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INTRODUCTION 

We live in a very uncertain world. Variation surrounds our work. There is 
noise in our experiments, in our measurements, and in our test subjects. 
From all these sources of uncertainty and variation, we try to extract a 
coherent picture of very complex and sometimes dynamic, biological and 
chemical processes. In fact, one of our major challenges is to separate this 
signal, the 'real' biology or chemistry, from the noise. The tools developed 
to do this are called, collectively, biostatistics. 

Any tool, even a hammer, can be misused. This could result, at best, in 
inefficiency, and, at worst, in disaster. With the advent of newer, user- 
friendly statistical software packages, desk top computing, and point-and- 
click technologies, it is easier than ever to make mistakes in your analyses. 
The beauty of having access to so much computing power is that you can 
now enjoy ultimate flexibility in data processing: that can also be a 
problem. Ask your computer to produce a particular analysis, report or 
graphic, and that is exactly what you will get: if you happen to have asked 
for the wrong thing it will be produced just as quickly, and you will 
probably never know it was wrong. One aim of this handbook is to help 
you choose the correct tool for the job at hand, understand its strengths 
and weaknesses, and to help you recognize when you should seek expert 
advice. 

We describe biostatistics as a collection of tools for very good reasons. 
They are techniques that have been developed to do a job. Although the 
mathematical theory behind them can sometimes be rather esoteric and 
quite complex, our primary concern, as experimental scientists, is on how 
they may be applied, not on the theory behind them. 

We use biostatistics - the entire tool box - to achieve a variety of goals. 
We can use some of these tools to describe our data in standard, rigorous 
ways which allow our audience to know exactly what we mean, and do 
not mean, when we discuss our results. Other tools are used to compare 
and draw inferences about populations: a word that needs to be taken in 
its broadest sense. Animals treated with different drugs represent different 
populations, but so do stones quarried from different sites. Yet another set 
of tools can be used to derive estimates of model parameters. A dose- 
response curve is a good example of a model based system from which 
estimates for parameters such as the ED50 or L D 10  can be derived. These 
estimation tools can also provide a good insight into how much uncertain- 
ty there is in the model, the data, etc. and how much faith should be 
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placed in the results. The main categories we have just described are called 
description, inference and estimation, and we will devote one chapter to each.

The point of this book is to make Biostatistics accessible. We want to
inflame your intuition. Biostatistics can be intimidating if all you see are 
mathematical formulae - but if you understand why a particular test is 
performed and what it means in plain English, then you will know when 
and how to apply it to your own particular problems. That is our goal! 



1.  DESCRIPTION 

Collections of data are not the same thing as information. This is a rather
harsh generalization, but one which holds when examined critically. 
Data points are measurements; they are random 'snapshots' of random
processes. Because we human beings are limited by our technology, our 
measurements contain errors, and because it is impossible to run an 
experiment of infinite scope and range, data obtained from a limited 
sample must be extended to an entire underlying population. Data are, 
therefore, inherently noisy and incomplete. 

Information, on the other hand, depends upon context. Data need to 
be interpretable within that context. Valid summary and description are 
required to allow the signal to be separated from the noise and to enable 
the information obtained to be shared. For example, it makes no sense to 
separate your subjects into different classes and then ignore these 
classifications when you summarize your results. There must have been 
a reason for separating them in the first place: either they received 
different treatments, they represent different kinds of people, perhaps 
men and women, or they display some other attribute that makes them 
unique. In the next chapter we will explore ways of comparing groups. 
Before we do, however, it is important that you become acquainted with 
your data - summarize it, display it and extract from it all the 
information it has to offer. The tools of biostatistics which allow you to 
summarize, plot and interpret your data are called descriptive statistics. In 
the following sections we will discuss each tool separately, but first we 
will present a brief overview of the areas to be covered. 

The point of data description is to enable communication with your 
colleague - but what do you want to tell them? Do you really just want 
to describe the single sample of 10 rats you just received from your 
animal colony, or do you want to describe the class of subjects known as
'rat' and the effects of a particular treatment upon them? In order to
generalize from your sample to the whole population you must be able 
to associate your observed data with an ideal underlying population that 
represents all the rats you could have possibly tested. In other words, we 
need to separate in our own minds the idea of 'population' from the idea 
of 'sample' so that we can derive a description of the first from the 
second. 

What do we mean by a description? Typically, we want to tell our 
audience about how our population responds to a stimulus. We would 
like to say something about the average behavior we observe, whether 
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(and the skeptic!) usually also wants to know how your data are 
distributed around the average. Is one value, or set of values, more likely 
to occur than any other? We also need to know how much noise is 
inherent in the experiment. 

Suppose you could study simultaneously all the spontaneously 
hypertensive rats in the world. You might observe some with mean 
blood pressures below 90 mmHg, although the chances of that happening 
are quite small, maybe even 1 in a million. You would probably see more 
rats with blood pressures between 90 and 100 mmHg, and more still 
between 100 and 110 mmHg. If you allocated every hypertensive rat in 
the world to a group defined by blood pressure, classified in 10 mmHg 
intervals from 90 to 300 mmHg, you would have a clear picture of your 
population. That kind of experiment cannot be performed and reported 
in any reasonable time. You therefore need to say something about rats 
based upon the data observed in, say, 10 of their representatives. In the 
next section we will discuss populations, samples and distributions, and 
tie them together so that the summaries you derive from your sample 
actually represent the underlying population in a statistically rigorous 
way. 

we mean blood pressure in rats or densities in rocks. The statistician
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POPULATIONS, DISTRIBUTIONS AND SAMPLES 

Terms you should learn: 
Target population 
Statistical population 
Sample population 
Underlying distribution 
Sample distribution 
Observations 

Concepts you should master: 
Generalizations from sample to statistic to target 
Frequencies, probabilities and events 
Random sampling 
Bias 

The average person uses the word 'population' to mean a collection of 
individuals living together in a community. To the statistician, though, 
the word means much more than that. Formally, a statistical population is 
the set of all possible values (called observations) that could be obtained 
for a given attribute if all the test subjects were measured 
simultaneously. Less formally, suppose you are interested in a popula- 
tion of hypertensive rats, and suppose you decide to measure one 
attribute that you think describes your rats, say blood pressure or heart 
rate. The entire range of all possible blood pressures makes up the 
statistical population. While the point is a subtle one, it deserves to be 
made. You want to describe a target population (hypertensive rats) by 
summarizing a set of measures (blood pressure) and generalize from one 
back to the other. It is the population of blood pressure values which 
interests the statistician. 

Let us consider other examples. Suppose you were measuring the 
density of igneous rock. Then the statistical population of interest is not 
all the igneous rocks in the world, but all their densities. The target 
population you want to describe is 'igneous rock' by summarizing the 
attribute we call 'density'. Suppose you want to verify the quality of an
assay run for you by an outside laboratory. The target population would 
be all the tests run for you by that laboratory, and the statistical 
population might be all hemoglobin measurements performed during 
January. 

Care is needed, however. A target population and an attribute do not 
necessarily have anything to do with each other. For example, in the 
most absurd case, you could measure the tail lengths of hypertensive rats 
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rather than their blood pressures. One must wonder why, but if you did 
do something so silly, why would you target hypertensives rather than 
normotensives? Do you really gain any insight into your target 
population that you would not have had anyway? What you really want 
to summarize (and then tell your colleagues about) is blood pressure. 
Maybe you want to describe new blood pressure lowering medicines, or 
maybe just the rat population itself. In either case, tail length will 
probably not suffice since it is not a 'surrogate' for blood pressure. Good 
statistics cannot help silly science and vice versa! 

If we assume that you choose a statistical population that really 
represents your target, the next step is to build the link between your 
target and statistical populations, i.e. to define a mathematically 
descriptive relationship between your subjects and your statistical 
universe. If we could count the number of subjects in the entire universe 
that achieves a value between some predefined upper and lower limit, 
and if we let these intervals cover our entire universe, then we could 
calculate the frequency of observations within each interval. From that 
set of frequencies we would know exactly what the most frequently 
attained values are. The whole set of frequency-value pairs makes up 
what the statistician calls the underlying distribution of the statistical 
population. Grouping the observations into predefined intervals, 
counting their frequencies and presenting them graphically results in a 
plot known as the histogram, which is covered in much greater detail 
below. 

Mathematically, the frequency distribution of the underlying 
population explicitly defines a probability space. That means that we 
now know the exact chances of a value drawn from any subject falling 
within a specified interval. To carry our hypertensive rat example to its 
most extreme limits, we know that if 23% of all the hypertensive rats in 
the world registered mean blood pressures between 140 and 150 mmHg, 
the chances of observing any one rat with a measure in that range is 
23/100. The frequency distribution therefore becomes a measure of 
probability in an event space where the events are 'blood pressure 
between . . .'. This linkage between the underlying frequency distribution 
and the probability of observing any particular event, e.g. blood pressure 
between 140 mmHg and 150 mmHg, forms the basis for the inferential 
statistics presented below. 

You have probably heard of terms such as normal or Gaussian 
distribution, chi-square distribution, F-distribution. These are simply 
well defined Probability distributions which seem to describe the real 
world fairly well. Each is well established and well characterized. More 
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importantly, each has been derived based upon good statistical theory, 
which means that we can use them to develop standard tools that follow 
well defined rules of mathematics and logic. This makes them 
insensitive to opinion, feelings or subjectivity. We thus have the first 
crosslink in our bridge between the underlying population and a 
probability space with which we can associate our results. 

A problem arises when you try to measure an infinite number of 
values in an infinite number of subjects and assign them to an infinite 
number of intervals. It is impossible to measure the density of all the 
igneous rocks, the blood pressure of all the hypertensive rats, or review 
all the hemoglobin assay results from a target laboratory, collate them 
into an infinite number of intervals, and still have time to report your 
results. You must draw a finite sample from the underlying population 
and generalize your results from the smaller cross-section back to the 
whole. The connection between the sample and the underlying population 
forms the second crosslink in our bridge. 

The theory we are about to explore, and the tools we use to exploit it, 
require the linkage between the underlying statistical population and the 
sample to be undistorted. We gave you one example earlier about how a 
statistical population, tail lengths, yields misleading results when 
misapplied to a target population, hypertensive rats. That was a case of 
blatant silliness. But an even more insidious kind of error could creep 
into the process which could yield similarly misleading results yet 
remain almost undetectable. Suppose you are interested in a target 
population composed of all heart attack survivors, and suppose you 
sample patients from your local veterans hospital. The first problem is 
that you will probably skew your results to mostly men. In the USA, the 
majority of veterans hospital patients tend to be men in a lower than 
average socio-economic group, and your chance of observing a truly 
representative sample of heart attack victims is therefore minimized. 
Depending upon your geographical limits, you may be excluding 
population members from other parts of the country who would 
contribute valuable information to your study. If you are working in a 
rural area, all your patients may be from small towns or farms, or people 
who otherwise lead an entirely different lifestyle to that of a New York 
City stockbroker, or a Chicago taxi driver. Choice of sample is very 
important: you could easily bias your results by choosing your subjects 
too selectively, what we call selection bias. 

Intuitively you already know what selection bias is: something in the 
selection process somehow favors the choice of one particular subgroup 
over another. To the statistician, the term bias has a very specific 
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meaning: formally, any factor which interferes with the connection made 
between the target population and the sample is called a selective factor. 

The effect of all these factors taken together distorts this connection and 
enhances the differences between these two very important populations: 
the conglomerate effect is called bias. 

A word of caution: to the classicist, the term sample population is a 
misnomer and oxymoron. A sample cannot be a population since it is not 
infinite or complete. But to help you understand the text more clearly, 
we will use this term intermittently. We think that by saying sample 
population, you will more readily see the connection between things you 
want to describe, such as all the hypertensive rats in existence, and the 
ones you can get your hands on, the six individual rats in your 
laboratory. 

The theory developed to associate sample and population depends 
upon a minimum of distortion, which can only be ensured if your 
subjects are selected randomly from the underlying population. The act 
of randomization ensures that every subject has an equal opportunity of 
being selected for the sample without bias or interference. This is 
actually an exercise in mechanics: each subject must be given an 
absolutely equal chance of participating in your study. Assigning 
subjects to a treatment group in a laboratory is a lot easier than sampling 
the human population in a clinical trial, but the theory remains the same: 
randomization schemes using random number tables (or random 
number generators, etc.) ensure fair and honest sampling. 
Randomization of experiments and the identification and control of bias 
are discussed in more detail later. 

Finally, suppose you were to carry out your experiment many times. 
Do you really think you would obtain the same results from sample to 
sample? If identical results were cbtained, surely, as a good scientist, you 
would be at least a bit skeptical about their validity? We all know that 
variation between experiments exists, and we expect to see it. If we do 
not, we feel a bit uneasy about the validity of our study. Such variation 
arises from the fact that when you draw a finite number of subjects at 
random from your infinite underlying population, the chances of 
selecting the same subjects in different samples are infinitesimally small. 
We should see variations from sample to sample. The point of statistical 
analyses, in general, is to quantitate the degree of variation we can 
reasonably expect, and the point of descriptive statistics, in particular, is 
to provide an insight into the shape and size of the signal underlying 
your sampling noise. 
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MEASURES OF CENTRAL TENDENCY 

Terms you should learn: 
Mean (true) 
Median 
Mode 
Sample mean 
Random variable 

Concepts you should master: 

Limits of the median and the mode 
Random variables, functions, and distributions 
The sample mean as a random variable 
Central tendency as a measure of location 
Sample mean as an unbiased estimator of the true mean 

Suppose you are allowed 5 minutes in which to discuss the results of 
your last six studies. Or suppose you must write a short communication 
summarizing these results for a prestigious journal. How do you 
communicate, quickly and effectively, the key points of your work so 
that you will win your Nobel prize, obtain your promotion, etc.? What 
key elements of your study do you want to describe in the clearest 
fashion? Do you really want to outline every single subject in your target 
population, one by one, or could you present some summary to make 
your points clearly and efficiently based on your sample? 

Although on rare occasions you really might want to describe your 
study on a subject-by-subject basis, most instances require discussion of 
a conglomerate effect, results being summarized using one or two simple 
descriptors derived from a sample of your statistical population. These 
measures need to be clear and concise, and they are hopefully 
representative of what the underlying statistical population is actually 
telling you. Although many measures are available, and we will discuss 
some of them below, the one used most often to summarize a sample
data set is the average. 

The average or mean 

Statistically, we refer to the average as the arithmetic mean, or just the 
mean, or the expected value, and there are many good mathematical 
reasons why it should be used to summarize your statistical population. 
It is stable, it is usually unbiased, and it takes advantage of a rich 
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underlying mathematical theory which allows us to make statements 
about the underlying population even though we have only sampled a 
small segment of it. We humans like to know what the typical patient, 
rock or rat looked like, felt like or weighed. For us to make decisions, 
whether they are related to medical interventions or to consumer 
products, it is usually sufficient for us to know how a population, on 
average, would be affected by our intervention. How much, on average, 
does the typical man weigh? What is the average density of steel bars 
coming off an assembly line? What is the average blood pressure of 70- 
year-old men? 

We assume that characteristic measures of a population are reflected 
in the average population member, and that the average calculated from 
our sample actually represents the average value that would have been 
observed if the entire underlying population had been observed. In 
statistical terms, what we are saying is that the sample mean is an 
unbiased estimator of the true mean. In experimentation, industrial 
design, and even in recreational activities we adapt to these measures. 
We perform clinical trials to see whether the average patient improves 
after therapy. We build automobiles to fit the average body, and we can 
use averages as a measure of performance in sports. 

The mode 

The average is only one summary variable that describes the typical 
behavior of a population, i.e. the 'center' of a sample, and helps us locate 
it in your measurement space. The primary variables which summarize 
the 'center' of your sample are the mean, the median and the mode. As a 
group, these are called measures of central tendency. The easiest of the three
to understand, the one that lends itself to pure intuition, is the mode. 
Recall the frequency distributions outlined above: the mode is the most 
frequent value attained in your sample population. No calculations or 
formulae are required to find it: you simply count your data and plot it. 
The problem with the mode is that while it tells you about your most 
frequently observed values, it tells you nothing about the rest of your 
sample, and hence the statistical population underlying it. A great deal 
of information is therefore being discarded. This problem is illustrated in 

figure have the same mode, yet these two distributions clearly represent 
different underlying populations. This single descriptor is insufficient. 

A second problem arises when a frequency distribution has two or 
more peaks - what a statistician calls a bimodal or multimodal distribu- 

Figure 1. The frequency distributions shown in parts a and b of the 
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tion. What does the secondary peak mean? Could it represent another 
underlying population, or is it just a fluke of sampling and nature? A 
classic example is the mean arterial blood pressure measured in 'healthy 
males'. The frequency distribution sometimes shows a secondary peak at 
the higher end of the scale. One explanation has been that a subsection of 
the target population has essential hypertension, and this group emerges 
in some samples when blood pressure is used as one of the attributes 
defining 'healthy'. In fact, there are actually two populations involved in 
the sampling: a normotensive population and a population of 
individuals who have coped with essential hypertension. In this case the 
label 'healthy' actually means 'asymptomatic'. There is nothing magical 
or mystical about this example. Bimodal distributions can be observed all 
the time. The point is that the secondary peak may indicate that your 
measure and your selection factor, e.g. 'low mean arterial blood pressure' 
equals ‘healthy’, are confounded and overlap. 

One final problem with the mode is that it implicitly depends upon 
the scaling, precision and accuracy of your measurements. Figure 2 
illustrates this by considering a population that is measured four 
different ways. First, suppose 100 people are standing in a field. You fly 
over them in an aeroplane and measure their heights with your 
altimeter. The precision of your measure classifies your subjects into 10- 
foot intervals. Clearly you have a mode in the group from 0 to 10, with 
no data in 10 to 20, 20 to 30, etc. This is shown in panel a of the Figure. 
What does this mean? All you can say is that there are no giants in your 
population. 

You then use a measuring stick which is exactly one foot long to 
measure each person in the field to the nearest foot. The results are 
shown in panel b. Your distribution has no one in the intervals 0 to 1, 1 
to 2, 2 to 3, or 3 to 4. Some small number of people are assigned to the 
interval 4 to 5, most to the interval 5 to 6, some to the interval 6 to 7, and 
none to the interval 7 and above. Your mode is in the interval from 5 to 6 
feet. You now know that your population contains no dwarfs. 

When you discover that your measuring stick actually has 1 inch 
gradations on the other side, you re-measure your sample population to 
the nearest inch. The results of that measure are shown in panel c. 
Clearly the mode is emerging in the interval 5 feet 7 inches to 5 feet 8 
inches. 

A world famous nuclear physicist then tells you that she can measure 
your sample to the nearest 0.000001 inch. The new distribution has no 
mode at all. Figure 2d shows the distribution over your whole range of 
values. The intervals are 0.000001 inches long, and no interval has more 
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Figure 2
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than one person in it. In other words, no two people in your sample are 
exactly the same height when it comes to that level of precision in your 
measurement, and although the data are infinitely precise, we can derive 
no useful information about the mode. 

The median 

Another measure of central tendency is the median. This represents the 
value that exactly splits your population in half 50% of the population 
falls above this value and 50% falls below. Like the mode, the median is 
determined from the frequency distribution, and no real calculations are 
involved in determining it. Suppose you sample your underlying 
statistical population by drawing N subjects at random. If N is an even 
number, then the median is half way between the two values ranked 
(N/2) and (N/2) + 1. If N is odd, the median is the (N+1)/2 ranked value 
in the data set. A characteristic of the median is illustrated in the 
following examples. The median of a data set comprising the values 1,1, 
3, 5, 6, 8, 10 and 100 is 5.5, half way between 5 and 6. If the values of the 
sample data were 1, 1, 3, 5, 7, 8, 10 and 100, the median is 6, half way 
between 5 and 7. Now suppose your values were 1, 1,3, 5, 6, 8, 10 and 
100 000. The median goes back to 5.5 again, illustrating the limits of the 
median when describing data. 

The median intimately depends upon the sparseness of your sample 
but not the precision of your measure. This is one advantage of the 
median over the mode. There is another strength to the median in that it 
is insensitive to vastly outlying measures: the first and third examples 
above have the same median, even though the last point in the third 
sample is 1000 times larger than that in the first. This ability of the 
median to withstand outlying data measures is the basis for much of the 
non-parametric statistics described later and is one way in which 
statisticians handle potential outliers like those observed above. The 
problem is that there is no mathematically accessible way to associate the 
median of the sample with the median of the underlying population. To 
make that connection we use the third, and most common, measure of 
central tendency, the mean (the arithmetic mean or common average) 
described earlier. 
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Sample means and random variables 

Everyone knows that the mean is calculated by adding the observations 
all together and dividing by the total number of observations you have. 
Let us look at the formula more closely: 

Here means 'summation'. What this simple formula says is that the 
observed value for the ith subject, Xi , is actually assigned an importance 
or weight in determining the final information derived from it about the 
statistical population: this weight is 1/N. Each data point is, therefore, 
equally important in assessing the central tendency of the population, 
assuming that these points were chosen at random when the population 
was sampled, and that no data point is any more important than any 
other. It is this assumption that provides us with the theory we need to 
bridge the gap between our sample and the underlying populations. 

Let us look at what the sample mean really is. It is derived from a 
finite cross-section of representatives selected at random from an 
underlying population. No data point is more important than any other. 
Even under these theoretically perfect conditions, would you really 
expect the average calculated from your sample to be exactly that of the 
statistical population underlying your experiment? Will they really be 
the same time after time and experiment to experiment? Is there no 
chance or randomness in your universe? Of course there is! 

To link our sample to our underlying population, we use a mathemati- 
cal construct known as the random variable. A random variable is actually 
a function. It represents all the possible values you could have chosen 
from your underlying statistical population if you had had the time. 
Each sample point observed represents one realization from all those 
possible choices. To understand how a random variable helps us link the 
sample to the underlying statistical population we need to lay a little 
theoretical ground work. 

Every random variable follows two simple rules. The first is that 
anything you do to a random variable, whether addition, subtraction, 
multiplication or division, results in another random variable. The 
second is that each random variable is related to an underlying statistical 
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population with a distribution of its own. Therefore, if a sample of size 
10 is drawn from an underlying population, the resulting data points 
actually represent 10 realizations of the random variable. If we add them 
all together, the sum is still a random variable (rule 1). If we multiply 
that sum by 0.1, i.e., divide it by 10, then the result is still a random 
variable (still rule 1). This means that the sample mean (adding up your 
observations and dividing by 10) is a random variable, and the one 
sample mean you happen to have calculated is only one realization 
drawn from the distribution of all possible samples means calculated 
from samples of size 10. 

We cannot make this leap with the median and the mode. While they 
are important descriptors which provide us with insight and an intuitive 
notion about the shape of our data, the mean is the primary tool for 
establishing an association between a sample and the population from 
which it is drawn. We will complete this connection in the next section 
when we talk about data dispersion and spread, but for the moment you 
can gather useful information using the three measures of central 
tendency already discussed. 

Distributions 

If we have a symmetric, unimodal distribution, then in the underlying 
population the median, mean and mode have the same value. The 
normal or Gaussian distribution is the primary example of this situation. 
As we diverge from symmetry the median and mean separate, since the 
mean is sensitive to outlying or extreme values and the median is not. As 
we diverge from a unimodal shape multimodal distributions arise, and 
while these may be symmetric, and while the median and mean may be 
perfectly equal, the mode can become totally undefined. 

Given these three measures of central tendency, you should now be 
able to describe the vast majority of your experimental results in 
standard nomenclature to both your audience and yourself. Central 
tendency is, however, insufficient as a descriptor of your population. It 
only tells you about the location of your population, not its variability. 
To obtain a clearer picture of your data, to hear what it is really telling 
you, you need to know how variable it actually is. The next section 
provides us with the tools we need to describe that variability, and, on 
the way, helps us to complete the bridge between our sample and 
statistical populations by providing us with a measure of how good an 
estimate our sample mean really is. 
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Normal and non-normal distributions 

Data may be drawn from an underlying distribution which is skewed 
(e.g. it has a long tail sticking out to the right). Distribution of this shape 
indicates that the frequency of occurrences about your mean is not 
symmetric. The weighting scheme outlined above for the arithmetic 
mean, which assumes that all points should be given equal weight, may 
therefore not be a fair representation of the importance of each data point 
to the final calculation. To offset this inherent inequality, statisticians 
have devised a way of transforming the data which works in most cases. 
If you converted the raw data values to their logarithms (assuming all 
are greater than zero) and plotted them, the distribution would appear 
much more normal. The antilog of the arithmetic mean of these log 
values (called the geometric mean) then gives you a better estimate of the 
true ‘center’ of the population. We discuss data transforms and scaling 
later (see The Design of Statistical Experiments). But the point here is 
that when faced with non-normal data, especially skewed data, there are 
tools on which we can rely that allow us to describe accurately and 
precisely those data and the underlying distributions from which they 
were drawn. 
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DATA DISPERSION, NOISE AND ERROR 

Terms you should learn: 
Variance 
Standard deviation 
Standard error 
Kurtosis 
Skewness 
lnterquartile range 

Concepts you should master: 
Measures of inter-subject distances 
Measures of subject to point distances 
Sum of squared distances and the insurance of a positive measure 
Degrees of freedom 
Units, square roots and Pythagoras 
Data and scales 
Distribution of sample means 

In the previous section we outlined the three primary measures of 
central tendency you can use to describe your data. These measures tell 
you approximately where your data are, but not how the individual 
measures are arranged around them. For example, the two populations 
shown in Figure 3 have the same means and medians, yet they are 
clearly nothing alike! To truly describe your data you need a description 
of how variable your data are: how widespread is the distribution? Is it 
symmetrically spread over your observation range? How flat or peaked 
is it? The point of this section is to introduce you to the tools that 
measure data dispersion and how to use them to help you interpret your 
own results and then present them as clearly and concisely to others as 
possible. 

Suppose you have at your disposal all the measures of a statistical 
population (for instance, heart rates) that were drawn from an 
underlying target population (which could be rats). How would you 
describe the variability of your population if you were not constrained 
by logistics, logic or mathematical reason? Intuitively, you would want a 
measure of dispersion that either describes how far each point is from 
every other point, or how far each is from some fixed reference point. 
The idea of providing an array of inter-subject distances is too vast a task 
to even initiate. Even if the universe you are dealing with is small 
enough, e.g. heart rates of rats that weigh 245 g and have green eyes, and 
even if the data array were manageable, there is no clear way for the 
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Figure 3 
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human mind to digest this type of two-dimensional display and make 
good sense of it. There is certainly no good way to present these results 
to an audience in a concise manner. 

You are therefore forced to measure the dispersion of your data 
around a fixed point - but which one? You could choose an arbitrary 
point in the data set, but then the measure of dispersion you pick would 
vary from population to population, making comparisons between them 
a nightmare. Alternatively, you could choose a fixed point that is 
independent for all data sets, such as zero, and proceed from there. The 
problem with that is that the measure of dispersion is now sensitive to 
the scale of the numbers. Data dispersed around numbers like 10 (e.g. 9, 
11, 12, 14, 8, 7) will look less variable than those dispersed about 
numbers like 100 (e.g. 99, 101, 102, 104, 98, 97). It therefore makes more 
sense to choose one of the measures of central tendency described above 
to act as a locator, forcing your measure of variability to be centered in 
the correct location. Which measure would you choose? We have already 
shown that the median and mode are reasonable descriptors of location, 
but have problems associated with connecting the sample and 
underlying population. Since you will eventually be taking only a 
sample from your underlying population, you need to know that that 
linkage will eventually be in place. Therefore, the best choice for fixing 
the 'dispersion center' of our new measure is probably the mean. 

Variance

Having chosen the mean as a fixed point, how would you establish a 
measure of dispersion that is a reasonable descriptor of the variability in 
your data? You could list the distances from each point to the mean in a 
table, but this is just a one-dimensional analog of the two-dimensional 
array of inter-subject distances described above. While it may seem 
easier to collate and display than a two-dimensional table, the 
information you can offer based on this table diminishes rapidly as your 
population expands. You should therefore provide your audience with 
some sort of summary measure: a single number that can be normalized 
across all underlying populations and can be used as a standard 
descriptor of data variability from population to population. 

The obvious choice would be the average distance from each point to 
the mean - but there is a problem with that very simple solution. Look at 
the following equation: 



Description 21 

= 0!

The left hand summation in the first line is the sum of the distances 
from each point to the mean. Dividing that sum by the number of points 
in the data set, N, would give you the average distance you desire. The 
solution to the equation, however, is zero. This makes good sense when 
you think about it. What this calculation tells you is that no matter what 
fixed point you choose, the mean is the single point that minimizes the 
sum of all the distances (if you do not ignore the sign of the distance), 
and that this minimum value is, by definition, zero. This is another 
advantage of the mean over the median and the mode. The conclusion 
that the center of your data is where that sum is not just minimized but 
must be zero is useful in developing the theory we will need to link the 
estimates from our sample population to the true underlying values of 
our statistical population. Since the sum is zero, and you know that there 
is noise associated with the data, your intuition has to stretch a little 
farther to produce a dispersion measure that will still work. 

Intuitively, the easiest thing to do is to force all the distances to be 
positive. In other words, it does not matter whether a point is five units 
to the left or seven units to the right of the mean: all the distances are 
added up and the sum, or its average, is presented as a single measure of 
variability. This measure is called the mean deviance of the distribution 
and it seems to fit all the criteria we have set out for it. The problem is 
that mathematicians have found that the function that makes all the 
distances positive, the absolute value, is mathematically difficult to 
handle for reasons that are well beyond the scope of this book. 

There is another way of making all these distances positive: they can 
be squared. Adding the squared distances between each point and the 
mean always results in a positive number. If you were to take that sum 
(called the sum of squares), and divide by N you would have the average 
dispersion about the mean. However, whether you realize it or not, you 
have forced a constraint upon your data: by using the mean as your 
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measure of central tendency you have predetermined that the sum of the 
unsquared distances is zero. Therefore, if you knew the value of any N-1 

points in your sample population, you could add them up and 
determine the final point explicitly. For reasons beyond the scope of this 
book, theory requires us to account for this constraint by dividing the 
sum of squares by N-1 and not N. This of course makes the ratio slightly 
larger, and thus our estimate of the noise a bit more conservative. It is 
this ratio: 

that statisticians call the variance: it provides us with a single measure of 
variability which is mathematically easy to calculate and, it turns out, 
theoretically pleasing when associating a sample population to an 
underlying population. Parenthetically, the practice of using the number 
of independent points minus the number of constraints imposed on your 
data is used throughout inferential statistics to determine the freedom 
you have to maneuver about your information. The statistician calls 
these free steps, degrees of freedom, a concept which will be considered in 
much greater detail in the next chapter. For the time being, think of 
degrees of freedom as a 'currency' of information, much like information 
coins to be spent when describing or comparing your populations. 

Standard deviation 

Let us look at the units of the variance: they are the squared units of the 
original variables. Feet become squared feet, kilograms become squared 
kilograms, etc. How can we possibly relate to a dispersion measure that 
is inconsistent with our original units? How could we plot it on the same 
graph? What does it mean to say we have so many squared inches of 
variability? The obvious solution to our problem is to take the square 
root of the variance and define a new measure of variability with the 
correct units. This new variable, the square root of the variance, is called 
the standard deviation. A standard notation has been developed for these 
two important parameters. The population variance is usually denoted 
as and the population standard deviation is denoted as The sample 
variance and standard deviation are denoted, respectively, as s

2 
and s. 

The standard deviation has a number of advantages over the variance. 
First, you can plot the data and its spread on the same graph. A standard 
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deviation of 3.41 feet around a mean can be plotted as a line on a graph 
which has feet as the x-axis. It has much more meaning than the variance 
of 11.63 feet2. Second, the standard deviation looks much like the 
Pythagorean theorem (the square root of the hypotenuse of a right- 
angled triangle is the square root of the sum of the other two sides), 
which is, if you think about it, a measure of distance on a two
dimensional grid. The linkage of dispersion about the mean and distance 
is more than fortuitous. It allows us to associate distance and its 
probability measure as the basis of the inferential statistics we present 
below. 

Coefficient of variation 

There is still a potential problem in interpreting your results when 
scaling your data. Suppose your underlying population consisted of only 
hypertensive rats with green eyes, and there are only six of them in the 
entire world. Your statistical population is composed of body weights, 
and the body weights of those six rats are 280, 286, 310, 316, 293 and 306 g.
The mean body weight of your population is 298.5 g. The variance is 
1023.5 g2 and the standard deviation is 31.99 g. Now suppose you 
measured the body weights in kilograms. Then the mean is 0.2985 kg, the 
variance is 0.0010235 kg2 and the standard deviation is 0.03199 kg. Are 
these data, measured as kilograms, really less disperse than when they 
are measured as grams? Of course not! 

To adjust for the scaling of data, you could normalize your measures 
of variability by dividing by the mean. Dividing the variance by the 
mean makes no sense, since you still have a disparity in your units of 
measurement, but dividing the standard deviation by the mean gives the 
coefficient of variation (abbreviated CV), which is usually reported as a 
percentage. In our body weight example of green eyed hypertensive rats, 
the coefficient of variation is 0.107 (31.99/298.5 or 0.03199/0.2985) or 
10.7%: that measure is the same whether body weight is measured in 
grams, kilograms, or metric torts. 

Standard error of the mean 

Up to now we have focused our attention on describing the underlying 
population. Suppose, however, that you have only a sample (chosen at 
random) from your underlying population. This is the scenario most 
likely to be encountered in the real world. Can we use these measures of 
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variability to finally build our bridge between the sample population and 
the underlying population and link their respective descriptors? 

Recall that a mean calculated from a sample is, in fact, a random 
variable. By its very definition, then, it represents a small cross-section 
drawn from an infinite population of other sample means, i.e. your 
particular sample mean is but one realization drawn from a distribution 
of all possible sample means when the sample size is fixed to N. This 
distribution of sample means has its own variance, and we would expect 
the realizations drawn from this distribution, of which your particular 
sample mean is but one, to vary from sample to sample. This becomes 
intuitive when you consider the chances of drawing exactly the same 
subjects and measuring exactly the same blood pressures from experi- 
ment to experiment. To link the sample and underlying populations, to 
help us complete our bridge, and to be confident that the first really 
represents the second, we must be able to measure how noisy the data 
really are, and how much of that noise Peaks into your samples from 
experiment to experiment when you calculate your sample mean. 

The tool used to gauge the ability of a single sample mean to estimate 
the true mean is the standard deviation of the population of sample 
means. We call this statistic the standard error of the mean (SEM). When a 
statistician talks about error, he or she is not making a value judgement. 
The term usually refers to noise in the data, and this noise may be due to 
limits in technology, subject- to-subjec t variations, day- to-day-varia tions, 
etc. The SEM is calculated from the equation: 

where is the standard deviation of the underlying statistical population 
and N is the sample size. It is highly unlikely we would ever know 
since our data are derived from a sample, so in practice, to calculate the 
SEM we substitute the sample standard deviation, s, for to derive the 
equation: 

Let us return to our green eyed hypertensive rats. Suppose there is no 
reason to believe that eye color has anything to do with body weight, 
and that these six rats have been chosen at random from the underlying 
population of all hypertensive rats. The target population is hypertensive 
rats, the statistical population is rat body weight, and the sample of six 
rats yields a random sample of all those possible weights, i.e. six 
realizations of the random variable 'body weight'. Then the sample 
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mean, variance, and standard deviation are 298.5 g, 1023.5 g2 and 31.99 g 
respectively. The SEM is 13.06 g (31.99/2.45, 2.45 is the square root of 6). 

There are two things to note about the SEM. The first is that it also has 
the same units as the mean. The point of the standard deviation was to 
ensure that as a measure of noise it would have the same units as the 
mean, and the SEM is just the standard deviation of the distribution of 
sample means. The second point is that the SEM is smaller than the 
standard deviation, and that it becomes still smaller as the sample 
increases with size. The reason becomes obvious when you think about it 
logically. The SEM is a measure of variability for the distribution of 
sample means. If data are drawn from the underlying population at 
random, what is the likelihood that, all things being equal, all the 
measures will come from the extrema of the distribution? It is more 
likely that the majority of values will be drawn from the most frequently 
observed parts of the distribution. Even if this were not the case, the 
likelihood that they will all tend to be higher (or lower) than average is 
smaller than the chance of some being high and some low. When that 
average value for each particular sample set is calculated, it is thus 
pulled toward the middle of the distribution. Repeating the procedure 
for all the possible samples of size N results in a distribution of sample 
means which is less disperse than the raw data making up the underly- 
ing population. 

There is still one more thing to notice about the SEM and its relation to 
the sample size: as N tends towards infinity, i.e. as you sample more and 
more of the underlying population, the error measure about the sample 
mean moves nearer to zero. The reason is simple. Using the same 
argument presented above, the more points you take at random the 
smaller are the chances that they will all be drawn from the extremes or 
from one side of the underlying distribution. A mean determined from a 
sample of 60 is therefore probably pushed more toward the center of the 
distribution than one calculated from a sample of six. 

What do these decreasing SEMs mean? Since the sample mean is an 
estimate of the true mean, the greater the sample size, and thus the 
smaller the SEM, the more certain it is that the estimate of the latter is 
given by the former. As the sample size nears infinity (i.e. as you 
measure the body weight of every single hypertensive rat in the world) 
the estimate of the true underlying mean body weight becomes infinitely 
precise. The point is that while the standard deviation represents the 
spread of your underlying data, the SEM represents the precision of your 
estimate of the true mean of that set. Even though your SEM goes to 
zero, your underlying standard deviation, is constant - i.e. your data 
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remain disperse. Thus when trying to describe the variability expected 
from a particular population, the appropriate statistical tool is the 
standard deviation (or sample standard deviation). To describe an 
estimate of the reliability of the sample mean to estimate the true mean 
(and any generalization one could make from it), the correct tool is the 
SEM. They are not interchangeable. 

Shapes of distribution curves 

Finally, we present two measures that will help you describe the shape 
of a distribution, and a method of describing data dispersion in 
populations which are not symmetric or normal. Shapes are hard to 
describe in words. Terms such as steep, peaked, flat, etc. are too subjec- 
tive to be used unambiguously: they modify other descriptive terms 
which may be equally ambiguous. That is why we depend so heavily 
upon graphical displays to show our data. We will present some of the 
more common techniques for data display in the next section. 

However, it is sometimes necessary to forego a graphical description 
and describe your results using standard, well-defined terminology. We 
have described the tools which can tell us where data lie (a statistic that 
measures central tendency, like the mean) and how disperse they are (a 
statistic that measures variability, like the standard deviation), but we 
have no explicit tools to tell us about its shape. What we need to finish 
off our picture are measures of symmetry and sharpness. These two 
statistics are called skewness and kurtosis.

Skewness 

Skewness is a measure of asymmetry: it measures how much a 
distribution slumps to one side or the other. In more statistical terms it 
measures how much more of a population is in one tail of the 
distribution (at one set of extreme values) rather than the other. Distribu- 
tions which lean to one side or the other are called either positively skewed 

if the longer tail is to the right or negatively skewed if it is to the left. 
Skewness may result from data that are truly disparate, or it may result if 
the population underlying the sample is not homogeneous. Suppose you 
measure weights from rats of different ages, and the population contains 
more young rats than older ones. The distribution of body weights may 
be skewed to the left toward the lower values measured in the younger 
rats. 
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Kurtosis 

Kurtosis is a measure of 'peakiness' or 'sharpness' in the distribution. It 
gives an insight into whether your distribution has a sharp peak 
(positive kurtosis) or is just flat (negative kurtosis). The former may arise 
because the underlying population is too homogeneous, e.g. mean blood 
pressure in healthy 25-year-old white male atheletes, while the latter is 
seen if it is not homogeneous enough, e.g. measures taken from all 
comers, independent of species, strain, age or sex. The real question you 
must ask is, "Is the sample I have drawn really representative of the 
underlying population I want to make a generalization about?" Both 
skewness and kurtosis can help you decide if that is the case. 

Interquartile range 

Once you have determined that your data are asymmetric or
multimodal, the typical variance measure could be misleading. 
However, there are still ways of determining how disperse your data 
really are. One of the most common is the interquartile range. This is 
calculated by listing the data and choosing the two values that mark the 
25th percentile (the point at which 25% of the data are below a given 
value) and the 75th percentile (the point at which 25% of the data are 
above a given value). Taken along with the median, these two points 
measure central tendency and spread, and give you a reasonable view of 
your data. 
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GRAPHICS 

Terms you should learn: 
Presentation graphics 
Bar graphs and line graphs 
Graphical annotation 
Error bars 
Exploratory graphics 
Dot plots, stem-and-leaf, histograms and box plots 

Concepts you should master 
When you should use a graph rather than a table 
Which graphic style to use with which data 
How to use graphical annotation to embellish your graph 
How to depict graphical range with error bars 
Using graphical scale to achieve a uniform information scale 
How to explore your data with graphs 

'A picture is worth a thousand words'. We know it is a cliché, but this 
really is true. Because the data we deal with and the ideas we want to 
communicate can be so complex, the picture that we draw has to make 
sense. When you use the graphical tools available to you in most 
statistical packages you must ask yourself: 

Who are you presenting to? 
What are you presenting? 
Why are you presenting it? 

You must consider your audience. Did you plot your data to obtain an 
overview of your own experimental results (you are your own 
audience), or is this a graph meant for final publication and presentation 
when you deliver your Nobel prize winning lecture? The difference is 
more than just stylistic. What does your picture show that cannot be 
obtained from tables, words, etc.? Are the data being presented truly 
representative of the effect you see, or is there so much summary 
between you and the data that you lose the message along the way? It is 
easy to become so involved in the graphic process as to forget what you 
are really trying to do: inform and educate rather than entertain. Why 
make a graph of the data in the first place? Remember, data points are 
not information; a graph should provide a theoretical context that 
facilitates their interpretation. 

A computer can provide many ways to represent data, but do any of 
them make sense? A graph is a pictorial representation of relevant 
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experimental information. When constructed properly, a picture really is 
worth 1000 words, but like other forms of statistical information, a 
poorly constructed graph can be ineffective, and it might even be 
misleading. Using a graph is most appropriate when the quality of the 
experimental results embodies the relevant scientific information. Tables 
and other numerical summaries are more appropriate when the 
magnitude of the responses is important. 

In our day-to-day endeavors, we use graphs either to present 
conclusions or to explore data. The following sections discuss the many 
forms of presentation and exploratory graphics, and provide some 
guidance about the many graphical tools at our disposal. Most of these 
are commonly available in the popular computer packages. In addition, 
we will address some special considerations in style: the goal is to create 
a reliable picture that will present the scientifically relevant information 
produced by your experiment clearly and precisely, and which will be 
easily understood. 

Presentation graphics 

There is a rich array of presentation graphical types from which to 
choose. Many of these can be accessed through popular spreadsheet 
software packages, such as EXCEL. A mock-up of the online EXCEL 
graphics menu is given in Figure 4. Several of the graphical types shown 
in the EXCEL Chartwizard display can be used to present your results, 
but choosing the correct graphical tool for the task should be made on 
the basis of: (1) the type of information being summarized, and (2) the 
conclusion you wish to communicate with your graph. We will discuss 
some of the most useful tools here. 

Bar graphs 

Bar graphs are effective for presenting relative frequencies (percentages) 
or the magnitude of an effect when data are collected from nominal 

categories. By nominal categories we mean classifications which are not 
ordered in any way, such as sex, hair color, or formulation. 

Graphs of data collected from ordinal categories, ie., groups that can be 
ordered, such as time or dose, will be considered later. 

Consider an experiment in which weight gain was measured in male 
and female rats receiving one of three diets. We would Pike to observe 
which diet had the greatest (or least) influence on weight gain. Showing 
the data as a table (see Table 1) is reasonable but, as shown in Figure 5, a 
graphical representation is better. 
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Figure 4 EXCEL graphics menu 

Table 1 Effect of diet on weight gain in rats 

Diet Males SE Females SE Overall SE 

A 11 2.3 9 1.9 10 1.5 
B 21 3.6 18 3.1 19 2.5 
C 13 2 14 1.9 13 1.4 
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Diet 

Figure 5 Bar chart showing weight gain in rats (data from Table 1) 

Figure 6 Weight gain in male and female rats (data from Table 1) 
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We choose a bar graph to depict the magnitude of weight gain for these 
three categories of treatment. The diets are nominal in that they are not 
ranked in any way: they merely divide the animals into groups. This plot 
combines the weight gain of male and female animals in the study 
together. If we wanted to see the responses of each of the sexes separate- 
ly, we might elect to use a grouped bar chart (Figure 6). A grouped bar 
chart is useful for studying several experimental strata (in our example, 
sex) which are embedded in each nominal class (here, diet). This permits 
us to study simultaneously the relative differences in the effect of the 
study diets on male and female rats. Several adaptations of bar graphs 
are available in most popular graphical packages. These are less 
frequently used in scientific applications, but may be effective in special 
situations. 

A stacked bar chart is a bar chart in which each bar is subdivided, 
proportionally, into areas representing your experimental strata. For 
example, suppose you were interested in total, rather than average, 
weight loss, and you wanted to see the contributions each sex made to 
that total. Total weight loss could then be plotted as a single bar such 
that the top of each bar represents the total loss for the males (hash 
marked) and the bottom half of each bar represents the total loss by the 
females (black). The height of the entire bar represents their combined 
total. The level of the division would be proportional to the total 
contribution made by the females to the total weight loss in each group. 

This kind of chart conveys fundamentally different information to that 
shown by the grouped chart. It is used to evaluate simultaneously a total 
response and the contribution made by each subpopulation to that total. 

A 3-dimensional bar graph shows the magnitude of responses for two 
nominal classifiers at the same time. For example, suppose you 
expanded our simple example to include an exercise regimen in the 
study. Then, if there were three kinds of exercise and three types of diet 
your analysis of weight gain would be composed of 3 x 3 (=9) categories. 
In the third dimension would be the average weight gain per pair. You 
could then determine whether exercise regimen 1 varies more radically 
with diet than does exercise regimen 3. In other words, you can get a 
reasonable insight into any cross-classification effects you might observe 
with these factors. 

Finally, a pareto chart is a special application of the bar graph, where 
the groups are ordered by magnitude of response. The pareto chart is 
commonly used to highlight significant effects in conjunction with 
factorial experiments. We will discuss these kinds of experiments in the 
section on Experimental Design. 
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Line graphs 

Line graphs are used for presenting a trend over an ordinal measure, 
such as time or dose. The points that make up the x-axis are still classes 
but, unlike the nominal categories presented above, they carry with them 
an implicit order. For these kinds of data, line graphs are more effective 
than bar graphs for depicting the kinetics of response. Consider a 
stability study of two drug formulations which produced the data shown 
in Table 2. Here the form of the kinetics, perhaps the rate of degradation, 
is the relevant scientific information you want to communicate. The line 
graph in Figure 7 is the most effective way of depicting this attribute. 

Time (months) 

Figure 7 Kinetics of drug degradation (Formulation 1, Table 2) 
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Suppose you would like to compare the kinetics of several groups. The 
best way to do this is to add a second line to your graph, making it a 
multi-line graph. Contrast the effectiveness of a multiple line graph 
(Figure 8) and a grouped bar graph (Figure 9) for comparing the stability 
of two formulations. 

The grouped bar graph in Figure 9 is too busy and detracts from the 
information. You are forced to look too hard to see the difference in 
degradation rates between the two formulations. You also cannot see the 
form of the kinetics. In this case, the line graph in Figure 8 is much more 
effective for depicting differences in the stability of the two formulations. 
This same distinction can be made for data collected over different doses 
of two drugs. Dose-response studies in pharmacology or safety 
experiments are best illustrated with line graphs or multiple line graphs 
rather than bar charts. 

Several adaptations of line graphs are useful for portraying scientific 
information. A survival curve is a line graph. The data are derived from 
the proportion of subjects still alive at different times of the experiment. 
Sometimes these kinds of graphs are called step graphs. This particular 
tool is equally useful in depicting the proportion of subjects 'succeeding' 
where 'success' is associated with a known outcome. For example, the 
proportion of animals which improved after therapy, where you decide 
just what improvement is, can be plotted using a step line graph. Control 

charts are an effective tool for monitoring trends in scientific, analytical, 
and manufacturing processes. We will not discuss control processes in 
detail, but briefly, suppose you were monitoring a manufacturing 
process such as 'building a widget'. You could measure the width of 
each widget as it left the assembly line. Tracking the control responses 
(the widths) over all your runs would allow you to detect any 
noteworthy trends, outliers or deviations in the manufacturing process. 
It is much easier to perform this test graphically than it is to scan thou- 
sands of raw numbers by eye. 

Special considerations 

Several special considerations will affect the effectiveness with which 
experimental results are communicated by your graph, and they may 
well add to the reliability of your presentation. 

Graphical annotation 

Popular graphical software packages such as EXCEL provide a wealth of 
graphical enhancement tools which, when used properly, can enhance 
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Time (months) 

Figure 8 

Time (months) 

Figure 9 
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the information in your graph. These tools fall into two categories: 
labeling tools and referencing tools. 

Labeling tools allow you to label the axes of a graph with legends, tick 
marks, and data labels. Graphical axes should be labeled judiciously. 
Labels on the horizontal axis should reflect the experimental conditions 
of your study, while those on the vertical axis depict the measurement 
characteristic. For the sake of completeness, the units of each (if 
appropriate, since some characteristics, such as hair color, have no units) 
should be included in the axis label. Any special characteristics of the 
graph, such as standard error bars, used in the graph can also be 
included in the axis description. Tick marks are used to illustrate design 
and scale: horizontal ticks can show the time points at which responses 
were measured or treatments were administered, while vertical ticks 
reflect the scale of the measured response. We will discuss graphical 
scale later, but without at least some indication of the scale on the graph 
your audience has no clue as to the size of the response. Finally, a legend 
should be included in your graph to delineate the experimental groups. 

Referencing tools include symbols, colors, line styles, patterns and 
reference lines. These are used to add dimension to your graph. For 
example, different symbols can be used in a line graph to depict different 
experimental groups, e.g., circles representing males and triangles 
representing females. Different kinds of lines serve the same purpose. 
Different patterns can be used to fill the bars in a bar graph to highlight 
experimental strata as in Figure 6 above. Color is another useful way to 
add additional dimension in your graph. Thus, if different species of rat 
were included in the study of the three diet plans, two different colors 
and two patterns could be used to distinguish the two species and the 
sexes. Reference lines should be drawn at practically meaningful levels 
to draw attention to significant effects, but their overuse can be 
distracting and should be avoided. Some of these annotation tools are 
illustrated in Figure 10. In general, annotation is a powerful tool, but one 
which should be employed judiciously. It should be used to enhance the 
information value of your graph, not for entertainment: entertainment is 
a diversion, and the last thing you want to do is divert your audience 
from your message. If used incorrectly, these annotation devices will 
complicate your graph. Avoid redundant labeling and using too many 
group designators in a single graph. Popular graphical packages provide 
a host of clever annotation tools which, when misused, draw attention 
away from the scientifically meaningful information and detract from 
your presentation. 
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Figure 10 Annotation of graphs 

Multigraphs 

Multigraphs are a series of graphs which have been assembled on the 
same page. They are effective tools for both presentation and writing, 
and help to eliminate the need for flipping backwards and forwards 
through slides or pages. Multigraphs can be used to either reduce the 
burden of excess series on a single graph, or to plot several variables that 
might correlate well over time or dose. Thus, if you wish to track mean 
arterial blood pressure, heart rate, and glomerular filtration rate over 
time, and compare them side by side, they can each be plotted on 
individual graphs, then re-constructed into a vertical multigraph (i.e. 
stacked one on top of the other on the same page), displaying the oppos- 
ing trends among the variables. 

Graphical range and error bars 

Graphical range can distort experimental information. An effect which is 
scientifically meaningful can be made to appear insignificant by selecting 
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Figure 11 The use of error bars 

a wide range, while a practically insignificant outcome can be made to 
seem large within a narrow range. 

The range to employ in your plot should be selected, foremost, on the 
basis of scientifically reasonable limits. If mean arterial blood pressure 
typically ranges from 80 to 120 mmHg, then this should comprise the 
graphical range of your plot. Secondarily, the range can be fixed by the 
statistical quality of the information. Error bars are a measure of the 
statistical quality of the information, and can thus be utilized in lieu of a 
scientifically defined range (see Figure 11). 

Graphical scale 

Occasionally the scale of measurement is not uniform, and the quality of 
information varies with the level of response. Consider the pair of plots 
shown in Figure 12. Without the error bars, the difference between 
higher level groups appears greater than the difference between lower 
level responses. With the error bars the differences between groups 1 and 
2 at the lower level and groups 3 and 4 at the higher level are quite 
comparable: data that have a uniform scale are easier to interpret. 
Changes can be explained quite impartially over the whole range of 
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Figure 12 The same data plotted with and without error bars 

responses. What would you do in this case? Alternative scaling may be 
needed to introduce a uniform information scale for measurements that 
vary in quality with the response. One common such alternative is 
geometric scaling (e.g. log scaling) which is frequently used to construct 
graphs of scientific results. Note, that summary measures used in a plot 
employing geometric scaling require special treatment. A geometric mean 

and fold variability, rather than simple average and standard deviation 
must be calculated for your display, otherwise, your graph will be 
inconsistent with the implementation of the alternative scale. 

Dilution studies typically generate geometrically scaled measure- 
ments. An assay using a standard curve, in which test samples are 
diluted serially into the range of the curve is a case in point, as is a 
production process in which bulk material is diluted to final potency. 
Geometrically scaled data appear skewed when viewed in the linear 
scale. The larger numbers may even appear as if they are outliers, 
although in fact they form a natural part of a skewed distribution. Before 
generating a graph, therefore, be sure you understand the scale of your 
measurements. A class of graphical tools used for exploring the 
distribution of your measurements, and therefore their scale, is called 
exploratory graphics. 

Exploratory graphics 

Many of the statistical procedures discussed in this book are based upon 
the assumption that the underlying population of measurements follows 
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a normal distribution. We have seen, however, that data generated in 

nated with outliers. We would like to be able to explore our measure- 
ments for these characteristics before undertaking an analysis. 

measurements graphically. Dot plots, stem and leaf displays, histograms 
and box plots are some of the tools available on many popular spread- 
sheet packages. 

Dot plots 

The distribution of measurements from experiments with small group 
sizes can be explored using an adaptation of a scatter plot, called a dot 

plot. A dot plot is constructed by plotting each treatment group on the 
abscissa (x-axis) and the response for each subject on the ordinate (y- 
axis). For example, consider an experiment in which urine output was 
studied in six dogs, each receiving either saline or a candidate drug. A 
dot plot of the results is shown in Figure 13. 

In addition to serving as a graphical summary of the individual 
measurements obtained in the experiment, the dot plot highlights any 
unusual values which may be measurement outliers or artifacts of a non- 
symmetric distribution. 

As noted above, the dot plot is a special case of the scatter plot or 

Treatment 

Figure 13 Effects of drug or saline on urine output in dogs: a dot plot 

some scientific experiments can be skewed, and may even be contami- 

Exploratory graphics let you study the distribution of a set of 
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scattergram. In the case of the scattergram the x-axis is not divided into 
categories, but represents a continuous measure such as height or 
weight. The (x,y) pair from each subject is plotted as bivariate data on 
both continuous measurement scales. We typically use this kind of plot 
when we want to perform a linear regression or correlation. An actual 
scattergram of height vs. weight data is provided later in the Estimation 
section. 

Stem and leaf displays and histograms 

A dot plot is useful for exploring the distribution of measurements 
obtained from a statistical experiment when the number of observations 
is small (perhaps 20 or fewer). The utility of the dot plot diminishes as 
the number of observations increases, when the density of the plotted 
points obscures the shape of the data distribution. Exploratory graphical 
techniques which are available to study the distribution of a large data 
set are stern and leaf displays and histograms. 

A stern and leaf display is a simple tally of a series of measurements 
and can be readily constructed with pencil and paper. Consider an 
experiment in which dissolution data have been collected on a particular 
formulation, yielding the following figures: 

87 109 79 80 96 95 90 92 96 98 
101 91 78 112 94 98 94 107 81 96 

A stem and leaf display is constructed as follows. First, identify the 
'stem' portion of your plot. In this case, the values are all factors of 10 
(70s, 80s, 90s, 100s). The 'stems' are therefore 7, 8, 9, 10 and 11. List these 
values in a vertical column. For each observation, record the 'leaf' 
portion (the next digit in the measurements). Make a row of leaves 
corresponding to the appropriate stems (the higher order digits). The 
above example then becomes: 

 

9  |   01244566688 
8 |   017 
7 |  89 

10 |   179 
11 |    2 
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The first row is the number 112. The next row are the three numbers 
101,107 and 109. The next row has 11 different entries. 

The distribution of a larger set of measurements can be depicted using 
a histogram. This exploratory graphical tool is available in most of the 
popular spreadsheet packages, or can be constructed manually by 
dividing the range of measurements into six or more evenly spaced class 
intervals. Individual measurements are tallied into these class intervals, 
and a bar chart of the frequency (or the relative frequency, which is 
equal to the frequency divided by the number of measurements) is 
constructed. Figure 14 shows a frequency histogram of potencies for 487 
batches of a product. 

Although this plot appears to indicate that the distribution of potency 
measurements is skewed (shifted) to the left, i.e. some measurements 
appear excessively high, in this case it is a natural consequence of the in- 
herent distribution and not due to outliers. It would be misleading to 
describe the normal range of these measurements using two or three 
standard deviation limits on the mean, since a higher proportion of read- 
ings would fall above the upper bound of the interval than would exceed 
the lower limit. In this case, a mathematical transformation of the 
potency measurements, perhaps a log transformation, would yield a 

Figure 14 Frequency histogram for 487 batches of a product 
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more characteristic symmetric distribution. Statistical limits on the trans- 
formed mean will equitably capture equal proportions of high and low 
measurements. 

Box plots 

Another exploratory tool that is frequently available in scientific graphics 
and analysis software is a box plot, which uses percentiles of a set of 
measurements to depict the shape and range of the distribution (Figure 
15). 

The box is composed of a center line, which represents the median 
measurement. The upper and lower borders of the box represent the 
'quartiles' of the distribution. Thus the middle 50% of the distribution of 
measurements falls in the range of the box. A skewed distribution might 
appear as a box with an off-centered median. The lines emanating from 
the box extend an equal distance from the median, and serve to identify 
outliers. The box plot outliers are noted as exceptional cases in the 
distribution and may either result from truly abnormal values or be the 
result of a skewed distribution. A box plot of appropriately transformed 
data (perhaps the log) might ameliorate this condition. 

Figure 15 Box plots indicate the shape and range of a distribution 
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Summary 

A well constructed graph is an effective tool for communicating the 
results of your scientific investigation, or for exploring your data. Like 
most statistical tools, however, a poorly constructed graph can distort the 
information and mislead your audience. The appropriate form of 
graphical display is dictated by the type of data collected and the 
message to be imparted. Bar charts are useful for displaying relative 
magnitude of responses across categories, while line graphs are more 
effective for displaying kinetics. Each is useful for studying relative 
effects in multiple groups. Exploratory techniques, such as dot plots, 
histograms, and box plots, are useful for studying your distribution. 
Most of the statistical techniques we use assume 'normality' in the 
distribution of measurements. Therefore, a symmetric distribution of 
sample measurements is the key to an accurate assessment of your 
experimental results. 



2 INFERENCE 

Terms you should learn: 
Inference 
Null hypothesis 
Alternative hypothesis 
p-value 
Critical value 
Type I error rate 

Concepts you should master: 
Distance in probability space 
Conditional probability and the pvalue 
Critical value and risk 
One-tailed and two-tailed test 

When most people talk about biostatistics they are really focusing on the 
part of the toolbox we call inference. Inference is the process by which 
two or more groups of subjects are compared to determine, given the 
appropriate controls, whether an experimental intervention altered an 
outcome measure. We usually consider the average effect of treatment 
because, as we pointed out in our discussion of descriptive statistics, 
these measures provide simple summaries of complex population-based 
effects. If we can say that, on average, the blood pressure decreased, or 
the sodium concentration increased, etc. we are happy to conclude that 
the intervention was, for the most part, successful. 

Every test (tool) in this part of our toolbox is based upon the following 
model. First, you assume that the intervention had no effect on the 
underlying populations. Samples from each population are compared to 
see how 'far away' from each other they are. The distance between 
samples (their means or other summary values) is then associated with a 
probability, calculated under the assumption that there really is no effect 
of your treatment. If the distance is 'large enough', that is, if there is very 
little likelihood that what you observed could have occurred by chance 
alone, then you can probably reject the underlying premise which 
assumed that the intervention had no impact on the system. All our 
statistical tests assume that our samples represent underlying popula- 
tions, and that these populations are unaffected by the intervention being 
examined. This implies that, on average, the outcome values measured 
in a treatment group are the same as those measured in an appropriate 
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control group. That does not mean that no individual showed an effect 
of treatment: although some subjects may have responded very 
positively (i.e. in the way expected) to the intervention, the group as a 

whole did not. Statistically, this assumption of 'no effect' is called the 
null hypothesis, and it represents the most conservative assumption that 
can be made about the underlying science of your process. The notation 
commonly used to represent the null hypothesis is H0, and in each of the 
tests described below, we will explicitly state it in its mathematical 
parlance, and then describe, in plain English what it means. 

Once you have assumed that the null hypothesis is true, you have to 
perform the next phase of the comparison. (Since most of our work is 
done with means, we will use the sample mean as an example of the 
summary measure we can test. Later in this chapter you will see that we 
can also test other measures.) This involves determining how far apart 
two sample means are when distance is measured in a probability space. 
The common measures of distance (feet, meters, light years) cannot be 
used to measure the distances between means: such distances are 
determined as a function of the noise or variance which surrounds them. 
Given that distance, we ask, 'What are the chances that the first sample 
mean is this far away from the second, assuming that there was no effect 
of treatment?' This probability is the p-value. 

The p-value seems to be the Holy Grail of all experimental science. 
When asked whether a drug treatment worked, the typical response is 
'Well, p is less than 0.05, so I guess it did'. The problem with that 
statement is that most people do not really know what the p-value is. The 
p-value represents the probability of observing a difference as large as 
that obtained (i.e. of being 'this far away' in noise units) given the null 

hypothesis is true. Statistically, we call this a conditional probability, and it 
represents the chance of rejecting the null hypothesis when, in fact, both 
samples were really drawn from the same underlying population: i.e. the 
treatment really does not work. The p-value thus represents your chance 
of making a mistake. It is not a measure of effect, but the risk you take of 
rejecting the null hypothesis given the fact that it is true. The point at 
which you are willing to take that risk is a function of how much you are 
willing to lose if you are wrong. If you are pursuing a screening protocol, 
and you know that a great many more assays will be performed before a 
final decision is made about the use of a given drug or intervention, you 
are willing to take a bigger risk than if you are performing a key assay 
that will determine the fate of a million dollar project. This 'comfort 
zone' about your risk of being wrong is called the critical value of your 
experiment. Typically it is chosen at 0.05, i.e. 1 chance in 20. Why? We do 
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not know, but at some time in the past someone decided to accept an 
error rate of 1 time in 20 and risk the consequences. The statistician calls 
this risk of being wrong the Type I error rate. 

If the null hypothesis is rejected we need an alternative hypothesis to fall 
back on. The statistician usually denotes this dichotomy as: 

Statistically, we are saying that if we assume there is no real difference 
between the two treatment groups, i.e. the true mean of a drug-treated 
group,  is equal to the true mean of a saline-treated group, then any
difference we observe in the sample means is strictly due to the sampling 
distribution and chance alone. If the data observed are 'different enough' 
from zero then this underlying assumption might be rejected. Details on 
how to calculate this distance and associate it with a chance of 
occurrence are presented below. 

If you reject the null hypothesis, you have a choice of two 'research 
hypotheses' which depend intimately on your alternative hypothesis. If 
an investigation is aimed at proving that drug treatment can only 

increase urine output in the treated dogs, i.e. our alternative hypothesis 
is that > then a one-tailed test should be performed. However, if you 
are interested in showing that the two means are different, i.e. 
and you do not care in which direction the difference occurs, then a two- 
tailed test is performed. This decision should be made when you design 
your experiment, and should be based strictly on scientific first 
principles. 
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COMPARING A SAMPLE MEAN TO A POPULATION 
WITH KNOWN MEAN AND VARIANCE - THE ONE 

SAMPLE z-TEST 

Terms you should learn: 
Critical ratio 
Standard normal curve 
z-score or z-statistic 

Concepts you should master: 
What the null hypothesis really says 
Critical ratio as a distance 
The true meaning of the p-value in this test 

Case study 

Suppose you have access to the complete medical records of a popula- 
tion, and from these you know that the mean serum cholesterol level in 
your area is 237 mg/dl. Using the tools described above, you further 
determine that the distribution of serum cholesterols has a standard 
deviation of 20 mg/dl. You believe that a regimen of health foods, 
reasonable exercise and stress management will lower these cholesterol 
levels. The question you are asking is 'If I were able to control lifestyle 
with these regimens for three months, could I really decrease serum 
cholesterol levels below those of the normal population?' 

To test this hypothesis, you choose 100 people at random from the 
general population and sequester these (willing) volunteers in a holiday 
resort for three months, ensuring that they are well fed, exercised, and 
kept cool, calm and collected. You then measure their serum cholesterol 
levels. 
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The data 

The data collected from your experiment, along with preliminary 
summary statistics, are presented in Table 3 and shown as a histogram in 
Figure 16. 

Figure 16 Distribution of cholesterol levels 

Did you really lower cholesterol levels significantly below those of the 
general population? 

Data analysis 

You know that the true mean serum cholesterol for the general 
population is 237 mg/dl and it has a standard deviation of 20 mg/dl. 
(That is to say, the computerized records from your national health 
statistics center completely and adequately describe the general 
population in enough detail that these numbers are as close to 'known' 
as you can get.) The statistical question is 'What is the likelihood that the 
serum cholesterol level of 209.22 mg/dl measured after treatment was 
drawn from a population with a mean cholesterol level of 237 mg/dl and 
standard deviation of 20 mg/dl?' This question forms the basis for the 
null hypo thesis. 

Table 4 shows the answer calculated using standard analysis. 
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Table 4 

After treatment 

Mean 209.22 
SD 16.34 
z-score 13.89 

Critical value (one-sided) 1.64 
Critical value (two-sided) 1.96 

We will discuss the calculation of these values later, but first notice 
that the table supplies all the information needed to enable you to decide 
whether your treatment is really as good as you think it is. After 
treatment, the mean serum cholesterol is 13.89 noise units away from the 
true population mean of 237 mg/dl (the z-score). The probability of 
observing means this far apart, when the null hypothesis is true, is less 
than 1 in 1000. Rejecting the null hypothesis when it is true is called a 
Type I error. Recall that we defined the Type I error rate as a comfort 
level for this kind of error, and that it is set before the experiment begins. 
The critical value is the number of noise units which fixes the Type I error 
rate to that comfort level. If you did not want to reject a null hypothesis 
which is true more than once in 20 times (i.e. 5%), the critical value 
which ensures this error rate is 1.64. 

A quick note about the choice of the critical value. You assumed that 
your treatment would only decrease serum cholesterol levels. If these 
levels increased you would not care by how much, and, hopefully, you 
would discontinue the study immediately. When these conditions 
pertain, a one-tailed test is warranted. If, on the other hand, you were 
unsure of the effects your treatment would have on mean serum 
cholesterol, and if you wanted to detect any movement at all, then a two- 
sided test should be performed. In that case, the critical value would be 
1.96. 

In either case you can easily reject the null hypothesis for these data. 
You can thus conclude, with at most a 5% chance of being wrong, that 
you would not be able to observe a mean serum cholesterol of 209 mg/dl 
if your patients were drawn from a population with a true mean and 
standard deviation of 237 mg/dl and 20 mg/dl respectively. The z- 

statistic and the one-sided critical value are shown schematically in 
Figure 17. 

p-value < 0.001 
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Figure 17 Gaussian distribution 

The 'bell-shaped' curve depicts the standard normal or Gaussian 

distribution. The z-statistic, the distance between your sample mean and 
the known mean (as measured. in noise units) falls well into the tail of 
this distribution. The likelihood of seeing a mean cholesterol level of 209 
or less, given that the null hypothesis is true, is therefore exceedingly 
small (less than 0.1%), and falls well within the limits required to satisfy 
the 5% error criteria for declaring the null hypothesis false. The null 
hypothesis is therefore rejected and you claim that there is a 'significant'
decrease in serum cholesterol levels after treatment comprising a long 
holiday, good food and exercise. 

The question and your experiment 

The study was based on a question about the efficacy of healthy food, 
healthy air and healthy exercise in maintaining cardiovascular health. 
The scientific target was the cardiovascular health of the general (target) 
population, and serum cholesterol level was taken as a reasonable 
predictor of cardiovascular well-being. Standard medical technology was 
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used to measure serum cholesterol levels in the statistical population, 
and lower cholesterol level was assumed to be, in general, indicative of a 
healthier state. What the experiment is asking is, 'Is this treatment plan a 
healthy regimen for the general population to follow?', or to put it 
another way, 'On average, did this treatment really lower serum choles- 
terol levels below those of the general population?' 

Assumptions 

The scientific assumptions underlying the one sample z-test are: 

(1) the true mean of the underlying population is known; 
(2) the true standard deviation of the underlying population is 

(3) the measurements taken reflect the true effect being looked for, i.e. 

(4) the underlying population is truly homogeneous. 

known; 

data being measured are predictive of your proposed effects; 

The statistical assumptions required for this test are: 

(1) that your measures are continuous (e.g. not all-or-none effects, 

(2) that they are drawn from an underlying distribution which is 

(3) the sample population is chosen randomly from the homogeneous 

scores, etc.); 

normal; 

underlying population. 

We will discuss these assumptions and what happens when they are 
violated below. 

The test - the equation, what it means, and the distance it measures 

The null hypothesis is given by: 

In English, this says that the mean of your underlying population is 
In this analysis, we test to see whether you could observe a sample mean 
consistent with that assumption. In other words, 'What are the chances 
of observing differences between the sample mean and the true mean 
'this big' given that the sample was drawn from the underlying popula- 
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tion?' The statistical assumptions upon which this test is based actually 
restate part of this null hypothesis. 

The equation which tests this assumption is given by: 

where and N represent the sample mean and sample size, and and 
  represent the true mean and standard deviation of the underlying
population. 

This equation (known as the critical ratio) says that we are interested in 
a difference between the sample mean (a random variable) and a fixed 
point, the true mean. The equation also tells us that this difference (in 
mg/dl for the above example) should be normalized into a new distance 
(measured in noise units), and that the normalizing factor should 
account for the normal variations expected in the underlying population. 

Think about the numerator of the critical ratio. The difference, is 
actually a random variable. The test asks whether a single realization 
drawn from the distribution of all is far enough away from the true 
mean   to cause us concern. Under the null hypothesis, the 
distribution should have a mean of zero; although the difference 
between the true mean, and a particular sample mean will never be 
exactly zero, how far away from zero is it, and could that difference have 
been observed by chance alone? 

The only information left to be determined is the dispersal of sample 
    around zero given the null hypothesis is true. Recall that we are
asking what the difference in mean serum cholesterol levels is, and that 
the standard deviation of a distribution of means is actually the standard 
error of the mean (see Descriptive Statistics). The standard noise measure 
should, therefore, look something like a standard deviation divided by 
the square root of a sample size. When the null hypothesis is true, the 
standard deviation of the differences between any individual and the 
true mean = is given by The standard error for the difference 
in means should, therefore, just be divided by the square root of N. If 
we normalize the difference observed by this standard error-like 
normalizing factor we derive the critical ratio. The critical ratio is also a 
random variable, however, and it must, therefore, be represented by a 
distribution. This new distribution is the tool we use to associate the 
noise units to the probability measure we are actually seeking. Remem- 
ber the bridge we built in the discussion of Descriptive Statistics above? 
This new distribution also has a mean of zero but it now has a standard 
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deviation of one because of our normalization procedure. It is called the 
standard normal or z-distribution, and is calculated from a complex mathe- 
matical formula which describes the bell shape shown in Figure 17. The 
probabilities we seek are the cumulative areas under the curve, i.e. the 
areas to the right and left of any arbitrary cut-off point. Any differences 
greater than a given cut-off, e.g. 1 noise unit, have a fixed probability of 
occurring when the null hypothesis is true. These probability measures 
have already been tabulated and appear in every standard statistical 
reference book; these are the tools we used to obtain our p-values in the 
earlier calculations. 

Returning to our example 

The calculations associated with our example data are outlined in Table 
5. The test is performed as follows: first calculate the numerator for the 
critical ratio, i.e. the difference, which is 27.78 mg/dl. The denominator 
(based on and N) is calculated as 2 mg/dl. The distance between 
sample and known mean serum cholesterols is 13.9 noise units. To 
determine the probability that they are 13.9 or more noise units away 
from each other, i.e. to link the distance measure to a probability when the 

null hypothesis is true, we turn to the z-table and find that the likelihood of 
observing a difference this big is less than 0.001. The chance of wrongly 
rejecting the null hypothesis is much less than 5%, the error rate with 
which we appear to be comfortable. You can now conclude that serum 
cholesterol level is significantly decreased by healthy air, healthy food 
and exercise and, therefore, that this regimen is good for the cardiovas- 
cular system and, probably beneficial to the general health of the public. 

Table 5 
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COMPARING A SAMPLE MEAN TO A POPULATION 

WITH KNOWN MEAN AND UNKNOWN VARIANCE 

— THE ONE SAMPLE t-TEST 

Terms you should learn: 
Critical ratio 
t-statistic 
Degrees of freedom 
t-di st r i b u t io n 

Concepts you should master: 
What the null hypothesis really says 
Critical ratio as a generalized distance 
The uncertainty due to estimation and the price 

in degrees of freedom 

Case study (continued) 

Your original research question was whether you could lower 
cholesterol below the levels found in the normal population levels using 
only rest at a holiday resort, good food and plenty of exercise. In the last 
section we found out that you could. There is, however, still one point 
left to be settled. Is there really a significant difference between the mean 
serum cholesterol level of the treated population and the 'danger' level 
(200 mg/dl). Was the serum cholesterol level in your population lowered 
far enough to allow you to conclude that the treatment really induces 
good cardiovascular health? 

Simple inspection shows that 209 mg/dl is greater than 200 mg/dl. 
The statistical question is, 'How likely is it that the serum levels I 
observed could have been drawn from a population which had a true 
mean of 200 mg/dl?' 

The data 

The data are the same as those given above. Cholesterol levels after 
treatment had a mean of 209.22 mg/dl and a standard deviation of 16.34 
mg/dl. Are these levels statistically indistinguishable from those seen in 
a population with a mean at the ‘danger’ level of 200 mg/dl? 

The data can be plotted in a histogram like that shown in Figure 16. In 
this instance we do not know the standard deviation of the cholesterol 
levels in the 'healthy' population, only that of the sample drawn from the 
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target group. The 'danger level' is marked on the graph. The question 
now is whether a distribution like that shown in Figure 16 would result 
if the sample were drawn from a population with the true mean of 200 
mg/dl. Although the difference between the sample mean and the 
standard does not appear to be 'far enough' away to enable the null 
hypothesis to be rejected, you must still translate the difference in means 
into noise units (and then into a probability measure) to be absolutely 
sure. The issue of experimental design, power, and your ability to detect 
small differences is discussed in the chapter on Experimental Design. For 
the time being, you would be satisfied to merely claim that there is a 
‘significant’ decrease in mean serum cholesterol levels from those of the 
normal population after the holiday regimen, and that the levels 
achieved are indistinguishable from those of a healthy population. 

Data analysis 

The cut-off point that you would like your population to attain is an 
average of 200 mg/dl, but a higher mean serum cholesterol would be 
acceptable if it was statistically indistinguishable from this value. The 
statistical question becomes 'What is the likelihood that, after treatment, 
the experimentally measured serum cholesterol level of 209.22 mg/dl 
could have been drawn from a population which has a mean serum 
cholesterol of 200 mg/dl?' This question forms the basis for the null 
hypo thesis. 

Calculation of this likelihood using a standard analysis produces the 
result shown in Table 6. 

Table 6 

After treatment 

Mean 209.22 
SD 16.34 
t-statistic 5.61 
p-value < 0.001 
Degrees of freedom 99 

Critical value (2-sided) 1.99 
Critical value (1 -sided) 1.67 

You can decide whether your treatment is really as good as you think 
it is by using only the information in this table. We will show you how 
these numbers were calculated below, but for the time being, let us look 
at what these results are actually saying. The 'after treatment' mean 
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serum cholesterol level is 5.61 noise units away from the ‘healthy’ 
population mean of 200 mg/dl (the t-statistic). The critical value for this 
study fixes the Type I error rate to 5%. Since you only want to test the 
differences when the test group has a serum cholesterol level of more 
than 200 mg/dl, your critical value is 1.67. For the sake of completeness 
we are including the two-sided critical value (1.99) in case you wanted to 
determine the ability to lower cholesterol levels to significantly below 
200 mg/dl. 

The question and the experiment 

The original study began with a question about the efficacy of a holiday 
regimen as a form of cardiovascular therapy. You showed that this 
intervention lowered serum cholesterol levels to below those of the 
general population, and your new concern is whether you have removed 
your patients from the 'danger zone'. The experiment is now asking is 
whether on average, serum cholesterol levels after treatment are 
indistinguishable from a population ('healthy') which has a mean level 
of 200 mg/dl. 

Assumptions 

The scientific assumptions underlying the use of the one sample t-test in 
this experiment are: 

(1) the true mean of an underlying population (in this case 'healthy' 

(2) the true standard deviation of that underlying population is not 

(3) scientifically valid data are being measured; 
(4) the underlying population is truly homogeneous; 
(5) you only care if the mean of your population is statistically 

significantly greater than that of the 'healthy' population. 

people) is known; 

known; 

The statistical assumptions required for this test are: 

(1) the measures are continuous (e.g. not all-or-none effects, scores, 

(2) the measures are drawn from an underlying distribution which is 

(3) the sample population is chosen randomly from the underlying 

etc.); 

normal; 

population; 
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(4) there are enough subjects in the sample to detect small differences, 
or at least differences that can carry with them biological conse- 
quences (see Experiment Design, below, for a discussion of 
statistical power). 

The test - the equation, what it means, and the distance it measures 

The null hypothesis is the same as that given for the one sample z-test 
above: 

It is assumed that the mean of a sample population is the same as the 
mean of the underlying population. In the analysis you are going to ask 
whether your observation is consistent with that assumption; you must 
therefore calculate the chances of seeing differences between the sample 
mean and the true mean as large as you did, assuming the null 
hypothesis is true. 

The equation which tests this assumption is given by: 

where s, and N represent the sample mean, sample standard 
deviation and sample size, and represents the true mean (200 mg/dl, 
i.e. your 'danger level') of the underlying population. 

This equation says almost the same thing, statistically, that the critical 
ratio says for the one-sample z-test. We are still interested in a difference 
between a sample mean (a random variable) and a fixed point. The 
equation is normalized using the only measure we have of noise, the 
standard deviation of the sample. In fact, in some texts, this equation is 
also called the critical ratio: by giving it the same name from test to test, 
we are implicitly confirming that all inferential statistics are really 
nothing more than distance measurements associated with probability 
measures. 

Again, the numerator is a difference, which is still a random 
variable. This test asks whether the mean of the distribution is far 
enough away from the true mean (200 mg/dl) to cause us concern. 
Again we assume that = , i.e. we assume the null hypothesis is true, 

- 
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and that the sample is drawn from an underlying population for which 
the mean level is 200 mg/dl. The distribution should, therefore, have a 
mean of zero, and the test is thus actually asking how far away from zero 
your particular (9.22 mg/dl) must be before you begin to question the 
wisdom of assuming that the null hypothesis is true. 

We do not, however, know the true standard deviation of the 
population, as we did for the one-sample z-test: we have only an 
estimate of in s. Since we are again asking about differences in mean 

serum cholesterol levels, we need to use a standard error-like 
normalizing factor in the denominator of our ratio. Replacing by s and 
proceeding as above we are almost home. 

This critical ratio is a random variable, and is represented by its own 
distribution, which has a mean of zero. It is, however, different from the 
standard normal curve used for the z-test because we do not know the 
value of We have to pay a price in uncertainty for estimating by s. 
The new distribution, known as the t-distribution, takes into account this 
uncertainty by accounting for the precision of our estimate of 

Intuitively, increased uncertainty in the estimate of suggests that the 
two means should be farther apart (in noise units) to achieve the same 
'comfort level' in rejecting the null hypothesis. In other words, once you 
have fixed your Type I error rate at 5%, for example, increasing 

uncertainty in requires the distance between and to be greater 
than that required for the z-test. It would be expected that as fewer 
points are taken in the sample, the estimate of should become less 
precise. The shape of the t-distribution should therefore be a function of
the sample size, forcing more and more probability measures into the tail 
as N becomes smaller. This dependence of the t-distribution on the 
sample size harks back to the earlier reference to the degrees of freedom of 
the data set (see Descriptive Statistics). Degrees of freedom is the number 
of independent values sampled minus the number of estimates made 
from them. In essence, they act as information coins: you have to pay for 
the right to estimate parameters, such as the standard deviation, from 
data. Mathematically, the argument is that if you have N data points and 
you want to estimate the mean, you can let N-1 of them float anywhere 
you want. However, once you have fixed those N-1 values (i.e. when 
you have randomly chosen your N-1 sample points), the Nth value is 
completely determined by your estimate of the mean. Since it is 
determined, it is no longer a random variable you are sampling, and the 
number of independent sample points is actually reduced by one. 
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In practice, you are really not fixing a mean and then sampling your 
statistical population to fit it. Mathematically, however, once you have N 

sample points, you are estimating the true mean, of your underlying 
population by Without even knowing it, you are then asking about 
all the possible samples that you could have taken, given = . From 

that implicit question the limit of N-1 degrees of freedom is determined. 
The same situation arises for the t-distribution. You can only freely 

sample N-1 points before the last is strictly determined; there are, 
therefore only N-1 degrees of freedom in your sample. The corollary to 
all this mathematics is that the standard normal distribution is just a t- 

distribution with infinite degrees of freedom: as you sample more and 
more data points from a statistical population, the estimate of by s 

becomes so precise that, in the end, you know the value of 
The dependence of the t-distribution on the degrees of freedom is 

shown graphically in Figure 18, which shows three curves drawn as 
overlays of the standard normal distribution. The critical values of each 
are also marked, and it can be seen that these move farther away from 
zero as the number of degrees of freedom decreases. This corroborates 
mathematically our intuitive notion that the less we know about our 
statistical population, i.e. the smaller the sample, the greater the distance 
between means must be for us to maintain a fixed error rate. 

Figure 18 Dependence of the t-distribution on degrees of freedom 
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Returning to our example 

The calculations associated with our example data are outlined in Table 
7. 

Table 7 

We test the null hypothesis as follows. First, calculate the numerator 
for the critical ratio, i.e. the difference (9.22 mg/dl). Then calculate the 
denominator (based on s and N), which in this case is 1.63 mg/dl. The 
distance between the sample mean serum cholesterol level and 200 
mg/dl is 5.61 noise units. To determine the probability of observing a 
sample mean that is 5.61 or more noise units away from the standard, 
given that the null hypothesis is true (i.e. to link the distance measure to 
a probability), we turn to the t-distribution with 99 degrees of freedom, 
and find that the likelihood of observing a difference this big is less than 
0.001. 

Based on these data, the chance of seeing a sample mean 'this much' 
greater than 200, given the null hypothesis is true, is much less than 5%, 
and we must conclude that while the 'holiday therapy' decreased serum 
cholesterol levels significantly when compared with those of the general 
population, it did not lower the levels far enough, at least after three 
months, to enable the treated patients to be declared 'healthy'. 
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COMPARING BEFORE AND AFTER DATA - THE 

TWO SAMPLE PAIRED t-TEST 

Terms you should learn: 
Critical ratio 
t-statistic 
Degrees of freedom 
t-distribution 

Concepts you should master: 
What the null hypothesis really says 
Critical ratio as a generalized distance 
The uncertainty due to estimation and the 

price in degrees of freedom 

Case study (continued) 

Your treatment regimen lowered serum cholesterol levels to below those 
of the ordinary population, but these levels were not low enough to 
declare your patients out of the danger zone, i.e. the mean level in the 
treated population was significantly above 200 mg/dl. The question then 
arose of whether other risk factors had been beneficially altered by the 
treatment. A literature search showed that for non-smoking males over 
52 years old, overall body weight was a second significant risk factor for 
measuring cardiovascular health. Therefore, if that group alone showed 
a significant decrease in body weight after treatment, you might still 
claim that the therapy was beneficial to good cardiovascular health in 
some people. 

Review of the records identified 31 men aged 52 or more in the 
sample. The medical records included their weights at the start and at 
the end of the treatment, enabling you to determine whether the 
treatment produced significant weight loss in this subpopulation. 

The data 

The body weights of these individuals before and after therapy are given 
in Table 8. The mean weight loss was 13.35 pounds (standard deviation 
9.92 pounds). 



Inference 63 

Data analysis 

You would like to show that, on average, these men lost weight after 3 
months of treatment in a holiday resort. The statistical question becomes 
'What is the likelihood that a mean weight loss of 13.35 pounds would be 
observed if there was really no effect of therapy?' 

Calculating this likelihood using a standard analysis produces the 
results shown in Table 9. 

Table 8 

Table 9 

After treatment, mean weight loss is 7.49 noise units away from zero 
(what you would expect if your treatment had no effect at all). If the 
Type I error rate is fixed at 5%, then the critical value for this study is 
1.70. If you had been interested in whether there had been a weight 
change of any kind, and not just a loss, you would have had to perform 
the test using a two-sided test, and the critical value would be 2.04. 
Recall from the last section that when there were 99 degrees of freedom 
in the analysis our critical values were slightly smaller. In this case, the 
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degrees of freedom are 30 (31 pairs of data - 1 for estimation). The 
estimate of is therefore less precise (31 patients vs. 100). 

The question and your experiment 

The original study looked at the efficacy of a holiday resort as a form of 
cardiovascular therapy. This intervention lowered serum cholesterol 
levels to below those of the general population, but the treated 
population was still not 'healthy'. Since the combination of lower serum 
cholesterol level and significant weight loss in men over 52 is probably a 
good predictor of increased cardiovascular health, you are now asking 
whether the treatment makes 52-year-old men more healthy. What the 
experiment is asking is, 'on average, are the weight losses observed 
significantly more than nothing?' 

Assumptions 

The scientific assumptions underlying the two-sample paired t-test are: 

(1)  you must estimate the true mean difference between pairs for an 
underlying population; 

(2) you must estimate the true standard deviation of the distribution 
of differences for that underlying population; 

(3) the underlying population is truly homogeneous. 

The statistical assumptions required for this test are: 

(1) that your measures are continuous (e.g. not all-or-none effects, 

(2) that they are drawn from an underlying distribution which is 

(3) the sample population is chosen randomly from the underlying 

(4) that you have true pairing of your data. 

scores, etc.); 

normal; 

population; 

The test - the equation, what it means, and the distance it measures 

The null hypothesis is a variation on a theme: are the mean differences 
observed within my pairs different from zero, i.e. could differences this 
big have arisen in a sample drawn from a population with a mean of 
zero and a standard deviation of s? In both the one-sample z-test and 
one-sample t-test, we asked whether our sample mean was different 
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from a fixed point. In this case the fixed point is zero. The null 
hypothesis therefore simplifies to: 

In English, you are assuming that there is no post-therapy weight loss, 
i.e. the mean of the underlying population is actually zero. In the 
analysis, you are going to ask whether the mean of the differences 
observed within each subject is consistent with that assumption. This 
requires calculation of the likelihood of observing a sample mean as 
large as that seen when the null hypothesis is true. 

The equation which tests this assumption is given by: 

where sD and N represent the sample mean change, sample standard D, 

deviation of the changes, and the number of pairs (the true sample size 
in this experiment) and zero is the hypothesized weight loss. 

When is replaced by zero in the one-sample t-test, the equations are 
identical. We are still interested in a difference between a sample mean 
(a random variable) and a fixed point, and the equation is still being 
normalized using the only measure we have of noise, the standard 
deviation of the sample. We should, therefore, not be too surprised that 
this equation is also called the critical ratio. Implicitly, the numerator is 
still the difference, but this test asks whether the mean of the 
distribution (which can now be estimated by D) is far enough away from 
zero and not to concern us. 

Again, we must estimate using sD. To calculate the distance in noise 
units, we again rely upon a standard error-like normalizing factor to 
adjust our mean difference to a noise measure. This critical ratio is still a 
random variable, and it is still represented by the t-distribution. This 
should not come as any great surprise, since, so far, the two tests seem to 
be identical. In fact, all we did was replace by zero and change our 
analysis variable to the mean change within each patient. Once we have 
the distance in noise units we need only associate that distance with the 
correct probability measure to assess our risk of rejecting the null 
hypothesis wrongly. As in the one-sample case, we must modify our 
probability estimate by the amount of uncertainty in the estimate of 
This time we use the number of pairs minus one as our index, because 
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we have only 31 (and not 62) independent measures of weight 
difference. 

Notice that we did not compare the mean body weights before and 
after treatment (227 pounds and 213 pounds, respectively) directly, but 
used the change in weight (13.35 pounds) within each patient. This is an 
important factor in this type of design: using the patient as his/her own 
control produces perfect pairing. As you will see in the next section, 
when you cannot take advantage of this within-subject design, you are
required to estimate two means and a pooled estimate of the variance to 
reach the same point. 

Why does this work so well, and what do we mean by paired data? 
Consider the following premise. The variance observed within a subject 
or patient is usually significantly less than that seen across different 
subjects or patients. The reason is that, usually, the values measured 
within each subject are correlated and not independent. If each member 
of the group of men had lost exactly 13.35 pounds, the standard 
deviation of the 'after treatment' weights would have been identical to 
that of the 'before treatment' weights (14.12 pounds), but the standard 
deviation of the differences would have been zero. It is this lack of 
independence that makes the data paired. Twins can be used as each 
other’s control, making a paired t-test possible. Left and right sides of the 
body in the same subject can be used in the same way. Subjects matched 
for age and sex can sometimes be considered paired if the outcome 
measure can be shown to depend only upon treatment and not on 
matching factors. That is a very large assumption, however, and it is 
more conservative not to assume that the age-sex matched subjects are 
pairs, but to consider the two populations as independent. That case is 
considered below - but this special case of the one-sample t-test can be 
performed in any case where the subjects can be matched or paired. 

Returning to our example 

The calculations associated with our example data are outlined in Table 
10. We can calculate the numerator for the critical ratio, i.e. the 
difference, which is -13.35 pounds, and the denominator (based on sD 

and N), 1.78 pounds. -13.35 pounds is -7.49 noise units away from zero. 
To determine the probability of observing a mean 7.49 or more noise 
units away from zero when the null hypothesis is true, we turn to the t- 
distribution with. 30 degrees of freedom, and see that the likelihood of 
observing a difference this big is less than 0.001. 
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Table 10 

Formula Example 

Degrees of freedom = number of 

pairs minus 1 

Degrees of freedom = 30 

Based on these data, the probability of wrongly declaring the null 
hypothesis false is much less than 5%. We can, therefore, conclude that 
you were able to decrease body weight in 52-year-old men significantly 
by sending them to a holiday resort and forcing them to eat healthily and 
exercise regularly. 
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COMPARING TWO MEANS - THE TWO SAMPLE 

UNPAIRED t-TEST 

Terms you should learn: 
Critical ratio 
Pooled variance 

Concepts you should master: 
What the null hypothesis really says 
Critical ratio as a distance 
The true meaning of the p-value in this test 

Case study 

Suppose you know that antagonizing a specific receptor in the smooth 
muscle of the ureter will increase urine output, and suppose you believe 
that a certain compound can be a potent antagonist of that receptor. The 
question you have is 'If I administer this compound to dogs, will urine 
output increase?' 

You have developed a study plan using two groups of dogs: one 
receiving an i.m. injection of saline and the other receiving an injection of 
your test compound (0.3 mg/kg). Each dog is catheterized, assigned to a 
treatment arm, and urine is collected for 3 hours after dosing and 
measured in milliliters. Both groups receive water ad lib for 24 hours after 
surgical preparation. 

Preliminary data on urine output in dogs suggest that a 40 ml increase 
in urine output is biologically meaningful, and you have determined that 
six dogs in each group is sufficient to detect this increase. The 12 dogs 
were randomized into the groups so that their assignment to saline or 
drug treatment was completely unbiased. We have already discussed 
why randomization is basic to the theory of descriptive statistics: the 
same arguments apply here. 

Details regarding the experiment design phase of this project, 
including issues relating to power, randomization, etc. are presented 
later in our discussion of Experimental Design. We believe that good 
experiment design begins as early as the animal handling phase of the 
study. Anything that can be done to account for selection factors, bias or 
noise will help us eventually to separate the true biological signal from 
naturally occurring variation between subjects. 
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The data 

A difference of 44.2 ml of urine (203.5 -159.3) was observed between the 
drug- and saline-treated dogs in the experiment. The data collected from 
your experiment, along with preliminary summary statistics, are 
presented in Table 11. The dot plot obtained from these data was used as 
an example in Chapter 1 (Figure 13) and is reproduced here for easy 
reference. 

Table 11 

Treatment 

Figure 13 Urine output in dogs treated with saline or drug 
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Data analysis 

We know that the observed difference in sample means, 44.2 ml, is 
actually a random 'snapshot' drawn from the distribution of all differ- 
ences in urine output for drug-treated dogs compared with saline-treated 
animals. The measure 'difference', in fact, is a random variable, and is 
thus subject to variability in its own distribution. In another experiment 
we might have observed a difference as high as 60.0 ml or maybe even as 
low as 30.0 ml. The statistical question becomes 'Is the experimentally 
measured difference of 44.2 ml so large that it is unlikely to have been 
drawn from a population with a mean of zero?' This question forms the 
basis for the null hypothesis. We have calculated this chance using a 
common spreadsheet program (Table 12). Most spreadsheet and data 
analysis software packages can perform this calculation. In this case we 
have used EXCEL (Analysis Tools, t-test, Two-sample assuming equal 
variances). 

Table 12 t-Test: two-sample, assuming equal variances 

The software produces a table which provides all the information 
needed to make a decision about the efficacy of the test compound. Later 
on we will show you how these numbers were calculated, but for the 
time being we can trust EXCEL to calculate the t-test statistic as 2.48 
noise units. The computer provides you with both resources you need to 
evaluate your results: 

(1) the probability of observing your difference (2.48 noise units) 

(2) the critical value for the t-statistic, the measure of the least 
given the null hypothesis is true, i.e. the p-value (labeled 

difference in noise units acceptable for a preordained risk level for 
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error (e.g. in this case it was predetermined to be at a 5% Type I 
error rate and equal to 2.23 noise units for a two-tail test). 

Suppose we expect an increase in urine output due to drug treatment 
and a one-tail test is warranted. The probability associated with the t-test 
statistic (the p-value) and the point at which a 5% error rate will occur 
(the critical value) are shown schematically in Figure 19. 

Figure  19 

The 'bell-shaped' curve depicts the t-probability distribution with 10 
degrees of freedom. Remember, we saw this earlier in our one-sample 
tests. In this case, the curve represents the distribution of all possible 
differences we would expect to see if, in fact, the drug did not increase 
urine output. The t-statistic, or the distance measured in noise units, falls 
in the extreme end, or tail, of this distribution, suggesting that the 
likelihood of seeing a difference this big (44.2 ml of urine) given the null 
hypothesis is true (that is, that your samples were drawn from a popula- 
tion centered with mean zero) is very small. We usually decide that a 
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result is 'significant' if that likelihood is 'small enough' (beyond the 
critical value). In this example, the critical value was preset to limit our 
Type I errors to only 5%. The t-statistic falls outside this range, and we 
say that there is a ’significant’ increase in urine flow. 

In the following parts of this section we will discuss the details of this 
study, and then return to these data to show you how EXCEL actually 
performs the calculations. 

The question and your experiment 

Every experiment starts with a question and a possible solution. A valid 
assay is then established to test the hypothesis: the outcome of your test 
can be measured (e.g. increased urine flow) and the experimental model 
allows results to be obtained in a fairly 'reasonable' way - the measures 
are consistent and continuous. What you are asking is 'Does this test 
compound really antagonize the receptor in the smooth muscle of the 
ureter?' What your experiment is asking is 'on average, do treated dogs 
yield an increased urine flow compared with controls?'

Assumptions 

The scientific assumptions underlying the two-sample t-test are: 

(1) you are comparing only two groups; 
(2) they have both experienced comparable experimental conditions; 
(3) the treatment group differs from the controls only by the planned 

(4) the measurements taken reflect the true effect being looked for, i.e. 
intervention; 

the effects measured are not spurious side effects of the 
experiment. 

The statistical assumptions required for this test are: 

(1) the measures are continuous (e.g. not all-or-none effects, scores, 

(2) they are drawn from underlying distributions which are normal; 
(3) they have equal variance (although there is a method around 

etc.); 

which does not make this assumption). 

The test - the equation, what it means, and the distance it measures 

In general, the null hypothesis is given by: 
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In English, this says that the two underlying populations have the 
same mean, and you are going to test whether the observations made in 
the experimental samples drawn from that population are consistent 
with that assumption. In other words 'What are the chances of observing 
differences between two sample means 'this big' given they were drawn 
from one underlying population?' The statistical assumptions upon 
which this test is based are actually restating part of this null hypothesis. 

The equation which tests this assumption is given by: 

where 

and the ’s, N’s and s²'  s represent the sample means, sample sizes, and 
sample variances of each of the two populations respectively. 

What do these two equations tell you? The first equation, still known 
as the critical ratio, says that we are interested in a difference of means 

which is normalized in some way for the noise of the 

measures. If we think about as a single variable the test asks 
about a single realization drawn from the distribution of the random 
variable, difference in means. Under the null hypothesis, i.e. 
assuming = , this distribution should have a mean of zero. You 
know, however, that the difference between two random sample means 
will not be exactly zero, so how far away from zero must it be before you 
begin to believe that you may be mistaken in assuming the null 
hypothesis? 

To answer that question we need to know the spread around zero 
expected for - when the null hypothesis is true. Given this, we are 
then able determine in a probability metric how far from zero D 

           really is. That noise measure, based on sp², is the pooled 
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variance of the two populations and is supplied in the second equation. It 
is an estimate of the variance, and is a weighted average of the two 
sample variances s1 and s2 . The weights are given by the ratios of the 
two sample sizes (N1 and N2), to the total observations taken: that is 
easier to see as 

2 2 

sp² = (weight1)s1² + weight2)s2² 

What we want to know is how likely we are to see a sample difference 

as large or larger than drawn from a population with mean 
zero and variance sp . Remember that the standard deviation of a 
distribution of sample means is the standard error of the mean, and that 
it is calculated by dividing the standard deviation of the sample by the 
square root of N, the sample size. We happen to be looking at the 
distribution of the difference of two means, the random variable, D. The 
theoretical variance of the difference is given as: 

2 

The standard deviation of the distribution of mean differences is then 
given by: 

We are, however, assuming that the values of are drawn from the 
same underlying distribution. Remember the null hypothesis? In theory 
at least, the values of       should both equal the true underlying 
variance, and sp² is our best estimate for that. Therefore, substituting sp² 
into this equation and factoring it through the radical yields: 
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the denominator of the first equation. 
Given these calculations, we can now associate the distance calculated 

in noise units (the difference divided by the noise) with a probability 
distribution which looks like that shown in Figure 19. These theoretical 
curves are specific for the distribution called the t-distribution, and have 
been around for about 100 years. They have been tabulated, and were 
used by EXCEL in our earlier calculation. The degrees of freedom for this 
test are (N1 + N2 - 2): two information coins were spent to estimate the 

means, 1 and 2. 

Returning to our example 

The calculations associated with our example data are outlined in Table 
13. The null hypothesis assumes that the two sample populations 
(treated and control) were drawn from a single underlying population, 
and hence, have the same mean. The statistical question 'What is the 
likelihood of observing a difference this big (44.2 ml; 203.5 - 159.3) given 
the null is true?' associates that difference with a probability measure. 

The test is run as follows. We have the numerator for the test (the 
difference, 44.2 ml) and we calculate sp² as 949.56, using the second 
equation (since the two sample sizes are the same, it is not too surprising 
that this is just the average of the two variances). sp the square root of this 
value, is therefore 30.81. The distance metric requires we take the square 
root of 1/6 plus 1/6 to find the standard error (the standard deviation of 
the distribution of differences of sample means), so that the denominator 
of the first equation becomes 17.79. This tells us that 1 standard error 
unit in the distribution of the difference is 17.79 ml of urine, and that 
203.50 is 2.48 of those units away from 159.3. Alternatively, we could ask 
how likely it is that the number 44.2 would be drawn at random from a 
distribution which has a mean of zero and standard deviation of 17.79. 
To determine the probability that this actually occurred by chance alone, 
i.e. to link the distance measure to a probability, the critical values 
associated with 10 degrees of freedom (6 + 6 - 2) are looked up in the t- 
table. These values are shown in Table 14. 
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Table 13 

Form u I a Example 

Table 14 

One-sided critical values 0.1 0.05 0.02 0.01 
10 df 1.812 2.228 2.764 3.169 

Based on these data, this result says that the probability of observing a 
difference as large as 44.2 ml given the null hypothesis is true is less than 
5% but more than 2% (2.228 < 2.48 < 2.764) The p-value is less than the 
critical value of 0.05, so we can reject the null hypothesis and be wrong 
less than one time in 20. This is exactly the result produced by the 
EXCEL software. 
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COMPARING THREE OR MORE MEANS - THE ONE 

WAY ANALYSIS OF VARIANCE 

Terms you should learn: 
Homoscedastic 
Heteroscedastic 

ANOVA table - the F-statistic, degrees of freedom and the p-value 

Experiment-wise error rate 
Pairwise error rate 

Concepts you should master: 
What the null hypothesis really says 
Why comparing variances lets you test means 

Homoscedasticity vs. heteroscedasticity - robustness 

Multiple comparisons testing - experiment-wise error vs. by-test error 
of the assumptions 

Foreword 

This section introduces a tool with which to compare three or more 
means across different groups of subjects. Before getting further into 
these fairly complex calculations, consider why all the means within one 
analysis need to be compared simultaneously when performing all the 
pairwise t-tests separately would probably suffice. The reason is that 
when you decide to perform a t-test, you must choose, a priori, the 
comfort level for erroneously rejecting the null hypothesis. That is 
equivalent to saying that you are willing to declare two population 
means different when in fact they are not. Previously, we defined that 
error rate as the Type I error which, by convention, is usually preset to 
5%. If you have a 1 in 20 chance of making a mistake on one trial, 
however, the composite chance of making that same mistake in two 
independent trials is clearly no longer 1 in 20, and it is certainly no 
lower. If you undertook an enormous number of such tests (perhaps 
infinite) you are guaranteed to make that same mistake, no matter how 
small each individual probability is. The overall error rate, called the 
experiment-wise error rate, is therefore what you really want to control at 
the outset of an experiment. The individual trials are tested at the 
pairwise error rate. 

As an example of error inflation, suppose the pairwise error rate was 
set to 5%. While the chance of erroneously rejecting the null hypothesis 
for one pairwise comparison is exactly 5%, the chance of rejecting the 
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null hypothesis for two pairwise comparisons (e.g. one control group 
and two treatment arms) is given by: 

Experiment-wise error = 1- (1.0 - 0.05)² 
= 0.0975  

If an experiment required five pairwise comparisons, the likelihood of 
erroneously rejecting one or more of the null hypotheses would be 
22.6%. In other words, the chance of making a mistake when using the 
individual tests is approximately 1 in 5 — more than four times the 
overall comfort level. 

Case study 

Suppose an experiment tests more than a single pair of treatment arms: 
for example, a study of the dose-response characteristics of a particular 
drug. This might involve testing four or five different (usually increas- 
ing) doses or concentrations in an assay which is known to be predictive 
of drug efficacy. The results of this bioassay might be compared with 
those of a standard reference compound or an untreated control, or 
perhaps both. Another example might involve screening drugs. This 
would probably require a number of them to be tested simultaneously. 
Again you would want to know which of these drugs 'works', and 
which is better than another. These two experiments are almost identical 
when it comes to their logistics, but the designs are subtly different. 
These differences, subtle though they may be, are reflected in the 
analysis tools applied to the interpretation of the results. 

Let us work through the following example. A protein chemist is 
convinced that a series of molecules she has developed, all based on the 
same basic protein class, will decrease the proliferation rate of 
autoreactive T-cells in at least some autoimmune diseases. She is sure 
that the key to T-cell proliferation is an enzyme which has an active site 
that is 9 Å wide by 12 Å high by 4 Å deep, and this pocket has a positive 
charge on its uppermost face. Your laboratory has been given the task of 
determining if her conjecture is correct. An extensive literature search 
alerts you to an in vivo proliferation assay in which T-cells are excited by 
a non-specific adjuvant (a substance which induces immunoreactive 
cells to multiply) and which reasonably mimics autoimmunity. You have 
designed your experiment to include the following treatment arms: 

(1) T-cells from animals receiving no adjuvant stimulation 
(2) T-cells from animals receiving the adjuvant stimulus, but no 
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drug of any kind. 

test compound 1 

respectively. 

(3) T-cells from animals receiving the adjuvant and one dose of 

(4-7) As Group 3 except that they each receive test compounds 2-5 

Your questions are as follows: 

(1) Did the adjuvant work? 
(2) Did any of the test compounds actively inhibit the proliferation 

(3) If so, which compounds were they? 
rate of the T-cells in vivo? 

In this experiment, T-cells from the spleens of test animals were 
extracted one day after administration of the adjuvant and stained to 
indicate DNA replication levels. Those showing twice the normal DNA 
content, i.e. those in M-phase, were counted in a flow cytometer. The 
theory is that the number of cells in M-phase is a reasonable marker of 
the proliferation rate, i.e. is proportional to the total number of cells in 
the active phase of the cell cycle. 

The data 

The data obtained from the experiment are given below. The recordings 
are counts and are presented as a table (Table 15; means and SD) and as a 
dot plot (Figure 20). 

Table 15 
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Figure 20 Dot plot of T cell counts: data from Table 15 

Data analysis 

The analysis of these data is shown in Tables 16-18. 

Table 16 
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work?', is answered using only these two groups. If you were to include 
any of the other groups receiving adjuvant, i.e. those also receiving 
therapy, you would confound the issue with the treatment effects of any 
active compounds. If we ignore the controls not given adjuvant we can 
now answer the second question, 'Did any of these compounds 
significantly inhibit T-cell proliferation after adjuvant therapy?' Note: 
Sometimes a statistician would like to answer these two questions 
simultaneously, and there are ways to do that. But for illustrative 
purposes we have pulled them apart. Table 17, called an ANOVA table, is 
a little more complex than those presented previously, but it provides all 
the information you need to determine the answer. 

Table 17 

We will discuss the meaning of each of the entries in Table 18 below, 
but for now the p-value that answers your second question is given in 
the last column of Table 17. This value represents the probability of 
observing the pattern of sample means actually obtained, given that the 
null hypothesis is true. The null hypothesis in this case is that all six 
samples (all adjuvant-treated animals) were drawn from the same 
underlying population. In other words, if each group was chosen at 
random from a single underlying population, the chances of observing a 
pattern like this is less than 1 in 10 000. 

Table 18 provides you with the p-values derived using the Analysis of 
Variance for each individual test comparing adjuvant-stimulated 
controls (no drug) with drug-treated subjects. These pairwise 
comparisons are made simultaneously within the context of the overall 
analysis. The details of how they were performed are discussed below, 
but this extension of the two-sample t-test allows experiment-wise error 

rates to be controlled for and separated from the corporate error you 
would encounter if you performed five individual tests each with its 
own pairwise error rate. 
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Table 18 

Treatment Counts 
(mean ± SD) 

The question and your experiment 

The study began with a question about the efficacy of a family of 
proteins as anti-proliferative agents in some autoimmune diseases and a 
reasonable in vivo model of T-cell proliferation which you believe is 
predictive of these autoimmune reactions. Using standard laboratory 
practices and good experiment design, you decided that counting the 
number of spleen cells in M-phase one day after treatment would give a 
reasonable indication of the antiproliferative activity of any protein in 
the test system. What you are asking is 'Does my model of autoimmunity 
really work - i.e. do the cells begin to proliferate when animals are 
challenged with this non-specific adjuvant?' If so, which, if any, of these 
proteins really inhibits this kind of proliferative growth? What your 
experiment is asking is, 'on average, are there more cells in M-phase in 
the spleens of adjuvant-treated animals than in the spleens of animals 
receiving no adjuvant?, and if so, on average, do the animals in any of 
the treatment arms have fewer M-phase cell counts than the appropriate 
control?' 

1763.28 ± 73.45 

171 9.81 ± 77.36

(ns vs. Group 1) 

1797.00 ± 99.23 

(ns vs. Group 1) 

1568.04 ± 86.27 

(p < 0.05 vs. Group 1) 

1488.28 ± 97.78

(p < 0.05 vs. Group 1) 

992.75 ± 61.87 

(p < 0.05 vs. Group 1) 

1. Adjuvant; no drug 

2. Adjuvant; test compound 1 

3. Adjuvant; test compound 2 

4. Adjuvant; test compound 3 

5. Adjuvant; test compound 4 

6. Adjuvant; test compound 5 
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Statistically, you are trying to determine the chances of observing a 
distribution of sample means as disparate as that observed, given that 
these samples were all drawn from the same underlying population. 

Assumptions 

The scientific assumptions underlying the use of the Analysis of 
Variance are: 

(1) the true mean of the underlying population is not known; 
(2) the true standard deviation is not known; 
(3) the number of cells in M-phase is a scientifically valid measure of 

autoreactive T-cell proliferation rates; 
(4) the underlying populations are truly homogeneous, i.e. only 

autoreactive T-cells are being measured in the assay. 

The statistical assumptions required for this test are: 

(1) the measures are continuous (e.g. not all-or-none effects, scores, 

(2) the measures are drawn from underlying distributions which are 

(3) the sample populations are chosen randomly from the underlying 

(4) each treatment arm contains enough subjects to detect small 

etc.); 

normal, and have the same mean and variance; 

populations; 

differences in the proliferation rates, or at least differences large 
enough to be biologically relevant. 

The assumption of equal variance (assumption 2 above) is known as 
hornoscedasticity and is very important (see below). The existence of 
unequal variances among the populations is called heteroscedasticity. 

The test - the equation, what it means, and the distance it measures 

In general, the null hypothesis is given by: 

This equation says that all six underlying populations have the same 
mean, Under these conditions, the sample means should all be valid 
estimators of and the only variation about the true mean should be 
due to variations between samples. The ANOVA tool tests whether the 
sample means observed are consistent with that assumption. In other 
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words, 'What are the chances of observing a pattern of mean responses 
(i.e. variations) 'this big', given that all the samples were drawn from the 
same underlying population?' 

Suppose all the samples were drawn from a single underlying popula- 
tion. Then one would expect the mean of the sample variances and the 
variance of the sample means to be related somehow, and to provide 
identical estimates of the underlying population variance, This is why 
we must assume homoscedasticity. 

By now, you should know that the sample means will not all be the 
same. If they were you would have serious doubts about the validity of 
your assay. You should therefore expect some variation in your estimates 
of the true mean. If the null hypothesis is true, however, the sample 
means should be fairly close to each other, since each actually represents 
a single random sample from the same underlying population. If the 
spread of the sample means is too large, then one or more of them is 
'sticking out' from the others, and these deviants were probably derived 
from different underlying populations (i.e. for the ith group). We 
therefore need to determine how far apart these sample means must be 
(i.e. what is their variance?) and to ask if that variance is ‘big enough’ to 
indicate that the sample means probably did not come from a single 
underlying source. The best way to do that is to somehow compare the 
variance of the sample means with the variance of the true underlying 
population,  One estimate of that variance is derived from the mean of 
the sample variances. The calculations are as follows: 

Each treatment arm yields a sample mean and sample variance. In the 
previous sections we called these statistics and s². Recall that the 
calculation of s² looked like : 

For the sake of this discussion we have to add a complication to this 
equation. Each sample has its own variance. Therefore we need to 
identify each treatment arm with its own subscript. For lack of anything 
better, we will use the letter 'j' to indicate that we are discussing 
treatment group j. The equation then becomes: 
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If all the treatment arms have the same number of subjects, then all the 
Nj are equal, and we can simply calculate the 'average variance' from the 
samples to derive the first estimate of the underlying variance, Now 
suppose that the number of subjects in each group is not the same. 
Remember how we were able to calculate an estimate of the underlying 
variance using the pooled variance in the two-sample t-test? The analysis 
of variance does essentially the same thing. If the experiment has k 

different groups (in this case k = 6), with sample sizes N1, N2, . . . Nk’ then, 
in calculations similar to those used for the pooled variance estimate in 
the two sample t-test, the generalized pooled variance estimate has (N1- 

1) + (N 2-1) + . . . + (N k-1) degrees of freedom. 
That estimate for is fairly straightforward, but what we really want 

to know is how disparate our sample means are. That calculation is just 
as straightforward. Each of the k treatment groups (in this case 6) yields a 

sample mean, . The mean of the means, the grand mean, , is 
calculated in the usual way. The variance of the means is given by: 

You already know that the standard deviation of the distribution of 
sample means is really the standard error of the mean, which is the 
population standard deviation divided by the square root of the sample 
size. In this case we have k groups each of size N. That is like taking k 
random points (in this case 6) from the underlying population of the 
means derived from samples of size N (in this case 7). The second 
estimate of the true variance, is therefore given as: 

If one of the means is sticking out 'too far', this is the estimate that 
would show it: it would be 'too big'. 

Recall that all of these machinations are based upon estimates of the 
variances. Then their ratios are random variables and, by the rules about 
random variables, must be associated with a probability distribution. 
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This distribution is, in principle, just like those we used for the z-statistic 
and the various t-statistics, i.e. it associates a probability with a noise 
metric. This distribution, known as the F-distribution, represents the 
likelihood of observing all possible ratios of variances given that the true 
ratio should be 1, i.e. the variances are equal. The F-distribution therefore 
indicates how likely it is to be 'this far away from 1', given that the null 
hypothesis is true. In that sense, we treat the F-statistic, the test of the 
ratio, in the exact same way as we treated the t-tests above. 

Now for the tricky part. We need to identify the degrees of freedom 
for each estimate of Remember, the degrees of freedom are like 
information coins: you have a certain amount of information to use, and 
you have to spend one of your coins for each estimate you make. The 
estimate of using the average of the variances has only Nk indepen- 
dent pieces of information, and one information coin is used to estimate 
each mean (just as in the t-tests described above). The first method of 
estimating therefore has (Nk - k ) degrees of freedom. 

The second method of estimating actually looks at the variance of 
the means. What you are really saying is 'I have k samples, each of size 
N, from which to estimate this variance'- you therefore have N x k pieces 
of information. You have to estimate k different means, however, from 
which you can derive one variance estimate. The number of degrees of 
freedom for this estimate of is therefore k - 1. 

How can the two be compared? The null hypothesis says that the two 
estimates of the variance should be the same and that their ratio should 
be 1. Dividing the second estimate by the first should give a value of 1, or 
at least near 1. The probability of being 'this far away' from 1 when the 
null hypothesis is true is derived from tables of the F-distribution, which 
depends upon both estimates of This table must therefore reflect both 
of the degrees of freedom. 

Returning to our example 

The calculations associated with our example data are outlined below: 
The mean of the variances for the adjuvantly treated groups is: 



Inference 87 

The grand mean, i.e. the mean of the means, is 1554.86. The variance 
of the means is: 

This is the estimate we called obtain an estimate for we 

need to multiply this variance (the one that looks like a 'standard error') 
by the size of each group. In this case the size of each group, Nj, is 7. 
Therefore, this estimate for is 629 796. The ratio of the two is 89.95. 

These variance estimates appear in the ANOVA table under the 
column mean square (see page 81): the term mean square is just another 
name for the variance. It is derived from the fact that the variance is a 
sum of squared differences divided by the number of degrees of freedom 
left over after the estimates have been paid for in information coins. 

The ratio of the two variance estimates appears in the column marked 
F-statistic, and the probability of observing this ratio when the null 
hypothesis is true, the overall treatment effect p-value, is given to the 
right of the F-statistic. All of the information pertinent to the test is 
summarized in the lower right hand corner of the table. 

Since the null hypothesis assumes that all the sample populations 
(treated and control) were drawn from a single underlying population, 
each estimates the true mean and variance. The statistical question 'What 
is the likelihood of observing a ratio 'this big' between the variance of the 
means and the mean of the variances, given that the null hypothesis is 
true?' is the link in the bridge which associates that ratio with a 
probability measure. 

The test is run as follows. First calculate the numerator for the test, i.e. 
the estimate of based on the variance of means, 629 796. Then calculate 
the denominator for the test, i.e. the estimate of based on the mean of 
the variances, 7009. The number of degrees of freedom for the numerator 
is 5 (6 treatment groups minus one estimate of the grand mean), and for 
the denominator is 36 (42 individual measures minus 6 estimates for 
each group mean or variance). Calculation of the ratio of the two 
variance estimates gives a value of 89.95. That ratio can then be linked 
with a probability using the F-table with 5 and 36 degrees of freedom. 
The critical value drawn from the ANOVA table on page 81 is 2.48. This 
means that, with this study design, the likelihood of seeing variances 
that are about 2.5-fold different when the null hypothesis is true is only 

[(1763.28 -1554.86) ² + (1719.81 - 1554.86)² + . . + (992.75- 1554.86)²]/(6 -1)
= 449853.44/5

= 89970.69
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5%. The p-value for observing two estimates of the same variance which 
are 90-fold different is less than 0.0001 or less than 1 chance in 10 000! 
Based on these results we are willing to reject the null hypothesis and 
say that at least one of these groups is different from all the others. 

Pairwise comparisons 

The final question to be answered is 'Which of these treatments was 
active when compared with controls?' You could just as easily have 
asked 'Which of these treatments is different from which?': in either case 
you would still test an adjuvant-treated control against a non-treated 
control to see whether the adjuvant induced proliferation in autoreactive 
T-cells. Assuming it did, you would then drop the non-treated group to 
determine the effects of the test compounds. The ANOVA would 
actually be performed the same way, but the scientific questions are 
different. The pairwise comparisons used to answer those different 
questions will therefore also be different. 

The tools used to make pairwise comparisons within the context of an 
overall ANOVA are numerous and complex. They differ according to the 
design of your study and how conservative you feel about making an 
error during any one of the comparisons: we cannot, therefore, outline all 
the possible scenarios in this book. For the sake of completeness, 
however, we will highlight the two which could be employed to answer 
the questions raised at the beginning of this section. 

The first test allows comparison of any treatment group (usually the 
control) with all the others. The mathematics does not care which is 
which. You should, therefore, take care during the design phase to 
identify your control adequately and be sure that this is the only one 
used for comparison. In the foreword to this book, we raised the point 
that you could compare your bioassay results to a standard reference 
compound, to an untreated control, or maybe both. This is a case which 
has two possible controls and two sets of comparisons. 

Assuming that you are really only interested in one set of 
comparisons, the test we employed to derive the table of comparisons 
shown on page 82 was Dunnett’s test. This test adjusts the pairwise 
comparisons in a fairly conservative manner for each of the five (k-1) 
comparisons. The details of the adjustment are based on the results 
generated in the overall ANOVA, and are beyond the scope of this book. 
Graphically, the comparison scheme looks like a 'starburst', with the 
control comparator in the middle, and the individual comparators 
radiating outward (see Figure 21). 
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The other point raised in the foreword was that you might want to 
know which of these drugs 'works', and which works better than the 
others. This test would clearly have more possible comparisons than 
those performed in the case outlined above. In the case study with six 
groups there were five independent Dunnett’s comparisons out of 15 
possible. Determination of which is different from which requires all 15 
of those questions to be answered. Given our concern over controlling 
the experiment-wise error rate, shouldn’t any test which compares 15 
pairs be more conservative than one which compares only five? In other 
words, we would need the means to be farther apart in the noise space. 
This more conservative, but more general, test is called the Student- 

Neuman-Keul’s test. Again the details of the test are beyond the scope of 
this book, but, it is important to determine which question is to be 
answered before the experiment is performed so that the right tools are 
used to analyze the results. 

Figure 21 
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COMPARING TWO OR MORE PROPORTIONS: 

PROPORTIONS TESTS AND CHI-SQUARE (x²) 

Terms you should learn: 
Two-sample proportions test 
Chi-square test 
Blinding 
Binomial distribution and Bernoulli trials 
Marginal totals 
Chi-square distribution 
Rule of five & Fisher’s exact test 

Concepts you should master: 
Blinding, bias and category assignment 
The null hypothesis, its assumptions and interpretation 
Proportions as random variables 
The pooled proportion as an estimator 
The variance of the distribution of proportions 
Degrees of freedom in the chi-square 

Foreword 

Up to now we have been developing tools with which to compare the 
average behavior of two or more populations, and our responses have 
been summarized as arithmetic means. But suppose we need to compare 
two or more populations as a whole with respect to their abilities to 
respond to a particular stimulus. This question is slightly different to 
those previously considered, which have involved measurement of a 
continuous response (e.g. blood pressure, cell counts, etc.) from each 
member of the sample population. In this case we establish, a priori, a 
level of response which we identify as 'positive' and ask 'What 
proportion of the population is positive, and is that proportion different 
from population to population?' 

In essence, while each subject in your study contributes either 'yes' or 
'no' to the overall answer, the sample population as a whole is the real 
experimental unit. From that sample proportion you will try to establish 
what the true proportion of responders would have been if you had 
tested, simultaneously, every subject in the underlying population. 
Using this estimate you can then ask the same inferential question as you 
asked about the means: 'How far away, in probability space, are the 
proportions observed in sample population 1 and sample population 2, 
and could they both be snapshots of the same underlying population?' 
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Case study 

Pain in the neck has been shown to be a major debilitating condition 
afflicting the average mother of three. Based on extensive research into 
neck physiology, nerve conduction and child rearing, a model involving 
a pinched nerve in the neck has been developed which mimics this 
condition in female rats. When these animals are stroked along the back 
they writhe and squeal in pain. Although the number of writhes and 
squeals is difficult to quantify, it is possible to determine whether or not 
the animals are in pain, and they can therefore be assigned to one of two 
groups (happy or sad). It has been proposed that the proportion of rats 
in the happy group will increase when an active analgesic (trade name 
Pain-Away) is given to the rats 2 hours before stroking. Is this correct? 

The experiment designed to test this hypothesis compares Pain-Away 
with three other analgesics to see (1) whether Pain-Away really works 
and (2) whether there is any evidence to suggest that Pain-Away is better 
than anything else. You determine that five groups (Control, Pain-Away, 
and three competitors) of 20 animals each is a large enough sample size 
to show any relevant differences in analgesia. Each animal in each group 
has been surgically prepared with a neck pinch, and each is randomly 
assigned to one of the treatment groups. The treatments are performed as 
follows: a rat is selected at random from each group (the experimenter 
does not know which rat is from which group, a technique known as 
blinding). He strokes it across the back, and declares it happy or sad. The 
process continues, 5 rats at a time, until all rats are tested. 

The data 

The data for your experiment are given in Table 19. Removing the 
control group allows the second question to be answered. The new data 
display is shown in Table 20; this yields an analysis called a chi-square 

(X ²) test. It is analogous to the ANQVA in that it answers the same type 
of question about proportions that the ANOVA answers about means, 
i.e. 'In these multiple samples, is there enough evidence to suggest that 
at least one of them is not drawn from the same underlying population?'

Data analysis 

The data are analyzed as follows. First, the control group is compared 
just with the group treated with Pain-Away (proportions 6/20 and15/20) 
to determine the likelihood that a single underlying population of pinch- 
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Table 19 

Table 20 

necked rats would have yielded two sample proportions 'this far apart'. 
The statistics are similar to those in the two sample t-test (Table 21). In 
this table there is an estimator not seen before, called the pooled estimate 
of the proportion. We will discuss it more fully below but briefly, it 
represents the best guess we can make about the true underlying 
proportion of happy rats when the null hypothesis is true. Another 
difference between this analysis and the two-sample t-test is that this test 
statistic is distributed like a z-statistic and not like a t-statistic. This is 
something to keep in mind. 

Table 21 

The second analysis (Table 22) is a bit more difficult. This table is 
called a X ² contingency table. 

Control Pain-Away

Proportion responding 6/20 1 5/20

Pooled estimator of proportion 0.525 

Pooled S E 0.158

p-value < 0.005

(30%) (75%)

z-stat ist ic 2.848
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Table 22 

X² = 2.773 df = 3; Critical value = 7.815; p = 0.428 

This analysis yields a p-value similar to that derived from the 
ANOVA. It indicates the likelihood of obtaining a group of proportions 
this disparate, given the null hypothesis is true, i.e. knowing they were 
all drawn from the same underlying distribution. In the headings of the 
second and third columns, 'observed' is the result obtained, while 
'expected' is the value expected if the null hypothesis were true. What 
this analysis quantifies is how far away from expectation the actual 
results really are. Expectation is, of course, defined by the null 
hypo thesis. 

The question and your experiment 

The study began with a question about the efficacy of a standard drug 
(Pain-Away) and was expanded to a comparison of Pain-Away with 
other analgesics. A reasonable model of pain which mimics neck pain in 
the average mother of three was obtained and, using standard 
technologies, you decided that while the number of squeals and writhes 
in any single rat was not a good measure of pain, the proportion of 
happy rats in each test sample was a reasonable measure of efficacy. 
What you are asking is 'Does my model of analgesia really work, i.e. 
does pain actually decrease when I treat my rats with the wonder drug, 
Pain-Away?' If so, is there any difference between Pain-Away and the 
other three analgesics tested? What your experiment is asking is, 
'proportionately, are there more rats assigned to the happy category in 
the treated group than in the group of animals receiving a placebo?', and 
if so, 'proportionately, do any of the other treatment arms yield signifi- 
cantly lower assignment levels than Pain-Away?' 

Statistically, you are trying to determine the chances of observing a 
distribution of sample proportions as disparate as that obtained, given 
that these samples were all drawn from the same underlying population. 

Group Happy Sad Total

Observed/ Expected Observed/ Expected 

Pain-Away 15/12.5 5 / 7.5 20

Comparison 1 12 / 12.5 8 / 7.5
Comparison 2 10/ 12.5 10 / 7.5
Comparison 3 13/ 12.5 7 / 7.5 20 

Total 50 30 80 
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Assumptions 

The scientific assumptions underlying the use of all proportions tests, 
including the X ², are: 

(1) the true proportion of responders in the underlying population is 

(2) the number of rats observed in the happy group is a scientifically 

(3) the underlying populations are truly homogeneous, i.e. only pain 

not known; 

valid measure of efficacy; 

responses due to pinched necks are being measured in the assay. 

The statistical assumptions required for this test are: 

(1) the measures are dichotomous (e.g. all- or- none effects); 
(2) the samples are drawn from the same underlying distribution; 
(3) the sample populations are chosen randomly from the underlying 

(4) the measurement and assignment tool is not biased or confounded 

(5) there are enough subjects per treatment arm to show differences in 

population; 

with other effects (which is why the study was blinded); 

proportions which are deemed to be biologically relevant. 

The test - the equation, what it means and the distance it measures 

In general, the null hypothesis for the first question is given by: 

The notation has changed to indicate that we are looking at 
proportions and not means: the Greek letter ‘pi’ is used to indicate the 
‘true proportions’ of underlying populations, and the Roman alphabet 
(letter p) is used to indicate sample proportions, i.e. those actually 
observed. What this equation is actually saying is that the proportion of 
responders in the placebo control group is equal to the proportion of 
responders in the group treated with Pain-Away, and that both are equal 
to the underlying proportion of responders in all rats, 

The equation which tests this assumption is another critical ratio: 



Inference 95 

where 

Ni and Nc represents the sample sizes of the two populations respec- 
tively (the subscript t indicates those treated with Pain-Away, while c 

indicates control). pt and pc represent the proportions of responders in the 
two sample populations respectively, and p* is the weighted mean of the 
two, and is a pooled estimate of the true proportion. This is, in fact, simply 
the total number of successes divided by the total number of trials, and 
should be a reasonable estimate for when the null hypothesis is true. 

The first equation is just like the critical ratio calculated before for the 
two-sample t-test. It says that we are interested in a difference of two 
proportions = pt - pc) which is normalized in some way for the 
noisiness of the estimates. If we consider pt - pc as a single variable,  
this test (just like the two sample t-test) looks at a single realization 
drawn from the distribution of the random variable, 'differences in 
proportions'. Under the null hypothesis, i.e. assuming = this 
distribution should have zero as its mean (just as in the t-test). In order 
to determine the distance from zero to the sample difference, and to see 
whether it is far enough away to allow the validity of the null hypothesis 
to be questioned, we need to know the expected spread around zero for 
the values of when the null hypothesis is true. That noise measure is 
based on the binomial distribution. 

The binomial distribution 

A binomial event can have only two possible outcomes: positive and 
negative, happy and sad, heads and tails, etc. The expected value of the 
proportion of successes in N independent trials will be, on average, 
where is the underlying probability of success. It is important that each 
of these trials (in our case, each pinch-necked rat) is independent, and 
that the likelihood of success in each trial (rat) is equal. Each on-off, 
dichotomous test like this is called a Bernoulli trial, and the number of 
successes in N Bernoulli trials is a random variable. Since it is a random 
variable it must be associated with a distribution, in this case the 
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binomial distribution, the variance of which is given by - n). The 
proportion of successes, as opposed to the number of successes, is also a 
random variable. It therefore has a distribution which has a variance 
given by - The standard error of the proportion of successes, 
then, is just: 

The proportions version of the critical ratio can be treated the same 
way as when we generalized the one-sample t-test to the two-sample t- 
test. We need an estimate of the variance of the population of differences
in proportions when the null hypothesis is true, which should be, for 
consistency's sake, a weighted average of the two sample variances. That
is easier to see as: 

The leap to the second line in this equation is derived when we 
assume that the null hypothesis is true, i.e. = = Therefore, given 

the null hypothesis is true, we can use this estimate of the noise. 
In our actual test, we do not know the value of n: this is where p* 

comes in. p* is actually a weighted average, and the weights are given by 
the two sample sizes (Nt and Nc). Substituting p* for in the equation for 
the standard error and putting all these mathematical building blocks 
together, we arrive at the critical ratio given above. 

The distance calculated in noise units (the difference in proportions 
divided by the noise) can now be associated with a probability 
distribution to give the likelihood measure, i.e. the probability value, we 
are really seeking. In this case, the critical ratio is distributed just like the 
z-distribution outlined in the one-sample tests of means above. The 
critical point which traces out a 95% confidence level for a two-sided test 
is 1.96. This means that the likelihood of seeing two proportions more 
than 1.96 standard error units away from each other in either direction 

is less than 5% when the null hypothesis is true. 
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We will work through the calculations needed during this ‘assay 
verification phase’ (i.e. the part of the experiment that answers the 
question of whether Pain-Away reverses neck pain in rats with pinched 
nerves) in detail below. First, however, we want to present an overview 
of the chi-square analysis. 

The null hypothesis for the second question is given by: 

This hypothesis states that the proportion of responders in each group 
is equal to any other and that all are equal to the same underlying 
proportion of responders, In other words, all sample populations were 
really drawn from the same underlying population (‘effectively treated 
rats’) and the differences observed in success rates are due only to 
random sampling. 

The motivation for the chi-square test is just a generalization of the 
argument presented for the two-sample proportions test. The logic is as 
follows. If the null hypothesis were true, then the best estimate for 
would be the total number of responders divided by the total number of 
participants (just like p*), and there should be no major discrepancies 
observed from row to row of the X ² table (what is sometimes referred to 
as row effects in a X ² analysis). The total number of happy rats, given at 
the bottom of the second column in the X ² contingency table, is one of 
seven possible totals derived from this table (total number tested for 
Pain-Away, total number tested for comparison drugs 1, 2 and 3, total 
happy, total sad and the grand total). As a group, these totals are called 
the marginals of the table (because they are on the edges). The total number 
of happy rats divided by the grand total is therefore the best estimate of 
when the null hypothesis is true. There should be happy rats in the 
Pain-Away group. The same kind of result would be expected for the 
other totals. These calculations yield the expected numbers of successes 
in each group (the expected values in the X ² table above). If we were to 
sum all the differences between the expected and observed values in the 
table, we should get an overall discrepancy measure. If expectation is 
based upon the assumption of the null hypothesis, we would now need 
a means of associating our calculated discrepancy with a probability of 
observing it. This is the same paradigm used throughout all inferential 
testing. So what we want to do is normalize our discrepancy by a 
measure of its noisiness. 

The equation for calculating the value of X ² is: 
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where the sum is taken over each of the cells in the X ² table. 
The numerator of the sum is a squared discrepancy. The reasoning 

behind this is the same as that behind the use of the sum of squared 
deviations in calculations of variance - in order to obtain a positive sum, 
each of the components of that sum must be made positive. Although the 
absolute values could have been used, the arguments made in the case of 
the variance also hold for the X ² test. 

The denominator in each component of the sum is the expected value 
derived for the cell in question. For the successes, it is the total number 
of successes divided by the grand total multiplied by the number of 
subjects tested in the group, while for the number of failures it is just its 
complement (Table 23). 

Table 23 

In this case 50/80 = 62.5% or 0.625, which is the best estimate of The 
best estimate of the number of happy rats expected following treatment 
with Pain-Away, if the null hypothesis is true, is 20 times 0.625, or 12.5. 
However, the X ² sum, composed of all the discrepancies found in your 
table, is a random variable just like all the other test statistics discussed 
on the preceding pages. It must, then, have a distribution from which a 
probability measure can be derived. Fortuitiously, it does and it is 
tabulated in most statistics references and software packages. 

There is still one more point to be addressed. Given a fixed marginal 
(i.e. knowing that 20 animals were tested), specification of the number of 
successes automatically gives the number of failures in that particular 
sample. The fact that the table has fixed marginals means that the cells 
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are not independent, and again raises the question of degrees of 
freedom. In this case, the degrees of freedom are a function of the 
number of independent cells in the table, and not of the number of 
subjects tested. A table with R rows and C columns has (R - 1) x (C - 1) 
independent free spaces to be filled before all the rest are automatically 
calculated. The X ² distribution is therefore described by (R - 1) x (C - 1) 
degrees of freedom. It should therefore be obvious that the larger the x² 
table, the more degrees of freedom it has, and the more entries there are 
in the sum. Thus, as the table grows, the sum will also grow, and the 
critical value on the total X ² needed to reject the null hypothesis also 
increases. In other words, the more degrees of freedom you have the 
greater the total sum must be to reject the null hypothesis. This is 
opposite to the case for the t-distributions, where the fewer the degrees 
of freedom the larger the critical ratio had to be to yield the same the 
values. The reason is that in the case of the t-distribution, a lower 
number of observations increases the uncertainty of the estimate of the 
true variance, and this uncertainty was accounted for by making the 
critical points larger. 

Returning to our example 

The calculations associated with the First test are shown in Table 24. The 
null hypothesis assumes that the two sample populations (treated and 
control) were drawn from a single underlying population, and hence, 
will have the same proportion of positive responses. The statistical 
question, then, is ‘What is the likelihood of observing a difference in 
proportions this big (= 0.75 - 0.30) given the null hypothesis is true?’ The 
test will associate that difference with a probability measure. 

The test is run as follows. The numerator for the test, i.e. the 
difference, is 0.45. The pooled estimate of the proportion, is estimated 
by adding up all the responders and dividing by the total number of 
independent trials (rats); this gives a figure of 0.525. The pooled estimate 
of the standard error, derived from is 0.158. The distance metric 
requires calculation of the ratio of the difference and the standard error, 
which has a value of 2.848. Associating that with a likelihood of 
occurrence by using the z-distribution yields a probability of seeing a 
difference this big, given that the null hypothesis is true, as less than 
0.005, or 5 chances in 1000. It is therefore probably fairly safe to reject the 
null hypothesis and to conclude that Pain-Away actually does alleviate 
severe neck pain. 
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The calculations associated with the second test are outlined in Table 
25. 

Table 24 

Table 25 
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The null hypothesis assumes that all the sample populations were 
drawn from a single underlying population, and hence, that they all 
have the same underlying proportion of positive responses. The 
statistical question is, therefore, 'What is the likelihood of observing a 
pattern of sample proportions this disparate (75%, 60%, 50%, 65%), given 
the null hypothesis is true?' 

The test is run as follows. The best estimate of  based on a weighted
average of happy rats, is 50/80 = 62.5%. Given this estimate of should 
four proportions drawn at random from the distribution of all sample 
proportions (of samples of size 20) have this pattern of response? The 
distance metric requires calculation of the sum of normalized 
discrepancies (i.e. the ratios of the squared differences between observed 
and expected values normalized by the expected values), which is 2.773 
noise units. That sum is associated with a likelihood by using a X ² table 
with three degrees of freedom. The critical value which ensures at most a 
5% error rate is 7.815. In other words, the sums of normalized ratios 
greater than 7.815 will occur, by chance alone, less than 5% of the time, 
when the null hypothesis is true. In the case described above, a sum of 
discrepancies greater than 2.773 occurs about 43% of the time, and this 
can occur by chance alone. Most people would be unwilling to reject the 
null hypothesis knowing that they would be wrong 43% of time, and 
these results therefore do not suggest that Pain-Away is better, or worse, 
than any other analgesic. 

Caveats and extensions 

There are two more issues of which you need to be aware when using 
the X ² test. First, none of the theory that we have covered expressed a 
requirement for the use of dichotomous responses in the columns of the 
X ² table. All that was involved was the addition of a set of normalized
discrepancies, and checking to see whether their total was 'far enough' 
away from expectation to suggest that the null hypothesis should be 
questioned. This suggests that the same logic should apply to any 
number of well-defined categories for which expected values could be 
derived, and this is in fact the case. Consider the example shown in 
Table 26. For the first type (category) of response, observations were 
made in five subjects from a sample of 20 (25%) from group A, in seven 
of 35 (20%) from group B, in 10 of 25 (40%) from group C, and in six of 15 
(40%) from group D. Could these sample proportions have come from a 
single underlying population in which 29.5% (28 of 95) were type 1 
responders? The same question could be asked with respect to types 2, 3 
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and 4. The sum of all the discrepancies derived from this table does not 
depend upon the simple proportions observed with dichotomous 
responses. Rather, it only needs a complete set of proportions for all 
categories to enable the calculation of expected values to be undertaken. 
Once all the machinery is in place, the logic of adding up all deviations 
from expectation remains the same. In this case, there are four groups 
and four categories of response, i.e. it is a 4 x 4 X ² table, and there are 3 x 
3 = 9 degrees of freedom. Once the sums have been calculated, the X ² 
distribution allows us to calculate a probability of seeing a total 
normalized discrepancy ‘this big’ when the null hypothesis is true (i.e. 
when there are no row effects, and all the groups are just snapshots of 
the same underlying population). 

Table 26 

The second point is that there are limits to the X ² technology. For 
theoretical reasons that are beyond the scope of this book, the X ² table 
cannot be too sparse. By that we mean that the table cannot contain too 
many cells that are either empty or contain a small number of counts. 

Suppose a set of categories in a particular assay yields only small 
proportions of responders. Since we are considering only whole number 
events (i.e. the number of responders in a given category), one responder 
who deviates from expectation in either direction, by chance alone, will 
alter your final total by adding to the discrepancies observed. However, 
the X ² calculation requires the use of normalized discrepancies, and the 
normalization factors used are the expected values themselves. Small 
sample cells would therefore be inordinately weighted by these smaller 
expectations to be fair. If a data set does have too many of these small 
sample cells the problem is probably not insurmountable, and the X ² 
analysis will probably work. Too many of these cells, however, could 
cause trouble. The statistician has a rule of thumb, called the Rule of Five, 

which he/she applies to the X ² table before proceeding with the analysis. 
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This rule says that if 20% of the cells in the table contain expected counts 
less than five, use of the X ² test should be reconsidered. An analysis tool 
known as Fisher's exact test should be used instead. This numerical test, 
which can be found in most statistics software packages, analyzes the 
likelihood of the pattern of cells observed (or something even more 
extreme), given fixed marginals. This probability is calculated exactly by 
enumerating all the possibilities for the given table structure. Therefore, 
even when the X ² tool is inappropriate you can still analyze your results. 
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DISTRIBUTION-FREE MEASURES: NON- 

PARAMETRIC STATISTICS 

Terms you should learn: 
The sign test 
The Wilcoxon signed rank test 
The rank sum test 
The Kruskall-Wallis test 

Concepts you should master: 
Parameters and distributions 
Sign test and the binomial distribution 
Signed rank and the paired t-test 
Rank sum and unpaired t-test 

Kruskall-Wallis and the one-way ANOVA 
The null hypotheses, their assumptions and interpretations 

Foreword 

So far we have discussed statistical terms such as means, standard devia- 
tions and variances as population measures, as if we really know what 
we are talking about. Each of the case studies presented above assumed 
the existence of an underlying statistical population, the distribution of 
which looked like a normal (i.e. bell-shaped) curve, and assumed that 
the sample means and standard deviations, the measures of location and 
spread derived from random snapshots, were somehow representative 
of that distribution. Suppose the underlying statistical population 
yielded sample data that did not fit this image of a perfect distribution. 
In that case a mean calculated from the sample data need not necessarily 
represent the underlying statistical population and may not, in fact, be 
the most appropriate value to use when comparing target populations. A 
perfect example of data with a non-normal (i.e. non-bell shaped) 
distribution is scores on fixed intervals. This situation is described more 
completely when we recognize that the mean and variance of a normal 
population are just representatives, or parameters, of that distribution. We 
have assumed that the population can be described exactly using just 
these two values. That incredible feat was accomplished using complex 
mathematical formulae based upon these parameters which trace out 
theoretical curves. The class of inferential statistics that takes advantage 
of these complex formulae is called parametric statistics. 
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When assumptions about the shape of the underlying distribution fail, 
or if there are serious doubts, given the randomness of the sampling 
tools, about the shapes and sizes of these distributions, it would be nice 
to have a set of tools with which populations can be compared and 
described. Such tools are called distribution-free (i.e. assumption-free), or 
non-parametric statistics, because they do not require and the true 
mean and standard deviation to be used, estimated or tested. 

In this section we will outline four non-parametric analogs for the 
paired t-test, the unpaired t-test and one-way ANOVA, parametric 
methods which were described above. There is no non-parametric 
analog for the one-sample z-test since that test depends intimately on the 
shape of the standard normal Gaussian curve. Without the standard 
normal curve there really is no z-statistic at all. In fact, the reason we 
developed the one-sample t-test in the first place was because we had to 
estimate from the sample data. There are also some distribution-free 
methods analogous to the tools used in correlation and regression (see 
Chapter 3). For the sake of consistency they will be presented under that 
topic. 

Case study (the sign test and the Wilcoxon signed rank – for paired

samples)

It has been suggested direct sunlight weakens the protein structure of the 
hair, and that repeated exposure destroys the sheen and luster so prized 
among the 'beautiful people' on the resort beaches of the world. A study 
is designed similar to that described above for the study of health 
promotion to reduce the risk of cardiovascular disease, in which green- 
eyed rats are sent to the Caribbean for exposure to sun and coconut 
baths, in an attempt to determine whether multiple exposures to the 
Caribbean sun result in the loss of tensile strength in the hair. The results 
obtained are shown in Table 27. 

There are two things to notice about this table. First the data are 
ranked — the details of how this is done are presented below. Second, the 
ranks are also 'signed', i.e. they are given a direction. The important 
thing to notice here is that rank for the zero value (rat 3) is discarded, 
and remaining ranks are then determined by first direction and then 
magnitude. Those two aspects of the procedure establish the difference 
between the sign test and the signed rank test. 

There are two positive differences, and the sum of the positive ranks is 
5. There are seven negative differences, and the sum of the negative 
ranks is 40. The sample size is actually 9, since rat 3 was discarded. The 
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p-value for the sign test is 0.095, while the p-value for the signed rank test 
is < 0.05. How were these calculated and why are these two values so 
different? 

Table 27 

The question and your experiment 

The study began with a question about the effects of sunlight on the 
protein structure of the hair. A model of measuring hair strength in 
green-eyed rats was developed that entailed pulling out the hairs and 
measuring the tensile strength of each strand. You measured these 
strengths before and after the animals were kept for 2 weeks in direct 
Caribbean sunlight. What you are asking is, ‘In this model, does direct 
sunlight exposure result in protein degradation and the eventual loss of 
luster and sheen in the hair?’ What the experiment is asking is, ‘on the 
whole, is there a significant loss of tensile strength in the hair of green- 
eyed rats exposed to the Caribbean sunshine?’ 

Statistically, you are trying to determine the chances of observing a 
distribution of positive and negative differences (in both magnitude and 
direction) as disparate as that obtained, given that these samples were all 
drawn from a single underlying population centered around zero. 

Assumptions 

The statistical assumptions required to run the paired t-test are: 

(1) the measures are continuous (e.g. not all-or-none effects, scores, 
etc.); 
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(2) they are drawn from an underlying distribution which is normal 

(3) the sample population is chosen randomly from the underlying 

(4) there is true pairing of the data. 

The only difference between these assumptions and those which 
underlie the Wilcoxon rank sum test is that there is no need for 
normality in the underlying population (assumption 2). This method is 
distribution-free, and we must therefore alter the way we look at the 
underlying scientific assumptions. 

Recall that the scientific assumptions underlying the paired t-test 
require the estimation of the true mean and standard deviation of the 
differences between pairs to enable a distance in a statistical space to be 
calculated and assigned a probability. The probability is based upon a 
distribution (the t-distribution). The basis of those calculations is the 
assumption that the underlying population is truly homogeneous, and 
that the true difference should be about zero. 

The only part of these assumptions which pertains in this example is 
that the population is homogeneous and the distribution of differences is 
centered around zero. In other words, since these methods make no 
assumptions about the shape of the distribution of the statistical popula- 
tion, the standard parameters, mean and standard deviation, need not be 
estimated from the sample. Instead, it is assumed that the distribution of 
responses has a median of zero, i.e. the difference is as likely to go up as 
down. If that is true, then a pattern of responses, namely the positive and 
negative differences, should emerge. The distribution of the signs should 
be about even, and the sums of the positive and negative ranks should be 
about equal. This is the assumption tested in these particular non- 
parametric tests. 

with a mean of zero; 

population; 

The tests - the same null hypothesis and its interpretation 

In general, the null hypothesis is given by: 

H0 : MEDIAN = 0 

This says that without estimating the underlying mean and by 
assuming no effect of treatment or intervention, equal numbers of 
differences between pre-intervention values (tensile strength before) and 
post-intervention values (tensile strength after) should go up as go 
down. For these tests, there is no real distance measure analogous to that 
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given in the paired t-test. Rather, there is an assumption about the 
underlying distribution of differences based upon a conservative 
assumption about the underlying science, i.e. no effect. 

If the intervention (two weeks in the Caribbean) causes no real change 
in tensile strength, then any changes observed (i.e. any differences in the 
before and after measurements) must be due to random variation alone. 
If this is true, equal numbers of changes should go up and down, and 
the magnitude of these changes should be about the same. The distribu- 
tion of pluses and minuses should therefore look like the distribution of 
heads and tails following multiple tosses of a fair coin, and the ranks of 
all the differences, independent of their sign (up or down, we only care 
about their magnitude) should show as many 'big' ups as 'big' downs. If 
we were to sum the two sets of ranks separately, the sum of the positives 
should be near the sum of the negatives. 

The sign test 

Consider only the direction of the changes. If the sample contains N 
subjects, then under the null hypothesis, assuming that sunlight has no 
effect on hair strength, you would expect about half your differences to 
go up and half to go down, i.e. the mean number of positives should be 
N/2. The variance of the distribution of the number of ups is derived 
from another statistical population known as the binomial distribution. 

This calculation is given as Np(1-p), where p is the probability of going 
up. Since we assume no effect, and the chance of going up is the same as 
the chance of going down, p = 0.5. If the assumption about the lack of 
effect is correct, the difference between the results observed and those 
expected should only be attributed to noise, and the difference 

is distributed as a standard normal z-statistic. A distance can therefore be 
assigned after all, and this distance yields a probability, which is the p- 
value of the sign test. 

The sign rank test 

The previous procedure ignores the magnitude of the differences and 
only looks at the distribution of their signs. The addition of extra 
information in the form of data about magnitude should produce a more 
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‘powerful’ test. (The idea of power is discussed in the section on 
experimental design later, but for now assume that we mean that one test 
is more likely than another to see the same size differences.) The sum of
all the unsigned ranks is given by: 

Under the null hypothesis, the sum of the positive ranks, SP, should be 
about equal to the sum of the negative ranks, SN. The signed rank test 
determines the number of possible pairs of sums, SP and SN whose total 
is S, and how likely it is that a pair as disparate as that obtained will 
occur by chance. 

Returning to our example (Table 26) 

There were 10 animals in the initial sample, and the differences between 
values obtained before and after the experiment range from 1.1 to -7.4. 
There is one difference of zero (rat 3). If the null hypothesis is true, and if 
we lived in a perfectly ordered universe, then this is exactly what we 
would expect. Therefore, rat 3 provides no information, and it can be 
dropped from our sample. 

In the sign test, Np = (9)(0.5) = 4.5. There were two actual positives, 
and the square root of the variance (9)(0.5)(0.5) = 2.25 is just 1.5. The z- 
statistic is therefore (4.5 - 2)/1.5, or 1.67. The p-value associated with that 
statistic, derived from a standard normal curve just as in the z-test above, 
is   0.095. 

For the signed rank test, there are only nine truly informative sample 
points. The sum of all the ranks, S, is 45. When we assign direction to the 
ranks, SP = 5 and SN = 40. What are the chances, given that the null 
hypothesis is true, of observing a difference between SN and SP ‘this 
large’? The calculations have been done and the results are tabulated in 
most statistical books and software systems. In books they are arranged 
in (SN,SP) pairs, based upon the final sample size (in this case, 9). The
result in the case described above is  < 0.05. What this says, is that the
likelihood of seeing two sums at least as different as those observed (40 
and 5) when the null hypothesis is true is less than 1 in 20. 
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A word of caution 

Why is the p-value obtained using the signed rank test less than that 
obtained with the sign test? The reason is that the sign test ignores the 
size of the differences and looks only at the distribution of pluses and 
minuses. A lot of information is therefore discarded. If half of the 
differences were negative but all less than 1, and the remaining 
differences were all positive and all greater than 10, would you believe 
there was no effect of sunlight? Probably not, but the sign test would 
neither see these differences nor account for them. Assigning ranks adds 
extra information without adding any extra assumptions about the 
distribution. 

A second point to consider is that we are dealing with the ranks of the 
differences. That means that if the largest difference was -1000 instead of 
-7.4 it would still be given rank 9. These techniques are therefore 
insensitive to possible outlying values. It is easier to include all of the 
data in an analysis and account for it with this kind of technique than to 
justify dropping a point just because it ‘looks bad’. The decision to drop 
data is a very serious one, and should only be taken after expert advice 
from a statistician, and good scientific reason, such as possible contami- 
nation of data, are considered. 

Case study (rank sum - for two independent samples) 

Since sunlight induces degradation in hair quality, it is suggested that a 
protein-based shampoo should protect the prized sheen and glory. 

Table 28 
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In an experiment whose design is similar to that employed for the two 
sample t-test, two parallel groups of healthy Norwegian volunteers are 
taken to the Caribbean to investigate the effects of either a fake shampoo 
or a protein-based shampoo. The treatments are applied daily, after they 
have spent the day on the beach and just before they go to bed and the 
progress and compliance of the two groups is monitored closely. The 
results obtained are shown in Table 28. 

The details of the calculations are presented below. But first look at the 
way the data are distributed (actual values and ranks): 

Values for the fake shampoo are in bold type for the sake of clarity. 
The median of the joint distribution of hair strengths is 6.5 (the 10th 

and 11th values in the array are 6.5 and 6.5, which yields an average of 
6.5). This procedure asks the likelihood of seeing this sort of distribution 
for the fake shampoo (four below the median with ranks 2,3,4,5 and six 
above with ranks 12,13,14,15,16,20) when the null hypothesis is true. 

The p-value for this test is > 0.05, i.e. the null hypothesis may not be 
rejected: there is no evidence for a real effect of protein shampoo on the 
tensile strength of hair in sun-exposed Norwegians. The likelihood of 
seeing a distribution of ranks at least this disparate is more than 5%. In 
fact it is much closer to 95%. 

The question and your experiment 

The study began with a question about the ability of protein to protect 
hair from the detrimental effects of sunlight. The results of the first 
experiment showed that sunlight was, in fact, quite damaging to hair. 
The second experiment was designed to try and determine whether 
protein-based shampoos can actually reverse that trend, or at least 
provide some protection against the effects of strong sun. A model was 
developed in which 20 normal Norwegian blond volunteers were 
exposed to the Caribbean sun for 2 weeks. Half of the subjects were 
assigned, at random, to a protein treatment and half were treated with 
fake shampoo, and the tensile strength of the hair from each of the 
volunteers was measured at the end of the 2 weeks. What you are asking 
is, 'Does protein-treated shampoo protect against damage induced by 
direct sunlight and return the sheen and lustre to the hair?' What the 
experiment is asking is, 'Is there any difference in the tensile strength of 

3.0 4.1 4.7 5.4 5.8 5.9 6.2 6.3 6.5 6.5 6.5 6.7 7.0 7.1 7.1 8.2 8.3 8.7 9.9 12.2
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hair between Norwegian blonds treated with protein-based shampoos 
and those receiving a fake treatment (controls)?’ 

Statistically, you are trying to determine the chances of observing a 
distribution of strengths for the treated group within the joint 
distribution as disparate as that observed. The basis of the question is, of 
course, the assumption (the null hypothesis) that these samples were 
drawn from the same underlying population as those derived from the 
control group. 

Assumptions 

The statistical assumptions required to run the t-test are: 

(1) the measures are continuous (e.g. not all-or-none effects, scores, 

(2) they are drawn from underlying distributions which are normal; 
(3) the sample populations are chosen randomly from the underlying 

etc.); 

populations. 

The only difference between these assumptions and those which 
underlie the rank SUM test is that there is no need for normality in the 
underlying population (assumption 2). Again, this method is 
dis tribution-free. 

The scientific assumptions underlying the t-test are: 

(1) the true means of the underlying populations involved will be 

(2) the true standard deviation of those populations will be estimated, 

(3) the difference of those means will be estimated assuming there is a 

estimated; 

assuming equal variance, i.e. homoscedasticity; 

single underlying population which is truly homogeneous. 

The only assumption which pertains in this case is that the underlying 
population is homogeneous. This method makes no assumptions about 
the shape of the distributions of the statistical populations, so we do not 
need to estimate the means and pooled standard deviation. As was the 
case for the signed rank test, we are going to look at the distribution of 
responses and only assume that the tensile strength values are drawn 
from a joint distribution with the same median. If all that is true, then a 
pattern of responses should emerge, namely the sums of the ranks of the 
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treated and control groups should be about equal. That is all we are 
testing in this particular non-parametric test. 

The test - the null hypothesis and its interpretation 

In general, the null hypothesis is given by: 

H0: MEDIAN1 = MEDIAN2
 = MEDIAN 

What this is saying is that without estimating any population 
parameters, and by assuming no effect of treatment or intervention, the 
distribution and ranks of tensile strengths will be similar for both treated 
and untreated hair. Again, there is no real distance measure analogous to 
that used for the unpaired t-test. Rather, we are assuming that the 
underlying joint distribution of ranks is based upon a conservative 
assumption of no treatment effect. 

If the intervention causes no real change in our measurements, i.e. 
there is no effect, then any disparities in the ranks must be due only to 
random variation. One would suspect that equal numbers of the treated 
hair strengths should be 'large' as are 'small', and that the same holds 
true for the fake shampoo controls. Ranking all the values in a joint 
distribution should therefore show as many 'big' numbers from 
members of the treatment groups as from the controls. The same could 
be said for ‘moderate' and 'small' values. 

To perform this test, we again need the sum of ranks for each group. 
For a total of N subjects in a sample, the sum of all the ranks would be: 

N(N + 1) 
S  =  

2 

If all the subjects from one of your groups were ranked at the bottom 
of the joint distribution, their sum would be S. That is the smallest sum 
any group could accrue from the joint distribution, and the likelihood of 
getting all the subjects from one group as your lowest values, given the 
null hypothesis is true, is very, very small. 

In fact, under the null hypothesis, the sum of the treated ranks, ST, 
should be about equal to the sum of the untreated ranks, SU, and the 
question this test asks is, 'how many possible pairs of sums, ST and SU are 
there, given sample sizes NT and Nu, and how likely are we to observe a 
pair as disparate as that actually observed? 
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Returning to our example 

There are 10 subjects in each of our samples. The smallest possible sum 
of ranks (1-10) is 55. Therefore, the most disparate pair of sums one 
could possibly observe would be 55 (1-10) and 155 (11-20). Summing 
the values for the treated and untreated groups separately gives: 

ST = 104 = (2+3+4+5+12+13+14.5+14.5+16+20) 

and 

SU = 106 = (210-104). 

What are the chances, given that the null hypothesis is true, that we 
would observe two values like those shown above for the sums of ST and 
SU? The calculations required have been done, and are tabulated in most 
statistical books or on-line analysis packages. They are arranged in NT- 
NU pairs. The calculations are based upon all the possible combinations 
of sums one could observe when there are N (=NT + NU) total subjects in 
the final joint sample size. The tables give you the critical pairs, i.e. the 
minimum disparities, which yield probabilities less than 0.05, 0.01, and 
0.001. This is the p-value for your test . 

In this case, > 0.05. What this says is that the likelihood of seeing two 
sums like this (104 and 106), given the two sample were drawn from 
populations with the same median tensile strength, is fairly good (you 
cannot get much closer). 

Case study (Kruskal-Wallis - for several independent samples) 

Since the protein-based shampoo cannot protect hair adequately from 
the effects of exposure to intense sunlight, collagen-based shampoos are 
now going to be tested in 40 subjects, randomly assigned to four groups 
of 10, who will receive either a fake shampoo control, or one of three 
collagen-based formulas. This design should be familiar, since it is like 
that employed for the one-way ANOVA. Again, the treatments are 
applied every night after the subjects have spent the day on the beach. 

The results obtained are shown in Table 29. We will forego the 
calculations needed to perform this test, but it is easy to imagine that 
they are simply an extension of the rank sum test. The generalizations 
are conceptually easy but computationally intimidating. We will, 
however, work through the conceptual interpretation of the null 
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hypothesis, what it means, and how the results from a Kruskal-Wallis 
test are interpreted. 

Table 29 

The test - the null hypothesis and its interpretation 

The null hypothesis for Kruskal-Wallis is related to that of the rank sum 
test in the same way as the null hypothesis for the one-way ANOVA is 
related to that of the unpaired t-test. For this example, the null 
hypothesis is given by: 

H0: MEDIAN1 = MEDIAN2 = MEDIAN3 = MEDIAN4
 = MEDIAN 

This says that without estimating any of the sample means, and by 
assuming no effect of treatment or intervention, the distribution of the 
ranks of the hair strengths from each of the groups will be similar, and 
could all be considered to be drawn from the same underlying 
population which has but one median. In other words, the ranked hair 
strengths will be randomly distributed about their own measure of 
central tendency, and no group will dominate either the high or low end 
of the scale. Thus, any disparities in the ranks must be strictly due to 
random variation. 

Generalizing the equations for the sums of ranks, we could envision a 
world in which the four sums should all be about equal. This would 
certainly be the case if the null hypothesis holds. Instead of two sums, in 
this case we have four, and rather than pairs of sample sizes yielding our 
probability measure we have groups of four. The idea is the same, 
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however: under the null hypothesis, the sum of the ranks for each of the 
groups (call them S1, S2, S3, and S4) should all be about equal, and the 
question this test asks is, 'how many possible sets of four sums are there, 
given the four sample sizes N1, N2, N3, and N4, and what is the likelihood 
of seeing sums as different as those observed?' In this case, each of the 
sample sizes is 10, so what you are specifically asking is, 'How likely is it 
that I will see these four rank sums within a joint distribution of size 40, 
given there are 10 subjects in each sample, and assuming that no 
treatment had any effect on hair strength?' 

These calculations are quite complex and are usually performed om a 
computer. However, the conceptual framework of these calculations is 
easy to understand. Once the initial analysis is completed, the most you 
can infer is that at least one of your groups comes from a distribution 
different from the others. However, you can perform similar pairwise 
comparisons in this milieu in the same way as those performed in the 
analysis of data with a one-way ANOVA. The strategies used to control 
for the multiple comparisons problem, e.g. Dunnett's test, Student- 
Neuman-Keuls, etc. were derived to control for the experiment-wise 
error rate. Nowhere in their execution did they explicitly require the 
pairwise testing to be done with an unpaired t-test. In the non- 
parametric case we can therefore use Kruskal-Wallis as the analog for 
the one-way ANOVA and the rank sum test as an analog for the 
unpaired t-test, and derive an analysis strategy which is distribution-free 
but statistically sound. 



3 ESTIMATION 

Estimation resembles description except that you assume that an 
underlying relationship between two or more variables exists and that it 
can be specified in a mathematical formula. These relationships are 
termed mathematical models. Any relationship derived from your data is 
implicitly based upon the selection of the correct model. In fact, without 
even knowing it, you have been dabbling in modeling throughout the 
entire inferential statistics sections. 

Other models are also constantly in use in research situations. For 
example, suppose two characteristics of a population are thought to be 
related proportionally. An example that has been used for time 
immemorial is that of height and weight. If you believe (for reasons we 
will explore below) that height and weight are directly proportional, i.e. 
for every extra inch in height a subject will weigh an average of an extra 
three pounds, you are assuming that height and weight are linearly relat- 
ed. Mathematically, you are assuming that the height-weight 
relationship (i.e. model) can be described by a formula that looks like: 
(see Figure 22). Weight should, however, be proportional to the volume 

Wt = (proportionality constant). Ht + baseline 

displaced by a body, and not to height. The units of volume are cubic 
inches while height is measured in linear inches. How can we get away 

Height 

Figure 22 Height-weight relationship 
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with this (over-)simplification? The assumption underlying this model is 
that the human body is a cylinder, and that the volume of a cylinder is 
strictly proportional to its height Ht). The assumption implies that 
the radii of the human population are fairly constant, and that height is 
the determining factor in the calculation of weight. What you are trying 
to do statistically, therefore, is to determine from the observed data set, 
an estimate of the proportionality constant in that relationship, which 
represents the fixed radii of all humans and the density of human tissue. 

The classic example of height and weight which we provided, though, 
is not, strictly speaking, a candidate for linear regression. In this chapter 
we will tell you why. 

We will define the set of tools used to explore these kinds of 
relationships and help you understand what they can and cannot do. We 
will also look at the confidence that can be placed in these estimates, 
how these confidence regions can be determined and what they mean in 
the real world of experimental science. Finally, we will talk about how 
an experiment might be performed in order to optimize the information 
derived from it. 
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DATA RELATIONSHIPS: ASSOCIATION AND 

CORRELATION 

Terms you should learn: 
Scattergram 
Bivariate normal 
Correlation coefficient 
Coefficient of determination 

Concepts you should master: 
Correlation as a measure of association 
The correlation coefficient and what it means 
Test of correlation coefficient 
The null hypothesis and what it means 
Association vs. cause and effect 

Case study 

The A22-Natasha amoeba causes a dreadful CNS disease, but these cells 
can be identified by their carriage of a unique and constant marker, the 
Boris-XI receptor. It is widely believed that the concentration of Boris-X1 
receptors on the surface of the A22-Natasha amoeba is fairly constant 
over the entire population of these creatures. This assertion is equivalent 
to saying that the number of receptors on a cell is proportional to the 
surface area of the cell, but an equally valid model of receptor expression 
is that the number of receptors per cell is independent of the surface 
area, i.e. the number of receptors, rather than the concentration, is 
constant and independent of cell surface area. If that were the case, then 
the genetic machinery which manufactures this particular receptor is 
totally independent of that which monitors the size of the cell. You have 
been asked to design an experiment to see whether the former 
hypothesis is correct. You therefore develop a new high frequency laser 
assay which can measure accurately the fluorescence of an object such as 
a cell once it has been tagged with a reactive dye. You then need to 
determine whether there is an increase in reactive fluorescence with 
target size. The following experiment is performed. A22-Natasha amoeba 
are grown in vitro for 2 days until they are in the exponential growth 
phase. One thousand cells are extracted at random and mixed with 
squirrel anti-Boris antibodies. Moose anti-squirrel antibodies tagged 
with reactive dye are then added to the mixture, and the volume and 
fluorescence of each cell is recorded. 
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The data 

The data obtained in the experiment are given in Figure 23. This type of 
graph is called a scattergram. The x-axis shows cell volume while the y- 
axis is the intensity of cell fluorescence. The shape of the graph shows 
that the fluorescence intensity seems to fan out from left to right. A good 
statistician will recognize this as the graphical fingerprint of a 
heteroscedastic population: the variance increases with the magnitude of 
cell volume. Why should this be so? 

Figure 23 Scattergram of cell volume vs. cell fluorescence 

Although you are trying to investigate whether the concentration of 
Boris receptors is constant on the surface of A22-Natasha amoebae, you 
are measuring cell volume, not surface area. Surface area, however, is 
proportional to the 2/3 power of the volume vs. Therefore, 
you should not be too surprised that the curve of fluorescence vs. 
volume is not exactly proportional. It is possible to transform the data in 
a manner that is both statistically correct and biologically reasonable: 
after taking the 2/3 power of the y-axis data, a new plot can be created 
like that shown in Figure 24. Now that’s better! 

The question and your experiment 

The study began with the suggestion that the concentration of Boris-X1 
receptors on the surface of A22-Natasha amoebae is constant. An 
experiment was designed to measure the fluorescence of a specific dye 
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Cell volume 

Figure 24 Data from Figure 23 transformed as described in text 

marker on a randomly selected sample of target cells. The data obtained 
were plotted on a graph (Figure 23), but because these data showed 
severe signs of heteroscedasticity, they were transformed to produce the 
data set shown in Figure 24. What you are asking is, ‘Do the A22- 
Natasha amoebae show a constant concentration of Boris-X1 receptors on 
their surfaces?’ What your experiment is asking is, ‘on the whole, i.e. 
over the entire sample, is there a proportional association between the 
cell surface area and the fluorescence observed in this random sample?’ 
Statistically, you are trying to determine the chances of observing a 
proportional response as marked as the one observed, given that this 
sample was drawn from a single underlying population in which no 
proportionality exists, i.e. the case wherein receptor expression and cell 
size are unlinked (a fairly conservative assumption). The statistician calls 
this measure of association between these two random variables 
correlation. 

Assumptions 

To estimate and test the correlation between two random variables 
(usually, but not always, measured within a single population), one 
must assume that: 
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(1) the two measures are random variables, i.e. that neither is used to 
assign subjects to treatment groups or categories; 

(2) each measure is continuous and not categorical or binary (i.e., is 
not 'all or none'); 

(3) each random variable is distributed normally and that together the 
random variables are drawn from an underlying bivariate normal 
population. By this we mean that the joint distribution of the two 
variables taken together results in a normal Gaussian distribution 
for each. 

Calculation of the correlation coefficient and the coefficient of 

determination 

The degree of association between two random variables (in this case 
fluorescence and cell surface area) is called the correlation coefficient, and 
is denoted by p (the Greek letter rho) for the population and r for the 
sample: r, which is called the Pearson correlation coefficient, is, in fact, a 
random variable, derived from other random variables, and is an 
estimate of the true value p. We will thus calculate r from a sample, 
estimate p, obtain a confidence interval about that estimate, and even 
formulate tests for p as we did for the mean, for proportions, etc. 

The equation for calculating the sample correlation coefficient can be 
expressed in two equivalent forms: 

or 

where is the number of pairs measured and SX and SY are the sample 
standard deviations of the two random variables taken individually. In 
our case n = 1000 A22-Natasha amoebae. But what do these two 
equivalent equations really say? The numerator is a cross-product. It says 
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that when one of the values of X i is less than its average, , i.e. when the 
difference is less than zero, then if the companion value of Y i is also less 
than its average value, their product is positive. The same is true when 
both are greater than their respective averages. Therefore, if the random 
variables we call cell 'surface area' and 'fluorescence' range from their 
lowest to highest values in concert, a positive association between the 
two must exist. Similarly, if the value of Xi increases as the value of Y i 

goes down, a negative association must exist. 
The association must be normalized for the noise inherent in the 

underlying populations. This normalization is achieved by dividing the 
cross-product by a noise metric in the same way as in inferential 
statistics (see the discussion of t-tests outlined earlier). According to 
statistical theory, the denominators of the two equations, the first giving 
an explicit definition of the sum of products of squared deviations 
(something like a joint variance term), and the second showing explicitly 
that this is, in fact, the product of the two sample standard deviations, 
provide the noise metric. Once normalized, the correlation coefficient, r, 
can never achieve a magnitude greater than 1. Therefore, our measure of 
association is bounded by the values -1 and +l. 

What do these normalized values mean? If x and y vary in perfect 
synchrony, meaning that every unit increase in x is accompanied by a 
proportional increase in y, then r = 1. Conversely, if for every unit 
increase in x, y decreases by a proportional amount, then while the two 
measures are still perfectly associated, they vary inversely and r = -1. 
The first phenomenon is called a positive correlation while the second is 
called a negative correlation. The degree to which these two measure 
deviate from that perfection due to random variation and noise is the 
degree to which the magnitude of r tends towards zero. When the 
correlation coefficient is zero (i.e. when the numerator is zero) you have 
perfect randomness and no association is therefore detectable between 
the two measures. 

There is one last variable of association to be introduced before we 
proceed to the description of the tests that can be made using p. That 
statistic is called the Coefficient of determination, and is just r². This 
coefficient is defined intuitively as the proportion of variance in the first 
random variable that can be accounted for by variance in the second. In 
other words, as one of your measures ranges from low to high, the 
degree to which the other ranges from low to high (or high to low for 
negative correlation), is measured by r². 
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Considering the extreme values of r; if r is either +1 or -1, r² is just 1. 
That means that changes in one variable can be accounted for perfectly 
by changes in the other. If r is zero, then so is r². That means that the 
second variable is completely independent of the first, and that 
irrespective of the values of x, the value of y is simply a realization from 
a normal distribution with its own mean and variance. In other words, 
the value of x is immaterial. 

There is one last point which we wish to emphasize. This discussion 
has not used the terms independent and dependent variable. At no point 
has it been stated that one variable, y, depends upon the value of the 
other variable, x. That requires the derivation of a mathematical model 
that explicitly defines that relationship (like the one we derived for 
height and weight in our introduction). Rather, we are only saying that 
two random variables may be associated. Their assignment to the letters 
x and y is totally arbitrary, and the degree of association between the 
two, as measured by our ability to account for the variance of one by 
variance in the other, is the coefficient of determination. This is a rather 
subtle point, but is the foundation for the difference between correlation 
and regression, described in the next section. 

The tests - the null hypothesis and its interpretation 

The assumption that no association exists between two independent 
measures is a very conservative one indeed. You are positing that the 
underlying forces of biological nature which affect one measure exert 
absolutely no effect on the other. In statistical terms, that highly 
conservative assumption is embodied in the null hypothesis: 

H0: p = 0 

In English, you are assuming that there is absolutely no association 
between the two random variables, and that the correlation coefficient of 
the underlying population is actually zero. We are going to return to the 
inferential paradigm and try to assess the likelihood of observing a 
sample correlation coefficient r whose magnitude is as large as the one 
actually observed, given that no underlying correlation between the 

two measures exists at all. 

The equation which tests this assumption is: 
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where n is the number of pairs in the sample. 
The test is another in the vast array of t-test tools available for estimat- 

ing an underlying population parameter from sample data. Once these 
estimates have been obtained they can be tested to see whether they are 
significantly different from known fixed points. In a way this test is 
similar to that performed for the one-sample t-test described above. In 
this case we used a fixed point of zero, which corresponds to the highly 
conservative assumption that two measures are completely dissociated 
at a biological level. 

Like any other t-test, however, we have to pay for information: the 
payment in this case is two degrees of freedom (information coins), one 
for each of the means estimated. Therefore, the degrees of freedom 
which will define the correct t-distribution for you is n — 2 

Returning to our example 

The summary statistics relating to the data obtained in the experiment 
described above are shown in Table 30. 

Table 30 

Although the actual calculations were performed using a standard 
computer software package, for the sake of cIarity all the components 
needed for our determination of r are presented. The denominator for r, 

calculated as the sum of the cross-products of the raw data, is 123 752 967. 
The numerator, the product of 1000, 29.38, and 4212.15 is 102 343 703. 
Their ratio, the value of r, is 0.827. The p-value for this is < 0.01; r² is 
0.684. These statistics tell you that there is a high degree of association 
between surface area and fluorescence (r = 0.827) and that the likelihood 
of seeing data this highly correlated, given that the null hypothesis is 
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true, i.e., that there really is no association between these two measures, 
is less than 1 in 100. In fact, it is less than 1 in 1000. Furthermore, since r² 

= 0.68, 68% of the variation in fluorescence can be accounted for by the 
variation in surface area. However, this association is not a 'cause and 
effect' phenomenon, merely a measure of association. As silly as it may 
seem to the intuitive mind, we could also say that 68% of the variation in 
surface area can be accounted for by the variation in fluorescence. We 
address cause and effect as a phenomenon in the next section, in which 
we describe linear regression. 

Extras: a non-parametric analog 

Remember that we assumed that the data obtained had a bivariate 
normal distribution? Suppose that one or both of the random variables 
were not drawn from underlying populations with normal distributions. 
Then applying these techniques to estimate and test p would be sorely 
tried. However, just as parametric inferential tests can be augmented by 
using distribution-free methods of analysis, a non-parametric analog of 
Pearson's correlation coefficient is available to account for non-normality 
in your data. This non-parametric analog is called Spearman's rank 
correlation and is calculated as follows: 

(1) Rank each of the (x,y) pairs from top to bottom. The ranking 
procedure is performed separately, first for x and then for y. 
Thus for 12 pairs of data, the largest value of x is assigned rank 
1, the next rank 2, and so on, the smallest being rank 12. Repeating 

the procedure for the y variable yields a second set of ranks from 
1 to 12. Therefore, when you have finished you should have 
pairs of ranks (X,Y) to replace your original data points (x,y). Ties 
are broken by taking the average of the ranks occupied by the tie. 

there is a perfect correlation, rank 1 for X will align itself with 
rank 1 for Y , and so on, so that all the differences will be 0. 

(3) Add up all the squared differences and perform the following 
calculation: 

(2) Subtract the two ranks Y and X and square the difference. If 



Estimation 127 

When the sum of the ranks is zero the non-parametric rank correlation 
is 1. If X and Y are perfectly uncorrelated, R = 0. This estimate for p is 
valid when the initial assumptions about bivariate normality fail. The 
null hypothesis H0: p = 0 can then be tested in the same way as above. 
The t-test is given by: 

with n-2 degrees of freedom as before. Note that as R approaches either 
1 or -1, t approaches infinity, meaning that the likelihood of seeing a 
sample rank correlation with magnitude near one, drawn at random 
from a population with a true rank correlation of zero is so small that 
you would feel quite comfortable in rejecting the null hypothesis. 

If there are ‘too many’ ties this approximation will not work. What 
constitutes ‘too many’ depends upon your sample size and data, and you 
should review suspect data sets with an expert. If this should occur, then 
calculate the Spearman correlation coefficient using the same formulae 
you used to calculate Pearson’s r. 
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DATA RELATIONSHIPS: MATHEMATICAL MODELS 

AND LINEAR REGRESSION 

Terms you should learn: 
Least squares approximation 
Standard error of the estimate 
Standard deviation of the regression 
Goodness of fit 
Multiple regression 

Concepts you should master: 
The line as a mathematical model 
Linear regression and the one-way ANOVA 
The slope and intercept as random variables 
The null hypothesis and what it means regarding the slope 
The null hypothesis and what it means regarding the intercept 
Association vs. cause and effect 
r² and accounting for the observed variance 

Case study 

You have been asked to explain why it is not possible to infer a ‘cause 
and effect’ relationship from the correlation results obtained above. We 
have already discussed why the measurement of two random variables 
cannot, by definition, yield variables that are classified as independent 
and dependent - a prerequisite for inferring cause and effect: if both cell 
size and receptor expression were controlled by a common, underlying 
genetic program, the experiment would have yielded these same results. 
Further studies are therefore necessary. 

While looking for a control mechanism which can account for the 
varying levels of Boris-X1 receptors, you discover an apparently direct 
relationship between the concentration of a natural proteolytic enzyme, 
shermanase, and the expression of these receptors. The theory is that the 
receptors are masked by glycoprotein LHY-peabody-Q upon which 
shermanase acts. To determine whether this relationship exists, and 
whether the purported mechanism of receptor masking is real, the 
following experiment is performed. A22-Natasha amoeba are grown in 
vitro to exponential growth phase. Five sets of 50 amoebae are then ex- 
tracted at random, and mixed with varying concentrations of pure 
shermanase. The amoebae are allowed to rest for 1 hour and are then 
exposed to squirrel anti-Boris antibodies followed by moose anti-squirrel 
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antibodies tagged with the same reactive dye used in the previous 
experiments. The fluorescence of each cell is then recorded. 

The data 

The data for your experiment are given below in graphical form (Figure 
25). The x-axis shows the concentration of shermanase, while the y-axis 
represents the intensity of cell fluorescence. These data give an estimated 
slope of 12.1 with a standard error of 0.16, and the estimated intercept is 
123.3 with a standard error of 1.32. The p-values for testing the null 
hypotheses that these estimates are drawn from populations with means 
of zero are both < 0.01. The r² for the regression is 0.96. We will show you 
how to calculate these values and what they mean below. But first, we 
need to review and understand the questions asked and the experiment 
performed. 

Figure 25 Plot of cell fluorescence vs. enzyme concentration 

The question and the experiment 

The study began with the question of an association between the size of 
A22-Natasha amoebae and the expression of Boris-X1 receptors. When a 
strong correlation was found, it became necessary to determine whether 
a more complete relationship between cell size and receptor expression 
exists. These receptors may be masked by the glycoprotein LHY- 
peabody-Q which is cleaved by the enzyme shermanase. If this is the 
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case, then receptor expression may be independent of cell size and the 
experiment may only be showing a masking effect of the glycoprotein. 
What you are asking is, ‘Is there a proportional (linear) increase in Boris- 
X1 receptor numbers with increasing concentrations of shermanase?’ 
What the experiment is asking is, ‘Overall, is there a linear relationship 
between shermanase concentration and fluorescence in the moose- 
squirrel antibody assay of these amoebae?’ 

Statistically, you are trying to determine the chances of observing a 
linear relationship with a positive slope as steep as that observed, given 
that no such relationship actually exists, i.e. receptor expression and 
shermanase concentration are actually unrelated. 

Assumptions 

Before considering the statistical details of linear regression, its 
assumptions, calculations, etc. we need to consider a more fundamental 
scientific assumption that underlies the basic question. By proposing that 
a relationship exists between two variables, and by assuming a shape to 

that relationship, such as a line, you are implicitly assuming that a 
phenomenological dynamic underlies the process represented by the 
data. In the introduction to this Chapter, we alluded to the mathematical 
relationship one would expect to observe between height and weight. 
The mathematical expression of that relationship was linear, meaning 
that weight showed a proportional dependence upon height (the 
dependent and independent variables required before anyone can draw 
‘cause and effect’ conclusions from a data set). Mathematically: 

Wt = (proportionality constant) . Ht + baseline 

This equation states explicitly that for every additional unit of height, 
a subject will also show an additional given number of units of weight. 
The measures have units, say inches and pounds, and the 
proportionality constant is therefore given in pounds per inch. This 
underlying assumption carries with it biological implications which 
must be accounted for. Recall, that we were able to argue that although 
weight is actually proportional to volume, because the radius of the 
average human is fairly constant, height is the primary factor in 
determining weight gain. Extrapolating this to the hypothetical 
experiment described above, you must now argue that for each unit 
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increase in shermanase concentration there is a proportional increase in 
proteolytic activity, resulting in greater antibody binding and thus, 
greater fluorescence. The proportionality constant (i.e. the slope of the 
regression line) estimated from these data is therefore going to be 
measured in fluorescence units per micromole of shermanase. Implicitly, 
that means that the assay design must ensure that there are no steric 
hindrance issues for the shermanase, that the levels measured are not 
below the quantifiable limits of the assay, and/or that concentrations are 
not at or above the saturable limits of the amoeba population. 

The statistical assumptions underlying linear regression are: 

(1) the data are sampled at pre-specified levels of the independent 

(2) the data are normally distributed at each sample level; 
(3) the variances of each underlying population at each level are equal 

(4) the relationship between the independent and dependent variables 

variable; 

(homoscedasticity); 

is linear. 

You should see that these assumptions and those outlined above for 
the one-way ANOVA are almost identical. The latter assumed that the 
sample data obtained from all independent treatment groups drawn 
from underlying populations which were both normal and 
homoscedastic. Assuming the null hypothesis for the inferential test, that 
all the means are equal, was equivalent to saying that if each level of the 
independent variable (in this case concentrations of shermanase) was 
considered an independent treatment group, then a line passing through 
the samples would have a true slope equal to zero. 

Calculation of the slope and intercept 

While a line is usually described by mathematicians in the form Y = mX 
+ b, statisticians use the expression Y = aX + b to model their sample 
data. The reason is that the equation tells us that Y, a random variable, is 
a linear function of X, a non-random variable (one with predefined 
levels and no variance). In other words, populations of responses are 
proportional to the levels of the independent variable. Solving this 
equation to give the slope (a) and the intercept (b) in terms of Y would 
show that they must also be random variables. The parameter estimates a 
and b, which are derived from the sample data, are therefore really just 
snapshots from two underlying populations, each with its own true 
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mean, and If we had used m to designate the slope, then the mean of 
the underlying slope population would have to be designated the 
character already used to indicate the underlying mean of a sample 
population for all the inferential tools. Strange but true! 

The method by which the best estimates for and are derived from 
a particular sample is called least squares regression. In essence, this 
method looks for a line that, when placed through the values of Y for all 
the samples, has the smallest sum of squared deviations about it. 
Conceptually the process proceeds as follows. A line is drawn through 
all the sample points. The line has a slope and intercept which you use to 
predict a value of Y for each level of X; for X*, Y*= ax* + b. For each X*, 

subtract each value of Y from Y* and square the difference. Then add all 
these together to obtain a sum of squares. The 'best' line is the one that 
minimizes that sum. 

This process ensures that we are able to minimize the conglomerate 
variance about the line. But why take the sum of squared deviations 
from the predicted values of Y* - why not just sum all the sample 
variances at each level? The answer is that the implicit assumption about 
the data relationship, i.e. that it is a line, requires these data to follow a 
proportionality model of association defined by the slope of the line. 
That assumption is discussed further below. 

The equation for calculating the sum of squared deviations is simply 

where each value of Y* is measured at the appropriate X*, and the sums 
of the deviations are made for each at its appropriate level. This is just a 
mathematical expression for what we said in English above. Performing 
the calculations allows the following expressions for the slope and 
intercept to be derived: 
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where are the grand means of the two populations taken separately. 
The numerator of the expression defining the slope, a, looks very 

much like the numerator of the equation defining r, the sample 
correlation coefficient. This should come as no great surprise since it 
assumes the same kind of data relationship i.e. linearity and normality of 
each Y .  In fact, we will be using a correlation like as a measure of how r² 
well the line fits our data. Accepting that the mathematics is beyond the 

scope of this book, the regression line must pass through the point 

What this procedure is doing is fixing a line at the point and 
spinning it about this center like a propeller until the sum of squares is 
minimized. When we have minimized that conglomerate variance, any 
noise remaining must represent that inherent in the Y populations. This 
noise provides a pooled estimate of the underlying variance in Y that 
should be observed at each level of the test. This is why we assumed that 
the variances of Y measured across all levels of X are equal. This process 
is shown in Figure 26. 

Figure 26 

Since a and b are random variables and are only estimates of and 
we must account for the uncertainty about Y with confidence regions 
about a and b. The standard error of the estimate is the term used to 
quantify that uncertainty. It is related to all the other standard errors we 
have derived for the other estimates, and p. The error estimates for 
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a and b should, therefore, explicitly depend upon the best guess of the 
underlying noise in the Y population. That estimate is given by a new 
variable, sy, x ’ the standard deviation of the regression, which is calculated as 
follows: 

sy.x is conceptually similar to the pooled error estimate used to test for 
main effects in the one way ANOVA. By assuming homoscedasticity and 
treating each level of X as a different treatment arm the ANOVA can 
again be linked to the linear regression. 

The first equation is clearly more intuitive than the second: it allows 
an estimate of the pooled variance to be derived from all the squared 
deviations. In reality the second equation is more computationally 
efficient, and is the one used to perform the relevant calculations in most 
software packages. 

Once sy.x is known, the equations for the standard errors about a and b 
are actually quite simple: 
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One more piece of information is needed to complete the analysis of 
these data. Have you asked why the sample correlation coefficient, r, is 
not used to determine how well these data track each other? After all, the 
ability to interpret r correctly depends only upon assumptions of 
bivariate normality and randomness in X. We have, in fact, implicitly 
used r to calculate sy.x by including a cross-product term in its 
calculation. Therefore, intuition and logic tell us that this added bit of 
information could be quite valuable in evaluating our new regression 
results. 

The calculation of r² for the regression is identical to that given for the 
correlation coefficient above. In this case, though, it is a measure of the 
goodness of fit, and can be used to decipher how much noise is due to the 
values of Y as they track those of X (after all it is implicitly assumed that 
Y = aX + b). The values of Y at each level of X are random variables 
drawn from underlying populations with their own means and 
variances. Assuming a positive slope, the means of Y should vary 
proportionately as the values of X increase. The variances about these 
means are assumed to be equal, but the conglomerate variance increases 
as the means move. [Hint: think about projecting all these moving 
normal distributions back onto the y-axis in Figure 26. The conglomerate 
looks fairly noisy!] What r² indicates is how much of that conglomerate 
noise is due to the drifting of the means, i.e. how much is due to the 
purported linear relationship, and how much is just noise. 

The tests - the null hypothesis and its interpretation 

We now have an estimate for the true slope, in the random variable a, 

and the true intercept in the random variable b, and we have a 
standard error about each. 

When testing the slope, the most common null hypothesis is given as: 

H0: = 0 

This says that the slope of the line defining the linear relationship 
between the independent variable (in this case, levels of shermanase) 
and the dependent variable (the observed fluorescence, a random 
variable) is zero. In terms of the one-way ANQVA, what we are saying is 
that the means of observed values of Y sampled at each level of X are 
equal. In scientific terms, we are saying that there is no relationship 
between X and Y. What our test is asking is 'What are the chances of 
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seeing a slope as steep as that observed, given that there is no 

proportionality (linear) relationship between the independent and 

dependent variables?’ The test is given by the following equation: 

The test is much like all the others outlined above. It assumes that there 
is a population of slopes, i.e. there is a random variable called ‘slope’, 
and that the mean of that population, is zero. The standard deviation 
of the population is represented by a function of the pooled sample 
standard deviation, sy.x. The test is just asking how likely it is that a single 
realization a, drawn at random from this kind of population, would be as 
large as the one actually drawn. 

estimated slope from i.e. our distance from zero. The units for slope in 
this case are just fluorescence units per micromole shermanase. The 
slope distance still has to be normalized by the noise metric. This 
normalization, similar to those used for the other inferential tests, is just 
the ratio given on the right hand side of the equation. The normalized 
distance is the number of noise units our estimated slope is from zero. 
Now we need to know the likelihood of being ‘this far away’ from zero. 
Linking the normalized distance to a probability is accomplished using 
the f-distribution with n-2 degrees of freedom (n-2 because two 
parameters were estimated from the data: the slope and the intercept). 

If the t-value is large enough, the likelihood of a slope being as large 
as that observed, given that it was drawn from a population with a mean 
of zero, is quite low, say < 0.05. In that case the null hypothesis will be 
wrongly rejected, less than once in 20 times. 

The most common null hypothesis for testing the intercept is: 

This says that the linear relationship between the independent 
variable (levels of shermanase) and the dependent variable (the observed 
fluorescence, a random variable) passes through the origin. In scientific 
terms, this says that there is no basal or background level to account for 
when defining the relationship between X and Y. What the test is asking 

Since our null hypothesis assumes that = 0, a is the distance of our



Estimation 137 

is ‘What are the chances of seeing an intercept this large, given that the 
true intercept is zero?’ The test is given by the following equation: 

This test can be interpreted in the same way as the test on the slope: 
what are the chances of drawing, at random, a value for the intercept as 
large as b from a population with a true mean of 0? Again we use a t-test 
with n-2 degrees of freedom. If the value of t is large enough, then the 
probability of seeing a realization from the population of all intercepts 
‘this large’ would be low. In that case, you may be willing to reject the 
null hypothesis and be wrong a small percentage of the time. 

Returning to our example 

The results of the experiment outlined above yield the summary 
statistics shown in Table 31. Although we calculated the regression 
equations using a standard software package, we will present all the 
components needed to estimate the slope and intercept of this regression 
line. The value of the estimated intercept is 123.26 and the estimated 
value of the slope is 12.1. The value of sy.x is 13.74. The square root of the 
squared deviations from the grand mean of the concentrations, 

slope is thus given as: 13.74/86.29 = 0.158. 12.1 divided by that 
(12.1/0.158) = the calculated t-statistic, 75.994. The slope estimate of 123 
is, therefore, about 76 noise units away from zero. The p-value associated 
with this t-statistic with 248 degrees of freedom is much less than 0.01. 
Similar calculations for the intercept yield a t-statistic of 93.70, which 
also yields a p-value much less than 0.01. 

Table 31 

is 86.29. The denominator for the equation that tests the 
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These statistics tell you that the slope is positive, that there is a high 
level of basal fluorescence in the assay (of about 12000 units), and that 
the likelihood of seeing data with slopes this steep and intercepts this 
high, given that the null hypotheses are true, is less than 1 in 100 for 
each. In fact, it is much less than 1 in 1000. The r² for this regression line 
is 0.96, suggesting that these data are highly linearly correlated: 96% of 
the conglomerate noise is due to the linear relationship between the 
fluorescence and the concentration of shermanase. The remaining 4% of 
the noise is due to the inherent variance in the underlying fluorescence 
populations. 

Caveats and words of wisdom 

The above discussion depends upon the implicit assumption that the 
data analyzed follow a linear relationship. What would we expect to see 
if they did not? 

First consider the predictors, the values of Y*. You would not really 
expect the values of Y for every sample at each level of X to be exactly 
equal to its appropriate Y*. By definition, therefore, the sample contains a 
set of 'misses'. These misses, called residuals, are all the deviations from 
the predicted values of Y* minimized in the sum of squares to obtain the 
best line possible. Theory tells us that because the values of Y were 
drawn from underlying populations that were normally distributed at 
each level of X, the misses about the line at each level should also be 
normally distributed. If they are not, then there may be a problem using 
a line to fit the data in the first place. A residual analysis is beyond the 
scope of this book, but this should be kept in mind when performing 
linear regressions. 

Many sets of data show a relationship that is more complex than can 
be explained by a simple line. One of the many reasons for this is that the 
relationship between the variables is non-linear. Non-linear regression is 
discussed in the next section. Another explanation is that the dependent 
measure may depend upon more than one independent variable. This is 
a first look at an area called multivariate statistics, which is well beyond 
the scope of this book. However, there is one technique worth 
mentioning here which may prove useful when dealing with linear 
relationships between many variables. 

Let us take tumor doubling time as an example, and assume that this 
depends upon on how fast individual tumor cells divide and how 
quickly they become quiescent. The doubling time would then be a 
function of both variables. Mathematically, this can be expressed as: 
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Doubling time = f (birth rate, quiescence rate) 

= aB - bQ + c 

In this case, the shape of the function, f, is linear, but doubling time 
depends proportionally on both birth and quiescence rates. A technique 
called multiple regression has been derived to handle this type of 
problem. The details of the technique are beyond the scope of this book, 
but any good statistical consultant should be able to help you with this 
kind of analysis. 

Finally, suppose you use a linear regression to analyze data from two 
random variables (such as height and weight in the example given in the 
last section), i.e. when, in fact, you should have been performing a 
correlation type analysis. While this may not be the end of the world, if 
you are going to use the wrong tool for the job, at least know what its 
limits are. Regression assumes a number of things that correlation does 
not. The interpretation obtained may be right, but it may not be as clean 
or efficient as if the right tool had been used. 
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COMPLEX DATA RELATIONSHIPS: 

REGRESSION 

MATHEMATICAL MODELS AND NON-LINEAR 

Terms you should learn: 
Parameters and parameter estimates 
The law of parsimony 
Model identification 
Non-linear regression 
ED50, EC50, IC50 and potency 
Asymptotic standard error 

Concepts you should master: 
The mathematical model, first principles and philosophy of 

The sigmoidal curve in dose response and what it ‘means’ 
The dose response and Michaelis-Menten dynamics 
Non-linear regression and the minimization of the sum of squares 
Parameter estimates, random variables and confidence intervals 

exploration 

Foreword - the mathematical model, first principles and philosophy of 

exploration 

Up to now it has been assumed that the response variable (fluorescence) 
and the independent variable (concentration of shermanase) vary 
proportionally (i.e. they are linearly related). That implicit assumption 
provided the entire theoretical framework for linear regression as an 
estimation procedure, and the inferential tests that followed. If the 
relationship did not follow that simple proportionality constraint, 
performing a simple linear regression may have resulted in estimates for 
the slope and intercept that were quite misleading. Consider, for 
example, the following obvious case. The curve shown in Figure 27 was 
generated in an immunoprecipitation assay which measured precipitate 
vs. antibody concentration. Clearly, the amount of precipitate generated 
in this assay is not proportional to the amount of antibody added to the 
mix. A simple line fitted to these data would have given an estimated 
slope of zero and an estimated intercept of about 60 units of precipitate, 
which is, of course, nonsense. Since the relationship between these two 
variables is clearly non-linear, what we call biphasic, what do you think 
it should be? This leads us into a discussion of philosophy which 
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Figure 27 Precipitation vs. antibody concentration 

basically crystallizes into the chicken-vs.-egg conundrum. In order to 
make scientific assumptions about the relationship between an indepen- 
dent and a dependent variable, is it not necessary to know, a priori, what 
that relationship should be? Is there not some mathematical formula, 
somewhere, that could be used as a paradigm for how Y varies with X? 

Certainly, in a utopian world, there would be a catalog or library of 
such mathematical models to choose from so that fitting data would be 
just a matter of matching particular variables to a ‘reasonably’ shaped 
function. But what if there is more than one ‘reasonable’ shape from 
which to choose? Do all the models ‘mean’ the same thing? - i.e. do the 
parameters peculiar to each model all carry the same clear biological 
meaning that you want to communicate? (By parameters we mean 
constants in the model which modify its shape, like the slope and 
intercept of a line. You will see more examples of parameters when we 
discuss the dose response below). 

Statistical estimation procedures are investigative tools as much as 
they are analysis devices. They can be used to explore the relationships 
inherent in data so that the ‘correct’ model can be chosen when you have 
no idea where else to begin. This exploratory role must, however, be 
tempered by good scientific judgement, and the model eventually 
selected should be one that can be defined, defended and interpreted 
intelligently. One rule of thumb is to use the most conservative model 
that explains the data adequately. This rule, known to mathematicians as 
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the law of parsimony, says that the model used should make the fewest 
assumptions necessary, but no fewer. This field of statistics is known as 
model identification: the intricacies of this process are beyond the scope of 
this book. 

Once the 'correct model' has been defined, whether by a priori logic 
and derivation or via model identification procedures, it is still necessary 
to estimate the model parameters from the data. This procedure is called 
non - linear regression. 

An example: the dose response 

One of the most common relationships explored in biology is that 
between the concentration or dose of an active drug or bioreactive 
molecule and the response it elicits. Typically, the response profile is an 
S-shaped or sigmoidal curve. The curve is non-linear and is defined by 
four parameters, which will be discussed below. First, look at an 
example (Figure 28). 

Figure 28 Sigmoid curve 

Without indulging in mathematical minutiae, what does a curve like 
this tell you? First, it goes from a plateau on the extreme left hand side to 
a shelf on the extreme right. These dynamics suggest that the effect 
observed is saturable, i.e. no matter how much more drug is given, after 
a certain point a region of diminishing returns is reached. 
Mathematically, this saturable kind of behavior is called asymptotic, 
meaning that, in theory, the shelf can be approached as closely as you 
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want, but it will only be reached when there are infinite levels of drug in 
the assay. We know that is not true - eventually the ability to detect 
these small diminishing differences will be exceeded. The model is an 
idealization of a perfect mathematical relationship. But the form of the 

model which must be developed must, in theory, be able to handle these 
kinds of dynamics in order to obtain a relationship that is both 
mathematically conservative, i.e. obeys the law of parsimony, and 
scientifically accurate. 

The center part of the curve is linear (at least in so far a5 we are 
measuring effect vs. the log of the concentration). This indicates the 
existence of a proportionality between the dependent and independent 
variables for a significant portion of the data. That is very important both 
statistically and scientifically. The shermanase experiment was designed 
to exclude concentrations of shermanase either above or below the 
quantifiable/saturable limits of our targets. The linear regression was 
sufficient only in so far as there was a reasonable goodness of fit to our 
line. Problems occur when you extrapolate beyond the range of the data. 

If you fitted a line only to the linear part of a saturable function and 
tried to project above the upper plateau to 'estimate the intercept' this 
estimate, which depends explicitly on the linear relationship underlying 

Figure 29 
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the regression, would overestimate the level of the upper plateau and 
completely ignore the saturable nature of the dynamics involved (see 
Figure 29). 

A model of these kinds of dynamics can be derived from first 
principals and it is both mathematically and scientifically valid. The 
model is completely described by four parameters, each of which carries 
with it a well-defined biological meaning. 

The Michaelis-Menten equation and the dose response 

The model which will be derived is based upon the familiar mass-action 
equations of Michaelis and Menten which describe the dynamics of an 
ideal enzyme. Their equation is: 

This says that the velocity of product production in an enzyme system, 
V, depends upon the amount of substrate in the assay (S, the dependent 
variable), and can go no faster than VMax’ the maximum velocity of the 
enzyme reaction (the first parameter). VMax is a scientific measure based 
completely on the laws of thermodynamics. Dividing the numerator and 
denominator by S

N 
shows that the point at which S = KM is half way up 

the curve to VMax. This is the second parameter of the model and is 
known as the Michaelis-Menten constant. It acts as a locator on the S- 

axis and indicates the affinity of the enzyme for the substrate: as the 
value of KM increases more substrate is needed to move further along the 
response curve. N is a curvature parameter: the greater its value the 
steeper the response curve. 

How does this relate to the dose-response function we were looking 
at earlier? In fact, both mathematically and scientifically there is a great 
similarity between these two dynamics. If you can believe, just for a 
moment, that the same physical/chemical laws of thermodynamics that 
dictate binding in the enzyme system dictate binding, signalling, etc. at 
the target site in or on cells, then the activity measured should have a 
shape similar to that of a Michaelis-Menten curve. The difference is that 
the inhibition of cellular activity, secretion rates of a hormone, etc. are 
being measured rather than the production rate of an enzyme product. 
Therefore, rather than estimating a parameter like VMax you would 



Estimation 145 

estimate one which yields the maximum activity observable in the 
cellular system. The model could then be rewritten as: 

The new parameter in this model is called the ED50, and is the dose 
corresponding to the point half way (50%) along the response curve. 
Conceptually, the ED50 acts the same as the KM parameter in the 
Michaelis-Menten equation, locating the curve on the dose axis and 
providing us with a measure of drug potency. 

What if there is a basal. level, of activity inherent in your assay system 
- as is usually the case when experiments are performed in cells, tissues 
or whole animals. That basal level is accounted for by adding another 
parameter to the model as follows: 

Now look what happens as we vary dose. If N is positive, as dose 
approaches zero, ED50/dose approaches infinity, the fractional term 
moves towards zero, and response reaches its basal level. As dose 
approaches infinity, ED50/dose moves towards zero, and the fractional 
term approaches the maximum, and the sum becomes Max + basal. If N 
is less than zero the dynamic is reversed. 

There is nothing magical about using dose and ED50 as the dependent 
variable and measure of potency: they are locators, just like KM. If a 
concentration in vitro is being studied rather than a dose in vivo, the 
dependent variable is denoted 'concentration', and the potency 
parameter may be either EC50 or IC50 depending on whether you are 
looking for effective responses (EC50) or inhibitory responses (IC50). The 
point is that the same equation fits all. 
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Statistical issues 

Statistically, the regression analysis is quite complex and it cannot, in 
fact, be solved with simple equations for each of the parameters (EC50' 

maximum activity, basal activity, and N) like those that we used to 
obtain the slope and intercept of the line. A computer is needed to fit a 
non-linear equation to a data set. The idea of fitting the data is identical 
whether the shape of your response function is a line or a curve. What 
the computer program is doing is looking, iteratively, for the best point 
in a four-dimensional space, i.e. the best quadruplet (EC50, maximum 
activity, basal activity, and N), so that the sum of the squared residuals is 
minimized. This is exactly the procedure employed when we took a line 
through the point and spun it like a propeller until the sum of 
squares was minimized in the two-dimensional (linear) space. By 
mimicking this procedure, we again minimize the conglomerate variance 
in the system, and are able to obtain a pooled estimate for the underlying 
variance in the random variable, ‘response’. 

The computer programs which perform non-linear regressions are 
quite complex, and require a certain amount of expertise in their pro- 
gramming and interpretation: this is well beyond the scope of this book. 
Working closely with a statistician, however, you should be able to 
derive estimates for your parameters based upon reasonable 
mathematical models of relationships obtained from your data. 

There is one more point to be addressed. The parameters fitted to the 
‘perfect model’ are, of course, only random snapshots drawn from four 
underlying distributions based on the four random variables ‘potency’, 
‘maximum’, ‘basal’, and ‘curvature’. They carry with them, therefore, as 
much uncertainty as is inherent in the underlying populations. The error 
estimates for the parameters of a non-linear regression are termed 
asymptotic standard errors (ASE), and can be considered the estimation 
equivalent to the regular standard error of the mean calculated for the 
descriptive statistics above. The 95% confidence intervals about each 
parameter, say the EC50 in this case, can be given by: 

[EC50 - 1.96(ASE(EC50)), EC50 + 1.96(ASE(EC50))] 

The factor of 1.96 comes from the fact that 95% of the area of the 
standard normal z-distribution is accounted for by 1.96 standard error 
units to the left (minus sign) and right (plus sign) of the center. A slightly 
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more conservative confidence interval would be derived by using the t- 
distribution rather than the z-distribution. In this case the multiplying 
factor would be larger, its magnitude depending upon the degrees of 
freedom. In this instance the number of degrees of freedom is just equal 
to the number of data points observed minus four, paying one degree of 
freedom for each of the four parameters being estimated. 





4  DESIGN OF A 

STATISTICAL 
EXPERIMENT 

Terms you should learn: 
Research hypothesis 
Study population 
Confounding 
Specificity, accuracy and precision 
Experimental strata and covariables 
Sequential design 
Completely randomized (one-way) and block design 
Latin square design 
Multifactor designs: factorial and fractional factorial designs 

Concepts you should master: 
The study population and its underlying distribution 
Bias and experimental conduct 
Experimentation vs. characterization 
Elements of measurement 
Choice of controls 
Statistical power, margin of error, Type I and Type II error, and the 

study plan 

The statistical experiment 

A scientific experiment is a procedure used to answer a question by 
generating and analyzing data. It is a physical act, depending upon the 
trained hands and mind of the scientist to make it happen. The statisti- 
cal experiment, on the other hand, is a process made up of several 
stages: 

(1) formulation of the experimental goal; 
(2) development of a statistically valid experimental design; 
(3) careful conduct of the experiment; 
(4) a thorough analysis of the data generated by the experiment. 

Executing all these steps will allow you to answer a scientific 
question as accurately as possible. The product of this process is 
information, and like any good process, the quality of the final product 
depends upon the care with which each stage is executed . This section 
discusses, in detail, each stage of the process, demonstrating how 
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careful conduct of the statistical experiment will help the actual 
experiment and realize the final goal, the gathering of quality informa- 
tion. 

Step 1: the experimental goal 

The experimental goal is sometimes called the research hypothesis, and 
is a rigorous statement of fact about some characteristic of the 
underlying population being studied. To understand it fully requires 
the definition of two very important terms. The first, known in 
statistics as the study population, is the universe of measurements made 
on objects being studied. Statisticians also call this the underlying 
target population. It is associated with an underlying distribution. The 
study population is, therefore, not batches of a compound or groups of 
animals, but the measurements made on these experimental units. 
Recall that we based our entire discussion of the inferential paradigm 
on this population. Results obtained from the sample population used 
in the experiment must eventually be generalized to this population. 
The second definition is that of the characteristic of the study population. 

This is any attribute of the distribution of these measurements which 
is scientifically interesting. You may want to study the average (mean) 
yield of a fermentation process, or perhaps you are interested in the 
variability of that distribution. Sometimes you may wish to know both 
- estimates of both are needed before the inferential tools described 
earlier can be used. Knowing the characteristic(s) to be addressed in 
the statistical experiment will help in the selection of the appropriate 
tools for collecting measurements and in the selection of an ideal 
statistical experimental design. 

The following example will be used in the discussion of each stage 
of the process. An investigator wishes to show that an anti-hyper- 
tensive drug is effective in dogs. To initiate her experiment, she has to 
define what 'effective' is: the compound must reduce blood pressure in 
dogs by at least 20 mmHg over that seen in placebo-treated animals. In 
this example, the characteristic of interest (in statistics, the population 

parameter) is the average difference in blood pressure reduction 
between drug and placebo-treated animals. The explicit goal is to 
demonstrate an improvement in drug-treated animals by as much as 
20 mmHg over controls. 

Step 2: the statistical (experimental) design 

A statistical (experimental) design is a plan. It includes, in clear and 
concise language, the details of how animals will be assigned to treat- 
ment groups (e.g. the randomization scheme) and the conditions to be 
applied to all treatment groups to ensure they are treated comparably 
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(what we call applying the experimental conditions to the subjects of 
the experiment). Test subjects are called experimental units by the 
statistician. The experimental design must also include a sample size 
calculation to ensure that the experiment will provide enough 
satisfactory information to ensure that any conclusions drawn are 
probably accurate. We discuss the power calculation in detail below. 

There are many ways in which to implement an experiment. For 
example, the effectiveness of a drug for reducing blood pressure could 
be studied in a number of different ways. You could study animals 
receiving only the experimental compound, or you could include a 
control group. Measurements might be made of post-treatment blood 
pressure alone, or you could look at changes from a baseline. Animals 
may even be treated once with the control compound and again with 
the test compound. The goal is to obtain the best information for the 
least investment of effort. The experimental design selected depends 
upon the experimental goal and the nature of the population being 
studied. It should be chosen on both the basis of practical 
considerations and the quality of information it can produce. 

In our example, the investigator should probably consider an 
experiment design which ameliorates the high degree of variability in 
the distribution of blood pressure measurements between individual 
animals. She might plan to collect baseline and post-treatment blood 
pressures, calculating a change from baseline within each animal. 
Another strategy might be to use the same animals to study both the 
test and control compounds. The treatment effect must be large 
enough to be distinguishable from its own noise. Remember that the 
variance of the distribution of sample means decreases with increasing 
sample sizes - the same thing is true here. Sizes of treatment groups 
must be considered carefully: an experiment in which samples are too 
small can miss a practically meaningful outcome, while an oversized 
experiment is inefficient and may yield spuriously significant results, 
i.e. results which produce a statistically significant p-value but which 
are scientifically irrelevant. Remember, the p-value is a conditional 
probability, not a measure of scientific effect! 

After considering all these elements, the investigator decided to 
measure blood pressure before treatment in each animal and at 30- 
minute intervals for 5 hours during infusion with either the drug or a 
vehicle control. She calculated that six animals would be needed to 
ensure 80% power of detecting a mean difference of at least 20 mmHg 
between treatment and vehicle control groups at the maximum blood 
pressure point = 0.05). 

This is a very complex statement of the experiment design and 
includes the criteria needed for power estimates and sample sizes. This 
will become clearer when we discuss the statistical power of an experi- 
ment, later. The point to make here is that the investigator has 
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determined a plan (baseline measures, drug infusion, half-hourly 
sample intervals), and a sample size (six) which she believes will help 
to produce an answer to the original question. 

Step 3: experimental conduct 

The experimental plan is not complete until a decision has been made 
as to how the study will be administered, i.e. how the experiment will be 

conducted. Bias may be introduced from subtle influences of extraneous 
(environmental) factors or improper execution of the experimental 
plan, and biased data can easily flaw experimental results. To 
minimize the bias and balance environmental effects, the subjects 
(experimental units) should either be randomly assigned to treatment 
groups or drawn randomly as a representative sample from the study 
population. For example, animals receiving the same treatment that are 
all housed together are subject to hidden biases. Bias may also be a 
result of the way in which units are measured. This is especially true 
when measurement characteristics, such as run-to-run variability in an 
analytical test, influence the comparisons of interest. 

In our example, the dogs are labeled 1-12 and assigned to receive 
either the drug or a vehicle control according to a random allocation 
schedule. Because this is a short-term study, the scientist is not too 
concerned about environmental factors such as housing. However, 
only six animals can be treated and monitored at a time. To eliminate 
measurement bias, she elects to make measurements from three 
animals from each group during each monitoring session. This will 
allay potential bias due to 'monitoring period' in the experiment: 
suppose the measuring devices (or animals) were heat sensitive, and 
all the drug-treated animals were tested in the cool of the morning 
while all the control animals were tested in the hot afternoon sun. 
There would be no way of telling whether effects observed were a 
result of drug effects or the heat. Such confusion of factors and 
elements is referred to as confounding. 

Step 4: data analysis and conclusion 

Data analysis is an accurate summary of the experimental data into 
some information metric. Examples of information metrics used 
throughout this book are the confidence interval and p-value - but 
what do we really mean by an information metric? What we are 
saying here is that the final span of the bridge between the underlying 
target population and our sample data needs to be completed. The 
process of data analysis allows random snapshots - data - to be put 
into a theoretical context for interpretation. The result of that 
interpretation is information. The information metric is the probability 
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measure that indicates the likelihood of an interpretation being the 
correct one. 

If the study has been well designed, and the experiment has been 
adequately administered, the analysis should follow seamlessly. In 
fact, a proper design should acknowledge the mathematical tools that 
will be used to analyze the data before the actual experiment is ever 
performed. Any deviation from the data analysis plan, like any other 
deviations in design, can hamper the investigator’s ability to correctly 
interpret his or her results. 

Some of the analysis tools available for summarizing and drawing 
conclusions from experimental data have been presented before, e.g. 
graphs and plots, t-tests, estimators and their confidence intervals. 
Linking them, a priori, to the design of the experiment, its conduct and 
its measurements means that the chances of using the wrong tool for 
analysis of the experimental results are much less than if the two 
processes are considered separately. 

Back to our example 

The goal of the experiment was to ascertain a difference in blood 
pressure reduction between drug-treated and vehicle-treated animals. 
Our investigator chose to represent her results with a 95% confidence 
interval on the mean difference in blood pressures. In other words, she 
wants to be 95% sure (her information metric) that the true mean of the 
differences in blood pressures (the population parameter) lies 
somewhere above 20 mmHg. The mean difference observed after 
analysis of the data gathered from the experiment was 28.7 mmHg. 
The confidence interval around this mean (22.5 mmHg, 34.8 mmHg), 
was derived using the standard error of the mean as described above. 

statistically significant evidence of a difference of more than 20 mmHg 

application of each. step in the process of a statistical experiment cedes 
a dependable marriage of practical and statistical significance in the 
performance of the actual experiment. 

Design elements 

Several design elements can affect the reliability of information 
obtained from a statistical experiment. Some of these, such as the 
sampling scheme used to collect the data and the sample size 
necessary to obtain reliable information, have already been mentioned 
in passing. Others, more subtle and frequently overlooked, are 
discussed here. These include the distinction between experimentation 
and characterization, elements of measurement, experimental strata 
and covariables, and choice of controls. 

Since this interval excludes 20 mmHg, she felt confident that there was 

between drug treatment and vehicle control in dogs  < 0.05). Careful 
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Experimentation versus characterization 

One design element which relates to the scope of the conclusions that 
can be drawn from a statistical experiment is the difference between 
conducting an experiment and characterizing a population. In an 
experiment, only the experimental factor(s) should be allowed to vary; 
all other factors must be held constant. During characterization, non- 
experimental factors should be as varied as possible to represent the 
entire underlying population. What does all that mean? 

An experiment is usually performed in an attempt to explore the 
influence of one or more factors on a particular population 
characteristic, e.g. the effect of a drug (the factor) on the mean or mean 
difference in blood pressure (the characteristics). This factor might be 
isolated in an attempt to abate the noise induced by non-experimental 
factors and to improve the likelihood of observing treatment effects. 
Thus, an experiment aimed at studying the effects of several different 
constituents on product stability might utilize a single lot of the active 
stock, and testing might be performed in limited analytical runs. This 
would reduce the variability inherent in the analytical method. This 
does not mean that a ‘one-factor-at-a-time’ experiment should be 
performed when different experimental factors are involved: the rule 
of thumb is that only random (environmental) elements which can 
contribute noise to an experiment should be controlled. Experimental 
factors which might systematically influence the process, such as all 
the various constituents relating to product stability, should be studied 
simultaneously (see Factorial Experiments, below). 

The goal of characterization, on the other hand, is to describe the 
underlying distribution of measurements which evolve under the 
influence of both systematic (i.e. treatment) and random (i.e. 
environmental) effects. If any of these components is overlooked in the 
planning of an experiment the final data may not be representative of 
the true effects sought. Interpretation is then limited to the scope of 
only those factors actually included in the experimental plan. Thus, to 
estimate (i.e. characterize) the stability of a product, several lots should 
be included in the study design. If only one lot is studied ‘lot’ is no 
longer a factor in the design, and any conclusions drawn are relevant 
only to the lot studied. Nothing can be said about the population of 
material produced by the process. 

Not being able to generalize the results of an experiment to an entire 
population because of a failure in the design is a special case of 
confounding. The example we provided earlier is a case in point: had 
our scientist not balanced her blood pressure monitoring so that 
treatment groups were represented in each monitoring session, i.e. 
they were monitored under comparable circumstances, then she could 
not have drawn any conclusions about whether the drug actually 
lowered blood pressure. Equally acceptable alternatives would be that 
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the heat of the day, diurnal rhythms, differences in laboratory light 
levels, or handling by the afternoon vs. morning staff yielded the same 
results. By balancing the design the random factors of environment, 
handling, etc. were controlled for, and the results were free of 
confounding. 

Elements of measurement 

The quality of information derived from an experiment is affected by 
the selection of measurement variable. The overall noise in a statistical 
experiment is a composite of random variability, systematic treatment 
effects and measurement variability. A measurement variable should 
be chosen on the basis of its operating characteristics: specificity, accuracy 

and precision. 
While these terms are usually associated with the process of 

validating an analytical method, they also apply to other situations in 
which scientific measurements are made. Specificity is the capacity to 
measure expressly the characteristic of interest, while accuracy is the 
ability to obtain, on average, the true value you seek. Precision relates to 
the inherent variability of the measurement. A measure that is precise 
will give the same results from measurement to measurement, 
although it may not be accurate (e.g. a precise scale which is 
miscalibrated yields a set of measures all within 1% of each other but 
systematically wrong). A measure that is accurate may not be precise 
(e.g. the electrical activity of a nerve bundle, while yielding an accurate 
picture of ion channel activity, is, due to limits in our technology, so 
noisy that the measurements are not very precise). Measures that are 
specific may be neither accurate nor precise (e.g. the effect of a drug 
that acts directly, and only, on an ion channel may yield 
physicochemical measures that are still very noisy, and, given the 
limits of our technology, possibly inaccurate). The optimal experiment 
requires your measurements be as specific, accurate and precise as 
possible. 

These effects are reflected in the statistical power of an experiment: 
an experiment aimed at exploring the toxic effects of a compound in 
vivo could use either survival or weight loss as its measurement end- 
points. Survival is quite Specific, but the measurement 'time to death' 
is not very precise, not because of limitations in the technology (after 
all, dead is dead) but because survival is such an inherently complex 
biological process. Weight loss, on the other hand, is likely to be more 
precise, and the chance of inducing excess noise in the system is mini- 
mized. With less noise it takes far fewer animals (and time) to obtain 
the same amount of suitable information. 
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Experimental strata and covariables 

Strata and covariables are elements in an experiment which are not the 
primary factors (e.g. treatments), but which may exert an effect on 
experimental endpoints. If, for example, male and female mice react 
differently to treatment with a specific compound, sex should be 
considered as a stratum in the experiment. Experimental strata are 
typically categorical variables such as sex, formulation, container, etc. 
while covariables are continuous (i.e. measurable) characteristics of 
your population such as age, weight, pH and baseline response. 

Strata and covariables which might have an effect on experimental 
results should be identified in advance. Recognizing these elements 
reduces experimental variability, enhances the ability to represent 
accurately the underlying population and isolates important experi- 
mental interactions. For example, simply eliminating sex as a source of 
experimental variability by identifying ‘sex’ as a stratum (and using 
the correct tool in the analyses) will allow proper conclusions to be 
drawn about drug effects taking each sex into account. If an outcome 
measure such as drop in blood pressure is strongly associated with an 
inherent characteristic such as weight, identifying ‘weight’ as a 
covariable, and adjusting the analyses to use this added knowledge 
can reduce the underlying noise in the experiment. The appropriate 
analysis tool for this situation is called an analysis of covariance. The 
details are beyond the scope of this book, but in essence it combines 
the ANOVA and correlation tools to minimize the variability due to 
weight. 

Care should be taken with strata and covariables when running the 
actual experiment. To guarantee balance and to limit confounding, 
experimental units from each stratum should be randomized separate- 
ly, and covariables should be collected as data throughout the 
experiment. There is, after all, no point in identifying a stratum or 
covariate if it is not then used to minimize noise. 

Control groups 

Experimental controls are an essential element in a well designed 
scientific experiment. They serve to validate the experiment, to define 
the study range and act as the ‘gold standard’ for comparison 
purposes. Experimental conditions other than treatment, such as 
environment or time, can affect responses in an experiment. The 
controls form the relative basis of response when all external elements 
are accounted for. They act as validation indices in the experiment: if 
the control subjects are not behaving as expected there may be 
something wrong with the entire experimental procedure. Under 
certain circumstances, particularly in analytical procedures, multiple 
controls are used to achieve these objectives. An assay or reference 



Design of a statistical experiment 157 

standard is used to calibrate test compounds, while an assay control is 
used to monitor the operating characteristics of the assay. Vehicle 
controls are fundamental to the design of in vivo pharmacology and 
safety experiments. When developing a new manufacturing process, a 
batch of material manufactured under the standard process can be the 
control against which all other processes can be compared for yield or 
purity. 

Additional design elements 

Many other elements should be considered when planning a statistical 
experiment. Below we work through a simple power calculation, 

deriving a sample size for an estimated mean based upon a fixed 
margin of error. The principle of restricting the margin of error holds 
for all experimental plans and is the basis for all sample size 
calculations. The equations that have been derived to calculate these 
sample sizes intimately depend upon the statistical design of the 
experiment, and can be quite complex. You may need the help of a 
statistician to utilize them fully. 

So far we have assumed that our experiments are meant to show a 
difference between two groups, in this case, canine blood pressure. 
While this scenario is familiar to most of us, many circumstances 
warrant a different approach. Some experiments seek to demonstrate 
the equivalence of effects across experimental factors. For example, 
suppose we wish to validate that a new production process is 
equivalent to our present one, or to establish in vivo that the distribu- 
tion of an active ingredient is equivalent over several formulations of a 
drug. The data analyses required to ‘prove’ equivalence are different 
from those needed to establish a treatment difference. The design of 
these experiments is also special: a statistician should be consulted for 
help in the details of an equivalence study. They are not as easy as they 
appear. 

Sometimes, the sample size required to undertake an acceptable 
statistical study is too large to be practical. This may be due to inherent 
noise in the population under study. A sequential experimental plan can 
be used incrementally to improve the knowledge of a population’s 
characteristics (especially the underlying mean and standard 
deviation), and may allow a smaller overall experiment to be 
performed. For example, if an experimental plan calls for eight dogs 
per group to study changes in blood pressure, data might be collected 
initially on four dogs per group, and an interim analysis of the results 
performed. These interim studies can give a rough estimate of the true 
means and standard deviations in each group. If the statistical power 
is not sufficient to establish the desired effect, four additional animals 
in each group can be studied to complete the experiment. There is a 
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price to pay for a sequential study plan, and such studies should only 
be undertaken following expert advice. 

Statistical power versus practical significance and sample size 

An experiment which has too few subjects may miss a practically 

significant outcome, i.e. a difference large enough to be scientifically 
relevant. This is called a Type II error and represents the ‘consumer’s 
risk’. The better known name for this kind of error is a false negative, 
i.e. concluding that there is no difference between groups, when in fact 
one exists. On the other hand, an experiment which is too large may 
generate a spuriously significant result. Statisticians call this a Type I 

error or the ‘producer’s risk’. This kind of error is a false positive: a true 
difference appears to be present when in fact there is not. When an 
experiment is well designed (including a complete power calculation), 
statistical significance can act as a surrogate for practical significance. 
Therefore, a good design will acknowledge, a priori, the inherent risks, 
the Type I and Type II error levels, the underlying variability of the 
experimental measurements and the practical goal of the study. 

Consider the following example. Suppose we are interested in 
estimating average dissolution of a tablet formulation, and we would 
like our estimate to be within a specified margin of error. The 
relationship defining the terms which limit the margin of error on the 
estimate is: 

Thus, if we fix the practical deviation, i.e., how close we want to be 
to the truth, the margin of error can be reduced by: 

(1) decreasing the confidence in the estimate - an undesirable 
strategy since confidence relates to the chance of drawing the 
wrong conclusion; 
(2) reducing the measurement error - something we cannot do 
since it is usually a static property of the population; 
(3) increasing the sample size. 

Solving this equation for the required sample size, N, gives: 
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In our example, had we wished to estimate dissolution to within 
±2% (practical deviation) with 95% confidence (a value of about 2 for 
'confidence' in our expression), and had we 'known' that our measure- 
ment error is equal to 3%, we would need at least 9 (= (2.3/2)²) sample 
points to meet our power criteria. The numbers derived for 
'confidence' in this equation come from the t- or z-distributions, and 
are the same as those used to obtain the p-values. Had we elected to be 
99% confident about our result, 'confidence' would have a value closer 
to 3. 

Design digest 

Some commonly employed experimental strategies are considered 
here. Their applications, advantages and disadvantages are 
summarized, along with a basic schema for each. The sample size for 
each design is selected for illustration purposes only. 

The completely randomized (one-way) design 

The completely randomized design is the most commonly employed 
statistical design in pharmaceutical development. This is sometimes 
called a one-way design because, in general, N experimental units are 
randomized to k treatments which are defined by a single experimental 
factor. 

As an illustration, consider a safety experiment in rats divided into 
groups of six animals each, to receive a vehicle control, a low dose, 
medium dose and high dose of a drug. A computer generated enrol- 
ment (randomization) scheme is shown in Table 32. 

Table 32 

Animal 1 is assigned to medium dose group, animal 2 is assigned to 
the vehicle group, and so on. The advantage of the completely 
randomized design is its simplicity. Many popular spreadsheet 
programs provide online resources to analyze data from a one-way 
layout. If only two groups are needed, say a control and one test 
group, the two-sample t-test or its Mann-Whitney non-parametric 
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one-way ANOVA or the Kruskal-Wallis non-parametric test can be 
employed. These tools were discussed in detail earlier. The disad- 
vantage of this design is that it is costly, frequently requiring larger 
sample sizes than some alternative strategies. 

Other examples of the completely randomized design include 
comparative studies of different compounds in vitro, comparison of 
compound formulations based upon different excipients and cell 
culture experiments comparing different culture media supplements. 
Key to this design is that only a single factor is under investigation 
(e.g. cornpound, excipient, supplement). If the effects of several factors 
are to be studied a factorial design should be employed. 

Block designs 

Block designs can be used to reduce the effects of factors in an 
experiment which create variability. Two such designs are a complete 
block design and a Latin square design. 

The complete block design is used in pharmacology to study the 
effects of increasing doses of a compound. Suppose serial doses 
(treatments) of a compound are administered to each of several tissues 
(blocks), as shown in Table 33. Treatments are administered in the 
same order in each tissue. 

Table 33 

The primary advantage of blocking is that it controls the variability 
between factors in the block (here tissue to tissue) variability. The 
block design is one possible solution when non-experimental factors 
contribute a Barge amount of the variability to an experiment. If an 
assay exhibits large inter-run variation, then samples from multiple 
treatment arms can be submitted to the assay in carefully selected 
groups. A case in point is the balancing act performed by our scientist 
when she tested three dogs from each treatment arm in the morning 
and three more from each group in the afternoon. Time of day became 
a blocking factor. Similarly, when different devices are used in the 
conduct of an experiment, such as fermentors or tablet presses, it may 
be wise to identify these devices as experimental blocks. In addition to 
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reducing experimental variability, block designs enhance the ability to 
generalize experimental results to wider portions of the underlying 
population. 

This type of design is called a two-way design (here two-way refers 
to the two factors in the design, treatments and blocks) and can be 
analyzed as readily as the one-way design using popular spreadsheet 
programs. If there are only two treatment levels, a paired t-test or 
Wilcoxon non-parametric test should be performed. If there are 
multiple treatment levels, a two-way ANOVA or Friedman's non- 
parametric test can be used. 

A disadvantage of the complete block design is that it does not 
control the order in which the treatments are administered (sequence 

effects in the experiment). This situation can arise when a drug 
accumulates in the blood stream or induces dose-dependent 
permanent changes in the host. A strategy which achieves balance in 
the sequence of treatments applied to the blocks is a Latin square design. 
Suppose three treatments (A, B and C) are to be administered to three 
dogs. We could give all three dogs Treatment A first, then B, then C. 
That is the block design. If, however, treatment A induces a permanent 
change in the test subjects (e.g. kidney damage or impaired liver 
function), the effects of B and C may be masked completely. 
Alternatively, if each dog received a different treatment first, and if 
treatments were changed for the second treatment period, and then 
again for the third, a scheme like that shown in Table 34 would be 
obtained. This design is frequently employed in animal 
pharmacokinetics experiments, where small numbers of animals are 
used to study several formulations of a drug. As with all block 
designs, the Latin square design helps ameliorate the effects of inter- 
animal variability. 

Table 34 

Multifactor designs (factorial and fractional factorial designs) 

The goal of many experiments - drug formulation studies, product 
control processes and assay performance experiments to name a few - 
is to study the effects of multiple factors on a particular endpoint. 
These are all processes which are subject to the influences of a number 
of constituents and the conditions under which they are implemented. 
Screening designs are used as investigative tools to help establish which 
factors exert the most influence on a particular response. Optimization 
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designs use that information to find the optimum settings of the most 
important design factors. These multiple effects could be studied one 
factor at a time, but such a strategy is both ineffective and inefficient. It 
takes more time and resources, and furnishes less statistical power, 
than a factorial design. It can also miss important interactions among 
the experimental factors, which in a screening study can result in 
misidentification of key factors, and in an optimization experiment, 
yield substandard performance in the process. 

Factorial designs are used to study the effects of multiple factors 
simultaneously. For example, suppose we want to establish which of 
three excipients, a lubricant, a binder and a filler, has the greatest effect 
on tablet hardness. As a screen, we might try two levels of each factor, 
high and low. A scheme frequently used to outline this kind of 
factorial design is to depict the low level of a factor with the code -1, 
and the high level using +l. Center points could also be included in 
the design, values somewhere between high and low, and coded using 
the symbol 0 (see Table 35). This does not mean that no excipient is 
given for that treatment combination. Rather it indicates there is a level 
of a particular excipient somewhere between high and low which is 
believed to be a reasonable level to test. This type of design can 
provide valuable information regarding the variability of your process. 

Table 35 

A simple design using three factors at two levels each results in 2³ (= 
8) design points. The inclusion of additional 'center points' (coded 0 in 
Table 35) increases the size of the experiment. An alternative way to 
depict a simple factorial design is as a cube (see Figure 31). The 
vertices of the cube represent the experimental runs, while the size of 
each circle is proportional to the response observed at the associated 
factor settings. 
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Figure 30 A cube representation of a factorial design 

In general, you need 2
k 

runs plus center points to study k factors 
effectively. This can quickly become a fairly large experiment as the 
number of factors increases, and care should therefore be taken in 
choosing the experimental factors thought likely to exert the largest 
influence on outcome. One way to reduce the size of the experiment is 
not to limit the number of factors and levels, but to test only a select 
fraction of them from the overall factorial design. This is called a 
fractional factorial design. For example, a half-fraction of a 25-factorial 
design results in 16 experimental runs rather than 32. This reduction in 
the number of runs results, however, in the loss of some information. 
We cannot estimate all the possible interactions that exist between 
factors, i.e. they are confounded with each other. Fractional factorial 
designs and other statistically efficient strategies are extraordinarily 
complex and should only be used in conjunction with expert advice. 

An optimization experiment is a different kind of exploratory proce- 
dure. To optimize a process effectively, factorial designs using more 
than two levels of each factor are usually employed. A 3k-factorial de- 
sign, known as a central composite design, is an effective choice. A 
detailed discussion of these designs is beyond the scope of this book, 
but any textbook on statistical experimental design will contain details. 
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Regression design 

As described earlier, regression and correlation are the tools most 
commonly used to study the relationship between two variables. 
Simple linear regression and curve fitting are often used to fit models 
of kinetics over time or doses. Several design features need to be taken 
into consideration to employ regression effectively, such as regression 
scale which should be considered in selecting the number and spacing 
of doses and time points. Two commonly employed dose scales are 
arithmetic (linear) and geometric (sometimes called logarithmic). The 
choice of dose scale should yield as much information as possible, as 
economically as possible. In statistical language, we are trying to 
achieve parsimony between the regression points and the response 
variable. Arithmetic scaling is preferred when the response variable 
behaves arithmetically, i.e., linearly: dose 1 = dose 2 + X, dose 3 = dose 
2 + X, etc. Geometric scaling should be used when the responses are 
multiplicative, i.e. dose 2 = twice dose 1, dose 3 = twice dose 2, etc. (see 
our description of the geometric mean for an example of this type of 
scale). The weights applied to arithmetically and geometrically scaled 
doses (where 'weight' is the importance of each measurement in the 
calculation of a regression line) are not equivalent (Table 36). 

Table 36 

The arithmetic scale yields a more equitable distribution of weights 
among the regression points. Therefore, if a dosing regimen takes 
advantage of a dilution process, the geometric scaling will create an 
inherent imbalance in this distribution. A log transformation of the 
doses will then result in equal spacing among the regression points, 
and yield the same weighting as the arithmetic scale (see Table 36). The 
number of regression points selected should be sufficient to meet the 
objectives of the experiment. If the goal of the experiment is to measure 
the change in a response, two points is ideal, i.e. before and after. If 
more complex dynamics are suspected, more points should be utilized. 
Complex non-linear equations require special treatment. Regression 
points should be abundant in regions of rapid change, but can be less 
frequent where there is little variation in response. In correlation 
analyses, a broad range of responses will yield a stronger estimate of 
the degree of association between variables than those that are more 
closely spaced. 
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Repeated measurements 

The more samples you take on a subject, the more you know about 

that subject. Because we are constrained to live in a temporal universe, 
samples represent dynamic responses in an assay system. Multiple 
measurement designs, wherein data are collected on the same experi- 
mental units, can therefore be valuable tools in safety, pharmacology, 
stability and other kinetic studies. We have already seen special cases 
of this design in the cross-over and Latin square designs presented 
above. Dose escalating studies represent another variation on the 
theme. There is also another reason for measuring the same subject 
repeatedly: in some instances between-subject variability can be 
lessened when multiple measures are made within subjects. 

Repeated measurement experiments are one of the most statistically 
complex designs employed in research and development. Care should 
be taken when collecting and analyzing data from these types of 
studies. Repeated measurements on the same experimental unit are not 
independent, and this complicates the statistical analysis. Naive 
analyses, those conducted on data at each time point without 
correcting for the multiple comparisons problem, can yield spurious 
significances due to the large number of tests performed. Missing 
values can lead to information bias (see Figure 31), and a reasonable 
strategy to estimate these missing responses must be employed. 

Sampling intervals should be selected both to be convenient and to 
provide the maximum information possible. Frequent observations 
should be collected over periods of expected rapid changes in the 
response, while fewer observations are needed when the response 
varies slowly. 

Dose response 

The dose response is one of the most useful tools in pharmaceutical 
research and development. A trend in response with increasing dose is 
an effective way to establish a minimum effective dose (MED) or a 
maximum tolerated dose (MTD). The dose-response relationship can 
be used in lieu of pairwise comparisons of each treatment group in a 
one-way design. A parsimonious summary of the effectiveness or 
safety of a compound can be obtained without the need for a dose-by- 
dose comparison with a control. Over the linear part of the dose range, 
a linear regression analysis may be enough to satisfactorily 
characterize the dose response of a compound. The regression can be 
further applied to obtain a powerful comparison of doses with a 
vehicle control. For example, consider a study of the effect of a drug on 
bleeding time in dogs. The doses chosen are a vehicle control (dose 0), 
1 mg/kg, 3 mg/kg, and 10 mg/kg of an anit-coagulent. You are fairly 
convinced that these three doses represent the linear part of the curve. 
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Time 

Figure 31 

The bleeding times are equal to 22, 18, 32, and 56 minutes respectively. 
While the average bleeding time for only the high dose (10 mg/kg) is 
clearly statistically greater than the average response to the vehicle 
control (we performed a Dunnett’s test after completing a one-way 
ANQVA here), a regression analysis yields a significant trend through 
the middle dose (3 mg/kg) of the compound. In this context, the 
maximum tolerated dose is unequivocal, whereas pairwise compari- 
sons in the one-way ANOVA can lead to ambiguity in the conclusions. 

Summary 

The reward of sound statistical planning is quality information. Key 
elements of the experimental process are a well formulated objective, 
an effective experimental design, proper conduct of the experiment 
and careful analysis of the experimental measurements. From these 
four elements you are able to derive appropriate results and reach clear 
and accurate conclusions. Proper implementation of each step of this 
process helps to ensure the unambiguous quality of scientific informa- 
tion. 

We have outlined some of the most important statistical design 
considerations required for a sound scientific study. Design elements 
which affect the reliability of your experimental results include the 
scope of your experimental inference, the selection of a proper 
measurement variable, the impact of experimental strata and 
covariables, use of experimental controls and determination of a 
sample size. 
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Several statistical designs have been discussed. The most commonly 
employed design in scientific research is the completely randomized or 
one-way design. This forms the basis for comparisons among 
treatment groups when no other factors influence the experimental 
outcome. A block or two-way design is used to account for variability 
from non-treatment related factors in an experiment. Multifactor 
designs are used in studies in which several experimental factors are 
applied simultaneously. These designs should be used in lieu of 'one 
factor at a time' strategies. Regression analysis is frequently employed 
to study kinetics of a single variable over time or doses, and correlation 
analysis provides information concerning the association between two 
measurement variables. Either of these analyses is best served by a 
carefully contrived experimental strategy. And finally, the design tool 
customarily used to directly assess the effects of a candidate 
compound is the dose response. 
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