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Series Introduction

The primary objectives of the Biostatistics series are to provide useful
reference books for researchers and scientists in academia, industry, and
government, and also to o¡er textbooks for undergraduate and=or graduate
courses in the area of biostatistics. This book series will provide compre-
hensive and uni¢ed presentations of statistical designs and analyses of
important applications in biostatistics, such as those in biopharmaceuti-
cals. A well-balanced summary will be given of current and recently
developed statistical methods and interpretations for both statisticians
and researchers=scientists with minimal statistical knowledge who are
engaged in the ¢eld of applied biostatistics. The series is committed to
providing easy-to-understand, state-of-the-art references and textbooks.
In each volume, statistical concepts and methodologies will be illustrated
through real world examples.

Medical and pharmaceutical research are lengthy and costly processes,
which involves discovery, formulation, laboratory development, animal stu-
dies, clinical development, and regulatory submission. These lengthy pro-
cesses are necessary not only for understanding of the target disease but
also for providing substantial evidence regarding e⁄cacy and safety of the
pharmaceutical entity under investigation prior to regulatory approval. In
addition, it provides assurance that the pharmaceutical entity will possess
good characteristics such as identity, strength, quality, purity, and stability
after regulatory approval. Statistics plays an important role in medical and
pharmaceutical research not only to provide a valid and fair assessment of
the pharmaceutical entity under investigation prior to regulatory
approval, but also to assure that the pharmaceutical entity possesses good
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characteristics with a desired accuracy and reliability. Applied Statistical
Designs for the Researcher is a condensation of various useful experimental
designs that are commonly employed in the medical and pharmaceutical in-
dustries. It covers important topics in medical and pharmaceutical research
and development such as complete randomized two-factor factorial designs,
small scale pilot designs, and nested designs. This volume provides useful
approaches to medical and pharmaceutical research. It would be bene¢cial
to biostatisticians, medical researchers, and pharmaceutical scientists who
are engaged in the areas of medical and pharmaceutical research.

Shein-Chung Chow

iv Series Introduction



Preface

This book is a condensation of the most useful experimental designs I have
employed over the past twenty years. Initially, I was trained in medical
microbiologywith a strong background in applied statistics. Once I ¢nished
graduate school, I began work in the medical^pharmaceutical industry.
Then, I worked on solid dosage form process validations, from which I
learned the problems of using very complex statistical designs requiring
many theoretical assumptions that were assumed to be true, but could not
be assured. Reproducibility was the major problem. I began to use practi-
cal, robust, and easily understood designs whenever possible from that
moment forward.

It was not long before I began working in clinical trials of both parent-
eral and topical drugs.Most of my experience in this area was in bioequiva-
lency using regression analysis. From this I learned the value of small-scale
pilot studies, determining which product of several was the most e¡ective,
as well as determining use or label instructions.When I launched my own
biotechnology company, BioScience Laboratories, Inc., in 1991, the
opportunity arose for greatly expanding statistically based studies in
microbial death-rate kinetics, skin biotechnology, and clinical trials of
topical antimicrobials.

This book represents the most useful approaches to research based on
what I have learned over these years.The ¢rst chapter,‘‘Research and Statis-
tics,’’ is a broad discussion of experimental process. Chapter 2, ‘‘Basic
Review of Parametric Statistics,’’ is a review of basic statistics. It is assumed
that the reader knows how to perform basic statistical operations, such as
deriving values of the mean and the standard deviation. However, no other
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knowledge is required. Chapter 3, ‘‘Exploratory Data Analysis,’’ provides
methods that enable the researcher to evaluate quickly the form of the data
prior to computing a statistic. It involves the researcher intimately with the
data so as to see the general data distribution, skewness, and outliers.Chap-
ter 4, ‘‘Two-SampleTests,’’ is an in-depth view of the statistical workhorse,
the Student’s t-test.Three varieties are covered: comparisonsof two di¡erent
groups with di¡erent variances, two groups with the same variance, and
matched, paired groups. The power, the detectable di¡erences, and sample
size calculations are also provided.

Chapter 5, ‘‘Completely Randomized One-Factor Analysis of Var-
iance,’’ introduces the analysis of variance (ANOVA) design; Chapter 6,
‘‘One and Two Restrictions on Randomization,’’ further expands ANOVA
designs and introduces Latin square designs; and Chapters 7, ‘‘Completely
Randomized Two-Factor Factorial Designs,’’ and 8, ‘‘Two-Factor Factorial
Completely Randomized BlockedDesigns,’’ present more complex ANOVA
designs.

Chapter 9, ‘‘Useful Small-Scale Pilot Designs: 2k Designs’’ presents
very useful screening approaches to comparing two factors and their inter-
actions.Chapter 10,‘‘Nested Statistical Designs,’’ provides the reader with a
background on common hierarchical ANOVA designs. Chapter 11, ‘‘Linear
Regression,’’ is a complete introduction to regression analysis, as well as to
many ways of comparing the various con¢dence levels within the analysis.

Chapter 12, ‘‘Nonparametric Statistics,’’ presents nonparametric ana-
lysis analogs to the parameteric ones previously presented. Unique to this
book, the nonparametric analogs of their parametric counterparts are clas-
si¢ed according to the strength of the collected data: nominal (qualitative
non-rankable), ordinal (qualitative rankable), and interval continuous quan-
titative data. Finally, Chapter 13, ‘‘Introduction to Research Synthesis and
Meta-Analysis and Concluding Remarks,’’ provides a brief introduction to
meta-analysis.

I wish to dedicate this book to my ¢rst statistics professor and the
person who stimulated my love of statistics, the late Edward Perrasini of
Great Falls,Montana.He was a teacher’s teacher.

Iwant to thank JohnA.Mitchell, Ph.D., for his excellent and persistent
editing of this book, Tammy Anderson for managing the process, and the
wonderful personnel at Marcel Dekker, Inc., speci¢cally Maria Allegra and
Brian Black.

Daryl S. Paulson

vi Preface



Contents

Series Introduction iii
Preface v

1. Research and Statistics 1
2. Basic Review of Parametric Statistics 21
3. Exploratory Data Analysis 49
4. Two-Sample Tests 81
5. Completely Randomized One-Factor Analysis of Variance 123
6. One and Two Restrictions on Randomization 185
7. Completely Randomized Two-Factor Factorial Designs 243
8. Two-Factor Factorial Completely Randomized

Blocked Designs 309
9. Useful Small-Scale Pilot Designs: 2kDesigns 347

10. Nested Statistical Designs 393
11. Linear Regression 433
12. Nonparametric Statistics 519
13. Introduction to Research Synthesis andMeta-Analysis

and Concluding Remarks 607

Appendix: Tables of Mathematical Values 611
References 687
Index 691

vii





1

Researchand Statistics

The vastmajority of researchers are familiar with, if not experts in, a speciali-
zed ¢eld outside statistics, such as chemistry, biology, microbiology, medi-
cine, pharmacy, animal science, sports medicine, botany, or zoology. This
book is written for them.

Researchers do not need to be statisticians in order to perform qual-
ity research as long as they understand the basic principles of experimental
design and apply them. In this way, the statistical method can usually be
kept relatively simple and can provide straightforward answers. Underlying
all research is the need to present the ¢ndings in a clear, concise manner.
This is particularly important if one is defending those ¢ndings before a
regulatory agency, explaining them to management, or looking for funding
from a particular group.

Research validity can be assured by understanding how to use statis-
tics properly. Compromised research validity can occur when conducting
an experiment prior to designing the study and, afterward, determining
what the numbers mean [1]. In this situation, researchers generally need to
consult a professional statistician to extract any useful information be-
cause there is no easy repair. An even more serious situation can occur
when a researcher evaluates the data using several statistical methods and
selects the one that provides the results most favorable to a preconceived
conclusion. It is important, then, that the statistical method to be used is
chosen prior to conducting the study.
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I. EMPIRICAL RESEARCH

Valid statisticalmethods, as described in this text, require objective observa-
tion and measurement, consisting of observing an event or phenomenon
under controlled conditions where as many extraneous in£uences as possi-
ble are eliminated [2].Valid statisticalmethods employed in experimentation
require at least four characteristics [3]:

1. Collection of sample data, performed in a unbiased manner
2. Accurate, objective observation and measurement
3. Interpretation of data-based results
4. Reproducibility of the observations and measurements

The controlled experiment is a fundamental tool for the researcher.
In controlled experiments, a researcher selects samples at random from
the population or populations of interest. One sample set is usually desig-
nated the control group and is the standard, or reference, for comparison.
The other group (or groups) is the test group, the one to be subjected to the
speci¢c test condition one wishes to observe and measure. Other than the
test condition(s), the control and test groups are treated in the same way.
For example, if an experiment is designed to evaluate the e¡ectiveness of a
surgical scrub solution in removing normal micro£ora from the hands, in-
dividuals from a population of healthy volunteers are assigned randomly to
either the control group (no scrub) or the test group (scrub). Randomiza-
tion ensures that each person is as likely to be assigned to the test group as
to the control group.

II. BIASES

Measurement error has two components, a random one and a systematic
one. Random error is unexplainable £uctuation in the data that remains
beyond the researcher’s ability to attribute a speci¢c cause.We discuss ran-
dom error in Sec. IVof this chapter. Systematic error, or bias, is error that is
not the consequence of chance alone. And systematic error, unlike random
£uctuation, has a direction and magnitude.

Researchers cannot will themselves to take a purely objective per-
spective on research, even if they think they can [4]. The researcher has
personal desires, needs, wants, and fears that unconsciously come into
play by ¢ltering, to some degree, the research, particularly when inter-
preting the data’s meaning [5]. Also, shared, cultural values of the scien-
ti¢c research community bias the researcher’s interpretations with preset
expectations. This makes it very di⁄cult to get outside the box to perform
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new and creative research. Particularly dangerous is the belief of a re-
searcher that he or she is without bias.

Knowing the human predisposition to bias, it is important to collect
data by methods of randomization and blinding. It is also helpful to the
researcher to hone his or her mind continually by developing several impor-
tant characteristics:

Openness
Discernment
Understanding

A. Openness

It is important that the research problem, the research implementation, and
the interpretationof the data receive the full,open attentionof the researcher.
Open attention can be likened to theTaiost term wu wei, or noninterfering
awareness. That is, the researcher does not try to interpret initially but,
instead, is aware. In this respect, even though unconscious bias remains, the
researcherdoesnot consciouslyoverlaydatawith theoretical constructs con-
cerning how the results should appear.One should strive to avoid consciously
bringing to the research process any preconceived values. This is di⁄cult
because those of us who perform research have conscious and unconscious
biases. Probably the best way to remain consciously open for what is is to
avoid becoming overly invested in speci¢c theories and explanations.

B. Discernment

Accompanying openness is discernment�the ability not only to be pas-
sively aware but also to go a step further, to see into the heart or root of the
experiment and uncover information not immediately evident while not
adding information that is not present. Discernment can be thought of as
one’s internal nonsense detector.Unlike openness, discernment enables the
researcher to draw upon experience to di¡erentiate fact from supposition,
association from causation, and intuition from fantasy. Discernment is
accurate discrimination with respect to sources, relevance, pattern, and
motives by grounding interpretation in the data and one’s direct experience.

C. Understanding (Verstehen)

Interwoven with openness and discernment is understanding. Researchers
must understand�that is, correctly interpret�the data, not merely observe
an experiment.Understanding what is, then, is knowing accurately and pre-
cisely what the phenomena mean. This type of understanding is attained
when intimacy with the data and their meaning is achieved and integrated.
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In research, it is not possible to gain understanding by merely observing
phenomena and analyzing them statistically. One must interpret the data
correctly, a process enhanced by at least three conditions:

1. Familiarity with themental processes by which understanding, and
hence meaning, is obtained must exist. And much of this meaning
is shared. Researchers do not live in isolation but live within a
culture�albeit scienti¢c�that, nevertheless, operates through
shared meaning, shared values, shared beliefs, and shared goals.
In addition, one’s language�both technical and conversant�is
held together by both shared meaning and concepts. Because each
researcher tries to communicatemeaning to others,understanding
the semiotics of communication is important [6]. For example, the
letters�marks�on this page are signi¢ers.They are symbols that
refer to collectively de¢ned (by language) objects, or concepts,
known as referents.However, each individual has a slightly unique
concept of each referent stored in memory, termed the signi¢ed.
For instance, when one says or writes tree, the utterance or letter
markings of t-r-e-e, this signi¢er represents a culturally shared
referent, the symbol of a wooden object with branches and leaves.
Yet, unavoidably, you and I have slightly di¡erent concepts of the
referent tree.Mymental signi¢edmay be an oak tree; yoursmay be
a pine tree.

2. Realization that an event and the conception of an event are not the
same. Suppose a researcher observes event A1 at time t1 (Fig. 1).
The researcher describeswhat she or he witnessed at time t1, which
is now a description,A2, of eventA1at time t2. Later, the researcher
distances himself or herself even farther from event A1 by review-
ing the laboratory notes on A2, a process that produces A3. Notice
that this process hardly represents a direct, unbiased view of A1.
The researcher generally interprets data (A3) that, themselves, are
interpretations of data to some degree (A2) based on the actual
occurrence of the event,A1 [7].

3. Understanding that a scienti¢c system itself (e.g., biology, geology)
provides a de¢nition of most observed events that transfers inter-
pretation,which is again reinterpreted by researchers.This, in itself,
isbiasing,particularly inthat itprovidesapreconceptionofwhat is.

III. THE EXPERIMENTAL PROCESS

Inpractice,theexperimentalprocess isusually iterative.Theresultsofexperi-
ment A become the starting point for experiment B, the next experiment
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(Fig. 2). The results of experiment B become the starting point for ex-
perimentC.Let us lookmore closely at the iterative process in an example.

Suppose one desires to evaluate a newly developed antimicrobial at
¢ve incremental concentration levels (0.25, 0.50, 0.75, 1.00, and 1.25%) for
its antimicrobial e¡ects against two representative pathogenic bacterial
species: Staphylococcus aureus, a gram-positive bacterium, and Escherichia
coli, a gram-negative one. The researcher designs a simple, straightforward
test to observe the antimicrobial action of the ¢ve concentration levels
upon challenge for 1 minute with speci¢c inoculum levels of S. aureus and
E. coli. Exposure of the two bacterial species to the ¢ve levels of the drug
demonstrates that the 0.75 and 1.00% concentrations are equivalent in
their antimicrobial e¡ects and 0.25, 0.50, and 1.25% are much less anti-
microbially e¡ective.

Encouraged by these results, the researcher designs another study,
focusing on the 0.75 and 1.00% drug formulations, to compare their anti-
microbial properties, now against 13 di¡erent microbial species, and to
select the better formulation (more antimicrobially active). However, the
two formulations perform equally well against the 13 di¡erent species of
microorganisms.The researcher then expands the scope of the next study to
use the same 13 microorganisms but at reduced exposure times, 15 seconds
and 30 seconds, and adds a competitive product to use as a reference.

FIGURE 1 Fact^ interpretation gradient of experimental processes.
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The two formulations again perform equally well and signi¢cantly bet-
ter than the competitor.The researcher now believes that one of the formula-
tions may truly be a candidate to market, but which active concentration?
Product cost studies, product stability studies, etc. are conducted, and still
the two formulations are equivalent.

Finally, the researcher performs a human clinical trial to compare the
two products’antibacterial e⁄cacy as well as their skin irritation potential.
Although the antimicrobial portion of the study reveals activity equivalence,
the skin irritation evaluation demonstrates that the1.00% product is signi¢-
cantly more irritating to users’ hands. Hence, the formulation candidate is
the 0.75% product.

This is the type of process commonly employed in new product devel-
opment projects. Because research and development e¡orts are generally
subject to tight budgets, small pilot studies are preferred to larger, more
costly ones.Usually, this is ¢ne because the experimenter has intimate, ¢rst-
hand knowledge of the research area as well as an understanding of its theo-
retical aspects.With this knowledge and understanding, the researcher can
usually ground the meaning of the data in the observations, even when the
number of observations is small.

Yet, researchers must be aware that there is a downside to this step-
by-step approach. When experiments are conducted one factor at a time,

FIGURE 2 Iterative approach to research.
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if interaction between factors is present, it will not be discovered. Statistical
interaction occurs when two or more products do not produce the same
proportional response at di¡erent levels of measurement. Figure 3 depicts
log10 microbial counts after three time exposures with product A (50%
strength) and product B (full strength). No interaction is apparent because,
over the three time intervals, the di¡erence between the product responses
is constant.

Figure 4 portrays statistical interaction between factors. At time t1,
product A provides more microbial reduction (lower counts) than product
B.At time t2, product Ademonstrates less reduction in microorganisms than
product B.At time t3,productsA andB are equivalent.When statistical inter-
action is present, it makes no sense to discuss general e¡ects of products A
and B. Instead, one must discuss product performance relative to a speci¢c
exposure time frame, that is, at times t1, t2, and t3.

In addition, researchersmust realize that reality cannot be broken into
small compartments to know it in toto.Although this book is devotedmainly
to small study designs and much practical information can be gained by
using small studies, by themselves, they rarely provide a clear perspective
on the whole situation.

We humans tend to think and describe reality in simple cause-and-
e¡ect relationships (e.g.,AcausesB).But, in reality,phenomenaseldomshare
merely linear relationships, nor do they have a simple, one-factor cause [8].
For example, in medical practice, when a physician examines a patient
infected with S. aureus, the physician is likely to conclude that S. aureus
caused the disease and proceed to eliminate the o¡ending microorganism

FIGURE 3 No interaction present.
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from the body. Yet, this is not the complete story. The person’s immune
system�composed of the reticuloendothelial system, immunocytes,
phagocytes, etc.�acts to prevent infectious diseases from occurring and to
¢ght themonce the infectious process begins.The immune system is directly
dependent upon genetic predisposition, modi¢ed through one’s nutritional
state, psychological state (e.g., sense of life’s meaning and purpose), and
stress level. In a simple case like this, inwhich oral administration of an anti-
biotic cures the disease, knowledge of these other in£uences usually does not
matter.But in more complicated chronic diseases such as cancer, these other
factorsmayplayan important part in treatmente⁄cacyand thesurvivalof the
patient.

IV. OTHER DIFFICULTIES IN RESEARCH

There are three other phenomena that may pose di⁄culties for the experi-
menter:

Experimental (random) error
Confusing correlation with causation
Employing too complex a study design when a simpler one would be

as good

A. Experimental Error

Random variability�experimental error�is produced by a multitude of
uncontrolled factors that tend to obscure the conclusions that can be drawn

FIGURE 4 Interaction present.
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from an experiment with a small sample size. This is a very critical
consideration in research in which small sample sizes are the rule because it
is often di⁄cult to detect signi¢cant treatment e¡ectswhen they truly exist, a
type II error.

One or two wild data points (outliers) in a small sample can distort the
mean and hugely in£ate the variance, making it nearly impossible to make
inferences�at least meaningful ones. Therefore, before becoming heavily
invested in a research project, the experimenter should have an approxima-
tion of what the variability of the data is and establish the tolerable limits for
both the alpha (a) and beta (b) errors so that the appropriate sample size is
tested. Recall that a error (type I error) occurs when rejecting a true null hy-
pothesis, and b error (type II error) is committed by failing to reject a false
null hypothesis. In other words, aerror occurs when one states that there is a
di¡erence between treatments when there actually is not, and b error occurs
when one concludes that there is no di¡erence between treatments when
there is.

Traditionally, type I error�a error�is considered the more serious
and can be controlled by setting the a level. But in research and development
(R&D) studies, type II error is also serious. For example, if one is evaluating
several products, particularly when using a small sample size per treatment
group, there is a real problemof concluding statistically that the products are
not di¡erent from each other when they are. It should be pointed out that, as
one tightens a error, that is, reduces its probability of occurrence, the prob-
ability of committing a b error increases.The reverse is also true.

The simplest way to control both a and b errors is to use more experi-
mental replicates, but the increases in cost may prohibit this. Another viable
method is to use larger a values to reduce b error.That is, use an a of 0.10 or
0.15 instead of 0.05 or 0.01. Also, using more powerful statistical procedures
can immensely reduce the probability of committing b error.

B. Confusing Correlation with Causation

Correlation is a measure of the degree to which two variables vary linearly in
relationship to each other. For example, in comparing the number of
lightning storms in Kansas with the number of births in NewYork City, you
discover a strong positive correlation: the more lightning storms in Kansas,
themore children born inNewYorkCity (Fig. 5). Although the two variables
appear to be correlated su⁄ciently to claim that the increased incidence of
lightning storms in Kansas caused increased childbirth in NewYork, corre-
lation is not causation. Correlation between two variables, X and Y,
often occurs because they are both associated with a third factor, Z, that
is unknown. There are a number of empirical ways to verify causation,
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and generally these do not rely on statistical inference. So, until causation is
truly demonstrated, it is preferable to state that correlated data areassociated
rather than causally related.

C. Complex Study Design

In many research situations, especially those involving human subjects in
medical research clinical trials, the study design must be complex in order
to better evaluate the dependent variable(s).But whenever possible, it is wise
to use the rule of parsimony. That is, use the simplest and most straight-
forward study design available. Even simple experiments can quickly
become complex. Adding other questions, although interesting,will quickly
make them that way. I often ¢nd it useful to state formally the study objec-
tives, the choice of experimental factors and levels (that is, independent vari-
ables), the dependent variable one intends to measure to ful¢ll the study
objectives, and the study design selection. For example, suppose a bio-
chemist is evaluating the log10 reduction in S. aureus bacteria after a 15-
second exposure to a new antimicrobial compound produced in several pilot
batches. The biochemist wants to determine the 95% con¢dence interval

FIGURE 5 Correlation between unrelated variables.
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for the true log10 microbial average reduction. This is simple enough, but
then the chemist asks:

1. Is there signi¢cant lot-to-lot variation in the pilot batches? If there
is, perhaps one is signi¢cantly more antimicrobial than the other.

2. What about subculture-to-subculture variability in antimicrobial
resistance of the strain of S. aureus used in testing? If one is inter-
ested in knowing whether the product is e¡ective against S.aureus,
what number of strains must be evaluated?

3. What about lot-to-lot variability in the culture medium used to
grow the bacteria? The chemist remembers supplier A’s medium
supporting signi¢cantly higher microbial populations than that of
supplier B. Should both be tested? Does the medium have signi¢-
cant e¡ects on log10 microbial reduction variability?

4. What about procedural error by technicians and variability
between technicians? Evaluation of the training records shows
technician A to be more accurate than technicians B and C. How
should this be handled?

As one can see, even a very simple study can�and often does�become
complex.

V. BASIC TOOLS IN EXPERIMENTAL DESIGN

There are three basic tools in statistical experimental design:

Replication
Randomization
Blocking

Replication means that the basic experimental measurement is re-
peated. For example, if one was measuring the CO2 concentration of blood,
themeasurementswould be repeated several times under controlled circum-
stances. Replication serves several important functions. First, it allows the
investigator to estimate the experimental or random error through the sam-
ple standard deviation (S) or sample variance (S2).This estimate becomes a
basic unit of measurement for determining whether observed di¡erences in
the data are statistically signi¢cant.Second, if the samplemean ( �XX ) is used to
estimate a true population mean (m), replication enables the investigator to
obtain amore precise estimate of themean. If S2 is the sample variance of the
data for n replicates, then the variance of the sample mean is S2

�xx ¼ S2=n.
The practical aspect of this is that, if no or few replicates are made, the

investigator may be unable to make a useful inference about the value of the
population mean, m. However, if the sample mean computation is based on
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replicated data, one can estimate the population mean, m, more accurately
and precisely. This will become more evident as we discuss further the
mean, the standard deviation, and the1�acon¢dence intervals.

Randomization of a sampling process is a mainstay of statistical analy-
sis.Nomatter how careful an investigator is in eliminating bias, it still creeps
into the study. In addition,when a variable cannot be controlled, randomized
sampling can negate any biasing e¡ect. Randomization schemes can be
achieved by using a table of random numbers or a computer-generated ran-
domization subroutine. Through randomization, each experimental unit is
as likely to be selected for a particular treatment or measurement as any of
the others.

Blocking is another common statistical technique used to increase the
precision of an experimental design. It is used to reduce or even eliminate
nuisance factors that in£uence themeasured responsesbut are not of interest
to the study.Blocks consist of groups of the experimental unit chosen so that
each group is more homogeneous with respect to some variable than the col-
lection of experimental units as a whole. Blocking involves subjecting the
block to all the experimental treatments and comparing the treatment e¡ects
within each block. For example, in a drug absorption study, an investigator
may have four di¡erent drugs to compare. The investigator may block
according to similar weights of test subjects. The four individuals between
120 and 125 pounds may be in block 1, and each randomly receives one of
the four test drugs. Block 2 may contain the four individuals between 130
and 135 pounds.The rationale is that the closer the subjects are to the same
weight, the closer the baseline liver functions will be.

The statistical method selected depends, in part, on the data distribu-
tion (normal, skewed, bimodal, exponential, binomial, or other). As will
be explained (Chap. 3), the use of exploratory data analysis (EDA)
procedures can help the investigator select the appropriate statistical
method and develop an intuitive feel for the data before the actual statisti-
cal analysis occurs.

VI. STATISTICAL METHOD SELECTION: OVERVIEW

The statistical method, to be appropriate, must measure and re£ect the data
accurately and precisely [8, 9, 10, 11]. The test hypothesis should be formu-
lated clearly and concisely. If, for example, the study is designed to test
whether products A and B are di¡erent, statistical analysis should provide
an answer.

Roger H.Green, in his book Sampling Designs and Statistical Methods
for Environmental Biologists, describes 10 steps for e¡ective statistical analy-
sis [12].These steps are applicable to any analysis:

12 Chapter 1



1. State the test hypothesis concisely to be sure that what you are
testing is what you want to test.

2. Always replicate the treatments. Without replication, measure-
ments of variability may not be reliable.

3. Insofar as possible, keep the number of replicates equal through-
out the study. This practice makes it much easier to analyze the
data in order to produce more reliable results.

4. When determining whether a particular treatment has a signi¢-
cant e¡ect, it is important to take measurements both where the
test condition is present and where it is absent.

5. Perform a small-scale study to assess the e¡ectiveness of the
design and statistical method selection before going to the e¡ort
and expense of a larger study.

6. Verify that the sampling scheme one devises actually results in a
representative sample of the target population. Guard against
systematic bias by using techniques of random sampling.

7. Break a large-scale sampling process into smaller components.
8. Verify that the collected data meet the statistical distribution

assumptions. In the days before computers were commonly used
and programswere readily available, some assumptions had to be
made about distributions.Now it is easy to test these assumptions
to verify their validity.

9. Test the method thoroughly tomake sure that it is valid and useful
for the process under study. And, even if the method is satisfac-
tory for one set of data, be certain that it is adequate for other sets
of data derived from the same process.

10. Once these nine steps have been carried out, one can accept the
results of analysis with con¢dence.Much time, money, and e¡ort
can be saved by following these steps to statistical analysis.

Once an investigator has a general understanding of the products’
attributes, she or he must choose a statistical method to analyze the data. At
times, the data are such that nonparametric methods are more appropriate
than parametric methods. For example, if budgetary or time constraints
force the investigator to use only a few replicates per test group or if some
requirements of the parametric method, such as a normal distribution of the
data, cannot be achieved or determined, then the nonparametric method is
the method of choice.There is also another reason.That is, under many con-
ditions, quantitative data cannot be collected.This is particularly true when
data are subjective and, hence, qualitative on the basis of arbitrary scales of
measure. An applied researcher can face this situation many times.We will
address some potential sources of qualitative data in Sec.Xof this chapter.
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Prior to assembling the large-scale study, the investigator should re-
examine (1) the test hypothesis, (2) the choice of variables, (3) the number of
replicates required to protect against type Iand type IIerrors, (4) the order of
the experimentation process, (5) the randomization process, (6) the appro-
priateness of the design used to describe the data, and (7) the data collection
and data-processing procedures to ensure that they continue to be relevant
to the study.

Let us now brie£y address the types of parametric and nonparametric
statistical methods available.

VII. PARAMETRIC TESTS

The parametric tests addressed in this book require that the data distribu-
tions be normal, an often unsubstantiated assumption. Speci¢cally, para-
metric tests require that certain conditions be met and, generally, these
include the following:

1. The data must be collected randomly,which is also a requirement
for nonparametric tests. That is, the selection of any one sample
item from a population must not be more probable than the selec-
tion of any of the others; each sample is then as likely to be selected
as any other one.

2. The observations must be normally distributed (¢t a bell-shaped
curve) or nearly so.

3. When multiple populations are sampled, they must have similar
variances (s2).

4. The sample data involved must have been measured, at least, on an
interval scale or one that approximates it (e.g., some discrete dis-
tributions, such asmicrobial counts, numbers of animals, numbers
of cells, can be used).

Interval data can be ranked, as well as be subdivided, into an in¢-
nite number of intervals that are objectively meaningful (102.915,
1�10�5, 1.3000, 7.23914,...). Usually, interval data relate to some stan-
dard physical measurement (e.g., height, weight, blood pressure, the
number of deaths). Subjective perception of degrees of pregnancy, pres-
tige, or social status, for instance, cannot be translated into interval data,
despite a number of research studies erroneously categorizing them as
such. Extreme caution must be used when using quantitative methods
to analyze what are actually qualitative data, or nonsensical analyses re-
sult (e.g., variance of subjective preferences).
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Common parametric statistical methods include the following:

1. Student’s t-test. This is probably the most common parametric
statistical test used in research. It is often used to compare two
groups of data (a test and a control group or two test groups). It
can also be used to compare a test group with a speci¢c value, as a
one-tail test to determine whether one group is signi¢cantly better
or worse than other, or as a two-tail test to determine whether they
simply di¡er.

2. Analysis of variance (ANOVA): Analysis of variance is a common
parametric technique usually used to compare more than two
groups.There are a number of variants of ANOVAused to analyze
one-factor, two-factor, and three-factor designs as well as cross-
over and nested designs.

3. Regression analysis: Regression analysis is a common parametric
statistical procedure used where rates of change and trending are
evaluated.

VIII. NONPARAMETRIC TESTS

Most nonparametricmethods do not require the data to ¢t a normal distribu-
tion or to have the same variances,whenmultiple populations are compared,
nor do they require the sample data tobe of interval scale.Randomsampling,
however, is a requirement. Nonparametric tests do not use the usual para-
meters (mean, standard deviation, or variance), and they can be used to eval-
uate nominal or ordinal data.

Nominal data can be grouped but not ranked. Data such as right=left,
male=female, yes=no, and 0=1 are examples of nominal data, and such data
consist of numbers used only to classify an object, person, or characteristic.

Ordinal data can be both grouped and ranked. Examples include
good=bad, poor=average=excellent, and lower class=middle class=upper
class.Nonparametric methods are also often used for interval data when the
sample size is very small or the data distribution cannot be assumed to be
normal, a requisite for use of parametric tests.

Common nonparametric tests include the following:

1. Wilcoxon^Mann^Whitney Test: This test is the nonparametric
analog of the two independent sample Student’s t-test. Unlike the
parametric Student’s t-test that assumes normal distributions, the
Wilcoxon^Mann^Whitney test requires only that the sample data
are randomly selected and that the population of data is of at least
ordinal scale.
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2. Kruskal^Wallis Test: This is the nonparametric analog of a one-
wayANOVA F-test, and it is used to compare multiple groups. For
example, suppose one wants to evaluate the relative antimicrobial
e¡ects of ¢ve di¡erent hand soaps; the Kruskal^Wallis test can be
used for this evaluation.

In many evaluations where the number of human subjects required to
perform the study is low and, thus, cost feasible, the best choice may well be
a nonparametric test. Many investigators simply will not have the funding
necessary to perform larger scale studies. However, there is a price to pay
when using nonparametric statistics.They are not as powerful as parametric
statistics and tend to err on the conservative side. If a parametric test
can barely detect a signi¢cant di¡erence between two treatments, the com-
parable nonparametric test more than likely would not be able to detect a
di¡erence.

IX. RESEARCHER’S PLACE IN THE LARGER PICTURE

Most researchers who read this book will recognize that they are parts in a
larger whole, a corporate entity, for example. In industrial research,much of
a researcher’s work will be in new product development and in comparative
product studies in industrieswhere intense levels of competition are present.
There will also be the pressure from the ever-tightening control of regulating
agencies expecting valid scienti¢c and statistical studies. In the medical
topical antimicrobial market, for example, product requirements include
high, broad-spectrum antimicrobial e¡ectiveness, low skin irritation poten-
tial upon repeated and prolonged use, ease of use, and aesthetic appeal. If
these aspects have been addressed successfully, the product has a good
chance of being a success.But too often, these important factors are ignored,
and the product is never really accepted in the market. Because the goal is to
introduce products into a market that has multiple determinants of a
product’s success, it is best to develop the product from a multidimensional
perspective. At least four di¡erent domains exist and should be addressed in
R&Dprojects: (1) social, (2) cultural, (3) personal objective, and (4) personal
subjective. Let me £esh out this type of model so that it is more accessible to
readers.

X. FOUR-DOMAIN MODEL

Let us look at the situation of bringing a new antimicrobial product
to market.
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A. Social Requirements

Social requirements in new antimicrobial product development include con-
forming to standards set by regulating agencies, such as the Food and Drug
Administration (FDA), the Federal Trade Commission (FTC), and the
Environmental Protection Agency (EPA), as well as the rules, laws, and reg-
ulations they enforce. Before developing a product, it is critical to under-
stand the current legal regulations governing the product and the product’s
components and their levels as well as product stability and toxicological
concerns. Although probably not a great deal of statistical analysis will be
used in this domain, it is a critical component in the statistical work. For
example, a New Drug Application (NDA) is required in order to market a
regulated drug product. For over-the-counter (OTC) products, the active
drug and its dosage must be both legal and within allowable limits.

B. Cultural Requirements

Cultural requirements are very important but are often ignored by
researchers. Cultural and subcultural requirements include shared inter-
personal values, beliefs, goals, and the world views of a society or subgroup
of society. Shared values such as perceived antimicrobial e¡ectiveness have
much in£uence on consumers, professional and domestic. These values are
generally of two types: manifest and latent. A consumer is conscious of
manifest (surface) values. For example, consumers buy an antimicrobial
soap to be cleaner than they can be using a non-antimicrobial soap. But
deeper and more fundamental values are also present [13,14]. These are
referred to as latent values and are unconscious in that the consumer is
not aware of them. In this case, cleaner may mean to the consumer such
things as being accepted, valued, loved, and worthwhile as a person,
spouse, and=or parent.

Most manifest and latent values that we share as a culture are magni-
¢ed by manufacturers’ advertising campaigns. The consumer will be moti-
vated by both the manifest and latent values. For example, if homemakers
perceive that they are taking better care of the children by having them use
antimicrobial soaps (a manifest value), and if they feel more valuable, more
lovable, and=or more needed by their family, etc. (latent values), they will be
motivated to purchase the product.Or, in the hospital setting, there are prac-
tices considered better than others. For example,when chlorhexidine gluco-
nate was ¢rst used as a preoperative skin preparation, many surgical sta¡
members refused to use it.The data demonstrated that the product was anti-
microbially e¡ective, but it still was not used. It was not until subjective data
were collected that nonparametric statistical analysis showed that it was not
used because, once it dried on the skin, it could not be seen as readily as the
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standard povidone iodine. Sta¡ members derived shared meaning and value
by being able to see the iodine covering the proposed operative site.To solve
this problem,chlorhexidine gluconate manufacturers added a reddish dye to
stain the skin.

Finally, much of what consumers believe to be true is not grounded in
objective reality.Most of these beliefs are formed from consumers’ interpre-
tation of mass media reports, opinions of others, and explanations of
phenomena from various notorious sources.

C. Personal Objective Attributes

Physical components of a product include its application, its antimicrobial
actions, and its irritating e¡ects on skin and environment (e.g., staining
clothing, gowns, and bedding). It is important that productsbe designedwith
the individual in mind.Hence, products must be easy to use, easy to open (if
in a container), and e¡ective for their intended use (e.g., food service, in-
home, or medical and surgical personnel applications).This region is gener-
ally subject to both parametric and nonparametric methods.

D. Personal Subjective Attributes

This category includes one’s personal interpretation of cultural and subcul-
tural world views. In relation to antimicrobials, these include, for example,

FIGURE 6 Quadrant modelof attribute categories.
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subjective likes and dislikes of characteristics such as the fragrance and feel
of the product, the perceived quality of the product, and other aesthetic con-
siderations. As with cultural attributes, there are manifest and latent values
in this category. Hence, if one likes the springtime fragrance of a consumer
body wash (manifest), the latent or deeper valuemay be that it makes one feel
younger and, therefore, more physically attractive and desirable as a person.
This region is usually better approached with nonparametric methods.

These four attribute categories are presented in quadrant form
(Fig. 6). Each quadrant interacts with the other three quadrants. For
example, cultural values in£uence personal values and vice versa. Cultural
and personal values in£uence behavior, and behavior in£uences values.

XI. CONCLUSION

With this said, it certainly cannot be the sole responsibility of a single
researcher to evaluate products in all four dimensions.Yet, it is critical from
a business perspective that, as a group e¡ort, this be done if a product is to
achieve and sustain a competitive advantage.
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2

Basic Reviewof Parametric Statistics

In this chapter,we discuss fundamental statistical procedures. It is assumed
that the reader has had an introductory statistical course and this chapter
will serve merely as a review.

I. THE NORMAL DISTRIBUTION

For most of the statistical models developed and described in this text, the
data are assumed to be from a normal (bell-shaped or Gaussian) distribu-
tion. The normal distribution is perhaps the most important distribution
encountered in statistical applications. A good reason for this is that
many measurements have observed frequency distributions that closely
resemble the normal distribution�for example, intelligence quotients,
weights and heights of individuals, speeds of runners, and chemical reac-
tion times.

There is another reason why the normal distribution is so important in
statistics. A theoretical property of the sample mean, the central limit theo-
rem, allows one to use the normal distribution to ¢nd probabilities for var-
ious test results, even when the data are not normal, as long as the sample
size is large. Hence, the normal distribution has a basic role to play in many
situations, particularly in research experiments,when only the sample mean
can be known.

Normally distributed data describe a curve (Fig. 1) that is bell-shaped,
with a single central peak, termed ‘‘unimodal.’’A normal distribution is sym-
metric about its center, with the mean, the mode, and the median at that
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center, all with the same value.* Theoretically, the tails of the normal distri-
bution extend to in¢nity, never quite touching the horizontal (x) axis.y

We say that a population having a shape approximating the normal dis-
tribution is approximately ‘‘normally distributed.’’ The normal curve is de-
pendent upon two values, m and s, the population mean and the standard
deviation, respectively.Note also that the area under the curve is always1.

Figure 2 provides examples of distributions that are not normal. Dis-
tributionsAandBare examples of skeweddistributions.CurveA is said tobe
skewed to the left and curve B to the right. Distribution C is a bimodal dis-
tribution, and distribution D is a uniform distribution.

Figure 3 illustrates three di¡erent populations, eachwith amean equal
to 80. Yet, note that the data distributions are di¡erent in spread, meaning
that their standard deviation values di¡er.Distributionswith small standard
deviations have narrow, peaked bells, and those with larger standard devia-
tions have wide, £attened bells. The normal curve is symmetric about the
mean and the area under the curve from a to b depends only on the distance,

FIGURE 1 Frequency distribution for the normal.

*Note that themode is the value that occursmost frequently.Themedian is the central value in an
ordered array of values.
y If y is a ‘‘normal’’ random variable, then the probability distribution function of y is

f ðY Þ ¼ 1
s

ffiffiffiffiffiffi
2p
p e

1
2ð Þ ðY�mÞsð Þ2

where�1 < m <1 is the mean of the distribution and s2 > 0 is the variance.
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measured in standard deviations, that separates the end points a and b from
the mean.

For example, about 68%of the values in a normal population lie within
one standard deviation (plus andminus) from themean, from m� s to mþ s.
That is, the area under the curve between m� s and m and the area under the
curve from m to mþ s, taken together, equal 0.68, or 68% of the data (Fig. 4,
curve A). It is also true that about 95% of the normal population lies within
2s of the mean, from m� 2s to mþ 2s, as depicted in curve B, and about

FIGURE 2 Nonnormal distributions.

FIGURE 3 Examples of normal distributions.
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FIGURE 4 Relationship betweenareaunder thenormal curve and the distance from
themean in standard deviations.
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99.7% within three standard deviations of the mean, from m� 3s to mþ 3s,
as depicted in curve C.

We will occasionally use the notation X � N ðm;s2Þ to denote that X is
normally distributed with a mean of m and a variance of s2. An important,
special case of the normal distribution is the standard normal distribution,
where m ¼ 0 and s2 ¼ 1.The statistic is converted to this scale for use of the
normal distribution tables A and B. In this case, the random variable,
Z ¼ ðX � mÞ=s, follows the standard normal distribution, Z � N ð0; 1Þ. This
equation transforms any normal random variable,X, into a standard normal
random variable,Z, that can then be used in a table of the cumulative stan-
dard normal distribution.

A statistical population is the set of all elements under observation.
This ‘‘population’’ exists whether all, some, or no observations have been
made. It may be real, such as the heights of all 30-year-oldmales in NewYork
State on January 15, 2005, or it may be hypothetical, such as the longevity of
laboratory mice fed a special diet. It is synonymous with‘‘universe’’ because
it consists of all possible elements.

Generally, the true population mean ðmÞ is not known and must be esti-
mated by the sample mean ð �XX Þ. The mean is a measure of central tendency,
the value around which the other values are distributed.The population var-
iance,designated bys2, is the degree towhich these values cluster around the
arithmetic mean ðmÞ. Generally, like the population mean, the population
variance is unknown and is estimated by S2, the sample variance.Under ran-
dom sampling (technically,when sampledwith replacement), S2 (the sample
variance) is an unbiased estimate of s2 (the population variance) [9]. How-
ever, the sample standard deviation,S, is not an unbiased estimate of the po-
pulation standard deviation, s.

In applied research, one is often interested in comparing two treat-
ments to determine whether the measured response from one treatment
group is signi¢cantly di¡erent from that of the other (two-tail test) or is sig-
ni¢cantly larger (upper tail) or smaller (lower tail). The basic test for this is
Student’s t-test,which is covered in detail in Chap. 4. For example, it may be
used to compare two chemical puri¢cation methods, two skin-moisturizing
products, or a new and an old (control) method of active ingredient extrac-
tions.The comparison of data from the two groups is usually made in terms
of their sample mean values (e.g., �XX1 and �XX2). Let us beginwith an example of
calculating the mean,variance, and standard deviation,which estimate their
population counterparts [10].

Suppose a researcher wants to test two types of paint for their average
time before cracking. Paint 1 is an oil-based paint, and paint 2 is a water-
based paint. The scores are the numbers of days the paints remain on the
test substance in an environmental chamber at 140�F before cracking is
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noticed. Five replicate wood carriers are used. The data are presented in
Table 1.

II. CALCULATION OF THE ARITHMETIC MEAN AVERAGE

The arithmetic mean, or average, is probably the most commonly encoun-
tered statistic.Technically, the mean is computed as:Pn

i¼1
Xi

n

where Xi ¼ value of the ith observation in the sample

n ¼ sample size¼ total number of values

In applied statistics, one can rarely know the population mean value ðmÞ, so it
is estimated by the sample mean ð �XX Þ. The unbiased, expected value of the
sample mean is m. That is, the sample mean is an unbiased estimate of the
population mean.

Paint 1 �xx1 ¼
P

xi
n
¼ 85þ 87þ 92þ 80þ 84

5
¼ 428

5
¼ 85:6 ð1Þ

Paint 2 �xx2 ¼
P

xi
n
¼ 89þ 89þ 90þ 84þ 88

5
¼ 440

5
¼ 88:0 ð2Þ

III. VARIANCE

The dispersion of the data, the scatter of the data about the populationmean,
ismeasured by the variance,s2.The population variances2 is, again in prac-
tice, estimated by the sample variance, S2.The expression for calculating the

TABLE1 Data Results

n Paint 1score Paint 2 score

1 85 89
2 87 89
3 92 90
4 80 84
5 84 88
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population variance is:

s2 ¼
PðXi � mÞ2

N
ð3Þ

where N is the population size, and which is estimated by the sample
variance:

S2 ¼
PðXi � �XX Þ2

n� 1
ð4Þ

Notice that the sample variance formula denominator is n� 1, not n, as one
might expect by analogy with the population variance. This is because one
degree of freedom is lost when m is estimated by �XX in the variance formula.

IV. CALCULATION OF SAMPLE VARIANCE

In practice, the formula:

S2 ¼
P

X 2
i � n �XX 2

n� 1
¼
P

X 2
i � ð

P
XiÞ2=n

n� 1
ð5Þ

is much easier to use, particularly with a calculator.

Paint 1

s21¼
Xðx1i� �xx1Þ2

n�1

¼ð85�85:60Þ
2þð87�85:60Þ2þð92�85:60Þ2

5�1
þð80�85:60Þ2þð84�85:60Þ2

5�1
¼77:20

4
¼19:30

Paint 2

s22 ¼
X ðx2i � �xx2Þ2

n� 1

¼ ð89� 88Þ2 þ ð89� 88Þ2 þ ð90� 88Þ2 þ ð84� 88Þ2 þ ð88� 88Þ2
5� 1

¼ 22
4
¼ 5:50
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V. STANDARD DEVIATION

The population standard deviation, s, has unique properties in that, for a
population of size N from a bell-shaped distribution, the mean plus or
minus (�) one standard deviation encompasses approximately 68% of the
data.Plus orminus (�) two standarddeviations encompasses approximately
95% of the data, and � three standard deviations encompasses approxi-
mately 99.7% of the data.More about this later.

The population standard deviation,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðX � mÞ2

N

s
¼

ffiffiffiffiffiffi
s2
p

ð6Þ

is estimated by sample standard deviation,

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðXi � �XX Þ2

n� 1

s
¼

ffiffiffiffiffi
S2
p

ð7Þ

This is merely the square root of the variance.

VI. CALCULATIONS OF SAMPLE STANDARD DEVIATION

Paint 1:

s1 ¼
ffiffiffiffi
s21

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
19:30
p

¼ 4:39

Paint 2:

s2 ¼
ffiffiffiffi
s22

q
¼

ffiffiffiffiffiffiffiffiffi
5:50
p

¼ 2:35

VII. QUALITATIVE AND QUANTITATIVE VARIABLES

There are two basic kinds of variables in statistics, distinguished by the form
of the characteristic of interest.When the characteristic can be expressed
numerically, in a meaningful way, such as weight, height, speed, cost, stabi-
lity, or number, the variable is termed quantitative.When the characteristic is
nonnumerically operational, such as sex, category, lot, batch, or occupation,
the variable is said to be qualitative.Di¡erent methods will be introduced for
describing and summarizing each type of variable. The di¡erence in proce-
dure stems from the fact that arithmetic operations canbe performedonly on
numbers. For example, one can calculate the average weight of a collection
of individual laboratory rats, but other procedures must be employed to
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summarize qualitative data.Qualitative data with a particular characteristic
are called attributes.

VIII. THE CENTRAL LIMIT THEOREM

The central limit theorem states that, as the value of n increases (i.e., as the
sample size increases), no matter what the underlying distribution, the dis-
tribution of �XX tends to become normal [2, 3]. The central limit theorem is
applicable to any frequency distribution�skewed, bimodal, uniform, or
exponential�and its utility lies in enabling the researcher to make an infer-
ence about a populationwithout knowing anythingmore about its frequency
distribution than can be found in a sample.

IX. STATISTICAL ESTIMATES

Sample data are what we will use to draw our statistical inferences. A
descriptive statistic (mean, median, standard deviation, variance) is gener-
ated from a sample and performs the function of an estimator.Much statisti-
cal theory over the years has been concerned with ¢nding and then using
statistics that are appropriate estimators. For example, the sample mean is a
good estimator of the population mean, as is the sample variance for the
population variance [8]. That is, the expected value of the sample mean is
the population mean, and the expected value of the sample variance is the
population variance.

Eð �XX Þ ¼ m

EðS2Þ ¼ s2

Because of chance, the value actually calculated (the ‘‘estimate’’) may
not be identical to the population parameter value.That is, the values of the
sample mean, �XX , and sample variance, S2, usually di¡er from the population
mean, m, and the population variance, s2. For this reason, we will use esti-
mates in two forms: point and interval.

A point estimate is a single numerical value used as the best estimate of
the unknown population parameter value. The value of a sample mean ð �XX Þ
is a point estimate of the population mean ðmÞ. The value of the sample var-
iance ðS2Þ is a point estimate of the population variance ðs2Þ.Point estimates,
although very useful, tend to be interpreted as an exact representation of
their population counterparts. So, if the average height of a laboratory
wheat specimen group is 23 inches, based on a sample, it may be interpreted
to mean that the population mean is 23 inches.This is usually not so.
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In addition, there is no way to measure the degree of con¢dence the
researcher has with respect to the accuracy of the point estimate. In this ex-
ample, how con¢dent can the researcher be that 23 inches is close to the true
population mean?What does ‘‘close’’mean?

In cases where the researcher needs an objective measure of the relia-
bility of an estimate, she uses an interval estimate. Interval estimates pro-
vide a range of values in which, with a speci¢c con¢dence, a particular
parameter is contained.What does ‘‘a P% con¢dence interval estimate for
m is (a, b)’’ mean? It means that, if all possible samples of size n had been
drawn from the population and the data from each sample had been used
to create a separate con¢dence interval (CI) estimate of, say, m, then if
somehow later the value of m became known, P% of the con¢dence inter-
vals would include the value m and the rest would not. In Fig. 5, each hori-
zontal line ((��)) represents the CI estimate of m calculated from a
particular sample. The vertical line shows the true value of m. Note that
some intervals capture m and some do not. For, say, 95% CI, 95% of these
intervals would include m and 5% would not.

Obviously, the researcher draws only one sample of size n, not all pos-
sible samples of size n. ‘‘A P% CI for m is (a, b)’’ means that the researcher
drew a sample, ran the data through the CI formula, and got the numbers a
and b.Her best estimate of m is that a � m � b; i.e., m is somewhere between a
and b. (This is amathematical translation of a statement such as ‘‘the average

FIGURE 5 Confidence intervals about the truemean.
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height of the wheat specimen group is 23 inches, give or take 3 inches,’’ i.e.,
the mean is estimated to be between 23 � 3 ¼ 20 inches and 23 þ 3 ¼ 26
inches.)

The researcher does not know and probably will never know whether m
is between a and b,* i.e.,whether her interval was one of the P%of the CI that
captures mor one of the intervals that does not capture m.She only knows that
she used a method of estimation (the CI process) that works P%of the time.
The researcher is ‘‘con¢dent’’ in the procedure and ‘‘con¢dent’’ in the esti-
mate (a, b) of m that resulted from the procedure.

The word ‘‘probability’’ is not used in this situation; it is incorrect to
say, for example, ‘‘the probability that m is between 20 inches and 26 inches
is 95%.’’

A 95% con¢dence interval about the mean is an interval range of va-
lues that, 95%of the time,will include the truemean ðmÞwithin the upper and
lower bounds [12].The true population mean is rarely known; only the prob-
ability that it is contained within the interval range of values 95% of the time
is known.

In practice, both point and interval estimates are important. They are
like a hammer and nail, a saw and board; they complement each other [9].

One of themost common and useful estimators is used to determine the
interval estimate of a population mean, m. It has the form

�XX � Za=2
sffiffiffi
n
p
� �

� m � �XX þ Za=2
sffiffiffi
n
p
� �

ð8Þ

or

�XX � Za=2
sffiffiffi
n
p
� �

ð9Þ

where m ¼ the true population mean

�XX ¼ the sample mean
n¼ sample size
s¼ the population standard deviation
Z¼ value from a table of the standard normal values used for

two-tail a-level tests.

*One case where the CI can be checked is in political election polling. Before an election, poll-
sters estimate the percentage of voters who probably will vote for a particular candidate. After
the election, the true percentage of votes the candidate received is known. Statements such as
‘‘candidate Jones is projected to receive 52% of the votes . . . the poll has a margin of error of 3
percentage points’’mean that the pollster’s interval estimate is 49 to 55%.If Jones gets only 48%
of the votes, his is one of those unlucky intervals that did not capture the parameter value, 48%.
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The interval is symmetrically centered at �XX , and its width is determined by
the con¢dence level percent used (e.g., for a ¼ 0:20, 1� a ¼ 0:80 or 80%;
for a ¼ 0:05,1� a ¼ 0:95or 95%; for a ¼ 0:01, 1� a ¼ 0:99or 99%). Recall
that the con¢dence level is set, not calculated by the experimenter.The most
commonly used con¢dence level in science is 95%. If the experimenter
desires a greater degree of con¢dence, the CIwidth increases (Fig. 6).

For example, if one wants to estimate the true average weight of the
population of U.S. males 25 years of age, the point estimate may be 175
pounds and the interval estimate 175 � 5, or (170, 180), pounds at 80%
con¢dence. At 95% con¢dence, the point estimate remains 175 pounds,
and the interval estimate may be 175 � 20, or (155, 195), pounds, and at
99% con¢dence, the interval estimate may be 175 � 50, or (125, 225),
pounds. The more con¢dence one requires, the wider the con¢dence inter-
val becomes. But the more con¢dence one has, the less precise one is. In
practice, a trade-o¡ is necessary between con¢dence and precision.

X. NORMAL TABLES

The standard normal distribution is found in Table A.1. It requires one to
transform a value into a normal deviate,where it is converted to a Z score. If
X � N ðm;s2Þ, then

Z ¼ X � m
s

ð10Þ

is distributed as a standard normal.
Instead of the normal table (Z table inTable A.1),we will generally use

Student’s t-distribution for work in thisbook.Student’s t-distribution is iden-
tical to the normal standard distribution for large sample sizes, n � 120, and
has the added advantage of compensating for sample sizes that are much

FIGURE 6 Various confidence levels.
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smaller [1,3]. It does this by extending the tails of the sample distribution (see
Fig.7), making it more conservative, lowering the probability of a error.

XI. INTRODUCTION TO STATISTICAL INFERENCE

In1954, the largest medically related statistical investigation ever performed
up to that time was conducted. It dealt with the question, ‘‘Does the Salk
polio vaccine provide protection against the polio disease?’’ To answer this
question, more than a million children were randomly assigned to two
groups�one to be inoculated with the Salk polio vaccine, the other to be
inoculated with a salt solution placebo. The data collected from this study
would lead to one of two conclusions: (1) If the percentage of children devel-
oping polio among those given the vaccine was less than the percentage
developing polio among those receiving the placebo, then the vaccine pro-
vided a degree of immunity to polio, or (2) if the percentages of children
developing polio in both groups were about the same, then the Salk vaccine
was not e¡ective against polio.

Such decision problems are called statistical hypothesis tests. The
researcher decides between two possible hypotheses. A hypothesis is a

FIGURE 7 Comparison of the relative frequency curves of the standard normal dis-
tribution (Z table) and Student’s t-distribution.

Basic Review of Parametric Statistics 33



statement (or claim) about a parameter of a population, and it is the research-
er’s purpose to decide, on the basis of experimental or sample evidence,
which statement is most probably true.The null hypothesis (H0) is a mathe-
matical statement that the treatment is not e¡ective. The alternative or test
hypothesis (HA) is a statement that the treatment is e¡ective. Both hypoth-
eses cannot be true, and both cannot be false. In this example, the null hy-
pothesis, that the vaccine provided no immunity,was to be weighed against
the test hypothesis, that the vaccine was e¡ective. Fortunately for posterity,
the data failed to supportH0, andH0 was rejected.The researchers were able
to conclude that the Salk polio vaccine worked.

Decision problems such as this are common. Other examples include
such issues as the following:

1. A researcher is interested in testing whether a speci¢c presurgical
preparationproduct will showgreater antimicrobial e⁄cacy than a
control product.

2. A sociologist suggests that certain environmental changes will
reduce the crime rate in a community.

3. An agronomist predicts greater yield per acre if farmers use a new
hybrid seed.

4. A new packaging process is claimed to reduce damage to goods
shipped by mail order businesses.

Collecting valid data to provide evidence for or against the null hypoth-
esis is crucial in statistical inference.When the evidence one collects comes
from a representative sample of a larger (often much larger) group called the
‘‘population,’’one can conclude that results seen in the sample-based study
would hold true for the entire population. In the polio example, the research-
ers concluded that the Salk vaccinewas e¡ective in reducing the incidence of
polio among the children who were vaccinated. Because the sample of chil-
dren studied was representative of children nationwide, they were also able
to conclude that, if children nationwide were given the Salk vaccine, the in-
cidence of polio in the United States would drop signi¢cantly. And it did;
because of routine vaccination, polio is now a very rare disease in industria-
lized countries.

Statistical inference is the process of making inductive generalizations
from part (the sample) to whole (the population).The process of inference is
inherently incorporated in hypothesis testing; only the sample data go into
the test statistic (which determines whether the null hypothesis is to be re-
jected), but both hypotheses,H0 and HA, are stated in terms of a population
parameter.Thus, the conclusion is related to the population, even though the
evidence came from only a sample.
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XII. STATISTICAL HYPOTHESIS TESTING

The objective of a statistical hypothesis test is to evaluate an assumption or
claim made about a speci¢c parameter of a given population. The statistic
used in the hypothesis testing is termed the test statistic.We know that the
evidence one collects to helpmake the decision comes from sample data that
are, in turn, used in statistical inference procedures.

Many individuals complain of having trouble with hypothesis testing
because they get lost in the process�there is so much going on. It is confus-
ing to try to keep track of upper tail, lower tail, and two-tail tests. However,
there is a straightforward way to conduct hypothesis tests,which can greatly
help the researcher. It was taught to me by my ¢rst statistics professor and
mentor, Edward Peresini [13], who called it the ‘‘six-step procedure.’’ The
six steps are as follows:

Step 1. Formulate the test hypothesis (HA) ¢rst, and then the null
hypothesis (H0), which will be the opposite of the test hypothesis
(HA). These serve as the two mutually exclusive alternatives being
considered.

Step 2. Select the sample size,n, and set the a level (the probability of a
type I [a] error).

Step 3. Select the appropriate test statistic to be used. This selection
process is, to a great degree,what this book covers.

Step 4. Formulate the decision rule; that is, decide what the test sta-
tistic must show in order to support or reject the null hypothesis
(H0).

Step 5. Collect the sample data, conduct the experiment, and perform
the statistical test calculations.

Step 6. Apply the decision rule to the null hypothesis H0 in terms of
accepting or rejecting it at the speci¢ed a value.*

*In academic writing, as well as in many scienti¢c journals, net; ¢xed (a) level hypothesis
testing is not often done. Instead, a p value is provided for each test. This allows the reader
to draw her own conclusions, based on the p value. For some investigators, a smaller p value
may be required for a study’s results to be signi¢cant than would be required by another
researcher. Let us look at what the p value means speci¢cally. The p value is the observed
signi¢cance level. A p value of .047 (p � :047), say, for a t-test, means the following: the prob-
ability of computing a test statistic value as extreme as or more extreme than the one calcu-
lated, given that the null hypothesis is true, is less than or equal to .047, the p value. The
statement just written can be expressed as:

P½ðt � tcÞjH0 is true� � :047

assuming this is an upper tail hypothesis test. However, in industrial-type experiments,
where decisions must be made, we will use ¢xed-level hypothesis testing. The reader can
easily adapt p values to ¢xed level tests by calculating the p value and rejecting (H0) if
p < a, the level of the test.
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Let us look at the ¢rst two steps in greater detail.

Step1. Step 1 requires the formulation of two hypotheses.The ¢rst to
be formulated is the alternative or test statistic (HA), which is con-
trastedwith the null hypothesis (H0) or a statement of the status quo.
For example, one may want to test the hypotheses:

A new presurgical skin preparation provides faster antimicro-
bial e¡ects than the standard one; or

A new leave-on antimicrobial soap for food handlers leaves
substantially less soap residue on the skin than a rival pro-
duct; or

A new sanitation program can reduce food contamination
levels signi¢cantly more than the standard one.

The current position, H0, or the ‘‘no change’’ position, is the null hy-
pothesis claim.The researcher demands convincing evidence before reject-
ing the null hypothesis. Statistical tests are predisposed to err on the
conservative side, for it is considered a worse problem to commit a type I,
or a error, than to commit a type II,or b error (i.e., berror is committedwhen
accepting the null hypothesis as true when it is not). The null hypothesis is
denoted by H0, and the test or alternative hypothesis is denoted by HA, H1,
or k.We use the ¢rst notation,HA, in this book.

The null hypothesis and the alternative hypothesis take on one of the
following formats*: theH0 statement about a parameter’s value will include
one of three possibilities: equal to (¼ ), greater than or equal to (�), or less
than or equal to (� ). The HA will never include equality. The HA statement
will use not equal to ( 6¼ ), less than (<), or greater than (>) in making a state-
ment about a parameter’s value.

1. A two-tail test [tests whether a signi¢cant di¡erence exists
between two population parameters or if a parameter is di¡erent
from a stated value] has the form:

H0: Population A ’s parameter ¼ population B’s parameter
HA: Population A ’s parameter 6¼ population B’s parameter

2. An upper tail test has the form:

H0: Population A ’s parameter � population B’s parameter
HA: Population A ’s parameter> population B’s parameter

(Again, be sure to stateHA ¢rst.TheH0 is ‘‘less than or equal to.’’).

*In more advanced statistical tests, the same basic hypothesis structure remains.
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3. A lower tail test has the form:

H0: Population A ’s parameter� population B’s parameter
HA: Population A ’s parameter< population B’s parameter

Note that:

1. One sets up the test based on the alternative,or test hypothesis,HA.
2. The equality symbol is always included withH0.
3. HA is a statement that indicates the test challenge of the researcher to

the status quo (H0).
4. H0 is a statement of the commonly accepted belief or standard.

Step 2. Select a (the probability of a type I error) and the sample
size,n.

1. The object of testing hypotheses is tomake correct decisions.When
making a decision in the presence of uncertainty (from a sample
that is, by de¢nition, incomplete information about some larger
population), one runs the risk of making an error. The probability
of making a type I error is denoted by a,where a¼P(type I error)
¼P(rejecting H0 when H0 is true). The signi¢cance level of a test is
the probability value of a selected beforehand for that test.

2. In many parametric hypotheses, the test statistic will have a bell-
shaped probability distribution, such as Z or t, as its basis. If we
consider the total area beneath a curve to be equal to1.00, then the
chosen value of a, together with whether that particular test is one
tail or two tail, enables us to divide the area into two parts called
the region of rejection and the region of nonrejection (or the region of
acceptance). Hence, a¼probability of observing a test statistic in
the rejection region whenH0 is true.

3. Let us look at the test regions for a general, bell-shaped distribu-
tion, beginning with a lower tail test.

Lower tail test: The letter L (Fig. 8) de¢nes the critical value of the test
statistic’s distribution (e.g.,Z or t) and represents the region of rejection for
H0. If the calculated value of the test statistic falls in the rejection region,H0

Condition Accept H0 Reject H0

H0 true Correct Type I error
H0 false Type II error Correct
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will be rejected at the a level. For example, H0: m1 � m2, and HA: m1 < m2, at
a ¼ 0:05.

Upper tail test: The letter U (Fig. 9) is called the critical value of the test
statistic’s distribution and represents the region of rejection forH0. If the cal-
culated value of the test statistic is greater than U, i.e., falls in the rejection

FIGURE 9 Regionsof rejection and nonrejection (upper tail).

FIGURE 8 Regionsof rejection and nonrejection (lower tail).
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region, H0 will be rejected at that a level. For example, H0: m1 � m2, and
HA: m1 > m2, at a ¼ 0:01; 0:05.

Two-tail test: The letters L (lower critical value) and U (upper critical
value) (Fig. 10) both appear in this diagram because a two-tail test has two
critical areas, each with area a=2,which together equal a. If the value of the
test statistic calculated from the sample data is less than L or greater than U,
rejectH0. If the value of the test statistic is greater than or equal to L and less
than or equal to U, do not reject H0. For example, H0: m1 ¼ m2, and
HA: m1 6¼ m2, a ¼ 0:10.

Note, we choose the value of a before conducting the experiment. The
value of b can also be estimated, as explained later in this book.

Let us now get an overview of testing using the six-step procedure.

XIII. TEST FOR ONE MEAN WITH s KNOWN

Step1. Formulate hypotheses (m0 is a speci¢c value of mwhich is often
also represented by K).There are three possible tests.

1. H0: m � m0 versusHA: m > m0 (upper tail, directional test)
2. H0: m � m0 versusHA: m < m0 (lower tail, directional test)
3. H0: m ¼ m0 versus HA: m 6¼ m0 (two tail, nondirectional

test)

Step 2. State sample size,n, and select a.

FIGURE 10 Regionof rejection and nonrejection for two-tail test.
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Step 3. Write the formula for the test statistic, such as

Zc ¼
�XX � m0
s=

ffiffiffi
n
p

This test statistic assumes that the data are normally distributed or
that n is su⁄ciently large for the central limit theorem to apply.

Step 4. Formulate a decision rule via drawing a normal curve and
shading the critical region(s).Call the test statistic’s value calculated
from the sample data Zc. Let Za be the tabled value of the standard
normal that cuts o¡ an area of size a in the upper tail of the distribu-
tion.Also,�Za is the tabled value that cuts o¡ an area the size of a in
the lower-tail region. A two-tail test at a cuts o¡ areas in both the
lower and upper regions the size of a=2.

Step 5. Collect sample data and perform statistical calculations.
Step 6. Apply decision rule and make decision.

Example 1. The following data represent the number of days a disin-
fectant (consisting of parts A and B mixed together to form a solution) will
remain antimicrobially e¡ective. In 21 independent tests of the product, the
following ‘‘mixed solution’’shelf-life data are provided in days: 27, 28, 30, 31,
29, 30, 26, 26, 30, 21, 34, 31, 33, 35, 24, 25, 28, 32, 34, 30, 34.* The population
standard deviation is known to be s ¼ 11 days.The ¢rm that manufactures
the antimicrobial product wants to state that the mean number of days that
the product is stable,when parts A and B are mixed, is greater than 34 days.
Based on sample information, can the manufacturer do so?

Step1. Formulate the hypothesis. (I ¢nd it easier to determine the test
hypothesis ¢rst.)

H0: m � 34
HA: m > 34

Null hypothesis Test hypothesis Reject region Nonreject region

H0 ¼ m � m0 HA ¼ m > m0 zc > za zc � za
H0 ¼ m � m0 HA ¼ m < m0 zc < �za zc � �za
H0 ¼ m ¼ m0 HA ¼ m 6¼ m0 zc < �za=2

or zc > za=2
�za=2 � zc � za=2

*In order to use this test, we should check that the lifetimes, Xc, are normally distributed (life-
times often are), or we need to claim n¼ 21 is su⁄ciently large for the central limit theorem to
apply.These distributional considerations are discussed in a later chapter.
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Step 2. Set a and n. For the preceding data,n¼ 21.Let’s pick a ¼ 0:05.
Step 3. Write out the test statistic. Because s is known,we will use the

standard normal distribution as the basis for our test.

We will use Zc ¼ ð �XX � m0Þ=ðs=
ffiffiffi
n
p Þ as the test statistic, where the sub-

script c is used to indicate that this is the Z-score calculated from the data
and m0 represents a speci¢ed value of the mean (here m0 ¼ 34).

Step 4. This is a one-tail (upper tail) test at a ¼ 0:05because the aver-
age value needed is greater than 34.One can now turn toTableA.1 in
the Appendix and ¢nd that the Z tabled value (normal deviate),
which cuts o¡ an upper tail area of a ¼ 0:05, is Zt ¼ 1:64.The deci-
sion rule is: if Zcalculated > Ztabled, rejectH0 at a ¼ 0:05 (Fig.11).

Step 5. Perform the calculations.

�XX ¼
P

xi
n
¼ 27þ 28þ 30þ 	 	 	 þ 30þ 34

21
¼ 618

21
¼ 29:43

Zc ¼ �xx � m0
s=

ffiffiffi
n
p ¼ 29:43� 34:0

11=
ffiffiffiffiffiffi
21
p ¼ �1:90

Step 6. Because the calculated value ofZ ðZc ¼ �1:90Þ is less than the
tabled value ofZ ðZt ¼ 1:64Þ, one cannot rejectH0 at a ¼ 0:05. Con-
clude that the mean number of days the product is stable is 34, or
less.The ¢rmmust reformulate.

FIGURE 11 Acceptance and rejection regions of H0 (Example 1, step 4).
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XIV. TEST FOR ONE MEAN WITH s UNKNOWN

Recall that for a large sample size, n, the Z and t distributions are virtually
identical. For this reason, many authors recommend using the preceding Z-
test if n � 30ands is unknown.However, for a sample size n < 30, it is better
to use Student’s t-test, using Student’s t-distribution. Steps 1, 2, 5, and 6 are
exactly as described in the problemwith onemean,s known.The formula in
step 3 changes because s is not known and is, therefore, estimated by S, the
sample standard deviation. And, in step 4, each zc is replaced by the tc
because zc is used to signify a normal distribution, whereas tc indicates
Student’s t-distribution.

The test statistic is distributed as Student’s t,with n� 1degrees of free-
dom (df ).Hence, tc ¼ ð �XX � m0Þ=ðS=

ffiffiffi
n
p Þ,with n� 1 df.

Example 2. Suppose wework the previous example,* ignoring the fact
that the value of swas given.

Step1. State hypothesis.

H0 : m � 34

HA : m > 34

Step 2. Specify a and n.

a ¼ 0:05

n ¼ 21

Step 3. Write out the test statistic

tc ¼
�XX � 34
S=

ffiffiffi
n
p with n� 1 df

where

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðxi � �xxÞ2

n� 1

s
A simpli¢ed calculation for S is:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x2i � n �xx2

n� 1

r

*As before, the data need to be tested for normality; this will be discussed in Chapter 3.
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Step 4. Formulate the decision rule.
Student’s t-table (Appendix Table B) shows that, with 21�1¼20 df,
the value of t that cuts o¡ an upper tail area of a ¼ 0:05 is tt ¼ 1:725
(Fig.12).The tabled t value, tt, is also known as the critical value.

Decision rule: If tc > tt, rejectH0 at a ¼ 0:05.
Step 5. Calculate the test statistic.

�xx¼ 618
21
¼ 29:43

S2¼
P

xi2�nð �XX Þ2
n�1

S2¼ 18;460�21ð29:43Þ2
21�1

S2¼ 18;460�18;189
20

¼ 13:55

S¼
ffiffiffiffiffiffiffiffiffiffiffiffi
13:55
p

¼ 3:68

X
xi2¼272þ282þ302þ312þ292

þ302þ262þ262þ302þ212

þ342þ312þ332þ352þ242

þ252þ282þ322þ342

þ302þ342

¼ 18;460

Thus,

tc ¼ 29:43� 34
3:68=

ffiffiffiffiffiffi
21
p ¼ �4:57

0:80
¼ �5:71

Step 6. Draw conclusion.
Because�5.71<1.725, one cannot rejectH0 at a ¼ 0:05.

FIGURE 12 Acceptance and rejection regions of H0 (Example 2, step 4).
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Example 3. Consider the following set of log10 measurements*:0.91,
1.32, 1.72, 1.43, 1.66, 1.95, 1.61, 2.07, 2.02, 1.65, 1.52, 1.21, 1.30, 1.59, 1.82, 2.02,
1.69, 2.33, 1.75, 1.46. Could one conclude that the mean of the population is
less than 1.70 (in the log10 scale)? In order to answer this question, apply the
six-step process.

Step1. Formulate hypotheses.The test question, m < 1:70, is the alter-
native or test hypothesis. The null hypothesis is simply m � 1:70.
The hypotheses are:

H0: m � 1:70

HA: m < 1:70:

Step 2. Set n and a.
Let n¼ 20 and a ¼ 0:025.

Step 3. Specify the test statistic. It is

tc ¼
�XX � m0
S=

ffiffiffi
n
p

Step 4. Formulate the decision rule. Because this is a lower tail test,
we need the tabled t valuewith n� 1 ¼ 20� 1 ¼ 19df,which cuts o¡
an area of a ¼ 0:025 in the lower (left) tail. The critical value tt is,
therefore,�2.093 (Fig.13).

Decision rule: If tt < �2:093, rejectH0 at a ¼ 0:025.

Step 5. Perform calculations.

�xx ¼
P

xi
n
¼ 33:03

20
¼ 1:6515

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xi2 � nð�xxÞ2
n� 1

s
¼ 0:3346

tc ¼ 1:6515� 1:70
0:3346=

ffiffiffiffiffiffi
20
p ¼ �0:6482

Step 6. Determine conclusion.
Because tcð�0:6482Þ > ttð�2:093Þ, one cannot rejectH0 at a ¼ 0:025.

*The log10 measurements need to be checked for normality; this will be discussed later.
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XV. TEST FOR THE DIFFERENCES BETWEEN TWO MEANS
(INDEPENDENT SAMPLES)

Example 4. Two antimicrobial products are compared for e⁄cacy.
The results are summarized:

Are the products’ antimicrobial properties statistically di¡erent from one
another?

Step1. State the hypotheses.
Because we are looking for a di¡erence in the performance of products

(either larger or smaller), the test hypothesis is m1 6¼ m2, a two-tail
test.

Product1 Product 2

n1 ¼ 36 n2 ¼ 40
s1 ¼ 10:2 s2 ¼ 15:4
�xx1 ¼ 86:3 �xx2 ¼ 92:4

FIGURE 13 Acceptance and rejection regions (Example 3, step 4).
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So:

H0: m1 ¼ m2 or m1 � m2 ¼ 0

HA: m1 6¼ m2 or m1 � m2 6¼ 0

Step 2. Set a and determine n. Because this problem has two samples,
there are two ns: n1 and n2.

Thirty-six (36) zoneswere read for product1and forty (40) for product
2, so n1 ¼ 36 and n2 ¼ 40. Let us set a ¼ 0:05.

Step 3. Write out the test statistic.

tc ¼ �xx1 � �xx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1=n1 þ S2

2=n2
q

which is approximately distributed as Student’s t for n1+n2 large.

Step 4. Formulate the decision rule. Find the tabled critical values for
a two-sided t-test at level a with df degrees of freedom. Call these
critical values � tt (Fig. 14). Note that, if the sample sizes are not
equal, the smaller of the samples, minus1, is used; in this case, 36�
1 ¼ 35 df.

Decision rule: If tc (t calculated) is greater than tt or less than�tt, reject
H0.

FIGURE 14 Acceptance and rejection regions (Example 4, step 4).
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Step 5. Perform the calculations.

tc¼ 86:3�92:4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10:2Þ2=36þð15:4Þ2=40

q ¼ �6:1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:89þ5:929p ¼�6:1

2:97
¼�2:05

tt with35df¼2:030

Step 6. Determine the conclusion.
Because tc < �ttð�2:05 < �2:030Þ, rejectH0 at a ¼ 0:05.
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3

Exploratory Data Analysis

Once an experiment has been conducted, but before performing any statisti-
cal tests, it is a good idea to get a ‘‘feel’’ for the data collected. This can be
e¡ectively accomplished by using exploratory data analysis, or EDA. John
W. Tukey, a famed statistician, at the level of R. A. Fisher,W. G. Cochran,
W. S.Gossett (the ‘‘Student’’), S. Siegel, and F.Mosteller, initially developed
this concept. Tukey ¢rst presented this work in his book Exploratory Data
Analysis [14] and later inData Analysis and Regression,which was coauthored
with FrederickMosteller [15].

EDA is a straightforward, practical way of evaluating data without
prior assumptions about the data. This allows the data themselves to help
the researcher better understand them and, thereby, better select the appro-
priate parametric or nonparametric procedure to be used in the statistical
analysis.Yet, EDA goes beyond this in that it helps the researcher to choose
a speci¢c statistical method to analyze the data and know why that speci¢c
statistical method has been chosen.This may seem like a small issue, but be-
cause there are often multiple ways to analyze data, to be able to analyze
them optimally is important. Researchers need to ground the statistical
method chosen based on the data’s distribution.That is,one ¢ts the statistical
method to the data, not the data to the method.

EDAwill enable one, through practice, to ascertain whether a data set
derived from a small number of samples is distributed approximately nor-
mally. And it must be remembered that observations collected in applied
research are rarely distributed in a perfectly symmetrical, bell-shaped,‘‘nor-
mal’’distribution.Data never ¢t a statistical distribution exactly. Instead, the
data are usually ‘‘messy.’’
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When a sample appears nonnormal, one can often transform, or reex-
press,* the data to make them more normal.This procedure is an important
aspect of EDA. For example, if a data set is skewed (piled up on one side of
the curve with long tailing on the other side), a data reexpression can be per-
formed to normalize the data. Or, if the sample is bimodal (has two peaks
instead of one) EDA procedures can £ag the researcher to investigate this
problem further. Perhaps the data were unknowingly drawn from two popu-
lations, not one. For example, if blood pressure readings are taken from a
sample of available people, one can often detect a bimodal distribution. This
can be the result of selecting both males and females under the assumption
that they are from a single populationwhen they are really from two di¡erent
populations, one for each sex.

In addition, many times a sample’s outer edges, or ‘‘tails,’’ extend
beyond what is considered a normal distribution; i.e., there are enough data
values beyond � 3s or � 4s to cast doubt on the presumption that the data
are normal. They straggle more than they should according to statistical
theory [14]. Yet, these straggler values�sometimes single, sometimes mul-
tiple�can reveal valuable hidden features contained in the data. For exam-
ple, the antimicrobial e⁄cacy (log10 microbial count) data in human trials
of a preoperative skin prepping solution often have straggler values (also
known as ‘‘outliers’’) that are either very large or very small, relative to the
data’s central tendency. Generally, upon investigation, this is not an anom-
aly related to the degerming characteristics of the antimicrobial solution
but is a phenomenon both of bacterial populations normally residing on
the skin surfaces and of skin sampling methods themselves. Even so, the
normal distribution allows values beyond � 3s to be included in the popu-
lation. In fact, 0.3% of values theoretically are beyond three standard de-
viations from the mean. So, by chance, one of these rare values may have
been collected in the sample, even through 95% of the values are contained
within � 2s of the mean. But these extreme values can also represent an
error, such as a recording error or a calculation error in a speci¢c dilution
level, for example. EDA can be of immense help to a researcher in quickly
identifying these extreme values.The researcher, then, must determine why
these data were extreme. Did they occur by chance? Are they the result of
some error? Or are they naturally occurring values that may provide unex-
pected insight into the problem being studied? This identi¢cation process
is a challenge for the researcher.

Now, let us preview four general EDA operations useful for the
researcher:

*I use the terms ‘‘transform’’and ‘‘reexpress’’as they apply to data interchangeably in this work.
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1. EDA data displays provide a graphical depiction of the whole data
set, thus enabling the researcher to visualize easily data clumping
and data dispersion as well as the shape,‘‘gappy-ness,’’ tailing, and
any extreme values. In short, they assist the researcher to under-
stand quickly how the data are oriented to one another.

2. EDA residual analyses are important because they help the
researcher see how well the data ¢t the model (i.e., how close the
observed values are to the values predicted by the statisticalmodel)
in terms of the size and distribution of ei. This information will be
of concern to us, beginning in Chap. 4 and continuing through the
remainder of the book.

ei ¼ xi � �xx

where ei ¼ random variation or statistical error
xi ¼ actual value
�xx¼ predicted value or mean

In the regression chapter, Chap. 11, we will estimate a regression
function. If that function adequately portrays the actual collected
data, the di¡erences between each observed (collected) value and
the predicted value will be minimal and random.When the pre-
dicted values do not portray the observed data adequately, a dis-
tinct, nonrandom data pattern is often observed in the residual
values.The researcher can then reexpress the data and reevaluate
the residual values for minimal spread and a random pattern.

3. Data Reexpressions, or transformations are a possible ‘‘¢x’’ for data
sets that are not approximately normal. For example, the data can
often be reexpressed in another scale to make them normal.* Gen-
erally, such reexpressions are simple mathematical operations,
such as the square root (

ffiffiffiffi
Y
p

), the logarithmic value (log10 Y [base
10] or lnY [natura]), or the reciprocal value (1=Y ).The data trans-
formation is usually performed, and the results, call them Y 0i , are
reevaluated, generally through another residual analysis. If the
residual values (Y 0i � ŶY 0i ) are randomly distributed about zero,
the process was adequate. If not, another reexpression iteration
can be performed.

4. Resistance,or robustness,of a statistic canbe checked using EDAto
determine whether a single value, or a few extreme values, has had

*In general, reexpressions are ¢rst applied to the response, or dependent variable,y. If this is not
satisfactory, the independent variable, x, can be transformed.Sometimes it is necessary to trans-
form both x and y.
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undue in£uence on the results of a statistical analysis.This is parti-
cularly useful for small sample sizes, where an extreme value can
have much in£uence on the statistical parameters (e.g., �xx and s ).

Finally, it is important to recognize that use of these four EDA tools
together will maximize their e⁄ciency. For example, in the situation where
there are several extreme values (i.e.,very di¡erent from the other data in the
set), a data display, such as the stem-and-leaf display, will portray them
quickly. A residual analysis will also portray this situation, not in terms of
the actual numbers but in di¡erences (ei) between the observed and pre-
dicted values. And, if the data are skewed�piled to the left (smaller values)
or piled to the right (larger values) with a long tail on the opposite end�
reexpressing the data, in most cases,will be useful in making the data more
normal in their distribution.

Finally, although EDA calculations are generally simple, in practice,
they are tedious and time consuming to perform.The use of statistical soft-
ware, particularly if large data sets are involved, is nearly mandatory. Fortu-
nately, there are many software packages (e.g., SPSSX1, SAS1, MiniTab1)
that contain many useful EDAapplication subroutines.By far themost user-
friendly package is MiniTab, which we will use in tandem with the paper-
and-pencil statistical analyses performed in this book. Let us now look at
some individual EDA applications.

I. STEM-AND-LEAF DISPLAYS

As the applied researcher is aware, and as we have discussed, data sets
(known as ‘‘batches’’ in EDA) come in variously shaped distributions. It is
useful to know the shape of the data set(s) to ascertain that the data are nor-
mally distributed, etc., prior to conducting a parametric statistical test. A
stem-and-leaf display is a data-ordering and presentation procedure that
provides a convenient and direct way to become acquainted with the data.
When a data set contains only a few values, a stem-and-leaf display is simple
to construct with pencil and paper. Larger data sets are more conveniently
displayed by using a computer.

The stem-and-leaf display was ¢rst presented by JohnTukey [14] and is
widely used throughout the statistical ¢eld. It is a type of frequency distribu-
tion that combines the leftmost digit(s) of each data value (stem) with the
next digit to the right (leaf ) simultaneously in an orderedmanner. Individual
data values are also easy to recover from the display* because, unlike the

*The recovered value may be only a two- or three-digit ‘‘approximation’’ to the original value if
some digits on the right were truncated (see step1 in the example that follows).
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case of histograms,where data are grouped into categories and only the cate-
gory frequencies are plotted, the numerical values do not disappear.

Speci¢cally, the stem-and-leaf display enables a researcher to see:

1. How wide the data batch is (its range)
2. Where,within the data batch, the values are concentrated and where

there are gaps, if any
3. Whether there are single or multiple modes (peaks)
4. How symmetrical or asymmetrical the data batch is
5. Whether any values are extreme, or stragglers, asTukey described

them

These important characteristics of the data usually go unnoticed
and unchecked by those who merely gather data and ‘‘crank’’ them through
a statistical analysis. But, by making EDA the ¢rst procedure in a statistical
analysis (after the study has been designed and after the data have

TABLE1 Thickness Levels of Biofilm Residue
inmm

Run
Amount of
residue left

1 4.305
2 7.210
3 5.161
4 8.204
5 8.191
6 6.502
7 6.307
8 5.211
9 11.701
10 9.801
11 8.213
12 2.051
13 10.133
14 4.221
15 4.305
16 5.261
17 4.305
18 7.159
19 6.793
20 5.201
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been collected), the preceding ¢ve aspects can be examined and dealt with, if
necessary.

A. Construction Procedure

Let us work an example to understand better how a stem-and-leaf display
is constructed. Suppose a researcher has performed a series of measure-
ments to determine the amount of bio¢lm residue left on a glass beaker’s sur-
face after a certain chemical cleaning treatment has been completed.Table1
presents the collected data. Let us organize these data into a stem-and-leaf
display.

Step1. Choose the stems and leaves.The researcher has some £exibil-
ity here. For example, looking at the ¢rst value, 4.305, there are a
number of ways to present it.

The number of digits assigned to the stem portion is arbitary. How-
ever, the leaf portion contains only one digit, and that is the digit
immediately following the last stemdigit.For example, if the number
is 4.305 and the researcher decides to use a one-digit stem, that stem
is 4, and its leaf is 3, and the ‘‘05’’ portion of 4.305 is truncated or
dropped, giving

Taking the data batch from Table 1 as an example, we will now
construct the stem-and-leaf display, shown in Fig. 1.We will assign
the stems the values to the left of the decimal point andwill designate
the ¢rst values to the right of the decimal point to be the leaves. (The
other digits to the right of the decimal point are ignored.)

Step 2. The data are ordered in ascending order, and the stems are
written in a column from smallest to largest to the left of the dividing

‘‘Stem’’
leading component

‘‘Leaf’’
trailing component

4 3
or

43 0
or

430 5

Stem Leaf
4 3
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line.The leaves arewritten to the right of the dividing line,beginning
at the bottom and working up. Notice that we include all possible
stem values even if no values occurred in the data for that stem.
Where there are multiple identical values for the stem, the stem is
not rewritten but, instead, an additional leaf value is shown. For
example, if there are two values, 4.305 and 4.221, the stem for both
is 4, the leaf for 4.305 is 3, and the leaf for 4.221 is 2.The display for
these two values is 4j23.The leaf values are alsowritten in ascending
order. Same value leaves are similarly handled. For example, the
three values 4.31, 4.31, and 4.30 would be displayed as 4j333. Clearly,
every value in a data batch will have one leaf value.

By examining theMiniTab computer output in Fig. 2, one can see, as in
the pencil-and-paper stem-and-leaf display in Fig. 1, that there is a data gap
at stem ‘‘3.’’ There are not enough data, however, to determine whether this
gap is a signi¢cant feature of the data. Notice, also, that the MiniTab output
provides a depth column. On both sides of the data set, the ¢rst value is
termed ‘‘1,’’ the second ‘‘2,’’and so forth.Themedian is found in the stem^leaf
column and is the midvalue.

There is an interesting pattern at stem ‘‘8,’’ subtly suggesting that the
data are bimodal (two peaks). Again, there are not enough data to tell. So

FIGURE 1 Stem-and-leaf display.
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one is left with the question,‘‘Is it possible that themode at the stem 8 value is
an anomaly, a randomoccurrence,or a distinct phenomenonunknown to the
researcher?’’

In performing research, one is often confronted with questions that
cannot be answered directly. All one can do is be watchfully aware, looking
for unusual features that might, for example, indicate that the data are not
normal.

II. LETTER-VALUE DISPLAYS

Complementing the stem-and-leaf display is the letter-value display, which
enables the researcher to examine data symmetry even more closely. The
stem-and-leaf display provides useful, initial insight into data structure, but
the letter-value display extends this view speci¢cally for determining
whether the data are skewed, focusing on the spread of the data between
various points.The basic procedure is to divide a group of data in half at the
median, then halve these two groups, halve the resulting groups, etc.

FIGURE 2 Stem-and-leaf display (MiniTab).
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A. Construction Procedure

The ¢rst operation in constructing a letter-value display is to ¢nd themedian
of the ordered set of data.* The median (middle value) of a group of ordered
data, with an odd sample size n, is the middle data value. A set of data in
which n is an even number has a middle pair of numbers, and the average of
these two values is the median.

Calculating the depth of the median is also important. Depth is not
the median value; rather, it is the position of the median in the ordered data
set.y The depth of the median is customarily written as d(M )¼(nþ 1)/2,
where M¼median and n¼ sample size. When n is odd, d(M ) is a whole
number; when n is an even number, the depth of the median is the average
of two depth values. If d(M )¼ 8, the median is the 8th ordered value in the
data set. If dðM Þ=10:5, the median is the average of the 10th and 11th
ordered values.

Note that the median divides a data batch in half whether n is odd or
even. In computing a letter-value display, these two half batches are split in
half again; the split points are called the hinges, denoted by the letterH. So, a
data batch has one median, M, and two hinges, H, which divide the batch
into, roughly, quarters.

In ¢nding the depth of the hinges,we begin with the median’s position,
d(M ). The calculation is much like that for the depth of the median except
that we drop any fractional value from d(M ) and add 1. Hence, the formula
for the depth of the hinges is d(H )¼(½dðM )]þ 1)/2,where the square brackets
around d(M) mean ‘‘greatest integer portion of ’’ and indicate that any frac-
tional portion of d(M) is truncated, or dropped.

Note that hinges are similar to quartilesz in that both, along with the
median (which is the second quartile),divide the data set into quarters.How-
ever, because of the di¡erence in the way they are calculated, the hinges may
be closer to the median than the ¢rst and third quartiles are.

The next step in letter-value display construction is to ¢nd the middle
values for the outer data quarters. They are approximately an eighth of the
way in from each end of the ordered data batch and are denoted E for eighth.
The computational formula for computing the depth of eighths is d(E)¼
(½d(H )�þ1)/2, where the square brackets again remind us to drop the

*Thismethod is the same as that discussed for stem-and-leaf plots, except that here we are work-
ing with the ordered raw data.
yRecall that depth can be measured either from below or from above.
zThe ¢rst or lower quartile can be calculated as the median of the observations below the loca-
tion of the batch median, and the third or upper quartile is the median of the observations above
the location of the batch median.
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fractional portion (if there is one) of the depth of the hinge value and use only
the greatest integer portion of d(H).

The letter value in the tails beyond the eighths is used less often in pen-
cil-and-paper procedures but is commonly computed in software programs.
These D points lie midway between the E points and the ends of the data
string.* Their depths are computed exactly as the depths of E and H were:
d(D)=([d(E)]þ 1)/2:

An example using the data inTable1 for constructing a letter-value dis-
play is provided inTable 2.

The depth of the median,d(M), is ¢rst computed using the formula:

dðM Þ ¼ nþ 1
2
¼ 20þ 1

2
¼ 10:5

First, the data from Table 1 are ordered from smallest to largest, and then
their depths are recorded. (Recall from the stem-and-leaf discussion that
depths are counted ‘‘from below’’ for the smaller values and ‘‘from above’’
for the larger values, i.e., from the smallest value forward to the middle
value in the data set and from the largest value backward to the middle
value in the data set.)

Because the sample size n is even, we must add the two central data
values (at depths of10 and11) from either end and divide by 2 to ¢nd the data
value with the10.5 depth position.The two values at depths10 and11, respec-
tively, are 6.502 and 6.307 (counted from above) or 6.307 and 6.502 (counted
from below); in either case, their average is (6:502þ 6:307Þ=2 ¼ 6:405
(rounded),which is the median value of the data.

Now, let us ¢nd the depth of the hinges,d(H).

dðH Þ ¼ ð½dðM Þ� þ 1Þ=2

¼ ð½10:5� þ 1Þ=2y

So dðH Þ ¼ ð10þ 1Þ=2 ¼ 5:5

Again, the two values associated with depths 5 and 6 are averaged. Remem-
ber, there are two hinges, an upper hinge and a lower hinge, so we must

*The ends of the data string, the extremes, i.e., the minimum and maximum values, are said to
have depth1.Thus,each subsequent depth is halfway between the previous depth and1,the depth
of the extreme.
yNote that the fractional portion of dðM Þ is truncated.
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average the values with depths 5 and 6 from above and average the values
with depths 5 and 6 from below:

ð8:204þ 8:191Þ=2 ¼ 8:198; rounded = upper hinge value

ð5:161þ 4:305Þ=2 ¼ 4:733 ¼ lower hinge value

With the hinge values found, now let us determine the depths of the
eighths:

dðEÞ ¼ ð½dðH Þ� þ 1Þ=2

¼ ð½5:5� þ 1Þ=2

¼ ð5þ 1Þ=2 ¼ 3

TABLE 2 Constructionof a Letter-value Display

Depths of letter values for
calculating display (n¼20) Depth Datavalues Letter value

1 2.051
d(D)¼ (3 þ 1)/2¼ 2 2 4.221 ! 4.221 D
d(E)¼ (5 þ 1)/2¼ 3 3 4.305 ! 4.305 E

4 4.305
5 4.305

d(H)¼ (10 þ 1)/2¼ 5.5 5.5 ! 4.733 H
6 5.161
7 5.201
8 5.211
9 5.261
10 6.307

d(M)¼ (20 þ 1)/2¼10.5 10.5 ! 6.405 M
10 6.502
9 6.793
8 7.159
7 7.210
6 8.191

d(H)¼ (10 þ 1)/2 ¼ 5.5 5.5 ! 8.198 H
5 8.204
4 8.213

d(E)¼ (5 þ 1)/2¼ 3 3 9.801 ! 9.801 E
d(D)¼ (3 þ 1)/2¼ 2 2 10.133 ! 10.133 D

1 11.701
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Because the depth of the eighths is a whole number, all we have to do is count
three values from above for the upper eighth and three values from below for
the lower eighth (Table 2).

9.801 is the upper eighth value.
4.305 is the lower eighth value.

Finally, let us determine the depth of theD value,

dðDÞ ¼ ð½dðEÞ� þ 1Þ=2
¼ ð½3� þ 1Þ=2
¼ ð3þ 1Þ=2 ¼ 2

Because the depth of E is a whole number,we have to count only two values
from above for the upper D value and two values from below for the lower
D value.

10.133 is the upperD value.
4.221 is the lowerD value.

The letter-value display data computed from Table 2 can now be put
into the letter-value display format (Table 3). In producing this table,we need
to compute the midsummaries (midhinge, mideighth, mid-D, and midex-
treme or midrange), by averaging the appropriate upper and lower values.
TheH,E, andD spreads aremerely the distance between the upper and lower
letter values; the distance between the extremes is called the range.

It is far easier to let a computer’s software compute and table letter-
value displays once one knows and senseswhat is happening.Table 4 presents
aMiniTab computer output of a letter-value display.

TABLE 3 Letter-value Display

Letter Depth Lower Upper Mida Spreadb

M 10.5 6.405 6.405
H 5.5 4.733 8.198 6.465 3.465
E 3.0 4.305 9.801 7.053 5.496
D 2.0 4.221 10.133 7.177 5.912
Extreme 1.0 2.051 11.701 6.876 9.650

aMid is midpoint between the upper and lower values, (lowerþupper)=2; for H, (4.733þ
8.198)=2¼ 6.465.
bSpread is distance betweenupperand lower values (e.g.,H spread¼ 8.198�4.733¼ 3.465).
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Using the letter-value display, the symmetry or skewness of a sample
data set can be determined by comparing the ‘‘mid’’ (midsummary) column
values with one another, that is, comparing the median value with the mid-
hinge,with the mideighth,with the mid-D, and with the midpoint of the two
extreme values, the midrange.

If the data are symmetrical, the midsummary values will be close to
the median value. If the midsummary values become progressively larger
as we move from M to H to E to D to the extremes, the data are skewed to
the right, or larger values. If the midsummary values become progres-
sively smaller, the data are skewed to the left, or smaller values of the data
batch.*

Looking at themidsummary values inTable 4,we see 6.405,6.465,7.053,
7.177, and 6.876. Because these values are increasing, up to 7.177, the data are
apparently skewed to the right,but then this trend ceases at 7.177 and recedes
to 6.876.The skewness of this sample set is not that signi¢cant, and anoma-
lies are expected in small data sets such as this. Hence, a transformation of
the data tomake themmore symmetrical would probably not be worthwhile.
Iwould conclude that the data are approximately symmetrical.But,with an n
of only 20, there are too few data points to be sure.

One can also learn about variability of the data batch from the‘‘spread’’
column. The spread is simply the di¡erence between the pair of upper and
lower letter values,which typically increases from letter value to letter value
aswemove outward from themedian.The last spread (depth1) is the range of
the entire data batch. The greater the spreads (range of data within each

*Skewed distributions are shown in Fig. 13. The easy way to remember which way the data are
skewed is to think ‘‘skew, few.’’ If the data right skew, there are only a few values on the right; i.e.,
there is a long right tail. If the data left skew, there are few values on the left, so there is a long
left tail.

TABLE 4 MiniTab Letter-value Display

Letter Depth Lower Upper Mid Spread

N 20
M 10.5 6.405 6.405
H 5.5 4.733 8.198 6.465 3.465
E 3 4.305 9.801 7.053 5.496
D 2 4.221 10.133 7.177 5.912
a 1 2.051 11.701 6.876 9.650

aThe extremevalues of the batch haveno letter label; theyare labeledwith only their depth,1.
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letter-value pair), the greater the variability of the data batch.Finding spread
analyses truly useful will require hands-on practice.

When using the letter-value display, use the stem-and-leaf display with
it to get amore comprehensive view.Notice that the data in the stem-and-leaf
display (Figs. 1 and 2) are slightly skewed to the right because there are sev-
eral large values but no small values (except 2.0) to ‘‘balance’’ the display of
the data set.The data are ‘‘bunched up’’ at stems 4 and 5.There is no tail on
the left because there is only one datumwith a stem smaller than 4.The value
2.051may represent something unique about the data batch.Why is the 2.051
value present? Without the 2.051 value, the data set would clearly be skewed
to the right. The researcher will want to keep this in mind as the evaluation
progresses. At present, this question cannot be answered.

It is in this ‘‘fuzzy’’ area that the researcher employing statistics has a
far greater advantage in understanding what is occurring than does a mathe-
matical statistician. The data represent phenomena in the researcher’s ex-
pertise, not in that of the statistician!

If the researcher suspects that the smallest value (2.051) may be erro-
neous, she or he may decide to do statistical analyses with and without that
data point. Or, at this point, it may be useful to transform or reexpress the
data to normalize them.However, on a personal note, Iwould use a nonpara-
metric method for data analysis, thereby sidestepping issues of skewness.

The letter-value display can be used to evaluate how close a particular
symmetrical sample distribution is to the normal or Gaussian distribution.*
The researcher compares the spreads in the letter-value display with the cor-
responding spreads for the standard normal distribution,which has a mean
of zero and a standard deviation of 1. The H, E, and D spreads for the
standard normal distributions are:

If we assume that the data are approximately normal with mean m and stan-
dard deviation s, the data spread values divided by the N(0, 1) spread values
should provide estimates of s.

*If the data were reexpressed to attain greater symmetry, the spreads of the reexpressed data
would be used.

Letter value N (0,1) spread

H 1.349
E 2.301
D 3.068
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The formulae would be as follows:

SH ¼ ðdata value of H spreadÞ=1:349
SE ¼ ðdata value of E spreadÞ=2:301
SD ¼ ðdata value of D spreadÞ=3:068

If the data resemble a normal distribution, all three of these quotients should
be approximately equal (because they each estimate s):

SH 
 SE 
 SD

If the quotients grow�increase�aswemove fromH toE toD, the tails of the
data are heavier than the tails of the normal curve.* If the quotients shrink,
the tails of the data are lighter.

Let us perform these calculations on the data inTable 3:

SH ¼ 3:465=1:349 ¼ 2:569

SE ¼ 5:496=2:301 ¼ 2:389

SD ¼ 5:912=3:068 ¼ 1:927

Because SH ¼ 2:569, SE ¼ 2:389, and SD ¼ 1:927 are not approximately
equal, the data do not appear to be from a normal distribution.The S values
shrink, so the tails are lighter (have less probability) than the tails of a normal
distribution (Fig. 3). Personally, I would consider these data ‘‘normal
enough’’ for most applications, particularly pilot studies. If I were con-
cerned, I would merely increase the sample size, n, and check the new data
for symmetry and normality.

If it is commonpractice in one’s ¢eld to report data in the original scale,
then a reexpression of the skewed data, particularly if skewness is not severe,
will just confuse the situation. Perhaps one will apply a parametric method
that relies on data normality but inform readers that the sample data are, in
fact, skewed.Or, if the data are seriously skewed, the researcher will opt for a
nonparametric method.Whatever the case, it is the researcher’s conscious
decision how best to deal with the data.This is far better than merely gather-
ing data andmindlessly cranking themthrough a statistical analysis to report
signi¢cance.

Statistics, to a large degree, are a form of communication and not an
absolute decree. However, when a researcher chooses a statistic to support

*Heavier tails mean that there is more probability in the tails than the standard normal distribu-
tion. Figure 6 shows the t-distribution with 4 df and the standard normal distribution. All
t-distributions have heavier tails than the standard normal distribution.
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a preconceived outcome, this action is not a legitimate use of statistics or the
research process.

III. BOXPLOT

It is often helpful to have a clear, visual picture of where the middle of a
sample batch of data lies and how spread out the data are, but without a
lot of other detail. The middle point of a data batch is rarely proble-
matic�unless the data distribution is multimodal�but the outermost data
or tails can be. Hence, one is often more interested in the tail regions, par-
ticularly if extreme values, or outliers (also known as ‘‘strays’’), are present.

Outliers are values so small or large�i.e., extreme�that they dra-
matically stand away from the rest of the data batch, sometimes many
standard deviations away. Outliers can result from research peculiarities
as well as from measuring errors, recording errors, procedural errors,
and data entry errors. Having outlier values £agged visually is an advan-
tage of the boxplot display. Once outliers have been identi¢ed, one can
study them in greater detail and, if they are errors, correct them. Of
course, not all outliers are errors. Outliers often re£ect unusual or unex-
pected outcomes in a study and, at that, may be extremely valuable. Be-
fore performing actual statistical method calculations, the cause of an
outlier should be investigated and identi¢ed as an error in recording,
etc., or a unique phenomenon.

Sometimes one will be unable to identify the source of an outlier and
may wish to remove it from a data set to enhance the power of a statistical
test by reducing the data variability. In order to deal with such outliers with
some type of legitimacy, the researcher needs a rule of thumb for when to
leave the extreme values in a data batch or remove them as extraneous
values.We can do this using EDA,without resorting to advanced statistical
procedures. This is because boxplots utilize H (hinge) values, as calculated
for the letter-value display, as a critical construction component.

FIGURE 3 Sample data distributionvs. normal distribution.
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A. Construction Procedure

Two calculations are made, for both the upper and lower portions of the box-
plot display, called the inner and outer ‘‘fences.’’ These fences de¢ne bound-
aries, and data outside the boundaries are labeled outliers.The computations
are fairly straightforward.

Upper inner fence = upper hinge þ ð1:5�H spreadÞ
Lower inner fence = lower hinge� ð1:5�H spreadÞ

The outer fence also has upper and lower values.

Upper outer fence ¼ upper hingeþ ð3�H spreadÞ
Lower outer fence ¼ lower hinge� ð3�H spreadÞ

Data values beyond the inner fences are termed outside values and values
beyond the outer fences are called far outside values. The data values that
are not outside the inner fences, but are closest to them, are called adjacent
values.

B. Boxplot Calculations

For the data in Table 1, displayed in stem-and-leaf form in Fig. 2 and
summarized in the letter-value display (Table 3), we note that the hinge
values are 4.733 and 8.198 with an H spread of 3.465. So the inner fence
values are:

Lower inner fence ¼ lower hinge� ð1:5�H spreadÞ
¼ 4:733� ð1:5� 3:465Þ
¼ �0:465

Upper inner fence ¼ upper hinge þ ð1:5�H spreadÞ
¼ 8:198þ ð1:5� 3:465Þ
¼ 13:395

The outer fence values are:

Lower outer fence ¼ lower hinge� ð3�H spreadÞ
¼ 4:733� ð3� 3:465Þ
¼ �5:662
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Upper outer fence ¼ upper hinge þ ð3�H spreadÞ
¼ 8:198þ ð3� 3:465Þ
¼ 18:593

The adjacent values are the most extreme data values that are within
the inner fence values; in this example, they are 2.051and11.701.

An easy way to make a boxplot display by hand is to begin with a ske-
letal boxplot. A skeletal boxplot illustrates the ‘‘¢ve-number summary;’’ i.e.,
it shows only the maximum and minimum data values (the extremes), the
hinges,* and the median. It is constructed by drawing a box between the
hinges (4.733 and 8.198) and depicting the median (6.405) as a solid line
through the box (Fig. 4). To ¢nish the skeletal boxplot, draw dashed lines
from the hinges to the extremes (2.051 and 11.701). These dashed lines are
called ‘‘whiskers’’ (Fig. 5). (Boxplots are also known as ‘‘box-and-whis-
kers’’ plots.)

A (modi¢ed) boxplot is similar to a skeletal boxplot except that we ex-
tend the dash marks (whiskers) out to the adjacent values (2.051 and 11.701),
which are within the lower and upper inner fence values,�0.465 and13.395,
respectively. (In this example, the extremes are also the adjacent values.) The
fences, by convention, are not marked.

Values outside the inner fence should be individually highlighted. Va-
lues lying outside the outer fence values should be very prominent. In this
example, no values exceed the inner fences, so this step is not necessary. But
suppose that two other values were present, say 14.0 and 20. (Ignore the fact
that the median, hinges, etc.would all be changed by adding these two points

*Some texts use the ¢rst and third quartiles and the interquartile range instead of the hinges and
the H spread.The slight di¡erence, if any, between hinge and quartile values will not be distin-
guishable in a boxplot.

FIGURE 4 Preliminary sketch of skeletal boxplot showingonlymedian and hinges.
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to the data.) The value14.0 is outside the upper inner fence (13.395) and 20 is
outside the upper outer fence (18.593) (Fig. 6).*

It is far easier to generate a boxplot with a computer program.Software
packages such asMiniTab and SAShave special commands for a boxplot dis-
play. Figure 7 provides a character-based boxplot generated from the data in
Table1using a standardMiniTab routine.

Notice that the dotted whiskers extend to the adjacent values within
the inner fence (2.051 and 11.701); ‘‘I’’ marks the hinge values (4.733 and
8.198).Themedian is denoted ‘‘þ.’’ No values exceed the inner fence or outer
fence boundaries, so none are identi¢ed.

In addition, in initial data exploration, it is often useful to compare
multiple groups tentatively. The boxplot o¡ers the researcher a convenient
way of doing so (Fig. 8).

But what does one compare? Our eyes tend to focus on the hinges as
well as the whiskers, looking naturally at boxplots to categorize those that
do and do not overlap. That procedure is useful, but a researcher usually

*The values outside the outer fences are often labeled ‘‘HI’’ or ‘‘LOW,’’ depending upon their
direction. The value 14 is ‘‘outside’’ and the value 20 is ‘‘far outside.’’ Both are potential outliers
and need to be investigated.

FIGURE 5 Skeletal boxplot withwhiskers.

FIGURE 6 Boxplot with outliers.
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applies a little more formal method.McGill et al. [16] presented a useful way
of performingmultiple boxplot comparisons.The authors created special in-
tervals around the medians in boxplots and then used the overlap or non-
overlap of these special intervals to develop a test of signi¢cance for the
di¡erence between the two populations whose samples are displayed in the
boxplots. The end points of the intervals shown in the boxplot display are
called notches.* These notches are usually located within the box itself, but

*Why these are called notches will not be apparent from the ¢gures that follow. However, the
illustrations in McGill et al. [16] show boxes with ‘‘dents’’ or ‘‘notches’’ (similar to what might
be carved into the edge of a block of woodwith a pocket knife).The resulting notched box resem-
bles an hourglass,which, in our examples,would be lying on its side.

FIGURE 7 Boxplot.

FIGURE 8 Multiple boxplots.
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if the sample median is close to a hinge, a notch (interval end point) may be
located outside the box along a whisker.

This, then, is the hypothesis test using notched boxplots. Two
samples (batches or groups) whose notched intervals do not overlap in-
dicate that the two populations (represented by these samples) are sig-
ni¢cantly di¡erent at, roughly, a¼0.05. (Technically, this comes down
to a test at, roughly, a¼0.05 of H0: population one’s median¼ popula-
population two’s median vs. HA: population one’s median 6¼ population
two’s median, but, obviously, if the population medians are di¡erent,
so are the populations.)

Notice that this is a comparison test of two populations. If notched
boxplots are used to compare more than two groups, the researcher needs
to understand that this already crude test will become even more crude.
However, I ¢nd it very useful, particularly when grounded in one’s ¢eld of
expertise.This is also the purpose of EDA: to explore the data and get a feel
for it, not to use what has been suggested by exploratory analysis to reach
decisions regarding the research questions. The decision process comes
much later, after a model for the data is selected, after the necessary model
assumptions have been veri¢ed, after the method of analysis is selected, and
after the analysis is done.

The notch calculation is:

Median� 1:58� ðH spreadÞ= ffiffiffi
n
p

where 1.58 is the constant expressing, in part, the relationship between the
H-spread and population standard deviation,* and n¼ sample size. From
the data inTable 3, the notches are:

Lower notch ¼ 6:405� 1:58ð3:465=
ffiffiffiffiffiffi
20
p
Þ

¼ 6:405� 1:224

¼ 5:181

*Technically, the notches on a notched boxplot should be used to compare only two boxes. For
the researcher using the boxplot as a preliminary tool, this is a bit restrictive. But, as McGill
et al. [16] presented it, a 95% con¢dence level is applied strictly to only two samples.With the
formula: notches¼median� (1.58� hinges-spread)/

ffiffiffi
n
p

, the factor, 1.58, combines the H spread
and the population standard deviation, the variability of the samemedian, and the factor used in
setting the con¢dence limits. It is well known that theH spread=1.349 provides a crude estimate
of the standard deviation, s, particularly for large samples, from a normal distribution. Simi-
larly, in large samples, the variance of the population, s2, is p=2 times the variance of the sam-
ples, s2.This tends to hold only for large sample sizes theoretically, but it has also been shown to
be a surprisingly accurate measure of a wide variety of nonnormal distributions.
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Upper notch ¼ 6:405þ 1:58ð3:465=
ffiffiffiffiffiffi
20
p
Þ

¼ 6:405þ 1:224

¼ 7:629

Figure 9 presents this boxplot with notches added. Figure 10 provides a
MiniTab computer output of the notched boxplot.

Multiple boxplots,when notched and generated on the same scale, can
be rapidly checked for evidence that the populations they represent are the
same or are di¡erent (Fig. 11). Technically, only two groups should be com-
pared. But when this is used as a preliminary screening method, compari-
sons beyond twomay be surprisingly accurate.

From Fig. 11, one can see that the three boxplots vary a great deal in
hinge locations,whiskers, and extremeor outlier values.Yet, a quick compar-
ison can be made by just observing whether the notches overlap. The inter-
vals of A and C overlap, so the populations from which they were drawn are
not signi¢cantly di¡erent. Intervals inA andB do not overlap�their popula-
tions di¡er signi¢cantly in median values�and sample C overlaps both A
andB. Although much more needs to be done in evaluating the data, one gets
a relatively accurate indicator of where the population medians are relative

FIGURE 9 Boxplot with notches.

FIGURE 10 Boxplot with notches.
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to one another right at the beginning of the EDA process.The boxplot, then,
provides the researcher information immediately about the data and the po-
pulations they represent.

IV. INTEGRATION

Now that wehavediscussed threemajor exploratory data analysis displays, it
is important that they�all three of them�are employed in an integrated
manner [17]. The stem-and-leaf and the letter-value displays, as well as the
boxplot with notches, are reproduced in Fig. 12 to demonstrate one way of
doing this.

By comparing the three EDA outputs simultaneously, one gets a very
comprehensive perspective on the data set with just a few minutes of study.
In the stem-and-leaf display, the data appear approximately normal, but
there is a slight skewing of the data to the right (atH,E, andD) until one views
the depth1values (letter-value display).

Here, the data really are not gappy enough to be a concern, nor do they
appear to be multimodal (stem-and-leaf ). Data are all clustered within the
inner fences, and the median value is 6.405 (boxplot). There are no outliers
(boxplot).

By just taking this brief time for examination, the researcher is more
intimate with the data and better understands the data.

A. Nonnormally Distributed Data

There are many situations in which the shape of a data batch is clearly non-
normal.The researcher then has to make a decision:

1. Leave the data in the original form and, essentially, ignore the
problem as related to parametric analysis;

FIGURE 11 Multiple boxplotswith notches.
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2. Use a distribution-free method�a nonparametric method; or
3. Reexpress the data.

One may wonder why data that are nonnormally distributed would
be left that way. Most often, this occurs because of communication and

FIGURE 12 Stem-and-leaf, letter-value, and boxplot displays.
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consistency. Researchers must communicate information, not only to fellow
researchers but also to management, investors, regulatory agencies, and
even politicians. Trying to describe the tensile strength of a new product in
terms of a ‘‘reciprocal square root’’ transformation will probably result in
frustration. A simpli¢ed portrayal of the data is needed.

In addition, if one is comparing the e¡ectiveness of one treatment with
that of another treatment where studies involving one of the treatments have
been published in a technical journal, the researcher will often opt to per-
form not only the experiment but also the statistical data analysis in the same
way as in the published study.This is so even if the conditions underlying the
method of an analysis were not met and a di¡erent technique should have
been used. The researcher may opt not to change methods so as not to
‘‘muddy the water.’’

Other times, a researcher will leave the data in nonnormal form and
use a distribution-free, or nonparametric, method. But, in applied re-
search, many studies are conducted on a very small scale, and the research-
er wants to maximize power as well as more easily ¢nd potentially better
products, processes, etc. In this case, data transformation is the best op-
tion. Parametric tests are more powerful than nonparametric tests, and
transforming the data to achieve normality is better than ignoring the pro-
blem altogether.

B. Reexpressions of Data

Making nonnormal data normal by reexpression is fairly simple,particularly
in skewed data conditions (Fig. 13). However, this is not the case for multi-
modal distributions (Fig.14).

For example, a bimodal distribution is often encounteredwhendata for
males and females are mixed together. In situations like this, it is better to
disentangle the subpopulations and treat them separately.

In performing reexpressions, in practice, it is more practical to use
a statistical computer program because tedious calculations are often

FIGURE 13 Skewed data.
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involved. Reexpressions are best handled methodically via a ‘‘scale of
powers’’ (Table 5) [18].

Generally, one begins with the current data scale, called power 1, or
power¼1.* If the data batch is skewed to the right (larger values), a power
reexpression of less than 1 will pull out the left (smaller) values and push in
the right (larger) values (Fig.15).When a data batch is skewed to the left, the
reexpression should be greater than the power of 1.This will push in the left
(smaller) values and pull out the right (larger) values (Fig. 16). The farther
one goes in either direction from p ¼ 1, themore abruptly the data batch will
be changed.

*a1 ¼ a for all a.

FIGURE 14 Multimodal distributions.

TABLE 5 Ladder of Powers

Use Power Reexpression Expression name

For data skewed to the left g g g
3 x3 Cubed
2 x2 Squared

Non-reexpressed data 1 x1 Raw
For data skewed to the right 1=2

ffiffiffi
x
p

Square root
0a log x Log transformation
�1=2 �1= ffiffiffi

x
p

Reciprocal root
�1 �1=x Reciprocal
�2 �1=x2 Reciprocal square
�3 �1=x3 Reciprocal cube
g g g

aFor all a 6¼ 0; a ¼ 1, and there is no point in reexpressing each datum as 1.When we order the
powers basedon the strength of their effect, log falls in this relative position.
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An e¡ective way to ¢nd the best reexpression is to perform several re-
expressions using various powers on the data and print out letter^value dis-
plays. [Recall that if the ‘‘mid’’ (midsummary) column values increase in
size, the data are skewed to the right or larger end. If the mid column values
become progressively smaller, the data are skewed to the left or smaller
values. The mid column values should be about the same size or £uctuate
randomly if the data are symmetrical.] The process is iterative, and whether
one starts at a lower or greater power depends on the direction of skew
(Table 5).

If one isworking by hand, time can be saved by reexpressing only a por-
tion of the data. The only values needing reexpression are the letter values.
When the depth of a letter value involves 1=2, the two values on which the
letter value is based need reexpression. Once this is done, new mids and
spreads can be calculated.

If positive and negative values are found in data batches, reexpres-
sion becomes more challenging. Because letter values are determined
entirely by their depth in an ordered batch, if the order is disturbed, that
reexpression cannot be used. So, if a > b and both are positive, then
ap > b p for any positive power, p, and �ap > �b p for any negative p.

FIGURE 15 Reexpessing skewed-to-the-right sample data.

FIGURE 16 Reexpressing skewed-to-the-left sample data.
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However, if either a or b or both are negative, power reexpressions will not
preserve the order.*

Also,when the numbers in a data batch are not all positive (i.e., greater
than zero), some reexpression operations will not be possible. For example,
one cannot ¢nd

ffiffiffiffiffiffiffi�2p
, and one cannot reexpress a zero with a log10 reexpres-

sion.Yet, one can add a constant to the value before transformation. For ex-
ample, one could add1=4 or 0.25 to each value at the start.

x0 ¼ logðx þ 0:25Þ; when x ¼ 0; the log reexpression will be that
of 0.25, a permissible operation.

Data that are all negative can bemade positive bymultiplying by�1and then
applying a reexpression to the resulting positive number.

Let us look at an example to see how reexpression works (Table 6).
Figure17 provides a stem-and-leaf display of Table 6.

Clearly, the data are skewed to the right (larger values). Looking at
Fig.18, a letter-value display, one can see the midsummary values increasing
consistently, showing that the data are clearly skewed to the larger values.y

Because the data are skewed to the right, we look at Table 5 of power
reexpressions and see that the power needed is less than 1. So 1=2, 0, and
�1=2 reexpressions are performedwith the square root, log10, and reciprocal
root, respectively.Table 7 provides the reexpressed values.

TABLE 6 AData Batch of n ¼ 30Observations

0.79 1.75 0.82 1.21 1.96 1.21
0.48 1.44 3.38 2.21 3.01 3.10
1.52 2.11 0.53 1.62 1.32 0.33
0.60 0.82 2.82 1.88 1.19 1.36
4.76 2.49 0.97 1.90 0.91 2.06

*Example: a > b > 0; rule: for p > 0; ap > bp.
Example: 9 > 4 > 0. Let p ¼ 1=2 > 0; then, 91=2 > 41=2 (i.e.,

ffiffiffi
9
p

>
ffiffiffi
4
p ¼ 3 > 2). Or, let

p ¼ 2 > 0; then, 92 > 42 ¼ 81 > 16:
Example: a > b > 0; rule: for p < 0;�ap > �bp.
Example: 9 > 4 > 0. Let p ¼ �1=2 < 0, then 9�1=2 < 4�1=2 ¼ 1=91=2 < 1=41=2 ¼ 1=

ffiffiffi
9
p

<

1=
ffiffiffi
4
p ¼ 1=3 < 1=2 but � 1=3 > �1=2 (i.e.,�0:333 > �0:500Þ.

Recall that, if both numbers are negative, the one closer to zero is larger.
yThe values that halve the tail areas outside a D are called C . The data values beyond C each
constitute 1=32 of the total number of values.
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Table 8 presents the reexpressed values in letter-value displays. The
¢rst reexpression, the square root, helped normalize the distribution as
shown by a less pronounced incremental increase in the ‘‘mids.’’

The log10 transformation removed the skew to the larger values,
overcorrecting the data to make them skewed to the smaller values. This
can be seen in the mid values now incrementally decreasing.

The �1= ffiffiffi
x
p

transformation overcorrected more than the log10 trans-
formation.* The researcher may opt to pick the log10 reexpression or opt for

FIGURE 17 Stem-and-leaf displayof data.

FIGURE 18 Letter-value display.
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TABLE 7 Reexpressionsof Raw Data

n x
ffiffiffi
x
p

log10x �1= ffiffiffi
x
p

1 0.79 0.88882 �0.102373 �1.12509
2 0.48 0.69282 �0.318759 �1.44338
3 1.52 1.23288 0.181844 �0.81111
4 0.60 0.77460 �0.221849 �1.29099
5 4.76 2.18174 0.677607 �0.45835
6 1.75 1.32288 0.243038 �0.75593
7 1.44 1.20000 0.158362 �0.83333
8 2.11 1.45258 0.324282 �0.68843
9 0.82 0.90554 �0.086186 �1.10432

10 2.49 1.57797 0.396199 �0.63372
11 0.82 0.90554 �0.086186 �1.10432
12 3.38 1.83848 0.528917 �0.54393
13 0.53 0.72801 �0.275724 �1.37361
14 2.82 1.67929 0.450249 �0.59549
15 0.97 0.98489 �0.013228 �1.01535
16 1.21 1.10000 0.082785 �0.90909
17 2.21 1.48661 0.344392 �0.67267
18 1.62 1.27279 0.209515 �0.78567
19 1.88 1.37113 0.274158 �0.72932
20 1.90 1.37840 0.278754 �0.72548
21 1.96 1.40000 0.292256 �0.71429
22 3.01 1.73494 0.478566 �0.57639
23 1.32 1.14891 0.120574 �0.87039
24 1.19 1.09087 0.075547 �0.91670
25 0.91 0.95394 �0.040959 �1.04828
26 1.21 1.10000 0.082785 �0.90909
27 3.10 1.76068 0.491362 �0.56796
28 0.33 0.57446 �0.481486 �1.74078
29 1.36 1.16619 0.133539 �0.85749
30 2.06 1.43527 0.313867 �0.69673
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a reexpression power between the square root (1=2) and log(0), such as the
1=4 power. But, given that the data batch has only n ¼ 30 observations, such
¢ne-tuning is usually not productive.

V. CONCLUSION

It is important to learn how to use EDA adequately and make it part of each
analysis. By performing EDA at the outset, one can usually gain an under-
standing of the data that can be achieved in no other way.

TABLE 8 Letter-value Displays

Letter Depth Lower Upper Mid Spreadffiffiffi
x
p

n ¼ 30
M 15.5 1.216 1.216
H 8.0 0.954 1.453 1.203 0.499
E 4.5 0.832 1.707 1.269 0.875
D 2.5 0.710 1.800 1.255 1.089
C 1.5 0.634 2.010 1.322 1.376

1 0.574 2.182 1.378 1.607

log10x
n ¼ 30
M 15.5 0.170 0.170
H 8.0 �0.041 0.324 0.142 0.365
E 4.5 �0.162 0.464 0.151 0.627
D 2.5 �0.297 0.510 0.106 0.807
C 1.5 �0.400 0.603 0.102 1.003

1 �0.481 0.678 0.098 1.159

�1= ffiffiffi
x
p

n ¼ 30
M 15.5 �0.822 �0.822
H 8.0 �1.048 �0.688 �0.868 0.360
E 4.5 �1.208 �0.586 �0.897 0.622
D 2.5 �1.408 �0.556 �0.982 0.853
C 1.5 �1.592 �0.501 �1.047 1.091

1 �1.741 �0.458 �1.100 1.282

*Recall that, when all the values are negative, the one closest to zero is the largest. Here, the
midnumbers are decreasing.
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4

Two-SampleTests

I. BASIC EXPERIMENTAL PRINCIPLES

As discussed previously, three basic tools in the experimental design process
are replication, randomization, and blocking.We will begin using them in this
chapter and continue using them throughout the book. Recall that replica-
tion refers to repeating experimental runs in order to collect multiple mea-
surements of the experimental phenomenon of interest. The replication
process enables one to estimate the true mean value of a population with
both greater precision and greater accuracy. It also allows estimation of the
magnitude of experimental error. Randomization of experimental units
and=or treatments is a precaution against bias. Each experimental unit,
then, is equally likely to be assigned any one of several treatments. For
example, virtually all statistical methods require that observations (or
experimental errors) be independently distributed random variables, and
randomization makes this assumption valid. Finally, blocking is a technique
used to increase the precision of an experiment by controlling for an extra-
neous variable within a population sample. Blocks consist of sample items
grouped to bemore homogeneouswith respect to that variable.For example,
a simple block may combine microbial counts from the left and right sides of
a test subject used in a preoperative skin preparation evaluation. This is
because one would expect the population counts to be more similar in num-
bers on the left and right sides of an individual than counts among di¡erent
individuals. The samples within a block undergo the experimental treat-
ments with randomization occurring only within that block, and posttreat-
ment results are compared with each other only within that block. In our
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simple example using two products, each would be assigned randomly to
either the left or right side of the subject.This process reduces experimental
error,making the statistical test more powerful�that is,more likely to reject
a null hypothesis when it is false.

To use the statistical approach e¡ectively in designing and analyzing an
experiment, it is necessary to have a clear idea in advance of exactly what is
to be studied, how it is to be represented by the data collected, and how those
data are to be collected. The researcher should also have at least a general
idea of how the data are to be analyzed. Let us expand this discussion [17].

1. Recognition of and statement of the problem. This may seem an
obvious point, but in practice, it is often not simple to recognize
what the problem is, how to measure it, and how to know
what one thinks is measured actually is measured. Therefore, a
clear statement of the problem, how tomeasure it, and how to vali-
date the measurement of it is necessary before performing any
experimentation.

2. Choice of factors and levels. The experimenter must explicitly iden-
tify and select the variables�independent and dependent�to be
investigated in the experiment. The independent variables must
be interval or ratio measures, and the dependent variable must be
continuous (or approximately continuous data) in parametric sta-
tistics.The dependent variable(s) in nonparametric statistics may
be nominal, ordinal or interval. One must also select the ranges
over which the independent variables are to be varied.These levels
may be chosen speci¢cally or selected at random from the set of all
possible factor levels (random e¡ects model).

3. Selection of a dependent variable. In choosing a dependent or
response variable, it is important that the responsemeasured really
provides the information that is wanted about the problem under
study.This is a big challenge in many research situations.

4. Choice of experimental design. We will cover a number of experi-
mental designs in this text. If a researcher takes the time to learn
how to apply them, the selection of the appropriate design is rather
straightforward. Initially, the experimenter will have to decide
between parametric and nonparametric methods. In parametric
statistics,when two sample groups with unknown population var-
iances are compared, a Student’s t-test is used. This test will be
subdivided into the two independent samples and matched-pairs
cases. For experiments comparing more than two samples,
analysis of variance generally will be used. Blocking is analogous
in these models to matched-pair Student’s t-tests. When there is

82 Chapter 4



trending involved over time, regression analysis will be used. And
for nonparametric applications, analogs of the parametric meth-
ods will be used.

5. Performing the experiment.The experimenter must assure that ran-
domization, blocking, and replication are carried out according to
the experimental design’s requirements,which are often quite spe-
ci¢c. If these are not carried out appropriately, the entire statistical
rationale undergirding the experiment is invalid.

6. Data analysis. In recent years, the computer has played an ever-
increasing role in data analysis. There are currently a number of
excellent statistical software packages available for statistical
computing.We will employ MiniTab1. Graphical techniques, as
we have seen in EDA, are particularly helpful in data analysis.

An important part of the data analysis process is model ade-
quacy checking through the use of residual plotting, for example,
to assure that the model accurately describes the data. In this
book, we will learn to become intimate with the data so that we
can better assess the statistical model’s adequacy in describing
the data.We will not merely plug values into a computer and crank
out results.

7. Conclusions and recommendations. Once the data have been ana-
lyzed, the experimenter will use statistical inference to draw
conclusions from the experiment’s results. The conclusion may
suggest that a further round of experiments be conducted because
experimentation is often an iterative process, with an experiment
answering some questions and simultaneously posing others. In
presenting the results and conclusions, the experimenter should
minimize unnecessary statistical terminology and jargon and,
instead, present the information as simply as possible; the techni-
cal details can appear in an appendix in the ¢nal, written report.
The use of graphical displays is a very e¡ective way of presenting
important experimental results to nonscientists.

II. TWO-SAMPLE COMPARISONS

There are two situations in which the researcher is interested in the di¡er-
ences between e¡ects instead of the e¡ects themselves: (1) the comparison
of two independent groups (samples) and (2) the comparison of related or
matched groups. Each of the two situations involves comparing two sets of
sample data.One sample is generally designated the test group and the other,
the control. The test group has undergone the treatment condition that is
the main focus of interest. Its e¡ect is judged relative to the response of the
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other group, the control group. The control group undergoes the standard
treatment or no treatment at all. However, the two-sample comparison pro-
cedures can also be used to compare two new or separate treatments, pro-
ducts, or procedures or the di¡erences in response when one group is
measured two times, usually before and after a treatment process.The latter
procedure is referred to as a pre-post measures design or a repeated-
measures design.

Graphical representations of the experimental design are useful to
clarify what the researcher is doing. For example, suppose a researcher has
developed a new house paint that the researcher believes is superior to the
standard paint, withstanding greater heat before peeling. Ten test paint pa-
nels and 10 control paint panels will be selected at random, placed in a
375�Foven for 48 hours, and then removed.The chipping pressure will then
be measured for each panel.

A schematic depiction of this study is:

ðRÞ A1 O1

ðRÞ A2 O2

where (R) represents randomization, signifying that the panels were
randomly selected, in this case, from the same population

(Ai) represents the independent variable, which in this case is
the paint; i¼1, if test paint,or 2, if control paint (standard)

(Oi) represents the dependent variable (also known as the re-
sponse variable), degree of paint peeling measurement at
a speci¢c pressure

Notice that this design does not identify a speci¢c test to use�a two-
sample t-test, a matched-pair t-test, or a nonparametric test, such as the
Wilcoxon^Mann^Whitney test.The researcher can decide this beforehand,
in such cases as a matched-pair test or, later, based on the EDAevaluation.

Suppose an immunologist wants to determine whether a curing pro-
cess for a speci¢c vaccine results in a longer shelf life for the vaccine than
does the control (no process).The study schema is:

ðRÞ A1 O1

ðRÞ O2

where (R) signi¢es that the bulk vaccine solution was randomly as-
signed to test and control groups

(A1) represents the treatment (curing process) (note: only the
treatment group undergoes the curing process)
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(Oi) represents the observed variable (shelf life); i¼1, if test group,or
2, if control group

This structure can also be used for pretest=posttest measurements on
one sample:

where (Oi) represents the dependent variable; i¼1, if pretest mea-
surement, or 2, if posttest measurement

(A) represents the treatment (note: in this case, product was
not randomly assigned, so an R is not present)

In this case, a measurement was performed prior to treatment. Once
the pretreatment measurement occurred, the treatment was applied, and
then the shelf life was remeasured.

This structure can be expanded tomore complex studies.For example:

ðRÞ A1 O1

ðRÞ A2 O2

ðRÞ O3

or

ðRÞ A1 O11 O12 O13

ðRÞ O21 O22 O23

or

ðRÞ A1 O11 O12 O13

ðRÞ A2 O21 O22 O23

ðRÞ A3 O31 O32 O33

ðRÞ O41 O42 O43

III. TWO-SAMPLE TESTS

Oneof themost useful and powerful statistics in an applied researcher’s tool-
box is Student’s two-sample t-test. As previously stated, there are two gen-
eral types: (1) independent and (2) matched pair.We will now discuss the
independent case,which is composed of two di¡erent tests.The ¢rst is used
when the variances di¡er, and the second is used when the variances are

Pretest Posttest

O1 A O2
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assumed equal. In this book,we will focus on using the t-distribution instead
of theZ-distribution.That is because it is more appropriate for small sample
sizes than the Z table. And, as the sample sizes increase (�120), the t- and
Z-distributions are identical.

The linear statistical model for the two-sample t-test is:

xij ¼ mþ bi þ eij ; i ¼ 1; 2; j ¼ 1; 2; . . . ; n ð1Þ

where xij¼ individual observations for each sample j for the ith treat-
ment

m¼ the combined average treatment e¡ect of the sample
treatments

bi¼ e¡ect due to treatment1, if i¼1, or treatment 2, if i¼ 2
eij¼ random or experimental error due to each treatment i at

each sample j

A. Two-Sample t-Test, Independent Samples, Variances
Not Equal (s2

1�s2
2)

The two-sample t-test requires that both samples are randomly selected
from normally distributed populations. Fortunately, the two-sample t-test
is robust enough to tolerate considerable deviations from the normal distri-
bution requirement, particularly if the sample sizes of the two samples, n1
and n2, are equal or nearly so. The greater the sample size di¡erences
between the two groups, the less e⁄cient the two-sample t-test is.We will
see this later in the chapter when we compute the sample sizes required to
detect a speci¢c signi¢cant di¡erence, d ¼ jm1 � m2j, in the population
means. In addition, the two-sample t-test has been reported to be more
robust in a two-tail application than in the upper or lower tail applications
[19^21].

Note that the larger both the sample sizes n1and n2 are, themore power-
ful the two-sample t-test is. Furthermore, if the underlying populations are
found to be skewed and one does not want to utilize a scale transformation
or a nonparametric statistic, it is reassuring to know that the two-tail t-test is
not greatly a¡ected by skewedness [19,22].Even so,the experimentermust be
wary of using a two-tail test on skewed data sets. This is particularly true,
also, for small a values such as 0.05 or 0.01.The power* of the two-tail t-test
is not seriously a¡ected by skewed data but is a¡ected in single-tail tests [19].
For small sample sizes, the actual power of the two-sample t-test has been

*Power is the ability of a statistic to reject correctly false null hypotheses.
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shown to be somewhat less than the power computations suggest [19,23].
Finally, if the variances are unequal (s2

1 6¼ s2
2), type I error will tend to be

greater than the stated a level, but if the sample sizes are equal, the t-test is
robust for moderate to large samples.

The two independent samples test assumes that the samples from one
group are not related to those from the other group. Three test hypothesis
conditions can be evaluated using the two-sample t-test in any of its three
variations.

1. Upper tail

H0: m1� m2
HA: m1>m2
RejectH0 if tc> ttabled where
tc¼ t-statistic calculated from the data
ttabled¼ t-critical value (tabled)

2. Lower tail

H0: m1�m2
HA: m1<m2
RejectH0 if tc< ttabled

3. Two-tail

H0: m1¼ m2
HA: m1 6¼ m2
RejectH0 if jtcj 6¼ jttabledj

Student’s t-test statistic for two independent samples is:

t ¼
�XX1 � �XX2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS2
1=n1Þ þ ðS2

2=n2Þ
q ð2Þ

The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS2

1=n1ÞþðS2
2=n2Þ

p
provides an unbiased estimate of the combined var-

iances, s2
1þ2,where:

�XX1 ¼ sample mean for group 1 ¼
P

X1

n1

�XX2 ¼ sample mean for group 2 ¼
P

X2

n2
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S2
1 ¼ variance of sample one ¼

PðX1 � �XX1Þ2
n1 � 1

�

S2
2 ¼ variance of sample two ¼

PðX2 � �XX2Þ2
n2 � 1

The degrees of freedom ¼ df ¼ n1 þ n2 � 2.
The two-sample t-test assumes that the samples were collected at ran-

dom, that the data are normally distributed, but not that the variances are
equal ðs2

1 6¼ s2
2Þ.

Generally, it will not be necessary to utilize Student’s t-test for inde-
pendent samples and unequal variances, for most researchers assume var-
iances are equal and pool them.This provides greater statistical power.

When the variances s2
1 and s2

2 are not assumed to be equivalent, a con-
undrum exists that statisticians call the Behrens^Fisher problem [24].We
have ignored the problem and merely used a procedure for evaluating two
independent samples when variances are unequal. However, a number of
statisticians would disagree and argue to use another procedure, Welch’s
approximate t-test [19].

The test statistic is the same as that presented in Eq. (2).

tw ¼
�XX1 � �XX2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS2
1=n1Þ þ ðS2

2=n2Þ
q ð2Þ

The computation of the degrees of freedom (df 0 ), however, is not n1 þ n2 � 2,
but

df 0 ¼ ½ðS2
1=n1Þ þ ðS2

2=n2Þ�2
ðS1=n1Þ2=ðn1 � 1Þ þ ðS2=n2Þ2=ðn2 � 1Þ ð3Þ

The degrees of freedom (df 0 ) calculation usually does not result in an
integer, so the fraction (decimal) portion of df is truncated. If n1 6¼ n2 and the
variance di¡erence is great, tw will provide a more powerful test than a stan-
dard two-sample t-test [Eq. (2)]. Also,Welch has suggested, to improve the
test when n1 6¼ n2, using n1 � 3 and n2 � 3 instead of n1 � 1 and n2 � 1
[Eq. (3)].

Some statisticians recommend actively comparing s2
1 and s2

2 for
equivalence prior to conducting a t-test. However, because the two-sample
pooled t-test is so robust and the variance (s2) comparison test performs

*When computing by hand, a simpli¢ed computational formula can be used:

S2
i ¼
�P

x2ij � n �XX 2
�
=ðni � 1Þ
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poorly with nonnormal data, I do not recommend a test of the variance
equivalence. Instead, I recommend the pooled two-sample t-test or, in cases
of severe deviation from a normal distribution and=or severe nonequality of
variances, a nonparametric test. The Wilcoxon^Mann^Whitney U-test is
the one of choice and is discussed in Chap.12.

B. Two-Sample Pooled t-Test, Independent Samples,
Variances Equal s2

1¼s2
2

When using a two-sample pooled t-test for independent samples, where we
assume the variances are equal, the following formula is used:

tc ¼
�XX1 � �XX2

S �XX1� �XX2

ð4Þ

where �XX1 ¼ sample mean for group 1
�XX2 ¼ sample mean for group 2
S �XX1� �XX2

¼ the pooled standard deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
p

n1
þ S2

p

n2

q
where

S2
p ¼

SS1 þ SS2

ðn1 � 1Þ þ ðn2 � 1Þ
or

S2
p ¼

SS1 þ SS2
df 1 þ df 2

where

SSi ¼ sum of squares ¼
Xn
i¼1
ðxi � �xxÞ2

df i ¼ degrees of freedom ¼ ni � 1

Example 1: A chemist wishes to test two chemical extraction meth-
ods for e⁄ciency. Method 1 is a new method, and method 2 is the standard.
Ten extraction runs with each of the twomethods are conducted via random
assignment.The researcher wants to know whethermethod1is ‘‘better’’ than
method 2, that is, whether more ingredient volumes, in microliters, are
extracted by method 1 than by method 2.The data for extractions using the
twomethods are presented inTable1.

For computational ease,wewill use the six-step procedure for all of our
testing.
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Six-Step Procedure

Step1. Formulate the test hypothesis, beginning withHA.
Because we are determining whether method 1 is greater in extraction

e⁄ciency thanmethod2 (the standard),wewill set thisupas anupper
tail test.

Let m1 ¼ true extraction mean for method 1
m2 ¼ true extraction mean for method 2 (the standard)
H0: m1 � m2
HA: m1 > m2

Step 2. Specify sample sizes n1 and n2 and the a-level for signi¢cance
of di¡erence.

n1 ¼ 10

n2 ¼ 9

Set a ¼ 0.05 (or any other a the researcher chooses).
Step 3. Select the test statistic.We assume here that the variances are

equal.

tc ¼
�XX1 � �XX2

S �XX1� �XX2

Step 4. Specify the decision rule (Fig.1).
ttabled (Student’s t table, Table B)¼ tt ¼ tða;n1þn2�2Þ ¼ tð0:05;10þ9�2Þ ¼

tð0:05;17Þ ¼ 1:740

TABLE1 Data for Chemical Extractions UsingTwoMethods

n Method 1¼ x1 Method 2¼ x2

1 152 151
2 153 �a
3 149 156
4 162 155
5 165 157
6 168 161
7 157 158
8 178 168
9 161 149
10 186 174

aSample 2 ofmethod 2 was lost; its position is represented byan asterisk, not a 0.
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Decision rule:

If tc > tt, rejectH0 at a ¼ 0.05,where tt ¼ 1.740.

Step 5. Calculate test statistic:

tc ¼
�XX1 � �XX2

S �XX1� �XX2

�XX1¼152þ153þ149þ			þ161þ18610
¼ 1631

10
¼ 163:10

�XX2¼151þ156þ155þ			þ149þ1749
¼ 158:78

SS1¼ð152�163:10Þ2þð153�163:10Þ2þ			þð161�163:10Þ2

þð186�163:10Þ2¼1240:90

SS2¼ð151�158:78Þ2þð156�158:78Þ2þ			þð149�158:78Þ2

þð174�158:78Þ2¼503:56

S2
p ¼

SS1 þ SS2

n1 � 1þ n2 � 1

S2
p ¼

1240:90þ 503:56
9þ 8

¼ 102:62

FIGURE 1 Acceptance and rejection regions (Example 1, step 4).
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S �XX1� �XX2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
p

n1
þ S2

p

n2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102:62
10

þ 102:62
9

r
S �XX1� �XX2

¼ 4:65

tc ¼
�XX1 � �XX2

S �XX1� �XX2

tc ¼ 163:10� 158:78
4:65

¼ 0:93

Step 6. Because t-calculated is less than t-tabled (0.93 < 1.74), one
cannot reject the H0 hypothesis at a ¼ 0.05. The new method of
extraction is not signi¢cantly better than the old method at a¼
0.05.

In addition, this t-test can be computed using a formula sometimes
easier to perform by pencil-and-paper methods.

tc ¼
�XX1 � �XX2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1�1ÞS2
1þðn2�1ÞS2

2
n1þn2�2

q
The pooled two-sample t-test can also be computed using a computer

software package.When using a software package, it is important to check

TABLE 2 MiniTab Output of Data inTable 1

POOLEDTWO-SAMPLETFORC1VSC2
N MEAN STDEV SEMAN

c1 10 163.1 11.7 3.7
c2 9 158.78 7.93 2.6

95 PCTC1FORMUC1-MUC2:a (�5.5,14.1)
TTESTMUC1¼MUC2 (VSNE):T¼ 0.93 P=0.37 DF=17
POOLEDSTEDEV¼10.1
where:
c1¼x1; c2¼ x2
T¼ t-test calculated value
P¼p-value
DF¼n1þ n2�2
am1 � m2 ¼ �XX1 � �XX2 � ta=2Sx1�xx2.
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the computer output and the hand calculation output to ensure that they are
equivalent. The MiniTab1 package uses the same formulae as were used to
compute both the two-sample pooled t-test and the con¢dence interval
around the di¡erence between the two means. Let us apply MiniTab1 to
computation of the data presented inTable 1. Table 2 presents the output of
theMiniTab1 computation.

Notice inTable 2, the software version of the two-sample pooled t-test,
that the software package computed the t-test as an �xx1 � �xx2 con¢dence inter-
val, �5:5 � m � 14:1, which includes 0, so we know that the H0 hypothesis
cannot be rejected. Notice, too, that a p value is provided in the MiniTab1

program. It means that, given that the H0 hypothesis is correct, one can
expect to observe a t-calculated (tc) value at least as extreme as 0.93, 37% of
the time.The probability of tc � 0:93jH0 true j ¼ 0:37.This is much greater
than an a ¼ 0.05, so one is fairly certain that no di¡erence exists between the
populations.

C. Confidence Interval Method to Detect a Difference
between Populations

The same conclusion could have been drawn by performing a 95% con¢-
dence interval procedure for m1 � m2. Technically, however, only a two-tail
test can be computed in this way.The formula is:

m1 � m2 ¼ �XX1 � �XX2 � ta=2S �XX1� �XX2
ð5Þ

where n1 ¼ 10; n2 ¼ 9,

S2
p ¼

SS1 þ SS2

ðn1 � 1Þ þ ðn2 � 1Þ ¼
1240:90þ 503:56

9þ 8
¼ 102:62; and

S �XX1� �XX2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
p

n1
þ S2

p

n2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102:62
10

þ 102:62
9

r
¼ 4:65

For ta=2 ¼ t0:025 at df ¼ n1 þ n2 � 2 ¼ 10þ 9 ¼ 17, Student’s t table
(Table B) shows t0:025;17 ¼ 2:11:95%CI¼ �XX1 � �XX2 � ta=2;df S �XX1� �XX2

¼ (163.10�
158.78) � 2.11(4.65) ¼ 4.32 � 9.81. Therefore �5:49 � m1 � m2 � 14:13.
Notice that, in the 95% interval range, zero is included.Whenever zero is
included, theH0 (null) hypothesis cannot be rejected at the a ¼ 0.05 level of
signi¢cance.

Note:The same result can be achieved using a simplifyingmodi¢cation
of Eq. (5).

�XX1 � �XX2 � tða=2;n1þn2�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞS2

1 þ ðn2 � 1ÞS2
2

n1 þ n2 � 2

s
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IV. CONFIDENCE INTERVAL FOR EACH SAMPLE �XX GROUP

Recall that the computation for one population mean interval estimate is:

�XX � ta=2
Sffiffiffi
n
p � m � �XX þ ta=2

Sffiffiffi
n
p ; df ¼ n� 1

In the two-sample situation, estimating a con¢dence interval on the
two population means is similar. For situations where s2

1 ¼ s2
1 (variances of

population 1 and population 2 are the same), the con¢dence interval for
either m1 or m2 is computed using the pooled variance, S2

p, rather than either
S2
1 or S2

2 , as the best estimate of s2
1þ2.

�XXi � ta=2

ffiffiffiffiffi
S2
p

ni

s
� m1 � �XXi þ ta=2

ffiffiffiffiffi
S2
p

ni

s

 �XXi � ta=2

ffiffiffiffiffi
S2
p

ni

s
; where ð6Þ

S2
p ¼

SS1 þ SS2
ðn1 � 1Þ þ ðn2 � 1Þ

with n1 þ n2 � 2 degrees of freedom
From Example 1, let us compute a 95% con¢dence interval for the

means in samples1and 2.
Sample 1 ðx1Þ:

S2
p ¼

1240:90þ 503:56
9þ 8

¼ 102:62

for m1; �XX1 � ta=2
ffiffiffiffiffiffiffiffiffiffi
S2
p=n

q
, where

Student’s t tabled value (Table B) ¼
ta=2;n1þn2�2 ¼ 2:11

¼163:10� 2:11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102:62
10

r
¼163:10� 2:11ð3:20Þ
¼163:10� 6:76

156:34 � m1 � 169:86

Sample 2 ðx2Þ:
For m2; 158:78� 2:11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102:62

9

r
¼ 158:78� 6:76

152:02 � m2 � 165:54
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Notice that the con¢dence intervals for m1 and m2 overlap.This is to be
expected because no di¡erence exists between the sample groupmeans.

The previous computation is very useful when the H0 hypothesis is
rejected. In cases such as this example, when the H0 hypothesis was not
rejected, an estimate of the common mean is often of more value.This is be-
cause where m1 ¼ m2, the researcher is describing the same population. The
best estimate of m is a pooled estimate of the mean �XXp.

�XXp ¼ n1 �XX1 þ n2 �XX2

n1 þ n2

¼ 10ð163:10Þ þ 9ð158:78Þ
10þ 9

¼ �XXp ¼ 161:05

ð7Þ

So161.05, the pooled estimate, is the best estimate of the common mean, m.
The con¢dence interval for the common mean estimate whenH0 is not

rejected is:

�XXp � ta=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
p

n1 þ n2

s
ð8Þ

161:05� 2:11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102:62
10þ 9

r
161:05� 2:11ð2:32Þ
161:05� 4:90

156:15 � m � 165:95

Hence, one may be 95% con¢dent that the true mean of the population
will be found in the preceding interval.

A. Sample Size Determination

Statistical estimation and hypothesis testing are designed primarily for pro-
tecting the researcher from making a type I (a) error but not from a type II
(b) error [19,24].The reason is that type Ierror is considered themore severe.
Recall that type I error occurs when one rejects a true H0 hypothesis�for
example, stating that a new treatment process is better than the standard
when really it is not. Conversely, type II error occurs when one accepts the
H0 hypothesis as true when it is actually false�that is, rejecting a new treat-
ment process that really is more e¡ective than the standard one.

For the applied researcher, a dynamic balance between a and b error
prevention should be sought (25, 26, 27). This will enable one to maximize
the likelihood of determining correctly whether or not some treatment
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process, for example, is or is not more e¡ective.The ability of the statistic to
do this is referred to as the power of the statistic.

There are several immediate things the investigator can do to in-
crease statistical power. First, one can select the most e⁄cient and power-
ful statistical model available. Second, one can increase the sample size,
thereby enhancing the power of any statistic, reducing the probability of
committing b error. One can also manipulate the a and b error levels. Re-
call that reducing the probability of making an a error (that is, decreasing
the value of a) increases the probability of making a b error and vice ver-
sa. It is often helpful in a study having small sample sizes to increase the a
value (e.g., from 0.05 to 0.10), thereby reducing the b error level. However,
a larger study should be conducted subsequently to verify the conclusions
made from a small pilot study.

Given this advice, it is important that one determine the sample sizes
needed to ensure that, if a ‘‘signi¢cant di¡erence’’ in sample groupmeans ex-
ists, it will be picked up by the statistical model used. If not, one probably
need not conduct the study, for it will not really contribute to the research
e¡ort.

A researcher must consider two other aspects in sample size de-
termination: (1) the detection level between the two groups (i.e., the value
d ¼ j �XX1 � �XX2j) and (2) the variance (S2) of the sample data. If an investigator
requires very ¢ne detection resolution to identify a small but real di¡erence
in sample means, a larger sample size, n,will be required than if the resolu-
tion of di¡erence is larger. And, as well, the larger the variance (S2) implicit
in the sample data, the larger the number of samples one must collect within
each set in order to demonstrate a signi¢cant di¡erence between means that
may exist.

The ¢rst issue (detection level) can often be addressed by requiring a
speci¢c preset numerical di¡erence, d, between the sample sets compared
(i.e., d ¼ j �XX1 � �XX2j).This simpli¢es a researcher’s task considerably, particu-
larly in the early stages of research,when one is screening for potential new
and promising treatments, products, etc. Second, in controlled studies, a
researcher usually has substantial knowledge about what the variance (S2)
of a particular kind of test data is. By re¢ning techniques and, thereby, redu-
cing common procedural error, the variance can often be further minimized
and, to some degree, in£uenced and controlled.

By knowing these two parameters�the detection level and the sample
variance�a researcher can easily determine the sample size required to de-
tect a true di¡erence between �XX1 and �XX2 before conducting a study. Let us
begin our sample size determination by specifying the detection level re-
quired jm1 � m2j, remembering that the larger the sample sizes, the greater
the ability to detect di¡erences between sample means.
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B. Sample Size and Power Computations for the Pooled
Two-Sample t-Tests for Independent Means

Equation (9) can be used to estimate the sample size (estimated sample
size ¼ ne) required, given speci¢ed con¢dence interval width, w, and
variance, s2.

ne ¼
2S2

p t
2
a=2;2ðn�1Þ
ðw=2Þ2 ð9Þ

where:

S2
p ¼ the pooled variance ¼ SS1þSS2

n1�1þn2�1
ta=2¼ speci¢c critical value from t table,with n1 þ n2 � 2 [or 2(n� 1)

when n1 ¼ n2] degrees of freedom, squared
w¼ the data spread at the desired 1� a con¢dence level width

In order to determine the sample size, n, required, an iterative ap-
proach must be taken. The iterative process is quicker if the initial n ‘‘seed
value’’ used to start the process is too high instead of too low, and it is always
better, but not mandatory, that sample sizes be equal (n1 ¼ n2).With each
iteration, the estimate of n is successively improved.

Let us use the data in Example1to calculate the required sample size,n,
for a 10-point spread in the con¢dence interval, so w=2 ¼ 5:0. Recall
S2
p ¼ 102:62. Let us pick n ¼ 50 to start the process, df ¼ 2(50�1) ¼ 98,

and for a ¼ 0.05, a=2 ¼ 0.05=2 ¼ 0.025, and t0:25;98 ¼ 1:984.This is an itera-
tive process,performed until the previous ne calculated equals the present ne.
In case of a fraction, the ne value is rounded up.

Step1. Pick n (large).Wewill use 50, t0:25;98 ¼ 1:984.Plug the required
values into the ne formula, and round up the answer to keep only the
integer portion of ne.

ne ¼ 2ð102:62Þð1:984Þ2
ð10=2Þ2 ¼ 32:32 ðrounded up : 33Þ

Step 2. Next,use n ¼ 33 as the entering value.The degrees of freedom
equals 2(33�1)¼ 64, t0:25;64 ¼ 1:998

ne ¼ 2ð102:62Þð1:998Þ2
ð10=2Þ2 ¼ 32:77 ðrounded up : 33Þ

Because this iteration reveals ne to be 33, as did the ¢rst, we can stop
here. In this case, only two iterations were required, and n1 and n2 will
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require at least 33 sample replicates each for a 95% con¢dence interval with
a 10-unit spread, or �5 units from the means at the 95% con¢dence level.
Other examples may require more.

As previously stated, it is better to have the sample sizes equal, n1 ¼ n2,
but it is not a requirement. If one sample groupmust be constrained to a spe-
ci¢c n, the other sample can be expanded to be able to di¡erentiate them at a
speci¢c con¢dence interval width. The easiest way to do this is to let the
known, ¢xed sample set equal n1 and the unknown, adjustable one be n2.
We can determine n2 by calculating

n2 ¼ nn1
2n1 � n

After calculating the appropriate n sample size from Eq. (9), use that
value to represent n and solve for n2. In addition, assume that n1 can only be
sample size¼10.Using Example 1 again,we determined the necessary sam-
ple size for n ¼ 33.

n2 ¼ 33ð10Þ
2ð10Þ � 33

¼ �25:38

Notice n2 ¼ �25:38. If ð2n1 � nÞ � 0, then n1 must be increased and=or a
must be increased and=or the detectionwidth increased so that n2 is positive
(2n1 > n).

We increased the sample size, n1, in this example, but we could also in-
crease a ¼ 0:05 to a ¼ 0:10 or 0.15 and increase the minimum detection
width from 10 to 15 or 20 points to produce the same result without adding
more replicates to n1.However,we would lose statistical power.

n2 ¼ 33ð17Þ
2ð17Þ � 33

¼ 561

n1 2n1 n

2(10)¼ 20< 33 too low sample size n1
2(15)¼ 30< 33 too low sample size n1
2(16)¼ 32< 33 too low sample size n1
2(17)¼ 34> 33 okay, the minimum number

of replicateswe
can beginwith is 17
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That number of n2 samples is far too large. The researcher then decides to
increase n1 to 25.

n2 ¼ 33ð25Þ
2ð25Þ � 33

¼ 48:53 or 49

This is far better.
So a sample size of n1 ¼ 25 will require a sample size n2 ¼ 49 in order

to ensure that jm1 � m2j is within a 10-point spread at a 95% con¢dence
interval.

Notice that the statistical e⁄ciency is eroded by uneven sample sizes.
The researcher must keep this in mind, because many times in research, a
control group sample size,n, is purposely set at a lower number.For example,
if one is comparing a new drug with a control drug, 10 replicates may be col-
lected with the test product and, to save time andmoney, 5 replicates are col-
lected for the control product.This approach can greatly reduce the power of
the statistical test, causing validity problems for the researcher.

C. Determining the Smallest Detectable Difference between
Two Means

A common problem in conducting pilot studies based on small samples is a
lack of statistical power that results,mainly, in committing type II error [19].
That is, it is di⁄cult to detect a di¡erence in the means, d ¼ j �XX1 � �XX2j,when
one really exists. This is also a problem in other practical applications, for
example,when one uses small samples in quality control or assurance to ver-
ify that a process or product is not signi¢cantly di¡erent from a standard. In
addition, problems may occur when a researcher tries to select the best one
or two products of a group of products.Many times, testing of a group of pro-
ducts results in accepting a null hypothesis outcome (no di¡erence) when
one truly exists.Hence, it is important to know just what the statistical detec-
tion level is.

Let us review, for a moment, four factors that in£uence sample size re-
quirements:

1. The detectable di¡erence between population means
(d ¼ jm1 � m2j) is directly attributable to sample size. The smaller
the di¡erence between means, that is, the smaller the d values, the
larger the sample sizemust be to detect a di¡erence.This detection
limit value, d, should be known by the researcher prior to conduct-
ing a test.

2. The sample variance, s2, also directly in£uences the sample size
required. The larger the sample variability or variance (s2), the
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larger the sample size needed to detect a speci¢c d level. And, gen-
erally speaking, for the two-sample t-test, the total variability of
s21 þ s22 estimated by S2

1 and S2
2 is less if the variances are equal

(S2
1 ¼ S2

2 ) and can, therefore, be pooled (S2
p).

3. The signi¢cance level set for type I (a) error also a¡ects the sample
size requirements. One can adjust the value of a downward from,
say, 0.05 to 0.01, for greater insurance against type I (a) error, but
in doing so, the probability of committing type II (b) error
increases unless the sample size,n, is also increased.

4. The power of the statistical test,1�b (its ability to detect a true dif-
ference in sample means when one exists), increases as the sample
size increases. However, using a more powerful statistical test
when possible�say a parametric instead of a nonparametric
one�will generally increase the power without increasing the
sample size.

D. d Computation to Determine Detection Level between
Two Samples

The formula to be used for determining the degree of detectable di¡erence
between sample sets of data is:

d �
ffiffiffiffiffiffiffiffi
2S2

p

n

s
ðta=2; df þ tb;df Þ ð10Þ

where d ¼ smallest di¡erence that can be detected between the
two sample means ¼ j�xx1 � �xx2j.

ta=2 ¼ standard signi¢cance level of a, either a two-tail test
using a=2 or a one-tail test using a

df ¼ n1+n2 � 2
tb ¼ signi¢cance level for b (type II) error
n¼ sample size

S2
p ¼ SS1þSS2

n1þn2�2 ; df ¼ 2ðn� 1Þ�; n ¼ 33, and 2(33�1)¼ 64

Using the data in Example 1 again a ¼ 0:05, a=2 ¼ 0:025, b ¼ 0:10
(that is, we have a 1� b ¼ 90% probability of detecting true di¡erences in
sample means).

*Note: If n1 6¼ n2, then df ¼ n1 � 1+n2 � 1.
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Applying formula (10), the computation is carried out.

d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð102:62Þ

33

r
ð1:998þ 1:295Þ ¼ 8:21 or rounded up, 9

We note that, for a sample size of 33 ¼ n1 ¼ n2, df ¼ 2ðn� 1Þ ¼ 64,
S2
p ¼ 102:62, a=2 ¼ 0:025, and b ¼ 0:10, the minimum detection level is 9

points, or jx1 � x2j � 9, if a signi¢cant di¡erence is to be detected.

E. Power of the Pooled t-Test Prior to Conducting
Experiment

When calculating the power of the statistical test, (1� b), prior to conduct-
ing the experiment, use Eq. (11). And it is usually wise to compute the power
prior to conducting a study.Recall that the power of a test (1 � b) is its ability
not to make type II errors.

f ¼
ffiffiffiffiffiffiffiffi
nd2

4S2
p

s
ð11Þ

where f ¼ critical value to ¢nd power (1� b) in Table A.4 (Power
Tables). For t-tests, useTable A.4.1where v1¼1.

n¼ sample size (see Note below)
d ¼minimum detection level

S2
p ¼ SS1þSS2

n1�1þn2�1 degrees of freedom for f ¼ n1 þ n2 � 2 or
2ðn� 1Þ, if n1 ¼ n2

Note: When the sample sizes are unequal (n1 6¼ n2), use Eq. (12) (an
unequal sample size correction factor) to calculate the n value.

n ¼ 2n1n2
n1 þ n2

ð12Þ

Using the data from Example 1, let us assume n1 ¼ n2 ¼ 10 because
that is our plan prior to conducting the test experiment. Because this is
an estimate to be used before conducting the study, we can employ Eq.
(11). Recall that we previously set d ¼ 10 units and S2

p was 102.62.
Therefore,

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ð10Þ2
4ð102:62Þ

s
¼ 1:56
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FromTableA.4.1 (PowerTables) where v1¼1, and v2¼ df¼ n1þ n2�2¼10þ
10�2¼18, use the a value 0.05 to determine the power of the test, 1�b. Find
f¼ 1.56 on the power table for a¼ 0.05, and ascend in a straight line to the
corresponding value of v2 (18).Then move all the way to the left most portion
of the table to Read1�adirectly.The value1.56 is too small to be found.This
means that with a d¼10, a¼0.05 and S2p ¼ 102:62 the power is very small.
Let us adjust this using a¼ 0.01. Here, we match f¼1.56 with the curved
power line approximately v2¼18.Once this has been completed, again move
to the left most portion of the table reading 1�bdirectly.That value is about
0.58. So the power of the test is 0.58.The researcher will theoretically reject
products that actually are e¡ective, with 42% probability over the long run
when a¼ 0.01.Since this computation hasbeendone prior to the experiment,
the researcher can take action. Increase the sample size to reduce S2

p is the
preferred way, and increase the value of d, to reduce the detectable di¡er-
ence.Therefore, the b value corresponding to f is 0.08.The power of the sta-
tistic is 1� b ¼ 1� 0:08 
 0:92.

V. POWER COMPUTATION AFTER THE EXPERIMENT HAS
BEEN CONDUCTED

The power computations just presentedmust be computed prior to conduct-
ing an experiment. This is very important, for it is necessary to know the
test’s power so that the appropriate sample size is used.Yet, after the experi-
ment has been run, it is also of value to determine or con¢rmwhat the power
of the two-sample pooled t-test actually is, in termsof the probability of com-
mitting a type II error.

The power of the two-sample pooled t-test, computed after the experi-
ment is run, can be estimated by:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nd2 � 2S2

p

4S2
p

s
ð13Þ

where

S2
p ¼

SS1 þ SS2

ðn1 � 1Þ þ ðn2 � 1Þ
d ¼ difference between sample means; or

�XX1 � �XX2

df ¼ n1 þ n2 � 2 where a ¼ 0:01 or a ¼ 0:05

n ¼ sample size when n1 ¼ n2
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If n1 6¼ n2, then n ¼ ð2n1n2Þ=ðn1 þ n2Þ, the correction formula [Eq. (12)].
Using the data in Example 1, note that n1 6¼ n2 ; one of our sample

values was lost. Therefore, we will use the sample size correction factor
[Eq. (12)].

n ¼ 2n1n2
n1 þ n2

¼ 2ð10Þð9Þ
10þ 9

¼ 9:47

Let a¼ 0.05. The value of d computed is 163.10�158.78¼ 4.32, and
d2¼ 4.322¼18.66.This value will be too small to be useful for the same rea-
son just discussed in IV. Suppose d ¼15 and d2¼ 225.

S2
p ¼ 102:62

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:47ð225Þ � 2ð102:62Þ

4ð102:62Þ

s
f ¼

ffiffiffiffiffiffiffiffiffi
4:69
p

¼ 2:2

We again turn to the power tables,TableA.4.1where v1 ¼ 1.Notice that
a can be either 0.05 or 0.01 using these tables.The pooled sample degrees of
freedom ðv2Þ ¼ n1 þ n2 � 2. Find the a graph to use, 0.05 or 0.01, and, at the
bottom of the graph, ¢nd the value for f. Again, trace that value straight up
until it meets the line for degrees of freedom.Where they meet, draw a hori-
zontal line to the vertical y axis of the table.This spot corresponds to 1� b,or
the power of the statistic.We use a ¼ 0:05, so the left group of power curves is
used.The computed value for f at 0.05 is 2.2, corresponding to a df value of
n1 þ n2 � 2 ¼ 10þ 9� 2 ¼ 17,which is v2, for a power of� 0:58.This is not
much power. The experimenter now runs a rather high risk of committing
type II error.

In conclusion, it is important that the researcher acknowledges that
sample sizes, con¢dence levels or widths, power, and detectable di¡erences
be viewed from a problematic perspective. As a researcher becomes more
familiar and experienced with the methods and techniques used in the ana-
lysis, she or he will intuitively understand the signi¢cance of a particular
parameter. Statistical computations are tools to assist a researcher, they do
not determine what the research means, in and of themselves.

A. Differences between Variances

Later in this book, we will devote considerable time to learning to
compare variances, s2, using several analysis of variance statistical meth-
ods, but for the time being, we will concentrate on two-sample pooled
t-tests.
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When the variances are pooled in the two-sample pooled t-test,we as-
sume variance equality (s2

1 ¼ s2
2). We have noted earlier that comparing

variances is not as powerful for revealing signi¢cant di¡erences between po-
pulations as is a two-sample t-test.Yet, there are times in research when we
really need to know whether the variability in one population is di¡erent
from that of another.Take, for example, Fig. 2 and 3.

In Fig. 2,we have a graph of two variances of equal width. Figure 3, on
the other hand, presents two samples with unequal variances (in width). A
statistical power problem arises in situations where one variance is larger
than the other. In a two-sample t-test, as long as s2

2 is located within the
width of s2

1 , the test would portray the samples as coming from the same
population (Fig. 4).

Although it appears that samples1and 2 comes from the same popula-
tion within the regions depicted in Fig. 4, intuitively, one can see a problem.
The region ofs2

1 is so large that one cannot readily see a di¡erence in the two
samples. One can see a biasing e¡ect when s2

1 6¼ s2
2 in that the relatively

small variance, s2
2 ,will totally obscured by the larger one, s2

1, in analysis. In
many cases, it would not bemeaningful to compare the samples, particularly
in situations with small sample sizes, because no meaningful di¡erence
could be detected. A better goal would be to equalize the variance, usually
by increasing the sample sizes of both groups. The problem, however, will
more than likely be a research issue, requiring a research solution, instead
of a statistical one [19].

FIGURE 3 Unequal variances.

FIGURE 2 Equal variances of twopopulations.

FIGURE 4 Positions of the samples relative to one another, in which they would be
consideredas coming from the samepopulation.
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Another option is to use an F-test to compare variances to ensure that
they are equivalent, as required by the two-sample pooled t-test. There is
heated debate as to the actual usefulness of this test, but we will consider it
impartially.

The general approach to testing the variance in a two-sample t-test
poses the hypothesis:

H0: s2
1 ¼ s2

2

HA: s2
1 6¼ s2

2

and the test is a variance ratio test: S2
i =S

2
j ¼ Fc.

The larger variance is placed in the numerator portion of the ratio be-
cause the Fdistribution is only an upper tail one.

Fc ¼ S2
2

S2
1
; given S2

2 > S2
1

If S2
1 
 S2

2 , the quotient of the ratio will be near 1, where no di¡erence is
inferred.

Example 2: The data in Table 3 are microbial plate count values for
Escherichia coli bacteria preserved either by freeze drying or by cryostorage.

TABLE 3 Microbial Plate Count Values

Group1 Group 2
freeze-dried �70�C

380 350
376 356
360 358
368 376
372 338
366 342
374 366
382 350

344
364

�xx1 = 372:25 �xx2 = 354:40
n1 = 8 n2 = 10
df1= n1 � 1=7 df2= n2 � 1 = 9
S2
1 = 54:214 S2

2 = 142:044
Fc =142.044/54.214=2.628
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The experimenter wants to know whether the variances are signi¢cantly
di¡erent.

H0: s21 ¼ s22; a ¼ 0:05

The Ftabled statistic has two values for the degrees of freedom, the one
on the ‘‘top’’ for the numerator (v1), the other to the left for the denominator
(v2), Fa;v1;v2 ¼ Fa;n1�1;n2�1.* Table A.3 contains the Fdistribution.

Using a ¼ 0:05, df for the numerator v1 ¼ n2 � 1 ¼ 9, and df for the de-
nominator v2 ¼ n1 � 1 ¼ 8� 1 ¼ 7,we ¢nd the value, 3.68.

F0:05; 9; 7 ¼ 3:68

Because Fc calculated (2.628) < Ftabled (3.68), we cannot reject the H0
hypothesis.That is,we cannot conclude that s2

1 6¼ s2
2 at the a ¼ 0:05 level of

signi¢cance.
Amajor problemwith the variance test is that it is adversely a¡ected by

nonnormal populations, much more so than are two-sample t-tests.

VI. MATCHED-PAIR TWO-SAMPLE t-TEST

So far, the statistical methodswe have discussed have been two independent-
sample t-tests.We learned that it is better that they�the two sample sets�
have the same variance so they can be pooled.This provides amore powerful
test than when the variances cannot be pooled.Now we will discuss another
variation of the two-sample t-test, the paired two-sample t-test. Pairing, a
form of blocking, can be done when samples are related. In fact, the pair
may be the same sample, as in a pre-post or before-and-after type of study
design. The matched-pair t-test is statistically more powerful than both the
pooled t-test and the nonpooled variance, independent-sample t-test.This is
because the inherent variability between samples will be signi¢cantly
reduced, a big advantage in that fewer replicates are needed to achieve com-
parable power [17,20,22].

Let us look at an example. Randomly selecting subjects from a popula-
tion of patients to undergo either treatmentAor treatment B is an example of
an independent design approach. But, if each subject receives both treat-
ments, a matched-pair design (that is, each subject is a block), the statistical
analysis is more powerful than for the independent design. For example, in a
preoperative skin preparation study design, if each study subject is a treat-
ment block surgically prepped on one side of the abdomen near the umbilicus
with product A and on the other sidewith product B,wehave a casewherewe

*Note: The sample size of the larger S2 value of the two is used as the n1 value. So, if
n2 ¼ 10; v1 ¼ n2 � 1 ¼ 9; if n1 ¼ 8, v2 ¼ n1 � 1 ¼ 7:
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can use the matched-pair two-sample t-test. This blocking technique is sta-
tistically amore powerful one than having x1 number of patients treated with
product A and x2 number of patientswith product B. In later chapters, block-
ing will continue to be very useful as we get into more complex designs.

Let us look at another example. If we select rats randomly from a col-
ony of rats (di¡erent litters, age, facility, sex) and assign them treatment Aor
treatment B,we have an independent sampling design. If, on the other hand,
we have a single litter of rats in the same pen, eating the same food, drinking
the same water, and we wish to run an experiment to determine sexually
determined responses, we could divide (block) the litter into males and fe-
males and derive meaningful data to which to apply the matched-pair, two-
sample t-test.

If we had one metal strip,we could section it into10 equal segments for
10 replicates, partition the 10 segments in half, and use treatment A on one
half and treatment B on the other half of each of the10 segments (Table 4).Or
better yet, we could randomize each A or B placement by £ipping a coin,
where heads ¼ treatment A in upper portion of the strip, and tails ¼
treatment B in lower portion.

In the previous two-sample t-test section,we tested hypotheses of the
two-tail test version in which two population means were either equal
(m1 ¼ m2) or not equal (m1 6¼ m2). In the paired version of this test,we evalu-
ate the di¡erence (m1 � m2 ¼ md). If jmd j > 0, then we accept the alternative
hypothesis (m1 6¼ m2). If md 
 0, we cannot reject the null hypothesis
(m1 ¼ m2).

The di¡erence (di) between the ith paired treatments is calculated as:

di ¼ xi1 � xi2 ; i ¼ 1; 2; . . . ; n

The average value di¡erence is:

md ¼
PðdiÞ
n
¼
Pðxi1 � xi2 Þ

n

Note, also, that we do not use the original measurements for the two
samples in the paired t-test but instead use the di¡erence for each sample.

TABLE 4 Treatment of Randomly Selected Rats

1 2 3 4 5 6 7 8 9 10

A A A B A A A B A A
B B B A B B B A B B
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The paired t-test is essentially a one-sample t-test.The paired t-test data are
not under thesameconditionsof normalityandequalityas the variance found
in the two-sample case; instead, the di values are assumed to be normally
distributed.So, any exploratory data analyses are performedon the di values.
We will discuss a nonparametric analog of the paired t-test in Chap.12.

A. Setting up a Paired t-Test

Three test conditions are possible:

Two-tail:

H0: md ¼ 0

HA: md 6¼ 0 Accept HA if jta=2j > ttabled

Upper-tail:

H0: md � 0
HA: md > 0 Accept HA if jtaj > ttabled

Lower tail:

H0: md � 0

HA: md < 0 Accept HA if t�a < ttabled

The test statistic is:

tc ¼
�dd

Sd=
ffiffiffi
n
p

where

�dd ¼
P

d
n

; and

Sd ¼

"Pn
i¼1
ðdi � �ddÞ2

n� 1

#1=2�

or Sd ¼

"Pn
i¼1

d2
i �

1
n
Pn
i¼1

di

� �2

n� 1

#1=2

;

which is often easier to computewhen using a hand calculator. If jtcj > ttabled,
acceptHA.

*Note: x1=2 ¼ ffiffiffi
x
p

.
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Example 3: After an experimental clotting drug was administered to
a genetically inbred colony of mice for 30 days, blood-clotting time wasmea-
sured to determine whether there was a di¡erence between clotting times for
males and females.The researcher paired individuals of the two sexes on the
basis of similar body weights.The data inTable 5 were collected for the clot-
ting times in seconds.

Let us work this example using the six-step procedure:

Step 1. Formulate H0 and HA.We are interested in detecting a di¡er-
ence between clotting times of male and female mice. This is a two-
tail test.

H0: m1 ¼ m2 m1 ¼ femalemice and HA: m1 6¼ m2 m2 ¼ malemice

Step 2. Select a, and determine sample size. At this point we would
calculate the sample size needed,power, and=or minimumdetection
limits, given that we knew or could accurately estimate Sd.We will
not do this now, but the researcher in practice would.

n1 ¼ n2 ¼ 10 a ¼ 0:01 df ¼ n� 1 ¼ 10� 1 ¼ 9

Step 3. Select the test statistic. Because this is a paired t-test, the for-
mula is:

tc ¼
�dd

Sd=
ffiffiffi
n
p ð14Þ

Step 4. Present the decision rule (Fig. 5). a ¼ 0:01=2 ¼ 0:005 and
n� 1 ¼ df ¼ 10� 1 ¼ 9. ttð0:005; 9Þ ¼ �3:25 because it is a two-tail
test.

TABLE 5 Blood-clottingTimes for Mice, in Seconds

n Females (x1) Males (x2) d ¼ x1 � x2

1 44 46 �2
2 43 34 9
3 29 44 �15
4 34 37 �3
5 10 18 �8
6 47 22 25
7 42 42 0
8 17 33 �16
9 58 41 17
10 36 62 �26
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Decision rule:
If tc calculated is<�3.25 or>3.25, onemust reject theH0 hypothesis
at a ¼ 0.01.

Step 5. Compute the test statistic from the data in table 5.

�dd ¼
P

d
n
¼ �2þ 9þ 	 	 	 þ 17� 26

10
¼ �1:90

Sd ¼
P

d2 � ð1=nÞðP dÞ2
n� 1

� �1=2

ð15ÞX
di ¼ �2þ 9þ 	 	 	 þ 17þ ð�26Þ ¼ �19X
d2
i ¼ �22 þ 92 þ 	 	 	 þ 172 þ ð�26Þ2 ¼ 2229

Sd ¼ 2229� ð1=10Þð�19Þ2
10� 1

� �1=2

¼ 15:609

td ¼
�dd

Sd=
ffiffiffi
n
p ¼ �1:9

15:609=
ffiffiffiffiffiffi
10
p ¼ �0:385

Step 6. Because tcalculated ¼ �0:385 > ttabledð�3:25Þ and tcalculated ¼
�0:385 < ttabled (3.25), the H0 hypothesis cannot be rejected at
a ¼ 0:01. No signi¢cant di¡erence in blood-clotting times between
males and females can be detected at the 0.01 level of signi¢cance.

Note that when using a paired t-test software model, MiniTab1 in this
case, the data utilized by the software are the di¡erence between each
matched pair, x1 � x2 ¼ dj (Table 6).

FIGURE 5 Decision rule.
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Table 7 provides the same results as the pencil-and-paper method used in
Example 3. The SE in the output is the standard error of the mean¼
S�xx ¼ Sd=

ffiffiffi
n
p ¼ 15:609=

ffiffiffiffiffiffi
10
p ¼ 4:936:The P value is the probability (71%) of

observing a tcalculated value¼ 0.38, or more extreme, given the H0 hypothesis
is true.This can be written as:

PðtÞ � 0:38 ðgiven H0 is trueÞ ¼ 0:71:

B. Confidence Interval for the Mean Differences: Paired
t-Test

In the paired t-test example, because we work with d values, the con¢dence
interval for the mean population di¡erence, md, is simply a con¢dence inter-
val for the population of one mean, m. Recall that the population m is esti-
mated from:

m ¼ �xx � tða=2;n�1ÞS�xx ð16Þ

where m ¼ sample mean
P

xi=n

t ¼ two-tail t value at a=2;with n� 1 degrees of freedom

S�xx ¼ standard error of the mean s=
ffiffiffi
n
p

or
ffiffiffiffiffiffiffiffiffi
s2=n

p
The paired two-sample con¢dence interval is computed in much the

TABLE 6 MiniTab Computer Input of di Values

Input

�2 9 �15 �3 �8 25 0 �16 17 �26

TABLE 7 MiniTab Computer Output

Output

N MEAN STDEV SEMEAN T PVALUE
MEAN 10 �1.9 15.609 4.936 �0.38 0.71
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same way, using the di values.The md is estimated from:

md ¼ �dd � tða=2;n�1Þs �dd ð17Þ
where

�dd ¼
P

d
n

t ¼ two-tailed a level, a=2; with n� 1 degrees of freedom

S �dd ¼
Sdffiffiffi
n
p or

ffiffiffiffiffi
S2
d

n

s
For Example 3, the 95% con¢dence level for the mean di¡erence is

�dd � ðta=2;n�1Þ Sdffiffiffinp ð18Þ

where t0:05=2¼0:025;9 df ¼ 2:262 and S ¼ 15:609ffiffiffiffi
10
p ¼ 4:936

�1:9� 2:262ð4:936Þ
�1:9� 11:165

�13:065 � md � 9:265

The 95% con¢dence interval for the true di¡erence, md, is between�13:065
and 9.265. Note that, because 0 is included in the con¢dence interval,
�13:065 � m � 9:265, one cannot reject theH0 hypothesis at a ¼ 0:05.

C. Size Estimation of the Population Mean Contained in a
Set Interval Using the Paired t-Test

For the paired t-test, the required sample size is computed as for a one-sam-
ple t-test with a prede¢ned� con¢dence interval width, d.The basic formula
is:

n ¼
S2
d t

2
ða=2;n�1Þ
d2 ð19Þ

where

S2
d ¼ sample variance ¼

Pðd � �ddÞ2
n� 1

t ¼ two-tail tabled value on Student’s t-distribution for a=2; n� 1
degrees of freedom

d ¼ 1=2 the width of the confidence interval desired
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The basic di⁄culty with Eq. (19) is that the degrees of freedom ðn� 1Þ
depends upon a known n value,which, at this point, is unknown.However, as
before, the solution can be determined by iteration.We ‘‘guesstimate’’an in-
itial n value, beginning with a larger sample size than we think is needed be-
cause using a larger n ¢nds the appropriate value with fewer iterations than
using a smaller n. As before, the reliability of the n value depends upon what
the actual S2

d value is. As before, S2
d is improved�becomes smaller�with

a larger sample size. And, as before, the calculated n value is rounded up
to the next whole number, if a fraction is involved. Using the data from
Table 4, the parameters are calculated in a three-step procedure following
Eq. (19).

Step 1. Let’s pick n ¼ 50, so df ¼ 49 with a ¼ 0:05=2 ¼ 0:025, and
tð0:025; 49Þ ¼ 2:021:Let us set 2d ¼ 10 points, or d ¼ 5.

n ¼ S2
d tða=2;n�1Þ

d2 ¼ 15:6092ð2:021Þ2
52

n ¼ 39:805; or rounded up, 40

Step 2. The next interationwill use n ¼ 40, n� 1 ¼ 39, a=2 ¼ 0:05=2,
and tð0:025; 39Þ ¼ 2:042:

n ¼ 15:6092ð2:042Þ2
52

¼ 40:637; or rounded up; 41

Step 3. Solve for n ¼ 41, so tðd=2;n�1Þ ¼ tð0:025;40Þ ¼ 2:021.

n ¼ 15:6092ð2:021Þ2
52

¼ 39:806; or rounded up; 40

Because the table degrees of freedom jump from 30 to 40,without including
31^39, the iterative power will continue to repeat from 40 to 41 and back to
40.When this pattern is seen, stop.The sample size requiredwill be atleast 40
at a ¼ 0:05,with S2

d ¼ 15:609, con¢dence interval width ¼10.

D. Sample Size Determination of the Mean at Set a and b

levels

The sample size needed for detecting the true mean with a probability of
1� a, a speci¢ed b, and at a speci¢ed detection level, d, is extremely useful.
The detection level is very important at a speci¢ed pretest^posttest di¡er-
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ence, m1 � m2. Equation (20) can be used for determining the sample size
requirements.

n ¼ S2
d

d2
ðta;n�1 þ tb;n�1Þ2 ð20Þ

Note that a can be a single or two-tail value.

S2
d ¼ sample variance ¼

Pðd � �ddÞ2
n� 1

t ¼ two-tail or single-tail tabled value for a or b at

n� 1 degrees of freedom

a ¼ type I error significance level

b ¼ type II error significance level

d ¼ specified detection level ¼ j�xx1 � �xx2j:
The calculation is straightforward. Using the data from Table 5 and

Eq. (20), the sample size is computed iteratively, again using an initial
estimate higher than expected. Using a value higher than the actual
number for the initial estimate ¢nds the ¢nal n value more quickly than does
a lower value.

Sd ¼ 15:609

a; two-tail in this case for a ¼ 0:05; or a=2 ¼ 0:025

b ¼ always a single tail, set at 0:10

d¼Let’s set d at a10-point detection level for di¡erence between
males and females

Let us begin the iterative process with a large n, say n ¼ 50.

Step 1. Let n ¼ 50, so n� 1 ¼ 49, the ttabled value for
ta=2;n�1 ¼ t0:025;49 ¼ 2:021, the ttabled value for tb;n�1 ¼ t0:10;49 ¼
1:296. So

n ¼ 15:6092
102 ð2:021þ 1:296Þ2 ¼ 26:807; or rounded up; 27

Step 2. Use the rounded up n ¼ 27 to begin the next iteration.
n ¼ 27; n� 1 ¼ 26, the ttabled value for t0:025;26 ¼ 2:056, the ttabled
value for tb;n�1 ¼ t0:10;26 ¼ 1:315

n ¼ 15:6092
102 ð2:056þ 1:315Þ2 ¼ 27:686; or rounded up; 28
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Step 3. Let n ¼ 28; n� 1 ¼ 27, so t0:025;27 ¼ 2:052; and tb;n�1 ¼
t0:10;27 ¼ 1:314.

n ¼ 15:6092
102 ð2:052þ 1:314Þ2 ¼ 27:604, or rounded up, 28

Because iterations two and three are both 28 (when rounded up),we can stop
computing. We need a minimum of 28 subjects for d ¼ 10; a ¼ 0:05;
b ¼ 0:10, and Sd ¼ 15:609. As before, we must depend upon S2

d being an
accurate estimate of s2

d.

E. Minimum Detectable Differences

We can also compute theminimumdetectable di¡erence, dd, between x1 and
x2 by rearranging terms in Eq. (20).

dd ¼
ffiffiffiffiffi
S2
d

n

s
ðta;n�1 þ tb;n�1Þ ð21Þ

Asbefore, acan be a two-tail test ða=2Þor a single-tail test ðaÞ.Using the
information from the six-step procedure, as well as Eq. (21), the following dd
is provided.No iteration is necessary, for we know what n is.

dd ¼
ffiffiffiffiffi
S2
d

n

s
ðta;n�1 þ tb;n�1Þ

dd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15:6092

28

r
ð2:052þ 1:314Þ ¼ 9:929; or rounded up; 10

Notice that dwas set at10 in the previous calculation.That is,we can detect a
minimum of 10 points between m1 and m2. To increase the detection level
(reduce the di¡erence) will require an increased sample size.

F. Power of the Paired t-Test

The probability of rejecting a falseH0 is the power of the test (1�b¼power).
That can be determined by applying Eq. (22).Again, no iteration is necessary
because we have solved for n previously. Note that the power of a test is
greater for a one-tail than for a two-tail test.

tb;n�1 ¼ ddffiffiffiffiffiffiffiffiffiffi
S2
d=n

q � ta;n�1 ð22Þ

Note that a can be a one-tail ðaÞor two-tail ða=2Þ test.
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From the data used to generate the results of Eq. (22), the following derives.

tb;n�1 ¼ 10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð15:609Þ2=28

q � 2:052 ¼ 1:338

Using Student’s t table (Table B) with n� 1 df ¼ 27, we see that 1:338 

0:10, that is, b ¼ 0:10, and the power of the test ¼ 1� b ¼ 0:90.

VII. FINAL COMMENTS

One challenge for researchers is to ensure that the statistics they use have
been consciously chosen. If one had only to pick between a two-sample t-test
for independent samples and a paired t-test for matched pairs, life would be
easy. If the researcher, however, uses the stipulations we have already
discussed in previous chapters as a fundamental guide, then she or he must
think about the intended audience. If it is a statistically well-versed
professional group, the appropriate design based on the conditions we have
discussed can prevail. In my experience, this type of presentation is a rare
event.

The researcher should also use practical, jargon-free communication
to describe to investors, business management, and marketing personnel
the statistical models used. This is often wise even when writing for many
professional journals. Most of these groups have some knowledge of statis-
tics, but often this begins and ends with the t-test. So, the majority of re-
searchers’ reports and discussions should maintain evaluations at the t-test
level of complexity, particularly if the intent is to communicate rather than
impress or,worse, confuse.

Many experiments will evaluate more than two sample sets.
Technically, to do this, the t-test must be modi¢ed to account for multiple
comparisons. In this case, the easiest way to do this is via con¢dence
intervals.

Recall that the con¢dence interval for the population mean, m, is:

�XX � ðta=2;n�1Þ
sffiffiffi
n
p

where �XX ¼
P

x

n or mean

t ¼ two-tail, tabled value for a=2; n� 1 degrees of freedom

s ¼ standard deviation of sample set
P
ðx� �xxÞ2
n�1

� �1=2

or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðx� �xxÞ2

n�1

q
n ¼ sample size
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However, the t-test is valid for only one two-sample comparison. Any
more, and the true con¢dence level, 1� a, is reduced by ð1� aÞk,where k is
the number of comparisons [20].

For example, at a ¼ 0:05, for one contrast, say, m1vs. m2, the con¢dence
level is

For one contrast: ð1� 0:05Þ1 ¼ 0:950

For two contrasts: ð1� 0:05Þ2 ¼ 0:903

For three contrasts: ð1� 0:05Þ3 ¼ 0:857

For four contrasts: ð1� 0:05Þ4 ¼ 0:815

For five contrasts: ð1� 0:05Þ5 ¼ 0:774

g g

For k contrasts: ð1� 0:05Þk

There is an a0 correction factor that should be used for multiple com-
parisons [20]:

a0 ¼ 1� ð1� aÞk ð23Þ

where k ¼ number of contrasts or comparisons
a ¼ standard set a
a0 ¼ adjusted true significance level of all comparison tests

used in the evaluation

Example 4: A researcher has six nutritional rations to evaluate for
weight gain in broiler chickens after 8 weeks on the rations at full feeding.
The six groups are designated A through F, with the ¢nal weights given, as
inTable 8.

Note: Although technically, k contrasts are k contrasts and only k
contrasts, I have repeatedly used k con¢dence intervals and compared all
of them visually, which is more, technically, than one should do. I have not
increased k to all possible combinations, for that provides a meaningless a.
I have done this on a number of occasions without using the k correction
factor, when it would merely serve to confuse the audience. The important
point, however, is that this weakness should be presented to the audience.
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In the current example, the procedure is as follows:

Step 1. Because there are six groups (A through F), six con¢dence
intervals are calculated at a=2 ¼ 0:05=2; n� 1 degrees of freedom.
For groups A, B, D, and E: a ¼ 0:05=2; n ¼ 10; n� 1 ¼ 9, and
2:262 ¼ t. For groups C and F: a ¼ 0:05=2; n ¼ 9; and
t0:025;8 ¼ 2:306.

mA ¼ 2:5� 2:262 ð0:9=
ffiffiffiffiffiffi
10
p
Þ

2:5� 0:6

1:9 � mA � 3:1

mB ¼ 3:1� 2:262 ð0:3=
ffiffiffiffiffiffi
10
p
Þ

3:1� 0:2

2:9 � mB � 3:3

mC ¼ 2:7� 2:306 ð0:4=
ffiffiffi
9
p
Þ

2:7� 0:3

2:4 � mC � 3:0

TABLE 8 Example 4 Data

n A B C D E F

1 2.1 2.9 2.7 3.3 2.0 2.9
2 2.7 3.1 2.9 3.5 2.3 3.1
3 3.0 3.4 3.5 3.7 2.5 3.2
4 3.2 2.8 2.2 3.6 2.0 2.7
5 2.7 3.6 2.3 3.1 2.1 2.6
6 2.6 2.9 a 3.7 2.0 2.8
7 2.3 2.8 2.7 3.8 2.1 a

8 3.1 2.9 2.3 3.2 2.0 3.6
9 2.9 3.0 2.9 3.4 1.9 3.2
10 2.8 3.3 2.8 3.6 2.3 3.3

�xxA ¼ 2:5 �xxB ¼ 3:1 �xxC ¼ 2:7 �xxD ¼ 3:5 �xxE ¼ 2:1 �xxF ¼ 3:0
SA ¼ 0:9 SB ¼ 0:3 SC ¼ 0:4 SD ¼ 0:2 SE ¼ 0:2 SF ¼ 0:3
nA ¼ 10 nB ¼ 10 nC ¼ 9 nD ¼ 10 nE ¼ 10 nF ¼ 9

aMissing value (chicken died).
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mD ¼ 3:5� 2:262 ð0:2=
ffiffiffiffiffiffi
10
p
Þ

3:5� 0:1

3:4 � mD � 3:6

mE ¼ 2:1� 2:262 ð0:2=
ffiffiffiffiffiffi
10
p
Þ

2:1� 0:1

2:0 � mE � 2:2

mF ¼ 3:0� 2:306 ð0:3=
ffiffiffi
9
p
Þ

3:0� 0:2

2:8 � mF � 3:2

Step 2. Plot the con¢dence intervals (Fig. 6). Notice that if the con¢-
dence interval boundaries do not overlap with those of another con-
¢dence interval, the groups will be considered di¡erent.Group D is
the best of all for weight gain and is signi¢cantly di¡erent from all
other groups.Clearly, all other groups (B,C, E, and F) are equivalent
to A.Within that, group E is signi¢cantly di¡erent from and lower
than groups B,C, and F.

Showing data in the form of Fig. 6 is often much better than trying to
perform an ANOVA due to the complexity of explaining nonequivalent var-
iances, etc.However, the 95% con¢dence level for this does not hold at 95%

FIGURE 6 Plot of confidence intervals.
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because of repealed contrasts. One must use the correction factor,
a0 ¼ 1� ð1� aÞk.

a0 ¼ 1� ð1� 0:05Þ6 ¼ 1� 0:735 ¼ 0:265

A value for a� of 0.265 for all six con¢dence intervals is not particularly
useful. If the researchers corrected for this by setting a at a very small num-
ber, e.g., 0.001, the e¡ect would be to extend the con¢dence intervals out,
making them wider. This has the e¡ect of losing too much power, not being
able to detect di¡erences that may be there.

As stated, I have had very good practical luck with using multiple con-
¢dence intervals and not performing the a adjustments, particularly in small
pilot comparisons. In addition, the researcher may want to protect against
type Ierrors and bewilling to havemany type IIerrors to play it safe. I would
not want to £y a plane with an a level of 0.05 for probability of failure. It
should be more like a ¼ 0:000001. I would pay for replacing parts that are
still good to achieve that safety edge.

Yet, in pilot studies,one often cannot justify using greater than an n of 5
due tobudgets restraints.This puts tremendous pressure on the researcher to
increase the power of the test. In certain cases, the researcher may use a
paired t-test on data that are not really paired, to reduce the variance. The
researcher, of course, is doing this for an intended reason (to increase the
power) with too small a sample size. The researcher knows the statistical
problems of this but can use wisdom gained from familiarity with the re-
search ¢eld to helpwith the research conclusion.With that insight, this really
is not naive use of the wrong model.

In many cases, I have been forced to use a small sample size to ensure
that the test formulation is not di¡erent from the control. For example,many
of our clients cannot justify themoney required to detect the kind of discrete
di¡erences needed for assuring with high con¢dence that a di¡erence truly
does not exist between two formulations. For example, a client may change
the color or fragrance of an antimicrobial product and want to validate that
this action has caused no change in antimicrobial e⁄cacy but wants to do
this with ¢ve to eight replicates. Here again, I will do nearly anything to cut
downon the variance in the actual testing and the statistic, including pairing.
But this strategy is always explained in the statistical report, so the reader
will understand the rationale.

Irrefutably, it is undesirable to use statistical inference to justify a
bias. For example, if one wants to ensure that a fragrance change does not
alter the product, and an n of 5 is used with a nonparametric statistic and
an a of 0.01, the researcher has been not only negligent but also fraudulent.
In such a case, it would be literally impossible to detect a di¡erence if one
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is there, a b error by design.Unfortunately, statistical biasing such as this is
all too prevalent.

The vast majority of statistics an applied research will encounter have
now been discussed, and the researcher has the tools to peform most
research comparisons. The rest of the book will essentially build on this
knowledge.
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5

Completely Randomized One-Factor Analysis

of Variance

In the last chapter, I discussed Student’s t-test and stated that I had favorable
experiences using it formultiple sample comparisons. I also stated a problem
with doing this.As the number of statistical comparisons increases, the1� a
level of signi¢cance decreases. For example, the 95% con¢dence level of the
two-sample t-test drops to 85.7% (0.953) with three comparisons and 77.4%
(0.955) with ¢ve comparisons. In Chap. 4 I provided a correction procedure
to use to adjust a,when multiple t comparisons are to be performed, that will
maintain the 95% con¢dence level when multiple comparisons are used.On
the other hand, analysis of variance (ANOVA) models are designed speci¢-
cally for multiple sample comparisons and should be employed, instead of
multiple t-tests, unless there is a speci¢c reason to use the t-test, such as pre-
sentation of the data to nonscientists.

I. ANALYSIS OF VARIANCE

The analysis of variance was ¢rst introduced by the British statistician Sir
Ronald A. Fisher [25] (for whom the F-distribution is named). ANOVA
methods are essentially a process for partitioning the total sum-of-squares
variance into subcomponents that represent the treatment sum-of-squares
variance and the random error sum-of-squares variance.

One-factorANOVAdesigns appear in two forms�a completely rando-
mized design and a randomized complete block design.These are analogous
to the pooled two-sample t-test and the paired two-sample t-test, the
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di¡erence being that instead of comparing means, we are comparing var-
iances and usually more than two sample groups.

A. Completely Randomized Single-Factor Design

The order of each experimental test run is selected by a completely rando-
mized selection process throughout the experiment, hence the name comple-
tely randomized design.The single factor means that only one parameter is of
concern. For example, a researcher who is comparing the percentage of pro-
tein for weight gain in heavy-meat chickens may test ¢ve di¡erent levels of
protein, say 10, 15, 20, 25, and 30%�all one factor. A factor is composed of
treatments, so in this case there are ¢ve treatments of one factor, usually
designated byAwith a numerical subscript, 1 to k, indicating the number of
treatments.

Within each treatment level are replicates that act in the same way as
the replicates used in Student’s t-test do: to increase accuracy and precision
of the estimated parameters. As in the t-test, ANOVA replicates are also de-
signated n.

The general linear model is:

yij ¼ mþ Ai þ Eij
i ¼ 1; 2; . . . ; k treatments
j ¼ 1; 2; . . . ; n replicates

� �
ð1Þ

where

yij¼ the ith treatment and the jth replicate observation; the yij values
are normally and independently distributed, havings2

E as the com-
mon error variance

m ¼ the common mean of all treatment samples
Ai¼ treatment e¡ect for the ith treatment
eij ¼ random error¼ yij� (mþAi)

There are ¢ve treatments [i.e., di¡erent levels of protein (the factor)].
The chickens in this experiment have been selected randomly from a group
of 2000 chickens, age1week.Ten chickenswill be assigned to each of the test
ration groups and fed that ration for 8 continuous weeks. At the end of 8
weeks, the chickens will be weighed. Using a study design schema, the ex-
periment is presented in Fig.1.
where:

(R) represents that the chickens were randomly assigned to each of
¢ve groups. Each chicken was assigned only one treatment.

Ai is the independent variable: protein% of the feed.
Oi is the dependent variable: weight of the chickens after 8 weeks.
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B. Fixed-Effects and Random-Effects Models

In ANOVA designs, there are two basic types of models called ¢xed e¡ects
and random e¡ects. Fixed-e¡ects models are most commonly used by the
applied researcher. For this model, the Ii values are set at speci¢c, predeter-
mined values. Figure 1 presents an example of a ¢xed-e¡ects model because
the researcher set the levels at 10, 15, 20, 25, and 30% protein. Hence, the
scope of the researcher’s conclusions will be limited to these levels: 10, 15,
20, 25, and 30% protein.

Suppose a researcher wants to compare ¢ve types of surgical scrub for-
mulations for their antimicrobial e⁄cacy. The researcher picks the top-
selling products containing alcohol gel, parachlorometaxylenol (PCMX),
triclosan, chlorhexidine gluconate (CHG), and iodine.This is a ¢xed-e¡ects
model comparing ¢ve products with one another. The researcher’s conclu-
sions are drawn not on the basis of all representative alcohol gel, PCMX, tri-
closan,CHG, and iodine products but only on those top sellers.To construct
this as a random-e¡ects model, the ¢ve product categories would entail ran-
dom selection from all PCMX, CHG, triclosan, iodophor, and alcohol pro-
ducts available, instead of merely the top sellers. In a random-e¡ects model,
the Iis are randomly selected, not just assigned.We will discuss both models
in this book, however, beginning with ¢xed-e¡ects models.

C. Fixed-Effects Model (Model I)

In the ¢xed e¡ectsmodel, Ii represents the treatment e¡ects (e.g., the chicken
weights in the ¢rst example and the antimicrobial counts on the hands in the
surgical scrub example).Note that the sumof treatment e¡ects is 0.Xa

i¼1
Ii ¼ 0 ð2Þ

FIGURE 1 Experimental design schema.
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Let us look at the construction of the chicken feed experiment, beginning
with ANOVAcon¢gurationTable 1.

FromANOVATable1,we see that the sumof each treatment rowequals
y1:; y2:; y3:; . . . y5; and the average of each total treatment row is �y1:; �y2:; . . . �y5:.
The total of all treatments is y.., and the grandmean or mean of the treatment
means is y..=N or �y::. So,

yi: ¼
Xn
j¼1

yij and �yi: ¼ yi:
n
; where i ¼ 1; 2; . . . ; a

y:: ¼
Xa
i¼1

Xn
j¼1

yij

¼ the sum of each treatment set’s replicate weight values

�y:: ¼ the grand treatment mean ¼ y::
N

Note that N, the total sample size, is (a�n), or seeTable1, 5(10)¼ 50.
In ANOVA problems, all hypothesis tests are two-tail tests that detect

di¡erences between any of the a treatments. The null hypothesis of a
one-factorANOVA is:

H0: m1 ¼ m2 . . . ma.This means that the a treatment means are
equivalent.

The alternative hypothesis is:
HA: mi 6¼ mj for at least one pair. That is, at least one pair of treatment

means di¡er.

TABLE1 ANOVATable

Replicates

1 2 3 4 5 6 7 8 9 10 Total Mean

1 10% y11* y12 y13 y14 y15 y16 y17 y18 y19 y110 y1. �y1:
2 15% y21 y22 y23 y24 y25 y26 y27 y2 y29 y210 y2. �y2:
3 20% y31 y32 y33 y34 y35 y36 y37 y38 y39 y310 y3. �y3:
4 25% y41 y42 y43 y44 y45 y46 y47 y48 y49 y410 y4. �y4:
5 30% y51 y52 y53 y54 y55 y56 y57 y58 y59 y510 y5. �y5:

Total y.. �y::

a¼ numberof treatments¼ 5
n¼numberof replicates¼10
N¼ a�n¼ 50
*Note: y11¼yrow, column; that is, y11¼ the value in row1, column1.

Tr
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Note that, in the ¢xed-e¡ects model, we speak of the means, mi, being
equal in hypothesis-testing. In the random-e¡ects model, we will compare
equalities of variance, s2

i in hypothesis-testing.

D. Decomposition of the Total Sum of Squares

There are two components that make up the total sum of squares in one-
factor analysis of variancemodels.Recall that, in the last chapter,we de¢ned
the sum of squares as simply

Pðxi � �xÞ2, the sum of the squared di¡erences
between the individual xi values and the mean.The process is very similar in
theANOVAmodel.

SST ¼ sum of squares total ¼
Xa
i¼1

Xn
j¼1

yij � �y::
� �2

which is simply the summation of the squared di¡erences between each yij
value and the mean of the treatment means�the grand mean, �y::.

The total variability, or total sum of squares ðSST Þ, can be decomposed
into two components: the variability due to the treatments and the random
variability, or error.This is written as:

SST ¼ SSTREATMENT þ SSERROR ð3Þ
Mathematically, the decomposition is written

SST ¼
Xa
i¼1

Xn
j¼1
ðyij � �y::Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SSTOTAL

¼ n
Xa
i¼1
ð�yi: � �y::Þ2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

SSTREATMENT

þ
Xa
i¼1

Xn
j¼1
ðyij � �yi:Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SSERROR

ð4Þ

SSTOTAL ¼
Pa

i¼1
Pn

j¼1ðyij � �y::Þ2¼ the sum of each individual yij
minus the grand mean, the quantity squared

SSTREATMENT ¼ n
Pð�yi: � �y::Þ2¼ the sum of each treatment mean

minus the grand mean, the quantity squared. Once
that total has been computed, it is multiplied by n,
the number of replicates.

SSERROR ¼
Pa

i¼1
Pn

j¼1ðyij � �yi:Þ2¼ the sum of each individual yij
minus the speci¢c treatment mean �yi:, the quantity
squared

The SSTREATMENT variable is a measure of variability between the a
treatment groups.The SSERROR is a measure of variability within each treat-
ment group.

Intuitively, if the H0 hypothesis is correct, each SSTREATMENT and
SSERROR component will provide a measure of ‘‘random’’ variability, or
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error, and they will, therefore,be equivalent when adjusted (divided) by their
respective degrees of freedom.

SSTREATMENT

df
¼ SSERROR

df

or

SSTREATMENT=df
SSERROR=df


 1

When SSTREATMENT is signi¢cant, it can be decomposed into a measure of
both random error and the treatment e¡ect, A. The SSERROR is composed
only of error and cannot be further subdivided.

SSTREATMENT ¼ errorþ treatment effect A

SSERROR ¼ error

Recall in Chap. 4 that the sum of square values was divided by the de-
grees of freedom; similarly:

SSTOTAL hasN�1degrees of freedom
SSTREATMENT has a�1degrees of freedom
SSERROR has (N�a) degrees of freedom
Let us look at the error termmore closely.

SSE ¼
Xa
i¼1

Xn
j¼1
ðyij � �yi:Þ2 ¼

Xa
i¼1

Xn
v¼1
ð yij � �yi:Þ2

" #
ð5Þ

If the bracketed term is divided byN�a, it is of the form of sample variance
described in Chap. 4,where n�1 is the denominator or degrees of freedom.

S2
i ¼

Pn
i¼1ðyij � �yi:Þ2
n� 1

where i ¼ 1; 2; . . . ; a and j ¼ 1; 2; . . . ; n: ð6Þ

In this ANOVA model, the a sample variances (number of treatments) are
combined to give a single estimate of s2,which has the form:

ðn�1ÞS2
i þðn�1ÞS2

2þðn�1ÞS2
3þ			þðn�1ÞS2

a

ðn�1Þþðn�1Þþðn�1Þþ		 	þðn�1Þ ¼
Pa

i¼1
Pn

j¼1ðyij� �yi:Þ2
h i
Pa

i¼1ðn�1Þ
ð7Þ

MSERROR ¼ SSE
N�a¼ the mean square error (MSE), the estimate of the

common variance (s2) within each of the a treatments. It is the variability
due to random error.
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Also, if one computes the di¡erences between the a treatment means
and there is no treatment e¡ect, the mean square treatment,MSTREATMENT,
is also an estimator of the common variance, MSE.The variability between
those ameans can be measured.The equation is:

MSTREATMENT ¼ n
Pa

i¼1ð�yi: � �y::Þ2
a� 1

¼ SSTREATMENTS

a� 1

¼ variability due to treatments

When the treatment e¡ect¼ 0, MSTREATMENT¼MSE.
When a signi¢cant treatment e¡ect is noted, MSTREATMENT > MSE,

and when no signi¢cant treatment e¡ect is noted, MSTREATMENT 
MSE.
More formally, the expected values are:

EðMSTREATMENTÞ ¼ ½s2�|{z}
½Error term�

þ n
Pn

i¼1 A
2
i

a� 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
½Treatment term�

ð8Þ

EðMSERRORÞ ¼ s2|{z}
½Error term�

ð9Þ

Amost important aspect of the one-factorANOVA is the complete ran-
domization of the order of samples collected both within and between treat-
ments. That is, each observation ðy11; y12; . . . ; y33Þ is as likely to be collected
at this sample time as any of the other observations (Table 2). Let us take the
example of a three-treatment, three-replicate model.

Using a random number generator, or nine pieces of paper, each repre-
senting one and only one yij sample randomly drawn from a box, suppose a
researcher drew y22 for draw1, y31 for draw 2, . . . etc. (Table 3).The order of
the runs in the experiment, then, is y21 ¢rst, y31 second, . . . and y13 ninth.
This ordering is important, for it de¢nes why a completely randomized one-
factorANOVA is termed ‘‘completely randomized.’’

TABLE 2 Three-Treatment,Three-Replicate Model

Replicates

Treatments 1 2 3

1 y11 y12 y13
2 y21 y22 y23
3 y31 y32 y33
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In performing a one-factor, completely randomized statistical design,
an analysis of variance table must be constructed (Table 4).

Computing formulae for the sum of square are provided below:

SSTOTAL ¼
Xa
i¼1

Xn
j¼1

y2ij �
y2::
N

SSTREATMENTS ¼ 1
n

Xa
i¼1

y2i: �
y2::
N

;

SSERROR is determined by subtraction:

SSERROR ¼ SSTOTAL � SSTREATMENTS

TABLE 3 RandomNumber Generator Results

Experimental
Run Order Observation

1 y22
2 y31
3 y12
4 y32
5 y11
6 y23
7 y33
8 y21
9 y13

TABLE 4 ANOVATable for One-Factor,Completely Randomized Design,
Fixed Effects

Source of
variation

Sumof
squares

Degrees of
freedom Mean square FCALCULATED

Treatment effect
(between
treatments)

SSTREATMENTS a�1 SSTREATMENT

a� 1
¼ MSTREATMENT

Fc ¼ MSTREATMENT
MSERROR

Randomerror
(within
treatments)

SSERROR N�a SSERROR
N�a ¼ MSERROR

Total SSTOTAL N�1
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In order to determine whether at least one of the treatment means dif-
fers signi¢cantly from any other treatment mean,we will compute the test or
Fc ratio:

Fc ¼ SSTREATMENT=ða� 1Þ
SSERROR=ðN � aÞ

¼MSTREATMENT

MSERROR
with a� 1;N � a degrees of freedom ð10Þ

So; if FC > Ftabled; ða;a�1; N�aÞ; reject the H0 hypothesis ð11Þ
Let us now, using the six-step procedure, put all of this together in an

example.
Cell culture media are produced by four di¡erent manufacturers and

used to grow ¢broblast tumor cells. Now a researcher wants to determine
whether they di¡er in supporting tissue culture growth quality,which ismea-
sured as nitrogen content. Five replicates are to be performed using each of
the four di¡erent media source samples.The following resultswere collected
in terms of protein nitrogen, a cell culture metabolic by-product.The runs of
each observation were completely randomized (Table 5).

Step1. Formulate the hypothesis:
H0: m1 ¼ m2 ¼ m3 ¼ m4 (the suppliers provide equivalent media to

support cell culture growth)
HA: The mi value di¡ers in at least one medium. (Notice that this is a

two-tail test, as are all ANOVA problems.)
Step 2. If one were performing a pivotal study, one would want to cal-
culate the minimum sample size required in each treatment to detect a
speci¢c di¡erence between means (microliters of nitrogen) at set,
acceptable b and a error levels. Because this is but a small pilot study,
this will not be done.We will set the sample size as n¼ 5 for each group
and the signi¢cance level, a¼0.05.

TABLE 5 Completely Randomized Observationsof Four Different Media

Replicates Totals Averages

Suppliers 1 2 3 4 5 yi �yi

1 100 100 99 101 100 500 100.00
2 101 104 98 105 102 510 102.00
3 107 103 105 105 106 526 105.20
4 100 96 99 100 99 494 98.80

y..¼ 2030 �y..¼ 101:50
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Step 3. Choose the appropriate statistic.We will choose a one-factor,
completely randomized design.
Step 4. Formulate the decision rule.
The degrees of freedom for the FT ða;a�1;N�aÞ is a� 1 for treatment e¡ect
(numerator),N � a for random error (denominator).
n¼ sample size¼ 5
N¼a�n¼ 4�5¼20
a� 1 ¼ 4� 1 ¼ 3
N � a ¼ 20� 4 ¼ 16
In the F table (Table A.3) at a ¼ 0:05, ¢nd the numerator value of
a� 1 ¼ 3 and the denominator value of N � a ¼ 16, and read their
corresponding value, which is 3.24. So if Fc (calculated) is greater
than 3.24 (FC > FT) , reject the H0 hypothesis at a ¼ 0.05; at
least one of the supplier’s formulas di¡ers in cell culture growth
abilities.
Step 5. Conduct the experiment. Then EDA is performed on the
collected data to assure that one-factor ANOVA is appropriate.
Basically, this is to assure the data are normally distributed and the
error is random. We will discuss this in more detail at the end of the
chapter. If the data are not, perhaps a nonparametric analysis, such as
the Kruskal^Wallis, should be used. If the data are okay, the computa-
tions are performed.

SSTOTAL ¼
X4
i¼1

X5
j¼1

y2ij �
y::2

N

¼ 1002 þ 1012 þ 1072 þ 	 	 	 þ 1022 þ 1062 þ 992 � ð2030Þ
2

20

¼ 206; 214� 206; 045 ¼ 169:00 ð12Þ

SSTREATMENT ¼ 1
n

X4
i¼1

y2i:

 !
� y::2

N

¼ 1
5
ð5002 þ 5102 þ 5262 þ 4942Þ � ð2030Þ

2

20

¼ 206; 162:40� 206; 045 ¼ 117:40 ð13Þ

SSERROR is determined by subtraction:

132 Chapter 5



SSERROR ¼ SSTOTAL � SSTREATMENT

¼ 169:00� 117:40 ¼ 51:60 ð14Þ

Mean square ðtreatmentÞ ¼ SSTREATMENT

a� 1
¼ 117:40

3
¼ 39:133

Mean square ðerrorÞ ¼ SSERROR

N � a
¼ 51:60

16
¼ 3:225

FCALCULATED ¼MSTREATMENT

MSERROR
¼ 39:133

3:225
¼ 12:134

Next, the appropriate values are placed in the ANOVATable 6, using
the format presented inTable 4.
Step 6. Because Fcalculated (12.134) > Ftabled (3.24), reject the H0

hypothesis at a ¼ 0.05.

Performing the same computation via MiniTab software provides
Table 7. In thisMiniTab example,‘‘FACTOR’’ represents treatments, the cell
growth media, and P value ¼ probability value, which is P(FC � 12.13 H0

true) ¼ 0.That is, the probability of computing an FC value of12.13 or larger,
given that the null hypothesis is true, is about zero.

The one-factor ANOVA model is a robust statistic, reliable even when
there is considerable heterogeneity of variances, as long as the sample sizes
(n) of the individual treatments are equal or close to equal [9].The assump-
tion that the individual ai sample sets come from normal populations with
equivalent variances has been evaluated using, for example, Bartlett’s test
for homogeneity. However, that test has been argued to be ine⁄cient in this
capacity, as well as being adversely a¡ected by nonnormal sample sets [19,
21, 26].

However, if the ni are quite di¡erent in size, the probability of a (type I)
error can di¡er signi¢cantly from the stated a level. If larger variances are
associated with the larger sample sizes in each treatment group, the

TABLE 6 ANOVAof Table 5

Source of
variation

Sumof
squares

Degrees of
freedom Mean square Fcalculated

Treatment effect 117.40 3 39.133 12.134
Randomerror effect 51.60 16 3.225
Total 169.00 19
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probability of a will be less than the stated a value, and if associated with
smaller samples, the probability will be greater than the stateda.The validity
of the ANOVA is a¡ected only slightly by considerable deviations from
normality as n increases.

E. The Unbalanced Design

When the sample sizes n are not equal, the design is said to be unbalanced.
The one-factor, completely randomized design may still be used, but its
calculation requires a slight modi¢cation.

The computations of SSTOTAL and SSTREATMENT change.

SSTOTAL ¼
Xa
i¼1

Xni
j¼1

y2ij �
y2::
N

SSTREATMENT ¼
Xa
i¼1

y2i :
ni
� y2::

N

where N ¼Pa
i¼1 ni

SSTOTAL ¼ SSTREATMENT � SSERROR

Everything else is the same, degrees of freedom, ANOVA table, etc.

F. Parameter Estimation

Recall that for the one-factor, completely randomized design, the linear
model was presented in Eq. (1)

yij ¼ mþ Ai þ Eij
where m, the common population mean, is estimated by �y:: *, and the treat-
ment e¡ect, Ai, by:

Ai ¼ �yi: � �y:: for treatments 1 through a ð15Þ

TABLE 7 MiniTab Output

Analysis of variance
Source DF SS MS F P
Factor 3 117.40 39.13 12.13 0.000
Error 16 51.60 3.23
Total 19 169.00

*Technically, these are one set of an in¢nite number of solutions.Neither m nor Ai are estimable
by themselves (i.e., they must be combined�mþ Ai).
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A con¢dence interval for each of the ith treatment means (m̂ ¼ mþ Ai)
can be determined by an equation similar to that which we used in the
last chapter for determining the con¢dence interval for m̂, which was
�x � ta=2;df ; s

ffiffiffi
n
p

. For the ANOVA model, however, s2 is estimated by MSE,
with the error being normally and independently distributed with a mean
of m and variance of s2=n. That is, the error terms of each yi. are NID
(mi;s2=n).

The 100(1� a) con¢dence interval of the ith treatment group is com-
puted as:

m̂i ¼ �yi: � tða=2;N�aÞ

ffiffiffiffiffiffiffiffiffiffiffi
MSE
n

r
ð16Þ

The100(1� a) con¢dence interval for the di¡erence between any two treat-
ment means is mi� mj., or

m̂i � m̂j ¼ �yi � �yj � tða=2;N�aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
ð17Þ

Let us calculate Eqs. (16) and (17). Recall that

�y:: ¼ 101:5 MSE ¼ 3:225

�y1: ¼ 100 N � a ¼ 20� 4 ¼ 16

�y2: ¼ 102 a ¼ 0:05

�y3: ¼ 105:2 t0:05=2;16 ¼ 2:12

�y4: ¼ 98:80

ð18Þ

m̂1 ¼ �y1: � 2:12

ffiffiffiffiffiffiffiffiffiffiffiffi
3:225
5

r
¼ 100� 2:12

ffiffiffiffiffiffiffiffiffiffiffiffi
3:225
5

r
¼ 100� 1:703

¼ 98:297 � m̂1 � 101:703

m̂2 ¼ �y2: � 2:12

ffiffiffiffiffiffiffiffiffiffiffiffi
3:225
5

r

¼ 102� 2:12

ffiffiffiffiffiffiffiffiffiffiffiffi
3:225
5

r
¼ 102� 1:703

¼ 100:297 � m̂2 � 103:703
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m̂3 ¼ �y3: � 2:12

ffiffiffiffiffiffiffiffiffiffiffiffi
3:225
5

r

¼ 105:2� 2:12

ffiffiffiffiffiffiffiffiffiffiffiffi
3:225
5

r
¼ 105:2� 1:703

¼ 103:497 � m̂3 � 106:903

m̂4 ¼ �y4: � 2:12

ffiffiffiffiffiffiffiffiffiffiffiffi
3:225
5

r

¼ 98:8� 2:12

ffiffiffiffiffiffiffiffiffiffiffiffi
3:225
5

r
¼ 98:8� 1:703

¼ 97:097 � m̂4 � 100:503

Let us now ¢nd the100(1� a) con¢dence interval for the di¡erence between
m̂3 and m̂4, or m̂3 � m̂4.

m̂3 � m̂4 ¼ �y3: � �y4: � tða=2;N�aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
ð19Þ

¼ 105:2� 98:8� 2:12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3:225Þ

5

r
¼ 6:400� 2:408 ¼ 3:992 � m̂3 � m̂4 � 8:808

Note: Recall that, when means (m̂i) are subtracted, the standard deviations
(s2

i ) are summed.
So the 95% con¢dence interval for m̂3 � m̂4 is 3.992 to 8.808. Notice

that, because 0 is not included in the 95% con¢dence interval, there is a sig-
ni¢cant di¡erence between m3 and m4 at a ¼ 0.05.*

G. Computer Output

Using a software package (MiniTab in this case), the 95% con¢dence
interval output of the four treatments is reproduced inTable 8.

Note that the 95% con¢dence intervals are determined as they were in
Chap. 4, without pooling them. However, the pooled standard deviation,

*A100(1� a) con¢dence interval can also be constructed for the individual treatments,Ai, using
Eq. (15) (Ti ¼ �yi: � �y::) and the variance estimation about the mean using the formula:
Ai ¼ �yi: � �y:: � tða=2;N�aÞ

ffiffiffiffiffiffiffiffi
MSE
n

q
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1.80, is
ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

. The con¢dence intervals for the entire ANOVA model, as
performed for the data inTable 5, can be computed as m̂1 � tða=2;N�aÞ1:80=

ffiffiffi
n
p

.
Wehave learned to obtain individual con¢dence levels for the m̂i, aswell

as the di¡erence between m̂i and m̂j . But the researcher runs into the same
problem discussed in Chap. 4�when multiple contrasts are performed, the
level of the actual a increases in size. So, to compare treatment means, once
we have detected a signi¢cant F value,wemust use a di¡erent approach, that
of contrasts.*

H. Orthogonal Contrasts (Determined Prior to Experiment)

Orthogonal contrasts can be determined by the investigator if the speci¢c
contrasts�the treatment means to be compared�are selected prior to con-
ducting the experiment and, therefore, before knowing its outcome. This
requires some background of the data to be really useful.

In addition, only a� 1 contrasts can be performed. For example, using
data from Table 5, suppose the researcher, before running the experiment,
chose these a�1 (¼4�1¼3) contrasts:

Ci ¼ Contrast Hypothesis
C1 ¼ �y1: � �y4: ¼ 0 m1 ¼ m4
C2 ¼ �y2: � �y3: ¼ 0 m2 ¼ m3

C3 ¼ �y1: � �y2: � �y3: þ �y4: ¼ 0 m1 þ m4 ¼ m2 þ m3

ð20Þ

In other words, the researcher has chosen to compare the mean of
treatment 1 (�y1:) with the mean of treatment (�y4:) and the mean of treatment
2 (�y2:) with the mean of treatment 3 ( �y3:), as well as both the means of treat-
ments1and 4 (�y1:; �y4:) with both the means of treatments 2 and 3 (�y2:; �y3:).

TABLE 8 95%Confidence Intervals for the FourTreatments

*If a signi¢cant F value has not been computed, there is no need to perform contrasts because
m1 ¼ m2 ¼ 	 	 	 ma.The compared sample means are all equal.
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Orthogonal contrasts are independent contrasts in that one contrast is
not a¡ected by another. ‘‘Orthogonal’’ is an algebraic term; two straight
lines are said to be orthogonal if they are perpendicular to one another.Lines
that areperpendicular tooneanotherhavenegative reciprocal slopes (Fig. 2).
Recall that a slope is rise=run ¼ Dy=Dx ¼ ðy2 � y1Þ=ðx2 � x1Þ. If line a has a
slopeof 3=1,thena lineperpendicular to it,b, hasa slopeof�1=ð3=1Þ,or�1=3.

Contrasts require a linear combination that will utilize coe⁄cients, ci,
as well as the treatments means �yi.When the sample sizes are equal, the con-
trasts are orthogonal if they equal zero.Each contrast has one degree of free-
dom.The sum of the contrasts is:Xa

i¼1
ci ¼ 0 ð21Þ

The linear combination is of the form:

cn ¼
Xa
i¼1

ciyi : ð22Þ

where cn cannot> a�1. So, at most, there can be only three contrasts in our
previous example because there were four treatments.There can be no more
contrasts than the degrees of freedom (a�1) for the treatment term.

Let us return to our conjectural contrasts based on data fromTable 5.
We can perform a� 1 ¼ 4� 1 ¼ 3 contrasts. The actual contrast calcula-
tions are performed on the yi: (the sum of the values in each treatment, not
the �yi: treatment mean (Table 9). Let us ¢rst construct a table of orthogonal
coe⁄cients (Table10). Remember, this orthogonal contrast computation re-
quires equal replicate sample sizes or that n1 ¼ n2 ¼ 	 	 	 na.

FIGURE 2 Perpendicular lines havenegative reciprocal slopes.
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Step1. Make orthogonal coe⁄cient table.

Recall that y1.¼500, y2.¼510, y3.¼526, and y4.¼494 (fromTable 5).

Step 2. Apply the equation
Pa

i¼1 ciyi: to each contrast, based on
Table10:

c1 ¼ þ1ð500Þ þ 0ð510Þ þ 0ð526Þ � 1ð494Þ ¼ 6:00
c2 ¼ þ0ð500Þ þ 1ð510Þ � 1ð526Þ þ 0ð494Þ ¼ �16:00
c3 ¼ þ1ð500Þ � 1ð510Þ � 1ð526Þ þ 1ð494Þ ¼ 42:00

Step 3. The sum of squares, balanced design, for each contrast is
calculated:

SSc ¼
Pa
i¼1

ciyi :
� �2

n
Pa

i¼1 c
2
i

ð23Þ

SSc1 ¼ ð6:00Þ2
5½12 þ 02 þ 02 þ ð�1Þ2� ¼

36
10
¼ 3:60

SSc2 ¼ ð�16:00Þ2
5½02 þ 12 þ ð�1Þ2 þ 02� ¼

256
10
¼ 25:60

SSc3 ¼ ð�42:00Þ2
5½12 þ ð�1Þ2 þ ð�1Þ2 þ 12� ¼

1764
20
¼ 88:20

Note that the sum of the three sum of squares contrasts (3.60þ 25.60þ
88.20) equals 117.40,which equals SSTREATMENT. Each contrast has 1degree

TABLE 9 The Sumof theValues
in EachTreatment

C�1 ¼ Y1 � Y4

C2 ¼ Y2 � Y3

C3 ¼ Y1 � Y2 � Y3 þ y4

�Ci=Contrast.

TABLE10 Table of Orthogonal Coefficients

y1 y2 y3 y4
Pa
i¼1

Ci

C�1 þ1 0 0 � 1 0
C2 0 þ1 � 1 0 0
C3 þ1 � 1 � 1 þ1 0

�Ci ¼ Contrast
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of freedom, and its mean square value is compared with (divided by) the
mean square error term to generate FC values in an expanded ANOVA table
(Table11).

Clearly, the researcher sees that at a ¼ 0.05, the treatment e¡ects are
di¡erent:

m1 ¼ m4 The null hypothesis cannot be rejeted at a ¼ 0:05:

m2 6¼ m3 The null hyposthesis is rejected at a ¼ 0:05:

m1 þ m4 6¼ m2 þ m3 The null hypothesis is rejected at a ¼ 0:05

I. Unbalanced Designs

Anunbalanced design is one that accommodates unequal sample sizes in the
treatment groups. Orthogonal contrasts can still be made. Recall that
Eq. (24) for the sum of squares for each balanced contrast was:

SSc ¼
Pa

i¼1ciyi :
� �2

n
Pa

i¼1 c
2
i

For the unbalanced design, everything is the same throughout, except that
the equation is modi¢ed at the denominator.

Instead of n
Pa

i¼1 c
2
i , the denominator becomes

Pa
i¼1 nic

2
i . The entire

equation is:

TABLE11 ANOVAwith Orthogonal Contrasts,Expansionof Table 5

Source of
variance

Sumof
squares

Degrees
of

freedom
Mean
square Fcalculated Ftabled

a

Significant(S)
or Not Significant

(NS)

Treatment effect
orthogonal
contrasts

117.4 3 39.133 12.134 3.24 S

Ci:m1¼m4 3.60 1 3.60 1.116 3.24 NS
C2:m2¼m3 25.60 1 25.60 7.938 3.24 S
C3:m1þm4¼m2þm3 88.20 1 88.20 27.349 3.24 S
Randomerror 51.60 16 3.225
Total 169.00 19

aFtabled¼ F0.05,3, 16¼ 3.24.
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SSc ¼
Pa

i¼1 ciyi :
� �2Pa

i¼1 nic
2
i

ð24Þ

which ismerely an adjustment to correct for the unequal sizes of ni.Note thatXa
i¼1

nic2i ¼ n1c21 þ n2c22 þ 	 	 	 þ nac2a

II. POWER (f) OF THE ONE-FACTOR ANALYSIS PRIOR TO
CONDUCTING THE TEST

In Chap. 4, we learned how to compute the power for two-sample t-tests.
Recall that the power of a statistic (1� b) is its ability to detect a true alter-
native hypothesis�that is, accept a true HA hypothesis when it is true. The
power of a one-factor, completely randomized ANOVA before the study is
conducted the equation to employ is:

fc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pa

i¼1ðmi � mÞ2
as2

s
fc ¼ Phi-calculated, used to find power in Table A.4.

ð25Þ

where n ¼ the replicate sample size

s2¼ the variance, estimated byMSE
a ¼ the number of treatment groups to be tested
m ¼ the overall average population ‘‘common’’ value (estimated

by �y::)
mi ¼ the population average for each treatment group (estimated

by �yi:)

Note that

m ¼
Pa
i¼1

mi

a
¼
Pa
i¼1

�yi :

a
¼ �y::

To ¢nd the tabled value of the power of the statistic, fT, go toTable A.4
(power tables) and ¢nd fc at v1 ¼ a�1, v2 ¼ a(n�1), and a.This will make
it possible to determine the power of the statistic (1� b) when conducted
with a speci¢c sample size n.

Let us calculate the power of the statistic for the data inTable 5.
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a¼ number of group ¼ 4
n ¼ replicates per group ¼ 5
s2 ¼ estimate of s2 ¼ MSE ¼ 3.225
a ¼ 0.05
v1 ¼ df ¼ a�1 ¼ 3
v2 ¼ df ¼ a(n�1) ¼ 4(4) ¼ 16

fC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pa
i¼1
ðmi � mÞ2

as2

vuuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pa
i¼1
ð�yi:� �y::Þ2

aðMSEÞ

vuuut

m ¼ �y:: ¼
Pa
i¼1

�yi :

n
¼ 100þ 102þ 105:20þ 98:80

4
¼ 101:50

fC¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5½ð100�101:5Þ2þð102�101:5Þ2þð105:2�101:5Þ2þð99:8�101:5Þ2�

4ð3:225Þ

s

fC ¼
ffiffiffiffiffiffiffiffiffi
7:39
p

¼ 2:72

Notice that when v1 ¼ 3, v2¼ 16, a ¼ 0.05, andMSE ¼ 3.225, fc=2.72
and 6 the tabled power value is (Table A.4.3), 1� b, is> 0.99, so clearly ‘‘an n
of 5’’ with an anticipated fc of 2.72 is su⁄cient.

An alternative and very commonway to determine power is to specify a
desired detection level di¡erence, d.Unlike the previous equation, this equa-
tion gives the power of the statistic at a speci¢c detection level.

fC ¼
ffiffiffiffiffiffiffiffiffi
nd2

2as2

s
ð26Þ

where d¼minimum detectable di¡erence (i.e., the minimum di¡erence
between mesh values a researcher wants to be able to detect), say 5 nitrogen
points

a ¼ number of groups ¼ 4
n ¼ replicates ¼ 5
s2 ¼ estimate of s2 ¼ MSE¼ 3.225
a ¼ 0.05
v1 ¼ df ¼ a�1 ¼ 4�1 ¼ 3
v2 ¼ df ¼ a(n�1) ¼ 4(4) ¼ 16
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Again, using the data fromTable 5:

fC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð52Þ

2ð4Þ3:225

s
¼ 2:201

FromTableA.4.3,with v1 ¼ 3, v2 ¼ 16, a ¼ 0.05, and fC ¼ 2.201,we ¢nd the
power value (1� b) 
 0.93,which is very good for b error detection.

Note that when a small detectable di¡erence is desired, the power of
the statistic generally drops, often dramatically. The power of the statistic,
1� b, is 0.93, which means there is a 1�0.93¼0.07, or 7% chance of
committing a type II error (stating that a signi¢cant di¡erence does not exist
when one does) at a detectable di¡erence of 5 points.

Note, however, that the previous two power estimates are, in practice,
conducted before a test is conducted. Hence, one could not use a computed
s2 valuebecause it would be unknown.The value ofs2, however,often canbe
estimated from previous experimental knowledge.

Once the experimental part of completely randomized ANOVA has
been conducted, a di¡erent power calculation equation should be used. It is
wise to determine the power of the statistic at this time, particularly if H0

has not been rejected.
The formula for ¢nding the power of the one-factorANOVA is:

fC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1ÞMSTREATMENT �MSERROR

aðMSEÞ

s
ð27Þ

Using data fromTable 5:

a ¼ 4
MSTREATMENT ¼ 39.133
MSERROR ¼ 3.225
v1 ¼ a�1 ¼ 3
v2 ¼ a(n�1) ¼ 4(5�1) ¼ 16
a ¼ 0.05

fC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð39:113� 3:225Þ

4ð3:225Þ

s
¼ 2:889

FromTable A.4.3, we see that, where a ¼ 0.05, v1 ¼ 3, v2 ¼ 16, and fC ¼
2.889, the power, (1� b), is �>0.99, meaning there is less than 1 chance in
100 of committing a type II error.
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A. Sample Size Requirement

Generally, a researcher determines the sample size required by setting the a
and b levels and estimating s2. As with the two-sample t-tests, the sample
size estimate is performed by iteration.

In sample size determination, the same formula used for the power of
the statistical test ‘‘prior’’ to conducting it can be used [Eq. (26)]. Simply sta-
ted, one performs iterations until fc corresponds to the desired1�bvalue.

Again using data fromTable 5, let’s assume we do not know how many
replicates to use. Recall s2, or MSE ¼ 3.225,which ordinarily would not be
known, but we will use it anyway. Also, v1 ¼ a�1 ¼ 3, a ¼ 0.05, d ¼ mini-
mum detectable di¡erence between group means, which we will set at 3
points, and let us set b¼ 0.20.

Let us begin with a sample size of 3 (n ¼ 3) as our initial estimate.
Hence, the v2 value is a(n�1) ¼ 4(3�1) ¼ 8.

fC ¼
ffiffiffiffiffiffiffiffiffi
nd2

2as2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3Þ2

2ð4Þð3:225Þ

s
¼ 1:023

Using Table D3, where v1 ¼ 3, v2 ¼ 8, a ¼ 0.05, we ¢nd that with an
fc ¼ 1:023,Table D is in Appendix the power (1� b) is 
 0.27,which makes
b ¼ 0.73,which is too large.We need to ¢nd the sample size where the power
of the test, 1� b, is close to 0.80.

Next, the researcher increases the estimate of n to, say, n ¼ 4. The
parameters remain the same, except that the v2 changes. v2 ¼
a(n�1)¼ 4(4�1) ¼ 12.

fC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð3Þ2
2ð4Þð3:225Þ

s
¼ 1:181

ConsultTable D3 with v1 ¼ 3, v2 ¼ 12, a ¼ 0.05 and a fc of 1.181.The power
1� b ¼ 0.35 and b ¼ 0.65,which is still too large.

For the next iteration, the researcher selects n ¼ 6.
v1 ¼ 3, v2 ¼ a(n�1) ¼ 4(6�1) ¼ 20, a ¼ 0.05.

fC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ð3Þ2
2ð4Þð3:225Þ

s
¼ 1:447

The fC value corresponds to (1� b), at about 0.63, making b 
 0.37,which is
still too large. The researcher next sets n¼10 and recomputes. v1¼3,
v2¼ a(n�1)¼ 4(10�1)¼ 36, a¼0.05.
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fC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10ð3Þ2
2ð4Þð3:225Þ

s
¼ 1:868

which provides a power (1� b) of 
0.87 or a bof 
0.13,which is smaller than
needed.The researcher next decreases n to 9.

v1 ¼ 3; v2 ¼ 4ð9� 1Þ ¼ 32; a ¼ 0:05:

fC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9ð3Þ2
2ð4Þð3:225Þ

s
¼ 1:772

which provides a power (1� b) of 
0.80 and a b of 
0.20,which is the level
desired.

Notice that in this example, the detectable di¡erence (d) value of 3
drove the sample size way up. If the researcher thinks this is too many repli-
cates, she or he can, of course, adjust it by increasing a, b, and=or d.

B. Minimum Detectable Differences Between Treatment
Means (d)

Aswith the two-sample t-tests, the researcher can specify a, b, and n and esti-
mate s2. The minimum detectable di¡erence can then be determined. The
researcher needs to only ¢ndf T fromTableA.4 and plug it into the equation:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2as2f2

T

n

s
ð28Þ

In this example, let us again use the data fromTable 5. s2 ¼ MSE ¼ 3.225,
n¼ 5, and a ¼ 4, so v1 ¼ a�1 ¼ 3, v2 ¼ a(n�1) ¼ 4(5�1) ¼ 16, a ¼ 0.05.
b¼ 0.20, and1� b ¼ 0.80.

FromTable D3,we ¢nd f T ¼ 1.81,which corresponds to 1� bof 0.80,
so

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4Þ3:225ð1:81Þ2

5

s
¼ 4:112

Hence, the detectable di¡erence is about 4.112 points.
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C. Power of One-Factor, Completely Randomized
(Random Effects) ANOVA

The power (1� b) for the random-e¡ects model (which will be discussed in
greater detail later) can be determined from:

Fð1�b;v1;v2Þ ¼
v2S2ðFa;v1;v2 Þ

ðv2 � 2ÞMSTREATMENT
ð29Þ

We use the data fromTable 5,which is technically wrong, because they
are ¢xed-e¡ect data, but we will use them to demonstrate the procedure.

MSTREATMENT ¼ 39.113

s2 ¼ MSE ¼ 3.225
v1 ¼ a�1 ¼ 4�1 ¼ 3
v2 ¼ a(n�1) ¼ 4(5�1) ¼ 16
Fa¼ 0.05, 3, 16 ¼ 3.24 (from FdistributionTable A.3)

Fð1�b;v1;v2Þ ¼ 16ð3:225Þð3:24Þ
ð16� 2Þð39:113Þ ¼ 0:305

The value, 0.305, in this calculation, provides a probability value of the
power 1� b.

D. Orthogonal Contrasts—Discussion

Orthogonal contrasts are extremely useful in applied research, particularly
in that the power of the contrast is greater, at any given a level, than any of the
contrasts that are determined after the experimental runs have been com-
pleted. Many researchers penalize themselves by relying on ‘‘canned’’ soft-
ware programs to provide contrasts,which can often be too conservative for
the researcher’s requirements.That is, they generally require that treatment
e¡ect di¡erences between the treatment means be relatively large in order to
be detected.This can be very problematic for the researcher limited, all too
often, to low sample sizes and with signi¢cant variability in the data.To help
avoid this situation, the researcher must do everything possible to reduce
variability within the treatment groups themselves,use orthogonal contrasts
whenever possible, and increase the a level from, say, 0.05 to 0.10 for preli-
minary studies aimed at detecting di¡erences between treatments.

Finally, even when bene¢cial, but to maintain consistency in reports,
the researcher will want to consider not using orthogonal contrasts when at-
tempting to replicate an experiment in which the original researcher used a
di¡erent treatment comparison procedure, such as Sche¡e’s test or the LSD
test. However, it may be bene¢cial to run orthogonal contrasts in this situa-
tion to contrast the results.

146 Chapter 5



E. Bonferroni Multiple Comparison Procedure

This procedure, like orthogonal contrasts, is very useful not only in pairwise
comparisons but also in more complex contrasts, as long as they are stipu-
lated prior to conducting the study.The Bonferroni method is also bene¢cial
in that it is not limited, like orthogonal contrasts, to a�1 comparisons.The
Bonferroni multiple contrast procedure also is applicable for unequal, as
well as equal, sample sizes and can be used for single or multiple con¢dence
estimation.

TheBonferroni procedure uses con¢dence intervals to evaluate signi¢-
cance. In pairwise comparisons where, say, yi and yj are compared, if the a
level con¢dence interval of yi � yj includes 0, there is no signi¢cant di¡er-
ence between the treatments.

The following is the general form of the Bonferroni method:

L� BSðLÞ ð30Þ
where L ¼ linear combination

B ¼ tða=2ðgÞ : N � aÞ ¼ modi¢cation of the t tabled procedure
SðLÞ ¼ MSE

Pa
i¼1 c

2
i =ni ; which is the variability of the linear com-

bination and
P

ci¼ 0
g¼ number of linear combination contrasts made.*

Let us use the data fromTable 5 to demonstrate the Bonferroni method.This
time we will let a ¼ 0.01,which is the a level for all four linear combinations
to be evaluated.Recall thatMSE ¼ 3.225,N ¼ 20,a ¼ 4, and n1¼ n2¼ n3¼
n4¼5.

Let us call

L1 ¼ �y1 � �y2 (linear combination 1), which compares group 1 and
group 2

L2 ¼ �y3 (linear combination 2),which will provide a1� acon¢dence
interval for group 3

L3¼ �y1þ�y2
2 � ð�y3þ�y4Þ2 (linear combination 3), which compares groups 1

and 2 with groups 3 and 4
L4 ¼ �y3 � �y1:þ�y2:þ�y4:

3 (linear combination 4), which compares group 3
with the average of groups1, 2, and 4

*With the Bonferroni method, the a is portioned among the (g) contrasts; i.e., each contrast has
a=g con¢dence.
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Let’s begin with determiningB ¼ ta=2ðgÞ;N�aÞ,where g ¼ 4 and a ¼ a=2(4) ¼
0.01=8 ¼ 0.001.

B¼ t(0.001; 20� 4) ¼ t(0.001, 16) ¼ 3.686, from the student’s t Table A.2

L1 ¼ �y1:� �y4:� BSðLÞ

L1 ¼ 100� 98:80� 3:686

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225

12

5
þ 12

5

� �s
¼ 1:20� 4:187

L1 ¼ �2:987 � m1 � m2 � 5:387

Because zero is included in the 99% con¢dence interval, m1� m2 ¼ 0, we
cannot conclude that a di¡erence between m1 and m2 exists at a ¼ 0.01. But
note that this is a simultaneous 99%CI for all contrasts considered.

L2 ¼ �y3: � BSðLÞ

L2 ¼ 105:20� 3:686

ffiffiffiffiffiffiffiffiffiffiffiffi
3:225
5

r
¼ 105:20� 2:960

L2 ¼ 102:240 � m3: � 108:160

Note that the L2 is merely a 99% simultaneous con¢dence interval for the
treatment mean ð�y3Þ.

Turning our attention to a more complex linear combination, let us
solve L3. The process looks intimidating, but with patience, it will become
clear.

L3 ¼ �y1: þ �y2:
2
þ ð�y3: þ �y4:Þ

2
� BSðLÞ

¼ 100þ 102
2

� 105:2þ 98:8
2

� 3:686

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225

1
2

� �2
5
þ

1
2

� �2
5
þ �

1
2

� �2
5
þ �

1
2

� �2
5

 !vuut
L3 ¼ �1� 3:686

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225ð0:2000Þ

p
L3 ¼ �3:960 � m1 þ m2 � ðm3 þ m4Þ � 1:960

Hence, because the contrast interval L3 includes 0,we cannot conclude that
m1 þ m2 � ðm3 þ m4Þ are signi¢cantly di¡erent pairs at a ¼ 0.01 for the simul-
taneous contrasts.
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New for contrast L4

L4 ¼ �y3: � ð�y1: þ �y2: þ �y4:Þ
3

L4 ¼ 105:20� ð100þ 102þ 98:8Þ
3

� 3:686

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225

12

5
þ
�1
3

� �2
5
þ
�1
3

� �2
5
þ
�1
3

� �2
5

 !vuut
L4 ¼ 1:515 � m3 �

m1 þ m2 þ m4
3

� 8:351

Because zero is not included in theL4 combination, m3 is signi¢cantly di¡er-
ent from ðm1 þ m2 þ m4=3Þ at a ¼ 0:01 for the simultaneous contrasts.

F. Multiple Test Comparisons via Critical Values

Multiple two-tail test comparisons can be made on the basis of critical
values.The two-tail hypotheses are of the form:

H0: L ¼ 0

HA: L 6¼ 0

Use the Student’s t-test calculated values compared with the Student’s
t-test tabled value.

tc ¼ t - test computed ¼ L=SðLÞ
where

SðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Xa
i¼1

c2i
ni

s
; as before

tt¼ t-test tabled value¼ tða=2g;N�aÞ
g¼ number of comparisons made

If jtcj > ttða=2g;N�aÞ, concludeHA:L 6¼ 0.
Again using the data from Table 5 and a ¼ 0.01, we will perform the

same linear contrasts (L) as just performed, except that we will not com-
pute L2 because L2 was only one parameter providing a con¢dence
interval. Hence, g ¼ 3, a=2(g) ¼ 0.01=2(3) ¼ 0.002, and t at a¼ 0.002, 16
df
 3.469.
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H0: m1 ¼ m2

HA: m1 6¼ m2

L1 ¼ �y1: � �y4: ¼ 100� 98:8 ¼ 1:2

tc ¼ 1:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225ð125 þ 12

5 Þ
q

tc ¼ 1:06

Because tcð1:06Þ => ttð3:469Þ,we cannot conclude �y1: 6¼ �y2: at a ¼ 0.01.Hence,
the null hypothesis cannot be rejected.

L3 ¼ �y1: þ �y2:
2
� ð�y3: þ �y4:Þ

2

L3 ¼ 100þ 102
2

� 105:2þ 98:8
2

¼ �1:000

tc ¼ �1:000ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225 1

2

� �2
=5þ 1

2

� �2
=5þ � 1

2

� �2
=5þ � 1

2

� �2
=5

	 
r
tc ¼ �1:245

Because tcðj � 1:245jÞ => ttð3:469Þ, one cannot rejectH0 at a ¼ 0.01.

In linear contrast 4 (L4),we have:

H0: m3 ¼
m1 þ m2 þ m4

3

HA : m3 6¼
m1 þ m2 þ m4

3

L4 ¼ 105:2� ð100þ 102þ 98:8Þ
3

¼ 4:933

L4 ¼ 4:933ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225 1

5þ � 1
3

� �2
=5þ � 1

3

� �2
=5þ � 1

3

� �2
=5

	 
r
L4 ¼ 4:933

0:927
¼ 5:319 ¼ tc

Because tc j 5.321 j >tt (3.469), rejectH0 at a ¼ 0.01.
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As stated, the Bonferroni method of multiple contrasts is very useful as
long as the linear combinations onewants to calculate are determined prior to
conducting the test. The Bonferroni contrasts are simultaneous for all con-
trasts considered (at the a level).Using more contrasts lowers the power. In
practice, because the Bonferroni procedure tends to be less powerful (more
conservative) in rejecting H0 than the orthogonal contrasts we previously
viewed, it is perhaps more attractive when there is an overriding desire to
prevent type I error. This will increase type II error, however,which can be
problematic, particularly in pilot studies. Generally, however, the Bonfer-
roni comparison tends to be more powerful than the other contrasts that
can be performed after the data from a study have been analyzed.Note, how-
ever, that if all possible contrasts are tobe computed,theTukeymethod (tobe
discussed) provides more power. And when the contrasts performed are
close in number to a, or fewer, the Bonferroni method is more powerful than
the Sche¡e method (also to be discussed).

Some authors [26] suggest that one compute using all of themethods�
the Bonferroni, the Sche¡e, and theTukey�and choose the one that appears
most advantageous.This, in my opinion,often leads in practice tomassaging
the data, trying to support a preexisting experimental bias. There must be
criteria stronger than a tight con¢dence interval for selecting one procedure
over another.

G. Holm Simultaneous Test Procedure

The Holm test procedure is a modi¢cation of the Bonferroni test procedure
and can improve the power of the family of tests [26]. It, too, is applicable
when pairwise comparisons of means or linear combinations, or a combina-
tion of these, are used. And, as in the Bonferroni procedure, the linear con-
trasts, comparisons, or the mixture of these must be determined prior to
conducting the study.

The Holm procedure can be applied to equal or unequal sample sizes.
As in the Bonferroni procedure, the researcher will set g as the number of
contrasts to perform. This procedure, like the Bonferroni procedure, will
evaluate g contrasts using the hypothesis form.

H0: L ¼ 0

HA: L 6¼ 0; where L is a linear combination

Hypothesis testing for each contrast (as it would be, also, for the Bon-
ferroni method) is of the form Li=SðLiÞ. Each of the contrasts (tc), following
the Bonferroni procedure, is compared with the t tabled value with N � a
degrees of freedom to ¢nd the P value.
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The Holm procedure, relying on P values, becomes tricky when the
P value is very small and the t-calculated value large because then the t-
tabled values are not exact. In addition, the P values are tested using the
formula a=ðg � k þ 1Þ for contrasting the k þ 1 smallest P values.

If the P value calculated is < a=ðg � k þ 1Þ, reject H0. If the P value
calculated is � a=ðg � k þ 1Þ, one cannot reject H0. The Holm procedure
computes the test procedures, obtaining a P value for each. It then
modi¢es the level that the P value is compared with in order to increase
the power of the statistical procedure. By this process, the Holm proce-
dure may be able to detect signi¢cant di¡erences in compared values that
cannot be determined using the Bonferroni procedure without increasing
the sample sizes [26]. This can be of real value to the researcher perform-
ing pilot studies or any other study where one desires to detect di¡erences
in contrasts with relatively small sample sizes.

This author has used this procedure andDunnett’s test (to be described
later) for comparing a control product with a� 1other products.The advan-
tage of the Holm procedure over Dunnett’s is increased statistical power
[26].The disadvantage of having to set up contrasts prior to conducting the
study is not really applicable in control versus test contrasts. If the researcher
wishes to compare the control with the a� 1 other test conditions, these
are known prior to conducting the study. Where problems can arise is in
trying to determine di¡erences between test groups prior to conducting the
study. One does not want to increase g frivolously because each contrast
increases the value of a of the test procedure (e.g., 0.05 to 0.10). In small pilot
studies, this can be a real problem.

One way in which I have countered the problem is to keep the test pro-
ducts or treatments no greater than three, plus a control. Often, I ¢nd that
two test products with one control is even better.

A disadvantage, however, is that con¢dence intervals cannot be deter-
mined using thismethod.Some authorities recommend using theBonferroni
con¢dence interval procedure when using the Holm simultaneous test pro-
cedure [26].However, this can result in a nonsigni¢cant con¢dence interval
for a contrast deemed signi¢cant by the Holms procedure. Each researcher
must work within the constraints given to him or her.

The Holm procedure ¢rst requires that the researcher conduct a series
of two-tail P-value tests,which are then ranked in ascending order (lowest P
value ¼ number one rank, second lowest ¼ second rank, . . . highest P
value ¼ highest rank value). The lowest P value (rank 1) is then compared
with the value a=(g�1þ1) (where g ¼ number of comparisons) to determine
whether to accept or reject H0. As with the Bonferroni method, if the H0

hypothesis is rejected for the rank1P value, the researcher moves to the next
rank (rank 2), which is compared with the value a=(g � 2þ 1). If H0 is
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accepted, the testing procedure is stopped. If not, the researcher moves to
rank 3 and compares that rank with the value a=(g � 3þ 1) and so on. Re-
member that, once the H0 hypothesis is accepted, no further comparisons
are made because any subsequent ones will not rejectH0. Like the Bonferro-
ni procedure, this procedure, taken as a whole family of contrasts, will be
equivalent to a. Hence, the more tests performed, the more likely one is to
commit a type II error. That is because the more tests that are conducted,
the greater the di¡erence must be to rejectH0.

Using the data fromTable 5 and letting a again equal 0.05, let us con-
struct contrasts using the Holm procedure.

L1 ¼ �y1: � �y2:

L2 ¼ ð�y1: þ �y2:Þ
2

þ ð�y3: þ �y4:Þ
2

L3 ¼ �y3: � ð�y1: � �y2: þ �y4:Þ
3

where a ¼ 0:05; �y1: ¼ 100; �y2: ¼ 102; �y3: ¼ 105:20; and �y4: ¼ 98:80:
Let us compute the mean di¡erences ¢rst:

L1 ¼ 100� 102 ¼ �2

L2 ¼ 100þ 102
2

� 105:2þ 98:8
2

¼ �1

L3 ¼ 105:2� 100þ 102þ 98:8
3

¼ 4:933

Let us next compute the standard deviations of the contrasts,S(Li):

SðLiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

X c2i
ni

s

SðL1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225

12

5
þ�1

2

5

� �s
¼ 1:136

SðL2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225

1
2

� �2
5
þ

1
2

� �2
5
þ �

1
2

� �2
5
þ �

1
2

� �2
5

 !vuut ¼ 0:803

SðL3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225

12

5
þ �

1
3

� �2
5
þ �

1
3

� �2
5
þ �

1
3

� �2
5

 !vuut ¼ 0:927

tc1 ¼ L1=SðL1Þ ¼ �2=1:136 ¼ �1:761
tc2 ¼ L2=SðL2Þ ¼ �1=0:803 ¼ �1:245
tc3 ¼ L3=SðL3Þ ¼ 4:933=0:927 ¼ 5:321
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The next step is to ¢nd theP value * on Student’s tdistribution (Table B)
for each of the tc values computed,with N � a degrees of freedom.We must
alsomultiply this value by 2 because the tabled value has been divided by 2 in
the fraction a=2.

This procedure is summarized inTable12.
As can be seen, the only signi¢cant contrast was the third,

�y3: � ð�y1: þ �y2: þ �y4:Þ
3

.The readers are urged to work some problems compar-

ing the Bonferroni method with the Holm procedure to gain knowledge of
their comparative e¡ects and choose on their own which to use.

The Holm procedure can be extremely useful and is recommended for
situations in which more than a� 1 contrasts are to be used. (25,27).

III. DISCUSSION CONCERNING BOTH GENERAL
ORTHOGONAL CONTRASTS AND THE BONFERRONI
AND HOLM PROCEDURES

When comparing nomore than a� 1 groups, I prefer the general orthogonal
contrasts.These are relatively easy-to-use procedures that logically portion
the treatment sum of squares in a way that is easy for any audience to under-
stand,with respect to an ANOVA table.

When one must compare more than a� 1 contrasts, I prefer the
Bonferroni and Holm methods to any of the orthogonal contrasts. I gen-
erally prefer the Holm contrast procedure over the Bonferroni in that it is
more powerful. However, I strongly urge the reader to choose wisely what
contrasts will be computed, for the power of the statistic drops relative to
the number of contrasts. This is particularly noticeable for studies with
small sample sizes�many industrial experiments�where, ironically, the
main goal is to detect signi¢cant di¡erences between groups. One may
also consider, in preliminary studies with low sample sizes, increasing a
to 0.10. If one is performing small-scale studies, however, to identify a
treatment (or treatments) that is highly signi¢cantly di¡erent (better)
from the control, one should use an a of at least 0.05 and a posterior test
such as those to be described, particularly Dunnett’s, that contrasts test
versus control.

*TheP value is the probability of calculating a tc value at least as large as the one calculated, given
theH0 hypothesis is true.
p value1 (where tc1 ¼ �1:761, df ¼ 16) 
 0.04 � 2 ¼0.08
P value2 (where tc2 ¼ �1:245, df ¼ 16) 
 0.12 � 2 ¼0.24
P value3 (where tc3 ¼ 5:321, df ¼ 16) 
 0.0001 � 2 ¼0.0002
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IV. COMPARISONS MADE AFTER EXPERIMENTS
ARE CONDUCTED

In practice, particularly if the experiment is covering new territory, a
researcher will not know which contrasts to perform prior to conducting
the study.Fortunately, a variety of methods can be used to compare and con-
trast the treatments after experimentation is completed. Those that we will
discuss include:

Sche¡e’s method
Newman^Keuls test
LSD (least signi¢cant di¡erence) test
Tukey’s test
Dunnett’s comparisons
Duncan’s new multiple range test

A. Scheffe’s Method

In many situations, the experimenter will not know which contrast compar-
isons should be made prior to conducting the experiment.This is usually the
case in exploratory experimentation.Or the experimenter may be interested
in more than a�1 contrasts, which cannot be handled using orthogonal
contrasts.

The She¡e method can be used to test multiples of two groups such as
m1� m2 6¼ 0 for HA. Unfortunately, this type of comparison is less sensitive
(less power) than the Newman^Keuls or the Tukey test. Often, the Sche¡e
test is apt to commit a type II error (stating that m1� m2¼ 0 when actually
m1� m2 6¼ 0). Because of this, Sche¡e’s test is not generally recommended for
multiple two-group testing. It is better applied inmultiple comparisons com-
paring, say, (m1þm2þm3)=3� m4¼ 0 or m1þm2� m3� m4 6¼ 0.

Both two-sample contrasts and multiple contrasts having greater than
two samples will be demonstrated here.

The general hypothesis is:

H0: mi � mj ¼ 0�

HA: mi � mj 6¼ 0

Suppose k contrasts in the treatment means are to be conducted for a
treatments.

*This hypothesis can also be written as:
H0: mi ¼ mj
HA: mi 6¼ mj
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Tc ¼ treatment contrasts

Tc ¼ C1m1 þ C2m2 þ C3m3 þ 	 	 	Cama and m ¼ m1; m2; . . . mk
ð31Þ

The actual contrasts will be made, however, substituting �yi: for mi. The
standard error of the contrast is:

Sci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Xa
i¼1

c2i
ni

� �s
ð32Þ

where ni¼ number of observations per ith treatment.
Each C value (C ¼ c1 �y1 þ c2 �y2 þ 	 	 	 ca �yaÞ is to be compared to

Sa ¼ Sci
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� 1ÞFa;ða�1;N�aÞ

p ð33Þ

To test the contrast, Tc di¡ers signi¢cantly from 0, we utilize C. If
jCj>Sa, theH0 hypothesis is rejected.

Let us use the data fromTable 5 to demonstrate how to set up contrasts.
The procedure can be conveniently written in four steps.

Step1. Set up all contrasts in null (H0) hypothesis terms.
Step 2. Determine standard error for the contrasts (Sci).
Step 3. Determine the tabled Sa values.
Step 4. Make comparison table for jCij vs.Sa.
Example1: Suppose the researcher wants to conduct the following con-

trasts inH0 terms; the null hypothesis would be:

Tc1 ¼ m1 � m2 ¼ 0; or m1 ¼ m2
Tc2 ¼ m3 � m4 ¼ 0; or m3 ¼ m4
Tc3 ¼ m2 � m3 ¼ 0; or m2 ¼ m3
Tc4 ¼ m1 þ m2 � m3 � m4 ¼ 0; or m1 þ m2 ¼ m3 þ m4

Step1. Contrast 1 ¼ C1 ¼ �y1: � �y2:
C1¼100�102¼ � 2
Contrast 2 ¼ C2 ¼ �y3: � �y4:
C2¼105.20� 98.80¼ 6.40
Contrast 3 ¼ C3 ¼ �y2: � �y3:
C3¼102�105.20¼ �3.2
Contrast 4 ¼ C4 ¼ �y1: þ �y2: � �y3: � �y4:
C4¼100þ102�105.20� 98.80¼ � 2
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Step 2. Determine standard error for the contrasts.

Sci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Pa
i¼1

c2i
ni

	 
s
Sc1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225 12

5 þ 12
5

� �q
Sc1 ¼ 1.136

Sc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225 12

5 þ 12
5

� �q
Sc2 ¼ 1.136

Sc3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225 12

5 þ 12
5

� �q
Sc3 ¼ 1.136

Sc4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225 12

5 þ 12
5 þ 12

5 þ 12
5

� �q
Sc4 ¼ 1.606

Step 3. Find the tabled Sa values in the F tables. From the F distribu-
tion table (Table A.3), with a¼ 0.05, a�1¼4�1¼3, and
N�a¼ 20� 4¼16,F(0.05, 3, 16)¼ 3.24.

Sa;i ¼ Sci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1ÞFa;a�1;N�aÞ

p
Sð0:05;1Þ ¼ 1:136

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3:24Þ

p
¼ 3:542

Sð0:05;2Þ ¼ 1:136
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3:24Þ

p
¼ 3:542

Sð0:05;3Þ ¼ 1:136
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3:24Þ

p
¼ 3:542

Sð0:05;4Þ ¼ 1:606
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3:24Þ

p
¼ 5:007

The Sai values are compared with Ci values. If jCij>Sai, reject H0, the
null hypothesis at a.

Step 4. Make comparison table (Table13).

TABLE13 Comparison Table

Comparison Ci jCij Sa, i jCij>Sa, i

�y1: � �y2: � 2 2 3.542 No, accept H0

�y3: � �y4: 6.4 6.4 3.542 Yes, rejectH0

�y2: � �y3: � 3.2 3.2 3.542 No, accept H0

�y1: þ �y2: � �y3: � �y4: � 2 2 5.007 No, accept H0
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Using the Sche¡e method, one can test all possible contrasts. This
author’s recommendation, however, is to use the Sche¡e method when com-
paringmore than two samples at a time.When only contrasting pairs of treat-
ments, use the Newman^Keuls or the Tukey test. In this case, only
�y1 þ �y2 � �y3 � �y4 would qualify.

Con¢dence intervals can be computed, too, using the Sche¡e procedure
for two ormore than two samples.For two-sample comparisons, the formula
for a100 (1� a) con¢dence interval,where mi: � mj: ¼ �yi: � �yj:, is:

�yi: � �yj: � SaðSci Þ ð34Þ
where

Sci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Xa
i¼1

c2i
ni

� �s
For more than two samples, the general formula for a 100(1� a) con¢dence
interval is:X

ci �yi: � SaðSci Þ ð35Þ
Let us look at 95%con¢dence intervals for contrasts, as follows, noting to the
right of the ‘‘equal’’signs how each of the contrasts also can be expressed in a
‘‘short-hand’’ notation.

contrast 1 ¼ m1 � m3 ¼ Sc1�3

contrast 2 ¼ m1 þ m2 � m3 � m4 ¼ Sc1þ2�3�4

contrast 3 ¼ m1 �
m2 þ m3 þ m4

3
¼ Sc1� 2þ3þ4

3ð Þ
RecallSa ¼ Sci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� 1ÞFa;ða�1;N�aÞ
p

fora¼ 0.05,with degrees of freedom3,16.

Hence;Sa ¼¼ Sci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3F0:05;ð3;16Þ

p ¼ Sci
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3:24Þ

p
¼ 3:118

Contrast con¢dence interval 1:

�y1: � �y3: � SaðSc1�3Þ ¼ 100� 105:20� 3:118Sc1�3 ; and

Sc1�3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Pa
i¼1

c2i
ni

	 
s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225 12

5 þ 12
5

� �q
¼ 1:136

�5:2� 3:118ð1:136Þ
�5:2� 3:541
�8:741 � m1 � m3 � �1:659

Contrast con¢dence interval 2:

�y1: þ �y2: � �y3: � �y4: � SaðSc1þ2�3�4Þ ¼ 100þ 102� 98:8
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and

Sc1þ2�3�4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225 12

5 þ 12
5 þ �1

2

5 þ �1
2

5

� �q
¼ 1:606

�2:00� 3:118ð1:606Þ
�2:00� 5:008
�7:008 � m1 þ m2 � m3 � m4 � 3:008

Contrast con¢dence interval 3:

�y1:� �y2:þ�y3:þ�y4:
3 � SaSc1� 2þ3þ4

3ð Þ ¼100� 102þ105:20þ98:80
3 � 3:118ðSc�i 2þ3þ4

3ð ÞÞ;
and

Sci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:225 12

5 þ
�1
3ð Þ2
5 þ

�1
3ð Þ2
5 þ

�1
3ð Þ2
5

� �s
¼ 0:927

¼ �2� 3:118ð0:927Þ
¼ �2� 2:890
¼ �4:89 � m1 � m2 þ m3 þ m4

3 � 0:890

B. Newman–Keuls Test

This test was originally devised by Newman in 1939 and later modi¢ed by
Keuls in 1952. It has also been referred to as the Student^Newman^Keuls
(SNK) test [2,27,28].The Newman^Keuls is a powerful contrast test, tend-
ing to conclude signi¢cant di¡erences more often than its sister, the Tukey
test.However, it ismore conservative for type Ierror thanDuncan’s contrast
procedure [28]. A number of authors have criticized it and have recom-
mended against it because of falsely declaring signi¢cant di¡erences at a
greater rate probability than a [3,19,21]. Hence, although it is powerful, for
situations inwhich a type I error is to be avoided, it may be wise to substitute
theTukey test.The procedure for the Newman^Keuls test is as follows:

1. Order the ameans in ascending order.
2. Refer to the ANOVA table (Table 6 in our example) and ¢nd

degrees of freedom (N�a) and value for MSE.
3. Compute SE (standard error) of each mean, where

SE ¼ S�yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=ni

p
Note:When the values of ni are equal,SEwill be the same for each ni.

4. Go to the Studentized tables (Table A.12) for a¼ 0.01, or 0.05, and
using (N�a) as error degrees of freedom, list the a�1 tabled
ranges corresponding to p¼ 2, 3, . . . , a. The table value is of the
form qa(p,f )
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5. Multiply these ranges by SE ¼ S�yi for the a�1 values to obtain the
Studentized range value (SRV ).

6. Beginning with the largest mean value (�yi) versus smallest, one
compares with SRVat p¼ a; the largest versus the second smallest
is then compared to p¼ a�1, and so on.Once the largest value has
been compared with p¼ 3, the process begins again. The second
largest �yi is compared with the smallest SRV at p¼ a�1, then the
second smallest, and so forth until p¼ 2.The process is continued
until the a(a�1)=2 possible pairs have been compared. If the
two means being compared are equal, no signi¢cant di¡erence is
determined.

Let us do this procedure using our own example data.

Step1. Order the a test means in ascending order:

a ¼ 4 ¼ 98:80 100 102 105:20
�y4: �y1: �y2: �y3:

Step 2. Determine the degrees of freedom for the value of MSE.
MSE¼ 3.225, and degrees of freedom ¼N�a¼ 20� 4¼16
Step 3. Compute the standard error for each mean.

S�yi ¼
ffiffiffiffiffiffiffiffiffi
3:225
5

q
¼ 0:803

Note:Because the n value is the same for each group S�yi is the same, too.

Step 4. Using the Studentized range table (Table L) at a¼ 0.05 and
degrees of freedom ¼N�a¼16, (where ‘‘F’’on the studentized range
value equals n� 2,or the degree of freedom), list the a�1tabled ranges
corresponding to p¼ 2, 3, 4.

p ¼ 2 3 4
Studentized range values (table A.12) ¼ 3:0 3:65 4:05

Step 5. Multiply these ranges by SE ¼ S�yi ¼ 0:803
3ð0:803Þ ¼ 2:409 ¼ SRV for p ¼ 2

3:65ð0:803Þ ¼ 2:931 ¼ SRV for p ¼ 3
4:05ð0:803Þ ¼ 3:252 ¼ SRV for p ¼ 4

Step 6. Beginning with the largest �yi versus the smallest �yi , at p¼ a,
then the largest to second smallest at p¼ a�1, and so on, until p¼ 2
and the process begins with the second largest �yi until the 4(3)=2¼ 6
contrasts are compared.

Figure 3 presents the above results graphically in con¢dence interval (CI)
style.
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So, at a¼ 0.05:

m3 is signi¢cantly larger than the other three mean value, because the
m3 CI does not overlap m1, m2 and m4.

m2 is larger than m4, is not di¡erent from m1, and is smaller than m3.
m1 is not signi¢cantly di¡erent from m2 or m4, but is smaller than m3.

The Newman^Keuls test is very useful for comparing all possible
a(a�1)=2 contrast pair s. It is particularly useful in small pilot studies,
where small sample sizes are the rule, to explore and screen multiple treat-
ments. For example, in one situation, in the author’s experience, it worked
well in the process for selection of impregnated preoperative=precatheter
insertion swabs tested on human subjects. The cost of the project was well
over $25,000 just for screening, with the goal of ¢nding the ‘‘best’’ swab.
‘‘Best’’ was to be the swab that demonstrated the greatest reductions in
skin microorganisms. If several were reasonably equivalent, the cheaper
or cheapest would be selected. Only ¢ve subjects were used for each swab
con¢guration, and the variability of the test was 0.99 log10 or nearly �1

FIGURE 3 Contrast comparisons.

SRvalue Conclude

�y3: � �y4: ¼ 105:2� 98:80 ¼ 6:400 > 3:252 m3 > m4
�y3: � �y1: ¼ 105:2� 100:0 ¼ 5:200 > 2:931 m3 > m1
�y3: � �y2: ¼ 105:2� 102:0 ¼ 3:200 > 2:409 m3 > m2
�y2: � �y4: ¼ 102:0� 98:80 ¼ 3:200 > 2:931 m2 > m4
�y2: � �y1: ¼ 102:0� 100:0 ¼ 2:000 < 2:409 m2 ¼ m1
�y1: � �y4: ¼ 100:0� 98:80 ¼ 1:200 < 2:409 m1 ¼ m4
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log10 of microorganisms. A rank-ordering (nonparametric) selection pro-
cedure was going to be used, but several of the decision makers were not
versed in nonparametric analyses. Instead, ANOVA with the Newman^
Keuls test was used, providing extremely useful information that was sub-
sequently con¢rmed in a larger antimicrobial e⁄cacy evaluation used in
the drafting of a New Drug Application submitted to the Food and Drug
Administration (FDA).

C. Least Significant Difference (LSD) Test

Another approach to comparing all pairs of means after the experiment has
been conducted is the least signi¢cant di¡erence, or LSD, test.The LSD test
is a modi¢cation of the pooled two-sample t-test. Recall from Chap. 4 that
the t statistic had the form

tc ¼ �x1 � �x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
p ð1=n1 þ 1=n2Þ

q
The LSD comparison is similar in the denominator to the t statistic.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE
1
n1
þ 1
n2

� �s
; where MSE ¼ S2 ð36Þ

The actual LSD comparison process is quite simple.

If j�yi: � �yj:j > tða=2;N�aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
ni
þ 1
nj

� �s !
ð37Þ

the researcher can reject theH0 hypothesis and conclude that the two group
means compared are signi¢cantly di¡erent at the stated a level. The
student’s t table (table A.2) is used in this computation.

The LSD formula,when ni 6¼ nj, is

tða=2;N�aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
ni
þ 1
nj

� �s
ð38Þ

but, if the design is balanced, that is,ni¼ nj, Eq. (38) can be simpli¢ed to:

tða=2;N�aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
ð39Þ

Because the example presented inTable 5 is a balanced design,we will
use Eq. (39).The test statistic is
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j�yi: � �yj:j > tða=2;N�aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
where

LSD¼ tða=2;N�aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
¼ tð0:052 ;20�4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3:225Þ

5

r
¼ 2:120ð1:136Þ ¼ 2:408

Continuing our work with data from Table 5, there are að4� 1Þ=2 ¼
4ð3Þ=2 ¼ 6 possible contrasts that can be made.

Table 14 presents these contrasts using the LSD procedure. Plotting
these contrasts, provides a visual understanding of how they relate to one
another (Fig. 4).

TABLE14 LSDProcedure Contrasts

Contrasts
Significant if
j�yi � �yjj > LSD

Significant¼S
Not significant¼NS

j�y1: � �y2:j ¼ 100.0�102.0¼ 2< 2.408 NS
j�y1: � �y3:j ¼ 100.0�105.2¼ 5.2>2.408 S
j�y1: � �y4:j ¼ 100.0� 98.80¼ 1.2< 2.408 NS
j�y2: � �y3:j ¼ 102.0�105.2¼ 3.2>2.408 S
j�y2: � �y4:j ¼ 102.0� 98.80¼ 3.2>2.408 S
j�y3: � �y4:j ¼ 105.2� 98.80¼ 6.4>2.408 S

FIGURE 4 Rough confidence intervals, for the LSD procedure contrasts.
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So �y3 is greater than �y2:, �y1: and �y4: ;
�y2: is less then �y3., equal to �y1., and greater than �y4: ;
�y4: is not less than �y1., but less than �y2. and �y3.

The LSD method is a commonly used contrast o¡ered on many com-
puter software packages. It can also be easily computed using the pencil-
and-paper procedure just shown.However, risk of type I (a) error canbe pro-
nounced using the LSDmethod, just aswith theNewman^Keuls procedure.
The LSDmethod is progressively more prone to a error as a becomes larger.
One frustrating anomaly is that, when a is relatively large, with low sample
sizes, n, and relatively high MSE, an F-test, as part of ANOVA, may be sig-
ni¢cant, but the LSD contrasts fail to detect any signi¢cant di¡erences.This
occurs because the LSD method compensates for all possible contrasts, not
just one or two,which lowers the power.Hence, as a increases, the probabil-
ity of concluding that no signi¢cant di¡erence exists between �yi:and �yj:when,
in actuality, it does, a error also increases. In practice, try to keep the com-
parisons to nomore than three or, at the most, four.

D. Tukey’s Test

TheTukey test, like theNewman^Keuls test, is based on a Studentized range
statistic.The computation procedure is straightforward and useful for pair-
wise comparison of the means. Procedurally, as in the LSD method, where
all a(a�1)=2 pairwise mean contrasts are made, the critical value, a is deter-
mined on thebasis of all possible contrasts.As long as sample sizes are equal,
the family con¢dence level is 100(1� a) for all contrasts.When sample sizes
are not equal,the signi¢cance level of theTukey test is greater than100(1� a),
or more conservative for making type I error [26].This is very important, for
theTukey test is unsurpassed for studies where committing a type II error is
not as critical as committing a type Ierror.

The procedure requires the use of a table of percentage points (qa) of
the Studentized range statistic to derive qað p;f Þ(Table A.12), where p¼ a¼
number of sample groups, and f¼N�a (total number of observations less
number of groups). This provides the critical acceptance value for all pair-
wise comparisons.Again, theTukey test comparesmeans j�yi � �yj j. If their ab-
solute di¡erence is greater thanTc ¼ qaðp;f ÞS�yi , the hypothesis is rejected at a.

In the Tukey test, only one p value is used to determine qa , not a�1
value of p.

S�yi ¼ standard error of the mean

ffiffiffiffiffi
S2

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
MSE
n

r
ð40Þ

Let us use the data fromTable 5 and demonstrate the procedure.
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qaðp;f Þ ¼ q0:05ða;N � aÞ ¼ q0:05ð4;16Þ ¼ 4:05 from Table L:

Recall MSE ¼ 3:225

S�yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3:225
5

r
¼ 0:803 ð41Þ

Tc¼ 4.05(0.803)¼ 3.252
Again, construct a contrast table of all aða� 1Þ=n combinations (Table 15).

Notice from Table 15 and Fig. 5 that �y3: is not greater than �y2:, but is
greater than �y1: and �y4: ; �y2: is not less than �y3: not greater than �y1: or �y4: ; �y1: is
equivalent to �y2: and �y4:, but less than �y5: ; �y4: is equivalent to �y1:and �y2: but less
than �y3:

In many of the clinical trial studies I have performed, the use of Tukey
contrasts has been extremely valuable when it is less desirable to commit a
type Ierror than to commit a type IIerror.For example, in evaluating a series
of surgical scrub formulations, the critical point of the research is to ensure
that a signi¢cant di¡erence�an indication of ‘‘better’’�would mean that a
product is clearly better,which theTukey test ensures because of its conser-
vative properties. I have also found it useful in research and development,
particularly when, for example, a new formulation is compared with the
standard formulation, and it is important that the new formulation be mark-
edly better if one is going to replace the standard with a new one. But it is
important to note that, if a product isworse than the standard, it will bemore
di⁄cult to detect using theTukey test,which could be problematic.

TheTukey procedure is prone to misuse. For example, at one ¢rm for
which I consulted, theTukey contrast was used to ensure that batches of the
manufactured drug did not go out of tolerance. As long as the Tukey test
showed that the batch manufacturing process was not di¡erent at the

TABLE15 Contrast Table

Mean
difference Tc

Significant¼S
Not significant¼NSa

j�y1: � �y2:j¼ j100�102j ¼ 2< 3.252 NS
j�y1: � �y3:j¼ j100�105.2j ¼ 5.2>3.252 S
j�y1: � �y4:j¼ j100� 98.80j ¼ 1.2< 3.252 NS
j�y2: � �y3:j¼ j102�105.2j ¼ 3.2< 3.252 NS
j�y2: � �y4:j¼ j102� 98.80j¼ 3:2 < 3:252 NS
j�y3: � �y4:j¼ j105.2� 98.8j ¼ 6.4> 3.252 S

aIf j�yi � �yjj > Tc test is significant at a, or if j�yi � �yjj4Tc test is not significant
at a.
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a¼ 0.05 level of signi¢cance, the batchwas considered in tolerance.Thisway
of using theTukey test was exceptionally liberal, for it is more di⁄cult to de-
tect true out of tolerances, and the analystswould be prone to say the process
was in control when it really was not. It is also likely to be a poor test (i.e.,
lower power by design).

The Tukey test is a standard contrast option in many statistical soft-
ware packages. Table 16 provides a MiniTab printout of theTukey test. No-
tice that it is the same as the hand computation.

E. Dunnett’s Comparison (Test Versus Control)

In many kinds of experimentation, an investigator is interested in testing a
group of products compared with a control. Generally, the control is a
‘‘standard,’’ such as the standard treatment, standard product, etc. Often
the researcher is interested in developing a product better than the
standard. For example, drug A may be a ¢rm’s major product in a speci¢c
category. Researchers work to create new drugs that perform better than
drug A. In this developmental process, they compare new formulations with
the standard (drug A). In order to replace drug A, a new drug must be sig-
ni¢cantly better.

In one prime example of this, the author’s group worked on the devel-
opment of a new generation of a triclosan^alcohol antimicrobial handwash
formulation. The standard product was 62% ethanol without triclosan.
Three new ethanol test product prototypes had been developed containing
the antimicrobial agent, triclosan, at incremental levels.The goal was to ¢nd

FIGURE 5 Tukey test (plotted roughly).
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a triclosan^alcohol product that had greater antimicrobial e¡ectiveness
than the alcohol alone. Employing Dunnett’s test on this project proved
highly useful.

The test procedure is straightforward.There are a treatments in the ex-
periment, and the researcher will evaluate the a�1 treatment groups, com-
pared with the control group, using either a two-tail or a one-tail test.
Dunnett’s test utilizes Table M for two-tail and one-tail tests at both
a¼ 0.05 and 0.01.

The ¢rst step is to establish the value, da(a�1, f ), where a�1 is the
number of treatments compared with control and f¼N�a¼ total number
of observations minus number of treatments.

The formula for contrasts having the same sample sizes (ni¼ nj) is

S�yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
ð42Þ

For pairs where ni 6¼ nj, the formula is

S�yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
ni
þ 1
nj

� �s
ð43Þ

Let us use ‘‘c’’ to denote the control group, and the a�1mean contrasts
will have the form:

j�yi: � �ycj; i ¼ 1; 2; . . . ; a� 1

TABLE 16 MiniTab Tukey Output (Provides the Same Information as the Hand
Calculation)

Tukey’s pairwise comparisons
Family error rate¼ 0.0500
Individual error rate¼ 0.0113
Critical value¼ 4.05

Intervals for (column levelmean)� (row levelmean)
1 2 3

2 5.253a

1.253 NS
3 � 8.453 � 6.453 NS

� 1.947 S 0.053
0.053

4 � 2.053 � 0.053 3.147
4.453 NS 6.453 NS 9.653 S

aj�y1 � �y2j at a 95% confidence interval. If 0 is intersected, no significant difference is present
(NS). If 0 is not intersected, the comparison is significant (S) at a¼ 0.05.
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The decision rule is that if

j�yi � �ycj > daða�1;f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
ð44Þ

rejectH0 at a, where:

f¼N�a
Using the data inTable 5 again to demonstrate the procedure,MSE ¼ 3:225,
and �y1: is the control ¼ �yc, let us calculate Dunnett’s comparison.

Let us performa two-tail test.Looking inTableM, a¼0.05=2,a�1¼3,
f¼16, daða�1;f Þ ¼ dð0:05=2Þð3;16Þ ¼ 2:59. Because the nis are all equal,

S�yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3:225Þ

5

r
¼ 1:136

Therefore, da=2ða�1;f Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE=n

p
¼ 2:59ð1:136Þ ¼ 2:942. A table (Table 17)

can then be constructed for Dunnett’s comparison of the three treatment
means (�y2, �y3, �y4) with the control (�y1). From these contrasts, we see that, at
a¼ 0.05, only �y3: is signi¢cantly di¡erent from the control group �y1:

Let us now do an example for a one-tail test.We will construct a one-
way Dunnett comparison that uses, again, Table A.13 where daða�1;f Þ ¼
d0:05ð3;16Þ ¼ 2:23.

Computing using the same methods, we will discover, again, that the
only signi¢cant contrast was m3 � m1, so m2 � m1, m3 > m1, and m4 � m1, at
the 0.05 level of con¢dence.

Note: When comparing treatments with a control, the control group
should preferably have a larger sample size, n, than the other a�1 treat-
ments.

The ratio of nc to ni should ideally be

nc
ni
¼ ffiffiffi

a
p

; where a ¼ number of groups tested ð45Þ

TABLE17 Dunnett’sTable

Mean contrast
S¼Significant

NS¼Not significant

j�y2 � �y1j ¼ j102� 100j ¼ 2 < 2:942 NS
j�y3 � �y1j ¼ j105:2� 100j ¼ 5:2 > 2:942 S
j�y4 � �y1j ¼ j98:8� 100j ¼ 1:2 < 2:942 NS
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In our example,
ffiffiffi
4
p ¼ 2, so nc=5¼2, and nc¼10. Hence, 10 replicates

should be run in the control group when 5 are run in the other a�1groups.
Con¢dence intervals can be constructed for the a�1, �yi � �yc groups.

mi � mc ¼ �yi � �yc � da=2;ða�1;f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
for groupswhere ni ¼ nj

or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
ni
þ 1
nj

� �s
for groupswhere ni 6¼ nj :

Using the MiniTab format, the con¢dence intervals appear as in
Table 18. Note that the con¢dence interval on m3 � mc, the one signi¢cant
contrast, does not include zero.

F. Duncan’s New Multiple Range Test

This is a popular procedure for comparing all aða� 1Þ=2 possible pairs of
means. The test can be used for both equal and unequal sample sizes, and
the procedure is quite straightforward.

The a mean values are ¢rst ordered in ascending order, and then the
standard error of the mean is computed for each of the means. For groups
where the sample sizes are equal, Eq. (46) is used.

S�yi ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE
n

r
ð46Þ

TABLE18 MiniTab Output

Dunnett’s intervals for treatmentmeanminus controlmean
Family error rate¼ 0.0500
Individual error rate¼ 0.0196
Critical value¼ 2.59
Control¼ level 1of C1

Level Lower Center Upper ��þ��þ��þ��
þ��

�y2 2 �0.942 2.000 4.942 (��*��)
�y3 3 2.258 5.200 8.142 (��*��)
�y4 4 � 4.142 � 1.200 1.742 (��*��)

170 Chapter 5



If the sample sizes are not equal,n0 must be computed,which is a (total num-
ber of treatments) divided by the sum of the reciprocals of the ni values, and
this replaces n in Eq. (46).The formula for computing the value of n0 is:

n0 ¼ aPa
i¼1

1=ni
� � ð47Þ

In addition, the researcher must obtain range values, raðp;f Þ for p¼ 2,
3, . . . , a,where a¼ signi¢cance level and f¼ number of degrees of freedom,
which is N � a. The range values must then be converted to a set of a � 1
least signi¢cant ranges for p¼ 2, 3, 4, . . . ,a.This is done by calculating:

Rp ¼ ðraðp;f ÞÞS�yi ð48Þ
for p¼ 2, 3, . . . , a, where raðp;f Þ values are found in Table E for a¼ 0.05 and
0.01.Then the observed di¡erences between means are evaluated, beginning
by comparing the largest with the smallest,which is then compared with the
least signi¢cant range value,Rp.

The next step is to determine the di¡erence between the largest and
second smallest and compare it with the range Ra�1. The process is contin-
ued until the di¡erences of all possible a(a�1)=2 pairs of means have been
evaluated. If an observed di¡erence is greater than the corresponding least
signi¢cant range value, the researcher concludes that the mean pairs are dif-
ferent, that is, rejectsH0 at a.

To eliminate any decisional contradictions, no di¡erence between a
pair of means is considered signi¢cant if the twomeans involved lie between
two other means that are not signi¢cantly di¡erent.

Let us compute Duncan’s multiple range test using, again, the data
fromTable 5.

Step1. The �yi values are arranged in ascending order.

Values of �yi
Values of �yi

in ascending Order

�y1 ¼ 100 �y4 ¼ 98:80 MSE¼ 3.225, as before, and
n1 ¼ n2 ¼ n3 ¼ n4 ¼ n5 ¼ 5 Let us set
a ¼ 0:05.

�y2 ¼ 102 �y1 ¼ 100
�y3 ¼ 105:2 �y2 ¼ 102 S�yi ¼

ffiffiffiffiffiffiffiffiffiffi
MSE

n

q
¼

ffiffiffiffiffiffiffiffi
3:225
5

q
¼ 0:803

�y4 ¼ 98:80 �y3 ¼ 105:2
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Step 2. The a�1, Rp values are computed beginning with R2 and
ending with Ra.
The computations ofRp ¼ rað p;f ÞS�yi ,where p ¼ 2; 3; 4 and f ¼ N � a ¼
20� 4 ¼ 16 are
R2 ¼ r0:05ð2;16Þ ¼ 3:0; and 3:0ð0:803Þ ¼ 2:409
R3 ¼ r0:05ð3;16Þ ¼ 3:15; and 3:15ð0:803Þ ¼ 2:530
R4 ¼ r0:05ð4;16Þ ¼ 3:23; and 3:23ð0:803Þ ¼ 2:594
Step 3. The largest versus smallest means are compared with the lar-
gest Rp value. The largest and second smallest mean values are
compared with the second largest Rp value. Finally, the largest versus
the third smallest mean values are compared with the third largest Rp

value.Then the process is repeated,using the second largestmean com-
pared with the smallest mean.

�yi: � �yj:

3 vs: 4 ¼ 105:2� 98:80 ¼ 6:400 > 2:594 ðR4Þ; because �y3 � �y4 > R4,
rejectH0
3 vs: 1 ¼ 105:2� 100 ¼ 5:20 > 2:530 ðR3Þ; because �y3 � �y1 > R3,
rejectH0
3 vs: 2 ¼ 105:2� 102 ¼ 3:20 > 2:409 ðR2Þ; because �y3: � �y2: > R2,
rejectH0
2 vs: 4 ¼ 102� 98:80 ¼ 3:20 > 2:530 ðR3Þ; because �y2: � �y4: > R3,
rejectH0
2 vs: 1 ¼ 102� 100 ¼ 2 < 2:409 ðR2Þ; because �y2: � �y1: < R2,
cannot rejectH0
1 vs: 4 ¼ 100� 98:80 ¼ 1:2 < 2:409 ðR2Þ; because �y1: � �y4: < R2,
cannot rejectH0

Notice that group 3 is signi¢cantly di¡erent from the other groups, and
group 2 is di¡erent from group 4, but not group1.

Please note that Duncan’s multiple range test requires an increasingly
greater di¡erence between mean groups to detect di¡erences as the number
of treatment groups,a, increases.And, it should be noted thatDuncan’smul-
tiple range test and the LSD test will provide identical results.The a set is the
a level for all a(a�1)=2 paired comparisons.

Duncan’s multiple range procedure is quite powerful in that it detects
di¡erences that are di¡erent, given that the a value is not big. This condi-
tion needs to be known if a researcher is performing, say, a screening study
where one must guard against type II error as well as type I error. In this
case, only a few test treatments should be contrasted (a � 4).

In choosing any of these tests of contrast, it is important that one
balance a (type I) and b (type II) error levels. One can do this by
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specifying the a level and computing the power (1� b) of the statistic
used, based on the detectable di¡erence requirements and the s2 esti-
mate. With the two values a and b, one can perform some theoretical
modeling to determine whether the a and b levels are acceptable. If one
loosens a from, say, 0.05 to 0.10, the b level will tighten from, say, 0.25 to
0.20. This procedure can be very useful in designing adequate studies.

V. ADEQUACY OF THE ONE-FACTOR ANOVA

The one-factor, completely randomized ANOVA makes the assumption
that the errors [the actual yij value minus the predicted �yij (eij ¼ yij � �yij)]
are independently and normally distributed with a mean of 0 and an
unknown but constant variance, s2 [NID(0,s2)]. The data gathered are
also expected to be normally distributed and randomly collected. In addi-
tion, as previously discussed, the model requires a completely randomized
method of sampling all N samples.

However, in the ¢eld, the researcher will generally ¢nd the eijs not to
be exactly [NID(0,s2)] but to be approximately so. The use of exploratory
data analysis (EDA) will help the researcher determine whether to use the
one-factor, completely randomized design. If the stem-and-leaf display, the
letter-value display, and the boxplot display show the data to be skewed,
nonlinear, etc., it may be wise to use a nonparametric statistic, such as the
Kruskal^Wallis model, in place of the one-factor, completely randomized
ANOVA.We will discuss nonparametric statistics in Chap. 12.

Yet, use of a nonparametric approach is not always a choice for
the researcher. For example, if one needs more power than a nonpara-
metric test provides, one is essentially forced to use an ANOVA
model. Also, the ANOVA may be chosen because decision makers re-
ceiving the information may understand it better than a nonparametric
statistic.

When one does choose to use the one-factor, completely randomized
ANOVA, it is a good idea to check the model’s adequacy. Adequacy in-
cludes normality, variance equivalence, and residual analysis for random-
ness and outliers.

VI. ASSESSING NORMALITY

Perhaps the easiest way to do this is use a stem-and-leaf display and letter-
value display for each of the i treatment groups’data and their error terms�
that is, the actual yij values, and the error value for each group, yij � �yi ¼ eij .

The most common problem in normality assumptions is a violation of
normality due to extremeor ‘‘wild’’ values (outliers) relative to themain body
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of data. If the outlier value is not an actual reading but an error, it is better
removed, given that it truly is a traceable error. If that cannot be determined,
I ¢nd it useful to perform the analysis both with and without the outlier(s) in
the data. This provides a dual but perhaps more correct world view�one
that is more vague but real.

VII. ASSESSING VARIANCE EQUALITY

Variance equality is known as homoscedasticity, and nonequivalent var-
iances are heteroscedastic. A number of tests are used to evaluate variance
equality.One is to compare the variance and=or standard deviations of each
of the a groups.The boxplot and the letter-value display are also applicable.

A. Bartlett’s Test for Assessing Equality of Variances

One of the better and most popular tests is Bartlett’s test for variance equal-
ity. It involves calculating a statistic that approximates a chi square (w2) dis-
tribution with a�1degrees of freedom.The hypothesis is:

H0: s21 ¼ s22 ¼ 	 	 	 s2a
HA: at least one of the variances is different from the others

The test statistic is:

w2c ¼ 2:3026 q=c

where

q ¼ ðN � aÞ log10 S2
p �

Xa
i¼1
ðni � 1Þ log10 S2

i ð49Þ

c ¼ 1þ 1
3ða� 1Þ

Xa
i¼1
ðni � 1Þ�1 � ðN � aÞ�1

 !
ð50Þ

S2
p ¼

Pa
iþ1
ðni � 1ÞS2

i

N � a
; and S2

i ¼ sample variance for the ith group:

ð51Þ
If the sample variances of the a treatments are signi¢cantly di¡erent

from one another, the q value will become large, also making w2c large.H0 is
rejected when w2c > w2aða�1Þ. The w

2
aða�1Þ value is found in Table A.10.
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It is important to recognize that Barlett’s test is sensitive to nonnormal
samples and should not be used if normality is doubtful.Hence, the research-
er should perform EDA (stem-leaf and letter-value displays) to ensure that
the data are approximately normal.

Using the data fromTable 5, let us demonstrate the procedure.

Step1. First, the sample variance for each data group is calculated.

S2 ¼
Pa
i¼1
ðy � �yÞ2

n� 1

and the variances for the four sets of data, S2
1, S

2
2, S

2
3, and S2

4 are 0.5,

7.5, 2.2, and 2.7, respectively, as calculated from
Si¼
Pn
i¼1
ð yi��yÞ2

n�1
Step 2. Next, compute, S2

p ,q, and c:

S2
p ¼

4ð0:5Þ þ 4ð7:5Þ þ 4ð2:2Þ þ 4ð2:7Þ
16

¼ 3:225

q ¼ 16ðlog10 3:225Þ � ½4 log10 0:5þ 4 log10 7:5

þ 4 log10 2:2þ 4 log10 2:7�

q ¼ 2:745

c ¼ 1þ 1
3ð3Þ ½ð4

�1 � 16�1Þ þ ð4�1 � 16�1Þ þ ð4�1 � 16�1Þ�

þð4�1 � 16�1Þ�

c ¼ 1þ 1
9
½ð0:25� 0:063Þ þ ð0:25� 0:063Þ

þ ð0:25� 0:063Þ þ ð0:25� 0:063Þ�

c ¼ 1:083
Step 3. Now calculate the Chi Square statistic and ¢nd w2Tða;a�1Þ.

w2c ¼ 2:3026 2:745
1:083

� � ¼ 5:836

w2Tð0:05;3Þ ¼ 9:49 fromTable J, the Chi Square table

Because 5.836 < 9.49, one cannot rejectH0. It cannot be concluded that the
variances are di¡erent at a¼ 0.05.
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B. Hartley Test For Assessing Equality of Variances

Thismethod assumes that the values used in the study are independently dis-
tributed, of equal sample size, and that the error terms are random, or nor-
mally distributed [26]. The test is designed to detect the most extreme
di¡erences (largest vs. smallest variances), that is, if extremely large (signi¢-
cant) di¡erences exist between the largest and the smallest group variances.
Let us demonstrate the procedure using the data from Table 5. Let us set
a¼ 0.05,a¼ 4, and n�1¼4.

Step1. State the hypothesis.
H0: s21 ¼ s22 ¼ s23 ¼ s24 (the variances are equal)
HA: the above is not true (at least one variance di¡ers from the others)
Step 2. Divide largest variance by smallest variance. Recall that the

variances are S2
1 ¼ 0:5; S2

2 ¼ 7:5; S2
3 ¼ 2:2, and S2

4 ¼ 2:7:

Hc ¼MAXS2
i

MIN S2
i
¼ 7:5

0:5
¼ 15:0

Step 3. Decision rule:
IfHc � H1�aðr; df Þ; acceptH0

Hc > H1�aðr;df Þ; rejectH0

Using theHartley method,we look atTable N.The table can be used for
a¼ 0.05 and 0.01, but in terms of 1� a, r¼a and df¼ n�1; so H0.95(4, 4)¼
20.60.

Because HC < HT, accept H0; the four variances are equivalent at the
a¼ 0.05 level.

In practice, the Hartley test is exceptionally easy to compute and has
served this researcher well as a decision-making tool, given that the sample
sizes, n, are equal and normality can be assured. If normality is in question,
the Hartley test becomes overly sensitive.

VIII. RESIDUAL ANALYSIS

In addition to checking normality and equality of variances, residual analy-
sis should be conducted. In residual analysis, residuals are evaluated for
trends, curvature, extreme points, lateral wedge shapes, or any other parti-
cular pattern.

A. Plot of Residuals in Time Sequence

It is important that residuals be plotted against the time order of data collec-
tion. This will be even more important in the two-factor ANOVA design.
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However, suppose the researcher does not completely randomize the data
collection (a requirement of the model) but instead collects the data in a pre-
set way. This occurs all the time in practice. Suppose, for example, a
researcher is evaluating the e⁄cacy of protein sequencing at four separate
temperatures: 60,70, 80, and 90�C.More than likely, the researcher will col-
lect the data at 60, then at 70, then at 80, and then at 90�C or, if not, in some
ordered, temperature-related sequence. It is very doubtful that each sample
will be selected in a completely randomized manner, going from 90�C to
60�C, etc. A time sequence plot is important because, for example, by the
time the researcher evaluates the last sample group, the protein may have
changeddue to‘‘¢xing.’’ This time-related problemmust be detected to avoid

FIGURE 6 Wedge-shaped residual plots.
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concluding inadvertently that the fourth run group is di¡erent from the
others because of the temperature when actually it was ‘‘aging.’’ This cannot
be evaluated directly because the temperature e¡ect and the ¢xing e¡ects are
confounded�mixed up. In this case, the experiment (treatments) ideally
should be run two di¡erent times, the second time in a reverse of the original.
For example, if one randomly chose the run order, 80, 60, 90, and 70, it would
be wise to run one half of the replicates in that order, then the remainder in
run order 70, 90, 60, and 80, and compare the same temperature groups to
one another to ensure no change.

Time series plots are very useful for detecting drift in the variance.The
most commonobservation is that the residuals takeon awedge shape (Fig.6).

The tests for equivalence of variance would more than likely pick this
up, but one will not realize a drift condition unless the eij values are plotted
against time.

B. Plot of Residuals Versus Fitted Value

This is perhaps the most important residual graph.Given that the statistical
model is correct and the assumptions are satis¢ed, the graph should be struc-

TABLE19 TwentyValues fromTable 5

n Level yij �yi eij ¼ yij � �yi:

1 1 100 100.0 0.0
2 1 100 100.0 0.0
3 1 99 100.0 � 1.0
4 1 101 100.0 1.0
5 1 100 100.0 0.0
6 2 101 102.0 � 1.0
7 2 104 102.0 2.0
8 2 98 102.0 � 4.0
9 2 105 102.0 3.0
10 2 102 102.0 0.0
11 3 107 105.2 1.8
12 3 103 105.2 � 2.2
13 3 105 105.2 � 0.2
14 3 105 105.2 � 0.2
15 3 106 105.2 0.8
16 4 100 98.8 1.2
17 4 96 98.8 � 2.8
18 4 99 98.8 0.2
19 4 100 98.8 1.2
20 4 99 98.8 0.2
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tureless, with the central value located at 0. The graphic is constructed by
plotting the error terms against the ¢tted values. Recall that error terms (eij)
equal the actual minus the ¢tted values. The ¢tted value in each case is the
sample group mean, �yi : Therefore, eij ¼ yij � �yi: Table 19 displays the 20
values fromTable 5.

Figure 7 provides a plot of the residuals versus the ¢tted
values.

Notice that values for groups 1 and 2 are distributed much di¡er-
ently, which is to be expected for a small sample size such as n¼ 5. It is
important that the researcher feel this variability intuitively as well as ver-
ify it visually. Because the variability may be of concern, a test is con-
ducted to ensure equality of variance (Bartlett’s or Hartley’s, which we
already did). It is clear, by this time, that much of the success in perform-
ing statistical analyses lies in the researcher’s ability to deal with ambigu-
ity�for in statistics, equivalence is always in terms of degrees, not
absolute numbers.

FIGURE 7 Residual versus fitted values.
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C. Exploratory Data Analysis (EDA)

The next step in residual analysis is to perform exploratory data analysis
tests on the residuals, particularly the stem-and-leaf display and the letter-
value display, although the boxplot with notchesmay also be useful. Figure 8
provides all three.

The stem-and-leaf display is approximately normal,with the � 4 value
being slightly extreme. The letter-value display, at the midrange column,
depicts the values trending to the lower end,meaning a slight skew to the left.
Notice that theasterisk in theboxplotdenotes anextremevalue,which,again,
is � 4, caused by 98, the eighth value inTable18,which had a predicted value
of 102. This value probably contributes more to the skewedness of the data
thananyother.It is an interesting value in that it is extremebyonewholenum-
ber. Is this normal; can Idetermine its cause? It is something tobe concerned
about, a question the researcher must address, not somuch from a statistical
perspective but based on knowledge in one’s speci¢c ¢eld of research. If the
data were more seriously nonnormal, the researcher could perform a var-
iance stabilizing transformation, such as converting the values to ln or log10
scale, etc., processes discussed earlier in the EDA section (see Chap. 3).

D. Outliers

A common problem in data analysis is outlier values, which are very
extreme values. They are so extreme that they just do not seem to ¢t the
rest of the data set, particularly when evaluating residuals. We discussed
this problem in Chap. 3. Once an outlier is discovered, the researcher
must evaluate it closely. Is it a ‘‘typo,’’ a measurement error, or a calcula-
tion error? Certainly, some are. But others cannot be determined one way
or the other. In cases like this, it is often useful to perform the analysis
with and without the outliers in the data sets. A very useful and easy com-
putation toward this end is to standardize the residuals:

Sr ¼ eijffiffiffiffiffiffiffiffiffiffiffi
MSE
p ð52Þ

This can be accomplished for individual valueswith a pen and paper or
for the entire data set using a computer. For example, for value 8 inTable 19,
e23 ¼ �4, and recallingMSE ¼ 3.225 (Table 6).

Sr ¼ �4ffiffiffiffiffiffiffiffiffiffiffiffi
3:225
p ¼ �2:227

Recall that, in the normal distribution, 68% of the data fall within �1
standard deviation, 95% within �2 standard deviations, and 99% within
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�3 standard deviations. A deviation of greater than 3 and, certainly, any
of 4 standard deviations should be considered a potential outlier. The value
� 2.227, as in this case, is extreme but is not really an outlier.

This author prefers to perform the outlier calculations with pen and
paper. All too often,when the Sr values are a part of yet one more computer
printout, it is just too easy to gloss over the data.

IX. RANDOM-EFFECTS (TYPE II) ANOVA

Up to this point,we have been discussing the ¢xed-e¡ects ANOVA.Whether
a model is ¢xed-e¡ects or random-e¡ects is determined when the treatment
groups are selected. Recall that in our study at the beginning of this chapter,
we selected fourmedia suppliers.Hadwe selected themedia suppliers at ran-
dom, the model would have been a random-e¡ects model.

It is important that the researcher clearly understand the di¡erence be-
tween the ¢xed- and random-e¡ectsmodels.For the ¢xed-e¡ectsmodel, one
can discuss the results of the experiment and its interpretation only in terms
of and limited to the ¢xed treatment levels.For example, if Iwant to compare
products based on ¢ve di¡erent antimicrobial compounds�chlorhexi-
dine gluconate (CHG), povidone iodine (PVP), parachlorometaxylenol
(PCMX), isopropyl alcohol (IPA), and triclosan�to determine which of
the compounds is the best in terms of immediate kill, I must select each of
the ¢ve representative compounds randomly from all available formulations
within each compound group in order to apply a random-e¡ectsmodel. I can
then state (generalize) how these compounds�not brands�compare with
each other in terms of immediate antimicrobial properties.That is, I can in-
fer general statements from speci¢c evaluations.

The random-e¡ects model is the same as the ¢xed-e¡ects one, as a lin-
ear statistical model.

yij ¼ mþ Ai þ Eij ; where i ¼ 1; 2; . . . ; n ð53Þ

However, the interpretation is di¡erent, for in the random-e¡ects model,
both Ai and Eij are random variables.

The variance component of each value, Vyij , consists of both the treat-
ment variance portion, s2A, and the error variance, s2, portion.

Vyij ¼ s2A þ s2

Both s2A and s2 are NID(0, s2). In addition, Ai and Eij are independent.
The sum of squares, SSTOTAL ¼ SSTREATMENT + SSERROR, continues to
hold for the random-e¡ects model. However, testing about the individual

182 Chapter 5



treatments is not useful.What is evaluated is that the treatment variances are
equal. That is, the hypothesis-testing for random-e¡ects models does not
evaluate means but evaluates variances. If s2A ¼ 0, all treatments are the
same and have the same variance. Hence, H0: s2A ¼ 0, and HA : s2A 6¼ 0 or
s2A > 0.

The rest of the ANOVA evaluation for the completely randomized de-
sign is identical to that of the ¢xed-e¡ects model. As before,whenH0 is true
ðs2A ¼ 0Þ, both MSERROR and MSTREATMENTS are unbiased estimators of s2

because the treatment e¡ect variance is 0. That is, E(MSTREATMENTS) ¼
s2 and E (MSERROR) ¼ s2. But when the HA hypothesis is true,
E(MSTREATMENTS) is composed of both the treatment and error variance,
ns2A þ s2, and E(MSERROR) ¼ s2.

The variance components, however, can be estimated as

ŝ2 ¼MSE and ŝ2A ¼
MSTREATMENTS �MSERROR

n

When the sample sizes are not equal,n is replaced by n*,where

n� ¼ 1
a� 1

Xa
i¼1

ni �
Pa
i¼1

n2iPa
i¼1

ni

2664
3775

Using data from Table 6, where n ¼ 5, MSE ¼ 3.225, and
MSTREATMENT ¼ 39.133,

ŝ2 ¼ 3:225; and ŝ2A ¼
39:133� 3:225

5
¼ 7:182

The treatment variance e¡ect is 7.182, and the error variance e¡ect is 3.225.
Note that EðMSTREATMENTÞ ¼ ns2A þ s2 ¼ 5� 7:182þ 3:225 ¼ 39:135:

The random-e¡ects model does not have the requirement of normality
because it yields estimates of s2 þ s2A,which provides the best minimum var-
iance by means of an unbiased quadratic equation.

The error variance can be estimated by:

ðN � aÞMSE
w2a=2;N�a

� s2 � ðN � aÞMSE
w2ð1�a=2;N�aÞ

ð54Þ

where w2 is the Chi-square value at a=2 andN � a degrees of freedom.
The variance con¢dence interval for the treatment variance is more

di⁄cult,well beyond the scope of this book.
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6

Oneand Two Restrictions on Randomization

I. RANDOMIZED COMPLETE BLOCK DESIGN: ONE
RESTRICTION ON RANDOMIZATION

A. Fixed-Effects Model

The randomized complete block design is di¡erent froma completely rando-
mized design. Instead of randomly selecting each sample unit from all the N
observations, randomization is conducted within the speci¢c test group
samples.This design is very useful when experimental units can be grouped
meaningfully. Such a grouping is designated a block. The objective of block-
ing is to have the within-block units as uniform as possible.This is not a new
concept, for we encountered it in pairing in Chap. 4 for the matched paired
t-tests.Variability among the sample units in di¡erent blocks will be greater,
on the average, than variability among the units in the sameblock. Ideally, the
variability among experimental units is controlled so that the variation
among blocks is maximized and the variability within minimized.

The randomized complete block design is the ANOVA version of the
paired two-sample t-test.For example, in skin sensitization studies, subjects
may be recruited into a study in which 5 to 10 di¡erent products are applied
on the same person. In this case, each person is a block, and each treatment
product factor is a separate treatment group. Blocks can also be established
in time and space.In a sequential study,measurements conducted onday one
could be block 1, those on day two, block 2, and so on. In addition, if an
experiment is on pieces of material, the pieces of material could be blocks.
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The statistical model is:

yij ¼ mþ Ai þ Bj þ Eij ð1Þ
where

m¼ overall mean
i¼ treatments1, 2, 3, . . .a
j¼blocks1, 2, 3, . . .b

Ai¼ the ith treatment e¡ect
Bj¼ the jth block e¡ect
Eij¼ the random error component,which is NID(0, s2)

Recall from Chap. 2 the discussion on randomization and blocking.
Randomization of experimental units is conducted so that unknown and un-
controlled variability is not injected into the study in a biasing way, causing a
researcher to think that a treatment e¡ect is due to the treatment when really
it is due to a bias in the study design.

Blocking is a technique used to control variability by creating indivi-
dual blocks of data that are as homogeneous as possible. Examples of block-
ing include subjects (blocks) receiving multiple treatments that do not
interact; an experiment using humans in blocks based on same weight class
or liver function rates; blocks of animals based on same sex,weight, class, or
litter; brands of cars (as blocks) when evaluating four di¡erent tire brands; a
chemical reaction rate experiment involving four catalyst treatments using
six di¡erent batches of chemical ingredients (blocks); or measuring the dur-
ability of six di¡erent paints (treatments) on each of ¢ve di¡erent wood cou-
pons (blocks).

During the course of the experiment, all treatments or units in a
block must be treated as uniformly as possible in all aspects other than
the treatment. Any changes should be done throughout a complete block,
not just to an individual component within a block. For example, if the yij
values are known to be in£uenced by, say, the performance of a particular
technician, the same technician should be used throughout the study, or
at least for each block. Multiple technicians performing the same work
should not be assigned a speci¢c treatment in each block. Each techni-
cian should, instead, perform the experiment in each block or randomly
assigned speci¢c units within each block. In conclusion, what cannot be
controlled should be randomized and what can be controlled should be
blocked.

Note that Eq. (1) is additive; that is, if the ¢rst block e¡ect increases the
expected value by two units or points (B1¼2) and the treatment e¡ect for the
¢rst treatment (A1) is 4, this additive model assumes that the treatment e¡ect
is always 4 units and the block e¡ect is always 2.
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The schematic for the evaluation is similar to the completely rando-
mized design, except that a parenthetical R, (R), is used to indicate that ran-
domization was conducted only within each block. Suppose there are three
treatments using four blocks. The schematic is (R) A1O1, (R) A2O2, and (R)
A3O3,where

(R) designates randomization within each of the four blocks
Ai¼ treatment i of a (independent variable)
Oj¼measured e¡ect of treatment j (dependent variable)

Figure1provides a representation of the blocked study.
The treatment and block e¡ects are de¢ned as deviations from m, soXa

i¼1
Ai ¼ 0 and

Xb
j¼1

Bj ¼ 0 ð2Þ

As in the completely randomized design, the researcher is interested in test-
ing the equality of the treatment means.

H0 : m1¼ m2¼ 	 	 	mn
HA: at least one mean is di¡erent from another

The design is computed in the same way whether the model is a ¢xed-e¡ects
(type I), random-e¡ects (type II), or mixed (blocks random=¢xed, treat-
ments random=¢xed) model. However, the notation is slightly expanded to
account for another factor, blocks designated by b.

yi.¼ the total summation of all observations in the ith treatment
y.j¼ the total summation of all observations in the jth block
N¼ab¼ total number of observations

yi: ¼
Xb
j¼1

yij for i ¼ 1; 2; . . . ; a

and

FIGURE 1 Blocked design.
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y:j ¼
Xa
i¼1

yij for j ¼ 1; 2; . . . ; b ð3Þ

Notice that y:: ¼Pa
i¼1
Pb

j¼1 yij ¼
Pa

i¼1 �yi : ¼
Pb

j¼1 y:j , which is to be
expected.

If one adds the treatment totals over the b blocks, or if one adds the
block totals over the a treatments, the net result is y..

In addition, �yi: ¼ ðyi:=bÞ; �y:j ¼ ðy:j=aÞ and �y:: ¼ ðy::=N Þ, and the total
sum of squares for the model yij ¼ mþ Ai þ Bj þ Eij is:Xa

i¼1

Xb
j¼1
ðyij � �y::Þ2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl} ¼ b

Xa
i¼1
ð�yi� �y::Þ2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} þ a

Xb
j¼1
ð�y:j� �y::Þ2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl} þ

Xa
i¼1

Xb
j¼1
ðyij � �yi:� �y:j � �y::Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

The difference of
each observation
from the grand
mean is composed
of ...

the treatment
effect A

the block effect
B

the random error component

which can be expressed in sum-of-square terms as:

SSTOTAL ¼ SSTREATMENT þ SSBLOCK þ SSERROR

There are N � 1 degrees of freedom for SSTOTAL, as before, and there
are a� 1 degrees of freedom for SSTREATMENT , b� 1 degrees of freedom for
the SSBLOCK component, and (a� 1Þðb� 1Þ degrees of freedom for the
SSERROR.

In addition, the expected mean squares are as follows:

EðMSTREATMENTÞ ¼
s2|{z}

random
error

þ

b
Pa
i¼1

A2
i:

a� 1|fflfflfflffl{zfflfflfflffl}
treatment
effect

ð4Þ

EðMSBLOCKSÞ ¼
s2|{z}

random
error

þ

a
Pb
j¼1

B2
:j

b� 1|fflfflfflffl{zfflfflfflffl}
block
effect

ð5Þ

EðMSERRORÞ ¼ s2 ð6Þ

Hence, if the block e¡ect is 0 and the treatment e¡ect is 0, all three EMS
values are estimated by s2.
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The Fcalculated value for the treatment e¡ect is:

Fc ¼MSTREATMENT

MSERROR
ð7Þ

The Ftabled value is: Ftða;a�1;ða�1Þðb�1ÞÞ.
If Fc > Ft, the H0 hypothesis is rejected at the selected a value. The

block e¡ect is generally not tested. That is, H0: Bj ¼ 0 and HA: Bj 6¼ 0.
The block e¡ect is assumed signi¢cant, or one would not undertake the
blocking process.

Recall that the block e¡ect limits randomization to being within each
block, a restricted randomization.Box,Hunter, andHunter [29] suggest that
the block e¡ect be evaluated asMSB=MSE, if the error terms are NID(0,s2).
Anderson and McClean [30], on the other hand, argue that the restricted
randomization prevents the block e¡ect test from being meaningful.

In practice, this author usually does not test the signi¢cance of the
block e¡ect but uses a suggestion of Montgomery [28] that, if the ratio
MSB=MSE is signi¢cantly larger than 1, as anticipated, the block e¡ect
removes assignable error. However, if the ratio is near 1, the block e¡ect
is negligible. This should cause the experimenter to rethink the design,
for if the block e¡ect is near zero, one is wasting valuable degrees of
freedom and reducing the detectability of the treatment e¡ect. Perhaps
the experimenter, in the next set of studies, would be well advised to ran-
domize the order of observations completely and not block them. It is
not wise to perform a completely randomized one-factor ANOVA on
data collected with a restriction on the randomization, as in the rando-
mized complete block design. Also, when the variability among experi-
mental units within each block is large, a large MSE term results.
Hence, it is critical that the units within each block are uniform to
provide the greatest power.

The ANOVA table for the randomized complete block design is pre-
sented inTable1.

In practice, this ANOVAmodel computation is more easily performed
using a software package, such as MiniTab, SAS, or SPSSX. However, we
will perform it using pencil and paper. The computational formulae
necessary are:

SSTOTAL ¼
Xa
i¼1

Xb
j¼1

y2ij �
y2::
N

ð8Þ

SSTREATMENTS ¼ 1
b

Xa
i¼1

y2i: �
y2::
N

ð9Þ
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SSBLOCKS ¼ 1
a

Xb
j¼1

y2:j �
y2::
N

ð10Þ

The error, as before, is found by subtraction.

SSTOTAL � SSTREATMENT � SSBLOCK ¼ SSERROR

Let us now work an example.
Example 1. A researcher studying nutritional formulations in mice

blocked test animals per litter and evaluated three test formulations, A, B,
and C. At the end of 3 months, after weaning, the mice were weighed. The
researcher wants to know whether the formulations a¡ected the mouse
weights di¡erently.

In practice, before any analysis is conducted, exploratory data analysis
should be performed as described in Chap. 3.

First, let us observe the basic study design:

(R) A1O1

(R) A2O2

(R) A3O3

Notice that (R) means there is a restriction on randomization. In this
case, randomization was performed only among the three treatments, per

Block

Formulation 1 2 3 4 5

A 20 20 19 24 19
B 23 21 22 26 20
C 18 17 19 21 18

TABLE1 Completely Randomized Block ANOVA

Source of
variance

Sumof
squares

Degrees of
freedom Mean square FC

Treatment SSTREATMENT a�1 SSTREATMENT
a�1

MSTREATMENT
MSERROR

Blocks SSBLOCK b�1 SSBLOCK
b�1

Error SSERROR ða� 1Þðb� 1Þ SSERROR
ða�1Þðb�1Þ

Total SSTOTAL N� 1
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each of the ¢ve blocks. Treatment order within each block was randomized
(Fig. 2).

The three mice within each litter were assigned randomly one of the
three rations.The mice in each litter were tagged1, 2, and 3.

Also notice that for each of the Ai treatments, there is one Oi weight
measurement.

Let us now perform the problem computation using the six-step proce-
dure:

Step1. Formulate hypothesis:
H0: mA ¼ mB ¼ mC There is no di¡erence inweights in mice after 3

months of receiving the three di¡erent rations.
HA: At least one of the rations produced a di¡erent weight gain

than the others.
Step 2. The a level is set at 0.05, and the sample size is ¢ve per treat-

ment.
Step 3. A randomized block design will be used in this evaluation.

Recall that in this blocking procedure we assume that it will make a
di¡erence, by reducing the degree of variability.

Step 4. Decision rule: If Fc > Ftabled, reject H0, that the rations
produced comparable weight gain. From Table A.3 (F-dis-
tribution), FT ¼ F0:05;a�1;ða�1Þðb�1Þ ¼ Fð0:05;2;8Þ ¼ 4:46

Step 5. Calculate the ANOVA parameters from ANOVA Table of
Raw data (Table 2)

SSTREATMENTS ¼ 1
b

X3
i¼1

y2i: �
y2::
N
¼ 1

5
ð1022 þ 1122 þ 932Þ � ð307Þ

2

15

¼ 1
5
ð31; 597Þ � ð307Þ

2

15
¼ 6319:4� 6283:267 ¼ 36:133

FIGURE 2 Randomized treatment order within each block.
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As the sum of square values are computed, they are arranged in an
ANOVATable for clarity (Table 3).

SSTOTAL¼
X3
i¼1

X5
j¼1

y2ij�
y2::
N
¼ð202þ202þ192þ	 	 	þ212þ182Þ�ð307Þ

2

15

¼ 6;367�ð307Þ
2

15
¼ 6;367�6;283:267¼ 83:733

SSBLOCKS ¼ 1
a

X5
j¼1

y2:j �
y2::
N
¼ 1

3
ð612 þ 582 þ 602 þ 712 þ 572Þ � ð307Þ

2

15

¼ 1
3
ð18; 975Þ � ð307Þ

2

15
¼ 6325� 6283:267 ¼ 41:733

SSE ¼ SSTOTAL � SSTREATMENT � SSBLOCK

¼ 83:733� 36:133� 41:733 ¼ 5:867

Step 6. Decision:

FC ¼MSTREATMENT

MSERROR
¼ 18:067

0:733
¼ 24:648

Because Fcalculatedð24:534Þ > Ftabledð4:46Þ, reject H0. At least one for-
mulation di¡ers from the other two at a¼ 0.05.

Also, although the experimenter did not to test the block e¡ect, she or
he can intuitively see that the ratio, 10.433=0.736¼14.175, is considerably
greater than 1.This points to the bene¢t of using a randomized block design
in that the error term is reduced considerably by blocking.

TABLE 2 ANOVATable (Rawdata)

Block

Formulation Litter 1 Litter 2 Litter 3 Litter 4 Litter 5 yi:

A 20 20 19 24 19 102
B 23 21 22 26 20 112
C 18 17 19 21 18 93

y:j 61 58 60 71 57 307 ¼ y::
a¼ 3 N ¼ ab ¼ 15
b¼ 5 a¼ 0.05
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Let us now review a computer printout of this ANOVA,usingMiniTab
(Table 4). Note that the FC value is not calculated and that the experimenter
must do that. So, 18.067=0.733¼24.648 is the Fcalculated value.

MiniTab also provides an option for 95%con¢dence intervals on the mi
treatment means, using the formula:

�yi: � ta=2;ða�1Þðb�1Þ

ffiffiffiffiffiffiffiffiffiffiffi
MSE
b

r
ð11Þ

See Fig. 3.

B. Adequacy of Fixed-Effects Model

Exploratory data analysis (EDA) procedures should be conducted prior to
performing the six-step ANOVA procedure. These include stem-and-leaf
displays, letter-value displays, and boxplots to check for the normality of
each sample yi: group, in terms of skewed data, multimodal data, and
extreme values.

The assumption of equal variances between the test groups must be
evaluated, as it was in Chap. 5. Following that, several residual plots are

TABLE 4 MiniTab ANOVA

Source DF SS MS

Treatments 2 36.133 18.067
Blocks 4 41.733 10.433
Error 8 5.867 0.733
Total 14 83.733

TABLE 3 ANOVATable

Source of
variance

Sumof
squares

Degrees of
freedom

Mean
square FC

Treatment 36.133 2 18.067 24.648
Blocks 41.733 4 10.433
Error 5.867 8 0.733
Total 83.733 14

SSE ¼ SSTOTAL � SSTREATMENT � SSBLOCKS; 83:733� 36:133� 41:733 ¼ 5:867
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useful.Table 5 provides a MiniTab computer printout of the actual data, the
residuals, and predicted or ¢tted values.

Figure 4 presents the residual data plotted against the three treat-
ments. Nothing unusual is noted, and all the residual values appear to be
distributed randomly about 0. In Fig. 5, plotting of the residuals against the
blocks also shows the data to be centered randomly about 0. In Fig. 6, resi-
duals plotted against the predicted (¢tted) values also appear to be distrib-
uted randomly about 0. If interaction between the treatments and blocks
was present, the residual versus ¢tted values would appear nonrandom.

FIGURE 3 Confidence intervals.

TABLE 5 MiniTab Printout of Data

Row yij Treatment Block eij
ŷij ¼ predicted

value of yij

1 20 1 1 �0.266666 20.2667
2 20 1 2 0.733334 19.2667
3 19 1 3 �0.933332 19.9333
4 24 1 4 0.400000 23.6000
5 19 1 5 0.066668 18.9333
6 23 2 1 0.733334 22.2667
7 21 2 2 �0.266666 21.2667
8 22 2 3 0.066668 21.9333
9 26 2 4 0.400000 25.6000
10 20 2 5 �0.933332 20.9333
11 18 3 1 �0.466665 18.4667
12 17 3 2 �0.466667 17.4667
13 19 3 3 0.866667 18.1333
14 21 3 4 �0.799999 21.8000
15 18 3 5 0.866667 17.3333

yij ¼ actual value and ŷij ¼ predicted value:
ŷij ¼ �yi: þ �y:j � �y::; and eij ¼ yij � ŷij
Example for y11 : ŷ11 ¼ 20:333þ 20:400� 20:467 ¼ 20:266 and e11 ¼ 20� 20:266 ¼ �0:266.
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That is, perhaps the negative residuals would occur with high or low ŷij va-
lues and the reverse with positive residual values.This has not occurred with
these data.

It is also a good idea to run EDA tests (stem-and-leaf displays, letter-
value displays, and boxplots) to get a di¡erent perspective on the residuals.
Table 6 is a table of the data in stem-and-leaf format.Table 7 displays the re-
sidual values in letter-value format. Figure 7 provides the data in a boxplot
format with notched display.

The data on the stem-and-leaf display (Table 6) portray a random=£at
distribution with a slight, but not signi¢cant, piling of the data at the lower

FIGURE 4 Residuals versus treatments.

FIGURE 5 Residuals versus blocks.
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value end. This is supported by the letter-value display, where a very slight
skew to the lower portion of the data is noted. The boxplot provides a ¢nal
view of the data, displaying nothing unusual. There is nothing to be con-
cerned with about the data.

C. Efficiency of the Randomized Block Design

Generally, the randomized block design is used in order to reduce the error
term value by reducing inherent variability that cannot be traced to the
treatment e¡ect. The variability is the sum of random error and innate
di¡erences between the experimental units when no treatment is applied.
This variability can often be reduced by blocking, but not always. And
if blocking does not signi¢cantly reduce the error term’s magnitude, it is

FIGURE 6 Residuals versus fitted.

TABLE6 Stem-and-Leaf Display (Leaf Unit¼ 0.10)

3 �0 998
3 �0
5 �0 44
7 �0 22
7 �0
(2) 0 00
6 0
6 0 44
4 0 77
2 0 88
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counterproductive because of a signi¢cant loss of degrees of freedom
½ða� 1Þðb� 1Þ� as opposed to N � a. It is usually worthwhile to compute the
relative e⁄ciency of the randomized block design versus the completely
randomized design.That relative e⁄ciency equation is:

R ¼ ðdfCB þ 1ÞðdfCR þ 3Þ
ðdfCB þ 3ÞðdfCR þ 1Þ

s2
CR

s2
CB

� �
ð12Þ

where dfCB¼ degrees of freedom for the complete block design for
MSERROR
dfCR ¼ degrees of freedom for the randomized block design for
MSERROR
s2
CB¼MSERROR term for the complete block of design

s2
CR ¼MSERROR term for the completely randomized design

However, the computation for s2
CRwas not done, for the model used

was a complete block design. To compute the data via a completely rando-
mized design, ignoring the block structure,will not work. Instead, it is better

TABLE 7 Letter-Value Display

Depth Lower Upper Mid Spread

N 15
M 8.0 0.067 0.067
H 4.5 �0.467 0.567 0.050 1.033
E 2.5 �0.867 0.800 �0.033 1.667
D 1.5 �0.933 0.867 �0.033 1.800

1 �0.933 0.867 �0.033 1.800

FIGURE 7 Boxplot with notches.
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to use an estimate of s2
CR, applying the Cochran^Cox method to calculate

ŝ2
CR [9,26].

ŝ2
CR ¼

ðb� 1ÞMSBLOCKS þ bða� 1ÞMSERROR

ab� 1
ð13Þ

Let us perform this comparison using the data in Example 1 (Table 2).
Recall that b ¼ 5, a ¼ 3, MSE ¼ 0:733 ¼ s2

CB, and MSBLOCKS ¼ 10:433:
Therefore:

ŝ2
CR ¼

ð5� 1Þ10:433þ 5ð3� 1Þ0:733
ð15� 1Þ ¼ 3:504

R ¼ ðdfCB þ 1ÞðdfCR þ 3Þ
ðdfCB þ 3ÞðdfCR þ 1Þ

ŝ2
CR

s2
CB

 !
where:

dfCB ¼ ða� 1Þðb� 1Þ ¼ ð3� 1Þð5� 1Þ ¼ 8

dfCR ¼ N � a ¼ ða 	 bÞ � a ¼ ð3 	 5Þ � 3 ¼ 12

ŝ2
CR ¼ 3:504

s2
CB ¼ 0:733

R ¼ ð8þ 1Þð12þ 3Þ
ð8þ 3Þð12þ 1Þ

3:504
0:733

� �
¼ 4:513

An R value of 4.513 means the complete block design was about 4.5 times
more e⁄cient than the completely randomized design would have been,
which is very advantageous for the researcher.

In this researcher’s experience, rarely does someone who works in the
¢eld block an experiment and ¢nd it ine⁄cient compared with a completely
randomized design. Therefore, whenever feasible, it is strongly recom-
mended to block. The vast majority of studies are not funded su⁄ciently
not to take advantage of the reduction in variability, which increases the
power of the statistic, thereby allowing reduced sample size (blocks, in this
case). In addition, the coe⁄cient of determination, R2, can be calculated
to provide a direct estimate of the amount of variability in the data
explained by both the treatment and block e¡ects.

R2 ¼ SSTREATMENT þ SSBLOCK

SSTOTAL
¼ 36:133þ 41:733

83:733
¼ 0:930

198 Chapter 6



Thus, about 93% of the total variability in the data is explained by the
treatment and block e¡ects, indicating that themodel provides a very good ¢t
to the data.

D. Multiple Comparisons

As with the completely randomized design, to know that a di¡erence exists
in at least one group is not enough.The researcher needs to know which one
or ones di¡er.With the ¢xed-e¡ects model, the interest is in the treatment
means, mi:. As noted previously, the blocks are not evaluated.

The comparisons used in the completely randomized design (Chap. 5)
can be used in evaluating the randomized complete block design, with sev-
eral minor adjustments:

1. Substitute b (blocks) in place of n, as used in the completely rando-
mized design.

2. The number of degrees of freedom for the error term is not as in the
completely randomized designN � a but is ða� 1Þðb� 1Þ.

Also, note that the individual con¢dence intervals for each treatment
mean can be calculated from:

�yi	 � ta=2;ða�1Þðb�1Þ

ffiffiffiffiffiffiffiffiffiffiffi
MSE
b

r
ð14Þ

and the di¡erence between twomeans, similarly, can be calculated:

�yi	 � �yj	 � ta=2;ða�1Þðb�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

b

r
ð15Þ

Everything else is the same. It is important that the researcher return to
Chap. 5 to review the multiple comparisons (a priori and a posteriori).

Let us perform theTukey test on the data set in Example 1 (Table 2).
Recall that

Ta ¼ qað p;f ÞS�yi	 .
p ¼ a ¼ 3 ¼ number of treatments.
f ¼ notN � a, as in the completely randomized design, but
ða� 1Þðb� 1Þ ¼ 8.

q¼ Studentized value inTable A.12. In usingTable A.12, one can set a
at 0.05 or 0.01 and ¢nd the corresponding p and f values to
determine q.

S�yi	 ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE
b

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
0:733
5

r
¼ 0:383

a: let’s set it at 0.05.
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Recall that:

�y1	 ¼ 20:4; �y2	 ¼ 22:4; and �y3	 ¼ 18:6;q0:05 ð3;8Þ From table L¼ 4:04

T0:05 ¼ q0:05ð3;8ÞS�yi: ¼ 4:04ð0:383Þ ¼ 1:547

Note:None of the �yi	 � �yj	 is considered signi¢cant unless j�yi	 � �yj	j > 1:547:

Hence, using theTukey test, the individual contrasts are signi¢cantly
di¡erent from each other at the cumulative a ¼ 0:05 level of signi¢cance.
A con¢dence interval placement of these data would appear as depicted in
Fig. 8.

E. Random-Effects Model

The F -test procedure is the same for the random e¡ects model if the
treatments, or the blocks, or both treatments and blocks are random.
However, the hypothesis for the random-e¡ects model is concerned with
the variance equivalence, not mean equivalence.

When the blocks are random (i.e., selected from the population of all
blocks), it is expected that the comparisons among the treatmentswill be the
same throughout the total population of blocks fromwhich those used in the
experiment were randomly selected.Given that the blocks are randomly se-
lected froma population of all possible blocks, if the blocks then are indepen-
dent variables, the treatment e¡ect (MSTREATMENT) is always free of block
interaction. If there is obvious block^treatment interaction, the treatment
tests are una¡ected by the interaction, unlike the case of the ¢xed-e¡ects
model. The reason for this in the random-e¡ects model is that both the
MSERROR andMSTREATMENT terms contain the interaction e¡ect, neutraliz-
ing it in the signi¢cance test [see Eqs. (16)].When interaction is present in the
randomblock e¡ectsmodel, the interaction is negated because:

MSE ¼ s2 þ AB

MSTREATMENT ¼ s2 þ Aþ AB
ð16Þ

whereAB¼ interaction of treatments and blocks.

S ¼Significant
NS¼Not significant

j�y1	 � �y2	j ¼ j20:40� 22:40j ¼ 2:00 > 1:547 S
j�y1	 � �y3	j ¼ j20:40� 18:60j ¼ 1:80 > 1:547 S
j�y2	 � �y3	j ¼ j22:40� 18:60j ¼ 3:80 > 1:547 S
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Careful thought by the researcher on preventing interaction between
the blocks and treatment is probably the most e¡ective way to prevent pro-
blems or, at least, to recognize potential impacts. Chapter 7 will discuss in-
teraction in detail, for it is much more prevalent and troublesome in two-
factorANOVAs and beyond.

F. Sample Size Determination

As in the two-sample t-test and the completely randomized ANOVAdesign,
it is important that the researcher realize the limits of his or her model’s
power, detection limits, and sample size requirements. In the randomized
complete block design, the blocks are the same size.Hence, if one has a block
size of10, that is equivalent to an nof10.Thismakes it particularly easy to use
each of the methods for estimating sample size, power, and detection limits
that were explained in Chap. 5 (completely randomized design) and also
used in this section. However, as explained for multiple comparisons in this
chapter, two adjustments are needed:

1. Substitute b (block) for any n used in the completely randomized
design.

2. The number of degrees of freedom for the error term (denomina-
tor) is notN � a but ða� 1Þðb� 1Þ.

G. Missing Values

Many times in research, a sample observation is lost. A specimen is lost, a
subject fails to report for a sample, or a test animal dies. As we saw in
Chap. 5, a missing value in a completely randomized test presents no pro-
blem. However, when both blocks and treatments are evaluated, the design
loses orthogonality because, for some blocks, the sum of the treatments,
SAi, no longer equals zero, and for some treatments, the sum of the blocks,
SBi, no longer equals zero.Therefore, the researchermust replace the one,or
more, missing values with one(s) that minimizes SSE.

Example 2: Let us look at one such approach.Using the data inExam-
ple 1,we generate the data for Example 2,where one of the litter 3 mice died,
which we will label ‘‘X’’ (Table 8).

The ¢rst missing value replacement method the researcher can use is
the derivative method: dðSSEÞ=dX . In order to perform this, it is easier to
code the data ¢rst by subtracting the average value (integer value, if the
data are integers, or integers created by multiplying by factors of 10 to
eliminate the decimal places) from all the observations, ignoring the
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missing value:

Step1.

P
y

n
¼ 20þ 20þ 24þ 	 	 	 þ 19þ 21þ 18

14
¼ 288

14
¼ 20:571; or 21

Step 2. The second step is to subtract the average interval from the
value and compute yi: and y	j values (Table 9). Recall that SSE
equals SSERROR ¼ SSTOTAL � SSTREATMENT � SSBLOCKS

So,

SSE ¼
Xa
i¼1

Xb
j¼1

y2ij �
Xa
i¼1

y2i:
b
�
Xb
j¼1

y2j	
a
þ y2::
ab

Let us now plug these values in and simplify algebraically

TABLE 8 Data for Example 2

Litter

Formulation 1 2 3 4 5

A 20 20 Xa 24 19
B 23 21 22 26 20
C 18 17 19 21 18

aX¼missing value.

TABLE 9 Data in Example 2 with 21Subtractions from EachValue

Litter

Formulation 1 2 3 4 5 yi:

A �1 �1 Xa 3 �2 x� 1
B 2 0 1 5 �1 7
C �3 �4 �2 0 �3 �12

y:j �2 �5 x� 1 8 �6 y:: ¼ x� 6

aX¼missing value.
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¼ ð�1Þ2 þ ð�1Þ2 þ x2 þ 32 þ ð�2Þ2 þ 22 þ 02 þ 12 þ 52 þ ð�1Þ2

þ ð�3Þ2 þ ð�4Þ2 þ ð�2Þ2 þ 02 þ ð�3Þ2 � ðx � 1Þ2 þ 72 þ ð�12Þ2
5

� ð�2Þ
2 þ ð�5Þ2 þ ðx � 1Þ2 þ 82 þ ð�6Þ2

3
þ ðx � 6Þ2

15

¼ x2 þ 84� ðx þ 12Þ þ 49þ 144
5

� ðx � 1Þ2 þ 129
3

þ ðx � 6Þ2
15

¼ x2 þ 84� ðx � 1Þ2 þ 193
5

� ðx � 1Þ2 þ 129
3

þ ðx � 6Þ2
15

which is the simpli¢ed version of the preceding SSE equation.

Now, let us take the ¢rst derivation of the SSE equation.

dðSSEÞ
dx

¼ 2x � 2ðx þ 1Þ
5

� 2ðx � 1Þ
3

þ 2ðx � 6Þ
15

¼ 0

Next,using the lowest commondenominator,we remove the fraction portion
of the equation.

LCD is 15ð2xÞ � 6ðx þ 1Þ � 10ðx � 1Þ þ 2ðx � 6Þ ¼ 0

30x � 6x � 6� 10x þ 10þ 2x � 12 ¼ 0

16x ¼ �8

x ¼ �8
16

x ¼ �0:5
Step 3. Convert �0:5 into full original value by adding 21: 21þ

ð�0:5Þ ¼ 20:5.
Step 4. Place 20.5 in the ‘‘X’’ position of the data table in Example 2

(Table 10).
Step 5. Perform the ANOVA losing 1 degree of freedom in the error

term for the missing value. The error term for estimating the
missing value is now ða� 1Þðb� 1Þ � 1.

SSTOTAL ¼
X3
i¼1

X5
j¼1

yij � y2::
N
¼ 202 þ 202 þ 20:52 þ 	 	 	 þ 212 þ 182

¼ 6426:25� 308:52

15
¼ 6426:25� 6344:817 ¼ 81:433
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SSTREATMENT ¼ 1
b

X3
i¼1

y2i �
y2::
N
¼ 1

5
ð103:52 þ 1122 þ 932Þ � ð308:5Þ

2

15

¼ 6381:05� 6344:817 ¼ 36:233

SSBLOCKS¼1
a

X5
j¼1

y2ij�
y2::
N
¼1
3
ð612þ582þ61:52þ712þ572Þ�ð308:5Þ

2

15

¼6385:750�6344:817¼40:933

SSE ¼ SSTOTAL � SSTREATMENT � SSBLOCKS

¼ 81:433� 36:233� 40:933 ¼ 4:267 ðTable11Þ

FT ¼ FTa½ða�1;ða�1Þðb�1Þ�1Þ�

FT ¼ FT0:05ð2;7Þ ¼ 4:74

Because FCð29:7Þ > FT ð4:74Þ, rejectH0 at a ¼ 0:05.
Note that the results are quite similar to those from the original pro-

blem.The SSE wasminimized,so it was less than that in the original problem,
yet we lost a degree of freedom from the estimation of themissing value.

H. Approximate Method of Determining Missing Values

There is also an easier method based upon the di¡erentiation of dðSSEÞ=dx,
where x ¼ ðay0i: þ by0:j � y0		Þ=ða� 1Þðb� 1Þ, and

y0i: is the value of the treatment row, ignoring the missing value x.
y0j: is the value of the block column, ignoring the missing value.

TABLE10 Tablewith MissingValue Inserted into Litter 3,Treatment A

Litter

Formulation 1 2 3 4 5 yi:

A 20 20 20.5 24 19 103.5
B 23 21 22 26 20 112
C 18 17 19 21 18 93

yj: 61 58 61.5 71 57 308:5 ¼ y::
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y0		 is the sum,
P

yij, ignoring the missing value.

Let us look at Example 2 and construct the tabled values, adding the
rows and columns without the missing value (Table12). Solving for x :

x ¼ ay01 þ by0:3 � y0		
ða� 1Þðb� 1Þ

¼ 3ð83Þ þ 5ð41Þ � 288
ð3� 1Þð5� 1Þ

¼ 166
8
¼ 20:75

The value 20.75 is plugged back into the original data set as inTable 10
and reworked. In addition, one degree of freedom is lost for each missing
value in the SSERROR portion. Notice that the simpli¢ed approximation
based upon the formula derived from dSSE=dx is nearly the same as for the
actual di¡erentiation, including the true value.

TABLE11 Revised ANOVATable

Source of
variance

Sumof
squares

Degrees of
freedom

Mean
square Fc

Treatment 36.233 2 18.117 29.700
Blocks 40.933 4 10.233
Error 4.267 7a 0.610
Total 81.433 13

aða� 1Þðb� 1Þ � 1 ¼ ð3� 1Þð5� 1Þ � 1 ¼ 7.

TABLE12 Columnand RowTotalsWithout the MissingValue X

Litter

Formulation 1 2 3 4 5 yi

A 20 20 X 24 19 83
B 23 21 22 26 20 112
C 18 17 19 21 18 93

yj 61 58 41 71 57 288 ¼ y0::

So, y:03 ¼ 41; y01: ¼ 83; y::0 ¼ 288; a ¼ 3; and b ¼ 5
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The di¡erentiation methods can be used for more than one missing va-
lue. However, if that is the case, a computer-generated ¢t is the most practi-
cal. Most software packages have a general linear model (GLM) program
that allows the calculation of the ANOVA model when one or more values
are missing, making the model nonorthogonal.

An alternative that this researcher has found to be useful is to drop
the entire block when one value is missing. Whereas some statisticians
would argue that this is losing valuable data points, others would argue this
is ‘‘dropping’’ data. The perspective of this author is that statistics are sec-
ondary to the experimenter’s wisdom in his or her ¢eld. Statistical applica-
tion should supplement his or her reason, not replace it. If it seems
reasonable to drop an entire block, then do it. I ¢nd this is much better in
practice than ¢nding a theoretical value to plug into a series of values col-
lected by research observation. The plugged-in value will minimize the
contribution to error (SSE), but it is not an actual observation. This is
potentially a huge hole in applied research, particularly if the study is a
small pilot study of, say, ¢ve blocks. One must ask whether they want to
use actual data and lose a block (or more) or have a nice model that is more
rooted in theory than in real observation.

I. GLM and Missing Values

The most practical way to perform the randomized complete block design
with missing values is to use the GLM routine in a statistical software pack-
age such as SAS, SPSSX, or MiniTab. The GLM package will compute an
ANOVA with missing values; however, they must be ‘‘full rank.’’ That is,
there must be enough values to estimate all the terms in the model.The soft-
ware package will tell you whether there are data adequate for computing
the model�you do not have to ascertain that.

When data are missing in a randomized complete block model, most
commonly, the missing value is assigned an asterisk. The data for Example
2 are entered into the computer, one value for each treatment/block possibi-
lity. So, in the completely randomized ANOVA, the GLMmodel is:

Y ¼ AB ð17Þ
where A ¼ 1, if treatment A; A ¼ 2, if treatment B; A ¼ 3, if treatment C;
B ¼ 1, if block1; B ¼ 2, if block 2; B ¼ 3, if block 3; B ¼ 4, if block 4; B ¼ 5,
if block 5; and Y ¼ yij .

Table 13 presents the Y ¼ AB computer input format. An asterisk is
placed for the yij value of the ¢rst treatment (A) for the third block.

Table 14 provides the ANOVA using the GLM procedure with the
missing value in treatment A, block 3. Notice that the ANOVA is essentially
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TABLE14 ANOVAUsing the GLMProcedurewith the MissingValue

MTB>GLM C1¼C2 C3
Analysis of variance for C1
Source DF SEQSSa ADJSS ADJMSb F P
C2 (Treatments) 2 36.279 36.267 18.133 29.98 0.000
C3 (Blocks) 4 40.917 40.917 10.229 16.91c 0.001
Error 7 4.233 4.233 0.605
Total 13 81.429

aThesequential sumof squaresvalueis computedby thesoftware tominimize theSSE termwith
the substituted value for the missing one.The sums of squares for the treatment, blocks, and
total are essentially those appearing inTable 10, after the substitution of 20.5 was used for the
missingvalue.Theadjusted SSvalues are in thenext column.
bThe adjustedmean square values aremerely the adjusted SS values divided by the degrees of
freedom (a-1) for treatments and (b-1) for blocks.The error termdegreesof freedom isbasedon
(a� 1)(b� 1) minus one degree of freedom for the missing value. Hence, the degrees of
freedom for SSE is (a� 1)(b� 1Þ � 1, or 7, as computed forTable 10.
cNotice that the block effect significance level was computed, which, as we learned in the
beginning of this chapter, is not customarily done. It is done on the GLMroutine, for this routine
is based on a two-factor ANOVA. We merely ignore the second factor B and evaluate it as
previously discussed in this chapter.

TABLE13 GLMInput for MiniTab

Yij A¼Treatment B¼Block
C1 C2 C3

20 1 1
23 2 1
18 3 1
20 1 2
21 2 2
17 3 2
�a 1 3
22 2 3
19 3 3
24 1 4
26 2 4
21 3 4
19 1 5
20 2 5
18 3 5

aMissing value coded�.
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equivalent to the pencil-and-paper method using the actual derivative pro-
cedure or the formula based on the derivative procedure.

II. COMPUTATION OF INDIVIDUAL CONFIDENCE
INTERVALS

Individual con¢dence intervals can be computed for the individual treat-
ments using the denominator term ða� 1Þðb� 1Þ � k,where k is the number
of missing values. In practice, if k is greater than 1, the con¢dence levels
become too hypothetical for practical use. In addition, the loss of one extra
degreeof freedomwill in£ate thecon¢dence interval,particularly if theblock
number is small, say 5 to10, as generally encountered in small studies.Again,
in this author’s opinion, it ismore useful to ground con¢dence intervals in the
data, not theory, so it is recommended that the entire block be dropped.

Fordetermining the powerof the test after thedatahavebeencollected,
my recommendation is the same.The entire block for any treatment missing
should be dropped.This ismore conservative in preventing a type Ierror.

There are cases, however, where one is trying to determine whether a
speci¢c treatment has an advantage, and it is not a pivotal study. In those
cases, the block may be saved by adding the derived missing value, then, per-
haps, not removing the degree of freedom associated with estimating the
missing value, as a hint toward the treatment’s possible bene¢t. However,
no claims should be made about the treatment’s e¡ect, for it is only one’s gut
feeling and must be checked out further.

By the way, any time one manipulates the data (e.g., estimating a miss-
ing value,ŝ2, or setting a or b at various levels, or removing or including
extreme values), that process and its rationale must be annotated and thor-
oughly described in the background data report.

III. BALANCED INCOMPLETE BLOCK DESIGN

There are times when all the treatments cannot be replicated in each block.
This author does not favor this type of experimentation, but it is necessary in
some cases. In practice, an incomplete or un¢lled block should not be sanc-
tioned for a pivotal, determining study. In pilot or preliminary studies, this
situation, however, is more acceptable. We will discuss the situation of a
‘‘balanced’’ design where each of the treatments is considered as important
as another. In a balanced design that is incomplete, the expected data ‘‘gaps’’
are distributed evenly through the blocks such that all treatments have
equivalent data loss.

For example, a block might be the abdomen region near the umbilicus
used for preoperative skin-prepping evaluations. Anatomical space allows
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four samples, and that is it. Suppose a researcher wants to compare the anti-
microbial e¡ects of ¢ve products.The researcher could use a separate indivi-
dual for each product, but that would be too expensive, and it would lose the
blocking e¡ect (same individual subject) of keeping the variability of the
error term down. So, instead, she or he will use ¢ve products and ¢ve blocks
(subjects) to keep it symmetrical.

The design could look likeTable15.
As in the case of the complete block design, there are a treatments and b

blocks, each block contains k treatments, and each treatment is replicated
r times in the design.There are N , or a� r, or b� k, total observations.

The statistical model has the same form as for the complete block
design.

yij ¼ mþ Ai þ Bj þ Eij

where

m ¼ common mean
Ai ¼ treatment e¡ect for the ith treatment
Bj ¼ block e¡ect for the jth block
E¼ error term,which is NID(0, s2), as before

The sum of squares for the full e¡ect is:

SSTOTAL ¼
Xa
i¼1

Xb
j¼1

y2ij �
y2		
N

We use the data fromTable15 and the six-step procedure:

Step1. Formulate the hypothesis:
H0: m1 ¼ m2 ¼ m3 ¼ m4 ¼ m5
HA: One of the means di¡ers from at least one other

TABLE15 Symmetrical Block Design

Product
(treatment)

Blocks (subjects)

1 2 3 4 5 yi:

1 1.863 2.169 � 2.051 2.003 8.086
2 � 2.175 1.426 2.057 1.975 7.633
3 1.863 2.181 1.433 � 1.975 7.452
4 1.875 � 1.457 2.075 1.992 7.399
5 1.891 2.473 1.433 2.063 � 7.860
y	j 7.492 8.998 5.749 8.246 7.945 38.430¼ y..
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Step 2. The a level is set at 0.05, k ¼ number of treatments in each
block¼ 4, r ¼numberof times each treatment is replicated¼ 4,
a ¼ number of treatments¼ 5, b ¼number of blocks ¼ 5.

Step 3. A balanced, incomplete randomized block design will be
used:

yij ¼ mþ Ai þ Bj þ Eij

Step 4. Decision rule:
If Fcalculated > Ftabled, reject H0; the products are not equivalent at the
a ¼ 0:05 level of signi¢cance.
Step 5. Perform calculations. SSTOTAL is composed of

SSTREATMENTðAdjÞ þ SSBLOCK þ SSERROR (Table 16).
SSTREATMENT is adjusted because each treatment is
represented in a di¡erent set of r blocks. The di¡erences
between unadjusted treatment totals, yi:; y2:; . . . ya: are in£u-
enced by the di¡erences between blocks.

The sum-of-squares treatment-adjusted calculation is:

SSTREATMENTðAdjÞ ¼
k
Pa
i¼1

Q2
i

la
where k ¼ number of treatments in each block
r ¼ number of times each treatment is replicated
l ¼ rðk � 1Þ=ða� 1Þ ¼ number of times each pair of treatments in

same block
Q ¼ adjustment factor
Let us ¢rst compute the Qi values.

Qi ¼ yi: � 1
k

Xb
j¼1

nijy:j; i ¼ 1; 2; . . . a

j ¼ 1; 2; . . . b
nij ¼ 1; if treatment i appears in jth

block, and 0, if not

TABLE16 ANOVATable

Source of
variance Sumof squares

Degrees of
freedom

Mean
square FC

Treatment
(Adj)

k
Pa

i¼1 Q
2
i:

la a� 1 SSTREATMENTðAdjÞ
a�1

MSTREATMENTðAdjÞ
MSERROR

Blocks 1
k

Pb
j¼1 y:

2
j � y::2

N b� 1 SSBLOCKS
b�1

Error Bysubtraction N� a� bþ 1 SSE
N�a�bþ1

Total
Pa

i¼1
Pb

j¼1 y
2
ij � y::2

N N� 1
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Q1 ¼ y1: � 1
4

X4
j¼1

n11y:1

Q1 ¼ 8:086� 1
4
½1ð7:492Þ þ 1ð8:998Þ þ 0ð5:749Þ þ 1ð8:246Þ þ 1ð7:945Þ�

Q1 ¼ 8:086� 8:170 ¼ �0:084

Q2 ¼ y2: � 1
4

X4
j¼1

n22y:2

Q2 ¼ 7:633� 1
4
½0ð7:492Þ þ 1ð8:998Þ þ 1ð5:749Þ þ 1ð8:246Þ þ 1ð7:945Þ�

Q2 ¼ �0:102

Q3 ¼ y3: � 1
4

X4
j¼1

n33y:3

Q3 ¼ 7:452� 1
4
½1ð7:492Þ þ 1ð8:998Þ þ 1ð5:749Þ þ 0ð8:246Þ þ 1ð7:945Þ�

Q3 ¼ �0:094

Q4 ¼ y4: � 1
4

X4
j¼1

n44y:4

Q4 ¼ 7:399� 1
4
½1ð7:492Þ þ 0ð8:998Þ þ 1ð5:749Þ þ 1ð8:246Þ þ 1ð7:945Þ�

Q4 ¼ 0:041

Q5 ¼ y5: � 1
4

X4
j¼1

n55y:5

Q5 ¼ 7:860� 1
4
½1ð7:492Þ þ 1ð8:998Þ þ 1ð5:749Þ þ 1ð8:246Þ þ 0ð7:945Þ�

Q5 ¼ 0:239
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Next compute l

l ¼ rðk � 1Þ
a� 1

¼ 4ð4� 1Þ
5� 1

¼ 3

Finally we can compute SSTREATMENTðAdjÞ ¼
k
Pa
j¼1

Q2
i

la

¼ 4ð½�0:084�2 þ ½�0:102�2 þ ½�0:094�2 þ ½0:041�2 þ ½0:239�2Þ
ð3Þð5Þ

¼ 0:023

Next compute SSBLOCKS ¼ 1
k

Pb
j¼1

y2:j � y2		
N

¼ 1
4
ð7:4922þ 8:99822þ 5:7492þ 8:2462þ 7:9452Þ � ð38:43Þ

2

20

¼ 1:473

Compute SSTOTAL ¼
Pa
i¼1

Pb
j¼1

yij � y2		
N

¼ 1:8632þ 1:8632þ 1:8752 þ 	 	 	 þ 1:9752þ 1:9922� 38:432

20

¼ 75:385� 73:843

¼ 1:542

SSERROR ¼ SSTOTAL � SSTREATMENTðAdjÞ � SSBLOCKS

SSERROR ¼ 1:542� 0:023� 1:473 ¼ 0:046

Table17 provides the actual ANOVA table.
Step 6. Decision:

FT ða;a�1;N�a�bþ1Þ

FT ð0:05;5�1;20�5�5þ1Þ

FT ð0:05;4;11Þ ¼ 3:36 ðTable A:3; F distributionÞ and FC ¼ 1:50

Because FC < FT , one cannot reject H0 at the a ¼ 0:05 level of signi-
¢cance.

Note that, although the treatments were not signi¢cantly di¡erent
statistically from one another, the blocking did reduce a signi¢cant amount
of error. Without blocking, total error would have been
0:368þ 0:004 ¼ 0:37, and FC would have been 0:004=0:37 ¼ 0:01, a much
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smaller value (and further removed from the possibility of showing any sig-
ni¢cant di¡erence between treatments, had it existed) than the FC ¼ 1:5
that blocking provided. Based upon this ratio, it is safe for the investigator
to assume the blocking e¡ect was very signi¢cant in reducing the SSE

value. This can be evaluated further rather easily in the case of a type I
¢xed-e¡ects model. Sometimes the researcher may want to determine the
block e¡ect. To do this, we must perform an alternative adjustment to the
blocks because the design is not orthogonal. Hence, the sum of squares to-
tal is portioned as followed:

SSTOTAL ¼ SSTREATMENT þ SSBLOCKðAdjÞ þ SSERROR

Note that, in this case, SSTREATMENTS is unadjusted. If the design is
symmetrical, a ¼ b, a simple procedure will provide the SSBLOCKS ðAdjustedÞ
value.

In the case of symmetry,

Q0:j ¼ y:j � 1
r

Xa
i¼1

nijyi:; j ¼ 1; 2; . . . ; b

and correspondingly,

SSBLOCKS ðAdjustedÞ ¼
r
Pb
j¼1
ðQ0:jÞ2

lb

In addition, because SSTREATMENT is no longer adjusted, its formula is:

1
k

Xa
i¼1

y2i: �
y2		
N

Using data fromTable15 and a ¼ b ¼ 5, l ¼ 3, and r ¼ 4:

TABLE17 ANOVATable

Source of
variance

Sumof
squares

Degrees of
freedom

Mean
square FC

Treatments(Adj.) 0.023 4 0.008 1.50
Blocks 1.473 4 0.368
Error 0.046 11 0.004
Total 1.542
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Q0j ¼ y:j � 1
r

Xa
i¼1

nijyi:

Q01 ¼ 7:492� 1
4
ð1½8:086� þ 0½7:633� þ 1½7:452� þ 1½7:399� þ 1½7:860�Þ

Q01 ¼ �0:207

Q02 ¼ 8:998� 1
4
ð1½8:086� þ 1½7:633� þ 1½7:452� þ 0½7:399� þ 1½7:860�Þ

Q02 ¼ 1:240

Q03 ¼ 5:749� 1
4
ð0½8:086� þ 1½7:633� þ 1½7:452� þ 1½7:399� þ 1½7:860�Þ

Q03 ¼ �1:837

Q04 ¼ 8:246� 1
4
ð1½8:086� þ 1½7:633� þ 0½7:452� þ 1½7:399� þ 1½7:860�Þ

Q04 ¼ 0:502

Q05 ¼ 7:945� 1
4
ð1½8:086� þ 1½7:633� þ 1½7:452� þ 1½7:399� þ 0½7:860�Þ

Q05 ¼ 0:303

SSTREATMENT ¼ 1
k

Xa
i¼1

y2i: �
y2		
N

¼ 1
4
ð8:0862 þ 7:6332 þ 7:4522 þ 7:3992 þ 7:8602Þ

� 38:4302

20

¼ 0:083
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SSBLOCKS ðAdjustedÞ ¼
r
Pb
j¼1
ðQ0:jÞ2

lb

¼ 4ð½�0:207�2 þ ½1:240�2 þ ½�1:837�2 þ ½0:502�2Þ
3� 5

þ ½0:303�2Þ
3� 5

¼ 1:413

Table18 presents the analysis.
Because FC ð88:25Þ > FT (3.36), rejectH0 at a ¼ 0:05.The blocks had a

very signi¢cant reduction in assignable error. It should also be noted that
SSTOTAL 6¼ SSTREATEMENTðAdjustedÞ þ SSBLOCKSðAdjustedÞ þ SSERROR due to
the model lacking orthogonality.

A. Orthogonal Contrasts

Let us set up several contrasts. Recall that the ¢ve means are m1; m2; m3; m4,
and m5. Each contrast carries one degree of freedom. So, a� 1 degrees of
freedom are available to the researcher. Because a ¼ 5, four contrasts are
available.

1. Hypothesis

H0: m1 ¼ m4
H0: m2 þ m4 ¼ m1 þ m3
H0: 4m3 ¼ m1 þ m2 þ m4 þ m5
H0: m3 ¼ m4

TABLE18 Analysis

Source of
variance

Sumof
squares

Degrees of
freedom

Mean
square FC

Treatments
(adjusted)

0.023 4 0.006 1.50

Treatments
(nonadjusted)

0.083 4

Blocks (adjusted) 1.413 4 0.353 88.25a

Blocks
(nonadjusted)

1.473 4

Error 0.046 11 0.006

aH0:Theblockmeans are equal.
HA:The blockmeans differ.
FT BLOCKS (Adjusted) (d; b�1,N�a�bþ1)¼ 88.25 and FT(BLOCKS (Adjusted))¼ 3.36.
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2. Contrasts

The corresponding statistical contrasts to the hypotheses are:

C1: ¼ y1 � y4:

C2 ¼ y2: þ y4: � y1: � y3: or � y1: þ y2: � y3: þ y4:

C3 ¼ 4y3: � y1: � y2: � y4: � y5: or � y1: � y2: þ 4y3: � y4: � y5:

C4 ¼ y3: � y4:

Note: �yi: are not used in the contrasts,Qi are.

Q1 ¼ �0:084 Q4 ¼ 0:041 l ¼ 3

Q2 ¼ �0:102 Q5 ¼ 0:239 k ¼ 4

Q3 ¼ �0:094 a ¼ 5

SSCONTRAST

SSCi ¼
k
Pa
i¼1

ciQj

� �2

l
Pa
i¼1

c2i

SSC1¼
4½1ð�0:084Þþ0ð�0:102Þþ0ð�0:094Þþð�1ð0:041ÞÞþ0ð0:239Þ�2

3ð5Þ½ð12þð�1Þ2�
SSC1¼0:0021

SSC2 ¼
4½�1ð�0:084Þ þ 1ð�0:102Þ þ ð�1ð�0:094ÞÞ þ 1ð0:041Þ

3ð5Þ½ð�1Þ2 þ 12 þ ð�1Þ2 þ 12�

þ 0ð0:239Þ�2
3ð5Þ½ð�1Þ2 þ 12 þ ð�1Þ2 þ 12�

SSC2 ¼ 0:0009

SSC3 ¼
4½�1ð�0:084Þ þ ð�1ð�0:102ÞÞ þ 4ð�0:094Þ� þ ½�1ð0:041Þ�

3ð5Þ½ð�1Þ2 þ ð�1Þ2 þ 42 þ ð�1Þ2 þ ð�1Þ2�

þ ½�1ð0:239Þ�2
3ð5Þ½ð�1Þ2 þ ð�1Þ2 þ 42 þ ð�1Þ2 þ ð�1Þ2�

SSC3 ¼ 0:00295
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SSC4¼
4½0ð�0:084Þþ0ð�0:102Þþ1ð�0:094Þþð�1ð0:041ÞÞþ0ð0:0239Þ�2

3ð5Þð12þð�1Þ2Þ
SSC4¼0:0024

Table19 presents an ANOVA table with the four contrasts.

3. Contrasts

If the model is a random-e¡ects model in the treatment, individual contrasts
are irrelevant.Generally, however, both blocks and treatments are ¢xed and,
occasionally, the blocks are random and the treatments ¢xed.

The methods from Chap. 5 can be used in this balanced, incomplete
block design as well. If orthogonal contrasts are used, the treatment totals
must be the adjusted ones (Qi), not the total values ( yi:).The contrast sum of
squares is:

SSCONTRAST ¼
k
Pa
i¼1

ciQi

� �2

la
Pa
i¼1

c2i

�

TABLE19 ANOVATablewith Four Contrasts

Source of
variance

Sumof
squares

Degrees of
freedom MS FC

Treatments 0.023 4 0.006 1.00a

C1 0.0021a 1 0.0021
C2 0.0009 1 0.0009
C3 0.00295 1 0.00295
C4 0.0024 1 0.0024
Blocks 1.455 4 0.364
Error 0.064 11 0.006
Total 1.542

aThe Fcalculated values of the individual contrasts have not been computed.None are significant,
because the treatment effect is not significant.Contrasts are never performed unless the treat-
ment effects are significant. This contrast series was computed for demonstration purposes
only.The degrees of freedom for each contrast are 1, and each is compared with the MSE term.
For example, contrast 1would have an FC of 0.0021=0.006¼ 0.35. Ftabled would be F(a,1, N�a�b�1)
or for a ¼ 0:05, Fð0:05;1;11Þ ¼ 4:84. Essentially, all other orthogonal contrasts can be constructed
in the same way, using the Qi (adjusted treatment values) in place of the yi: treatment total
values.
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Other contrastmethods using all pairs of adjusted treatment e¡ects are
estimated from:

Âi ¼ kQi

la

The standard error of the adjusted treatment e¡ect is:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðMSEÞ

la

r

B. Nonorthogonal Contrasts

The researcher can also employ nonorthogonal contrasts�compare all
pairs of adjusted means. Instead of utilizing a Qi value, the researcher will
instead use Âi 0 ¼ kQi=la with the standard error S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðMSEÞ=la

p
for

balanced designs. Everything else is computed essentially the same way, as
provided in Chap. 5.

Let us, however, for demonstration purposes, set up the computation of
the least signi¢cant di¡erence (LSD). Again, please note that the researcher
would not determine individual pair contrasts unless there was a signi¢-
cant adjusted treatment e¡ect (H0 rejected). In addition, the determination
of the appropriate contrast to use has been thoroughly described in Chap. 5.
That rationale continues to hold.

1. Least Significant Difference (LSD) Contrast Method

Step1. Compute the ¢ve adjusted treatment averages and S, using the
MSE value fromTable18.

Â1 ¼ 4ð�0:084Þ
3ð5Þ ¼ �0:02240

Â2 ¼ 4ð�0:102Þ
3ð5Þ ¼ �0:02720

Â3 ¼ 4ð�0:094Þ
3ð5Þ ¼ �0:02507

Â4 ¼ 4ð0:041Þ
3ð5Þ ¼ 0:01093

Â5 ¼ 4ð0:239Þ
3ð5Þ ¼ 0:00648
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S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðMSEÞ

la

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð0:004Þ
3ð5Þ

s
¼ 0:0327

LSD ¼ ta=2;ðN�a�bþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðMSEÞ

la

r �

tð0:05=2;11Þ ¼ 2:201

LSD ¼ 2:201ð0:0327Þ ¼ 0:07197

The aða� 1Þ=2 ¼ 5ð4Þ=2 ¼ 10 contrasts are then carried out as pre-
viously explained in Chap. 5.

Â1 �Â2 ¼ �0:02240� ð�0:02720Þ ¼ 0:0048 < 0:07197
yNSDðnot significantly differentÞ

Â1 �Â3 ¼ �0:02240� ð�0:02507Þ ¼ 0:00267 < 0:07197
yNSD

Â1 �Â4 The remainder of the contrasts are performed
in the same manner

Â1 �Â5

Â2 �Â3

Â2 �Â4

Â2 �Â5

Â3 �Â4

Â3 �Â5

Â4 �Â5

IV. TWO RESTRICTIONS ON RANDOMIZATION

A. Latin Square Design

There are times when a researcher will want to restrict randomization
beyond one block. For example, suppose a researcher is interested in evalu-
ating the antimicrobial e¡ectiveness of an antibacterial skin cleanser. Gen-
erally, the forearms can be used for this evaluation, two test sites per forearm

�The degrees of freedom =N � a� bþ 1,which is the degrees of freedom of error term (MSE).
yRecall that if the absolute value of jÂi � Âj j > LSD, the contrast is signi¢cant at a, in this case,
0.05.
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can be used (dorsal and anterior), and each test subject has two forearms. So
a total of four product formulations can be evaluated.

A Latin square design procedure for this would be to restrict ran-
domization within each person. That is, each of the four products would
be evaluated on each person. However, experience shows that microbial
populations vary between the dorsal and anterior aspects of the forearm,
so a biasing e¡ect is inherent in this design. A Latin square design re-
stricts randomization in the subject site selection as well. Hence, each
treatment will be assigned each site and each subject one time. That is,
if subjects are rows and anatomical sites are columns, each product will
be assigned each subject (row) and each site (column) one time.

The Latin square design is useful only in cases where the number
of rows and columns equals the number of treatments (four subjects,
four anatomical sites, and four products). Sometimes this is a problem,
but a surprising number of times it is not. This author ¢nds Latin square
designs extremely useful for small pilot research and development stu-
dies. For larger, more pivotal experimental studies, it is less useful, as
are all the more esoteric designs, for the simple problem of communica-
tion. If a researcher limits him or herself to the academic setting of basic
research, it is not a problem. But research in industry is very di¡erent in
that those funding the studies must be able to understand them. Most
individuals in business, ¢nance, management, quality assurance, regula-
tory agencies, and marketing and end users understand a t-test and, with
some prompting, usually accept a one-factor ANOVA�completely ran-
dom or random block design. But for more complicated studies�Latin
squares, factorial experiments such as one-half fraction of the 2k design,
the general 2k�p fractional factorial design, three factorial design, nested
designs, split-plot designs, and response surface methods�this is not
the case.

In this author’s opinion, it is a waste of time to assign highly complex
studies and expect many need-to-know individuals to understand them. It
is important, then, to keep evaluations to the level of t-tests if at all possi-
ble, using multiple t-test correction factors as previously discussed.

In addition, the more complexity an experiment has, the more chance
there is that the critical assumptions and model requirements will be
violated.

Finally, when in doubt, it is not recommended that one turn a deci-
sion over to a statistical hypothesis. Instead, one needs to rely on innate
wisdom in one’s ¢eld of expertise.Who�as a researcher�has not worked
with a statistician to design a very complex model that is seriously £awed
because the researcher does not understand the statistics and the statisti-
cian does not understand the mechanisms involved in the research?

One and Two Restrictions on Randomization 221



B. Latin Square Model

The basic Latin square model is:

yijk ¼ mþ yi þ yj þ yk þ Eijk ð18Þ
where yi ¼ Row Effects i ¼ 1; 2; . . . ; p

yj ¼ Treatment Effects j ¼ 1; 2; . . . ; p
yk ¼ Column Effects k ¼ 1; 2; . . . ; p

yijk ¼ the observation in the ith row, the kth column, in the jth
treatment

Latin squares are row^column equal. Note that there is one and only one
treatment j for each column k and each row i.

A Latin square design, then, contains p rows, p columns, and p treat-
ments. The number of observations in each p� p square is p2. For example,
a 3� 3 square has 32 ¼ 9 observations. Rows and columns are generally
numbered 1; 2; . . . ; p.The treatments are labeled A;B; . . . ; p.

The full Latin square analysis of variance model is:

SSTOTAL ¼ SSROWS þ SSCOLUMNS þ SSTREATMENTS þ SSERROR

ð19Þ
The degrees of freedom for the Latin square model are p2 � 1. The usual
assumption of the errors (Eijk) is that they are NID(0, s2) normal and inde-
pendently distributed with a mean of 0 and a variance of s2.

The model components are calculated byANOVA procedures:

SSTREATMENTS ¼ 1
p

Xp
j¼1

y2:j: �
y 2
			
N

with p� 1 degrees of freedomwhere:

p ¼ number of treatments
y:j:¼ jth treatment e¡ect
N ¼ p2

y2...¼ total j e¡ect¼ total column and total row

2� 2 3� 3 4� 4

AB ABC ABCD
BA BCA BCDA

CAB CDAB
DABC
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SSROW EFFECT ¼ 1
p

Xp
i¼1

y2i:: �
y2			
N

where y2i:: ¼ sum of squares of row e¡ects, degrees of freedom¼ p� 1.

SSCOLUMN EFFECT ¼ 1
p

Xp
k¼1

y2::k �
y2			
N

where y2::k ¼ sum of squares of column totals, degrees of freedom¼ p� 1.

SSTOTAL ¼
Xp
i¼1

Xp
j¼1

Xp
k¼1

y2ijk �
y2			
N

where y2ijk ¼ the sum of the squares of each of the p2 values, degrees of
freedom¼ p� 1.

SSERROR ¼ SSTOTAL � SSTREATMENT � SSROW � SSCOLUMN

degrees of freedom ð p� 2Þð p� 1Þ
An ANOVA table constructed for the Latin square design is provided

inTable 20.
To compute FC , the mean square treatment e¡ect is divided by the

mean square error term.That is:

FC ¼MSTREATMENT

MSERROR
ð20Þ

FtabledðFT Þ is an F distribution with ( p� 1) degrees of freedom in the
numerator and ð p� 2Þð p� 1Þdegrees of freedom in the denominator (Tables
A.3, A.6 distribution).

TABLE 20 ANOVA for the Latin Square Design

Source of
variance Sumof squares

Degrees of
freedom

Mean
square FC

Treatments 1
p

Pp
j¼1 y

2
:j: � y:::2

N p� 1 SSTREATMENT
p�1

MSTREATMENT
MSERROR

Roweffect 1
p

Pp
i¼1 y

2
i:: � y:::2

N p� 1 SSROW
p�1

Columneffect 1
p

Pp
k¼1 y

2
::k � y:::2

N p� 1 SSCOLUMN
p�1

Error SSTOTAL � SSTREATMENT

SSROWS � SSCOLUMNS
ðp� 2Þðp� 1Þ SSERROR

ðp�2Þðp�1Þ

SSTOTAL
Pp

i¼1
Pp

j¼1
Pp

k¼1 y
2
ijk � y2:::

N p2 � 1
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FT ða;p�1;ðp�2Þðp�1ÞÞ ð21Þ
The rows (MSROWS) and columns (MSCOLUMNS) can also be evaluated

by dividing them by mean square error (MSERROR).

MSROWS

MSERROR
and

MSCOLUMNS

MSERROR
ð22Þ

If the ratio is large, theblocking is e¡ective. If not (the ratio is around1),
the blocking was not useful. In these cases, the ine¡ective block or row e¡ect
can be pooled with the error sumof squares to gain more degrees of freedom.
But there is a danger because it means stating that there is no signi¢cant row
or column e¡ect, which was the reason for using a Latin square design that
blocks in two directions.

Also, if a block or row e¡ect is pooled with the error term, the res-
earcher confounds random error with assignable error, which may or may
not be problematic. This type of situation, however, is common in applied
research. This author’s suggestion is keep decision making grounded in the
data and in the research ¢eld.

C. Randomization

Often, I am told that there is no need for randomization in a Latin square
design. That is simply untrue. Randomization is important, and the follow-
ing procedure ensures randomization:

Step 1. Randomly assign one blocking factor to rows, the other to
columns.

Step 2. Then randomly assign levels of the row and then levels of the
column.

Step 3. Then randomly assign products to the treatments.

Let us work an example.
Example 3: A researcher wants to conduct a pilot study to evaluate

four new strengths of an antimicrobial skin cream lotion.The researcher will
restrict randomization between subjects because each test subject will re-
ceive all four of the test products. Because there is a probable di¡erence in
microorganismbaseline counts at each site, a second restrictionon randomi-
zation will be enforced. That is, each anatomical site will be used by every
product one time.

This will be a 4� 4 Latin square design,where subjects will be the row
e¡ect, anatomical sites the column e¡ect, and A, B, C, and D the treatment
e¡ect.

The basic design is presented inTable 21.
Let us use the six-step procedure as before.
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Step1. Formulate the statistical hypothesis:
H0: mA ¼ mB ¼ mC ¼ mD
HA: At least one of the treatments di¡ers from the others.

Step 2. Select the sample size appropriate for the Latin square design
and a level.There are four products,which requires four anatomical
sites and four subjects.

P ¼ 4; p2 ¼ 16

Therefore, 16 subjects will be used in this design, and a ¼ 0:05.
Step 3. The test statistic to be used is an ANOVA using the Latin
square design.

yijk ¼ mþ yi þ yj þ yk þ Eijk

where m ¼ common mean
yi ¼ ith row e¡ect
yj ¼ treatment e¡ect
yk ¼ column e¡ect
yijk ¼ individual observation
Eijk ¼ random error�NID(0, s2)

Step 4. Decision rule:
If Fcalculated > Ftabled, rejectH0 at a ¼ 0:05.

Step 5. Collect data and perform statistical evaluation.
Randomly assign row factor and column factor.
Randomly assign levels of the row and then column.
Randomly assign products to treatments.

Row factor randomly assigned anatomical site and column factor ran-
domly assigned subjects. (Assigned by £ip of coin for rows:
tails¼ anatomical site, heads ¼ subject.)
Randomly assign row level, then column level.

TABLE 21 43 4 Latin Square Design

1 2 3 4

1 A B C D
2 B C D A
3 C D A B
4 D A B C
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Row level: The four anatomical sites are then randomly assigned, each
to one and only one row, by drawing labeled paper pieces from a box.
The outcome is:

i ¼

1, if lower right arm
2, if upper left arm
3, if lower left arm
4, if upper right arm

8>>><>>>:
Column effect: Next, the four subjects are randomly assigned to the

row�each to one.

k ¼

1, for subject JH
2 for subject RJ
3 for subject DP
4 for subject MJ

8>>><>>>:
Next, the four antimicrobial products (0.5, 1.0, 1.5, 2.0% PCMX) are

randomly assigned one of the letter values. That is, the letters A^D
are placed in one box, the levels 0.5,1.0,1.5, and 2.0% in another.The
researcher draws one paper slip A^D and another 0.5^2.0%. The
outcomes are matched and presented below.

j ¼
A, if 1.5%
B, if 2.0%
C, if 1.0%
D, if 0.5%

8>><>>:
Next, the researcher conducts the study, using four products, four ana-

tomical test sites, and four subjects. Baseline samples are taken,
post-treatment samples are collected after 10 minutes of exposure,
and these are plated on tryptic soy agar. Twenty-four hours later,
the plates are counted; the log10 reduction values are presented in
Table 22.

Treatment effect: Sum of squares treatment:

¼ 1
p

Xp
j¼1

y2:j: �
y2			
N

¼ 1
4
ð10:3752 þ 9:6002 þ 10:0002 þ 11:8252Þ � 41:8002

16

¼ 1
4
ð439:631Þ � ð109:203Þ

¼ 0:705
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Row e¡ect: Sum of squares rows:

¼ 1
p

Xp
i¼1

y2i:: �
y2...
N

¼ 1
4
ð10:8502 þ 10:2252 þ 10:7252 þ 10:0002Þ � 41:8002

16

¼ 1
4
ð437:299Þ � ð109:203Þ

¼ 0:122

Column e¡ect: Sum of squares columns:

¼ 1
p

Xp
k¼1

y2::k �
y2...
N

¼ 1
4
ð9:7502 þ 11:0502 þ 9:8502 þ 11:1502Þ � 41:8002

16

¼ 1
4
ð438:510Þ � ð109:203Þ

¼ 0:425

Error e¡ect: Sum of squares error:

SSERROR ¼ SSTOTAL � SSCOLUMN � SSROW � SSTREATMENT

SSERROR ¼ 5:650� 0:425� 0:122� 0:705 ¼ 4:398

TABLE 22 Log10 Values

1 2 3 4 yi:: Treatment totals
(y:j:)

1 A ¼ 2:625 B ¼ 1:925 C ¼ 3:000 D ¼ 3:300 10.850 A ¼ y:1: ¼ 10:375
2 B ¼ 2:775 C ¼ 3:000 D ¼ 2:575 A ¼ 1:875 10.225 B ¼ y:2: ¼ 9:600
3 C ¼ 1:450 D ¼ 3:050 A ¼ 2:800 B ¼ 3:425 10.725 C ¼ y:3: ¼ 10:000
4 D ¼ 2:900 A ¼ 3:075 B ¼ 1:475 C ¼ 2:550 10.000 D ¼ y:4: ¼ 11:825

y::k 9.750 11.050 9.850 11.150 41.800 y::: ¼ 41:800
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Total sum of squares:

¼
Xp
i¼1

Xp
j¼1

Xp
k¼1

y2ijk �
y2...
N

¼ ð2:6252 þ 2:7752 þ 	 	 	 þ 3:4252 þ 2:5502Þ � 41:8002

16
¼ ð114:853Þ � ð109:203Þ
¼ 5:650

The results are presented inTable 23.

Step 6. Apply decision rule: Because FC ð0:321Þ < FT ;0:05;3;6 (4.76), one
cannot reject theH0 hypothesis at a ¼ 0:05.

Clearly, the treatments are not signi¢cantly di¡erent as depicted by
this Latin square design. However, from the researcher’s background, she
or he knows very clearly that four subjects are not enough to detect a signi¢-
cant di¡erence, given that one exists. This type of reasoning is extremely
important in the applied research situation�that is, drawing upon one’s
¢eld experience instead of turning the decision-making process over to a
statistical model,which is a model, not an extension of reality.

In addition, the row-to-error ratio (0:041=0:733 ¼ 0:056) is not intui-
tively signi¢cant, nor is the column-to-error ratio (0:142=0:733 ¼ 0:194).
Recall that it needs to be much larger than 1, more on the side of about 5 in
this case, to be signi¢cant.

D. Contrasts

As before,when signi¢cant di¡erences exist between treatment groups, the
investigator will want to determine which treatments or pairs of treatments
di¡er. (The example following would not ordinarily be done and is for
demonstration purposes only.)

TABLE 23 Results

Source of
variance

Sumof
squares

Degrees of
freedom

Mean
square FC

Treatment 0.705 3 0.235 0.321
Rows 0.122 3 0.041
Columns 0.425 3 0.142
Error 4.398 6 0.733
Total 5.65
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V. ORTHOGONAL TREATMENT CONTRASTS

The orthogonal contrasts discussed in Chap. 5 still basically hold for Latin
square design ANOVAs. Recall that for every contrast, one loses one degree
of freedom. There are p� 1 degrees of freedom available. For Example 3,
Table 22, there are 4� 1 ¼ 3 possible contrasts.

Suppose the researcher determines that the treatment e¡ects are sig-
ni¢cant and wants to know:

FromTable 22:

y:1: ¼ 10:375

y:2: ¼ 9:600

y:3: ¼ 10:000

y:4: ¼ 11:825

Because the Latin square is a balanced design, the sumof square contrasts is:

SSci ¼

Pp
j¼1

cjy:j:

 !2

p
Pa
j¼1

c2i

SSc1 ¼ ½1ð10:375Þ þ 0ð9:600Þ þ 0ð10:000Þ þ ð�1Þð11:825Þ�2
4ð12 þ ð�12ÞÞ

SSc1 ¼ 0:26281

SSc2 ¼ ½0ð10:375Þ þ 1ð9:600Þ þ ð�1Þð10:000Þ þ 0ð11:825Þ�2
4ð12 þ ð�12ÞÞ

SSc2 ¼ 0:0200

SSc3 ¼ ½1ð10:375Þ þ ð�1Þð9:600Þ þ ð�1Þð10:000Þ þ 1ð11:825Þ�2
4ð12 þ ð�12ÞÞ

SSc3 ¼ 0:42250

Table 24 presents an ANOVA table adjusted for contrasts, based onTable 23.

Hypothesis Contrasts

H0: m1 ¼ m4 C1 ¼ y:1: � y:4:
H0: m2 ¼ m3 C2 ¼ y:2: � y:3:
H0: m1 þ m4 ¼ m2 þ m3 C3 ¼ y:1: � y:2: � y:3: þ y:4:
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VI. NONORTHOGONAL CONTRASTS

For these contrasts determined after the experiment, nonorthogonal con-
trasts are used instead of orthogonal ones. Those described in Chap. 5 can
be used for Latin square designs. For demonstration purposes, the least sig-
ni¢cant di¡erence (LSD) will be used.

First, the mean treatment values are computed as in Chap. 5.

�y:1: ¼ 10:375
4
¼ 2:594

�y:2: ¼ 9:600
4
¼ 2:400

�y:3: ¼ 10:000
4
¼ 2:500

�y:4: ¼ 11:825
4
¼ 2:956

LSD ¼ ta=2;ðp�2Þðp�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

p

s
Letting a ¼ 0:05; tð0:025;6Þ ¼ 2:447 (from table A.2)

LSD ¼ 2:447

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð0:733Þ

4

r
¼ 0:605

LSD ¼ 2:447ð0:605Þ
¼ 1:480

TABLE 24 Adjusted for Contrasts ANOVATable Based onTable 23

Source of
variance

Sumof
squares

Degrees of
freedom

Mean
square FC

Treatment 0.705 3 0.235 0.321
C1 0.2628 1 0.2628a

C2 0.0200 1 0.0200
C3 0.4225 1 0.4225
Rows 0.122 3 0.041
Columns 0.425 3 0.142
Error 4.398 6 0.733
Total

aNote that eachof thep� 1contrasts is comparedwith theerror term.Forexample, todetermine
FC(C1) = 0.2628/0.733 = 0.3585, and Ftabled = Fa, 1, ((p-2)(p-1)) or Fa(1,6).
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So any pair ðj�y:i: � �y:j:jÞ of means di¡ering more than 1.480 are signi¢-
cantly di¡erent from each other at a ¼ 0:05. There will be pðp� 1Þ=2 con-
trasts¼ 4ð3Þ=2 ¼ 6.

�y:1: � �y:2: ¼ �j2:594� 2:400j ¼ 0:194 < 1:480NSD�

�y:1: � �y:3: ¼ �j2:594� 2:500j ¼ 0:094 < 1:480NSD
�y:1: � �y:4: ¼ �j2:594� 2:956j ¼ 0:362 < 1:480NSD
�y:2: � �y:3: The rest of the contrasts are performed in the same way.
�y:2: � �y:3:
�y:2: � �y:4:
�y:3: � �y:4:

Table 25 is a 4� 4 Latin square design in MiniTab. Table 26 provides
the complete data,which were input (columns C1through C4), the predicted
ŷ values (C5), and the residual values (C6).MiniTab can also be used to com-
pute the means and standard deviations of the treatment data (seeTable 27).

Note:The con¢dence interval computations for the �y:j: are:

�y:j: � ta=2;ðp�2Þðp�1Þ

ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

s

�y:j: � t0:025;6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:7329

4

r ð23Þ

It is always useful to perform a model adequacy check (Fig. 9)
Notice that the residual versus predicted values are not patterned.

Figure 10 presents the residual versus the subject (column) plot, which is
not extreme. Figure 11 provides the treatment versus residual plot, which

TABLE 25 MiniTab 4� 4 Latin Square Design

Source DF Seq SS Adj SS Adj MS F P

C2 Row 3 0.1222 0.1222 0.0407 0.06a 0.981
C3 Column 3 0.4250 0.4250 0.1417 0.19 0.897
C4 Treatment 3 0.7053 0.7053 0.2351 0.32 0.811
Error 6 4.3975 4.3975 0.7329
Total 15 5.6500

aThe FC and pvalues for rowand columnare ignored.

�NSD=not signi¢cantly di¡erent.
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again is not abnormal. Figure 12 presents the anatomical sites versus the
residual. Figure 13 and Table 28 present the stem-and-leaf display and the
letter-value display of the residuals. There is a gap in the data and a slight
skew to the upper tail but not an excessive one.

VII. REPLICATION IN LATIN SQUARE DESIGNS

As useful as the Latin square design can be, its major £aw is the small sample
size it uses. In the previous example, there were four products and four

TABLE 26 Complete Data Minitab Display

Row
C1
yijk

C2
I

C3
j

C4
k

C5
ŷijk

C6
y� ŷ ¼ e

1 2.625 1 1 1 2.51875 0.106250
2 2.775 2 1 2 2.16875 0.606250
3 1.450 3 1 3 2.39375 �0.943750
4 2.900 4 1 4 2.66875 0.231250
5 1.925 1 2 2 2.65000 �0.725000
6 3.000 2 2 3 2.59375 0.406250
7 3.050 3 2 4 3.17500 �0.125000
8 3.075 4 2 1 2.63125 0.443750
9 3.000 1 3 3 2.45000 0.550000
10 2.575 2 3 4 2.75000 �0.175000
11 2.800 3 3 1 2.51250 0.287500
12 1.475 4 3 2 2.13750 �0.662500
13 3.300 1 4 4 3.23125 0.068750
14 1.875 2 4 1 2.71250 �0.837500
15 3.425 3 4 2 2.64375 0.781250
16 2.550 4 4 3 2.56250 �0.012500

TABLE 27 Mean Printout Chart

Treatment Mean Stdev

1 2.594 0.4281
2 2.400 0.4281
3 2.500 0.4281
4 2.956 0.4281
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anatomical sites, but the testing on only four subjects is not useful because
there are no replicates. Hence, in cases in which di¡erent column e¡ects
(subjects) are used to increase the sample size but the same anatomical sites
(row) and treatments are used, the ANOVA procedure needs to be modi¢ed.
Themodi¢ed ANOVAprocedure is provided inTable 29, and Table 30 shows
the basic format for data computation.

The model is:

yijkl ¼ mþ yi þ yj þ yk þ Rl þ Eijkl

where i ¼ row factor, 1, 2, 3, 4 (Anatomical sites)
j ¼ treatment 1; 2; 3; 4 1 ¼ A; 2 ¼ B; 3 ¼ C; 4 ¼ D
k ¼ subject block1, 2, 3, 4
l ¼ replicate within subject block 1, 2, 3 (Each subject block con-

tains n¼ 3 replicate subjects).
R ¼ replicates

FIGURE 9 Predicted valueversus residual.
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FIGURE 11 Treatment versus residual plot.

FIGURE 10 Subject (column) versus residual plot.
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FIGURE 12 Anatomical sites versus residual plot.

FIGURE 13 Stem-and-leaf display residual values.
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Using the data inTable 30, let us compute the treatment value.
Treatments ( j):

y:1:: A ¼ 9:4þ 10:4þ 9:4þ 10 ¼ 39:2
y:2:: B ¼ 11:2þ 11:6þ 10:9þ 11:2 ¼ 44:9
y:3:: C ¼ 8:7þ 8:7þ 9:0þ 9:5 ¼ 35:9
y:4:: D ¼ 6:5þ 7:7þ 7:9þ 7:9 ¼ 30:0

Replicates (l ):

y:::1 ¼ rep1 ¼ 3:3þ 3:5þ 2:9þ 1:8þ 4:0þ 3:0þ 2:8þ 3:5þ 2:9

þ 2:4þ 3:3þ 3:5þ 2:6þ 3:5þ 3:7þ 3:2 ¼ 49:9

TABLE 28 Letter-Value Displayof Residual Value Y � Ŷ ¼ e

Depth Lower Upper Mid Spread

N 16
M 8.5 0.087 0.087
H 4.5 �0.419 0.425 0.003 0.844
E 2.5 �0.781 0.578 �0.102 1.359
D 1.5 �0.891 0.694 �0.098 1.584

1 �0.944 0.781 �0.081 1.725

TABLE 29 Modified ANOVA Table

Source of
variance

Sumof
squares

Degrees of
freedom

Mean
square FC

Treatments 1
np

Pp
j¼1 y

2
:j:: � y2::::

N p� 1 SSTREATMENT
p�1

MSTREATMENT
MSERROR

Rows 1
np

Pp
i¼1 y

2
i::: � y2::::

N p� 1 SSROWS
p�1

Columns 1
p

Pn
l¼1
Pp

k¼1 y
2
::kl �

Pn
l¼1

y2:::l
p2 nðp� 1Þ SSCOLUMNS

nðp�1Þ

Replicates 1
p2
Pn

l¼1 y
2
:::l � y2::::

N ðn� 1Þ SSREPLICATES
n�1

Error SSTOTAL � SSTREATMENT

� SSROW � SSCOLUMN

� SSREPLICATES

ðp� 1Þðnp� 1Þ SSERROR
ðp�1Þðnp�1Þ

Total
Pp

i¼1
Pp

j¼1
Pp

k¼1
Pn

l¼1 y
2
ijkl � y2::::

N np2 � 1
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y:::2¼rep2¼3:0þ3:9þ3:0þ2:0þ3:7þ2:8þ2:5þ3:4þ3:0þ2:8þ3:2þ
3:6þ2:8þ3:4þ3:9þ3:3¼50:3

y:::3¼rep3¼3:1þ3:8þ2:8þ2:7þ3:9þ2:9þ2:4þ3:5þ3:1þ2:7þ2:9þ
3:8þ2:5þ3:1þ3:6þ3:0¼49:8

SSROW ¼ 1
np

Xp
i¼1

y2i... �
y2...:
N

¼ 1
3ð4Þ ð37:9

2 þ 37:82 þ 37:02 þ 37:32Þ � 1502

48

¼ 468:795� 468:750 ¼ 0:045

SSTREATMENT ¼ 1
np

Xp
j¼1

y2:j:: �
y2...:
N

¼ 1
3ð4Þ ð39:2

2 þ 44:92 þ 35:92 þ 30:02Þ � 1502

48

¼ 478:455� 468:750 ¼ 9:705

SSREPLICATES ¼ 1
p2
Xn
i¼1

y2...l �
y2...:
N

¼ 1
42
ð49:92 þ 50:32 þ 49:82Þ � 468:750

¼ 468:759� 468:750

¼ 0:009

SSCOLUMN ¼ 1
p

Xn
l¼1

Xp
k¼1

y2::kl �
Xn
l¼1

y2...l
p2

¼ 1
4
ð11:52 þ 11:92 þ 12:42 þ 13:32þ

12:42 þ 12:72 þ 12:12 þ 12:62 þ 12:52þ

13:02 þ 13:42 þ 12:22Þ � 49:92

42
þ 50:32

42
þ 49:82

42

� �
¼ 469:595� 468:759

¼ 0:836
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SSTOTAL ¼
Xp
i¼1

Xp
j¼1

Xp
k¼1

Xn
l¼1

y2ijkl �
y2...:
N

¼ ð3:32 þ 3:02 þ 3:12 þ 3:12 þ 3:12 þ 	 	 	 þ 3:22

þ 3:32 þ 3:02Þ � 1502

48
¼ 480:600� 468:750 ¼ 11:850

SSERROR ¼ SSTOTAL � SSTREATMENT � SSROW � SSCOLUMN

� SSREPLICATES

¼ 11:850� 9:705� 0:045� 0:836� 0:009

¼ 1:255

Next we construct an ANOVA table (Table 31).
Ftabled ¼ Fðaðp�1;ðp�1Þðnp�1ÞÞ ¼ Fð0:05;3;33Þ ¼ 2:92
Because Fcð85:13Þ > FT (2.92), rejectH0, a ¼ 0:05.

Clearly, employing n ¼ 3 replicates in this Latin square designwas use-
ful.None of the ratios, SSROW=SSE, SSCOLUMN=SSE, SSREPLICATES=SSE,were
large. In fact, none were greater than 1. In the next experiment of this type,
the researcher can ignore anatomical site-to-site di¡erences.They were not
signi¢cantly di¡erent.The researcher can also ignore the subject-to-subject
di¡erences.Thismight be a little tricky because there are extreme subject-to-
subject di¡erences inweight, sex, health, and age.But in this study, it was not
signi¢cant. The replication e¡ect was minimal in that we probably could
have detected a di¡erence with these data using four subjects, but this also
has the disadvantage of having too few degrees of freedom to detect di¡er-
ences using only four individuals as we saw in the last situation.

TABLE 31 ANOVA

Source of
variation

Sumof
squares

Degrees of
freedom Mean square FC

SSTREATMENT 9.705 3 3.235
3:235
0:038

¼ 85:13
SSROW 0.045 3 0.015
SSCOLUMN 0.836 9 0.093
SSREPLICATES 0.009 2 0.005
SSERROR 1.255 33 0.038
SSTOTAL 11.850
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In future studies, if the researcher ignored the anatomical di¡erences,
it would be easier to conduct this study using a randomblock design, subjects
being the blocks and products being the treatments.Latin square values need
to be collected in random order, so that order needs to be randomly
determined.

Concerning missing values, it is a di⁄cult topic. Because there are so
few degrees of freedom in a standard Latin square design and the design is
more useful for pilot studies, I recommend collecting the data for the squares
prior to stopping the test. If the value for the square is £awed, it can be reran-
domized, with the remaining needed square observations to complete the
study.

If the study, however, has been completed before amissing value can be
rerun, it must be a judgment call in the experiment to collect a new value or
estimate the missing value. I have had far better luck collecting a new value,
even though that value may be unconsciously biased. I strongly prefer col-
lecting data�even when a possible bias is involved�instead of computing
a theoretical value. For the rerun biased data, a researcher can use ¢eld and
research experience to help determine its reasonableness. That cannot be
done with a theoretical data point.

However, if the researcher would like to compute a theoretical data
value, the procedure is nearly identical to the randomized block design. For
a p� p standard Latin square the yijk value is estimated:

yijk ¼
pðy0i		 þ y0:j: þ y0::kÞ � 2y0...
ðp� 2Þðp� 1Þ

where p ¼ number of squares
y0i:: ¼ row total containing the missing value
y0:j: ¼ treatment group j total with missing value
y0::k ¼ column total with missing value

Example 4: Drawing onTable 15, a standard 4� 4 Latin square is gi-
ven inTable 32.

The value in row 2 ð y2::Þ, column 3 ð y::3Þ, and treatment D ðy:4:Þ is miss-
ing.To estimate that missing value:

p ¼ 4

y0i:: ¼ 7:650

y0::k ¼ 7:275

y0:4: ¼ D ¼ 2:900þ 3:050þ 3:300 ¼ 9:25

y0... ¼ 39:225
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Let us now predict the missing value:

ŷ243 ¼
4ð7:650þ 9:25þ 7:275Þ � 2ð39:225Þ

ð4� 2Þð4� 1Þ ¼ 18:25
6

¼ 3:042

The value estimated to put into the Latin square for value
y243 ¼ 3:042. Recall that for this estimate, one degree of freedom for the er-
ror term is lost. The degrees of freedom for SSERROR are then ðp� 2Þ
ðp� 1Þ � 1, or ð4� 2Þð4� 1Þ � 1 ¼ 5,which is not many degrees of freedom
to work with.

TABLE 32 Standard 4� 4 Latin Square Design

1 2 3 4

1 A¼ 2.625 B¼1.925 C¼ 3.000 D¼ 3.300 10.850
2 B¼ 2.775 C¼ 3.000 D¼Xa A¼1.875 7.650¼ y02..
3 C¼1.450 D¼ 3.050 A¼ 2.800 B¼ 3.425 10.725
4 D¼ 2.900 A¼ 3.075 B¼1.475 C¼ 2.550 10.000

y..k¼ 7.275 39.225¼ y0...

aX¼missing value.

TABLE 33 Rowand Column Formulas

Source
Sumof
squares

Degrees of
freedom

Rowsnot
replicated

1
np

Pp
i¼1

y2i::: � y2:::
N p� 1

Rows replicated 1
p

Pp
i¼1

Pp
i¼1

y2i:::l �
Pn
i¼1

y2:::l
p2 nð p� 1Þ

Columns not
replicated

1
np

Pp
k¼1

y2::k: � y2::::
N p� 1

Columns
replicated

1
p

Pn
l¼1

Pp
k¼1

y2:::kl �
Pn
l¼1

y2:::l
p2 nðp� 1Þ

SSERROR Bysubtraction
as before

When columnor row
replicated

ðp� 1Þðnp� 1Þ

When both columnand
rows replicated

ðp� 1Þ½nðp� 1Þ � 1�
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The repeated replicate Latin square design can be adapted quickly
for cases where the rows and=or columns are the replicated values. In that
case, the row and column formulas are presented in Table 33.

The same calculation as for Table 23 is used for the treatments,
replicates, total sum of squares, degrees of freedom, and mean square
error.

In cases where data are missing, I have had better performance with
collecting new data points. In fact, it is a good idea to be prepared to
address any missing data points as they become known throughout the
course of the study. If the value is lost when remaining square values need
to be collected, that value’s run time should be randomized and the
remaining observations collected. Again, the emphasis is on collecting
data grounded in one’s ¢eld, not on theoretically constructed values un-
less there are no other choices.

Finally, whatever course the researcher took, that information needs
to be provided to the readers so that they can make their own determina-
tion concerning the data, their presentation, and their interpretation.

VIII. INDIVIDUAL TESTS

After the ANOVA analysis and a signi¢cant treatment e¡ect are noted, the
researcher will want to determine which treatment groups di¡er from one
another.

The methods from Chap. 5 for a completely randomized design can be
used for the Latin square ANOVAevaluation with a few adjustments.

1. Substitute p in place of n in the completely randomized design in
Latin squares.

2. The number of degrees of freedom for the error term will be used
for the degrees of freedom in ¢nding con¢dence intervals, etc.

3. Individual con¢dence interval values will use p in place of n for
nonreplicated Latin squares and pn for replicated ones.�

We have now discussed and applied some pretty advanced statistical
procedures. In the next chapter we will expand our ANOVA to include two
factors.

�The individual con¢dence intervals for each mean can be calculated from:
�y:j: � ta=2;ðp�2Þðp�1Þ

ffiffiffiffiffiffiffiffi
MSE
p

q
for nonreplicated Latin squares

�y:j: � ta=2;ðp�1Þðnp�1Þ
ffiffiffiffiffiffiffiffi
MSE
pn

q
for one block / row replicated

�y:j: � ta=2;ðp�1Þ½ðnp�1Þ�1�
ffiffiffiffiffiffiffiffi
MSE
pn

q
for both block/row replicated
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7

Completely Randomized Two-Factor Factorial

Designs

For the investigator, factorial designs provide a greater dimension to statis-
tical analysis than has previously beendiscussed. In factorial designs, at least
two variable factors are evaluated. Recall that, in Chap. 6, the discussion
focused on one experimental factor, one experimental factor with blocking
in one direction (complete block design), and one experimental factor with
blocking in two directions (Latin square design).

The researcher may ask,why not just compare one factor at a time? For
example, if one wanted to compare (1) an antimicrobial product’s e⁄cacy
relative to the concentration of the antimicrobial in several formulas as well
as (2) the length of handwashing time, one could evaluate the concentration
e¡ects in one ANOVA and then evaluate the length of handwashing time in
another ANOVA. However, any interaction a¡ecting the product’s e⁄cacy
related to both concentration and application time will probably not be dis-
covered.This can present a major problem. Hence, the main advantage of a
two-factor design over separate one-factor designs is detection of such inter-
actions,when present.

In a two-factor design, the two factors are termed main e¡ects. If one
has factors A and B (application time ¼A and antimicrobial concentration
¼B), these are the main e¡ects.The selection of which e¡ect isAor B is arbi-
trary andmakes no di¡erence. In general, the concept of comparison is quite
simple. Suppose we have two factors, A and B, both having two levels, high
and low. Figure1presents a display of this.
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The high level for factor B is the average of ðbþ dÞ=2.
The low level average of factor B is ðaþ cÞ=2.
The average main e¡ect of factor B is �B ¼ ðbþ dÞ=2� ðaþ cÞ=2.
The high-level average of factorA is ðaþ bÞ=2.
The low-level average of factorA is ðc þ dÞ=2.
The average main e¡ect of factorA is �A ¼ ðaþ bÞ=2� ðc þ dÞ=2.
Let us now re¢ne our view of a two-factor factorial. Suppose factorA is

the length of application, 60 seconds and 30 seconds, and factor B is the
antimicrobial concentration levels, high (20%) and low (5%).

Both factors A and B�the main e¡ects�are independent variables.
That is, factor A by itself does not in£uence factor B. But often, when pro-
ducts are applied in tandem, they have additive e¡ects on the response vari-
able (dependent variable), the microbial population (on log10 scale). Figure 2
portrays this.

As can be seen from Fig. 2, the antimicrobial properties and applica-
tion times both determine the microbial populations that remain after treat-
ment. The higher the concentration of the antimicrobial compound and the
longer the application, the lower the microbial counts.When both the high
concentration of antimicrobial compound and the longer time of application

FIGURE 1 Displayof high and low levels for factors Aand B.
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are used, the lowest microbial counts result.Clearly B1 is more e¡ective than
B2.

Notice that the shapes of B1 and B2 are parallel, or additive.That is, the
change in e⁄cacy from B2 toB1 is by a constant amount.

However, suppose that after using the products, the data in Fig. 2 were
not observed, but instead the data in Fig. 3 were observed. Now we cannot
discuss both main e¡ects as one factor being better than another. Now we
have interaction of the main e¡ects.That is,we must take into consideration
both main e¡ects relative to each other. For example, B2 is more e¡ective
than B1 when applied for 30 seconds but less e¡ective when applied for 60
seconds. E⁄cacy depends upon which time of application is used at what
antimicrobial concentration. When interaction of main e¡ects is present,
main e¡ects cannot be evaluated by themselves.Theymust be evaluatedwith
respect to the other main e¡ect.

The subject of interaction is a key advantage in using factorial designs.
The interaction is oftenmissedwhen anexperimenter comparesmain e¡ects
one at a time�for example,using a one-factorANOVAmodel for antimicro-
bial concentration and another for product application. In addition, signi¢-
cant interaction often masks themain e¡ects.For example, consider the case
in Fig. 4.Here we see that at factorA1,B1 is less e¡ective thanB2.However, at

FIGURE 2 Independent variables’effects on responsevariable.
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FIGURE 3 Interactionofmain effects.

FIGURE 4 Factors Aand B cancel each otherout.
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factorA2, B2 is less e¡ective�by approximately the same amount B1 was at
factorA1.The e¡ects are clearly signi¢cant, but as main e¡ects, factorA and
factorB cancel each other out.Again, this interaction component can be dis-
coveredin factorialdesignsbutwillbemissed in ‘‘onefactoratatime’’designs.

Other advantages of factorial designs include the following:

1. They aremore experimental-unit e⁄cient than one factor at a time.
2. They utilize the data more e¡ectively than one-factor-at-a-time

procedures.
3. As the factors increase beyond two, the points in one and two are

more pronounced.

The use of factorial experimental designs is extremely important to the
applied researcher. In pilot or small-scale studies where multiple indepen-
dent values are used, an understanding of the principle is critically impor-
tant. Probably the most versatile is the two-factor factorial model with
various levels within each factor. Also, the concept of replication of each
treatment at each level is very important.

A three-factor factorial design is also useful at times, but it is complex
and more di⁄cult to understand, not from a computation perspective but
from one of data relevance and application. Any design beyond a three-
factor factorial has little value in applied research conditions.

A linear regression model can be used to compute all factorial designs
using dummy variables.However, this book uses an analysis of variance per-
spective, and the results are the same. Factorial or analysis of variance
designs have qualitative independent variables. Regression generally has
quantitative values for the independent variables but, with the adoption of
dummy variables, can be designed to utilize qualitative variables.

I. TWO-FACTOR ANALYSIS OF VARIANCE (ALSO KNOWN
AS A TWO-WAY ANALYSIS OF VARIANCE)

A. Fixed Effects

In the two-factor ANOVA model, there are two main e¡ect variables, A and
B, the interaction of the main e¡ects, AþB, and the random error e, all of
which are measured.

The model is written as:

yijk ¼ mþ Ai þ Bj þ ðABÞij þ Eijk

where yijk¼ the value of the ithA factor, the jthB factor, the ijth interaction
factor, and the kth replicate within the treatments A and B

m¼ the common mean
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Ai¼ the ith treatment in factorA
Bj¼ the jth level in factor B
(AB)ij¼ the interaction between factorsA and B
Eijk¼ the random error

B. Randomization

The randomization scheme of this model is important and is a completely
randomized design. Suppose one is designing a study with two factors, A
and B, factor A at three levels and factor B at two levels with two replicates
per level (Table1).

There are a�b� n or 3�2� 2¼12 observations. This design is also
referred to as a 3�2 factorial design having three rows and two columns.
The sampling order, as just stated, is completely random.That is, each yijk is
as likely to be collected at any particular time as any other yijk. This is an
extremely important restriction of this two-factorANOVAdesign.

Let us now compare the one-factor completely randomized ANOVA,
the complete block one-factor ANOVA, and the two-factor ANOVA, based
upon the sum-of-squares computation.

Notice in Fig. 5A that the total sum of squares can be partitioned into
the sum of squares treatment (SSTREATMENT) and sum of squares error
(SSERROR).Hence the model is additive.That is,

SSTOTAL ¼ SSTREATMENT þ SSERROR

Notice in Fig. 5B that the randomized block design is similar to the
completely randomized design except that the error sum of squares (SSE) is

TABLE1 Two Factors at Three LevelswithTwo Replicates

FactorB
1 2

FactorA 1 y111 y121
y112 y122

2 y211 y221
y212 y222

3 y311 y321
y312 y322

Numberof levels of A¼ a¼ 3.
Numberof levels of B¼ b¼ 2.
Numberof replicates per level ¼n¼ 2.
yijk ¼ the individual measurement observation, where i¼ factor A (row
effect), j¼ factor B (column effect), k¼ replicates 1, 2, and on to ‘‘n’’ (i.e.,
k¼ 1, 2, . . . , n).
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FIGURE 5 ANOVAdesigns.
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further partitioned into SSBLOCKS and SSERROR. This makes the complete
block design more e⁄cient statistically (i.e., more powerful), for the random
error is minimized.

Figure 5C portrays the two-factor ANOVA design. Notice that the
treatment sum of squares is partitioned into both factors A and B and inter-
action between the factor components.

C. Hypotheses

There are three testable hypotheses in the two-factor factorial design. The
¢rst two ask whether there is a treatment e¡ect. If yes, the treatment e¡ect
is not equal to zero. If no, the treatment e¡ect is equal to zero. The third
hypothesis asks whether there is an interaction between factors A and B. If
not, the interaction e¡ect is equal to zero.

1. FactorA H0:A1¼A2¼ 			 ¼Aa¼ 0
HA: At least oneAi 6¼ 0

2. Factor B H0:B1¼B2¼ 			 ¼Bb¼ 0
HA: At least one Bj 6¼ 0

3. FactorAþB H0: (AB)ij¼ 0
Interaction HA: (AB)ij 6¼ 0

Note: The hypothesis statement can just as easily be written as pre-
viously shown (i.e., factor A, H0: m1¼ m2¼ 			 ¼ ma and factor B,
m1¼ m2¼ 			 ¼ mb).

D. Notation and Formula

Treatment A consists of the yi.. values, i¼1, 2, . . . a. Treatment B consists of
the y.j. values, j¼1, 2, . . . b. The interaction of treatments is AþB¼ yij. The
total value for the sum of the yijks is designated y. . . .

The total model is written:

Treatment A: yi:: ¼
Xb
j¼1

Xn
k¼1

yijk ; �yi:: ¼ yi::
bn

Treatment B: y:j: ¼
Xa
i¼1

Xn
k¼1

yijk; y	j	 ¼
y	j	
an

AB interaction : yij: ¼
Xn
k¼1

yijk; �yij: ¼
yij:
n
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Total: y . . . ¼
Xa
i¼1

Xb
j¼1

Xn
k¼1

yijk; �y . . . ¼ y . . .
abn

SSTOTAL ¼ SSFACTOR A þ SSFACTOR B þ SSAB þ SSERROR

E. Degrees of Freedom

The degrees of freedom components for this model are presented in
Table 2.The expected mean squares are:

EðMSAÞ¼E SSA
a�1
� �¼ s2|{z} þ

bn
Pa
i¼1

A2
i

a�1|fflfflfflffl{zfflfflfflffl}
Randomerror
component

TreatmentA
effect

ð1Þ

EðMSBÞ¼E SSB
b�1
� �¼ s2|{z} þ

an
Pb
j¼1

B2
j

b�1|fflfflfflffl{zfflfflfflffl}
Randomerror
component

TreatmentB
effect

ð2Þ

EðMSABÞ¼E SSAB
ða�1Þðb�1Þ
	 


¼ s2|{z} þ
n
Pa
i¼1

Pb
j¼1
ðABÞ2ij

ða�1Þðb�1Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Randomerror
component

AB interaction
effect

ð3Þ

EðMSEÞ ¼ E
SSE

abðn� 1Þ
� �

¼ s2|{z}
Random error
component

ð4Þ

TABLE 2. Degrees of Freedom

Effect Degrees of freedom

Treatment A a�1
Treatment B b�1
A�B interaction (a�1)(b�1)
Error ab(n�1)
Total abn�1
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Notice that when the treatment or interaction e¡ect is zero, the
expected mean square is merely the random error (s2) component. The FC
tests for each main e¡ect and the interaction are presented inTable 3.

F. Two-Factor ANOVA Analysis Strategy

For the researcher, the two-factor experimental design o¡ers an advantage
of detecting interaction between the two main e¡ect factors, A and B. From
a research perspective, interaction means that one cannot state unequivo-
cally that one treatment is di¡erent from another. They di¡er in speci¢c
amounts but relative to the speci¢c levels measured in each factor. Let me
give you an example.

Say the researcher wants to compare two wash times (factorA), 1 min-
ute and 2minutes (Fig. 6).The researcher alsowants to compare a handwash
with bare hands only (no sponge brush) and with the use of a sponge brush.
By plotting factor B in terms of log10 microbial counts remaining on the
hands following the wash procedure versus wash times (factor A), the
researcher can see graphically that interaction is present (nonparallel line).
But so what?

The researcher now knows that factorA cannot be discussed with fac-
tor B without discussing the individual levels within each factor. She or he
cannot say the use of a sponge brush in washing is more e¡ective in reducing
themicrobial populations residing on the hands than is the nonsponge wash.
Because interaction is present, statements must be conditional. The sponge
and wash are equivalent at a1-minute wash, but the sponge is better at 2min-
utes than a barehand wash procedure in reducing microbial populations on
the hands.

TABLE 3. ANOVATable forTwo-Factor, ANOVAFixedModel

Source of
variance

Sumof
squares

Degrees of
freedom

Mean
square Fc Ftabled

Treatment A SSA a�1 SSA
a�1 ¼ MSA

MSA
MSE

Fa½ða�1Þ;abðn�1Þ�

Treatment B SSB b�1 SSB
b�1 ¼ MSB

MSB
MSE

Fa½ðb�1Þ;abðn�1Þ�

A�B interaction SSAB ða�1Þðb�1Þ SSAB
ða�1Þðb�1Þ ¼ MSAB

MSAB
MSE

Fa½ða�1Þðb�1Þ;abðn�1Þ�

Error SSE ab(n�1) SSE
abðn�1Þ ¼ MSE

Total SST abn�1
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Because of this situation, itmakes no sense to performa hypothesis test
of the main e¡ects when interaction is present. Hence, from a practical
standpoint, when performing the hypothesis test, perform the interaction
test ¢rst. If it is signi¢cant, there is no need to perform the main e¡ects tests.
However, it is important that one create a graphic display, such as Fig. 6, to
see the interaction clearly.

Let us look at a similar model when no interaction is present (Fig.7).
Notice, as depicted by parallel factor B lines on the two A time points,

that the interaction is not signi¢cant.Here, themain e¡ects are signi¢cant as
blanket statements.One can state that factor B1 (the use of the bristle brush)
is more e¡ective in reducing the microorganisms residing on the hands than
a sponge brush wash (factor B2) at both levels of factorA.

In summary, perform the interaction test ¢rst.

H0: ðABÞij ¼ 0

HA: ðABÞij 6¼ 0

If the null hypothesis is rejected, one cannot, without restriction, test the
two main e¡ects, factors A and B. It is this researcher’s practice not even

FIGURE 6 Treatment interaction.
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to test the main e¡ects hypotheses because they are meaningless as inde-
pendent tests. Instead, interpret what the data present by graphing the
interaction, not just stating that the interaction hypothesis is signi¢cant
at a.

G. Manual Computing Formulas

SSTOTAL ¼
Xa
i¼1

Xb
j¼1

Xn
k¼1

y2ijk �
y2:::
abn

ð5Þ

SSA ¼ 1
bn

Xa
i¼1

y2i:: �
y2:::
abn

ð6Þ

SSB ¼ 1
an

Xb
j¼1

y2:j: �
y2:::
abn

ð7Þ

FIGURE 7 No interaction between treatments.
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SSAB0 ¼ 1
n

Xa
i¼1

Xb
j¼1

y2ij: �
y2:::
abn

Step 1

SSAB ¼ SSAB0 � SSA � SSB Step 2

ð8Þ

SSERROR ¼ SSTOTAL � SSAB � SSA � SSB ð9Þ

Let us look at an example.
Example 1: Suppose a researcher has developed three di¡erent

moisturizing lotion prototypes and wishes to evaluate how e¡ective they
are in maintaining skin moisture. The better the skin holds the moisture,
the more intact the skin is. The total moisture content of the skin is mea-
sured in terms of electrical resistance in this design. The more resistance
(the larger the number), the greater the amount of moisture held by the
skin and the greater degree of moisturization. The researcher will use 48
human subjects in this study. There will be three di¡erent treatments
comprising the moisture factor and two categories for the sex-of-subject
factor. This design, then, has 3�2¼ 6 categories, each replicated with
eight subjects. The treatment assignments of 48 subjects are completely
randomized, but the sex categories of male and female are predetermined.
In actuality, males and females are not randomly assigned a sex category.
They are, however, completely randomized in the run order of the study
(Table 4).

Let us use the six-step procedure to test this example.

Step1. Formulate the hypothesis.
yijk ¼ mþ Ai þ Bj þ ðABÞij þ Eijk

Let rows be factor A, or sex; let columns be factor B, or moisturizing
product.

Factor A: H0: m1.¼ m2. (females ¼ males in moisturization levels
after treatment)

HA: m1. 6¼ m2.(females 6¼ males in moisturization levels
after treatment)

Factor B: H0: m1.¼ m2.¼ m3. (moisturizer1¼moisturizer 2¼ moist-
urizer 3 in ability to moisturize the skin)

HA: At least one of the moisturizers is di¡erent from the
other two

Interaction: H0: There is no signi¢cant interaction between factors A
andB; (AB)ij¼ 0

HA:The above is not true; (AB)ij 6¼ 0.

Completely Randomized Two-Factor Factorial Designs 255



Step 2. In this case, the researcher assigned a¼ 0.05 for each hypo-
thesis

n¼ number of replicates¼ 8
a¼ number of categories of factorA¼ 2
b¼ number of categories of factor B¼ 3

Step 3. Identify the hypothesis test formula.There are three:

Treatment A: MSA
MSE
¼ FC. If FC>Ftabled, rejectH0.

Treatment B: MSB
MSE
¼ FC. If FC>Ftabled, rejectH0.

Interaction: MSAB
MSE
¼ FC. If FC>Ftabled, rejectH0.

In this evaluation, the ¢rst FC value calculated will be the interac-
tion. If it is signi¢cant, the main e¡ects need not be evaluated.

Step 4. Identify the tabled critical values at a¼ 0.05.
Treatment A: FT;a;ða�1Þ;abðn�1Þ ¼ FT;0:05;ð1;42Þ¼4:08. If FC> 4.08, reject
H0 at a¼ 0.05.

Treatment B: FT;a;ðb�1Þ;abðn�1Þ ¼ FT;0:05;ð2;42Þ¼3:23. If FC> 3.23, reject
H0 at a¼ 0.05.

Interaction: FT;a;ða�1Þðb�1Þ;abðn�1Þ ¼ FT;0:05;ð2;42Þ¼3:23. IfFC> 3.23, reject
H0 at a¼ 0.05.

Step 5. The next step is to conduct the study. In this study, skin moist-
urization measurements are conducted one individual at a time,
using a completely randomized order. This has been conducted,
and Table 5 presents the resultant data.

Once the data have been collected, the researcher should perform an
EDA to become intimate with the data. Given that the researcher
¢nds the data to be normal, etc., the actual ANOVA computation
can be made (Table 6).

TABLE 4. Example 1Data

Moisturizers

1 2 3

Sex Male 8 subjects 8 subjects 8 subjects
Female 8 subjects 8 subjects 8 subjects
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SSA ¼ 1
bn

Xa
i¼1

y2i:: �
y2...
abn

¼ 1
3 	 8 ð744

2 þ 6182Þ � 13622

2 	 3� 8
¼ 330:75

SSB ¼ 1
an

Xb
j¼1

y2:j: �
y2...
abn

¼ 1
2 	 8 ð372

2 þ 4362 þ 5542Þ � 13622

48
¼ 1065:50

SSAB
0 ¼ 1

n

Xa
i¼1

Xb
j¼1

y2ij: �
y2...
abn

¼ 1
8
ð1972 þ 2192 þ 3282 þ 1752 þ 2172 þ 2262Þ � 13622

48

¼ 1746:25

SSAB ¼ SSAB0 � SSA � SSB

¼ 1746:25� 330:75� 1065:50 ¼ 350:00

SSTOTAL ¼
Xa
i¼1

Xb
j¼1

Xn
k¼1

y2ijk �
y2...
abn

¼ ð322 þ 272 þ 222 þ 192 þ 282 þ 232 þ 252 þ 212 þ 	 	 	

þ 262 þ 302 þ 322 þ 292Þ � 13622

48

¼ 41; 014:00� 13622

48

SSTOTAL ¼ 2367:25

SSERROR ¼ SSTOTAL � SSAB � SSA � SSB

¼ 2367:25� 350:00� 1065:50� 330:75

SSERROR ¼ 621:00
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Interaction:
H0: Interaction between the main e¡ects¼ 0; ðABÞij ¼ 0
HA: The above is not true; ðABÞij 6¼ 0
Because FCð11:832Þ > FTð3:23Þ, rejectH0.

Interaction between the main e¡ects is signi¢cant. The next step is to
graph the interaction e¡ect,which appears in Fig. 8.

�yij: ¼ individual cell means of electrical resistance graphed in Fig. 8
�y11: ¼ 197=8 ¼ 24:63
�y12: ¼ 219=8 ¼ 27:38
�y13: ¼ 328=8 ¼ 41:00
�y21: ¼ 175=8 ¼ 21:88
�y22: ¼ 217=8 ¼ 27:13
�y23: ¼ 226=8 ¼ 28:25
Step 6. Once we see that interaction between the main e¡ects is pre-
sent,we need to be careful in making blanket statements concerning
the main e¡ects.

The interaction is between sex and product 3. That is, product 3 is a
much better moisturizer (higher skin resistance means greater moisture-
holding ability) than products1or 2 when usedwith female subjects. Product
3, when used by males, is less dramatically e¡ective than when used by
females. Products 1 and 2, on the other hand, appear to have no interaction
between them, providing roughly the same results (electrical resistance
readings) when used by males or females. In practice, one can still make
sense of the other two products, 1 and 2, relative to the sex factor from the
main e¡ects tests.

Let us evaluate the main factor e¡ects, even though we know, from the
interaction, that blanket statements concerning the main e¡ects (factors A
and B) for product 3 and sex cannot be made.

TABLE 6. ANOVATable for Example 1

Source
Sumof
squares

Degrees of
freedom

Mean
squar-

e
Fc

S¼Significant
NS¼not significant

FactorA (sex) 330.75 1 330.75 22.369 S
FactorB (moisturization) 1065.50 2 532.75 36.021 S
InteractionA � B 350.00 2 175.00 11.832 S
Error 621.00 42 14.79
Total 2367.25 48
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FactorA:H0:Moisturization for females ¼ moisturization for males
HA:The above is not true.

Clearly FCð22:369Þ > FTð4:08Þ, so the gender e¡ect is signi¢cant at the
a ¼ 0:05 level, but conditional.

Factor B:H0: Product1 ¼ product 2 ¼ product 3
HA: At least one product is di¡erent.

Clearly FCð36:021Þ > FTð3:23Þ, so the product e¡ect is signi¢cant at
a ¼ 0:05, but conditional.

I ¢nd that computing the main factor e¡ects after interaction e¡ects
can be useful in explaining an experiment to nonstatisticians, given that the
interaction is also discussed. But I ¢nd it even more useful to provide an
explanation for the occurrence of the interaction component and then to
follow upwith certain treatment level comparisons, not all, to uncover di¡er-
ences between treatment levels, aside from the interaction.

H. Multiple Comparisons

When theANOVAmodel detects a di¡erence between levels of main e¡ectA
and=or within levels of main e¡ect B, comparisons can be made in a number

FIGURE 8 Interaction betweenmain effects.
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of ways to determine which treatment within the main e¡ects di¡ers. The
methods introduced in Chap. 5 and expanded in Chap. 6 can also be used
for two-factor designs.

I. Orthogonal Testing

Asdiscussed previously, amajor bene¢t of the two-factor design is the ability
to identify interaction. If interaction is detected, comparing levels within a
main e¡ect is useful but must be considered in light of the interaction. It is
valuable to compute certain factor level di¡erences to identify treatment
level di¡erences that are not interaction e¡ects but valuable to the interpre-
tation of data.We will compute all for demonstration purposes.

Factor A. Looking at Example 1, where a¼ 2, we see that a�1¼2�1
provides one degree of freedom for factorA and, therefore, only one
contrast.But it is unnecessary to do that contrast because there were
only two levels in factorA: male and female.They were signi¢cantly
di¡erent.

Factor B. There are two degrees of freedom for factor B (b�1), so two
orthogonal contrasts can be made.

Factor B level totals are (fromTable 5):

Moisturizer 1 ¼ y:1: ¼ 372
Moisturizer 2 ¼ y:2: ¼ 436
Moisturizer 3 ¼ y:3: ¼ 554

Let us make the following hypotheses and contrasts:

So:

C1 ¼ 2ð372Þ � ð436Þ � ð554Þ ¼ �246
C2 ¼ �ð436Þ þ ð554Þ ¼ 118

The sum of squares contrast formula we have used before:

SSC ¼

Pb
j¼1

cjy:j:

 !2

n
Pb
j¼1

c2j

Hypothesis Contrasts

H01: 2m1 ¼ m2 þ m3 C1 ¼ 2y:1: � y:2: � y:3:
H02: m2 ¼ m3 C2 ¼ �y:2: þ y:3:
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Note that, because the sex factor is ignored, 8 males plus 8 females gives
n¼16.

SSC1 ¼
ð�246Þ2

16ð22 þ ð�1Þ2 þ ð�1Þ2Þ ¼ 630:375

SSC2 ¼
1182

16ð�12 þ 12Þ ¼ 435:125

Rearranging the ANOVA table (Table 6), for factor B only, we construct
Table 7.

Note that in Table 7, the orthogonal contrasts for factor B could have
been di¡erent from those chosen, but only two can be computed because
only two degrees of freedom are available (b� 1 ¼ 3� 1 ¼ 2). These two
were signi¢cant; that is, theH0 hypothesis would be rejected at a ¼ 0:05.

J. Interaction

In cases such as this, where the interaction term is signi¢cant, the experi-
menter can set one of the factors, say factor B (moisturizer), to one of its
levels and compare that level with the levels of factor A. For example, one
could set factor B at product 2 and compare it for females and males. Cur-
rently,we will ignore this option as a viable orthogonal contrast procedure,
for the chance of ever knowing what level of one main e¡ect to set for com-
parisons of the levels of other main e¡ects, a priori (prior to conducting the
experiment), is essentially zero. But we will come back to this option later.

TABLE 7. ANOVATable for FactorBOnly

Source

Sum
of

squares

Degrees
of

freedom
Mean
square Fc FT

a
S¼ significant

NS¼not significantb

FactorA (sex) � � � � � �
FactorB
(moisturization)

1065.50 2 532.750 36.031 � �

C1(2m1¼ m2þm3) 630.375 1 630.375 42.633c 4.08 S
C2(m2¼ m3) 435.125 1 435.125 29.428 4.08 S
Error 621 42 14.786

Total 2752.0 46

aFT for the two contrasts is found inTable C, the Fdistribution table.
bThe test statistic for these two contrasts is FTða;1;abðn�1ÞÞ ¼ FT;ð0:05;1;42Þ ¼ 4:08: If Fc > FT, reject
H0 at a ¼ 0:05.
c42.633¼ 630.375=14.786.
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When interaction is discovered, it is usually after the experiment has been
conducted, so orthogonal contrasts are not applicable.

K. Bonferroni Procedure

The Bonferroni procedure can be used for pairwise comparisons if the com-
parisons desired are selected a priori [26]. The procedure is more e¡ective
(i.e., has greater statistical power) when only a few pairwise contrasts are
made. It is important, however, to ensure that interaction between the main
e¡ects is not signi¢cant before one compares levelswithin main e¡ectsA and
B, as we discussed previously.

Let us perform the Bonferroni procedure.
Factor A: Again, it is usually not useful to evaluate main e¡ects when

interaction is signi¢cant. Because there are only two levels of factor A, it is
not necessary to compare them. Because the factorA e¡ect was signi¢cant,
the two levels within factor A are signi¢cantly di¡erent at the speci¢ed a
level. If factor Awas not signi¢cant, according to the F-test, the two levels
would not be di¡erent fromeach other at the speci¢ed a level, so no contrasts
would be necessary.

Factor B: In comparing levels of factor B, let us suppose the researcher
wants tomake three comparisons chosen prior to conducting the study.They
are:

1. H0: m1 ¼ m2 or �y:1: � �y:2:
2. H0: m1 ¼ m3 or �y:1: � �y:3:
3. H0: m2 ¼ m3 or �y:2: � �y:3:

The test statistic to use in this procedure is precisely the one we used in
both Chaps. 5 and 6.

t 0 ¼ D
SD

; whereD ¼ �y:i: � �y:j:
�� ��

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE
an

r
Decision rule: If t 0 > tða=2g;abðn�1ÞÞ (where g¼ number of contrasts), a signi¢-
cant di¡erence exists between the pairs at a. Hence,

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE
an

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð14:786Þ

16

r
¼ 1:36

t1 ¼ j�y:1: � �y:2:j ¼ 23:250� 27:250 ¼ j � 4j ¼ 4
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t2 ¼ j�y:1: � �y:3:j ¼ 23:250� 34:625 ¼ j � 11:375j ¼ 11:375

t3 ¼ j�y:2: � �y:3:j ¼ 27:250� 34:625 ¼ j � 7:375j ¼ 7:375

ta=2g;abðn�1Þ and a ¼ 0:05; g ¼ 3; and abðn� 1Þ ¼ 42; t0:008ð42Þ ¼ 2:80

t1 ¼ D1

SD
¼ 4

1:360
¼ 2:941 > 2:80 ;significant difference exists

between y:1: and y:2: at a ¼ 0:05

t2 ¼ D2

SD
¼ 11:375

1:360
¼ 8:364 > 2:80 ;significant difference exists

between y:1: and y:3: at a ¼ 0:05

t3 ¼ D3

SD
¼ 7:375

1:360
¼ 5:423 > 2:80 ;significant difference exists

between y:2: and y:3: at a ¼ 0:05

L. Multiple Contrasts to Use After the Experiment
Has been Run

In two-factor experiments, a posteriori contrasts are much more common
than a priori ones because of the complication of the design.

M. Main Effects

If interaction is not signi¢cant and if the main e¡ects are the relative varia-
tions within main e¡ects, factors A and B can be compared.The procedures
are identical to those used in Chaps. 5 and 6.

N. Interaction of the Main Effects

If signi¢cant interaction is present, the researcher can set a ¢xed level of a
main e¡ect and compare all or some of the other levels with each other. For
example, one can set one level ofA and compare all or some of the levels of B
with each other. Or, one can compare the cell totals (yij:) that make up both
main e¡ects,A and B. As an example, using data fromTable 5, this procedure
will be demonstrated.Within each of the six cells are the eight replicated
sums for both factors A and B.What is required, then, is to determine the
sum value of each of the yij: cells (Table 8).
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Here the various yij: totals can be compared with one another for di¡e-
rences between them.This procedure can be very useful to the experimenter,
even when signi¢cant interaction is present.

Let us, however,beginwith themain e¡ect factorB to demonstrate how
the computations are done. As before, there must be more than two levels of
factorA or B for this to be useful.The researcher would then, as in Chaps. 5
and 6, perform the contrast procedure on both factors A and B, using two
separate models, one for the row totals (factor A) and the other for column
totals (factor B).

In our example, only factor B had greater than two levels, so only it will
be compared. For factor A, we know already that the two levels, males and
females,were signi¢cantly di¡erent at a ¼ 0:05.

Let us begin analysis of factor B using the Sche¡e method, which is
suitable for level comparisons a posteriori (after the experiment has been
conducted).

O. Scheffe’s Method

Recall that the Sche¡emethod can be used for comparing a number of di¡er-
ent level contrasts but should not be used when comparing all the levels of a
main e¡ect with one another.Type I (a) error will be, at most, a for all of the
level comparisons done.Most commonly, the mean levels of speci¢c groups
are compared from both main e¡ects A and B.

The standard error of the contrast for factorsA and B has the form:

SC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

X
ðc2=nÞ

q
ð10Þ

where c is the number of hypothesized contrasts.The speci¢c form for factor
A is:

SC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Xa
i¼1

c2i
ni

� �s

TABLE 8. SumValuesTable

FactorB (moisturizer)

FactorA (sex) 1¼Product 1 2¼Product 2 3¼Product 3 yi::

1 ¼ female y11.¼197 y12.¼ 219 y13.¼328 744
2 ¼ male y21.¼175 y22.¼ 217 y23.¼ 226 618
y:j: 372 436 554 y...¼1362
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The speci¢c form for factor B is:

SC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Xb
j¼1

c2j
nj

 !vuut
For both factors A and B, the contrast has the form:

M ¼ C1m1 þ C2m2 þ 	 	 	 þ Cmmm

whereM is the total numberofcontrasts.Inpractice,theCj ¼ C1 �y:1: þ C2 �y:2:þ
	 	 	 þ Cb �y:b: sample means (�y) are used in place of the population means (m).

The critical value to whichCj is evaluated in factor B is:

Saj ¼ Scj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1ÞFaðb�1Þ;ðabðn�1ÞÞ

p � ð11Þ

The F value is found inTable A.3.
Decision rule:
If jCj j> Saj, rejectH0 hypothesis.
Recall that

y:1: ¼ 372; �y:1: ¼ 372
16
¼ 23:250

y:2: ¼ 436; �y:2: ¼ 436
16
¼ 27:250

y:3: ¼ 554; �y:3: ¼ 554
16
¼ 34:625

Suppose the researcher wants to evaluate the following contrasts:

H0: m:i: ¼ m:j:

HA: m:i: 6¼ m:j:

Three contrasts are possible:

1. H0: �y:1: ¼ �y:2:;C1 ¼ �y:1: � �y:2: ¼ 23:250� 27:25:0 ¼ �4:000
2. H0: �y:2: ¼ �y:3:;C2 ¼ �y:2: � �y:3: ¼ 27:250� 34:625 ¼ �7:375
3. H0: �y:1: ¼ �y:3:;C3 ¼ �y:1: � �y:3: ¼ 23:250� 34:625 ¼ �11:375

SC1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:786ð12 þ ð�1Þ2=16Þ

q
¼ 1:360

SC2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:786ð12 þ ð�1Þ2=16Þ

q
¼ 1:360

SC3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:786ð12 þ ð�1Þ2=16

q
Þ ¼ 1:360

*To compare �yi:: or theA treatment group, the Sa formula is Sai ¼ Sci
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� 1ÞFaða�1Þ;ðabðn�1ÞÞ:

p
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Let us set a ¼ 0:05:

S0:05;1 ¼ SC1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1ÞF0:05;ðb�1Þ;abðn�1Þ

p
F0:05;2;42 ¼ 3:23 ðfromTableA:3Þ

Therefore:

S0:05;1 ¼ 1:360
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3:23Þ

p
¼ 3:457

S0:05;2 ¼ 1:360
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3:23Þ

p
¼ 3:457

S0:05;3 ¼ 1:360
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3:23Þ

p
¼ 3:457

If jCij > Sa;i, theH0 hypothesis is rejected at a ¼ 0:05.
jC1j ¼ 4:00 > 3:457;RejectH0: m:1 ¼ m:2: at a ¼ 0:05
jC3j ¼ 11:375 > 3:457;RejectH0: m:1: ¼ m:3: at a ¼ 0:05
jC2j ¼ 7:375 > 3:457;RejectH0: m:2: ¼ m:3: at a ¼ 0:05

Note: In practice, comparing all possible pairs of means can be done with
the Sche¡e method, but this is generally not the most statistically e⁄cient
approach. It is more useful in these cases to use the least signi¢cant di¡er-
ence (LSD), Duncan’s multiple range test, the Newman^Keuls test, or
Tukey’s test. However, Sche¡e’s test provides the researcher with more
power and £exibility in comparing complex contrasts such as
H0: m1 þ m2 ¼ m3 þ m4 or H0: 3m1 ¼ m2 þ m3 þ m4.

P. Least Significant Difference (LSD)

Let us now look at a procedure designed to compare all possible combina-
tions of means�the LSD procedure. Many statisticians recommend not
using the LSD contrast method when the number of contrasts exceeds three
because it can let type I error be much larger than the stated a level
[21,23,24].Nevertheless, it remains a commonly used test.

The LSD procedure is another contrast method to be used after the
study has been conducted. Again, in contrasting row or column means (i.e.,
factor levels A or B) when interaction is present, the experimenter must be
very careful. In all honesty, it would be better to compare the �yij: values, a
combination of both A and B treatments,which is a procedure I shall discuss
shortly.But for demonstration purposes,we shall continue contrasting levels
within each of the main e¡ect factors.

Asbefore, themethods demonstrated inChap. 5 hold for the two-factor
factorial design. The computation of the LSD method is the same for the
levels within the main e¡ects except that one substitutes B forA and A for B.
Because there are only two treatment levels in factor A, we already know

Completely Randomized Two-Factor Factorial Designs 267



from the ANOVA (Table 6) that the two levels within factor A (males and
females) are signi¢cantly di¡erent.

The LSD method is used to compare each possible combination of
mean pairs, mi and mj .

For unbalanced designs, ni 6¼ nj, the test is simply:

FactorA LSD ¼ ta=2;abðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
ani
þ 1

ani

� �s
ð12Þ

FactorB LSD ¼ ta=2;abðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
bnj
þ 1
bnj

� �s
ð13Þ

For balanced designs,ni¼ nj:

Factor A LSD ¼ ta=2;abðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

an

r
ð14Þ

Factor B LSD ¼ ta=2;abðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

bn

r
ð15Þ

The test contrast statistic is, if j�yi � �yjj > LSD; rejectH0 at a.
Let us work Example1 for factor B:

�y:j: ¼ �y:1: ¼ 23:25

�y:2: ¼ 27:50

�y:3: ¼ 34:63

and

LSD ¼ tð0:05=2;42Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð14:786Þ

16

r

LSD ¼ ð2:021Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð14:786Þ

16

r
LSD ¼ 2:75

The bðb� 1Þ=2 ¼ 3� 2=2 ¼ 3 combinations possible are:

LSD

�y:1: � �y:2: ¼ j23:25� 27:25j ¼ 4:00 > 2:75; significant

�y:1: � �y:3: ¼ j23:25� 34:63j ¼ 11:38 > 2:75; significant

�y:2: � �y:3: ¼ j27:25� 34:63j ¼ 7:38 > 2:75; significant

Hence, m1, m2, and m3 are signi¢cantly di¡erent from each other at
a¼ 0.05.

As one can see, the LSD method for the completely randomized two-
factor factorial design is essentially the same as for the one-factor ANOVA
except that there are twomain e¡ect factors,A andB,with which to contend.
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If main e¡ectAwasmore than two levels, the contrast analysiswould be
the same except that rowmeans, insteadof columnmeans,would be used and
awould be substituted for b.

Q. Duncan’s Multiple Range Test

Duncan’s multiple range test is also very useful in evaluating two-factor fac-
torial designs. Contrasts can be performed on factor A’s treatment level
averages and factorB’s treatment level averages.However, before doing this,
the researcher will want to be assured that no signi¢cant two-way interac-
tion is present.

In this example, because main e¡ect A consisted of only two levels, the
ANOVA table already determined that they were signi¢cantly di¡erent from
one another.Hence,we will turn immediately to main e¡ect B.

One ¢rst arranges the b treatment values in ascending order. In addi-
tion, the standard error of each factor is computed.When the sample sizes
are equal, the formula is:

S�y:j: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

an

r
ðbalancedÞ ð16Þ

and when the sample sizes are not equal (unbalanced), one uses Eq. (16),
replacing nwith n0,where:

n0 ¼ aPa
i¼1

1=ni
� � ðunbalanced correction factorÞ

Note: For main e¡ect A, the same basic formulas apply:

S�yi:: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE
bn

r
ðbalancedÞ

and

n0 ¼ bPb
j¼1
ð1=njÞ

ðunbalanced correction factorÞ

Recall that, for the �y:j: value of factor B, we saw �y:1: ¼ 23:250; �y:2: ¼ 27:250,
and �y:3: ¼ 34:625, and these are already in ascending order.

For all three treatments: S�y:j: ¼
ffiffiffiffiffiffiffiffi
MSE
16

q
¼

ffiffiffiffiffiffiffiffiffiffi
14:786
16

q
¼ 0:961

FromDuncan’smultiple rangeTable (TableA.5),one obtains the values
of raðp; f Þ for p ¼ 2; 3; . . . ; b. The a is 0.05, and f ¼degrees of freedom for
error term abðn� 1Þ ¼ 42.
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This is followed by converting the ranges in a set of b� 1 (a� 1 if main
e¡ectA) least signi¢cant ranges for p ¼ 1; 2; . . . ; b.The least signi¢cant range
calculation is:

RP ¼ raðp;f ÞS�y:j: for p ¼ 2; 3; . . . ; b�

Theobserveddi¡erencesbetween themeans are then tested,beginning
withcomparing thelargestandthesmallest,versusRb (orRa).Next,thelargest
is compared with the second smallest versus the Rðb�1Þ (or Rða�1Þ) value.The
process is then continued until the di¡erences of all possible bðb� 1Þ=2 pairs
[or aða� 1Þ=2] have been evaluated. If the observed pair di¡erence is greater
than theRb (orRa) value,the pair is signi¢cantly di¡erent ata.

No di¡erence between a pair of means is considered signi¢cant if the
values of two means involved lie between the values of a pair of means that
are not signi¢cantly di¡erent.

For R2; r0:05ð2;42Þ ¼ 2:86 For R3 ¼ r0:05ð3;42Þ ¼ 3:01
R2 ¼ 2:86ð0:961Þ ¼ 2:748 R3 ¼ 3:01ð0:961Þ ¼ 2:893

Number of contrasts ¼ bðb� 1Þ
2

¼ 3ð2Þ
2
¼ 3 contrasts

3 vs. 1 ¼ 34:625� 23:250 ¼ 11:375 > 2:893 ðR3Þ; significant

3 vs. 2 ¼ 34:625� 27:250 ¼ 7:375 > 2:748 ðR2Þ; significant

2 vs. 1 ¼ 27:250� 23:250 ¼ 4:000 > 2:748 ðR2Þ; significant

Hence, from Duncan’s multiple range test, the researcher concludes
that the three means are signi¢cantly di¡erent fromone another at a ¼ 0:05.

Duncan’s multiple range test requires greater di¡erences between
means to be signi¢cant as the number of contrasts increases. It is a relatively
sensitive test, however,when only a few contrasts are calculated, as in this case.

R. Newman–Keuls Test

The application of this test is straightforward.Again, if the interaction is not
signi¢cant, the test can be used for both factor levels A and B directly, but
when signi¢cant interaction is present, the researcher should be very careful
in interpreting signi¢cant results.

As before (Chaps. 5 and 6), the researcher calculates a set of speci¢c
critical values.

*For treatment A, the Rp value is computed as:
RP ¼ ra;ðp;f ÞS�yi:: for p ¼ 2; 3; . . . ; a
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KP ¼ qaðp;f ÞS�y ð17Þ

For factor A, the formula is:

KP ¼ qaðp;f ÞS�yi:: p ¼ 2; 3; . . . ; a; f ¼ df error term ðMSEÞ

For factor B, the formula is:

KP ¼ qaðp;f ÞS�y:j: p ¼ 2; 3; . . . ; b; f ¼ df error term ðMSEÞ
Recall that factor A has only two values and, because a signi¢cant

di¡erence has already been demonstrated at a ¼ 0:05, there is no need to
retest.

For factor B, the actual comparison is done in a way similar to the
Duncan multiple range test.

The researcher’s ¢rst computes:

KP ¼ qaðp;f ÞS�y:j:

where

S�y:j: ¼
ffiffiffiffiffiffiffiffi
MSE
an

q
for, balanced designs

Note: For factor A, in balanced designs, use S�yi:: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=bn

p
.

In caseswhere n values are di¡erent (unbalanced designs), substitute n0

for n,where n0 ¼ a=
Pa

i¼1ð1=niÞ.
Note: For factor A, in unbalanced designs, use n0 ¼ b=

Pb
j¼1
ð1=njÞ.

In our example for factor B: S�y:j: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:786=16

p
¼ 0:961.

Next, arrange the �y:j: values (for a, the �yi::) in ascending order:

�y:1: ¼ 23:250

�y:2: ¼ 27:250

�y:3: ¼ 34:625

For this example, p ¼ 2 and 3, so qaðp;f Þ ¼ qð0:05Þð2;42Þ ¼ 2:86 and qaðp;f Þ ¼
qð0:05Þð3;42Þ ¼ 3:44.

Hence, where Kp ¼ qaðp;f Þ S�y:j: ; K2 ¼ 2:86ð0:961Þ ¼ 2:748, and K3 ¼
3:44ð0:961Þ ¼ 3:306.The three possible treatment contrasts are:

3 vs. 1 ¼ 34:625� 23:250 ¼ 11:375 > 3:306; ðKpÞ; significant

3 vs. 2 ¼ 34:625� 27:250 ¼ 7:375 > 2:748; ðKpÞ; significant

2 vs. 1 ¼ 27:250� 23:250 ¼ 4:000 > 2:748; ðKpÞ; significant
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Again,we see that each mean, �y:j:, is signi¢cantly di¡erent from every other
mean at a ¼ 0:05.

S. Tukey Test

TheTukey contrast procedure for contrasting all mean level pairs for a two-
factor factorial design, again, is straightforward. The requirement for main
e¡ect interaction (factors A and B) to be not signi¢cant remains important.
When interaction is signi¢cant, as before, one cannot describe factor A and
factor B e¡ects independently.

As in Chaps. 5 and 6, theTukey test considers any mean level pair dif-
ference (absolute) greater than Ta signi¢cant at a.

Recall:

Ta ¼ qaða;f ÞS�yi:: for treatment A ð18Þ

and

Ta ¼ qaðb;f ÞS�y:j: for treatment B ð19Þ
All aða� 1Þ=2 or bðb� 1Þ=2 mean level pairs are compared.
Again, for factor A,where a ¼ 2, the two mean levels possible to com-

pare were already determined signi¢cantly di¡erent at a via the main e¡ect
F -test, so no additional testing is necessary.

For factor B, Ta ¼ qaðb;f Þ S�y:j:, where b ¼ number of levels of Factor B
(B¼ 3), and f ¼ degrees of freedom for error term¼ abðn� 1Þ, the denomi-
nator for the Studentized range statistic table (Table L).

qaðb;f Þ ¼ q0:05ð3:42Þ ¼ 3:44

S�y:j: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

an

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:786
16

r
¼ 0:961

S�y:j: ¼ 0:961

Ta ¼ 3:44ð0:961Þ ¼ 3:306

Note: For factor A, the computation of S�yi :: is:ffiffiffiffiffiffiffiffiffiffiffi
MSE

bn

r
Decision rule: If �y:i: � �y:j:

�� �� > Ta reject H0, that the mean pairs are
equivalent at a.
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For factor B, there are bðb� 1Þ=2 ¼ 3ð2Þ=2 ¼ 3 pairwise contrasts.
They are:

3 vs. 1 ¼ j34:625� 23:250j ¼ 11:375 > 3:306; significant

3 vs. 2 ¼ j34:625� 27:250j ¼ 7:375 > 3:306; significant

2 vs. 1 ¼ j27:250� 23:250j ¼ 4:000 > 3:306; significant

Hence, the three contrasts are signi¢cantly di¡erent at a ¼ 0:05.

T. Dunnett’s Method (Test Versus Control Comparisons)

Recall from Chaps. 5 and 6 that Dunnett’s contrast method is useful when
one compares several treatment levels with one control. As before, it can
be used e¡ectively for both factors A and B, given that there is no signi¢-
cant interaction between the main e¡ects. Otherwise, it should not be used
or used only with extreme caution.We will perform the computation only
for demonstration purposes because we did not designate a control prior to
testing. And, as before, we will ignore factor A, for there are only two
levels.

For factor B, let �y:1: ¼ the control product. Then the researcher can
test b� 1 contrasts (a� 1 for treatment A, given a > 2). The contrasts for
our example involve b� 1 ¼ 3� 1 ¼ 2 contrasts.They are:

�y:2: � �y:1:

�y:3: � �y:1:

The test contrast hypothesis is:

H0:m:j:¼mc; where mc¼mean for control level group estimated by �y:1:

HA:m:j: 6¼mc

The Dunnett test, as in Chaps. 5 and 6, is straightforward:

�y:i: � �y:j:
�� �� > daðb�1;f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

an

r
if balanced design ðni ¼ njÞ ð20Þ

�y:i:� �y:j:
�� ��> daðb�1;f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
ani
þ 1
anj

� �s
if unbalanced design ðni 6¼ njÞ

ð21Þ
Note: In comparing factor A, the formulas are identical except that b is

used instead of a in the denominator.
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Using Example1, again for factor B:

�y:c: ¼ �y:1: ¼ 23:250 is the control product

�y:2: ¼ 27:250

�y:3: ¼ 34:625

MSE ¼ 14:786

n1 ¼ n2 ¼ n3; so this experiment is balanced

�y:2: � �y:1:
�� �� ¼ 27:250� 23:250 ¼ 4:000

�y:3: � �y:1:
�� �� ¼ 34:625� 23:250 ¼ 11:375

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE
an

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð14:786Þ

16

r
¼ 1:360

daðb�1;f Þ ¼ dð0:05Þð2;42Þ ¼ 2:29; from Dunnett’s Table (Table A.13):

So,

daðb�1;f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

an

r
¼ 2:29ð1:360Þ ¼ 3:114

The contrastHA decisions are:

If �y:j: � �yc
�� �� > 3:114, reject H0 at a ¼ 0:05; where �y:j: ¼ �y:2:; �y:3:, and
�y:c: ¼ �y:1:

Because �y:2: � �y:1:
�� �� ¼ 4:000 > 3:114, rejectH0 at a ¼ 0:05

Because �y:3: � �y:1:
�� �� ¼ 11:374 > 3:114, rejectH0 at a ¼ 0:05

Both test group levels are signi¢cantly di¡erent from the control at a ¼ 0:05.

U. Comparing Factor A and B Combined Levels

Given that interaction is signi¢cant, it is often useful to compare factor
A� B combination levels.Using Example 1, those combinations are as dis-
played inTable 9. FromTable 5,we previously computed the factor A� B cell
totals inTable10.

Themain di¡erence between comparing themain e¡ectsA� B combi-
nation levels, as opposed to factor A or B levels, is that cell values are yij:, not
yi:: or y:j:The factorA� B comparisons of cell means can be very useful when
interaction is present.
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V. Orthogonal Contrasts (A Priori Selection of Contrasts)

From an applied perspective, the probability of knowing in advance which
factor A� B combination levels to compare is very low, so we will not spend
time computing these. However, both orthogonal linear combinations and
the Bonferroni procedure can be used.

The main aspects are that:

The degrees of freedom for each contrast are 1, as described in earlier
chapters.

The degrees of freedom for the error term are, as before, abðn� 1Þ.
The possible A� B combination levels to evaluate can become large
very quickly because they arebased on two e¡ects, not just one, using
the formula ðabðab� 1Þ=2Þ. In the present example (Example 1), this
would be

2� 3ð2� 3� 1Þ
2

¼ 15
� �

TABLE 9. FactorA�BCombinations

FactorB�product formulations

1 2 3

FactorA 1 ¼ female A1B1orC11 A1B2 orC12 A1B3 orC13

2 ¼ male A2B1orC21 A2B2 orC22 A2B3 orC23

For celli j , where i ¼ row and j ¼ column, cell11 is the row 1, column 1 combination value, for
example.

TABLE10. FactorA�B Level Combinations

FactorB�Product Formulations

1 2 3 yi..

FactorA 1 ¼ Female y11.¼197
n ¼ 8

y12.¼ 219
n ¼ 8

y13.¼ 328
n ¼ 8

744

2 ¼ Male y21.¼ 175
n ¼ 8

y22.¼ 217
n ¼ 8

y23.¼ 226
n ¼ 8

618

y.j. 372 436 554 1362¼ y
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The total degrees available for contrasts using the interaction degrees
of freedom¼ ða� 1Þðb� 1Þ ¼ ð2� 1Þð3� 1Þ ¼ 2.TheBonferroni procedure
is useful only if the number of contrasts, g, is kept low because it balloons the
interval width as the number of contrasts increases, making the test essen-
tially useless.

In my opinion, it is really not useful, then, to compare factor A� B
combination levels using the a priori orthogonal procedure.

W. A�B Contrasts Determined A Posteriori

Let us work through the interaction contrasts that can be used e¡ectively by
the researcher after the experiment has been conducted and interaction
between the main e¡ects factors A and B has been discovered.

1. Scheffe’s Method

The Sche¡e method can be used for A� B comparisons of means, but com-
paring all possible pairs of A� B means is not that statistically e⁄cient
with this method.Other ‘‘pairwise’’ tests should be used instead, such as the
Newman^Keuls procedure.

We have already discussed the Sche¡e method for contrasting levels
within factor A or B. However, when A� B interaction is signi¢cant, the
researcher will want to compare A� Bmeans with one another. Looking at
the Cij mean values fromTable10,we have the following:

C�ij
n
¼ A1B1

n
¼ �y11 ¼ 197

8
¼ 24:625

A1B2

n
¼ �y12 ¼ 219

8
¼ 27:375

A1B3

n
¼ �y13 ¼ 328

8
¼ 41:000

A2B1

n
¼ �y21 ¼ 175

8
¼ 21:875

A2B2

n
¼ �y22 ¼ 217

8
¼ 27:125

A2B3

n
¼ �y23 ¼ 226

8
¼ 28:250

*Cij ¼ Contrast pairs where i ¼ A and j ¼ B.
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The Sche¡e procedure is best used for few, but more complicated contrasts.
Suppose the researcher wants to perform two contrasts, C1 and C2.

Contrast 1: H0: m11: � m12: ¼ 0

HA: m11: � m12: 6¼ 0

and a more complex contrast:
Contrast 2:Does m11: þ m12: þ m13: ¼ m21: þ m22: þ m23:?
Or written as a test hypothesis,

H0: m11: þ m12: þ m13: � m21: � m22: � m23: ¼ 0

HA: m11: þ m12: þ m13: � m21: � m22: � m23: 6¼ 0

Recall the critical value with whichCij is compared:

Sai ¼ Sci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1Þðb� 1ÞFa;ða�1Þðb�1Þ;abðn�1Þ

p
where Sci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

P
c2ij
�
n

	 
r
.The decision rule is:

If jCij > Sai ; reject H0
So,

C1 ¼ j24:625� 27:375j ¼ j � 2:750j ¼ 2:750
C2 ¼ j24:625þ 27:375þ 41:000� 21:875� 27:125� 28:250j
¼ 15:75

Sc1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:786

12 þ ð�1Þ2
8

� �s
¼ 1:923

Sc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:786

12 þ 12 þ 12 þ ð�1Þ2 þ ð�1Þ2 þ ð�1Þ2
8

� �s
¼ 3:330

C1: H0: m11:� m12: ¼ 0

HA: m11:� m12: 6¼ 0 a ¼ 0:05

Sa1 ¼ Sc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1Þðb� 1Þ;Fð0:05;ða�1Þðb�1Þ;abðn�1ÞÞ

p
¼ Fð0:05;12;42Þ: From Table A:3; F ¼ 3:23

Sa1 ¼ 1:923
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3:23Þ

p
¼ 4:888

Because jC1 ¼ 2:750j < 4:888, one cannot reject the H0 hypothesis at
a ¼ 0:05.
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C2: H0: m11: þ m12: þ m13: � m21: � m22: � m23: ¼ 0

HA: m11: þ m12: þ m13: � m21: � m22: � m23: 6¼ 0 a ¼ 0:05

Sa2 ¼ Sc1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1Þðb� 1Þ;Fð0:05;ða�1Þðb�1Þ;abðn�1ÞÞ

p
Fð0:05;2;42Þ ¼ 3:23

Sa2 ¼ 3:330
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3:23Þ

p
¼ 8:464

Because jC2 ¼ ð15:702Þj > 8:464, reject theH0 hypothesis at a ¼ 0:05.

2. Least Significant Differencoe (LSD)

The least signi¢cant di¡erence procedure is a most useful test when A� B
interaction is signi¢cant and all possible pairwise comparisons of �yij: means
are desired.The total number of A� B �yij:contrasts is:

abðab� 1Þ
2

or
3� 2ð3� 2� 1Þ

2
¼ 15

Recall that the LSD value is:

LSD¼ tða=2Þ;abðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
nlk:
þ 1
nkl:

� �s
for an unbalanced design, and

ð22Þ
LSD ¼ tða=2Þ;abðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
for a balanced design ð23Þ

The test hypothesis is:

H0: �ylk: � �ykl: ¼ 0

HA: �ylk: � �ykl: 6¼ 0

The decision rule is:
If

�ylk: � �ykl:
�� �� > tða=2Þ;abðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
nlk:
þ 1

nkl:

� �s
ð24aÞ

for an unbalanced design

�ylk: � �ykl:
�� �� > tða=2Þ;abðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
ð24bÞ

for a balanced design, theH0 hypothesis is rejected at a.
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For our example, a ¼ 0:05.The design is balanced so:ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð14:786Þ

8

r
¼ 1:923 and tða=2;abðn�1ÞÞ ¼ tð0:025;42Þ ¼ 2:021

LSD ¼ tða=2;42Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
¼ ð2:021Þð1:923Þ ¼ 3:886

So, if �ylk: � �ykl:
�� �� > 3:886, rejectH0 at a ¼ 0:05.

The15 test combinations are as follows:

X. Using Approximate Confidence Intervals
for the �yij : Values

The value �y13: is di¡erent from all others, being the largest value; �y23:
and �y12: are equivalent because their values overlap, based on all possible
contrasts performed. Also, �y12: and �y11: are equivalent. Finally, �y11: and �y21:
are equivalent.

Recall that as the number of contrasts increases, so doest type I error
(rejecting a true H0 hypothesis). So it is critical that the experimenter use his
or her ¢eld knowledge to help determine the reliability of the pair-wise tests.

S¼ significant
NS¼not significant

�y11: � �y12:j j ¼ 24:63� 27:38 ¼ 2:750 < 3:886 NS
�y11: � �y13:j j ¼ 24:63� 41:00 ¼ 16:370 > 3:886 S
�y11: � �y21:j j ¼ 24:63� 21:88 ¼ 2:750 < 3:886 NS
�y11: � �y22:j j ¼ 24:63� 27:13 ¼ 2:500 < 3:886 NS
�y11: � �y23:j j ¼ 24:63� 28:25 ¼ 3:620 < 3:886 NS
�y12: � �y13:j j ¼ 27:38� 41:00 ¼ 13:620 > 3:886 S
�y12: � �y21:j j ¼ 27:38� 21:88 ¼ 5:500 > 3:886 S
�y12: � �y22:j j ¼ 27:38� 27:13 ¼ 0:250 < 3:886 NS
�y12: � �y23:j j ¼ 27:38� 28:25 ¼ 0:875 < 3:886 NS
�y13: � �y21:j j ¼ 41:00� 21:88 ¼ 19:120 > 3:886 S
�y13: � �y22:j j ¼ 41:00� 27:13 ¼ 13:870 > 3:886 S
�y13: � �y23:j j ¼ 41:00� 28:25 ¼ 12:750 > 3:886 S
�y21: � �y22:j j ¼ 21:88� 27:13 ¼ 5:250 > 3:886 S
�y21: � �y23:j j ¼ 21:88� 28:25 ¼ 6:370 > 3:886 S
�y22: � �y23:j j ¼ 27:13� 28:25 ¼ 1:120 < 3:886 NS
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1. Duncan’s Multiple RangeTest for Interaction

As encountered previously, Duncan’s multiple range test is useful for com-
paring all pairs of �yij: means,whether the design is balanced or not.The pro-
cedure is like those we have done previously.

First, the �yij: means are ranked in ascending order and the standard
error of the mean is computed as:

S�yij : ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE
n

r
for a balanced design ð25aÞ

For an unbalanced design, the sample cell size, n, is replaced with

n0 ¼ ða� 1Þðb� 1ÞPb
j¼1

Pa
i¼1
ð1=nijÞ

ð25bÞ

The hypothesis used for each pairwise contrast is:

H0: mlk: � mkl: ¼ 0

HA: mlk: � mkl: 6¼ 0

Decision rule:
If �ylk: � �ykl:ð Þ > rað p;f ÞS�ylk: , rejectH0 at a.
The computational procedure is very similar to that of the previous

example when we were dealing with the main e¡ects factors A and B, but
now we compare combinations of A� Bmeans, �ylk:

The means are ¢rst arranged in ascending order. Because this is a
balanced design, the standard error of the mean is computed using Eq. (25a).

FIGURE 9A Approximate confidence intervals: LSD test.
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S�yij : ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:786

8

r
¼ 1:360 ð25aÞ

Let us set a ¼ 0:01. As before:

RP ¼ rað p; f ÞS��yij :
p ¼ 2; 3 . . . ; ða 	 bÞ or 2 	 3 ¼ 6; or p ¼ 2; 3; 4; 5; 6
f ¼ abðn� 1Þ ¼ 2 	 3 	 7 ¼ 42
R2 ¼ r0:01ð2;42Þ1:360 ¼ 3:82ð1:360Þ ¼ 5:195
R3 ¼ r0:01ð3;42Þ1:360 ¼ 3:99ð1:360Þ ¼ 5:426
R4 ¼ r0:01ð4;42Þ1:360 ¼ 4:10ð1:360Þ ¼ 5:576
R5 ¼ r0:01ð5;42Þ1:360 ¼ 4:17ð1:360Þ ¼ 5:671
R6 ¼ r0:01ð6;42Þ1:360 ¼ 4:24ð1:360Þ ¼ 5:776

All possible contrasts¼ ab ðab�1Þ
2 ¼ 2	3ð2	3�1Þ

2 ¼ 15 total contrasts

Combination A� Bmean Value

A2B2 ¼ �y21: ¼ 21.875
A1B1 ¼ �y11: ¼ 24.625
A2B2 ¼ �y22: ¼ 27.125
A1B2 ¼ �y12: ¼ 27.375
A2B3 ¼ �y23: ¼ 28.250
A1B3 ¼ �y13: ¼ 41.000

Contrasts
S¼ significant
NS¼not significant

�y13 � vs. �y21 � ¼ 41:000� 21:875 ¼ 19:125 > 5:766 ðR6Þ S
�y13 � vs. �y11 � ¼ 41:000� 24:625 ¼ 16:375 > 5:671 ðR5Þ S
�y13 � vs. �y22 � ¼ 41:000� 27:125 ¼ 13:875 > 5:576 ðR4Þ S
�y13 � vs. �y12 � ¼ 41:000� 27:375 ¼ 13:625 > 5:426 ðR3Þ S
�y13 � vs. �y23 � ¼ 41:000� 28:250 ¼ 12:750 > 5:195 ðR2Þ S
�y23 � vs. �y21 � ¼ 28:250� 21:875 ¼ 6:375 > 5:671 ðR5Þ S
�y23 � vs. �y11 � ¼ 28:250� 24:625 ¼ 3:625 < 5:576 ðR4Þ NS
�y23 � vs. �y22 � ¼ 28:250� 27:125 ¼ 1:125 < 5:426 ðR3Þ NS
�y23 � vs. �y12 � ¼ 28:250� 27:375 ¼ 0:875 < 5:195 ðR2Þ NS
�y12 � vs. �y21 � ¼ 27:375� 21:875 ¼ 5:500 < 5:576 ðR4Þ NS
�y12 � vs. �y11 � ¼ 27:375� 24:625 ¼ 2:750 < 5:426 ðR3Þ NS
�y12 � vs. �y22 � ¼ 27:375� 27:125 ¼ 0:250 < 5:195 ðR2Þ NS
�y22 � vs. �y21 � ¼ 27:125� 21:875 ¼ 5:250 < 5:426 ðR3Þ NS
�y22 � vs. �y11 � ¼ 27:125� 24:625 ¼ 2:500 < 5:195 ðR2Þ NS
�y11 � vs. �y21 � ¼ 24:625� 21:875 ¼ 2:750 < 5:195 ðR2Þ NS

* TableA.5 is used for Duncan’s multiple range test.>
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In this case, �y13: is signi¢cantly greater than the other cell mean values;
�y23: is equal to �y12:; �y22:, and �y11: but greater than �y21:, and �y12:; �y22:; �y11:, and
�y21: are equivalent at a ¼ 0:01. Rough con¢dence intervals are provided in
Fig.10.

This test proved to be slightly less sensitive than the LSD test, but the
Duncanmultiple range test is quite powerful and is very e⁄cient in detecting
di¡erences when they actually exist.

2. Newman^KeulsTest Interaction

Aswehave seen in earlier chapters, this test is similar to theDuncanmultiple
range test. Recall that a set of critical values is computed using the formula:

Kp ¼ qaðp;f ÞS�yij: p ¼ 2; 3; . . . ab

For this example, ab ¼ 2� 3 ¼ 6; hence, p ¼ 1; 2; 3; 4; 5; 6: a ¼ 0:01 (using
0.01again) and the Studentized range table (TableA.12) is used to determine
qaðp;f Þ.

S�yij: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:786

8

r
¼ 1:360 ð26Þ

Hypothesis testing:The hypothesis form for each pair of cell means tested is:

H0: mij: � mji: ¼ 0

HA: mij: � mji: 6¼ 0

Decision rule: RejectH0 if �yij: � �yji: > Kp.

FIGURE 10 Approximate confidence intervals:DuncanMultiple Range test.
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The next step is to compute the Kp values:

KP ¼ qað p; f ÞS�yij :

K2 ¼ qð0:01Þð2;42Þð1:360Þ ¼ 3:82ð1:360Þ ¼ 5:195
K3 ¼ qð0:01Þð3;42Þð1:360Þ ¼ 4:37ð1:360Þ ¼ 5:943
K4 ¼ qð0:01Þð4;42Þð1:360Þ ¼ 4:70ð1:360Þ ¼ 6:392
K5 ¼ qð0:01Þð5;42Þð1:360Þ ¼ 4:93ð1:360Þ ¼ 6:705
K6 ¼ qð0:01Þð6;42Þð1:360Þ ¼ 5:11ð1:360Þ ¼ 6:950

The A� B cell treatment means �yij : are listed in ascending order.

�y21: ¼ 21:875
�y11: ¼ 24:625
�y22: ¼ 27:125
�y12: ¼ 27:375
�y23: ¼ 28:250
�y13: ¼ 41:000

The largest value is comparedwith the smallest, the next with the smal-
lest, and so on, up to the value ranked just above the largest value.The pro-
cess is repeated with the second to the largest value, etc.

abðab�1Þ
2

¼2�3ð2�3�1Þ
2

¼6�5
2
¼15 (numberof possible contrasts)

Using the same comparative strategy aswith theDuncanmultiple range test:

Contrasts
S¼ significant
NS¼not significant

�y13 � vs. �y21 � ¼ 41:000� 21:875 ¼ 19:125 > 6:950 ðK6Þ S
�y13 � vs. �y11 � ¼ 41:000� 24:625 ¼ 16:375 > 6:705 ðK5Þ S
�y13 � vs. �y22 � ¼ 41:000� 27:125 ¼ 13:875 > 6:392 ðK4Þ S
�y13 � vs. �y12 � ¼ 41:000� 27:375 ¼ 13:625 > 5:943 ðK3Þ S
�y13 � vs. �y23 � ¼ 41:000� 28:250 ¼ 12:750 > 5:195 ðK2Þ S
�y23 � vs. �y21 � ¼ 28:250� 21:875 ¼ 6:375 < 6:705 ðK5Þ NS
�y23 � vs. �y11 � ¼ 28:250� 24:625 ¼ 3:625 < 6:392 ðK4Þ NS
�y23 � vs. �y22 � ¼ 28:250� 27:125 ¼ 1:125 < 5:943 ðK3Þ NS
�y23 � vs. �y12 � ¼ 28:250� 27:375 ¼ 0:875 < 5:195 ðK2Þ NS
�y12 � vs. �y21 � ¼ 27:375� 21:875 ¼ 5:500 < 6:392 ðK4Þ NS
�y12 � vs. �y11 � ¼ 27:375� 24:625 ¼ 2:750 < 5:943 ðK3Þ NS
�y12 � vs. �y22 � ¼ 27:375� 27:125 ¼ 0:250 < 5:195 ðK2Þ NS
�y22 � vs. �y21 � ¼ 27:125� 21:875 ¼ 5:250 < 5:943 ðK3Þ NS
�y22 � vs. �y11 � ¼ 27:125� 24:625 ¼ 2:500 < 5:195 ðK2Þ NS
�y11 � vs. �y21 � ¼ 24:625� 21:875 ¼ 2:750 < 5:195 ðK2Þ NS
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The conclusions reached are that �y13: is signi¢cantly larger than the
other cell means and �y11:; �y12:; �y21:; �y22:; and �y23:; are equivalent at
a ¼ 0:01. Rough con¢dence intervals are provided in Fig.11.

Notice that the Newman^Keuls test provides essentially the same
information as the Duncan multiple range test, except that the former indi-
cated no signi¢cant di¡erence between �y23: and �y21:,whereas the latter did. In
general, the Newman^Keuls test is a little more conservative, meaning less
powerful.

3. TukeyTest

This procedure was discussed earlier for main e¡ects comparison. For AB
cell mean comparisons, the procedure is similar.

The hypothesis for theTukey test is:
H0 : mij: � mji: ¼ 0
HA : mij: � mji: 6¼ 0

RejectH0 if �yij: � �yji:
�� �� > Ta,where:

Ta ¼ qaðp;f ÞS�yij: where p ¼ ab and f ¼ abðn� 1Þ

Ta ¼ qaðab;abðn�1ÞÞS�yij:

The Studentized range table (Table L) is used for this.
The Tukey, being an all possible pairwise test, consists of

abðab� 1Þ=2 ¼ 15 contrasts.

S�yij: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:786

8

r
¼ 1:360 ð27Þ

FIGURE 11 Approximate confidence intervals:Newman-Keuls test.
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Using a ¼ 0:05

qaðp;f Þ ¼ qaðab;abðn�1ÞÞ ¼ q0:05ð6;42Þ ¼ 4:23; and

Ta ¼ 4:23ð1:360Þ ¼ 5:753

In this case, �y13: is signi¢cantly larger than the other cell means; �y23: is
equal to �y11:; �y12:; and �y22: but greater than �y21: Finally, �y11:, �y12:, �y21:, and �y22:,
are equal at a ¼ 0:05.Note that these are the same results as derived from the
Duncan multiple range test using a ¼ 0:01 (Fig.12).

Contrasts
S¼significant
NS¼not significant

�y13 � vs. �y21� ¼ 41:000� 21:875 ¼ 19:125 > 5:753 S
�y13 � vs. �y11� ¼ 41:000� 24:625 ¼ 16:375 > 5:753 S
�y13 � vs. �y22� ¼ 41:000� 27:125 ¼ 13:875 > 5:753 S
�y13 � vs. �y12� ¼ 41:000� 27:375 ¼ 13:625 > 5:753 S
�y13 � vs. �y23� ¼ 41:000� 28:250 ¼ 12:750 > 5:753 S
�y23 � vs. �y21� ¼ 28:250� 21:875 ¼ 6:375 > 5:753 S
�y23 � vs. �y11� ¼ 28:250� 24:625 ¼ 3:625 < 5:753 NS
�y23 � vs. �y22� ¼ 28:250� 27:125 ¼ 1:125 < 5:753 NS
�y23 � vs. �y12� ¼ 28:250� 27:375 ¼ 0:875 < 5:753 NS
�y12 � vs. �y21� ¼ 27:375� 21:875 ¼ 5:500 < 5:753 NS
�y12 � vs. �y11� ¼ 27:375� 24:625 ¼ 2:750 < 5:753 NS
�y12 � vs. �y22� ¼ 27:375� 27:125 ¼ 0:250 < 5:753 NS
�y22 � vs. �y21� ¼ 27:125� 21:875 ¼ 5:250 < 5:753 NS
�y22 � vs. �y11� ¼ 27:125� 24:625 ¼ 2:500 < 5:753 NS
�y11 � vs. �y21� ¼ 24:625� 21:875 ¼ 2:750 < 5:753 NS

FIGURE 12 Approximate confidence intervals:Tukey test.
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TABLE11 Data inMiniTab format

n Factor A Factor B yijk �yij. Eijk

1 1 1 32 24.625 7.375a

2 1 1 27 24.625 2.375
3 1 1 22 24.625 �2.625
4 1 1 19 24.625 �5.625
5 1 1 28 24.625 3.375
6 1 1 23 24.625 �1.625
7 1 1 25 24.625 0.375
8 1 1 21 24.625 �3.625
9 2 1 18 21.875 �3.875

10 2 1 22 21.875 0.125
11 2 1 20 21.875 �1.875
12 2 1 25 21.875 3.125
13 2 1 16 21.875 �5.875
14 2 1 19 21.875 �2.875
15 2 1 24 21.875 2.125
16 2 1 31 21.875 9.125
17 1 2 28 27.375 0.625
18 1 2 31 27.375 3.625
19 1 2 24 27.375 �3.375
20 1 2 25 27.375 �2.375
21 1 2 26 27.375 �1.375
22 1 2 33 27.375 5.625
23 1 2 27 27.375 �0.375
24 1 2 25 27.375 �2.375
25 2 2 27 27.125 �0.125
26 2 2 31 27.125 3.875
27 2 2 27 27.125 �0.125
28 2 2 25 27.125 �2.125
29 2 2 25 27.125 �2.125
30 2 2 32 27.125 4.875
31 2 2 26 27.125 �1.125
32 2 2 24 27.125 �3.125
33 1 3 36 41.000 �5.000
34 1 3 47 41.000 6.000
35 1 3 42 41.000 1.000
36 1 3 35 41.000 �6.000
37 1 3 46 41.000 5.000
38 1 3 39 41.000 �2.000
39 1 3 43 41.000 2.000
40 1 3 40 41.000 �1.000

(Continued)
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Y. Computer Printout

Before continuing, let us review a series of computer printouts of this two-
factor factorial, completely randomized design. The computer output is a
standard generalized linear model (GLM) routine, speci¢cally as applied
by theMiniTab software,which is extremely user-friendly.

In this model,C1 (column1) represents treatment factor A (sex) andC2
represents treatment factor B (product). Also,C3 represents the actual mea-
sured (dependent) variable yijk; C4 is the speci¢c A� B cell means, andC5 is
the residual di¡erence between C3 and C4. Table 11 provides these data in
MiniTab format.

Table 12 provides a printout of the two-factor factorial experiment,
which is the same as depicted in Table 6, of the hand-computed example.
The table is straightforward to read.

Table 13 provides the means AðC1Þ for the ith level of treatment A, the
jth level of treatment BðC2Þ, and the ith, jth level of Treatments A and
BðC1 þ C2Þ.

TABLE11 (Continued.)

41 2 3 24 28.250 �4.250
42 2 3 27 28.250 �1.250
43 2 3 33 28.250 4.750
44 2 3 25 28.250 �3.250
45 2 3 26 28.250 �2.250
46 2 3 30 28.250 1.750
47 2 3 32 28.250 3.750
48 2 3 29 28.250 0.750

aEijk ¼ yijk � �yij.;32.000�(24.625)¼ 7.375.

TABLE12 Two-Factor Factorial Experiment Printout

Analysisof variance for
C3 Source DF Seq SS Adj SS Adj MS F P

C1 (factorA) 1 330.75 330.75 330.75 22.37 0.000
C2 (factorB) 2 1065.50 1065.50 532.75 36.03 0.000
C1*C2 (FactorA � B) 2 350.00 350.00 175.00 11.84 0.000
Error 42 621.00 621.00 14.79

Total 47 2367.25
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II. THE MODEL AND ITS ASSESSMENT

Before the researcher can make assumptions about the two-factor factorial
model, it is important that its adequacy be evaluated. Recall that the linear
statistical model is:

yijk ¼ mþ Ai þ Bj þ ðABÞij þ EkðijÞ ð28Þ

TABLE13 Means forTreatment Levels

Means for Factors Ci

Factor A C1¼A Mean
1 31.00
2 25.75

Factor B C2¼B
1 23.25
2 27.25
3 34.63

Factors A�B C1 �C2¼A�B
1 1 25.63
1 2 27.38
1 3 41.00
2 1 21.87
2 2 27.13
2 3 28.25

{

{

{

TABLE14 Stem-and-Leaf Format

1 �6 0
4 �5 860
5 �4 2

10 �3 86321
18 �2 86332110
24 �1 863210
24 �0 311
21 0 1367
17 1 07
15 2 013
12 3 13678
7 4 78
5 5 06
3 6 0
2 7 3
1 8
1 9 1
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where the EkðijÞ values are normally and independently distributed with a m of
zero and a variance of s2

E: [i.e., NID(0, s2)]. Also, Eijk ¼ yijk � �yij: (the error
term equals the actual value minus the predicted value).

As before, the researcher will ¢rst want to perform exploratory data
analysis (EDA) on the Eijk residuals to get a sense of their distribution, which
should be patternless. The stem^leaf display, letter-value display, and box-
plot display are valuable here.

A. Stem–Leaf

Table14 provides a display of the residuals in stem^leaf formats.The data do
not appear to have any patterns.

B. Letter-Value Displays

The letter-value display (Table15) of the residual data indicates that the data
are skewed to the upper value or the right side of the bell curve.This can be
seen by noticing that the ‘‘Mid’’column is increasing after ‘‘D.’’ This is not a
serious problembut one of which the researcher will want to be aware.

C. Boxplot

The boxplot with notches is provided inTable16.The data again appear to be
spreadoutmoretoward theupper values (theright),but it isnotaseriousskew.

TABLE15 Letter-Value Format

Depth Lower Upper Mid Spread

N 48.0
M 24.5 �0.687 �0.687
H 12.5 �2.500 2.750 0.125 5.250
E 6.5 �3.750 4.813 0.531 8.563
D 3.5 �5.312 5.812 0.250 11.125
C 2.0 �5.875 7.375 0.750 13.250

1.0 �6.000 9.125 1.563 15.125

TABLE16 Boxplot Format
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To get a better sense of the data, it is also useful to plot the residuals
against the main treatment factors, A and B, as well as against the predicted
values ( �yij). Figure 13 provides a plot of main e¡ects for factor A (where
1¼ females and 2¼males) against the residual values. The residuals seem
to be reasonably centered about 0.

Figure 14 presents a graph of the residuals compared with factor B, or
the three levels of products.

The residuals for product 1 are spread out further than those for the
other two, and those for product 3 are spread more than those for product 2.
Yet, these disparities are not enough of a concern to perform a transforma-
tion of the dependent variable or to use a nonparametric statistic.

Figure 15 presents a plot of the residuals against the �yij: (estimated y
values) or the Ai � Bj cell means. Again, the residuals do not appear to
be seriously nonnormally distributed about zero.

Note: Because �y22: (27.125) and �y12: (27.375) are so close in value pro-
ximity, their Eijk values are superimposed.

D. Model Parameter Estimation

For the linear model:

yijk ¼ mþ Ai þ Bj þ ðABÞij þ Eijk ð29Þ

the following estimations are useful:

m̂ ¼ �y... ð30Þ

Âi ¼ �yi:: � �y...; i ¼ 1; 2; . . . ; a ð31Þ

B̂j ¼ �y:j: � �y:::; j ¼ 1; 2; . . . ; b ð32Þ

cAB	 

ij
¼ �yij:� �yi::� �y_:j: þ �y::; i ¼ 1;2; . . . ;a; and j ¼ 1;2; . . . ;b ð33Þ

E. Pooling the Interaction Term with the Error Term

Once the analysis of residuals has been completed and the researcher is com-
fortable with meeting the normality assumptions, etc., there is another deci-
sion to make. If the interaction of the two main e¡ects, A and B, is not
signi¢cant, some statisticians suggest that the interaction sum of squares
and the error sum of squares be pooled.
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FIGURE 13 Residuals versusmain effect A (sex).

FIGURE 14 Residuals versusmain effect B (product).
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Recall that the original linear model for the two-factor design is:

yijk ¼ mþ Ai þ Bj þ ðABÞij þ Eijk ð34Þ
If the interaction is not signi¢cant, the interaction essentially drops

out, so the model becomes:
yijk ¼ mþ Ai þ Bj þ Eijk ð35Þ
In cases like this, the researcher does not have to recalculate the

model in its entirety. Instead, the new SSEðnewÞ term is:

SSEðnewÞ ¼ SSAB þ SSE ð36Þ
That is, the sums of squares are merely added to each other (pooled).

The only other change is in the degrees of freedom. The degrees of
freedom for SSAB ¼ ða� 1Þðb� 1Þ and the degrees of freedom for
SSE ¼ abðn� 1Þ.These are simply added to one another:

dfðnewÞ ¼ dfAB þ dfE

or

dfðnewÞ ¼ ða� 1Þðb� 1Þ þ abðn� 1Þ ¼ nab� a� bþ 1 ð37Þ
Everything else is the same.

FIGURE 15 Plot of residuals and cell values.
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The pooling a¡ects both the power of the statistical tests for main
e¡ects factors A and B and the level of signi¢cance.

Some statisticians recommend that pooling not be done, even if the
interaction is not signi¢cant, unless:

1. Degrees of freedom value for the error term is small (i.e., 5 or less).
2. The test statistic ratio,MSAB=MSE, is very small (i.e., less than 2 at

a ¼ 0:05).

These rules have the e¡ect of limiting pooling to cases in which degrees of
freedom being small for MSE will be increased and ensures that pooling
occur only in caseswhere interaction has a high probability of not being pre-
sent at all.

However, it is critical that the researcher, at no time,use a smorgasbord
of techniques to justify a preconceived bias. That is, a researcher must not
simply compute a variety of statistical tests until some desired outcome is
derived.

The ¢tted values for this model are:

ŷijk ¼ �yi:: þ �y:j: � �y...

m̂ ¼ �y...

Ai ¼ �yi:: � �y... i ¼ 1; 2; . . . ; a

Bj ¼ �y:j: � �y... j ¼ 1; 2; . . . ; b

F. Two-Factor ANOVA, One Observation per Cell

In practice, sometimes, the researcher can make only one measurement per
cell because of the expense of the study or some other factor. In these cases,
where no cell replication is done, k ¼ 1 (as does n) and the linear model is:

yij ¼ mþ Ai þ Bj þ ðABÞij þ Eij
i ¼ 1; 2; . . . ; a
j ¼ 1; 2; . . . ; b

ð38Þ

Notice that with only one observation within each cell, the error term
(Eij) and the interaction term ðABÞij are confounded, or ‘‘mixed together.’’
There is no way to retrieve the interaction term in this model. So, prior to
using only one observation per cell, the investigator should be familiar with
the system being studied to assure that no signi¢cant interaction between
factors will occur.When that cannot be assured, it is critical that the experi-
menter take more than one observation per cell.

The analysis of variance for a two-factor completely randomized
design, n ¼ 1 is straightforward (Table17).
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Tukey has presented a test to help determine whether interaction actu-
ally is present when n ¼ 1 [15,29].

SSl ¼

Pa
i¼1

Pb
j¼1

yijyi:y:j � y:: SSA þ SSB þ y2::=ab
� �" #2

ðabÞðSSAÞðSSBÞ ð39Þ

where yij ¼ individual cell value
yi: ¼ ith row total (factor A)
y:j ¼ jth column total (factor B)
y:: ¼ row or column totals

The test hypothesis is:

H0 : AB ¼ 0 ðinteraction not significant at aÞ
HA: AB 6¼ 0

FC ¼ SSl

SS�E=½ða� 1Þðb� 1Þ � 1�

SS�E ¼ SSE � SSl

Decision rule:
RejectH0 if Fc > Fa½1;ða�1Þðb�1Þ�1�
It is extremely dangerous for the researcher to rely on this interaction

test if the researcher does not have solid ¢eld knowledge of the data, espe-
cially that no interaction is present. It is often not wise to omit one of the
biggest advantages of a two-factor factorial model over a one-factor-at-a-

TABLE17 The Analysis of Variance foraTwo-Factor Designwith No Replication

Source of
variance

Sumof
squares

Degrees of
freedom Mean square Fc Ftabled

Treatment A
Pa
i¼1

yi:2

b � y2::
ab a�1 SSA

a�1 ¼ MSA
MSA

MSE
Fa½a�1;ða�1Þðb�1Þ�

Treatment B
Pb
j¼1

y:2j
a � y2 ::

ab b�1 SSB
b�1 ¼ MSB

MSB

MSE
Fa½b�1;ða�1Þðb�1Þ�

Error Subtraction (a�1)(b�1) SSE
ða�1Þðb�1Þ ¼ MSE MSE

Total
Pa
i¼1

Pb
j¼1

y2ij � y2::
ab ab�1
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time analysis�nteraction�but that is what happenswhere there is only one
observation per cell.

G. Power of the Test (Fixed Effects)

1. Power Calculated APriori

The power of the test�two-factor factorial�is straightforward and is com-
puted as previously described in Chaps. 5 and 6.We will perform it again for
demonstration.

Factors A and B (main e¡ects) are computed separately.

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0
Pk0

m¼1ðmm � mÞ2
k0s2

s
ð40Þ

where k0 ¼ a or b, depending upon the factor with which one is working
n0 ¼ bn, if factor A, or an, if factor B
s2 ¼MSE

m ¼
Pk0

m¼1 mm
k0 ¼ grand population mean

Note: Assume that these example calculations were computed prior to
running the F -tests for the two-factor factorial ANOVA.

2. FactorA

For this test, the researcher uses Table A.4, the power table. The necessary
parameters to determine the power are:

k0 ¼ a ¼ 2

n0 ¼ bn ¼ 3� 8 ¼ 24

v1 ¼ k0 � 1 ¼ a� 1 ¼ 2� 1 ¼ 1

v2 ¼ df for MSE ¼ abðn� 1Þ ¼ 2� 3ð7Þ ¼ 42

m ¼
Pa

m¼1 mm
a

¼ 31þ 25:75
2

¼ 28:375

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0
Pa

m¼1ðmm � mÞ2
as2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24ð½31� 28:375�2 þ ½25:75� 28:375�2Þ

2ð14:79Þ

s
¼ 3:344

From Table A.4, the researcher enters the value that corresponds to
v1 ¼ 1, v2 ¼ 42 degrees of freedom with f ¼ 3:344, a ¼ 0:05, and reads
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the b of the test, which, in this case, is about 0.03. The power of the test
is 1� b 
 1:00. Thus, with this model, there is about a zero (0%) chance
of committing a type II error (stating that H0 is true when it really is
false).

Let us now compute the same test for factor B.

3. FactorB

As before:

k0 ¼ b ¼ 3
n0 ¼ an ¼ 2� 8 ¼ 16
v1 ¼ b� 1 ¼ 2
v2 ¼ df for MSE ¼ 42

m ¼

Pb
j¼1

mj

b
¼ 23:25þ 27:25þ 34:63

3
¼ 28:377

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0
Pb
j¼1
ðmj � mÞ2

bs2

vuuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ð½23:25� 28:377�2 þ ½27:25� 28:377�2 þ ½34:63� 28:377�2Þ

3ð14:79Þ

s
¼ 4:9027

In Table D, ¢nding the v1 ¼ 2, v2 ¼ 42 value at a ¼ 0:05, f ¼ 4:9027,
(not even on the table) the researcher sees that, for b 
 0:000, the power of
the test is
 1:00.That is, there is about zero chance of making a type II error.

H. Alternative Way of Determining Power of the Test
A Priori

The power of the test computed before the ANOVA is performed is similar
to what was shown in Chaps. 5 and 6. The formula for the computation is:

f ¼
ffiffiffiffiffiffiffiffiffiffiffi
n0d2

2k0s2

s
ð41Þ

where:
n0 ¼ an, if factor B, or bn, if factorA
k0 ¼ a or b, depending upon the factor with which one is working
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s2 ¼dMSE (a value that would be estimated prior to conducting the
study, for this is an a priori test)

d¼ speci¢ed di¡erence to detect

1. TreatmentA

k0 ¼ a ¼ 2

n0 ¼ bn ¼ 3� 8 ¼ 24

v1 ¼ a� 1 ¼ 2� 1 ¼ 1

v2 ¼ df for MSE ¼ 42

d ¼ set at 5 units

s2 ¼MSE ¼ 14:786;which; in practice; would have to be estimated

f ¼
ffiffiffiffiffiffiffiffiffiffiffi
n0d2

2k0s2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24ð5Þ2

2ð2Þ14:786

s
¼ 3:1851

Entering Table D,with v1 ¼ 1, v2 ¼ 42, f ¼ 3:1851, and a ¼ 0:05, one
¢nds the b value to be about 0.015. The power of the statistical model is
1� b ¼ 0:985 (98.5%).

2. TreatmentB

k0 ¼ b ¼ 3

n0 ¼ an ¼ 2� 8 ¼ 16

v1 ¼ b� 1 ¼ 3� 1 ¼ 2

v2 ¼ df for MSE ¼ 42

d ¼ set at 5 units

s2 ¼dMSE ¼ 14:786 (Note: Again, this would be estimated;
we are using the actual only for
demonstration purposes.)

f ¼
ffiffiffiffiffiffiffiffiffiffiffi
n0d2

2k0s2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ð5Þ2

2ð3Þ14:786

s
¼ 2:123

Looking at Table A.4, with v1 ¼ 2, v2 ¼ 42, f ¼ 2:123, and let us set
a ¼ 0:05,we see that the power ð1� bÞ is about 0.85 (45%).
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I. Tests of Power, A Posteriori

After the experiment has been run and the ANOVA has been computed, the
power of the statistic can be computed for factors A and B, or, if interaction
is signi¢cant, the A� B combination means:

k0 ¼ a when contrasting levels of factor A; and

b when contrasting levels of factor B

After theANOVAhasbeen calculated,determining the actual power of
the model is straightforward.

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 � 1Þðfactor MS� s2Þ

k0s2

r
ð42Þ

1. FactorA

k0 ¼ a ¼ 2

MSA ¼ 330:750

v1 ¼ k0 � 1 ¼ 2� 1 ¼ 1

v2 ¼ df for MSE ¼ 42

s2 ¼MSE ¼ 14:786;which is now a calculated value

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� 1Þð330:750� 14:786Þ

2ð14:786Þ

s
¼ 3:269

The power of the test (1�b) when f¼ 3.269,v1¼1,v2¼ 42, and a¼ 0.05
(fromTable A.4) is about 0.97, or 97%. That is, the probability of making a
type II error, given the a level, f, and s2, is 1� 0.97, or 3%.

2. FactorB

k0 ¼ b ¼ 3

MSB ¼ 532:750

v1 ¼ k0 � 1 ¼ 3� 1 ¼ 2

v2 ¼ df for MSE ¼ 42

s2 ¼MSE ¼ 14:786

Let us set a¼ 0.05.
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f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� 1Þð532:750� 14:786Þ

3ð14:786Þ

s
¼ 4:833

The power of this test, when f¼ 4.833, v1¼2, v2¼ 42, and a¼ 0.05, is
about 1.00, or 100%. The probability of making a type II error is about
zero, or 1%.

3. Power for FactorA�B Interaction

The power of the interaction can also be computed after the ANOVA has
been completed:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� B degree of freedomÞðMSAB � s2Þ
ð½A� B degrees of freedom� þ 1Þs2

s
ð43Þ

df A ¼ 2� 1 ¼ 1
df B ¼ b� 1 ¼ 3� 1 ¼ 2
MSAB ¼ 175:000
v1 ¼ ða� 1Þðb� 1Þ ¼ ð2� 1Þð3� 1Þ ¼ 2
v2 ¼ df for MSE ¼ 42

s2 ¼MSE ¼ 14:786
a ¼ 0:05

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 	 2Þ175� 14:786
ð1 	 2þ 1Þð14:786Þ

s
¼ 2:688

For a¼ 0.05, v1¼2, v2¼ 42, and f¼ 2.688 the power of the statistic (1�b) is
0.97, and the probability of rejectingHA,when true, is 0.03, or 3%.

J. Sample Size Requirements

Prior to conducting an experiment or performing a study, an experimenter
will want be sure that the sample size selected is adequate at:

A speci¢ed power (1�b)
A speci¢ed alpha (signi¢cance level, a)
A speci¢ed s2

A speci¢ed minimum detectable di¡erence between means

As in the case of the one-factorANOVA, the procedure is iterative, and
generally it is based upon the most important main factor e¡ect (A or B). If
the researcher suspects greater variability in one factor than another, it
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would bewise to use that with the greater variability estimate, ŝ2, to be on the
safe, or conservative, side.

The method is performed as in Chap. 6.Using our example in the pre-
sent chapter,we will apply the formula:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n0d2

2k0S2

s
ð43Þ

where n0 ¼ bn, if factorA*; an, if factor B
k0 ¼ a, ifA; b, if B
v1¼ k0�1 (a�1 if factorA,b�1 if factor B)
v2¼ df for MSE
S2¼ variance estimate, orMSE
a¼ signi¢cance level for type I error
b¼ level of type II error which is experimented
d¼minimum desired detectable di¡erence between means

In our example, let us select factorA as the e¡ect on which to base our
decision. Suppose we estimate MSE as 14.786 (which we would not know in
reality because we have not performed the experiment).

k0 ¼ a¼ 2
v1¼2�1¼2�1¼1

It may be easier to see what is happening if we rewrite in terms of
factorA.

I ¢nd it easier to determine v2 in this way, for one needs to know what
the values of a and n are, not just their product,an.

Let us continue to use Example1:

v1¼a�1¼1
d ¼ 5(as before).We are using thisminimumdetectable di¡erence, as it

was previously set, to showhow these calculations are all interre-
lated.

a ¼ 0.05, as before
b ¼ 0.10 (so the required power [1�b]¼ 0.90) (we will use 1�b¼0.90

for a change)
s2¼14.786, as actually calculated
The ¢nal formula, then, is:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
bnd2

2k0S2

s
ð44Þ

*an or bn constitutes the entire sample size of group A or group B categorized by level; n is the
actual per cell sample size.
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f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðnÞ52
2ð2Þ14:786

s

Let us begin the iterative process, estimating n (the within-cell repli-
cates) as n¼15.

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð15Þ52

2ð2Þ14:786

s
¼ 4:361

v1 ¼ 1

v2 ¼ abðn� 1Þ ¼ 2� 3ð15� 1Þ ¼ 84

Looking in Table D, a¼0.05, v1¼1, v2¼ 84, f¼4.361, 1�b¼0.90.We
see that the power of this sample size is greater than 0.90 (actually, it is about
99.9%), so we can lower the estimate of sample size, say, 10.

Next Iteration,with n ¼ 10

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð10Þ52

2ð2Þ14:786

s
¼ 3:561

v1 ¼ 1

v2 ¼ 2� 3ð10� 1Þ ¼ 54

a ¼ 0:05

We ¢nd that the power is still over our required 0.90 value. We can
reduce the sample size,n, again, say to 5.

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð5Þ52
2ð2Þ14:786

s
¼ 2:518

v1 ¼ 1

v2 ¼ 2� 3ð5� 1Þ ¼ 24

a ¼ 0:05

The power for this test is about 0.92, which the researcher decides to
use because it is close to 0.90. So each cell in the experiment will use an
n¼ 5.The actual experiment used n¼ 8, but 5 would have been adequate.
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K. Minimum Detectable Difference

As before, the minimum detectable di¡erence is the numerical di¡erence
between means that can be detected by the two-factor factorial design at a
set a, b, sample size, and s2. Both treatments A and B can be tested.

The formula for this test is:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k0S2f2

n0

s
ð45Þ

where k0 ¼ a if measuring factorA and b if measuring factor B
n0 ¼bn if measuring factorA and an if measuring factor B
s2¼MSE
f must be read from Table D, at a speci¢ed a, b, and s2, or can be
computed in determining the power and plugged into the minimum
detectable di¡erence formula.

Example 1 (cont.): In our data set,we are interested in knowing the
smallest detectable di¡erence for both factors A and B after we have per-
formed the study.

1. Factor A

k 0 ¼ a ¼ 2

s2 ¼MSE ¼ 14:786

n0 ¼ b� n ¼ 3� 8 ¼ 24

a ¼ 0:05; as before

b ¼ 0:10; so 1� b ¼ 0:90; as before

v1 ¼ a� 1 ¼ 2� 1 ¼ 1

v2¼ ab(n�1)¼ 2�3(8�1)¼ 42 (to be read fromTable D for f; ¢nd v2
on the table corresponding to a¼ 0.05,v1¼1, and1�b¼0.90, and
read f)

f¼ 2.5
Plugging these data in Eq. (46), the researcher ¢nds that:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2Þ14:786ð2:5Þ2

3� 8

s
¼ 3:925

Hence, given a¼ 0.05, 1�b¼0.90, and s2¼14.786, the minimum
detectable di¡erence between means in treatment A is 3.925 points. This is
good, because we stated a need for a minimum of 5 points.
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Hence, the researcher is quite con¢dent that, if a signi¢cant di¡erence
exists between means, the statistic will detect it, if it is 5 points or greater.
There is a ‘‘cushion’’ factor in this model.

2. Factor B

k0 ¼ b ¼ 3

s2 ¼ 14:786 ¼MSE
n0 ¼ a� n ¼ 2� 8 ¼ 16
a ¼ 0:05
b ¼ 0:10
v1 ¼ b� 1 ¼ 3� 1 ¼ 2
v2 ¼ abðn� 1Þ ¼ 2� 3ð7Þ ¼ 42

f is estimated from Table D, v1¼2, v2¼ 42, a¼0.05, 1�b¼0.90, as

 2.15.

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3Þð14:786Þð2:15Þ2

2� 8

s
¼ 5:063

Theminimum detectable di¡erence between means in the treatment B
portion is 5.063,which is about the required 5.

L. Missing Values

It is critical, in this researcher’s opinion, that the replicates used per cell in
two-factor factorial designs be balanced or equal. If a list of data is missing,
making the cell sample size, n, unbalanced, the researcher can randomly
remove values in the cells with greater sample sizes until all cell sample sizes
are equal. However, if only one data point is missing, one can substitute an
estimated value, yijk, for the missing value. For example, the missing value
can be estimated from:

ŷijk ¼
ayi:: þ by:j: �

Pa
i¼1

Pb
j¼1

Pn
k¼1

yijk

N þ 1� a� b
ð46Þ

where a¼ number of treatment levels in treatment A
b¼ number of treatment levels in treatment B

yi..¼sum of the ith row totals containing the missing value
y.j.¼sum of the jth column totals containing the missing value
N¼a�b� n, including the missing value
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Once the missing value is estimated, it is inserted into the data, and the
ANOVA proceeds as before. However, for each data point estimated, the
researcher loses one degree of freedom in the error term. So, if one value is
estimated, the degrees of freedom become:

Degrees of freedomADJ ¼ ðab½n� 1�Þ � 1

Example 1 (cont.): Suppose the value, y122 (31), is missing, produ-
cing data as appear in Table 18. In this example, we are concerned with the
yi.. (row total) with the missing value and y.j. (column total) with the miss-
ing value. The row total (all females) is y1.. or 713. The column total of all
product 2 (y.2.) is 405.

The total of all individual yijk value is:Xa
i¼1

Xb
j¼1

Xn
k¼1

yijk ¼ 32þ 27þ 22þ 	 	 	 þ 30þ 32þ 29 ¼ 1331

The estimate of the missing value is:

ŷijk ¼ 2ð713Þ þ 3ð405Þ � 1331
48þ 1� 2� 3

¼ 29:773

The researcher plugs 29.773 (or 30, rounded) into theMVvalue spot in
the y12. cell and computes theANOVAas before, except that theMSE has one
less degree of freedom.

If several values are missing, the mean values of each cell containing
missing values can be substituted for the missing values. For each substitu-
tion, it is important to reduce the degrees of freedom in the error termbyone.
Hence, if three valueswere estimated values (m) in a ¢xed-e¡ects, two-factor
factorial design, the degrees of freedomwould be:

Degrees of freedomadj ¼ abðn� 1Þ �m

wherem is the number of missing values estimated.
The experiment’s validity becomes very shaky if many values are esti-

mated.This is particularly true for applied statistical researchers, for whom
assumption often does not prove valid in the actual research ¢eld.

III. CONCLUDING REMARKS

A. Model I: Fixed Effects

In cases where all levels within the two factors have been intentionally cho-
sen, the model is said to be ¢xed. All of the work in this chapter has been
concernedwith a ¢xed-e¡ectsmodel. In ¢xed-e¡ect studies,which are vastly
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more common than either random-e¡ects or mixed-e¡ects models, the
hypotheses tested are:

Factor A: H0: m1 ¼ m2 	 	 	 ¼ mn
HA: At least one m differs

Factor B: H0 : m1 ¼ m2 	 	 	 ¼ mn
HA: At least one m differs

The FC tests, as the reader will recall, are:

Factor A:
MSA
MSE

Factor B:
MSB
MSE

A� B interaction:
MSAB

MSE

Note:The degrees of freedom for FT are (numerator df; denominator df ).
Conclusions drawn concerning model I are only for the levels evalu-

ated in factors A and B.The assumptions should not be generalized to make
universal statements.

B. Model II:Random Effects

In some cases, the levels of both treatments A and B are selected at random
from the ‘‘universal,’’ or all possible levels ‘‘out there.’’ In models of this
type, one does not want to make inferences concerning all ‘‘levels’’
of a speci¢c factor. In a two-factor factorial model, it is all levels
of two factors.

Recall that the hypothesis dealt with means (m). In the random e¡ects
model, the question is one of equivalence of variances (s2).

Factor A: H0: s2
1 ¼ 	 	 	 ¼ s2

a

HA: The variances are not equal

Factor B: H0: s2
1 ¼ 	 	 	 ¼ s2

b

HA: The variances are not equal

A� B interaction: H0 : s2
1 ¼ 	 	 	 ¼ s2

ab

HA: The variances are not equal

The FC test for the random-e¡ects model is not the same as for the
¢xed-e¡ects model.
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Factor A:
MSA

MSAB

Factor B:
MSB

MSAB

A� B interaction:
MSAB
MSE

Note: The degrees of freedom for FT are FTa (numerator df;
denominator df )

Wehave covered a great deal ofmaterial in this chapter,which certainly
will be of use to the applied researcher. It is important that the researcher
clearly understands the methods presented.More complex factorial designs
will not be discussed because they are of little value to the applied researcher.
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8

Two-Factor Factorial Completely Randomized

Blocked Designs

As in the case of the complete block design in the one-factor analysis of
variance, there are times when complete randomization is not the best path
for the experimenter to pursue, particularly in terms of practicality. There
are many times when it is not feasible, for example, in heating or tempera-
ture experiments, such as D-value computations of the lethality rate of
steam heat for speci¢c bacterial spores. It may be practical only to run all
the replicate samples at one temperature, then subsequent replicates at
other temperatures, and so on. In this case, temperature 1 would represent
block 1; temperature 2, block 2; and on to temperature n. Another real
problem for which this design is useful consists of experiments so large in
size that it is not possible to run the entire study in a single time period,
say, a day. It may take 2 or 3 days. In this case, the test days are blocks.
Other applications include di¡erent batches of a material, di¡erent opera-
tors or technicians, or di¡erent times, blocked to enhance the statistical
power.

The concept of blocking two-factor designs is a direct extension of
the one-factor complete block design, so we will not spend a lot of time
on its discussion, except to provide procedural or calculation require-
ments.Only the ¢xed-e¡ects model will be discussed, for it is by far the most
applicable.
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The two-factor factorial, blocked design has the linear form:
yijk ¼ mþ Ai þ Bj þ ðABÞij þ Ck þ Eijk ð1Þ

where

i ¼ 1,2, . . . a
j ¼ 1,2, . . . b
k ¼ 1,2, . . . n
m ¼ grand mean
Ai ¼ treatment A at ith level
Bj ¼ treatment B at jth level
(AB)ij ¼A�B Interaction
Ck ¼ the blocking e¡ect of the kth block
Eijk ¼NID(0,s2); the error is an aggregate of factors A and B, the

A�B interaction, and the block e¡ect

Note that, in this blocking design, one does not completely randomize
all abn values but restricts randomization to within each block. We will
assume that no interaction between the blocks and treatments occurs. If
there is interaction, it will be added (confounded) to the error term, in£ating
it. Hence, the researcher will want to be observant for ‘‘strange’’ or unex-
plained increases in MSE. In point of fact, the error term is composed of
(AC), (BC), and (ABC), all of which we assume are near zero.

The analysis of variance table for the two-factor factorial, randomized
complete block design is presented inTable1.

I. EXPECTED MEAN SQUARES

Notice again that the variance components of this model will all equal an
unbiased estimate ofs2, given that no treatment=interaction blocking e¡ects
are present.Otherwise, the error term s2 also contains the treatment e¡ect,
interaction e¡ect, or blocking e¡ect embedded in it.

Treatment A ¼ s2|{z}
Pure error

þ bn
P

A2
i

a� 1|fflfflfflfflffl{zfflfflfflfflffl}
Treatment A

effect

Treatment B ¼ s2|{z}
Pure error

þ an
P

B2
j

b� 1|fflfflfflfflffl{zfflfflfflfflffl}
Treatment B

effect
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Treatment A� B ¼ s2|{z}
Pure error

þ n
PPðABÞ2ij
ða� 1Þðb� 1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Treatment A� B
effect

Block effect ¼ s2|{z}
Pure error

þ abs2
c|ffl{zffl}

Block
effect

Pure Error¼s2¼Random Error
Example1. A chemist working on a pilot puri¢cation extraction pro-

cedure is interested in evaluating three di¡erent antibiotic products using
two di¡erent extraction methods. This study cannot be conducted in 1 day,
so the researcher decides to utilize a two-factor design with days being
blocked.The study will restrict randomization to being within each of three
blocks. The values collected are in percentages, which have been coded to
equal whole numbers (e.g., 89%¼ 89). The study design is presented in
Table 2.

Note that at several samplings (Table 3), the percentage recorded was
over 100. This is a normal phenomenon and has to do with random error.
Also, note that the researcher has designed this study as a screening study.
It is merely a preliminary study to provide the basis for the researcher to
expand the study into a larger, more de¢nitive one.

The researcher would like to know whether the two extraction meth-
ods are equivalent. If so, she will use method 2, for it is cheaper and faster.
The researcher would also like to know whether there is a di¡erence in
the extraction e⁄ciency for the same glycoamino antibiotic in three separate
formulas.

TABLE 2 ANOVATable,Represented Notation

Day (block)

FactorB ,
extraction
method

1 2 3

1 2 1 2 1 2

FactorA , 1 ya111 y121 y112 y122 y113 y123
antibiotic 2 y211 y221 y212 y222 y213 y223

3 y311 y321 y312 y322 y313 y323

ayijk
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Using the six-step procedure, let us work the problem.

Step1. Formulate the hypothesis:

Factor A H0: m1 ¼ m2 ¼ m3 (The proportion of extrac-
tion of glycoamino is the
same for each product.)

HA: The above is not true.
Factor B H0 : m1 ¼ m2 (Extraction methods 1 and 2

provide the same results.)
HA : m1 6¼ m2

A� B Interaction: H0:There is no signi¢cant interaction between
factors A and B.

HA: The above is not true.

Step 2. Select a and n. The researcher has determined to use the smal-
lest sample size possible and run the study over 3 days (blocks) and
also to use a¼ 0.05 for the interaction but a¼ 0.10 for the main
e¡ects.That is, she wants to be more protected from type I error for
interaction but less so for the main e¡ects. In point of fact, she is
being less conservative for type Ierror, thereby to discover a possible
di¡erence if one may exist within each of the main e¡ects.

Step 3. The linear model to be used is

yijk ¼ mþ Ai þ Bj þ ðABÞij þ Ck þ Eijk ð1Þ

where

Ai¼ the ith level of factorA
Bj¼ the jth level of factor B

TABLE 2B ANOVATable, Actual Values Collected

Day (block)

FactorB ,
extraction
method

1 2 3

1 2 1 2 1 2

FactorA , 1 82 78 84 73 88 84
antibiotic 2 94 79 88 72 98 82

3 106 85 90 75 104 87
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(AB)ij¼ the interactionof the ith level of factorA and the jth level
of factor B

Ck¼ the kth level block e¡ect
Eijk¼ error term
a¼ 3 degrees of freedom¼a�1¼3�1¼2
b¼ 2 b�1¼2�1¼1
n¼ 3 n�1¼3�1¼2

AB¼ 3�2 (a�1)(b�1)¼ 2�1¼2
error¼ (ab�1)(n�1)¼ (3�2�1)(3�1)¼ 10

Step 4. Establish decision rule.
FactorA: Fa[b�1; (ab�1)(n�1)]¼F0.10[2, 10]¼ 2.92
If Fc> 2.92, rejectH0 at a¼ 0.10. A signi¢cant di¡erence in products
exists.
Factor B: Fa[b�1; (ab�1)(n�1)]¼F0.10 [1, 10]¼ 3.29
If Fc> 3.29, rejectH0 at a¼ 0.10.A signi¢cant di¡erence exists in the
methods.
A�B interaction: Fa[(a�1)(b�1); (ab�1)(n�1)]¼F0.05 [2, 10]¼ 4.10
If Fc> 4.10, reject H0; signi¢cant factor A�B interaction exists at
a¼ 0.05.

Step 5. Conduct the experiment.Table 3 provides the data.

Components
FactorA¼yi..¼489þ513þ547¼1549
Factor B¼ y.1.¼ 282þ262þ290¼ 834

y.2.¼ 242þ220þ253¼715
FactorA�B¼ yij.¼y11.¼82þ84þ88¼254

y12.¼78þ73þ84¼ 235
y21.¼94þ88þ98¼280
y22.¼79þ72þ82¼ 233
y31.¼106þ90þ104¼300
y32.¼85þ75þ87¼247

SSA ¼ 1
bn

X3
i¼1

y2i:: �
y2i::
abn

¼ 1
2ð3Þ ½489

2 þ 5132 þ 5472� � 15492

3 	 2 	 3

¼ 133; 583:167� 133; 300:056

¼ 283:111
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SSB ¼ 1
an

X2
j¼1

y2j:: �
y2:j:
abn

¼ 1
3ð3Þ ½834

2 þ 7152� � 15492

3 	 2 	 3
¼ 134; 086:770� 133; 300:056

¼ 786:714

SSBLOCK ¼ 1
ab

X3
k¼1

y 2
::k
� y 2:::

abn

¼ 1
2ð3Þ ½524

2 þ 4822 þ 5432� � 15492

3 	 2 	 3
¼ 133; 624:833� 133; 300:056

¼ 324:778

SSAB ¼ 1
n

X3
i¼1

X2
j¼1

y2ij: �
y2...
abn
� SSA � SSB

¼ 1
3

2542 þ 2352 þ 2802 þ 2332 þ 3002 þ 2472
 �
� 15492

3 	 2 	 3� SSA � SSB

¼ 134; 479:667� 133; 300:056� SSA � SSB
¼ 1; 179:611� SSA � SSB
¼ 1; 179:611� 283:111� 786:714

¼ 109:786

SSTOTAL ¼
Xa
i¼1

Xb
j¼1

Xn
k¼1

y2ijk �
y2:::
abn

¼
Xa
i¼1

Xb
j¼1

Xn
k¼1
½822 þ 942 þ 1062 þ 	 	 	 þ 842 þ 822 þ 872�

� 15492

3 	 2 	 3
¼ 134; 897� 133; 300:056

¼ 1596:944
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SSE ¼ SST � SSA � SSB � SSBLOCK � SSAB

¼ 1596:944� 283:111� 786:714� 324:778� 109:786

¼ 92:555

The next step is to construct the analysis of variance table (Table 4).

Step 6. Immediately the researcher sees that there is signi¢cant inter-
action between product formulations and extraction method used.
In addition, the researcher sees that the error term does not appear
in£ated with A�block, B�block, and A�B� block interaction,
because it is relatively small. Yet, one cannot tell for sure without
relying on experience. Because the main e¡ects interaction (A�B)
term is signi¢cant, the researcher plots the mean values (Fig. 1) for
the �yij:,where:

�y11: ¼ 84.67
�y12: ¼ 78.33
�y21: ¼ 93.33
�y22: ¼ 77.67
�y31: ¼ 100.00
�y32: ¼ 82.33

Upon closer investigation, the researcher sees that method 1
provides higher extractions than method 2.The practical importance of this

TABLE 4 ANOVATable forTwo-Factor Randomized Block Design

Source of
variance

Sumof
squares

Degrees of
freedom

Mean
square Fc FT

S¼Significant
NS¼Not
significant

FactorA
(product
formulation)

283.111 2 141.56 15.296 2.92 S; a¼ 0.10

FactorB
(method)

786.714 1 786.71 84.96 3.29 S; a¼ 0.10

FactorA�B
interaction

109.78 2 54.89 5.93 4.10 S; a¼ 0.05

Blockeffects
(days)

324.778 2 162.89

Error 92.555 10 9.26

Total 1596.944 17
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interaction is not signi¢cant for the researcher. She feels that the sensitivity
of the interaction is too great (MSE), based on her ¢eld experience, and deci-
des to ignore it in this pilot study. She is pleased that the block e¡ect did
reduce variability but decides, for the next study, to pool days (ignore the
day e¡ect),which will increase the error term. She sees that the main e¡ect,
A (antibiotic formulation), has varying extraction e¡ects. And, because for-
mulations di¡er, she will expand this component in the next study, carefully
noting what happens.Also, she decides to use extraction method1because it
provides consistently better extraction results. In the next study, she will
omit extraction method 2.

It is important for the researcher to ground the statistics in the ¢eld of
his or her expertise instead of looking at the statistical analysis as a ‘‘holy’’
vehicle. But this requires expertise in both statistics and one’s primary
¢eld.

A computer printout of this evaluation is presented in Table 5. The
generalized linear model was used on a MiniTab software package.

The means for the main e¡ects and interaction are provided in
Table 6.

FIGURE 1 Plottedmean values.
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Note:The predicted value ŷijk ¼ m̂þ Âþ B̂þdABþ Ĉ where:

m̂ ¼ �y:::
A ¼ �y1:: � �y:::
B ¼ �y:j: � �y:::
C ¼ �y::k � �y:::
ABij ¼ �yij: � �yi:: � �y:j: þ �y:::

TABLE 5 MiniTab Generalized Linear Model

ANALYSISOF VARIANCEFOREXTRACTION
Source DF Seq SS Adj SS Adj MS F P

C1 2 283.11 283.11 141.56 15.29 .001
C2 1 786.72 786.72 786.72 85.00 .000
C3 2 324.78 324.78 162.39 17.55 .001
C1�C2 2 109.78 109.78 54.89 5.93 .020
ERROR 10 92.56 92.56 9.26
TOTAL 17 1596.94

Note:C1¼ factor A,C2¼ factor B,C3- blocks (days),C4¼ yijk ,C5¼ ŷijk,C6¼ yEijk .

TABLE 6 Means for Main Effects and Interactions

(A) PRODUCT¼ C1 MEAN
1 81.50
2 85.50
3 91.17

(B) METHOD¼ C2

1 92.67
2 79.44

(C) DAY (BLOCK)¼ C3

1 87.33
2 80.33
3 90.50

PRODUCT�METHOD
INTERACTION¼ C1�C 2

1 1 84.67
1 2 78.33
2 1 93.33
2 2 77.67
3 1 100.00
3 2 82.33
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FIGURE 2 Residual values Eijk plottedagainstmain effectA (formulation).

TABLE 7 Input=Output DataTable

ROW C1 C2 C3 C4 C5 C6

1 1 1 1 83 85.944 � 3.94444
2 2 1 1 96 94.6111 � 6.61111
3 3 1 1 106 101.278 4.72222
4 1 1 1 78 79.611 � 1.61111
5 2 2 1 79 78.944 0.05558
6 3 2 1 83 87.611 1.38889
7 1 1 2 84 78.944 5.05596
8 2 1 2 88 87.611 0.38889
9 3 1 2 90 94.278 � 4.27778
10 1 2 2 72 72.611 0.38889
11 2 2 2 72 71.944 0.05556
12 3 2 2 73 76.611 � 1.61111
13 1 1 3 88 89.111 � 1.11111
14 2 1 3 98 47.778 0.22222
15 3 1 3 104 104.444 � 0.44444
16 1 2 3 84 82.778 1.22222
17 2 2 3 82 82.111 � 0.11111
18 3 2 3 87 88.778 0.22222
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FIGURE 3 Residual values Eijk plottedagainst factorB (method).

FIGURE 4 Residual values Eijk plottedagainst predicted values ŷijk.
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For example,

ŷ111 ¼ �y::: þ ð�y1::� �y:::Þ þ ð�y:1: � �y:::Þ þ ð�y::1 � �y:::Þ þ ð�y11: � �y1::� �y:1: þ �y:::Þ
¼ 86:06þ ð81:50� 86:06Þ þ ð92:67� 86:06Þ
þ ð87:33� 86:06Þ þ ð84:67� 81:50� 92:67þ 86:06Þ
¼ 85:94

The formula for deriving y“ ijk can be simpli¢ed with some algebraic mani-
pulation to

ŷijk¼ �yij:þ �y::k� �y::: ðe:g:; ŷ111¼84:67þ87:33�86:06¼85:94Þ
Let us now look at some residual plots. Figure 2 portrays the residual

values, Eijk, plotted against the three antibiotic formulations (main e¡ect A).
Notice that the residuals for all three formulations in factorA are uniformly
distributed about zero.

Figure 3 portrays the residual values, Eijk, plotted against main e¡ect B
(extraction method). Notice that the values in the two levels of factor B are
uniformly distributed about zero.

Figure 4 presents a plot of the residual values, Eijk against the predicted
values y“ ijk. Again, the residuals versus ¢tted or predicted values seem to be
centered about zero.

The researcher also should perform exploratory data analysis on the
residual values, including stem-and-leaf displays, letter-value displays, and
boxplots.

II. MULTIPLE CONTRASTS

Multiple contrasts can bemadeof themain e¡ects (factorsA andB) aswell as
the interaction.As discussed previously, if the interaction of themain e¡ects
is signi¢cant, the researcher will want to be careful in evaluating the main
e¡ects by themselves. Based upon Fig.1, the interaction of formulations 1
and 2 £ip-£ops between methods 1 and 2. Using extraction method 1, the
extraction quantity of formulation 2 is slightly higher than that for formula-
tion1, but when using extraction method 2, the extraction of formulation1 is
slightly greater than that for formulation 2.

The researcher now has dismissed the interaction’s signi¢cance to her
goal, that of picking an extraction method. She has decided, also, to expand
the investigation of the extraction method of choice (method 1) into a more
intense future study.

However,you, as the researcher,may not want to handle the analysis as
she did.You may want to explore the interaction e¡ects as well as the main
e¡ects via multiple contrasts.
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We will forgo any orthogonal (a priori) evaluation because the likeli-
hood of the researcher knowing what contrasts are important before
conducting the study is not high. Instead, we will focus on the a posteriori
contrasts that the researcher decides to perform after a study has been com-
pleted and theH0 hypothesis rejected.

As in the last chapter,when a main factor contains only two levels, no
further contrasts are necessary because the F-test would provide only a
retest of their signi¢cance. That is, the researcher already knows that there
is a signi¢cant di¡erence between methods 1 and 2 (factor B, extraction
method) at the set a.

Suppose the researcher wanted to evaluate the main e¡ects of factor
A, although this will undoubtedly provide contradictory results between
products 1 and 2 because results will di¡er depending upon the method
used.

III. SCHEFFE’S METHOD

Recall that Sche¡e’s method is used to compare a number of di¡erent con-
trasts. It is useful for comparing any number of combination contrasts but
not for all pairs of means.

The test can be used for both factorA (yi..) and factor B (y.j.) as well as
the A �B interaction (yij.). For standardization, we call the yi..s the row
totals, and the y.j.s the column totals.

The standard error of the contrast (C) is:

Sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

X c2

n

� �s
ð2Þ

which is, for factorA:

Sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Xa
i¼1

c2i
n

� �s

and for factor B:

Sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Xb
j¼1

c2j
n

 !vuut
In this example, only factor A is of importance because factor B is at

two levels and is known to be signi¢cant.
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FactorAContrasts (Ci)

Ci ¼ C1y1:: þ C2 �y2:: þ 	 	 	 þ Ca �ya::

The critical value with which Ci should be compared is Saj ¼
SCi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� 1ÞFaða�1Þ;ðab�1Þðn�1Þ
p

.

If Cj (factor B) is evaluated, use the form Saj ¼
SCj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb� 1ÞFaðb�1Þ;ðab�1Þðn�1Þ
p

.

Hypothesis: If jCij > Sai , rejectH0

Recall: yi:: ¼ y1:: ¼ 489; �y1:: ¼ 489
6
¼ 81:50

¼ y2:: ¼ 513; �y2:: ¼ 513
6
¼ 85:50

¼ y3:: ¼ 547; �y3:: ¼ 547
6
¼ 91:17

Suppose the researcher wants to contrast:

C1 ¼ m1 �
m2 þ m3

2
¼ 0 81:5� 85:5þ 91:17

2
¼ �6:84

The hypothesis set is written:

C1: H0: m1 �
m2 þ m3

2
¼ 0

HA: m1 �
m2 þ m3

2
6¼ 0

C1 ¼ �y1:: � �y2:: þ �y3::
2

C1 ¼ 81:5� 85:5þ 91:17
2

¼ �6:84

Recall fromTable 4 that MSE ¼ 9.256.

SC1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

X3
i¼1

Ci

ni

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:256

12 þ ð�1=2Þ2 � ð1=2Þ2
6

� �s
or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:256

12

6
þ ð�1=2Þ

2

6
þ ð�1=2Þ

2

6

� �s
¼ 1:52
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Sa1 ¼ SC0:05;C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� 1ÞFa½a�1;ðab�1Þðn�1Þ�
p

¼ 1:52
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� 1ÞF0:05ð2;10Þ

p
¼ 1:52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4:10Þ

p
¼ 4:35

If jCij > Sai rejectH0 at a.
jC1j ¼ j � 6:84j > 4:35, so the H0 hypothesis for contrast 1 ðC1Þ,
ðH0: m1 � ðm2 þ m3Þ=2 ¼ 0Þ, is rejected at a¼ 0.05.
Contrast 2 is:

C2: H0: m2 � m3 ¼ 0
HA: m2 � m3 6¼ 0

C2 ¼ �y2:: � �y3:: ¼ 85:50� 91:17 ¼ �5:67

SC2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

X2
i¼1

Ci

ni

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:256

ð12 þ ð�1Þ2Þ
6

s
¼ 1:76

Sa2 ¼ 1:76
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4:10Þ

p
¼ 5:04

jC2j ¼ j�5:67j > 5:04, so theH0 hypothesis for contrast 2(C2), ðH0: m2 ¼ m3Þ
is rejected at a ¼ 0:05.

Here is where the problem of interaction comes into play. One
cannot contrast the main e¡ects of factor A without taking into account
factorB. For a case in point, if the researcher were to compare m1with m2 and
adi¡erencewasdetected,sheor hewould have tobe sure tonote that at factor
B,method1,product 2 provides a greater extractionpercentage thanproduct
1. But at factor B, method 2, product 1 provides a greater extraction percen-
tage than product 2. Hence, the researcher would usually contrast not main
e¡ects ðyi:: or y:j:Þbut interactions (yij.) to get a viewof what the data reveal.

For the researcher, the Sche¡e method is most useful when eval-
uating particularly complex contrasts, such as C1 m1 � ðm2 þ m3Þ=2

 �
. If

the researcher wants to compare all pairs of means, the LSD, Duncan’s
multiple range, Newman^Keuls, or Tukey’s test can be used. They tend
to be more sensitive to di¡erences between mean pairs than is the Sche¡e
method.

IV. LEAST SIGNIFICANT DIFFERENCE (LSD)

Recall that the least signi¢cant di¡erence procedure compares all pairs of
means and can be used for both the main e¡ects and the interaction terms.

Two-Factor Factorial Completely Randomized Blocked Designs 325



Because factor B had only two levels, there is no need to compare them, for
we already know they are signi¢cantly di¡erent.

Because the LSD procedure is used to comparemean pairs, it is impor-
tant from the researcher’s perspective that, in the blocked design, there be no
missing values. If one block is missing a value, the other blocks should be
reduced randomly one block value each to make the design balanced.

The LSD test formula for factor B is:

LSD ¼ ta=2;ðab�1Þðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE
an

r
For factorA, substitute a for b,

ffiffiffiffiffiffiffiffiffi
2MSE
bn

q
The hypothesis test is:

H0: mi � mj ¼ 0

HA: mi � mj 6¼ 0

If j�yi � �yj j > LSD, rejectH0 at a.
There are ½aða� 1Þ�=2 ¼ ð3� 2Þ=2 ¼ 3 possible contrasts for factorA.

The FactorA means are:

�y1:: ¼ 81:50

�y2:: ¼ 85:50

�y3:: ¼ 91:17

LSD ¼ ta=2; ð2b�1Þðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

bn

r
for b ¼ 2; a ¼ 3; n ¼ 3; and MSE ¼ 9:256

Let us set a at 0.05. ta=2	ð2b�1Þðn�1Þ ¼ t0:05=2ð3	2�1Þð3�1Þ ¼ t0:025;10 From the
students t table (Table B), t ¼ 2:228

LSD ¼ 2:228

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð9:256Þ
2� 3

r
¼ 3:91

The three contrasts are:

S¼Significant
LSD NS¼Not significant

�y1:: � �y2:: ¼ j81:50� 85:50j ¼ 4 > 3:91 S
�y1:: � �y3:: ¼ j81:50� 91:17j ¼ 9:67 > 3:91 S
�y2:: � �y3:: ¼ j85:50� 91:17j ¼ 5:67 < 3:91 S
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V. DUNCAN’S MULTIPLE RANGE TEST

Wehave used the Duncan’s multiple range test over the last several chapters.
It is useful for comparing all pairs of means. Again, the more advanced
designs, such as the complete block two-factor factorial experiments we are
using, will be used primarily for research and development. The reason is
that, in the world at large, it will bemore di⁄cult for nonstatisticians to com-
prehend them. It is strongly recommended that sample sizes be the same to
provide a balanced design. If a value is missing, however, one can estimate
it with the method used in Chap. 7 and increase degrees of freedom for
the error term by one. Hence, degrees of freedom would be MSE ¼
ðab� 1Þðn� 1Þ � 1.

Both the main e¡ects and interaction can be compared using Duncan’s
multiple range test. Recall that one arranges the a (or b) treatment means of
each factor tested in ascending order.This is followed by computing the stan-
dard error of each factor.

For factorA, it is:

S�yi:: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

bn

r
For factor B, it is:

S�y:j: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE
an

r
Ascending order (treatment means of factorA):

�y1:: ¼ 81:50

�y2:: ¼ 85:50

�y3:: ¼ 91:17

Computation of standard error:

S�y1:: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

bn

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
9:256
2� 3

r
¼ 1:24

From Duncan’s multiple range table (see Table A.5), one obtains the
value of raðp;f ÞS�yi:: for p¼ 2, 3 . . . , a. (For treatment B, this would be rað p;f ÞS�y:j:
for p¼ 2, 3, . . . , b).

The observed di¡erences between the means are then compared,
beginning with the largest to the smallest, which is compared with
Ra ðRb if factor BÞ. Next, the largest to the second smallest is compared
with Ra�1 (or Rb�1 if factor B). For Factor A, the interaction process
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continues until all possible ½aða� 1Þ�=2 ¼ ð3� 2Þ=2 ¼ 3 comparisons have
been made. If the observed pair di¡erence, is greater than the R value, the
mean pair di¡erence is signi¢cant at a. No di¡erence between a pair of
means is considered signi¢cant if the two means involved lie between pairs
of means that are not signi¢cant.

R2 ¼ r0:05ð2;10ÞS�yi : R3 ¼ r0:05ð3;10ÞS�yi:

R2 ¼ 3:15ð1:24Þ R3 ¼ 3:30ð1:24Þ
R2 ¼ 3:91 R3 ¼ 4:09

However, by not checking out the interactions, which are signi¢cant
in this case, the researcher wouldmiss the point that formulations1and 2 £ip-
£op,depending uponwhether they are evaluated using factorBmethod1or 2.

VI. NEWMAN–KEULS TEST

The application of this test is very similar to what was done in the previous
chapter. Like the Duncan multiple range and LSD tests, the test is designed
to compare all possible combinations of treatment level means. It can be uti-
lized for both main e¡ects, factors A ð�yi::Þ and B ð�y:j:Þ, and the interaction
means ð�y:j:Þ.

As before, the researcher calculates a set of kp values for each factor:

kp ¼ qaðp;f ÞS�y ð3Þ
For main e¡ect factorA, the form is:
kp ¼ qaðp;f ÞS�yi:: where p¼ 2, 3 . . . ,a and f¼degrees of freedomMSE

For main e¡ect B, the form is:
kp ¼ qaðp;f ÞS�y:j: where p¼ 2, 3 . . . ,b and f¼degrees of freedomMSE

Recall that factor B had only two levels, so the evaluation need not go
further.

As with Duncan’s multiple range test, the investigator ¢rst computes
the kp value for factorA:

kp ¼ qaðp;f ÞS�yi::

S¼Significant
Contrast NS¼Not significant

�y3:: � �y1:: ¼ 91:17� 81:50 ¼ 9:67 > 4:09 S
�y3:: � �y2:: ¼ 91:17� 85:50 ¼ 5:67 > 3:91 S
�y2:: � �y1:: ¼ 85:50� 81:50 ¼ 4:00 > 3:91 S
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S�yi:: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

bn

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
9:256
6

r
¼ 1:24

Then, calculate kp,where p¼ 2, 3, letting a¼ 0.05.
Find qa in the Studentized range table (seeTable A.1).

q0:05ð2;10Þ ¼ 3:15

q0:05ð3;10Þ ¼ 3:88

kp ¼ qaðp;f ÞS�yi::

k2 ¼ 3:15ð1:24Þ ¼ 3:91

k3 ¼ 3:88ð1:24Þ ¼ 4:81

Next,we arrange the �yi:: values in ascending order:

�y1:: ¼ 81:50

�y2:: ¼ 85:50

�y3:: ¼ 91:17

Compute contrasts as in the Duncan method:

As stated previously, it is not a good idea to compare main e¡ects without
being extremely careful when interaction is present.

VII. TUKEY TEST

TheTukey test procedure is straightforward. Both main e¡ects factors
A and B, and the interaction e¡ects can be contrasted. As before, theTukey
test considers any pair di¡erence (absolute) that is greater than Ta signi¢-
cant at a.

S¼Significant
Contrast NS¼Not significant

�y3:: � �y1:: ¼ 91:17� 81:50 ¼ 9:67 > 4:81 S
�y3:: � �y2:: ¼ 91:17� 85:50 ¼ 5:67 > 3:91 S
�y2:: � �y1:: ¼ 85:50� 81:50 ¼ 4:00 > 3:91 S
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For main e¡ect factorA, the form is: Ta ¼ qaða;f ÞS�yi::
For main e¡ect factor B, the form is: Ta ¼ qaðb;f ÞS�y:j:
All ½aða� 1Þ�=2 or ½bðb� 1Þ�=2mean pairs for main e¡ect factorsA and

B, respectively, are computed. And, as before, because b¼ 2, only factor A
will be contrasted.

FactorA

Ta ¼ qaða;f ÞS�yi::

S�yi:: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

bn

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
9:256
2 	 3

r
S�yi:: ¼ 1:24

For factor B:

S �y:j: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

an

r
T0:05 ¼ q0:05ð3;10Þ1:24 ¼ 3:88ð1:24Þ ¼ 4:81

Where f¼degrees of freedom forMSE¼ (ab�1)(n�1)¼ 10
a¼ 0.05, and a¼ 3

Decision rule:

H0: mi ¼ mj
HA: m 6¼ mj

If j�yi:: � �yj::j > Ta rejectH0 (there is no di¡erence between mean pairs) at a.

As before, the same warnings apply. It is very risky determining main
e¡ects factors A and=or B when A�B interaction is signi¢cant. Formula-
tions 1 and 2 £ip-£op in the proportion of extraction, depending upon the
method.

S¼Significant
Contrast NS¼Not significant

�y3:: � �y1:: ¼ 91:17� 81:50 ¼ 9:67 > 4:81 S
�y3:: � �y2:: ¼ 91:17� 85:50 ¼ 5:67 > 4:81 S
�y2:: � �y1:: ¼ 85:50� 81:50 ¼ 4:00 < 4:81 NS
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VIII. COMPARING BOTH FACTORS A AND B

When interaction is signi¢cant, as it is in this case, it is often not useful to
contrast main e¡ects. It is, however, useful to compare combinations of fac-
tors A and B.

As inChap.7, insteadofcomparingcolumnor rowmeans (maine¡ects),
we nowcompare cell means ormain e¡ects factor combinationsA�B.

As stated in the main e¡ects contrast portion of this chapter, the
probability of knowing what contrasts one wants to test prior to conduct-
ing the study is essentially zero. Hence, we will not discuss a priori ortho-
gonal contrasts. Let us instead go back through the contrasts we employed
for the main e¡ects and employ them for cell combinations. The cell
means for the main e¡ect combinations averaged over the blocks or days
are:

A1B1 ¼ �y11: ¼ 84:67 A1B2 ¼ �y12: ¼ 78:33

A2B1 ¼ �y21: ¼ 93:33 A2B2 ¼ �y22: ¼ 77:67

A3B1 ¼ �y31: ¼ 100:00 A3B2 ¼ �y32: ¼ 82:33

These values are those of interest for theA�B factor contrast methods
discussed. Let us begin with Sche¡e’s method.

IX. SCHEFFE’S METHOD

Recall that Sche¡e’s method is used mainly to compare several combina-
tions of contrasts. It is not as e⁄cient for comparing all pairwise contrasts
as the LSD, Duncan’s multiple range test, Newman^Keuls, or Tukey’s
method. And recall that type I error (a) will be, at most, a for the combined
contrasts.

Suppose the researcher wants to perform the following two contrasts:

C1: H0: m11: ¼ m32:

HA: m11: 6¼ m32:

C2: H0: m11:þ m21:þ m31: ¼ m12:þ m22:þ m32:

HA: m11:þ m21:þ m31: 6¼ m12:þ m22:þ m32:

Recall that the critical value theCi values are compared with is:

Sai ¼ Sci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1Þðb� 1ÞFa½ða�1Þðb�1Þ;ðab�1Þðn�1Þ�

q
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where

Sci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

X c2ij
n

 !vuut and MSE ¼ 9:256:

The decision rule is:

If jCij > Sai rejectH0 at a.

C1 ¼ �y11: � �y32:

¼ j84:67� 82:33j ¼ 2:34

C2 ¼ �y11: þ �y21: þ �y31: � �y12: � �y22: � �y32:

¼ j84:67þ 93:33þ 100:00� 78:33� 77:67� 82:33j ¼ 39:67

Sc1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

12 þ ð�12Þ
3

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:256

12 þ ð�12Þ
3

� �s
¼ 2:48

Sc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:256

12 þ 12 þ 12 þ ð�12Þ þ ð�12Þ þ ð�12Þ
3

� �s
¼ 4:30

For contrast 1 (C1), the test hypothesis is:

C1 ¼ H0: m11: ¼ m22:

HA: m11: 6¼ m32:

Let a¼ 0.05

Sa1 ¼ Sc1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1Þðb� 1ÞFa½ða�1Þðb�1Þ;ðab�1Þðn�1Þ�

p
Sa1 ¼ Sc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� 1Þð2� 1Þð4:10Þ

p
¼ 2:48

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4:10Þ

p
¼ 7:10

Because C1¼2.34<7.10, one cannot rejectH0 at a¼ 0.05.
For contrast 2 (C2), the test hypothesis is:

C2 ¼ H0: m11:þ m21:þ m31: ¼ m12:þ m22:þ m32:

HA: The above is not true.
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Let a¼ 0.05.

Sa2 ¼ SC2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� 1Þð2� 1Þð4:10Þ

p
¼ 4:30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4:10Þ

p
¼ 12:31

Because C2¼39.67>12.31, rejectH0 at a¼ 0.05.

X. LEAST SIGNIFICANT DIFFERENCE (LSD)

We have now arrived at one of the most useful procedures for comparison
of treatment means when interaction exists. Because the researcher can
compare all possible pairs ofA�Bmeans, he or she will have a much better
idea of where di¡erences exist relative to the e¡ects of main factor A�B.
There are six mean values corresponding to the three levels of factor A and
the two levels of factor B, so the number of contrasts possible for the cell
means ð�yij:Þ is:

abðab� 1Þ
2

¼ 3 	 2ð3 	 2� 1Þ
2

¼ 15

The least signi¢cant di¡erence value, (LSD), is

ta
2;ðab�1Þðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
This is for a balanced design where the replicate n values are the same,

which is important in blocked studies.We have already discussed appropri-
ate ways to handle missing values.

The test hypotheses are:

H0: mij: � mji: ¼ 0

HA: mij: � mji: 6¼ 0

The decision rule is:

If j�yij: � �yji:j > ta
2;ðab�1Þðn�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
; rejectH0 at a:

In our example:ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð9:256Þ

3

r
¼ 2:48
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Let a¼ 0.05 and a=2¼ 0.025; for df¼10, t(0.025, 10)¼ 2.228. So, putting
this all together,LSD¼ 2.228(2.48)¼ 5.53.If j�yij: � �yji:j > 5:53, rejectH0 ata.

It would be helpful to consult Fig.1 to see where the di¡erences are.
Therefore, using method 2, none of the three formulations di¡er from

each other in extraction percentage.Also, formulation1,method1 is equiva-
lent to them. All other combination pairs are signi¢cantly di¡erent from
each other at a¼ 0.05.

XI. DUNCAN’S MULTIPLE RANGE TEST

As noted earlier, Duncan’s multiple range test can also be used to compare
all possibleA� Bmean pair ð�yij:) combinations.Again,we will consider only
the balanced experimental design contrasts. The cell means ð�yij:Þ are, as
usual, ranked in ascending order.

The test hypothesis is:

H0: mij: � mji: ¼ 0

HA: mij: � mji: 6¼ 0

S¼Significant
Contrasts NS¼Not significant

�y21· VS: �y11· ¼ j93:33� 84:67j ¼ 8:66 > 5:53 S
�y31· VS: �y11· ¼ j100:0� 84:67j ¼ 15:33 > 5:53 S
�y12· VS: �y11· ¼ j78:33� 84:67j ¼ 6:34 > 5:53 S
�y22· VS: �y11· ¼ j77:67� 84:67j ¼ 7:00 > 5:53 S
�y32· VS: �y11· ¼ j82:33� 84:67j ¼ 2:34 < 5:53 S
�y31· VS: �y21· ¼ j100:00� 93:33j ¼ 6:67 > 5:53 NS
�y12· VS: �y21· ¼ j78:33� 93:33j ¼ 15:00 > 5:53 S
�y22· VS: �y21· ¼ j77:67� 93:33j ¼ 15:66 > 5:53 S
�y32· VS: �y21· ¼ j82:33� 93:33j ¼ 11:00 > 5:53 S
�y12· VS: �y31· ¼ j78:33� 100:00j ¼ 21:67 > 5:53 S
�y22· VS: �y31· ¼ j77:67� 100:00j ¼ 22:33 > 5:53 S
�y32· VS: �y31· ¼ j82:33� 100:00j ¼ 17:67 > 5:53 S
�y12· VS: �y32· ¼ j78:33� 82:33j ¼ 4:00 < 5:53 NS
�y22· VS: �y32· ¼ j77:67� 82:33j ¼ 4:66 < 5:53 NS
�y12· VS: �y22· ¼ j78:33� 77:67j ¼ 0:66 < 5:53 NS
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Decision rule:
If �yij: � �yji: > raðp;f ÞS�yij: , rejectH0 at a.
The cell means ð�yij:) are arranged in ascending order:

�y22· ¼ 77:67

�y12· ¼ 78:33

�y32· ¼ 82:33

�y11· ¼ 84:67

�y21· ¼ 93:33

�y31· ¼ 100:00

The standard error of the mean is calculated as:

S�yij: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE
n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
9:256
3

r
¼ 1:76

The r value is found inTable A.5.

Let a¼ 0.05

Rp ¼ raðp;f ÞS�yij·

p ¼ 2; 3 	 	 	 a 	 b ¼ 2; 3 	 	 	 6

f ¼ abðn� 1Þðn� 1Þ ¼ ð3 	 2� 1Þð3� 1Þ ¼ 10

R2 ¼ r0:05ð2;10ÞS�yij: ¼ 3:15ð1:76Þ ¼ 5:54

R3 ¼ r0:05ð3;10ÞS�yij: ¼ 3:30ð1:76Þ ¼ 5:81

R4 ¼ r0:05ð4;10ÞS�yij: ¼ 3:37ð1:76Þ ¼ 5:93

R5 ¼ r0:05ð5;10ÞS�yij: ¼ 3:43ð1:76Þ ¼ 6:04

R6 ¼ r0:05ð6;10ÞS�yij: ¼ 3:46ð1:76Þ ¼ 6:09

Two-Factor Factorial Completely Randomized Blocked Designs 335



Thenumberof possible contrasts: ½abðab� 1Þ�=2 ¼ ½3 	 2ð3 	 2� 1Þ�=2 ¼
15 total contrasts.

XII. NEWMAN–KEULS TEST

TheNewman^Keuls test can also used to compare all possible pairs ofA�B
cell means ð�yij:Þ. Recall that in performing this test, a set of critical values is
computed using the formula:

Kp ¼ qaðp; f ÞSyij	 p ¼ 2; 3 . . . ab

Note also that the standard error of the mean represents the cell means
ð�yij:Þ. The MSE value is still used, but the divisor is n, not an or bn, as for the
treatment standard error computation.

For our present example, ab¼ 3�2¼ 6, p¼ 2, 3, 4, 5, 6 ; f¼ df for
MSE, or (ab�1)(n�1)¼ 10. Let a¼ 0.05

S�yij: ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

3

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
9:256
3

r
¼ 1:76

The test hypothesis for each mean compared is:

H0: mij: � mji: ¼ 0

HA: mij: � mji: 6¼ 0

S¼Significant
NS¼Not significant

�y31· � �y22· ¼ 100:00� 77:67 ¼ 22:33 > 6:09 ¼ ðR6Þ S
�y31· � �y12· ¼ 100:00� 78:33 ¼ 21:67 > 6:04 ¼ ðR5Þ S
�y31· � �y32· ¼ 100:00� 82:33 ¼ 17:67 > 5:93 ¼ ðR4Þ S
�y31· � �y11· ¼ 100:00� 84:67 ¼ 15:33 > 5:81 ¼ ðR3Þ S
�y31· � �y21· ¼ 100:00� 93:33 ¼ 6:67 > 5:54 ¼ ðR2Þ S
�y21· � �y22· ¼ 93:33� 77:67 ¼ 15:66 > 6:04 ¼ ðR5Þ S
�y21· � �y12· ¼ 93:33� 78:33 ¼ 15:00 > 5:93 ¼ ðR4Þ S
�y21· � �y32· ¼ 93:33� 82:33 ¼ 11:00 > 5:81 ¼ ðR3Þ S
�y21· � �y11· ¼ 93:33� 84:67 ¼ 8:66 > 5:54 ¼ ðR2Þ S
�y11· � �y22· ¼ 84:67� 77:67 ¼ 7:00 > 5:93 ¼ ðR4Þ S
�y11· � �y12· ¼ 84:67� 78:33 ¼ 6:34 > 5:81 ¼ ðR3Þ S
�y11· � �y32· ¼ 84:67� 82:33 ¼ 2:34 < 5:54 ¼ ðR2Þ NS
�y32· � �y22· ¼ 82:33� 77:67 ¼ 4:66 < 5:81 ¼ ðR3Þ NS
�y32· � �y12· ¼ 82:33� 78:33 ¼ 4:00 < 5:54 ¼ ðR2Þ NS
�y12· � �y22· ¼ 78:33� 77:67 ¼ 0:66 < 5:54 ¼ ðR2Þ NS
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Decision rule:
RejectH0 if �yij: � �yji: > kp
Compute the kp values, using the Studentized range statistic table

(seeTable A.12) for qað p; f Þ :

kP ¼ qaðp;f ÞS�yij:

k2 ¼ q0:05ð2;10Þ1:76

k2 ¼ 3:15ð1:76Þ
k2 ¼ 5:54

k3 ¼ q0:05ð3;10Þ1:76

k3 ¼ 3:88ð1:76Þ
k3 ¼ 6:83

k4 ¼ q0:05ð4;10Þ1:76

k4 ¼ 4:33ð1:76Þ
k4 ¼ 7:62

k5 ¼ q0:05ð5;10Þ1:76

k5 ¼ 4:66ð1:76Þ
k5 ¼ 8:20

k6 ¼ q0:05ð6;10Þ1:76

k6 ¼ 4:91ð1:76Þ
k6 ¼ 8:64

The cell means are arranged in ascending order:

�y22· ¼ 77:67

�y12· ¼ 78:33

�y32· ¼ 82:33

�y11· ¼ 84:67

�y21· ¼ 93:33

�y31· ¼ 100:00
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As before, the ½abðab� 1Þ�=2 ¼ ½3 	 2ð3 	 2� 1Þ�=2 ¼ 30=2 ¼ 15 contrasts
are:

It will be helpful to review Fig.1 to see where the mean pair di¡erences
are.These results di¡er from those of the LSD and Duncan’s multiple range
test in that �y11: ¼ �y12: and �y11: ¼ �y22:.

XIII. TUKEY TEST

This test, aswe have seen, is also one to compare all possiblemean pairs.The
test is straightforward for comparing cell (A�B) means ð�yij:Þ.

The test hypothesis is:

H0: mij: � mji: ¼ 0

HA: mij: � mji: 6¼ 0

Reject H0 if j�yij	 � �yji	j > ta, where ta ¼ q½aðab�1Þðn�1Þ�Syij:. The Studentized
range (Table L) is used to determine qa.

Again, the number of pairs of contrasts is

abðab� 1Þ
2

¼ ð3� 2Þð3� 2� 1Þ
2

¼ 30
2
¼ 15

Let a¼ 0.05.

S¼Significant
NS¼Not significant

�y31· � �y22· ¼ 100:00� 77:67 ¼ 22:33 > 8:64 ¼ ðK6Þ S
�y31· � �y12· ¼ 100:00� 78:33 ¼ 21:67 > 8:20 ¼ ðK5Þ S
�y31· � �y32· ¼ 100:00� 82:33 ¼ 17:67 > 7:62 ¼ ðK4Þ S
�y31· � �y11· ¼ 100:00� 84:67 ¼ 15:33 > 6:83 ¼ ðK3Þ S
�y31· � �y21· ¼ 100:00� 93:33 ¼ 6:67 > 5:54 ¼ ðK2Þ S
�y21· � �y22· ¼ 93:33� 77:67 ¼ 15:66 > 8:20 ¼ ðK5Þ S
�y21· � �y12· ¼ 93:33� 78:33 ¼ 15:00 > 7:62 ¼ ðK4Þ S
�y21· � �y32· ¼ 93:33� 82:33 ¼ 11:00 > 6:83 ¼ ðK3Þ S
�y21· � �y11· ¼ 93:33� 84:67 ¼ 8:66 > 5:54 ¼ ðK2Þ S
�y11· � �y22· ¼ 84:67� 77:67 ¼ 7:00 < 7:62 ¼ ðK4Þ NS
�y11· � �y12· ¼ 84:67� 78:33 ¼ 6:34 < 6:83 ¼ ðK3Þ NS
�y11· � �y32· ¼ 84:67� 82:33 ¼ 2:34 < 5:54 ¼ ðK2Þ NS
�y32· � �y22· ¼ 82:33� 77:67 ¼ 4:60 < 6:83 ¼ ðK3Þ NS
�y32· � �y12· ¼ 82:33� 78:33 ¼ 4:00 < 5:54 ¼ ðK2Þ NS
�y12· � �y22· ¼ 78:33� 77:67 ¼ 0:66 < 5:54 ¼ ðK2Þ NS
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S�yij	 ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
9:256
3

r
¼ 1:76

ta ¼ qa½ab;ðab�1Þðn�1Þ�S�yij:

t0:05 ¼ qa½3	2;ð3	2�1Þð3�1Þ�1:76

t0:05 ¼ qa½6;10�1:76

t0:05 ¼ 4:91ð1:76Þ ¼ 8:64

Note that this statistic is more conservative in detecting di¡erences than
those we used earlier, i.e., LSD,Duncan’s, and Newman^Keuls.

XIV. POWER OF THE TEST (FIXED-EFFECTS MODEL)

A. Power Computation Before Conducting the Experiment

As statistical designs become more complex, the computation of the power
before running the test becomes more tricky, particularly when the
two-factor factorial experiment has been blocked concerning replicates, as
in this case.But the computation is still useful, particularly in that it creates a
‘‘useful ballpark.’’ Unfortunately, replication-over-time (blocked) designs
are more di⁄cult, in practice, to control than a completely randomized
design. It is important to compute the power after the test has been

S¼Significant
NS¼Not significant

�y21: � �y11: ¼ j93:33� 84:67j ¼ 8:66 > 8:64 S
�y31: � �y11: ¼ j100:00� 84:67j ¼ 15:33 > 8:64 S
�y12: � �y11: ¼ j78:33� 84:67j ¼ 6:34 < 8:64 NS
�y22: � �y11: ¼ j77:67� 84:67j ¼ 7:00 < 8:64 NS
�y32: � �y11: ¼ j82:33� 84:67j ¼ 2:34 < 8:64 NS
�y31: � �y21: ¼ j100:00� 93:33j ¼ 6:67 < 8:64 NS
�y12: � �y21: ¼ j78:33� 93:33j ¼ 15:00 > 8:64 S
�y22: � �y21: ¼ j77:67� 93:33j ¼ 15:66 > 8:64 S
�y32: � �y21: ¼ j82:33� 93:33j ¼ 11:00 > 8:64 S
�y12: � �y31: ¼ j78:33� 100:00j ¼ 21:67 > 8:64 S
�y22: � �y31: ¼ j77:67� 100:00j ¼ 22:33 > 8:64 S
�y32: � �y31: ¼ j82:33� 100:00j ¼ 17:67 > 8:64 S
�y22: � �y12: ¼ j77:67� 78:33j ¼ 0:66 < 8:64 NS
�y32: � �y12: ¼ j82:33� 78:33j ¼ 4:00 < 8:64 NS
�y22: � �y32: ¼ j77:67� 82:33j ¼ 4:66 < 8:64 NS
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conducted, particularly if the H0 hypothesis is chosen.This will ensure that
the di¡erences one expects to detect will be detected.

As in Chap.7, the main e¡ects,A and B, are computed separately as:

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0
Pk0
n¼1
ðmm � mjÞ2

k0S2

vuuut
where k0 ¼ a or b, depending uponwhich factor

n0 ¼ bn, if factorA and an, if factor B
S2¼MSE

m ¼
Pk0

i¼1
k0 mm ¼ population mean for each level within each
factor.

mma
¼

Pma
mi

a for factor A or mmb
¼

Pmb
mi

b for factor B¼mean
of the means or grand mean.

Determining the power of a two-factor factorial completely rando-
mized block design is straightforward. I have found this procedure to be use-
ful in trying to gauge the actual value of a speci¢c test design, in the real
world, in being able to detect a true di¡erence in treatments.

As before, factors A and B (main e¡ects) are computed separately. In
this example,we will perform the test for both factors.

1. FactorA

Let a¼ 0.05

k0 ¼ a ¼ 3
n0 ¼ bn ¼ 2� 3 ¼ 6
v1 ¼ k0 � 1 ¼ a� 1 ¼ 3� 1 ¼ 2
v2 ¼ df MSE ¼ ðab� 1Þðn� 1Þ ¼ 10

S2 ¼MSE ¼ 9:256

�yi:: ¼ yi::
bn

�y1:: ¼ y1::
bn
¼ 489

2 	 3 ¼ 81:50

�y2:: ¼ y2::
bn
¼ 513

2 	 3 ¼ 85:50

�y3:: ¼ y3::
bn
¼ 547

2 	 3 ¼ 91:17
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mma
¼
Pa
m¼1

mi

a
¼ 81:50þ 85:50þ 91:17

3
¼ 86:06

f¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn
Pa
i¼1
ðmi � mma

Þ2

aS2

vuuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6½ð81:50� 86:06Þ2þ ð85:50� 86:06Þ2þ ð91:17� 86:06Þ2�

3ð9:256Þ

s
¼ 3:19

From the power determination table (Table A.4), the researcher enters
the table with v1¼2, v2¼10, a¼0.05, and f¼ 3.19. Reading the operating
characteristics of the curve, one sees is1� b¼0.98 is 98%, hence, the power
of the test. There is a 2% chance that the researcher will say that no di¡er-
ence exists between treatments in factorAwhen a di¡erence does exist.

2. FactorB

The procedure is very similar to that of factorA.
Let a¼ 0.05

k0 ¼ b ¼ 2

n0 ¼ an ¼ 3� 3 ¼ 9

v1 ¼ b� 1 ¼ 2� 1 ¼ 1

v2 ¼ df MSE ¼ ðab� 1Þðn� 1Þ ¼ 10

S2 ¼MSE ¼ 9:256

�y:j: ¼ y:j:
an

�y:1: ¼ y:1:
an
¼ 834

3:3
¼ 92:67

�y:2: ¼ y:2:
an
¼ 715

3:3
¼ 79:44

mmb
¼
Pb
m¼1

mm

b
¼ 92:67þ 79:44

2
¼ 86:06
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f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an
Pb
i¼1
ðmj � mbÞ2

b S2

vuuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð92:67� 86:06Þ2 þ ð79:33� 86:06Þ2

2ð9:256Þ

s
¼ 6:58

From Table A.4, the researcher enters the table with v1 ¼ 1, v2 ¼ 10,
a ¼ 0:05, and f ¼ 6:58 and ¢nds that 1� b ¼ 0:99. Hence, the probability
of b error is less than1%.

XV. POWER DETERMINATION AFTER THE EXPERIMENT
HAS BEEN CONDUCTED

This is very important as the researcher conducts an experiment and, for
example, a di¡erence in factor A cannot be found. The researcher then will
want to know the power of the statistic. That is, would the design actually
detect a di¡erence if one exists?

As before, the power of the test can be computed for both main e¡ects,
but separately.

Recall,k0 ¼ a if factorA and b if factor B.

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 � 1ÞðfactorMS� S2Þ

k0S2

r
Example for factorA
Let a ¼ 0:05

k0 ¼ a ¼ 3

MSA ¼ 141:556

v1 ¼ k0 � 1 ¼ a� 1 ¼ 3� 1 ¼ 2

v2 ¼ df MSE ¼ ðab� 1Þðn� 1Þ ¼ ð3 	 2� 1Þð3� 1Þ ¼ 10

S2 ¼MSE ¼ 9:256

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� 1Þð141:556� 9:256Þ

3ð9:256Þ

s
¼ 3:09

FromTable A.4,with v1 ¼ 2, v2 ¼ 10, a ¼ 0:05, and f ¼ 3:09,which is
too extreme for theTableA.4 value, b ¼ 0:02, 1� b ¼ 0:98.Given that a true
di¡erence exists with factorA’s levels, one is more than 98% con¢dent that
the statistic will pick it up.
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There are occasions when the researcher may want to check the power
of the interaction e¡ect. For example, if the researcher has performed
an experiment and does not witness an interaction e¡ect, even though the
two-factor experiment was run as a randomized complete block design, she
or he may want to compute the power to be sure the study was capable of
detecting interaction, given that it was there.

The power computation for A� B interaction is:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� B degrees of freedomÞðMSAB � S2Þ
½ðA� B degrees of freedomÞ þ 1�S2

s
ð4Þ

df for A ¼ a� 1 ¼ 3� 1 ¼ 2

df for B ¼ b� 1 ¼ 2� 1 ¼ 1

MSAB ¼ 54:89

v1 ¼ ða� 1Þðb� 1Þ ¼ ð3� 1Þð2� 1Þ ¼ 2

v2 ¼ df forMSE ¼ 10

S2 ¼MSE ¼ 9:256

Let a ¼ 0:05

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 	 1Þð54:89� 9:256Þ
ð2 	 1þ 1Þð9:256Þ

s
¼ 1:81

For v1 ¼ 2, v2 ¼ 10, a ¼ 0:05, andf ¼ 1:81, 1� b 
 0:68.The power of
the test is 
 0.68,which means there is a 32% probability of concluding that
an interaction is not signi¢cant when it is.

XVI. SAMPLE SIZE REQUIREMENTS

Although the power, sample size, and detection limits are all related, there
are many times a researcher wants to determine the sample size with a set b
prior to conducting the study.

The attributes that the researcher must specify ahead of time are:

The power (1� b)
The value of alpha (signi¢cance level, a)
The s2

The minimum detectable di¡erence between means

As in the case of the two-factor factorial experiment and the one-factor
ANOVA, the procedure is accomplished by iteration.Generally, the sample
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size of the experiment is determined on the basis of the more critical main
e¡ect (A or B).

The method is performed, as in Chap.7, using the formula:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n0d2

2k0S2

s

where n0 ¼ bn if factorA and an if factor B
k0 ¼ a ifA and b if B
df for v1¼k0 �1 (a�1 ifA, b�1 if B)
df for v2¼ df MSE¼ (ab�1)(n�1),which is unknown
S2¼ variance estimate (ŝ2) of MSE
d¼minimum desired detectable di¡erence between means

In our example, let us use factorA.

S2 ¼ 10 ðby estimateÞ
a ¼ 0:05; in this case

b ¼ 0:20

d ¼ 5

df for v1 ¼ k0 � 1 ¼ a� 1 ¼ 3� 1 ¼ 2

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n0d2

2k0S2

s
or

ffiffiffiffiffiffiffiffiffiffiffi
n0d2

2aS2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� nÞ52
2ð3Þ10

s
It is easier to rewrite n0 as ‘‘bn’’ (or ‘‘an’’ for factorB) in determining the

sample size,where nbl¼ the number of blocks.The sample size in this case is
directly related to the number of blocks.

Suppose we estimate nbl ¼ 4 for the ¢rst iteration. That means
we would have to replicate the study in its entirety over 4 days or replicated
days.

n ¼ 4

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4Þ52
2ð3Þ10

s
¼ 1:83

Let a ¼ 0:05

v1 ¼ 2
v2 ¼ ðab� 1Þðn� 1Þ ¼ ð3 	 2� 1Þð4� 1Þ ¼ 15
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From Table A.4, with v1 ¼ 2, v2 ¼ 15, a ¼ 0:01, and f ¼ 1:83, we see
1� b 
 0:74, which b 
 0:26 is larger than our speci¢ed b, which is set at
0.20. Let us take the next iteration to be n ¼ 5, or ¢ve blocks.

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 	 ð5Þ52
2ð3Þ10

s
¼ 2:04

df for v1 ¼ 2
df for v2 ¼ ðab� 1Þðn� 1Þ ¼ ð3� 2� 1Þð5� 1Þ ¼ 20
FromTable A.4,we see that 1� b 
 0:82,which is about right. Hence,

the experiment should have ¢ve replicate blocks.

XVII. MINIMUM DETECTABLE DIFFERENCE

There are a number of occasions when one is interested in approaching
the experiment from a detectable di¡erence between means perspective.

The procedure is as we saw in Chap. 7.The researcher states a numer-
ical value that is the minimum value or di¡erence she or he will accept in
detecting a di¡erence in means.The a value, the b value, n (number of repli-
cates), and s2 are set.

The formula for this determination is:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k0S2f2

n0

s

where k0 ¼ a if factorA and b if factor B
n0 ¼ bn, if factorA and an, if factor B
S2¼MSE
f is read fromTable A.4 at a speci¢ed1� b, v1, v2, and a level.

Using the example in this chapter, the researcher will usually be more
concerned with one factor than the other, if done before the experiment, or
may compute both factor ds after the study has been conducted.

1. FactorA (After the Study Has Been Completed)

k0 ¼ a ¼ 3

S2 ¼MSE ¼ 9:256

df for v1 ¼ a� 1 ¼ 3� 1 ¼ 2

df for v2 ¼ ðab� 1Þðn� 1Þ ¼ ð3:2� 1Þð3� 1Þ ¼ ð5Þð2Þ ¼ 10

n0 ¼ bn ¼ 2� 3 ¼ 6 This is an n of 6 blocks, or days.
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Let a ¼ 0:01

b ¼ 0:20

f is read from Table D. At 1� b ¼ 0:80; a ¼ 0:01; v1 ¼
2; and v2 ¼ 10; f 
 2:8:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3Þð9:256Þð2:8Þ2

6

s
¼ 8:52

So at a ¼ 0:01, b ¼ 0:20, S2 ¼ 9:256, the minimum detectable di¡er-
ence between means in factorA is 8.52 points.

2. FactorB

k0 ¼ b ¼ 2

S2 ¼ 9:256

df for v1 ¼ b� 1 ¼ 2� 1 ¼ 1

df for v2 ¼ ðab� 1Þðn� 1Þ ¼ 5� 2 ¼ 10

n0 ¼ an ¼ 3� 3 ¼ 9

Let a ¼ 0:01

b ¼ 0:20

Read directly from Table D, at a ¼ 0:01; 1� b ¼ 0:80; v1 ¼ 1;
and v2 ¼ 10; f ¼ 2:9:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2Þð9:256Þð2:9Þ2

9

s
¼ 5:88

The minimum detectable di¡erence between means in factor B is 5.88
at a ¼ 0:01 and b ¼ 0:20.

XVIII. CONCLUSION

Although no researcher will depend on any one experimental design, the
applied researcher now has added and greater £exibility in a two-factor
ANOVA design. This is particularly valuable when a study or experiment
cannot be replicated in1day or test period.
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9

Useful Small-Scale Pilot Designs: 2
k
Designs

Avery useful factorial design for researchers is a 2k factorial design. The 2k

factorial has two levels, with k factors, and is used when the researcher
desires to measure joint e¡ects.The two levels are usually qualitative in that
they represent high=low, strong=soft,with=without combinations.However,
quantitative levels are often used (e.g., 250�F=210�F, 15 PSI=30 PSI). This
design is particularly useful in screening or pilot studies.

The assumptions in this chapter concerning the 2k design are as
follows:

1. The factors are ¢xed.
2. The design is completely randomized.
3. The distribution underlying the data is normal.

These are the usual onesmet, particularly in the early stages of product
development when a number of factors are evaluated. This design provides
the smallest number of runswith k factors in a complete factorial design and,
hence, is common in pilot or screening studies. Also, because there are only
two levels for each factor evaluated by the design, it is not outrageous to as-
sume the responses are linear or can be linearized by a transformation (e.g.,
log10) over the range of the factor levels evaluated. I have used this type of
design extensively over the years and ¢nd, in practice (industrial micro-
biology), that this is a reasonable assumption. Yet, checking the model is
still important.

Finally, the computation of this type of design is straightforward. I
especially like to perform these by hand (calculator and pencil) because the
process forces me to look at the data, the factors, and the levels from
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a microbiological perspective, a research perspective, and a statistical per-
spective. This enables me to see things (interactions, etc.) that provide gui-
dance for the next experimental iteration. Just getting the end results in a
computer printout does not allow me to know the data or to bring to bear my
insight as a research microbiologist.

I. THE 22 FACTORIAL DESIGN

We will concentrate on a 22 design, also known as the 2� 2 (2 by 2) design,
which has two factors, A and B, at two levels each, often extremes of one
another (e.g., high=low, strong=weak, full strength=half strength).

The linear model for this design is:

yij ¼ mþ Ai þ Bj þ ðABÞij þ Eijk ð1Þ

where m¼ common average
Ai¼ factorA; i¼1, 2
Bj¼ factor B; j¼1, 2
n¼1, . . . ,k (replicates)
Suppose a researcher wants to evaluate the antimicrobial activity of a

compound at two di¡erent concentrations, in two di¡erent vehicles, and at
two dilution levels�2% chlorhexidine gluconate (CHG) with enhancers
and 4% chlorhexidine gluconate at water dilution levels of use strength
(10%) and full strength (100%). The researcher wants to develop a 2%
CHG product with an alcohol enhancer that is more e¡ective (greater bac-
terial kill) immediately after application than the 4%CHG.

Most researchers assign the levels to nominal categories. Let us call
factor A product concentration, where 4%¼ the high level and 2%¼ the
low level. Let us also designate the dilution levels, full and 10% strength, as
high and low factor B, respectively. Notice that both factors in this design
will be evaluated in combination with one another. There is no situation in
this design where one tests only factorA or only factor B.

II. EFFECT OF EACH FACTOR

The e¡ect of each factor is de¢ned as the change in response produced by a
change in the level of that factor. Figure1 illustrates the 22 design as it is con-
ventionally presented.

At a low level of B (10% strength), the observed e¡ect of A is the level
minus the low level, or a� (1). The observed e¡ect of A at a high level of B is
ab� b.The average e¡ect of moving from a low level ofA to a high level is:

A ¼ 1
2½a� ð1Þ þ ab� b�
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or
Aeffect ¼ 1

2½abþ a� b� ð1Þ�*
The observed e¡ect of B at a high level of A is ab� a. The observed

e¡ect of B at a low level ofA is b� (1).The average B e¡ect is:

B ¼ 1
2½ab� aþ b� ð1Þ�

or

Beffect ¼ 1
2½abþ b� a� ð1Þ�y

When factorA is high and factor B is low, the combination may be seen
listed in various texts as a0b� or aþb�or just ‘‘a,’’ and when factor A is low
and factor B is high, the combination may be portrayed as a�b0 or a�bþ or

FIGURE 1 Graphic presentation of 2� 2 design.

*When replications of the test are used, the A e¡ect is 1
2n ½abþ a� b� ð1Þ�,where n¼ number of

replicates.
yWhen the experiment is replicated, theB e¡ect is ð1=2nÞ½abþ b� a� ð1Þ�,where n¼ number of
replicates.
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just ‘‘b.’’ When factorA is high and factor B is high, the combination may be
written as a0b0, or aþbþ or just ‘‘ab,’’and when factorA is low and factor B is
low, the combination may be written as a�b� or a�b� or (1).

The interaction e¡ect in this model is represented by the di¡erence
between the A e¡ect at a high level of B and the A e¡ect at a low level of B, or
the B e¡ect at a high level of A and the B e¡ect at a low level of A. Either
way provides theAB e¡ect:

AB ¼ 1
2½ab� b� aþ ð1Þ�

or

ABeffect ¼ 1
2½abþ ð1Þ � a� b�*

Some authors present the formulas for determining A, B, and AB in
terms of mean di¡erences,where the high level is depicted by a ‘‘þ ’’and the
low level by a ‘‘�.’’

1. A factor
A ¼ �yyaþ � �yya�

¼ abþ a
2
� bþ ð1Þ

2

¼ 1
2½abþ a� b� ð1Þ�

This, by the way, is the same formula presented previously for the main
e¡ect ofA.
2. B factor
B ¼ �yybþ � �yyb�

¼ abþ b
2
� aþ ð1Þ

2

¼ 1
2½abþ b� a� ð1Þ�

3. AB interaction e¡ect

AB ¼ abþ ð1Þ
2

� aþ b
2

¼ 1
2½abþ ð1Þ � a� b�

*If replicates are performed, the AB e¡ect is ð1=2nÞ½abþ ð1Þ � a� b�, where n¼ number of
replicates.
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Hence,when Aor B is negative, the increase from low (e.g.,A� ) to high
(A þ ) decreases the net e¡ect.When the value ofA or B is positive, the result
of moving from low (e.g.,A� ) to high (Aþ ) is an increase in the net e¡ect.

The 22 experiment uses a direct contrastmethod to determine themain
factor e¡ects and interaction e¡ects of factors A and B.The two main e¡ects
(factors A and B) and the interaction e¡ect (A�B) make up the three possi-
ble contrasts. Because the design is orthogonal, the entire test sequence is
based upon orthogonal contrast procedures,which have the form:

SSCONTRAST ¼ ð
P

CyÞ2P
C2 ð2Þ

and,when replicated,

SSCONTRAST ¼ ð
P

CyÞ2
n
P

C2

We have used this formula modi¢ed for orthogonal contrasts of main
e¡ect factors and interactions in the previous chapters, so it is nothing new.

The 22 design is an orthogonal design (Table1).The numerator portion
of the contrast [Eq. (2)] is derived as shown in the following.

The factorA main e¡ect coe⁄cient order is (reading down column A)
A¼ [abþ a� b� (1)]2.

The factor Bmain e¡ect is B¼ [abþb� a� (1)]2.
The interaction ofA�B e¡ect is A�B¼ [ab� a�bþ (1)]2.

The denominator portion of the contrast [Eq. (2)] is:X
C2 ¼

X
ð�1Þ2 þ 12 þ ð�1Þ2 þ 12 ¼ 4

Hence, the denominator for each contrast is always 4, and when n¼1 (no
replications) the ¢nal formulas are:

SSA ¼ ½abþ a� b� ð1Þ�2
4

ð3Þ

TABLE1 Linear Contrast Coefficients for A,B, andAB

Treatment portions A B AB

(1) � 1 � 1 þ 1
a þ 1 � 1 � 1
b � 1 þ 1 � 1
ab þ 1 þ 1 þ 1
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SSB ¼ ½abþ b� a� ð1Þ�2
4

ð4Þ

SSAB ¼ ½abþ ð1Þ � a� b�2
4

ð5Þ

With n replicates, the formulas are:

SSA ¼ ½abþ a� b� ð1Þ�2
4n

ð6Þ

SSB ¼ ½abþ b� a� ð1Þ�2
4n

ð7Þ

SSAB ¼ ½abþ ð1Þ � a� b�2
4n

ð8Þ

If the e¡ect (A or B) is negative, then going from a low to a high level of
either factor reduces the output, as the level ofAorB is increased. If the e¡ect
is positive, increasing the level increases the output. If the interaction e¡ect
is large, one cannot talk about the main e¡ects by themselves.

The formulas for �AA; �BB, and AB are:

�AA ¼ 1
2n
½abþ a� b� ð1Þ�

�BB ¼ 1
2n
½abþ b� a� ð1Þ�

AB ¼ 1
2n
½abþ ð1Þ � a� b�

where n¼ number of replicates.
Graphing of data, as before, is also useful. I ¢nd that replicating this

type of study three times (n¼ 3) will generally provide valid data at cost-
e¡ective levels.

Example 1: A research scientist has two factors, A and B. She would
like to evaluate two concentrations of an antibiotic with two binder levels.
The goal is to ¢nd dissolution rates in an acid medium (pH 5.5).

The concentration levels of antibiotic the researcher has designated
factor A. The aþ level is 0.15%, and the a� level is 0.08%. She assigns
the binder levels to factor B: the high binder level (bþ) is 50 mg, and
the low binder level (b�) is 25 mg.The researcher replicates the experiment
in its entirety three times. The following data are dissolution rates, in
seconds.
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Before continuing, let us calculate the terms in theANOVAtable for the
22 design (Table 2), using the six-step procedure:

Step1. Formulate the hypotheses (These are three):
Factor A: H0: The 0.15% antimicrobial is equivalent to 0.08% in dis-

solution rates.
HA: The above is not true.

FactorB:H0:The 50-mg binder and the 25-mg binder are equivalent in
dissolution rates.

HA: The above is not true.
AB interaction:H0:There is no interaction between main factor e¡ects

A and B.
HA: There is signi¢cant interaction between main fac-

tor e¡ectsA and B.
Step 2. Let us set a¼ 0.10 because this is an exploratory study. The
researcher is willing to reduce a in order to prevent excessive b error
(recall thataerror is the probability of rejectingH0when it is actually

TABLE 2 ANOVATable

Sourceof
variation Sumof squares

Degrees of
freedom

Mean
square FC FT

FactorA ½abþa�b�ð1Þ�2
4n ¼ SSA a� 1 (which is

always 1)

SSA
1 ¼ MSA

MSA
MSE

Fa½1;abðn�1Þ�

FactorB ½abþb�a�ð1Þ�2
4n ¼ SSB b� 1 (which is

always 1)

SSB
1 ¼ MSB

MSB
MSE

Fa½1;abðn�1Þ�

A�B

interaction

½abþð1Þ�a�b�2
4n ¼ SSAB (a�1)(b�1)

(which is
always 1)

SSAB
1 ¼ MSAB

MSAB
MSE

Fa½1;abðn�1Þ�

Error SSE ¼ SST � SSA � SSB

�SSAB

ab(n�1) SSE
abðn�1Þ ¼ MSE

Total

X2
i¼1

X2
j¼1

Xn
k¼1

yijk � y2 . . .
4n

¼ SST

abn� 1

REPLICATES Total

(1)¼ a�b� 69,72,74 215
a¼aþb� 64, 67, 65 196
b¼ a�bþ 63, 65, 65 193

ab¼ aþbþ 69,71, 67 207
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true, and b error is the probability of failing to reject H0 when it is
actually false).The entire study will be replicated three times (n¼ 3).

Step 3. The ANOVA test for a completely randomized 22 design, of
course,will be used in this evaluation.

Step 4. Decision rules:
FactorA: If FC calculated for factorA>FT, rejectH0 at a¼ 0.10.

FT¼F0.10 (1, ab(n�1),¼F0.10 (1, 8)¼ 3.46 (fromTable 3 the F dis-
tribution)

Factor B: If FC calculated for factor B>FT, rejectH0at a¼ 0.10.
FT¼F0.10 (1, ab(n�1),¼F0.10 (1, 8)¼ 3.46 (from Table 3 the F
distribution)

Factor AB: If FC calculated for the interaction term>FT, reject H0 at
a¼ 0.10.

FT¼F0.10 (1, ab(n�1),¼F0.10 (1, 8)¼ 3.46 (fromTable 3 the F dis-
tribution)

Step 5. PerformANOVA.A schema (Fig. 2) is a very useful map,prior
to performing the test.

SSA ¼ ½abþ a� b� ð1Þ�2
4n

¼ ½207þ 196� 193� 215�2
4ð3Þ ¼ 2:08

SSB ¼ ½abþ b� a� ð1Þ�2
4n

¼ ½207þ 193� 196� 215�2
4ð3Þ ¼ 10:08

SSAB ¼ ½abþ ð1Þ � a� b�2
4n

¼ ½207þ 215� 196� 193�2
4ð3Þ ¼ 90:75

FIGURE 2 ANOVAschema.
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SST ¼
X2
i¼1

X2
j�1

X3
k¼1

y2ijk � y2			
4n

where y			 ¼
P

yijk ¼ 811:00

SST ¼ 692 þ 722 þ 	 	 	 þ 712 þ 672 � 8112

12

SST ¼ 54941:00� 8112

12
¼ 130:92

SSE¼SST �SSA�SSB�SSAB¼130:92�2:08�10:08�90:75¼28:01

The next step is to construct an ANOVA table (Table 3).

Step 6. Discussion.The researcher clearly sees that the interaction of
factors A and B is statistically signi¢cant at a¼ 0.10. Because the
interaction term is signi¢cant, it is not a good idea to test the main
e¡ects directly, for they interact. This discovery moves the
researcher to look at the interaction more carefully. By the way, the
average e¡ects ofA,B, and AB are:

�AA ¼ 1
2ðnÞ ½abþ a� b� ð1Þ�

¼ 1
2ð3Þ ½207þ 196� 193� 215� ¼ �0:83

�BB ¼ 1
2ðnÞ ½abþ b� a� ð1Þ�

¼ 1
2ð3Þ ½207þ 193� 196� 215� ¼ �1:83

TABLE 3 ANOVATable

Sourceof
variation

Sumof
squares

Degrees of
freedom

Mean
square FC FT

S¼Significant
NS¼Not significant

Factor A 2.08 1 2.08 0.59 3.46 ^
Factor B 10.08 1 10.08 2.88 3.46 ^
AB interaction 90.75 1 90.75 25.93 3.46 S
SSE 28.01 8 3.50
SSTOTAL 130.92 11
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AB ¼ 1
2ðnÞ ½abþ ð1Þ � a� b�

¼ 1
2ð3Þ ½207þ 215� 196� 193� ¼ 5:50

Because the interaction of A and B was signi¢cant, the researcher
knows she cannot discuss the main e¡ects independently. That is, if
one discusses factorA, it must be relative to factor B. As a visual aid
to interpretation, it is useful to graph the data (Fig. 3).

B high

A�Bþ ¼ B ¼ 193; �yyB ¼ 193
3 ¼ 64:63

AþBþ ¼ ab ¼ 207; �yyAB ¼ 207
3 ¼ 69:00

FIGURE 3 Data graph.
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B low

A�B� ¼ ð1Þ ¼ 215; �yyð1Þ ¼ 215
3 ¼ 71:67

AþB� ¼ a ¼ 196; �yyA ¼ 196
3 ¼ 65:33

When factorA is low,B high has a faster reaction time thanB low.How-
ever,when factorA is high,B low is faster than B high in dissolution
rate time.The investigator suspects that some unknown component,
C, or several,C,D, andE, are in£uencing the dissolution rate.So, she
decides to explore several other compounds in experiments we will
not examine here.

III. MODEL ADEQUACY

The linear model, ŷy ¼ b0 þ b1ðaÞ þ b2ðbÞ þ b3ðabÞ, can be used to ensure the
validity of the model.

b0 ¼ y...
abn

ð9Þ

where a¼ 2,b¼ 2,n¼ number of replicates, and where

b1 ¼ factorA ¼ 1
4ðnÞ ½abþ a� b� ð1Þ� ð10Þ

b2 ¼ factorB ¼ 1
4ðnÞ ½abþ b� a� ð1Þ� ð11Þ

b3 ¼ factorAB interaction ¼ 1
4ðnÞ ½abþ ð1Þ � a� b� ð12Þ

a¼1, ifAþ , or�1, ifA� , and b¼1, if Bþ , or�1, if B� .
Using Example1,

b0 ¼ y			
abn
¼ 811

2ð2Þð3Þ ¼ 67:58*

b1 ¼ A factor ¼ 1
4ðnÞ ½abþ a� b� ð1Þ�

¼ 1
4ð3Þ ½207þ 196� 193� 215� ¼ �0:42

*Note: b0 happens to be �yy:::

Useful Small-Scale Pilot Designs 357



b2 ¼ B factor ¼ 1
4ðnÞ ½abþ b� a� ð1Þ�

¼ 1
4ð3Þ ½207þ 193� 196� 215� ¼ �0:92

b3 ¼ AB interaction factor ¼ 1
4ðnÞ ½abþ ð1Þ � a� b�

¼ 1
4ð3Þ ½207þ 215� 196� 193� ¼ 2:75

The linear regression model to use to check the model’s adequacy is
then:

ŷy ¼ 67:58� 0:42ðaÞ � 0:92ðbÞ þ 2:75ðabÞ ð13Þ

The ŷy values will be used to compute estimates for each of the four combina-
tions.

For (1), where both a and b are at low levels (a�b�), hence a¼ �1,
and b¼ �1:

ŷya�b� ¼ 67:58� 0:42ð�1Þ � 0:92ð�1Þ þ 2:75½ð�1Þð�1Þ�
ŷya�b� ¼ 67:58þ 0:42þ 0:92þ 2:75

ŷya�b� ¼ 71:67

The residual can be computed for this group in the usual way, E ¼ y � ŷy,
where y¼ the actual value and ŷy the predicted value, for y � ŷy.

e1 ¼ 69� 71:67 ¼ �2:67
e2 ¼ 72� 71:67 ¼ 0:33

e3 ¼ 74� 71:67 ¼ 2:33

For aþb� ,where a is at the high level and b at the low,a¼1, and b¼ �1:

ŷyaþb� ¼ 67:58� 0:42ð1Þ � 0:92ð�1Þ þ 2:75½ð1Þð�1Þ� ¼ 65:33

e1 ¼ 64� 65:33 ¼ �1:33
e2 ¼ 67� 65:33 ¼ 1:67

e3 ¼ 65� 65:33 ¼ �0:33
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For a�bþ ,where a is low and b is high,a¼ �1, and b¼1:
ŷya�bþ ¼ 67:58� 0:42ð�1Þ � 0:92ð1Þ þ 2:75½ð�1Þð1Þ� ¼ 64:33

e1 ¼ 63� 64:33 ¼ �1:33
e2 ¼ 65� 64:33 ¼ 0:67

e3 ¼ 65� 64:33 ¼ 0:67

For aþbþ ,where both a and b are high,a¼1, and b¼1:
ŷyaþbþ ¼ 67:58� 0:42ð1Þ � 0:92ð1Þ þ 2:75½ð1Þð1Þ� ¼ 68:99

e1 ¼ 69� 68:99 ¼ 0:01

e2 ¼ 71� 68:99 ¼ 2:01

e3 ¼ 67� 68:99 ¼ �1:99

IV. 22 FACTORIAL DESIGNS CALCULATED
WITH STATISTICAL SOFTWARE

Many software packages can be used to compute this 22 design, including
SPSSX, SAS, and MiniTab. Because MiniTab is exceptionally popular and
user-friendly,itsstructurewillbedemonstratedusingthegeneral linearmodel.

The key point to keep in mind is that no factor is strictlyA or strictly B,
so one cannot code for justAor justB. Fortunately,one has to codewith only
� 1or þ1, depending uponwhetherA is high or low or B is high or low.

The data are keyed in as presented inTable 4.

TABLE 4 Data

Row C1 C2 C3

n a b y

1 � 1 � 1 69
2 � 1 � 1 72
3 � 1 � 1 74
4 1 � 1 64
5 1 � 1 67
6 1 � 1 65
7 � 1 1 63
8 � 1 1 65
9 � 1 1 65
10 1 1 69
11 1 1 71
12 1 1 67
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The general linear command isGLMC3¼C1C2C2*C3whereC3¼ y,
C1¼A factor,C2¼B factor, and C2 * C3¼ interaction ofA and B.

The ¢ts or predictions can be computed, as can the residuals and
means.The entire command structure is:

MTB>GLMC3¼C1C2 C1*C2
SUBC>FITSC4;
SUBC>RESIDSC5;
SUBC.MEANSC1C2.

TheANOVA for the data is presented inTable 5.
Notice that the content matches that of Table 3, constructed from the

data computed by hand. Computations of the model diagnostics are pre-
sented inTable 6.

The model adequacy is checked ¢rst by means of a plot of the residuals
versus the ¢tted or predicted values (Fig. 4).

The residualdataappear tobe randomlydistributed,withgreater spread,
however, as the predicted values increase.This is probably not a concern.

The researcher also prints a plot of the residuals versus the actual
values to get a feeling for their relative proximities.

Onexamining Fig. 5, the researcher is puzzled by the plot but not overly
concerned. Because she has not worked with this antibiotic compound pre-
viously, she has no ‘‘background data’’ with which to compare. So, she con-
tinues digging deeper, looking for clues to explain the data phenomena.

She ¢rst prints a stem^leaf display (Fig. 6) and sees that the residual
data are spread fairly uniformly about the median but also notices the
‘‘gappiness’’of the data. She considers this to be a result of using only three
replicates and is not overly concerned.

She next generates a letter-value display (Table 7) and concludes that
the data are too few and too dispersed to see anything of use.She does notice

TABLE 5 ANOVATable

ANALYSISOF VARIANCE

Source DF Seq SS Adj SS Adj MS F P

C1 1 2.083 2.083 2.083 0.60 .463
C2 1 10.083 10.083 10.083 2.88 .128
C1*C2 1 90.750 90.750 90.750 25.93 .000
ERROR 8 28.000 28.000 3.500

TOTAL 11 130.917
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FIGURE 4 Plot of residual versus predicted values.

TABLE 6 Model Diagnostics

C1 C2 C3 C4 C5
Row a b y y a eb

1 � 1 � 1 69 71.6667 � 2.66666
2 � 1 � 1 72 71.6667 0.33334
3 � 1 � 1 74 71.6667 2.33334
4 1 � 1 64 65.3333 � 1.33334
5 1 � 1 69 65.3333 1.66666
6 1 � 1 65 65.3333 � 0.33334
7 � 1 1 63 64.3333 � 1.33334
8 � 1 1 65 64.3333 0.66666
9 � 1 1 65 64.3333 0.66666
10 1 1 69 69.0000 0.00000
11 1 1 71 69.0000 2.00000
12 1 1 67 69.0000 � 2.00000

aThe predicted values (C4) were previously calculated by hand, using the formula ŷy ¼ b0þ
b1 (a)þb2(b)þb3(ab).
be ¼ y� ŷy.
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FIGURE 5 Plot of residual versus actual values.

FIGURE 6 Stem-and-leaf displayof residuals.
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that themidrange values are not really increasing or decreasing as a trend, so
the residual data are not skewed.

Finally, she computes a boxplot (Fig. 7) with notches and, again, this
reveals nothing out of the ordinary.

She then looks at all the data, trying to see some pattern, not only from
a statistical perspective but also from an experimental one, based on
knowledge of her major ¢eld speciality of chemistry. Nothing is apparent,
so she conducts another series of studies and critically observes the results
to learn more about what the phenomena reveal. At this time, she is satis¢ed
with the model’s adequacy but remains puzzled about the characteristics of
the main e¡ects and interaction. She decides to hold a meeting with her pro-
ject teammembers to‘‘bounce the data results’’o¡ them.

Although this approach is not often seen in statistical testing, it is the
overriding process in one’s ¢eld.What is going on is just not known�yet.

V. BLOCKING A 22 DESIGN

There are times when it is not possible to run all n replicates on the same
day with the same technicians or even under the same conditions (di¡erent
batch ingredients, di¡erent equipment, etc.). At other times, it is desirable
to vary conditions such as technicians, material brands, or lots to ensure
robustness. This is particularly true in evaluating antibiotics, disinfectants,

TABLE 7 Letter-Value Displayof Residuals

Depth Lower Upper Mid Spread

N 12
M 6.5 0.167 0.167
H 3.5 � 1.333 1.167 � 0.083 2.500
E 2.0 � 2.000 2.000 0.000 4.000

1 � 2.667 2.333 � 0.167 5.000

FIGURE 7 Boxplot of residuals.
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bioengineering products, and biotechnology processes. In methods devel-
opment, a researcher may purposely vary raw materials, for example, to
¢nd the combination that provides favorable end results.

Blocking an n -replicated design, then, is the obvious next step in a 22

design. Fortunately, the 22 design we have just explored can be used in the
blocked design, with a di¡erence, although slight, that is critical to
understanding the procedure. Instead of replicating the study n times, the
study is blockedB times.The blocks comprise the di¡erent conditions under
which the experiment is conducted, not homogeneous ones, as in the case of
the completely randomized 22 factorial design.Each set of nonhomogeneous
conditions de¢nes a block, and each replicate is run in one block. The run
order [(1),a,b,ab], however,within each block is randomly assigned.

For demonstration purposes, let us use Example 1 as our example for
this section.The only di¡erence will be that, instead of the three n replicates
being conducted under homogeneous conditions, let us assume they were
conductedusingdi¡erent technicians,andeach replicateconstitutes ablock,
or B.The experimenter,while not interested in technician-to-technician er-
ror, did not want the e¡ect to confound the study.The study results, then, are
presented inTable 8.

The ANOVA table for a complete blocked 22 factorial design is pre-
sented inTable 9.

Let us now perform the six-step procedure using the data from
Example1.

Step1. Formulate the test hypothesis:
FactorA:H0: The 0.15% antimicrobial is equivalent to the 0.08% anti-

microbial in dissolution rate.
HA: The above is not true.

FactorB:H0:The 50-mg binder and the 25-mg binder are equivalent in
dissolution rates.

HA: The above is not true.

TABLE 8 Blocks

Blocks
Total treatment
combination1 2 3

(1)¼ a�b� 69 72 74 215
a¼aþb� 64 67 65 196
b¼ a�bþ 63 65 65 193

ab¼ aþbþ 69 71 67 207
Total blocks 265 275 271
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AB interaction: H0: There is no interaction between main e¡ects A
and B .

HA: The above is not true.
Step 2. Again,we will set a¼ 0.10 and B¼ number of blocks¼ 3.
Step 3. The randomized block 22 factor design will be used.
Step 4. Decision rule:
FactorA: If FC calculated for factorA>FT, rejectH0 at a¼ 0.10.

FT¼F0.10 (1,ab(B-1)¼F0.10 (1, 8)¼ 3.46 (fromTableC(Ftable))
Factor B: If FC calculated for factor B>FT, rejectH0 at a¼ 0.10.

FT¼F0.10 (1,ab(B-1)¼F0.10 (1, 8)¼ 3.46 (fromTableC (Ftable))
Factor A�B: If FC calculated for the interaction term>FT, reject

H0 at a¼ 0.10.
FT¼F0.10 (1, ab(B-1)¼F0.10 (1, 8)¼ 3.46 (fromTable C (F
table))

Step 5. Compute the statistic. FromTable 8:

TABLE 9 ANOVATable for Complete 22 Factorial Design

Source
of
variation

Sum
of

squares

Degrees
of

freedom
Mean
square FC FT

Factor A ½abþa�b�ð1Þ�2
4B ¼ SSA 1 SSA

1
MSA
MSE

Fa½1;abðB�1Þ�
Factor B ½abþb�a�ð1Þ�2

4B ¼ SSB 1 SSB
1

MSB
MSE

Fa½1;abðB�1Þ�
AB
interaction

½abþð1Þ�a�b�2
4B ¼ SSAB 1 SSAB

1
MSAB
MSE

Fa½1;abðB�1Þ�

Block
effect

P
ðBk Þ2
4 � y2 ...

4B ¼ SSBL B�1 SSBL
B�1 Generally

not tested
Error SSE ¼ SST � SSA

�SSB � SSAB

�SSBL

(ab�1)
(B�1)

SSE
abðB�1Þ

Total
P2
i¼1

P2
j¼1

PB
k¼1

yijk � y2 ...
4B ¼ SST abB�1

Note:B¼ total numberof blocks.

Bk¼
(1)¼ 215 Block 1¼B1¼265
a¼ 196 Block 2¼B2¼ 275
b¼ 193 Block 3¼B3¼271

ab¼ 207 B¼ numberof blocks¼ 3
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The sum of

SSA ¼ ½abþa�b�ð1Þ�
2

4B ¼ ½207þ196�193�215�24ð3Þ ¼ 2:08

SSB ¼ ½abþb�a�ð1Þ�
2

4B ¼ ½207þ193�196�215�24ð3Þ ¼ 10:08

SSAB ¼ ½abþð1Þ�a�b�
2

4B ¼ ½207þ215�196�193�24ð3Þ ¼ 90:75

SSBlock ¼
P

B2
k

4
� y2...
4B
¼ 2652 þ 2752 þ 2712

4
� 8112

4ð3Þ
¼ 54; 822:75� 54; 810:08 ¼ 12:67

SST ¼
X2
i¼1

X2
j¼1

XB
k¼1

y2ijk �
y2...
4B

SST ¼ 692þ722þ 	 	 	þ712þ672�8112

12
¼ 54;941:00�8112

12
¼ 130:92

SSE ¼ SST � SSA � SSB � SSAB � SSBlock

¼ 130:92� 2:08� 10:08� 90:75� 12:67 ¼ 15:34

TheANOVA table (Table10) is then constructed for these data.

Step 6. Discussion. The comparison of main e¡ects A and B makes
little sense because the interaction between them is so high. The
researcher decides tomeet with her team in an attempt to determine
what phenomena are operative in this kinetic chemical process.

TABLE10 ANOVATable

Sourceof
variation

Sumof
squares

Degrees of
freedom

Mean
square FC FT

S¼Significant
NS¼Not significant

Factor A 2.08 1 2.08 0.81 3.46 a

Factor B 10.08 1 10.08 3.94 3.46 a

AB interaction 90.75 1 90.75 35.45 3.46 S
Blockeffect 12.67 2 6.34 �
SSE 15.34 6 2.56
SSTOTAL 130.92 11

aBecause the interaction term is significant, any significant outcomes for an individual factor must
be clearly framed in terms of the othermain factor.
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The average e¡ects of A, B, and AB are the same as calculated earlier,
except that n is replaced by B.

�AA ¼ 1
2ðBÞ ½abþ a� b� ð1Þ�

¼ 1
2ð3Þ ½207þ 196� 193� 215� ¼ �0:83

�BB ¼ 1
2ðBÞ ½abþ b� a� ð1Þ�

¼ 1
2ð3Þ ½207þ 193� 196� 215� ¼ �1:83

AB ¼ 1
2ðBÞ ½abþ ð1Þ � a� b�

¼ 1
2ð3Þ ½207þ 215� 196� 193� ¼ 5:50

The meaning of these data, then, remains the same. Because of
the factorAB interaction, the main e¡ects cannot be discussed inde-
pendently.

VI. MODEL ADEQUACY

The linear model for this blocked 22 factorial design is:

yijk ¼ mþ Ai þ Bj þ ðABÞij þ Bk þ Eijk

where A¼ factor A, B¼ factor B, AB¼ factor A�B interaction, and
Bk ¼ blocks.

Rewriting the model for predictive purposes:

ŷy ¼ b0 þ b1aþ b2bþ b3ðabÞ þ Bþ E

where:

b0 ¼ y...
abn

a ¼ 2; b ¼ 2; B ¼ number of blocks = 3

b1 ¼ factor A ¼ 1
4ðBÞ ½abþ a� b� ð1Þ�
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b2 ¼ factor B ¼ 1
4ðBÞ ½abþ b� a� ð1Þ�

b3 ¼ factor AB ¼ 1
4ðBÞ ½abþ ð1Þ � a� b�

and a¼1, if aþ , or �1, if a� ,b¼1, if bþ , or �1, if b� .
The researcher will need to perform a contrast-type operation and

compute Bk contrasts. It does not matter how one labels the constants.
Let us call B1¼1 for block1,B2¼ 2 for block 2, and B3¼3 for block 3.
The block sum total for block1 is 265, block 2 is 275, and block 3 is 271

(Table 8).

B̂B1 ¼ 1
2

P
B1

number of blocks
�

P
B2þ

P
B3

number of blocks�number of Bk in numerator

� �

¼ 1
2

265
3
�275þ 271

3ð2Þ
� �

¼ 88:33�91:00
2

¼�2:67
2
¼�1:33

B̂B2

¼ 1
2

P
B2

number of blocks
�

P
B1þ

P
B3

number of blocks� number of blocks in numerator

� �

¼ 1
2

275
3
�265þ271

3ð2Þ
� �

¼ 91:67�89:33
2

¼ 2:33
2
¼ 1:17

B̂B3

¼ 1
2

P
B3

number of blocks
�

P
B1þ

P
B2

number of blocks� number of blocks in numerator

� �

¼ 1
2

271
3
�265þ275

3ð2Þ
� �

¼ 90:33�90:00
2

¼ 0:33
2
¼ 0:17

So Bk ¼
If block1, B̂B1 ¼ �1.33
If block 2, B̂B2¼1.17
If block 3, B̂B3¼0.17

The linear model is then:

ŷy¼ b0þb1ðaÞþb2ðbÞþb3ðabÞþBk ¼ 67:58�0:42a�0:92bþ2:75ðabÞþBk
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where: k¼1, 2, 3
B1¼ �1.33
B2¼1.17
B3¼0.17

For (1)¼ a�b� , block1: a¼ �1,b¼ �1, and B1¼ �1.34
ŷya�b� ¼67:58�0:42ð�1Þ�0:92ð�1Þþ2:75½ð�1Þð�1Þ�þð�1:33Þ¼70:34

For (1)¼ a�b� , block 2: a¼ �1,b¼ �1, and B2¼1.17
ŷya�b� ¼ 67:58�0:42ð�1Þ�0:92ð�1Þþ2:75½ð�1Þð�1Þ�þ ð1:17Þ ¼ 72:84

For (1)¼ a�b� , block 3: a¼ �1,b¼ �1, and B3¼0.17

ŷya�b� ¼ 67:58�0:42ð�1Þ�0:92ð�1Þþ2:75½ð�1Þð�1Þ�þ ð0:17Þ ¼ 71:84

For a¼aþb� , block1: a¼1,b¼ �1, and B1¼ �1.33
ŷyaþb� ¼ 67:58� 0:42ð1Þ � 0:92ð�1Þ þ 2:75½ð1Þð�1Þ� � 1:33 ¼ 64:00

For a¼aþb� , block 2: a¼1,b¼ �1, and B2¼1.17
ŷyaþb� ¼ 67:58� 0:42ð1Þ � 0:92ð�1Þ þ 2:75½ð1Þð�1Þ� þ 1:17 ¼ 66:50

For a¼aþb� , block 3: a¼1,b¼ �1, and B3¼0.17

ŷyaþb� ¼ 67:58� 0:42ð1Þ � 0:92ð�1Þ þ 2:75½ð1Þð�1Þ� þ 0:17 ¼ 65:50

For b¼ a�bþ , block1: a¼ �1, b¼1, and B1¼ �1.33
ŷya�bþ ¼ 67:58� 0:42ð�1Þ � 0:92ð1Þ þ 2:75½ð�1Þð1Þ� � 1:33 ¼ 63:00

For b¼ a�bþ , block 2: a¼ �1,b¼1, and B2¼1.17
ŷya�bþ ¼ 67:58� 0:42ð�1Þ � 0:92ð1Þ þ 2:75½ð�1Þð1Þ� þ 1:17 ¼ 65:50

For b¼ a�bþ , block 3: a¼ �1,b¼1, and B3¼0.17

ŷya�bþ ¼ 67:58� 0:42ð�1Þ � 0:92ð1Þ þ 2:75½ð�1Þð1Þ� þ 0:17 ¼ 64:50

For ab¼ aþbþ , block1: a¼1,b¼1, and B1¼ �1.34
ŷyaþbþ ¼ 67:58� 0:42ð1Þ � 0:92ð1Þ þ 2:75½ð1Þð1Þ� � 1:33 ¼ 67:66

For ab¼ aþbþ , block 2: a¼1, b¼1, and B2¼1.17
ŷyaþbþ ¼ 67:58� 0:42ð1Þ � 0:92ð1Þ þ 2:75½ð1Þð1Þ� þ 1:17 ¼ 70:16

For ab¼ aþbþ , block 3: a¼1,b¼1, and B3¼0.17

ŷyaþbþ ¼ 67:58� 0:42ð1Þ � 0:92ð1Þ þ 2:75½ð1Þð1Þ� þ 0:17 ¼ 69:16
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VII. COMPUTER-GENERATED DATA
(COMPLETE BLOCK 22 DESIGN)

Using the general linear model routine in computer software, the complete
block 22 factorial design study can be generated. The same commands as
those for the randomized 22 factorial design can be used, but the variable list
must be increased by one to accommodate the block e¡ect.Table 11portrays
the input data.C1¼ factorA¼ �1 if a� ,1 if aþ .C2¼ factorB¼ �1 if b� ,1 if
bþ .C3 and C4 are di¡erent ways of coding the block e¡ect for MiniTab.The
data can be entered sequentially (1, 2, 3) or orthogonally (�1, 0,1).One does
not need both. In this example, the block data were used in C3.
C5¼Dissolution rate in seconds

UsingMiniTab, the command structure is:
MTB>GLMC5¼C1C2 C3 C1*C2;
SUBC>FITSC6;
SUBC>RESIDSC7;
SUBC>MEANSC1C2.
C6 ¼ ŷy; or the predicted value
C7 ¼ y � ŷy ¼ e; or the residual values:

TheANOVA table for these data appears inTable12.
Notice that Table 12 shows the same outcomes as the table generated

earlier using pencil and paper (Table10) in step 5.Table13 presents the input
data, as before (Table 11), with the addition of both the ¢ts ð ŷyÞ and the resi-
duals (e) in ¢elds C6 and C7, respectively.

TABLE11 Input Data,Complete Block 22 Design

Row C1 C2 C3 C4 C5

1 � 1 � 1 1 � 1 69
2 � 1 � 1 2 0 72
3 � 1 � 1 3 1 74
4 1 � 1 1 � 1 64
5 1 � 1 2 0 67
6 1 � 1 3 1 65
7 � 1 1 1 � 1 63
8 � 1 1 2 0 65
9 � 1 1 3 1 65
10 1 1 1 � 1 69
11 1 1 2 0 71
12 1 1 3 1 67
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The experimenter would carry this analysis further, as we did in Sec.
IV, performing stem^leaf displays, letter-value displays, and boxplots of the
residuals, as well as plotting the residuals against the predicted values ( ŷy).

VIII. CONFOUNDING THE 22 DESIGN

Inmany pilot type studies using a 22 design, the researchermay not be able to
conduct the study in one full block [(1) ab ab] at one time due to time ormate-
rial constraints, for example. In addition, one technician or team may con-
duct part of the experiment and others, another portion. In this situation,
the ‘‘actual block size’’ is ‘‘incomplete,’’or smaller than the number of treat-
ment combinations that make up one replicate.

Suppose that in Example 1, a researcher has one team conduct the
experiment portion where factor A is low and factor B is low [(1)] as well as

TABLE12 Analysis of Variance for Complete Block 22 Factorial

Source DF SeqSS AdjSS AdjMS F P

C1 1 2.083 2.083 2.083 0.82 0.401
C2 1 10.083 10.083 10.083 3.95 0.094
C3 2 12.667 12.667 6.333 2.48 0.164
C1*C2 1 90.750 90.750 90.750 35.51 0.001
ERROR 6 15.333 15.333 2.556
TOTAL 11 130.917

TABLE13 Computer Input Data

Row C1 C2 C3 C5 C6 C7

1 � 1 � 1 1 69 71.6667 � 2.66666
2 � 1 � 1 2 72 71.6667 0.33334
3 � 1 � 1 3 74 71.6667 2.33334
4 1 � 1 1 64 65.3333 � 1.33334
5 1 � 1 2 67 65.3333 1.66666
6 1 � 1 3 65 65.3333 � 0.33334
7 � 1 1 1 63 64.3333 � 1.33334
8 � 1 1 2 65 64.3333 0.66666
9 � 1 1 3 65 64.3333 0.66666
10 1 1 1 69 69.0000 0.00000
11 1 1 2 71 69.0000 2.00000
12 1 1 3 67 69.0000 � 2.00000
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the portionwhere factorA is high and factor B is high (ab). A second group is
assigned to conduct the componentswhere factorA is high and factorB is low
(a) and where factorA is low and factor B is high (b).Team1, then, conducts
block (1) and ab ð 1ab Þ, and team 2 conducts the block a and b ð ab Þ.

Here, the experiment whole� (1),a, b, ab� is said to be ‘‘confounded.’’
Generally, confounding is designed such that the interaction e¡ect is con-
founded (mixed with) the block e¡ect so that the main e¡ects can be seen
clearly.This can be a real problem to an experimenter, but modifying the de-
sign structure sometimes is all one can do,particularly in research and devel-
opment. The 22 factorial design, when confounded, requires replicates for
the data to make any sense.Often, it is wiser to confound these designs par-
tially instead of confounding them completely.The experimenter would ran-
domize which of the two partial blocks is assigned to team1or team 2 aswell
as the order of performing the experiment within each of these blocks, if they
are conducted sequentially.

But what does one confound with blocks? The standard statistical
answer is the interaction term. But this is not always the best. To see how it
is done, let us look atTable 14.

Table 14 portrays the linear combination of each e¡ect in terms of
its sign, for example, A¼ abþ a� b� (1) or, more appropriately, A¼ 1=2
½abþ a� b� ð1Þ� and B ¼ ½ab� aþ b� ð1Þ� or, more appropriately,
B¼ 1=2½ab� aþ b� ð1Þ�.

Now to confound AB with blocks, one merely ¢nds the pluses and
minuses in the AB column and puts them in di¡erent blocks: (1) and ab are
positive and go in one block, and a and b are negative, so they go into another
(Fig. 8).

There are times when one does not want to confound the AB interac-
tion e¡ect with the block e¡ect. Suppose one wants to confound the A e¡ect
with blocks,because onewants tomeasure theAB interaction.The same pro-
cedure is used. Consulting the A column of Table 14, one assigns treatment

TABLE14 Factor Effects

Treatment
combination

Main factor effects

A B AB

(1) � � þ
a þ � �
b � þ �
ab þ þ þ
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combinations with the þ sign to one block and the � treatment combina-
tions to the other (Fig. 9).

This, of course, results in theA e¡ect being confounded with blocks, so
one will not be able to determine the A e¡ect. Conversely, if the researcher
chooses to confound the B e¡ect with blocks, she consultsTable 14, ¢nds the
B column, and places the treatment combinationswith a þ sign in one block
and a � sign in the other (Fig.10).

It is often useful to measure the replication variability by computing
the replication e¡ect. If the contribution to replication variability is not
large, it can be pooledwith the error term to increase the error term’s degrees
of freedomwhile reducingMSE.

The analysis of variance table for this design is presented inTable15.
To be sure the reader understands this procedure, let us rework

Example 1, as if it were run in two blocks of three replicates. Generally,
it is wise to replicate experiments anyway to estimate the random error
component. The entire study is then repeated n times. Although
this study is blocked in the way it is, and it is termed confounded,
one can confound the study by blocking it di¡erently in ways previously
discussed.

FIGURE 8 AB interaction confoundedwith blocks.

FIGURE 9 A factor confoundedwith blocks.
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IX. COMPLETELY CONFOUNDED DESIGN

Completely confounded designs are ones in which the same variables are
confounded throughout the entire experimental sequence.

For this example, then, the experimental data are represented in
Table16 and Fig.11.Research team1conducts the portion of the study where
factorsA and B are both high and low.Research team 2 conducts the portion
of the study where factorA and factor B are high.

Let us then perform the experiment, beginning with the six-step
procedure.

Step1. Formulate the test hypothesis:
FactorA: H0: The 0.15% antimicrobial is equivalent to the 0.08% in

dissolution rates.
HA: The above is not true.

Factor B: H0:The 50-mg binder and the 25-mg binder are equivalent
in dissolution rates.
HA: The above is not true.

Replicate variability: H0: The replicates are not signi¢cantly
di¡erent.

HA: The above is not true.
AB interaction=blocks: H0: Because the interaction (AB) and blocks
are confounded, one does not know whether the e¡ect is due to
blocking or toAB interaction or to a combination of these.

FromTable14,we know the blocks will have the form in Fig.12.
Step 2. Let a¼ 0.05. R¼ 3, because the design is replicated three

times.
Step 3. The ANOVA model to be used is a confounded 22 factorial

design. The confounding will occur between blocks and the
AB interaction.

FIGURE 10 B factor confoundedwith blocks.
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Step 4. Decision rule:
FactorA: If Fcalculated > Ftabled, rejectH0 at a¼ 0.05.
FT ¼ ½0:05ð1; ðab� 1ÞðR � 1ÞÞ�
¼ F0:05½1;ð2�2�1Þð3�1Þ� ¼ F0:05½1;6� ¼ 5:99 ðTable A.3Þ

Factor B: If Fcalculated > Ftabled, rejectH0 at a¼ 0.05.
FT ¼ ½0:05ð1; ðab� 1ÞðR � 1ÞÞ� ¼ F0:05½1;ð2�2�1Þð3�1Þ� ¼ F0:05½1;6� ¼ 5:99

Replicates: If Fcalculated > Ftabled, rejectH0 at a¼ 0.05.

FT ¼ ½0:05ððR � 1Þ; ðab� 1ÞðR � 1ÞÞ� ¼ F0:05½ð2;6Þ� ¼ 5:14

Step 5. Compute the statistic.

SSA ¼ ½abþ a� b� ð1Þ�2
4R

¼ ð207þ 196� 193� 215Þ2
4ð3Þ ¼ 2:08

SSB ¼ ½abþ b� a� ð1Þ�2
4R

¼ ð207þ 193� 196� 215Þ2
12

¼ 10:08

FIGURE 11 Completely confounded design data.

TABLE16 Completely Confounded Design Data

Team1

Replicates

Total Team 2

Replicates

Total1 2 3 1 2 3

ð1Þ ¼ a�b� 69 72 74 215 a ¼ aþb� 64 67 65 196
ab ¼ aþbþ 69 71 67 207 b ¼ a�bþ 63 65 65 193

138 143 141 422 127 132 130 389
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SS�AB Blocks ¼
½abþ ð1Þ � a� b�2

4R
¼ ð207þ 215� 196� 193Þ2

4ð3Þ ¼ 90:75

SSBlock ¼
PðBlocksÞ2

number of observations per blockðRÞ
� y2...
4R

¼ 4222 þ 3892

3ð2Þ � 8112

12
¼ 90:75

SSReplicates ¼
P3
i¼1

R2
i

4
� y2...
4R
¼ 2652 þ 2752 þ 2712

4
� 8112

12
¼ 12:67

where R1¼138þ127, R2¼143þ132, and R3¼141þ130,

SST ¼
X3
1

X2
1

X2
1

y2ijk�
y2...
4R
¼692þ722þ		 	þ712þ672�811

2

4ð3Þ ¼ 130:92

SSE ¼ SST � SSA � SSB � SSAB=B

¼ 130:92� 2:08� 10:08� 90:75� 12:67 ¼ 15:34

Step 6. Discussion (seeTable17).

There is a problem with this design, however.We saw from Example 1
that there was signi¢cant interaction.We used the same data as before, so we
know interaction is signi¢cant, but with this completely confounded design
(AB interaction with blocks) we cannot know for sure what is happening. Is
the block e¡ect the culprit in the high value (90.75), or is it the interaction of
factors A and B, or both? We cannot know by this design but could probably
have a very grounded hunch. But the hunch could be wrong.This is a danger
of using a completely confounded design.The researcher, upon seeing these
data,would no doubt be puzzled and perhaps run the study again.

Finally, the researcher does not have to compute SSReplicates in this
design. When it is not computed, (its e¡ect) becomes a part of SSE. The

FIGURE 12 AB interaction blocks.

* The block calculation will also result in the SSAB value, for they are confounded.
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degrees of freedom, then, are ab(R�1) in the error term instead of
(ab�1)(R�1) (seeTable18).

X. DIAGNOSTIC CHECKING

For the confounded 22 factorial design, this researcher rarely checks the
model adequacy, simply because there are too many ‘‘holes’’ in the con-
founded design. In my opinion, the confounded study design is very useful
for ‘‘quick and dirty’’ explorations, but conclusive understanding must be
ruled out.

TABLE18 Revised ANOVATable (SSReplicate Pooledwith SSError)

Sourceof
variation

Sum
of

squares

Degrees
of

freedom
Mean
square Fc FT

S¼Significant
NS¼Not
significant

Factor A 2.08 1 2.08 0.59 5.32a NS
Factor B 10.08 1 10.08 2.88 5.32 NS
AB interaction
with blocks

90.75 1 90.75 �

SSError
b 12:67þ 15:34 ¼ 28:0 2þ 6¼ 8 3.50

SSTOTAL 130.92 11

aFT for factor AandB¼F0.05(1, 8)¼ 5.32.
bSSE is now composedof SSE plus SSREPLICATES.

TABLE17 ANOVATable

Sourceof
variation

Sumof
squares

Degrees of
freedom

Mean
square Fc FT

S¼Significant
NS¼Not significant

Factor A 2.08 1 2.08 0.81 5.99 NS
Factor B 10.08 1 10.08 3.94 5.99 NS
AB interaction
with blocks

90.75 1 90.75a 35.45 5.99 S

SSReplicates 12.67 2 6.33 2.47b 5.14
SSERROR 15.34 6 2.56
SSTOTAL 130.92 11

aResearcheraskswhy this (MSAB=B) is sohigh.Blockeffect, interaction, or both.
bResearcher sees that the replicate is not significant. So, instead of going on, the researcher deci-
des topool the SSReplicates effect with SSError to gain two degrees of freedom.
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If one does want to see how well the model ¢ts the data, however, the
following is the procedure. It is suggested that evaluation be of the main
e¡ects A and B as well as the AB interaction=block e¡ect, leaving the repli-
cate e¡ect alone.

XI. MODEL ADEQUACY

The linear model is:

y ¼ b0 þ b1ðaÞ þ b2ðbÞ þ b3ðabÞ ð14Þ
is su⁄cient.

b0 ¼ y2...
abR

a ¼ 2 a ¼ 1 if aþ; or �1 if a�

b ¼ 2 b ¼ 1 if bþ; or �1 if b�

R ¼ number of replicates (not blocks) ¼ 3

From Example1, recall that ab¼ 207,b¼193,a¼196, and (1)¼ 215.

b1 ¼ factor A ¼ 1
4R
½abþ a� b� ð1Þ�

b2 ¼ factor B ¼ 1
4R
½abþ b� a� ð1Þ�

b3 ¼ factor AB ¼ 1
4R
½abþ ð1Þ � a� b�

Using the data from Example1,

b0 ¼ y2...
abR
¼ 811

2ð2Þð3Þ ¼ 67:58 ¼ �yy

b1 ¼ a factor ¼ 1
4R
½abþ a� b� ð1Þ�

¼ 1
4ð3Þ ½207þ 196� 193� 215� ¼ �0:42

b2 ¼ b factor ¼ 1
4R
½abþ b� a� ð1Þ�

¼ 1
4ð3Þ ½207þ 193� 196� 215� ¼ �0:92

b3 ¼ ab interaction/block effect

¼ 1
4R
½abþ ð1Þ � a� b� ¼ 1

4ð3Þ ½207þ 215� 196� 193� ¼ 2:75
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The linear model to check the model’s adequacy, then, is:

ŷy ¼ 67:58� 0:42ðaÞ � 0:92ðbÞ þ 2:75ðabÞ
Notice that these are precisely the formula and values calculated in Eq.

(13).The actual calculations will not be redone as the outcome is exactly the
same.The only di¡erence is that the b3(ab) is no longer only the AB interac-
tion e¡ect but is theAB interaction and the block e¡ect.

XII. COMPUTER-GENERATED RESULTS

Let us now review how the exercise is computed with a general linear model.
Suppose initially the researcher used the model that was in the form:

ŷy ¼ b0 þ b1ðaÞ þ b2ðbÞ þ b3ðabÞ þ b4ðRÞ
where ŷy¼ predicted value of dissolution rate

b0¼ m
a¼ factorA¼1 if aþ , or �1 if a�
b¼ factor B¼1 if bþ , or �1 if b�
ab¼both the AB interaction and the block e¡ect in this con-

founded design
R¼ replicates

The data are keyed in as presented inTable19.
TheMiniTab computer program command is:

GLM C4 ¼ C1 C2 C1�C2 C3:

The computer printout is presented inTable 20. It is the same as calcu-
lated inTable 17.

Because the replicate e¡ect (C3) was not signi¢cant, the investigator
chose to pool it with the error term. The investigator could just add the
degrees of freedom terms as well as the sum-of-squares terms (SSrepþ SSE)
and recompute the F values or redo the computer calculation.

To redo the computation, the GLM key strokes are:

GLM C4 ¼ C1 C2 C1� C2:

The modi¢ed ANOVA Table appears as Table 21. This is the same
ANOVA that was computed inTable 18. The actual values (y), the predicted
values ( ŷy), and the error ( y � ŷy ) are presented inTable 22.

XIII. PARTIAL CONFOUNDING

In the last section,we discussed complete confounding,where the same vari-
able e¡ect (ab) is confounded continually through the entire sequence of
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replicates.By designing the study in thisway,one loses the ability tomeasure
theAB interaction e¡ect because it is confounded with the block e¡ect.

A di¡erent way of designing the study is to confound certain variable
e¡ects ‘‘partially,’’ that is, not to confound the same e¡ect continually.
Adesign I ¢nd particularly useful is one where three replicates of two experi-
mental blocks are performed, confounding A, B, and AB e¡ects with blocks
one time each.This does not have to remain constant, for in the 22 design one
can do a combination of, say,ab and a,ab and b,a and b, or a and b and ab.The
e¡ect forA,B, orAB is lost, however,when confounded with the block e¡ect.

TABLE19 DataTable

Row C1 C2 C3 C4

1 � 1 � 1 1 69
2 � 1 � 1 2 72
3 � 1 � 1 3 74
4 1 1 1 69
5 1 1 2 71
6 1 1 3 67
7 1 � 1 1 64
8 1 � 1 2 67
9 1 � 1 3 65
10 � 1 1 1 63
11 � 1 1 2 65
12 � 1 1 3 65

C1¼a¼1 if aþ ;� 1 if a�.
C2¼b¼1 if bþ ;� 1 if b�.
C3¼ replicate¼1, if replicate 1; 2, if replicate 2; 3, if replicate 3.
C4¼dissolution rate value.

TABLE 20 2� 2 Analysis of Variance

Source Df Seq SS Adj SS Adj MS F P

C1 1 2.083 2.083 2.083 0.82 .401
C2 1 10.083 10.083 10.083 3.95 .094
C1*C2 1 90.750 90.750 90.750 35.51 .001
C3 2 12.667 12.667 6.333 2.48 .164
Error 6 15.333 15.333 2.556
Total 11 130.917

Useful Small-Scale Pilot Designs 381



Hence, our example using three replicates confounds A,B, and AB one time
each; the actual main e¡ects (A and B) and the interaction of A and B have
been replicated twice.

The procedure for partial confounding is fairly straightforward. First,
Table 14 is reconstructed.This is simply a table of pluses and minuses based
on the factor e¡ect (Table 23).

Recall that factor A is abþ a� b� ð1Þ, read directly, row by row, on
column A. Recall also that to confound A, B, or AB with blocks, one blocks
theþ treatments and the � treatments separately.Hence,to confound factor
Awith blocks, the blocks would be as shown in Fig.13.

This process is conducted for each of the three replicates, usingTable
23 to confound AB,A, and Bwith blocks one time each (Fig.14).

In conducting the study, both the blocks are randomized, as are the
treatments within the blocks, in terms of run order. Block assignment 1 or 2

TABLE 21 Analysis of Variance

Source Df Seq SS Adj SS Adj MS F P

C1 1 2.083 2.083 2.083 0.60 .463
C2 1 10.083 10.083 10.083 2.88 .128
C1*C2 1 90.750 90.750 90.750 25.93 .000
Error 8 28.000 28.000 3.500
Total 11 130.917

TABLE 22 Actual Values

y ŷy y� ŷy ¼ E

69 71.6667 � 2.66666
72 71.6667 0.33334
74 71.6667 2.33334
69 69.0000 0.00000
71 69.0000 2.00000
67 69.0000 � 2.00000
64 65.3333 � 1.33334
67 65.3333 1.66666
65 65.3333 � 0.33334
63 64.3333 � 1.33334
65 64.3333 0.66666
65 64.3333 0.66666
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does not matter. In other words, for replicate II, block1could be depicted as
shown in Fig.15, or it could be as presented in Fig.16.

The main e¡ects (A, B) and the interaction e¡ects are computed with
two values per treatment, instead of three, as before.This is because, in one of
the three replicates, the A, B, and AB e¡ects are confounded with the block
e¡ect.

SSA ¼ ½abþ a� b� ð1Þ�2
4n

where n is the number of times the A e¡ect is measured (which is 2, in this
situation).

SSB ¼ ½abþ b� a� ð1Þ�2
4n

and n ¼ number of B measurements

SSAB ¼ ½abþ ð1Þ � a� b�2
4n

and n ¼ number of AB measurements

SSreplicates ¼
P

R2

4
� y2...

N
; where N ¼ abR

TABLE 23 Factor Effects

Treatment
combination

Main factor effects

A B AB

(1) � � þ
a þ � �
b � þ �
ab þ þ þ

FIGURE 13 FactorA confoundedwith blocks.
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SS blocks (with replicates) ¼ SSAðfor confounded replicateÞ
¼ SSBðfor confounded replicateÞ
¼ SSABðfor confounded replicateÞ

SSTOTAL ¼
Xa
i¼1

Xb
j¼1

XR
k¼1

Y 2
ijk �

y2...
N

SSE ¼ SSTOTAL � SSA � SSB � SSAB

� SSblocks within replicates � SS�number of replicates

Table 24 presents theANOVA table for partially confounded designs.
Let us perform an example to clarify how the study is performed,using

our original data from Example1, reconstructed below:

REPLICATES

Treatment 1 2 3

ab¼ 69 71 67
a¼ 64 67 65
b¼ 63 65 65
(1)¼ 69 72 74
Replicate totals 265 275 271

FIGURE 14 AB, A, andB confoundedwith blocks in three replicates.

*As before, if SSReps is not signi¢cant, it is often useful to add it to SSE to obtain a larger number
of degrees of freedom for the error term.
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It is also useful to review Table 23.
This study is composed of three replicates.The researcher wants to re-

trieve information on the main e¡ects A and B as well as AB interaction.
Hence, the researcher will partially confound this study with each of these
treatment e¡ects in one replicate each. Using the factor e¡ects schematic
(Fig.14) and ¢nding columnAB, the researchermakes sure that the two treat-
mentswith negative (� ) signs are in one block, and the positive (þ ) signs in
the other and then repeats the procedure for theA and B treatments.

Hence, the researcher now has the partially confounded 22 factorial
design in place.The next task is to perform the six-step procedure.

Step1. Formulate the hypothesis.
FactorA: H0: The 0.15% antimicrobial is equivalent to the 0.08% in

dissolution rate.
HA: The above is not true.

Factor B: H0:The 50-mg binder and the 25-mg binder are equivalent
in dissolution rates.
HA: The above is not true.

AB interaction: H0: Factors A and B are independent of each other.
HA: The above is not true.

Step 2. The researcher sets a at 0.10.Because the study design is small
scale, one is looking for ‘‘potential’’ di¡erence to explore in greater
detail later. If one wants to screen products, accepting only those
that are markedly better, a¼0.05 may be preferred.

FIGURE 16 Alternative block assignment.

FIGURE 15 Block assignment.
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The study will be replicated three times,confounding treatment factorsA,B,
and AB once each.

Step 3. TheANOVAmodel to be used is a partially confounded design
(Table 24).

Step 4. Decision rule:
FactorA: If Fcalculated> Ftabled, rejectH0 at a¼ 0.10.
FTabled¼F0.10[1,df SSE3]¼F0.10 [1, 3]¼ 5.54 (Table C),
Factor B: If Fcalculated> Ftabled, rejectH0 at a¼ 0.10.
FTabled¼F0.10[1, 3]¼ 5.54
FactorAB: If Fcalculated> Ftabled, rejectH0 at a¼ 0.10.
FTabled¼F0.10 [1, 3]¼ 5.54

Step 5. Perform the calculations.

SSA ¼ ½abþ a� b� ð1Þ�2
4n

Note that one does not use the data in replicate 2, for it is confounded
with block e¡ect.Hence,n¼ number of replicates A not confounded¼ 2.

SSA ¼ ½ð69þ 67Þ þ ð64þ 65Þ � ð63þ 65Þ � ð69þ 74Þ�2
4ð2Þ ¼ 4:50

SSB ¼ ½abþ b� a� ð1Þ�2
4ð2Þ

Replicate 3 is the one whereB is confounded with block e¡ects, so only
replicates 1and 2 are used.

½ð69þ 71Þ þ ð63þ 65Þ � ð64þ 67Þ � ð69þ 72Þ�2
4ð2Þ ¼ 2:00

SSAB ¼ ½abþ ð1Þ � a� b�2
4ð2Þ

Again,using only the replicateswhereAB is not confounded, replicates
2 and 3 are calculated.

SSAB ¼ ½ð71þ 67Þ þ ð72þ 74Þ � ð67þ 65Þ � ð65þ 65Þ�2
4ð2Þ ¼ 60:50

where k¼1 levels per factor¼ 2

SSREPS ¼
P

R2

2k
� y2...

N
¼ 2652 þ 2752 þ 2712

4
� 8112

12
¼ 12:67
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SSblocksþAþBþABðblocks within repsÞ

¼ SSA for replicates confounded

þ SSB for replicates confounded

þ SSAB for replicates confounded

SSA=block 2 ¼
½abþ a� b� ð1Þ2

4n
¼ ð71þ 67� 65� 72Þ2

4
¼ 0:25

SSB=block 3 ¼
½abþ b� a� ð1Þ�2

4n
¼ ð67þ 65� 65� 74Þ2

4
¼ 12:25

SSAB=block 1 ¼ ½abþ ð1Þ � a� b�2
4n

¼ ð69þ 69� 64� 63Þ2
4

¼ 30:25

SSblocks=AþBþAB ¼ 0:25þ 12:25þ 30:25 ¼ 42:75

SST ¼
XXX

y2ijk�
y2...
4R
¼ 692þ712þ	 	 	þ722þ742�8112

4ð3Þ ¼ 130:92

SSE ¼ SSTOTAL � SSA � SSB � SSAB � SSREPS

� SSBLOCKS WITHIN REPS

SSE ¼ 130:92� 4:50� 2:00� 60:56� 12:67� 42:75 ¼ 8:44

Step 6. Discussion.Construct theANOVATable (Table 25).

Based on this analysis, neither of the main e¡ects A or B is signi¢cant,
but the interaction is.This is a critical ¢nding, for the researcher is in amuch
better position having measured A, B, and the AB interaction. In practice,
it is a good idea to go immediately to the interaction and evaluate it. If it
is signi¢cant, it is not really necessary to compute the main e¡ects A and
B because they must be evaluated jointly and not independently.

The researcher could perform a simple adjustment to increase the
degrees of freedom in SSE, hoping to decrease the size of MSE, by merely
adding SSREPS to SSE and their respective degrees of freedom (df ).

SS0E ¼ SSE þ SSREPS ¼ 8:44þ 12:67 ¼ 21:11

df SS0E ¼ df SSE þ df SSREPS ¼ 3þ 2 ¼ 5
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MS0E ¼
SS0E

df SS0E
¼ 21:11

5
¼ 4:22

At this point, it is plain that a new MS0E of 4.22 will not change any of
our conclusions. However, in other cases it will, particularly because the
Ftabled value will change. For example:

F0:10½1;3� ¼ 5:54

But with the pooling of SSE and SSREPS, the new Ftabled value is:

F0:10½1;5� ¼ 4:06

The lower FT in many cases will make a di¡erence.
The procedure for partially confounded 22 designswhen the researcher

does not want to compute SSREPS is shown inTable 26. Let us compute the
ANOVA table (Table 27).

This type of factorial is just as easy to perform by paper-and-pencil
techniques as by computer. In fact, I ¢nd it much more useful, for it makes
me stay close to the data. In both computations, however, we see that the
interaction of factors A and B is signi¢cant, so there is no reason to compute
the main e¡ects A and B. It would also be wise for the investigator to plot the
main e¡ects (not confounded with blocks) averages to see the interaction
e¡ect.

Finally, the researchermust realize that partially confounded study de-
signs are very sensitive to replicate variability. In fact,one is essentiallymak-
ing predictions based on a replicate size of two,which can be very dangerous
because there are so few data points. This researcher recommends that

TABLE 25 ANOVATable

Sourceof
variation

Sumof
squares

Degrees
of

freedom
Mean
square FC FT

S¼Significant
NS¼Not
significant

Factor A (reps I, III) 4.50 1 4.50 1.60 5.54 NS
Factor B (reps I, II) 2.00 1 2.00 0.71 5.54 NS
AB(reps II, III) 60.50 1 60.56 21.55 5.54 S
SSBlocks with reps (SSA=

REP 2þSSB=REP 3

þSSAB=REP 1)

42.75 3 14.25

SSREPS 12.67 2 6.34
SSE 8.44 3 2.81
SST 130.92 11
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such designs be used only in preliminary screening studies. In addition, I
would not recommend an a value less than 0.10.Using a¼ 0.05, the di¡erence
required for signi¢cance would be obvious without the use of statistical
analyses.

The researcher now has one more series of powerful tests at his or her
disposal.

TABLE 27 ANOVATable

Source of

variation

Sumof

squares

Degrees of

freedom

Mean

square FC FT

S¼Significant

NS¼Not significant

Factor A 4.50 1 4.50 1.07 3.59 �

Factor B 2.00 1 2.00 0.47 3.59 �

AB interaction 60.56 1 60.56 14.35 3.59 S

Blockeffect 42.75 3 14.25

SSError 130.92�4.50

� 2.00� 60.56

� 42.75¼21.11

11�1�1
� 1�3¼5

4.22

SSTOTAL 130.92 11
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10

Nested Statistical Designs

Hierarchical or nested statistical designs can be very useful for researchers.
For example, if one has, three groups of individuals (blacks,Hispanics, Cau-
casians) and they are treated with a drug for several di¡erent diseases, is
there a di¡erencebetween the groups in treatment e¡ectiveness?Or suppose
one outsources the same kinds of testing, tests A, B, and C, to three di¡erent
laboratory facilities. How equivalent are the results from one laboratory to
another in these tests?

What di¡erentiates the hierarchical or nested design from a factorial
design is the following. Test A in a factorial design would always be consid-
ered the constant factor in terms of method interpretation, microbiological
techniques, and reagents used. But in reality, because test Awas performed
in di¡erent facilities, it may not be just a factor but also a variable.Test A in
one laboratory would be standardized to a degree, but not entirely. There
would be laboratory-to-laboratory variability [32].The same is true for tests
B andC.Because the tests are similar among laboratories,but not identical, a
comparative analysis necessitates a nested or hierarchical design, as de-
picted in Fig.1.

Because test A is not identical in each laboratory, it is said to be
‘‘nested,’’or a subset in each laboratory, and, in very real ways, is unique to
each. An important question for the researcher to address then is, are the
laboratories di¡erent from each other in how they perform the same tests?

A nested design is also valuable for evaluating work teams. Suppose
there are three work teams, A, B, and C,each performing four di¡erent tests.
Nested designs can be used to determine whether any of the teams di¡er in
performance of any of the tests, as depicted in Fig. 2.
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Some researchers, however, would not design these studies hierarchi-
cally.The determining factor for whether a design is a factorialor anested one
is whether it is more appropriately written in factorial or nested form. If the
design makes more sense depicted as in Fig. 3, it is factorial.That is, the as-
sumption must be that tests 1, 2, and 3 are identical in factors A, B, and C.
The structure illustrated in Fig. 4 is a nested one in which tests are assumed
not identical in groups A,B, and C, and, hence, it makes more sense to iden-
tify them numerically, 1 through 9.

Some critical thinking is often required to make this determination.
But as with everything in statistics, it is important that one communicate
clearly what one decided to do and, then, how it was done.Context is as im-
portant as content.Context gives the researcher and the reader a speci¢c pers-
pective from which to interpret the data. An argument can always be
presented that a di¡erent perspective should have been applied, and such
disputes are not uncommon in statistical processes [5].

FIGURE 1 Testing among laboratories.

FIGURE 2 Nested design.
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When appropriate, a nested design will provide greater statistical
power than a nonnested design [27].The model is straightforward.

yijk ¼ mþ Ai þ BjðiÞ þ EðijÞk ð1Þ
where i ¼ 1; 2; . . . a, factor A

j ¼ 1; 2; . . . b, factor B
k ¼ 1; 2; . . . n, replicate

Note that for factor B, the value j is nested within the ith level of factor A.
This design is commonly referred to as a two-stage nested design.The entire
model can be expressed as:

FIGURE 3 Factorial design.

FIGURE 4 Nested design.
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Xa
i¼j

Xb
j¼1

Xn
k¼1
ðyijk��y...Þ2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}¼Xa

i¼1

Xb
j¼1

Xn
k¼1
½ð �yi ::��y:::Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}þð �yij :��yi ::Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}þðyijk��yij :Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}�2

Total effect FactorA FactorB Error

ð2Þ

or, in sum-of-squares totals:

SSTOTAL ¼ SSA þ SSBðAÞ þ SSERROR ð3Þ

where the error term is assumed to be normally and independently distri-
buted with a mean of zero and a variance of s2 [NID (0, s2)].

This design is a little di¡erent from those we have encountered before
in that the expected mean square values (MSFactors) have, in the past, always
been divided by theMSERROR term.This is not the case for this design. Gen-
erally, much procedural knowledge is required for constructing an expected
mean square (E[MS]) table to determine which MS values are divided by
whichMSvalues,but wewill simplify it and provide easy-to-use instructions
(Table1).

To determine the F calculated value, for example, for each factor other
than theMSE, onemust ¢rst divide theMS factorA termby the factorMSB(A)
or by the factor MSE term.TheMS term with one variable component fewer
than theMSA term is the one to use.Then divide theMSB(A) factor by theMS
term that has one variable component fewer than it does.

For example, in the case where MSA andMSB(A) are both ¢xed:

ðMSAÞ ¼ s2|{z}þ bn
P

A2
i

a� 1|fflfflfflfflffl{zfflfflfflfflffl}
variable component 1 2

ð4Þ

TABLE1 Expected Mean SquareValues

Factors

Expectedmean
square

A fixed
B fixed

A fixed
B random

A random
B random

MSA s2 þ bn
P

A2
i

a�1 s2 þ ns2
b þ

bn
P

A2
i

a�1 s2 þ ns2
B þ bns2

A

MSBðAÞ s2 þ n
PP

B2
jðiÞ

aðb�1Þ s2 þ ns2
B s2 þ ns2

B

MSERROR s2 s2 s2
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MSBðAÞ ¼ s2|{z}þ n
P P

B2
jðiÞ

aðb� 1Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
variable component 1 2

ð5Þ

MSE ¼ s2|{z}
variable component 1

ð6Þ

Because both MSA and MSB(A) have two variable components and
MSE has one, both MSA andMSB(A) are divided by MSE to determine F -cal-
culated (FC).

When factor A and factor B are both random, the following applies:

MSA ¼ s2|{z}þ ns2
B|{z}þ bns2

A|fflffl{zfflffl}
variable components 1 2 3

ð7Þ

MSBðAÞ ¼ s2|{z}þ ns2
B|{z}

variable components 1 2
ð8Þ

MSE ¼ s2|{z}
variable component 1

ð9Þ

Because MSA has three variable components and MSB(A) has two, F -
calculated (FC) for factor A is MSA=MSBðAÞ. The FT value is found using the
numerator degrees of freedom forMSA and the denominator degrees of free-
dom for MSB(A). FT ¼ Faðdf MSA;df MSBðAÞÞ, and usingTable C to ¢nd the FT va-
lue.

Because factor MSB(A) has two components and MSE has one, the FC

value is MSB(A)=MSE.The FT value is Faðdf MSBðAÞ;df MSE Þ.The degrees of free-
dom for theFT values are simply the degrees of freedom for themaine¡ectsA
and B andMSE degrees of freedom.

When factor A is ¢xed and factor B is random, the following approach
is applied:

MSA ¼ s2|{z}þ ns2
B|{z}þ bn

P
A2
i

a� 1|fflfflfflfflffl{zfflfflfflfflffl}
variable components 1 2 3

ð10Þ
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MSBðAÞ ¼ s2|{z}þ ns2
B|{z}

variable components 1 2
ð11Þ

MSE ¼ s2|{z}
variable component 1

ð12Þ

Because E(MSA) has three variable components and E(MSB(A)) has
two, FC for factor A is MSA=MSB(A). The FT value, as before, is found using
the numerator degrees of freedom for MSA and the denominator degrees of
freedom forMSB(A).FT¼Fa(df MSA; df MSB(A)

inTable C.
Because MSB(A) has two variable components andMSE has one, FC for

MSBðAÞ is MSBðAÞ=MSE.The FTvalue is found using the numerator degrees of
freedom for MSBðAÞ and the denominator degrees of freedom for MSE.
FT ¼ Faðdf MSBðAÞ;df MSE Þ inTable C.

Table 2 provides a schematic of these various states of random versus
¢xed components, and Table 3 provides the actual ANOVAcomputations.

When a factor is ¢xed, the levels of that factor have been intentionally
set, not selected randomly from the population set of all possible levels.When
a factor is random, it has been selected at random from the set of all possible
levels of the population. Generally, in industrial research, the models are
either ¢xed (both factors) or mixed (A ¢xed,B random).

Example 1: Many times in pharmaceutical science, microbiology,
biotechnology, and engineering, product-e¡ectiveness testing is performed.
In this example, a laboratory has performed time-kill kinetics studies on
their various consumer antimicrobial products, using standard American
Society for Testing and Materials=Food and Drug Administration

TABLE 2 Numeratorand Denominator Degrees of FreedomTable

A fixed
B fixed

A fixed
B random

A random
B random

FactorA H0:Ai = 0 H0:Ai = 0 H0:s2
A = 0

HA:Ai 6¼ 0 HA:Ai 6¼ 0 HA:s2
A 6¼ 0

FC = MSA
MSE

FC = MSA
MSBðAÞ

FC = MSA
MSBðAÞ

FT = FaðdfMSA;dfMSEÞ FT = FaðdfMSA;dfMSBðAÞÞ FT = FaðdfMSA;dfMSBðAÞÞ

FactorB H0:BjðiÞ = 0 H0:s2
B = 0 H0:s2

B = 0
HA:BjðiÞ 6¼ 0 HA:s2

B 6¼ 0 HA:s2
B 6¼ 0

FC =
MSBðAÞ
MSE

FC =
MSBðAÞ
MSE

FC =
MSBðAÞ
MSE

FT = FaðdfMSBðAÞ;dfMSEÞ FT = FaðdfMSBðAÞ;dfMSEÞ FT = FaðdfMSBðAÞ;dfMSEÞ
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(ASTM=FDA) Tentative Final Monograph procedures. There has been a
major price increase by its supplier of tryptic soy agar.The quality assurance
group is disturbed about this situation in that the growth characteristics of
challenge microorganisms may vary between media from di¡erent suppli-
ers.They have issued awarning thatmicrobiology research and development
must assure the quality assurance group that substitute tryptic soy agar pro-
ducts are not di¡erent from the standard tryptic soy agar in terms of micro-
bial growth characteristics. The microbiology department has found two
other potential tryptic soy agar suppliers, but upon evaluation they deter-
mined that lot-to-lot variation may be excessive. That is, one lot may be ac-
ceptable and the next unacceptable.

The microbiology laboratory decides to evaluate the media from the
regular supplier and the two others (¢xed e¡ect, in that the suppliers were
selected on the basis of economic and availability characteristics, not at ran-
dom).However, fromeach of the three suppliers, three lotswill be selected at
random (randome¡ect).Five samples fromeachof the individual lotswill be
evaluated for microbial growth and the colony counts from each compared.
The data from the study are presented inTable 4.

Let us perform the six-step procedure in evaluating this problem.

Step1. Formulate the test hypothesis.
Company’s suppliers (factorA, ¢xed e¡ect)
H0: CompanyA ¼ company B ¼ company C in terms of microbial

population numbers on the agar plates.
HA: At least one company is di¡erent from the other two in terms of

microbial population numbers.

TABLE 3 ANOVAComputations

Source
Sumof
squares

Degrees of
freedom MS FC FT

FactorA 1
bn

Pa
i¼1

y2i::: � y2...
abn a� 1 SSA

ða�1Þ ¼ MSA

FactorB
within A

SSBðAÞ ¼ 1
n

Pa
i¼1

Pb
j¼1

y2ij: aðb� 1Þ SSBðAÞ
aðb�1Þ ¼ MSBðAÞ SeeTable 2

� 1
bn

Pa
i¼1

y2i::

Error
Pa
i¼1

Pb
j¼1

Pn
k¼1

y2ijk abðn� 1Þ SSE
abðn�1Þ ¼ MSE

� 1
n

Pa
i¼1

Pb
j¼1

y2ij:

Total
Pa
i¼1

Pb
j¼1

Pn
k¼1

y2ijk � y2...
abn abn� 1
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Lot-to-lot e¡ect [factor B, nested within suppliers (random)]
H0: s

2¼s2¼s2, or the variances of the three lots are the same.
HA: The variances between the lots are not the same.

Step 2. Select a level and n.
Themicrobiologygroupselectsa¼ 0.05because it is a standardoper-

ating procedure (SOP) decree, as is the minimum sample size of
n¼ 5.

Step 3. Select method.
The two-stage nested design was used.
yijk ¼ mþ Ai þ BjðiÞ þ EðijÞk
where m ¼ grand mean

Ai¼ supplier e¡ect
Bj(i)¼ lot e¡ect

E(ij)k is distributed as NID(0, s2)

Step 4. Decision rule.
Suppliers (factorA):

H0: CompanyA ¼ company B ¼ company C.
HA: The above is not true.
FC (¢xed) (fromTable 2) ¼ MSA

MSBðAÞ

TABLE 4 Nested Design

Product
suppliers (fixed)

A B C

Lots selected
at random 1 2 3 4 5 6 7 8 9a

n
1 5.69b 4.38 4.44 5.82 5.32 5.73 5.36 5.38 6.01
2 4.79 6.21 4.15 5.97 6.21 5.81 5.32 4.29 6.23

Replicates 3 5.23 5.48 5.39 5.81 5.73 6.13 4.79 5.71 5.82
4 5.51 5.92 5.29 5.32 4.91 5.13 5.15 5.62 5.89
5 5.72 4.79 4.72 5.43 5.59 5.56 5.92 5.15 5.69

Lot totals ðyij:Þ 26.94 26.78 23.99 28.35 27.76 28.36 26.54 26.15 29.64

Supplier totals
ðyi::Þ

77.71 84.47
244.51¼ y...

82.33

aThis design is nested instead of factorial because the lots can be numbered one through nine
and stillmake sense.
bActual colony count values, log10 scale.
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Suppliers ¼ a ¼ 3, lots ¼ b ¼ 3, and replicates ¼ n ¼ 5.
FT ¼ Fa(df MSA ; df MSB(A)

)¼ FT, 0.05(a � 1; a[b � 1]) ¼ F0.05(3�1; 3[3�1])
FT, 0.05(2, 6) ¼ 5.14 (Table A.3).

So, if FC> 5.14, rejectH0 at a¼ 0.05; suppliers are di¡erent.
Lot-to-lot (factor B(A)) random e¡ects
H0:The variance (s2) is the same between lots
HA: The variance (s

2) is di¡erent between lots
FC (random e¡ects) (fromTable 2) ¼ MSBðAÞ

MSE
FT ¼ Faða½b�1�;ab½n�1�Þ ¼ F0:05ð3½3�1�;3�3½5�1�Þ ¼ F0:05ð6;36Þ ¼ 2:42
So, if FC> 2.42, rejectH0 at a¼ 0.05; there is signi¢cant lot-to-lot
variability.

Step 5. Computation.

SSA ¼ SSSUPPLIERS ¼ 1
bn

Xa
i¼1

y2i:: �
y2...
abn

¼ 1
3ð5Þ ½77:71

2 þ 84:472 þ 82:332� � 244:512

3 	 3 	 5
¼ 1330:15� 1328:56

SSA ¼ 1:59

SSBðAÞ ¼ SSLOTSWITHINSUPPLIERS ¼ 1
n

Xa
i¼1

Xb
j¼1

y2ij: �
1
bn

Xa
i¼1

y2i::

¼ 1
5
½26:942 þ 26:782 þ 23:992 þ 28:352 þ 27:762 þ 28:362

þ 26:542 þ 26:152 þ 29:642� � 1330:15
¼ 1332:76� 1330:15

SSBðAÞ ¼ 2:61

SSE ¼
Xa
i¼1

Xb
j¼1

Xn
k¼1

y2ijk �
1
n

Xa
i¼1

Xb
j¼1

y2ij:

¼ ½5:692 þ 4:792þ 5:232þ 	 	 	 þ 5:822 þ 5:892þ 5:692� � 1332:76

¼ 1340:76� 1332:76

SSE ¼ 8:00

SSTOTAL ¼
Xa
i¼1

Xb
j¼1

Xn
k¼1

y2ijk �
y2...
abn
¼ 1340:76� 1328:56

SSTOTAL ¼ 12:20
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Step 6: Construct theANOVATable (Table 5).
Factor A (suppliers): Suppliers cannot be determined to be signi¢-

cantly di¡erent fromone another at the a¼ 0.05 level of signi¢cance.
Factor B (lots within suppliers): There is no signi¢cant di¡erence

between the lots within the suppliers in terms of variability at
a¼ 0.05. Hence, we can conclude that they came from the same
population at the a¼ 0.05 level of signi¢cance.

Note: Technically, in signi¢cance testing, a researcher must say ‘‘one
cannot reject the null hypothesis’’at a speci¢c a level. But in industry this is
a consistent problem because management frequently does not know how to
interpret that statement. Hence, it is easier to form the conclusion in busi-
ness terms.

I. MULTIPLE COMPARISONS

In Example 1, the researcher could not reject the H0 hypothesis, that supp-
liers were not di¡erent, at a¼ 0.05. In addition, lot variabilities within the
three suppliers were not signi¢cantly di¡erent at a¼ 0.05. But, if the H0

hypothesis in either case had been rejected, the same multiple comparison
procedures discussed in earlier chapters could be used, with minor adjust-

TABLE 5 ANOVATable

Factor
Sumof
squares

Degrees
of

freedom
Mean
square FC FT

Significant =
not

significant

FactorA
(suppliers)

1.59 a� 1
3� 1 ¼ 2

0:80 ¼ MSA
MSA

MSBðAÞ
¼ 1:82 5.14 Not

significant
Factor BA

(lotswithin
suppliers)

2.61 aðb� 1Þ
3ð3� 1Þ
¼ 6

0:44 ¼ MSBðAÞ
MSBðAÞ
MSE

¼ 2:00 2.42 Not
significant

Error 8.00 abðn� 1Þ
3 	 3ð5� 1Þ
¼ 36

0:22 ¼ MSE

Total 12.20 abn� 1
3 	 3 	 5� 1
¼ 44
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ments. Any contrasts should be performed on the ¢xed-e¡ects portions of
the method rather than the random e¡ects.

II. BONFERRONI METHOD

The Bonferroni method can be used for pairwise mean comparisons if
the desired comparisons are selected prior to conducting the study.

A. Factor A (Suppliers; Fixed Effect)

In comparing factor A groups (suppliers), let us suppose the researchers
wanted to make three comparisons and these were de¢ned prior to conduct-
ing the study.

H0: m1¼ m2
H0: m1¼ m3
H0: m2¼ m3

As before, the test statistic is:

t 0 ¼ D
SD

whereD ¼ j�yi:: � �yj::j

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðdenominator MS in F ratioÞ

bn

r
ð13Þ

Recall that the denominator wasMSB(A), so SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðMSBðAÞÞ=bn

p
.

B. Decision Rule

If t 0 > ta=2g; df denominator forF ratio, a signi¢cant di¡erence exists between the
suppliers at a,where g¼ number of contrasts.

We will compute the average values �yi:: for the three suppliers:

�y1:: ¼ 77:71
bn
¼ 77:71

15
¼ 5:18

�y2:: ¼ 84:47
bn
¼ 84:47

15
¼ 5:63

�y3:: ¼ 82:33
bn
¼ 82:33

15
¼ 5:49
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Hence

D1 ¼
���y1:: � �y2::

�� ¼ j 5:18� 5:63 j ¼ 0:45

D2 ¼
���y1:: � �y3::

�� ¼ j 5:18� 5:49 j ¼ 0:31

D3 ¼
���y2:: � �y3::

�� ¼ j 5:63� 5:49 j ¼ 0:14

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðMSBðAÞÞ

bn

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð0:44Þ
15

r
¼ 0:24

where g¼ 3 and a¼ 0.05
tða=2g;a½b�1�Þ ¼ tð0:05=6;6Þ ¼ tð0:01;6Þ ¼ 3:14. From the student’s T table

(Table A.2).

t 01 ¼
D1

SD
¼ 0:45

0:24
¼ 1:88

Because1.88 < 3.14, one cannot rejectH0 (as expected) at a¼ 0.05.

t 02 ¼
D2

SD
¼ 0:31

0:24
¼ 1:29

Because1.29 < 3.14, one cannot rejectH0 (as expected) at a¼ 0.05.

t 03 ¼
D3

SD
¼ 0:14

0:24
¼ 0:58

Because 0.58 < 3.14, one cannot rejectH0 (as expected) at a¼ 0.05.
It is important that the researcher not perform toomany pairwise con-

trasts (g) with the Bonferroni procedure because more than a few make the
t-table value huge, signi¢cantly reducing its power. Also, those contrasts
must be selected prior to conducting the test.

When a ¢xed factorAcomponent and a random factorB component are
used, as in Example1,MSB(A) will be used in place of MSE for the error term
denominator aswell as for thedegreesof freedom for the t-table value.IfAand
B factors are both ¢xed,MSE is used as the denominator in calculating FC.

C. Factor B

This factor is generally not evaluated when it is a random e¡ect. However,
this author has found it useful in quality assurance situations to use the
hypothesis H0: s21 ¼ s22 ¼ 	 	 	 ¼ s2k versus HA: ‘‘at least one group does not
have the same variance.’’ Variance and ranges tend to increase, to become
rather large (larger than normal), if the process is out of control.One way of
assessing, not themean value, but the variability (s2) is to compare the group
ranges intuitively. The range is merely the largest � smallest value. For
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example,

Because there was no signi¢cant di¡erence between the lots within
each supplier, such evaluation is a moot process.Yet, if there had been a sig-
ni¢cant di¡erence, the range of values might have helped isolate the sup-
plier(s) for which lot-to-lot variability is excessive.

The Bonferroni method is not generally useful for evaluating factor B
within A, particularly when the contrasts must be conceived prior to con-
ducting the experiment [33]. A posteriori contrasts (conceived after the ex-
periment has been completed) are more applicable. Let us begin with
factorBwithin A.

D. Factor B(A)

This factor is usually evaluated only if it is ¢xed. So, let us construct Table 6,
assuming that both factorA and B(A) are ¢xed.

Let us suppose, also, that factorB(A) was signi¢cantly di¡erent between
suppliers.Wewould then calculate a sum-of-squaresBwithinA, or lots with-
in each supplier.

Suppliers A: Lot variance

SSBðAÞ ¼ 1
n

X
y2ij: �

y2...
bn

TABLE 6 ANOVATablewith both Factor A and B(A) Fixed.

Factor
Sumof
squares

Degrees
of freedom

Mean
square FC

FactorA (suppliers) 1.59 2 0:80 ¼ MSA
MSA
MSE
¼ 0:80

0:22 ¼ 3:64

FactorBðAÞ (lotswithin
suppliers)

2.61 6 0:44 ¼ MSBðAÞ
MSBðAÞ
MSE
¼ 0:44

0:22 ¼ 2:00

Error 8.00 36 0:22 ¼ MSE

Total 12.20 44

SUPPLIERS
A B C
Lowest ^ highest Lowest ^ highest Lowest ^ highest
4:15� 6:21 4:91� 6:21 4:29� 6:23
Range Range Range
2.06 1.30 1.94
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First supplier:

SSBðA1Þ ¼ 1
5
ð26:942 þ 26:782 þ 23:992Þ � 77:712

3ð5Þ
¼ 403:69� 402:59
¼ 1:10

Second supplier:

SSBðA2Þ ¼ 1
5
ð28:352 þ 27:762 þ 28:362Þ � 84:472

3ð5Þ
¼ 475:73� 475:68
¼ 0:05

Third supplier:

SSBðA3Þ ¼ 1
5
ð26:542 þ 26:152 þ 29:642Þ � 82:332

3ð5Þ
¼ 453:34� 451:88
¼ 1:46

TheANOVA table (Table 6) is revised accordingly (Table 7).
The researcher can now perform the three contrasts to determine

which ones are signi¢cantly di¡erent, e.g.,

FT ¼Faðb�1Þ;abðn�1Þ and

FC forBðA1Þ ¼MSBðA1Þ
MSE

TABLE 7 Revised ANOVATable

Factor
Sumof
squares

Degrees of
freedom

Mean
square FC

FactorA (suppliers) 1.59 2 0:80 ¼ MSA
MSA
MSE
¼ 0:80

0:22
¼ 3:64

FactorBA 2.61 6 0:44 ¼ MSBðAÞ
MSBðAÞ
MSE
¼ 0:44

0:22
¼ 2:00

FactorBðA1Þ 1.10 ðb� 1Þ each ¼ 2 0.55
FactorBðA2Þ 0.05 2 0.03
FactorBðA3Þ 1.46 2 0.73

Error 8.00 36 0.22

Total 12.20 44
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FC forBðA2Þ ¼MSBðA2Þ
MSE

FC forBðA3Þ ¼MSBðA3Þ
MSE

If one FC for B(Ai) was signi¢cantly di¡erent from FT , one could state
that it was signi¢cantly di¡erent from the other lots. If two or all three were
signi¢cantly di¡erent, one could use the LSD or Sche¡e method to compare
those lot groups with each other, but only if B(A) is ¢xed. This will be done
for each contrast section.

III. SCHEFFE’S METHOD

Recall that Sche¡e’s method is used to compare a number of di¡erent con-
trasts. Sche¡e’s method is useful for a few of any possible contrasts but not
as a contrast to compare all mean pairs. This is because, as the number of
comparisons increases, the power decreases due to type I (alpha) error
being, at most for all of the simultaneous comparisons, a. If only pairwise
contrasts are made, theTukey procedure gives narrower con¢dence limits.

A. Factor A

The �yi:: values are evaluated in any possible combination.The standard error
of the contrast is:

SC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMSdenominatorÞ*

Xa
i¼1

c2i
ni

� �s
Recall that the number of contrasts is written as:

c1m1 þ c2m2 þ 	 	 	 þ cmmm

ci ¼ c1 �y1:: þ c2 �y2:: þ 	 	 	 þ ca �ya::

The critical value ðSai Þwith which the calculated ci is compared is:

Sai ¼ Sci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1ÞFaða�1Þ; degrees of freedomdenominatorÞ

p
Decision:
If jCij > Sai , rejectH0.

*Refer to Table 2 of this chapter for selecting the appropriate denominator. In a ¢xed-e¡ects
model, the appropriate denominator for factor A is MSE. In a random-e¡ects model for factor
B(A),with A ¢xed, it is MSB(A).
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Example Cont. Recall that factorA is ¢xed and factor BðAÞ is random
in our example.Also,onewould not performcomparisons if theFC valuewas
not signi¢cant. In this example, it is not signi¢cant, so the computation is for
demonstration purposes only.

Suppose the researcher wants to compare the lot means for all three
suppliers with one another.

1. H0: m1 ¼ m2; c1 ¼ j�y1:: � y2::j ¼ 5:18� 5:63 ¼ 0:45
2. H0: m1 ¼ m3; c2 ¼ j�y1:: � y3::j ¼ 5:18� 5:49 ¼ 0:31
3. H0: m2 ¼ m3; c3 ¼ j�y2:: � y3::j ¼ 5:63� 5:49 ¼ 0:14

Sci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSdenominator

X c2

n

� �s
The denominator in this example is MSBðAÞ because factorA is ¢xed and fac-
tor BðAÞ is random.

Sci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSBðAÞ

X c2

n

� �s

Sc1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:44

12 þ ð�1Þ2
16

� �s
¼ 0:23

Sc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:44

12 þ ð�1Þ2
16

� �s
¼ 0:23

Sc3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:44

12 þ ð�1Þ2
16

� �s
¼ 0:23

Letting a¼ 0.05 and usingTableA.3 (Fdistribution):

Sai ¼ Sci
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� 1ÞF0:05ða�1;MSdenominatorÞ

p ¼ Sci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� 1ÞF0:05ða�1;aðb�1ÞÞ
p

Sa1 ¼ 0:23
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� 1ÞF0:05ð2;6Þ

p
¼ 0:23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð5:14Þ

p
¼ 0:74

In this case, Sa1 ¼ Sa2 ¼ Sa3 ¼ 0:74.
Decision rule:
If jCij > Sai , theH0 hypothesis is rejected at a.

jC1j ¼ 0:45 < 0:74; can not reject H0 : ðm1 ¼ m2Þ at a ¼ 0:05

jC2j ¼ 0:31 < 0:74; can not reject H0 : ðm1 ¼ m3Þ at a ¼ 0:05

jC3j ¼ 0:14 < 0:74; can not reject H0 : ðm2 ¼ m3Þ at a ¼ 0:05
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B. Factor B(A)

When factor BðAÞ is random, the multiple contrast procedures are gen-
erally not used, for they are meaningless. However, evaluating the
ranges, as done in the Bonferroni example, is often useful [26]. But sup-
pose BðAÞ is ¢xed. The hypothesis tests of B groups within factor A can
be used for determining the groups contributing to the greatest varia-
bility. For example, looking at Table 7, we saw that the factor B group
lots within suppliers were not signi¢cantly di¡erent in growth support
when decomposed into individual lots within each supplier. The BðA3Þ
was the largest mean square value, however (Table 7). Suppose BðA3Þ
was signi¢cant (i.e., FC forBA3 > FT ðBA3 Þ. Then the question would be:
Which lot means were signi¢cantly di¡erent from one another within
that supplier (supplier C)?

If the variability within the lots of supplier C is excessive, which
lots are they? Which lots signi¢cantly vary from one another? If it is
variability that is key, then the range evaluation used in the Bonferroni
discussion could be performed. However, if mean variability has any
meaning, that is, lot-to-lot mean values, the following comparison can
be performed.

Supplier C had the following total colony counts (from Example 1):
26.54, 26.15, and 29.64 for lots 1 through 3. The means for these lots
(division by 5) are 5.31, 5.23, and 5.93, respectively. The researcher then
can proceed to compare lots 1, 2, and 3, or L1 vs. L2, L2 vs. L3, and L1
vs. L3.

H0: mL1 ¼ mL2; �y3ð1Þ � �y3ð2Þ ¼ C1

H0: mL2 ¼ mL3; �y3ð2Þ � �y3ð3Þ ¼ C2

H0: mL1 ¼ mL3; �y3ð1Þ � �y3ð3Þ ¼ C3

SaðjÞ ¼ Scj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb� 1Þ;Faðb�1;abðn�1ÞÞ
p

Scj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

X c2i
ni

� �s

where a ¼ number of suppliers
b ¼ number of lots within suppliers
n ¼ number of replicates of lots within suppliers

Decision rule: If jCij > Sai , rejectH0.
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Scj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

X�
C2

n

�s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:22

�
12 þ ð�1Þ2

5

s �
¼ 0:30

C1 ¼ j�y3ð1Þ � �y3ð2Þj ¼ j5:31� 5:23j ¼ 0:08

C2 ¼ j�y3ð2Þ � �y3ð3Þj ¼ j5:23� 5:93j ¼ 0:70

C3 ¼ j�y3ð1Þ � �y3ð3Þj ¼ j5:31� 5:93j ¼ 0:62

Because all three contrasts are the same, Scj ¼ 0:30.
For a¼ 0.05,

Saj ¼ Scj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1ÞF0:05ðb�1;abðn�1ÞÞ

p
¼ Scj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� 1ÞF0:05ð2;3	3ð5�1ÞÞ

p
¼ 0:30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F0:05ð2;36Þ

p
Saj ¼ 0:30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3:32Þ

p
¼ 0:30ð2:58Þ ¼ 0:77

If jCj j > 0:77; rejectH0.
Because we know that none of the jCjj values is larger than 0.77,

there is no reason to continue with the contrast procedure. But this exam-
ple demonstrates just how one would do this if they were. In this case, if
C2 (lot 2 vs. lot 3) had been signi¢cant, we could look in the batch records
as well as calibration=validation records to see what happened or simply
report this to the supplier.

IV. LEAST SIGNIFICANT DIFFERENCE (LSD)

The least signi¢cant di¡erence contrasts can also be used.The general pro-
cedure is the same as we have encountered over the previous chapters, and,
like all other contrasts, it is not used unless FC is signi¢cant.

A. Factor A

The LSD method is used to compare each possible combination of mean
pairs. But note that use of the LSD contrast procedure is recommended
against by a number of statisticians [34].The test, for balanced designswhere
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the sample size,n,values are equal, is:

LSD ¼ ta=2ðdf denominatorÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðMSdenominatorÞ

bn

*
s

The test is:

If j�yi:: � �yj::j > LSD; rejectH0 at a

Let us compare all possible ½aða� 1Þ�=2 ¼ ð3 	 2Þ=2 ¼ 3 combinations of fac-
torAmeans.

�y1:: ¼ 5:18

�y2:: ¼ 5:63

�y3:: ¼ 5:49

Set a at 0:05

LSD ¼ t0:05=2; ðaðb�1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðMSBðAÞÞ

bn

r

LSD ¼ t0:025;6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð0:44Þ
3 	 5

r
¼ 2:447

ffiffiffiffiffiffiffiffiffi
0:06
p

¼ 0:59

The three possible combinations of LSD are:

j�y1:: � �y2::j ¼ j5:18� 5:63j ¼ 0:45 >= 0:59 Not significant

j�y1:: � �y3::j ¼ j5:18� 5:49j ¼ 0:31 >= 0:59 Not significant

j�y2:: � �y3::j ¼ j5:63� 5:49j ¼ 0:14 >= 0:59 Not significant

Hence, as before, none of the suppliers is di¡erent from any of the
others at a¼ 0.05. Again, this test was performed only as a demonstration
and would be used only if FC for factorAwas signi¢cant.

B. Factor B(A)

As with examples demonstrated earlier,when BðAÞ is random,which it often
is, the individual mean tests are pretty much without value. The proper

*Again, the denominator used depends upon whether the factors are ¢xed or random (seeTable
2). In this example, recall that factor A is ¢xed and factor BðAÞ is random. So FC for factor A is
MSA=MSBðAÞ. MSBðAÞ is the denominator in this case, which corresponds to aðb� 1Þ degrees of
freedom.

Nested Statistical Designs 411



interpretation of a signi¢cant FC for BðAÞ, when random, is that the groups
[BðAÞ] do not have the same variance.

However, if BðAÞ is ¢xed, a test can be used to compare means. And, if
BðAÞ is signi¢cant, the strategy is to perform FC tests on the individual BðAÞ
groups.The groups that are signi¢cantly di¡erent can then be comparedwith
the LSD test.

Using our example, suppose that as in the Sche¡e example, BðA3Þ was
¢xed and was signi¢cant in the FC calculations, as presented in Table 7.
Hence, the researcher knows that suppliers (factor A) do not di¡er, but do
the mean microbial counts per lot from suppliers di¡er signi¢cantly? If so,
perhaps a quality assurance problem exists in interlot (lot-to-lot) variability.

Now, if interlot variabilitymakes sense only on thebasis of the range,or
variance, the range evaluation discussed in the Bonferroni section would be
more useful. But suppose comparisons of growth characteristics in terms of
the mean makes intuitive sense. And suppose BðA3Þ is signi¢cantly di¡erent,
that is, FC > FT .The log10 sum totals and means for the three lots are:

Lot1¼ 26.54,with a mean of 26.54=5¼5.31
Lot2¼ 26.15,with a mean of 26.15=5¼5.23
Lot3¼ 29.64,with a mean of 29.64=5¼5.93

The researcher then compares all ½bðb� 1Þ�=2 ¼ 3 combinations. The LSD
value is:

ta=2;ðab½n�1�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
; where MSE ¼ 0:22 ðTable 7Þ:

If j�yij: � �yji:j > LSD, rejectH0 at a.

LSD ¼ tð0:05=2;abðn�1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r

¼ tð0:025;36Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð0:22Þ

5

r
¼ 2:042ð0:30Þ ¼ 0:61

The three lot-to-lot combinations:

c1 ¼ j�y31: � �y32:j ¼ j5:31� 5:23j ¼ 0:08 >= 0:61 Not significant

c2 ¼ j�y31: � �y33:j ¼ j5:31� 5:93j ¼ 0:62 > 0:61 Significant

c3 ¼ j�y32: � �y33:j ¼ j5:23� 5:93j ¼ 0:70 > 0:61 Significant

Notice that for this test, contrasts c2 and c3 are signi¢cantly di¡erent
when the FC value was not. This may re£ect why there are recommenda-
tions against the LSD test. This does not usually occur, particularly
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because the LSD method tends to lack power as the number of contrasts
increases. The researcher had already concluded that no signi¢cant di¡er-
ence exists at a¼ 0.05 but if the FC had been signi¢cant, the researcher
would have noted that the mean variability among the lots provided by sup-
plier C was excessive.

V. DUNCAN’S MULTIPLE RANGE TEST

Duncan’s multiple range test is another that can be used to evaluate nested
designs. As before, the test, however, is performed only if the FC value is
signi¢cant and if the factor evaluated is ¢xed e¡ects.

A. Factor A

For demonstration purposes,we will evaluate factorA, despite the nonsigni-
¢cant FC . The goal is to determine whether any factor levels (suppliers) are
signi¢cantly di¡erent from the others.

For a balanced design, the test formula is:

S�yi:: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSdenominator

bn

r
whereMS denominator for this example (factorA ¢xed, factor BðAÞ random)
fromTable 2 is MSBðAÞ,which is 0.44 (Table 7 in this chapter).

Recall from LSD testing that �y1:: ¼ 5:18; �y2:: ¼ 5:63; and �y3:: ¼ 5:49.

S�yi:: ¼
ffiffiffiffiffiffiffiffiffi
0:44
3 	 5

r
¼ 0:17

For Duncan’s multiple range test, one obtains the critical values ½raðp;f Þ�
for p ¼ 2; . . . ; a (Appendix,Table E). Let a¼ 0.05 and f¼degrees of freedom
forMS denominator¼ aðb� 1Þ ¼ 6.The set of a� 1 least signi¢cant ranges,
as before, is calculated for p ¼ 2; 3; . . . ; a.

The least signi¢cant range calculation is:

Rp ¼ raðp;f ÞS�yi::

The observed di¡erences between the means are then determined, begin-
ning with contrasting the largest and the smallest, and comparing the result
with Rp at a. Next, the largest is contrasted to the second smallest and the
result compared with the Rp at ða� 1Þ. This process is continued until all of
the ½aða� 1Þ�=2 combinations have been compared. If an observed pair
di¡erence is greater than the Rp value, the pairs are considered signi¢cantly
di¡erent from each other at a.
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R2 ¼ rð0:05Þð2;6Þ0:17 R3 ¼ rð0:05Þð3;6Þ0:17
¼ 3:46ð0:17Þ ¼ 3:58ð0:17Þ
¼ 0:59 ¼ 0:61

The means are written in ascending order, �y1:: ¼ 5:18; �y3:: ¼ 5:49, and
�y2:: ¼ 5:63, . . and the smallest is subtracted from the largest, etc. The di¡e-
rences for the three contrasts are compared with the Rp values, as follows.

2 vs: 1 5:63� 5:18 ¼ 0:45 < 0:61 ðR3Þ
2 vs: 3 5:63� 5:49 ¼ 0:14 < 0:59 ðR2Þ
3 vs: 1 5:49� 5:18 ¼ 0:31 < 0:59 ðR2Þ
Notice that none of the factorA suppliers are signi¢cantly di¡erent at

a¼ 0.05, the result that was expected.

B. Factor B(A)

The same process presented concerning factorA is relevant for testing BðAÞ,
using Duncan’s multiple range test.Random e¡ects for BðAÞ are not individu-
ally evaluated because the experimenter is concerned with variances, not
means. However, as before, if FC is signi¢cant, as presented in Table 7, the
researcher can ascertain the individual levels ofBðAÞ that are signi¢cantly dif-
ferent from one another if the BðAÞ factor is ¢xed. The range comparison
could also be used, as in the Bonferroni procedure, to get an idea of what is
going on in terms of variability [26,27].

Example cont. Assume, for demonstration purposes, that the apprai-
sal of the population growth characteristic through the mean makes sense
and that factor BðAÞ, a ¢xed factor, was signi¢cant. Partitioning (Table 7)
further showed thatBðA3Þ was signi¢cantly di¡erent, that is, FC > FT .The re-
searcher could then use the Duncan’s multiple range test to evaluate the in-
dividual lots within a supplier.

S�yBðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

n

r
; where MSE ¼ 0:22 ðTable 7Þ

Recall from the LSD testing that the means for supplier C were lot 1¼5.31,
lot 2¼5.23, and lot 3¼5.93

S�yBðAÞ
¼

ffiffiffiffiffiffiffiffiffi
0:22
5

r
¼ 0:21

FromDuncan’smultiple range test (Appendix,Table E),one can obtain
the critical values of raðp;f Þ for p ¼ 2; 3; . . . ; b. Let a ¼ 0:05 and f¼ degrees of
freedom forMSE ¼ abðn� 1Þ ¼ 36.
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The least signi¢cant range calculation is:

raðp;f ÞS�yjðiÞ for p ¼ 2; 3; . . . ; b

The observed di¡erences between the means are then evaluated, be-
ginning with the largest versus the smallest, and the di¡erence is compared
withRb.Next, the largest is comparedwith the second smallest and the result
compared with Rðb�1Þ. This process is continued until all of the ½bðb� 1Þ�=2
combinations have been compared. If an observed pair di¡erence is greater
than the Rp value, the pair is considered signi¢cantly di¡erent at a.

As before, the two Rp values are computed:

R2 ¼ rð0:05Þð2;36Þð0:21Þ R3 ¼ rð0:05Þð3;36Þð0:21Þ
R2 ¼ 2:89ð0:21Þ R3 ¼ 3:04ð0:21Þ
R2 ¼ 0:61 R3 ¼ 0:64

The means are written in ascending order, �y3ð2Þ ¼ 5:23, �y3ð1Þ ¼ 5:31, �y3ð3Þ ¼
5:93, and the mean di¡erences are then compared with the Rp values:

3 vs: 2 5:93� 5:23 ¼ 0:70 > 0:64 ðR3Þ
3 vs: 1 5:93� 5:31 ¼ 0:62 > 0:61 ðR2Þ
1 vs: 2 5:31� 5:23 ¼ 0:08 < 0:61 ðR2Þ
Notice that two of the individual contrasts are signi¢cantly di¡erent

even though the FC forBðAÞ was not. In this case, one would ignore the indivi-
dual contrasts and consider the FC not being signi¢cant for factor BðAÞ at
a ¼ 0:05.

Often, Duncan’s multiple range test is excessively conservative. But in
this case, because MSE was a relatively small value, had a large number of
degrees of freedom [33,35], and only three contrasts were performed, it was
‘‘overly’’ sensitive. In other words, because factor BðAÞ was not signi¢cant at
a ¼ 0:05, the individual contrasts were not ‘‘practically’’signi¢cant.

VI. NEWMAN–KEULS TEST

The application of this contrast test is very much as described in previous
chapters.The test can be conducted on both factorsA andBðAÞ for all possible
pairwise contrasts.The contrasts should not bemade, however, ifFC (for fac-
torA or factor BðAÞ) is not signi¢cant.

A. Factor A

As before, the formula is Kp ¼ qaðp;f ÞS�yi:: for p ¼ 2; 3; . . . ; a; and f¼degrees
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of freedom for denominator

S�yi:: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSdenominator

bn

r
In our example, factorA is ¢xed andBðAÞ is random.So, as before (Table 2),we
note that the denominator is MSBðAÞ (¼ 0.44, fromTable 7).

S�yi:: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSBðAÞ
3 	 5

r
¼

ffiffiffiffiffiffiffiffiffi
0:44
15

r
¼ 0:17

The three factorAmeans are �y1:: ¼ 5:18; �y2:: ¼ 5:63; and �y3:: ¼ 5:49.
For this example, p ¼ 2; 3, and a ¼ 0:05 with df ¼ f ¼ aðb� 1Þ ¼ 6.
From the Studentized range table, the q values are found (Table A.12).
q0:05ð2;6Þ ¼ 3:46

q0:05ð3;6Þ ¼ 4:34

The Kvalues are computed, multiplying the q values and the S�y:: values.

Kp ¼ qaðp;f ÞS�y...

K2 ¼ 3:46ð0:17Þ ¼ 0:59

K3 ¼ 4:34ð0:17Þ ¼ 0:74

The factor A means are ordered in ascending order �y1:: ¼ 5:18; �y3:: ¼ 5:49,
and �y2:: ¼ 5:63.

The comparison procedure used inDuncan’smultiple range test is also
used here.

2 vs: 1 5:63� 5:18 ¼ 0:45 < 0:74 ðK3Þ
2 vs: 3 5:63� 5:49 ¼ 0:14 < 0:59 ðK2Þ
3 vs: 1 5:49� 5:18 ¼ 0:31 < 0:59 ðK2Þ
Hence, for the Newman^Keuls test, none of these contrasts are signi¢-

cant at a¼ 0.05,which is as expected.

B. Factor B(A)

Factor B(A) contrasts are performed in nearly the same fashion as those for
factorA.However, randome¡ects forB(A) are usually not pairwise compared
because the experimenter is concerned not with mean variation but with
variability.WhenB(A) is ¢xed, however, and ifFC is signi¢cant, the researcher
can partition factor B(A) into individual Bj(i) components to discover which
ones are signi¢cant.And, too, range comparisons can be conducted, as in the
Bonferroni example, to get an idea of what is going on.
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As before, the Newman^Keuls test assumes that it makes sense to eva-
luate the mean di¡erences in our example (assuming the factor is ¢xed) and
that supplierC is signi¢cantly di¡erent,FC>FT.The researcher then uses the
Newman-Keuls test to evaluate the lots within supplier C.

The formula is Kp ¼ qaðp; f ÞS�yjðiÞ , for p ¼ 2; 3; . . . ; b, where MSE ¼ 0.22
(Table 7), and f ¼ degrees of freedom forMSE ¼ ab(n�1)¼ 36.

S�yjðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

n

r
¼

ffiffiffiffiffiffiffiffiffi
0:22
5

r
¼ 0:21

The three lot means for supplier C are ordered in ascending order, Lot1 ¼
�yCð2Þ ¼ 5:23; Lot2 ¼ �yCð1Þ ¼ 5:31, and Lot3 ¼ �yCð3Þ ¼ 5:93 . . . and the q
values are determined usingTable A.1, Studentized range table.

q0:05ð2;36Þ ¼ 2:89

q0:05ð3;36Þ ¼ 3:48

The Kp values are then calculated.

Kp ¼ qaðp;f ÞS�yjðiÞ

K2 ¼ 2:89ð0:21Þ ¼ 0:61
K3 ¼ 3:48ð0:21Þ ¼ 0:73

The same comparison procedure as used in Duncan’s multiple range test is
used here.

3 vs: 2 5:93� 5:23 ¼ 0:70 < 0:73 ðR3Þ
3 vs: 1 5:93� 5:31 ¼ 0:62 > 0:61 ðR2Þ
1 vs: 2 5:31� 5:23 ¼ 0:08 < 0:61 ðR2Þ
Again, this test comparison generally would not be used when neither

B(A) nor any of the individuals Bj(i) components were found to be signi¢cant
in theANOVA.So, although 3 vs.1 is signi¢cant here, it is not practically so.

VII. TUKEY METHOD

TheTukey test for the nested design is, again, a straightforward means for
investigating factors A and B(A). Before using it, the researcher will want to
ensure that theFC values are signi¢cant at the selecteda level.For instructive
purposes,we will assume that they are.

A. Factor A

The formula for theTukey test is:

Ta ¼ qaða;f ÞS�yi::
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where S�yi:: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSdenominator=bn

p
; f ¼ degrees of freedom, and a¼ number

of treatments in factorA. All ½aða� 1Þ�=2 factorA treatments are contrasted.
In our example, factorA is ¢xed and factorB(A) is random.So, as can be

seen from Table 2, MSB(A) is the denominator, with a(b � 1) degrees of
freedom. qa(a,f )¼ q(0.05)(3,6), which from the Studentized range table
(Table A.1)¼ 4.34.

S�yi:: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSBðAÞ
bn

r
¼

ffiffiffiffiffiffiffiffiffi
0:44
3 	 5

r
¼ 0:17

Ta ¼ q0:05; ð3;6ÞðS�yi:: Þ ¼ 4:34ð0:17Þ ¼ 0:74

If j �yi:: � �yj:: j > ta; reject H0 at a.
The largest and the smallest means, followed by the largest and second

smallest means and the second largest and smallest means, are contrasted.

2 vs: 1 j5:63� 5:18j ¼ 0:45 < 0:74

2 vs: 3 j5:63� 5:49j ¼ 0:14 < 0:74

3 vs: 1 j5:49� 5:18j ¼ 0:31 < 0:74

As expected, none of the three suppliers are di¡erent at a.

B. Factor B(A)

Factor B(A) contrast procedures are also similar to those already conducted.
Random e¡ects for B(A) are usually not contrasted. However, if FC for B(A)

was signi¢cant and if it was a ¢xed-e¡ects model, the individual Bj(i) could
be evaluated with theTukey test.

Let us, for demonstration purposes, assume that FC was signi¢cant for
the lots nested in supplier C.

Ta ¼ qaðb; f ÞS�yjðiÞ:

where S�yjðiÞ: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE=n

p
; b ¼ 3; and f ¼ abðn� 1Þ ¼ 36:

All ½bðb� 1Þ�=2 contrasts within a speci¢c and signi¢cant factorA are
compared.

qaðb; ab½n�1�Þ, and usingTable A.1, q0:05ð3;36Þ ¼ 3:48

S�yjðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

n

r
¼

ffiffiffiffiffiffiffiffiffi
0:22
5

r
¼ 0:21

ta ¼ qaðp;f ÞS�yjðiÞ: ¼ 3:48ð0:21Þ ¼ 0:73

If j�ykðiÞ: � �ykðjÞ:j > ta; reject H0 at a:
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3 vs: 2 j5:93� 5:23j ¼ 0:70 < 0:73

3 vs: 1 j5:93� 5:31j ¼ 0:62 < 0:73

3 vs: 1 j5:31� 5:23j ¼ 0:08 < 0:73

None of the three contrasts is statistically signi¢cant at a. This is ex-
pected because FC was not signi¢cant for factor B.

VIII. DUNNETT’S METHOD

Dunnett’s method is used when a researcher is comparing multiple test pro-
ducts with a single control or reference product. In our example, if the
researcher had compared the new suppliers with the standard supplier,
Dunnett’s method could be used, but she should note that the test would be
limited to factor A because factor B(A) is concerned with the intrasupplier
variability of a speci¢c supplier. One of the other contrasts, such asTukey’s,
LSD, or Sche¡e’s, could be used to evaluate intracon¢guration variability.

A. Factor A

Let us perform an exercise in comparing the ‘‘control,’’ say supplier A,with
the two test suppliers, B and C,using Dunnett’s method, although, as before,
if FC for factor A is not signi¢cant, neither Dunnett’s method nor any other
contrast method would be applied.We perform the exercise here for demon-
stration purposes only. For Dunnett’s method, factorAmust always be ¢xed
e¡ects.

Here �y1:: ¼ �yc:: ¼ control, �y2::and �y3:: ¼ test configurations, and a ¼ 3,
b ¼ 3, n ¼ 5, and a ¼ 0.05. There are a � 1 ¼ 2 contrasts, �y2:: and �y3::, and
each is compared with, �yc::, the control, as �y2:: � �yc:: and �y3:: � �yc::

The test hypotheses areH0: mi:: ¼ mcontrol and HA: mi:: 6¼ mcontrol.
Decision Rule:
If

j �yi:: � �yc:: j > daða�1; f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSdenominator

bn

r
; reject H0 at a

Because factorA is ¢xed and factor B(A) is random, fromTable 2,we see that
MSB(A) is the denominator, with aðb� 1Þ ¼ 6 degrees of freedom ¼ f, and
fromDunnett’s table (Appendix,Table A.13),d(a�1, f )¼ d0.05 (2, 6) ¼ 2.86.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MSBðAÞ
bn

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð0:44Þ
3 	 5

r
¼ 0:24
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so

da;ða�1; f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSBðAÞ

bn

r
¼ 2:86ð0:24Þ ¼ 0:69

j�y2:: � �yc::j¼j5:23� 5:31j ¼ 0:08 < 0:69 Not significant

j�y3:: � �yc::j¼j5:93� 5:31j ¼ 0:62 < 0:69 Not significant

The conclusion reached, then, is that the test con¢gurations (suppliers
B and C) are not signi¢cantly di¡erent from the control (supplier A) at
a¼ 0.05.

IX. NESTED DESIGNS BY MEANS OF A
COMPUTER PROGRAM

The nested design can be generated with a software subroutine that allows
nesting or a two-factor ANOVAwith A � B interaction.When using a gen-
eral linear model, for example,one would input the data asA (supplier) andB
(lots within suppliers).Then one would merely add the B and A � B rows in
the df column and B and A � B in the sum-of-squares column.Factor B plus
the interaction ofA � B is B(A) (Table 8).

Adding the degrees of freedom, 2 þ 4 ¼ 6 for B(A), the sum of squares
B(A) is SSB þ SSA�B ¼ 0.0670 þ 2.5438 ¼ 2.61. The value for MSB(A) is
2.61=6 ¼ 0.44.

The residual values are determined by taking the ¢tted value, ŷijk, and
subtracting it from the actual value (y). For our purposes,

ŷijk ¼ �yij:

Recall that the yij :values are the total values of each lot within suppliers
(Table 4), and �yij: ¼

Pðyij:=nÞ. For example, �y11: ¼ ŷ11: ¼ 26:94=5 
 5:39
or 5:388 carried out three places to the right of the decimal point.

TABLE 8 Computerized ANOVAwithA� B Interaction (Example 1Data)

Source DF Seq SS Adj SS Adj MS F P

A 2 1.5916 1.5916 0.7958 3.58 .038
B

+
BðAÞa

2
+
6

0.0670
+
2:61

0.0670 0.3335 0.15 .861
A� B 4 2.5438 2.5438 0.6360 2.86 .037
Error 36 7.9974 7.9974 0.2221
Total 44 12.1998

adegrees of freedom for BðAÞ ¼ 2þ 4 ¼ 6, SSBðAÞ ¼ 0:0670þ 2:5438 ¼ 2:61, MSBðAÞ ¼
2:61 6 ¼ 0:44.
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Table 9 presents a code table of columnsA andB(A) aswell as the actual
values ðyijkÞ, the predicted values ðŷijkÞ, and the error ðeijjkÞ.

Figure 5 provides a stem-and-leaf display of the residual values. They
seem to approximate the requirements of a normal distribution.

Figure 6, a letter-value display of the residual values, appears to be nor-
mal.The midrange values are not consistently increasing or decreasing.

Figure 7 is a boxplot of the residuals.This, too, appears approximately
normal.

Two other useful displays are plots of the residuals versus suppliers
(Fig. 8) and residual versus predict values (Fig. 9). In both cases, these distri-
butions appear normal.

X. VARIANCE COMPONENTS

Whenever themain factors (AorB(A) or both) ¢t a random-e¡ectsmodel, it is
often useful to estimate the variance component. The variance component
can be estimated for s2, s2

BðAÞ, and s2
A.

s2 ¼ the error term ¼MSE

s2
BðAÞ ¼

MSBðAÞ �MSE

n

s2
A ¼

MSA �MSBðAÞ
bn

In our example, B(A) is a random-e¡ects component and A is ¢xed, a
con¢guration commonly used in nested designs.We will estimate the var-
iance for main factor B(A) using data fromTable 7.

s2 ¼MSE ¼ 0:22

s2
BðAÞ ¼

MSBðAÞ �MSE

n
¼ 0:44� 0:22

5
¼ 0:04

By the way, each level e¡ect of factor A can be estimated using data from
Table 4:

The formula is: �yi:: � �y::: and �y::: ¼ 244:51
45 ¼ 5:43

�y1:: ¼ y1::
15
¼ 77:71

15
¼ 5:18

�y2:: ¼ y2::
15
¼ 84:47

15
¼ 5:63

�y3:: ¼ y3::
15
¼ 82:33

15
¼ 5:49
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TABLE 9 CodeTable of Columns Aand B

Row A BðAÞ yijk ŷijk eijk

1 1 1 5.69 5.388 0.302000
2 1 1 4.79 5.388 �0.598000
3 1 1 5.23 5.388 �0.158000
4 1 1 5.51 5.388 0.122000
5 1 1 5.72 5.388 0.332000
6 1 2 4.38 5.356 �0.976000
7 1 2 6.21 5.356 0.854000
8 1 2 5.48 5.356 0.124000
9 1 2 5.92 5.356 0.564000
10 1 2 4.79 5.356 �0.566000
11 1 3 4.44 4.798 �0.358000
12 1 3 4.15 4.798 �0.648000
13 1 3 5.39 4.798 0.592000
14 1 3 5.29 4.798 0.492000
15 1 3 4.72 4.798 �0.078000
16 2 1 5.82 5.670 0.150000
17 2 1 5.97 5.670 0.300000
18 2 1 5.81 5.670 0.140000
19 2 1 5.32 5.670 �0.350000
20 2 1 5.43 5.670 �0.240000
21 2 2 5.32 5.552 �0.232000
22 2 2 6.21 5.552 0.658000
23 2 2 5.73 5.552 0.178000
24 2 2 4.91 5.552 �0.642000
25 2 2 5.59 5.552 0.038000
26 2 3 5.73 5.672 0.058000
27 2 3 5.81 5.672 0.138000
28 2 3 6.13 5.672 0.458000
29 2 3 5.13 5.672 �0.542000
30 2 3 5.56 5.672 �0.112000
31 3 1 5.36 5.308 0.052000
32 3 1 5.32 5.308 0.012000
33 3 1 4.79 5.308 �0.518000
34 3 1 5.15 5.308 �0.158000
35 3 1 5.92 5.308 0.612000
36 3 2 5.38 5.230 0.150000
37 3 2 4.29 5.230 �0.940000
38 3 2 5.71 5.230 0.480000
39 3 2 5.62 5.230 0.390000
40 3 2 5.15 5.230 �0.080000
41 3 3 6.01 5.928 0.082000
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Hence

AA ¼ �y1:: � �y::: ¼ 5:18� 5:43 ¼ �0:25
AB ¼ �y2:: � �y::: ¼ 5:49� 5:43 ¼ 0:06

AC ¼ �y3:: � �y::: ¼ 5:63� 5:43 ¼ 0:20

XI. POWER COMPUTATION FOR THE NESTED DESIGN

For nested designs,the power of the ¢xed portion of the test can be calculated
before the analysis is performed. In our example, the ¢xed portion is the fac-
torA e¡ect.

TABLE 9 Continued

Row A BðAÞ yijk ŷijk eijk

42 3 3 6.23 5.928 0.302000
43 3 3 5.82 5.928 �0.108000
44 3 3 5.89 5.928 �0.038000
45 3 3 5.69 5.928 �0.238000

FIGURE 5 Stem-and-leaf display.
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A. Basic Formula for Power of the Test (Performed Before
Conducting the Test)

The basic formula for calculation of the power of the test is:

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0
Pk0
m¼1
ðmm � mÞ2

k0S2

vuuut
where grand population mean ¼ m ¼

Pk0
m¼1

mm

k0 and mm ¼ factor meanm

k0 ¼ a, or ab for factor B(A) when ¢xed
n0 ¼ bn, if factorA, or n, if factor B(A)

s2 ¼ MSdenominator for factorA orMSE for B(A)

These values would generally not be known, but would to be estimated on
the basis of historical data.

1. Factor A

Using data fromTable 6, the power calculation for factorA is as follows.

k0 ¼ a ¼ 3
n0 ¼ bn ¼ 3 � 5 ¼ 15
v1 ¼ k0�1 ¼ a�1 ¼ 2 ¼ df numerator
v2 ¼ df denominator ¼ 6

[denominator is MSBðAÞ with aðb� 1Þ degrees of freedom]

m ¼
Pa
m¼1

mm

3
¼ 1

3
ð5:18þ 5:63þ 5:49Þ ¼ 5:43

FIGURE 6 Letter-value display.

FIGURE 7 Character box plot.
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(In reality, the valuer would not be known but estimated from previous
experience).
where s2 ¼ MSdenominator ¼ MSB(A) ¼ 0.44

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn
Pðmm � mÞ2
a 	 s2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:5½ð5:18� 5:43Þ2 þ ð5:63� 5:43Þ2 þ ð5:49� 5:43Þ2�

3ð0:44Þ

s
¼ 1:10

From the power table,Table A.4, read the a ¼ 0.05 table where v1 ¼ 2,
v2 ¼ 6, and f ¼ 1.10.We note that 1� b 
 0.25.

FIGURE 8 Residual values versus suppliers.

FIGURE 9 Plot of residuals versus predicted values.
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Hence, from this experiment, the researcher has about a 75%chance of
committing a type II error (stating that H0 is true when it is actually false),
that is,concluding that the suppliers are the samewhen they really are not.To
di¡erentiate them with greater con¢dence, the researcher will be wise to
select a larger sample size.

2. FactorB(A)

If factor B(A) was ¢xed, the power of the test could also be estimated,where

k0 ¼ ab ¼ (3)(3) ¼ 9
n0 ¼ n ¼ 5
v1 ¼ b�1 ¼ 3�1 ¼ 2
v2 ¼ df MSE ¼ 36
a ¼ 0.05

m¼
Pab
m¼1

mm

ab
¼ 5:39þ5:36þ4:80þ5:67þ5:55þ5:67þ5:31þ5:23þ5:93

9
¼ 5:43

(Again, in practice, these values would not be known, but estimated from
previous experiments)
Where s2 ¼ MSdenominator ¼ MSE ¼ 0.22,

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pab
m¼1
ðmm � mÞ2

abðs2Þ

vuuut

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5½ð5:39� 5:43Þ2 þ ð5:36� 5:43Þ2 þ ð4:80� 5:43Þ2 þ ð5:67� 5:43Þ2

þ ð5:55� 5:43Þ2 þ ð5:67� 5:43Þ2 þ ð5:31� 5:43Þ2
þ ð5:23� 5:43Þ2 þ ð5:93� 5:43Þ2�

9ð0:22Þ

vuuuuuut
f ¼ 1:45

and fromTable A.4, 1�b
 0.76.
Hence, the researcher will fail to rejectH0 whenH0 is false 24 times out

of100. Again, the solution to this is to increase lot samples.

B. Alternative Method for Determining Power of the Test
Before Conducting the Test

Recall that f can also be computed for ¢xed-e¡ects components using the
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following formula:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n0d2

2k0S2

s
where n0 ¼ bn ifA and n if B
k0 ¼ a ifA and b if B
s2 ¼ MSdenominator
d ¼ speci¢c numerical di¡erence one wishes to detect

1. Factor A (Using Data fromTable 6)

n0 ¼ 3 � 5 ¼ 15
k0 ¼ a ¼ 3
s2 ¼ MS denominator,which is MSB(A) ¼ 0.44. This normally would

not be known and would need to be estimated.
d ¼ set arbitrarily at 0.5 log10 scale

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15ð0:5Þ2
2ð3Þð0:44Þ

s
¼ 1:19

Entering the power table, Table A.4, at a¼ 0.05, v1¼a�1¼2,
v2¼ degrees of freedom, MSB(A)¼ a(b � 1) ¼ 6,we ¢nd that 1 � b ¼ 0.20.
Hence, there is about a 4-in-5 chance of failing to reject a false null hypoth-
esis.The investigator will want to increase the sample size.

2. FactorB(A)

Factor B(A) would not be evaluated because it is a random-e¡ects compo-
nent. But supposing it was ¢xed e¡ects, then:

n0 ¼ n ¼ 5
k0 ¼ b ¼ 3
s2 ¼ MSE ¼ 0.22 (This normally would not be known, but would be

estimated.)
d ¼ set arbitrarily at 0.5 log10 scale

f ¼
ffiffiffiffiffiffiffiffiffiffiffi
n0d2

2k0s2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð0:5Þ2

2ð3Þð0:22Þ

s
¼ 0:97

Entering the power table,TableA.4, at a ¼ 0.05, v1 ¼ k�1 ¼ 3�1 ¼ 2,
and v2 ¼ df MSE ¼ 36, the value of b 
 0.75 and 1 � b 
 0.25. There is
approximately a three-out-of-four chance of failing to reject a false H0

hypothesis.The sample size should be increased.
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XII. POWER OF TEST DETERMINED AFTER EXPERIMENT
HAS BEEN CONDUCTED

Once again, the power of the statistic is computed only for ¢xed e¡ects.The
general formula is:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þðnumerator MSÞ � ðdenominator MSÞ

k0ðdenominator MSÞ

s

1. FactorA (Using Data fromTable 6)

Here k0 ¼ a �1 ¼ 3 �1 ¼ 2, MS numerator ¼ MSA ¼ 0.80, and MS
denominator ¼ MSB(A) for this mixed model example ¼ 0.44.

For a ¼ 0.05, v1 ¼ k0 degrees of freedom ¼ a �1 ¼ 3 �1 ¼ 2 df, and
v2¼ denominator df; for this mixed model, the degrees of freedom ¼
a(b�1)¼ 3 � 2 ¼ 6,

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð0:80� 0:44Þ

6ð0:44Þ

s
¼ 0:52

From the power table,Table A.4, at a ¼ 0.05, v1 ¼ 2 and v2 ¼ 6, the
power of the statistic, (1 � b) < 0.20. Again, the investigator would want to
increase the sample sizes, for there will be a four-in-¢ve occurrence of failing
to reject a false H0 hypothesis. For this example,where the study is a valida-
tion study, it is critical that the power of the statistic be increased because
with themodel as is, the suppliers are likely to be considered equivalentwhen
they are not.

2. FactorB(A)

If factor B(A) was ¢xed e¡ects, the calculation would be equally straight for-
ward.

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0ÞðMSBðAÞ � S2Þ

k0S2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� 1ÞðMSBðAÞ �MSEÞ

ðb� 1ÞMSE

s
The degrees of freedom for a speci¢c a are:

v1 ¼ b� 1
v2 ¼ abðn� 1Þ; the degrees of freedom for MSE

XIII. SAMPLE SIZE REQUIREMENTS

Prior to conducting a study or experiment, such as the example we have been
using, one should calculate whether the sample size is adequate to detect a
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statistical di¡erence, given that one is present. In order to do this, the
researcher must:

1. Select a desired statistical power (1� b).
2. Specify an a level (signi¢cance level).
3. Specify an estimated error term (s2) that is representative of the

actual s2.
4. Specify a minimum detectable di¡erence.

As we demonstrated in earlier chapters, this process is iterative, and
generally the process is applied to the most important e¡ect,which is factor
A in Example 1. In addition, if the investigator suspects greater variability
than she estimates, it would be wise to in£ate the error term (denominator)
so that onehas a safety margin built into the statistic.This is particularly true
when it is important for a study, such as our example, to show a di¡erence
between factors if one exists. In our example, an investigator is interested in
‘‘validating’’ alternative media suppliers. However, as we have shown, there
was so little power in the statistic due to low sample size that it would have
been very di⁄cult to detect a true di¡erence in the suppliers unless the dif-
ference was huge.

Calculation of sample size requirements is limited to ¢xed-e¡ects com-
ponents, using the formula:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n0d2

2k0S2

s

where n0 ¼ bn, if factorA, and n, if factor B(A)

k0 ¼ a, if factorA, and b, if factor B
s2¼ estimate of s2

v1¼ (a�1) degrees of freedom, factor A, and (b�1) degrees of free-
dom, factor B

v2¼ degrees of freedom denominator
d ¼minimum desired detection limit between means in the factor

being evaluated

1. FactorA (Using Data fromTable 6)

Assume d ¼ 0.5 log10 scale.Rewriting the formula:

f ¼
ffiffiffiffiffiffiffiffiffiffi
bnd2

2as2

s
let us estimate s2 as 0.44 (which it really is), and set a ¼ 0.05 and1�b ¼ 0.80.
Let us begin with n ¼ 5.
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f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 	 5Þð0:5Þ2
2 	 3ð0:44Þ

s
¼ 1:19

Looking atTableD (Appendix), for v1 ¼ a�1 ¼ 3�1 ¼ 2 and v2 ¼ a(b�1) ¼
3 � 2 ¼ 6, we see this is far too low, for 1 � b � 0.30, so we increase the
sample size to n ¼ 10.

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 	 10Þð0:5Þ2
2 	 3ð0:44Þ

s
¼ 1:69

For v1 ¼ 2, and v2 ¼ a(b�1) ¼ 6, 1�b � 0.45 is still too low, so we increase
the sample size to, say, 15.

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 	 15Þð0:5Þ2
2 	 3ð0:44Þ

s
¼ 2:06

1�b 
 0.68,which is too small.The researcher would continue testing larger
sample sizes until 1�b
0.80.

2. FactorBðAÞ

With respect to detecting intralot variation, there are times the researcher
may want to evaluate B(A), given that it is a ¢xed-e¡ects model. Suppose, in
our model, it is.Then:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nd2

2ðbÞs2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð0:5Þ2

2ð3Þð0:22Þ

s
and v1 ¼ b�1, v2 ¼ ab(n�1).

Suppose the researcher begins the sample estimate with n ¼ 15. Sup-
pose also that she estimates s2 as 0.22 (which it was, fromTable 6).

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15ð0:5Þ2
2ð3Þð0:22Þ

s
¼ 1:69

For v1 ¼ 2 and v2 ¼ ab(n�1) ¼ 3 � 3(14) ¼ 126,1�b ¼ 0.74,which is low.
So,we increase, say, to n ¼ 20

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð20Þð0:5Þ2
2ð3Þð0:22Þ

s
¼ 1:95

For v1 ¼ 2, and v2 ¼ ab(n�1) ¼ 3 � 3(19) ¼ 171, 1�b ¼ 0.88. The
researcher can now cut back the sample size to approximate1�b ¼ 0.80.
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XIV. MINIMUM DETECTABLE DIFFERENCE

Many times it is useful to determine the minimum detectable di¡erence of a
statistic before or after the test has been conducted. As discussed in earlier
chapters, the minimum detectable di¡erence informs the researcher about
the numerical di¡erence between means that can be detected using this
nested design, at a speci¢ed a, b, sample size, and s2. Both factors A and
B(A) can be evaluated, given that each is a ¢xed-e¡ects model.
The formula for this test is:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ks2f2

n0

s

where k0 ¼ a, ifA, and b, if B(A)

n0 ¼ bn, ifA, and n, if B(A)

s2 ¼ for factorA:MSE, ifMSB(A) is ¢xed;MSB(A), ifMSB(A) is random
for factor B:MSE, but only if factor B(A) is ¢xed

f ¼ can be determined by reading it fromTableA.4 (PowerTable) at
a speci¢ed a; v1; v2, and b, or by using the value previously
computed when determining the power of the statistic.

1. FactorA

k0 ¼ a ¼ 3
s2 ¼ estimated variance or actual variance.When actual,useMSBðAÞ

because factor A is ¢xed and factor BðAÞ is random. Factor BðAÞ
is the denominator termused in calculatingFC for factorA (i.e.,
FC ¼MSA=MSBðAÞÞ.

v1 ¼ a� 1 ¼ 3� 1 ¼ 2
v2 ¼ aðb� 1Þ, which is the denominator term degrees of freedom

3ð3� 1Þ ¼ 6

First, ¢nd v2 inTable D corresponding to a ¼ 0:05, v1; 1� b, and read
f. So v1 ¼ 2; v2 ¼ 6; a ¼ 0:05, and f
 2:35.Then calculate the d formula:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3Þð0:44Þð2:35Þ2

3 	 5

s
¼ 0:99

That is,with a replicate size of ¢ve for eachof the three lots per supplier,
the investigator can detect only1 log10di¡erence.The researcher will need to
increase the sample size, n, if she wants to get a d ¼ 0:5.
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2. FactorBðAÞ

This procedure is done in the sameway forBðAÞ, given it is a ¢xed e¡ect.Let us
assume that it is for the moment.

k0 ¼ b ¼ 3
s2 ¼ estimated MSE or, if done after the experiment has been con-

ducted, MSE .We will use the actual MSE ¼ 0:22:
v1 ¼ b� 1 ¼ 3� 1 ¼ 2
v2 ¼ abðn� 1Þ ¼ 3� 3ð4Þ ¼ 36
a ¼ 0:05
b ¼ set at 0.20, so 1� b ¼ 0:80

First, ¢nd v1; v2; a, and 1� b in Table A.4 and read f. So, for
v1 ¼ 2; v2 ¼ 36; a ¼ 0:05; 1� b ¼ 0:80; s2 ¼ 0:22, the value of f 
 1:85.

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k0s2f2

n0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3Þð0:22Þð1:85Þ2

5

s
¼ 0:95

With the current statistic, the desired d of 0:5 log10 scale is grossly un-
derestimated.The researcher, in reality,cangetonly a one logdetection limit.

With the information from this chapter, the applied researcher is in an
empowered position, for there are now many ways to design his or her re-
search studies. Although we will not be evaluating more complex nested de-
signs, the basic principles remain the same. The only major concepts
remaining to be evaluated are regression analysis and nonparametrics
equivalent to parametrics.
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11

Linear Regression

Regression analyses are tools essential to the applied researcher in many
instances. Regression is a statistical methodology that uses the relationship
between two or more quantitative variables such that the value of one vari-
able can be predicted based on the value(s) of the other(s) [25].Determining
the relationship between two variables, such as exposure time and lethality
or wash time and log10 microbial reductions, is very common in applied
research. From amathematical perspective, two relationships are worth dis-
cussing: (1) a functional relationship and (2) a statistical relationship.

Recall from college algebra that a functional relationship has the form:

y ¼ f ðxÞ
where y is the resultant value, on the function of x, and f (x) is any set mathe-
matical procedure or formula such as x þ 1, 2x þ 10, 4x3 � 2x2 þ 5x � 10,
and so on.

Let us look at an example in which y ¼ 3x.
Hence,

and graphing y on x,we have a linear graph (Fig. 1).Given a particular value
of x, y is said to be determined by x.

y x

3 1
6 2
9 3
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A statistical relationship is not an exact or ‘‘perfect’’one as a functional
one is; y is not determined exactly by x. Even in the best of conditions, y is
composed of the estimate of x as well as some amount of unexplained var-
iance called statistical error.That is,

y ¼ f ðxÞ þ E

So, using the previous example, y ¼ 3x, now y ¼ 3x þ E (Fig. 2). Here, the
estimates of y on x actually do not ¢t the data estimate precisely.

1. GENERAL PRINCIPLES OF REGRESSION ANALYSIS

A. Regression and Causality

A statistical relationship demonstrated between two variables, y (the
response, or dependent variable) and x (the independent variable), is not
necessarily a causal one but can be. Ideally, it is, but unless one knows this
for sure, y and x are said to be associated [25,28].

The fundamental regressional model is a simple regression model.

yi ¼ b0 þ b1xi þ Ei ð1Þ

where y ¼ the response,or dependent variable for the ith observation

FIGURE 1 Linear graph.
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b0 ¼ population y intercept,when x ¼ 0
b1 ¼ population regression parameter (SLOPE, or rise

run)
xi ¼ independent variable
Ei ¼ random error for the ith observation
E ¼ N ð0;s2Þ; that is, the errors are normally and indepen-

dently distributed with a mean of zero and a variance of
s2; Ei and Ej are assumed not to be correlated (which simply
means that the errors are not in£uenced by the magnitude
of the previous or other error terms), so the covariance ¼
0, for all i; j; i 6¼ j.

Thismodel is linear in the parameters (b0, b1) aswell as in the xi values,
and there is only one predictor value, xi, in only a power of1. In actually app-
lying the regression function to sample data, we will use the form
ŷi ¼ b0 þ b1 þ Ei .Often, this function also is written as ŷi ¼ aþ bx þ Ei.This
form is also known as a ¢rst-order model. As previously stated, the actual y
value is composed of two components: (1) b0 þ b1x, the constant term, and
(2) E, the random variable term.The expected value of y is EðY Þ ¼ b0 þ b1x.
The variability of s is assumed to be constant and equidistant over the re-
gression function’s entirety (Fig. 3). Examples of nonconstant, nonequidis-
tant variability are presented in Fig. 4.

FIGURE 2 Linear graph.
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FIGURE 3 Constant variability.

FIGURE 4 Nonconstant variability.
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B. Meaning of Regression Parameters

A researcher is performing a steam-heat thermal-death curve calculation on
a 106 microbial population of Bacillus stearothermophilus, where the steam
sterilization temperature is 121�C.Generally, a log10 reexpression is used to
linearize the microbial population. In log10 scale, 10

6 is 6. In this example,
assume the microbial population is reduced 1 log10 for every 30 seconds of
exposure to steam.This example is presented graphically in Fig. 5.

ŷ ¼ b0 þ b1x

b1 represents the slope of the regression line, which is the rise=run or
tangent. This rise is negative because the value is decreasing over
exposure time, so

b1 ¼ rise
run
¼ �1

30
¼ �0:0333

b0 represents the value of ŷ when x ¼ 0,which is ŷ ¼ 6� 0:0333ð0Þ ¼ 6
in this example.

ŷ ¼ 6� 0:0333ðxÞ
For x ¼ 60 seconds, ŷ ¼ 6� 0:0333ð60Þ ¼ 4.

FIGURE 5 Regression parameters.
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For every second of exposure time, the log10 reduction in microorgan-
isms is 0.0333 log10.

C. Data for Regression Analysis

The researcher ordinarily will not know the population values of b0 or b1.
They will have to be estimated by a b0 and b1 computation, termed the
method of least squares. In this calculation, data relevant to the response,
or dependent variable ð yiÞ, and the independent variable ðxiÞ are used.
These data can be obtained by observation, by experiment, or by complete
randomization.

Observational data are obtained by ‘‘nonexperimental’’ study. There
are times a researcher may collect data (x and y) within the environment to
perform a regression evaluation. For example, a quality assurance person
may suspect a relationship exists between warm weather (winter to spring
to summer) andmicrobial contamination levels of the laboratory.Themicro-
bial counts ( y) are then compared with the months, x (1^6), to determine
whether this theory holds up (Fig. 6).

In experimental designs, usually the values of x are selected or set at
speci¢c levels and the y values corresponding to these are dependent on the
x levels set.This provides y or x values, and a controlled regimen or process is
enacted. Generally, multiple observations of y at a speci¢c x value are con-
ducted to increase the precision of the error term estimate.

In the completely randomized regression designs, the actual values of x
are selected randomly, not speci¢cally set. Hence, both x and y are random
variables.This design, although useful, is not as common as the other two.

D. Regression Parameter Calculation

To ¢nd the estimates of both b0 and b1,we use the least squares method.This
method provides the best estimate (the one with the least error) by minimi-
zing the di¡erence between the actual and predicted values from the set
of collected values.

ð y � ŷÞ2 or ð y � ðb0 þ b1xÞÞ2

The computation utilizes all the observations in a set of data.The sum
of the squares is denoted byQ.That is,

Q ¼
Xn
i¼1
ð yi � b0 � b1xiÞ2

where Q is the smallest possible number, as determined by the least squares
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method [34].The actual computational formulas are:

b1 ¼ slope ¼
Pn
i¼1
ðxi � �xÞð yi � �yÞ
Pn
i¼1
ðxi � �xÞ2

ð2Þ

b0 ¼ y intercept ¼
Pn
i¼1

yi � b1
Pn
i¼1

xi

n
ð3Þ

or
b0 ¼ �y � b1 �x

E. Properties of the Least Squares Estimation

The expected value of b0 ¼ E½b0� ¼ b0. The expected value of b1 ¼
E½b1� ¼ b1.The least squares estimators of b0 and b1 are unbiased estimators
and have the minimum variance of all other possible linear combinations
[36].

Example 1: An experimenter exposes 1� 106 Staphylococcus aureus
microorganisms to a benzalkonium chloride disinfectant for a series of
timed exposures. As noted before, exponential microbial colony counts are
customarily linearized via a log10 scale transformation, which has been

FIGURE 6 Microbial counts vs. months.
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performed in this example. The resultant data are presented in Table 1.
The researcher would like to perform regression analysis on the data in order
to construct a chemical microbial inactivation curve.

x ¼ exposure time in seconds
y ¼ log10 colony-forming units recovered

Notice that thedataare replicated in triplicate foreachexposure time,x.
First,we will compute the slope of the data.

b1 ¼
Pn
i¼1
ðxi � �xÞðyi � �yÞ
Pn
i¼1
ðxi � �xÞ2

where

�x ¼ 30

�y ¼ 4:90

X15
i¼1
ðxi� �xÞðyi� �yÞ¼ð0�30Þð6:09�4:90Þþð0�30Þð6:10�4:90Þ

þ			þð60�30Þð3:42�4:90Þþð60�30Þð3:44�4:90Þ
¼�276:60

TABLE1 Data from Regression Analysis

n x y

1 0 6.09
2 0 6.10
3 0 6.08
4 15 5.48
5 15 5.39
6 15 5.51
7 30 5.01
8 30 4.88
9 30 4.93
10 45 4.53
11 45 4.62
12 45 4.49
13 60 3.57
14 60 3.42
15 60 3.44
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X15
i¼1
ðxi � �xÞ2 ¼ ð0� 30Þ2 þ ð0� 30Þ2

þ 	 	 	 þ ð60� 30Þ2 þ ð60� 30Þ2 þ ð60� 30Þ2
¼ 6750

b1 ¼ �276:606750
¼ �0:041�

The negative sign means that the regression line estimated by ŷ is des-
cending, from the y intercept.

b0 ¼ �y � b1 �x ¼ 4:90� ð�0:041Þ30
b0 ¼ 6:13 is the y intercept point when x ¼ 0

The complete regression equation is:

ŷi ¼ b0 þ b1xi

ŷi ¼ 6:13� 0:041xi
ð4Þ

This regression equation can then be used to predict each ŷ, a proce-
dure known as point estimation.

For example, for x ¼ 0; ŷ ¼ 6:13� 0:041ð0Þ ¼ 6:130
15; ŷ ¼ 6:13� 0:041ð15Þ ¼ 5:515
30; ŷ ¼ 6:13� 0:041ð30Þ ¼ 4:900
60; ŷ ¼ 6:13� 0:041ð60Þ ¼ 3:670

From these data,we can now make a regression diagrammatic table to
see how well the model ¢ts the data. Regression functions are standard on
most scienti¢c calculators and computer software packages.One of the sta-
tistical software packages that is easiest to use and has a considerable num-
ber of options is MiniTab1.We will ¢rst learn to perform the computations
by hand and then switch to this software package because of its simplicity
and e⁄ciency.Table 2 presents the data.

It is also very useful in regression toplot thepredicted regressionvalues,
ŷ, with the actual observations, y, superimposed. And, too, exploratory

*There is a faster ‘‘machine’’ computational formula for b1, useful with a hand-held calculator,
although many scienti¢c calculators provide b1 as a standard routine. It is:

b1 ¼
Pn

i¼1 xiyi �
Pn

i¼1
� � Pn

i¼1 yi
� �

=nPn
i¼1 x

2
i �

Pn
i¼1 xi

� �2
=n
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data analysis (EDA) is useful, particularly when using regression methods
with the residual values ðe ¼ y � ŷÞ to ensure that no pattern or trending is
seen that would suggest inaccuracy. Although regression analysis can be ex-
tremely valuable, it is particularly prone to certain problems, as follow.

1. The regression line, ŷ, computed will be straight line or linear.
Often experimental data are not linear and must be transformed
to a linear scale, if possible, so that the regression analysis provides
an accurate and reliable model of the data. The EDA methods
described in Chap. 3 are particularly useful in this procedure.
However, some data transformations may confuse the intended
audience. For example, if the y values are transformed to a cube
root (3 ffip ) scale, the audience receiving the data analysis may have
trouble understanding the regression’s meaning in ‘‘real life’’
because they cannot translate the original scale to a cube root scale
‘‘in their heads.’’ That is, they cannotmake sense of the data. In this
case, the researcher is in a dilemma.Although it would be useful to
perform the cube root transformation to linearize the data, the
researcher may then need to take the audience verbally and gra-
phically through the transformation process in an attempt to
enlighten them. As an alternative, however, a nonparametric

TABLE 2 Data

n x ¼ time
y ¼ actual
log10 values

ŷ ¼ predicted
log10 values

e ¼ y� ŷ
(e ¼ actual� predictedÞ

1 0.00 6.0900 6.1307 �0.0407
2 0.00 6.1000 6.1307 �0.0307
3 0.00 6.0800 6.1307 �0.0507
4 15.00 5.4800 5.5167 �0.0367
5 15.00 5.3900 5.5167 �0.1267
6 15.00 5.5100 5.5167 �0.0067
7 30.00 5.0100 4.9027 0.1073
8 30.00 4.8800 4.9027 �0.0227
9 30.00 4.9300 4.9027 0.0273
10 45.00 4.5300 4.2887 0.2416
11 45.00 4.6200 4.2887 0.3313
12 45.00 4.4900 4.2887 0.2013
13 60.00 3.5700 3.6747 �0.1047
14 60.00 3.4200 3.6747 �0.2547
15 60.00 3.4400 3.6747 �0.2347
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method could be applied to analyze the nonlinear data. Unfortu-
nately, this, too, is likely to require a detailed explanation.

2. Sometimes, a model must be expanded in the bi parameters in
order to better estimate the actual data. For example, the regress-
ion equation may expand to:

ŷ ¼ b0 þ b1x1 þ b2x2 ð5Þ
or

ŷ ¼ b0 þ b1x1 þ 	 	 	 bkxk ð6Þ
where the b values will always be linear values.

We will, however, concentrate on simple linear regression procedures,
that is, ŷ ¼ b0 þ b1xi .

Before continuing, let us look at a regression model to understand
better what ŷ,y, and E represent. Figure 7 portrays them.

F. Diagnostics

One of the most important steps in regression analysis is to plot the actual
data values ð yiÞ and the ¢tted data ð ŷiÞ on the same graph to visualize clearly
how closely the regression line ð ŷiÞ ¢ts, or predicts the actual data ð yiÞ.

FIGURE 7 Regressionmodel. Note: e¼y� ŷ, or the error term, which is merely the
actual yvalue less the predicted ŷvalue.
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Figure 8 presents aMiniTab1 graphic plot of this as an example. In the
¢gure,R2 (‘‘R-Sq’’) is the coe⁄cient of determination, a value used to evalu-
ate the adequacy of the model, which in this example indicates that the
regression equation is about a 96.8% better predictor of y than using �x. An
R2 of 1.00, or 100%, is a perfect ¢t (the ŷ ¼ y).We will discuss both R and R2

later in this chapter.
Notice that, on examining the regression plot (Fig. 8), it appears that

the data seem to be adequately ‘‘modeled’’ by the linear regression equation
used.The researcher next should perform a stem^leaf display, a letter-value
display, and a boxplot display of the residuals, or y � ŷ ¼ e values. Also, it is
often useful to plot the y values and the residual values,e and the ŷ values and
the residual values, e.

Figure 9 presents a stem^leaf display of the residual data ð yi � ŷiÞ.The
stem-leaf display of the residual data ð yi � ŷiÞ portrays nothing of great con-
cern, that is, no abnormal patterns.Recall that residual value plots should be
patternless if the model is adequate.The residual mean is not precisely 0 but
very close to it.

Figure 10 presents the letter-value display of the residual data. Notice
that the letter-value display ‘‘Mid’’column is tending toward increased value
(a phenomenon we discussed in Chap. 3), meaning that the residual values
are skewed slightly to the right or to the values greater than the mean value.
In regression analysis, this is a clue that the predicted regression line

FIGURE 8 MiniTab1 regression plot.
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function may not adequately model the data. The researcher will next want
to examine a residual value (E) versus actual y value graph (Fig. 11) and a re-
sidual versus predicted ð ŷÞ value graph (Fig. 12) and to review the actual
regression graph (Fig.8).Looking closely at these graphs and the letter-value
display, we see clearly that the regression model does not completely de-
scribe the data. The actual data appear not quite log10 linear. For example,
note that beyond time xi ¼ 0; the regression model overestimates the actual
log10 microbial kill by about 0.25 log10,underestimates the actual log10 kill at

FIGURE 9 Stem-and-leaf display.

FIGURE 10 Letter-value display.
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FIGURE 11 Residual vs. actual yvalue graph.

FIGURE 12 Residual vs. predicted (ŷ) value graph.
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xi ¼ 45 seconds by about 0.25 log10, and again overestimates at xi ¼ 60 sec-
onds. Is this signi¢cant or not?

The researcher can draw on his or her primary ¢eld knowledge to
determine this,whereas a card-carrying statistician usually cannot.The sta-
tistician may decide to use a polynomial regression model and is sure that,
with some manipulation, it can model the data better, particularly in that
the error at each observation is considerably reduced (as supported by sev-
eral indicatorswe have yet to discuss, the regression f-test and the coe⁄cient
of determination, r2). However, the applied microbiology researcher has an
advantage over the statistician, knowing that, often, the initial value at time
0 ðx ¼ 0Þ is not reliable in microbial death rate kinetics and, in practice, is
often dropped from the analysis. In addition, the applied microbiology
researcher, from experience, knows that, once the data drop below four
log10, a di¡erent inactivation rate (i.e., slope of bi ) occurswith this microbial
species until the population reaches about two logs,where the microbial in-
activation rate slows due to survivors genetically resistant to the drug.
Hence, the microbial researcher may decide to perform a ‘‘piecewise’’
regression (to be explained later) to better model the data and explain the
inactivation properties at a level more basic than provided by a polynomial
regression [27,30].The ¢nal regression,when carried out over su⁄cient time,
could be modeled using a form such as that in Fig.13.

FIGURE 13 Final regressionmodel.
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In conclusion, the ¢eld microbiology researcher generally has a de¢nite
advantage over a statistician in understanding and modeling the data, bec-
ause the researcher grounds the interpretation inbasicknowledgeof the¢eld.

G. Estimation of the Error Term

Asbefore, the variance ðs2Þof the error term (written as either eor E) needs to
be estimated. Recall from earlier chapters that the sample variance (s2) was
obtained by measuring the squared deviation between each of the actual
values, xi, and the average value, �x.Xn

i¼1
ðxi � �xÞ2 ¼ sum of squares

From this equation,we computed the sample variance by dividing the
sum of squares by the degrees of freedom ðn� 1Þ.

s2 ¼
Pn
i¼1
ðxi � �xÞ2

n� 1
ð7Þ

This concept is applicable to the regression model, particularly as dis-
cussed in the previous chapters using analysis of variance (ANOVA) proce-
dures.Hence, the sum of squares for the error term in the regression method
is:

SSE ¼
Xn
i¼1
ðyi � ŷÞ2 ¼

Xn
i¼1

E2 ¼ sum of squares error term ð8Þ

Recall that themean square error (MSE) was used to predicts
2.Hence,

EðMSEÞ ¼ s2 ð9Þ
where

MSE ¼ SSE

n� 2
ð10Þ

Two degrees of freedom are lost because both b0 and b1 are estimated
in the model, ðb0 þ b1xiÞ, to predict ŷ. The standard deviation of the y values
can be computed directly from

S ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
ð11Þ

The value, S, is considered to be constant for any y value range on its
corresponding x values.
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H. Regression Inferences

Recall that the simple regression model equation is

yi ¼ b0 þ b1xi þ Ei
where b0 and b1 are regression parameters

xi ¼ known (set) independent values
E ¼ ð y � ŷÞ, normally and independently distributed, N(0, s2)

Frequently, the investigator will want to know whether the slope, b1, is
signi¢cant, i.e.,whether b1 6¼ 0. If b1 ¼ 0, then regression analysis should not
be used.The inference test for b1 is:

H0 : b1 ¼ 0 (slope is not significantly different from 0)

HA : b1 6¼ 0 (slope is significantly different from 0)

The conclusions that are drawnwhen b1 ¼ 0 are these:

1. There is no linear association between y and x.
2. There is no relationship of any type between y and x.

Recall that b1 is estimated by b1,which is:

b1 ¼
Pn
i¼1
ðxi � �xÞðyi � �yÞ
Pn
i¼1
ðxi � �xÞ2

and b1, the mean slope value, is an unbiased estimator of b1.
The variance of b1 is:

s2
b1
¼ s2Pn

i¼1
ðxi � �xÞ2

ð12Þ

In practice,s2
b1
will be estimated by:

S2
b1 ¼

MSEPn
i¼1
ðxi � �xÞ2

ð13Þ

ffiffiffiffiffiffiffi
S2
b1

q
¼ Sb1 or the standard deviation value for b1: ð14Þ

Returning to the b1 test, to evaluate whether b1 is signi¢cant ðb1 6¼ 0Þ,
the researcher will set up a two-tail hypothesis, using the six-step
procedure.
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Step1. Determine the hypothesis.

H0 : b1 ¼ 0
HA : b1 6¼ 0

Step 2. Set the a level.
Step 3. Select the test statistic.

tcalculated ¼ tc ¼ b1
Sb1

ð15Þ

where:

b1 ¼
Pn
i¼1
ðxi � �xÞð yi � �yÞ
Pn
i¼1
ðxi � �xÞ2

and

Sb1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSEPn
i¼1
ðxi � �xÞ2

vuuut
Step 4. Write the decision rule.

If j tc j> tða=2;n�2Þ, rejectH0; the slope b1 di¡ers signi¢cantly from 0.
If j tc j� tða=2;n�2Þ, the researcher cannot reject the nullH0 hypothesis

at a.

Step 5. Compute the calculated test statistic ðtcÞ.
Step 6. State the conclusion.

Let us now calculate whether or not the slope is 0 for data presented in
Example1.

Step1. Establish the hypothesis.

H0 : B1 ¼ 0
HA : B1 6¼ 0

Step 2. Set a. Let us set a at 0.05.
Step 3. Select the test statistic.

tc ¼ b1
Sb1
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where:

Sb1 ¼
MSEPn

i¼1
ðxi � �xÞ2

Step 4. Decision rule.

If j tc j> tða=2;n�2Þ one rejects the null hypothesis (H0) at a¼ 0.05.
Using Student’s t table (Table A.2) tð0:05=2;15�2Þ ¼ t0:025;13 ¼ 2:160:
So if j tcalculated j> 2:160, rejectH0 at a ¼ 0.05.

Step 5.Calculate the test statistic, tc ¼ b1=Sb1 .

Recall from Example 1 that b1 ¼ �0:041. Also recall from the initial
computation of b1 that

Pn
i¼1ðxi � �xÞ2 ¼ 6; 750.

MSE ¼
Pn
i¼1
ðyi � ŷÞ2

n� 2
¼
Pn
i¼1

e2i

n� 2

¼ ð�0:0407Þ
2 þ ð�0:0307Þ2 þ 	 	 	 þ ð�0:2547Þ2 þ ð�0:2347Þ2

13

¼ 0:3750
13

¼ 0:0288

Sb1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSEPn
i¼1
ðxi � �xÞ2

vuuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288
6750

r
¼ 0:0021

tc ¼ b1
Sb1
¼ �0:041

0:0021
¼ �19:5238

Step 6. Draw conclusion.

Because j tc j¼ �19:5238 > 2:160, the researcher will reject H0, that
the slope (rate of bacterial destruction per second) is 0 at a ¼ 0:05.

Note that one-sided tests (upper or lower tail) for b1 are also possible. If
the researcher wanted to conduct an upper tail test (hypothesize that B1 is
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signi¢cantly positive, that is, an ascending regression line), the hypothesis
would be

H0 : B1 � 0
HA : B1 > 0

with the same test statistic as used in the two-tail test,

tc ¼ b1
Sb1

The test is:

If tc > tða;n�2Þ, rejectH0 at a.

Note: The upper tail value fromTable A.2,which is a positive value,
will be used.

For the lower tail test, the test hypothesis forB1 will be a negative value
(descending regression line):

H0 : B1 � 0
HA : B1 < 0

with the test calculated value

tc ¼ b1
Sb1

If tc < tða;n�2Þ, rejectH0 at a.

Note: The lower tail value fromTable B,which is negative, is used, to
¢nd the tða;n�2Þ value.

Finally, if the researcher wants to compare B1 with a speci¢c value, k,
that, too, can be accomplished using a two-tail or one-tail test. For the two-
tail test, the hypothesis is

H0 : B1 ¼ k
HA : B1 6¼ k

where k is a set value.

tc ¼ b1 � k
Sb1

If j tc j> tða=2;n�2Þ, rejectH0.

Both upper and lower tail tests can be evaluated for a k value using the
lower and upper tail procedures just described.The only modi¢cation is that
tc ¼ ðb1 � kÞ=Sb1 .
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I. Computer Output

Generally, it will be most e⁄cient to use a computer for regression analyses.
A regression analysis using MiniTab1, a common software program, is pre-
sented inTable 3, using the data from Example1.

J. Confidence Interval for B1

A 1� a con¢dence interval for b1 is a straightforward computation.

b1 ¼ b1 � tða=2;n�2ÞSb1

Example1 (continued) To determine the 95%con¢dence interval for
B1, using the data from Example1and our regression analysis data,we ¢nd:

tð0:05=2;15�2Þ (from Table A.2, Student’s t tableÞ ¼ �2:16

b1 ¼ �0:0409

Sb1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSEPðx � �xÞ2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288
6750

r
¼ 0:0021

TABLE 3 Computer Printout of Regression Analysis

The regressionequation is
1C2 ¼ 6.13� 0.0409 C1
Predictor Coef SECoef T P
2Constant 6.13067 0.07594 80.73 0.000
3C1 �0.040933 0.002057 �19.81 0.000
5S ¼ 0.1698 4R-Sq¼ 96.8%
where:
c2 ¼ y
c3 ¼ x

NOTE:1 ¼ regression equation.
2 ¼ bo valuerow ¼ constant ¼ y interceptwhen x ¼ 0. Thevaluebelow theCoef isbo (6.13067);
the values below SECoef (0.07594) is the standard error of bo.Thevalue below T (80.73) is the T
test calculated value for bo hypothesizing it as 0, from Ho.The value (0.00) below P (0.00) is the
probability, when Ho is true, of seeing a value of T greater than or the same as 80.73, and this is
essentially 0.
3 ¼ b1 value row ¼ slope.The value below Coef (�0.040933) is b1; the value below SE Coef
(0.002057) is the standard error of b1; the value below T (�19.81) is the T test calculated value
for thenullhypothesis thatb1 ¼ 0.ThevaluebelowP (0.00) is theprobabilityof computingavalue
of�19.81ormore extreme, given the b1 value is actually 0.
4 ¼ r2, or coefficient of determination.
5¼ s ¼ ffiffiffiffiffiffiffiffiffiffi

MSE
p

.
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b1 þ ta=2Sb1 ¼ �0:0409þ ð2:16Þð0:0021Þ ¼ �0:0364
b1 � ta=2Sb1 ¼ �0:0409� ð2:16Þð0:0021Þ ¼ �0:454
�0:0454 � b1 � �0:0364

The researcher is con¢dent at the 95% level that the true slope (b1)
lies within this con¢dence interval. In addition, the researcher can deter-
mine whether b1 ¼ 0 from the con¢dence interval. If the con¢dence
interval includes 0 (which it does not), the H0 hypothesis, B1 ¼ 0, cannot
be rejected at a.

K. Inferences with B0

The point estimator of B0, the y intercept, is

b0 ¼ �y � b1 �x ð16Þ
The expected value of b0 is

Eðb0Þ ¼ B0 ð17Þ
The expected variance of B0 is:

s2
b0 ¼ s2 1

n
þ �x2Pn

i¼1
ðxi � �xÞ2

2664
3775 ð18Þ

which is estimated by S2
b0 :

S2
b0 ¼MSE

1
n
þ �x2Pn

i¼1
ðxi � �xÞ2

2664
3775 ð19Þ

where

MSE ¼
Pn
i¼1
ðyi � ŷÞ2

n� 2
¼
P

E2

n� 2

Probably the most useful procedure for evaluating B0 is to determine a
1� a con¢dence interval for its true value.The procedure is straightforward.
Using our previous Example1:

B0 ¼ b0 � tða=2;n�2ÞSb0

b0 ¼ 6:1307

tð0:05=2;15�2Þ ¼ �2:16 fromTable A.2 (Student’s t table).
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Sb0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
n
þ �x2Pn

i¼1
ðxi � �xÞ2

2664
3775

vuuuuut

Sb0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288

1
15
þ 302

6750

� �s
¼ 0:0759

b0 þ tða=2;n�2ÞSb0 ¼ 6:1307þ 2:16ð0:0759Þ ¼ 6:2946

b0 � tða=2;n�2ÞSb0 ¼ 6:1307� 2:16ð0:0759Þ ¼ 5:9668

5:9668 � b0 � 6:2946 at a ¼ 0:05:

The researcher is 1� a (95%) con¢dent that the trueB0 value lieswith-
in the con¢dence interval, 5.9668 to 6.2946.

Notes:

1. In making inferences about B0 and=or B1, the distribution of the yi
values, as with our previous work with the xi values using Student’s
t-test or ANOVA, does not have to be perfectly normal. It can
approximate normality. Even if the distribution is rather far from
normal, the estimators b0 and b1 are said to be asymptotically nor-
mal.That is, as the sample size increases, the y distribution used to
estimate both b0 and b1approaches normality. In cases inwhich the
yi data are clearly not normal, however, the researcher can use non-
parametric regression approaches (see Chap.12).

2. The regression procedure we have been using assumes that the xi
values are ¢xed and have not been collected at random.The con¢-
dence intervals and tests concerningB0 andB1are interpretedwith
respect to the range the x values cover.They do not purport to esti-
mate B0 and B1 outside that range.

3. As with the t-test, the 1�a con¢dence level should not be inter-
preted that one is ‘‘95% con¢dent the true B0 or B1 lies within the
1�a con¢dence interval.’’ Instead, over 100 runs, one will observe
the b0 or b1 contained within that interval (1�a) times. At a¼ 0.05,
for example, if one performed the experiment 100 times, 95 times
out of 100 the calculated b0 or b1 would be contained within that
calculated interval.

4. It is important for the researcher to know that the greater the range
covered by the xi values selected, the more generally useful will be
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the regression equation. In addition, the greatest weight in the
regression computation lies with the outer values (Fig. 14). The
researcher generally will bene¢t from taking great pains to ensure
that the outer data regions are representative of the true condition.
Recall that in our discussion of the example data set, when we
noted the importance in the log10 linear equation of death curve
kinetics, the ¢rst value (time zero) and the last value are known to
have undue in£uence on the data, so we dropped them.This sort of
insight, a¡orded only by experience, must be drawn on constantly
by the researcher. In research, it is often, but not always, wise to
take the worst-case approach to making decisions. Hence, the
researcher should constantly interplay statistical theory with ¢eld
knowledge and experience.

5. The greater the spread of the x values, the greater the valuePn
i¼1ðxi � �xÞ2 which is the denominator of Sb1 and a major portion

of the denominator for b0, and the smaller the variance of values for
b1 and b0 will be.This is particularly important for statistical infer-
ences concerning b1.

L. Power of the Tests for b0 and b1

To compute the power of the tests concerning b0 and b1, the approach is rela-
tively simple.

H0 : b ¼ bx
HA : b 6¼ bx

FIGURE 14 Greatest weight in regression computation.
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where b¼ b1or b0, and
bx ¼ any constant value. If the test is to evaluate the power

relative to 0 (e.g., b1 6¼0), the bx value should be set at
zero. As always, the actual sample testing uses lowercase
bi values.

tc ¼ bi � Bx

Sbi
ð20Þ

is the test statistic to be employed,where

bi¼ the ith regression parameter;
i¼ 0 if b0 and1 if b1

Bx¼constant value, or 0
Sbi¼ standard error of bi; i¼ 0 if b0 and1 if b1

The power computation of the statistic is

d ¼ jBi � Bxj
sbi

ð21Þ

where sbi¼ standard error of bi

If bi ¼ b0; sðboÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 1

n
þ �x2Pn

i¼1
ðxi � �xÞ2

2664
3775

vuuuuut
which, in practice, is

Sb0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
n
þ �x2Pn

i¼1
ðxi � �xÞ2

2664
3775

vuuuuut
Note: Generally, the power of the test is calculated prior to the evalua-

tion to ensure that the sample size is adequate.Typically,s2 is estimated from
previous experiments because MSE cannot be known if the power is com-
puted prior to performing the experiment.The value ofs2 is estimated using
MSEwhen the power is computed after the sample data have been collected.

If bi ¼ b1; sðb1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2Pn
i¼1
ðxi � �xÞ2

vuuut
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which is estimated by

Sb1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSEPn
i¼1
ðxi � �xÞ2

vuuut
Let uswork an example.The researcher wants to compute the power of

the statistic for b1.

H0 : b1 ¼ bx

HA : b1 6¼ bx

Let bx¼ 0, in this example.
Recall b1¼�0.0409. Let us estimate s2 withMSE and assume we want

to evaluate the power (d) after the study has been conducted instead of
before.

S2
b1 ¼

MSEPn
i¼1
ðxi � �xÞ2

S2
b1 ¼

0:0288
6750

Sb1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288
6750

r
¼ 0:0021

d ¼ 0:0409� 0
0:0021

¼ 0:0409
0:0021

¼ 19:4762

Using Table A.17 (power table for two-tail t-test), df¼ n�2¼15�2
¼ 13, a¼0.05, d¼19.4762, the power¼1�b
1.00 or 
100%at d¼ 9, which
is the largest value of d available in the table.Hence, the researcher is assured
that the power (d ) of the test is adequate to determine that the slope (B1) is
not 0, given it is not 0, at a s of 0.0021and n¼15.

M. Estimating ŷ from Confidence Intervals

A common aspect of interval estimation involves estimating the regression
line value ŷ with simultaneous con¢dence intervals for a speci¢c value of x.
That value ŷ can be further subcategorized as an average predicted ŷ value or
a speci¢c ŷ. Figure 15 shows which regions on the regression plot can and
cannot be estimated reliably through point and interval measurements.

The region�interpolation range�based on actual x, y values can be
predicted con¢dently by regression methods. If gaps between the y values
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are small, the prediction is usually more reliable than if they are extended
[25,29]. In my view, the determining factor is background�¢eld�experi-
ence. If one, for example, has worked with lethality curves and has an under-
standing of a particular microorganism’s death rate, the reliability of the
model is greatly enhanced if the statistical data are grounded in this knowl-
edge [17].Any region not representedbyboth smaller and larger actual values
of x,y is a region of extrapolation. It is usually very dangerous to assume accu-
racy and reliability of an estimate in an extrapolation region because this as-
sumes the data respond identically to the regression function computed from
the observed x,y data [34,35].Because that usually cannot be safely assumed,
it is better not to attempt extrapolation at all. That is better dealt with by
forecasting and time series procedures [31]. The researcher should focus
exclusively on the region of the regression, the interpolation region, where
actual x,y data have been collected, and so we shall in this text.

Up to this point,wehaveconsidered the sampling regionsof bothb0 and
b1but not ŷ itself.Recall that the expected value of a predicted ŷ at a givn x is

Eð ŷÞ ¼ b0 þ b1x ð22Þ
The variance of E (ŷ) is

s2
ŷ ¼ s2 1

n
þ ðxi � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775

FIGURE 15 Regionson the regression plot.
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As stated earlier, the greater the numerical spread of the xi values, the
smaller the corresponding s2

ŷ value is. However, notice that the s2
ŷ value

is for one xi point, and the farther the individual xi is from the mean, �x, the
larger s2

ŷ will be. This phenomenon is important from a practical as well
as a theoretical point of view. In the regression equation, b0þb1xi, there
will always be some error in b0 and b1 estimates. In addition, the regres-
sion line will always go through ð�x; �yÞ, the pivot points. The more variabil-
ity in s2

ŷ , the greater the swing on the pivot points ð �x; �yÞ. Figure 16
illustrates this. The true regression equation, yp, is somewhere between
ŷL and ŷU (estimate of y upper and lower). The regression line can pivot
on the �x axis to a certain degree, with both b0 and b1 varying.

Because the researcher does not know exactly what the true regres-
sion linear function is, it must be estimated. Any of the ŷ ( y predicted
values) on some particular x value will be wider, the farther away from
the mean ð�xÞ one estimates in either direction. This, of course, means that
the ŷ con¢dence interval is not parallel to the regression line but curvi-
linear (see Fig. 17).

FIGURE 16 Regression line pivots.
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N. Confidence Interval of ŷ

A 1�a con¢dence interval for the expected value�average value�of �y for
a speci¢c x is calculated using the following equation.

ŷ þ tða=2;n�2ÞS�y ð23Þ
where:

ŷ ¼ b0 þ b1x

and

S�y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
n
þ ðxi � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775

vuuuuut ð24Þ

and where xi is the set x value on which to predict ŷi.

MSE ¼
Pn
i¼1
ðyi � ŷiÞ2

n� 2
¼
Pn
i¼1

e2i

n� 2

Example 1 (continued) Using the data inTable 1 and from Eq. (1),we
see that the regression equation is ŷ¼ 6.13�0.041x. Suppose the researcher
would like to know the expected (average) value of y, as predicted by xi, when

FIGURE 17 Confidence intervals.
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xi¼15 seconds.What is the 95% con¢dence interval (CI) for the expected ŷ
(mean) value?

ŷ15 ¼ 6:13� 0:041ð15Þ ¼ 5:515

n ¼ 15

�x ¼ 30Xn
i¼1
ðxi � �xÞ2 ¼ 6750

MSE ¼
Pn
i¼1
ðyi � ŷiÞ2

n� 2
¼ 0:0288

S2
y ¼MSE

1
n
þ ðxi � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775 ¼ 0:0288

1
15
þ ð15� 30Þ2

6750

� �

S2
�y15
¼ 0:0029

S�y15 ¼ 0:0537

tða=2;n�2Þ ¼ tð0:025;15�2Þ ¼ 2:16

from Table A.2, Student’s t-table. The 95%CI¼ ŷ � tða=2;n�2Þ S�y ¼ 5:515�
2:16ð0:0537Þ ¼ 5:515� 0:1160, or 5:40 � ŷ15 � 5:63, at a ¼ 0:05.

Hence, the expected or average log10 population of microorganisms
remaining after exposure to a 15-second treatment with an antimicrobial
is between 5.40 and 5.63 log10 at the 95% con¢dence level. This con¢dence
interval is a prediction for one value, not multiple ones.Multiple estimation
will be discussed later.

O. Prediction of a Specific Observation

Many times a researcher is not interested in an ‘‘expected’’ (mean) value or
mean value con¢dence interval.The researcher instead wants an interval for
a speci¢c yi value corresponding to a speci¢c xi.

The process for this is very similar to that for the expected (mean) value
procedure, but the con¢dence interval for a single, new yi value results in a
wider con¢dence interval than does predicting for an average yi value. The
formula for a speci¢c yi value is:

ŷ � tða=2;n�2Þ Sŷ ð25Þ
where:

ŷ ¼ b0 þ b1x
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S2
ŷ ¼MSE 1þ 1

n
þ ðxi � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775 ð26Þ

and

MSE ¼
Pn
i¼1
ð yi � ŷiÞ2

n� 2
¼
Pn
i¼1

E2

n� 2

Example 1(continued) Again, using data from Table 1 and Eq. (1),
suppose the researcher wants to construct a 95% con¢dence interval for an
individual value, yi, at a speci¢c xi, say15 seconds.

ŷ¼ b0þb1x and ŷ15¼ 6:13�0:041ð15Þ ¼ 5:515 as before

n¼ 15

�x¼ 30Xn
i¼1
ðxi� �xÞ2¼ 6750

MSE ¼
Pn
i¼1
ðy� ŷÞ2

n�2
¼ 0:0288

Sŷ
2¼ standard error of a speci¢c y on x

S2
ŷ ¼MSE 1þ 1

n
þ ðxi þ �xÞ2Pðxi � �xÞ2

" #
¼ 0:0288 1þ 1

15
þ ð15� 30Þ2

6750

� �
S2
ŷ ¼ 0:0317

Sŷ ¼ 0:1780

tða=2;n�2Þ ¼ tð0:025;15�2Þ ¼ 2:16, fromTable A.2, Student’s t table.
The 95% CI¼ ŷ � tða=2;n�2ÞSŷ ¼ 5:515� 2:16ð0:1780Þ ¼ 5:515�

0:3845, or 5:13 � ŷ15 � 5:90, at a ¼ 0:05.
Hence, the researcher can expect the value ŷi (log10microorganisms) to

be contained within the interval 5.13 to 5.90 log10 for a15-second exposure at
a 95% con¢dence level.This does not mean that there is a 95% chance of the
value being within the con¢dence interval. It means that if the experimental
procedure was conducted 100 times, approximately 95 times out of 100
the value would lie within this interval. Again, this interval is a prediction
interval of one yi value on one xi value.
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P. Confidence Interval for Entire Regression Model

There are many cases in which a researcher would like to map out the
entire regression model with a 1� a con¢dence interval [32]. If the data
have excess variability, the con¢dence interval will be wide. In fact, it may
be too wide to be useful. If this occurs, the experimenter may want to
rethink the entire experiment or conduct it in a more controlled manner.
Perhaps more observations�particularly replicate observations�will be
needed. In addition, if the error, ð y � ŷÞ ¼ E, values are not patternless,
the experimenter might transform the data to better ¢t the regression
model to the data or add additional variables (e.g., b2 þ 	 	 	 þ bk) to the
model.

Given that these problems are insigni¢cant, one straightforward way
to compute the entire regression model is the Working^Hotelling method
[25], which enables the researcher not only to plot the entire regression
function, but also to ¢nd the upper and lower con¢dence interval limits
for ŷ on any or all xi values using the formula

ŷ �WS�y ð27Þ
The F distribution (TableA.3) is used in this procedure, instead of the t table,
where:

W 2 ¼ 2Fa;ð2;n�2Þ

and as before,

ŷi ¼ b0 þ b1xi and

S�y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
n
þ ðxi � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775

vuuuuut ð28Þ

Note that the latter is the same formula used previously to obtain a
1� a con¢dence interval for the expected (mean) value of a speci¢c yi
on a speci¢c xi. However, the con¢dence interval in this procedure is
wider than the expected value because it accounts for all xi values simul-
taneously.

Example 1 (continued) Suppose the experimenter wants to deter-
mine the 95% con¢dence interval for Example 1 and know the ŷi on xi ¼ 0,
15, 30, 45, and 60 seconds. The ŷi values predicted are expected (mean)
values, not actual values.

ŷ ¼ 6:13� 0:041ðxiÞ
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where

x ¼ 0; ŷ ¼ 6:13� 0:041ð0Þ ¼ 6:13

x ¼ 15; ŷ ¼ 6:13� 0:041ð15Þ ¼ 5:52

x ¼ 30; ŷ ¼ 6:13� 0:041ð30Þ ¼ 4:90

x ¼ 45; ŷ ¼ 6:13� 0:041ð45Þ ¼ 4:29

x ¼ 60; ŷ ¼ 6:13� 0:041ð60Þ ¼ 3:67

W 2 ¼ 2Fð0:05;2;15�2Þ (where the F tabled distribution value may be
found inTable A.3)
The F -tabled value (Table A.3)¼ 3.81

W 2 ¼ 2ð3:81Þ ¼ 7:62

W ¼
ffiffiffiffiffiffi
2F
p

¼
ffiffiffiffiffiffiffiffiffi
7:62
p

¼ 2:76

Sð �yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
n
þ ðxi � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775

vuuuuut for xi ¼ 0; 15; 30; 45; 60

Sð �y0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288

1
15
þ ð0� 30Þ2

6750

� �s
¼ 0:0759

Sð �y15Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288

1
15
þ ð15� 30Þ2

6750

� �s
¼ 0:0537

Sð �y30Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288

1
15
þ ð30� 30Þ2

6750

� �s
¼ 0:0438

Sð �y45Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288

1
15
þ ð45� 30Þ2

6750

� �s
¼ 0:0537

Sð �y60Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288

1
15
þ ð60� 30Þ2

6750

� �s
¼ 0:0759

Putting these together, one can construct a simultaneous 1� a con¢-
dence interval for each xi.
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ŷ �WS�y for each xi

For xi ¼ 0

6:13� 2:76ð0:0759Þ
6:13� 0:2095

5:92 � ŷ0 � 6:34

when x ¼ 0 at a ¼ 0:05 for the expected (mean) value of y.
For xi ¼ 15

5:52� 2:76ð0:0537Þ
5:52� 0:1482

5:37 � ŷ15 � 5:67

when x ¼ 15 at a ¼ 0:05 for the expected (mean) value of y.
For xi ¼ 30

4:90� 2:76ð0:0438Þ
4:90� 0:1209

4:78 � ŷ30 � 5:02

when x ¼ 30 at a ¼ 0:05 for the expected (mean) value of y.
For xi ¼ 45

4:29� 2:76ð0:0537Þ
4:29� 0:1482

4:14 � ŷ45 � 4:44

when x ¼ 45 at a ¼ 0:05 for the expected (mean) value of y.
For xi ¼ 60

3:67� 2:76ð0:0759Þ
3:67� 0:2095

3:46 � ŷ60 � 3:88

when x ¼ 60 at a ¼ 0:05 for the expected (mean) value of y.
Another way to do this is with a software computer program.
Figure18 provides aMiniTab1 computer graph of the 95% con¢dence

interval (outer two lines) as well as the predicted ŷi values (inner line).
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Notice that, although not dramatic, the con¢dence intervals widen for the ŷi
regression line as the data points move away from the mean ( �x) value of 30.
That is, the con¢dence interval is the most narrow where xi ¼ �x and in-
creases in size as the values of xi become farther from �x in either direction
[35]. In addition, one is not restricted to the values of x for which one has
corresponding y data. One can interpolate for any value between and in-
cluding 0 to 60 seconds. The assumption, however, is that the actual yi va-
lues for x ¼ ð0; 60Þ follow the ŷ ¼ b0 þ b1x equation.Given that one has ¢eld
experience, is familiar with the phenomena under investigation (here, anti-
microbial death kinetics), and is sure the death curve remains log linear,
there is no problem. If not, the researcher could make a huge mistake in
thinking the interpolated data follow the computed regression line when
they actually oscillate around the predicted regression line. Figure 19 illus-
trates this point graphically.

II. ANOVA AND REGRESSION

Analysis of variance (ANOVA) is a statistical methodology commonly used
for checking the signi¢cance and adequacy of the calculated linear regres-
sion model. In simple linear�straight line�regression models, such as we
are discussing now, ANOVA can be used for evaluating whether or not b1
(slope) is 0. But it is particularly useful for evaluating models involving two

FIGURE 18 MiniTab1 computer graph of the confidence interval and predicted
values.
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or more bi, for example, determining whether extra bi (e.g., b2, b3, bk) are of
statistical value [33^38].However, in this text we will not explore its applica-
tion to multiple bi values.

The application of the ANOVA model to analysis of simple linear re-
gression is similar to our previous work with ANOVA. In regression, three
primary sum-of-squares values are needed: the total sum of squares, SST;
the sum of squares explained by the regression, SSR; and the sum of squares
due to the random error, SSE. The total sum of squares is merely the sum of
squares of the di¡erences between actual yi observations and the �ymean.

SSTOTAL ¼
Xn
i¼1
ð yi � �yÞ2 ð29Þ

Graphically, the total sum of squares ðyi � �yÞ includes both the re-
gression and error e¡ects in that it does not distinguish between them
(Fig. 20).

FIGURE 19 Antimicrobial death kinetics curve. (�) Actual collected data points; (�)
predicted data points (regression analysis) that should be confirmed by the re-
searcher’s field experience; (- - -) actual data points unknown to the researcher.This
example is exaggerated but emphasizes that statistics must be grounded in field
science.
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The total sum of squares, to be useful, is partitioned into the sum of squares
due to regression (SSR) and the sum of squares due to error (SSE), or random
variability.

The sum of squares due to regression (SSR) is the sum of squares value
of the predicted values ð ŷiÞminus the �ymean value.

SSR ¼
Xn
i¼1
ð ŷi � �yÞ2 ð30Þ

Figure 21portrays this graphically. If the slope is 0, the SSR value is 0 because
the regression parameters ŷ and �y are the same values.

Finally, the sumof the squares error term,SSE, is the sumof the squares
of the actual Yi values minus the predicted ŷi value.

SSE ¼
Xn
i¼1
ð yi � ŷiÞ2 ð31Þ

FIGURE 20 Total sumof squares.
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Figure 22 portrays this graphically. As before, the sums of SSE and SSR equal
SSTOTAL.

SSR þ SSE ¼ SSTOTAL ð32Þ

The degrees of freedom for these three parameters and as the mean
square error are presented inTable 4.

The entire ANOVA table is presented inTable 5.
The six-step procedure can easily be applied to the regression ANOVA

for determining whether b1¼0. Let us now use the data in Example1 to con-
struct an ANOVA table.

Step 1. Establish the hypothesis.

H0 : b1 ¼ 0

HA : b1 6¼ 0

FIGURE 21 Sumof squares regression.
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Step 2. Select the a signi¢cance level. Let us set a at 0.10.
Step 3. Specify the test statistic. The test statistic used to determine
whether B1 ¼ 0 is found inTable 5.

FC ¼MSR

MSE

FIGURE 22 Sum-of-squares error term.

TABLE 4 Degrees of FreedomandMean Square Error

Sumof squares
(SS)

Degrees of freedom
(df) Mean square

SSR 1 SSR=1
SSE n� 2 SSE=n� 2

SSTOTAL n� 1 Not calculated
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Step 4. Decision rule: if FC > FT , rejectH0 at a.
FT ¼ Fða;1;n�2Þ ¼ F0:10ð1;13Þ ¼ 3:14, fromTable A.3, the Fdistribution.
If FC > 3:14, rejectH0 at a ¼ 0.10.
Step 5. ComputeANOVAmodel.Recall fromour calculations earlier,

�y ¼ 4:90.

SSTOTAL ¼
Xn
i¼1
ðyi � �yÞ2

¼ ð6:09� 4:90Þ2 þ ð6:10� 4:90Þ2 þ 	 	 	 þ ð3:42� 4:90Þ2

þ ð3:44� 4:90Þ2

¼ 11:685

SSR (using the alternate formula): Recall that
Pn

i¼1ðxi � �xÞ2 ¼ 6750
and b1 ¼ �0:040933:

SSR ¼ b21
Xn
i¼1
ðxi � �xÞ2 ¼ �0:0409332ð6750Þ ¼ 11:3097

SSE ¼ SSTOTAL � SSR ¼ 11:685� 11:310 ¼ 0:375

TABLE 5 ANOVATable

Source SS df MS FC FT

Significant=
not Significant

Regression SSR ¼
Pn
i¼1
ðŷi � �yÞ2 1 SSR

1 ¼ MSR
a MSR

MSE
Fða;1;n�2Þ If Fc > FT,

reject H0

Error SSE ¼
Pn
i¼1
ðyi � ŷiÞ2 n� 2 SSE

n�2 ¼ MSE

Total SSTOTAL ¼
Pn
i¼1
ðyi � �yÞ2 n� 1

a An alternative that is often useful for calculating MSR is b21
Pn

i¼1ðyi � �xÞ2.

TABLE 6 ANOVATable

Source SS df MS FC FT
Significant=
not significant

Regression SSR ¼11.310 1 11.310 392.71 3.14 Significant
Error SSE ¼ 0.375 13 0.0288

Total 11.685 14

472 Chapter 11



Step 6. The researcher sees clearly that the regression slope b1 is not
equal to 0. That is, FC ¼ 392:70 > FT ¼ 3:14. Hence, the null
hypothesis is rejected.

Table 6 provides the completed ANOVA model of this evaluation.
Table 7 provides aMiniTab1 version of this table.

A. Linear Model Evaluation of Fit of the Model

TheANOVA F-test to determine the signi¢cance of the slope (b1 6¼ 0) is use-
ful, but can it be expanded to evaluate the ¢t of the statistical model? That is,
how well does themodel predict the actual data? This procedure is often very
important in multiple linear regression in determining whether increasing
the number of variables (bi) is statistically e⁄cient and e¡ective [25,29].

A lack-of-¢t procedure, which is straightforward, can be used in this
situation. However, it requires repeated measurements (i.e., replication) for
at least some of the xi values. The F-test for lack of ¢t is used to determine
whether the regression model used (in our case, ŷ ¼ b0 þ b1xiÞ adequately
predicts and models the data. If it does not, the researcher can (1) increase
the beta variables, b2 . . . bn, by collecting additional experimental informa-
tion or (2) transform the scale of the data to linearize them.

For example, in Fig. 23, if the linear model is represented by a line and
the data by dots, one can easily see that themodel does not ¢t the data. In this
case, a simple log10 transformation, without increasing the number of bi
values, may be the answer. Hence, a log10 transformation of the y values
makes the simple regression model appropriate (Fig. 24).

In computing the lack-of-¢t F-test, several assumptions about the data
must be made [35]:

1. The yi values corresponding to each xi are independent of each
other.

2. The yi values are normally distributed and share the same variance.

TABLE 7 MiniTab1 Printout ANOVATable

Analysis of Variance
Source DF SS MS F P

Regression 1 11.310 11.310 390.0 0.000
Residual error 13 0.375 0.029
Total 14 11.685
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FIGURE 23 Inappropriate linearmodel.

FIGURE 24 Simple regressionmodelafter log10 transformation.
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In practice, assumption 1 is often di⁄cult to ensure. For example, in a
time^kill study, the exposure values y at1minute are related to the exposure
values y at 30 seconds. This author has found that, even if the y values are
correlated, the regression is still very useful and appropriate. However, it
may be more useful to use a di¡erent statistical model (Box^Jenkins,
weighted average, etc.) [31,33]. This is particularly so if values beyond the
data range collected are predicted.

It is important to realize that the F-test for regression ¢t relies on repli-
cation of various xi levels.These require actual replication of these levels, not
just repeated measurements [27,30]. For example, if a researcher is evaluat-
ing the antimicrobial e⁄cacy of an antimicrobial surgical scrub product by
exposing a known number of microorganisms for 30 seconds to the antimi-
crobial compound, then neutralizing the antimicrobial and plating each di-
lution level three times would not constitute a triplicate replication. The
entire proceduremust be replicated,or repeated three times, to include initi-
al population, exposure to the antimicrobial, neutralization, dilutions, and
plating.

The model the F-test for lack of ¢t evaluates is E½ y� ¼ b0 þ b1xi

H0 : E½y� ¼ b0 þ b1xi

HA : E½y� 6¼ b0 þ b1xi ð33Þ
The statistical process utilizes a full error model and a reduced error model.
The full model is evaluated ¢rst and often is represented by

yij ¼ mj þ Eij ð34Þ

where the mj are the parameters j¼1, . . . ,k.
The fullmodel states that the yij values aremade upof two components:

1. The expected ‘‘mean’’ response for the mj at a speci¢c xj value
ðmj ¼ �yjÞ

2. The random error ðEijÞ
The sum-of-squares error for the full model is considered ‘‘pure error,’’

which will be used to determine the ¢t of the model. The pure error is any
variation from �yj at a speci¢c xj level.

SSEFULL ¼ SSPURE ERROR ¼
Xk
j¼1

Xn
i¼1
ð yij � �yjÞ2

The SSPURE ERROR is the variation of the replicate yjvalues from the �yj value
at each replicated xj .
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B. Reduced ‘‘Error’’ Model

The reduced model determines whether the actual regression model under
the null hypothesis (b0 þ b1x) is adequate to explain the data [36]. The
reduced model is:

yij ¼ b0 þ b1xj þ Eij ð35Þ
That is, the amount that error is reduced due to the regression equation
ðb0 þ b1xiÞ in terms of

E ¼ y � ŷ ð36Þ
or the actual value minus the predicted value is determined.

More formally:

Sum of squares reduced model

¼ SSðredÞ ¼
Xk
i¼1

Xn
j¼1
ðyij � ŷijÞ2 ¼

Xk
i¼1

Xn
j¼1
½yij � ðb0 þ b1xjÞ�2 ð37Þ

Note that

SSðredÞ ¼ SSE : ð38Þ
It can be shown that the di¡erence between SSE and SSPURE ERROR ¼
SSlack of ¢t.

SSE ¼ SSPURE ERROR þ SSLACK OF FIT ð39Þ

ð yij � ŷijÞ2
Total error

¼ ð yij � �yjÞ2
Pure error

þ ð �yj � ŷijÞ2
Lack of fit

ð40Þ

Let us look at this diagrammatically (Fig. 25). Pure error ¼ di¡erence of
actual y values from �y at a speci¢c x (in this case, xj,where j¼ 4).

yi � �y ¼ 23� 21:33 ¼ 1:67

21� 21:33 ¼ �0:33
20� 21:33 ¼ �1:33

Lack of ¢t ¼ di¡erence between the �y value at a speci¢c x and the pre-
dicted ŷ at that speci¢c x value, or �y4 � ŷ4 ¼ 21:33� 16 ¼ 5:33.

The entire ANOVA procedure can be completed in conjunction with
the previous F-test ANOVA by expanding the SSE term to include both
SSPURE ERROR and SSLACK OF FIT.This procedure can be done only with re-
plication of the x values (Table 8).
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FIGURE 25 Lack-of-fit diagram. *21.33 is the average of y1;4 ¼ 23, y2;4 ¼ 21, and
y3;4¼20.

TABLE 8 ANOVATable

Source
Sumof
squares

Degrees
of freedom MS Fc FT

Regres-
sion

SSR ¼
Pn

i¼n¼1

Pk
j¼k¼1
ðŷij � �yÞ2 1 SSR

1 ¼ MSR
MSR
MSE

Fað1;n�2Þ

Error SSE ¼
Pn
i¼1

Pk
j¼1
ðyij � ŷijÞ2 n� 2 SSE

n�2 ¼ MSE

Lack-of-fit SSLACK OF FIT
SSLACK OF FIT

c�2
MSLF
MSPE

Faðc�2;n�cÞ

error ¼Pn
i¼1

Pk
j¼1
ð�yj � ŷijÞ2 c� 2 ¼ MSLF

Pure error SSPURE ERROR

¼Pn
i¼1

Pk
j¼1
ðyij � �yjÞ2 n� c

SSPURE ERROR
n�c
¼ MSPE

Total SSTOTAL

¼Pk
i¼1

Pc
j¼1
ðyij � �yÞ2 n� 1
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The test hypothesis for the lack of ¢t component is:

H0 : E½ y� ¼ b0 þ b1x (linear regression adequately describes data)
HA :E½ y� 6¼ b0 þ b1x (linear regression does not adequately

describe data)
If Fc ¼ ðMSLF=MSPEÞ > FT ½ðFaðc�2;n�cÞÞ� , rejectH0 at a.

where c¼ number of groups of data (replicated and nonreplicated),
which is the number of di¡erent xj levels

n ¼ number of observations
Let us now work the data in Example1.

The F-test for the lack of ¢t for the simple linear regression model is
easily expressed in the six-step procedure.

Step1. Determine the hypothesis.
H0 : E½ y� ¼ b0 þ b1x
HA : E½ y� 6¼ b0 þ b1x

Note: The null hypothesis for the lack of ¢t is that the simple linear
regression model cannot be rejected at the speci¢c a level.

Step 2. State the signi¢cance level (a). In this example, let us set a at
0.10.

Step 3. Write the test statistic to be used.

FC ¼ MSLACKOFFIT

MSPUREERROR

Step 4. Specify the decision rule. If FC > FT , reject H0 at a. In this
example, the value for FT is

Faðc�2;n�cÞ ¼ F0:10;ð5�2;15�5Þ ¼ F0:10ð3;10Þ ¼ 2:73

So, if Fc > 2:73, rejectH0 at a¼ 0.10.

Step 5. Perform theANOVA. n ¼ 15; c ¼ 5

Level ¼ j ¼ 1 2 3 4 5
xj 0 15 30 45 60
Replicate
1 6.09 5.48 5.01 4.53 3.57
2 6.10 5.39 4.88 4.62 3.42
3 6.08 5.51 4.93 4.49 3.44
�y:j ¼ 6.09 5.46 4.94 4.55 3.48
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SSPURE ERROR ¼
Xn
j¼1
ð yij � �yjÞ2 over the five levels of xj ; c ¼ 5:

SSPE ¼ ð6:09� 6:09Þ2þð6:10�6:09Þ2þð6:08� 6:09Þ2þð5:48�5:46Þ2

þ 	 	 	 ð3:57� 3:48Þ2þð3:42� 3:48Þ2þð3:44� 3:48Þ2

¼ 0:0388

SSLACKOFFIT ¼ SSE � SSPE

SSE (from Table 6) ¼ 0:375

SSLACKOFFIT ¼ 0:375� 0:0388 ¼ 0:3362

In anticipation of this kind of analysis, it is often useful to include the
lack of ¢t and pure error within the basic ANOVA table (Table 9).
Note that the computations of lack of ¢t and pure error are a decom-
position of SSE.

Step 6. Decision. Because Fc (28.74)> FT (2.73),we rejectH0 at the a
¼ 0.10 level. The rejection, i.e., the model is portrayed to lack ¢t, is
primarily because there is too little variability within each of the j
replicates used to obtain pure error. So, even though the actual data
are reasonably well represented by the regression model, the model
could be better.

The researcher must now weigh the pros and cons of the linear regres-
sion model. From a practical perspective, the model may very well be useful
enough,even though the lack-of-¢t error is signi¢cant [36,37]. In many situa-
tions experienced by this author, this model would be good enough. How-
ever, to a purist, perhaps a third variable (b2) could be useful. But will a

TABLE 9 New ANOVATable

Source SS df MS FC FT
Significant=
not significant

Regression 11.3100 1 11.3100 392.71 3.14 Significant
Error 0.375 13 0.0288
Lack-of-fit error 0.3362 3 0.1121 28.74 2.73 Significant
Pure error 0.0388 10 0.0039

Total 11.6850 14
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third variable hold up in di¡erent studies? It may be better to collect more
data and see if the simple linear regression model holds up in other cases. It
is quite frustrating for the end user to have to compare di¡erent reports using
di¡erent models to make decisions, let alone understand the underlying
data. For example, if a decision maker reviews several death-rate kinetic
studies of a speci¢c product and speci¢c microorganisms and the statistical
model is di¡erent for each study, the decision-maker will probably not use
the statistical analyst’s services much longer. So,when possible, use general
but robust models.

This author would elect to use the simple linear regression model to
approximate the antimicrobial activity but would collect more data sets to
see not only whether the H0 hypothesis continues to be rejected but also
whether the extra variable (b2) model is adequate for the new data. In statis-
tics, data pattern chasing can be an endless pursuit with no ¢nal conclusion
ever reached.

If the simple linear regression model, in the researcher’s opinion, does
not model the data properly, there are several options:

1. Transform the data using EDAmethods (to be discussed next).
2. Abandon the simple linear regression approach for a more

complex one.
3. Use a nonparametric statistic analog.

When possible, transform the data because the simple (linear) regres-
sion model can still be used. However, there is certainly value in multiple
regression procedures, in which the computations are done by matrix alge-
bra [35,37].The only practical approach to performing multiple regression is
with a computer. Note that the replicate xj values do not need to be consis-
tent in number, as in our previous work in ANOVA. For example, if the data

TABLE10 Lack-of-Fit Computation (ns Are Not Equal)

Level j 1 2 3 4 5

x value 0 15 30 45 60
Corresponding
yij values

6.09 5.48 5.01 4.53 3.57
5.39 4.88 4.62 3.42
5.51 3.44

Mean �yj ¼ 6.09 5.46 4.95 4.58 3.48
n ¼ 1 3 2 2 3

where n ¼ 11, c ¼ 5
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collected were as in Table 10, the computation would be performed in the
same way.

SSPUREERROR ¼ ð6:09� 6:09Þ2 þ ð5:48� 5:46Þ2 þ ð5:39� 5:46Þ2

þ ð5:51� 5:46Þ2 þ 	 	 	 þ ð3:42� 3:48Þ2

þ ð3:44� 3:48Þ2 ¼ 0:0337

Degrees of freedom ¼ n� c ¼ 11� 5 ¼ 6
Given SSE is 0.375, SSLACKOF FITwould equal:

SSLF ¼ SSE � SSPUREERROR ¼ 0:375� 0:0337 ¼ 0:3413

Let us now perform the lack-of-¢t test with MiniTab1 on the original data.
Table11portrays this.

As one can see, the ANOVA consists of the regression and residual
error (SSE) term. The regression is highly signi¢cant, with an Fc of 392.27.
The residual error (SSE) is broken into lack of ¢t and pure error. As before,
the researcher sees that the lack-of-¢t component is signi¢cant. That is, the
linear model is not a precise ¢t even though, from a practical perspective, the
linear regression model may be adequate.

For many decision-makers, as well as applied researchers, it is one
thing to generate a complex regression model but another entirely to explain
its meaning in terms of variables grounded in one’s ¢eld of expertise. For
those interested in much more depth in regression, see Applied Regression
Analysis by Kleinbaum et al. [35], Applied Regression Analysis by Draper and
Smith [32], orApplied Linear Statistical Models by Neter et al. [33].

The vast majority of data can be linearized by merely performing a
transformation. For the data that have nonconstant error variances, sigmoi-
dal shapes, and other anomalies, the use of nonparametric regression is an
option.

Let us now refocus on exploratory data analysis (EDA) as it applies to
regression.

Source SS df MS Fc

SSE 0.375 � � �
Error lackof fit 0.3413 3 0.1138 20.32
Pure error 0.0337 6 0.0056
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C. Exploratory Data Analysis and Regression

Recall that, in Chap. 3,Table 5 provided a table of reexpressions as well as
suggestions for what to do for nonnormal (skewed) data. A similar strategy
works well for regression data. In simple (linear) regression, of the form
ŷ ¼ b0 þ b1x, the datamust approximate a straight line. In practice, this often
does not occur, so in order to use the regression equation, the data need to be
‘‘straightened.’’ Four common nonlinear data patterns can be straightened
very simply. Figure 26 portrays these patterns.

1. Pattern A

For pattern A, the researcher will ‘‘go down’’ in the reexpression power of
either x or y or both.Often, audiences grasp the data more easily if the trans-
formation is done on the y scale (

ffiffiffi
y
p

; log10 y, etc.) rather than on the x scale.
The x scale is left at power 1; that is, it is not reexpressed. The regression is
then ‘‘re¢t,’’ using the transformed data scale and checked to assure the data
have been straightened [14,15]. If the plotted data do not appear straight-
line, the data are reexpressed again, say from

ffiffiffi
y
p

to log y or even �1 ffiffiffi
y
p

(see
Chap. 3).This process is done iteratively. In cases in which one transforma-
tion almost straightens the data but the next power transformation over-
straightens the data slightly, the researcher may opt to choose the
reexpression that has the smallest Fc value for lack of ¢t.

2. Pattern B

Data appearing like pattern B may be linearized by increasing the power of
the y values (e.g., y2, y3), increasing the power of the x values (e.g., x2, x3), or
increasing the power of both ( y2, x2). Again, it is often easier for the intended
audience�decision-makers, business directors, or clients�to under-
stand the data when y is reexpressed and x is left in the original scale. As
before, the reexpression procedure is done sequentially ( y2 to y3, etc.),

TABLE11 MiniTab1 Lack-of-Fit Test

Analysis of Variance
Source D- F SS MS F
P

Regression 1 11.310 11.310 390.0 0.000
Residual error 13 0.375 0.029
Lackof fit 3 0.336 0.112 28.0 0.000
Pure error 10 0.039 0.004

Total 14 11.685
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computing the Fc value for lack of ¢t each time.The smaller the Fc value, the
better. I ¢nd it most helpful to plot the data after each reexpression proce-
dure in order to select the best ¢t visually. The more linear the data are, the
better.

3. Pattern C

For data that resemble pattern C, the researcher needs to ‘‘up’’ the power
scale of x (x2, x3, etc.) or ‘‘down’’ the power scale of y (

ffiffiffi
y
p

; log y, etc.) to linear-
ize the data. For reasons previously discussed, I tend to recommend trans-
forming the y values only, leaving the x values in the original form.When the
data havebeen reexpressed,plot them tohelp determine visually whether the
reexpression adequately linearized them. If not, the next lower power trans-
formation should be used, on the y value in this case. Once the data are

FIGURE 26 Four common nonstraight data patterns.
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reasonably linear, as determined visually, theFc test for lack of ¢t can be used.
The smaller theFc value, the better. If, say, the data are not quite linearized byffiffiffi
y
p

but are slightly curved in the opposite directionwith the log y transforma-
tion, pick the reexpression having the smaller Fc value in the lack-of-¢t test.

4. Pattern D

For data that resemble patternD,the researcher can go up the power scale in
reexpressing y or down the power scale in reexpressing x, or doboth.Again, I
recommend reexpressing the y values ( y2, y3, etc.) only. The same strategy
previously discussed should be used in determining the most appropriate
reexpression, based on the Fc value.

5. DataThat Cannot Be Linearized by Reexpression

Data that are sigmoidal, or open up and down or down and up, cannot be
easily transformed. A change to one area (making it linear) makes the other

FIGURE 27 Polynomial regressions.

484 Chapter 11



areas even worse. Polynomial regression, a form of multiple regression, can
be used for modeling these types of data (see Fig. 27) [25, 33, 35, 37].

D. Exploratory Data Analysis to Determine the Linearity of a
Regression Line Without Using the FC Test for Lack of Fit

A relatively simple and e¡ective way of determining whether a selected reex-
pression procedure linearizes the data can be completed with EDA pencil-
and-paper techniques (Fig. 28). It is known as the method of half-slopes in
EDA parlance [15,39].

Step 1. Divide the data into thirds, ¢nding the median (x,y) value of
each group. Note that there is no need to be ‘‘ultra-accurate’’ when
partitioning the data into the three groups. To ¢nd the left x, y med-
ians (denoted xL,yL),use the left one third of the data.To¢nd themid-
dle x, ymedians, use the middle one third of the data, and label these
xM,yM.To ¢nd the right x,ymedians,denoted xR,yR,use the right one
third of the data.

Step 2. Estimate the slope (b1) for both the left and right thirds of the
data set.

bL ¼ yM � yL
xM � xL

ð41Þ

bR ¼ yR � yM
xR � xM

ð42Þ

where yM¼median of the y values in the middle third of the data set
yL¼median of the y values in the left third of the data set
yR¼median of the y values in the right third of the data set
xM¼median of the x values in the middle third of the data set
xL¼median of the x values in the left third of the data set
xR¼median of the x values in the right third of the data set

Step 3. Determine the slope coe⁄cient bR=bL. (43)

Step 4. If the bR=bL ratio is close to 1, the data are considered linear
and ‘‘good enough.’’ If not, reexpress the data and repeat steps 1
through 3. In practice, I suggest, when reexpressing a data set to
approximate a straight line, that this EDA procedure be used rather
than the Fc test for lack of ¢t.

Also note that, for any data set, approximations of b1 (slope) and b0 (y
intercept) can be computed using the median values.
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b1 ¼ yR � yL
xR � xL

ð44Þ

b0 ¼ yM � b1ðxMÞ ð45Þ
Let us use the data in Example 1 to perform the EDA procedures just

discussed. Because these data cannot be partitioned into equal thirds, the
data will be approximately separated into thirds. Because the left and right
thirds havemore in£uence on this EDAprocedure than themiddle group,we
will use x¼ 0 and 15 in the left group, only x¼ 30 in the middle group, and
x¼ 45 and 60 in the right group.

Step1. Separate the data into thirds at the x levels.

Step 2. Compute the slopes (b1) for the left and right groups.

bL ¼ yM � yL
xM � xL

¼ 4:93� 5:78
30� 7:5

¼ �0:0378

Left group Middle group Right group

x ¼ 0 and15 x ¼ 30 x ¼ 45 and 60
xL ¼ 7:5 xM ¼ 30 xR ¼ 52:50
yL ¼ 5:78 yM ¼ 4:93 yR ¼ 4:03

FIGURE 28 Halfslopes in EDA.
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bR ¼ yR � yM
xR � xM

¼ 4:03� 4:93
52:5� 30

¼ �0:0400

Step 3. Compute the slope coe⁄cient, checking it to see if it equals1.

Slope coefficient ¼ bR
bL
¼ �0:0400�0:0378 ¼ 1:0582

Note, in this procedure, that it is just as easy to see if bR¼ bL. If they are
not exactly equal, it is the same as the slope coe⁄cient not equaling 1.
Because the slope coe⁄cient ratio in our example is very close to 1 (and the
values bR and bL are nearly equal), we can say that the data set is approxi-
mately linear.

If the researcher wants a rough idea of what the slope (b1) and y inter-
cept (b0) are, they can be computed using Eqs. (44) and (45).

b1 ¼ yR � yL
xR � xL

¼ 4:03� 5:78
52:5� 7:5

¼ �0:0389

b0 ¼ yM � b1ðxMÞ ¼ 4:93� ð�0:0389Þ30 ¼ 6:097

Hence, before we have even opened discussion of nonparametric sta-
tistics, we have determined a ‘‘nonparametric’’ regression estimate of the
regression equation, ŷ ¼ b0 þ b1x1, or ŷ ¼ 6:097� 0:0389x, which is very
close to the parametric result, ŷ ¼ 6:13� 0:041x, computed using the formal
regression procedure.

E. Correlation Coefficient

The correlation coe⁄cient, r, is a statistic frequently used to measure the
strength of association between x and y. A correlation coe⁄cient of 1.00, or
100%, is a perfect ¢t (all of the predicted ŷ values equal the actual y values),
and a 0 value represents a completely random array of data (Fig. 29).

Theoretically, the range is�1to1,where�1describes a perfect ¢t, des-
cending slope (Fig. 30).

The correlation coe⁄cient (r) is a dimensionless value independent of x
and y. Note that, in practice, the value for r2 (coe⁄cient of determination)
is generally more directly applicable. That is, knowing that r¼ 0.80 is not
directly useful, but r2¼ 0.80 is, because the r2 means that the regression
equation is 80% better in predicting y than is the use of �y.

Themore positive the r (closer to1), the stronger the statistical associa-
tion.That is,theaccuracyandprecisionofpredictinga y value fromx increase.
It also means that, as the values of x increase, so do the y values. Likewise,
themorenegative the r value (closer to�1),thestronger thestatistical associa-
tion.In thiscase,as the x values increase,the y valuesdecrease.Thecloser the r
value is to 0, the less linear association there is between x and y, meaning the

Linear Regression 487



accuracy in predictions of a y value from an x value decreases. By associa-
tion, Imeandependenceof y and x.That is,one canpredict yby knowing x.

The correlation coe⁄cient value, r, is computed as:

r ¼
Pn
i¼1
ðxi � �xÞ2ðyi � �yÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi � �xÞ2 Pn

i¼1
ðyi � �yÞ2

s ð46Þ

A simpler formula is often used for hand calculator computation:

r ¼
Pn
i¼1

xiyi �
Pn
i¼1

xi

� � Pn
i¼1

yi

� �
=nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
x2i �

Pn
i¼1

xi

� �2

=n

" # Pn
i¼1

y2i �
Pn
i¼1

yi

� �2

=n

" #vuut ð47Þ

FIGURE 29 Correlation coefficients.
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Fortunately, even the less expensive scienti¢c calculators usually have
an internal program for calculating r.

Let us compute r from the data in Example1.Xn
i¼1

xiyi¼
X15
i¼1
ð0	6:09Þþð0	6:10Þþ			þð60	3:57Þþð60	3:42Þþð60	3:44Þ

¼1929:90X15
i¼1

xi ¼ 450

X15
i¼1

yi ¼ 73:54

X15
i¼1

x2i ¼ 20250:00

X15
i¼1

y2i ¼ 372:23

n ¼ 15

r ¼ 1929:90� ð450Þð73:54Þ=15ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20250:00� ð450Þ2=15 �

372:23� ð73:54Þ2=15 �q ¼ �0:9837

The correlation coe⁄cient is�0.9837 or, as a percentage, 98.37%.This
value represents a strong negative correlation. But the more useful value to

FIGURE 30 Perfect descending slope.
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use, in this author’s view, is the coe⁄cient of determination, r2. In this exam-
ple, r2¼ (�0.9837)2¼ 0.9677.This r2 value translates directly to the strength
of association. That is, 96.77% of the variability of the (x, y) data can be ex-
plained through the linear regression function.Notice inTable 3 that the r2 is
given as 96.8% (or 0.968) from theMiniTab1 computer software regression
routine. Also:

r2 ¼ SST � SSE
SST

¼ SSR
SST

where

SST ¼
Xn
i¼1
ðyi � �yÞ2

r2ranges between 0 and1, or 0 � r2 � 1.
SSR, as the reader will recall, is the amount of total variability directly

due to the regression model. SSE is the error not accounted for by the regres-
sion equation, which is generally called random error. Recall that
SST¼SSRþ SSE. The larger SSR is relative to error, SSE, the greater the r2

value. Likewise, the larger SSE is relative to SSR, the smaller (closer to 0)
r2 will be.

Again, r2 is, in this author’s opinion, the better of the two (r2 vs. r) to use
because r2 can be applied directly to the outcome of the regression. If
r2¼ 0.50, the researcher can conclude that 50% of the total variability is ex-
plained by the regression equation.This is no better than using the average �y
as predictor and dropping the need for the �x dimension entirely. Note that
when r2 ¼ 0.50, r ¼ 0.71. The correlation coe⁄cient can be deceptive in
cases like this, for it can lead a researcher to conclude that a higher degree
of statistical association exists than actually does.

Neither r2 nor r is a measure of the magnitude of b1, the slope. Hence,
it cannot be said that the greater the slope value b1, the larger r2 or r will be
(Fig. 31). If all the predicted values and actual values are the same, r2 ¼ 1, no
matter what the slope and as long as there is a slope. If there is no slope, b1
drops out and b0 becomes the best estimate of y, which turns out to be �y.
Instead, r2 is a measure of how close the actual y values are to the ŷ values
(Fig. 32).

Finally, r2 is not a measure of the appropriateness of the linear model
(see Fig. 33).The r2 ¼ 0.82 for thismodel is high,but it is obvious that a linear
model is not appropriate.

For Fig. 34, the r2 ¼ 0.12.Clearly, these data are not linear and not eval-
uated well by linear regression.
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FIGURE 31 Correlationof slope rates.

FIGURE 32 Degree of closeness of y to ŷ.

FIGURE 33 Inappropriate linearmodel.

Linear Regression 491



F. Correlation Coefficient Hypothesis Testing

Because the researcher will undoubtedly be facedwith describing the regres-
sion function via the correlation coe⁄cient r,which is a popular statistic,we
will develop its use further.The correlation coe⁄cient can be used to deter-
mine whether r ¼ 0 and, if r ¼ 0, b1 also equals 0.This computation can be
performed with the six-step procedure.

Step1. Determine hypothesis.
H0: R¼ 0 (x and y are not associated)
HA: R 6¼ 0 (x and y are associated)

Step 2. Set a level.
Step 3. Write out the test statistic, which is a t-test presented in

Eq. (48).

tc ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2
pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p with n� 2 degrees of freedom ð48Þ

Step 4. Decision rule.

If jtcj > tða=2;n�2Þ; reject H0 at a:

Step 5. Perform computation.
Step 6. Make the decision.

FIGURE 34 Nonlinearmodel.
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Example1 (continued) Using our chapter example (Example1), let us
do the problem.

Step1. H0: R¼ 0
HA: R 6¼ 0

Step 2. Let us set a ¼ 0.05. Because this is a two-tail test, the t tabled
(tt) value will utilize a =2 fromTable A.2.

Step 3. The test statistic is:

tc ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2
pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

Step 4. If jtc j > tð0:05=2;15�2Þ ¼ 2:16; reject H0 at a ¼ 0:05:
Step 5. Perform computation.

tc ¼ �0:9837
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:9677
p ¼ �3:5468

0:1797
¼ �19:7348

Step 6. Decision. Because jtc j ¼ 19:7348 > tða=2;13Þ ¼ 2:16, the H0

hypothesis is rejected at a ¼ 0.05. The correlation coe⁄cient is not
0, nor does the slope b1 ¼ 0.

G. Confidence Interval for R

A1�a con¢dence interval can be derived using a modi¢cation of Fisher’s Z
transformation [34].The transformation has the form

1
2
ln

1þ r
1� r

The researcher also uses the normalZ table (Table A.1) instead of Student’s t
table.The test is reasonably powerful as long as n� 20.

The complete con¢dence interval is:

1
2
ln

1þ r
1� r

� Za=2ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p ð49Þ

The quantity 1
2 ln ½ð1þ rÞ=ð1� rÞ� approximates the mean and Za=2=

ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p

the variance.

Lower limit ¼ 1
2

ln
1þ Lr

1� Lr
ð50Þ

The lower limit value is then found in Table A.16 (Fisher Z transformation
table) for the corresponding r value.

Upper limit ¼ 1
2

ln
1þ Ur

1� Ur
ð51Þ

The upper limit is also found inTable A.16 for the corresponding r value.
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The (1� a) 100% con¢dence interval is of the form Lr < R < Ur .
Let us use Example1. Four steps are required for the calculator.

Step 1. Compute basic interval, letting a ¼ 0.05, Z0.05=2 ¼ 1.96
(Table A).

1
2

ln
1þ 0:9837
1� 0:9837

� 1:96ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 3
p

2:4008� 0:5658

Step 2. Compute lower=upper limits.
Lr¼ 2.4008�0.5658¼1.8350
Ur¼ 2.4008þ0.5658¼2.9660

Step 3. Find Lr (1.8350) in Table A.16 (Fisher’s Z transformation
table), and then ¢nd the corresponding value of r.
r¼ 0.95
FindUr (2.9660) inTable A.16 (Fisher’s Z transformation table), and
again ¢nd the corresponding value of r.
r¼ 0.994

Step 4. Display1�acon¢dence interval.
0:950 < R < 0:994

at a ¼ 0:05:
Note: This researcher has adapted the Fisher test to a t-table test,

which is useful for smaller sample sizes. It is a more conservative test than
the Z-test, so the con¢dence intervals will be wider until the sample size of
the t table is large enough to equal the Z table value.

Basic modi¢ed interval:

1
2
ln

1þ r
1� r

� ta=2;ðn�2Þffiffiffiffiffiffiffiffiffiffiffi
n� 3
p ð52Þ

Everything else is the same as for the Z-based con¢dence interval example.
Example 1 (continued). Let a ¼ 0:05; tða=2;n�2Þ ¼ tð0:05=2; 13Þ ¼ 2:16,

as found in Student’s t table (Table A.2).

Step1. Compute the basic interval.

1
2
ln

1þ 0:9837
1� 0:9837

� 2:16ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 3
p ¼ 2:4008� 0:6235 ð53Þ

Step 2. Compute the lower=upper limits, as before.
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Lr ¼ 2:4008� 0:6235 ¼ 1:7773

Lu ¼ 2:4008þ 0:6235 ¼ 3:0243

Step 3. FindLr (1.773) inTableA.16 (Fisher’sZ table), and ¢nd the cor-
responding value of r.
r¼ 0.944
Find Ur (3.0243) inTable A.16 (Fisher’s Z table), and ¢nd the corre-
sponding value of r.
r¼ 0.995

Step 4. Display the1� acon¢dence interval.

0:944 < R < 0:995

at a ¼ 0:05:

H. Prediction of a Specific x Value from a y Value

There are timeswhen a researcher wants to predict a speci¢c x value from a y
value as well as generate con¢dence intervals for that estimated x value. For
example, in microbial death kinetic studies (D values), a researcher often
wants to know howmuch exposure time (x) is required to reduce a microbial
population, say, three logs from the baseline value. In this situation, the
researcher will predict x from y.Or a researcher may want to know how long
an exposure time (x) is required for an antimicrobial sterilant to reduce the
population to zero. Many microbial death kinetic studies, including those
using dry heat, steam, ethylene oxide, and gamma radiation, can be com-
puted in this way [1]. The most common procedure uses the D value, which
is the time (generally in minutes) in which the initial microbial population
is reduced by one log10 value.

The procedure is quite straightforward, requiring just basic algebraic
manipulation of the linear regression equation, ŷ ¼ b0 þ b1x. As rearranged,
then, the regression equation used to predict the x value is

x̂ ¼ y � b0
b1

ð54Þ
The process requires that a standard regression, ŷ ¼ b0 þ b1x, be computed
to estimate b0 and b1. It is then necessary to ensure that the regression ¢t is
adequate for the data described. At that point, the b0 and b1 values can be
inserted into Eq. 54.

Equation (55) works from results of Eq. (54) to provide a con¢dence
interval for x̂.The 1� a con¢dence interval equation for x̂ is:

x̂ � ta=2;n�2Sx ð55Þ
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where:

S2
x ¼

MSE
b21

1þ 1
n
þ ðx̂ � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775 ð56Þ

Let us perform the computation using the data in Example1 to demon-
strate this procedure.The researcher’s question is ‘‘how long an exposure to
the test antimicrobial product is required to achieve a two log10 reduction
from the baseline?’’

Recall that the regression for this example has already been completed.
It is ŷ ¼ 6:13067� 0:040933x, where b0 ¼ 6:13067 and b1 ¼ �0:040933.
First, the researcher calculates the theoretical baseline, or beginning value
of y when x ¼ 0 time: ŷ ¼ b0 þ b1x ¼ 6:13067� 0:040933ð0Þ ¼ 6:13. The
two log10 reduction time is found by using Eq. (54), x̂ ¼ ð y � b0Þ=b1,where y
is a two log10 reduction from ŷ at time 0. We calculate this value as
6:13� 2:0 ¼ 4:13. Then, using Eq. (54), we can determine x̂, or the time in
seconds for the example.

x̂ ¼ 4:13� 6:13
�0:041 ¼ 48:78 seconds

The con¢dence interval for this x̂ estimate is computed as follows,
where �x ¼ 30, n ¼ 15,

Pn
i¼1ðxi � �xÞ2 ¼ 6750, and MSE ¼ 0:0288. Using

Eq. (55), x̂ � ta=2; n�2 Sx, and tð0:05=2; 15�2Þ ¼ 2:16 (fromTable A.2)

S2
x ¼

MSE
b21

1þ 1
n
þ ðx̂ � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775

S2
x ¼

0:0288
ð�0:041Þ2 1þ 1

15
þ ð48:78� 30Þ2

6750

� �
S2
x ¼ 19:170 and Sx ¼ 4:378

x̂ � t0:05=2;13Sx
48:78� 2:16ð4:378Þ
48:78� 9:46

39:32 � x̂ � 58:24

So, the actual new value, x̂, on y ¼ 4:13 is contained in the interval
39:32 � x̂ � 58:24 when a ¼ 0:05.This is a 18.92-second spread,which may
not be very useful to the researcher. The main reasons for the wide con¢-
dence interval are variability in the data and that one is predicting a speci¢c,
not an average,value.The researcher may want to increase the sample size to
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reduce the variability or may settle for the average expected value of x
because the con¢dence interval will be narrower.

I. Predicting an Average x̂

Often, a researcher is more interested in the average value of x̂. In this case,
the formula for determining x is the same as Eq. (54).

x̂ ¼ y � b0
b1

ð54Þ
The equation for calculating the 1� a con¢dence interval is nearly the same
[Eq. (57)]. The di¡erence is that the 1 is removed from Eq. (56) in order to
calculate the value of S �x , as can be seen in Eq. (58).

x̂ � ta=2;n�2S �x ð57Þ

S�x ¼MSE
b21

1
n
þ ðx̂ � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775 ð58Þ

Let us use Example1again.Here, the researcher wants to know, on the
average, what the 95% con¢dence interval is for x̂ when y is 4.13 (or a two
log10 reduction).

x̂ ¼ 48:78 seconds, as before

S2
x ¼

0:0288
ð�0:041Þ2

1
15
þ ð48:78� 30Þ2

6750

� �
¼ 2:037

Sx ¼ 1:427

x̂ � tða=2;n�2ÞS �x ¼ x̂ � t0:025; 13S�x

48:78� 2:16ð1:427Þ
48:78� 3:08

45:70 � x̂ � 51:86

So, on the average, the time required to reduce the initial population is
between 45.70 and 51.86 seconds.For practical purposes, the researcher may
round up to a1-minute exposure.

J. D Value Computation

TheD value is the time,usually in minutes, of exposure to steam,dry heat, or
ethylene oxide that it takes to reduce the initial microbial population one
log10.
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ŷ ¼ b0 þ b1x

x̂D ¼ y � b0
b1

ð59Þ

Note that,whenwe look at a one log10 reduction, y � b0will always be1.
Hence, theD value, x̂D,will always equal 1=b1

�� ��.
The D value can also be computed for a new speci¢c value. The com-

plete formula is:

x̂D � tða=2;n�2ÞSx

where

S2
x ¼

MSE
b21

1þ 1
n
þ ðx̂D � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775 ð60Þ

Or the D value can be computed for the average or expected value EðxÞ.
x̂D � tða=2;n�2ÞS�x

where

S2
�x ¼

MSE
b21

1
n
þ ðx̂D � �xÞ2Pn

i¼1
ðxi � �xÞ

2664
3775 ð61Þ

Example 8. Suppose the researcher wants to compute the average D
value, or the time it takes to reduce the initial population one log10.

x̂D ¼ 1
b1

���� ����¼ 1
�0:041
���� ����¼ 24:39

S2
�x ¼

MSE
b21

1
n
þ ðx̂� �xÞ2Pn

i¼1
ðx� �xÞ2

2664
3775¼ 0:0288
�0:0412

1
15
þð24:39�30Þ2

6750

� �
¼ 1:222

S �x ¼ 1:11
x̂D � ta=2;n�2S �x

24:39 � 2:16ð1:11Þ
24:39 � 2:40
21:59 � x̂D � 26:79

Hence, the D value, on the average, is contained within the interval
21:59 � x̂D � 26:79 at the 95% level of con¢dence.

498 Chapter 11



K. Simultaneous MEAN Inference of B0 and B1

In certain situations, such as antimicrobial time-kill studies, an investigator
may be interested in the average con¢dence intervals for both b0 (initial
population) and b1 (rate of inactivation). In previous examples, con¢dence
intervals were calculated for b0 and b1 separately. Now we will discuss how
con¢dence intervals for both b0 and b1 can be achieved simultaneously. In
some text books, this is known as joint con¢dence intervals [26,33,37,38].
We will use the Bonferroni method for this procedure.

Recall:

b0 ¼ b0 � tða=2;n�2ÞSb0

b1 ¼ b1 � tða=2;n�2ÞSb1

Because we are estimating two parameters, b0 and b1, we will use
a=2þ a=2 ¼ a=4. So the revised formulas for b0 and b1 are:

b0 ¼ b0 � tða=4;n�2ÞSb0 ð62Þ
b1 ¼ b1 � tða=4;n�2ÞSb1 ð63Þ

where:
b0 ¼ y intercept

b1 ¼ slope

S2
b0 ¼MSE

1
n
þ �x2Pn

i¼1
ðxi � �xÞ2

2664
3775

S2
b1 ¼

MSEPn
i¼1
ðxi � �xÞ2

Let us now perform the computation using the data in Example 1. Recall
that b0 ¼ 6:13, b1 ¼ �0:041, MSE ¼ 0:0288,

Pn
i¼1ðxi � �xÞ2 ¼ 6750,

�x ¼ 30; n ¼ 15; a ¼ 0:05. From Table A.2, Student’s t table, ta=4; n�2 ¼
t0:05=4;15�2 ¼ t0:0125;13 
 2:5.

Sb1 ¼ 0:0021
Sb0 ¼ 0:0759
b0 ¼ b0 � tða=4;n�2Þ Sb0

� �
¼ 6:13þ 0:1898 ¼ 6:32
¼ 6:13� 0:1898 ¼ 5:94

5:94 � b0 � 6:32

Linear Regression 499



b1 ¼ b1 � tða=4;n�2Þ Sb1
� �

¼ � 0:041þ 0:0053 ¼ � 0:036

¼ � 0:041� 0:0053 ¼ � 0:046

� 0:046 � b1 � � 0:036

Hence, the joint 95% con¢dence intervals for b0 and b1 are:

5:94 � b0 � 6:32

� 0:046 � b1 � � 0:036

The researcher can conclude, at the 95% con¢dence level, that the in-
itial microbial population (b0) is between 5.94 and 6.32 logs and the rate of
inactivation (b1) is between 0.046 and 0.036 log10 per second of exposure.

L. Simultaneous Multiple Mean Estimates of Y

There are times when a researcher wants to estimate the mean y values for
multiple x values simultaneously. For example, suppose a researcher wants
to predict the log10 microbial counts (y) at times1,10,30, and 40 seconds after
the exposures andwants to be sure of their overall con¢dence at a ¼ 0:10.

The Bonferroni procedure can again be used for x1; x2; . . . xr simulta-
neous estimates.

ŷ � tða=2r; n�2ÞS�y ðmean responseÞ ð64Þ
where

r ¼ number of xi values estimated.

ŷ ¼ b0 þ b1xi for i ¼ 1; 2; . . . ; r simultaneous estimates

S2
�y ¼MSE

1
n
þ ðxi � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775

Example 9. Using the data from Example 1, a researcher wants a
0.90 con¢dence interval for a series of estimates (i ¼ 0; 10; 30; 40 and
r ¼ 4).What are they? Recall that ŷ ¼ 6:13� 0:41xi ; n ¼ 15;MSE ¼ 0:0288,
and

Pn
i¼1ðx � �xÞ2 ¼ 6750.

S2
�y ¼MSE

1
n
þ ðxi � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775 ¼ 0:0288

1
15
þ ðxi � 30Þ2

6750

� �
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tð0:10=2ð4Þ; 13Þ ¼
 2:5 fromTable A.2 Student’s t table

For x ¼ 0:

ŷ0 ¼ 6:13� 0:041ð0Þ ¼ 6:13

S2
�y ¼ 0:0288

1
15
þ ð0� 30Þ2

6750

� �
¼ 0:0058

S�y ¼ 0:076

ŷ0 � t0:10=2ð4Þ; 13ðS�yÞ
6:13� 2:5ð0:076Þ
6:13� 0:190

5:94 � ŷ0 � 6:32 for x ¼ 0; or no exposure, at a ¼ 0:10

For x ¼ 10:

ŷ10 ¼ 6:13� 0:041ð10Þ ¼ 5:72

S2
�y ¼ 0:0288

1
15
þ ð10� 30Þ2

6750

� �
¼ 0:0036

S�y ¼ 0:060

ŷ10 � t0:10=2ð4Þ; 13ðS�yÞ
5:72� 2:5ð0:060Þ
5:72� 0:150

5:57 � ŷ10 � 5:87 for x ¼ 10 seconds, at a ¼ 0:10

For x ¼ 30:

ŷ30 ¼ 6:13� 0:041ð30Þ ¼ 4:90

S2
�y ¼ 0:0288

1
15
þ ð30� 30Þ2

6750

� �
¼ 0:0019

S�y ¼ 0:044
ŷ30 � t0:10=2ð4Þ; 13ðS�yÞ
4:90� 2:5ð0:044Þ
4:90� 0:11
4:79 � ŷ30 � 5:01 for x ¼ 30 seconds exposure, at a ¼ 0:10
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For x ¼ 40:

ŷ40 ¼ 6:13� 0:041ð40Þ ¼ 4:49

S2
�y ¼ 0:0288

1
15
þ ð40� 30Þ2

6750

� �
¼ 0:0023

S�y ¼ 0:048

ŷ40 � t0:10=2ð4Þ; 13ðS�yÞ
4:49� 2:5ð0:048Þ
4:49� 0:12

4:37 � ŷ40 � 4:61 for x ¼ 40 seconds exposure, at a ¼ 0:10

Note: Individual simultaneous con¢dence intervals can be made on not
only the mean values but also the individual values.The procedure is identi-
cal to that already shown except that S�y is replaced by Sŷ,where:

Sŷ ¼MSE 1þ 1
n
þ ðxi � �xÞ2Pn

i¼1
ðxi � �xÞ2

2664
3775 ð65Þ

III. SPECIAL PROBLEMS

A. Piecewise Regression

There are times when it makes no sense to perform a transformation. This
is true, for example, when the audience will not make sense of the
transformation or when the data are too complex.The data displayed in Fig.
35 exemplify the latter circumstance.

Figure 35 is a complicated data display that easily can be handled using
multiple regression procedures with dummy variables.Yet the data can also
be approximated by simple linear regression techniques using three separate
regression functions (see Fig. 36).Here:

ŷa covers the range xa; b0 ¼ initial a value when x ¼ 0;
b1 ¼ slope of ya over the xa range

ŷb covers the range xb; b0 ¼ initial b value, when x ¼ 0;
b1 ¼ slope of yb over the xb range

ŷc covers the range xc; b0 ¼ initial c value, when x ¼ 0;
b1 ¼ slope of yc over the xc range
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FIGURE 35 Complex data.

FIGURE 36 Piecewise regression functions.
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A regression of this kind is rather simple to perform, yet is time
consuming. The process is greatly facilitated by use of a computer while
consulting certain technical texts [26,33,35,36].

The researcher can always take each x point and obtain a t-test
con¢dence interval, and this is often the course chosen. Although from a
probability perspective, this is not correct, from a practical perspective it is
easy, useful, and more readily understood by audiences.

B. Comparison of Multiple Simple Linear Regression
Functions

There are many times when a researcher would like to compare multiple
regression function lines. A researcher can construct a series of 95%
con¢dence intervals for each of the ŷ values at speci¢c xi values. If the
con¢dence intervals overlap, from regression line A to regression line B, the
researcher simply states that no di¡erence exists; if the con¢dence intervals
do not overlap, the researcher states that the y points are signi¢cantly
di¡erent from each other at a (see Fig. 37).

FIGURE 37 Nonoverlappingconfidenceintervals.Note: If the confidenceintervalsof
ŷa and ŷb overlap, the ŷ values on a specific x value are considered equivalent at a.
Notice that the confidenceintervalsin this figuredonotoverlap, so the tworegression
functionsare considered to differat a.
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When a researcher must be more accurate and precise in deriving con-
clusions, a more sophisticated procedure is necessary.Using the 1� a con-
¢dence interval approach, the 1� a con¢dence interval (CI) is not 1� a in
probability.Moreover, the CI approach does not compare rates (b1) or inter-
cepts (b0) but merely indicateswhether the y values are the same or di¡erent.
Hence, although the con¢dence interval procedure certainly has a place
in describing regression functions, it is ¢nite. There are other possibilities
(see Fig. 38).

FIGURE 38 Other possible comparisonsbetween regression lines.
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C. Evaluating Two Slopes (b1a and b1b) for Equivalence in
Values

At the beginning of this chapter,we learned to evaluate b1 to ensure that the
slope was not 0. Now we will expand this process slightly to compare two
slopes, b1a and b1b.

The test hypothesis for a two-tail test will be:
H0: b1a ¼ b1b

HA: b1a 6¼ b1b

However, the test can be adapted to perform one-tail tests too.

The statistical procedure is an adaptation of Student’s t-test.

tc ¼ b1a � b1b
Sba�b

ð66Þ

where:

b1a ¼ slope of regression function a ðŷaÞ
b1b ¼ slope of regression function b ðŷbÞ

S2
ba�b ¼ S2

pooled
1

ðna � 1ÞS2
xa

þ 1
ðnb � 1ÞS2

xb

" #
where:

S2
xi ¼

Pn
i¼1

x2i �
Pn
i¼1

xi

� �2

=n

n� 1

S2
pooled ¼

ðna � 2ÞMSEa þ ðnb � 2ÞMSEb

na þ nb � 4

MSEa ¼
Pn
i¼1
ðyia � ŷaÞ2

n� 2
¼ SSEa

n� 2

Lower tail Upper tail

H0: b1a � b1b H0: b1a � b1b
HA: b1a < b1b HA: b1a > b1b
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MSEb ¼
Pn
i¼1
ðyib � ŷbÞ2

n� 2
¼ SSEb

n� 2

This procedure can easily be used in the standard six-step procedure.

Step1. Formulate hypothesis (one of three):

Step 2. State the a level.
Step 3. Write out the test statistic,which is:

tc ¼ b1a � b1b
Sba�b

where:

b1a¼ slope estimate of the ath regression line
b1b¼ slope estimate of the bth regression line

Step 4. Determine hypothesis rejection criteria used on one of the
three options:

For a two-tail test (Fig. 39):
Decision rule: If jtc j 6¼ tt ¼ ta=2;½ðna�2Þþðnb�2Þ�; reject Ho at a:
For a lower tail test (Fig. 40)
Decision rule: If : tc < tt ¼ t�a;½ðna�2Þþðnb�2Þ�; reject Ho at a:
For an upper tail test (Fig. 41)
Decision rule: If : tc > tt ¼ ta;½ðna�2Þþðnb�2Þ�; reject Ho at a:
Step 5. Perform statistical evaluation to determine tc.
Step 6. Make decision based on comparing tc and tt.
Let us look at an example.
Example 2. Suppose the researcher exposed agar plates inoculated

with Escherichia coli to forearms of human subjects that were treated with
an antimicrobial formulation, as in an agar patch test [1]. In the study, four

Two tail Lower tail Upper tail

H0: b1a ¼ b1b H0: b1a � b1b H0: b1a � b1b
HA: b1a 6¼ b1b HA: b1a < b1b HA: b1a > b1b

Two tail Lower tail Upper tail

H0: b1a ¼ b1b H0: b1a � b1b H0: b1a � b1b
HA: b1a 6¼ b1b HA: b1a < b1b HA: b1a > b1b
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plates were attached to each of the treated forearms of each subject. In
addition, one inoculated plate was attached to untreated skin on each fore-
arm to provide baseline determinations of the initial microbial population
exposed. A random selection schema was used to determine the order in
which the plates would be removed from the treated forearms. Two plates
were removed and incubated after exposure for15 minutes to the antimicro-
bially treated forearms, two were removed and incubated after 30 minutes,
two were removed and incubated after 45 minutes, and the remaining two
were removed and incubated after 60 minutes. Two test groups of ¢ve

FIGURE 39 Step 4, decision rule for two-tail test.

FIGURE 40 Step 4, decision rule for lower tail test.

FIGURE 41 Step 4, decision rule for upper tail test.
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subjects each were used, one for antimicrobial product A and one for
antimicrobial product B, for a total of 10 subjects. The agar plates were
removed from 24 hours of incubation at 35�C� 2�C and the colonies
counted.The duplicate plates at each time point for each subject were aver-
aged to provide one value for each subject at each time.

The ¢nal average raw data provided the results shown inTable 12.The
experimenter,we assume, has completed the model selection procedures, as
previously discussed, and the linear regression models used are adequate.
Figure 42 portrays the ŷ (regression line) as well as the actual data at a 95%
con¢dence interval for product A. Figure 43 portrays the same data for
product B.

Hence, using the methods previously discussed throughout this chap-
ter, the following data have been collected.

The experimenter wants to compare the regression models of products
A and B. She or he would like to know not only the log10 reduction values at
speci¢c times, as provided by each regression equation, but also whether the
death kinetic rates (b1a and b1b) � the slopes� are equivalent. The six-step
procedure is used in this determination.

Product A Product B

Regression
equation:

ŷa ¼ 5:28� 0:060x ŷb ¼ 5:56� 0:051x
r2 ¼ 0:974 r2 ¼ 0:984
MSE ¼ SSE

n�2 ¼ 0:216 MSE ¼ SSE
n�2 ¼ 0:145

na ¼ 25 nb ¼ 25

SSE ¼
Pn
i¼1
ðyi � ŷÞ2 ¼ 1:069 SSE ¼

Pn
i¼1
ðyi � ŷÞ2 ¼ 0:483

TABLE12 Final Average Raw Data

Exposure time
inminutes (x)

Log10 averagemicrobial counts
(y), product A

Log10 averagemicrobial counts
(y), product B

Subject 5 1 3 4 2 1 3 2 5 4

0 (baseline
counts)

5.32 5.15 5.92 4.99 5.23 5.74 5.63 5.52 5.61 5.43

15 4.23 4.44 4.18 4.33 4.27 4.75 4.63 4.82 4.98 4.62
30 3.72 3.25 3.65 3.41 3.37 3.91 4.11 4.05 4.00 3.98
45 3.01 2.75 2.68 2.39 2.49 3.24 3.16 3.33 3.72 3.27
60 1.55 1.63 1.52 1.75 1.67 2.47 2.40 2.31 2.69 2.53
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FIGURE 42 Linear regressionmodel (product A).

FIGURE 43 Linear regressionmodel (product B).
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Step 1. Formulate the hypothesis. Because the researcher wants to
know whether the rates of inactivation are di¡erent, a two-tail test
is performed.
H0: b1A ¼ b1B (inactivation rates of products A and B are the same)
HA: b1A 6¼ b1B (inactivation rates of products A and B are di¡erent)

Step 2. Select a level.The researcher selects an a level of 0.05.
Step 3.Write out the test statistic.

tcalculated ¼ b1a � b1b
Sba�b

S2
ba�b ¼ S2

pooled
1

ðna � 1ÞS2
xa

þ 1
ðnb � 1ÞS2

xb

" #

Sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

x2i �
Pn
i¼1

xi

� �2

=n

n� 1

vuuut
S2
pooled ¼

ðna � 2ÞMSEa þ ðnb � 2ÞMSEb

na � nb � 4

MSE ¼ S2
y ¼

SSE
n� 2

¼
Pn
i¼1
ðyi � ŷÞ2

n� 2
¼
Pn
i¼1

E2

n� 2

Step 4. Decision rule (Fig. 44).
ttabled ¼ tða=2;naþnb�4Þ; using Table A.2, Student’s t table.

¼ tð0:05=2;25þ25�4Þ ¼ tð0:025;46Þ ¼ 2:021

If j tcalculated j> 2.021, rejectH0.

Step 5. Perform calculation of tc.

S2
ba�b ¼ S2

pooled
1

ðna � 1ÞS2
xa

þ 1
ðnb � 1ÞS2

xb

" #

S2
pooled ¼

ðna � 2ÞMSEa þ ðnb � 2ÞMSEb

na þ nb � 4

¼ ð25� 2Þ0:216þ ð25� 2Þ0:145
25þ 25� 4

¼ 0:1805
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S2
xa ¼

Pn
i¼1

x2i �
P

xi
� �2

=n

n� 1
; where

Xn
i¼1

x2i ¼ 33750

and
Xn
i¼1

xi

 !2

¼ ð750Þ2 ¼ 562; 500

S2
xa ¼

33750� ð562; 500=25Þ
25� 1

¼ 468:75

Sxa ¼ 21:65

S2
xb ¼

Pn
i¼1

x2i �
Pn

i¼1;xi

 !2

=n

n� 1
where;

Xn
i¼1

x2i ¼ 33750 and

Xn
i¼1

xi

 !2

¼ ð750Þ2 ¼ 562; 500

S2
xb ¼ 468:75 and Sxb ¼ 21:65

S2
ba�b ¼ S2

pooled
1

ðna � 1ÞS2
xa

þ 1
ðnb � 1ÞS2

xb

" #

¼ 0:1805
1

ð25� 1Þð468:75Þ þ
1

ð25� 1Þð468:75Þ
� �

S2
ba�b ¼ 3:21� 10�5

FIGURE 44 Step 4, decision rule.
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Sba�b ¼ 0:0057

For b1a ¼ �0:060 and b1b ¼ �0:051

tc ¼ b1a � b1b
Sba�b

¼ �0:060� ð�0:051Þ
0:0057

¼ �1:58

Step 6. Because j tc j ( j �1.58 j )<Ftabled (2.021),one cannot reject the
null (H0) hypothesis at a ¼ 0.05.We cannot conclude that the slopes
(b1) are signi¢cantly di¡erent from each other at a¼ 0.05.

D. Evaluating the Two Y Intercepts (b0) for Equivalence

There are times in regression evaluations when a researcher wants to be
assured that the y intercepts of the two regression models are equivalent.
For example, in microbial inactivation studies, if a researcher is comparing
log10 reductions attributable to antimicrobials directly, the researcher wants
tobe assured that they begin at the same y intercept�have the samebaseline.

Using a t-test procedure, this can be done,with a slight modi¢cation to
what we have already done in determining a 1� a con¢dence interval for b0.

The two separate b0 values can be evaluated as a two-tail test, a lower
tail test, or an upper tail test.

The test statistic used is:

tcalculated ¼ tc ¼ b0a � b0b
S0a�b

S2
0a�b ¼ S2

pooled
1
na
þ 1
nb
þ �x2a
ðna � 1ÞS2

xa

þ �x2b
ðnb � 1ÞS2

xb

" #

where:

S2
x ¼

Pn
i¼1

x2i �
Pn
i¼1

xi

� �2

=n

n� 1

S2
pooled ¼

ðna � 2ÞMSEa þ ðnb � 2ÞMSEb

na þ nb � 4

This test can also be framed in the six-step procedure.
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Step1. Formulate test hypothesis (one of three)

Note: The order of a or b makes no di¡erence; the three hypotheses
could be written in reverse order.

Step 2. State the a.
Step 3. Write the test statistic.

tc ¼ b0a � b0b
S0a�b

Step 4. Determine the decision rule (Fig. 45). For a two-tail test:
H0: b0a ¼ b0b

HA: b0a 6¼ b0b

If jtcj > tt ¼ ta=2;ðnaþnb�4Þ; reject H0 at a:

For a lower-tail test (Fig. 46):

H0: b0a � b0b

HA: b0a < b0b

If tc < tt ¼ t�a;ðnaþnb�4Þ; reject H0 at a:

For upper-tail test (Fig. 47):

H0: b0a � b0b

HA: b0a > b0b

If tc > tt ¼ ta;ðnaþnb�4Þ; reject H0 at a

Step 5. Perform statistical evaluation to determine tc.

Two tail Lower tail Upper tail

H0: b0a ¼ b0b H0: b0a � b0b H0: b0a � b0b
HA: b0a 6¼ b0b HA: b0a < b0b HA: b0a > b0b

Two tail Lower tail Upper tail
H0: b0b ¼ b0a H0: b0b � b0a H0: b0b � b0a
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Step 6. Draw conclusions based on comparing tc and tt.

Let us now work Example 2 where the experimenter wants to compare
the initial populations (times ¼ 0) for equivalence.

Step1. This would, again, be a two-tail test:
H0: b0a ¼ b0b

HA: b0a 6¼ b0b (the initial populations�y intercepts�are not equiva-
lent)

FIGURE 45 Step 4, decision rule for two-tail test.

FIGURE 46 Step 4, decision rule for lower tail test.

FIGURE 47 Step 4, decision rule for upper tail test.
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Step 2. Let us set a at 0.05, as usual.
Step 3. The test statistic is:

tc ¼ b0a � b0b
S0a�b

Step 4. Decision rule (Fig. 48)

tða=2;naþnb�4Þ � tð0:05=2;½25þ25�4�Þ 
 2:021, fromTableA.2, Student’s t table

If jtcj > 2:021; reject H0

Step 5. Perform statistical evaluation to derive tc.

tc ¼ b0a � b0b
Sba�b

b0a ¼ 5:28

b0b ¼ 5:56

S2
0a�b ¼ S2

pooled
1
na
þ 1
nb
þ �x2a
ðna � 1ÞS2

xa

þ �x2b
ðnb � 1ÞS2

xb

" #

S2
x: ¼

Pn
i¼1

x2i �
Pn
i¼1

xi

� �2

=n

n� 1
¼ 33750� ð750Þ2=25

25� 1
¼ 468:75

S2
0a�b ¼ S2

pooled
1
25
þ 1
25
þ 302

24ð468:75Þ þ
302

24ð468:75Þ
� �

FIGURE 48 Step 4, decision rule.
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where:

S2
pooled ¼

ðna� 2ÞMSEa þðnb� 2ÞMSEb

naþ nb� 4
¼ ð25� 2Þ0:216þð25� 2Þ0:145

25þ 25� 4

S2
pooled ¼ 0:1805

S2
0a�b ¼ 0:1805

1
25
þ 1
25
þ 302

24ð468:75Þ þ
302

24ð468:75Þ
� �

¼ 0:0433

S0a�b ¼ 0:2081

tc ¼ 5:28� 5:56
0:2081

¼ �1:35

Step 6. Because jtcj ¼ j� 1:35j < tt ¼ 2:021, one cannot reject H0 at
a¼ 0.05.The baseline values are equivalent.

E. Multiple Regression

Multiple regression procedures are easily accomplished using software
packages such as MiniTab1. However, in much of applied research, they
can become less useful for several reasons: they are more di⁄cult to under-
stand, the cost^bene¢t ratio is often low, and the underlying experiment is
often poorly thought out.

1. More Difficult to Understand

As the variable numbers increase, so does the complexity of the statistical
model and its comprehension. If comprehension becomes more di⁄cult,
interpretation becomes nebulous.

For example, if a researcher has a four- or ¢ve-variable model, trying to
visualize what a fourth or ¢fth dimension represents�would look like�is
impossible. If a researcher works in industry, no doubt his or her job will
soon be in jeopardy for nonproductivity. The key is not that the models ¢t
the data better with an r2 or F test ¢t, it is whether the investigator can truly
comprehend and describe the model’s meaning in nonequivocal terms. In
this author’s view, it is far better to utilize a weaker model (lower r2 or F
value) and understand the relationship between fewer variables than hide
behind a complex model that is applicable only to a speci¢c data set and is
not robust enough to hold up for other data collected under similar
circumstances.
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2. Cost^Benefit Ratio Low

Generally speaking, the more variables, the greater the experimental costs,
and the relative value of the extra variables often diminishes.The developed
model simply cannot produce valuable and tangible results in developing
new drugs, new methods, or new processes with any degree of repeatability.
Generally, this is due to lack of robustness.Acomplexmodel simply does not
hold true if even minute changes occur.

It is far better to control variables�temperature,weight, mixing, £ow,
drying, etc.�than to produce a model in an attempt to account for them. In
practice, no quality control or assurance group is prepared to track a ‘‘four-
dimensional’’ control chart, and government regulatory agencies would not
support them.

3. PoorlyThought-Out Study

It has been my experience that most multiple regression models applied in
research are merely the result of a poorly controlled experiment or process.
When I ¢rst began my industrial career in1981, I headed a solid dosage vali-
dation group. My group’s goal was to predict the quality of a drug batch
before it was made by measuring mixing times, drying times, hardness,
temperatures, tableting press variability, friability, dissolution rates,
compaction, and hardness of similar lots, as well as other variables. Compu-
tationally, it was not di⁄cult; time series and regression model development
were not di⁄cult either. The ¢nal tablet prediction con¢dence interval was
useless. A 500� 50 mg tablet became 500�800 mg at a 95% con¢dence
interval. Remember then, the more variables, the more error.

F. Conclusion

With this said, multiple regression is valuable under certain conditions,
experience being paramount.We will discuss them in the sister volume to
this book,Complex Applied Statistical Designs for the Researcher,which begins
where this book stops.

The applied researcher now has quite an arsenal of parametric meth-
ods at his or her disposal.

518 Chapter 11



12

Nonparametric Statistics

Up to this point,Chaps.1 through11,we have discussed parametric statistics
and have become quite knowledgeable in their applications. Now, we will
focus on nonparametric statistical methods. Parametric statistics, although
generallymore powerful, require thatmore assumptions bemet than donon-
parametric methods. For example, in situations in which the experimenter
has no previous understanding of the data (e.g., has not worked in this area
before), it is not known whether the data are normally distributed or fall
under another distribution. Although increasing the sample size tends to
normalize any distribution, an experimenter is often restrained by a budget
to a small sample size. Nonparametric statistics can be useful here, for they
do not require a normal distribution.Nonparametric statistics are so termed
because they do not utilize parameters, e.g., the mean, the variance, or the
standard deviation.* Instead, the median�midpoint of the data�is gener-
ally utilized.The biggest advantage of using nonparametric statistics is that
they remain valid under very general and limited assumptions [40,41].

There are alsomany timeswhen anexperimenter cannot use ratio scale
data (e.g., 1.237, 156.21) but instead must use ordinal and even nominal data.
Ordinal data, recall, are data that can be ranked and often are of a subjective
nature (e.g., good, average,or bador high,medium,or low).Nominal data are
essentially nonrankable classi¢cation data, consisting of numbers or letters
assigned to particular qualities (e.g., male=female, brown=green, growth=no

*This is not always the case.When we compute the Moses test for dispersion,we will calculate
both the mean and a portion of the variance.
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growth for Staphylococcus aureus, or 1=0). Nonparametric statistics are ap-
plicable to these two types of data,whereas parametric statistics are not.

A number of authors subdivide nonparametric statistics into two
categories: true nonparametric methods and distribution-free procedures
[42, 45]. This work will refer to both as nonparametric statistics without
any distinction between them.

Advantages of nonparametric statistics:

1. Statistical assumptions are minimal, so the probability of using
them improperly is relatively small.

2. The statistical concepts are relatively easy to understand.
3. They can be applied to all data types, including nominal and ordinal

scale data.

Disadvantages: Because nonparametric statistics do not require set
parameters, they generally lack the power of parametric statistics [42^49].
If the null hypothesis is rejected by a parametric procedure, it may not be by
a nonparametric procedure because the latter lacks power. In general, to at-
tain the same power as parametric statistics, nonparametrics require a larger
sample size.This is a de¢nite disadvantage, particularly in pilot studies, be-
cause the researcher will require greater location di¡erences in the sample
medians to detect statistically signi¢cant di¡erences. This requirement,
however, can be partially mitigated by increasing the signi¢cance level (e.g.,
to 0.10 instead of 0.05), a strategy this author uses when looking for potential
new antimicrobial products through small screening studies.

Nonparametric studies also o¡er certain advantages. For example, in
screening studies inwhich a new productmust be distinctly better (e.g., more
e¡ective than a standard), using a nonparametric statistic at a¼ 0.05 (stan-
dard a level) provides insurance against accepting a marginally more e¡ec-
tive product as truly better. If superiority can be demonstrated
nonparametrically, the product is truly better.

The format of this chapter will be to provide a nonparametric statis-
tic�insofar as possible�analogous to each parametric test already dis-
cussed in earlier chapters. We will construct test statistics relative to the
three types of data: nominal, ordinal, and interval.Let us beginwith the non-
parametric statistical methods corresponding to the independent two-sam-
ple Student’s t-test.

I. NOMINAL SCALE (COUNT AND CATEGORY DATA): TWO
INDEPENDENT SAMPLES

In experimental situations where two independent samples are to be
compared and nominal data are to be collected, a particularly useful
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nonparametric method is the 2� 2 chi square (w2) contingency table
test. This method is also called Fisher’s exact test for 2� 2 tables
[40, 41].

The study design requires two independent test conditions�the treat-
ments and the sample groups.Figure1portrays this design.The assumptions
for this test are that:

1. Each sample is selected randomly.
2. The two test groups are independent.
3. Each observation can be categorized asA or B.

The six-step procedure is as follows:

Step1. Formulate hypothesis:

Step 2. Select a level. Note that the two-tail test is a chi square test
and one-tail tests are t-tests.

Step 3. Write the test statistic formula.

Two tail:

w2c ¼
N ðad � bcÞ

ðaþ bÞðc þ dÞðaþ cÞðbþ dÞ ð1Þ

Single tail:

tc ¼
ffiffiffiffi
N
p ðad � bcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðc þ dÞðaþ cÞðbþ dÞp ð2Þ

Two-tail Upper tail Lower tail

H0: A¼B H0: A�B H0: A�B
HA: A 6¼B HA: A>B HA: A<B

FIGURE 1 2� 2 chi square table.

Nonparametric Statistics 521



Step 4. Decision rule.

Step 5. Compute the test statistic.

w2c or tc

Step 6. Make decision to accept or rejectH0 at a.

Example 1: Defective equipment is a problem typically encountered
in nearly all industries. A quality control manager is interested in determin-
ing whether supplier A provides equipment with more defective parts than
does supplier B.Her company bought the lot samples from the two suppliers
shown inTable 1.

The quality control manager has two categories for items in each lot:
usable or defective.A test using the Poissondistribution for rare events could
be used to explore di¡erences between the suppliers, but this 2� 2 test, I
¢nd, also performs well. This process can be structured easily into the six-
step procedure.

Step 1. Formulate hypothesis. In Example 1, the research question is
‘‘are theremore defects coming from supplierA thanB?’’ This can be
written in two ways as a one-tail test.

Two tail Upper tail Lower tail

RejectH0, if RejectH0, if RejectH0, if
w2c ¼ w2tða,1 dfÞ tc > ttða,N�1Þ tc < ttð�a,N�1Þ

TABLE1 Lot Numbers

Supplier A Supplier B

Sample Lot size Defective Sample Lot size Defective

1 100 3 1 300 13
2 700 21 2 513 17
3 221 7 3 250 3
4 53 5 4 910 22

1074 36 1973 55
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Upper tail:

H0: Number of defects from supplier A is less than or equal to
(�) that from supplier B.

HA: Number of defects from supplier A is more than (>) that
from supplier B.

or:
H0:A�B
HA:A>B

Lower tail:

H0: Number of defects from supplier B is greater than or equal
to (�) that from supplierA.

HA: Number of defects from supplier B is less than (<) that
from supplierA.

or:

H0 : B � A
HA : B < A

For this example,we will use the upper tail hypothesis.

Step 2. We will use a¼ 0.05.
Step 3. The decision rule is:

If tc > ttð0:05;N�1Þ; reject H0 at a:

N ¼ 1074þ 1973 ¼ 3047
ttð0:05;3046Þ ¼ 1:645

So, if tc>1.645, rejectH0 at a (Fig. 2).

FIGURE 2 Example 1, step 3.
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Step 4. Write the test statistic.

tc ¼
ffiffiffiffi
N
p ðad � bcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðc þ dÞðaþ cÞðbþ dÞp

a¼ number not defective from supplier A
b¼ number defective from supplierA
aþb¼ total lot size (nondefectiveþdefective), supplier A
c¼ number not defective from supplier B
d¼ number defective from supplier B
cþ d¼ total lot size (nondefectiveþdefective), supplier B
aþ c¼ number not defective from suppliers A and B
bþ d¼ number defective from suppliers A and B

Step 5. Compute test statistic.

tc ¼
ffiffiffiffiffiffiffiffiffiffiffi
3047
p ½ð1038 	 55Þ � ð1918 	 36Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1074 	 1973 	 2956 	 91p ¼ �0:8743

Step 6. Make decision rule. Because tc (�0.8743) 6>tt (1.645), one can-
not rejectH0 at a¼ 0.05.
Supplier A does not provide equipment with proportionately more
defective parts than supplier B.

A. Computer Output

A 2� 2 contingency table can also be computed with statistical software
such asMiniTab1. It is recommended, however, that the researcher perform
all six steps by hand, except step 5, which can be done by computer with

Nondefective Defective

Supplier A a b aþ b
Supplier B c d cþ d

aþ c bþ d N

Nondefective Defective

Supplier A a= 1038 b=36 aþ b=1074
Supplier B c= 1918 d= 55 cþ d= 1973

aþ c= 2956 bþ d= 91 N=3047
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results provided on a printout (Table 2). Because P value¼ 0.382>0.05, one
cannot rejectH0.

Note: This programuses a chi square test for one-tail tests instead of a
t-tabled test. Results are given as a P value and a w2 value.

II. ORDINAL SCALE (DATA THAT CAN BE RANKED): TWO
INDEPENDENT SAMPLES

For ordinal data (or interval data, for that matter), the Mann^Whitney
U-test can be used. The Mann^Whitney U-test, sometimes referred to as
the Mann^Whitney^Wilcoxon test, is the nonparametric equivalent of the
two-sample independent Student’s t-test, and the statistic is used to compare
two independent samples [40,43].

There are several requirements in using this statistic.

1. The data must be at least ordinal, that is, rankable. If interval data
are used, they are reduced to ranked ordinal data.

2. Sampling is conducted randomly.
3. There is independence between the data of the two tested groups.

If the data are paired, there is a better nonparametric statistic to
use.

As with the two-sample independent t-test, upper, lower, and two-tail
tests can be conducted. The Mann^Whitney U-test is based upon ranking.
The sample sizes do not have to be equal, but if there are many ties among
values, adjustment factors should be used.

In short, theMann^WhitneyU-test is statistically powerful and a very
useful alternative to the two-sample independent t-test.

TABLE 2 2� 2MiniTab1ContingencyTable:Expected Counts are Printed BeneathOb-
served Counts

Nondefective Defective Total

Supplier A 1038 36 1074
1041.92 32.08

Supplier B 1918 55 1973
1914.08 58.92

Total 2956 91 3047
Chi square= 0.015 + 0.480 + 0.008

+ 0.261 = 0.764
DF= 1,P value = 0.382
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Let us use the six-step procedure to perform this test.

Step1. Formulate the hypothesis.

Step 2. Select a level.

Step 3. Write out the test statistic to be used.

tc ¼
Xn
i¼1

Ri � nAðnA þ 1Þ
2

ð3Þ

where:
Pn
i¼1

Ri ¼ sum of the ranks of sample groupAor xA

nA ¼ sample size of sample groupA
tc ¼ test statistic calculated

Step 4. Make the decision rule.

Note: Table A.6 (Mann^Whitney table) is used for all determinations
ofM.

Step 5. Compute statistic.

Two tail Upper tail Lower tail

H0 : xA ¼ xB H0 : xA � xB H0 : xA � xB
HA : xA 6¼ xB HA : xA > xB HA : xA < xB

Two tail Upper tail Lower tail

Reject H0 , if Reject H0 , if Reject H0 , if
tC<M(a=2) or
tC>M(1�a=2)
whereM(a=2) is the
tabledMann^Whitney
value atM(a=2;nA ;nB)

tC>M(1�a) tC < M(a)

andM(1�a=2) ¼
nAnB �M(a=2;nA ;nB)

whereM(1�a) ¼
nAnB �MðaÞ

whereM(a) ¼ M(a;nA ;nB)

Two tail Upper tail Lower tail

a=2 a �a
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Step 6. Decision.

Example 2: Suppose a researcher wants to compare the nosocomial
infection rates in hospitals fromtwo separate regions,AandB.The research-
er wants to determine whether they di¡er.Table 3 presents the data obtained
over a speci¢ed1-month period.

Step1. Formulate the hypothesis.This is a two-tail test.

H0 : xA ¼ xB
HA : xA 6¼ xB

where xA¼ hospital region A nosocomial infection rate
xB ¼ hospital region B nosocomial infection rate

Step 2. Select a level.

a¼ 0.05, so a=2¼ 0.025

Step 3. Write out the test statistic ðtcÞ.

tc ¼
Xn
i¼1

Ri � nAðnA þ 1Þ
2

Note that both groups A and B will be ranked, but only A will be
summed. In cases of ties, the sequential values equaling the number of ties
will be summed and divided by the number of ties. For example, suppose va-
lues 7, 8, and 9 were all tied.The same value would be used in slots 7, 8, and 9,
which is (7þ8þ9)=3¼8.

TABLE 3 Data for Example 2

Region A (nA) Region B (nB)

11.3 12.5
15.2 10.6
19.0 10.3
8.2 11.0
6.8 17.0
11.3 18.1
16.0 13.6
23.0 19.7
19.1
10.6
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Step 4. State the decision rule.RejectH0 if:
tc < Mða=2Þ
or tc > Mð1�a=2Þ

where

ðnA ¼ 10Þ
ðnB ¼ 8Þ
Mða=2;nA;nBÞ ¼ Mð0:05=2; 10;8Þ ¼ 18 from Table A.6, using n1 ¼ nA and

n2 ¼ nB.
M1�a=2 ¼ nAnB �Mða=2;nA;nBÞ ¼ 10 	 8� 18 ¼ 62. So, if tc is less than 18

or greater than 62,we rejectHo at a¼ 0.05 (Fig. 3).
Step 5. Compute the test statistic. First ¢nd

Pn
i¼1 RA by ranking both

A and B (Table 4).
Step 6. Because 39.5 is contained in the interval 18 to 62, one cannot

rejectH0 at a¼ 0.05 (Fig. 4).
Let us now computeM1�a andMa to demonstrate both an upper and a

lower tail test. Set a¼ 0.05.

1. Upper tail test
H0 : xA� xB

HA : xA> xB

M1�a¼nAnB�Mða;nA;nBÞ ; whereMð0:05;10;8Þ ¼ 21; fromTable A.6

¼10 	8�21
¼80�21¼59

M1�a¼59

FIGURE 3 Example 2, step 4.
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TABLE 4 RankValues of A and B

xAvalues
xA rank
values xB values

xB rank
values

6.8 1
8.2 2

10.3 3
10.6 4.5 10.6 4.5 (4þ 5)2¼4.5

11.0 6
11.3 7.5 (7þ8)2¼7.5
11.3 7.5

12.5 9
13.6 10

15.2 11
16.0 12

17.0 13
18.1 14

19.0 15
19.1 16

19.7 17

23.0 18

P10
i¼1

RA ¼ 94:5 nA = 10 nB = 8

tc ¼
Pn
i¼1

RA � nA(nAþ1)
2 ¼ 94:5� 10(10þ1)

2

tc¼ 39.5

FIGURE 4 Example 2, step 6.
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So, if tc > 59, rejectH0 at a¼ 0.05.

2. Lower tail test
H0 : xA � xB

HA : xA < xB

Ma ¼ Mða;nA;nBÞ ¼ Mð0:05;10;8Þ ¼ 21; from Table A.6

So, if tc < 21, rejectH0 at a¼ 0.05.

A. Comments

There is an adjustment component to be used with data that contain signi¢-
cant tied values, but a number of authors point out that the adjustment has
little e¡ect unless the proportion of tied values is large [40,41,44].

In cases where the sample size (n1 or n2) is greater than 20, the Mann^
Whitney tables cannot be used. A large sample approximation must be used
in its place [Eq. (4)].

Zc ¼ tc � nAnB=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAnBðnA þ nB þ 1Þ=12p ð4Þ

where

tc ¼
Xn
i¼1

Ri � nAðnA þ 1Þ
2

The ZC calculated value, then, is compared with the Z table values
found in Table A.1, the normal distribution. The procedure is as previously
shown except that Z is substituted for theM values.

B. Computer Program

TheMann^WhitneyU-test is a standard routine in most statistical software
packages.Table 5 is aMini Tab1 version of this.

TABLE 5 Mann^WhitneyTest and C1:Region A,Region B

Region A n¼ 10 Median¼13.250
Region B n¼ 8 Median¼13.050
Point estimate for ETA1�ETA2 is �0.200
95.4 percent CI for ETA1�ETA2 is (�5.400, 5.399)
W¼ 94.5
Cannot reject at alpha¼ 0.05
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III. INTERVAL SCALE: TWO INDEPENDENT SAMPLES

The researcher has two options that work well when testing interval data:
the Mann^Whitney U-test, as previously discussed, and the Moses test
[40]. The Mann^Whitney U-test is applicable for median comparisons
and, in this researcher’s experience, is a powerful option. The Moses test,
on the other hand, compares on the basis of s (variability) or standard
deviation equivalence. And it is important to remember that the Moses
test is not applicable to nominal or ordinal data, only to interval data. I
recommend that researchers use both of these tests to obtain intuitive
experience and knowledge about which better describes their data. It is
critical, however, that this endeavor be used not for ‘‘data mining’’ but for
learning.

Because the Moses test does not assume equality in location para-
meters, it has wider application than other nonparametric tests. Also, it is
useful when one wishes to focus on variability.The Moses test requirements
are that:

1. Data collected are from two independent populations, A and B.
2. Data from each population are collected randomly.
3. Population distributions are interval data, having the same shape.

Both two-tail andone-tail tests canbe conducted,and both approaches
require that the xA and xB samples both be divided into several equal-size
subsamples.The sum of the squared deviation values is then found for each
subsample set.The number of values, k, in each subsample should be close to
but not more than 10. The Mann^Whitney U procedure is then applied to
these values for the results.
The six-step procedure can be used for this test.

Step 1. Formulate the hypothesis.

Step 2. Select the a level.
Step 3. Write out the test statistic.

tc ¼
XSA
i¼1

Ri � SAðSA þ 1Þ
2

ð5Þ

Two tail Upper tail Lower tail

H0 : sA ¼ sB H0 : sA � sB H0 : sA � sB
HA : sA 6¼ sB HA : sA > sB HA : sA < sB
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where SA¼ number of subgroups in groupAPSA
i¼1Ri ¼ sum of the ranks assigned to the sums of

squares values computed for the SA subgroups
Step 4. Make the decision rule.

Step 5. Compute statistic.
Step 6. Conclusion.

Example 3: In the pharmaceutical arena, a quality control technician
measured the dissolution rates of 50-mg tablets produced by two di¡erent
facilities.

The technician wanted to know whether they di¡ered in variability
when dissolved in a solution at pH 5.2 held at 37�C in a water bath. Table 6
presents the dissolution rates in minutes of the tablets randomly sampled
from each tablet press.

Two tail* Upper tail Lower tail

Reject H0, when RejectH0, if RejectH0, if
tc < M(a=2;SA;SB) or
tc > M(1�a=2) ¼

SASB �M(a=2;SA ;SB)

tc > M(1�a) ¼
SASB �M(a;SA;SB)

tc < M(a) ¼ M(a;SA;SB)

*Use the tabledMann-Whitney value forMwhere nA¼SA and nB¼SB inTable A.6

TABLE 6 Dissolution Rates in Minutes

n Facility A Facility B

1 2.6 3.2
2 2.9 3.2
3 3.1 3.0
4 2.7 3.1
5 2.7 2.9
6 3.2 3.4
7 3.3 2.7
8 2.7 3.7
9 2.5
10 3.3
11 3.4
12 2.5
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Step 1. Formulate the hypothesis.The researcher will use a two-tail
test to detect a di¡erence.

H0 : sA ¼ sB The variability of rates of dissolution of tables is
the same for facilityA and facility B.

HA : sA 6¼ sB There is a signi¢cant di¡erence between the
facilities in variability of dissolution rate.

Step 2. The researcher will use a¼ 0.05, or a =2¼ 0.025.
Step 3. The test statistic is:

tc ¼
XSA
i¼1

Ri � SAðSA þ 1Þ
2

Step 4. In this experimental statistical procedure, it is better, but not
absolutely necessary, to keep SA and SB equal in size.
Here SA ¼ number of subgroups in population A, and SB ¼ number
of subgroups in population B.Let us use k¼ 4 samples per subgroup
for a total of SA ¼ 3 (nA ¼3 for Table A.6) subgroups and SB ¼ 2
(nB ¼2 for Table A.6) subgroups. If SB ¼ 9, instead of 8, the
researcher would merely drop one xB value by random selection.

Mða=2;SA;SBÞ ¼ Mða=2;n1;n2Þ; for using Table A:6;¼ Mð0:05=2;3;2Þ ¼ 0

Mð1�a=2Þ ¼ SASB �Mða=2;SA;SBÞ ¼ 3 	 2� 0 ¼ 6

If tc is< 0 or> 6, the researcher will rejectH0 at a ¼ 0.05 (Fig. 5).
Step 5. Performanalysis. First, randomly sample values, k, for each S

group. Then ¢nd the means of the subgroups to ¢nd the sum of
squares.

FIGURE 5 Example 3, step 4.
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Next, rank the sums of squares of xA and xB, SSxA and SSxB , and sum the
ranks for SSxAð¼

P
riÞ.

Next, compute tc :

tc ¼
XSA
i¼1

Ri � SAðSA þ 1Þ
2

tc ¼ 10� 3ð4Þ=2
tc ¼ 10� 6

tc ¼ 4

Sub sample xA �xxA

Sumof
squares(SS)¼

(SSxA Þ ¼P
xAi � �xxA
� �2

1 3.2 2.5 3.1 2.7 2.88 ð3:2� 2:88Þ2+
ð2:5� 2:88Þ2+
ð3:1� 2:88Þ2+
ð2:7� 2:88Þ2 ¼ 0:33

2 2.9 3.3 2.7 3.4 3.10 ð2:9� 3:10Þ2
+ . . .+
ð3:4� 3:10Þ2 ¼ 0:33

3 2.7 3.3 2.5 2.6 2.78 ¼ 0.39

Sub sample xB �xxB Sumof
squares(SS) ¼
(SSxB Þ ¼P

xBi � �xxB
� �2

1 3.0 3.1 2.7 3.2 3.00 ¼ 0.14
2 3.4 2.9 3.7 3.2 3.30 ¼ 0.34

Sum of squares
SSxA Ri

Sumof squares
SSxB Ri

0.33 2.5 0.14 1
0.33 2.5 0.34 4
0.39 5P

Ri ¼ 10
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Step 6. Because tc =< 0 and => 6,we cannot rejectH0 at a ¼ 0.05. There
is no signi¢cant di¡erence in the variability of the dissolution rates
of the 50-mg tables from facilities A and B.

A. Comments

1. When interval data are used and the researcher wants to evaluate
di¡erences in themedians, she or he should use theMann^Whitney
U-test directly.

2. However, if the researcher desires to evaluate variability�disper-
sion� di¡erences, theMoses test should be used.

3. In cases of ties for the Moses test, as with the Mann^Whitney
U-test, they will generally will not have undue in£uence, so a cor-
rection factor is not really necessary.

IV. NOMINAL SCALE: TWO-SAMPLE RELATED OR
PAIRED DATA

The McNemar statistic is probably the most useful for evaluating count or
categorydata for two related samples.There aremany times in researchwhen
paired data fall into one of two categories � for example, yes=no, 0=1, survi-
ved=did not survive, positive=negative, reacted=did not react, or before=
after.

Recall that the objective in paired studies is to reduce variability
among the test objects or items to increase the statistical power and e⁄-
ciency of the evaluation. The pairing is done for variables such as weight,
height, organ function, microbial species strain, or lot numbers to decrease
the random variability in the data. Also, a paired test can be constructed
where individual subjects are both the control and the test object. Caution
should be used with this strategy, however, to ensure that environmental or
historical changes that may a¡ect the‘‘external validity’’of the study are con-
trolled and accounted for.This type of error can creep inwhen a change over
time occurs, for example, between conditions for the baseline and test proce-
dures that is not directly related to the test proposition but biases the data.

The McNemar test requires that the researcher employ two matched
groups and measure two outcome responses.

A. Assumptions

1. The data consist of n pairs of test items, such as pairs of subjects.
The paired items must be related or similar in a way relevant to
the test proposition.

2. The measurement scale is nominal.
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3. The matched pairs are independent of other pairs.When each sub-
ject is his or her own control, the subjects must be independent of
one another.

The McNemar test is exclusively a two-tail test (Table 7). The basic
model of the McNemar test is that of comparing two groups (xA and xB) un-
der two conditions (0 and1) tomeasure proportions of items or subjectswith
the test characteristics of interest.HereP1 is the proportion of test itemswith
the characteristics of interest under one condition andP2 is the proportion of
test items with the characteristics of interest under the other condition.

TheMcNemar test formula is:

ZC ¼ B� Cffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C
p ð6Þ

where

Bþ C � 10 for normal distribution to apply

P1 ¼ Aþ B
N

P2 ¼ Aþ C
N

P1 � P2 ¼ Aþ B
N
� Aþ C

N
¼ B� C

N
or the proportion difference

The six-step procedure can easily be applied to this test procedure.

TABLE 7 McNemarTest

Classification of xA

xA ¼ 0 xA¼ 1 Total

Classification of xB xB ¼ 0
xA¼ 0

A
xA¼1

B A+B
xB¼ 0 xB¼ 0

xB ¼ 1
xA¼ 0

C
XA¼1

D C+D
xB¼1 xB¼1

Total A+C B+D N

N¼ total numberofmatched pairs (each xAxB pair ismatched).
A¼ condition 0 for xA and xB.
B¼ condition 1 for xA and 0 for xB.
C¼ condition 0 for xA and1 for xB.
D¼ condition 1 for xA and xB.
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Step1. State hypothesis in a two-tail format.
H0 : P1 ¼ P2 Treatment condition has no e¡ect.
HA : P1 6¼ P2 Treatment condition has an e¡ect.

Step 2. Specify a level.
Step 3. Write test statistic.

ZC ¼ B� Cffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C
p for normal distribution

Step 4. Write out the test statistic (Table 8).
Step 5. The null hypothesis is rejected ifZc > Za=2 (Table A.1normal
distribution).

Step 6. State the conclusion.

Example 4: A researcher admits 40 individuals into a skin irritation
study.The subjects begin the study by having their hands scored visually by a
dermatologist,where no irritation ¼ 0 and irritation ¼ 1. Each subject per-
forms ¢ve applications of a skin-conditioning lotion product and is then
evaluated for bene¢cial change in skin condition. In this study, the subjects
serve as their own controls (Table 9).

Step1. Formulate hypothesis.

H0: Before product application ¼ after product application.
HA: Before product application 6¼ after product application.

Step 2. Specify a .Let us set a at 0.05.
Step 3. Write out the test statistic.

Zc ¼ B� Cffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C
p

TABLE 8 Step 4,Test StatisticTable

Condition 1 Total

Condition 2 A B A+B
C D C+D

Total A+C B+D N
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Step 4. Decision rule.

If jZcj > Zt , rejectH0 at a ¼ 0.05.
If jZcj > Ztð0:05=2Þ ¼ 1:96 (from normal Z table), rejectH0 at a ¼ 0.05.

Step 5. Compute statistic.

Zc ¼ B� Cffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C
p ¼ 2� 23ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 23
p ¼ �21

5
¼ �4:20

Step 6. Because jZcj ¼ j4:20j > 1:96, rejectH0 at a ¼ 0.05.There is a
di¡erence between treatments (pretreatment=posttreatment). The
negative value here shows that the hands improved with use of the
lotion.

V. ORDINAL SCALE: TWO-SAMPLE RELATED OR PAIRED
DATA

The sign test for two paired samples is particularly useful when the measure-
ment data are ordinal scale. Within each pair of data, the researcher can
determine only which datum is larger than another that is ranked. If themea-
surement scale is interval, the researcher is advised to use the Wilcoxon
matched-pair test.

The sign test for two paired samples is applicable for two-tail or one-

TABLE 9 Skin Irritation Studywith 40 Subjects

Before product application

Irritated Not irritated

After product application Irritated 12 A 2 B 14A+B
Not irritated 23 C 3 D 26C+D

35 A+C 5 B+C 40

A=number of subjects admitted into the study with irritated hands that were still irritated
after the study.

B=number of subjects admitted into the study with nonirritated hands that became irritated after
the treatment.

C=numberof subjectswith irritated handsupon entering the study that improvedwith treatment
D=number of subjects admitted into the study with nonirritated hands that did not become

irritated in the study.
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tail evaluations.The assumptions for the sign test include:

1. The data consist of n pairs of measurements, xA and xB. Each xA xB
pair ismatched according to in£uencing variables such as lot num-
ber, age,weight, or sex.

2. The n pairs of xA xBmeasurements are independent of one another.
3. The measurement scale is ordinal.
4. The data distribution is continuous.

The concept of the sign test is very simple, consisting of working only
with þ and� signs.Given that the null hypothesis is true, there should be as
many þ signs as there are� signs for the sample di¡erences.

In performing this test, the six-step procedure is amenable.

Step1. Specify hypothesis.
Two-tail

H0: p(þ ) ¼ p(�) Proportion of þ signs is equivalent to
that of� signs.

HA: p(þ ) 6¼ p(�) Proportion of þ signs is not equivalent
to that of� signs.

Upper tail
H0: p(þ ) � p(�)
HA: p(þ ) > p(�) Proportion of þ signs is larger than pro-

portion of� signs.
Lower tail

H0: p(þ )� p(�)
HA: p(þ ) < p(�) Proportion of þ signs is less than propor-

tion of� signs.
Step 2. Specify a level.
Step 3. Write out test formula. The sign test is a special case of the

binomial test from elementary statistics. The signi¢cance test is
dependent upon the formula.

PðT � t j n; pÞ ð7Þ
or PðT � t j n; 0:50Þ since P generally will be 0.50
where P ¼ probability of event (generally 0.50)

T ¼ the random variable (the number of þ signs of interest
underH0)

t ¼ the critical value of T from the binomial table (Table G)
tc ¼ the observed number of þ outcomes from the sample set
n ¼ sample size

Note: Ties are dropped from the evaluation; an n is dropped by 1 for
each tied pair.
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Step 4. Decision rule.

Step 5. Perform calculations.
Step 6. Conclusion.

Example 5: In a preference evaluation of alcohol lotion hand cleans-
ers, participants received two formula types, A and B. The investigator
wanted to know whether formulaA is perceived as ‘‘cooler to the touch’’ than
formula B.One type was applied to the back of one hand randomly selected
and the other to the back of the other hand, simultaneously by two techni-
cians. Subjects responded which product felt cooler, that on the left or right
hand. The study was double-blinded and not decoded until the evaluation
was ¢nished.Ties were dropped from the study.

The data was coded:

þ , if the subject preferred formula A
�, if the subject preferred formula B

We use the six-step procedure:

Step1. State hypothesis.
Upper tail

H0: p(þ )� p(�), or product A perceived as no cooler than B
HA: p(þ )> p(�), or product A perceived as cooler than B

Step 2. Set a level. Let us specify a as 0.10 for this one-tail test.
Step 3. Write out the test formula.

tc ¼ number of þ signs for this test
Step 4. Decision rule. We must ¢nd the critical value for the sign

test from the binomial table (Table A.7), P(T�n � t j n, 0.50)� a,
where n ¼ 10, and p ¼ 0.5 at a ¼ 0.10. FromTable G, the binomial

Two tail Upper tail Lower tail

Reject H0, when RejectH0, if RejectH0, if

P(T4 t)jn; 0:50Þ4a=2 or

P(T5 n� t)jn; 0:50)4a=2

P(T5 n� t)jn; 0:50)4a P(T4 t)jn; 0:50)4a

Data results

Subject 1 2 3 4 5 6 7 8 9 10
+ + + � + + � � + +
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distribution table, t ¼ r ¼ 3 at a � 0.1172, and n�t ¼ 10�3¼7. If
the number of þ outcomes is seven or greater, the H0 hypothesis is
rejected at a ¼ 0.1172, so P(T� 7 j10, 0.5)� 0.1172.

You will note that the value of a is 0.1172. Because the binomial table
deals with discrete t values (the r values, in the binomial tables), 1, 2, 3 . . . r,
the a level is not speci¢cally 0.05, 0.10, etc. Hence, the researcher must se-
lect the value closest to the speci¢ed a level and formulate the decision
rule.

Note: If this had been a two-tail test at a ¼ 0.10, a=2 ¼ 0.05, then

PðT � t j 10; 0:50Þ � 0:05 
 PðT � 2 j 10; 0:50Þ � 0:0439 and

PðT � n� t j 10; 0:50Þ � 0:05 
 PðT � 8 j 10; 0:50Þ � 0:0439:

If tc � 8 or tc� 2, theH0 hypothesis is rejected at a ¼ 0.0439 þ 0.0439
¼ 0.0878.
If this had been a lower tail test at a ¼ 0.10, then

PðT � t j 10; 0:50Þ � 0:10 ¼ PðT � 3 j 10; 0:50Þ � 0:1172:

Step 5. Calculate the test statistic.
tc¼ the number of þ signs,which is 7
Step 6. Conclusion.We conclude that, given we have seven þ signs

for this test, H0 is rejected at a ¼ 0.1172. There is strong evidence
that product A‘‘feels’’cooler than product B.

The sign test can be used on ‘‘stronger’’data, too. Suppose the investi-
gator matched pairs of subjects in terms of blood serum levels of penicillin
(mg=dL) following use of penicillin tablets, A and B, of the same strength.
The collected data are presented inTable 10.

The researcher would conduct the evaluation using the six-step proce-
dure, as before. The numerical data are easily reexpressed in the þ =� for-
mat, where þ denotes a subject using tablet Awho showed a higher serum
level of penicillin than the matched subjects who used tablet B.

TABLE10 Example 5 Data

n 1 2 3 4 5 6 7 8 9 10 11

Tablet A (þ ) 53 59 38 49 52 96 49 79 48 72 57
Tablet B (�) 21 28 39 51 53 92 53 85 55 65 63
Higher valueþor� þ þ � � � þ � � � þ �

Here tc¼ 4¼ numberofþsigns.
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The sign test for ordinal data is simple to use.Although this test is often
considered a‘‘quick and dirty’’one, this researcher has found it exceptionally
useful as long as a meaningful construction of test pairs is conscientiously
performed.

Many computer software packageshave this routine.Table11shows the
MiniTab1 version with the numerical data. First, subtract sample group B
from sample groupA.

VI. INTERVAL SCALE: TWO-SAMPLE RELATED OR
PAIRED DATA

TheWilcoxon matched-pairs signed-ranks statistic is a very useful and pop-
ular nonparametric statistic for evaluating two related or paired samples
when the collected data are interval scale. As with the two-sample matched-
pair t-test of parametric statistics, theWilcoxon test converts the two sam-
ples, xA and xB, to one sample,which we label ‘‘D’’ for di¡erence.

Di ¼ xAi � xBi for i ¼ 1; 2; . . . n ð8Þ
The test is then performed on these sample value di¡erences.

A. Assumptions

1. The data consist of n values ofDi,whereDi ¼ xAi � xBi .Each pair of
measurements,xAi andxBi , is takenonthesamesubject (e.g.,before=
after, pre=post) or on subjects that have been paired meaningfully
with respect to important but nonmeasured variables (e.g., sex,
weight,organ function).

2. The sampling of each pair, xAi and xBi , is random.
3. The di¡erences (Di) between each pair represent a continuous ran-

dom variable instead of discrete variables.This, in theory, is a vari-
able that potentially has an in¢nite number of trailing values to the
right of a decimal point (e.g., 1.379000...). The level of a drug mea-
sured from the blood exempli¢es a continuous scale. However, the

TABLE11 SignTest for Median:Numeric

SIGNTESTOFMEDIAN¼ 0.00000 VERSUSNOT¼ 0.00000

N BELOW EQUAL ABOVE P MEDIAN
C1 11 7 0 4 0.5488 �1.000
MTB>
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assumption of di¡erences representing a continuous variable is
often violated with little practical e¡ect. For example, the number
of bacteria or viruses remaining on the hands after an antimicro-
bial treatment regimen is discrete. That is, 0.031 of a bacterium is
meaningless.Yet, numbers of bacteria or viruses can be treated as
a continuous variable with no harm because one is usually dealing
with large numbers of discrete values that approximate a continu-
ous distribution.

4. EachDi is independent of all otherDis.
5. TheDis are at least interval scale.
6. TheDis have a symmetrical distribution.That is, the data to the left

and right of a constant, usually the median (or mean), mirror each
other.With absolute symmetry of distribution, as we recall from
parametric statistics, the median equals the mean value. That is,
they are the same value.

TheWilcoxon matched-pairs test can be used for both two-tail and one-tail
tests and the test procedure is straightforward.

First, the signed value di¡erence, Di, of each xA and xB data set is
obtained.

Di ¼ XAi � XBi

Second, the absolute values, jDij, are ranked from smallest to largest.
Finally, the original signs from Di ¼ XAi � XBi are reinstated, and the posi-
tive ranks (Rþ ) and the negative ranks (R�) are summed. Depending
upon the direction, upper or lower tail, one merely sums the Rþ or R�
values to derive theWC value and compares that value with theWilcoxon
table value,Wt (d in Table A.8), for a speci¢c signi¢cance level. The Wil-
coxon Table A.8 has one- and two-tail options and requires the n value
(number of Di values) and the d value (corresponding to the desired a
value), which is compared with theWC value (the sum of the Rþ or R�
values). The tabled values can be used for a number of Di values up to n ¼
25.For n larger than 25, a correction factor can be used to enable one to use
the normal distribution.

The correction factor is:

ZC ¼ WC � ½nðnþ 1Þ�=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þð2nþ 1Þ=24

p ð9Þ

where n ¼ number ofDi values
WC¼ sum of ranks of the negative or positive R values, depend-

ing on direction of the test
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B. Ties

There are two types of ties.The ¢rst occurs when speci¢c xA , xB values to be
paired are equal so the Di is 0. All pairs of xAi ¼ xBi are dropped from the
analysis, and n is reduced 1 for each pair dropped. In the other case, two or
more Dis in the same sample group are equal.These ties receive the average
rank value.This researcher has not found the tie correction formulas to be of
much practical value.

Step1. Specify hypothesis.

Step 2. Specify the a level.Use a=2 for two-tail tests for a speci¢c level
of a , as always, and a for single-tail tests.

Step 3. Write out the test statistic to use. For small sample sizes
(n � 25,which is the number ofDi values), theWilcoxon table (Table
A.8) can be used directly, using merely the sum of the ranks ofWCþ
or WC� values, depending on the direction of the test. For larger
samples, the correction factor must be used.That is:

ZC ¼ WC � ½nðn� 1Þ�=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þð2nþ 1Þ=24p ð9Þ

Step 4. Specify the decision rule.

Step 5. Perform the calculation.
Step 6. Formulate the conclusion.

Two tail Upper tail Lower tail

H0 : xA � xB ¼ 0 or xA ¼ xB H0 : xA 4 xB H0 : xA 5 xB

HA : xA � xB 6¼ 0 or xA 6¼ xB HA : xA > xB HA : xA < xB

Two tail Upper tail Lower tail

The test is dependent
on the sumof the
ranks (WC),
þ or�, using
whichever is the
smaller. IfWC is
equal to or less
than the d tabled
value at a, reject H0 at a

The test uses the sum
of the ranks of the
negative values,WC�.
IfWC� is
equal to or smaller
than the d tabled
value at a, reject H0.

The test uses the sum
of the ranks (WC) of
the positive values,
WC + . IfWC is equal
to or smaller than
the d tabled valueat the
desired a, reject H0.
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Example 6: A researcher in a skin care laboratory wants to evaluate a
dermatological lotion’s ability to reduce atopic dermatitis of the hands asso-
ciated with standard work-related tasks of healthcare workers (e.g., skin ex-
posure to heat and cold, to skin cleansers, towearing surgical or examination
gloves over periods of time, and to repeated washing). Prior to the use of the
test lotion, the researcher used aVisioscan device tomeasure scaliness of the
skin of the hands of 10 randomly selected healthcare workers. This repre-
sented the baseline measurement ðxAÞ. After a 24-hour period of treatment
during which the test dermatological lotionwas used three times, the skin on
the hands of the subjectswas again measured ðxBÞ for degree of scaliness.The
study was an in-use study inwhich healthcareworkerswent about their usual
activities in a normal manner.

On the basis of the before-and-after Visioscan data (Table 12), the re-
searcher wants to know whether the treatment was e¡ective in reducing skin
scaliness at an a ¼ 0:05 level of con¢dence.

The six-step procedure will work well here.

Step 1. Formulate hypothesis. The researcher wants to determine
whether the lotion treatment reduced skin scaliness. For that to
occur, the xB values must be signi¢cantly lower than the xA values.
Hence, this is an upper tail test (HA : xA > xB or xA � xB > 0Þ.

H0 : xA � xB

HA : xA > xB The treatment reduces the scaliness of the skin.
For purposes of this analysis, the hypotheses are restated as:

H0 : Di � 0

HA : Di > 0 Di¡erence greater than zero (upper tail)

Step 2. Specify a. Let us set a at 0.05.

TABLE12 Visioscan Data for Degreeof Skin Scaliness,Processed foraWilcoxon Ana-
lysis

Subject 1 2 3 4 5 6 7 8 9 10

Baseline 0
(pretreatment) (xA)

54 57 85 81 69 72 83 58 75 87

24 hours (posttreatment)
(xB)

41 53 63 81 73 69 75 54 69 70

Difference (Di) 13 4 22 0 �4 3 8 4 6 17
Rank (jDij) 7 3 9 Omit 3 1 6 3 5 8

Signed rank (R) + 7 þ 3 + 9 N=A �3 + 1 + 6 + 3 + 5 + 8
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This is a one-tail test, an upper tail test.We sum the R� values to cal-
culate WC, (sum value of the R� values) which is expected to be
small, ifH0 is to be rejected.

Step 3. Decision rule.The tabled value of Wt is found fromTable A.8
(theWilcoxon table) for n ¼ 9 (one pair value was lost due to a tie)
and a one-tail a ¼ 0:05. For this table, as with the sign test, the a
value (a00for two tail-tests and a0 for one-tail tests) is not precisely
0.001, 0.01, 0.025, 0.05, or 0.10, so the researcher uses the tabled a
value closest to the speci¢ed a value. In this case, with n ¼ 9 and
a0 ¼ 0:05, the tabled value is d ¼ Wt ¼ 9 at a ¼ 0:049. Hence, we
reject H0 if WC , the sum of the ranked negative values ðR�Þ, is less
than or equal to 9 at a ¼ 0:049.

Step 4. Choose the test statistic. Because this is an upper tail test,we
sum the negative rank values ðR�Þ and compare the result ðWCÞ
withWt ¼ 9. If R � ðWCÞ � 9, rejectH0 at a ¼ 0:049.

Step 5. Performanalysis.Thesumof thenegative rank values ðR�Þ is 3.
Step 6. Conclusion. Because the sum of the negative rank values,

WC ¼ 3, is less than the tabled value of 9, we reject at a ¼ 0:05 the
H0 hypothesis that the treatment does not signi¢cantly reduce skin
scaliness.The actual p value of aWC ¼ 3 is p < 0:006.

C. Comments

Suppose this had been a two-tail test at a ¼ 0.05:

H0 : xA ¼ xB

HA : xA 6¼ xB

The sumof negative or positiveR values,whicheverRi is smaller,must be less
than or equal to 7 at a00 ¼ 0.055 (TableH).The sumofR� ¼ 3, sowe rejectH0
at a ¼ 0.055,with a p value less than 0.012.

Suppose the test was a lower tail test.

H0 : xA � xB

HA : xA < xB

In this case, we use the sum of the positive ranks. If the sum of the positive
ranks is � 9 with an n of 9,we rejectH0 at a ¼ 0.049.

WC � Rþ ¼ 7þ 3þ 9þ 1þ 6þ 3þ 5þ 8 ¼ 42

WC ¼ 42 > Wt ¼ 9; so we cannot reject H0 at a ¼ 0:049

546 Chapter 12



D. Remarks

It is a good idea to perform EDA procedures on the data, Di, because we
assume symmetry. In this Di data set, the values are skewed to the right or
higher values,which can be seen in both the stem-and-leaf display (Table 13)
and the letter-value display (Table14). It is important that the researcher sees
this and uses his or her ¢eld experience,more than statistical ability, to judge
its validity.

TheMiniTab1 software computer program for theWilcoxonmatched-
pair test is used (Table15). Somemanual adjustment may be necessary when
applying this computerized analysis because it sums only the Rþ values.

VII. NOMINAL SCALE: MULTIPLE INDEPENDENT SAMPLES
(n >2)

The chi square (w2) test for independence�goodness of ¢t�is one of if not
themost useful of all the statistical tests for this category. All chi square tests
and their derivatives are based on the work ofKarl Pearson in the early1900s
[42,45].These tests consist of generating expected frequencies and compar-
ing observed frequencies with them.The goodness of ¢t is then determined

TABLE13 Stem-and-Leaf Displayof theDiUsingMiniTab

Stem-and-leaf
of differences ‘‘D’’ N¼ 10

1 �0 4
5 0 0344
5 0 68
3 1 3
2 1 7
1 2 2

TABLE14 Letter-Value displayof theDiUsingMiniTab1

DEPTH LOWER UPPER MID SPREAD

N¼ 10
M 5.5 5.000 5.000
H 3.0 3.000 13.000 8.000 10.000
E 2.0 0.000 17.000 8.500 17.000

1 �4.000 22.000 9.000 26.000

Nonparametric Statistics 547



on the basis of how closely those data match the expected results as a func-
tion of the chi square distribution.

In a research situation, one question that arises frequently is, ‘‘are the
data related�associated?’’ That is, if one variable changes, does another
variable also change in a consistent, predictable manner?

One particular recent application of this test by this author was in a
preliminary evaluation of the e¡ectiveness of ozone used as a hand disinfec-
tant in an automated hand-cleansing system. It is well known that ozone is a
powerful oxidizing agent and, therefore, a useful disinfectant, but when it is
delivered through water its disinfectant characteristics are altered. Even so,
it was worth evaluating. A study was constructed to determine whether in-
cremental changes in ozone concentrations were related to changes in num-
bers of viable microorganisms collected from the hands.The chi square test
was used to evaluate the data.

The chi square test for independence is a contingency table that mea-
sures row^column association.The di¡erent rows usually represent samples
fromdi¡erent test populations (e.g., product A,B,C) and the columns di¡er-
ent categories of classi¢cation of the data from the samples (e.g., time1, 2, 3,
or concentration1, 2, 3). A row^column dependence (i.e., the data are asso-
ciated) is construed as functional dependence or association.Similarly, if the
observations froma single sample are classi¢ed into rows and columnson the
basis of two di¡erent criteria, a row^column association or dependence can
be determined.

A. Assumptions

1. The data are randomly sampled.
2. Each data point consists of one value corresponding to one column

level and one row level.
3. The data are nominal (note, though, that interval and ordinal data

can be reduced to nominal scale).

The chi square test uses a row by column (r � c) contingency table
(Table16).

TABLE15 WilcoxonMatched-PairTest

WILCOXONSIGNEDRANK TEST:DIFFERENCE
TESTOFMEDIAN� 0.000000 VERSUSMEDIANNOT¼ 0.000000

N
N FOR
TEST

WILCOXON
STATISTIC P

ESTIMATED
MEDIAN

DIFFERENCE 10 9 42.0 0.024 6.500
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Two frequency values aremeasured: (1) the observed frequency and (2)
the expected frequency.The observed data are the cell (r � c) entries,usually
labeled Oij ¼ nij . The observed cell frequency represents the joint occur-
rence of the ith row component and the jth column component. To obtain
the expected frequency of each cell (Eij), two basic statistical laws of prob-
ability are used.Recall from elementary statistics that if two events (compo-
nents) are independent, the probability of their joint occurrence is the
product of their individual probabilities. In addition, if the two events (com-
ponents) are independent, the probability of including a subject in a speci¢c
nij cell is equal to counting it in the ith row times the jth column.To obtain a
speci¢c Eij , the researcher divides this product by the total sample size (n..).
The computational formula to use is Eij ¼ ni:n:j=n::.

From the observed cell frequencies Oij and the corresponding Eij , we
are interested in the magnitude of di¡erence between them.That is,we want
to know whether the di¡erence between them is large enough to dismiss ran-
dom chance.

This is done by calculation of the chi square test statistic:

w2c ¼
Xr
i¼1

Xc
j¼1

ðOij � EijÞ2
Eij

" #
ð10Þ

The chi square distribution has (r�1)(c�1) degrees of freedom. If
w2c > w2t , theH0 hypothesis is rejected.

The w2 statistic is distributed as a w2 distribution (givenH0 is true) only
if the expected frequencies (Eij) are large. Just how large is a debated issue.
Some statisticians specify that each Eij should be at least 10. However,
Cochran [9] argued that an Eij could be as low as1provided 20% or fewer of
the cells have expected frequencies less than 5.This researcher has found that

TABLE16 Chi SquareTable

Column level

1 2 . . . c Total

1 n11 n12 . . . n1c n1.

2 n21 n22 . . . n2c n2.

Row level . . . . . . . .
. . . . . . . .
. . . . . . . .
r nr1 nr2 . . . nrc nr:

Total n.1 n.2 . . . n.c n..
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adjacent rows and=or columns can be combined to achieve a higher fre-
quency per cell.

The w2 test is easily completed with the six-step procedure.

Step1. Formulate the hypothesis.
H0: Components A and B are independent.
HA: Components A and B are not independent.

Step 2. Specify a.
Step 3. Write out the test statistic.

w2c ¼
Xr
i¼1

Xc
j¼1

ðOij � EijÞ2
Eij

" #

Step 4. Formulate the decision rule. Ifw2c computed>w2t tabled, reject
H0 at a.

Step 5. Compute statistic.
Step 6. Conclusion.

Example 7: A researcher wanted to determinewhether increasing the
amount of ozone (O3) delivered throughwater at a £ow rate of 3.3 gallons per
minute (for a 60-second wash cycle) is associated with log10 reductions in
numbers of Escherichia coli. Five levels of ozone were used,with10 replicates
per level, andmicrobial log10 reductions observedwere categorized into four
levels (Table17).

Let us analyze the experiment using the six-step procedure.

Step1. Formulate hypothesis.
H0: The ozone levels and microbial log10 reductions are inde-

pendent
HA: The ozone levels and microbial log10 reductions are not

independent

TABLE17 Observed Data

Ozone level (ppm)

Log10
reduction 0.5 0.8 1.0 1.3 1.6 Total (n:j)

0^1 8 2 1 1 0 12
1^2 1 6 3 1 1 12
2^3 1 2 4 6 3 16
3^4 0 0 2 2 6 10
Total ni . 10 10 10 10 10 n..¼50
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Step 2. Specify a.Because this is a pilot study and the client was inter-
ested in developing an ozone technology, the a was set higher, a ¼
0.10.

Step 3. Write out the test statistic.

w2c ¼
Xr
i¼1

Xc
j¼1

ðOij � EijÞ2
Eij

" #

Step 4. Decision rule.
If w2c > w2t , rejectH0.
w2t ¼ w21�a½ðr�1Þðc�1Þ� ¼ w21�0:10½ð4�1Þð5�1Þ� ¼ w20:90ð12Þ ¼ 18:55

So, if w2c > 18:55, rejectH0 at a ¼ 0.10.

Step 5. Compute statistic. From the observed frequency table (Table
17), we compute an expected Eij table (each Eij ¼ ni.n.j=n..)
(Table18).Then by using both tables17 and18,we calculated w2c .

w2c ¼
ð8�2:4Þ2

2:4
þð2�2:4Þ2

2:4
þð1�2:4Þ2

2:4
þð1�2:4Þ2

2:4
þð0�2:4Þ2

2:4

�

þð1�2:4Þ2
2:4

þð6�2:4Þ2
2:4

þð3�2:4Þ2
2:4

þð1�2:4Þ2
2:4

þð1�2:4Þ2
2:4

þð1�3:2Þ2
3:2

þð2�3:2Þ2
3:2

þð4�3:2Þ2
3:2

þð6�3:2Þ2
3:2

þð3�3:2Þ2
3:2

þð0�2Þ2
2
þð0�2Þ2

2
þð2�2Þ2

2
þð2�2Þ2

2
þð6�2Þ2

2

�
¼ 41:79

TABLE18 Expected Eij Table

Ozone (ppm)

Log10
reduction 0.5 0.8 1.0 1.3 1.6 Total (n:j)

0^1 2.4 2.4 2.4 2.4 2.4 12.0
1^2 2.4 2.4 2.4 2.4 2.4 12.0
2^3 3.2 3.2 3.2 3.2 3.2 16.0
3^4 2.0 2.0 2.0 2.0 2.0 10.0
Total ni. 10.0 10.0 10.0 10.0 10.0 n..¼50.0

Note: n11¼10	12=50¼2.4.
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Step 6. Conclusion. Because w2c ð41:79Þ > w2t ð18:55Þ, the H0 hypoth-
esis of independence is rejected at a¼ 0.10.We cannot conclude that
ozone levels and log10 reductions in bacteria are independent of each
other. There is evidence that this form of ozone delivery is worth
pursuing. In fact, the evidence is very strong. At an a level of 0.005,
theH0 is still rejected (w20:995 ¼ 28:30).

Notice that none of the expected cell frequencies (Eij) exceeded 5.
Because this was a pilot study, it was used only as an orienting tool, leading
to further research and re¢nements.

Table19 provides aMiniTab1 computer software application of this w2

analysis.

VIII. ORDINAL OR INTERVAL SCALE: MULTIPLE
INDEPENDENT SAMPLES (n >2)

The Kruskal^Wallis test is a nonparametric version of the one-factor analy-
sis of variance and is probably the nonparametric test most widely used for

TABLE19 Tabulated Statistics: Log10 Reduction,Ozone Level (ppm)

ROWS:LOG10 REPLICATES COLUMNS:OZONELEVEL
0.5 0.8 1.0 1.3 1.6 ALL

8 2 1 1 0 12
1 2.40 2.40 2.40 2.40 2.40 12.00

3.61 �0.26 �0.90 �0.90 �1.55 �

1 6 3 1 1 12
2 2.40 2.40 2.40 2.40 2.40 12.00

�0.90 2.32 0.39 �0.90 �0.90 �

1 2 4 6 3 16
3 3.20 3.20 3.20 3.20 3.20 16.00

�1.23 �0.67 0.45 1.57 �0.11 �

0 0 2 2 6 10
4 2.00 2.00 2.00 2.00 2.00 10.00

�1.41 �1.41 0.00 0.00 2.83 �

10 10 10 10 10 50
ALL 10.00 10.00 10.00 10.00 10.00 50.00

� � � � � �
CHI-SQUARE¼ 41.792,DF¼12,P-VALUE¼ 0.000 20
CELLSWITHEXPECTEDCOUNTSLESSTHAN 5.0
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comparing more than two samples [44]. It can be used, too, when only two
samples are compared and, in that application, is equivalent to the Mann^
WhitneyU-test for two independent samples.

The data used by theKruskal^Wallis test consist of randomly sampled
treatment groups,which may di¡er in size but must comprise data at least of
ordinal (rank) scale.The data are arranged into k columns and then ranked
in ascending order. In cases of ties, the tied observations are assigned the
average ranks of those ties based on the rank value that would be assigned if
no ties existed. If theH0 hypothesis is true, thek column sumsof rankswill be
equivalent.

A. Assumptions

1. The collected data consist of k random samples of size n1; n2; . . . nk.
The sample sizes do not need to be equal.

2. The sample sets are independent.
3. The observations are independent within samples.
4. The variables of interest are continuous or approximate a continu-

ous distribution.
5. The measurement scale is at least ordinal.
6. The populations are identical (i.e., the population distributions)

except possibly in location (e.g., median) for at least one
population.

The test statistic is:

tc ¼ 12
N ðN þ 1Þ

Xk
i¼1

1
ni

Ri � niðN þ 1Þ
2

� �2
ð11Þ

which is computationally equivalent to an easier hand-computed formula:

tc ¼ 12
N ðN þ 1Þ

Xk
i¼1

R2
i

ni
� 3ðN þ 1Þ ð12Þ

where N¼Pk
i¼1 ni (total number of observations in the k samples)

Ri¼ sum of the ranks of the ith sample
ni¼ sample size of the ith sample

In situations in which each sample size is less than 5 observations
with a k of 3, the tc (test statistic computed) is compared in Table A.9,
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critical values of the Kruskal^Wallis test statistic. When the number of
samples and=or observations per sample exceeds these, useTable J, the w2

table with k � 1 degrees of freedom. Kruskal [48] demonstrated that, for
large values of ni and k, the tc approximates the w2 distribution with k � 1
degrees of freedom.

B. Correction for Ties

If there are many ties (say, one fourth of the values or more), the test can be
made more powerful by an adjustment,which is:

tcðadjustedÞ ¼ tc
1�Pk

i¼1 T=ðN 3 � N Þ
ð13Þ

where T ¼ t3 � t for each group of sample data
t¼ the number of tied observations in a group of tied scores
N¼ the

Pk
i¼1 ni values

The e¡ect of the tie adjustment is to in£ate the test statistic’s computed
value.Hence, if tc is signi¢cant at the computed (nonadjusted) value, there is
no need to make a tie adjustment.

The six-step procedure can easily be used in computing the Kruskal^
Wallis test.

Step1. State the hypothesis.
H0:The k populations are equivalent.
HA: At least one of the k populations is di¡erent in its median

value.
Step 2. Specify a.
Step 3. Decision rule.There are two versions.
1. If k ¼ 3 and each sample n is less than or equal to 5,useTableA.9,
Kruskal^Wallis, to ¢nd the critical value. If tc > the tabled critical
value at a, reject H0. If there are many ties (one fourth or more of
the sample) and tc is not signi¢cant (i.e., greater than the critical
value), apply the adjustment formula [Eq. (13)].

If tcðadjustedÞ > critical value at a, rejectH0.

2. If k > 3 and=or the ni values are> 5,useTableA.10, w2 table,with
k � 1 degrees of freedom. If tc > w2tða;k�1Þ, reject H0. If there are
many ties (one fourth or more of the sample) and tc is not signi¢-
cant, again, apply the adjustment formula [Eq. (13)].

If tcðadjustedÞ > w2tða;k�1Þ, rejectH0 at a.
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Step 4. Write out the test statistic.Use

tc ¼ 12
N ðN þ 1Þ

Xk
i¼1

R2
i

ni
� 3ðN þ 1Þ

If a signi¢cant number of ties exist, use the correction factor.

Step 5. Compute statistic.
Step 6. Conclusion.

Example 8: Three di¡erent antimicrobial wound dressings were se-
lected to use in a simulated wound care model. The model substrate was a
fresh, degermed pig skin, incubated at 35^37�C, with 3-cm incisions made
and inoculated with 108 colony-forming units (CFU) of Staphylococcus epi-
dermidis bacteria in a mix of bovine blood serum. The three wound dres-
sings�A¼ 25% chlorhexidine gluconate, B¼ silver halide, and C¼ zinc
oxide�were applied, and one inoculated wound was left untreated to pro-
vide a baseline value.Each pigskinwas placed in a sealed container with dis-
tilled water to provide moisture and incubated for 24 hours. Sampling was
performed using the cup scrub procedure. The log10 reductions recorded
are presented inTable 20.

The investigator wants to know whether there was a signi¢cant di¡er-
ence between wound antimicrobial products in terms of bacterial log10 re-
ductions.

Step 1. Formulate hypothesis.
H0: groupA¼ group B¼ group C in log10 reductions.
HA: At least one group di¡ers from the other two.

Step 2. Set a.The investigator will use a¼ 0.10.

TABLE 20 Log10 Reductions

A¼ 1 R1 B¼ 2 R2 C¼ 3 R3

3.10 6.5 5.13 12.0 2.73 1.5
5.70 13.0 4.57 9.0 3.51 8.0
4.91 10.0 3.01 4.5 3.01 4.5
3.10 6.5 2.98 3.0 2.73 1.5
5.01 11.0P

R1 ¼ 47
n1¼5

P
R2 ¼ 28:5
n2¼4

P
R3 ¼ 15:5
n3¼ 4

A,B,C¼wound dressing types; Ri¼ rankof values in eachwound dressing group.
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Step 3. Write the test statistic to be used.

tc ¼ 12
N ðN þ 1Þ

X3
i¼1

R2
i

ni
� 3ðN þ 1Þ

Step 4. Decision rule. If tc > critical value, reject H0. From the
Kruskal^Wallis table (Table A.9), for n1 ¼ 5; n2 ¼ n3 ¼ 4, and
a¼ 0.10, the critical value is 4.6187. So if tc > 4.6187, reject H0 at
a¼ 0.10.Because nearly one half of the data are ties, if tc is not signif-
icant,we will also use the adjustment formula.

tcðadjustedÞ ¼ tc
1�PT=ðN 3 � N Þ

Step 5. Compute statistic.

tc ¼ 12
N ðN þ 1Þ

X3
i¼1

R2
i

ni
� 3ðN þ 1Þ

tc ¼ 12
13ð14Þ

472

5
þ 28:52

4
þ 15:52

4

� �
� 3ð14Þ ¼ 4:4786

Because tc is not signi¢cant, we will use the correction factor adjust-
ment for ties,

tcðadjustedÞ ¼ tc
1�PT=ðN 3 � N Þ

where T ¼ t3 � t for each group of sample data
t¼ number of ties

T1 ¼ 23 � 2 ¼ 6
T2 ¼ 0
T3 ¼ 23 � 2 ¼ 6

¼ 4:4786
1� ½ð6þ 0þ 6Þ=ð133 � 13Þ� ¼ 4:5033

Step 6. Conclusion. Because tcðadjustedÞ ¼ 4:5033 => 4:61876, one can-
not reject H0 at a¼ 0.10. But this is so close that for a¼ 0.15, the H0

hypothesis would be rejected.

The Kruskal^Wallis statistic can be particularly valuable in subjective
ranking of scores (ordinal data). For example, in skin irritation studies, the
score that one can getmay rangebetween 0 and 5,0 representing no irritation
and 5 representing severe. Suppose three products are evaluated and the
following irritation scores result.
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This evaluation is performed in exactly the same way as the previous
one,with the tie adjustment formula applied.

C. Multiple Contrasts

In nonparametric statistics,as in parametric statistics, if a di¡erence is detected
whenevaluatingmore than two sample groups,one cannot knowwhere it lies�
betweenwhatsamples�withoutperformingamultiplecontrast procedure.The
Kruskal^Wallis multiple comparison, like the parametric ANOVA contrast,
provides a1�acon¢dence level for the family of contrasts performed.

The procedure is straightforward.First,one computes the sum-of-rank
means, �RRj . Next, a value of a is selected that is generally larger than the cus-
tomary a¼ 0.05�e.g., 0.15, 0.20, or even 0.25, depending on the number of
groups, k.The larger the k value, the more di⁄cult it is to detect di¡erences.
From a practical standpoint, try to limit k to 3 or at most 4.The next step is to
¢nd, in the normal distribution table (Table A.1), the value of Z that has
a=kðk � 1Þ area to its right and compare the possible nðnþ 1Þ=2 contrast
pairs �RRi � �RRjjwith the test inequalities.
use: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N ðN þ 1Þ
12

1
ni
þ 1
nj

� �s
for uneven sample sizes ð14Þ

use: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðN þ 1Þ

6

r
for even sample sizes ð15Þ

The entire contrast procedure is:

If j �RRi � �RRjj > Za=kðk�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðN þ 1Þ

12
1
ni
þ 1
nj

� �s
; reject H0 ð16Þ

because a signi¢cant di¡erence exists between j �RRi � �RRjj at a.

Product 1 Product 2 Product 3

0 1 4
0 1 4
1 1 3
2 3 2
1 2 0
1 2 1
1 0 5
3 1

1
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Example 8 (continued): Let us use the data from Example 8 even
though no signi¢cant di¡erence between the groups was detected. This is
only a demonstration of the computation of the multiple comparison. Let us
set a¼ 0.15.

�RR1 ¼ 47:0
5
¼ 9:40

�RR2 ¼ 28:5
4
¼ 7:13

�RR3 ¼ 15:5
4
¼ 3:88

nðn� 1Þ
2

¼ 3 contrasts possible, which are ð �RR1 �RR2Þ; ð �RR1 �RR3Þ; ð �RR2 �RR3Þ

First contrast:

j �RR1 � �RR2j ¼ j9:40� 7:13j � Z0:15=3ð2Þ ¼ Z0:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13ð14Þ
12

1
5
þ 1
4

� �s
¼ 2:27 � Z0:025ð2:6125Þ

The Z value is found in Table A.1, where 0:5� 0:025 
 0:4750, providing a
tabled value of1.96¼Z. Hence,

2:27 � 1:96ð2:6125Þ ¼ 5:1205

Therefore, no di¡erence exists at a¼ 0.15.
Second contrast:

j �RR1 � �RR3j ¼ j9:40� 3:88j
Hence, 5:52 > 5:1205, so a signi¢cant di¡erence exists at a¼ 0.15.

Third contrast:

j �RR2 � �RR3j ¼ j7:13� 3:88j

¼ 3:25 � ð1:96Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13ð14Þ
12

1
4
þ 1
4

� �s
¼ 3:25 � ð1:96Þ2:7538 ¼ 3:25 � 5:3974

Again, there is no signi¢cant di¡erence at a¼ 0.15.
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MiniTab1also provides the test (Table 21).

IX. NOMINAL SCALE: MULTIPLE RELATED SAMPLES
(n >2)

Cochran’s test for related observations is a useful test when the outcome can
be presented in 0=1 format, a binomial outcome. The 0=1 arrangement can

TABLE 21 Kruskal^Wallis Comparisons

Kruskal–Wallis: Multiple Comparisons
Kruskal^WallisTest on the Data
Group N Median Average rank Z

A 5 4.910 9.4 1.76
B 4 3.790 7.1 0.08
C 4 2.870 3.9 �1.93
Overall 13 7.0
H ¼ 4:48 Df ¼ 2 P ¼ 0:107
H ¼ 4:52 Df ¼ 2 P ¼ 0:105 (adjusted for ties)
*Note:One ormore small samples.

Kruskal–Wallis: All Pairwise Comparisons

Comparisons: 3
Ties: 3
Familyalpha: 0.1
Bonferroni individual alpha: 0.033
Bonferroni Z-value (2-sided): 2.128

Standardized Absolute Mean Rank Difference
jRbar (I)�Rbar (J) j=Stdev
Rows: Group I¼ 1; . . . ;N
Columns: Group J¼ 1; . . . ;N
1. Table of Z-values

A 0.00000 * *
B 0.87072 0.00000 *
C 2.11486 1.18019 0

Adjusted forTies in the Data
1. Table of Z-values

A 0.00000 * *
B 0.87443 0.00000 *
C 2.12363 1.18509 0

2. Table of P-values
A 1.00000 * *
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represent lived=died, success=failure, true=false, pass=not pass, etc. Recall
from our previous sections that nominal data were analyzed using a 2� 2
contingency table or an r � c contingency table. However, these tests are
intended for independent samples. It is often possible and usually preferable
to block groups across the treatments so that the power of the statistic can be
increased.This frequently can be accomplished by applying all k treatments
to the same related block but randomizing the k treatmentswithin the block.

Take, for example, a preliminary skin reaction test where 0¼ no reac-
tion, and1¼reaction. Suppose there are k¼ 4 products, 3 test and1control,
and that each subject is a complete block, measuring all four treatments.
Because the study is of nominal scale (0=1), Cochran’s test for related sam-
ples is ideal.

Cochran’s test for related samples requires that all k treatments be ap-
plied to each of the b blocks and the resultant data be categorized as 0=1 re-
sults.The result is a k � l table inwhich the row totals are identi¢ed asBj and
the column totals as theks (Table 22).The w2 distribution is used with w2ða;l�1Þ.
That is, there are l � 1 degrees of freedom.

A. Assumptions

1. The blocks are randomly selected.
2. The data are nominal.

TABLE 22 K � L Table

Treatments

1 2 	 	 	 l
Row
total xlk

1 x11 x12 	 	 	 x1l B1

Bi ¼ block totals,
i ¼ 1,2, . . . ,k

2 x21 x22 	 	 	 x2l B2

Rj ¼Column totals,
j ¼ 1,2, . . . ,l

Blocks 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
k xk1 xk2 xkl Bk

Column
total

C1 C2 Cl N ¼ grand total
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3. The samples are randomized within the block (e.g., sites on a single
subject are randomly assigned to products).

4. The data results can be organized as 0=1.

The test hypothesis is a two-tail one.

H0: The l treatments are equivalent.
HA: There is a di¡erence between at least two of the l treatments.

The test statistic is:

tc ¼
lðl � 1ÞPl

j¼1 C
2
j � ðl � 1ÞN 2

lN �Pk
l¼1 B

2
i

ð17Þ

where: l¼ number of columns or treatments
Cj ¼ treatment totals for each jth column
N¼number of rows times number of columns.
Bi ¼ block total for each ith block

This test can easily be adapted into the six-step procedure.

Step1. Formulate the hypothesis.
H0: The C treatments are equal
HA: The C treatments are not equal

Step 2. Select a.This will be a w2 distributionwith l�1degrees of free-
dom at a.

Step 3. Write out the test statistic to be used:

tc ¼
lðl � 1ÞPl

j¼1 C
2
j � ðl � 1ÞN 2

lN �Pk
i¼1 B

2
i

Step 4. Decision rule.
If tc > w2aðl�1Þ, reject theH0 hypothesis at a.

Step 5. Perform computation.
Step 6. Conclusion.

Example 9: In a primary skin irritation=sensitization study, ¢ve test
products were applied to the backs of selected human subjects every other
day for 21days. A 7-day rest period was then observed so that, if the immune
system was undergoing sensitization, it would have enough time to develop
hypersensitivity. Following that, the ¢ve products were reintroduced to the
back for 24 h. A reaction is designated 1 and no reaction 0.The investigator
wants to know whether the test products di¡er at a¼ 0.05. The results are
presented inTable 23.
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Step1. Formulate hypothesis.
H0: Product 1 ¼ product 2 ¼ product 3 ¼ product 4 ¼

product 5
HA: At least one product is di¡erent from the others in

irritation
Step 2. Specify a. a¼0.05.
Step 3. Write out the test statistic.

tc ¼
lðl � 1ÞPl

j¼1
C2
j � ðl � 1ÞN 2

lN �Pk
i¼1

B2
i

Step 4. Specify decision rule.
If tc > w20:05ð5�1Þ ¼ 9.488, rejectH0 at a ¼ 0:05.

Step 5. Perform computation.

tc ¼
lðl � 1ÞPl

j¼1
C2
j � ðl � 1ÞN 2

lN �Pk
i¼1

B2
i

tc ¼ 5ð5� 1Þ½72 þ 22 þ 32 þ 42 þ 12� � ð5� 1Þ172
5ð17Þ � ½02 þ 42 þ 12 þ 02 þ 32 þ 12 þ 12 þ 42 þ 02 þ 32�
¼ 424

32
¼ 13:25

TABLE 23 Data

Product

1 2 3 4 5 Total

Subject (block)
1 0 0 0 0 0 0
2 1 1 1 1 0 4
3 1 0 0 0 0 1
4 0 0 0 0 0 0
5 1 0 1 1 0 3
6 1 0 0 0 0 1
7 1 0 0 0 0 1
8 1 1 0 1 1 4
9 0 0 0 0 0 0
10 1 0 1 1 0 3
Total treatments 7 2 3 4 1 17
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Step 6. Conclusion. Because tc ¼ 13:25 > w2 ¼ 9:488Þ, one rejects
the H0 hypothesis at a ¼ 0:05. The products do di¡er in irritation
potential.

B. Multiple Comparisons

If the H0 hypothesis is rejected, pairwise comparisons can be performed
using the McNemar test,which is a variation on the sign test. Recall that the
McNemar test is a two-sample test for related samples.The test is used as a
pairwise test, so P tests must be computed for each pair compared. For
demonstration purposes, suppose a researcher wanted to compare product
1with product 5 and product 4 with product 5. (1¼reaction,0¼ no reaction)

Product1 versus 5. Let xA ¼ 1, xB ¼ 5, and let a ¼ 0:05.

If jZcj ¼ Zt , rejectH0 at a.
For a ¼ 0:05; 0:05=2 ¼ 0:025; 0:500� 0:025 ¼ 0:4750. From table A,

Z table, Zt ¼ 1:96:
So, if jZc j > 1:96, rejectH0.

Zc ¼ B� Cffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C
p where

A B

C D

Zc ¼ 6� 0ffiffiffiffiffiffiffiffiffiffiffi
6þ 0
p ¼ 2:4495

Because Zc ¼ 2:4495 > Zt ¼ 1:96, products1and 5 di¡er at a ¼ 0:05.
Product 4 versus 5. Let xA ¼ 4, xB ¼ 5, and let a ¼ 0:05.

Product 1 Total
Reaction 0 1

Product 5 0 3 6 9
1 0 1 1

Total 3 7 10

Product 4 Total
Reaction 0 1

Product 5 0 6 3 9
1 0 1 1

Total 6 4 10
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If jZcj > 1:96, rejectH0.

Zc ¼ B� Cffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C
p where

A B

C D

¼ 3� 0ffiffiffiffiffiffiffiffiffiffiffi
3þ 0
p ¼ 1:7321

Because Zc ¼ 1:7321 < Zt ¼ 1:96, one cannot rejectH0 at a ¼ 0:05.
The researcher can continue to compare pairs of products in this

manner.

X. ORDINAL SCALE: MULTIPLE RELATED SAMPLES (> 2)

Another very useful test in multiple sample comparisons, but with ordinal
data, is the Friedman test. This test is a nonparametric statistical analog of
the randomized complete block ANOVA model discussed in Chap. 5. The
Friedman test is an extension of theWilcoxon signed-ranks test for two sam-
ples, andwhen the number of samples is 2, it is essentially that test.The test is
particularly useful in situations where the attributes of multiple products,
services, or sensory experiences are ranked subjectively. For example, in a
subjective preference test, a group of panelists (professional or naive) may
be asked to rank mildness, sudsing, feel, fragrance, roughness, etc. of several
di¡erent products. The Friedman test, which uses blocks (panelists in this
case), is generally more powerful than the Kruskal^Wallis test,which is not
blocked. This author has used this test for many years and ¢nds it both
powerful and robust.

Thedatadisplay is likethatofCochran’stest fornominaldata(Table24).

TABLE 24 FriedmanTest

Treatment

1 2 	 	 	 l Row total

1 x11 x12 	 	 	 x1l B1

2 x21 x22 	 	 	 x2l B2

Blocks 	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
k xk1 xk2 xkl Bk

Column total C1 C2 Cl N ¼ grand total
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A. Assumptions

1. The data consist of kmutually independent blocks of size l.
2. The data are blocked in meaningful ways (e.g.,weight, height, sex,

or same subject).
3. The data are continuous or, if discrete,can be treated as continuous

(i.e., integer ranks).
4. No signi¢cant interaction between blocks and treatments is pre-

sent.
5. Scale is at least ordinal (observations within blocks can be ranks,

i.e., 1, 2, . . ., l).

The test hypothesis is two-tail:

H0:The populations are equivalent.
HA: At least one population group di¡ers from the other l groups.

B. Procedure

If the data collected are interval data, the ¢rst procedure is to rank them
within blocks as though they were ordinal.

If the data collected are already in ranks, this step is not necessary.
Note that, in the Kruskal^Wallis test, the ranking is performed per treat-
ment group, but the ranking for the Friedman test is done within the blocks,
across groups.

If theH0 hypothesis is true for the Friedman test, the ranks between the
blockswill be random, none signi¢cantly larger or smaller than the others. If
theH0 hypothesis is rejected, it will be due to nonrandomorder of the blocks.

After each block has been ranked, the next step is to obtain the rank-
sums of the columns (Cis). If the H0 hypothesis is true, the Cis will be nearly
the same value.

Group

1 2 3 4

Values Block 1 10.3 9.5 66.1 75.9
Block 2 15.3 14.9 13.0 16.0

Ranked values by blocks Block 1 2 1 3 4
Block 2 3 2 1 4
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The test statistic is:

w2c ¼
12

lkðl þ 1Þ
Xl
j¼1

C2
j � 3kðl þ 1Þ

where l ¼ number of treatments
k¼ number of blocks

Cj ¼ sum of the jth treatment

If w2c � w2t ¼ w2aðl�1Þ rejectH0 at a.
Note: When l and k are small ðl ¼ 3 or 4; k ¼ 2; . . . ; 9Þ, one can use

Friedman’s test exact tables (Table A.11) to ¢nd w2t . In using this table,
l ¼ number of treatments, k ¼number of blocks. Otherwise, use the chi
square tables (Table A.10) with l � 1 degrees of freedom.

C. Ties

From a theoretical perspective, ties within blocks should not occur, but they
do.Ties are handled, as always, by summing the ties (nontied ranks) in each
block and dividing by the number of ties.

When a signi¢cant number of ties occur, about one fourth of the blocks
or more, the test statistic should be adjusted and the w2c values should be ex-
pressed as w2cðMODÞ

w2cðMODÞ ¼
w2c

1�Pk
i¼1 Ti=lkðl2 � 1Þ

ð18Þ

where: Ti ¼
P

t2i �
P

ti,when ti is the number of observations tied in the ith
block

l ¼ number of treatments
k¼ number of blocks

The entire procedure can again behandled e⁄ciently using the six-step
procedure.

Step1. Formulate the test hypothesis,which will be a two-tail test.
H0:The groups are equal.
HA: The groups are not equal.

Step 2. Set a.
Step 3. Write out the test statistic.
Step 4. Present decision rule using Friedman exact tables (TableA.11)

if l and k are small; otherwise use the chi square table (TableA.10). If
there are signi¢cant ties, these will a¡ect

Step 5. Perform statistical analysis.
Step 6. Conclusion.
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Example 10: A researcher wants to evaluate three skin-conditioning
products for user perceptions of their moisturizing abilities.That is, the user
participants rank the products in terms of how well they feel their skin has
been moisturized.Ten panelists are recruited and randomly provided one of
the products for use, then the second and the third. Before application of a
test product, subjects are to apply an alcohol product to remove excess skin
lipids from the skin so that each product canbe appliedwith aminimumbias.
Rankings were 1¼best, 2¼ second best, and 3¼ least good.The researcher
set a¼ 0.10.The results are presented inTable 25.

Step1. Formulate hypothesis.
H0: Product1¼product 2¼ product 3, in subjective perception
HA: At least one product is di¡erent from the others

Step 2. Specify a. a ¼ 0:10.
Step 3. Write out the test statistic.

w2c ¼
12

lKðl � 1Þ
Xl
j¼1

c2j � 3Kðl þ 1Þ

Because there are signi¢cant ties in the data, w2c is adjusted by
computing:

w2cðMODÞ ¼
w2c

1�Pk
j¼1

Ti=Kðl2 � 1Þ
Step 4. Specify decision rule. We must use the chi square table

because K is greater than 9. If w2
cðMODÞ � w2t ¼ w2tða;l�1Þ ¼

w2tð0:10;3:1Þ ¼ 4:605, rejectH0 at a ¼ 0:10.

TABLE 25 Example Data

Product

Panelist 1 2 3

1 3.0 1 2.0
2 3.0 1 2.0
3 2.5 1 2.5
4 2.0 1 3.0
5 2.0 1 3.0
6 2.5 1 2.5
7 2.0 1 3.0
8 1.5 1.5 3.0
9 2.5 1 2.5
10 2.0 1 3.0

C1 ¼ 23:0 C2 ¼ 10:5 C3 ¼ 26:5
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Step 5. Perform computation.

w2c ¼
12

3ð10Þð3þ 1Þ ½23:0
2 þ 10:52 þ 26:52� � 3ð10Þð3þ 1Þ

w2c ¼ 134:15� 120:00

w2c ¼ 14:15

Because there were a number of ties, the adjustment processwill be used.

w2c ¼
w2c

1�P Ti=3ð10Þð32 � 1Þ

There are four ties of two values:

Ti ¼ ð23 � 2Þ þ ð23 � 2Þ þ ð23 � 2Þ þ ð23 � 2Þ ¼ 24

w2cðMODÞ ¼
14:15

1� ½24=3ð10Þð9� 1Þ�
w2cðMODÞ ¼ 15:722

Step 6. Conclusion. Because w2cðMODÞ ¼ 15:722 > w2t ¼ 4:605, the
researcher rejects H0 at a ¼ 0:10. The products di¡er in subjective
preference at a ¼ 0:10.

AMiniTab1 version of this test is shown inTable 26.

D. Multiple Contrasts

Given that the H0 hypothesis is rejected, the researcher will want to know
which treatment groups di¡er. A very useful comparison of all possible

TABLE 26 FriedmanTest:MiniTab1Version

FriedmanTest for Rank by Product Blocks by Panelist
S ¼ 14.15 Df ¼ 2 P ¼ 0.001
S ¼ 15.72 Df ¼ 2 P ¼ 0.000 (Adjusted forTies)
Product N Est Median Sumof Ranks

1 10 2.1667 23.0
2 10 1.0000 10.5
3 10 2.5833 26.5
GrandMedian ¼ 1.9167
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contrasts, lðl � 1Þ=2 ¼ 3 	 2=2 ¼ 3, can be made using the formula:

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lkðl þ 1Þ

6

r
ð19Þ

where Z corresponds to a=lðl � 1Þ in the normal Z tables (Table A.1). If

jCi � Cj j � Z
ffiffiffiffiffiffiffiffiffi
lðlþ1Þ

6

q
, rejectH0 at a.

Taking our example at a ¼ 0:10, a=lðl � 1Þ ¼ 0:10=3ð2Þ ¼ 0:0167. In
the normal table, 0:5� 0:0167 ¼ 0:4833, which provides a Z value of 2.13.
So,

¼ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl þ 1Þ

6

r
¼ 2:13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð10Þð3þ 1Þ

6

r
¼ 9:53

jC1 � C2j ¼ j23:0� 10:5j ¼ 12:5 > 9:52 Significant

jC1 � C3j ¼ j23:0� 26:5j ¼ 3:5 < 9:52 Not Significant

jC2 � C3j ¼ j10:5� 26:5j ¼ 16 > 9:52 Significant

Hence, product 2 was ranked signi¢cantly higher than either product1
or 3. Products 1 and 3 were not signi¢cantly di¡erent from each other at
a ¼ 0:10.

XI. INTERVAL SCALE: MULTIPLE RELATED SAMPLES (> 2)

The nonparametric analog of the randomized complete block parametric
statistic is the Quade test when using interval scale data. The Quade test,
although less powerful than the parametric randomized complete block test,
does not require a normal distribution [41,42]. Hence, in cases in which the
distribution of interval data cannot be assured tobe normal, theQuade test is
the alternative.The Quade test is an extension of theWilcoxon signed-ranks
test.Although theQuade test will performwithordinal ‘‘ranked’’data, I have
categorized it as an interval scale statistic because it has more theoretical
assumptions than the Friedman test, so it is also more powerful. Yet this
statement is not universally accepted.Some statisticians consider the Fried-
man and Quade tests to have about the same power. Some even suggest that
the Friedman test, particularly when the number of treatment samples, l, is
greater than six, is more powerful.

TheQuade test is not aswell knownas theKruskal^Wallis orFriedman
test, but it is an extremely useful tool for the applied statistical researcher.
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As with the last two tests discussed, the data display for the Quade test
(interval data) is:

A. Assumptions

1. The data consist of kmutually independent blocks of size l.
2. The data are blocked in meaningful ways (such as age, sex,weight,

height, or same subject).
3. The data within each block can be ranked�data are at least ordi-

nal. (This researcher prefers to use this test with interval data. It is
suggested that, if the data are ordinal, the Friedman test be used.)

4. The sample range within each block can be determined. (There is a
smallest and largest number in each block; the x values are not all
equal.)

5. The blocks, themselves, must be rankable by range.
6. No signi¢cant interaction occurs between blocks and treatments.
7. The data are continuous.

The test hypothesis is a two-tail test.

H0: The test populations are equivalent.
HA: They di¡er in at least one.

Note: Ties donot adversely a¡ect this test, so a correction factor is not
necessary.

The F distribution table (Table A.3) is used in this test.The FT value is
Fa½l�1;ðl�1Þðk�1Þ�.That is, the numerator degrees of freedom are ðl � 1Þ and the
denominator degrees of freedom are ðl � 1Þðk � 1Þ.

B. Procedure

Step1. LetRðxijÞbe the rank from1to l of each block i.For example, in
block (row) 1, the individual l treatments are ranked. A rank of 1 is

Treatments
1 2 . . . l

1 x11 x12 . . . x1l
2 x21 x22 . . . x2l

Blocks 	 	 	 	
	 	 	 	
	 	 	 	
k xk1 xk2 xkI
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provided to the smallest and a rank of l to the largest.Thus, step one
is to rank all the observations, block by block, throughout the k
blocks. In case of ties, the average rank is used, as before.

Step 2. Using the original xij values�not the ranks�determine the
range of each block. The range in block i ¼MAXðXijÞ �MINðxijÞ.
There will be k sample ranges, one for each block.

Step 3. Once the ranges are determined, rank the block ranges,
assigning 1 to the smallest up to k for the largest. If ties occur, use
the average rank. Let R1;R2; . . .Rk be the ranks assigned to the
1; 2; . . . k blocks.

Step 4. Each block rank, Ri, is then multiplied by the di¡erence
between the rank within block i, [R(xij)], and the average rankwithin
the blocks, ðl þ 1Þ=2, to get the value forSij,which represents the rela-
tive size of each observationwithin the block, adjusted to portray the
relative signi¢cance of the block in which it appears. Each
Sij value ¼ Ri ½Rðxij � ðl þ 1Þ=2�. Each treatment group sum is

denoted by Sij ¼
Pk

i¼1 Sij.

The test statistic is similar to that in ANOVA.

SSTOTAL ¼
Xk
i¼1

Xl
j¼1

S2
ij ð20Þ

If there are no ties in SSTOTAL, a simpler equation can be used:

SSTOTAL ¼ kðk þ 1Þð2k þ 1Þlðl þ 1Þðl � 1Þ
72

The treatment sum of squares is:

SSTREATMENT ¼ 1
k

Xl
j¼1

S2
j ð21Þ

The test statistic is:

FC ¼ ðk � 1ÞSSTREATMENT

SSTOTAL � SSTREATMENT
ð22Þ

Note: If SSTOTAL�SSTREATMENT¼ 0, use that point ‘‘0’’ as if it were
in the critical region and calculate the critical level or ‘‘p’’ value as ð1=l!Þk�1,
where l! is l factorial or l 	 ðl � 1Þ 	 ðl � 2Þ 	 	 	 ðl � l þ 1Þ (e.g.,
l ¼ 5; l! ¼ 5 	 4 	 3 	 2	1 ¼ 120).

The decision rule is, if FC > Ft ¼ Fa½l�1;ðl�1Þðk�1Þ�, rejectH0 at a.
Again, the six-step procedure is easily adapted to this statistical

analysis.
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Step1. Formulate hypothesis,which will always be for a two-tail test.
H0: The groups are equal.
HA: The groups are not equal.

Step 2. Choose a.
Step 3. Write out the test statistic.

FC ¼ ðk � 1ÞSSTREATMENT

SSTOTAL � SSTREATMENT

Step 4. Decision rule.
If FC > Ft , rejectH0 at a.

Step 5. Perform statistic.
Step 6. Conclusion.

Example 11: A researcher working with Pseudomonas aeruginosa
tested the resistance to bio¢lm formation of several antimicrobial com-
pounds applied to the surface of venous=arterial catheters. Three di¡erent
sample con¢gurations of catheter material were introduced into ¢ve
bioreactors, each of which was considered a block for the analysis. After a
72-hour growth period in a continuous-£ow nutrient system, the catheter
materials were removed, and the microorganism=bio¢lm levels were enum-
erated in terms of log10 colony-forming units. The researcher wanted to
know whether there was a signi¢cant di¡erence in microbial adhesion
among the products.

The collected data were tabulated, as shown here. Because the study
was a small pilot study with few replicate blocks and the blocks varied so
much, a nonparametric model was selected.

Step1. Formulate hypothesis.
H0: Catheter material 1 ¼ 2 ¼ 3 in microbial adherence
HA: At least one catheter material is di¡erent

Step 2. Specify a. Because this was a small study, awas selected as
0.10.

Test catheter

1 2 3

Reactors (blocks) 1 5.03 3.57 4.90
2 3.25 2.17 3.10
3 7.56 5.16 6.12
4 4.92 3.12 4.92
5 6.53 4.23 5.99
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Step 3. Write out the test statistic.The test statistic to be used is:

FC ¼ ðk � 1ÞSSTREATMENT

SSTOTAL � SSTREATMENT

Step 4. Present decision rule.

If FC > Ft , rejectH0 at a ¼ 0:10.
Ft ¼ Fta½l�1;ðl�1Þðk�1Þ�, where numerator degrees of freedom
¼ l � 1 ¼ 2, denominator degrees of freedom ¼ ðl � 1Þðk � 1Þ�
ð3� 1Þð5� 1Þ ¼ 8, and a ¼ 0:10.

Ft½0:10ð2;8Þ� ¼ 3:11.Therefore, ifFC > Ft ¼ 3:11, rejectH0 at a ¼ 0:10.
Step 5. Perform computation (the collected results are reconstructed

here).

1. First rank blocks in 1; 2; 3; . . . order.
2. Next, determine range of actual values, from high value to low
value.

Block 1 : 5:03� 3:57 ¼ 1:46 4 : 4:92� 3:12 ¼ 1:80
2 : 3:25� 2:17 ¼ 1:08 5 : 6:53� 4:23 ¼ 2:30
3 : 7:56� 5:16 ¼ 2:40

3. Next, rank the blocks.
4. Determine Sij ¼ Ri RðxijÞ � lþ1

2

 �
for each xij

S11 ¼ 2 3� 3þ 1
2

� �
¼ 2

S12 ¼ 2ð1� 2Þ ¼ �2

S13 ¼ 2ð2� 2Þ ¼ 0

S21 ¼ 1ð3� 2Þ ¼ 1

Test catheter

1 2 3

Reactors (reactor) 1 5.03 (3) 3.57 (1) 4.90 (2) RðX13Þ
2 3.25 (3) 2.17 (1) 3.10 (2)
3 7.56 (3) 5.16 (1) 6.12 (2)
4 4.92 (2.5) 3.12 (1) 4.92 (2.5)
5 6.53 (3) 4.23 (1) 5.99 (2)
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S22 ¼ 1ð1� 2Þ ¼ �1

S23 ¼ 1ð2� 2Þ ¼ 0

S31 ¼ 5ð3� 2Þ ¼ 5

S32 ¼ 5ð1� 2Þ ¼ �5

S33 ¼ 5ð2� 2Þ ¼ 0

S41 ¼ 3ð2:5� 2Þ ¼ 1:5

S42 ¼ 3ð1� 2Þ þ �3

S43 ¼ 3ð2:5� 2Þ ¼ 1:5

S51 ¼ 4ð3� 2Þ ¼ 4

S52 ¼ 4ð1� 2Þ ¼ �4

S53 ¼ 4ð2� 2Þ ¼ 0

5. Determine SSTOTAL

SSTOTAL ¼
Xk
i¼1

Xl
j¼1

S2
ij

¼ 22 þ ð�2Þ2 þ 02 þ 12 þ ð�1Þ2 þ 02

þ 52 þ ð�5Þ2 þ 02 þ 1:52 þ ð�3Þ2 þ 1:52

Block

Sample
block
range

Block
rank (Ri)

Catheter

1 2 3

1 1.46 2 2 �2 0
2 1.08 1 1 �1 0
3 2.40 5 5 �5 0
4 1.80 3 1.5 �3 1.5
5 2.30 4 4 �4 0

S1 = 13:5 S2 =�15:0 S3 = 1:5
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þ 42 þ ð�4Þ2 þ 02

¼ 105:50

SSTOTAL ¼ 105:50

SSTREATMENT ¼ 1
k

Xl
j¼1

S2
ij ¼

1
5
½13:52 þ ð�15Þ2 þ 1:52� ¼ 81:90

SSTREATMENT ¼ 81:90

Next,Compute FC :

FC ¼ ðk � 1ÞSSTREATMENT

SSTOTAL � SSTREATMENT
¼ ð5� 1Þ81:90

105:50� 81:90
¼ 13:88

FC ¼ 13:88

Step 6. Conclusion.BecauseFC ¼ 13:88 > FT ¼ 3:11,theH0 hypoth-
esis is rejected at a ¼ 0:10. Performance of one catheter is di¡erent
from the others.

C. Multiple Contrasts

As before, multiple contrasts are conducted only when H0 is rejected. The
computation formula is for all possible lðl � 1Þ=2 contrast combinations.
If jSi � Sjj is greater than

ta=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðSSTOTAL � SSTREATMENTÞ

ðl � 1Þðk � 1Þ

s
ð23Þ

conclude that the di¡erence is signi¢cant at a.
Let us contrast the catheter products.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðSSTOTAL � SSTREATMENTÞ

ðl � 1Þðk � 1Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð5Þð105:5� 81:90Þ

2ð4Þ

s
¼ 5:4314

t0:10=2 with ðl�1Þðk�1Þ df ¼ tð0:05;8Þ ¼ 1:86: (table B, Student’s T table)

So,

ta=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðSSTOTAL � SSTREATMENTÞ

ðl � 1Þðk � 1Þ

s
¼ 1:86ð5:4314Þ ¼ 10:10
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Catheter product contrasts:

1 vs. 2 ¼ j13:5� ð�15Þj ¼ 28:5 > 10:10 Significant
1 vs. 3 ¼ j13:5� 1:5j ¼ 12 > 10:10 Significant
2 vs. 3 ¼ j � 15� 1:5j ¼ 16:5 > 10:10 Significant

Each of the catheter products is signi¢cantly di¡erent from the others
at a ¼ 0:10.

XII. SIMPLE LINEAR REGRESSION WITH
NONPARAMETRIC STATISTICS

Regression analysis, as we have seen, is a very widely used and valuable pro-
cedure in applied research. In Chap. 11,we discussed parametric regression
methods. The methods of regression require that the data meet fairly rigid
restrictions.When those restrictions cannot be met, and many times they
cannot, nonparametric methods o¡er a valuable alternative.

Recall that in simple linear regression, there are two variables, the in-
dependent variable x and the dependent or response variable y. The regres-
sion parameters b0 and b1 are determined from the x,y data set providing the
simple linear regression equation:

y ¼ b0 þ b1x

There are several nonparametric methods that use standard para-
metric procedures, the least squares approach, for determining both b0 and
b1. This researcher recommends using not those methods but, instead, a
method developed byMood and Brown [43].

A. Mood–Brown Regression Method (with Paulson
Modification)

Thismethod is fairly involved,but for small samples it is easily accomplished
using pen and paper.For larger data sets, a software statistical program,such
asMiniTab1, is useful.

The y values are ¢rst portioned into two sets: (1) those having x values
to the left of the median of x, that is, speci¢cally less than or equal to the
median of x, and (2) those having x values greater than the x value median.
The predicted values of b0 and b1 are the values that present a line in which
themedian of the deviations around the regression line is 0 in bothof the data
sets. Predicting 0 is not always possible, but one wants to be as close to it as
possible.
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B. Mood-Brown Determinants of b0 and b1

Step 1. Linearize the data, and prepare a scattergram of the sample
data. It is recommended that EDA be performed on any data
intended for regression. If the assumptions of parametric regression
cannot be assured, use the nonparametric statistic.

Step 2. Draw a vertical line through the x median. If one or more
points fall on the xmedian, shift the line to the left or right such that
the numbers of points to the left and right of the xmedian are equal
or as equal as possible.

Step 3. Determine the medians of x and those of y for the two sub-
groups, left and right. [There will be one pair of (x, y) medians for
the left group, called (x1, y1), and one pair of (x, y) medians for the
right group, called x2, y2.]

Step 4. For the ¢rst group of data [the (x, y) values with the x1 values
less than or equal to the x median], plot the point representing the
(x, y) median intercept.Do the same for the second (x2, y2) group of
data. There will be two points when this is completed, represented
by (x1, y1) and (x2, y2).

Step 5. Drawa line connecting the two points.This is the ¢rst estimate
of the regression line.

Step 6. If themedianof the vertical deviation of points from this line is
not 0 for both groups, shift the regression line to a new position until
you ¢nd where the deviation of each group is 0.

Step 7. The value of b0 is the point where the y intercept is crossed
when x ¼ 0, based on the scribed regression line.

b1 ¼ y1 � y2
x1 � x2

ð24Þ

C. Mood-Brown Assumptions

1. The data collected are interval scale.
2. The data collected are continuous.
3. The (x, y) values are associated.
4. Generally, the x values are selected, not randomly determined.

Let us work an example (Example12).

Example 12: In a pilot evaluation, a researcher wanted to know the
rate of bacterial reductions and the expected number of bacteria on a death
curve (regression slope). Streptococcus pyogenes were used with a baseline
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(initial) population of 1.72�108 CFU=mL. Five time intervals were used: 0,
30, 60, 90, and120 seconds.The colony-forming unit counts were as follows:

Because the data were not linear, the researcher performed a log10
transformation on the y values, termed y0.

Please note, also, that when using nonparametric regression, the data
size, n, is usually small. Otherwise, a parametric model would probably be
used. In this researcher’s opinion, it is easiest to plot the data points by
means of a computer printout. Figure 6 is theMiniTab1 version.

Theactual xmedian is 60 (solid line),but because it cuts a value (6.19) in
half, the line ismoved slightly left or right.Wewill move it right (dashed line).

The (x1, y1) median values of the three data points to the left of the
median (x ¼ 60) are (30, 7.41).The (x2, y2) median values of the two observa-
tions to the right of 60 are x2 ¼ ð90þ 120Þ=2 ¼ 105 and for y2 are
ð5:44þ 4:16Þ=2 ¼ 4:80.

x2; y2 ¼ ð105; 4:80Þ
A regression line is drawn through (x1; y1) and ðx2; y2Þ ¼ ð30; 7:41Þ and

(105, 4.80).Now, using the algebraic formula for the slope:

Slope b1 ¼ m ¼ y2 � y1
x2 � x1

¼ 4:80� 7:41
105� 30

¼ �0:0348

the slope, b1, is estimated.

x= time (seconds)
y=microbial

population (CFU/mL)

0 1:72� 108

30 2:58� 107

60 1:56� 106

90 2:73� 105

120 1:43� 104

x= time (seconds)
y0 =microbial

population (log10 y)

0 8.24
30 7.41
60 6.19
90 5.44
120 4.16
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So, b1 ¼ �0:0348, which means that for every 1-second exposure, the
microbial population decreases by 0.0348 log.

D. Paulson Modification

Instead of trying to draw and, from the drawing, ¢nd the di¡erences between
the y values and the ŷy predicted values, use the function y ¼ mx þ b to deter-
mine the regression line. Because the function is linear, use (x1; y1) or
(x2; y2)�it does not matter which�and solve for b0 ¼ y intercept.

y ¼ mx þ b; where y ¼ y2 and x ¼ x2

y2 ¼ 4:80; x2 ¼ 105; m ¼ �0:0348
4:80 ¼ �0:0348ð105Þ þ b0; solve for b0

b0 ¼ 4:80þ 3:654 ¼ 8:45

So the entire regression equation is, by the Paulson modi¢cation.

FIGURE 6 AnnotatedMiniTab1 printout.
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Then construct a regression function:

ŷy ¼ b0 þ b1x ¼ 8:45� 0:0348x

Next compute ŷy for each x, and subtract ŷy from yE:

Here
P

E ¼ �0:39�notice that the error magnitudes oscillate around
the regression line midpoint of 60, so the slope b1 is ¢ne, but the b0 estimate
can probably be improved. So,we will ‘‘tweak’’ b0 in order to reduce

P
E.

Let b0 ¼ 8:35, and see what happens; ŷy ¼ 8:35� 0:0348x and recalcu-
late the ŷy value as well as on a new

P
E:

Because
P

E ¼ 0:13, the error is positive, so we will tweak b0 again by
increasing it a couple of points and see what happens.

Let us set b0 at 8.38; ŷy ¼ 8:38� 0:0348x and again recalculate the ŷy
value and

P
E:

x y ŷy E ¼ y� ŷy

0 8.24 8.45 �0:23
30 7.41 7.41 0.00
60 6.19 6.36 �0:17
90 5.44 5.32 0.12
120 4.16 4.27 �0:11P

E ¼ �0:39

x y ŷy E ¼ y� ŷy

0 8.24 8.35 �0:11
30 7.41 7.31 0.10
60 6.19 6.26 �0:07
90 5.44 5.22 0.22
120 4.16 4.17 �0:01P

E ¼ 0:13

x y ŷy E ¼ y� ŷy

0 8.24 8.38 �0:14
30 7.41 7.34 0.07
60 6.19 6.29 �0:10
90 5.44 5.25 0.19
120 4.16 4.20 �0:04P

E ¼ �0:02
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Here
P

E ¼ �0:02,which is very good for practical purposes.The regression
at a cumulated error term of�0:02 is, for this researcher, good enough.

The regression formula via this nonparametric procedure is:

ŷy ¼ b0 þ b1x

ŷy ¼ 8:38� 0:0348ðxÞ
If the data had originally provided negative errors for the data to

the left of the x ¼ 60 median and positive for the data to the right of the
x ¼ 60 median, the ŷy values in b1 ¼ m ¼ ð y1 � y2Þ=ðx1 � x2Þ ¼ Dy=Dx
would have been iteratively changed by decreasing the ŷy values to reduce
the slope. This would be done until all the errors to the left and right of
the x ¼ 60 median were equally positive and negative. If further correc-
tions were then needed, it would be done at b0, as the example portrayed
(Fig. 7).

E. Suggestions

1. If the study is controlled in the sense that the xi values are pre-
determined, be sure the range of xi values extends as far as pos-
sible. That is, the span from the lowest to the highest values

FIGURE 7 Further corrections.
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should be as great as is practical. This will provide value in two
ways. It will enable the estimates of the regression parameters,
b0 and b1, to be more accurate and precise. Second, it will enable
the researcher to better determine whether the regression func-
tion is, in fact, linear. If it is not, the researcher will need to lin-
earize the data set by one of the transformations discussed
previously in the EDA section (Chap. 3) and the regression sec-
tion (Chap. 11).

2. Be sure to replicate each of the xi values. A minimum of two or,
better yet, three replicates per xi value is preferred. If one’s budget
is extremely tight, skimp on replicating the middle xi values, not
the outside high and lowdata sets.For example, Fig. 8 portrays this
strategy in that the outside values have 3 replicates each, the next
values 2 each, and the inside two1each.

3. It is also important to perform true replicates. All too often,
applied researchers think replication is merely multiple measure-
ments of the same xi condition (e.g., same subject, same lot, same
experiment). This is appropriate only if the researcher is measur-
ing ‘‘observation’’ error (repeated measurement), measuring the
precision of the experimental process itself. But most researchers
are interested in the induction process.They want tomake a gener-
alized claim about the experiment conducted,using speci¢c condi-
tions. That requires actual replication, which is essentially
performing a single experiment ‘‘n’’ times.

FIGURE 8 ‘‘Skimping’’strategy.
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XIII. HYPOTHESIS TESTING FOR b0 AND b1

Several authors suggest using theBrown andMood procedure for hypothesis
testing of both b0 and b1 once these estimates have been determined
[41,42,44].

H0: b0 ¼ b00
HA: b0 6¼ b00, where b00 is 0 or some ¢xed value for the y coordinate

intercept when x ¼ 0

and

H0: b1 ¼ b01
HA: b1 6¼ b0i , where b0i is 0 or some other ¢xed value for regression

slope

The procedure is applicable from our previous calculations of b0 and b1.
One merely looks at the last (¢nal) regression function drawn and

counts the yi values above the ¢nal regression line (ŷy) in the ¢rst (left of the
vertical x median line) group of data separated by the vertical xmedian line.
[Recall that we moved the vertical median line to the right of xmedian ¼ 60
because 60 has a value.We showed this with a theoretical dashed line (Fig. 9)
It serves no purpose other than to include xmedian ¼ 60 in the left side data.]
Call this value n1. Do the same with the values to the right of the center line,
which are above.

FIGURE 9 Regression function.
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There is only one value y greater than the ŷy in the ¢rst group to the left of
the vertical line xmedian, so n1 ¼ 1.For the values above ŷy in the second group,
there is also one value, so n2 ¼ 1.

Note: This can also be determined by residuals (E).

The n1 and n2 have binomial distributionswith the indicator value of 0.5, and
the test statistic is:

w2c ¼
8
n

n1 � n
4

	 
2
þ n2 � n

4

	 
2� �
ð25Þ

where: n ¼ number of (x,y) coordinate values

n1 ¼ number of positive values, yi > ŷy, in the left one half data
group

n2 ¼ number of positive values, yi > ŷy, in the right one half data
group, which is distributed as a chi square (w2) distribution
with 2 degrees of freedom: w2tða;2Þ

If w2c > w2t , rejectH0 at a.
Let us work an example, specifying b 00 ¼ 8:38 and b 01 ¼ �0:0348.

This works well using the six-step procedure.

Step1. Formulate the hypothesis.
H0 : b0 ¼ 8:38 and b1 ¼ �0:0348
HA : b0 6¼ 8:38 and b1 6¼ �0:0348

x y ŷy E= y� ŷy

Data group to
the left of
median

0 8.24 8.38 �0:14 �
n1

Count thenumber of positive
values of E left of and including
xmed ¼ 60, which is 1.
n1 ¼ 1.

30 7.41 7.34 0.07
60 6.19 6.29 �0.10

Data group to
the right
ofmedian

90 5.44 5.25 0.19 )
n2

For the secondgroup, count
thenumberof positive Evalues
to the right of the verticalmedian
line.There is also 1positive value
in this group, so n2 ¼ 1.120 4.16 4.20 �0.04
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Step 2. Set a. Let a ¼ 0:10. But this time we will also determine the p
value. That is, given the H0 hypothesis is true,with the w2C value we
will compute, how likely is its probability?

Step 3. Write out the test statistic to be used.

w2c ¼
8
n

n1 � n
4

	 
2
þ n2 � n

4

	 
2� �
Step 4. Decision rule.
If w2c > w2t (where w

2
tð0:10;2Þ ¼ 4:605), from table J, rejectH0.

Step 5. Perform calculation.

w2c ¼
8
5

1� 5
4

� �2

þ 1� 5
4

� �2
" #

w2c ¼ 0:20 < w2t ¼ ð4:605Þ
Step 6. Conclusion. Because w2c < w2t , one cannot reject H0 at

a ¼ 0:10. b0 is not signi¢cantly di¡erent from 8.38, and
b1 is not signi¢cantly di¡erent from�0.0348.

A. Evaluating Two Regression Slopes (B1) for Parallelism

There are times when a researcher will want to compare two regression
slopes (b1) for equivalence. For example, if two moisturizing products are
evaluated in terms of the rate of moisturizing, two antimicrobial products
are evaluated for rate of bacterial inactivation, or two drugs are evaluated
for rate of absorption by the liver, this procedure can be useful.

In this investigator’s opinion, it is extremely useful to evaluate the b1
values of multiple test groups�with small samples�using nonparametric
procedures. In fact, when large sample sizes are used, the math becomes a
real burden.

There are a number of procedures applicable for regression slope eva-
luations.One devised by Hollander [48] is particularly useful, using a modi-
¢cation of theWilcoxon matched-pair signed-ranks test discussed earlier in
this chapter.

B. Assumptions

1. Both regression functions are linear and can be adequately
described by:
ŷyA ¼ b0A þ b1A for population A

and

ŷyB ¼ b0B þ b1B for population B
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2. Each y value (response or dependent variable) ismeasured without
bias for each x point set.The x values for both models are‘‘pre-set,’’
not random variables, themselves.

3. The E values (y � ŷy) are random errors for each population and are
independent of one another.

C. Hypothesis Testing

We will concern ourselves with testing only two di¡erent sample sets,which
can be written as:

Population A : ŷyia ¼ b0a þ b0axia þ eia

Population B : ŷyib ¼ b0b þ b0bxib þ eib

Both two-tail and one-tail tests can be performed:

D. Equal and Even Sample Sizes

This procedure requires that the numbers of observations for populations A
and B be equal, na ¼ nb, and that they be even in number. If they are not, one
evens and equalizes them by random removal of (x, y) pair values until
na ¼ nb and na and nb are even (divisible by 2 with no remainder).

E. Procedure

1. The two sample populations, equal in size and even in number, are
arranged in ascending order based on the xi values. That is,
x1 � x2 � x3 	 	 	 � xn.There will be two groups, A and B.

2. Divide each group in two based on the xi values. The total sample
size of each xdata groupwill be 2n. Pair the xi values as xi, xiþn, e.g.,
i ¼ 1; 2; . . . ; n. For example, if you have 16 values of xia, they are
separated into two groups of 8. The pairing will be (based on
original order)

Two tail Lower tail Upper tail

H0 : b1a ¼ b1b H0 : b1a � b1b H0 : b1a � b1b
HA : b1a 6¼ b1b HA : b1a < b1b HA : b1a > b1b
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xi ; xiþn ¼ x1; x1þ8¼9 x1x9¼ x2; x2þ8¼10 x2x10
. . . . . .
¼ xn; xnþ8 xnxnþn

3. Compute the n slope estimated for groupA, then group B.

SAi ¼
yðiþnÞ � yi
xðiþnÞ � xi

ð26Þ

where A ¼ group A; i ¼ 1; 2; . . . ; n,

SBi ¼
yðiþnÞ � yi
xðiþnÞ � xi

ð27Þ

where B¼ group B, i ¼ 1; 2; . . . ; n.
4. Randomly pair the SAis and SBis so that each SAi is pairedwith each

SBi.
5. Compute the n di¡erence.

Di ¼ SAi � SBi ð28Þ
6. The n di¡erences are:

D1;D2; . . . ;Dn

7. The procedure from here on is identical to the Wilcoxon signed-
rank test. The absolute values of the di¡erences, jDij, are ranked
from smallest to largest. Ties among Dis are assigned the mean of
the n tied values, as always.

8. Each of the resulting ranks is assigned the sign (plus=minus) of the
di¡erence for which the absolute value yields that rank.

9. Compute the Ri :
Rþ ¼ sum of ranks positive

R� ¼ sum of ranks negative

The test statistic is exactly as previously presented.The process will be
presented in the six-step procedure.

Step1. Specify hypothesis.

Two tail Lower tail Upper tail

H0 : b1a = b1b H0 : b1a 5 b1b H0 : b1a 4 b1b
HA : b1a=� b1b HA : b1a < b1b HA : b1a >b1b
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Step 2. Select a.Use a=2 for two-tail tests at a.
Step 3. Write out the test statistic directly o¡ the Wilcoxon table

(Table A.8) Tables H and A in Appendix.

Zc ¼ R � ½nðnþ 1Þ�=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þð2nþ 1Þ=24p ð29Þ

where R¼ sum of squares, as used according to step 4; it will be
either Rþ or R�, depending uponwhich tail test is chosen

Rþ¼ sum of positive rank values
R�¼ sum of negative rank values

Step 4. Specify decision rule.*

Step 5. Perform calculations.
Step 6. Conclusion.

Example 13: A researcher performs a pilot study to determine
whether the lethality rates of two hard-surface disinfectants are equivalent
(parallel).The two products are:

Product A¼ 0.5% PCMX
Product B¼ 0.5% triclosan

WilcoxonTable

Two-tail test Upper tail test Lower tail test

The test dependsupon
the sumof the ranks,
R+or R,^ whichever
is smaller. IfR^/+ is
equal to or less than the
tabled d valuevalue,
reject H0 at a.

This test uses the sum
of the ranks of
negative values ðR�Þ.
IfR� is smaller than
or equal to d tabled
(Wilcoxon table,
Table H in Appendix),
reject H0 at a.

This test uses the sum of the
ranks of positive values ðRþÞ.
If Rþ is smaller than or equal
to d tabled (Table H in Appen-
dix), reject H0 at a.

*Note: In using theWilcoxon table (Table H in Appendix), the d value is the Rþ or R� value and
the number ofDi pairs is n.
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The exposure times are 0 (baseline control),15 seconds, 30 seconds,60
seconds, 90 seconds, and 120 seconds. The results are microbial counts, in
log10 scale to linearize the data, as follows:

Prior to performing any statistics, it is wise to plot both data sets.They
are presented in Figs.10 and11inMiniTab1 computer software output.Note
that I removed product B readings at 75 and 105 seconds to equalize nA and
nB.The observations are also even in number, nA ¼ nB ¼ 6.The plotted data
for both products look linear, sowe will go ahead with the comparison,using
the six-step procedure.

Step1. Formulate hypothesis for comparing the two slopes ðb1Þ.
H0: Product A¼product B in rates of microbial reduction
HA: Product A 6¼product B in rates of microbial reduction

Step 2. Select a. For this pilot study, set a ¼ 0:10.
Step 3. Because n < 25, we can use Wilcoxon Table H directly for
this evaluation.

Step 4. Decision rule. Looking at Table H for the Wilcoxon test, n
(number of DisÞ ¼ 3; for a two-tail test 0:10=2 ¼ 0:05 ¼ a. There is
no corresponding value, sowewill use a ¼ 0:25because it is the best
we can do.We will take the smaller of the two R values, Rþ or R�,
which corresponds to d on the table, and use a ¼ 0:25.Wewill reject
H0 if the smaller sum of the ranks (either Rþ or R�) is less than or
equal to1at a ¼ 0:25.

So, if ‘‘Rsmaller’’�1, rejectH0 at 0:25 ¼ a.The sample size is too small
to be useful for anything but an extreme di¡erence.

Step 5. Perform computation.

Product A Product B

x (seconds)
Microbial counts

y (log) x (seconds)
Microbial Counts

y (log)

0 8.01 0 9.15
15 7.49 15 8.23
30 6.38 30 7.15
60 5.43 60 6.23
90 3.23 75 5.89
120 2.15 90 4.16

105 3.27
120 2.70
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A. First, pair the two data sets.
B. Then randomly pair the SAi and SBi values, and rank.

Product A Product B

x1x4 ¼ x0x60 x1x4 ¼ x0x60
x2x5 ¼ x15x90 x2x5 ¼ x15x90
x3x6 ¼ x30x120 x3x6 ¼ x30x120
SA1 ¼ y4�y1

x4�x1 ¼
y60�y0
x60�x0 ¼ 5:43�8:01

60�0 ¼ �0:043 SB1 ¼ y4�y1
x4�x1 ¼

y60�y0
x60�x0 ¼ 6:23�9:15

60�0 ¼ �0:049
SA2 ¼ y90�y15

x90�x15 ¼ 3:23�7:49
90�15 ¼ �0:057 SB2 ¼ y90�y15

x90�x15 ¼ 4:16�8:23
90�15 ¼ �0:054

SA3 ¼ y120�y30
x120�x30 ¼ 2:15�6:38

120�30 ¼ �0:047 SB3 ¼ y120�y30
x120�x30 ¼ 2:70�7:15

120�30 ¼ �0:049

Randomly pair SAi and SBi values

Difference Di Rank (ascendingorder)

SA3SB1 = j � 0:047�(�0:049)j= 0:002(þ) 1
SA1SB3 = j � 0:043�(�0:049)j= 0:006(þ) 3
SA2SB3 = j � 0:057�(�0:054)j= 0:003(�) 2

Rþ ¼ 1þ 3 ¼ 4
R� ¼ 2

FIGURE 10 Product A.
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Step 6. Conclusion. Because R� was the smaller of Rþ and R� and
it was 2,we cannot rejectH0 at a ¼ 0:25.

or via p value notation:

Pðd � 2Þ jH0 trueÞ � 0:25

We cannot conclude that the slopes are di¡erent at a ¼ 0:25.
Note that for one-tail tests:

Note: Remember �0:47 > �0:49, so greater here really means less
antimicrobial activity.

Upper tail Lower tail

H0: BA1 4BB1 H0: BA1 5BB1

HA: BA1 > BB1 HA: BA1 < BB1

If the sumof the ranks of the R�values
4 1, reject H0 at a ¼ 0:125.

If the sumof the ranks of theRþ
values 4 1, reject H0 at a ¼ 0:125.

Because R�= 2 > 1, we cannot
reject H0 ata ¼ 0:125.

Because Rþ ¼ 4 > 1, we cannot reject
H0 ata ¼ 0:125.

FIGURE 11 Product B.
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From these tests, the researcher will get the feeling that theBA1 andBB2

group rates of inactivation are probably the same.

F. Nonparametric Linear Regression (Monotonic
Regression)

Monotonic regression can be used with data that increase or decrease non-
linearly [42,43].Figure12 shows all examples ofmonotonically decreasing or
increasing data.Figure13 presents someexamples of nonmonotonic curves.

Monotonic functions are as follows:

1. As x increases, y increases at an increasing or decreasing rate.
2. or, as x increases, y decreases at a decreasing or increasing rate.

These functions are fairly easy to linearize, but there are times one
does not wish to transform the data to linearize them. Perhaps one is not
comfortable with changing a scale and expecting repeated testing to model
the proposed transformation.

G. Assumptions

1. The data consist of determined (set) x values, and the correspond-
ing y values are dependent upon the x values.

2. The individual E (error) values are independent random variables.
3. The regression function is monotonic.

There are two things we can do:

1. A point estimate (an estimate of a y given an x value)
2. An estimate of the regression function y ¼ b0 þ b1x

H. Estimate of y at Specific x

The process can be ordered by distinct steps:

1. Obtain the ranks of the x and y values. For ties, take the average, as
usual.

2. Determine the regression parameters via ranks.
Regression form: y ¼ b0 þ b1x

b1 ¼
Pn
i¼1

RðxiÞRðyiÞ � nðnþ 1Þ2=4
Pn
i¼1
½RðxiÞ�2 � nðnþ 1Þ2=4

ð30Þ
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FIGURE 12 Examples ofmonotonic regression curves.
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FIGURE 13 Examples of nonmonotonic curves.
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where
RðxiÞ ¼ rank of xi values
RðyiÞ ¼ rank of yi values

b0 ¼ ð1� b1Þðnþ 1Þ
2

ð31Þ

Let xe ¼ x estimate.

3. Obtain the rank of a speci¢c xe.
a. If xe is one of the x values already observed, let RðxeÞ ¼ that spe-

ci¢c x value rank.
b. If xe is between two adjacent xi values,where xi < xe < xj, inter-

polate to get its rank RðxeÞ using the formula:

RðxeÞ ¼ RðxiÞ þ xe � xi
xj � xi

RðxjÞ � RðxiÞ
 � ð32Þ

RðxeÞmay not be an integer, and that is all right. If ðxeÞ is larger than
the largest xj , do not extrapolate.The test cannot be used for extra-
polation.

4. Next, replace x in the equation ŷy ¼ b0 þ b1x with RðxeÞ to predict
E½RðyeÞ�.

E½RðyeÞ� ¼ RðŷyeÞ ¼ b0 þ b1RðxeÞ

5. Then convert RðŷyeÞ into EðyeÞ applying the following rules:

a. If RðyeÞ equals the rank of one of the yi observations, RðyiÞ, then
the estimate of EðyeÞwill equal that observation, yi .

b. If RðyeÞ lies between the ranks of two adjacent values yi and yj ,
that is, RðyiÞ < RðyeÞ < RðyjÞ, interpolate using the formula:

EðyeÞ ¼ yi þ RðyeÞ � RðyiÞ
RðyjÞ � RðyiÞ ðyj � yiÞ ð33Þ

c. If RðyeÞ is greater than the largest observed rank of y, let
RðyeÞ be equal to the largest observed y. If RðyeÞ is less than
the smallest observed rank y, let RðyeÞ be equal to the smal-
lest observed y.
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Example 14: An experimenter performed a study with one
hard-surface disinfectant and the microorganism, Bacillus subtilis, a
spore-forming bacterial species, to determine the rate of inactivation
(to be discussed in the next section) and the expected lethality after
a 4.5-minute exposure. The following data were collected in log10
scale.

As always, it is a good idea to plot the data (Fig. 14). The researcher
concludes that the data are monotonic and wants to know what the log10 mi-
crobial population is at time 4.5 minutes.

Step1. Obtain the ranks of x and y values.
Step 2. Determine the regression parameter via ranks.

x= time
(minutes)

y= log10 microbial
counts

0 9.18
1 8.37
2 7.81
3 6.72
4 4.11
5 1.92
6 0.51

x= time
(minutes)

y= log10
microbial
counts R(x) R(y)

0 9.18 1 7
1 8.37 2 6
2 7.81 3 5
3 6.72 4 4
4 4.11 5 3
5 1.92 6 2
6 0.51 7 1

S R(x) = 28 S R(y) = 28
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Regression form: ŷy ¼ b0 þ b1x

b1 ¼
Pn
i¼1

RðxiÞRðyiÞ � nðnþ 1Þ2=4
Pn
i¼1
½RðxiÞ�2 � nðnþ 1Þ2=4

b1¼ ½ð1 	7Þþð2 	6Þþð3 	5Þþð4 	4Þþð5 	3Þþð6 	2Þþð7 	1Þ��7ð7þ1Þ2=4
½12þ22þ32þ42þ52þ62þ72��7ð7þ1Þ2=4

b1 ¼ 84� 112
140� 112

¼ �1:0

b0 ¼ ð1� b1Þ nþ 1
2

� �
¼ 1� ð�1Þ 8

2

� �
¼ 8:0

Step 3. Let xe ¼ xestimate ¼ 4:5
xi < xe < xj ¼ 4 < 4:5 < 5

RðxeÞ ¼ RðxiÞ þ xe � xi
xj � xi

½RðxjÞ � RðxiÞ�

¼ 5þ 4:5� 4
5� 4

½6� 5� ¼ 5:5

FIGURE 14 MiniTab1 plot of data.
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Step 4. Next, replace x in the equation ŷy ¼ b0 þ b1x with RðxeÞ ¼ 5:5
to predict ŷy ¼ EðyeÞ.

ŷy ¼ b0 þ b1ðRðxeÞÞ ¼ 8� 1ð5:5Þ ¼ 2:5

The rank of ye ¼ 2:5

Step 5. Convert Rð ŷyeÞ ¼ ŷy into E½ðyeÞ�
Rð yiÞ < RðyeÞ < RðyjÞ

2 2:5 3

EðyeÞ ¼ yi þ RðyeÞ � RðyiÞ
RðyjÞ � RðyiÞ ðyj � yiÞ

where

RðyeÞ ¼ 2; RðyjÞ ¼ 3; RðyeÞ ¼ 2:5; yi ¼ 1:92; and yj ¼ 4:11

EðyeÞ ¼ 1:92þ 2:5� 2
3� 2

ð4:11� 1:92Þ ¼ 3:015

EðyeÞ ¼ 3:015

So, when x ¼ 4:5; ŷy ¼ 3:015 logs. Look back at the plot and notice
how close 3.015 appears to be.This is a very useful method.

I. Estimate of the Regression Function y on x

Step1. Obtain the end points of the regression function curve by using
the smallest xð1Þ and the largest xðnÞ observations in the previous pro-
cedure. Plug Rðx1Þ and Rðx2Þ into the formula:

RðŷyÞ ¼ b0 þ b1ðRxÞ ð34Þ

Step 2. For each rank of y; RðyiÞ, estimate the rank of xi; RðxeÞ, from
RðŷyÞ ¼ b0 þ b1x1,which is

RðxeÞ ¼ ½RðyiÞ � b0�
b1

i ¼ 1; 2; . . . ; n ð35Þ

Step 3. Convert each RðxiÞ to an estimate of xe such that
a. IfRðxeÞ equals the rank of some observation,RðxiÞ, then xe equals
that value.
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b. If RðxeÞ lies between the ranks of two adjacent observations, xi
and xj ,where xi < xj, then interpolate to get xe :

xe ¼ xi þ RðxeÞ � RðxiÞ
RðxjÞ � RðxiÞ ðxj � xiÞ ð36Þ

c. If RðxeÞ is less than the smallest observed rank of x or larger than
the largest observed rank, no estimate for xe can be found.

Step 4. Plot each of the points found in step 3 on graph paper (or plot
as a computer printout).Donot forget to plot the two end pointswith
EðyÞ for x1 and xn.

Step 5. Connect the points with straight lines that, cumulatively, are
what make up the regression function ŷy ¼ b0 þ b1x.

Now, continuing with our previews example:

Step 1. Obtain the end points of the regression curve by using the
smallest x1 and largest xn to obtain the expected values of on x1 and
on xn.

ŷy ¼ b0 þ b1x

ŷy ¼ 8� 1ðxÞ
x1 ¼ 0 6¼ Rðx1Þ ¼ 1

xn ¼ x7 ¼ 6 6¼ Rðx7Þ ¼ 7

Rð ŷyÞ ¼ b0 þ b1Rðx1Þ xi ¼ 0; RðxiÞ ¼ 1

Rð ŷyÞ ¼ 8� 1ð1Þ
Rð ŷyÞ ¼ 7;Rðx1Þ
Rð ŷyÞ ¼ 8� 1ð6Þ
Rð ŷyÞ ¼ 2;Rðx7Þ
So; x1 ¼ 0; Rðx1Þ ¼ 1; RðyÞ ¼ 7

x7 ¼ 6; Rðx7Þ ¼ 6; RðyÞ ¼ 2:

Step 2. For each rank of y; RðyiÞ, ¢nd the estimate, RðxeÞ.

RðxiÞ ¼ RðyiÞ � b0
b1
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Let us reconstruct our table.

Rðx1e Þ ¼
7� 8
�1 ¼ 1

Rðx2e Þ ¼
6� 8
�1 ¼ 2

Rðx3e Þ ¼
5� 8
�1 ¼ 3

Rðx4e Þ ¼
4� 8
�1 ¼ 4

Rðx5e Þ ¼
3� 8
�1 ¼ 5

Rðx6e Þ ¼
2� 8
�1 ¼ 6

Rðx7e Þ ¼
1� 8
�1 ¼ 7

Step 3. Convert each RðxiÞ to an estimate of xi.

Rðx1Þ ¼ x1 ¼ 0; x1 ¼ 0; x1 ¼ 0

Rðx2Þ ¼ x2 ¼ 1; x2 ¼ 1; x2 ¼ 1

Rðx3Þ ¼ x3 ¼ 2; x3 ¼ 2; x3 ¼ 2

Rðx4Þ ¼ x4 ¼ 3; x4 ¼ 3; x4 ¼ 3

Rðx5Þ ¼ x5 ¼ 4; x5 ¼ 4; x5 ¼ 4

Rðx6Þ ¼ x6 ¼ 5; x6 ¼ 5; x6 ¼ 5

Rðx7Þ ¼ x7 ¼ 6; x7 ¼ 6; x7 ¼ 6

n
x = time
(minutes)

y= log10
microbial
counts R(x) R(y) R(xe) xe

1 0 9.18 1 7 1 0
2 1 8.37 2 6 2 1
3 2 7.81 3 5 3 2
4 3 6.72 4 4 4 3
5 4 4.11 5 3 5 4
6 5 1.92 6 2 6 5
7 6 0.51 7 1 7 6
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Step 4. Plot the points xe; y and
Step 5. Correct themwith a line (Fig.15).

Notice that this procedure will always predict y on any x and inter-
polate between ð yi � yjÞ=ðxi � xjÞpoints. It is very useful in some exploratory
phases.

xe
y= log10 microbial

counts

0 9.18
1 8.37
2 7.81
3 6.72
4 4.11
5 1.92
6 0.51

FIGURE 15 MiniTab1 plot.
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XIV. NONPARAMETRIC CORRELATION

Recall that, in parametric regression analysis, we worked with the correla-
tion coe⁄cient, r, and with r2, the coe⁄cient of determination. A useful and
very well known nonparametric correlation coe⁄cient test involves the
Spearman rank correlation coe⁄cient.Correlation, as you recall, is themea-
sure of association between variables ðx; yÞ. A correlation of 1 is a perfect ¢t,
and a correlation of 0 is total randomness. In nonparametric statistics,we do
not use the 0^1 scale but only whether the correlation is signi¢cant or not
signi¢cant at a speci¢c a.There is not a useful r2 value equivalent in nonpara-
metrics, and the range of r ¼ �1 to1 is di⁄cult to interpret directly.

A. Assumptions

1. The data consist of any ðx; yÞ pair of data.
2. The data can be ranked from smallest to largest.
3. The data are at least of ordinal or interval scale.
4. Both two-tail and one-tail tests can be applied.

The Spearman test statistic is:

rc ¼ 1�
6
Pn
i¼1

d2
i

nðn2 � 1Þ ð37Þ

where:

Xn
i¼1

d2
i ¼

Xn
i¼1
½RðxiÞ � RðyiÞ�2 ð38Þ

The rc values will always be from�1 to1.The entire analysis can be ap-
proached via the six-step procedure.

Step1. Formulate hypothesis.
Step 2. Set a.

Two tail Upper tail Lower tail

H0 : x and yare
independent

H0: x and yare
independent

H0: x and yare independent

HA: x and yare
associated

HA: x and yare positively
associated (as x
increases, y increases)

HA: x and yare negatively
associated (as x
increases, y decreases)
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Step 3. Write out the test statistic.

rc ¼ 1�
6
Pn
i¼1

d2
i

nðn2 � 1Þ

Step 4. Decision rule.

Note: For sample pairs from 4 to 30, use the Spearman rank table
(Table A.15). For larger sample sizes, use the Z table (normal distribu-
tion,Table A.1) where:

Zc ¼ rc
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

; ð39Þ

Step 5. Perform calculations.
Step 6. Conclusion.

Example15: Let us use the regression data from Example14.

Step1. Determine hypothesis.Two-tail:
H0: x and y are independent.
HA: x and y are associated.

Step 2. Determine a. Let us set a ¼ 0:05.

Two tail Upper tail Lower tail

If jrcj > rt(a=2;n),
reject H0 at level a.

If rc > rt(a;n), reject H0

at levela.
If rc < �rt(a;n), reject
H0 at level a.

x minutes
y log10

microbial counts

0 9.18
1 8.37
2 7.81
3 6.72
4 4.11
5 1.92
6 0.51
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Step 3. Write out the test statistic. Because n ¼ 7, we will use the
Spearman rank table (Table A.15).The formula is:

rc ¼ 1�
6
Pn
i¼1

d2
i

nðn2 � 1Þ
Step 4. Decision rule.

If jrcj > rtða=2;nÞ, rejectH0 at a.

rtða=2;nÞ ¼ rð0:05=2;7Þ ¼ 0:7450

So, if jrjc > 0:7450, rejectH0 at a.

Step 5. Perform computation.

rc ¼ 1� 6ð112Þ
7ð72 � 1Þ ¼ 1� 672

336
¼ �1 and jrc j ¼ 1

jrcj > 0:745

x y R(xi) R(y) di =R(xi)�R(yi) d2

0 9.18 1 7 �6 36
1 8.37 2 6 �4 16
2 7.81 3 5 �2 4
3 6.72 4 4 0 0
4 4.11 5 3 2 4
5 1.92 6 2 4 16
6 0.51 7 1 6 36

Sd2
i = 112:0

Upper tail Lower tail

H0: x and yare independent H0: x and yare independent
HA: x and yare positively correlated HA: x and yarenegatively correlated
If rc > rt(a,n), reject H0 at a. If rc < � rt(a,n), reject H0 at a.
r0.05, 7 = 0.6786 r0:05;7 = 0:6786
Because�1< 0.6786, we cannot
reject H0 at a= 0:05. The xand
y variables are not positively
correlated at H0 ata= 0:05.

Because�1<�0.6786, reject H0 at
a= 0:05.The xand y variables
arenegatively correlated at H0 at
a= 0:05.Actually, it is a perfect
correlation.
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Step 6. Conclusion. Because jrcj ¼ 1 > 0:745, we reject H0 at
a ¼ 0:05. Actually, the data are perfectly negatively correlated.

Note: Let us do an upper and a lower tail test at a ¼ 0:05.

B. Ties

If ties occur, as always, assign them the average value. If ties are excessive
(over one fourth of the values of x or y), and usually they are not for regres-
sion, the following correction factor formula should be used.

r 0c ¼
P

x2 þP y2 �P d2
i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x2
P

y2
p ð40Þ

where:

x2 ¼ n3 � n
12
�
X

tx ð41Þ

and

tx ¼ ties of x ¼ t3x � tx
12

y2 ¼ n3 � n
12
�
X

ty; where ty ¼
t3y � ty
12

ð42Þ

XV. CONCLUSION

The researcher now has a broad array of nonparametric tools to meet
research needs. Nearly every method we explored previously using para-
metric statistics can now be accomplished using nonparametric methods.
Familiarity is important, and that will come through application, practice,
and experience.
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13

Introduction to Research Synthesis and

Meta-Analysis and Concluding Remarks

I. RESEARCH SYNTHESIS AND META-ANALYSIS

Research synthesis, or ‘‘meta-analysis,’’ comprises a family of statistical
methods used to evaluate and compare multiple research studies using their
conclusive data as the raw data. In short, in meta-analysis, one is interested
in evaluating the treatment e¡ects of a product or process across multiple
studies [49^53].

For example, in the evaluation of the e⁄cacy of a surgical preparation
product, multiple studies may have been conducted, some displaying favor-
able results and some unfavorable.How does one evaluate the e⁄cacy of the
product when the study outcomes con£ict? The answer ismeta-analysis.The
data used for meta-analysis are the results from the various studies com-
pleted in the past [50]. A prime use of meta-analysis is in the evaluation of
data compiled through literature review. In the past, researchers reviewed
the literature and formed their own subjective opinion concerning themean-
ing of experimental data. This subjective approach is increasingly being
abandoned in favor of meta-analysis statistical tests [51].

Meta-analysis is especially valuable for the ¢eld researcher, but to ap-
ply it, expertise in the ¢eld of study is necessary to determining which studies
to include. For example, if a drug should be used for 5 days in treatment, one
would avoid including studies in which the drug was used, inappropriately,
for1or 2 days.
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It is useful to have acceptance criteria as well as rejection criteria
clearly spelled out before a meta-analysis of data from the literature is per-
formed. It is also valuable to include studies that evaluate the product or pro-
cess under a wide range of conditions. For example, selecting studies to
encompass both sexes, di¡erent ages, di¡erent test methods, di¡erent races,
di¡erent geophysical areas, etc.,will make the meta-analysis results broader
in scope and the conclusions more robust.

The literature contains reference to a variety of statistical methods ap-
plicable to meta-analysis. In this book,we will explicate only one. As a start
to application of meta-analysis, this researcher suggests using the inverse chi
square (w2) method [50]. Given k independent studies and the p values for
each study, p1; . . . ; pk, this procedure combines the p values. The method is
based on the uniform distribution (U ) of success=failure. If U is a uniform
distribution, then �2‘npi has a chi square distribution with 2k degrees of
freedom.

We reject H0 if P ¼ �2
Xk
i¼1

‘npi > w2tða;2kÞ:

This statistic, I believe, as do others, is more robust and powerful than
the inverse normal method or the logit method [50,51].

Thesix-stepprocedurecanbeadapted for application tometa-analysis.

Step1. Formulate hypothesis.
H0:The combined studies show product=process not e¡ective.
HA: Combined studies show product=process e¡ective.
Step 2. Set a.
Step 3.The test statistic is:

P ¼ �2
Xk
i¼1

‘npi

where ‘n ¼ natural (or Naperian) logarithm (base e)
pi ¼ the p value for each study result, pi; . . . ; pk

Step 4. Decision rule.
If Pc > w2tða;2kÞ, rejectH0.

Step 5. Perform computation.
Step 6.Conclusion.

Example 1: A researcher was interested in evaluating the positive
results of using an alcohol gel product for sanitizing the hands of students in
various schools across the country. Students were selected randomly to use
the product, ad libitum, or to not. In several studies, two indices were evalu-
ated over the course of several months. The ¢rst was the incidence of
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Staphylococcus aureus cultured from the hands, and the second, the days stu-
dents were absent from school because of ‘‘colds or £u.’’ The studies were
conducted by di¡erent researchers using di¡erent methods in six di¡erent
school districts across the country.Generally, the t-test was used to analyze
the data.

A ¼ frequency of S. aureus on hands of product users compared with
those of nonusers

B ¼ study of absenteeism,users versus nonusers

The data from the multiple studies, processed for meta-analysis,were as fol-
lows.

Step1. Formulate hypothesis.
H0: The school studies showed that the product was not e¡ective.
HA: The school studies showed that the product was e¡ective.
Step 2. Set a. Let a ¼ 0.05.
Step 3.The test statistic to be used is:

P ¼ �2
Xk
i¼1

‘n p

Step 4. Decision rule.

If Pc > w2tð0:05;12Þ ¼ 21:03, rejectH0 at a ¼ 0:05.

SCHOOL
DISTRICT

Calculated value
Student’s t test

Student’s t
P value ‘nP

1 At ¼ 2:78 .0029 �5:8430
Bt ¼ 2:59 .0100 �4:6052

2 At ¼ 2:807 .005 �5:2983
Bt ¼ 1:33 .1100 �2:2073

3 At ¼ 2:12 0.025 �3:6889
Bt ¼ 0:686 0.5392 �0:6176

4 At ¼ (not given) .0312 �3:4673
Bt ¼ (not given) 0.0310 �3:4738

5 At ¼ (not given) .0500 �2:9957
Bt ¼ (not given) .0200 �3:9120

6 At ¼ 0:701 .2510 �1:3823
Bt ¼ 1:323 .0998 �2:3046

S ‘n p ¼ �39:7960
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Step 5. Perform computation.
Pc ¼ �2

X
‘n pi ¼ �2ð�39:7960Þ

Pc ¼ 79:5920

Step 6.Conclusion. Because Pc ¼ 79:59 > w2t ¼ 21:03,we reject theH0

hypothesis at a ¼ 0.05.There is good reason to believe the product is
e¡ective, although, obviously, there is much potential for confound-
ing here. But all in all, the data point to bene¢cial e¡ects.

In conclusion, meta-analysis is a very useful tool. It has been my ex-
perience that this inverse w2 test is very useful andmanageable without mak-
ing many assumptions about the data that cannot be met.

II. CONCLUDING REMARKS

Over these 13 chapters,we have covered many useful statistical methods. A
researcher who has an intimate understanding of his or her data should ben-
e¢t enormously from the information presented in this text. Obviously, not
all needs of the researcher in all circumstances could be addressed, but the
background presented here can be used by the researcher as a springboard to
enhance his or her investigational ability and, therefore, e¡ectiveness. As I
stated at the book’s beginning, statistics is a method of communicating.That
is what I hope we have done over the course of this work. I would be inter-
ested in your comments and applications.
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Appendix : Tables of Mathematical Values

TABLE A.1 Z-Table (Normal Curve Areas [Entries in the Body of the Table Give
the Area Under the Standard Normal Curve from 0 toz])

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015

(Continued)
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TABLEA.1 (Continued)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

Source: Freund JE,Williams FJ. Elementary Business Statistics; The Modern Approach. 2nd ed.
1972; reprinted by permission of Prentice-Hall, Inc.,Englewood Cliffs,NJ.

TABLEA.2 Student’s t Table (Percentage Points of the tDistribution)

v
a .40 .25 .10 .05 .025 .01 .005 .0025 .001 .0005

1 .3251.000 3.0786.314 12.70631.821 63.657127.32 318.31 636.62
2 .289 .816 1.8862.920 4.303 6.965 9.925 14.089 23.326 31.598
3 .277 .7651.6382.353 3.182 4.541 5.841 7.453 10.213 12.924
4 .271 .741 1.5332.132 2.776 3.747 4.604 5.598 7.173 8.610
5 .267 .7271.4762.015 2.571 3.365 4.032 4.773 5.893 6.869
6 .265 .7271.4401.943 2.447 3.143 3.707 4.317 5.208 5.959
7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.019 4.785 5.408
8 .262 .7061.3971.860 2.306 2.896 3.355 3.833 4.501 5.041
9 .261 .7031.3831.833 2.262 2.821 3.250 3.690 4.297 4.781
10 .260 .7001.3721.812 2.228 2.764 3.169 3.581 4.144 4.587
11 .260 .6971.3631.796 2.201 2.718 3.106 3.497 4.025 4.437
12 .259 .6951.3561.782 2.179 2.681 3.055 3.428 3.930 4.318
13 .259 .6941.3501.771 2.160 2.650 3.012 3.372 3.852 4.221

v¼degrees of freedom (Continued)
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TABLEA.2 (Continued)

v
a .40 .25 .10 .05 .025 .01 .005 .0025 .001 .0005

14 .258 .6921.3451.761 2.145 2.624 2.977 3.326 3.787 4.140
15 .258 .6911.3411.753 2.131 2.602 2.947 3.286 3.733 4.073
16 .258 .6901.3371.746 2.120 2.583 2.921 3.252 3.686 4.015
17 .257 .6891.3331.740 2.110 2.567 2.898 3.222 3.646 3.965
18 .257 .6881.3301.734 2.101 2.552 2.878 3.197 3.610 3.922
19 .257 .6881.3281.729 2.093 2.539 2.861 3.174 3.579 3.883
20 .257 .6871.3251.725 2.086 2.528 2.845 3.153 3.552 3.850
21 .257 .6861.3231.721 2.080 2.518 2.831 3.135 3.527 3.819
22 .256 .6861.3211.717 2.074 2.508 2.819 3.119 3.505 3.792
23 .256 .6851.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 .256 .6851.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 .256 .6841.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 .256 .6841.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 .256 .6841.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 .256 .6831.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 .256 .6831.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 .256 .6831.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 .255 .6811.3031.684 2.021 2.423 2.704 2.971 3.307 3.551
60 .254 .6791.2961.671 2.000 2.390 2.660 2.915 3.232 3.460
120 .254 .6771.2891.658 1.980 2.358 2.617 2.860 3.160 3.373
1 .253 .674 1.2821.645 1.960 2.326 2.576 2.807 3.090 3.291

v¼degrees of freedom.
Source :PearsonEs,HartleyHO.BiometrikaTables for Statisticians.Vol1,3rded.: Cambridge: Cam-
bridge University Press,1966.
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TABLEA.4 PowerTables (Fixed Effects)

A.4.1.Powerand sample size in analysis of variance;V1¼1.
A.4.2.Powerand sample size in analysis of variance;V1¼2.
A.4.3.Powerand sample size in analysis of variance;V1¼3.
A.4.4.Powerand sample size in analysis of variance;V1¼4.
A.4.5.Powerand sample size in analysis of variance;V1¼5.
A.4.6.Powerand sample size in analysis of variance;V1¼6.
A.4.7.Powerand sample size in analysis of variance;V1¼7.
A.4.8.Powerand sample size in analysis of variance;V1¼8.
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TABLEA.5 Significant Ranges for Duncan’s Multiple RangeTest

r0.01(p, f )

p

f 2 3 4 5 6 7 8 9 10 20 50 100

1 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0
2 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
3 8.26 8.5 8.6 8.7 8.8 8.9 8.9 9.0 9.0 9.3 9.3 9.3
4 6.51 6.8 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.5 7.5 7.5
5 5.70 5.96 6.11 6.18 6.26 6.33 6.40 6.44 6.5 6.8 6.8 6.8
6 5.24 5.51 5.65 5.73 5.81 5.88 5.95 6.00 6.0 6.3 6.3 6.3
7 4.95 5.22 5.37 5.45 5.53 5.61 5.69 5.73 5.8 6.0 6.0 6.0
8 4.74 5.00 5.14 5.23 5.32 5.40 5.47 5.51 5.5 5.8 5.8 5.8
9 4.60 4.86 4.99 5.08 5.17 5.25 5.32 5.36 5.4 5.7 5.7 5.7
10 4.48 4.73 4.88 4.96 3.06 5.13 5.20 5.24 5.28 5.55 5.55 5.55
11 4.39 4.63 4.77 4.86 4.94 5.01 5.06 5.12 5.15 5.39 5.39 5.39
12 4.32 4.55 4.68 4.76 4.84 4.92 4.96 5.02 5.07 5.26 5.26 5.26
13 4.26 4.48 4.62 4.69 4.74 4.84 4.88 4.94 4.98 5.15 5.15 5.15
14 4.21 4.42 4.55 4.63 4.70 4.78 4.83 4.87 4.91 5.07 5.07 5.07
15 4.17 4.37 4.50 4.58 4.64 4.72 4.77 4.81 4.84 5.00 5.00 5.00
16 4.13 4.34 4.45 4.54 4.60 4.67 4.72 4.76 4.79 4.94 4.94 4.94
17 4.10 4.30 4.41 4.50 4.56 4.63 4.68 4.73 4.75 4.89 4.89 4.89
18 4.07 4.27 4.38 4.46 4.53 4.59 4.64 4.68 4.71 4.85 4.85 4.85
19 4.05 4.24 4.35 4.43 4.50 4.56 4.61 4.64 4.67 4.82 4.82 4.82
20 4.02 4.22 4.33 4.40 4.47 4.53 4.58 4.61 4.65 4.79 4.79 4.79
30 3.89 4.06 4.16 4.22 4.32 4.36 4.41 4.45 4.48 4.65 4.71 4.71
40 3.82 3.99 4.10 4.17 4.24 4.30 4.34 4.37 4.41 4.59 4.69 4.69
60 3.76 3.92 4.03 4.12 4.17 4.23 4.27 4.31 4.34 4.53 4.66 4.66
100 3.71 3.86 3.98 4.06 4.11 4.17 4.21 4.25 4.29 4.48 4.64 4.65
1 3.64 3.80 3.90 3.98 4.04 4.09 4.14 4.17 4.20 4.41 4.60 4.68

r0.05( p, f )

p

f 2 3 4 5 6 7 8 9 10 20 50 100

1 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0
2 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09
3 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50
4 3.93 4.01 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02
5 3.64 3.74 3.79 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83
6 3.46 3.58 3.64 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68
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TABLEA.5 (Continued)

r0.05( p, f )

p

f 2 3 4 5 6 7 8 9 10 20 50 100

7 3.35 3.47 3.54 3.58 3.60 3.61 3.61 3.61 3.61 3.61 3.61 3.61
8 3.26 3.39 3.47 3.52 3.55 3.56 3.56 3.56 3.56 3.56 3.56 3.56
9 3.20 3.34 3.41 3.47 3.50 3.52 3.52 3.52 3.52 3.52 3.52 3.52
10 3.15 3.30 3.37 3.43 3.46 3.47 3.47 3.47 3.47 3.48 3.48 3.48
11 3.11 3.27 3.35 3.39 3.43 3.44 3.45 3.46 3.46 3.48 3.48 3.48
12 3.08 3.23 3.33 3.36 3.40 3.42 3.44 3.44 3.46 3.48 3.48 3.48
13 3.06 3.21 3.30 3.35 3.38 3.41 3.42 3.44 3.45 3.47 3.47 3.47
14 3.03 3.18 3.27 3.33 3.37 3.39 3.41 3.42 3.44 3.47 3.47 3.47
15 3.01 3.16 3.25 3.31 3.36 3.38 3.40 3.42 3.43 3.47 3.47 3.47
16 3.00 3.15 3.23 3.30 3.34 3.37 3.39 3.41 3.43 3.47 3.47 3.47
17 2.98 3.13 3.22 3.28 3.33 3.36 3.38 3.40 3.42 3.47 3.47 3.47
18 2.97 3.12 3.21 3.27 3.32 3.35 3.37 3.39 3.41 3.47 3.47 3.47
19 2.96 3.11 3.19 3.26 3.31 3.35 3.37 3.39 3.41 3.47 3.47 3.47
20 2.95 3.10 3.18 3.25 3.30 3.34 3.36 3.38 3.40 3.47 3.47 3.47
30 2.89 3.04 3.12 3.20 3.25 3.29 3.32 3.35 3.37 3.47 3.47 3.47
40 2.86 3.01 3.10 3.17 3.22 3.27 3.30 3.33 3.35 3.47 3.47 3.47
60 2.83 2.98 3.08 3.14 3.20 3.24 3.28 3.31 3.33 3.47 3.48 3.48
100 2.80 2.95 3.05 3.12 3.18 3.22 3.26 3.29 3.32 3.47 3.53 3.53
1 2.77 2.92 3.02 3.09 3.15 3.19 3.23 3.26 3.29 3.47 3.61 3.67

f=degrees of freedom.
Source: Adapted fromDuncan DB.Biometrics 1(1):1^42,1995.

TABLEA.6 Quantiles of the Mann^WhitneyTest Statistic

n1 p n2¼ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
2 .01 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2

.025 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3 3

.05 0 0 0 1 1 1 2 2 2 2 3 3 4 4 4 4 5 5 5

.10 0 1 1 2 2 2 3 3 4 4 5 5 5 6 6 7 7 8 8

.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

.005 0 0 0 0 0 0 0 1 1 1 2 2 2 3 3 3 3 4 4

(Continued)
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TABLEA.6 Continued

3 .01 0 0 0 0 0 1 1 2 2 2 3 3 3 4 4 5 5 5 6
.025 0 0 0 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9
.05 0 1 1 2 3 3 4 5 5 6 6 7 8 8 9 10 10 11 12
.10 1 2 2 3 4 5 6 6 7 8 9 10 11 11 12 13 14 15 16
.001 0 0 0 0 0 0 0 0 1 1 1 2 2 2 3 3 4 4 4
.005 0 0 0 0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 9

4 .01 0 0 0 1 2 2 3 4 4 5 6 6 7 9 8 9 10 10 11
.025 0 0 1 2 3 4 5 5 6 7 8 9 10 11 12 12 13 14 15
.05 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19
.10 1 2 4 5 6 7 8 10 11 12 13 14 16 17 18 19 21 22 23
.001 0 0 0 0 0 0 1 2 2 3 3 4 4 5 6 6 7 8 8
.005 0 0 0 1 2 2 3 4 5 6 7 8 8 9 10 11 12 13 14

5 .01 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
.025 0 1 2 3 4 6 7 8 9 10 12 13 14 15 16 18 19 20 21
.05 1 2 3 5 6 7 9 10 12 13 14 16 17 19 20 21 23 24 26
.10 2 3 5 6 8 9 11 13 14 16 18 19 21 23 24 26 28 29 31
.001 0 0 0 0 0 0 2 3 4 5 5 6 7 8 9 10 11 12 13
.005 0 0 1 2 3 4 5 6 7 8 10 11 12 13 14 16 17 18 19

6 .01 0 0 2 3 4 5 7 8 9 10 12 13 14 16 17 19 20 21 23
.025 0 2 3 4 6 7 9 11 12 14 15 17 18 20 22 23 25 26 28
.05 1 3 4 6 8 9 11 13 15 17 18 20 22 24 26 27 29 31 33
.10 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 35 37 39
.001 0 0 0 0 1 2 3 4 6 7 8 9 10 11 12 14 15 16 17
.005 0 0 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25

7 .01 0 1 2 4 5 7 8 10 12 13 15 17 18 20 22 24 25 27 29
.025 0 2 4 6 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
.05 1 3 5 7 9 12 14 16 18 20 22 25 27 29 31 34 36 38 40
.10 2 5 7 9 12 14 17 19 22 24 27 29 32 34 37 39 42 44 47
.001 0 0 0 1 2 3 5 6 7 9 10 12 13 15 16 18 19 21 22
.005 0 0 2 3 5 7 8 10 12 14 16 18 19 21 23 25 27 29 31

8 .01 0 1 3 5 7 8 10 12 14 16 18 21 23 25 27 29 31 33 35
.025 1 3 5 7 9 11 14 16 18 20 23 25 27 30 32 35 37 39 42
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TABLEA.6 Continued

n1 p n2¼ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

.05 2 4 6 9 11 14 16 19 21 24 27 29 32 34 37 40 42 45 48

.10 3 6 8 11 14 17 20 23 25 28 31 34 37 40 43 46 49 52 55

.001 0 0 0 2 3 4 6 8 9 11 13 15 16 18 20 22 24 26 27

.005 0 1 2 4 6 8 10 12 14 17 19 21 23 25 28 30 32 34 37
9 .01 0 2 4 6 8 10 12 15 17 19 22 24 27 29 32 34 37 39 41

.025 1 3 5 8 11 13 16 18 21 24 27 29 32 35 38 40 43 46 49

.05 2 5 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

.10 3 6 10 13 16 19 23 26 29 32 36 39 42 46 49 53 56 59 63

.001 0 0 1 2 4 6 7 9 11 13 15 18 20 22 24 26 28 30 33

.005 0 1 3 5 7 10 12 14 17 19 22 25 27 30 32 35 38 40 43
10 .01 0 2 4 7 9 12 14 17 20 23 25 28 31 34 37 39 42 45 48

.025 1 4 6 9 12 15 18 21 24 27 30 34 37 40 43 46 49 53 56

.05 2 5 8 12 15 18 21 25 28 32 35 38 42 45 49 52 56 59 63

.10 4 7 11 14 18 22 25 29 33 37 40 44 48 52 55 59 63 67 71

.001 0 0 1 3 5 7 9 11 13 16 18 21 23 25 28 30 33 35 38

.005 0 1 3 6 8 11 14 17 19 22 25 28 31 34 37 40 43 46 49
11 .01 0 2 5 8 10 13 16 19 23 26 29 32 35 38 42 45 48 51 54

.025 1 4 7 10 14 17 20 24 27 31 34 38 41 45 48 52 56 59 63

.05 2 6 9 13 17 20 24 28 32 35 39 43 47 51 55 58 62 66 70

.10 4 8 12 16 20 24 28 32 37 41 45 49 53 58 62 66 70 74 79

.001 0 0 1 3 5 8 10 13 15 18 21 24 26 29 32 35 38 41 43

.005 0 2 4 7 10 13 16 19 22 25 28 32 35 38 42 45 48 52 55
12 .01 0 3 6 9 12 15 18 22 25 29 32 36 39 43 47 50 54 57 61

.025 2 5 8 12 15 19 23 27 30 34 38 42 46 50 54 58 62 66 70

.05 3 6 10 14 18 22 27 31 35 39 43 48 52 56 61 65 69 73 78

.10 5 9 13 18 22 27 31 36 40 45 50 54 59 64 68 73 78 82 87

.001 0 0 2 4 6 9 12 15 18 21 24 27 30 33 36 39 43 46 49

.005 0 2 4 8 11 14 18 21 25 28 32 35 39 43 46 50 54 58 61
13 .01 I 3 6 10 13 17 21 24 28 32 36 40 44 48 52 56 60 64 68

.025 2 5 9 13 17 21 25 29 34 38 42 46 51 55 60 64 68 73 77

.05 3 7 11 16 20 25 29 34 38 43 48 52 57 62 66 71 76 81 85

.10 5 10 14 19 24 29 34 39 44 49 54 59 64 69 75 80 85 90 95

.001 0 0 2 4 7 10 13 16 20 23 26 30 33 37 40 44 47 51 55

.005 0 2 5 8 12 16 19 23 27 31 35 39 43 47 51 55 59 64 68
14 .01 I 3 7 11 14 18 23 27 31 35 39 44 48 52 57 61 66 70 74

.025 2 6 10 14 18 23 27 32 37 41 46 51 56 60 65 70 75 79 84

.05 4 8 12 17 22 27 32 37 42 47 52 57 62 67 72 78 83 88 93

.10 5 11 16 21 26 32 37 42 48 53 59 64 70 75 81 86 92 98 103

.001 0 0 2 5 8 11 15 18 22 25 29 33 37 41 44 48 52 56 60

.005 0 3 6 9 13 17 21 25 30 34 38 43 47 52 56 61 65 70 74
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TABLEA.6 Continued

n1 p n2¼ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

15 .01 I 4 8 12 16 20 25 29 34 38 43 48 52 57 62 67 71 76 81
.025 2 6 11 15 20 25 30 35 40 45 50 55 60 65 71 76 81 86 91
.05 4 8 13 19 24 29 34 40 45 51 56 62 67 73 78 84 89 95 101
.10 6 11 17 23 28 34 40 46 52 58 64 69 75 81 87 93 99 105 111
.001 0 0 3 6 9 12 16 20 24 28 32 36 40 44 49 53 57 61 66
.005 0 3 6 10 14 19 23 28 32 37 42 46 51 56 61 66 71 75 80

16 .01 I 4 8 13 17 22 27 32 37 42 47 52 57 62 67 72 77 83 88
.025 2 7 12 16 22 27 32 38 43 48 54 60 65 71 76 82 87 93 99
.05 4 9 15 20 26 31 37 43 49 55 61 66 72 78 84 90 96 102 108
.10 6 12 18 24 30 37 43 49 55 62 68 75 81 87 94 100 107 113 120
.001 0 1 3 6 10 14 18 22 26 30 35 39 44 48 53 58 62 67 71
.005 0 3 7 11 16 20 25 30 35 40 45 50 55 61 66 71 76 82 87

17 .01 1 5 9 14 19 24 29 34 39 45 50 56 61 67 72 78 83 89 94
.025 3 7 12 18 23 29 35 40 46 52 58 64 70 76 82 88 94 100 106
.05 4 10 16 21 27 34 40 46 52 58 65 71 78 84 90 97 103 110 116
.10 7 13 19 26 32 39 46 53 59 66 73 80 86 93 100 107 114 121 128
.001 0 1 4 7 11 15 19 24 28 33 38 43 47 52 57 62 67 72 77
.005 0 3 7 12 17 22 27 32 38 43 48 54 59 65 71 76 82 88 93

18 .01 1 5 10 15 20 25 31 37 42 48 54 60 66 71 77 83 89 95 101
.025 3 8 13 19 25 31 37 43 49 56 62 68 75 81 87 94 100 107 113
.05 5 10 17 23 29 36 42 49 56 62 69 76 83 89 96 103 110 117 124
.10 7 14 21 28 35 42 49 56 63 70 78 85 92 99 107 114 121 129 136
.001 0 1 4 8 12 16 21 26 30 35 41 46 51 56 61 67 72 78 83
.005 1 4 8 13 18 23 29 34 40 46 52 58 64 70 75 82 88 94 100

19 .01 2 5 10 16 21 27 33 39 45 51 57 64 70 76 83 89 95 102 108
.025 3 8 14 20 26 33 39 46 53 59 66 73 79 86 93 100 107 114 120
.05 5 11 18 24 31 38 45 52 59 66 73 81 88 95 102 110 117 124 131
.10 8 15 22 29 37 44 52 59 67 74 82 90 98 105 113 121 129 136 144
.001 0 1 4 8 13 17 22 27 33 38 43 49 55 60 66 71 77 83 89
.005 1 4 9 14 19 25 31 37 43 49 55 61 68 74 80 87 93 100 106

20 .01 2 6 11 17 23 29 35 41 48 54 61 68 74 81 88 94 101 108 115
.025 3 9 15 21 28 35 42 49 56 63 70 77 84 91 99 106 113 120 128
.05 5 12 19 26 33 40 48 55 63 70 78 85 93 101 108 116 124 131 139
.10 8 16 23 31 39 47 55 63 71 79 87 95 103 111 120 128 136 144 152

Source: Adapted fromVerdooren LR. Extended tables of critical values for Wilcoxon’s test statis-
tic. Biometrika 50:177^186, 1963; used by permission of the Biometrika Trustees. The adaptation
is due to ConoverWJ.Practical Nonparametric Statistics.NewYork:Wiley,1971, pp. 384^388.
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TABLEA.7 Binomial Probability Distribution

Pðr j n;PÞ ¼ n
r

	 

prqn�r

n=1
r p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .9900 .9800 .9700 .9600 .9500 .9400 .9300 .9200 .9100 .9000
1 .0100 .0200 .0300 .0400 .0500 .0600 .0700 .0800 .0900 .1000

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .8900 .8800 .8700 .8600 .8500 .8400 .8300 .8200 .8100 .8000
1 .1100 .1200 .1300 .1400 .1500 .1600 .1700 .1800 .1900 .2000

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .7900 .7800 .7700 .7600 .7500 .7400 .7300 .7200 .7100 .7000
1 .2100 .2200 .2300 .2400 .2500 .2600 .2700 .2800 .2900 .3000

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .6900 .6800 .6700 .6600 .6500 .6400 .6300 .6200 .6100 .6000

.3100 .3200 .3300 .3400 .3500 .3600 .3700 .3800 .3900 .4000

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .5900 .5800 .5700 .5600 .5500 .5400 .5300 .5200 .5100 .5000
1 .4100 .4200 .4300 .4400 .4500 .4600 .4700 .4800 .4900 .5000

n¼ 2

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .9801 .9604 .9409 .9216 .9025 .8836 .8649 .8464 .8281 .8100
1 .0198 .0392 .0582 .0768 .0950 .1128 .1302 .1472 .1638 .1800
2 .0001 .0004 .0009 .0016 .0025 .0036 .0049 .0064 .0081 .0100

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .7921 .7744 .7569 .7396 .7225 .7056 .6889 .6724 .6561 .6400
1 .1958 .2112 .2262 .2408 .2550 .2688 .2822 .2952 .3078 .3200
2 .0121 .0144 .0169 .0196 .0225 .0256 .0289 .0324 .0361 .0400

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0. .6241 .6084 .5929 .5776 .5625 .5476 .5329 .5184 .5041 .4900
1. .3318 .3432 .3542 .3648 .3750 .3848 .3942 .4032 .4118 .4200
2 .0441 .0484 .0529 .0576 .0625 .0676 .0729 .0784 .0841 .0900

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .4761 .4624 .4489 .4356 .4225 .4096 .3969 .3844 .3721 .3600
1 .4278 .4352 .4422 .4488 .4550 .4608 .4662 .4712 .4758 .4800
2 .0961 .1024 .1089 .1156 .1225 .1296 .1369 .1444 .1521 .1600

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .3481 .3364 .3249 .3136 .3025 .2916 .2809 .2704 .2601 .2500
1 .4838 .4872 .4902 .4928 .4950 .4968 .4982 .4992 .4998 .5000
2 .1681 .1764 .1849 .1936 .2025 .2116 .2209 .2304 .2401 .2500
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TABLEA.7 (Continued)

n=3
r p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .9704 .9412 .9127 .8847 .8574 .8306 .8044 .7787 .7536 .7290
1 .0294 .0576 .0847 .1106 .1354 .1590 .1816 .2031 .2236 .2430
2 .0003 .0012 .0026 .0046 .0071 .0102 .0137 .0177 .0221 .0270
3 .0000 .0000 .0000 .0001 .0001 .0002 .0003 .0005 .0007 .0010

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .7050 .6815 .6585 .6361 .6141 .5927 .5718 .5514 .5314 .5120
1 .2614 .2788 .2952 .3106 .3251 .3387 .3513 .3631 .3740 .3840
2 .0323 .0380 .0441 .0506 .0574 .0645 .0720 .0797 .0877 .0960
3 .0013 .0017 .0022 .0027 .0034 .0041 .0049 .0058 .0069 .0080

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .4930 .4746 .4565 .4390 .4219 .4052 .3890 .3732 .3579 .3430
1 .3932 .4015 .4091 .4159 .4219 .4271 .4316 .4355 .4386 .4410
2 .1045 .1133 .1222 .1313 .1406 .1501 .1597 .1693 .1791 .1890
3 .0093 .0106 .0122 .0138 .0156 .0176 .0197 .0220 .0244 .0270

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .3285 .3144 .3008 .2875 .2746 .2621 .2500 .2383 .2270 .2160
1 .4428 .4439 .4444 .4443 .4436 .4424 .4406 .4382 .4354 .4320
2 .1989 .2089 .2189 .2289 .2389 .2488 .2587 .2686 .2783 .2880
3 .0298 .0328 .0359 .0393 .0429 .0467 .0507 .0549 .0593 .0640

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .2054 .1951 .1852 .1756 .1664 .1575 .1489 .1406 .1327 .1250
1 .4282 .4239 .4191 .4140 .4084 .4024 .3961 .3894 .3823 .3750
2 .2975 .3069 .3162 .3252 .3341 .3428 .3512 .3594 .3674 .3750
3 .0689 .0741 .0795 .0852 .0911 .0973 .1038 .1106 .1176 .1250

n¼ 4

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .9606 .9224 .8853 .8493 .8145 .7807 .7481 .7164 .6857 .6561
1 .0388 .0753 .1095 .1416 .1715 .1993 .2252 .2492 .2713 .2916
2 .0006 .0023 .0051 .0088 .0135 .0191 .0254 .0325 .0402 .0486
3 .0000 .0000 .0001 .0002 .0005 .0008 .0013 .0019 .0027 .0036
4 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .6274 .5997 .5729 .5470 .5220 .4979 .4746 .4521 .4305 .4096
1 .3102 .3271 .3424 .3562 .3685 .3793 .3888 .3970 .4039 .4096
2 .0575 .0669 .0767 .0870 .0975 .1084 .1195 .1307 .1421 .1536
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TABLEA.7 (Continued)

n=4
r p .11 .12 .13 .14 .15 .16 .17 .18 .19 .20

3 .0047 .0061 .0076 .0094 .0115 .0138 .0163 .0191 .0222 .0256
4 .0001 .0002 .0003 .0004 .0005 .0007 .0008 .0010 .0013 .0016

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .3895 .3702 .3515 .3336 .3164 .2999 .2840 .2687 .2541 .2401
1 .4142 .4176 .4200 .4214 .4219 .4214 .4201 .4180 .4152 .4116
2 .1651 .1767 .1882 .1996 .2109 .2221 .2331 .2439 .2544 .2646
3 .0293 .0332 .0375 .0420 .0469 .0520 .0575 .0632 .0693 .0756
4 .0019 .0023 .0028 .0033 .0039 .0046 .0053 .0061 .0071 .0081

.31 ..32 .33 .34 .35 .36 .37 .38 .39 .40
0 .2267 .2138 .2015 .1897 .1785 .1678 .1575 .1478 .1385 .1296
1 .4074 .4025 .3970 .3910 .3845 .3775 .3701 .3623 .3541 .3456
2 .2745 .2841 .2933 .3021 .3105 .3185 .3260 .3330 .3396 .3456
3 .0822 .0891 .0963 .1038 .1115 .1194 .1276 .1361 .1447 .1536
4 .0092 .0105 .0119 .0134 .0150 .0168 .0187 .0209 .0231 .0256

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .1212 .1132 .1056 .0983 .0915 .0850 .0789 .0731 .0677 .0625
1 .3368 .3278 .3185 .3091 .2995 .2897 .2799 .2700 .2600 .2500
2 .3511 .3560 .3604 .3643 .3675 .3702 .3723 .3738 .3747 .3750
3 .1627 .1719 .1813 .1908 .2005 .2102 .2201 .2300 .2400 .2500
4 .0283 .0311 .0342 .0375 .0410 .0448 .0488 .0531 .0576 .0625

n¼ 5

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .9510 .9039 .8587 .8154 .7738 .7339 .6957 .6591 .6240 .5905
1 .0480 .0922 .1328 .1699 .2036 .2342 .2618 .2866 .3086 .3280
2 .0010 .0038 .0082 .0142 .0214 .0299 .0394 .0498 .0610 .0729
3 .0000 .0001 .0003 .0006 .0011 .0019 .0030 .0043 .0060 .0081
4 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0003 .0004

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .5584 .5277 .4984 .4704 .4437 .4182 .3939 .3707 .3487 .3277
1 .3451 .3598 .3724 .3829 .3915 .3983 .4034 .4069 .4089 .4096
2 .0853 .0981 .1113 .1247 .1382 .1517 .1652 .1786 .1919 .2048
3 .0105 .0134 .0166 .0203 .0244 .0289 .0338 .0392 .0450 .0512
4 .0007 .0009 .0012 .0017 .0022 .0028 .0035 .0043 .0053 .0064
5 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002 .0003

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .3077 .2887 .2707 .2536 .2373 .2219 .2073 .1935 .1804 .1681
1 .4090 .4072 .4043 .4003 .3955 .3898 .3834 .3762 .3685 .3602
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TABLEA.7 (Continued)

n=5
r p .21 .22 .23 .24 .25 .26 .27 .28 .29 .30

2 .2174 .2297 .2415 .2529 .2637 .2739 .2836 .2926 .3010 .3087
3 .0578 .0648 .0721 .0798 .0879 .0962 .1049 .1138 .1229 .1323
4 .0077 .0091 .0108 .0126 .0146 .0169 .0194 .0221 .0251 .0284
5 .0004 .0005 .0006 .0008 .0010 .0012 .0014 .0017 .0021 .0024

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .1564 .1454 .1350 .1252 .1160 1074 .0992 .0916 .0845 .0778
1 .3513 .3421 .3325 .3226 .3124 .3020 .2914 .2808 .2700 .2592
2 .3157 .3220 .3275 .3323 .3364 .3397 .3423 .3441 .3452 .3456
3 .1418 .1515 .1613 .1712 .1811 .1911 .2010 .2109 .2207 .2304
4 .0319 .0357 .0397 .0441 .0488 .0537 .0590 .0646 .0706 .0768
5 .0029 .0034 .0039 .0045 .0053 .0060 .0069 .0079 .0090 .0102

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0715 .0656 .0602 .0551 .0503 .0459 .0418 .0380 .0345 .0312
1 .2484 .2376 .2270 .2164 .2059 .1956 .1854 .1755 .1657 .1562
2 .3452 .3442 .3424 .3400 .3369 .3332 .3289 .3240 .3185 .3125
3 .2399 .2492 .2583 .2671 .2757 .2838 .2916 .2990 .3060 .3125
4 .0834 .0902 .0974 .1049 .1128 .1209 .1293 .1380 .1470 .1562
5 .0116 .0131 .0147 .0165 .0185 .0206 .0229 .0255 .0282 .0312

n¼ 6

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .9415 .8858 .8330 .7828 .7351 .6899 .6470 .6064 .5679 .5314
1 .0571 .1085 .1546 .1957 .2321 .2642 .2922 .3164 .3370 .3543
2 .0014 .0055 .0120 .0204 .0305 .0422 .0550 .0688 .0833 .0984
3 .0000 .0002 .0005 .0011 .0021 .0036 .0055 .0080 .0110 .0146
4 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005 .0008 .0012
5 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .4970 .4644 .4336 .4046 .3771 .3513 .3269 .3040 .2824 .2621
1 .3685 .3800 .3888 .3952 .3993 .4015 .4018 .4004 .3975 .3932
2 .1139 .1295 .1452 .1608 .1762 .1912 .2057 .2197 .2331 .2458
3 .0188 .0236 .0289 .0349 .0415 .0486 .0562 .0643 .0729 .0819
4 .0017 .0024 .0032 .0043 .0055 .0069 .0086 .0106 .0128 .0154
5 .0001 .0001 .0002 .0003 .0004 .0005 .0007 .0009 .0012 .0015
6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .2431 .2552 .2084 .1927 .1780 .1642 .1513 .1393 .1281 .1176
1 .3877 .3811 .3735 .3651 .3560 .3462 .3358 .3251 .3139 .3025
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TABLEA.7 (Continued)

n=6
r p .21 .22 .23 .24 .25 .26 .27 .28 .29 .30

2 .2577 .2687 .2789 .2882 .2966 .3041 .3105 .3160 .3206 .3241
3 .0913 .1011 .1111 .1214 .1318 .1424 .1531 .1639 .1746 .1852
4 .0182 .0214 .0249 .0287 .0330 .0375 .0425 .0478 .0535 .0595
5 .0019 .0024 .0030 .0036 .0044 .0053 .0063 .0074 .0087 .0102
6 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005 .0006 .0007

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .1079 .0989 .0905 .0827 .0754 .0687 .0625 .0568 .0515 .0467
1 .2909 .2792 .2673 .2555 .2437 .2319 .2203 .2089 .1976 .1866
2 .3267 .3284 .3292 .3290 .3280 .3261 .3235 .3201 .3159 .3110
3 .1957 .2061 .2162 .2260 .2355 .2446 .2533 .2616 .2693 .2765
4 .0660 .0727 .0799 .0873 .0951 .1032 .1116 .1202 .1291 .1382
5 .0119 .0137 .0157 .0180 .0205 .0232 .0262 .0295 .0330 .0369
6 .0009 .0011 .0013 .0015 .0018 .0022 .0026 .0030 .0035 .0041

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0422 .0381 .0343 .0308 .0277 .0248 .0222 .0198 .0176 .0156
1 .1759 .1654 .1552 .1454 .1359 .1267 .1179 .1095 .1014 .0938
2 .3055 .2994 .2928 .2856 .2780 .2699 .2615 .2527 .2436 .2344
3 .2831 .2891 .2945 .2992 .3032 .3065 .3091 .3110 .3121 .3125
4 .1475 .1570 .1666 .1763 .1861 .1958 .2056 .2153 .2249 .2344
5 .0410 .0455 .0503 .0554 .0609 .0667 .0729 .0795 .0864 .0938
6 .0048 .0055 .0063 .0073 .0083 .0095 .0108 .0122 .0138 .0156

n¼ 7

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .9321 .8681 .8080 .7514 .6983 .6485 .6017 .5578 .5168 .4783
1 .0659 .1240 .1749 .2192 .2573 .2897 .3170 .3396 .3578 .3720
2 .0020 .0076 .0162 .0274 .0406 .0555 .0716 .0886 .1061 .1240
3 .0000 .0003 .0008 .0019 .0036 .0059 .0090 .0128 .0175 .0230
4 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0011 .0017 .0026
5 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .4423 .4087 .3773 .3479 .3206 .2951 .2714 .2493 .2288 .2097
1 .3827 .3901 .3946 .3965 .3960 .3935 .3891 .3830 .3756 .3670
2 .1419 .1596 .1769 .1936 .2097 .2248 .2391 .2523 .2643 .2753
3 .0292 .0363 .0441 .0525 .0617 .0714 .0816 .0923 .1033 .1147
4 .0036 .0049 .0066 .0086 .0109 .0136 .0167 .0203 .0242 .0287
5 .0003 .0004 .0006 .0008 .0012 .0016 .0021 .0027 .0034 .0043
6 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0004
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TABLEA.7 (Continued)

n=7
r p .21 .22 .23 .24 .25 .26 .27 .28 .29 .30

0 .1920 .1757 .1605 .1465 .1335 .1215 .1105 .1003 .0910 .0824
1 .3573 .3468 .3356 .3237 .3115 .2989 .2860 .2731 .2600 .2471
2 .2850 .2935 .3007 .3067 .3115 .3150 .3174 .3186 .3186 .3177
3 .1263 .1379 .1497 .1614 .1730 .1845 .1956 .2065 .2169 .2269
4 .0336 .0389 .0447 .0510 .0577 .0648 .0724 .0803 .0886 .0972
5 .0054 .0066 .0080 .0097 .0115 .0137 .0161 .0187 .0217 .0250
6 .0005 .0006 .0008 .0010 .0013 .0016 .0020 .0024 .0030 .0036
7 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0745 .0672 .0606 .0546 .0490 .0440 .0394 .0352 .0314 .0280
1 .2342 .2215 .2090 .1967 .1848 .1732 .1619 .1511 .1407 .1306
2 .3156 .3127 .3088 .3040 .2985 .2922 .2853 .2778 .2698 .2613
3 .2363 .2452 .2535 .2610 .2679 .2740 .2793 .2838 .2875 .2903
4 .1062 .1154 .1248 .1345 .1442 .1541 .1640 .1739 .1838 .1935
5 .0286 .0326 .0369 .0416 .0466 .0520 .0578 .0640 .0705 .0774
6 .0043 .0051 .0061 .0071 .0084 .0098 .0113 .0131 .0150 .0172
7 .0003 .0003 .0004 .0005 .0006 .0008 .0009 .0011 .0014 .0016

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0249 .0221 .0195 .0173 .0152 .0134 .0117 .0103 .0090 .0078
1 .1211 .1119 .1032 .0950 .0872 .0798 .0729 .0664 .0604 .0547
2 .2524 .2431 .2336 .2239 .2140 .2040 .1940 .1840 .1740 .1641
3 .2923 .2934 .2937 .2932 .2918 .2897 .2867 .2830 .2786 .2734
4 .2031 .2125 .2216 .2304 .2388 .2468 .2543 .2612 .2676 .2734
5 .0847 .0923 .1003 .1086 .1172 .1261 .1353 .1447 .1543 .1641
6 .0196 .0223 .0252 .0284 .0320 .0358 .0400 .0445 .0494 .0547
7 .0019 .0023 .0027 .0032 .0037 .0044 .0051 .0059 .0068 .0078

n¼ 8

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .9227 .8508 .7837 .7214 .6634 .6096 .5596 .5132 .4703 .4305
1 .0746 .1389 .1939 .2405 .2793 .3113 .3370 .3570 .3721 .3826
2 .0026 .0099 .0210 .0351 .0515 .0695 .0888 .1087 .1288 .1488
3 .0001 .0004 .0013 .0029 .0054 .0089 .0134 .0189 .0255 .0331
4 .0000 .0000 .0001 .0002 .0004 .0007 .0013 .0021 .0031 .0046
5 .0000 .0000 .0000 .0000 .0000 .0000 0001 .0001 .0002 .0004

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .3937 .3596 .3282 .2992 .2725 .2479 .2252 .2044 .1853 1678
1 .3892 .3923 .3923 .3897 .3847 .3777 .3691 .3590 .3477 .3355
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TABLEA.7 (Continued)

n=8
r p .11 .12 .13 .14 .15 .16 .17 .18 .19 .20

2 .1684 .1872 .2052 .2220 .2376 .2518 .2646 .2758 .2855 .2936
3 .0416 .0511 .0613 .0723 .0839 .0959 .1084 .1211 .1339 .1468
4 .0064 .0087 .0115 .0147 .0185 .0228 .0277 .0332 .0393 .0459
5 .0006 .0009 .0014 .0019 .0026 .0035 .0045 .0058 .0074 .0092
6 .0000 .0001 .0001 .0002 .0002 .0003 .0005 .0006 .0009 .0011
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .1517 .1370 .1236 .1113 .1001 .0899 .0806 .0722 .0646 .0576
1 .3226 .3092 .2953 .2812 .2670 .2527 .2386 .2247 .2110 .1977
2 .3002 .3052 .3087 .3108 .3115 .3108 .3089 .3058 .3017 .2965
3 .1596 .1722 .1844 .1963 .2076 .2184 .2285 .2379 .2464 .2541
4 .0530 .0607 .0689 .0775 .0865 .0959 .1056 .1156 .1258 .1361
5 .0113 .0137 .0165 .0196 .0231 .0270 .0313 .0360 .0411 .0467
6 .0015 .0019 .0025 .0031 .0038 .0047 .0058 .0070 .0084 .0100
7 .0001 .0002 .0002 .0003 .0004 .0005 .0006 .0008 .0010 .0012
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0514 .0457 .0406 .0360 .0319 .0281 .0248 .0218 .0192 .0168
1 .1847 .1721 .1600 .1484 .1373 .1267 .1166 .1071 .0981 .0896
2 .2904 .2835 .2758 .2675 .2587 .2494 .2397 .2297 .2194 .2090
3 .2609 .2668 .2717 .2756 .2786 .2805 .2815 .2815 .2806 .2787
4 .1465 .1569 .1673 .1775 .1875 .1973 .2067 .2157 .2242 .2322
5 .0527 .0591 .0659 .0732 .0808 .0888 .0971 .1058 .1147 .1239
6 .0118 .0139 .0162 .0188 .0217 .0250 .0285 .0324 .0367 .0413
7 .0015 .0019 .0023 .0028 .0033 .0040 .0048 .0057 .0067 .0079
8 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0004 .0005 .0007

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0147 .0128 .0111 .0097 .0084 .0072 .0062 .0053 .0046 .0039
1 .0816 .0742 .0672 .0608 .0548 .0493 .0442 .0395 .0352 .0312
2 .1985 .1880 .1776 .1672 .1569 .1469 .1371 .1275 .1183 .1094
3 .2759 .2723 .2679 .2627 .2568 .2503 .2431 .2355 .2273 .2188
4 .2397 .2465 .2526 .2580 .2627 .2665 .2695 .2717 .2730 .2734
5 .1332 .1428 .1525 .1622 .1719 .1816 .1912 .2006 .2098 .2188
6 .0463 .0517 .0575 .0637 .0703 .0774 .0848 .0926 .1008 .1094
7 .0092 .0107 .0124 .0143 .0164 .0188 .0215 .0244 .0277 .0312
8 .0008 .0010 .0012 .0014 .0017 .0020 .0024 .0028 .0033 .0039
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TABLEA.7 (Continued)

n=9

r p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .9135 .8337 .7602 .6925 .6302 .5730 .5204 .4722 .4279 .3874
1 .0830 .1531 .2116 .2597 .2985 .3292 .3525 .3695 .3809 .3874
2 .0034 .0125 .0262 .0433 .0629 .0840 .1061 .1285 .1507 .1722
3 .0001 .0006 .0019 .0042 .0077 .0125 .0186 .0261 .0348 .0446
4 .0000 .0000 .0001 .0003 .0006 .0012 .0021 .0034 .0052 .0074
5 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005 .0008
6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .3504 .3165 .2855 .2573 .2316 .2082 .1869 .1676 .1501 .1342
1 .3897 .3884 .3840 .3770 .3679 .3569 .3446 .3312 .3169 .3020
2 .1927 .2119 .2295 .2455 .2597 .2720 .2823 .2908 .2973 .3020
3 .0556 .0674 .0800 .0933 .1069 .1209 .1349 .1489 .1627 .1762
4 .0103 .0138 .0179 .0228 .0283 .0345 .0415 .0490 .0573 .0661
5 .0013 .0019 .0027 .0037 .0050 .0066 .0085 .0108 .0134 .0165
6 .0001 .0002 .0003 .0004 .0006 .0008 .0012 .0016 .0021 .0028
7 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0003

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .1199 .1069 .0952 .0846 .0751 .0665 .0589 .0520 .0458 .0404
1 .2867 .2713 .2558 .2404 .2253 .2104 .1960 .1820 .1685 .1556
2 .3049 .3061 .3056 .3037 .3003 .2957 .2899 .2831 .2754 .2668
3 .1891 .2014 .2130 .2238 .2336 .2424 .2502 .2569 .2624 .2668
4 .0754 .0852 .0954 .1060 .1168 .1278 .1388 .1499 .1608 .1715
5 .0200 .0240 .0285 .0335 .0389 .0449 .0513 .0583 .0657 .0735
6 .0036 .0045 .0057 .0070 .0087 .0105 .0127 .0151 .0179 .0210
7 .0004 .0005 .0007 .0010 .0012 .0016 .0020 .0025 .0031 .0039
8 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002 .0003 .0004

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0355 .0311 .0272 .0238 .0207 .0180 .0156 .0135 .0117 .0101
1 .1433 .1317 .1206 .1102 .1004 .0912 .0826 .0747 .0673 .0605
2 .2576 .2478 .2376 .2270 .2162 .2052 .1941 .1831 .1721 .1612
3 .2701 .2721 .2731 .2729 .2716 .2693 .2660 .2618 .2567 .2508
4 .1820 .1921 .2017 .2109 .2194 .2272 .2344 .2407 .2462 .2508
5 .0818 .0904 .0994 .1086 .1181 .1278 .1376 .1475 .1574 .1672
6 .0245 .0284 .0326 .0373 .0424 .0479 .0539 .0603 .0671 .0743
7 .0047 .0057 .0069 .0082 .0098 .0116 .0136 .0158 .0184 .0212
8 .0005 .0007 .0008 .0011 .0013 .0016 .0020 .0024 .0029 .0035
9 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002 .0003
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TABLEA.7 (Continued)

n=9

r p .41 .42 .43 .44 .45 .46 .47 .48 .49 .50

0 .0087 .0074 .0064 .0054 .0046 .0039 .0033 .0028 .0023 .0020
1 .0542 .0484 .0431 .0383 .0339 .0299 .0263 .0231 .0202 .0176
2 .1506 .1402 .1301 .1204 .1110 .1020 .0934 .0853 .0776 .0703
3 .2442 .2369 .2291 .2207 .2119 .2027 .1933 .1837 .1739 .1641
4 .2545 .2573 .2592 .2601 .2600 .2590 .2571 .2543 .2506 .2461
5 .1769 .1863 .1955 .2044 .2128 .2207 .2280 .2347 .2408 .2461
6 .0819 .0900 .0983 .1070 .1160 .1253 .1348 .1445 .1542 .1641
7 .0244 .0279 .0318 .0360 .0407 .0458 .0512 .0571 .0635 .0703
8 .0042 .0051 .0060 .0071 .0083 .0097 .0114 .0132 .0153 .0176
9 .0003 .0004 .0005 .0006 .0008 .0009 .0011 .0014 .0016 .0020

n¼10

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .9044 .8171 .7374 .6648 .5987 .5386 .4840 .4344 .3894 .3487
1 .0914 .1667 .2281 .2770 .3151 .3438 .3643 .3777 .3851 .3874
2 .0042 .0153 .0317 .0519 .0746 .0988 .1234 .1478 .1714 .1937
3 .0001 .0008 .0026 .0058 .0105 .0168 .0248 .0343 .0452 .0574
4 .0000 .0000 .0001 .0004 .0010 .0019 .0033 .0052 .0078 .0112
5 .0000 .0000 .0000 .0000 .0001 .0001 .0003 .0005 .0009 .0015
6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .3118 .2785 .2484 .2213 .1969 .1749 .1552 .1374 .1216 .1074
1 .3854 .3798 .3712 .3603 .3474 .3331 .3178 .3017 .2852 .2684
2 .2143 .2330 .2496 .2639 .2759 .2856 .2929 .2980 .3010 .3020
3 .0706 .0847 .0995 .1146 .1298 .1450 .1600 .1745 .1883 .2013
4 .0153 .0202 .0260 .0326 .0401 .0483 .0573 .0670 .0773 .0881
5 .0023 .0033 .0047 .0064 .0085 .0111 .0141 .0177 .0218 .0264
6 .0002 .0004 .0006 .0009 .0012 .0018 .0024 .0032 .0043 .0055
7 .0000 .0000 .0000 .0001 .0001 .0002 .0003 .0004 .0006 .0008
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .0947 .0834 .0733 .0643 .0563 .0492 .0430 .0374 .0326 .0282
1 .2517 .2351 .2188 .2030 .1877 .1730 .1590 .1456 .1330 .1211
2 .3011 .2984 .2942 .2885 .2816 .2735 .2646 .2548 .2444 .2335
3 .2134 .2244 .2343 .2429 .2503 .2563 .2609 .2642 .2662 .2668
4 .0993 .1108 .1225 .1343 .1460 .1576 .1689 .1798 .1903 .2001
5 .0317 .0375 .0439 .0509 .0584 .0664 .0750 .0839 .0933 .1029

(Continued )

Appendix 643



TABLEA.7 (Continued)

n=10

r p .21 .22 .23 .24 .25 .26 .27 .28 .29 .30

6 .0070 .0088 .0109 .0134 .0162 .0195 .0231 .0272 .0317 .0368
7 .0011 .0014 .0019 .0024 .0031 .0039 .0049 .0060 .0074 .0090
8 .0001 .0002 .0002 .0003 .0004 .0005 .0007 .0009 .0011 .0014
9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0245 .0211 .0182 .0157 .0135 .0115 .0098 .0084 .0071 .0060
1 .1099 .0995 .0898 .0808 .0725 .0649 .0578 .0514 .0456 .0403
2 .2222 .2107 .1990 .0873 .1757 .1642 .1529 .1419 .1312 .1209
3 .2662 .2644 .2614 .2573 .2522 .2462 .2394 .2319 .2237 .2150
4 .2093 .2177 .2253 .2320 .2377 .2424 .2461 .2487 .2503 .2508
5 .1128 .1229 .1332 .1434 .1536 .1636 .1734 .1829 .1920 .2007
6 .0422 .0482 .0547 .0616 .0689 .0767 .0849 .0934 .1023 .1115
7 .0108 .0130 .0154 .0181 .0212 .0247 .0285 .0327 .0374 .0425
8 .0018 .0023 .0028 .0035 .0043 .0052 .0063 .0075 .0090 .0106
9 .0002 .0002 .0003 .0004 .0005 .0006 .0008 .0010 .0013 .0016
10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0051 .0043 .0036 .0030 .0025 .0021 .0017 .0014 .0012 .0010
1 .0355 .0312 .0273 .0238 .0207 .0180 .0155 .0133 .0114 .0098
2 .1111 .1017 .0927 .0843 .0763 .0688 .0619 .0554 .0494 .0439
3 .2058 .1963 .1865 .1765 .1665 .1564 .1464 .1364 .1267 .1172
4 .2503 .2488 .2462 .2427 .2384 .2331 .2271 .2204 .2130 .2051
5 .2087 .2162 .2229 .2289 .2340 .2383 .2417 .2441 .2456 .2461
6 .1209 .1304 .1401 .1499 .1596 .1692 .1786 .1878 .1966 .2051
7 .0480 .0540 .0604 .0673 .0746 .0824 .0905 .0991 .1080 .1172
8 .0125 .0147 .0171 .0198 .0229 .0263 .0301 .0343 .0389 .0439
9 .0019 .0024 .0029 .0035 .0042 .0050 .0059 .0070 .0083 .0098
10 .0001 .0002 .0002 .0003 .0003 .0004 .0005 .0006 .0008 .0010

n¼11

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .8953 .8007 .7153 .6382 .5688 .5063 .4501 .3996 .3544 .3138
1 .0995 .1798 .2433 .2925 .3293 .3555 .3727 .3823 .3855 .3835
2 .0050 .0183 .0376 .0609 .0867 .1135 .1403 .1662 .1906 .2131
3 .0002 .0011 .0035 .0076 .0137 .0217 .0317 .0434 .0566 .0710
4 .0000 .0000 .0002 .0006 .0014 .0028 .0048 .0075 .0112 .0158
5 .0000 .0000 .0000 .0000 .0001 .0002 .0005 .0009 .0015 .0025
6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003
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n=11

r p .11 .12 .13 .14 .15 .16 .17 .18 .19 .20

0 .2775 .2451 .2161 .1903 .1673 .1469 .1288 .1127 .0985 .0859
1 .3773 .3676 .3552 .3408 .3248 .3078 .2901 .2721 .2541 .2362
2 .2332 .2507 .2654 .2774 .2866 .2932 .2971 .2987 .2980 .2953
3 .0865 .1025 .1190 .1355 .1517 .1675 .1826 .1967 .2097 .2215
4 .0214 .0280 .0356 .0441 .0536 .0638 .0748 .0864 .0984 .1107
5 .0037 .0053 .0074 .0101 .0132 .0170 .0214 .0265 .0323 .0388
6 .0005 .0007 .0011 .0016 .0023 .0032 .0044 .0058 .0076 .0097
7 .0000 .0001 .0001 .0002 .0003 .0004 .0006 .0009 .0013 .0017
8 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .0748 .0650 .0564 .0489 .0422 .0364 .0314 .0270 .0231 .0198
1 .2187 .2017 .1854 .1697 .1549 .1408 .1276 .1153 .1038 .0932
2 .2907 .2845 .2768 .2680 .2581 .2474 .2360 .2242 .2121 .1998
3 .2318 .2407 .2481 .2539 .2581 .2608 .2619 .2616 .2599 .2568
4 .1232 .1358 .1482 .1603 .1721 .1832 .1937 .2035 .2123 .2201
5 .0459 .0536 .0620 .0709 .0803 .0901 .1003 .1108 .1214 .1321
6 .0122 .0151 .0185 .0224 .0268 .0317 .0371 .0431 .0496 .0566
7 .0023 .0030 .0039 .0050 .0064 .0079 .0098 .0120 .0145 .0173
8 .0003 .0004 .0006 .0008 .0011 .0014 .0018 .0023 .0030 .0037
9 .0000 .0000 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0169 .0144 .0122 .0104 .0088 .0074 .0062 .0052 .0044 .0036
1 .0834 .0744 .0662 .0587 .0518 .0457 .0401 .0351 .0306 .0266
2 .1874 .1751 .1630 .1511 .1395 .1284 .1177 .1075 .0978 .0887
3 .2526 .2472 .2408 .2335 .2254 .2167 .2074 .1977 .1876 .1774
4 .2269 .2326 .2372 .2406 .2428 .2438 .2436 .2423 .2399 .2365
5 .1427 .1533 .1636 .1735 .1830 .1920 .2003 .2079 .2148 .2207
6 .0641 .0721 .0806 .0894 .0985 .1080 .1176 .1274 .1373 .1471
7 .0206 .0242 .0283 .0329 .0379 .0434 .0494 .0558 .0627 .0701
8 .0046 .0057 .0070 .0085 .0102 .0122 .0145 .0171 .0200 .0234
9 .0007 .0009 .0011 .0015 .0018 .0023 .0028 .0035 .0043 .0052
10 .0001 .0001 .0001 .0001 .0002 .0003 .0003 .0004 .0005 .0007

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0030 .0025 .0021 .0017 .0014 .0011 .0009 .0008 .0006 .0005
1 .0231 .0199 .0171 .0147 .0125 .0107 .0090 .0076 .0064 .0054
2 .0801 .0721 .0646 .0577 .0513 .0454 .0401 .0352 .0308 .0269
3 .1670 .1566 .1462 .1359 .1259 .1161 .1067 .0976 .0888 .0806
4 .2321 .2267 .2206 .2136 .2060 .1978 .1892 .1801 .1707 .1611
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TABLEA.7 (Continued)

n=11

r p .41 .42 .43 .44 .45 .46 .47 .48 .49 .50

5 .2258 .2299 .2329 .2350 .2360 .2359 .2348 .2327 .2296 .2256
6 .1569 .1664 .1757 .1846 .1931 .2010 .2083 .2148 .2206 .2256
7 .0779 .0861 .0947 .1036 .1128 .1223 .1319 .1416 .1514 .1611
8 .0271 .0312 .0357 .0407 .0462 .0521 .0585 .0654 .0727 .0806
9 .0063 .0075 .0090 .0107 .0126 .0148 .0173 .0201 .0233 .0269
10 .0009 .0011 .0014 .0017 .0021 .0025 .0031 .0037 .0045 .0054
11 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0004 .0005

n¼12

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .8864 .7847 .6938 .6127 .5404 .4759 .4186 .3677 .3225 .2824
1 .1074 .1922 .2575 .3064 .3413 .3645 .3781 .3837 .3827 .3766
2 .0060 .0216 .0438 .0702 .0988 .1280 .1565 .1835 .2082 .2301
3 .0002 .0015 .0045 .0098 .0173 .0272 .0393 .0532 .0686 .0852
4 .0000 .0001 .0003 .0009 .0021 .0039 .0067 .0104 .0153 .0213
5 .0000 .0000 .0000 .0001 .0002 .0004 .0008 .0014 .0024 .0038
6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0003 .0005

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .2470 .2157 .1880 .1637 .1422 .1234 .1069 .0924 .0798 .0687
1 .3663 .3529 .3372 .3197 .3012 .2821 .2627 .2434 .2245 .2062
2 .2490 .2647 .2771 .2863 .2924 .2955 .2960 .2939 .2897 .2835
3 .1026 .1203 .1380 .1553 .1720 .1876 .2021 .2151 .2265 .2362
4 .0285 .0369 .0464 .0569 .0683 .0804 .0931 .1062 .1195 .1329
5 .0056 .0081 .0111 .0148 .0193 .0245 .0305 .0373 .0449 .0532
6 .0008 .0013 .0019 .0028 .0040 .0054 .0073 .0096 .0123 .0155
7 .0001 .0001 .0002 .0004 .0006 .0009 .0013 .0018 .0025 .0033
8 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0002 .0004 .0005
9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .0591 .0507 .0434 .0371 .0317 .0270 .0229 .0194 .0164 .0138
1 .1885 .1717 .1557 .1407 .1267 .1137 .1016 .0906 .0804 .0712
2 .2756 .2663 .2558 .2444 .2323 .2197 .2068 .1937 .1807 .1678
3 .2442 .2503 .2547 .2573 .2581 .2573 .2549 .2511 .2460 .2397
4 .1460 .1589 .1712 .1828 .1936 .2034 .2122 .2197 .2261 .2311
5 .0621 .0717 .0818 .0924 .1032 .1143 .1255 .1367 .1477 .1585
6 .0193 .0236 .0285 .0340 .0401 .0469 .0542 .0620 .0704 .0792
7 .0044 .0057 .0073 .0092 .0115 .0141 .0172 .0207 .0246 .0291
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TABLEA.7 (Continued)

n=12

r p .21 .22 .23 .24 .25 .26 .27 .28 .29 .30

8 .0007 .0010 .0014 .0018 .0024 .0031 .0040 .0050 .0063 .0078
9 .0001 .0001 .0002 .0003 .0004 .0005 .0007 .0009 .0011 .0015
10 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0016 .0098 .0082 .0068 .0057 .0047 .0039 .0032 .0027 .0022
1 .0628 .0552 .0484 .0422 .0368 .0319 .0276 .0237 .0204 .0174
2 .1552 .1429 .1310 .1197 .1088 .0986 .0890 .0800 .0716 .0639
3 .2324 .2241 .2151 .2055 .1954 .1849 .1742 .1634 .1526 .1419
4 .2349 .2373 .2384 .2382 .2367 .2340 .2302 .2254 .2195 .2128
5 .1688 .1787 .1879 .1963 .2039 .2106 .2163 .2210 .2246 .2270
6 .0885 .0981 .1079 .1180 .1281 .1382 .1482 .1580 .1675 .1766
7 .0341 .0396 .0456 .0521 .0591 .0666 .0746 .0830 .0918 .1009
8 .0096 .0116 .0140 .0168 .0199 .0234 .0274 .0318 .0367 .0420
9 .0019 .0024 .0031 .0038 .0048 .0059 .0071 .0087 .0104 .0125
10 .0003 .0003 .0005 .0006 .0008 .0010 .0013 .0016 .0020 .0025
11 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002 .0003

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0018 .0014 .0012 .0010 .0008 .0006 .0005 .0004 .0003 .0002
1 .0148 .0126 .0106 .0090 .0075 .0063 .0052 .0043 .0036 .0029
2 .0567 .0502 .0442 .0388 .0339 .0294 .0255 .0220 .0189 .0161
3 .1314 .1211 .1111 .1015 .0923 .0836 .0754 .0676 .0604 .0537
4 .2054 .1973 .1886 .1794 .1700 .1602 .1504 .1405 .1306 .1208
5 .2284 .2285 .2276 .2256 .2225 .2184 .2134 .2075 .2008 .1934
6 .1851 .1931 .2003 .2068 .2124 .2171 .2208 .2234 .2250 .2256
7 .1103 .1198 .1295 .1393 .1498 .1585 .1678 .1768 .1853 .1934
8 .0479 .0542 .0611 .0684 .0762 .0844 .0930 .1020 .1113 .1208
9 .0148 .0175 .0205 .0239 .0277 .0319 .0367 .0418 .0475 .0537
10 .0031 .0038 .0046 .0056 .0068 .0082 .0098 .0116 .0137 .0161
11 .0004 .0005 .0006 .0008 .0010 .0013 .0016 .0019 .0024 .0029
12 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0002 .0002

n¼13

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .8775 .7690 .6730 .5882 .5133 .4474 .3893 .3383 .2935 .2542
1 .1152 .2040 .2706 .3186 .3512 .3712 .3809 .3824 .3773 .3672
2 .0070 .0250 .0502 .0797 .1109 .1422 .1720 .1995 .2239 .2448
3 .0003 .0019 .0057 .0122 .0214 .0333 .0475 .0636 .0812 .0997
4 .0000 .0001 .0004 .0013 .0028 .0053 .0089 .0138 .0201 .0277
5 .0000 .0000 .0000 .0001 .0003 .0006 .0012 .0022 .0036 .0055
6 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0003 .0005 .0008
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
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TABLEA.7 (Continued)

n=12

r p .11 .12 .13 .14 .15 .16 .17 .18 .19 .20

0 .2198 .1898 .1636 .1408 .1209 .1037 .0887 .0758 .0646 .0550
1 .3532 .3364 .3178 .2979 .2774 .2567 .2362 .2163 .1970 .1787
2 .2619 .2753 .2849 .2910 .2937 .2934 .2903 .2848 .2773 .2680
3 .1187 .1376 .1561 .1737 .1900 .2049 .2180 .2293 .2385 .2457
4 .0367 .0469 .0583 .0707 .0838 .0976 .1116 .1258 .1399 .1535
5 .0082 .0115 .0157 .0207 .0266 .0335 .0412 .0497 .0591 .0691
6 .0013 .0021 .0031 .0045 .0063 .0085 .0112 .0145 .0185 .0230
7 .0002 .0003 .0005 .0007 .0011 .0016 .0023 .0032 .0043 .0058
8 .0000 .0000 .0001 .0001 .0001 .0002 .0004 .0005 .0008 .0011
9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .0467 .0396 .0334 .0282 .0238 .0200 .0167 .0140 .0117 .0097
1 .1613 .1450 .1299 .1159 .1029 .0911 .0804 .0706 .0619 .0540
2 .2573 .2455 .2328 .2195 .2059 .1921 .1784 .1648 .1516 .1388
3 .2508 .2539 .2550 .2542 .2517 .2475 .2419 .2351 .2271 .2181
4 .1667 .1790 .1904 .2007 .2097 .2174 .2237 .2285 .2319 .2337
5 .0797 .0909 .1024 .1141 .1258 .1375 .1489 .1600 .1705 .1803
6 .0283 .0342 .0408 .0480 .0559 .0644 .0734 .0829 .0928 .1030
7 .0075 .0096 .0122 .0152 .0186 .0226 .0272 .0323 .0379 .0442
8 .0015 .0020 .0027 .0036 .0047 .0060 .0075 .0094 .0116 .0142
9 .0002 .0003 .0005 .0006 .0009 .0012 .0015 .0020 .0026 .0034
10 .0000 .0000 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0006
11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0. .0080 .0066 .0055 .0045 .0037 .0030 .0025 .0020 .0016 .0013
1 .0469 .0407 .0351 .0302 .0259 .0221 .0188 .0159 .0135 .0113
2 .1265 .1148 .1037 .0933 .0836 .0746 .0663 .0586 .0516 .0453
3 .2084 .1981 .1874 .1763 .1651 .1538 .1427 .1317 .1210 .1107
4 .2341 .2331 .2307 .2270 .2222 .2163 .2095 .2018 .1934 .1845
5 .1893 .1974 .2045 .2105 .2154 .2190 .2215 .2227 .2226 .2214
6 .1134 .1239 .1343 .1446 .1546 .1643 .1734 .1820 .1898 .1968
7 .0509 .0583 .0662 .0745 .0833 .0924 .1019 .1115 .1213 .1312
8 .0172 .0206 .0244 .0288 .0336 .0390 .0449 .0513 .0582 .0656
9 .0043 .0054 .0067 .0082 .0101 .0122 .0146 .0175 .0207 .0243
10 .0008 .0010 .0013 .0017 .0022 .0027 .0034 .0043 .0053 .0065
11 .0001 .0001 .0002 .0002 .0003 .0004 .0006 .0007 .0009 .0012
12 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001
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TABLEA.7 (Continued)

n=13

r p .41 .42 .43 .44 .45 .46 .47 .48 .49 .50

0 .0010 .0008 .0007 .0005 .0004 .0003 .0003 .0002 .0002 .0001
1 .0095 .0079 .0066 .0054 .0045 .0037 .0030 .0024 .0020 .0016
2 .0395 .0344 .0298 .0256 .0220 .0188 .0160 .0135 .0114 .0095
3 .1007 .0913 .0823 .0739 .0660 .0587 .0519 .0457 .0401 .0349
4 .1750 .1653 .1553 .1451 .1350 .1250 .1151 .1055 .0962 .0873
5 .2189 .2154 .2108 .2053 .1989 .1917 .1838 .1753 .1664 .1571
6 .2029 .2080 .2121 .2151 .2169 .2177 .2173 .2158 .2131 .2095
7 .1410 .1506 .1600 .1690 .1775 .1854 .1927 .1992 .2048 .2095
8 .0735 .0818 .0905 .0996 .1089 .1185 .1282 .1379 .1476 .1571
9 .0284 .0329 .0379 .0435 .0495 .0561 .0631 .0707 .0788 .0873
10 .0079 .0095 .0114 .0137 .0162 .0191 .0224 .0261 .0303 .0349
11 .0015 .0019 .0024 .0029 .0036 .0044 .0054 .0066 .0079 .0095
12 .0002 .0002 .0003 .0004 .0005 .0006 .0008 .0010 .0013 .0016
13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001

n¼14

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .8687 .7536 .6528 .5647 .4877 .4205 .3620 .3112 .2670 .2288
1 .1229 .2153 .2827 .3294 .3593 .3758 .3815 .3788 .3698 .3559
2 .0081 .0286 .0568 .0892 .1229 .1559 .1867 .2141 .2377 .2570
3 .0003 .0023 .0070 .0149 .0259 .0398 .0562 .0745 .0940 .1142
4 .0000 .0001 .0006 .0017 .0037 .0070 .0116 .0178 .0256 .0349
5 .0000 .0000 .0000 .0001 .0004 .0009 .0018 .0031 .0051 .0078
6 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0004 .0008 .0013
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .1956 .1670 .1423 .1211 .1028 .0871 .0736 .0621 .0523 .0440
1 .3385 .3188 .2977 .2759 .2539 .2322 .2112 .1910 .1719 .1539
2 .2720 .2826 .2892 .2919 .2912 .2875 .2811 .2725 .2620 .2501
3 .1345 .1542 .1728 .1901 .2056 .2190 .2303 .2393 .2459 .2501
4 .0457 .0578 .0710 .0851 .0998 .1147 .1297 .1444 .1586 .1720
5 .0113 .0158 .0212 .0277 .0352 .0437 .0531 .0634 .0744 .0860
6 .0021 .0032 .0048 .0068 .0093 .0125 .0163 .0209 .0262 .0322
7 .003 .0005 .0008 .0013 .0019 .0027 .0038 .0052 .0070 .0092
8 .0000 .0001 .0001 .0002 .0003 .0005 .0007 .0010 .0014 .0020
9 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0003
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TABLEA.7 (Continued)

n=14

r p .21 .22 .23 .24 .25 .26 .27 .28 .29 .30

0 .0369 .0309 .0258 .0214 .0178 .0148 .0122 .0101 .0083 .0068
1 .1372 .1218 .1077 .0948 .0832 .0726 .0632 .0548 .0473 .0407
2 .2371 .2234 .2091 .1946 .1802 .1659 .1519 .1385 .1256 .1134
3 .2521 .2520 .2499 .2459 .2402 .2331 .2248 .2154 .2052 .1943
4 .1843 .1955 .2052 .2135 .2202 .2252 .2286 .2304 .2305 .2290
5 .0980 .1103 .1226 .1348 .1468 .1583 .1691 .1792 .1883 .1963
6 .0391 .0466 .0549 .0639 .0734 .0834 .0938 .1045 .1153 .1262
7 .0119 .0150 .0188 .0231 .0280 .0335 .0397 .0464 .0538 .0618
8 .0028 .0037 .0049 .0064 .0082 .0103 .0128 .0158 .0192 .0232
9 .0005 .0007 .0010 .0013 .0018 .0024 .0032 .0041 .0052 .0066
10 .0001 .0001 .0001 .0002 .0003 .0004 .0006 .0008 .0011 .0014
11 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0055 .0045 .0037 .0030 .0024 .0019 .0016 .0012 .0010 .0008
1 .0349 .0298 .0253 .0215 .0181 .0152 .0128 .0106 .0088 .0073
2 .1018 .0911 .0811 .0719 .0634 .0557 .0487 .0424 .0367 .0317
3 .1830 .1715 .1598 .1481 .1366 .1253 .1144 .1039 .0940 .0845
4 .2261 .2219 .2164 .2098 .2022 .1938 .1848 .1752 .1652 .1549
5 .2032 .2088 .2132 .2161 .2178 .2181 .2170 .2147 .2112 .2066
6 .1369 .1474 .1575 .1670 .1759 .1840 .1912 .1974 .2026 .2066
7 .0703 .0793 .0886 .0983 .1082 .1183 .1283 .1383 .1480 .1574
8 .0276 .0326 .0382 .0443 .0510 .0582 .0659 .0742 .0828 .0918
9 .0083 .0102 .0125 .0152 .0183 .0218 .0258 .0303 .0353 .0408
10 .0019 .0024 .0031 .0039 .0049 .0061 .0076 .0093 .0113 .0136
11 .0003 .0004 .0006 .0007 .0010 .0013 .0016 .0021 .0026 .0033
12 .0000 .0000 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0006 .0005 .0004 .0003 .0002 .0002 .0001 .0001 .0001 .0001
1 .0060 .0049 .0040 .0033 .0027 .0021 .0017 .0014 .0011 .0009
2 .0272 .0233 .0198 .0168 .0141 .0118 .0099 .0082 .0068 .0056
3 .0757 .0674 .0597 .0527 .0462 .0403 .0350 .0303 .0260 .0222
4 .1446 .1342 .1239 .1138 .1040 .0945 .0854 .0768 .0687 .0611
5 .2009 .1943 .1869 .1788 .1701 .1610 .1515 .1418 .1320 .1222
6 .2094 .2111 .2115 .2108 .2088 .2057 .2015 .1963 .1902 .1833
7 .1663 .1747 .1824 .1892 .1952 .2003 .2043 .2071 .2089 .2095
8 .1011 .1107 .1204 .1301 .1398 .1493 .1585 .1673 .1756 .1833
9 .0469 .0534 .0605 .0682 .0762 .0848 .0937 .1030 .1125 .1222
10 .0163 .0193 .0228 .0268 .0312 .0361 .0415 .0475 .0540 .0611
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TABLEA.7 (Continued)

n=14

r p .41 .42 .43 .44 .45 .46 .47 .48 .49 .50

11 .0041 .0051 .0063 .0076 .0093 .0112 .0134 .0160 .0189 .0222
12 .0007 .0009 .0012 .0015 .0019 .0024 .0030 .0037 .0045 .0056
13 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005 .0007 .0009
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

n¼15

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .8601 .7386 .6333 .5421 .4633 .3953 .3367 .2863 .2430 .2059
1 .1303 .2261 .2938 .3388 .3658 .3785 .3801 .3734 .3605 .3432
2 .0092 .0323 .0636 .0988 .1348 .1691 .2003 .2273 .2496 .2669
3 .0004 .0029 .0085 .0178 .0307 .0468 .0653 .0857 .1070 .1285
4 .0000 .0002 .0008 .0022 .0049 .0090 .0148 .0223 .0317 .0428
5 .0000 .0000 .0001 .0002 .0006 .0013 .0024 .0043 .0069 .0105
6 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0006 .0011 .0019
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0003

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .1741 .1470 .1238 .1041 .0874 .0731 .0611 .0510 .0424 .0352
1 .3228 .3006 .2775 .2542 .2312 .2090 .1878 .1678 .1492 .1319
2 .2793 .2870 .2903 .2897 .2856 .2787 .2692 .2578 .2449 .2309
3 .1496 .1696 .1880 .2044 .2184 .2300 .2389 .2452 .2489 .2501
4 .0555 .0694 .0843 .0998 .1156 .1314 .1468 .1615 .1752 .1876
5 .0151 .0208 .0277 .0357 .0449 .0551 .0662 .0780 .0904 .1032
6 .0031 .0047 .0069 .0097 .0132 .0175 .0226 .0285 .0353 .0430
7 .0005 .0008 .0013 .0020 .0030 .0043 .0059 .0081 .0107 .0138
8 .0001 .0001 .0002 .0003 .0005 .0008 .0012 .0018 .0025 .0035
9 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0003 .0005 .0007
10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .0291 .0241 .0198 .0163 .0134 .0109 .0089 .0072 .0059 .0047
1 .1162 .1018 .0889 .0772 .0668 .0576 .0494 .0423 .0360 .0305
2 .2162 .2010 .1858 .1707 .1559 .1416 .1280 .1150 .1029 .0916
3 .2490 .2457 .2405 .2336 .2252 .2156 .2051 .1939 .1812 .1700
4 .1986 .2079 .2155 .2213 .2252 .2273 .2276 .2262 .2231 .2186
5 .1161 .1290 .1416 .1537 .1651 .1757 .1852 .1935 .2005 .2061
6 .0514 .0606 .0705 .0809 .0917 .1029 .1142 .1254 .1365 .1472
7 .0176 .0220 .0271 .0329 .0393 .0465 .0543 .0627 .0717 .0811
8 .0047 .0062 .0081 .0104 .0131 .0163 .0201 .0244 .0293 .0348
9 .0010 .0014 .0019 .0025 .0034 .0045 .0058 .0074 .0093 .0116
10 .0002 .0002 .0003 .0005 .0007 .0009 .0013 .0017 .0023 .0030
11 .0000 .0000 .0000 .0001 .0001 .0002 .0002 .0003 .0004 .0006
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001
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TABLEA.7 (Continued)

n=15

r p .31 .32 .33 .34 .35 .36 .37 .38 .39 .40

0 .0038 .0031 .0025 .0020 .0016 .0012 .0010 .0008 .0006 .0005
1 .0258 .0217 .0182 .0152 .0126 .0104 .0086 .0071 .0058 .0047
2 .0811 .0715 .0627 .0547 .0476 .0411 .0354 .0303 .0259 .0219
3 .1579 .1457 .1338 .1222 .1110 .1002 .0901 .0805 .0716 .0634
4 .2128 .2057 .1977 .1888 .1792 .1692 .1587 .1481 .1374 .1268
5 .0210 .2130 .2142 .2140 .2123 .2093 .2051 .1997 .1933 .1859
6 .1575 .1671 .1759 .1837 .1906 .1963 .2008 .2040 .2059 .2066
7 .0910 .1011 .1114 .1217 .1319 .1419 .1516 .1608 .1693 .1771
8 .0409 .0476 .0549 .0627 .0710 .0798 .0890 .0985 .1082 .1181
9 .0143 .0174 .0210 .0251 .0298 .0349 .0407 .0470 .0538 .0612
10 .0038 .0049 .0062 .0078 .0096 .0118 .0143 .0173 .0206 .0245
11 .0008 .0011 .0014 .0018 .0024 .0030 .0038 .0048 .0060 .0074
12 .0001 .0002 .0002 .0003 .0004 .0006 .0007 .0010 .0013 .0016
13 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0003

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0004 .0003 .0002 .0002 .0001 .0001 .0001 .0001 .0000 .0000
1 .0038 .0031 .0025 .0020 .0016 .0012 .0010 .0008 .0006 .0005
2 .0185 .0156 .0130 .0108 .0090 .0074 .0060 .0049 .0040 .0032
3 .0558 .0489 .0426 .0369 .0318 .0272 .0232 .0197 .0166 .0139
4 .1163 .1061 .0963 .0869 .0780 .0696 .0617 .0545 .0478 .0417
5 .1778 .1691 .1598 .1502 .1404 .1304 .1204 .1106 .1010 .0916
6 .2060 .2041 .2010 .1967 .1914 .1851 .1780 .1702 .1617 .1527
7 .1840 .1900 .1949 .1987 .2013 .2028 .2030 .2020 .1997 .1964
8 .1279 .1376 .1470 .1561 .1647 .1727 .1800 .1864 .1919 .1964
9 .0691 .0775 .0863 .0954 .1048 .1144 .1241 .1338 .1434 .1527
10 .0288 .0337 .0390 .0450 .0515 .0585 .0661 .0741 .0827 .0916
11 .0091 .0111 .0134 .0161 .0191 .0226 .0266 .0311 .0361 .0417
12 .0021 .0027 .0034 .0042 .0052 .0064 .0079 .0096 .0116 .0139
13 .0003 .0004 .0006 .0008 .0010 .0013 .0016 .0020 .0026 .0032
14 .0000 .0000 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005

n¼16

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .8515 .7238 .6143 .5204 .4401 .3716 .3131 .2634 .2211 .1853
1 .1376 .2363 .3040 .3469 .3706 .3795 .3771 .3665 .3499 .3294
2 .0104 .0362 .0705 .1084 .1463 .1817 .2129 .2390 .2596 .2745
3 .0005 .0034 .0102 .0211 .0359 .0541 .0748 .0970 .1198 .1423
4 .0000 .0002 .0010 .0029 .0061 .0112 .0183 .0274 .0385 .0514
5 .0000 .0000 .0001 .0003 .0008 .0017 .0033 .0057 .0091 .0137
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n=16

r p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

6 .0000 .0000 .0000 .0000 .0001 .0002 .0005 .0009 .0017 .0028
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0004
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .1550 .1293 .1077 .0895 .0743 .0614 .0507 .0418 .0343 .0281
1 .3065 .2822 .2575 .2332 .2097 .1873 .1662 .1468 .1289 .1126
2 .2841 .2886 .2886 .2847 .2775 .2675 .2554 .2416 .2267 .2111
3 .1638 .1837 .2013 .2163 .2285 .2378 .2441 .2475 .2482 .2463
4 .0658 .0814 .0977 .1144 .1311 .1472 .1625 .1766 .1892 .2001
5 .0195 .0266 .0351 .0447 .0555 .0673 .0799 .0930 .1065 .1201
6 .0044 .0067 .0096 .0133 .0180 .0235 .0300 .0374 .0458 .0550
7 .0008 .0013 .0020 .0031 .0045 .0064 .0088 .0117 .0153 .0197
8 .0001 .0002 .0003 .0006 .0009 .0014 .0020 .0029 .0041 .0055
9 .0000 .0000 .0000 .0001 .0001 .0002 .0004 .0006 .0008 .0012
10 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .0230 .0188 .0153 .0124 .0100 .0081 .0065 .0052 .0042 .0033
1 .0979 .0847 .0730 .0626 .0535 .0455 .0385 .0325 .0273 .0228
2 .1952 .1792 .1635 .1482 .1336 .1198 .1068 .0947 .0835 .0732
3 .2421 .2359 .2279 .2185 .2079 .1964 .1843 .1718 .1591 .1465
4 .2092 .2162 .2212 .2242 .2252 .2243 .2215 .2171 .2112 .2040
5 .1334 .1464 .1586 .1699 .1802 .1891 .1966 .2026 .2071 .2099
6 .0650 .0757 .0869 .0984 .1101 .1218 .1333 .1445 .1551 .1649
7 .0247 .0305 .0371 .0444 .0524 .0611 .0704 .0803 .0905 .1010
8 .0074 .0097 .0125 .0158 .0197 .0242 .0293 .0351 .0416 .0487
9 .0017 .0024 .0033 .0044 .0058 .0075 .0096 .0121 .0151 .0185
10 .0003 .0005 .0007 .0010 .0014 .0019 .0025 .0033 .0043 .0056
11 .0000 .0001 .0001 .0002 .0002 .0004 .0005 .0007 .0010 .0013
12 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0026 .0021 .0016 .0013 .0010 .0008 .0006 .0005 .0004 .0003
1 .0190 .0157 .0130 .0107 .0087 .0071 .0058 .0047 .0038 .0030
2 .0639 .0555 .0480 .0413 .0353 .0301 .0255 .0215 .0180 .0150
3 .1341 .1220 .1103 .0992 .0888 .0790 .0699 .0615 .0538 .0468
4 .1958 .1865 .1766 .1662 .1553 .1444 .1333 .1224 .1118 .1014
5 .2111 .2107 .2088 .2054 .2008 .1949 .1879 .1801 .1715 .1623
6 .1739 .1818 .1885 .1940 .1982 .2010 .2024 .2024 .2010 .1983
7 .1116 .1222 .1326 .1428 .1524 .1615 .1698 .1772 .1836 .1889
8 .0564 .0647 .0735 .0827 .0923 .1022 .1122 .1222 .1320 .1417
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TABLEA.7 (Continued)

n=16

r p .31 .32 .33 .34 .35 .36 .37 .38 .39 .40

9 .0225 .0271 .0322 .0379 .0442 .1511 .0586 .0666 .0750 .0840
10 .0071 .0089 .0111 .0137 .0167 .0201 .0241 .0286 .0336 .0392
11 .0017 .0023 .0030 .0038 .0049 .0062 .0077 .0095 .0117 .0142
12 .0003 .0004 .0006 .0008 .0011 .0014 .0019 .0024 .0031 .0040
13 .0000 .0001 .0001 .0001 .0002 .0003 .0003 .0005 .0006 .0008
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0002 .0002 .0001 .0001 .0001 .0001 .0000 .0000 .0000 .0000
1 .0024 .0019 .0015 .0012 .0009 .0007 .0005 .0004 .0003 .0002
2 .0125 .0103 .0085 .0069 .0056 .0046 .0037 .0029 .0023 .0018
3 .0405 .0349 .0299 .0254 .0215 .0181 .0151 .0126 .0104 .0085
4 .0915 .0821 .0732 .0649 .0572 .0501 .0436 .0378 .0325 .0278
5 .1526 .1426 .1325 .1224 .1123 .1024 .0929 .0837 .0749 .0667
6 .1944 .1894 .1833 .1762 .1684 .1600 .1510 .1416 .1319 .1222
7 .1930 .1959 .1975 .1978 .1969 .1947 .1912 .1867 .1811 .1746
8 .1509 .1596 .1676 .1749 .1812 .1865 .1908 .1939 .1958 .1964
9 .0932 .1027 .1124 .1221 .1318 .1413 .1504 .1591 .1672 .1746
10 .0453 .0521 .0594 .0672 .0755 .0842 .0934 .1028 .1124 .1222
11 .0172 .0206 .0244 .0288 .0337 .0391 .0452 .0518 .0589 .0667
12 .0050 .0062 .0077 .0094 .0115 .0139 .0167 .0199 .0236 .0278
13 .0011 .0014 .0018 .0023 .0029 .0036 .0046 .0057 .0070 .0085
14 .0002 .0002 .0003 .0004 .0005 .0007 .0009 .0011 .0014 .0018
15 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002

n¼17

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .8429 .7093 .5958 .4996 .4181 .3493 .2912 .2423 .2012 .1668
1 .1447 .2461 .3133 .3539 .3741 .3790 .3726 .3582 .3383 .3150
2 .0117 .0402 .0775 .1180 .1575 .1935 .2244 .2492 .2677 .2800
3 .0006 .0041 .0120 .0246 .0415 .0618 .0844 .1083 .1324 .1556
4 .0000 .0003 .0013 .0036 .0076 .0138 .0222 .0330 .0458 .0605
5 .0000 .0000 .0001 .0004 .0010 .0023 .0044 .0075 .0118 .0175
6 .0000 .0000 .0000 .0000 .0001 .0003 .0007 .0013 .0023 .0039
7 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0004 .0007
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
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n=17

r p .11 .12 .13 .14 .15 .16 .17 .18 .19 .20

0 .1379 .1138 .0937 .0770 .0631 .0516 .0421 .0343 .0278 .0225
1 .2898 .2638 .2381 .2131 .1893 .1671 .1466 .1279 .1109 .0957
2 .2865 .2878 .2846 .2775 .2673 .2547 .2402 .2245 .2081 .1914
3 .1771 .1963 .2126 .2259 .2359 .2425 .2460 .2464 .2441 .2393
4 .0766 .0937 .1112 .1287 .1457 .1617 .1764 .1893 .2004 .2093
5 .0246 .0332 .0432 .0545 .0668 .0801 .0939 .1081 .1222 .1361
6 .0061 .0091 .0129 .0177 .0236 .0305 .0385 .0474 .0573 .0680
7 .0012 .0019 .0030 .0045 .0065 .0091 .0124 .0164 .0211 .0267
8 .0002 .0003 .0006 .0009 .0014 .0022 .0032 .0045 .0062 .0084
9 .0000 .0000 .0001 .0002 .0003 .0004 .0006 .0010 .0015 .0021
10 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0003 .0004
11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .0182 .0146 .0118 .0094 .0075 .0060 .0047 .0038 .0030 .0023
1 .0822 .0702 .0597 .0505 .0426 .0357 .0299 .0248 .0206 .0169
2 .1747 .1584 .1427 .1277 .1136 .1005 .0883 .0772 .0672 .0581
3 .2322 .2234 .2131 .2016 .1893 .1765 .1634 .1502 .1372 .1245
4 .2161 .2205 .2228 .2228 .2209 .2170 .2115 .2044 .1961 .1868
5 .1493 .1617 .1730 .1830 .1914 .1982 .2033 .2067 .2083 .2081
6 .0794 .0912 .1034 .1156 .1276 .1393 .1504 .1608 .1701 .1784
7 .0332 .0404 .0485 .0573 .0668 .0769 .0874 .0982 .1092 .1201
8 .0110 .0143 .0181 .0226 .0279 .0338 .0404 .0478 .0558 .0644
9 .0029 .0040 .0054 .0071 .0093 .0119 .0150 .0186 .0228 .0276
10 .0006 .0009 .0013 .0018 .0025 .0033 .0044 .0058 .0074 .0095
11 .0001 .0002 .0002 .0004 .0005 .0007 .0010 .0014 .0019 .0026
12 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0004 .0006
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0018 .0014 .0011 .0009 .0007 .0005 .0004 .0003 .0002 .0002
1 .0139 .0114 .0093 .0075 .0060 .0048 .0039 .0031 .0024 .0019
2 .0500 .0428 .0364 .0309 .0260 .0218 .0182 .0151 .0125 .0102
3 .1123 .1007 .0898 .0795 .0701 .0614 .0534 .0463 .0398 .0341
4 .1766 .1659 .1547 .1434 .1320 .1208 .1099 .0993 .0892 .0796
5 .2063 .2030 .1982 .1921 .1849 .1767 .1677 .1582 .1482 .1379
6 .1854 .1910 .1952 .1979 .1991 .1988 .1970 .1939 .1895 .1839
7 .1309 .1413 .1511 .1602 .1685 .1757 .1818 .1868 .1904 .1927
8 .0735 .0831 .0930 .1032 .1134 .1235 .1335 .1431 .1521 .1606
9 .0330 .0391 .0458 .0531 .0611 .0695 .0784 .0877 .0973 .1070
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n=17

r p .31 .32 .33 .34 .35 .36 .37 .38 .39 .40

10 .0119 .0147 .0181 .0219 .0263 .0313 .0368 .0430 .0498 .0571
11 .0034 .0044 .0057 .0072 .0090 .0112 .0138 .0168 .0202 .0242
12 .0008 .0010 .0014 .0018 .0024 .0031 .0040 .0051 .0065 .0081
13 .0001 .0002 .0003 .0004 .0005 .0007 .0009 .0012 .0016 .0021
14 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002 .0003 .0004
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0001 .0001 .0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000
1 .0015 .0012 .0009 .0007 .0005 .0004 .0003 .0002 .0002 .0001
2 .0084 .0068 .0055 .0044 .0035 .0028 .0022 .0017 .0013 .0010
3 .0290 .0246 .0207 .0173 .0144 .0119 .0097 .0079 .0064 .0052
4 .0706 .0622 .0546 .0475 .0411 .0354 .0302 .0257 .0217 .0182
5 .1276 .1172 .1070 .0971 .0875 .0784 .0697 .0616 .0541 .0472
6 .1773 .1697 .1614 .1525 .1432 .1335 .1237 .1138 .1040 .0944
7 .1936 .1932 .1914 .1883 .1841 .1787 .1723 .1650 .1570 .1484
8 .1682 .1748 .1805 .1850 .1883 .1903 .1910 .1904 .1886 .1855
9 .1169 .1266 .1361 .1453 .1540 .1621 .1694 .1758 .1812 .1855
10 .0650 .0733 .0822 .0914 .1008 .1105 .1202 .1298 .1393 .1484
11 .0287 .0338 .0394 .0457 .0525 .0599 .0678 .0763 .0851 .0944
12 .0100 .0122 .0149 .0179 .0215 .0255 .0301 .0352 .0409 .0472
13 .0027 .0034 .0043 .0054 .0068 .0084 .0103 .0125 .0151 .0182
14 .0005 .0007 .0009 .0012 .0016 .0020 .0026 .0033 .0041 .0052
15 .0001 .0001 .0001 .0002 .0003 .0003 .0005 .0006 .0008 .0010
16 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001

n¼18

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .8345 .6951 .5780 .4796 .3972 .3283 .2708 .2229 .1831 .1501
1 .1517 .2554 .3217 .3597 .3763 .3772 .3669 .3489 .3260 .3002
2 .0130 .0443 .0846 .1274 .1683 .2047 .2348 .2579 .2741 .2835
3 .0007 .0048 .0140 .0283 .0473 .0697 .0942 .1196 .1446 .1680
4 .0000 .0004 .0016 .0044 .0093 .0167 .0266 .0390 .0536 .0700
5 .0000 .0000 .0001 .0005 .0014 .0030 .0056 .0095 .0148 .0218
6 .0000 .0000 .0000 .0000 .0002 .0004 .0009 .0018 .0032 .0052
7 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0005 .0010
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002
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n=18

r p .11 .12 .13 .14 .15 .16 .17 .18 .19 .20

0 .1227 .1002 .0815 .0662 .0536 .0434 .0349 .0281 .0225 .0180
1 .2731 .2458 .2193 .1940 .1704 .1486 .1288 .1110 .0951 .0811
2 .2869 .2850 .2785 .2685 .2556 .2407 .2243 .2071 .1897 .1723
3 .1891 .2072 .2220 .2331 .2406 .2445 .2450 .2425 .2373 .2297
4 .0877 .1060 .1244 .1423 .1592 .1746 .1882 .1996 .2087 .2153
5 .0303 .0405 .0520 .0649 .0787 .0931 .1079 .1227 .1371 .1507
6 .0081 .0120 .0168 .0229 .0301 .0384 .0479 .0584 .0697 .0816
7 .0017 .0028 .0043 .0064 .0091 .0126 .0168 .0220 .0280 .0350
8 .0003 .0005 .0009 .0014 .0022 .0033 .0047 .0066 .0090 .0120
9 .0000 .0001 .0001 .0003 .0004 .0007 .0011 .0016 .0024 .0033
10 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0003 .0005 .0008
11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .0144 .0114 .0091 .0072 .0056 .0044 .0035 .0027 .0021 .0016
1 .0687 .0580 .0487 .0407 .0338 .0280 .0231 .0189 .0155 .0126
2 .1553 .1390 .1236 .1092 .0958 .0836 .0725 .0626 .0537 .0458
3 .2202 .2091 .1969 .1839 .1704 .1567 .1431 .1298 .1169 .1046
4 .2195 .2212 .2205 .2177 .2130 .2065 .1985 .1892 .1790 .1681
5 .1634 .1747 .1845 .1925 .1988 .2031 .2055 .2061 .2048 .2017
6 .0941 .1067 .1194 .1317 .1436 .1546 .1647 .1736 .1812 .1873
7 .0429 .0516 .0611 .0713 .0820 .0931 .1044 .1157 .1269 .1376
8 .0157 .0200 .0251 .0310 .0376 .0450 .0531 .0619 .0713 .0811
9 .0046 .0063 .0083 .0109 .0139 .0176 .0218 .0267 .0323 .0386
10 .0011 .0016 .0022 .0031 .0042 .0056 .0073 .0094 .0119 .0149
11 .0002 .0003 .0005 .0007 .0010 .0014 .0020 .0026 .0035 .0046
12 .0000 .0001 .0001 .0001 .0002 .0003 .0004 .0006 .0008 .0012
13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0002

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0013 .0010 .0007 .0006 .0004 .0003 .0002 .0002 .0001 .0001
1 .0102 .0082 .0066 .0052 .0042 .0033 .0026 .0020 .0016 .0012
2 .0388 .0327 .0275 .0229 .0190 .0157 .0129 .0105 .0086 .0069
3 .0930 .0822 .0722 .0630 .0547 .0471 .0404 .0344 .0292 .0246
4 .1567 .1450 .1333 .1217 .1104 .0994 .0890 .0791 .0699 .0614
5 .1971 .1911 .1838 .1755 .1664 .1566 .1463 .1358 .1252 .1146
6 .1919 .1948 .1962 .1959 .1941 .1908 .1862 .1803 .1734 .1655
7 .1478 .1572 .1656 .1730 .1792 .1840 .1875 .1895 .1900 .1892
8 .0913 .1017 .1122 .1226 .1327 .1423 .1514 .1597 .1671 .1734
9 .0456 .0532 .0614 .0701 .0794 .0890 .0988 .1087 .1187 .1284
10 .0184 .0225 .0272 .0325 .0385 .0450 .0522 .0600 .0683 .0771
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n=18

r p .31 .32 .33 .34 .35 .36 .37 .38 .39 .40

11 .0060 .0077 .0097 .0122 .0151 .0184 .0223 .0267 .0318 .0374
12 .0016 .0021 .0028 .0037 .0047 .0060 .0076 .0096 .0118 .0145
13 .0003 .0005 .0006 .0009 .0012 .0016 .0021 .0027 .0035 .0045
14 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0006 .0008 .0011
15 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0009 .0007 .0005 .0004 .0003 .0002 .0002 .0001 .0001 .0001
2 .0055 .0044 .0035 .0028 .0022 .0017 .0013 .0010 .0008 .0006
3 .0206 .0171 .0141 .0116 .0095 .0077 .0062 .0050 .0039 .0031
4 .0536 .0464 .0400 .0342 .0291 .0246 .0206 .0172 .0142 .0117
5 .1042 .0941 .0844 .0753 .0666 .0586 .0512 .0444 .0382 .0327
6 .1569 .1477 .1380 .1281 .1181 .1081 .0983 .0887 .0796 .0708
7 .1869 .1833 .1785 .1726 .1657 .1579 .1494 .1404 .1310 .1214
8 .1786 .1825 .1852 .1864 .1864 .1850 .1822 .1782 .1731 .1669
9 .1379 .1469 .1552 .1628 .1694 .1751 .1795 .1828 .1848 .1855
10 .0862 .0957 .1054 .1151 .1248 .1342 .1433 .1519 .1598 .1669
11 .0436 .0504 .0578 .0658 .0742 .0831 .0924 .1020 .1117 .1214
12 .0177 .0213 .0254 .0301 .0354 .0413 .0478 .1549 .0626 .0708
13 .0057 .0071 .0089 .0109 .0134 .0162 .0196 .0234 .0278 .0327
14 .0014 .0018 .0024 .0031 .0039 .0049 .0062 .0077 .0095 .0117
15 .0003 .0004 .0005 .0006 .0009 .0011 .0015 .0019 .0024 .0031
16 .0000 .0000 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0006
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

n¼19

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .8262 .6812 .5606 .4604 .3774 .3086 .2519 .2051 .1666 .1351
1 .1586 .2642 .3294 .3645 .3774 .3743 .3602 .3389 .3131 .2852
2 .0144 .0485 .0917 .1367 .1787 .2150 .2440 .2652 .2787 .2852
3 .0008 .0056 .0161 .0323 .0533 .0778 .1041 .1307 .1562 .1796
4 .0000 .0005 .0020 .0054 .0112 .0199 .0313 .0455 .0618 .0798
5 .0000 .0000 .0002 .0007 .0018 .0038 .0071 .0119 .0183 .0266
6 .0000 .0000 .0000 .0001 .0002 .0006 .0012 .0024 .0042 .0069
7 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0004 .0008 .0014
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002
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n=19

r p .11 .12 .13 .14 .15 .16 .17 .18 .19 .20

0 .1092 .0881 .0709 .0569 .0456 .0364 .0290 .0230 .0182 .0144
1 .2565 .2284 .2014 .1761 .1529 .1318 .1129 .0961 .0813 .0685
2 .2854 .2803 .2708 .2581 .2428 .2259 .2081 .1898 .1717 .1540
3 .1999 .2166 .2293 .2381 .2428 .2439 .2415 .2361 .2282 .2182
4 .0988 .1181 .1371 .1550 .1714 .1858 .1979 .2073 .2141 .2182
5 .0366 .0483 .0614 .0757 .0907 .1062 .1216 .1365 .1507 .1636
6 .0106 .0154 .0214 .0288 .0374 .0472 .0581 .0699 .0825 .0955
7 .0024 .0039 .0059 .0087 .0122 .0167 .0221 .0285 .0359 .0443
8 .0004 .0008 .0013 .0021 .0032 .0048 .0068 .0094 .0126 .0166
9 .0001 .0001 .0002 .0004 .0007 .0011 .0017 .0025 .0036 .0051
10 .0000 .0000 .0000 .0001 .0001 .0002 .0003 .0006 .0009 .0013
11 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0003

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .0113 .0089 .0070 .0054 .0042 .0033 .0025 .0019 .0015 .0011
1 .0573 .0477 .0396 .0326 .0268 .0219 .0178 .0144 .0116 .0093
2 .1371 .1212 .1064 .0927 .0803 .0692 .0592 .0503 .0426 .0358
3 .2065 .1937 .1800 .1659 .1517 .1377 .1240 .1109 .0985 .0869
4 .2196 .2185 .2151 .2096 .2023 .1935 .1835 .1726 .1610 .1491
5 .1751 .1849 .1928 .1986 .2023 .2040 .2036 .2013 .1973 .1916
6 .1086 .1217 .1343 .1463 .1574 .1672 .1757 .1827 .1880 .1916
7 .0536 .0637 .0745 .0858 .0974 .1091 .1207 .1320 .1426 .1525
8 .0214 .0270 .0334 .0406 .0487 .0575 .0670 .0770 .0874 .0981
9 .0069 .0093 .0122 .0157 .0198 .0247 .0303 .0366 .0436 .0514
10 .0018 .0026 .0036 .0050 .0066 .0087 .0112 .0142 .0178 .0220
11 .0004 .0006 .0009 .0013 .0018 .0025 .0034 .0045 .0060 .0077
12 .0001 .0001 .0002 .0003 .0004 .0006 .0008 .0012 .0016 .0022
13 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0002 .0004 .0005
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0009 .0007 .0005 .0004 .0003 .0002 .0002 .0001 .0001 .0001
1 .0074 .0059 .0046 .0036 .0029 .0022 .0017 .0013 .0010 .0008
2 .0299 .0249 .0206 .0169 .0138 .0112 .0091 .0073 .0058 .0046
3 .0762 .0664 .0574 .0494 .0422 .0358 .0302 .0253 .0211 .0175
4 .1370 .1249 .1131 .1017 .0909 .0806 .0710 .0621 .0540 .0467
5 .1846 .1764 .1672 .1572 .1468 .1360 .1251 .1143 .1036 .0933
6 .1935 .1936 .1921 .1890 .1844 .1785 .1714 .1634 .1546 .1451
7 .1615 .1692 .1757 .1808 .1844 .1865 .1870 .1860 .1835 .1797
8 .1088 .1195 .1298 .1397 .1489 .1573 .1647 .1710 .1760 .1797
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TABLEA.7 (Continued)

n=19

r p .31 .32 .33 .34 .35 .36 .37 .38 .39 .40

9 .0597 .0687 .0782 .0880 .0980 .1082 .1182 .1281 .1375 .1464
10 .0268 .0323 .0385 .0453 .0528 .0608 .0694 .0785 .0879 .0976
11 .0099 .0124 .0155 .0191 .0233 .0280 .0334 .0394 .0460 .0532
12 .0030 .0039 .0051 .0066 .0083 .0105 .0131 .0161 .0196 .0237
13 .0007 .0010 .0014 .0018 .0024 .0032 .0041 .0053 .0067 .0085
14 .0001 .0002 .0003 .0004 .0006 .0008 .0010 .0014 .0018 .0024
15 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0004 .0005
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0006 .0004 .0003 .0002 .0002 .0001 .0001 .0001 .0001 .0000
2 .0037 .0029 .0022 .0017 .0013 .0010 .0008 .0006 .0004 .0003
3 .0144 .0118 .0096 .0077 .0062 .0049 .0039 .0031 .0024 .0018
4 .0400 .0341 .0289 .0243 .0203 .0168 .0138 .0113 .0092 .0074
5 .0834 .0741 .0653 .0572 .0497 .0429 .0368 .0313 .0265 .0222
6 .1353 .1252 .1150 .1049 .0949 .0853 .0751 .0674 .0593 .0518
7 .1746 .1683 .1611 .1530 .1443 .1350 .1254 .1156 .1058 .0961
8 .1820 .1829 .1823 .1803 .1771 .1725 .1668 .1601 .1525 .1442
9 .1546 .1618 .1681 .1732 .1771 .1796 .1808 .1806 .1791 .1762
10 .1074 .1172 .1268 .1361 .1449 .1530 .1603 .1667 .1721 .1762
11 .0611 .0694 .0783 .0875 .0970 .1066 .1163 .1259 .1352 .1442
12 .0283 .0335 .0394 .0458 .0529 .0606 .0688 .0775 .0866 .0961
13 .0106 .0131 .0160 .0194 .0233 .0278 .0328 .0385 .0448 .0518
14 .0032 .0041 .0052 .0065 .0082 .0101 .0125 .0152 .0185 .0222
15 .0007 .0010 .0013 .0017 .0022 .0029 .0037 .0047 .0059 .0074
16 .0001 .0002 .0002 .0003 .0005 .0006 .0008 .0011 .0014 .0018
17 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002 .0003

n¼ 20

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .8179 .6676 .5438 .4420 .3585 .2901 .2342 .1887 .1516 .1216
1 .1652 .2725 .3364 .3683 .3774 .3703 .3526 .3282 .3000 .2702
2 .0159 .0528 .0988 .1458 .1887 .2246 .2521 .2711 .2818 .2852
3 .0010 .0065 .0183 .0364 .0596 .0860 .1139 .1414 .1672 .1901
4 .0000 .0006 .0024 .0065 .0133 .0233 .0364 .0523 .0703 .0898
5 .0000 .0000 .0002 .0009 .0022 .0048 .0088 .0145 .0222 .0319
6 .0000 .0000 .0000 .0001 .0003 .0008 .0017 .0032 .0055 .0089
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TABLEA.7 (Continued)

n=20

r p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

7 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0005 .0011 .0020
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0004
9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .0972 .0776 .0617 .0490 .0388 .0306 .0241 .0189 .0148 .0115
1 .2403 .2115 .1844 .1595 .1368 .1165 .0986 .0829 .0693 .0576
2 .2822 .2740 .2618 .2466 .2293 .2109 .1919 .1730 .1545 .1369
3 .2093 .2242 .2347 .2409 .2428 .2410 .2358 .2278 .2175 .2054
4 .1099 .1299 .1491 .1666 .1821 .1951 .2053 .2125 .2168 .2182
5 .0435 .0567 .0713 .1868 .1028 .1189 .1345 .1493 .1627 .1746
6 .0134 .0193 .0266 .0353 .0454 .0566 .0689 .0819 .0954 .1091
7 .0033 .0053 .0080 .0115 .0160 .0216 .0282 .0360 .0448 .0545
8 .0007 .0012 .0019 .0030 .0046 .0067 .0094 .0128 .0171 .0222
9 .0001 .0002 .0004 .0007 .0011 .0017 .0026 .0038 .0053 .0074
10 .0000 .0000 .0001 .0001 .0002 .0004 .0006 .0009 .0014 .0020
11 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0003 .0005
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .0090 .0069 .0054 .0041 .0032 .0024 .0018 .0014 .0011 .0008
1 .0477 .0392 .0321 .0261 .0211 .0170 .0137 .0109 .0087 .0068
2 .1204 .1050 .0910 .0783 .0669 .0569 .0480 .0403 .0336 .0278
3 .1920 .1777 .1631 .1484 .1339 .1199 .1065 .0940 .0823 .0716
4 .2169 .2131 .2070 .1991 .1897 .1790 .1675 .1553 .1429 .1304
5 .1845 .1923 .1979 .2012 .2023 .2013 .1982 .1933 .1868 .1789
6 .1226 .1356 .1478 .1589 .1686 .1768 .1833 .1879 .1907 .1916
7 .0652 .0765 .0883 .1003 .1124 .1242 .1356 .1462 .1558 .1643
8 .0282 .0351 .0429 .0515 .0609 .0709 .0815 .0924 .1034 .1144
9 .0100 .0132 .0171 .0217 .0271 .0332 .0402 .0479 .0563 .0654
10 .0029 .0041 .0056 .0075 .0099 .0128 .0163 .0205 .0253 .0308
11 .0007 .0010 .0015 .0022 .0030 .0041 .0055 .0072 .0094 .0120
12 .0001 .0002 .0003 .0005 .0008 .0011 .0015 .0021 .0029 .0039
13 .0000 .0000 .0001 .0001 .0002 .0002 .0003 .0005 .0007 .0010
14 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0006 .0004 .0003 .0002 .0002 .0001 .0001 .0001 .0001 .0000
1 .0054 .0042 .0033 .0025 .0020 .0015 .0011 .0009 .0007 .0005
2 .0229 .0188 .0153 .0124 .0100 .0080 .0064 .0050 .0040 .0031
3 .0619 .0531 .0453 .0383 .0323 .0270 .0224 .0185 .0152 .0123
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TABLEA.7 (Continued)

n=20

r p .31 .32 .33 .34 .35 .36 .37 .38 .39 .40

4 .1181 .1062 .0947 .0839 .0738 .0645 .0559 .0482 .0412 .0350
5 .1698 .1599 .1493 .1384 .1272 .1161 .1051 .0945 .0843 .0746
6 .1907 .1881 .1839 .1782 .1712 .1632 .1543 .1447 .1347 .1244
7 .1714 .1770 .1811 .1836 .1844 .1836 .1812 .1774 .1722 .1659
8 .1251 .1354 .1450 .1537 .1614 .1678 .1730 .1767 .1790 .1797
9 .0750 .0849 .0952 .1056 .1158 .1259 .1354 .1444 .1526 .1597
10 .0370 .0440 .0516 .0598 .0686 .0779 .0875 .0974 .1073 .1171
11 .0151 .0188 .0231 .0280 .0336 .0398 .0467 .0542 .0624 .0710
12 .0051 .0066 .0085 .0108 .0136 .0168 .0206 .0249 .0299 .0355
13 .0014 .0019 .0026 .0034 .0045 .0058 .0074 .0094 .0118 .0146
14 .0003 .0005 .0006 .0009 .0012 .0016 .0022 .0029 .0038 .0049
15 .0001 .0001 .0001 .0002 .0003 .0004 .0005 .0007 .0010 .0013
16 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0003

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0004 .0003 .0002 .0001 .0001 .0001 .0001 .0000 .0000 .0000
2 .0024 .0018 .0014 .0011 .0008 .0006 .0005 .0003 .0002 .0002
3 .0100 .0080 .0064 .0051 .0040 .0031 .0024 .0019 .0014 .0011
4 .0295 .0247 .0206 .0170 .0139 .0113 .0092 .0074 .0059 .0046
5 .0656 .0573 .0496 .0427 .0365 .0309 .0260 .0217 .0180 .0148
6 .1140 .1037 .0936 .0839 .0746 .0658 .0577 .0501 .0432 .0370
7 .1585 .1502 .1413 .1318 .1221 .1122 .1023 .0925 .0830 .0739
8 .1790 .1768 .1732 .1683 .1623 .1553 .1474 .1388 .1296 .1201
9 .1658 .1707 .1742 .1763 .1771 .1763 .1742 .1708 .1661 .1602
10 .1268 .1359 .1446 .1524 .1593 .1652 .1700 .1734 .1755 .1762
11 .0801 .0895 .0991 .1089 .1185 .1280 .1370 .1455 .1533 .1602
12 .0417 .0486 .0561 .0642 .0727 .0818 .0911 .1007 .1105 .1201
13 .0178 .0217 .0260 .0310 .0366 .0429 .0497 .0572 .0653 .0739
14 .0062 .0078 .0098 .0122 .0150 .0183 .0221 .0264 .0314 .0370
15 .0017 .0023 .0030 .0038 .0049 .0062 .0078 .0098 .0121 .0148
16 .0004 .0005 .0007 .0009 .0013 .0017 .0022 .0028 .0036 .0046
17 .0001 .0001 .0001 .0002 .0002 .0003 .0005 .0006 .0008 .0011
18 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002
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TABLEA.7 (Continued)

n=25

r p .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

0 .7778 .6035 .4670 .3604 .2774 .2129 .1630 .1244 .0946 .0718
1 .1964 .3079 .3611 .3754 .3650 .3398 .3066 .2704 .2340 .1994
2 .0238 .0754 .1340 .1877 .2305 .2602 .2770 .2821 .2777 .2659
3 .0018 .0118 .0318 .0600 .0930 .1273 .1598 .1881 .2106 .2265
4 .0001 .0013 .0054 .0137 .0269 .0447 .0662 .0899 .1145 .1384
5 .0000 .0001 .0007 .0024 .0060 .0120 .0209 .0329 .0476 .0646
6 .0000 .0000 .0001 .0003 .0010 .0026 .0052 .0095 .0157 .0239
7 .0000 .0000 .0000 .0000 .0001 .0004 .0011 .0022 .0042 .0072
8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0004 .0009 .0018
9 0 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0004
10 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.11 .12 .13 .14 .15 .16 .17 .18 .19 .20
0 .0543 .0409 .0308 .0230 .0172 .0128 .0095 .0070 .0052 .0038
1 .1678 .1395 .1149 .0938 .0759 .0609 .0486 .0384 .0302 .0236
2 .2488 .2283 .2060 .1832 .1607 .1392 .1193 .1012 .0851 .0708
3 .2358 .2387 .2360 .2286 .2174 .2033 .1874 .1704 .1530 .1358
4 .1603 .1790 .1940 .2047 .2110 .2130 .2111 .2057 .1974 .1867
5 .0832 .1025 .1217 .1399 .1564 .1704 .1816 .1897 .1945 .1960
6 .0343 .0466 .0606 .0759 .0920 .1082 .1240 .1388 .1520 .1633
7 .0115 .0173 .0246 .0336 .0441 .0559 .0689 .0827 .0968 .1108
8 .0032 .0053 .0083 .0123 .0175 .0240 .0318 .0408 .0511 .0623
9 .0007 .0014 .0023 .0038 .0058 .0086 .0123 .0169 .0226 .0294
10 .0001 .0003 .0006 .0010 .0016 .0026 .0040 .0059 .0085 .0118
11 .0000 .0001 .0001 .0002 .0004 .0007 .0011 .0018 .0027 .0040
12 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005 .0007 .0012
13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0003
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

.21 .22 .23 .24 .25 .26 .27 .28 .29 .30
0 .0028 .0020 .0015 .0010 .0008 .0005 .0004 .0003 .0002 .0001
1 .0183 .0141 .0109 .0083 .0063 .0047 .0035 .0026 .0020 .0014
2 .0585 .0479 .0389 .0314 .0251 .0199 .0157 .0123 .0096 .0074
3 .1192 .1035 .0891 .0759 .0641 .0537 .0446 .0367 .0300 .0243
4 .1742 .1606 .1463 .1318 .1175 .1037 .0906 .0785 .0673 .0572
5 .1945 .1903 .1836 .1749 .1645 .1531 .1408 .1282 .1155 .1030
6 .1724 .1789 .1828 .1841 .1828 .1793 .1736 .1661 .1572 .1472
7 .1244 .1369 .1482 .1578 .1654 .1709 .1743 .1754 .1743 .1712
8 .0744 .0869 .0996 .1121 .1241 .1351 .1450 .1535 .1602 .1651
9 .0373 .0463 .0562 .0669 .0781 .0897 .1013 .1127 .1236 .1336
10 .0159 .0209 .0269 .0338 .0417 .0504 .0600 .0701 .0808 .0916
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TABLEA.7 (Continued)

n=25

r p .21 .22 .23 .24 .25 .26 .27 .28 .29 .50

11 .0058 .0080 .0109 .0145 .0189 .0242 .0302 .0372 .0450 .0536
12 .0018 .0026 .0038 .0054 .0074 .0099 .0130 .0169 .0214 .0268
13 .0005 .0007 .0011 .0017 .0025 .0035 .0048 .0066 .0088 .0115
14 .0001 .0002 .0003 .0005 .0007 .0010 .0015 .0022 .0031 .0042
15 .0000 .0000 .0001 .0001 .0002 .0003 .0004 .0006 .0009 .0013
16 .0000 .0000 .0000 .0000 .0000 0001 .0001 .0002 .0002 .0004
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

.31 .32 .33 .34 .35 .36 .37 .38 .39 .40
0 .0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0011 .0008 .0006 .0004 .0003 .0002 .0001 .0001 .0001 .0000
2 .0057 .0043 .0033 .0025 .0018 .0014 .0010 .0007 .0005 .0004
3 .0195 .0156 .0123 .0097 .0076 .0058 .0045 .0034 .0026 .0019
4 .0482 .0403 .0334 .0274 .0224 .0181 .0145 .0115 .0091 .0071
5 .0910 .0797 .0691 .0594 .0506 .0427 .0357 .0297 .0244 .0199
6 .1363 .1250 .1134 .1020 .0908 .0801 .0700 .0606 .0520 .0442
7 .1662 .1596 .1516 .1426 .1327 .1222 .1115 .1008 .0902 .0800
8 .1680 .1690 .1681 .1652 .1607 .1547 .1474 .1390 .1298 .1200
9 .1426 .1502 .1563 .1608 .1635 .1644 .1635 .1609 .1567 .1511
10 .1025 .1131 .1232 .1325 .1409 .1479 .1536 .1578 .1603 .1612
11 .0628 .0726 .0828 .0931 .1034 .1135 .1230 .1319 .1398 .1465
12 .0329 .0399 .0476 .0560 .0650 .0745 .0843 .0943 .1043 .1140
13 .0148 .0188 .0234 .0288 .0350 .0419 .0495 .0578 .0667 .0760
14 .0057 .0076 .0099 .0127 .0161 .0202 .0249 .0304 .0365 .0434
15 .0019 .0026 .0036 .0048 .0064 .0083 .0107 .0136 .0171 .0212
16 .0005 .0008 .0011 .0015 .0021 .0029 .0039 .0052 .0068 .0088
17 .0001 .0002 .0003 .0004 .0006 .0009 .0012 .0017 .0023 .0031
18 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0005 .0007 .0009
19 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0002

.41 .42 .43 .44 .45 .46 .47 .48 .49 .50
0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0003 .0002 .0001 .0001 .0001 .0000 .0000 .0000 .0000 .0000
3 .0014 .0011 .0008 .0006 .0004 .0003 .0002 .0001 .0001 .0001
4 .0055 .0042 .0032 .0024 .0018 .0014 .0010 .0007 .0005 .0004
5 .0161 .0129 .0102 .0081 .0063 .0049 .0037 .0028 .0021 .0016
6 .0372 .0311 .0257 .0211 .0172 .0138 .0110 .0087 .0068 .0053
7 .0703 .0611 .0527 .0450 .0381 .0319 .0265 .0218 .0178 .0143
8 .1099 .0996 .0895 .0796 .0701 .0612 .0529 .0453 .0384 .0322
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TABLEA.7 (Continued)

n=25

r p .41 .42 .43 .44 .45 .46 .47 .48 .49 .50

9 .1442 .1363 .1275 .1181 .1084 .0985 .0886 .0790 .0697 .0609
10 .1603 .1579 .1539 .1485 .1419 .1342 .1257 .1166 .1071 .0974
11 .1519 .1559 .1583 .1591 .1583 .1559 .1521 .1468 .1404 .1328
12 .1232 .1317 .1393 .1458 .1511 .1550 .1573 .1581 .1573 .1550
13 .0856 .0954 .1051 .1146 .1236 .1320 .1395 .1460 .1512 .1550
14 .0510 .0592 .0680 .0772 .0867 .0964 .1060 .1155 .1245 .1328
15 .0260 .0314 .0376 .0445 .0520 .0602 .0690 .0782 .0877 .0974
16 .0113 .0142 .0177 .0218 .0266 .0321 .0382 .0451 .0527 .0609
17 .0042 .0055 .0071 .0091 .0115 .0145 .0179 .0220 .0268 .0322
18 .0013 .0018 .0024 .0032 .0042 .0055 .0071 .0090 .0114 .0143
19 .0003 .0005 .0007 .0009 .0013 .0017 .0023 .0031 .0040 .0053
20 .0001 .0001 .0001 .0002 .0003 .0004 .0006 .0009 .0012 .0016
21 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0004
22 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
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TABLE A.8 Wilcoxon Table (d-Factors for Wilcoxon Signed-Rank Test and Confi-
dence Intervals for the Median (a0 ¼ One-Sided Significance Level, a0 0 ¼ Two-Sided
Significance Level)

n d
Confidence
coefficient a0 0 a0 n d

Confidence
coefficient a00 a00

3 1 .750 .250 .125 14 13 .991 .009 .004
4 1 .875 .125 .063 14 .989 .011 .005
5 1 .938 .062 .031 22 .951 .049 .025

2 .875 .125 .063 23 .942 .058 .029
6 1 .969 .031 .016 26 .909 .091 .045

2 .937 .063 .031 27 .896 .104 .052
3 .906 .094 .047 15 16 .992 .008 .004
4 .844 .156 .078 17 .990 .010 .005

7 1 .984 .016 .008 26 .952 .048 .024
2 .969 .031 .016 27 .945 .055 .028
4 .922 .078 .039 31 .905 .095 .047
5 .891 .109 .055 32 .893 .107 .054

8 1 .992 .008 .004 16 20 .991 .009 .005
2 .984 .016 .008 21 .989 .011 .006
4 .961 .039 .020 30 .956 .044 .022
5 .945 .055 .027 31 .949 .051 .025
6 .922 .078 .039 36 .907 .093 .047
7 .891 .109 .055 37 .895 .105 .052

9 2 .992 .008 .004 17 24 .991 .009 .005
3 .988 .012 .006 25 .989 .011 .006
6 .961 .039 .020 35 .955 .045 .022
7 .945 .055 .027 36 .949 .051 .025
9 .902 .098 .049 42 .902 .098 .049
10 .871 .129 .065 43 .891 .109 .054

10 4 .990 .010 .005 18 28 .991 .009 .005
5 .986 .014 .007 29 .990 .010 .005
9 .951 .049 .024 41 .952 .048 .024
10 .936 .064 .032 42 .946 .054 .027
11 .916 .084 .042 48 .901 .099 .049
12 .895 .105 .053 49 .892 .108 .054

11 6 .990 .010 .005 19 33 .991 .009 .005
7 .986 .014 .007 34 .989 .011 .005
11 .958 .042 .021 47 .951 .049 .025
12 .946 .054 .027 48 .945 .055 .027
14 .917 .083 .042 54 .904 .096 .048
15 .898 .102 .051 55 .896 .104 .052
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TABLEA.8 (Continued)

n d
Confidence
coefficient a0 0 a0 n d

Confidence
coefficient a00 a0

12 8 .991 .009 .005 20 38 .991 .009 .005
9 .988 .012 .006 39 .989 .011 .005
14 .958 .042 .021 53 .952 .048 .024
15 .948 .052 .026 54 .947 .053 .027
18 .908 .092 .046 61 .903 .097 .049
19 .890 .110 .055 62 .895 .105 .053

13 10 .992 .008 .004 21 43 .991 .009 .005
11 .990 .010 .005 44 .990 .010 .005
18 .952 .048 .024 59 .954 .046 .023
19 .943 .057 .029 60 .950 .050 .025
22 .906 .094 .047 68 .904 .096 .048
23 .890 .110 .055 69 .897 .103 .052

22 49 .991 .009 .005 24 62 .990 .010 .005
50 .990 .010 .005 63 .989 .011 .005
66 .954 .046 .023 82 .951 .049 .025
67 .950 .050 .025 83 .947 .053 .026
76 .902 .098 .049 92 .905 .095 .048
77 .895 .105 .053 93 .899 .101 .051

23 55 .991 .009 .005 25 69 .990 .010 .005
56 .990 .010 .005 70 .989 .011 .005
74 .952 .048 .024 90 .952 .048 .024
75 .948 .052 .026 91 .948 .052 .026
84 .902 .098 .049 101 .904 .096 .048
85 .895 .105 .052 102 .899 .101 .051

Source: Wilcoxon F, Katti S, Wilcox RA. Critical Values and Probability Levels for the Wilcoxon
Rank Sum Test and the Wilcoxon Signed Rank Test. Pearl River, NY: American Cyanamid Co.,
1949; used by permission of American Cyanamid Company.
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TABLEA.9 Critical Values of the Kruskal^WallisTest

Sample sizes
Critical
value a

Sample sizes
Critical
value an1 n2 n3 n1 n2 n3

2 1 1 2.7000 0.500 4.7000 0.101
2 2 1 3.6000 0.200 4 4 1 6.6667 0.010
2 2 2 4.5714 0.067 6.1667 0.022

3.7143 0.200 4.9667 0.048
3 1 1 3.2000 0.300 4.8667 0.054
3 2 1 4.2857 0.100 4.1667 0.082

3.8571 0.133 4.0667 0.102
3 2 2 5.3572 0.029 4 4 2 7.0364 0.006

4.7143 0.048 6.8727 0.011
4.5000 0.067 5.4545 0.046
4.4643 0.105 5.2364 0.052

3 3 1 5.1429 0.043 4.5545 0.098
4.5714 0.100 4.4455 0.103
4.0000 0.129 4 4 3 7.1439 0.010

3 3 2 6.2500 0.011 7.1364 0.011
5.3611 0.032 5.5985 0.049
5.1389 0.061 5.5758 0.051
4.5556 0.100 4.5455 0.099
4.2500 0.121 4.4773 0.102

3 3 3 7.2000 0.004 4 4 4 7.6538 0.008
6.4889 0.011 7.5385 0.011
5.6889 0.029 5.6923 0.049
5.6000 0.050 5.6538 0.054
5.0667 0.086 4.6539 0.097
4.6222 0.100 4.5001 0.104

4 1 1 3.5714 0.200 5 1 1 3.8571 0.143
4 2 1 4.8214 0.057 5 2 1 5.2500 0.036

4.5000 0.076 5.0000 0.048
4.0179 0.114 4.4500 0.071

4 2 2 6.0000 0.014 4.2000 0.095
5.3333 0.033 4.0500 0.119
5.1250 0.052 5 2 2 6.5333 0.008
4.4583 0.100 6.1333 0.013
4.1667 0.105 5.1600 0.034

4 3 1 5.8333 0.021 5.0400 0.056
5.2083 0.050 4.3733 0.090
5.0000 0.057 4.2933 0.122
4.0556 0.093 5 3 1 6.4000 0.012
3.8889 0.129 4.9600 0.048

(Continued )
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TABLEA.9 (Continued)

Sample sizes
Critical
value a

Sample sizes
Critical
value an1 n2 n3 n1 n2 n3

4 3 2 6.4444 0.008 4.8711 0.052
6.3000 0.011 4.0178 0.095
5.4444 0.046 3.8400 0.123
5.4000 0.051 5 3 2 6.9091 0.009
4.5111 0.098 6.8218 0.010
4.4444 0.102 5.2509 0.049

4 3 3 6.7455 0.010 5.1055 0.052
6.7091 0.013 4.6509 0.091
5.7909 0.046 4.4945 0.101
5.7273 0.050 5 3 3 7.0788 0.009
4.7091 0.092 6.9818 0.011

5 3 3 5.6485 0.049 5 5 1 6.8364 0.011
5.5152 0.051 5.1273 0.046
4.5333 0.097 4.9091 0.053
4.4121 0.109 4.1091 0.086

5 4 1 6.9545 0.008 4.0364 0.105
6.8400 0.011 5 5 2 7.3385 0.010
4.9855 0.044 7.2692 0.010
4.8600 0.056 5.3385 0.047
3.9873 0.098 5.2462 0.051
3.9600 0.102 4.6231 0.097

5 4 2 7.2045 0.009 4.5077 0.100
7.1182 0.010 5 5 3 7.5780 0.010
5.2727 0.049 7.5429 0.010
5.2682 0.050 5.7055 0.046
4.5409 0.098 5.6264 0.051
4.5182 0.101 4.5451 0.100

5 4 3 7.4449 0.010 4.5363 0.102
7.3949 0.011 5 5 4 7.8229 0.010
5.6564 0.049 7.7914 0.010
5.6308 0.050 5.6657 0.049
4.5487 0.099 5.6429 0.050
4.5231 0.103 4.5229 0.099

5 4 4 7.7604 0.009 4.5200 0.101
7.7440 0.011 5 5 5 8.0000 0.009
5.6571 0.049 7.9800 0.010
5.6176 0.050 5.7800 0.049
4.6187 0.100 5.6600 0.051
4.5527 0.102 4.5600 0.100

5 5 1 7.3091 0.009 4.5000 0.102

Source: Kruskal WH,WallasWA.Useof ranks in one-criterion analysis of variance. JAmStat Assoc
47:583^621,1952. Addendum. lbid 48:907^911,1953.
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TABLEA.10 Chi SquareTable

a ¼ 0.10 0.05 0.025 0.01 0.005

df 1� a¼ w20:005 w20:025 w20:05 w20:90 w20:95 w20:975 w20:99 w20:995
1 0.0000393 0.000982 0.00393 2.706 3.841 5.024 6.635 7.879
2 0.0100 0.0506 0.103 4.605 5.991 7.378 9.210 10.597
3 0.0717 0.216 0.352 6.251 7.815 9.348 11.345 12.838
4 0.207 0.484 0.711 7.779 9.488 11.143 13.277 14.860
5 0.412 0.831 1.145 9.236 11.070 12.832 15.086 16.750
6 0.676 1.237 1.635 10.645 12.592 14.449 16.812 18.548
7 0.989 1.690 2.167 12.017 14.067 16.013 18.475 20.278
8 1.344 2.180 2.733 13.362 15.507 17.535 20.090 21.955
9 1.735 2.700 3.325 14.684 16.919 19.023 21.666 23.589
10 2.156 3.247 3.940 15.987 18.307 20.483 23.209 25.188
11 2.603 3.816 4.575 17.275 19.675 21.920 24.725 26.757
12 3.074 4.404 5.226 18.549 21.026 23.336 26.217 28.300
13 3.565 5.009 5.892 19.812 22.362 24.736 27.688 29.819
14 4.075 5.629 6.571 21.064 23.685 26.119 29.141 31.319
15 4.601 6.262 7.261 22.307 24.996 27.488 30.578 32.801
16 5.142 6.908 7.962 23.542 26.296 28.845 32.000 34.267
17 5.697 7.564 8.672 24.769 27.587 30.191 33.409 35.718
18 6.265 8.231 9.390 25.989 28.869 31.526 34.805 37.156
19 6.844 8.907 10.117 27.204 30.144 32.852 36.191 38.582
20 7.434 9.591 10.851 28.412 31.410 34.170 37.566 39.997
21 8.034 10.283 11.591 29.615 32.671 35.479 38.932 41.401
22 8.643 10.982 12.338 30.813 33.924 36.781 40.289 42.796
23 9.260 11.688 13.091 32.007 35.172 38.076 41.638 44.181
24 9.886 12.401 13.848 33.196 36.415 39.364 42.980 45.558
25 10.520 13.120 14.611 34.382 37.652 40.646 44.314 46.928
26 11.160 13.844 15.379 35.563 38.885 41.923 45.642 48.290
27 11.808 14.573 16.151 36.741 40.113 43.194 46.963 49.645
28 12.461 15.308 16.928 37.916 41.337 44.461 48.278 50.993
29 13.121 16.047 17.708 39.087 42.557 45.722 49.588 52.336
30 13.787 16.791 18.493 40.256 43.773 46.979 50.892 53.672
35 17.192 20.569 22.465 46.059 49.802 53.203 57.342 60.275
40 20.707 24.433 26.509 51.805 55.758 59.342 63.691 66.766
45 24.311 28.366 30.612 57.505 61.656 65.410 69.957 73.166
50 27.991 32.357 34.764 63.167 67.505 71.420 76.154 79.490
60 35.535 40.482 43.188 74.397 79.082 83.298 88.379 91.952
70 43.275 48.758 51.739 85.527 90.531 95.023 100.425 104.215
80 51.172 57.153 60.391 96.578 101.879 106.629 112.329 116.321
90 59.196 65.647 69.126 107.565 113.145 118.136 124.116 128.299
100 67.328 74.222 77.929 118.498 124.342 129.561 135.807 140.169

Source: Adapted from: Hald A, Sinkbaek SA. A table of percentage points of the w2 distribution.
Skand Aktuarietidskr 33:168^175,1950.
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TABLEA.11 Friedman ANOVATable [Exact distribution of w2r forTableswithTwo to Nine
Sets of Three Ranks (l ¼ 3; k ¼ 2, 3, 4, 5, 6,7, 8, 9] p is the probabilityof obtainingavalue
of w2r as great as or greater than the correspondingvalue of w

2
r

k¼ 2 k¼ 3 k¼ 4 k¼ 5

w2r p w2r p w2r p w2r p

0 1.000 0.000 1.000 0.0 1.000 0.0 1.000
1 0.833 0.667 0.944 0.5 0.931 0.4 0.954
3 0.500 2.000 0.528 1.5 0.653 1.2 0.691
4 0.167 2.667 0.361 2.0 0.431 1.6 0.522

4.667 0.194 3.5 0.273 2.8 0.367
6.000 0.028 4.5 0.125 3.6 0.182

6.0 0.069 4.8 0.124
6.5 0.042 5.2 0.093
8.0 0.0046 6.4 0.039

7.6 0.024
8.4 0.0085
10.0 0.00077

k¼ 6 k¼ 7 k¼ 8 k¼ 9

w2r r p w2r p w2r p w2
r p

0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000
0.33 0.956 0.286 0.964 0.25 0.967 0.222 0.971
1.00 0.740 0.857 0.768 0.75 0.794 0.667 0.814
1.33 0.570 1.143 0.620 1.00 0.654 0.889 0.865
2.33 0.430 2.000 0.486 1.75 0.531 1.556 0.569
3.00 0.252 2.571 0.305 2.25 0.355 2.000 0.398
4.00 0.184 3.429 0.237 3.00 0.285 2.667 0.328
4.33 0.142 3.714 0.192 3.25 0.236 2.889 0.278
5.33 0.072 4.571 0.112 4.00 0.149 3.556 0.187
6.33 0.052 5.429 0.085 4.75 0.120 4.222 0.154
7.00 0.029 6.000 0.052 5.25 0.079 4.667 0.107
8.33 0.012 7.143 0.027 6.25 0.047 5.556 0.069
9.00 0.0081 7.714 0.021 6.75 0.038 6.000 0.057
9.33 0.0055 8.000 0.016 7.00 0.030 6.222 0.048
10.33 0.0017 8.857 0.0084 7.75 0.018 6.889 0.031
12.00 0.00013 10.286 0.0036 9.00 0.0099 8.000 0.019

10.571 0.0027 9.25 0.0080 8.222 0.016
11.143 0.0012 9.75 0.0048 8.667 0.010
12.286 0.00032 10.75 0.0024 9.556 0.0060
14.000 0.000021 12.00 0.0011 10.667 0.0035

12.25 0.00086 10.889 0.0029

(Continued)
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TABLEA.11 (Continued)

n¼ 6 n¼ 7 n¼ 8 n¼ 9

w2r p w2r p w2r p w2r p

13.00 0.00026 11.556 0.0013
14.25 0.000061 12.667 0.00066
16.00 0.0000036 13.556 0.00035

14.000 0.00020
14.222 0.000097
14.889 0.000054
16.222 0.000011
18.000 0.0000006

l¼ 4; k¼ 2, 3, 4

k¼ 2 k¼ 3 k¼ 4

w2r p w2r p w2r p w2r p

0.0 1.000 0.2 1.000 0.0 1.000 5.7 0.141
0.6 0.958 0.6 0.958 0.3 0.992 6.0 0.105
1.2 0.834 1.0 0.910 0.6 0.928 6.3 0.094
1.8 0.792 1.8 0.727 0.9 0.900 6.6 0.077
2.4 0.625 2.2 0.608 1.2 0.800 6.9 0.068
3.0 0.542 2.6 0.524 1.5 0.754 7.2 0.054
3.6 0.458 3.4 0.446 1.8 0.677 7.5 0.052
4.2 0.375 3.8 0.342 2.1 0.649 7.8 0.036
4.8 0.208 4.2 0.300 2.4 0.524 8.1 0.033
5.4 0.167 5.0 0.207 2.7 0.508 8.4 0.019
6.0 0.042 5.4 0.175 3.0 0.432 8.7 0.014

5.8 0.148 3.3 0.389 9.3 0.012
6.6 0.075 3.6 0.355 9.6 0.0069
7.0 0.054 3.9 0.324 9.9 0.0062
7.4 0.033 4.5 0.242 10.2 0.0027
8.2 0.017 4.8 0.200 10.8 0.0016
9.0 0.0017 5.1 0.190 11.1 0.00094

5.4 0.158 12.0 0.000072

Source:FriedmanM.Theuseof ranks toavoid theassumptionof normality implicit in theanalysisof
variance. JAm Stat Assoc 32:675^701,1937.
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TABLEA.13 Critical Values for Dunnett’sTest (Treatments vs.Control)
d0:05ða� 1; fÞ

Two-Sided Comparisons
a�1 ¼ Number of Treatment Means (excluding control)

f 1 2 3 4 5 6 7 8 9

5 2.57 3.03 3.29 3.48 3.62 3.73 3.82 3.90 3.97
6 2.45 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71
7 2.36 2.75 2.97 3.12 3.24 3.33 3.41 3.47 3.53
8 2.31 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41
9 2.26 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32
10 2.23 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24
11 2.20 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19
12 2.18 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14
13 2.16 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.10
14 2.14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07
15 2.13 2.44 2.61 2.73 2.82 2.89 2.95 3.00 3.04
16 2.12 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02
17 2.11 2.41 2.58 2.69 2.78 2.85 2.90 2.95 3.00
18 2.10 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98
19 2.09 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96
20 2.09 2.38 2.54 2.65 2.73 2.80 2.86 2.90 2.95
24 2.06 2.35 2.51 2.61 2.70 2.76 2.81 2.86 2.90
30 2.04 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86
40 2.02 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81
60 2.00 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77
120 1.98 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73
1 1.96 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69

d0:01ða� 1; fÞ
Two-Sided Comparisons

a�1 ¼ Number of Treatment Means (excluding control)

f 1 2 3 4 5 6 7 8 9

5 4.03 4.63 4.98 5.22 5.41 5.56 5.69 5.80 5.89
6 3.71 4.21 4.51 4.71 4.87 5.00 5.10 5.20 5.28
7 3.50 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89
8 3.36 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62
9 3.25 3.63 3.85 4.01 4.12 4.22 4.30 4.37 4.43
10 3.17 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28
11 3.11 3.45 3.65 3.79 3.89 3.98 4.05 4.11 4.16
12 3.05 3.39 3.58 3.71 3.81 3.89 3.96 4.02 4.07
13 3.01 3.33 3.52 3.65 3.74 3.82 3.89 3.94 3.99

(Continued)
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TABLEA.13 (Continued)

14 2.98 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93
15 2.95 3.25 3.43 3.55 3.64 3.71 3.78 3.83 3.88
16 2.92 3.22 3.39 3.51 3.60 3.67 3.73 3.78 3.83
17 2.90 3.19 3.36 3.47 3.56 3.63 3.69 3.74 3.79
18 2.88 3.17 3.33 3.44 3.53 3.60 3.66 3.71 3.75
19 2.86 3.15 3.31 3.42 3.50 3.57 3.63 3.68 3.72
20 2.85 3.13 3.29 3.40 3.48 3.55 3.60 3.65 3.69
24 2.80 3.07 3.22 3.32 3.40 3.47 3.52 3.57 3.61
30 2.75 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52
40 2.70 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44
60 2.66 2.90 3.03 3.12 3.19 3.25 3.29 3.33 3.37
120 2.62 2.85 2.97 3.06 3.12 3.18 3.22 3.26 3.29
1 2.58 2.79 2.92 3.00 3.06 3.11 3.15 3.19 3.22

d0.05(a�1, f)
One-Sided Comparisons

a�1¼Numberof Treatment Means (excluding control)

f 1 2 3 4 5 6 7 8 9

5 2.02 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30
6 1.94 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12
7 1.89 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01
8 1.86 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92
9 1.83 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86
10 1.81 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81
11 1.80 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77
12 1.78 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74
13 1.77 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71
14 1.76 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69
15 1.75 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67
16 1.75 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65
17 1.74 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64
18 1.73 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62
19 1.73 2.03 2.20 2.31 2.40 2.47 2.52 2.57 2.61
20 1.72 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60
24 1.71 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57
30 1.70 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54
40 1.68 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51
60 1.67 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2.48
120 1.66 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45
1 1.64 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42
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TABLEA.13 (Continued)

d0.01(a�1, f)
One-Sided Comparisons (continued)

a�1¼Number of Treatment Means (excluding control)

f 1 2 3 4 5 6 7 8 9

5 3.37 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03
6 3.14 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59
7 3.00 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30
8 2.90 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09
9 2.82 3.19 3.40 3.55 3.66 3.75 3.82 3.89 3.94
10 2.76 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83
11 2.72 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74
12 2.68 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67
13 2.65 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61
14 2.62 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56
15 2.60 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52
16 2.58 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48
17 2.57 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.45
18 2.55 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42
19 2.54 2.83 2.99 3.10 3.18 3.25 3.31 3.36 3.40
20 2.53 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38
24 2.49 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31
30 2.46 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24
40 2.42 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18
60 2.39 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12
120 2.36 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06
1 2.33 2.56 2.68 2.77 2.84 2.89 2.93 2.97 3.00
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TABLEA.14 Hartley Distribution
Entry IsHð1� a; r; dfÞwhere PfH4Hð1� a; r; dfÞg ¼ 1� a

1�a¼0.95
r

df 2 3 4 5 6 7 8 9 10 11 12

2 39.0 87.5 142 202 266 333 403 475 550 626 704
3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124
4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4
5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9

6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7
7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7
10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34

12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48
15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.2 2.30 2.33 2.36
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1�a¼0.99
r

df 2 3 4 5 6 7 8 9 10 11 12

2 199 448 729 1,036 1,362 1,705 2,063 2,432 2,813 3,204 3,605
3 47.5 85 120 151 184 216 249 281 310 337 361
4 23.2 37 49 59 69 79 89 97 106 113 120
5 14.9 22 28 33 38 42 46 50 54 57 60

6 11.1 15.5 19.1 22 25 27 30 32 34 36 37
7 8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27
8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21
9 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6
10 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9

12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6
15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0
20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9
30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2
60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7
1 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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TABLEA.15 SpearmanTest StatisticTable
Critical Values of SpearmanTest Statistic
Approximate UpperTail Critical Values r 6< s1,
Where Pðrs > rsÞ ¼ a; n ¼ 4ð1Þ30:

n .001 .005 .010 .025 .050 .100

4 � � � � .8000 .8000
5 � � .9000 .9000 .8000 .7000

6 � .9429 .8857 .8286 .7714 .6000
7 .9643 .8929 .8571 .7450 .6786 .5357
8 .9286 .8571 .8095 .7143 .6190 .5000
9 .9000 .8167 .7667 .6833 .5833 .4667
10 .8667 .7818 .7333 .6364 .5515 .4424

11 .8364 .7545 .7000 .6091 .5273 .4182
12 .8182 .7273 .6713 .5804 .4965 .3986
13 .7912 .6978 .6429 .5549 .4780 .3791
14 .7670 .6747 .6220 .5341 .4593 .3626
15 .7464 .6536 .6000 .5179 .4429 .3500

16 .7265 .6324 .5824 .5000 .4265 .3382
17 .7083 .6152 .5637 .4853 .4118 .3260
18 .6904 .5975 .5480 .4716 .3994 .3148
19 .6737 .5825 .5333 .4579 .3895 .3070
20 .6586 .5684 .5203 .4451 .3789 .2977

21 .6455 .5545 .5078 .4351 .3688 .2909
22 .6318 .5426 .4963 .4241 .3597 .2829
23 .6186 .5306 .4852 .4150 .3518 .2767
24 .6070 .5200 .4748 .4061 .3435 .2704
25 .5962 .5100 .4654 .3977 .3362 .2646
26 .5856 .5002 .4564 .3894 .3299 .2588
27 .5757 .4915 .4481 .3822 .3236 .2540
28 .5660 .4828 .4401 .3749 .3175 .2490
29 .5567 .4744 .4320 .3685 .3113 .2443
30 .5479 .4665 .4251 .3620 .3059 .2400

Note:The corresponding lower tail critical value for rs is�rs*.
Source:Glasser GJ,Winter RF.Valuesof the coefficient of rankcorrelation for testing thehypothesis
of independence.Biometrika48:444^448.This tableincorporates correctionsappearing inConover
WJ.Practical Nonparametric Statistics.NewYork:Wiley,1971.

680 Appendix



TABLEA.16 Fisher Z TransformationTable

Values of
1

2
log10

1þ r
1� r

for Given Values of r

r 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.000 0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090
0.010 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190
0.020 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290
0.030 0.0300 0.0310 0.0320 0.0330 0.0340 0.0350 0.0360 0.0370 0.0380 0.0390
0.040 0.0400 0.0410 0.0420 0.0430 0.0440 0.0450 0.0460 0.0470 0.0480 0.0490
0.050 0.0501 0.0511 0.0521 0.0531 0.0541 0.0551 0.0561 0.0571 0.0581 0.0591
0.060 0.0601 0.0611 0.0621 0.0631 0.0641 0.0651 0.0661 0.0671 0.0681 0.0691
0.070 0.0701 0.0711 0.0721 0.0731 0.0741 0.0751 0.0761 0.0771 0.0782 0.0792
0.080 0.0802 0.0812 0.0822 0.0832 0.0842 0.0852 0.0862 0.0872 0.0882 0.0892
0.090 0.0902 0.0912 0.0922 0.0933 0.0943 0.0953 0.0963 0.0973 0.0983 0.0993
0.100 0.1003 0.1013 0.1024 0.1034 0.1044 0.1054 0.1064 0.1074 0.1084 0.1094
0.110 0.1105 0.1115 0.1125 0.1135 0.1145 0.1155 0.1165 0.1175 0.1185 0.1195
0.120 0.1206 0.1216 0.1226 0.1236 0.1246 0.1257 0.1267 0.1277 0.1287 0.1297
0.130 0.1308 0.1318 0.1328 0.1338 0.1348 0.1358 0.1368 0.1379 0.1389 0.1399
0.140 0.1409 0.1419 0.1430 0.1440 0.1450 0.1460 0.1470 0.1481 0.1491 0.1501
0.150 0.1511 0.1522 0.1532 0.1542 0.1552 0.1563 0.1573 0.1583 0.1593 0.1604
0.160 0.1614 0.1624 0.1634 0.1644 0.1655 0.1665 0.1676 0.1686 0.1696 0.1706
0.170 0.1717 0.1727 0.1737 0.1748 0.1758 0.1768 0.1779 0.1789 0.1799 0.1810
0.180 0.1820 0.1830 0.1841 0.1851 0.1861 0.1872 0.1882 0.1892 0.1903 0.1913
0.190 0.1923 0.1934 0.1944 0.1954 0.1965 0.1975 0.1986 0.1996 0.2007 0.2017
0.200 0.2027 0.2038 0.2048 0.2059 0.2069 0.2079 0.2090 0.2100 0.2111 0.2121
0.210 0.2132 0.2142 0.2153 0.2163 0.2174 0.2184 0.2194 0.2205 0.2215 0.2226
0.220 0.2237 0.2247 0.2258 0.2268 0.2279 0.2289 0.2300 0.2310 0.2321 0.2331
0.230 0.2342 0.2353 0.2363 0.2374 0.2384 0.2395 0.2405 0.2416 0.2427 0.2437
0.240 0.2448 0.2458 0.2469 0.2480 0.2490 0.2501 0.2511 0.2522 0.2533 0.2543
0.250 0.2554 0.2565 0.2575 0.2586 0.2597 0.2608 0.2618 0.2629 0.2640 0.2650
0.260 0.2661 0.2672 0.2682 0.2693 0.2704 0.2715 0.2726 0.2736 0.2747 0.2758
0.270 0.2769 0.2779 0.2790 0.2801 0.2812 0.2823 0.2833 0.2844 0.2855 0.2866
0.280 0.2877 0.2888 0.2898 0.2909 0.2920 0.2931 0.2942 0.2953 0.2964 0.2975
0.290 0.2986 0.2997 0.3008 0.3019 0.3029 0.3040 0.3051 0.3062 0.3073 0.3084
0.300 0.3095 0.3106 0.3117 0.3128 0.3139 0.3150 0.3161 0.3172 0.3183 0.3195
0.310 0.3206 0.3217 0.3228 0.3239 0.3250 0.3261 0.3272 0.3283 0.3294 0.3305
0.320 0.3317 0.3328 0.3339 0.3350 0.3361 0.3372 0.3384 0.3395 0.3406 0.3417
0.330 0.3428 0.3439 0.3451 0.3462 0.3473 0.3484 0.3496 0.3507 0.3518 0.3530
0.340 0.3541 0.3552 0.3564 0.3575 0.3586 0.3597 0.3609 0.3620 0.3632 0.3643
0.350 0.3654 0.3666 0.3677 0.3689 0.3700 0.3712 0.3723 0.3734 0.3746 0.3757
0.360 0.3769 0.3780 0.3792 0.3803 0.3815 0.3826 0.3838 0.3850 0.3861 0.3873
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TABLEA.16 (Continued)

r 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.370 0.3884 0.3896 0.3907 0.3919 0.3931 0.3942 0.3954 0.3966 0.3977 0.3989
0.380 0.4001 0.4012 0.4024 0.4036 0.4047 0.4059 0.4071 0.4083 0.4094 0.4106
0.390 0.4118 0.4130 0.4142 0.4153 0.4165 0.4177 0.4189 0.4201 0.4213 0.4225
0.400 0.4236 0.4248 0.4260 0.4272 0.4284 0.4296 0.4308 0.4320 0.4332 0.4344
0.410 0.4356 0.4368 0.4380 0.4392 0.4404 0.4416 0.4429 0.4441 0.4453 0.4465
0.420 0.4477 0.4489 0.4501 0.4513 0.4526 0.4538 0.4550 0.4562 0.4574 0.4587
0.430 0.4599 0.4611 0.4623 0.4636 0.4648 0.4660 0.4673 0.4685 0.4697 0.4710
0.440 0.4722 0.4735 0.4747 0.4760 0.4772 0.4784 0.4797 0.4809 0.4822 0.4835
0.450 0.4847 0.4860 0.4872 0.4885 0.4897 0.4910 0.4923 0.4935 0.4948 0.4061
0.460 0.4973 0.4986 0.4999 0.5011 0.5024 0.5037 0.5049 0.5062 0.5075 0.5088
0.470 0.5101 0.5114 0.5126 0.5139 0.5152 0.5165 0.5178 0.5191 0.5204 0.5217
0.480 0.5230 0.5243 0.5256 0.5279 0.5282 0.5295 0.5308 0.5321 0.5334 0.5347
0.490 0.5361 0.5374 0.5387 0.5400 0.5413 0.5427 0.5440 0.5453 0.5466 0.5480
0.500 0.5493 0.5506 0.5520 0.5533 0.5547 0.5560 0.5573 0.5587 0.5600 0.5614
0.510 0.5627 0.5641 0.5654 0.5668 0.5681 0.5695 0.5709 0.5722 0.5736 0.5750
0.520 0.5763 0.5777 0.5791 0.5805 0.5818 0.5832 0.5846 0.5860 0.5874 0.5888
0.530 0.5901 0.5915 0.5929 0.5943 0.5957 0.5971 0.5985 0.5999 0.6013 0.6027
0.540 0.6042 0.6056 0.6070 0.6084 0.6098 0.6112 0.6127 0.6141 0.6155 0.6170
0.550 0.6184 0.6198 0.6213 0.6227 0.6241 0.6256 0.6270 0.6285 0.6299 0.6314
0.560 0.6328 0.6343 0.6358 0.6372 0.6387 0.6401 0.6416 0.6431 0.6446 0.6460
0.570 0.6475 0.6490 0.6505 0.6520 0.6535 0.6550 0.6565 0.6579 0.6594 0.6610
0.580 0.6625 0.6640 0.6655 0.6670 0.6685 0.6700 0.6715 0.6731 0.6746 0.6761
0.590 0.6777 0.6792 0.6807 0.6823 0.6838 0.6854 0.6869 0.6885 0.6900 0.6916
0.600 0.6931 0.6947 0.6963 0.6978 0.6994 0.7010 0.7026 0.7042 0.7057 0.7073
0.610 0.7089 0.7105 0.7121 0.7137 0.7153 0.7169 0.7185 0.7201 0.7218 0.7234
0.620 0.7250 0.7266 0.7283 0.7299 0.7315 0.7332 0.7348 0.7364 0.7381 0.7398
0.630 0.7414 0.7431 0.7447 0.7464 0.7481 0.7497 0.7514 0.7531 0.7548 0.7565
0.640 0.7582 0.7599 0.7616 0.7633 0.7650 0.7667 0.7684 0.7701 0.7718 0.7736
0.650 0.7753 0.7770 0.7788 0.7805 0.7823 0.7840 0.7858 0.7875 0.7893 0.7910
0.660 0.7928 0.7946 0.7964 0.7981 0.7999 0.8017 0.8035 0.8053 0.8071 0.8089
0.670 0.8107 0.8126 0.8144 0.8162 0.8180 0.8199 0.8217 0.8236 0.8254 0.8273
0.680 0.8291 0.8310 0.8328 0.8347 0.8366 0.8385 0.8404 0.8423 0.8442 0.8461
0.690 0.8480 0.8499 0.8518 0.8537 0.8556 0.8576 0.8595 0.8614 0.8634 0.8653
0.700 0.8673 0.8693 0.8712 0.8732 0.8752 0.8772 0.8792 0.8812 0.8832 0.8852
0.710 0.8872 0.8892 0.8912 0.8933 0.8953 0.8973 0.8994 0.9014 0.9035 0.9056
0.720 0.9076 0.9097 0.9118 0.9139 9.9160 0.9181 0.9202 0.9223 0.9245 0.9266
0.730 0.9287 0.9309 0.9330 0.9352 0.9373 0.9395 0.9417 0.9439 0.9461 0.9483
0.740 0.9505 0.9527 0.9549 0.9571 0.9594 0.9616 0.9639 0.9661 0.9684 0.9707
0.750 0.9730 0.9752 0.9775 0.9799 0.9822 0.9845 0.9868 0.9892 0.9915 0.9939
0.760 0.9962 0.9986 1.0010 1.0034 1.0058 1.0082 1.0106 1.0130 1.0154 1.0179
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TABLEA.16 (Continued)

r 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.770 1.0203 1.0228 1.0253 1.0277 1.0302 1.0327 1.0352 1.0378 1.0403 1.0428
0.780 1.0454 1.0479 1.0505 1.0531 1.0557 1.0583 1.0609 1.0635 1.0661 1.0688
0.790 1.0714 1.0741 1.0768 1.0795 1.0822 1.0849 1.0876 1.0903 1.0931 1.0958
0.800 1.0986 1.1014 1.1041 1.1070 1.1098 1.1127 1.1155 1.1184 1.1212 1.1241
0.810 1.1270 1.1299 1.1329 1.1358 1.1388 1.1417 1.1447 1.1477 1.1507 1.1538
0.820 1.1568 1.1599 1.1630 1.1660 1.1692 1.1723 1.1754 1.1786 1.1817 1.1849
0.830 1.1870 1.1913 1.1946 1.1979 1.2011 1.2044 1.2077 1.2111 1.2144 1.2178
0.840 1.2212 1.2246 1.2280 1.2315 1.2349 1.2384 1.2419 1.2454 1.2490 1.2526
0.850 1.2561 1.2598 1.2634 1.2670 1.2708 1.2744 1.2782 1.2819 1.2857 1.2895
0.860 1.2934 1.2972 1.3011 1.3050 1.3089 1.3129 1.3168 1.3209 1.3249 1.3290
0.870 1.3331 1.3372 1.3414 1.3456 1.3498 1.3540 1.3583 1.3626 1.3670 1.3714
0.880 1.3758 1.3802 1.3847 1.3892 1.3938 1.3984 1.4030 1.4077 1.4124 1.4171
0.890 1.4219 1.4268 1.4316 1.4366 1.4415 1.4465 1.4516 1.4566 1.4618 1.4670
0.900 1.4722 1.4775 1.4828 1.4883 1.4937 1.4992 1.5047 1.5103 1.5160 1.5217
0.910 1.5275 1.5334 1.5393 1.5453 1.5513 1.5574 1.5636 1.5698 1.5762 1.5825
0.920 1.5890 1.5956 1.6022 1.6089 1.6157 1.6226 1.6296 1.6366 1.6438 1.6510
0.930 1.6584 1.6659 1.6734 1.6811 1.6888 1.6967 1.7047 1.7129 1.7211 1.7295
0.940 1.7380 1.7467 1.7555 1.7645 1.7736 1.7828 1.7923 1.8019 1.8117 1.8216
0.950 1.8318 1.8421 1.8527 1.8635 1.8745 1.8857 1.8972 1.9090 1.9210 1.9333
0.960 1.9459 1.9588 1.9721 1.9857 1.9996 2.0140 2.0287 2.0439 2.0595 2.0756
0.970 2.0923 2.1095 2.1273 2.1457 2.1649 2.1847 2.2054 2.2269 2.2494 2.2729
0.980 2.2976 2.3223 2.3507 2.3796 2.4101 2.4426 2.4774 2.5147 2.5550 2.5988
0.990 2.6467 2.6996 2.7587 2.8257 2.9031 2.9945 3.1063 3.2504 3.4534 3.8002

r z
0.9999 4.95172
0.99999 6.10303

Note: To obtain 1
2 loge ½ð1þ rÞ=ð1� rÞ� when r is negative, use the negative of the value corres-

ponding to the absolute value of r, e.g., r ¼ �0:242; 12 loge ½ð1þ 0:242Þ=ð1� 0:242Þ� ¼ �0:2469:
Source: Waugh AE. Statistical Tables and Problems. New York: McGraw-Hill, 1952, Table A11,
pp 40^41.
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TABLEA.17 POWERVALUESFORTWO-TAIL t TEST

a¼ 0.01
d

df 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

1 .01 .03 .04 .05 .06 .08 .09 .10 .11
2 .02 .05 .09 .16 .23 .31 .39 .48 .56
3 .02 .08 .17 .31 .47 .62 .75 .85 .92
4 .03 .10 .25 .45 .65 .82 .92 .97 .99
5 .03 .12 .31 .55 .77 .91 .97 .99 1.00
6 .04 .14 .36 .63 .84 .95 .99 1.00 1.00
7 .04 .16 .40 .68 .88 .97 1.00 1.00 1.00
8 .04 .17 .43 .72 .91 .98 1.00 1.00 1.00
9 .04 .18 .45 .75 .93 .99 1.00 1.00 1.00
10 .04 .19 .47 .77 .94 .99 1.00 1.00 1.00
11 .04 .19 .49 .79 .95 .99 1.00 1.00 1.00
12 .04 .20 .50 .80 .96 .99 1.00 1.00 1.00
13 .05 .21 .52 .82 .96 1.00 1.00 1.00 1.00
14 .05 .21 .53 .83 .96 1.00 1.00 1.00 1.00
15 .05 .21 .54 .83 .97 1.00 1.00 1.00 1.00
16 .05 .22 .55 .84 .97 1.00 1.00 1.00 1.00
17 .05 .22 .55 .85 .97 1.00 1.00 1.00 1.00
18 .05 .22 .56 .85 .97 1.00 1.00 1.00 1.00
19 .05 .23 .56 .86 .98 1.00 1.00 1.00 1.00
20 .05 .23 .57 .86 .98 1.00 1.00 1.00 1.00
21 .05 .23 .57 .86 .98 1.00 1.00 1.00 1.00
22 .05 .23 .58 .87 .98 1.00 1.00 1.00 1.00
23 .05 .24 .58 .87 .98 1.00 1.00 1.00 1.00
24 .05 .24 .59 .87 .98 1.00 1.00 1.00 1.00
25 .05 .24 .59 .88 .98 1.00 1.00 1.00 1.00
26 .05 .24 .59 .88 .98 1.00 1.00 1.00 1.00
27 .05 .24 .59 .88 .98 1.00 1.00 1.00 1.00
28 .05 .24 .60 .88 .98 1.00 1.00 1.00 1.00
29 .05 .25 .60 .88 .98 1.00 1.00 1.00 1.00
30 .05 .25 .60 .88 .98 1.00 1.00 1.00 1.00
40 .05 .26 .62 .90 .99 1.00 1.00 1.00 1.00
50 .05 .26 .63 .90 .99 1.00 1.00 1.00 1.00
60 .05 .26 .63 .91 .99 1.00 1.00 1.00 1.00
100 .06 .27 .65 .91 .99 1.00 1.00 1.00 1.00
120 .06 .27 .65 .91 .99 1.00 1.00 1.00 1.00
1 .06 .28 .66 .92 .99 1.00 1.00 1.00 1.00
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TABLEA.17 (Continued)

a¼ 0.05
d

df 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

1 .07 .13 .19 .25 .31 .36 .42 .47 .52
2 .10 .22 .39 .56 .72 .84 .91 .96 .98
3 .11 .29 .53 .75 .90 .97 .99 1.00 1.00
4 .12 .34 .62 .84 .95 .99 1.00 1.00 1.00
5 .13 .37 .67 .89 .98 1.00 1.00 1.00 1.00
6 .14 .39 .71 .91 .98 1.00 1.00 1.00 1.00
7 .14 .41 .73 .93 .99 1.00 1.00 1.00 1.00
8 .14 .42 .75 .94 .99 1.00 1.00 1.00 1.00
9 .15 .43 .76 .94 .99 1.00 1.00 1.00 1.00
10 .15 .44 .77 .95 .99 1.00 1.00 1.00 1.00
11 .15 .45 .78 .95 .99 1.00 1.00 1.00 1.00
12 .15 .45 .79 .96 1.00 1.00 1.00 1.00 1.00
13 .15 .46 .79 .96 1.00 1.00 1.00 1.00 1.00
14 .15 .46 .80 .96 1.00 1.00 1.00 1.00 1.00
15 .16 .46 .80 .96 1.00 1.00 1.00 1.00 1.00
16 .16 .47 .80 .96 1.00 1.00 1.00 1.00 1.00
17 .16 .47 .81 .96 1.00 1.00 1.00 1.00 1.00
18 .16 .47 .81 .97 1.00 1.00 1.00 1.00 1.00
19 .16 .48 .81 .97 1.00 1.00 1.00 1.00 1.00
20 .16 .48 .81 .97 1.00 1.00 1.00 1.00 1.00
21 .16 .48 .82 .97 1.00 1.00 1.00 1.00 1.00
22 .16 .48 .82 .97 1.00 1.00 1.00 1.00 1.00
23 .16 .48 .82 .97 1.00 1.00 1.00 1.00 1.00
24 .16 .48 .82 .97 1.00 1.00 1.00 1.00 1.00
25 .16 .49 .82 .97 1.00 1.00 1.00 1.00 1.00
26 .16 .49 .82 .97 1.00 1.00 1.00 1.00 1.00
27 .16 .49 .82 .97 1.00 1.00 1.00 1.00 1.00
28 .16 .49 .83 .97 1.00 1.00 1.00 1.00 1.00
29 .16 .49 .83 .97 1.00 1.00 1.00 1.00 1.00
30 .16 .49 .83 .97 1.00 1.00 1.00 1.00 1.00
40 .16 .50 .83 .97 1.00 1.00 1.00 1.00 1.00
50 .17 .50 .84 .98 1.00 1.00 1.00 1.00 1.00
60 .17 .50 .84 .98 1.00 1.00 1.00 1.00 1.00
100 .17 .51 .84 .98 1.00 1.00 1.00 1.00 1.00
120 .17 .51 .85 .98 1.00 1.00 1.00 1.00 1.00
1 .17 .52 .85 .98 1.00 1.00 1.00 1.00 1.00
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