PARTICLE
PHYSICS

An Introduction

R. Purdy

"'\\
( Essentials of Physics Series



PARTICLE
PHYSICS



LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED
WARRANTY

By purchasing or using this book (the “Work™), you agree that this license grants permission to use the
contents contained herein, but does not give you the right of ownership to any of the textual content in the
book or ownership to any of the information or products contained in it. This license does not permit
uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the
Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is
limited to and subject to licensing terms for the respective products, and permission must be obtained from
the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual
material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the
creation, writing, or production of the companion disc, accompanying algorithms, code, or computer
programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not
warrant the performance or results that might be obtained by using the contents of the Work. The author,
developers, and the Publisher have used their best efforts to insure the accuracy and functionality of the
textual material and/or programs contained in this package; we, however, make no warranty of any kind,
express or implied, regarding the performance of these contents or programs. The Work is sold “as is”
without warranty (except for defective materials used in manufacturing the book or due to faulty
workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the
composition, production, and manufacturing of this work will not be liable for damages of any kind arising
out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material
contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book, and
only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from
state to state, and might not apply to the purchaser of this product.



PARTICLE
PHYSICS

An Introduction

ROBERT PURDY, PHD

‘M,
MERCURY LEARNING AND INFORMATION

Dulles, Virginia
Boston, Massachuserrs
Mew Delhi



Copyright ©2018 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

Original title and copyright: The Fundamentals of Particle Physics by Robert Purdy. Copyright ©2017
Pantaneto Press. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in
a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical
display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior
permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

1-800-232-0223

This book is printed on acid-free paper.

R. Purdy. Particle Physics: An Introduction.
ISBN: 978-1-683921-42-4

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products. All brand names and product names mentioned in this book are
trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service
marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2017960711
171819321 Printed in the United States of America

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For
additional information, please contact the Customer Service Dept. at 1-(800)-232-0223.

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the
book, based on defective materials or faulty workmanship, but not based on the operation or functionality of
the product.


mailto:info@merclearning.com
http://www.merclearning.com

To my parents, who have always listened to my ramblings



CONTENTS

INTRODUCTION

L.

[ A )
°

A HISTORY OF PARTICLE PHYSICS

1.1  Atomic Theory

1.2 Atomic Structure

1.3  Forces and Interactions

1.4  Strange and Unexpected Developments

1.5  Quarks and Symmetries

1.6 The Standard Model of Particle Physics

1.7 The Current State of the Field
Exercises

SPECIAL RELATIVITY

2.1  Lorentz Transformations
2.1.1  Scalars, Vectors, and Reference Frames
2.1.2  Special Relativity
2.1.3  Minkowski Space

2.2 Energy and Momentum in Minkowski Space
2.2.1  Invariant Mass
Exercises

QUANTUM MECHANICS

3.1  States and Operators

3.2  The Schrodinger Equation

3.3  Probability Current

3.4  Angular Momentum and Spin

3.5  Spin 3 Particles and the Pauli Matrices



(= p]
)

3.6  The Hamiltonian
3.6.1  The Lagrangian

3.7  Quantum Mechanics and Electromagnetism: The Schrédinger
Approach

3.8  Quantum Mechanics and Electromagnetism: the Pauli Equation
Exercises

SYMMETRIES AND GROUPS

4.1  The Importance of Symmetry in Physics

4.2  Discrete Symmetries
4.2.1  Mathematical Structure of Discrete Symmetries
4.2.2  Discrete Symmetries in Particle Physics

4.3  Continuous Symmetries
4.3.1  Mathematical Structure of Continuous Symmetries
4.3.2  Continuous Symmetries in Particle Physics
Exercises

EXPERIMENTAL PARTICLE PHYSICS
5.1  Detectors
5.1.1 Interactions of Particles with Matter
5.1.2  Early Detectors
5.1.3  Modern Detectors
5.2  Accelerators
5.2.1 Linear Accelerators
5.2.2  Cyclotrons
5.2.3  Synchrotrons
5.3  Measurable Quantities in Particle Physics: Matching Theory to
Experiment
5.3.1  Cross-Sections
5.3.2  Lifetimes
Exercises

PARTICLE CLASSIFICATION
6.1  The Spin-Statistics Theorem
6.2  The Strong Force

6.2.1  Isospin

6.2.2  Flavor SU(3)



6.3  Color
6.4  Building Hadrons
6.4.1  Quark Content
6.4.2  Mass
6.4.3  Angular Momentum, Parity, and Charge Parity
6.4.4  Larger Flavor Symmetries
6.4.5 Resonances
Exercises

RELATIVISTIC QUANTUM MECHANICS

7.1  The Klein-Gordon Equation
7.1.1 A Relativistic Schrodinger Equation
7.1.2  Solutions of the Klein-Gordon Equation
7.1.3  Conserved Current

7.2 The Maxwell and Proca Equations
7.2.1  Derivation of the Maxwell Equation
7.2.2  Solutions of the Maxwell Equation
7.2.3  Including Mass: The Proca Equation
7.2.4  Spin of Vector Particles

7.3  Combining Equations: How Do Particles Interact?
7.3.1  Quantum Field Theory without the Math
7.3.2  Feynman Rules
Exercises

THE DIRAC EQUATION
8.1 A Linear Relativistic Equation
8.2  Representations of the Gamma Matrices
8.2.1  The Dirac Representation
8.2.2  The Weyl Representation
8.3  Spinors and Lorentz Transformations
8.4  Solutions of the Dirac Equation
8.4.1 Spin
8.4.2  Antiparticles
8.4.3  Helicity
8.4.4  Chirality
8.5  Massless Particles



10.

8.6
8.7
8.8

Charge Conjugation

Dirac, Weyl, and Majorana Spinors
Bilinear Covariants

Exercises

QUANTUM ELECTRODYNAMICS

9.1
9.2
9.3
9.4
9.5

9.6
9.7

U(1) Symmetry in Wave Equations

Localizing the U(1) Symmetry

The Link with Classical Physics

A Well-Tested Theory

Calculations in QED

9.5.1 Feynman Rules for QED

9.5.2  Calculating Amplitudes

9.5.3  Calculating the Differential Cross-Section
Beyond Leading Order: Renormalization

Form Factors and Structure Functions

9.7.1  Electromagnetic Form Factors

9.7.2  Structure Functions and the Quark Model
Exercises

NON-ABELIAN GAUGE THEORY AND COLOR

10.1

10.2
10.3

10.4

10.5

10.6

Non-Abelian Symmetry in the Dirac Equation
10.1.1 SU(3) and Color

10.1.2 Localizing the SU(3) Symmetry
Gluon Self-Interactions

Strong Force Interactions

10.3.1 Quantum Chromodynamics
10.3.2 Scale-Dependence
High-Energy QCD

10.4.1 Asymptotic Freedom

10.4.2 Perturbative QCD

Low-Energy QCD

10.5.1 Quark Confinement

10.5.2 The Residual Nuclear Force
10.5.3 Perturbative and Lattice QCD
Exotic Matter



11.

12.

13.

10.6.1 Pentaquarks and Tetraquarks
10.6.2  Glueballs

10.6.3 Quark-Gluon Plasma
Exercises

SYMMETRY BREAKING AND THE HIGGS MECHANISM
11.1 The Weak Force as a Boson-Mediated Interaction
11.1.1 P Violation
11.1.2 C Violation
11.2 Renormalizability and the Need for Symmetry
11.3 Hidden Symmetry
11.3.1 Toy Model 1: Z, Symmetry Breaking

11.3.2 Toy Model 2: U(1) Symmetry Breaking

11.3.3 The Higgs Mechanism: SU(2) ® U(1) Breaking
11.4 Electroweak Interactions

11.4.1 Hypercharge and Weak Isospin

Exercises

THE STANDARD MODEL OF PARTICLE PHYSICS

12.1 Putting It All Together

12.2  Fermion Masses

12.3 Quark Mixing and the CKM Matrix
12.3.1 The Cabibbo Hypothesis
12.3.2 Neutral Mesons
12.3.3 More General Quark Mixing

12.4 CP Violation in the Weak Sector

12.5 Successes of the Standard Model
12.5.1 Anomaly Cancellation

12.6 Drawbacks of the Standard Model
12.6.1 Baryogenesis
12.6.2 The Hierarchy Problem
12.6.3 The Strong CPP Problem
Exercises

BEYOND THE STANDARD MODEL
13.1 Neutrino Oscillations and the PMNS Matrix



13.2
13.3

13.4
13.5

13.6
13.7
13.8

13.9

The See-Saw Mechanism
Grand Unification

13.3.1 Magnetic Monopoles
Supersymmetry

Gravitons

13.5.1 Can We Go Further than Spin-2?
13.5.2 Problems with Gravity
Axions

Dark Matter

Dark Energy and Inflation
13.8.1 Inflation

13.8.2 Dark Energy

The Future of Particle Physics
Exercises

APPENDIX A
APPENDIX B
APPENDIX C
BIBLIOGRAPHY

INDEX



INTRODUCTION

WHY STUDY PARTICLE PHYSICS?

Particle physics remains one of the most popular aspects of the study of
modern physics. Not only is the subject popular among physics students, it also
captures the imagination of the general public. Admittedly, a part of the reason
for this may be that the machines constructed for the field’s continued
development are easily some of the most awe-inspiring engineering feats in
human history. However, I do not think that this is the full story. Rather, I believe
that the appeal of particle physics is that it addresses some of the key questions
that lead people to an interest in physics in the first place. First, particle physics,
arguably more than any other discipline, aims to answer the question of what the
universe is ultimately made of. In my opinion, the only other discipline to
address such weighty problems is cosmology, and the two could not be more
different in their approach. While cosmology studies the overall structure and
history of the universe on the grandest scales—what we might call the “holistic”
approach—particle physics is concerned with building a universe from its
simplest constituents. We can think of this as a constructionist or “bottom up”
approach to understanding the world. This said, the aim of the two disciplines is
ultimately the same, and so despite the many orders of magnitude between the
scales of their realms of study, there is a surprising amount of overlap between
the two. This is a point that we will explore a little in the final chapter of this
book.

The second reason I believe particle physics appeals to many is that it is built
upon a few guiding principles. Chief among these is the role that symmetry plays



in our universe. As we will see throughout this text, symmetry and its
implications play a pivotal role in the field of particle physics. As such, there is
an elegance and beauty underlying much of modern particle physics. Indeed, it is
the desire to produce a more symmetrical theory that has led to many of the
developments in the history of particle physics, including as-yet purely
hypothetical developments such as supersymmetry and grand unification. The
drive to develop theories of the world that are elegant, simple, and symmetrical
is not unique to particle physics of course: it is a principle adhered to by all areas
of physics, dating back at least as far as William of Ockham and his famous
razor in the fourteenth century. However, since particle physics develops this
idea to its full potential, this is just another reason that students of physics are
commonly drawn to this field.

THE AIM OF THIS BOOK

This book has three main aims. First, I wish to introduce the reader to the
concepts of particle physics. As a theorist, my approach to this is mainly to come
at things from a theoretical point of view. As such, the emphasis is on
developing the ideas of particle physics that are mathematically consistent and
then showing that they apply to the real world. This is as opposed to the
(arguably more historically accurate) approach of finding and refining theories
that fit the experimental observations. In this way, the reader will hopefully
develop an appreciation for the elegance of the subject and its reliance on
symmetry and simplicity as guiding principles. This said, even as a theorist, I
must acknowledge that occasionally it is necessary to observe the real world to
ensure that our theories are on the right track. As such, an introduction is given
in Chapter 5 to some aspects of experimental physics and of how we may
compare theory with experiment.

The crowning achievement of particle physics to date has been the
development of the Standard Model of particle physics. The second aim of this
book is thus to provide the reader with a solid understanding of the Standard
Model. The necessary groundwork is laid throughout the book, and then the
Standard Model itself is discussed in Chapter 12, along with some of its
properties and consequences. Despite its successes, however, the Standard



Model is known not to be the ultimate theory of fundamental particle
interactions, and some of the model’s limitations are also discussed. These are
further addressed, and some of the extensions of particle physics “beyond the
Standard Model” are introduced in Chapter 13.

Finally, the third aim of this book is to provide the reader with the necessary
toolkit required for an exploration of particle physics. With this in mind,
Chapters 2—4 provide something of a crash course in some of the necessary
mathematical background for the subject. Throughout the rest of the book,
various additional tools are gradually introduced, such as Dirac spinors,
Feynman diagrams and their related calculations, and a brief introduction to the
concepts of lattice gauge theory. The hope is that, whatever aspect of particle
physics a reader wishes to pursue, this book will provide a useful foundation.

UNITS IN PARTICLE PHYSICS

The Systeme International d’Unités (SI units) is a marvelous achievement of
science and diplomacy: a unified, consistent, and logical set of units for the
description of any physical quantity (and even some anthropocentric biological
ones for good measure). With this system, any two parties anywhere on Earth
may know that they are measuring the same quantity in the same way. Despite
this, the SI units are not always the most useful or most natural for a given
discipline. This is why many scientific disciplines develop their own set of units:
solid state physicists commonly use the non-SI Angstrom, while astrophysics
and cosmology routinely express distances in mega-parsecs.

The units of choice in particle physics fall into two categories. First, the most
important quantity in experimental particle physics is the cross-section for an
interaction. This is measured in the same units as area (as it is related to the
cross-sectional area of the colliding particles), but the scales involved are of the
order of a few femtometers. To avoid a profusion of annoying prefixes, the
nuclear physicists involved in the Manhattan Project to construct the first atomic
bomb chose a unit of area much more suitable to the kinds of scales being
considered. This is the barn (b), equivalent to 100 fm?, whose name originates
from comparison with a barn door, since 100 fm? is a relativity large area in



nuclear physics terms. Since the barn is so ingrained in experimental particle
physics, it is not uncommon to hear it used with SI prefixes. This leads to the
rather bizarre “standard” unit for luminosity, or particle collisions per unit cross-
section: the inverse femtobarn (fb~!). Similarly, nuclear physicists also
introduced the “fermi” as a unit of length, equivalent to 10~ m or one
femtometer. This has the fortunate side effect that, when abbreviated, the unit is
identical to its SI counterpart: fm. In written form, then, the reader need not
consider the fermi as a separate unit. It is worth mentioning here, though, simply
because the reader may occasionally come across the term “fermi” in
conversation.

In theoretical particle physics, the quantity of interest is generally energy. In a
similar vein to the adoption of the barn by experimentalists, theorists have
chosen a unit of a suitable scale for the types of quantities they wish to study: the
electron volt (eV), equivalent to 1.60217662 x 10719 J, or the amount of energy
gained by a single electron when passing through a potential difference of one
volt. However, theorists also take this idea much further by introducing the
concept of “natural units.” By choosing units such that the numerical values of
the constants ¢ and h (as well as a handful of other constants) are equal to 1, the
need for additional units is negated. In this way, all physical quantities may be
expressed as powers of eV or, more commonly, mega-, gigaor tera-electron volts
(MeV, GeV, or TeV). This idea will be justified further in Chapters 2 and 3. Both
experimentalists and theorists alike will, however, also on occasion convert to SI
units for clarity or to compare results across disciplines.



A HISTORY OF PARTICLE PHYSICS

This chapter is intended to provide the reader with an overview of the history of
particle physics, but that is not its only function. Along the way, some of the key
concepts in the field will be touched upon in such a way as to prepare the reader
for later chapters, when we will revisit these concepts and put them on a firmer
footing.

1.1 ATOMIC THEORY

A history of particle physics must start somewhere, and this one starts with
Isaac Newton. We could go all the way back to Ancient Greece and talk about
the philosophical arguments regarding whether or not matter was infinitely
divisible, but we will avoid this for two reasons. First, such matters have been
considered in the philosophies of various world cultures, and the author does not
wish to be accused of Eurocentrism. Second, and more importantly, the
following is a history of the scientific study of the particle nature of reality, and
science itself only surfaced as a discipline in its modern form much later, in the
15" and 16" Centuries. Newton believed that light is composed of a stream of
particles, which he called corpuscles. Though this idea was not originally
Newton’s, he developed it and showed that it was able to correctly model the
laws of reflection and refraction, along with other optical phenomena. The big
problem with Newton’s corpuscular theory, though, was that it failed when one
attempted to apply it to the diffraction and interference of light. For this reason,
over time, it was gradually realized that an older, rather more conceptually
difficult theory was better suited to describing the nature of light. This was the
wave-front theory put forward by Christian Huygens 26 years before Newton’s
model, which models light as a wave propagating through space. That these two



greatly respected scientists could, within so short a time span, propose such
vastly different models of the same phenomena, perfectly summarizes one of the
big questions in the history of science. This is the question addressed by those
philosophers we have glossed over, of whether matter, at its fundamental level, is
continuous or composed of indivisible discrete units. Waves and particles, fields
and forces, atoms and infinitely divisible matter; all fall under this
continuous/discrete dichotomy.

The first great steps toward addressing this dichotomy came not from physics
but from chemistry. In the early 1800s, John Dalton formulated his law of
multiple proportions. This stated that, if two different chemical elements are
capable of producing more than one compound, the ratio of masses of the two
elements needed to form one compound is a simple multiple of the similar ratio
for the other compound. Dalton’s explanation for this law was that each element
came in discrete amounts: atoms. Each compound was formed from some
combination of the atoms of each element, and the exact compound depended on
the particular arrangement of atoms. The theory was also able to explain why
elements cannot be decomposed as compounds can. Each element has its own
type of atom, and an atom of one type cannot be transformed into another. What
Dalton’s theory did not answer was the question of why there were different
elements at all. There was simply a group of known elements with particular
properties and no obvious unifying principle to explain those properties. As we
will see again later in this history, in the absence of an explanation for a large
group of related phenomena, a good place to start is to catalog or categorize
them to look for patterns. Even if those patterns cannot be explained, at least the
underlying structure can begin to be glimpsed. Although many attempted such a
categorization of the elements, the first person to construct a comprehensive
structured catalog was Dmitri Mendeleev with the Periodic Table of Elements.
He found that there were regular periodic patterns in the properties of the
elements if they were arranged according to their relative mass. This pattern
would later be explained with the discovery of the nucleus, composed of protons
and neutrons, since the number of protons uniquely determines the position of an
element on the table.

Mendeleev’s periodic table allowed for predictions of elements’ properties,
but without an understanding of why the elements were arranged in this way; the
table itself made no assumptions about the nature of the matter making up the



elements. This was then the trend for many years: models were proposed that
made use of atoms as a computational tool, and some of these made accurate
predictions, but none was entirely convincing as anargument for the physical
reality of atoms. This changed in 1905, when Albert Einstein wrote a paper
explaining the origin of Brownian motion. Brownian motion had been observed
many years earlier by botanist Robert Brown, while he was studying pollen
grains. His sample was suspended in water and he was observing it through a
microscope when he noticed that tiny particles (smaller than the pollen grains)
exhibited what appeared to be random motion. The particles would drift for a
short time and then suddenly change direction before drifting again. The reason
for this motion, Einstein showed, was that the particles were sufficiently small as
to have their trajectory altered by random collisions with water molecules. In
fact, Einstein was not the first to suggest this as a mechanism for Brownian
motion, but it was he who derived a statistical model of the motion of large
numbers of molecules, demonstrating that the predicted motion of the small
particles exactly matched observation.

Today, advances in microscopy and nanotechnology have moved us into an
astonishing world in which physicists and materials scientists can not only see
but even manipulate individual atoms. It is sometimes easy to forget that the
majority of particle physics has taken place in relatively recent history. Indeed,
the very existence of atoms was placed beyond reasonable doubt only after
Einstein’s 1905 paper. Our understanding of the nature of matter has made
remarkable progress in a little over 100 years. So by 1905, you may be forgiven
for thinking that the continuous/discrete dichotomy had been resolved. Matter
was composed of atoms, and light was composed of waves. Not so fast, though.
In the same year that he conclusively demonstrated the discrete nature of matter,
Einstein also cast doubt on the wave nature of light. We will return to this point
shortly.

1.2 ATOMIC STRUCTURE

Even before they had been definitively shown to exist, atoms were believed to
have structure. A look at the periodic table shows that atoms appear to be built
out of the smallest of their kind—the hydrogen atom—since many mass



numbers are approximately integer multiples of the mass of hydrogen. This
suggested that hydrogen was the fundamental unit of matter, and that heavier
elements were somehow built out of hydrogen. Those masses with non-integer
multiples of the hydrogen mass would later be explained with the discovery of
the neutron. Since each element generally comes in several isotopes (forms with
equal numbers of protons but differing numbers of neutrons), but a sample
typically does not distinguish these isotopes, the measured atomic mass of an
element is the mean of the different isotopes weighted by their relative
abundance.

The next big milestone in particle physics was the discovery of the electron in
1896 by J. J. Thomson. The rays produced by a highvoltage cathode in a near
vacuum were believed by some to be a stream of negatively charged molecules,
while others believed they were some different kind of particle. In fact, the name
“electron” had already been given to these hypothetical particles before
Thomson’s demonstration of their existence. By passing cathode rays through
electric and magnetic fields and carefully varying the strength of these fields,
Thomson was able to perform accurate measurements of the charge-to-mass
ratio of the particles in the ray. Assuming the charge to be the same as in
previous charge-to-mass ratio measurements of ions gives a mass for the electron
of 0.0005 atomic mass units (0.51 MeV), over a thousand times lighter than the
hydrogen atom. This lent support to the idea that even the hydrogen atom was
not fundamental, but was instead constructed from smaller constituents. In
particular, Thomson proposed a model of the atom in which the negatively
charged electrons were free to move around in a diffuse cloud of positive charge.
This model came to be known as the plumpudding model and is familiar to most
students mainly because of the way in which it was overturned.

In the same year that Thomson made his discovery, an unrelated investigation
into cathode rays led to the accidental discovery of radioactivity. The radiation
given off by radioactive samples is characterized by its ability to ionize any
material through which it passes. The phenomenon was of great interest to
physicists, and its study was responsible for many discoveries, but it remained
poorly understood until the discovery of nuclear decay. We now know
radioactive decay to be related to the transmutation of the atomic nucleus. Due to
instability, an atom of one element changes its identity to become an atom of a
different element: a process previously thought impossible. With our modern



understanding of the random and probabilistic nature of quantum phenomena,
we also know that an individual such decay cannot be predicted, but that there is
merely a finite and fixed probability of its occurence in any given unit time. This
probability is the decay constant for the process, I. However, given the vast
numbers of atoms in a typical sample, the law of large numbers implies that the
sample as a whole will behave predictably. In particular, if the number of atoms
at time t is N, then the expected value of the change in that number in a short
time interval dt is given by

dN(t) = —'N(2). (1.1)

Solving this first-order differential equation gives the characteristic exponential
decay function for a radioactive sample:

N(t) = N(0)e . (1.2)

We can also characterize this type of decay by its half-life, ¢;,. This is the time

that it takes for half of a radioactive sample to decay, and is related to the decay
constant by t;, = In(2)/T.
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FIGURE 1.1 A schematic representation of the Rutherford scattering experiment.

In 1909, Ernest Rutherford, along with his collaborators, Geiger and
Marsden, dispelled the plum-pudding myth with their famous gold-foil
experiment. Rutherford’s previous work on radioactivity had identified three
distinct types of radiation: «, 5, and y. In this latest experiment, a-particles,
which Rutherford himself had correctly identified as doubly-ionized helium
atoms, were directed on to a gold foil target. The deflection of the alpha particles
was then measured by observing their subsequent interaction with a fluorescent
screen that would emit a flash at the point of impact (Figure 1.1). In this way,
Rutherford demonstrated that the majority of a particles passed straight through



the gold foil with minimum deflection, while a small number of particles
received a large deflection. A simple calculation using classical mechanics, as in
Exercise 1, will show that such large deflections can only occur if the « particle
strikes an object with a mass much greater than itself, whereas striking a lighter
object will have minimal impact on the « particle’s trajectory. In the
plumpudding model, the only objects from which the «a particles could be
scattered were the electrons, known to have a mass several thousand times too
small for large deflections. This suggested the existence of much heavier objects
in the gold atoms. Furthermore, the rarity of such large deflections suggested
that these massive subatomic components were also very small. This, then, is
how the nuclear model of the atom was born. Rather than being spread out in a
diffuse cloud, the positive charge of an atom is locked away in a massive and
dense nucleus, around which the electrons orbit through electromagnetic
attraction. In an effort to verify the point-like nature of the nucleus, Rutherford
derived the scattering formula that bears his name, to describe the scattering of
particles from a heavy point-like object as a function of energy and scattering
angle. In the case of « particle scattering, this formula is given by
do k2Z2et

— = ; (1.3)
dQ  4E2sin* (6/2) '

where E is the energy of the a particle, Z is the atomic number of the scattering
center (nucleus), e is the fundamental charge, 0 is the angle through which the «
particle is scattered, and k is the Coulomb constant (1/(4mey) in SI units). The

notation do/dQ will be explained fully in Section 5.3.1, when we discuss cross-
sections in detail, but we may think of it as a measure of how many scattering
events occur for a given solid angle Q. We will also see in Section 5.3.1 how
Rutherford was able to arrive at this formula. Further experiments by Geiger and
Marsden appeared to fit the Rutherford formula precisely, providing evidence
that the model was at least on the right track. However, while Rutherford’s
model is certainly closer to the truth than the plum-pudding model, it
immediately runs into problems. Specifically, if the electrons orbit the nucleus,
then they should, according to classical electromagnetic theory, radiate away
their kinetic energy as light, since they are accelerating in an electric field.
Through this radiation, they should quickly lose all kinetic energy and fall into
the nucleus. Clearly, there was still something missing in the model. This



something was, of course, quantum mechanics.

Quantum mechanics had been developed around the same time, originally by
Max Planck to explain the energy distribution of blackbody radiation, but soon
also applied by Einstein to an explanation of the photoelectric effect. In order to
explain how light could liberate electrons from a metal surface, he assumed that
light comes in discrete packets. Einstein called these quanta, but today we call
them photons. The photon is a massless particle that carries momentum p and
energy E,! both related to the frequency f of the corresponding wave description
by

E=hf and p= h{_f (1.4)
where h is Planck’s constant, and ¢ the speed of light. A single photon is
absorbed by an electron in the photoelectric effect and its energy is used partly to
liberate the electron from the metal. Any leftover energy is carried away by the
electron as kinetic energy through Einstein’s equation,

Evin = hf — &, (1.5)
where ¢ is the energy required to liberate the electron, known as the material’s
work function. In this way, the quantum description of light was able to explain
why the photoelectric effect will only occur above some material-dependent
threshold frequency. If the frequency is too low, the energy of the photon is
insufficient to liberate an electron. In contrast, the wave theory of light predicts
that light of any frequency should be capable of producing this effect with the
kinetic energy of electrons depending instead on the intensity of the incident
light. The concept of single photons being emitted and absorbed by charged
particles will turn out to be absolutely central to our modern understanding of
electromagnetic interactions.

In 1911, Danish physicist Niels Bohr combined Rutherford’s idea of an
atomic nucleus with Planck’s concept of discrete energy levels in quantum
mechanics to arrive at a model of the atom in which electrons could only exist in
certain orbits around the nucleus. This model was successful in that it was able
to explain the structure of atomic emission spectra, each emission line
corresponding to some “jump” between discrete energy levels. However, as



understanding of quantum mechanics developed, ultimately it was realized that
the Bohr model could not be the full story. Later developments showed that the
strange dual nature of light, in which it behaves sometimes as a wave and
sometimes as a stream of particles, also applies to matter. In order to account for
this, quantum mechanics describes any system as a wave function that evolves
according to the Schrodinger equation. When a measurement is taken of the
system, the allowed values that can result are determined by expanding the wave
function in terms of a set of basis states. In particular, the measured position of a
particle can, in principle, take any value, but the probability of finding the
particle at a particular point is proportional to the square of the wave function’s
value at that point. Another remarkable consequence of quantum mechanics is
Heisenberg’s uncertainty principle. This is a direct consequence of the wave-like
nature of matter and states that any particle cannot have a simultaneously well-
defined momentum and position. Certainty in one implies inherent uncertainty in
the other, since a wave that is localized in space must necessarily be a sum of a
large range of Fourier modes, corresponding to different momenta. Energy and
time follow a similar reciprocal relationship: the duration of an event and the
energy involved cannot be simultaneously known. The Bohr model is
incompatible with this principle, since it models the electron as a particle with a
definite position, albeit one that orbits the nucleus. The more modern model,
then, relies on solving the Schrédinger equation for the bound system that is an
atom. The orbits are replaced with a set of “orbitals” that are the probability
distributions associated with distinct quantum states of the electron. With all this
in mind, we do now have a definitive answer to the question that started this
chapter: is matter continuous or discrete? The answer is a rather surprising
“both!”

Rutherford continued his experiments with « particles and in 1917 found that
directing them at nitrogen gas caused the emission of other charged particles.
These he was able to identify as hydrogen ions and show that they were
originating from the nitrogen atoms. He had shown that the heavier elements
really are built out of hydrogen. Unlike the original formulation of this idea,
however, it was the heavier elements’ nuclei that were constructed from
hydrogen nuclei. In this way, the proton was discovered to be the unit of positive
charge in the nucleus, and to have a mass of around 938 MeV. The atom was
now fairly well understood, and radioactivity was understood to be a nuclear



process, with a particles identical to helium nuclei and 8 particles determined to
be electrons. One suggestion for the process of f-decay, then, was that some
electrons reside in the nucleus and are emitted during decay. A simple
calculation using the uncertainty principle, however, shows that the electrons
contained in the nucleus would have much higher energy than that measured in 3
decay. This puzzle was solved in the 1930s with the discovery of the neutron,
completing the lineup of subatomic particles in ordinary matter. By firing o
particles at a Beryllium target, James Chadwick was able to demonstrate that the
nucleus also contains a neutral particle, the neutron, of around the same mass as
the proton. It is this particle that decays during 3 decay, producing a proton and
electron in the process. The electron is then emitted as a [ particle. Further
evidence for the proton and neutron as subnuclear particles came much later in
the 1960s, when experimental energies were finally capable of producing a
deviation from Rutherford’s scattering formula (Equation 1.3) when scattering
off the nucleus. These experiments directly demonstrated that the nucleus was
not a point-like object but was built out of smaller components. For a better
understanding of nuclear decay, physicists now turned to studying the forces that
governed the behavior of the nucleus.

1.3 FORCES AND INTERACTIONS

In the classical theory of electromagnetic interactions, charges and currents
produce electric and magnetic fields, respectively, and charges moving through
these fields experience a force. If photons are to provide the quantum description
of electromagnetism, we need a mechanism by which they can reproduce these
same phenomena. This is achieved through the concept of virtual particle
exchange, and the theory built around this idea is quantum electrodynamics
(QED). If a particle is observed or detected, we say that it is a real particle. Its
energy, momentum, and mass will necessarily obey the appropriate energy-
momentum relation, in which case, we also say that the particle is “on the mass
shell,” or “on-shell.” A virtual particle, on the other hand, is one that is emitted
by one particle and absorbed by another. The electron, for example, is capable of
emitting a photon, which may then be absorbed by a second electron or other
charged particle. Since the photon has been absorbed, we can never detect it. In



this way, the existence of the photon can only be inferred by its effects, and we
say that it is virtual. Typically, a virtual photon will last only a short time and
travel only a short distance. This means that the uncertainty in the photon’s
energy and momentum can be large, so much so that the photon need not obey
the energy-momentum relation and may behave as though it has a non-zero
mass. In this case, the virtual photon is said to be off-shell. Since the photon
carries an energy and a momentum, and we know both of these quantities to be
conserved, we can see how exchange of a virtual photon would lead to a
deviation in the trajectories of the electrons. It is in this way that the photon
mediates the electromagnetic force. Since this force applies only to charged
particles, it must be the case that the emission and absorption of a photon is only
possible in particles with a nonzero charge. We say that the photon “couples” to
a charge but does not couple to particles without a charge. This image of photons
being thrown between electrons is very intuitive for explaining the repulsion of
like charges. Where its interpretation becomes less clear is when considering that
the electromagnetic force can also be attractive. How, for instance, are we to
describe the attraction between a proton and an electron in terms of photon
exchange? The first part of the answer to this question is to realize that the
uncertainty in the photon’s momentum means that it can carry a negative
momentum! Momentum conservation then guarantees that the change of
momentum of the proton and electron at the point of emission and absorption is
in such a way as to produce an attraction. The second part of the answer is that
the way in which a photon couples to a particle depends on that particle’s charge,
and the relative sign of two charges will determine whether the resulting force is
attractive or repulsive. There is no easy way to see why this should be the case,
but the mathematics really does work out this way, as we will see later when
considering QED amplitudes (see Section 9.3). In this way, then, forces are
explained in particle physics via the exchange of virtual particles. Such
interactions can be depicted using Feynman diagrams, which we can think of as
stylized representations of the trajectories of the particles involved. Each
external line (with one end not terminating on a vertex with other lines)
represents a real particle that takes part in the interaction, while each internal line
(with both ends terminating at vertices) represents a virtual particle. Fermions
(matter-like particles) such as electrons are shown as solid lines, while photons
and other exchange bosons (force-like particles) are shown as wiggly lines. With



this in mind, then, we can show elastic electron scattering, e” + e~ — e~ +e", as
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Each time a particle couples to the electromagnetic field through photon
emission or absorption, it does so with a particular strength. This is a numerical
value, which essentially measures the inherent probability of electromagnetic
interactions for that particle at any given moment. This value is different
depending on the particle’s charge and so is separated into two parts. One is a
dimensionless charge factor g, taken to be the ratio of the particle’s charge to the
fundamental unit charge. That is, ¢ = —1 for the electron and g = +1 for the
proton. The second part is a universal constant known as the electromagnetic
coupling constant, e. In natural units, this coupling strength is related to the fine-
structure constant, a, by a = £ ~ ;L. Since electromagnetic scattering processes
involve photon exchange, the leading-order contributions to scattering
amplitudes are generally on the order of a, and higher-order corrections can be
written as power series in a.

After the discovery of the proton and neutron, there were a number of
unresolved problems regarding atomic structure. One such puzzle was the
question of what held the nucleus together. What could overcome the
electrostatic repulsion of such a small, dense concentration of positive charge?
Clearly, there must be some additional attractive force to compensate. The
behavior of this nuclear force was qualitatively different from the behavior of
electromagnetism though. Most notably, the range of the force must be small, to
account for the fact that its effects are not observed outside of the nucleus. In
contrast, the range of the electromagnetic force is essentially infinite, though of
course it decreases in magnitude over large distances. The nature of this force
was probed further with experiments in which protons and neutrons were fired at
each other. Since the neutron has no charge, the interaction of these two particles
in such experiments must be mediated by the nuclear force. Given that the two
are of similar mass, one would expect a glancing blow that results in both
particles continuing with similar momenta to those before the collision.



However, by measuring the interaction crosssection (the likelihood of an
interaction) as a function of scattering angle, what was found was that back-
scattering was almost as likely as forward scattering. In fact, the cross-section

plot was almost symmetrical about a scattering angle of 90°.

In 1935, Hideki Yukawa proposed a model of the nuclear force that could
account for both the short range and this cross-section problem, based on the
exchange of a new kind of particle. In fact, there were to be three such particles.
One was neutral to allow proton-proton and neutron-neutron interactions. The
others were charged to allow the interconversion of protons and neutrons
through their exchange. This could account for the back-scattering, since these
events were then explained as those in which the proton and neutron had
exchanged identities, as demonstrated in Figure 1.2. Their momenta were not
really changed very much at all, just their clothing! There was a big difference,
however, with the electromagnetic theory: whereas the photon is massless,
Yukawa determined that his “mesons” must have a mass of around 100 MeV/c?.
To see how he arrived at this figure, consider the exchange of a particle of mass
m. Assuming that this particle travels only a short distance at a speed
approximately equal to c, the uncertainty in the particle’s position is given by
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FIGURE 1.2 The exchange of one of Yukawa’s charged mesons allows the proton and neutron to inter
convert, solving the problem of back-scattering seen in nucleon interactions.

Turning this argument on its head, the mass of an exchange particle
associated with a force of range Ax is




which, for nuclear interactions with a range on the order of 1 fm, gives a mass of
around 100 MeV. This force would also require its own coupling constant, gy,

and in order for the nucleus to overcome electrostatic repulsion, this coupling
strength would have to be considerably greater than its electromagnetic
equivalent.

The second big puzzle of nuclear interactions to consider is just how the
neutron is capable of producing a proton and electron during 8 decay. The real
problem lay in the fact that § radiation appeared to have a very broad momentum
spectrum. If the relative frequency of emissions with a particular momentum is
plotted against a range of momenta for a-decay, the result is a sharp peak at one
momentum value. This is as we would expect for a single object undergoing a
two-body decay, since the energy and momentum are fixed by conservation
laws. However, when a similar plot is made of [-particle momenta, the peak is
much broader and flatter. To Wolfgang Pauli, this suggested a third particle was
being produced in the decay of the neutron. The particle would have to have no
charge to ensure charge conservation, which would also explain why it had not
been detected, since only charged particles make tracks in tracking chambers, as
we will see in Section 5.1.2. In order to match the observed decays, the particle
would also have to be very lightweight. In fact, to this day, Pauli’s “neutrino”
(whose existence has since been confirmed experimentally)? has been found to
have such a small mass that its value cannot yet be directly measured. This may
change in the near future, however, thanks to the recently completed Karlsruhe
Tritium Neutrino Experiment (KATRIN), which is expected to measure the
neutrino mass to a precision of around 200 meV/c?, through precision
measurements of electron energies in the 8 decay of tritium nuclei. The current
constraint on the neutrino mass is complicated by the fact that it is really an
upper limit on the combined mass of three distinct flavors of neutrino (for
reasons that will become clear when we discuss neutrino oscillations in Section
13.1). This current best guess comes from matching cosmological models to
observations of, among other things, the cosmic microwave background, and
shows that the combined neutrino masses can be no more than 1.2 eV/c?. To put
this in context, the electron has a mass of just over half a million electron volts.
With the idea of the neutrino in place, Enrico Fermi suggested a mechanism for
neutron decay, in which all four particles involved interacted at a single point, as
in Figure 1.3. In this way, the neutron was thought to decay directly to a proton,



electron, and (anti-)neutrino. This interaction had its own coupling strength, G,
much smaller than the electromagnetic coupling.
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FIGURE 1.3 Feynman diagram for the Fermi “four-point” formulation of 3 decay.

Ignoring gravity, then, as particle physicists are somewhat prone to do, there
are three known interactions that determine the behavior of particles. One of
these is the familiar electromagnetic interaction, while the other two are short-
range forces which only have significant effects within the nucleus. Based on
their relative strengths, as encoded in the relevant couplings, the two nuclear
forces are referred to simply as “weak” and “strong.” The strong force is
responsible for holding the nucleus together, while the weak interaction is
responsible for nuclear decays.

1.4 STRANGE AND UNEXPECTED
DEVELOPMENTS

Returning for a moment to an earlier time, another development was the
discovery of spin angular momentum. The first suggestion that there was some
as-yet unknown property of electrons, that would later be known as spin, came
from Wolfgang Pauli in 1924. By postulating some two-fold degeneracy in
electrons, he was able to explain the arrangement of electrons into their atomic
orbitals. His discovery was the exclusion principle, which states that no two
electrons (more generally, no two fermions) may occupy the same state. The
twofold degeneracy was required to reconcile this principle with the fact that
electrons appeared to occupy states in pairs. The Stern-Gerlach experiment later
showed, by splitting beams of particles with a magnetic field, that this two-fold
degree of freedom in electrons is related to their angular momentum.
Specifically, it was discovered that electrons have an intrinsic angular



momentum, unrelated to their motion, and of a fixed magnitude. The
quantization of angular momentum allows for the orientation of this “spin,” as it
became known, to take two distinct values in the presence of a magnetic field.
The magnitude of a particle’s spin, on the other hand, is an inherent property of
that particle. An electron has a spin of %, while a photon has a spin of 1, and
nothing can change that. One of the most important results in particle physics is
the spin-statistics theorem. This states that particles can be grouped into two
categories according to their spin, and that these two groups behave in
profoundly different ways. The fermions have a spin that is half of an odd
integer (4. 3. ...) and obey the Pauli Exclusion Principle. The bosons have integer

spin and do not obey the exclusion principle. That is, bosons can form systems in
which more than one particle is in the same state, while fermions cannot.>

In 1928, Paul Dirac, in an attempt to unify quantum mechanics and relativity,
wrote down the equation that bears his name. Using this equation, Dirac was
able to motivate the spin of the electron from a purely theoretical standpoint. The
success of his equation came at a price, however, since it appeared to predict
particle states of negative energy. Dirac’s resolution of this problem led to one of
several unexpected developments that characterized the next period in the
history of particle physics. The solution that Dirac found was to postulate the
existence of a new particle, somehow the equal and opposite of the electron. The
particle, later dubbed the positron, should have the same mass as the electron but

the opposite electric charge. What was more, every particle species should have
4

a similar twin.” Dirac had predicted the existence of antimatter, and his
prediction was validated four years later with the discovery of the positron in
cosmic rays. Dirac’s own understanding of antiparticles was quite different from
the conventional viewpoint today. In Dirac’s picture, the negative-energy states
that are allowed by his equation are all populated by a sea of negative-energy
electrons. Since this is the norm, we do not observe these sea electrons under
normal circumstances. However, should one of these negative-energy states be
given a boost in energy, it will raise the electron up to a positive energy state.
This will also leave a noticeable hole in the sea, however, which is capable of
moving around as other negative-energy electrons move into the hole. Relative
to the negative sea, this hole will also appear to have a positive charge.
Therefore, it is this hole that we see as a positron. Should a positive-energy
electron chance upon the positron hole, it can fall into it, releasing its energy as it



does so. In this way, we can see that a particle-antiparticle pair can be created
apparently from nothing if given energy, and that they may subsequently
annihilate one another in a burst of energy. Although Dirac’s sea picture is no
longer considered correct, it does provide an intuitive understanding of the
difficult concept that is antimatter, since processes such as those described above
really do occur:

et e o+ . (1.8)
Incidentally, while positrons are denoted e" to contrast with electrons (e”), the
majority of antiparticles are shown by placing a bar over the particle name.

By 1935, things were looking fairly complete in the world of particle physics.
There was a model to describe electromagnetism, and models to describe nuclear
stability and decay, all in terms of particle exchange. All that remained to be
seen was experimental confirmation of the existence of Yukawa’s strong-force
meson. This appeared to have arrived in 1936, when a charged particle of
roughly the right mass was discovered in cosmic rays. Instead, this turned out to
be something wholly unexpected: a cousin of the electron with similar properties
but a much greater mass. The terminology became somewhat confused during
this period, as particles named after their properties were later reclassified, and
names were co-opted for other use. This can make reading published work from
this period very confusing to the modern reader. The end result is that while
“meson” originally referred to a particle of intermediate mass between the
electron and proton, it now refers to a specific set of composite particles, which
we will explore in Section 1.5. This left the electron’s chunky cousin in need of
name, and it later became the muon, denoted u. Yukawa’s meson was eventually
found in 1947 and has also undergone a name change: we now know it as the
pion.

The discovery of the muon was a prelude for what was to come. After the
discovery of the pion, more unexpected particles were discovered. The first of
these was the kaon (though not named as such at the time), which was again
discovered in cosmic rays, but many more were to follow, including the ¥ and A
baryons, the = baryons, the p mesons, and the n mesons. The existence of so
many new particles came as a surprise to many, and the era gave rise to what
became known as the “particle zoo.” With no understanding of why these



particles existed, there was no choice but to list them along with their properties.
Things were getting messy, and it was beginning to look rather like the list of
elements before the discovery of the periodic table. What was needed was a
“periodic table of particles”: a similar means of classifying particles and
understanding their underlying trends. A first step in the right direction was to
categorize the particles by their spin. In this way, a distinction was made
between the leptons, the mesons, and the baryons. Originally, these names had
referred to the relative mass of the particles: lepto-, meaning “light,” meso-,
“medium,” and bary-, “heavy.” However, over time, these distinctions began to
blur, and the names were used in a different way. Lepton came to mean
“electron-like,” and so included the muon and electron. The majority of new
particles, though, were categorized as mesons if they had integer spin, and
baryons if they had halfinteger spin. Collectively, these two categories form the
hadrons. It was soon realized that there appeared to be a conservation law
regarding baryons. The total number of baryons in a system appeared to remain
unaltered before and after any interaction, as long as antibaryons were taken to
count negatively against this sum. That is, if baryons are assigned a baryon
number of 1, and antibaryons a baryon number of —1, then this number is
conserved during physical processes. It was also realized that there is no such
conservation law for mesons: a process may produce one or more mesons
without violating any conservation law.

Similar conservation laws were found for the leptons, through careful
observation of interactions involving muons, electrons, and neutrinos. In fact,
rather than an overall”’conservation of lept on number,” which would be
analogous to baryon conservation, it was found that there are independently
conserved electron and muon numbers. The subtlety in this statement is that each
of these leptons has associated with it a neutral particle. In the electron’s case,
this is the same neutrino involved in § decay. In the muon’s case, however, it is
an entirely new “mu neutrino,” distinguished from the electron neutrino only by
its lepton numbers. To clarify this statement, we assign an electron number of L,

= +1 to the electron and its neutrino, and L, = —1 to their antiparticles. Similarly,
we assign a muon number of L, = +1 to the muon and p neutrino, and L, = —1 to

their antiparticles. Both of these lepton numbers are then independently
conserved.



A full understanding of the origin of the hadrons was still needed, and this is
where Murray Gell-Mann came in. In 1961, Gell-Mann arranged these new
particles according to two properties: isospin and strangeness. The isospin
formalism requires an understanding of symmetry groups and so discussion of
this will be deferred until Chapter 6, where we will see exactly how Gell-Mann
arranged the hadrons into groups. For now, we will simply assert that the
hadrons have a well-defined property known as isospin, I;, and we will

categorize them according to this property. We will, however, discuss the
concept of strangeness.

Strangeness

The strength of a force tells us a great deal about it. As well as the typical
binding energies involved, it tells us the probability of an interaction occurring
as well as the characteristic length-scale and time-scale of those interactions.
This led to a problem with the new baryons that were being discovered: it was
noticed that some of these baryons were produced at a high rate, but that their
decays were typically rather slow processes. Since this was fairly strange
behavior, Gell-Mann suggested the existence of a quantum number which he
called “strangeness.” This strangeness could be quantified: if a particle decayed
via one of these strange processes to ordinary particles, it was given a
strangeness of magnitude 1. Actually, in much the same way that the electron has
the “wrong” charge of —1, history has dictated that strange baryons have a
negative strangeness, with positive strangeness reserved for strange antibaryons.
If a particle decays via a strange process to something that is itself strange, then
it is said to have strangeness +2, and so on. Gell-Mann offered an explanation
for the strange behavior of such hadrons based on this new quantum number. His
idea was to suggest that there were two distinct types of interaction responsible
for the production and decay of strange particles. The interaction responsible for
their production had a short characteristic time-scale and large coupling, and also
conserved strangeness. On the other hand, the process responsible for decay was
weaker with a longer time-scale, and crucially did not obey the law of
conservation of strangeness. We now identify these processes as the weak
nuclear and strong nuclear interactions. In this way, the strong interaction could
produce a pair of particles with opposite strangeness, which would then
propagate away from their point of origin. Once the particle is separated from its



twin, however, the strangeness-conserving process responsible for its production
is no longer an option for decay. This leaves only the strangeness-violating weak
process for their decay, with its characteristically longer time-scale.

With these concepts in place, we can now list some of the hadrons along with
their properties (Table 1.1). Note that the values given are the currently
measured values as opposed to the values as measured back in the 1960s.
Indeed, some of the particles listed here had not even been discovered at that
time. At the same time, this list is far from exhaustive, containing only a sample
of the hadrons that have been observed.

1.5 QUARKS AND SYMMETRIES

By categorizing the known hadrons according to their baryon number, spin,
isospin, and strangeness, Gell-Mann found a series of regular patterns, as in
Figures 1.4-1.7. Since the baryons’ antiparticles have the opposite baryon
number, they form a separate plot. In the case of the mesons, however, particles
and their own antiparticles are present in the same plot, since all have a baryon
number of 0. In particular, each meson’s antiparticle is in the position
diametrically opposed to it, and those mesons in the center are their own
antiparticles.

These patterns will be explored in more detail in Chapter 6, but the result was
that Gell-Mann found he could explain the patterns in terms of a symmetry
group, SU(3). Just as the periodic table displays the patterns in the elements,
Gell-Mann had drawn out the underlying symmetries hidden in the hadrons.
Notice in the case of elements, though, that a true understanding of the periodic
table only came with the discovery of the structure of the atom, since this did
more than simply categorize the elements: it explained them. In a similar way, by
1961, Gell-Mann had a “periodic table” of the hadrons, but still lacked a
mechanism that could explain it. This came two years later with the quark
model.



Hadron Mass({MeV) Spin  Charge(g) lsospin (/) Is Strangeness (5)  Baryon number ( B)
0 134.977 0 0 1 0 0 0
7t 139,57 0 +1 1 +1 0 0
n 547.862 0 0 0 0 0 0
u D57.78 0 0 0 0 0 0
K* 403667 ] +1 lig +!a +1 0
o~ TTE.5 1 0 1 0 0 0
pt TT5.4 1 +1 1 +1 0 0
n 939,565 1;‘2 0 1;‘2 - I."Iz 0 +1
il 935.272 1;‘2 +1 1;‘2 +1.-"12 0 +1
M 1107.440 lig -1 1 -1 -1 +1
0 1102.642 lig 0 1 0 —1 +1
Lt 1189.37 1z +1 1 +1 -1 +1
B~ 1321.71 lig -1 lig —lia -2 +1
g7 1314.86 lig 0 lig +1a -2 +1
Fa 1232 3;.'2 —1 3;.'2 _33-'2 0 +1
AL 1232 3;.'2 0 3;.'2 =1 I."Iz 0 +1
At 1232 3;‘2 +1 3;.'2 +1.-"12 0 +1

Attt 1232 3;.'2 +2 3;.'2 -I-SI.'"Q 0 +1

B 1387.2 3/g -1 1 -1 —1 +1
0 1383.7 3/2 0 1 0 -1 +1

Tt 1382.8 32 +1 1 +1 -1 +1

=5 1530 32 ., | 1ia —lta -2 by
me0 1530 3;.'2 0 1;‘2 41 I."Iz -2 +1
0= 1672 45 /g —1 0 0 —3 +1

TABLE 1.1 Selected properties of a selection of hadrons. The number of significant figures given for the
mass varies based on the precision with which the value is known.
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FIGURE 1.4 The spin-1 baryon octet.
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FIGURE 1.5 The spin-£ baryon decuplet.



What Gell-Mann realized was that he could explain the patterns of hadrons
with the introduction of a set of three new particles, which he called quarks.” By
assuming the quarks to have the properties listed in Table 1.2, all of the hadron
properties listed in Table 1.1 (with the exception of mass) can be explained by
taking baryons to be collections of three quarks, and mesons to be a combination
of a quark and an antiquark. Each hadron property is then found by summing the
corresponding properties of the individual quarks. The mass is an exception to
this rule and will be considered in detail in Chapter 6. The quarks were named
after the role they played in the model. The “up” and “down” quarks have
isospin values of up (+3) and down (—1) respectively, while the “strange” quark
has a non-zero strangeness. Notice that I have not listed the masses of the
quarks, since this is a slightly complicated issue, as we will see in Chapter 6.
With these assignments, we can see that the quark content of some sample
hadrons is given by
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FIGURE 1.6 The spin-0 scalar meson nonet.
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FIGURE 1.7 The spin-1 vector meson nonet.
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TABLE 1.2 Quark Properties
Hadron Quarks
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While these ideas were widely regarded as a great step in understanding the
hadrons, less popular was the suggestion that the quarks are actual physical
particles. Even Gell-Mann saw the quarks more as mathematical constructs that
fit the data. There is now plenty of evidence, however, that quarks are physical.
We still cannot strictly claim to have seen an individual quark, but at least we
now have a reason not to have seen one. Our current model of the strong force
was developed around 1965, and grew out of the observation that quarks require
an additional degree of freedom so as not to violate the Pauli Exclusion
Principle. It was determined that each quark “flavor,” u, d, and s, should come in
three “colors,” red, blue, and green. These names have nothing at all to do with
color in the literal sense but are convenient names for the three varieties of each
quark. This color charge was the basis for a color force: an interaction between
quarks based on their color as electromagnetism is based on charge. Since it is
based on color, and was modeled on quantum electrodynamics, it became known
as quantum chromodynamics. The mathematics of this new force conspired to
keep quarks locked away inside hadrons in a process called confinement,
explaining why no isolated quark has been observed. It also explained why
quarks formed collections of three in baryons and quark-antiquark pairs in
mesons: when a set of quarks contains one of each color, from outside the group
the result is color neutral, just as a pair of opposing charges appears electrically



neutral from sufficient distance. Similarly, a color and its anticolor also appear
colorless. A lone quark, if there were such a thing, would attract two other
quarks of other colors to itself to form a color-neutral baryon, or would attract its
anticolor to form a meson. Once either of these objects is formed, the result is
color neutral and no further interaction with external quarks occurs. Those
interactions do continue inside the hadron, however, with the strong force
mediators, the gluons, constantly carrying color information between the quarks.
The only evidence of all this activity from outside the hadron is the residual
strong force that “leaks” out and binds the hadron to other nearby hadrons
through the exchange of pions and other mesons. In this way, the original
formulation of the strong nuclear force is found to be merely the low-energy
effect of a more fundamental interaction.

As evidence for physical quarks, an argument for why we cannot see them
may seem fairly tenuous. However, there is additional evidence in the form of
Rutherford scattering. Just as the nucleus was found to show structure when
bombarded with high-energy particles, when the energy is increased far enough,
the hadrons themselves similarly deviate from Rutherford’s scattering formula.
This demonstrates that the hadrons have structure in the form of smaller
constituent parts. Once it is accepted that quarks are physical objects, we see that
d and s are similar, in the same way that the muon is similar to the electron. For
this reason, we arrange the fermions into generations of increasing mass.

Fermi’s original four-fermion formulation of the weak interactions was found
to be adequate to explain the majority of weak phenomena. However, later
developments would show the four-point interaction to be inconsistent at high
energies. Ultimately, these interactions were also explained in terms of a
mediating particle. As with Yukawa’s meson, the short range of these particles’
influence was attributed to a large mass. The picture that emerged was of an
interaction something like that shown in Figure 1.8, in which a quark emits a
weak force carrier, changing flavor in the process. The carrier, known as a W~
(antiparticle W), which must be charged in order for the interactions to conserve
charge, then decays to two leptons. To account for the decays of strange hadrons,
it was realized that these weak interactions must occur within their own
generation: d - u + W™, but also across generations: s — u + W~. Leptons, on
the other hand, were found not to take part in these cross-generational



interactions. It had also been noticed that the apparent couplings of quarks
through the weak interaction were reduced when compared with the lepton
couplings. To account for this difference, Nicola Cabibbo proposed a mixing of
quarks, such that the states that take part in weak interactions are a linear
combination of the physical quark states. We will see in Chapter 12 why such
mixing is in fact a very natural consequence of the theory of weak interactions.
This mixing was best explained if there was a fourth quark flavor, with charge
+2 to match the up quark; this possibility was first put forward by Glashow and
Bjorken on fairly shaky theoretical grounds, but yet completing the second
generation of fermions. This hypothetical quark was later incorporated into a
fuller understanding of weak interactions through the Glashow-Iliopoulos-
Maiani mechanism, which displayed such elegance that they named the
hypothetical particle “charm.” A meson formed from a charm-anticharm pair, the
J/¥ ° was discovered in 1974, confirming the prediction, and showing the charm
quark to be considerably heavier than its cousins. It was around this time that the
quark model gained a near-universal following. Since this, two more leptons—
the t and its associated neutrino—and two more quarks—the top and bottom—
have been found, bringing the number of fermion generations to three. These too
have their own quantum numbers, so we now have quark flavor quantum
numbers strangeness (S), charm (C), bottom (B), and top (T ), where the tilde is
placed on the symbol for bottom to distinguish it from the baryon number, B. In
addition, we have a third conserved lepton number, L, . The properties of all of

these particles may be found in Appendix A.

FIGURE 1.8 The weak interaction as a boson-mediated interaction.

1.6 THE STANDARD MODEL OF PARTICLE
PHYSICS




During the 1960s, Glashow, Weinberg, and Salam developed a remarkable
theory that unified the electromagnetic and weak interactions into one
“electroweak” theory, which will be explored in detail in Chapter 11. The first
prediction of this unified model to be experimentally verified was the existence
of neutral weak currents. These are weak interactions in which no flavor change
occurs: instead a fermion emits an electrically neutral weak force carrier called
the Z° which interacts with another fermion, again with no change in flavor. In
this way, Z° exchange is very similar to photon exchange but can occur between
all particles, whereas photon exchange occurs only between charged particles.
Such interactions allow for neutrinos to influence the motion of electrons, and it
is in this way that the process was confirmed experimentally. Many years later in
the 1980s, the W * and Z° bosons were directly detected by the Gargamelle
bubble chamber after their production in the Large Electron-Positron (LEP)
colliderat CERN. There was, however, one piece of the model that remained
elusive. In order to give masses to three of the mediators of the electroweak
theory, while retaining a massless photon, the model made use of a specific
spontaneous symmetry breaking process known as the Higgs mechanism,
originally proposed by, among others, Brout, Englert, Higgs, and Kibble. This
requires the introduction of a set of four spin-0 particles, three of which are
“eaten” by the weak force carriers, thereby providing them with their mass. The
fourth particle should remain physical and should, by that token, be detectable.
This is, of course, the Higgs boson.

The combination of the electroweak theory with quantum chromodynamics
led to the modern Standard Model of particle physics. With the exception of the
discovery of neutrino oscillations, which imply a small but non-zero mass for
neutrinos, and refined measurements of the model’s parameters, the model
remains largely unchanged. It consists of the fermions listed in Figure 1.9, along
with the photon, the W * and Z°, eight gluons, and the Higgs. As well as the
particle content, the Standard Model consists of a set of rules that govern the
interactions of these particles. In particular, we find a set of conservation laws,
whereby q, B, L,, L, and L, are conserved in all interactions. In addition, the

isospin and flavor quantum numbers, I5, S, C, B, and T, are also conserved in

electromagnetic and strong interactions, but not in weak. These conservation
laws can be understood in terms of “allowed” and “forbidden” vertices in
Feynman diagrams. In particular, the vertices shown in Figure 1.10 are all



allowed, where a solid line denotes a fermion, a dashed line denotes the Higgs, a
wiggly line denotes either a photon (y) or a weak boson (W *, Z°), and a springy
line denotes a gluon. Any vertex not in this allowed list is forbidden in the
Standard Model. If the initial and final states of a process can be connected to
each other using only allowed vertices, then the process can occur, but if there is
no set of allowed vertices that connects the states, then the process is forbidden
and not observed. The fermion-fermion-W interaction is complicated by quark
mixing (see Chapter 12), and the allowable weak vertices fall into two camps.
First, there are those in which one fermion is a charged lepton and the other is
the neutrino with the same lepton number, such as e” and v,, or p~ and v,,. The
second type consists of one “up-type” and one “down-type” quark. That is, one
fermion is u, c, or t, while the other is d, s, or b.

Generation
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FIGURE 1.9 The fundamental fermions of the Standard Model.
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FIGURE 1.10 The allowed vertices of Standard Model interactions. See the text for an explanation of the
“allowed fermion” label in the weak interaction.

The Standard Model has proven remarkably successful, but is by no means
considered to be the complete theory of particle physics. For one thing, it makes
no attempt to incorporate gravity. In fact, there is a very good reason for this,
since even the mathematical framework that underpins the Standard Model runs
into problems when it is applied to gravity. There are other issues with the
Standard Model that will be partly addressed in Chapter 12.

1.7 THE CURRENT STATE OF THE FIELD




In the years since the Standard Model was formulated, there have been
additional discoveries that the theory does not explain. One of these was the
discovery that galactic rotation rates cannot be explained by the amount of
visible matter within each galaxy. The most common view of this problem is that
there must be a large amount of matter that is not visible, known as dark matter.
The suggestion is that this should be some kind of as-yet undiscovered matter
that does not participate in the Standard Model interactions, or possibly takes
part only in the weak interaction. Although this idea has actually been around for
a long time—the galactic rotation problem was discovered as far back as the
1920s—the idea has only really gained widespread acceptance, and the scale of
the problem fully appreciated, since measurements were improved in the 1980s.
While the Standard Model does not contain any suitable candidates for this dark
matter, there are extensions of the model that are able to account for the presence
of this mysterious phenomenon.

The biggest shock discovery, however, came in 1998 from observations of
distant supernovae. Until this survey, it had been widely assumed that the mutual
gravitational attraction of galaxies should act to slow down the expansion of the
universe, and the aim of the survey was to measure this deceleration. What the
team found was wholly unexpected: the deceleration parameter was negative.
That is, the expansion of the universe is accelerating. This requires the presence
of a new type of energy in the universe, dubbed dark energy in analogy with the
dark matter that preceded it. In fact, though there are some alternative theories to
explain the perceived universal acceleration, it is now widely believed that over
68% of the total energy in the universe is accounted for by dark energy. We will
see in Chapter 13 that dark energy may also have an explanation intimately tied
to particle physics.

The final out standing piece of the Standard Model was discovered
experimentally in 2012. CERN’s Large Hadron Collider (LHC) was built as a
general-purpose collider, but one of the problems it set out to tackle was direct
observation of the Higgs boson, which has now been achieved. This was (and
still is!) not the LHC’s only goal, however. Given the theoretical problems with
the Standard Model, it is widely expected that there should exist additional
physics “Beyond the Standard Model.” Some of the theoretical extensions of the
Standard Model that have been proposed include supersymmetry, grand unified
theories, axions, and other dark matter candidates. All of these ideas, along with



others, generally predict the existence of new as-yet unobserved particle species.
At the time of writing, none of these proposals has been confirmed
experimentally. In a sense, this leaves particle physics today in somewhat of a
limbo: it is expected that new physics lies just beyond the reach of our most
powerful experiments, but there is so far no hint as to what that new physics may
look like. To be clear, though, this not is a disappointing end to this history. On
the contrary, not knowing quite what to expect from the current and next
generation of particle physics experiments makes this a very exciting time to be
active in this field.

EXERCISES

1.

Suppose the «a particle in Rutherford’s gold-foil experiment has initial
velocity v and collides with a stationary target of mass m,. The «a particle

then moves off with velocity v, and the target has velocity v,.

(a) Using conservation of momentum and conservation of energy, show
that

T

: mm :
|w.-f|2 (l — —fj = 2|vq| - |vt| cos b,

where 0 is the angle between v, and v,,.
(b) Hence show that if m, = m,, then 0 is acute and there is little

momentum transfer.
(c) Similarly, show that if m, < m, then 0 is obtuse.

(d) How do these scenarios relate to models of the atom?

Radium-226 has a half-life of 1600 years. What is the decay constant for
this material in decays s~'? How long would it take a sample to decay to
1% of its original size?

A free neutron decays via f-decay with a half-life of around 15 minutes.
Why is this not necessarily true of the neutrons in atomic nuclei?

4. The nucleus is on the order of a few fm across. The 8 decay of a nucleus



causes the emission of an electron, typically with an energy of around a
few MeV. By considering the uncertainty in the position and momentum
of an electron confined to the nucleus, show that the emitted electron
cannot reside in the nucleus before emission, but must be produced at the
moment of decay.

5. (a) By considering the conservation of charge, strangeness, baryon
number, and lepton numbers, determine whether the following
processes can occur. If the process cannot occur, state which
conservation law forbids it.
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6. Draw possible tree-level Feynman diagrams (no closed loops) for the
following interactions.
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In the last example, there are two diagrams that contribute: can you find
both?

1 As we will see in Section 2.2, the mass (sometimes also called the rest mass or invariant mass) of a
particle is a fundamental property that does not vary for a given particle type. For a photon, this mass is
zero. However, the equivalence of mass and energy as demonstrated by special relativity shows that there is

also an effective or relativistic mass of E/c?>. The momentum of a particle is the product of this effective
mass with velocity, allowing a massless particle to carry a non-zero momentum.

2 The name “neutrino” is not Pauli’s. In fact, Pauli called his particle the neutron, as what we would now
call a neutron had not been discovered at that time. The name was later changed to neutrino to distinguish



the two particles, and translates as “little neutral one.” Another change in terminology means that we now
call Pauli’s particle an anti-neutrino for consistency with later developments.

3 More generally, the difference is that fermions obey the statistical mechanics of indistinguishable particles
as derived by Fermi and Dirac, while bosons obey the Bose-Einstein statistics, hence the names. Bosons’
ability to cluster into the lowest energy state or ground state is also the mechanism behind the non-classical
state of matter known as a Bose-Einstein condensate.

4 To be clear, some particles are their own antiparticle twin. These include the photon and the neutral pion.

> The name “quark” is often said to have been taken from the line “Three quarks for Muster Mark” in the
book Finnegans Wake, because of its fitting the requirement of three particles. However, Gell-Mann himself
has stated that this is not quite the full story. In fact, he had chosen the pronunciation of the name he
intended to use for these particles based on nothing more than a whim, and which he intended to rhyme
with “cork.” The spelling only came later when he saw the above passage from Finnegans Wake, and in fact
the structure of the passage suggested that the author’s pronunciation of that word did not match his own,
but should instead rhyme with Mark. He neglected this fact and used the spelling “quark” to fit his chosen
pronunciation. As a result of this, there really is a right way to pronounce quark (cork) and a wrong way
(Mark). It is also worth mentioning that the pronunciation issue could have been avoided altogether if
Zweig had beaten Gell-Mann to publication, since he independently made a similar discovery and preferred
the name “aces.”

% The slightly unusual name, J/¥, is due simply to the fact that this particle was discovered independently
by two groups and given two distinct names.



SPECIAL RELATIVITY

This is the first of two chapters of general background that will be useful for the
remainder of the book. These chapters are not intended as introductions to these
subjects but more as a recap of material that the reader should be reasonably
familiar with. They will not be an in-depth look at the background material but
will cover only those aspects of the material that will prove most useful for later
chapters. This chapter revisits the ideas of special relativity, introducing the
concept of four-vectors and tensors. Most importantly for our purposes, it will
introduce the index notation that will be used throughout much of the rest of this
book. For a more in-depth introduction to this rich subject, the reader is
encouraged to take a look at the text The Special Theory of Relativity in this
series.

2.1 LORENTZ TRANSFORMATIONS

2.1.1 Scalars, Vectors, and Reference Frames

The reader is almost certainly familiar with the concepts of a “vector” and a
“scalar.” The way in which these concepts are typically introduced is to describe
a scalar as “just a number” and a vector as a “number with a direction.” In
practice, one likely thinks of a scalar as a single number and a vector as a
collection of components. However, these two descriptions don’t quite match. In
reality, there are objects we can write down that consist of a collection of
components that do not correspond to the idea of a number with direction. The
reason for this is that the real essence of a vector is captured by its behavior
under coordinate transformations. It is not enough to list a series of components:
we must also check that these components behave the right way if we look at the



object from a different perspective. To illustrate this idea, consider a two-
dimensional vector v. When this vector is viewed from a particular reference
frame, S, it may have a set of components ! 2. However, if viewed from a
different reference frame, 5. it has a different set of components ! 72 (We use
superscripts to identify the components for reasons that will become clear
shortly. Also, we are using bars to denote the second frame rather than the more
common “primed” notation simply to avoid clashes with superscipt indices.) If
the reference frames are related by a rotation through an angle 6, then we would
expect the relationship between components in each frame to be of the form
7! = ol cos B+ v2sinf and 72 = 2 cos # — o' sin #. We can say then that an object is only
a vector if it transforms in this way. The transformation can be written in a
concise form using a rotation matrix B where

v=HR-v

1 "l N " cosf sin# pl (2.1)
b 72 )~ \ —sinf cos6 e §

What is this matrix notation really saying though? It says that the matrix &
consists of four numbers which we can label by their row and column: R}, R,
R?;, and R?,, and that some (but not all) of these numbers multiply other

numbers v! and v2. Specifically,

o = RYyv!' + B2

i, A ; 2.2)
= H"li'l - 1’?"-3{‘2.
which we can summarize as
2
T = Z R v fors— 1.3, (2.3)
j=1

where the index i labels the new components and j labels the old components.
This is shorthand for two equations: one with i = 1 and one with i = 2. Notice
that the i index appears on both sides of the equation. The index j plays a very
different role. There is no j on the left because j is summed over on the right, so
there is no free j to relate the left to. In fact, we could change the name of j to
anything we like without changing the meaning of the equation. For this reason,



j is called a dummy index, while i is a free index. Equations like the one above
are so common in this notation that, by convention, we leave out the ) sign. A
repeated index automatically implies a sum over the dummy index. This is
known as the Einstein summation convention. Notice that Rij is just a measure of

how the i-th new coordinate depends on the j-th old coordinate. So

R L

7 Bxd A

Now although two observers in different frames will disagree on the
components of a vector, there is one property of the vector on which they agree:
namely, its length. This value is independent of any particular reference frame,
and it is this invariance property that classifies it as a scalar. To put this another
way, the transformation law for a scalar between different reference frames is
simply 7 — ¢. Notice that this is not true of a vector component such as v': this
transforms instead as one component of a vector, not as a scalar.

For ease of generalization to later cases, let’s now consider a vector with
infinitesimal components dv', dv?. The length of this vector is given by

df = Vdv2

S
.':'"

— \;[de'l Pt (dr?_}:’ (¢

— \f.fch”'dij{h'i

where 6;; is the Kronecker delta, defined to be 1 if i = j and 0 otherwise. More
generally, the scalar product of any two vectors is given by

m-v— e.r*é!-jrj'. (2.6)

The delta is playing the role of a metric, an object that tells us how to form
scalars from vectors in a given coordinate system. For Cartesian coordinates in
Euclidean space, this metric is very simple. However, for other systems, it takes
different forms. For example, in polar coordinates r, 0, infinitesimal distances
are given by

= 1

di? = d-e':f £ 8 ?‘Ede'g = (Iript-jd:‘j.



where p;; is now the metric and is given by p,. = 1, pgg = r2, Prg = Por = 0.

In order to generalize these ideas to relativity, it is useful to consider here one
more concept: the gradient. The gradient of a scalar quantity, ¢, is the vector
formed from the derivatives of the scalar with respect to the coordinates, (0,¢,

0,¢), denoted 0,¢. By the chain rule, this transforms to a new reference frame
according to

ﬂt_.-‘)
ﬁ
Ozl O
IF O
Ozl

which is not the same as the transformation of our original vector v/ (Equation
2.4). We have two different types of vector that transform differently: the first is
called contravariant and the second covariant. We don’t think about this
difference very often in Euclidean space since the two types of vector behave
almost identically. We will see shortly that the same is not true in relativity.

Notice also that in order to form a scalar quantity ¢ from two vectors u’, v/,
then one must be contravariant and the other must be covariant, since then

(2.9)

From this, we can see that another way to view the metric is as an object that
converts a contravariant vector to a covariant vector. We can similarly define an

inverse metric 8V that converts covariant to contravariant.



If different observers are to agree on the laws of physics, then the two sides of
an equation must have the same transformation rule. We must be able to take two
equal quantities (F and ma, for instance) and transform to a different reference
frame to find that they are still equal! To put it another way, dummy indices must
always appear one-up-one-down, and free indices must match on opposite sides
of an equation. Let’s check a few:

F = ma becomes F* = ma’,

A - - aA?
N becomes E' = —8'V — 57
B = V x A becomes B* = £7%9; A,

E=—VV — . and (2.10)

where €U¥ is the Levi-Civita symbol, defined to be antisymmetric and 1 if i, j, k

are a cyclic permutation of 1, 2, 3. That is
b S-S
- S S (2.11)

=0k — 0 if any of i, j, k are equal.
We can take these ideas further and define objects with more than one index,
that transform according to (e.g.)

_ o7 E;A

i i
dzk ozt

E-‘..'I
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Such an object is known as a rank-2 tensor, and we can similarly define rank-
3 tensors and so on. Note that “vector” is just another name for a rank-1 tensor
and “scalar” means rank-0 tensor.

2.1.2  Special Relativity

Einstein’s special theory of relativity begins from the assumption that the
speed of light is a constant value, regardless of the reference frame of the
observer. This assumption leads directly to the concept of a Lorentz
transformation. The form of a Lorentz transformation is most easily written
down if we make certain assumptions about the two reference frames we wish to
transform between. Specifically, let’s assume that one observer, 5, is moving



with speed v relative to the other, S, along a direction that they both call the x-
direction, such that the two observers coincide at a time they both call 0. Then
the transformation between frames is given by

2
r — vt t —vr/c*

o

1\‘. l = f'r"}_l-"ll( -7 1\‘.

il (2.13)
1 —v?/c?

Any transformation between frames not perfectly aligned in this way can be
found by combining appropriate rotations with the above standard
transformation. Since this transformation mixes up the time and spatial
coordinates, it is no longer appropriate to treat time and space as separate
entities. Instead they become blended together into a four-dimensional space-
time. For this to make sense, the units for space and time must match: it would
make little sense in three-dimensional Euclidean space to measure one direction
in feet and another in meters!

One way to correct the mismatched units for time and distance is to use a
scaling factor that everyone can agree on. Since special relativity is founded on
the principle that all observers agree on the speed of light, we can re-scale time
coordinates by c, giving us a four-dimensional vector (or four-vector) (ct, x, y, z).
However, another approach is to recognize that nature is trying to tell us
something: maybe we were using the wrong units to begin with. If distances and
times are really two sides of the same coin, we should really use exactly the
same unit for each. In SI units, one meter is defined to be the distance that light
travels in one 299,792,458™ of a second, but this number is completely arbitrary,
chosen simply so that the meter is a typical everyday length for most humans
and the second is a typical everyday time. If we had chosen the fraction to be
simply 1, we could instead measure both times and distances in the same unit.
Whether we choose to call that unit seconds, meters, or something else is up to
us. In fact, we will use a similar argument in Chapter 3 to show that an
appropriate unit for length and time is MeV~!. With these “natural units,” the
standard Lorentz transformation looks a little more symmetrical:

r — vt i—vz

=, gL e, (2.14)
\,fl _ E.z v’l . E‘Q

T

and the space-time four-vector is simplified to (t, x, y, ).



2.1.3 Minkowski Space

The space that these four-vectors inhabit is not a simple generalization of
Euclidean space to four dimensions. Instead, it is a space with a fundamentally
different metric, known as Minkowski space. By considering the Lorentz
transformation, one finds that the quantity

ds? =dt? + dz? + dy? + d=? = d.z'frﬁ}jd.z'j (2.15)

is not invariant. That is, it is not a scalar. The correct form of the scalar quantity
associated with four-vectors is, in fact,

ds? = dt? — dz? — dy® — d2® = dz*g,,, dz". (2.16)
Notice that we have changed the indices on the four-vector to Greek letters: this

is common practice to distinguish Minkowski vectors from Euclidean vectors.

The metric, then, is not the Kronecker delta as for Euclidean space but instead
takes the form:

1 p—a—1

guv = § —1 il =6 00 (12.17)

o

or, in matrix form

- (2.18)
Guv O 9 —1 B Y

As in the Euclidean case, we can also define an inverse metric, g"", by
aupg™ = 0%, which converts covariant vectors to contravariant. The Lorentz
transformation, just like the rotation in the two-dimensional case, can be written
as

TH = AH, 7V, (2.19)

where
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(2.20)
We have already seen that covariant vectors transform according to the inverse
of this derivative, so we can say that

s D i = (2.21)

Also, notice that a Lorentz transformation followed by its inverse necessarily
brings us back to where we started, so we have (A™)" A#, =47,

It is worth noting at this point that, while we have referred to “the” Lorentz
transformation, the term is really much broader than the way in which we have
used it. A Lorentz transformation is any transformation of the above form that
preserves the scalar product of two vectors. To preserve this product, the
transformation must clearly preserve the metric. Therefore, we require:

ﬁ“zaﬁpaﬁﬂ.ﬂ — Guvo- (2.22)

Such transformations include the boosts (one reference frame moving relative
to another) but also includes ordinary threedimensional rotations. To see that this
is the case, we need only consider the transformation:

| 0 0 0
AR — 0 cosf sinf 0O s
Y 1 0 —sinf cos® 0 |’ e

0 0 0 1

(]
]
e

which gives a rotation in the x, y-plane through an angle 6, and is easily shown
to obey Equation 2.22. Angles are of course a very natural way to describe
rotations, since to find the combined transformation due to two successive
rotations about the same axis, we need only add the two angles. It turns out that
there is a similarly neat way to combine successive boosts if we define the
rapidity, &, of a boost by & = tanh™! v, where v is the relative speed of the two
reference frames. With this definition, boosts may be written in the form
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The typical route taken by a text on relativity at this point is to show that
various other constructs transform as four-vectors. Here, we will simply state
that the following objects (among others) all obey the correct transformation
laws:

p* = (E,pzpy, p:) = (E,p),

AP = (V, Ag, Ay, A,) = (V, A}, {2.25)

« [

i = (p, 3z jy: 3=) = (B ]) 5

(]
[ ]
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where E is a particle’s energy, p is momentum, V is the electric potential, A is
the electromagnetic vector potential, p is charge density, and j is charge current
density.

However, two important quantities that do not generalize to fourvectors in the
relativistic case are the electric and magnetic fields, E and B. In fact, these are
found to transform as the components of an antisymmetric rank-2 tensor:

i Ry <

E B —B. B
Oy x B u o o)
F=1g, B a8 =8 | o)
E, =B, B; O

known as the Maxwell field strength tensor. With this in mind, it is reasonably
straightforward to show that Maxwell’s equations can be written:

8 FM =¥ FH = grAY — ¥ AH. (2.27)

It should be noted that, in the above equations, we have extended the idea of
natural units to set the permeability of free space p also to a value of 1.

Since the metric is not quite as simple as in the Euclidean case, it is now
especially important to distinguish between contra- and covariant four-vectors.
This is because if we use the metric to lower an index on, for example, the
momentum four-vector, we get:



Pu = GuP’

However, as long as we are careful to make such distinctions, we are free to
move indices up and down with metrics as we please.

A final point on notation is that, having made a careful distinction in Section
2.1.1 between the contravariant and covariant vectors in Euclidean space, we
now lower all Euclidean indices, since we know that there is actually no such
distinction to be made in Euclidean space. This allows us such useful notations
as the following:

A — II."!.(]. A 1, .4.-3. .‘13} = [.f-'l[]. "L}
Ay = (Ao, —A1,—A2,—A3z) = (Ao, —A), and
A? = A A" = A2 — A — A3 - A

—A2—A-A

.......

2.2 ENERGY AND MOMENTUM IN
MINKOWSKI SPACE

We have seen that the energy and momentum of a particle together form a
four-vector: the four-momentum. Since we know that energy and momentum are
both conserved quantities, we can summarize both of these conservation laws in
one equation:

Y =7 (2.30)
: 7

where i indexes a set of initial four-momenta, and f indexes a similar set of final



momenta. An important consequence of the four-vector nature of the four-
momentum is that its square is an invariant quantity. That is, for a given particle,
there is a constant m such that

J:Q =gl — m?Z. (2.31)

We know this invariant quantity as the particle’s mass. In terms of the
components of four-momentum, the above equation relates energy, momentum,
and mass according to:

E? = pipi + m? = |p|* + m?. (2.32)

In particular, in the case of a particle at rest, the particle still has energy
simply due to its mass, namely E = m. Therefore, we can attribute any additional
energy coming from the energy-momentum relation to the particle’s motion.
That is, the kinetic energy of a particle is given by E; = E — m.

Example Calculation

Consider the decay of a heavy particle A into two lighter particles B and C.
Assuming that A was at rest when it decayed, what is the energy of each of the
decay products? This is a classic problem whose solution is a great example of
the use of four-vectors. First, we can use conservation of four-momentum to
write:

Py =P+ (2.33)

We then rearrange and square, remembering that the square of a particle’s four-
momentum is equal to the square of its mass:

Py — e =1C
(pA — PB }"3 = pe
P4 + B — 2pa - PB = PE

n.!%_l - -r'r':-ia — 2pA - pB = m%-.

(2.34)

Since we assumed that A was at rest, we know that its three-momentum is zero:
P4 = 0, and therefore its four-momentum is given by (E4, 0, 0, 0). Squaring this,



we find
’ 8 3 ; 4 -
p_‘j_l — f:-i —PA-pa==84= mi. (2.35)

so we can further simplify p, to (my, 0, 0, 0). This simple form for p, reduces
Equation 2.34 to

n.!%_l + m-ia —2maFEpg = m%. (2.36)
so we find we can express Eg as

- 2 2
My +mpg — M

E-,..'I
(W]
'-_!

Ep =
= 2m 4
Since this expression involves only invariant quantities, we can now determine
the energy of particle B (as long as we know the masses of the particles
involved). By symmetry, a similar argument holds for particle C.

2.2.1 Invariant Mass

We can extend these methods by introducing a quantity known as the
invariant mass, W. For any collection of particles, W is defined by

W2 = Z T P = Z E} — pi. (2.38)
ke k

To be clear, this quantity is only actually a mass in the special case that the
collection consists of only one particle. In larger collections, the physical
significance of W is a little more subtle. It is the mass equivalent to the total
energy of the system as measured in the center-ofmomentum frame, if that
energy were to be concentrated in a single particle. However, the fact that it is an
invariant quantity makes it useful for calculations.

As an example of the use of the invariant mass, consider a shortlived particle
X that typically decays via

X+A4+ B, (2.39)

with a lifetime that is too short for direct detection. How can we infer the



existence of such a particle? Well, regardless of the fourmomentum of the
particle X, the invariant mass for the A and B particles gives
W? = (E4 + Eg) — (pa +pa)°

: (2.40)
(Py +P) (Pau +pPBu) = PkPxp = m¥,

by conservation of four-momentum. If the A and B particles are measured as
having originated at the same point with a combined invariant mass of m%. it is
evidence that they could have been produced by the decay of a particle with
mass my. Of course, one such signal on its own may well be due to an A and a B

particle coincidentally crossing paths. The power of the invariant mass is only
harnessed when looking at many thousands of signals or more. If the same
invariant mass appears in an A, B pair many times, it begins to provide evidence
of an undetected particle species X. These ideas will be built upon when we
consider resonances in Chapter 6.

Another use of the invariant mass is in determining the mass of a particle that
has escaped detection, for example by traveling through an area not covered by a
detector. Particles escaping an experiment without being directly detected may
still be inferred through conservation of momentum. When the momentum in a
collision appears to be unconserved, there must be some additional particle or
particles to account for the discrepancy. The invariant mass of this collection of
undetected particles is known as the missing mass, and is a particularly useful
concept when one particle is responsible for the majority of the missing
momentum. For example, in a collision A + B - C + D + X where X is
undetected, we construct the invariant mass:

W2 = (Es+Ep—Ec—Ep)®—(pa+ps—pc—pp)’. (241)

In this case, W is the mass of the missing particle, 1W? = m3.

EXERCISES

1. Show that CikChim = (.i:'fd'jm — OimOke-

2. Show that Equation 2.24 is equivalent to the standard Lorentz
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transformation given in Equation 2.14.

. (@) Using the transformation laws for the contravariant four-vector A*

and the covariant four-vector B, derive the transformation law for
the rank-2 tensor X¥, = A¥B, .
(b) Hence show that the object X} is a scalar.

- Evaluate g,,, g"".

. (@) For a symmetric constant rank-2 tensor a,,, show that

pv?

i}P l ”.“ E_,-.".l H ."'1. i :l = 2(! L ."'.1“ ap.":l o .

(b) For an antisymmetric rank-2 tensor b*" show that a,,, b*” = 0.

- Calculate 0, exp(g,,, X'x" ) where g, is the metric and x* is the space-

time coordinate four-vector.

- (@) By considering the case when v = 0, show that 0,F"" = j* gives one

of the inhomogeneous Maxwell equations.
(b) By considering the case when v # 1, show that it also gives the other
inhomogenous equation.

- The antisymmetric rank-2 tensor L*" is defined by

I = '’ — z¥p",

where x# is a position vector and p* is the four-momentum.
(@) How many independent components does L, have?

(b) What is the physical significance of the components L; and L;?

. A Higgs boson with initial three-momentum 200 MeV decays to two

photons. Assuming the photons have equal energy, find the energy of
each photon and the angle between their trajectories.

In Experiment A, a particle of mass m is accelerated toward its
antiparticle, which is stationary. In Experiment B, the same type of
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particle and its antiparticle are accelerated toward each other with equal

and opposite momentum.

(a) Write down the four-momentum of each particle in both cases.

(b) Use conservation of four-momentum to find the invariant mass, W,
for each system, in terms of the particle energies, momenta, and
masses.

(c) Hence determine the minimum total energy required for each
experiment to produce a particle of type X with mass my.

(d) Write the required energy in experiment A in terms of Othat in
experiment B and show that

= ;
Es=ZE% —m?
4
(e) Which type of experiment is more energy-efficient?

The position of an object is described by a four-vector x*. We can define

a four-velocity U¥ = dx*/dt where 7 is the proper time for the object (the

time as experienced by an observer moving with the object). We can also

define a four-force dp*/dr.

(a) What are the components of U¥?

(b) By considering the energy and momentum of a particle of charge Q
in an electromagnetic field, show that the covariant form of the
Lorentz force is

W _ qu,

aTm

where FHV is the electric field strength tensor.



QUANTUM MECHANICS

While special relativity gave our understanding of space and time a gentle prod
in the right direction, quantum mechanics beat our ideas of the universe into
submission. We will not delve into the history or origins of quantum mechanics,
as other texts do a better job of this than a single chapter can manage. As in the
last chapter, the aim here is to provide a reminder of some ideas that the reader
should be familiar with, focusing in particular on those points that are most
relevant to later chapters. For a comprehensive introduction to the subject, I
direct the reader to the quantum mechanics text in this series: Quantum
Mechanics.

3.1 STATES AND OPERATORS

A good place to start in understanding quantum mechanics is wave-particle
duality: particles exhibit wave-like behavior and waves can sometimes act like
particles. This is very counterintuitive, since waves and particles are very
different beasts on the surface. Waves are characterized by smooth continuous
properties, whereas particles are discrete objects with definite properties. The
way to make (at least some) sense of this duality is to understand that everything
acts in a manner that is not quite like either of these concepts, but as something
that has properties of both. There is a correspondence between the particle-like
and the wave-like properties of a quantum object, which can be summed up in
two equations. First, the energy of a particle is related to the angular frequency
of its corresponding wave by E = hw, and second, the momentum of a particle is
related to the wave-vector by p = hk. As with relativity, we take the hint that
nature is giving us, and redefine our units in such a way as to get rid of the
unnecessary constants. In particular, we choose h = 1, reducing these equations



to E = w and p = k. In order to reconcile the wave-like and particle-like aspects
of a system, quantum mechanics introduces a new concept, which is able to
reproduce both types of behavior in different situations. The new concept is that
of the quantum state.

A system has a Hilbert space H of possible states that it can be in, essentially
equivalent to the phase-space of classical mechanics.! We denote individual
states in this space using the “ket” notation: |). In fact, the physically distinct
quantum states are given only by the direction in the Hilbert space. In other
words, the state of a system corresponds to a ray of vectors in the Hilbert space,
rather than a particular vector. For this reason, it is necessary to choose a
consistent normalization for the physical states of a system. The simplest choice
is for all physical state vectors to be normalized according to (¢ | ¢) = 1. The
Hilbert space is a complex vector space, so we must also have a way to write the
Hermitian conjugate of a state. For this we use the “bra” {y| = |¢)T. The inner
product of two state vectors is then written simply as (i | ¢,). We also have a

set of operators O that act as a linear map from # to #, mapping state vectors to
other state vectors. These are linear in the sense that
O (a |} + b)) = aO | ) +b0 |ib). It should be noted that this ket notation is
specifically designed to be independent of any particular representation we may
have in mind for the quantum state, so if we wish to formulate quantum
mechanics in terms of wavefunctions and differential operators, then we are free
to do so: the state vector can simply be replaced with the wavefunction.
Similarly, some situations are simpler to consider in terms of vectors and
matrices, and we are equally justified in making this replacement instead. The
two representations are equivalent, inasmuch as they contain the same
information and make the same predictions.

The behavior of the state vector is determined by some linear differential
equation, until any act of measurement is performed, at which point it is said to
“collapse” into a particular state. It is these two distinct types of behavior that
give rise to the wave-like and particle-like properties of quantum systems. The
particle-like properties of the system are reproduced by identifying observable
quantities, A, of the system with Hermitian operators, 4, where the possible
measured values are the eigenvalues, A, of the operator: that is, there exists a
state |) such that 4 |) = A |y). Similarly, ) is then termed an eigenstate of A.



For a particular observable, the Hermiticity and linearity of the corresponding
operator guarantees that it has a set of eigenstates that form a complete
orthonormal set. That is, they form a suitable basis for the Hilbert space. As
such, any quantum state can be written as a linear combination of eigenstates of
A, |¢) = ay |@1) +ay |g,) + . ... When the measurement is taken, the measured

value will be one of the eigenvalues, say A;, with eigen-state |i;). The probability
of this particular outcome is given by «? where q; is the coefficient of |i;) in the
linear decomposition of the original state |).> At the same time, the state
“collapses” into the corresponding eigenstate |y;). As a result, if the same

measurement is performed again immediately (before the system has time to
evolve), the same result will be obtained, since the linear combination for the
collapsed state is simply |¢) = 1 |;). Simple probability theory then tells us that
the expectation value for this measurement (the average value if the same
measurement could be taken multiple times on the same state) is given by

|I|" s '\I' |I|" - '\I'
':-.Af' = (1 A i ).
1Y £ 1Y £

Suppose we wish to know more than one piece of information about a
quantum system. This will mean taking measurements of more than one quantity,
and therefore applying more than one operator to the state. In particular, suppose
we wish to measure the observables represented by the operators A and B. If we
measure A first, we will collapse the system into some eigenstate of A4, say |y/;).

If we then measure B, we collapse the system to a B eigenstate, say |¢,). If [y,)

consists of a linear combination of more than one eigen-state of 4, a second
measurement of A may well collapse the system to a different eigenstate from |
;). Measuring B has altered the value of A. The only way we can guarantee that

the measurement of B does not affect the value of A is if the two operators share
the same eigenstates. If this is the case then it can be shown that the operators
must commute. In fact, the converse is also true, so we find that the eigenstates
of two operators are compatible if and only if the operators commute. This is a
key concept in quantum mechanics, as it says that the values of two incompatible
observables are not only simultaneously unknowable, but in fact cannot even be
simultaneously defined. A state with a well-defined value for one observable can
never be a state with a well-defined value for a second incompatible observable.
In turn, this implies that the state of a quantum system is uniquely defined only
by some subset of the observable quantities of the system.



One final point about the observable operators is that they obey the same
relations with each other as their corresponding classical quantities. This is
important in the next section.

3.2 THE SCHRODINGER EQUATION

In order to produce the wave-like properties of a system, quantum mechanics
postulates that the time-evolution of a state vector between measurements is
determined by a wave equation. In particular, one set of states that should
provide solutions to the wave equation are the plane-waves:

1

~HEpI) = ypeiPT (3.1)

W= i.‘.-'3|_'-£f_:'~“"'_k'“" = e

(in the wave-formulation of quantum mechanics). Often, we will want to work
specifically in the wavefunction representation, in which case we will denote the
wavefunction as y rather than |y).

By acting with the differential operator i . we find that

0
"ot

—i(Et—p-x) —i{Et—p=x)

e = Fyge

i
= 31— | = E |4 .

That is, the state (wavefunction) is an eigenstate (eigenfunction) of the
operator i 2 with an eigenvalue equal to the energy of the state. We identify this
operator, therefore, as the energy operator

A

7, s
E=i—. (3.3)
ot

The plane wave is similarly an eigenfunction of the operator —iV with (vector-
valued) eigenvalue p, so we identify this as the momentum operator

p=—iV, (3.4)
or in index notation

f)}' = —F'lﬂt'. |'35:



We now construct the wave equation by taking the non-relativistic energy-
momentum relation:

E=_—_p*+V, (3.6)

where V is the potential energy, then promoting each term to the relevant
operator,
2 Aes

and giving the operators something to act on:

) 1 ~3) ) T TOR
E )y = —p° ) + V |2
L e )
i e g g i
— ) = ——V )+ V |¢ (3.8)
"ot ) 2m ) v
1 , o
= gm0 ¥} +VI9).

We have arrived at the time-dependent Schrodinger equation. Notice that the
operator V" simply has the effect of multiplying by the potential energy V.

All of this should be familiar, and it is reviewed here simply to ensure that the
reader can appreciate the logic behind the equation. This will be useful when we
wish to derive similar equations in a relativistic setting.

3.3 PROBABILITY CURRENT

Possibly slightly less familiar is the concept of probability density current.
Recall that the probability of finding the particle described by a wavefunction in
a given region R is given by

PlH) — / (| ) 4z (3.9)
JR

where the wavefunction is normalized such that



[ (2| ¥ d3r =1. (3.10)
all

Space

So we can interpret (i | ¢) = |y|> = Y*y as a probability density function. As a
system evolves in time, the probability of finding the particle at a given point
will change. The probability density will fall in some places and rise in others,
but all the while, the total amount of probability density must remain the same
since the probability of finding the particle somewhere must always be unity. We
can imagine, then, a flow of probability density around the system, with a
probability density current carrying from place to place the likely position of the
particle. We can find an expression for this probability density current by
recognizing that the conservation of overall probability implies a continuity
equation.

Continuity equations take the form

3, :
—p+V-j=0, (3.11)
! J

where p is the density of some conserved quantity and j is the associated density
current. To see why this implies continuity, we integrate over some region V,

. 8 _
[ & —p=— [ Prv. i
JV C}f JV .
. (3.12)
== /dS “Js

boundary

by the divergence theorem. Therefore,

o
hisic'; LS [ds 5, (3.13)

ot

boundary

where ¢ = J_ﬁ.-_d"l-r p- So the value of Q within the region V can only change if
there is a net non-zero value of the quantity j at the boundary of V. We can see
that Q is the conserved quantity and j is the current. In particular, if V is taken to
be all space, then the right side must vanish and the total value of Q for the
universe is constant. Put another way, Q is conserved locally and also therefore



globally.

So we wish to find a suitable j when p = |y|>. To do so, consider the
Schrédinger equation and its complex conjugate in their wave-mechanical
representation:

9, 1 o i . N T
'Eﬁ-t_-'l — —Eﬂgﬂﬂj'— Vi and — U —ﬂf}gﬂgﬁ-‘ +.]rf b :
(3.14)
Now we multiply the first of these by ¢/* and the second by y:
a ; s
i —h = —*8:0;¢0 + V™Y and
- ot 2m g
h (3.15)
= C} I* 1 ' 1% R
—F'E_;'a'{_-" = —ﬂﬁf-‘ﬂfaﬂ; +V 0w,
Subtracting one from the other, we find
: [ % a 1 | 'E} K l K Fi | | [ %
i (t sk drvis ) == 0;0;¢ — G;0;¢7)
: d [ % 1 L g y | % ( |
*'-a (Y ¢) = —Eﬁ‘f (™ Oih — VO™ (3.16)
a .
=" 5P = —0;7i,
where p = ¢*y and we have identified the current as
" J' T % ! [ : [ - Lk
Ji = —m {1‘_' ﬂf y — 'EI."C}:,"EI." :l i L-'}l i)
or
. b et loesone A
j = —— (v*Viy — V™). (3.18)
: 2ma RS

This, then, is the probability density current that quantifies how probability
moves around in the system. We will see later that the correct interpretation of a
similar conserved current in the relativistic case is an important part of
understanding particle physics.



34 ANGULAR MOMENTUM AND SPIN

A particularly important, and relevant, example that demonstrates some of the
ideas of quantum mechanics is that of angular momentum. The (classical) orbital
angular momentum of an object is given by

L=rxp, or L;==&grim, (3.19)

where r is the object’s position vector and p is the object’s momentum. Since
operators bear the same relations to each other as their classical counterparts, we
can define the orbital angular momentum operator as

L; = iuriPk = —i€ijr Ok (3.20)
That is,
Ly = —igyl, +iz8,
L, = —iz0y + iTh, (3.21)
L, = —iz0y + iyb,.

Looking at the commutation relations for the individual components of angular
momentum, we find

[LI. f_.y] —4 1
[Ly, Lz] =iL, (3.22)
:I—*: : I“.T] — f.!r_a-u

Since no two of these components commute, it is impossible to measure two
distinct components of angular momentum simultaneously. In fact, it is
meaningless even to consider the value of one component if another component
is known: it is simply not defined. However, it is possible to measure
simultaneously one component and the overall magnitude of the angular
momentum L2, since L2 commutes with all three of the components. We will see
later that this is an example of a Casimir, and will also see how this idea
generalizes to other systems. So while it makes no sense to ask what all
individual components of angular momentum are, we can ask what one
component is (conventionally the z component) as well as the overall magnitude.



This means that angular momentum eigenstates have two eigenvalues associated
with them: one for each simultaneously measurable quantity. It can be shown
that the possible values of L? are constrained to be of the form £(£ + 1) where £
is an integer, while the possible values of L, are constrained to be integers m

such that —¢ < m < £. These constraints arise from consistency of the eigenstate
solutions to the Schrédinger equation under rotation through 2mr. Specifically, it
may be derived from the spherical harmonics (see Section 6.4.3).

Now consider a particle with an intrinsic angular momentum, not due to the
particle orbiting any point, but just an inherent property of the particle itself.
This is found to be the case for most particles—indeed, it is a part of the identity
of most fundamental particles—and the typical picture that springs to mind is of
a particle spinning on its axis. For this reason, the property is referred to as spin,
even though the picture is somewhat misleading. The particle cannot be literally
spinning, because fundamental particles are either point particles or are so small
that their spatial extent cannot be detected. If the latter is true, then the particle
would be spinning so fast to account for the intrinsic angular momentum that the
surface of the particle would be traveling considerably faster than the speed of
light. On the other hand, if the particles truly are point-like, then it is not clear
what it would even mean for them to spin. So particles do not literally spin, but
they do have an intrinsic, measurable, angular momentum called spin.

In the case of spin, the constraints on the possible eigenvalues that apply to
orbital angular momentum do not necessarily apply, and we must use a different
approach to find the eigenvalues. First, we introduce a set of operators to
represent the spin. If spin is a type of angular momentum, then the commutation
relations for angular momentum operators must apply and we find

Sz
i g :""I
S.

Also, we construct the operator that describes the magnitude of the spin

¥

$?=82+52+ 5% and find
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g5 =B 5] = 5] =5 (3.24)



as expected.

Consider now an eigenstate |s) of both S, and S?, with eigenvalues m, and S?
respectively. We construct a pair of “ladder operators™

19: = .15‘1- :t e’.Sry :__3.:?.-5|
and find the following commutation relations:
[Sz,54] =+S+ and HE 5}] — (. (3.26)

Acting on the eigenstate |y) with S, produces a new state which, through use of
the commutation relations, we can easily verify is also an eigenstate of both S,
and S? with eigenvalues m, + 1 and S? respectively. That is:

S.Sy [¥) = (ms+1)S4 |¢¢) and  S2S, |of) = S25, o). (3.27)

This is why S, is known as a ladder operator (specifically a raising operator); it
has the effect of incrementing the z component of spin. Similarly, S_ is a

lowering operator, which decreases the z component of spin by one unit. Both
operators, however, leave the magnitude of the spin unaltered.

So for a given value of S there exists a series of eigenstates with this
magnitude of spin and differing values of m—that is, differently oriented spins.
For this value of S?, there must exist a maximum m,, since if mg increases
without bound, the z component of spin will eventually outgrow the spin’s
magnitude. Let’s call that maximum eigenvalue m_,, and the corresponding

eigenstate |y,.,). Since the incremental relation, Equation 3.27, holds even in
this case, we have

- y \ I f Y
JE_":‘E"+ |'t_-"1m=|x.} e (”i'm;uc ER l}"E-;+ L1]I]'<L1i} : '-.3-2'5’

but this implies the existence of a state S, |/,.,) With an eigenvalue (m,,., +1),

which is greater than our assumed maximum value m_,. The only way to

max

resolve this apparent contradiction is for S, |{/,,.,) to vanish. We can use this fact

to relate m_,_. to S%. First, inverting Equation 3.25, we can write the operators for
the x and y components of spin as



Sy = # and S, = % (3.29)
which in turn allows us to write S as
84 —58-8, 18 15 (3.30)
or equivalently as
5'=8,9.-8.4+8. (A:%E)

Acting on |y,,) with the first form of S? above, we find

& W T o R I

S |'L"nmx} = (5-5++5: + S;) |'L"n|mc,}
b e+ IR \ o ag)
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since S, W) = 0. So we can identify S?> = m_ (m.. + 1). We can perform
this analysis again, using the eigenstate with the minimum allowed z component
— 1). Equating

of spin m_;,. This leads, in a similar fashion, to $? = m_; (M,

these expressions we find
'”'!'nleu'::'m'llm 4 l::' = ”i'tu'lu'::'r”]uilu _ 1} (3.33)

that
= M.« + 1, which we can immediately rule out as

It should be fairly obvious that, for a given m the only values of m

max? min

satisfy this relation are m,

nonsensical, and m;, = —My.y-

Since m,,;, and m are necessarily separated by an integervalue, this

min max

restricts the possible values for m_,, to half of an integer value. Putting this all
together, we find that, without the additional restrictions imposed on orbital
angular momentum, the allowed values of spin (and, indeed, of angular
momentum in general) are that S? = s(s + 1) for some half-integer value of s, and
m, takes all values in integer steps from s to —s.

This is an important result since, as we saw in Chapter 1, the spin quantum
number s is a fundamental property of elementary particles. In fact, due to the
spin-statistics theorem and the Pauli exclusion principle, it is the quantum



number that determines the behavior of the particle arguably more than any
other.

3.5 SPIN ! PARTICLES AND THE PAULI
MATRICES

The particles of the standard model all have spin quantum numbers of 0, 3, or
1, and of these, the only fermions are the spin-; particles. Since fermions make
up what we typically think of as matter, it is important to have a good
understanding of the quantum mechanical behavior of spin-; particles. In
particular, in many physical systems, it is electrons that underpin the mechanics
of the system, so we must be able to model the behavior of electrically charged
spin-; particles. We will see in Section 3.8 how to include electromagnetic
interactions, but for now, let’s find a way to model the spin of an electron.

Since spin is an angular momentum, the spin operators must obey the correct
angular momentum commutation relations (Equation 3.23). In addition, each
operator must have only two eigenstates with eigenvalues of +1. In the language
of Section 4.3.1, we wish to find a two-dimensional representation of the algebra
defined by Equation 3.23. This is achieved by the matrices X; = £o;. where o; are

e (0 —i _ i
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(3.34)

the Pauli matrices:

Notice that 05 is chosen to be diagonal since it is conventionally the z axis along

which the spin is measured. The reader is invited to check that the above
matrices ¥; do indeed satisfy Equation 3.23. Further-more, the eigenvalues for

each operator are easily shown to be +; as required.

Since we are representing the spin operators with 2 x 2-matrices, we must
similarly use a two-component column matrix for the state vector. Since this
state vector is introduced specifically to describe spin, it is known as a spinor.
This is a term whose meaning has expanded greatly since its original
introduction, and we will be seeing much more of the concept in Chapter 8. In



this representation, we can show that the eigenstates of X5 are given by ( {1} )

(with eigen-value +3), and( '1' ) (with eigenvalue —3). Additionally, the total spin

operator is given by
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That this operator is proportional to the identity simply demonstrates that any
state in the relevant Hilbert space is an eigenstate of this operator. The
proportionality factor of T is equal to s(s + 1), with s = 1 as we would expect.

3.6 THE HAMILTONIAN

One way to express Schrédinger’s equation is in the form:

;(—} ) = H ) . (3.36)
ot

where H is the Hamiltonian operator, representing the sum of kinetic and
potential energy in the system. An unfortunate side effect of the rise of quantum
mechanics is that many students today are introduced to the Hamiltonian via
quantum mechanics, only later (if at all) meeting the Hamiltonian in its original
classical setting. Hamiltonian mechanics is an alternative formalism to
Newtonian mechanics; whereas Newtonian mechanics makes use of forces and
velocities, Hamiltonian mechanics works directly with energies and momenta.
The typical procedure is as follows:

» For a system with N degrees of freedom, make a list of N coordinates Xx;
that parametrize the system.

* Let p, be the momentum associated with the k-th degree of freedom.

* Construct the Hamiltonian or total energy of the system, H, in terms of
coordinates x; and momenta p;.

* Solve Hamilton’s equations:
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A little thought will reveal that these equations are nothing more than the

definition of velocity and Newton’s 2nd law respectively. As an example, the
Hamiltonian for a single particle with potential energy V'is given by:

2
g=r (yv-_BP, y (3.38)
2m 2m
which, if substituted into Hamilton’s equations, gives precisely the classical
behavior we would expect. We also see that this Hamiltonian immediately gives
back the Schrédinger equation when the dynamic variables are promoted to
operators, as discussed in Section 3.2.

The Schrédinger equation given in Equations 3.8 and 3.36 is time dependent
and describes the evolution of the wavefunction if left to its own devices. When
the energy of the system is measured, however, the relevant equation is the time-
independent Schrédinger equation, given by

Fi=——00;|v) + V |¢) = H |¢), (3.39)
2m ;

where E is the measured energy. In other words, as with any measurement, the
possible outcomes of measuring the energy of a system are the eigenvalues of a
quantum mechanical operator, and in this case the relevant operator is the
Hamiltonian.

A further important property of the Hamiltonian is related to its commutation
properties. The expected value of an observable quantity is conserved if and only
if the corresponding quantum operator commutes with the Hamiltonian. Though
not a rigorous proof, the following gives an idea of why this is the case:

a f -~ L ﬂ {'Ij_‘| e g ﬂ L'}
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Thus, if [H 4] — 0, there is no change in the expectation value of A.

3.6.1 The Lagrangian

A final point to make here is that there is an alternative description of
classical mechanics that relies on a different, but related, concept. Rather than
constructing the Hamiltonian as the sum of kinetic and potential energy, we can
construct another quantity, known as the Lagrangian, as the difference between
kinetic and potential energy: L = E,;,—V. Rather than using a set of coupled first-

order equations to find the behavior of the system with respect to one of its
degrees of freedom, we now use a second-order equation, known as the Euler-
Lagrange equation. This equation is derived from the principle of least action,
which states that the path followed by a system is that which has the smallest
value of the action, S, defined by S[path] = [, Ld¢. The equation takes the form

i " 8L ) B L (3.41)
dt (fi".é';‘.’ = oz’ et

where L is considered to be a function of x; and i, for all k, as well as time. This
means that x; and i are treated as independent variables. We can also write the
momentum in the k-th direction in terms of the Lagrangian as pr = ﬁi and we
can move between Hamiltonian and Lagrangian formalisms by means of the
Legendre transformation: H = pi — L. The reader is encouraged to explore these
ideas more in Exercise 7.

An advantage of the Lagrangian formalism is that the Lagrangian transforms
as a scalar. This is in contrast to the Hamiltonian, which, being the total energy
of the system, transforms in the same way as the time coordinate. In the non-
relativistic case, this is essentially the same as a scalar. However, the power of
the Lagrangian formalism really becomes apparent in relativistic mechanics,
when the Lagrangian is invariant under Lorentz transformations while the
Hamiltonian behaves as just one component of a four-vector. For this reason,
particle physics, at the junction between relativity and quantum mechanics, is
most naturally described in the Lagrangian formalism. However, since relativity
necessarily treats space and time on an equal footing, the form of the Euler-
Lagrange equation given above clearly cannot apply to relativistic systems, since



the time coordinate receives special treatment. The correct relativistic
generalization of the equation utilizes a Lagrangian density, ¢, related to the
Lagrangian by L = [, d3x £. The Euler-Lagrange equation is now given by

Vi, (3.42)
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where the ¢, are a set of fields that depend on all four space-time coordinates x.

For the sake of any readers unfamiliar with this formalism, where practical I will
provide alternatives to the Lagrangian approach. This will also serve to keep the
interpretation of equations clear. However, as we progress, later chapters will
rely more heavily on the Lagrangian formalism. Fortunately, all that we really
require is the Euler-Lagrange equation (Equation 3.42).

3.7 QUANTUM MECHANICS AND
ELECTROMAGNETISM: THE
SCHRODINGER APPROACH

A physical system with electromagnetism can be made quantum mechanical
in the same way that any system is quantized: we impose the relevant
commutation relations on the classical Hamiltonian. We must, however, first find
a suitable classical Hamiltonian for a system incorporating electromagnetism. To
include a conservative force such as an electrostatic field in a Hamiltonian is
straightforward, since we know that a charge ge in a potential V has a potential
energy geV . This is simply included as a potential term in the Hamiltonian. The
magnetic part of the electromagnetic interaction is not so obvious, however,
since this is not a conservative force. The magnetic force, of course, depends on
the velocity of a charged particle through the magnetic field. This can be
accounted for with a Hamiltonian of the form
| \2

H — m '.l) = (;(-:_:"L

1 i ) 5 -
= — (pi — geA;) (pi — geA;) + g€V,
2m

+ geV’
(3.43)



where m is the mass of the charged particle, ge and p are its charge and
momentum, and V and A are the scalar and vector potentials respectively.

There is no intuitive reason for using this Hamiltonian, but it is easily shown
via Hamilton’s equations (Exercise 7) to lead to the correct behavior of the
particle in an electromagnetic field. Notice that we have replaced the physical
momentum of the particle with p — geA. Since the left-hand side of the equation
is just the total energy in the system, another way to view what we have done is
that we have made an additional substitution E - E — geV . In four-vector
notation (although it should be stressed that this is still a non-relativistic
Hamiltonian), we have switched p* for p# — geA* where p* and A" are the four-
momentum and electromagnetic four-potential. This substitution (known as
minimal substitution or minimal coupling) is found to be sufficient for the
inclusion of electromagnetism in more general systems as well.

Promoting this Hamiltonian to an operator leads to a timeindependent
Schrodinger equation for spinless particles in an electromagnetic field:
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One of the successes of this equation is that it correctly predicts the normal

Zeeman effect. The energy levels of a charged particle with orbital angular

momentum undergo Zeeman splitting in the presence of a magnetic field. This is

the mechanism behind the fine structure of spectral lines, and the above

Schrédinger equation is adequate to predict this behavior. To see this, consider a
magnetic vector potential given by

1

A = —;E;‘.;m.e'{nm. (3.45)

rail

where x is the position vector, and n is a constant vector.

By applying the curl operator to this potential, the magnetic field is found to
be
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so a potential of this form gives us a constant magnetic field. It is also easily
shown that the divergence of this potential is zero: 0,A; = 0. If we assume that
there is also no electric field, the third and final terms in Equation 3.44 thus
vanish, while the construct A;0;i in the second term becomes

: 1 e
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by the definition of the angular momentum operator in Equation 3.20.
Substituting into the Schrodinger equation, then, gives
3 1 - ge oo o [qr«:l'E : :
Fip = —0;0; — — B; Ly + A; A, (3.48)
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The second term in this equation is the term responsible for Zeeman splitting,
since a non-zero angular momentum clearly affects the energy eigenvalues of the
system. When considering electrons, the Zeeman splitting term is more
commonly written as

pi B, (3.49)
where p is the orbital magnetic moment of the electron, given by
pi = pBehi (3.50)

Here, ug = e/(2m,) is the Bohr magneton. This can be thought of as the natural

unit for describing the magnetic moment,? or as the constant of proportionality
when converting angular momenta to magnetic moments.

Unfortunately, the above electromagnetic Schrodinger equation is limited.
Where it falls down is in describing the anomalous Zeeman effect. This is an
additional splitting of energy levels, which was termed anomalous since, at the
time of its discovery, it had no explanation. This is because the effect is due to



the particle’s intrinsic angular momentum, which had not yet been discovered. A
suitable term may be introduced to the electromagnetic Schrédinger equation to
account for this behavior, of the form

sy Bi. (3.51)
Here, ji(s) is the spin magnetic moment, given by
1L(S)i = gspBSi, (3.52)

where S is the spin angular momentum. Notice the introduction of the new factor
g, however. This is the “spin g-factor,” found experimentally to be g, ~ 2. This

means that spin is somehow twice as effective as orbital angular momentum at
producing a magnetic moment. This is the reason that the electromagnetic
Schrodinger equation cannot be considered entirely adequate: the introduction of
this term is not only ad hoc, but includes a factor whose value must be deduced
from experiment, with no theoretical justification.

3.8 QUANTUM MECHANICS AND
ELECTROMAGNETISM: THE PAULI
EQUATION

For a more satisfying account of the behavior of electrons in a magnetic field,
then, we need a generalization of the Schrédinger equation that correctly
incorporates spin. We have already seen that the way to describe the spin of an
electron is via the Pauli matrices, requiring the use of a two-component
wavefunction. To derive our new equation, note that, in the absence of an
electromagnetic field, it should reduce to the free Schrédinger equation, only
with a twocomponent wavefunction (and an implicit identity matrix)

f;—iy — ﬁjj; pith. (3.53)

A useful identity involving the Pauli matrices now comes into play. For any

two vectors A and B, we have



(0id;) (0;B;) = AiAi + igij0iA; By (3.54)

Noting that g;ko;p;pk vanishes due to the symmetry of ppk, this allows us to
write Equation 3.53 in the form

@ . 1 (oip)2 4 3.55)
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Now reintroducing electromagnetic interactions via minimal substitution gives

the Pauli equation:

A 1 _ : s % : : e
e = "o (oi (O + igeAs)) (o5 (05 + igeA;)) ¢ + qeV .{;'r_ |
(3.56)

We will now demonstrate that this equation correctly predicts the spin
magnetic moment. First, we again use the identity (3.54), but this time notice
that the second term will not vanish:

(o3 (0; + igeA;)) (o (0; +igeA;))
= (8; + igeA;) (0; + igeA;) + g0 (0; + igeA;) (O + igeAy).
(3.57)
The symmetry of the bracketed factors, together with the antisymmetric Levi-
Civita symbol, would appear to cause the second term to vanish. While this
would be true for ordinary vectors, the object (0; + iqeA;) is a differential

operator, and this argument fails to apply. This may seem strange, but it is
equivalent to the statement that, while the cross-product of a vector with itself
must necessarily vanish, the cross-product of a vector with its own derivative
need not. So we have

J:Et'jkﬂ';‘ {E?j + ?rq(:!.f-'ljjl (QJ‘ = ?'g(:f.qk:l
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where the first and last terms have vanished by symmetry. Recalling that the

derivative acts on everything to the right, applying the above to the
wavefunction gives
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where all but the final term cancel due to the antisymmetry of &;;.

We are now in a position to put everything together. The energy levels
predicted by the Pauli equation are given by its timeindependent counterpart. For
an electron in the presence of a constant magnetic field and no electric field, we
canlet g = —1, A; = —%=;;42; B and V = 0. This leads to
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Using the definition of the Bohr magneton and the fact that S; = 57;. we can
write this as
7
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and we see that we have reproduced the electromagnetic Schrodinger equation
with the spin magnetic moment included and the correct spin g-factor. While the
Pauli equation is thus successful at describing the behavior of spin-; particles, it
is also not the full story, since it fails to incorporate relativity. We will see in
Chapter 8, however, how the Pauli equation can be derived as the low-energy
limit of a more general relativistic equation (Exercise 13). It is also worth
mentioning here that the magnetic moments of the proton and neutron cannot be
derived in this way, since this method applies only to fundamental particles,
whereas the proton and neutron are composite. Instead the proton and neutron
magnetic moments are generally expressed as

fip = gptNS and [, = gopNS, (3.62)

where Ly is the nuclear magneton, given by



The same magneton is used for both, since there is no obvious analogy of the
Bohr magneton specifically for the neutron. The g-factors are determined
experimentally to be g, = 5.586 and g,, = —3.826. Notice that a non-zero moment

for the neutron is strong evidence of internal structure, since a neutral
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fundamental particle should have no magnetic moment.

EXERCISES

1.

4.

Verify that the Pauli matrices satisfy the appropriate commutation
relations to be used as angular momentum operators.

Let|1) and |{) be the spin-up and spin-down eigenstates of ¥, with
eigenvalues +1/2 and —1/2 respectively.

(a) Find|1) and |{) in the form of two-component spinors.

(b) Hence show that

2

If the overall spin operator is X, where ¥? = ¥2 + ¥2 4 32 show that
v2 _ 3 1 0
- ( 01 )

When two particles are combined, we must consider the spin of the
combined state.

(@) Show that £V |14y = 1 11} where D™ = £t + where x(B),
(b) Show that the overall spin of the combined state is 1.

(c) Find the z-component of spin for the mixed spin states |11}, |1 1), and

show that these states are not eigenstates of £(°@}2,

(d) Show that both the symmetric spin state 5 (I} + [11)) and the
antisymmetric spin state = (I14) — [I1)) are || eigenstates and
find their eigenvalues.



5. In the previous questions, we have chosen the representation of S; = X,
arbitrarily to represent our spin operators: we could have chosen any
other set of matrices that obey the correct commutation relations. Show
that the relations in Exercise 2(b) hold regardless of representation by
deriving them straight from the commutation relations for angular
momentum.

7. (a) Show that the Hamiltonian given in Equation 3.43 leads via
Hamilton’s equations (Equation 3.37) to the Lorentz force law for a
charge in an electromagnetic field.

(b) Write down an appropriate Lagrangian for the same system and show
that this also leads to the Lorentz force via the Euler-Lagrange
equation.

1 As far as a mathematician is concerned, a Hilbert space is any vector space equipped with an inner
product, along with one or two other important properties. While Hilbert spaces can exist with any finite
number of dimensions, physicists generally reserve the term for the infinite-dimensional vector space of
quantum mechanical state vectors.

2 This is true so long as state vectors are normalized such that (y | ¢) = 1.

3 Specifically, the magnetic moment of the electron, since the mass appearing in the expression is the
electron mass. Similar expressions can be used for other particles.

4 The deviation of g, from 2 is known as the anomalous magnetic moment, and is a subject to which we will
return in Chapter 9.



SYMMETRIES AND GROUPS

4.1 THE IMPORTANCE OF SYMMETRY IN
PHYSICS

Symmetry plays an important role in various areas of physics—none more so
than particle physics. In fact, it could be argued that particle physics is
essentially the study of which symmetry groups exist and how they are
represented. While this statement may seem strange now, hopefully its meaning
will become more transparent by the end of this chapter and even clearer by the
end of the book.

Part of the importance of symmetries in physics stems from a key result in
Lagrangian mechanics known as Noether’s theorem, after its discoverer,
mathematician Emmy Noether. This states that, for each continuous symmetry in
the Lagrangian for a theory, there is a corresponding conserved quantity. In fact,
Noether’s theorem also gives us a way to compute the conserved quantity
directly from the relevant symmetry. Neither the formal proof of the theorem,
nor the exact nature of the correspondence between symmetries and conservation
laws will be given here.! However, as a rule of thumb, any two quantities related
by the Heisenberg uncertainty principle, such as time and energy, or position and
momentum, give a clue as to a symmetry/conserved quantity pair. As particular
examples:

symmetry transformation conserved quantit