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INTRODUCTION

WHY	STUDY	PARTICLE	PHYSICS?

Particle	 physics	 remains	 one	 of	 the	 most	 popular	 aspects	 of	 the	 study	 of
modern	physics.	Not	only	is	the	subject	popular	among	physics	students,	it	also
captures	the	imagination	of	the	general	public.	Admittedly,	a	part	of	the	reason
for	 this	 may	 be	 that	 the	 machines	 constructed	 for	 the	 field’s	 continued
development	 are	 easily	 some	 of	 the	 most	 awe-inspiring	 engineering	 feats	 in
human	history.	However,	I	do	not	think	that	this	is	the	full	story.	Rather,	I	believe
that	the	appeal	of	particle	physics	is	that	it	addresses	some	of	the	key	questions
that	lead	people	to	an	interest	in	physics	in	the	first	place.	First,	particle	physics,
arguably	more	than	any	other	discipline,	aims	to	answer	the	question	of	what	the
universe	 is	 ultimately	 made	 of.	 In	 my	 opinion,	 the	 only	 other	 discipline	 to
address	 such	weighty	 problems	 is	 cosmology,	 and	 the	 two	 could	 not	 be	more
different	 in	 their	 approach.	While	 cosmology	 studies	 the	 overall	 structure	 and
history	of	the	universe	on	the	grandest	scales—what	we	might	call	the	“holistic”
approach—particle	 physics	 is	 concerned	 with	 building	 a	 universe	 from	 its
simplest	 constituents.	We	can	 think	of	 this	 as	 a	 constructionist	or	 “bottom	up”
approach	to	understanding	the	world.	This	said,	the	aim	of	the	two	disciplines	is
ultimately	 the	same,	and	so	despite	 the	many	orders	of	magnitude	between	 the
scales	of	their	realms	of	study,	there	is	a	surprising	amount	of	overlap	between
the	 two.	This	 is	a	point	 that	we	will	explore	a	 little	 in	 the	 final	chapter	of	 this
book.

The	second	reason	I	believe	particle	physics	appeals	to	many	is	that	it	is	built
upon	a	few	guiding	principles.	Chief	among	these	is	the	role	that	symmetry	plays



in	 our	 universe.	 As	 we	 will	 see	 throughout	 this	 text,	 symmetry	 and	 its
implications	play	a	pivotal	role	in	the	field	of	particle	physics.	As	such,	there	is
an	elegance	and	beauty	underlying	much	of	modern	particle	physics.	Indeed,	it	is
the	 desire	 to	 produce	 a	more	 symmetrical	 theory	 that	 has	 led	 to	many	 of	 the
developments	 in	 the	 history	 of	 particle	 physics,	 including	 as-yet	 purely
hypothetical	 developments	 such	 as	 supersymmetry	 and	 grand	 unification.	 The
drive	to	develop	theories	of	the	world	that	are	elegant,	simple,	and	symmetrical
is	not	unique	to	particle	physics	of	course:	it	is	a	principle	adhered	to	by	all	areas
of	 physics,	 dating	 back	 at	 least	 as	 far	 as	William	 of	Ockham	 and	 his	 famous
razor	 in	 the	 fourteenth	 century.	 However,	 since	 particle	 physics	 develops	 this
idea	 to	 its	 full	potential,	 this	 is	 just	another	 reason	 that	 students	of	physics	are
commonly	drawn	to	this	field.

THE	AIM	OF	THIS	BOOK

This	 book	 has	 three	main	 aims.	 First,	 I	wish	 to	 introduce	 the	 reader	 to	 the
concepts	of	particle	physics.	As	a	theorist,	my	approach	to	this	is	mainly	to	come
at	 things	 from	 a	 theoretical	 point	 of	 view.	 As	 such,	 the	 emphasis	 is	 on
developing	 the	 ideas	of	particle	physics	 that	are	mathematically	consistent	and
then	 showing	 that	 they	 apply	 to	 the	 real	 world.	 This	 is	 as	 opposed	 to	 the
(arguably	more	historically	 accurate)	 approach	of	 finding	and	 refining	 theories
that	 fit	 the	 experimental	 observations.	 In	 this	 way,	 the	 reader	 will	 hopefully
develop	 an	 appreciation	 for	 the	 elegance	 of	 the	 subject	 and	 its	 reliance	 on
symmetry	 and	 simplicity	 as	 guiding	 principles.	This	 said,	 even	 as	 a	 theorist,	 I
must	acknowledge	that	occasionally	it	is	necessary	to	observe	the	real	world	to
ensure	that	our	theories	are	on	the	right	track.	As	such,	an	introduction	is	given
in	 Chapter	 5	 to	 some	 aspects	 of	 experimental	 physics	 and	 of	 how	 we	 may
compare	theory	with	experiment.

The	 crowning	 achievement	 of	 particle	 physics	 to	 date	 has	 been	 the
development	of	the	Standard	Model	of	particle	physics.	The	second	aim	of	this
book	 is	 thus	 to	 provide	 the	 reader	with	 a	 solid	 understanding	 of	 the	 Standard
Model.	 The	 necessary	 groundwork	 is	 laid	 throughout	 the	 book,	 and	 then	 the
Standard	 Model	 itself	 is	 discussed	 in	 Chapter	 12,	 along	 with	 some	 of	 its
properties	 and	 consequences.	 Despite	 its	 successes,	 however,	 the	 Standard



Model	 is	 known	 not	 to	 be	 the	 ultimate	 theory	 of	 fundamental	 particle
interactions,	 and	 some	of	 the	model’s	 limitations	are	also	discussed.	These	are
further	 addressed,	 and	 some	 of	 the	 extensions	 of	 particle	 physics	 “beyond	 the
Standard	Model”	are	introduced	in	Chapter	13.

Finally,	the	third	aim	of	this	book	is	to	provide	the	reader	with	the	necessary
toolkit	 required	 for	 an	 exploration	 of	 particle	 physics.	 With	 this	 in	 mind,
Chapters	 2–4	 provide	 something	 of	 a	 crash	 course	 in	 some	 of	 the	 necessary
mathematical	 background	 for	 the	 subject.	 Throughout	 the	 rest	 of	 the	 book,
various	 additional	 tools	 are	 gradually	 introduced,	 such	 as	 Dirac	 spinors,
Feynman	diagrams	and	their	related	calculations,	and	a	brief	introduction	to	the
concepts	 of	 lattice	 gauge	 theory.	 The	 hope	 is	 that,	whatever	 aspect	 of	 particle
physics	a	reader	wishes	to	pursue,	this	book	will	provide	a	useful	foundation.

UNITS	IN	PARTICLE	PHYSICS

The	Système	International	d’Unités	(SI	units)	is	a	marvelous	achievement	of
science	 and	 diplomacy:	 a	 unified,	 consistent,	 and	 logical	 set	 of	 units	 for	 the
description	of	any	physical	quantity	(and	even	some	anthropocentric	biological
ones	 for	 good	measure).	With	 this	 system,	 any	 two	parties	 anywhere	on	Earth
may	know	that	 they	are	measuring	the	same	quantity	in	the	same	way.	Despite
this,	 the	 SI	 units	 are	 not	 always	 the	 most	 useful	 or	 most	 natural	 for	 a	 given
discipline.	This	is	why	many	scientific	disciplines	develop	their	own	set	of	units:
solid	 state	 physicists	 commonly	 use	 the	 non-SI	 Ångstrom,	 while	 astrophysics
and	cosmology	routinely	express	distances	in	mega-parsecs.

The	units	of	choice	in	particle	physics	fall	into	two	categories.	First,	the	most
important	 quantity	 in	 experimental	 particle	 physics	 is	 the	 cross-section	 for	 an
interaction.	 This	 is	measured	 in	 the	 same	 units	 as	 area	 (as	 it	 is	 related	 to	 the
cross-sectional	area	of	the	colliding	particles),	but	the	scales	involved	are	of	the
order	 of	 a	 few	 femtometers.	 To	 avoid	 a	 profusion	 of	 annoying	 prefixes,	 the
nuclear	physicists	involved	in	the	Manhattan	Project	to	construct	the	first	atomic
bomb	 chose	 a	 unit	 of	 area	 much	 more	 suitable	 to	 the	 kinds	 of	 scales	 being
considered.	This	 is	 the	barn	(b),	equivalent	 to	100	fm2,	whose	name	originates
from	 comparison	with	 a	 barn	 door,	 since	 100	 fm2	 is	 a	 relativity	 large	 area	 in



nuclear	 physics	 terms.	 Since	 the	 barn	 is	 so	 ingrained	 in	 experimental	 particle
physics,	 it	 is	not	uncommon	 to	hear	 it	used	with	SI	prefixes.	This	 leads	 to	 the
rather	bizarre	“standard”	unit	for	luminosity,	or	particle	collisions	per	unit	cross-
section:	 the	 inverse	 femtobarn	 (fb–1).	 Similarly,	 nuclear	 physicists	 also
introduced	 the	 “fermi”	 as	 a	 unit	 of	 length,	 equivalent	 to	 10–15	 m	 or	 one
femtometer.	This	has	the	fortunate	side	effect	that,	when	abbreviated,	the	unit	is
identical	 to	 its	 SI	 counterpart:	 fm.	 In	 written	 form,	 then,	 the	 reader	 need	 not
consider	the	fermi	as	a	separate	unit.	It	is	worth	mentioning	here,	though,	simply
because	 the	 reader	 may	 occasionally	 come	 across	 the	 term	 “fermi”	 in
conversation.

In	theoretical	particle	physics,	the	quantity	of	interest	is	generally	energy.	In	a
similar	 vein	 to	 the	 adoption	 of	 the	 barn	 by	 experimentalists,	 theorists	 have
chosen	a	unit	of	a	suitable	scale	for	the	types	of	quantities	they	wish	to	study:	the
electron	volt	(eV),	equivalent	to	1.60217662	×	10−19	J,	or	the	amount	of	energy
gained	by	a	single	electron	when	passing	 through	a	potential	difference	of	one
volt.	 However,	 theorists	 also	 take	 this	 idea	 much	 further	 by	 introducing	 the
concept	of	“natural	units.”	By	choosing	units	such	that	the	numerical	values	of
the	constants	c	and	ħ	(as	well	as	a	handful	of	other	constants)	are	equal	to	1,	the
need	for	additional	units	 is	negated.	In	this	way,	all	physical	quantities	may	be
expressed	as	powers	of	eV	or,	more	commonly,	mega-,	gigaor	tera-electron	volts
(MeV,	GeV,	or	TeV).	This	idea	will	be	justified	further	in	Chapters	2	and	3.	Both
experimentalists	and	theorists	alike	will,	however,	also	on	occasion	convert	to	SI
units	for	clarity	or	to	compare	results	across	disciplines.



1.1

CHAPTER	1
A	HISTORY	OF	PARTICLE	PHYSICS

This	chapter	is	intended	to	provide	the	reader	with	an	overview	of	the	history	of
particle	physics,	but	that	is	not	its	only	function.	Along	the	way,	some	of	the	key
concepts	in	the	field	will	be	touched	upon	in	such	a	way	as	to	prepare	the	reader
for	later	chapters,	when	we	will	revisit	these	concepts	and	put	them	on	a	firmer
footing.

ATOMIC	THEORY

A	history	of	particle	physics	must	 start	 somewhere,	and	 this	one	starts	with
Isaac	Newton.	We	could	go	all	 the	way	back	to	Ancient	Greece	and	talk	about
the	 philosophical	 arguments	 regarding	 whether	 or	 not	 matter	 was	 infinitely
divisible,	but	we	will	avoid	 this	 for	 two	reasons.	First,	 such	matters	have	been
considered	in	the	philosophies	of	various	world	cultures,	and	the	author	does	not
wish	 to	 be	 accused	 of	 Eurocentrism.	 Second,	 and	 more	 importantly,	 the
following	is	a	history	of	the	scientific	study	of	the	particle	nature	of	reality,	and
science	itself	only	surfaced	as	a	discipline	in	its	modern	form	much	later,	in	the
15th	and	16th	Centuries.	Newton	believed	that	 light	 is	composed	of	a	stream	of
particles,	 which	 he	 called	 corpuscles.	 Though	 this	 idea	 was	 not	 originally
Newton’s,	 he	 developed	 it	 and	 showed	 that	 it	was	 able	 to	 correctly	model	 the
laws	of	 reflection	and	 refraction,	along	with	other	optical	phenomena.	The	big
problem	with	Newton’s	corpuscular	theory,	though,	was	that	it	failed	when	one
attempted	to	apply	it	to	the	diffraction	and	interference	of	light.	For	this	reason,
over	 time,	 it	 was	 gradually	 realized	 that	 an	 older,	 rather	 more	 conceptually
difficult	 theory	was	better	suited	to	describing	the	nature	of	light.	This	was	the
wave-front	 theory	put	forward	by	Christian	Huygens	26	years	before	Newton’s
model,	which	models	light	as	a	wave	propagating	through	space.	That	these	two



greatly	 respected	 scientists	 could,	 within	 so	 short	 a	 time	 span,	 propose	 such
vastly	different	models	of	the	same	phenomena,	perfectly	summarizes	one	of	the
big	questions	 in	 the	history	of	science.	This	 is	 the	question	addressed	by	 those
philosophers	we	have	glossed	over,	of	whether	matter,	at	its	fundamental	level,	is
continuous	or	composed	of	indivisible	discrete	units.	Waves	and	particles,	fields
and	 forces,	 atoms	 and	 infinitely	 divisible	 matter;	 all	 fall	 under	 this
continuous/discrete	dichotomy.

The	first	great	steps	toward	addressing	this	dichotomy	came	not	from	physics
but	 from	 chemistry.	 In	 the	 early	 1800s,	 John	 Dalton	 formulated	 his	 law	 of
multiple	 proportions.	 This	 stated	 that,	 if	 two	 different	 chemical	 elements	 are
capable	of	producing	more	 than	one	compound,	 the	 ratio	of	masses	of	 the	 two
elements	needed	to	form	one	compound	is	a	simple	multiple	of	the	similar	ratio
for	the	other	compound.	Dalton’s	explanation	for	this	law	was	that	each	element
came	 in	 discrete	 amounts:	 atoms.	 Each	 compound	 was	 formed	 from	 some
combination	of	the	atoms	of	each	element,	and	the	exact	compound	depended	on
the	 particular	 arrangement	 of	 atoms.	The	 theory	was	 also	 able	 to	 explain	why
elements	 cannot	 be	decomposed	 as	 compounds	 can.	Each	 element	has	 its	 own
type	of	atom,	and	an	atom	of	one	type	cannot	be	transformed	into	another.	What
Dalton’s	 theory	 did	 not	 answer	 was	 the	 question	 of	 why	 there	 were	 different
elements	 at	 all.	 There	was	 simply	 a	 group	 of	 known	 elements	with	 particular
properties	and	no	obvious	unifying	principle	to	explain	those	properties.	As	we
will	 see	again	 later	 in	 this	history,	 in	 the	absence	of	an	explanation	 for	a	 large
group	 of	 related	 phenomena,	 a	 good	 place	 to	 start	 is	 to	 catalog	 or	 categorize
them	to	look	for	patterns.	Even	if	those	patterns	cannot	be	explained,	at	least	the
underlying	structure	can	begin	to	be	glimpsed.	Although	many	attempted	such	a
categorization	 of	 the	 elements,	 the	 first	 person	 to	 construct	 a	 comprehensive
structured	catalog	was	Dmitri	Mendeleev	with	 the	Periodic	Table	of	Elements.
He	 found	 that	 there	 were	 regular	 periodic	 patterns	 in	 the	 properties	 of	 the
elements	 if	 they	 were	 arranged	 according	 to	 their	 relative	 mass.	 This	 pattern
would	later	be	explained	with	the	discovery	of	the	nucleus,	composed	of	protons
and	neutrons,	since	the	number	of	protons	uniquely	determines	the	position	of	an
element	on	the	table.

Mendeleev’s	 periodic	 table	 allowed	 for	 predictions	 of	 elements’	 properties,
but	without	an	understanding	of	why	the	elements	were	arranged	in	this	way;	the
table	 itself	made	no	assumptions	about	 the	nature	of	 the	matter	making	up	 the
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elements.	This	was	 then	 the	 trend	 for	many	 years:	models	were	 proposed	 that
made	 use	 of	 atoms	 as	 a	 computational	 tool,	 and	 some	 of	 these	made	 accurate
predictions,	 but	 none	 was	 entirely	 convincing	 as	 anargument	 for	 the	 physical
reality	 of	 atoms.	 This	 changed	 in	 1905,	 when	 Albert	 Einstein	 wrote	 a	 paper
explaining	the	origin	of	Brownian	motion.	Brownian	motion	had	been	observed
many	 years	 earlier	 by	 botanist	 Robert	 Brown,	 while	 he	 was	 studying	 pollen
grains.	His	 sample	was	 suspended	 in	water	 and	he	was	observing	 it	 through	 a
microscope	when	he	noticed	 that	 tiny	particles	 (smaller	 than	 the	pollen	grains)
exhibited	what	 appeared	 to	 be	 random	motion.	The	 particles	would	 drift	 for	 a
short	time	and	then	suddenly	change	direction	before	drifting	again.	The	reason
for	this	motion,	Einstein	showed,	was	that	the	particles	were	sufficiently	small	as
to	 have	 their	 trajectory	 altered	 by	 random	 collisions	with	water	molecules.	 In
fact,	 Einstein	 was	 not	 the	 first	 to	 suggest	 this	 as	 a	 mechanism	 for	 Brownian
motion,	 but	 it	 was	 he	 who	 derived	 a	 statistical	 model	 of	 the	 motion	 of	 large
numbers	 of	 molecules,	 demonstrating	 that	 the	 predicted	 motion	 of	 the	 small
particles	exactly	matched	observation.

Today,	 advances	 in	microscopy	and	nanotechnology	have	moved	us	 into	an
astonishing	world	 in	which	physicists	and	materials	 scientists	can	not	only	see
but	 even	manipulate	 individual	 atoms.	 It	 is	 sometimes	 easy	 to	 forget	 that	 the
majority	of	particle	physics	has	taken	place	in	relatively	recent	history.	Indeed,
the	 very	 existence	 of	 atoms	 was	 placed	 beyond	 reasonable	 doubt	 only	 after
Einstein’s	 1905	 paper.	 Our	 understanding	 of	 the	 nature	 of	 matter	 has	 made
remarkable	progress	in	a	little	over	100	years.	So	by	1905,	you	may	be	forgiven
for	 thinking	 that	 the	 continuous/discrete	 dichotomy	 had	 been	 resolved.	Matter
was	composed	of	atoms,	and	light	was	composed	of	waves.	Not	so	fast,	though.
In	the	same	year	that	he	conclusively	demonstrated	the	discrete	nature	of	matter,
Einstein	also	cast	doubt	on	the	wave	nature	of	light.	We	will	return	to	this	point
shortly.

ATOMIC	STRUCTURE

Even	before	they	had	been	definitively	shown	to	exist,	atoms	were	believed	to
have	structure.	A	look	at	the	periodic	table	shows	that	atoms	appear	to	be	built
out	 of	 the	 smallest	 of	 their	 kind—the	 hydrogen	 atom—since	 many	 mass



numbers	 are	 approximately	 integer	 multiples	 of	 the	 mass	 of	 hydrogen.	 This
suggested	 that	 hydrogen	was	 the	 fundamental	 unit	 of	matter,	 and	 that	 heavier
elements	were	somehow	built	out	of	hydrogen.	Those	masses	with	non-integer
multiples	of	 the	hydrogen	mass	would	later	be	explained	with	the	discovery	of
the	neutron.	Since	each	element	generally	comes	in	several	isotopes	(forms	with
equal	 numbers	 of	 protons	 but	 differing	 numbers	 of	 neutrons),	 but	 a	 sample
typically	 does	 not	 distinguish	 these	 isotopes,	 the	measured	 atomic	mass	 of	 an
element	 is	 the	 mean	 of	 the	 different	 isotopes	 weighted	 by	 their	 relative
abundance.

The	next	big	milestone	in	particle	physics	was	the	discovery	of	the	electron	in
1896	by	J.	 J.	Thomson.	The	 rays	produced	by	a	highvoltage	cathode	 in	a	near
vacuum	were	believed	by	some	to	be	a	stream	of	negatively	charged	molecules,
while	others	believed	they	were	some	different	kind	of	particle.	In	fact,	the	name
“electron”	 had	 already	 been	 given	 to	 these	 hypothetical	 particles	 before
Thomson’s	 demonstration	 of	 their	 existence.	 By	 passing	 cathode	 rays	 through
electric	 and	magnetic	 fields	 and	 carefully	 varying	 the	 strength	 of	 these	 fields,
Thomson	 was	 able	 to	 perform	 accurate	 measurements	 of	 the	 charge-to-mass
ratio	 of	 the	 particles	 in	 the	 ray.	 Assuming	 the	 charge	 to	 be	 the	 same	 as	 in
previous	charge-to-mass	ratio	measurements	of	ions	gives	a	mass	for	the	electron
of	0.0005	atomic	mass	units	(0.51	MeV),	over	a	thousand	times	lighter	than	the
hydrogen	atom.	This	 lent	 support	 to	 the	 idea	 that	even	 the	hydrogen	atom	was
not	 fundamental,	 but	 was	 instead	 constructed	 from	 smaller	 constituents.	 In
particular,	 Thomson	 proposed	 a	 model	 of	 the	 atom	 in	 which	 the	 negatively
charged	electrons	were	free	to	move	around	in	a	diffuse	cloud	of	positive	charge.
This	model	came	to	be	known	as	the	plumpudding	model	and	is	familiar	to	most
students	mainly	because	of	the	way	in	which	it	was	overturned.

In	the	same	year	that	Thomson	made	his	discovery,	an	unrelated	investigation
into	cathode	rays	 led	 to	 the	accidental	discovery	of	radioactivity.	The	radiation
given	 off	 by	 radioactive	 samples	 is	 characterized	 by	 its	 ability	 to	 ionize	 any
material	 through	 which	 it	 passes.	 The	 phenomenon	 was	 of	 great	 interest	 to
physicists,	 and	 its	 study	was	 responsible	 for	many	discoveries,	but	 it	 remained
poorly	 understood	 until	 the	 discovery	 of	 nuclear	 decay.	 We	 now	 know
radioactive	decay	to	be	related	to	the	transmutation	of	the	atomic	nucleus.	Due	to
instability,	an	atom	of	one	element	changes	its	identity	to	become	an	atom	of	a
different	 element:	 a	 process	 previously	 thought	 impossible.	 With	 our	 modern



understanding	 of	 the	 random	 and	 probabilistic	 nature	 of	 quantum	 phenomena,
we	also	know	that	an	individual	such	decay	cannot	be	predicted,	but	that	there	is
merely	a	finite	and	fixed	probability	of	its	occurence	in	any	given	unit	time.	This
probability	 is	 the	 decay	 constant	 for	 the	 process,	 Γ.	 However,	 given	 the	 vast
numbers	of	atoms	in	a	typical	sample,	the	law	of	large	numbers	implies	that	the
sample	as	a	whole	will	behave	predictably.	In	particular,	if	the	number	of	atoms
at	 time	 t	 is	N,	 then	 the	expected	value	of	 the	change	 in	 that	number	 in	a	short
time	interval	dt	is	given	by

Solving	this	first-order	differential	equation	gives	the	characteristic	exponential
decay	function	for	a	radioactive	sample:

We	can	also	characterize	this	type	of	decay	by	its	half-life,	t1/2.	This	is	the	time
that	it	takes	for	half	of	a	radioactive	sample	to	decay,	and	is	related	to	the	decay
constant	by	t1/2	=	ln(2)/Γ.

FIGURE	1.1	A	schematic	representation	of	the	Rutherford	scattering	experiment.

In	 1909,	 Ernest	 Rutherford,	 along	 with	 his	 collaborators,	 Geiger	 and
Marsden,	 dispelled	 the	 plum-pudding	 myth	 with	 their	 famous	 gold-foil
experiment.	 Rutherford’s	 previous	 work	 on	 radioactivity	 had	 identified	 three
distinct	 types	 of	 radiation:	 α,	 β,	 and	 γ.	 In	 this	 latest	 experiment,	 α-particles,
which	 Rutherford	 himself	 had	 correctly	 identified	 as	 doubly-ionized	 helium
atoms,	were	directed	on	to	a	gold	foil	target.	The	deflection	of	the	alpha	particles
was	then	measured	by	observing	their	subsequent	interaction	with	a	fluorescent
screen	 that	would	emit	a	 flash	at	 the	point	of	 impact	 (Figure	1.1).	 In	 this	way,
Rutherford	demonstrated	that	the	majority	of	α	particles	passed	straight	through



the	 gold	 foil	 with	 minimum	 deflection,	 while	 a	 small	 number	 of	 particles
received	a	large	deflection.	A	simple	calculation	using	classical	mechanics,	as	in
Exercise	1,	will	show	that	such	large	deflections	can	only	occur	if	the	α	particle
strikes	an	object	with	a	mass	much	greater	than	itself,	whereas	striking	a	lighter
object	 will	 have	 minimal	 impact	 on	 the	 α	 particle’s	 trajectory.	 In	 the
plumpudding	 model,	 the	 only	 objects	 from	 which	 the	 α	 particles	 could	 be
scattered	were	 the	electrons,	known	to	have	a	mass	several	 thousand	 times	 too
small	for	large	deflections.	This	suggested	the	existence	of	much	heavier	objects
in	 the	 gold	 atoms.	 Furthermore,	 the	 rarity	 of	 such	 large	 deflections	 suggested
that	 these	massive	 subatomic	 components	were	 also	 very	 small.	 This,	 then,	 is
how	the	nuclear	model	of	the	atom	was	born.	Rather	than	being	spread	out	in	a
diffuse	cloud,	 the	positive	charge	of	 an	atom	 is	 locked	away	 in	a	massive	and
dense	 nucleus,	 around	 which	 the	 electrons	 orbit	 through	 electromagnetic
attraction.	In	an	effort	to	verify	the	point-like	nature	of	the	nucleus,	Rutherford
derived	the	scattering	formula	that	bears	his	name,	to	describe	the	scattering	of
particles	 from	a	heavy	point-like	object	 as	 a	 function	 of	 energy	 and	 scattering
angle.	In	the	case	of	α	particle	scattering,	this	formula	is	given	by

where	E	is	the	energy	of	the	α	particle,	Z	is	the	atomic	number	of	the	scattering
center	(nucleus),	e	is	the	fundamental	charge,	θ	is	the	angle	through	which	the	α
particle	 is	 scattered,	 and	k	 is	 the	Coulomb	constant	 (1/(4πε0)	 in	 SI	 units).	 The
notation	dσ/dΩ	will	be	explained	fully	in	Section	5.3.1,	when	we	discuss	cross-
sections	 in	detail,	but	we	may	think	of	 it	as	a	measure	of	how	many	scattering
events	occur	 for	 a	given	 solid	angle	Ω.	We	will	 also	 see	 in	Section	5.3.1	 how
Rutherford	was	able	to	arrive	at	this	formula.	Further	experiments	by	Geiger	and
Marsden	 appeared	 to	 fit	 the	 Rutherford	 formula	 precisely,	 providing	 evidence
that	 the	 model	 was	 at	 least	 on	 the	 right	 track.	 However,	 while	 Rutherford’s
model	 is	 certainly	 closer	 to	 the	 truth	 than	 the	 plum-pudding	 model,	 it
immediately	runs	into	problems.	Specifically,	 if	 the	electrons	orbit	 the	nucleus,
then	 they	 should,	 according	 to	 classical	 electromagnetic	 theory,	 radiate	 away
their	 kinetic	 energy	 as	 light,	 since	 they	 are	 accelerating	 in	 an	 electric	 field.
Through	this	radiation,	 they	should	quickly	lose	all	kinetic	energy	and	fall	 into
the	 nucleus.	 Clearly,	 there	 was	 still	 something	 missing	 in	 the	 model.	 This



something	was,	of	course,	quantum	mechanics.

Quantum	mechanics	had	been	developed	around	the	same	time,	originally	by
Max	Planck	to	explain	the	energy	distribution	of	blackbody	radiation,	but	soon
also	applied	by	Einstein	to	an	explanation	of	the	photoelectric	effect.	In	order	to
explain	how	light	could	liberate	electrons	from	a	metal	surface,	he	assumed	that
light	comes	 in	discrete	packets.	Einstein	called	 these	quanta,	but	 today	we	call
them	photons.	The	photon	 is	 a	massless	particle	 that	 carries	momentum	p	and
energy	E,1	both	related	to	the	frequency	f	of	the	corresponding	wave	description
by

where	 h	 is	 Planck’s	 constant,	 and	 c	 the	 speed	 of	 light.	 A	 single	 photon	 is
absorbed	by	an	electron	in	the	photoelectric	effect	and	its	energy	is	used	partly	to
liberate	the	electron	from	the	metal.	Any	leftover	energy	is	carried	away	by	the
electron	as	kinetic	energy	through	Einstein’s	equation,

where	ϕ	 is	 the	energy	required	to	 liberate	 the	electron,	known	as	 the	material’s
work	function.	In	this	way,	the	quantum	description	of	light	was	able	to	explain
why	 the	 photoelectric	 effect	 will	 only	 occur	 above	 some	 material-dependent
threshold	 frequency.	 If	 the	 frequency	 is	 too	 low,	 the	 energy	 of	 the	 photon	 is
insufficient	to	liberate	an	electron.	In	contrast,	the	wave	theory	of	light	predicts
that	 light	of	any	 frequency	should	be	capable	of	producing	 this	effect	with	 the
kinetic	 energy	 of	 electrons	 depending	 instead	 on	 the	 intensity	 of	 the	 incident
light.	 The	 concept	 of	 single	 photons	 being	 emitted	 and	 absorbed	 by	 charged
particles	will	 turn	out	 to	be	 absolutely	 central	 to	our	modern	understanding	of
electromagnetic	interactions.

In	 1911,	 Danish	 physicist	 Niels	 Bohr	 combined	 Rutherford’s	 idea	 of	 an
atomic	 nucleus	 with	 Planck’s	 concept	 of	 discrete	 energy	 levels	 in	 quantum
mechanics	to	arrive	at	a	model	of	the	atom	in	which	electrons	could	only	exist	in
certain	orbits	around	the	nucleus.	This	model	was	successful	in	that	it	was	able
to	 explain	 the	 structure	 of	 atomic	 emission	 spectra,	 each	 emission	 line
corresponding	 to	 some	 “jump”	 between	 discrete	 energy	 levels.	 However,	 as



understanding	of	quantum	mechanics	developed,	ultimately	 it	was	realized	that
the	Bohr	model	could	not	be	the	full	story.	Later	developments	showed	that	the
strange	 dual	 nature	 of	 light,	 in	 which	 it	 behaves	 sometimes	 as	 a	 wave	 and
sometimes	as	a	stream	of	particles,	also	applies	to	matter.	In	order	to	account	for
this,	quantum	mechanics	describes	any	system	as	a	wave	function	 that	evolves
according	 to	 the	 Schrödinger	 equation.	 When	 a	 measurement	 is	 taken	 of	 the
system,	the	allowed	values	that	can	result	are	determined	by	expanding	the	wave
function	in	terms	of	a	set	of	basis	states.	In	particular,	the	measured	position	of	a
particle	 can,	 in	 principle,	 take	 any	 value,	 but	 the	 probability	 of	 finding	 the
particle	at	a	particular	point	is	proportional	to	the	square	of	the	wave	function’s
value	 at	 that	point.	Another	 remarkable	 consequence	of	quantum	mechanics	 is
Heisenberg’s	uncertainty	principle.	This	is	a	direct	consequence	of	the	wave-like
nature	of	matter	and	states	that	any	particle	cannot	have	a	simultaneously	well-
defined	momentum	and	position.	Certainty	in	one	implies	inherent	uncertainty	in
the	other,	since	a	wave	that	is	localized	in	space	must	necessarily	be	a	sum	of	a
large	range	of	Fourier	modes,	corresponding	to	different	momenta.	Energy	and
time	 follow	 a	 similar	 reciprocal	 relationship:	 the	 duration	 of	 an	 event	 and	 the
energy	 involved	 cannot	 be	 simultaneously	 known.	 The	 Bohr	 model	 is
incompatible	with	this	principle,	since	it	models	the	electron	as	a	particle	with	a
definite	 position,	 albeit	 one	 that	 orbits	 the	 nucleus.	 The	more	modern	model,
then,	relies	on	solving	the	Schrödinger	equation	for	the	bound	system	that	is	an
atom.	 The	 orbits	 are	 replaced	 with	 a	 set	 of	 “orbitals”	 that	 are	 the	 probability
distributions	associated	with	distinct	quantum	states	of	the	electron.	With	all	this
in	mind,	we	 do	 now	 have	 a	 definitive	 answer	 to	 the	 question	 that	 started	 this
chapter:	 is	 matter	 continuous	 or	 discrete?	 The	 answer	 is	 a	 rather	 surprising
“both!”

Rutherford	continued	his	experiments	with	α	particles	and	in	1917	found	that
directing	 them	 at	 nitrogen	 gas	 caused	 the	 emission	 of	 other	 charged	 particles.
These	 he	 was	 able	 to	 identify	 as	 hydrogen	 ions	 and	 show	 that	 they	 were
originating	 from	 the	 nitrogen	 atoms.	 He	 had	 shown	 that	 the	 heavier	 elements
really	 are	 built	 out	 of	 hydrogen.	 Unlike	 the	 original	 formulation	 of	 this	 idea,
however,	 it	 was	 the	 heavier	 elements’	 nuclei	 that	 were	 constructed	 from
hydrogen	nuclei.	In	this	way,	the	proton	was	discovered	to	be	the	unit	of	positive
charge	 in	 the	nucleus,	 and	 to	have	 a	mass	of	 around	938	MeV.	The	 atom	was
now	 fairly	 well	 understood,	 and	 radioactivity	 was	 understood	 to	 be	 a	 nuclear
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process,	with	α	particles	identical	to	helium	nuclei	and	β	particles	determined	to
be	 electrons.	 One	 suggestion	 for	 the	 process	 of	 β-decay,	 then,	 was	 that	 some
electrons	 reside	 in	 the	 nucleus	 and	 are	 emitted	 during	 decay.	 A	 simple
calculation	 using	 the	 uncertainty	 principle,	 however,	 shows	 that	 the	 electrons
contained	in	the	nucleus	would	have	much	higher	energy	than	that	measured	in	β
decay.	This	puzzle	was	 solved	 in	 the	1930s	with	 the	discovery	of	 the	neutron,
completing	 the	 lineup	 of	 subatomic	 particles	 in	 ordinary	 matter.	 By	 firing	 α
particles	at	a	Beryllium	target,	James	Chadwick	was	able	to	demonstrate	that	the
nucleus	also	contains	a	neutral	particle,	the	neutron,	of	around	the	same	mass	as
the	proton.	It	is	this	particle	that	decays	during	β	decay,	producing	a	proton	and
electron	 in	 the	 process.	 The	 electron	 is	 then	 emitted	 as	 a	 β	 particle.	 Further
evidence	for	the	proton	and	neutron	as	subnuclear	particles	came	much	later	in
the	 1960s,	 when	 experimental	 energies	 were	 finally	 capable	 of	 producing	 a
deviation	 from	Rutherford’s	 scattering	 formula	 (Equation	 1.3)	when	 scattering
off	 the	nucleus.	These	 experiments	 directly	 demonstrated	 that	 the	nucleus	was
not	 a	 point-like	 object	 but	 was	 built	 out	 of	 smaller	 components.	 For	 a	 better
understanding	of	nuclear	decay,	physicists	now	turned	to	studying	the	forces	that
governed	the	behavior	of	the	nucleus.

FORCES	AND	INTERACTIONS

In	 the	 classical	 theory	 of	 electromagnetic	 interactions,	 charges	 and	 currents
produce	electric	and	magnetic	fields,	 respectively,	and	charges	moving	through
these	fields	experience	a	force.	If	photons	are	to	provide	the	quantum	description
of	electromagnetism,	we	need	a	mechanism	by	which	they	can	reproduce	these
same	 phenomena.	 This	 is	 achieved	 through	 the	 concept	 of	 virtual	 particle
exchange,	 and	 the	 theory	 built	 around	 this	 idea	 is	 quantum	 electrodynamics
(QED).	If	a	particle	is	observed	or	detected,	we	say	that	it	is	a	real	particle.	Its
energy,	 momentum,	 and	 mass	 will	 necessarily	 obey	 the	 appropriate	 energy-
momentum	relation,	in	which	case,	we	also	say	that	the	particle	is	“on	the	mass
shell,”	or	“on-shell.”	A	virtual	particle,	on	the	other	hand,	is	one	that	is	emitted
by	one	particle	and	absorbed	by	another.	The	electron,	for	example,	is	capable	of
emitting	 a	 photon,	which	may	 then	be	 absorbed	by	 a	 second	 electron	or	 other
charged	particle.	Since	the	photon	has	been	absorbed,	we	can	never	detect	it.	In



this	way,	the	existence	of	the	photon	can	only	be	inferred	by	its	effects,	and	we
say	 that	 it	 is	virtual.	Typically,	a	virtual	photon	will	 last	only	a	 short	 time	and
travel	 only	 a	 short	 distance.	 This	 means	 that	 the	 uncertainty	 in	 the	 photon’s
energy	and	momentum	can	be	large,	so	much	so	that	the	photon	need	not	obey
the	 energy-momentum	 relation	 and	 may	 behave	 as	 though	 it	 has	 a	 non-zero
mass.	 In	 this	 case,	 the	 virtual	 photon	 is	 said	 to	 be	 off-shell.	 Since	 the	 photon
carries	an	energy	and	a	momentum,	and	we	know	both	of	these	quantities	to	be
conserved,	 we	 can	 see	 how	 exchange	 of	 a	 virtual	 photon	 would	 lead	 to	 a
deviation	 in	 the	 trajectories	 of	 the	 electrons.	 It	 is	 in	 this	 way	 that	 the	 photon
mediates	 the	 electromagnetic	 force.	 Since	 this	 force	 applies	 only	 to	 charged
particles,	it	must	be	the	case	that	the	emission	and	absorption	of	a	photon	is	only
possible	in	particles	with	a	nonzero	charge.	We	say	that	the	photon	“couples”	to
a	charge	but	does	not	couple	to	particles	without	a	charge.	This	image	of	photons
being	thrown	between	electrons	is	very	intuitive	for	explaining	the	repulsion	of
like	charges.	Where	its	interpretation	becomes	less	clear	is	when	considering	that
the	 electromagnetic	 force	 can	 also	 be	 attractive.	 How,	 for	 instance,	 are	 we	 to
describe	 the	 attraction	 between	 a	 proton	 and	 an	 electron	 in	 terms	 of	 photon
exchange?	 The	 first	 part	 of	 the	 answer	 to	 this	 question	 is	 to	 realize	 that	 the
uncertainty	 in	 the	 photon’s	 momentum	 means	 that	 it	 can	 carry	 a	 negative
momentum!	 Momentum	 conservation	 then	 guarantees	 that	 the	 change	 of
momentum	of	the	proton	and	electron	at	the	point	of	emission	and	absorption	is
in	such	a	way	as	to	produce	an	attraction.	The	second	part	of	the	answer	is	that
the	way	in	which	a	photon	couples	to	a	particle	depends	on	that	particle’s	charge,
and	the	relative	sign	of	two	charges	will	determine	whether	the	resulting	force	is
attractive	or	repulsive.	There	is	no	easy	way	to	see	why	this	should	be	the	case,
but	 the	mathematics	 really	 does	work	 out	 this	way,	 as	we	will	 see	 later	when
considering	 QED	 amplitudes	 (see	 Section	 9.3).	 In	 this	 way,	 then,	 forces	 are
explained	 in	 particle	 physics	 via	 the	 exchange	 of	 virtual	 particles.	 Such
interactions	can	be	depicted	using	Feynman	diagrams,	which	we	can	think	of	as
stylized	 representations	 of	 the	 trajectories	 of	 the	 particles	 involved.	 Each
external	 line	 (with	 one	 end	 not	 terminating	 on	 a	 vertex	 with	 other	 lines)
represents	a	real	particle	that	takes	part	in	the	interaction,	while	each	internal	line
(with	 both	 ends	 terminating	 at	 vertices)	 represents	 a	 virtual	 particle.	 Fermions
(matter-like	particles)	such	as	electrons	are	shown	as	solid	lines,	while	photons
and	other	exchange	bosons	(force-like	particles)	are	shown	as	wiggly	lines.	With



this	in	mind,	then,	we	can	show	elastic	electron	scattering,	e−	+	e−	→	e−	+	e−,	as

Each	 time	 a	 particle	 couples	 to	 the	 electromagnetic	 field	 through	 photon
emission	or	absorption,	it	does	so	with	a	particular	strength.	This	is	a	numerical
value,	 which	 essentially	 measures	 the	 inherent	 probability	 of	 electromagnetic
interactions	 for	 that	 particle	 at	 any	 given	 moment.	 This	 value	 is	 different
depending	on	 the	particle’s	charge	and	so	 is	 separated	 into	 two	parts.	One	 is	a
dimensionless	charge	factor	q,	taken	to	be	the	ratio	of	the	particle’s	charge	to	the
fundamental	 unit	 charge.	 That	 is,	 q	 =	−1	 for	 the	 electron	 and	 q	 =	 +1	 for	 the
proton.	 The	 second	 part	 is	 a	 universal	 constant	 known	 as	 the	 electromagnetic
coupling	constant,	e.	In	natural	units,	this	coupling	strength	is	related	to	the	fine-
structure	constant,	α,	by	α	=	 	Since	electromagnetic	scattering	processes
involve	 photon	 exchange,	 the	 leading-order	 contributions	 to	 scattering
amplitudes	are	generally	on	the	order	of	α,	and	higher-order	corrections	can	be
written	as	power	series	in	α.

After	 the	 discovery	 of	 the	 proton	 and	 neutron,	 there	 were	 a	 number	 of
unresolved	 problems	 regarding	 atomic	 structure.	 One	 such	 puzzle	 was	 the
question	 of	 what	 held	 the	 nucleus	 together.	 What	 could	 overcome	 the
electrostatic	 repulsion	of	 such	a	 small,	dense	concentration	of	positive	charge?
Clearly,	 there	 must	 be	 some	 additional	 attractive	 force	 to	 compensate.	 The
behavior	 of	 this	 nuclear	 force	was	 qualitatively	 different	 from	 the	 behavior	 of
electromagnetism	though.	Most	notably,	the	range	of	the	force	must	be	small,	to
account	 for	 the	 fact	 that	 its	 effects	 are	not	observed	outside	of	 the	nucleus.	 In
contrast,	the	range	of	the	electromagnetic	force	is	essentially	infinite,	though	of
course	 it	decreases	 in	magnitude	 over	 large	distances.	The	nature	 of	 this	 force
was	probed	further	with	experiments	in	which	protons	and	neutrons	were	fired	at
each	other.	Since	the	neutron	has	no	charge,	the	interaction	of	these	two	particles
in	such	experiments	must	be	mediated	by	the	nuclear	force.	Given	that	the	two
are	 of	 similar	 mass,	 one	 would	 expect	 a	 glancing	 blow	 that	 results	 in	 both
particles	 continuing	 with	 similar	 momenta	 to	 those	 before	 the	 collision.



However,	 by	 measuring	 the	 interaction	 crosssection	 (the	 likelihood	 of	 an
interaction)	 as	 a	 function	 of	 scattering	 angle,	 what	 was	 found	 was	 that	 back-
scattering	was	 almost	 as	 likely	 as	 forward	 scattering.	 In	 fact,	 the	 cross-section
plot	was	almost	symmetrical	about	a	scattering	angle	of	90◦.

In	 1935,	 Hideki	 Yukawa	 proposed	 a	model	 of	 the	 nuclear	 force	 that	 could
account	 for	 both	 the	 short	 range	 and	 this	 cross-section	 problem,	 based	 on	 the
exchange	of	a	new	kind	of	particle.	In	fact,	there	were	to	be	three	such	particles.
One	was	 neutral	 to	 allow	 proton-proton	 and	 neutron-neutron	 interactions.	 The
others	 were	 charged	 to	 allow	 the	 interconversion	 of	 protons	 and	 neutrons
through	 their	exchange.	This	could	account	 for	 the	back-scattering,	 since	 these
events	 were	 then	 explained	 as	 those	 in	 which	 the	 proton	 and	 neutron	 had
exchanged	 identities,	 as	 demonstrated	 in	 Figure	 1.2.	 Their	 momenta	 were	 not
really	changed	very	much	at	all,	just	their	clothing!	There	was	a	big	difference,
however,	 with	 the	 electromagnetic	 theory:	 whereas	 the	 photon	 is	 massless,
Yukawa	determined	that	his	“mesons”	must	have	a	mass	of	around	100	MeV/c2.
To	see	how	he	arrived	at	this	figure,	consider	the	exchange	of	a	particle	of	mass
m.	 Assuming	 that	 this	 particle	 travels	 only	 a	 short	 distance	 at	 a	 speed
approximately	equal	to	c,	the	uncertainty	in	the	particle’s	position	is	given	by

FIGURE	1.2	 The	 exchange	 of	 one	 of	Yukawa’s	 charged	mesons	 allows	 the	 proton	 and	 neutron	 to	 inter
convert,	solving	the	problem	of	back-scattering	seen	in	nucleon	interactions.

Turning	 this	 argument	 on	 its	 head,	 the	 mass	 of	 an	 exchange	 particle
associated	with	a	force	of	range	∆x	is



which,	for	nuclear	interactions	with	a	range	on	the	order	of	1	fm,	gives	a	mass	of
around	100	MeV.	This	 force	would	also	 require	 its	own	coupling	constant,	gN,
and	 in	 order	 for	 the	 nucleus	 to	 overcome	 electrostatic	 repulsion,	 this	 coupling
strength	 would	 have	 to	 be	 considerably	 greater	 than	 its	 electromagnetic
equivalent.

The	 second	 big	 puzzle	 of	 nuclear	 interactions	 to	 consider	 is	 just	 how	 the
neutron	is	capable	of	producing	a	proton	and	electron	during	β	decay.	The	real
problem	lay	in	the	fact	that	β	radiation	appeared	to	have	a	very	broad	momentum
spectrum.	If	the	relative	frequency	of	emissions	with	a	particular	momentum	is
plotted	against	a	range	of	momenta	for	α-decay,	the	result	is	a	sharp	peak	at	one
momentum	value.	This	 is	as	we	would	expect	 for	a	single	object	undergoing	a
two-body	 decay,	 since	 the	 energy	 and	 momentum	 are	 fixed	 by	 conservation
laws.	However,	when	a	similar	plot	is	made	of	β-particle	momenta,	 the	peak	is
much	broader	and	flatter.	To	Wolfgang	Pauli,	this	suggested	a	third	particle	was
being	produced	in	the	decay	of	the	neutron.	The	particle	would	have	to	have	no
charge	to	ensure	charge	conservation,	which	would	also	explain	why	it	had	not
been	detected,	since	only	charged	particles	make	tracks	in	tracking	chambers,	as
we	will	see	in	Section	5.1.2.	In	order	to	match	the	observed	decays,	the	particle
would	also	have	 to	be	very	 lightweight.	 In	 fact,	 to	 this	day,	Pauli’s	 “neutrino”
(whose	existence	has	since	been	confirmed	experimentally)2	has	been	found	 to
have	such	a	small	mass	that	its	value	cannot	yet	be	directly	measured.	This	may
change	in	the	near	future,	however,	thanks	to	the	recently	completed	Karlsruhe
Tritium	 Neutrino	 Experiment	 (KATRIN),	 which	 is	 expected	 to	 measure	 the
neutrino	 mass	 to	 a	 precision	 of	 around	 200	 meV/c2,	 through	 precision
measurements	of	electron	energies	in	the	β	decay	of	tritium	nuclei.	The	current
constraint	 on	 the	 neutrino	mass	 is	 complicated	 by	 the	 fact	 that	 it	 is	 really	 an
upper	 limit	 on	 the	 combined	 mass	 of	 three	 distinct	 flavors	 of	 neutrino	 (for
reasons	that	will	become	clear	when	we	discuss	neutrino	oscillations	in	Section
13.1).	 This	 current	 best	 guess	 comes	 from	 matching	 cosmological	 models	 to
observations	 of,	 among	 other	 things,	 the	 cosmic	 microwave	 background,	 and
shows	that	the	combined	neutrino	masses	can	be	no	more	than	1.2	eV/c2.	To	put
this	in	context,	the	electron	has	a	mass	of	just	over	half	a	million	electron	volts.
With	the	idea	of	the	neutrino	in	place,	Enrico	Fermi	suggested	a	mechanism	for
neutron	decay,	in	which	all	four	particles	involved	interacted	at	a	single	point,	as
in	Figure	1.3.	In	this	way,	the	neutron	was	thought	to	decay	directly	to	a	proton,
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electron,	and	(anti-)neutrino.	This	interaction	had	its	own	coupling	strength,	GF,
much	smaller	than	the	electromagnetic	coupling.

FIGURE	1.3	Feynman	diagram	for	the	Fermi	“four-point”	formulation	of	β	decay.

Ignoring	gravity,	then,	as	particle	physicists	are	somewhat	prone	to	do,	there
are	 three	 known	 interactions	 that	 determine	 the	 behavior	 of	 particles.	 One	 of
these	 is	 the	 familiar	electromagnetic	 interaction,	while	 the	other	 two	are	short-
range	 forces	which	 only	 have	 significant	 effects	within	 the	 nucleus.	Based	 on
their	 relative	 strengths,	 as	 encoded	 in	 the	 relevant	 couplings,	 the	 two	 nuclear
forces	 are	 referred	 to	 simply	 as	 “weak”	 and	 “strong.”	 The	 strong	 force	 is
responsible	 for	 holding	 the	 nucleus	 together,	 while	 the	 weak	 interaction	 is
responsible	for	nuclear	decays.

STRANGE	AND	UNEXPECTED
DEVELOPMENTS

Returning	 for	 a	 moment	 to	 an	 earlier	 time,	 another	 development	 was	 the
discovery	of	spin	angular	momentum.	The	first	suggestion	that	there	was	some
as-yet	unknown	property	of	electrons,	that	would	later	be	known	as	spin,	came
from	 Wolfgang	 Pauli	 in	 1924.	 By	 postulating	 some	 two-fold	 degeneracy	 in
electrons,	he	was	able	to	explain	the	arrangement	of	electrons	into	their	atomic
orbitals.	 His	 discovery	 was	 the	 exclusion	 principle,	 which	 states	 that	 no	 two
electrons	 (more	 generally,	 no	 two	 fermions)	 may	 occupy	 the	 same	 state.	 The
twofold	 degeneracy	was	 required	 to	 reconcile	 this	 principle	 with	 the	 fact	 that
electrons	appeared	to	occupy	states	in	pairs.	The	Stern-Gerlach	experiment	later
showed,	by	splitting	beams	of	particles	with	a	magnetic	field,	that	this	two-fold
degree	 of	 freedom	 in	 electrons	 is	 related	 to	 their	 angular	 momentum.
Specifically,	 it	 was	 discovered	 that	 electrons	 have	 an	 intrinsic	 angular



momentum,	 unrelated	 to	 their	 motion,	 and	 of	 a	 fixed	 magnitude.	 The
quantization	of	angular	momentum	allows	for	the	orientation	of	this	“spin,”	as	it
became	known,	 to	 take	 two	distinct	values	 in	 the	presence	of	a	magnetic	field.
The	magnitude	of	a	particle’s	spin,	on	the	other	hand,	is	an	inherent	property	of
that	 particle.	An	 electron	has	 a	 spin	of	 ,	while	 a	 photon	 has	 a	 spin	 of	 1,	 and
nothing	can	change	that.	One	of	the	most	important	results	in	particle	physics	is
the	 spin-statistics	 theorem.	 This	 states	 that	 particles	 can	 be	 grouped	 into	 two
categories	 according	 to	 their	 spin,	 and	 that	 these	 two	 groups	 behave	 in
profoundly	 different	 ways.	 The	 fermions	 have	 a	 spin	 that	 is	 half	 of	 an	 odd
integer	 	and	obey	the	Pauli	Exclusion	Principle.	The	bosons	have	integer
spin	and	do	not	obey	the	exclusion	principle.	That	is,	bosons	can	form	systems	in
which	more	than	one	particle	is	in	the	same	state,	while	fermions	cannot.3

In	1928,	Paul	Dirac,	in	an	attempt	to	unify	quantum	mechanics	and	relativity,
wrote	 down	 the	 equation	 that	 bears	 his	 name.	Using	 this	 equation,	 Dirac	was
able	to	motivate	the	spin	of	the	electron	from	a	purely	theoretical	standpoint.	The
success	 of	 his	 equation	 came	 at	 a	 price,	 however,	 since	 it	 appeared	 to	 predict
particle	states	of	negative	energy.	Dirac’s	resolution	of	this	problem	led	to	one	of
several	 unexpected	 developments	 that	 characterized	 the	 next	 period	 in	 the
history	 of	 particle	 physics.	 The	 solution	 that	Dirac	 found	was	 to	 postulate	 the
existence	of	a	new	particle,	somehow	the	equal	and	opposite	of	the	electron.	The
particle,	later	dubbed	the	positron,	should	have	the	same	mass	as	the	electron	but
the	opposite	electric	charge.	What	was	more,	every	particle	species	should	have
a	 similar	 twin.4	 Dirac	 had	 predicted	 the	 existence	 of	 antimatter,	 and	 his
prediction	was	 validated	 four	 years	 later	with	 the	 discovery	 of	 the	 positron	 in
cosmic	rays.	Dirac’s	own	understanding	of	antiparticles	was	quite	different	from
the	conventional	viewpoint	 today.	In	Dirac’s	picture,	 the	negative-energy	states
that	 are	 allowed	by	his	 equation	 are	 all	 populated	by	 a	 sea	of	 negative-energy
electrons.	 Since	 this	 is	 the	 norm,	we	 do	 not	 observe	 these	 sea	 electrons	 under
normal	 circumstances.	However,	 should	one	of	 these	negative-energy	 states	be
given	a	boost	 in	energy,	 it	will	 raise	 the	electron	up	 to	a	positive	energy	state.
This	will	also	 leave	a	noticeable	hole	 in	 the	sea,	however,	which	 is	capable	of
moving	around	as	other	negative-energy	electrons	move	into	 the	hole.	Relative
to	 the	 negative	 sea,	 this	 hole	 will	 also	 appear	 to	 have	 a	 positive	 charge.
Therefore,	 it	 is	 this	 hole	 that	 we	 see	 as	 a	 positron.	 Should	 a	 positive-energy
electron	chance	upon	the	positron	hole,	it	can	fall	into	it,	releasing	its	energy	as	it



does	so.	 In	 this	way,	we	can	see	 that	a	particle-antiparticle	pair	can	be	created
apparently	 from	 nothing	 if	 given	 energy,	 and	 that	 they	 may	 subsequently
annihilate	one	another	 in	a	burst	of	 energy.	Although	Dirac’s	 sea	picture	 is	no
longer	 considered	 correct,	 it	 does	 provide	 an	 intuitive	 understanding	 of	 the
difficult	concept	that	is	antimatter,	since	processes	such	as	those	described	above
really	do	occur:

Incidentally,	while	positrons	are	denoted	e+	 to	contrast	with	electrons	 (e−),	 the
majority	of	antiparticles	are	shown	by	placing	a	bar	over	the	particle	name.

By	1935,	things	were	looking	fairly	complete	in	the	world	of	particle	physics.
There	was	a	model	to	describe	electromagnetism,	and	models	to	describe	nuclear
stability	 and	 decay,	 all	 in	 terms	 of	 particle	 exchange.	All	 that	 remained	 to	 be
seen	was	 experimental	 confirmation	 of	 the	 existence	 of	Yukawa’s	 strong-force
meson.	 This	 appeared	 to	 have	 arrived	 in	 1936,	 when	 a	 charged	 particle	 of
roughly	the	right	mass	was	discovered	in	cosmic	rays.	Instead,	this	turned	out	to
be	something	wholly	unexpected:	a	cousin	of	the	electron	with	similar	properties
but	 a	much	greater	mass.	The	 terminology	became	 somewhat	 confused	during
this	period,	as	particles	named	after	their	properties	were	later	reclassified,	and
names	were	co-opted	for	other	use.	This	can	make	reading	published	work	from
this	 period	 very	 confusing	 to	 the	modern	 reader.	 The	 end	 result	 is	 that	 while
“meson”	 originally	 referred	 to	 a	 particle	 of	 intermediate	 mass	 between	 the
electron	and	proton,	it	now	refers	to	a	specific	set	of	composite	particles,	which
we	will	explore	in	Section	1.5.	This	left	the	electron’s	chunky	cousin	in	need	of
name,	and	it	later	became	the	muon,	denoted	µ.	Yukawa’s	meson	was	eventually
found	 in	1947	and	has	also	undergone	a	name	change:	we	now	know	 it	as	 the
pion.

The	discovery	 of	 the	muon	was	 a	 prelude	 for	what	was	 to	 come.	After	 the
discovery	of	 the	pion,	more	unexpected	particles	were	discovered.	The	 first	of
these	was	 the	 kaon	 (though	 not	 named	 as	 such	 at	 the	 time),	which	was	 again
discovered	in	cosmic	rays,	but	many	more	were	to	follow,	including	the	Σ	and	Λ
baryons,	 the	Ξ	 baryons,	 the	ρ	mesons,	 and	 the	η	mesons.	 The	 existence	 of	 so
many	new	particles	 came	as	 a	 surprise	 to	many,	 and	 the	 era	gave	 rise	 to	what
became	 known	 as	 the	 “particle	 zoo.”	 With	 no	 understanding	 of	 why	 these



particles	existed,	there	was	no	choice	but	to	list	them	along	with	their	properties.
Things	were	getting	messy,	 and	 it	was	beginning	 to	 look	 rather	 like	 the	 list	of
elements	 before	 the	 discovery	 of	 the	 periodic	 table.	What	 was	 needed	 was	 a
“periodic	 table	 of	 particles”:	 a	 similar	 means	 of	 classifying	 particles	 and
understanding	 their	underlying	 trends.	A	 first	 step	 in	 the	 right	direction	was	 to
categorize	 the	 particles	 by	 their	 spin.	 In	 this	 way,	 a	 distinction	 was	 made
between	 the	 leptons,	 the	mesons,	and	 the	baryons.	Originally,	 these	names	had
referred	 to	 the	 relative	 mass	 of	 the	 particles:	 lepto-,	 meaning	 “light,”	meso-,
“medium,”	and	bary-,	“heavy.”	However,	over	time,	these	distinctions	began	to
blur,	 and	 the	 names	 were	 used	 in	 a	 different	 way.	 Lepton	 came	 to	 mean
“electron-like,”	 and	 so	 included	 the	 muon	 and	 electron.	 The	 majority	 of	 new
particles,	 though,	 were	 categorized	 as	 mesons	 if	 they	 had	 integer	 spin,	 and
baryons	if	they	had	halfinteger	spin.	Collectively,	these	two	categories	form	the
hadrons.	 It	 was	 soon	 realized	 that	 there	 appeared	 to	 be	 a	 conservation	 law
regarding	baryons.	The	total	number	of	baryons	in	a	system	appeared	to	remain
unaltered	before	and	after	any	interaction,	as	long	as	antibaryons	were	taken	to
count	 negatively	 against	 this	 sum.	 That	 is,	 if	 baryons	 are	 assigned	 a	 baryon
number	 of	 1,	 and	 antibaryons	 a	 baryon	 number	 of	 −1,	 then	 this	 number	 is
conserved	during	physical	 processes.	 It	was	 also	 realized	 that	 there	 is	 no	 such
conservation	 law	 for	 mesons:	 a	 process	 may	 produce	 one	 or	 more	 mesons
without	violating	any	conservation	law.

Similar	 conservation	 laws	 were	 found	 for	 the	 leptons,	 through	 careful
observation	 of	 interactions	 involving	muons,	 electrons,	 and	 neutrinos.	 In	 fact,
rather	 than	 an	 overall”conservation	 of	 lept	 on	 number,”	 which	 would	 be
analogous	 to	 baryon	 conservation,	 it	 was	 found	 that	 there	 are	 independently
conserved	electron	and	muon	numbers.	The	subtlety	in	this	statement	is	that	each
of	 these	 leptons	has	associated	with	 it	a	neutral	particle.	 In	 the	electron’s	case,
this	is	the	same	neutrino	involved	in	β	decay.	In	the	muon’s	case,	however,	it	is
an	entirely	new	“mu	neutrino,”	distinguished	from	the	electron	neutrino	only	by
its	lepton	numbers.	To	clarify	this	statement,	we	assign	an	electron	number	of	Le
=	+1	to	the	electron	and	its	neutrino,	and	Le	=	−1	to	their	antiparticles.	Similarly,
we	assign	a	muon	number	of	Lµ	=	+1	to	the	muon	and	µ	neutrino,	and	Lµ	=	−1	to
their	 antiparticles.	 Both	 of	 these	 lepton	 numbers	 are	 then	 independently
conserved.



A	full	understanding	of	the	origin	of	the	hadrons	was	still	needed,	and	this	is
where	 Murray	 Gell-Mann	 came	 in.	 In	 1961,	 Gell-Mann	 arranged	 these	 new
particles	 according	 to	 two	 properties:	 isospin	 and	 strangeness.	 The	 isospin
formalism	 requires	an	understanding	of	 symmetry	groups	and	 so	discussion	of
this	will	be	deferred	until	Chapter	6,	where	we	will	see	exactly	how	Gell-Mann
arranged	 the	 hadrons	 into	 groups.	 For	 now,	 we	 will	 simply	 assert	 that	 the
hadrons	 have	 a	 well-defined	 property	 known	 as	 isospin,	 I3,	 and	 we	 will
categorize	 them	 according	 to	 this	 property.	 We	 will,	 however,	 discuss	 the
concept	of	strangeness.

Strangeness

The	 strength	of	 a	 force	 tells	us	 a	great	deal	 about	 it.	As	well	 as	 the	 typical
binding	energies	 involved,	 it	 tells	us	 the	probability	of	an	interaction	occurring
as	 well	 as	 the	 characteristic	 length-scale	 and	 time-scale	 of	 those	 interactions.
This	led	to	a	problem	with	the	new	baryons	that	were	being	discovered:	it	was
noticed	 that	some	of	 these	baryons	were	produced	at	a	high	rate,	but	 that	 their
decays	 were	 typically	 rather	 slow	 processes.	 Since	 this	 was	 fairly	 strange
behavior,	 Gell-Mann	 suggested	 the	 existence	 of	 a	 quantum	 number	 which	 he
called	“strangeness.”	This	strangeness	could	be	quantified:	if	a	particle	decayed
via	 one	 of	 these	 strange	 processes	 to	 ordinary	 particles,	 it	 was	 given	 a
strangeness	of	magnitude	1.	Actually,	in	much	the	same	way	that	the	electron	has
the	 “wrong”	 charge	 of	 −1,	 history	 has	 dictated	 that	 strange	 baryons	 have	 a
negative	strangeness,	with	positive	strangeness	reserved	for	strange	antibaryons.
If	a	particle	decays	via	a	strange	process	to	something	that	is	itself	strange,	then
it	 is	said	 to	have	strangeness	±2,	 and	 so	on.	Gell-Mann	offered	an	explanation
for	the	strange	behavior	of	such	hadrons	based	on	this	new	quantum	number.	His
idea	was	to	suggest	that	there	were	two	distinct	types	of	interaction	responsible
for	the	production	and	decay	of	strange	particles.	The	interaction	responsible	for
their	production	had	a	short	characteristic	time-scale	and	large	coupling,	and	also
conserved	strangeness.	On	the	other	hand,	the	process	responsible	for	decay	was
weaker	 with	 a	 longer	 time-scale,	 and	 crucially	 did	 not	 obey	 the	 law	 of
conservation	 of	 strangeness.	 We	 now	 identify	 these	 processes	 as	 the	 weak
nuclear	and	strong	nuclear	interactions.	In	this	way,	the	strong	interaction	could
produce	 a	 pair	 of	 particles	 with	 opposite	 strangeness,	 which	 would	 then
propagate	away	from	their	point	of	origin.	Once	the	particle	is	separated	from	its
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twin,	however,	the	strangeness-conserving	process	responsible	for	its	production
is	no	longer	an	option	for	decay.	This	leaves	only	the	strangeness-violating	weak
process	for	their	decay,	with	its	characteristically	longer	time-scale.

With	these	concepts	in	place,	we	can	now	list	some	of	the	hadrons	along	with
their	 properties	 (Table	 1.1).	 Note	 that	 the	 values	 given	 are	 the	 currently
measured	 values	 as	 opposed	 to	 the	 values	 as	 measured	 back	 in	 the	 1960s.
Indeed,	 some	 of	 the	 particles	 listed	 here	 had	 not	 even	 been	 discovered	 at	 that
time.	At	the	same	time,	this	list	is	far	from	exhaustive,	containing	only	a	sample
of	the	hadrons	that	have	been	observed.

QUARKS	AND	SYMMETRIES

By	categorizing	 the	known	hadrons	according	 to	 their	baryon	number,	 spin,
isospin,	 and	 strangeness,	 Gell-Mann	 found	 a	 series	 of	 regular	 patterns,	 as	 in
Figures	 1.4–1.7.	 Since	 the	 baryons’	 antiparticles	 have	 the	 opposite	 baryon
number,	they	form	a	separate	plot.	In	the	case	of	the	mesons,	however,	particles
and	their	own	antiparticles	are	present	in	the	same	plot,	since	all	have	a	baryon
number	 of	 0.	 In	 particular,	 each	 meson’s	 antiparticle	 is	 in	 the	 position
diametrically	 opposed	 to	 it,	 and	 those	 mesons	 in	 the	 center	 are	 their	 own
antiparticles.

These	patterns	will	be	explored	in	more	detail	in	Chapter	6,	but	the	result	was
that	 Gell-Mann	 found	 he	 could	 explain	 the	 patterns	 in	 terms	 of	 a	 symmetry
group,	 SU(3).	 Just	 as	 the	 periodic	 table	 displays	 the	 patterns	 in	 the	 elements,
Gell-Mann	 had	 drawn	 out	 the	 underlying	 symmetries	 hidden	 in	 the	 hadrons.
Notice	in	the	case	of	elements,	though,	that	a	true	understanding	of	the	periodic
table	only	came	with	 the	discovery	of	 the	structure	of	 the	atom,	since	 this	did
more	than	simply	categorize	the	elements:	it	explained	them.	In	a	similar	way,	by
1961,	 Gell-Mann	 had	 a	 “periodic	 table”	 of	 the	 hadrons,	 but	 still	 lacked	 a
mechanism	 that	 could	 explain	 it.	 This	 came	 two	 years	 later	 with	 the	 quark
model.



TABLE	1.1	Selected	properties	of	a	selection	of	hadrons.	The	number	of	significant	figures	given	for	the
mass	varies	based	on	the	precision	with	which	the	value	is	known.

FIGURE	1.4	The	spin- 	baryon	octet.

FIGURE	1.5	The	spin- 	baryon	decuplet.



What	Gell-Mann	 realized	was	 that	he	could	explain	 the	patterns	of	hadrons
with	the	introduction	of	a	set	of	three	new	particles,	which	he	called	quarks.5	By
assuming	the	quarks	to	have	the	properties	listed	in	Table	1.2,	all	of	the	hadron
properties	listed	in	Table	1.1	 (with	 the	exception	of	mass)	can	be	explained	by
taking	baryons	to	be	collections	of	three	quarks,	and	mesons	to	be	a	combination
of	a	quark	and	an	antiquark.	Each	hadron	property	is	then	found	by	summing	the
corresponding	properties	of	 the	 individual	quarks.	The	mass	 is	an	exception	 to
this	rule	and	will	be	considered	in	detail	 in	Chapter	6.	The	quarks	were	named
after	 the	 role	 they	 played	 in	 the	 model.	 The	 “up”	 and	 “down”	 quarks	 have
isospin	values	of	up	 	and	down	 	respectively,	while	the	“strange”	quark
has	 a	 non-zero	 strangeness.	 Notice	 that	 I	 have	 not	 listed	 the	 masses	 of	 the
quarks,	 since	 this	 is	 a	 slightly	 complicated	 issue,	 as	we	will	 see	 in	Chapter	 6.
With	 these	 assignments,	 we	 can	 see	 that	 the	 quark	 content	 of	 some	 sample
hadrons	is	given	by

FIGURE	1.6	The	spin-0	scalar	meson	nonet.

FIGURE	1.7	The	spin-1	vector	meson	nonet.



TABLE	1.2	Quark	Properties

Hadron Quarks

p uud

n udd

Σ+ uus

Σ− dds

π+ u

π− dū

While	these	ideas	were	widely	regarded	as	a	great	step	in	understanding	the
hadrons,	 less	 popular	 was	 the	 suggestion	 that	 the	 quarks	 are	 actual	 physical
particles.	Even	Gell-Mann	saw	the	quarks	more	as	mathematical	constructs	that
fit	the	data.	There	is	now	plenty	of	evidence,	however,	that	quarks	are	physical.
We	still	 cannot	 strictly	claim	 to	have	seen	an	 individual	quark,	but	at	 least	we
now	have	a	reason	not	to	have	seen	one.	Our	current	model	of	the	strong	force
was	developed	around	1965,	and	grew	out	of	the	observation	that	quarks	require
an	 additional	 degree	 of	 freedom	 so	 as	 not	 to	 violate	 the	 Pauli	 Exclusion
Principle.	It	was	determined	that	each	quark	“flavor,”	u,	d,	and	s,	should	come	in
three	“colors,”	red,	blue,	and	green.	These	names	have	nothing	at	all	to	do	with
color	in	the	literal	sense	but	are	convenient	names	for	the	three	varieties	of	each
quark.	This	color	charge	was	the	basis	for	a	color	force:	an	interaction	between
quarks	based	on	their	color	as	electromagnetism	is	based	on	charge.	Since	it	 is
based	on	color,	and	was	modeled	on	quantum	electrodynamics,	it	became	known
as	quantum	chromodynamics.	The	mathematics	 of	 this	 new	 force	 conspired	 to
keep	 quarks	 locked	 away	 inside	 hadrons	 in	 a	 process	 called	 confinement,
explaining	 why	 no	 isolated	 quark	 has	 been	 observed.	 It	 also	 explained	 why
quarks	 formed	 collections	 of	 three	 in	 baryons	 and	 quark-antiquark	 pairs	 in
mesons:	when	a	set	of	quarks	contains	one	of	each	color,	from	outside	the	group
the	result	is	color	neutral,	just	as	a	pair	of	opposing	charges	appears	electrically



neutral	 from	sufficient	distance.	Similarly,	a	color	and	 its	anticolor	also	appear
colorless.	 A	 lone	 quark,	 if	 there	 were	 such	 a	 thing,	 would	 attract	 two	 other
quarks	of	other	colors	to	itself	to	form	a	color-neutral	baryon,	or	would	attract	its
anticolor	 to	 form	a	meson.	Once	either	of	 these	objects	 is	 formed,	 the	result	 is
color	 neutral	 and	 no	 further	 interaction	 with	 external	 quarks	 occurs.	 Those
interactions	 do	 continue	 inside	 the	 hadron,	 however,	 with	 the	 strong	 force
mediators,	the	gluons,	constantly	carrying	color	information	between	the	quarks.
The	 only	 evidence	 of	 all	 this	 activity	 from	 outside	 the	 hadron	 is	 the	 residual
strong	 force	 that	 “leaks”	 out	 and	 binds	 the	 hadron	 to	 other	 nearby	 hadrons
through	 the	 exchange	 of	 pions	 and	 other	 mesons.	 In	 this	 way,	 the	 original
formulation	 of	 the	 strong	 nuclear	 force	 is	 found	 to	 be	merely	 the	 low-energy
effect	of	a	more	fundamental	interaction.

As	 evidence	 for	 physical	 quarks,	 an	 argument	 for	why	we	 cannot	 see	 them
may	seem	fairly	 tenuous.	However,	 there	 is	additional	evidence	 in	 the	 form	of
Rutherford	 scattering.	 Just	 as	 the	 nucleus	 was	 found	 to	 show	 structure	 when
bombarded	with	high-energy	particles,	when	the	energy	is	increased	far	enough,
the	hadrons	 themselves	 similarly	deviate	 from	Rutherford’s	 scattering	 formula.
This	 demonstrates	 that	 the	 hadrons	 have	 structure	 in	 the	 form	 of	 smaller
constituent	parts.	Once	it	is	accepted	that	quarks	are	physical	objects,	we	see	that
d	and	s	are	similar,	in	the	same	way	that	the	muon	is	similar	to	the	electron.	For
this	reason,	we	arrange	the	fermions	into	generations	of	increasing	mass.

Fermi’s	original	four-fermion	formulation	of	the	weak	interactions	was	found
to	 be	 adequate	 to	 explain	 the	 majority	 of	 weak	 phenomena.	 However,	 later
developments	would	 show	 the	 four-point	 interaction	 to	 be	 inconsistent	 at	 high
energies.	 Ultimately,	 these	 interactions	 were	 also	 explained	 in	 terms	 of	 a
mediating	particle.	As	with	Yukawa’s	meson,	the	short	range	of	these	particles’
influence	 was	 attributed	 to	 a	 large	mass.	 The	 picture	 that	 emerged	was	 of	 an
interaction	 something	 like	 that	 shown	 in	 Figure	1.8,	 in	which	 a	 quark	 emits	 a
weak	force	carrier,	changing	flavor	 in	 the	process.	The	carrier,	known	as	a	W−

(antiparticle	W+),	which	must	be	charged	in	order	for	the	interactions	to	conserve
charge,	then	decays	to	two	leptons.	To	account	for	the	decays	of	strange	hadrons,
it	 was	 realized	 that	 these	 weak	 interactions	 must	 occur	 within	 their	 own
generation:	d	→	u	+	W−,	but	also	across	generations:	s	→	u	+	W−.	Leptons,	on
the	 other	 hand,	 were	 found	 not	 to	 take	 part	 in	 these	 cross-generational
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interactions.	 It	 had	 also	 been	 noticed	 that	 the	 apparent	 couplings	 of	 quarks
through	 the	 weak	 interaction	 were	 reduced	 when	 compared	 with	 the	 lepton
couplings.	To	account	for	this	difference,	Nicola	Cabibbo	proposed	a	mixing	of
quarks,	 such	 that	 the	 states	 that	 take	 part	 in	 weak	 interactions	 are	 a	 linear
combination	of	 the	physical	quark	states.	We	will	 see	 in	Chapter	12	why	 such
mixing	is	in	fact	a	very	natural	consequence	of	the	theory	of	weak	interactions.
This	mixing	was	best	explained	if	there	was	a	fourth	quark	flavor,	with	charge	
	to	match	the	up	quark;	this	possibility	was	first	put	forward	by	Glashow	and

Bjorken	 on	 fairly	 shaky	 theoretical	 grounds,	 but	 yet	 completing	 the	 second
generation	 of	 fermions.	 This	 hypothetical	 quark	 was	 later	 incorporated	 into	 a
fuller	 understanding	 of	 weak	 interactions	 through	 the	 Glashow-Iliopoulos-
Maiani	 mechanism,	 which	 displayed	 such	 elegance	 that	 they	 named	 the
hypothetical	particle	“charm.”	A	meson	formed	from	a	charm-anticharm	pair,	the
J/Ψ,6	was	discovered	in	1974,	confirming	the	prediction,	and	showing	the	charm
quark	to	be	considerably	heavier	than	its	cousins.	It	was	around	this	time	that	the
quark	model	gained	a	near-universal	following.	Since	this,	 two	more	leptons—
the	τ	and	its	associated	neutrino—and	two	more	quarks—the	top	and	bottom—
have	been	found,	bringing	the	number	of	fermion	generations	to	three.	These	too
have	 their	 own	 quantum	 numbers,	 so	 we	 now	 have	 quark	 flavor	 quantum
numbers	strangeness	(S),	charm	(C),	bottom	( ),	and	top	(T	),	where	the	tilde	is
placed	on	the	symbol	for	bottom	to	distinguish	it	from	the	baryon	number,	B.	In
addition,	we	have	a	third	conserved	lepton	number,	Lτ	.	The	properties	of	all	of
these	particles	may	be	found	in	Appendix	A.

FIGURE	1.8	The	weak	interaction	as	a	boson-mediated	interaction.

THE	STANDARD	MODEL	OF	PARTICLE
PHYSICS



During	 the	 1960s,	 Glashow,	Weinberg,	 and	 Salam	 developed	 a	 remarkable
theory	 that	 unified	 the	 electromagnetic	 and	 weak	 interactions	 into	 one
“electroweak”	 theory,	which	will	be	explored	 in	detail	 in	Chapter	11.	The	first
prediction	of	this	unified	model	to	be	experimentally	verified	was	the	existence
of	neutral	weak	currents.	These	are	weak	interactions	in	which	no	flavor	change
occurs:	instead	a	fermion	emits	an	electrically	neutral	weak	force	carrier	called
the	Z0	which	interacts	with	another	fermion,	again	with	no	change	in	flavor.	In
this	way,	Z0	exchange	is	very	similar	to	photon	exchange	but	can	occur	between
all	 particles,	whereas	 photon	 exchange	 occurs	 only	 between	 charged	 particles.
Such	interactions	allow	for	neutrinos	to	influence	the	motion	of	electrons,	and	it
is	in	this	way	that	the	process	was	confirmed	experimentally.	Many	years	later	in
the	 1980s,	 the	W	 ±	 and	 Z0	 bosons	 were	 directly	 detected	 by	 the	 Gargamelle
bubble	 chamber	 after	 their	 production	 in	 the	 Large	 Electron-Positron	 (LEP)
colliderat	 CERN.	 There	 was,	 however,	 one	 piece	 of	 the	 model	 that	 remained
elusive.	 In	 order	 to	 give	 masses	 to	 three	 of	 the	 mediators	 of	 the	 electroweak
theory,	 while	 retaining	 a	 massless	 photon,	 the	 model	 made	 use	 of	 a	 specific
spontaneous	 symmetry	 breaking	 process	 known	 as	 the	 Higgs	 mechanism,
originally	 proposed	 by,	 among	others,	Brout,	Englert,	Higgs,	 and	Kibble.	This
requires	 the	 introduction	 of	 a	 set	 of	 four	 spin-0	 particles,	 three	 of	 which	 are
“eaten”	by	the	weak	force	carriers,	thereby	providing	them	with	their	mass.	The
fourth	particle	should	remain	physical	and	should,	by	that	token,	be	detectable.
This	is,	of	course,	the	Higgs	boson.

The	 combination	 of	 the	 electroweak	 theory	with	 quantum	 chromodynamics
led	to	the	modern	Standard	Model	of	particle	physics.	With	the	exception	of	the
discovery	 of	 neutrino	 oscillations,	which	 imply	 a	 small	 but	 non-zero	mass	 for
neutrinos,	 and	 refined	 measurements	 of	 the	 model’s	 parameters,	 the	 model
remains	largely	unchanged.	It	consists	of	the	fermions	listed	in	Figure	1.9,	along
with	 the	 photon,	 the	W	±	 and	Z0,	 eight	 gluons,	 and	 the	Higgs.	As	well	 as	 the
particle	 content,	 the	 Standard	Model	 consists	 of	 a	 set	 of	 rules	 that	 govern	 the
interactions	of	these	particles.	In	particular,	we	find	a	set	of	conservation	laws,
whereby	q,	B,	Le,	Lµ,	 and	Lτ	 are	 conserved	 in	 all	 interactions.	 In	 addition,	 the
isospin	 and	 flavor	 quantum	numbers,	 I3,	S,	C,	 	 and	T,	 are	 also	 conserved	 in
electromagnetic	 and	 strong	 interactions,	 but	 not	 in	 weak.	 These	 conservation
laws	 can	 be	 understood	 in	 terms	 of	 “allowed”	 and	 “forbidden”	 vertices	 in
Feynman	 diagrams.	 In	 particular,	 the	 vertices	 shown	 in	 Figure	 1.10	 are	 all



allowed,	where	a	solid	line	denotes	a	fermion,	a	dashed	line	denotes	the	Higgs,	a
wiggly	line	denotes	either	a	photon	(γ)	or	a	weak	boson	(W	±,	Z0),	and	a	springy
line	 denotes	 a	 gluon.	 Any	 vertex	 not	 in	 this	 allowed	 list	 is	 forbidden	 in	 the
Standard	Model.	 If	 the	 initial	and	final	states	of	a	process	can	be	connected	 to
each	other	using	only	allowed	vertices,	then	the	process	can	occur,	but	if	there	is
no	set	of	allowed	vertices	that	connects	the	states,	then	the	process	is	forbidden
and	not	 observed.	The	 fermion-fermion-W	 interaction	 is	 complicated	 by	 quark
mixing	(see	Chapter	12),	 and	 the	allowable	weak	vertices	 fall	 into	 two	camps.
First,	 there	are	those	in	which	one	fermion	is	a	charged	lepton	and	the	other	 is
the	neutrino	with	the	same	lepton	number,	such	as	e−	and	νe,	or	µ−	and	νµ.	The
second	type	consists	of	one	“up-type”	and	one	“down-type”	quark.	That	is,	one
fermion	is	u,	c,	or	t,	while	the	other	is	d,	s,	or	b.

FIGURE	1.9	The	fundamental	fermions	of	the	Standard	Model.
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FIGURE	1.10	The	allowed	vertices	of	Standard	Model	interactions.	See	the	text	for	an	explanation	of	the
“allowed	fermion”	label	in	the	weak	interaction.

The	Standard	Model	has	proven	 remarkably	 successful,	 but	 is	by	no	means
considered	to	be	the	complete	theory	of	particle	physics.	For	one	thing,	it	makes
no	attempt	 to	 incorporate	gravity.	 In	 fact,	 there	 is	 a	 very	good	 reason	 for	 this,
since	even	the	mathematical	framework	that	underpins	the	Standard	Model	runs
into	 problems	 when	 it	 is	 applied	 to	 gravity.	 There	 are	 other	 issues	 with	 the
Standard	Model	that	will	be	partly	addressed	in	Chapter	12.

THE	CURRENT	STATE	OF	THE	FIELD



In	 the	 years	 since	 the	 Standard	 Model	 was	 formulated,	 there	 have	 been
additional	 discoveries	 that	 the	 theory	 does	 not	 explain.	 One	 of	 these	 was	 the
discovery	 that	 galactic	 rotation	 rates	 cannot	 be	 explained	 by	 the	 amount	 of
visible	matter	within	each	galaxy.	The	most	common	view	of	this	problem	is	that
there	must	be	a	large	amount	of	matter	that	is	not	visible,	known	as	dark	matter.
The	 suggestion	 is	 that	 this	 should	be	 some	kind	of	 as-yet	 undiscovered	matter
that	 does	 not	 participate	 in	 the	 Standard	Model	 interactions,	 or	 possibly	 takes
part	only	in	the	weak	interaction.	Although	this	idea	has	actually	been	around	for
a	 long	 time—the	 galactic	 rotation	 problem	was	 discovered	 as	 far	 back	 as	 the
1920s—the	idea	has	only	really	gained	widespread	acceptance,	and	the	scale	of
the	problem	fully	appreciated,	since	measurements	were	improved	in	the	1980s.
While	the	Standard	Model	does	not	contain	any	suitable	candidates	for	this	dark
matter,	there	are	extensions	of	the	model	that	are	able	to	account	for	the	presence
of	this	mysterious	phenomenon.

The	 biggest	 shock	 discovery,	 however,	 came	 in	 1998	 from	 observations	 of
distant	supernovae.	Until	this	survey,	it	had	been	widely	assumed	that	the	mutual
gravitational	attraction	of	galaxies	should	act	to	slow	down	the	expansion	of	the
universe,	and	the	aim	of	the	survey	was	to	measure	this	deceleration.	What	the
team	 found	 was	 wholly	 unexpected:	 the	 deceleration	 parameter	 was	 negative.
That	is,	the	expansion	of	the	universe	is	accelerating.	This	requires	the	presence
of	a	new	type	of	energy	in	the	universe,	dubbed	dark	energy	in	analogy	with	the
dark	matter	that	preceded	it.	In	fact,	though	there	are	some	alternative	theories	to
explain	the	perceived	universal	acceleration,	it	is	now	widely	believed	that	over
68%	of	the	total	energy	in	the	universe	is	accounted	for	by	dark	energy.	We	will
see	in	Chapter	13	that	dark	energy	may	also	have	an	explanation	intimately	tied
to	particle	physics.

The	 final	 out	 standing	 piece	 of	 the	 Standard	 Model	 was	 discovered
experimentally	 in	 2012.	CERN’s	Large	Hadron	Collider	 (LHC)	was	 built	 as	 a
general-purpose	collider,	but	one	of	the	problems	it	set	out	to	tackle	was	direct
observation	of	 the	Higgs	boson,	which	has	now	been	achieved.	This	was	 (and
still	is!)	not	the	LHC’s	only	goal,	however.	Given	the	theoretical	problems	with
the	 Standard	 Model,	 it	 is	 widely	 expected	 that	 there	 should	 exist	 additional
physics	“Beyond	the	Standard	Model.”	Some	of	the	theoretical	extensions	of	the
Standard	Model	that	have	been	proposed	include	supersymmetry,	grand	unified
theories,	axions,	and	other	dark	matter	candidates.	All	of	these	ideas,	along	with
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others,	generally	predict	the	existence	of	new	as-yet	unobserved	particle	species.
At	 the	 time	 of	 writing,	 none	 of	 these	 proposals	 has	 been	 confirmed
experimentally.	 In	a	 sense,	 this	 leaves	particle	physics	 today	 in	 somewhat	of	a
limbo:	 it	 is	 expected	 that	 new	 physics	 lies	 just	 beyond	 the	 reach	 of	 our	most
powerful	experiments,	but	there	is	so	far	no	hint	as	to	what	that	new	physics	may
look	like.	To	be	clear,	though,	this	not	is	a	disappointing	end	to	this	history.	On
the	 contrary,	 not	 knowing	 quite	 what	 to	 expect	 from	 the	 current	 and	 next
generation	of	particle	physics	experiments	makes	this	a	very	exciting	time	to	be
active	in	this	field.

EXERCISES

Suppose	the	α	particle	in	Rutherford’s	gold-foil	experiment	has	initial
velocity	v	and	collides	with	a	stationary	target	of	mass	mt.	The	α	particle
then	moves	off	with	velocity	vα	and	the	target	has	velocity	vt.

Using	conservation	of	momentum	and	conservation	of	energy,	show
that

where	θ	is	the	angle	between	vt	and	vα.
Hence	show	that	if	mα	 	mt,	then	θ	is	acute	and	there	is	little
momentum	transfer.
Similarly,	show	that	if	mα	 	mt,	then	θ	is	obtuse.
How	do	these	scenarios	relate	to	models	of	the	atom?

Radium-226	has	a	half-life	of	1600	years.	What	is	the	decay	constant	for
this	material	in	decays	s−1?	How	long	would	it	take	a	sample	to	decay	to
1%	of	its	original	size?

A	free	neutron	decays	via	β-decay	with	a	half-life	of	around	15	minutes.
Why	is	this	not	necessarily	true	of	the	neutrons	in	atomic	nuclei?

The	nucleus	is	on	the	order	of	a	few	fm	across.	The	β	decay	of	a	nucleus
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causes	the	emission	of	an	electron,	typically	with	an	energy	of	around	a
few	MeV.	By	considering	the	uncertainty	in	the	position	and	momentum
of	an	electron	confined	to	the	nucleus,	show	that	the	emitted	electron
cannot	reside	in	the	nucleus	before	emission,	but	must	be	produced	at	the
moment	of	decay.

By	considering	the	conservation	of	charge,	strangeness,	baryon
number,	and	lepton	numbers,	determine	whether	the	following
processes	can	occur.	If	the	process	cannot	occur,	state	which
conservation	law	forbids	it.

Draw	possible	tree-level	Feynman	diagrams	(no	closed	loops)	for	the
following	interactions.

In	the	last	example,	there	are	two	diagrams	that	contribute:	can	you	find
both?

1	As	we	will	 see	 in	 Section	 2.2,	 the	mass	 (sometimes	 also	 called	 the	 rest	mass	 or	 invariant	mass)	 of	 a
particle	 is	a	 fundamental	property	 that	does	not	vary	 for	a	given	particle	 type.	For	a	photon,	 this	mass	 is
zero.	However,	the	equivalence	of	mass	and	energy	as	demonstrated	by	special	relativity	shows	that	there	is
also	an	effective	or	relativistic	mass	of	E/c2.	The	momentum	of	 a	particle	 is	 the	product	of	 this	 effective
mass	with	velocity,	allowing	a	massless	particle	to	carry	a	non-zero	momentum.
2	The	name	“neutrino”	is	not	Pauli’s.	In	fact,	Pauli	called	his	particle	the	neutron,	as	what	we	would	now
call	a	neutron	had	not	been	discovered	at	that	time.	The	name	was	later	changed	to	neutrino	to	distinguish



the	two	particles,	and	translates	as	“little	neutral	one.”	Another	change	in	terminology	means	that	we	now
call	Pauli’s	particle	an	anti-neutrino	for	consistency	with	later	developments.
3	More	generally,	the	difference	is	that	fermions	obey	the	statistical	mechanics	of	indistinguishable	particles
as	derived	by	Fermi	and	Dirac,	while	bosons	obey	the	Bose-Einstein	statistics,	hence	the	names.	Bosons’
ability	to	cluster	into	the	lowest	energy	state	or	ground	state	is	also	the	mechanism	behind	the	non-classical
state	of	matter	known	as	a	Bose-Einstein	condensate.
4	To	be	clear,	some	particles	are	their	own	antiparticle	twin.	These	include	the	photon	and	the	neutral	pion.
5	The	name	“quark”	is	often	said	to	have	been	taken	from	the	line	“Three	quarks	for	Muster	Mark”	in	the
book	Finnegans	Wake,	because	of	its	fitting	the	requirement	of	three	particles.	However,	Gell-Mann	himself
has	 stated	 that	 this	 is	 not	 quite	 the	 full	 story.	 In	 fact,	 he	 had	 chosen	 the	 pronunciation	 of	 the	 name	 he
intended	 to	use	 for	 these	particles	based	on	nothing	more	 than	a	whim,	and	which	he	 intended	 to	 rhyme
with	“cork.”	The	spelling	only	came	later	when	he	saw	the	above	passage	from	Finnegans	Wake,	and	in	fact
the	structure	of	the	passage	suggested	that	the	author’s	pronunciation	of	that	word	did	not	match	his	own,
but	should	instead	rhyme	with	Mark.	He	neglected	this	fact	and	used	the	spelling	“quark”	to	fit	his	chosen
pronunciation.	As	a	result	of	this,	 there	really	is	a	right	way	to	pronounce	quark	(cork)	and	a	wrong	way
(Mark).	 It	 is	 also	 worth	 mentioning	 that	 the	 pronunciation	 issue	 could	 have	 been	 avoided	 altogether	 if
Zweig	had	beaten	Gell-Mann	to	publication,	since	he	independently	made	a	similar	discovery	and	preferred
the	name	“aces.”
6	The	slightly	unusual	name,	J/Ψ,	is	due	simply	to	the	fact	that	this	particle	was	discovered	independently
by	two	groups	and	given	two	distinct	names.
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CHAPTER	2
SPECIAL	RELATIVITY

This	is	the	first	of	two	chapters	of	general	background	that	will	be	useful	for	the
remainder	of	the	book.	These	chapters	are	not	intended	as	introductions	to	these
subjects	 but	more	 as	 a	 recap	 of	material	 that	 the	 reader	 should	 be	 reasonably
familiar	with.	They	will	not	be	an	in-depth	look	at	the	background	material	but
will	cover	only	those	aspects	of	the	material	that	will	prove	most	useful	for	later
chapters.	 This	 chapter	 revisits	 the	 ideas	 of	 special	 relativity,	 introducing	 the
concept	of	 four-vectors	and	 tensors.	Most	 importantly	 for	our	purposes,	 it	will
introduce	the	index	notation	that	will	be	used	throughout	much	of	the	rest	of	this
book.	 For	 a	 more	 in-depth	 introduction	 to	 this	 rich	 subject,	 the	 reader	 is
encouraged	 to	 take	 a	 look	 at	 the	 text	The	 Special	 Theory	 of	 Relativity	 in	 this
series.

LORENTZ	TRANSFORMATIONS

Scalars,	Vectors,	and	Reference	Frames

The	reader	is	almost	certainly	familiar	with	the	concepts	of	a	“vector”	and	a
“scalar.”	The	way	in	which	these	concepts	are	typically	introduced	is	to	describe
a	 scalar	 as	 “just	 a	 number”	 and	 a	 vector	 as	 a	 “number	 with	 a	 direction.”	 In
practice,	 one	 likely	 thinks	 of	 a	 scalar	 as	 a	 single	 number	 and	 a	 vector	 as	 a
collection	of	components.	However,	these	two	descriptions	don’t	quite	match.	In
reality,	 there	 are	 objects	 we	 can	 write	 down	 that	 consist	 of	 a	 collection	 of
components	that	do	not	correspond	to	the	idea	of	a	number	with	direction.	The
reason	 for	 this	 is	 that	 the	 real	 essence	 of	 a	 vector	 is	 captured	 by	 its	 behavior
under	coordinate	transformations.	It	is	not	enough	to	list	a	series	of	components:
we	must	also	check	that	these	components	behave	the	right	way	if	we	look	at	the



object	 from	 a	 different	 perspective.	 To	 illustrate	 this	 idea,	 consider	 a	 two-
dimensional	 vector	 v.	When	 this	 vector	 is	 viewed	 from	 a	 particular	 reference
frame,	S,	 it	 may	 have	 a	 set	 of	 components	 	 However,	 if	 viewed	 from	 a
different	reference	frame,	 	it	has	a	different	set	of	components	 	(We	use
superscripts	 to	 identify	 the	 components	 for	 reasons	 that	 will	 become	 clear
shortly.	Also,	we	are	using	bars	to	denote	the	second	frame	rather	than	the	more
common	“primed”	notation	simply	 to	avoid	clashes	with	superscipt	 indices.)	 If
the	reference	frames	are	related	by	a	rotation	through	an	angle	θ,	then	we	would
expect	 the	 relationship	 between	 components	 in	 each	 frame	 to	 be	 of	 the	 form	

	We	can	say	then	that	an	object	is	only
a	 vector	 if	 it	 transforms	 in	 this	 way.	 The	 transformation	 can	 be	 written	 in	 a
concise	form	using	a	rotation	matrix	 	where

What	 is	 this	 matrix	 notation	 really	 saying	 though?	 It	 says	 that	 the	 matrix	
consists	of	four	numbers	which	we	can	label	by	their	row	and	column:	R11,	R12,
R21,	 and	 R22,	 and	 that	 some	 (but	 not	 all)	 of	 these	 numbers	 multiply	 other
numbers	v1	and	v2.	Specifically,

which	we	can	summarize	as

where	 the	 index	 i	 labels	 the	new	components	and	 j	 labels	 the	old	components.
This	 is	shorthand	for	 two	equations:	one	with	 i	=	1	and	one	with	 i	=	2.	Notice
that	the	i	 index	appears	on	both	sides	of	the	equation.	The	index	j	plays	a	very
different	role.	There	is	no	j	on	the	left	because	j	is	summed	over	on	the	right,	so
there	is	no	free	j	 to	relate	the	left	 to.	In	fact,	we	could	change	the	name	of	 j	 to
anything	we	like	without	changing	the	meaning	of	the	equation.	For	this	reason,



j	is	called	a	dummy	index,	while	i	is	a	free	index.	Equations	like	the	one	above
are	so	common	in	this	notation	that,	by	convention,	we	leave	out	the	∑	sign.	A
repeated	 index	 automatically	 implies	 a	 sum	 over	 the	 dummy	 index.	 This	 is
known	as	the	Einstein	summation	convention.	Notice	that	Rij	is	just	a	measure	of
how	the	i-th	new	coordinate	depends	on	the	j-th	old	coordinate.	So

Now	 although	 two	 observers	 in	 different	 frames	 will	 disagree	 on	 the
components	of	a	vector,	there	is	one	property	of	the	vector	on	which	they	agree:
namely,	 its	 length.	This	value	is	 independent	of	any	particular	reference	frame,
and	it	is	this	invariance	property	that	classifies	it	as	a	scalar.	To	put	this	another
way,	 the	 transformation	 law	 for	 a	 scalar	 between	 different	 reference	 frames	 is
simply	 	Notice	 that	 this	 is	not	 true	of	a	vector	component	such	as	v1:	 this
transforms	instead	as	one	component	of	a	vector,	not	as	a	scalar.

For	 ease	 of	 generalization	 to	 later	 cases,	 let’s	 now	 consider	 a	 vector	 with
infinitesimal	components	dv1,	dv2.	The	length	of	this	vector	is	given	by

where	δij	 is	 the	Kronecker	delta,	defined	to	be	1	if	 i	=	j	and	0	otherwise.	More
generally,	the	scalar	product	of	any	two	vectors	is	given	by

The	delta	is	playing	the	role	of	a	metric,	an	object	 that	 tells	us	how	to	form
scalars	from	vectors	in	a	given	coordinate	system.	For	Cartesian	coordinates	in
Euclidean	space,	this	metric	is	very	simple.	However,	for	other	systems,	it	takes
different	 forms.	 For	 example,	 in	 polar	 coordinates	 r,	θ,	 infinitesimal	 distances
are	given	by



where	pij	is	now	the	metric	and	is	given	by	prr	=	1,	pθθ	=	r2,	prθ	=	pθr	=	0.

In	order	to	generalize	these	ideas	to	relativity,	it	is	useful	to	consider	here	one
more	 concept:	 the	 gradient.	 The	 gradient	 of	 a	 scalar	 quantity,	ϕ,	 is	 the	 vector
formed	from	the	derivatives	of	 the	scalar	with	respect	 to	 the	coordinates,	 (∂1ϕ,
∂2ϕ),	 denoted	∂iϕ.	By	 the	 chain	 rule,	 this	 transforms	 to	 a	new	 reference	 frame
according	to

which	 is	not	 the	same	as	 the	 transformation	of	our	original	vector	vi	 (Equation
2.4).	We	have	two	different	types	of	vector	that	transform	differently:	the	first	is
called	 contravariant	 and	 the	 second	 covariant.	 We	 don’t	 think	 about	 this
difference	 very	 often	 in	Euclidean	 space	 since	 the	 two	 types	 of	 vector	 behave
almost	identically.	We	will	see	shortly	that	the	same	is	not	true	in	relativity.

Notice	also	that	 in	order	 to	form	a	scalar	quantity	ϕ	 from	two	vectors	ui,	vi,
then	one	must	be	contravariant	and	the	other	must	be	covariant,	since	then

From	this,	we	can	see	that	another	way	to	view	the	metric	is	as	an	object	that
converts	a	contravariant	vector	to	a	covariant	vector.	We	can	similarly	define	an
inverse	metric	δij	that	converts	covariant	to	contravariant.
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If	different	observers	are	to	agree	on	the	laws	of	physics,	then	the	two	sides	of
an	equation	must	have	the	same	transformation	rule.	We	must	be	able	to	take	two
equal	quantities	(F	and	ma,	 for	 instance)	and	 transform	to	a	different	 reference
frame	to	find	that	they	are	still	equal!	To	put	it	another	way,	dummy	indices	must
always	appear	one-up-one-down,	and	free	indices	must	match	on	opposite	sides
of	an	equation.	Let’s	check	a	few:

where	εijk	is	the	Levi-Civita	symbol,	defined	to	be	antisymmetric	and	1	if	i,	j,	k
are	a	cyclic	permutation	of	1,	2,	3.	That	is

We	can	take	these	ideas	further	and	define	objects	with	more	than	one	index,
that	transform	according	to	(e.g.)

Such	an	object	is	known	as	a	rank-2	tensor,	and	we	can	similarly	define	rank-
3	tensors	and	so	on.	Note	that	“vector”	is	just	another	name	for	a	rank-1	tensor
and	“scalar”	means	rank-0	tensor.

Special	Relativity

Einstein’s	 special	 theory	 of	 relativity	 begins	 from	 the	 assumption	 that	 the
speed	 of	 light	 is	 a	 constant	 value,	 regardless	 of	 the	 reference	 frame	 of	 the
observer.	 This	 assumption	 leads	 directly	 to	 the	 concept	 of	 a	 Lorentz
transformation.	 The	 form	 of	 a	 Lorentz	 transformation	 is	 most	 easily	 written
down	if	we	make	certain	assumptions	about	the	two	reference	frames	we	wish	to
transform	 between.	 Specifically,	 let’s	 assume	 that	 one	 observer,	 	 is	 moving



with	speed	v	relative	to	the	other,	S,	along	a	direction	that	they	both	call	the	x-
direction,	such	that	the	two	observers	coincide	at	a	time	they	both	call	0.	Then
the	transformation	between	frames	is	given	by

Any	transformation	between	frames	not	perfectly	aligned	in	this	way	can	be
found	 by	 combining	 appropriate	 rotations	 with	 the	 above	 standard
transformation.	 Since	 this	 transformation	 mixes	 up	 the	 time	 and	 spatial
coordinates,	 it	 is	 no	 longer	 appropriate	 to	 treat	 time	 and	 space	 as	 separate
entities.	 Instead	 they	 become	 blended	 together	 into	 a	 four-dimensional	 space-
time.	For	this	to	make	sense,	the	units	for	space	and	time	must	match:	it	would
make	little	sense	in	three-dimensional	Euclidean	space	to	measure	one	direction
in	feet	and	another	in	meters!

One	way	 to	 correct	 the	mismatched	 units	 for	 time	 and	 distance	 is	 to	 use	 a
scaling	factor	that	everyone	can	agree	on.	Since	special	relativity	is	founded	on
the	principle	that	all	observers	agree	on	the	speed	of	light,	we	can	re-scale	time
coordinates	by	c,	giving	us	a	four-dimensional	vector	(or	four-vector)	(ct,	x,	y,	z).
However,	 another	 approach	 is	 to	 recognize	 that	 nature	 is	 trying	 to	 tell	 us
something:	maybe	we	were	using	the	wrong	units	to	begin	with.	If	distances	and
times	 are	 really	 two	 sides	 of	 the	 same	 coin,	 we	 should	 really	 use	 exactly	 the
same	unit	for	each.	In	SI	units,	one	meter	is	defined	to	be	the	distance	that	light
travels	in	one	299,792,458th	of	a	second,	but	this	number	is	completely	arbitrary,
chosen	 simply	 so	 that	 the	meter	 is	 a	 typical	 everyday	 length	 for	most	 humans
and	 the	 second	 is	a	 typical	everyday	 time.	 If	we	had	chosen	 the	 fraction	 to	be
simply	1,	we	could	 instead	measure	both	 times	and	distances	 in	 the	same	unit.
Whether	we	choose	to	call	that	unit	seconds,	meters,	or	something	else	is	up	to
us.	 In	 fact,	 we	 will	 use	 a	 similar	 argument	 in	 Chapter	 3	 to	 show	 that	 an
appropriate	 unit	 for	 length	 and	 time	 is	MeV−1.	With	 these	 “natural	 units,”	 the
standard	Lorentz	transformation	looks	a	little	more	symmetrical:

and	the	space-time	four-vector	is	simplified	to	(t,	x,	y,	z).



2.1.3 Minkowski	Space

The	 space	 that	 these	 four-vectors	 inhabit	 is	 not	 a	 simple	 generalization	 of
Euclidean	space	to	four	dimensions.	Instead,	it	 is	a	space	with	a	fundamentally
different	 metric,	 known	 as	 Minkowski	 space.	 By	 considering	 the	 Lorentz
transformation,	one	finds	that	the	quantity

is	not	invariant.	That	is,	it	is	not	a	scalar.	The	correct	form	of	the	scalar	quantity
associated	with	four-vectors	is,	in	fact,

Notice	that	we	have	changed	the	indices	on	the	four-vector	to	Greek	letters:	this
is	common	practice	to	distinguish	Minkowski	vectors	from	Euclidean	vectors.

The	metric,	then,	is	not	the	Kronecker	delta	as	for	Euclidean	space	but	instead
takes	the	form:

or,	in	matrix	form

As	 in	 the	 Euclidean	 case,	 we	 can	 also	 define	 an	 inverse	 metric,	 gµν,	 by	
	 which	 converts	 covariant	 vectors	 to	 contravariant.	 The	 Lorentz

transformation,	just	like	the	rotation	in	the	two-dimensional	case,	can	be	written
as

where



We	have	already	seen	that	covariant	vectors	 transform	according	to	the	inverse
of	this	derivative,	so	we	can	say	that

Also,	 notice	 that	 a	 Lorentz	 transformation	 followed	 by	 its	 inverse	 necessarily
brings	us	back	to	where	we	started,	so	we	have	

It	 is	worth	noting	at	 this	point	that,	while	we	have	referred	to	“the”	Lorentz
transformation,	the	term	is	really	much	broader	than	the	way	in	which	we	have
used	 it.	A	Lorentz	 transformation	 is	any	 transformation	of	 the	above	 form	 that
preserves	 the	 scalar	 product	 of	 two	 vectors.	 To	 preserve	 this	 product,	 the
transformation	must	clearly	preserve	the	metric.	Therefore,	we	require:

Such	transformations	include	the	boosts	(one	reference	frame	moving	relative
to	another)	but	also	includes	ordinary	threedimensional	rotations.	To	see	that	this
is	the	case,	we	need	only	consider	the	transformation:

which	gives	a	rotation	in	the	x,	y-plane	through	an	angle	θ,	and	is	easily	shown
to	 obey	 Equation	 2.22.	 Angles	 are	 of	 course	 a	 very	 natural	 way	 to	 describe
rotations,	 since	 to	 find	 the	 combined	 transformation	 due	 to	 two	 successive
rotations	about	the	same	axis,	we	need	only	add	the	two	angles.	It	turns	out	that
there	 is	 a	 similarly	 neat	 way	 to	 combine	 successive	 boosts	 if	 we	 define	 the
rapidity,	ξ,	of	a	boost	by	ξ	=	tanh−1	v,	where	v	 is	 the	relative	speed	of	 the	 two
reference	frames.	With	this	definition,	boosts	may	be	written	in	the	form



The	 typical	 route	 taken	 by	 a	 text	 on	 relativity	 at	 this	 point	 is	 to	 show	 that
various	 other	 constructs	 transform	 as	 four-vectors.	 Here,	 we	 will	 simply	 state
that	 the	 following	 objects	 (among	 others)	 all	 obey	 the	 correct	 transformation
laws:

where	E	 is	a	particle’s	energy,	p	 is	momentum,	V	 is	 the	electric	potential,	A	 is
the	electromagnetic	vector	potential,	ρ	is	charge	density,	and	j	 is	charge	current
density.

However,	two	important	quantities	that	do	not	generalize	to	fourvectors	in	the
relativistic	case	are	the	electric	and	magnetic	fields,	E	and	B.	 In	 fact,	 these	are
found	to	transform	as	the	components	of	an	antisymmetric	rank-2	tensor:

known	as	the	Maxwell	field	strength	tensor.	With	this	 in	mind,	 it	 is	reasonably
straightforward	to	show	that	Maxwell’s	equations	can	be	written:

It	 should	 be	 noted	 that,	 in	 the	 above	 equations,	we	 have	 extended	 the	 idea	 of
natural	units	to	set	the	permeability	of	free	space	µ0	also	to	a	value	of	1.

Since	 the	metric	 is	 not	 quite	 as	 simple	 as	 in	 the	 Euclidean	 case,	 it	 is	 now
especially	 important	 to	 distinguish	between	 contra-	 and	 covariant	 four-vectors.
This	 is	 because	 if	 we	 use	 the	 metric	 to	 lower	 an	 index	 on,	 for	 example,	 the
momentum	four-vector,	we	get:



2.2

However,	 as	 long	 as	we	 are	 careful	 to	make	 such	 distinctions,	 we	 are	 free	 to
move	indices	up	and	down	with	metrics	as	we	please.

A	final	point	on	notation	is	that,	having	made	a	careful	distinction	in	Section
2.1.1	 between	 the	 contravariant	 and	 covariant	 vectors	 in	 Euclidean	 space,	 we
now	 lower	 all	Euclidean	 indices,	 since	we	know	 that	 there	 is	 actually	no	 such
distinction	to	be	made	in	Euclidean	space.	This	allows	us	such	useful	notations
as	the	following:

ENERGY	AND	MOMENTUM	IN
MINKOWSKI	SPACE

We	have	 seen	 that	 the	 energy	 and	momentum	of	 a	 particle	 together	 form	 a
four-vector:	the	four-momentum.	Since	we	know	that	energy	and	momentum	are
both	conserved	quantities,	we	can	summarize	both	of	these	conservation	laws	in
one	equation:

where	i	indexes	a	set	of	initial	four-momenta,	and	f	indexes	a	similar	set	of	final



momenta.	 An	 important	 consequence	 of	 the	 four-vector	 nature	 of	 the	 four-
momentum	is	that	its	square	is	an	invariant	quantity.	That	is,	for	a	given	particle,
there	is	a	constant	m	such	that

We	 know	 this	 invariant	 quantity	 as	 the	 particle’s	 mass.	 In	 terms	 of	 the
components	of	four-momentum,	the	above	equation	relates	energy,	momentum,
and	mass	according	to:

In	 particular,	 in	 the	 case	 of	 a	 particle	 at	 rest,	 the	 particle	 still	 has	 energy
simply	due	to	its	mass,	namely	E	=	m.	Therefore,	we	can	attribute	any	additional
energy	 coming	 from	 the	 energy-momentum	 relation	 to	 the	 particle’s	 motion.
That	is,	the	kinetic	energy	of	a	particle	is	given	by	Ek	=	E	−	m.

Example	Calculation

Consider	 the	decay	of	a	heavy	particle	A	 into	 two	 lighter	particles	B	and	C.
Assuming	that	A	was	at	rest	when	it	decayed,	what	is	the	energy	of	each	of	the
decay	products?	This	is	a	classic	problem	whose	solution	is	a	great	example	of
the	 use	 of	 four-vectors.	 First,	 we	 can	 use	 conservation	 of	 four-momentum	 to
write:

We	then	rearrange	and	square,	remembering	that	the	square	of	a	particle’s	four-
momentum	is	equal	to	the	square	of	its	mass:

Since	we	assumed	that	A	was	at	rest,	we	know	that	its	three-momentum	is	zero:
pA	=	0,	and	therefore	its	four-momentum	is	given	by	(EA,	0,	0,	0).	Squaring	this,
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we	find

so	we	can	further	simplify	pA	to	(mA,	0,	0,	0).	This	simple	form	for	pA	 reduces
Equation	2.34	to

so	we	find	we	can	express	EB	as

Since	this	expression	involves	only	invariant	quantities,	we	can	now	determine
the	 energy	 of	 particle	 B	 (as	 long	 as	 we	 know	 the	 masses	 of	 the	 particles
involved).	By	symmetry,	a	similar	argument	holds	for	particle	C.

Invariant	Mass

We	 can	 extend	 these	 methods	 by	 introducing	 a	 quantity	 known	 as	 the
invariant	mass,	W.	For	any	collection	of	particles,	W	is	defined	by

To	 be	 clear,	 this	 quantity	 is	 only	 actually	 a	 mass	 in	 the	 special	 case	 that	 the
collection	 consists	 of	 only	 one	 particle.	 In	 larger	 collections,	 the	 physical
significance	of	W	 is	 a	 little	more	 subtle.	 It	 is	 the	mass	 equivalent	 to	 the	 total
energy	 of	 the	 system	 as	 measured	 in	 the	 center-ofmomentum	 frame,	 if	 that
energy	were	to	be	concentrated	in	a	single	particle.	However,	the	fact	that	it	is	an
invariant	quantity	makes	it	useful	for	calculations.

As	an	example	of	the	use	of	the	invariant	mass,	consider	a	shortlived	particle
X	that	typically	decays	via

with	 a	 lifetime	 that	 is	 too	 short	 for	 direct	 detection.	 How	 can	 we	 infer	 the
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existence	 of	 such	 a	 particle?	 Well,	 regardless	 of	 the	 fourmomentum	 of	 the
particle	X,	the	invariant	mass	for	the	A	and	B	particles	gives

by	 conservation	 of	 four-momentum.	 If	 the	A	 and	B	 particles	 are	 measured	 as
having	originated	at	the	same	point	with	a	combined	invariant	mass	of	 	it	is
evidence	 that	 they	 could	 have	 been	 produced	 by	 the	 decay	 of	 a	 particle	 with
mass	mX.	Of	course,	one	such	signal	on	its	own	may	well	be	due	to	an	A	and	a	B
particle	coincidentally	crossing	paths.	The	power	of	 the	 invariant	mass	 is	only
harnessed	 when	 looking	 at	 many	 thousands	 of	 signals	 or	 more.	 If	 the	 same
invariant	mass	appears	in	an	A,	B	pair	many	times,	it	begins	to	provide	evidence
of	 an	 undetected	 particle	 species	X.	 These	 ideas	 will	 be	 built	 upon	 when	 we
consider	resonances	in	Chapter	6.

Another	use	of	the	invariant	mass	is	in	determining	the	mass	of	a	particle	that
has	escaped	detection,	for	example	by	traveling	through	an	area	not	covered	by	a
detector.	Particles	 escaping	an	experiment	without	being	directly	detected	may
still	be	inferred	through	conservation	of	momentum.	When	the	momentum	in	a
collision	 appears	 to	 be	 unconserved,	 there	must	 be	 some	 additional	 particle	 or
particles	to	account	for	the	discrepancy.	The	invariant	mass	of	this	collection	of
undetected	particles	 is	known	as	 the	missing	mass,	 and	 is	 a	particularly	useful
concept	 when	 one	 particle	 is	 responsible	 for	 the	 majority	 of	 the	 missing
momentum.	 For	 example,	 in	 a	 collision	 A	 +	 B	 →	 C	 +	 D	 +	 X	 where	 X	 is
undetected,	we	construct	the	invariant	mass:

In	this	case,	W	is	the	mass	of	the	missing	particle,	

EXERCISES

Show	that	

Show	that	Equation	2.24	is	equivalent	to	the	standard	Lorentz



(a)

(b)

		3.

		4.

(a)

(b)

		5.

		6.

(a)

(b)

		7.

		8.

(a)
(b)

		9.

10.

transformation	given	in	Equation	2.14.

Using	the	transformation	laws	for	the	contravariant	four-vector	Aµ
and	the	covariant	four-vector	Bν,	derive	the	transformation	law	for
the	rank-2	tensor	Xµν	=	AµBν	.
Hence	show	that	the	object	 	is	a	scalar.

Evaluate	gµν	gµν.

For	a	symmetric	constant	rank-2	tensor	aµν,	show	that

For	an	antisymmetric	rank-2	tensor	bµν	show	that	aµν	bµν	=	0.

Calculate	∂ρ	exp(gµν	xµxν	)	where	gµν	is	the	metric	and	xµ	is	the	space-
time	coordinate	four-vector.

By	considering	the	case	when	ν	=	0,	show	that	∂µFµν	=	jν	gives	one
of	the	inhomogeneous	Maxwell	equations.
By	considering	the	case	when	ν	≠	1,	show	that	it	also	gives	the	other
inhomogenous	equation.

The	antisymmetric	rank-2	tensor	Lµν	is	defined	by

where	xµ	is	a	position	vector	and	pµ	is	the	four-momentum.
How	many	independent	components	does	Lµν	have?
What	is	the	physical	significance	of	the	components	Lij	and	L0i?

A	Higgs	boson	with	initial	three-momentum	200	MeV	decays	to	two
photons.	Assuming	the	photons	have	equal	energy,	find	the	energy	of
each	photon	and	the	angle	between	their	trajectories.

In	Experiment	A,	a	particle	of	mass	m	is	accelerated	toward	its
antiparticle,	which	is	stationary.	In	Experiment	B,	the	same	type	of



(a)
(b)

(c)

(d)

(e)

11.

(a)
(b)

particle	and	its	antiparticle	are	accelerated	toward	each	other	with	equal
and	opposite	momentum.

Write	down	the	four-momentum	of	each	particle	in	both	cases.
Use	conservation	of	four-momentum	to	find	the	invariant	mass,	W,
for	each	system,	in	terms	of	the	particle	energies,	momenta,	and
masses.
Hence	determine	the	minimum	total	energy	required	for	each
experiment	to	produce	a	particle	of	type	X	with	mass	mX.
Write	the	required	energy	in	experiment	A	in	terms	of	0that	in
experiment	B	and	show	that

Which	type	of	experiment	is	more	energy-efficient?

The	position	of	an	object	is	described	by	a	four-vector	xµ.	We	can	define
a	four-velocity	Uµ	=	dxµ/dτ	where	τ	is	the	proper	time	for	the	object	(the
time	as	experienced	by	an	observer	moving	with	the	object).	We	can	also
define	a	four-force	dpµ/dτ.

What	are	the	components	of	Uµ?
By	considering	the	energy	and	momentum	of	a	particle	of	charge	Q
in	an	electromagnetic	field,	show	that	the	covariant	form	of	the
Lorentz	force	is

where	Fµν	is	the	electric	field	strength	tensor.
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CHAPTER	3
QUANTUM	MECHANICS

While	special	relativity	gave	our	understanding	of	space	and	time	a	gentle	prod
in	 the	 right	 direction,	 quantum	mechanics	 beat	 our	 ideas	 of	 the	 universe	 into
submission.	We	will	not	delve	into	the	history	or	origins	of	quantum	mechanics,
as	other	texts	do	a	better	job	of	this	than	a	single	chapter	can	manage.	As	in	the
last	chapter,	the	aim	here	is	to	provide	a	reminder	of	some	ideas	that	the	reader
should	 be	 familiar	 with,	 focusing	 in	 particular	 on	 those	 points	 that	 are	 most
relevant	 to	 later	 chapters.	 For	 a	 comprehensive	 introduction	 to	 the	 subject,	 I
direct	 the	 reader	 to	 the	 quantum	 mechanics	 text	 in	 this	 series:	 Quantum
Mechanics.

STATES	AND	OPERATORS

A	good	place	 to	 start	 in	 understanding	quantum	mechanics	 is	wave-particle
duality:	particles	exhibit	wave-like	behavior	and	waves	can	sometimes	act	 like
particles.	 This	 is	 very	 counterintuitive,	 since	 waves	 and	 particles	 are	 very
different	 beasts	 on	 the	 surface.	Waves	 are	 characterized	by	 smooth	 continuous
properties,	 whereas	 particles	 are	 discrete	 objects	 with	 definite	 properties.	 The
way	to	make	(at	least	some)	sense	of	this	duality	is	to	understand	that	everything
acts	in	a	manner	that	is	not	quite	like	either	of	these	concepts,	but	as	something
that	has	properties	of	both.	There	is	a	correspondence	between	the	particle-like
and	the	wave-like	properties	of	a	quantum	object,	which	can	be	summed	up	in
two	equations.	First,	the	energy	of	a	particle	is	related	to	the	angular	frequency
of	its	corresponding	wave	by	E	=	ħω,	and	second,	the	momentum	of	a	particle	is
related	 to	 the	wave-vector	by	p	 =	ħk.	As	with	 relativity,	we	 take	 the	hint	 that
nature	 is	 giving	 us,	 and	 redefine	 our	 units	 in	 such	 a	way	 as	 to	 get	 rid	 of	 the
unnecessary	constants.	In	particular,	we	choose	ħ	=	1,	reducing	these	equations



to	E	=	ω	and	p	=	k.	In	order	to	reconcile	the	wave-like	and	particle-like	aspects
of	 a	 system,	 quantum	 mechanics	 introduces	 a	 new	 concept,	 which	 is	 able	 to
reproduce	both	types	of	behavior	in	different	situations.	The	new	concept	is	that
of	the	quantum	state.

A	system	has	a	Hilbert	space	 	of	possible	states	that	it	can	be	in,	essentially
equivalent	 to	 the	 phase-space	 of	 classical	 mechanics.1	 We	 denote	 individual
states	 in	 this	space	using	the	“ket”	notation:	 |ψ⟩.	 In	fact,	 the	physically	distinct
quantum	 states	 are	 given	 only	 by	 the	 direction	 in	 the	 Hilbert	 space.	 In	 other
words,	the	state	of	a	system	corresponds	to	a	ray	of	vectors	in	the	Hilbert	space,
rather	 than	 a	 particular	 vector.	 For	 this	 reason,	 it	 is	 necessary	 to	 choose	 a
consistent	normalization	for	the	physical	states	of	a	system.	The	simplest	choice
is	for	all	physical	state	vectors	 to	be	normalized	according	to	⟨ψ	|	ψ⟩	=	1.	The
Hilbert	space	is	a	complex	vector	space,	so	we	must	also	have	a	way	to	write	the
Hermitian	conjugate	of	a	state.	For	 this	we	use	 the	“bra”	⟨ψ|	=	|ψ⟩†.	The	 inner
product	of	two	state	vectors	is	then	written	simply	as	⟨ψ1	|	ψ2⟩.	We	also	have	a
set	of	operators	 	that	act	as	a	linear	map	from	 	to	 ,	mapping	state	vectors	to
other	 state	 vectors.	 These	 are	 linear	 in	 the	 sense	 that	

	 It	 should	 be	 noted	 that	 this	 ket	 notation	 is
specifically	designed	to	be	independent	of	any	particular	representation	we	may
have	 in	 mind	 for	 the	 quantum	 state,	 so	 if	 we	 wish	 to	 formulate	 quantum
mechanics	in	terms	of	wavefunctions	and	differential	operators,	then	we	are	free
to	 do	 so:	 the	 state	 vector	 can	 simply	 be	 replaced	 with	 the	 wavefunction.
Similarly,	 some	 situations	 are	 simpler	 to	 consider	 in	 terms	 of	 vectors	 and
matrices,	 and	we	are	 equally	 justified	 in	making	 this	 replacement	 instead.	The
two	 representations	 are	 equivalent,	 inasmuch	 as	 they	 contain	 the	 same
information	and	make	the	same	predictions.

The	 behavior	 of	 the	 state	 vector	 is	 determined	 by	 some	 linear	 differential
equation,	until	any	act	of	measurement	is	performed,	at	which	point	it	is	said	to
“collapse”	 into	a	particular	 state.	 It	 is	 these	 two	distinct	 types	of	behavior	 that
give	rise	 to	 the	wave-like	and	particle-like	properties	of	quantum	systems.	The
particle-like	 properties	 of	 the	 system	are	 reproduced	by	 identifying	observable
quantities,	 A,	 of	 the	 system	 with	 Hermitian	 operators,	 ,	 where	 the	 possible
measured	 values	 are	 the	 eigenvalues,	 λ,	 of	 the	 operator:	 that	 is,	 there	 exists	 a
state	|ψ⟩	such	that	 	|ψ⟩	=	λ	|ψ⟩.	Similarly,	|ψ⟩	is	then	termed	an	eigenstate	of	 .



For	 a	 particular	 observable,	 the	Hermiticity	 and	 linearity	 of	 the	 corresponding
operator	 guarantees	 that	 it	 has	 a	 set	 of	 eigenstates	 that	 form	 a	 complete
orthonormal	 set.	 That	 is,	 they	 form	 a	 suitable	 basis	 for	 the	 Hilbert	 space.	 As
such,	any	quantum	state	can	be	written	as	a	linear	combination	of	eigenstates	of	
,	|ψ⟩	=	a1	|ψ1⟩	+	a2	|ψ2⟩	+	.	.	.	.	When	the	measurement	is	taken,	the	measured

value	will	be	one	of	the	eigenvalues,	say	λi,	with	eigen-state	|ψi⟩.	The	probability
of	this	particular	outcome	is	given	by	 	where	ai	is	the	coefficient	of	|ψi⟩	in	the
linear	 decomposition	 of	 the	 original	 state	 |ψ⟩.2	 At	 the	 same	 time,	 the	 state
“collapses”	 into	 the	 corresponding	 eigenstate	 |ψi⟩.	 As	 a	 result,	 if	 the	 same
measurement	 is	 performed	 again	 immediately	 (before	 the	 system	 has	 time	 to
evolve),	 the	 same	 result	will	 be	 obtained,	 since	 the	 linear	 combination	 for	 the
collapsed	state	is	simply	|ψ⟩	=	1	|ψi⟩.	Simple	probability	theory	then	tells	us	that
the	 expectation	 value	 for	 this	 measurement	 (the	 average	 value	 if	 the	 same
measurement	 could	 be	 taken	 multiple	 times	 on	 the	 same	 state)	 is	 given	 by	

Suppose	 we	 wish	 to	 know	 more	 than	 one	 piece	 of	 information	 about	 a
quantum	system.	This	will	mean	taking	measurements	of	more	than	one	quantity,
and	therefore	applying	more	than	one	operator	to	the	state.	In	particular,	suppose
we	wish	to	measure	the	observables	represented	by	the	operators	 	and	 .	If	we
measure	 	first,	we	will	collapse	the	system	into	some	eigenstate	of	 ,	say	|ψ1⟩.
If	we	then	measure	 ,	we	collapse	the	system	to	a	 	eigenstate,	say	|ψ2⟩.	If	|ψ2⟩
consists	 of	 a	 linear	 combination	 of	 more	 than	 one	 eigen-state	 of	 ,	 a	 second
measurement	of	 	may	well	collapse	the	system	to	a	different	eigenstate	from	|
ψ1⟩.	Measuring	 	has	altered	the	value	of	 .	The	only	way	we	can	guarantee	that
the	measurement	of	 	does	not	affect	the	value	of	 	is	if	the	two	operators	share
the	same	eigenstates.	 If	 this	 is	 the	case	 then	 it	can	be	shown	that	 the	operators
must	commute.	In	fact,	the	converse	is	also	true,	so	we	find	that	the	eigenstates
of	two	operators	are	compatible	if	and	only	if	 the	operators	commute.	This	is	a
key	concept	in	quantum	mechanics,	as	it	says	that	the	values	of	two	incompatible
observables	are	not	only	simultaneously	unknowable,	but	in	fact	cannot	even	be
simultaneously	defined.	A	state	with	a	well-defined	value	for	one	observable	can
never	be	a	state	with	a	well-defined	value	for	a	second	incompatible	observable.
In	turn,	this	implies	that	the	state	of	a	quantum	system	is	uniquely	defined	only
by	some	subset	of	the	observable	quantities	of	the	system.
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One	 final	 point	 about	 the	 observable	 operators	 is	 that	 they	 obey	 the	 same
relations	 with	 each	 other	 as	 their	 corresponding	 classical	 quantities.	 This	 is
important	in	the	next	section.

THE	SCHRÖDINGER	EQUATION

In	order	to	produce	the	wave-like	properties	of	a	system,	quantum	mechanics
postulates	 that	 the	 time-evolution	 of	 a	 state	 vector	 between	 measurements	 is
determined	 by	 a	 wave	 equation.	 In	 particular,	 one	 set	 of	 states	 that	 should
provide	solutions	to	the	wave	equation	are	the	plane-waves:

(in	 the	wave-formulation	of	quantum	mechanics).	Often,	we	will	want	 to	work
specifically	in	the	wavefunction	representation,	in	which	case	we	will	denote	the
wavefunction	as	ψ	rather	than	|ψ⟩.

By	acting	with	the	differential	operator	 	we	find	that

That	 is,	 the	 state	 (wavefunction)	 is	 an	 eigenstate	 (eigenfunction)	 of	 the
operator	 	with	an	eigenvalue	equal	to	the	energy	of	the	state.	We	identify	this
operator,	therefore,	as	the	energy	operator

The	plane	wave	is	similarly	an	eigenfunction	of	 the	operator	−i∇	with	 (vector-
valued)	eigenvalue	p,	so	we	identify	this	as	the	momentum	operator

or	in	index	notation
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We	 now	 construct	 the	 wave	 equation	 by	 taking	 the	 non-relativistic	 energy-
momentum	relation:

where	 V	 is	 the	 potential	 energy,	 then	 promoting	 each	 term	 to	 the	 relevant
operator,

and	giving	the	operators	something	to	act	on:

We	 have	 arrived	 at	 the	 time-dependent	 Schrödinger	 equation.	 Notice	 that	 the
operator	 	simply	has	the	effect	of	multiplying	by	the	potential	energy	V.

All	of	this	should	be	familiar,	and	it	is	reviewed	here	simply	to	ensure	that	the
reader	can	appreciate	the	logic	behind	the	equation.	This	will	be	useful	when	we
wish	to	derive	similar	equations	in	a	relativistic	setting.

PROBABILITY	CURRENT

Possibly	 slightly	 less	 familiar	 is	 the	 concept	 of	 probability	 density	 current.
Recall	that	the	probability	of	finding	the	particle	described	by	a	wavefunction	in
a	given	region	R	is	given	by

where	the	wavefunction	is	normalized	such	that



So	we	can	interpret	⟨ψ	|	ψ⟩	=	|ψ|2	=	ψ∗ψ	as	a	probability	density	function.	As	a
system	evolves	 in	 time,	 the	probability	 of	 finding	 the	particle	 at	 a	 given	point
will	change.	The	probability	density	will	fall	 in	some	places	and	rise	in	others,
but	all	 the	while,	 the	total	amount	of	probability	density	must	remain	the	same
since	the	probability	of	finding	the	particle	somewhere	must	always	be	unity.	We
can	 imagine,	 then,	 a	 flow	 of	 probability	 density	 around	 the	 system,	 with	 a
probability	density	current	carrying	from	place	to	place	the	likely	position	of	the
particle.	 We	 can	 find	 an	 expression	 for	 this	 probability	 density	 current	 by
recognizing	 that	 the	 conservation	 of	 overall	 probability	 implies	 a	 continuity
equation.

Continuity	equations	take	the	form

where	ρ	is	the	density	of	some	conserved	quantity	and	j	is	the	associated	density
current.	To	see	why	this	implies	continuity,	we	integrate	over	some	region	V,

by	the	divergence	theorem.	Therefore,

where	 	 So	 the	 value	 of	Q	within	 the	 region	V	 can	 only	 change	 if
there	is	a	net	non-zero	value	of	the	quantity	j	at	the	boundary	of	V	.	We	can	see
that	Q	is	the	conserved	quantity	and	j	is	the	current.	In	particular,	if	V	is	taken	to
be	 all	 space,	 then	 the	 right	 side	must	 vanish	 and	 the	 total	 value	 of	Q	 for	 the
universe	is	constant.	Put	another	way,	Q	is	conserved	locally	and	also	therefore



globally.

So	 we	 wish	 to	 find	 a	 suitable	 j	 when	 ρ	 =	 |ψ|2.	 To	 do	 so,	 consider	 the
Schrödinger	 equation	 and	 its	 complex	 conjugate	 in	 their	 wave-mechanical
representation:

Now	we	multiply	the	first	of	these	by	ψ∗	and	the	second	by	ψ:

Subtracting	one	from	the	other,	we	find

where	ρ	=	ψ∗ψ	and	we	have	identified	the	current	as

or

This,	 then,	 is	 the	 probability	 density	 current	 that	 quantifies	 how	 probability
moves	around	in	the	system.	We	will	see	later	that	the	correct	interpretation	of	a
similar	 conserved	 current	 in	 the	 relativistic	 case	 is	 an	 important	 part	 of
understanding	particle	physics.



3.4 ANGULAR	MOMENTUM	AND	SPIN

A	particularly	important,	and	relevant,	example	that	demonstrates	some	of	the
ideas	of	quantum	mechanics	is	that	of	angular	momentum.	The	(classical)	orbital
angular	momentum	of	an	object	is	given	by

where	r	 is	 the	object’s	position	vector	 and	p	 is	 the	 object’s	momentum.	Since
operators	bear	the	same	relations	to	each	other	as	their	classical	counterparts,	we
can	define	the	orbital	angular	momentum	operator	as

That	is,

Looking	at	the	commutation	relations	for	the	individual	components	of	angular
momentum,	we	find

Since	 no	 two	 of	 these	 components	 commute,	 it	 is	 impossible	 to	measure	 two
distinct	 components	 of	 angular	 momentum	 simultaneously.	 In	 fact,	 it	 is
meaningless	even	to	consider	the	value	of	one	component	if	another	component
is	 known:	 it	 is	 simply	 not	 defined.	 However,	 it	 is	 possible	 to	 measure
simultaneously	 one	 component	 and	 the	 overall	 magnitude	 of	 the	 angular
momentum	L2,	since	L2	commutes	with	all	three	of	the	components.	We	will	see
later	 that	 this	 is	 an	 example	 of	 a	 Casimir,	 and	 will	 also	 see	 how	 this	 idea
generalizes	 to	 other	 systems.	 So	 while	 it	 makes	 no	 sense	 to	 ask	 what	 all
individual	 components	 of	 angular	 momentum	 are,	 we	 can	 ask	 what	 one
component	is	(conventionally	the	z	component)	as	well	as	the	overall	magnitude.



This	means	that	angular	momentum	eigenstates	have	two	eigenvalues	associated
with	 them:	 one	 for	 each	 simultaneously	measurable	 quantity.	 It	 can	 be	 shown
that	the	possible	values	of	L2	are	constrained	to	be	of	the	form	ℓ(ℓ	+	1)	where	ℓ
is	 an	 integer,	while	 the	 possible	 values	 of	Lz	 are	 constrained	 to	 be	 integers	m
such	that	−ℓ	≤	m	≤	ℓ.	These	constraints	arise	from	consistency	of	the	eigenstate
solutions	to	the	Schrödinger	equation	under	rotation	through	2π.	Specifically,	 it
may	be	derived	from	the	spherical	harmonics	(see	Section	6.4.3).

Now	consider	a	particle	with	an	intrinsic	angular	momentum,	not	due	to	the
particle	 orbiting	 any	 point,	 but	 just	 an	 inherent	 property	 of	 the	 particle	 itself.
This	is	found	to	be	the	case	for	most	particles—indeed,	it	is	a	part	of	the	identity
of	most	fundamental	particles—and	the	typical	picture	that	springs	to	mind	is	of
a	particle	spinning	on	its	axis.	For	this	reason,	the	property	is	referred	to	as	spin,
even	though	the	picture	is	somewhat	misleading.	The	particle	cannot	be	literally
spinning,	because	fundamental	particles	are	either	point	particles	or	are	so	small
that	their	spatial	extent	cannot	be	detected.	If	the	latter	is	true,	then	the	particle
would	be	spinning	so	fast	to	account	for	the	intrinsic	angular	momentum	that	the
surface	of	 the	particle	would	be	 traveling	considerably	faster	 than	 the	speed	of
light.	On	the	other	hand,	 if	 the	particles	 truly	are	point-like,	 then	it	 is	not	clear
what	it	would	even	mean	for	them	to	spin.	So	particles	do	not	literally	spin,	but
they	do	have	an	intrinsic,	measurable,	angular	momentum	called	spin.

In	 the	case	of	spin,	 the	constraints	on	 the	possible	eigenvalues	 that	apply	 to
orbital	angular	momentum	do	not	necessarily	apply,	and	we	must	use	a	different
approach	 to	 find	 the	 eigenvalues.	 First,	 we	 introduce	 a	 set	 of	 operators	 to
represent	the	spin.	If	spin	is	a	type	of	angular	momentum,	then	the	commutation
relations	for	angular	momentum	operators	must	apply	and	we	find

Also,	 we	 construct	 the	 operator	 that	 describes	 the	 magnitude	 of	 the	 spin	
	and	find



as	expected.

Consider	now	an	eigenstate	|ψ⟩	of	both	Sz	and	S2,	with	eigenvalues	ms	and	S2
respectively.	We	construct	a	pair	of	“ladder	operators”

and	find	the	following	commutation	relations:

Acting	on	the	eigenstate	|ψ⟩	with	S+	produces	a	new	state	which,	through	use	of
the	commutation	relations,	we	can	easily	verify	is	also	an	eigenstate	of	both	Sz
and	S2	with	eigenvalues	ms	+	1	and	S2	respectively.	That	is:

This	is	why	S+	is	known	as	a	ladder	operator	(specifically	a	raising	operator);	it
has	 the	 effect	 of	 incrementing	 the	 z	 component	 of	 spin.	 Similarly,	 S−	 is	 a
lowering	operator,	which	decreases	 the	z	 component	of	 spin	by	one	unit.	Both
operators,	however,	leave	the	magnitude	of	the	spin	unaltered.

So	 for	 a	 given	 value	 of	 S2,	 there	 exists	 a	 series	 of	 eigenstates	 with	 this
magnitude	of	spin	and	differing	values	of	ms—that	is,	differently	oriented	spins.
For	 this	 value	 of	 S2,	 there	 must	 exist	 a	 maximum	 ms,	 since	 if	 ms	 increases
without	 bound,	 the	 z	 component	 of	 spin	 will	 eventually	 outgrow	 the	 spin’s
magnitude.	 Let’s	 call	 that	 maximum	 eigenvalue	 mmax	 and	 the	 corresponding
eigenstate	 |ψmax⟩.	 Since	 the	 incremental	 relation,	 Equation	 3.27,	 holds	 even	 in
this	case,	we	have

but	this	implies	the	existence	of	a	state	S+	|ψmax⟩	with	an	eigenvalue	(mmax	+1),
which	 is	 greater	 than	 our	 assumed	 maximum	 value	 mmax.	 The	 only	 way	 to
resolve	this	apparent	contradiction	is	for	S+	|ψmax⟩	to	vanish.	We	can	use	this	fact
to	relate	mmax	to	S2.	First,	inverting	Equation	3.25,	we	can	write	the	operators	for
the	x	and	y	components	of	spin	as



which	in	turn	allows	us	to	write	S2	as

or	equivalently	as

Acting	on	|ψmax⟩	with	the	first	form	of	S2	above,	we	find

since	S+	 |ψmax⟩	=	0.	So	we	can	 identify	S2	=	mmax(mmax	+	1).	We	can	perform
this	analysis	again,	using	the	eigenstate	with	the	minimum	allowed	z	component
of	spin	mmin.	This	leads,	in	a	similar	fashion,	to	S2	=	mmin(mmin	−	1).	Equating
these	expressions	we	find

It	 should	be	 fairly	obvious	 that,	 for	a	given	mmax,	 the	only	values	of	mmin	 that
satisfy	this	relation	are	mmin	=	mmax	+	1,	which	we	can	immediately	rule	out	as
nonsensical,	and	mmin	=	−mmax.

Since	 mmin	 and	 mmax	 are	 necessarily	 separated	 by	 an	 integervalue,	 this
restricts	the	possible	values	for	mmax	to	half	of	an	integer	value.	Putting	this	all
together,	 we	 find	 that,	 without	 the	 additional	 restrictions	 imposed	 on	 orbital
angular	 momentum,	 the	 allowed	 values	 of	 spin	 (and,	 indeed,	 of	 angular
momentum	in	general)	are	that	S2	=	s(s	+	1)	for	some	half-integer	value	of	s,	and
ms	takes	all	values	in	integer	steps	from	s	to	−s.

This	 is	an	 important	result	since,	as	we	saw	in	Chapter	1,	 the	spin	quantum
number	s	 is	a	 fundamental	property	of	elementary	particles.	 In	 fact,	due	 to	 the
spin-statistics	 theorem	 and	 the	 Pauli	 exclusion	 principle,	 it	 is	 the	 quantum
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number	 that	 determines	 the	 behavior	 of	 the	 particle	 arguably	 more	 than	 any
other.

SPIN	 	PARTICLES	AND	THE	PAULI
MATRICES

The	particles	of	the	standard	model	all	have	spin	quantum	numbers	of	0,	 ,	or
1,	and	of	these,	the	only	fermions	are	the	spin- 	particles.	Since	fermions	make
up	 what	 we	 typically	 think	 of	 as	 matter,	 it	 is	 important	 to	 have	 a	 good
understanding	 of	 the	 quantum	 mechanical	 behavior	 of	 spin- 	 particles.	 In
particular,	in	many	physical	systems,	it	is	electrons	that	underpin	the	mechanics
of	the	system,	so	we	must	be	able	to	model	the	behavior	of	electrically	charged
spin- 	 particles.	 We	 will	 see	 in	 Section	 3.8	 how	 to	 include	 electromagnetic
interactions,	but	for	now,	let’s	find	a	way	to	model	the	spin	of	an	electron.

Since	spin	is	an	angular	momentum,	the	spin	operators	must	obey	the	correct
angular	 momentum	 commutation	 relations	 (Equation	 3.23).	 In	 addition,	 each
operator	must	have	only	two	eigenstates	with	eigenvalues	of	±1.	In	the	language
of	Section	4.3.1,	we	wish	to	find	a	two-dimensional	representation	of	the	algebra
defined	by	Equation	3.23.	This	is	achieved	by	the	matrices	 	where	σi	are
the	Pauli	matrices:

Notice	that	σ3	is	chosen	to	be	diagonal	since	it	is	conventionally	the	z	axis	along
which	 the	 spin	 is	 measured.	 The	 reader	 is	 invited	 to	 check	 that	 the	 above
matrices	Σi	 do	 indeed	 satisfy	Equation	3.23.	Further-more,	 the	 eigenvalues	 for
each	operator	are	easily	shown	to	be	+ 	as	required.

Since	we	 are	 representing	 the	 spin	 operators	with	 2	×	 2-matrices,	we	must
similarly	 use	 a	 two-component	 column	 matrix	 for	 the	 state	 vector.	 Since	 this
state	vector	 is	 introduced	specifically	 to	describe	spin,	 it	 is	known	as	a	spinor.
This	 is	 a	 term	 whose	 meaning	 has	 expanded	 greatly	 since	 its	 original
introduction,	and	we	will	be	seeing	much	more	of	the	concept	in	Chapter	8.	 In
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•

•

•

•

this	 representation,	we	 can	 show	 that	 the	 eigenstates	 of	 Σ3	 are	 given	 by	

(with	eigen-value	+ ),	and	 	(with	eigenvalue	− ).	Additionally,	the	total	spin

operator	is	given	by

That	 this	 operator	 is	 proportional	 to	 the	 identity	 simply	 demonstrates	 that	any
state	 in	 the	 relevant	 Hilbert	 space	 is	 an	 eigenstate	 of	 this	 operator.	 The
proportionality	factor	of	 	is	equal	to	s(s	+	1),	with	s	=	 	as	we	would	expect.

THE	HAMILTONIAN

One	way	to	express	Schrödinger’s	equation	is	in	the	form:

where	 	 is	 the	 Hamiltonian	 operator,	 representing	 the	 sum	 of	 kinetic	 and
potential	energy	in	the	system.	An	unfortunate	side	effect	of	the	rise	of	quantum
mechanics	 is	 that	 many	 students	 today	 are	 introduced	 to	 the	 Hamiltonian	 via
quantum	mechanics,	only	later	(if	at	all)	meeting	the	Hamiltonian	in	its	original
classical	 setting.	 Hamiltonian	 mechanics	 is	 an	 alternative	 formalism	 to
Newtonian	mechanics;	whereas	Newtonian	mechanics	makes	use	of	forces	and
velocities,	Hamiltonian	mechanics	works	 directly	with	 energies	 and	momenta.
The	typical	procedure	is	as	follows:

For	a	system	with	N	degrees	of	freedom,	make	a	list	of	N	coordinates	xk
that	parametrize	the	system.

Let	pk	be	the	momentum	associated	with	the	k-th	degree	of	freedom.

Construct	 the	Hamiltonian	 or	 total	 energy	 of	 the	 system,	H,	 in	 terms	 of
coordinates	xk	and	momenta	pk.

Solve	Hamilton’s	equations:



A	 little	 thought	 will	 reveal	 that	 these	 equations	 are	 nothing	 more	 than	 the
definition	 of	 velocity	 and	Newton’s	 2nd	 law	 respectively.	As	 an	 example,	 the
Hamiltonian	for	a	single	particle	with	potential	energy	V	is	given	by:

which,	 if	 substituted	 into	 Hamilton’s	 equations,	 gives	 precisely	 the	 classical
behavior	we	would	expect.	We	also	see	that	this	Hamiltonian	immediately	gives
back	 the	 Schrödinger	 equation	 when	 the	 dynamic	 variables	 are	 promoted	 to
operators,	as	discussed	in	Section	3.2.

The	Schrödinger	equation	given	in	Equations	3.8	and	3.36	is	time	dependent
and	describes	the	evolution	of	the	wavefunction	if	left	to	its	own	devices.	When
the	energy	of	the	system	is	measured,	however,	the	relevant	equation	is	the	time-
independent	Schrödinger	equation,	given	by

where	E	 is	 the	measured	energy.	In	other	words,	as	with	any	measurement,	 the
possible	outcomes	of	measuring	the	energy	of	a	system	are	the	eigenvalues	of	a
quantum	 mechanical	 operator,	 and	 in	 this	 case	 the	 relevant	 operator	 is	 the
Hamiltonian.

A	further	important	property	of	the	Hamiltonian	is	related	to	its	commutation
properties.	The	expected	value	of	an	observable	quantity	is	conserved	if	and	only
if	the	corresponding	quantum	operator	commutes	with	the	Hamiltonian.	Though
not	a	rigorous	proof,	the	following	gives	an	idea	of	why	this	is	the	case:
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Thus,	if	 	there	is	no	change	in	the	expectation	value	of	 .

The	Lagrangian

A	 final	 point	 to	 make	 here	 is	 that	 there	 is	 an	 alternative	 description	 of
classical	mechanics	 that	 relies	 on	 a	different,	 but	 related,	 concept.	Rather	 than
constructing	the	Hamiltonian	as	the	sum	of	kinetic	and	potential	energy,	we	can
construct	another	quantity,	known	as	 the	Lagrangian,	as	 the	difference	between
kinetic	and	potential	energy:	L	=	Ekin−V.	Rather	than	using	a	set	of	coupled	first-
order	 equations	 to	 find	 the	 behavior	 of	 the	 system	 with	 respect	 to	 one	 of	 its
degrees	of	 freedom,	we	now	use	a	second-order	equation,	known	as	 the	Euler-
Lagrange	equation.	This	 equation	 is	derived	 from	 the	principle	of	 least	 action,
which	 states	 that	 the	path	 followed	by	a	 system	 is	 that	which	has	 the	 smallest
value	of	the	action,	S,	defined	by	S[path]	=	 	The	equation	takes	the	form

where	L	is	considered	to	be	a	function	of	xk	and	 k	for	all	k,	as	well	as	time.	This
means	that	xk	and	 	are	treated	as	independent	variables.	We	can	also	write	the
momentum	in	the	k-th	direction	in	terms	of	the	Lagrangian	as	 	and	we
can	 move	 between	 Hamiltonian	 and	 Lagrangian	 formalisms	 by	 means	 of	 the
Legendre	transformation:	H	=	p 	−	L.	The	reader	is	encouraged	to	explore	these
ideas	more	in	Exercise	7.

An	advantage	of	the	Lagrangian	formalism	is	that	the	Lagrangian	transforms
as	a	scalar.	This	is	in	contrast	to	the	Hamiltonian,	which,	being	the	total	energy
of	 the	 system,	 transforms	 in	 the	 same	way	as	 the	 time	coordinate.	 In	 the	non-
relativistic	case,	 this	 is	essentially	 the	same	as	a	scalar.	However,	 the	power	of
the	 Lagrangian	 formalism	 really	 becomes	 apparent	 in	 relativistic	 mechanics,
when	 the	 Lagrangian	 is	 invariant	 under	 Lorentz	 transformations	 while	 the
Hamiltonian	 behaves	 as	 just	 one	 component	 of	 a	 four-vector.	 For	 this	 reason,
particle	 physics,	 at	 the	 junction	 between	 relativity	 and	 quantum	mechanics,	 is
most	naturally	described	in	the	Lagrangian	formalism.	However,	since	relativity
necessarily	 treats	 space	 and	 time	 on	 an	 equal	 footing,	 the	 form	 of	 the	 Euler-
Lagrange	equation	given	above	clearly	cannot	apply	to	relativistic	systems,	since
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the	 time	 coordinate	 receives	 special	 treatment.	 The	 correct	 relativistic
generalization	 of	 the	 equation	 utilizes	 a	 Lagrangian	 density,	 ,	 related	 to	 the
Lagrangian	by	L	=	∫V	d3x	 .	The	Euler-Lagrange	equation	is	now	given	by

where	the	ϕi	are	a	set	of	fields	that	depend	on	all	four	space-time	coordinates	x.
For	the	sake	of	any	readers	unfamiliar	with	this	formalism,	where	practical	I	will
provide	alternatives	to	the	Lagrangian	approach.	This	will	also	serve	to	keep	the
interpretation	 of	 equations	 clear.	 However,	 as	 we	 progress,	 later	 chapters	 will
rely	more	heavily	on	 the	Lagrangian	 formalism.	Fortunately,	 all	 that	we	 really
require	is	the	Euler-Lagrange	equation	(Equation	3.42).

QUANTUM	MECHANICS	AND
ELECTROMAGNETISM:	THE
SCHRÖDINGER	APPROACH

A	physical	system	with	electromagnetism	can	be	made	quantum	mechanical
in	 the	 same	 way	 that	 any	 system	 is	 quantized:	 we	 impose	 the	 relevant
commutation	relations	on	the	classical	Hamiltonian.	We	must,	however,	first	find
a	suitable	classical	Hamiltonian	for	a	system	incorporating	electromagnetism.	To
include	 a	 conservative	 force	 such	 as	 an	 electrostatic	 field	 in	 a	Hamiltonian	 is
straightforward,	since	we	know	that	a	charge	qe	in	a	potential	V	has	a	potential
energy	qeV	.	This	is	simply	included	as	a	potential	term	in	the	Hamiltonian.	The
magnetic	 part	 of	 the	 electromagnetic	 interaction	 is	 not	 so	 obvious,	 however,
since	this	is	not	a	conservative	force.	The	magnetic	force,	of	course,	depends	on
the	 velocity	 of	 a	 charged	 particle	 through	 the	 magnetic	 field.	 This	 can	 be
accounted	for	with	a	Hamiltonian	of	the	form



where	 m	 is	 the	 mass	 of	 the	 charged	 particle,	 qe	 and	 p	 are	 its	 charge	 and
momentum,	and	V	and	A	are	the	scalar	and	vector	potentials	respectively.

There	is	no	intuitive	reason	for	using	this	Hamiltonian,	but	it	is	easily	shown
via	 Hamilton’s	 equations	 (Exercise	 7)	 to	 lead	 to	 the	 correct	 behavior	 of	 the
particle	 in	 an	 electromagnetic	 field.	Notice	 that	we	have	 replaced	 the	 physical
momentum	of	the	particle	with	p	−	qeA.	Since	the	left-hand	side	of	the	equation
is	just	the	total	energy	in	the	system,	another	way	to	view	what	we	have	done	is
that	 we	 have	 made	 an	 additional	 substitution	 E	↦	 E	 −	 qeV	 .	 In	 four-vector
notation	 (although	 it	 should	 be	 stressed	 that	 this	 is	 still	 a	 non-relativistic
Hamiltonian),	we	have	switched	pµ	for	pµ	−	qeAµ	where	pµ	and	Aµ	are	the	four-
momentum	 and	 electromagnetic	 four-potential.	 This	 substitution	 (known	 as
minimal	 substitution	 or	 minimal	 coupling)	 is	 found	 to	 be	 sufficient	 for	 the
inclusion	of	electromagnetism	in	more	general	systems	as	well.

Promoting	 this	 Hamiltonian	 to	 an	 operator	 leads	 to	 a	 timeindependent
Schrödinger	equation	for	spinless	particles	in	an	electromagnetic	field:

One	of	 the	successes	of	 this	equation	 is	 that	 it	correctly	predicts	 the	normal
Zeeman	 effect.	 The	 energy	 levels	 of	 a	 charged	 particle	 with	 orbital	 angular
momentum	undergo	Zeeman	splitting	in	the	presence	of	a	magnetic	field.	This	is
the	 mechanism	 behind	 the	 fine	 structure	 of	 spectral	 lines,	 and	 the	 above
Schrödinger	equation	is	adequate	to	predict	this	behavior.	To	see	this,	consider	a
magnetic	vector	potential	given	by

where	x	is	the	position	vector,	and	n	is	a	constant	vector.

By	applying	the	curl	operator	to	this	potential,	the	magnetic	field	is	found	to
be



so	 a	 potential	 of	 this	 form	gives	 us	 a	 constant	magnetic	 field.	 It	 is	 also	 easily
shown	that	 the	divergence	of	 this	potential	 is	zero:	∂iAi	=	0.	 If	we	assume	that
there	 is	 also	 no	 electric	 field,	 the	 third	 and	 final	 terms	 in	 Equation	 3.44	 thus
vanish,	while	the	construct	Ai∂iψ	in	the	second	term	becomes

by	the	definition	of	the	angular	momentum	operator	in	Equation	3.20.

Substituting	into	the	Schrödinger	equation,	then,	gives

The	 second	 term	 in	 this	 equation	 is	 the	 term	 responsible	 for	Zeeman	 splitting,
since	a	non-zero	angular	momentum	clearly	affects	the	energy	eigenvalues	of	the
system.	 When	 considering	 electrons,	 the	 Zeeman	 splitting	 term	 is	 more
commonly	written	as

where	µ	is	the	orbital	magnetic	moment	of	the	electron,	given	by

Here,	µB	=	e/(2me)	is	the	Bohr	magneton.	This	can	be	thought	of	as	the	natural
unit	for	describing	the	magnetic	moment,3	or	as	 the	constant	of	proportionality
when	converting	angular	momenta	to	magnetic	moments.

Unfortunately,	 the	 above	 electromagnetic	 Schrödinger	 equation	 is	 limited.
Where	 it	 falls	 down	 is	 in	 describing	 the	 anomalous	Zeeman	 effect.	 This	 is	 an
additional	splitting	of	energy	levels,	which	was	termed	anomalous	since,	at	 the
time	of	its	discovery,	it	had	no	explanation.	This	is	because	the	effect	is	due	to
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the	particle’s	intrinsic	angular	momentum,	which	had	not	yet	been	discovered.	A
suitable	term	may	be	introduced	to	the	electromagnetic	Schrödinger	equation	to
account	for	this	behavior,	of	the	form

Here,	µ(S)	is	the	spin	magnetic	moment,	given	by

where	S	is	the	spin	angular	momentum.	Notice	the	introduction	of	the	new	factor
gs,	however.	This	is	the	“spin	g-factor,”	found	experimentally	to	be	gs	≈	2.4	This
means	that	spin	is	somehow	twice	as	effective	as	orbital	angular	momentum	at
producing	 a	 magnetic	 moment.	 This	 is	 the	 reason	 that	 the	 electromagnetic
Schrödinger	equation	cannot	be	considered	entirely	adequate:	the	introduction	of
this	term	is	not	only	ad	hoc,	but	includes	a	factor	whose	value	must	be	deduced
from	experiment,	with	no	theoretical	justification.

QUANTUM	MECHANICS	AND
ELECTROMAGNETISM:	THE	PAULI
EQUATION

For	a	more	satisfying	account	of	the	behavior	of	electrons	in	a	magnetic	field,
then,	 we	 need	 a	 generalization	 of	 the	 Schrödinger	 equation	 that	 correctly
incorporates	spin.	We	have	already	seen	that	the	way	to	describe	the	spin	of	an
electron	 is	 via	 the	 Pauli	 matrices,	 requiring	 the	 use	 of	 a	 two-component
wavefunction.	 To	 derive	 our	 new	 equation,	 note	 that,	 in	 the	 absence	 of	 an
electromagnetic	 field,	 it	 should	 reduce	 to	 the	 free	 Schrödinger	 equation,	 only
with	a	twocomponent	wavefunction	(and	an	implicit	identity	matrix)

A	useful	 identity	involving	the	Pauli	matrices	now	comes	into	play.	For	any
two	vectors	A	and	B,	we	have



Noting	 that	 εijkσipjpk	 vanishes	 due	 to	 the	 symmetry	 of	 pjpk,	 this	 allows	 us	 to
write	Equation	3.53	in	the	form

Now	 reintroducing	 electromagnetic	 interactions	 via	minimal	 substitution	 gives
the	Pauli	equation:

We	 will	 now	 demonstrate	 that	 this	 equation	 correctly	 predicts	 the	 spin
magnetic	moment.	 First,	we	 again	 use	 the	 identity	 (3.54),	 but	 this	 time	 notice
that	the	second	term	will	not	vanish:

The	 symmetry	 of	 the	 bracketed	 factors,	 together	with	 the	 antisymmetric	Levi-
Civita	 symbol,	 would	 appear	 to	 cause	 the	 second	 term	 to	 vanish.	 While	 this
would	 be	 true	 for	 ordinary	 vectors,	 the	 object	 (∂i	 +	 iqeAi)	 is	 a	 differential
operator,	 and	 this	 argument	 fails	 to	 apply.	 This	 may	 seem	 strange,	 but	 it	 is
equivalent	 to	 the	statement	 that,	while	 the	cross-product	of	a	vector	with	 itself
must	 necessarily	 vanish,	 the	 cross-product	 of	 a	 vector	with	 its	 own	 derivative
need	not.	So	we	have

where	 the	 first	 and	 last	 terms	 have	 vanished	 by	 symmetry.	 Recalling	 that	 the
derivative	 acts	 on	 everything	 to	 the	 right,	 applying	 the	 above	 to	 the
wavefunction	gives



where	all	but	the	final	term	cancel	due	to	the	antisymmetry	of	εijk.

We	 are	 now	 in	 a	 position	 to	 put	 everything	 together.	 The	 energy	 levels
predicted	by	the	Pauli	equation	are	given	by	its	timeindependent	counterpart.	For
an	electron	in	the	presence	of	a	constant	magnetic	field	and	no	electric	field,	we
can	let	q	=	−1,	Ai	=	 	and	V	=	0.	This	leads	to

Using	the	definition	of	the	Bohr	magneton	and	the	fact	that	Si	=	 	we	can
write	this	as

and	we	see	 that	we	have	 reproduced	 the	electromagnetic	Schrödinger	equation
with	the	spin	magnetic	moment	included	and	the	correct	spin	g-factor.	While	the
Pauli	equation	is	thus	successful	at	describing	the	behavior	of	spin- 	particles,	it
is	 also	 not	 the	 full	 story,	 since	 it	 fails	 to	 incorporate	 relativity.	We	will	 see	 in
Chapter	8,	 however,	 how	 the	Pauli	 equation	 can	 be	 derived	 as	 the	 low-energy
limit	 of	 a	 more	 general	 relativistic	 equation	 (Exercise	 13).	 It	 is	 also	 worth
mentioning	here	that	the	magnetic	moments	of	the	proton	and	neutron	cannot	be
derived	 in	 this	 way,	 since	 this	 method	 applies	 only	 to	 fundamental	 particles,
whereas	 the	proton	 and	neutron	 are	 composite.	 Instead	 the	proton	 and	neutron
magnetic	moments	are	generally	expressed	as

where	µN	is	the	nuclear	magneton,	given	by



1.

2.

(a)
(b)

3.

4.

(a)
(b)
(c)

(d)

The	 same	magneton	 is	used	 for	both,	 since	 there	 is	no	obvious	 analogy	of	 the
Bohr	 magneton	 specifically	 for	 the	 neutron.	 The	 g-factors	 are	 determined
experimentally	to	be	gp	=	5.586	and	gn	=	−3.826.	Notice	that	a	non-zero	moment
for	 the	 neutron	 is	 strong	 evidence	 of	 internal	 structure,	 since	 a	 neutral
fundamental	particle	should	have	no	magnetic	moment.

EXERCISES

Verify	that	the	Pauli	matrices	satisfy	the	appropriate	commutation
relations	to	be	used	as	angular	momentum	operators.

Let	|↑⟩	and	|↓⟩	be	the	spin-up	and	spin-down	eigenstates	of	Σz	with
eigenvalues	+1/2	and	−1/2	respectively.

Find	|↑⟩	and	|↓⟩	in	the	form	of	two-component	spinors.
Hence	show	that

If	the	overall	spin	operator	is	Σ,	where	 	show	that	

When	two	particles	are	combined,	we	must	consider	the	spin	of	the
combined	state.

Show	that	 	where	
Show	that	the	overall	spin	of	the	combined	state	is	1.
Find	the	z-component	of	spin	for	the	mixed	spin	states	|↑↓⟩,	|↓↑⟩,	and
show	that	these	states	are	not	eigenstates	of	Σ(total)|2.
Show	that	both	the	symmetric	spin	state	 	and	the
antisymmetric	spin	state	 	are	 	eigenstates	and
find	their	eigenvalues.



5.

6.

(a)

(b)

7.

In	the	previous	questions,	we	have	chosen	the	representation	of	Si	≡	Σi
arbitrarily	to	represent	our	spin	operators:	we	could	have	chosen	any
other	set	of	matrices	that	obey	the	correct	commutation	relations.	Show
that	the	relations	in	Exercise	2(b)	hold	regardless	of	representation	by
deriving	them	straight	from	the	commutation	relations	for	angular
momentum.

Show	that	(σiAi)	(σjBj)	=	AiAi	+	iεijkσiAjBk.

Show	that	the	Hamiltonian	given	in	Equation	3.43	leads	via
Hamilton’s	equations	(Equation	3.37)	to	the	Lorentz	force	law	for	a
charge	in	an	electromagnetic	field.
Write	down	an	appropriate	Lagrangian	for	the	same	system	and	show
that	this	also	leads	to	the	Lorentz	force	via	the	Euler-Lagrange
equation.

1	 As	 far	 as	 a	 mathematician	 is	 concerned,	 a	 Hilbert	 space	 is	 any	 vector	 space	 equipped	 with	 an	 inner
product,	along	with	one	or	 two	other	 important	properties.	While	Hilbert	spaces	can	exist	with	any	finite
number	 of	 dimensions,	 physicists	 generally	 reserve	 the	 term	 for	 the	 infinite-dimensional	 vector	 space	 of
quantum	mechanical	state	vectors.
2	This	is	true	so	long	as	state	vectors	are	normalized	such	that	⟨ψ	|	ψ⟩	=	1.
3	 Specifically,	 the	 magnetic	 moment	 of	 the	 electron,	 since	 the	 mass	 appearing	 in	 the	 expression	 is	 the
electron	mass.	Similar	expressions	can	be	used	for	other	particles.
4	The	deviation	of	gs	from	2	is	known	as	the	anomalous	magnetic	moment,	and	is	a	subject	to	which	we	will
return	in	Chapter	9.
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CHAPTER	4
SYMMETRIES	AND	GROUPS

THE	IMPORTANCE	OF	SYMMETRY	IN
PHYSICS

Symmetry	plays	an	important	role	in	various	areas	of	physics—none	more	so
than	 particle	 physics.	 In	 fact,	 it	 could	 be	 argued	 that	 particle	 physics	 is
essentially	 the	 study	 of	 which	 symmetry	 groups	 exist	 and	 how	 they	 are
represented.	While	this	statement	may	seem	strange	now,	hopefully	its	meaning
will	become	more	transparent	by	the	end	of	this	chapter	and	even	clearer	by	the
end	of	the	book.

Part	of	 the	 importance	of	 symmetries	 in	physics	 stems	 from	a	key	 result	 in
Lagrangian	 mechanics	 known	 as	 Noether’s	 theorem,	 after	 its	 discoverer,
mathematician	Emmy	Noether.	This	states	that,	for	each	continuous	symmetry	in
the	Lagrangian	for	a	theory,	there	is	a	corresponding	conserved	quantity.	In	fact,
Noether’s	 theorem	 also	 gives	 us	 a	 way	 to	 compute	 the	 conserved	 quantity
directly	 from	 the	 relevant	 symmetry.	Neither	 the	 formal	 proof	 of	 the	 theorem,
nor	the	exact	nature	of	the	correspondence	between	symmetries	and	conservation
laws	will	be	given	here.1	However,	as	a	rule	of	thumb,	any	two	quantities	related
by	the	Heisenberg	uncertainty	principle,	such	as	time	and	energy,	or	position	and
momentum,	give	a	clue	as	to	a	symmetry/conserved	quantity	pair.	As	particular
examples:

symmetry	transformation conserved	quantity

spatial	translation momentum

time-translation energy

rotation angular	momentum

boost COM	motion
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QM	phase	transformation charge

The	 final	 example	 in	 this	 list	may	 not	 be	 familiar	 but	 is	 arguably	 the	most
important	 for	 our	 purposes.	We	 will	 return	 to	 this	 in	 later	 chapters	 when	 we
discuss	conserved	currents	and	gauge	theories.

DISCRETE	SYMMETRIES

Discrete	 symmetries	 are	 those	 symmetries	 under	 which	 we	 can	 only	 make
discrete	 transformations	 of	 the	 system	 without	 affecting	 its	 appearance.	 As	 a
simple	example,	the	rotational	symmetries	of	a	square	are	discrete:	we	can	rotate
the	 square	 through	 90◦,	 180◦,	 270◦,	 or	 360◦	 without	 altering	 its	 appearance,
although	not	 through	any	 intermediate	angle.	There	are	a	number	of	 important
discrete	 symmetries	 that	 play	 a	 role	 in	 particle	 physics,	 but	 before	we	 explore
them,	 let’s	 first	 take	 some	 time	 to	 understand	 the	 mathematical	 structure	 of
discrete	symmetries.

Mathematical	Structure	of	Discrete	Symmetries

The	study	of	symmetry	relies	on	the	mathematical	concept	of	a	group.	While
we	will	 not	 go	 into	 the	 general	 theory	 of	 groups,	 we	will	 consider	 the	 group
structure	 of	 symmetry	 transformations	 in	 particular.	 Any	 two	 symmetry
transformations,	 or	 elements	 of	 the	 group,	 can	 be	 combined	 to	 form	 a	 third
symmetry	transformation.	This	is	known	as	the	closure	property	of	groups.	For
example,	in	the	case	above	of	rotations	of	a	square,	a	rotation	through	90◦	leaves
the	square	invariant,	as	does	a	rotation	of	180◦.	But	we	can	also	combine	these
transformations,	by	performing	one	after	the	other,	to	produce	a	rotation	of	270◦,
which	is	also	a	symmetry	transformation.	This	is	part	of	what	we	mean	when	we
say	 that	 the	 transformations	 form	 a	 group,	 but	 it	 is	 not	 the	 full	 story.	We	 also
require	an	identity	element	 in	 the	group,	which	when	combined	with	any	other
transformation	 gives	 back	 that	 same	 transformation.	 That	 is,	 the	 identity
transformation	combined	with,	say,	a	90◦	rotation	should	produce	a	90◦	 rotation,
and	so	forth.	It	should	be	fairly	obvious	that	the	identity	element	in	our	case	is	a
rotation	 of	 0◦	 (or	 360◦)	 or	 the	 transformation	 “do	 nothing.”	 In	 fact	 the	 “do
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nothing”	transformation	is	the	identity	element	in	all	symmetry	groups.	The	next
thing	we	need	for	a	group	structure	is	a	concept	of	“inverse”	elements.	We	need
to	 be	 able	 to	 undo	 any	 transformations	 that	 we	 perform	 to	 get	 back	 to	 the
identity.	 In	 our	 example,	 a	 rotation	 through	 270◦	 undoes	 a	 rotation	 of	 90◦	 and
vice	versa,	while	a	rotation	of	180◦	is	its	own	inverse.	The	elements	of	a	discrete
group	are	often	best	summarized	in	a	table.	The	following	table	shows	the	result
of	combining	each	possible	pair	of	elements	of	the	rotation	group	of	a	square.

0◦ 90◦ 180◦ 270◦

0◦ 0◦ 90◦ 180◦ 270◦

90◦ 90◦ 180◦ 270◦ 0◦

180◦ 180◦ 270◦ 0◦ 90◦

270◦ 270◦ 0◦ 90◦ 180◦

The	final	property	required	of	a	group	is	associativity.	This	specifies	that	the
bracketing	of	combinations	of	transformations	has	no	effect	on	the	result:

Importantly,	 however,	 a	 group	 does	 not	 necessarily	 have	 the	 property	 of
commutativity.	 While	 in	 our	 example	 the	 order	 in	 which	 transformations	 are
applied	does	not	affect	the	result,	in	more	general	groups,	the	order	does	matter.
In	the	former	case,	we	say	that	the	group	is	Abelian,	while	in	the	latter	it	is	non-
Abelian.	That	is,	in	a	non-Abelian	group,	we	have	R1	·	R2	≠	R2	·	R1.

Discrete	Symmetries	in	Particle	Physics

There	are	several	discrete	symmetries	 that	play	a	particularly	 important	role
in	 particle	 physics,	 for	 a	 couple	 of	 different	 reasons.	 First,	 the	 eigenvalues	 of
elementary	particles	under	these	discrete	symmetries	(where	they	exist)	play	an
important	role	in	characterizing	and	classifying	particles.	Second,	these	discrete
symmetries	 are	not	 exact.	That	 is	 to	 say	 that,	while	 they	appear	 to	be	genuine
symmetries	on	 the	surface,	a	closer	 investigation	shows	 them	 to	be	violated	 in
some	way.	As	an	analogy,	the	average	human	face	is	close	to	symmetrical,	to	the
extent	 that,	when	 shown	a	picture	of	 a	 face	and	 its	mirror	 image,	most	people



will	 not	 immediately	 see	 any	 distinction	 between	 them.	 It	 is	 only	 on	 closer
inspection,	when	 observers	 gradually	 begin	 to	 notice	 the	 odd	 freckle	 here	 and
crooked	 tooth	 there,	 that	 they	 realize	 there	 is	 a	 difference.	 Particle	 physics	 is
very	good	at	pointing	out	these	differences.

It	 should	 be	 noted	 that	 discrete	 symmetries	 are	 exempt	 from	 Noether’s
theorem,	 since	 Noether’s	 theorem	 applies	 only	 to	 continuous	 symmetries.
However,	 we	 can	 show	 that	 some	 discrete	 symmetries	 also	 lead	 to	 conserved
quantities.	To	see	this,	we	must	consider	what	we	actually	mean	for	a	system	to
have	a	particular	symmetry.	Since	a	symmetry	transformation	leaves	the	system
invariant,	 the	 transformed	 system	 and	 the	 original	 system	 should	 evolve
identically	 in	 time.	In	practice,	 this	means	that	what	we	are	really	 interested	in
are	those	transformations	that	do	not	affect	the	Hamiltonian.	Suppose	we	have	a
system,	|ψ⟩,	and	a	transformation	that	changes	this	to	a	new	system	|ϕ⟩.	Then	we
can	define	an	operator	Ô	that	effects	the	transformation,	such	that	|ϕ⟩	=	Ô	|ψ⟩.	If
this	 is	 a	 symmetry	 transformation,	 we	 do	 not	 expect	 the	 Hamiltonian	 to	 be
affected.	 We	 can	 deduce,	 then,	 that	 the	 Hamiltonian	 and	 the	 transformation
operator	 commute,	 and	 we	 already	 know	 that	 commuting	 operators	 share	 the
same	eigenstates.	The	 states	 that	 have	 a	well-defined	 time	 evolution	under	 the
Hamiltonian	 thus	 also	 have	 a	 well-defined	 constant	 eigenvalue	 under	 the
transformation	operator	Ô.	If	this	operator	is	additionally	Hermitian,	then	it	is	an
observable,	and	the	eigenvalue	becomes	a	measurable	conserved	quantity.

Parity

The	first	discrete	symmetry	 that	we	consider	 is,	 to	many,	 the	most	obvious.
When	 considering	 symmetry,	 what	 almost	 certainly	 comes	 to	 mind	 before
anything	else	is	a	mirror	image.	A	parity	transformation	is	essentially	the	same
as	 taking	 the	mirror	 image	 of	 a	 system.	More	 precisely,	 it	 is	 the	 simultaneous
inversion	 of	 all	 three	 spatial	 coordinates,	 which	 is	 equivalent	 to	 a	 reflection
followed	by	a	rotation.	Parity-invariance	is	the	property	of	a	system	that	ensures
it	 retains	 its	 original	 appearance	 after	 a	 parity	 transformation.	 In	 the	 case	 of	 a
system	of	particles	described	by	a	state	vector	|ψ(t,	x)⟩,	a	parity	transformation	is
effected	 by	 the	 parity	 operator,	 .	 If	 we	 assume	 that	 parity	 is	 a	 genuine
symmetry,	then	the	state	|ψ(t,	x)⟩	must	be	an	eigenstate	under	 :



Since	it	is	obvious	that	two	reflections	bring	us	back	to	where	we	started,	we
must	also	have

which	restricts	the	possible	values	of	P	to	±1.	All	systems,	then,	must	take	one	of
these	 two	 values	 under	 parity	 transformations.	 In	 addition,	 whichever	 one	 a
system	 takes,	 the	 value	 is	 then	 conserved,	 so	 parity	 provides	 a	 good	 quantum
number	for	characterizing	states.	In	the	case	of	individual	particles,	the	intrinsic
parity	 is	 a	 particle’s	 eigenvalue	 under	 the	 parity	 transformation.	 That	 is,	 each
particle	species	has	a	quantum	number	associated	with	it,	which	is	related	to	its
transformation	 under	 parity	 and	 which	 is	 itself	 also	 called	 “parity.”	 Notice,
incidentally,	 that	 the	 defining	 invariance	 of	 a	 scalar	 under	 continuous
transformations	does	not	require	invariance	under	parity.	We	make	a	distinction,
therefore,	between	true	scalars	with	even	parity	(P	=	+1)	and	pseudo-scalars	with
odd	parity	(P	=	−1).	Similarly,	the	natural	behavior	of	a	vector	is	to	change	sign
under	 a	 parity	 transformation,	 as	 we	 can	 see	 if	 we	 consider	 an	 arrow	 and	 its
mirror	image.	So	we	define	a	vector	to	have	odd	parity	and	a	pseudo-vector	or
axial	vector	to	have	even	parity.

It	 can	 be	 shown	 that	 the	 parity	 of	 the	 photon	 must	 be	 −1.	 This	 follows
essentially	from	the	fact	 that	the	photon	is	the	quantum	mechanical	description
of	the	electric	and	magnetic	fields,	which	are	vector-valued	and	pseudo-vector-
valued	 respectively.	 That	 is,	 while	 both	 fields	 have	 three	 components	 and
transform	 the	 same	way	 under	 rotations,	 the	 electric	 field	 changes	 sign	 under
parity,	while	the	magnetic	field	does	not.	Since	E	and	B	are	given	by	E	=	− A	−
∇V	and	B	=	∇	 ×	A,	we	 see	 that	 the	potential	must	 transform	as	 a	 four-vector
under	 parity.	 Since,	 as	 we	 will	 see	 in	 Section	 7.2,	 it	 is	 this	 potential	 that	 is
promoted	to	the	role	of	wavefunction	for	the	photon,	this	means	that	the	photon
must	 also	 transform	 as	 a	 four-vector	 under	 parity.	 Hence,	 the	 photon	 has	 odd
intrinsic	parity.	The	parity	of	 fermions,	 on	 the	other	 hand,	 cannot	 be	 so	 easily
pinned	 down.	 Since	 fermions	 are	 necessarily	 produced	 in	 fermionantifermion
pairs,	only	the	parity	of	the	pair	can	be	determined.	In	fact,	a	particle-antiparticle
pair	 is	found	to	have	opposing	parities,	such	that	 the	product	 is	−1.	Which	has
the	even	parity	and	which	has	the	odd	is,	however,	undetermined	and	must	be	set
by	convention.	The	standard	is	to	assign	a	parity	of	+1	to	quarks	and	leptons,	and
a	parity	of	−1	to	antiquarks	and	antileptons.



While	 parity	 invariance	 appears	 to	 be	 an	 exact	 symmetry	 as	 far	 as	 the
electromagnetic	and	strong	interactions	are	concerned,	it	has	been	known	since
1957	that	the	weak	interaction	violates	parity.	Such	a	possibility	was	suggested	a
year	 earlier	 by	 Lee	 and	 Yang	 when	 they	 noted	 that	 the	 existence	 of	 parity
violation	 in	 the	 weak	 interactions	 would	 solve	 one	 of	 the	 then-outstanding
problems	of	particle	physics:	the	“τ-θ	problem.”	It	should	be	stressed	that	the	τ
particle	in	this	puzzle	is	an	old	name:	it	is	not	the	lepton	that	we	now	call	the	τ.
The	τ-θ	problem	arose	simply	from	the	assumption	of	parity	conservation.	Two
strange	particles	(τ+	and	θ+)	were	known	to	decay	via	different	routes:	θ+	→	π+	+
π0	and	τ+	→	π+	+	π+	+	π−.	Since	the	parities	of	these	final	states	were	known	to
be	+1	and	−1	respectively,	parity	conservation	ruled	out	the	possibility	that	the	τ+

and	 θ+	 were	 the	 same	 particle,	 despite	 having	 apparently	 identical	 properties
otherwise.	 In	 particular,	 increasingly	 precise	 measurements	 of	 the	 particles’
masses	 continued	 to	 suggest	 that	 they	 were	 one	 and	 the	 same.	 Lee	 and	Yang
noted	 that,	 while	 experiments	 confirmed	 conservation	 of	 parity	 in	 both	 the
electromagnetic	 and	 strong	 interactions,	 there	 was	 a	 lack	 of	 experimental
evidence	regarding	its	conservation	or	otherwise	in	the	weak	interactions.	They
proposed	an	experimental	 test	of	parity	conservation	 in	 the	weak	sector,	which
was	 performed	 by	 Wu	 et	 al	 through	 careful	 measurement	 of	 the	 radioactive
decay	of	cobalt	nuclei.	If	parity	were	respected	by	weak	interactions,	the	decays
of	 spin-aligned	nuclei	 should	 emit	 radiation	 in	 the	 forward	 (aligned	with	 spin)
and	 backward	 (anti-aligned)	 directions	 with	 equal	 likelihood.	 In	 fact,	 the
experiment	 found	 that	 the	 majority	 of	 radiation	 was	 emitted	 in	 one	 direction,
indeed	violating	parity.	With	the	conclusive	demonstration	of	parity	violation	in
the	weak	interactions,	the	solution	to	the	τ-θ	puzzle	was	trivial:	they	are	the	same
particle,	which	we	would	now	call	a	kaon.

All	of	this	means,	then,	that	the	quantum	number	associated	with	parity	is	not
really	conserved	in	nature.	However,	since	the	weak	force	is	so	feeble	compared
with	 the	 electromagnetic	 and	 strong	 force,	 and	 interactions	 mediated	 by	 it	 so
infrequent	 in	 comparison	 with	 these	 other	 forces,	 the	 amount	 of	 violation	 is
sufficiently	small	that	the	quantum	number	is	still	approximately	conserved.	For
this	reason,	it	is	still	used	to	characterize	particles.

Charge	Conjugation



Charge	conjugation	is	not	quite	as	obvious	as	parity,	but	is	another	symmetry
that	was	formerly	widely	believed	to	be	exact.	The	 	transformation	consists	of
replacing	all	particles	in	a	system	with	their	antiparticles.	Since	the	properties	of
antiparticles	were	thought	to	be	equal	and	opposite	to	those	of	the	corresponding
particles,	 it	 would	 make	 intuitive	 sense	 that	 nature	 is	 invariant	 under	 such	 a
transformation.	 However,	 around	 the	 time	 of	 the	 previous	 Wu	 experiment,
physicists	 came	 to	 realize	 that	 the	 neutrinos	 emitted	 in	β-decay	were	 all	 “left-
handed,”	 while	 all	 anti-neutrinos	 were	 “right-handed.”	 This	 concept	 of
handedness	 will	 be	 made	 more	 precise	 in	 a	 later	 chapter,	 but	 for	 now,	 it	 is
enough	to	say	that	this	violates	charge	conjugation	symmetry.	However,	as	with
parity,	 the	 violation	 only	 occurs	 in	 the	 weak	 sector.	 As	 such,	 it	 is	 a	 valid
approximation	to	use	the	 	eigenvalue	as	a	quantum	number,	acknowledging	the
fact	 that	 it	 is	 not	 necessarily	 conserved	 during	weak	 interactions.	 In	 this	 case,
though,	we	find	that	there	are	only	certain	classes	of	particles	for	which	such	an
eigenvalue	exists	at	all.	As	an	example,	consider	a	particle	state	 |X⟩,	where	 the
particle	 X	 has	 a	 distinct	 antiparticle.	 In	 this	 case,	 the	 effect	 of	 the	 charge
conjugation	operator	is	simply

Since	X	 has	 a	 distinct	 antiparticle,	 ,	 this	 is	 clearly	 not	 proportional	 to	 the
original	state.	In	other	words,	 this	is	not	an	eigenstate.	The	only	way	a	particle
can	 be	 an	 eigenstate	 of	 the	 charge	 conjugation	 operator	 is	 if	 it	 is	 its	 own
antiparticle:	 for	 example,	 the	 photon	 or	 the	 neutral	 pion.	 In	 this	 case,	 the
argument	 proceeds	 exactly	 as	 for	 the	 parity	 operator,	 and	 we	 find	 that	 the
eigenvalue	must	be	±1.	Again,	 this	eigenvalue	 is	conserved	 in	electromagnetic
and	 strong	 interactions,	 and	 so	 functions	 as	 a	 useful	 quantum	 number	 for
classification.	 The	 difference,	 however,	 is	 that	 it	 is	 only	 defined	 for	 a	 small
subset	of	all	particle	species.

It	is	worth	mentioning	here	that,	with	the	discovery	of	both	 	and	 	violation
in	the	weak	interaction,	it	was	then	suggested	that	the	combined	symmetry	of	
may	 still	 be	 exact.	 This	 is	 also	 now	 known	 not	 to	 be	 the	 case	 in	 the	 weak
interactions,	 and	 more	 will	 be	 said	 on	 this	 when	 we	 discuss	 	 violation	 in
Chapter	12.



Time	Reversal

Time	reversal,	 ,	can	be	 thought	of	 in	 two	different	ways,	one	very	abstract
and	one	rather	more	practical.	The	abstract	 interpretation	is	as	a	literal	reversal
of	 the	 direction	 of	 the	 time	 coordinate.	 The	 more	 practical	 approach	 to	
symmetry	 is	 to	 consider	 a	 reversal	 of	 particle	 momenta.	 For	 example,	 an
interaction	of	the	form

where	pk	are	the	three-momenta	of	each	particle,	is	related	by	timereversal	to	the
process

While	 it	 is	 obvious	 that	 there	 is	 a	 definite	 arrow	 of	 time	 in	 nature,	 a
distinction	should	be	drawn	between	time-irreversibility	due	to	the	violation	of	
in	the	equations	of	motion,	and	that	due	to	the	initial	conditions	of	 the	system.
The	definite	direction	 that	 time	has	on	a	macroscopic	scale	because	of	 the	2nd
law	 of	 thermodynamics	 is	 related	 to	 the	 boundary	 conditions	 of	 the	 universe,
rather	than	an	inherent	asymmetry	in	the	laws	of	mechanics.	For	this	reason,	 it
was	 not	 an	 unreasonable	 assumption	 that	 	 symmetry	 is	 respected	 in	 nature,
since	 it	 is	not	violated	 in	classical	mechanics.	 In	 fact,	 the	principle	of	detailed
balance	 states	 that	 the	 transition	 rates	 for	 the	 two	 processes	 given	 previously
should	be	identical	if	 	symmetry	is	exact.

However,	with	the	discovery	of	 -violation,	it	is	understood	that	 	must	also
be	 violated	 in	 nature,	 due	 to	 the	 	 theorem	 (see	 as	 follows).	 To	 date,	 this
violation	has	yet	 to	be	measured	directly,	however,	since	 it	 is	only	expected	 to
occur	 in	 the	weak	 interactions,	 and	 producing	 the	 initial	 conditions	 to	 test	 the
principle	 of	 detailed	 balance	 in	 the	 weak	 sector	 has	 proven	 prohibitively
difficult.	Furthermore,	unlike	the	other	discrete	symmetries	discussed	previously,
the	 violation	 of	 	 cannot	 be	 probed	 by	 looking	 for	 violation	 of	 a	 quantum
number,	because	there	is	no	quantum	number	associated	with	 .	The	reason	for
this	is	simply	that	the	operator	 	is	not	Hermitian	(in	fact,	it	is	anti-Hermitian),
and	as	such	does	not	have	an	observable	quantity	associated	with	it,	conserved	or
otherwise.



The	 	Theorem

While	 ,	 ,	 ,	and	 	are	all	violated	by	 the	weak	 interaction,	 there	 is	good
reason	 to	 believe	 that	 the	 combined	 symmetry	 of	 	 is	 exact.	Of	 course,	we
must	 be	 careful	 to	 make	 such	 claims,	 since	 it	 was	 previously	 thought	 to	 be
obvious	 that	 the	 individual	 discrete	 symmetries	must	 be	 exact,	 and	 it	 came	 as
something	of	a	surprise	 that	 they	are	not.	However,	 the	difference	 is	 that	 there
exists	 a	 theorem	 that	 demonstrates	 	 must	 be	 exact,	 based	 only	 on	 very
general	principles,	such	as	Lorentz-invariance.	This	is	not	to	say	that	we	should
not	test	the	symmetry,	though,	since	experiment	is	the	ultimate	arbiter	in	physics.
Indeed,	 there	 are	 currently	 experiments	 running	 to	 test	 the	 validity	 of	 the	
theorem.	 One	 possible	 effect	 of	 a	 violation	 of	 	 would	 be	 a	 difference	 in
behavior	 of	 matter	 and	 antimatter,	 and	 such	 differences	 are	 being	 tested	 at
Berkeley	and	at	CERN’s	anti-proton	decelerator	facility.

A	 consequence	 of	 the	 	 theorem	 is	 another	 useful	 symmetry	 property:
crossing	symmetry	 is	 the	symmetry	 in	 the	 transition	amplitude	between	related
processes.	In	particular,	the	amplitude	 	for	a	particular	interaction	involving	an
incoming	 particle,	 X,	 with	 momentum	 p,	 is	 identical	 to	 the	 amplitude	 for	 a
similar	process	involving	an	outgoing	anti-particle,	 ,	with	momentum	−p.	That
is,

Note	that	 the	quantity	−p	necessarily	 implies	a	negative	energy	(assuming	p
has	positive	energy),	so	this	result	is	best	thought	of	as	a	calculational	tool	more
than	 a	 physically	 meaningful	 insight.	 Note	 also	 that	 this	 applies	 only	 to	 the
amplitudes	for	the	two	processes.	It	does	not	imply	identical	transition	rates	for
the	 two	 interactions,	 since	 they	will	generally	have	different	phase	spaces.	For
these	 two	 reasons,	 it	 is	 important	 to	 remember	 that	 the	 transition	 rate	 for	 an
interaction	 does	 not	 tell	 us	 anything	 useful	 about	 the	 rate	 for	 an	 interaction
related	by	crossing	symmetry.	 Indeed,	 it	 is	 trivial	 to	give	an	example	 in	which
one	of	the	interactions	is	forbidden.	For	example,	Bhabha	scattering	(e+	+e−	→
e+	+e−)	 is	an	allowed	scattering	process,	while	 the	process	e−	→	e+	+e−	+e−	 is
kinematically	forbidden	for	physical	energies,	since	the	available	phase	space	is
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empty.

As	we	will	 see	 in	Chapter	7,	 the	 amplitude	 for	 a	 particular	 process	 can	 be
calculated	 directly	 from	 the	 appropriate	 Feynman	 diagram.	With	 this	 in	mind,
crossing	symmetry	can	be	inferred	simply	by	considering	that	such	calculations
depend	 only	 on	 the	 topology	 of	 the	 diagrams.	 It	 is	 then	 fairly	 obvious	 that
diagrams	such	as

give	essentially	identical	results.

CONTINUOUS	SYMMETRIES

Mathematical	Structure	of	Continuous	Symmetries

Beginning	 again	with	 the	 simple	 example	 of	 rotation,	 let’s	 now	 replace	 the
square	with	a	circle.	Symmetric	rotations	are	now	possible	through	any	angle	we
care	 to	 choose,	 and	 so	 become	 continuously	 parametrized.	 As	 with	 discrete
symmetries,	we	can	still	combine	two	rotations	to	produce	a	third	rotation	and	as
such,	 we	 can	 see	 that	 continuous	 symmetries	 also	 form	 a	 group	 structure.
However,	the	group	also	now	has	the	additional	structure	of	a	smooth	manifold.
Such	groups	are	known	as	Lie	groups	in	honour	of	Sophus	Lie,	who	carried	out
much	of	the	early	work	on	such	groups.	As	before,	the	identity	element,	 ,	is	the
“do	 nothing”	 transformation	 of	 rotation	 through	 an	 angle	 of	 0◦.	 Since	 the
transformations	are	parametrized	by	the	angle	θ,	we	can	write	a	general	rotation
as	R	=	R(θ).	We	can	choose	this	parametrization	in	such	a	way	that	a	zero	value
gives	 the	 identity	 (R(0)	 =	 ),	 which	 fits	with	 the	 intuitive	 notion	 of	 using	 the
rotation	angle	as	the	parameter.	Since	the	set	of	rotations	we	are	considering	is
now	continuous,	we	can	consider	an	element	that	is	only	infinitesimally	removed
from	the	identity,	and	since	the	group	has	a	smooth	structure,	we	know	that	this
will	 correspond	 to	 an	 infinitesimal	 value	 of	 the	 parameter.	 That	 is,	 we	 can



consider	 a	 rotation	 through	 an	 infinitesimal	 angle	 δθ,	 effected	 by	 the	 rotation
group	element	δR,	which	is	only	infinitesimally	removed	from	 .	Hence,	to	first
order	in	δθ,	we	can	say	that	δR	=	 	+	iδθ	T,	where	iT	=	 	gives	the	non-trivial
part	of	 the	 transformation.	We	refer	 to	T	as	 the	generator	of	 the	rotations.	The
factors	 of	 i	 are	merely	 a	 convention—in	 fact,	 a	 convention	 unique	 to	 physics,
with	mathematicians	generally	choosing	a	different	definition	and	absorbing	the
i	into	the	generator.

We	now	imagine	constructing	a	finite	rotation	through	an	angle	θ	by	means	of
repeated	 application	 of	 this	 infinitesimal	 rotation.	 In	 particular,	 we	 let	 δθ	 =
limN→∞	θ/N,	and	construct	the	rotation

This	 last	 expression	 is	 hopefully	 familiar	 to	 many	 readers	 as	 the	 exponential
function.	So	we	can	identify

which	is	known	as	the	exponential	map.

What	if	we	want	to	describe	rotations	in	three	dimensions?	Now	the	problem
becomes	considerably	more	complicated	as	we	must	specify	both	an	axis	and	an
angle	 of	 rotation.	A	moment’s	 thought	will	 convince	 the	 reader	 that,	 although
there	 are	 infinitely	 many	 axes	 around	 which	 we	 can	 rotate,	 it	 is	 possible	 to
achieve	any	rotation	by	way	of	three	independent	rotations	about	fixed	axes	(an
example	of	three	such	rotations	would	be	the	Euler	angles).	This	means	we	have
only	 three	 independent	 axes	 of	 rotation	 to	 consider,	 and	 therefore	 three
parameters	to	specify.	If	we	let	T1,	T2,	and	T3	be	the	generators	of	rotations	about
the	x,	 y,	 and	 z	 axes	 respectively,	 then	we	 can	 use	 these	 to	 build	 up	 a	 general
rotation	 about	 any	 axis.	 In	 particular,	 the	 axis	 of	 rotation	may	be	 specified	by
some	linear	combination	of	these	generators	δθ1T1	+	δθ2T2	+	δθ3T3.	We	can	then
construct	a	finite	rotation	in	the	same	way	as	before:



There	 is	 an	 important	 difference	 between	 the	 two-dimensional	 and	 the	 three-
dimensional	rotations.	Any	two	rotations	in	two	dimensions	must	necessarily	be
about	 the	same	axis	and,	as	such,	 it	does	not	matter	which	order	we	apply	two
transformations.	 That	 is,	 the	 rotations	 in	 two	 dimensions	 commute,	 giving	 an
Abelian	group.	In	three	dimensions,	the	rotations	do	not	commute	and	we	have	a
non-Abelian	group	structure.	This	 is	captured	 in	 the	 fact	 that	 the	generators	of
the	group	also	do	not	commute.	 In	 the	case	of	 three-dimensional	 rotations,	 the
commutation	relations	for	the	generators	are	given	by:

This	is	said	to	form	the	Lie	algebra	for	the	group.	This	algebra	is	enough	to
determine	 the	 local	 structure	of	 the	group.	The	only	property	of	 the	group	not
uniquely	captured	in	the	previous	relations	is	its	overall	topology.

Group	Representations

So	 far,	 we	 have	 discussed	 groups	 in	 very	 abstract	 terms.	 In	 practice,	 we
generally	want	 to	consider	 the	effect	of	a	 transformation	on	a	particular	object
such	as	a	 tensor,	which	we	write	 in	a	 specific	basis.	For	example,	 suppose	we
wish	to	find	the	effect	of	a	rotation	on	a	vector.	The	obvious	approach	would	be
to	 write	 it	 in	 column	 vector	 form	 and	 act	 on	 it	 with	 a	 rotation	 matrix.	 This
rotation	matrix	would	then	be	a	particular	representation	of	the	abstract	rotation
that	we	wish	to	perform.	To	be	more	concrete,	a	representation	is	a	map	from	the
group	of	 (abstract)	 transformations,	R,	 to	 a	 group	of	matrices,	M(R),	 such	 that
the	product	of	the	representations	of	two	transformations	is	the	representation	of
the	combination	of	the	transformations:

Clearly,	 in	 a	 different	 coordinate	 system,	 the	 representation	 would	 be
different.	However,	 the	 idea	generalizes	much	more	 than	 this;	we	can	consider
the	effect	of	a	rotation	on	other	tensors,	in	which	case	even	the	dimension	of	the
matrix	representing	the	transformation	can	change.	The	only	thing	that	must	be



the	 same	 for	 all	 representations	 of	 a	 group	 is	 that	 the	 representation	 of	 the
generators	must	obey	the	appropriate	Lie	algebra.

As	 an	 example,	 the	 group	 of	 rotations	 in	 three	 dimensions	 has	 a	 three-
dimensional	representation:

that	acts	on	 the	 three-dimensional	vectors	 in	 the	way	 that	we	would	expect.	A
rather	obvious	six-dimensional	representation	is	given	by

but	 this	 clearly	 splits	 into	 two	 three-dimensional	 representations,	 since	 the
matrices	are	block	diagonal.	That	is,	the	upper	three	and	lower	three	components
of	the	six-component	vector	space	acted	on	by	this	representation	will	only	mix



among	 themselves	 and	 never	 with	 each	 other.	 In	 this	 case,	 we	 say	 that	 the
representation	 is	 reducible,	 whereas	 an	 irreducible	 representation	 is	 one	 that
cannot	 be	 broken	 down	 in	 this	 way.	 We	 will	 see	 later	 that	 irreducible
representations	are	a	key	concept	in	particle	physics.

Far	 less	 obvious	 is	 that	 this	 group’s	 associated	 algebra	 also	 has	 a	 two-
dimensional	representation,	given	by:

which	 the	 reader	 should	 recognize	 as	 the	 spin- 	 spin	 operators.	 This	 is	 no
coincidence	and	is	a	point	to	which	we	will	return	in	Section	4.3.2.

Classification	of	Lie	Groups

In	 Chapter	 6,	 we	 will	 consider	 the	 various	 ways	 in	 which	 particles	 are
classified	 and	 categorized,	 and	 it	 will	 become	 clear	 that	 a	 particle	 is	 really
nothing	 more	 than	 one	 part	 of	 an	 irreducible	 representation	 of	 various	 Lie
algebras.	 There	 are	 several	 different	 Lie	 algebras	 that	 we	 must	 consider	 in
particle	physics,	including	the	special	unitary	and	special	orthogonal	groups.	The
Lie	algebras	fall	into	more	than	just	these	two	categories,	but	these	are	the	two
that	are	most	important	for	our	purposes,	so	we	now	explore	them	a	little.

The	 group	 of	 transformations	 on	 an	 n-dimensional	 real	 vector	 space	 that
preserves	 the	 inner	 product	 u	 ·	 v	 =	 uivi	 can	 be	 represented	 by	 the	 n	 ×	 n
orthogonal	matrices—that	is,	those	obeying	MT	M	=	 n.	For	this	reason,	such	a
group	is	known	as	the	orthogonal	group	on	n	elements,	or	O(n),	and	corresponds
to	our	usual	concept	of	 rotations.	However,	 in	addition	 to	 the	proper	 rotations,
these	 groups	 also	 contain	 reflections;	 if	 we	 wish	 to	 restrict	 our	 attention	 to
proper	 rotations,	 we	 must	 consider	 only	 those	 matrices	 with	 the	 additional
property	 that	 their	 determinant	 is	 equal	 to	 1.	 These	 are	 known	 as	 the	 special
orthogonal	groups	on	n	elements,	or	SO(n).

A	 similar	 class	 of	 groups	 exists	 for	 the	 complex-valued	 vector	 spaces.
However,	the	relevant	property	in	this	case	is	that	the	matrices	be	unitary	(M†M
=	 n),	so	we	have	the	groups	U(n)	and	SU(n),	where	again	the	S	denotes	that	the



4.3.2

latter	is	the	special	unitary	group	in	which	all	elements	have	unit	determinant.

The	generators	of	SU(n)	must	be	Hermitian,	as	this	guarantees	the	unitarity	of
the	 group	 elements,	 and	 traceless,	 as	 this	 gives	 the	 elements	 unit	 determinant.
We	 can	 also	 determine	 how	 many	 generators	 are	 required.	 An	 n×n	 complex
matrix	 has	 n2	 complex	 values,	 or	 equivalently	 2n2	 real	 parameters.	 For	 that
matrix	 to	 be	 unitary,	 it	must	 obey	 the	 property	M†M	 =	 n,	 which	 reduces	 the
number	of	independent	parameters	to	n2.	The	additional	property	of	having	unit
determinant	 further	 reduces	 this	number	 to	n2	−1.	This,	 then,	 is	 the	number	of
generators	for	the	group	SU(n).	A	similar	argument	can	be	made	for	orthogonal
groups,	giving	 the	number	of	generators	of	SO(n)	as	 n(n	−	1),	which	must	be
traceless	 and	 antisymmetric.	 As	 well	 as	 the	 determinant	 and
Hermiticity/orthogonality	 properties	 of	 the	 generators,	 it	 is	 also	 necessary	 to
choose	 an	 overall	 normalization.	 The	 standard	 convention	 is	 to	 choose	 the
generators	such	that	tr(TiTj)	=	 δij.

We	could	go	further	than	the	previous	two	categories	of	Lie	groups	and	ask	if
similar	groups	exist	based	on	the	quaternions,	or	even	the	octonions.	In	fact	they
do,	but	we	will	not	delve	into	this	here,	as	such	groups	are	not	directly	relevant
to	us.

Continuous	Symmetries	in	Particle	Physics

A	pertinent	 question	might	well	 be	 “what	 do	 these	 groups	 have	 to	 do	with
particles?”	 To	 answer	 this	 question,	 consider	 the	 infinitesimal	 rotation	 of	 a
position	vector	about	the	z	axis	in	a	threedimensional	system,	through	an	angle
δθ,	as	in	Figure	4.1.	This	alters	the	values	of	x	and	y	according	to

Now	 a	 quantity	 that	 depends	 on	 that	 position	 vector	 (e.g.,	 a	wavefunction)
will	vary,	to	first	order,	according	to



FIGURE	4.1	Rotation	 of	 a	 vector	 through	 an	 infinitesimal	 angle	δθ	 about	 the	 z	 axis,	 demonstrating	 the
transformation	of	the	x	and	y	components.

This	is	of	the	form	that	we	would	expect	for	an	infinitesimal	transformation,
with	a	generator	given	by

So	 the	 generator	 of	 rotations	 about	 the	 z	 axis	 is	 precisely	 the	 quantum
mechanical	operator	for	the	z	component	of	angular	momentum.	As	stated	at	the
start	 of	 this	 chapter,	 a	 rule	 of	 thumb	 is	 that	Noether’s	 theorem	 connects	 those
variables	that	are	related	by	the	uncertainty	principle.	This	rule	goes	further,	and
we	 can	 say	 that	 the	 generator	 for	 a	 symmetry	 transformation	 is	 the	 quantum
mechanical	operator	for	the	relevant	conjugate	variable.2

So	SO(3)	symmetry	is	closely	related	to	angular	momentum,	and	therefore	to
spin.	Reconsidering	the	results	of	Chapter	3	in	grouptheoretic	terms,	we	can	see
that	spin-1	particles	form	a	threedimensional	representation	of	SO(3)	 (Equation
4.13),	 while	 spin- 	 particles	 form	 a	 two-dimensional	 representation	 of	 its
associated	algebra.

Generators,	Quantum	Numbers,	and	Representations

In	Section	4.3.1	and	previously,	 it	was	stated	 that	 there	 is	a	 twodimensional
representation	of	the	algebra	of	SO(3).	Let	us	now	clarify	this	statement	a	little.
Strictly,	 the	 three-dimensional	 rotation	 group,	 SO(3),	 does	 not	 have	 a	 two-
dimensional	representation.	However,	the	group	is	locally	isomorphic	to	the	two-



dimensional	 unitary	 group,	SU(2).	 This	 is	 equivalent	 to	 the	 statement	 that	 the
algebras	of	these	two	groups	are	identical,	and	the	groups	are	only	distinguished
by	 their	 global	 structure,	 or	 topology.	 The	 algebra	 has	 a	 twodimensional
representation,	but	this	representation	strictly	applies	only	to	the	group	SU(2).	So
why	 must	 we	 consider	 this	 representation	 at	 all	 when	 discussing	 spin?	 The
answer	is	that	spin	is	a	purely	quantum	mechanical	concept	and	so	is	encoded	in
the	wavefunction	for	a	particle,	which	is	complex-valued.	As	such,	the	types	of
symmetry	 transformations	 we	 may	 perform	 on	 a	 wavefunction	 are	 generally
unitary	 transformations.	For	example,	consider	a	 two-component	 spinor-valued
wavefunction	|ψ⟩,	transformed	according	to	|ψ⟩	 	M	|ψ⟩,	where	M	is	an	element
of	 the	 special	 unitary	 group	 on	 two	 elements,	 SU(2).	 Then	 the	 Hermitian
conjugate	 spinor	 transforms	 as	 ⟨ψ|	 	 ⟨ψ|	 M†	 and	 the	 physically	 significant
quantity	⟨ψ	|	ψ⟩	is	invariant,	since

and	M†M	is	the	identity	by	definition.	Hopefully,	this	argument	will	persuade	the
reader	that	SU(2)	is	more	suited	to	describing	spin	than	SO(3).	A	more	technical
reason	is	that	SU(2)	is	the	“double	cover”	of	SO(3).	In	other	words,	the	topology
of	SU(2)	in	a	sense	“wraps	around”	SO(3)	twice,	and	this	double	wrapping	is,	in
effect,	canceled	out	when	considering	the	physical	quantity	⟨ψ	|	ψ⟩.

We	have	already	seen	a	two-dimensional	representation	of	SU(2)	in	the	spin-
spin	operators	(Equation	3.34),	so	it	should	come	as	no	surprise	that	these	are	the
generators	for	SU(2).	However,	recall	also	that	in	Section	3.4,	we	saw	that	 it	 is
more	 convenient	 to	 use	 just	 one	 of	 these	 generators,	 along	 with	 raising	 and
lowering	operators.	Since	only	one	of	the	observables	corresponding	to	the	three
spin	 operators	 can	 be	measured	 at	 any	 one	 time,	 it	 is	 useful	 to	 have	 a	 set	 of
operators	 that	 return	 eigenstates	 of	 just	 one	 of	 the	 generators.	 It	 is	 also	 no
coincidence	 that	 we	 generally	 choose	 Sz	 as	 the	 measured	 quantity,	 since	 it	 is
diagonal	in	the	standard	representation.

We	 can	 represent	 all	 this	 in	 the	 form	 of	 a	 diagram.	 This	 may	 well	 seem
unnecessarily	abstract	at	first,	but	it	generalizes	nicely	to	larger	groups.	In	what
follows,	 we	 will	 deliberately	 gloss	 over	 much	 of	 the	 mathematics,	 choosing
instead	 to	 give	 the	 reader	 an	 intuitive	 understanding	 of	 the	 specific	 concepts



relevant	to	the	remainder	of	the	text.	In	particular,	we	should	acknowledge	that
the	 diagrams	 in	what	 follows	 are	well-defined	but	 lie	 in	 a	 different	 space	 (the
dual	 space)	 from	 the	 one	 that	 actually	 contains	 the	 generators.	 This	 need	 not
concern	us,	however,	and	 it	 is	simpler	 to	 think	of	 the	diagrams	as	 representing
the	generators	 themselves.	On	a	one-dimensional	 “graph”	of	 the	 spin	quantum
number	 Sz,	 we	 represent	 the	 raising	 and	 lowering	 operators	 with	 arrows,
demonstrating	 the	effect	 that	 they	have	on	 the	value	of	Sz.	The	generator	Sz	 is
shown	as	a	dot	at	the	origin,	since	it	does	not	change	the	value	of	its	observable.

We	can	use	the	same	axis	to	depict	the	different	representations	of	SU(2).	A
spin- 	particle	is	shown	by	its	two	allowed	values	of	Sz:

while	a	spin- 	particle	is	shown	by	its	four	allowed	values:

and	so	on.

Although	 the	 individual	 generators	 do	not	 commute,	we	 can	 find	one	more
object	 that	 does	 commute	with	our	 chosen	Sz	generator.	 This	 is	 the	 “quadratic
Casimir,”	 given	 by	 ∑i	 Ti2,	 and	 its	 eigenvalue	 serves	 to	 identify	 the	 particular
representation	of	SU(2).	That	 is,	 the	Casimir’s	eigenvalue	 tells	us	which	of	 the
above	 diagrams	 we	 need	 to	 look	 at.	 This	 is	 equivalent	 to	 the	 fact	 that	 the
individual	 components	 of	 a	 particle’s	 angular	 momentum	 cannot	 all	 be
simultaneously	measured,	 but	we	 can	measure	 one	 component	 and	 the	 overall
magnitude.	The	Casimir	gives	that	magnitude.

Let	 us	 now	 consider	 the	 larger	 symmetry	 group	 SU(3),	 corresponding	 to	 a
three-fold	symmetry	in	which	a	particle	has	available	to	it	three	states	and	their
linear	combinations.	Such	a	group	has	eight	generators,	Ti	=	 	λi,	where	λi	are	the
Gell-Mann	matrices,	given	by



•

•

•

If	a	particle	can	be	in	one	of	three	distinct	states,	then	it	really	has	only	two
degrees	of	freedom:	if	it	is	not	in	state	1	or	state	2,	then	it	must	be	in	state	3.	As
such,	a	system	with	SU(3)	symmetry	is	categorized	by	two	quantum	numbers.	It
is	no	coincidence	that,	of	the	eight	generators	of	SU(3),	the	largest	subgroup	of
these	that	commutes	consists	of	just	two	generators.	If	we	are	to	label	a	state	by
two	quantum	numbers,	then	those	numbers	must	be	simultaneously	measurable,
and	so	the	quantum	operators	must	commute.	Notice	that	λ3	and	λ8	are	diagonal:
this	 tells	us	 that	 these	correspond	 to	mutually	compatible	quantum	numbers	of
the	 system,	 according	 to	 which	 the	 states	 will	 be	 labeled.	 These	 quantum
numbers	will	also	be	the	appropriate	axes	for	our	generator	graph.	As	in	the	case
of	SU(2),	 the	 remaining	operators	 are	not	 in	 a	particularly	useful	 form	 for	our
current	 purposes,	 and	we	 are	 better	 off	 forming	 linear	 combinations	 to	 act	 as
ladder	operators.	Now,	however,	we	find	that	these	do	not	raise	or	lower	just	one
of	the	quantum	numbers,	but	a	combination	of	the	two.	Specifically:

I±	alters	the	T3	value	by	±1,

U±	alters	the	T3	value	by	± 	and	the	T8	value	by	± ,	and

V±	alters	the	T3	value	by	± 	and	the	T8	value	by	∓ ,

where	it	is	left	to	the	reader	to	find	expressions	for	these	operators	in	Exercise	5.

Measuring	either	quantum	number	has	no	effect	on	its	value,	so	we	place	two
dots	at	the	center	of	the	diagram	to	denote	the	diagonal	generators,	and	the	effect
of	the	ladder	operators	on	the	quantum	numbers	is	again	shown	pictorially	as	in
Figure	4.2.

The	 irreducible	 representations	 of	 this	 group	 must	 consist	 of	 sets	 of	 states



whose	quantum	numbers	are	related	to	each	other	by	the	ladder	operators.	From
this	fact,	we	can	see	how	to	write	out	 the	representations	of	SU(3)	graphically.
Some	examples	are	given	in	Figures	4.3–4.5,	but	there	are	infinitely	many	more
besides.	Such	diagrams	are	properly	referred	to	as	weight	diagrams,	the	weight
of	a	state	being	the	set	of	its	eigenvalues	under	the	group’s	generators.

FIGURE	4.2	The	ladder	operators	of	SU(3)	in	pictorial	form.

FIGURE	 4.3	 The	 eight-dimensional	 irreducible	 representation	 of	 SU(3).	 Also	 known	 as	 the	 adjoint
representation	or	8.



FIGURE	4.4	A	10-dimensional	irreducible	representation	of	SU(3),	10.

FIGURE	4.5	Two	three-dimensional	irreducible	representations	of	SU(3),	known	as	the	fundamental	or	3
and	anti-fundamental	or	 .

The	 irreducible	 representations	 may	 be	 combined	 to	 form	 larger
representations,	 though	 these	 are	 typically	 reducible.	 The	 representations	 in
Figure	4.5	 are	 known	 as	 the	 fundamental	 and	 antifundamental	 representations,
since	they	are	the	simplest,	out	of	which	the	larger	representations	may	be	built.
This	 happens	 in	 the	 same	 way	 that	 tensors	 are	 built	 from	 vectors.	 In	 fact,	 a
vector	is	the	equivalent	of	the	fundamental	representation	of	the	symmetry	group
of	 space-time	 transformations,	 and	 tensors	 are	 higher	 representations.	 To	 see
how	 this	works,	 consider	 a	 three-component	 column	 vector	ψi	 that	 transforms
under	 the	 three-dimensional	 representation	 of	 SU(3).	 That	 is,	 under	 SU(3),	 ψi
transforms	according	to

where	Mi
j	is	some	element	of	the	three-dimensional	representation	of	the	group.

Then	the	nine-component	object	ψiψj	must	transform	according	to



Since	we	can	write	Mi
kMj

ℓ	 as	 the	 exterior	 product	 of	 two	3	×	3	matrices,	 it	 is
equivalent	to	a	nine-dimensional	matrix	representation.	However,	if	we	were	to
do	 this,	we	would	find	 that	 this	 representation	 is	 reducible.	This	 is	most	easily
seen	by	considering	again	the	construct	ψiψj.	Since	this	is	constructed	from	two
identical	 column	 vectors,	 it	 makes	 sense	 to	 talk	 about	 the	 symmetric	 and
antisymmetric	parts	of	the	object.	That	is,	we	can	construct	the	symmetric	part	of
the	product	as	(ψiψj)s	=	(ψiψj	+	ψjψi)/2,	and	the	antisymmetric	part	as	(ψiψj)a	=
(ψiψj	 −	ψjψi)/2,	with	ψiψj	 =	 (ψiψj)s	 +	 (ψiψj)a.	 Now	 consider	 the	 action	 of	 the
transformation	Mi

kMj
ℓ	on	the	symmetric	part	of	this	product:

which	 is	 just	 the	 symmetric	 part	 of	 the	 transformed	 tensor.	 This	 demonstrates
that	 the	 symmetric	 and	 antisymmetric	 parts	 of	 the	 tensor	 transform	 entirely
independently	 of	 each	 other.	 We	 can	 thus	 deduce	 that	 the	 nine-dimensional
representation	is	reducible	to	a	six-dimensional	symmetric	representation	and	a
three-dimensional	 antisymmetric	 representation.	 Similar	 results	 may	 be	 found
with	higher-order	constructs.

As	another	example,	combining	 the	 three-dimensional	 fundamental	with	 the
three-dimensional	anti-fundamental	also	gives	a	ninedimensional	representation.
In	this	case,	it	makes	no	sense	to	talk	about	symmetric	and	antisymmetric	parts,
as	we	have	combined	vectors	from	different	spaces.	However,	this	time	the	trace
of	 the	 representation	 transforms	 independently	of	 the	 rest	of	 the	 representation
under	 SU(3):	 in	 fact,	 it	 is	 invariant.	 As	 such,	 the	 representation	 is	 clearly
reducible,	so	the	trace	is	separated	out	as	an	SU(3)	singlet,	while	the	remaining
eight	degrees	of	freedom	form	an	SU(3)	octet.	In	group-theoretic	notation,	then,
we	say	that	these	representations	combine	according	to	3	⊗	 	=	8	⊕	1.	Similarly,
we	 find	 that	 3	⊗	 3	⊗	 3	 =	 10	⊕	 8	⊕	 8	⊕	 1,	 where	 10	 is	 symmetric,	 1	 is



antisymmetric,	and	the	two	8s	have	mixed	symmetry	properties.	We	will	see	in
Chapter	 6	 that	 the	 hadrons	 fall	 into	 some	 of	 these	 irreducible	 representations,
and	it	is	this	fact	that	led	Gell-Mann	to	propose	the	quark	model.

Another	 representation	of	particular	 importance	 is	 that	shown	in	Figure	4.3.
This	is	the	representation	that	the	generators	themselves	form,	and	is	known	as
the	adjoint.	As	we	will	see	in	Chapter	10,	the	exchange	bosons	for	the	three	non-
gravitational	 fundamental	 interactions	 form	 adjoint	 representations	 of	 their
associated	groups.

Lorentz	Invariance,	Mass,	and	Spin

Of	course,	we	know	that	the	particles	we	wish	to	describe	do	not	exist	just	in
three-dimensional	 space,	 but	 in	 four-dimensional	 spacetime.	 What	 are	 the
relevant	groups	 to	 consider	when	we	wish	 to	 combine	 relativity	with	quantum
mechanics?	The	four-dimensional	rotation	group	SO(4)	might	seem	an	obvious
answer	but,	by	definition,	this	preserves	the	inner	product	u	·	v	=	u1v1	+	u2v2	+
u3v3	+	u4v4,	rather	than	the	correct	Lorentz-invariant	product	u	·	v	=	u0v0	−	u1v1
−	 u2v2	 −	 u3v3.	 To	 make	 this	 distinction	 clear,	 we	 denote	 the	 group	 of	 proper
Lorentz	 transformations	SO(1,	3)	 to	highlight	 the	presence	of	one	positive	and
three	relative	negative	terms	in	the	scalar	product.3	This	group	is	known	as	the
(proper)	Lorentz	group.	If	we	include	space-time	translations,	this	is	extended	to
the	 Poincaré	 group.	 An	 important	 result	 in	 particle	 physics	 (whose	 proof	 is
beyond	 the	 scope	 of	 this	 text)	 is	 that	 the	 irreducible	 representations	 of	 the
Poincaré	group	are	labeled	by	their	mass	and	their	spin.

An	 outline	 of	 the	 result	 is	 as	 follows.	 The	 generators	 of	 space-time
translations	 are	 the	 energy	 and	 momentum	 operators,	 pµ.	 The	 irreducible
representations	 of	 the	 translation	 group	 are	 labeled	 by	 their	 eigenvalues	 under
the	operator	p2,	which	of	course	are	just	given	by	m2.	The	generators	of	Lorentz
transformations	are	given	by

Notice	 that	 this	 object	 is	 antisymmetric	 and	 so	 has	 only	 six	 independent
components.	These	correspond	to	the	three	rotations	and	three	boosts.	In	fact,	the
generators	for	rotations	in	the	i,j-plane	are	given	by



while	boosts	in	the	i	direction	are	generated	by

These	generators	can	be	shown	to	obey	the	algebra

as	must	any	other	representations	of	this	group.

More	 generally,	 a	 representation	 will	 typically	 have	 a	 non-zero	 spin
component,	which	provides	additional	terms.	A	useful	means	of	extracting	these
terms	from	the	representation	is	provided	by	the	Pauli-Lubański	vector,4

since	it	can	be	shown	that

where	Ŝ2	is	the	total	spin	operator.	As	such,	the	eigenstates	of	W	2	are	labeled	by
−m2s(s	+	1),	where	s	is	the	spin	quantum	number.	Notice	that	W	2	plays	the	role
of	Casimir	for	the	Lorentz	group.

It	follows	that	 the	representations	of	 the	Poincaré	group	are	 labeled	by	their
mass	 and	 spin.	 This	 result	 was	 first	 established	 by	 Eugene	Wigner,	 who	 also
showed	 that	 these	 labels	 determine	 the	 number	 of	 degrees	 of	 freedom	 of	 the
representation.	 In	 particular,	 any	 massless	 representation	 has	 two	 degrees	 of
freedom,	 regardless	 of	 spin,	 whereas	 representations	 with	m≠	 0	 have	 2s	 +	 1
degrees	of	freedom.

EXERCISES



		1.

(a)

(b)

		2.

(a)

(b)

		3.

		4.

(a)

(b)

		5.

Draw	a	table	that	shows	the	effect	of	combining	the	symmetries	of	a
square	with	each	other	if	we	allow	both	rotations	and	reflections.

Given	that	finite	elements	of	a	Lie	group	may	be	written	in	the	form
of	Equation	4.10,	show	that	the	generators	of	SO(3)	may	be	written
as

Hence	show	that	the	generator	of	rotations	about	the	z	axis	is	given
by

Given	that	infinitesimal	transformations	may	be	written	as	δR	=	 	+
iδθiTi,	expand	the	boost	transformation	in	Equation	2.24	to	first
order	in	ξ	and	find	the	generator	for	boosts	in	the	x	direction.
By	a	similar	method,	show	that	an	arbitrary	infinitesimal	Lorentz
transformation	may	be	written	in	the	form	Λµν	=	δνµ	+	gµρ	δωρν,
where

is	 an	 antisymmetric	matrix	 that	parametrizes	 the	 transformation	 in
terms	of	the	rotation	angles,	θi,	and	the	rapidities,	ξi.

The	generators	of	an	SU(N)	group	must	be	a	set	of	linearly	independent,
Hermitian,	and	traceless	matrices.	Show	that	the	Pauli	and	Gell-Mann
matrices	form	two	such	sets.

Construct	the	ladder	operators	I±	=	T1	±	iT2,	U±	=	T4	±	iT5	and	V±	=
T6	±	iT7,	where	Ti	=	λi/2	are	the	SU(3)	generators.
Find	the	commutators	of	U±	with	T3,	T8	and	each	other.



(c)

		6.

(a)

(b)

Hence	show	that	U+	raises	the	values	of	T3	and	T8	by	1/2	and	√3/2
respectively.

We	can	write	the	anti-fundamental	( )	of	SU(3)	in	terms	of	the
fundamental	(3),	as	ψi	=	εijkψjψk,	where	εijk	is	the	Levi-Civita	symbol.

Write	down	an	expression	for	an	arbitrary	element	of	3	⊗	 	and
hence	show	that	it	cannot	be	written	as	the	sum	of	symmetric	and
antisymmetric	parts.
Show	that	the	trace	of	3	⊗	 	(ψiψi)	transforms	independently	of	the
rest	of	the	representation.

1	For	a	formal	proof,	the	reader	is	directed	to	any	introductory	text	on	Lagrangian	mechanics.
2	Those	readers	unfamiliar	with	the	concept	of	conjugate	variables	from	Lagrangian	mechanics	can	think	of
conjugates	as	again	those	variables	related	by	the	uncertainty	principle.
3	As	with	rotations,	“proper”	here	refers	to	the	fact	that	the	group	considers	only	those	transformations	that
do	not	involve	a	reflection.	In	the	case	of	the	proper	Lorentz	group,	this	means	no	spatial	inversion	or	time
reversal.
4	Strictly	a	pseudo-vector,	since	it	transforms	as	such	under	parity	transformations.
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CHAPTER	5
EXPERIMENTAL	PARTICLE	PHYSICS

While	 the	 majority	 of	 this	 book	 will	 take	 a	 theoretical	 approach	 to	 particle
physics,	it	is	of	course	experiment	that	is	the	ultimate	judge	of	a	physical	theory,
and	we	would	not	have	the	understanding	that	we	do	of	the	nature	of	particles	if
it	were	not	 for	 their	 experimental	 detection.	For	 this	 reason,	 it	 is	worth	 taking
some	time	to	appreciate	how	particles	are	produced	and	detected	in	experiments,
and	 how	 their	 properties	 are	measured.	 This	 chapter	will	 look	 at	 some	 of	 the
ways	in	which	individual	particles	can	interact	with	bulk	matter,	and	how	these
interactions	 may	 be	 exploited	 to	 build	 particle	 detectors.	 It	 will	 look	 at	 both
historic	and	contemporary	detector	design,	and	why	some	of	the	early	detectors
have	been	superseded.	It	will	then	look	at	some	aspects	of	the	design	of	particle
accelerators	and	how	 they	are	used	 to	produce	 the	particles	 for	analysis.	Since
this	is	not	the	main	focus	of	the	rest	of	the	book,	the	first	part	of	this	chapter	will
give	 less	 mathematical	 detail,	 and	 is	 intended	 only	 to	 give	 a	 flavor	 of	 what
experimental	particle	physics	entails.	The	final	part	 looks	at	the	experimentally
measurable	quantities	of	particle	physics,	 and	how	we	might	hope	 to	calculate
these	quantities	theoretically.

DETECTORS

Everything	we	know	about	particle	physics	comes	from	our	ability	to	observe
the	 particles	whose	 properties	we	wish	 to	 understand.	To	 this	 end,	 there	 are	 a
variety	of	detector	 types	 that	 exploit	 particles’	 interactions	with	bulk	matter	 in
order	 to	 capture	 a	 record	 of	 the	 particles’	 behavior.	 In	 order	 to	 understand	 the
construction	and	implementation	of	these	particle	detectors,	we	must	first	look	at
the	nature	of	these	particle-matter	interactions.



5.1.1 Interactions	of	Particles	with	Matter

The	 following	 is	 a	 limited	 list	 of	 some	 of	 the	 types	 of	 interactions	 that
particles	undergo	when	traveling	through	bulk	matter.	While	it	is	not	exhaustive,
it	should	be	sufficient	for	the	reader	to	appreciate	the	principles	behind	some	of
the	 detection	methods	 we	will	 discuss.	 In	 what	 follows,	 since	 we	 are	 dealing
with	experimental	physics,	and	particularly	 to	highlight	 the	difference	between
relativistic	 and	 nonrelativistic	 cases,	 we	 will	 work	 temporarily	 in	 non-natural
(SI)	units.

Ionization	of	Matter	by	Charged	Particles

When	 a	 charged	 particle,	 whether	 positive	 or	 negative,	 travels	 through	 a
material,	 it	exerts	an	electrostatic	force	on	the	electrons	in	 the	outer	orbitals	of
the	 material’s	 atoms.	 If	 this	 force	 is	 sufficiently	 strong,	 the	 electrons	 may	 be
removed	 from	 their	 atoms	 leading	 to	 ionization	 of	 the	 material.	 Since	 the
removal	of	an	electron	from	an	atom	requires	energy,	and	since	there	is	only	one
place	 the	 energy	 could	 have	 come	 from	 in	 this	 situation,	 this	 ionization	 also
results	in	a	loss	of	kinetic	energy	of	the	particle.	Consider	a	particle	with	charge
qe	 moving	 at	 speed	 v	 past	 an	 atom	 with	 an	 impact	 parameter	 b.	 This	 latter
quantity	is	simply	a	measure	of	the	distance	of	closest	approach	if	the	particle’s
trajectory	 were	 a	 straight	 line.	 Put	 another	 way,	 the	 impact	 parameter	 is	 the
orthogonal	 separation	 of	 the	 atom	 from	 the	 tangent	 to	 the	 particle’s	 initial
trajectory.	We	parametrize	the	situation	as	in	Figure	5.1.

FIGURE	5.1	Energy	loss	of	charged	particle	due	to	ionization.

Let	x	denote	 the	displacement	of	 the	particle	 in	 its	direction	of	motion	from
the	point	of	closest	 approach.	The	momentum	 transferred	 to	an	electron	 in	 the
atom	 in	 the	 x	 direction	 averages	 out	 to	 0	 as	 the	 particle	 travels	 by.	 The
momentum	 transfer	 in	 the	 direction	 perpendicular	 to	 the	 particle’s	 motion	 is



given	by

The	energy	transferred	to	the	electron,	then,	is

This	is	the	energy	lost	by	the	charged	particle	to	a	single	electron.	Since	there
are	many	electrons	 in	 the	material,	 consider	a	cylindrical	 shell	of	 radius	b	and
thickness	db:

The	number	of	electrons	in	this	shell	is

where	 n	 is	 the	 number	 density	 of	 atoms	 in	 the	medium	 and	Z	 is	 their	 atomic
number,	so	the	rate	of	energy	loss	per	unit	length	traveled	in	the	material	is



where	 we	 must	 include	 a	 maximum	 and	 minimum	 b	 to	 account	 for	 quantum
mechanical	effects.	 In	particular,	 the	minimum	impact	parameter	 is	determined
by	the	electron’s	de	Broglie	wavelength	relative	to	the	particle,	since	the	value	of
b	 is	not	well	defined	below	 this	 limit	due	 to	uncertainty.	More	precisely,	 since
the	 maximum	 momentum	 that	 may	 be	 imparted	 to	 the	 electron	 during	 the
collision	 is	pmax	=	2mev	 (see	Exercise	1),	 the	uncertainty	principle	 tells	us	 that
the	 smallest	 physically	 meaningful	 b	 is	 given	 by	 bmin	 =	 ħ/(2mev).	 For	 the
maximum	b,	if	the	particle	is	too	distant	from	the	atom,	it	will	not	impart	enough
energy	 to	 ionize	 the	 atom,	 since	 energy	 levels	 are	 discrete.	 To	 a	 good
approximation,	the	interaction	between	particle	and	electron	occurs	only	over	a
short	 distance	where	 |x|	 <	b,	 so	 that	 the	 duration	 of	 the	 interaction	 is	∼	 2b/v.
Comparing	this	with	the	frequency	of	the	electron’s	orbit,	we	find

where	I	is	the	average	ionization	energy	for	all	electrons	in	the	atom.	Since	I	is
measured	empirically,	by	convention	we	absorb	the	residual	factor	of	π	 into	 its
definition	to	arrive	at	the	Bethe	formula

which	 is	 valid	 for	 slow-moving/heavy	 charged	 particles.	 A	 correction	 for
relativistic	 particles	 gives	 the	 relativistic	 Bethe	 formula,	 whose	 derivation	 we
will	gloss	over:



where	β	=	v/c,	γ	is	the	Lorentz	factor,	γ	=	(1	−	β2)−1/2,	and

is	the	maximum	energy	that	can	be	transferred	in	a	single	interaction.	Note	that
the	mass,	M,	of	the	charged	particle	appears	in	the	relativistic	form	via	Tmax.

As	 a	 particle	 travels	 through	 a	 medium,	 then,	 it	 loses	 energy	 at	 a	 rate
determined	 by	 several	 factors,	 including	 the	 type	 of	 particle,	 the	medium,	 and
the	 particle’s	 instantaneous	 energy.	 The	 rate	 at	 which	 this	 energy	 is	 lost	 with
respect	 to	 the	 distance	 traveled	 (−dE/dx)	 is	 known	 as	 the	 material’s	 stopping
power.	 It	 should	 be	 noted	 that	 the	 x	 appearing	 in	 the	 Bethe	 formula	 is	 not	 a
literal	length,	but	really	a	measure	of	“amount	of	material	traversed.”	That	is,	it
is	 related	 to	 the	 actual	 path	 length,	ℓ,	by	x	 =	ρℓ,	where	ρ	 is	 the	density	of	 the
medium.	As	such,	it	is	typically	measured	in	SI	units	of	g	cm−2.

There	is	a	minimum	in	the	Bethe	formula	at	around	βγ	∼	3−3.5	depending	on
the	 medium.	 Above	 this,	 relativistic	 effects	 dominate	 and	 the	 stopping	 power
scales	 as	 roughly	 ln(γ2),	 increasing	 slowly	 with	 energy.	 This	 increase	 is
attributable	 to	 the	 fact	 that	 the	 electric	 field	 of	 the	 charged	 particle	 is	 highly
Lorentz	contracted	and	thereby	concentrated,	allowing	for	greater	ionization.	In
reality,	this	increase	eventually	levels	off,	however,	in	the	“Fermi	plateau.”	This
is	 because	 the	 maximum	 transferable	 energy,	 Tmax,	 appearing	 in	 the	 Bethe
formula	grows	without	limit,	which	in	turn	would	allow	electrons	to	be	liberated
from	the	medium	entirely.	In	practice,	then,	there	is	an	energy	cutoff	that	must	be
imposed,	leading	to	the	plateau.

Below	 the	minimum	 at	βγ	∼	 3,	 the	 stopping	 power	 decreases	with	 energy,
scaling	 roughly	 as	 β−2	∼	E−1.	 This	 is	 due	 to	 the	 fact	 that	 the	 energy	 of	 the
particle	 at	 these	 scales	 is	 more	 directly	 related	 to	 its	 velocity,	 and	 a	 slower-
moving	particle	has	more	time	to	interact	and	ionize	atoms.	As	the	energy	of	a
charged	particle	drops	lower	still,	other	factors	contribute	to	the	stopping	power,



including	the	scattering	of	 the	particle	by	atomic	nuclei	 in	 the	medium	and	the
particle’s	 capture	 of	 electrons	 from	 the	 material.	 As	 such,	 the	 Bethe	 formula
begins	 to	 lose	 its	 validity.	 In	 fact,	 the	 stopping	 power	 is	 observed	 to	 reach	 a
maximum	at	around	βγ	∼	0.01,	and	then	begin	to	decrease	at	a	rate	for	which	the
Bethe	 formula	 cannot	 account.	 Empirical	models	 exist	 to	 describe	 this	 region,
and	 at	 the	 lowest	 energy	 scales	 the	 stopping	 power	 is	 found	 to	 scale
approximately	linearly	with	particle	energy.	Ultimately,	however,	the	question	of
how	much	energy	 the	particle	 loses	at	 these	scales	becomes	 irrelevant,	 since	 it
will	eventually	reach	the	average	thermal	energy	of	the	medium	(thermalize),	at
which	point	no	further	energy	dissipation	will	occur.

Photon	Interactions	with	Matter

When	 a	 photon	 passes	 through	 a	 medium,	 it	 may	 ionize	 an	 atom	 of	 the
material	 through	 the	 photoelectric	 effect.	 That	 is,	 if	 it	 has	 sufficient	 energy,	 it
may	be	 absorbed	by	 an	 electron	 in	one	of	 the	material’s	 atoms,	 liberating	 that
electron	from	its	atomic	orbital.	For	a	given	orbital,	there	is	a	minimum	required
energy,	ϕ,	 for	 this	process	 to	occur.	The	difference	between	 the	photon	energy
and	 the	 ionization	 energy	manifests	 itself	 as	 the	 kinetic	 energy	 of	 the	 ionized
electron,	 through	Ekin	 =	hf	 −	ϕ,	 where	 h	 is	 the	 photon’s	 frequency.	 The	 freed
electron	may	then	cause	further	 ionization	through	the	mechanism	discussed	in
the	previous	 section.	At	 the	 same	 time,	 the	 atom	 from	which	 the	 electron	was
liberated	may	also	be	left	in	an	excited	state,	if	the	electron	was	removed	from
an	 inner	 orbital.	 This	 allows	 an	 electron	 from	 a	 higher	 orbital	 to	 fall	 into	 the
lower-energy	“hole”	left	by	the	photoelectric	effect.	As	the	electron	makes	this
transition,	 it	 emits	 the	 excess	 energy	 in	 the	 form	 of	 another	 photon,	 of	 lower
energy	than	the	original.

FIGURE	5.2	The	Feynman	diagram	for	Compton	scattering	along	with	a	parametrization	of	the	situation.
The	electron	is	assumed	to	be	initially	at	rest,	and	the	photon	is	scattered	through	an	angle	θ.

In	addition	to	these	ionization	effects,	photons	may	also	interact	with	free	or



quasi-free	 electrons	 in	 the	 medium	 through	 inelastic	 scattering,	 known	 as
Compton	 scattering.	 That	 is,	 the	 photon	 may	 be	 absorbed	 by	 a	 free	 electron,
increasing	the	electron’s	kinetic	energy.	The	electron	then	re-emits	a	photon,	but
one	of	a	lower	energy	than	the	original.	This	can	be	summarized	by	the	Feynman
diagram	in	Figure	5.2.	The	electron	must	be	free	 for	such	scattering	processes,
since	 the	energy	 levels	of	bound	electrons	 in	atomic	orbitals	 take	only	discrete
values.	 So	 the	 absorption	 of	 a	 photon	 in	 this	 case	 would	 place	 the	 electron
“between”	energy	 levels,	which	 is	 forbidden.	By	contrast,	 the	 free	electrons	 in
the	conduction	band	of	a	material	have	a	continuum	of	energy	levels	available	to
them.	The	energy	redistribution	of	Compton	scattering	is	achieved	by	producing
a	net	 increase	 in	 the	 electron	kinetic	 energy,	 and	hence	 also	 in	 its	momentum.
For	momentum	to	be	conserved,	this	requires	that	the	re-emitted	photon	have	a
different	 trajectory	 from	 the	 photon	 that	 was	 absorbed.	 There	 is	 a	 direct
relationship	 between	 this	 scattering	 angle	 and	 the	 energy	 lost	 to	 the	 electron,
given	by

where	λ	 is	 the	photon	wavelength,	 related	 to	 its	 energy	 through	E	 =	hc/λ.	 The
reader	is	invited	to	derive	this	relationship	in	Exercise	4.

Through	 Compton	 scattering	 and	 the	 photoelectric,	 then,	 photons	 may
dissipate	 their	energy	through	direct	 interactions	with	the	medium.	As	with	the
Bethe	 formula,	 these	 effects	 become	 less	 important	 at	 higher	 energies.	 In	 the
case	 of	 both	 photons	 and	 charged	 particles,	 further	 effects	 dominate	 at	 higher
energy	scales.	Whereas	 the	 low-energy	behaviors	are	goverened	by	very	direct
interaction	with	the	material,	we	will	see	that	the	high-energy	effects	are	rather
indirect,	though	they	still	require	the	medium	in	order	to	occur.

Bremsstrahlung	and	Pair-Production

When	a	high-energy	electron	passes	an	atom,	it	can	interact	with	the	atom	via
photon	exchange.	This	allows	the	 transferral	of	energy	and	momentum,	 in	 turn
allowing	the	electron	to	emit	one	or	more	photons	as	in	Figure	5.3.	Note	that	the
electron	 cannot	 simply	 emit	 a	 photon	 without	 such	 interaction,	 as	 this	 would
necessarily	 violate	 momentum	 conservation.	 This	 process	 is	 known	 as



Bremsstrahlung	 (a	German	word	meaning	 “braking	 radiation”),	 as	 it	 results	 in
the	 loss	 of	 a	 significant	 proportion	 of	 the	 electron’s	 kinetic	 energy.	 Likewise,
when	 a	 high-energy	 photon	 passes	 an	 atom,	 it	 can	 interact	 via	 virtual	 particle
exchange	 to	 create	 an	 electron-positron	 pair,	 as	 in	 Figure	 5.4.	 So	 an	 initial
charged	particle	will	tend	to	produce	a	shower	of	lower	energy	particles	through
a	 combination	 of	 Bremsstrahlung	 and	 pairproduction,	 together	 referred	 to	 as
radiative	 losses.	 The	 energy	 lost	 through	 Bremsstrahlung	 is	 found	 to	 be
proportional	 to	 the	 total	energy,	and	so	follows	an	exponential	decay.	As	such,
we	 can	 define	 a	 radiation	 length,	X0,	 to	 be	 the	 length	 scale	 (in	 g	 cm−2)	 over
which	E	drops	by	a	factor	of	e.	So	we	have

FIGURE	5.3	Feynman	diagram	contributing	to	radiative	energy	loss	of	a	charged	particle	through	braking
radiation	or	Bremsstrahlung.

FIGURE	5.4	 Feynman	 diagram	 contributing	 to	 electron-positron	 pair	 production	 in	 the	 presence	 of	 an
electromagnetic	field,	in	this	case	in	the	form	of	a	nucleus.

Similarly,	the	characteristic	length	scale	for	photons	is	the	mean	free	path,	ℓfree,
with	 the	 photon	 intensity	 varying	 as	 I	 =	 I0	 exp(−x/ℓfree).	 The	 mean	 free	 path
tends	to	be	of	order	9X0/7.

While	 the	 total	 energy	 lost	 to	 a	 medium	 is	 the	 sum	 of	 the	 ionization	 and
radiative	 losses,	 there	 is	 a	 critical	 energy,	 below	 which	 the	 ionization	 losses



dominate,	 and	above	which	 the	 radiative	 losses	dominate.	The	dissipation	of	a
charged	 particle’s	 energy,	 then,	 is	 characterized	 by	 a	 shower	 of	 exponentially
increasing	numbers	of	lowerenergy	particles,	after	which	the	charged	particles	in
the	 shower	 dump	 their	 remaining	 energy	 via	 ionization,	 while	 the	 photons
dissipate	 their	 energy	 through	Compton	 scattering	 and	 the	photoelectric	 effect.
This	leads	to	a	fairly	predictable	number	of	final-state	particles	as	a	function	of
initial-particle	energy.	The	value	of	the	critical	energy	at	which	radiative	losses
begin	 to	 dominate	 depends	 strongly	 on	 the	 type	 of	 particle	 considered.	 For
electrons,	 radiative	 losses	 play	 a	 big	 role,	 and	 since	 these	 losses	 scale	 with
energy,	it	allows	for	very	efficient	energy	dissipation.	For	heavy	particles	such	as
hadrons,	 the	 role	 of	 radiative	 losses	 is	much	 less	 significant,	 since	 the	 critical
energy	 is	 considerably	 higher.	 In	 fact,	 for	 heavy	 particles,	 even	 the	 ionization
effects	 described	 by	 the	 Bethe	 formula	 play	 a	 smaller	 role	 than	 for	 lighter
particles,	with	 the	majority	 of	 the	 stopping	 power	 coming	 instead	 from	 direct
collisions	 with	 nuclei.	 For	 this	 reason,	 energy	 dissipation	 is	 typically	 a	 much
slower	process	for	heavy	particles.

Čerenkov	Radiation

Another	way	that	charged	particles	can	interact	with	their	surroundings	is	via
Čerenkov	radiation.	This	is	the	electromagnetic	analogue	of	a	bow	wave	in	water
surfaces	or	a	sonic	boom	in	air.	When	an	object	capable	of	causing	disturbances
in	 a	 medium	 travels	 through	 that	 medium	 at	 a	 speed	 v,	 it	 causes	 waves	 to
propagate	outward	at	a	speed	cmed.	If	the	object	travels	faster	than	the	waves	can
propagate,	 then	 constructive	 interference	 of	 successive	 waves	 creates	 a	 plane
wave	 that	 propagates	 at	 a	 particular	 angle	 away	 from	 the	 object’s	 direction	 of
motion.

In	 time	 t,	 a	 wave	 propagates	 a	 distance	 cmedt,	 while	 the	 object	 moves	 a
distance	vt.	This	gives	an	angle

at	which	this	shock	wave	will	develop.

In	the	case	of	electromagnetic	radiation	cmed/c	=	1/n	where	n	is	the	refractive
index	of	the	material.	This	is	useful	for	measuring	β	for	a	particle	as



5.1.2

which,	 since	 it	 depends	 on	 velocity,	 whereas	 most	 methods	 are	 momentum-
dependent,	 can	 aid	 in	 determining	 the	 mass,	 and	 thereby	 the	 identity,	 of	 a
particle.	 Since	 the	 refractive	 index	 is	 wavelength-dependent,	 the	 number	 of
Čerenkov	photons	also	varies	with	wavelength,	and	is	found	to	peak	in	the	blue-
UV	range,	making	Čerenkov	radiation	visible	as	a	pale	blue	glow.

FIGURE	5.5	The	geometry	of	wave-formation	leading	to	Čerenkov	radiation.

Čerenkov	 radiation	 is	 produced	 when	 highly	 relativistic	 charged	 particles
travel	 through	a	dielectric	medium.	If	such	a	particle	 travels	across	a	boundary
between	two	media	of	different	dielectric	constants,	there	is	yet	another	type	of
radiative	loss	known	as	“transition	radiation.”	Unlike	Čerenkov	radiation,	this	is
emitted	over	a	 range	of	angles.	However,	 the	peak	 intensity	of	 the	 radiation	 is
again	 characteristic	 of	 a	 particular	 velocity	 or,	 equivalently,	 Lorentz	 factor.
Again,	this	is	useful	in	identifying	particles,	and	a	transition	radiation	detector	is
designed	to	make	use	of	this.

Early	Detectors

This	 section	 is	 intended	 to	give	 the	 reader	an	 idea	of	 the	history	of	particle
detection,	and	will	look	at	some	of	the	methods	that	were	used	in	the	early	days
of	 particle	 physics	 experiments.	 However,	 it	 is	 important	 to	 realize	 that	 these



methods	have	not	all	been	superseded.	While	the	detectors	used	in	the	highest-
energy	 experiments	 have	 generally	 moved	 on	 to	 other	 methods,	 some	 of	 the
methods	 in	 this	 section	 are	 still	 used	 in	 other	 contexts,	 such	 as	 in	 specific
lowenergy	 experiments	 and	 day-to-day	 applications.	 All	 of	 the	 detectors
mentioned	here	are	used	 to	determine	 the	 trajectories	of	 charged	particles,	 and
work	on	 the	general	principle	of	making	 those	particles’	 tracks	visible	 in	some
way.	 Particle	 trajectory	 by	 itself	 can	 reveal	 such	 information	 as	 the	 decay
products	 of	 unstable	 particles	 and	 particle	 lifetime.	 Additionally,	 when	 these
detectors	 are	 placed	 in	 magnetic	 fields,	 the	 curvature	 of	 particle	 trajectories
provides	additional	information	regarding	momentum,	charge,	and	energy.	When
a	detector	 is	used	 specifically	 to	measure	particle	momentum	 in	 this	way,	 it	 is
referred	to	as	a	spectrometer.

Emulsions

One	of	the	simplest	types	of	detection	apparatus	is	the	nuclear	emulsion.	This
is	 a	 particularly	 high-quality	 photographic	 emulsion	 that	 is	 applied	 in	 a	 thick
layer	 to	a	photographic	plate.	The	detection	of	charged	particles	 then	works	 in
exactly	 the	 same	 way	 as	 lightdetection	 in	 pre-digital	 photography.	 A	 charged
particle	causes	a	chemical	reaction	in	the	silver-halide	crystals	suspended	in	the
emulsion.	These	tracks	thus	capture	a	permanent	record	of	any	charged	particle
passing	 through,	 and	 can	be	made	visible	 at	 a	 later	 date	 through	photographic
development	 of	 the	 plate.	 The	 visible	 tracks	 are	 then	 observed	 with	 a
microscope.	 The	 advantages	 of	 this	 method	 are	 that	 the	 spatial	 resolution	 is
extremely	high,	and	the	emulsion	can	be	installed	and	left	in	situ	for	the	duration
of	an	experimental	run,	since	the	recorded	tracks	are	permanent.	However,	there
are	 also	 significant	 disadvantages:	 first,	 the	 tracks	 have	 essentially	 no	 time
resolution,	as	there	is	no	record	of	when	the	particle	associated	with	a	particular
track	 passed	 through.	 Second,	 since	 the	 plates	 require	 development	 and	 later
study,	there	is	no	real-time	output.

Cloud	Chambers

While	the	emulsion	is	arguably	the	simplest	type	of	detector,	it	is	not,	in	fact,
the	oldest.	As	far	back	as	the	1920s,	physicists	were	using	the	cloud	chamber	to
illuminate	the	tracks	of	charged	particles.	The	principle	behind	this	apparatus	is



that	 a	 vapor	 cannot	 spontaneously	 condense,	 even	 below	 its	 boiling	 point,
without	a	condensation	nucleus.	This	could	be	in	the	form	of	a	dust	particle,	or
an	 existing	 droplet	 of	 the	 condensed	 vapor,	 but	 can	 also	 be	 in	 the	 form	 of	 an
ionized	 atom.	 A	 cloud	 chamber,	 then,	 consists	 of	 a	 saturated	 vapor	 cooled	 to
below	 its	 condensation	 point,	 in	 a	 chamber	 that	 is	 sealed	 in	 order	 to	 avoid
condensation	 around	 other	 types	 of	 nuclei	 such	 as	 dust	 motes.	 The	 cooling
required	 for	 condensation	 is	 typically	 achieved	 by	 adiabatic	 expansion	 of	 the
vapor	 inside	 via	 the	 rapid	 movement	 of	 a	 diaphragm	 or	 piston.	 Any	 charged
particle	moving	through	the	vapor	ionizes	the	atoms	along	its	track,	which	then
cause	 condensation	 of	 the	 vapor	 around	 them.	 The	 tracks	 are	 thus	 visible	 as
small	clouds	of	condensation,	much	like	the	contrails	 left	by	a	passing	aircraft.
These	 tracks	are	 then	 illuminated	and	captured	on	film,	 typically	with	cameras
mounted	at	various	angles	 to	allow	a	three-dimensional	picture	of	 the	tracks	to
be	reconstructed.

A	significant	limitation	of	the	cloud	chamber	is	that	one	of	the	best	types	of
condensation	 nucleus	 is	 existing	 droplets	 of	 the	medium.	 This	means	 that	 the
cloud	will	 rapidly	 increase	 in	 size	 until	 the	 tracks	 are	 difficult	 to	 observe.	 To
combat	this,	the	chamber	is	quickly	reset	to	its	supersaturated	vapor	state,	ready
for	 another	 expansion.	 The	 problem,	 then,	 is	 that	 there	 is	 a	 significant	 “dead
time”	 during	 which	 the	 chamber	 is	 unable	 to	 show	 any	 tracks.	 A	 second
disadvantage	is	that,	as	the	energy	scale	of	experiments	was	pushed	higher,	the
low	 density	 of	 the	 gaseous	 medium	 required	 large	 chambers	 to	 achieve	 any
significant	 reduction	 in	 particle	 energy.	 In	 smaller	 chambers,	 high-energy
particles	would	simply	exit	the	chamber	before	decaying	to	their	final	products,
and	 so	 not	 allow	 for	 particle	 identification.	 Eventually,	 experimental	 energies
surpassed	the	levels	for	practical	and	cost-efficient	cloud	chambers.

Bubble	Chambers

In	 the	 1950s,	 the	 bubble	 chamber	 began	 to	 supersede	 the	 cloud	 chamber.
While	the	principle	behind	the	bubble	chamber	is	very	similar	to	its	predecessor,
it	solves	one	of	the	problems	of	the	cloud	chamber.	Specifically,	since	the	bubble
chamber	 uses	 liquid	 as	 its	 medium	 rather	 than	 vapor,	 it	 has	 a	 much	 greater
density,	 allowing	 the	 device	 to	 be	 physically	 smaller	 yet	 achieve	 the	 same
stopping	power.	The	tracks	of	charged	particles	in	this	case	are	revealed	as	trails
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of	 bubbles	 in	 a	 superheated	 liquid,	 forming	 at	 the	 nucleation	 sites,	 again
provided	by	ionization	of	the	medium.	The	superheated	phase	was	achieved	by	a
sudden	 decrease	 in	 pressure	 of	 the	 chamber	 by	means	 of	 a	 piston.	While	 the
bubble	chamber	was	an	 improvement,	 its	design	 still	 suffers	 from	some	of	 the
disadvantages	 of	 the	 cloud	 chamber:	 specifically,	 the	 dead	 time	 between
superheated	phases.

Spark	Chambers

Used	 around	 the	 same	 time	 as	 the	 cloud	 and	 bubble	 chambers,	 there	 was
another	type	of	detector	that	also	made	visible	the	tracks	of	charged	particles,	but
through	a	very	different	method.	This	was	the	spark	chamber,	and	its	operation
relies	on	a	high	voltage	being	applied	between	parallel	plates,	greater	 than	 the
electrical	 breakdown	 voltage.	 The	 ions	 produced	 by	 the	 passage	 of	 a	 charged
particle	provide	the	ideal	means	for	a	visible	spark	to	jump	between	the	plates.
This	voltage	could	not	be	applied	continuously,	since	even	in	the	absence	of	an
ionized	 path,	 the	 plates	would	 discharge	 given	 the	 voltage	 between	 them.	The
spark	chamber	typically	has	a	lower	spatial	resolution	than	the	cloud	or	bubble
chambers	but	has	some	advantages	over	these	methods,	depending	on	the	aim	of
the	 experiment.	 In	 particular,	 if	 used	 in	 conjunction	 with	 a	 secondary	 trigger
detector,	 capable	 of	 determining	 the	 possibility	 of	 an	 interesting	 event,	 the
voltage	 could	 be	 applied	 in	 a	 very	 short	 time,	 ensuring	 the	 event	 would	 be
captured.	 In	 contrast,	 the	 cloud	and	bubble	 chambers	 can	only	detect	 an	 event
when	they	happen	to	be	in	the	operational	phase.	In	addition,	spark	chambers	are
typically	more	costeffective.	The	spark	chamber	is	now	largely	obsolete,	but	 is
mentioned	here	mainly	as	it	is	more	closely	related	than	the	previous	examples
to	more	modern	detector	designs.

Modern	Detectors

Modern	 detectors	 that	monitor	 particle	 trajectories	 generally	 do	 not	 rely	 on
making	the	ionized	paths	visible	as	the	older	detectors	did.	Instead,	the	electrons
and	ions	liberated	by	passing	charged	particles	are	moved	by	electric	fields	to	a
circuit,	 where	 they	 can	 be	 detected	 directly	 as	 a	 signal	 or	 pulse.	 A	 great
advantage	 of	 these	 devices	 over	 the	 older	methods	 is	 that,	 since	 the	 signal	 is
electronic,	 it	 may	 be	 input	 directly	 and	 automatically	 into	 computer	 storage



without	the	need	for	additional	recording	equipment.	An	array	of	data	lines	then
builds	up	a	three-dimensional	image	of	the	particle	trajectories	in	real	time.

Despite	the	ubiquity	of	this	approach,	there	is	still	a	great	deal	of	variation	in
the	methods	for	detecting	such	signals.	The	behavior	of	 ions	 in	 these	detectors
varies	considerably	with	the	applied	voltage.	If	the	voltage	is	too	low,	then	ions
and	their	liberated	electrons	will	simply	recombine	without	generating	a	signal	at
all.	 As	 the	 voltage	 is	 increased,	 we	 enter	 the	 ionization	 region,	 in	 which	 free
electrons	 will	 drift	 toward	 the	 anode	 and	 cause	 a	 small	 signal.	 At	 very	 high
voltages,	the	free	electrons	gain	sufficient	energy	from	the	applied	electric	field
that	they	cause	secondary	ionizations,	which	in	turn	cause	further	ionization,	and
so	 on.	 In	 this	way,	 a	 cascade	 of	 electrons	 is	 produced,	 known	 as	 a	 Townsend
avalanche,	which	causes	a	large	signal	at	the	anode.	This	is	the	principle	behind
a	 Geiger	 counter,	 in	 which	 each	 particle	 that	 enters	 will	 cause	 a	 large	 signal
followed	by	a	period	of	dead	time	while	the	medium	undergoes	recombination.

In	between	the	ionization	and	Geiger	regions,	there	is	a	range	of	voltages	at
which	ionization	produces	a	number	of	secondary	ionizations	proportional	to	the
energy	 of	 the	 initial	 particle.	 This	 is	 the	 proportional	 region,	 in	 which	 many
modern	 detectors	 operate.	 The	 multi-wire	 proportional	 chamber	 is	 one	 such
detector,	consisting	of	a	plane	of	wire	anodes	sandwiched	between	two	cathode
planes,	as	in	Figure	5.6.	As	a	charged	particle	passes	 through	 the	chamber,	 the
ionization	of	the	medium	(often	a	noble	gas)	causes	electrons	to	drift	toward	the
nearest	 anode	 and	 ions	 to	 drift	 toward	 the	 cathode.	 Since	 the	 arrangement	 of
electrodes	leads	to	a	field	strength	that	is	greatest	close	to	the	anodes,	a	drifting
electron	 enters	 the	 proportional	 region	 as	 it	 approaches.	 This	 encourages
secondary	production	allowing	for	a	substantial	signal	in	the	form	of	a	pulse	of
current.	 Surprisingly,	 however,	 the	 other	 anodes	 in	 the	 chamber	 also	 receive	 a
pulse	known	as	an	induced	pulse.	As	the	avalanche	appears	in	the	vicinity	of	one
anode,	 which	 then	 removes	 the	 electrons,	 a	 large	 number	 of	 positive	 ions	 is
produced	 around	 this	 anode.	 These	 alter	 the	 arrangement	 of	 field	 lines,	 since
they	 also	 contribute	 to	 the	 field.	 Initially,	 the	 field	 lines	 from	 these	 ions	 all
connect	 to	 the	avalanche	anode	but,	as	 the	 ions	drift	away	 from	 this	point,	 the
field	 lines	 distribute	 themselves	 across	 the	 remaining	 anodes.	 So	 a	 pulse	 is
detected	in	the	remaining	anodes	that	is	opposite	in	sign	to	that	in	the	avalanche
anode.	 In	 this	 way,	 we	 may	 determine	 which	 wire	 the	 particle	 passed	 most
closely	 to.	By	 separating	 one	 of	 the	 cathode	 planes	 into	 a	 series	 of	 strips,	 the



particle’s	position	along	the	avalanche	anode	can	also	be	resolved.

FIGURE	5.6	The	signal	generated	by	a	MWPC	as	a	particle	passes	through	(dotted	line).	The	planes	at	the
top	and	bottom	of	the	image	are	held	at	a	negative	potential	while	the	wires	running	through	the	center	are
positive.	The	point	at	which	the	avalanche	develops	is	marked	by	a	cross.

Drift	Chambers

The	 spatial	 resolution	 of	 wire	 chambers	 can	 be	 improved	 by	 taking	 into
account	 the	 time	 required	 for	 the	 avalanche	 to	 reach	 the	 wire.	 Detectors	 that
make	use	of	this	fact	are	known	as	drift	chambers.	For	this	to	work,	it	must	be
possible	to	predict	the	time	taken	for	an	avalanche	to	develop	from	an	ion	at	any
point	in	the	chamber.	This	is	achieved,	in	the	case	of	multi-wire	chambers,	with
the	aid	of	additional	field-shaping	wires	of	tuned	potentials,	such	that	the	field	in
the	 chamber	 is	 very	 uniform.	 The	 simplest	 type	 of	 drift	 chamber,	 though,
consists	of	 a	 single	anode	wire	 running	axially	 through	 the	 length	of	 a	hollow
cylindrical	cathode.	Such	an	arrangement	 is	known	as	a	 straw	chamber,	and	 is
commonly	 used	 since	 it	 is	 an	 inexpensive	 design.	 A	 straw	 chamber	 by	 itself
gives	only	limited	information,	but	by	measuring	the	timing	of	a	pulse	relative	to
other	 nearby	 straw	 chambers,	 the	 trajectory	 of	 the	 particle	 can	 be	 found	 very
accurately.	To	see	how	 this	works,	consider	a	charged	particle	passing	 through
two	 straw	 chambers	 as	 in	 Figure	5.7.	 The	 relative	 time	 between	 pulses	 in	 the
chambers	 is	enough	 to	determine	 the	 radial	distance	of	 the	particle’s	 trajectory
from	 each	 straw.	 This	 identifies	 a	 circle	 around	 each	 anode	 to	 which	 the
trajectory	 must	 be	 tangential.	 For	 two	 such	 circles,	 there	 are	 four	 possible
trajectories	 as	 shown	 in	 the	 figure.	 To	 distinguish	 between	 these	 four
possibilities	 requires	 a	 third	 chamber,	 and	 further	 chambers	 reduce	 the
uncertainty	 in	 the	measurement.	A	 straw	tracker,	 then,	 is	 a	 large	 collection	 of
straw	chambers	used	in	parallel	to	track	a	charged	particle.	Notice	that	the	tracks



labeled	 C	 and	 D	 would	 remain	 indistinguishable	 if	 the	 third	 chamber	 were
arranged	 in	 line	with	 the	 first	 two.	For	 this	 reason,	neighboring	chambers	 in	a
straw	 tracker	are	 typically	hexagonally	close	packed,	as	 in	Figure	5.8.	Paths	C
and	D	are	then	easily	distinguished	by	which	chamber	they	pass	through	next.

FIGURE	5.7	 The	 possible	 paths	 of	 a	 charged	 particle	 leading	 to	 equivalent	 signals	 in	 a	 pair	 of	 straw
chambers.

Solid-State	Detectors

The	 same	 concepts	 as	 employed	 in	 the	Multi-Wire	 Proportional	 Chamber
(MWPC)	are	used	in	the	solid	state	as	well	as	the	gaseous	state.	Here,	 it	 is	not
electrons	 and	 ions	 that	 cause	 the	 signal	 but	 electrons	 and	 holes	 in	 a
semiconductor,	 most	 commonly	 silicon.	 However,	 given	 the	 sensitivity	 of
semiconductor	 devices,	 they	 typically	 operate	 in	 the	 ionization	 region,	 rather
than	the	proportional	region.	Such	devices	allow	for	greater	spatial	resolution	but
at	significantly	greater	cost.	For	 this	 reason,	modern	experiments	 tend	 to	use	a
combination	of	 these	methods,	with	the	semiconductor	devices	only	used	close
to	the	beam	where	spatial	resolution	is	crucial,	and	more	costeffective	gaseous-
state	detectors	used	outside.



FIGURE	 5.8	 Hexagonally	 close	 packed	 straw	 chambers	 in	 a	 typical	 straw	 tracker.	 A	 charged	 particle
trajectory	is	shown,	along	with	the	region	to	which	each	individual	chamber	can	attribute	that	trajectory.

Čerenkov	Detectors

As	 the	 name	 suggests,	 Čerenkov	 detectors	 rely	 on	 detecting	 the	 Čerenkov
radiation	given	off	by	energetic	charged	particles.	The	name	 is	 something	of	a
catch-all	 term,	 however,	 for	 a	 number	 of	 different	 detector	 types	 that	 vary	 in
purpose	and	design.

A	 threshold	 detector	 makes	 use	 of	 Equation	 5.11	 to	 aid	 in	 particle
identification.	 For	 a	 particle	 of	 known	momentum	 (measured	 in	 some	 type	 of
spectrometer),	we	may	not	necessarily	know	the	mass	or	velocity	of	the	particle,
just	the	product	of	the	two.	If	a	particle	has	a	sufficiently	high	velocity	β,	it	will
radiate	Čerenkov	radiation.	However,	notice	that	Equation	5.11	has	no	solution	if
β	is	too	small.	A	lightweight	particle	may	thus	emit	Čerenkov	radiation	where	a
heavier	 particle	 of	 equal	 momentum	 may	 not,	 and	 a	 threshold	 detector
distinguishes	 between	 particle	 species	 in	 this	 way.	 More	 elaborate	 threshold
detectors	may	consist	of	two	or	more	materials	of	different	refractive	indices	to
allow	for	further	distinctions	to	be	made.

A	 ring-imaging	 Čerenkov	 (or	 RICH)	 detector	 allows	 the	 emitted	 cone	 of
Čerenkov	photons	to	propagate	freely	for	some	distance	before	striking	a	plane
of	photon	detectors	perpendicular	to	the	cone’s	symmetry	axis.	In	this	way,	the
photons	 imaged	 by	 the	 detectors	 form	 a	 ring	 whose	 radius	 can	 be	 used	 to



calculate	 β,	 again	 using	 Equation	 5.11.	 In	 this	 way,	 the	 velocity	 of	 the	 initial
charged	 particle	may	 be	 calculated	 in	 addition	 to	 its	momentum,	 allowing	 for
calculation	of	the	mass	and	again	aiding	in	particle	identification.	In	addition,	the
measured	 energy	 of	 detected	 photons	 in	 a	 RICH	 detector	 can	 be	 used	 to
extrapolate	 backward	 and	 calculate	 the	 energy	 of	 the	 initial	 particle.	 A
contemporary	example	of	this	type	of	detector	is	its	use	in	the	LHCb	experiment,
which	aims	to	study	 	violation	in	the	B	mesons.

Calorimeters

All	 of	 the	 methods	 considered	 so	 far	 have	 been	 non-destructive.	 Although
some	energy	is	lost	by	the	particle	in	ionizing	the	medium	or	emitting	radiation,
this	amount	is	very	small	in	comparison	to	the	particle’s	total	energy.	In	order	to
measure	 particle	 energy	 directly,	 however,	 the	methods	 tend	 to	 be	 destructive,
relying	on	the	total	or	near-total	absorption	of	that	energy.	This	is	achieved	with
a	 calorimeter,	 of	 which	 there	 are	 two	 major	 categories:	 electromagnetic	 and
hadronic.

An	electromagnetic	calorimeter	is	designed	to	absorb	the	energy	of	a	particle
that	 interacts	 primarily	 through	 the	 electromagnetic	 force,	 whereas	 a	 hadronic
calorimeter	 is	 designed	 for	 particles	 that	 lose	 the	majority	 of	 their	 energy	 via
strong	nuclear	 interactions.	We	will	 consider	 the	electromagnetic	 type	 first.	As
we	saw	in	Section	5.1.1,	a	high-energy	charged	particle	will	produce	a	shower	of
other	particles	with	lower	energies,	via	radiative	losses.	Below	a	critical	energy,
these	processes	become	negligible	so	a	particle	with	a	particular	energy	will	lead
to	 a	 characteristic	 number	 of	 secondary	 electrons	 and	 photons	 being	 emitted,
which	 then	 lose	 their	 energy	 through	 ionization	 losses.	 Calculating	 the	 initial
particle’s	 energy,	 then,	 is	 achieved	 essentially	 by	 counting	 the	 number	 of
particles	 in	 the	 final	 shower.	 This	 can	 be	 achieved	 in	 a	 number	 of	 ways
depending	on	the	design	of	the	calorimeter.	Although	it	is	possible	to	construct	a
homogeneous	 calorimeter	 from	 a	 single	 material,	 this	 tends	 to	 be	 expensive.
More	 commonly,	 calorimeters	 sample	 the	 energy	 produced	 in	 showers	 by
layering	two	different	materials.	The	first	is	a	high-density	material	intended	to
encourage	 shower	 production	 and	 the	 second	 is	 the	 sampling	 material.	 The
nature	 of	 the	 sampling	 material	 depends	 on	 the	 design	 of	 the	 detector;	 one
possibility	 is	 to	 have	 a	 secondary	 set	 of	 ionization	 chambers	 to	 measure	 the



passage	 of	 charged	 particles	 in	 the	 shower.	 Since	 the	 positions	 of	 these
secondary	particles	 is	unimportant,	 these	 ionization	chambers	can	be	of	a	very
simple	 design.	 Another	 possibility	 is	 to	 use	 a	 scintillating	 material:	 that	 is,	 a
material	which	radiates	photons	in	the	visible	range	when	excited	by	interactions
with	 ionizing	 radiation.	 The	 photons	 emitted	 by	 the	 scintillator	 may	 then	 be
detected	 via	 devices	 such	 as	 photomultiplier	 tubes	 or,	 more	 recently,	 single-
photon	detectors	such	as	silicon	photomultipliers.	By	amplifying	the	signal	using
these	 methods,	 both	 the	 intensity	 and	 the	 energy	 of	 the	 scintillation	 radiation
may	be	accurately	measured.	In	yet	other	calorimeter	designs,	the	sampling	may
be	achieved	with	Čerenkov	detectors.	Although	 these	sampling	 techniques	will
inevitably	 not	 capture	 all	 of	 the	 energy	 dissipated	 by	 the	 initial	 particle,	 the
energy	 is	 distributed	 in	 a	 predictable	 manner	 allowing	 for	 accurate
reconstruction	of	the	total	energy.

A	hadronic	calorimeter	works	 in	much	 the	 same	way	as	an	electromagnetic
calorimeter.	 The	 primary	 difference	 is	 in	 the	 nature	 of	 the	 interactions,	 rather
than	 the	 design.	 While	 hadrons	 will	 interact	 with	 their	 surroundings
electromagnetically	 if	 charged,	 hadrons	 being	 of	 a	 much	 greater	 energy	 than
leptons	 or	 photons,	 such	 interactions	 do	 little	 to	 dissipate	 their	 energy.	 The
majority	 of	 a	 hadron’s	 energy	 is	 dissipated	 instead	 through	 collisions	with	 the
nuclei	 of	 the	 calorimeter	 medium,	 leading	 to	 the	 production	 of	 secondary
hadrons.	 A	 hadronic	 shower,	 then,	 is	 formed	 in	 a	 similar	 fashion	 to	 the
electromagnetic	 shower	 produced	 by	 light	 charged	 particles.	 However,	 since
nuclear	collisions	are	 far	 less	 likely	 to	occur	 than	electromagnetic	 interactions,
the	mean	free	path	for	a	hadron	is	much	greater	than	for	a	light	charged	particle,
leading	 to	 showers	 developing	 over	 greater	 distances.	 As	 such,	 hadronic
calorimeters	must	be	physically	larger	than	their	electromagnetic	counterparts	to
ensure	 the	 full	 dissipation	of	 energy.	Additionally,	 a	variable	proportion	of	 the
energy	of	nuclear	collisions	tends	to	be	carried	away	in	the	form	of	neutrinos	and
neutral	pions,	both	of	which	can	escape	detection.	For	this	reason,	there	tends	to
be	considerable	statistical	fluctuation	in	the	measurement	of	hadron	energies.

Layered	Designs

All	of	the	types	of	particle	detection	that	we	have	looked	at	in	the	preceding
sections	 are	 generally	 capable	 of	 determining	 just	 one	 of	 the	 properties	 of	 a
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passing	 particle.	 In	 order	 to	 build	 up	 a	 clear	 picture	 of	 an	 interaction,	 it	 is
necessary	 to	 layer	 different	 detector	 types	 on	 top	 of	 one	 another.	 The	ATLAS
and	CMS	detectors	at	CERN’s	Large	Hadron	Collider	are	both	prime	examples
of	this	principle.	Both	detectors	have	silicon	detectors	as	their	innermost	layers,
close	 to	 the	 beam	 for	 precise	 measurement	 of	 the	 positions	 of	 interactions.
Beyond	 this	 are	 additional	 layers	 of	 trackers	 for	measuring	 the	momentum	 of
particles.	 Intense	 magnetic	 fields	 are	 used	 to	 bend	 the	 paths	 of	 particles
throughout	 the	 detectors	 to	 aid	 in	 identification.	 Further	 out	 still,	 there	 are
electromagnetic	and	hadronic	calorimeters	to	measure	the	energy	of	the	particles
through	 absorption.	 Finally,	 beyond	 the	 calorimeters	 there	 are	 further	 sets	 of
trackers	for	the	precise	measurement	of	the	momentum	of	muons.	Muons	are	by
far	 the	 most	 penetrative	 of	 charged	 particles	 and	 will	 escape	 even	 the	 dense
material	 of	 the	 calorimeters.	 Therefore,	 for	 an	 accurate	 measurement	 of	 the
energy	 and	 momentum	 carried	 away	 from	 an	 interaction	 by	 muons,	 it	 is
necessary	 to	 track	 the	 muons’	 trajectories	 for	 as	 far	 as	 is	 feasible.	 The	 high
penetration	of	muons	arises	from	a	combination	of	the	particle’s	properties.	First,
the	muon	is	a	lepton	and	so	does	not	interact	through	the	nuclear	processes	that
serve	 to	 slow	 hadrons	 in	 a	 calorimeter.	 Second,	 the	 mass	 of	 the	 muon	 is
sufficiently	 high	 that	 the	 stopping	 power	 due	 to	 radiative	 losses	 is	 weak;
however,	 the	mass	is	not	so	high	as	to	cause	the	muon	to	decay	before	leaving
the	detector.	This	is	in	contrast	to	the	muon’s	heavier	cousin,	the	τ,	whose	decay
width	 is	 such	 that	 it	 typically	 decays	 close	 to	 its	 point	 of	 creation,	 at	 least	 at
current	collision	energies.

ACCELERATORS

In	the	early	days	of	particle	physics,	discoveries	relied	on	highenergy	cosmic
rays.	For	example,	 this	 is	how	the	muon	was	discovered.	However,	 for	higher-
energy	experiments,	particles	must	be	accelerated	artificially.	There	are	two	main
types	 of	 accelerator	 experiment:	 fixed-target	 beams	 and	 colliders.	 In	 a	 fixed-
target	experiment,	a	single	particle	beam	is	accelerated	to	high	energy	and	then
directed	 at	 a	 target	 constructed	 from	 high-density	 material.	 The	 collisions	 of
accelerated	particles	with	the	nuclei	of	the	target	result	in	a	high	concentration	of
energy	in	a	localized	region,	leading	to	the	production	of	new	particles	that	may
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be	 studied	 using	 the	 methods	 of	 the	 preceding	 sections.	 While	 fixed-target
experiments	 typically	 produce	 a	 large	 number	 of	 events	 due	 to	 the	 high
likelihood	of	collisions,	there	is	a	significant	downside	to	the	design.	This	is	that
conservation	of	momentum	requires	the	products	of	any	collision	to	be	moving
in	the	direction	of	the	beam.	This	essentially	guarantees	that	some	of	the	energy
of	the	beam	will	be	lost	as	kinetic	energy	of	 the	products.	The	alternative	is	 to
aim	two	beams	at	each	other	in	a	collider	experiment.	In	this	way,	there	is	no	net
momentum	in	the	system	and	all	of	the	beam	energy	is	potentially	available	for
particle	 production.	 The	 technical	 difficulty	 of	 this	 approach,	 however,	 is
considerably	increased,	since	each	particle	beam	is	typically	a	few	nanometers	in
diameter,	and	two	of	these	must	collide	head-on.	An	often-quoted	analogy	is	the
point-to-point	collision	of	a	pair	of	knitting	needles	launched	from	either	side	of
the	Atlantic	Ocean.	Needless	to	say,	the	focusing	system	must	be	extraordinarily
precise.

Acceleration	 is	achieved	 through	 the	manipulation	of	charged	particles	with
electric	and	magnetic	fields.	Since	the	force	due	to	a	magnetic	field	is	given	by	F
=	 qv	 ×	 B,	 this	 force	 is	 always	 perpendicular	 to	 the	 direction	 of	 motion.
Therefore,	a	magnetic	field	can	do	no	work,	and	it	is	only	electric	fields	that	can
increase	the	energy	of	a	charged	particle.	The	simplest	accelerator,	then,	consists
of	a	static	electric	field	produced	by	a	pair	of	plate-like	electrodes	with	a	hole	to
allow	the	passage	of	any	accelerated	particles.	Such	designs	are	indeed	used	for
verylow	energy	experiments,	but	there	is	a	strict	limit	on	the	energy	attainable	in
this	way.	If	we	accelerate	a	particle	with	a	single	constant	electric	field,	then	the
kinetic	 energy	 that	 can	 be	 achieved	 is	 directly	 proportional	 to	 the	 applied
potential	difference.	So	 this	method	 is	 impractical	 for	high-energy	experiments
since	 the	 required	 potential	 would	 be	 immense,	 and	 the	 system	 would	 suffer
electrical	breakdown.	There	are	numerous	accelerator	designs	that	overcome	this
problem.

Linear	Accelerators

To	 avoid	 the	 issues	 with	 static	 electric	 fields,	 accelerators	 instead	 use
alternating	fields.	The	simplest	example	of	such	a	device	is	a	linear	accelerator
or	linac.	Linac	is	a	generic	term	for	any	accelerator	in	which	each	particle	passes
only	once	through	the	machine,	and	so	has	only	one	chance	to	be	accelerated.	As
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an	 example	 of	 the	 operation	 of	 a	 linac,	 consider	 an	 accelerator	 in	 which	 the
electric	field	is	produced	by	a	set	of	hollow	tube-shaped	electrodes	of	alternating
potentials.	An	electric	 field	between	 these	plates	accelerates	 the	particle.	 If	 the
fields	were	 static,	 however,	 the	 particle	would	 accelerate	 between	 one	 pair	 of
plates	and	 then	decelerate	between	 the	 subsequent	pair.	So	 the	voltages	on	 the
plates	 constantly	 switch	 back	 and	 forth	 so	 that,	 as	 the	 particle	moves	 into	 the
next	section,	the	field	is	still	 in	the	correct	orientation	to	accelerate	the	particle
further.	 Since	 the	 speed	 of	 the	 particle	 increases	 throughout	 the	 length	 of	 the
linac,	but	the	frequency	of	the	alternating	voltage	remains	constant,	the	distance
between	 electrodes,	 as	 well	 as	 the	 length	 of	 the	 electrodes	 themselves,	 must
increase	along	the	tube.

Accelerators	do	not	accelerate	particles	in	isolation	but	as	beams.	Of	course,
most	 particles	 in	 the	 beam	will	 not	 be	 perfectly	 in	 phase	 with	 the	 oscillating
field,	 and	 will	 not	 be	 given	 the	 maximum	 amount	 of	 energy	 in	 each	 section;
others	 will	 be	 more	 than	 90◦	 out	 of	 phase	 and	 actually	 decelerate	 in	 some
sections.	 This	may	 seem	 to	 be	 a	 problem,	 but	 it	 is	 actually	 rather	 useful	 as	 it
causes	the	particles	to	bunch	together.	A	particle	exactly	at	the	mean	position	of
a	 bunch	 will	 receive	 a	 fraction	 of	 the	 maximum	 possible	 energy-gain.	 Any
particle	lagging	behind	this	mean	position	will	be	accelerated	more	and	catch	up
with	 the	 main	 bunch,	 while	 any	 particle	 ahead	 of	 the	 bunch	 will	 not	 be
accelerated	as	much	and	 so	 the	bunch	will	 catch	 it	up.	This	bunching	helps	 to
maximize	 the	 possibility	 of	 a	 collision	 when	 the	 beam	 of	 particles	 meets	 its
target.	 Indeed,	 the	 second	 key	 quantity	 of	 interest	 (after	 energy)	 for	 any
accelerator	 is	 its	 luminosity:	essentially	a	measure	of	 the	average	rate	at	which
events	occur.

FIGURE	5.9	Schematic	representation	of	a	linear	accelerator	using	alternating	voltages.

Cyclotrons

A	cyclotron	is	also	based	on	the	principle	of	alternating	electric	fields	but	is
built	 in	 a	 very	 different	 way	 from	 a	 linac.	 Rather	 than	 a	 large	 number	 of



electrodes	that	each	particle	traverses	only	once,	a	cyclotron	consists	of	just	two
electrodes,	which	each	particle	visits	multiple	times	in	a	spiral	trajectory.	This	is
achieved	 through	 two	 flat	 hollow	 semi-cylindrical	 electrodes,	 named	 “Ds”	 in
reference	to	their	shape.	The	electrodes	are	separated	by	a	gap	on	their	straight
sides	as	shown	in	Figure	5.10.	It	is	when	crossing	this	gap	that	the	particle	will
receive	 a	 boost	 in	 energy.	 In	 order	 that	 each	 particle	 may	 traverse	 the
accelerating	gap	more	 than	once,	a	 static	magnetic	 field	 is	 applied	 in	 the	axial
direction.	Due	to	the	Lorentz	force,	the	charged	particle	then	travels	in	a	circular
path	between	accelerations,	gradually	spiraling	outward	as	its	energy	increases.
Once	 the	 particle	 reaches	 the	 outer	 edge	 of	 the	D,	 it	 is	 fired	 at	 its	 target.	 The
beauty	of	this	design	is	hidden	in	the	mathematics	describing	its	behavior.	In	the
non-relativistic	regime,	the	Lorentz	force	acting	on	the	particle	is	given	by

FIGURE	 5.10	 Schematic	 representation	 of	 a	 cyclotron	 demonstrating	 a	 typical	 accelerated	 particle’s
trajectory	through	the	device.

where	v	 is	 the	 particle’s	 velocity	 and	B	 is	 the	 applied	magnetic	 field.	 So	 the
particle	experiences	a	centripetal	acceleration	of	magnitude

Recall	that	centripetal	acceleration	is	also	given	by



and	equating	these	gives

We	now	calculate	the	time	period	of	the	particle’s	orbit	as	T	=	2πr

which	is	independent	of	the	particle’s	speed!	Despite	the	particle	gaining	energy
and	 traveling	 at	 ever-increasing	 speeds	 around	 the	 cyclotron,	 this	 increase	 is
matched	perfectly	by	the	increasing	distance	the	particle	must	travel	as	it	works
its	 way	 out	 on	 its	 spiral	 trajectory.	 This	 makes	 the	 operation	 of	 a	 cyclotron
wonderfully	 simple,	 since	 the	 time	 between	 successive	 accelerations	 remains
constant	 throughout	 the	 time	 the	 particle	 is	 in	 the	 machine.	 As	 such,	 the
frequency	of	the	alternating	voltage	applied	to	the	Ds	can	also	remain	constant	at

From	 the	 1930s	 to	 the	 1950s,	 the	 cyclotron	was	 the	 design	 utilized	 for	 the
highest-energy	experiments	of	 the	day.	However,	 the	design	has	 its	 limitations,
and	 is	 not	 suitable	 for	 acceleration	 to	 extreme	 high	 energies.	 There	 are	 two
problems:	 first,	 the	maximum	energy	 attainable	 depends	 on	 both	 the	magnetic
field	strength	and	the	radius	of	the	Ds	through

so	high-energy	experiments	require	either	very	high	magnetic	field	strengths	or
prohibitively	large	Ds.	The	second	issue	is	the	appearance	of	m	 in	the	previous
derivation	 for	 the	 time	period.	This	derivation	assumes	a	constant	m	 and	 so	 in
fact	 applies	 only	 in	 the	 nonrelativistic	 limit.	 At	 higher	 energies,	 relativistic
effects	become	important	and	the	constant-frequency	relationship	breaks	down.
This	 second	 problem	 can	 be	 solved	 with	 the	 use	 of	 a	 synchrocyclotron:
essentially	 the	 same	 design	 with	 a	 variable-frequency	 voltage,	 allowing	 the
voltage	frequency	to	be	adjusted	in	synchrony	with	the	natural	frequency	of	the
particle’s	 orbit.	An	 immediate	problem	with	 this	 solution	 is	 that	 the	 frequency



cannot	 be	 simultaneously	 tuned	 to	 suit	 particles	 at	 different	 stages	 of
acceleration.

Radio	Frequency	Acceleration

As	relativistic	effects	become	important,	one	consequence	is	that	high-energy
particles	all	travel	essentially	at	c.	Increasing	the	energy	of	such	a	particle	leads
to	 an	 increase	 in	 relativistic	 mass	 rather	 than	 in	 speed.	 This	 allows	 for	 an
efficient	 acceleration	 mechanism	 in	 which	 a	 particle	 in	 effect	 “surfs”	 an
electromagnetic	wave	along	the	beam	line,	gaining	energy	as	it	does	so.	At	first
sight,	 this	 may	 seem	 counterintuitive,	 since	 the	 electric	 field	 in	 an
electromagnetic	 wave	 is	 orthogonal	 to	 the	 wave’s	 propagation,	 and	 would
apparently	 serve	 to	 knock	 the	 particle	 off	 course.	 However,	 it	 is	 important	 to
realize	that	 this	 is	only	true	in	free	space.	While	electromagnetic	waves	in	free
space	 are	 transverse	 to	 the	 direction	 of	 propagation,	 the	 fields	 in	 a	 cylindrical
waveguide	are	constrained	by	the	boundary	conditions	to	lie	along	the	direction
of	 travel.	 This	 is	 because	 the	 guide	 is	 made	 of	 a	 conducting	 material,	 so	 the
electric	 field	 must	 meet	 it	 perpendicularly.	 Equivalently,	 the	 magnetic	 field
cannot	 pass	 through	 the	 material.	 This	 gives	 a	 wave	 mode	 similar	 to	 that	 in
Figure	5.11,	in	which	the	electric	field	lies	parallel	to	the	beam.

FIGURE	5.11	The	wave	mode	excited	in	a	cylindrical	waveguide.

FIGURE	5.12	 A	 radio-frequency	 accelerating	 cavity.	 The	 baffles	 reduce	 the	 lateral	 components	 of	 the
electric	field,	leaving	an	almost	purely	longitudinal	field	for	acceleration.

The	effectiveness	of	this	method	is	maximized	by	introducing	a	set	of	baffles
to	the	waveguide,	as	in	Figure	5.12,	such	that	the	length	of	each	section	is	equal
to	 the	 wavelength.	 Resonance	 then	 sets	 up	 standing	 waves	 in	 the	 guide	 with
minimal	fields	in	the	directions	perpendicular	to	the	beam	axis.
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Klystrons

For	 radio	 frequency	 acceleration	 to	 be	 of	 use,	 the	waves	must	 have	 a	 large
amplitude,	and	the	typical	means	of	producing	such	waves	is	with	a	klystron.	A
klystron	 is	 essentially	 a	 small	 electrostatic	 linear	 accelerator.	 Electrons	 are
emitted	 from	 a	 cathode	 and	 accelerated	 under	 high	 voltage	 toward	 an	 anode.
They	 then	 pass	 through	 a	 cavity	 resonator	 which	 is	 fed	 by	 a	 low-amplitude
signal	 at	 the	 desired	 output	 frequency.	 This	 causes	 the	 electrons	 to	 begin	 to
bunch:	electrons	out	of	phase	with	 the	 input	 field	accelerate	or	decelerate.	The
electrons	then	pass	through	a	drift	tube.	This	is	a	tube	of	precise	length	such	that
the	bunching	of	 the	electrons	 is	maximized	by	 the	 time	they	reach	 the	far	end.
They	then	pass	through	a	second	resonator,	building	up	a	strong	standing	wave
as	 successive	bunches	pass	 through.	Since	 the	bunches	 arrive	 at	 the	 frequency
determined	 by	 the	 input	 signal,	 the	 output	 is	 a	 wave	 of	 the	 same	 frequency.
However,	 since	 the	 kinetic	 energy	 of	 the	 electrons	 is	 determined	 by	 the	 high
voltage	 across	 the	 electrostatic	 accelerator,	 the	 signal	 is	 greatly	 amplified.	 In
order	 to	ensure	 that	 the	electron	beam	does	not	spread	out	along	the	klystron’s
length,	 the	 beam	must	 be	 focused.	 This	 can	 be	 achieved	 quite	 simply	 with	 a
longitudinal	 magnetic	 field.	 Any	 component	 of	 the	 electron’s	 velocity	 that	 is
perpendicular	 to	 the	 length	of	 the	klystron	 then	 results	 in	a	Lorentz	 force	such
that	the	electron	travels	in	a	helical	path	through	the	drift	tube.

FIGURE	5.13	A	klystron.	Electrons	are	accelerated	from	the	cathode	at	the	left,	through	the	anode	and	into
the	 drift	 tube.	 They	 are	 bunched	 by	 the	 low-amplitude	waves	 in	 the	 first	 resonating	 cavity	 and	 produce
high-amplitude	waves	in	the	second.

Synchrotrons

A	synchrotron	is	a	ring-shaped	vacuum,	in	which	acceleration	occurs	in	radio-
frequency	cavities	at	one	or	more	stations	around	the	ring.	The	particles	are	then



shepherded	around	the	ring	by	magnetic	fields	 to	be	accelerated	again.	We	can
think	of	it	essentially	as	a	modified	linac,	in	which	the	particles	leaving	one	end
are	brought	back	 to	 the	beginning.	The	name	synchrotron	comes	 from	 the	 fact
that	 the	magnetic	 field	must	again	be	 tuned	as	 the	particles	 increase	 in	energy.
The	 magnetic	 fields	 used	 to	 bend	 the	 beam	 around	 the	 ring	 are	 produced	 by
dipole	magnets.	 In	 practice,	 to	 keep	 the	 circumference	 of	 the	 ring	 as	 small	 as
possible,	 these	 magnets	 must	 be	 extremely	 powerful	 and	 so	 superconducting
electromagnets	are	typically	used.	For	example,	at	the	time	of	writing,	the	most
powerful	accelerator	is	CERN’s	Large	Hadron	Collider,	at	a	collision	energy	of
13	 TeV.	 The	 dipole	 magnets	 used	 in	 this	 collider	 produce	 a	 maximum	 field
strength	of	around	8	T,	on	the	order	of	106	times	the	Earth’s	geomagnetic	field.
Despite	this,	the	ring	is	still	over	8	km	in	diameter.

FIGURE	5.14	 Schematic	 representation	 of	 a	 dipole	 magnet	 used	 to	 bend	 charged-particle	 beams.	 The
dipoles	 typically	 employed	are	of	 a	much	more	 sophisticated	design	 to	 reduce	 lateral	 components	of	 the
magnetic	field.

Dipole	magnets	have	 the	fortunate	side	effect	of	correcting	small	deviations
of	particle	 trajectories	 from	the	mean	path.	 In	particular,	a	particle	moving	 too
far	 toward	 the	 inner	 edge	 of	 the	 ring	 will	 experience	 a	 weaker	 force	 than
particles	 on	 the	mean	 path,	 and	 so	 the	 diameter	 of	 such	 a	 particle’s	 orbit	will
begin	to	increase.	Similarly,	a	particle	drifting	toward	the	outer	edge	of	the	ring
will	experience	a	greater	force,	again	correcting	the	deviation.	The	net	effect	is
that	every	particle	in	the	ring	travels	in	a	circular	orbit	with	the	same	diameter	as



the	 ring,	but	different	particles’	orbits	are	not	concentric.	Without	acceleration,
relative	to	the	beam	average,	each	particle	experiences	a	periodic	variation	in	its
momentum	 as	 it	 traverses	 the	 ring,	 known	 as	 betatron	 oscillation.	 So	 dipole
magnets	 by	 themselves	 are	 capable	 of	 focusing	 the	 beam	 to	 some	 extent.
However,	we	require	something	more	precise	than	this	“weak	focusing,”	and	for
this	we	turn	to	quadrupole	magnets	and	“strong	focusing.”

FIGURE	5.15	Schematic	representation	of	a	quadrupole	magnet	used	to	focus	a	beam	of	charged	particles.

Magnetic	Focusing

Strong	focusing	works	on	the	principle	of	using	a	repeating	lattice	of	focusing
magnets.	If	a	beam	of	(positively	charged)	particles	passes	through	a	quadrupole
magnet	 as	 in	 Figure	 5.15,	 then	 it	 will	 be	 focused	 in	 the	 vertical	 plane	 by	 the
Lorentz	 force.	At	 the	same	 time,	 though,	 it	will	be	defocused	 in	 the	horizontal
plane.

The	horizontal	defocusing	can	be	corrected	by	a	quadrupole	 in	 the	opposite
orientation,	though	clearly	this	will	again	defocus	in	the	vertical	plane.	Indeed,	if
a	 vertically	 focusing	 quadrupole	 is	 followed	 immediately	 by	 a	 horizontally
focusing	quadrupole,	 there	is	no	net	effect.	However,	 if	 the	beam	is	allowed	to
drift	a	distance	between	the	two	quadrupoles,	 then	overall	 it	 is	focused	in	both
planes.	 This	 arrangement	 is	 known	 as	 a	 FODO	 lattice	 as	 (in	 one	 plane)	 it
consists	 of	 a	 focusing	magnet	 (F),	 then	nothing	 (0),	 then	 a	 defocusing	magnet
(D)	and	finally	another	stretch	of	nothing	(0).

To	see	why	 this	works,	consider	a	particle	 that	 is	perfectly	aligned	with	 the



beam	horizontally	but	which	has	a	 small	vertical	displacement	 from	 the	beam.
Suppose	that	its	velocity	is	also	perfectly	aligned	with	the	beam,	that	is,	it	has	a
longitudinal	 velocity.	 If	 the	 particle	 passes	 through	 a	 horizontally	 focusing
magnet,	 this	will	 have	no	effect	on	 its	horizontal	velocity	 since	 the	 field	 at	 its
location	 is	 itself	horizontal.	The	particle	will	be	defocused	vertically,	however,
which	 is	 to	 say	 that	 it	 will	 acquire	 a	 vertical	 component	 to	 its	 velocity,	 away
from	the	beam.	Since	the	field	strength	of	a	quadrupole	is	weakest	at	the	center,
the	vertical	component	of	the	particle’s	velocity	is	small.	However,	by	the	time
the	 particle	 reaches	 the	 next	 (vertically	 focusing)	 magnet,	 it	 has	 now	 drifted
further	from	the	beam.	As	such,	it	is	in	a	region	with	a	stronger	field	and	so	feels
a	greater	 restoring	force	 than	 the	defocusing	force	experienced	previously.	The
net	effect	is	that	the	particle	is	focused	in	the	vertical	plane.

A	quadrupole	lattice	cannot,	by	itself,	correct	for	all	variations	in	a	beam.	In
particular,	since	each	bunch	will	contain	particles	of	a	 range	of	energies,	some
particles	will	experience	a	greater	deflection	than	others	in	the	quadrupole	field.
In	 this	 context,	 the	 range	 of	 energies	 present	 is	 known	 as	 the	 beam’s
chromaticity.	 The	 appropriate	 corrections	 that	must	 be	made	 to	 each	 particle’s
trajectory	can	be	treated	as	a	power	series	in	energy.	The	dipole	and	quadrupole
magnets	are	then	capable	of	correcting	particle	paths	to	lowest	order.	To	correct
for	 higher-order	 deviations	 requires	 higher-order	 magnetic	 fields,	 and	 so
sextupole	and	octopole	magnets	are	also	used	in	a	focusing	lattice.	The	number
of	magnets	required	at	each	order	diminishes	as	 the	pole	order	 increases,	since
the	necessary	higher-order	 corrections	are	much	 smaller	 in	magnitude	 than	 the
lower-order	corrections.

Synchrotron	Radiation	and	Future	Accelerators

Synchrotrons	 are	 not	without	 their	 own	 disadvantages.	Key	 among	 these	 is
the	problem	of	energy	losses.	As	a	charged	particle	moves	in	a	circular	orbit,	it	is
constantly	accelerating,	and	accelerating	charges	emit	electromagnetic	radiation
and	 lose	 energy	 in	 the	 process.	 In	 this	 context,	 this	 radiation	 is	 known	 as
synchrotron	radiation.	This	puts	an	upper	 limit	on	the	energy	attainable	by	any
given	 synchrotron,	 since	 the	 energy	 lost	 through	 radiation	 increases	 with	 the
total	energy	of	the	particle.	At	some	point,	 the	energy	lost	 through	synchrotron
radiation	during	one	lap	of	the	ring	will	equal	the	energy	input	during	the	same
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period.	 At	 this	 point,	 further	 acceleration	 is	 impossible.	 The	 amount	 of
synchrotron	 radiation	 emitted	by	 a	 particle	 depends	on	 the	particle’s	mass	 and
energy,	 and	 the	 radius	 of	 the	 ring.	 This	 is	 one	 reason	 for	 the	 large	 scale	 of
modern	accelerators.	It	also	means	that	electrons,	with	their	small	mass,	are	far
more	 susceptible	 to	 radiative	 energy	 losses	 than	 hadrons	 since	 synchrotron
radiation	 scales	 with	 γ,	 which	 is	 velocity-dependent,	 rather	 than	 energy-
dependent.	This	is	partly	the	reason	that	protons	were	the	particle	of	choice	for
acceleration	 to	 the	high	energies	of	 the	Large	Hadron	Collider.	Another	 reason
for	this	choice	is	the	composite	nature	of	protons.	Since	each	event	is	caused	by
the	 interaction	of	 some	part	 of	 each	proton,	 the	 amount	 of	 energy	 involved	 in
each	collision	 is	variable.	This	 is	 ideal	 for	an	all-purpose	machine	designed	 to
probe	a	range	of	energies.	The	downside	is	that	the	effective	collision	energy	per
event	is	much	less	than	the	total	proton	energy.	For	this	reason,	coupled	with	the
issue	 of	 synchrotron	 radiation,	 many	 believe	 that	 the	 next	 generation	 of
accelerators	 should	 return	 to	 a	 linear	 design	 using	 leptons.	 A	 particularly
intriguing	concept	is	that	of	the	Compact	Linear	Collider	(CLIC).	The	proposed
CLIC	design	allows	for	acceleration	to	high	energy	over	a	shorter	distance	than
“conventional”	linear	accelerators,	and	would	utilize	a	secondary	drive	beam	to
produce	very	high	field	strengths	for	the	primary	cavity	resonators.	In	essence,	it
is	a	linac	with	a	secondary	linac	in	place	of	conventional	klystrons.

The	preceding	sections	have	hopefully	given	 the	 reader	a	 flavor	of	 some	of
the	exciting	physics	involved	in	both	the	acceleration	and	detection	of	particles.
To	 call	 this	 an	 overview,	 however,	 would	 be	 generous,	 since	 we	 have	 barely
scratched	the	surface	of	these	topics.	The	interested	reader	will	find	whole	books
and	 indeed	whole	 journals	 dedicated	 to	 the	 topics	 of	 individual	 paragraphs	 of
this	chapter.

MEASURABLE	QUANTITIES	IN	PARTICLE
PHYSICS:	MATCHING	THEORY	TO
EXPERIMENT

We	finish	 this	 chapter	with	 a	 look	at	 the	quantities	 that	 experiments	 aim	 to
measure	 and	how	we	might	 hope	 to	 predict	 their	 values	 theoretically.	We	will
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consider	two	important	quantities:	the	decay	rate	and	the	cross-section.	From	an
experimental	point	of	view,	these	are	very	different	concepts,	but	we	will	see	that
they	are	closely	connected	from	a	computational	standpoint.

Cross-Sections

The	cross-section	is	a	measure	of	the	likelihood	of	an	interaction	between	two
particles	 when	 one	 is	 fired	 toward	 the	 other.	 It	 behaves	 as	 an	 effective	 area
through	which	the	incident	particle	must	 travel	 in	order	to	effect	a	collision.	In
order	to	understand	the	cross-section	as	it	is	used	in	particle	physics,	let	us	first
consider	the	simpler	case	of	the	interaction	of	two	classical	objects.

Classical	Scattering

Suppose	 a	 sphere	 of	 radius	 r	 is	 fired	 toward	 a	 second	 stationary	 sphere	 of
radius	R	and	much	greater	mass	from	which	it	scatters	elastically.	What	can	we
deduce	about	the	resulting	collision?

First,	we	must	parametrize	our	problem.	An	imaginary	line	drawn	parallel	to
the	moving	sphere’s	trajectory	that	passes	through	the	center	of	the	target	sphere
will	 be	 referred	 to	 as	 the	 collision	 axis.	 Since	 the	 situation	 is	 rotationally
symmetric	about	this	collision	axis,	the	only	variations	we	can	make	to	the	setup
of	 this	 hypothetical	 experiment	 are	 the	 speed	 of	 the	 projectile	 and	 its
perpendicular	distance	 from	the	collision	axis.	This	 latter	quantity	 is	known	as
the	impact	parameter	and	is	conventionally	denoted	b.	What	might	the	outcome
of	 this	 experiment	 be?	Well,	 assuming	 that	 the	 spheres	 collide	 elastically,	 the
projectile	 must	 be	 deflected	 in	 some	 direction	 which	 is	 best	 characterized	 by
spherical	polar	coordinates	originating	at	the	target	as	in	Figure	5.16.

Since	 the	 situation	 has	 radial	 symmetry,	 the	 azimuthal	 angle	 ϕ	 will	 be
unchanged	before	and	after	the	collision,	so	the	angle	of	interest	is	θ.	Consider	a
plane	 perpendicular	 to	 the	 collision	 axis	 placed	 just	 before	 the	 target.	 The
projectile	must	 pass	 through	 some	 part	 of	 this	 plane.	 Let’s	 call	 the	 small	 area
through	which	 it	 passes	 dσ.	 After	 the	 collision,	 the	 projectile	 is	 scattered	 into
some	solid	angle	characterized	by	θ	and	ϕ.	Let’s	 call	 the	 small	 region	of	 solid
angle	around	the	projectile’s	trajectory	dΩ.	How,	then,	does	dΩ	depend	on	dσ?
To	answer	this,	first	notice	that



FIGURE	5.16	A	 collision	 between	 two	 classical	 objects,	 showing	 the	 impact	 parameter	 and	 the	 angular
coordinates	used	to	parametrize	the	subsequent	trajectory	of	the	scattered	objects.

FIGURE	5.17	The	point	of	contact	between	two	classical	colliding	objects.

so	we	find	that

This	quantity	is	known	as	the	differential	cross-section.

Zooming	 in	 to	 the	 collision	 itself	 as	 in	 Figure	 5.17,	 we	 see	 that	 a	 little
geometry	gives

since	 in	 an	 elastic	 collision,	 the	 angle	 of	 incidence	 of	 the	 lighter	 sphere	must
equal	its	angle	of	reflection.	Therefore,	the	differential	crosssection	becomes



This	 is	 a	 measure	 of	 how	 much	 of	 the	 cross-sectional	 area	 of	 the	 collision
scatters	 into	each	solid	angle.	 In	more	general	situations,	 the	differential	cross-
section	will	typically	depend	on	other	factors	such	as	the	projectile’s	energy.	To
find	the	total	cross-sectional	area	of	 the	plane	through	which	the	projectile	can
pass	and	experience	a	deflection,	we	integrate	the	differential	cross-section	over
all	solid	angles:

This	expression	is	as	we	would	expect,	since	it	is	the	area	of	the	region	through
which	the	projectile	must	pass	to	collide	with	the	target	at	all.	This	is	why	such
quantities	are	known	as	the	cross-sections	for	 the	collision.	Notice	that	another
way	to	think	of	the	cross-section	is	as	the	likelihood	of	a	collision	occurring	at
all.	 If	we	 fire	 the	 projectile	 randomly,	without	 aiming,	 but	we	 know	 that	 it	 is
constrained	 to	 travel	 along	 a	 tube	 of	 unit	 cross-sectional	 area,	 then	 the
probability	that	a	collision	will	take	place	is	given	by	σ.

It	 was	 through	 these	 ideas	 that	 Rutherford	 derived	 his	 scattering	 formula,
which	we	discussed	 in	Section	1.2.	By	 considering	 a	 classical	 electromagnetic
interaction	between	 two	particles,	 one	may	 show	 that	 the	 relationship	between
the	impact	parameter,	b,	and	the	scattering	angle,	θ,	is	given	by

where	k	is	the	Coulomb	constant,	E	is	the	energy	of	the	scattered	particle,	and	q1,
q2	 are	 the	 particles’	 charges.	 By	 substituting	 this	 into	 Equation	 5.21,	 it	 is
straightforward	 to	 arrive	 at	 the	 differential	 cross-section	 for	 classical
electromagnetic	scattering	from	a	stationary	charged	object,



as	the	reader	is	invited	to	show	in	Exercise	5.

Inelastic	Scattering

A	 much	 more	 complicated	 situation	 that	 may	 occur	 is	 one	 in	 which	 the
scattering	is	inelastic.	For	instance,	consider	a	situation	in	which	the	target	and
projectile	 are	 both	 shattered	 by	 the	 collision.	 There	 are	 now	 many	 more
possibilities	to	consider	for	the	final	state	of	the	system.	Let’s	assume	that	there
are	 N	 particles	 (still	 classical	 objects)	 in	 the	 final	 state.	 In	 principle,	 the
momentum	 of	 each	 of	 these	 particles	 can	 take	 any	 value	 as	 long	 as	 the	 total
momentum	in	the	system	is	conserved.	To	parametrize	the	system,	then,	it	is	no
longer	enough	to	use	just	the	angle	of	the	final	trajectory;	we	must	also	specify
the	 speed.	The	 simplest	way	 to	do	 this	 is	 to	 consider	 for	 each	particle	 a	 small
range	 of	 final	momenta	 d3p.	 In	 this	way,	 dΩ	 is	 replaced	 by	N	 factors	 of	 d3p.
Since	this	could	lead	to	a	very	unwieldy	notation,	it	is	typical	to	continue	to	use
the	 symbol	 	 to	 refer	 to	 the	 differential	 cross-section,	 even	 though	 it	 is	 now
nothing	more	than	shorthand	for

Since	this	differential	cross-section	must	conserve	momentum,	the	one	factor
that	we	know	it	must	contain,	before	even	performing	any	calculations,	 is	a	δ-
function.	That	is,	we	must	have

where	pi	is	the	initial	momentum	in	the	system.

We	could	now,	in	principle,	calculate	the	likelihood	of	a	collision	of	this	type
with	particular	final	momenta	by	analyzing	the	mechanics	of	the	specific	system
we	are	interested	in.	We	could	then	find	the	likelihood	of	 this	 type	of	collision
occurring	at	 all	by	 integrating	over	all	possible	 final	momenta,	 to	arrive	at	 the
cross-section.	 Notice,	 though,	 that	 this	 is	 the	 cross-section	 specifically	 for	 a



collision	with	N	final	particles.	If	we	wish	to	know	the	probability	of	any	kind	of
collision,	we	must	also	sum	over	all	values	of	N.

We	can	see,	at	least	in	principle,	how	to	calculate	a	cross-section	theoretically,
then,	but	how	might	it	be	measured	experimentally?	Well,	assuming	that	we	fire
multiple	projectiles	at	the	target,	and	that	we	know	the	number	of	projectiles	per
unit	time,	or	luminosity,	is	L,	then	the	total	number	of	events	should	be	N	=	Lσ.
This	 is	what	makes	 the	 cross-section	 such	 a	 useful	 quantity.	 Experiments	will
vary	in	luminosity	because	of	design	differences,	but	as	long	as	the	luminosity	is
known,	 the	cross-section	can	be	calculated,	and	 its	value	 is	 independent	of	 the
experimental	 setup.	 Similarly,	 we	 can	 find	 the	 differential	 cross-section
experimentally	 by	 measuring	 the	 total	 number	 of	 events	 with	 a	 particular
arrangement	of	final	states,	dN/dΩ,	and	then	factoring	out	the	luminosity.

Quantum	Scattering

We	are	now	ready	to	consider	the	quantum-mechanical	version	of	the	cross-
section.	 When	 dealing	 with	 elementary	 particles,	 the	 final	 state	 particles	 are
distinguishable	if	they	are	of	different	kinds	and	indistinguishable	if	they	are	of
the	same	kind.	For	this	reason,	we	must	separate	collision	outcomes	not	just	by
the	 number	 of	 finalstate	 particles	 but	 also	 by	 the	 particular	 set	 of	 particles
produced.	In	 this	way,	we	find	 that	 there	 is	a	separate	differential	cross-section
for	each	process	that	may	take	place.	The	total	cross-section	for	the	interaction
of	 two	 elementary	 particles	 is	 the	 sum	 of	 the	 cross-sections	 for	 each	 possible
interaction,	as	determined	by	conservation	laws.

To	 calculate	 the	 cross-section,	we	 imagine	 that	 the	 system	 is	 restricted	 to	 a
finite	volume,	V,	with	sides	of	 length	L.	We	fire	a	beam	of	particles	of	 type	A
into	a	 target	of	particles	of	 type	B	 for	 a	 set	 time	T.	We	are	 interested	 in	 some
particular	reaction	A	+	B	→	F1	+	.	.	.	FN,	with	some	particular	set	of	final-state
momenta	p1,	.	.	.	,	pN.	However,	since	the	probability	of	achieving	exactly	these
momenta	is	zero,	we	again	consider	a	small	momentum	range	d3p	around	each
chosen	 value.	 Since	 the	 cross-section,	 σ,	 behaves	 as	 an	 area,	 the	 number	 of
events	of	the	correct	type	per	unit	volume	per	unit	time	is	given	by



where	nB	is	the	number	of	target	particles	per	unit	volume,	and	Φ	is	the	incident
flux,	or	the	number	of	incident	particles	passing	through	a	unit	area	in	unit	time.
So	the	number	of	events	with	the	chosen	final-state	momenta	is

If	we	imagine	a	plane	perpendicular	to	the	beam,	we	can	see	that	the	flux	is
equal	 to	the	density	of	A-type	particles	multiplied	by	the	length	of	a	section	of
beam	that	can	pass	that	plane	in	unit	time.	In	other	words,

where	vA	is	the	velocity	of	the	particles	in	the	beam.	So	we	have

For	relativistic	particles	of	energy	E,	the	conventional	normalization	is	for	the
state	to	consist	of	2E	particles	per	unit	volume,	where	E	is	the	particle’s	energy.
This	 seems	 like	 a	 strange	 normalization	 condition	 at	 first	 sight,	 but	 it	 is	 used
with	 good	 reason.	 We	 cannot	 use	 the	 non-relativistic	 normalization	 of	 one
particle	per	unit	volume,	since	volume	is	not	a	Lorentz-invariant	quantity.	That
is,	observers	in	different	reference	frames	will	disagree	on	the	volume	occupied
by	 the	 particle.	 In	 particular,	 if	 one	 observer	measures	 a	 volume	 as	V,	 then	 a
second	observer	moving	relative	to	the	first	at	a	speed	v,	will	see	a	volume	that	is
Lorentz	 contracted	 along	 the	 direction	 of	 relative	 motion	 by	 a	 factor	

	A	consistent	normalization,	then,	must	have	a	number	of	particles
that	also	scales	as	γ.	Since	the	energy	scales	in	the	correct	way,	2E	particles	per
unit	volume	is	a	Lorentz-invariant	normalization.	The	factor	of	2	is	not	so	well
justified	 and	 is	 merely	 convention.	 If	 this	 normalization	 condition	 still	 feels
strange	given	that	we	only	want	to	describe	one	particle,	we	can	look	at	it	from
some	 other	 points	 of	 view.	 First,	 a	 relativistic	 treatment,	 as	 we	will	 see	 later,
necessarily	 involves	 antiparticles.	 So	 the	 notion	 of	 having	 only	 one	 particle	 is
somewhat	flawed	anyway,	as	a	particle	will	be	accompanied	by	a	host	of	virtual
particle	 and	 antiparticle	 pairs.	 Second,	 we	 are	 in	 fact	 rarely	 interested	 in
describing	 a	 single	 particle,	 since	 we	 typically	 prepare	 samples	 as	 a	 beam	 of
many	 similar	 or	 identical	 states.	A	 third	way	 to	 consider	 the	 condition	 is	 as	 a



variable	volume,	rather	than	a	variable	particle	number.	That	is,	the	condition	is
equivalent	to	the	condition	that	we	have	one	particle	per	1/(2E)’s-worth	of	a	unit
volume.	 Whichever	 interpretation	 you	 choose	 to	 go	 with,	 imposing	 the
condition,	we	find

The	only	thing	left	to	do	is	to	find	dP.	Since	this	is	related	to	the	probability
of	 a	 transition	 from	 the	 initial	 (two-particle)	 state	 to	 the	 final	 (many-particle)
state,	we	can	write	it	as

where	 	 is	 the	 transfer	 operator	 from	 initial	 to	 final	 state,	 and	 d(Phase)	 is	 a
Lorentz-invariant	 phase	 space	 factor	 to	 account	 for	 the	 number	 of	 final	 states
with	the	appropriate	momenta.

To	calculate	d(Phase),	notice	that,	confined	as	we	are	to	our	finite	volume	V,
the	 allowed	 momentum	 states	 for	 a	 final-state	 particle	 are	 those	 with	 an	 i-th
momentum	 component	 given	 by	 (2π/L)	ki,	 for	ki	∈	 .	 This	 gives	 a	 density	 of
states	of	(L/2π)3	=	V	/(2π)3,	so	the	number	of	final	states	for	a	particle	to	scatter
into	within	a	small	region	of	phase	space	around	some	particular	momentum	is
given	by

where	d3p	 is	 the	 volume	of	 the	 small	 phase	 space	 region,	 and	E	 is	 the	energy
associated	 with	 this	 final-state	 momentum.	 Again,	 the	 2E	 arises	 from	 the
conventional	normalization	for	relativistic	particles,	that	there	are	2E	particles	in
the	 volume	 V.	 The	 differential	 crosssection	 must	 contain	 one	 factor	 like	 the
previous	one	for	each	particle	in	the	final	state.

Finally,	 the	transition	amplitude	⟨final	 | |	 initial⟩	must	necessarily	contain	a
δ-function	 to	 constrain	 the	 final	 momenta	 and	 ensure	 overall	 momentum
conservation.	For	this	reason,	we	write	it	in	the	form



Since	 this	 amplitude	 is	 squared,	 we	 find	 that	 one	 δ-function	 constrains	 the
momenta	of	the	second	so	we	end	up	with

The	quantity	 	is	known	as	the	invariant	amplitude,	and	the	evaluation	of	this
quantity	 is	 specific	 to	 the	 process	 under	 consideration.	 For	 this	 reason,	 we
postpone	discussion	of	the	invariant	amplitude	to	later	chapters.	The	δ4(0)	looks
rather	 worrying,	 since	 we	 would	 expect	 it	 to	 evaluate	 to	 an	 infinite	 constant.
Fortunately,	since	we	are	considering	a	finite	universe	of	volume	V	and	duration
T,	 the	δ-function	 evaluates	 to	V	 T	 /(2π)4.	 Putting	 everything	 together,	we	 find
that	the	time	and	volume	cancel	out,	and	we	are	left	with

This	 is	not	quite	our	final	expression,	however,	since	we	have	not	yet	 taken
into	 account	 all	 scenarios.	 First,	 we	 must	 consider	 a	 statistical	 factor.	 If	 two
particles	in	the	final	state	are	indistinguishable,	then	the	expression	in	Equation
5.38	will	double	count	each	possible	arrangement	of	momenta.	For	example,	the
state	“electron	1	with	momentum	p1	and	electron	2	with	momentum	p2”	 is	 the
same	state	as	“electron	1	with	momentum	p2	and	electron	2	with	momentum	p1.”
In	 this	 situation,	 then,	we	must	 halve	 the	 result	 of	Equation	5.38.	Similarly,	 if
there	are	j	indistinguishable	particles,	there	are	j!	ways	to	label	them,	and	we	will
over-count	 by	 this	 factor.	 So	 the	 first	 amendment	 we	 wish	 to	 make	 to	 the
previous	expression	is	to	include	a	statistical	factor	of



The	second	amendment	we	wish	to	make	is	to	allow	for	both	initial	particle
types	to	be	in	motion	(as	in	a	collider).	One	way	to	do	this	is	simply	to	take	the
relative	 velocity	 |vA	 −	 vB|.	 While	 this	 is	 a	 legitimate	 solution,	 it	 is	 rather
unsatisfying,	since	it	 is	still	not	manifestly	Lorentz-covariant.	A	neater	solution
is	to	replace	the	denominator	with

where	the	proof	of	this	equality	is	left	as	an	exercise	for	the	reader	(Exercise	7).

This	gives	us	a	complete	and	manifestly	Lorentz-covariant	expression	for	the
differential	cross-section:

It	 is	 worth	 noting	 that	 this	 expression	 is	 spin-polarized.	 That	 is,	 the
calculation	of	 	 requires	us	 to	assign	specific	spin	orientations	or	helicities	 to
all	initial-	and	final-state	particles.	If	we	do	not	know	these	values,	then	we	must
sum	 over	 the	 cross-sections	 for	 each	 possibility.	 More	 precisely,	 since	 the
particles	in	the	beam	and	the	target	will	have	a	mixture	of	spins,	of	which	we	are
unaware,	 we	 must	 average	 over	 the	 possible	 initial	 spin	 states.	 On	 the	 other
hand,	if	the	final-state	particles	are	detected	but	their	spins	are	unmeasured,	then
all	possibilities	will	count	toward	the	measured	cross-section.	In	this	case,	then,
we	must	average	over	initial	spins	but	sum	over	final	spins.

A	final	point	on	 the	cross-section	 that	we	have	derived	 is	 to	emphasize	 that
this	quantity	is	process-dependent.	That	is,	there	is	a	cross-section	for,	say,	e+	+	e
−	 →	 µ	 +	 +µ−,	 but	 another,	 independent	 cross-section	 for	 e++e−	 →	 γ+γ.	 The
likelihood	 of	 the	 incident	 particles	 interacting	 at	 all,	 then,	 is	 the	 sum	 of	 the
cross-sections	 for	 all	 of	 the	 possible	 individual	 processes	 that	 could	 occur.	As



5.3.2

such,	we	 define	 a	 total	 cross-section,	σT	 =	∑σ,	 to	 be	 the	 cross-section	 for	 any
type	 of	 interaction,	 regardless	 of	 the	 products.	Notice	 that	 one	 of	 the	 possible
outcomes	is	for	the	products	to	be	the	same	as	the	incident	particles,	so	the	total
cross-section	 necessarily	 includes	 elastic	 scattering.	 Some	 detectors	 are
specifically	built	with	the	aim	of	measuring	total	cross-sections.	A	contemporary
example	 of	 this	 approach	 is	 the	 TOTEM	 (or	 TOTal	 cross	 section,	 Elastic
scattering	 and	 diffraction	 dissociation	Measurement)	 experiment,	which	 shares
an	 interaction	 point	 with	 the	 Compact	 Muon	 Solenoid	 (CMS)	 at	 the	 LHC.
TOTEM	is	designed	to	lie	close	to	the	beam	line	a	long	way	from	the	interaction
point,	 so	 as	 to	 detect	 anything	 scattered	with	 small	 angles	 from	 the	 beam	 that
other	 detectors	 would	 miss.	 In	 this	 way,	 the	 experiment	 aims,	 among	 other
things,	to	take	precision	measurements	of	the	total	proton-proton	cross-section.

Lifetimes

The	 second	 measurable	 quantity	 we	 will	 consider	 is	 the	 lifetime,	 or
equivalently	the	decay	rate,	of	unstable	particle	species.	An	unstable	particle	has
a	 finite	 probability	 of	 decaying	 during	 any	 given	 time	 interval,	 and	 the	 decay
rate,	 Γ,	 is	 the	 probability	 of	 decay	 in	 a	 given	 unit	 time,	 just	 as	 in	 the	 case	 of
radioactive	 decay.	 The	 lifetime,	 τ,	 of	 a	 particle	 species	 is	 a	 measure	 of	 the
average	lifetime	of	a	particle	of	 this	 type	before	it	decays,	and	is	related	to	the
decay	rate	by	τ	=	1/Γ.	Equivalently,	the	lifetime	is	the	time	it	takes	for	the	size	of
a	sample	of	such	particles	to	decrease	by	a	factor	of	e.	A	related	quantity	is	the
half-life:	the	time	it	would	take	a	similar	sample	to	halve	in	size.	The	half-life,
t1/2	is	related	to	the	lifetime	by	t1/2	=	τ	 ln	2.	These	quantities	may	be	measured
experimentally	 in	one	of	 two	ways.	First,	 if	 the	 lifetime	is	sufficiently	 long	for
the	 particle	 to	 be	 observed	 before	 decay,	 and	 if	 the	 decay	 products	 are
observable,	 then	 the	 decay	 rate	 may	 be	 measured	 directly	 by	 counting	 the
number	of	decays	per	unit	 time.	More	commonly	 in	particle	physics,	however,
the	 lifetime	 of	 an	 unstable	 particle	 is	 so	 short	 that	 the	 particle	 is	 not	 directly
observed	before	decay.	Instead,	only	the	products	of	its	decay	are	observed.	Such
a	particle	is	known	as	a	resonance.	In	this	case,	the	decay	rate	can	be	measured
experimentally	 through	 statistical	 analysis	 of	 the	 invariant	mass	 for	 groups	 of
particles.	 If	 the	 same	 final	 states	 appear	 many	 times	 in	 collisions,	 and	 the
invariant	masses	are	found	to	peak	around	a	particular	value,	this	is	evidence	of



a	resonance	with	that	mass	(Figure	5.18).

One	 may	 expect	 that	 the	 invariant	 mass	 measurements	 should	 form	 an
infinitesimally	 thin	 spike	 around	 the	 resonance	mass	 rather	 than	 a	broad	peak,
but	 remember	 that,	 since	 the	 particle	 is	 shortlived,	 there	 is	 considerable
uncertainty	 in	 its	 energy.	 The	 width	 of	 the	 resonance	 peak	 at	 half	 maximum
height	is	equal	to	the	decay	rate	of	the	resonance	(in	natural	units).	This	can	be
seen	 by	 looking	 at	 the	wavefunction	 for	 an	 unstable	 particle	 in	 its	 rest-frame,
which	takes	the	form:

FIGURE	5.18	A	typical	resonance	peak	in	invariant-mass	data.

where	 Γ	 is	 the	 decay	 rate	 and	m	 the	 particle	mass.	Note	 that	 this	 is	 simply	 a
plane-wave	 type	 state	 of	 energy	 m	 and	 no	 momentum,	 which	 is	 also
exponentially	 decaying	 at	 a	 rate	 Γ/2.	 The	 Γ/2	 exponent	 ensures	 that	 the
probability	of	measuring	the	particle	decays	at	a	rate	Γ,	since	P	(t)	∝	⟨ψ(t)	|	ψ(t)⟩.

A	Fourier	transform	to	the	energy	domain	gives	the	Breit-Wigner	formula

where	 ρ(W	 )	 is	 the	 frequency	 density	 of	 measurements	 taken	 at	 a	 particular
invariant	mass	W,	 and	κ	 is	 a	 constant.	This	 is	 in	 excellent	 agreement	with	 the
measured	distributions	of	invariant	mass,	with	Γ	equal	to	the	width	of	the	peak.
The	 Breit-Wigner	 peak	 is	 the	 characteristic	 shape	 to	 look	 for	 in	 experimental
data	that	may	indicate	the	existence	of	a	previously	unknown	particle.	Of	course,



its	 discovery	 requires	many	 scattering	 events	 for	 a	 particular	 set	 of	 final	 state
particles	over	a	range	of	values	of	the	invariant	mass.	Trial	peaks	are	then	fitted
against	the	data	and	the	accuracy	of	the	fit	assessed	to	determine	the	most	likely
properties	of	any	potential	discoveries.	As	the	fit	becomes	better	with	increased
data	 points,	 the	 probability	 that	 the	 peak	 is	 nothing	 more	 than	 a	 random
statistical	fluctuation	decreases	and	it	is	more	likely	that	it	represents	a	genuine
discovery.	 Potential	 discoveries	 are	 generally	 announced	 when	 the	 fit	 is
sufficiently	accurate	that	the	likelihood	of	error	is	only	0.0027.	This	probability
is	 equivalent	 to	 being	 three	 standard	 deviations	 from	 the	 mean	 in	 a	 normal
distribution,	 so	 such	 events	 are	 said	 to	 occur	 “at	 three	 sigma.”	 This	 is	 not
generally	considered	strong	enough	evidence	for	a	discovery,	however,	which	is
reserved	for	events	at	five	sigma.	This	translates	to	a	probability	of	only	around
5	×	10−7	that	the	discovery	is	erroneous	and	due	simply	to	statistical	noise.	That
the	bar	is	set	so	high	is	merely	evidence	that	noise	does	lead	to	spurious	results
from	time	to	time.	In	fact,	a	recent	example	of	this	arose	in	the	LHC	data	in	late
2015.	 An	 excess	 of	 two-photon	 final	 states	 was	 discovered	 in	 gluon-gluon
interactions,	and	fitting	the	resonance	peak	to	 the	data	appeared	to	point	 to	 the
existence	 of	 a	 particle	with	 a	mass	 around	 750	GeV.	 This	 fit	 was	 accurate	 to
almost	four	sigma,	suggesting	that	the	likelihood	of	it	being	merely	a	statistical
fluctuation	was	around	1	 in	15,000.	This	apparent	 resonance	was	even	given	a
name:	the	digamma.	However,	as	more	data	accrued,	 the	ratio	of	peak	to	noise
diminished	 and	 the	 significance	 of	 this	 fit	 decreased	 and	 vanished.	 The	 peak
really	was	just	an	accident	of	the	data.	This	goes	to	show	that	when	the	number
of	events	is	large	enough,	even	very	unlikely	artifacts	can	appear	in	the	noise.	In
other	 words,	 15,000	 isn’t	 such	 a	 large	 number	 when	 hundreds	 of	 millions	 of
collision	events	occur	each	second.

From	 a	 theoretical	 standpoint,	 the	 decay	 rate	 is	 similar	 to	 the	 total	 cross-
section,	 in	 that	 it	 is	 indiscriminate	 of	 the	 final	 products	 of	 the	 decay.	 When
calculating	a	decay,	we	must	consider	a	single	decay	mode	at	a	time.	That	is,	we
must	calculate	the	rate	at	which	the	initial	unstable	particle	species	will	transition
to	a	particular	 final	 state.	To	find	 the	experimentally	determined	decay	rate,	as
for	 the	 total	crosssection,	we	must	 then	sum	over	 the	 individual	modes’	partial
decay	rates:	Γ	=	∑k	Γk,	where	k	is	a	particular	decay	mode.	The	ratio	of	a	mode’s
individual	 decay	 rate	 to	 the	 total	 decay	 rate	 is	 a	measure	 of	 the	 proportion	 of
initial	particles	that	decay	via	that	mode,	and	is	known	as	the	branching	fraction
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(a)

or	branching	ratio:	BFk	=	Γk/Γ.

How	are	we	to	calculate	the	decay	rate	for	a	particular	mode,	then?	Well,	one
way	to	approach	this	problem	is	to	think	of	a	decay	as	a	one-particle	“collision.”
The	decay	rate	is	then	equivalent	to	the	cross-section	for	this	process.	That	is,	the
decay	rate	will	be	proportional	to	the	square	of	the	transition	amplitude	and	the
available	 phase	 space,	 so	 these	 factors	 take	 the	 same	 form	 as	 they	 did	 for	 the
cross-section.	Similarly,	the	decay	rate	will	also	include	a	deltafunction	to	ensure
momentum	 conservation,	 though	 this	 will	 now	 have	 only	 one	 initial-state
particle	 in	 it.	 The	 only	 other	 part	 of	 the	 cross-section	 formula	 that	 we	 must
modify	 is	 the	pre-factor	 relating	 to	 the	 initial	 state.	Before	 rewriting	 the	cross-
section	formula	to	make	it	manifestly	Lorentz-covariant,	the	pre-factor	took	the
form:

In	 the	 case	of	 a	decay	 rate,	 there	 is	 only	one	particle	 to	 consider	 in	 its	 rest
frame,	 and	no	 relative	 velocity	 to	worry	 about.	 So	 this	 factor	 becomes	 simply
1/2mA,	where	mA	is	the	mass	of	the	decaying	particle.	So	the	partial	decay	rate	is
given	by

The	amplitudes	that	will	allow	us	to	calculate	these	measurable	quantities	will
be	the	subject	of	later	chapters.

EXERCISES

Consider	a	classical	object	of	mass	m	and	initial	velocity	v	colliding
with	a	second	stationary	classical	target	of	mass	mt.	After	the	collision,
the	mass	m	has	a	velocity	v1	and	the	target	has	a	velocity	vt.

By	considering	the	conservation	of	(non-relativistic)	energy	and
momentum,	show	that
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Hence	find	the	maximum	speed	that	may	be	transferred	to	the	target
during	the	collision	and	find	a	necessary	condition	on	the	masses
for	this	maximum	to	be	achieved.

Show	that	the	non-relativistic	Bethe	formula	may	be	written	as
−dE/dx	=	A	ln(BE)/E	where	A	and	B	are	constants.
Hence	show	that	the	Bethe	formula	predicts	a	maximum	stopping
power	at	low	energy	that	is	independent	of	particle	type.	Find	the
value	of	βγ	at	which	this	occurs.	You	may	assume	a	mean	ionization
energy	equal	to	that	of	lead:	823	eV.
Below	this	maximum,	the	Bethe	formula	is	no	longer	valid	and	the
stopping	power	is	found	to	scale	approximately	linearly	with
particle	energy.	By	considering	the	behavior	and	interdependence	of
stopping	power,	particle	energy,	and	path	length,	at	values	of	BE	≫	1,
BE	∼	1,	and	BE	≪	1,	sketch	a	rough	plot	of	how	the	stopping
power	varies	with	path	length.	(The	characteristic	shape	of	this	plot
is	known	as	the	Bragg	curve.)
Use	the	(non-relativistic)	Bethe	formula	to	estimate	the	maximum
stopping	power	due	to	ionization	for	α	particles	in	lead,	given	that
lead	has	atomic	number	82	and	a	density	of	11.35	g	cm−2.

Lead	(atomic	number	82)	has	a	radiation	length	of	6.37	g	cm−2	and
electrons	have	a	critical	energy	of	around	10	Mev,	below	which	they
lose	their	energy	predominantly	through	ionization	losses.	A	300	GeV
electron	enters	a	calorimeter	made	of	lead	and	produces	a	shower.

Assuming	that	the	mean-free	path	of	photons	in	lead	is	of	the	same
order	as	the	radiation	length,	estimate	the	total	final	number	of
particles	in	the	shower.
Estimate	also	the	shower	penetration	depth	given	that	the	density	of
lead	is	11.35	g	cm−3.

The	energy	and	momentum	of	a	photon	are	given	by	E	=	p	=	hc/λ,	where
λ	is	the	photon	wavelength.	Assuming	that	an	electron	is	initially	at	rest,
show	that	the	scattering	angle	of	the	photon	in	Compton	scattering	is
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directly	related	to	the	transferred	energy	(Equation	5.9).

When	a	non-relativistic	charged	particle	is	scattered	from	a	heavy
charged	center	via	a	Coulomb	interaction,	it	follows	a	hyperbolic
trajectory	as	follows.

Show	that	the	only	net	momentum	change	is	in	the	direction	of	the
line	of	symmetry	of	the	hyperbola	(vertical	axis).
Show	that	the	initial	and	final	momenta,	pi,	pf	are	related	by

where	θ	is	the	scattering	angle.
The	hyperbola	may	be	parametrized	by	the	variable	angle	ϕ	shown
in	the	figure.	By	considering	the	vertical	component	of	the	Coulomb
force,	show	that

where	 q1e	 and	 q2e	 are	 the	 charges	 of	 the	 particles	 and	 k	 is	 the
Coulomb	 constant.	 (Hint:	 you	may	 find	 it	 helpful	 to	 consider	 the
angular	momentum	of	 the	 particle	 about	 the	 scattering	 center	 at	 a
time	in	the	long-distant	past	or	future.)
Using	your	results	to	the	previous	parts,	derive	Equation	5.25.
Hence	derive	the	Rutherford	scattering	formula.

What	assumptions	are	made	in	the	above	derivation	of	the	Rutherford
scattering	formula?	Why	is	a	departure	from	the	formula	expected	for
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high-energy	particles	if	the	target	is	an	atomic	nucleus?

Show	that

as	in	Equation	5.40.

Perform	a	Fourier	transform	on	Equation	5.42	to	arrive	at	the	Breit-
Wigner	resonance	formula	(Equation	5.43),	and	find	the	value	of	the
constant	κ.
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CHAPTER	6
PARTICLE	CLASSIFICATION

The	 first	 step	 toward	 understanding	 the	 different	 particles	 in	 nature	 was	 to
classify	 them.	 By	 cataloguing	 what	 particles	 there	 were,	 physicists	 began	 to
understand	 the	 relationships	between	 them.	There	are	several	different	ways	 to
classify	particles,	and	we	consider	some	of	these	here.	We	will	find	that	much	of
our	 attention	will	 be	 given	 to	 understanding	 the	 hadrons,	 since	 the	 composite
nature	of	these	particles	allows	for	a	very	rich	structure.

THE	SPIN-STATISTICS	THEOREM

Arguably	 the	 most	 important	 property	 of	 a	 particle	 is	 its	 spin	 or	 intrinsic
angular	 momentum.	 To	 be	 clear,	 by	 this	 we	 do	 not	 mean	 the	 magnetic	 spin
quantum	 number	ms,	 which	 can	 take	 on	 a	 number	 of	 different	 values	 for	 any
given	particle,	based	on	the	orientation	of	its	spin.	Nor,	strictly,	do	we	mean	the
overall	magnitude	of	the	particle’s	spin;	instead	when	we	talk	of	a	particle’s	spin,
we	generally	use	the	term	as	a	shorthand	for	“spin	quantum	number.”	So	a	spin-
particle	 has	 a	 spin	 quantum	 number	 of	 	 and	 therefore	 an	 intrinsic	 angular
momentum	 (spin	 in	 the	 true	 sense)	 of	 	 This	 number	 is	 a
fundamental	part	of	 the	 identity	of	a	particle:	 electrons	are	spin- ,	 and	nothing
can	change	that,	any	more	than	it	could	change	the	electron’s	mass.	The	reason
that	this	is	of	such	importance	is	that	it	is	the	spin	of	a	particle	that	determines
which	type	of	statistics	it	obeys.

Consider	a	quantum	system	consisting	of	two	indistinguishable	particles.	By
indistinguishable,	we	mean	 that	 any	 physical	measurement	 of	 the	 system	does
not	change	if	the	two	particles	are	swapped.	If	the	particles	are	labeled	A	and	B,
then	the	state	vector	for	this	system	can	be	written	as	|ψ(A,	B)⟩,	and	swapping	the
two	 particles	 then	 gives	 a	 state	 vector	 |ψ(B,	 A)⟩.	 In	 order	 to	 satisfy	 the



requirement	 that	 the	 system	 is	 physically	 identical	 before	 and	 after	 such	 an
exchange,	 it	may	 seem	obvious	 that	 the	 state	vector	 itself	 be	 equal	before	 and
after:	|ψ(A,	B)⟩	=	 |ψ(B,	A)⟩.	However,	 this	 is	 in	 fact	 too	restrictive	a	condition,
since	the	state	vector	is	not	itself	a	physical	quantity.	All	that	we	require	is	that
the	associated	probability	density	remain	the	same,	or	that	⟨ψ(A,	B)	|	ψ(A,	B)⟩	=
⟨ψ(B,	A)	|	ψ(B,	A)⟩,	so	in	fact	the	state	vectors	can	be	related	by	a	complex	phase
|ψ(B,	A)⟩	=	eiα	|ψ(A,	B)⟩,	where	α	∈	 ,	since	such	a	phase	will	cancel	out	of	any
physically	 meaningful	 quantities.	 By	 a	 similar	 argument	 to	 that	 used	 for	 the
eigenstates	of	parity,	we	can	now	restrict	the	values	of	this	phase.	In	particular,
two	 successive	 exchanges	 of	 the	 indistinguishable	 particles	 clearly	 returns	 the
system	to	its	original	state.	If	we	let	the	operator	 	have	the	effect	of	exchanging
the	two	particles,	we	find

so	e2iα	=	1,	which	restricts	the	value	of	the	phase	to	±1.	That	is,	the	state	vector	is
either	unchanged	under	exchange	of	particles,	or	it	picks	up	a	relative	negative
sign.1

Consider	the	case	that	the	state	vector	changes	sign	under	particle	exchange.
If	we	construct	the	state	vector	out	of	one-particle	states,	then	it	must	in	this	case
be	antisymmetric:

where	|ψA⟩,	|ψB⟩	are	the	states	of	particles	A	and	B	respectively.	If	both	particles
are	now	placed	into	the	same	one-particle	state	|ψ1⟩,	we	find

Since	 this	 state	 is	 identically	 zero,	 it	 has	 no	 probability	 density	 associated
with	 it.	 This	 demonstrates,	 then,	 that	 such	 a	 combination	 of	 particles	 has	 no
likelihood	of	occurring,	or	is	forbidden.	This	is	the	basis	of	the	Pauli	Exclusion
Principle,	 which	 states	 that	 no	 two	 particles	 (that	 change	 sign	 under	 particle
exchange)	can	occupy	the	same	state.	Notice	that	no	such	restriction	applies	 in
the	case	that	the	state	vector	is	unchanged	under	particle	exchange,	since	in	this
case,	 the	 expression	 for	 the	 overall	 state	 would	 be	 symmetric	 in	 oneparticle



6.2

states.	This	greatly	affects	 the	behavior	of	 the	particles:	 those	 that	change	sign
under	 exchange	 obey	 Fermi-Dirac	 statistics,	 and	 are	 termed	 fermions,	 while
those	that	do	not	change	sign	obey	Bose-Einstein	statistics,	and	so	are	bosons.

The	spin-statistics	theorem	is	a	powerful	result	that	demonstrates	a	one-to-one
correspondence	between	the	spin	of	a	particle	and	the	statistics	that	it	obeys.	In
particular,	 it	 states	 that	 all	 integer-spin	 particles	 are	 bosons,	while	 all	 particles
with	 half-odd-integer	 spin	 are	 fermions.	 In	 the	 Standard	 Model,	 there	 is	 one
spin-0	 boson	 (the	 Higgs)	 and	 several	 spin-1	 bosons	 that	 mediate	 the	 three
nongravitational	forces.	These	are	the	photon	for	electromagnetism,	eight	gluons
for	the	strong	nuclear	force,	and	the	W±	and	Z0	for	the	weak	force.	The	fermions
will	be	explored	further	in	the	following	sections.

THE	STRONG	FORCE

Another	top-level	distinction	to	be	made	between	particle	species	is	whether
or	 not	 the	 particle	 interacts	 through	 the	 strong	 nuclear	 force.	 The	 reason	 this
makes	 such	 a	 key	 difference	 to	 the	 particle’s	 behavior	 is	 primarily	 due	 to	 the
concept	 of	 confinement.	 The	 strong	 force	 is	 responsible	 for	 the	 existence	 of
bound	states	of	 strongly	 interacting	particles,	and	confinement	 is	a	property	of
this	 force	 that	 leads	 to	 the	complete	 isolation	of	such	bound	particles	 from	the
outside	world.	That	 is,	 the	 internal	dynamics	of	 the	bound	state,	along	with	 its
constituents,	are	unobservable	from	outside	the	confines	of	 that	state	at	normal
energy	scales.	While	the	internal	structure	may	be	probed	with	very	high-energy
experiments,	at	normal	scales	the	bound	state	behaves	almost	as	though	it	were	a
fundamental	 particle	 itself.	 For	 this	 reason,	 it	 is	 necessary	 to	 catalog	 both	 the
fundamental	particles	and	the	strongly-bound	states.	Indeed,	it	is	the	existence	of
a	multitude	of	such	composite	particles	 that	 led	to	 the	particle	explosion	in	 the
1950s.	We	 thus	make	a	distinction	between	 those	 fermions	 that	do	not	 interact
through	 the	 strong	 force,	 the	 leptons,	 and	 those	 that	 do.	 The	 classification	 of
leptons	 is	 straightforward,	 as	we	have	 already	 seen	 in	Chapter	1.	But	 of	 those
strongly	interacting	particles,	we	further	distinguish	those	that	are	fundamental,
the	quarks,	and	those	composite	particles	that	consist	of	bound	states	of	quarks,
the	hadrons.
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The	sum	of	angular	momenta	of	the	constituents	of	a	hadron	contributes	to	its
internal	angular	momentum.	Since	we	see	the	bound	state	as	a	particle	in	its	own
right,	we	see	this	internal	angular	momentum	as	the	particle’s	spin.	The	hadron
as	a	whole	can	have,	in	addition,	orbital	angular	momentum,	but	both	the	orbital
and	 spin	 angular	 momenta	 of	 the	 constituents	 contribute	 to	 the	 spin	 of	 the
hadron.	 This	 means	 that	 hadrons	 can,	 in	 principle,	 have	 any	 integer	 or	 half-
integer	value	of	spin.	However,	since	orbital	angular	momentum	is	restricted	to
integer	values,	 the	type	of	statistics	obeyed	by	the	hadron	is	determined	by	the
total	spin	of	the	constituent	quarks,	which	in	turn	depends	solely	on	the	number
of	quarks	 in	 the	hadron.	 Ignoring	 the	possibility	 for	now	of	more	 complicated
bound	 states	 (though	we	will	 return	 to	 this	 in	Section	10.6),	we	 consider	 only
two	types.	There	are	the	baryons—fermionic	states	consisting	of	three	quarks—
and	the	mesons—bosonic	states	comprising	a	quark	and	an	antiquark.

If	 we	 include	 composite	 particles	 in	 our	 classification	 process,	 then	 the
number	of	particles	we	must	consider	increases	dramatically.	For	this	reason,	the
remainder	 of	 this	 chapter	 is	 dedicated	 to	 understanding	 how	 the	 hadrons	 are
grouped,	as	well	as	the	underlying	structure	behind	their	classification.

Isospin

When	 a	 multitude	 of	 new	 particles	 was	 being	 discovered	 in	 the	 1950s,
physicists	 needed	 a	 way	 to	 catalog	 them.	 They	 chose	 to	 do	 this	 with	 the
introduction	 of	 two	 new	 quantum	 numbers:	 isospin	 and	 strangeness.	We	 have
already	seen	 in	Chapter	1	how	strangeness	was	defined	 in	order	 to	explain	 the
strangely	 long	 lifetimes	of	some	particles.	Now	we	must	consider	 isospin.	The
origin	of	this	quantum	number	(or	more	accurately,	pair	of	quantum	numbers)	is
the	observation	that	the	proton	and	neutron	have	similar	masses,	and	may	inter-
convert	during	β	decay.	The	idea	was	advanced	that	these	two	might	be	simply
two	states	of	the	same	particle:	the	nucleon.	If	the	nucleon	has	a	property	similar
to	spin	with	an	SU(2)	structure	and	an	overall	magnitude	of	 	 for	 this	property,
then	there	would	be	two	“orientations”	available	to	it	to	account	for	the	existence
of	 the	 proton	 and	 neutron.	 Since	 this	 new	 spin-like	 property	 accounts	 for	 the
existence	of	different	isotopes,	it	was	termed	“isotopic	spin,”	or	isospin	for	short,
and	given	the	symbol	I.2	By	convention,	 the	orientation	 is	measured	 in	 the	“z”
direction	 of	 isospin	 space,	 so	 the	 proton	 and	 neutron	 are	 distinguished	 by	 the
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third	component	of	isospin	I3.	The	proton	and	neutron	are	thus	assumed	to	form
a	doublet	under	an	isospin	SU(2)	symmetry	group.	While	this	idea	is	not	taken
literally	 anymore,	 the	 terminology	 has	 stuck	 and	 is	 now	 used	 to	 describe	 all
hadrons.

The	next	important	observation	for	this	story	was	that,	just	like	the	proton	and
neutron,	many	of	the	new	particles	being	discovered	could	also	be	grouped	with
others	of	similar	mass.	For	example,	the	Σ	baryon	masses	are	mΣ−	≈	1197	MeV,
mΣ0	≈	 1192	MeV,	 and	mΣ+	≈	 1189	MeV.	 These	 were	 grouped	 into	 an	 isospin
triplet,	 with	 an	 isospin	 of	 I	 =	 1.	 By	 convention,	 the	 member	 of	 an	 isospin
multiplet	with	 the	highest	charge	was	also	assigned	 the	highest	value	of	 I3.	So
the	Σ	baryons	have	I3(Σ−)	=	−1,	I3(Σ0)	=	0	and	I3(Σ+)	=	+1,	while	the	proton	and
neutron	have	third	components	of	isospin	+ 	and	− 	respectively.

Flavor	SU(3)

If	we	arrange	hadrons	according	 to	several	properties,	an	 interesting	pattern
emerges.	 First,	 we	 categorize	 according	 to	 spin	 and	 parity.	 When	 listing	 the
properties	of	a	hadron,	it	is	customary	to	denote	the	spin	and	parity	with	a	single
symbol,	in	which	the	parity	(+	or	−)	is	written	as	a	superscript	on	the	value	of	the
spin.	 For	 example,	 the	 proton	 is	 said	 to	 have	 a	 spin-parity	 of	 J	 =	 	 +.	 If	 the
particle	 is	 also	 a	 	 eigenstate,	 its	 C	 eigenvalue	 is	 included	 as	 a	 second
superscript.	For	example,	 the	π0	has	JPC	=	0−+.	Within	each	spin-parity	 family,
we	 then	arrange	 the	hadrons	on	a	graph	of	 strangeness	plotted	against	 isospin.
The	result	is	that	the	lightest	hadrons	form	a	spin- 	octet,	a	spin- 	decuplet,	and
two	 integer-spin	 nonets	 that	 look	 suspiciously	 like	 SU(3)	 representations
(Figures	 6.1–6.4).	 In	 fact,	 by	 rescaling	 the	 vertical	 (strangeness)	 axis,	 we	 can
identify	 I3	 and	 S	 as	 the	 compatible	 generators	 of	 the	 symmetry	 group.	 More
precisely,	the	T8	generator	is	identified	as	 	where	B	is	the	baryon
number.	The	quantity	S	+	B,	or	more	generally	S	+	C	+	 	+	T	+	B,	is	known	as
the	hypercharge,	but	this	is	not	to	be	confused	with	the	weak	hypercharge,	which
we	will	introduce	in	Chapter	12.

The	baryons,	then,	appear	to	fall	into	the	8	and	10	representations	of	SU(3),
but	why	 should	 this	 be	 the	 case?	Gell-Mann’s	 hypothesis	was	 that	 there	 is	 an
underlying	structure	to	 the	hadrons:	 they	are	built	out	of	smaller	spin- 	units—



quarks—which	 transform	 as	 the	 fundamental	 representation.	 The	 relevant
quantum	numbers	of	these	objects	are:

FIGURE	6.1	The	spin- 	baryon	octet.

FIGURE	6.2	The	spin- 	baryon	decuplet.

FIGURE	6.3	The	spin-0	scalar	meson	nonet.



FIGURE	6.4	The	spin-1	vector	meson	nonet.

Quark I I3 S

u + 0

d − 0

s 0 0 −1

So	it	is	the	number	of	u	and	d	quarks	that	determines	isospin,	and	the	presence	of
strange	quarks	that	determines	strangeness.	Recall,	though,	that	strangeness	was
defined	by	an	unusually	low	decay	rate.	When	we	consider	weak	interactions	in
detail	in	Chapter	12,	we	will	see	exactly	why	it	is	that	the	presence	of	a	strange
quark	vastly	increases	the	lifetime	of	a	particle.

As	 we	 have	 seen	 in	 Section	 4.3.2,	 a	 combination	 of	 three	 fundamental
representations	 gives	 both	 a	 decuplet	 and	 an	 octet	 (along	 with	 two	 additional
representations,	but	we	will	deal	with	these	later).	Similarly,	the	combination	of
a	 fundamental	 with	 an	 anti-fundamental	 gives	 an	 octet	 and	 a	 singlet,	 or,	 put
another	way,	a	nonet.	The	proposal,	then,	was	that	baryons	are	formed	from	three
quarks,	while	a	meson	is	formed	from	a	quark	and	an	antiquark.	As	an	example,
the	 quark	 content	 of	 the	 spin- 	 octet	 is	 shown	 in	 Figure	 6.5,	 and	 a	 quick
calculation	or	two	will	show	that	the	quantum	numbers	appear	to	sum	correctly
to	give	the	correct	values	of	I3	and	S	for	each	hadron.	However,	as	we	will	see	in
Section	 6.4,	 the	 details	 of	 this	 process	 are	 a	 little	more	 complicated.	 Also,	 in
order	to	account	for	the	charges	of	the	hadrons,	we	find	that	the	d	and	s	quarks
have	charges	of	− ,	while	the	u	quark	has	+ .
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FIGURE	6.5	The	spin- 	octet,	showing	the	quark	content	of	each	baryon.

COLOR

Historically,	 the	need	 for	 three	quarks	per	hadron	was	 incorporated	 into	 the
quark	model	 simply	 to	 fit	 the	 data.	Three	 quarks	was	 sufficient	 to	 explain	 the
known	baryons.	In	hindsight,	the	underlying	reason	for	three-quark	states	is	the
existence	 of	 color.	 Color	 is	 an	 additional	 degree	 of	 freedom	 for	 quarks:	 each
quark	flavor	(up,	down,	strange,	etc.)	comes	in	three	varieties,	known	as	colors.
These	 have	 nothing	 at	 all	 to	 do	 with	 color	 in	 the	 everyday	 sense	 but	 are	 an
arbitrary	set	of	 labels	 to	distinguish	 the	 three	 types	of	quark.	This	 terminology
does	allow	for	a	useful	analogy,	however,	in	that	the	colors,	labeled	red,	green,
and	blue,	can	be	considered	to	mix	in	a	baryon	to	form	a	neutral	white.	Just	as	an
atom,	with	 equal	 numbers	 of	 positive	 and	 negative	 charges,	 appears	 neutral	 at
large	 distance	 scales,	 a	 baryon	with	 all	 three	 colors	 present	 in	 a	 neutral	white
mixture	 appears	 to	 have	no	 color	 from	 the	 outside.	Similarly,	 antiquarks	 carry
and	anticolor	and	mesons	consist	of	a	neutral	color-anticolor	combination.

This	 color	 degree	 of	 freedom	 cannot	 be	 directly	 detected,	 again	 due	 to
confinement;	so	why	should	it	be	included	on	theoretical	grounds?	The	answer	is
that	hadronic	bound	states	without	color	appear	 to	disobey	 the	Pauli	Exclusion
Principle.	We	will	 see	 in	Section	6.4	 that	 this	 is	 true	 of	 all	 the	 hadrons,	 since
their	wavefunctions	without	color	must	be	symmetric	under	quark	exchange	 in
order	 to	 match	 correctly	 the	 observed	 multiplets.	 The	 simple	 way	 to	 see	 the
problem,	however,	is	to	look	just	at	the	Ω−	baryon	in	an	Sz	=	+ 	spin	state.	With
this	spin	and	a	strangeness	of	−3,	the	baryon	must	consist	of	three	strange	quarks



whose	 spins	 are	 aligned.	 In	 this	 configuration,	 each	 quark	 is	 in	 the	 same	one-
particle	 state,	 which	 contradicts	 the	 exclusion	 principle.	 Since	 quarks	 are
fermions,	 the	overall	wavefunctions	must	 be	 antisymmetric	under	 exchange	of
any	two	quarks.	Color	was	introduced	as	an	additional	SU(3)	degree	of	freedom,
in	which	the	three	quarks	of	a	baryon	are	completely	antisymmetric,	to	allow	for
an	overall	antisymmetric	wavefunction	for	the	hadron.

Additional	 evidence	 for	 the	 existence	 of	 three	 colors	 comes	 from	 the
production	 of	 hadronic	 showers	 in	 electron-positron	 collisions	 via	 processes
such	as

where	q	and	 	are	a	quark-antiquark	pair.	Since	the	electron	does	not	participate
in	strong	interactions	(and	weak	interactions	are	negligible),	we	can	see	that	the
cross-section	for	q- 	production	is	calculated	from	a	lone	Feynman	diagram:

Although	 we	 have	 not	 yet	 delved	 into	 the	 full	 calculation	 of	 crosssections
from	 a	 theoretical	 viewpoint,	we	 can	 see	 that	 the	 above	 process	 is	 essentially
identical	to	µ+-µ−	production:	e++e−	→	µ++µ−.	As	such	the	cross-sections	should
be	 essentially	 identical,	 up	 to	 the	 strength	 of	 the	 coupling	 constant	 at	 the
vertices.	 That	 is,	 since	 the	 quarks	 have	 fractional	 charges,	 the	 hadronic	 cross-
section	 should	 be	 scaled	 down	 relative	 to	muon	 production	 by	 a	 factor	 of	q2,
where	q	 is	 the	fractional	charge	of	 the	quark	in	question.	Recall	 that	 the	cross-
section	 is	 proportional	 to	 the	 square	 of	 the	 invariant	 amplitude	 and	 hence	 the
squared	charge.	So	at	low	energies,	where	strange	hadron	production	is	possible,
but	charmed	hadron	production	is	not,	we	would	expect	to	find	that	the	hadronic
cross-section	is	related	to	the	muonic	cross-section	by
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Experimentally,	 however,	 this	 ratio	 is	 found	 to	 be	 2,	 not	 .	As	 energies	 are
increased	 above	 the	 threshold	 for	 charm	 production,	 this	 ratio	 changes	 both
experimentally	and	theoretically,	but	again	the	experimental	result	is	higher	than
the	 theoretical	 prediction	 by	 a	 factor	 of	 3.	 This	 trend	 continues	 above	 the
threshold	for	bottom-quark	production.	So	production	rates	in	such	processes	are
consistently	higher	than	theoretical	predictions	by	a	factor	of	3.	However,	if	the
process	e+	+	e−	→	q	+	 	is	seen	as	a	shorthand	for	three	different	processes:

each	of	which	can	produce	the	detectable	final-state	hadrons,	then	the	source	of
the	discrepancy	becomes	clear.

While	color	was	originally	introduced	just	to	clear	up	the	symmetry	issue,	it
is	now	known	to	be	of	fundamental	importance	to	the	strong	nuclear	force.	Color
is	 to	 strong	 interactions	 as	 charge	 is	 to	 electromagnetic	 interactions.	 The
difference	is	that,	where	electric	charge	is,	in	a	sense,	a	one-dimensional	quantity
(positive	 and	 negative	 may	 be	 opposites	 but	 can	 still	 be	 plotted	 on	 the	 same
axis),	color	is	three-dimensional.	It	comes	in	red,	green,	and	blue	varieties,	each
of	which	 can	be	 positive	 or	 negative	 (negative	 red	 is	 known	 as	 antired).	This,
then,	 is	 the	 underlying	 reason	 that	 baryons	 have	 three	 quarks.	 In	 a	 colorless
system,	 such	 as	 a	 combination	 of	 red,	 green,	 and	 blue	 quarks,	 there	 is	 no	 net
“color	charge”	to	attract	further	quarks.	The	structure	of	strong	interactions	will
be	 examined	 in	 greater	 detail	 in	 Chapter	 10.	 For	 now,	 the	 only	 part	 of	 this
discussion	 that	we	must	 bear	 in	mind	 for	 the	 remainder	 of	 this	 chapter	 is	 that
quarks	are	bound	in	color-antisymmetric	combinations.

BUILDING	HADRONS



The	state	vector	for	a	hadron	can	be	broken	down	into	four	components:	the
flavor	 state,	 the	 color	 state,	 the	 spin	 state,	 and	 the	 spatial	 dependence,	 |ψ⟩	 =	 |
ψflavor⟩	|ψcolor⟩	|ψspin⟩	|ψspace⟩.	Of	 these,	 the	spatial	component	has	 the	potential
to	be	the	most	complicated,	involving	the	spherical	harmonic	functions	that	we
will	consider	 in	Section	6.4.3.	However,	 if	we	 restrict	our	attention	 for	now	 to
those	hadrons	with	no	 internal	 orbital	 angular	momentum,	 in	which	 all	 quarks
are	in	the	ground	state	with	respect	to	their	spatial	dependence,	then	we	can	say
that	 the	 spatial	 component	 is	 symmetric	 under	 quark	 exchange.	 In	 order	 to
understand	the	existence	of	the	different	hadrons,	it	is	enough	to	consider	just	the
symmetry	properties	of	these	components,	so	this	allows	us	to	neglect	the	spatial
component.	 We	 can	 further	 deconstruct	 the	 remaining	 components	 and	 write
them	 in	 terms	 of	 combinations	 of	 one-particle	 states	 for	 the	 individual
component	quarks.	For	baryons,	we	have	already	seen	that	the	color	state	must
be	fully	antisymmetric.	We	can	write	this	as

We	can	see	from	this	color	wavefunction	that	hadrons	are	color	singlets.	That
is,	they	form	the	1	representation	of	color	SU(3).	It	is	not	enough	for	a	hadron	to
be	“colorless”	in	the	sense	of	having	no	net	color:	they	must	be	an	antisymmetric
combination	of	color	states.	In	fact,	if	we	could	construct,	for	example,	a	meson
consisting	of	just	red	and	antired	states,	it	would	be	strongly	interacting,	since	it
is	not	a	singlet.	This	is	analogous	to	the	non-zero	spin	of	the	symmetric	state	(|
↑↓⟩	 +	 |↓↑⟩)	 as	 in	 the	 next	 section.	 For	 the	 flavor	 and	 spin	 components,	 things
aren’t	quite	so	straightforward,	and	we	will	return	to	them	shortly.

Since	a	meson	is	composed	of	one	quark	and	one	anti-quark,	quark	exchange
is	not	an	option.	This	makes	meson	state	vectors	rather	more	simple	to	construct
than	baryon	states.	The	color	component	must	clearly	consist	of	a	color	and	its
anti-color.	However,	 strong	 interactions	within	 the	meson	mean	 that	 this	 color
and	 anticolor	 are	 not	 fixed.	 The	 color	 component	 must,	 therefore,	 be	 a
symmetric	combination	of	color-anticolor	states:



6.4.1 Quark	Content

We	have	 two	more	parts	 of	 the	wavefunction	 to	 consider,	 and	here	 there	 is
more	 freedom	 and	 more	 subtlety	 than	 in	 the	 color	 part	 we	 have	 already
considered.	The	guiding	principle	in	constructing	the	spin	and	flavor	parts	of	the
wavefunction	will	 be	 that	 the	 combined	 result	must	 be	 fully	 symmetric	 under
quark	 exchange.	 This	 is	 because	 the	 overall	 wavefunction	 must	 be	 fully
antisymmetric,	 since	 quarks	 are	 fermions.	 This	 antisymmetry	 is	 already
accounted	for	by	the	color	part	of	the	wavefunction,	and	the	spatial	part	is	fully
symmetric	for	the	hadrons	we	wish	to	consider.

Combining	Spins

Let	us	begin	by	looking	at	the	spin	state	of	quarks	in	a	baryon.	We	will	need
to	consider	a	combination	of	three	quarks,	but	for	now,	let’s	consider	a	simpler
system	of	 just	 two	quarks.	 If	a	 two-particle	state	 |ψ⟩	 is	constructed	out	of	one-
particle	 states	 |ψA⟩	 and	 |ψB⟩	 for	 the	 individual	 particles	 A	 and	 B,	 then	 the	 z
component	of	spin	for	the	system	is	given	by

where	 	and	 	act	only	on	their	respective	particles.	In	other	words

It	is	straightforward	to	show	that	the	states	|↑↑⟩	and	|↓↓⟩	have	a	z	component	of
spin	of	+1	and	−1	respectively.	Similarly,	the	mixed	states	|↑↓⟩	and	|↓↑⟩	are	both
Sz	states	with	eigenvalue	0.

We	can	also	form	the	total	spin	operator	for	the	two-particle	system:

and	while	|↑↑⟩	and	|↓↓⟩	are	S2	eigenstates,	the	Sz	=	0	mixed-spin	states	are	not.	In
fact,	we	find



From	this,	it	quickly	follows	that	the	symmetric	combination	|ψS⟩	=	 	(|↑↓⟩	+	|
↓↑⟩)	 is	 an	 eigenstate	 of	 S2	 with	 eigenvalue	 1.	 Similarly,	 the	 antisymmetric
combination	|ψA⟩	=	 	(|↑↓⟩	−	|↓↑⟩)	is	an	S2	state	with	an	overall	spin	of	0.

This	suggests	that	the	symmetric	state	should	form	part	of	a	triplet,	while	the
antisymmetric	state	is	a	singlet.	This	is	indeed	the	case:	the	remaining	two	states
of	 the	 triplet	 are	 |↑↑⟩	 and	 |↓↓⟩,	 as	 can	 be	 demonstrated	 by	 forming	 the	 spin
raising	and	lowering	operators	S+,	S−	for	the	two-particle	system.	We	have

with	a	similar	result	for	S−.

Combining	 a	 third	 spin	works	 in	 a	 similar	 fashion	 to	 produce	 a	 total	 of	 10
three-particle	spin	states:

The	spin- 	quadruplet	is	fully	symmetric	in	all	three	spins,	while	the	two	spin-
doublets	are	each	partially	antisymmetric:	the	first	in	spins	1	and	2,	the	second	in
spins	1	and	3,	and	the	third	in	spins	2	and	3.	In	fact,	only	eight	of	these	10	states
are	linearly	independent	since	any	one	of	the	doublets	may	be	formed	as	a	linear
combination	of	the	other	two.



Combining	Flavors

Since	 the	combination	of	spin	and	 flavor	wavefunctions	must	be	symmetric
overall,	flavor	states	must	share	the	same	symmetry	properties	as	the	spin	states
we	wish	to	combine	them	with.	So	the	spin- 	states	must	be	fully	symmetric	in
flavor,	while	the	spin- 	states	must	be	of	mixed	symmetry.	Simply	writing	down
all	 27	 possible	 combinations	 of	 three	 quark	 flavors	 is	 not	 sufficient,	 however,
since	 the	majority	have	no	 symmetry.	For	 example,	 |uds⟩	 is	 neither	 symmetric
nor	antisymmetric.	So	what	combinations	should	we	be	using?	To	answer	 this,
notice	that,	in	taking	the	quarks	to	be	interchangeable,	we	have	made	an	implicit
assumption	that	 the	quarks	are	identical	apart	from	their	flavor.	That	 is,	we	are
treating	them	as	 if	 they	have	the	same	properties,	such	as	mass	and	charge.	Of
course,	we	know	this	not	to	be	the	case	but	here	the	hierarchy	of	forces	comes
into	 play.	 Since	 the	 strong	 force	 utterly	 dwarfs	 the	 weak	 and	 electromagnetic
interactions,	and	since	there	is	no	difference	between	the	quarks	in	terms	of	their
strong	 interactions,	 to	 a	 good	 approximation,	 we	 can	 treat	 them	 as	 the	 same
particle.	We	say	that	there	is	an	“approximate	SU(3)	flavor	symmetry.”	So,	just
as	we	 constructed	our	 spin	 states	 as	 irreducible	SU(2)	 representations	 in	 order
that	 they	 have	 well-defined	 spin	 quantum	 numbers,	 here	 we	 must	 construct
irreducible	flavor	SU(3)	representations.	These	will	have	well-defined	values	of
the	quantum	numbers	we	have	chosen	as	 the	basis	 for	our	 flavor	SU(3)	states:
isospin	and	strangeness.

So	 we	 require	 27	 linearly	 independent	 flavor	 states	 that	 form	 irreducible
representations	of	flavor	SU(3).	We	have	already	seen	 in	Section	4.3.2	 that	 the
relevant	 representations	 will	 arise	 from	 3⊗3⊗	 3	 =	 10	⊕	 8	⊕	 8	⊕	 1.	 The
symmetric	10	consists	of



Any	one	of	these	may	be	combined	with	any	of	the	previous	spin- 	spin	states,
giving	 10	 different	 baryons,	 each	 with	 four	 possible	 Sz	 states.	 We	 have
successfully	constructed	the	spin- 	baryon	decuplet.

There	are	eight	states	that	are	antisymmetric	in	quarks	1	and	2:

Notice	that	the	last	two	of	these	both	have	quark	content	u,	d,	s.	However,	they
are	distinguished	by	their	isospin:	the	first	has	I	=	1,	the	second,	I	=	0,	which	can
be	seen	by	considering	the	symmetry	properties	under	exchange	of	u	and	d	only.
This	is	exactly	what	we	want	for	the	spin- 	octet.

We	can	construct	similar	representations	that	are	symmetric	in	quarks	1	and	3,
and	quarks	2	and	3.	Finally,	there	is	a	fully	antisymmetric	state



At	this	point,	we	appear	to	have	10+8+8+8+1=35	flavor	states.	However,	as
with	 the	 spin	 states,	 not	 all	 of	 these	 are	 linearly	 independent.	 Either	 of	 the
mixed-symmetry	 octets	 may	 be	 constructed	 from	 the	 other	 two,	 reducing	 the
number	of	independent	states	to	27	as	expected.	So	which	of	these	octets	is	the
correct	one	for	describing	the	spin- 	baryons?	The	answer,	as	always,	is	a	linear
combination!	We	must	construct	a	spin-flavor	state	 that	 is	fully	symmetric,	but
we	have	only	mixed-symmetry	states	available.	We	therefore	combine	spin	and
flavor	states	with	the	same	symmetry	and	take	the	symmetric	sum	of	all	three	to
get	the	overall	state.	That	is,	if	|ψij⟩	denotes	a	state	antisymmetric	in	i	and	j,	we
take

Notice	 that	 the	 remaining	 antisymmetric	 flavor	 singlet,	1,	 has	 no	 spin	 state
with	which	it	can	pair	to	produce	a	symmetric	state.	As	such,	the	flavor	singlet	is
unphysical.	We	have	now	reached	a	point	where	we	can	successfully	explain	the
existence	of	the	baryon	octet	and	decuplet.	However,	we	can	go	further	and	use
the	quark	model	to	predict	some	of	the	properties	of	the	baryons,	including	their
mass,	as	we	will	see	in	Section	6.4.2.	First,	however,	we	should	check	 that	we
can	also	explain	the	meson	multiplets.

Building	Mesons

The	 mesons	 are	 somewhat	 easier	 to	 construct	 than	 the	 baryons	 but	 were
postponed	 until	 now	 because	 there	 is	 one	 aspect	 of	 their	 construction	 that	 is
unusual,	 in	 that	 some	 of	 the	 physical	 flavor	 states	 will	 not	 be	 uniquely
determined.	 The	 relative	 simplicity	 of	 meson	 states	 is	 due	 to	 the
distinguishability	 of	 the	 constituent	 quark	 and	 antiquark.	 Since	we	 can	 always
tell	 the	 two	 apart,	 we	 need	 not	 consider	 symmetric	 and	 antisymmetric
combinations.	 Instead,	 we	 can	 definitively	 assign	 a	 particular	 flavor	 to	 a
particular	constituent.	Six	of	the	available	flavor	states	are	given	by



directly	 corresponding	 to	 the	 mesons	 around	 the	 outside	 of	 the	 nonets.	 The
remaining	three	possibilities	would	appear	to	be	simply

However,	since	any	one	of	 these	could	potentially	undergo	a	 transformation
into	another	through	annihilation	and	pair-production,	the	physical	particles	may
be	 linear	 combinations	 of	 these	 basis	 states.	 Exactly	 which	 combinations
correspond	 to	 physical	 states,	 though,	 must	 be	 determined	 experimentally,	 by
observing	the	relative	frequency	of	decay	modes.	Isospin	SU(2)	appears	to	be	a
good	symmetry	in	both	the	spin-0	and	spin-1	systems,	with	both	the	neutral	pion
and	neutral	ρ	forming	the	I3	=	0	component	of	an	isospin	triplet:	 	(|uū⟩	−	d ⟩).
In	 the	 case	 of	 the	 scalar	 mesons,	 experiment	 suggests	 that	 flavor	 SU(3)	 is	 a
reasonably	 good	 symmetry.	 The	 η′	 is,	 at	 least	 approximately,	 an	 SU(3)	 flavor
singlet	 	 (|uū⟩	 +	 d ⟩	 +	 |s ⟩)	 and	 the	 η	 the	 remaining	 linearly	 independent
combination	 	 (|uū⟩	 +	 d ⟩	 −	 2	 |s ⟩).	 In	 fact,	 since	 SU(3)	 flavor	 is	 only	 an
approximation,	the	actual	η	and	η′	states	are	a	mixture	of	the	two	idealized	states
given	here,	with	a	mixing	angle	of	around	11.5◦.	On	the	other	hand,	in	the	case	of
the	vector	mesons,	it	appears	that	the	strange	quark	does	not	play	nicely	with	the
other	quarks,	 instead	producing	a	physical	 state	on	 its	 own	with	only	minimal
mixing.	So	the	physical	states	in	this	case	are	(approximately)	ρ	=	 	(|uū⟩	−	d
⟩),	ω	=	 	(|uū⟩	+	d ⟩)	and	ϕ	=	|s ⟩.	The	values	in	these	combinations	tell	us	that,
if	we	 could	 repeatedly	 pull	 apart	η	mesons	 for	 example,	 then	 in	 six	 goes,	we
would	find	on	average	one	uū	pair,	one	d 	pair,	and	four	s 	pairs.	An	important
point	 about	 these	particular	 combinations	 is	 that	 they	are	orthogonal:	we	can’t
make	any	one	of	them	out	of	a	linear	combination	of	the	other	two.	If	we	could,
they	 would	 not	 be	 independent	 particles	 and	 would	 not	 have	 well-defined
masses.

FIGURE	6.6	The	decay	of	a	∆+	baryon	at	both	hadron	and	quark	levels.

Quark	Diagrams
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With	the	quark	model	in	place,	we	can	begin	to	see	that	Feynman	diagrams	at
the	hadron	level	can	be	translated	to	diagrams	at	 the	quark	level.	For	example,
the	decay	of	a	∆+	baryon	can	be	 represented	equally	well	 at	hadron	and	quark
levels,	as	shown	in	Figure	6.6.	Similarly,	we	also	find	that	the	weak	interaction
really	works	at	the	quark	level,	as	shown	in	Figure	6.7.

FIGURE	6.7	A	weak	interaction	at	the	quark	level.

Mass

A	naive	approach	to	predicting	the	hadron	masses	may	be	simply	to	add	the
masses	of	the	constituent	quarks.	The	problem	with	this	approach	is	immediately
obvious	 when	 we	 consider	 that	 the	 Λ	 and	 Σ0	 baryons	 have	 the	 same	 quark
content,	yet	different	masses.	Clearly,	there	is	something	else	contributing	to	the
mass	of	the	hadron.	As	we	will	see	later	in	Section	10.5.3,	an	accurate	approach
to	finding	this	something	is	a	difficult	problem	that	we	will	not	be	able	to	give	a
full	 solution	 to	 in	 this	 text.	However,	as	a	 first	approximation,	we	can	account
for	 the	difference	 in	mass	by	considering	 the	spin	coupling	of	 the	quarks.	This
approach	is	known	as	the	static	quark	model.	As	discussed	in	Section	3.7,	in	the
presence	 of	 a	 magnetic	 field,	 otherwise	 degenerate	 energy	 levels	 may	 split
through	 the	 Zeeman	 effect.	 In	 atomic	 spectra,	 such	 splitting	 is	 caused	 by	 the
magnetic	field	generated	by	the	magnetic	moment	of	the	nucleus	and	gives	rise
to	 the	 fine	 structure	 in	 spectral	 lines.	 In	 the	case	of	hadrons,	 the	 interaction	of
each	pair	of	quarks	will	have	an	effect	on	the	energy	and	thereby	on	the	mass	of
the	hadron.	Since	the	energy	of	a	magnetic	dipole	in	an	external	magnetic	field	is
given	by	−µiBi,	 the	energy	associated	with	a	pair	of	quarks	due	to	their	mutual
magnetic	interactions	should	be	of	the	form

where	 S1,	 S2	 are	 the	 quark	 spins,	 m1,	m2	 are	 the	 quark	 masses,	 and	 A	 is	 a



constant	 to	 be	 determined	 from	 experimental	 data.	 This	 gives	 a	 formula	 for
meson	masses	of	the	form

and	a	similar	expression	for	baryon	masses:

The	 values	 of	 the	 quark	 masses	 and	 constants	 Abaryon,	 Ameson	 may	 then	 be
calculated	 by	 finding	 the	 best	 fit	 to	 the	 observed	 hadrons.	 This	 is	 left	 to	 the
reader	in	Exercises	2	and	3.

This	 model	 is	 reasonably	 successful	 at	 predicting	 (or	 rather	 postdicting)
hadron	 masses,	 but	 it	 does	 seem	 to	 suggest	 that	 the	 quark	 masses	 are
suspiciously	high.	In	fact,	this	highlights	a	limitation	of	the	model	that	we	have
employed,	and	we	must	be	careful	 to	make	a	distinction	between	 two	 types	of
quark	mass.	The	“effective	mass”	of	a	quark	or	“constituent	quark	mass”	is	the
apparent	mass	 according	 to	 this	model,	 while	 the	 “current	masses”	 (so	 called
because	 of	 their	 role	 in	 the	 conserved	 currents	 that	 describe	 Standard	 Model
interactions)	are	around	200	times	smaller.	The	current	masses,	then,	are	not	by
themselves	 capable	 of	 explaining	 the	 much	 larger	 masses	 of	 hadrons.	 The
additional	 mass	 in	 fact	 comes	 from	 the	 complicated	 internal	 dynamics	 of	 the
hadron,	 with	 a	 sea	 of	 gluons	 and	 quark-antiquark	 pairs	making	 up	more	 than
98%	of	the	total	energy	of	the	system.	The	real	problem	is	that,	in	assuming	that
the	 quarks	 are	 static,	we	 have	 implicitly	 assumed	 also	 that	 the	 system	 is	 non-
relativistic.	Since	it	is	the	combination	of	relativity	with	quantum	mechanics	that
leads	 to	 the	 appearance	 of	 antiparticles,	we	 have	 neglected	 all	 of	 this	 activity.
The	 appearance	 of	 an	 effective	 quark	 mass	 in	 the	 static	 model	 is	 due	 to	 us
carelessly	attributing	 roughly	one	 third	of	 this	additional	binding	energy	 to	 the
mass-energy	of	each	quark.	We	refer	to	the	quark	plus	this	lump	of	extra	energy
as	 a	 “constituent	 quark.”	Despite	 these	 limitations,	 however,	 there	 are	 at	 least
two	 reasons	why	 this	 is	 still	 a	useful	model.	First,	despite	 its	 flaws,	 the	model
still	 predicts	 hadron	 masses	 reasonably	 well.	 Second,	 in	 calculating	 the
constituent	quark	masses,	we	now	have	an	expression	for	the	effective	magnetic
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moment	 of	 each	 quark	 flavor,	 from	 which	 we	 can	 calculate	 the	 magnetic
moments	of	hadrons.	For	example,	with	no	internal	orbital	angular	momentum,
the	magnetic	moment	of	 the	proton	 is	 the	sum	of	 the	magnetic	moments	of	 its
constituent	quarks.	While	this	sounds	simple,	it	must	be	borne	in	mind	that	the
magnetic	 moment	 of	 each	 quark	 depends	 on	 that	 quark’s	 relative	 spin
orientation.	As	 such,	 the	 symmetry	properties	of	 the	proton’s	wavefunction,	 as
discussed	in	previous	sections,	must	be	taken	into	account	when	performing	the
calculation.	 The	 result,	 however,	 is	 in	 reasonably	 good	 agreement	 with	 the
experimentally	determined	value.

Angular	Momentum,	Parity,	and	Charge	Parity

Angular	Momentum

All	of	the	mesons	and	baryons	that	we	have	considered	so	far	have	had	a	spin
determined	 by	 the	 relative	 orientations	 of	 the	 spins	 of	 their	 constituents,	 since
the	 orbital	 angular	momentum	 has	 been	 assumed	 to	 be	 zero.	 This	 assumption
only	allows	meson	spins	of	0	or	1,	and	baryon	spins	of	 	or	 ,	since	these	are	the
only	possibilities	when	adding	quark	spins.	 In	reality,	many	other	hadron	spins
are	realized,	since	the	quarks	may	also	have	non-zero	orbital	momentum.	Let’s
consider	this	possibility	in	the	case	of	mesons.	In	a	meson,	with	two	independent
spins,	 the	 only	 possibilities	 for	 the	 total	 spin	 are	S	 =	 0	 and	S	 =	 1.	 For	L	 =	 0
(orbital	 angular	 momentum),	 these	 are	 also	 the	 values	 of	 J	 (total	 angular
momentum),	 giving	 the	 scalar	 and	 vector	mesons	 that	we	 are	 already	 familiar
with.	 For	L	 =	 1,	 we	 have	 the	 possibilities	 J	 =	 0,	 1,	 2.	 However,	 we	must	 be
careful	to	distinguish	two	distinct	states	with	J	=	1.	Specifically,	there	is	the	state
in	which	S	=	0	and	L	=	1,	and	there	is	the	state	in	which	S	=	L	=	1	but	in	which
the	orientation	of	these	angular	momenta	is	such	that	their	sum	is	J	=	1.	To	put
this	another	way,	the	S	=	0	state	is	a	singlet,	while	the	S	=	1	states	form	a	triplet
with	 J	 taking	 the	 values	 J	 =	 0,	 1,	 2.	 This	 pattern	 then	 continues	 with	 higher
values	of	L.	 In	each	case,	 there	 is	a	 singlet	with	S	=	0	and	J	=	L,	 as	well	 as	a
triplet	with	S	=	1	and	J	=	L	−	1,	L,	L	+	1.	This	 information	is	most	commonly
summarized	in	spectroscopic	notation



where	2S	+	1	is	the	multiplicity	of	the	state,	and	L	is	conventionally	represented
by	 its	 spectroscopic	 letter	 rather	 than	 its	 numerical	 value	 (S,	P,	D,	F,	G,	 .	 .	 .
standing	for	L	=	0,	1,	2,	3,	4,	.	.	.).	The	meson	states,	then,	are	given	by

In	 the	 case	 of	 baryons,	 there	 are	 now	 two	 independent	 contributions	 to	 the
orbital	 angular	 momentum:	 one	 component,	 Lp,	 that	 measures	 the	 orbital
momentum	of	a	pair	of	quarks	about	their	center	of	mass,	and	a	second,	Lr,	that
measures	 the	 orbital	 momentum	 of	 this	 pair’s	 barycenter	 and	 the	 remaining
quark	about	the	overall	center	of	mass.	According	to	quantum	mechanics,	these
angular	momenta	may	combine	in	various	ways.	However,	the	possible	values	of
L	are	still	the	integers.	The	possible	values	of	S	now	are	 	+	 	+	 	=	 	and	 	+	 	−	
=	 .	Together,	these	give	the	following	possibilities	for	baryons:

Parity

The	 parity	 of	 all	 the	 lowest-mass	 mesons	 is	 −1.	 This	 simple	 statement	 of
experimental	fact	is	straightforward	to	deduce	on	theoretical	grounds	by	looking
at	 the	 constituent	 quarks,	 since	 we	 know	 that	 a	 quark-antiquark	 pair	 has	 a
combined	parity	of	−1.	As	stated	in	Section	4.2.2,	the	convention	is	to	take	the
quark	 parity	 to	 be	 +1	 and	 the	 antiquark	 parity	 to	 be	 −1.	However,	 this	 is	 not
necessary	to	determine	the	parity	of	the	meson,	since	the	alternative	convention
would	 also	 lead	 to	 the	 same	 result.	 Now	 consider,	 though,	 a	 meson	 with	 an
orbital	angular	momentum	ℓ.	Here,	 the	effect	of	a	parity	 transformation	on	 the
entire	 system	must	be	 taken	 into	account.	 It	 is	not	difficult	 to	 see	 that	a	parity
transformation	 applied	 to	 two	 classical	 objects	 orbiting	 each	 other	 alters	 the
system,	with	the	transformed	system	appearing	to	rotate	in	the	opposite	direction
from	 the	original.	This	 is	 found	 to	be	 the	case	 in	 the	quantum	system	as	well.
While	 this	 argument	 will	 hopefully	 help	 to	 convince	 the	 reader	 that	 orbital
momentum	should	play	a	role	in	determining	parity,	it	is	not	intended	to	be	taken
too	 literally,	 since	 we	 must	 remember	 that	 it	 is	 the	 sign	 of	 the	wavefunction
under	parity	that	matters.	To	proceed,	then,	we	must	consider	the	wavefunction



of	 two	 quantum	 objects	 in	 mutual	 orbit.	 The	 solution	 of	 the	 Schrödinger
equation	 in	 a	 spherically	 symmetric	 potential	 requires	 first	 the	 solution	 of
Laplace’s	equation	(∇2Ψ	=	0)	in	spherical	polar	coordinates.	The	solutions	may
be	expressed	as	the	product	of	a	radial	part	and	an	angular	part.	The	radial	part
leads	to	the	existence	of	a	principal	quantum	number	analogous	to	that	in	atomic
orbitals,	which	labels	the	radial	eigenfunction.	We	may	neglect	this	part	for	our
current	purposes,	however,	since	it	is	invariant	under	parity.	The	eigenfunctions
of	the	angular	part	of	the	equation	take	the	form	of	the	spherical	harmonics

where	θ	and	ϕ	 are	 the	polar	and	azimuthal	angles	and	 	 is	a	constant	whose
value	 is	 unimportant	 for	 the	 present	 discussion.	 	 is	 an	 associated	 Legendre
polynomial,	given	by

where	the	labels	ℓ	and	m	are,	respectively,	the	angular	momentum	and	magnetic
quantum	numbers.

Consider,	 then,	 the	 effect	 of	 a	 parity	 inversion	 on	 the	 spherical	 harmonics.
First,	the	spherical	coordinates	themselves	transform	as	θ	 	π	−	θ	and	ϕ	 	ϕ	+	π,
as	can	be	seen	by	considering	 the	coordinates	of	an	arbitrary	point	on	 the	unit
sphere.	This	 implies,	 then,	 that	 (cos	θ)	 transforms	 to	 (−	cos	θ)	under	parity.	 In
turn,	since	the	only	“unsquared”	appearance	of	cos	θ	in	the	associated	Legendre
polynomial	is	in	the	derivative,	we	find	that	 (cos	θ)	 	(−1)ℓ+m (cos	θ).	The
exponential	part	of	the	spherical	harmonic,	on	the	other	hand,	clearly	transforms
according	to

Overall,	this	gives	the	spherical	harmonics	a	parity	transformation	of

From	 this,	 we	 can	 see	 that	 the	 behavior	 of	 the	 wavefunction	 under	 a	 parity
transformation	is	determined	by	the	magnitude	of	its	orbital	angular	momentum



(ℓ),	 but	 not	 by	 its	 orientation	 (m).	 So	 mesons	 with	 non-zero	 orbital	 angular
momentum	have	an	intrinsic	parity	of	(−1)ℓ+1,	where	the	additional	negative	sign
comes	from	the	intrinsic	parity	of	the	quark	and	antiquark.

For	baryons,	we	again	have	two	angular	momenta	to	consider,	Lp	and	Lr.	The
quantum	 mechanical	 description	 of	 the	 system,	 then,	 will	 consist	 of	 a
wavefunction	 that	 is	 formed	 from	 a	 product	 of	 two	 spherical	 harmonics,	with
independent	 values	 of	 ℓ.	 Under	 parity,	 each	 of	 these	 spherical	 harmonics	 will
transform	in	the	way	discussed	above,	so	we	find	that	the	parity	of	the	baryon	is
given	by

where	there	are	three	implicit	factors	of	+1	to	account	for	the	intrinsic	parities	of
the	quarks.	Unlike	 the	case	of	mesons,	 in	which	 the	convention	used	 to	assign
parities	 to	 fermions	made	no	difference	 to	 the	hadron	parity,	here	we	 find	 that
using	 the	opposite	convention	would	 lead	 to	PB	=	 (−1)3(−1)Lp+Lr	 =	−(−1)Lp+Lr.
This	 is	 unsurprising,	 however,	 since	 baryons	 have	 distinct	 antiparticles,	 unlike
mesons.	 So	 we	 would	 expect	 to	 have	 to	 impose	 our	 convention	 either	 at	 the
quark	 level	or	 the	baryon	 level,	 and	 the	 change	demonstrated	here	 is	 simply	 a
reflection	of	the	consistency	of	the	convention	at	both	levels.

Charge	Conjugation

We	have	already	seen	that	the	majority	of	particle	species	are	not	eigenstates
of	 the	 charge	 conjugation	operator.	One	group	of	 particles	 that	are	 eigenstates
are	those	mesons	that	consist	of	a	quark	and	its	own	antiquark.	This	is	because
the	charge	conjugation	operator,	 ,	swaps	each	of	the	constituent	particles	for	the
other	particle	in	the	meson.	To	see	what	effect	 	has	on	a	meson,	there	are	three
factors	that	we	must	consider.	First,	if	the	position	of	the	antiquark	relative	to	the
quark	 is	 given	 by	 a	 position	 vector	 r,	 then	 applying	 	 effectively	 exchanges
quark	and	antiquark,	such	that	r	is	replaced	by	−r.	In	other	words,	the	effect	that	
	 has	 on	 the	 spatial	 part	 of	 the	meson	wavefunction	 is	 the	 same	 as	 the	 parity
operator,	giving	a	factor	of	(−1)L,	as	before.	Second,	we	have	already	seen	that	a
symmetric	spin	state	has	S	=	1,	while	an	antisymmetric	state	has	S	=	0.	So	 the
spin	part	of	the	wavefunction	will	undergo	a	sign	change	if	the	sum	of	the	quark
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spins	 is	 0,	 but	will	 be	unchanged	 if	 the	 sum	 is	 1.	Finally,	 since	 the	quark	 and
antiquark	 are	 fermions,	 there	 is	 an	 overall	 negative	 sign	 that	 arises	 from	 their
exchange.	 Putting	 this	 together,	 we	 find	 that	 the	C-parity	 of	 a	 	 eigenstate	 is
given	by	(−1)L+S.	This	expression	also	generalizes	to	the	case	of	bound	states	of
other	particle-antiparticle	pairs.	In	the	case	that	the	particles	involved	are	bosons,
the	expression	simplifies	somewhat,	since	the	sum	of	spins	must	necessarily	be
even	in	this	case,	and	the	overall	negative	for	fermion	exchange	is	not	needed.	In
this	case,	then,	the	expression	reduces	to	(−1)L.

Larger	Flavor	Symmetries

The	SU(2)	isospin	symmetry,	while	not	exact,	is	a	good	approximation.	This
is	 because	 the	difference	 in	masses	 between	 the	u	 and	d	 quarks	 is	 sufficiently
small	 that	 the	 two	 look	 essentially	 identical	 as	 far	 as	 the	 strong	 force	 is
concerned.	It	is	true	that	they	also	differ	in	charge,	but	since	the	electromagnetic
force	is	so	weak	compared	with	the	strong	force,	this	too	has	a	negligible	impact.
Widening	 the	 group	 of	 “identical”	 quarks,	 we	 have	 extended	 the	 isospin
symmetry	to	flavor	SU(3).	This	is	not	as	good	an	approximation	as	isospin,	as	is
evident	in	the	larger	differences	in	masses	between	the	strange	hadrons	and	those
with	 zero	 strangeness.	 However,	 the	 symmetry	 is	 still	 a	 sufficiently	 good
approximation	that	it	 is	useful	to	arrange	hadrons	into	SU(3)	multiplets.	Again,
the	reliability	of	the	approximation	is	due	to	the	reasonably	similar	masses	of	the
u,	d,	and	s	quarks.

Can	we	extend	the	flavor	symmetry	further,	and	include	the	charm	quark	as
part	 of	 an	SU(4)	 symmetry?	 The	 answer	 is,	 unsatisfyingly,	 “yes	 and	 no.”	 The
charm	quark	mass	is	considerably	higher	than	those	of	the	three	light	quarks	and,
as	 such,	 the	approximation	begins	 to	break	down	somewhat.	However,	 at	high
energy,	when	 the	masses	 of	 all	 four	 of	 these	 quark	 flavors	 are	 negligible,	 the
symmetry	 is	 restored.	 As	 for	 the	 three	 light	 quarks,	 we	 can	 plot	 the	 hadrons
constructed	 from	 the	 four	 lightest	 quarks	 as	 representations	 of	 the	 relevant
groups	 by	 choosing	 appropriate	 axes.	 The	 axes	 in	 this	 case	 are	 isospin	 and
strangeness	as	before,	with	the	additional	quantum	number,	charm.	The	plots	are
given	in	Figure	6.8.



FIGURE	 6.8	 The	 ground-state	 spin- 	 baryons,	 spin- 	 baryons,	 and	 scalar	 (spin-0)	 mesons	 as	 SU(4)
representations.	For	clarity,	only	the	π0	is	shown	in	place	of	four	neutral	mesons:	π0,	η,	η′,	J/Ψ.

Going	 even	 further,	we	 could	 attempt	 to	 plot	 hadrons	 involving	 the	 bottom



quark	 as	 SU(5)	 representations	 (although	 the	 plots	 would	 become	 four
dimensional!).	 However,	 by	 this	 point,	 the	 idea	 of	 a	 symmetry	 between	 the
quarks	 is	 virtually	 meaningless,	 since	 the	 b	 quark	 mass	 is	 over	 2,000	 times
heavier	 than	 the	 u!	 In	 fact,	 while	 the	 light	 quarks	 form	mesons	 that	 are	 best
described	as	superpositions	of	flavor	states,	 the	charm	and	bottom	quarks	form
mesons	 of	 welldefined	 flavor	 known	 as	 charmonium	 and	 bottomonium	 (or
collectively	 as	 quarkonium)	 states.	That	 is,	while	 the	π0,	η,	 and	η′	mesons	 are
composed	of	 superpositions	of	 the	 light	 quark	 flavors,	 the	groundstate	mesons
consisting	 of	 heavy	 quarks	 are	 simply	 |c ⟩	 and	b ⟩.	 By	 the	 time	we	 reach	 the
heaviest	 of	 the	 quarks—the	 top—there	 is	 certainly	 no	 flavor	 symmetry	 to
consider,	since	the	top	quark	does	not	even	participate	in	hadron	formation.	The
reason	 for	 this	 is	 the	 top’s	 ludicrously	 large	mass	 of	 172	GeV,	which	 is	 over
70,000	 times	 the	 up	 quark	mass,	 and	 almost	 200	 times	 heavier	 than	 even	 the
proton.	 This	 is	 so	 high	 that	 the	 lifetime	 of	 the	 top	 is	 on	 the	 order	 of	 10−25	 s,
around	100	 times	 shorter	 than	 the	 typical	 time-scale	of	 strong	 interactions:	 the
top	simply	does	not	have	time	to	form	hadrons.

Naming	Hadrons

One	aspect	of	the	SU(3)	hadrons	that	does	extend	to	the	hadrons	containing	c
and	b,	however,	is	the	naming	conventions.	The	name	of	a	baryon	is	determined
by	 the	 number	 of	 u	 and	d	 quarks	 it	 contains,	 with	 p	 and	 n	 the	 exceptions.	 ∆
particles	contain	 three	u	and	d	quarks,	while	Σ	baryons	contain	 two,	Ξ	contain
one,	and	Ω	none.	The	identity	of	the	non-u	or	d	quarks	is	assumed	to	be	s	unless
shown	 otherwise	 with	 a	 subscript.	 Where	 spins	 of	 	 and	 	 are	 possible,	 the
higher-spin	baryon	is	shown	with	an	asterisk	(∗).	Finally,	there	are	the	spin- 	Λ
baryons	that	are	isosinglets.	These	necessarily	contain	u,	d,	and	one	other	quark,
whose	identity	is	given	as	a	subscript.	Notice,	however,	that	just	as	in	the	case	of
Σ0	 and	 Λ,	 with	 identical	 quark	 content	 but	 distinguished	 by	 their	 isospin
multiplicity,	 there	 are	 similar	 doublings	 of	 states	 in	 systems	 such	 as	 usc.	 To
distinguish	 these	 states,	 a	 prime	 is	 used.	 So	 for	 example,	 the	Ξc	 and	 Ξ′c	 both
contain	usc	quarks,	but	the	difference	between	them	lies	in	exactly	which	parts
of	the	wavefunction	are	symmetric	or	antisymmetric.	These	naming	conventions
are	already	in	place	despite	the	fact	that	several	of	these	hadrons	are	predicted	to
be	very	massive	 and	have	not	 yet	 been	observed	 in	 experiment.	By	 itself,	 this



6.4.5

system	only	allows	us	 to	name	 the	ground	state	of	a	quark	system:	 it	does	not
allow	 us	 to	 distinguish	 between	 particles	 with	 the	 same	 quark	 content	 but
different	 orbital	 momenta,	 for	 instance.	 For	 this	 reason,	 resonances	 are
additionally	 labeled	with	 their	mass	 in	brackets.	For	example,	 the	full	name	of
the	negative	Delta	baryon	is	∆−(1232).

There	 is	also	a	similar	set	of	conventions	used	for	 the	mesons.	The	class	of
meson	 is	 determined	 by	 the	 highest-mass	 quark	 present,	 with	 B	 mesons
containing	 either	 b	 or	 ,	D	 containing	 c	 or	 ,	 and	K	 containing	 s	 or	 .	 If	 the
remaining	quark/antiquark	has	I	=	0	(i.e.,	it	is	anything	other	than	u,	ū,	d,	or	 ),	it
is	 labeled	 as	 a	 subscript.	 Finally,	 the	 charge	 is	 labeled	 as	 a	 superscript.	 If	 the
meson	 has	 zero	 charge	 and	 contains	 one	 I	 =	 -quark,	 then	 the	 particle	 and
antiparticle	are	distinguished	with	a	bar.	Specifically,	the	meson	with	negative	S,
C,	or	 	is	barred.	The	naming	of	neutral	mesons,	such	as	s ,	is	less	systematic.
As	 with	 baryons,	 the	 spin-1	 mesons	 are	 named	 exactly	 as	 their	 spin-0
equivalents,	 and	 distinguished	 with	 an	 asterisk	 (with	 the	 exception	 of	 the	 ρ
mesons,	which	are	essentially	spin-1	pions).

Resonances

We	 have	 briefly	 mentioned	 those	 hadrons	 whose	 internal	 orbital	 angular
momenta	are	non-zero,	but	we	have	not	said	a	great	deal	about	them.	Any	such
hadron	can	be	thought	of	as	an	excited	state	of	one	of	the	lighter	hadrons.	They
have	the	same	quark	content,	but	differ	in	the	spatial	part	of	their	wavefunction.
As	 such,	 the	 energy	 (and	 hence	mass)	 of	 such	 states	 tends	 to	 be	 considerably
higher	 than	 the	 light	hadrons.	This	places	 them,	along	with	 the	spin- 	decuplet
baryons	 and	 the	 vector	 (spin-1)	 meson	 nonet,	 in	 the	 class	 of	 resonances.	 As
discussed	 in	Section	5.3.2,	 a	 resonance	 is	a	particle	whose	mass	 is	 sufficiently
high	 that	 its	 lifetime	 is	 too	 short	 for	 direct	 detection.	 In	 the	 case	 of	 hadronic
resonances,	 the	 high	 transition	 rate	 for	 strong	 interactions	 puts	 the	 typical
lifetime	around	10−23	s.	The	existence	of	such	particles	is	thus	indirectly	inferred
through	the	appearance	of	resonance	peaks	in	invariant-mass	data.

Many	 hadronic	 resonances	 have	 been	 detected,	 and	 have	 even	 had	 their
properties	 measured.	 The	 reader	 may	 find	 comprehensive	 lists	 of	 such
resonances	and	their	properties	in	the	pages	of	the	Review	of	Particle	Physics.
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EXERCISES

The	χb2	resonance	is	a	bottomonium	state	with	principal	quantum
number	n	=	2	and	3P2.	What	are	the	spin,	parity,	and	charge-parity	of
this	state?

Suppose	we	wish	to	find	a	value	for	the	spin-interaction	parameter,
Ameson	(Equation	6.22),	making	no	assumptions	about	the
constituent	quark	masses.	If	we	are	considering	only	those	mesons
in	which	the	quarks	have	no	orbital	angular	momentum,	find	a
minimal	set	of	mesons	required	for	the	calculation.
If	we	now	assume	that	isospin	SU(2)	symmetry	is	exact	but	make
no	further	assumptions,	show	that	the	π+	and	ρ+	mesons	are
sufficient	to	calculate	Ameson.
By	squaring	the	combination	S1	+	S2,	show	that	S1iS2i	is	+1/4	for
the	ρ+	and	−3/4	for	the	π+.
Hence	find	an	expression	for	the	u	and	d	masses,	along	with	an
expression	for	Ameson.
Find	the	numerical	values	of	these	expressions	given	that	mπ	=
139.57	MeV	and	mρ	=	775.4	MeV.
Use	your	answers	to	the	last	part,	along	with	the	fact	that	m∆++	=
1232	MeV,	to	find	an	estimate	for	Abaryon	(Equation	6.23).

Use	the	constituent	quark	masses	given	in	Appendix	A	to	find	a	better
estimate	of	Ameson.

Find	the	spin,	flavor,	and	color	parts	of	the	wavefunction	for	the	Σ+
baryon	when	its	overall	spin	orientation	is	+1/2.	Hence	write	down
the	combined	wavefunction	(ignoring	the	spatial	part).

If	flavor	SU(4)	were	an	exact	symmetry,	outline	how	the	group	structure
would	work	out	to	produce	the	observed	SU(4)	multiplets	given	in
Figure	6.8.

Color	is	an	exact	SU(3)	symmetry,	with	the	three	color	of	a	quark
transforming	as	the	3	of	SU(3).	Represent	this	fact	on	an	SU(3)	weight
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diagram	and	show	graphically	why	a	combination	of	all	colors	appears
neutral.	How	can	you	also	represent	graphically	that	a	quark-antiquark
pair	is	color	neutral?

Why	isn’t	e+	+	e−	→	e+	+	e−	used	in	the	denominator	of	Equation	6.5?

Draw	quark-level	Feynman	diagrams	for	the	β-decay	of	a	neutron	and
for	the	decay	π0	→	γ	+	γ.

1	An	interesting	exception	to	this	argument	occurs	when	we	restrict	ourselves	to	two	spatial	dimensions.	In
this	case,	two	successive	exchanges	of	two	particles—equivalent	to	a	full	rotation	of	one	about	the	other—
does	not	necessarily	 return	 the	system	to	 its	original	state.	This	allows	 two-dimensional	particles	 to	have
any	phase	under	exchange.	Such	particles	are	known	as	anyons.
2	 Strictly,	 isospin	 accounts	 for	 different	 isobars	 rather	 than	 isotopes,	 since	 a	 change	 in	 the	 isospin	 of	 a
nucleus	changes	its	atomic	number	and	not	its	atomic	mass	number,	but	let’s	not	split	atoms.
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7.1.1

CHAPTER	7
RELATIVISTIC	QUANTUM
MECHANICS

As	 previously	 stated,	 particle	 physics	 is	 really	 the	 combination	 of	 quantum
mechanics	 with	 relativity.	 As	 such,	 it	 is	 no	 longer	 appropriate	 to	 use	 the
Schrödinger	equation,	 since	 this	 is	constructed	 from	 the	non-relativistic	energy
momentum	 relation	E	 =	 p2/2m.	 Instead,	 we	 must	 look	 for	 a	 similar	 equation
based	on	the	relativistic	relation	E2	=	p2	+	m2.	As	we	will	see,	a	direct	attempt	to
do	this	will	lead	us	to	some	problems	that	will	require	some	restructuring	of	our
previous	understanding	of	quantum	mechanics.	In	the	process,	it	will	lead	us	to
the	 inevitability	 of	 antimatter	 in	 any	 relativistic	 quantum	 theory.	We	will	 also
find	that	there	is	more	than	one	approach	to	finding	a	relativistic	quantum	wave
equation,	and	each	approach	describes	particles	of	different	spin.	In	this	chapter,
we	will	consider	the	equations	for	particles	of	spin	0	and	spin	1.

THE	KLEIN-GORDON	EQUATION

The	first	attempt	to	construct	a	relativistic	quantum	theory	was	performed	by
Klein	and	Gordon	in	1926.	The	equation	that	they	arrived	at,	however,	was	not
new,	 as	 it	was	 originally	written	 down	 by	 Schrödinger.	 Schrödinger	 discarded
this	equation,	in	favor	of	what	is	now	the	Schrödinger	equation,	partly	because
of	 the	 interpretational	 issues	 with	 the	 Klein-Gordon	 equation	 that	 we	 will
consider	shortly,	and	partly	because	it	does	not	predict	spin.	Since	Schrödinger
was	predominantly	interested	in	describing	spin- 	particles	in	an	effort	to	explain
emission	spectra,	he	moved	away	from	the	relativistic	equation.

A	Relativistic	Schrödinger	Equation
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Since	the	energy	and	momentum	operators	are	given	by	Ê	=	i∂0	and	
we	can	combine	them	into	an	energy-momentum	four-vector	operator	
which	we	shall	simply	call	the	momentum	operator	from	now	on.	In	four-vector
notation,	the	relativistic	energy-momentum	relation	takes	the	simple	form:

Following	 the	 same	steps	 taken	when	deriving	 the	non-relativistic	Schrödinger
equation,	 we	 promote	 the	 momentum	 in	 the	 relativistic	 energy-momentum
relationship	 to	 the	momentum	 operator,	 and	 introduce	 a	 wavefunction	 for	 the
operators	to	act	upon:

This	 is	 the	Klein-Gordon	equation.	Notice	 that	ϕ	 is	 a	 scalar,	 since	 it	has	no
Lorentz	 index.	 This	 is	 consistent	 with	 it	 describing	 spin-0	 particles,	 since	 we
expect	a	spin-s	particle	to	have	2s	+	1	degrees	of	freedom.	Now	the	keen-eyed
reader	may	 at	 this	 point	 complain	 that	 the	wavefunction	was	 only	 a	 scalar	 by
choice.	 It	 is	 true	 that	 we	 could	 equally	 have	 chosen	 a	 four-vector	 valued
wavefunction	 ϕµ,	 in	 which	 case	 there	 would	 be	 four	 degrees	 of	 freedom.
However,	 since	 there	 is	 no	 interaction	 between	 the	 degrees	 of	 freedom	 in	 this
case,	this	would	really	describe	four	independent	spin-0	particles,	rather	than	one
particle	of	higher	spin.	As	we	will	see	in	Section	7.12,	the	situation	is	different
when	 we	 write	 down	 a	 vector-valued	 wave	 equation	 in	 which	 different
components	are	related.

Solutions	of	the	Klein-Gordon	Equation

To	find	solutions	of	 the	Klein-Gordon	equation,	 it	 is	enough	to	consider	 the
same	 plane-wave	 solutions	 that	 were	 used	 earlier	 in	 deriving	 the	 Schrödinger
equation:
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Since	 this	 is	 exactly	 the	 same	 form	we	 used	 for	 solutions	 to	 the	 Schrödinger
equation,	we	know	that	it	will	be	an	eigenstate	of	the	momentum	operator	with
eigenvalue	kµ.	As	such,	we	are	justified	in	calling	the	wave-vector	p	rather	than
k.	The	plane-wave	is	easily	shown	by	direct	substitution	to	be	a	solution	to	the
equation	as	long	as	the	particle	has	mass	m:

Since	 the	 Klein-Gordon	 equation	 is	 a	 linear	 PDE,	 any	 linear	 combination	 of
solutions	 is	 itself	 a	 solution.	 Therefore,	 the	 plane	 waves	 form	 a	 basis	 for	 all
solutions,	since	they	are	complete	and	orthogonal.

Looking	 at	 these	 solutions	 a	 little	more	 carefully,	 however,	 a	 problem	 soon
becomes	apparent.	Rather	than	a	constraint	on	the	mass	of	the	particle,	consider
the	necessary	relation	p2	−	m2	=	0	as	a	condition	on	the	energy.	Then	the	plane
wave	 is	 a	 solution	 if	 and	 only	 if	 	 This	 suggests	 that	 there	 are
solutions	 to	 the	 Klein-Gordon	 equation	 with	 negative	 energy.	 Such	 solutions
would	appear	to	be	nonsensical,	but	we	cannot	simply	ignore	them:	as	a	general
rule	 in	 quantum	mechanics,	 the	 contribution	 of	 all	 possible	 solutions	must	 be
included	in	order	to	get	the	correct	solutions	to	calculations.	This	means	that	the
negative-energy	 solutions	must	be	 considered	valid.	We	will	 come	back	 to	 the
correct	interpretation	of	these	solutions	shortly.	For	now,	we	will	persevere	and
attempt	to	find	a	probability	density	current	for	these	particles.

Conserved	Current

The	conserved	current	for	the	Klein-Gordon	equation	can	be	found	just	as	for
the	 Schrödinger	 equation.	 The	 Klein-Gordon	 equation	 is	 multiplied	 by	 the
complex	conjugate	of	ϕ,	while	the	conjugate	equation	is	multiplied	by	ϕ.	One	is
then	subtracted	from	the	other.



We	have	found	a	conserved	quantity	 j0,	and	an	associated	conserved	current
jµ.	 In	 the	 non-relativistic	 case,	 the	 factor	 of	 i	 was	 included	 in	 ji	 so	 that	 the
quantity	|ψ|2	was	real	valued	and	so	could	be	interpreted	as	a	probability	density.
The	factor	of	i	here	is	likewise	included	to	ensure	that	the	conserved	quantity	j0

is	real,	but	the	interpretation	of	j0	as	a	probability	is	no	longer	viable.	While	the
three	space-like	components	of	this	new	current	have	a	very	similar	form	to	the
non-relativistic	 case,	 the	 time-like	 component	 is	 very	 different.	 For	 the
Schrödinger	equation,	it	was	given	by	ϕ∗ϕ,	which	is	positivedefinite.	However,
in	the	relativistic	case,	the	time-like	component	is	given	by

The	relative	negative	sign	between	the	two	terms	in	j0	means	that	no	choice	of
pre-factor	can	guarantee	a	positive	value	for	all	solutions	ϕ.	Clearly,	a	negative
probability	 is	 meaningless,	 so	 we	 cannot	 interpret	 jµ	 as	 a	 probability	 current.
Things	are	looking	bleak	for	the	Klein-Gordon	equation,	but	there	is	a	way	out
of	 both	 of	 the	 apparent	 problems	 that	 have	 arisen.	 First,	 notice	 that	 the	 two
problems	are	in	fact	related,	since

In	particular,	ρ	=	j0	=	2	|A|2	E,	so	it	is	the	negative	energy	solutions	that	give	rise
to	negative	ρ.	Notice	that	both	these	problems	arise	because	of	the	second-order
time	 derivative.	 In	 the	 Schrödinger	 equation,	 the	 time	 derivative	 (energy
operator)	is	only	first	order.	This	means	that	there	is	no	square	root	involved	in



finding	the	energy	eigenvalues	and	the	energy	is	always	positive.	This	was	Paul
Dirac’s	motivation	for	attempting	to	derive	a	first-order	relativistic	analogue	of
the	Schrödinger	equation,	and	we	will	 follow	a	similar	path	when	we	consider
the	Dirac	 equation	 in	Chapter	8.	However,	while	Dirac’s	 equation	was	 a	 truly
remarkable	discovery,	his	reason	was	actually	quite	unnecessary,	since	the	Klein-
Gordon	equation	is	a	valid	description	of	relativistic	particles,	if	looked	at	in	the
correct	way.

Consider	a	negative-energy	solution	ϕ	=	Ae−i(Et−pxx−pyy−pzz)	(with	E	<	0).	This
describes	a	particle	of	mass	m	with	energy	E	and	momentum	(px,	py,	pz).	Now
consider	the	complex	conjugate	of	this	solution:

This	is	still	a	solution	of	the	Klein-Gordon	equation	with	mass	m,	but	it	now	has
momentum	 (−px,	 −py,	 −pz),	 and	 more	 importantly	 has	 energy	 −E.	 So	 this
conjugate	 solution	 describes	 some	 object	 with	 the	 same	 mass	 as	 the	 original
particle	 but	 moving	 in	 the	 opposite	 direction,	 and	 in	 fact	 behaving	 in	 the
opposite	way	 to	 the	original	 in	 every	other	 respect.	This	 solution	describes	 an
antiparticle!	We	have	reinterpreted	negative-energy	particle	solutions	as	positive-
energy	antiparticle	solutions.	Recall	from	Section	4.2.2	 that	crossing	symmetry
says	an	incoming	particle	of	momentum	pµ	behaves	as	an	outgoing	antiparticle
of	momentum	−pµ.	This	demonstrates	 the	necessity	of	 introducing	antiparticles
in	relativistic	quantum	mechanics.

Now	to	the	other	problem:	that	of	negative	probability	density.	The	solution
here	is	to	reinterpret	the	current	we	derived	as	some	other	current	that	we	know
is	conserved	but	which	is	allowed	negative	values.	That	is,	the	answer	is	to	treat
jµ	 as	 a	 charge	 current.	 Suppose	 the	 particle	 described	 by	 the	 Klein-Gordon
equation	 has	 an	 electric	 charge	 qe.	 Then	 redefining	 jµ	 	 qejµ	 gives	 us	 a
conserved	charge	density	current.	A	negative	j0	is	now	no	problem.	Also,	notice
that	 a	 positively	 charged	 particle	moving	with	momentum	 pi	 gives	 rise	 to	 the
same	 current	 as	 its	 (negatively	 charged)	 antiparticle	 moving	 with	 momentum
−pi.	 In	 fact,	 this	 interpretation	 is	 more	 broadly	 applicable	 than	 to	 merely	 the
electric	charge:	we	can	choose	qe	to	be	any	quantum	number	associated	with	the
particle.	Since	all	quantities	other	than	mass	are	reversed	for	an	antiparticle,	the
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same	 logic	 applies.	 So	 the	 correct	 interpretation	 of	 jµ	 is	 as	 the	 flux	 of	 all	 the
particle’s	quantum	numbers,	rather	than	its	probability	density.	Notice	that	if	ϕ	is
real-valued,	then	the	expression	for	jµ	vanishes.	Also,	the	state	described	by	ϕ∗
in	this	case	is	the	same	as	that	described	by	ϕ.	So	we	see	that	a	particle	described
by	a	real-valued	wavefunction	must	be	its	own	antiparticle	and	carry	no	non-zero
quantum	numbers.

The	conserved	current	 that	we	have	derived	 is	valid	 if	 there	are	no	external
electromagnetic	 fields.	 If	 we	 wish	 to	 construct	 a	 conserved	 current	 in	 the
presence	of	external	fields,	we	must	make	use,	as	we	did	in	the	non-relativistic
case,	 of	 the	 substitution	pµ	 	pµ−qeAµ.	 It	 can	 be	 shown	 in	 this	 case	 that	 the
Klein-Gordon	equation	is	modified	to

while	the	conserved	current	becomes

The	reader	is	invited	to	demonstrate	this	in	Exercise	5.

THE	MAXWELL	AND	PROCA	EQUATIONS

Derivation	of	the	Maxwell	Equation

Given	that	the	photon	is	known	to	be	a	spin-1	particle,	a	good	place	to	start	in
finding	a	relativistic	spin-1	wave	equation	is	the	Maxwell	equation.	In	Lorentz-
covariant	form,	Maxwell’s	equations	can	be	written	as

where	 jν	 is	 the	electric	 current	density	and	Aµ	 is	 the	 electromagnetic	 potential.
Combining	 these	 equations,	 we	 find	 Maxwell’s	 equation	 in	 terms	 of	 the
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potential:

Given	that	photons	are	quanta	of	the	electromagnetic	field,	we	expect	that	the
equation	 of	 the	 photon	 wavefunction	 should	 behave	 as	 the	 classical
electromagnetic	 field.	 Therefore,	 the	 equation	 for	 the	 photon,	 and	 so	 for	 any
other	spin-1	particle,	is	simply	a	reinterpretation	of	Equation	7.12,	in	which	Aµ	is
now	the	vector-valued	wavefunction.

Solutions	of	the	Maxwell	Equation

In	 free	 space,	 the	 current	 density	 jµ	 is	 set	 to	 zero.	 In	 this	 case,	 it	 is
straightforward	 to	 check	 that	 the	 plane	 waves	 Aµ	 =	A0εµe−ip·x,	 where	A0	 is	 a
normalization	 constant	 and	 εµ	 is	 a	 constant	 unit	 vector,	 are	 solutions	 of	 the
Maxwell	equation	as	long	as	the	four-momentum,	pν,	is	such	that	p2	=	0.	That	is,
the	 solutions	 to	 the	 free-space	 Maxwell	 equation	 are	 massless,	 as	 we	 would
expect	for	photons.	The	vector	εµ	defines	the	polarization	of	the	photon,	and	can
be	 any	 constant	 unit	 vector.	 For	 concreteness,	 we	 choose	 a	 basis	 for	 the
polarization	vector	that	depends	on	the	momentum	of	the	photon.	That	is,	if	the
photon	is	traveling	in	a	direction	determined	by	its	three-momentum	p,	then	we
select	a	basis	vector	in	the	direction	of	travel	 	=	(0,	k/|k|),	and	one	in	the	time-
like	direction	 	=	(1,	0,	0,	0).	For	the	remaining	two	basis	vectors,	we	choose	an
arbitrary	unit	vector	n	perpendicular	to	k.	The	final	two	basis	vectors	are	then	
=	(0,	n)	and	 	=	(0,	n	×	k/|k|).	The	specific	polarization	vector	for	a	photon	may
then	be	constructed	from	this	basis,	as

where	µ	is	a	Lorentz	index	and	A	labels	the	basis	vectors.

We	appear	to	have	four	distinct	degrees	of	freedom	for	the	photon,	since	its
polarization	 can	 be	 any	 linear	 combination	 of	 these	 four	 polarization	 basis
vectors.	However,	we	know	that	the	physical	electromagnetic	field	only	has	two



possible	 polarizations.	 The	 discrepancy	 arises	 from	 the	 fact	 that	 the	Maxwell
equation	contains	redundancy	in	the	form	of	gauge	freedom.	Even	classically,	we
know	that	 the	electromagnetic	potentials	may	be	redefined	without	altering	 the
physical	 electric	 and	 magnetic	 fields.	 In	 Lorentz-covariant	 form,	 this	 gauge
invariance	appears	as	an	ability	to	shift	the	four-potential	according	to

where	χ(x)	is	any	scalar	function	of	xµ.	It	is	easy	to	see	by	substitution	that	this
shift	 has	 no	 effect	 on	 the	 physical	 fields	Fµν.	 In	 order	 to	 specify	 the	 potential
uniquely,	 it	 is	 necessary	 to	 “fix	 the	 gauge”—that	 is,	 to	 choose	 an	 additional
condition	that	must	be	satisfied	by	the	potential.	Since	this	choice	is	arbitrary,	it
will	 have	 no	 bearing	 on	 the	 physical	 properties	 of	 the	 system.	 The	 same
procedure	is	necessary	in	the	quantum	case,	and	it	is	this	gauge-fixing	that	will
reduce	the	apparent	degrees	of	freedom	of	the	system	from	four	to	the	physical
two.

A	common	condition	 to	 impose	 is	 the	Lorenz	condition,	∂·A	=	0,	 since	 this
simplifies	the	Maxwell	equation	considerably.1	Specifically,	 the	second	term	of
the	Maxwell	equation	clearly	vanishes.	In	free	space,	 this	reduces	the	Maxwell
equation	to

This	is	just	shorthand	for	four	copies	of	the	massless	Klein-Gordon	equation.	In
Section	 7.1.1,	 we	 said	 that	 such	 a	 system	 would	 behave	 as	 four	 independent
spin-0	particles.	However,	there	is	an	important	distinction	to	be	made	this	time,
in	that	this	Klein-Gordon	equation	has	only	arisen	because	of	the	imposition	of	a
further	constraint,	∂	·	A	=	0.	This	constraint	has	already	linked	the	components	of
Aµ	so	that	they	are	necessarily	interdependent.

Consider	a	gauge	transformation	applied	after	the	Lorenz	condition	has	been
imposed,	 of	 the	 form	 Aµ	 	 Aµ	 +	 ∂µχh,	 where	 χh	 is	 a	 harmonic	 function
(satisfying	 ∂2χ	 =	 0).	 Then	Aµ	 clearly	 still	 obeys	 the	Maxwell	 equation,	 as	we
have	seen	that	this	is	true	for	any	gauge	transformation.	Crucially,	however,	this
type	 of	 transformation	 also	 leaves	 the	 Lorenz	 condition	 invariant.	 This
demonstrates	 that	 the	 Lorenz	 condition	 is	 in	 fact	 only	 a	 partial	 gauge	 fixing



condition,	 and	 leaves	 a	 residual	 gauge	 freedom.	 In	 fact,	 the	 Lorenz	 condition
reduces	the	degrees	of	freedom	only	to	three,	not	the	physical	two.	To	specify	a
unique	solution,	we	must	 impose	a	 further	condition.	Although	 there	are	many
gauges	available,	the	simplest	example	is	the	Coulomb	gauge	∇·	A	=	0.	In	fact,
it	 can	 be	 shown	 that	 physically	 meaningful	 solutions	 that	 obey	 the	 Coulomb
gauge	condition	must	also	obey	the	Lorenz	condition,	so	it	could	be	said	that	the
former	implies	the	latter.	However,	we	will	treat	them	as	independent	conditions.
Applying	 both	 conditions	 to	 the	 plane-wave	 solution,	 we	 find	 the	 following
conditions	on	the	polarization	vector

Considering	the	polarization	basis	vectors,	we	see	that	the	second	condition	rules
out	any	contribution	from	 ,	and,	in	turn,	the	first	rules	out	 .	Thus,	we	are	left
with	a	polarization	vector	composed	of	a	linear	combination	of	only	two	of	the
basis	vectors,	 	and	 .

The	physical	degrees	of	 freedom	of	 the	photon	have	 thus	been	 successfully
reduced	to	two.	However,	since	the	choice	of	n	from	which	the	polarization	basis
was	constructed	was	 itself	arbitrary,	we	are	apparently	still	 free	 to	decide	what
the	two	physical	polarization	states	should	be.	An	obvious	choice	may	seem	to
be	 simply	 	 and	 ,	 corresponding	 to	 linear	 polarization,	 in	 which	 the
polarizations	are	aligned	with	either	the	“horizontal”	or	“vertical”	axes.	Equally,
we	could	choose

corresponding	to	circular	polarization.	The	advantage	of	this	scheme,	as	we	will
see	 in	 Section	 7.2.3,	 is	 that	 these	 polarization	 vectors	 are	 eigenstates	 of	 the
helicity	 operator,	 which	 measures	 the	 orientation	 of	 the	 photon’s	 spin	 with
respect	to	the	direction	of	motion.

Whatever	basis	we	choose,	it	should	obey	an	orthonormality	condition:

and	a	completeness	relation
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Including	Mass:	The	Proca	Equation

The	 solutions	 to	 any	 relativistic	 wave	 equation	 must	 also	 obey	 the	 Klein-
Gordon	 equation,	 since	 this	 is	 simply	 a	 statement	 of	 the	 relativistic	 energy-
momentum	 relation.	 We	 have	 already	 seen	 this	 principle	 in	 the	 Maxwell
equation:	 the	 Maxwell	 equation	 is	 equivalent	 to	 four	 copies	 of	 the	 massless
Klein-Gordon	equation	with	additional	constraints	linking	those	copies	together.
It	is	not	too	difficult,	therefore,	to	see	how	to	include	a	mass	into	the	equation.
We	 simply	 replace	 the	 massless	 Klein-Gordon	 operator	 ∂2	 with	 the	 massive
operator	∂2	+	m2,	to	arrive	at	the	Proca	equation:

It	 is	 important	 to	 appreciate	 that	 gauge	 symmetry	 has	 been	 lost	 with	 the
introduction	of	this	mass	term.	Indeed,	a	transformation	of	the	form	Aµ	 	Aµ	+
∂χ	now	leads	to	a	transformed	equation	that	differs	from	the	original	by	m2∂µχ.
From	 this,	 we	 see	 that	 gauge	 invariance	 is	 restored	 if	 and	 only	 if	 m	 =	 0.
However,	 in	 the	massive	 case,	 the	Lorenz	 condition	 is	 necessarily	 satisfied	 by
the	 solutions.	 To	 see	 this,	 we	 act	 on	 the	 Proca	 equation	 with	 the	 differential
operator	∂µ,	giving

Hence,	in	the	case	that	m	≠	0,	the	Lorenz	condition	must	hold.	It	is	accurate	to
say,	 then,	 that	 the	 Proca	 equation	 is	 equivalent	 to	 four	massive	Klein-Gordon
equations	 for	 the	 components	 of	Aµ	 together	 with	 the	 Lorenz	 condition.	 This
reduces	the	degrees	of	freedom	to	three,	as	we	would	expect	for	a	spin-1	particle.
This	does	not,	of	course,	prove	that	the	spin	is	1,	but	it	does	show	at	least	that	the
equation	is	consistent	with	a	spin-1	particle.

Spin	of	Vector	Particles

In	order	to	demonstrate	conclusively	that	the	spin	of	a	vector	particle	is	1,	it	is
necessary	to	analyze	the	behavior	of	solutions	under	Lorentz	transformations.	In



particular,	 it	 can	 be	 shown	 that	 the	 spin	 operators	 for	 a	 solution	 to	 the	 Proca
equation	are	given	by

The	demonstration	of	this	is	left	as	an	exercise	for	the	reader	but	is	deferred	until
the	next	chapter	when	we	will	see	a	similar	derivation	for	the	(slightly)	simpler
case	of	a	spin-1/2	particle	(Exercise	10).	In	turn,	these	give	a	total	spin	operator
of

from	which	we	can	see	that	s(s	+	1)	=	2,	implying	a	spin	of	1.	Notice	that	a	time-
like	polarization	vector	would	be	canceled	out	by	this	operator,	since	it	contains
only	zeroes	in	the	left-most	column.	This	would	imply	that	a	time-like	polarized
vector	 particle	would	 have	 spin	 0.	This	 is	 not	 a	 problem,	 however,	 since	 such
polarizations	are	unphysical.

In	 order	 to	 characterize	 the	 state	 of	 a	 particle,	 it	 is	 necessary	 of	 course	 to
provide	 the	 spin	 orientation	 quantum	 number.	We	 can	 choose	 to	measure	 this
orientation	 along	 any	 axis,	 but	 any	 such	 choice	 is	 arbitrary.	 A	 more	 natural
approach	is	to	allow	the	state	itself	to	determine	a	spin	polarization	axis	for	us.
We	 define	 the	 helicity	 operator	 as	 the	 component	 of	 spin	 along	 the	 axis
determined	by	the	particle’s	momentum.	That	is:



Using	the	helicity	operator,	we	find	that	the	circularly	polarized	solutions	form	a
complete	set	of	spin	states,	since	 ,	 ,	and	 	have	helicities	of	−1,	0,	and	+1
respectively.

In	 the	 massless	 case,	 there	 is	 no	 option	 to	 choose	 an	 arbitrary	 spin
quantization	axis.	Such	a	choice	strictly	takes	place	in	the	particle’s	rest	frame,	a
concept	which	does	not	apply	to	massless	particles.	Hence,	in	the	massless	case,
we	 have	 no	 choice	 but	 to	 characterize	 particles	 by	 their	 helicity.	 If	 the
momentum	of	the	massless	particle	is	p,	then	the	four	momentum	is	of	the	form

while	the	longitudinal	polarization	vector	is

If	we	write	 the	polarization	vector	of	an	arbitrary	state	 in	 terms	of	 the	basis
states,	εµ	=	αA ,	and	impose	the	Lorenz	condition,	we	find

This	condition	is	clearly	respected	by	the	 	and	 	(or	 ,	 )	basis	vectors,
placing	no	constraints	on	the	values	of	α1	and	α2.	However,	since	the	condition	is
not	 obeyed	 by	 	 and	 	 individually,	 it	 imposes	 a	 constraint	 on	 the
corresponding	coefficients	α0,	α3:

or	α0	 =	α3.	 This	 suggests	 that	 the	 full	 set	 of	 physical	 polarization	 vectors	 for
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massless	particles	is	given	by	 ,	 ,	and	 + .	However,	the	latter	basis	vector
corresponds	to	a	plane-wave	of	the	form

which	can	be	written	as

Since	 this	solution	 is	expressible	as	a	 total	derivative,	 it	 is	gauge	equivalent	 to
the	solution	Aµ	=	0,	and	therefore	has	no	physical	significance.	We	can	deduce,
then,	 that	 the	 longitudinal	 polarization	 available	 to	 massive	 particles	 is	 not	 a
viable	solution	for	massless	particles.

COMBINING	EQUATIONS:	HOW	DO
PARTICLES	INTERACT?

Just	 as	we	 introduced	 the	 effect	 of	 an	 electromagnetic	 field	 into	 the	Klein-
Gordon	equation	 in	Section	7.1.3,	we	 can	 also	 capture	 the	 effect	 of	 a	 charged
particle	on	the	behavior	of	a	photon	by	including	terms	in	the	Maxwell	equation.
In	particular,	we	know	that	the	term	on	the	right	of	the	Maxwell	equation	is	the
electromagnetic	 current.	 But	 we	 already	 have	 an	 expression	 for	 the	 current
carried	by	a	scalar	particle:	we	simply	use	the	electric	charge,	qe,	as	the	relevant
quantum	number	 in	 the	conserved	current	 formula.	We	 therefore	 find	a	pair	of
coupled	equations	for	the	photon	and	the	scalar	particle:

How	should	we	interpret	these	equations	though?	Recall	that	the	right	side	of
the	Maxwell	equation	is	the	source	term	for	the	electromagnetic	field.	That	is,	a
non-zero	value	on	the	right	is	capable	of	producing	an	electromagnetic	field.	We
can	say	that	the	current	acts	as	a	source	term	for	photons,	capable	of	producing
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photons	 from	 the	 movement	 or	 merely	 the	 existence	 of	 the	 charged	 scalar
particle.	So	we	see	from	the	second	equation	that	a	pair	of	scalars	can	produce	a
photon	via	 the	 terms	with	derivatives,	 and	a	 combination	of	 two	 scalars	 and	a
photon	can	produce	another	photon	via	the	term	2q2ϕ∗ϕAµ.	Similarly,	in	the	first
equation,	 a	 scalar	 can	 arise	 from	 an	 existing	 scalar	 and	 either	 one	 or	 two
photons.

This	 all	 points	 toward	 the	 idea	 of	 using	 Feynman	 diagrams	 to	 calculate
physical	quantities.	A	Feynman	diagram	 is	 a	 stylized	 representation	of	what	 is
happening	 at	 the	 microscopic	 level,	 with	 virtual	 particles	 being	 created	 and
exchanged.	Each	one	of	 these	events,	 though,	corresponds	 to	some	 term	 in	 the
relevant	equations	of	motion	for	the	system.	In	particular,	by	introducing	a	set	of
Feynman	rules,	derived	from	the	equations	of	motion,	we	can	translate	directly
from	 the	 Feynman	 diagram	 to	 an	 algebraic	 expression	 for	 the	 transition
amplitude	for	the	process.	To	state	this	idea	more	clearly,	we	must	take	a	slight
detour	 into	 the	world	 of	 quantum	 field	 theory.	This	 is	 a	 huge	 topic	 in	 its	 own
right	and	 the	following	is	by	no	means	 intended	as	an	 in-depth	 introduction.	 It
will,	however,	serve	to	introduce	some	of	the	concepts.

Quantum	Field	Theory	without	the	Math

One	of	the	counterintuitive	aspects	of	quantum	mechanics	(there	are	several!)
is	 the	 concept	 of	 wave-particle	 duality,	 in	 which	 objects	 exhibit	 behavior
characteristic	of	both	particles	and	waves	depending	on	the	measurements	being
taken.	How	are	we	to	make	sense	of	this	fact?	The	answer,	or	at	least,	an	answer
comes	 in	 the	 form	of	quantum	field	 theory.	A	 full	 introduction	 to	 the	quantum
behavior	of	fields	is	far	beyond	the	scope	of	this	book,	but	some	of	the	ideas	of
the	 subject	 may	 be	 discussed	 without	 delving	 into	 the	 full	 mathematical
treatment.	The	most	familiar	example	of	a	quantum	field	is	the	electromagnetic
field.	Classically,	electromagnetism	is	described	in	terms	of	a	field,	with	waves
propagating	 through	 it	 transferring	 energy.	 The	 quantum	 picture	 of
electromagnetism	 is	 very	 different,	 of	 course,	 with	 photons	 mediating	 the
electromagnetic	 force	 between	 charged	 particles.	The	 continuous	 nature	 of	 the
electromagnetic	 field	 gives	way	 to	 a	 description	 of	 the	 same	 phenomena	 built
from	discrete	chunks	of	energy	with	well-defined	properties	of	momentum	and
spin.	The	means	to	reconcile	these	two	pictures	is	the	quantized	electromagnetic



field.	 The	 field	 is	 quantized	 in	 the	 same	 way	 that	 a	 particulate	 system	 is
quantized,	with	the	promotion	of	observables	to	operators,	and	the	imposition	of
certain	commutation	relations	between	these	operators.	The	difference	 is	 in	 the
dynamic	 variables	 used	 to	 describe	 the	 system.	 For	 a	 simple	 quantum
mechanical	system,	the	dynamic	variables	are	the	position	and	momentum	of	the
relevant	particles.	For	a	quantum	field,	the	dynamic	variables	are	the	value	and
rate	 of	 change	 of	 the	 field	 at	 each	 point	 in	 space-time.	 The	 result	 is	 that	 the
wave-modes	 of	 the	 field	 are	 then	 quantized:	 that	 is,	 discretized.	 The	 lowest-
energy	 state	 of	 the	 field	 is	 then	 identified	 as	 the	 vacuum,	while	 higher-energy
excitations	 are	 identified	 as	 particles.	 A	 wave	 propagating	 through	 space	 can
have	an	amount	of	energy	and	momentum	that	allows	for	its	identification	as	a
photon,	while	higher	 states	may	be	 identifiable	 as	 collections	of	 two,	 three,	or
more	photons.	That	is,	it	is	the	excitations	of	the	field	above	the	ground	state	that
we	 perceive	 as	 particles.	 Quantum	 field	 theory	 extends	 this	 idea	 to	 other
particles.	Where	 the	 photon	 is	 the	 quantized	 excitation	 of	 the	 electromagnetic
field,	the	electron	is	an	excitation	in	the	electron	field,	and	so	on.	The	standard
model,	therefore,	consists	of	a	set	of	37	such	fields:	one	for	each	particle	species
in	the	theory.	Each	of	these	fields	pervades	all	of	space-time,	so	it	should	come
as	 no	 surprise	 that	 one	 field	 should	 be	 capable	 of	 transferring	 its	 energy	 and
momentum	to	another	field.	However,	only	some	of	 these	fields	are	capable	of
interacting,	 leading	 to	 the	 allowed	 and	 forbidden	 interactions	 of	 the	 standard
model.

A	rigorous	derivation	of	the	invariant	amplitudes,	 ,	of	scattering	and	decay
processes	requires	a	full	field-theoretical	treatment,	so	we	shall	merely	state	the
result.	 If	 particles	 are	 really	 the	quantized	excitations	of	 a	 set	of	 fields,	 then	a
scattering	process	is	really	the	conversion	of	some	initial	field	configuration	to	a
final	 configuration.	 In	 any	 theory	 in	 which	 the	 fields	 interact,	 even	 single-
particle	states	are	found	to	be	complicated	solutions	to	the	field	equations,	in	that
they	 are	 not	 analytical.	 However,	 they	 may	 be	 approximated	 by	 the
corresponding	free-theory	states	found	in	the	limit	that	the	coupling	constants	of
the	 theory	 vanish.	 Any	 scattering	 process	 and	 its	 associated	 amplitude	 is
similarly	 tricky	 to	 calculate,	 but	 can	be	 approximated	 as	 a	 power	 series	 in	 the
interactions	of	free-theory	states.	In	particular,	the	solution	is	written	as	a	power
series	 in	 the	 relevant	 coupling.	 The	 process	 is	 similar	 to	 non-relativistic
perturbation	theory,	but	allows	for	an	interesting	interpretation	of	the	underlying



dynamics.	 We	 can	 calculate	 a	 scattering	 process	 by	 writing	 down	 all	 of	 the
Feynman	 diagrams	 that	 could	 contribute	 to	 the	 process	 and	 summing	 their
contributions,	found	via	the	Feynman	rules.	That	is,	the	amplitude	for	the	overall
process	can	be	found	by	adding	together	all	of	the	ways	in	which	it	could	have
happened.

There	is	a	second	approach	to	quantization,	which	leads	to	precisely	the	same
quantum	 theory	 as	 the	 canonical	 approach	 of	 promoting	 observables	 to
operators.	This	is	the	path	integral	method,	and	can	be	thought	of	as	an	extension
of	the	famous	double-slit	experiment.	In	this	experiment,	it	was	shown	that	if	a
particle	travels	through	a	screen	with	a	double	slit,	but	no	measurement	is	taken
of	which	slit	the	particle	traverses,	then	the	probability	of	finding	the	particle	at	a
particular	point	on	the	far	side	of	the	screen	is	given	by	an	interference	pattern.
This	suggests	that	the	particle	has,	in	a	sense,	made	both	possible	journeys	and
interfered	with	itself	on	the	far	side	of	the	screen.	If	the	same	experiment	were
conducted	with	a	greater	number	of	screens,	each	with	a	 large	number	of	slits,
then	all	possible	paths	through	the	screens	would	have	to	be	summed	in	order	to
find	 the	 probability	 density	 distribution	 for	 the	 particle’s	 position.	 In	 the	 limit
that	the	number	of	screens	and	number	of	slits	per	screen	tends	to	infinity,	 this
system	is	indistinguishable	from	empty	space.	To	find	the	likelihood	of	a	particle
reaching	 a	 particular	 point	 in	 free	 space,	 then,	 it	 is	 necessary	 to	 sum	 over	all
possible	 paths	 that	 the	 particle	 could	 have	 taken	 to	 get	 to	 that	 point.	 More
precisely,	 this	 “sum	over	histories”	has	 each	path	weighted	by	a	 factor	eiS[path]
where	the	quantity	S	=	∫path	 (x)dx	is	the	action	for	that	path.	Such	sums	oscillate
wildly	 for	 small	 variations	 in	 S	 when	 we	 are	 far	 from	 the	 classical	 solution,
where	 S	 is	 stationary.	 This	 causes	 destructive	 interference	 between	 paths	 far
from	 the	 classical	 path,	 such	 that	 the	 greatest	 contributions	 to	 the	 quantum
behavior	of	 a	 system	come	 from	 those	paths	closest	 to	 the	classical	path.	This
leads	to	 the	remarkable	result	 that	 this	sum	over	histories	 is	 in	fact	responsible
for	 the	 classical	 principle	 of	 least	 action.	 In	 the	 case	 of	 an	 interacting	 field
theory,	 the	 path	 integral	 is	 further	 complicated	 by	 the	 fact	 that	 viable	 paths
involve	the	particle	undergoing	various	interactions	en	route.	For	example,	in	the
case	of	an	electron	traveling	through	free-space,	the	electron	could	simply	move
from	 one	 position	 to	 another.	 On	 the	 other	 hand,	 it	 could	 emit	 one	 or	 more
virtual	photons,	which	 it	 then	 re-absorbs.	Or,	 it	 could	 emit	 a	photon	 that	 itself
splits	into	an	electron-positron	pair	before	re-combining	to	be	re-absorbed	by	the
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original	electron.	All	of	these	paths	are	valid,	and	so	all	must	be	counted	toward
the	 probability	 amplitude	 for	 the	 process	 being	 considered.	 In	 fact,	 there	 are
infinitely	many	such	contributions,	but	as	long	as	the	coupling	is	small,	higher-
order	 interactions	 have	 a	 less	 significant	 contribution	 and	 the	 sum	 converges.
Generalizing	 this	 idea,	 since	 we	 cannot	 know	 the	 exact	 nature	 of	 the	 virtual
particles	 exchanged	 in	 an	 interaction,	 we	must	 “average	 over	 our	 ignorance.”
Both	quantization	 schemes	 thus	 arrive	 at	 the	 conclusion	 that	we	must	 sum	 the
contributions	 of	 Feynman	 diagrams.	 Due	 to	 the	 perturbative	 nature	 of	 these
calculations,	in	practice,	only	Feynman	diagrams	with	up	to	a	specific	number	of
vertices	 are	 considered	 for	 any	 given	 calculation,	with	more	 vertices	 giving	 a
more	precise	answer.

Increasing	 the	 number	 of	 vertices	 in	 a	 diagram	 typically	 introduces	 closed
internal	loops,	which	we	will	consider	in	Section	9.6.	The	simplest	diagrams	for
a	process	have	no	internal	loop	and	are	referred	to	as	tree-level	diagrams.	Even
at	 tree	 level,	 however,	 there	 may	 be	 more	 than	 one	 contribution	 to	 a	 given
process.	 For	 example,	 the	 interaction	 of	 an	 electron	 and	 a	 positron	 via	 photon
exchange	can	occur	in	two	different	ways:

Feynman	Rules

Before	we	write	 down	 the	 Feynman	 rules	 and	 calculate	 an	 amplitude,	 it	 is
worth	pointing	out	that	Equation	7.31,	along	with	the	complex	conjugate	of	the
scalar	equation,	can	be	derived	from	a	Lagrangian	of	the	form

via	the	Euler-Lagrange	equations
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and	that	the	allowed	vertices	in	Feynman	diagrams	can	also	be	deduced	directly
from	 this	Lagrangian.	 In	 fact,	 this	 is	 the	more	 typical	 approach	 to	determining
Feynman	rules.

To	 calculate	 an	 invariant	 amplitude,	we	 use	 the	 following	 procedure.	 First,
label	 all	 the	 internal	 and	 external	 particles	 with	 a	 fourmomentum,	 such	 that
momentum	is	conserved	at	each	vertex.	Also,	at	each	point	that	a	photon	joins	a
vertex,	label	it	with	a	Lorentz	index	(for	the	photon’s	polarization	vector).	Next,
write	down	the	relevant	factor	for	each	feature	of	the	diagram,	including	internal
and	external	particles,	and	each	vertex.	The	relevant	factors	are	as	follows:

For	each	scalar-scalar-photon	vertex	with	Lorentz	index	µ,	include	a	factor
of	iqe(p1+p2)µ	where	p1,	p2	are	the	momenta	of	the	scalars,	following	the
direction	of	the	arrows	on	the	diagram	(see	the	example	in	Equation	7.40).

For	each	two-photon–two-scalar	vertex	with	Lorentz	indices	µ,	ν,	include
a	factor	of	−2i(qe)2gµν.

For	 each	 incoming	 external	 photon	 with	 momentum	 p	 connected	 to	 a
vertex	with	Lorentz	index	µ,	include	its	polarization	vector	εµ(p).

For	 each	 outgoing	 external	 photon	 with	 momentum	 p	 connected	 to	 a
vertex	with	Lorentz	index	µ,	include	a	conjugate	polarization	vector	 (p).

For	 each	 internal	 (virtual)	 scalar	 particle	 with	 momentum	 p,	 include	 a
propagator,	 	where	m	is	the	scalar’s	mass.

For	each	internal	photon	with	momentum	p,	include	a	photon	propagator,	
	(This	is	modified	to	 	in	the	case	of	a	vector	particle	of	mass	m.)

If	 an	 internal	 momentum	 q	 is	 unconstrained,	 we	 must	 sum	 over	 all
possible	values:	∫	d4q/(2π)4.



These	 rules,	 along	 with	 the	 other	 Feynman	 rules	 covered	 in	 this	 text,	 are
summarized	 in	 Appendix	 B.	 The	 product	 of	 all	 the	 factors	 arising	 from	 a
diagram	 gives	 a	 contribution	 to	 −i ,	 where	 	 is	 the	 transition	 amplitude.
Notice	 that	 I	 have	 not	mentioned	 external	 scalar	 particles	 in	 the	 previous	 list.
This	is	because	the	external	scalar	contribution	is	trivial,	giving	a	factor	of	1,	and
so	we	can	simply	ignore	it.

It	is	worth	taking	a	further	moment	to	appreciate	the	origin	of	these	rules.	The
momentum	in	the	vertex	factor	comes	from	the	derivative	in	the	interaction	term
of	 the	 equation	of	motion.	 In	 the	 case	 of	 the	 vertex	with	 two	photons	 and	 the
photon	propagator,	the	two	Lorentz	indices	must	be	the	same,	hence	the	metrics.
A	polarization	vector	for	external	states	is	reasonably	intuitive.	The	least	clear	of
these	rules	are	the	two	propagators.	To	derive	these,	we	use	a	Fourier	transform
to	 write	 the	 non-interacting	 part	 of	 the	 Lagrangian	 in	 momentum-space.	 The
propagator	 is	 then	 the	 inverse	 of	 the	 operator	 sandwiched	 between	 the	 two
momentum-space	 wavefunctions.	 Let	 us	 take	 the	 scalar	 propagator	 as	 an
example	to	see	why	this	works.	The	wavefunction	for	a	non-interacting	scalar	of
course	obeys	the	Klein-Gordon	equation.	Suppose	now	that	we	wish	to	produce
a	 scalar	 particle	 in	 an	 otherwise	 empty	 system	 by	 introducing	 some	 sort	 of
disturbance	or	source.	We	do	this	at	a	particular	place	at	a	particular	time,	so	the
source	can	be	approximated	as	a	delta	function.	Taking	this	disturbance	to	be	at
the	origin,	we	have

where	α	 is	 some	 proportionality	 constant.	Writing	ϕ(x)	 in	 terms	 of	 its	 Fourier
transform

and	also	writing	the	delta	function	in	terms	of	a	k	integral,	we	find



Substituting	this	back	into	Equation	7.35,	we	find	that	at	a	point	x,	where	the
wavefunction	 would	 otherwise	 be	 trivially	 zero	 (for	 an	 empty	 system),	 the
behavior	 of	 the	wavefunction	 is	modified	by	 the	 presence	of	 the	 source	 at	 the
origin	according	to

A	more	rigorous	derivation	would	show	that	we	require	α	=	−i	so

or,	in	momentum	space,

Looking	at	the	denominator	of	this	propagator,	it	is	clear	that	a	virtual	particle
that	is	close	to	being	on	shell	carries	more	weight	than	one	that	is	far	from	the
mass-shell.	In	this	way,	the	propagator	ensures	that	the	most	likely	processes	are
those	in	which	the	exchange	particle	is	“almost	real.”

Writing	down	the	relevant	factors	for	a	Feynman	diagram	and	multiplying	all
of	these	factors	together	gives	a	contribution	to	−i ,	where	 	is	the	invariant
amplitude	for	 the	diagram.	The	full	amplitude	 is	 found	by	summing	all	similar
terms	 from	 relevant	 Feynman	 diagrams.	 This	 may	 then	 be	 squared	 and
substituted	 into	 Equation	 5.41	 to	 find	 the	 differential	 cross-section	 for	 the
process.	As	an	example,	consider	the	diagram



(a)

(b)

		1.

		2.

		3.

		4.

in	which	 two	 particles	 of	mass	m1	 and	m2	 and	 charges	 q1	 and	 q2	 interact	 via
photon	exchange.	The	arrows	on	the	scalar	lines,	incidentally,	show	the	flow	of
quantum	numbers	rather	than	momentum,	so	an	antiparticle	line	would	appear	to
point	backward.	Following	 the	Feynman	 rules,	we	can	write	 the	 amplitude	 for
this	diagram	as

This	 amplitude	 can	 now	 be	 substituted	 into	 Equation	 5.41	 to	 find	 the	 cross-
section	for	this	interaction.

EXERCISES

Given	that	ϕ(t,	x)	is	a	plane-wave	solution	of	the	Klein-Gordon
equation,	show	that	Ψ(t,	x)	=	ϕ(t,	x)eimt	is	an	energy	eigenstate
whose	eigenvalue	is	equal	to	the	kinetic	energy	of	ϕ.
Show	that,	in	the	non-relativistic	limit	(Ek	<<	m),	the	Klein-Gordon
equation	for	ϕ	reduces	to	the	Schrödinger	equation.

Show	that	the	plane	wave	Aµ	=	A0εµ	exp(−ip	·	x)	is	a	solution	of	the
Maxwell	equation	if	p2	=	0.

Show	that	the	Proca	equation	is	not	invariant	under	a	gauge
transformation	such	that	Aµ	 	Aµ	+	∂µχ.

Show	that	the	helicity	basis	states	for	vector	particles,	together	with	the



		5.

		6.

		7.

time-like	polarization	vector,	form	a	complete	orthonormal	set.

Making	use	of	the	substitution	pµ	 	pµ	−	qeAµ,	derive	the	form	of	the
Klein-Gordon	equation	and	the	conserved	current	in	the	case	of	a
charged	particle	in	an	electromagnetic	field	(Equations	7.9,	7.10).

Draw	a	Feynman	diagram	to	depict	a	charged	scalar	particle	and
antiparticle	annihilating	to	produce	a	photon,	which	then	pair-produces
another	scalar	particle	and	antiparticle.	Label	the	diagram	appropriately
including	particle	momenta	and	use	the	Feynman	rules	to	calculate	the
amplitude	for	this	process.	How	would	this	amplitude	differ	if	the	vector
were	massive?

Derive	the	equations	of	motion	for	the	scalar,	its	conjugate,	and	the
photon	from	the	Lagrangian	in	Equation	7.32	via	the	Euler-Lagrange
equations.

1	The	reader	will	often	see	this	misspelled	as	the	“Lorentz	condition.”	The	Lorenz	condition	is	named	after
Ludvig	Lorenz,	unlike	Lorentz	 invariance	and	the	Lorentz	group,	both	of	which	are	named	after	Hendrik
Lorentz.
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CHAPTER	8
THE	DIRAC	EQUATION

A	LINEAR	RELATIVISTIC	EQUATION

As	we	saw	in	Chapter	7,	the	simplest	relativistic	wave	equation	leads	to	some
difficulties	 involving	 negative-energy	 solutions	 and	 negative	 charge	 densities.
We	have	also	seen	how	to	overcome	these	difficulties	with	a	reinterpretation	of
the	equation.	Initially,	however,	when	first	discovered,	 these	issues	appeared	to
be	a	very	serious	stumbling	block	 for	a	 relativistic	quantum	theory,	 suggesting
that	 the	 Klein-Gordon	 equation	 was	 simply	 wrong.	 The	 non-relativistic
Schrödinger	 equation	 is	 free	 from	 these	 problems	 because	 it	 is	 a	 first	 order
differential	 equation	 with	 respect	 to	 time.	 Since	 the	 time	 derivative	 is
proportional	 to	 the	 energy	operator,	 this	 is	 just	 another	way	of	 saying	 that	 the
Schrödinger	equation	is	linear	with	respect	to	energy.	The	quadratic	nature	of	the
relativistic	 energy-momentum	 relation,	on	 the	other	hand,	 leads	 to	 an	 equation
that	is	second-order	in	time,	which	in	turn	means	that	negative-energy	solutions
cannot	 be	 ruled	 out.	 This	 led	 Paul	 Dirac	 in	 1928	 to	 search	 for	 a	 different
equation,	 with	 two	 important	 properties.	 First,	 its	 solutions	 should	 obey	 the
correct	 relativistic	 energy-momentum	 relation.	 Second,	 in	 order	 to	 retain	 the
interpretation	of	the	non-relativistic	equation,	it	should	be	first	order	in	time.	In
particular,	 it	 should	 in	 fact	 be	 a	 Schrödinger	 equation	 i∂tψ	 =	 Ĥψ,	 with	 a
Hamiltonian	suitable	for	a	relativistic	theory.	Lorentz	invariance	requires	that	the
treatment	 of	 time	 and	 space	 coordinates	 should	 be	 the	 same,	 and	 so	 it	 is
immediately	 clear	 that	 the	 Hamiltonian	 can	 be	 only	 first	 order	 in	 spatial
coordinates	as	well.	Another	term	that	is	compatible	with	these	first	derivatives
in	 terms	of	units	 is	 the	mass.	Dirac	 thus	postulated	a	Hamiltonian	of	 the	form	

	where	α	and	β	are	constants,	and	m	 is	 the	mass	of	 the	particle.
The	 equation	 can	 be	 put	 in	 a	 more	 obviously	 Lorentz-covariant	 form	 if
multiplied	through	by	β−1:



where	we	have	defined	γµ	by:

Another	way	to	view	this	equation	is	as	an	eigenvalue	equation:	the	solution
ψ	is	an	eigenfunction	of	the	operator	iγµ∂µ,	with	eigenvalue	m.	As	such,	we	can
operate	on	both	sides	of	the	equation	a	second	time	with	this	operator,	to	arrive
at

Since	 the	 two	 momentum	 operators	 in	 this	 expression	 clearly	 commute,	 the
operator	 	is	symmetric	in	µ	and	ν.	Using	this	fact	and	relabeling	the	indices
gives

We	can,	therefore,	write	m2ψ	as	the	average	of	these	two	expressions,	leading
to

Since	the	relativistic	energy-momentum	relation	can	be	written	gµνpµpν	=	m2,
this	places	a	constraint	on	the	γ	coefficients:

where	{A,	B}	=	AB	+	BA	denotes	the	anticommutator	of	two	objects.	When	a	set
of	objects	obeys	a	relation	of	the	previous	kind,	they	are	said	to	form	a	Clifford
algebra,	and	this	is	the	defining	property	of	the	objects	γµ.

A	moment’s	thought	will	show	that	the	Clifford	algebra	cannot	be	satisfied	by
ordinary	numbers,	since	we	have	the	requirement	that,	for	example,	(γ0)2	=	1	and
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(γ1)2	=	−1,	and	yet	γ0γ1	=	−γ1γ0.	These	objects	are	 instead	something	new,	and
potentially	 abstract.	 In	 fact,	 the	 nature	 of	 these	 objects	 is	 not	 particularly
important,	since	everything	physical	that	they	represent	can	be	deduced	directly
from	the	Clifford	algebra	relation	(Equation	8.6).	As	with	group	theory,	however,
we	can	represent	these	objects	with	a	set	of	matrices,	and	so	this	is	how	they	are
most	commonly	thought	of.	In	fact,	they	are	generally	referred	to	simply	as	the
gamma	matrices.	The	smallest	matrices	that	can	satisfy	the	defining	relation	are
4	 ×	 4	 matrices.	 Put	 another	 way,	 the	 smallest	 representation	 of	 the	 algebra
defined	 by	 Equation	 8.6	 has	 dimension	 4.	 In	 turn,	 this	 means	 that	 the
wavefunction	itself	 is	also	not	a	simple	number,	but	 is	an	object	with	(at	 least)
four	 components.	 The	 obvious	 candidate	 is	 of	 course	 a	 fourvector,	 but	 an
analysis	 of	 the	 transformation	 properties	 of	 the	Dirac	 equation	 shows	 that	 the
wavefunction	cannot	be	a	vector.	 It	 is	 a	new	 type	of	object,	known	as	a	Dirac
spinor.	We	will	explore	this	further	in	Section	8.3.

REPRESENTATIONS	OF	THE	GAMMA
MATRICES

There	 are	 a	 continuous	 infinity	 of	 possible	 representations	 of	 the	 gamma
matrices,	but	in	practice	only	a	few	are	ever	used.	Each	of	the	commonly	used
representations	has	its	own	useful	properties,	but	it	is	worth	re-emphasizing	that
the	physical	properties	of	a	system	cannot	depend	on	 the	 representation	 that	 is
chosen.	All	physically	significant	results	must	be	true	in	any	representation	and
can,	 therefore,	 be	 derived	 directly	 from	 the	 defining	 property	 of	 the	 gamma
matrices.	Having	said	this,	the	properties	of	a	particular	representation	may	lend
themselves	 to	 solution	 of	 a	 particular	 problem.	 We	 will	 consider	 two
representations	 in	 this	 text,	 which	 will	 be	 explored	 in	 the	 following	 sections.
There	 are	 some	properties	 of	 the	gamma	matrices	 that	 are	worth	deriving	 in	 a
representation-free	 manner,	 as	 this	 demonstrates	 that	 the	 useful	 properties
derived	 in	 this	 way	 are	 not	 an	 artifact	 of	 the	 specific	 representation	 used.	 In
particular,	it	is	worth	noting	that,	since	the	Hamiltonian	must	be	Hermitian,	we
must	have	αi†	=	αi	and	β†	=	β,	which	 in	 turn	give	γ0†	=	γ0	and	γi†	=	−γi.	These
relations	can	be	summarized	neatly	by
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The	Dirac	Representation

Arguably	 the	 “standard”	 representation	 for	 massive	 particles,	 the	 Dirac
representation	is	given	by

written	in	block	notation,	in	which	each	entry	is	itself	a	2	×	2	matrix,	with	 	the	2
×	2	identity	and	σi	the	i-th	Pauli	matrix.

The	Weyl	Representation

While	 the	 Dirac	 representation	 is	 the	 most	 common	 representation	 for
massive	 particles,	 it	 is	 not	 particularly	 well	 suited	 for	 describing	 massless
particles.	The	reasons	for	this	will	become	clear	when	we	discuss	chirality	later
in	 this	chapter.	For	now,	 it	 is	sufficient	 to	say	 that	another	representation	more
suitable	 for	 massless	 particles	 is	 the	 Weyl	 representation.	 This	 representation
shares	the	same	γi	as	the	Dirac	representation	but	differs	in	γ0.	In	block	form,	it	is
given	by

Notice	 that	 all	 four	 matrices	 are	 characterized	 by	 their	 vanishing	 block
diagonal	elements.	This	is	the	reason	that	the	representation	is	suited	to	massless
states,	since	it	allows	the	spinor	to	be	split	into	two	2-component	spinors,	as	we
will	see	in	Section	8.4.4.

SPINORS	AND	LORENTZ
TRANSFORMATIONS

We	can	derive	the	transformation	properties	of	a	Dirac	spinor	by	considering



the	 Dirac	 equation	 in	 two	 different	 frames.	 In	 particular,	 consider	 a	 second
reference	frame	related	to	the	first	by	a	Lorentz	transformation	Λµν.	Since	we	do
not	yet	know	the	corresponding	transformation	law	for	the	spinor,	let	us	write	it
as	 some	 matrix	 S.	 Since	 the	 gamma	 matrices	 are	 constants,	 they	 require	 no
transformation	between	frames.	The	derivative	on	the	other	hand	will	transform
as	 a	 covariant	 four-vector.	 In	 the	 new	 frame,	 then,	 the	Dirac	 equation	may	 be
written

Multiplying	from	the	left	by	the	inverse	transformation,	S−1,	gives

Notice	 that	 the	 derivative	 does	 not	 act	 on	 S	 since	 S	 is	 a	 transformation
between	frames	whereas	the	derivative	measures	the	rate	of	change	with	respect
to	one	frame.	Since	the	(Λ−1)νµ	is	just	a	collection	of	numbers,	it	must	commute
with	S	and	S−1.	Therefore,	we	have

If	 this	 equation	 is	 to	 remain	 invariant	 under	 Lorentz	 transformations,	 the
above	form	must	be	identical	to	the	original.	We	can,	therefore,	identify	(Λ−1)νµ
S−1γµS	with	γν.	Since	we	already	know	that	(Λ−1)νµ	Λµρ	=	 ,	we	can	see	that

It	 can	 be	 shown	 (as	 the	 reader	 is	 invited	 to	 verify	 in	 Exercise	 6)	 that	 the
appropriate	transformation	matrix	is	given	by

where	 ωµν	 is	 an	 antisymmetric	 set	 of	 rotation	 angles	 and	 boost	 velocities
defining	the	Lorentz	transformation	(as	in	Exercise	3),	and	σµν	=	 	[γµ,	γν].

Let’s	 take	 a	 spinor	 and	 rotate	 it	 about	 the	 z	 axis	 by	 some	 angle	 θ.1	 This



corresponds	to	ω12	=	−ω21	=	θ	and	ωµν	=	0	otherwise.	When	we	do	this,	we	find
that

where	 the	 last	 step	 only	 follows	 because	 the	 matrix	 is	 diagonal.	 For	 a	 full
rotation	of	2π,	this	gives

Rotating	 a	 spinor	 one	 full	 turn	 gives	 us	 back	 the	 negative	 of	what	we	 started
with!	We	must	rotate	through	two	full	turns	to	get	back	to	where	we	started:

A	spinor,	then,	is	an	object	that	in	a	sense	“rotates	more	slowly”	than	a	vector,
and	 is	 therefore	 able	 to	 resolve	 the	 structure	of	 the	Lorentz	group	more	 finely
than	 a	 vector.	 There	 are	 some	 very	 neat	 demonstrations	 (usually	 involving
ribbons)	 of	 the	 fact	 that	 the	 group	 of	 rotations	 really	 does	 contain	 additional



structure	 that	 vectors	miss.	 This	 is	 not	 a	 rotation	 in	 the	 usual	 sense,	 however,
since	the	components	of	the	spinor	do	not	correspond	to	directions	in	space.	It’s
more	a	case	that,	as	we	rotate	a	system	in	space,	we	must	make	a	simultaneous
“rotation”	of	the	components	in	a	related	spinor	space.

With	 the	 spinor,	 we	 have	 found	 a	 representation	 of	 the	 Lorentz	 group	 that
cannot	 be	 constructed	 as	 a	 tensor	 from	 the	 fundamental	 vector	 representation.
Since	 the	spinor	resolves	 the	structure	of	 the	Lorentz	group	more	finely	 than	a
vector,	 it	 appears	 to	 be	 the	more	 fundamental	 object.	A	 question	 that	 presents
itself,	then,	is	whether	we	can	express	scalars,	vectors,	and	higher-order	tensors
in	 terms	 of	 spinors.	We	 can	 certainly	 construct	 a	 single	 real	 number	 out	 of	 a
spinor	 by	 using	 the	 Hermitian	 conjugate:	ψ†ψ.	 However,	 since	ψ†	 transforms
under	Lorentz	transformations	according	to	ψ†′	=	ψ†S†,	and	S	is	not	unitary,	this
combination	is	not	a	scalar.	In	fact,	it	can	be	shown	that	S†	=	γ0S−1γ0,	leading	to
the	conclusion	that	the	appropriate	scalar	quantity	is	the	combination	ψ†γ0ψ.	For
this	reason,	we	find	it	useful	to	define	the	adjoint	of	a	spinor	as	 	=	ψ†γ0.	With
this	 definition,	 it	 can	 also	 be	 shown	 that	 γµψ	 transforms	 as	 a	 vector.	 In	 fact,
following	a	similar	procedure	to	that	used	in	the	cases	of	the	spin-0	and	spin-1
equations,	it	can	also	be	shown	that	 γµψ	is	the	conserved	current	for	the	Dirac
equation.	This	requires	the	introduction	of	the	adjoint	Dirac	equation.	Recall	that
for	the	Klein-Gordon	equation,	both	ϕ	and	ϕ∗	were	solutions.	This	is	because	the
Klein-Gordon	 operator	 is	 real,	 so	 taking	 the	 conjugate	 of	 the	 equation	 is
equivalent	to	taking	the	conjugate	of	the	wavefunction.	In	the	case	of	the	Dirac
equation,	 the	 operator	 is	 not	 real	 and	 is	 also	 matrix-valued,	 so	 taking	 the
Hermitian	conjugate	gives	a	slightly	altered	version	of	the	Dirac	equation	that	is
satisfied	by	the	adjoint	spinor:

where	 	denotes	a	derivative	that	acts	on	everything	to	the	left,	not	to	the	right.
The	 last	 line	 follows	 from	 the	 identity	 γµ†	 =	 γ0γµγ0,	 after	 canceling	 an	 overall
factor	 of	 γ0.	 From	 this	 and	 the	 original	Dirac	 equation,	we	 can	 show	 that	 the
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conserved	current	for	a	spinor	is	given	by	i γµψ,	as	the	reader	is	invited	to	show
in	Exercise	9.

SOLUTIONS	OF	THE	DIRAC	EQUATION

As	with	previous	relativistic	equations,	we	will	assume	a	planewave	solution
to	the	Dirac	equation	of	the	form

where	u(p)	is	a	normalized	constant	spinor	that	depends	on	the	momentum	of	the
particular	plane	wave	in	question.	Acting	with	the	momentum	operator	 µ	shows
that	this	is	a	momentum	eigenstate	with	eigenvalue	pµ,	and	substituting	the	plane
wave	into	the	Dirac	equation	gives

This	 is	 the	 momentum-space	 Dirac	 equation,	 and	 in	 fact	 holds	 for	 any
solution	 of	 the	 real-space	 equation,	 as	 can	 be	 seen	 by	 taking	 the	 Fourier
transform	 of	 the	 original	 equation.	 Notice	 that	 the	 gamma	 matrices	 are
contracted	 with	 the	 momentum.	 Such	 contractions	 occur	 so	 regularly	 when
working	with	 the	Dirac	 equation	 that	 it	 is	 convenient	 to	 introduce	 a	 shorthand
notation.	When	 a	 quantity	 is	 written	with	 a	 “slash”	 through	 it,	 this	 represents
contraction	with	the	gamma	matrices.	Hence	 	=	γµpµ	and	 	=	γµ∂µ.	In	the	case
of	the	plane-wave	solutions,	then,	we	have

Since	the	exponential	factor	cannot	take	a	value	of	0,	this	places	a	necessary
constraint	on	the	spinorial	factor	of	plane-wave	solutions:

Multiplying	from	the	 left	by	( 	+	m)	gives	 ( 	+	m)( 	−	m)	u(p)	=	0,	which
Equation	8.6	reduces	to	(p2	−	m2)u(p)	=	0.	Since	the	bracket	is	now	a	scalar,	 it
must	be	the	case	that	p2	=	m2,	so	the	plane	wave	describes	a	particle	of	mass	m



as	expected.	However,	it	also	means	that	the	plane	wave	is	a	solution	as	long	as	
	the	negative-energy	solutions	that	were	the	main	motivation	for

Dirac’s	 equation	 are	 still	 present!	Luckily	we,	 unlike	Dirac,	 are	 already	 in	 the
fortunate	 position	 of	 having	 a	 handy	 interpretation	 for	 such	 solutions,	 so	 they
need	 not	 worry	 us.	 In	 fact,	 it	 is	 Dirac	 whom	 we	 must	 thank	 for	 that
interpretation,	 as	 it	 was	 he	 who	 realized	 that	 the	 negative-energy	 solutions
arising	 from	 his	 equation	 were	 describing	 a	 type	 of	 matter	 that	 had	 not
previously	been	detected	or	predicted.

Multiplying	Equation	8.22	out	to	form	a	scalar	in	a	sense	“averaged	out”	the
constraints	 on	 the	 individual	 components	 of	 u(p)	 to	 show	 that	 our	 solution
describes	 a	 relativistic	 particle.	 If	we	 keep	 the	 components	 separate,	 Equation
8.22	contains	additional	information.	Writing	the	spinor	as

where	uA(p)	and	uB(p)	are	two-component	spinors,	we	can	rewrite	the	constraint
in	block	form	in	the	Dirac	representation	as:

or

From	this,	we	find	that	we	can	express	the	two-component	spinors	in	terms	of
each	other,	as

Therefore,	 only	 one	 of	 these	 objects	 is	 independent:	 once	 it	 is	 chosen,	 the
other	is	fixed.	There	is	freedom,	however,	to	choose	the	first	of	these	objects	as



we	please.	If	we	let	 	then

So	 one	 possible	 solution	 to	 the	Dirac	 equation	 (in	 the	Dirac	 representation)	 is
given	by

Notice	that,	as	p	→	0,

where	the	±	sign	depends	on	whether	we	are	considering	positive-	or	negative-
energy	solutions.

If	E	<	0,	 then	 	so	uB	→	∞	 in	 the	 limit	of	vanishing	momentum,
which	 is	 clearly	 nonsensical.	 On	 the	 other	 hand,	 if	E	 >	 0,	 then	E	 +	m	 =	 2m,
leading	 to	 a	well-defined	uB(p).	 Since	we	 can	 always	 transform	 to	 a	 frame	 in
which	 the	 three-momentum	 is	 zero,	 for	 consistency	 we	 must	 identify	 the	 u1
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solution	as	a	positive-energy	solution.

We	could	have	chosen	 the	uA(p)	differently	as	 	 in	which	case

we	 would	 have	 found	 a	 different	 uB(p).	 Analysis	 similar	 to	 the	 previous	 one
gives	two	independent	positive-energy	solutions:

and	two	independent	negative-energy	solutions:

The	final	thing	to	consider	in	constructing	the	basis	spinors	is	the	value	of	the
normalization	constant,	N.	Since	we	are	describing	relativistic	particles,	we	use
the	 relativistic	normalization,	 in	which	 there	are	2E	particles	 in	a	unit	volume.
This	requires	ψ†ψ	=	u†u	=	2E.	Since	we	can	show	that	u†u	=	2EN2/(E	+	m),	this
requires

Spin

In	order	to	find	the	spin	of	the	particles	described	by	the	Dirac	equation,	it	is
necessary	to	find	the	representation	of	the	Lorentz	group	that	is	appropriate	for
spinors.	To	do	 this,	we	 look	 at	 the	Dirac	 equation	 in	 two	 infinitesimally	 close
frames.	If	the	spinor	as	a	function	of	space-time	is	given	by	ψ(x)	in	one	frame,
then	there	is	a	corresponding	function	ψ′	that	takes	the	transformed	coordinate	 µ

=	Λµνxν	as	its	argument.	Equivalently,	we	can	express	x	in	terms	of	 ,	as	xν	=	(Λ
−1)νµ	 µ.	To	move	between	these	descriptions,	we	have	the	transformation	law



In	the	case	of	an	infinitesimal	transformation,	we	can	expand	both	S	and	x	to
first	order	to	give

or,	as	a	Taylor	expansion	of	ψ,

We	now	write	this	in	terms	of	the	Lorentz	generators	Jµν,	in	the	form

where	the	factor	of	1/2	accounts	for	the	over-counting	due	to	ωµν,	including	each
parameter	twice.	Relabeling	dummy	indices	so	that	we	may	factorize	out	the	δω
and	ψ,	and	neglecting	the	second-order	term,	we	have

From	this,	we	find	that	we	can	identify	the	Lorentz	generators	for	spinors	as

where	we	have	made	use	of	the	identities	pµ	=	i∂µ	and	ωµν	=	 	 (ωµν	−	ωνµ).	 In
particular,	looking	just	at	the	spatial	parts:

Here,	we	recognize	the	second	and	third	terms	as	the	orbital	angular	momentum
operator,	 as	 in	 Equation	 4.25,	 and	 so	 we	 identify	 the	 first	 term	 as	 the	 spin
operators,	 in	 tensor	form.	Converting	 this	 to	 threevector	form	(see	Exercise	5),
the	spin	operators	can	then	be	identified	as
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and	the	total	spin	as

Since	 the	 eigenvalue	 of	 the	 total	 spin	 is	 	 we	 see	 that	 the	 spinor
describes	a	spin- 	particle	as	expected.

To	 fully	 appreciate	 a	 key	 moment	 in	 the	 history	 of	 particle	 physics,	 it	 is
important	 that	 the	 reader	 be	 comfortable	 with	 the	 fact	 that	 spinors	 really	 do
describe	spin- 	particles.	So	if	further	evidence	is	needed,	consider	also	the	fact
that	the	Dirac	equation	is	a	relativistic	Schrödinger	equation	with	Hamiltonian	Ĥ
=	 α	 ·	 +	 βm.	 Any	 conserved	 quantity	 should,	 therefore,	 commute	 with	 this
Hamiltonian.	 It	 is	 reasonably	 straightforward	 to	 verify	 that	 the	 orbital	 angular
momentum	 operator	 	 does	 not	 commute	 with	 Ĥ,	 but	 that	 the	 total	 angular
momentum	operator	 	=	Σ	 +	 	 does	 commute.	Hence,	 if	we	 are	 to	 retain	 the
conservation	 of	 angular	momentum	 (which	 is	 a	 reasonable	 assumption!),	 then
the	 spin	must	 be	 given	 by	 the	 above	 spin	 operators,	 leading	 again	 to	 a	 spin-
particle.

Antiparticles

The	 reason	 for	 emphasizing	 the	 spin- 	 nature	 of	 spinors	 in	 Section	8.4.1	 is
that	 when	Dirac	 first	 constructed	 his	 equation,	 he	 too	 derived	 the	 spin	 of	 the
objects	 he	 had	 described,	 and	 so	 found	 that	 the	 equation	 was	 appropriate	 for
describing	electrons.	However,	with	a	spin	of	 ,	he	would	have	expected	as	we
should	that	there	would	be	only	two	degrees	of	freedom.	There	appear,	therefore,
to	 be	 two	 additional	 degrees	 of	 freedom.	 Furthermore,	 these	 additional	 states
have	negative	energy.	It	was	for	this	reason	that	Dirac	originally	postulated	the
concept	 of	 antimatter.	 In	 fact,	 as	 we	 saw	 in	 Chapter	 1,	 Dirac’s	 concept	 of
antimatter	was	slightly	different	from	the	modern	understanding,	and	was	based
on	the	idea	of	a	sea	of	negative-energy	states	held	up	by	the	exclusion	principle.
While	 this	hole	 theory	of	antimatter	 is	very	elegant,	 it	 is	unfortunately	 flawed,
since	we	now	know	that	bosons	can	also	have	antiparticles.	In	this	case,	the	hole



theory	does	not	work	since	bosons	are	not	subject	to	the	exclusion	principle	and
so	 would	 all	 decay	 away	 to	 infinitely	 negative	 energy	 states.	 For	 a	 full
understanding	 of	 the	 nature	 of	 antiparticles,	 it	 is	 necessary	 to	 introduce	 the
quantum	theory	of	fields,	which	we	will	discuss	only	briefly	in	Chapter	9,	since
it	 is	 somewhat	 beyond	 the	 scope	 of	 this	 text.	 The	 outcome,	 however,	 is	 that
negative-energy	 particle	 solutions	 can	 be	 reinterpreted	 as	 positive-energy
antiparticle	 solutions	 and	 vice	 versa,	 regardless	 of	 the	 spin	 of	 the	 particles	 in
question.	 In	 the	 case	 of	 a	 scalar	 particle,	we	moved	 between	 these	 equivalent
descriptions	using	the	complex	conjugate.	In	the	case	of	spinors,	things	are	not
quite	 so	 straightforward,	 and	 we	 must	 use	 a	 “charge	 conjugate”	 operation	 to
switch	between	descriptions.	This	will	be	introduced	in	Section	8.6.

For	 now,	 let	 us	 find	 a	 set	 of	 basis	 spinors	 more	 suited	 to	 describing	 the
negative-energy	 states,	 to	 complement	 those	 derived	 in	 Section	 8.4.	 Starting
again	from	the	assumption	of	a	plane-wave	solution	ψ	∝	e−ip·x	∝	e−i(Et−p·x),	but
insisting	now	that	E	is	to	be	defined	as	the	positive	root	 	then
in	order	to	write	the	negative-energy	solutions,	it	is	necessary	to	change	the	sign
in	the	exponent:

Notice	that	we	now	use	v(p)	for	the	basis	spinor	to	differentiate	the	negative
energy-type	solutions.	Substituting	this	into	the	Dirac	equation	gives

Recall	that	the	corresponding	constraint	for	u-type	solutions	is	given	by	( 	−
m)u(p)	 =	 0,	 so	 we	 have	 different	 constraints	 for	 the	 two	 types	 of	 solution.
Writing	the	basis	spinor	as	 	and	following	the	same	steps	as	for	the

u-type	spinors	leads	to	the	constraints



and	ultimately	to	the	basis	spinors

As	with	the	u-type	solutions,	consistency	demands	that	 two	of	 these	spinors
have	negative	energy	and	two	have	positive	energy.	However,	it	is	important	to
note	that,	in	this	case,	we	have	defined	E	to	be	the	negative	of	the	energy,	since
the	v-type	solutions	have	ψ	=	v(p)eip·x.	So	v1	and	v2	have	positive	E	and	negative
energy,	while	v3	and	v4	have	negative	E	and	positive	energy.

We	now	have	eight	basis	spinors:	four	u-type	and	four	v-type.	However,	only
four	of	these	are	linearly	independent.	Therefore,	the	standard	choice	of	basis	for
spinors	 in	 the	Dirac	representation	 is	 to	use	u1,	u2,	v1	and	v2	 since	all	of	 these
have	positive	E.	The	utype	solutions	are	then	used	to	describe	particles	while	the
v-type	solutions	are	used	for	antiparticles.	The	standard	basis	is	thus:

These	form	a	suitable	basis,	since	they	are	complete,	in	the	sense	that
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and	orthonormal,	in	that

as	the	reader	is	invited	to	verify	in	Exercise	12.

When	analyzing	antiparticle	solutions,	it	is	necessary	to	use	slightly	modified
operators	for	observables.	This	is	most	obvious	in	the	case	of	the	energy,	since
acting	on	ψ	=	v1eip·x	with	 	 gives	−E,	where	we	know	 that	 the	value	of	E	 is
positive.	That	is,	although	the	basis	spinors	have	been	defined	in	such	a	way	as
to	make	E	positive,	the	v-type	solutions	still	have	negative	energy.	To	understand
why,	it	 is	important	to	realize	that	all	of	the	solutions	we	have	found	are	really
particle	 solutions.	We	are	 still	describing	antiparticles	 in	 terms	of	particles	via
crossing	symmetry.	The	physical	energy	of	the	antiparticle	is	then	the	negative	of
that	 found	 by	 acting	 with	 the	 energy	 operator	 on	 the	 negative-energy	 particle
solution.

With	this	point	in	mind,	it	is	now	easy	to	see	that	other	operators	should	also
be	modified	in	order	to	find	the	physical	values	of	observables	for	antiparticles.
For	example,	the	physical	spin	of	an	antiparticle	is	given	by	− Σ,	since	a	spin-up
particle	is	equivalent	to	a	spin-down	antiparticle.

Helicity

The	 helicity	 of	 a	 spin- 	 particle	 is	 defined	 as	 for	 a	 spin-1	 particle,	 as	 the
component	of	spin	along	the	axis	defined	by	the	particle’s	momentum.	Since	the
spin	 operators	 are	 already	 defined	 for	 the	 spinor,	 we	 can	 define	 the	 helicity
operator	as

The	 standard	massive	 basis	 states	 introduced	 in	 Section	 8.4.2	 are	 not	 helicity
eigenstates.	 In	 fact,	 they	 are	 not,	 in	 general,	 eigenstates	 of	 any	 of	 the	 spin
operators.	The	only	exception	 is	 that	a	state	with	momentum	in	 the	z	 direction
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has	 a	well-defined	 z-component	 of	 spin.	 It	may	 be	 useful,	 therefore,	 to	 find	 a
general	 set	of	helicity	eigenstates.	 It	 is	possible	 to	construct	a	basis	of	helicity
states,	though	exploration	of	this	set	will	be	left	to	the	reader	in	Exercise	11.

A	spinor	can	be	either	right-helical	or	left-helical,	with	helicity	eigenvalues	of
+1/2	and	−1/2	 respectively.	The	 reader	may	see	 these	states	 referred	 to	as	 left-
and	 right-handed	 states,	 but	 this	 terminology	 is	 avoided	 here	 since	 it	 can
sometimes	also	refer	to	the	chirality	of	a	state,	leading	to	confusion.	It	is	worth
noting	 that	 the	 helicity	 of	 a	 state	 is	 a	 conserved	 quantity:	 that	 is,	 the	 helicity
operator	 commutes	 with	 the	 Hamiltonian.	 This	 seems	 intuitive	 since
conservation	 of	 angular	 momentum	 would	 suggest	 that	 a	 particle	 that	 is
“spinning”	one	way	cannot	spontaneously	transform	into	a	particle	spinning	the
other	way.	There	 is,	however,	one	way	in	which	we	can	apparently	change	 the
helicity.	 Consider	 a	 right-helical	 particle	 with	 a	 velocity	 v	 in	 some	 reference
frame.	Now	boost	into	a	reference	frame	with	a	velocity	in	the	same	direction	as
the	particle	but	with	a	larger	magnitude.	In	other	words,	consider	overtaking	the
particle.	 From	 the	 point	 of	 view	 of	 the	 observer	 in	 this	 boosted	 frame,	 the
particle	will	now	have	a	relative	velocity	 in	 the	opposite	direction	from	that	 in
the	original	frame.	However,	the	boost	has	no	effect	on	the	apparent	spin	state	of
the	 particle.	 The	 particle’s	 spin	 was	 aligned	 with	 its	 velocity	 in	 the	 original
frame,	but	that	spin	is	now	anti-parallel	to	the	new	velocity.	The	particle	which
was	 right-helical	 is	 now	 left-helical.	 That	 the	 helicity	 is	 not	 Lorentz-invariant
should	not	really	come	as	a	surprise,	since	the	form	of	the	operator	depends	only
on	the	threemomentum,	rather	than	on	the	full	momentum	four-vector.

Chirality

The	chirality	of	a	state	also	comes	in	left-	and	right-handed	varieties,	but	is	a
much	more	abstract	concept	 than	the	helicity.	Whereas	the	helicity	has	a	direct
physical	interpretation	as	the	alignment	of	the	particle’s	spin,	the	chirality	has	a
less	 clear	 physical	 interpretation,	 relating	 to	 the	 transformation	 properties	 of	 a
spinor.	 Specifically,	 it	 is	 due	 to	 the	 fact	 that	 the	 Dirac	 spinor	 is	 a	 reducible
representation	 of	 the	 Lorentz	 group,	 which	 can	 be	 broken	 down	 into	 two
irreducible	representations.	It	is	these	irreducible	representations	that	are	referred
to	as	the	left-	and	right-chiral	components	of	the	spinor.	To	see	how	the	concept
arises,	we	first	introduce	a	fifth	gamma	matrix	γ5	=	iγ0γ1γ2γ3.	This	is	traditionally



referred	 to	 as	 γ5,	 since	 its	 introduction	 dates	 back	 to	 a	 time	 when	 use	 of	 the
indices	1,	2,	3,	4	for	space	and	time	was	more	common	than	0,	1,	2,	3.	We	say
“fifth	gamma	matrix”	because	it	can	be	shown	to	obey	the	same	Clifford	algebra
as	the	other	matrices:

In	fact,	if	we	were	to	construct	spinors	in	a	five-dimensional	spacetime,	γ5	would
play	the	role	of	the	extra	gamma	matrix.	Notice	that	the	above	relations	are	true
in	any	representation,	and	can	be	derived	directly	from	the	definition	of	γ5	and
the	 anticommutation	 relations	 for	 the	 other	 gamma	 matrices.	 In	 a	 particular
representation,	of	course,	γ5	 can	be	written	explicitly.	We	could,	 if	we	wished,
write	 the	 chirality	 operator	 in	 the	 Dirac	 representation.	 For	 what	 follows,
however,	we	will	 find	 it	most	useful	 to	work	 in	 the	Weyl	 representation,	 since
this	 is	 specifically	 designed	 for	 working	 with	 chiral	 states.	 Indeed,	 it	 is
sometimes	 referred	 to	 as	 the	 chiral	 representation.	 In	 this	 representation,	 γ5	 is
given	by

Next	we	introduce	two	operators	 	=	 	( 4	−	γ5)	and	 	=	 	( 4	+	γ5),	known	as
the	left-	and	right-projection	operators.	Between	them,	these	operators	have	three
important	properties.	First,	their	sum	is	the	identity	operator,	so	that	 	+	 	acting
on	any	state	gives	back	the	same	state.	Second,	they	are	both	idempotent,	which
is	 to	say	 that	 they	each	square	 to	 themselves:	 	=	 	and	 	=	 .	The	 third
property	is	that	the	product	of	the	two	operators	vanishes:	 	=	 	=	0.	These
properties	 are	 what	 characterize	 the	 operators	 as	 projection	 operators.	 To	 see
why,	define	 the	states	ψL	and	ψR	by	ψL	=	 ψ	and	ψR	=	 ψ	 for	 some	arbitrary
spinor	ψ.	We	will	call	these	the	left-chiral	and	right-chiral	projections	of	ψ.	The
first	property	guarantees	that	ψL	+	ψR	=	ψ,	so	the	two	projected	components	sum
to	give	the	original	state.	In	the	Weyl	representation,	these	projection	operators
take	the	simple	form



and	it	 is	easy	to	see	that	 they	have	the	effect	of	projecting	out	 the	top	two	and
bottom	two	components	of	the	spinor	respectively.	For	this	reason,	in	the	Weyl
representation	we	 introduce	 2	 two-component	 spinors	 χL	 and	 χR	 such	 that	 the
Dirac	spinor	is	constructed	out	of	these	as

A	common	abuse	of	notation	is	 to	use	ψL	 to	refer	 to	both	a	 left-chiral	Dirac
spinor	and	 the	 two-component	 spinor	 forming	 the	 top	 two	 components	 in	 the
Weyl	 representation.	To	 avoid	 any	 confusion,	we	will	make	 a	 clear	 distinction
here,	 using	 ψ	 for	 four-component	 objects	 and	 χ	 for	 two-component	 objects.
Notice	that	a	left-chiral	spinor	can	now	be	written	ψL	=	(	χL,	0	)T.	Similarly,	ψR	=
(	0,	χR	)T.

Recall	that	the	infinitesimal	Lorentz	transformation	of	a	spinor	is	given	by

Let	us	now	consider	this	expression	in	terms	of	its	components.	First,	recall	that
the	antisymmetric	parameter	matrix	ωµν	consists	of	six	independent	parameters:
three	angles	θ1,2,3	which	parametrize	rotations	about	 the	 three	spatial	axes,	and
three	rapidities	ξ1,2,3	that	parametrize	boosts.	These	parameters	can	be	extracted
from	the	parameter	matrix	according	to

Furthermore,	 in	 the	Weyl	 representation,	 the	generator	matrices	σµν	=	 	 [γµ,	γν]
can	be	split	into

This	allows	us	to	write	the	previous	infinitesimal	transformation	in	the	form
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So	we	 see	 that	 the	 transformation	 laws	 for	 left-	 and	 right-chiral	 spinors	 are
given	by

In	 particular,	 the	 two	 irreducible	 representations	 transform	 identically	 under
rotations	but	have	opposite	behavior	under	boosts.

In	 the	case	of	massive	particles,	 the	helicity	and	the	chirality	are	essentially
completely	 unrelated	 concepts,	 but	 they	 do	 have	 somewhat	 complementary
properties.	Namely,	while	the	helicity	is	conserved	but	not	Lorentz-invariant,	the
chirality	is	Lorentz-invariant	but	not	conserved.	Indeed,	as	we	will	see	in	Section
8.5,	the	mass	term	in	the	Dirac	equation	mixes	the	chiral	components	of	a	spinor,
so	 it	 does	 not	 even	make	 sense	 to	 talk	 of	 the	 chirality	 of	 a	 massive	 particle.
However,	since	the	chiral	components	of	a	spinor	transform	independently	under
Lorentz	transformations,	the	chiral	components	are	clearly	individually	Lorentz-
covariant.

MASSLESS	PARTICLES

Working	 again	 in	 a	 representation-free	 scheme,	 since	 γ5	 anticommutes	with
the	 gamma	 matrices,	 we	 have	 i γ5	 =	 −iγ5 .	 Since	 the	 identity	 obviously
commutes	with	this	differential	operator,	it	is	easy	to	see	that	i 	=	 i 	and	i
=	 i .	 Clearly,	 then,	 acting	 on	 either	 chiral	 component	 of	 a	 spinor	 with	 the
differential	 operator	 found	 in	 the	 Dirac	 equation	 reverses	 the	 chirality	 of	 that
component.	 Therefore,	when	written	 in	 chiral	 components,	 the	Dirac	 equation
becomes	a	set	of	coupled	equations:
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Notice	that	these	equations	are	only	coupled	in	the	case	of	a	massive	particle.
If	m	is	set	to	zero,	the	equations	decouple	to

which,	 in	 the	 Weyl	 representation,	 simplifies	 to	 a	 pair	 of	 massless	 Pauli
equations

We	see	that	the	left-	and	right-chiral	components	of	a	massless	spinor	behave
completely	 independently	 of	 each	 other,	 so	 it	 is,	 in	 fact,	 more	 appropriate	 to
consider	each	as	a	separate	particle,	each	with	a	fixed	chirality.

The	 standard	 basis	 spinors	 derived	 in	 Section	 8.4	 are	 not	 appropriate	 for
massless	particles,	since	they	are	ultimately	based	on	the	spin	of	the	particle	in
its	 rest	 frame,	and	a	massless	particle	has	no	 rest	 frame.	The	appropriate	basis
for	massless	 particles	 is,	 therefore,	 the	 helicity	 basis	 (see	Exercise	 11).	Notice
that	 the	 argument	 given	 in	 Section	 8.4.3	 based	 on	 overtaking	 the	 particle	 to
change	 its	 helicity	 no	 longer	 applies	 in	 the	 case	 of	 massless	 particles:	 since
massless	particles	must	travel	at	the	speed	of	light,	we	cannot	overtake	them.	So
in	the	massless	case,	helicity	is	both	Lorentz-invariant	and	conserved.	Similarly,
since	chirality	of	a	massless	particle	is	fixed,	the	chirality	is	also	both	Lorentz-
invariant	and	conserved.	In	fact,	it	can	be	shown	that	the	two	concepts	become
identical	for	massless	particles.	In	particular,	 the	left-chiral	state	has	a	negative
helicity,	while	the	right-chiral	state	has	positive	helicity.	It	is	for	this	reason	that
chiral	states	are	labeled	as	left	and	right,	but	only	in	the	massless	case	do	these
labels	mean	anything!

CHARGE	CONJUGATION

For	scalar	particles,	the	complex	conjugate	was	sufficient	to	define	the	charge
conjugate	 of	 a	 particle.	 In	 the	 case	 of	 a	 spinor,	 since	 it	 is	 a	multi-component
object,	the	complex	conjugate	will	no	longer	necessarily	do	the	job.	Instead,	we
assume	that	the	charge	conjugate	of	a	spinor	is	given	by
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where	C	is	some	matrix.	In	particular,	we	assume	that	for	a	basis	spinor	u,	there
is	 a	 charge	 conjugate	 spinor	 v	 =	Cu∗.	 Recall	 that	 antiparticle	 solutions	 must
satisfy	the	constraint

Also,	if	v	 is	to	be	an	antiparticle	solution	of	the	Dirac	equation,	then	its	charge
conjugate,	 u,	 should	 be	 a	 particle	 solution.	 Therefore,	 taking	 the	 complex
conjugate	of	the	Dirac	equation:

The	 final	 expressions	 in	 Equations	 8.43	 and	 8.64	 must	 be	 equivalent,	 so
multiplying	the	latter	from	the	left	by	C,	we	find

so	equivalence	requires

From	this,	we	can	verify	that	C	=	iγ2	is	an	appropriate	charge	conjugation	matrix.
Incidentally,	there	is	nothing	significant	about	the	fact	that	C	is	related	to	γ2.	This
does	not	imply	anything	special	about	γ2	or	the	y	direction.	The	fact	is	that	this	C
is	representation-specific,	and	the	relation	between	C	and	γ2	is	an	artifact	of	the
Dirac	 and	Weyl	 representations.	 Using	 this	C,	 we	 can	 also	 verify	 that,	 of	 the
standard	Dirac-representation	basis	spinors	given	in	Section	8.4,	we	have	v1	=	
and	v2	=	 .	Note,	this	is	the	reason	for	the	overall	negative	sign	in	v2.

An	 important	 property	 of	 the	 charge	 conjugation	 operation,	 which	 we	 will
make	use	of	when	formalizing	the	Standard	Model,	is	that	it	inter-converts	left-
chiral	and	right-chiral	spinors.

DIRAC,	WEYL,	AND	MAJORANA	SPINORS



Spinors	 come	 in	 several	 varieties	 in	 particle	 physics,	 though	 they	 are	 all
related.	 To	 understand	 these	 relations,	 it	 is	 necessary	 to	 delve	 a	 little	 into	 the
mathematics	of	the	special	orthogonal	groups.	Specifically,	we	have	already	seen
in	Section	4.3.2	that	the	rotation	group	has	a	double	cover,	in	the	form	of	SU(2).
This	 means	 that,	 while	 all	 SO(3)	 representations	 are	 also	 representations	 of
SU(2),	 the	 converse	 is	 not	 true.	SU(2)	 has	 extra	 representations	 in	 addition	 to
those	 of	 the	 rotation	 group,	 but	 which	 must	 still	 be	 considered	 in	 quantum
mechanics,	 since	 only	 squared	 amplitudes	 have	 physical	 meaning.	 This	 idea
generalizes	to	larger	rotation	groups,	though	the	double	cover	in	most	cases	does
not	 coincide	 with	 one	 of	 the	 simple	 Lie	 groups.	 Instead,	 the	 double	 cover	 of
SO(n)	 is	 referred	 to	 as	Spin(n),	 and	 the	 representations	 of	Spin(n)	 that	 are	 not
present	in	SO(n)	are	 the	spinor	representations.	For	odd	dimensions,	n,	 there	 is
only	one	fundamental	spinor	representation,	but	when	n	is	even,	there	are	two.	In
the	 even	 case,	 the	 two	 fundamental	 representations	 are	 chiral,	 with	 one	 left-
chiral	 and	 one	 right-chiral,	 whereas	 there	 is	 no	 concept	 of	 chirality	 in	 odd-
dimensional	 spaces.	 The	 chiral	 spinors	 are	 irreducible	 representations	 and	 are
known	 as	Weyl	 spinors.	 They	 are	 complex-valued	 representations	 with	
components.	In	the	case	of	the	Lorentz	group,	therefore,	the	Weyl	spinors	are	the
twocomponent	 chiral	 spinors	 appearing	 as	 the	 upper	 and	 lower	 blocks	 of	 the
Dirac	 spinor	 in	Weyl	 representation.	The	Dirac	 spinors,	on	 the	other	 hand,	 are
reducible,	 and	 can	 be	 composed	 from	 two	Weyl	 spinors,	 as	 we	 have	 already
seen.	 The	 Dirac	 spinor,	 then,	 has	 	 complex	 components,	 giving	 a	 four-
component	spinor	for	the	Lorentz	group.

Both	Weyl	 and	Dirac	 spinors	 are	 complex	 representations	of	 their	 algebras,
but	 there	 is	 a	 third	 type	 of	 spinor	 representation.	 We	 can	 impose	 a	 reality
condition	on	a	Dirac	spinor,	ψ∗	=	ψ,	reducing	the	number	of	components	by	half.
In	 Minkowski	 space,	 then,	 we	 can	 define	 a	 real-valued	 spinor	 with	 two
components.	 A	 spinor	 defined	 in	 this	 way	 is	 called	 a	Majorana	 spinor,	 and	 a
fermion	described	by	such	a	spinor	is	a	Majorana	fermion,	but	what	would	be	its
properties?	First,	it	is	important	to	realize	that,	if	a	Majorana	spinor	is	to	obey	a
Dirac	equation,	then	since	the	mass	term	is	clearly	real	valued,	we	must	have

That	 is,	 all	 non-zero	 entries	 in	 the	 gamma-matrices	must	 be	 purely	 imaginary,
and	the	representations	we	have	used	so	far	do	not	satisfy	this	requirement:	the
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Majorana	representation	is	used	instead.

If	we	were	to	attempt	to	apply	a	reality	condition	to	a	Weyl	spinor,	we	would
find	 the	 attempt	 unsuccessful.	 There	 simply	 is	 not	 enough	 freedom	 in	 a	Weyl
spinor	to	restrict	the	components	further.	But	the	notion	of	chirality	is	related	to
which	Weyl	spinor	representation	a	fermion	belongs	to.	With	this	in	mind,	then,
a	Majorana	fermion	is	non-chiral.	It	does,	however,	have	a	helicity.	Recall	that	a
real	scalar	must	describe	a	particle	that	is	its	own	antiparticle.	In	a	similar	vein,
we	 find	 that	 the	 antiparticle	 of	 a	Majorana	 fermion	 is	 the	 same	 fermion	with
opposite	helicity!	This	in	turn	would	imply	that	the	Majorana	fermion	can	carry
no	fermion	number,	since	the	left-	and	right-handed	particles	would	necessarily
have	to	carry	both	the	same	and	the	opposite	number.	There	is	still	some	debate
over	the	possibility	of	Majorana	neutrinos,	since	all	neutrinos	are	believed	to	be
left-handed,	while	 all	 antineutrinos	 appear	 to	 be	 right-handed.	A	 smoking	 gun
for	 the	Majorana	 nature	 of	 neutrinos	would	 be	 the	 observation	 of	 neutrinoless
double-beta	decay,	since	this	would	require	an	interaction	of	the	form

Notice	 the	 lack	of	arrows	on	 the	 internal	neutrino	 line,	due	 to	 the	 lack	of	a
fermion	 number.	 Any	 attempt	 to	 direct	 these	 lines	 with	 arrows	 results	 in	 two
lines	 pointing	 toward	 the	 same	 vertex,	 demonstrating	 that	 this	 process	 cannot
occur	 if	neutrinos	are	not	Majorana	particles.	To	be	clear,	 there	 is	currently	no
evidence	for	this	process,	but	the	possibility	is	an	intriguing	one.

BILINEAR	COVARIANTS

Returning	 to	 the	 slightly	more	 familiar	 territory	 of	Dirac	 spinors,	we	 know



that	 the	 number	 of	 components	 is	 four	 in	 4D	 space.	 Taking	 a	 product	 of	 two
Dirac	spinors,	 then,	should	give	us	an	object	with	16	components.	As	with	 the
combination	of	spins	under	SU(2),	however,	the	object	formed	in	this	way	is	not
irreducible,	but	 it	should	be	expressible	as	a	sum	of	 irreducible	representations
of	 the	Lorentz	group.	These	are	 the	bilinear	 covariants	 for	 a	Dirac	 spinor,	 and
they	 are	 characterized	 by	 their	 behavior	 under	 proper	 Lorentz	 transformations
and	parity.

Bilinear	form type transformation parity components

ψ scalar 1 +1 1

γµψ vector Λµν −1 4

σµνψ antisymmetric	tensor ΛµρΛ
ν
τ +1 6

γµγ5ψ pseudo-vector Λµν +1 4

γ5ψ pseudo-scalar 1 −1 1

Summing	 the	 right	 column,	we	 see	 that	 this	 accounts	 for	 all	 16	 degrees	 of
freedom,	 so	 no	 other	 irreducible	 Lorentz-group	 representations	 may	 be
constructed	from	two	spinors.	This	allows	us	to	determine	the	types	of	currents
that	we	 can	 build	 into	 a	 theory.	 In	 particular,	we	 see	 that	 γµψ	 gives	 a	 vector
current	 that	 we	 may	 couple	 to,	 for	 example,	 the	 electromagnetic	 field.	 This
allows	us	to	construct	a	theory	of	a	spin- 	particle	in	an	electromagnetic	field:

Both	of	these	equations	may	be	derived	from	a	Lagrangian	of	the	form

This	is	 the	Lagrangian	for	quantum	electrodynamics,	of	which	much	more	will
be	said	in	Chapter	9.

Note,	from	the	bilinear	covariants,	that	we	can	also	construct	an	axial	current
(pseudo-vector	 current),	 of	 the	 form	 γµγ5ψ.	 This	 will	 prove	 useful	 when	 we
wish	to	formulate	a	theory	of	the	weak	interactions.	In	particular,	a	vector	boson



		1.
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may	 couple	 to	 a	 current	 of	 the	 form	 γµψ	 while	 a	 pseudo-vector	may	 couple
through	 γµγ5ψ.	 Both	 of	 these	 are	 parity-preserving	 interactions,	 since	 vectors
and	 pseudo-vectors	 both	 have	 a	 well-defined	 and	 consistent	 behavior	 under
parity	transformations.	However,	if	a	boson	were	to	couple	to	a	combination	of
these,	such	as	 	(αγµ	+	βγµγ5)ψ,	then	the	resulting	theory	would	violate	parity.	As
we	will	see	in	Chapter	11,	the	weak	interactions	are	found	to	be	of	this	form.	In
fact,	because	the	weak	current	is	an	equal	combination	of	 the	two	currents,	we
say	that	they	violate	parity	maximally.

Also	from	the	bilinear	covariants,	we	see	that	the	term	 ψ	is	a	scalar,	to	which
we	can	couple	a	scalar	field.	Adding	the	relevant	source	terms	to	the	Dirac	and
Klein-Gordon	equations	gives

where	 y	 is	 the	 coupling.	 This	 is	 equivalent	 to	 adding	 a	 term	 −yϕ ψ	 to	 the
Lagrangian	 and	gives	 a	 new	Feynman	 rule:	 each	 fermionfermion-scalar	 vertex
gives	 a	 factor	 of	 −y.	 These	 latter	 interactions	 are	 referred	 to	 as	 Yukawa
interactions,	 since	 they	 have	 the	 same	 Lorentz	 structure	 as	 Yukawa’s	 original
formulation	of	the	nuclear	interaction.

EXERCISES

Working	in	the	Dirac	representation,	show	that	the	momentum-space
Dirac	equation	can	be	written	in	the	form

Write	the	helicity	operator	for	a	Dirac	spinor	with	momentum	only	in
the	z	direction.	Hence	show	that	a	solution	of	the	form	ψ	=	u1(p)e−i(Et
−pzz)	is	a	helicity	eigenstate	and	find	its	helicity.



(a)

(b)
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		5.

(a)

(b)
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		7.

		8.

		9.

Use	the	defining	Clifford	algebra	relations	for	the	γ-matrices	to
show	that	(γ5)2	=	 	regardless	of	representation.
Hence	show	that	the	projection	operators	 	=	 	( 	−	γ5)	and	 	=	 	(
+	γ5)	are	idempotent	(square	to	themselves).

Show	explicitly	in	the	Weyl	representation	that	the	left-	and	right-chiral
parts	of	a	spinor	evolve	independently	of	each	other	in	the	case	of	a
massless	fermion.

From	Equation	8.39,	show	that	the	three-vector	form	of	the	spin
operators	is	as	given	in	Equation	8.40.	(Hint:	Consider	that	angular
momentum	in	three-space	is	defined	by	a	cross-product,	ℓ	=	r	×	p.	How
does	this	definition	extend	to	more	than	three	dimensions	and	how	can
you	write	it	in	index	notation?)

Use	the	γ-matrix	Clifford	algebra	relation	to	show	that

where	σµν	=	 	[γµ,	γν].
From	the	spinor	transformation	law	(Equation	8.14),	write	down	an
appropriate	form	of	S	and	S−1	for	an	infinitesimal	transformation.
Hence	show	that	this	transformation	obeys	the	condition	given	in
Equation	8.13.	(Hint:	Recall	the	infinitesimal	form	of	Lorentz
transformations	given	in	Exercise	3.)

Working	in	the	Dirac	representation,	show	that	the	plane	wave

is	an	eigenstate	of	the	operator	iγµ∂mu	and	find	its	eigenvalue.	Interpret
this	state	physically.

Verify	that	v1	=	 	and	v2	=	 .

Starting	from	the	Dirac	equation	and	its	adjoint,	and	following	a	similar
procedure	as	for	the	scalar	particle,	show	that	jµ	=	i γµψ	is	a	conserved



10.

(a)
(b)

(c)

(d)

(a)

(b)

(c)
(d)
(e)

11.

current	for	the	Dirac	spinor.

The	Lorentz	generators	for	a	vector	particle	take	the	form	(Jµν)αβ,	where
the	indices	µ,	ν	play	a	different	role	from	α	and	β.	Compare	this	with	the
corresponding	expression	for	the	spinor	Lorentz	generators.

What	are	the	roles	of	the	indices?
Following	a	similar	procedure	to	that	used	for	spin- 	particles	in
Section	8.4.1,	show	that	the	Lorentz	generators	(Jµν)αβ	obey

Relabel	indices	as	appropriate	to	show	that	the	generators	are	given
by

(Hint:	You	will	also	need	to	insert	a	couple	of	Kronecker	deltas	to
make	the	indices	work	out	right.)
Hence	show	that	the	spin	operators	for	a	vector	particle	are	as	given
in	Equation	7.22.

Write	down	the	energy-momentum	four-vector	for	a	Dirac	solution
of	the	form

For	a	solution	of	this	form,	show	that

Show	that	χ	is	an	eigenstate	of	 	for	arbitrary	θ	and	ϕ.
Hence	show	that	ψ	is	a	helicity	eigenstate	and	find	its	eigenvalue.
Find	a	similar	helicity	eigenstate	with	the	opposite	helicity.



12.

(a)

(b)

13.

14.

Show	that

and

Starting	from	Equation	8.26,	show	that	the	positiveenergy	solutions
to	the	Dirac	equation	approximately	satisfy

in	the	non-relativistic	limit,	where	Ek	is	the	kinetic	energy.

Hence	show	that	the	two-component	spinor	ψ	=	 uA(p)eimt	obeys
the	Pauli	equation	in	the	absence	of	electromagnetic	fields
(Equation	3.55).

Construct	a	set	of	four	4	×	4	matrices	with	no	real	entries	that	obey	the
Clifford	algebra	and	so	could	function	as	the	γ-matrices	in	the	Majorana
representation.

1	More	accurately,	we	will	rotate	our	reference	frame	through	an	angle	θ	around	the	spinor.
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CHAPTER	9
QUANTUM	ELECTRODYNAMICS

U(1)	SYMMETRY	IN	WAVE	EQUATIONS

In	non-relativistic	quantum	mechanics,	wavefunctions	must	be	normalized	in
a	consistent	way,	but	this	choice	is	arbitrary,	since	it	is	only	distinct	directions	in
the	Hilbert	space	of	state	vectors	that	correspond	to	physically	distinct	states.	It
may	seem	intuitive,	then,	that	changing	the	phase	of	a	wavefunction	may	lead	to
a	distinct	state.	However,	this	is	not	the	case,	as	can	be	seen	by	considering	the
correspondence	 between	 the	 wave	 and	 particle	 descriptions	 of	 a	 system.	 The
energy	and	momentum	of	a	particle	are	related	to	the	frequency	and	wavelength
of	the	corresponding	wave	respectively.	The	overall	phase	of	the	wave,	though,
has	no	bearing	on	the	nature	of	the	corresponding	particle.	So	a	phase	shift	in	the
wavefunction	 is	 a	 symmetry	of	 the	 system.	This	 can	be	 seen	directly	 from	 the
Schrödinger	 equation	 by	 adding	 a	 constant	 phase	 to	 the	 exponent	 for	 a	 plane
wave	 or,	 more	 generally,	 multiplying	 the	 wavefunction	 by	 a	 phase	 eiα.	 The
derivatives	 in	 the	 Schrödinger	 equation	 clearly	 have	 no	 effect	 on	 a	 constant
multiplicative	factor,	so	we	find	that	the	phase	cancels	throughout	the	equation:

That	is,	multiplying	ψ	by	eiα	has	no	effect	on	the	Schrödinger	equation.	It	is
easy	 to	 see	 that	 the	 same	 logic	 applies	 equally	 to	 all	 of	 the	 relativistic	 wave
equations	 we	 have	 considered	 so	 far	 as	 well.	 Such	 a	 symmetry	 in	 the
wavefunction	 is	 known	 as	 a	 global	U(1)	 symmetry:	 global	 because	 the	 same
transformation	is	applied	at	all	space-time	points,	and	U(1)	since	the	set	of	such
transformations	forms	a	U(1)	symmetry	group	(notice	that	the	single	generator	in
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this	case	is	the	identity).

This	 continuous	 symmetry	 must	 come	 with	 a	 conserved	 quantity	 and
associated	 current,	 and	 indeed	 it	 does.	 In	 fact	 we	 have	 already	 met	 this
conserved	current,	but	it	takes	a	slightly	different	form	for	each	of	the	different
wave	 equations.	 For	 the	Schrödinger	 equation	 it	 is	 the	 probability	 density	 and
probability	density	current.	For	 the	Klein-Gordon	equation	 it	 is	given	by	 jµ	=	i
(ϕ∗∂µϕ	−	ϕ∂µϕ∗),	while	for	 the	Dirac	equation	it	 is	given	by	 jµ	=	 γµψ,	and	so
on.	 It	 is	 the	 charge	 current	 that	we	 have	 derived	 independently	 for	 each	wave
equation,	 and	 we	 see	 now	 that	 such	 a	 current	 was	 guaranteed	 by	 Noether’s
theorem.

Notice	that	this	U(1)	symmetry	is	not	local,	however.	That	is,	we	cannot	make
a	 different	 transformation	 at	 each	 point	 in	 space-time	 independently.	 The
intuitive	argument	for	this	statement	is	that	making	a	different	transformation	at
two	points	in	space	would	lead	to	the	wave-form	expanding	in	some	places	and
contracting	in	others.	This	change	in	the	wavelength	of	the	wavefunction	would
have	 an	 effect	 on	 the	 corresponding	 particle,	 altering	 its	 momentum.	 Such	 a
transformation,	then,	cannot	be	a	symmetry	of	the	system.	Equivalently,	it	is	also
straightforward	to	see	that	multiplication	by	a	positiondependent	phase	leads	to
new	terms	in	the	wave	equation.	Taking	the	Dirac	equation	as	an	example,	since
it	will	be	the	most	important	in	what	follows,	we	find	that	a	transformation	of	the
form	ψ	 	eiα(x)ψ	leads	to

If	ψ	 is	itself	a	solution	of	the	Dirac	equation,	then	the	first	 term	in	the	last	line
vanishes,	 leaving	 only	 the	 second	 term.	 Since	 this	 is	 not	 necessarily	 zero,	 the
transformed	spinor	is	not	a	solution	of	the	Dirac	equation.

LOCALIZING	THE	U(1)	SYMMETRY



Consider	 now	 an	 electrically	 charged	 spin- 	with	 charge	qe,	 where	 e	 is	 the
fundamental	 electromagnetic	 charge	 (the	 charge	 on	 an	 electron)	 and	 q	 is	 the
relative	charge.	That	is	q	=	−1	for	the	electron,	+ 	for	the	up	quark,	and	so	forth.
The	 current	 produced	 by	 this	 fermion,	 then,	 is	 jµ	 =	 qe γµψ.	 This	 gives	 an
inhomogeneous	 Maxwell	 equation	 ∂2Aµ	 −	 ∂µ∂	 ·	 A	 =	 qe γµψ.	 Similarly,	 the
modified	Dirac	equation	 in	 the	presence	of	an	electromagnetic	field	 is	 (iγµ∂µ	−
qeγµAµ	 −	m)	ψ	 =	 0.	 Put	 another	 way,	 this	 system	 can	 be	 summarized	 by	 the
Lagrangian

This	 is	 the	 Lagrangian	 for	 quantum	 electrodynamics	 (QED),	 a	 theory	 of
charged	 spin- 	 particles	 interacting	 with	 the	 electromagnetic	 field.	 The	 U(1)
phase	symmetry	on	the	spinor	in	this	case	is	more	general	than	in	the	previous
section,	 since	we	now	have	 the	 freedom	 to	 change	 the	phase	 independently	 at
each	 point	 in	 spacetime.	 This	 additional	 freedom	 is	 granted	 by	 the	 gauge
symmetry	of	 the	electromagnetic	field.	Making	a	 local	phase	 transformation	as
in	Equation	9.2	leads	to

Since	the	photon	has	a	gauge	symmetry,	we	are	free	to	redefine	Aµ	according
to	Aµ	 	Aµ	+	 ∂µα(x).	In	this	way,	we	reduce	Equation	9.4	to	the	same	modified
Dirac	 equation	 obeyed	 by	 the	 initial	 spinor	 ψ.	 By	 coupling	 to	 the
electromagnetic	field,	we	have	localized	the	U(1)	symmetry	that	was	previously
only	global.	We	can	now	flip	this	entire	argument	on	its	head,	and	ask	in	what
situation	we	can	localize	the	global	phase	symmetry	in	the	Dirac	equation.

Looking	 again	 at	 the	 demonstration	 from	 the	 previous	 section	 that	 the
symmetry	 is	 not	 local	 in	 the	 general	 case,	 clearly	 the	 problem	 lies	 in	 the
derivative,	as	 this	 is	what	generates	 the	additional	 term.	Specifically,	while	 the
mass	 term	 transforms	 the	 same	 way	 as	 the	 spinor	 itself	 under	 phase
transformations,	 the	 problem	 is	 that	 the	 derivative	 term	 transforms	 differently.
So	what	 is	 needed	 is	 a	modified	 derivative	Dµ	 with	 the	 property	 that	Dµψ	



eiα(x)Dµψ.	 Such	 a	 derivative	 is	 known	 as	 a	 gauge-covariant	 derivative.	 We
assume	that	this	derivative	takes	the	form	of	a	simple	partial	derivative	with	an
additional	 term,	which	 for	 consistency	must	 be	 a	 four-vector	 field:	Dµ	 =	∂µ	 +
iqeAµ,	 where	 we	 have	 taken	 out	 a	 factor	 of	 iqe	 in	 anticipation	 of	 what	 is	 to
follow.	The	required	transformation	law	for	the	covariant	derivative	is

but	substituting	in	the	assumed	form	of	Dµ	gives

In	order	to	remove	the	offending	final	term,	we	need	the	freedom	to	redefine
the	vector	field	Aµ	according	to	Aµ	 	Aµ	+	 ∂µα(x).	That	 is,	we	require	gauge
freedom	 in	Aµ	 in	 order	 to	 localize	 the	 phase	 symmetry	 in	ψ.	 This	 leads	 to	 a
Lagrangian	of	the	form

with	 local	U(1)	 phase	 symmetry	 and	 gauge	 symmetry.	 Recall	 that	 a	 massive
vector	particle	has	no	gauge	invariance,	so	if	Aµ	is	to	describe	a	particle,	it	must
be	massless.	We	now	ask	the	question	“are	there	any	other	 terms	that	could	be
added	to	this	Lagrangian	without	destroying	these	symmetries?”	To	see	that	the
answer	is	yes,	notice	that	the	second	gauge-covariant	derivative	of	a	spinor	also
transforms	as	a	spinor:	DµDνeiα(x)ψ	=	eiα(x)DµDνψ.	So	a	second	derivative	is	also
invariant	under	local	U(1).	The	commutator	of	two	such	derivatives	gives

In	 deriving	 this	 result,	 we	must	 be	 careful	 with	 the	meaning	 of	 the	 partial
derivatives.	 In	 the	 first	 line,	 the	 partial	 derivatives	 act	 on	 everything	 to	 their
right,	including	an	implicit	wavefunction.	In	the	second	line,	the	additional	terms
generated	by	the	derivatives’	effect	on	the	implicit	wavefunction	have	vanished,
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and	the	derivatives	now	act	only	on	A.	While	this	object	is	gauge-invariant,	with
two	Lorentz	indices	it	is	not	Lorentz-invariant.	A	suitable	additional	term	for	the
Lagrangian	must	be	a	scalar,	so	a	term	proportional	to	FµνFµν	will	fit	the	bill.

Simply	by	imposing	a	local	U(1)	phase	symmetry,	we	have	arrived	at	a	theory
of	a	 fermion	 interacting	with	a	massless	 spin-1	particle	with	gauge	 invariance.
Local	U(1)	has	led	directly	to	a	theory	of	a	charged	fermion	interacting	with	the
photon,	 or	 at	 least	 something	 that	 behaves	 very	 much	 like	 a	 photon.	 This
approach	 to	deriving	quantum	electrodynamics,	 and	 its	generalization	 to	 larger
symmetry	 groups,	 will	 prove	 useful	 in	 constructing	 the	 remainder	 of	 the
Standard	Model	of	particle	physics,	as	in	the	following	chapters.	Theories	built
on	local	symmetries	in	this	way	are	known	as	gauge	theories.

THE	LINK	WITH	CLASSICAL	PHYSICS

If	quantum	electrodynamics	is	to	describe	the	behavior	of	charged	particles	in
the	presence	of	an	electromagnetic	field,	 then	in	particular	it	should	agree	with
the	classical	theory	in	the	appropriate	limit.	In	order	to	check	that	this	is	the	case,
it	 is	 sufficient	 to	 compute	 the	 interaction	 energy	 between	 two	 static	 charged
particles.	It	is	instructive	to	do	this	first	for	the	case	of	a	massive	scalar	exchange
particle:	we	will	return	shortly	to	the	case	of	a	massless	vector	exchange	particle
like	 the	 photon.	 Since	we	 are	 considering	 a	 static	 situation,	 the	Klein-Gordon
equation	for	the	exchange	particles	reduces	to

where	ρ(x)	is	a	source	of	the	exchange	particles.	In	the	presence	of	a	single	static
source	of	charge	Q1	=	q1e	at	position	x1,	then,	this	becomes

Other	than	working	in	only	three	dimensions,	the	procedure	is	now	identical	to
the	derivation	of	the	propagator	as	in	Section	7.3,	and	we	find



This	then	describes,	in	a	sense,	the	distribution	of	exchange	particles	around
the	source	in	the	static	approximation.	If	there	is	a	second	source	of	charge	Q2	=
q2e	at	position	x2,	then	the	energy	of	interaction	between	this	second	source	and
the	exchange	particles	due	to	the	first	source	is	given	by

If	 we	 choose	 our	 coordinate	 system	 such	 that	 the	 direction	 of	 (x2	 −	 x1)	 is
aligned	with	the	z	axis,	and	then	convert	to	spherical	polar	coordinates,	(r,	θ,	ζ),
we	find

where	ℓ	≡	|k|	and	r	≡	|x2	−	x1|.	So	the	previous	expression	for	U	becomes

where	this	last	step	follows	from	a	change	of	integration	variable,	ℓ	 	−ℓ,	in	the
second	term.

To	 complete	 this	 calculation,	 it	 is	 necessary	 to	 use	 the	 tools	 of	 complex
analysis.	Specifically,	we	wish	to	compute	this	integral	along	the	entire	real	line.
However,	since	r	is	necessarily	positive,	for	large	imaginary	values	of	ℓ,	we	have



eiℓr	→	0	and	the	integrand	vanishes.	We	can,	therefore,	compute	the	integral	over
a	closed	loop	that	runs	the	length	of	the	real	axis	and	then	closes	in	the	positive
imaginary	half-plane.	Since	the	semicircular	part	of	this	contour	has	an	integrand
of	 zero,	 the	 value	 of	 the	 whole	 contour	 integral	 is	 equal	 to	 the	 value	 of	 the
integral	 along	 just	 the	 real	 line.	 This	 allows	 us	 to	 apply	 Cauchy’s	 integral
formula:	for	an	integrand	of	the	form

where	 f(z)	 is	 any	 analytic	 function,	 the	 integral	 over	 a	 closed	 contour	 C,
performed	counterclockwise,	is	given	by

Writing	the	integrand	in	Equation	9.14	as

we	see	that	it	is	of	the	correct	form	to	use	Cauchy’s	formula,	with

Hence,	we	arrive	at	an	interaction	energy	between	our	two	sources	of

This	 is	 the	 classical	 potential	 for	 a	 force	with	 a	 range	 of	 order	 1/m.	 If	 the
exchange	 particle	 is	 massless,	 this	 reduces	 to	 the	 potential	 for	 a	 force	 with
infinite	range:
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Notice	that	this	force	is	attractive	(−dU/dr	<	0)	for	like	charges	and	repulsive
(−dU/dr	>	0)	for	opposite	charges.	This	may	seem	counterintuitive	but	in	fact	is
the	 correct	 result	 when	 we	 consider	 a	 force	 mediated	 by	 scalar	 exchange
particles.	As	an	example,	consider	the	residual	nuclear	force	between	nucleons:
this	is	mutually	attractive	since	it	is	mediated	(to	a	good	approximation)	by	spin-
0	pions.	The	more	 familiar	 situation	of	 a	 repulsive	 force	between	 like	 charges
arises	when	we	consider	a	spin-1	mediator.	In	this	case,	we	must	also	consider
the	 polarization	 state	 of	 the	 virtual	 exchange	particle.	 In	 the	 low-energy	 semi-
classical	limit	in	which	we	are	working,	it	is	the	time-like	component	A0	of	the
photon	that	contributes	to	the	potential.	This	is	because	Aµ	couples	to	the	current
produced	by	the	particles	acting	as	sources,	and	in	the	static	limit,	the	only	non-
zero	part	of	this	current	is	the	time-like	component.	Since	the	photon	propagator
takes	 the	 form	 −igµν/k2,	 considering	 only	 the	 A0	 component,	 we	 see	 that	 it
behaves	as	a	scalar	with	propagator	−i/k2,	whereas	a	true	massless	scalar	would
have	 propagator	 i/k2.	 This	 relative	 negative	 sign	 gives	 rise	 to	 the	 familiar
Coulomb	potential	as	a	result	of	photon	exchange:

A	WELL-TESTED	THEORY

Quantum	 electrodynamics	 has	 the	 impressive	 distinction	 of	 being	 the	most
accurate	 scientific	 theory	 ever	 devised.	 To	 clarify	 this	 statement,	 some	 of	 the
predictions	of	quantum	electrodynamics	match	with	experimentally	determined
values	 to	 the	 highest	 precision	 of	 any	 such	 quantities	 in	 a	 physical	 theory.
Among	these	is	the	magnetic	moment	of	the	electron.	As	we	saw	in	Section	3.8,
the	spin	g-factor	of	 the	electron	 is	predicted	 to	be	2	by	 the	Pauli	equation,	and
also	 therefore	by	 the	Dirac	 equation.	This	 is,	 however,	 not	 in	 exact	 agreement
with	the	experimentally	determined	value.	There	is	a	small	deviation	of	g	from
2,	usually	quantified	as	 	and	known	as	the	anomalous	magnetic	moment.	The
experimental	 value	 of	 this	 anomalous	 moment	 is	 (1.15965218073(28))×10−3,
and	quantum	electrodynamics	is	able	to	match	this	to	the	tenth	significant	figure
with	a	calculated	value	of	(1.15965218178(77))×10−3.	There	are	other	precision
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measurements	that	have	been	performed	to	test	QED	and	all	find	that	the	theory
is	 in	 excellent	 agreement	 with	 experiment.	 Such	 precision	 arises	 from
calculating	higher-order	Feynman	diagrams,	so	let’s	explore	this	procedure.

CALCULATIONS	IN	QED

We	 have	 already	 seen,	 in	 Section	 7.3,	 how	 to	 calculate	 a	 simple	 Feynman
diagram.	In	QED,	 the	calculations	 tend	 to	get	somewhat	 trickier.	This	 is	partly
because	 there	are	often	multiple	diagrams	to	consider	for	each	process,	but	 the
main	complication	is	from	the	Feynman	rules.	The	Feynman	rules	for	QED	are
such	 that	 even	 an	 amplitude	 with	 a	 single	 contribution	 can	 be	 difficult	 to
compute,	since	it	typically	contains	a	product	of	multiple	γ-matrices.

Before	 performing	 a	 full	 calculation,	 it	 is	 worth	 noting	 that	 the	 Feynman
diagram	 formalism	 also	 allows	 for	 a	 very	 simple	 estimation	 procedure.
Specifically,	if	we	write	down	the	simplest	diagrams	contributing	to	a	particular
process	 and	 then	 simply	 count	 the	 number	 of	 vertices,	 this	 gives	 an	 order-of-
magnitude	 estimate	 for	 the	 strength	 of	 a	 process.	 For	 example,	 consider	 the
processes	of	Møller	scattering,	e−	+	e−	→	e−	+	e−,	and	Delbrück	scattering,	γ	+	γ
→	γ	+	γ.	The	lowest-order	contributions	to	each	of	these	processes	are

and

respectively,	 so	 we	 can	 see,	 just	 from	 the	 number	 of	 vertices,	 that	 Delbrück
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scattering	is	typically	an	order	of	 	weaker	than	Møller	scattering.

Feynman	Rules	for	QED

The	 Feynman	 rules	 for	 QED	 are	 as	 follows.	 First,	 label	 each	 internal	 and
external	 particle	 with	 a	 momentum	 consistent	 with	 momentum	 conservation.
Additionally,	 label	 all	 external	 fermions	 and	 photons	 with	 a	 polarization	 state
index.	 Internal	 and	 external	 photons	 contribute	 the	 same	 factors	 as	 in	 Section
7.3.	The	additional	fermion-specific	rules	are	as	follows,	where	all	particles	are
taken	to	have	momentum	p	and	spin-polarization	A:

An	incoming	fermion	contributes	a	spinor	uA(p).

An	outgoing	fermion	contributes	a	spinor	ūA(p).

An	incoming	anti-fermion	contributes	a	spinor	 A(p).

An	outgoing	anti-fermion	contributes	a	spinor	vA(p).

An	internal	fermion	contributes	a	propagator:

A	 fermion-fermion-photon	vertex	contributes	 a	 factor	−iqeγµ,	where	µ	 is
the	Lorentz	index	for	the	photon	connecting	to	the	vertex.

When	applying	these	rules,	there	are	three	more	points	we	must	be	aware	of.
First,	spinors	must	be	written	in	the	correct	order.	To	achieve	this,	we	follow	a
fermion	line	backward,	against	 the	flow	of	 the	fermion	number	denoted	by	 the
arrows	on	the	lines.	If	the	fermion	forms	a	closed	internal	loop,	we	take	the	trace
of	 the	 resulting	 string	 of	 gamma	 matrices.	 Second,	 we	 include	 an	 additional
factor	 of	 −1	 for	 any	 closed	 fermion	 loop.	And	 third,	 if	 any	 two	 diagrams	 are
related	 by	 the	 relabeling	 of	 external	 fermion	 lines,	 we	 give	 one	 of	 them	 an
additional	overall	factor	of	−1.	A	full	list	of	these	rules	is	given	in	Appendix	B.

Calculating	Amplitudes



Distinguishable	Particles

Let’s	see	how	a	full	calculation	goes	through.	The	most	obvious	amplitude	we
could	 try	 to	calculate,	and	what	may	intuitively	feel	as	 though	it	should	be	 the
simplest,	is	the	elastic	scattering	of	two	electrons.	However,	as	we	can	see	from
the	 above	 diagrams	 for	 Møller	 scattering,	 there	 are	 two	 contributions	 to	 this
process	 at	 the	 lowest	 order,	 and	 this	 complicates	matters.	The	 reason	we	have
two	diagrams	is	due	to	the	fact	that	electrons	are	indistinguishable,	so	we	must
account	 for	 the	 possibility	 that	 the	 outgoing	 electron	 with	 momentum	 p3
originally	 had	 momentum	 p1,	 but	 also	 the	 possibility	 that	 it	 originally	 had
momentum	p2.	This	issue	can	be	avoided,	therefore,	if	we	calculate	the	scattering
amplitude	 for	 two	 different	 particles.	 With	 this	 in	 mind,	 let’s	 calculate	 the
scattering	of	a	particle	of	mass	m1	and	charge	q1	with	a	particle	of	mass	m2	and
charge	q2.	To	lowest	order,	this	amplitude	is	given	by	the	diagram:

where	 A,	 B,	 C,	 D	 are	 the	 spin	 states	 of	 the	 particles.	 Following	 the	 QED
Feynman	rules,	we	can	write	the	amplitude	as

We	 should	 stress	 at	 this	 point	 that	 the	 previous	 expression	 is	 the	 full
amplitude	for	this	scattering	process.	All	that	is	left	to	do	is	to	work	through	the
process	of	simplifying	this	expression	to	something	that	can	be	plugged	into	the



differential	 cross-section	 formula,	 and	 we	 will	 have	 calculated	 our	 first
physically	measurable	quantity.	The	concept	of	using	Feynman	rules	to	calculate
an	 amplitude,	 then,	 is	 very	 straightforward.	We	 shouldn’t	 lose	 sight	 of	 that	 in
what	follows,	because	the	algebra	can	get	a	little	tricky	in	this	next	part.

If	 the	spins	are	specified—that	 is,	 if	we	know	the	electron	and	 the	muon	 to
have	 particular	 helicities—then	 we	 could	 at	 this	 point	 substitute	 in	 particular
values	for	each	spinor,	choosing	from	an	appropriate	basis.	We	would	then	have
to	perform	matrix	multiplications	to	find	the	final	amplitude.	This	can	be	time-
consuming,	but	 it	 is	 reasonably	straightforward.	More	commonly,	however,	we
wish	to	know	the	spin-averaged	amplitude,	since	we	will	wish	to	compare	with
experiments	 that	 typically	 do	 not	 measure	 spins.	 Rather	 than	 finding	 the
amplitude	for	each	spin	state	individually	and	then	averaging	(which	would	be	a
tedious	process),	we	use	a	shortcut.	First,	 recall	 that	 the	physically	meaningful
quantity	is	not	 	itself	but	| |2.	It	turns	out	that	spin	averaging	this	quantity	is
much	simpler	than	averaging	before	squaring.	So	we	find

The	 bracketed	 factors	 in	 the	 last	 expression	 commute,	 since	 each	 is	 just	 a
four-vector.	We	wish	to	combine	the	first	and	third,	but	to	do	so,	we	first	rewrite
the	third	factor:

which	follows	from	Equation	8.7.	Taking	the	first	and	third	factors	now,	together
with	the	sums	over	A	and	C,	gives



Using	the	completeness	relation	(Equation	8.47),	the	sum	over	A	gives

For	the	next	step,	we	first	take	a	slight	detour.	Consider	a	1	×	2	matrix	(row
vector),	a,	and	a	2	×	1	matrix	(column	vector),	b.	Multiplying	these	in	the	order
ab	gives	a	scalar:

On	the	other	hand,	multiplying	them	in	the	reverse	order	gives	a	2×2	matrix

Notice	that	taking	the	trace	of	this	matrix	gives	back	the	same	scalar	as	the	first
multiplication:

This	relation	generalizes	and	we	can	say	that,	for	arbitrary	matrices,

This	is,	incidentally,	also	the	origin	of	the	trace	rule	for	closed	fermion	loops	in
Feynman	diagrams.

Returning	to	Equation	9.26	and	applying	Equation	9.30,	we	find



This	 trace	 can	 now	 be	 evaluated	 using	 the	 standard	 trace	 relations	 for	 the	 γ
matrices	given	in	Appendix	C:

This	is	the	result	for	the	first	and	third	factors	of	9.23,	and	we	find	a	similar
result	 for	 the	 second	 and	 fourth	 factors.	 Putting	 everything	 together,	 then,	 we
have

All	that	remains	is	to	contract	Lorentz	indices.	This	gives	16	terms	in	the	first
instance,	but	many	of	these	cancel	or	combine.	After	the	dust	settles,	we	are	left
with

as	 the	 invariant	 amplitude	 for	 elastic	 scattering	 of	 distinguishable	 charged
particles.



Indistinguishable	Particles

We	 will	 not	 perform	 the	 full	 calculation	 of	 the	 electron-electron	 (Møller)
scattering	 amplitude,	 since	 the	 reader	 can	 hopefully	 now	 see	 how	 to	 do	 it	 for
themselves.	We	will,	however,	address	the	additional	complications	arising	from
the	 fact	 that	 the	 particles	 involved	 in	 this	 process	 are	 indistinguishable.
Specifically,	we	now	have	two	contributing	diagrams	at	lowest	order:

with	amplitudes

respectively,	where	we	have	made	use	of	 the	 fact	 that	 here	q1	 =	q2	=	−1.	The
overall	amplitude,	then,	is	the	difference	between	these	individual	amplitudes,	
1	−	 2,	since	the	diagrams	are	related	by	a	relabeling	of	fermions,	and	fermions
anticommute.	The	reader	may	be	curious	as	to	which	of	the	amplitudes	should	be
negative	in	this	difference.	Fortunately,	the	answer	is	“it	doesn’t	matter,”	since	it
is	 only	 the	 square	 of	 the	 amplitude	 that	 has	 physical	meaning.	 The	 important
point	to	remember	is	that	the	two	terms	have	a	relative	minus	sign,	since	it	is	this
that	will	give	the	correct	cross-terms	when	squaring	the	amplitude.	Incidentally,
one	view	of	quantum	physics	is	that	it	is	this	squaring	of	the	amplitude	that	leads
to	 quantum	 behavior.	 For	 instance,	 the	 interference	 patterns	 in	 an	 electron
double-slit	 experiment	 arise	 from	 the	 cross-terms	 in	 the	 squared	 amplitude.	A
classical	approach	to	the	same	situation	would	sum	without	squaring,	leading	to
no	interference.	The	overall	spin-averaged	amplitude	for	e−-e−	scattering,	then,	is
given	by



The	first	two	terms	in	this	expression	are	identical	to	the	previous	example	for
distinguishable	 particles,	 and	 the	 calculation	 of	 these	 terms	 goes	 through	 in
exactly	 the	same	way.	The	 third	and	 fourth	 terms	are	different,	however,	 since
they	have	a	different	trace	structure.	To	see	what	we	mean	by	this,	consider	the
third	term	in	the	previous	equation:

Taking	the	spin	average,	then,	gives	one	trace	of	the	form

which	when	multiplied	out	would	require	 the	evaluation	of	several	 four-matrix
and	 six-matrix	 traces,	 as	 well	 as	 a	 trace	 of	 eight	 gamma	matrices.	 The	 eight-
matrix	 trace	 alone	 consists	 of	 105	 terms,	 so	 the	 reader	 will	 appreciate	 how
complicated	these	amplitude	calculations	can	become.	Of	course,	most	of	these
terms	 either	 cancel	 or	 combine	 with	 one	 another,	 and	 symmetry	 arguments
applied	as	early	as	possible	in	the	calculation	can	simplify	the	problem.

Other	Amplitudes

There	 are	 other	 amplitudes	 that	 we	 can	 calculate	 with	 these	 methods.	 In
particular,	 in	 the	first	example	of	 the	scattering	of	distinguishable	particles,	we
can	replace	one	of	the	particles	with	its	antiparticle	with	only	a	minimal	effect	on



the	 subsequent	 calculation.	 The	 amplitude	 in	 this	 case	 contains	 antiparticle
spinors,	and	the	ordering	is	slightly	different:

leading	to	a	reordering	of	the	trace:

as	well	as	the	appearance	of	some	( 	−	m)	factors,	but	the	methods	are	the	same.

Similarly,	the	completeness	relation	for	polarization	vectors	(Equation	7.19),
means	 that	 we	 can	 use	 the	 same	 trace	 method	 for	 photons.	 For	 example,	 the
amplitude	for	Compton	(electron-photon)	scattering	is	given	by

so	we	find



and,	therefore

where	 the	 metrics	 arise	 from	 the	 completeness	 relations	 on	 the	 polarization
vectors.

Mandelstam	Variables

Notice	 that	 the	 tree-level	Feynman	diagrams	for	2	→	2	scattering	processes
come	 in	 three	 distinct	 shapes.	 First,	 there	 are	 those	 in	 which	 the	 total	 initial
momentum,	p1	+	p2	is	carried	by	the	virtual	particle.	Then	there	are	two	diagram
topologies	 in	which	 a	 virtual	 particle	 is	 exchanged	 between	 two	 quite	 distinct
particles.	In	particular,	 the	momentum	carried	by	the	exchange	particle	may	be
p1	 −p3	 or	 p1	 −p4	 depending	 on	 the	 diagram’s	 topology:	 this	 is	 especially
noticeable	 in	 the	 case	 of	 indistinguishable	 particles,	where	 both	 of	 these	 latter
possibilities	 occur.	 Since	 the	 internal	 propagator	 always	 carries	 one	 of	 three
values	of	momentum,	then,	it	is	useful	to	introduce	a	shorthand	for	these	allowed
values.	These	are	the	Mandelstam	variables,	defined	by	s	=	(p1	+	p2)2,	t	=	(p1	−
p3)2	and	u	=	(p1	−	p4)2.

We	 find	 some	 useful	 relationships	 between	 these	 variables	 that	 reflect	 the
symmetries	 hidden	 in	Feynman	diagrams.	As	 a	 simple	 example,	 if	we	 already
have	 an	 expression	 for	 the	 amplitude	 in	 the	 “t-channel”	 for	Møller	 scattering,
written	in	terms	of	s,	t,	and	u,	then	we	may	write	down	the	amplitude	for	the	“u-
channel”	without	any	further	calculation,	simply	by	making	the	replacement	t	↔
u.



9.5.3 Calculating	the	Differential	Cross-Section

Now	that	we	have	a	set	of	transition	amplitudes,	we	can	find	the	differential
cross-section	 for	 these	 interactions.	 Since	 all	 of	 the	 processes	 we	 have
considered	 so	 far	 are	2	→	2	processes,	with	 two	 initial-state	particles	 and	 two
final-state	particles,	 the	procedure	is	 the	same	in	all	cases.	First,	 let’s	make	the
general	 cross-section	 formula	 (Equation	 5.38)	 specific	 to	 a	 2	 →	 2	 process.
Collecting	numerical	factors,	we	have:

If	 this	 process	 occurs	 in	 a	 typical	 symmetric	 collider	 experiment,	 then	 the
initial-state	particles	have	equal	and	opposite	momentum.	Even	if	this	is	not	the
case,	we	can	always	choose	to	work	in	the	center-of-mass	reference	frame	(pA	+
pB	 =	 0)	 and	 then	 transform	 the	 final	 result	 back	 to	 the	 laboratory	 frame
afterward.	As	such,	we	have

where	 k	 is	 the	 initial	 three-momentum.	 Notice	 that	 we	 make	 no	 assumption
about	 the	 final-state	 three-momenta.	We	know	 in	 advance	of	 course	 that	 these
must	also	be	equal	and	opposite	thanks	to	conservation	of	momentum.	However,
we	do	not	feed	this	into	the	calculation,	as	the	delta	function	will	automatically
ensure	it	for	us.	In	fact,	because	of	the	delta	function,	to	make	this	assertion	in
advance	would	lead	to	a	divergent	integral	during	the	subsequent	calculation.	By
substituting	these	four-vectors	into	the	previous	cross-section,	we	can	rewrite	the
factor	in	the	square	root	in	the	form	(EA	+	EB)	|k|.	Separating	the	delta	function
into	its	time-like	and	space-like	parts,	we	find



where	we	have	chosen	to	multiply	the	arguments	of	both	delta	functions	by	−1	to
avoid	unnecessary	negative	signs	later.	This	is	a	legitimate	step,	since	the	delta
function	is	an	even	function.	The	threedimensional	delta	function	now	sets	p1	=
−p2	when	we	perform	the	d3p2	integral:

Since	 the	 remaining	 integral	 that	 we	 need	 to	 compute	 is	 with	 respect	 to	 the
momentum	of	one	of	the	particles,	we	rewrite	the	energies	in	the	delta	function
in	terms	of	momentum:

Notice	 that	 both	 final-state	particles	now	have	 the	 same	momentum,	p1.	Since
the	 remaining	delta	 is	 one-dimensional	 and	depends	 only	 on	 the	magnitude	of
the	momentum	p1,	we	 rewrite	 the	 integration	variable	 in	 polar	 form	as	 d3p1	 =
|p1|2	d|p1|	dΩ,	where	Ω	is	the	solid	angle	into	which	the	particle	with	momentum
p1	is	scattered.	Also,	notice	that	the	delta	function	does	not	take	the	magnitude	of
the	momentum	directly	as	its	argument,	instead	taking	as	argument	a	function	of
the	 magnitude.	 Therefore,	 in	 order	 to	 perform	 the	 |p1|	 integral,	 we	 use	 the
following	identity	for	the	delta	function:

where	{xi}	is	the	set	of	all	values	of	x	such	that	f(xi)	=	f0,	and	where	f′(xi)	is	the
derivative	 of	 the	 function	 f	 evaluated	 at	 xi.	 In	 the	 case	 of	 Equation	 9.48,	 the
function	in	question	is



so	the	delta	function	becomes

where	|p|	is	defined	by

That	is,	|p|	is	that	particular	value	for	the	magnitude	of	the	final	momentum	that
ensures	energy	conservation.

Putting	everything	together	now,	we	find

where	 this	 last	step	follows	from	the	energy	conservation	 imposed	by	 the	final
delta	function.

To	 proceed	 further,	 we	 must	 now	 substitute	 in	 a	 particular	 invariant
amplitude,	 .	 Since	 there	 are	 no	 more	 delta	 functions	 to	 simplify	 the
computation	of	integrals,	to	integrate	with	respect	to	the	angular	variables	in	Ω,
we	 must	 now	 have	 an	 explicit	 dependence	 on	 the	 initial	 and	 final	 momenta.
Since	 the	 computations	 typically	 become	 numerical	 at	 this	 stage,	 we	 will	 not
proceed	 any	 further	 with	 exact	 calculations.	 However,	 with	 a	 suitable
approximation,	 we	 can	 find	 the	 differential	 cross-section	 for	 high-energy
scattering	processes,	as	the	reader	is	invited	to	explore	in	Exercise	4.	Notice	also
that	we	were	only	able	to	proceed	as	far	as	we	did	without	choosing	a	specific	
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because	 of	 the	 restrictions	 on	 a	 two-particle	 final	 state.	 The	 threemomentum
delta	 function	 directly	 relates	 the	 two	 final	 momenta,	 while	 the	 energy	 delta
function	 uniquely	 determines	 their	 magnitude.	 If	 we	 had	 attempted	 a	 similar
analysis	with	a	three-particle	(or	higher)	final	state,	the	particles	would	not	be	so
restricted.	Conservation	of	energy	and	momentum	in	this	case	may	be	respected
in	infinitely	many	different	ways,	by	shifting	momentum	between	the	final-state
particles.	As	such,	in	order	to	calculate	the	cross-section	for	processes	with	more
than	two	particles	in	the	final	state,	we	must	include	an	explicit	form	for	 	from
the	 outset.	Again,	 this	 then	 typically	 requires	 a	 numerical	 computation	 for	 the
cross-section.

BEYOND	LEADING	ORDER:
RENORMALIZATION

So	 far,	 all	 of	 the	 amplitudes	 that	we	 have	 considered	 have	 been	 at	 the	 tree
level.	How	do	 these	methods	generalize	 to	higher-order	diagrams?	The	answer
is,	unsurprisingly,	“with	additional	complications.”	 In	particular,	as	soon	as	we
move	beyond	the	leading	order	and	introduce	loops	into	the	calculations,	we	find
we	must	consider	the	renormalization	process.	There	will	not	be	a	full	analysis
of	 this	 procedure	 here,	 but	we	will	 demonstrate	 exactly	where	 the	 issue	 arises
and	show	how	it	may	be	addressed	in	one	particular	case.

Consider	 the	 next-to-leading-order	 (NLO)	 contribution	 to	 Compton
scattering:

The	amplitude	for	this	diagram	is	given	by



Notice	 that	 the	 integral	over	 the	momentum	q	 is	 unconstrained.	 It	 therefore
has	no	finite	value,	instead	growing	without	limit.	How	are	we	to	make	physical
sense	of	a	transition	amplitude	with	an	infinite	value?	To	answer	this,	we	must
first	realize	that,	as	far	as	the	initial	and	final	states	are	concerned,	there	was	a
single	electron	of	momentum	p1+p2	that	acted	as	the	virtual	exchange	particle	in
this	 situation.	 In	 effect,	 they	do	not	 “know”	 about	 the	virtual	 photon	 emission
and	re-absorption	in	the	center	of	 the	diagram.	So	whatever	effect	 the	loop	has
on	the	amplitude	is	through	the	effective	electron	propagator.	We	must	write	the
full	electron	propagator,	then,	as	a	sum	of	approximations—one	of	which	is	the
“bare”	propagator	that	we	have	been	using	so	far:

The	form	of	the	propagator	given	in	the	Feynman	rules,	then,	which	includes
the	physical	electron	mass,	is	the	effective	propagator	when	all	of	these	internal
corrections	have	been	made.	The	bare	propagator	need	not	have	the	same	form.

To	see	how	this	works,	let’s	look	at	the	simplest	higher-order	correction	with
a	 single	 loop—the	 same	 loop	 that	 appears	 in	 our	 correction	 to	 the	 previous
Compton	 scattering.	 Taking	 the	 parts	 of	 the	 amplitude	 from	 that	 diagram	 that



arise	from	the	loop	itself,	and	writing	 	for	simplicity,	we	have

We	now	use	 the	 first	of	several	 standard	 tricks	 to	compute	 this	 integral:	 the
Feynman	parameter	x	makes	use	of	the	identity

to	rewrite	the	denominator	as

Next	we	change	variables	according	to	qµ	=	kµ	+	pµx:

Notice	that	we	have	neglected	the	term	in	the	numerator	that	is	linear	in	kµ,	since
an	odd	 function	 integrated	over	 all	 space	will	vanish	anyway.	 In	more	general
calculations,	we	can	drop	any	odd	powers	in	the	numerator	of	the	integrand.	All
kµ-dependence	 is	 now	 contained	 in	 the	 denominator,	 so	 we	 will	 evaluate	 a
simplified	integral:

where	M2	≡	−p2x(1	−	x)	+	m2(1	−	x))2,	and	then	we	will	evaluate	the	numerator
separately.	This	integral	is	simplified	further	by	performing	a	“Wick	rotation”	to
Euclidean	space.1	That	is,	we	change	variables	again	according	to



Notice	that	k2	=	(k0)2	−	kiki	=	−(ℓ0)2	−	ℓiℓi	=	−ℓ2	as	long	as	we	understand	ℓµ	as	a
Euclidean	 four-vector.	Also,	note	 that	d4k	=	 id4ℓ.	Once	we	 find	ourselves	 in	 a
Euclidean	space,	we	see	that	our	 integral	 is	actually	spherically	symmetric	and
we	may	make	use	of	(4D)	spherical	polar	coordinates.	Our	integral	then	becomes

The	factor	of	2π2	|ℓ|3	appearing	in	the	numerator	here	comes	from	converting	to
spherical	polar	coordinates	and	performing	the	angular	part	of	the	integral;	it	is
equivalent	 to	 the	 factor	 2πr	 coming	 from	 the	 angular	 integration	 in	 two
dimensions	or	 the	4πr2	 in	 three	dimensions.	 In	 the	 last	 line,	we	have	used	our
final	 change	 of	 variables,	 ξ	 =	 |ℓ|2,	 dξ	 =	 2	 |ℓ|	 d|ℓ|,	 to	 reduce	 the	 power	 in	 the
numerator.

Our	final	 trick	 is	 to	deal	with	 the	problematic	 infinite	answer	 that	will	arise
from	this	integral	if	we	simply	attempt	to	compute	it	at	this	point.	The	idea	is	to
introduce	a	regulator:	that	is,	a	quantity	that	regularizes	the	integral	to	give	it	a
finite	 value	 but	 which	 will	 reproduce	 the	 original	 result	 in	 some	 appropriate
limit.	There	are	many	ways	to	regularize	integrals	like	the	previous	one,	some	of
which	 are	 better	 suited	 than	 others	 to	 particular	 situations	 or	 theories.	 The
simplest	 regulator	we	 can	 use,	 though,	 is	 a	 simple	 “momentum	 cut-off,”	Λ:	 a
maximum	allowed	value	of	the	momentum	parameter	ξ.	The	appropriate	limit	to
obtain	our	original	(infinite)	 integral	 is	 then	of	course	Λ	→	∞.	With	 the	aid	of
partial	fractions	and	standard	integrals,	the	result	is	now	easily	shown	to	be

Having	 dealt	 with	 the	 denominator	 in	 our	 original	 loop	 integral,	 we	 now
return	 to	 the	 question	 of	 the	 numerator.	 To	 evaluate	 this,	 we	 use	 the	 γ-matrix
identities	listed	in	Appendix	C.	In	particular,	we	find



so	that	the	full	expression	for	the	loop	becomes

Notice	 that	 the	 result	 depends	 on	 the	 total	 momentum	 pµ,	 through	 the
combination	M2.

At	the	beginning	of	this	section,	 it	was	asserted	that	 this	 loop	would	merely
alter	our	understanding	of	the	electron	propagator.	Somewhat	counterintuitively,
this	is	most	easily	seen	by	summing	a	series	of	such	loops.	Consider	a	series	of
diagrams	in	which	each	is	constructed	from	the	last	by	adding	on	another	one	of
the	loops	of	the	form	we	have	just	calculated	(as	in	the	first	three	contributions
to	 Equation	 9.55).	 If	 we	 denote	 the	 value	 of	 a	 single	 loop	 by	 −iΣ(p)	 and	 the
electron	propagator	by

where	 the	 factors	 of	 i	 are	 a	 standard	 convention,	 then	 the	 bare	 propagator
diagram	 gives	 a	 contribution	 iS(p),	 while	 a	 single	 loop	 (with	 propagators	 on
either	 side)	 gives	 iS(p)Σ(p)S(p).	 Similarly,	 higherorder	 diagrams	 give
contributions	iS(p)Σ(p)S(p)Σ(p)	 .	 .	 .	Σ(p)S(p),	with	one	factor	of	Σ(p)S	 for	each
loop.	Since	each	diagram	contributes	to	the	full	effective	propagator,	we	find	we
have	a	geometric	series	of	contributions.	Summing	these,	we	have

Now	here	comes	 the	sneaky	part:	since	we	know	that	 real	particles	must	be
on-shell,	we	 demand	 that	 the	 full	 propagator	 for	 an	 on-shell	 electron	 have	 the
physical	electron	mass	and	behave	like	the	propagator	of	a	free	particle—that	is,



one	 with	 no	 interactions.	 If	 the	 electron	 did	 not	 interact,	 then	 infinite	 loop
diagrams	would	not	be	an	issue	and	the	form	of	the	propagator	that	we	originally
wrote	 down	 would	 have	 been	 sufficient.	 We	 should,	 then,	 expect	 the	 full
propagator	 to	 have	 a	 singularity	 at	 the	 physical	 electron	 mass.	 Therefore,	 we
may	set

or

Here	 mphys	 is	 the	 physical	 mass	 of	 the	 electron.	 By	 constructing	 the	 full
propagator	 out	 of	 a	 series	 of	 bare	 propagators	 and	 loops,	we	 have	 hidden	 the
underlying	“bare	mass”	of	the	electron	from	experimental	observation.	The	only
value	we	can	measure	is	the	“dressed”	mass	mphys.	An	alternative	viewpoint	is	to
consider	 Σ(p)	 as	 affecting	 the	 energy	 of	 the	 electron	 rather	 than	 the	 mass,
through	the	energy	momentum	relation	E2	=	p2	+	m2,	and	for	this	reason	Σ(p)	is
known	as	the	electron	self-energy.

Since	the	bare	mass	is	unobservable,	 it	does	not	matter	that	the	value	of	the
self-energy,	Σ,	 is	 infinite:	we	 just	assert	 that	 the	value	of	 the	bare	mass	 is	also
divergent	 and	 allow	 the	 two	 to	 cancel	 each	 other	 out,	 leaving	 us	with	 a	well-
behaved	 physical	 electron	 mass.	 This	 is	 the	 renormalization	 process:	 each
infinite	 quantity	 arising	 through	 loop	 diagrams	 is	 absorbed	 into	 one	 of	 the
underlying	but	unobservable	parameters	of	the	theory	in	order	to	leave	us	with	a
finite	and	observable	physical	value.	An	interesting	side	effect	of	all	this	is	found
when	we	consider	that	the	physical	or	renormalized	mass	is	given	by

but	 Σ(p)	 is	 dependent	 on	 the	 total	 momentum	 transferred,	 and	 the	 above
cancellation	 was	 only	 imposed	 at	 specific	momenta.	 This	means	 that	 at	 other
values	of	momentum	(when	the	electron	is	virtual	and	off-shell),	the	exact	nature
of	 the	 cancellation	 differs,	 and	 we	 find	 a	 physical	 mass	 that	 varies	 with	 the
particular	interaction	being	considered.	Put	another	way,	if	we	were	to	split	Σ(p)
into	a	divergent	part	 that	cancels	m	and	a	 finite	 remainder,	 then	 that	 remainder



varies,	 giving	 us	 a	 variable	 value	 of	 mphys.2	 This	 is	 a	 genuine	 property	 of
interacting	 particles:	 the	 effective	 values	 of	 physical	 parameters	 vary	with	 the
energy	scale	of	the	particular	interaction	under	consideration.

Just	 as	 corrections	 to	 the	 propagator	 produce	 an	 effective	 mass	 parameter,
corrections	to	the	simple	QED	vertex	produce	an	effective	vertex	factor.	That	is,
the	 bare	 coupling	 constant	 is	 also	 renormalized	 to	 produce	 a	 physical	 value.
Crucially,	 the	relationship	between	bare	and	effective	coupling	is	also	found	to
be	dependent	on	the	energy	scale	at	which	a	process	is	considered.	As	with	the
mass,	 since	 the	 bare	 parameter	 cannot	 be	 known,	 we	must	 find	 some	way	 of
fixing	the	value	of	the	effective	parameters	so	that	the	theory	still	has	predictive
power.

The	 renormalization	 procedure	 is	 really	 two	 procedures	 in	 one.	 First,
regularization	introduces	some	means	to	tame	the	infinite	integrals	appearing	in
Feynman	diagrams	so	that	we	may	make	work	with	them	in	a	meaningful	way.
This	 can	 be	 through	 a	 simple	 cutoff	 as	 we	 have	 seen,	 through	 introducing
imaginary	extra	particles	with	large	masses,	or	even	through	varying	the	number
of	 space-time	 dimensions.	 As	 long	 as	 the	 regularized	 integral	 gives	 back	 the
original	integral	in	some	limit,	the	exact	nature	of	the	regularization	scheme	does
not	really	matter.	Second,	a	set	of	renormalization	conditions	is	introduced	such
that	the	effective	parameters	have	their	measured	values	at	low	energy	(since	this
is	 typically	 where	 we	 measure	 them).	 In	 this	 way,	 the	 parameters’	 values	 at
higher	 energies	 can	 be	 deduced.	A	 particularly	 important	 case	 of	 this	 for	 later
discussions	 is	 that	 the	coupling	constant	 for	 a	 theory	of	 interacting	particles	 is
found	 to	 change	 as	we	measure	 it	 at	 different	 energy	 scales.	 In	 particular,	 the
couplings,	gi,	vary	with	the	logarithm	of	the	energy	scale,	µ,	according	to

where	βi	 is	known	simply	as	 the	coupling’s	“β-function.”	 In	 the	approximation
that	 only	 one-loop	 corrections	 are	 considered,	 the	β-functions	 are	 found	 to	 be
fairly	simple:	the	inverse	couplings,	 	=	4π/ ,	varying	linearly	with	ln	µ.	The
gradients	are	different	 for	each	 force	and	are	given	 in	Appendix	A.	All	of	 this
has	the	most	notable	consequences	for	the	theory	of	strong	interactions	and	is	a
point	 to	which	we	will	 return	when	we	 consider	 quantum	 chromodynamics	 in
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9.7.1

Section	10.3.2.

The	full	details	of	these	sorts	of	calculations	and	the	renormalization	process
are	somewhat	beyond	the	scope	of	this	text,	but	the	interested	reader	is	referred
to	any	introductory	text	on	quantum	field	theory.	When	first	confronted	with	the
renormalization	 procedure,	many	 feel	 that	 they	 have	 somehow	been	 duped,	 or
that	the	infinities	have	been	carelessly	swept	under	the	rug.	This	is	not	the	case,
however,	 and	 the	 procedure	 is	 built	 on	 a	 solid,	 mathematically	 rigorous
foundation.	Besides	which,	the	procedure	works!	The	renormalization	process	is
directly	 responsible	 for	 the	 extraordinary	 agreement	 between	 experiment	 and
theory	discussed	earlier	in	this	chapter.

FORM	FACTORS	AND	STRUCTURE
FUNCTIONS

Electromagnetic	Form	Factors

The	calculations	considered	so	far	have	involved	only	fundamental	particles.
A	complication	arises	when	we	wish	to	calculate	the	amplitude	for	an	interaction
involving	 one	 or	 more	 hadrons.	 The	 problem	 is	 that,	 while	 at	 low	 energy	 it
appears	 that	 the	 hadron	 as	 a	 whole	 emits	 or	 absorbs	 photons,	 at	 a	 more
fundamental	 level,	 such	 interactions	 are	 actually	 occurring	 in	 individual
constituent	 quarks.	 For	 this	 reason,	 we	 have	 no	 reason	 to	 suspect	 that	 the
effective	 Feynman	 rule	 for	 hadron-photon	 interaction	 should	 resemble	 that	 of,
say,	electronphoton	interaction.	What	we	can	say,	however,	is	that	the	interaction
should	be	of	a	particular	form,	as	constrained	by	Lorentz	and	gauge	invariance.
In	particular,	notice	 that	 the	form	of	Equation	9.33	consists	of	 three	parts.	The
initial	 factor	 (apart	 from	 the	 charges	 which	 we	 have	 shifted	 here	 for
convenience)	 is	due	 to	 the	exchanged	photon.	Each	of	 the	 following	 factors	 is
due	 to	 just	 one	 of	 the	 interacting	 fermions	 and	 takes	 the	 form	of	 a	 symmetric
rank-2	 tensor.	 This	 forces	 us	 to	 conclude	 that,	 however	 complex	 the	 effective
vertex	 factor	 is	 for	 a	 hadron,	 it	 must	 also	 lead	 us	 to	 the	 basic	 form	 of	 a
symmetric	rank-2	tensor	for	its	contribution	to	the	spin-averaged	amplitude.



FIGURE	9.1	The	interaction	of	a	non-fundamental	charged	particle	with	a	photon.	The	shaded	blob	shows
that	the	details	of	the	graph	at	this	point	are	masked	by	higher-order	contributions	or	by	other	interactions.

The	details	of	the	argument	depend	on	the	spin	of	the	hadron	in	question.	In
the	case	of	a	proton,	with	spin	 ,	we	can	proceed	as	 follows.	First,	 the	 lowest-
order	contribution	is	represented	by	the	Feynman	diagram	shown	in	Figure	9.1,
where	 the	shaded	blob	denotes	 that	we	have	hidden	some	of	 the	details	of	 this
diagram,	in	the	sense	that	zooming	in	would	reveal	a	more	fundamental	picture
of	the	interaction.

If	 the	proton	were	point-like,	we	know	that	 the	current	 to	which	 the	photon
couples	would	look	like

just	as	for	 the	charged	leptons.	Since	the	subsequent	steps	 in	 the	calculation	of
the	 amplitude	 will	 be	 identical	 to	 the	 point-particle	 case,	 Lorentz	 invariance
forces	 the	actual	hadron	vertex	 to	 take	 the	 form	of	a	 four-vector.	Furthermore,
gauge	 invariance	allows	us	 to	 impose	 the	Lorenz	condition,	 thus	requiring	 that
the	current	have	zero	divergence,	so	∂µjµ	=	0,	or	in	momentum	space,	kµjµ	=	0,
where	kµ	is	the	momentum	of	the	photon.	So	by	symmetry	arguments	alone,	we
can	be	sure	 that	 the	hadron-photon	vertex	must	be	given	by	a	 four-vector	with
the	additional	constraint	 that	k	 ·	 j	=	0.	There	 are	 three	momentum	vectors	 that
can	contribute	 to	 jµ,	namely	 	and	 the	photon	momentum	kµ	=	 (p3	 −	p1)µ.
Since	only	two	of	these	are	independent,	we	are	free	to	choose	any	two	linearly
independent	combinations.	We	choose	kµ	and,	for	simplicity,	(p1	+	p3)µ,	which	is
orthogonal	to	kµ.	Furthermore,	there	is	only	one	independent	scalar	quantity	that
can	be	constructed	from	these	momenta,	since



so	k2	and	(p1	+	p3)2	are	not	independent.

Since	 the	 only	 aspect	 of	 the	Feynman	 rule	we	 expect	 to	 change	 (compared
with	that	for	fundamental	particles)	is	the	vertex	itself,	the	form	of	jµ	should	be	a
group	of	 terms	 sandwiched	between	 two	 spinors.	Recall	 from	Section	8.8	 that
there	 are	 five	 independent	 Lorentz-covariant	 objects	 that	 may	 be	 constructed
from	spinors.	Two	of	these	have	the	wrong	behavior	under	parity	to	contribute	to
jµ,	 so	 we	may	 construct	 a	 total	 of	 five	 independent	 vector	 quantities	 that	 can
potentially	contribute	to	jµ,	namely

Each	of	these	may	be	scaled	by	an	arbitrary	coefficient	function,	but	since	each
must	maintain	 its	Lorentz	 structure,	 this	 coefficient	 can	depend	at	most	on	 the
one	 independent	 scalar	 quantity	 of	 interest,	which	we	 can	 take	 to	 be	k2.	 Also,
since	this	scalar	function	can	include	constant	terms	such	as	σµν,	we	find	that	the
fourth	and	fifth	terms	in	the	previous	equation	are	accounted	for	by	the	second
and	third	terms	respectively.	Thus	we	arrive	at	a	current	of	the	form

where	a1,	a2,	a3	are	the	scaling	functions.

We	now	impose	the	second	constraint,	kµjµ	=	0,	known	in	this	context	as	the
Ward	identity.	Multiplying	Equation	9.75	by	pµ,	we	find

where	the	final	term	vanishes	due	to	the	orthogonality	of	kµ	and	(p1+	p3)µ,	and
the	first	term	vanishes	because



In	order	to	satisfy	the	Ward	identity,	then,	we	see	that	the	function	a2(k2)	must	be
identically	zero,	reducing	the	independent	terms	in	the	current	to	just	two:

We	now	make	use	of	the	Gordon	identity,

to	 rewrite	 the	 second	 term	 in	 Equation	 9.78.	 The	 end	 result,	 then,	 is	 that	 the
proton-photon	vertex	is	given	by

where	F1	 and	F2	 are	 known	 as	 the	 proton	 form	 factors.	 The	 factor	 of	 i/2m	 is
conventional.	Using	the	Gordon	identity	again,	this	can	also	be	written	as

which	helps	to	make	the	interpretation	of	the	terms	a	little	clearer.	To	understand
this	expression,	we	should	first	note	that	we	could	perform	a	similar	but	rather
more	 straightforward	 derivation	 for	 the	 interaction	 of	 a	 photon	 with	 a	 scalar
particle,	such	as	the	charged	pion.	In	this	case,	we	find	that	there	is	just	one	form
function,	with	the	vertex	given	by

Notice	 that	 the	 form	of	 the	 vertex	 factor	 is	 identical	 to	 that	 for	 a	 fundamental
scalar	 particle,	 only	 scaled	 by	 the	 pion	 form	 factor.	 The	 first	 term	 of	 the
expression	 for	 the	proton	vertex,	 then,	behaves	analogously	 to	 that	of	 the	pion
vertex.	The	second	term,	on	the	other	hand,	has	no	equivalent	in	the	scalar	case,
and	so	must	be	an	artifact	of	the	non-zero	spin	of	the	proton.	This	term	is	due	to
the	proton’s	magnetic	moment.
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Notice	 that	 the	vertex	 factor	 for	a	 fundamental	 spin- 	particle	 contains	only
the	first	term	of	Equation	9.78	but	both	terms	of	Equation	9.81	if	rewritten	using
the	Gordon	identity.	It	should	come	as	no	surprise	that	the	magnetic	moment	in
this	case	works	out	 to	give	 the	g-factor	of	g	=	2.	However,	we	can	 take	 this	a
step	further:	suppose	the	fermion	in	Figure	9.1	 is	an	electron	and	 that	 the	blob
now	 denotes	 our	 ignorance,	 not	 of	 the	 hidden	 strong	 interactions,	 but	 of	 the
higher-order	electromagnetic	interactions	that	manifest	as	loop	corrections	to	the
tree-level	diagram.	In	this	case,	 the	second	term	of	Equation	9.78	 is	present	by
exactly	 the	 same	 argument	 as	 above,	 and	 represents	 the	 anomalous	magnetic
moment	of	 the	 electron.	 It	 is	 by	 computing	 the	 loop	contributions	 to	 this	 term
that	 one	 is	 able	 to	 arrive	 at	 the	 theoretical	 value	 for	 (g	 −	 2)	 that	 is	 in	 such
impressive	agreement	with	observation.

Structure	Functions	and	the	Quark	Model

The	interactions	discussed	in	the	preceding	sections	were	for	elastic	scattering
processes,	 but	 the	 same	 arguments	 can	 be	 applied	 to	 inelastic	 scattering,	 in
which	 the	 final	 products	 are	not	 the	 same	as	 the	 initial	 particles.	 In	particular,
deep	inelastic	scattering	processes	involve	the	exchange	of	a	photon	between	a
high-energy	electron	and	a	proton,	such	 that	 the	proton	produces	hadronic	 jets.
The	vertex	factor	for	such	processes	looks	almost	identical	to	Equation	9.80,	but
the	scale-dependent	coefficients	are	now	referred	to	as	structure	functions,	since
they	map	the	internal	structure	of	the	hadron.	The	detailed	study	of	form	factors
and	 structure	 functions	 is	 worthy	 of	 a	 book	 of	 its	 own	 and	 many	 have	 been
written,	 but	 it	 is	 worth	 mentioning	 here	 just	 a	 few	 points	 regarding	 their
behavior.	 First,	 at	 intermediate	 energy	 scales,	 the	 structure	 functions	 are
complicated,	 while	 at	 very	 high	 energy	 scales,	 they	 become	 essentially	 scale-
invariant,	notwithstanding	some	minor	scaling	violations.	This	is	best	explained
by	 relating	 the	 structure	 functions	 to	 the	 distribution	 functions	 for	 a	 set	 of
constituent	 particles	 within	 the	 hadron.	 In	 this	 context,	 these	 hypothetical
constituents	are	known	as	partons,	since	they	are	the	“parts”	of	the	hadron.	The
scale-invariance	is	then	a	consequence	of	the	finite	time-scale	of	the	interactions
between	these	partons:	at	high	energy,	the	interaction	of	the	photon	with	a	single
constituent	 particle	 occurs	 over	 a	 shorter	 interval	 than	 the	 characteristic
timescale	of	the	parton	interactions.	Second,	the	predicted	form	of	the	structure
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function	 from	 a	 parton	 distribution	 depends	 on	 the	 spin	 of	 the	 partons,	 and
consistency	 with	 observation	 requires	 the	 parton	 distribution	 function	 for	 the
charged	components	of	the	hadron	to	be	spin- 	and	account	for	only	half	of	the
total	hadron	momentum.	In	other	words,	the	only	electrically	charged	constituent
particles	of	a	hadron	are	required	to	be	spinors,	consistent	with	the	quark	model.
The	 missing	 momentum	 is	 accounted	 for	 with	 the	 electrically	 neutral	 gluons.
Furthermore,	 comparison	 of	 the	 structure	 functions	 for	 the	 proton	 and	 the
neutron	gives	constraints	on	the	charges	of	the	constituents,	placing	them	at	q	=
+2/3,	−1/3,	−1/3,	.	.	.	,	again	consistent	with	the	quark	model.	It	is	this	fact	that
provided	the	first	clear	evidence	that	quarks	were	physical	particles	rather	than
mere	mathematical	tools.

EXERCISES

Take	the	adjoint	of	the	Dirac	equation	and	modify	the	derivative	to
a	gauge-covariant	derivative	to	arrive	at	the	equation	obeyed	by	the
adjoint	spinor	in	an	electromagnetic	field.
Show	that	this	equation	along	with	the	equations	of	motion	for	the
photon	and	the	electron	follow	from	the	Lagrangian	given	in
Equation	9.3.	(Hint:	The	Euler-Lagrange	equation	in	which	you
differentiate	with	respect	to	ψ	gives	the	equation	for	 	and	vice
versa.)

Compare	the	list	of	Feynman	rules	against	the	QED	Lagrangian.	Identify
which	rule	corresponds	to	which	term	and	determine	how	you	would	go
about	deriving	Feynman	rules	directly	from	a	Lagrangian.

Following	a	derivation	similar	to	Exercise	13,	show	that	the	full	Pauli
equation	(Equation	3.56)	is	the	low-energy	limit	of	the	Dirac	equation	in
the	presence	of	an	electromagnetic	field.

In	ultra-high	energy	collisions,	the	mass	of	the	colliding	particles	can	be
neglected	to	a	first	approximation.

For	a	high-energy	collision	between	two	distinguishable	particles	in
the	center-of-mass	frame,	write	down	the	four-vectors	for	the	initial
and	final	states	in	the	center-of-mass	frame.
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Hence	show	that	the	differential	cross-section	for	electron-muon
scattering	is	proportional	to	(1	+	(1	+	cos	θ)2)/(1	−	cos	θ)2,	where	θ
is	the	scattering	angle.
Write	this	differential	cross-section	in	terms	of	the	Mandelstam
variables.
Integrating	over	solid	angle	should	now	give	the	total	cross-section
for	this	process.	However,	the	cross-section	is	found	to	be	divergent.
Identify	the	origin	of	this	divergence	and	explain	why	it	does	not
imply	unphysical	behavior.	(Hint:	consider	which	values	of	θ	may
cause	the	differential	cross-section	to	diverge.)

The	presence	of	delta	functions	in	the	differential	cross-section	formula
allows	it	to	be	calculated	analytically	in	the	case	of	a	two-particle	final
state	(Equation	9.53).	This	applies	equally	to	the	decay	rate	in	the	case
of	a	two-particle	final	state.	Derive	the	decay	rate	in	this	case,	in	terms
of	the	invariant	amplitude.

Consider	the	annihilation	of	an	electron	and	a	positron	via	e+	+	e−	→	γ	+
γ.

Why	do	on-shell	electron-positron	pairs	never	annihilate	to	produce
a	single	photon?
Draw	a	Feynman	diagram	for	the	above	process.
Calculate	the	spin-averaged	invariant	amplitude	for	this	process.

Draw	two	Feynman	diagrams	for	one-loop	corrections	to	elastic
scattering	of	distinguishable	particles.
One	such	correction	takes	the	form	of	a	correction	to	the	photon
propagator.	Identify	this	diagram	and	calculate	the	photon’s	“self-
energy”	(more	properly	called	the	vacuum	polarization	when
relating	to	photons).

Find	the	invariant	amplitude	and	differential	cross-section	for	µ−-µ+

production	in	e−-e+	collisions	in	the	ultra-relativistic	limit.
Write	this	differential	cross-section	in	terms	of	the	Mandelstam
variables.	How	is	it	related	to	your	answer	to	Exercise	4?

Derive	the	γ-matrix	identities	listed	in	Appendix	C.
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Write	down	the	invariant	amplitude	for	Delbrück	scattering	to	lowest
order,	and	use	Appendix	C	to	evaluate	its	fermion	trace	structure.

Show	that	the	Mandelstam	variables	obey	the	relation

1	 The	 name	 comes	 from	 the	 fact	 that	 this	 change	 of	 variables	 is	 equivalent	 to	 rotating	 the	 integration
contour	for	the	k0	component	such	that	it	lies	along	the	imaginary	axis	rather	than	the	real	axis.
2	This	separation	of	Σ(p)	into	a	finite	and	a	divergent	part	can	be	seen	directly	from	the	square	brackets	of
Equation	9.65,	where	it	is	easily	verified	that	the	first	term	is	divergent	and	the	second	is	finite.
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CHAPTER	10
NON-ABELIAN	GAUGE	THEORY
AND	COLOR

Just	as	quantum	electrodynamics	may	be	derived	from	a	localization	of	the	U(1)
symmetry	 in	 the	 Dirac	 equation,	 we	 will	 find	 that	 localizing	 other	 global
symmetries	leads	to	the	remaining	forces	of	the	standard	model.	In	particular,	we
will	 show	 how	 the	 approximate	 isospin	 symmetry	 discussed	 in	 Section	 6.2.1
leads	 to	 the	 weak	 interaction.	 However,	 it	 will	 also	 be	 shown	 that	 there	 are
certain	 complications	 involved	with	 this	 interaction,	 which	 are	 the	 underlying
reason	 for	 the	 approximate	 nature	 of	 this	 symmetry.	 For	 this	 reason,	 this
derivation	is	deferred	until	Chapter	11.	In	this	chapter,	we	consider	the	larger	but
exact	 (and,	 therefore,	 simpler)	 color	 symmetry,	 and	 show	 that	 this	 leads	 to	 the
strong	 interaction.	 We	 will	 see	 that	 the	 non-Abelian	 nature	 of	 these	 larger
symmetry	groups	leads	to	behavior	that	is	qualitatively	different	from	that	of	the
Abelian	(U(1))	symmetry	previously	considered.

NON-ABELIAN	SYMMETRY	IN	THE	DIRAC
EQUATION

SU(3)	and	Color

We	 have	 seen	 in	 Section	 6.3	 that	 quarks	 come	 in	 three	 colors.	 This	 color
degree	of	freedom	is	very	different	from	the	flavor	degree	of	freedom,	since	all
colors	behave	identically.	Whereas	different	quark	flavors	have	different	masses
and	charges,	 there	 is	no	distinction	between,	say,	a	red	up	quark	and	a	blue	up
quark.	There	 is	 a	 perfect	 three-fold	 symmetry.	 Since	 the	 colors	 have	 the	 same
mass,	 all	 three	 degrees	 of	 freedom	 for	 a	 given	 quark	 flavor	may	 be	 described



succinctly	by	a	single	Dirac	equation

where

is	 now	 a	 triplet	 of	 spinors.	We	 can	 also	 write	 this	 in	 the	 form	 of	 an	 exterior
product	 of	 one	Lorentz	 spinor,	ψ,	 and	 a	 color	 spinor,	 cA:	Ψ	 =	ψcA.	 The	 color
spinor	is	then	a	three-component	SU(3)	spinor	that	accounts	for	the	color	degree
of	 freedom	of	 the	quark.	Specifically,	 red,	 green,	 and	blue	quarks	 respectively
have	color	spinors

This	 symmetry	 goes	 deeper:	 since	 particles	 can	 be	 combined	 into	 linear
superpositions,	we	could	relabel,	for	example,	r	as	 	(|r⟩	+	|b⟩)	and	b	as	 	(|b⟩
−	 |r⟩),	without	 affecting	 the	physics.	 In	 fact,	 for	 any	SU(3)	matrix,	M,	 a	 color
transformation	of	the	form

is	a	symmetry	of	the	system,	as	long	as	this	relabeling	is	performed	consistently
on	all	quarks	simultaneously.	That	is,	there	is	a	global	SU(3)	symmetry	in	quark
colors.	Recall	from	Section	4.3.1	that	there	are	eight	generators,	T1,	.	.	.	,	T8,	of
the	SU(3)	group,	each	a	traceless	Hermitian	3	×	3	matrix.	There	is,	of	course,	a
great	 deal	 of	 freedom	 in	 choosing	 these	 generators,	 each	 choice	 leading	 to	 a
different	representation	of	the	group.	One	possible	representation	is	given	by	Ti
=	 	λi,	where	λi	are	the	Gell-Mann	matrices:
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where	the	 	factor	in	the	final	matrix	is	 to	ensure	the	same	normalization	for
all	matrices.	Specifically,	these	matrices	are	normalized	such	that	tr	(TiTj)	=	 	δij
(or	tr	(λiλj)	=	2δij).

Localizing	the	SU(3)	Symmetry

Localization	 of	 this	 SU(3)	 symmetry	works	 in	 essentially	 the	 same	way	 as
that	 of	 the	 U(1)	 symmetry.	 We	 again	 need	 to	 construct	 a	 gauge-covariant
derivative,	that	transforms	according	to

for	an	arbitrary	SU(3)	transformation	matrix	M.	Since	M	is	given	by

where	αi	are	now	a	set	of	eight	independent	parameters,	the	covariant	derivative
must	now	have	eight	additional	vector	field	terms	Ai,	i	=	1,	.	.	.	,	8.	Each	of	these
vector	 fields	 is	 included	 to	absorb	one	of	 the	unwanted	 terms	arising	 from	 the
partial	derivative	acting	on	one	of	the	group	parameters	αi(x).	Therefore,	each	of
these	 vector	 fields	 independently	 has	 gauge	 invariance.	 The	 proportionality
constant	for	each	vector	field	must	be	the	same	to	retain	the	SU(3)	symmetry	so
we	find	a	covariant	derivative	of	the	form



where	 g3	 is	 the	 strong	 coupling	 constant.	 This	 covariant	 derivative	 has	 the
correct	 transformation	property	as	 long	as	we	have	 the	 freedom	 to	 redefine	Aµ
according	to	the	generalized	gauge	transformation

Notice,	incidentally,	that	less	care	is	taken	with	the	positioning	of	SU(3)	indices
than	 Lorentz	 indices.	 This	 is	 because	 there	 is	 no	 need	 to	 distinguish	 between
contravariant	and	covariant	vectors	in	the	SU(3)	space.

Local	SU(3)	symmetry,	then,	requires	eight	vector	bosons,	which	we	know	as
gluons.	 These	 mediate	 the	 strong	 force	 just	 as	 the	 photon	 mediates	 the
electromagnetic	force	in	the	Abelian	case.	One	key	difference,	however,	 is	 that
the	 photon	 leaves	 the	 identity	 of	 the	 interacting	 fermion	 unchanged,	while	 the
gluons	are	capable	of	changing	the	color	of	the	interacting	quarks.	To	see	why,
consider	the	action	of	the	generator	T1	on	a	quark	in	the	red	state.	Writing	again
the	 quark	 wavefunction	 as	 a	 color	 triplet,	 a	 red	 state	 can	 be	 expressed	 as	

,	so

The	 generator	T1	 has	 the	 effect	 of	 turning	 a	 red	 quark	 into	 a	 green	 quark.
Similarly,	the	same	generator	converts	green	to	red.	If	color	is	to	be	a	conserved
quantity	 (which,	 of	 course,	 it	must	 be,	 since	 its	 conservation	 follows	 from	 the
global	 SU(3)),	 then	 the	 gluons	 themselves	 must	 carry	 color.	 In	 particular,	 the
gluon	 	must	 be	 in	 the	 color	 state	 	 .	 Likewise,	 in	 the	 chosen
SU(3)	representation,	the	gluons	can	be	written	as



10.2 GLUON	SELF-INTERACTIONS

Since	the	strong	interaction	is	an	interaction	between	colored	particles	and	the
gluons	 themselves	 carry	 a	 color	 charge,	 this	 leads	 to	 gluon-gluon	 interactions.
These	can	also	be	derived	by	looking	at	the	gluon	kinetic	term.	Constructing	the
commutator	of	two	covariant	derivatives,	as	for	the	photon,	we	find

The	third	term	in	this	expression	is	specific	to	the	non-Abelian	case,	and	did	not
appear	 in	 the	 field	 strength	 tensor,	 Fµν,	 for	 the	 photon.	 It	 arises	 in	 this	 case
because	of	 the	non-commutativity	of	 the	group	generators	 appearing	 in	Dµ.	 In
fact,	the	presence	of	this	term	means	that	 	is	not	gauge-invariant	as	Fµν	was.
However,	the	term	that	will	appear	in	the	Lagrangian,	 Giµν,	is	both	Lorentz-
invariant	and	gauge-invariant.

The	equation	of	motion	 for	 a	gluon	 in	 the	presence	of	 a	 colored	 fermion	 is
then	given	by
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which	expands	to

The	 first	 three	 terms	 on	 the	 right	 of	 this	 equation	 allow	 for	 threegluon
interactions,	while	 the	fourth	 term	allows	for	 four-gluon	 interactions.	The	final
term	of	course	accounts	for	gluon	interactions	with	the	fermion.

Another	way	to	arrive	at	the	same	conclusion	is	to	construct	the	Lagrangian
for	 this	 system.	The	kinetic	 term	for	gluons	 is	 constructed	 in	analogy	with	 the
kinetic	term	for	photons:

The	three-point	and	four-point	interactions	are	clear	in	this	formalism.

STRONG	FORCE	INTERACTIONS

Quantum	Chromodynamics

The	strong	force,	then,	is	explained	in	terms	of	a	non-Abelian	generalization
of	local	phase	symmetry.	Theories	of	this	nature	are	collectively	known	as	gauge
theories,	since	they	all	have	a	generalized	notion	of	gauge	invariance,	as	given	in
Equation	 10.9.	 Since	 it	 is	 based	 around	 color,	 in	 analogy	 with	 quantum
electrodynamics,	 the	 locally	SU(3)-invariant	 theory	 that	we	 have	 introduced	 is
named	 quantum	 chromodynamics	 (QCD).	 The	 Feynman	 rules	 for	 QCD	 are



•

•

•

•

similar	to	those	for	QED,	with	a	few	additional	rules.	In	particular,	the	following
alterations	to	the	QED	rules	must	be	made.

External	 (anti-)quarks	 carry	 an	 additional	 color	 spinor,	 cA,	 which
transforms	as	the	(anti-)fundamental	(3/ )	representation	of	SU(3).

External	 incoming/outgoing	gluons	carry	an	additional	color	polarization
factor,	Ga/ ,	 in	 the	adjoint	 (8)	 representation	of	SU(3),	which	serves	 to
identify	the	particular	combination	of	gluon	basis	states.

Fermion-gluon	 vertices	 contribute	 an	 additional	 factor	 of	 the	 SU(3)C
generator,	Ta.

Internal	 gluon	 propagators	 contribute	 an	 additional	 δab	 where	 a,	 b	 are
(adjoint	representation)	color	indices.

In	addition,	 there	are	now	gauge	boson	 self-interactions	 to	consider,	with	 their
own	set	of	Feynman	rules.	For	a	three-gluon	vertex,

where	 p1,2,3	 are	 momenta,	 µ,	 ν,	 ρ	 are	 Lorentz	 indices,	 and	 a,	 b,	 c	 are	 color
indices,	we	get	a	contribution	of

where	fabc	are	the	SU(3)	structure	constants.	With	similar	notation,	we	find



10.3.2

A	full	list	of	all	these	rules	may	be	found	in	Appendix	B.

Scale-Dependence

Quantum	chromodynamics	 is	 found	 to	have	 some	 important	 scaledependent
features.	 In	 particular,	 it	 behaves	 very	 differently	 at	 the	 low-energy	 (large-
distance)	and	high-energy	(short-distance)	scales.	This	difference	 is	due	 in	part
to	 the	 scale-dependence	 of	 the	 coupling	 constant	 g3:	 the	 inherent	 strength	 of
QCD	 interactions	 depends	 on	 the	 energy	 of	 the	 particles	 taking	 part	 in	 the
interaction,	 or	 equivalently	 on	 the	 length	 scales	 being	 probed.	This	may	 seem
strange—after	 all,	 the	 strength	 of	 the	 interactions	 is	 measured	 by	 a	 coupling
constant!	However,	such	scale-dependence	is	a	genuine	feature	of	any	theory	of
interacting	particles,	as	we	saw	in	Section	9.6.	For	an	intuitive	appreciation	of	its
origin,	 it	 is	 easiest	 to	 consider	 first	 the	 analogous	 scale-dependence	 of	 the
electromagnetic	coupling.	Consider	a	lone	stationary	electron	and	a	test	particle
used	 to	 measure	 the	 electron’s	 charge.	 If	 the	 test	 particle	 could	 be	 brought
infinitesimally	 close	 to	 the	 electron,	 we	 would	 find	 some	 value,	 e0.	 But	 now
consider	what	happens	as	we	move	the	test	particle	away	from	the	electron.	The
intervening	 space,	 even	when	 empty,	 is	 a	 sea	 of	 virtual	 photons	 and	 electron-
positron	pairs	popping	 in	and	out	of	existence.	Even	 though	 these	particles	are
virtual,	they	have	a	real	effect:	the	potential	due	to	the	real	electron	is	attractive
to	the	virtual	electrons	but	repulsive	to	the	virtual	positrons,	and	so	it	polarizes
the	particle	pairs.	The	net	effect	of	this	is	that	the	space	itself	around	the	electron
becomes	polarized,	screening	the	true	value	of	the	electron	charge	from	the	test
particle.	 If	 the	 electron	 charge	 is	 measured	 at	 this	 larger	 distance	 scale,	 the
measured	value,	e,	 is	found	to	be	less	 than	the	bare	charge	e0.	 In	fact,	 the	bare
charge	is	found	to	be	formally	infinite,	and	is	one	of	the	parameters	of	the	theory
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that	 must	 be	 renormalized.	 The	 amount	 of	 this	 screening	 may	 be	 calculated
through	 higher-order	 corrections	 to	 the	 tree-level	 graphs	 of	 QED,	 and	 is	 the
origin	 of	 the	 β	 function,	 introduced	 in	 Section	 9.6.	 This	 function	 gives	 the
relative	 change	 in	 the	 coupling	 constant	 as	 the	 energy	 scale	 is	 increased,	 or
equivalently	as	the	theory	is	probed	at	shorter	length	scales.	In	the	case	of	QED,
the	β	function	is	positive:	the	coupling	increases	as	the	energy-scale	is	increased.

In	QCD,	the	screening	effect	is	reversed	and	the	β	 function	is	negative.	The
force	gets	stronger	at	longer	length	scales.	The	reason	for	this	is	the	gluon	self-
interactions.	 Essentially,	 a	 gluon	 exchanged	 between	 two	 quarks	 that	 are	 far
removed	from	each	other	produces	other	gluons	en	route,	increasing	the	coupling
constant	 for	 the	 interaction.	 This	 means	 that	 the	 strong	 coupling	 at	 everyday
energy	scales	(macroscopic	length-scales)	grows	so	high	that	its	numerical	value
is	 greater	 than	 1.	 At	 this	 point,	 the	 perturbative	 approach	 to	 calculating
amplitudes	breaks	down,	since	increasing	the	number	of	vertices	in	a	Feynman
diagram	 increases	 that	 diagram’s	 contribution	 to	 the	 amplitude.	 At	 shorter
distances,	 the	perturbative	approach	 is	 still	valid,	 leading	 to	 two	very	different
regimes	in	strong	interactions.	The	approximate	scale-dependences	of	couplings
are	summarized	in	Appendix	A.

HIGH-ENERGY	QCD

Asymptotic	Freedom

At	 short	 distance	 scales,	 the	 strong	 coupling	 constant	 is	 small.	 Indeed,	 its
value	decreases	with	decreasing	length	scales	so	that	at	arbitrarily	small	scales,
the	 constant	 vanishes.	 This	means	 that	 the	 quarks	 and	 gluons	within	 a	 hadron
behave	more	and	more	as	 free	 (non-interacting)	particles	as	 they	are	probed	at
smaller	 scales.	This	 behavior	 is	 known	 as	 asymptotic	 freedom.	 In	 this	 regime,
we	may	calculate	scattering	amplitudes	through	the	perturbative	approach.	Such
calculations	allow	us	to	verify	that	the	baryon	and	meson	color	states	are	bound,
while	other	quark	combinations	such	as	q 	are	mutually	repulsive.	Perturbative
calculations	 in	 the	 high-energy	 regime	 allow	 for	 the	 detailed	 analysis	 of	 the
parton	 distribution	 functions.	 These	 in	 turn	 may	 be	 linked	 to	 the	 hadronic
structure	functions	of	Section	9.7.2	in	order	to	match	theory	to	experiment.



10.4.2 Perturbative	QCD

Let	us	calculate	the	amplitude	for	quark-quark	scattering	via	gluon	exchange.
The	leading-order	contribution	to	this	amplitude	comes	from	the	diagram:

There	 is,	of	course,	a	crossed	version	of	 this	diagram	as	well	 if	 the	quarks	are
identical,	but	we	will	neglect	this	fact	for	now,	since	the	argument	we	are	going
to	use	would	still	apply	with	two	contributions.	Using	the	QCD	Feynman	rules,
we	find	that	the	amplitude	is	given	by

Since	 the	color	spinors	cA	 and	 the	Lorentz	 spinors	u(p)	 act	 in	different	 spaces,
they	commute,	and	so	we	can	factorize	this	expression	as

where	 the	 generators	 have	 been	 set	 equal	 by	 the	 Kronecker	 delta,	 δab.	 The
repeated	“a”	index	implies	summation	over	generators.

Apart	from	the	obvious	replacement	qe	 	g3,	the	first	part	of	this	amplitude	is
identical	to	the	corresponding	QED	diagram	for	electron-electron	scattering.	The
only	additional	complication	for	the	QCD	calculation,	then,	is	the	appearance	of
a	color	factor:



where	λa	are	the	Gell-Mann	matrices.

Let	us	now	choose	a	specific	color	assignment:	qr	+qr	→	qr	+qr.	That	is,	we
consider	two	quarks	in	a	color	sextet	state:	the	symmetric	part	of	the	product	3	⊗
3	=	6	⊕	 .	In	this	case,	the	color	spinors	are

and	so	the	only	Gell-Mann	matrices	that	will	contribute	to	the	color	factor	are	λ3

and	λ8,	since	these	have	diagonal	entries.	So	we	find:

Since	 the	 amplitude	 is	 otherwise	 identical	 to	 the	 corresponding	 QED
amplitude,	we	can	deduce	that	the	behavior	will	also	be	identical.	In	particular,
the	QED	electron-electron	scattering	leads	to	a	potential	that	falls	off	as	1/r,	and
is	positive	(as	we	saw	in	Section	9.3).	That	is,	the	force	between	like	charges	is
repulsive.	 So	 we	 can	 see	 that	 we	 have	 the	 same	 result	 here:	 two	 quarks	 in	 a
symmetric	state	will	repel.	Although	we	have	demonstrated	this	fact	only	in	the
case	 of	 red-red	 scattering,	 the	 result	 is	 necessarily	 the	 same	 for	 the	 remaining
colors,	since	color	symmetry	is	exact:	we	must	be	able	to	replace	one	color	for
another	 in	 a	 consistent	 manner,	 and	 arrive	 at	 the	 same	 result.	 It	 is	 worth
checking,	 therefore,	 that	 the	result	 really	 is	 the	same	for	green-green	and	blue-
blue	scattering.



What	 about	 the	 color	 singlet	 state,	 the	 antisymmetric	 combination	 that	 we
saw	 in	 Chapter	 6?	 For	 quarks	 to	 form	 baryons,	 we	 require	 this	 state	 to	 be
attractive.	 We	 can	 demonstrate	 that	 this	 is	 the	 case,	 again	 through	 the	 color
factor.	 In	 the	 singlet	 state,	 the	 quarks’	 colors	 are	 fully	 antisymmetric.	 So	 a
typical	pair	of	quarks	to	consider	might	be	in	the	state	|ψ⟩	=	 	(|rg⟩	−	|gr⟩),	for
example.	The	scattering	amplitude	for	quarks	in	this	state	can	be	expressed	as

where	 Ŝ	 is	 the	 relevant	 scattering	 operator.	 So	 there	 are	 two	 distinct	 types	 of
interaction	to	consider	in	this	case:	the	elastic	scattering	processes,

in	which	quarks	retain	 their	color	 identity,	and	 the	 inelastic	processes	 in	which
quark	 colors	 are	 swapped.	 Let’s	 find	 the	 color	 factor	 for	 redgreen	 elastic
scattering	first.	In	this	case:

Thanks	 again	 to	 color	 symmetry,	 green-red	 scattering	 gives	 the	 same	 color
factor.	This	leaves	the	color-changing	processes



each	giving	a	color	factor	of

where	it	is	now	the	λ1	and	λ2	matrices	that	contribute.	Combining	these	results,
we	find	from	Equation	10.23	that	the	overall	color	factor	for	the	scattering	of	a
pair	of	quarks	in	the	singlet	state	is

Since	this	is	negative,	it	implies	that	the	force	between	differently	colored	quarks
really	is	attractive.

Before	 performing	 similar	 calculations	 for	 the	meson	 states,	 ,	 it	 is	worth
mentioning	that	there	is	an	alternative	method	for	finding	the	color	factor	for	a
process.	This	is	to	look	at	the	gluons	that	can	couple	to	a	particular	quark	color.
For	example,	 to	conserve	color	 in	 the	previous	 red-green	elastic	scattering,	 the
only	gluons	that	can	couple	to	red-red	and	green-green	currents	are	the	|3⟩	=	 	

	and	|8⟩	=	 	 .	The	coupling	at	the	red	vertex	is	 	for	the
|3⟩	and	 	for	the	|8⟩.	Similarly,	the	coupling	at	the	green	vertex	is	− 	for	the
|3⟩	and	 	for	the	|8⟩.	With	this	in	mind,	the	color	factor	can	also	be	expressed	as



where	C1,2	are	the	“color-couplings”	at	each	vertex.	For	the	current	example,	we
have

which	is	in	agreement	with	the	more	formal	method	presented	above.

We	will	perform	one	more	example	before	suggesting	that	the	reader	try	some
of	these	calculations	themselves.	The	final	example	is	quark-antiquark	scattering
in	 the	 singlet	 (meson)	 state,	 	 .	 As	 before,	 this	 gives	 several
contributions:

with	nine	terms	in	total.	Because	of	color	symmetry,	only	two	of	these	need	to	be
calculated	explicitly.	We	will	choose	red-antired	elastic	scattering	and	 .
The	relevant	diagram	in	this	case	is

with	amplitude
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Notice	 that,	 as	 far	 as	 the	 color	 factor	 is	 concerned,	 there	 is	 no	 difference
between	red-red	and	red-antired	scattering.	So	for	redantired	scattering,	we	find
CF	=	 ,	and	for	 ,	we	have	CF	=	 	Substituting	these	values	into	Equation
10.29,	we	get	an	overall	color	factor	of

At	first	sight,	this	appears	to	have	the	wrong	sign:	a	positive	result	seems	to
suggest	a	repulsive	force,	yet	we	know	that	the	singlet	is	a	stable	configuration,
since	it	is	the	state	chosen	by	mesons.	We	must	remember,	however,	that	one	of
the	particles	in	this	case	is	an	antiquark,	carrying	an	anticolor.	In	addition	to	the
color	spinor	 for	each	particle,	we	must	also	 take	account	of	 its	“color	charge.”
While	 the	 red	quark	and	antired	antiquark	are	both	described	by	 the	spinor	c1,
one	has	a	positive	value	and	the	other	negative.	Therefore,	we	expect	the	form	of
the	potential	deriving	from	the	QED-like	part	of	Equation	10.30	to	resemble	that
of	 the	 electron-positron	 system	 rather	 than	 the	 electron-electron	 system.
Therefore,	in	the	quark-antiquark	case,	the	attractive/repulsive	nature	of	a	force
is	determined	by	the	negative	of	the	color	factor.

LOW-ENERGY	QCD

Quark	Confinement

At	large	scales	(low	energy	scales),	quarks	and	gluons	do	not	behave	as	free
particles:	 in	 fact,	 their	 behavior	 is	 probably	 as	 far	 from	 free	 as	 it	 could	 be.
Instead,	they	are	confined	to	the	hadrons	of	which	they	are	part,	in	the	sense	that



they	 cannot	 be	 removed.	Although	 the	mechanism	 behind	 confinement	 is	 still
not	completely	understood,	its	origins	are	becoming	clearer	thanks	in	part	to	the
efforts	of	lattice	QCD	calculations	(which	we	will	discuss	in	Section	10.5.3).	A
qualitative	argument	for	confinement	is	as	follows,	where	it	is	instructive	first	to
consider	the	analogous	behavior	of	electromagnetic	interactions.

The	 cloud	 of	 virtual	 photons	 emitted	 by	 an	 electrically	 charged	 particle
radiates	outward	in	all	directions,	with	the	density	of	photons	at	a	given	distance
dropping	 off	 with	 the	 surface	 area	 of	 a	 sphere	 at	 that	 radius.	 In	 contrast,	 the
gluons	in	a	similar	cloud	are	bound	by	their	own	self-interactions	into	string-like
objects	 that	end	on	 the	color-charged	objects	producing	 them.	 It’s	 important	 to
realize	 that	 these	QCD	strings	are	not	 the	fundamental	objects	of	string	theory,
though	historically	they	were	their	precursors.	We	will	revisit	the	origin	of	these
QCD	 strings	 in	 Section	 10.5.3	 where	 we	 examine	 a	 slightly	 more	 rigorous
argument	for	their	formation.

QCD	 strings	 begin	 and	 end	 on	 colored	 objects	 as	 in	 Figure	 10.1,	 in	 effect
focusing	the	strong	force	between	them.	So	unlike	electromagnetic	forces,	which
fall	away	with	increasing	distance	according	to	an	inverse-square	law,	the	strong
force	 is	 found	 to	 be	 constant	 with	 varying	 distance.	 This	 leads	 to	 a	 linearly
increasing	potential	energy	when	two	strongly	interacting	particles	are	separated.
As	 such,	 increasing	 the	 separation	between	 two	quarks,	 in	 an	effort	 to	 remove
one	 or	more	 from	 a	 hadron,	 imparts	 an	 increasing	 amount	 of	 energy	 into	 the
system.	 Before	 the	 quark	 is	 taken	 beyond	 the	 boundaries	 of	 the	 hadron,	 the
amount	of	energy	introduced	is	sufficient	to	produce	a	new	quark-antiquark	pair.
In	turn,	this	leads	to	the	formation	of	new	hadrons,	rather	than	the	isolation	of	a
quark.	Thus,	the	quarks	are	never	observed	outside	of	the	confines	of	a	hadron.
The	production	of	 hadrons	 in	 this	way	 is	 known	as	 hadronization.	The	 energy
required	 to	 probe	 the	 internal	 structure	 of	 a	 hadron	 is	 immense,	 so	 hadrons
produced	through	hadronization	are	not	produced	in	isolation,	but	in	collections
of	hadrons	with	roughly	similar	momenta,	called	a	jet.	Experimentally,	then,	the
emission	of	 a	quark	or	gluon	 from	a	QCD	process	 is	 not	detected	 as	 such	but
must	be	inferred	through	the	arrangement	of	jets	in	the	detector.
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FIGURE	10.1	A	schematic	representation	of	QCD	strings	confining	the	constituent	quarks	in	a	baryon.

The	Residual	Nuclear	Force

The	low-energy	behavior	of	QCD	is	best	described	not	in	terms	of	quarks	and
gluons	but	in	terms	of	the	bound	states	of	baryons	and	mesons.	Since	the	quarks
and	gluons	are	confined	within	these	composite	particles,	from	the	point	of	view
of	an	observer	at	 a	distance	 from	a	hadron,	 the	hadron	appears	 to	behave	as	a
point	 particle.	 These	 composite	 particles	 then	 have	 their	 own	 dynamics.	 The
residual	nuclear	force	is	the	attractive	force	between	baryons	in	the	nucleus,	and
is	 mediated	 by	 mesons.	 As	 we	 saw	 in	 Section	 9.3,	 it	 is	 a	 general	 result	 in
quantum	field	theory	that	the	force	mediated	by	a	boson	with	even-valued	spin	is
attractive	for	like	particles.	In	principle	then,	any	meson	is	capable	of	mediating
the	nuclear	force	through	a	Yukawa-like	interaction,	but	in	practice	it	is	carried
by	the	pions.	Since	these	are	the	lightest	mesons,	they	are	readily	produced	and
so	 have	 the	 greatest	 contribution	 to	 the	 scattering	 amplitudes	 of	 baryons.
Although	they	are	not	fundamental	and	there	is	a	deeper	theory	underlying	their
interaction,	 since	 the	 deeper	 theory	 is	 effectively	 masked	 by	 the	 scale-
dependence	 of	 QCD,	 it	 is	 useful	 to	 have	 a	 set	 of	 Feynman	 rules	 for	 pion
exchange.	The	 relevant	 rules	 are	 analogous	 to	 those	given	 in	Sections	7.3	 and
8.8,	but	we	have	additional	kinds	of	 interaction.	Specifically,	since	the	hadrons
are	 not	 the	 fundamental	 degrees	 of	 freedom	 for	 the	 theory,	 the	Lagrangian	 for
this	model	is	only	approximate.	As	such,	we	must	take	a	perturbative	approach
even	to	the	terms	in	the	Lagrangian	and	include	an	entire	series	of	interactions	of
increasing	 dimension.	 That	 is,	 we	 find	 that	 there	 are	 terms	 with	 increasing
numbers	of	derivatives	acting	on	the	scalar	particle,	which	manifest	themselves



as	powers	of	momentum	in	the	Feynman	rules.

This	 approach	 to	 calculation	 is	 known	 as	 “effective	 field	 theory”	 and	 the
general	 philosophy	 of	 the	 approach	 is	 to	 include	 all	 terms	 consistent	with	 the
symmetries	 of	 the	 model.	 Effective	 field	 theories	 are	 characterized	 by	 the
presence	of	non-renormalizable	interactions.	However,	this	is	not	a	problem	for
an	effective	theory,	since	it	is	only	applied	to	a	specific	range	of	energy-scales,
and	so	 the	highenergy	 limit	where	 renormalizability	becomes	an	 issue	 is	of	no
consequence.	The	theory	is	expected	to	break	down	at	high	energy,	since	it	is	a
low-energy	 approximation,	 and	 so	 a	 hard	 momentum	 cutoff	 is	 imposed	 at	 a
suitable	 scale.	 The	 particular	 effective	 theory	 used	 for	 describing	 residual
hadronic	strong	 interactions	 is	known	as	“chiral	perturbation	 theory,”	since	 the
approximate	symmetries	to	consider	when	writing	down	the	Lagrangian	are	the
chiral	symmetries	of	the	underlying	quarks,	which	are	considered	in	the	massless
limit.	 This	 is	 a	 valid	 approximation	 since	 the	 quark	masses	 are	much	 smaller
than	 the	 typical	 energy	 scales	 of	 interest.	The	 lowest-order	 contribution	 to	 the
residual	nuclear	 interaction	 is	 the	exchange	of	a	single	pion,	as	 in	Figure	10.2,
though	 the	 effective	 nature	 of	 the	 model	 means	 that	 the	 associated	 Feynman
rules	are	somewhat	complicated:	in	principle	each	vertex	contributes	an	infinite
series	 of	 terms	with	 different	 powers	 of	 the	 transferred	momentum.	However,
those	terms	with	higher	powers	of	momentum	make	smaller	contributions,	given
that	 they	 are	 scaled	 down	 by	 the	 high-momentum	 cutoff,	 so	 in	 practice	 such
series	 are	 summed	 to	 a	 specific	 order.	 Given	 the	 complicated	 nature	 of	 such
calculations	we	will	not	explore	them	further	here.	Instead,	we	simply	note	that
chiral	perturbation	theory	has	had	much	success	in	modeling	the	behavior	of	the
residual	nuclear	force	between	pairs	of	nucleons	in	various	bound	states,	as	well
as	larger	collections	of	nucleons.	The	methods	may	even	be	generalized	to	apply
to	 “hyperons”—those	 baryons	with	 one	 or	more	 strange	 quarks—by	 including
the	kaons	as	additional	mediators.
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FIGURE	10.2	Pion	exchange	mediating	the	residual	nuclear	interaction	between	baryons.

Perturbative	and	Lattice	QCD

In	the	short-distance	regime,	 the	strong	coupling	is	smaller	 than	1.	As	such,
increasing	the	number	of	vertices	in	a	Feynman	diagram	reduces	the	magnitude
of	 the	 diagram’s	 contribution	 to	 the	 amplitude.	 This	 means	 that	 perturbation
theory	is	valid	and	amplitudes	may	be	calculated	order-by-order	in	g3.

At	 large	distances,	 since	g3	 is	 large,	 the	 perturbative	 approach	 is	 no	 longer
valid.	 If	 one	were	 to	 attempt	 a	 perturbative	 calculation,	 then	 diagrams	with	 a
large	number	of	vertices	would	have	a	greater	contribution	to	the	amplitude	than
those	with	fewer	vertices.	The	calculation	would	be	divergent	when	calculated	to
higher	and	higher	orders	 in	g3.	Another	approach	 is	 required	when	performing
QCD	calculations	at	low	energy.	An	approach	to	such	calculations	that	has	had
considerable	 success	 is	 the	 lattice	 approach.	 In	 particular,	 among	other	 hadron
properties,	 lattice	 calculations	 have	 correctly	 found	 the	 mass	 of	 the	 proton	 to
within	2%	accuracy.	This	approach	to	QCD	involves	discretizing	space-time	into
a	set	of	lattice	points.	A	strongly	interacting	system	is	then	modeled	by	placing
the	quarks	on	 the	 lattice	points,	while	gluons	are	placed	on	 the	edges	between
these	vertices,	as	in	Figure	10.3.

More	precisely,	lattice	QCD	is	a	method	for	calculating	measurable	quantities
by	 direct	 approximate	 computation	 of	 the	 path	 integral	 (see	 Section	 7.3.1).	 In
principle,	the	path	integral	is	a	sum	over	all	possible	field	configurations,	but	this
sum	 may	 only	 be	 computed	 approximately	 in	 all	 but	 the	 simplest	 cases.
Perturbation	 theory	makes	 this	 approximation	 by	 expanding	 about	 an	 analytic
solution	in	powers	of	one	or	more	coupling	constants.	Lattice	calculations	take	a
different	 approach	 and	 approximate	 the	 path	 integral	 as	 a	 finitedimensional
integral	in	which	the	field	is	defined	only	at	a	finite	set	of	discrete	lattice	space-
time	points,	with	lattice	spacing	a.	A	Fourier	 transform	shows	 that	 the	discrete
lattice	 ensures	 a	 momentum	 cutoff.	 Similarly,	 the	 finite	 size	 of	 the	 lattice
corresponds	 to	 a	 discrete	 set	 of	 momentum	 modes,	 thus	 rendering	 any
calculation	 finite	 in	 both	 the	 infra-red	 (long-distance)	 and	 ultraviolet	 (short-
distance)	 regions.	 Lattice	 QCD	 has,	 then,	 a	 built-in	 regularization	 scheme	 for
dealing	with	the	infinities	that	arise	in	quantum	field	theoretical	calculations.	To



make	contact	with	reality,	calculations	are	considered	in	the	continuum	limit,	in
which	a	→	0,	and	at	which	point	any	artifacts	of	the	discretization	should	vanish.
While	 the	 idea	 seems	 reasonably	 simple,	 the	practicalities	of	 such	calculations
are	riddled	with	complications.

FIGURE	10.3	Quarks	placed	on	the	points	of	a	lattice	of	spacing	a,	with	gauge	fields	placed	on	the	edges
connecting	lattice	points.

The	first	complication	is	the	sheer	size	and	cost	of	the	calculations,	even	for
relatively	small	lattices.	For	example,	a	field	defined	on	a	lattice	with	32	lattice
points	 in	 each	 direction	 (including	 time)	 requires	 a	 324	 =	 1,	 048,	 576-
dimensional	 vector	 of	 field	 values,	 and	manipulation	 of	 such	 vectors	 requires
matrix	multiplication	using	square	matrices	of	 this	size:	 that	 is,	with	over	1012
elements.	 Lattice	 calculations	 thus	 require	 considerable	 computing	 power	 and
run	time.	Second,	even	with	a	finite-dimensional	integral,	these	calculations	are
not	 approached	 analytically,	 but	 must	 be	 approximated	 using	 Monte	 Carlo
methods.	 That	 is,	 a	 selection,	 or	 ensemble,	 of	 field	 configurations	 is	 summed
over	as	an	approximation	to	the	full	(infinite)	set	of	configurations.	This	leads	to
a	 further	 complication:	 as	we	 said	 in	Section	7.3.1,	 each	path’s	 contribution	 is
weighted	by	its	action,	S[path]	=	∫path	d4x	 ,	according	to	eiS.	For	large	values	of
S,	 this	 complex	 phase	 oscillates	 wildly	 for	 neighboring	 paths	 such	 that	 their
contributions	largely	cancel	out,	whereas	those	paths	close	to	the	classical	path
(which	 has	 a	 stationary	 value	 of	 S)	 give	 similar	 contributions,	 leading	 to
constructive	 interference	 in	 the	weighting	 factor.	 This	 is	 a	 problem	 for	 lattice
computations,	since	essentially	all	the	configurations	in	a	neighborhood	must	be
included	 to	 achieve	 the	 correct	 interference.	 This	 problem	 is	 overcome	 by
working	 in	 a	 four-dimensional	Euclidean	 space,	 rather	 than	Minkowski	 space-
time.	 Notice	 that	 the	 only	 difference	 between	 a	 Minkowski-space	 and	 a
Euclidean-space	 vector	 is	 the	 relative	 negative	 sign	 for	 the	 “time-time”



component	of	the	metric.	So	by	moving	to	an	imaginary	time	coordinate,	τ	=	it,
via	a	Wick	rotation,	we	find	xµxµ	=	t2	−	x2	−	y2	−	z2	=	−τ2	−	x2	−	y2	−	z2:	with	an
imaginary	 time,	 the	 system	 becomes	Euclidean	with	metric	 (-,-,-,-).	 The	 other
effect	of	this	imaginary	coordinate	is	to	convert	the	i	in	the	exponent	of	the	path
integral	to	a	negative	sign.	That	is,	in	Euclidean	space,	the	path	integral	is	now
weighted	 by	 e−S.	 This	 has	 the	 effect	 that,	 while	 the	 paths	 with	 the	 largest
contributions	are	still	those	with	the	smallest	values	of	S,	the	contribution	of	an
individual	 path	 far	 from	 the	 classical	 path	 is	 now	heavily	 damped	without	 the
interference	of	other	neighboring	paths.	This	allows	Monte	Carlo	methods	to	be
used,	since	we	may	now	choose	a	selection	of	paths	with	large	contributions,	and
efficient	algorithms	exist	for	finding	such	an	ensemble.

As	 stated	 previously	 that	 the	 gauge	 fields	 live	 on	 the	 links	 between	 lattice
sites:	why	should	this	be?	Well,	consider	that	the	gauge	field’s	appearance	in	the
theory	is	via	the	gauge-covariant	derivative:	Dµ	=	∂µ	+	ig3AaµTa.	The	derivative
in	a	discrete	 space	becomes	a	non-local	operator:	 the	derivative	of	 a	 field	at	 a
site	x	 is	defined	as	 some	discrete	difference,	 such	as	∂µψ(x)	=	ψ(x+aµb)−ψ(x),
where	 	is	the	unit	vector	in	the	µ-th	direction.	That	is,	the	action	of	the	operator
on	a	field	at	one	point	 involves	the	value	of	the	field	at	other	points.	Since	the
gauge	 field	 is	 incorporated	 into	 the	 definition	 of	 gauge-covariant	 derivative,	 it
must	 also	 be	 non-local.	 Furthermore,	 it	 must	 be	 oriented,	 since	 it	 must
distinguish	between	the	location	being	acted	upon	by	the	derivative	and	the	other
(non-local)	 lattice	 point	 that	 is	 involved.	 For	 this	 reason,	 the	 gauge	 fields	 are
conventionally	 shown	as	an	arrow	on	 the	 link	between	 two	 lattice	 sites.	 It	 can
then	be	shown	that	any	closed	path	constructed	of	such	links	is	gauge	invariant.
In	 this	way,	 the	gauge-invariance	of	 the	 continuous	 theory	 is	 preserved	on	 the
lattice.

The	 final	 complication	 of	 lattice	 QCD	 that	 we	 will	 discuss	 is	 the	 fermion
doubling	problem.	To	see	how	this	problem	arises,	it	is	worth	first	considering	a
bosonic	field	on	the	lattice.	When	the	propagator	for	a	bosonic	field	is	computed
on	the	lattice,	it	is	found	to	be	of	the	form

where



for	lattice	spacing	a,	whereas	the	propagator	in	a	continuum	Euclidean	theory	is

The	 momentum	 is	 thus	 deformed	 by	 the	 discretization	 process,	 with	 the
discrete	momentum	and	that	in	the	continuum	limit	agreeing	in	the	limit	of	small
momentum.	For	larger	values	of	momentum,	near	 the	maximum	of	pµ	=	π/a	at
the	boundary	of	the	first	Brillouin	zone,	the	two	diverge	as	shown	in	Figure	10.4.
In	the	fermionic	case,	a	similar	procedure	finds	a	propagator

where

FIGURE	10.4	The	relationship	between	continuum	and	lattice	momenta	in	the	first	Brillouin	zone.

compared	with	simply



in	 the	 continuum.	 The	 problem	 is	 now	 clear	 from	 Figure	 10.4:	 there	 are	 two
distinct	regions	that	appear	to	behave	like	the	continuum,	pµ	=	0	and	pµ	=	±π/a
(since	 we	 are	 restricted	 to	 the	 first	 Brillouin	 zone,	 the	 positive	 and	 negative
extrema	are	identical).

This	doubling	of	 fermion	states	occurs	once	for	each	space-time	dimension,
giving	 16	 fermionic	 degrees	 of	 freedom	 for	 each	 physical	 fermion	 in	 four
dimensions.	A	number	of	methods	exist	for	removing	these	unphysical	fermions,
but	 each	 introduces	 its	 own	 side	 effects.	 For	 example,	 the	 Wilson	 fermion
approach	gives	a	mass	to	the	unphysical	degrees	of	freedom	that	scales	as	1/a.	In
this	way,	as	the	continuum	limit	is	approached,	the	doubled	fermions	acquire	an
infinite	mass	and	are	removed	from	the	system.	The	downside	of	this	approach	is
that	it	also	destroys	the	chiral	symmetry	of	the	underlying	theory:	that	is,	even	in
the	continuum	limit,	with	no	mass	terms,	the	left-chiral	and	right-chiral	parts	of
the	 fermions	are	no	 longer	 independent.	There	 are	 several	 other	 approaches	 to
removing	 the	 “doublers,”	 but	 it	 has	 been	 proven	 that	 no	method	 is	 capable	 of
doing	so	without	introducing	artifacts	that	remain	present	in	the	continuum	limit.

The	Origin	of	QCD	Strings

The	low-energy	behavior	of	QCD	is	dominated	by	the	complex	nature	of	the
QCD	vacuum	state.	It	is	important	to	realize	that	“vacuum”	does	not	necessarily
translate	as	“empty”	but	simply	denotes	the	lowest-energy	state	of	the	system.	In
the	case	of	QCD,	 the	ground	 state	 consists	of	 a	 sea	of	quarks,	 antiquarks,	 and
gluons.	One	of	the	successes	of	lattice	QCD	is	the	prediction	of	the	QCD	strings
connecting	 the	constituent	quarks	 in	hadrons.	These	manifest	 themselves	as	an
emptying	of	the	busy	QCD	vacuum	state.	The	presence	of	a	valence	quark	in	a
region	 suppresses	 the	 background	 fluctuations	 of	 the	 vacuum	 state.	 Somewhat
counterintuitively,	it	is	the	resulting	lack	of	virtual	particles	that	raises	the	energy
of	the	region	above	the	vacuum	state.	It	is	the	system’s	attempt	to	minimize	its
energy	that	leads	to	the	formation	of	QCD	strings.	To	see	why,	first	consider	the
electromagnetic	force.	When	two	particles	of	opposite	electric	charge	are	placed
in	a	small	region,	we	can	picture	electric	field	flux	lines	connecting	the	two.	In
the	space	immediately	between	the	charges,	these	flux	lines	are	concentrated	and
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have	very	little	deviation	from	a	series	of	straight	lines.	In	the	space	outside	this,
however,	 the	 lines	 become	 more	 bent,	 and	 radiate	 from	 each	 charge	 in	 all
directions	as	in	Figure	10.5.	If	the	color	force	behaved	in	this	way,	the	vacuum
suppression	would	 extend	 into	 the	 space	 around	 the	 color	 charges,	 raising	 the
system’s	energy.	To	minimize	vacuum	suppression,	 the	 flux	 lines	are	 squeezed
into	a	narrow	tube	directly	connecting	one	charge	to	another,	as	in	Figure	10.6:
this	is	the	origin	of	the	QCD	string.	Lattice	calculations	have	demonstrated	this
type	 of	 behavior	 for	 both	 mesons	 and	 baryons.	 Interestingly,	 in	 the	 case	 of
baryons,	 they	 have	 shown	 that	 the	 strings	 do	 not	 connect	 each	 pair	 of	 quarks
individually,	 but	 instead	 that	 the	 strings	 form	 a	Y-shaped	 junction	 between	 all
three	 quarks,	 as	 in	 Figure	 10.1.	 This	 is	 the	 arrangement	 in	 which	 the	 least
amount	of	space	suffers	vacuum	suppression.	This	is	true	as	long	as	the	quarks
are	sufficiently	separated.	Since	the	“flux	tube”	is	finite	in	cross-section,	for	very
closely	spaced	quarks	it	is	more	energetically	favorable	for	the	suppressed	region
to	form	roughly	a	triangular	prism	around	the	quarks.

FIGURE	10.5	Lines	of	electric	flux	in	the	region	between	two	charges.

FIGURE	10.6	Lines	of	color	flux	squeezed	by	the	QCD	vacuum	into	a	flux	tube	connecting	color	charges.

EXOTIC	MATTER

The	qqq	and	 	systems	are	not	 the	only	possible	color	singlets.	 It	has	 long
been	suspected	that	more	exotic	hadrons	may	exist	in	the	form	of	tetraquarks	(
)	and	pentaquarks	(qqq ).	In	addition,	due	to	gluon	self-interactions,	there	is

the	possibility	of	a	color-singlet	collection	of	gluons,	known	as	a	glueball.



10.6.1 Pentaquarks	and	Tetraquarks

The	 tetraquark	 is	 a	 bound	 state	 of	 two	 quarks	 and	 two	 antiquarks,	 which
would	of	course	be	a	colorless	combination.	The	possibility	of	such	a	state	was
proposed	by	Gell-Mann	when	he	 first	put	 forward	 the	quark	model,	 and	many
specific	 examples	 have	 been	 predicted	 along	 with	 their	 calculated	 properties.
Despite	their	long-theorized	existence,	though,	tetraquark	states	have	only	been
observed	in	recent	years.	Many	possible	tetraquark	candidates	have	arisen	over
time	as	statistical	bumps	in	 the	 invariant	mass	distributions	for	various	decays.
However,	 further	 probing	 by	 other	 experiments	 has	 often	 smoothed	 out	 such
bumps.	In	other	cases,	these	fluctuations	have	remained	but	have	not	reached	the
necessary	 5σ	 level	 of	 significance	 to	 be	 considered	 a	 genuine	 resonance.	 The
first	 resonance	 to	 be	 confirmed,	 which	 may	 be	 a	 tetraquark	 state,	 is	 the	 Z
−(4430),	found	in	the	decays	of	B	mesons.	This	was	first	discovered	by	the	Belle
collaboration	 in	 2007,	 but	 was	 only	 confirmed	 as	 a	 resonance	 by	 the	 LHCb
collaboration	 in	2014,	at	 the	 indisputably	high	significance	 level	of	13.9σ.	The
state	arises	in	the	decay	of	B0	mesons	via	the	mode	B0	→	ψ′	+K+	+π−,	where	ψ′
is	 a	 charmonium	 ( )	 meson	 in	 the	 n	 =	 2,	 3S1	 state,	 where	 n	 is	 the	 principal
quantum	 number.	 The	 Z	 −(4430)	 appears	 specifically	 in	 the	 invariant	 mass
distribution	for	the	ψ′-π−	pair,	with	a	spin-parity	of	1+.	Since	this	state	is	charged,
the	 simplest	 quark	 configuration	 that	 can	 give	 rise	 to	 its	 decay	 is	 ,
discounting	the	possibility	that	it	is	an	ordinary	meson.	What	remains	to	be	seen,
however,	is	whether	this	is	a	tetraquark	in	the	true	sense—four	quarks	mutually
bound	by	their	color-charge—or	a	bound	state	of	two	mesons,	maintained	by	the
same	 residual	 nuclear	 attraction	 that	 binds	 baryons	 together	 in	 the	 nucleus.	A
third	 possibility	 is	 that	 the	 state	 is	 a	 different	 kind	 of	 “bound	 state	 of	 bound
states,”	namely	a	diquark–anti-diquark	pair.	Further	experiments	will	allow	for
the	nature	of	the	state	to	be	pinned	down,	but	in	any	case,	 it	 is	clear	that	the	Z
−(4430)	most	likely	really	does	represent	an	entirely	new	family	of	particles.

Another	 type	of	exotic	hadron	 is	 the	pentaquark.	This	 is	a	kind	of	baryonic
cousin	of	the	tetraquark,	consisting	of	four	quarks	and	an	antiquark.	Again,	there
is	now	compelling	evidence	 that	 such	a	 state	has	been	discovered,	 also	by	 the
LHCb	collaboration	in	2015.	The	evidence	in	this	case	comes	from	the	decay	of	
	baryons	to	J/Ψ	+	K	−	+	p,	in	particular	from	the	invariant	mass	spectrum	for

the	J/Ψ	and	p.	In	fact,	since	the	spectrum	has	a	tall	narrow	peak	within	a	broader
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flatter	peak,	two	distinct	pentaquark	states	are	required	to	fit	the	data.	These	are
the	Pc+(4380)	and	Pc+(4450),	both	with	quark	content	uud ,	and	 together	 they
fit	 the	data	 to	an	incredible	15σ	significance	level,	easily	placing	the	discovery
beyond	doubt.	As	with	the	observed	tetraquark	states,	it	is	not	yet	known	if	these
pentaquarks	 are	 combinations	 of	 five	 quarks	 strongly	 bound	 by	 their	 color-
charge,	or	bound	baryon-meson	states,	as	in	Figure	10.7.	Further	observation	and
analysis	will	no	doubt	make	this	clear.

FIGURE	10.7	Possible	arrangements	of	 the	constituents	 in	a	pentaquark.	 In	 (a),	 the	quarks	are	mutually
bound	by	their	color	charges	through	QCD	strings.	In	(b),	the	pentaquark	is	a	more	loosely	bound	state	of
hadronic	constituents,	namely	a	baryon	and	a	meson.

Additional	 bumps	 in	 various	 invariant	mass	 spectra	 have	 been	 identified	 as
possible	 tetraquarks	 and	 pentaquarks,	 but	 only	 those	 in	 the	 previous	 examples
have,	to	date,	been	definitively	identified	as	such.	Of	course,	as	more	data	come
in,	 this	 situation	 is	 likely	 to	 change	 and	 we	 may	 find	 that	 the	 exotic	 hadron
family	grows	considerably	in	the	near	future.

Glueballs

Two-	and	three-quark	states	are	commonplace,	four-	and	fivequark	states	are
now	beginning	 to	 announce	 their	 presence,	 and	 in	 principle	we	 could	go	 even
further,	 postulating	 six-quark	 states	 or	 more.	 On	 the	 other	 hand,	 a	 one-quark
state	remains	forbidden,	at	least	at	low	energy,	by	the	confining	nature	of	strong
interactions.	 However,	 if	 we	 step	 over	 this	 forbidden	 state,	 we	 arrive	 at	 the
possibility	of	a	zero-quark	state,	in	which	gluons	alone	are	bound	by	their	self-
interactions.	 Instead	 of	 quarks,	 these	 composite	 particles	 would	 consist	 of	 an
overall	color-neutral	group	of	gluons.	While	there	are	no	valence	quarks	in	these
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glueball	states,	 like	other	hadrons	 they	contain	a	sea	of	virtual	quark-antiquark
pairs.	 Since	 the	 state	must	 be	 color-neutral	 and	 gluons	 are	 not	 charged	 under
other	 interactions,	 all	 glueball	 states	must	 have	 all	 quantum	 numbers	 equal	 to
zero	 other	 than	 angular	 momentum,	 parity,	 and	 -parity.	 These	 unconstrained
properties	 are	determined	by	 the	particular	 arrangement	of	 the	valence	gluons,
and	 lattice	 QCD	 calculations	 have	 additionally	 predicted	 the	 properties	 of
various	 states,	 including	 their	 masses,	 decay	 channels,	 and	 lifetimes.	 Several
experimentally	observed	resonances	are	potential	glueball	candidates,	though	to
date	none	has	been	definitively	identified	as	such.	In	particular,	the	f0(1500)	and
f0(1710),	along	with	several	other	f0	states,	have	potential	 interpretations	as	 the
lightest	 predicted	 glueballs.	 Just	 as	 in	 the	 case	 of	 the	 flavor-neutral	 mesons,
glueballs	 are	 capable	 of	 mixing	 with	 other	 neutral	 states.	 In	 this	 way,	 the
glueballs	 may	 mix	 with	 ordinary	 mesons,	 complicating	 the	 identification	 of
states.

Quark-Gluon	Plasma

As	 stated	 previously,	 free	 quarks	 are	 forbidden	 at	 large	 distance	 scales.
However,	due	to	the	asymptotic	freedom	of	QCD,	if	the	average	energy	density
(that	is,	temperature)	or	particle	density	of	a	system	is	sufficiently	high,	then	the
system	will	undergo	a	phase	transition	to	a	state	of	matter	in	which	both	quarks
and	gluons	become	deconfined.	That	is,	a	new	state	of	matter—the	quark-gluon
plasma	or	QGP—occurs,	 in	which	 colored	particles	 become	 free.	 Such	 a	 state
would	have	dominated	the	universe	for	a	fraction	of	a	second	after	the	Big	Bang
and	 was	 recreated	 artificially	 for	 the	 first	 time	 in	 2010	 at	 Brookhaven’s
Relativistic	Heavy	 Ion	Collider	 (RHIC).	Quark-gluon	 plasmas	 have	 since	 also
been	created	at	the	LHC	and	studied	by	the	dedicated	ALICE	experiment	as	well
as	the	general-purpose	ATLAS	and	CMS	experiments.	In	both	cases,	the	plasma
state	 has	 been	 achieved	 by	 colliding	 heavy	 nuclei	 in	 accelerators.	 Since	 each
proton	in	an	ionized	nucleus	experiences	the	accelerating	force	in	a	collider,	the
energy	attainable	in	nucleus-nucleus	collisions	is	considerably	larger	and	spread
over	 a	 greater	 volume	 than	 in	 collisions	 of	 individual	 hadrons,	 making	 such
collisions	ideal	for	producing	the	QGP	state.

The	 QGP	 state	 is	 not	 straightforward	 to	 study	 experimentally,	 as	 it	 is	 not
directly	detected,	since	it	exists	only	in	a	very	localized	region	of	both	space	and
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time.	 Instead,	 only	 the	 ordinary	 hadronic	 matter	 states	 radiating	 from	 the
collapse	 of	 the	 state	 and	 into	 the	 surrounding	 detectors	 are	 observed.	 The
experimental	signatures	of	the	state	include	a	change	in	the	expected	momentum
spectra	of	products	due	 to	 the	 increase	 in	degrees	of	 freedom	of	 the	state	over
hadronic	matter.	At	present,	QGP	physics	 remains	 relatively	unknown,	and	 the
properties	of	 the	QGP	state	 are	neither	precisely	measured	 experimentally,	 nor
universally	agreed	upon	 theoretically.	However,	with	more	powerful	collisions,
this	is	an	area	in	which	a	great	deal	of	progress	is	likely	to	be	seen	in	the	near
future.	One	 aspect	 of	 the	 nature	 of	QGP	 that	 is	 clear	 is	 that,	 unlike	 the	 usual
plasma	state	of	ionized	gas,	the	strong	interactions	between	colored	particles	in
QGP	cause	it	to	behave	more	like	a	liquid	than	a	gas.	In	time,	the	properties	of
this	 intriguing	exotic	state	of	matter	will	be	probed,	allowing	us	 to	explore	 the
QCD	phase	diagram	and	to	deepen	our	overall	understanding	of	QCD.

EXERCISES

Color	SU(3)	symmetry	demands	that	the	color	factor	be	the	same	for
red-red	scattering	as	it	is	for	green-green	or	blue-blue	(see	Equation
10.22).	Show	this	explicitly	by	considering	the	gluons	that	can
contribute	to	each	process.

Consider	a	higher-order	process	in	which	red	and	blue	quarks	scatter	via
exchange	of	two	gluons.	How	many	individual	diagrams	contribute	and
what	is	the	overall	color	factor?

In	principle,	mesons	other	than	the	pions	can	contribute	to	the	residual
inter-nucleon	interaction	but	will	be	very	heavily	suppressed.	Use
relevant	Feynman	diagrams	to	explain	why	this	is.

The	Lagrangian	for	QCD	and	a	single	quark	flavor	is	given	by

Show	that	this	leads	to	the	correct	equations	of	motion	for	the	quark	and
for	the	gluons.

Due	to	gluon	self-interactions,	there	are	two	distinct	types	of
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Feynman	diagram	that	contribute	to	the	QCD	analogue	of	Compton
scattering	(quark	+	gluon	→	quark	+	gluon)	at	tree-level.	What	are
they?
Find	the	invariant	amplitude	for	each	diagram,	making	no
assumption	about	the	color	state	of	the	external	particles.
By	factoring	out	all	of	the	color	information	from	these	amplitudes,
find	a	general	expression	for	the	color	factor	for	each	diagram.
Hence	find	the	color	factor	for	each	diagram	in	the	case	of	elastic
scattering	between	a	red	quark	and	a	gluon	in	the	|1⟩	state.
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CHAPTER	11
SYMMETRY	BREAKING	AND	THE
HIGGS	MECHANISM

THE	WEAK	FORCE	AS	A	BOSON-
MEDIATED	INTERACTION

Fermi’s	original	formulation	of	the	weak	interactions	consisted	of	a	four-point
fermion	interaction	of	the	form	 ,	or

This	vertex	contributes	a	 factor	GF	 to	 the	amplitude,	where	GF	 is	 the	coupling
for	the	interaction,	known	as	the	Fermi	constant.	The	value	of	the	Fermi	constant
is	 very	 much	 smaller	 than	 the	 couplings	 for	 the	 electromagnetic	 and	 strong
nuclear	interactions,	at	1.166	×	10−5	GeV−2,	to	account	for	the	weakness	of	the
interaction.

The	 theory	was	 phenomenologically	 sound,	 and	 capable	 of	 reproducing	 the
behavior	 of	 the	 weak	 interaction	 known	 at	 the	 time.	 There	 was	 found	 to	 be,
however,	 a	 serious	 theoretical	 issue	with	 such	 an	 interaction:	 the	 four-fermion
vertex	 led	 to	a	non-renormalizable	 theory,	and	was	only	viable	 to	first	order	 in
GF	 .	 That	 is	 to	 say	 that	 the	 inevitable	 infinities	 that	 arise	 in	 higher-order
diagrams	 cannot	 be	 consistently	 removed	 in	 the	 case	 of	 the	 Fermi	 interaction.
The	first	step	toward	a	solution	to	this	problem	was	the	introduction	of	the	weak
intermediate	 bosons,	 the	W±	 and	 the	 Z0.	 The	 very	 small	 value	 of	 the	 Fermi



11.1.1

constant	was	 explained	 by	 giving	 these	 bosons	 a	 large	mass;	when	 they	were
later	 discovered	 experimentally	 at	 CERN’s	 Large	 Electron-Positron	 Collider
(LEP),	they	were	indeed	found	to	be	massive	particles	at	around	90	GeV.

	Violation

There	are	additional	complications	with	the	weak	interactions,	on	top	of	 the
renormalizability	issue.	One	of	 these	is	 the	experimentally	determined	fact	 that
weak	 interactions	 violate	 parity.	 Before	 trying	 to	 build	 a	 theory	 that	 violates
parity,	 let	us	first	 take	a	moment	to	better	understand	how	a	theory	can	respect
the	 symmetry.	 If	 a	 theory	 is	 to	 remain	 invariant	 under	 a	parity	 transformation,
then	 the	 equations	 governing	 that	 theory	must	 have	 all	 terms	 transform	 in	 the
same	way	under	parity.	This	means	 that	a	vector	current	 like	 γµψ	 acting	as	 a
source	for	a	vector	boson	is	an	example	of	a	parity-invariant	theory.	Similarly,	an
axial	current	such	as	 γµγ5ψ	 can	act	as	a	source	 for	a	pseudo-vector.	What	we
cannot	 do,	 however,	 in	 a	 parity-invariant	 theory,	 is	 mix	 terms	 of	 these	 two
opposing	kinds.	So	another	way	of	stating	that	weak	interactions	violate	parity	is
to	 claim	 that	 the	 current	 responsible	 for	 the	 force	 contains	 both	 a	 vector
component	 and	 an	 axial	 component.	 That	 is,	 these	 two	 types	 of	 current	 are
mixed	 together	 in	 weak	 interactions.	 This	 mixing	 would	manifest	 itself	 as	 an
asymmetry	 in	 the	 helicities	 of	 weakly	 produced	 particles,	 and	 the	 amount	 of
asymmetry	tells	us	how	much	the	currents	mix.	Again,	it	is	an	experimental	fact
that	the	particular	amount	of	mixing	found	to	occur	is	the	maximal	amount:	there
is	an	equal	contribution	from	the	vector	and	axial	parts.	This	leads,	for	example,
to	an	electronneutrino	current	of	the	form

with	similar	currents	for	other	fermions.	Notice	that,	for	clarity,	we	have	used	e
and	νe	 to	 represent	 these	particles’	spinors,	as	opposed	 to,	say,	ψe	and	ψν.	This
will	help	to	reduce	the	number	of	necessary	subscripts.

To	see	how	to	fit	such	a	vertex	into	a	theory,	notice	that	we	can	factorize	it	as
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where	we	 recognize	 the	 factor	 	 ( 	−	 γ5)	 as	 the	 left-chiral	 projection	 operator.
Therefore,	we	can	rewrite	the	vertex	once	more	as

and	we	see	that	it	is	only	left-chiral	fermions	that	take	part	in	weak	interactions.
This	explains	the	observation	that	all	neutrinos	are	lefthelical.	Since	the	neutrino
is	(almost)	massless,	its	helicity	and	chirality	eigenstates	(almost)	coincide.	The
only	interaction	that	the	neutrino	engages	in	is	the	weak	interaction,	so	only	left-
chiral,	and	 therefore	 left-helical	neutrinos	are	produced.	Even	if	a	right-handed
neutrino	were	 to	 exist,	 it	would	not	 interact	with	 the	Standard	Model	particles
through	any	of	the	three	non-gravitational	forces,	and	so	we	would	have	no	way
to	infer	its	presence.	Actually,	this	is	somewhat	of	a	simplification,	and	we	will
return	 later	 to	 the	 problem	 of	 neutrino	masses	 and	what	 they	mean	 for	 right-
helical	neutrinos.

	Violation

The	charge	conjugate	of	a	left-chiral	fermion	is	a	left-chiral	antifermion.	The
weak	 interaction	 only	 couples	 to	 left-chiral	 fermions	 and	 to	 right-chiral
antifermions.	So	the	 	violation	found	in	the	weak	interactions	also	leads	directly
to	a	violation	of	charge	conjugation	symmetry,	since	a	system	with	 	symmetry
would	treat	left-chiral	fermions	and	left-chiral	antifermions	on	the	same	footing.
This	is	the	reason	that	many	felt,	after	the	discovery	of	 	and	 	violation,	that	the
combined	symmetry	of	 	may	still	be	respected,	even	by	the	weak	interactions.
In	a	sense,	many	felt	in	hindsight	that	 	was	the	“obvious”	symmetry	that	they
had	meant	all	along	when	talking	about	charge	conjugation.

RENORMALIZABILITY	AND	THE	NEED
FOR	SYMMETRY

The	approximate	four-point	nature	of	weak	interactions,	as	well	as	the	rather
feeble	coupling	strength,	indicate	that	the	bosons	that	mediate	the	weak	force	are
massive.	 However,	 the	 arguments	 we	 have	 used	 so	 far,	 based	 on	 symmetry
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principles,	 dictate	 that	 gauge	 bosons	 must	 be	 massless.	 Furthermore,	 the
different	particles	 that	 can	 interact	with	 each	other	 through	 the	weak	 force	are
very	different	from	each	other	(unlike	the	quark	colors	for	the	strong	force	which
are	essentially	identical).	For	instance,	the	electron	and	the	neutrino	are	clearly
very	different	particles,	with	different	charge	and	mass,	yet	they	interact	through
the	weak	force.	These	problems	might	seem	to	suggest	that	the	gauge	symmetry
approach	is	not	suitable	for	the	weak	interaction,	but	there	is	a	very	compelling
reason	 to	 persevere.	 Namely,	 gauge	 theories	 have	 been	 shown,	 by	 Gerard	 ’t
Hooft	and	Martinus	Veltman,	to	be	renormalizable,	while	other	theories	of	spin1
particles	generally	are	not.	The	symmetry	of	a	gauge	theory	in	a	sense	protects
the	 renormalizability.	 In	 fact,	 it	 is	 a	 general	 result	 that	 any	 theory	 involving
particles	of	spin	greater	than	 	inevitably	leads	to	certain	unphysical	degrees	of
freedom	unless	those	particles	are	coupled	to	a	conserved	current	derived	from
an	appropriate	symmetry.

The	solution	to	the	previous	problems	is	to	notice	that,	at	very	high	energies,
the	electron	and	the	neutrino	do	begin	to	behave	very	similarly.	The	strong	force
becomes	the	dominant	interaction,	and	neither	of	these	particles	participate	in	it.
If	we	were	 only	 aware	 of	 the	 electron	 and	 neutrino	 through	 very	 high-energy
experiments,	we	might	well	say	 that	 they	 look	approximately	 identical!	This	 is
the	key	to	building	a	theory	of	weak	interactions.	We	assume	that	there	really	is
a	 flavor	symmetry—flavor	SU(2)—linking	 the	electron	 to	 the	neutrino	and	 the
up	quark	to	the	down	quark,	but	that	this	symmetry	is	“broken.”

HIDDEN	SYMMETRY

Symmetry	breaking	is	any	process	by	which	a	symmetric	system	appears	 to
become	 less	 symmetrical,	 and	 is	 an	 important	 concept	 in	 several	 areas	 of
physics.	 A	 classic	 example	 is	 that	 of	 phase	 transitions.	 A	 liquid	 is	 a	 highly
symmetrical	 system:	 since	 there	 is	 no	 preferred	 orientation	 for	 any	 particular
molecule,	the	system	is	isotropic.	In	fact,	a	liquid	in	a	vacuum	will	form	a	sphere
with	 SO(3)	 rotation	 symmetry.	 The	 more	 familiar	 situation	 of	 a	 liquid	 in	 a
gravitational	 field	 has,	 of	 course,	 a	 definite	 “top”	 and	 “bottom,”	 but	 the
symmetry	 in	 this	 situation	 is	 broken	 by	 external	 influences.	 In	 a	 situation	 like
this,	we	 say	 that	 the	 symmetry	 is	 explicitly	 broken,	 but	 this	 is	 not	 the	 type	of
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symmetry	 breaking	 that	 interests	 us.	 Even	 in	 the	 absence	 of	 any	 external
influence,	as	the	liquid	drop	is	cooled,	it	undergoes	a	phase	transition	to	the	solid
state.	At	this	point,	the	molecules	become	arranged	in	a	crystalline	form,	and	the
symmetry	 is	 destroyed.	 Although	 there	 is	 no	 preferred	 direction,	 it	 is
energetically	 favorable	 for	 the	molecules	 to	 form	 a	 lattice,	 and	 so	 this	 occurs
with	 the	molecules	 in	some	specific	but	arbitrary	orientation.	The	symmetry	 in
this	 situation	 is	 said	 to	 be	 “spontaneously	 broken.”	 As	 in	 this	 example,	 it	 is
typically	 the	 case	 that	 symmetry	 breaking	 occurs	 as	 the	 energy	 of	 a	 system	 is
lowered.

Although	this	symmetry	is	referred	to	as	“broken,”	it	is	more	accurate	to	call
the	symmetry	“hidden,”	since	the	original	symmetry	is	in	fact	still	present.	In	the
example	of	the	liquid	drop,	there	is	still	an	SO(3)	symmetry	in	the	sense	that	the
crystal	itself	could	still	be	in	any	orientation,	even	though	the	specific	state	that
the	system	has	chosen	is	anisotropic.	More	generally,	spontaneous	symmetry	is
characterized	by	a	Hamiltonian	that	obeys	some	symmetry,	but	a	ground	state	or
vacuum	that	does	not.

The	 Higgs	 mechanism	 was	 developed	 independently	 by	 several	 groups	 in
around	 1964,	 and	 is	 a	 means	 of	 spontaneously	 breaking	 the	 SU(2)	 gauge
symmetry	 required	 for	 renormalizability	 of	 the	 weak	 interactions.	 The
mechanism	is	able	to	provide	a	mass	to	the	weak	bosons	without	destroying	the
renormalizability.	We	will	 build	 up	 to	 the	 full	Higgs	mechanism	 gradually	 by
first	looking	at	some	similar	but	simplified	models.

Toy	Model	1:	Z2	Symmetry	Breaking

Consider	a	real-valued	scalar	field,	ϕ,	which	has	a	potential	energy	given	by	
,	 depicted	 in	 Figure	 11.1.	 Notice	 that	 the	 potential	 has	 a

reflection	(Z2)	 symmetry	 in	 the	value	of	ϕ.	 This	 leads,	 via	 the	Euler-Lagrange
equation	or	Hamilton’s	equations,	to	an	equation	of	motion:

which	 appears	 to	 describe	 spin-0	 particles	 with	 a	 four-point	 selfinteraction	 of
coupling	strength	λ.	There	is	a	problem	with	the	mass	term,	however.	Notice	that



the	µ2	 term	 in	 the	 Klein-Gordon	 equation	 has	 the	 wrong	 sign.	 This	 seems	 to
suggest	that	the	particles	described	by	this	equation	have	an	imaginary	mass	of
iµ,	 which	 is	 clearly	 nonsensical.	 The	 problem	 arises	 because	 we	 can	 only
interpret	excitations	of	the	field	around	the	vacuum	as	particles,	and	in	this	case
the	vacuum	is	not	at	ϕ	=	0.

FIGURE	11.1	Potential	energy	of	a	real	scalar	with	negative	µ2.

The	 stationary	 points	 of	 the	 potential	 are	 at	 ϕ	 =	 0	 and	 ϕ	 =	 ±v	 where	
	The	first	of	 these	is	a	 local	maximum,	while	 the	others	are	 local

minima.	This	means	 that	 there	are	 two	ground	 states	or	vacua	 for	 this	 system:
each	of	the	local	minima	in	the	potential	function	is	a	valid	vacuum	state,	and	so
the	 system	 will	 settle	 into	 one	 or	 the	 other.	 While	 the	 Hamiltonian	 has	 Z2
symmetry,	the	ground	state	(whichever	one	is	chosen)	does	not.	Notice	that	it	is
precisely	because	the	Hamiltonian	is	symmetric	that	the	two	minima	are	of	equal
energy.	The	 field,	 then,	will	 take	 a	 non-zero	 background	value	 at	 all	 points	 in
space:	 it	 is	said	to	have	acquired	a	non-zero	vacuum	expectation	value,	or	vev.
The	field	can	then	be	split	into	the	background	portion	and	the	residual	value:	ϕ
=	v	+	r.	The	residual	 field	r	 is	 still	 free	 to	deviate	 from	 the	background	value,
and	excitations	in	r	will	give	rise	to	particles.	An	important	distinction,	however,
between	the	original	ϕ	field	and	the	residual	field	r	is	that	the	r	particles	have	a
real	mass.	To	see	this,	we	can	substitute	v	+	r	into	the	potential:

Between	the	first	and	second	lines	 in	Equation	11.5,	use	 is	made	of	 the	fact
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that	 the	 vev	 is	 given	 by	 	 The	 first	 term	 is	 an	 unimportant	 constant,
which	will	vanish	from	the	equation	of	motion.	The	second	term	gives	the	mass
of	the	particle,	and	the	final	two	terms	show	that	the	particles	will	undergo	both
three-point	 and	 four-point	 self-interactions	 with	 couplings	 of	 λv	 and	 λ
respectively.	The	equation	of	motion	becomes

so	we	can	see	that	 the	mass	is	now	well-behaved.	This	equation	of	motion	can
also	be	arrived	at	by	substituting	ϕ	=	v	+	r	directly	into	Equation	11.4.

This	 simple	 toy	 model	 demonstrates	 the	 underlying	 idea	 of	 spontaneous
symmetry	breaking	in	particle	physics	but	is	missing	some	of	the	most	important
features	 that	we	will	 require	 of	 the	 concept.	 To	 capture	 these,	 a	 slightly	more
complicated	model	is	needed.

Toy	Model	2:	U(1)	Symmetry	Breaking

We	now	consider	a	complex	scalar	field	ϕ	with	a	potential

and	corresponding	wave	equation:

It	 is	 important	 to	 recognize	 that	 there	 are	 two	 degrees	 of	 freedom	 in	 this
system,	 though	 there	are	different	ways	 to	parametrize	 that	 freedom.	The	 field
can	be	split	into	real	and	imaginary	parts,	or	into	ϕ	and	ϕ∗,	or	even	considered	as
polar	coordinates	|ϕ|	and	arg	(ϕ).	This	last	parametrization	is	particularly	useful
for	our	purposes.	 It	also	reminds	us	 that	 the	degrees	of	freedom	need	not	have
physical	significance.	We	have	already	seen,	in	Section	9.1,	that	complex-valued
wave	equations	have	a	global	U(1)	symmetry	(allowing	redefinition	of	the	phase
degree	of	freedom),	and	the	above	is	no	exception.	In	fact,	the	stationary	points
for	 this	 system	 are	 located	 at	 the	 origin,	 and	 in	 a	 continuous	 ring	 of	 fixed



magnitude	around	the	origin:

This	 potential	 is	 commonly	 known	 as	 the	Mexican	 hat	 potential,	 though	 I
prefer	to	think	of	it	as	the	wine-bottle	potential.	The	ring	of	minima	occurs	at	a
field	value	of	magnitude

as	 can	 be	 seen	 by	 differentiating	Equation	 11.7.	The	 field	 could	 “choose”	 any
point	 on	 this	 ring	 to	 settle	 into	 as	 its	 background	 value.	 Also,	 because	 the
Hamiltonian	contains	a	shear	 term	(the	kinetic	 term),	 the	background	field	will
have	 the	 same	 value	 at	 all	 points,	 since	 a	 varying	 value	 would	 increase	 the
overall	 energy	of	 the	 system.	We	now	write	 the	 field	 in	 terms	of	 its	vev,	v,	 its
phase,	ξ,	and	a	residual	magnitude,	 	The	overall	factor	of	
	and	the	factor	of	v	in	the	exponent	allow	both	complex	and	real	scalars	to	be

simultaneously	 and	 consistently	 normalized.	 Substituting	 this	 into	 the	 wave
equation	gives:

Since	 h	 and	 ξ	 are	 both	 real-valued,	 we	 can	 separate	 this	 into	 real	 and
imaginary	 components	 to	 arrive	 at	 two	 equations,	 one	 for	 each	 degree	 of
freedom.	Taking	into	account	Equation	11.9,	these	can	be	written	as



The	 residual	magnitude	h	 behaves	very	much	 like	 the	 r	 particle	 in	 the	 case	of
discrete	 symmetry.	 Having	 fallen	 into	 the	 potential	 well,	 radial	 perturbations
now	increase	the	energy	in	the	system	and	the	h	field	has	gained	a	mass	mh	=	
µ.	The	ξ	particle,	however,	is	very	different.	The	ξ	degree	of	freedom	traverses
the	bottom	of	the	well,	with	all	values	of	ξ	giving	the	same	potential	energy.	Put
another	 way,	 perturbations	 in	 the	 ξ	 direction	 around	 the	 vev	 do	 not	 alter	 the
energy	 in	 the	 system	 since	 the	 potential	 is	 flat	 in	 this	 direction.	 So	 ξ	 particles
behave	as	massless	particles:	the	equation	of	motion	contains	no	linear	term	and
so	 no	 mass.	 This	 is	 a	 general	 result:	 when	 a	 continuous	 global	 symmetry	 is
spontaneously	broken,	excitations	of	 the	field	that	change	the	value	away	from
the	 vev	 in	 a	 direction	 tangential	 to	 the	 set	 of	 minima	 correspond	 to	massless
particles	known	as	Goldstone	bosons.	All	of	this	can	also	be	shown	directly	via
the	Lagrangian,	which	 after	 substitution	 of	 the	 real	 fields	h	 and	ξ	 contains	 no
quadratic	 term	 in	 ξ,	 which	would	 correspond	 to	 a	mass	 (see	 Exercise	 1).	 The
following	types	of	interactions	have	also	appeared:

Before	continuing	with	 the	main	thrust	of	 the	argument,	 it	 is	worth	taking	a
short	 detour	 to	 look	 at	 an	 interesting	 application	of	 these	 ideas.	We	have	 seen
that	a	Goldstone	boson	arises	if	an	exact	global	symmetry	is	broken.	But	if	the
symmetry	that	is	broken	is	only	approximate,	then	the	boson	related	to	“angular”
variations	 is	 no	 longer	 massless.	 However,	 since	 there	 is	 an	 approximate
symmetry,	the	system	must	behave	almost	as	though	it	has	a	Goldstone	boson.	In
this	 case,	 then,	 a	 “pseudo-Goldstone”	 boson	 is	 found,	 which	 has	 a	 small	 but
finite	mass.	A	good	example	of	this	process	is	in	the	strong	interactions:	the	up
and	down	quarks	have	an	approximate	chiral	SU(2)L	⊗	SU(2)R	symmetry	due	to
their	small	masses,	with	left-	and	right-chiral	parts	 transforming	independently.
This	symmetry	is	then	broken	by	the	non-zero	vev	of	the	QCD	vacuum,	down	to
isospin	SU(2),	where	the	two	chiralities	now	mix.	However,	since	the	quarks	are



not	 perfectly	 massless	 and	 the	 chiral	 symmetry	 is	 therefore	 not	 exact,	 its
spontaneous	breaking	leads	to	a	set	of	three	(massive)	pseudo-Goldstone	bosons:
the	pions.	It	is	this	spontaneous	breaking	of	(approximate)	chiral	symmetry	that
guarantees	 that	 the	 pions	 have	 a	 small	 mass	 when	 compared	 with	 the	 other
mesons.	In	the	case	that	we	consider	three	quark	flavors	to	be	almost	massless,
then	there	is	an	approximate	SU(3)L	⊗	SU(3)R	symmetry	that	is	broken	to	flavor
SU(3),	resulting	in	the	light	pseudo-scalar	meson	octet.

Local	U(1)	Symmetry	Breaking

Suppose	now	that	the	U(1)	symmetry	of	the	previous	example	is	promoted	to
a	local	symmetry.	We	have	seen	how	this	results	in	electromagnetic	interactions
(or	at	least	interactions	that	behave	similarly	to	electromagnetic	interactions	but
possibly	with	a	different	set	of	charges—for	simplicity,	we	will	refer	to	them	as
electromagnetic).	The	symmetry	breaking	occurs	as	before	with	two	differences.
First,	 the	 derivative	 in	 the	 scalar	 wave	 equation	 must	 be	 replaced	 with	 a
covariant	derivative,	leading	to	modified	equations	for	the	real	fields

The	 most	 important	 difference,	 though,	 is	 in	 the	 Maxwell	 equation	 for	 the
photon.	Recall	that	the	current	due	to	a	scalar	particle	is	given	by

so	the	Maxwell	equation	becomes:



Notice	that	ξ	only	appears	with	a	derivative:	it	is	of	the	right	form	to	act	as	a
gauge	 transformation	 on	 the	 photon.	 We	 are	 thus	 able	 to	 “gauge	 away”	 this
object,	effectively	absorbing	it	into	the	photon.	This	leaves	us	with

The	term	involving	Aµ	and	v2,	however,	demonstrates	that	in	absorbing	the	phase
term	(“eating	the	Goldstone	boson”),	the	photon	has	now	acquired	a	mass.	That
is,	the	term	would	sit	more	comfortably	on	the	left	of	the	equation	where	we	can
identify	it	with	the	mass	term	of	the	Proca	equation.	A	massive	spin-1	particle,	of
course,	 has	 an	 additional	 longitudinal	 polarization	 state	 over	 its	 massless
counterpart,	and	so	requires	an	extra	degree	of	freedom	from	somewhere.	This	is
no	 problem,	 since	 the	 phase	 degree	 of	 freedom	 of	 the	 complex	 scalar	 is	 now
unphysical	 and	effectively	 lost	 to	 the	photon.	This	 is	 the	 essence	of	 the	Higgs
mechanism:	 the	 symmetry	 is	 still	 intact	 (albeit	 hidden),	 protecting	 the
renormalizability	of	the	theory,	but	the	gauge	boson	has	“stolen”	a	longitudinal
polarization	from	the	scalar	field	to	become	a	massive	particle.

So	far,	we	have	seen	the	argument	for	the	Goldstone	boson	providing	a	mass
to	the	gauge	boson	by	looking	directly	at	 the	equations	of	motion.	This	was	in
order	 to	 ease	 any	 readers	 unfamiliar	 with	 Lagrangian	 mechanics	 into	 the
concepts	and	to	make	clear	the	physical	interpretation	of	these	ideas.	The	same
argument	 can	 be	 made,	 however,	 by	 looking	 just	 at	 the	 Lagrangian	 for	 the
system,	 and	 in	 fact	 becomes	 a	 little	 simpler.	 This	 will	 prove	 valuable	 when
breaking	 larger	 symmetry	 groups,	 since	working	with	 the	 equations	 of	motion
for	non-Abelian	symmetries	quickly	becomes	unwieldy.	The	Lagrangian	for	the



Abelian	symmetry	we	have	just	considered	is	given	by

where	Dµ	=	∂µ	+	iqeAµ.	This	expands	to

When	substituting	in	the	real	fields,	we	find

A	gauge	transformation	 	simplifies	the	second	term	to

and	we	see	that	a	mass	of	qev	has	again	appeared	for	the	gauge	boson,	since	a
quadratic	 term	 in	 the	 Lagrangian	will	 lead	 to	 a	 linear	 term	 in	 the	 equation	 of
motion,	and	so	provides	a	mass.

Combining	the	µ2-	and	λ-dependent	terms,	we	arrive	at

The	first	term,	being	constant,	has	no	effect	on	the	equation	of	motion,	as	it	will
vanish	when	the	Lagrangian	is	differentiated.	The	second	term	shows,	as	before,
that	 the	 real	 particle	 h	 has	 acquired	 a	 real-valued	 mass	 of	 µ,	 while	 the
remaining	terms	again	give	the	interactions	of	the	h	particle.
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It	should	be	stressed	that	 this	 is	not	 the	Higgs	mechanism	as	 realized	 in	 the
Standard	 Model,	 but	 a	 simple	 model	 to	 illustrate	 the	 concepts:	 the	 U(1)
symmetry	 in	 the	 Standard	 Model	 is	 not	 broken.	 The	 symmetry	 that	 must	 be
broken	to	account	for	the	weak	interactions	is	the	SU(2)	flavor	symmetry,	which
we	are	now	ready	to	tackle.

The	Higgs	Mechanism:	SU(2)	⊗	U(1)	Breaking
The	 symmetry	 that	 must	 be	 broken	 in	 the	 Standard	Model	 is	 SU(2)	 flavor

symmetry.	 For	 this	 we	 require	 a	 pair	 of	 complex	 scalars,	 ,

transforming	as	a	doublet	under	SU(2).	The	gauge	bosons	of	this	symmetry	are
the	W1,	W2	and	W3.	Breaking	this	SU(2)	is	not,	by	itself,	enough	to	reproduce	the
properties	 of	 the	 weak	 interactions.	 Recall	 that	 the	 fermions	 we	 wish	 to	 pair
together	 into	weak	doublets,	 such	as	 the	electron	and	neutrino,	must	also	have
different	 electric	 charges.	This	 problem	can	be	 overcome	by	having	 the	 scalar
doublet	 charged	 under	 an	 additional	U(1)	 symmetry.	 However,	 this	 is	 not	 the
electromagnetic	force:	it	is	another	U(1)	mediated	by	a	new	gauge	boson,	the	B.
The	relevant	charge	for	this	group	is	not,	therefore,	the	electric	charge	but	some
new	quantity,	known	as	the	weak	hypercharge.1	This	gives	a	covariant	derivative
of	the	form

where	 g1	 and	 g2	 are	 the	 couplings	 under	 the	 U(1)Y	 and	 SU(2)	 groups
respectively.	 The	 factor	 of	 	 in	 the	U(1)Y	 term	 is	 merely	 convention,	 and	 is
included	so	that	the	matrix	manipulations	are	more	straightforward:	since	Ta	=	
σa,	 an	 overall	 factor	 of	 	 can	 be	 pulled	 out	 from	 the	 gauge	 terms	 of	 the
derivative.	 Also,	 now	 that	 we	 have	 fixed	 our	 conventions,	 we	 can	 choose	 a
hypercharge	for	the	scalar	doublet.	We	assign	YΦ	=	1.

With	 SU(2)	⊗	U(1)Y	 symmetry,	 there	 is	 now	 a	 lot	 of	 freedom	 in	 how	 to
choose	the	vacuum	state.	However,	because	of	that	same	symmetry,	it	does	not
matter	how	we	choose	it:	different	choices	of	vacuum	really	just	correspond	to
re-parametrizations	 of	 the	 system.	 The	 standard	 convention	 is	 to	 choose	 a



vacuum	in	which	the	scalar	doublet	has	an	expectation	value

with	v	=	µ/ .

The	scalar	doublet	can	then	be	parametrized

and	the	Lagrangian	is	given	by

Assuming	for	a	moment	that	all	four	fields	h	and	ξa	are	zero,	the	first	term	of
this	Lagrangian	becomes

which	reduces	to

This	 provides	mass	 terms	 as	 in	 the	Abelian	 case.	The	 situation	 is	 complicated
here,	 however,	 by	 the	 presence	 of	 the	 linear	 combination	 .	 This
combination	is	a	sign	that	the	physical	states	do	not	coincide	with	the	particular
representation	of	SU(2)	 that	we	 have	 chosen.	 It	 is	 the	 linear	 combination	 as	 a
whole	 that	 acquires	 a	vev	 through	 this	 symmetry	breaking,	 and	 so	we	 identify
the	combination	as	 a	particle	 species:	 .	To	ensure	 standard	normalization	of
both	the	group	generators	and	this	new	massive	particle,	we	require

Introducing	a	parameter,	θw,	defined	by	tan	θw	=	g1/g2,	we	can	write	this	as
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The	angle	θw	parametrizes	 the	amount	of	mixing	between	the	SU(2)	and	U(1)Y
groups	in	producing	the	Z0	particle,	and	is	known	as	the	weak	mixing	angle.	The
remaining	 physical	 states	 are	 W	 ±	 =	 	 (W1	 ∓	 iW2)	 and	 the	 remaining
orthogonal	combination

Notice	 that	 this	 last	 particle	 is	 massless,	 since	 the	 Lagrangian	 developed	 no
quadratic	term	proportional	to	it.	This	particle	corresponds	to	the	unbroken	part
of	 the	 original	 symmetry,	 a	 residual	 U(1)	 symmetry	 that	 gives	 rise	 to
electromagnetism.	 In	 other	 words,	 the	 remaining	 linear	 combination	 A	 is	 the
photon.

The	masses	 of	 the	W	 ±	 bosons	 can	 be	 read	 off	 directly	 from	 the	 quadratic
terms	in	the	Lagrangian	as

while	the	mass	of	the	Z0	is	given	by

Three	of	the	four	gauge	bosons	are	massive,	which	means	that	three	of	the	four
scalar	 degrees	 of	 freedom	have	 been	 gauged	 away.	This	 leaves	 one	 remaining
real	 scalar	 field	 that	 can	 interact	with	 these	massive	 vector	 bosons.	 Since	 this
scalar	must	be	invariant	under	the	remaining	unbroken	symmetry	(it	would	have
broken	the	symmetry	otherwise),	it	must	be	electrically	neutral.	This	is	the	Higgs
boson,	predicted	in	1964	and	discovered	experimentally	almost	50	year	later	at
the	Large	Hadron	Collider	in	2012.

ELECTROWEAK	INTERACTIONS

The	electromagnetic	and	weak	interactions	have	been	described	in	terms	of	a



gauge	 group	SU(2)	⊗	U(1)Y,	 with	 the	 massive	 weak	 bosons	 arising	 from	 the
symmetry	 breaking,	 and	 the	 electromagnetic	 interactions	 being	 the	 residual
unbroken	part	of	the	group.	The	two	interactions	have	been	unified	into	a	larger
gauge	 theory	 known	 as	 electroweak	 theory.	 We	 must	 now	 consider	 how	 the
fermions	 fit	 into	 this	 theory.	 Since	 we	 wish	 only	 left-chiral	 fermions	 to
participate	in	weak	interactions,	we	must	temporarily	strip	the	fermions	of	their
masses	 in	 order	 to	 treat	 their	 chiral	 components	 differently.	 Notice	 that,	 as	 a
bonus,	this	has	also	solved	the	problem	of	different	members	of	a	doublet	having
different	masses:	the	masses	are	equal	if	all	set	to	zero!	The	fermions,	then,	are
grouped	into	SU(2)	doublets	if	left-chiral	but	are	left	as	SU(2)-invariant	singlets
if	 right-chiral.	 This	 gives	 the	 Lagrangian	 separate	 fermionic	 kinetic	 terms	 for
left-	and	right-chiral	fermions	of	the	form:

and	allows	 for	 interaction	with	 the	SU(2)	generators	only	 if	 leftchiral.	For	 this
reason,	the	flavor	SU(2)	group	is	commonly	denoted	SU(2)L	with	the	L	standing
for	“left-chiral.”

Since	the	W	±	are	linear	combinations	of	W1	and	W2,	they	couple	only	to	left-
chiral	 fermions.	 In	 particular,	 they	 couple	 the	 two	 components	 of	 a	 left-chiral
flavor	doublet,	such	as	the	electron	and	its	associated	neutrino.	Also,	since	W	±
emission	 or	 absorption	 involves	 a	 change	 in	 charge	 of	 the	 fermion,	 such
interactions	 are	 referred	 to	 as	 charged-current	 processes.	 The	Z0,	 on	 the	 other
hand,	 is	 composed	 partly	 of	W	 3,	 which	 couples	 to	 left-chiral	 fermions,	 and
partly	of	the	B,	which	couples	to	anything	with	a	non-zero	hypercharge.	As	such,
the	 Z0	 interaction	 is	 not	 purely	 a	 left-chiral	 one	 as	 the	 charged	 current
interactions	are.2	In	particular,	it	couples	to	a	current	of	the	form:

where	f	is	any	fermion,	I3	is	the	weak	isospin	of	the	left-chiral	component,	and
YR	is	the	hypercharge	of	the	right-chiral	component.	The	coupling	in	this	case	is
given	by	gz	=	g1/	sin	θw.	Notice	 that	 the	 interaction	arising	from	this	current	 is
the	emission	or	absorption	of	a	Z0	by	a	fermion	that	retains	its	identity	afterward.
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This	 is	 in	 contrast	with	 the	 charged-current	 interactions,	 in	which	 the	 fermion
changes	to	its	weak	doublet	partner.	Since	Z0	 interactions	involve	no	change	in
the	 charge	 of	 the	 fermion,	 they	 are	 known	 as	 neutral	 currents.	 As	 for	 the
remaining	gauge	boson,	we	can	also	show	that	 the	electromagnetic	coupling	 is
related	to	the	weak	and	hypercharge	couplings	by

Hypercharge	and	Weak	Isospin

The	 left-chiral	 fermions	 are	 arranged	 into	 doublets	 under	 the	 SU(2)L
symmetry	 group,	 while	 the	 right-chiral	 fermions	 are	 singlets	 under	 SU(2)L,
which	is	to	say	that	they	do	not	transform.	The	two	components	of	a	left-chiral
weak	 doublet	must	 be	 distinguished	 in	 some	way:	 that	 is,	we	 require	 a	 flavor
analogue	 of	 the	 color	 states	 of	QCD.	 This	 is	 termed	weak	 isospin,	 since	 it	 is
similar	to	the	isospin	concept	introduced	back	in	Section	6.2.1.	It	is	not	quite	the
same,	however,	since	it	is	only	the	left-chiral	species	that	have	non-zero	values
of	weak	 isospin.	Also,	our	original	version	of	 isospin	applied	only	 to	hadrons,
whereas	weak	 isospin	applies	 also	 to	 leptons.	The	weak	doublets	have	a	weak
isospin	of	 	with	the	upper	and	lower	components	of	the	doublet	taking	different
values	 of	 the	 third	 component,	 I3.	 On	 the	 other	 hand,	 the	 right-chiral	 weak
singlets	have	a	weak	isospin	of	0.

We	must	also	consider	the	hypercharges	of	the	fermions	under	the	U(1)Y	part
of	 the	 group.	 We	 know	 that	 the	 hypercharges	 must	 be	 equal	 for	 the	 two
components	 of	 a	 doublet,	 and	 the	 Gell-Mann–	 Nishijima	 formula	 provides	 a
relationship	between	electric	charge,	hypercharge,	and	weak	isospin	that	fits	the
bill:

The	factor	of	2	is	a	result	of	the	convention	used	for	the	B	term	in	the	covariant
derivative	 (Equation	 11.21).	 The	 following	 table	 summarizes	 the	 properties	 of
the	left-	and	right-chiral	fermions:



		1.
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		3.

Notice	that	the	left-	and	right-chiral	parts	of,	say,	the	electron	do	not	have	the
same	properties.	This	is	perfectly	acceptable,	since	the	electroweak	theory	treats
these	 as	 independent	massless	 particles.	 The	 left-chiral	 electron	 and	 the	 right-
chiral	electron	are	not	 (yet)	 related,	and	so	we	should	not	expect	 them	to	have
the	 same	 properties.	 In	 fact,	 the	 only	 reason	 we	 associate	 the	 left-	 and	 right-
chiral	electrons	with	each	other	at	all	is	because	of	the	mass	term	that	links	them
as	we	will	see	in	Section	12.2.	But	as	far	as	the	gauge	group	itself	is	concerned,
there	 is	no	connection	between	 these	 independent	particles.	On	 the	other	hand,
notice	 that	 the	 hypercharges	 are	 the	 same	 for	 members	 of	 the	 same	 weak
doublet.	 This	 all	 leads	 us	 to	 a	 set	 of	 Feynman	 rules	 that	 are	 summarized	 in
Appendix	B.

EXERCISES

Starting	from	the	Lagrangian

and	 expanding	 ϕ	 as	 ϕ	 =	 (v	 +	 h)eiξ,	 re-derive	 the	 properties	 of	 the
spontaneously	broken	U(1)	model	in	the	Lagrangian	formalism.

Find	expressions	for	the	couplings	in	the	three-point	and	four-point
Higgs	boson	self-interactions	in	terms	of	the	Higgs	boson	and	W	±
masses.

Consider	a	spontaneously	broken	model	in	which	a	triplet	of	real	scalars



		4.

		5.

transforms	as	the	3	of	SU(2).	What	properties	would	this	model	have	at
low	energy	and	why	is	it	not	suitable	as	a	theory	of	weak	interactions?

By	considering	a	low-energy	decay	process,	find	an	expression	for	the
Fermi	constant	GF	in	terms	of	g2	and	MW	.

Show	that	sin	 	and	cos	 .

1	We	will	 subsequently	 refer	 to	 this	 simply	 as	 hypercharge.	However,	 the	 reader	 should	be	 aware	 that	 it
should	strictly	be	“weak	hypercharge”	to	distinguish	it	from	an	unrelated	quantity	relating	to	quark	flavors.
2	The	exception	to	this	statement	is	that,	since	right-chiral	neutrinos	have	Y	=	0,	The	neutrino-Z0	interaction
is	purely	left-chiral.
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CHAPTER	12
THE	STANDARD	MODEL	OF
PARTICLE	PHYSICS

PUTTING	IT	ALL	TOGETHER

The	Standard	Model	of	Particle	Physics	was	developed	gradually	during	the
1960s	 and	 1970s,	 and	 is	 at	 its	 core	 simply	 a	 combination	 of	 the	 SU(3)C
symmetry	of	QCD	and	the	electroweak	theory	of	the	previous	chapter.	As	such,
the	Standard	Model	is	described	by	the	gauge	group	SU(3)C	⊗SU(2)L	⊗U(1)Y	 .
However,	 there	 is	more	 to	 the	model	 than	 just	 its	 gauge	 group:	we	must	 also
specify	the	fermion	content	and	a	few	other	parameters	that	we	will	meet	in	this
chapter.	 In	 particular,	 the	 Standard	 Model	 consists	 of	 three	 generations	 of
fermionic	matter,	 each	 of	 which	 contains	 similar	 representations	 of	 the	 gauge
group.	Specifically,	the	fermion	content	for	the	first	generation	is	given	by

where	 the	 numbers	 in	 parentheses	 are	 the	 representation	 under	 SU(3)C	 and
SU(2)L,	while	the	subscript	is	the	hypercharge.	QL	and	LL	here	refer	to	the	left-
chiral	 quarks	 and	 leptons	 respectively.	 Notice	 that	 there	 is	 no	 right-chiral
neutrino	in	the	Standard	Model.	With	the	discovery	of	neutrino	oscillations,	we
now	 know	 that	 neutrinos	 have	 mass,	 and	 so	 we	 must	 include	 a	 right-chiral
component,
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though	we	defer	discussion	of	this	point	until	Sections	13.1–13.2.	We	now	turn
to	the	problem	of	giving	the	fermions	in	the	theory	mass,	which	so	far	they	are
lacking.

FERMION	MASSES

The	 electroweak	 theory	 solves	 several	 issues	 associated	 with	 weak
interactions.	It	provides	a	means	of	giving	mass	to	gauge	bosons	while	retaining
renormalizability.	It	also	allows	for	chiral	interactions,	and	for	particles	within	a
weak	 doublet	 to	 have	 different	 properties.	However,	 to	 achieve	 all	 of	 this,	we
were	 forced	 to	 assume	 that	 all	 of	 the	 fermions	 of	 the	 Standard	 Model	 are
massless.	This	leaves	us	with	a	final	problem:	how	can	we	give	masses	back	to
the	 fermions	 without	 undoing	 all	 the	 work	 that	 we	 have	 put	 into	 building	 a
consistent	 theory?	 Recall	 that	 the	 different	 electromagnetic	 charges	 of	 the
electroweak	 theory,	 along	 with	 the	 weak	 boson	 masses,	 only	 appeared	 after
symmetry	breaking.	We	are	 going	 to	 perform	a	 similar	 trick	here:	 the	 fermion
masses	will	be	a	by-product	of	symmetry	breaking.	In	order	to	achieve	this,	we
must	include	a	type	of	interaction	in	our	theory	that	we	have	not	yet	considered;
namely,	direct	interactions	between	the	scalar	and	fermion	sectors	of	the	model.
What	sort	of	interactions	could	we	have	between	these	two?	As	in	Section	8.8,
the	interaction	is	a	Yukawa-type	interaction.1	However,	if	the	theory	is	to	retain
the	 full	 SU(3)C	 ⊗	 SU(2)L	 ⊗	 U(1)Y	 and	 Lorentz	 symmetries	 that	 we	 have
carefully	 constructed,	 we	 find	 that	 only	 certain	 combinations	 of	 fermions	 and
scalars	are	allowed.	Let	us	 find,	 then,	 the	allowed	 interactions	by	examining	a
number	of	possibilities.	First,	we	know	that	a	left-chiral	spinor	obeys	an	equation
of	the	form:

Recall	 that	 the	 left	 side	 of	 this	 equation	 transforms	 as	 a	 rightchiral	 spinor,
since	 the	gamma	matrices	 in	 	 inter-convert	 left	 and	 right	 chirality.	Therefore,
the	 right	 side	 must	 also	 transform	 as	 a	 right-chiral	 spinor.	 So	 the	 left-chiral
electron	 cannot	 have	 as	 a	 source	 any	 left-chiral	 fermion,	 as	 this	would	 violate



Lorentz	 invariance.	 Something	 that	 we	 might	 attempt,	 then,	 is	 to	 include
interactions	of	the	form:

since	 we	 know	 that	 the	 charge	 conjugate	 spinor	 transforms	 with	 the	 opposite
chirality.	Here	we	run	into	a	problem,	though,	since	the	two	sides	of	the	equation
must	also	transform	identically	under	gauge	transformations.	Specifically,	under
a	U(1)Y	transformation	through	θ,	each	field	transforms	as	ϕ	 	eiY	θ/2ϕ,	so	for	the
equation	 to	be	gauge-invariant,	 the	 sum	of	hypercharges	on	 each	 side	must	be
equal.	 In	 general,	 this	 is	 not	 true	 of	 the	 conjugate	 spinor,	 although	 there	 is	 an
important	 caveat	 to	 this	 statement	 that	we	will	 consider	 in	 Section	 13.2.	 This
constraint,	then,	is	what	determines	the	allowed	Yukawa	interactions.

Put	 another	 way,	 the	 interaction	 terms	 in	 the	 Lagrangian	 must	 be	 scalars
under	 both	 Lorentz	 and	 gauge	 transformations.	 So	 terms	 such	 as	 ēLΦeR	 are
allowed,	 along	 with	 its	 Hermitian	 conjugate,	 where	 eL	 and	 eR	 are	 the
wavefunctions	of	 the	 left-	and	 right-chiral	electrons,	and	Φ	 is	 the	scalar.	Since
the	theory	must	treat	both	members	of	a	weak	doublet	equally,	we	find	that	the
allowed	interaction	terms	in	the	Lagrangian	for	one	fermion	generation	take	the
form

where	 the	y’s	 are	 a	 set	 of	 independent	Yukawa	couplings.	The	 third	 term	here
contains	 	=	iσ2Φ∗	in	analogy	with	the	charge	conjugate	spinor	ψc	=	iγ2ψ†,	since
this	construct	has	the	correct	transformation	under	SU(2)L.	Note	that	there	is	no	

L νR	 term,	 since	 right-chiral	 neutrinos	 are	 not	 a	 part	 of	 the	Standard	Model.
When	 kinetic	 terms	 of	 the	 form	 	 =	 L	 (i )	 LL	 +	 .	 .	 .	 ,	 are	 included,	 this
Lagrangian	allows	interaction	through	source	terms,	for	example,	of	the	form

In	this	way,	we	can	see	that	after	symmetry	breaking,	when	Φ	is	given	a	vev
of	magnitude	v/ ,	the	electron	gains	a	mass	of	me	=	yev/ .	The	residual	field
that	we	see	as	the	Higgs	boson	is	also	coupled	to	the	fermion	in	this	way,	with
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the	same	coupling	as	 that	which	provides	 the	mass.	This	means	 that	 the	Higgs
must	interact	with	all	the	Standard	Model	fermions	with	a	coupling	proportional
to	each	fermion’s	mass.	For	 this	reason,	one	of	 the	common	decay	channels	of
the	Higgs	boson	is	via	a	top	loop,	such	as

since	the	top	mass	is	so	high.	A	similar	diagram	with	gluons	in	place	of	photons
also	acts	as	the	dominant	production	channel	in	hadronic	collisions.

In	 the	 previous	 chapter,	 we	 saw	 that	 the	 Higgs	 mechanism	 is	 capable	 of
giving	 mass	 to	 gauge	 bosons	 in	 a	 manner	 that	 allows	 us	 to	 retain
renormalization.	Now	we	 see	 that	with	 the	 introduction	 of	Yukawa	 couplings,
the	same	mechanism	can	provide	fermion	masses	despite	the	chiral	nature	of	the
weak	interactions.	In	this	way,	then,	the	Standard	Model	can	accommodate	all	of
observed	masses	 for	 fundamental	 particles.	 One	 will	 often	 hear	 the	 statement
that	 the	 Higgs	 boson	 is	 responsible	 for	 giving	 other	 particles	 their	 mass.
However,	I	hope	that	the	preceding	sections	have	demonstrated	that	this	is	rather
a	misreading	of	what	is	really	going	on.	Particle	masses	come	from	the	vacuum
expectation	value	of	 the	 full	Higgs	 field,	not	 from	 the	Higgs	boson	 itself.	The
Higgs	 does	 not	 give	 particles	 their	 mass:	 it	 is	 merely	 what	 is	 left	 over	 after
particles	have	gained	their	mass.

QUARK	MIXING	AND	THE	CKM	MATRIX

The	overall	hypercharge	of	each	 term	 in	Equation	12.5	vanishes,	 so	each	 is
invariant	 under	 U(1)Y	 .	 Notice,	 however,	 that	 there	 is	 actually	 no	 reason	 to
constrain	ourselves	to	fermions	from	the	same	generation.	While	the	second	term
in	the	Lagrangian,	for	example,	allows	for	interactions	of	the	form	i dL	=	ydΦdR,
a	similar	term,	−yds LΦsR,	 leads	to	 i dL	=	ydsΦsR.	That	 is,	 the	left-chiral	down
quark	can	couple	to	the	right-chiral	down	but	equally	to	the	right-chiral	strange



or	bottom	quarks.	The	possible	interactions	can	be	summarized	in	matrix	form,
with	the	left-chiral	down-type	quarks	coupling	to	the	right-chiral	according	to

where	the	reason	for	the	primed	quark	names	will	become	clear.	We	also	find,	of
course,	a	similar	equation	for	the	right-chiral	components.	So	far,	this	just	tell	us
that	cross-generational	interactions	can	occur	with	the	scalar	fields	in	the	theory.
The	twist	comes	when	we	break	the	symmetry	and	impose	the	scalar	vev.	Now,
each	of	 the	entries	 in	 the	previous	matrix	behaves	as	a	mass	 term,	 leading	to	a
mass	matrix:

with	a	similar	matrix	for	the	up-type	quarks.

We	 have	 masses	 that	 apparently	 link	 all	 three	 flavors	 of	 downtype	 quark.
Rather	 than	 giving	 a	 single	 simple	 mass	 to	 each	 quark,	 we	 have	managed	 to
couple	each	left-chiral	quark	flavor	to	a	complicated	combination	of	right-chiral
quarks.	It	makes	little	sense	to	talk	about	different	masses	for	the	same	particle,
so	what	does	this	matrix	represent?	Well,	if	we	measure	the	masses	of	the	down-
type	 quarks,	we	will	 find	 three	well-defined	 values:	 one	 for	 each	 of	 the	 three
degrees	 of	 freedom	 for	 the	 system.	These	will	 be	 the	 eigenvalues	 of	 the	mass
matrix.	The	objects	 that	we	generally	 refer	 to	as	quarks,	 then,	are	 really	 linear
combinations	 of	 the	 underlying	 degrees	 of	 freedom,	 but	 they	 are	 the
combinations	 for	 which	 we	 find	 well-defined	 masses.	 That	 is,	 the	 physical
quarks	are	the	mass	eigenstates,	as	opposed	to	the	flavor	eigenstates.	In	order	to
find	 the	mass	 states,	we	must	 diagonalize	 the	mass	matrix	Md	 by	means	 of	 a
similarity	transformation:	Md	=	 Ud	where	 	is	the	diagonalized	matrix
and	Ud	 is	 some	 unitary	matrix.	 The	matrix	Ud	 transforms	 between	 the	 flavor
states	d′,	s′,	b′	seen	by	the	weak	interaction,	and	the	states	of	definite	mass	d,	s,
b.	A	similar	matrix,	Mu,	and	transformation,	Uu,	exist	in	principle	for	the	up-type
quarks.	 Since	 the	 weak	 interactions	 are	 rare,	 we	 generally	 consider	 the	 mass



12.3.1

eigenstates,	 which	 is	 why	 we	 place	 the	 primes	 on	 the	 flavor	 states.	 The	 only
physical	significance	of	the	flavor	states	is	in	weak	interactions.

The	weak	currents	to	which	the	W±	bosons	couple	are	given	by

and	its	Hermitian	conjugate.	The	γ	matrices	and	the	unitary	matrices	Uu,	Ud	act
in	 different	 spaces.	 As	 such,	 they	 commute	 and	 we	 can	 write	 the	 weak
interactions	as

where	 V	 =	 Ud.	 The	 individual	 matrices,	 Uu	 and	 Ud,	 have	 no	 physical
significance	 by	 themselves	 then.	 They	 only	 have	 physical	 meaning	 in	 the
combination	V	.	For	this	reason,	there	is	freedom	in	how	we	choose	to	interpret
V	 .	 Conventionally,	 we	 take	 V	 to	 act	 on	 the	 downtype	 quarks,	 effectively
parametrizing	the	quark-mixing	in	such	a	way	that	it	all	takes	place	in	the	down-
type	quarks.	By	convention,	 the	up-type	quarks	are	 taken	 to	be	both	mass	and
flavor	eigenstates.	The	matrix	V	 is	known	as	 the	Cabibbo-Kobayashi-Maskawa
(or	CKM)	matrix.	This	is	the	reason	for	the	non-conservation	of	quark	flavor	in
weak	interactions:	it	is	not	so	much	that	the	weak	interactions	mix	quark	flavors
as	it	is	that	the	mass	states	mix	the	weak	flavors.	A	third	quark	generation	in	the
mixing	matrix	brings	with	it	additional	complications,	so	we	will	first	look	at	the
case	of	just	two	generations.

The	Cabibbo	Hypothesis

In	the	case	of	only	two	generations	of	matter,	we	have	a	2	×	2	unitary	CKM
matrix	 that	mixes	 d	 and	 s	 states.	 Unitary	N	 ×	N	 matrices	 in	 general	 have	N2



parameters	(2N2	real	parameters	that	are	constrained	by	the	unitarity	condition),
so	 for	 two	 generations,	 we	 might	 expect	 the	 mixing	 matrix	 to	 have	 four
parameters.	 However,	 three	 of	 these	 degrees	 of	 freedom	 can	 be	 transformed
away	by	global	relative	phase	 transformations	of	 the	spinors	for	 the	flavor	and
mass	 eigenstates,	 and	 so	 are	 not	 physical.	 This	 only	 leaves	 one	 degree	 of
freedom,	 so	 the	mixing	matrix	 for	 two	 generations	 is	 defined	 by	 a	 single	 real
parameter.	For	simplicity,	we	choose	the	matrix	 to	be	real	valued,	reducing	the
unitarity	 condition	 to	 an	 orthogonality	 condition:	 V	 T	 V	 =	 3.	 Therefore,	 the
mixing	matrix	is	reduced	to	a	simple	rotation	matrix:

where	 θC	 is	 the	Cabibbo	 quark-mixing	 angle,	 θC	∼	 13◦.	 The	model	 is	 named
after	Nicola	 Cabibbo,	who	was	 the	 first	 to	 propose	 it	 in	 1963,	 as	 a	means	 of
explaining	 the	 cross-generational	 nature	 of	weak	 interactions.	We	can	 also	 see
why	 it	 is	conventional	 to	shift	all	mixing	 into	 the	down-type	quarks:	when	 the
model	 was	 proposed,	 only	 three	 quark	 flavors	 were	 known.	 Cabibbo’s	 model
only	mixed	 the	 downtype	 quarks,	 since	 there	was	 no	 second	 up-type	 quark	 to
mix.

We	find,	then,	that	vertices	such	as

are	possible,	but	so	are:

though	these	interactions	are	weaker	 than	the	others,	since	the	coupling	for	 the
first	carries	a	factor	of	cos	θC,	while	the	second	carries	a	factor	of	sin	θC.	We	say
that	 the	 first	 type	 are	 “Cabibbo	 allowed”	 processes,	 while	 the	 second	 are



“Cabibbo	suppressed.”	By	comparison,	a	weak	interaction-lepton	vertex	simply
gives	a	factor	of	g2,	since	lepton	states	do	not	mix	in	the	same	way.

As	an	example,	the	decay	of	a	D0	meson	(cū)	can	proceed	via

among	other	decay	modes.	The	first	mode	here	is	Cabibbo	allowed,	since	c	and	s
are	 in	 the	same	generation.	However,	 the	 second	mode	 is	Cabibbo	suppressed.
Therefore,	we	expect	the	first	process	to	be	the	dominant	decay	mode	despite	the
smaller	phase	space	(K−	is	more	massive	than	π−).

The	charged	weak	currents	necessarily	change	flavor,	since	they	must	couple
quarks	of	different	charges.	A	flavor-changing	neutral	current,	on	the	other	hand,
would	require	the	transformation	of	say,	a	strange	quark	to	a	down	quark.	Such
processes	 are	 found	 to	 be	 heavily	 suppressed	 in	 nature.	 In	 fact,	 one	 of	 the
successes	 of	 the	 electroweak	 theory	 is	 its	 lack	 of	 flavor-changing	 neutral
processes	at	tree	level.	However,	it	is	easy	to	see	that	such	processes	can	occur
through	higher-order	interactions,	such	as

Of	 course,	 if	 quarks	 were	 free,	 a	 process	 like	 the	 one	 above	 would	 be
forbidden	 anyway	 on	 kinematic	 grounds	 (it	 cannot	 conserve	 fourmomentum),
but	it	serves	to	demonstrate	the	principle	that	flavorchanging	neutral	currents	are
present	 at	 higher	 order.	 This	 was	 initially	 a	 problem	 for	 any	 model	 of	 weak
interactions,	since	it	predicted	that	decays	such	as

should	 be	 allowed,	 with	 a	 coupling	 of	 (g2	 cos	 θC)	 ·	 (g2	 sin	 θC).	 This	 was
problematic	because	 the	observed	 rate	of	 such	decays	was	 found	 to	be	greatly
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suppressed.

The	solution	to	 the	problem	came	from	Glashow,	Iliopoulos,	and	Maiani,	 in
the	form	of	the	(then	still	hypothetical)	charm	quark.	They	saw	that	the	inclusion
of	a	second	up-type	quark	allowed	mixing	to	be	described	by	the	above	matrix.
In	turn,	this	means	that	there	is	a	second	diagram	contributing	to	kaon	decay:

In	 this	 case,	 though,	 the	 charm	 flavor	 state	 couples	 to	 the	 strange	 flavor	 state,
whereas	the	up	couples	to	the	down.	So,	in	terms	of	mass	states,	the	coupling	in
this	case	is	(−g2	sin	θC)	·	(g2	cos	θC).	If	the	charm	quark	were	equal	in	mass	to
the	up	quark,	 these	two	amplitudes	would	thus	cancel,	 forbidding	this	mode	of
kaon	decay.	As	it	is,	the	up	and	charm	masses	are	different,	and	the	cancellation
is	incomplete.	Hence	the	process	is	merely	suppressed,	rather	than	forbidden.

Neutral	Mesons

Neutral	Meson	Mass	States

Quark	 mixing	 leads	 in	 turn	 to	 mixing	 of	 the	 neutral	 mesons.	 The	 classic
example	 of	 this	 is	 the	mixing	 of	 kaons	 via	 the	 interactions	 depicted	 in	 Figure
12.1.

Here,	a	 0	has	transformed	into	a	K0,	so	we	can	see	that	a	system	prepared	in
the	 0	state	later	has	a	non-zero	probability	of	being	found	in	the	K0	state.	Put
another	way,	 since	 the	quark	 flavors	need	not	be	 conserved,	we	know	 that	 the
flavor	symmetries	are	not	exact	and	that	the	Hamiltonian	is	not	invariant	under
flavor	 transformations.	So	 the	mass	eigenstates	 (physical	 states)	are	not	 the	K0

and	 0	but	some	linear	combination	of	these	flavor	states.	How,	then,	are	we	to
find	 the	physical	kaon	 states?	The	answer	 (almost!)	 comes	 from	 the	combined
symmetries	of	charge	conjugation	and	parity.	While	the	weak	interactions	violate
these	individually,	it	is	a	reasonable	as	sumption	that	the	combined	symmetry	is



respected.	 If	 	 is	 an	 exact	 symmetry,	 then	 	 must	 commute	 with	 the
Hamiltonian,	 and	 the	mass	 eigenstates	 and	 	 eigenstates	 would	 be	 identical.
That	is,	we	would	expect	physical	states	to	be	eigenstates	of	 .

FIGURE	12.1	Neutral	kaon	mixing.

Consider,	then,	the	combined	action	of	 	and	 	on	the	flavor	eigenstates	of	the
kaon	system:

It	is	easy	then	to	check	that

are	 	eigenstates	with	 	|K1⟩	=	|K1⟩	and	 	|K2⟩	=	−	 |K2⟩.	 If	 	 is	conserved,
we	expect	these	to	be	the	physical	states.

The	 decay	 rates	 of	 these	 two	 particles	 are	 very	 different.	 Since	 the	K1	 has
positive	“CP	 -parity,”	 it	 can	 only	 decay	 to	CP	 =	 1	 states:	 the	 dominant	 decay
mode	 is	K1	→	π+	+	π−.	On	 the	other	hand,	 the	K2	 can	only	decay	 to	CP	=	−1
states,	the	dominant	mode	being	K2	→	π+	+π−	+π0.	Since	the	mass	of	the	kaon	is
only	 slightly	 larger	 than	 the	mass	 of	 three	 pions,	 the	 phase	 space	 of	 available
states	is	much	smaller	for	K2	decay	than	it	is	for	K1	decay,	pushing	up	the	decay
rate	for	the	K2.	Experiments	confirm	that	there	is	a	short-lived	and	a	long-lived



neutral	kaon,	KS	and	KL.	So	we	identify

if	 	is	an	exact	symmetry.

Flavor	Oscillations

In	the	mass	basis,	the	behavior	of	the	kaons	is	straightforward.	We	have	two
orthogonal	 physical	 states,	 so	 if	 it	 does	 not	 interact	 with	 anything,	 a	 particle
prepared	in	one	state	will	remain	in	that	state	at	all	future	times,	described	by	a
rest-frame	 wavefunction	 of	 the	 form	 	 where	 Γ	 is	 the
decay	 rate	 and	m	 the	mass	 (see	 Equation	 5.42).	 However,	 interactions	 of	 this
particle	take	place	in	the	flavor	basis,	so	we	must	also	consider	how	the	flavor
states	evolve	in	time.	Inverting	the	relationship	in	Equation	12.14	to	express	the
flavor	states	in	terms	of	mass	states,	we	find

We	can	now	substitute	in	the	wavefunction	of	the	mass	states	to	find	the	time-
evolution	of	the	flavor	states:

From	this,	we	can	see	that	a	particle	initially	in	the	|K0⟩	state	has	a	non-zero	| 0⟩
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contribution	 at	 later	 times.	 However,	 we	 can	 be	 more	 specific	 than	 this.	 The
transition	amplitude	for	finding	a	particle	in	the	| 0⟩	state	at	a	time	t,	if	initially
in	the	|K0⟩	state,	is	given	by

and	so	the	probability	of	finding	the	particle	in	the	 | 0⟩	state	at	time	t	 is	given
(up	to	an	overall	normalization)	by

and	we	see	that,	not	only	do	the	flavor	states	mix,	but	in	fact	the	probability	of	a
transition	 from	the	 initial	 state	 to	 the	opposite	state	oscillates	periodically	over
time.	A	similar	calculation	shows	that	the	probability	of	measuring	the	particle	in
its	original	state	also	oscillates	over	time.

More	General	Quark	Mixing

In	the	case	of	three	generations,	we	have	a	3	×	3	unitary	mixing	matrix:	the
CKM	matrix.	By	 the	 same	argument	 that	we	 employed	 for	 the	 two-generation
case,	this	suggests	nine	degrees	of	freedom,	but	five	of	these	can	be	transformed
away,	leaving	four	real	parameters.	An	orthogonal	matrix	only	has	 	N(N	−	1)	=
3	degrees	 of	 freedom,	 so	we	 cannot	 accommodate	 all	 of	 the	CKM	parameters
with	 a	 real	matrix.	We	will	worry	 about	 precisely	what	 this	means	 in	 Section
12.4.	For	now,	let’s	consider	the	problem	of	how	best	to	parametrize	the	matrix.
First,	 notice	 that	 three	 parameters	 could	 have	 been	 accommodated	 in	 a	 3×3
rotation	 matrix,	 so	 we	 have	 three	 mixing	 angles	 that	 parametrize	 the	 mixing
between	 generations	 1	 and	 2,	 generations	 2	 and	 3,	 and	 generations	 1	 and	 3.
These	are	referred	to	as	Euler	angles	in	analogy	with	the	angles	used	to	describe
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threedimensional	orientation.	The	fourth	degree	of	freedom	must	be	a	complex
phase.	There	are	infinitely	many	ways	to	represent	these	Euler	angles	and	phase
in	the	CKM	matrix,	but	a	common	way	is

where	 cij	 and	 sij	 are	 the	 cosine	 and	 sine,	 respectively,	 of	 the	 mixing	 angle
between	generations	i	and	j,	and	δ	is	the	complex	phase.

The	parametrization	that	we	choose	has	no	effect,	of	course,	on	the	measured
values	of	the	CKM	matrix	entries.	Ignoring	the	matter	of	the	complex	phase	for
now,	the	magnitudes	of	the	entries	are	found	experimentally	to	be

It	is	important	to	emphasize	that	these	results	are	obtained	experimentally:	there
is	nothing	in	the	Standard	Model	that	can	fix	these	values	for	us.

Notice	that	the	entries	that	account	for	mixing	of	third-generation	quarks	with
other	 generations	 have	 small	 values.	 This	 accounts	 for	 the	 relative	 stability	 of
hadrons	 composed	 of	 b-quarks	 despite	 their	 high	masses.	 In	 fact,	 interpreting
these	values	in	terms	of	the	Euler	angles	above,	we	find	θ12	=	θC	=	13.04◦,	θ23	=
2.38◦,	 and	 θ13	 =	 0.201◦.	 So	 the	mixing	 of	 generations	 1	 and	 2	 is	 only	 lightly
suppressed,	while	mixing	of	generations	2	and	3	is	more	heavily	suppressed,	and
the	first	and	third	generations	barely	mix	at	all.

	VIOLATION	IN	THE	WEAK	SECTOR

We	turn	now	to	the	question	of	the	complex	phase	in	the	CKM	matrix.	This
phase	 is	 responsible	 for	 the	 violation	 of	 	 symmetry	 in	weak	 interactions.	 In
fact,	it	is	a	general	result	that	a	complex	coupling	constant	leads	to	 -violation
if	it	cannot	be	phased	away.	We	can	sketch	an	argument	for	this	in	the	specific



case	of	the	CKM	matrix	as	follows.	The	terms	responsible	for	quark	masses	in
the	Lagrangian,	or	equivalently	in	the	Hamiltonian,	are	of	the	general	form

where	qL,	qR	are	 left-	and	right-chiral	quarks,	and	y	 is	some	Yukawa	coupling.
Note	 that	 the	 couplings	 must	 be	 related	 by	 complex	 conjugation,	 as	 the
Lagrangian	(Hamiltonian)	must	be	Hermitian,	and	the	constructs	 LqR	and	 RqL
are	 Hermitian	 conjugates.	 Under	 a	 	 transformation,	 the	 above	 mass	 terms
become

and	we	can	see	that	the	Lagrangian	(or	Hamiltonian)	is	invariant	under	 	if	and
only	 if	y	 =	y∗.	That	 is,	 a	 real	 coupling	 respects	 ,	while	 a	 complex	 coupling
violates	it,	if	the	complex	component	cannot	be	phased	away.

Since	it	requires	three	quark	generations,	 	violation	manifests	itself	only	in
situations	where	the	three	generations	are	all	present.	In	particular,	 -violation
is	 observable	 in	 the	 decays	 of	 neutral	mesons.	We	 have	 already	 seen	 that	 the
neutral	meson	 flavor	 states	mix	 to	 produce	 the	 physical	 states.	 Previously,	 the
physical	states	we	constructed	for	the	kaon	system	were	based	on	the	assumption
of	exact	 	symmetry.	In	particular,	we	identified	the	 	eigenstates	K1,2	with	the
mass	 eigenstates	 KS,L.	 However,	 experiments	 by	 Cronin	 and	 Fitch	 in	 1964
showed	that,	if	a	beam	of	neutral	kaons	is	left	to	travel	through	empty	space	such
that	the	short-lived	KS	component	decays	away,	there	are	still	CP	=	+1	decays.
This	 demonstrates	 that	 	 cannot	 be	 conserved.	Notice	 that	 it	 does	 not	 tell	 us
exactly	 where	 the	 	 violation	 takes	 place,	 though.	 It	 could	 be	 in	 the	 kaon
mixing,	or	 it	could	be	 in	 the	decay	processes	 themselves.	 If	 the	violation	 takes
place	 in	 the	 kaon	mixing,	 then	 the	 identification	we	made	 above	 is	 no	 longer
accurate.	We	find	instead	that	KS	is	only	mostly	K1,	but	has	a	little	K2	mixed	in.
This	additional	 -violating	mixing	is	parametrized	as



where	 ε	 is	 a	 small	 quantity	 that	 parametrizes	 the	 mixing.	 As	 stated	 above,
though,	this	“indirect	violation”	is	not	the	only	possible	source	of	 	violation	in
kaon	systems.	It	is	possible	that	further	violation	occurs	during	the	decay	of	the
kaon	(direct	violation),	through	the	so-called	“penguin”	graphs:2

It	 is	now	known	 that	both	 types	of	violation	occur	and	experiments	have	been
able	to	identify	that	direct	violation	is	on	the	order	of	103	times	weaker	an	effect
than	indirect	violation.	In	fact,	there	is	also	a	third	type	of	 	violation	that	arises
from	interference	effects	of	direct	and	indirect	violation.

The	 neutral	 kaons	 are	 the	 system	 in	 which	 	 violation	 was	 originally
observed,	but	they	are	not	the	only	system	that	exhibits	violation,	since	the	same
mixing	 can	 apply	 to	 any	 neutral	 mesons.	 When	 investigating	 	 violation,
however,	the	D	mesons	are	found	not	to	be	terribly	fruitful,	since	the	D0	and	 0

states	mix	much	less	than	their	strange	counterparts.	The	B	mesons,	on	the	other
hand,	 are	 found	 to	 be	 the	 ideal	 sector	 for	 studying	 	 violation,	 and	 there	 are
several	 detectors	 at	 various	 experimental	 facilities	 dedicated	 to	 the	 study	 of	B
physics.	 There	 are	 several	 reasons	 that	 B	 mesons	 are	 so	 well	 suited	 to	 this
application.	 First,	 they	 have	 a	 surprisingly	 long	 lifetime	 for	 such	 massive
particles,	due	to	 the	weakness	of	quark	mixing	in	 the	third	generation.	Second,
the	 -violating	 differences	 in	 decay	 rates	 are	 sufficiently	 large	 that	 accurate
measurements	may	be	taken.	The	 	violation	that	is	observable	in	the	B	 sector
is	qualitatively	different	from	that	in	the	kaon	system.	Whereas	the	kaons	show
very	distinct	mass	eigenstates	due	to	the	lucky	coincidence	that	the	KL	mass	is	so
close	to	the	mass	of	three	pions,	the	decay	rates	for	the	equivalent	B	mass	states



are	so	similar	that	they	cannot	(yet)	be	resolved.	We	cannot	hope	to	observe	the
mass	states	decaying	to	the	“wrong”	final	states	if	we	cannot	be	sure	which	we
are	looking	at!	For	this	reason,	studies	of	B	mesons	commonly	work	instead	with
the	flavor	eigenstates	B0	and	 0.	Of	course,	as	in	the	kaon	case,	these	mix	and	so
we	 must	 find	 a	 way	 to	 distinguish	 them.	 One	 trick	 is	 to	 observe	 B	 mesons
produced	in	particle-antiparticle	pairs.	Although	we	do	not	know	which	meson
was	which	at	the	time	of	their	production,	we	can	use	the	fact	that	the	subsequent
evolution	of	each	is	correlated	with	the	other.	If	one	meson	undergoes	decay	to	a
leptonic	state,	the	lepton	pair	produced	is	sufficient	to	identify	the	B	meson	that
produced	it	at	the	time	of	decay.	This	allows	us	to	identify	the	meson	that	has	not
yet	decayed,	and	since	the	rate	of	oscillation	is	known,	we	can	extrapolate	to	find
the	quantum	 state	 of	 the	 second	particle	 at	 the	moment	 of	 its	 decay.	Also,	we
should	 note	 that	 the	B0	 and	 the	 0	 are	 capable	 of	 decaying	 to	 the	 same	 final
states,	again	due	to	mixing,	but	this	time	in	the	resulting	kaon,	rather	than	in	the
initial	B	meson.	For	example,	both	B0	and	 0	can	decay	to	J/Ψ	+	KL,	via

and

but	the	K0	and	 0	are	measured	as	the	same	state,	either	KL	or	KS.	In	this	way,
we	 can	 measure	 the	 asymmetry	 in	 the	 decays	 of	 the	 B0	 and	 the	 0,	 when
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decaying	 to	 the	 same	 final	 states,	 and	 hence	 determine	 the	 degree	 of	
violation.

We	 have	 already	 seen	 that	 the	 individual	 	 and	 symmetries	 are	 violated
maximally	 in	 the	weak	 sector.	How	might	we	quantify	 the	 degree	 of	weak	
violation	so	that	we	may	ask	if	the	same	is	true	of	the	combined	symmetry?	The
answer	 comes	 from	 a	 quantity,	 J,	 known	 as	 the	 Jarlskog	 invariant.	 This	 is
defined	as

where	(i,	ℓ)	=	 (u,	c,	 t),	 (j,	k)	 =	 (d,	 s,	 b)	 and	 i≠	 ℓ,	 j≠	 k.	 Unitarity	 of	 the	CKM
matrix	 demands	 that	 taking	 the	 imaginary	 part	 of	 the	 product	 of	 four	 matrix
elements	in	this	way	gives	the	same	value	regardless	of	which	particular	set	of
elements	we	choose.	The	quantity	 is	 invariant	under	phase	shifts	of	 the	quarks
and	is	guaranteed	to	take	a	value	in	the	interval	[0,	1],	vanishing	when	there	is	no
	 violation	 present.	As	 such,	 it	 acts	 as	 a	 useful	measure	 of	 the	 degree	 of	

violation,	 which	 is	 independent	 of	 how	 we	 might	 choose	 to	 parametrize	 the
CKM	 matrix.	 Far	 from	 being	 maximal,	 the	 amount	 of	 	 violation	 found	 to
occur	in	the	weak	interactions	is	small	at	around	J	=	3	×	10−5.

SUCCESSES	OF	THE	STANDARD	MODEL

The	 Standard	 Model	 is	 a	 hugely	 successful	 theory	 of	 the	 fundamental
particles	 and	 their	 interactions.	 We	 have	 already	 seen	 that	 the	 predictions	 of
QED	 and	 their	 corresponding	 experimental	 results	 agree	 to	 a	 precision
unmatched	 by	 any	 other	 theory	 in	 the	 history	 of	 science.	 Furthermore,	 the
multitude	 of	 observed	 hadrons	 can	 be	 explained	 in	 terms	 of	 bound	 states	 of
quarks,	 with	 the	 hadron	 properties	 at	 least	 partially	 deducible	 from	 a	 simple
static	model	of	 the	 constituent	quarks.	The	high-energy	perturbative	 regime	of
QCD	 allows	 for	 calculation	 of	 the	 form	 factors	 for	 hadrons,	 while	 the	 lattice
approach	has	had	 remarkable	successes	 in	modeling	 the	behavior	of	 the	strong
force	at	low	energy	scales.	While	these	are	technically	the	most	impressive	feats
of	the	Standard	Model,	it	may	be	argued	that	possibly	the	most	striking	examples
of	its	success	come	from	the	weak	sector.	The	electroweak	theory	predicted	the
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existence	of	not	just	one,	nor	indeed	two	nor	three,	but	four	new	particles	whose
existence	have	now	been	confirmed,	along	with	their	estimated	properties.	These
are,	 of	 course,	 the	W	+,	W	 −,	Z0	 and	 the	Higgs.	 The	model	 is	 also	 capable	 of
explaining	the	chiral	nature	of	the	weak	interactions,	and	the	origin	of	the	 -,	 -,
and	 -violation	 also	 observed	 in	 nature.	 Despite	 these	 successes,	 it	 is
universally	accepted	that	the	Standard	Model	is	merely	a	work	in	progress	on	the
way	to	a	deeper	understanding	of	the	particle	universe.	This	is	due,	in	part,	to	a
number	of	problems	and	drawbacks	with	the	model.	Before	discussing	some	of
the	 less	 successful	 aspects	 of	 the	 Standard	Model,	 we	will	 examine	 one	 final
point	of	the	model	that	is	particularly	pleasing.

Anomaly	Cancellation

Any	 quantum-mechanical	 theory	 consists	 of	 two	 parts:	 the	Hamiltonian	 (or
Lagrangian),	 and	 some	means	of	quantizing	 the	 theory.	Early	 in	 the	history	of
quantum	 physics,	 it	 was	 implicitly	 assumed	 that	 any	 symmetry	 of	 the
Hamiltonian	would	be	a	symmetry	of	the	full	theory;	after	all,	this	was	certainly
true	 of	 classical	 physics.	Unfortunately,	 this	 assumption	 is	 not	 valid,	 since	 the
quantization	 procedure	must	 also	 respect	 any	 symmetry	 of	 the	Hamiltonian	 in
order	 for	 the	 symmetry	 to	 remain	 in	 the	 quantum	 theory.	 Since	 this	 came	 as
something	 of	 a	 shock	 at	 the	 time,	 symmetries	 violated	 by	 the	 quantization
procedure	 in	 this	way	are	 referred	 to	as	anomalies.	 It	 should	be	noted,	 though,
that	 this	 name	 is	 almost	 as	 unfortunate	 as	 the	 term	 “imaginary”	 for	 those
complex	 numbers	 that	 are	 not	 real:	 it	 gives	 the	 impression	 that	 there	 is
something	mysterious	about	their	appearance.	In	fact,	“anomalous”	symmetries
are	common	and	can	be	innocuous	in	quantum	theories.

A	 simple	 example	 of	 an	 anomalous	 symmetry	 is	 the	 invariance	 of	 a	 theory
under	a	change	in	the	scale	at	which	it	is	viewed.	In	a	classical	theory,	there	is	no
reason	to	suspect	that	the	fundamental	strength	of	a	force	would	depend	on	the
distance	 scale	 under	 consideration.	That	 is,	 from	a	 classical	 point	 of	 view,	 the
coupling	constant	 for	a	 theory	should	be	 just	 that:	constant.	This	 invariance	of
the	 coupling	 under	 scale	 transformations	 is	 then	 a	 symmetry	 of	 the	 classical
theory.	 In	contrast,	we	have	already	seen	how	 the	 screening	effect	of	quantum
fluctuations	 (or	 equivalently,	 the	 renormalization	 process)	 leads	 to	 a	 scale-
dependence	 of	 the	 coupling	 constant.	 Scale	 invariance	 is	 thus	 an	 anomalous



symmetry.	The	preceding	example	is	of	an	anomaly	in	a	global	symmetry.

Recall,	though,	that	the	structure	of	the	Standard	Model	relies	on	gauged,	or
local,	 symmetries.	 Whereas	 a	 global	 anomaly	 is	 an	 interesting	 but	 harmless
artifact	of	the	quantization	procedure,	the	same	cannot	be	said	of	an	anomalous
local	 symmetry.	 Since	 the	 consistency	 of	 a	 theory	 of	 spin-1	 bosons	 requires
gauge	 symmetry,	 the	 loss	 of	 that	 symmetry	 through	 an	 anomaly	 would	 be
catastrophic	for	the	theory.	Therefore,	any	consistent	gauge	theory	must	contain
no	 gauge	 anomalies.	 It	 turns	 out	 that,	 for	QED	 and	QCD,	 there	 is	 nothing	 to
worry	about,	since	no	anomalies	appear.	This	is	because	the	contribution	to	the
anomaly	 carries	 opposite	 signs	 in	 left-chiral	 and	 right-chiral	 fermions.	 Since
QED	and	QCD	are	 left-right	 symmetric,	 the	 left-	and	 right-chiral	contributions
must	be	equal	 and	 so	cancel.	However,	 things	are	not	quite	 so	 straightforward
once	we	introduce	the	electroweak	theory.	The	chiral	nature	of	 the	theory	does
potentially	allow	for	the	emergence	of	gauge	anomalies,	but	the	theory	is	saved
by	a	very	neat	result.

The	anomaly	in	electroweak	theory	(known	as	the	chiral	anomaly),	 is	found
to	be	generated	by	triangular	Feynman	diagrams	of	the	form:

where	the	closed	loop	must	sum	over	all	fermions	that	may	contribute.	The	first
diagram	 is	proportional	 to	 the	 sum	of	 the	 cubes	of	 the	hypercharges	of	 all	 the
fermions	 with	 the	 contributions	 of	 leftchiral	 and	 right-chiral	 fermions	 having
opposite	 sign.	Since	 these	charges	 repeat	 for	different	 fermion	generations,	we
need	consider	only	one	generation.	We	find:
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where	 the	 factors	 of	 3	 account	 for	 the	 quark	 colors.	 The	 particular	 set	 of
hypercharges	 for	 a	 single	 generation	 of	 fermions	 ensures	 that	 the	 anomaly
vanishes,	 and	 the	 theory	 is	 safe!	A	 similar	 cancellation	 is	 found	 in	 the	 second
and	third	diagrams,	though	verification	of	this	is	left	to	the	reader.	Notice	that	we
did	not	consider	diagrams	with,	for	example,	one	gluon.	This	is	due	to	the	fact
that	 such	 diagrams	 necessarily	 vanish:	 each	 vertex	 in	 one	 of	 these	 triangle
diagrams	 contributes	 a	 generator	 from	 the	 associated	 gauge	 group	 (an	 identity
for	 U(1)Y	 ).	 The	 closed	 fermion	 loop	 then	 requires	 us	 to	 trace	 over	 these
generators,	and	since	 the	generators	 for	a	 special	unitary	group	are	 traceless,	a
single	contribution	from	a	given	group	causes	the	diagram	to	vanish.

DRAWBACKS	OF	THE	STANDARD	MODEL

Despite	its	successes,	the	Standard	Model	suffers	from	a	number	of	problems.
First,	 there	 is	 the	 rather	 unsatisfactory	 point	 that	 the	 parameters	 of	 the	 theory,
such	as	masses,	 couplings,	mixing	angles,	 and	 the	 -violating	phase,	must	be
introduced	by	hand.	With	no	way	of	determining	their	values	a	priori,	 this	 is	a
total	 of	 19	 parameters	with	 apparently	 no	 underlying	 explanation.	 In	 addition,
the	Standard	Model	fails	 to	predict	some	observed	phenomena.	For	 instance,	 it
has	no	candidate	 for	dark	matter,	 and	no	way	 to	explain	dark	energy.	Even	 its
treatment	of	neutrinos	is	found	to	be	inadequate,	as	we	will	see	in	Section	13.1.

In	the	following	sections,	we	will	look	specifically	at	three	problems	with	the
Standard	Model:	matter-antimatter	 asymmetry,	 the	 hierarchy	 problem,	 and	 the
strong	 	problem.	The	second	of	these	arises	from	the	electroweak	sector	of	the
model,	while	the	latter	arises	from	a	combination	of	the	electroweak	and	strong
sectors.	However,	even	the	simplest	part	of	the	Standard	Model	has	its	issues.	In
particular,	 as	 the	energy	scale	 is	 increased,	and	 the	U(1)	coupling	 rises,	 so	 too
does	the	value	of	the	β	function.	That	is,	not	only	does	the	coupling	increase	but
so	 too	does	 the	rate	of	 increase.	At	a	 finite	energy	scale	known	as	 the	Landau
pole,	 the	coupling	 is	 found	 to	 take	on	an	 infinite	value.	This	may	suggest	 that
there	 should	 be	 some	 new	 physics	 below	 this	 scale	 to	 prevent	 the	 pole	 being
reached.	One	way	out	of	this	issue	is	to	embed	the	U(1)	group	into	a	larger	group
with	a	negative	β-function.	This	is	an	example	of	Grand	Unification,	which	will
be	explored	in	Section	13.3.	However,	 it	 should	be	noted	 that	 the	β-function	 is
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calculated	using	perturbation	theory	and	so	may	only	apply	when	a	coupling	is
small.	 If	 a	 coupling	 tends	 to	 infinity,	 then	 it	 can	 certainly	 no	 longer	 be	 called
small!	As	such,	 it	may	be	that	 the	behavior	of	 the	β-function	changes	at	scales
where	g	>	1,	and	that	the	Landau	pole	is	not	a	genuine	effect	but	a	result	of	our
attempting	to	apply	perturbative	predictions	to	non-perturbative	systems.

Baryogenesis

Grand	 unification	 is	 also	 a	 possible	 solution	 to	 the	 problem	 of	 matter-
antimatter	asymmetry,	though	some	would	argue	that	this	is	not	a	shortcoming	of
the	 Standard	 Model.	 If	 baryon	 number	 is	 truly	 conserved	 in	 fundamental
interactions,	it	begs	the	question	of	where	the	baryons	came	from	originally.	In
particular,	 we	 expect	 matter	 and	 antimatter	 to	 have	 been	 produced	 in	 equal
measure	 at	 the	 big	 bang,	 and	yet	we	 see	 essentially	 only	matter	 today.	Andrei
Sakharov	showed	that	a	matter-antimatter	asymmetry	requires	several	conditions
in	order	to	develop	from	an	initially	symmetric	universe.	These	are	the	violation
of	 ,	 ,	 and	 baryon	 number,	 B,	 together	 with	 a	 departure	 from	 thermal
equilibrium.	The	requirement	for	violation	of	baryon	number	is	self-explanatory,
and	the	remaining	conditions	allow	for	any	matter-preferential	processes	not	 to
be	 automatically	 balanced	 by	 analogous	 antimatter-preferential	 processes.	 We
have	already	seen	that	the	Standard	Model	does	indeed	violate	both	 and	 ,	and
departure	from	thermal	equilibrium	is	achieved	during	any	phase	transition,	for
example,	the	electroweak	symmetry	breaking.

In	 fact,	 the	 Standard	Model	 is	 also	 capable	 of	 violating	 baryon	 number	 at
sufficiently	 high	 energy	 through	 the	 sphaleron	process.	The	details	 of	 this	 can
get	 a	 little	 tricky,	 but	 essentially,	 the	 space	 of	 possible	 vacuums	 in	 the	 SU(2)
flavor	sector	is	sufficiently	complex	that	there	are	different	field	configurations
that	look	identical	locally	but	are	distinguished	globally	by	their	topology.	In	any
one	of	these	energy	wells,	 the	local	concept	of	baryons	and	leptons	is	different
from	neighboring	wells.	 If	 this	 idea	 seems	 alien,	 recall	 that	what	we	mean	 by
“Higgs	boson”	is	similarly	dependent	on	the	vacuum	state	we	find	ourselves	in.
A	particle	 is	 an	excitation	of	 a	quantum	field	about	 its	minimum	value,	 so	 the
concept	 of	 a	 “particle”	 depends	 on	 that	 minimum.	 With	 enough	 energy,	 the
universe	 could	 climb	 over	 the	 energy	 barrier	 (known	 as	 a	 sphaleron)	 into	 a
different	well,	violating	baryon	and	lepton	number	along	the	way.	Estimates	of
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the	energy	required	for	direct	scaling	of	the	sphaleron	barrier	are	around	9	TeV,
explaining	why	no	baryon-violating	processes	have	yet	been	directly	observed	in
nature.	 Since	 scaling	 this	 barrier	 requires	 a	 large	 deviation	 from	 the	 vacuum
state,	 the	 sphaleron	process	 is	a	non-perturbative	 process	 and	hence	 cannot	be
depicted	through	Feynman	diagrams.3

In	this	way,	then,	the	Standard	Model	appears	to	contain	all	of	the	ingredients
necessary	 for	 baryogenesis—that	 is,	 the	 production	 of	 a	 matter-dominated
universe	 from	 an	 initial	 symmetric	 state,	 in	which	matter	 and	 antimatter	were
present	in	equal	measure.	However,	the	sphaleron	process	actually	acts	to	undo
baryogenesis,	 rather	 than	 promote	 it.	 In	 the	 unbroken	 electroweak	 phase,
sphaleron	 processes	 would	 be	 plentiful	 and	 destroy	 any	 existing	 baryon
asymmetry.	It	is	only	during	the	symmetry	breaking	phase	transition	that	any	net
baryogenesis	 could	 occur,	 after	 which	 the	 temperature	 is	 too	 low	 for	 further
sphaleron	processes,	“freezing	in”	the	asymmetry	at	 that	point.	For	this	reason,
some	feel	that	electroweak	baryogenesis	is	incapable	of	producing	the	extent	of
asymmetry	we	see	today.	However,	it	should	be	stressed	that	opinion	is	divided
on	this	point.

When	we	discuss	grand	unification	 in	Section	13.3,	we	will	 see	how	 it	 can
give	 rise	 to	 B-violating	 processes	 that	 are	 perturbative,	 in	 which	 exchange
particles	couple	directly	to	B-violating	currents.

The	Hierarchy	Problem

The	hierarchy	problem	refers	 to	a	discrepancy	between	 the	Higgs	mass	and
the	 expected	 energy	 scale	 for	 “new	 physics.”	 In	 particular,	 while	 a	 massless
particle	 will	 remain	 massless	 under	 the	 renormalization	 process,	 a	 non-zero
particle	 mass	 receives	 quantum	 corrections	 through	 the	 particle’s	 self-
interactions.	 These	 corrections	 are	 found	 to	 be	 divergent	 for	 a	 scalar	 particle.
Clearly,	 an	 infinite	 particle	 mass	 is	 nonsensical,	 so	 how	 are	 we	 to	 ensure
consistency?	The	answer	is	that	the	divergence	is	again	a	sign	of	our	ignorance
of	 the	 underlying	 high-energy	 theory.	 In	 Section	 9.6,	 we	 saw	 that,	 during
renormalization,	 it	 is	 necessary	 to	 introduce	 a	 finite	 energy	 scale	 in	 order	 to
evaluate	loop	integrals.	This	“cutoff”	is	then	allowed	to	diverge	after	evaluation,
and	 physical	 quantities	 are	 extracted	 along	 the	 way.	 However,	 this	 process



assumes	 that	 the	 theory	 is	 valid	 up	 to	 arbitrarily	 large	 energy	 scales.	 If	 the
standard	model	is	really	just	an	effective	theory	up	to	some	physical	energy,	then
the	cutoff	need	only	run	up	to	this	point.	This	implies	that	the	mass	of	the	scalar
particle	should	be	of	the	order	of	the	physical	cutoff,	which	is	problematic	if	we
only	expect	the	Standard	Model	to	break	down	at	very	high	energy.	As	we	will
see	in	Section	13.3,	the	expected	scale	of	a	grand	unified	theory	is	typically	on
the	 order	 of	 1016	 GeV,	 but	 even	 this	 ludicrously	 large	 scale	 is	 better	 than	 the
alternative:	 the	 Planck	 scale,	 at	 which	 gravitational	 effects	 can	 no	 longer	 be
neglected	in	a	quantum	theory,	is	of	the	order	of	1019	GeV!	The	scalar	particle
discovered	 at	 the	 LHC	 in	 2012,	 which	 is	 widely	 believed	 to	 be	 the	 Standard
Model	Higgs,	is	found	to	have	a	mass	of	125	GeV,	respectively	14	and	17	orders
of	magnitude	too	small	for	either	of	these	scales.	In	fact,	the	hierarchy	problem
was	recognized	long	before	this	experimental	discovery,	since	there	were	already
theoretical	bounds	on	the	Higgs	mass.

In	order	for	a	scalar	particle	to	retain	a	small	mass	after	renormalization,	the
“bare”	mass	 appearing	 as	 an	 unobservable	 parameter	 in	 the	 underlying	 theory
must	cancel	off	the	large	corrections,	leaving	only	the	observable	quantity.	With
the	orders	of	magnitude	involved,	this	is	equivalent	to	measuring	the	lengths	of
two	objects	 roughly	 the	size	of	 the	Milky	Way,	and	 finding	 that	 they	differ	by
only	 a	 meter.	 Needless	 to	 say	 that,	 without	 some	 underlying	 reason	 for	 this
cancellation,	such	a	phenomenal	coincidence	is	a	little	hard	to	swallow.	This	puts
the	hierarchy	problem	 in	 the	 class	of	 fine-tuning	problems,	of	which	 there	 are
other	examples.	Ultimately,	 then,	 the	problem	is	one	of	naturalness:	 there	must
be	an	underlying	 reason	 that	 such	a	precisely	balanced	system	 is	 in	 some	way
natural	or	expected.	The	obvious	answer	is	that	the	scale	of	new	physics	is	much
lower	than	1019	GeV,	but	what	is	the	nature	of	this	new	physics?	One	possibility
will	be	considered	in	Section	13.4.

A	very	good	question	at	 this	point	 is	why	this	 is	considered	a	problem	only
for	 the	Higgs	mass:	why	not	 for	 the	fermions	or	gauge	bosons	of	 the	Standard
Model?	The	answer	 that	 is	usually	given	 to	 this	question	 is	 that	 the	masses	of
these	particles	are	“protected”	by	a	symmetry:	chiral	symmetry	in	the	case	of	the
fermions	and	gauge	symmetry	 in	 the	case	of	 the	vector	bosons.	This	answer	 is
somewhat	 esoteric,	 so	 let	 us	 attempt	 to	 clear	 up	 its	 meaning.	 As	 shown	 in
Section	9.6,	the	corrections	to	a	particle’s	mass	are	generally	of	the	form
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where	k1	and	k2	are	constants,	Λ	is	the	cutoff,	and	n	is	1	for	fermions	and	2	for
vector	bosons.	In	the	case	of	a	massless	particle,	a	vector	boson	or	fermion	has,
respectively,	gauge	symmetry	or	chiral	 symmetry	 (that	 is,	 left-chiral	and	 right-
chiral	 components	 do	 not	 mix).	 Since	 the	 appropriate	 symmetry	 is	 non-
anomalous,	it	is	guaranteed	to	be	respected	in	the	renormalized	theory	as	well,	so
a	massless	 particle	 cannot	 be	 given	mass	 by	 quantum	 corrections.	 Clearly	 the
second	term	above	vanishes	in	this	case,	which	in	turn	implies	that	k1	=	0.	For	a
massive	 particle,	 the	 second	 term	 is	 non-zero	 and	 does	 indeed	 provide
corrections	 to	 the	mass,	 but	 notice	 that	 a	 small	mass	means	 small	 corrections
since	the	term	is	proportional	to	m.	The	first	term	must	again	be	zero,	since	the
results	must	 agree	 in	 the	massless	 limit;	 it	 is	 in	 this	 sense	 that	 the	 symmetry
“protects”	 the	mass.	 In	 the	 case	 of	 scalar	 particles,	 there	 is	 no	 such	 guardian
symmetry,	 and	 so	 the	 corrections	 to	 the	mass	 are	 typically	 of	 the	 order	 of	 the
cutoff.

The	Strong	 	Problem

Finally,	we	consider	the	strong	 	problem.	We	have	seen	that	 	violation	is
a	natural	consequence	of	the	electroweak	theory.	In	fact,	it	is	also	found	to	be	a
natural	part	of	the	theory	of	strong	interactions.	Essentially,	this	is	because	 	is
anomalous	in	QCD:	there	is	a	term	in	the	QCD	Hamiltonian	that,	even	if	initially
set	 to	 zero,	 is	 reintroduced	 by	 quantum	 corrections,	 and	 this	 term	 violates	
symmetry.	The	term	in	question	takes	the	form

where	 Gµν	 is	 the	 gluon	 field	 strength	 tensor,	 and	 εµνρσ	 is	 the	 totally	 anti-
symmetric	 tensor,	while	 θ	∈	 [0,	 2π]	 is	 a	 parameter.	 Since	 this	 term	 is	 purely
imaginary,	it	is	clear	that	it	violates	 	for	any	θ≠	0,	by	the	arguments	of	Section
12.4.	The	problem	is	that	no	 	violation	has	been	detected	in	the	strong	sector,
which	seems	to	suggest	that	θ	is	at	least	very	close	to,	if	not	equal	to,	0.	We	have
another	 fine-tuning	 problem:	 θ	 may	 take	 any	 value	 in	 its	 range	 with	 equal
likelihood	 and	 yet	 appears	 to	 have	 chosen	 a	 value	 so	 small	 that	 its	 departure
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from	0	is	(as	yet)	undetectable.	How	are	we	to	find	a	natural	explanation	for	such
a	small	value?	One	possible	solution	is	a	hypothetical	particle	called	the	axion,
whose	 properties	 will	 be	 explored	 in	 Section	 13.6.	 The	 astute	 reader	 may	 be
wondering	why	there	is	no	such	problem	for	the	SU(2)L	and	U(1)Y	parts	of	 the
theory:	 the	 answer	 is	 that	 the	 behavior	 of	 a	 fermion	 under	 these	 parts	 of	 the
theory	depends	on	the	fermion’s	chirality.	In	particular,	the	right-chiral	fermions
do	not	transform	under	SU(2)L	and	so	an	appropriate	phase	rotation	of	the	right-
chiral	fermions	may	remove	the	analogous	term	in	the	weak	sector.

From	the	preceding	sections	it	should	be	clear	that,	while	the	Standard	Model
is	a	remarkable	achievement,	it	is	still	a	work	in	progress,	and	is	certainly	not	the
final	theory	of	particle	physics.	The	next	chapter	will	explore	some	of	the	current
ideas	in	particle	physics	that	take	us	beyond	the	Standard	Model.

EXERCISES

Show	that	each	term	in	the	Yukawa	part	of	the	Lagrangian	(Equation
12.5)	has	no	net	hypercharge.

Draw	Feynman	diagrams	for	the	processes	K−	→	µ−	+	 µ	and	π−	→
µ−	+	 µ	at	the	quark	level.	Without	performing	a	full	calculation,
estimate	the	ratio	of	the	transition	amplitudes	of	these	two
processes.
The	above	decays	are	the	dominant	modes	for	these	mesons.	Why
isn’t	a	decay	to	e−	+	 e	favored?	(Hint:	This	is	a	tough	one!	Some
things	to	consider	are	the	chirality	and	helicity	of	the	decay	products
as	well	as	how	mass	mixes	these	concepts.)

Consider	a	transition	amplitude	 	for	a	process	that	can	occur	through
two	distinct	channels:	 	=	 1	+	 2.	If	a	complex	phase	is	introduced
in	the	couplings	for	these	channels,	it	shows	itself	in	the	amplitudes	as

where	 i	now	refer	 to	 the	amplitude	for	each	channel	 if	 the	couplings
were	real.
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Write	down	the	amplitude,	 (CP),	for	the	 -conjugate	process.
Hence	show	that

By	writing	 1,2	in	terms	of	their	magnitudes,	| 1,2|,	and	complex
arguments,	ϕ1,2,	show	that	the	above	expression	is	equal	to

Hence	show	that	 	symmetry	is	violated	in	the	case	of	complex
couplings.

Write	down	the	individual	matrices	that	would	account	for	a	simple
mixing	of	the	first	and	second,	second	and	third,	and	first	and	third
quark	generations.	Show	that	these	may	be	multiplied	together	to
give	the	magnitudes	of	the	elements	of	the	CKM	matrix	as
parametrized	in	Equation	12.20.	How	should	the	complex	phase	be
included	in	one	of	the	three	rotation	matrices	to	give	the	full
parametrization?
For	the	parametrization	of	the	CKM	matrix	in	Equation	12.20,	show
that	the	Jarlskog	invariant	is	given	by	

Find	the	invariant	amplitude	for	the	process	W−	→	e−	+	 e.	(For
simplicity,	neglect	the	mass	of	the	electron.)	Hence	use	the	two-body
decay	rate	formula	found	in	Exercise	5	to	estimate	the	partial	decay	rate
of	the	W	−	boson	via	this	channel.

As	well	as	the	diphoton	decay	via	a	top	loop,	the	Higgs	boson	can	decay
in	several	other	ways.	By	considering	the	couplings	between	various
particle	species	and	the	necessary	final	states	these	would	lead	to,	find
some	other	likely	decay	modes.

Show	that	the	potential	gauge	anomalies	of	the	Standard	Model	vanish.

1	Recall	 that	Yukawa	 interaction	now	means	 something	much	broader	 than	 its	 original	 sense.	 Initially,	 it
referred	to	 the	specific	 interaction	of	nucleons	and	pions,	but	we	now	use	 it	 to	refer	 to	any	interaction	 in
which	a	fermion	emits	or	absorbs	a	scalar.



2	Apparently	named	after	their	resemblance	to	a	penguin.
3	 In	 fact,	 since	 it	 does	 not	 involve	 the	 exchange	 of	 a	 virtual	 particle,	 the	 sphaleron	 process	 is	 arguably
beyond	the	realm	of	particle	physics.
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CHAPTER	13
BEYOND	THE	STANDARD	MODEL

Some	of	 the	 issues	with	 the	Standard	Model	 have	been	 addressed	by	 theorists
introducing	extensions	to	the	model.	However,	many	of	these	extensions	remain
speculative,	with	little	or	no	experimental	verification.	Their	acceptance	among
(portions	 of)	 the	 physics	 community	 is	 based	 instead	 on	 the	 elegance	 of	 the
proposed	models,	 and	 their	 ability	 to	 solve	many	 of	 the	 problems	 highlighted
previously.	This	chapter	will	explore	some	of	these	theories	that	go	“beyond	the
standard	model.”	The	first	extension	that	we	consider	is	the	least	contested,	since
it	 is	 similar	 in	 form	 to	 the	 quark	 mixing	 of	 the	 previous	 chapter,	 and	 is
introduced	to	accommodate	an	experimental	observation:	namely,	that	neutrinos
must	have	mass.

NEUTRINO	OSCILLATIONS	AND	THE
PMNS	MATRIX

One	 of	 the	 products	 of	 the	 nuclear	 processes	 powering	 our	 sun	 is	 a	 large
number	of	neutrinos.	In	the	1960s,	observations	of	the	solar	neutrinos	seemed	to
suggest	 that	 the	 number	 emitted	 was	 too	 low.	 Neutrinos	 are,	 of	 course,
notoriously	 difficult	 to	 observe	 at	 all,	 but	 even	 taking	 this	 into	 account,	 the
number	observed	was	found	to	be	only	around	one	third	of	 the	value	predicted
by	models	of	solar	evolution.	This	became	known	as	the	solar	neutrino	problem
and	 its	 solution	 came	 with	 the	 realization	 that	 neutrino	 detectors	 only	 detect
electron-neutrinos:	 mu-neutrinos	 and	 tau-neutrinos	 are	 not	 detected.	 However,
only	 electron-neutrinos	 should	 be	 emitted	 by	 weak	 nuclear	 processes	 in	 the
Sun’s	core,	 so	 this	 then	 raises	another	problem:	how	are	 the	electron-neutrinos
emitted	by	the	Sun	changing	to	other	neutrino	flavors?

We	 can	 find	 the	 answer	 to	 this	 puzzle	 by	 considering	 again	 the	 kaon
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oscillations	that	we	saw	in	the	previous	chapter.	As	long	as	no	conservation	laws
are	violated	and	there	is	an	appropriate	mixing	channel	for	two	particle	species,
the	flavor	state	will	oscillate	in	time.	That	neutrino	flavors	oscillate	in	this	way
was	 definitively	 demonstrated	 in	 the	 1990s.	 In	 a	 beam	 of	 neutrinos,	 the
probability	of	measuring	neutrinos	of	a	particular	flavor	fluctuates	over	time.	We
saw	in	the	case	of	kaons,	though,	that	the	rate	of	this	oscillation	is	determined	by
the	difference	in	mass	between	the	two	particles.	So	if	neutrinos	are	all	massless,
then	no	oscillations	take	place.	Put	another	way,	if	neutrinos	were	massless,	then
their	 flavor	 and	 mass	 states	 would	 be	 identical:	 there	 would	 be	 no	 leptonic
equivalent	 of	 the	 CKM	matrix,	 and	 therefore	 no	 means	 of	 mixing	 leptons	 of
different	generations.

To	accommodate	neutrino	oscillations,	then,	we	require	a	leptonic	analogue	to
the	 CKM	 matrix,	 known	 as	 the	 Pontecorvo-Maki-Nakagawa-Sakata	 (PMNS)
matrix.	 So	 we	 now	 know	 neutrinos	 to	 be	 massive	 particles,	 even	 though	 no
direct	 measurement	 of	 neutrino	 masses	 has	 ever	 been	 made.	 In	 fact,	 current
experimental	constraints	tell	us	that	the	sum	of	the	masses	of	the	three	neutrinos
must	be	less	than	1.2	eV.	For	most	purposes,	then,	we	can	still	approximate	the
neutrinos	 as	 being	 massless.	 As	 stated	 above,	 the	 introduction	 of	 the	 PMNS
matrix	is	considered	standard,	and	some	would	even	argue	that	this	is	now	a	part
of	the	Standard	Model	itself.	However,	it	raises	another	problem,	as	we	will	see
in	 the	 next	 section,	 and	 the	 possible	 solution	 presented	 there	 does	 not,	 as	 yet,
have	any	observational	backing.

THE	SEE-SAW	MECHANISM

The	problem	raised	by	the	introduction	of	neutrino	masses	is	this:	why	should
the	 neutrino	 mass	 be	 non-zero	 but	 so	 small	 that	 it	 has	 not	 yet	 been	 directly
measured?	 This	 is	 another	 example	 of	 a	 fine-tuning	 problem,	 similar	 to	 the
strong	 	and	hierarchy	problems	discussed	previously.	One	possible	answer	is
the	see-saw	mechanism.	In	fact,	there	are	a	few	variations	on	this	idea,	and	the
version	that	we	will	consider	is	the	Type	I	see-saw.

It	 was	 stated	 in	 Section	 12.2	 that	 there	 are	 restrictions	 on	 the	 kind	 of
interaction	 and	 mass	 terms	 we	 can	 include	 because	 of	 gaugeinvariance	 and



Lorentz-invariance.	The	argument	put	forward	there	suggested	that	an	equation
such	as

is	disallowed	because	of	the	different	transformations	of	fL	and	fLc	under	gauge
transformations.	There	is,	however,	one	exception	to	this	rule.	If	the	particle	we
are	 describing	 is	 neutral	 with	 respect	 to	 all	 charges,	 then	 both	 sides	 of	 the
equation	are	unaffected	by	gauge	transformations.	There	appears,	therefore,	to	be
nothing	 stopping	 us	 from	 including	 such	 a	 mass	 term	 for	 the	 right-chiral
neutrino.	The	only	charge	that	would	be	violated	is	lepton	number.	But,	in	fact,
there	is	no	reason	to	suspect	that	the	individual	lepton	numbers	are	conserved,	at
least	 since	 the	 discovery	 of	 neutrino	 oscillations.	 This	 allows	 for	 two	 very
different	types	of	mass	for	neutrinos:	a	Dirac	mass,	mD,	 that	couples	 left-chiral
neutrinos	to	right-chiral	neutrinos	(which	is	the	type	we	have	considered	so	far),
and	 a	 Majorana	 mass,	 mM,	 that	 couples	 right-chiral	 neutrinos	 to	 left-chiral
antineutrinos.	 Notice	 that	 we	 cannot	 include	 the	 same	 kind	 of	 term	 for	 the
leftchiral	 neutrino,	 though,	 since	 this	 has	 a	 non-zero	 hypercharge,	 and	 also
transforms	under	SU(2)L.

Including	 all	 possible	 contributions	 to	 the	mass,	 we	 find	 we	 have	 a	 2	 ×	 2
matrix	of	mass	terms	(per	generation):

The	natural	scale	for	mD	is	the	energy	scale	of	electroweak	symmetry	breaking,
since	this	 is	where	the	Dirac	mass	terms	come	from.	The	natural	scale	for	mM,
however,	is	at	the	scale	of	whatever	new	physics	underlies	the	Standard	Model,
say	somewhere	around	the	1016	GeV	mark.	The	exact	value	is	not	important	for
this	argument,	as	long	as	mM	≫	mD.

The	physical	neutrinos	would	be	the	eigenstates	of	 the	previous	matrix	with
masses	equal	to	the	eigenvalues,	which	are	found	to	be	approximately	mM	and	

	 One	 of	 the	 mass	 eigenstates	 has	 a	 mass	 close	 to	 the	 high	 mass	 scale
mentioned	 above,	 while	 the	 other	 has	 a	 vanishingly	 small	 mass.	 It	 doesn’t
matter,	incidentally,	that	the	smaller	eigenvalue	is	negative.	Only	the	magnitude
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is	 physically	meaningful	 anyway,	 since	 a	 redefinition	 of	 one	 of	 the	 neutrino’s
wavefunctions	via	a	global	phase	shift	of	π	will	make	 this	eigenvalue	positive.
The	eigenvectors	corresponding	to	these	masses	are	approximately

respectively.	 So	 the	 low	mass	 neutrino	 is	 almost	 entirely	 left-chiral	 while	 the
high	mass	neutrino	is	almost	entirely	right-chiral.	As	well	as	explaining	the	low
mass	of	neutrinos,	this	also	provides	a	possible	dark	matter	candidate:	the	sterile
neutrino.	 We	 also	 can	 see,	 incidentally,	 why	 this	 is	 known	 as	 the	 see-saw
mechanism:	 as	 the	 right-chiral	 neutrino	 mass	 goes	 up,	 the	 left-chiral	 mass	 is
driven	down.	At	low	energy,	the	apparent	effect	of	all	this	will	be	very	different.
Recall	 from	Section	11.1	 that	 the	 low-energy	view	of	massive	boson-mediated
interactions	 is	 a	 direct	 four-fermion	 interaction.	 Essentially,	 we	 have	 not
“zoomed	in”	enough	to	the	interaction	region	to	see	that	the	two	vertices	do	not
actually	coincide.	A	similar	process	occurs	with	neutrino	masses,	and	 the	 low-
energy	view	is	of	a	purely	left-chiral	neutrino	as	in	the	Standard	Model,	with	a
mass	derived	from	 two	 interactions	with	 the	Higgs	field:	 the	 individual	mixed-
chirality	interactions	at	high-energy	blend	into	one	fixed-chirality	interaction	as
we	zoom	out,	as	in	Figure	13.1.

FIGURE	 13.1	 At	 high	 energy	 (left),	 a	 left-chiral	 neutrino	 interacts	 with	 the	 Higgs	 field	 and	 changes
chirality,	before	a	second	interaction	changes	it	back.	As	we	zoom	out	(right),	 the	right-chiral	component
propagates	 a	 negligible	 distance,	 transforming	 the	 process	 into	 an	 effective	 four-point	 interaction	 at	 low
energy.

GRAND	UNIFICATION

The	 history	 of	 physics	 has	 been	 one	 of	 gradual	 unification:	 the	 building	 of
connections	between	disparate	 ideas	and	phenomena,	and	 their	 integration	 into



the	same	few	frameworks.	The	once	separate	ideas	of	electric	current	and	static
charge	were	initially	combined	into	a	unified	understanding	of	electricity.	Later,
this	 understanding	 would	 be	 further	 unified	 with	 magnetism	 and	 optics	 by
Faraday,	Ampere,	Maxwell,	and	others	into	a	single	theory	of	electromagnetism.
This,	of	course,	was	not	the	end	of	the	story,	however,	as	we	have	also	seen	that
electromagnetism	 is	 itself	 combined	 with	 the	 weak	 interaction	 to	 give	 the
electroweak	theory.	This	theory,	in	conjunction	with	QCD,	gives	us	the	Standard
Model.	It	seems	strange,	then,	to	stop	here:	why	not	continue	to	unify	and	see	if
we	 can	 explain	 strong	 and	 electroweak	 forces	 in	 terms	 of	 a	 single	 underlying
theory?

In	Section	13.2,	 it	was	 stated	 that	 the	natural	 scale	 for	 a	Majorana	neutrino
mass	might	be	somewhere	around	1016	GeV.	Where	did	this	value	come	from?
The	β-functions	 (see	Section	10.3.2)	 for	 the	 individual	 groups	 SU(3)C,	SU(2)L
and	 U(1)Y	 show	 that	 the	 couplings	 for	 these	 groups’	 corresponding	 forces
converge	at	high	energy	(around	1016	GeV).	In	fact,	the	convergence	is	not	exact
and	 the	couplings	“miss”	each	other,	but	 the	 trend	 is	 strong	enough	 to	suggest
that	 there	 may	 be	 new	 physics	 in	 the	 intervening	 energy	 region	 that	 ensures
convergence	(see	Figure	13.2).	There	 is	 no	good	 reason	 for	 these	 couplings	 to
converge	unless	they	are	somehow	related	at	high	energy.	In	the	same	way	that
we	 broke	 the	 electroweak	 sector	 of	 this	 theory	 to	 give	 the	 low-energy
electromagnetic	 theory,	we	can	ask	 the	question:	 is	 there	a	 larger	simple	group
that	 contains	 the	 Standard	Model?	 Such	models	 are	 known	 as	 Grand	 Unified
Theories	(GUTs)	and	there	are	several	candidates.	The	first	example	of	a	GUT
was	SU(5),	proposed	by	Georgi	and	Glashow.	This	group	is	capable	of	breaking
via	a	Higgs-like	mechanism	to	the	Standard	Model	group.	Importantly,	though,
not	only	does	the	SU(5)	group	contain	 the	Standard	Model	group,	but	a	simple
combination	of	SU(5)	representations	 is	also	capable	of	giving	all	 the	particles
of	 the	 Standard	Model.	Not	 all	 unified	models	 are	GUTs,	 since	 some	 are	 still
semi-simple:	 that	 is,	 they	 still	 contain	 a	 product	 of	 several	 simple	Lie	 groups.
However,	 even	 such	 a	 partial	 unification	 brings	 with	 it	 an	 immediate	 payoff.
Recall	from	the	previous	chapter	that	the	U(1)	part	of	the	Standard	Model	has	an
apparent	 sickness	 in	 the	 form	 of	 the	 Landau	 pole:	 the	 divergent	 value	 of	 its
coupling	 constant	 at	 a	 finite	 energy.	 If	 we	 embed	U(1)Y	 along	with	 the	 other
subgroups	 of	 the	 Standard	 Model	 into	 a	 simple	 non-Abelian	 group	 at	 some
energy	below	the	scale	of	the	Landau	pole,	then	this	problem	is	solved,	since	the



coupling	of	a	non-Abelian	group	decreases	with	increasing	energy	scale.

For	a	clearer	understanding	of	grand	unification,	let’s	take	a	closer	look	at	the
Georgi-Glashow	model.	There	are	24	generators	of	SU(5),	each	of	which	is	a	5	×
5	traceless	Hermitian	matrix,	normalized	such	that	tr(TiTj)	=	2δij.	Eight	of	these
have	the	general	form

and	three	have	the	form

where	λ	is	a	Gell-Mann	matrix	and	σ	a	Pauli	matrix.	Another	matrix	is	diagonal:

These	 twelve	 block-diagonal	 matrices	 give	 the	 generators	 of	 the	 Standard
Model,	while	the	remaining	twelve,	with	non-zero	elements	in	the	off-diagonals,
are	broken	at	high	energy.	The	SU(5)	group	is	the	smallest	simple	group	that	can
contain	the	full	Standard	Model	as	a	subgroup.	This	is	not	enough,	however,	to
suggest	 its	 validity	 as	 a	 possible	 unified	 group:	 when	 a	 group	 breaks	 to	 a
collection	 of	 subgroups,	 the	 representations	 of	 the	 larger	 group	must	 likewise
break	to	representations	of	the	subgroups.	The	rules	governing	such	breaking	are
known	 as	 the	 group’s	 branching	 rules.	 While	 it	 is	 possible	 to	 calculate	 the
branching	rules	for	a	given	group,	most	often	the	branching	rules	 that	 theorists
are	 interested	 in	have	 already	been	calculated	 and	may	be	 found	 in	 tables.	An



important	point	about	such	branching	rules,	though,	is	that	a	group	typically	has
many	 possible	 subgroups	 to	 which	 it	 can	 break,	 depending	 on	 the	 particular
vacuum	occupied	by	the	scalar	field	responsible.	We	must	also	check,	then,	that
the	 observed	 representations	 of	 the	 Standard	 Model	 gauge	 group	 embed	 into
representations	of	SU(5).	The	fact	that	they	do	so,	and	in	fact	do	so	without	the
need	 to	 postulate	 new	 unobserved	 fermions,	 is	 a	 remarkable	 property	 of	 the
model.	 In	particular,	when	SU(5)	breaks	 to	SU(3)	⊗	SU(2)	⊗	U(1),	 two	of	 its
representations,	the	 	and	10,	break	as	follows:

where	the	numbers	in	brackets	are	the	SU(3)	and	SU(2)	representations,	and	the
subscript	 gives	 the	 charge	 under	 U(1).	 Comparing	 this	 with	 the	 fermionic
Standard	 Model	 representations	 given	 in	 Section	 12.1,	 we	 see	 that	 the	 U(1)
charges	are	consistently	out	by	a	factor	of	 	This	is	not	a	problem,	though,
as	 we	 are	 free	 to	 redefine	 the	 hypercharge	 as	 long	 as	 we	 compensate	 with	 a
similar	 rescaling	 of	 the	U(1)Y	 coupling.	 It	 is	 the	 relative	 U(1)Y	 charges	 that
matter,	and	these	are	exactly	as	we	would	hope.	So	we	can	identify	the	 	as

with	a	similar	identification	for	the	10.	Another	bonus	of	grand	unification	is	an
explanation	 of	 the	 anomaly	 cancellation	 from	 the	 previous	 chapter.	 There,	we
saw	that	the	particular	charge	assignments	for	a	single	fermion	generation	were
necessary	for	the	cancellation	of	chiral	anomalies,	but	no	underlying	reason	was
given.	With	a	GUT,	we	can	see	that	the	charges	must	work	out	the	way	that	they
do.	 In	 turn,	 this	 explains	 the	 quantization	 of	 charge,	 which	 again	 has	 no
explanation	 within	 the	 standard	 model.	 While	 we	 are	 free	 to	 redefine	 the
coupling	and	charges	for	the	U(1)	subgroup,	the	same	cannot	be	said	of	the	other
subgroups,	since	the	charges	are	determined	by	a	normalization	condition	in	this
case.	In	fact,	it	is	only	when	this	relative	U(1)	normalization	factor	is	taken	into



account	that	the	couplings	appear	to	converge,	as	in	Figure	13.2.

The	off-diagonal	matrices	mix	parts	of	the	SU(5)	representations	that	do	not
mix	 in	 the	Standard	Model	 subgroup.	Each	of	 these	matrices	 corresponds	 to	 a
gauge	 boson	 that	 does	 not	 survive	 the	 symmetry	 breaking	 and,	 just	 as	 in	 the
electroweak	theory,	these	bosons	gain	a	mass	at	the	breaking	scale.	Despite	this
high	mass,	 these	new	bosons	should	have	a	non-zero	contribution	 to	scattering
amplitudes,	though	the	contribution	will	be	hugely	suppressed	at	low	energy.	An
example	of	such	an	interaction	would	be

FIGURE	13.2	A	plot	of	the	inverse	gauge	couplings	against	energy	scale.	The	initial	values	on	the	left	are
the	observed	values	at	an	energy	scale	equal	to	the	mass	of	the	Z0	boson.	The	gradients	are	determined	from
perturbation	theory.	The	U(1)Y	 coupling’s	 initial	value	and	gradient	are	both	corrected	by	 the	appropriate
factor	of	

where	q	is	a	quark,	ℓ	is	a	lepton,	and	X	is	one	of	the	GUT	bosons.	In	this	way,	we
see	 that	 unified	 theories	 are	 capable	 of	 violating	 baryon	 number	 conservation
and	thus	satisfying	the	third	Sakharov	condition.

Interactions	like	the	one	above	also	allow	for	the	proton	to	decay	to	mesons
and	 leptons,	 making	 the	 proton	 unstable.	 We	 can	 even	 quantify	 the	 proton
lifetime	 approximately	 with	 a	 rather	 neat	 argument.	 The	 amplitude	 for	 the



13.3.1

previous	diagram	is	of	the	order

where	g	is	the	unified	coupling	and	MX	is	the	X	boson	mass,	since	the	mediator’s
momentum	 in	 such	 a	 process	 would	 be	 negligible	 compared	 with	MX.	 Using
Equation	5.45,	the	decay	rate	of	the	proton	must	look	something	like

where	ρ(E)	is	the	available	state	space.	Since	g	is	dimensionless,	 	has	units	of
[Mass]−4.	The	decay	rate	in	natural	units	has	units	of	[Mass],	so	the	state	space
must	have	units	of	[Mass]5.	Since	the	only	mass-scale	available	to	constrain	the
available	states	is	the	proton	mass,	we	can	deduce	that	ρ(E)	must	be	on	the	order
of	 	Thus	we	find

Since	g	is	the	value	of	the	coupling	at	the	unification	point,	its	value	is	the	value
at	which	the	three	Standard	Model	couplings	meet.	Hence	its	value,	or	at	least	its
order	of	magnitude,	is	known.	Substituting	in	the	relevant	values,	then,	leads	to	a
proton	lifetime	on	the	order	of	1031	years.	While	this	means	we	certainly	do	not
need	to	worry	about	protons	disappearing	any	time	soon,	it	also	rules	out	SU(5)
as	 a	 viable	 theory,	 since	 the	 current	 experimental	 constraints	 on	 the	 proton
lifetime	are	around	1034	years.	Although	SU(5)	is	ruled	out	in	its	simplest	form,
its	supersymmetric	extension	is	still	viable.	Additionally,	 there	are	many	larger
GUT	groups	 that	are	still	viable,	 such	as	E6	 and	 the	Pati-Salam	model,	 among
others.	One	group	in	particular	that	has	received	much	attention	is	SO(10),	which
again	 has	 an	 elegant	 structure,	 not	 least	 because	 a	 whole	 Standard	 Model
fermion	generation	with	the	addition	of	a	right-chiral	neutrino	fits	 into	a	single
16	spinor	representation.

Magnetic	Monopoles
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An	 interesting	 prediction	 of	 Grand	 Unified	 Theories	 is	 the	 existence	 of
magnetic	 monopoles.	 Classically,	 of	 course,	 magnetic	 fields	 are	 produced	 by
dipoles	 and	 there	 is	 no	 object	 that	 has	 a	 net	 magnetic	 charge.	 Cutting	 a	 bar
magnet	 in	 two	 gives	 two	 new	 dipoles	 rather	 than	 isolated	 north	 and	 south
magnetic	poles.	However,	the	possible	existence	of	monopole	is	not	ruled	out	by
Maxwell’s	 equations—it	 would	 merely	 require	 a	 slight	 modification	 of	 them.
Monopoles	 arise	 naturally	 in	 GUTs	 as	 topological	 entities	 frozen	 into	 the
vacuum	state	during	symmetry	breaking.	Specifically,	 the	electromagnetic	field
is	related	to	one	of	the	remaining	group	generators	after	the	symmetry	breaking
phase	 transition.	 If	 this	 symmetry	 breaking	 “chooses”	 different	 vacuums	 in
different	 regions	 of	 space,	 such	 that	 the	 differences	wrap	 around	 a	 point,	 then
there	is	no	way	to	untwist	the	situation	without	restoring	symmetry.	The	simplest
example	of	 this	 is	 the	breaking	of	 a	Z2	 symmetry	 in	 a	universe	with	only	one
spatial	dimension.	If	the	vacuum	state	⟨ϕ⟩	=	v	is	chosen	to	the	right	of	the	origin
but	 ⟨ϕ⟩	 =	 −v	 is	 chosen	 to	 the	 left,	 then	 continuity	 of	 the	 value	 of	 the	 field
requires	 a	 high-energy	 state	 at	 the	 origin	 itself,	 in	 order	 to	 connect	 these	 two
half-spaces.	 Similar	 situations	 exist	with	 larger	 groups	 in	 larger	 spaces.	 In	 the
case	 of	 the	 electromagnetic	 field,	 the	 energetic	 state	 is	 the	monopole,	 and	 its
magnetic	 charge	 is	 an	 artifact	 of	 us	 attempting	 to	 treat	 the	 field	 equally	 at	 all
points,	despite	 its	actually	having	very	different	values	as	we	move	around	the
pole.

SUPERSYMMETRY

One	 of	 the	 most	 widespread	 additions	 to	 the	 Standard	 Model	 is
supersymmetry	 (SUSY).	 There	 are	 several	 ways	 to	 introduce	 the	 concept	 of
supersymmetry,	all	 leading	 to	 the	 same	set	of	 ideas.	One	way	 is	 to	postulate	a
symmetry	 between	 particles	 of	 different	 spin:	 in	 the	 same	way	 that	 the	 quark
colors	 are	 interchangeable	 through	 SU(3)C	 interactions,	 supersymmetry
transformations	would	 interchange	bosons	with	 fermions.	My	preferred	way	 to
introduce	the	concept,	however,	is	as	the	answer	to	a	question:	can	we	combine
the	 internal	 gauge	 symmetries	 of	 the	 Standard	 Model	 with	 the	 spacetime
symmetries	 of	 the	 Poincaré	 group	 in	 a	 non-trivial	 manner?	 Originally,	 the
response	 to	 this	 question	was	 thought	 to	 be	 “no.”	 In	 fact,	 a	 key	 result	 due	 to



Coleman	 and	Mandula	 in	 1967	 rigorously	 proved	 that	 such	 a	 combination	 is
impossible	based	on	a	few	simple	assumptions.	That	would	seem	to	suggest	that
the	question	had	been	definitively	answered	and	that	no	further	work	in	this	area
were	necessary.	However,	over	the	next	few	years,	supersymmetric	theories	were
formulated,	initially	in	two	dimensions	and	then	in	four,	followed	by	the	Haag-
Łopuszański-Sohnius	 theorem	 in	 1975,	which	modified	 the	Coleman-Mandula
result	 to	 allow	 for	 more	 general	 models.	 In	 particular,	 it	 relaxed	 one	 of	 the
assumptions	of	 its	predecessor,	 allowing	 the	generators	of	 symmetry	groups	 to
obey	anticommutation	relations,	{Ti,	Tj}	=	ifijkTk,	generalizing	the	notion	of	a	Lie
algebra.	What	the	generalized	theorem	showed	was	that	the	only	way	to	include
a	 non-trivial	 relationship	 between	 Poincaré	 generators	 and	 gauge-group
generators	was	to	have	each	independently	obey	anticommutator	relations	with	a
set	 of	 new	 generators	Qα.	 These	 new	 generators	 are	 referred	 to	 as	 fermionic
generators,	since	they	are	found	to	carry	non-zero	spin.	In	fact,	these	objects	are
Weyl	spinors,	and	the	index	α	runs	over	the	spinor	components.	Notice	that	there
is	still	no	direct	non-trivial	interaction	between	the	bosonic	generators:	this	type
of	algebraic	structure	is	known	as	a	graded	Lie	algebra.

Recall	 that	 the	 Poincaré	 algebra	 consists	 of	 momentum	 operators	 Pµ	 and
angular	 momentum	 operators	 Jµν.	 The	 supersymmetry	 algebra	 is	 essentially
unique,	 up	 to	 the	 number	 of	 independent	 Qα	 generators,	 and	 is	 given
schematically	by:

where	P	and	J	still	obey	any	pre-existing	commutation	relations,	and	R	is	either
0	or	 some	gauge-group	generator	 that	commutes	with	all	others,	depending	on
the	 particular	 theory	 in	 question.	 This	 demonstrates	 the	 essential	 properties	 of
the	 graded	 Lie	 structure.	 Notice	 that	 the	 R-symmetry	 is	 the	 only	 part	 of	 the
algebra	that	connects	space-time	and	internal	symmetries	in	a	non-trivial	way.

How,	then,	does	this	relate	to	the	idea	mentioned	earlier	of	each	boson	having
a	fermionic	partner?	The	answer	to	that	comes	from	applying	the	new	generator,



Q,	 to	a	particle.	Since	Q	 itself	 carries	 a	 non-zero	 spin,	 its	 effect	 is	 to	 alter	 the
spin	of	the	particle	by	 ,	changing	a	boson	to	a	fermion,	and	vice	versa.	If	Q	is	a
symmetry	 of	 the	 theory	 (that	 is,	 if	 Q	 can	 be	 applied	 to	 the	 Hamiltonian	 or
Lagrangian	 without	 altering	 it),	 then	 apart	 from	 spin	 the	 properties	 of	 these
partners	must	be	 identical.	 In	 the	 same	way	 that	we	placed	quarks	of	different
colors	 into	 multiplets	 earlier,	 supersymmetry	 allows	 us	 to	 place	 particles	 of
different	spin	into	“supermultiplets.”

Since	 the	particles	within	a	given	multiplet	should	have	 the	same	properties
(apart	 from	spin	 in	 this	case),	and	no	such	pairs	of	similar	particles	are	known
with	 different	 spin,	 supersymmetry	 predicts	 the	 existence	 of	 an	 as-yet
undiscovered	 “superpartner”	 for	 each	 Standard	Model	 particle.	 Each	 Standard
Model	fermion	is	twinned	with	a	scalar,	while	each	vector	boson	is	twinned	with
a	spin- 	“gaugino.”	This	implies	that	the	superpartners	have	masses	sufficiently
high	that	we	have	not	yet	seen	evidence	of	them	in	collider	experiments,	and	this
is	 where	 we	 run	 into	 a	 potential	 problem	 with	 supersymmetry.	 One	 of	 the
properties	 that	 the	particles	of	a	supermultiplet	should	share	 is	mass.	 It’s	clear,
then,	 that	 if	 supersymmetry	 does	 exist,	 it	 must	 be	 broken,	 much	 like	 the
electroweak	symmetry.

Given	 the	 lack	 of	 direct	 evidence	 for	 the	 idea,	 why	 is	 supersymmetry
considered	so	enticing?	The	answer	 is	 that	 it	 is	capable	of	solving	some	of	 the
problems	with	 the	 Standard	Model	 that	 we	 discussed	 in	 the	 previous	 chapter.
Supersymmetric	theories	are	mathematically	very	elegant,	and	compelling	for	a
number	 of	 reasons.	 Not	 least	 of	 these	 is	 their	 ability	 to	 solve	 the	 hierarchy
problem.	The	reason	for	this	is	that	the	problematic	divergent	Feynman	diagrams
that	 result	 in	 the	 inflated	 Higgs	mass	 are	 joined	 by	 a	 set	 of	 similar	 diagrams
involving	 the	 superpartners.	 Since	 the	 relevant	 couplings	 are	 necessarily	 the
same	for	particles	of	 the	same	supermultiplet,	and	since	 the	contribution	 to	 the
amplitude	 from	 particles	 of	 differing	 spin	 is	 of	 opposite	 sign,	 these	 diagrams
cancel	each	other	off.	For	example,	a	diagram	such	as
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with	an	electron	circulating	in	the	loop,	is	canceled	off	by

where	the	particle	in	the	loop	is	now	the	electron’s	superpartner,	the	“selectron.”1
Some	of	the	motivation	for	SUSY	requires	it	to	be	broken	at	a	fairly	low	energy.
Specifically,	 introduction	 of	 SUSY	 at	 a	 sufficiently	 low	 energy	 alters	 the
Standard	Model	β	functions	in	such	a	way	as	to	solve	the	“near	miss”	problem	of
the	previous	section.	Since	SUSY	has	not	yet	been	observed	at	the	LHC,	some
feel	 the	future	 is	beginning	 to	 look	bleak	for	 the	 theory,	at	 least	 in	 its	simplest
form.	 However,	 these	 issues	 can	 be	 resolved	 with	 more	 sophisticated	 (or,
depending	 on	 one’s	 view,	 convoluted)	 models,	 and	 this	 is	 still	 very	 much	 an
active	area	of	research.

GRAVITONS

We	have	seen	the	particles	of	the	Standard	Model	and	described	them	with	a
set	 of	 equations:	 the	 Klein-Gordon	 equation	 for	 spin-0	 particles,	 the	 Dirac
equation	 for	 spin- 	 particles,	 and	 the	 Maxwell	 equation	 for	 spin-1	 particles.
Supersymmetry	 predicts	 the	 existence	 of	 spin- 	 partners	 of	 the	 gauge	 bosons,
described	by	their	own	equation.	So	can	we	find	equations	for	particles	of	higher
spin?	The	answer	is	“yes”	but	only	in	a	limited	sense.

Just	 as	 the	 equation	 for	 spin-1	 particles	 is	 simply	 the	 classical	 Maxwell
equation	for	the	electromagnetic	field	reinterpreted	as	a	quantum	wave-equation,
we	can	attempt	to	reinterpret	the	equations	of	gravity.	Since	we	are	interested	in
relativistic	 wave	 equations,	 however,	 the	 gravitational	 equations	 we	 must
consider	are	Einstein’s	equations	of	General	Relativity.	Without	delving	into	too
much	detail,	the	general	theory	of	relativity	says	that	the	geometry	of	spacetime
itself	is	affected	by	the	presence	of	matter	and	energy,	quantified	in	this	case	by	a
rank-2	symmetric	 tensor	called	 the	stress-energymomentum	tensor.	That	 is,	 the
space-time	metric	 is	deformed	as	gµν	=	ηµν	+	hµν,	where	ηµν	 is	 the	Minkowski



metric	of	flat	spacetime	and	hµν	is	some	deviation	from	flat	space.	This	leads	to	a
curvature	in	space-time	that	we	perceive	as	gravity,	with	the	amount	of	curvature
quantified	by	hµν.	However,	the	equation	describing	the	curvature	is	non-linear,
and	as	such	cannot	be	treated	as	simply	as	the	Maxwell	equation.	In	particular,
the	 presence	 of	 non-linear	 terms	means	 that	 self-interactions	 are	 automatically
incorporated,	 which	 in	 turn	 prevents	 us	 from	 using	 simple	 plane	 waves	 as	 a
basis.	 For	 small	 perturbations	 in	 free	 space,	 though,	 we	 can	 approximate	 the
equation	with	a	linear	equation:

where	h	=	ηµνhµν.

Reinterpreting	this	as	a	quantum	wave-equation	leads	us	to	the	prediction	of
gravitons.	These	are	the	particles	that	mediate	the	gravitational	force,	in	the	same
way	 that	 the	 gauge	 bosons	mediate	 the	 non-gravitational	 forces.	Gravitons	 are
found	to	be	spin-2	particles.	A	particularly	pleasing	result,	as	we	saw	in	Section
9.3,	 is	 that	 the	 Feynman	 rules	 for	 even-spin-mediated	 interactions	 between
particles	of	 like	charge	are	always	attractive,	 the	 relevant	“charge”	 in	 this	case
being	mass	or	energy.

A	spin-2	particle	is	described	by	a	symmetric	rank-2	tensor	(just	as	a	spin-1
particle	 is	 described	 by	 a	 vector)	 and	 so	 has	 10	 components.	 Recall	 that	 the
Maxwell	 equation	 had	 a	 gauge	 freedom	 that	 reduced	 the	 physical	 degrees	 of
freedom	 to	 two,	 but	 that	 the	 introduction	 of	 a	 mass	 in	 the	Maxwell	 equation
required	 the	Lorenz	 condition	 and	 removed	 gauge	 freedom,	 only	 reducing	 the
degrees	of	freedom	to	3.	If	we	were	to	introduce	a	mass	to	the	above	equation,
we	would	find	additional	constraints	that	reduced	the	degrees	of	freedom	to	5,	as
we	would	expect	for	a	spin-2	particle.	However,	the	graviton	is	massless,	and	has
its	own	version	of	“gauge”	symmetry	known	as	general	covariance.	In	particular,
we	can	make	a	transformation	of	the	form:

for	 an	 arbitrary	 vector-valued	 function	 χµ(x),	 without	 altering	 the	 equation	 of
motion.	 When	 working	 with	 the	 Maxwell	 equation,	 we	 chose	 to	 impose	 a
condition	such	that	all	but	the	d’Alembertian	term	(∂2Aµ)	vanished.	Can	we	do



something	similar	here	using	the	general	covariance	symmetry?	That	is,	can	we
choose	a	gauge	in	which

holds?	Since	both	sides	are	symmetric	in	µ	and	ν,	we	can	rewrite	 the	 left-hand
side	as

and	it	is	then	clear	that	the	answer	is	“yes”	if	2∂ρ∂νhµρ	=	∂ν∂µh,	or

Substituting	in	Equation	13.14,	we	find	that	this	is	satisfied	by	the	transformed
tensor,	h′µν,	as	long	as	we	choose	χµ	as	a	solution	to

Since	such	a	solution	always	exists,	but	requires	a	condition	for	each	component
of	χµ,	we	are	free	to	simplify	the	wave	equation	to

reducing	the	degrees	of	freedom	to	six	in	the	process.

This	simplified	equation	has	the	obvious	plane-wave	solutions

where	kρ	is	a	massless	four-momentum	and	εµν	is	a	polarization	tensor.	However,
we	find	that	there	is	a	residual	gauge	invariance	of	the	form:

since	 	in	this	case	still	obeys	the	condition	in	Equation	13.17.	So	the	degrees
of	freedom	are	further	reduced	to	two.	These	two	degrees	of	freedom	correspond
to	the	two	possible	helicity	states	(±2)	of	a	graviton.	Classically,	of	course,	these
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solutions	correspond	to	gravitational	waves:	deviations	from	the	flat	background
metric,	which	propagate	through	space.	These	manifest	themselves	as	a	warping
of	 space	 as	 the	wave	 passes	 through,	with	 space	 being	 alternately	 compressed
and	stretched	along	perpendicular	axes,	both	also	perpendicular	to	the	direction
of	 propagation.	 The	 two	 helicity	 states	 of	 the	 graviton	 correspond	 to	 the	 two
independent	 polarizations	of	 these	waves,	which	 as	 linear	 polarizations	 can	be
thought	of	as	having	 their	axes	arranged	 in	a	“+”	configuration	and	a	“×.”	For
many	years	since	first	predicted	in	the	early	twentieth	century,	these	waves	were
to	General	Relativity	what	the	Higgs	boson	was	to	the	Standard	Model:	namely,
a	key	prediction	of	 the	 theory	 that	had	yet	 to	be	observed	experimentally.	This
changed,	 of	 course,	 with	 their	 detection	 by	 the	 Laser	 Interferometer
Gravitational-Wave	Observatory	(LIGO)	experiment	in	2016.

Can	We	Go	Further	than	Spin-2?

The	Feynman	rule	for	the	propagator	of	a	spin-1	particle	contains	a	part	that
remains	 constant	with	 increasing	 energy	 and	momentum.2	 This	would	 suggest
that	 high	 momentum	 transfers	 between	 particles	 are	 just	 as	 likely	 as	 low
momentum	 transfers,	 leading	 to	 a	 divergent	 amplitude	 and	 cross-section.	 The
situation	is	even	worse	for	higher	spins,	where	the	corresponding	term	actually
increases	 with	 increasing	 momentum	 transfer,	 making	 infinitely	 energetic
interactions	 infinitely	 likely.	 This	 is	 clearly	 nonsensical.	 The	 only	 thing	 that
saves	 a	 theory	 of	 a	 spin-1	 particle	 is	 a	 conserved	 current	 for	 the	 particle	 to
couple	 to:	 for	 example,	 the	 electromagnetic	 current	 for	 the	 photon.	 This
conserved	current	allows	us	to	gauge	away	the	unphysical	behavior.	Likewise,	a
spin- 	 particle,	 such	 as	 a	 gaugino,	 only	 gives	 a	 sensible	 theory	 if	 there	 is	 an
appropriate	 current	 for	 the	 particle	 to	 couple	 to:	 in	 this	 case	 the	 appropriate
current	 is	 that	 associated	 with	 supersymmetric	 transformations,	 known	 as	 the
supercurrent.	A	spin-2	particle	requires	a	symmetric	 traceless	rank-2	conserved
current,	which	 is	 provided	 in	 the	 form	 of	 the	 stress-energy-momentum	 tensor.
For	this	reason,	if	a	(fundamental)	spin-2	particle	is	discovered,	it	must	couple	to
the	 stress-energy-momentum	 tensor:	 in	 other	 words,	 it	must	 be	 the	 graviton.
Since	no	conserved	currents	are	known	that	have	more	than	two	Lorentz	indices,
it	seems	that	we	cannot	have	a	fundamental	particle	of	spin	greater	than	2.
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13.6

Problems	with	Gravity

All	 of	 the	 above	 is	 not	 to	 say	 that	 the	 theory	 of	 the	 graviton	 is	 perfect,
however.	There	 are	 additional	problems	 relating	 to	 the	highenergy	behavior	of
the	 theory	 (it	 is	 not	 renormalizable)	 that	mean	 that	 the	previous	description	of
the	graviton	cannot	be	the	correct	or	full	description	of	gravity.	This	is	why	a	full
quantum	description	of	gravity	is	still	not	yet	understood.	There	are	candidates,
such	 as	 string	 theory	 and	 loop	 quantum	 gravity,	 but	 none	 of	 these	 is	 yet
considered	complete	or	mainstream.

AXIONS

As	 discussed	 in	 Section	 12.6.3,	 there	 is	 no	 way	 in	 the	 Standard	Model	 to
explain	the	smallness	of	the	 -violating	parameter	in	the	QCD	Lagrangian.	If	a
chiral	fermion	undergoes	a	phase	rotation,	the	value	of	the	θ	parameter	is	altered.
This	does	not	make	θ	unphysical,	however,	since	such	a	rotation	shifts	the	value
into	 the	Yukawa	terms.	We	cannot	simultaneously	rotate	away	θ	and	retain	 the
appropriate	degrees	of	freedom	in	the	Yukawa	matrices.	This	is	not	a	problem	if
one	or	more	of	the	quarks	is	massless,	since	θ	can	effectively	be	rotated	into	the
zero	component	of	the	Yukawa	matrix,	but	this	is	ruled	out	experimentally	as	all
quark	 flavors	 have	 non-zero	mass.	However,	 this	 gives	 a	 hint	 as	 to	 a	 possible
solution	 to	 the	 strong	 	 problem:	 a	massless	 fermion	 has	 a	 global	 axial	U(1)
symmetry,	 eiγ

5ξ,	 and	 it	 is	 this	 that	 allows	 for	 free	 phase	 rotation.	 Peccei	 and
Quinn	 proposed	 additional	 fields	 to	 allow	 such	 an	 axial	 symmetry	 without
modifying	 the	 fermion	sector	of	 the	 theory.	Specifically,	a	new	complex	scalar
field	is	 introduced	with	the	appropriate	symmetry,	which	is	 then	spontaneously
broken.	While	we	do	not	intend	to	delve	into	the	math	here,	it	can	be	shown	that
this	is	sufficient	to	restore	 -invariance	in	QCD.	Since	the	symmetry	is	global,
this	leads	to	a	Goldstone	boson:	a	pseudo-scalar	particle	called	the	axion.	In	fact,
because	chiral	symmetry	is	anomalous,	the	new	U(1)	is	not	actually	a	symmetry
of	the	full	quantum	theory	and	so	the	axion	is	a	pseudo-Goldstone	boson	with	a
non-zero	mass.	The	properties	of	the	axion	are	found	to	be	related	to	each	other.
As	 such,	 phenomenological	 constraints	 give	 estimates	 for	 all	 the	 axion
properties:	 the	 particle	 is	 hypothesized	 to	 be	 very	 light	 (m	∼	 10−3	 eV)	with	 a
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weak	coupling	to	fermions	and	a	long	lifetime.

DARK	MATTER

Galactic	rotation	requires	that	each	galaxy	be	composed	of	around	six	times
more	matter	than	is	currently	observed,	and	the	missing	mass	is	known	as	dark
matter,	 since	 it	emits	no	 light.	Dark	matter,	 then,	 is	 that	matter	 in	 the	universe
that	 we	 do	 not	 detect	 directly	 through	 electromagnetic	 interactions	 but	 whose
existence	 is	 inferred	 through	 its	gravitational	effects.	An	obvious	candidate	 for
dark	matter	is	black	holes	in	the	galactic	halo	or	other	“Massive	Compact	Halo
Objects”	(MACHOs).	However,	this	possibility	has	been	essentially	ruled	out	in
more	ways	than	one.	First,	a	direct	search	for	such	objects	in	our	own	galaxy	has
ruled	out	 the	majority	of	possible	MACHOs	of	a	wide	 range	of	 sizes.	Second,
cosmological	models	of	 the	 formation	of	 the	 first	 atoms,	which	agree	with	 the
observed	ratios	of	the	lightest	elements,	require	the	amount	of	matter	of	a	type
we	 would	 consider	 “ordinary”	 to	 be	 equal	 to	 the	 amount	 observed.	 Thus	 the
nature	 of	 dark	 matter	 is	 widely	 considered	 to	 be	 some	 sort	 of	 new	 particle.
Furthermore,	models	of	galactic	formation	require	that	these	particles	be	“cold.”
Cold	 in	 this	 context	 has	 less	 to	 do	 with	 actual	 temperature	 than	 it	 does	 with
speed:	dark	matter	particles	must	be	moving	at	non-relativistic	speeds.	What	we
need,	 then,	 is	 a	 particle	 or	 particles	 with	 a	 non-zero	 mass	 that	 interacts	 only
weakly	 with	 ordinary	 matter.	 Such	 particles	 are	 thus	 known	 as	 “Weakly
Interacting	Massive	Particles”	or	WIMPs.	Crucially,	Standard	Model	neutrinos
are	ruled	out	as	their	mass	is	too	small,	making	them	relativistic	and	only	viable
as	a	“hot	dark	matter”	candidate.

There	are	many	candidates	for	dark	matter,	and	we	have	already	seen	some	of
them.	Constraints	on	the	axion	mass	also	require	it	to	be	very	weakly	interacting.
Its	mass	is	predicted	to	be	extremely	small	but	non-zero.	We	have	already	stated
that	neutrinos	are	ruled	out	by	their	small	mass	and	the	axion	mass	is	predicted
to	be	considerably	smaller.	However,	a	crucial	difference	is	that	the	QCD	phase
transition	 in	 the	 early	 history	 of	 the	 universe	 would	 have	 produced	 large
numbers	 of	 axions	 that	 were	 not	 in	 thermal	 equilibrium	 with	 the	 rest	 of	 the
universe	 and	were	 already	 non-relativistic,	 despite	 their	mass.	 This	makes	 the
axion	a	very	appealing	dark	matter	candidate,	as	many	pieces	appear	to	fit.	The



possibility	that	axions	make	up	dark	matter	is	currently	being	actively	tested	in
the	Axion	Dark	Matter	Experiment	 (ADMX).	This	 experiment	uses	a	 resonant
cavity	tuned	to	the	possible	axion	mass	together	with	a	strong	magnetic	field	to
prompt	 the	 decay	 of	 axions	 to	 pairs	 of	 photons.	 In	 this	way,	 a	 range	 of	 axion
masses	 has	 already	 been	 ruled	 out	 and	 it	 is	 hoped	 that	 the	 experiment	 will
ultimately	 either	 confirm	 the	 axionic	 nature	 of	 dark	 matter	 or	 rule	 out	 all
otherwise	possible	masses.

We	 have	 already	mentioned	 the	 right-chiral	 cousins	 of	 the	 Standard	Model
neutrinos,	 and	have	 seen	 that	 they	would	be	neutral	 under	 all	 Standard	Model
interactions.	 Furthermore,	 the	 mass	 eigenstate	 consisting	 almost	 entirely	 of	 a
right-chiral	component	would	have	a	large	mass.	At	first	sight,	this	makes	these
“sterile”	 neutrinos	 the	 obvious	 candidate	 for	 a	 dark	matter	 particle.	 However,
this	idea	is	not	without	its	problems.	Specifically,	the	heavy	neutrino	states	have
a	 small	 left-chiral	 component,	 allowing	 for	weak	 interactions.	This	means	 that
the	sterile	neutrinos	can	decay	by	photon	emission	via	channels	like

A	sterile	neutrino	with	too	large	a	mass	will	decay	at	an	appreciable	rate	due
to	the	same	5th	power	argument	that	we	used	for	proton	decay	in	Section	13.3.
Since	dark	matter	is	required	in	abundance,	such	decays	would	be	detectable	as
an	excess	of	X-ray	photons	of	energy	equal	 to	 the	mass	of	 the	 sterile	neutrino
(since	 the	 light	 neutrino	mass	 is	 negligible).	 That	 these	 decays	 have	 not	 been
detected	 provides	 an	 upper	 bound	 for	 the	 mass	 of	 the	 sterile	 neutrino	 if	 this
really	is	the	nature	of	dark	matter.	A	mid-scale	neutrino	with	a	mass	on	the	order
of	a	few	keV	still	provides	a	viable	candidate	for	socalled	“warm”	dark	matter:
that	 is,	dark	matter	of	a	range	of	speeds	intermediate	between	those	of	hot	and
cold	matter.	Opinion	on	 the	validity	of	 such	models	 is	divided,	however,	 since
they	 typically	 require	 more	 tuning	 than	 alternative	 models,	 with	 too	 small	 or
large	a	mass	leading	to	further	problems.

In	order	to	explore	a	final	dark	matter	candidate,	we	return	to	the	concept	of
R-symmetry	briefly	introduced	in	Section	13.4:	the	part	of	the	internal	symmetry



group	that	has	a	non-trivial	 interaction	with	the	space-time	generators.	In	some
SUSY	models,	the	U(1)	R-symmetry	is	broken	to	a	Z2	symmetry,	with	different
particles	 of	 a	 supermultiplet	 taking	 different	 values	 under	 this	 “R-parity.”
Specifically,	 the	 Standard	 Model	 particles	 take	 the	 value	 +1	 and	 their
superpartners	 take	 the	 value	 −1.	 If	R-parity	 is	 conserved,	 this	means	 that	 any
allowed	 Feynman	 diagram	 vertices	 necessarily	 include	 an	 even	 number	 of
superpartners.	In	turn,	this	means	that	the	lightest	of	the	superpartners	must	be	a
stable	 particle.	 If	 this	 lightest	 supersymmetric	 particle	 (LSP)	 is	 electrically
neutral	and	color	neutral,	then	it	is	a	candidate	for	dark	matter.

Each	of	the	particles	mentioned	previously	is	theorized	for	another	reason	and
plays	a	secondary	role	as	a	dark	matter	candidate.	There	 is	another	possibility:
that	 the	 true	 nature	 of	 dark	 matter	 is	 simply	 some	 other	 particle	 that	 has	 the
necessary	 properties	 of	mass	 and	weak	 interaction	with	 “ordinary”	matter.	We
already	know	of	three	particles—the	neutrinos—that	have	no	interaction	with	the
U(1)Y	or	SU(3)C	 parts	 of	 the	Standard	Model,	 so	 there	 is	 of	 course	nothing	 to
prevent	 the	 existence	 of	 whole	 “hidden	 sectors”	 of	 additional	 particles,	 not
interacting	 with	 any	 of	 the	 Standard	 Model	 gauge	 groups.	 It	 is	 tempting	 to
imagine	 that	 such	 hidden	 sectors	 could	 have	 their	 own	 gauge	 groups	 and
interactions	 and	 even	 their	 own	 version	 of	 atoms,	 molecules,	 and	 so	 forth.
However,	the	evidence	for	dark	matter	suggests	that	it	is	arranged	only	in	diffuse
uniform	halos	throughout	galaxies,	ruling	out	this	rather	fanciful	possibility.

We	 can	 see,	 then,	 that	 there	 are	 multiple	 potential	 explanations	 for	 dark
matter.	However,	there	is	no	reason	to	believe	that	only	one	of	these	possibilities
is	 realized	 in	nature.	 It	 is	plausible	 (indeed,	 likely)	 that	dark	matter	 is	 actually
composed	 of	 a	 combination	 of	 different	 particle	 types.	As	 such,	many	models
have	been	proposed	 that	 incorporate	 a	 variety	 of	 dark	matter	 constituents,	 and
which	seek	to	place	constraints	on	the	contribution	of	each	component.

We	should	also	mention	that	there	is	an	alternative	to	dark	matter.	Some	have
proposed	 a	 modification	 of	 Newtonian	 gravity	 on	 large	 distance	 scales	 to
account	 for	 the	 observed	 phenomena	most	 commonly	 ascribed	 to	 dark	matter,
such	as	the	galactic	rotation	curves.	Specifically,	a	gravitational	field	that	drops
off	 faster	 than	 1/r2	 at	 long	 distances	 can	 also	 explain	 the	 observed	 rotation
curves.	Others	have	argued	against	the	naturalness	of	such	modified	gravitational
theories,	pointing	out	that	many	still	require	additional	particle	content	to	make
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them	 work,	 which	 may	 seem	 to	 undermine	 the	 reason	 for	 their	 introduction.
There	 is	 no	 reason	 to	 suppose	 that	 all	 particles	 in	 the	 universe	 should	 interact
through	 the	 same	 combination	 of	 gauge	 groups	 as	 our	 own	 atoms.	 It	 almost
seems	obvious	that	 there	should	be	additional	particle	species	that	we	have	not
yet	detected,	making	dark	matter	the	more	natural	addition.

DARK	ENERGY	AND	INFLATION

As	 is	 clear	 from	 the	 preceding	 sections,	 the	 study	 of	 the	 universe	 at	 the
smallest	scale	through	particle	physics	has	a	surprising	overlap	with	its	study	at
the	 largest	 scales	 through	 cosmology.	 This	 relationship	 between	 apparently
disparate	 areas	 of	 physics	 goes	 further	 when	 we	 consider	 dark	 energy	 and
inflation.	One	could	very	reasonably	argue	that	these	are	areas	beyond	the	scope
of	particle	physics,	but	it	is	worth	pushing	boundaries	a	little	to	highlight	some
of	the	common	ground	between	disciplines.

Inflation

There	are	a	number	of	problems	with	the	Big	Bang	theory	that	may	be	solved
by	the	idea	of	inflation.	First,	if	Grand	Unified	Theory	is	correct,	then	we	would
expect	 to	 see	 magnetic	 monopoles,	 and	 yet	 none	 has	 ever	 been	 observed.
Second,	the	cosmic	microwave	background	(CMB)	is	found	to	have	essentially
no	variation	in	temperature	in	different	directions	in	space—that	is,	the	CMB	is
found	 to	 be	 isotropic.	 If	 we	 consider	 two	 regions	 of	 the	 CMB	 in	 opposite
directions	 from	 us	 in	 space,	 then	 clearly	 the	 light	 from	 each	 has	 had	 time	 to
reach	 us	 since	 it	was	 produced.	However,	 light	 has	 not	 yet	 had	 time	 to	 travel
between	 the	 two	 regions:	 they	 are	 beyond	 each	 other’s	 cosmic	 horizon.	 Since
nothing	can	communicate	faster	than	light	speed,	we	should	not	expect	these	two
regions	 to	 be	 in	 thermal	 equilibrium,	 and	 yet	 we	 find	 that	 they	 are.	 A	 third
problem	is	that	the	universe	is	observed	to	be	flat.	General	relativity	tells	us	that
space-time	itself	curves	in	the	presence	of	matter	and	energy,	and	cosmological
models	show	that	a	non-zero	curvature	of	 the	universe	as	a	whole	 increases	 in
magnitude	over	time,	quickly	moving	away	from	zero.	Despite	this,	we	appear	to
be	in	a	universe	with	zero	curvature,	or	at	least	a	curvature	very	close	to	zero.	To
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find	 ourselves	 in	 this	 situation	 ∼	 1010	 years	 after	 the	 Big	 Bang	 requires
incredible	fine-tuning	of	the	initial	curvature.

Inflation	is	the	idea	that	the	universe	underwent	a	rapid	expansion	early	in	its
history—in	 fact	 growing	 exponentially	 for	 just	 the	 first	 10−34	 seconds,	 but
increasing	in	size	by	a	factor	of	around	1027.	Such	a	rapid	growth	is	able	to	solve
the	 three	 problems	 listed	 above.	 The	 exotic	 particles	 such	 as	 monopoles	 are
spread	so	thinly	across	the	universe	by	the	expansion	that	the	expected	number
of	 such	 particles	within	 a	 given	 cosmic	 horizon	 is	 less	 than	 one.	 The	 horizon
problem	is	solved	simply	by	the	fact	that	the	regions	of	space	in	question	really
were	 once	 causally	 connected	 before	 inflation,	 since	 they	 were	 much	 closer
together.	 Similarly,	 the	 expansion	 smooths	 out	 the	 wrinkles	 in	 the	 universe
pushing	the	curvature	 toward	zero,	so	much	so	that	 the	subsequent	exponential
departure	from	zero	during	normal	expansion	has	still	not	given	the	universe	a
detectable	curvature.

So	what	 does	 this	 have	 to	 do	with	 particle	 physics?	The	 answer	 is	 that	 the
mechanism	 for	 inflation	 is	 commonly	 hypothesized	 to	 be	 one	which	we	 have
already	met—namely,	 symmetry	 breaking.	The	 assumption	 is	 that	 some	 scalar
“inflaton”	 field	 is	 initially	 in	 a	 highenergy	 symmetric	 state.	 During	 a	 phase
transition,	 this	 field	 then	 acquires	 a	 vacuum	 expectation	 value,	 decreasing	 its
energy	in	the	process.	The	excess	energy	is	what	drives	the	sudden	expansion	of
space.	There	are	many	details	here	that	are	being	glossed	over,	including	that	the
field’s	potential	cannot	be	as	simple	as	the	ϕ4	 that	we	considered	for	the	Higgs
mechanism,	 but	 must	 instead	 decrease	 toward	 its	 vev	 at	 a	 much	 shallower
gradient.

Dark	Energy

Observations	of	distant	supernovae	in	the	late	1990s	showed	that	we	are	now
in	another	period	of	accelerating	universal	expansion.	There	appears	to	be	some
form	 of	 energy	 driving	 on	 the	 expansion	 at	 an	 ever-increasing	 rate.	 Since	 the
exact	nature	of	this	energy	is	unknown,	in	analogy	with	dark	matter,	it	has	been
named	 dark	 energy.	 There	 is	 no	 ordinary	 matter	 capable	 of	 producing	 this
acceleration,	 since	 standard	 cosmological	 models	 tell	 us	 that	 all	 matter	 with
positive	energy	also	provides	a	positive	pressure,	resulting	in	a	braking	effect	on



the	expansion.	The	fact	that	positive	pressure	acts	to	slow	down	the	expansion	of
the	universe	can	seem	counter	intuitive	upon	first	encountering	it.	However,	it	is
important	 to	realize	 that	 the	universe	does	not	expand	 into	anything,	so	we	are
not	considering	this	pressure	to	push	back	on	any	kind	of	boundary.	Rather,	 its
effect	 is	on	 the	 internal	energy	density	of	 the	contents	of	 the	universe,	 through
the	work	done	due	 to	expansion.	Recall	 that	 in	 thermodynamics,	an	expanding
gas	 of	 pressure	 p	 and	 volume	 V	 does	 work	 pdV	 against	 its	 surroundings.
Similarly,	if	the	matter	in	the	universe	has	a	positive	pressure,	it	does	work	as	the
universe	expands.	With	no	surroundings	in	this	case,	the	energy	goes	instead	into
increasing	 gravitational	 potential	 energy.	 Before	 this	 energy	 was	 converted
through	 the	work	of	 the	expanding	gas,	however,	 it	was	kinetic	energy.	So	we
see	 that	 positive	 pressure	 implies	 a	 decrease	 in	 kinetic	 energy	 over	 time	 and
hence	a	decelerating	universal	expansion.	Therefore,	we	require	a	substance	with
negative	 pressure	 to	 account	 for	 an	 accelerating	 universe.	 Fortunately,	 particle
physics,	 or	 more	 accurately	 quantum	 field	 theory,	 provides	 at	 least	 two
possibilities.

The	first	possibility	is	that	there	is	a	“cosmological	constant,”	Λ,	representing
essentially	 the	 energy	 density	 of	 free	 space.	 In	 Einstein’s	 general	 theory	 of
relativity,	 such	 a	 constant	 is	 an	 allowed	 but	 not	 a	 required	 term	 in	 the	 field
equations.	 When	 it	 was	 first	 introduced	 by	 Einstein	 himself,	 originally	 as	 a
means	 of	 ensuring	 a	 static	 universe,	 it	 did	 not	 have	 a	 physical	 interpretation.
Instead	it	was	simply	a	mathematical	tool,	included	to	make	the	theory	behave,
and	later	removed	again	when	the	universe	was	found	to	be	expanding.	Now	that
the	constant	has	been	revived,	to	account	for	the	accelerating	expansion,	there	is
still	 the	question	of	 its	physical	meaning.	As	we	have	 seen	 in	earlier	chapters,
particles	 are	 described	 in	 quantum	 field	 theory	 as	 the	 quantized	 excitations	 of
various	fields.	These	fields,	though,	do	not	need	to	be	in	an	excited	state	to	have
a	nonzero	energy.	That	 is	 to	say	 that	 the	vacuum	is	predicted	 in	quantum	field
theory	to	have	a	“zero-point	energy,”	which	appears	to	be	the	ideal	candidate	for
the	cosmological	 constant.	However,	 the	downside	 to	 this	 interpretation	 is	 that
the	 value	 of	 the	 zero-point	 energy	 predicted	 by	 quantum	 field	 theory	 is
proportional	to	the	cutoff	imposed	in	order	to	tame	the	infinities	of	the	theory.	If
the	 Standard	 Model	 is	 the	 low-energy	 effective	 theory	 of	 something	 more
fundamental,	 then	 this	 cutoff	 is	 in	 turn	 related	 to	 the	 energy	 scale	 of	 this
underlying	new	physics.	This	 leads	 to	 the	 prediction	 that	 the	 zeropoint	 energy
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should	 be	 many	 orders	 of	 magnitude	 greater	 than	 the	 observed	 cosmological
constant.

The	second	possible	explanation	for	dark	energy	arising	from	particle	physics
is	more	closely	related	to	the	inflation	model	discussed	in	the	previous	section.
In	particular,	 it	 is	possible	 that	 the	universe	 is	undergoing	a	phase	 transition	at
this	moment,	with	 some	 scalar	 field	 settling	 into	 its	 lowest-energy	 state.	 Such
models	 are	 known	 as	 “Quintessence”	 models,	 in	 honor	 of	 the	 ancient	 four-
element	 view	 of	 the	 universe,	 with	 quintessence	 being	 the	 mysterious	 fifth
element.	 An	 important	 difference	 between	 quintessence	 and	 the	 cosmological
constant	 is	 that	 the	 process	 is	 localized	 in	 time.	 That	 is,	 the	 amount	 of	 dark
energy	will	vary	as	the	phase	transition	begins	and	ends.	On	the	other	hand,	the
cosmological	constant	is	just	that:	a	constant.	While	energy	is	liberated	through
the	 inflation-like	 behavior	 of	 the	 scalar	 field,	 thus	 driving	 the	 universal
expansion,	 in	 the	case	of	 the	cosmological	constant,	 the	energy	density	of	 free
space	 remains	 invariant	 throughout	 history.	 This	 does	 not	 mean	 that	 the
cosmological	constant	implies	a	fixed	acceleration	rate,	however.	This	is	crucial,
since	 observations	 show	 that	 the	 universe	 has	 not	 been	 accelerating	 since	 its
beginning:	 the	 accelerating	 phase	 only	 developed	 later.	 In	 the	 case	 of	 a
cosmological	 constant,	 this	 is	 a	 natural	 state	 of	 affairs.	When	 the	 universe	 is
young	and	dense,	its	expansion	is	dominated	by	the	matter	and	radiation	within
it.	 It	 is	 only	 as	 it	 expands	 that	 the	 sheer	 volume	of	 empty	 space,	with	 its	 tiny
contribution	to	the	energy	density,	is	able	to	dominate	over	matter	and	drive	up
the	expansion	rate.

THE	FUTURE	OF	PARTICLE	PHYSICS

It	is	of	course	impossible	to	say	where	the	future	will	lead	our	understanding
of	particle	physics.	In	the	shortto	mid-term,	it	seems	likely	that	experiments	will
deepen	our	understanding	of	the	exotic	hadron	states	discussed	in	Section	10.6,
including	pentaquarks	and	tetraquarks.	Likewise,	we	can	expect	to	see	a	gradual
increase	in	our	knowledge	of	the	quark-gluon	plasma	state	of	matter	as	well	as
the	 rest	 of	 the	 QCD	 phase	 diagram.	 More	 speculatively,	 the	 experimental
discovery	that	overturns	our	current	understanding	of	the	field	could	come	at	any
time.	Some	such	potential	discoveries	would	serve	to	steer	particle	physics	into	a



particular	 direction	 that	 has	 already	 been	 theorized.	 For	 example,	 if	 the
supersymmetric	partner	of	a	Standard	Model	particle	were	discovered	tomorrow,
then	 its	 properties	 would	 serve	 to	 narrow	 down	 the	 parameter	 space	 of	 an
already	 well	 developed	 area	 of	 study.	 On	 the	 other	 hand,	 it	 is	 also	 entirely
plausible	 that	 a	 new	 resonance	 may	 be	 discovered	 whose	 properties	 are
incompatible	with	any	of	those	particles	yet	hypothesized.	Such	a	discovery	has
the	potential	 to	alter	our	current	understanding	considerably,	 in	any	number	of
different	ways.	Depending	on	the	interactions	of	such	a	particle,	considerations
such	 as	 the	 necessity	 of	 anomaly	 cancellation	 may	 immediately	 predict	 the
existence	 of	 a	whole	 family	 of	 related	 particles.	 The	 incomplete	 nature	 of	 the
Standard	Model,	 as	 explored	 in	 this	 chapter,	 suggests	 that	 there	 may	 well	 be
some	kind	of	unpredicted	discovery.	However,	given	that	such	a	discovery	could
occur	at	essentially	any	energy	scale,	 it	 is	difficult	 to	say	whether	 the	next	big
moment	in	particle	physics	will	come	from	the	current	generation	of	accelerator
experiments	 or	 from	 a	 future	 generation,	 or	 indeed	 if	 the	 Standard	 Model	 is
robust	 to	such	high	energy	scales	 that	 there	are	 important	potential	discoveries
that	lie	beyond	the	energy	capability	of	even	hypothetical	machines.

On	 the	 subject	 of	 new	 experimental	 searches,	 there	 are	 already	 interesting
developments	 at	 various	 stages	 of	 planning,	 design,	 and	 construction.	 In	 the
short	term,	the	LHC	is	expected	to	undergo	an	upgrade	before	2025	to	increase
its	 luminosity,	 and	hence	also	 its	data	output,	by	an	order	of	magnitude.	More
long-term	 plans	 include	 the	 International	 Linear	 Collider	 (ILC)	 project.	 This
collider,	 to	 be	 constructed	 in	 the	 Kitakame	 Mountains	 in	 northern	 Honshu,
Japan,	is	planned	to	collide	electrons	and	positrons	at	energies	of	1	TeV,	around
five	times	the	collision	energy	of	the	previous	record	holder	for	lepton	collisions,
the	LEP.	To	achieve	this,	the	ILC	is	to	be	around	50	km	in	length.	Compare	this
with	the	longest	existing	linac,	the	Stanford	Linear	Collider	(SLAC),	at	a	length
of	 3.2	 km,	 and	 one	 can	 appreciate	 the	 mammoth	 task	 being	 considered.	 As
discussed	in	Chapter	5,	the	energy	of	lepton	collisions	is	much	more	controlled
than	those	of	hadron	collisions,	in	which	the	actual	collision	energy	is	dependent
on	the	fraction	of	momentum	carried	by	the	individual	parton	actually	involved
in	the	interaction.	However,	since	leptons	have	much	smaller	masses,	they	suffer
a	much	greater	rate	of	synchrotron	radiation	when	in	a	circular	accelerator.	It	is
clear,	 therefore,	why	the	next	generation	of	 lepton	colliders	will	most	 likely	be
linear.	Another	large-scale	lepton	linac	in	the	design	stage	is	the	Compact	Linear



Collider	 (CLIC),	 whose	 ingenious	 design	 will,	 it	 is	 hoped,	 allow	 for	 similar
energies	to	the	ILC	to	be	achieved	over	a	shorter	distance.	Beyond	this,	CERN	is
already	 conducting	 studies	 for	 the	 design	 of	 the	 next	 big	 thing	 in	 accelerator
physics.	 This	 Future	 Circular	 Collider	 (FCC)	 project	 is	 currently	 in	 the	 very
early	stages	of	development,	but	the	timing	of	the	project	is	worthy	of	mention.
The	LHC	and	its	upgrade,	the	high-luminosity	LHC,	are	expected	to	continue	to
produce	results	until	around	2035.	However,	history	suggests	that	the	design	and
construction	of	each	new	generation	of	experiment	can	take	around	30	years.	As
such,	 the	FCC	project	 is	 likely	 to	be	 the	successor	 to	 the	ILC	and	CLIC	rather
than	the	direct	successor	of	the	LHC.

All	of	this	uncertainty	does	not	prevent	us	from	considering	the	likelihood	of
various	experimental	discoveries,	though.	For	example,	while	opinion	is	divided
on	 the	 subject	 of	 supersymmetry,	 it	 is	 safe	 to	 say	 that	 the	 simplest
supersymmetric	 extensions	 of	 the	 Standard	 Model	 require	 the	 superpartner
masses	to	be	relatively	low.	The	higher	the	energy	that	is	probed	without	finding
signatures	 of	 these	 particles,	 the	 less	 sturdy	 the	 foundations	 of	 these	 models.
This	then	begs	the	question:	how	much	can	we	extend	a	theory	before	it	begins
to	look	incredible?

While	not	a	part	of	the	Standard	Model,	arguably	the	most	obvious	“missing
piece”	 of	 our	 current	 understanding	 of	 the	world	 is	 the	 graviton.	 As	we	 have
seen,	 all	 other	 processes	 that	 are	 continuous	 in	 classical	 mechanics	 become
discrete	 in	 quantum	 mechanics.	 The	 same	 should	 of	 course	 be	 true	 of	 the
gravitational	force,	and	so	we	should	expect	the	graviton	to	be	a	real	particle.	So
should	 we	 be	 looking	 for	 the	 graviton	 in	 our	 collider	 experiments?
Unfortunately,	 the	 answer	 is	 “no.”	 Gravity’s	 weakness	 in	 comparison	 to	 the
forces	of	the	Standard	Model,	with	a	coupling	of	only	around	10−42	times	that	of
electromagnetism,	means	 that	 individual	gravitons	are	essentially	unobservable
using	 standard	 particle	 physics	 techniques.	 Unless	 a	 fundamentally	 new
approach	 to	 experiment	 is	 discovered,	 then	 all	 we	 can	 hope	 to	 observe	 is	 the
classical	 effect	 of	 large	 numbers	 of	 gravitons—which,	 thanks	 to	 LIGO’s
experimental	verification	of	gravitational	waves,	we	have	already	achieved.	Now
with	further	observations	in	this	field,	we	can	hope	to	deepen	our	understanding
of	classical	gravity,	and	thereby	indirectly	develop	our	understanding	of	quantum
gravity.	 In	 particular,	 while	 we	 almost	 certainly	 will	 not	 directly	 detect
individual	 gravitons,	 precise	 analysis	 of	 gravitational	 waves	 may	 demonstrate



(a)		1.

quantum	corrections	to	classical	models.

Theoretical	developments	are	somewhat	easier	to	imagine	than	experimental.
While	 the	 history	 of	 physics	 as	 a	 whole	 has	 demonstrated	 that	 there	 is	 the
occasional	great	 leap	 forward,	 such	as	Einstein’s	 special	 theory	of	 relativity	or
Planck’s	 hypothesis	 of	 the	 energy	 quantum,	 more	 commonly	 progress	 in
theoretical	physics	is	a	gradual	development	of	the	ideas	that	have	already	been
laid	down.	So	it	seems	reasonable	that,	in	the	near	future	at	least,	progress	will
mostly	consist	of	building	and	 refining	models,	as	well	as	 the	 improvement	of
existing	tools	and	techniques.	With	this	in	mind,	it	seems	a	safe	bet	that	lattice
gauge	theory	will	see	the	greatest	advances	in	the	near	future.	Computing	power
grows	 exponentially	 year	 upon	 year	 and	 lattice	 calculations	 are	 the	 area	 of
particle	physics	most	heavily	reliant	on	large-scale	computation.	The	history	of
lattice	 QCD	 has	 already	 effected	 a	 remarkable	 improvement	 in	 our
understanding	of	the	strong	interactions	and	this	trend	seems	set	to	continue.

The	 mathematical	 foundation	 on	 which	 particle	 physics	 is	 built—quantum
field	theory—has	proven	incredibly	successful	in	describing	the	smallest	scales
of	our	world	as	we	observe	it.	However,	through	predictions	such	as	the	Landau
pole	 and	 the	 non-renormalizability	 of	 gravitational	 interactions,	 it	 essentially
predicts	its	own	demise	at	the	shortest	length	scales	and	highest	energies.	What
lies	 beyond	 this	 is	 open	 to	 speculation:	 whether	 this	 be	 string	 theory,	 loop
quantum	gravity,	or	some	as-yet	unconsidered	and	revolutionary	approach.	But
since	 field	 theory	 also	 demonstrates	 the	 validity	 of	 the	 effective	 field	 theory
approach,	 it	 shows	 itself	 to	 be	 the	 correct	 model	 to	 approximate	 whatever
physics	may	actually	lie	beneath	the	surface.	As	such,	in	much	the	same	way	that
day-to-day	engineering	tasks	require	only	Newtonian	mechanics,	we	can	be	sure
that	whatever	 the	 true	underlying	high-energy	behavior	may	be,	 the	 techniques
of	 field	 theory	 and	 particle	 physics	 discussed	 in	 this	 book	 will	 remain	 the
standard	for	most	applications.

EXERCISES

Show	that	the	eigenvalues	of	the	neutrino	“see-saw	matrix”
(Equation	13.2)	are	approximately	mM	and	 /mM	.



(b)

(c)

		2.

(a)

(b)

(c)

		3.

		4.

Hence	show	that	the	low-mass	neutrino	is	almost	entirely	left-chiral
and	the	heavy	neutrino	is	almost	entirely	right-chiral.
Assuming	a	neutrino	Dirac	mass	of	the	same	order	as	the	electron,
and	based	on	current	experimental	limits	of	the	physical	neutrino
mass,	estimate	the	Majorana	mass.

A	neutrino	mass	state	propagating	in	the	x	direction	at	time	t	can	be
expressed	as

where	|ν1(0)⟩	is	the	same	state	at	an	initial	time.
Since	the	neutrinos	are	close	to	massless,	we	can	assume	that	they
travel	at	v	≈	1,	and	that	E	≫	m.	By	expanding	the	expression	for	the
relativistic	momentum	in	terms	of	E	and	m,	show	that	the	above
state	can	be	written	as

Assuming	only	two	neutrino	flavors,	write	the	flavor	states	as
appropriate	orthonormal	linear	combinations	of	the	mass	states.
Following	a	similar	procedure	as	for	the	kaon	mixing	in	Section
12.3.2,	find	the	rate	of	oscillation	between	flavor	states	in	this	case.
How	does	this	generalize	in	the	case	of	three	neutrino	flavors?

Without	performing	any	calculations,	explain	why	the	selectron	( )	loop
would	cancel	off	the	electron	(e−)	loop	in	corrections	to	the	Higgs	mass.

If	we	wish	to	include	a	mass	term	in	the	equation	for	a	spin-2	particle,	it
must	be	modified	according	to

By	 acting	 with	 appropriate	 differential	 operators	 and	 the	 Minkowski
metric,	show	that	this	equation	has	five	degrees	of	freedom,	as	expected
for	 a	 massive	 spin-2	 particle.	 Hence	 find	 a	 simplified	 version	 of	 this
equation	obeyed	by	hµν	when	the	appropriate	constraints	are	imposed.



1	 The	 supersymmetric	 partners	 of	 the	Standard	Model	 particles	 are	 named	 in	 a	 systematic	way:	 bosonic
superpartners	 of	Standard	Model	 fermions	 are	given	 an	 initial	 “s”	 as	 in	 selectron,	 squark,	 and	 sneutrino,
while	 fermionic	superpartners	are	given	an	“-ino”	suffix,	as	 in	gaugino,	wino,	and	photino.	This	 leads	 to
some	of	the	more	interesting	names	in	all	of	physics!
2	For	simplicity,	this	has	been	left	this	part	out	of	the	Feynman	rules	listed	in	this	book,	since	it	is	gauge-
dependent:	the	form	of	the	rules	given	in	this	book	are	computed	in	a	particular	gauge.	This	does	not	affect
their	validity,	of	course,	since	any	physical	result	must	hold	regardless	of	the	chosen	gauge.



APPENDIX	A
ELEMENTARY	PARTICLE
PROPERTIES	AND	OTHER	USEFUL
QUANTITIES

This	appendix	lists	 the	properties	of	 the	fundamental	particles	and	interactions.
All	quantities	are	given	in	natural	units.	Note	that	the	lifetime	in	SI	units	and	the
decay	width	in	natural	units	are	related	by

Leptons

Quarks

The	following	table	lists	the	quark	properties.	Here,	I	and	I3	refer	to	isospin,
rather	 than	 weak	 isospin.	 The	 first	 mass	 listed	 is	 the	 current	 mass,	 with	 the
constituent	quark	(effective)	mass	given	in	brackets.	Since	all	quarks	but	the	top
exist	 only	 in	 hadrons,	 there	 is	 no	 decay	 width	 to	 list.	 Likewise	 there	 is	 no
effective	mass	to	list	for	the	top.	The	decay	width	of	the	top	quark	is	predicted	to
be	∼	2632	MeV.



Bosons

Name Charge Spin Mass	(MeV) Decay	width	(MeV)

γ 0 1 0 (stable)

W± ±1 1 80385 2085

Z0 0 1 91188 2495

g 0 1 0 —

H 0 0 125090 4.218

Some	Other	Useful	Quantities

Note	that	the	value	of	a	coupling	is	only	valid	at	a	particular	energy	scale.	The
values	 of	 e	 and	g2	 given	 here	 are	 in	 the	 low-energy	 limit.	 The	 value	 of	 g3	 is
given	at	 the	MZ	 scale	 since	 strong	 interactions	are	confined	at	 low	energy	and
perturbative	 calculations	 are	 invalid.	 To	 lowest	 order,	 the	 inverse	 coupling	

	 depends	 linearly	 on	 the	 natural	 logarithm	of	 the	 energy	 scale,	with
gradients



We	 also	 list	 here	 the	 magnitudes	 of	 the	 entries	 of	 the	 quark	 mixing	 (CKM)
matrix:



B.1

B.2

APPENDIX	B
FEYNMAN	RULES

The	Feynman	rules	have	already	been	explored	in	depth	in	the	relevant	chapters.
This	appendix	summarizes	the	rules	for	ease	of	use.

PROPAGATORS	AND	EXTERNAL
PARTICLES

Each	 particle	 below	 is	 assumed	 to	 carry	 momentum	 pµ	 and	 mass	 m.	 The
additional	factors	in	square	brackets	are	only	relevant	in	the	QCD	case.

FERMION	INTERACTIONS	WITH	GAUGE



B.3

BOSONS

Here,	q	 is	 the	charge	of	the	fermion,	θw	 is	 the	weak	mixing	angle,	and	e,	g2
and	g3	are	the	electromagnetic,	weak,	and	strong	couplings	respectively.	Gauge
bosons	 carry	 Lorentz	 indices	 denoted	 µ	 and	 color	 is	 denoted	 a.	 In	 the	 weak
quark	 interactions,	Vij	 is	 the	 relevant	 component	 of	 the	 CKM	mixing	 matrix.
Finally,	I3	and	YR	in	the	last	diagram	are	the	third	component	of	weak	isospin	of
the	 fermion’s	 left-chiral	 component,	 and	 the	 hypercharge	 of	 the	 rightchiral
component.

GAUGE	BOSON	SELF-INTERACTIONS

Here	g2	and	g3	are	the	weak	and	strong	couplings	respectively,	θw	is	the	weak
mixing	angle,	and	fabc	are	the	structure	constants	for	SU(3).	Lorentz	indices	are
denoted	with	Greek	letters	and	color	indices	with	Latin	letters.





B.4 HIGGS	BOSON	INTERACTIONS

The	notation	here	is	as	in	the	last	section	with	the	addition	of	mH,	MW	and	MZ

which	denote	the	masses	of	the	Higgs,	W±	and	Z0	bosons	respectively.	The	m	in
the	first	diagram	refers	to	the	fermion	mass.
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		4)

GENERAL	RULES

Four-momentum	must	be	conserved	at	each	vertex.

Integrate	over	undetermined	momenta	in	loops:	∫	d4q/(2π)4.

Closed	fermion	loops	give	an	additional	factor	of	−1,	and	the	trace	must
be	taken	over	the	γ	matrices.

Diagrams	related	by	the	exchange	of	two	external-state	fermions	have	a
relative	minus	sign.



APPENDIX	C
GAMMA	MATRIX	IDENTITIES

When	 computing	 amplitudes	 involving	 fermions,	 the	 following	 γ-matrix
identities	are	often	useful.

Note	 that	only	 traces	of	even	products	of	γ-matrices	are	 listed.	The	 trace	of
any	product	 involving	an	odd	number	of	γ-matrices	vanishes.	The	 last	of	 these
identities	can	be	useful	when	considering	weak	interactions.

The	 Feynman	 parameter	 trick	 can	 be	 generalized	 to	 allow	 more	 than	 two
factors	in	the	denominator.	The	general	form	is
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750	GeV	diphoton	excess,	147

A

action,	201
adjoint	representation,	98
adjoint	spinor,	216
ALICE,	307
α	decay,	6,	9
angular	momentum,	58,	90

commutation	relations,	59
in	hadrons,	174

angular	momentum	operator,	59
anomalous	magnetic	moment,	249,	275
anomaly	cancellation,	349,	368
anti-fundamental	representation,	97
antiparticle,	17,	189,	222,	225,	294
asymptotic	freedom,	288
atomic	orbitals,	16
axial	vector,	see	pseudo-vector
axion,	357,	378,	380
Axion	Dark	Matter	Experiment,	380

B

B	meson,	305,	346,	347
bare	coupling,	270



bare	mass,	269,	355
bare	propagator,	265,	268
baryogenesis,	353,	354
baryon,	19,	156

number,	19,	353,	369
basis	spinors,	219,	223,	253

completeness	relation,	224,	254
β	decay,	6,	9,	10,	14,	15
β	function,	271,	287,	352,	365,	374
betatron	oscillation,	131
Bethe	formula,	107
Bhabha	scattering,	84
Bohr

model	of	atom,	8
Bohr	magneton,	69
boson,	11,	155
bottom	quark,	27,	180
bottomonium,	180
branching	fraction,	147
branching	rules	(subgroups),	367
Breit-Wigner	formula,	146
Bremsstrahlung,	110
Brownian	motion,	3
bubble	chamber,	115
bunching,	126

C

Cabibbo	angle,	see	quark	mixing,	angle
calorimeter,	121–122
Casimir,	59,	94
Cauchy’s	integral	formula,	247
Čerenkov	detector,	120–121
Čerenkov	radiation,	111–113
charge	conjugation,	81,	353

matrix,	231



of	hadrons,	177
of	spinors,	223,	231
violation	in	weak	interactions,	81,	313,	340

charm	quark,	27,	180,	339
charmonium,	180
chiral	anomaly,	351
chiral	perturbation	theory,	297
chiral	projection	operators,	227
chiral	symmetry,	297,	355
chiral	symmetry	breaking,	320
chirality,	226,	229,	230,	313,	327,	333

operator,	226
chromaticity,	133
CKM	matrix,	335,	343
CLIC,	134,	388
Clifford	algebra,	211,	227
cloud	chamber,	114–115
CMS,	144
Coleman-Mandula	theorem,	371
color,	25,	161,	280,	294
color	factor,	289,	292
complex	coupling,	see	complex	phase
complex	phase,	343,	344
Compton	scattering,	109,	259,	264

amplitude,	see	scattering	amplitude
confinement,	25,	156,	161,	294,	296
conservation	laws,	19,	29,	75,	78,	353
conserved	current,	242,	377

for	scalar	in	EM	field,	190
for	scalar	particle,	188,	198
for	spinors,	216,	235

constituent	quark,	156,	172
continuity	equation,	57
contravariant	vector,	see	vector
coordinate	transformations,	36
cosmological	constant,	385



Coulomb	gauge,	193
Coulomb	interaction,	248
coupling	constant,	12,	270

electromagnetic,	12
nuclear	force,	14
strong,	271,	282
weak,	15,	311

covariant	derivative,	244,	282,	300,	321
covariant	vector,	see	vector
	symmetry,	82,	314,	340,	341,	353,	356
violation	in	weak	interactions,	344
	theorem,	83

Cronin-Fitch	experiment,	345
cross-section,	13,	135,	139

classical	scattering,	135
Coulomb	scattering,	see	Rutherford	scattering	formula
differential,	see	differential	cross-section,	206
for	hadron	production,	162
inelastic	scattering,	138
total,	144

crossing	symmetry,	84,	189,	225
cyclotron,	126–128

D

D	meson,	346
dark	energy,	31,	384
dark	matter,	31,	364,	379
decay	constant,	5
decay	mode,	147
decay	rate,	145
Delbrück	scattering,	250
differential	cross-section,	138,	139,	260
digamma,	147
dipole	magnet,	130
Dirac	equation,	17,	209



Hamiltonian	form,	222
in	momentum	space,	217
solutions,	216

Dirac	mass,	see	mass,	Dirac
Dirac	representation,	212
double-beta	decay,	233
down	quark,	24
drift	chamber,	118–119
dummy	index,	37

E

e+-e−	pair	production,	110
effective	coupling	constant,	270,	287,	352,	365
effective	field	theory,	297
eigenstate,	53
eigenvalue,	53
Einstein	summation	convention,	37
electromagnetic	current,	198
electromagnetic	interactions

of	scalar	particles,	198
of	spinors,	235

electromagnetism,	10
electron,	4
electron	volt,	xviii
electroweak	symmetry	breaking,	see	Higgs	mechanism,	Standard	Model
electroweak	theory,	28,	327,	329,	331,	349
emission	spectra,	8,	172
energy	operator,	55,	186
energy-momentum	relation,	45,	185
Euclidean	space,	38,	300
Euler-Lagrange	equation,	66,	67,	203
expectation	value,	53,	65
exponential	map,	86

F



f0,	307
fermi	(unit),	xviii
Fermi	interaction,	15,	311
fermion,	11,	16,	155
fermion	doubling,	301,	303
Feynman	diagram,	11,	29,	198

estimation	of	amplitudes,	250
higher-order,	264
QCD,	288
QED,	250
quark	level,	171
tree-level,	202

Feynman	parameter,	266
Feynman	rules,	199,	202,	206,	397

for	hadron-photon	interaction,	271
for	QCD,	285
for	QED,	251

field	strength	tensor,	44
fine	tuning,	355
fine-structure	constant,	12,	172
flavor,	158,	165,	331,	337
oscillation	in	mesons,	342
flavor	mixing	in	mesons,	170,	340,	342,	345
flavor-changing	neutral	current,	338
flavour,	25,	27
FODO	lattice,	132
form	factor,	271

pion,	275
proton,	274

four-momentum	operator,	186
four-vector,	41,	43
free	index,	37
full	propagator,	265,	268
fundamental	representation,	97

G



g-factor,	70,	72,	249,	275
γ5,	see	chirality,	operator
γ	matrices,	211

identities,	255,	267,	403
representations,	211

gauge	fixing,	192
gauge	invariance,	192,	195,	243,	244,	281,	333,	355,	371,	375
gauge	theory,	285,	331

Abelian,	243
non-Abelian,	281,	314,	316

gauge-covariant	derivative,	see	covariant	derivative
gaugino,	374
Geiger	counter,	117
Gell-Mann	matrices,	94,	281
Gell-Mann–Nishijima	formula,	329
general	covariance,	375
general	relativity,	374
generator,	see	group	generator
Georgi-Glashow	model,	366,	370
GIM	mechanism,	27,	339
global	phase	transformation,	242
glueball,	306–307
gluon,	26,	282

self-interactions,	284,	286
Goldstone	boson,	320,	322
Gordon	identity,	274,	275
grand	unified	theory,	365,	366
gravitational	waves,	377
graviton,	374–378
group,	76

Abelian,	77,	86
non-Abelian,	77,	86,	279

group	generator,	85,	281,	289,	366
group	representation,	87,	158,	211,	232,	366,	367

irreducible,	89,	93,	95,	158,	168



reducible,	88,	97
Standard	Model,	331

H

hadron,	19,	156
multiplets,	21
naming	conventions,	180
properties,	21

hadron	jet,	275,	296
hadronization,	296
half-life,	145
Hamilton’s	equations,	64
Hamiltonian,	64

non-relativistic,	64
of	charged	particle	in	EM	field,	67

harmonic	function,	193
Heisenberg’s	uncertainty	principle,	9
helicity,	225,	229,	230,	233,	312,	313

spinor	operator,	225
vector	operator,	196

hidden	sector,	381
hierarchy	problem,	354,	373
Higgs	boson,	28,	32,	326,	334,	335,	354
Higgs	mechanism,	28,	316,	334,	366

Standard	Model,	324,	364
toy	model,	316,	322

Hilbert	space,	52
hypercharge	(strong),	158

I

ILC,	387
impact	parameter,	104,	135
inflation,	383–384
invariant	amplitude,	142,	see	also	transition	amplitude,	203
invariant	mass,	47,	145



ionization	energy	losses,	104
irrep,	see	group	representation,	irreducible
isospin,	19,	24,	157
isotopes,	4

J,	K

Jarlskog	invariant,	348
J/Ψ,	27
kaon,	18,	81,	340
KATRIN	experiment,	14
ket	vector,	52
KL	and	KS,	345
Klein-Gordon	equation,	186,	187,	316
klystron,	129–130
Kronecker	delta,	37

L

ladder	operator,	61,	166
Lagrangian,	66,	75,	202,	235

for	electroweak	theory,	325
for	QED,	243
for	toy	Higgs	model,	322
QCD,	284

Landau	pole,	352,	366
large	hadron	collider,	see	LHC
lattice	QCD,	295,	298
Legendre	polynomial,	176
Legendre	transformation,	66
LEP,	312
lepton,	19,	156

numbers,	19
Levi-Civita	symbol,	39
LHC,	32,	123,	130,	144,	326,	387
LHCb,	305
Lie	algebra,	87,	92



graded,	372
Lie	group,	85

semi-simple,	366
lifetime,	145–148
lightest	supersymmetric	particle,	381
LIGO,	377
linac,	125–126,	see	also	ILC,	CLIC,	SLAC
linear	accelerator,	see	linac
local	phase	transformation,	242,	243
Lorentz	group,	99,	215,	226
Lorentz	transformation,	40,	42,	333

of	spinors,	213,	215,	228
Lorenz	condition,	193,	195
luminosity,	xviii,	126,	139

M

MACHO,	379
magnetic	focusing,	132–132
magnetic	moment,	70

of	electron,	69
of	hadrons,	73
of	proton,	275

magnetic	monopole,	370–371
Majorana	mass,	see	mass,	Majorana
Mandelstam	variables,	260
mass,	45,	100

bare,	see	bare	mass
constituent	quark,	173
Dirac,	363
fermions,	333
Majorana,	363
neutrino,	see	neutrino,	mass
of	hadrons,	172
of	quarks,	173,	335
physical,	see	physical	mass



mass	shell,	10,	205,	268
mass	state,	337
Maxwell	equation,	191

classical,	44
deformation	under	Higgs	mechanism,	321
quantum,	191

meson,	19,	156,	170
metric,	38,	39,	374
Minkowski,	42
minimal	coupling,	68,	71,	190
minimal	substitution,	see	minimal	coupling
Minkowski	space,	41,	300,	374
missing	mass,	48
Møller	scattering,	250

amplitude,	256
momentum	cut-off,	267,	297
momentum	operator,	55,	186
multi-wire	proportional	chamber,	117
muon,	18,	123,	162
MWPC,	see	multi-wire	proportional	chamber

N

natural	units,	xvii,	xviii,	41,	52
negative-energy	solutions,	187,	189,	209,	217,	222
neutral	currents,	28,	328
neutrino,	14,	15,	27,	313,	332

as	Majorana	fermion,	233
mass,	15,	332,	361,	362,	364
oscillations,	15,	332,	361
sterile,	364,	380

neutron,	10
Noether’s	theorem,	75,	242
nuclear	force,	12,	26,	248,	296

coupling	constant,	14
nuclear	magneton,	73



nucleon,	157,	297
nucleus,	6

O,	P

off-shell,	see	mass	shell
on-shell,	see	mass	shell
operator,	52
orthogonal	group,	89
parity,	78,	353

of	fermions,	80
of	hadrons,	158,	174,	175
of	photon,	79
violation	in	weak	interactions,	80,	312,	340

particle	decay,	46
particle	shower

electromagnetic,	110,	121
hadronic,	121

parton,	276,	288
path	integral,	201,	298
Pauli	equation,	70,	71,	230
Pauli	exclusion	principle,	155
Pauli	matrices,	63,	70
Pauli-Lubański	vector,	100
,	305

penguin	diagram,	346
pentaquark,	305
periodic	table	of	elements,	3
perturbation	theory,	202,	298

in	QCD,	288
photino,	374
photo-electric	effect,	7,	108
photomultiplier,	122
photon,	7,	10,	191,	199,	244
physical	mass,	269,	355
pion,	13,	18,	296



plum-pudding	model,	5
PMNS	matrix,	361,	362
Poincaré	group,	99,	371
polarization	tensor	(graviton),	376
polarization	vector,	191

basis,	192,	194
circular	polarization,	194
completeness	relation,	194,	259
linear	polarization,	194
longitudinal,	197,	198
orthonormality,	194

positron,	17
potential	between	interacting	particles,	246
principle	of	detailed	balance,	83
probability	density	current	non-relativistic,	56,	58
Proca	equation,	194–195
propagator,	203,	204

on	a	lattice,	301
proton,	9

lifetime,	369
proton	decay,	369
pseudo-Goldstone	boson,	320
pseudo-scalar,	79,	234
pseudo-vector,	79,	234,	235,	312

Q

QCD,	25,	285,	349
Lagrangian,	284
scale-dependence,	286

QCD	flux	tube,	see	QCD	string
QCD	string,	295,	303
QCD	vacuum,	303
QED,	10,	249,	349

coupling	constant,	12
Lagrangian,	235,	243



quadrupole	magnet,	132
quantization,	200,	349
quantum	electrodynamics,	see	QED,	see	QED
quantum	field	theory,	199,	316
quantum	mechanics,	7,	51
quantum	state,	see	state	vector
quark,	21,	23,	156,	158,	165,	276

constituent,	see	constituent	quark
quark	mixing,	27,	335,	337,	340,	343

angle,	337,	344
matrix,	see	CKM	matrix

quark-gluon	plasma,	307–308
quarkonium,	180
quintessence,	385

R

R-parity,	381
R-symmetry,	372,	381
radiation	length,	110
radiative	losses,	104,	110
radio-frequency	acceleration,	128–129
radioactivity,	5,	9
rapidity,	43
real	particle,	10
regularization,	267,	270,	299
relativistic	kinetic	energy,	46
renormalization,	264,	265,	268–270,	287,	312,	314,	316,	354,	378
representation,	see	group	representation
residual	gauge	freedom,	193
resonance,	48,	145,	181
RHIC,	307
RICH,	see	Čerenkov	detector
Rutherford	experiment,	6
Rutherford	scattering	formula,	6,	10,	26,	137

S



scalar,	35,	37,	79
scalar	particle,	186
scalar	product,	37
scattering	amplitude

for	Bhabha	scattering,	258
for	Compton	scattering,	259
for	distinguishable	charged	spinors,	252,	256

Schrödinger	equation,	8,	54,	64,	68
for	hadrons,	175
time-dependent,	56
time-independent,	65

scintillator,	122
see-saw	mechanism,	363–365
selectron,	374
self-energy,	269
semi-conductor	detector,	see	solid-state	detector
Σ	baryon,	158
significance	level,	147
silicon	detector,	see	solid-state	detector
SLAC,	387
slash	notation,	217
sneutrino,	374
SO(3),	92
solar	neutrino	problem,	361
solid-state	detector,	119–120
SO(n),	89,	232
space-time,	40
spark	chamber,	115–116
special	orthogonal	group,	see	SO(n)
special	unitary	group,	see	SU(n)
spectrometer,	113
sphaleron,	353
spherical	harmonics,	176
spin,	16,	60,	100,	153

commutation	relations,	60



of	Dirac	spinors,	220
of	hadrons,	156,	158,	165
quantum	number,	153

spin	operators,	60
for	spinors,	221
for	vectors,	195

spin-averaged	amplitude,	253,	258
spin-statistics	theorem,	16,	153,	155
spinor

color	space,	280,	289
Dirac,	211,	232
Majorana,	232
Pauli	(non-relativistic),	63
Weyl,	232

spontaneous	symmetry	breaking,	315,	316
squark,	374
Standard	Model,	28,	29,	331,	349
state	vector,	52

normalization,	52,	140,	220,	319
static	quark	model,	172
sterile	neutrino,	see	neutrino,	sterlie
Stern-Gerlach	experiment,	16
stopping	power,	107
strange	quark,	24
strangeness,	19,	20,	158
straw	chamber,	118
stress-energy	tensor,	374,	378
strong	 	problem,	356,	378
strong	nuclear	force,	15,	25,	155,	156,	163,	279

coupling	constant,	282
structure	function,	275–276
SU(2),	92
SU(3),	94
SU(3)	color	symmetry,	281
SU(5),	see	Georgi-Glashow	model
sum	over	histories,	201



SU(n),	89,	90,	157,	178,	331
supercurrent,	378
supersymmetry,	371–374
synchrocyclotron,	128
synchrotron,	130–133,	see	also	LHC,	RHIC,	LEP
synchrotron	radiation,	133–134

T

τ	particle,	27,	123
τ-θ	problem,	80
tensor,	40,	97
tetraquark,	304–306
time	reversal	symmetry,	82
top	quark,	27,	180
TOTEM,	144
Townsend	avalanche,	117
transition	amplitude,	84,	142,	see	also	invariant	amplitude,	205
transition	radiation,	113

U,	V

up	quark,	24
vacuum	expectation	value,	317,	319,	325,	334
vector,	35,	36,	97

contra-	and	covariant,	38,	44
virtual	particle,	10,	205,	287

W

W±	boson,	26,	312,	326,	327
Ward	identity,	274
wave	function,	8
wave-particle	duality,	9,	51,	53,	199,	241
wavefunction,	53

static	quark	model,	164,	167
wavefunction	collapse,	53
waveguide,	128



weak	focusing,	131
weak	hypercharge,	324,	328,	329,	331,	333
weak	isospin,	328,	329
weak	mixing	angle,	326
weak	nuclear	force,	15,	26

coupling	constant,	311,	324,	328
mixing	angle,	326

Weyl	representation,	212,	227,	228
Wick	rotation,	266,	300
WIMP,	380
wino,	374

X,	Y,	Z

X	boson,	369
Yukawa	interaction,	13,	236,	296,	332,	333,	345
Z0	boson,	28,	312,	325,	327
Zeeman	effect,	68,	172

anomalous,	70
zero-point	energy,	385
Z−(4330),	305
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