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Preface

The field of medical imaging advances so rapidly that all of those working in it,
scientists, engineers, physicians, educators, and others, need to frequently update
their knowledge to stay abreast of developments. While journals and periodicals
play a crucial role in this, more extensive, integrative publications that connect
fundamental principles and new advances in algorithms and techniques to practical
applications are essential. Such publications have an extended life and form durable
links in connecting past procedures to the present, and present procedures to the
future. This book aims to meet this challenge and provide an enduring bridge in the
ever expanding field of medical imaging.

This book is designed for end users in the field of medical imaging, who
wish to update their skills and understanding with the latest techniques in image
analysis. The book emphasizes the conceptual framework of image analysis and the
effective use of image processing tools. It is designed to assist cross-disciplinary
dialog both at graduate and at specialist levels, between all those involved in the
multidisciplinary area of digital image processing, with a bias toward medical
applications. Its aim is to enable new end users to draw on the expertise of experts
across the specialization gap.

To accomplish this, the book uses applications in a variety of fields to demon-
strate and consolidate both specific and general concepts, and to build intuition,
insight, and understanding. It presents a detailed approach to each application while
emphasizing the applicability of techniques to other research areas. Although the
chapters are essentially self-contained, they reference other chapters to form an
integrated whole. Each chapter uses a pedagogical approach to ensure conceptual
learning before introducing specific techniques and “tricks of the trade”.

The book is unified by the theme foreshadowed in the title “Medical Image
Processing: Techniques and Applications.” It consists of a collection of specialized
topics, each presented by a specialist in the field. Each chapter is split into
sections and subsections, and begins with an introduction to the topic, method, or
technology. Emphasis is placed not only on the background theory but also on the
practical aspects of the method, the details necessary to implement the technique,

vii



viii Preface

and limits of applicability. The chapter then introduces selected more advanced
applications of the topic, method, or technology, leading toward recent achievements
and unresolved questions in a manner that can be understood by a reader with no
specialist knowledge in that area.

Chapter 1, by Dougherty, presents a brief overview of medical image processing.
He outlines a number of challenges and highlights opportunities for further devel-
opment.

A number of image analysis packages exist, both commercial and free, which
make use of libraries of routines that can be assembled/mobilized/concatenated to
automate an image analysis task. Chapter 2, by Luengo, Malm, and Bengtsson,
introduces one such package, DIPimage, which is a toolbox for MatLab that
incorporates a GUI for automatic image display and a convenient drop-down menu
of common image analysis functions. The chapter demonstrates how one can
quickly develop a solution to automate a common assessment task such as counting
cancerous cells in a Pap smear.

Segmentation is one of the key tools in medical image analysis. The main appli-
cation of segmentation is in delineating an organ reliably, quickly, and effectively.
Chapter 3, by Couprie, Najman and Talbot, presents very recent approaches that
unify popular discrete segmentation methods.

Deformable models are a promising method to handle the difficulties in seg-
menting images that are contaminated by noise and sampling artifact. The model
is represented by an initial curve (or surface in three dimensions (3D)) in the
image which evolves under the influence of internal energy, derived from the model
geometry, and an external force, defined from the image data. Segmentation is
then achieved by minimizing the sum of these energies, which usually results in a
smooth contour. In Chapter 4, Alfiansyah presents a review of different deformable
models and issues related to their implementations. He presents some examples of
the different models used with noisy medical images.

Over the past two decades, many authors have investigated the use of MRI for
the analysis of body fat and its distribution. However, when performed manually,
accurate isolation of fat in MR images can be an arduous task. In order to
alleviate this burden, numerous segmentation algorithms have been developed for
the quantification of fat in MR images. These include a number of automated and
semi-automated segmentation algorithms. In Chapter 5, Costello and Kenny discuss
some of the techniques and models used in these algorithms, with a particular
emphasis on their application and implementation. The potential impact of artifacts
such as intensity inhomogeneities, partial volume effect (PVE), and chemical shift
artifacts on image segmentation are also discussed.

An increasing portion of medical imaging problems concern thin objects, and
particularly vessel filtering, segmentation, and classification. Example applications
include vascular tree analysis in the brain, the heart, or the liver, the detection of
aneurysms, stenoses, and arteriovenous malformations in the brain, and coronal
tree analysis in relation to the prevention of myocardial infarction. Thin, vessel-like
objects are more difficult to process in general than most images features, precisely
because they are thin. They are prone to disappear when using many common image
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analysis operators, particularly in 3D. Chapter 6, by Tankyevych, Talbot, Passat,
Musacchio, and Lagneau, introduces the problem of cerebral vessel filtering and
detection in 3D and describes the state of the art from filtering to segmentation, using
local orientation, enhancement, local topology, and scale selection. They apply both
linear and nonlinear operators to atlas creation.

Automated detection of linear structures is a common challenge in many
computer vision applications. Where such structures occur in medical images, their
measurement and interpretation are important steps in certain clinical decision-
making tasks. In Chapter 7, Dabbah, Graham, Malik, and Efron discuss some of
the well-known linear structure detection methods used in medical imaging. They
describe a quantitative method for evaluating the performance of these algorithms in
comparison with their newly developed method for detecting nerve fibers in images
obtained using in vivo corneal confocal microscopy (CCM).

Advances in linear feature detection have enabled new applications where the
reliable tracing of line-like structures is critical. This includes neurite identification
in images of brain cells, the characterization of blood vessels, the delineation of cell
membranes, and the segmentation of bacteria under high resolution phase contrast
microscopy. Linear features represent fundamental image analysis primitives. In
Chapter 8, Domanski, Sun, Lagerstrom, Wang, Bischof, Payne, and Vallotton
introduce the algorithms for linear feature detection, consider the preprocessing and
speed options, and show how such processing can be implemented conveniently
using a graphical user interface called HCA-Vision. The chapter demonstrates how
third parties can exploit these new capabilities as informed users.

Osteoporosis is a degenerative disease of the bone. The averaging nature of bone
mineral density measurement does not take into account the microarchitectural
deterioration within the bone. In Chapter 9, Haidekker and Dougherty consider
methods that allow the degree of microarchitectural deterioration of trabecular bone
to be quantified. These have the potential to predict the load-bearing capability of
bone.

In Chapter 10, Adam and Dougherty describe the application of medical image
processing to the assessment and treatment of spinal deformity, with a focus on the
surgical treatment of idiopathic scoliosis. The natural history of spinal deformity
and current approaches to surgical and nonsurgical treatment are briefly described,
followed by an overview of current clinically used imaging modalities. The key
metrics currently used to assess the severity and progression of spinal deformities
from medical images are presented, followed by a discussion of the errors and
uncertainties involved in manual measurements. This provides the context for an
analysis of automated and semi-automated image processing approaches to measure
spinal curve shape and severity in two and three dimensions.

In Chapter 11, Cree and Jelinek outline the methods for acquiring and pre-
processing of retinal images. They show how morphological, wavelet, and fractal
methods can be used to detect lesions and indicate the future directions of research
in this area.

The appearance of the retinal blood vessels is an important diagnostic indicator
for much systemic pathology. In Chapter 12, Iorga and Dougherty show that the
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tortuosity of retinal vessels in patients with diabetic retinopathy correlates with the
number of detected microaneurysms and can be used as an alternative indicator of
the severity of the disease. The tortuosity of retinal vessels can be readily measured
in a semi-automated fashion and avoids the segmentation problems inherent in
detecting microaneurysms.

With the increasing availability of highly resolved isotropic 3D medical image
datasets, from sources such as MRI, CT, and ultrasound, volumetric image render-
ing techniques have increased in importance. Unfortunately, volume rendering is
computationally demanding, and the ever increasing size of medical image datasets
has meant that direct approaches are unsuitable for interactive clinical use. In
Chapter 13, Zhang, Peters, and Eagleson describe volumetric visualization pipelines
and provide a comprehensive explanation of novel rendering and classification
algorithms, anatomical feature and visual enhancement techniques, dynamic mul-
timodality rendering and manipulation. They compare their strategies with those
from the published literatures and address the advantages and drawbacks of each in
terms of image quality and speed of interaction.

In Chapter 14, Bones and Wu describe the background motivation for adopting
sparse sampling in MRI and show evidence of the sparse nature of biological
image data sets. They briefly present the theory behind parallel MRI reconstruction,
compressive sampling, and the application of various forms of prior knowledge to
image reconstruction. They summarize the work of other groups in applying these
concepts to MRI and then describe their own contributions. They finish with a brief
conjecture on the possibilities for future development in the area.

In Chapter 15, Momot, Pope, and Wellard discuss the fundamentals of diffusion
tensor imaging (DTI) in avascular tissues and the key elements of digital processing
and visualization of the diffusion data. They present examples of the application
of DTI in two types of avascular tissue: articular cartilage and eye lens. Diffusion
tensor maps present a convenient way to visualize the ordered microstructure of
these tissues. The direction of the principal eigenvector of the diffusion tensor
reports on the predominant alignment of collagen fibers in both tissues.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Geoff Dougherty

2 Rapid Prototyping of Image Analysis Applications . . . . . . . . . . . . . . . . . . . . . 5
Cris L. Luengo Hendriks, Patrik Malm, and Ewert Bengtsson

3 Seeded Segmentation Methods for Medical Image Analysis . . . . . . . . . . . 27
Camille Couprie, Laurent Najman, and Hugues Talbot

4 Deformable Models and Level Sets in Image Segmentation . . . . . . . . . . . 59
Agung Alfiansyah

5 Fat Segmentation in Magnetic Resonance Images . . . . . . . . . . . . . . . . . . . . . . 89
David P. Costello and Patrick A. Kenny

6 Angiographic Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Olena Tankyevych, Hugues Talbot, Nicolas Passat, Mariano
Musacchio, and Michel Lagneau

7 Detecting and Analyzing Linear Structures in Biomedical
Images: A Case Study Using Corneal Nerve Fibers . . . . . . . . . . . . . . . . . . . . 145
Mohammad A. Dabbah, James Graham, Rayaz A. Malik,
and Nathan Efron

8 High-Throughput Detection of Linear Features: Selected
Applications in Biological Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Luke Domanski, Changming Sun, Ryan Lagerstrom, Dadong
Wang, Leanne Bischof, Matthew Payne, and Pascal Vallotton

9 Medical Imaging in the Diagnosis of Osteoporosis and
Estimation of the Individual Bone Fracture Risk . . . . . . . . . . . . . . . . . . . . . . . 193
Mark A. Haidekker and Geoff Dougherty

xi



xii Contents

10 Applications of Medical Image Processing in the Diagnosis
and Treatment of Spinal Deformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Clayton Adam and Geoff Dougherty

11 Image Analysis of Retinal Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Michael J. Cree and Herbert F. Jelinek

12 Tortuosity as an Indicator of the Severity of Diabetic Retinopathy . . . 269
Michael Iorga and Geoff Dougherty

13 Medical Image Volumetric Visualization: Algorithms,
Pipelines, and Surgical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Qi Zhang, Terry M. Peters, and Roy Eagleson

14 Sparse Sampling in MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Philip J. Bones and Bing Wu

15 Digital Processing of Diffusion-Tensor Images
of Avascular Tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Konstantin I. Momot, James M. Pope, and R. Mark Wellard

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373



Contributors

Clayton Adam Queensland University of Technology, Brisbane, Australia,
c.adam@qut.edu.au

Agung Alfiansyah Surya Research and Education Center, Tangerang, Indonesia,
agung.alfiansyah@gmail.com

Ewert Bengtsson Swedish University of Agricultural Sciences, Uppsala, Sweden

Uppsala University, Uppsala, Sweden, ewart.bengtsson@cb.uu.se

Leanne Bischof CSIRO (Commonwealth Scientific and Industrial Research
Organisation), North Ryde, Australia, leanne.bischof@csiro.au

Philip J. Bones University of Canterbury, Christchurch, New Zealand,
phil.bones@canterbury.ac.nz

David P. Costello Mater Misericordiae University Hospital and University Collage
Dublin, Ireland, dcostello@mater.ie
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Nicholas Passat Université de Strasbourg, Strasbourg, France,
passat@dpt-info.u-strasbg.fr

Matthew Payne CSIRO (Commonwealth Scientific and Industrial Research
Organisation), North Ryde, Australia, matthew.payne@csiro.au

Terry M. Peters Robarts Research Institute, University of Western Ontario,
London, ON, Canada, tpeters@robarts.ca



Contributors xv

James M. Pope Queensland University of Technology, Brisbane, Australia,
j.pope@qut.edu.au

Changming Sun CSIRO (Commonwealth Scientific and Industrial Research
Organisation), North Ryde, Australia, changmin.sun@csiro.au

Hugues Talbot Université Paris-Est, Paris, France, h.talbot@esiee.fr
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Chapter 1
Introduction

Geoff Dougherty

1.1 Medical Image Processing

Modern three-dimensional (3-D) medical imaging offers the potential and promise
for major advances in science and medicine as higher fidelity images are produced.
It has developed into one of the most important fields within scientific imaging due
to the rapid and continuing progress in computerized medical image visualization
and advances in analysis methods and computer-aided diagnosis [1], and is now, for
example, a vital part of the early detection, diagnosis, and treatment of cancer. The
challenge is to effectively process and analyze the images in order to effectively
extract, quantify, and interpret this information to gain understanding and insight
into the structure and function of the organs being imaged. The general goal is to
understand the information and put it to practical use.

A multitude of diagnostic medical imaging systems are used to probe the human
body. They comprise both microscopic (viz. cellular level) and macroscopic (viz.
organ and systems level) modalities. Interpretation of the resulting images requires
sophisticated image processing methods that enhance visual interpretation and
image analysis methods that provide automated or semi-automated tissue detection,
measurement, and characterization [2–4]. In general, multiple transformations will
be needed in order to extract the data of interest from an image, and a hierarchy
in the processing steps will be evident, e.g., enhancement will precede restoration,
which will precede analysis, feature extraction, and classification [5]. Often, these
are performed sequentially, but more sophisticated tasks will require feedback of
parameters to preceding steps so that the processing includes a number of iterative
loops.

G. Dougherty (�)
California State University Channel Islands, Camarillo, CA, USA
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2 G. Dougherty

There are a number of specific challenges in medical image processing:

1. Image enhancement and restoration
2. Automated and accurate segmentation of features of interest
3. Automated and accurate registration and fusion of multimodality images
4. Classification of image features, namely characterization and typing of structures
5. Quantitative measurement of image features and an interpretation of the

measurements
6. Development of integrated systems for the clinical sector

Design, implementation, and validation of complex medical systems require not
only medical expertise but also a strong collaboration between physicians and
biologists on the one hand, and engineers, physicists, and computer scientists on
the other.

Noise, artifacts and weak contrast are the principal causes of poor image quality
and make the interpretation of medical images very difficult. They are responsi-
ble for the limited success of conventional or traditional detection and analysis
algorithms. Poor image quality invariably leads to problematic and unreliable
feature extraction, analysis and recognition in many medical applications. Research
efforts are geared towards improving the quality of the images, and finding more
robust techniques to successfully handle images of compromised quality in various
applications.

1.2 Techniques

The major strength in the application of computers to medical imaging lies in the
use of image processing techniques for quantitative analysis. Medical images are
primarily visual in nature; however, visual analysis by human observers is usually
associated with limitations caused by interobserver variations and errors due to
fatigue, distractions, and limited experience. While the interpretation of an image
by an expert draws from his/her experience and expertise, there is almost always a
subjective element. Computer analysis, if performed with the appropriate care and
logic, can potentially add objective strength to the interpretation of the expert. Thus,
it becomes possible to improve the diagnostic accuracy and confidence of even an
expert with many years of experience.

Imaging science has expanded primarily along three distinct but related lines
of investigation: segmentation, registration and visualization [6]. Segmentation,
particularly in three dimensions, remains the holy grail of imaging science. It is
the important yet elusive capability to accurately recognize and delineate all the in-
dividual objects in an image scene. Registration involves finding the transformation
that brings different images of the same object into strict spatial (and/or temporal)
congruence. And visualization involves the display, manipulation, and measurement
of image data. Important advances in these three areas will be outlined in the various
chapters in this book.
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A common theme throughout this book is the differentiation and integration
of images. On the one hand, automatic segmentation and classification of tissues
provide the required differentiation, and on the other the fusion of complementary
images provides the integration required to advance our understanding of life
processes and disease. Measurement of both form and function, of the whole image
and at the individual pixel level, and the ways to display and manipulate digital
images are the keys to extracting the clinical information contained in biomedical
images. The need for new techniques becomes more pressing as improvements in
imaging technologies enable more complex objects to be imaged and simulated.

1.3 Applications

The approach required is primarily that of problem solving. However, the under-
standing of the problem can often require a significant amount of preparatory work.
The applications chosen for this book are typical of those in medical imaging;
they are meant to be exemplary, not exclusive. Indeed, it is hoped that many of
the solutions presented will be transferable to other problems. Each application
begins with a statement of the problem, and includes illustrations with real-life
images. Image processing techniques are presented, starting with relatively simple
generic methods, followed by more sophisticated approaches directed at that specific
problem. The benefits and challenges in the transition from research to clinical
solution are also addressed.

Biomedical imaging is primarily an applied science, where the principles of
imaging science are applied to diagnose and treat disease, and to gain basic insights
into the processes of life. The development of such capabilities in the research
laboratory is a time-honored tradition. The challenge is to make new techniques
available outside the specific laboratory that developed them, so that others can use
and adapt them to different applications. The ideas, skills and talents of specific
developers can then be shared with a wider community and this will hopefully
facilitate the transition of successful research technique into routine clinical use.

1.4 The Contribution of This Book

Computer hardware and software have developed to the point where large images
can be analyzed quickly and at moderate cost. Automated processes, including
pattern recognition and computer-assisted diagnosis (CAD), can be effectively
implemented on a personal computer. This chapter has outlined some of the
successes in the field, and brought attention to some of the remaining problems. The
following chapters will describe in detail some of the techniques and applications
that are currently being used by experts in the field.
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Medical imaging is very visual. Although the formalism of the techniques
and algorithms is mathematical, we understand the advantages offered through
visualization. Therefore, this book offers many images and diagrams. Some are for
pedagogical purposes, to assist with the exposition, and others are motivational, to
reveal interesting features of particular applications.

The book is a collection of chapters, written by experts in the field of image
analysis, in a style to build intuition, insight, and understanding. Each chapter
represents the state-of-the-art wisdom in a particular subfield, the result of ongoing,
world-wide collaborative efforts over a period of time. Although the chapters are
essentially self-contained they reference other chapters to form an integrated whole.
Each chapter employs a pedagogical approach to ensure conceptual learning before
introducing specific techniques and “tricks of the trade.” The book aims to address
recent methodological advances in imaging techniques by demonstrating how they
can be applied to a selection of topical applications. It is hoped that this will
empower the reader to experiment with and use the techniques in his/her own
research area and beyond.

Chapter 2 describes an intuitive toolbox for MatLab, called DipImage, and
demonstrates how it can be used to count cancerous cells in a Pap smear.

Chapter 3 introduces new approaches that unify discrete segmentation tech-
niques, Chapter 4 shows how deformable models can be used with noisy images,
and Chapter 5 applies a number of automated and semi-automated segmentation
methods to MRI images.

Automated detection of linear structures is a common challenge in many
computer vision applications. Chapters 6–8 describe state-of-the-art techniques and
apply them to a number of biomedical systems.

Image processing methods are applied to osteoporosis in Chapter 9, to idiopathic
scoliosis in Chapter 10, and to retinal pathologies in Chapters 11 and 12.

Novel volume rendering algorithms are discussed in Chapter 13.
Sparse sampling algorithms in MRI are presented in Chapter 14, and the visual-

ization of diffusion tensor images of avascular tissues is discussed in Chapter 14.
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Chapter 2
Rapid Prototyping of Image Analysis
Applications

Cris L. Luengo Hendriks, Patrik Malm, and Ewert Bengtsson

2.1 Introduction

When developing a program to automate an image analysis task, one does not start
with a blank slate. Far from it. Many useful algorithms have been described in the
literature, and implemented countless times. When developing an image analysis
program, experience points the programmer to one or several of these algorithms.
The programmer then needs to try out various possible combinations of algorithms
before finding a satisfactory solution. Having to implement these algorithms just
to see if they work for this one particular application does not make much sense.
This is the reason programmers and researches build up libraries of routines that
they have implemented in the past, and draw on these libraries to be able to quickly
string together a few algorithms and see how they work on the current application.
Several image analysis packages exist, both commercial and free, and they can be
used as a basis for building up such a library. None of these packages will contain
all the necessary algorithms, but they should provide at least the most basic ones.
This chapter introduces you to one such package, DIPimage, and demonstrates how
one can proceed to quickly develop a solution to automate a routine medical task.
As an illustrative example we use some of the approaches taken over the years to
solve the long-standing classical medical image analysis problem of assessing a Pap
smear. To make best use of this chapter, you should have MATLAB and DIPimage
running on your computer, and try out the command sequences given.

C.L. Luengo Hendriks (�)
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2.2 MATLAB and DIPimage

2.2.1 The Basics

DIPimage is built on MATLAB (The MathWorks, Natick, MA, USA), which
provides a powerful and intuitive programming language, publication-quality graph-
ing, and a very extensive set of algorithms and tools. DIPimage adds to this a
large collection of image processing and analysis algorithms, easy computation
with images, and interactive graphical tools to examine images. It is designed for
ease of use, using MATLAB’s simple command syntax and several graphical user
interfaces, and is accessible to novices but fast and powerful enough for the most
advanced research projects. It is available free of charge for academic and other
noncommercial purposes from its website: http://www.diplib.org/.

DIPimage extends the MATLAB language with a new data type. Natively,
MATLAB knows about arrays of numbers, characters, structures or cells (the latter
can contain any other data type). With this toolbox installed, images are added to this
list. Even though images can be seen simply as an array of numbers, there are several
advantages to this new type: indexing works differently than in an array, the toolbox
can alter the way operations are performed depending on the pixel representation,
and images can be automatically displayed. This latter point is significant, for it
greatly enhances accessibility to novices and significantly increases the interactivity
in the design phase of an image analysis application.

In MATLAB, assigning the value 1 to a variable a is accomplished with:

a = 1;

Additionally, if the semicolon is left off this statement, MATLAB will reply by
displaying the new value of the variable:

a = 1
a =

1

Similarly, when leaving the semicolon off a DIPimage statement that assigns an
image into a variable, MATLAB will reply by displaying that image in a figure
window. For example, the next statement reads in the Pap smear image in file
“papsmear.tif”1 and assigns it to variable a.

a = readim(’papsmear.tif’)
Displayed in figure 10

Depending on the chosen configuration, the image will be displayed to a new
window or an existing window. To suppress automatic display, all that is thus needed
is to add a semicolon at the end of all statements.

1You can obtain this file from http://www.cb.uu.se/∼cris/Images/papsmear.tif
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DIPimage features a graphical user interface (GUI) that gives access to the most
commonly used functions in the toolbox (if the GUI does not appear by default
in your installation of DIPimage, run the command dipimage in the MATLAB
command window). The GUI’s menus list all available functions. Selecting one
of these functions changes the area below the menus to allow parameter selection
and execution of the function. For example, the function used above, readim, is
available under the “File” menu. Selecting it brings up a control to select the file
to read and choose a name for the variable that will hold the image. Pressing the
“Execute” button will read the selected file and put its contents into the chosen
variable. Additionally, the result of the command is displayed.

2.2.2 Interactive Examination of an Image

The figure windows in which the images are automatically displayed have four
menus. The second and third ones allow the user to change the way the image
is displayed. Note that some menu options are only present when applicable. For
example, the “Mappings” menu has options to choose the slicing direction in 3D and
4D images, which are not visible with 1D or 2D images; two- or higher-dimensional,
gray-value images have options to select a color map, which are hidden for color
images. The fourth menu, “Actions,” contains all the interactive tools that a user can
use to examine the image in the display. The “Action” enabled by default is “Pixel
testing,” which allows the user to hold the left mouse button down to get a reading
of the values of the pixel under the cursor. The title bar of the figure window shows
the coordinates and either the gray value or the RGB values of the pixel. Holding
down the right mouse button allows the user to measure distances. The “Zoom”
and “Pan” modes allow closer examination of large images. For 3D and 4D images,
several additional options exist. “Step through slices” is to use the mouse to change
the slice of the image shown (it is also possible to do this with the keyboard, without
changing the mode). Most interestingly, “Link displays” can be used to link various
windows displaying 3D or 4D images. These windows will then all show the same
slice at all times. This is very useful when, for example, comparing the output of
various filters. We encourage the reader to explore these options and read more
about them in the user manual [1].

2.2.3 Filtering and Measuring

A large selection of filters and analysis tools are available through the DIPimage
GUI. Many more are accessible only from the command line, and are consequently
hidden. Typing

help dipimage

gives an overview of (almost) all functions in DIPimage. For more information on
any one function, use the help command with the function’s name. We will stick
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Fig. 2.1 A first look at DIPimage: (a) input image, (b) result of gaussf, (c) result of threshold, and
(d) plot of measured area vs. perimeter

to the functions in the GUI for now. Let us assume that we still have the Pap smear
image loaded in variable a. We select the “Gaussian filter” from the “Filters” menu.
For the first parameter we select variable a, for the second parameter we enter 2, and
for output image we type b. After clicking “Execute,” we see

b = gaussf(a,2,’best’)
Displayed in figure 11

on the command line, and the filtered image is shown in a window (Fig. 2.1b).
Typing the above command would have produced the same result, without the need
for the GUI. Because ’best’ is the default value for the third parameter, the same
result would also have been accomplished typing only

b = gaussf(a,2)
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Next we will select the “Threshold” function from the “Segmentation” menu,
enter -b for input image and c for output image, and execute the command. We
now have a binarized image, where the nuclei are marked as objects (red) and the
rest as background (Fig. 2.1c). If we had left the minus sign out of the input to the
threshold, the output would have been inverted. Finally, we select the “Measure”
function from the “Analysis” menu, use c as the first input image, select several
measurements by clicking on the “Select. . . ” button (for example: “size,” “center”
and “perimeter,” hold the control key down while clicking the options to select more
than one), and execute the command. On the command window we will now see
the result of the measurements. We can generate a plot of surface area (“size”) vs.
perimeter (Fig. 2.1d) by typing

figure, plot(msr.size, msr.perimeter,’.’)

Note several small objects are found that are obviously not nuclei. Based on
the size measure these can be discarded. We will see more of this type of logic in
Sect. 2.4.

2.2.4 Scripting

If you collect a sequence of commands in a plain text file, and save that file with a
“.m” extension, you have created a script. This script can be run simply by typing
its name (without the extension) at the MATLAB command prompt. For example,
if we create a file “analyse.m” with the following content:

a = readim(’papsmear.tif’);
b = smooth(a,2);
c = threshold(-b);
msr = measure(c,[],{’Size’,’Center’,’Perimeter’});
figure, plot(msr.size,msr.perimeter,’.’)

then we can execute the whole analysis in this section by just typing

analyse

It is fairly easy to collect a sequence of commands to solve an application in
such a file, execute the script to see how well it works, and modify the script
incrementally. Because the GUI prints the executed command to the command line,
it is possible to copy and paste the command to the script. The script works as both
a record of the sequence of commands performed, and a way to reuse solutions.
Often, when trying to solve a problem, one will start with the working solution to
an old problem. Furthermore, it is easier to write programs that require loops and
complex logic in a text editor than directly at the command prompt.
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If you are a programmer, then such a script is obvious. However, compared to
many other languages that require a compilation step, the advantage with MATLAB
is that you can select one or a few commands and execute them independently of
the rest of the script. You can execute the program line by line, and if the result of
one line is not as expected, modify that line and execute it again, without having
to run the whole script anew. This leads to huge time savings while developing
new algorithms, especially if the input images are large and the analysis takes a lot
of time.

2.3 Cervical Cancer and the Pap Smear

Cervical cancer is one of the most common cancers for women, killing about
a quarter million women world-wide every year. In the 1940s, Papanicolaou
discovered that vaginal smears can be used to detect the disease at an early, curable
stage [2]. Such smears have since then commonly been referred to as Pap smears.
Screening for cervical cancer has drastically reduced the death rate for this disease
in the parts of the world where it has been applied [3]. Mass screens are possible
because obtaining the samples is relatively simple and painless, and the equipment
needed is inexpensive.

The Pap smear is obtained by collecting cells from the cervix surface (typically
using a spatula), and spreading them thinly (by smearing) on a microscope slide
(Fig. 2.2). The sample is then stained and analyzed under the microscope by a
cytotechnologist. This person needs to scan the whole slide looking for abnormal
cells, which is a tedious task because a few thousand microscopic fields of view
need to be scrutinized, looking for the potentially few abnormal cells among the

Fig. 2.2 A Pap smear is obtained by thinly smearing collected cells onto a glass microscope slide
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several hundred thousand cells that a slide typically contains. This work is made
even more difficult due to numerous artifacts: overlapping cells, mucus, blood, etc.
The desire to automate the screening has always been great, for all the obvious
reasons: trained personnel are expensive, they get tired, their evaluation criteria
change over time, etc. The large number of images to analyze for a single slide,
together with the artifacts, has made automation a very difficult problem that has
occupied numerous image analysis researchers over the decades.

2.4 An Interactive, Partial History of Automated
Cervical Cytology

This section presents an “interactive history,” meaning that the description of
methods is augmented with bits of code that you, the reader, can try out for yourself.
This both makes the descriptions easier to follow, and illustrates the use of DIPimage
to quickly and easily implement a method from the literature. This section is only a
partial history, meaning that we show the highlights but do not attempt to cover
everything; we simplify methods to their essence, and focus only on the image
analysis techniques, ignoring imaging, classification, etc. For a somewhat more
extensive description of the history of this field see for instance the paper by
Bengtsson [4].

2.4.1 The 1950s

The first attempt at automation of Pap smear assessment was based on the
observation that cancer cells are typically bigger, with a greater amount of stained
material, than normal cells. Some studies showed that all samples from a patient
with cancer had at least some cells with a diameter greater than 12μm, while no
normal cells were that large. And thus a system, the cytoanalyzer, was developed
that thresholded the image at a fixed level (Fig. 2.3a), and measured the area
(counted the pixels) and the integrated optical density (summed gray values) for
each connected component [5]. To replicate this is rather straightforward, and very
similar to what we did in Sect. 2.2.3:

a = readim(’papsmear.tif’);
b = a<128;
msr = measure(b,a,{’Size’,’Sum’});
As you can see, this only works for very carefully prepared samples. Places

where multiple cytoplasms overlap result in improper segmentation, creating false
large regions that would be identified as cancerous. Furthermore, the threshold value
of 128 that we selected for this image is not necessarily valid for other images. This
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Fig. 2.3 (a) Segmented Pap-smear image and (b) plot of measured area vs. integrated optical
density

requires strong control over the sample preparation and imaging to make sure the
intensities across images are constant.

The pixel size in this machine was about 2μm, meaning that it looked for seg-
mented regions with a diameter above 6 pixels. For our image this would be about
45 pixels. The resulting data was analyzed as 2D scatter plots and if signals fell in
the appropriate region of the plot the specimen was called abnormal (Fig. 2.3b):

figure, plot(msr.size,msr.sum,’.’)

All the processing was done in hardwired, analog, video processing circuits. The
machine could have worked if the specimens only contained well-preserved, single,
free-lying cells. But the true signal was swamped by false signals from small clumps
of cells, blood cells, and other debris [6].

2.4.2 The 1960s

One of the limitations of the cytoanalyzer was the fixed thresholding; it was very
sensitive to proper staining and proper system setup. Judith Prewitt (known for her
local gradient operator) did careful studies of digitized cell images and came up
with the idea of looking at the histogram of the cell image [7]. Although this work
was focused on the identification of red blood cells, the method found application
in all other kinds of (cell) image analysis, including Pap smear assessment.

Assuming three regions with different intensity (nucleus, cytoplasm, and back-
ground), we would expect three peaks in the histogram (Fig. 2.4a). For simple
shapes, we expect fewer pixels on the border between the regions than in the
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Fig. 2.4 (a) Histogram of Pap-smear image, with calculated threshold and (b) segmented image

regions themselves, meaning that there would be two local minima in between these
three peaks, corresponding to the gray values of the pixels forming the borders.
The two gray values corresponding to these two local minima are therefore good
candidates for thresholding the image, thereby classifying each pixel into one of the
three classes (Fig. 2.4b). Detecting these two local minima requires simplifying the
histogram slightly, for example by a low-pass filter, to remove all the local minima
caused by noise:

a = readim(’papsmear.tif’);
h = diphist(a); % obtain a histogram
h = gaussf(h,3); % smooth the histogram
t = minima(h); % detect the local minima
t(h==0) = 0; % mask out the minima at the tails
t = find(t) % get coordinates of minima
a < t(1) % threshold the image at the first

local minimum

Basically, this method substitutes the fixed threshold of the cytoanalyzer with a
smoothing parameter for the histogram. If this smoothing value is taken too small,
we find many more than two local minima; if it is too large, we do not find any
minima. However, the results are less sensitive to the exact value of this parameter,
because a whole range of smoothing values allows the detection of the two minima,
and the resulting threshold levels are not affected too much by the smoothing. And,
of course, it is possible to write a simple algorithm that finds a smoothing value such
that there are exactly two local minima:

h = diphist(a); % obtain a histogram
t = [0,0,0]; % initialize threshold array
while length(t)>2 % repeat until we have 2 local

minima
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Fig. 2.5 (a) Gradient magnitude of Pap-smear image and (b) differential histogram computed
from the Pap-smear image and its gradient magnitude

h = gaussf(h,1); % (the code inside the loop is
identical to that used above)

t = minima(h);
t(h==0)=0;
t = find(t);

end

The loop then repeats the original code, smoothing the histogram more and more,
until at most two local minima are found.

2.4.3 The 1970s

In the late 1960s, a group at Toshiba, in Japan, started working on developing a Pap
smear screening machine they called CYBEST. They used a differential histogram
approach for the automated thresholding [8, 9]. That is, they computed a histogram
weighted by a measure of edge strength; pixels on edges contribute more strongly to
this histogram than pixels in flat areas. Peaks in this histogram indicate gray values
that occur often on edges (Fig. 2.5). Though CYBEST used a different scheme
to compute edge strength, we will simply use the Gaussian gradient magnitude
(gradmag).

a = readim(’papsmear.tif’);
b = gradmag(a);
h = zeros(255,1); % initialize array
for i = 1:255

t = a==i; % t is a binary mask
n = sum(t); % n counts number of pixels with value i
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if n>0
h(i) = sum(b(t))/n; % average gradient at pixels

with value i
end

end
h = gaussf(h,2); % smooth differential histogram
[∼,t] = max(h); % find location of maximum
a < t % threshold

A second peak in this histogram gives a threshold to distinguish cytoplasm from
background, much like in Prewitt’s method.

This group studied which features were useful for analyzing the slides and
ended up using four features [10]: nuclear area, nuclear density, cytoplasmic area,
and nuclear/cytoplasmic ratio. These measures can be easily obtained with the
measure function as shown before. They also realized that nuclear shape and
chromatin pattern were useful parameters but were not able to reliably measure
these features automatically, mainly because the automatic focusing was unable
to consistently produce images with all the cell nuclei in perfect focus. Nuclear
shape was determined as the square of the boundary length divided by the
surface area. Determining the boundary length is even more sensitive to a correct
segmentation than surface area. The measure function can measure the boundary
length (’perimeter’), as well as the shape factor (’p2a’). The shape
factor, computed by perimeter2/(4πarea), is identical to CYBEST’s nuclear shape
measure, except it is normalized to be 1 for a perfect circle. The chromatin pattern
measure that was proposed by this group and implemented in CYBEST Model 4 is
simply the number of blobs within the nuclear region [11]. For example (using the
a and t from above):

m = gaussf(a) < t; % detect nuclei
m = label(m)==3; % pick one nucleus
m = (a < mean(a(m))) & m; % detect regions within

nucleus
max(label(m)) % count number of regions

Here, we just used the average gray value within the nucleus as the threshold,
and counted the connected components (Fig. 2.6). The procedure used in CYBEST
was more complex, but not well described in the literature.

The CYBEST system was developed in four generations over two decades,
and tested extensively, even in full scale clinical trials, but was not commercially
successful.

2.4.4 The 1980s

In the late 1970s and 1980s, several groups in Europe were working on developing
systems similar to CYBEST, all based on the so-called “rare event model,” that is,
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Fig. 2.6 A simple chromatin pattern measure: (a) the nucleus, (b) the nucleus mask, and (c) the
high-chromatin region mask within that nucleus

looking for the few large, dark, diagnostic cells among the few hundred thousand
normal cells. And these systems had to do this sufficiently fast, while avoiding being
swamped by false alarms due to misclassifications of overlapping cells and small
clumps of various kinds.

As a side effect of the experimentation on feature extraction and classification,
carried out as part of this research effort, a new concept emerged. Several groups
working in the field observed that even “normal” cells on smears from patients with
cancer had statistically significant shifts in their features towards the abnormal cells.
Even though these shifts were not strong enough to be useful on the individual cell
level, it made it possible to detect abnormal specimens through a statistical analysis
of the feature distributions of a small population, a few hundred cells, provided these
features were extracted very accurately. This phenomenon came to be known as
MAC, malignancy associated changes [12]. The effect was clearly most prominent
in the chromatin pattern in the cell nuclei. The CYBEST group had earlier noted
that it was very difficult to extract features describing the chromatin pattern reliably
in an automated system. A group at the British Colombia Cancer Research Centre
in Vancouver took up this idea and developed some very careful cell segmentation
and chromatin feature extraction algorithms.

To accurately measure the chromatin pattern, one first needs an accurate de-
lineation of the nucleus. Instead of using a single, global threshold to determine
the nuclear boundary, a group in British Colombia used the gradient magnitude to
accurately place the object boundary [13]. They start with a rough segmentation,
and selected a band around the boundary of the object in which the real boundary
must be (Fig. 2.7a):

a = readim(’papsmear.tif’);
b = gaussf(a,2)<128; % quick-and-dirty threshold
c = b-berosion(b,1); % border pixels
c = bdilation(c,3); % broader region around border
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Fig. 2.7 Accurate delineation of the nucleus: (a) boundary regions, (b) gradient magnitude,
(c) upper skeleton, and (d) accurate boundaries

Now comes the interesting part: a conditional erosion that is topology preserving
(like the binary skeleton), but processes pixels in order of the gray value of the
gradient magnitude (Fig. 2.7b), low gray values first. This implies that the skeleton
will lie on the ridges of the gradient magnitude image, rather than on the medial
axis of the binary shape. This operation is identical to the upper skeleton or upper
thinning, the gray-value equivalent of the skeleton operation [14], except that the
latter does not prune terminal branches nor isolated pixels (Fig. 2.7c). We can prune
these elements with two additional commands (Fig. 2.7d):

g = gradmag(a);
g = closing(g,5); % reducing number of local minima

in g
d = dip upperskeleton2d(g*c);

% compute upper skeleton in border region only
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d = bskeleton(d,0,’looseendsaway’);
% prune terminal branches

d = d -getsinglepixel(d); % prune isolated pixels

It is interesting to note, the upper skeleton is related to the watershed in that
both find the ridges of the gray value image. We could have used the function
watershed to obtain the exact same result.

We now have an accurate delineation of the contour. The following commands
create seeds from the initial segmentation, and grow them to fill the detected
contours:

e = b & ∼c;
e = bpropagation(e,∼d,0,1,0);
Because the pixels comprising the contours are exactly on the object edge, we

need an additional step to assign each of these pixels to either the background or
the foreground. In the paper, the authors suggest two methods based on the gray
value of the pixel, but do not say which one is better. We will use option 1: compare
the border pixel’s value to the average for all the nuclei and the average for all the
background, and assign it to whichever class it is closest:

gv nuc = mean(a(e)); % average nuclear gray value
gv bgr = mean(a(∼(d|e))); % average background gray

value
t = a < (gv nuc+gv bgr)/2; % threshold halfway between

the two averages
e(d) = t(d); % reassign border pixels only

The other option is to compare each border pixel with background and fore-
ground pixels in the neighborhood, and will likely yield a slightly better result for
most cells.

A very large group of features were proposed to describe each nucleus. Based
on the outline alone, one can use the mean and maximum radius, sphericity,
eccentricity, compactness, elongation, etc., as well as Fourier descriptors [15].
Simple statistics of gray values within one nucleus are maximum, minimum, mean,
variance, skewness, and kurtosis. Texture features included contour analysis and
region count after thresholding the nucleus into areas of high, medium and low
chromatin content; statistics on the co-occurrence matrix [16] and run lengths [17];
and the fractal dimension[18]. The fractal dimension is computed from the fractal
area measured at different resolutions, and gives an indication of how the image
behavior changes with scale. The fractal area is calculated with:

fs = 1 + abs(dip finitedifference(a,0,’m110’)) + ...
abs(dip finitedifference(a,1,’m110’));

m = label(e)==4; % pick one nucleus
sum(fs(m)) % sum values of fs within nucleus
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The function dip finitedifference calculates the difference between
neighboring pixels, and is equivalent to MATLAB’s function diff, except it returns
an image of the same size as the input.

Multivariate statistical methods were finally used to select the best combination
of features to determine whether the cell population was normal or from a slide
influenced by cancer.

2.4.5 The 1990s

In the 1990s, research finally lead to successful commercial systems being intro-
duced: AutoPap [19] and PAPNET [20]. They built on much of the earlier research,
but two concepts were extensively used in both of these commercial systems:
mathematical morphology and neural networks. In short, what the PAPNET systems
did was detect the location of nuclei of interest, extract a square region of fixed size
around this object, and use that as input to a neural network that classified the object
as debris/benign/malignant [21]. Using such a system, these machines avoided the
issues of difficulty in segmentation, careful delineation, and accurate measurement.
Instead, the neural network does all the work. It is trained with a large collection
of nuclei that are manually classified, and is then able to assign new nuclei to one
of the classes it was trained for. However, the neural network is a “black box” of
sorts, in that it is not possible to know what features of the nucleus it is looking at to
make the decision [22]. Slightly simplified, the method to extract fixed-sized image
regions containing a nucleus is as follows:

a = readim(’papsmear.tif’);
b = gaussf(a); % slight smoothing of the image
b = closing(b,50)-b; % top-hat, max. diameter is 50

pixels
c = threshold(b);

The closing minus the input image is a top-hat, a morphological operation that
eliminates large dark regions. The result, c, is a mask where all the large objects
(nuclei clusters, for example) have been removed. But we also want to make sure
we only look at objects that are dark in the original image:

c = c & ∼threshold(a);
c now contains only objects that are dark and small (Fig. 2.8a). The next step is

to remove the smallest objects and any object without a well-defined edge:

d = gradmag(a,3);
d = threshold(d); % detect strong edges
d = brmedgeobjs(∼d); % find inner regions

The first step finds regions of large gradient magnitude. In the second step
we invert that mask and remove the part that is connected to the image border.
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Fig. 2.8 Detecting the location of possible nuclei: (a) all dark, small regions, (b) all regions
surrounded by strong edges, and (c) the combination of the two

Fig. 2.9 Extracted regions around potential nuclei. These subimages are the input to a neural
network

The regions that remain are all surrounded by strong edges (Fig. 2.8b). The
combination of the two partial results,

e = c & d;

contains markers for all the medium-sized objects with a strong edge (Fig. 2.8c).
These are the objects we want to pass on to the neural network for classification.
We shrink these markers to single-pixel dots and extract an area around each dot
(Fig. 2.9):

e = bskeleton(e,0,’looseendsaway’);
% reduce each region to a single dot

coords = findcoord(e); %get the coordinates for each
dot

N = size(coords,1); % number of dots
reg = cell(N); % we’ll store the little regions in here
for ii=1:N

x = coords(ii,1);
y = coords(ii,2);
reg{ii} = a(x-20:x+20,y-20:y+20);

% the indexing cuts a region from the image
end
reg = cat(1,reg{:}) % glue regions together for display
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That last command just glues all the small regions together for display. Note that,
for simplicity, we did not check the coords array to avoid out-of-bounds indexing
when extracting the regions. One would probably want to exclude regions that fall
partially outside the image.

The PAPNET system recorded the 64 most “malignant looking” regions of the
slide for human inspection and verification, in a similar way to what we did just for
our single image field.

2.4.6 The 2000s

There was a reduced academic research activity in the field after the commercial
developments took over in the 1990s. But there was clearly room for improvements,
so some groups continued basic research. This period is marked by the departure
from the “black box” solutions, and a return to accurate measurements of specific
cellular and nuclear features. One particularly active group was located in Brisbane,
Australia [23]. They applied several more modern concepts to the Pap smears and
demonstrated that improved results could be achieved. For instance, they took the
dynamic contour concept (better known as the “snake,” see Chapter 4) and applied
it to cell segmentation [24]. Their snake algorithm is rather complex, since they
used a method to find the optimal solution to the equation, rather than the iterative
approach usually associated with snakes, which can get stuck in local minima. Using
“normal” snakes, one can refine nuclear boundary thus:

a = readim(’papsmear.tif’)
b = bopening(threshold(-a),5); % quick-and-dirty

%segmentation
c = label(b); % label the nuclei
N = max(c); % number of nuclei
s = cell(N,1); % this will hold all snakes
vf = vfc(gradmag(a)); % this is the snake’s ‘‘external

force’’
for ii = 1:N % we compute the snake for each nucleus

separately
ini = im2snake(c==ii); % initial snake given by

segmentation
s{ii} = snakeminimize(ini,vf,0.1,2,1,0,10);

% move snake so its energy is minimized
snakedraw(s{ii}) % overlays the snake on the image

end

The snake is initialized by a rough segmentation of the nuclei (Fig. 2.10a),
then refined by an iterative energy minimization procedure (snakeminimize,
Fig. 2.10b). Note that we used the function vfc to compute the external force, the
image that drives the snake towards the edges of the objects. This VFC (vector field
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Fig. 2.10 (a) Initial snake and (b) final snake in active contour method to accurately delineate
nuclei

convolution) approach is a recent improvement to the traditional snake [25]. For this
example image, the results are rather similar when using the traditional gradient,
because the initial snake position is close to its optimal. Also note the large number
of parameters used as input to the function snakeminimize, the function that
moves the control points of the snake to minimize the snake’s energy function. This
large number of parameters (corresponding to the various weights in the energy
function) indicates a potential problem with this type of approach: many values
need to be set correctly for the method to work optimally, and thus this particular
program is only applicable to images obtained under specific circumstances.

2.5 The Future of Automated Cytology

An interesting observation that can be made from the brief samples of the long
history of automated cervical cytology that has been presented in this chapter is that
the focus of the research in the field has been moving around the world about once
every decade – Eastern USA, Japan, Europe, Western USA/Canada, and Australia
(Fig. 2.11) – although there are, of course, outliers to this pattern. This pattern might
have arisen because of the apparent ease of the problem: when researchers in one
region have been making strong promises of progress for too long, without being
able to deliver on these promises, it becomes increasingly difficult to obtain more
research funds in that region; researchers in a different region in the world are then
able to take the lead.

One significant development that we have not discussed so far is the efforts
of producing cleaner specimens that are more easy to analyze than the smears,
which can be very uneven in thickness and general presentation of the cells. These
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Fig. 2.11 A map of the world showing the location of major Pap smear analysis automation
research over the decades

efforts led to two commercial liquid cytology systems in the 1990s [26, 27]. The
companies behind these sample preparation devices have also developed dedicated
image analysis systems. These devices work well, but the modified kits for preparing
the specimens are so expensive that most of the economic gain from automation
disappears.

The cost of automation is an important issue. One of the original motivations
for developing automation was the high cost of visual screening. Still, the first
generation automated systems were very complex and expensive machines costing
about as much to operate as visual screening. The need for modified sample
preparation for some systems added to these costs. A third aspect was that the
combined effect of visual and machine screening gives a higher probability of
actually detecting a lesion than either one alone, making it hard in some countries,
due to legal liability reasons, to use automation alone even if it is comparable in
performance to visual screening. All of this has made the impact of automation very
limited in the poorer parts of the world, so cervical cancer is still killing a quarter
million women each year. Most of these deaths could be prevented by a globally
functioning screening program.

A significant challenge for the future, therefore, is to come up with a screening
system that is significantly cheaper than the present generation. How can this be
achieved? Looking at the history we can see two approaches.

One is the “rare event” approach. Modern whole-slide scanners are much more
robust, cheaper, and easier to operate than earlier generations of robot microscopes.
With software for such systems, a competitive screening system should be possible,
perhaps utilizing a somewhat modified specimen preparation approach that gives
cleaner specimens without the high cost of the present liquid-based preparations.

The alternative approach is to use the MAC concept. The obstacle there is to
achieve sufficiently robust imaging to consistently detect the subtle changes of
chromatin texture between normal and malignancy-influenced cells in an automated
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system. A malignancy-influenced cell looks too much like a normal cell when it is
slightly out of focus or poorly segmented. Here, modern 3D scanning concepts may
make a significant difference.

So perhaps the next generation systems will be developed in third-world coun-
tries, to solve their great need for systems that are better and more economical than
the systems that have been developed in the richer parts of the world.

2.6 Conclusions

As we have seen, the availability of a toolbox of image analysis routines greatly
simplifies the process of “quickly trying out” an idea. Some of the algorithms that
we approximated using only two or three lines of code would require many hundreds
of lines of code without such a toolbox.

Another benefit to using an environment like MATLAB is the availability of
many other tools not directly related to images that are very useful in developing
novel algorithms. For example, in this chapter we have created graphs with some
of the intermediate results. Being able to graphically see the numbers obtained
is invaluable. In Sect. 2.4.5, we implemented only the first stage of the PAPNET
system, but with equal ease we could have constructed the rest, using any of the
neural network toolboxes that exist for MATLAB.

These two benefits are augmented in the MATLAB/DIPimage environment with
an interpreted language, allowing interactive examination of intermediate results,
and a high-level syntax, allowing easy expression of mathematical operations.
The downside is that certain algorithms can be two orders of magnitude faster
when expressed in C than in MATLAB, and algorithms written in MATLAB are
more difficult to deploy. A common approach is to develop the algorithms in
MATLAB, and translate them to C, C++, or Java when the experimentation phase
is over. Though it is not always trivial to translate MATLAB code to C, MATLAB
code that uses DIPimage has a big advantage: most of the image processing and
analysis routines are implemented in a C library, DIPlib, that can be distributed
independently of the DIPimage toolbox and MATLAB. All these things considered,
even having to do the programming a second time in C, one can save large
amounts of time when doing the first development in an environment such as that
described here.
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Chapter 3
Seeded Segmentation Methods for Medical
Image Analysis

Camille Couprie, Laurent Najman, and Hugues Talbot

Segmentation is one of the key tools in medical image analysis. The objective of
segmentation is to provide reliable, fast, and effective organ delineation. While
traditionally, particularly in computer vision, segmentation is seen as an early vision
tool used for subsequent recognition, in medical imaging the opposite is often true.
Recognition can be performed interactively by clinicians or automatically using
robust techniques, while the objective of segmentation is to precisely delineate
contours and surfaces. This can lead to effective techniques known as “intelligent
scissors” in 2D and their equivalent in 3D.

This chapter is divided as follows. Section 3.1 starts off with a more “philosoph-
ical” section setting the background for this study. We argue for a segmentation
context where high-level knowledge, object information, and segmentation method
are all separate.

In Sect. 3.2, we survey in some detail a number of segmentation methods that
are well-suited to image analysis, in particular of medical images. We illustrate this,
make some comparisons and some recommendations.

In Sect. 3.3, we introduce very recent methods that unify many popular discrete
segmentation methods and we introduce a new technique. In Sect. 3.4, we give some
remarks about recent advances in seeded, globally optimal active contour methods
that are of interest for this study.

In Sect. 3.5, we compare all presented methods qualitatively. We then conclude
and give some indications for future work.
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3.1 The Need for Seed-Driven Segmentation

Segmentation is a fundamental operation in computer vision and image analysis. It
consists of identifying regions of interests in images that are semantically consistent.
Practically, this may mean finding individual white blood cells amongst red blood
cells; identifying tumors in lungs; computing the 4D hyper-surface of a beating
heart, and so on.

Applications of segmentation methods are numerous. Being able to reliably and
readily characterize organs and objects allows practitioners to measure them, count
them and identify them. Many images analysis problems begin by a segmentation
step, and so this step conditions the quality of the end results. Speed and ease of use
are essential to clinical practice.

This has been known for quite some time, and so numerous segmentation
methods have been proposed in the literature [57]. However, segmentation is a
difficult problem. It usually requires high-level knowledge about the objects under
study. In fact, semantically consistent, high-quality segmentation, in general, is
a problem that is indistinguishable from strong Artificial Intelligence and has
probably no exact or even generally agreeable solution. In medical imaging, experts
often disagree amongst themselves on the placement of the 2D contours of normal
organs, not to mention lesions. In 3D, obtaining expert opinion is typically difficult,
and almost impossible if the object under study is thin, noisy and convoluted, such
as in the case of vascular systems. At any rate, segmentation is, even for humans, a
difficult, time-consuming and error-prone procedure.

3.1.1 Image Analysis and Computer Vision

Segmentation can be studied from many angles. In computer vision, the segmen-
tation task is often seen as a low-level operation, which consists of separating an
arbitrary scene into reasonably alike components (such as regions that are consistent
in terms of color, texture and so on). The task of grouping such component into
semantic objects is considered a different task altogether. In contrast, in image
analysis, segmentation is a high-level task that embeds high-level knowledge about
the object.

This methodological difference is due to the application field. In computer vision,
the objective of segmentation (and grouping) is to recognize objects in an arbitrary
scene, such as persons, walls, doors, sky, etc. This is obviously extremely difficult
for a computer, because of the generality of the context, although humans do
generally manage it quite well. In contrast, in image analysis, the task is often to
precisely delineate some objects sought in a particular setting known in advance.
It might be for instance to find the contours of lungs in an X-ray photograph.
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The segmentation task in image analysis is still a difficult problem, but not to
the same extent as in the general vision case. In contrast to the vision case, experts
might agree that a lesion is present on a person’s skin, but may disagree on its exact
contours [45]. Here, the problem is that the boundary between normal skin and
lesion might be objectively difficult to specify. In addition, sometimes there does
exist an object with a definite physical contour (such as the inner volume of the
left ventricle of the heart). However, imaging modalities may be corrupted by noise
and partial volume effects to an extent that delineating the precise contours of this
physical object in an image is also objectively difficult.

3.1.2 Objects Are Semantically Consistent

However, in spite of these difficulty, we may assume that, up to some level of
ambiguity, an object (organ, lesion, etc) may still be specified somehow. This means
that semantically, an object possess some consistency. When we point at a particular
area on an image, we expect to be, again with some fuzziness, either inside or
outside the object

This leads us to the realize that there must exist some mathematical indicator
function, that denotes whether we are inside or outside of the object with high
probability. This indicator function can be considered like a series of constraints, or
labels. They are sometimes called seeds or markers, as they provide starting points
for segmentation procedures, and they mark where objects are and are not.

In addition, a metric that expresses the consistency of the object is likely to
exist. A gradient on this metric may therefore provide object contour information.
Contours may be weak in places where there is some uncertainty, but we assume
they are not weak everywhere (else we have an ambiguity problem, and our
segmentation cannot be precise). The metric may simply be the image intensity or
color, but it may express other information like consistency of texture for instance.
Even though this metric may contain many descriptive elements (as a vector of
descriptors for instance), we assume that we are still able to compute a gradient on
this metric [61].

This is the reason why many segmentation methods focus on contours, which
are essentially discontinuities in the metric. Those that focus on regions do so
by defining and utilizing some consistency metric, which is the same problem
expressed differently.

The next and final step for segmentation is the actual contour placement, which
is equivalent to object delineation. This step can be considered as an optimization
problem, and this is the step on which segmentation methods in the literature focus
the most. We will say more about this in Sect. 3.2 listing some image segmentation
categories.
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3.1.3 A Separation of Powers

In summary, to achieve segmentation in the analysis framework, we need three
ingredients: (1) an indicator function that denotes whether we are inside or outside
of the object of interest; (2) a metric from which we may derive contour information,
and (3) an optimization method for placing the contour accurately.

To achieve accuracy, we need flexibility and robustness. Some have argued that
it is useful to treat these three steps separately. This was first described in [47])
as the morphological method, but is also called by others interactive or seeded
segmentation [31]. In this context, this does not mean that user interaction is
required, only that object identification is provided by some means, and contour
extraction separately by a segmentation operator.

The first ingredient, the object identification, or our indicator function, is of
course essential and it is frustrating to be obliged to only write here “by some
means”. Accurate content identification can simplify the requirements on the
segmentation operator greatly. Unfortunately, the means in question for contents
identification are problem-dependent and sometimes difficult to publish, because
they are often seen as ad hoc and of limited interest beyond their immediate use in
the problem at hand. Fortunately, some journals accept such publications, such as the
Journal of Image Analysis and Stereology and applications journals (e.g. Journal of
Microscopy, materials, etc). There are also a few recent books on the matter [23,52].
Software libraries are also important but not many are freely available for training,
although the situation is improving.

Also, whereas in computer vision a fully automated solution is required, in medi-
cal imaging a semi-automated method might be sufficient. In biomedical imaging, a
large number of objects are typically measured (such as cells, organelles, etc.), and
a fully automated method is often desirable. However, in medical imaging, typically
a relatively small number of patients is being monitored, treated or surveyed, and so
human-guided segmentation can be sufficient. The objective of the segmentation
method in this context is to provide reasonable contours quickly, which can be
adjusted easily by an operator.

In this variety of contexts, is it possible to define precisely the segmentation
problem? The answer is probably no, at this stage at least in image analysis research.
However, it is possible to provide formulations of the problem. While this may
sound strange or even suspicious, the reason is that there exists a real need for
automated or semi-automated segmentation procedures for both image analysis and
computer vision, and so solutions have been proposed. They can still be explained,
compared and evaluated.

3.1.4 Desirable Properties of Seeded Segmentation Methods

We come to the first conclusion that to provide reliable and accurate results, we
must rely on a segmentation procedure and not just an operator. Object identification
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and constraints analysis will set us in good stead to achieve our results, but not all
segmentation operators are equivalent. We can list here some desirable properties of
interactive segmentation operators.

• It is useful if the operator can be expressed in an energy or cost optimization
formulation. It is then amenable to existing optimization methods, and this entails
a number of benefits. Lowering the cost or the energy of the formulation can be
done in several ways (e.g. continuous or discrete optimization), which results in
different characteristics and compromises, say between memory resources and
time. Optimization methods improve all the time through the work of researchers,
and so our formulations will benefit too.

• It is desirable if the optimization formulation can provide a solution that is at
least locally optimal, and if possible globally optimal, otherwise noise will almost
certainly corrupt the result.

• The operator should be fast, and provide guaranteed convergence, because it will
be most likely restarted several times, in order to adjust parameters. Together with
this requirement, the ability to segment many objects at once is also desirable,
otherwise the operator will need to be restarted as many time as there are objects
in the image. This may not be a big problem if objects do not overlap and if
bounding boxes can be drawn around them, because the operator can then be run
only within the bounding box, but this is not the general case.

• The operator should be bias-free: e.g. with respect to objects size or to the
discretization grid or with respect to initialization.

• The operator should be flexible: it is useful if it can be coupled with topology
information for instance, or with multi-scale information.

• It should be generic, not tied to particular data or image types.
• It should be easy to use. This in practice means possessing as few parameters as

possible. Of course one can view constraints setting as an enormous parameter
list, but this is the reason why we consider this step as separate.

Such a method certainly does not yet exist to our knowledge, although some
might be considered to come close. We describe some of them in the next section.

3.2 A Review of Segmentation Techniques

Here, we list and detail some segmentation categories that are compatible with the
image analysis viewpoint, although cannot hope to present a complete description
of this field.

3.2.1 Pixel Selection

Pixel selection is likely the oldest segmentation method. It consists of selecting
pixels solely based on their values and irrespective of their spatial neighborhood.
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The simplest pixel selection method is humble thresholding, where we select pixels
that have a gray-level value greater or smaller than some threshold value. This
particular method is of course very crude, but is used frequently nonetheless.
Multiple thresholding uses several values instead of a single value; color and multi-
spectral thresholding using vectors of values and not just scalars. By definition all
histogram-based methods for finding the parameters of the thresholding, including
those that optimize a metric to achieve this [54], are pixel selection methods.
Statistical methods (e.g. spectral classification methods) that include no spatial
regularization fall into this category as well. This is therefore a veritable plethora
of methods that we are including here, and research is still active in this domain.

Of course, thresholding and related methods are usually very fast and easily made
interactive, which is why they are still used so much. By properly pre-processing
noisy, unevenly illuminated images, or by other transforms, it is surprising how
many problems can be solved by interactive or automated thresholding. However,
this is of course not always the case, hence the need for more sophisticated methods.

3.2.2 Contour Tracking

It was realized early on that (1) human vision is sensitive to contours and (2) there
is a duality between simple closed contours and objects. A simple closed contour
(or surface) is one that is closed and does not self-intersect. By the Jordan theorem,
in the Euclidean space, any such contour or surface delineates a single object of
finite extent. There are some classical difficulties with the Jordan theorem in the
discrete setting [52], but they can be solved by selecting proper object/background
connectivities, or by using a suitable graph, for instance, the 6-connected hexagonal
grid or the Khalimsky topology [22, 40].

A contour can be defined locally (it is a frontier separating two objects (or
an object and its background in the binary case)), while an object usually cannot
(an object can have an arbitrary extent). A gradient (first derivative) or a Laplacian
(second derivative) operator can be used to define an object border in many cases,
and gradients are less sensitive to illumination conditions than pixel values. As a
result, contour detection through the use of gradient or Laplacian operators became
popular, and eventually led to the Marr–Hildreth theory [44].

Given this, it is only natural that most segmentation method use contour
information directly in some ways, and we will revisit this shortly. Early methods
used only this information to detect contours and then tried to combine them in some
way. By far the most popular and successful version of this approach is the Canny
edge detector [9]. In his classical paper, Canny proposed a closed-form optimal
1D edge detector assuming the presence of additive white Gaussian noise, and
successfully proposed a 2D extension involving edge tracking using non-maxima
suppression with hysteresis.
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One problem with this approach is that there is no optimality condition in 2D,
no topology or connectivity constraints and no way to impose markers in the final
result. All we get is a series of contours, which may or may not be helpful. Finding
a suitable combination of detected contours (which can be incomplete) to define
objects is then a combinatorial problem of high complexity. Finally, this approach
extends even less to 3D.

Overall, in practical terms, these contour tracking methods have been superseded
by more recent methods and should not be used without good reasons. For instance,
more recent minimal-path methods can be applied to contour tracking methods,
although they are much more sophisticated in principle [3, 14]. In this class of
methods belongs also the “intelligent scissors” types. There were many attempts in
previous decades to provide automated delineating tools in various image processing
software packages, but a useful contribution was provided relatively recently by
Mortensen [48]. This method is strictly interactive, in the sense that it is designed
for human interaction and feedback. “Intelligent scissor” methods are useful to
clinicians for providing ground truth data for instance. Such methods are still strictly
2D. As far as we know, no really satisfying 3D live-wire/intelligent scissor method is
in broad use today [5]. However, minimal surfaces methods, which we will describe
shortly in Sect. 3.4.3, in some ways do perform this extension to nD [30].

3.2.3 Statistical Methods

The opposite approach to contour detection is to work on the objects, or regions
themselves. An early and intuitive approach has been to try to divide (the splitting
step) an image into uniform regions, for example using a hierarchical representation
of an image in the form of quadtrees (in 2D) and octrees (in 3D). Uniformity
can be defined by statistical parameters and/or tests. Subsequently, a merging step
considering neighboring and statistical region information is performed [36]. Initial
considered statistics were color and intensity, but other region descriptors can be
used as well, for instance including texture, motion and so on. In this approach,
even though regions statistics are used, they are inevitably derived at the pixel level.
The split and merge approach consists of acquiring all the statistics first and basing
a decision on them.

A different approach, which is also productive, consists of building a model
first. One way is to consider an image as a 2D or 3D graph of pixels, to start
from a vast over-segmentation at the pixel level, and to evolve cliques of pixels
(e.g. sets of one, two or more pixels that are fully-connected, respectively called
unary, binary or higher-level cliques) to fit that model. This is the Markov Random
Field (MRF) model, named in this way by comparison to classical one-dimensional
Markov chains, for which only immediate neighboring relationships matter. Models
that can be written using these cliques turn out to corresponds to energies featuring
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weighted finite sums with as many terms as there are different kinds of cliques.
In [26] Geman and Geman proposed to optimize these sums using Gibbs sampling (a
form of Monte-Carlo Markov Chain algorithm) and simulated annealing. This was
first used for image restoration, but can be readily applied to segmentation as well.
This approach was very successful because it is very flexible. Markers and texture
terms can be added in, and many algorithmic improvement were proposed over
the years. However, it remains a relatively costly and slow approach. Even though
Geman and Geman showed that their simulated annealing strategy converges, it only
does so under conditions that make the algorithm extremely slow, and so usually
only a non-converged or approximate result is used. More recently, it was realized
that Graph-Cut (GC) methods were well-suited to optimized some MRF energies
very efficiently. We will give more details in the corresponding section.

MRFs belong to the larger class of Bayesian methods. Information-theoretic
perspectives and formulations, such as following the Minimum Description Length
principle, also exist. These frameworks are also very flexible, allowing for example
region competition [69]. However, the corresponding models might be complicated
both to understand and run, and sometimes possess many parameters that are not
obvious to tune. Well-designed methods are guaranteed to converge to at least a
local minimum.

In general, when dealing with regions that have complex content (for instance,
textures, or multispectral content), statistical methods can be a very good choice
although they cannot be recommended for general work, since simpler and faster
methods often are sufficient.

3.2.4 Continuous Optimization Methods

In the late 1980s, it was realized that contour tracking methods were too limited for
practical use. Indeed, getting closed contours around objects were difficult to obtain
with contour tracking. This meant that detecting actual objects was difficult except
in the simplest cases.

3.2.4.1 Active Contours

Researchers, therefore, proposed to start from already-closed loops, and to make
them evolve in such a way that they would converge towards the true contours of
the image. Thus were introduced active contours, or snakes [39]. The formulation
of snakes takes the following continuous-domain shape:

Esnake =
∫ 1

0
{Einternal(v(s))+ Edata(v(s))+ Econstraints(v(s))}ds. (3.1)

where v(s) is a parametric representation of the contour.
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This model is very flexible. It contains internal terms, image data terms and
constraints terms (see Chapter 4 for more details):

• The first term, the internal energy, contains a curvature term and a “rubber band”
energy. The former tends to smooth the resulting contour following a thin plate,
while the latter tends to make it shrink around features of interest. Other terms
such as kinetic energy can be added too, which makes it possible for the snake to
avoid noisy zones and flat areas.

• The second term, the data energy, attracts the active contours towards points of
interest in the image: typically, image contours (zones of high gradient), lines or
termination points.

• The last term, the constraint term, is optional, but allows interaction with the
snake by defining zones of attraction and repulsion.

To solve this equation, the Euler–Lagrange of (3.1) is worked out (typically in
closed form), and a gradient descent algorithm is used. All the terms are combined
in a linear combination, allowing them to be balanced according to the needs of the
user. Due to its flexibility, the active contour model was very popular in the literature
as well as in applications. It fits very well into the interactive segmentation paradigm
because constraints can be added very easily, and it can be quite fast because it uses a
so-called Lagrangian framework. The contour itself is discretized at regular interval
points and evolves according to (3.1). Convergence towards a local minimum of the
energy is guaranteed, but may require many iterations.

In practice, there are some difficulties: the snake energy is flexible but difficult
to tune. Because of the contour evolution, points along the contour tend to spread
out or bunch up, requiring regular and frequent resampling. There can also be
topological difficulties, for instance causing the snake to self-intersect. The snake
is also sensitive to its parametrization and to initialization. Finally, even though a
local optimum is guaranteed, in practice, it may not be of good quality due to noise
sensitivity.

One major difficulty with snakes is that they can be extended to 3D via
triangulation, but such extensions can be complicated, and topological problems
plaguing snakes in 2D are usually more difficult to avoid in 3D. However, 3D active
surfaces are still widely used, because they make it easy to improve or regularize a
triangulated surface obtained by other means. For instance, the brain segmentation
software FreeSurfer includes such a method. To distinguish them from other models
we are going to introduce now, snake-like active contours or surfaces are sometimes
called parametric deformable models.

3.2.4.2 Level Sets

One way to avoid altogether some of the problems brought about by the way
parametric deformable models are discretized, is to embed the contour into a higher-
dimensional manifold. This idea gave rise to level sets, proposed by Osher and
Sethian in 1988 [53]. Remarkably, this is around the same time when active contours
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a b

Fig. 3.1 Embedding and evolving a curve as a level set of a higher-dimension function. The zero-
level of function ψ is shown in color, representing a 2D contour. To evolve the contour, the whole
function evolves. Note that topology changes can occur in the contour, while the embedding surface
shows no such effect

were proposed. However level sets were initially proposed for computational fluid
dynamics and numerical simulations. They were applied to imaging somewhat
later [43, 62]. A contour is represented on the surface S of an evolving regular
function ψ by its zero level-set, which is simply the threshold of the function ψ at
zero. By using sufficiently regular embedding functions ψ , namely signed distance
transforms from an initial contour, it was possible to propose effective evolution
equations to solve similar problems to Lagrangian active contours.

The main advantages of the level-sets method were that contour resampling was
no longer necessary, and contour self-intersection (shock solutions) was avoided
because level sets were able to change topology easily (see Fig. 3.1b). This means
practically that it was possible at least in theory to initialize a segmentation by draw-
ing a box around a series of object of interest, and the level set could find a contour
around each of them. This was seen as a major benefit by the vision community.
The level set Eulerian formulation (where the whole space is discretized) is thought
to offer better theoretical guarantees than the Lagrangian framework of previous
non-embedded formulations, and the simulation of function evolution is a well-
researched topic with many usable and interesting results. Finally, the formulation is
dimension independent. Level sets work virtually unchanged in 3D or more, which
is a major benefit.

There are also a number of drawbacks. First, the level set formulation is more
expensive than earlier active contour formulations. It requires the iterative solving
of PDEs in the whole space, which is expensive. In practice, it is possible to limit
the computation in a narrow band around the contour, but this is still more costly
than if they were limited to the contour itself, and requires the resampling that
was sought to be avoided. The surface S of function ψ is implicitly represented
by the function itself, but it requires more space than the contour. In 3D or more,
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this may be prohibitive. Some contour motions are not representable (e.g. contour
rotation), but this is a minor problem. More importantly, the fact that level-sets can
undergo topology changes is actually a problem in image analysis, where it is useful
to know that a contour initialized somewhere will converge to a single simple closed
contour. In some cases, a contour can split or even disappear completely, leading to
undesirable results.

Nonetheless, level-set formulations are even more flexible than active contours,
and very complex energies solving equally complex problems have been proposed
in the literature. Solving problem involving texture, motion, competing surfaces
and so on is relatively easy to formulate in this context [55, 56]. For this reason,
they were and remain popular. Complex level-set formulation tend to be sensitive to
noise and can converge to a poor locally optimal solution. On the other hand, more
robust, closer to convex solutions can now be solved via other means. An example
of relatively simple PDE that can be solved by level sets is the following:

ψt + F|∇ψt | = 0, (3.2)

where F is the so-called speed function. Malladi and Sethian proposed the following
for F :

F =
1− εκ
1 + |∇I| + β (∇ψ .∇|∇I|). (3.3)

The first part of the equation is a term driving the embedding function ψ
towards contours of the image with some regularity and smoothing controlled by
the curvature κ . The amount of smoothing is controlled by the parameter ε . The
second term is a “balloon” force that tends to expand the contour. It is expected that
the contour initially be placed inside the object of interest, and that this balloon force
should be reduced or eliminated after some iterations, controlled by the parameter β .
We see here that even though this model is relatively simple for a level-set one, it
already has a few parameters that are not obvious to set or optimize.

3.2.4.3 Geodesic Active Contours

An interesting attempt to solve some of the problems posed by overly general
level sets was to go back and simplify the problem, arguing for consistency and a
geometric interpretation of the contour obtained. The result was the geodesic active
contour (GAC), proposed by Caselles et al. in 1997 [10]. The level set formulation
is the following:

ψt = |∇ψ |div

(
g(I)

∇ψ
|∇ψ|

)
. (3.4)

This equation is virtually parameter-free, with only a g function required. This
function is a metric and has a simple interpretation: it defines at point x the cost of
a contour going through x. This metric is expected to be positive definite, and in
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most cases is set to be a scalar functional with values in R
+. In other words, the

GAC equation finds the solution of:

argminC

∫
C

g(s)ds, (3.5)

where C is a closed contour or surface. This is the minimal closed path or minimal
closed surface problem, i.e. finding the closed contour (or surface) with minimum
weight defined by g. In addition to simplified understanding and improved consis-
tency, (3.4) has the required form for Weickert’s PDE operator splitting [28, 68],
allowed PDEs to be solved using separated semi-implicit schemes for improved
efficiency. These advances made GAC a reference method for segmentation, which
is now widely used and implemented in many software packages such as ITK.
The GAC is an important interactive segmentation method due to the importance
of initial contour placement, as with all level-sets methods. Constraints such as
forbidden or attracting zones can all be set through the control of function g, which
has an easy interpretation.

As an example, to attract the GAC towards zones of actual image contours, we
could set

g ≡ 1
1 + |∇I|p , (3.6)

With p = 1 or 2. We see that for this function, g is small (costs little) for zones
where the gradient is high. Many other functions, monotonically decreasing for
increasing values for ∇I, can be used instead. One point to note, is that GAC has a
so-called shrinking bias, due to the fact that the globally optimal solution for (3.5)
is simply the null contour (the energy is then zero). In practice, this can be avoided
with balloon forces but the model is again non-geometric. Because GAC can only
find a local optimum, this is not a serious problem, but this does mean that contours
are biased towards smaller solutions.

3.2.5 Graph-Based Methods

The solution to (3.5) proposed in the previous section was in fact inspired by
preexisting discrete solutions to the same problem. On computers, talking about
continuous-form solutions is a bit of a misnomer. Only the mathematical formula-
tion is continuous, the computations and the algorithms are all necessarily discrete
to be computable. The idea behind discrete algorithm is to embrace this constraint
and embed the discrete nature of numerical images in the formulation itself.

3.2.5.1 Graph Cuts

We consider an image as a graph Γ (V ,E ) composed of n vertices V and m edges E .
For instance, a 2D N ×N 4-connected square grid image will have n = N2 vertices
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and m = 2×N × (N − 1) edges.1 We assume that both the edges and the vertices
are weighted. The vertices will typically hold image pixel values and the edge
values relate to the gradient between their corresponding adjacent pixels, but this is
not necessary. We assume furthermore that a segmentation of the graph can be
represented as a graph partition, i.e:

V =
⋃

Vi∈Γ
Vi;∀i �= j,Vj ∩Vi = /0. (3.7)

Then E� is the set of edges that are such that their corresponding vertices are in
different partitions.

E� = {e = {pi, p j} ∈ E, pi ∈Vi; p j ∈Vj, i �= j}. (3.8)

The set E� is called the cut, and the cost of the cut is the sum of the edge weights
that belong to the cut:

C(E�) = ∑
e∈E�

we, (3.9)

where we is the weight of individual edge e. We assume these weights to be
positive. Reinterpreting these weights as capacities, and specifying a set of vertices
as connected to a source s and a distinct set connected to a sink t, the celebrated
1962 Ford and Fulkerson result [25] is the following:

Theorem 3.1. Let P be a path in Γ from s to t. A flow through that path is a quantity
which is constrained by the minimum capacity along the path. The edges with this
capacity are said to be saturated, i.e. the flow that goes through them is equal to
their capacity. For a finite graph, there exists a maximum flow that can go through
the whole graph Γ. This maximum flow saturates a set of edges Es. This set of edges
define a cut between s and t, and this cut has minimal weight.

This theorem is illustrated in Fig. 3.2.
In 2D and if Γ is planar, this duality essentially says that the Ford and Fulkerson

minimum cut can be interpreted as a shortest path in a suitable dual graph to Γ [2].
In arbitrary dimension, the maxflow – mincut duality allows us to compute discrete
minimal hypersurfaces by optimizing a discrete version of (3.4).

There exist many algorithms that can be used to compute the maximum flow in
a graph (also called network in this framework), but none with a linear complexity.
Augmenting paths algorithms [7] are effective in 2D where the number of vertices
is relatively high compared to the number of edges. In 3D and above, where the
reverse is true, push-relabel algorithms [27] are more efficient. These algorithms
can only be used when there is one source and one sink. The case where there are
multiple sources or sinks is known to be NP-hard. To compute energies comprising
several sources or sinks and leading to multi-label segmentation, approximations

1This particular computation is left as an exercise to the reader.
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Fig. 3.2 (a) A graph with edge weights interpreted as capacities, shown as varying diameters in
this case. (b) A maximum flow on this graph. We see that the saturated vertices (in black) separate
s from t , and they form a cut of minimum weight

can be used, such as α-expansions. These can be used to formulate and optimize
complex discrete energies with MRF interpretations [8, 66], but the solution is only
approximate. Under some conditions, the result is not necessarily a local minimum
of the energy, but can be guaranteed not to be too far from the globally optimal
energy (within a known factor, often 2).

In the last 10 years, GC methods have become extremely popular due to their
ability to solve a large number of problems in computer vision, particularly in
stereo-vision and image restoration. In image analysis, their ability to form a
globally optimal binary partition with a geometric interpretation is very useful.
However, GC do have some drawbacks. They are not easy to parallelize, they are
not very efficient in 3D, they have a so-called shrinking bias, just as GAC and
continuous maxflow have as well. In addition, they have a grid bias, meaning
that they tend to find contours and surfaces that follow the principal directions of
the underlying graph. This results in “blocky” artifacts, which may or may not be
problematic.

Due to their relationship with sources and sinks, which can be seen as internal
and external markers, as well as their ability to modify the weights in the graph to
select or exclude zones, GC are at least as interactive as the continuous methods of
previous sections.

3.2.5.2 Random Walkers

In order to correct some of the problems inherent to graph cuts, Grady introduced
the Random Walker (RW) in 2004 [29,32]. We set ourselves in the same framework
as in the Graph Cuts case with a weighted graph, but we consider from the start
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a multilabel problem, and, without loss of generality, we assume that the edge
weights are all normalized between 0 and 1. This way, they represent the probability
that a random particle may cross a particular edge to move from a vertex to a
neighboring one. Given a set of starting points on this graph for each label, the
algorithm considers the probability for a particle moving freely and randomly on
this weighted graph to reach any arbitrary unlabelled vertex in the graph before any
other coming from the other labels. A vector of probabilities, one for each label, is
therefore computed at each unlabeled vertex. The algorithm considers the computed
probabilities at each vertex and assigns the label of the highest probability to that
vertex.

Intuitively, if close to a label starting point the edge weights are close to 1, then its
corresponding “random walker” will indeed walk around freely, and the probability
to encounter it will be high. So the label is likely to spread unless some other labels
are nearby. Conversely, if somewhere edge weights are low, then the RW will have
trouble crossing these edges. To relate these observations to segmentation, let us
assume that edge weights are high within objects and low near edge boundaries.
Furthermore, suppose that a label starting point is set within an object of interest
while some other labels are set outside of it. In this situation, the RW is likely to
assign the same label to the entire object and no further, because it spreads quickly
within the object but is essentially stopped a the boundary. Conversely, the RW
spreads the other labels outside the object, which are also stopped at the boundary.
Eventually, the whole image is labeled with the object of interest consistently
labeled with a single value.

This process is similar in some way to classical segmentation procedures like
seeded region growing [1], but has some interesting differentiating properties and
characteristics. First, even though the RW explanation sounds stochastic, in reality
the probability computations are deterministic. Indeed, there is a strong relationship
between random walks on discrete graphs and various physical interpretations. For
instance, if we equate an edge weight with an electrical resistance with the same
value, thereby forming a resistance lattice, and if we set a starting label at 1 V and
all the other labels to zero volt, then the probability of the RW to reach a particular
vertex will be the same as its voltage calculated by the classical Kirchhoff’s laws on
the resistance lattice [24]. The problem of computing these voltages or probability
is also the same as solving the discrete Dirichlet problem for the Laplace equation,
i.e. the equivalent of solving ∇2ϕ = 0 in the continuous domain with some suitable
boundary conditions [38]. To solve the discrete version of this equation, discrete
calculus can be used [33], which in this case boils down to inverting the graph
Laplacian matrix. This is not too costly as it is large but very sparse. Typically
calculating the RW is less costly and more easily parallelizable than GC, as it
exploits the many advances realized in numerical analysis and linear algebra over
the past few decades.

The RW method has some interesting properties with respect to segmentation.
It is quite robust to noise and can cope well with weak boundaries (see Fig. 3.3).
Remarkably, in spite of the RW being a purely discrete process, it exhibits no
grid bias. This is due to the fact that level lines of the resistance distance (i.e. the
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A B
C

Fig. 3.3 An intuitive explanation of why the Random Walker copes well with weak boundaries.
We assuming constant, high probabilities everywhere on this graph, except where thick vertical
lines cross an edge, where the probabilities are low. A and B represent labels, and we estimate the
probability of a random walker in C to move to the left as opposed to all the other directions (north,
south, or east). We see that locally the probabilities are identical, but globally, there are many ways
for a random walker to come from B to the north, east or south position from C. However, there
is only one way to move to the west of C, and that is to go through C. Therefore, Random walker
probabilities must be high up to C, and then drop precipitously. Since the situation is symmetrical
with respect to A, it is likely that the region left of he thick lines will be labelled with A, and the
region right to it are going to be labelled with B. This is in spite of the fact that the boundary
defined by the thick vertical lines is weak and closer to A than B

resistance between a fixed node and all the others) in an infinite graph with constant
edge weights are asymptotically isotropic [21]. RW exhibit a shrinking bias but not
as strong as GC.

3.2.5.3 Watershed

While there are many variations on discrete segmentation methods, we will consider
one last method: the Watershed Transform (WT). It was introduced in 1979 by
Beucher and Lantuéjoul [6] by analogy to the topography feature in geography. It
can be explained intuitively in the following manner: consider a gray-level image
to be a 3D topographical surface or terrain. A drop of water falling onto this
surface would follow a descending path towards a local minimum of the terrain.
The set of points, such that drops falling onto them would flow into the same
minimum, is called a catchment basin. The set of points that separate catchment
basins form the watershed line. Finally, the transform that takes an image as input
and produces its set of watershed lines is called the Watershed Transform. To use
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Fig. 3.4 Watershed segmentation: (a) an MRI image of the heart, (b) its smoothed gradient, (c) the
gradient seen as a topographic surface, (d) Watershed of the gradient, and (e) topographical view
of the watershed

this transform in practical segmentation settings, we must reverse the point of view
somewhat. Assume now that labels are represented by lakes on this terrain and that
by some flooding process, the water level rises evenly. The set of points that are
such that waters from different lakes meet is also called the watershed line. Now
this watershed line is more constrained, because there are only as many lines as
necessary to separate all the lakes.

This intuitive presentation is useful but does not explain why the WT is useful for
segmentation. As the “terrain”, it is useful to consider the magnitude of the gradient
of the image. On this gradient image, interior objects will have values close to zero
and will be surrounded by zones of high values: the contours of the objects. They
can therefore be assimilated to catchment basins, and the WT can delineate them
well (see Fig. 3.4).

The WT is a seeded segmentation method, and has many interesting interpreta-
tions. If we consider the image again as a graph as in the GC setting, then on this
graph the set of watershed lines from the WT form a graph cut. The edges of this
tree can be weighted with a functional derived from a gradient exactly as in the GC
case. Computing the WT can be performed in many efficient ways [46, 67], but an
interesting one is to consider the Maximum Spanning Forest (MSF) algorithm [19].
In this algorithm, the classical graph algorithm for maximum spanning tree (MST)
is run on the graph of the image, following for instance Kruskal’s algorithm [41,59],
with the following difference: when an edge selected by the MST algorithm is
connected with a seed, then all vertices that are connected with it become also
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labeled with this seed, and so on recursively. However, when an edge selected by the
MST algorithm would be connecting two different seeds, the connection is simply
not performed. It is easy to show that (1) eventually all edges of the graph are labeled
with this algorithm; (2) the set of edge that are left connected form a graph cut
separating all the seeds; and (3) the labels are connected to the seeds by subtrees.
The result is a MSF, and the set of unconnected edges form a watershed line. The
MSF algorithm can be run in quasi-linear time [20].

3.2.6 Generic Models for Segmentation

Even though seeded models are the focus of this chapter, we say here a few words
about generic models that are not seeded by default, because they contain powerful
ideas for the future of seeded models.

3.2.6.1 Continuous Models

Over the years, several now widely cited formulations of the segmentation problem
have been proposed, including for instance the Mumford–Shah functional [49] or
the Chan–Vese active contour without edges (AWE) [13]. They generally seek to
solve the segmentation problem in the vision setting, and can be used for image
restoration as well (denoising, inpainting, etc).

In particular, the Mumford–Shah functional is the following:

E(f,C) = β
∫

Ω
(f−g)2dA + α

∫
Ω\C

|∇f|2dA + γ
∫

C
ds. (3.10)

This formulation is very interesting because it has been an inspiration to many.
In this expression, g is the original image, f a piecewise smooth approximation of g
and C a collection of contours where f is discontinuous. In essence, C represents the
segmentation of ð and f is a restored (denoised, etc) model of ð. The first term in
(3.10) is a data fidelity term; the second is a total variation term (TV), and the last
optimizes an unweighted contour length.

Both MS and AWE initially were solved using level-sets methods, but more
recently convex methods have been used. The MS functional is NP-hard in general,
but convex relaxations are computable, and can be exact in the binary case. In
particular, the ROF model is convex, and correspond to the MS model without the
last term [12]. From the image analysis point of view, these models are not readily
usable, because they correspond to simplistic models of vision, and if markers or
shape constraints are added, they tend to dominate the model, which then does not
help very much.
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3.2.6.2 Hierarchical Models

Hierarchies of segmentations are a powerful way to deal with the multi-resolution
inherent to nature. Many images contain objects at different scales. In medical
imaging a vascular network is a typical example. It is very difficult to come up
with a seeded strategy to solve this case. One general idea is to perform many
segmentations at once or in sequence, taking into account various scales. This is
not as easy to do as it sounds, because simply repeating a segmentation procedure
with different parameters will not yield compatible segmentations, in the sense that
contours are not likely to remain stable as the scale increases or decreases. One way
of dealing with this is to offer a measure to the strength of a particular piece of
contour, and as the scale increase, remove pieces of contours with weak strength
first. This saliency idea was proposed by Najman and Schmitt in [51] in the context
of watershed segmentation, but more work has been done on this idea since, for
example, on ultrametric watershed and connections [50, 63]. A saliency map or
ultrametric watershed is an interactive segmentation because edge strength can be
selected by interactive thresholding for instance, but it is not always obvious how to
combine this with seeded segmentation.

Hierarchical methods do offer some other benefits, such as the ability to
efficiently optimize Mumford–Shah-like functionals on a saliency map [35]. Other
functionals are also possible, such as optimizing minimum ratio costs [34]. There are
some drawbacks as well, such as decreased speed and extra memory requirement,
and again the question of compatibility with other constraints. This is at present a
very interesting area of research.

3.2.6.3 Combinations

Many segmentation algorithms can be combined to provide different sets of
compromises or extensions. For instance, Yuille proposed an interesting model
combining Bayesian methods with level-sets [69]. An active area of research today
are so-called turbopixels, where a first-level over-segmentation is performed in order
to group pixels into consistent regions of similar size. Then these regions are linked
in a graph and a discrete segmentation is performed over them [42]. This two-
level segmentation procedure has some advantages in terms of speed and resource
allocations. Final segmentation can still be precise if the first-order grouping is
done well, and these methods are compatible with seeded segmentation. However,
segmentation quality may be poor in the presence of weak edges [64].

3.3 A Unifying Framework for Discrete Seeded Segmentation

In many early segmentation methods, the focus was on the values of the pixels
themselves, or in graph terms the values of the vertices. Since the advent of GC
methods, it was realized that focusing instead on the edges was useful. In particular,
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defining a gradient function on the edges is easy. Let p and q be two vertices in
the graph Γ(V ,E ) of image I, that we have been using so far (see Sect. 3.2.5),
then we can set as weight wp,q for the edge linking p and q any value depending
on the discrete gradient Iq − Ip, where Iq represents the value of I at vertex q. For
instance, we can use wp,q = exp(−β |Iq − Ip|2), with β a positive scalar parameter.
This is a monotonically decreasing function of the gradient, recommended by
several authors. In addition, there are topological advantages, as a cut in such a
graph obeys the Jordan property in arbitrary dimension. In addition, there is a
fundamental difference between regions, formed of uniformly labeled vertices, and
cuts formed of edges. In former pixel-based segmentation procedures, the contours
were themselves made of pixels, which created problems [19]. The only significant
drawback is that storing edge weights rather than pixels costs roughly twice as much
memory in 2D, or three times as much in 3D for the simplest nearest-neighbor
connectivity. This extra cost increases with the connectivity, and may be indeed
be a problem in some applications.

3.3.1 Discrete Optimization

Assuming then this simple model of discrete images, the segmentation problem can
be viewed as an optimization problem over cliques of one or two pixels, like in the
MRF setting. For instance, classical graph cut can optimize the following problem
exactly:

argminx E(x) = ∑
u∈V

wu|xu − yu|+ ∑
(u,v)∈E

wu,v|xu − xv|, (3.11)

in the case where x is a binary vertex labeling, y a reference binary image that can,
for instance, represent seeds, and wu and wu,v positive unary weights and binary
weights respectively. The seeded segmentation case corresponds to an image y
containing some vertices labelled with 0, others with 1 (the seeds) and unlabelled
ones as well. The wu for the labelled vertices in y have infinite weights, and the
unlabeled one zero. Using the same notation, the Random Walker optimizes the
following energy:

argminx E(x) = ∑
u∈V

wu(xu − yu)2 + ∑
(u,v)∈E

wu,v(xu − xv)2. (3.12)

In this case, the optimal labelling x� is not binary even if y is binary. It expresses
the probability of a vertex belonging to label 0 or label 1. To reach a unique solution,
we must threshold the result:

su = 0 if xu <
1
2
,su = 1 otherwise. (3.13)

In this case, the binary result s represents the segmentation. There is a strik-
ing similarity between (3.11) and (3.12), which leads us to propose a unifying
framework.
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Table 3.1 Our generalized scheme for image segmentation includes several
popular segmentation algorithms as special cases of the parameters p and q.
The power watershed are previously unknown in the literature, but may be
optimized efficiently with a MSF calculation

q
∖

p 0 Finite ∞
1 Collapse to seeds Graph cuts Power watershed q = 1
2 �2 norm Voronoi Random walker Power watershed q = 2
∞ �1 norm Voronoi �1 norm Voronoi Shortest path forest

3.3.2 A Unifying Framework

We propose to optimize the following general discrete energy:

argminx E(x) = ∑
u∈V

wp
u |xu − yu|q + ∑

(u,v)∈E

wp
u,v|xu − xv|q, (3.14)

The p and q terms are integer exponents. In cases where the optimal x� is not
binary, we threshold it in the end as in (3.13). An analysis of the influence of p and
q provides us with Table 3.1.

In this table, we find some well-known algorithms, such as previously mentioned
GR and RW, in addition to the Shortest Path Forests algorithm [20], that uses forests
of shortest path leading to seeds as segmentation criteria. Most of the other cases are
not interesting (Voronoi diagrams, for instance), but the case q = 1 or 2 and p → ∞
is novel and interesting: this is the Power Watershed algorithm [15].

3.3.3 Power Watershed

Among the drawbacks of traditional watershed as described in Sect. 3.2.5.3 are the
following: (1) watershed has no energy interpretation and is purely a segmentation
algorithm; (2) watershed segmentations are not unique: for the same seed placement
and edge weights, the same definition can provide different results; (3) watershed
results tend to leak in the presence of weak boundaries. We intend to solve all three
problems.

An analysis of the convergence of (3.14) in the case q = 1 or 2 and p → ∞ led us
to the algorithm shown below.

This algorithm is illustrated in Fig. 3.5. We also show some pictorial results in
Fig. 3.6, where we compare qualitatively the results of PW with the other classical
discrete segmentation algorithms, namely GC, RW, SPF and the classical WT in the
form of a MSF.

More details on the Power Watershed algorithm can be found in [16]. We
show the PW algorithm performs very well in terms of quantitative results, that
qualitatively PW is devoid of size bias and grid artifacts, while being only slightly
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Algorithm: power watershed algorithm, optimizing p → ∞,q ≥ 1
Data: A weighted graph Γ(V ,E ) and a reference image y containing seed

information
Result: A potential function x and a labeling s associating a label to each

vertex.
Set x values as unknown except seed values.
Sort the edges of E by decreasing order of weight.
while any node has an unknown potential do

Find an edge (or a plateau) EMAX in E of maximal weight; denote by S the
set of nodes connected by EMAX.
if S contains any nodes with known potential then

Find xS minimizing (3.14) (using the input value of q) on the subset S
with the weights in EMAX set to wi j = 1, all other weights set to wi j = 0
and the known values of x within S fixed to their known values.
Consider all xS values produced by this operation as known.

else
Merge all of the nodes in S into a single node, such that when the value
of x for this merged node becomes known, all merged nodes are
assigned the same value of x and considered known.

Set si = 1 if xi ≥ 1
2 and si = 0 otherwise.

a b c d e f

Fig. 3.5 Illustration of the different steps for Algorithm in the case q = 2. The values on the
nodes correspond to x, their color to s. The bold edges represents edges belonging to a Maximum
Spanning Forest. (a) A weighted graph with two seeds, all maxima of the weight function are
seeded, (b) First step, the edges of maximum weight are added to the forest, (c) After several steps,
the next largest edge set belongs to a plateau connected to two labeled trees, (d) Minimize (3.14)
on the subset (considering the merged nodes as a unique node) with q = 2 (i.e., solution of the
Random Walker problem), (e) Another plateau connected to three labeled vertices is encountered,
and (f) Final solutions x and s obtained after few more steps. The q-cut, which is also an MSF cut,
is represented in dashed lines

slower than standard watershed and much faster than either GC or RW, particularly
in 3D. The PW algorithm provides a unique unambiguous result, and an energy
interpretation for watershed, which allows it to be used in wider contexts as a solver,
for instance in filtering [17] and surface reconstruction. One chief advantage of PW
with respect with GC for instance, is its ability to compute a globally optimal result
in the presence of multiple labels. When segmenting multiple objects this can be
important.
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Fig. 3.6 Slides of a 3D lung segmentation. The foreground seed used for this image is a small
rectangle in one slice of each lung, and the background seed is the frame of the image (a) GC
(b) RW (c) SPF (d) MSF (e) PW

3.4 Globally Optimum Continuous Segmentation Methods

Here, we provide some arguments for globally optimal segmentation in the context
of continuous-domain optimization.

3.4.1 Dealing with Noise and Artifacts

Even assuming we can construct a contents metric as explained in the first section,
there are several sources of artifacts in segmentation: (1) weak edges cause
uncertainty in the result; (2) noise tends to corrupt boundaries, and for some methods
tend to lead to wrong results; (3) method artifacts, such as a size bias or blockiness
artifacts can cause undesirable results. Of course all these artifacts are linked and
essentially due to the contents metric, reflecting insufficient knowledge about the
content, but it is precisely to solve this problem that we require segmentation.

Weak edges are a fact of life in medical imaging. Most often in CT for example it
is difficult to delineate a lesion because it has a similar radiation absorption profile
to surrounding tissues. In this case, it is better to use methods that interpolate
contours and surfaces well. The GAC is very useful in this context because of its
geometric formulation and shortest path/minimal surface interpretation. In addition,
it is straightforward to add simple shape information, such as elliptical or spherical
shape priors.

Many iterative methods do not cope well with noise. One reason might be that the
formulation of the corresponding energy is not convex, which implies that it would
probably not have a single global optimum. This is unfortunately the case with
most active contours and level set formulations, including the classic formulation
of GACs. In addition, these methods make it easy to add terms to the energy and
make it look like it can be optimized. The reality is that in most cases, these methods
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get stuck into a poor quality local minimum. If models are complex, tweaking
their parameters is difficult and error-prone. This is the reason why most recent
segmentation models feature few parameters and tend to propose formulations that
can be optimized globally.

Finally, all segmentation methods present artifacts. Graph Cuts for instance tend
to both produce blocky results (grid bias) and favour small objects (shrinking bias).
They can be coped with by augmenting the connectivity of the graph and by metric
manipulation knowing the position of the seeds. However, it is preferable to use
formulations that are isotropic in nature, such as continuous-domain ones.

These are some of the reasons that motivate us to mention continuous, isotropic,
efficient formulations for finding the global solution to the GAC equation exactly.

3.4.2 Globally Optimal Geodesic Active Contour

In spite of advances in GAC optimization, more efficient ways of solving equa-
tion (3.5) do exist. In particular, in 2D, this equation can be solved by a continuous-
domain, non point-convex circular shortest path [3]. The solution, called the globally
optimal geodesic active contour (GOGAC) is globally optimal and extremely
efficient [4], although it can only find a single contour at a time. The GOGAC
solution is as flexible as the original GAC, but due to its formulation and algorithm,
it is significantly less affected by noise.

This GOGAC has no shrinking bias and no grid bias, however, it tends to favor
circular boundaries due to its polar coordinate equivalence. This may be desirable
in some applications, but not in others. This can be avoided by using a different
weighting than the 1/r given in the original article. A flat weighting can be used if
small solutions are forbidden for instance.

3.4.3 Maximal Continuous Flows and Total Variation

The GOGAC solution is extremely efficient but does not extend to 3D and higher,
but in 2006, Appleton and Talbot proposed a continuous maximum flow (CMF)
solution to solve this problem. Their solution, inspired by local solutions for discrete
graph cuts, consists of simulating a flow originating from a source s and ending in a
sink t, and a pressure field, linked by a PDE system forming a propagation equation
and constrained by the metric g:

∂�F
∂ t

= −∇P

∂P
∂ t

= −div�F

‖�F‖ ≤ g. (3.15)
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This unusual system, at convergence, produces a scalar field P that acts as an
indicator function for the interior of the contour C of (3.5). It solves the closed
minimal surface problem exactly and efficiently, and so this represents a better
way to solve it than (3.4). The result in 2D is exactly the same as that obtained
with GOGAC. This CMF result provides a direct algorithm for solving the problem
posed by Iri and Strang in [37, 65]. Interestingly, researchers in image restoration
had proposed over the years solutions to Strang’s dual problem, that of minimizing
the total variation (TV) of a functional. Initial solutions used level-set formula-
tions [60], and later ones convex optimization methods [11, 58]. Nonetheless, it
is thought that primal maximum flow methods are better suited to segmentation
than TV formulations [18]. Note that CMF are also biased towards small contours,
and because they find a global optimum, this is a more serious problem than with
standard GAC. However, there exist ways to remove this shrinking bias for an
arbitrary collection of sources and sinks [2], and the bias is less strong in 3D and
can be ignored, as long as small solutions are forbidden, using for instance large
enough inner seeds. CMFs are about as fast as GC, but can be parallelized easily.

3.5 Comparison and Discussion

In the space of a single chapter it is not possible to present a thorough, quantitative
assessment of the most popular segmentation methods. However, in Table 3.2, we
present a qualitative comparison.

In this table, we have presented all the methods discussed in the chapter. A
score of 1 indicates a low, undesirable score and the highest score is 5. These
scores are potentially controversial and represent experience and opinion rather
than hard fact. We have ranked all methods according to some desirable features.
In the following discussion, we present robustness as the ability of a method to
cope with noise and weak edges. Flexibility denotes the ability of a method to be
used in different contexts: seeded or non-seeded segmentation, and the possibility
to optimize different models, for instance with texture.

Taking the methods in order, we see that (1) Pixel selection uses low resources
but is extremely simplistic; (2) Contour tracking has some speed and flexibility
advantages but is limited to 2D; (3) Split-and-merge methods generally have
high scores but are not robust and not flexible; (4) MRFs and Bayesian methods
optimized by simulated annealing feature a lot of flexibility but are very slow; (5)
Active contours are fast and flexible but not robust, they find only one object at
a time, and cannot be extended easily to 3D; (6) Level sets (LS) are similar in
some ways but are quite slow, require lots of resources and are not robust. They
do extend to 3D readily; (7) GAC are a particular case of LS methods, which are
popular in medical imaging because they are faster and more robust but less flexible.
However standard GAC is slow compared to many other methods and still not robust
enough; (8) Graph cuts are a very popular recent method, which feature relatively
high scores across the board, in particular they are among the most flexible and
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Fig. 3.7 Segmentation of the lungs in a chest CT image. (a) The CT image. (b) Segmentation
using 3D standard Geodesic Active Contours. The surfaces fail to fill the base of the lung.
(c) Segmentation using a discrete maximal flow algorithm. Observe the directional bias due to
the grid. (d) Segmentation from identical input using continuous maximal flows

robust methods. However, they are slow, particularly in 3D, not parallelizable easily
and feature much bias; (9) Watershed is an old method but has definite advantages
for segmentation: it is fast, bias-free and multi-label (it can segment many objects
at once). However, it is not flexible or very robust. Watershed can be extended
readily for multi-resolution, and due to its age, many parallel implementations exist,
including hardware ones; (10) The Random Walker is a recent method which is
similar in some ways to Watershed, but is significantly more robust. It requires more
resources however.

Among the newer methods presented in this chapter, (11) GOGAC solves GAC
exactly and quickly in 2D, and so provides a quick robust solution, which is good for
2D interactive segmentation of single objects. However, is not flexible in its model;
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(12) CMF is probably among the most robust segmentation method in the literature
for 3D segmentation, but it segments only one object at a time, is not very flexible,
and has no grid bias but does feature a shrinking bias. Finally, (13) Power watershed
fits in between standard watershed and random walker. It is significantly more
flexible and robust than standard watershed. Its speed is also comparable, but it
uses more memory, and is less parallelizable.

The global score is probably even more subject to controversy than the individual
ones, but it would tend to show that active contour methods should not be tried
as a first choice method. For medical imaging, Random Walker and watershed-
based methods are probably a good first choice, particularly for ease of use. It is
comforting to realize that more modern methods suitable for 3D medical imaging
(GC, RW, PW and CMF) are all very robust.

Many advantages presented in the literature, such as purported sub-pixel accu-
racy of segmentation, are not listed here because they are an illusion. The reported
ability of some methods to control topology or on the contrary to allow it to change
is not necessarily a drawback or advantage either way, so we do not include it
as well.

3.6 Conclusion and Future Work

In conclusion, we argue that seeded or interactive segmentation is useful in medical
imaging. Compared with model-based segmentation, seeded segmentation is more
robust in actual image analysis applications, as opposed to computer vision. The
ability to separate seeds/markers, use contour information, and perform contour
optimization are very useful, as these elements generally result in a higher likelihood
of good results. From this point of view, we argue that segmentation is a process and
not merely an operator.

In general, the literature focuses on contour placement optimization at the
expense of the other two components, with some rare exceptions. This is unfor-
tunate but understandable with respect to seeds/markers, because they are highly
application dependent. The choice of methods for obtaining contour information is
also limited, and this is probably a good area for future research. One conclusion
of this study is that contour placement optimization methods are important. More
recent methods focus on optimization robustness, which is important. For someone
not yet experienced in medical segmentation, simpler, more robust methods should
be preferred over complex ones. Among those, power-watershed is a good candidate
because of its combination of speed, relative robustness, ability to cope with
multiple labels, absence of bias and availability (the code is easily available online).
The random walker is also a very good solution, but is not generally and freely
available.

We have not surveyed or compared methods that encompass shape constraints.
We recognize that this is important in some medical segmentation methods, but this
would require another study altogether.
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Finally, at present there exists a dichotomy between the way discrete and
continuous-domain work and are presented. In the near future, it is likely we will
see methods unifying both aspects to great advantage.
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Chapter 4
Deformable Models and Level Sets
in Image Segmentation

Agung Alfiansyah

4.1 Introduction

Segmentation is a partitioning process of an image domain into non-overlapping
connected regions that correspond to significant anatomical structures. Automated
segmentation of medical images is a difficult task. Images are often noisy and
usually contain more than a single anatomical structure with narrow distances
between organ boundaries. In addition, the organ boundaries may be diffuse.
Although medical image segmentation has been an active field of research for
several decades, there is no automatic process that can be applied to all imaging
modalities and anatomical structures [1].

In general, segmentation techniques can be classified into two main categories:
(a) segmentation methods that allow users to explicitly specify the desired feature
and (b) algorithms where the specification is implicit. The first segmentation
class considers the segmentation as a real-time interaction process between the
user and the algorithm. The user is provided with the output and allowed to
perform feed-back directly in order to modify the segmentation until he/she gets
a satisfactory result. In the extreme case, this framework might degenerate into
manual segmentation with the user forcing his/her desirable results. Some examples
of this approach are the livewire segmentation algorithms [2–5]. These algorithms
produce a piecewise optimal boundary representation of an object, by viewing
the image as a weighted graph and finding the shortest path between consecutive
specified boundary points of the user. A more recent example of this approach based
on the concept of random walks is described in [6].

The majority of segmentation methods belong to the second category, where the
desired result is specified implicitly. Segmentation algorithms belonging to this cat-
egory include: thresholding, various contour-based and region-based segmentation
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methods, Markov random fields, active contours, model-based, and deformable
model methods. As this domain has been studied extensively, there exist many
published reviews of medical image segmentation [7, 39, 40], with specialized
surveys on deformable models [7,8], vessel extraction [9,10], or brain segmentation
[10, 11].

This chapter is organized as follows. In Sect. 4.2, we review the main concepts
of the deformable model and its role in image segmentation. We present several
types of deformable models according to how they are represented, followed by
a description of their energy definition and possible optimization methods. In
Sect. 4.3, we compare the performance of these deformable models according
to properties such as initialization, topological change handling, stability, etc. In
Sect. 4.4, we discuss several cases of developed applications of medical image
segmentation and conclude in Sect. 4.5.

4.2 Deformable Models

The basic idea of active contours for image segmentation is to embed an initial con-
tour (or surface in the three-dimensional case) into the image, and to subsequently
let it evolve while being subjected to various constraints. In order to detect objects
in the image, the contour has to stop its evolution on the boundary of the object
of interest. Although the term deformable models first appeared in the work by
Kass et al. [12] in the late eighties, the idea of deforming a template for extracting
image features dates back much further, with work on spring-loaded templates [13]
and on the rubber mask technique [14]. In image processing literature, deformable
models are also variously known as snakes, active contours or surfaces, balloons,
and deformable contours or surfaces. An extensive review of the current research in
this area can be found in [1, 38].

In the following subsection, we present the different types of deformable models
classified according to contour representation, and some energy optimization
strategies.

4.2.1 Point-Based Snake

This classical snake was firstly proposed by Kass et al. [12] and represents the
contour using discrete points. The behavior of this classical snake is usually modeled
by a weighted linear combination of: internal energy calculated from the contour
that determines the regularity of the curve; external energy which attracts the
contour towards the significant features in the image; and often an additional user
energy allowing the operator to better interact with the model.

In the first snake-type, one applies the simplest way to represent the model: a
set of discrete points as snake elements (C(s)). Using this representation, closed
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contours can be formed by connecting the last “snaxel” (snake element) to the first
one. For segmentation, the snake has to minimize the energy as follows:

E(C(s)) =
∫

Ω

⎧⎪⎨
⎪⎩Econtour(C(s))︸ ︷︷ ︸

internal energy

+Eimage(C(s))+ Euser(C(s))︸ ︷︷ ︸
external energy

⎫⎪⎬
⎪⎭ds. (4.1)

Applying discrete-point representation, the internal energy can be approximated by
accommodating the elasticity and rigidity terms:

Econtour(C(s)) = w1(s)Eelasticity(C(s))+ w2(s)Erigidity(C(s))

= w1(s)Cs(s)2 + w2(s)Css(s)2, (4.2)

where the subscripts s and ss denote the first and second derivatives with respect
to the curve parameter. The model behavior is controlled by constants w1 and w2,
respectively, weighting the curve elasticity and rigidity.

Internal Energy Definition: In the first term in equation (4.2), Cs(s) represents
the elastic energy and makes the snake behave like a membrane. The second term
Css(s) represents the contour’s bending energy that makes the model act like a
thin plate. Decreasing elasticity allows the contour to increase in length, while
increasing elasticity increases the tension of the model by reducing its length.
Decreasing rigidity allows the active contour model to develop corners, while
increasing rigidity makes the model smoother and less flexible. Setting either of
the weighting coefficients to zero permits first- and second-order discontinuities,
respectively.

This energy equation can then be discretized using the finite difference
method as:

Eelasticity ≈ (xs − xs−1)
2 +(ys − ys−1)

2 . (4.3)

This term will minimize the distance between the points on the snake, causing
shrinking during optimization of the energy process in the absence of external
energy. In a similar way, the rigidity term is discretized as:

Erigidity ≈ (xs+1− xs − xs−1)
2 +(ys+1 − ys − ys−1)

2 . (4.4)

The elasticity definition using finite differences discretization scheme is valid for
the condition that the model’s snaxels are evenly spaced [15]. In other cases, a
continuity term can be defined that subtracts the average distance of the snaxels,
otherwise the energy value will be larger for points which are further apart.
This constraint forces the points to be more evenly spaced, and avoids possible
contraction of the snake.
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External Energy Definition: The external energy term in equation (4.1) represents
the image potential derived from image data and guides the contour in finding the
desired object. Ideally, this energy has a minimum value at the feature subject to
detection. However, due to the presence of noise, there is often a convergence
problem at object concavities. The snake can also integrate the constraint energy
to interactively guide itself towards or away from particular features. This energy
helps the contour to overcome the initialization problem or the sensitivity to noise.

Kass [12] proposed a weighted sum of the following energy terms in order to
detect image features:

Eext(C(s)) = αline · I(s)+ αedge ·−∇I2 +αterm ·Eterm. (4.5)

The most common image functional in this model is the image intensity function I.
The first term will simply attract the contour to lower or higher intensity values
depending on the αline value. Large positive values of αline tend to make the snake
align itself with dark regions in the image I(s), whereas large negative values of
αline tend to make the snake align itself with bright regions in the image.

The edge energy that attracts the contour towards high gradient values is squared
to narrow the edge-gradient response. Similarly, large positive values of αedge tend
to make the snake align itself with sharp edges in the image whereas large negative
values of αedge make the snake avoid the edges. Eterm is defined to find termination
of line segments and corners. Kass proposed to use the curvature of iso-contours in
a Gaussian smoothed image to attract the contours towards line termination.

4.2.1.1 User Constraint Energy

Constraint energy is applied to interactively guide the snake towards or away from
particular features. This energy helps the contour to overcome the initialization
problem or the sensitivity to noise.

Constraint energy was first proposed for the classical snake by allowing the user
to attach springs between points of the contour and fix their position in the image
plane. Kass define an energy in terms of spring (to attract the snake towards specified
points) and volcano (to repulse the snake from specified points) within the image
(Fig. 4.1).

The spring term attracts a contour point towards a spring point in the image
plane, with a given constant, spring constant. The active contour model is attracted
or repelled by the spring depending on this spring constant sign and value. The
volcano term acts as a repulsive force between a point on the image at a inverse
value of the distance from a point on the snake.

Balloon Force: Cohen [16,17] proposed an additional force that pushes the contour
in the direction normal to the contour. Since it can either inflate or deflate the
contour, this force is known as a balloon force, defined as:

Fballoon(s) = k�N(s), (4.6)
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Fig. 4.1 Classical Snake [after [12]]

where �N(s) is the normal unit vector, k is the weighting parameter representing the
strength of the balloon force, and the sign of k determines whether the model inflates
or deflates.

Incorporating an additional balloon force helps the user with the classical
problem of contour initialization when it is not close enough to the desired solution,
as shown in Fig. 4.2b. This force also reduces the model sensitivity to noise, and can
also push the model into object concavities. It should be noted that this force only
has a single direction for all of the evolved deformable models. Hence, to capture the
desired object perfectly the initial contour should be totally inside (or outside) the
contour. A snake without any additional force and in the absence of image energy
tends to shrink into a point to minimize the internal energy. Figure 4.2c shows this
condition.

Gradient Vector Flow: The basic idea of this method [18, 19, 41] is to replace the
external force term Eext(I) = ∇P(I) with a gradient vector field (ν), which can be
derived from the equilibrium state of the following partial differential equation:

νt = g(|∇ f |)∇2ν −h(|∇ f |)(ν −∇ f ). (4.7)

The first term in (4.7) is referred to as the smoothing term since it produces a
smoothly varying vector field. The second term involving (ν −∇ f ) is referred to
as the data term, since it encourages the vector field ν to be close to ∇ f . The weight
functions g(.) and h(.) are applied to the smoothing and data terms.
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Fig. 4.2 Deformable model with additional balloon force

The authors in [5] proposed the following weight functions:

g(∇ f ) = e−
|∇ f |

K

h(∇ f ) = 1− e−
|∇ f |

K . (4.8)

Using these weight functions, the gradient vector flow field will conform to the
distance map gradient near the relevant features, but will vary smoothly away
from them. The constant K determines the extent of the field smoothness and the
conformity gradient.

Figure 4.3 Illustrates the Gradient Vector Flow performance when a thin con-
cavity or sharp corner is present in the segmented object. The Gradient Vector
Flow force is able to attract the snake towards the desired contour and towards
concave areas. This would not be the case with conventional external energy, since
no external force attracts the snake towards that part of the image.
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Fig. 4.3 Additional force provided by Gradient Vector Flow for synthetic image segmentation;
(a) Initial contour defined as a circle in the image; (b) Vector flow visualization derived from the
image; (c) Segmentation result using Gradient Vector Flow: the snake captures the desired object;
(d) Segmentation result without additional force

4.2.1.2 Snake Optimization Method

Image segmentation using an active contour is formulated as a process of energy
minimization that evolves the contour. This minimization controls the model
deformation to reach the desired segmentation result. The term “snake” comes from
the “slip and slide” movement of the contour during this minimization process.
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Fig. 4.4 Local neighborhood in optimization using a greedy algorithm. The energy function is
evaluated at vt−1

i and each of the neighbors, using vt
i−1 and vt−1

i+1 to compute the internal energy
terms. The location with lowest energy is chosen as the new position vt

i

Greedy Algorithm

Using greedy algorithms optimization finds the solution incrementally by choosing
at each step the direction which is locally the most promising for the final result, i.e.
which provides larger energy decrease.

Figure 4.4 illustrates the optimization procedure using a greedy algorithm. The
energy function at the current point νt−1

i and each of its neighbors is computed
under consideration of adjacent contour points νt

i−1 and νt−1
i+1 . The location with

the smallest energy value is chosen as the new position of νt
i . The previous point

νt
i−1 has already been updated to the new position in the current iteration over the

contour, while νt−1
i+1 will be updated next.

At the first stage of the algorithm, all contour points are sequentially updated
within one iteration. At the second stage, the forming of corners is determined by
recalculating the rigidity energy terms with the updated points, and also by adjusting
the weighting rigidity parameter w2 for each contour point accordingly.

Dynamic Programming

Dynamic programming minimization was presented by Amini [20] to solve the
variational problem in energy minimization of active contour models. Dynamic
programming is different from variational optimizations in the sense that it ensures
a globally optimal solution with respect to the search space and numerical stability
by moving the contour points on a discrete grid without any derivative numerical
approximations. The optimization process can be viewed as a discrete multi-stage
decision process and is solved by a time-delayed discrete dynamic programming
algorithm. Dynamic programming bypasses local minima as it embeds the mini-
mization problem in a neighborhood-related problem. This is achieved by replacing
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the minimization of the total energy measurement by the minimization of a function
of the form:

E(ν0,ν1,ν2 . . .νn−1) = E1(ν0,ν1,ν2)+ E2(ν1,ν2,ν3)

+E3(ν1,ν2,ν3)+ · · ·+ En−2(νn−1,νn−2,νn−1). (4.9)

S(νi+1,ν1) = min
ν1

νi−1Si−1(νi,νi−1)+ Eelast(νi−1,νi)+ Erigid(νi−1,νi,νi+1)

+Eext(νi). (4.10)

Apart from the energy matrix corresponding to the optimal value function Si, a
position matrix is also needed so the value of νi minimizing equation (4.10) can
be stored. The optimal contour of minimum energy Emin(s) can be then found by
back-tracking from the end position represented in the matrix.

This process is iterated until the active contour finds an energy that does not
change significantly. It consists of a forward pass to determine the minimum energy
values for each νi and a backward pass to find the minimum energy path in the
position matrix.

Similar to minimization using the greedy algorithm, dynamic programming
allows hard constraints (e.g. minimum distance between snaxels) on the behavior
of the global minimum solution directly and naturally. The other advantage of this
method comes from the execution time and the required memory. The complexity
of this method is O(mn) with O(mn2) memory required, where n is the number of
points on the contour and m is the number of potential locations in the search space
to which every point is allowed to move during one optimization step.

Variational Method

This approach is based on the Euler–Lagrange condition in order to derive a
differential equation that can be solved to minimize the snake energy. For each
iteration, an implicit Euler forward step is performed with respect to the internal
energy, and an explicit Euler step with respect to the external image and constraints
energy terms.

The basic deformable model (in (4.2)) can be rewritten as:

E(C(s)) =
∫

Ω

1
2

(
w1(s)|C′(s)|2 + w2(s)|C′′(s)|2)ds+

∫

Ω

Eext(C(s))ds. (4.11)

Representing the integrand by E(s,C′,C′′), the necessary condition for the variation
to locally minimize E(C(s)) must satisfy the following Euler–Lagrange equation:

− (w1(s)C′)′ +(w2(s)C′′)′′ + ∇Eext(C(s)) = 0. (4.12)
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The equation can be solved by changing C over time t, then C is a function of the
contour s and time t → C(s,t). When the snake reaches a stable state Ct(s,t) = 0,
the solution of (4.12) is obtained. Thus, insertion of this term gives:

∂ Eext

∂ s
− (w1(s)C′)′ +(w2(s)C′′)′′ + ∇Eext(C(s)) = 0. (4.13)

If the sum of all external forces and image energy is Eext(s), the equation can be
solved numerically by using a finite difference approach and represented implicitly
in matrix multiplication form such as:

F = A.V, (4.14)

where A is a penta-diagonal banded matrix. This expression is correct for
snakes with fixed-point positions at their extremities or closed snakes (i.e.
C(0)=C(N −1)).

Generally, we assume that elasticity w1 and rigidity w2 are constant for both
discretized space and time during curve evolution, thus:

a1 = e1 =
w2

h4 b1 = d1 =
(w1

h4 + 4
w2

h4

)
c =

(
2

w1

h4 + 6
w2

h4

)
. (4.15)

To solve (4.14) iteratively, the successive over-relaxation method [21] can be
applied. In the two-dimensional image case, the resulting equations for evaluating
time t from time t −1 can be solved iteratively after matrix inversion using:

Vt = τ(A+ I)−1 · (Vt−1 + τF(xt−1,yt−1), (4.16)

I is the identity matrix, and τ(A+ I)−1 is also penta-diagonal.
This optimization approach does not guarantee a global minimum solution,

and requires estimates of high-order derivatives on the discrete data. Moreover,
hard constraints cannot be directly enforced. A desired constraint term like mean
or minimum snaxel spacing can only be enforced by increasing the associated
weighting term, which will force more effect on this constraint, but at the cost of
other terms.

4.2.2 Parametric Deformable Models

These deformable models represent the curve or surface in an explicit parametric
form during the model deformation. This representation allows for direct interac-
tion and gives a compact representation for real-time implementation. Parametric
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deformable models are usually too sensitive to their initial conditions because of the
non-convexity of the energy functional and the contraction force which arises from
the internal energy term.

B-Spline is often used as a representation of parametric deformable models [42].
In this case, the deformable model is split into segments by knot points. Each curve
segment C(t) = {x(t),y(t)} is approximated by a piecewise polynomial function,
which is obtained by a linear combination of basis functions βi and a set of control
points ν = {xi,y}. In general, however, representations using smooth basis functions
require fewer parameters than point-based approaches and thus result in faster
optimization algorithms [22]. Moreover, such curve models have inherent regularity
and hence do not require extra constraints to ensure smoothness [22, 23].

Both point-based and parametric snakes represent the model in an explicit way,
hence it is easier to integrate an a priori shape constraint into the deformable
model. Moreover, the user’s interaction can be accommodated in a straightforward
manner by allowing the user to specify some points through the desired contour
evolution. The inconvenience of this model lies in reduced flexibility in accounting
for topological changes during the evolution, although much effort has been spent
to overcome this limitation.

4.2.2.1 Internal Energy Definition

Similar to the discrete point-based snake, internal energy is responsible for ensuring
the smoothness of the contour. Actually, Kass proposed a linear combination of
the length of the contour and the integral of the square of the curvature along the
contour. Thus, in explicit contour representation, this energy can be defined as:

Econtour = w1

M∫

0

(x′(t)2 + y′(t)2)
1
2 dt + w2

M∫

0

(
x′′(t)y′(t)− x′(t)y′′(t)

(x′(t)2 + y′(t)2)
3
2

)2

dt. (4.17)

where the second term represents the curvature at point r(t).

4.2.2.2 Image Energy Definition

The most common image energy applied for the snake is defined as the integral of
the square of the gradient magnitude along the curve. The main drawback widely
known in using this energy is the lack of gradient direction. This information can be
used to detect edges, since at the boundary image gradient is usually perpendicular
to the curve. This direction should be incorporated into the image energy to make
the snake more robust for image segmentation.

Region-based energy. This region-based energy represents the statistical charac-
teristics in a region in the contour and provides snake boundary information. This
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is indeed very helpful when the contour is far away from the real contour to be
detected. For this purpose we assume two regions in the images (which can be
expanded two more times) with different probability distributions in which each
of these regions has different means and variances. Staib’s [24] formulation to
determine the region likelihood function can be used for this case:

Eregion = −
∫

S

log(P(f(s)|s ∈R))dS−
∫

S′
log(P(f(s)|s ∈R′))dS. (4.18)

Where R and R′ denote the different regions of the curve and S and S′ indicate
the position inside or outside the region, respectively. The energy will be maximum
when R = S and R′ = S′, and the regional based energy can be reformulated as:

Eregion = −
∫

S

log

(
P(f(s)|s ∈R)
P(f(s)|s ∈R′)

)
dS. (4.19)

4.2.2.3 External Constraint Energy Definition

External constraint, proposed by Kass, can be integrated in such a way that the user
might specify a few points which should lie on the contour to be detected. It can
be performed by adding an energy term which is the distance between these given
points and the corresponding closest points on the curve.

As mentioned previously, image segmentation finally yields the totality of the
energy minimization process that will place a regular contour at the edge of the
object which we want to detect. Sometimes, we do not require the global optimum
solution, since the initial contour can be provided interactively by the user to obtain
a rough initial contour near the edge, even though a robust optimization scheme that
converges to the minimum solution in an acceptable number of iterations is strongly
desired. Some examples of image segmentation results using a Bspline snake which
integrate gradient and region based energy are demonstrated in Fig. 4.5.

4.2.3 Geometric Deformable Models (Active Contours)

These models were introduced independently by Caselles [23] and Malladi [25] to
propose an efficient solution addressing the primary limitations of the parametric
deformable model using a geometric deformable model (level set). Advantages of
the implicit contour formulation of the geometric deformable model over parametric
formulation include: (1) no parameterization of the contour, (2) topological flex-
ibility, (3) good numerical stability, and (4) straightforward extension of the 2D
formulation to higher dimensions.
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Fig. 4.5 B-Spline snake performance with respect to noisy image (i.e. echo cardiogram): (a) Initial
contour by means of manual contouring; (b) Segmentation using only gradient-based energy;
anatomical details of the upper part of the heart can be captured since this region has a bright
area, but not in the lower part due to the noises; (c) Region-based energy, noisy problems can be
solved but not anatomical details in the upper part; (d) Result using combination of 75% region-
based and 25% edge-based energies; the advantage of both energies can be taken and limitations
can be solved, thus enabling a better result

These models are based on curve evolution theory and the level set method
[23, 26] proposed by Sethian and Osher [27] to track the surface interface and
shape evolution in physical situations. Using this approach, curves and surfaces are
evolved using only geometric measures, resulting in an evolution that is independent
of parameterization. As in the other types of deformable models, the evolution
is coupled with the image data in such a way that the process recovers object
boundaries. The evolving curves and surfaces can be represented implicitly as
a level set of a higher-dimensional function, so the evolution is independent of
parameterization. As a result, topological changes can be handled automatically.

4.2.3.1 Curve Evolution

Let C(t, p) be a kind of closed curves where t parameterizes the family and p the
given curve, where 0 ≤ p ≤ 1. As a closed curve, we assume that C(0,t) = C(1,t)
and similarly for the first derivatives for closed curves. Using this curve definition,
the curve shortening flow, in the sense that the Euclidean curve length shrinks as
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quickly as possible when the curve evolves, can be obtained from the first variation
of the length functional [28]:

∂C
∂ p

= κ�N, (4.20)

where κ is the local mean curvature of the contour at a point, and �N is the unit inward
normal. For the intrinsic property of being closed, the curve under the evolution
of the curve shortening flow will continue to shrink until it vanishes. By adding a
constant ν , which we will refer to as the “inflation term,” the curve tends to grow
and counteracts the effect of the curvature term when κ is negative [29]:

∂C
∂ p

= (ν +κ)�N. (4.21)

A stopping evolution term can be introduced into the above framework by changing
the ordinary Euclidean arc-length function along the curve C to a geodesic arc
length, by multiplying with a conformal factor g, where g = g(x,y) is a positive
differentiable function that is defined based on the given image I (x, y). From the
first variation of the geodesic curve length function, we obtain a new evolution
equation by combining both the internal property of the contour and the external
image force:

∂C
∂ p

= g(ν + κ)�N −∇g. (4.22)

Equation (4.22) gives us an elegant curve evolution definition for deformable model
formulation applicable for curve evolution analysis. The main problem arises then
in relation to how to represent the contour efficiently in terms of geometric and
topologic stability as well as numerical implementation. One of the most common
methods for representing the contour in using this scheme is the level set concept.

For a more detailed explanation of curve evolution in terms of image segmen-
tation, interested readers are suggested to refer to the works of Casseles [23, 30],
Kichenassamy [29], and Yezzi [31].

4.2.3.2 Level Set Concept

Curve evolution analysis using level set method views a curve as the zero level set
of a higher-dimensional function φ(x,t). Generally, the level set function satisfies

φ(x,t)

⎧⎨
⎩

φ(x,t) < 0 insideΩ(t)
φ(x,t) = 0 C(t)
φ(x,t) > 0 outsideΩ(t)

,

where the artificial time t denotes the evolution process, C(t) is the evolving curve,
and Ω(t) represents the region enclosed by C(t).

Figure 4.6 illustrates an important property of the level set method in handling
the topological change in the object of interest. The first image shows a closed curve
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Fig. 4.6 Level set visualization

Fig. 4.7 Level set definition in three-dimensional objects: (a) An object represented implicitly
using a 0th level set; (b) An example of a plane in the distance map representing the level set of
the object

shape with a well-behaved boundary. The red surface below the object is a graph of
a level set function φ determined by the shape, and the flat blue region represents the
x− y plane. The boundary of the shape is then the zero-th level set of φ , while the
shape itself is the set of points in the plane for which φ has positive values (interior
of the shape) or zero (at the boundary).

Extension of the level set method to higher dimensions is also possible and
straightforward as shown in Fig. 4.7. Topological change in three dimensional space
in this kind of deformable model can be observed in Fig. 4.8, where an initial surface
defined as a sphere evolves to become a two-connected torus.

Mathematically speaking, instead of explicitly calculating the curve propagation
directly on C, we can transform the contour implicitly using level set representation.
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Fig. 4.8 Level set representation advantage in handling the topological change during segmenta-
tion. Initialized using a sphere the method can detect the connected chain as the final result

Thus, contour evolution, which is ∂C
∂ p = F�N, can be transformed in level set

representation:
∂φ
∂ t

= F |∇φ |. (4.23)

It would be very hard to elaborate upon this topology transformation using
parameterized curve representation. One would need to develop an algorithm able to
detect the moment the shape split (or merged), and then construct parameterizations
for the newly obtained curves.

4.2.3.3 Geodesic Active Contour

Slightly different from the other models previously explained, this model does
not impose any rigidity constraints (i.e. w2 = 0); hence, the minimized energy is
formulated as:

E(C) =
1∫

0

g(|∇I(C(s))|)ds︸ ︷︷ ︸
attraction term

∣∣∣∣∣∣
∂C
∂ p︸︷︷︸

∣∣∣∣∣∣
regularity term

dp. (4.24)

Where g is a monotonically decreasing function, ds is the Euclidian arc-length
element and L the Euclidian length of C(t, p).
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Using this formulation, we aim to detect an object in the image by finding
the minimal-length geodesic curve that best takes into account the desired image
characteristics. The stated energy in (4.24) can be minimized locally using the
steepest descent optimization method, as demonstrated in [30]. It shows that in
order to deform the contour towards the minimum local solution with respect to
the geodesic curve length in Riemannian space, the curve evolves according to the
following equation:

∂C
∂ t

= gκ�N − (∇g ·�N)�N. (4.25)

The segmentation result can be achieved in the equilibrium state where ∂C
∂ t = 0.

Following the level set method for the curve evolution in (4.25), we obtain the curve
evolution using the geodesic active contour in terms of the level set:

∂φ
∂ t

= gκ|∇φ |+ ∇g∇φ . (4.26)

Finally, in order to accelerate the convergence and place the model in the correct
boundary, we integrate an elastic term in the curve evolution that will pull the model
towards the desired object [30] and writing the curvature κ explicitly:

∂φ
∂ t

= g ·div

(
∇φ
|∇φ |

)
|∇φ |+ ∇g∇φ︸ ︷︷ ︸

elastic term

+ν∇g|∇φ |. (4.27)

The role of this elastic term can be observed in Fig. 4.9 in which the upper-row
active contour evolves without any elastic term, and hence the converged contour
does not match the desired contour.

4.2.3.4 Chan–Vese Deformable Model

One limitation of the geodesic active contour lies in its dependence on image energy
represented by the gradient. In order to stop the curve evolution, we need to define
g(|∇I|) which defines the edges of the object. In practice, discrete gradients are
bounded, and so the stopping function is never zero on the edges, and the curve
may pass through the boundary. Moreover, if the image is very noisy, the isotropic
smoothing Gaussian has to be strong, which will smooth the edges as well.

To overcome these problems, Chan and Vese [32–34] proposed stopping process
based on the general Mumford–Shah formulation of image segmentation [15], by
minimizing the functional:

EMS( f ,C) = μ .Length(C)+ λ
∫

Ω

| f − f0|2dxdy +
∫

Ω\C

|∇ f |2dxdy, (4.28)

where f0 : Ω → R is a given image to be segmented, and μ and λ are positive
parameters. The solution image f is formed in smooth regions Ri and sharp
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Fig. 4.9 Role of the elastic term in geodesic active contour: In the upper row, the model is evolved
without the elastic term; in the lower row, an elastic term is used

boundaries C. A reduced form of this problem consists simply in the restriction
of EMS to piecewise constant functions and finding a partition of Ω such that f in Ω
equals a constant.

To minimize the functional energy, Chan and Vese proposed a two-phase
segmentation as follows:

min
C,Co,Cb

⎧⎪⎨
⎪⎩μ

∫

Ω

δ (φ)|∇φ |dxdy + ν
∫

Ω

H(φ)dxdy + λo

∫

inside(C)

| f − co|2H(φ)dxdy+

⎫⎪⎬
⎪⎭

+λo

∫

outside(C)

| f − co|2(1−H(φ))dxdy,

where φ is the level set function and H(φ) is the Heaviside function.
Generally, the above deformable models implemented by means of the level set

method suffer from a slower speed of convergence than parametric deformable mod-
els due to their computational complexity. Application of the Chan-Vese deformable
model to segmentation on a low signal, noisy image is shown in Fig. 4.10.

4.3 Comparison of Deformable Models

Whereas geometric deformable models often have been presented as an improve-
ment (and even superior) to classical snakes [23, 25, 30], one might argue that they
actually are complementary to each other. In a wide range of image segmentation
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Fig. 4.10 Image segmentation using a Chan–Vese deformable model: (a) The original image;
note that it has a very weak border; (b) The degraded image with added salt-and-paper noises;
(c) A segmentation result represented as a binary mask (the white area is the detected object)

applications there is a trade-off between desirable properties. Instances of such
important trade-offs are the level of automation versus control, and topological
flexibility versus a priori constraints. Other important properties are the role of the
initialization, existence of a unique solution, dependence of the result on parameter
choice and the robustness of the method with respect to noise, and imperfect image
data.

Table 4.1 summarizes the main properties of a number of deformable model types
which have been described in the previous section. We categorize the deformable
models into three approaches following the previous presentation.

Classical and explicit parametric snakes are well-known in performing well if the
initialization is close to the desired objects. Moreover, since a parameterization is
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Table 4.1 Comparison of different types of deformable models. We indicate whether
the approach satisfies some properties (+) or not (−) or it is partially fulfilled ( ).
These properties are topological flexibility (a); steady final state (b); possibility of
segmenting multiple objects (c); support to a priori knowledge (d); independence
from initialization (e); absence of ad-hoc parameters (f)

Deformable model type a b c d e f

Discrete Points
– Classical model − − − −
– Balloon − − − + −
– Gradient vector Flow − − − + +

Parametric Snake
– B-Spline − − + −

Geometric
– Geodesic active contour + + + − +
– Vesse–Chan model + + + − +

available, morphological properties can directly be derived from the representation.
A drawback is that they are easily trapped by spurious edges representing local
minimum solution when the initialization is poor. This problem has been tackled by
the balloon approach, where an additional inflation force pushes the level sets over
insignificant edges. This introduces an additional arbitrary parameter on which the
result strongly depends.

Interestingly, the same difference is present between the classical parametric
snake model and its geodesic version. In the latter approach, one parameter less is
required, but as a consequence the result depends more strongly on the initialization.

4.4 Applications

4.4.1 Bone Surface Extraction from Ultrasound

In order to extract bone surfaces from ultrasound images by following the expert
reasoning from clinicians, bones can be characterized by a strong intensity change
from a bright pixel group to a global dark area below since the high absorption rate
of bones generates an acoustic shadow behind them. Discontinuities are normally
not present on the bone surface; hence the segmentation method should produce a
smooth contour.

Considering all of these, an open active contour initialized below the edge in
the acoustic shadow was proposed, going from one side of the image to another,
and evolving vertically towards the top of the image until it meets the bone surface.
A posterior treatment is then necessary to choose only real bone surface points in
the image. A deformable model with an external balloon force is applied for this
segmentation, but we only take into account the vertical component of the normal
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Fig. 4.11 Snake evolution, initialized with a simple contour at the bottom of image (a) and then
evolved until it reaches convergence

to the curve and the horizontal point positions of the snake are fixed. This approach
allows the snake to move in the vertical direction. We also require an open contour
with all points able to freely move vertically, as illustrated in Fig. 4.11.

Then the discretization of the energy minimization scheme gives a stiffness
matrix A similar to (4.15), except for the elements related to the two-model
extremities. The elements of the matrix A become:

a0 = aN = 2
w1

h2 + 3
w2

h4 b0 = bN = −
(w1

h2 + 3
w2

h4

)
.

A new local energy definition [35] is proposed to accommodate the image intensity
changes and reduce the noise effect during the segmentation process. This regional
energy can be defined as a difference between mean intensities in the regions above,
below, and in the considered location. When this difference is negative, then a
penalization value is applied, and the final energy term is defined as the product
of this region-based measurement and the gradient term, and Fig. 4.12 illustrates the
role of this energy in deformable model evolution.

Since the active contour initialization goes from one side to another in the image,
and considering that the real bone contour does not always behave in a similar
fashion, we need to perform a posterior point selection in which only points having
a high enough intensity are retained.

A method has been proposed to improve its performance [36] by applying a
Gradient Vector Flow in the narrow band around the evolved contour. Furthermore,
addressing serial ultrasound images, snake initialization for the next slice can be
obtained from the retrospective results of previous slices. This Gradient Vector
Flow imparts bi-directional force to the evolved contour; in consequence, the model
is capable of moving back when placed above the desired contour. To reduce
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Fig. 4.12 Role of the regional energy term in bone surface segmentation. The model on the left
evolves without a regional term, while such a term is applied on the right hand figure

computation time, Gradient Vector Flow and other image energy computations are
confined within a thin narrow band around the evolved curve.

For the purpose of bone surface reconstruction from ultrasound imagery, other
enhancements have been proposed [37] following the presented model. A set of
bone contours is first extracted from a series of free-hand 2D B-Mode localized
images, using an automatic segmentation method based on snakes with region-based
energy as previously described. This data point-set is then post-processed to obtain a
homogeneous re-sampling point-grid form. For each ultrasound slice, the algorithm
first computes an approximation of the bone slice center. Using these central points,
it approximates a line corresponding to the central axis of the bone. Then, for each
slice, it: (a) updates the value of the central point as the intersection point of the line
and the corresponding slice plane; (b) casts rays from the center towards the surface
at regular intervals (spaced by a specific angle); (c) computes the new vertex as the
intersection between rays and segments connecting the original points.

Three-dimensional B-Spline is applied to approximate the surface departing from
these points. The method ensures a smooth surface and helps to overcome the
problem of false positives in segmentation. Model reconstructions from localized
ultrasound images using the proposed method are shown in Figure 4.13 and 4.14.

4.4.2 Spinal Cord Segmentation

4.4.2.1 Spinal Cord Measurements

This study has been conducted for quantitative assessment of disease progression
in multiple sclerosis using MRI. For this study we use IR-FSPGR volume data as
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Fig. 4.13 Reconstructed surface of a real radius. Results for different numbers of control points c

Fig. 4.14 Reconstructed
radius and ulna. Data scanned
from a real subject

shown in Fig. 4.15, in which the spinal cord under analysis can be characterized by
a bright structure against a dark background (representing CFS), normally with a
cylindrical topology. Segmentation difficulties can arise due to artifacts, noise, and
proximity to other structures such as vertebrae.
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Fig. 4.15 MRI Image in which the spinal cords need to be segmented

Atrophy is generally assessed by measuring the cross-sectional areas at specific
levels (typically C2–C5) along the cervical cord. This protocol introduces several
uncertainties, including the choice of the level at which the measurements should be
performed, the cord orientation, as well as the cord segmentation process itself. To
provide non-biased area measurements, an MRI image, or part of the image, often
needs to be re-formatted or acquired with slices perpendicular to the cord.

Moreover, the spinal cord cross-sectional area has often been measured either
manually or using intensity-based 2D processing techniques. The limitations of
such methods are various: measurements are restricted to a predefined level at
which cords and slices are orthogonal; intensity-based segmentation is hindered
by intensity variations caused by surface coils typically used during acquisition;
2D measurements are more prone to being biased by partial volume effects than
3D measurements; manual analysis is more time-consuming and more sensitive to
intra- and inter-operator variability.
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Fig. 4.16 Segmentation of an MRI Image using a naive geodesic active contour

4.4.2.2 Segmentation Using Geodesic Active Contour

We propose to apply a geometric deformable model to perform the segmentation
without any image preprocessing of the data image. The model is initialized
by placing a sphere in the spinal cord and letting this sphere evolve until the
process reaches the convergence. Figure 4.16 shows that the segmentation method
encounters difficulties in extracting the spinal cord at lower levels of vertebrae,
due to the proximity of these organs in the image. Using a surface evolution-based
segmentation method, such as geodesic active contour, the evolved surface passes
over the vertebrae border.

We propose an intensity integration approach to solve this organ concurrence
problem in a specific area, by applying a contrast-based selection to the surface
of the organ in order to drive the curve evolution bi-directionally according to that
contrast. Figure 4.17 illustrates the idea of contrast-based selection: suppose that the
gray box in the middle is the spinal cord, the two black boxes represent the vertebrae
and the red contour is the evolved curve. When the contour is placed in the spinal
cord then ∇g and ∇φ have different signs and the contour should be evolved towards
the spinal cord border. But, when the contour placed in the vertebrae then ∇g and
∇φ have the same sign and the contour should be evolved inversely.

Such an approach can be integrated directly into the geodesic active contour’s
evolution as:

∂φ
∂ t

=
[

g ·div

(
∇φ
|∇φ |

)
|∇φ |+ sign(∇g∇φ)(∇g∇φ)+ ν∇g

]
‖∇φ‖.
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Fig. 4.17 Selective contrast

Fig. 4.18 User interface places the spheres in the spinal cord area (a) and the initialization begins
(b and c)

We also enhanced the interactivity of the method, such that the user is allowed to
initialize the method using various spheres in the spinal cord. These spheres can
be provided interactively by means of a user interface in order to browse through
axial slices and then locate the center of the sphere in that slice. It is not necessary
to place the spheres in the middle of the spinal cord, but they should be situated
entirely inside the spinal cord region in the MRI image.

The curve evolution process of the proposed deformable model for spinal
cord segmentation purposes, deviating from the initial curve in Fig. 4.18, prior to
reaching the convergence, is visualized in Fig. 4.19.

Applying this type of geometric deformable model, we find that the spinal cord
can be obtained with better quality in a shorter computation time.
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Fig. 4.19 Surface evolution during the segmentation process of spinal cord from the MRI image
(the number in the left corner of each image represents the number of elapsed iterations)

4.5 Conclusion

This chapter describes some of the basic concepts of deformable models and their
application in different cases of image segmentation. Image segmentation plays a
critical role in almost all aspects of image analysis; it has opened a wide range of
challenging problems oriented towards accurate featuring and geometric extraction
of different types of images. The deformable model successfully overcomes the
limitation of classical low-level image processing by providing an elegant and
compact representation of shapes and objects in image analysis.
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To gain the best performance of segmentation, the particular deformable model
should be carefully chosen according to the application context. In general practice,
the parametric deformable model runs faster than geometric ones but its typical
shape representation is considerable lower.
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Chapter 5
Fat Segmentation in Magnetic
Resonance Images

David P. Costello and Patrick A. Kenny

5.1 Introduction

Over the past two decades, many authors have investigated the use of magnetic
resonance imaging (MRI) for the analysis of body fat and body fat distribution.
However, accurate isolation of fat in MR images is an arduous task when performed
manually. In order to alleviate this burden, numerous automated and semi-automated
segmentation algorithms have been developed for the quantification of fat in MR
images. This chapter will discuss some of the techniques and models used in these
algorithms, with a particular emphasis on their application and implementation.

When segmenting MR images the largest variable in the process is the image
itself. What acquisition parameters give optimal image quality, in terms of signal to
noise ratio (SNR), contrast, uniformity, and boundary definition? An appropriate
MRI pulse sequence aims to generate adequate image contrast in the shortest
imaging time. MRI can also introduce measurement errors and image artifacts as a
result of the imaging process, which will complicate the segmentation process. The
potential impact of artifacts such as intensity inhomogeneities and partial volume
effect (PVE) on image segmentation will be discussed briefly.

Body fat volume and fat distribution provide key risk indicators for a number of
diseases including non-insulin-dependent diabetes mellitus (NIDDM) and coronary
heart disease (CHD) [1]. Traditionally, anthropometric measurements such as body
mass index (BMI), waist to hip ratio, abdominal circumference, and caliper tests
have been used to estimate total body fat and body fat distribution [2–4]. These
methods indirectly infer an estimate of body fat based on a known correlation
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with underwater weighing [3]. Obesity is defined in terms of BMI [5], which is
expressed as:

BMI =
Weight(kg)
Height2 (m2)

. (5.1)

However, BMI is a metric that fails to distinguish fat mass from lean mass. This
renders BMI ineffective as a metric for assessing sample groups such as athletes,
who because of their increased muscle mass can be categorized as overweight or
obese even if their percentage body fat is below normal.

Body fat distribution can be analysed using volumetric images of the body.
Both MRI and computed tomography (CT) are sophisticated volumetric imaging
techniques that facilitate delineation of regional fat deposits in the body [6]. It is
difficult to justify whole body CT for fat quantification because of its high radiation
dose, especially when MRI exists as a non-ionising alternative [7]. Seidell et al. [8]
show a strong correlation between fat volumes measured using both modalities. As
a result of this, radiation dose remains the main reasons for selecting MRI over CT
to analyse body fat.

5.2 Imaging Body Fat

Image acquisition is the most important step when quantifying fat with MRI. Good
contrast, resolution, SNR and homogeneity are required for accurate image segmen-
tation. Contrast in MR images depends on proton density, longitudinal relaxation
time (T1) and transverse relaxation time (T 2). As a result of the significant
difference in T1 between fat and soft tissue, T1-weighted (T1w) MR sequences are
used to enhance fat contrast. Numerous MRI pulse sequences are used to generate
high contrast images for fat analysis, including: spin echo (SE), gradient echo (GE),
Inversion recovery, three-Point Dixon method and water saturated (WS) balanced
steady-state free precession (WS b-SSFP or TrueFISP) pulse sequences fat [6,8–17].

Both SE and GE sequences are used to image body fat [9–15]. GE sequences
are faster than SE but provide decreased homogeneity, lower SNR and reduced T1
contrast. However, in some circumstances short scan times are necessary to reduce
motion artifact. Fast-SE1 (FSE) sequences reduce imaging time while maintaining
homogeneity. Barnard et al. [9], compared fast and conventional spin echo pulse
sequences and found good correlation between the two. However, when compared
to GE sequences, FSE sequences are relatively slow for whole body imaging [18].
Brennan et al. [15], successfully used a T1w GE pulse sequence to demonstrate the
relationship between whole body fat and BMI.

A number of authors have used advanced pulse sequences to improve contrast
between fat and soft tissue. One variation on Gradient echo pulse sequence is a
b-SSFP sequence. Both WS [19] and non-WS b-SSFP [6] pulse sequences have

1Fast spin echo techniques acquire between 2 and 16 lines of k-space during each TR.
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Fig. 5.1 (a) Whole body MR scan acquired in 6 stations; (b) the stitched image after post
processing and (c) stitched image with no post processing

been used to image body fat. Peng et al. [19] proposed using a WS b-SSFP pulse
sequence for fat quantification. WS b-SSFP [16, 19] allows for rapid acquisition
of high contrast images containing fat and soft tissue. Peng et al. [19] found that
this sequence performed better than a WS Fast-SE sequence and simplifies the
segmentation process (see Sect. 5.4.2) [16].

Once a pulse sequence is selected, sequence parameters (e.g. repetition time
(TR), echo time (TE), number of signal averages (NSA) and echo train length)
should be set to optimize both acquisition time and image contrast. Acquisition time
is a key factor when selecting a pulse sequence, as long scan times increases the
likelihood of motion artifacts. The presence of motion artifact in the visceral cavity
can make it very difficult to quantify fat. Scan time can be reduced by shortening
acquisition time, reducing the NSA and increasing the echo train length. Changing
these factors can also lead to a decrease in image contrast and SNR, which should
be investigated prior to scanning large cohorts of patients.

There are a number of other imaging parameters that must also be considered.
These include field of view (FOV), scan orientation, matrix size, slice thickness, and
slice gap. FOV size affects the severity of inhomogeneities across the image.
A larger FOV results in a less homogeneous B–field (magnetic–field) across the
image. Homogeneity is particularly important when acquiring coronal whole body
data sets. Consequently, it is normal practice to split a whole body scan into a
number of smaller sections, known as stations, to reduce inhomogeneities caused by
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Fig. 5.2 (a) Intensity
corrected whole body image
and (b) whole body image
with no intensity correction

variation in the B–field. The resultant sections are then stitched together to form a
whole body data set as illustrated in Fig. 5.1 and 5.2. Figure 5.1c and 5.2b illustrate
the intensity differences that can occur between stations in the same slice.

Intensity differences between stations for tissues of the same class can hamper
image segmentation. Brennan et al. [15] describe a method of histogram matching
to compensate for intensity differences between each station. The first step is
to identify the soft tissue peak in the histogram of each station. After which,
all soft tissue peaks are aligning to match the gray-scale distribution across all
stations. Images are then stitched according to the coordinates in the DICOM header
information, illustrated in Fig. 5.1b. Transverse MR images of the body are often
used in the literature to image body fat. Opting to use transverse orientation over
coronal has a number of advantages. Transverse images allow the use of a smaller
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FOV, which reduces non-uniformities in the image. Smaller self-contained sections
also remove the need for post processing such as image stitching and histogram
matching. Transverse images of the abdomen make it possible to get an estimate of
visceral fat volume from a small number of sample slices, which reduces scan time
significantly [20].

Slice thickness and voxel size both influence SNR and PVE. Larger voxels
increased SNR but increase the incidence of partial volume voxels (PVE is discussed
in Sect. 5.3.1). Therefore, it is important to find a balance between SNR and PVE
to optimize the segmentation process. Increasing the gap between slices can reduce
acquisition time without compromising image quality. A slice gap of 100% will half
acquisition time. Fat volume in the gap can be estimated using interpolation.

5.3 Image Artifacts and Their Impact on Segmentation

5.3.1 Partial Volume Effect

PVE occurs when a single voxel contains a mixture of two or more tissue types,
(e.g. at the interface of fat and soft tissue or fat and air), resulting in blurring
at boundaries. Figure 5.3 illustrates the effect of the PVE on subcutaneous fat.
MR images have limited resolution which increases the probability of the PVE
occurring [21]. Voxels affected by the PVE have an intermediate gray level intensity,
which is determined by the proportion of each tissue type contained within that
voxel [22]. This effect is observed at interfaces between gray and white matter in
the brain and fat and soft tissue throughout the body. The PVE can cause fuzziness
(or uncertainty) at the boundaries of two tissues classes [8]. This inhibits the use of
edge detection methods due to ambiguity at the interface of tissue classes leading to
a lack of clear edges [8, 23].

Edge-based segmentation methods aim to find borders between regions by
locating edges (or boundaries) within images. MR images have a relatively low
resolution and SNR when compared to other modalities such as CT. PVE and low

Fig. 5.3 (a) T1w GE image containing fat, soft tissue, and background (b) is a profile through plot
of the region outlined in red in image (a)
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SNR can result in uncertainty at the boundary of objects in MR images which
limits the use of edge detection algorithms [8]. Figure 5.3b illustrates the problem
encountered by edge detectors when faced with the PVE. Where does fat stop and
background start? The use of edge detection algorithms can lead to incomplete
segmentation of boundaries in MR images. PVE is a three-dimensional phenomenon
and can affect large volumes of tissue in a local area. This can affect the performance
of global segmentation techniques, discussed in Sect. 5.4.

5.3.2 Intensity Inhomogeneities

Intensity inhomogeneities can have a significant impact on segmentation and
quantitative analysis of MR images. They are caused by non-uniformity in the RF
field (B1), irregularities in the main magnetic field (B0), susceptibility effects of
normal tissue and receiver coil sensitivity profile [24]. This artifact can cause the
appearance of skewed or bimodal fat peaks in the image histogram [25]. As a result,
clinical MR images require some processing before segmentation and analysis can
take place. Inhomogeneities in MR images can be modeled as a multiplicative bias
field [23]. The bias field is characterized as a gradual change in intensity within
segmentation classes across the entire image which cannot be attributed to random
noise [23]. It can degrade the performance of the intensity–based segmentation
algorithm, as the model assumes spatial invariance between tissues of the same class
across the entire image. An expression for the biased image is given in (5.1).

fbiased = foriginal (x,y)β (x,y)+ n(x,y), (5.2)

where fbiased is the degraded image, forignal is the image without degradation or noise
and n(x,y) is random noise. A number of approaches are investigated in the literature
for the correction of the bias field (26–30). The impact of intensity inhomogeneities
on thresholding is illustrated in Fig. 5.4.

Siyal et al. [26] and Rajapakse et al. [23] reviewed a number of approaches
to reduce the appearance of the intensity inhomogeneities. These approaches can
be split into two categories, retrospective and prospective modeling. Prospective
modeling uses prior knowledge of the bias field, which can be obtained by imaging
a homogeneous phantom. Homogeneous phantoms only provide a good estimate of
the bias field for objects of similar size to the phantom. When imaging patients,
the dimensions of the scanned volume can vary from patient to patient and also
between sections of the same patient (e.g. the legs and the torso). The volume of the
area being imaged changes the loading on the receiver coils’ in the MRI scanner,
which in turn alters the coils sensitivity profile [27]. To account for this Murakami
et al. [28] performed a calibration scan directly on the patient to estimate the bias
field. Prospective modeling of the bias field can be impractical for studies containing
large numbers of patients, as imaging time increases due to the need for additional
phantom/patient scans [27].
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Fig. 5.4 (a) Ideal unbiased image (b) Product of the ideal image and bias field, (c) and (d) are the
corresponding thresholded images

Retrospective methods are more practical to implement, as they are based on
image processing and do not require any additional scan time. A number of methods
to retrospectively correct the bias field were used in the literature [27, 29–32]. In
an MR image, the bias field is considered to have a low spatial frequency, while
anatomical structures are likely to consist of higher spatial frequencies. Therefore,
it is possible to model the bias field based on the low frequency components
of the original image [33]. This model can then be used with (5.2) to correct
the inhomogeneity. Guillemaud et al. [34] proposed a method that changes the
multiplicative bias field into an additive one, by applying homomorphic filtering
to the logarithmic transform of the image data. An extension to this correction
method which combines homomorphic filtering and normalized convolution was
also proposed by Guillemaud et al. [32]. Both of these methods can affect high
frequency components in the image. However, the second approach uses normalized
convolution to compensate for this.
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Yang et al. [35] proposed the use of overlapping mosaics to segment fat in MR
images affected by intensity inhomogeneities. This segmentation technique is an
example of adaptive thresholding and is discussed further in Sect. 5.4.6.

5.4 Overview of Segmentation Techniques Used to Isolate Fat

Most of the segmentation algorithms discussed in this section are ‘hard segmenta-
tion algorithms’, i.e. a definite label is assigned to every voxel in the image (e.g. fat
or non-fat). Some consideration will be given to soft segmentation algorithms and
their usefulness in dealing with the PVE. These algorithms take into consideration
the proportion of each tissue type in every voxel.

Once an image has been segmented, the volume of fat (VF) contained within an
image is calculated using:

VFat = NFat Voxels ×Vvoxel. (5.3)

where NFat Voxels is the number of voxels classified as fat in the image and Vvoxel

is the volume of a single voxel. The total fat in kilograms can be calculated by
multiplying this value by the density of fat [15].

5.4.1 Thresholding

Thresholding is the simplest forms of image segmentation. It is a real-time segmen-
tation technique that is both fast and computationally inexpensive. Thresholding
transforms a gray-scale image f (i, j), into a binary image g(i, j), based on a
threshold value, T . The process is summarized as:

g(i, j) = 1 for f (i, j) > T,

g(i, j) = 0 for f (i, j) ≤ T. (5.4)

In its simplest form thresholding is a manual process in which the user interactively
selects a threshold value (T ), based on the distribution of gray-levels in the image
histogram, to create a binary image similar to those shown in Fig. 5.5.

Manual thresholding, like all subjective processes, is open to inter and intra-
operator variability. Figure 5.5c, d are examples of alternative segmentation results
that were obtained using alternative threshold values.

At the outset, some authors used manual thresholding to quantify fat in MR
image. However, in an effort to reduce subjectivity, Chan et al. [11] set a strict
protocol for threshold selection. The threshold was selected as the minima between
the soft tissue and fat peaks in the image histogram. Chan’s method shows good
correlation with BMI for a sample group of patients [11]. One drawback of this
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Fig. 5.5 (a) T1-Weighted GE image (b) manually thresholded image (c) over-thresholded
(d) under-thresholded (e) image histogram

approach is that MR image histograms can have multiple minima between tissue
peaks as a result of random noise and inhomogeneities. This can cause ambiguity
when manually selecting a threshold value. Another approach used in the literature
is to preset a threshold for all subjects based on the manual analysis of a group of
healthy controls [13, 36]. This system of segmentation is very rigid and can require
user interaction to reclassify mislabelled pixels [13]. One way to avoid variability is
to automate the process of thresholding to select an optimum threshold value.

5.4.2 Selecting the Optimum Threshold

Subjectively choosing an image threshold is a relatively simple task. However, the
objective selection of an optimum threshold can be much more complex. Many
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algorithms have been developed for the automated selection of optimum thresholds
(see, e.g., Zhang et al. [37], Sezgin et al. [38]). Six categories of automated thresh-
olding, including histogram shape information, clustering and entropy methods have
been proposed [38]. Histogram–shape–based methods threshold an image based on
the peaks, valleys, or curvature of the smoothed images histogram. Clustering–based
methods group the elements of an image histogram into two or more tissue classes
based on a predefined model. A variety of techniques have been proposed in the
literature for automatic threshold selection in gray-scale images. These methods
include shape-based algorithms including peak and valley thresholding [39,40] and
clustering methods such as the Otsu method [41].

The Otsu method is one of the most referenced thresholding methods in the
literature for finding an optimal threshold [41,42]. This method is a non-parametric,
unsupervised clustering algorithm used for the automatic selection of an optimal
threshold [41]. Optimal thresholds are calculated by minimizing the weighted sum
of within-class variance of the foreground and background pixels. The weighted
sum of within-class variance, σ 2

w, can be expressed as:

σ 2
w = Wbσ2

b
+Wf σ 2

f
, (5.5)

where Wb and Wf are the number of voxels in the background and foreground,
respectively, and σ2

b
and σ 2

f
are the variance in the background and foreground.

Otsu’s thresholding is an iterative algorithm which calculates all possible
threshold values for the image and the corresponding variance on each side of the
threshold. The threshold is then set as the value which gives the maximum value
for σ2

w.

Otsu Algorithm

• Compute histogram
• Set up initial threshold value
• Step through all possible thresholds

– Compute σ 2
w for each one

• The optimum threshold corresponds to the maximum σ 2
w

Thresholding using this method gives satisfactory results when the number of voxels
in each class is similar. MR images used for the analysis of body fat usually contain
at least three tissue classes, soft tissue, fat and background. An extension of the Otsu
method known as Multilevel Otsu thresholding can be used to segment images with
more than two tissue classes. The Otsu method was used in Fig. 5.6 to segment fat,
soft tissue and background.

Using Multilevel Otsu thresholding complete segmentation is not always possible
as illustrated in Fig. 5.6b. To compensate, a morphological hole–filling operation
was carried out resulting in Fig. 5.6c. Lee and Park [43] found that when foreground
area in an image is small relative to the background, segmentation errors will occur.
The Otsu method also breaks down in images with a low SNR.
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Fig. 5.6 (a) T1w GE image containing fat and soft tissue, (b) image segmentation using a Multi-
Otsu method and (c) segmented image corrected using morphological operator

In MRI, the water signal can sometimes obscure the fat peak in the image
histogram and make it difficult to use histogram–based global–segmentation tech-
niques to locate the optimum threshold. WS sequences such as b-SSFP (or FISP)
and T1w FSE can be used to simplify the image segmentation process [19]. Peng
et al. [19] compared Water-suppressed T1w TSE and WS b-SSFP and found that
SNR and contrast were superior in WS b-SSFP. In later work, Peng et al. [44]
introduced a simple automated method to quantify fat in water saturated MR
images. This technique is based on an ideal model of the image histogram and
global thresholding. Figure 5.7 illustrates the effect of water saturation on the image
histogram.

Peng’s segmentation model assumes that all voxels beyond the peak fat value
(Smax) in Fig. 5.7e are fat and all voxels between 0 and Smax are partial volume
fat voxels. On average, partial volume fat voxels are 50% fat [16]. Therefore,
the threshold value, Sth, is set to Smax/2. Once a threshold value is calculated
classification of subcutaneous and visceral fat is completed manually. Using water–
saturated MR images removes the obstacle of overlapping peaks from the image
histogram, which facilitates simple thresholding. Segmentation results shown in
Fig. 5.7e, f are very different because of the improved contrast in (d), demonstrating
that an optimal imaging protocol can greatly simplify the segmentation process.
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Fig. 5.7 Images and their corresponding intensity histograms obtained using T1W TSE and WS
b-SSFP sequences. Both images are acquired from the same anatomic slice of the same subject
with breath hold. The T1W TSE image (a) is shown to have lower contrast between fat and
nonfat. Water and partial-volume fat signal are also in the same gray level range as shown in
(b), making automated fat quantification difficult. The WS b-SSFP image (d), however, shows
negligible water signal, leading to fat-only images. The corresponding histogram (e) shows that
signal from suppressed water, partial-volume fat, and full-volume fat are delineated. This makes
it possible to perform automated, yet accurate fat quantification. This material is reproduced with
permission of John Wiley & Sons, Inc. [44] with the addition of images (c) and (f). Image (c) is
the result of OTSU thresholding applied to (a) and (f) is the result of the segmentation technique
described by Peng et al. [44]

5.4.3 Gaussian Mixture Model

When overlapping peaks cannot be avoided the Gaussian mixture model (GMM)
can be used to model complex probability density functions (PDF), such as image
histograms, f (x), as k overlapping Gaussians. This is illustrated in Fig. 5.8 and can
be expressed as:

f (x) =
k

∑
i=1

piN
(
x|μi,σ 2

i

)
, (5.6)

where μi and σi are the mean and standard deviation of the ith Gaussian, respec-
tively. pi is the mixing proportion of the constituent Gaussians, N, used to model
the PDF of the image. It satisfies the conditions:

pi > 0,
k

∑
i=1

pi = 1. (5.7)
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Fig. 5.8 (a) T1-weighted GE image containing fat and soft tissue, (b) shows the threshold value
T illustrates the threshold location using a red line. Voxels with gray level intensities higher than T
are classified as fat. (c) Image histogram of (a) and its constituent Gaussians estimated using the
GMM

Each Gaussian cluster is then modeled using the product of (5.8), the general
equation for a Gaussian distribution and its probability (pi).

N(μi,σi) =
1

σi
√

2π
exp

(
− (x− μi)2

2σ 2
i

)
. (5.8)

Figure 5.8c, illustrates an image histogram containing 3 tissue classes and its con-
stituent Gaussians calculated using a GMM. One of the most common algorithms
used to calculate pi, μi and σi is the expectation maximization (EM) algorithm [45].

The GMM assumes that the PDF of all constituent tissue types in an image
histogram are Gaussian and that tissue of the same class is uniform in intensity
throughout the image or region of image to be segmented. When segmenting fat in
MR images, k is usually estimated using a priori knowledge as 3 (fat, soft tissue and
background).

The probability of an event (pixel/voxel) belonging to the ith distribution is
given by

P(x|Θ) =
k

∑
i=1

piN(x|μi,σi), (5.9)
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where

Θ = {μi=1, . . . ,μi=k,σi=1, . . . ,σi=k, pi=1, . . . , pi=k}. (5.10)

The EM algorithm is a two-step iterative algorithm consisting of an expectation step
(E-step) and a maximization step (M-step). The algorithm can be initialized using k-
means clustering or by equal partitioning of the data into k regions or by automated
seed initialization [46]. The expected log likelihood function for the complete data

is calculated using the E-step and is defined by Q(Θ,
�

Θ(t)) using the estimated

parameters
�

Θ(t).

Q(Θ,
�

Θ(t)) ≡ E[logN (X , Y |Θ)|X ,
�

Θ(t)]. (5.11)

The function Q(Θ,
�

Θ(t)) contains two arguments Θ denotes the parameters that

will be optimized in order to maximize the likelihood and
�

Θ(t) corresponds to the
estimated values. X is the observed data and remains constant while Y is the missing
data, which is controlled by the underlying distributions.

The second step in the algorithm is the M-step. This step uses the maximized
values from (5.11) above to generate a new set of parameters and is given by:

�

Θ(t + 1) = arg max
Θ

Q(Θ,
�

Θ(t)). (5.12)

If we have an estimate of the means (μi) and standard deviation (σi) of the
constituent Gaussians we can compute the probability (pi) of a point (gray-level)
in the histogram belonging to the kth Gaussian. The maximization step updates the
Gaussian parameters using (5.13), (5.14) and (5.15).

pnew
i =

1
k

k

∑
i=1

N( i|x, �

Θ(t)). (5.13)

μnew
i = ∑k

i=1 xN( i|x, �

Θ(t))

∑k
i=1 N( i|x, �

Θ(t))
. (5.14)

σnew
i =

∑k
i=1 N( i|x, �

Θ(t))(xi − μnew
i )(xi −μnew

i )T

∑k
i=1 N( i|x, �

Θ(t))
. (5.15)

The algorithm iterates between (5.11) and (5.12) until convergence is reached.
Based on the Gaussian estimated using the EM algorithm an optimized threshold
is calculated that minimizes misclassification error. The threshold for fat is set to
the closest gray-level corresponding to the intersection of the fat and soft tissue
Gaussians, as illustrated in Fig. 5.8b. Figure 5.13 in Sect. 5.5 is an example of an
image which has been segmented successfully using the GMM. Lynch et al. [46]
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Fig. 5.9 Seed point selection voxels in a region of interest. Each of the nearest neighbor voxels
are illustrated using yellow arrows

proposed a novel approach to initialize cluster centers based on histogram analysis.
It used the GMM to obtain a more robust segmentation of fat in MR images. No
objective assessment of this method was carried out.

5.4.4 Region Growing

Region growing is an image segmentation technique that creates regions based some
predefined homogeneity criteria such as texture, gray-level or color. Gray-level is
the characteristic most commonly used when segmenting fat in MR images. Region
growing aims to merge voxels or small regions in an image into larger ones based
on a homogeneity criteria. The first step in any region-growing algorithm is the
selection of a seed point, as illustrated in Fig. 5.9. This can be a single voxel or
a small region of voxels and can be selected manually or automatically. Next, a
homogeneity criterion is set. For example, if the gray-level of the neighboring voxel
is between two threshold values, merge the voxel (region) with the seed point. The
seed voxels nearest neighbors are illustrated using the yellow arrows in Fig. 5.9.
Each new voxel in the region becomes a growth point and is compared to its nearest
neighbors using the same homogeneity criteria. Growth of the region ceases when
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no new growth points can be created within the confines of the homogeneity criteria.
Growth or merging of regions will continue iteratively until the stopping criterion is
reached.

Region Growing Algorithm

• Select a seed point/points
• Define a homogeneity/merging criteria
• Join all voxels connected to the seed that follow the homogeneity criteria to form

a region
• Stop the algorithm when no adjacent voxels agree with the homogeneity criteria

Figure 5.10 shows an image containing a number of manually selected seed points
and the resultant segmentation using region growing. Unlike thresholding, region
growing can differentiate objects based on their spatial location, which enables the
classification of different fat categories. In Fig. 5.10b, note also that bone marrow
adipose tissue and the liver are not classified as fat. Fat classification as distinct from
segmentation is an important issue and is discussed in detail in Sect. 5.5.

Region growing can be implemented using a number of algorithms, including
region merging, region splitting and split and merge algorithms [39, 47]. Split
and merge algorithms can be used to automate region growing, removing the
need for subjective seed point selection [48]. Automated seed selection does not
always guarantee complete segmentation due to the unpredictability of seed point
selection and may therefore require manual addition of extra seed points after initial
segmentation. In noisy images, it is possible for holes to appear in the segmented
regions, post processing may be used to reduce these.

Siegel et al. [6] used a region growing technique in its simplest form to
segment fat in transverse MR images of the abdomen. However, region growing
is sometimes combined with edge detection to reduce the occurrence of over- and
under-segmentation. In a study by Yan et al. [49], a three-step segmentation process
to isolate skeletal structures in CT images was employed. The first step was the
application of a three-dimensional region-growing algorithm with adaptive local
thresholds, which was followed by a series of boundary correction steps. This
approach is both accurate and reliable for high contrast, low noise CT images.
Subsequently, a similar technique was applied to the segmentation of fat in MR
images by Brennan et al. [15].

Brennan et al. [15], used a four-step automated algorithm for the quantification
of fat in MR images. Their algorithm was based on initialization of fat regions
using conservative thresholding followed by steps of boundary enhancement, region
growing and region refining (post processing). A weak correlation was found
between total body fat quantified using MRI and BMI. The authors attribute
this to the flawed nature of BMI measurements. A more appropriate measure of
accuracy would have been comparison with manual delineation of fat by an expert
radiologist (the gold standard). Combination of both region growing and edge–based
segmentation algorithms contradicts work by Rajapakse and Kruggel [23], who state
that the use of region and edge detection schemes are unsuitable in MR images due
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Fig. 5.10 (a) A T1w GE image and the seed points used for region growing and (b) is the resultant
segmentation following region growing, visceral fat is labeled with red, other fat is labeled blue
and the liver purple. Each labeled group is quantified separately

to the lack of clearly defined edges. Despite this, the data presented by Brennan
et al. were well segmented. Brennan’s method did not classify and label body fat.
Further steps are required to develop classification algorithm.

5.4.5 Adaptive Thresholding

Due to intensity inhomogeneities in MR images a single threshold may not be
sufficient for the entire image. Segmentation using adaptive thresholding can
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Fig. 5.11 (a) Whole body T1-weighted GE image affected by intensity inhomogeneities; (b) Re-
sult of global segmentation using the GMM on (a); (c) Sub-images used for adaptive thresholding;
and (d) is the result of adaptive thresholding

compensate for intensity inhomogeneities [39]. Adaptive segmentation can be
achieved by dividing an image into a number sub-images as shown in Fig. 5.11c
[50]. Each sub-image is then segmented using one of the segmentation algorithms
discussed in Sect. 5.4.2.

Two factors must be considered when selecting the size of the sub-images:

(1) They must be small enough so the impact of the intensity inhomogeneity is
minimal across each of their areas

(2) They must contain enough voxels to maintain a workable SNR

Figure 5.11a is an example of an image that is affected by intensity inhomogeneities
and (b) is the result of global segmentation using the GMM algorithm. Using
adaptive segmentation a significant improvement can be seen in Fig. 5.11d. If the
sub-images cannot be made small enough to reduce the impact of the intensity
inhomogeneities, a technique which uses overlapping mosaics may be used [35],
this is discussed in Sect. 5.4.6.

Local adaptive thresholding (using a sliding window) can be an effective
segmentation algorithm in the presence of inhomogeneities [51]. This technique
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thresholds individual voxels using the mean or median value of their surrounding
n × n neighborhood. MR images acquired for fat analysis can contain large
monotone regions consisting of a single tissue type. In order to achieve meaningful
segmentation the size of the neighborhood must be large enough to contain more
than one tissue class at any point tin the image. This should be considered when
selecting the neighborhood size.

5.4.6 Segmentation Using Overlapping Mosaics

Yang et al. [35] developed a method to segment fat in MR images using overlapping
mosaics. The segmentation technique consists of 3 steps:

(1) Mosaic bias field estimation
(2) Adipose tissue segmentation
(3) Consistency propagation

Following smoothening (low pass filtering) to remove noise the expression for the
biased image in (5.2) becomes:

f ′biased(x,y) = foriginal(x,y)β (x,y), (5.16)

where f ′biased(x,y) is the image after filtering. Assuming the bias field varies
gradually across the entire image, log (β (x,y)) can be approximated by a piecewise
linear function. Yang divides f ′biased(x,y) into a array of overlapping mosaics or sub-
images (Tij). Within each of the sub-images Log (β (x,y)) is assumed to be first
order linear, therefore, ∀(x,y) ∈ Tij:

log f ′biased(x,y) = log( foriginal(x,y))+ aij

(
x− x(0)

ij

)
+ bij

(
y− y(0)

ij

)
+ cij, (5.17)

where (x(0)
ij ,y(0)

ij ) is the upper left voxel in each sub image. Optimal values for a and
b are estimated by maximizing the function:

P = ∑
ξ

⎛
⎝ ∑

(x,y)∈Tij

δ (log( f ′biased(x,y)))
(
−aij

(
x− x(0)

ij

)
−bij

(
y− y(0)

ij

)
− ξ
)⎞⎠

2

,

(5.18)
where δ (x) = 1 when x = 0, and ξ is the gray-scale intensity index of the image
histogram. Cij is not calculated because it affects voxels in the sub–image uniformly,
causing a change in position of gray–levels in the image histogram but not the shape.
Once the image is corrected, the skewed and bimodal peaks discussed in Sect. 5.3.2
appear more distinctive.

When intensity inhomogeneities are corrected, image segmentation is carried
out using a multi-level thresholding technique on each sub-image. Segmentation
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Fig. 5.12 The intermediate processing results of the proposed algorithm applied to a synthetic
phantom. (a) The original image with an SNR of 20 dB; (b) the optimum manually segmented
result by using intensity thresholding; (c) the bias corrected image by using overlapping
mosaics; (d) the result of initial segmentation; (e) the final fat distribution after applying inter-
mosaic consistency propagation. This material is reproduced with kind permission from Springer
Science+Business Media B.V [35]

is based on an automated thresholding technique that minimises the total variance
within the three classes, fat soft tissue and background, giving 2 threshold values ξ1

and ξ2 [16].
A measure of confidence, λij, of the segmentation result is calculated, as not all

sub images will contain all three tissue classes.

λij =

meanHij
ξ≥ξ2

(ξ )

meanHij
ξ<ξ1

(ξ )
, (5.19)

Hij(ξ ) is the log transform of the image histogram. λij is likely to be large when
all three tissue classes are present in the sub-image. However, when only one or
two tissue classes are present λij will be much smaller indicating misclassification.
The mosaic tile with the highest value of λij is used as a seed for consistency
propagation. The regions of overlap between the seed tile and its nearest neighbors
are compared. If any conflicting segmentation results are present, then the value for
ξ2 in neighboring tile is changed to that of the seed. This process is propagated to
all tiles within the image until segmentation result like those shown in Fig. 5.12 are
achieved. Peng et al. [16], compared this technique to the gold standard, manual
segmentation, and found that the mean percentage between the two was 1.5%.
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5.5 Classification of Fat

To appreciate the complexities associated with quantifying fat in medical images, it
is important to know what exactly needs to be measured. The most common conflict
in the literature is in the terminology used, (i.e. fat or adipose tissue) [52]. The
difference between fat and adipose tissue is important when quantifying fat in MR
images. Bone marrow in a typical T1w imaging sequence has the same graylevel
as body fat. However, bone marrow adipose tissue is not classified as fat because it
is connected to haematopoietic activity2 and not to obesity [53, 54]. Classification
is further complicated by the subdivision of fat into three main categories: total
body fat [15], visceral fat and subcutaneous fat [6]. Whole body fat includes the
measurement of all adipose tissue except bone marrow and adipose tissue contained
in the head, hands and feet [52]. A summary of the proposed classification of adipose
tissue within the body is given by Shen et al. [52] and is presented in Table 5.1.
Examination of body fat distribution involves the analysis of two or more of the fat
categories outlined in Table 5.1.

Global segmentation algorithms such as thresholding require extra steps to
classify fat. This can be achieved manually by drawing a region of interest around
areas such as the viscera. Figure 5.13 shows the result of manual classification

Table 5.1 Proposed classification of total body adipose tissue as given by Shen et al. [52]

Adipose tissue compartment Definition

Total adipose tissue Sum of adipose tissue, usually excluding bone marrow and
adipose tissue in the head, hands, and feet

Subcutaneous adipose tissue The layer found between the dermis and the aponeuroses
and fasciae of the muscles. Includes mammary adipose
tissue

Superficial subcutaneous
adipose tissue

The layer found between the skin and a fascial plane in the
lower trunk and gluteal-thigh area

Deep subcutaneous adipose
tissue

The layer found between the muscle fascia and a fascial
plane in the lower trunk and gluteal-thigh areas

Internal adipose tissue Total adipose tissue minus subcutaneous adipose tissue
Visceral adipose tissue Adipose tissue within the chest, abdomen, and pelvis
Non-visceral internal adipose

tissue
Internal adipose tissue minus visceral adipose tissue

Intramuscular adipose tissue Adipose tissue within a muscle (between fascicles)
Perimuscular adipose tissue Adipose tissue inside the muscle fascia (deep fascia),

excluding intramuscular adipose tissue
Intermuscular adipose tissue Adipose tissue between muscles
Paraosseal adipose tissue Adipose tissue in the interface between muscle and bone

(e.g., paravertebral)
Other non-visceral adipose

tissue
Orbital adipose tissue; aberrant adipose tissue associated

with pathological conditions (e.g., lipoma)

2Hematopoietic activity: pertaining to the formation of blood or blood cells.
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Fig. 5.13 (a) T1w GE image (b) global segmentation using the GMM and (c) classification of
visceral fat

after global segmentation using the GMM. Region growing allows for classification
based on spatial location. This is illustrated in Fig. 5.10 where both the liver and
visceral fat are differentiated from fat in the image. Further work is required to fully
automate classification.

5.6 Conclusions

This chapter reviewed the challenges associated with the quantification of fat in
MR images. Accurate segmentation and analysis of fat using MRI is not a trivial
matter. Ideally, MR images acquired for fat analysis should contain three distinct
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tissue classes: fat, soft tissue and air. However, as a result of the many artifacts
inherent to MRI this ideal image model is rarely attained. Therefore, consideration
must be given to both the PVE and intensity inhomogeneities when segmenting fat
in MR images. It is crucial that fat segmentation is approached with a thorough
understanding of these artifacts and the limitations they present. A number of
techniques used to segment fat in the presence of inhomogeneities were outlined
in this chapter.

Image acquisition is the most important step in the quantification and analysis of
fat using MRI. Before scanning patients, the imaging sequence should be optimized
to achieve a balance between image contrast and acquisition time. Selection of an
appropriate imaging sequence, such as the WS–bSSFP can significantly reduce the
complexity of the segmentation algorithm required.

Fat classification currently requires manual intervention and will remain a signif-
icant challenge in the future. Future work in this field will investigate the prospect
of fully automating the classification process and the use of soft segmentation
algorithms involving fuzzy sets to overcome the PVE.
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Chapter 6
Angiographic Image Analysis

Olena Tankyevych, Hugues Talbot, Nicolas Passat, Mariano Musacchio,
and Michel Lagneau

6.1 Introduction

The important rise of medical imaging during the twentieth century, mainly induced
by physics breakthroughs related to nuclear magnetic resonance and X-rays has led
to the development of imaging modalities devoted to visualize vascular structures.
The analysis of such angiographic images is of great interest for several clinical
applications. Initially designed to generate 2D data, these imaging modalities
progressively led to the acquisition of 3D images, enabling the visualization of
vascular volumes.

However, such 3D data are generally huge, being composed of several millions
of voxels, while the useful –vascular– information generally represents less than
5% of the whole volume. In addition to this sparseness, the frequent low signal-
to-noise ratio and the potential presence of artifacts make the analysis of such
images a challenging task. In order to assist radiologists and clinicians, it is therefore
necessary to design software tools enabling them to extract as well as possible the
relevant information embedded in 3D angiographic data.

One of the main ways to perform such a task is to develop segmentation methods,
i.e., tools which (automatically or interactively) extract the vessels as 3D volumes
from the angiographic images. A survey of such segmentation methods is proposed
in Sect. 6.3. In particular, it sheds light on recent advances devoted to merge different
image processing methodologies to improve the segmentation accuracy.

Another way to consider computer-aided analysis of 3D angiographic images is
to provide human experts with a base of high-level anatomical knowledge which can
possibly be involved in more specific analysis procedures such as vessel labelling.
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Such knowledge can in particular be embedded in vascular atlases which are
devoted to model qualitative and/or quantitative information related to vessels.
A survey of different existing vascular atlases, and ways they can be created is
presented in Sect. 6.4.

The purpose of this chapter is to provide some general background notions on 3D
angiographic image analysis. Due to space limitations, it is impossible to propose
an exhaustive overview on vessel segmentation and vascular knowledge modeling.
Consequently, Sects. 6.3 and 6.4 propose partial, but hopefully relevant, states of
the art on these topics. They present some of the most classical and/or recent related
works, and some pointers on more complete surveys linked to the main topics of
this chapter (or to connected research fields, for the sake of completeness). They
also present some recent contributions of some of the authors, especially related to
vessel segmentation.

6.2 Clinical Context

Vascular pathologies are one of the main causes of morbidity and mortality in
the Western world, and thus constitute an important issue in public health. The
causes are manifold, from traumatic lesions (due to accidents) to genetic vascular
diseases (such as some arteriovenous malformations), via those linked to obesity
and stress (such as atheromatosis and diabetes).

An anomaly affecting vessels can provoke perturbations in organ circulation as
well as in tissues supplied by the involved vascular network. If the lumen of the
arteries is shrunk, such as in an atheromatosis disease, blood flow will be affected
and the associated organ will be insufficiently supplied, leading, in the worst cases,
to ischemia, and then tissue death. The breaking of a vessel, normal (as in a trauma)
or pathological (as in an aneurysm rupture), can cause hemorrhages.

The various angiographic imaging techniques need to determine the nature of
potential and actual vascular problems, and to accurately identify the affected
vessels, in order to select the most effective treatment. Magnetic resonance an-
giography (MRA) was developed during the last decades, and has the advantage
of being non-invasive. X-ray angiography, and particularly computed tomography
angiography (CTA), is invasive and irradiating, but remains effective in terms of
image accuracy.

6.3 Vessel Segmentation

The segmentation of vascular structures from 3D images is a particularly challeng-
ing task. Here, the notion of segmentation is considered in a broad sense. From
an image processing point of view, segmentation consists of partitioning an image
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into an object, i.e., a structure of interest, and a background, i.e., the remainder
of the image volume. In the context of angiographic imaging, we consider that
vessel segmentation includes (a) methods that detect either whole vessels (i.e., their
lumen and/or walls) or their medial axes and/or (b) methods that perform low-level
processing or high-level knowledge extraction (e.g., vein/artery discrimination [100,
103] or vessel labelling [14, 42]). We also consider some methods which could be
classified as filtering, since their purpose is to perform vessel enhancement, which
consists mainly of denoising, but also of vessel reconnection (e.g., in the case of
stenosis, or of signal loss [27, 76]).

As discussed above, the difficulty in performing vessel segmentation is due to
the sparseness of data, and the possible presence of irrelevant signal (other tissues,
artifacts or noise). Moreover, anatomical properties of vessels are highly variable in
size, appearance, geometry and topology, even more so in pathological cases such
as aneurysms, stenoses, calcifications or arteriovenous malformations.

There exist several kinds of angiographic data, generally well-fitted for visualiz-
ing specific vascular structures, and consequently for dealing with specific clinical
issues. The choice of a segmentation method is often linked to the type of images
under consideration, the vessel(s) being studied and the clinical purpose. The next
section discusses the various methodological segmentation strategies.

6.3.1 Survey of Vessel Segmentation Methods

6.3.1.1 General Overview

Several surveys devoted to 3D vascular segmentation have been proposed during the
last decade. The survey proposed in [94] focuses on vessel segmentation from MRA
images,1 and divides them into skeleton methods (with an interest in medial axes)
and non-skeleton ones (that aim at detecting whole vascular volumes). Another
(globally similar) classification is proposed in [51], which deals more generally
with vessel segmentation from any kind of data independently of their dimension
or acquisition technique. The most recent survey [56] mainly refers to 3D vessel
segmentation from MRA and CTA, and divides its description into (a) the a priori
information which can be used for segmentation, (b) the basic tools using this
information for detecting vessels, and (c) the methodological frameworks involving
these tools, as well as a discussion on pre- and post-processing considerations.

In the next section, we introduce the segmentation methods divided into eight
main categories corresponding to the main image processing strategies on which

1Part I of this survey [93] also describes MRA acquisition techniques.



118 O. Tankyevych et al.

they rely: region-growing, differential analysis, model-based filtering, deformable
models, path finding, vessel tracking, statistical approaches, and mathematical
morphology.2

6.3.1.2 Region-Growing Methods

Region-growing has been one of the first strategies considered for image segmenta-
tion [117], and in particular medical/angiographic ones.Basically, region-growing
relies on two elements: one (or several) seed(s) [1] assumed to belong to the
structure of interest to be segmented, and a propagation criterion, enabling the
segmentation of the object from the seed, by iterative addition of adjacent voxels.

In the case of vessel segmentation, seeds are generally defined interactively
inside vessels. The seeds can also be detected automatically, especially in the case
where they constitute the root of a vascular tree [69]. The possible definition of
several seeds can straightforwardly lead to an application of region-growing to
vessel separation, and in particular, to vein/artery discrimination. In such a case,
a set of seeds is defined for arteries and veins, respectively. A competitive region-
growing is then performed, based on ad hoc propagation criteria (e.g., a measure of
gray-scale connectedness in [100]).3

The propagation criterion is commonly based on intensity properties, related
to the high-intensity vascular signal. However, more sophisticated properties can
also be embedded in this segmentation strategy. In particular, it has been proposed
to consider a priori knowledge related to the shape and size of the vessels to be
segmented [68], or to their topology [78]. The correctness of the orientation of
the vessels during the segmentation process has also been considered by proposing
“wave propagation” strategies [115], which aim to constrain the segmentation front
to remain normal to the vessel axis. It may be noticed that this kind of approach has
been further used for vessel tracking methods (discussed later in the section). The
concept of wave propagation has also led to the development of methods related
to both deformable models (level-sets) and path-finding approaches, namely, fast-
marching methods [61].

Region-growing methods rely on a simple algorithmic framework, which makes
their development and use quite easy and induces a low (generally linear) compu-
tational cost. In addition, they guarantee termination which is not systematically
available for other non-monotonic strategies. However, the connectivity hypothesis
intrinsically associated with this strategy constitutes a weakness, since the method
may fail in segmenting vessels in case of vascular signal loss (due to partial volume

2Due to limited space we heave omitted those methods which have resulted led to fewer
publications, such as neural network-based methods [52].
3Note that, by duality, region-growing also provides solutions to segmenting vessels by skele-
tonization. In such a case, the growing process starts from a seed being a subset of the background
(which can then be automatically defined), and generally includes topological constraints in the
propagation criterion [27, 76].
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effect, or flow artifacts, for instance). A contrario, the use of a criterion being
too permissive may lead to leakage phenomena, and a final over-segmentation of
vessels [66]. In this context, region-growing methods have often been preferentially
devoted to the segmentation of large and/or well-contrasted vessels (for which
intensity and connectivity hypotheses are generally reliable).

6.3.1.3 Differential Analysis

Vessels are generally bright structures within a dark background. If an image is
viewed as the discrete analog of a function from R

3 to R, vessels then appear as
the maxima of this function. Consequently, it may be possible to detect them by
analyzing the differential properties of the image.

In order to deal with the discrete/continuous issue involved by this strategy, the
(discrete) image is convolved with a series of Gaussian derivatives of different
standard deviations and in different directions, and the responses obtained are
combined into a matrix.

In the case of first derivatives analysis, this matrix, which is the covariance
matrix of gradient vectors [2, 8], is called the structure tensor. Except for vessel
segmentation, the first derivatives have also been involved in diffusion filtering,
which consists of the propagation of information in the orientations suggested by
these derivatives [60].

In the case of second derivatives analysis, the resulting information is gathered
in the Hessian matrix. The main idea behind eigen analysis of the Hessian matrix is
to extract one or more principal directions of the local structure of the image. This
gives the direction of the minimal curvature, the principal direction in the tubular
structure and a high curvature in the vessel cross-section plane, which makes the
filter more efficient than line filters.

Compared with the image gradient, the Hessian matrix can capture the shape
characteristics of objects, such as tubes, planes, blob surfaces or noise. In particular,
the eigenvalues of the Hessian matrix can be combined into a vesselness function in
order to describe plate-, blob-like and tubular objects [34, 53, 84].

These methods can be performed in multi-scale frameworks in order to detect
objects of different sizes. It has to be noticed that the choice and number of the
considered scales is particularly important in such methods. If performed at a unique
scale, they do not detect vessels of different sizes, especially those out of the range
of the considered scale. Conversely, if performed at numerous scales, they can
potentially detect all the vessels but they become computationally quite expensive.

In addition, the robustness of such methods to noise is strongly related to the
considered scale. For large scales, the blurring effect of Gaussian filtering tends
to remove noise effects and, unfortunately, smaller objects. A contrario, for small
scales, the noise is hardly corrected by this filtering, and the method may bias
the derivative evaluation accuracy, thus requiring the incorporation of assumptions
related to noise in the method [113].
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Despite some weaknesses, which require specific care, derivative-based methods
provide efficient solutions for detecting vessels, especially in a multi-scale frame-
work, and have therefore often been considered for the design of segmentation
methods based on model filtering (see next section) or for the guidance of
deformable models, for instance.

6.3.1.4 Model-Based Filtering

In general, vessel appearance can be used as a prior for segmentation. In this case,
such a prior can describe vessel specific characteristics: photometric (usually being
brighter than the background) and/or geometric (curvilinear). The most simple are
intensity and geometry-based models, which are often combined in deformable
model methodologies (see next section). We will describe such models in the order
of increasing complexity.

Intensity Models

Intensity models, which are among the simplest ones, strongly depend on the
imaging modality. They can integrate brightness, contrast and gradient priors,
but also imaging properties, like intensity ranges or intensity variation based on
location, or even noise distribution [2] (see also Sect. 6.3.1.6 for a discussion of
noise modeling).

In [111], a cylindrical parametric intensity model is directly fit to the image
intensities through an incremental process based on a Kalman filter for estimating
the radii of the vessels. While in [79], local neighborhood intensities are considered
in a spherical polar coordinate system in order to capture the common properties for
the different types of vascular points. A natural integration into this kind of models
is a background description [85, 102].

While simple, intensity models are highly dependent on the nature of the images.
Therefore, they have to be tuned for all kinds of circumstances, such as artifacts or
other image distortions, as well as to compensate for image variability.

Geometry Models

The assumption that vessels are elongated thin objects, globally similar to tubes has
been used for the design of several geometric models, such as generalized cylinders,
superellipsoids, Gaussian lines, or bar-like profiles [9, 53, 102].

Based on second-order derivatives (see previous section), several models incor-
porating geometrical properties have been developed. In [34], an ideal cylinder is
proposed in order to enhance vessels within a measure called vesselness, while in
[84] a more general model incorporates elliptical shapes.
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The bifurcation issue has also been considered, for instance in [3] where a bifur-
cation models is proposed and optimized based on vessel centerline information.

Geometry models are powerful tools for describing vessels and aiding their
further extraction within tracking schemes or by deformation. However, these
methods assume image regularities that are present in high-quality images, but
not necessarily in noisier ones, nor in pathological cases. Furthermore, they often
require careful parameter tuning, which may change from one data set to the next.
They can be used together with the intensity models, often combined in probabilistic
and/or statistical approaches contributing to decision-making whether pixel belong
to a vascular structure or not.

6.3.1.5 Deformable Models

Deformable models aim at fitting a geometric hypersurface (e.g., a 2D surface
in a 3D image), by moving it and modifying its shape from an initial model,
under the guidance of several (generally antagonist) forces: external (“data-driven”)
ones, related to the image content, and internal (“model-driven”) ones, devoted
to preserve correct geometric properties (e.g., regularity). Such models have been
intensively used in the field of image analysis due to the following advantages:
arbitrary shape representation, topological adaptivity, sub-pixel precision, etc.

Among the most classical methods, snakes (often used in 2D in order to segment
vessel cross-sections), have been considered, e.g., in [64], or in [46], where two (1D
and 2D) snakes are used for both segmentation and stenosis quantification.

Level-sets constitute another classical type of deformable model, and rely on an
Eulerian version of contour evolution with partial derivative equations. The contour
is integrated as the zero-level of a higher dimension function (level-set). In [59],
an original level-set based scheme deformed an initial boundary estimate toward the
vascular structures in the image using a codimension-two regularization force, based
on the vessel centerlines instead of the vessel surface (see Fig. 6.1a). Another level-
set based method [62] estimated the background and vessel intensity distributions
based on the intensity histogram, to more efficiently steer the level-set onto the
vessel boundaries.

Several efforts have been conducted to improve deformable models in the quite
specific case of elongated structures. In this context, [104] used flux maximization
as an alternative curvature-based regularization to make surface normals evolve
according to the gradient vector field. The key idea was to evolve a curve or a surface
under constraints by incorporating not only the magnitude but also the direction of
an appropriate vector field.

In [54], local variances are measured with first-order derivatives and are prop-
agated according to their strengths and directions, with an optimally oriented flux
reporting more accurate and stable responses and higher robustness to disturbances
from adjacent structures in comparison with Hessian-based measures.

The major advantage of deformable model methods is that they are sensitive to
weak edges and robust to noisy structures. However, the intensity variation inside
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Fig. 6.1 Vessel segmentation examples. (a) Brain vessels segmentation based on deformable
models. (b) Brain arteries segmentation based on path-finding and statistical approaches. (c) Brain
arteries segmentation based on vessel tracking. (d) Brain vessels segmentation based on gray-level
hit-or-miss transform. Illustrations from (a) [59], (b) [110], (c) [31], (d) [68]

vascular structures can generate significant intensity gradient with this undesired
discontinuity stopping the contour evolution at these regions. Due to this local
minima, the initial forces should be described with such precision that the final
object borders are not far from the initial ones. Nonetheless, the evolution of the
deformation can be a costly process. However, integrating vessel features and forces
in powerful optimization schemes helps overcome these problems.
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6.3.1.6 Statistical Approaches

Vessel segmentation based on statistical approaches generally relies on specific
assumptions related to the intensity distribution of the vascular/non-vascular signals
in MRA data (only very few statistical methods have been devoted to CTA, see, e.g.,
[32], which proposes a particle-filtering strategy for the segmentation of coronary
arteries), and especially physical models of blood flow. If the number and the nature
of these distributions is known correctly, it is possible to determine their respective
parameters (and in particular the mean intensity characterizing the associated
structures), via a standard Expectation-Maximization (EM) technique [23].

In MRA, two or three distributions are generally considered, for the blood,
and the other anatomical structures and the background, respectively. They led,
in particular to the definition of Gaussian-Gaussian-uniform [107] and normal-
Rayleigh–2×normal [80] mixtures for time-of-flight (TOF) MRA, and Maxwell-
Gaussian [19], Maxwell-Gaussian-uniform [17] mixtures for phase-contrast (PC)
MRA. In [18], a hybrid model, enables one to choose between these two kinds of
mixtures. Alternatively to these “constrained” mixture choices, [29] has proposed
a linear combination of discrete Gaussians with alternate signs, involved in a
modified EM, which adaptively deals with both laminar and turbulent (pathological)
blood flow [28].

In the primarily considered strategies, the determination of the vascular intensity
led to a straightforward segmentation by thresholding of the image (sometimes en-
riched by a hierarchical analysis of the image by octree decomposition [107]). From
an algorithmic point of view, segmentation improvements were also performed
by considering spatial information (i.e., statistical dependence) between neighbor
voxels, by integrating Markov random fields (MRF) [38] in a post-classification
correction step [80]. In other works, speed and phase information provided by PC-
MRA were fused and involved in a maximum a posteriori-MRF framework to
enhance vessel segmentation [17, 18].

Statistical methods globally inherit the strengths and weaknesses of the EM
algorithm. First, they generally require one to establish hypotheses on the signal
distribution. Moreover, they involve several parameters, for instance, weight, mean
and standard deviation, of the distributions. The initialization of the segmentation
process then requires special attention. Indeed, the convergence may depend on
the quality of the initial distribution settings (sometimes automatically determined
based on heuristic rules [17,107]). As for any optimization strategy, the termination
also requires one to decide whether the process has correctly converged or not
(which is sometimes empirically determined, for instance by a maximal number
of iterations [107]). Finally, since the segmentation process is strongly based on
photometric properties (the results often consist of global or local thresholdings),
higher-level knowledge such as geometric assumptions are hardly considered, and
require post-processing steps based on a statistical framework [80], or, more effi-
ciently the collaboration of alternative image processing techniques (see examples
in Sect. 6.3.1).



124 O. Tankyevych et al.

6.3.1.7 Path Finding

Based on extremal intensity and connectedness criteria, the detection of a vessel
segment (or more precisely its medial axis) can be expressed as the determination
of a minimal cost path in a weighted graph modeling voxels, their neighborhood
relations and their intensity.

Vessel segmentation based on such strategies can rely on standard minimal path
finding techniques [25] (i.e., on “global” minimization strategies, while methods
categorized in the next Vessel tracking section will rely on “local” (step-by-step)
minimization strategies). This is, for instance, the case in [75].

Alternatively to classic path-finding methods, fast-marching strategies [101] have
been considered. They are both related to the level-sets (see Sect. 6.3.1.5) and
minimal path-finding methodologies (they remain, in particular, consistent with the
continuous formulation of the minimal-path research). In contrast to fully discrete
path-finding, they enable the determination of paths with a sub-voxel accuracy [4].

The methods based on path-finding are globally well-suited to the detection of
vessel medial axes, especially in the case of small vessels which justifies their
frequent use in coronary detection. (For larger vessels, the optimal path may diverge
from the medial axis, leading to eccentric results [57].) However, efforts have also
been conducted in developing segmentation methods that extract both vessel axes
and vessel walls [7, 57], expressing the whole vascular volume segmentation as the
minimization of a path in a space enriched with a supplementary “scale” dimension
corresponding to the vessel radius.

Despite attempts to segment whole vascular trees [114], such methods generally
remain devoted to the segmentation of vessel segments, thus requiring one to
interactively provide at least an initial and final point [75, 108]. In this case, they
may be robust to noise, and signal decrease (or short signal loss) along the vessel,
especially in the case of stenoses. Since these methods are based on monotonic
and/or finite algorithmic processes, their termination is guaranteed and their theo-
retical algorithmic cost is generally low. However, in practice, the computational
cost may be high, and the provision of initial and final points can potentially enable
its reduction by computing paths from both points simultaneously [75].

6.3.1.8 Tracking Methods

By opposition to path-finding methods, tracking methods consist of finding a vessel
locally, by progressively determining successive segments composing it. Such an
approach requires one to interactively propose a seed, namely the starting point of
the tracking process, located in the vessel, and (in most cases) the direction in which
the vessel has to be tracked.
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This strategy has to be applied step by step, a small segment of the vessel
being detected at each step. The principal issues to consider in such methods
are the determination of a correct geometry of the detected segment (namely the
determination of its cross section), the determination of the vessel axis, and the
evaluation of the direction of the next segment to be found (i.e., the trajectory
modification), or equivalently, the next point in the vessel. Less frequently, vessel
tracking methods, such as the one proposed in [63], directly perform a more global
iterative vascular volume detection, corrected, at each step, by the analysis of the
induced vessel axis, which can in particular be constrained by ad hoc topological
hypotheses.

The determination of the vessel cross-section at the current point (which enables
in particular its correct repositioning on the vessel axis) can be performed according
to several strategies. The use of a gradient-based measure is considered in [109]
(a centerline measure based on the vessel profile then enables one to approximate
the vessel centerline, even in case of non-circularity). The explicit determination
of vessel cross-sections to estimate the vessel axis may however be avoided. In
particular, it can be done by considering that the medial axis is necessarily located
on a ridge point [5], which may be detected by second-derivatives criteria. Such
an approach requires a minima the use of cross section information related to the
size of the vessel (in order to determine the correct scale factor) and circularity
hypotheses. It can also be performed based on a local optimisation of 3D models
[102, 112], which may also lead to the determination of the vessel axis orientation.
More classically, the next tracking point may be determined according to the best fit
of a sphere modeling the vessel into the image [12, 47, 69].

Despite a few attempts to deal with the case of bifurcations, which can enable
the recursive processing of a whole vascular tree [9, 13, 31], vessel tracking is
especially well-suited to the segmentation of single vessels (see Fig. 6.1c). In this
case, the termination has to be considered. Some methods require, in particular, the
provision of both a start and an end point [109].

It should be noted that, similarly to the other local approaches (which aim
at detecting a part of the vessels, and/or are guided by providing a seed), such
methods present a generally low algorithmic/computational cost. However, they
present some drawbacks related to the determination of multiple parameters and
to possible error propagation (which characterize such local methods), potentially
leading to incorrect segmentation if vessel orientation and/or axis is miscalculated
at a given step, for instance due to a bifurcation, non circular section, or a strong
axis curvature.

6.3.1.9 Mathematical Morphology Methods

Mathematical morphology (MM) is a well-established theory of non-linear, order-
based image analysis. Fundamental texts on morphology include the books by Serra
[86, 87], but more recent and more synthetic texts are also available, including the
works by Soille [89] and by Najman and Talbot [72].
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Filtering thin objects with morphology can be achieved using appropriate
structuring elements. Typically, thin structuring elements include segments and
paths, combined over families. To account for arbitrary orientation, one can use
families of oriented segments and compute a supremum of openings or an infimum
of closings as described in [90].

To account for noise or disconnection, families of incomplete segments can be
used instead, yielding so-called rank-max openings, which are just as efficient and
also described in the same reference.

Paths are elongated structuring elements, but they are not necessarily locally
straight. Even though the size of families of paths grow exponentially with their
length, there exists a recursive decomposition that makes the use of such families
tractable [43]. As with segments, it is useful to account for some discontinuities
using so-called incomplete paths. As with segments, there exists an efficient
implementation [95]. In fine, path and segment operations are comparable in speed.

In [96], it is shown that path and segment morphological operators significantly
outperform linear and steerable filters for the segmentation of thin (2D) structures,
even in the presence of heavy noise. Paths operators have been extended to 3D
in [44], and shown to outperform all other morphological filters for thin object
segmentation in 3D, both for efficiency and performance.

Connected operators are also the supremum of openings or infimum of closings,
but using families of structuring elements that are so large makes little sense.
Instead, the concept of connectivity is used [83, 105]. The simplest of those is the
area opening or closing. Informally, the area opening suppresses objects that are
smaller in area than a given size λ . It extends readily to arbitrary lattices, and
corresponds to a supremum of openings with a very large family of structuring
elements: all the connected sets that have an area smaller than λ . In the continuum,
this family is not countable, but in the discrete case it is still very large. Fortunately
it is not implemented in this way. A very efficient way to implement this operator is
via the component tree [65, 71, 82].

In [106], a scale-independent elongation criterion was introduced to find vascular
structures, while in [11], component tree was mixed with classification strategies to
segment 3D vessels in an automated fashion.

Other useful connected operators are thinnings rather than openings, as they
make it possible to use more complex criteria for object selection, for instance,
using elongation measures, that are not necessarily increasing.

Hit-or-miss transforms repeatedly use pairs of structuring elements (SEs) to
select objects of interest, rather than single SEs. In [10, 68], authors used such
operators for 3D vessel segmentation, including brain, liver and heart vessels
(see Fig. 6.1d).
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6.3.1.10 Hybrid Methods

Despite the huge amount of methodological contributions dedicated to 3D vessel
segmentation, proposed during the last 20 years, the results provided by such
segmentation methods generally remain less than perfect.

The handling of under-segmentation (especially in the case of small vessels,
whose size is close to the image resolution, of signal decrease, or of the partial
volume effect) and over-segmentation (especially in the case of neighboring anatom-
ical structures, or of high intensity artifacts), the robustness to image degradations
(low signal-to-noise ratio), the ergonomy (automation or easy interaction), the low
computational cost, the guarantee of termination and convergence, and the accuracy
of the result (for instance, the ability to provide results at a higher resolution than
the image one) are desirable properties for such methods. Unfortunately, none is
generally exempt from drawbacks, even in the frequent (and justified) case where the
method is devoted to a quite specific task, vascular structure, and/or image modality.

As nearly all the main strategies of image processing have been –not fully
satisfactorily– investigated to propose solutions to this issue, a reasonable trend
during the last years has consisted of designing hybrid segmentation methods
obtained by crossing methodologies. An alternative way to overcome this issue is
to inject more guiding knowledge in the segmentation processes, which justifies –
among other reasons– the generation of anatomical vascular models, as discussed
in Sect. 6.4. These strategies aim, in particular, at taking advantage of (distinct and
complementary) advantages of different segmentation techniques.

A synthetic overview of such hybrid methods is now presented.

Principal Strategies

Hybrid vessel segmentation methods present a range of possible solutions for
overcoming certain weaknesses of each method and combining their advantages.

One of the most popular hybrid methods is a combination of multi-scale
differential analysis within vessel detection schemes as in [34, 84] with deformable
models, such as level-sets [15], B-spline snakes [33], and maximum geometric flow
[24, 103].

The deformable method with energy minimizing functionals has also been
combined with statistical region-based information in a multi-scale feature space for
automatic cerebral vessel segmentation [45]. The tracking strategies were reinforced
by gradient flux of circular cross-sections as in [55], while in [35] a multiple
hypothesis tracking was used with Gaussian vessel profile and a statistical model
fitting.

In [110], a probabilistic method for axis finding was used within a tracking with
minimal path finding strategy together with a possible used guidance (see Fig. 6.1b).
This method is especially well-fitted for pathological cases.
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Multi-scale morphology has been used with Gabor wavelets (providing vessel
size and direction) filters in [92]. The advantage of the Gabor wavelet is that
it is capable of tuning to specific frequencies, allowing estimation of the vessel
dimension, while the morphological top-hat filter enhances the contrast between
vessel structures and background.

6.4 Vessel Modeling

6.4.1 Motivation

6.4.1.1 Context

The availability of accurate knowledge related to anatomical structures is of precious
use in nearly all the fields related to medical image analysis. Knowing where an
organ is located, its shape, dimensions, functions, cellular or chemical composition,
and its spatial relations or collaborations with other organs constitutes the basics of
anatomy and medicine.

In the case of vessels, and more generally of vascular trees,4 anatomical
knowledge can be classified into three categories:

• Morphological properties: what is the shape of a vessel (cross-section, trajec-
tory), its size (diameter, cross-section area), its orientation, etc.?

• Structural properties: what is the topology of a vascular network (number of
branches, bifurcations, presence of cycles/anastomoses), its position, its spatial
relations with other organs, etc.?

• Functional properties: what are the vascular territories of an organ (i.e., what
parts of an organ are supplied by a given branch of a vascular network)?

In the field of angiographic image analysis, the question of functional properties,
and more specifically the partition of an organ into vascular territories has not
been intensively considered. In the case of coronaries, the vascular territories are
generally implicitly provided by the different branches of the coronary tree (the
knowledge of such regions is of actual importance for determining the parts of
the heart being affected by vessel stenoses, and possible subsequent heart attack).
Computational modeling of these branches has been carefully studied for several
years. In the case of cerebral vasculature, the different areas of the brain supplied by
the main branches originated from the Willis polygon have been described long ago

4From a structural (and more especially from a topological) point of view, the terminology of
“tree” is generally incorrect for most of vascular networks, despite its frequent use in the literature
devoted to angiographic imaging. In the sequel of the chapter we will generally distinguish vascular
trees from vascular networks. This distinction will be clarified in the next sections.
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in the medical literature (see, e.g., [70, 97, 98] for recent contributions),5 but these
areas have not yet played a crucial role in angiographic/medical image analysis
despite their potential helpfulness. Similar considerations can be made for the liver
vascular networks, and in particular the portal network, the branches of which define
the main hepatic anatomical segments [21].

6.4.1.2 Usefulness

The other two kinds of anatomical knowledge, namely, morphological and struc-
tural, have been the subject of a several publications related to medical image
analysis dating back to the end of the 1980s. In particular, the coronary tree and
the (arterial and venous) networks of the brain have been considered.

The first studies, related to the heart, have essentially been devoted to gather and
model structural information related to the coronary arteries in order to assist the
radiologists in their analysis of vessels from CT data, especially for the diagnosis
and follow-up of stenoses and their consequences on heart blood supply. The
globally simple structure of the coronary tree and its (relative) invariance has led
to the design of the first vascular models. Such vascular models will be referred to
as atlases6 in the sequel of the chapter. A survey of this first family of (deterministic)
atlases is proposed in Sect. 6.4.2.

More recent studies, essentially devoted to the cerebrovasculature, have intended
to gather and model morphological information related to potentially complex
vascular networks. It should be noted that, in contrast to vascular structures such as
coronary arteries or hepatic vessels, vascular networks such as the cerebral ones are
not actually tree structures. A vascular tree originates from a single vessel, which
progressively divides itself (by bifurcations) into branches, leading to an arborescent
hierarchy (which, in particular, does not present any cycle). Vascular networks, such
as the cerebral ones, present a more complex organisation. They can originate from
several vessels, which divide themselves to refine into smaller branches, but which
can also join together to give birth to new vessels, or present cyclic structures, as
anastomoses. To the complexity induced by the structure of such vascular networks,
one must add the complexity induced by the nature of the vessels visualized in
the considered images (both veins and arteries, large and small vessels), from the
image modalities (generally non-injected data, especially in MRA, in the case of
brain vessels), but also from the anatomical variability of the vessels (from both
morphological and structural points of view). In this context, the design of no longer
deterministic, but statistical atlases had to be considered. A survey of this second

5The notion of “vascular areas”, which actually does not match the anatomical notion of vascular
territories, was introduced in [78] in order to propose a partition of the cerebral volume to facilitate
the segmentation of vessels from PC-MRA data.
6The notion of an atlas has been the subject of a quite intensive research activity during the last
15 years, especially in the field of brain imaging. The emergence of computational anatomy [39,
50, 99] is, in particular, a direct expression of such research activities.
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family of atlases is proposed in Sect. 6.4.3. One of the main uses of such statistical
atlases is the guidance of automated vessel segmentation procedures [68], which is
a crucial step for several medical image analysis applications.

6.4.2 Deterministic Atlases

The first works on vascular atlases have consisted in developing deterministic
models of the vessels. By deterministic, we mean that a model is a (representative)
example of what can be considered a vascular network. Although being a good
(and actually useful) representation of the anatomical truth, such a deterministic
atlas is however not necessarily able to take in consideration in an accurate way the
interindividual variability. Broadly speaking, these atlases can be seen as a direct
transcription of the models described (both textually and visually) in the anatomy
literature. The pioneering works related to this topic were actually based on this
approach.

6.4.2.1 Pioneering Works

To the best of our knowledge, the first vascular atlas generated from angiographic
data was developed for the modeling of coronary arteries [26]. This “hand-made”
atlas consists of a (piecewise linear) skeleton modeling the main coronary artery
segments and branches, and providing information on topology (e.g., position of the
bifurcations), position and trajectory of vessels. Starting from 2D arteriographies of
37 patients, vessels were manually segmented from two orthogonal views, from
the origin of the coronaries to the most distal visible point on each considered
branch. A total set of approximately 100 points was then regularly sampled on
each segmented tree, leading to a 3D mean positioning of each point. An interactive
choice of the structures to be visualized, and the visualization angle allowed the
generation of 2D projections of the atlas. In the same period, a second approach
was proposed in [36], relying on a model composed of two orthogonal planes
embedding a structural and spatial representation of each one of the left and right
coronary trees. Based on this pseudo-3D reference, a symbolic description of the
arteries was proposed, providing in particular information on branch names and
hierarchy, position, (qualitative) orientation, or vascular territories. This description
was made by use of declarative programming with each predicate formalizing a
given information related to a vessel, while some more general rules modeled
heuristic information, such as continuity or angular limits at bifurcations.

In contrast to methods such as [36], which rely on bases of semantic knowledge,
those which took advantage of the emerging technologies offered by computer
graphics at the end of the 1980s (such as [26]), gave rise to related strategies,
essentially based on graph modeling and geometric information.
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6.4.2.2 Graph-Based and Geometric Atlases

Among the methods aiming at generating deterministic atlases, one can distinguish
those based on graphs, and those based on geometry. The first ones essentially
focus on a symbolic description of the vascular structures (independently from their
embedding in the 3D space, i.e., from their anatomical reality), while the second
ones especially aim at defining such models as objects which “match at best” a
spatial reality.

One of the main uses of such atlases, is the labeling of coronary branches,
i.e., the automatic naming of vessels, in order to assist radiological analysis.
The extraction of reliable vascular information from cardiovascular data (generally
2D or 3D CT angiography) is of precious use for coronary disease assessment.
In this context, it is not only required to segment these vessels (which is a non-trivial
task, subject to strong research efforts by the medical image analysis community
[67]), but also to be able to name each branch of the coronary tree, in order to
facilitate the radiological analysis. Such a highly semantic task can not, of course,
be carried out without using high-level a priori anatomical knowledge. Based on
these considerations, several vascular atlases have been involved in –and sometimes
specifically designed for– this labeling task [14, 30, 36, 41, 42].

Graph-Based Atlases

The extraction of a graph modeling the structure of a vascular network (i.e.,
assigning an edge to each vessel branch, and a node to each junction/bifurcation)
has been a purpose frequently considered by the first vessel segmentation methods
devoted to 3D angiographic data [37, 115]. Note that the main weakness of these
first approaches was propagation of segmentation errors in the obtained model.

A solution proposed in [30] relies on the data collected, and validated, in [26].
It proposed to define both a symbolic graph-based atlas, which models the tree
structure of the coronary arteries, and to couple it with a geometric 3D atlas which
models spatial and geometric relationships. Unclassically, the nodes of the graph
represent vessel segments while the edges model their bifurcations. Each node of
the graph is then associated with a vessel name, a width, but also a list of points
located on the vessel medial axis. This information then intrinsically provides a
geometric model of the vessels.

In order to automatically build a graph-model of a vascular tree without depend-
ing on possible errors inherited from the segmentation process of real images, an
alternative consists of generating such a graph from a realistic anatomical phantom.
This is the approach proposed in [14] for generating a graph-based atlas of the
coronary arteries. The use of a phantom enables to easily obtain a segmentation
(which can be validated a posteriori) and to derive, by a topological post-processing,
curvilinear structures enabling to define a graph structure. In [14], such an atlas can
be achieved by storing at each edge/vessel segment information attributes such as
its name, length, orientation and diameter.
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Fig. 6.2 Geometry-based atlases. (a) Atlas of the cerebral vascular (arterial and venous) networks.
(b) Atlas of the whole heart and of the coronary arteries. Illustrations from (a) [74] and (b) [58]

Geometry-Based Atlases

The works described above have focused on vascular structures presenting simple
properties, namely the coronary arteries, out of their anatomical neighboring
context. In recent works, efforts have been conducted to design vascular atlases
related to more complex structures. These contributions rely, in particular, on the
use of geometric models, and specifically surfacic meshes.

In [74], a geometric atlas of the whole cerebral vascular network was proposed
(see Fig. 6.2a). This network was quite complex, being composed of veins and
arteries of varying sizes (at the resolutions available in 3D CT and MR angiographic
data, namely 0.5 mm), organized in a non-arborescent fashion. The generation
process, based on the TOF MRA of a healthy patient, was composed of several
iterative steps, the most crucial of which was segmentation (performed manually,
for the sake of correctness), medial axes determination and topology correction
(also performed interactively), vessel surface generation, quantitative knowledge
extraction and vessel labeling. It led to a quite accurate vascular atlas providing
information on the type of vessels (arteries or veins), their position in the intracranial
volume, their name, size and topology. Such an atlas, essentially designed with high-
level image processing tools, but in a basically manual fashion, however, remains
strongly related to the only patient involved in the image acquisition process.

In [58], a geometric atlas of the whole heart, made of surfacic meshes cor-
responding to different anatomical structures, was proposed (see Fig. 6.2b). In
addition to the coronary arteries, it also modeled several anatomical structures
such as the heart chambers and the trunks of the connected vasculature (the model
generation of which is beyond the scope of this chapter). The information used
for generating this vascular atlas consisted of measurements from [26], which
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helped to create a first vascular model. In order to correctly fit this model on its
neighboring cardiac structures, a registration step was carried out.7 The registration
process was driven by the medial axes of the main artery segments, interactively
delineated from 27 3D CT data (which had previously been involved in the mesh
generation of the other anatomical structures). It was based on an incremental
relaxation of the authorized degrees of freedom, first accepting rigid (translation,
rotation) transformation, then scaling, and finally, affine transformation. In contrast
to the vascular atlas proposed in [74] for the cerebrovasculature, the one presented
here, despite the relative simplicity of the modeled vascular tree, was sufficiently
specific to model spatial relationships with neighboring –non vascular– structures.
This is the first (and to our knowledge, the only) vascular atlas offering such a
property. In contrast to the previous atlas, this one was created (at least partially)
thanks to the vascular information provided by 3D CT data of several patients.
As stated in the synthetic description of the generation protocol, this required one
to be able to process heterogeneous anatomical knowledge, possibly presenting
variability. In particular, this implies the consideration of tools enabling one to fuse
the information related to several patients in a unified result. In the present case,
this was done by considering registration. In Sect. 6.4.3, it will be shown that based
on similar registration-based strategies, it is possible to obtain results which are
no longer deterministic, but statistical, enabling in particular the modeling of the
interindividual variability.

6.4.3 Statistical Atlases

In the above section, we have considered the vascular atlases which can be qualified
as deterministic, in the sense that they present a model of vasculature which could
be seen as the vascular network of a representative patient among the population.
In this section, we now focus on non deterministic vascular atlases, and more
especially on statistical ones, which are intuitively less similar to a hard anatomical
model, but which aim at gathering and modeling more completely and efficiently
the characteristics of a whole population of patients.

6.4.3.1 Anatomical Variability Handling

When designing an anatomical model (in the present case, a vascular atlas), two
questions have to be considered carefully:

1. How to model the invariant information, i.e., the set of characteristics shared by
the whole population?

7The reader interested in registration – which is an issue strongly linked to (vascular) atlas
generation – may complete the study of this chapter by reading the following surveys [48, 116].
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2. How to model the interindividual variability, i.e., the set of varying characteristics
among this population, in a unified framework?

The deterministic atlases described in Sect. 6.4.2 actually provide efficient answers
to the first question. However, since they are based on a hard (graph or geometric)
model, their ability to handle interindividual variability is not obvious.8

Most of the contributions devoted to deterministic vascular atlas generation
propose various (partial) solutions to this issue. In the preliminary works on
coronary modeling [26], it is mentioned that there exist three variants in the coronary
trees structure: right dominant (10%), balanced anatomic distribution (80%), and
left dominant (10%)9. In [36], such variations are considered by exhaustively
modeling each induced branch distribution (in this case by integrating them into
the symbolic base of knowledge).

In the case of cerebral vessels, there also exists a strong interindividual variability
from both topological and geometrical points of view [81]. In order to cope with this
issue in the case of the vascular atlas proposed in [74] (and obtained from a single
patient), a straightforward solution is an exhaustive list of each topological variation
described in the anatomy literature [73]. In [41], a more unified solution is proposed
for the modeling and storing of such interindividual topological variations. This is
done by initially considering a classical graph-based modeling (see Sect. 6.4.2.2)
enriched by fusing of several anatomical models/graphs into a “vascular catalog”,
composed of a graph of all variations, and a discrimination matrix. This matrix helps
to extract these variations as graphs similar to those of [14, 30]. (See also [40] for a
more theoretical/methodological contribution related to the same concepts.)

The handling of variability proposed in these contributions is essentially based
on characteristics related to the structure of the vascular networks. This is a
straightforward consequence of the modeling strategies which are primarily based
on topological data structures. In particular, the quantitative variations are generally
omitted from these atlases, and the answer of these methods to the second question
actually remains partial.

Some recent contributions try to propose complementary answers to this second
question. They are specifically devoted to coping with the issue of modeling the
variability of anatomical characteristics which can be quantified, for instance the
size, orientation, position, or even the shape of the vessels. To this end, they propose
to generate non-deterministic (namely statistical) atlases.

8However, this fact does not represent a crippling drawback, since the relevance of interindividual
variability handling is essentially modulated by the applications requiring the designed atlas. In
particular, deterministic atlases must not be considered as less (or more) relevant than statistical
ones.
9Note that the information on coronary arteries gathered in [26] corresponds to a sample of patients
with “normal-sized hearts”. This example illustrates the general necessity to constraint some
anatomical hypotheses if we hope to finally obtain a useful model from a finite (and generally
restricted) set of patients. Such a consideration remains valid when considering statistical models:
a classical example is the restriction to either healthy or non-healthy people in the considered pool
of patients.
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Fig. 6.3 Atlas for the portal vein entry, in the liver. (a) Sagittal, (b) coronal, and (c) axial slices.
Illustration from [68]

6.4.3.2 Recent Works

The methods described hereafter are mainly devoted to design vascular atlases of
vessels or vascular trees/networks from a set of patients/images presenting possible
anatomical variations. In all these contributions, the input data consist of vascular
volumes extracted from angiographic images. Similarly to most of the methods for
deterministic atlas generation, those for statistical atlas generation then strongly rely
on vessel segmentation. The following methods have been classified according to
the degree of complexity of the modeled anatomical information.

Shape model

When the vascular structures of interest are sufficiently simple, for instance when
only a vessel, or a vessel segment has to be modeled, a first (and straightforward)
approach for generating vascular atlases can consist in creating shape models. Such
models can be defined by computing the mean image of data obtained from the
segmentation of a (learning) image database. This mean image of binary functions
can be seen as a fuzzy function with values in the interval [0,1].

In [69], such a model (which can in particular be involved in subsequent
segmentation procedures [68]) was proposed for a vessel segment, namely the
entrance of the portal vein, in the liver. The atlas, built from a database of 15
segmented images of the portal vein entry, is illustrated in Fig. 6.3.

Density Atlas

When the vascular structures become more complex, in particular in the case
where a whole vascular tree/network is considered, a straightforward mean image
gathering each patient vascular information is no longer sufficient to accurately
generate a satisfactory vascular atlas. In this more difficult context, it becomes
necessary to develop adequate strategies for fusing several vascular images onto a
coherent anatomical reference. Such strategies thus require the use of a registration
procedure.
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Fig. 6.4 Atlas of the cerebral arteries. (a) Sagittal, (b) coronal, and (c) axial maximum intensity
projections. Illustration from [20] (with kind permission from Springer Science+Business Media:
MICCAI 2003, Tissue-based affine registration of brain images to form a vascular density atlas,
volume 2879 of LNCS, 2003, p. 12, D. Cool et al., Fig. 1)

Intuitively, a first and natural way to proceed consists in attempting to register all
the (segmented) vascular networks onto a chosen one, considered as the reference.
Such an approach has been developed in [16], where the reference network is first
skeletonized and then processed to provide a distance map (providing the distance to
the closest vessel). The other segmented vascular networks are then registered (by
affine transformation) on this template. The mean and variance images obtained
from the distance maps of all the registered images finally provide a kind of
probabilistic vascular atlas.

If such an approach enables the discrimination between healthy and non-healthy
patients (especially in the case of arterio-venous malformations), it is actually not
sufficient to accurately model the vessels. This is due, in particular, to the lack
of a morphological reference. In order to correct this drawback, it is possible to
perform registration no longer to angiographic data, but to associated morphological
images. This alternative approach was proposed in [20], where each angiographic
data (in this case, cerebral MRA) was associated with a T2-weighted MRI of the
same patient. An affine registration procedure was then applied between these T2
data, leading to morphology-based deformation fields which were then applied on
distance maps similar to the ones previously described, leading to an atlas consisting
of a vascular density map. A result for cerebral arteries, obtained from 9 patients
is depicted in Fig. 6.4. Nonetheless, for creating vascular atlases as density fields,
a recent strategy was proposed in [88] for cardiovascular CT data. In contrast to
the case of cerebral MRA data, which requires the simultaneous use of MRI data,
the considered CTA images contained both morphological (cardiac) structures and
angiographic ones. It was then possible to directly perform registration on such data.
After (non-rigid) registration of the main vessel centerlines of each image with the
chosen reference image and estimation of the closest centerline for each point of the
image, a mean-shift clustering was performed in order to assign each point to one
of the three main vessel clusters. An artery-specific density at each point was then
computed from a covariance analysis. The result obtained from 85 CTA is depicted
in Fig. 6.5.
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Fig. 6.5 3D visualisation of the vascular atlas (here, thresholded density field) for the three main
coronary arteries (centerlines of which, for a given CTA, are depicted in green, red and yellow).
Illustration from [88], ( c©2010 IEEE)

Enriched atlas

The statistical atlas generation protocols presented above are essentially devoted to a
density field generation. This density field models information related to a “vascular
presence probability” and possibly a shape, when the interindividual variability is
sufficiently low.

It may, however, be useful to be able to model more accurate information, related
for instance to size and orientation. An approach described in [77] proposed such a
method. It requires as input more information than a simple segmentation, namely
a segmented volume (as in [69]), the associated medial axes (as in [16, 20, 88]),
but also information on the vessel orientation (it should be noted that all these
information elements may be obtained from a segmented volume, by using adequate
methods10). It also requires correct deformation fields in order to register these
different data with an anatomical reference. In order to do so, each angiographic
image (in the current case, cerebral PC-MRA phase image) was associated with a
morphological image (namely the associate PC-MRA magnitude image), following
a strategy similar to the one proposed in [20]. Non-rigid registration of these
morphological images then provided the deformation fields in order to match the
segmentation, medial axes and orientation maps associated with each image onto

10See, e.g., [22] for a robust medial axis computation method.
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Fig. 6.6 Atlas of the cerebral vascular network. (a) Vascular density, visualized as a maximum
intensity projection (sagittal view). (b) Mean vessel diameters, visualized as a maximum intensity
projection (sagittal view). (c) 3D visualisation of a part of the orientation image. Illustration
from [77]

the anatomical reference. The mean and variance values for each one of these scalar
and vectorial attributes finally led to a vascular density field (as in [16, 20, 88]), but
also to size and orientation intervals at each vascular point of the atlas. Such an
atlas, modeling both cerebral veins and arteries, built from 16 patients is partially
illustrated in Fig. 6.6.

Remaining Challenges

The vascular atlas generation protocols discussed in the previous section provide,
in contrast to most of the ones devoted to deterministic atlases, the way to
fuse information from a potentially large set of data in a globally automated
fashion. Such automation requirements however induce several conditions related
to vessel segmentation which can be performed automatically as already discussed
in Sect. 6.3.1, but which (at least in the case of vessels) still does not offer perfect
results. However, it should be noted that in the context of atlas generation, a
sufficient condition for a correct use of automatically segmented data would be the
guarantee that they do not present any false positives (the presence of false negatives
being possibly compensated by the possibly high number of segmented data).

Another crucial issue related to non-deterministic atlas generation is the avail-
ability of efficient registration methods. The most recent methods [77, 88] are
based on non-rigid registration techniques, the accuracy of which (in contrast to
rigid or even affine registration) is probably a sine qua non condition to obtain
satisfactory results. Since such non-rigid registration algorithms have probably
reached a sufficient degree of efficiency for the processing of dense images (such as
morphological cerebral data, for instance), the development of efficient registration
procedures in the case of sparse – and more especially of angiographic – data seems
to remain, despite a few recent works [6, 16, 49, 91], a globally open question.
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Chapter 7
Detecting and Analyzing Linear Structures
in Biomedical Images: A Case Study Using
Corneal Nerve Fibers

Mohammad A. Dabbah, James Graham, Rayaz A. Malik,
and Nathan Efron

7.1 Introduction

Diabetic peripheral neuropathy (DPN) is one of the most common long-term
complications of diabetes. The accurate detection and quantification of DPN are
important for defining at-risk patients, anticipating deterioration, and assessing new
therapies. Current methods of detecting and quantifying DPN, such as neurophysi-
ology, lack sensitivity, require expert assessment and focus primarily on large nerve
fibers. However, the earliest damage to nerve fibers in diabetic neuropathy is to
the small nerve fibers. At present, small nerve fiber damage is currently assessed
using skin/nerve biopsy; both are invasive technique and are not suitable for repeated
investigations.

Recent research [1–3] using Corneal Confocal Microscopy (CCM) suggests that
this noninvasive, and hence reiterative, test might be an ideal surrogate endpoint for
human diabetic neuropathy. These studies demonstrate that measurements made by
CCM accurately quantify corneal nerve fiber morphology. The measurements reflect
the severity of DPN and relate to the extent of intra-epidermal nerve fiber loss seen
in skin biopsy. However, the major limitation preventing extension of this technique
to wider clinical practice is that analysis of the images using interactive image
analysis is highly labor-intensive and requires considerable expertise to quantify
nerve fiber pathology. To be clinically useful as a diagnostic tool, it is essential that
the measurements be extracted automatically.

The chapter is organized as follows. Section 7.2 provides an overview of some
linear structure detection methods. Section 7.3 focuses on the quantification of
CCM imaging. Section 7.3.1 provides more detail on its relationship with diabetic
neuropathy, while Sect. 7.3.2 discusses the characteristics of CCM images and
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Sect. 7.3.3 presents the metrics used to quantify the images. The dual-model
detection algorithm is then presented in Sect. 7.4. The foreground and background
models are described in Sect. 7.4.1 and the method for estimating local orientation is
presented in Sect. 7.4.2. The final outcome of the dual-model and its postprocessing
are discussed in Sects. 7.4.3 and 7.4.4, respectively. Section 7.5 describes the
method and results of the comparative evaluations together with the assessment of
clinical utility. The conclusion is provided in Sect. 7.6.

7.2 Linear Structure Detection Methods

The first critical stage in analysis of CCM images is the detection of nerve fibers.
This is challenging as the nerve fibers often show poor contrast in the relatively
noisy images. The literature on this topic is not extensive, although the problem
has a superficial similarity to other, more widely investigated, applications, such as
detection of blood-vessels in retinal images. Ruggeri et al. [4] describe a heuristic
method that was adapted from retinal analysis. Linear structures occur in a number
of imaging applications, in biomedicine and other fields. Below, we briefly review
some that are particularly relevant to this application.

In [5], we conducted a preliminary comparison of methods for contrast en-
hancement of nerve fibers, comparing a Gabor wavelet with a well-established line
detector. This method (Line Operator – LinOp), originally developed for detection
of asbestos fibers [6] has also been used in other contexts, such as the detection of
cracks in metal castings [7] and has been shown to be effective in detecting ducts
and other linear structures in mammograms [8]. LinOp exploits the linear nature
of the structures to enhance their contrast by computing the average intensity of
pixels lying on a line passing through the reference pixel for multiple orientations
and scales. The largest values are chosen to correspond to the line, the strength of
which is determined by the difference with the average intensity of the similarly
oriented square neighborhood. In the original LinOp implementation, processing
was conducted at a single scale, but later versions used a multi-scale analysis.

In our comparative study [5], the 2D Gabor filter [9] was used to detect nerve
fibers in CCM images. The filter is a band-pass filter that consists of a sinusoidal
plane wave with a certain orientation and frequency, modulated by a Gaussian
envelope. This spatial domain enhancement is based on the convolution of the image
with the even-symmetric Gabor filter that is tuned to the local nerve fiber orientation.
The comparison indicated that the oriented Gabor response, gave slightly improved
enhancement of nerve fibers over that provided by LinOp.

Inspired by [10, 11], Frangi et al. [12] used a multi-scale decomposition of the
Hessian matrix (matrix of second order image derivatives) to detect and measure
blood vessels in Digital Subtraction Angiography images in 2D and 3D Magnetic
Resonance Angiography images. Local second order structure of the image can
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be decomposed by extracting the principal directions using the eigenvalues of
the Hessian. Unlike Lorenz et al. [10] and Sato et al. [11], Frangi et al. [12]
simultaneously used the eigenvalues and eigenvectors of the Hessian to derive
a discriminant function that has maximum response for tube-like structures. The
method uses the norm of the Hessian to distinguish between background and
foreground based on the observation that the magnitude of the derivatives (and
thus the eigenvalues) is small at background pixels. Several other models based on
second derivatives have been widely used for linear structure detection in medical
image analysis [13].

The dual-tree complex wavelet transform (DTCWT) [14] is an extension of
the discrete wavelet transform (DWT), which provides a sparse representation and
characterization of structures and texture of the image at multiple resolutions. The
DTCWT utilizes two DWT decompositions (trees) with specifically selected filters
that give it the properties of approximate shift-invariance and good directionality.
The key feature of the DTCWT operation lies in the differences between the filters
in the two trees. DTCWT has been used in extracting and decomposing information
from images to obtain rich feature descriptors of key-points [15]. It was also used to
detect linear structures in retinal image [16] and mammograms [17].

The Monogenic Signal [18] (a variant of a 2D analytic signal) is an extension
of the analytic signal using quaternionic algebra in an attempt to generalize the
method to enable it to analyze intrinsically 2D signals, for example, structures
within images. The Monogenic Signal is based on the Riesz transform, which is a
2D generalization of the Hilbert transform used in the conventional analytic signal.
The Monogenic Signal is defined as the combination of the original signal and the
Riesz-transformed one in the algebra of quaternions. It has been used in extracting
structure information (such as edge, ridge, etc.) from images in several medical
image analysis applications [19, 20].

7.3 Quantification of Nerve Fibers in Corneal Confocal
Microscopy Imaging

CCM imaging is a new technology based on confocal laser scanning microscopes
(CLSM), which captures high-resolution images with depth selectivity from the
cornea of the human eye. However, confocal microscopy itself is not new, having
been first introduced in 1961 [21] and later adopted as a standard technology in the
late 1980s.

Confocal microscopy provides highly improved image quality over “conven-
tional” transmitted-light microscopy due to its highly controlled and limited depth
of focus. Images are reconstructed by detecting light from the focal plane in a
point-by-point fashion, with the result that light from out-of-focus parts of the
sample does not contribute to image background. Confocal imaging is widely
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used for constructing three dimensional images of prepared samples. A number of
instruments are available that apply the same imaging procedure to the cornea in
vivo (such as Tomey Confoscan,1 Nidek,2 HRT-III.3)

7.3.1 CCM for Imaging Diabetic Peripheral Neuropathy

Diabetic neuropathy is one of the commonest long-term complications of diabetes
and is the main initiating factor for foot ulceration, Charcot’s neuroarthropathy, and
lower extremity amputation. As 80% of amputations are preceded by foot ulceration,
an effective means of detecting and treating neuropathy would have a major medical,
social, and economic impact. The development of new treatments to slow, arrest, or
reverse this condition is of paramount importance but is presently limited due to
difficulties with end points employed in clinical trials [22].

Recent studies suggest that small unmyelinated c-fibers may be the earliest to
be damaged in diabetic neuropathy [23–25]. The only technique which allows a
direct examination of unmyelinated nerve fiber damage are those of sural nerve
biopsy with electron microscopy [25, 26], and the skin-punch biopsy [27–29],
but both are invasive procedures. However, our previous studies in patients with
diabetic neuropathy have shown that CCM can be used to quantify early small
nerve fiber damage and accurately quantify the severity of diabetic neuropathy
[1, 2]. These observations led us to suggest that CCM may be an ideal noninvasive
surrogate marker for detecting small fiber damage in diabetic and other peripheral
neuropathies [3]. Moreover, we have shown that corneal nerve damage assessed
using CCM relates to the severity of intra-epidermal nerve fiber loss in foot skin
biopsies [30] and the loss of corneal sensation [31] in diabetic patients. CCM also
detects early nerve fiber regeneration following pancreas transplantation in diabetic
patients [32]. Recently, we have also shown that CCM detects nerve fiber damage
in patients with Fabry disease [33] and idiopathic small fiber neuropathy [34] in the
presence of normal electrophysiology and quantitative sensory testing (QST). CCM
offers considerable potential as a surrogate marker, and hence as an end-point for
clinical trials in diabetic neuropathy [35].

7.3.2 CCM Image Characteristics and Noise Artifacts

CCM images are captured at different depths in the cornea by manual focusing of
the CLSM. Due to different capturing conditions such as saccadic eye movements

1Tomey Corporation, http://www.tomey.com/.
2Nidek Inc. http://usa.nidek.com/.
3Heidelberg Engineering, Inc. http://www.heidelbergengineering.com/.
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Fig. 7.1 CCM images of nerve fibers obtained from the Bowman’s membrane. The images exhibit
different varieties of artifacts due to acquisition conditions

in the eye, the degree of physical pressure on the eye, the spherical shape of the
cornea, etc. images can suffer a variety of artifacts (Fig. 7.1).

One of the common artifacts seen in CCM images is uneven illumination: low
frequency intensity variations across the entire CCM image with no correspondence
to the feature of interest of the image (nerve fibers, cells, etc.). These illumination
artifacts are caused by the physical pressure of the CLSM lens on the spherically
shaped cornea. It is difficult to avoid such artifacts while capturing the images as the
acquisition requires constant physical contact through a medium that matches the
refractive index of the cornea. These artifacts could not be defined by a certain orien-
tation or frequency. This makes it plausible for pass-band directional filters to elimi-
nate them from the image. Two-dimensional wavelets are an example of such filters.

Motion artifacts arise from the fact that it is difficult for patients to keep their eyes
still with the microscope lens in contact with the cornea, despite the application of
an anesthetic drop. The result is blurring of the nerve fibers.

The human cornea has a diameter of about 11.5 mm and a thickness of
0.5–0.6 mm in the centre and 0.6–0.8 mm at the periphery. It is transparent, has
no blood supply and gets oxygen directly from the atmosphere. It consists of
five layers: Epithelium, Bowman’s membrane, Stroma, Descemet’s membrane,
and Endothelium. The Bowman’s membrane is 8–12μm thick, helps the cornea
maintain its shape and is composed of nerve fibers. It is in this layer that CCM
images are acquired for analysis.
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Fig. 7.2 CCM image characteristics. Nerve fibers flow in a predominant direction everywhere in
the image with some minor variation in the direction and size. The size of these nerve fibers can
be attributed to high-frequency components in the Fourier domain as shown in the right-hand side
of the figure

These nerve fibers extend into different depths of the membrane causing them
to disappear when they move out of the scanning focal plane. The spherical shape
of the cornea also contributes to this depth-of-field artifact, especially around the
periphery of the field of view.

Nerve fibers in CCM images display different lengths, widths, patterns, and
orientations (Fig. 7.2). However, within an image they exhibit a predominant global
orientation with minor variations across the image.

This predominant orientation depends on the part of the cornea the image is
captured from. Across the cornea, the nerve fibers tend to converge toward the
centre, in front of the pupil. The 2D Fourier Transform of the image in Fig. 7.2 shows
the high frequency components (i.e., edges or nerve fibers) lying in an oriented
pattern around the origin. These image characteristic can be used to detect nerve
fibers and filter out noise.

7.3.3 Quantified Metrics of Nerve Fibers in CCM Images

For quantitative measurement of nerve fibers four main metrics are used: nerve fiber
length (NFL), nerve fiber density (NFD), nerve-branch density (NBD), and nerve
fiber tortuosity (NFT). The nerve fibers are considered as being the main trunks
while braches are the secondary fibers which originate from the main nerve fibers
(see Fig. 7.2).

NFL is defined as the total length of all nerve fibers visible in the CCM image per
square millimeter. The total length is computed by tracing all the nerve fibers and
nerve-branches in the image. This number is then divided by the area of the field-
of-view provided by the microscope to produce the NFL [mm/mm2]. According to
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Fig. 7.3 An example of a
CCM image with a tortuous
nerve fiber

ongoing research and previously published data, this metric seems to be the most
significant measure in categorizing and analyzing the diabetic neuropathy. The NFD
and nerve-branch densities are the number of the major nerves per square millimeter
and the number of branches emanating from those major nerve trunks per square
millimeter of corneal tissue, respectively.

NFT is a metric indicating the degree of curvature or tortuousness of the main
nerve fibers. There have been several attempts to quantify this property in medical
image analysis such as in retinopathy [36], corneal neuropathy [2], etc. Clinical
research [2] has shown that NFT (Fig. 7.3) can differentiate between differing
severities of neuropathy.

7.4 A Dual-Model Detector for Linear Structures
in CCM Images

To quantify the CCM images, the nerve fibers have to be reliably detected. The
quality of captured images is often low due to the imaging effects outlined in
Sect. 7.3.2 and nerve fibers may appear faint due to either their small size or
being only partly in the focus plane. Therefore, a nerve fiber contrast enhancement
algorithm is needed to exploit the linear structure of the nerve fibers and distinguish
them from the background noise. All of the methods described in Sect. 7.2 are
capable of providing this enhancement. In the next section, we describe our
approach, the dual-model [37].
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The dual-model consists of a 2D Gabor wavelet (foreground model) and a
Gaussian envelope (background model), which are applied to the original CCM
images. The detection relies on estimating the correct local and dominant orientation
of the nerve fibers. We evaluate our dual-model in comparison with feature detectors
described in Sect. 7.2 that are well established for linear and more general image
features. In addition to the evaluation of the nerve fiber detection responses, we
have also evaluated the clinical utility of the method by a comparison with manual
analysis.

7.4.1 Foreground and Background Adaptive Models

For this purpose, the foreground model MF is an even-symmetric and real-valued
Gabor [9,38] wavelet and the background model MB is a two-dimensional Gaussian
envelope, Fig. 7.4.
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xθ = xcosθ + ysinθ (7.3)

yθ = −xsinθ + ycosθ (7.4)

The x and y axes of the dual-model coordinate frame xθ and yθ are defined by a
rotation of θ , which is the dominant orientation of the nerve fibers in a particular
region within the image (see Sect. 7.4.2). This dual-model is used to generate the
positive response RP = MF + MB and the negative response RN = MF −MB that are
applied to the original CCM image and can be represented as in (7.5) and (7.6),
respectively.
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The equations of RP and RN assume that the Gaussian envelope of both responses
are identical, that is, they have the same variances σ 2(x,y) and the same aspect
ratio γ . The magnitude of the Gaussian envelope α defines the threshold in which a
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Fig. 7.4 Foreground and background models for the nerve fibers. (a) the two-dimensional Gabor
wavelet at a particular orientation and frequency. It represents the foreground model of the nerve
fibers. (b) the Fourier transforms of (a). (c) the two-dimensional Gaussian envelope that represents
the background model and (d) its Fourier transform

nerve fiber can be distinguished from the background image. The value of α can be
set empirically to control sensitivity and accuracy of detection. The wavelength λ
defines the frequency band of the information to be detected in the CCM image, and
is related to the width of the nerve fibers (see Fig. 7.2). Its value might be computed
for a sub-region within the image that has significant variability of nerve fiber width.
However, for simplicity, λ is chosen to be a global estimate of the entire image based
on empirical results.

7.4.2 Local Orientation and Parameter Estimation

In CCM images, the nerve fibers flow in locally constant orientations. In addition,
there is a global orientation that dominates the general flow. The orientation field de-
scribes the coarse structure of nerve fibers in the CCM images and has been proven
to be of a fundamental importance in many image analysis applications [39, 40].
Using the least mean square algorithm [41], the local orientation θ (i, j) of the block
centered at pixel (i, j) (7.9), is computed using the following equations [39].
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The gradients ∂x(u,v) and ∂y(u,v) are computed at each pixel (u,v) and may vary
from the simple Sobel operator to the more complex Canny operator depending
on the computational requirements. ω is the width of the block centered at pixel
(i, j). The orientation field is then smoothed by convolving the x and y vector field
components in (7.7) and (7.8), respectively, with a low-pass Gaussian filter. This

smoothed orientation field is calculated by (7.14), where
�

Φx(i, j) and
�

Φy(i, j) are
the smoothed continuous x and y vector field components.

Φx(i, j) = cos(2θ(i, j)) (7.10)

Φy(i, j) = sin(2θ (i, j)) (7.11)

According to the original algorithm [41], the low-pass 2-dimensional Gaussian
filter G is applied on the block level ω of the orientation field computed earlier in
(7.9). The filter has a unit integral and a kernel size of ωΦ ×ωΦ. However, since
the orientation in CCM images varies at a slow rate, the low-pass filter is applied
globally to further reduce errors at near-nerve fiber and nonnerve fiber regions. The
estimated orientation is not always correct, hence, the low-pass filter tries to rectify
the error given that the orientation in the local neighborhood varies slowly;
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The least square estimate produces a stable smooth orientation field in the region
of the nerve fibers. However, when applied on the background of the image, that is,
between fibers, the estimate is dominated by noise due to the lack of structure and
uniform direction, which is expected and understandable. Figure 7.5 shows a CCM
image and its orientation field estimate.
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Fig. 7.5 An illustration of the orientation field (right) of the original CCM image (left). The
orientations on the nerve fibers and their surrounding are similar and follow the predominant
orientation in the image, while orientations everywhere else (background) are random and noisy

7.4.3 Separation of Nerve Fiber and Background Responses

The models are applied on the image pixel-wise. During this operation, they are
adjusted to suit the local neighborhood characteristics of the reference pixel at f (i, j)
by modifying their parameters of the foreground and background separately in (7.5)
and (7.6). The dot products of the models and the reference pixel’s neighborhood
((7.15) and (7.16)) are then combined to generate the final enhanced value of this
particular reference pixel g(i, j) (7.17).

Γp(i, j) = 〈 fω(i, j),RP〉 (7.15)

Γn(i, j) = 〈 fω (i, j),RN〉 (7.16)

g(i, j) =
Γp(i, j)

1 + exp{−2kΓn(i, j)} (7.17)

The neighborhood area of the reference pixel is defined by the width ω . The
transition from foreground to background at a particular pixel g(i, j) occurs at
Γn = 0. The sharpness of this transition is controlled by k: larger k results in sharper
transition. This in turn enhances the nerve fibers that are oriented in the dominant
direction, and decreases noisy structures that are oriented differently by increasing
the contrast between the foreground and the noisy background, whilst effectively
reducing noise around the nerve fiber structure as shown in Fig. 7.6.
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Fig. 7.6 An illustration of the dual-model enhancement results. The dual-model algorithm was
applied on the original CCM image on the left resulting in the response image on the right. Even
the structures of small and faint nerve fibers were enhanced

7.4.4 Postprocessing the Enhanced-Contrast Image

Once the CCM image is enhanced, the detection of the nerve fibers becomes a trivial
task. The response image of the dual-model has a zero value for a background pixel
and a value that is greater than zero, up to unity for everything else. This makes
global thresholding of intensities an effective technique of separating background
and foreground.

Changing the threshold value of the dual-model detector α in (7.5) and (7.6) will
change the sensitivity of the detection as shown in Fig. 7.7. A lower threshold value
will produce sensitive detection even for the very faint nerve fibers. However, this
will also cause a more noisy response image due to the false positive detected nerve
fibers that are represented as small fragments. These fragments can then be easily
filtered out by simple postprocessing techniques as shown in Fig. 7.7.

The values that correspond to foreground pixels, that is, pixels on a nerve fiber,
represent a confidence measure. The higher the value the more likely this is a nerve
fiber pixel. Once the image is thresholded and turned into a binary form, zeros for
background and ones for foreground, nerve fibers appear as thick ridges flowing
across the image. This is followed by morphological operators to eliminate islands
(separate pixels) between nerve fibers and to reduce the number of spurs in the
thinned image.

To be able to estimate the center of these ridges, that is, the one-pixel line
detection of nerve fibers, the binary linear structures are thinned using [42]. The
skeletonized image (e.g., Fig. 7.8) provides a straightforward representation for
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Fig. 7.7 An illustration of the dual-model enhancement threshold α on the response image. The
first column contains the original CCM; the images in the second column are enhanced with a
relatively high threshold. The images in the third and the last column are enhanced with the same
low threshold but the images in the last column are also postprocessed to remove small fragmented
nerve fibers

Fig. 7.8 After the original CCM image is enhanced to exploit the nerve fiber structures, the image
is thresholded to produce a binary image which is then thinned to a skeleton image as shown in the
last image on the right

defining the image features described in Sect. 7.3.3. NFL is simply the count of
pixels with binary value of one. Fully connected lines of detected pixels that have
a length greater than a certain threshold are counted to give the number of major
nerve fibers in the CCM image and used to compute the NFD.

At each pixel on the skeleton, we can calculate the crossing number [43], which
defines the number of neighbors the pixel has on the skeleton. One defines an end
point, two is a ridge point, and three or more indicate a branch point. This allows us
to recognize and count branch points.
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7.5 Quantitative Analysis and Evaluation of Linear Structure
Detection Methods

7.5.1 Methodology of Evaluation

The performance of the dual-model detector and the other methods described in
Sect. 7.2 is obtained by validating the extracted nerve fibers in comparison with
an expert manual delineation using CCMetrics.4 Only the raw response of each
method is taken into account without any further postprocessing operations or shade
correction methods as shown in Fig. 7.9. Binary images are obtained by a simple
uniform thresholding operation that is followed by a thinning operation to achieve a
one-pixel-wide skeleton image.

To be consistent in this comparison of different methods, the detection algorithm
did not include any pixel classifications. Responses from techniques with multi-
scale analysis, such as LinOp, Hessian, DTCWT, and Monogenic Signal, were
considered by taking the maximum magnitude of all levels.

Three measures have been used to quantify the evaluation: the false-positive
(FPR), the true-positive (TPR), and the equal-error rate (EER), which is the
average of optimal FPR and false-negative rate at minimal difference between both.
A receiver operating characteristic (ROC) analysis was conducted by comparing the
generated skeleton at different threshold intervals of the methods’ responses with the
manually delineated ground-truth. A tolerance of ±3.141μm (3 pixels) was allowed
in determining coincidence between the ground-truth and the detected nerve fibers.

The peak signal to noise ratio (PSNR) in (7.18) is also used to evaluate the
performance of all methods.

PSNRdB = 20 log

(
MAXI√

e

)
(7.18)

The PSNR is computed with respect to the mean squared error e, which is the
mean square difference between the detected nerve fibers and the ground-truth
manual delineation. MAXI is the maximum possible intensity (fixed) and e is the
mean square error. The practical implementations of the Hessian, the DTCWT, and
the Monogenic Signal were obtained from public domain sources [44–46], while
the rest were implemented by our research group.

4CCMetrics is a purpose built interactive graphical interface which helps in the analysis undertaken
by experts to manually delineate nerve fibers in CCM images.
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Fig. 7.9 Example response images for all different detection methods. The responses were taken
as a raw output from the detector without any postprocessing and converted to binary images and
then to skeleton images for fair comparison

7.5.2 Database and Experiment Setup

The evaluation has been conducted on a database of 525 CCM images captured
using the HRT-III5 microscope from 69 subjects (20 controls and 49 diabetic
patients). The pixel size is 1.0417μm and the field of view is 400× 400μm2 of

5Heidelberg Engineering Inc. modified to acquire corneal confocal images.
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Fig. 7.10 The receiver operating characteristic (ROC) curves of all five detectors. The dual-model
performance of detecting nerve fibres has clearly outperformed the other methods

the cornea. For each individual, several fields of view are selected manually in the
centre of the cornea from the Bowman’s layer showing recognizable nerve fibers.

Using the neuropathy disability score (NDS) [47], 48 patients were categorized
into four groups according to severity of neuropathy (nonneuropathic: 0 ≤ NDS ≤
2(n = 26), mild: 3 ≤ NDS ≤ 5(n = 9), moderate: 6 ≤ NDS ≤ 8(n = 10) and severe:
9 ≤ NDS ≤ 10(n = 3).

7.5.3 Nerve Fiber Detection Comparison Results

The superior performance of the dual-model is borne out by the ROC curves of
Fig. 7.10 in which the dual-model shows improved detection at all operation points.
The EER and PSNR values for all the methods are presented in the box-plots in
Fig. 7.11 and Table 7.1. Each data point in Fig. 7.11 corresponds to the evaluation
on one of the 525 CCM images in the database.

The dual-model shows lower EER and higher PSNR than all other methods
(Table 7.1). These improvements are statistically significant (p≈0 using three
different nonparametric tests). The table also shows that the standard deviations
of both EER and PSNR are low for the dual-model, which indicates a more stable
and robust behavior.
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Fig. 7.11 The box-plots of the EER (left) and the PSNR (right) are shown for all methods. The
box-plots indicate the upper and the lower quartiles as well as the median (the bar) of the EER and
PSNR values respectively; whiskers show the extent of the rest of the data while crosses indicate
outliers for (a) dual-model, (b) LinOp, (c) 2D Gabor, (d) Hessian, (e) DTCWT, and (f) Monogenic

Table 7.1 A comparison of
mean EER and PSNR and
their standard deviations for
all five detection methods; the
dual-model has achieved the
lowest EER and the highest
PSNR

EER(%) PSNR(dB)

μ σ μ σ
Dual-model 17.79 10.58 19.0774 2.16
LinOp 22.65 10.76 18.5132 2.09
2D Gabor 24.15 10.74 18.8042 2.11
Hessian 23.14 11.53 17.9269 2.27
DTCWT 34.17 10.43 17.0045 2.23
Monogenic 26.50 12.58 18.1084 2.20

The closest performance to the dual-model has been achieved by LinOp, which
has 4.86% greater EER on average. The performance of the Hessian methods is
also similar with an average EER of 23.14% (Table 7.1). The poorest performance
is obtained with the DTCWT and Monogenic Signal, as these are general-purpose
methods. The dual-model has also shown a superior performance in terms of
achieving higher PSNR values for the response images. As shown in the box-plot
(Fig. 7.11), the average PSNR of the dual-model is 19.08 dB, while all PSNR groups
have means smaller than the dual-model as indicated by Table 7.1, which shows a
summary of the comparison. The closest PSNR is at 18.80 dB.

7.5.4 Evaluation of Clinical Utility

Of the several features listed in Sect. 7.3.3, which may be used to quantify the nerve
fibers, NFL has been shown to be the most discriminating, and it is that feature that
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Fig. 7.12 The scatter plot of the manually and the automatically computed NFL metrics. There is
clearly a very strong correlation (r = 0.93)

Table 7.2 A comparison of the manual and the automated analysis;
unlike manual analysis, the automated analysis is insensitive to observer
variability and can be much quicker

Manual Automated

p-value(×10−8) 0.03 2.03
Coefficient of variation 0.34 0.29
Observer variability Yes No
Processing time 5–10 min ≈ 5s

we use to compare automatic detection with expert manual analysis (ground-truth).
NFL is measured as the total number of pixels in the nerve fiber skeleton after the
postprocessing of Sect. 7.4.4.

Figure 7.12 shows a scatter plot of manual vs. automatic measurements of NFL.
There is clearly a strong correlation (r = 0.93) indicating that the automated system
is successfully identifying the correct nerve fibers. The coefficient of variation cv =
σ/μ of the manual analysis is 0.34, reducing for the automated analysis to 0.29,
which indicates more reliability and robustness of the results (Table 7.2).

The box-plots in Fig. 7.13 shows NFL measured manually and automatically for
the stratified group of subjects. There is a strong similarity between the manual and
the automated analysis. However, the scale of the NFL has slightly changed from
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Fig. 7.13 Boxplots showing the NFL scores for each of the NDS groups calculated manually (left)
and automatically (right)

(3.68–33.91) for the manual analysis to (1.22–20.03) for the automated analysis.
ANOVA analysis results in a p-value for discrimination among these groups which
is slightly higher for the automated than the manual analysis, though both are highly
significant (p ≈ 0) (Table 7.2).

7.6 Conclusion

The analysis of CCM images requires the identification of fiber-like structures
with low contrast in noisy images. This is a requirement shared by a number of
imaging applications in biology, medicine, and other fields. A number of methods
have been applied in these applications, and we have compared some of these, and
more generic methods, with a dual-model detection algorithm devised for this study.
The comparison used a large set of images with manual ground-truth. In terms of
both error-rates (pixel misclassification) and signal-to-noise ratio, the dual model
achieved the highest performance. It seems reasonable to propose that this filter is
likely to prove equally useful in applications of a similar nature.

The question of the clinical utility of the method was also addressed. The
evaluation has shown that the automatic analysis is consistent with the manual
ground-truth with a correlation of r = 0.93. Similarity in grouping control and
patient subjects between manual and automated analysis was also achieved with
(p ≈ 0). Therefore, we conclude that automated analysis of corneal nerve fibers is a
much quicker and potentially more reliable practical alternative to manual analysis
due to its consistency and immunity to the inter/intra-observer variability. These
prosperities will help deliver CCM from a research tool to a practical and potentially
large scale clinical technique for the assessment of neuropathic severity.
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Chapter 8
High-Throughput Detection of Linear Features:
Selected Applications in Biological Imaging

Luke Domanski, Changming Sun, Ryan Lagerstrom, Dadong Wang,
Leanne Bischof, Matthew Payne, and Pascal Vallotton

8.1 Introduction

Psychovisual experiments support the notion that a considerable amount of
information is contained in region boundaries such as edges and linear features
[1]. Thus, as long as these elements are preserved, it is possible to simplify images
drastically with no apparent loss of content. Linear features also underlie the
organization of many structures of interest in biology, remote sensing, medicine,
and engineering. Examples include rivers and their deltas, road networks, the
circulatory system, and textile microstructure (see [2] for a more extensive list and
Chapters 6, 7, and 11 in this book).

Given that linear features play a central role in image analysis, a major aim
is to develop fast and sensitive implementations for identifying them in digital
images. Section 8.2 describes an efficient approach based on nonmaximum intensity
suppression. The method systematically probes the image intensity along short
segments in the image. By sampling a few transect directions (typically 8) at each
image pixel in turn, linear features can be detected very rapidly. Although the
algorithm in its original form is unable to detect linear features in close proximity,
small modifications can deal with this issue while sacrificing very little in terms of
speed. This is described in Sect. 8.2.3.

The output of our linear feature detector sometimes contains artifacts that need
treatment. Thus, one typically removes isolated pixels and attempts to restore
skeleton continuity when the latter is broken. Our approach to these issues is
presented in Sect. 8.2.4.

Linear features can be considered intermediate representations on which to apply
further computations to obtain morphological information, such as the number of
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branches, their length, or the number of branching points. Branching structures
typically possess a hierarchical organization, and it is important to capture and
deliver information at each level. This higher order processing is described in
Sect. 8.2.5.

There is renewed excitement nowadays around computational platforms such as
Graphics Programming Units (GPUs) to speed up algorithms. This is particularly the
case for high-throughput applications and for 3D and 4D datasets, where execution
time still represents a major bottleneck. Section 8.3 describes the implementation of
our linear feature detection algorithm on the GPU.

The technology presented in this contribution has been implemented in a
WindowsTM package called HCA-Vision. For the user’s benefit, Sect. 8.4 outlines
the software architecture and the main capabilities of this user-friendly tool
(www.hca-vision.com).

Section 8.5 describes several representative applications in biological imaging.
The first example demonstrates that even subtle phenotypic changes in the arbors
of neurons in culture can be characterized if a sufficient number of neurons are
analyzed. In this type of application, automation is central to reaching statistical
significance. The importance of maintaining linear feature continuity is also high-
lighted by this example.

We have also used HCA-Vision with success to characterize the phenotype of as-
trocytes in response to drug-induced stress. In this application, fluorescently stained
bundles of intermediate filaments were traced rather than neurites. Intermediate
filaments are typical of the many polymers present within the cells, and we expect
this application to grow in importance in the future.

In our final example, we describe how we used our sensitive linear feature
detector to separate closely adjoining bacteria under minimal contrast, thus com-
plementing the capability of more mainstream edge detectors.

Section 8.6 concludes this chapter by giving insight into recent developments, as
well as by speculating about future directions.

8.2 Methods

There are many different algorithms suitable for linear feature detection. Good
reviews are provided in [3,4]. Sun and Vallotton {Sun, 2009 #2}developed a fast lin-
ear feature detection method using multiple directional nonmaximum suppression
(MDNMS). This approach is particularly intuitive and suitable for a nonspecialist
audience. We will summarize the main steps of this algorithm in this section and
describe its implementations on the GPU in Sect. 8.3.

8.2.1 Linear Feature Detection by MDNMS

Linear features are thin objects across which the image presents an intensity
maximum in the direction of the largest variance, gradient, or surface curvature



8 High-Throughput Detection of Linear Features: Selected Applications... 169

Fig. 8.1 Illustration of linear windows at four different directions. “x” indicates the centre of the
linear windows. The other pixels in the window are shown as small circles. The length of the linear
window is 7 pixels in this illustration

(i.e., perpendicular to the linear feature). This direction may be obtained by the
use of computationally expensive Hessian-based detectors or by using matched or
steerable filters. Rather than searching for the local direction of linear features,
we use 1D nonmaximum suppression (NMS) [5] in multiple directions to identify
candidate pixels on a linear feature.

NMS is the process of removing all pixels whose intensity is not the largest
within a certain local neighborhood, that is searching for local maxima. The shape of
this local neighborhood is usually a square or rectangular window. For our purpose,
we choose this local neighborhood as an orientated linear window. A number of
approaches are available to obtain the directional local maximum within a one-
dimensional window. For example, a local maximum can be obtained by using basic
morphological operators to check whether a pixel value in the input image is equal
to that in the dilated image [6].

Figure 8.1 shows four examples of linear windows at angles equal to 0, 45, 90,
and 135◦. Additional directions, such as 22.5, 67.5, 112.5, and 157.5◦ can also be
used. NMS is performed successively for each direction at every pixel. The result
is independent of the order of the scanning process. The longer the linear window,
the lower the number of candidate pixels detected in an image. The ideal scenario
occurs when the linear window crosses the linear feature at right angles as this will
produce maximum contrast.

The outputs of the directional NMS are binary images, as opposed to grayscale
images produced by most directional filter methods [3]. This eliminates the need for
an arbitrary thresholding step. Linear features are detected by the union of MDNMS
responses, that is we combine the NMS responses at each orientation.

The algorithms for linear feature detection using NMS can be easily extended
for 3D images by using 3D linear windows. We used either 3 or 9 directions in 3D,
although additional directions may be necessary, depending on the data.
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Fig. 8.2 Cross section
through a linear feature

8.2.2 Check Intensities Within 1D Window

Bona fide linear features are characterized by an approximately symmetric intensity
profile across the feature, as opposed to edges which show a step-like profile. This
translates into approximately equal intensity values around the central pixel on both
sides of the linear window. Figure 8.2 illustrates the parameters that characterise the
shape of a profile. Imax is the value of a local directional maximum at the centre
pixel of the linear window. Iaverage1 and Iaverage2 are the average intensity values over
the two sides of the local maximum within the local window; and Idiff1 and Idiff2

are the differences between the maximum value and these two average values. For a
genuine linear feature, both Idiff1 and Idiff2 should be large. The parameter Idiff1 and
Idiff2 can be used to control the sensitivity of the algorithm. Lowering the values of
Idiff1 and Idiff2 increases the number of linear features detected.

8.2.3 Finding Features Next to Each Other

Some images present linear features in close proximity to one another. The NMS
process will detect only one feature in each linear window. Figure 8.3 shows an
example where four local maxima lie within the linear window. We can extend the
NMS process so that multiple local maxima are detected for any particular linear
window. Once a local maximum is found at the center of a linear window, a second
local maximum search is performed within the original window using a smaller
window size. The use of a smaller window size allows additional local maxima to
be found within the original window. The newly found local maxima are ordered
based on their maximum intensity as shown in Fig. 8.3. To prevent detecting false
peaks due to noise, we also check that the intensity does not deviate significantly
from Imax and that it conforms to the symmetry condition defined in Sect. 8.2.2. For
example, in Fig. 8.3, Imax3 and Imax4 are two local maxima, but they are not strong
enough to be retained.
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Fig. 8.3 Multiple local
maxima within a linear
window

Fig. 8.4 Endpoint (red)
and its neighborhood (green)
for gap linking. The shortest
path is shown in blue

8.2.4 Gap Linking for Linear Features

The union of the multiple responses of NMS at different directions generates many
small objects, which may not belong to genuine linear features. We fit an ellipse to
each object (set of connected pixels) and remove them if the major axis is too small.
Alternatively, a simple pixel count can be used.

The continuity of the linear features may be broken due to noise or weakness of
linear features. This results in small gaps in the combined responses of NMS. We
restore continuity by joining linear feature endpoints to neighboring linear features
through a shortest path. Here, a shortest path should be understood as a connection,
which displays a high average intensity along its length. A standard technique called
dynamic programming limits the combinatorial explosion that would otherwise
be associated with the exploration of all candidate paths [7]. The computational
overhead also remains small because the operation is only performed on small
gaps – typically below 20 pixels in length. Figure 8.4 illustrates the process of
gap linking from an endpoint to the skeleton in its neighborhood. Note that the
domain shown in green in Fig. 8.4 is first transformed into polar coordinates prior
to calculating the shortest path.
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Fig. 8.5 Illustration of the measurements derived by quantifying linear feature detection results
on neuronal cells

8.2.5 Quantifying Branching Structures

Linear features are produced as intermediate representations towards image quan-
tification and image understanding. The conversion of a full image into a set of
linear feature entails a considerable compression of the original information. In this
section, we describe how to reduce the feature size further while preserving as much
information as possible. To this end, the linear features are processed to generate
measures of length, branching, and complexity (see Fig. 8.5). This framework is
quite general and several applications are described in Sect. 8.5.

A) Feature representation
After preprocessing, the linear features are paths of width equal to only one
pixel, often connected in complex ways. The sensitivity of the feature detection
process typically leads to false positive detection events. These inaccuracies
manifest themselves as small barbs in the skeleton, which can be pruned by
a process, where small lateral branches below a chosen length are removed.
The skeleton is then divided into unique segments, defined as sections of
linear feature between two intersections, or branching points. This division
process first requires identifying the branching points as having more than two
4-connected neighbors. Branching points are then removed from the skeleton. In
doing so, the skeleton is divided into segments which remain 4-connected and
each segment is given a unique label.
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A graph of neighborhood relationships for segments then has to be built. We
first morphologically dilate [6] uniquely labeled intersection points with a 3×3
structuring element, so that they overlap with the extremities of segments.
Segments which overlap a common intersection point are considered neighbors.
This information is initially contained in a bivariate histogram of segments
versus intersection points. A linked list is then created by scanning across each
row of the histogram and locating nonzero entries in the histogram indicating
neighborhood relationships among segments.
When the image corresponds to a structure possessing an organizing centre from
which branches are protruding (such as the mitotic organizing centre, the trunk
of a tree, or the cell body of a neuron), we identify segments that are in contact
with that organizing centre as “root” segments. To identify them, we first thicken
the labelled centre, so that it overlaps root segments (a thickening is a dilation
that preserves an object’s label [6]). Again, we use a bivariate histogram to
store the overlap information. Nonzero entries correspond to root segments for
a particular cell body.

B) Tree growing using the watershed algorithm
At this stage, we must associate all segments with a particular tree. A tree is a
connected network extending from a single root segment. We use the watershed
algorithm to derive the association. Typically, the watershed is performed on
an image called the segmentation function, which highlights object boundaries.
A set of unique seeds are grown on the segmentation function using a priority
queue. Seeds are placed in the queue and neighboring pixels are added with
priority given to those with the lowest value in the segmentation function. Pixels
are repeatedly taken from the top of the queue and added to the object defined
by the pixel’s neighboring seed.
We use the watershed methodology to grow all trees from their root segment.
The framework for the watershed in our case is different to that which is used for
2D images: we are dealing with graph nodes instead of pixels. The nodes are the
individual segments and our seeds are the root segments as found in the previous
section. Root segments are initially put in the priority queue and neighboring
segments are added with priority given to segments with the highest average
brightness. The average brightness is calculated over the pixels that form the
segment. Brightness was chosen as priority feature because it is generally found
to be preserved along branches. Other criteria for the prioritization could be used
such as the relative orientation of the segments. Segments are repeatedly taken
from the top of the queue and associated with their neighboring neurite tree until
all segments have been removed from the queue.

C) Measures on segments and trees
Various measurements can be accumulated for each branch during the tree
growing process. These measurements can in turn be aggregated on a per-
tree or per-organizing centre basis. It is also common to report measurements
on a per-image basis. There are two groups of measurements collected during
the watershed process: those relating to length, width or brightness and those
relating to complexity. Fig. 8.5 illustrates these measurements.
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Length and width measurements seem particularly important in applications
(see Sect. 8.5 for some examples). Before the tree growing process is initiated,
the length of each segment is estimated [8]. The average width of each segment
is also computed using the method proposed by Lagerstrom et al. [9]. The
average brightness of the segment is computed not only to guide the watershed
process, but also as a reportable measure in itself. As each segment is removed
from the queue, we accumulate the length back to the centre for the segment,
the longest path back to the centre for the tree and the total length of the tree.
In a similar fashion, the average width of the tree, the total area of the tree,
the average brightness and integrated intensity of the tree are also accumulated.
Once the trees have been grown, the total field area is calculated, defined by the
area of the convex hull of all trees associated with a single organizing centre.

A variety of complexity measures for capturing additional morphological
measures are also collected via the tree growing process. Often trees display
behaviour where a dominant or primary branch extends from the centre, with
secondary branches projecting from the primary branches, and recursively. On
a per-line basis, we refer to this as branching layer. Root segments are given a
primary branching layer coded as “1.” As segments are removed from the queue,
they inherit their parent’s branching layer if they represent a child segment
with the highest average brightness. The remaining child segments inherit an
incremented branching layer. The average branching layer per tree, the number
of branching points per tree and the number of extreme segments (i.e., those
with no children) are accumulated as the tree is grown.

8.3 Linear Feature Detection on GPUs

While the algorithm presented in Sect. 8.2 is generally considered fast, execution
time can become an issue in the case of large images or those containing complex
linear structures. In this context, complexity refers to both density of linear
structures and their branching rate, as well as the variation of intensity along linear
features. In high-throughput biological experiments, where thousands of images
may need to be processed in batch during a single experiment, the overall increase
in processing time can be significant, thus motivating attempts to improve algorithm
performance further.

In this section, we will look at using many-core processing units and parallel
programming techniques to help accelerate parts of the linear feature detection
algorithm described in Sect. 8.2. This problem will serve as an interesting example
of how these methods can be used to accelerate image processing problems in
general. We will utilize Graphics Processing Units (GPUs) as the many-core
processors in our discussions and tests. These commodity processing chips are now
a widely available and popular parallel processing platform, with most personal and
office computers containing one or more of them.
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8.3.1 Overview of GPUs and Execution Models

Originally designed to accelerate the rendering of 3D computer graphics, GPUs are
now used widely as architecture for executing general purpose parallel programs
[10]. Modern GPUs consist of hundreds of light-weight processor cores, capable of
executing thousands of parallel threads concurrently. GPUs are coupled to dedicated
off-chip RAM through a high-bandwidth memory interface. Data is transferred
between this dedicated GPU RAM and a host processor’s memory via an expansion
card bus (usually PCI-Express). GPUs also provide a number of on-chip storage
spaces including register files, unmanaged shared memory, and various memory
caches. Accessing these on-chip storage spaces can be orders of magnitude faster
than accessing GPU RAM which, while being high-bandwidth, can incur significant
access latencies.

On the NVIDIA GPUs [4] used in our tests, the processors are grouped into
a number of streaming multi-processors (SMs), which can concurrently execute a
large number of assigned threads by switching execution between different groups
of these threads. On-chip storage is arranged such that each SM has its own
private register file and shared memory space, which cannot be accessed by threads
executing on other SMs.

Threads are logically grouped into n-dimensional blocks whose sizes are cus-
tomisable. A regular grid of common sized blocks is used to parameterize threads
over a problem domain. Each thread is assigned unique n-dimensional grid and
block level IDs to distinguish it from other threads. A block is assigned to a single
SM for its lifetime, and its threads can synchronize their execution and share data via
SM shared memory. Each thread in the grid of blocks executes the same program,
which is defined by a parallel kernel function. A grid of threads only executes a
single kernel at a time, and on-chip storage does not remain persistent between
kernel launches.

For example, the process of executing a simple image operation on the GPU that
subtracts image A from B and places the result in image C can be performed as
follows:

1. Transfer image A and B from host RAM to GPU RAM.
2. Assign a single thread to each output pixel by constructing a grid of 2D thread

blocks to cover the image domain.
3. Launch a subtraction kernel where each thread reads corresponding pixel values

from image A and B in GPU RAM and writes the subtraction result to image C
in GPU RAM.

4. Transfer image C from GPU RAM to host RAM.

Data transfer between host and GPU can be a performance bottleneck, so it should
be avoided where possible. For example, when performing a number of dependent
parallel image operations in succession on the GPU, it may not be necessary to
transfer the result of each operation back to the host.
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Fig. 8.6 Execution times for different stages of linear feature detection for images shown in
Fig. 8.7. MDNMS, small object removal, and gap filling steps are described in Sects. 8.2.1–8.2.4.
Aggregated time taken by short utility operations performed between steps, such as labelling and
skeletonization, is represented as “other”

8.3.2 Linear Feature Detection Performance Analysis

Before attempting to parallelize the algorithm on a GPU, one should analyze
performance issues and determine how different changes might take effect. For
example, the MDNMS algorithm from Sect. 8.2 is a classic neighborhood filter that
computes the value for each pixel in the output image by analyzing only pixels
within a small neighborhood around the pixel. Although the number of symmetry
checks performed (Sect. 8.2.2) may vary with image content, its performance is
primarily determined by the size of the image, as well as by the size and number of
linear windows used for filtering. Accelerating this portion of the algorithm should
provide performance improvement irrespective of the image complexity. However,
the number of false objects and feature mask endpoints in the MDNMS output can
increase significantly with input image complexity. This places a higher workload
on the steps that remove small objects and bridge gaps in the resulting feature
masks. The performance of these steps is, therefore, affected more strongly by image
complexity than by size.

Figure 8.6 shows the breakdown of linear feature detection processing time for
a number of images with varying size and linear structure complexity (Fig. 8.7).
In general, we see that MDNMS takes the largest portion of overall execution
time for each image. Gap filling also consumes a large amount time for complex
images (Fig. 8.7, img 2 and img 3) due to an increase in the number of feature mask
endpoints produced by the MDNMS step, and the need to perform costly shortest
path calculations for each endpoint (Sect. 8.2.4). Although small object removal
performance also appears to be affected by image complexity, as hypothesized
above, its execution time is relatively low compared to the other two steps. The
same remark applies to the utility functions.
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Fig. 8.7 Neurite images used in performance tests. (a) img 1: 1,300× 1,030 pixels. (b) img 2:
1,280 × 1,280 pixels. (c) img 3: 1,280 × 1,280 pixels. (d) img 4: 640 × 640 pixels. (e) img 5:
694×520 pixels. (f) img 6: 512×512 pixels
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Intuitively, one would expect that efforts would be best directed towards
improving the performance of those steps, which consume the largest percentage of
time, assuming they can be accelerated. Therefore, we will focus our attention on
the implementation of the initial linear feature detection on the GPU.

8.3.3 Parallel MDNMS on GPUs

The MDNMS algorithm with extensions to support symmetry checks and dual local
maxima detection (Sects. 8.2.2 and 8.2.3) consists of four steps for each window
orientation:

1. Detecting primary maxima by NMS with given window size.
2. Detecting candidate secondary maxima by NMS with a smaller window size.
3. Symmetry check on primary maxima.
4. Secondary maxima search and symmetry check in presence of positive primary

detection.

NMS is achieved most simply using a brute force neighborhood filter. In this case,
each pixel is compared directly to every pixel within its local linear window to
determine whether it is the maximum in the window. Although it is possible to reuse
the max operator observations across nearby pixels to improve performance in a
serial context [2], this would not work effectively in a parallel implementation where
nearby pixels can be processed concurrently and where the order of operations is not
predictable. The symmetry checks are performed using similar brute force filters,
but carry out different operations on the values within a pixel’s linear window.

In each of these brute force neighborhood filters, the result for a single pixel is
not dependent on the output of other pixels, and can be performed in parallel on the
GPU using one thread to calculate each output pixel. Examples of the parallel filter
kernels are shown in Listing 8.1 through Listing 8.3. Note that the NMS kernel is
executed with two different windows sizes to produce the primary and secondary

Listing 8.1 Parallel NMS kernel
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Listing 8.2 Parallel symmetry check kernel

Listing 8.3 Parallel secondary maxima search and symmetry check
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maxima images “prim” and “sec.” Each of these parallel kernels can be executed
using a simple 2D grid and block configuration that assigns one thread to each output
pixel.

8.3.4 Combining Steps for Efficiency

In Sect. 8.3.1, we discussed the high latency of GPU RAM accesses (where the input
image resides) compared to on-chip data access to registers, shared memory or cache
memories. Because of these latencies, it is important to minimize transfers to GPU
RAM where practical. The steps outlined in Sect. 8.3.3 can easily be performed
using separate parallel image filters by executing separate GPU kernel functions for
each step. However, a solution with fewer GPU RAM accesses can be developed if
we consider the following properties of the filters:

1. NMS: A pixel can be compared with the pixels in its linear window in any order
to determine its suppression status.

2. NMS: Testing a pixel’s suppression status in a given linear window is a subtask
of doing the same for a larger linear window at the same orientation.

3. Symmetry check: Performing a symmetry check on a maxima pixel requires the
same set of values as its primary suppression test

With these properties identified, we can combine the two NMS steps and the primary
maxima symmetry check into a single kernel shown in Listing 8.4. The code in this
kernel visits the first and second halves of a pixel’s linear window separately,
allowing it to calculate the average value in each half-window while simultaneously
checking whether the pixel is a maximum. It also assesses the secondary NMS
result for a pixel at the same time as the primary NMS. This allows everything
except the secondary maxima symmetry check to be calculated after reading a
pixel’s primary linear window values only once from GPU RAM. In contrast, using
a separate kernel for each filter requires these values to be read multiple times from
RAM, since on-chip storage is not persistent between kernel launches. It would also
require the values of the primary NMS kernel to be communicated to the primary
symmetry check kernel via GPU RAM. It should be noted that this combination of
steps might also help speed up the CPU algorithm by reducing overall workload
and memory accesses.

The secondary maxima search and symmetry check around a primary maximum
cannot be performed efficiently in the same kernel as the other filters. This is
because the thread responsible for a pixel requires both the secondary NMS and
half-window average values calculated by other threads to avoid recalculating them.
It is non-trivial to share these values using shared memory, as many threads with
data interdependency relationships will belong to different processing blocks. These
threads will not be able to access each other’s shared memory space or synchronize
their execution. All NMS and half-window averages are, therefore, written to global
memory by the kernel in Listing 8.4, and a different kernel is utilized to facilitate
the exchange of values and perform the necessary processing.
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Listing 8.4 Parallel kernel calculating primary and secondary NMS, and primary symmetry check
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Table 8.1 Speedup of linear feature detection al-
gorithm after GPU acceleration. Results indicate
how many times faster the NMS and gap filling
ran on the GPU in isolation, as well as how many
times faster the process ran overall

Speedup on GPU (times ×)

Img NMS Gap filling Overall

1 13.3 4.8 3.0
2 13.7 8.3 3.3
3 13.6 8.6 3.3
4 9.0 8.6 3.3
5 7.9 3.5 2.7
6 8.0 6.9 3.0

8.3.5 Results for GPU Linear Feature Detection

We have also sped up the gap closing steps on the GPU, which involved parallelizing
polar image generation and shortest path calculations. Various lower level code and
memory optimisations were applied throughout. For example, loop unrolling has
been applied to the NMS kernels [11], while texture fetches, a special kind of
cached [12, 13]. GPU RAM access operation used in computer graphics, have been
used to accelerate polar image generation. Discussion of these topics is beyond the
scope of an introductory text. The reader may want to check [14] if his/her curiosity
has been aroused.

Tests were performed on a Geforce GTX 260 GPU (NVIDA Corp., Santa Clara,
CA, USA). The host computer consisted of a Xeon E5520 2.3GHz CPU (Intel
Corp., Santa Clara, CA, USA) with 3GB of RAM running 32-bit Windows XP
(Microsoft Corp., Redmond, WA, USA). Table 8.1 shows the performance of the
linear feature detection algorithm after GPU accelerations for the images displayed
in Fig. 8.7. The speedup for NMS is quite high, and is more significant for larger
images (Fig. 8.7, img 1–3). The speedup for gap filling is also significant in the case
of complex images (img 2–4, 6), but reduces for less complex images. These types
of performance inconsistencies are common in parallel programs, where higher
workloads help offset the costs of setup and communication that tend to take a
constant amount of time or do not parallelize well.

Note that the overall speedup of the algorithm is much lower than the speedup of
the accelerated steps in isolation due to the portion of the process consumed by the
steps that were not accelerated. Since these steps consumed around 21–24% of the
original CPU algorithm’s execution time for the test images, the maximum overall
speedup we could hope for by accelerating NMS and gap filling is less than 4.7
times. The described GPU algorithms have achieved up to 70% of this theoretical
speedup. Greater overall speedup will come from accelerating other parts of the
algorithm.
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8.4 HCA-Vision, A Software Platform for Linear Feature
Detection and Analysis

The algorithms detailed in Sects. 8.2 and 8.3 have been integrated in standalone
software that rapidly and reproducibly quantifies linear features and their orga-
nization. It can be used both for linear feature detection and for more dedicated
morphological analyses, such as neurite analysis. HCA-Vision was originally aimed
for cell phenotyping and thus also provides functions for cell and nucleus detection
and counting, cell scoring and sub-cellular analysis. It supports batch processing
with a built-in database to store results, a batch result viewer and an ad hoc query
builder for users to retrieve events of interest (e.g., identify all cells with neurite
field above 50μm2 and projecting in excess of 5 root neurites). Results from HCA-
Vision have been shown to be more objective, reliable and reproducible than those
from manual or semi-automated approaches [15].

8.4.1 Architecture and Implementation

HCA-Vision has been designed with three layers: the image processing layer written
in C, a C++ wrapper layer, and the data and image presentation layer, written in
C#. It also includes an optional web service for users to remotely view their batch
processing results.

The GUI provides an assistant to guide the user in the process of choosing opti-
mal parameters for the automated segmentation of cells and sub-cellular structures.
It delivers quantitative measures and statistics that are biologically relevant, together
with result images.

8.4.2 HCA-Vision Features

HCA-Vision enables a range of various activities including the detection of neurons,
neurites, astrocytes, and other glial cells, even in the presence of varying background
brightness, variable neurite staining, high cell densities, and high levels of neurite
interconnections. It delivers quantitative measures and statistics that are biologically
relevant, including measurements of neurite features at various levels of branching,
neuron “webbiness,” and astrocyte “starriness” and roundness (see Table 8.3 for
definitions).

To accommodate a wide range of applications, a step-by-step wizard guides the
user through a process that fine-tunes individual parameter required for obtaining
best results. At each step of the process, the user is given a semantic description
of each parameter and controls their effect through user-friendly interfaces. As the
processing has been optimized for speed, intermediate results are immediately
presented on screen as each parameter is adjusted (Fig. 8.8).
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Fig. 8.8 Results produced by HCA-Vision. (a) Original image. (b) Detected neurite segments.
(c) Assignment of neurites to neuron bodies. (d) Labelled neurite branching structure

Once parameters are tuned, they can be saved into a profile. The user can load
the saved profile to process individual images or batch process all images generated
in an experiment. Summaries of batch processing results can be produced using the
query facilities provided.

8.4.3 Linear Feature Detection and Analysis Results

HCA-vision detects linear features and reports their properties such as length, width,
area and complexity. For example, with the neurite analysis module, neurites can
be detected and their branching behaviour can be analysed, including the primary
neurites in contact with the cell body and the number of layers of branching
from these primary neurites into secondary, tertiary and quaternary branches (see
Fig. 8.9).

Users can query and view the batch processing results using the batch result
viewer (Fig. 8.10), including both the result images and measured features.

When HCA-Vision is used with microplates, the batch processing also generates
a plate summary with normalized features for each well. The features extracted from
the images captured from the same well are averaged to produce the well-based
normalized statistics. A sample plate summary is shown in Table 8.2.
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Fig. 8.9 Batch processing result viewer

8.5 Selected Applications

8.5.1 Neurite Tracing for Drug Discovery and Functional
Genomics

High Content Screening or Analysis (HCS, respectively HCA) has virtually become
an obligatory step of the Drug Development process. Cells in small transparent
wells in a 96-, 384-, or 1,536-microplate format are exposed in a fully automated
manner to thousands of different candidate compounds (see Table 8.2). They are
then imaged and analysed using computer vision algorithms for evidence of drug
action. In the case of neuronal cells, such evidence includes the growth of neuronal
projections (neurites), but it can also include receptor trafficking, apoptosis, motility,
as well as many other assays [16]. Measuring neurite dynamics is a particularly
direct and informative approach but it is also challenging because neurites tend to
be very thin, long, and may present extensive branching behaviour.

Some drugs trigger spectacular effects on neurites (e.g., nocodazole destabilizes
microtubules thus inducing neurite retraction). More often however, dendritic
arbours are altered in subtle ways only. Pharma is generally interested in changes
to the length, shape and complexity of neurites. In fact, most of the general image
features described in Sect. 8.2.5 are directly relevant for this particular application.
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Fig. 8.10 (a) Original image showing astrocyte nuclei. (b) Nuclei identified by the software are
gray coded, with surrogate cellular region boundaries overlaid in white. (c) Original image showing
staining of GFAP fibres of the cytoskeleton. (d) Linear features identified by the software and gray
coded as per nuclei, with surrogate cellular region boundaries overlaid in white

Generally, one does not know in advance how the phenotype will be altered.
Therefore, it is desirable to apply as wide a spectrum of quantitative features as
possible. Neuronal phenotype may also be altered by mutations, or by changes
in the protein expression level elicited, for example, by small inhibitory RNAs.
In collaboration with the Group of S.S. Tan and J.M. Gunnersen at the Howard
Florey institute, we have been particularly interested in uncovering the role of the
Seizure-related protein type 6 (Sez-6) [15]. From mouse behavioural studies, Sez-6
had already been implicated in cognitive processes but it was not clear yet whether
the cell morphology was affected. In general, the biological variability across cells
precludes drawing definitive conclusions from observing by eye a limited number of
cells. Indeed, an individual knockout cell (lacking Sez-6) may appear more similar
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Table 8.2 Plate summary showing well-based normalized features

Well number A1 A2 – – – H11 H12

Number of cells 625 425 – – – 899 648
Total neurite outgrowth 32,124 19,801 – – – 30,883 11,887
Average neurite

outgrowth
51.4 46.59 – – – 34.35 18.34

Total neurite area 36,466 23.348 – – – 36,432 14,025
Average neurite area 58.35 54.94 – – – 40.52 21.64
Total number of

segments
3,826 2,110 – – – 4,820 2,119

Average number of
segments

6.12 4.96 – – – 5.36 3.27

Average longest
neurite length

25.68 27.58 – – – 18.97 12.97

Total number of roots 1,213 583 – – – 1,479 571
Average number of

roots
1.94 1.37 – – – 1.65 0.88

Total number of
extreme neurites

1,353 747 – – – 1,492 615

Average number of
extreme neurites

2.16 1.76 – – – 1.66 0.95

Total number of
branching points

455 251 – – – 438 101

Average number of
branching points

0.73 0.59 – – – 0.49 0.16

Average branching
layers

1.28 1.13 – – – 1.17 0.71

to a wild type cell (possessing Sez-6) than to another knockout cell (Fig. 8.9).
It is only when large numbers of cells are systematically analysed that statistically
significant differences can be uncovered. In conducting these comparisons, it is
extremely important to ensure that the analysis is performed identically on both
the knockout and the wild-type images.

Our results demonstrated clearly that while the neurite field area was not affected,
the mutation both increased branching and diminished the mean branch length.
The full biological significance of these findings is not yet appreciated but these
experiments clearly indicate that the geometry of neurite arbours is in large part
under genetic control.

8.5.2 Using Linear Features to Quantify Astrocyte Morphology

In this example, we show how linear feature detection can be used to characterise
morphological changes in the cytoskeleton of astrocytes, as induced by kinase
inhibitors. This was part of a larger study into the role played by astrocytic glutamate
transporters in maintaining brain homeostasis [17].
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Fig. 8.11 The sensitivity of our linear feature proved helpful in this bacterial segmentation
problem. By themselves, the detected edges (in gray) would not be sufficient to segment cells
successfully. Together with the detected edges, our linear features (in white) form a double barrier
system that enables accurate segmentation

It is often important to make measurements on a per-cell basis rather than on
a per-image basis. To achieve this, one needs some way to identify the extent of
each cell. This is done either directly by acquiring an additional image of a labelled
cytoplasmic protein, or indirectly by generating a surrogate for the cell extent. The
surrogate commonly used in cellular screening requires the capture of an additional
image of labelled nuclei, the segmentation of those nuclei and the placing of a
doughnut or ring around each nucleus. If cells are isolated, the surrogate cell region
will appear roughly elliptical and the approximation to the actual cell shape tends to
be crude. However, if cells are closely packed (as they often are in screening assays),
the surrogate cell regions from neighboring nuclei deform to the midpoint between
the two nuclei. This gives rise to regions which are close to the actual cell shapes
(Fig. 8.11).

Within these surrogate cell regions, we quantify the features of the linear
structures forming the astrocyte cytoskeleton (see Table 8.3). These measures have
been used by our collaborators, O’Shea et al. of the Howard Florey Institute, to
quantify the changes induced by the Rho-kinase inhibitor HA1077 in primary
cultures of mouse astrocytes.

The astrocyte cytoskeleton was labelled using immunocytochemical staining
for the astrocytic intermediate filament protein GFAP. Nuclei were labelled using
Hoechst 33342. Figure 8.11 shows a sample nucleus and cytoskeleton image, along
with the detected nuclei, the calculated surrogate cell extent and the detected lines
in the cytoskeleton. Treatment with HA1077 (100μM) produced rapid (<1h) and
persistent changes in astrocytic morphology. The lineAngleVar feature (variance of
the orientation angles of the “lines” within the cells) was significantly reduced by
HA1077 (to 81± 4% of control, p < 0.05). A low lineAngleVar means that the
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Table 8.3 Features developed specifically to characterize linear structures in the
astrocyte cytoskeleton

lineNo Number of lines detected within cell
lineMean Mean brightness of lines within cell
lineLength Length of lines within cell
lineDensity Density of lines within cell
lineAngle Mean orientation angle of lines Within cell
lineAngleVar Variance of orientation angle of lines within cell
lineWidthMean Mean width of lines within cell
lineWidthMedian Median width of lines within cell
lineStar “Starriness” measure based on how much linear structure is

removed by an opening of a specific radius
lineWeb “Webbiness” measure based on how much the gaps between

lines are filled in by a closing of specific radius

linear structures within a cell are generally aligned in a particular direction, whereas
a high value indicates that the linear structures are randomly oriented. In addition,
the lineDensity measure (the density of these “lines” within cells) also decreased (to
44±5% of control, p < 0.05), demonstrating a decrease in the cellular area labelled
by GFAP.

8.5.3 Separating Adjacent Bacteria Under Phase Contrast
Microscopy

In bacterial cultures, cells tend to come in very close proximity to each other, such
that the contrast between individual cells is sometimes minute (see Fig. 8.11). This
makes bacterial counting and measurement of size and shape difficult. We have
found that our linear feature detector was capable of detecting the very weak linear
features that separate adjacent bacteria (see Fig. 8.11). By combining this tool with a
standard Canny edge detector, a system was put together that permitted counting and
segmenting bacteria with over 97% reliability [18]. We expect this new capability to
be generally useful for microbial studies and we are planning to extend this work to
allow tracking of bacterial cells with a comparable reliability. This work is motivated
by the need to understand how bacterial films are able to spread quickly over tissue
surfaces and thus cause infections.

8.6 Perspectives and Conclusions

Our approach to linear feature is both conceptually simple and very fast. It is
fairly general – independent of any model assumption about linear features. This
also means that the approach is not recommended for very noisy images. In the
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rare instances where noise was an issue, we found that it was often possible to
use a preliminary processing step to increase the contrast of linear features, for
example, using the technique of anisotropic filtering [19]. Another promising tool
to preprocess linear feature images in this manner is afforded by so-called flexible
path openings, which aim to identify paths along which the intensity remains high
on average [20].

There are also instances where the contrast mechanism of the optical instrument
makes the analysis difficult. This is the case with Differential Interference Contrast
(DIC) microscopy. For such images, the Hilbert transform can be used to create
images that are suitable for analysis.

In the case of very noisy images, the potential of more global methods, such as
“shortest paths” [7], or even “linear paths” [9], has been explored. While useful,
these more complex approaches may also represent warnings that the experimenter
should go back to the bench to produce better data. With the availability of EMMCD
camera and the availability of bright and photostable dyes, such as the AlexaTM

dyes, this is often the best course of action.
This is an exciting time for image analysis, with a growing number of applica-

tions that can be automated. The samples presented in this chapter only touch the
surface, as illustrated by the content of other exciting chapters in this book.
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Chapter 9
Medical Imaging in the Diagnosis
of Osteoporosis and Estimation of the Individual
Bone Fracture Risk

Mark A. Haidekker and Geoff Dougherty

Abstract Osteoporosis is a degenerative disease of the bone. In an advanced
state, bone weakened by osteoporosis may fracture spontaneously with debili-
tating consequences. Beginning osteoporosis can be treated with exercise and
calcium/vitamin D supplement, whereas osteoclast-inhibiting drugs are used in
advanced stages. Choosing the proper treatment requires accurate diagnosis of the
degree of osteoporosis. The most commonly used measurement of bone mineral
content or bone mineral density provides a general orientation, but is insufficient
as a predictor for load fractures or spontaneous fractures. There is wide agreement
that the averaging nature of the density measurement does not take into account the
microarchitectural deterioration, and imaging methods that provide a prediction of
the load-bearing quality of the trabecular network are actively investigated. Studies
have shown that X-ray projection images, computed tomography (CT) images, and
magnetic resonance images (MRI) contain texture information that relates to the
trabecular density and connectivity. In this chapter, image analysis methods are
presented which allow to quantify the degree of microarchitectural deterioration of
trabecular bone and have the potential to predict the load-bearing capability of bone.

9.1 Introduction

Osteoporosis is defined as a skeletal disorder characterized by compromised bone
strength predisposing a person to an increased risk of fracture. Bone strength
primarily reflects the integration of bone density and bone quality [1].

The official definition of osteoporosis further specify bone density as referring
to specify mineral content and bone quality as referring to architecture, turnover,
damage accumulation, and mineralization [1]. Bone density peaks at an age between
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20 and 30 and declines as people age. Hormonal changes, most notably menopause,
accelerate this decline. For the purpose of diagnosis, individual bone density is
commonly compared to an age-matched reference collective. The World Health
Organization defines osteopenia as a loss of bone density to one standard deviation
below the age-matched mean (T-score of −1) and osteoporosis as a loss of bone
density to below 2.5 standard deviations (T-score of −2.5). The major health
concern is the risk of fracture. The relationship between reduced bone density and
the incidence of fractures is well known [2–5].

Bone loss can be slowed or prevented. A diet rich in calcium and vitamin D,
or dietary supplements thereof, reduce the risk of osteopenia and osteoporosis [6].
Strength-building exercise stimulates bone formation (see [7] for a critical review).
Whereas calcium intake and exercise primarily improve the baseline, patients with
a low T-score need to be treated with drugs that reduce bone deterioration, such as
calcitonin or bisphosphonates.

The primary goal of the diagnostic procedures is to assess the degree of
bone loss for a decision on possible treatment. Whereas calcium and vitamin D
supplementation are widely recommended, the type and vigorousness of a possible
exercise regimen strongly depends on the degree of bone deterioration. The use of
drugs also depends on the diagnosis. In advanced stages of bone deterioration it is,
therefore, crucial to establish the individual fracture risk.

Presently, the diagnostic process most commonly involves the measurement of
bone density (see Sect. 9.2). However, bone deterioration that leads to osteopenia
and osteoporosis is a complex process [2, 8] that affects bone microarchitecture. In
fact, early studies show that osteoporosis is associated with a deterioration of the
complex three-dimensional network of trabeculae, which form the weight-bearing
component of spongy bone [9]. There is a discrepancy between the relatively low
bone density gain of around 1% by exercise [10] and the strong reduction of fracture
incidence [11]. The benefits of exercise clearly include improved muscular strength,
dexterity, and range of motion, thus directly contributing to a lower incidence of
falls, accidents, or fracture-causing motions. Conversely, treatment with fluorides
has been shown to strongly increase bone density while not decreasing [12] or even
increasing fracture incidence [13]. Similarly, observations have been made for drugs
that enhance bone formation. Moreover, bone density has been shown to strongly
overlap between patients with and without osteoporosis-related fractures. Clearly,
bone density alone is not a sufficiently specific predictor of the individual fracture
risk [14].

Bone is heterogeneous and biomechanically complex. Fracture-prone sites, such
as vertebrae, wrist, femoral head, and calcaneus are composed of spongy bone,
which is a three-dimensional strut-like network of trabeculae, and the surrounding
cortical shell, which is composed of compact bone. Both parts contribute to
the weight-bearing capacity of bone. The loss of bone density reflects both the
deterioration of the cortical shell and thinning of the trabeculae in spongy bone.
An early study by Rockoff et al. found that the compact bone of the cortical shell
carried between 45% and 75% of the total mechanical load, and that the weight-
bearing contribution of the cortical shell increased with decreasing ash content [15].
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A more recent study indicated that both vertebral stiffness and vertebral strength is
almost completely attributable to spongy bone, and the cortical shell plays only a
very small role in the weight-bearing capacity [16]. Further biomechanical studies
suggested a power–law relationship between apparent bone density ρ and elastic
modulus E and maximum compressive stress σmax in the form of (9.1),

E = ρA =
(

Vb

Vt

)A

; σmax = ρB =
(

Vb

Vt

)B

(9.1)

where Vb is the apparent bone volume, Vt is the total volume, and A and B are
experimentally-determined constants [17]. Although a case can be made that mi-
crostructural deterioration is reflected in a loss of bone density [18], the deterioration
of trabeculae is not isotropic. Rather, deterioration of vertical trabeculae occurs
more rapidly than that of horizontal trabeculae [9]. Non-isotropic deterioration may
in part explain differences in failure load at the same bone density [19]. Conse-
quently, analysis of bone microstructure remains under active investigation [20].

The focus of recent research has been three-pronged. On the treatment side, sci-
entists are striving to understand the cellular mechanisms that determine the balance
between bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts),
with the long-term goal to influence this balance in favor of bone formation.
On the diagnostic side, researchers are striving to obtain information about the
bone microarchitecture, because the combined measurement of bone density and
microstructural parameters promise to improve the prediction of the fracture load
and therefore the individual fracture risk. Finally, basic research efforts are aimed at
understanding the complex biomechanical behavior of bone. In all three cases,
imaging methods play a central role.

9.2 Bone Imaging Modalities

The clinical modalities for imaging bone include X-ray imaging and the related dual
energy X-ray absorptiometry (DEXA), computed tomography, magnetic resonance
imaging, and ultrasound imaging.

9.2.1 X-Ray Projection Imaging

X-ray imaging provides excellent bone-tissue contrast, with a spatial resolution of
about 30–40μm. Dual-Energy X-ray Absorptiometry (DEXA) reduces the influence
of soft tissue, such as muscle or marrow, which surrounds the bone. Since X-ray
attenuation coefficients are energy-dependent, the X-ray intensity is measured at
two different energies along the same path to eliminate the contribution of the soft



196 M.A. Haidekker and G. Dougherty

tissue. Like conventional X-ray imaging, DEXA is a projection imaging method.
It is typically applied to the thoracic or lumbar spine, the femoral neck, or the
calcaneus.

The accuracy of the DEXA method is limited because the X-ray beam is
polychromatic and because the soft tissue may be composed of muscle and adipose
tissue, with varying absorption coefficients between individuals. It is possible to
obtain the soft tissue composition from the DEXA image [21] to correct for the
error. DEXA is best known for the measurement of bone density. Typical DEXA
scanners feature a spatial resolution in the millimeter range, which is not sufficient
to image structural details.

9.2.2 Computed Tomography

Computed tomography (CT) is an X-ray based technique that provides cross-
sectional images of the X-ray absorption coefficient. Unlike projection imaging
methods, computed tomography provides bone density as a true volumetric value
that can be calibrated in mg/cm3. Accuracy and reproducibility of bone density
measurements can be further increased by introducing a calibration phantom into
the image. With a phantom that provides representative image values of bone IB

and of soft tissue IS, bone density D, calibrated in milligrams of hydroxyapatite per
milliliter of bone volume, can be computed from the average image value < I > in
the bone region and the known specific density of bone, ρB, through (9.2):

D =
< I > −IS

IB − IS
ρB (9.2)

The computed tomography method that provides calibrated bone density values
is often referred to as quantitative CT. It is further possible to use a dual-energy
principle similar to DEXA to eliminate artifacts caused by soft tissue and bone
marrow [22]. Dual-energy quantitative CT is often regarded as the gold-standard
for the noninvasive measurement of bone density.

Whereas a low spatial resolution, dominantly in the form of a wide slice
thickness, is used for bone density measurement, CT can be used to image the bone
microarchitecture when a high resolution is selected. Slice thicknesses of 1 mm with
in-plane pixel sizes of 0.2× 0.2mm are possible with many clinical CT scanners.
Micro-CT scanners are available that feature isotropic voxel sizes in the micron
range, but these devices can hold only small samples, and are therefore reserved
for biopsies or for in vivo imaging of, for example, the wrist (Fig. 9.1). The interior
of the radius and ulna show a clear texture that can be related to the trabecular
microarchitecture.
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Fig. 9.1 Cross-sectional Micro-CT image of a human forearm. The voxel size is 70μm, small
enough to make the trabecular structure visible. Note the presence of reconstruction artifacts (the
pseudo-texture that is particularly prominent in the air region surrounding the arm) and beam-
hardening artifacts (straight lines extending from bone edges). Note also the low tissue-tissue
contrast that makes tissue structures (blood vessels, muscle, tendons) indiscernible. The scale bar
represents 10 mm

9.2.3 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is presently not clinically used for imaging bone
because of the low water content of bone, which leads to a very weak resonance
signal. Figure 9.2 shows a T1-weighted high-resolution spin-echo image of the wrist,
acquired with a conventional clinical 1.5T scanner. Inside the ulna and radius areas,
texture becomes apparent that is related to the trabecular architecture, analogous
to Fig. 9.1. In-plane resolution is approximately 120μm, with pixels almost twice
as large as in Fig. 9.1. The long T1 relaxation of bone marrow makes spongy bone
appear bright in this image, although compact bone itself appears dark. Although
MRI is not currently a method of choice for bone densitometry, there is a rising
popularity of MRI methods in research to examine bone microstructure and its
changes in osteoporosis.

9.2.4 Ultrasound Imaging

Ultrasound is widely used for bone densitometry. Sound waves travel much faster in
bone than in soft tissue, with the speed of sound being approximately 4,080 m/s in
compact bone and 1,600 m/s in muscle tissue [23]. A broadband ultrasound signal
is attenuated in tissue in a frequency-dependent manner. Broadband ultrasound
attenuation is commonly measured in transverse transmission mode by computing
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Fig. 9.2 Cross-sectional magnetic resonance image of a human forearm. Similar to Fig. 9.1, radius
and ulna can easily be recognized. In contrast to the CT image, however, compact bone appears
dark, and the MR image clearly reveals soft tissue features, such as muscle, tendons, and blood
vessels. Spongy bone appears particularly bright because of the long relaxation times of bone
marrow. The inset shows the section inside the white rectangle magnified and inverted to match the
higher image values for bone in CT images. In the spongy area, texture that is related to trabecular
structure is discernible, although it appears more blurred than in the corresponding CT image.
Image courtesy of Dr. Kai Haidekker

the ratio of the transmitted spectra with and without the sample. A single value,
often referred to as BUA (the broadband ultrasound attenuation value), is obtained
from the slope of the attenuation over the frequency. No theoretical relationship
between ultrasound attenuation and the mechanical properties of cancellous bone
has been established [24], but both the speed of sound and the BUA value are higher
in healthy bone than in osteoporotic bone.

9.3 Quantifying the Microarchitecture of Trabecular Bone

In Sect. 9.1, we discussed the need to estimate the individual fracture risk and the
role that bone microstructure plays in that estimation. A very rigorous approach
is computerized modeling of the biomechanical behavior of bone under a defined
load. For this purpose, the exact three-dimensional microscopic geometry of the
trabeculae and their interface with cortical bone need to be available. It is feasible
to extract the geometry with sufficient precision by micro-CT or microscopy or
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histology in a slice-by-slice manner [25], yet these methods are normally restricted
to ex vivo samples. Other three-dimensional imaging methods with high resolution,
for example, micro-MRI, change the apparent geometry due to the system’s point-
spread function. At lower resolution, individual trabeculae cannot be imaged
accurately. In such cases, the image shows a distinct texture that is more or
less related to trabecular microarchitecture. Even two-dimensional cross-sectional
slices and projection images can provide such texture information, but other
influences (noise, reconstruction artifacts, pseudo-texture) become more dominant
as the resolution becomes lower. Below a certain resolution, artifacts dominate,
and any texture in the image is unrelated to trabecular microarchitecture, at which
the image can only be used to measure average bone density. The most important
methods to quantify image texture and relate it to trabecular microarchitecture are
discussed in this section.

9.3.1 Bone Morphometric Quantities

Morphometric quantities are directly related to the microstructure of the trabecular
network. From the segmented three-dimensional bone image, total volume and bone
surface area can be obtained immediately. In the literature [26], these are abbreviated
TV and BS, respectively. Bone volume (BV) is the space occupied by actual bone
mineral. BV can be determined by measuring the total volume of the trabeculae after
segmentation of those voxels that lie above a certain density. These primary indices
can be used in normalized form, that is, relative bone volume BV/TV, relative bone
surface BS/TV, and bone surface–volume-ratio BS/BV, to allow comparison between
individuals.

Microstructural analysis of the trabeculae leads to the derived indices of tra-
becular thickness (Tb.Th) and trabecular spacing (Tb.Sp). In a simplified model,
trabeculae can be interpreted as thin plates of constant thickness and width. In this
case, the following relationships can be found [27]:

Tb.Th = 2BV/BS

T b.Sp = 2(BV −TV )/BS

Tb.N = BS/2BV (9.3)

Tb.N is the number of trabecular plates. Bone mineral content (BMC) was found
to directly correlate with the normalized bone volume [28],

BMC =
(

BV
TV

)
ρBα (9.4)

where ρB is the specific weight of bone mineral and α is the ash fraction. Values
for α range from α = 0 for osteoid to α = 0.7 for fully mineralized bone [28].
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Fig. 9.3 Analysis of the trabecular microstructure. (a): Structures can be quantitatively analyzed
by fitting a maximum-radius sphere into the structure Ω so that a point P ∈ Ω is an element of the
maximum-radius sphere (adapted from [29]). (b): Scan-line method to quantify the microstructure.
Parfitt [26] suggested counting the intersections of the bone structure with a rectangular grid of
lines to obtain Tb.N. The method can be extended to obtain the distribution of runs along bone
(light gray) and runs along marrow spaces (black)

These values correspond to a dry tissue density of 1.41g/cm3 and 2.31g/cm3,
respectively. Furthermore, an experimental relationship of these values to elasticity
E and ultimate stress σult was found (9.5) with the constants a, b, c, and d
determined by nonlinear regression as a = 2.58 ± 0.02, b = 2.74 ± 0.13, c =
1.92±0.02, and d = 2.79±0.09 [28].

E ∝ (BV/TV )aαb; σult ∝ (BV/TV )cαd (9.5)

The assumption of homogeneous plates is a very rough approximation, and
actual measurements from images provide more accurate estimations. Hilebrand
and Rüegsegger proposed an image analysis method where a maximum-size sphere
is fitted into the space between the segmented trabeculae [29]. By examining each
point P inside the structure (Fig. 9.3a), statistical analysis of the void spaces can
be performed. For each structure, the mean thickness (the arithmetic mean value of
the local thicknesses taken over all points in the structure), the maximum thickness,
average volume, and similar metrics can be found and examined over the entire
bone segment, which can then be characterized by statistical methods. This method
is capable of analyzing 3D volumetric data, but by using a circle rather than a sphere,
it can be adapted to 2D slices.

An alternative method, known as the run-length method, can produce similar
quantitative parameters with relatively low computational effort. Originally, Parfitt
[26] suggested to use a rectangular grid of scanlines and count the intersections with
trabecular bone in microscopic images to determine Tb.N. This idea can be extended
to the run-length method (Fig. 9.3b): In an image that contains the segmented bone,
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linear runs of bone and marrow are measured. The average length of the marrow
runs is related to Tb.Sp, and the average length of the bone runs is related to Tb.Th.
The number of bone runs relative to the total number of runs provides Tb.N. With
progressing bone deterioration, where trabeculae become thinner and disconnected,
we can expect fewer and longer marrow runs, and shorter bone runs. Typically, runs
are calculated at 0◦, 45◦, 90◦, and 135◦, and the resulting run lengths are averaged
to obtain a measurement that is widely orientation-independent. Alternatively, runs
in different directions can be used to determine orientational preferences. The run
length method is a 2D method.

Two representative examples for the application of the run-length method for the
quantification of trabecular microstructure on CT images [30, 31] demonstrate that
this technique does not require an accurate microscopic representation of trabecular
bone. A relationship between morphometric quantities and bone strength has been
established [32]. On the other hand, noise and partial-volume effects have a strong
influence on which voxels are classified as bone. Furthermore, image degradation by
the point-spread function of the device makes the selection of a suitable threshold for
the separation of bone and soft tissue difficult. Even with micro-CT and micro-MRI
techniques, the thickness of individual trabeculae is on the order of a single voxel.

Topological quantities, such as the number of struts or the number of holes,
are popular in the analysis of the trabecular network. The interconnected trabeculae
can be represented as a graph, and the number of links (i.e., trabecular struts),
the number of nodes, the number of holes (i.e., the marrow spaces), and related
metrics, such as the Euler characteristic can be determined. The Euler characteristic
can be seen as the number of marrow cavities completely surrounded by bone. To
obtain the topological quantities, the image needs to be segmented into bone and
non-bone areas followed by thinning of the structures (skeletonization, Fig. 9.4).
One of the most interesting features of the topological quantities is the invariance
under affine transformations. Therefore, these quantities should be robust – within
limitations of the pixel discretization – against changes in scale, rotations, and even
shear and perspective distortions.

Analysis of the skeleton is traditionally a 2D method, but extensions to 3D have
been reported [33]. In two and three dimensions additional parameters have been
defined. These include the connectivity index by Le et al. [34]; the marrow star
volume by Vesterby et al. [35], which also reflects connectivity; the trabecular bone
pattern factor (often abbreviated TBPf ) by Hahn et al. [36], which decreases with
bone deterioration; the ridge number density by Laib et al. [37]; and the structure
model index (SMI) by Hildebrand and Rüegsegger [38], which is designed to
characterize a 3D shape as being plate-like or rod-like and requires a 3D image
of microscopic resolution.

9.3.2 Texture Analysis

Whereas morphometric analysis is based on the assumption that individual trabec-
ulae are resolved in the image (thus, requiring high-resolution images with voxel
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Fig. 9.4 X-ray image of an excised section of trabecular bone with its skeleton superimposed.
Skeletonization is a popular method to quantify the connectivity. Microstructural deterioration of
bone increases the number of branches (links that are connected to the network on only one end),
and decreases the number of loops

sizes generally smaller than trabecular width), such an assumption is not needed for
the analysis of the texture in image regions representing trabecular bone. Texture
can be defined as a systematic local variation of the image values [39]. This
definition normally implies the existence of multiple image values (gray values) as
opposed to the purely binary values used in the morphometric analysis. Moreover,
an assumption must be made that the image texture is related to the microstructure
of trabecular bone. This is a reasonable assumption, as can be demonstrated in a
simple experiment (Fig. 9.5). Let us consider an imaging device with a non-ideal
point-spread function, for example, X-ray projection imaging where the size of the
focal spot of the X-ray tube and the bone–film distance introduce blur. This process
can be simulated by additive superposition of blurred images of some defined binary
structure. A structure that somewhat resembles the distribution of trabecular bone
is shown in Fig. 9.5a. The purely binary image represents trabecular bone (white)
and marrow space (black). This image has been generated by a suitable random
generator. Six such images, blurred with a second-order Butterworth filter adjusted
to a random cutoff frequency of 10±3 pixel−1 were created and added on a pixel-
by-pixel basis (Fig. 9.5b). The similarity of the resulting texture to an actual CT
image (Fig. 9.5c) is striking.
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Fig. 9.5 Demonstration of the relationship between microarchitecture and texture in an imaging
system with non-ideal point-spread function. (a): A synthetically generated pattern that somewhat
resembles segmented and binarized trabeculae in a microscopic image. (b): Six patterns similar
to the one shown in (a), blurred and superimposed. (c): Magnified computed tomography slice of
the trabecular area in a lumbar vertebra. The trabecular area has been slightly contrast-enhanced,
leading to saturation of the image values that correspond to cortical bone

Texture can be analyzed in two or three dimensions. Because most imaging
modalities have anisotropic voxel sizes with much lower resolution in the axial
direction than in-plane, texture analysis normally takes place as a two-dimensional
operation. In 3D imaging modalities (CT and MRI), texture analysis can take
place slice-by-slice. When an analysis method is extended into three dimensions,
a possible voxel anisotropy needs to be taken into account.

The simplest method for texture analysis is the computation of the statistical
moments of the histogram inside a region of interest. Most notably, the standard
deviation and its normalized equivalent, the coefficient of variation, contain infor-
mation about the irregularity of the structure. Healthy bone can be expected to have a
more irregular structure with a higher coefficient of variation than osteoporotic bone
with larger and more homogeneous marrow spaces. Both variance and coefficient
of variation can be computed locally inside a sliding window. A compact metric
is the average local variance (ALV), which shows a similar trend as the global
variance, i.e., declines with the lower roughness of the texture of osteoporotic
bone. Basic statistical moments can also be computed on gradient images [40],
and the first moment is sometimes referred to as edgeness. The use of edge
enhancement to emphasize the roughness was applied by Caldwell et al. [41], who
processed digitized radiographies of thoracic vertebrae with the Sobel operator and
a thresholding algorithm to remove small gradients that are likely caused by noise.
A histogram of the gradient values showed two maxima that were related to a
preferredly horizontal and vertical orientation of the trabeculae, respectively. The
two maxima, relative to the mean gradient, related to the fracture load.

The run length method, introduced in the previous section, can be adapted to
analyze texture in a straightforward manner. The grayscale image (such as Fig. 9.5c
can be binarized with the application of a threshold. Clearly, the application of a
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threshold leads to a loss of information, and the original microstructure cannot be
restored. The binary run length method can be extended by allowing more than two
gray level bins. In this case, a two-dimensional histogram N(g, l) of the number of
runs N as a function of the gray value g and the run length l is obtained. The run-
length histogram is still relatively complex, and statistical quantities can be extracted
that characterize the histogram. Examples are the short- and long-run emphasis
(SRE and LRE), low and high gray value emphasis (LGRE and HGRE), combined
metrics, such as the long-run low gray-value emphasis (LRLGE), and uniformity
metrics, such as the gray-level and run-length nonuniformities (GNLU and RLNU).
Three of these quantitative descriptors are listed in (9.6) as examples, and a complete
list can be found in [39].

SRE =
G−1

∑
g=0

L

∑
l=1

P(g, l)
l2

LGRE =
G−1

∑
g=0

L

∑
l=1

P(g, l)
(g + 1)2

GLNU =
L

∑
l=1

[
G−1

∑
g=0

P(g, l)

]2

(9.6)

Here, L is the longest run, G is the number of gray bins, and P(g, l) is the run
probability where P(g, l) = N(g, l)/n with n being the total number of runs. It can
be expected that trabecular rarefaction due to osteoporosis would increase LRE and
LRLGE because of the longer intratrabecular runs, and would decrease GLNU as
an indicator of the loss of complexity. In fact, Chappard et al. found that X-ray
based SRE and GLN showed a high negative correlation with 2D histomorphometric
methods ex vivo. Lespessailles et al. found significant differences in the SRE value
between patients with and without osteoporosis-related fractures in a multicenter
study [42]. In radiography images, Ito et al. [31] reported a significant increase of a
parameter termed I-texture with age and with the presence of fractures. The I-texture
is the average length of dark runs in a binary run-length histogram and corresponds
to intratrabecular spaces. Conversely, the T-texture, the white runs that correspond to
the trabecular area, did not change significantly. This observation can be interpreted
as the increase of marrow spaces with otherwise unchanged trabecular width.

Selection of the threshold, or placement of the gray-level bins, have a strong
influence on the quantitative texture descriptors. Neither projection images nor CT
images allow the application of a defined threshold to separate bone from soft
tissue and marrow. Depending on the threshold, the runs can be almost arbitrarily
shifted from black to white runs. Bin selection is less critical when a gray-level
run-length histogram is computed. However, a large number of gray levels leads
to predominantly short runs, whereas a small number of gray levels allows longer
runs, but introduces a sensitivity against shifts in image value. Frequently, the
bin size b is determined from the maximum and minimum image intensity as
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b = (Imax − Imin)/G. A few outlier pixels can strongly influence bin placement. In
the example of Fig. 9.5b, clamping the brightest 0.1% of the pixels reduces SRE
by 15%, LGRE by 25%, GLNU by 28%, SRLGE by 27%, and LRLGE by 16%.
All other descriptors are also affected, albeit to a lesser degree. A more robust
method to select a threshold or to place bins would be based on the gray-value
histogram [43]. Histogram-based threshold and bin selection also ensures that the
quantitative descriptors are independent of the image intensity. Bone deterioration
leads to lower image values in X-ray and CT images. A change in exposure or
a different CT calibration may have a similar effect, although the microstructure
has not been altered. The quantitative descriptors directly reflect the image intensity
rather than the microarchitecture. This potential fallacy applies to most other texture
analysis methods as well. Any method can be subjected to a simple test. If all image
values are linearly transformed such that I′(x,y) = a · I(x,y)+ b, where a > 0 and b
are scalars, any algorithm that produces different descriptors for I′ when a and b are
modified does not reflect pure texture.

Other artifacts that may influence texture descriptors are image noise and
pseudotexture, introduced in the image formation process. Noise can be seen as
an artifactual texture on the pixel level. By using a low number of gray-value bins
and by discarding the shortest runs, the run-length method can be made more robust
against noise. Pseudo-texture (see, for example, Fig. 9.1) cannot be fully eliminated.
In special cases, suitable filters can suppress the pseudo-texture to some extent.
The presence of this artifact makes it difficult to compare quantitative parameters
obtained with different instruments or reconstruction settings. Lastly, the application
of a highpass filter is advisable before texture parameters are determined. A highpass
filter removes broad trends in the image values, for example, inhomogeneous X-ray
illumination or MR bias field artifacts.

Two other texture analysis methods, based on the co-occurrence matrix [44]
and on Law’s texture energy metrics [45], have been successfully applied in
texture analysis of trabecular bone. The co-occurrence matrix is the histogram of
probabilities that an image value i is accompanied by the image value j at the
distance �r. To create the co-occurrence matrix, a copy of the image is shifted by
−�r = (Δx,Δy), and the two-dimensional joint histogram is computed. Analogous
to the two-dimensional run-length histogram, single-value quantitative descriptors
can be extracted. The most widely used set of quantitative descriptors are known
as Haralick’s texture classification metrics [44]. Haralick proposes 14 different
classification metrics, such as the energy, entropy, contrast, and correlation. Each
of these metrics can be determined for different�r. Texture analysis is often driven
by a high-dimensional feature vector that is used as the input of some artificial-
intelligence decision mechanism. In the analysis of bone, however, single values
are normally used. The choice of�r is critical. Since the texture features of interest
are normally larger than a single pixel, single-pixel offsets reflect predominantly
noise. A thorough analysis of the relevant size of the features is necessary to obtain
meaningful values from the co-occurrence matrix. The influence of the offset �r
is shown in Fig. 9.6, where the co-occurrence matrices for Δx = 1 and Δx = 15



206 M.A. Haidekker and G. Dougherty

0 10 20 30 40 50
0

500

1000

1500

2000

2500

0

10

20

30

40

x (pixels)

In
er

tia
( 

   
  )

C
ontrast(- - - -)

a b c

Fig. 9.6 Examples of the gray-level co-occurrence matrix of the image in Fig. 9.5b. A single-
pixel offset (a) shows highly correlated pixel values with high-probability co-occurrences arranged
along the diagonal i = j. With a larger offset (Δx = 15 pixels), a broader distribution of the co-
occurrence matrix is seen (b). Analysis of the influence of the offset ((c), inertia and contrast shown
as representative metrics) reveals that the values strongly depend on the choice of Δx until Δx � 20

are juxtaposed, and two representative metrics, inertia and contrast, are shown for
different Δx. Neighboring pixels are highly correlated for small�r (the diagonal i = j
dominates the histogram). The metrics become robust against changes of Δx for
Δx � 20, which indicates that the features of interest coincide with this size. In fact,
Euclidean distances between local maxima of the image fluctuate between 15 and
35. One example study be Lee et al. [46] examines the inverse difference moment
IDM (9.7) of the co-occurrence matrix,

IDM(θ ,d) = ∑
a,b,a �=b

Pθ ,d(a,b)
|a−b|2 (9.7)

where θ and d describe the displacement in polar coordinates, and a and b are
the indices of the co-occurrence matrix. Lee et al. found a negative correlation
of IDM in digitized radiographies of the femoral neck with bone strength, and
found that IDM was significantly correlated with bone density, although highpass
filtering and histogram normalization made IDM independent from radiographic
density. On the other hand, Lee et al. [46] did not find a statistically significant
difference of IDM between cases with and without fractures. One possible reason is
the low resolution of approximately 8 pixels/mm, where the displacement d = 7
corresponds to 1 mm and is much larger than the trabecular size. Lespessailles
et al. [47] found only a weak and nonsignificant correlation between the energy
parameter and bone density. This observation can be interpreted in two ways. First, it
should be expected that microarchitectural organization and density are independent
quantities, and a high correlation cannot be expected. On the other hand, it is known
that microarchitectural deterioration is seen as reduced bone density in large-volume
averages, and a moderate correlation between the two quantities should be observed.
Since Lespessailles et al. used single-pixel distances for r, the energy metric may
have been dominated by pixel noise rather than actual microstructural information.
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Unlike run-length classifiers and co-occurrence classifiers, Laws’ energy metrics
[45] are local neighborhood values obtained by convolving the image with two out
of five one-dimensional convolution kernels to yield a feature vector with up to 25
elements. Laws proposes a three-step process where the image is first subjected to
background removal (for example, a highpass filter step), subsequently convolved
with the kernel pair, and finally lowpass filtered. The resulting image is referred to as
the energy map. Typically, Laws’ energy maps result in a high-dimensional feature
vector per pixel and advertises itself for classification or segmentation with high-
dimensional clustering techniques or artificial intelligence methods. In one example
[48], classical statistical parameters were obtained from the texture energy maps,
and the discrete first-order finite difference convolution kernel that approximates
∂ 2/∂x∂y showed some ability to discriminate between cases with and without
fractures. However, Laws’ texture maps are not in common use for this special
application of texture analysis. One possible reason is the fixed scale on which the
texture maps operate. Laws’ convolution kernels are fixed to 5 by 5 pixels, and pixel
noise dominates this scale. Thus, the method suffers from the same problems as
the co-occurrence matrix with short displacements. However, it is conceivable that
a combination of multiscale decomposition (such as a wavelet decomposition) with
Laws’ texture energy maps provides a more meaningful basis to obtain a quantitative
description of the texture.

In summary, texture analysis methods in the spatial domain provide, to some
extent, information that is related to actual trabecular structure. Therefore, texture
analysis methods have the potential to provide information on bone architecture
that is independent from bone density. However, texture analysis methods are
sensitive towards the image formation function (e.g., projection image versus
tomography), towards the point-spread function, the pixel size relative to trabecular
size, and towards image artifacts, most notably noise.

9.3.3 Frequency-Domain Methods

The Fourier transform decomposes an image into its periodic components. A reg-
ular, repeating pattern of texture elements (sometimes referred to as texels), causes
distinct and narrow peaks in the Fourier transform. A comprehensive discussion
of the Fourier transform and its application in image analysis can be found
in the pertinent literature [39, 40]. Since the Fourier transform reveals periodic
components, i.e., the distances at which a pattern repeats itself, operations acting on
the Fourier-transform of an image are referred to as frequency-domain operations
in contrast to the spatial-domain operations that were covered in the previous
section. The magnitude of the Fourier transform is often referred to as the frequency
spectrum. In two-dimensional images, the frequency spectrum is two-dimensional
with two orthogonal frequency components u and v. It is possible to analyze those
frequency components separately and include properties such as texture anisotropy.
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Alternatively, the spectrum can be reduced to one dimension by averaging all
frequency coefficients at the same spatial frequency ω =

√
u2 + v2. Intuitively, the

frequency spectrum can be interpreted as a different representation of the spatial-
domain image data that emphasizes a specific property, namely, the periodicity.

Trabecular bone does not exhibit any strict periodicity, because trabeculae are
to some extent randomly oriented and have random size. The Fourier transform of
random structures does not show distinct peaks. Rather, the frequency components
decay more or less monotonically with increasing spatial frequency. This property
is demonstrated in Fig. 9.7. The Fourier transform images (more precisely, the log-
transformed magnitude of the Fourier transform) of a relatively regular texture and
an irregular, bone-like structure are shown. Peaks that indicate the periodicity of
the knit pattern do not exist in the Fourier transform of the bone-like structure.
However, the decay behavior of the central maximum contains information about
the texture. A fine, highly irregular texture, typically associated with healthy
bone architecture, would show a broad peak with slow drop-off towards higher
frequencies. Conversely, osteoporotic bone with large intratrabecular spacing would
show a narrow peak with a faster drop-off towards higher frequencies.

In the analysis of trabecular bone texture, frequency-domain methods are often
used to detect self-similar properties. These methods are described in the next
section. Moreover, a number of single-value metrics can be derived from the Fourier
transform. These include the root mean square variation and the first moment of the
power spectrum (FMP, (9.8)):

FMP =
∑u ∑v

√
u2 + v2|F(u,v)|2

∑u ∑v |F(u,v)|2 (9.8)

Here, F(u, v) indicates the Fourier coefficients at the spatial frequencies u and
v, and the summation takes place over all u,v. The computation of the FMP-value
can be restricted to angular “wedges” of width Δθ , where the angle-dependent FMP
(θi) is computed over all u,v with tan(θi) < v/u ≤ tan(θi + Δθ). In this case, the
minimum and maximum value of FMP (θi) provide additional information on the
anisotropy of the texture. For example, if the texture has a preferredly horizontal and
vertical orientation, FMP(θ) shows very distinct maxima for θ around 0◦,±90◦,
and 180 ◦. Conversely, the FMP-index for a randomly oriented texture has less
distinct maxima, and the coefficient of variation of FMP(θ) is lower. Two recent
representative studies describe the use of frequency-domain metrics in radiographic
images of the femur in patients with osteoprosis [49] and osteolysis [50]. Special use
of the anisotropy was made in a study by Chappard et al. [51] and Brunet-Imbault
et al. [52].

Frequency-domain methods have two major advantages over spatial-domain
methods for the analysis of bone structure and its texture representation in images.
First, frequency-domain methods are less sensitive against background irregularities
and inhomogeneous intensity distributions. Trend-like background inhomogeneities
map to very low spatial frequencies, and the corresponding Fourier coefficients
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Fig. 9.7 Frequency-domain representation of texture. (a): Photography of a knit texture that
contains a somewhat regular repeating pattern. The regularity of the pattern is represented
by distinct peaks in the Fourier transform (b). The slight off-vertical orientation of the knit
texture finds a correspondence of the off-horizontal orientation of the Fourier-transform pattern.
(c): Synthetic trabecular pattern from Fig. 9.5. Such a pattern does not have repeated texture
elements, and the frequency coefficients decay mostly monotonically with increasing frequencies
(d). The decay behavior can be used to characterize any irregular texture

are close to the center of the Fourier spectrum image. By omitting the F(u,v)
from any single-value metric computation for small u,v, trends are automatically
excluded from the metric. Second, frequency-domain methods are usually less
noise-sensitive than spatial-domain methods. Many spatial-domain methods act on
the pixel level (examples are Laws’ texture energies or the co-occurrence matrix
with low displacements), and pixel noise directly influences the measured values.
In the frequency domain, the energy of the noise is broadly distributed over the
entire frequency spectrum. High spatial frequencies, i.e., those frequencies that are
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above the inverse spatial distance of the image features of interest, can be omitted
from the computation of any frequency-domain metric, leading to an immediate
reduction of the influence of noise. Application of a moderate spatial-domain noise
filter before performing the Fourier transform is none the less advisable, because it
reduces aliasing artifacts.

9.3.4 Use of Fractal Dimension Estimators for Texture Analysis

Fractal models enjoy great popularity for modeling the texture in medical images,
with the fractal dimension commonly used as a compact descriptor. The fractal
dimension D describes how an object occupies space and is related to the complexity
of its structure: it gives a numerical measure of the degree of boundary irregularity
or surface roughness. In its original mathematical definition, a fractal object is
created by a set of mapping rules that are applied iteratively on an object. After an
infinite application of the mapping operation, the resulting object is invariant under
the mapping operation and therefore referred to as the attractor of the mapping
rules. The attractor is self-similar in the sense that any part, magnified, looks like
the whole. Furthermore, the mapping rules determine the self-similarity dimension
of the attractor, which is strictly less than, or equal to, the Euclidean dimension
E of the embedding space (E = 1 for a line, E = 2 for a surface, and E = 3
for a volume). In nature, self-similarity occurs, but contains a certain degree of
randomness. For this reason, no strict self-similarity dimension exists, and the
apparent fractal dimension needs to be estimated by suitable methods. To cover
the details of this comprehensive topic is beyond the scope of this chapter. A highly
detailed overview of the subject with a mathematical focus can be found in [53], the
groundbreaking work by Mandelbrot [54] deals with the aspect of randomness in
natural fractal objects, and an in-depth overview of the methodology of estimating
fractal dimensions in images can be found in [39].

Fractal analysis always involves the detection and quantification of self-similar
behavior, i.e., to find a scaling rule under which a magnified part of the image
feature is similar to the whole. This property can be illustrated with the example
of the coastline of England. The length of the coastline can be estimated with
calipers. However, as the caliper setting is reduced, the length of the coastline
appears increased, because the caliper now covers more of the smaller detail, such
as bays and headlands. In fact, nonlinear regression of the coastline length l as a
function of the caliper setting s reveals a power law,

l =
1
sD (9.9)

where D is the apparent fractal dimension. Equation (9.9) implies that the measured
length exceeds all bounds as s→ 0, which is indeed a property of some mathematical
fractals. In actual images, the scaling law fails when the limits of the resolution
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a b

Fig. 9.8 Demonstration of the box-counting method to estimate the fractal dimension of binary
images. The image (a) shows the water body (black) of the Amazon river. Superimposed is a
square mesh of boxes. Every box that contains or touches the river is counted. Next, the mesh is
refined (usually by powers of two), and the number of smaller boxes containing part of the river is
counted again. If self-similar properties exist, the log-transformed number of boxes, plotted over
the log-transformed inverse box size (b), will follow a straight line with slope D

are reached. In practice, the range of scales under which a scaling law similar to
(9.9) can be found is even more limited. In the example of the coastline, values
around D = 1.2 can be found [39, 53]. This is consistent with the notion of a very
complex and convoluted line embedded in two-dimensional Euclidean space, where
1≤D ≤ 2. A surface, such as a grayscale elevation landscape, is embedded in three-
dimensional space, where 2 ≤ D ≤ 3 holds.

A very widespread method to estimate an apparent fractal dimension in binary
images is the box-counting method, explained in Fig. 9.8. The feature needs to be
segmented (the river in the example), and the number of boxes that contain part of
the feature are counted as a function of the box size. If a power-law similar to (9.9)
exists, the counted boxes NB over the inverse scale 1/s lie on a straight line in a
log–log plot, and nonlinear regression yields the box-counting dimension DB:

log NB = −DB · logs (9.10)

In a grayscale extension of the box-counting method, the image intensities are
interpreted as heights in an elevation landscape. The surface area is determined,
whereby the scale is controlled by averaging neighboring pixel values inside boxes
of a grid. Numerous other algorithms for estimating fractal dimension have been
described [39, 55, 56]. They are all based on measuring an image characteristic,
chosen heuristically, as a function of a scale parameter. Generally, these two
quantities are linearly regressed on a log–log scale, and the fractal dimension
obtained from the resulting slope, although nonparametric estimation techniques
have also been used [57]. In all fractal estimation methods, the scale range needs
to be chosen carefully. For large box sizes, to remain with the example of the
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Table 9.1 A visual classification scheme for the assessment of the trabecular structure used for
the determination of the degree of osteoporosis and its relationship to fractal properties

Fractal
WHO Bone Spongiosa dimension of
classification strength pattern Marrow size feature

1 (Healthy) High Homogeneously dense
with granular
structures

Small,
homogeneous

Low, Unifractal

2 (Beginning
demineral-
ization)

Normal Discrete disseminated
intertrabecular areas

Medium, inho-
mogeneous

High,
Multifractal

3 (Osteopenia) Low Confluent
intratrabecular areas
<50% of the
cross-sectional
surface

Large, inhomo-
geneous

High,
Multifractal

4 (Osteoporosis) Very
low

Confluent
intratrabecular areas
≥50% of the
cross-sectional
surface

Very large,
homogeneous

Low, Multifractal

box-counting method, there is insufficient resolution to measure the feature area
properly. In the presence of noise, the scaling law at the smallest scales may be
dominated by noise, and partial-volume artifacts may result in misclassification of
pixels in the segmented image [58]. Further critique of the method specifically for
trabecular bone stems from the observation that trabeculae, on the microscopic
scale, are not fractal [58]. This observation reinforces the notion that the scale
range needs to be carefully considered [59, 60]. In spite of some criticism [58]
and the limitations discussed above, estimation methods for the fractal dimension
have been applied successfully in hundreds of studies (for representative reviews,
see [61, 62]).

There has been considerable debate in the literature regarding the change in
fractal dimension with decalcification. An early study of human calcaneous bone
[63] during immobilization for fracture (causing a process similar to osteoporosis)
found an increased fractal dimension during immobilization. Likewise, a study
of mandibular alveolar bone reported an increased fractal dimension after decal-
cification [64]. On the other hand, a later study showed a reduction in fractal
dimension of the ankle with immobilization and age [65], and a CT study of
vertebral trabecular bone reported that osteoporotic patients had a smaller fractal
dimension [66]. Furthermore, a study of dental radiographs [67] concluded that
fractal dimension decreased with decalcification. In fact, the majority of studies
agrees that the fractal dimension declines with the progression of the disease.
Clearly, changes in fractal dimension need to be interpreted with care. We conclude
that global fractal dimension does not change monotonically with decalcification
(Table 9.1), but rather that it reflects the homogeneity of the spongiosa pattern of
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the trabecular bone. Studies with subjects who do not reflect the full range of this
pattern can report either an increase (WHO classes 1,2, perhaps 3) or a decrease in
fractal dimension (from class 2 or 3 to class 4) with osteoporosis.

9.3.4.1 Frequency-Domain Estimation of the Fractal Dimension

Self-similar properties of texture can be quantified in the frequency domain. The
main advantage of frequency-domain methods is the better representation of the
stochastic nature of images: Certain characteristics are less robust when applied
to digitized data, especially when these are sparse, and algorithms that implicitly
assume an exactly self-similar fractal model are inappropriate for medical images,
because they are fractal only in a statistical sense and because pixel intensity and
position are different physical properties and cannot be expected to scale with
the same ratio. Thus, methods that do not meet the intensity–scale independency
requirement [68], such as the surface area algorithm, may not be applicable. In
contrast, the Fourier power spectrum method conveniently represents the statistical
nature of real images by describing them in terms of a fractional Brownian
motion model.

Roughness (or is opposite, smoothness) is an important feature of texture, and a
commonly used method to estimate the smoothness of a one-dimensional function
is from the decay of the Fourier power spectrum with increasing frequency f . For
a two-dimensional image, the radial Fourier power spectrum should be used. For a
rough image that adheres to the model of uncorrelated noise, the power spectrum
falls off as 1/ f 2, whereas a smooth image (correlated or Brownian noise) has a
power spectrum that decays with 1/ f 4. In a log-log plot of the spectral power
over the frequency, a decay with a straight line of slope β indicates self-similar
properties. Furthermore, β will be 2 and 4 for a rough- and a smooth-textured image,
respectively. Similar to the scaling range in spatial-domain methods, the range in
which a power-law decay of the power spectrum with frequency is found, may be
limited. At very low spatial frequencies, corresponding to the bulk features of an
object, the power spectrum may be fairly constant. At very high spatial frequencies,
system noise will dominate and the power spectrum will become constant again.
The power spectrum has been shown to estimate the fractal dimension of self-affine
fractals reliably and accurately [69] and has been used to discriminate textures in
conventional radiographs of osteoarthritic knees [70].

The link between power-law spectral decay β and fractal dimension is estab-
lished by interpreting the image data as fractional Brownian motion (FBM), because
FBM shows a statistical scaling behavior. FBM is an extension of the more familiar
Brownian motion. It has been shown [57] that the decay exponent of the power
spectrum, β , is related to the fractal dimension of a function modeled by FBM
according to

D = 1 +
1
2
(3E −β ) (9.11)
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where E is the Euclidean dimension of the embedding space (for a two-dimensional
image, E = 2 and therefore D = 4−β/2). In a two-dimensional image, the value of
D will be constrained to be between 2 (smooth) and 3 (rough), and for a projected
image generated by Brownian motion (a special case of FBM), the value of D will
be 2.5.

In practice, images are degraded by noise and blurring within a particular
imaging device. Image noise adds to the roughness and results in an overestimate
of the fractal dimension, whereas blurring results in an underestimate of the fractal
dimension. A very important advantage of the power spectrum method is that it
allows for correction of these two effects. The noise power can be obtained by
scanning a water phantom under the same conditions, and can then be subtracted
from the power spectrum of the noisy image. Image blurring can be described by the
modulation transfer function (MTF) of the system that typically attenuates higher
frequencies in an image. The effect of system blurring can be eliminated by dividing
the measured power spectrum by the square of the MTF, obtained by scanning a very
small object approximating a point. With these corrections, accurate estimates of
the fractal dimension of CT images of trabecular bone have been obtained, enabling
very small difference in texture to be distinguished [71].

9.3.4.2 Lacunarity

Lacunarity (from lacuna, meaning gap or cavity) is a less frequently used metric
that describes the complex intermingling of the shape and distribution of gaps
within an image; specifically, it quantifies the deviation of a geometric shape from
translational invariance. Lacunarity was originally developed to describe a property
of fractals [54, 72] to distinguish between textures of the same fractal dimension.
However, lacunarity is not predicated on self-similarity and can be used to describe
the spatial distribution of data sets with and without self-similarity [73]. Lacunarity
is relatively insensitive to image boundaries, and is robust to the presence of noise
and blurring within the image.

Lacunarity is most frequently computed as a function of a local neighborhood
(i.e., moving window) of size r. To compute the lacunarity, we first define a “score”
S(r,x,y) for each pixel, which is the sum of the pixel values inside the moving
window centered on (x,y). The detailed derivation of the lacunarity L(r) can be
found in [73]. Simplified, we obtain L(r) as

L(r) =
σ 2

S (r)
S2(r)

+ 1 =
∑N

r=1(S̄(r)−S(r))2

S2(r)
+ 1 (9.12)

where S̄(r) is the mean value of all S(r) and σ 2
S is the variance of S(r).

Equation (9.12) reveals explicitly the relationship between lacunarity and the
variance of the scores: Lacunarity relies on the variance of the scores, standardized
by the square of the mean of the scores. The lacunarity, L(r) of an image at a
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particular window size r uses all the scores obtained by exhaustively sampling
the image. Thus, in general, as the window size r increases, the lacunarity will
decrease, approaching unity whenever the window size approaches the image size
(when there is only one measurement and the variance is consequently zero) – or
for a spatially random (i.e., noisy) pattern, since the variance of the scores will be
close to zero even for small window sizes. The lacunarity defined in (9.12) and
its variants (including normalized lacunarity and grayscale lacunarity) are scale-
invariant but are not invariant to contrast and brightness transformations, so that
histogram equalization of images is a necessary pre-processing step.

A plot of lacunarity against window size contains significant information about
the spatial structure of an image at different scales. In particular, it can distinguish
varying degrees of heterogeneity within an image, and in the case of a homogeneous
image it can identify the size of a characteristic substructure. Hierarchically struc-
tured random images can be generated using curdling [54]. Higher lacunarity values
are obtained when the window sizes are smaller than the scale of randomness, and
images with the same degree of randomness at all levels (viz. self-similar fractals)
are close to linear, where the slope is related to the fractal dimension. Specifically,
the magnitude of the slope of the lacunarity plot for self-similar fractals is equal to
D−E , where D and E are the fractal and Euclidean dimensions, respectively.

One problem with the lacunarity metric defined in (9.12) is that the vertical
scaling is related to the image density, with sparse maps having higher lacunarities
than dense maps for the same window size. This complicates the comparison of
plots between images of different density. It is possible to formulate a normalized
lacunarity whose decay is a function of clustering only and is independent from
image density. A normalized lacunarity, NL(r), can be achieved by combining the
lacunarity of an image, L(r) with the lacunarity of its complement, cL(r), which can
assume values between 0 and 1 [71, 74]:

NL(r) = 2− 1
L(r)

+
1

cL(r)
(9.13)

9.3.4.3 Lacunarity Parameters

Lacunarity plots, i.e., plots of L(r) over r, show how the lacunarity varies with
scale. The plots monotonically decay to a value of unity at large scales, unless
there is considerable periodicity in the image; in which case it can pass through
some minima (corresponding to the repeat distance) and maxima as it falls to unity.
Most real images, as opposed to synthetic images, will show only the monotonic
decay. In image features with strict self-similarity, L(r) results in a straight-line
plot from (0,1) to (1,0). If this line is seen as the neutral model, the deviation of
the (normalized) lacunarity plots from the straight line, calculated as a percentage
of the (normalized) lacunarity value, will emphasize subtle differences that are not
conspicuous in the decay curves themselves and is useful in identifying size ranges
for different tonal features [74]. Positive (negative) deviations indicate greater
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Fig. 9.9 Lacunarity plots for three sample textures, highly correlated noise (Perlin noise, dashed
line labeled P), uncorrelated Gaussian noise (black circles, labeled GN), and the texture from a
CT cross-section of spongy bone in a healthy lumbar vertebra (black diamonds, labeled S). Fitted
curves (9.14) are shown in gray. The lacunarity for Perlin noise cannot be described by (9.14). For
Gaussian noise, α = 1.5 and β = 0.007 was found, and for the spongiosa texture, α = 0.45 and
β = 0.021

(lesser) spatial homogeneity than the underlying scale-invariant neutral (fractal)
model. The presence of a prominent maximum would indicate the typical size of a
structuring element in the image. Moreover, Lacunarity plots often resemble the plot
of a power-law function, and Zaia et al. [75] have fitted non-normalized lacunarity
plots from binary images to a function of the form

L(r) =
β
rα + γ (9.14)

where the parameters α, β , and γ are regression parameters that represent the order
of the convergence of L(r), the magnitude (vertical scaling) of L(r), and the offset
(vertical shift) of L(r), respectively. We have explored the fitting to monotonic
normalized lacunarity plots, where the parameter γ can be conveniently set to unity,
which is the value that NL(r) approaches at large scales. This simplifies the power-
law fit to

NL(r)−1 =
β
rα (9.15)

Examples for lacunarity plots L(r) are shown in Fig. 9.9. The plots of L(r) and
the curve fits with (9.14) are shown. Highly correlated noise (Perlin noise) cannot
be described by (9.14). Conversely, both the uncorrelated noise and the texture of
spongy bone in a cross-sectional CT slice show a good fit with (9.14) with R2 > 0.99
in both cases. The score S(r) rapidly reaches statistical stability for increasing r,
and the variance of S over the location of a sliding window becomes very low. The
texture of trabecular bone has a higher variance with the location of S, and its decay
with increasing window size is slower. It becomes obvious that window sizes with
r > 20 do not carry additional information in this example, where a window size was
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used that coincides with the largest textural variations in the spongy bone image.
Since bone density, the fractal dimension, and lacunarity are orthogonal metrics,
they can be used for multidimensional clustering to better discriminate between
degrees of osteoporosis (Table 9.1) [74].

9.3.5 Computer Modeling of Biomechanical Properties

Up to this point, Sect. 9.3 was primarily concerned with the empirical relationship
between image properties and bone strength. Most notably X-ray attenuation, which
is directly related to bone density, can be linked to bone strength. The texture
analysis methods introduced in the previous sections aim at extracting information
from biomedical images of trabecular bone that are independent from average
density and therefore provide additional information. A less empirical approach is
the modeling of bone biomechanical properties with finite-element models (FEM).
In finite-element analysis, an inhomogeneous object is subdivided into a large
number of small geometrical primitives, such as tetrahedrons or cuboids. Each
element is considered homogeneous with defined mechanical properties (stress–
strain relationship). External forces and displacements are applied by neighboring
elements. External boundary conditions can be defined. Those include spatial
fixation and external forces. The entire system of interconnected finite elements
is solved numerically, and the forces, the shear tensor and the displacement for
each element are known. Finite-element models also allow time-resolved analysis,
providing information on motion and the response to time-varying forces.

The use of FEM for skeletal bone became popular in the late 1970s and has been
extensively used to relate skeletal variation to function (for a general overview, see
[76]). Since then, literally dozens of studies have been published each year where
FEM were used for the functional understanding of bone, predominantly in the
spine. Because of the large volume of available literature, we will focus on spinal
vertebrae as one pertinent example. One of the most fundamental questions that can
be approached with finite-element analysis is the contribution of compact bone to
the overall weight-bearing capacity of bone. Studies by Rockoff et al. and Vesterby
et al. indicate a major load-bearing contribution of the cortical shell [15, 77].

Two main approaches exist. A general vertebral model with representative
geometry can be designed and used to study general spine biomechanics. Con-
versely, the geometry of individual vertebrae can be extracted from volumetric
images (CT or MRI), approximated by finite elements, and subjected to load and
deformation analysis. Although the second approach holds the promise to improve
the assessment of the individual fracture risk, it has not found its way into medical
practice, mainly because of the computational effort and because of uncertainties
about the influence of the finite-element subdivision, material property assignment,
and the exact introduction of external forces [78]. The two representative approaches
are shown in Fig. 9.10. The early model by Lavaste et al. [79] was generated from
global X-ray based measurements, including the width and height of the vertebral
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a b

Fig. 9.10 Finite-element approximations of the spine. (a): Early parametric model of a vertebral
body (adapted from [79]). The vertebral body is generated from X-ray measurements, such as
height, width, and curvature. (b): Comprehensive finite-element model of the lumbar spine and
the computed stress magnitude (adapted from [80] with permission to reprint through the Creative
Commons License)

body, the diameter of its waist, and the length of the vertebral processes. As such,
it is a semi-individual model that reflects gross measurements combined with a
generalized shape model. Individual vertebral bodies can be combined to form a
semi-individualized model of the spine or segments of the spine [79]. The recent
model by Kuo et al. was segmented from volumetric high-resolution CT images
(0.35 mm pixel size), and different material properties were assigned to spongy
bone, the cortical shell, the endplates, and the intervertebral discs. Such a model may
easily contain 20,000 elements per vertebra, and it accurately reflects the geometry
of an individual spine.

The assignment of material properties is an ongoing question. In many models,
including the two examples presented above, the spongiosa is modeled as a homo-
geneous material – in the example of Kuo et al., spongy bone is assigned a Young’s
modulus of 100 MPa compared to cortical bone with 12,000 MPa. However, spongy
bone may have a larger local variation of its mechanical strength than the model
allows. General models for spongy bone include hexagonal or cubic stick models
[81, 82]. Specific models have been developed for spongy bone, often based on
micro-CT or micro-MRI images that can resolve individual trabeculae [83,84]. Once
again, the model strongly depends on the accurate representation of the geometry
and the local material properties. To determine the load-bearing capacity of an entire
vertebra, the spongiosa model needs to be appropriately connected to the cortical
shell and the endplates. Furthermore, detailed models of the spongiosa cannot
presently be used in a clinical setting, because whole-body scanners do not provide
the necessary microscopic resolution to build a detailed model of the trabeculae.
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These considerations nonwithstanding, finite-element models have become an
important component in the toolkit of image analysis for bone. Whereas the analysis
of texture may provide information on the bone structure, which may complement
average bone density in an empirical fashion, finite-element models allow a more
rigorous approach to examine the load distribution in bone.

9.4 Trends in Imaging of Bone

A focus of this chapter lies on the use of texture analysis methods to obtain density-
independent information on bone microarchitecture. The underlying idea, that the
combination of bone density and microarchitecture leads to an improved assessment
of the individual fracture risk, has been validated in many studies. However, none of
the texture analysis methods has found its way into clinical practice. In fact, several
studies found a low predictive value of structure analysis, and most of the fracture
risk was explained by bone density. The key reasons are:

• Bone density and microarchitectural/structural information cannot be truly or-
thogonal, because reduced bone density appears as a consequence of trabecular
thinning.

• Unless microscopic methods are used that can resolve individual trabeculae,
images of trabecular bone are subject to the point-spread function and the noise
contribution from the imaging device. These artifacts can influence the metrics
obtained.

• The same artifact prevents most metrics to be comparable between modalities or
even between different scanners. No single universal (or even widely applicable)
method has emerged.

• Texture methods usually do not take into account the load-bearing capacity of
the cortical shell.

• Additional factors have a strong impact on the fracture risk. These include muscle
mass and overall strength, age, body mass index, current medication, dementia,
and ancillary diseases.

On the other hand, it is indisputable that bone density, whose measurement
involves averaging over a relatively large volume, is associated with loss of
information. In a frequency-domain interpretation, bone density contains only the
very low-frequency components of the bone, and the high-frequency information
is discarded. The latter component is related to the complexity of the trabecular
network, and the complexity and interconnectedness of trabeculae have been linked
to load-bearing capacity. Furthermore, bone density overlaps between patients with
and without fractures, a fact that further supports the idea that more factors than bone
density should be included to assess the fracture risk. In this respect, the inclusion
of structural or textural parameters is certainly a step in the right direction.
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These observations define the future trends in imaging of bone. First, existing
methods for obtaining more complete information on a specific bone can be refined
and new methods developed. Second, those methods must become more universal to
allow adoption independent of imaging parameters, devices, and modalities. Third,
ancillary factors need to be identified and included in the fracture risk assessment.

Progress is in part driven by the availability of higher-resolution modalities.
Over the last 10–15 years, mainstream clinical scanners have increased their
spatial resolution by an order of magnitude. Three-dimensional constructs can
be extracted from CT and – more recently – MRI [85] that strongly resemble
actual trabecular structure. With this development, biomechanical modeling of the
fracture load of individual peripheral bones comes within reach. For the thoracic and
lumbar spine, this extreme resolution is not readily available. Furthermore, present
trends in healthcare policies could prevent relatively expensive three-dimensional
imaging modalities from becoming more widely adopted. It is more reasonable to
assume that the diagnosis will continue to be based on relatively inexpensive bone
density estimation with ultrasound or DEXA. For this reason, continued research
on texture-based methods gains importance as a means to obtain information that
complements gross bone density. These methods would particularly focus on low-
resolution modalities, such as DEXA and possibly ultrasound imaging. In fact,
the prediction of bone strength with ultrasonic techniques has recently received
increased attention [86–88].

An area where image-based assessment of bone strength becomes more attractive
is the evaluation of anti-osteoporosis drugs [89]. A case in point is the controversial
treatment of bone loss with fluoride, which leads to a rapid gain in bone density
[90], but not to a matching gain in bone strength [13]. In fact, Riggs et al. found
an increased fracture rate after fluoride treatment [13]. Grynpas [91] presumes
that fluoride leads to the formation of larger bone mineral crystals, which make
bone more brittle. This example highlights the importance of the microstructure
particularly well. The methods to assess bone microstructure can therefore aid in
drug development and evaluation: by providing information on the microstructure
during treatment, and by providing the tools to noninvasively estimate or even
compute bone strength. One recent example is a micro-CT study by Jiang et al.
[92] on the effects of hormone therapy on bone microstructure.

In conclusion, there is wide agreement that bone density alone may be suf-
ficient to diagnose early bone loss, but is insufficient to accurately predict the
individual fracture risk. Bone microarchitecture holds complementary informa-
tion. Microstructural information can be obtained from biopsies or, noninvasively,
by suitable high-resolution imaging techniques. Depending on the resolution,
the trabecular structure and its interface with the cortical shell can be directly
reconstructed, or indirect quantitative metrics can be obtained that reflect the
microarchitecture only to some extent. When the bone structure can be fully
reconstructed, direct modeling of bone strength is possible, for example, with
finite-element methods. Conversely, indirect metrics that are obtained from lower-
resolution modalities or projection imaging can be combined with mineral density
in an empirical fashion. The combined metrics often correlate better with age
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and existing fractures than density alone. Although it would be desirable to
have assessment methods for the bone microarchitecture in routine, low-resolution
modalities (e.g., DEXA), no single method has emerged as a routine complement
for bone densitometry. Due to their costs, high-resolution modalities are rarely used
in clinical practice, but could turn out to be promising in drug development.
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Chapter 10
Applications of Medical Image Processing
in the Diagnosis and Treatment
of Spinal Deformity

Clayton Adam and Geoff Dougherty

10.1 Introduction

Spinal deformities are a group of disorders characterized by abnormal curvature
of the spine. In the healthy spine, natural curves occur in the sagittal plane, with
a lordosis (concave curvature) in the lower back (lumbar) region and kyphosis
(convex curvature) in the upper back (thoracic) region. In some spinal deformi-
ties, these natural curves can be either suppressed or amplified, as in the case
of hypokyphosis (flatback) or hyperkyphosis (exaggerated thoracic curvature or
‘hunchback’). However, the most common type of deformity is scoliosis, which
is defined as abnormal lateral (side to side) curvature of the spine accompanied
by axial rotation. Because of the combined sagittal curvature, abnormal lateral
curvature, and axial rotation, scoliosis is a complex three-dimensional deformity
which cannot be visualised in any single viewing plane (Fig. 10.1).

This chapter describes the application of image processing to the assessment
and treatment of spinal deformity, with a focus on the most common deformity,
adolescent idiopathic scoliosis (AIS). We will briefly describe the natural history
of spinal deformity and current approaches to surgical and non-surgical treatment
to give some background to the problem, and present an overview of current
clinically used imaging modalities. We will introduce the key metric currently used
to assess the severity and progression of spinal deformities from medical images,
the Cobb angle, and discuss the uncertainties involved in manual Cobb angle
measurements. An alternative metric, the Ferguson angle, will also be discussed.
This provides the context for an examination of semi-automated image processing
approaches for improved measurement of spinal curve shape and severity, including
the development of discrete and continuum representations of the thoracolumbar
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Fig. 10.1 Three dimensional CT reconstructions of a scoliotic spine showing overall spine and
ribcage shape (left), sagittal, and coronal close-up views of the vertebral column (right)

spine and tortuosity measures. The newly defined metrics are applied to a dataset of
idiopathic scoliosis patients and assessed by comparison with clinical Cobb angle
measurements for the same patient group. Finally, areas for future image processing
research applied to spinal deformity assessment and treatment are discussed.

10.1.1 Adolescent Idiopathic Scoliosis

While scoliosis can occur as a secondary consequence of a primary pathology
(such as a leg length inequality or congenital malformation), most (70–80%)
scoliosis cases occur during the adolescent growth spurt without known cause.
These deformities are classified as AIS, and affect 2–4% of the population.

People with scoliosis often have no symptoms beyond a slight increase in pain
and reduced lung capacity. However, progressive scoliosis leads to an increasingly
severe cosmetic deformity and can compromise the function of internal organs
in severe cases. For these reasons, both conservative (non-surgical) and surgical
treatments for spinal deformities have been developed. Bracing is a common
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Fig. 10.2 Post-operative
X-rays single rod showing
anterior (left) and dual rod
posterior (right) implants for
scoliosis correction

conservative treatment in which the patient is asked to wear an orthotic brace which
attempts to exert corrective forces on the deformed spine. Surgical approaches to
scoliosis correction (Fig. 10.2) involve attachment of implants to the spine to restore
a more normal curvature. Successful surgical approaches typically achieve a 60%
reduction of the deformity and prevent further progression; however, there are risks
of complication and further deformity progression after surgery which mandate
ongoing imaging to monitor the corrected spine.

10.2 Imaging Modalities Used for Spinal Deformity Assessment

Many spinal deformities are visible just by looking at a patient. However, due to
differences in body fat levels and bone structure between patients, they cannot
be accurately assessed by visual examination of the patient’s appearance. Medical
imaging, therefore, plays a key role both in the monitoring of spinal deformity
progression before treatment, and in assessing treatment outcomes. There are four
medical imaging modalities relevant to the assessment of spinal deformities.
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Planar and biplanar radiography Plane radiographs (X-rays) are the gold standard
for imaging spinal deformities, and are used in spine clinics worldwide. A relatively
new technology developed in France, the EOS system (EOS imaging, Paris, France),
uses bi-planar radiography to simultaneously obtain coronal and sagittal radiographs
of standing scoliosis patients with low radiation dose.

Computed Tomography (CT) CT is currently not used routinely for clinical assess-
ment of scoliosis due to its greater cost and higher radiation dose than plane X-rays
[1, 2]. However, low dose pre-operative CT is clinically indicated in endoscopic
or keyhole scoliosis surgery for planning implant placement [3], and advances in
scanner technology now allow CT with much lower radiation doses than previously
possible [4]. In the research context, a number of groups have used CT to assess
spinal deformities (in particular vertebral rotation in the axial plane) due to the 3D
information provided [5–10].

Magnetic Resonance (MR) MR imaging is sometimes used clinically to detect
soft tissue abnormalities (particularly the presence of syringomyelia in scoliosis
patients), but clinical use of MR for spinal deformities is generally limited. Several
research studies have used MR to investigate scoliosis [11–15]. MR is a useful
research tool because of the absence of ionizing radiation, although the ability of
MR to define bony anatomy is limited and thus image processing of MR datasets is
often labour-intensive.

Back surface topography Various optical surface topography systems have been
used to directly visualise the cosmetic effects of spinal deformity by assessing back
shape in 3D [16–24]. Back surface topography does not involve ionising radiation,
and so is useful for functional evaluations involving repeated assessments [25].
However, the relationship between spinal deformity and back shape is complicated
by factors such as body positioning, trunk rotation, body build and fat folds [26].

10.2.1 Current Clinical Practice: The Cobb Angle

Currently, the accepted measure for clinical assessment of scoliosis is the Cobb
angle [27]. The Cobb angle is measured on plane radiographs by drawing a line
through the superior endplate of the superior end vertebra of a scoliotic curve,
and another line through the inferior endplate of the inferior-most vertebra of the
same scoliotic curve, and then measuring the angle between these lines (Fig. 10.3).
Clinically, many Cobb measurements are still performed manually using pencil
and ruler on hardcopy X-ray films, but PACS systems (viz. computer networks)
are increasingly used which allow manual Cobb measurements to be performed
digitally by clinicians on the computer screen. As well as being used to assess
scoliosis in the coronal plane, the Cobb angle is used on sagittal plane radiographs
to assess thoracic kyphosis and lumbar lordosis.
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Fig. 10.3 Schematic view of
a scoliotic deformity showing
measurement of the Cobb
angle

α

Cobb angle

Although widely used for scoliosis assessment for its simplicity, the Cobb angle
has several shortcomings. First, numerous studies have shown that the inter- and
intra-observer measurement variabilities associated with the Cobb angle are high.
If the vertebral endplates on a plane X-ray appear blurred due to a forward or
backward tilt, considerable inter-observer errors can be introduced in the Cobb
method as a result of the difficulty in selecting the endplate orientation. Such
errors are even more pronounced in the presence of contour changes resulting from
osteoporosis [28, 29]. Figure 10.4 shows a summary of Cobb variability studies
performed between 1982 and 2005, indicating that the 95% confidence interval for
the difference between two measurements by the same observer is around 5–7◦, and
for two measurements by different observers is around 6–8◦. These measurement
errors are large enough to make the difference between a diagnosis of progression
(requiring treatment) or stability, and so introduce uncertainty into the assessment
and treatment process.

Second, because of its simplicity, the Cobb angle omits potentially useful
information about the shape of a scoliotic spine. Specifically, the Cobb angle cannot
differentiate between a large scoliotic curve which may span 8 or 9 vertebral levels,
and a small scoliotic curve which may only span 2 or 3 vertebral levels but that has
the same endplate angulation due to its severity (Fig. 10.5).

10.2.2 An Alternative: The Ferguson Angle

Prior to the adoption of the Cobb angle as standard practice by the Scoliosis
Research Society in 1966, a number of other scoliosis measurement techniques
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Fig. 10.4 Ninety five percent confidence intervals for intra-observer measurement variability
using the Cobb angle from previous studies (figure based on [30])

Fig. 10.5 Simplified
representation of three
different scoliotic curves with
increasing radius and a
greater number of vertebral
levels in the curve, but the
same Cobb angle α

Cobb angle

had been proposed, including the Ferguson angle [31]. The Ferguson angle requires
identification of three landmark points, the geometric centres of the upper, apical
(i.e. the most laterally deviated) and lower vertebrae in a scoliotic curve (Fig. 10.6).
Not only does the Ferguson angle take into account the position of the apical
vertebra, which the Cobb angle does not, it is less influenced by changes in the
shape of the vertebrae [32].



10 Applications of Medical Image Processing in the Diagnosis and Treatment... 233

Fig. 10.6 Schematic view of
a scoliotic deformity showing
measurement of the Ferguson
angle (Cobb angle shown for
comparison)

α

Cobb angle

Ferguson
angle

The Ferguson angle is slightly more complicated to measure than Cobb due to
the three landmark points (rather than two endplates in the Cobb technique). There
can be difficulties in identifying the centres of the vertebrae, depending on their
shape. The diagonals of the vertebra, as used in the standard Ferguson method, do
not intersect at its geometric centre. The intersection of perpendicular lines drawn
through the midpoints of the upper and lower endplates of a vertebra, proposed as a
more accurate method of obtaining the geometric centre especially with prominently
wedge-shaped vertebrae [32], is also flawed since it assumes that the four corners
of the vertebral body lie on a circle. An alternative, more reliable method of
finding the geometric centres has been proposed [33]. It has been shown that the
Ferguson angle is closely related to the Cobb angle, with the ratio between Cobb
and Ferguson angles for the same curve being ∼1.35 [34]. Measurement variability
for the Ferguson angle appears to be comparable with, or slightly higher than that
of the Cobb angle [32, 34, 35].

10.3 Image Processing Methods

The increasing adoption of digital imaging provides a growing opportunity to (a)
develop more detailed metrics for spinal deformity assessment which consider all
vertebral levels in a scoliotic curve rather than just the two end vertebrae, (b)
implement these metrics quickly and accurately using semi- and fully-automated
image processing tools, and (c) measure scoliosis curvature using 3D datasets from
modalities such as biplanar radiography, CT and MR. The remainder of this chapter
presents details of image processing applications which are being developed by the
authors in an attempt to avoid the manual measurement variability mentioned above,
and also to allow development of new metrics which may in the longer term improve
surgical planning and treatment decision making for spinal deformity patients.
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10.3.1 Previous Studies

Development of medical image processing algorithms for assessment of scoliosis
has been sparse to date. Several studies have used algorithms to perform computer-
aided measurement of Cobb angle and other standard measures based on digitized
anatomical landmarks manually selected by a user on a computer screen [36–39].
Gerard et al. [40] developed a semi-automated algorithm for scoliotic deformity
measurement using dynamic programming optimisation. An automated algorithm
for measuring vertebral rotation from a CT slices using the inherent symmetry of
the vertebral cross-section was developed by Adam et al. [10]. Algorithms have
also been developed to process back surface topography images (see Sect. 10.2),
including a recent non-rigid registration algorithm [41]. However, as mentioned pre-
viously, back shape approaches are limited in their ability to assess the underlying
spinal deformity and so are not widely used clinically.

10.3.2 Discrete and Continuum Functions for Spinal Curvature

A key aspect of developing more detailed metrics for spinal deformity assessment
is measuring all vertebrae in a scoliotic curve, not just the end or apical vertebrae
(as in the Cobb and Ferguson methods). Measuring all vertebrae provides a fuller
understanding of how deformities affect each vertebral level before treatment, and
also captures changes in spinal configuration after surgical treatment which may
occur over only one or two vertebral levels (such as decompensation at the top of
an implant construct). However, the challenges in measuring all vertebral levels are
(a) defining appropriate anatomical landmarks for reliable, semi- or fully-automated
detection from radiographic images, and (b) processing these landmark coordinates
to obtain meaningful measures of deformity shape which will assist in diagnosis and
treatment.

One approach being developed by the authors for use with low dose CT datasets
of AIS patients is to use the edge of the vertebral canal as a robust anatomical
landmark suitable for semi-automated detection. Figure 10.7 shows a transverse CT
slice of a scoliosis patient, which demonstrates the clearly defined, high contrast,
enclosed inner boundary of the vertebral canal.

Even though individual vertebrae may be substantially tilted relative to the
transverse CT slices, even in large scoliosis curves (Cobb angle ∼60◦), one or more
CT slices will contain an enclosed vertebral canal such as that shown in Fig. 10.7.
From these images, a spinal canal tracking algorithm has been developed using
the ImageJ software (version 1.43u, National Institutes of Health, USA), which
uses ImageJ’s automatic edge tracing command to locate the inner boundary of
the vertebral canal, and determine the canal centroid coordinates. By applying this
algorithm for each vertebral level in a scoliosis curve, a series of 17 x,y,z datapoints
for the entire thoracolumbar spine can be generated, and pairs of x,z and y,z data
points define spinal curvature in the coronal and sagittal planes respectively.
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Fig. 10.7 Left: Axial CT slice showing the enclosed vertebral canal which is used as a landmark
detection point by the semi-automated ‘canal tracker’ algorithm. Note that the anterior vertebral
column is more rotated and deviated away from the mid-sagittal plane than the posterior part of
the vertebra. Right: Close-up view of vertebral canal showing outline traced by the ImageJ edge
detection algorithm and geometric centre of the detected outline which is used as the vertebral
canal landmark

Having measured vertebral canal landmark coordinates for each vertebral level,
these coordinates (which represent a ‘discrete’ representation of the scoliotic spine
curvature) can then be used to generate a ‘continuum’ representation of scoliotic
spinal curvature by fitting a mathematical function to the 17 sets of landmark
coordinates. The approach used here is to fit two sixth order polynomial functions
to pairs of x,z (coronal plane) and y,z (sagittal plane) coordinates respectively,

x = c0 + c1z+ c2z2 + c3z3 + c4z4 + c5z5 + c6z6 (10.1)

y = S0 + S1z+ S2z2 + S3z3 + S4z4 + S5z5 + S6z6, (10.2)

where cn and sn are the coronal and sagittal polynomial coefficients, respectively.
Of course, other mathematical functions could be used. Figure 10.8 shows examples
of two scoliosis patients where vertebral canal landmarks have been measured and
continuum representations of the spinal curvature generated using this approach.

To show the relationship of the vertebral canal landmarks (which are located
posteriorly in the vertebral canal) to the anterior vertebral column (where the
Cobb and Ferguson angles are measured), Fig. 10.8 overlays the vertebral canal
landmark points on CT reconstructions of the anterior vertebral columns. From these
images it is apparent that first, while the vertebral canal landmarks and continuum
curves closely follow the anterior column contours, the vertebral canal curvature
tends to be less severe than that of the anterior column. This is to be expected
because the anterior column is more rotated and displaced relative to the mid-sagittal
plane than the vertebral canal (Fig. 10.7). Second, the vertebral canal landmark
points do not always lie at mid-height relative to the anterior vertebral bodies.
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Fig. 10.8 Coronal CT reconstructions of two scoliosis patients showing the vertebral canal
landmark points (dark blue diamonds) and polynomial fits (pink lines) to the vertebral canal
landmark points which provide a continuum mathematical description of the spinal curvature

This can occur firstly because the vertebra may be tilted in the sagittal plane (with
the anterior vertebral body higher than the posterior vertebral canal – see the sagittal
CT view in Fig. 10.1), and also because the current implementation of the algorithm
is semi-automated, so there may be a choice of several axial CT slices in which an
enclosed vertebral canal can be clearly seen by the user, leading to a user variability
in slice selection. We note, however, that the resulting continuum mathematical
representation is insensitive to variations in the CT slice chosen within a particular
vertebrae for spinal canal landmark detection.

Having obtained discrete landmark points and a continuum representation of the
spinal curvature, various curve metrics can be extracted. In particular, the inflection
points of the coronal plane polynomial can be readily located by finding the zeros of
the second derivative of the polynomial (i.e. the roots of a fourth order polynomial),

d2x
dz2 = 2c2 + 6c3z+ 12c4z2 + 20c5z3 + 30c6z4 = 0, (10.3)

and the angle between the normals to the coronal curve at two neighboring inflection
points can then be determined to provide a ‘Cobb-equivalent angle’. This approach
is analogous with the clinical definition of the coronal Cobb angle, which is based
on locating the ‘most tilted’ endplates in a scoliotic curve.

In some cases, the coronal polynomial curve has only one inflection point, and in
these cases an alternative approach must be used to generate the ‘Cobb-equivalent’
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metric. Here, we propose that the z-coordinates of the upper and lower end vertebrae
of the scoliotic curve as determined clinically are used in this situation. The angle
between the normals to the coronal curve at these vertebral levels is again a Cobb-
equivalent measure, with the disadvantage that a manual selection of levels was
required.

The two approaches just presented; (1) Cobb-equivalent angle determined as the
angle between inflection points of coronal polynomial, and (2) Cobb-equivalent
angle determined as the angle between manually selected vertebral locations of
coronal polynomial are denoted as the ‘Cobb-equivalent 1’ and ‘Cobb-equivalent 2’
angles, respectively.

10.3.3 Tortuosity

The concept of tortuosity, the accumulation of curvature along a curve, has been
used to characterise blood vessels and their risk of aneurysm formation or rupture
[33, 42–47]. A variety of possible metrics for tortuosity have been proposed, such
as the distance factor (the relative length increase from a straight line) [48–50] or
sinuosity [51], the number of inflection points along the curve [52], the angle change
along segments [53,54], and various line integrals of local curvature values [42,44],
which can be computed from second differences of the curve [43].

We have developed two tortuosity metrics [45] which are amenable to automation
and can be used as putative scoliosis metrics for measuring the severity of the
condition. Both are inherently three-dimensional, although they can be applied to
two-dimensional projections. (A third possible metric, the integral of the square of
the derivative of curvature of a spline-fit smoothest path, was found not to be scale-
invariant, and subsequently abandoned [55]).

The first metric delivers a scoliotic angle, which can be considered an extension
of the Ferguson angle. It is the accumulated angle turned along the length of
the section of spine of interest, calculated as the sum of the magnitudes of the
angles between straight line segments connecting the consecutive centres of all the
vertebrae under consideration (Fig. 10.9). We have previously designated it as M. It
can be applied to the whole spine, or a designated curve within it.

Figure 10.9 shows that M can be considered an extension of the Ferguson angle
(referred to here as the segmental Ferguson angle). For a given scoliotic curve, the
segmental Ferguson angle will be larger than the conventional Ferguson angle and
smaller than the Cobb angle, although in the special (theoretical) case of a circular
arc comprising many short segments its value approaches that of the Cobb angle.
This special case is shown schematically in Fig. 10.10.

The second metric is based on a continuum function for the spinal curve,
based on a unit speed parameterization of the vertebral centres. A piece-wise
spline is used to produce a continuous function, which is the ‘smoothest path’
connecting the vertebral centres (Fig. 10.11), and it is used to compute a normalized
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Fig. 10.9 Left: Portion of a scoliotic curve showing conventional Cobb and Ferguson angles as
well as the segmental Ferguson angles which are summed to give the coronal tortuosity metric M.
Right: Absolute segmental angles are summed in the case of a spinal curve containing both positive
and negative angles

Fig. 10.10 For the special
case of a circular arc the
Cobb angle α is twice the
Ferguson angle φ. As the arc
is divided into successively
more segments, the coronal
tortuosity (sum of the
segmental Ferguson angles
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approaches the Cobb angle
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Fig. 10.11
Anterior–posterior (AP)
radiograph, illustrating the
measurement of the
conventional Cobb and
Ferguson angles, and showing
the smoothest-path
piece-wise spline iteratively
fitted to the geometric centres
of the vertebrae

root-mean-square (rms) curvature, which we designated K. It is defined in terms of
the root-mean-square curvature, J, of the smoothest path by

K =
√

J.L, (10.4)

where L is the length of the smoothed curve. The ‘normalization’ by
√

L ensures that
K is dimensionless (viz. an angle). While M is an accumulated angle using straight
line segments between the vertebral centres, K is an accumulated angle using the
smoothest path connecting the centres. With K, the accumulation is not democratic;
rather contributions of higher curvature are given more weight than contributions
of lower curvature. (If the curvature is constant, then K is forced to accumulate
democratically and K = M.)

Both metrics have been shown to be scale invariant and additive, and K is essen-
tially insensitive to digitization errors [45] Their usefulness has been demonstrated
in discriminating between arteries of different tortuosities in assessing the relative
utility of the arteries for endoluminal repair of aneurysms [33].
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10.4 Assessment of Image Processing Methods

Before adopting an automated method for the assessment of spinal deformities, there
is a need to compare the proposed method with the results from current practice,
in particular the Cobb angle which is the clinically accepted measure of scoliosis
severity. Here, we apply the image processing techniques described above to derive
Cobb-equivalent and tortuosity metrics in a series of AIS patients. We then compare
the new metrics with existing, clinically measured Cobb angles for the patients in
the series.

10.4.1 Patient Dataset and Image Processing

The patient group comprised 79 AIS patients from the Mater Children’s Hospital
in Brisbane, Australia. Each of the patients in this series underwent thoracoscopic
(keyhole) anterior surgery for correction of their deformity, and prior to surgery
each patient received a single, low-dose, pre-operative CT scan for surgical planning
purposes. Pre-operative CT allows safer screw sizing and positioning in keyhole
scoliosis surgery procedures [56]. The estimated CT radiation dose for the scanning
protocol used was 3.7 mSv [57].

Following the procedure described in Sect. 10.3.2, vertebral canal landmark co-
ordinates were measured for each thoracolumbar vertebrae in each patient in the
series. We note that measurement of spinal deformities from supine CT scans yields
lower values of the Cobb angle than measurements on standing patients. Torell
et al. [58] reported a 9◦ reduction in Cobb angle for supine compared to standing
patients, and Yazici et al. [59] showed a reduction in average Cobb angle from 56 to
39◦ between standing and supine positions.

10.4.2 Results and Discussion

The patient group comprised of 74 females and 5 males with a mean age of 15.6
years (range 9.9–41.2) at the time the CT scan was performed. The mean height was
161.5 cm (range 139.5–175) and mean weight was 53.4 kg (range 30.6–84.7). All
79 patients had right-sided major scoliotic curves.1 The mean clinically measured
major Cobb angle for the group was 51.9◦ (range 38–68◦). The clinical Cobb
measurements were performed manually at the Mater Children’s Hospital spinal
clinic by experienced clinicians, using standing radiographs. Figure 10.12 shows a

1The major curve is defined as the curve with the largest Cobb angle in a scoliotic spine. Typically,
adolescent idiopathic scoliosis major curves are convex to the right in the mid-thoracic spine, with
smaller (minor) curves above and below, convex to the left.
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Fig. 10.12 Plot of Cobb-equivalent 1 and Cobb-equivalent 2 angles against clinically measured
coronal Cobb angle for each patient in the series. Note that for 10 of the 79 patients, there was
only one inflection point on the polynomial curve so Cobb-equivalent1 could not be determined
for these ten patients

comparison between the clinically measured (standing) Cobb angle and the Cobb-
equivalent 1 and Cobb-equivalent 2 metrics derived from the supine CT scans for
the patient group.

With respect to Fig. 10.12, the relatively low R2 values of 0.38 and 0.32
(Cobb-equivalent 1 and Cobb-equivalent 2, respectively) show there are substantial
variations between individual clinical Cobb measurements from standing radio-
graphs, and the Cobb-equivalent angles derived from continuum representations of
spine shape on supine CT scans. The 13.7 and 15.5◦ offsets in the linear regression
equations for the two Cobb-equivalent angles are consistent with the magnitude of
change in Cobb angle between standing and supine postures of 9◦ and 17◦ reported
by Torell et al. [58] and Yazici et al. [59]. The gradients of the regression lines for
Cobb-equivalent 1 (1.13) and Cobb-equivalent 2 (1.04) in Fig. 10.13 are close to
unity as would be expected, but the slightly greater than unity values suggest that
either (1) bigger scoliotic curves are more affected by gravity (i.e. the difference
between standing and supine Cobb increases with increasing Cobb angle), or (2)
there is greater rotation of the anterior vertebral column (where clinical Cobb angles
are measured from endplates) compared to the posterior vertebral canal (where the
Cobb-equivalent landmarks are measured) in patients with larger deformities. Note
that although not shown in Fig. 10.12, Cobb-equivalent 1 and Cobb-equivalent 2 are
highly correlated with each other (R2 = 0.96).

Figure 10.13 shows the close correlation between two of the new metrics,
the coronal tortuosity (segmental Ferguson angle) of the major curve and the
Cobb-equivalent 2. The coronal tortuosity, M (or segmental Ferguson angle), is
strongly correlated (R2 = 0.906, p < 0.0000001) with the Cobb-equivalent 2 angle.
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Fig. 10.13 Major coronal tortuosity (segmental Ferguson angle) vs. Cobb-equivalent 2 for the
patient group, showing the close correlation between these two metrics

It is almost 10% larger for all angles, as expected from a metric based on the
Ferguson angle, and there is no offset angle. This represents a strong internal
consistency for these two semi-automated metrics. M follows the Cobb-equivalent
2 angle in being larger than the measured Cobb angle and having a significant
correlation (R2 = 0.30, p < 0.007) to it.

To remove the influence of (1) patient positioning (supine vs. standing) and
(2) measurement error associated with a single clinical Cobb measurement, we
performed a separate sub-study on 12 of the 79 patients in the main patient
group.2 For each patient in the sub-study, repeated manual Cobb measurements (six
clinicians measured each Cobb angle on three separate occasions at least a week
apart) were made using 2D coronal reconstructions from the supine CT scans. This
allowed direct comparison of manual and Cobb-equivalent metrics using the same
supine CT datasets, and reduced manual measurement variability by using repeated
measures by multiple observers. Figure 10.14 shows the result of this comparison.

The R2 value of 0.88 in Fig. 10.14 suggests that when postural differences are
accounted for, the Cobb-equivalent metric is strongly correlated to manual Cobb
measurements, but has the advantage of not being prone to the substantial manual
measurement variability which can occur with a single Cobb measurement by a
single observer. Note that the intercept and gradient of the regression equation
in Fig. 10.14 suggest that although the metric is strongly correlated with supine
manual measures, there is still a difference between the magnitudes of the two Cobb
measures, perhaps due to the difference in anatomical location of the landmarks
used in each case (manual Cobb uses endplates in the anterior column, whereas

2Note that the measurements described in this sub-study were performed before the main study,
so there was no bias in the selection of the 12 patients based on the results from the entire patient
group.
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Fig. 10.14 Comparison of manually measured Cobb and Cobb-equivalent 1 for a subgroup of 12
patients, where manual Cobb angles were measured from 2D coronal supine CT reconstructions.
Each data point represents the mean of 18 manual measurements (six observers on three occasions
each). Error bars are the standard deviation of the manual measurements
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Fig. 10.15 Plot of normalized root-mean-square tortuosity, K, against tortuosity, M, both mea-
sured in the coronal (AP) plane, for each patient in the series

Cobb-equivalent metric uses vertebral canal). Also the number of patients used in
this sub-study was relatively small, due to the constraints associated with obtaining
multiple repeat Cobb measurements by a group of clinicians.

Figure 10.15 shows the relationship between the two tortuosity-based metrics,
K and M (Sect. 10.3.3). Clearly, the correlation is very poor, although both metrics
have been shown to correlate well with the ranking of an expert panel when used
with retinal vessels [47]. However, in this application, the data is very sparse and
there are no ‘data balls’ which can be used to constrain the spline-fitting [45].
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Under these circumstances, the utility of the K metric is questionable. Since it
computes tortuosity differently, by emphasizing contributions of high curvature, it
is not directly comparable to any of the other methods and seems to have limited
applicability to scoliotic angles.

10.5 Summary

Current clinical approaches to spinal deformity assessment and treatment are based
on manual (printed film or computer screen) measurement of plane radiographs,
along with limited use of other modalities such as CT/MRI or back shape analysis.
The Cobb angle is currently the standard clinical metric for assessing the severity of
a scoliotic curve. It reduces the 3D curvature to a single angle, measured at the
upper and lower vertebral endplates of the curve. The Cobb angle is a key pa-
rameter used in surgical decision-making, yet measurement variability studies have
demonstrated that it is a relatively ‘noisy’ measure (Sect. 10.2.1). The alternative,
the Ferguson angle, includes lateral deviation at the apex of the deformity but the
geometric centres of the vertebrae are difficult to establish from a plane radiograph
(Sect. 10.2.2), especially when the vertebrae are wedge-shaped [32].

Given these uncertainties in manual measurement and the increasing availability
of digitized medical images, there are emerging opportunities for the development
of medical image processing techniques to assess spinal deformities. Both discrete
and continuum representations of spinal curvature on a vertebral level-by-level basis
offer the potential for better reproducibility and sensitivity so that the progression of
disease can be followed using automated or semi-automated selection of anatomical
landmarks such as the vertebral canal landmark detection approach demonstrated
here. Image processing approaches also offer the potential to develop new metrics
which use data from all of the vertebrae in a scoliotic curve rather than only two or
three manually selected vertebrae.

One practical issue around the development of new spinal deformity assessment
techniques is how they compare with existing clinical measures, and for this
reason we included a comparison of several new metrics (Cobb equivalent 1,
Cobb equivalent 2 and tortuosity metrics) with manual Cobb measurements for
a group of AIS patients. This comparison showed that a single manual Cobb
measurement by a single observer is subject to significant measurement variability,
which results in scatter when comparing manual and Cobb-equivalent measures
(Fig. 10.12). However, when a group of manual measurements of the same image
are averaged, there is much closer agreement between manual Cobb and Cobb-
equivalent metrics (Fig. 10.14). Further, the Cobb-equivalent 1, Cobb-equivalent 2
and coronal tortuosity metrics are all closely correlated. These initial results show
that continuum and discrete representations of entire thoracolumbar spinal curves
can be interrogated to yield simple clinical measures which agree closely with
current manual measurements, but more work is required to extend the comparison
to 3D (sagittal and axial planes), and to other clinical measures than the Cobb angle.
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The image processing metrics which we presented here were based on semi-
automated landmark detection in the vertebral canal, which is a high-contrast
landmark on transverse CT slices; however, semi-automated detection of the
anterior vertebral column would be a valuable direction for future study, as the
anterior column in scoliosis tends to be more deformed than the posterior region.

We note again that although CT is not current clinical practice for scoliosis
assessment (except in the case of keyhole surgery planning), advances in CT
scanner technology have dramatically reduced radiation dose compared to earlier
scanners [6], and CT or biplanar radiography (with their associated advantages of
3D reconstruction with good bony resolution) may become more common. One
issue with CT is the relatively large difference in deformity magnitude between
supine and standing postures (which in itself is a potentially valuable indicator of
spine flexibility). A move toward 3D imaging modalities is likely considering the
increasing realisation of the need to consider scoliosis as a 3D deformity [60].

There is much potential for future development of image processing algorithms
based on 3D imaging modalities for improved assessment and treatment of spinal
deformities. New metrics can assist in surgical planning by highlighting 3D aspects
of the deformity, by feeding into biomechanical analysis tools (such as finite element
simulations of scoliosis [61], and by interfacing with existing classification systems
[39, 62, 63] to provide automated classification.
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Chapter 11
Image Analysis of Retinal Images

Michael J. Cree and Herbert F. Jelinek

11.1 Introduction

The eye is sometimes said to provide a window into the health of a person for
it is only in the eye that one can actually see the exposed flesh of the subject
without using invasive procedures. That ‘exposed flesh’ is, of course, the retina,
the light sensitive layer at the back of the eye. There are a number of diseases,
particularly vascular disease, that leave tell-tale markers in the retina. The retina can
be photographed relatively straightforwardly with a fundus camera and now with
direct digital imaging there is much interest in computer analysis of retinal images
for identifying and quantifying the effects of diseases such as diabetes.

It is a particularly exciting and interesting field for the image analysis expert
because of the richness and depth of detail in retinal images and the challenges pre-
sented for analysis. There are many distinctive lesions and features for segmentation
and quantification ranging from those requiring straightforward implementations
to those presenting formidable challenges that remain largely unsolved. Finding
solutions to these problems present enormous opportunity to positively impact on
the health care of millions of people.

In this chapter, we present a tutorial introduction to some of the image processing
techniques used in analysis of retinal images. Some space is given to the simpler
approaches to image preprocessing and the detection of two major features. The
first, the blood vessel network, is ubiquitous to all retinal images and can provide
a wealth of health and disease information. The second, microaneurysms, is a
lesion particularly associated with diabetic retinopathy – a disease of the retina
resulting from diabetes. This is polished off with some more recent and sophisticated
techniques in wavelet and fractal analysis of the vessel network.
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But first, there is some notation and jargon that is necessary for talking about
retinal images. We turn to that first followed by a brief expansion upon the
motivation for automated computer analysis of retinal images, and an introduction
to the technologies used to capture retinal images.

11.2 Retinal Imaging

11.2.1 Features of a Retinal Image

The retina is the light sensitive layer at the back of the eye that is visualisable with
specialist equipment when imaging through the pupil. The features of a typical view
of the retina (see Fig. 11.1) include the optic disc where the blood vessels and nerves
enter from the back of the eye into the retina. The blood vessels emerge from the
optic disc and branch out to cover most of the retina. The macula is the central
region of the retina about which the blood vessels circle and partially penetrate (the
view shown in Fig. 11.1 has the optic disc on the left and the macula towards the
centre-right) and is the most important for vision.

There are a number of diseases of the retina of which diabetic retinopathy
(pathology of the retina due to diabetes) has generated the most interest for
automated computer detection. Diabetic retinopathy (DR) is a progressive disease
that results in eye-sight loss or even blindness if not treated. Pre-proliferative
diabetic retinopathy (loosely DR that is not immediately threatening eye-sight loss)
is characterized by a number of clinical symptoms, including microaneurysms
(small round outgrowths from capillaries that appear as small round red dots less

Fig. 11.1 Color retinal
image showing features of
diabetic retinopathy including
microaneurysms and exudate
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than 125 μm in diameter in color retinal images), dot-haemorrhages (which are
often indistinguishable from microaneurysms), exudate (fatty lipid deposits that
appear as yellow irregular patches with sharp edges often organized in clusters)
and haemorrhage (clotting of leaked blood into the retinal tissue). These symptoms
are more serious if located near the centre of the macular.

Proliferative diabetic retinopathy (PDR) is the more advanced form that poses
significant risk of eye-sight loss. Features that lead to a diagnosis of PDR include
leakage of blood or extensive exudate near the macular, ischaemia, new vessel
growth and changes in vessel diameter such as narrowing of the arterioles and
venous beading (venules alternately pinching and dilating that look like a string
of sausages). Indeed, there is a reconfiguring of the blood vessel network that we
have more to say about later.

11.2.2 The Reason for Automated Retinal Analysis

Recent data suggest that there are 37 million blind people and 124 million with low
vision, excluding those with uncorrected refractive errors. The main causes of global
blindness are cataract, glaucoma, corneal scaring, age-related macular degeneration,
and diabetic retinopathy. The global Vision 2020 initiative is having an impact to
reduce avoidable blindness particularly from ocular infections, but more needs to
be done to address cataract, glaucoma, and diabetic retinopathy [14]. Screening is
generally considered effective if a number of criteria are met including identification
of disease at an early, preferably preclinical, stage and that the disease in its early or
late stage is amenable to treatment. Screening for diabetic retinopathy, for example,
and monitoring progression, especially in the early asymptomatic stage has been
shown to be effective in the prevention of vision loss and cost.

Automated screening (for example, by computer analysis of retinal images)
allows a greater number of people to be assessed, is more economical and accessible
in rural and remote areas where there is a lack of eye specialists. Automated assess-
ment of eye disease as an ophthalmological equivalent to the haematology point-of
care testing such as blood glucose levels has been subject to intense research over
the past 40 years by many groups with algorithms being proposed for identification
of the optic disc, retinal lesions such as microaneurysms, haemorrhage, cotton wool
spots and hard exudates, and retinal blood vessel changes.

Retinal morphology and associated blood vessel pattern can give an indication
of risk of hypertension (high blood pressure), cardiovascular and cerebrovascular
disease as well as diabetes [23, 28, 36]. With the increase in cardiovascular disease,
diabetes and an aging population, a greater number of people will need to be
screened yet screening a large number of people is difficult with limited resources
necessitating a review of health care services.

Early identification of people at risk of morbidity and mortality due to diverse
disease processes allows preventative measures to be commenced with the greatest
efficacy. However in many instances preclinical signs are not easily recognized and
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often appear as signs or symptoms that are not specific for a particular disease.
The retina and its blood vessel characteristics however have been shown to be a
window into several disease processes. The identification of increased risk of disease
progression is based on several markers in the eye including venous dilatation,
vessel tortuosity and the change in the ratio of the arteriolar to venular vessel
diameter especially in proximity to the optic disc. This morphological characteristic
allows the application of image analysis and automated classification [23, 28, 36].

11.2.3 Acquisition of Retinal Images

Digital images of the human retina are typically acquired with a digital fundus
camera, which is a specialized camera that images the retina via the pupil of the eye.
The camera contains an illumination system to illuminate the retina and optics to
focus the image to a 35 mm SLR camera. Modern systems image at high-resolution
and in color with Nikon or Canon digital SLR camera backends. The field of view
(FOV) of the retina that is imaged can usually be adjusted from 25◦ to 60◦ (as
determined from the pupil) in two or three small steps. The smaller FOV has better
detail but this is at the expense of a reduced view of the retina.

When monochromatic film was commonplace a blue-green filter was sometimes
placed in the optical path of the fundus camera as the greatest contrast in retinal
images occurs in the green wavelengths of light. An image acquired in such a
manner is referred to as a red-free image. With color digital imaging it is common
practice to take the green field of a RGB image as a close approximation to the
red-free image.

In fluorescein angiographic imaging, the patient is injected with a sodium
fluorescein drug which is transported in the blood supply to the retina. The fundus
camera uses a flash filtered to the blue spectrum (465–490 nm) to activate the
fluorescein, which fluoresces back in the green part of the spectrum (520–630 nm).
The collected light is filtered with a barrier filter so that only the fluorescence
from the retina is photographed. Images obtained with fluorescein angiography are
monochromatic and highlight the blood flow in the retina. Since the fluorescein,
when injected into the blood stream, takes a few seconds to completely fill the retinal
vessels, images taken early in the angiographic sequence show the vasculature filling
with fluorescein. First the fluorescein streams into the arterioles, and then a couple or
so seconds later fills the venules. Over time (minutes) the images fade as fluorescein
is flushed out of the retinal blood supply.

Angiographic retinal images better highlight vascular lesions such as microa-
neurysms, ischaemia (absence of blood flow) and oedema (leakage of blood into
the surrounding tissues). The downside of the use of fluorescein is the inherent risk
to the patient with about 1 in 200,000 patients suffering anaphylactic shock. Indo-
cyanine green (ICG) is sometimes used for imaging the choroidal vasculature but
requires a specially designed fundus camera due to the low intensity fluorescence.

Other imaging technologies such as the scanning laser ophthalmoscope (SLO)
and optical coherence tomography (OCT) may be encountered. The SLO scans a
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laser point on to the retina and simultaneously collects light reflected back from the
retina with a photodiode. The photodiode has no pixels; an image is formed by the
scanning of the light source in a raster fashion over the retina in time.

The raster scanning of the SLO has been exploited in some interesting ap-
plications, such as forming images on the retina in a form of heads-up display,
and projecting images on to the retina to measure retinal distortion. In another
application, in vivo study of cell movement in retinal vessels is made with a single
scan only by fluorescent labelling of the blood cells [18,38]. This is possible because
the SLO used scans the retina with interlacing, namely it scans the odd lines of the
raster first (the odd field) and then scans the intervening even lines (the even field). In
between scanning the two fields the leucocyte moves so it appears in two locations
in one image. Matching the two appearances of the leucocyte together enables a
calculation of leucocyte speed in the blood stream.

11.3 Preprocessing of Retinal Images

As the photographer does not have complete control over the patient’s eye which
forms a part of the imaging optical system, retinal images often contain artifacts
and/or are of poorer quality than desirable. Patients often have tears covering the
eye and, particularly the elderly, may have cataract that obscures and blurs the view
of the retina. In addition, patients often do not or cannot hold their eye still during
the imaging process hence retinal images are often unevenly illuminated with parts
of the retinal image brighter or darker than the rest of the image, or, in worst cases,
washed out with a substantial or complete loss of contrast.

Not much attention has been given to the blurring effect of cataract and tears,
maybe because one can sometimes choose another image out of a sequence that
is better and, in any case, it has a position dependent blurring function that varies
from image to image, making restoration difficult. Much more problematic is the
uneven illumination of the retina, partly because it occurs more often, but also in
part because in its extreme form can obliterate almost all the detail in a substantial
part of the retinal image.

It should be recognized that in addition to the uneven illumination due to
failures in the imaging system, the retina varies in intensity due to its own
natural appearance. This distinction, though, is not too important for general image
processing and pattern recognition of the features of the retina, but must be
considered in quantitative analysis of illumination such as that occurs, for example,
in fluorescence change over time in angiographic sequences [10].

Minor unevenness in illumination occurs in most retinal images and it is usually
advantageous to correct for during preprocessing for successful automated detection
of retinal lesions. For example, Chaudhuri et al. [3] described one of the very
first attempts at vessel detection in retinal images (the algorithm is described in
more detail in Sect. 11.4.1 below). Recent proposals for vessel detection are often
compared to the algorithm of Chaudhuri et al. [3] and if they are any good they
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show substantial improvement. But it has not always been realized that the algorithm
proposed by Chaudhuri et al. does not include shade- (or illumination-) correction
as a preprocessing step. Preprocessing with shade-correction (as described below)
can substantially improve the [3] algorithm on certain images.

The shading effect due to uneven illumination is a slowly changing function of
the spatial coordinates, that is, it consists of low frequency content only, thus can be
isolated by a low-pass filter. While it is possible to do this with a filter in the Fourier
domain, it is much more common to isolate the illumination changes using a gross
mean or median filtering of the image. In the past, the mean filter was sometimes
preferred because it was much quicker to compute than the median filter, however,
the median filter has better edge preserving properties and typically gives better
results on retinal images. Now that a very efficient implementation of the median
filter whose computational efficiency is almost independent of the kernel size is
widely available [27], the median filter should be preferred.

How large the median filter kernel should be is determined by the resolution of
the retinal image and the size of the objects/lesions that one wishes to segment. If
the lesions are small (for example microaneurysms and dot-haemorrhages) then it
would not matter if one underestimated the size of the kernel as long as it is much
bigger than the largest lesion to be detected. On the hand if large lesions such as
extensive haemorrhage that cover a large part of the retinal image are to be detected
then determining the size of the kernel becomes a tough proposition as the lesion
size is on the same scale as the illumination changes. Methods more sophisticated
than those described here are then needed for shade-correcting the image.

If we take the illumination of the retina by the camera to be L(x,y) where (x,y)
labels the pixels in the image, and f (x,y) to be the perfect image of the retina, then
the camera measures g(x,y) given by

g = Lf , (11.1)

where the multiplication is pixel-wise. It is clear that we should divide the captured
retinal image g by the illumination estimated by gross median filtering to give a
reasonable approximation f ∗ to the true image f . Of course, the goodness of the
approximation depends on our ability to estimate the illumination and the goodness
of the model expressed by (11.1).

The above, as illustrated in Fig. 11.2, generally works well for preparing color
fundus images for the segmentation of lesions/objects that are smaller than the scale
of illumination change. It may be seen in Fig. 11.2 that the technique is correcting
for more than unevenness in illumination, but also for intrinsic background intensity
changes of the retina, and that is advantageous in many applications.

The illumination expressed in (11.1) is, however, not an appropriate model for the
shade-correction of fluorescein angiographic images. This is because the capillary
bed of the retina (the capillaries themselves are not resolvable in the typical retinal
image) contributes a background glow due to the fluorescein in the blood. Where
the retina is densely populated with capillaries the background glow is substantial,
and where the retina is absent of capillaries, i.e. the foveal avascular zone, there is
little or no background glow.
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Fig. 11.2 Shade-correction of a retinal image. (a) Green plane, (b) background illumination
estimated by median filtering, and (c) shade-correction by dividing green plane by estimated
illumination (contrast adjusted by linear stretch for display purposes)

Applying a gross median filter to an angiographic image does determine the illu-
mination change across the image, however, it is not solely due to the illumination
function L but includes the background fluorescence B due to the capillary bed. In
this case the illumination model is better described as

g = L( f + B). (11.2)

Since the contribution due to B is substantial, reducing (11.2) to g ≈ f + I, where
I is the illumination estimated with a gross median filtering of f , thus estimating
f by subtracting I from g usually produces sufficiently good results for detecting
small lesions. Indeed, this is the approach used by early microaneurysm detection
algorithms that were designed for use with angiographic images [9, 31].

For the segmentation of large lesions such as extensive haemorrhage or quan-
tifying changes in brightness over time (for example, quantifying blood leakage
into surrounding tissues during an angiographic sequence) then more sophisticated
physics inspired preprocessing approaches are required [10,13]. Some authors have
noted that the global approach to shade-correction described above still leaves
some room for improvement when segmenting microaneurysms in regions of poor
contrast. Huang and Yan [19], Fleming et al. [12] and Walter et al. [35] all resort to
some form of locally adaptive shade-correction with contrast enhancement to eke
out slight improvements in microaneurysm detection.

11.4 Lesion Based Detection

We now turn attention to the segmentation of features of interest and lesions in
retinal images. In the following pages three general techniques in image processing,
namely linear filtering in image space, morphological processing, and wavelets
are illustrated by way of application to the detection of retinal blood vessels and
microaneurysms. Analysis of blood vessels is of particular interest as vascular
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Fig. 11.3 Cross-section of a blood vessel. The asterisks show the intensity at pixel locations across
the vessel and the solid line is the fitted Gaussian function

disease such as diabetes cause visible and measurable changes to the blood
vessel network. Detecting (i.e. segmenting) the blood vessels and measuring blood
vessel parameters provides information on the severity and likely progression of
a variety of diseases. Microaneurysms are a particular vascular disorder in which
small pouches grow out of the side of capillaries. They appear in color fundus
images as small round red dots and in fluorescein angiographic images as small
hyperfluorescent round dots. The detected number of microaneurysms is known to
correlate with the severity and likely progression of diabetic retinopathy.

11.4.1 Matched Filtering for Blood Vessel Segmentation

One of the earliest and reasonably effective proposals for the segmentation of blood
vessels in retinal images [3] is the use of oriented matched-filters for the detection
of long linear structures.

Blood vessels often have a Gaussian like cross-section (see Fig. 11.3) that is
fairly consistent along the length of vessel segments. Provided the vessels are not
too tortuous then they can be approximated as elongated cylinders of Gaussian
cross-section between the vessel branch points. Thus, the two-dimensional model
consisting of an elongated cylinder of Gaussian cross-section should correlate well
with a vessel segment provided they have both the same orientation. The model is
moved to each possible position in the image and the correlation of the local patch of
image to the model is calculated to form a correlation image. Peaks in the correlation
image occur at the locations of the blood vessels.
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Fig. 11.4 Segmentation of blood vessels by matched-filtering: (a) Inverted shade-corrected green
component of the retinal image of Fig. 11.1, (b) vessel model used for matched-filtering, (c) the
result match-filtering with the vertical orientation model, (d) combined matched-filters applied in
all orientations, and (e) thresholded to give the blood vessels

A better theoretical formulation can be given to support the argument [3]. Take
f (x) to be a signal and F( f ) be its Fourier transform (that is, the spectrum of
the signal f ). Consider f (x) contaminated by additive Gaussian white noise with
spectrum N( f ). The optimal linear filter in the sense of maximising the signal
to noise ratio that recovers f in the presence of the noise N is F∗, the complex
conjugate of F . That is, if we calculate

f0(x) =
∫

H( f )(F( f )+ N( f ))e2π i f x dx (11.3)

then H( f ) = F∗( f ) gives the best approximation of f0(x) as f (x). Equation (11.3)
is the correlation of f with itself.

Now if f is a localized patch of retinal image (the generalisation to 2D does
not change the argument) then correlation of f with the blood vessel signal is the
optimal linear filter for detecting the blood vessel. Of course, this assumes that
everything else in the localized patch of retinal image is Gaussian noise, which is
certainly not true. Let us proceed anyway despite the flawed assumption.

The blood vessel model described above is correlated with a small patch of image
to isolate the blood vessel section. This is repeated over every local region of the
image to form a correlation image. The peaks in the correlation image correspond
to the locations of the model in the image. This process is commonly referred to as
a matched-filter or as matched-filtering.

Figure 11.4a shows the shade-corrected image of a color retinal image. It is
inverted to make the vessels appear bright and a median filter with a kernel size
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of 5× 5 pixels has been applied to reduce pixel noise. The vessel model in the
vertical orientation is shown in Fig. 11.4b. It is correlated with the retinal image to
produce the image shown in Fig. 11.4c. All vertical sections of blood vessels are
strongly emphasized and everything else in the image is suppressed. The model is
rotated by a small amount and the matched-filter is applied again to the image. This
is repeated for all possible orientations of the model, and the maximum response at
each pixel over all the matched-filtered images is taken as the final response for the
pixel as shown in Fig. 11.4d. This is then thresholded to give the vessel network, see
Fig. 11.4e. A failing of this approach is evident in the example given, namely that it
has false-detected on the exudate at the top-right of the image.

The amount to rotate the model for each application of the matched-filter should
be small enough so that all vessel segments are segmented in at least one of the
matched-filtered images but not so small that processing time becomes excessive.
Chaudhuri et al. used 15◦ angular increments with a kernel size of 32×32 pixels on
images of size 512×480.

11.4.2 Morphological Operators in Retinal Imaging

Morphological operators are based on mathematical set theory and provide a natural
way of analysing images for geometrical structure. The basic operators are the
dilation and the erosion. The dilation has the effect of dilating objects so that
closely located structures become joined and small holes are filled. The erosion
has the effect of eroding objects with sufficiently thin structures eliminated. But it
is better than that; the direction, size and even shape, of the erosion or dilation can
be controlled with a mask called the structuring element.

The downside of the basic operators is that while they have extremely useful
properties they nevertheless do not retain the object size. Dilation, not unsurpris-
ingly, causes objects to grow in size and erosion causes them to shrink. Better is a
combination of the two operators to form the opening and the closing.

The opening is an erosion followed by a dilation. It has the effect of returning
objects to their near original size (since the dilation reverses somewhat the effect
of the erosion) with the destruction of very small objects and thin joins between
objects that are smaller than the structuring element (since the dilation cannot
dilate structures that have been entirely eliminated by the opening). The closing
is a dilation followed by an erosion and has the effect of returning objects to near
original size but with small holes filled and objects that are very close to each other
joined together.

The general description of gray-scale morphology treats both the image and
the structuring element as gray-scale [17, 30] but in many implementations the
structuring element is taken to be a set of connected pixels. The erosion of image
f (x,y) by structuring element b, written f �b is

( f �b)(x,y) = min
(x′,y′)∈b

f (x + x′,y + y′), (11.4)
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Fig. 11.5 The tophat operator used to detect microaneurysms. (a) median filtered inverted green
plane of retinal image, (b) the result of the tophat operator with a 6-pixel radius disc structuring
element, and (c) thresholded to segment microaneurysms and, unfortunately, many other spurious
features (contrasts adjusted by linear stretch for display purposes)

and the dilation, written as f ⊕b, is1

( f ⊕b)(x,y) = max
(x′,y′)∈b

f (x− x′,y− y′). (11.5)

The closing of f by mask b, written f • b, is

f • b = ( f ⊕b)�b, (11.6)

and the opening is

f ◦ b = ( f �b)⊕b. (11.7)

The opening and closing operators are idempotent; repeated application of the
operator does not change the result further.

An opening removes all objects that cannot be enclosed by the structuring
element from the image. Subtracting the opening off the original image, namely
calculating,

m = f − f ◦ b (11.8)

eliminates most structure in the image except for objects smaller than the structuring
element. This procedure is referred to as the tophat transform.

As described in Sect. 11.2.1 microaneurysms appear in retinal images as little
round dots (see Fig. 11.5). If the structuring element is chosen to be round and
just bigger than the largest microaneurysm and f is the inverted green plane of a
retinal image, then m is an image that contains the microaneurysms. This, with a
final thresholding of m to give a binary image, is the basis of some of the earliest
proposals for microaneurysm detection in retinal images [2,24], but, it is not specific
enough. Other small objects, bits of background texture, and vessel bits are all

1The reflection of the structuring element in the dilation that is not present in the erosion is intended
as it simplifies the definitions of the opening and closing following.
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Fig. 11.6 The structuring element to segment vessels is long and narrow and segments all
objects that it can fit into. Vessels (a) are segmented because the structuring element fits in them
when correctly orientated and small objects (b) are eliminated because they cannot enclose the
structuring element at any orientation

picked up in the result. In Fig. 11.5 the inverted green plane of the retinal image was
median filtered with a 5× 5 pixel kernel first because of pixel noise in the image.
Then the procedure described above with a round disc structuring element of radius
6 pixels was applied to highlight the microaneurysms. It should be obvious that a
suitable threshold to segment the microaneurysms cannot be chosen.

A very similar procedure can be used to detect the blood vessels. If the structuring
element is a long thin linear structure it can be use to segment sections of the blood
vessel. The structuring element is normally taken to be one pixel wide and enough
pixels long that it is wider than any one vessel but not so long that it cannot fit into
any vessel segment provided it is orientated correctly (see Fig. 11.6). The opening
of the inverted green plane of the retinal image is taken with the structuring element
at a number of orientations. The maximal response of all openings at each pixel
location is calculated. The resultant image contains the blood vessels, but not small
structures such as the microaneurysms and background texture. This approach for
detecting the vessels is not specific enough as it also segments large structures such
as extensive haemorrhage as vessels.

Even though this “vessel detection” algorithm is not brilliant at solely detecting
vessels, it does have the feature that it does not detect microaneurysms, thus it
can be used as a vessel removal procedure in microaneurysm detection to reduce
the number of false detections of microaneurysms. One approach is to detect
microaneurysms (say as described above) and remove the ones that are on vessels
detected with the tophat transform. Since the line structuring element used to detect
blood vessels also removes all larger objects an extra tophat operation with a round
structuring element is not needed and it is best to apply an opening with a small
round structuring element that is smaller than the smallest microaneurysm. That
opening removes all small spurious objects due to noise.

To put this on a more formal setting, take f to be the inverted green plane of the
retinal image, bm to be a round structuring element that is just small enough that
no microaneurysm can fully enclose it, and bv,θi to be a one-pixel wide structuring
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element of suitable length to detect vessels when correctly orientated (θi) along the
length of the vessel. The image with the vessels (and other large structures) removed
is constructed by tophat transform, viz

f1 = f −max
i

f ◦ bv,θi . (11.9)

This image contains the microaneurysms and other small detections. They are
removed with the opening,

m = f1 ◦ bm, (11.10)

then m is thresholded to those objects of enough depth to be a microaneurysm.
This reduces false-detections of microaneurysms on vessels but false-detections of
small bits of texture, retinal-pigment epithelium defects, and so on, still occur so
improvements can yet be made.

Some prefer to use a matched-filter approach to detect the microaneurysms.
A good model of microaneurysm intensity is a circularly symmetric Gaussian func-
tion. Applying such a model to the image f1 of (11.9) (i.e. the image with vessels
removed) with a matched-filter then thresholding to isolate the microaneurysms
gives a reasonable result but, yet again, it is not good enough [32].

A small improvement to the above algorithms can be made by using morpho-
logical reconstruction [33]. The tophat transform to detect objects does not preserve
the segmented objects’ shape precisely; morphological reconstruction addresses this
problem. First some operator is applied to identify objects of interest. It need not
segment the objects in their entirety; just having one of the brightest pixels within
the object is sufficient. This image is called the marker and the original image
is the mask. The marker is dilated by one pixel with the limitation that it cannot
dilate further than any objects in the mask. Note that this restricted dilation by one
pixel, called the geodesic dilation, is different to the dilation described by (11.5)
in that it is limited by structures in the mask. The geodesic dilation is repeatedly
applied until the limit is reached when no more changes occur. This process is called
reconstruction by dilation.

If the marker has a peak that is in the mask then the shape of the peak is returned
from the mask in reconstruction by dilation. If the marker has no feature at a peak
in the mask then the peak in the mask is eliminated. Morphological reconstruction
by dilation better preserves the shapes of the segmented features in the image than
does an opening or tophat transform. Opening by reconstruction is the process of
reconstructing by dilation an image with its erosion with a structuring element as
the marker. It has a similar effect as the morphological opening but with a much
better preservation of the shape of the segmented objects.

As described above microaneurysm detection often proceeds by removing the
blood vessels before segmenting the microaneurysms. Tests show that removing
the blood vessels in a retinal image with tophat by reconstruction instead of the
morphological tophat transform reduces the false detection of microaneurysms in
blood vessels [16]. An extra opening with a disc structuring element smaller than
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Fig. 11.7 Detection of microaneurysms by way of vessel removal (a) median filtered inverted
green plane of retinal image, (b) tophat by reconstruction of the image to remove vessels, then
(c) opened with a structuring element smaller than microaneurysms to remove small specks, and
(d) thresholded to isolate the microaneurysms and overlaid original image

any microaneurysm helps to remove spurious noise. See Fig. 11.7 for an illustration
of the process. The detection of microaneurysms shown in Fig. 11.7c is a pretty
good result but there are a couple of false detections, one on the optic disc and one
amongst the patch of exudate, thus there is still room for improvement. There are
also other non-trivial issues, such as how to automatically adapt the threshold for
each image.

Walter and Klein [34] and Walter et al. [35] argue that the diameter opening
(and closing) is a better morphological operator to detect microaneurysms. The
diameter opening is the maximum of all openings with structuring elements with
a diameter greater than or equal to a required diameter. Here, the diameter of a
connected group of pixels is the maximum distance from any one pixel in the object
to a pixel on the other side of the object. Nevertheless, to improve specificity most
authors that use morphology or matched filtering or some combination of both to
segment microaneurysms, measure features such as size, shape, and intensity on the
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segmented candidate microaneurysms, and apply machine learning techniques to
refine the detection of the microaneurysms [8, 9, 26, 31, 35].

The above illustrates an important point in processing complicated medical
images rich in detail such as retinal images. With basic and well understood image
processing operators it is easy to do reasonably well in detecting a certain lesion
or feature. But reasonably well is not good enough. One missed lesion that has
serious clinical implications (such as missing indications of proliferative retinopathy
in retinal images when it can lead to significant eye-sight loss within a few days or
weeks) will not generate trust from the medical profession. On the other hand, false
detections on far too many images is useless. Getting the first 80% sensitivity and
specificity is easy; improving that to better than 90% sensitivity at 90% specificity
is the hard problem.

11.5 Global Analysis of Retinal Vessel Patterns

So far we have discussed segmenting specific lesions (in particular microaneurysms)
and features (vasculature) in retinal images. Typically, lesion specific measures such
as number of microaneurysms or localized vessel parameters that are known to
predict or correlate with disease are measured. The analysis of vessel properties,
in particular, often involves sophisticated fitting of parametric models to the blood
vessels in a local region from which features such as vessel diameter, tortuosity and
branching ratios are measured [15, 37]. Vessel diameters of arterioles and venules,
for example, can be used to calculate arterio-venous diameter ratios that predict
hypertensive (high blood pressure) disorders [6].

In this section, we take a different tack and examine an approach to measure gen-
eral disease condition with global vessel analysis. Proliferative diabetic retinopathy
(PDR) – an advanced form of retinopathy due to diabetes with high risk of eye-sight
loss if not treated [7] – is characterized by a reconfiguration of the blood vessels
resulting from ischaemia in parts of the retina and new vessel growth that emerges
from the area of the optic disc or from peripheral vessels [22]. Given that the vessel
pattern is noticeably different in PDR than non-proliferative diabetic retinopathy it
is tempting to ask whether a global operator applied to the vessel patterns is capable
of characterising the changes in the vasculature and, therefore, detect PDR [21].
We, therefore, seek such operators.

Traditional and simpler shape analysis features often used in image processing,
such as area (a), perimeter (p), and circularity (typically calculated as p2/a) are
not expected to be powerful enough as these features are dependent on a change
of the amount of vasculature whereas the existing vessel network can reconfigure
with minimal change in the amount of vasculature. Jelinek et al. [21] explore global
vessel analysis with wavelet and fractal inspired features to characterise the vessel
reconfiguration that occurs in PDR. The vessels are detected with a sophisticated
wavelet based segmentation [29], then reduced by a morphological skeletonisation
to a 1-pixel wide skeleton that represents the vessel tracks.
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The vector gradient of the vessel skeleton image is calculated via analysing
wavelets, namely the partial derivatives of the Gaussian, viz,

ψ1(x,y) =
∂g(x,y)x

∂x
, ψ2(x,y) =

∂ g(x,y)y
∂y

, (11.11)

where g(x,y) denotes the two-dimensional Gaussian. Calculating the wavelet trans-
form of the skeletonized vessel image f with the two wavelets at displacement b
and scale a and forming the vector,

Tψ [ f ](b,a) =
(

Tψ1 [ f ](b,a)
Tψ2 [ f ](b,a)

)
(11.12)

where the entries are the two wavelet transforms is an estimate of the vector gradient.
This can be efficiently implemented with the fast Fourier transform.

The vector gradient image is analysed on the boundary of the vessels. It has two
orthogonal components, namely orientation and magnitude, which can be analysed
separately. Let us first consider calculating the entropy of the orientations as entropy
is a quantitative measure of manifest disorder. If the vessels all tend to be aligned in
the same direction (i.e. order) then the orientation entropy will be low, whereas if the
vessels are randomly orientated throughout the image (disorder) then the entropy
will be high. The suspicion is that the new vessel growth in PDR may affect the
distribution of vessel orientations and, hence, the orientation of the gradient field.
The orientation entropy also has the advantage that it is invariant against rotations
and reflections of the image.

The orientation entropy s is straightforward to calculate and involves forming a
histogram of orientations and calculating

s = −∑
i

pi ln pi (11.13)

where i indexes the histogram bins, that is orientations, and pi is the frequency of
occurrence of orientation i.

One can also analyse the magnitudes of the gradient vector field. A useful
measure is the second moment which when applied to Tψ indicates bias in the
gradient vector field. A histogram can be formed from the magnitudes then the CWT
second moment is

m2 = ∑
i

i2qi (11.14)

where the i are the centers of the histogram bins and qi is the frequency of occurrence
of the magnitudes in the bin.

There are other features that can be measured on the vessels with a global
approach. The vessels are shapes and an important parameter of a shape is the
curvature which characterises how the direction of a unit tangent vector varies along
the shape contour. What is interesting is that the curvature can be measured with a
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two-dimensional global Fourier analysis of the image without having to perform
sophisticated one-dimensional parameterisations of the shape contours [11]. Jelinek
et al. [21] apply this technique to the skeletonized vessel patterns to estimate a global
measure of vessel curvature.

The blood vessels in the retina branch a number of times each time forming a
vessel tree that is similar in characteristics to the branch it came from. Systems
that have self-similarity at multiple scales are known as fractals. There are some
reports of measuring fractal properties of blood vessel patterns of the retina; most
have involved manual segmentation of the blood vessel patterns [4,5,25]. Now with
reliable automated vessel segmentation, attention is turning to analysing the retinal
vasculature as a fractal. As the retinal tree branches it fills the two-dimensional
space of the image. One way to measure the space-filling is with various fractal
dimensions of which the correlation dimension Dc(ε) is a common choice [1]. It is
defined as

Dc = lim
r→0

logC(r)
logr

, (11.15)

where C(r) is the correlation integral given by

C(r) =
number of distances less than r

total number of distances
. (11.16)

The limit is usually approximated by evaluating the slope of the straight line
segments of a plot of logC(r) against logr. In practice the first and last line segments
should be disregarded since at these scales of r little fractal information is brought
from the shape. Jelinek et al. [21] make two calculations of correlation dimension
over the skeletonized retinal vessel shapes. The first is the median of the ranked
line segment slopes and the second is the global correlation dimension calculated
by adding all slopes except those from the first and last line segments.

Jelinek et al. [21] test the features described on a database of 27 retinal images
(16 with PDR; 11 with pathology but not PDR) for the ability to predict PDR.
The traditional measures (area, perimeter, and circularity) showed no predictive
power whatsoever when used separately and failed statistical significance at 95%
confidence when used in combination to predict PDR. All the wavelet based features
when used separately showed predictive power but only the curvature achieved 95%
confidence in predicting PDR. Combining features and using linear discriminant
analysis as the classifier correctly classified all images except three.

11.6 Conclusion

Automated analysis of retinal images is an ongoing active field of research. In
the above some of the simpler and some of the more recent analytical tools
bought to analyse retinal images have been discussed. We have seen that standard
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image processing techniques that may be found in any good text on general image
processing can go a long way to detecting certain features/lesions in retinal images
and produce seemingly good results, but do not provide the quality of result required
in clinical practice. Sophisticated image analysis techniques are now being explored
for the quantification of previously difficult to assess features and to improve
existing methods. The interested reader can find a useful summary and inspiration
for further research in the text by Jelinek and Cree [20].
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24. Laÿ, B., Baudoin, C., Klein, J.C.: Automatic detection of microaneurysms in retinopathy
fluoro-angiogram. Proc. SPIE 432, 165–173 (1983)

25. Masters, B.R.: Fractal analysis of the vascular tree in the human retina. Annu. Rev. Biomed.
Eng. 6, 427–452 (2004)

26. Niemeijer, M., van Ginneken, B., Cree, M.J., Mizutani, A., Quellec, G., Sanchez, C.I.,
Zhang, B., Hornero, R., Lamard, M., Muramatsu, C., Wu, X., Cazuguel, G., You, J., Mayo,
A., Li, Q., Hatanaka, Y., Cochener, B., Roux, C., Karray, F., Garcia, M., Fujita, H., Abramoff,
M.D.: Retinopathy online challenge: Automatic detection of microaneurysms in digital color
fundus photographs. IEEE Trans. Med. Im. 29, 185–195 (2010)
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Chapter 12
Tortuosity as an Indicator of the Severity
of Diabetic Retinopathy

Michael Iorga and Geoff Dougherty

12.1 Introduction

The retinal vasculature can be viewed directly and noninvasively, offering a unique
and accessible window to study the health of the human microvasculature in vivo.
The appearance of the retinal blood vessels is an important diagnostic indicator for
much systemic pathology, including diabetes mellitus, hypertension, cardiovascular
and cerebrovascular disease, and atherosclerosis [1–3]. There is mounting evidence
supporting the notion that the retinal vasculature may provide a lifetime summary
measure of genetic and environmental exposure, and may therefore act as a valuable
risk marker for future systemic diseases [4]. Using its characteristics may provide
early identification of people at risk due to diverse disease processes [5].

12.1.1 The Progression of Diabetic Retinopathy

Diabetic retinopathy is the most frequent cause of new cases of blindness among
adults aged 20–74 years [6]. It is a progressive disease, beginning with mild
nonproliferative abnormalities, characterized by increased vascular permeability,
and progressing through moderate and severe nonproliferative diabetic retinopathy
(NPDR) characterized by vascular closure, to proliferative diabetic retinopathy
(PDR) with the growth of new blood vessels on the retina and posterior surface of
the vitreous. Macular edema, marked by retinal thickening from leaky blood vessels,
can develop at all stages of retinopathy.

In the early state of the disease, symptoms are mild or nonexistent. The curvature
of a blood vessel influences its local flow hemodynamics and may result in
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unfavorable clinical consequences [7–9]. The tortuosity of intracranial arteries, for
example, has been implicated in the risk of aneurysm formation due to the high
shear stress weakening the outer walls of the arteries [10]. The process may be
similar in diabetic retinopathy. As the disease develops, increased tortuosity of the
retinal blood vessels may result in the weakening of the outer walls and precede
the formation of microaneurysms, which can leak fluid into the retina and cause
swelling of the macula.

Microaneurysms are often the first clinical sign of diabetic retinopathy, and are
seen as intraretinal deep red spots 10–100μm in diameter. The significance of
microaneurysm counts and their close correlation with the severity of the disease
are well documented [11,12]. Microaneurysm formation and regression are dynamic
processes [13], where microaneurysms form and then later clot and regress. More
than 50% of them either form or regress within a 12-month period [14]. There
is evidence that turnover, as well as absolute counts, is an early indicator of
retinopathy progression [12, 15]. Rupture of microaneurysms gives rise to small
round dot hemorrhages, which are indistinguishable from microaneurysms in color
fundus images. Hemorrhages present a range of size, color, and texture from the
dot hemorrhages, through blotch (cluster) hemorrhages to larger boat-shaped or
flame-shaped hemorrhages. A pattern recognition approach may well be required
to reliably detect all the variants.

White lesions comprise exudates, cotton wool spots, and drusen. Hard exudates
are caused when weakened blood vessels in the eye leak lipids onto the retina, which
in turn block it from sensing light. This results in blurred or completely obstructed
vision in some areas of the eye. Since exudates are made of lipids, they appear as
light yellow in fundus images. Early automated detection systems used thresholding
of red-free images [16, 17], while a more recent study used a multilayer neural net-
work to detect exudates [18]. The appearance of microaneurysms and hard exudates
in the macular area is more serious, and is identified as “Diabetic Maculopathy” so
as to highlight the potential sight-threatening nature of this condition.

As the disease advances (preproliferative retinopathy), circulation problems
cause the retina to become more ischemic and cotton wool spots to become more
prevalent. In proliferative retinopathy (PDR), new fragile blood vessels can begin to
grow in the retina in an attempt to restore the malnourished area and prevent it from
dying. These new blood vessels may leak blood into the vitreous, clouding vision.
Other complications of PDR include detachment of the retina due to scar tissue
formation and the development of glaucoma, an eye disease resulting in progressive
damage to the optic nerve.

12.2 Automated Detection of Diabetic Retinopathy

Many studies have been initiated worldwide to develop advanced systems for
the automated detection and monitoring of diabetic retinopathy. They comprise
image analysis tools for detecting and measuring common lesions (such as
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microaneurysms, hemorrhages, and exudates) and may include indexing and
automated retrieval techniques applied to image databases. A major issue is how to
accurately and objectively assess results from different studies.

Microaneurysms are among the first signs of the presence of diabetic retinopathy
and their numbers correlate well with the severity of the disease in its early stages
[12, 13]. Since microaneurysms are extremely small and similarly colored to the
background, they are very tedious to measure manually. Most publications on
automated microaneurysm detection use monochromatic data from one of the color
planes of a fundus image, even though full color information is available. (Microa-
neurysms are better visualized with fluorescein angiography but it is more invasive
and therefore less practical for screening purposes). The green plane normally
contains the best detail; the red plane, while brighter and sometimes saturated, has
poorer contrast; and the blue plane is dark and of least use. Hemoglobin has an
absorption peak in the green region of the spectrum, so that features containing
hemoglobin (e.g., microaneurysms) absorb more green light than surrounding
tissues and appear dark, giving the green plane a higher contrast. Red light
penetrates deeper into the layers of the retina and is primarily reflected in the
choroid, explaining the reddish appearance of fundus images. Because red light has
a lower absorption than green in the tissues of the eye, the red plane has less contrast.
Blue light is mostly absorbed by the lens, and then by melanin and hemoglobin, and
is the most scattered light, so the blue plane shows very little contrast.

However, the appearance of color retinal images can vary considerably, espe-
cially between people of different race [16, 19], so that it may be prudent to use
all the color information and to employ some form of color normalization. For
example, divisive shade correction can be applied to each of the color planes, and
then the individual contrasts normalized to a specific mean and standard deviation
[20]. This process retains the overall shape of the color image histogram, but shifts
the hue (which is often dominated by the ratio of green to red in retinal images) to
be consistent between images.

12.2.1 Automated Detection of Microaneurysms

Over the years, a variety of algorithms have been used to automatically detect
microaneurysms [21]. For example, a morphological top-hat transformation with
a linear structuring element at different orientations was used to distinguish
connected, elongated structures (i.e., the vessels) from unconnected circular ob-
jects (i.e., the microaneurysms) [22]. A shade-correction preprocessing step and
a matched filtering postprocessing step were then added to the basic detection
technique [23–32].1,2,3

1 http:www.ces.clemson.edu/ahoover/stare.
2 http://www.isi.uu.nl/Research/Databases/DRIVE/.
3 http://messidor.crihan.fr.
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The Waikato Microaneurysm Detector [26, 27] modified this procedure to work
on full-color retinal images. The green plane of the retinal images was used to find
all candidate objects. After normalization by subtracting a median filtered version
of the image, noise was removed by median filtering using a small kernel. A top-hat
transform was performed by morphological reconstruction [28], using an elongated
structuring element at different orientations to detect the vasculature. Following
the removal of the vasculature and a microaneurysm matched filtering step, an
adaptive threshold isolated microaneurysm candidates and region-growing on the
shade-corrected green plane at the positions of candidates was used to isolate the
morphology of the underlying candidate. A number of features based on the color,
intensity, and shape of the candidates were extracted [27], and a naı̈ve Bayesian
classifier was used to assign a likelihood to each of the found candidate objects
that it is a true microaneurysm. Sensitivity can be traded against specificity by
varying a threshold probability that determines whether or not a candidate should
be considered a microaneurysm.

A recent study [29], using a variation of this processing method and a k-
nearest neighbor (k-NN) classifier, reported a sensitivity of 88.5% for detecting
microaneurysms. An alternative method [30] used template matching in the wavelet
domain to find the microaneurysm candidates. It assumed that microaneurysms
at a particular scale can be modeled with two-dimensional, rotation-symmetric
generalized Gaussian functions.

12.3 Image Databases

The STARE (see footnote 1) and DRIVE (see footnote 2) [31, 32] databases of
retinal images have been widely used to compare various vessel segmentation
algorithms. A subset of the DRIVE database is being used for an online challenge
(the Retinopathy Online Challenge [21]) to compare algorithms used to detect
microaneurysms.

The Messidor project database (see footnote 3) is the largest database of retinal
images currently available on the Internet. It was established to facilitate studies
on computer-assisted diagnoses of diabetic retinopathy, and comprises 1,200 color
fundus images of the posterior pole acquired using a Topcon TRC NW6 camera
[Topcon Medical Systems, Inc. (TMS), of Paramus, NJ] with a 45◦ field of view.
The 24-bit RGB color images are of various sizes: 1,440× 960, 2,240× 1,488 or
2,304×1,536 pixels. Eight hundred of the images were acquired with pupil dilation
and 400 without dilation.

Two diagnoses are provided by expert ophthalmologists for each image: the
retinopathy grade and the risk of macular edema. The retinopathy grade [0 (normal),
1, 2 or 3] is based on the numbers of microaneurysms (MA) and hemorrhages (H),
and whether there is neovascularization (NV = 1) or not (NV = 0), using

0: (MA = 0) AND (H = 0)
1: (0 < MA ≤ 5) AND (H = 0)
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Fig. 12.1 Example images from the publicly available Messidor database: (a) grade 0, (b) grade 1,
(c) grade 2, and (d) grade 3

2:
(
(5 < MA < 15) OR (0 < H < 5)

)
AND (NV = 0)

3: (MA ≥ 15) OR (H ≥ 5) OR (NV = 1)

Typical images, for grades 0 through to 3, are shown in Fig. 12.1.
This reflects the order in which these pathologies appear, viz. first microa-

neurysms, then hemorrhages, and then neovascularization (which results in PDR).
Grade 1 corresponds to the R1 (minimal) and R2 (mild) grades, and grade 2 to the
R3 (moderate) and R4 (severe) grades, the main categories of the early treatment
diabetic retinopathy study (ETDRS) classification system [33] used in clinical trials.
Hard exudates were used to grade the risk of macular edema. We looked at example
images from all grades, with a view to exploring whether tortuosity might be a useful
indicator of the severity of the retinopathy.

In addition to the Messidor project database images, each assigned a retinopathy
grade, we were supplied with a second database of 82 different images (with
names MA Originaux XX, where XX is the Image ID starting from 01: courtesy of
Dr. Jean-Claude Klein, Center of Mathematical Morphology of MINES ParisTech).
Each image is 1,440× 960 pixels (and 118 pixels/cm). The microaneurysms in
these images were particularly clear, and were manually identified by three expert
ophthalmologists. We will refer to this database as the “marked database.”
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12.4 Tortuosity

Normal retinal blood vessels are straight or gently curved, but they become dilated
and tortuous in a number of disease classes, including high blood flow, angiogenesis,
and blood vessel congestion [34]. It has been suggested that the severity of
many retinal diseases, and the progression of retinopathy, could be inferred from
the tortuosity of the blood vessel network if a consistent quantitative measure
of tortuosity could be demonstrated [34]. In clinical practice, ophthalmologists
commonly grade tortuosity using a qualitative scale (e.g., mild, moderate, severe,
and extreme) [35], but a reliable quantitative measure would enable the automated
measurement of retinal vascular tortuosity and its progression to be more easily
discerned.

A multiplicity of tortuosity measures are in use, including the relative length
increase over a straight vessel [36] or a smoothed curve through the vessel [37],
the relative length increase for vessels in a range of spatial frequencies [36, 38],
and various measures of integral curvature along the vessels [39–43]. Those
based on relative length increase only measure vessel elongation and have no
value in measuring morphology or hemodynamic consequences, while those using
integrated curvature require arbitrary smoothing schemes to smooth the noise in the
coordinates resulting from limited sampling.

12.4.1 Tortuosity Metrics

Two robust metrics have been proposed for quantifying vascular tortuosity in terms
of three-dimensional (3-D) curvature [44]. They are additive and scale invariant, and
largely independent of image noise (for signal-to-noise ratios greater than ∼50dB)
and the resolution of the imaging system. The metrics were validated using both 2-D
and 3-D clinical vascular systems [45], and are well suited to automated detection
and measurement when used with a vessel tracking algorithm. In a preliminary
application to retinal pathologies [46], they correlated strongly with the ranking
of tortuosity by an expert panel of ophthalmologists, and were able to distinguish
several pathologies from normal in a discretionary (i.e., referred) population.

One of these metrics, the mean tortuosity, is equivalent to the accumulating
angle change along the length of a vessel considered to comprise straight-line
segments between closely digitized points along its midline. Figure 12.2 shows
how the tortuosity decreases as the length of these segments (viz., the sampling
interval) increases. There are large digitization errors with small sampling intervals,
which results in an artificially elevated tortuosity. Large sampling intervals miss
high-frequency changes and underestimate the tortuosity of highly tortuous vessels.
A sampling interval of five pixels minimized digitization errors and accurately
traced the vessels in images corresponding to all retinopathy grades.
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Fig. 12.2 Tortuosity measured using different sampling intervals along two typical vessels

Since tortuosity is additive, it is clear that it is the tortuosity per unit length, rather
than tortuosity itself, that is the actual metric of interest. Therefore, Fig. 12.2 plots
the tortuosity divided by the length of the vessel (in pixels).

12.5 Tracing Retinal Vessels

A common approach to tracing linear features (viz., thin objects across which
the image presents an intensity maximum in the direction of the largest variance,
gradient, or surface curvature (i.e., perpendicular to the linear feature)) in an
image is to segment the image and perform skeletonization, after some initial
preprocessing. Typically, an image will be hampered by noise (inevitable statistical
fluctuations as well as other irrelevant structures), poor resolution, low contrast,
and background gradients (nonuniform illumination). Although prevention is better
than cure, to some extent these artifacts can be minimized by image processing
operations such as (nonlinear) smoothing [47], deconvolution, shading correction,
and morphological filtering [48]. Comparison of images often calls for histogram
equalization or histogram matching.

Segmentation is a challenging process in all but the very simplest images. Meth-
ods for segmentation can be roughly categorized as region-based and boundary-
based approaches. Region-based segmentation is usually implemented by some
form of (adaptive) thresholding. However, intensity thresholding, while commonly
used for its simplicity and efficiency, is generally known to be one of the most error-
prone segmentation methods. Boundary-based methods include edge-detecting
and subsequent linking, boundary tracking, active contours (see Chapter 4), and



276 M. Iorga and G. Dougherty

watershed segmentation. The next step would be to extract the centerlines, for which
various skeletonization algorithms have been proposed [48]. The process is very
sensitive to noise, and generally results in a number of errors such as spurious gaps
and branches (spurs) and ambiguities (especially in 2-D) such as spurious loops and
crossings. Various filling and pruning strategies must then be employed to try to
rectify these retrospectively.

An alternative approach, which circumvents the problems inherent in segmen-
tation and skeletonization, is to obtain the centerlines directly from the grayscale
images by applying a Hessian [49–52] or Jacobian [53] based analysis of critical
points, using matched or steerable filters [54] or by nonmaximum suppression [55,
and Chapter 8].

The Hessian is a generalization of the Laplacian operator; it is a square matrix
comprising second-order partial derivatives of the image, and can therefore be used
to locate the center of a ridge-like structure. Specifically, the local principal ridge
directions at any point in an image are given by the eigenvectors of the second-
derivative matrix computed from the intensity values around that point.

The Hessian of an intensity image can be obtained at each point by computing

H(x,y) =
[

∂2L/∂ x2 ∂2L/∂ x∂y
∂2L/∂ x∂y ∂2L/∂ y2

]
=

[
Lxx Lxy
Lyx Lyy

]
, (12.1)

where

L(x,y;t) = g(x,y;t)∗ f (x,y) (12.2)

and g(· ; t) is a Gaussian function with variance t, f is an image, (x,y) is a pixel
location, and ∗ represents the convolution operation. The partial derivatives can be
computed by convolving the image f with a derivative-of-Gaussian kernel. Due to
the symmetry of this matrix, the eigenvectors are orthogonal, with the eigenvector
corresponding to the smaller absolute eigenvalue pointing in the longitudinal
direction of the ridge. The scale-normalized determinant of the Hessian has better
scale selection properties than the more commonly used Laplacian operator [56].
The Hessian values can be incorporated into a boundary tracking algorithm and
linked using the so-called live-wire segmentation paradigm [57–59].

12.5.1 NeuronJ

This latter approach is the method of semiautomated tracing employed by NeuronJ
[49], a plugin for ImageJ, which was developed to identify and trace neurons with
limited user intervention but which we have used equally effectively to trace the
centerlines of retinal blood vessels. The user selects a starting point and the search
algorithm finds the optimal paths from that point to all other points in the image
(on the basis of their Hessian “vesselness” values), where “optimal” means having a
globally minimal cumulative cost according to a predefined function. The paths can
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Fig. 12.3 Use of a tracing sampling interval of (a) 5 and (b) 10 in tracing a typical segment of a
vessel

be displayed in real time as the user moves the cursor towards the end of the object of
interest, until the presented path starts to deviate too much from what is considered
the optimal tracing by the user. The tracing can then be anchored up to that point
by a single mouse click, after which the algorithm proceeds by presenting optimal
paths from that point. The process is iterated until the entire object has been traced.
In cases where the user is not completely satisfied with the paths presented, which
may sometimes occur in regions with very low contrast, it is possible to switch to
manual delineation.

Before tracing can begin, several parameters must be selected. We chose
parameter settings based on test tracings. For our images, we used a sampling
interval of 5 (viz., 1 out of every 5 pixels along the tracings is used). Figure 12.3a
shows a tracing with a sampling interval of 5, and Fig. 12.3b uses a sampling interval
of 10. The former produces a smoother and better fit to the vessel, while the latter
produces a more jagged centerline, which would artifactually result in a higher
tortuosity. However for narrow vessel segments which are straight, or nearly so, a
larger sampling interval performs better at finding the centerline. Figure 12.4a shows
a nearly straight segment of a vessel using a sampling interval of 5. (Short lines are
shown extending from each subsegment for clarity). In Fig. 12.4b, with a sampling
interval of 10, the centerline tracing more closely follows the straight vessel. This
is a consequence of NeuronJ using integer coordinates (taken as the centers of the
pixels); representing lines other than those along the horizontal, vertical or at 45◦
to the grid can introduce subpixel errors which are more significant the smaller the
subsegments. (We will return to this point later.)

The tracings are generally smoothed prior to sampling using a moving-average
filter; we used a smoothing half-length of 5, namely a filter length of 11. We found
that selecting a smoothing half-length lower than the sampling interval tends to
produce more jagged lines, while a smoothing half-length larger than the sampling
interval makes it difficult to follow sharply bending vessels.
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Fig. 12.4 Use of a tracing sampling interval of (a) 5 and (b) 10 in tracing a straight segment of
a vessel. To highlight the error on straight lines, each segment has been extrapolated to show the
angle it forms with the next

Fig. 12.5 Showing the
choice of tracing at
bifurcations (see magnified
areas) in a particular image
(MA Originaux 33)

Typically, there are four long blood vessels which emerge from the optic disk
in a retinal image – two arterioles and two venules. We identified the (oxygen-
rich) arterioles as the redder vessels (they also tended to have smaller diameters
and higher tortuosity than the venules) and traced two of them (an “upper” and a
“lower” arteriole) from each image, starting where the vessels leave the optic disk.
At a bifurcation, we selected the ongoing branch at the shallower branching angle,
which generally corresponded to the thicker, longer branch (Fig. 12.5). The digitized
coordinates of the vessel centerlines were then exported to an Excel file.

The quantization of the digitized coordinates to integers when tracing in NeuronJ
is an unwanted limitation. It introduces an error that is particularly noticeable for
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line-like structures or segments. We mitigated this by applying a three-point moving
average filter to the exported coordinates prior to calculating tortuosities.

NeuronJ is a semiautomated tracing method, as it requires the user to guide
the vessel tracing. However, it has major advantages in that there is no need to
preprocess the images (e.g., by histogram equalization) nor is segmentation required
(i.e., the tracing can be performed on a grayscale image (usually the green plane of
an RGB color image) directly).

12.5.2 Other Software Packages

Hessian-based detectors are computationally expensive. HCA-vision is a software
platform for the automated detection and analysis of linear features based on
multidirectional nonmaximum suppression (MDNMS). HCA-vision has been suc-
cessfully applied to a number of applications including neurite tracing for drug
discovery and functional genomics [60], quantifying astrocyte morphology [61], and
separating adjacent bacteria under phase contrast microscopy [62]. It is discussed in
detail in Chapter 8. The software can be downloaded after completing a request
at http://www.hca-vision.com/product download hca vision.html. The large noise
content in our images precluded us from utilizing the program successfully.

Retinal vessel centerline extraction can also be achieved using multiscale
matched filters, with a vessel confidence measure defined as a projection of a vector
formed from a normalized pixel neighborhood on to a normalized ideal vessel
profile [54]. Vessel boundary measures and associated confidences are computed
at potential vessel boundaries. A training technique is used to develop a mapping
of this vector to a likelihood ratio that measures the “vesselness” at each pixel.
Results comparing this vesselness measure to matched filters alone and to measures
based on the Hessian of intensities have shown substantial improvements both
qualitatively and quantitatively. Binary executables of the code are available at
http://www.sofka.com/LRV.html.

This represents a possible route for fully automated tracing of retinal vessels.
A typical tracing is shown in Fig. 12.6. This is a promising result, although it
was difficult to avoid breaks in the tracings without adding spurious vessels. It
may be possible to achieve a more acceptable result with an optimal choice of
tracer sensitivity, and judicious preprocessing of the image to remove background
variation and reduce noise.

12.6 Experimental Results and Discussion

The grades associated with the Messidor project database (and all other databases)
are rather coarse. To explore changes in the vessels with the severity of retinopathy,
we need a finer grading scheme. The number of detected microaneurysms has been
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Fig. 12.6 The result of a fully automated tracing of retinal vessels using Sofka’s program on
the same image as in Fig. 12.5. The traced vessels are shown in green, with the bifurcations
subsequently colored red

used as a surrogate for the severity of retinopathy in its early stages [12, 13]. This
information was available in the marked database (of 82 unique images) supplied
by MINES ParisTech.

Figure 12.7 shows that the tortuosity (per cm) increases steadily with the number
of manually identified microaneurysms from images in the marked database. The
correlation coefficient (r = 0.4159, n = 46) corresponds to a probability, p, for the
null hypothesis of 0.004.4 This suggests that tortuosity is related to microaneurysm
count, and that the tortuosity increases with the severity of retinopathy.

The number of microaneurysms detected by the Waikato Automated Microa-
neurysm Detector did not match the numbers manually counted by experts for
images from the marked database. Despite the normalization of the images prior to
segmentation, the number of microaneurysms detected is still somewhat dependent
on the threshold probability used in the Bayes classifier. Useful thresholds normally
lie between 10−5 and 10−7 (Cree, private communication). The key is to select a
threshold which is high enough to detect all the microaneurysms but small enough
not to count noise as aneurysm, but this optimum threshold depends on the particular
image. We investigated two methods for finding the optimum value of the threshold.

4http://faculty.vassar.edu/lowry/VassarStats.html.
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Fig. 12.7 The tortuosity/length for 46 vessels from the marked database. The best-fitted line is
superimposed

For both methods, we plotted the number of microaneurysms detected in an im-
age for a series of thresholds between 10−5 and 10−7. The higher the threshold, the
smaller the number of aneurysms detected. We considered the optimum threshold
to be a balance between the microaneurysm count changing too fast with threshold
and it hardly changing at all with threshold. In our first method (method 1), we
considered this be the value where the plot of microaneurysm counts was furthest
from a straight line connecting the two extreme thresholds (Fig. 12.8). In our second
method (method 2), we calculated the local curvature of datapoints (by calculating
the local tortuosity using five points centered on the datapoint of interest) in the plot
of microaneurysm counts vs. threshold, and considered the largest value to indicate
the position of the optimum threshold.

We tested both methods on the marked database, for which we know the
microaneurysm counts (viz., the “gold standard” counts from manual counting by
three experts). Table 12.1 shows the number of microaneurysms in the images,
assessed by the various methods. Probability thresholds of 10−5, 10−6, and 10−7

are included, although microaneurysm counts for 100 different thresholds were
computed. The correlation coefficient for these fixed values with the “gold standard”
values varied between 0.4696 and 0.6805, depending on the value of the threshold.
Although it is possible to achieve a correlation of 0.6805 with a fixed threshold,
it would be highly unlikely that this particular value of the threshold would be
chosen a priori. The correlation coefficient for the number of microaneurysms found
by method 1 with the “gold standard” counts was 0.6458, while the correlation
coefficient for the number of microaneurysms found by method 2 with the “gold
standard” counts was higher at 0.7303. (This corresponds to p < 0.001 (n = 82)
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Fig. 12.8 (a) Image (MA Originaux 09, from the marked database) and (b) a plot showing how
the optimum threshold is obtained from this image using method 1

for the null hypothesis). In the light of these findings, we consider that method 2 is
particularly well suited for finding the optimum threshold for use with the Waikato
Automated Microaneurysm Detector.

The microaneurysms in the Messidor project database are not so clearly
delineated. We detected and counted them with the Waikato Automated
Microaneurysm Detector using method 2 (Fig. 12.9). Only images with a
microaneurysm count of five or greater were considered, since we had greatest
confidence that these corresponded to actual microaneurysms. The correlation
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Table 12.1 The number of microaneurysms detected for the images of the marked database using
various thresholds, and our methods 1 and 2, compared with the actual “gold standard” counts

“Gold
standard” Threshold Threshold Threshold

Image ID counts = 10−5 = 10−6 = 10−7 Method 1 Method 2

1 2 0 1 11 1 2
2 3 2 3 11 3 4
3 2 1 1 4 1 2
4 1 3 4 16 3 4
5 4 2 4 19 4 4
6 16 5 17 34 11 16
7 3 1 6 11 2 7
8 8 3 7 12 4 7
9 9 8 15 36 11 11
10 19 7 20 39 16 16
11 14 4 15 41 11 9
12 3 2 3 11 3 4
13 3 2 4 11 4 5
14 4 0 4 7 1 4
15 1 3 4 16 3 4
16 5 2 4 19 4 4
17 11 3 10 22 10 11
18 16 7 17 29 13 15
19 7 2 8 21 4 4
20 0 1 1 7 1 3
21 2 0 1 4 1 1
22 3 1 6 11 2 7
23 6 2 7 11 4 5
24 7 3 13 25 11 10
25 0 1 1 3 1 3
26 0 0 1 6 0 1
27 6 3 10 39 8 6
28 10 8 17 48 14 14
29 11 0 3 12 2 3
30 5 5 13 20 5 15
31 2 1 7 21 5 6
32 8 4 13 36 9 7
33 7 0 6 13 3 6
34 5 4 7 33 6 8
35 3 1 3 15 1 3
36 0 1 2 43 2 2
37 1 0 6 34 2 2
38 18 5 12 24 10 10
39 18 1 13 34 8 14
40 22 5 17 42 11 17
41 7 3 9 25 9 9
42 17 3 8 31 5 8
43 10 5 18 57 10 10

(continued)



284 M. Iorga and G. Dougherty

Table 12.1 (continued)

“Gold
standard” Threshold Threshold Threshold

Image ID counts = 10−5 = 10−6 = 10−7 Method 1 Method 2

45a 4 2 6 11 7 4
46 4 1 4 22 3 3
47 1 0 1 10 5 2
48 18 4 9 25 1 9
49 2 1 2 14 9 2
50 13 5 15 42 2 12
51 10 4 9 30 12 8
52 7 1 8 23 9 4
53 1 0 1 4 2 1
54 0 1 4 11 1 4
55 3 1 3 6 1 3
56 12 3 5 36 2 5
57 14 3 17 52 5 11
58 8 2 5 8 11 6
59 0 0 2 5 3 2
60 2 2 3 12 2 3
61 4 1 2 9 3 3
62 11 3 11 22 2 9
63 21 4 11 25 9 12
64 5 5 12 27 6 14
65 14 8 21 36 12 13
66 5 1 2 17 16 4
67 2 0 2 17 2 2
68 0 1 2 22 0 2
69 0 0 0 3 2 3
70 2 3 7 24 0 7
71 1 1 2 5 6 2
72 1 1 1 14 1 2
73 13 9 26 61 1 14
74 12 15 22 93 14 20
75 6 3 15 50 22 13
76 0 0 1 4 11 3
77 0 0 1 3 0 1
78 4 10 37 111 1 20
79 2 1 3 7 25 3
80 1 0 1 4 3 1
81 1 0 8 39 1 8
82 15 5 15 32 3 16
83 6 5 15 8 9 7
aNo ID 44 exists because the image is identical to ID 43

of microaneurysm count with tortuosity is not as strong (r = 0.2236 (n = 34),
corresponding to a probability value for the null hypothesis of 0.1018) as with
the marked database. Although we optimized the counting within the Waikato
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Fig. 12.9 The tortuosity/length for 34 vessels from the Messidor project database. The best-fitted
line is superimposed

Fig. 12.10 The tortuosity of the first quintile length compared to the tortuosity of the entire vessel,
for 46 vessels from the marked database

Automated Microaneurysm Detector, we do not expect the number of counts to
be completely accurate. Despite this, the level of correlation supports our earlier
finding with the marked database that tortuosity is related to microaneurysm count,
and that tortuosity increases with severity of retinopathy.

A complicating factor in the use of vessel tortuosity as an indicator of the severity
of retinopathy would be a change in tortuosity along an individual blood vessel. We
measured the tortuosity of vessels along the quintiles of their length. Figure 12.10
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plots the tortuosity of the first quintile of its length (closest to the optic disk) with
the tortuosity of the entire vessel, for the 46 vessels of the marked database shown in
Fig. 12.7. The correlation coefficient is 0.5777, corresponding to p < 0.0001. This
indicates that there is little significant change in tortuosity along the length of a
vessel, and therefore the tortuosity of the entire vessel can be confidently used to
characterize each vessel.

12.7 Summary and Future Work

It has been recognized that the local flow hemodynamics of a curved vessel may
dispose it to the formation of an aneurysm. The geometry of intracranial arteries,
for example, has been implicated in the formation of aneurysms [10]. The branching
patterns of the vessel network may also be useful in diagnosing and evaluating the
severity of a disease such as diabetic retinopathy [34, 42].

We have shown that tortuosity is related to microaneurysm count, and we suggest
that tortuosity increases with severity of diabetic retinopathy. It is too early to say
with this limited data whether tortuosity could be used as an alternate predictor of
the severity of such retinopathy. Longitudinal data would help to resolve the matter.
Local flow hemodynamics will be affected by the tortuosity of the vessels, and it will
affect the number of microaneurysms formed. Precisely which is cause and which
is effect is difficult to ascertain, but as diabetic retinopathy becomes more severe it
is likely that both tortuosity and microaneurysm count will increase, and our results
confirm this trend. Blood pressure and the diameter of the vessels are also likely
implicated in the changes. It may be that tortuosity is related to an integral effect of
blood pressure, while microaneurysm responds more to local maxima.

Tortuosity can be measured easily from the digitized tracings of vessels in
retinal images, and these tracings can be obtained using a semiautomated program
such as NeuronJ. Fully automated tracing is an enticing prospect, although current
algorithms would seem to require customized preprocessing of the image, which
would then render the process semiautomatic again.

Fractal dimension (or the fractal signature [63]) may be an alternative method
of measuring the bending within a blood vessel. Initial studies demonstrated that
the blood vessels of the optic fundus are fractal, and that the fractal dimension can
be used to identify PDR [64, 65]. Preliminary analysis of the skeletonized vascular
patterns in the normal and NPDR macula suggested that vascular morphology had
already changed by this relatively early stage of retinal disease [66].

A disadvantage of fractal dimension is that it is constrained within very tight
limits (1–2 for a vessel tracing), and this limits its sensitivity. Another limitation is
that different algorithms can result in different values [67]. Perhaps, its greatest
potential is that it can deliver a quantitative summary value for the geometric
complexity of a network, rather than a single vessel, and could therefore summarize
the complete retinal vascular branching pattern in an image. Recent computerized
studies [68, 69] suggest that increased fractal dimension of the retinal vasculature,
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reflecting increased geometric complexity of the retinal vascular branching pattern,
is associated with early diabetic retinopathy microvascular damage. Although the
differences in fractal dimension were small [69], the average fractal dimension
was higher in participants with retinopathy than in those without retinopathy
(median 1.46798 [interquartile range 1.45861–1.47626] compared with 1.46068
[1.44835–1.47062], respectively; p < 0.001). After adjustments for age and sex,
greater fractal dimension was significantly associated with increased odds of
retinopathy (odds ratio [OR] 4.04 [95%CI 2.21–7.49] comparing highest to lowest
quartile of fractal dimension; OR 1.33 for each 0.01 increase in fractal dimension).
This association remained with additional adjustments for diabetes duration, blood
sugar, blood pressure, body mass index (BMI), and total cholesterol levels. Further
adjustment for retinal arteriolar or venular caliber had minimal impact on the
association (OR 3.92 [95% CI 1.98–7.75]).
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Chapter 13
Medical Image Volumetric Visualization:
Algorithms, Pipelines, and Surgical Applications

Qi Zhang, Terry M. Peters, and Roy Eagleson

13.1 Introduction

With the increasing availability of high-resolution datasets of 3D medical images,
the development of volumetric image rendering techniques have become an impor-
tant complement to classical surface-based rendering. Since volumetric visualiza-
tion does not require that surfaces be selected from within the 3D volumes, the
full volume dataset is maintained during the rendering process. These methods are
based on a foundation of projecting rays through volumes, which have a range of
opacity attributes, onto a viewing window. Volume rendering is computationally
demanding, and the ever increasing size of medical image datasets means that brute-
force algorithms are not feasible for interactive use.

More recently, further efficiencies have been attained by implementing many
of these algorithms on graphics processing hardwares (GPUs). In this chapter, we
describe volumetric visualization pipelines, and provide a comprehensive overview
of rendering algorithms that use effective approximate models to compute volumet-
ric scenes of medical applications. We review and implement several mainstream
medical image visualization strategies and rendering pipelines, including multipla-
nar reformation (MPR), direct and indirect surface rendering (DSR and ISR) with
shading, direct volume rendering (DVR), software-based raycasting, 2D and 3D
texture mapping (3DTM), GPU-based raycasting, maximum intensity projection
(MIP), X-ray based rendering, gradient estimation and different interpolation
approaches, voxel classification, and optical composition schemes. We present an
overview of these techniques, and also evaluate their image quality and rendering
performance.
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Where space permits, we have also added some of our recent research results and
new rendering and classifications algorithms. In particular, these include anatomical
feature enhancement techniques, dynamic multimodality rendering, and interactive
manipulation. We have implemented a GPU-based medical image manipulation and
visualization system with these volume rendering enhancements. We compare the
performance of our strategies with those obtained by implementation algorithms
from the published literature. We also address the advantages and drawbacks of
each in terms of image quality and speed of interaction.

Fig. 13.1 MPR of 3D cardiac CT image. Top: three arbitrary cross-planes. Bottom: synchronized
2D displays of cross-planes
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13.2 Volumetric Image Visualization Methods

Three principle rendering algorithms have been established for volumetric medical
image visualization, that is multiplanar reformation (MPR; see Fig. 13.1), surface
rendering (SR), and volume rendering (VR). As illustrated in the following sections,
the rendering techniques can be categorized as direct and indirect rendering. Direct
rendering includes DVR and DSR, while indirect rendering includes ISR. Here, we
refer to both DSR and ISR as SR.

13.2.1 Multiplanar Reformation (2D slicing)

MPR is an image processing technique, which extracts 2D slices from a 3D volume
using arbitrarily positioned orthogonal or oblique planes [1]. Although it is still a
2D method, it has the advantages of ease of use, high speed, and no information
loss. The observer can display a structure of interest in any desired plane within the
data set, and 4D MPR can be performed in real time using graphics hardware [2].
2D multiplanar reformatting can readily complement 3D volume rendering where
the 2D slices of MPR can be readily texture-mapped to cut-planes through a 3D
volume.

13.2.2 Surface-Based Rendering

SR [3] is a common method of displaying 3D images. ISR can be considered
as surface modeling, while DSR is a special case of DVR. ISR requires that the
surfaces of relevant structure boundaries within the volume be identified a priori
by segmentation and representation as a series of surface tiles using isosurface
extracting such as marching cubes [4] or region growing [5], and can be accelerated
by taking advantage of graphics processing unit (GPU) and geometry shaders
[6, 7]. Such models reduce the amount of data to be displayed by several orders of
magnitude, making it easy to manipulate the surfaces interactively with reasonable
fidelity. For DSR, the surfaces are rendered directly from the volume without
intermediate geometric representations, setting thresholds or using object labels to
define a range of voxel intensities to be viewed. Only those voxels within this range,
or which have labels, are selected and rendered with DVR. Surface reconstruction
can also be improved further by employing GPUs [8].

A fully parallel isosurface extraction algorithm was presented by Zhang et al. [9].
In addition, a high degree of realism can be achieved with lighting models that
simulate realistic viewing conditions. Figure 13.2a illustrates an implementation of
ISR, while Fig. 13.3b shows the results of DSR for comparison.
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Fig. 13.2 (a) ISR of cardiac structures: myocardium (myo), and the left atrium and aorta (LAA),
compared with (b) DSR of an MR cardiac volume and heart phantom

Fig. 13.3 SR applications: (a) image generated with MIP and shaded SR, demonstrating the prox-
imal middle cerebral artery mainstem occlusion (arrow) [12]; (b). SR display of the endoluminal
CT colonographic data, showing sessile morphology of the lesion (arrow) [13]

SR is often applied to contrast-enhanced CT data for displaying skeletal and
vascular structures, and is also usually used in describing vascular disease and
dislocations. In the process of detecting acute ischemic stroke, Schellinger and his
colleagues [10] combined MIP with shaded SR to visualize proximal middle cere-
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Fig. 13.4 Volume rendering
pipeline and corresponding
numerical operations

bral artery mainstem occlusion (Fig. 13.3a). SR has also been exploited to describe
polyps within the 3D endoluminal CT colonographic images [11] (Fig. 13.3b).

We note that sometimes it is difficult to justify the accuracy and reliability of the
images generated with shaded SR, that is the shiny surfaces might be misleading,
causing the relation between image data and brightness in the resultant image
becomes more complex, a property which could affect the diagnosis.

13.2.3 Volumetric Rendering

DVR displays the entire 3D dataset by tracing rays through the volume and project-
ing onto a 2D image, without computing any intermediate geometry representations
[14–16]. This algorithm can be further divided into image-space DVR, such as
software- [17, 18] and GPU-based raycasting [19], and object-space DVR, such as
splatting [20,21], shell rendering [22], TM [23], and cell projection [24]. Shear-warp
[25] can be considered as a combination of these two categories. In addition, MIP
[26], minimum intensity projection (MinIP), and X-ray projection [27] are also
widely used methods for displaying 3D medical images. This chapter now focuses
its attentions on DVR, and the datasets discussed here are assumed to be represented
on cubic and uniform rectilinear grids, such as are provided by standard 3D medical
imaging modalities. Figure 13.4 describes the DVR pipeline with corresponding
computations, which are described in detail in the next section that is followed by
a discussion of traditional DVR algorithms. Figure 13.5 shows an example of our
DVR results applied to an MR cardiac volume.

When compared with SR, the main advantage of DVR is that interior information
is retained, and so provides more information about the spatial relationships of
different structures [14]. In clinical applications, sensitivity and specificity are the



296 Q. Zhang et al.

Fig. 13.5 Volume rendered images of volumetric human cardiac CT data set

major diagnostic criteria that must be considered. Even though DVR generally has
high sensitivity and specificity for diagnosis [28], it is computationally intensive,
so interactive performance is not always feasible. Another disadvantage is that it
may be difficult to interpret the “cloudy” interiors that can result from the ray-
tracing process. For detailed observation of specific lesions, slab imaging, where
thick slices are rendered with DVR or MIP, has generally been used in clinical
diagnosis [29]. In addition, the combination of cross-sectional MPR and DVR can
significantly increase the interpretation rate of anatomical structures [30]. DVR
has a wide range of clinical applications. For example, to perform renal donor
evaluation, Fishman et al. [31] used DVR and MIP to display the renal vein of
CT angiography (CTA) data, as shown in Fig. 13.6, for the DVR generated image,
the left gonadal vein (large arrow) is well defined (a), while the locations of the
renal vein and gonadal vein (arrow) are inaccurately depicted in the MIP generated
image (b). Gill et al. [32] used DVR and MinIP to show the central airway and
vascular structures of a 60-year-old man who underwent double lung transplantation
for idiopathic pulmonary fibrosis, evaluating posttreatment in a noninvasive manner
(Fig. 13.6c,d).

13.3 Volume Rendering Principles

The core component of DVR is to solve the volume rendering integral that describes
the optical model. Different DVR techniques share similar components in the
rendering pipeline, the main difference being the order in which they are applied,
and the manner in which they traverse the volumetric data. Due to the rapid
development of programmable GPUs, many CPU-based algorithms and techniques
have been or can be implemented on GPUs. In this paper, for the texture-mapping
based DVR, we refer to algorithms that use a fixed graphics pipeline, while for
GPU-based raycasting, we refer to DVR implemented on GPUs.
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Fig. 13.6 DVR, MIP, and MinIP applications: (a) Coronal oblique DVR image of kidney and
veins; (b) MIP display of the same data as (a) [31]. (c) DVR generated image of the central airway
and vascular structures. (d) Coronal MinIP image of the same data as (c) [32]

13.3.1 Optical Models

The volume rendering integral is still often based on a model developed by
Blinn [33] describing a statistical simulation of light passing through, and being
reflected by, clouds of similar small particles. The optical models may be based on
emission or absorption individually, or both, depending on the applications [34].
To reduce the computational cost, Blinn assumed that the volume is in a low
albedo environment, in which multiple reflections and scattering of the particles are
negligible. In this case, a light emission–absorption model is an optimal balance
between realism and computational complexity, where every particle absorbs
incoming light and emits light on its own without scattering between particles other
than in the viewing ray direction [16]. Equation (13.1) demonstrates this procedure.
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dI(λ)
dλ

= c(λ)τ(λ)− I(λ)τ(λ) = c̃(λ)− Ĩ(λ). (13.1)

The solution to this equation is given below, showing the intensity of each pixel.

I(D) = I0T (D)+
∫ D

0
c̃(λ)T (λ)dλ,

T (λ ) = exp

(
−

∫ λ

0
τ(x)dx

)
, (13.2)

describes the volume transparency. The first term I0 illustrates light coming from the
background, and D is the extent of the ray over which light is emitted. The last term
demonstrates the behavior of the volume emitting and absorbing incoming light. The
source term c() indicates the color change, and the extinction coefficient (tau)(D)
defines the occlusion of light per unit length due to light scattering or extinction.

13.3.2 Color and Opacity Mapping

13.3.2.1 Voxel Classification

To display 3D medical images with DVR, the scalar values must first be mapped
to optical properties such as color and opacity through transfer function (TF),
a process referred to as voxel classification. Pre- and postclassification approaches
differ with respect to the order in which the TF and sampling interpolation are
applied [16, 35]. Pre-classification first maps every scalar value at the grid into
color and opacity in a pre-processing step, where the color and opacity are assigned
at the resampling points. However, for post-classification, we first sample the
scalar value by interpolation, and then map the acquired values to colors and
opacity through TFs. Both the pre-and post-classification operations introduce high
frequency components via the nonlinear TFs [36–38]. Pre-classification suppresses
this high-frequency information, so the rendered image appears blurry (Fig. 13.7a),
while postclassification maintains all the high frequencies, but introduces “striping”
artifacts in the final images (Fig. 13.7b).

To address the undersampling problem, Rottger et al. [39, 41] proposed a prein-
tegrated classification algorithm for hardware-accelerated tetrahedra projection,
which was first introduced by Max et al. [40]. Later, Engel et al. [36] applied
this classification algorithm for 3D texture-mapping-based volume visualization of
regular-grid volume data. Preintegrated classification separates the DVR integral
into two parts, one for the continuous scalar value, and the other for the TF pa-
rameters c(colors) and tau(extinction). This algorithm renders the volume segment-
by-segment, instead of point-by-point. In this manner, the Nyquist frequency for
reconstructing the continuous signal is not increased by the TF nonlinear properties.
Assuming there are n + 1 sampling points along the viewing ray, then the segment
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Fig. 13.7 DVR of cardiac vessels via different voxel classification algorithms: (a) preclassifica-
tion; (b) postclassification; (c) preintegrated classification; (d) post color-attenuated classification

length d equals D = n, where D is the maximum ray length. For the ith segment,
the front and back points are sa = s(id) and sb = s((i+1)d). The calculated opacity
and color of this segment are then given by (13.3) and (13.4), respectively.

I(D) f b =
n

∑
i=0

αiCi

i−1

∏
j=0

Tj =
n

∑
i=0

αiCi

i−1

∏
j=0

(1−α j) (13.3)

I(D)b f =
n

∑
i=0

αiCi

n

∏
j=i+1

Tj =
n

∑
i=0

αiCi

n

∏
j=i+1

(1−α j). (13.4)

13.3.2.2 Transfer Function

The important step of voxel classification is implemented through a TF adjustment,
which plays an important role in DVR. However, TF specification is a complex
procedure and is a major obstacle for the widespread clinical use of DVR [42, 43].
In this section, we briefly review the TFs that are of crucial clinical importance. In
DVR, the TF was typically used for tissue classification based on local intensities in
the 3D dataset [44]. Multidimensional TF is efficient for multiple spatial feature
detection, for example, Kniss et al. [45] designed such a TF and demonstrated
its medical applications, while Higuera et al. [46] built a 2D TF to effectively



300 Q. Zhang et al.

visualize intracranial aneurysm structures. Abellan et al. [47] introduced a 2D
fusion TF to facilitate the visualization of merged multimodal volumetric data, and
a 3D TF was designed by Hadwiger et al. [48] to interactively explore feature
classes within the industrial CT volumes, where individual features and feature
size curves can be colored, classified, and quantitatively measured with the help
of TF specifications. Furthermore, Honigmann et al. [49] designed an adaptive
TF for 3D and 4D ultrasound display, and a default TF template was built to fit
specific requirements. Similarly, Rezk-Salama et al. [50] proposed a template-based
reproducible automatic TF design algorithm and applied it to medical diagnosis.
Later, to facilitate the TF specification, these authors also introduced semantic
models for TF parameter assignment, while a similar idea was used by Rautek et al.
[51] to add a semantic layer in the TF design. As pointed by Freiman et al. [52],
automation is important in TF design.

13.3.3 Composition

During the DVR process, a number of composition schemes are commonly em-
ployed, including simulating an X-ray projection (Fig. 13.8a) [53], MIP [54, 55],
MinIP, and alpha blending. MIP and MinIP are widely used techniques in 3D CT and
MR angiography. The salient features in the image are generally comprised by the
voxels having the maximum (MIP) or minimum (MinIP) intensity along the viewing
rays traversing through the object. MIP and MinIP images can be generated rapidly
and can clearly display vessels, tumor, or bones [56], and the image generation has
been accelerated by graphics hardware [57,58]. Because no user input is necessary,
MIP is a widely used 3D visualization option in radiology.

Local MIP, MinP, or closest vessel projection (CVP) are often used in slab
imaging for vascular structure diagnosis [29, 59]. For vascular diagnosis, CVP is
superior to MIP, however the user needs to set an appropriate threshold for the
local maximum, which is determined by a specific dataset, making the application
of CVP more difficult than MIP (which is shown in Fig. 13.8b). Alpha blending
[17, 34] is a popular optical blending technique, often implemented by summing to
discretize the continuous function (13.2), resulting front-to-back and back-to-front
alpha blending, depending on the compositing order. The front-to-back and back-to-
front alpha blending methods represent opposite rendering directions. Figure 13.8c
describes the DVR result using alpha blending without shading, while Fig. 13.8d
shows the result with shading.

13.3.4 Volume Illumination and Illustration

In volume illumination, the normal at every sampling point is calculated by
interpolation using the intensity changes across that voxel. These approximated
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Fig. 13.8 DVR results of human head with angiographic contrast using different compositing
techniques: (a) X-ray projection; (b) MIP; (c) alpha blending without shading; and (d) alpha
blending with shading

voxel normals are then used in a Phong or Blinn-Phong model for shading
computations, with the results being employed in the DVR composition. The
shading computations may be accelerated using commodity graphics hardware
[60]. In addition, the shading model can be used with volumetric shadows to
capture chromatic attenuation for simulating translucent rendering [61], and can
be combined with clipped volumes to increase the visual cues [62]. Figure 13.9
illustrates a DVR of MR and CT cardiac data sets with and without illumination,
demonstrating that images with shading are visually more pleasing.

Lighting and illumination are important aspects of volumetric visualization.
Examples of approaches employed include those by Rheingans and Ebert [63] who
proposed an illumination method similar to volume shading, using nonphotorealistic
rendering [64] to enhance physics-based DVR, and Lum and Ma [65] who acceler-
ated this algorithm with multitexture-based hardware, and they also introduced a
pre-integrated lighting with voxel classification-based DVR, resulting in decreased
illumination artifacts [66]. To explore hidden structures and depict their spatial
relations in volumes, Chan et al. [67] introduced a relation-aware visualization
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Fig. 13.9 DVR images of CT pulmonary data showing illumination (right image) compared with
no illumination (left image)

pipeline, in which inner structural relationships were defined by a region connection
calculus and were represented by a relation graph interface. In addition, Rautek
et al. [68] gave a comprehensive review on illustrative visualization and envisioned
their potential medical applications. Such illustrative techniques are sometimes
integrated within commercial systems; however, there have been very few system-
atic studies done to verify the perceptual enhancement, nor to validate the clinical
benefit [69].

13.4 Software-Based Raycasting

Raycasting [14] is a popular technique used to display a 3D dataset in two
dimensions, in which the basic idea is to cast a ray from each pixel in the viewing
plane into the volume, sampling the ray with a predetermined step in a front-to-back
or back-to-front order using trilinear interpolation. In this process, a TF is used to
map the scalar value to RGB color and opacity, which can be performed on every
voxel in the volume before the sampling step (preclassification), or on the sampled
scalar values along the casting ray after sampling, where post-, preintegrated, or
postcolor attenuated classification can be used. Finally, the acquired optical values at
these sampling points along the casting ray are composited using (13.5) or (13.6) to
approximately compute the DVR integral (13.2), obtaining the corresponding final
pixel color on the output image. Figure 13.10 illustrates the raycasting pipeline, and
Fig. 13.11demonstrates this on four medical images.



13 Medical Image Volumetric Visualization: Algorithms, Pipelines... 303

Fig. 13.10 Raycasting pipeline: sampling, optical mapping, and compositing

Fig. 13.11 Medical images rendered with software-based raycasting: (a) CT skull; (b) MR brain;
(c) CT jaw, and (d) MR cerebral blood vessel
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13.4.1 Applications and Improvements

Because of its rendering speed, raycasting has been not often used in clinical
applications until now. However, it was a significant 3D display method in some
applications ever when graphics hardware accelerated DVR was not commonly
available. For example, Sakas et al. [70] used raycasting to display 3D ultrasound
data of a fetus, and Hohne [71] and Tiede et al. [72] employed this algorithm for
anatomical visualization. Many of the approaches to improve raycasting techniques
have focused on schemes to eliminate unnecessary voxels from the computation.

13.5 Splatting Algorithms

Splatting is a popular DVR algorithm which was first proposed by Westhover
[73–75] and was improved in terms of quality and speed by the research community
over the years [76, 77]. This technique was developed to accelerate the speed of
DVR at the expense of lower accuracy, and calculates the influence of each voxel
in the volume on multiple pixels in the output image. This algorithm represents
the volume as an array of overlapping basis functions called reconstruction kernels,
which are commonly rotationally symmetric Gaussian functions with amplitudes
scaled by the voxel values. This process is described in Fig. 13.12, and Fig. 13.13
presents examples of images rendered with the splatting algorithm.

13.5.1 Performance Analysis

Splatting is efficient because it reorders the DVR integral, making the preintegration
of reconstruction kernels possible, so that each voxel’s contribution to the integral

Fig. 13.12 Splatting pipeline: the optical model is evaluated for each voxel and projected onto the
image plane, leaving a footprint (splat). Then these footprints are composited to create the final
image
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Fig. 13.13 Medical images rendered with splatting: (a) CT skull with shading; (b) MR brain with
shading [76]; (c) CT jaw, and (d) MR cerebral blood vessel [77]

can be viewed separately. Another major advantage is that only voxels relevant to
the image are projected and rasterized, so empty (transparent) regions can easily be
skipped. However, because all of the splats are composited back-to-front directly
without considering the kernel overlaps, the basic splatting algorithm is plagued
by artifacts known as “color bleeding,” where the colors of hidden objects or
background appearing in the final image.

13.5.2 Applications and Improvements

Vega-Higuera et al. [78] exploited texture-accelerated splatting to visualize the
neurovascular structures surrounded by osseous tissue in CTA data in real time.
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Splatting was also employed by Birkfellner et al. [79] to generate digitally rendered
radiographs (DRRs) rapidly in the iterative registration of medical images, and the
authors later exploited graphics hardware to accelerate the splat-based creation of
DRRs [80]. Audigier and his colleagues [81] used splatting with raycasting to guide
the interactive 3D medical image segmentation, providing users with feedback at
each iterative segmentation step. Since basic splatting algorithms suffer from “color
bleeding” artifacts, Westover originally employed an axis-aligned sheet buffer to
solve this problem. However, this technique needs to maintain three stacks of sheets
and introduces “popping” artifacts. To address this issue, Mueller and his colleagues
[82] aligned the sheet buffers parallel to the image plane instead of parallel to the
axes, and they later accelerated this image aligned splatting algorithm with modern
GPUs [83]. They also proposed a postshaded pipeline for splatting to improve the
resultant image [77].

13.6 Shell Rendering

Shell rendering [84] is an efficient software-based hybrid of surface and volume
rendering proposed by Udupa and Odhner. The shell rendering algorithm is based
on a compact data structure referred to as a shell, which is a set of nontransparent
voxels near the extracted object boundary with a number of attributes associated
with each related voxel for visualization. The shell data structure can store the entire
3D scene or only the hard (binary) boundary. For a hard boundary, the shell is crisp
and only contains the voxels on the object surface, and shell rendering degenerates
to SR. For a fuzzy boundary, the shell includes voxels in the vicinity of the extracted
surface, and shell rendering is identified as DVR. Figure 13.14 shows examples of
shell SR and DVR.

13.6.1 Application and Improvements

Lei et al. [85] employed this algorithm to render the segmented structures of vessels
and arteries of contrast-enhanced magnetic resonance angiography (CE-MRA)
image. However, the explicit surface extraction creates errors. To address the
problem, Bullitt et al. [86] selectively dilated the segmented object boundaries along
all axes, and visualized the extracted fuzzy shell with raycasting. To accelerate
the shell rendering speed, Falcao and his colleagues [87] added the shear-warp
factorization to the shell data structure, and Botha and Post [88] used a splat-like
elliptical Gaussian to compute the voxel contribution energy to the rendered image.
Later, Grevera et al. [89] extended the point-based shell element to a new T-shell
element comprised of triangular primitives for isosurface rendering, referred to as
T-Shell rendering.
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Fig. 13.14 Shell rendering examples. Top row, shell SR [174]: skull CT data (left) and CT data of
a “dry” child’s skull (right). Bottom row, shell DVR [175]: CT skull (left), and MR head (right)

13.7 Texture Mapping

The pioneering work of exploiting texture hardware for DVR was performed by
Cullip and Neumann [90] and Cabral et al. [91]. When graphics hardware does not
support trilinear interpolation, 2D texture mapping (2DTM) must be adopted. In this
case, the volume is decomposed into three stacks of perpendicularly object-aligned
polygons. For the current viewing direction, the stack whose slicing direction
(normal) must be within 45 degrees of the current viewing direction is chosen
for rendering. During rasterization, each of the polygon slices is textured with the
image information obtained from the volume via bilinear interpolation. Finally, the
textured slices are alpha-blended in a back-to-front order to produce the final image.
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Fig. 13.15 The working pipeline of 3DTM for 3D head rendering

Fig. 13.16 Medical image rendered with 3DTM: (a) CT skull; (b) MR brain; (c) CT jaw, and (d)
MR cerebral blood vessel

Figure 13.15 describes the working pipeline, and Fig. 13.16 illustrates the ren-
dering results with this algorithm. 3DTM uploads the volume to the graphics
memory as a single 3D texture, and a set of polygons perpendicular to the viewing
direction is placed within the volume and textured with the image information by
trilinear interpolation. Compared with 2DTM, there are no orientation limitations
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for the decomposed polygon slices, making the texture access more flexible. The
compositing process is similar to 2DTM, in that the set of textured polygon planes
are alpha-blended in a back-to-front order.

13.7.1 Performance Analysis

Compared with 3DTM, the main advantage of 2DTM is higher rendering speed and
lower hardware requirements, since it uses efficient in-slice bilinear interpolations,
instead of expensive trilinear interpolations. However, this algorithm is prone to
aliasing artifacts at the edges of the slice polygons, and has to maintain three
copies of the volume in graphics memory. The shift of viewing directions causes
the algorithm to switch from one texture stack to another, resulting in the “popping”
artifacts mentioned earlier. In 3DTM, the extracted slices can have arbitrary
orientations and only a single copy of the data is required; therefore, there are
no artifacts caused by the texture stack switching during the viewing direction
changing process. In addition, the extracted slices are textured with trilinear instead
of bilinear interpolation, so the mapped texture information has a higher accuracy.
For orthographic projections, the viewport-aligned slices can be employed to
achieve a consistent sampling step, but because the sampling distance cannot be
uniform for projective views, “striping” artifacts are introduced. This limitation
may be overcome using spherical rendering primitives [92], albeit with an increased
computational cost.

13.7.2 Applications

In the published literature, there are three main types of medical applications for
TM-based DVR. The first is multimodal medical image rendering and tissue sepa-
ration. Sato et al. [93] designed a multidimensional TF to identify tissue structures in
multimodal medical images generated with 3DTM. A two-level rendering technique
was integrated with 3DTM by Hauser et al. [94], allowing different rendering
techniques to be selected for different tissues based on segmentation information.
Later, Hadwiger et al. [95] improved this 3DTM-based two-level DVR algorithm in
the aspects of image quality and performance, minimizing the number of rendering
passes and the computational cost of each pass, adding dynamic filtering, and using
depth and stencil buffering to achieve correct compositing of objects created with
different rendering techniques.

The second application area is in the display of specific tissues and organs for
diagnosis and therapy. Holmes et al. [96] used 3DTM to achieve a real-time display
of transurethral ultrasound (TUUS) for prostate treatment. This technique was also
used by Etlik et al. [97] to find bone fractures, and also by Wenger et al. [98] to
visualize diffusion tensor MRI (DTI) data in the brain. Wang et al. [99] exploited
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3DTM to display 3D ultrasound for cardiac ablation guidance, and Sharp et al. [100]
employed this technique to visualize the light diffusion in 3D inhomogeneous tissue
to provide visual information relating to structures located beneath the skin surface.
Lopera et al. [101] used this DVR approach to view a stenosis in arbitrary image
planes, and employed the rendering results to demonstrate the subsequent arterial
bypass.

The third area of application is in dynamic imaging, deformation, and 4D data
display. Levin et al. [102] developed a software platform based on TM, which was
used to render multimodality 4D cardiac datasets interactively. A similar technique
was used by Lehmann et al. [103] to visualize the beating heart in real time, in which
a hierarchical memory structure was employed to improve bandwidth efficiency. In
addition, Yuan et al. [104] designed a TF for nonlinear mapping density values in the
dynamic range medical volumes, while Correa and his colleagues [105] presented a
3DTM algorithm that sampled the deformed space instead of the regular grid points,
simulating volume deformations caused by clinical manipulations, such as cuts and
dissections.

13.7.3 Improvements

13.7.3.1 Shading Inclusion

In 1996, shading was first included into TM approaches by Van Gelder et al. [23].
Both diffuse and specular shading models were added to texture-based DVR by
Rezk-Salama et al. [92] with the use of register combiners and paletted texture.
In addition, Kniss et al. [61] proposed a simple shading model that captured
volumetric light attenuation to produce volumetric shadows and translucency. The
shading model was also used with depth-based volume clipping by Weiskopf and his
colleagues [62] in a 3DTM pipeline. To decrease shading artifacts, Lum et al. [66]
introduced preintegrated lighting into the TM-based DVR, resulting in decreased
lighting artifacts. Recently, Abellan and Tost [106] defined three types of shadings
for the TM-accelerated volume rendering of dual-modality dataset, that is emission
plus absorption, surface shading, and the mixture of both shadings, with user-
selected choice of shading model for a specific imaging modality.

13.7.3.2 Empty Space Skipping

As mentioned earlier, the DVR speed can often be improved if the empty spaces can
be skipped during rendering procedure, for example, Li et al. [107–109] computed
texture hulls of all connected nonempty regions, and they later improved the
hull technique with “growing boxes” and an orthogonal binary space partitioning
tree. Bethune and Stewart [110] proposed an adaptive slice DVR algorithm based
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on 3DTM. In this algorithm, the volume was partitioned into transparent and
nontransparent regions, axis aligned bounding boxes were used to enclose the
nontransparent ones, and an octree was used to encode these boxes for efficient
empty space skipping. In addition, Keles et al. [111] exploited the slab silhouette
maps (SSMs) and the early depth test to skip empty spaces along the direction
normal to the texture slice.

13.8 Discussion and Outlook

DVR is an efficient technique to explore complex anatomical structures within
volumetric medical data. Real-time DVR of clinical datasets needs efficient data
structures, algorithms, parallelization, and hardware acceleration. The progress of
programmable GPUs has dramatically accelerated the performance and medical
applications of volume visualization, and opened a new door for future develop-
ments of real-time 3D and 4D rendering techniques. For DVR algorithms such as
splatting, shell rendering, and shear-warp, and hardware accelerations have been
proposed and implemented; however, most of these improvements are based on
fixed graphics pipelines, and do not take full advantages of the programmable
features of GPU. As mentioned previously, even if the TM-based DVR algorithms
make use of graphics hardware in the volume-rendering pipeline, they differ
considerably from the programmable GPU algorithms, such as raycasting, in that all
of the volume rendering computations and corresponding acceleration techniques
are implemented on the GPU fragment shaders. The TM-based DVR algorithms
only use fixed graphics pipelines that include relative simple texture operations,
such as texture extraction, blending, and interpolation.

In addition, to further enhance the visualization environment, DVR algorithms
should be effectively combined with realistic haptic (i.e., force) feedback and
crucial diagnostic and functional information extracted from medical data using new
algorithms in the research fields such as machine learning and pattern recognition.
Furthermore, innovative techniques of robotics, human–computer interaction, and
computational vision must be developed to facilitate medical image exploration,
interpretation, processing, and analysis.

Finally, we note that the current volume visualization algorithms should be
integrated into standard graphical and imaging processing frameworks such as the
Insight Segmentation and Registration Toolkit (ITK) [112] and the Visualization
ToolKit (VTK) [113], enabling them to be used readily in clinical medical imaging
applications. We also note that even though there have been many efficient and
advanced techniques developed for all parts of the volume rendering pipeline, only
a few simple ones have been developed for clinical visualization. The translation of
these advances into clinical practice, nevertheless, remains a problem. However, we
must ensure that such challenges are addressed so as not to introduce roadblocks
with respect to related technologies as image-guided interventions.
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Chapter 14
Sparse Sampling in MRI

Philip J. Bones and Bing Wu

14.1 Introduction

The significant time necessary to record each resonance echo from the volume
being imaged in magnetic resonance imaging (MRI) has led to much effort to
develop methods which take fewer measurements. Faster methods mean less time
for the patient in the scanner, increased efficiency in the use of expensive scanning
facilities, improved temporal resolution in studies involving moving organs or
flows, and they lessen the probability that patient motion adversely affects the
quality of the images. Images like those of the human body possess the property
of sparsity, that is the property that in some transform space they can be represented
much more compactly than in image space. The technique of compressed sensing,
which aims to exploit sparsity, has therefore been adapted for use in MRI. This,
coupled with the use of multiple receiving coils (parallel MRI) and the use of
various forms of prior knowledge (e.g., support constraints in space and time), has
resulted in significantly faster image acquisitions with only a modest penalty in
the computational effort required for reconstruction. We describe the background
motivation for adopting sparse sampling and show evidence of the sparse nature
of biological image data sets. We briefly present the theory behind parallel MRI
reconstruction, compressed sensing and the application of various forms of prior
knowledge to image reconstruction. We summarize the work of other groups in
applying these concepts to MRI and our own contributions. We finish with a brief
conjecture on the possibilities for future development in the area.
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14.1.1 Magnetic Resonance Imaging

MRI is the term used to represent the entire set of methods which apply the
principles first developed for chemistry as nuclear magnetic resonance in such a
way that the spatial variation of a property within an object is observed. A strong
and extremely uniform magnetic field is applied to the object. Under the influence
of the field those atoms in the object which have a magnetic spin property align
in the direction of the magnetic field in one of two orientations such that a small
net magnetization occurs. The atoms exhibit a resonance at a frequency, which is
linearly dependent on the magnetic field strength. The resonance can be excited by
means of a radiofrequency (RF) pulse at the appropriate frequency and the atoms
which have been excited precess about an axis aligned with the direction of the
magnetic field. After excitation, the precessing atoms relax back to equilibrium and
in the process generate a small, but measurable, RF field – an “echo.”

By imposing a gradient in magnetic field strength as a linear function of one of
the Cartesian space coordinates, z say, it is possible to encode that spatial coordinate
in the resonance frequencies of the spins. By considerable extension of this basic
idea, signal processing of the signals recovered from echoes after a specific sequence
of gradient impositions with respect to the x, y, and z directions, coupled with
RF excitations, and echo signal acquisitions, allows the formation of an image of
the interior of the object. Many excitation and acquisition sequences have been
devised. Because of the relationship between resonance frequency and magnetic
field strength, virtually all of them make measurements in spatial frequency space,
or “k-space” as the MRI community generally refers to it. Moreover, tissues in the
body can be characterized in terms of the time constants associated with the atomic
resonances, known as “T1” and “T2”. The differences between tissue responses
help to make MRI effective in distinguishing between them. For a good overview
of the basis of MRI, see [1] and for a comprehensive review of MRI sequences and
algorithms, see [2].

While MRI also has applications in biological science and in the study of
materials, it is its role in medicine that has led to a whole industry. The size of the
annual meeting of the International Society for Magnetic Resonance in Medicine
(ISMRM, http://ismrm.org) is testament to the extraordinary interest in the imaging
modality. The reason that MRI has had such a profound effect on the practice of
modern medicine is because of the exquisite detail that it has achieved in images
of soft tissues within the human body. In this, it is quite complementary to X-ray
computed tomography, which is particularly good at imaging harder tissues, notably
bone. The two imaging modalities thus coexist and many patients are imaged using
both for some diagnoses. Note that there are no known detrimental effects on the
human body caused by MRI scanners of the sort in regular use, while the use of
X-ray computed tomography is strictly limited by the dose of ionizing radiation the
patient receives in such a scanner.

The use of MRI is restricted in one specific way: the physical processes involved
in the excitation and reception of MR signals are inherently quite slow. Thus,
the time taken to invoke a specific sequence and to measure the signals that are
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generated is measured in a matter of milliseconds per pulse. Note that this has
nothing to do with the electronics associated with the scanner – faster hardware
does not solve the problem. To take a complete set of measurements for, say, a 3D
imaging study of the brain may take many minutes; some acquisition sequences
require periods approaching 1 h [2]. As well as reducing the throughput of an
expensive facility, the slowness of acquisition limits how useful MRI is in imaging
organs where motion is intrinsic, most notably the heart and circulatory system; even
when these organs are not specifically the target for a particular imaging study, their
activity may affect the success of imaging nearby or associated organs. The efforts
of the authors and of many others involved in MRI research are directed toward
developing smarter algorithms to attempt to reconstruct useful images from fewer
measurements and therefore in less time.

14.1.2 Compressed Sensing

The conventional wisdom in signal processing is that the sampling rate for any
signal must be at twice the maximum frequency present in the signal. The Sampling
Theorem is variously attributed to Whittaker, Nyquist, Kotelnikov, and Shannon
and its conception represents a very significant landmark in the history of signal
processing. However in the work performed in recent years related to signal
compression, it has become obvious that the total amount of information which
is needed to represent a signal or image to high accuracy is in many cases much
less than that implied by the “Nyquist limit.” This is nowhere more apparent than
in the modern digital camera where quite acceptable images can be stored and
recreated from a small fraction of the data volume that was associated with the
original image sampling. The total amount of information acquired, 4 megapixels at
24-bit per pixel for example, may often be compressed to several hundred thousand
bytes by the JPEG compression method without appreciable loss of image quality.
The image property that lies behind this compressibility is “sparsity”: the fact that
under some transformation many of the data values in the space associated with
the transform can be set to zero and the image reconstructed from the rest of the
data values without appreciable effect. An image which is very sparse (under that
transformation) is one for which the number of nonzero values is relatively low.

The technique of compressed sensing (also known as “compressive sensing”)
was introduced to exploit image sparsity [3, 4]. Consider a 2D image with N pixels
represented by the vector x and suppose that it can be accurately represented by
K � N data values under the linear transformation y = Φx. Rather than measuring
the N pixel values and then performing the transformation, we seek to make just M
measurements m, where K ≤ M � N. Thus, m = Ψy, where Ψ is a measurement
matrix of dimension M ×K. While this might be of little direct benefit in the case
cited above of a modern digital camera, for which the design of the sensor is most
straightforwardly implemented as a regular 2D array of individual pixel detectors,
there are many other applications, notably including MRI, for which making fewer
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Fig. 14.1 Comparing (a) conventional image sensing and compression to (b) compressed sensing.
In (a), the image is sampled at the Nyquist sampling rate and stored. Then all of the smallest
coefficients in the image’s wavelet transform are discarded to reduce the storage volume. In (b),
the significant coefficients of the wavelet transform are directly estimated from a lesser number of
samples of the image

measurements does offer an advantage. In the remainder of this chapter, we show
how the exploitation of sparsity by means of compressed sensing methods has
considerable potential in speeding up MRI image acquisition.

An illustration of how compressed sensing might work for the general optical
imaging case is shown in Fig. 14.1. Suppose that the well-known cameraman image
is being acquired with a conventional digital camera in Fig. 14.1a and a full set



14 Sparse Sampling in MRI 323

of pixels are being recorded and stored. Applying a linear transform, such as
the discrete wavelet transform (DWT), to the image allows many of the DWT
coefficients to be set to zero, resulting in a compressed form of storage. The
compressed data set can be used to reconstruct a good likeness of the original image.
The compressed sensing (CS) approach is illustrated in Fig. 14.1b: by some process
many fewer samples are made of the original scene and the nonzero coefficients of
the compressed image are directly estimated. Thus, the waste associated with full
data measurement followed by compression is avoided in CS.

At the time of writing, the group at Rice University has established a very
comprehensive bibliography of literature related to the theory and application of
compressed sensing (see http://dsp.rice.edu).

14.1.3 The Role of Prior Knowledge

The term “prior knowledge” is most frequently associated with Bayesian inference,
in which a posterior estimate based on gathered measurements is influenced by
knowledge of prior distributions for the measurements and for the result. See Geman
and Geman [5] and Hu et al. [6] for a full treatment of Bayesian estimation methods.
Here, we use the term in a wider context, however. By prior knowledge is here meant
any constraint which can be put on the estimate. For example if the interior of an
object is being imaged that is known to exist within a given boundary, then that
boundary, or possibly a conservative estimate of it, can be incorporated into the
imaging process: this is an example of a “support constraint.” In the situation cited,
those pixels (or voxels, if 3D images are being considered), which lie outside the
support region do not need to be estimated, suggesting that incorporating the prior
knowledge may make the estimation process easier.

The spatial support constraint represents only one from a rich set of forms of
prior knowledge, which may be applied to imaging problems in general and MRI in
particular. Other examples include:

1. Knowledge that the image is sparse in some sense is itself a form of prior
knowledge

2. Knowledge that the object being imaged is approximately piecewise homoge-
neous

3. Knowledge that the object has a smooth boundary or boundaries
4. Knowledge that changes in time occur smoothly
5. Knowledge that only a relatively small portion of the object undergoes changes

with time

Some authors may argue that all of the examples of prior knowledge listed above
may be able to be labeled as “sparsity,” but here we use a more restricted definition:
sparsity is the property that when the image is expressed in terms of some basis,
many fewer coefficients are required to accurately represent the image than is
implied by Nyquist sampling.
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14.2 Sparsity in MRI Images

In this section, we explore the properties of MR images, which make them amenable
to compressed sensing, show examples of how some common transforms can be
used to exploit the sparsity, and introduce a novel nonlinear approach to promoting
sparsity.

14.2.1 Characteristics of MR Images (Prior Knowledge)

As mentioned in the introduction, MRI measurements are made in the k-space
domain. In some cases, the measurements may be at positions constrained by a
regular Cartesian grid. Since an inverse Fourier transform is required to generate
an image from the sampled k-space data, the regular Cartesian sample positions
allow the straightforward use of the efficient FFT algorithm. However to achieve
faster scanning or some signal processing advantages non-Cartesian sampling is
frequently employed. Radial and spiral sampling [2] are quite common, for example.
Some sampling strategies involve a higher density of samples near the center of
k-space (i.e., concentrated in the area of lower spatial frequencies). In any case,
there is a direct relationship between the extent of the k-space domain within which
measurements are distributed and the resolution of the image obtained. Likewise,
there is a direct relationship between the field-of-view (FOV) in the spatial domain
and the effective spacing of samples in k-space [1].

The main source of noise in MR imaging is due to thermal fluctuations of
electrolytes in the region being imaged which are detected by the receiver coil or
coils. Electronic noise is inevitably present as well but may usually be of lesser
order. Generally, the SNR increases as the square root of the acquisition time and
linearly with the voxel size. Thus any moves to increase imaging speed and/or
imaging resolution inevitably lead to a loss of SNR. Importantly, the noise statistics
of each k-space sample is essentially equal [1]. Since the amplitude of samples near
the origin of k-space is much greater than near the periphery, the SNR of these center
samples is much better. This consideration often influences the design of a sampling
scheme.

In many significant imaging situations, the object is known not to extend
throughout the FOV. For example, in making a 2D axial plane image of the brain,
the FOV is usually chosen to be a square or rectangular region that entirely contains
the outline of the head. There is therefore part of the FOV which lies outside the
head and which is therefore known not to contribute a significant signal to the
measurements made. This support constraint is explicit. A support constraint may
also be implicit: for example if it is known that a transformed version of the image
is known to be nonzero only within an unspecified region which spans some known
proportion of the transformed space.
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Fig. 14.2 Compressibility of an MR brain slice. The wavelet and DCT approximations of the
original MR brain slice shown in (a), using only the 10% highest amplitude and the 5% highest
amplitude coefficients of the transforms, are shown in (b) to (e). There appears to be little loss of
information under such high levels of image compression

Constraints may also be temporal. While the relatively slow acquisition of MR
data restricts its use in dynamic imaging tasks, the facts that measurements are
made at precise timing instants and that objects under observation move relatively
smoothly allows temporal constraints to be formulated and exploited.

Biological tissues comprise a large number of types. While at a microscopic
level these tissues are generally inhomogeneous, at the resolution observed by MR
techniques, each tissue type is relatively homogeneous. It is the difference in MR
signal between tissue types which allows such useful anatomical information to
be gleaned. The image as a whole therefore exhibits an approximately piecewise
homogeneity, which can be exploited.

The forms of prior knowledge about the MR images discussed above can all be
seen as evidence for expecting the images to be sparse.

14.2.2 Choice of Transform

The term implicit support was introduced in Sect. 14.2.1. This represents the
property that under some transformation an image can be shown to be nonzero
only within some unspecified part of the domain. The success of lossy image
compression schemes based on the DCT and wavelet transforms indicate that these
are useful sparsifying transforms. In Fig. 14.2, we illustrate the degree to which a
typical MR image can be compressed by the two transforms. The image in Fig. 14.2a
is formed for an axial slice of the brain with the full resolution afforded by the MRI
sequence employed (256×256). The other parts of the figure show reconstructions
with only a fraction of the transform coefficients retained. It is clear that under
either of the two transforms a substantial reduction of data volume is possible before
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serious degradation of the image occurs. Note that the compression here is “lossy,”
in that there is always some degradation generated by setting small coefficients to
zero, but not so much degradation that the image usefulness is seriously impaired.

The discrete cosine transform (DCT) was the transform of choice for many
years for image compression [7]. It was the basis of the original JPEG standard.
The properties of the DCT which make it a useful choice for image compression
include:

1. It lends itself to representing small rectangular blocks of pixels
2. It can be shown to have a faster fall off in coefficient amplitude as frequency

increases in comparison with the DFT
3. It is relatively efficient to compute via the FFT

The DWT has taken over from the DCT in certain regards [8]. The properties of the
DWT which make it a useful choice for image compression include:

1. It naturally distributes information over a number of scales and localizes that
information in space

2. It offers a wide range of basis function (wavelet families) from which to choose
3. It is inherently efficient to compute

The decision between the transforms is unlikely to be critical. The nature of
the DWT, however, does render it better at representing boundaries in the image
between two tissue types where the image function exhibits a step change. With
the DCT, such a boundary necessarily injects some energy in high frequency
components and adversely affects the sparsity in the transformed representation.
The DWT with an appropriate choice of wavelet may perform better in this regard.

14.2.3 Use of Data Ordering

A quite distinctly different approach for increasing sparsity has recently been
proposed. In 2008, Adluru and DiBella [9] and Wu et al. [10] independently
proposed performing a sorting operation on the signal or image as part of the
reconstruction process. The principle is presented in Fig. 14.3 for a 2D axial brain
image. In Fig. 14.3a, the situation is shown whereby the image is transformed by
the 2D DCT and then a compression occurs by setting all coefficients less than
a given threshold to zero. The resulting reconstruction is similar to the original,
but noticeably smoother due to the loss of some small amplitude high frequency
components. In Fig. 14.3b, the image pixels are sorted from largest amplitude in
the lower right to highest amplitude in the upper left to make the resulting function
monotonic and the mapping required to do this is retained (denoted “R”). The same
transformation and recovery operation after thresholding as in (a) is performed and
a re-sorting (denoted “R−1”) is performed. Because the compression retains much
of the shape of the image after sorting, the result has much higher fidelity than in
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Fig. 14.3 Illustration of how a data ordering can achieve a higher sparsity for a 2D image. In (a),
the signal is compressed by retaining only those DCT coefficients with amplitudes higher than a
threshold. In (b), the image pixels are sorted to generate a monotonic function and then the same
recovery operation is performed before a final resorting. Because the sorted data in (b) is more
sparse, the recovery is of higher quality

Fig. 14.3a. We argue that many fewer coefficients need to be retained in the DCT of
the sorted image than in the original, hence the more successful reconstruction.

Clearly, the process depicted in Fig. 14.3 requires knowledge of the original
signal to derive R. The practical utility of what has been demonstrated is likely
therefore to be questioned. However, we show in Sect. 14.4.2 that several methods
to derive an approximate R are possible and that they lead to useful and practical
algorithms for MR image recovery.

The advantage claimed for data ordering depends on the sorted data function
being more sparse than the original. It is difficult if not impossible to prove this,
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Fig. 14.4 Examples which
show the higher sparsity that
data ordering can achieve for
2D images: (a) a set of 5
original images; (b) the
number of DCT coefficients
needed to achieve a
reconstruction of each image
with a relative mean square
error (RMSE) ≤ 1%; (c) the
image after a data ordering
operation; and (d) the number
of DCT coefficients needed to
achieve a reconstruction of
the ordered image with
RMSE≤ 1%

but experiments indicate that in virtually all cases it is true. In Fig. 14.4, we show
a set of 2D example images; three are typical brain axial slices (128× 128 pixels)
while the others are popular test images (200×200 pixels). A data sorting operation
was performed on each image such that the highest intensity pixel was positioned in
the top left corner and the lowest intensity pixel in the bottom right corner. A simple
algorithm arranged the others in a type of raster which achieved the “wedge” images
shown in column (c). Clearly, other algorithms for arranging the sorted pixels are
possible. To the right of each image in columns (b) and (d) is the number of DCT
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coefficients that need to be retained to represent the image to within 1% relative
mean square error (RMSE). It is clear that many fewer coefficients are required to
represent the sorted images than the originals, with the ratio being around 10 to 1.
Under the definition of sparsity we employ here, therefore, the sorting operation
achieves a considerably sparser image.

14.3 Theory of Compressed Sensing

Recall that an image x can be called sparse if under the linear transformation y = Φx
just K � N of the data values in y are enough to accurately represent the image,
where N is the size of x (Sect. 14.1.2). Assume that y is of size N (under the sparsity
assumption, N −K of the elements yi are close to zero). Therefore, Φ is N ×N. If
we knew a priori which of the elements yi may be neglected, we could reduce Φ to
K ×N and attempt to estimate y and recover an estimate of x. However, in general
it is not known which may be neglected and the data measured may be in a different
space.

In MRI, data are measured in k-space and can be represented by a vector d = Wx,
where W is the Fourier transform matrix. It is desirable to minimize the number of
measurements and so we seek to reduce the size of d as much as possible, to M
elements say (dM), while recovering an acceptable quality of estimate of x. A direct
method would be to form a transformation Ψ of dimension K×M such that y′ = Ψd,
with y′ comprising only the important values of y being estimated. Again, however,
such an approach requires prior knowledge of which of the elements yi may be
neglected.

The alternative approach used by many proponents of compressed sensing is
to pose the problem in terms of an optimization. Before looking at this in detail,
however, let us consider the nature of the measurement process.

14.3.1 Data Acquisition

We have established that speeding up the MRI can be achieved primarily by
making fewer measurements. However, there is inevitably a cost incurred from
making fewer measurements. First, fewer measurements with other properties of the
scanning apparatus unchanged means a lower SNR for the data [11]. Second, under-
sampling in k-space causes aliasing in the image domain, that is simply inverting the
relationship dM = Wx to estimate an image x′ = W−1x produces a heavily aliased
image. Even if a more sophisticated image recovery process is adopted, it is clear
that the choice of the sampling locations plays an important role.

The effect of noise can be ameliorated to some extent in post-processing,
particularly if that noise is random in nature and its distribution throughout the
image. The effect of aliasing can be reduced to acceptable levels by the use of prior
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Fig. 14.5 The transform point spread functions (TPSFs) corresponding to one 2D DWT coeffi-
cient with random and regular sampling patterns. (a) Original 128× 128 axial image; (b) TPSF
for random k-space sampling; (c) TPSF for regular k-space sampling (showing clear aliasing); (d)
low-resolution image formed from 1/16 k-space data; (e) TPSF for random k-space sampling with
data ordering; and (f) TPSF for regular k-space sampling with data ordering

information. However, the pattern of undersampling plays a particularly important
role. In CS, random sampling patterns are often employed [3, 12]. In Fig. 14.5, we
illustrate the important roles that both random sampling patterns and data ordering
can play. Figure 14.5a is the original 128× 128 axial brain image formed from
a fully sampled k-space dataset. Two subsets of the k-space samples were taken
by a random pattern and a regular pattern. A DWT was formed (Debauchies-4
wavelets) in each case and one coefficient was chosen to be estimated from the
undersampled k-space data. Figure 14.5b, c shows the estimates in the DWT domain
for random and regular undersampling patterns, respectively. Lustig, Donoho, and
Pauly [13] refer to this type of plot as the “transform point spread function” (TPSF).
In Fig. 14.5b, the coefficient is estimated with relatively little aliasing, whereas in
Fig. 14.5c the process generates several aliases for the coefficient. Many authors
who have written on CS describe this as an “incoherence” property [3, 12, 13].

The remainder of Fig. 14.5 illustrates what happens when data ordering is
introduced into the process, with the ordering based on the low-resolution re-
construction shown in Fig. 14.5d (formed from the center 1/16 of the k-space
data). Figure 14.5e, f shows the TPSF for random and regular undersampling
patterns, respectively, with data ordering and reordering included. In this case, little
difference is seen between random and regular k-space undersampling patterns, with
relatively minor aliasing occurring in both cases. We believe this indicates that the
data ordering itself introduces the incoherence property. In Sect. 14.4.2 below, we
relate our experience with a number of different sampling strategies.
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14.3.2 Signal Recovery

Assuming that we have chosen a sampling strategy for the k-space data and a
transform Φ under which the true image is expected to be sparse, we seek a solution
x′ as close as possible to x, which is constrained in two ways:

1. The solution is consistent with the data dM

2. The solution is sparse under the transformation Φ

Condition 1 can be achieved in principle at least by minimizing the power of
the error between the measurements and the values at those measurement points,
which are predicted by the imaging model for the current image estimate, that is by
minimizing the squared norm ||dM −WMx′||2. Such squared norm minimizations
have formed the backbone of image recovery for many years [14].

Condition 2 above implies a minimization of the quantity ||Φx′||0, that is the
number of nonzero elements in Φx′. However, this minimization is computationally
intractable [4, 15]. It turns out that a minimization of the quantity ||Φx′||1, that
is the first norm of the transformed image estimate, can achieve Condition 2
remarkably well [4,16]. The l1 norm applied here has the effect of pushing negligible
coefficients toward zero while retaining larger components accurately. This is in
contrast with a squared norm which tends to penalize large coefficients.

As explained in the previous section, the random sampling patterns which offer
advantages in CS do generate noise-like artifacts. Therefore in our experience, it is
also useful to apply a further constraint:

3. The solution is piecewise smooth

Minimizing the total variation (TV), that is the sum of the magnitudes of differences
between each pixel and its immediate neighbors, has been shown to be effective at
meeting Condition 3. We denote the total variation for image vector y, TV(y).

The minimization problem can now be posed: Find an estimate for the required
image x′ by minimizing

||dM −WMx′||2 +λ ||Φx′||1 + β TV(x′)

where λ and β are positive constants used to control the relative importance of
the constraints being placed on the solution. A method such as conjugate gradient
minimization is suitable to solve the problem. We have employed the SparseMRI
package provided by [13] as part of the very comprehensive resource on compressed
sensing provided by Rice University (see http://dsp.rice.edu).

14.4 Progress in Sparse Sampling for MRI

In this section, we briefly review the progress made to date in applying the principles
of sparse sampling to MRI. We first review the important developments that have
appeared in the literature. We believe that the biggest single contribution came
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from Lustig, Donoho, and Pauly [13]. This group has continued to make valuable
contributions. Our own contributions, in the form of two new algorithms for
applying sparse sampling in MRI, are then presented.

14.4.1 Review of Results from the Literature

Prior to the introduction of compressed sensing, exploiting signal sparseness by
utilizing the l1 norm constraint started in mid-1980s when Santosa, Symes, and
Raggio [17] utilized an l1 norm to recover a sparse series of spikes from the aliased
representation that resulted from sub-Nyquist sampling in the Fourier domain.
A similar experiment was implemented by Donoho [18] using soft thresholding,
where the individuals in a sparse series of spikes were recovered sequentially in
the order of the descending magnitude: the strongest component was first recovered
and its aliasing effects were then removed to reduce the overall aliasing artifacts
to allow the next strongest component to be recovered, and so on. These simple
numerical experiments in fact have the same nature as the application of the modern
compressed sensing technique in contrast-enhanced magnetic resonance angiogra-
phy (CE-MRA). In CE-MRA, the contrast-enhanced regions to be recovered can be
usefully approximated as isolated regions residing within a 2D plane, and hence the
use of simple l1 norm suffices in recovering the contrast-enhanced angiogram.

Another application of the l1 norm before compressed sensing is in the use of
TV filter [19], which imposes a l1 norm in gradient magnitude images (GMI), or
the gradient of the image. As discussed previously, l1 norm promotes the strong
components while penalizing weak components. In the operations on the GMI,
the TV operator suppresses small gradient coefficients, whereas it preserves large
gradient coefficients. The former are considered as noise to be removed, whereas
the latter are considered to be part of the image features (edges) that need to be
retained; hence, TV can serve as an edge-preserving denoising tool. TV itself can
be employed as a powerful constraint for recovering images from undersampled
data sets. In [20], TV is employed to recover MR images from undersampled
radial trajectory measurements; Sidky and Pan [21] investigated the use of TV in
recovering computed tomography images from limited number of projection angles.

The formal introduction of compressed sensing into MRI methods was made
by Lustig, Donoho, and Pauly in 2007 [13]. Their key contribution is the explicit
use of a different transform domain for appropriate application of the l1 norm.
Both the sparse set of spikes and the TV filter mentioned previously are special
instances of the general transform-based compressed sensing setup. The authors
identified the use of DWT and DCT as suitable transform bases for application
in MR images, as evidenced by their sparse representation under DWT and DCT.
A reconstruction framework was given, which converts the CS formulation into a
convex optimization problem and hence allows for computational efficiency. The
authors also spelt out that a key requirement in data measurement for successful
compressed sensing recovery is to achieve incoherent aliasing. In MRI, such a
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requirement can be satisfied by employing a pseudorandom data acquisition pattern
on Cartesian k-space grid. The idea of compressed sensing has received much
attention thereafter and has been extended to the use of non-Cartesian trajectories
such as radial [20] and spiral [22].

Another place where a high level of sparseness exists is the temporal domain
of dynamic MRI. Not only does each individual temporal frame have inherent
sparseness under the appropriate transform, and hence allows undersampling using
compressed sensing, there also exists a high level of redundancy in the time domain
due to the generally slow object variation over time. Such redundancy can be
exploited in terms of its sparseness under appropriate transform to allow under-
sampling in the temporal domain. In fact, this idea has been well exploited prior to
the use of compressed sensing: Fourier-encoding the overlaps using the temporal
dimension (UNFOLD) [23], k-t broad-use linear acquisition speed-up technique
(k-t BLAST) [24] and k-t focal underdetermined system solver (k-t FOCUSS, [25])
are all good examples of this. They all include an additional temporal frequency
dimension in addition to the spatial frequency dimensions of the data set, and
utilize the sparseness in the resulting spatial–temporal frequency domain. In fact, k-t
FOCUSS was later shown to be a general implementation of compressed sensing by
inherently utilizing the l1 norm constraint. In [26], compressed sensing is explicitly
applied in the additional temporal dimension to in MR cardiac imaging, and it was
shown to outperform the k-t BLAST method.

In general, the application of compressed sensing to MRI is a recently emerged
and fast developing area. The use of the l1 norm in the appropriate domain, which
is the core of compressed sensing, can be used as a general regularization constraint
in many cases. One good example is in the conjoint use of parallel imaging, which
normally faces the penalty of reduced SNR with reduced sampling density. The l1
norm regularization intrinsically suppresses noise and hence offers complementary
characteristics to those of parallel imaging [27].

14.4.2 Results from Our Work

Our own work in applying sparse sampling in MRI has led to the development of two
new algorithms: Prior estimate-based compressed sensing (PECS) and sensitivity
encoding with compressed sensing (SENSECS). PECS has been demonstrated in
both brain imaging, that is imaging of a static structure, and in contrast-enhanced
angiography, that is dynamic imaging as part of a pilot study on normal volunteers
[28, 29]. SENSECS has been demonstrated in brain imaging [27]. We briefly
summarize the work in the remainder of this section.

14.4.2.1 PECS

The success of compressed sensing is determined by the sparsity of the underlying
signal. In our experience to date, the sparsest representation of a typical MRI
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Fig. 14.6 Presentation of an argument for the approximate ordering process incorporating prior
knowledge into PECS recovery. Figure (b) depicts the computation of an approximate data order
from a low-resolution version of the signal. Figure (a) depicts the use of that sampling order
on the original signal. Figure (c) depicts the effect of sorting on the discrepancies between the
original signal and the prior knowledge. After transformation, the large amplitude coefficients
retain information about the sorting prior, while the smaller coefficients are mainly associated
with the discrepancies between the original and low-resolution signals

anatomical image is obtained by ordering the set of pixel (or voxel) amplitudes
as described in Sect. 14.2.3. Assume that a set of undersampled k-space data have
been collected with a particular MRI sequence with the purpose of forming a high-
resolution image. In addition, a prior estimate is available of the image, for example
a low-resolution image. In PECS, the prior estimate of the image is first used to
derive a data ordering, R′; compressed sensing is used to recover an image from
the measured k-space data, incorporating the approximate ordering (to promote
sparsity) and a TV minimization (to promote piecewise smoothness in the resulting
image). The process is illustrated in Fig. 14.6 for the case of a 1D signal. Recall from
Sect. 14.2.3 that ordering the amplitudes of a signal into a monotonic function allows
that signal to be represented by fewer coefficients under an appropriate transform
(DCT or DWT, say). In this case the approximate ordering, R′, is derived from a
low resolution (low pass filtered) version of the signal. When R′ is applied to the
high resolution data, the result is a highly noisy signal which only approximates
in form to a monotonic function. Under the transform the largest coefficients
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Fig. 14.7 Reconstructions comparing PECS with other methods: (a) top left quadrant of a
reconstruction of an axial brain slice with full k-space sampling; (b–d) reconstructions at an
acceleration factor of 4 (the sampling patterns used are shown in the insets). (b) CS with uniformly
distributed randomly selected k-space samples; (c) CS with randomly selected k-space samples,
but including the center 32 lines; and (d) PECS with ordering derived from a low-resolution
approximation using just the center 32 lines of k-space. The arrows indicate areas where (d) shows
better recovery than (c)

retain the form, while the errors tend to generate a noise-like spectrum with low
amplitudes spread across many coefficients. After thresholding only the significant
coefficients are nonzero and these retain the form of the true ordering. We argue
that prior knowledge about the signal is thereby introduced by the application of the
approximate data ordering [27].

A result for PECS is shown in Fig. 14.7. A 1.5T GE scanner equipped with an
eight-channel head coil was used to obtain a 2D T2-weighted axial brain slice of a
healthy adult volunteer. A fully sampled k-space data set (256×256) was obtained
and then various forms of sampling patterns were applied in post processing to
simulate the under-sampling required [29]. Note that in this case the under-sampling
is applied in the single phase encoding direction (anterior–posterior). In Fig. 14.7a
is shown the reconstruction for the slice utilizing the fully sampled k-space data; the
top left quadrant is selected for more detailed study. To the right are three different
reconstructions obtained from only one quarter of the k-space data, simulating an
acceleration factor of 4 for the imaging process. In Fig. 14.7b, the reconstruction
is by CS with a uniform sampling density, while in Fig. 14.7c an otherwise similar
sampling pattern is altered to make the center 32 lines of k-space fully sampled. The
improvement in (c) compared to (b) is obvious. A PECS reconstruction is shown in
Fig. 14.7d, with the prior estimate used to generate R′ being a low-resolution image
formed from the center 32 k-space lines. The arrows indicate particular areas, where
PECS in (d) performs better that CS in (c).

14.4.2.2 SENSECS

As the name implies, SENSECS combines SENSE with CS. A regular sampling
pattern is employed which promotes the performance of SENSE, except that several
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Fig. 14.8 Reconstructions comparing SENSECS with other methods at high acceleration factors
(shown in the top left of the reconstructions): (a) reconstruction of an axial brain slice with full
k-space sampling; in the lower section of the figure, the left column is SENSE, the center column
is CS, and the right column is SENSECS. Note that the SENSECS reconstructions use the SENSE
reconstructions to derive the data sorting order

additional lines are sampled at the center of k-space. SENSE is applied to achieve
an intermediate reconstruction [11]. Because of the high acceleration factor being
used, the image is likely to be quite noisy. The noise is in part at least due to the
imperfect knowledge available of the sensitivities of the individual receiver coils.
An approximate sorting order R′ is derived from the intermediate SENSE-derived
image. Then PECS is performed with the same set of k-space data and using R′.

Again, a single set of results is shown for the new algorithm in Fig. 14.8. The
same set of data as described above in this section was used and the fully sampled
k-space data was again undersampled in postprocessing [29]. High acceleration
factors of 5.8 and 6.5 were simulated. In Fig. 14.8a is shown the reconstruction for
the slice utilizing the fully sampled k-space data; the top left quadrant is selected for



14 Sparse Sampling in MRI 337

Fig. 14.9 The application of PECS to CE-MRA is illustrated. Samples in k-space samples are
acquired progressively by means of different randomly selected subsets (top row). A combination
of a set of the acquisitions is used to achieve a “reference” image which is sorted to derive R.
PECS is applied to each of the (high acceleration factor) subsets using R. The result (bottom right)
is a sequence of relatively high time resolution images. The arrow indicates a region in one of the
output frames, which does not show an artifact which appears in the reference image

more detailed study. In each of the two lower rows are three different reconstructions
obtained from a fraction of the k-space data, simulating the acceleration factors
indicated. In the left column are shown the SENSE reconstructions, which are
clearly noisy and unlikely to be diagnostically useful. CS reconstructions are shown
in the center column; in this case, the sampling pattern employed was designed
specifically for CS. The results are superior to the SENSE reconstructions, but
somewhat blurred in appearance. SENSECS reconstructions are shown in the right
column; they show better fidelity than the other reconstructions and diagnostically
useful results up to at least an acceleration factor of 6.5. Note that the images
obtained by SENSE were used to derive the sorting order here.

14.4.2.3 PECS Applied to CE-MRA

The PECS method has been extended to enable it to be applied to CE-MRA.
There is a strong desire in CE-MRA to increase the temporal resolution, that is
to increase the acceleration factor in image acquisition and reconstruction. The
algorithm is depicted in Fig. 14.9. Note that the depiction is for 3D imaging, so
the sampling patterns depicted correspond to the two phase encoding directions.
In the first acquisition, a small number of k-space samples (corresponding to
a high acceleration factor) are acquired at pseudo-random locations; a second
acquisition takes the same number of samples, again randomly distributed, but at
a different subset of k-space locations; the acquisitions proceed in this manner until
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all of k-space is filled, then the sequence is repeated. To improve sparsity, data
for a “background” image can be collected before the contrast agent is injected,
and those sample values subtracted from the corresponding samples collected as
the contrast agent moves through the vessels. Combining the data from several
contiguous acquisitions allows a fully sampled “reference” image to be made (after
background subtraction), but it has low temporal resolution and may suffer from
artifacts caused by the dynamically changing nature of the volume being imaged.
It is adequate, however, to generate an approximate sorting order R. That ordering
is used in applying PECS to individual acquisition frames (again after background
subtraction) to achieve a high frame rate sequence of reconstructions. The arrows in
the sample images lower right highlight how features, which appear in the relatively
artifact filled reference image. Results with the method have been encouraging up
to acceleration factors of 12 (for an eight-channel receiver coil system) [29].

14.5 Prospects for Future Developments

We have presented some preliminary and very encouraging results for incorporating
a data ordering step in the recovery of MR images by compressed sensing. There
remains considerable scope for putting this nonlinear processing on a firm theoret-
ical footing. Candès and others have provided such rigor to the basic compressed
sensing recovery of certain classes of image [3, 4], but no such attention has to
our knowledge been directed at the data ordering and its use in incorporating prior
knowledge.

We have demonstrated the exploitation of several forms of sparsity above.
Briefly, this includes the sparsity achieved by ordering the image into a monotonic
function, the use of a compressive transform such as DCT or DWT, and the
subtraction of the contribution to signal from static structures in dynamic CE-MRA.
Other authors have likewise exploited piecewise homogeneity. Given that CS is
relatively new as a practical method in signal processing, it seems likely that
other transforms may be available, or as yet undiscovered, which may allow more
gains to be made. Our work and the work of many others in the area of applying
sparse sampling in MRI suggests that it has a bright future and we should see the
manufacturers of MRI scanning systems incorporating some of the algorithms based
on sparse sampling soon.
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Chapter 15
Digital Processing of Diffusion-Tensor Images
of Avascular Tissues

Konstantin I. Momot, James M. Pope, and R. Mark Wellard

15.1 Introduction

Diffusion is the process that leads to the mixing of substances as a result of
spontaneous and random thermal motion of individual atoms and molecules. It was
first detected by the English botanist Robert Brown in 1827, and the phenomenon
became known as ‘Brownian motion’. More specifically, the motion observed by
Brown was translational diffusion – thermal motion resulting in random variations
of the position of a molecule. This type of motion was given a correct theoretical
interpretation in 1905 by Albert Einstein, who derived the relationship between
temperature, the viscosity of the medium, the size of the diffusing molecule, and its
diffusion coefficient [1]. It is translational diffusion that is indirectly observed in MR
diffusion-tensor imaging (DTI). The relationship obtained by Einstein provides the
physical basis for using translational diffusion to probe the microscopic environment
surrounding the molecule.

In living systems, translational diffusion is vital for the transport of water and
metabolites both into and around cells. In the presence of a concentration gradient,
diffusion results in the mixing of substances: The molecules of a compound
on average tend to move from areas of high concentration into areas of low
concentration, resulting in a net transport of the compound in the direction of the
gradient. A classic example of this is the spontaneous mixing of a dyestuff into a
stationary solvent.

Diffusive mass transport can serve as the basis for the measurement of molecular
diffusion: a concentration gradient is artificially created, and its equilibration
with time observed (Fig. 15.1). This method of measuring diffusion is not always
physically relevant because a concentration gradient is neither required for diffusion
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Fig. 15.1 Diffusion in the
presence of a concentration
gradient C(x, t) gives rise to a
net flux or flow of particles
J(x, t) from high to low
concentration

nor always present. The majority of DTI applications are based on the diffusion
of water, whose concentration is essentially uniform in extracellular and intracel-
lular microenvironments of living organisms. Diffusion of molecules of the same
substance in the absence of a concentration gradient is known as ‘self-diffusion’.
It is self-diffusion that is observed in DTI. Self-diffusion can be measured by
the technique of Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-NMR),
which is exquisitely sensitive to the microstructural environment of nuclear spins.
(Other examples of applications of magnetic resonance to tissues can be seen in
Chapters 5, 9, and 10.) In recent years, PFG-NMR has been increasingly combined
with magnetic resonance imaging (MRI) to study diffusion of water protons in
biological tissues for diagnosis of stroke and multiple sclerosis, for white matter
fiber tracking in the brain, muscle fiber tracking, and other applications.

While no concentration gradient is necessary for DTI, the notion of a concen-
tration gradient is instructive for understanding how DTI works. In an isotropic
medium such as bulk water, the process of diffusion is itself isotropic and can be
described by a scalar diffusion coefficient D. If we were to “label” a subset of
molecules, the flux of the labeled molecules would be governed by Fick’s first law
of diffusion:

J(r,t) = −D ∇C(r,t) ≡−D

(
i
∂C
∂x

+ j
∂C
∂ y

+ k
∂C
∂ z

)
. (15.1)

Here, C(r,t) is the spatial concentration profile of the labeled molecules; D is
the diffusion coefficient; and J is the flux of particles, defined as the amount of
substance that flows through a unit area per unit time. The meaning of (15.1) is
that in isotropic media the flux occurs strictly in the direction of the concentration
gradient. Combining (15.1) with the conservation of mass and the assumption that D
is independent of concentration yields Fick’s second law of diffusion or the diffusion
equation:

∂ C(r,t)
∂ t

= D ∇2C(r,t) ≡ D

(
∂ 2C
∂x2 +

∂ 2C
∂y2 +

∂ 2C
∂ z2

)
. (15.2)
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Diffusion in biological tissues is substantially different from isotropic diffusion.
Tissues are intrinsically heterogeneous: there are barriers to free diffusion of
water molecules arising from the presence of macromolecules, organelles, cell
membranes, and larger scale structures. As a result, diffusion of water molecules
in many tissues is both restricted and anisotropic.

Restricted diffusion results in measurements of the diffusion coefficient giving
results that are dependent on the timescale of the diffusion interval Δ over which
the measurement is performed. This is known as an ‘apparent diffusion coefficient’
(ADC). Besides Δ, the ADC is dependent on the nature and the length scale of the
obstructions and is generally smaller than the self-diffusion coefficient of bulk water
(D0 = 2.3 ·10−9 m2 s−1 at 25◦C). For example, the ADC of water confined between
parallel, semipermeable barriers approximately equals D0 at Δ << d2/D0, where d
is the separation between the barriers, but decreases to D0/(1+1/P) at Δ >> d2/D0

(where P is the permeability of the barriers) [2].
Anisotropic diffusion means that the diffusing molecules encounter less restric-

tion in some directions than others. Diffusion can be anisotropic when the tissue
possesses some form of global alignment. Two well-known examples of anisotropic
tissues are the white matter of the brain and the heart muscle. In muscles, the global
alignment arises from the elongated form of the muscle cells forming muscle fibers.
In white matter, the anisotropy arises from the fact that nerve fiber tracts follow
specific pathways. In both these cases, the cellular structures preferentially restrict
the diffusion of water in the direction perpendicular to the fibers. Diffusion is also
anisotropic in the two tissues that are the focus of this chapter: articular cartilage
(AC) and the eye lens. In AC, the anisotropic restrictions to diffusion are imposed
by the aligned collagen fibers that form the biomacromolecular “scaffold” of the
tissue. In the crystalline eye lens, the restrictions are imposed by the fiber cells.

To take account of anisotropic diffusion, a common approach is to re-write the
diffusion equation in terms of a diffusion tensor:

J(r,t) = −D ·∇C(r,t), (15.3)

where the diffusion tensor D is represented by a symmetric and real 3×3 matrix:

D =

⎛
⎝ Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎞
⎠ . (15.4)

In the anisotropic case, Fick’s second law becomes:

∂C
∂ t

= ∇ ·D ·∇C ≡
(

∂
∂x

∂
∂y

∂
∂ z

)⎛
⎝ Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎞
⎠
⎛
⎝ ∂/∂ x

∂/∂ y
∂/∂ z

⎞
⎠C. (15.5)

Note that while the diagonal elements of the diffusion tensor (DT) scale
concentration gradients and fluxes that are in the same direction, the off-diagonal
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Fig. 15.2 Diffusion ellipsoid as a visual representation of the diffusion tensor. The straight lines
radiating from the center of the ellipsoid illustrate two possible choices of the diffusion sampling
directions, as discussed in Sects. 15.2.2 and 15.2.5

elements couple fluxes and concentration gradients in orthogonal directions. This
is because in the anisotropic case the distribution of diffusional displacements
of molecules tends to follow the geometry of the restricting barriers. This is the
physical basis for using DTI to measure the microscopic morphology of the tissue.
In Sects. 15.2.4 and 15.4, we discuss applications of DTI to the eye lens and AC,
respectively, as examples.

A convenient way of representing the DT is the diffusion ellipsoid, which
is illustrated in Fig. 15.2. The shape of the ellipsoid represents the directional
asymmetry of the average displacements of the diffusing molecules. The directions
of the principal axes of the ellipsoid characterize the orientation of the DT, which
in turn represents the spatial anisotropy of the restricting barriers imposed by the
tissue.

In the isotropic case, the DT is a diagonal matrix:

D =

⎛
⎜⎜⎝

D 0 0

0 D 0

0 0 D

⎞
⎟⎟⎠ , (15.6)

where D is the isotropic diffusion coefficient. In this case, (15.5) reverts to (15.2),
and the ellipsoid in Fig. 15.2 becomes a sphere.
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15.2 Acquisition of DT Images

15.2.1 Fundamentals of DTI

DT images can be obtained using Nuclear Magnetic Resonance (NMR). NMR
measures the frequency of precession of nuclear spins such as that of the proton
(1H), which in a magnetic field B0, is given by the Larmor equation:

ω0 = γB0. (15.7)

The key to achieving spatial resolution in MRI is the application of time-dependent
magnetic field gradients that are superimposed on the (ideally uniform) static
magnetic field B0. In practice, the gradients are applied via a set of dedicated
3-axis gradient coils, each of which is capable of applying a gradient in one of
the orthogonal directions (x, y, and z). Thus, in the presence of a magnetic field
gradient g,

g =
(

∂Bz

∂x
,

∂ Bz

∂y
,

∂Bz

∂ z

)
(15.8)

the magnetic field strength, and hence the precession frequency become position
dependent. The strength of the magnetic field experienced by a spin at position r is
given by:

B = B0 + g · r (15.9)

The corresponding Larmor precession frequency is changed by the contribution
from the gradient:

ω(r) =
∂φ(r)

∂ t
= γ(B0 + g · r). (15.10)

The precession frequency ω is the rate of change of the phase, φ, of a spin – that
is, its precession angle in the transverse plane (Fig. 15.3). Therefore, the time-
dependent phase φ is the integral of the precession frequency over time. In MRI, we
switch gradients on and off in different directions to provide spatial resolution, so
the gradients are time dependent and the phase of a spin is given by:

φ(r,t) =
t∫

0

ω(r,t ′)dt ′ = γB0t + γ
t∫

0

g(t ′) · rdt ′. (15.11)

We observe the phase relative to the reference frequency given by (15.7). For
example if the gradient is applied in the x direction in the form of a rectangular pulse
of amplitude gx and duration δ the additional phase produced by the gradients is
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Fig. 15.3 The effect of a magnetic field gradient on precession of spins. A constant magnetic field
gradient g (illustrated by the blue ramp) applied in some arbitrary direction changes the magnetic
field at position r from B0 to a new value B = B0 +g ·r. The gradient perturbs the precession of the
spins, giving rise to an additional position-dependent phase φ′, which may be positive or negative
depending on whether the magnetic field produced by the gradient coils strengthens or weakens
the static magnetic field B0

φ′(r,t) = γ
δ∫

0

gx(t ′)xdt ′ = γδgxx = 2πkxx, (15.12)

where the “spatial frequency” kx = γδgx/2π is also known as the “k value”. It plays
an important role in the description of spatial encoding in MRI and can be thought
of as the frequency of spatial harmonic functions used to encode the image.

In MRI to achieve spatial resolution in the plane of the selected slice (x,y), we
apply gradients in both x and y directions sequentially. The NMR signal is then
sampled for a range of values of the corresponding spatial frequencies kx and ky.

For one of these gradients (gx, say), this is achieved by keeping the amplitude
fixed and incrementing the time t at which the signal is recorded (the process called
‘frequency encoding’).

In the case of the orthogonal gradient (gy), the amplitude of the gradient is
stepped through an appropriate series of values. For this gradient, the appropriate
spatial frequency can be written:

ky = γ
δ∫

0

gy(t ′)dt ′ = γδgy/2π. (15.13)
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Fig. 15.4 Gradient pulse pairs used for diffusion attenuation. The first gradient sensitizes the
magnetisation of the sample to diffusional displacement by winding a magnetization helix. The
second gradient rewinds the helix and thus enables the measurement of the diffusion-attenuated
signal. The two gradients must have the same amplitude if they are accompanied by the refocusing
RF π pulse; otherwise, their amplitudes must be opposite

The MR image is then generated from the resulting two-dimensional data set
S(kx, ky) by Fourier transformation:

S(x,y) =
∫ ∫

S(kx,ky)e−2πi(kxx+kyy)dkxdky. (15.14)

The Fourier transform relationship between an MR image and the raw NMR data is
analogous to that between an object and its diffraction pattern.

15.2.2 The Pulsed Field Gradient Spin Echo (PFGSE) Method

Consider the effect of a gradient pair consisting of two consecutive gradient pulses
of opposite sign shown in Fig. 15.4 (or alternatively two pulses of the same sign
separated by the 180◦ RF pulse in a ‘spin echo’ sequence).

It is easy to show that spins moving with velocity v acquire a net phase shift (rel-
ative to stationary spins) that is independent of their starting location and given by:

φ(v) = −γ g ·vδΔ, (15.15)

where δ is the duration of each gradient in the pair and Δ is the separation of
the gradients. Random motion of the spins gives rise to a phase dispersion and
attenuation of the spin echo NMR signal.

Stejskal and Tanner [3] showed in the 1960s that, for a spin echo sequence this
additional attenuation (Fig. 15.5) takes the form:

S(Δ,g) = S0e−TE/T2 e−Dγ2g2δ2(Δ−δ/3). (15.16)

The first term is the normal echo attenuation due to transverse (spin-spin) relaxation.
By stepping out the echo time TE, we can measure T2.

The second term is the diffusion term. By incrementing the amplitude of the
magnetic field gradient pulses (g), we can measure the self-diffusion coefficient D.

For a fixed echo time TE, we write:

S = S′0e−bD = S0e−TE/T2 e−bD, (15.17)
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Fig. 15.5 A pulsed field
gradient spin echo (PGSE)
sequence showing the effects
of diffusive attenuation on
spin echo amplitude

where

b = γ2g2δ2
(

Δ− δ
3

)
. (15.18)

The ADC is then given by:

ADC = −ln

(
S
S′0

)/
b (15.19)

For the case of anisotropic diffusion described by a diffusion tensor D, the
expression for the echo attenuation in a PFG spin echo experiment becomes:

S(Δ,g) = S′0e−γ2g·D·gδ2(Δ−δ/3), (15.20)

where g = (gx,gy,gz) is the gradient vector, and the scalar product g ·D ·g is defined
analogously to (15.5).

Overall, if diffusion is anisotropic, the echo attenuation will have an orientation
dependence with respect to the measuring gradient g. Gradients along the x, y, and z
directions sample, respectively, the diagonal elements Dxx, Dyy, and Dzz of the DT.
In order to sample the off-diagonal elements, we must apply gradients in oblique
directions – that is combinations of gx and gy or gy and gz, etc. Because the DT
is symmetric, there are just 6 independent elements. To fully determine the DT
therefore requires a minimum of 7 separate measurements – for example:

⎛
⎝gx

gy

gz

⎞
⎠=

⎛
⎝0

0
0

⎞
⎠ ,

⎛
⎝ g

0
0

⎞
⎠ ,

⎛
⎝0

g
0

⎞
⎠ ,

⎛
⎝0

0
g

⎞
⎠ ,

1√
2

⎛
⎝g

g
0

⎞
⎠ ,

1√
2

⎛
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0
g

⎞
⎠ ,

1√
2

⎛
⎝0

g
g

⎞
⎠ .

(15.21)
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Fig. 15.6 Spin echo
diffusion imaging pulse
sequence. “RF” denotes the
RF pulses and acquisition.
Gradient pulses: S, slice
selection; P, encoding in the
Phase direction; R, encoding
in the Read direction; D,
diffusion gradients

This choice of diffusion gradient directions is illustrated in Fig. 15.2a. We shall
refer to a data set measured with this set of gradients as the minimal diffusion-
tensor dataset. As seen below, this is neither the only nor the best choice of DTI
gradient directions. Other gradient combinations exist that achieve optimal signal-
to-noise ratio (SNR) in the resulting DT images and/or optimal gradient amplifier
efficiency (see Sect. 15.2.5). The first measurement with all gradients off is required
to determine S′0.

15.2.3 Diffusion Imaging Sequences

Diffusion gradients can readily be incorporated in a conventional spin echo MRI
sequence as follows (Fig. 15.6).

The sequence is repeated for the appropriate different combinations of gradients
gx, gy, and gz to yield a set of 7 different diffusion weighted images. These are then
used to calculate the elements of the DT, pixel by pixel, to yield 6 images represent-
ing the three diagonal elements and 3 off-diagonal elements of the DT. (Because of
the symmetry of the DT, the off-diagonal elements are duplicated in the 3× 3 DT
image). Once obtained the DT must be diagonalized to obtain the eigenvalues and
eigenvectors. For more details, see, for example Basser and Jones [4].

For a given DTI imaging sequence and available MRI hardware, the effects of
T2 relaxation can be minimized by making more efficient use of available gradient
power to maximize b values and reduce the minimum echo time TE. For example by
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ensuring that gradients are applied simultaneously along two axes at the maximum
amplitude for each individual axis, the resultant gradient amplitude is increased
by a factor of

√
2, while by employing all three basic gradients in an icosahedral

arrangement it is possible to increase the maximum amplitude by Fibonacci’s golden
ratio: (1 +

√
5)/2 (see e.g. [5] and references therein). This choice of diffusion

gradient directions is illustrated in Fig. 15.2b.
For clinical applications of DTI, patient motion can be a serious problem because

even relatively small bulk motions can obscure the effects of water diffusion on
the NMR signal. In such applications, it is common to employ spin echo single
shot echo planar imaging (SS-EPI) sequences that incorporate diffusion weighting
in order to acquire an entire DWI data set in a fraction of a second (albeit at
somewhat reduced spatial resolution when compared with more conventional spin
echo imaging sequences). Such SS-EPI sequences also have the added advantage of
a relatively high SNR per unit scanning time, allowing a complete DTI data set to
be acquired in 1–2 min. Further improvements in acquisition time and/or SNR can
be achieved by combining such sequences with parallel imaging techniques and/or
partial Fourier encoding of k-space (see e.g. [6] and references therein).

15.2.4 Example: Anisotropic Diffusion of Water in the Eye Lens

We have used the PFGSE method to measure the components of the DT for water
(H2O) in human eye lenses [7]. In this case, we were measuring diffusion on a
timescale of ∼20ms corresponding to diffusion lengths � =

√
2Dt ∼= 10μm with

D = 2.3 · 10−9m2s−1 for bulk water at 20◦C and t = 20ms. This is comparable to
the cell dimensions. Since the cells are fiber-like in shape (i.e., long and thin) with
diameter ∼8μm, we might expect to observe diffusion anisotropy on this timescale.

Note that four of the off-diagonal elements in the (undiagonalized) DT are almost
zero. This implies that in this example diagonalization (see Figs. 15.7 and 15.8)
involves a simple rotation of axes about the normal to the image plane.

If we assume cylindrical symmetry for the cell fibers within a voxel, then ε = 0
and in the principal axes frame we can describe the diffusion in terms of a 2× 2
tensor:

D′ ≡
(

D⊥ 0
0 D//

)
. (15.22)

What is more if we choose the image plane to correspond to the center of symmetry
of the lens, we only require one angle θ to describe the orientation of the principal
axis of the DT with respect to the gradients gx and gz, say. Consequently, we only
require four images to calculate D//, D⊥ and θ, corresponding to gradients of 0, gx,
gz, and 1√

2
(gx + gz).

The next problem is how to display the data, since even in this case of cylindrical
symmetry and a 2× 2 DT, we have 3 parameters to display for each pixel! The
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Fig. 15.7 Diffusion tensor images of human eye lenses in vitro from a 29-year-old donor
(left column) and an 86-year-old donor (right column) [7]. Top row images are of the raw
(undiagonalized) diffusion tensor; those in the bottom row are after diagonalization

method we have developed using MatLab is to display for each pixel a pair of
orthogonal lines whose lengths are proportional to D// and D⊥, respectively, with
the direction of the larger component defining the angle θ, viz (Fig. 15.8).

More generally, if the DT does not display cylindrical symmetry, there are 6
parameters to define per pixel (three eigenvalues and three Euler angles defining the
directions of the eigenvectors relative to the laboratory frame). In such cases, it may
be necessary to map the principal eigenvalues, the orientations of the eigenvectors,
the fractional anisotropy (FA), and the mean eigenvalues (see below) as separate
diffusion maps or images in order to visualize the full DT.

15.2.5 Data Acquisition

In situations where time is limited by the need to minimize motion artifacts or
to achieve adequate patient throughput, it may be practical only to acquire data
for the minimum number of diffusion gradient combinations required to define
the DT. In other cases, it may be necessary to employ signal averaging to reduce



352 K.I. Momot et al.

Fig. 15.8 2D diffusion tensor images of a human eye lens from a 29-year-old donor: (a) axes
of the principal components D// and D⊥ of the diagonalized diffusion tensor with respect to the
directions of the diffusion gradients; (b) quiver plot showing both principal components on the
same scale; (c) and (d) plots of D// and D⊥, respectively

‘sorting bias’ (see below) and/or to acquire data for additional gradient directions
to improve precision in measuring the eigenvalues and eigenvectors of the DT
and derived parameters such as the FA. Even for the case where the number of
gradient directions is restricted to the minimum value [6], significant improvements
in precision of DTI-derived parameters can be achieved by appropriate choice of
those directions [8].

Several authors have investigated optimum strategies for measuring diffusion
parameters in anisotropic systems using MRI [4, 5, 8–13]. Jones et al. [9] derived
expressions for the optimum diffusion weighting (b values) and the optimum ratio
of the number of signal acquisitions acquired with high diffusion weighting (NH)
to the number (NL) with low or minimum diffusion weighting, for which b∼0.
(Note that for an imaging sequence b = 0 is generally not strictly achievable due
to the influence of the imaging gradients, which produce some diffusive attenuation
of the signal.) If the effects of transverse relaxation (T2) are ignored, they found
b = 1.09× 3/Tr(D) and NH = 11.3 · NL, where Tr(D) = Dxx + Dyy + Dzz is the
trace of the DT and b here refers to the difference in diffusion weighting between
high and low values (assuming the latter is non-zero). This result applies provided
that the diffusion is not too anisotropic (so that diffusive attenuation is similar in
all directions). It compares with the situation of minimum overall imaging time
in which each of the 7 combinations of gradient magnitude and direction is applied
only once, for which clearly NH = 6NL and according to Jones et al. [9] the optimum
b = 1.05 ·3/Tr(D). However, these results must be modified to take account of the
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effects of T2 relaxation, which results in additional signal attenuation since it is
necessary to operate with a finite echo time TE to allow sufficient time to apply the
gradients. For example, in the case of white matter in the human brain, for which
T2∼80ms, Jones et al. [9] find that it is necessary to reduce both the b value and the
ratio NH/NL to ∼77% of the asymptotic (long T2) values quoted above.

Chang et al. [14] used a first order perturbation method to derive analytical
expressions for estimating the variance of diffusion eigenvalues and eigenvectors
as well as DTI derived quantities such as the trace and FA of the DT, for a given
experimental design and over a useful range of SNRs. They also validated their
results using Monte Carlo simulations.

A number of authors have compared the merits of applying diffusion gradients
in more than the minimum six directions. Some reports [10, 12] have suggested
there may be no advantage in using more than the minimum number of sampling
directions provided that the selected orientations point to the vertices of an
icosahedron [11]. However, a more recent Monte Carlo analysis [5] supports earlier
suggestions [13,15] that ∼20–30 unique and evenly distributed sampling directions
are required for robust estimation of mean diffusivity, FA and DT orientation.
Batchelor et al. [11] conclude that ‘the recommended choice of (gradient) directions
for a DT-MRI experiment is . . . the icosahedral set of directions with the highest
number of directions achievable in the available time.’

The use of multiple sets of magnetic field gradient directions is of particular
importance for applications involving fiber tracking in the brain. Fiber tracking or
‘Tractography’ is used to infer axonal connectivity in the white matter of the brain
[16–19]. It relies on the fact that the myelin sheaths surrounding neuronal fibers
in the white matter restrict water diffusion perpendicular to the direction of the
fiber bundles, while diffusion parallel to the nerve fibers is relatively unrestricted.
Consequently, the eigenvectors corresponding to the largest eigenvalues reflect the
(average) fiber direction within a voxel. By analyzing the directions of the principal
eigenvectors in adjacent voxels, it is possible to trace the fiber tracts and infer
connectivity between different regions of the brain. The situation becomes more
complicated if two or more fiber bundles with significantly different directions
intersect or cross within a voxel due to partial volume effects. (Typical voxel
dimensions in DTI∼1–3mm are much larger than the individual white matter tracts
∼1–10μm). Behrens et al. [20] estimate that one-third of white matter voxels in
the human brain fall into this category. In such cases, the use of a single DT
will yield a principal diffusion eigenvector that represents a weighted average of
the individual fiber directions and as such will not correspond to the direction
of any of the individual fiber bundles. This problem can be at least partially
alleviated by acquiring data for multiple gradient directions using high angular
resolution diffusion imaging (HARDI) and employing spherical tomographic in-
version methods [21] or constrained spherical deconvolution (CSD) techniques [22]
to model the resulting DWI data in terms of a set of spherical harmonics rather
than a single DT. HARDI techniques employ stronger diffusion weighting gradients
(b-values ≥ 3,000s/mm2) compared with those ∼1,000s/mm2 more routinely
employed in clinical DTI. Recently, Tournier et al. [23] using such methods have
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shown in a DWI phantom that it is possible to resolve two fiber orientations with a
crossing angle as small as 30◦.

15.3 Digital Processing of DT Images

The raw data set obtained from a DTI measurement described in Sect. 15.2 contains
one or more zero-gradient images and six or more diffusion-weighted images
corresponding to distinct diffusion directions. To render this data in a form amenable
to interpretation, the following processing steps are usually performed:

(I) For each voxel in the image, the six independent components of the DT (DT)
are calculated. The tensor obtained in this step is the so-called laboratory-frame
DT: it is linked to laboratory-based coordinate axes, which may be defined as
the directions of the hardware X, Y, Z gradient coils or the Read, Phase, and
Slice directions of the image.

(II) The laboratory-frame DT can then be diagonalized. The diagonalization proce-
dure yields:

(i) The principal diffusivities oreigenvalues D1, D2 and D3 of the DT;
(ii) The orientation of the principal axes oreigenvectors of the DT with respect

to the laboratory frame.

This represents the DT in the ‘sample’ frame linked with the physical alignment
order in the tissue. The relationship between the laboratory-frame and the diagonal-
ized DT is illustrated in Fig. 15.9 and discussed in detail later in this section.

Steps (I) and (II) can be regarded as the primary DTI processing. These steps are
common to all DTI processing and carried out irrespective of the tissue imaged.

Fig. 15.9 Diagonalization of the diffusion tensor involves finding the rotation of the coordinate
frame that aligns the coordinate axes with the principal axes of the ellipsoid
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(III) In “secondary” processing, the DT image obtained in step (II) is represented
as a voxel-by-voxel map of one or more of the following parameters:

Direction of the principal eigenvector.
Angle between the principal eigenvector and a specified axis.
Principal eigenvalue (maximum diffusivity).
Mean eigenvalue (mean diffusivity).
Fractional anisotropy.
The nonaxial anisotropy parameters of the DT.

The user must decide what DT parameters best enable visualization of the image
acquired.

(IV) In “tertiary” processing, the information from individual voxels is translated
into “global” characteristics describing the image as a whole. An example
of such analysis is the nerve fiber tracking used in DTI of the brain or the
spinal cord. The voxels of the image are grouped into tracts such that the
principal eigenvectors of the voxels within a tract form continuous “flow lines”
representing a large bundle of axons.

Unlike the primary DTI processing, the secondary and tertiary processing is organ-
or tissue dependent. The choice of the processing approaches and the DT metrics
is determined by the morphology of the tissue and the information sought about
the tissue. In avascular tissues, the objective is to characterize the overall alignment
order in the tissue rather than identify individual fibers. (The latter is not possible
because of the huge number of fibers within a single voxel.) Examples of secondary
processing of DT images of cartilage will be presented in Sect. 15.4.

In the following, we provide an overview of the basic principles and the
mathematics underlying DT image processing. The processing techniques are
described without reference to a specific platform and are generally applicable.

15.3.1 Primary DTI Processing: Calculation
of the Laboratory-Frame DT

In Sect. 15.2, the signal intensity was represented as a function of the diffusion
gradient as shown in (15.20). This representation provides an intuitive and visual
explanation of the diffusive attenuation of the signal in DT images. In practice, it is
more convenient to base DTI processing on the so-called B matrix. Equation(15.20)
can be rewritten as follows (15.24):

ln

[
S(g)
S0

]
= −

3

∑
i=1

3

∑
j=1

bijDij ≡−b : D, (15.23)
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where the indices i, j take the values of x, y, or z. The B matrix, b, is a 3× 3 real
symmetric matrix. In the spin-echo experiment, its values are given by

bij = γ2gig jδ2(Δ− δ/3), (15.24)

where gi, g j are the components of the diffusion gradient vector g. The B matrix is
an extension of the quantity b introduced in (15.18) to multiple gradient directions.

There are two main advantages to using the B matrix rather than the gradient
vectors for processing of DT images. First, the functional form of the signal
attenuation is dependent on the DTI pulse sequence used. Equation(15.20) applies
to the basic spin-echo pulse-sequence with rectangular diffusion gradients. The
attenuation expression is different if a different pulse sequence or nonrectangular
diffusion gradients are used [25]. Calculation of the attenuation factor can be
difficult and time-consuming for the general pulse sequence [26]. Fortunately, the
attenuation equation is amenable to algorithmic, software-based calculation. When
the attenuation factor is kept in the simple and general form given by (15.23), any
pulse sequence-specific factors can be incorporated into the B matrix as part of the
algorithm. The software of most modern MRI spectrometers is capable of automatic
calculation of the B matrix for any pulse sequence installed on the spectrometer,
eliminating the need for the operator to perform this time-consuming calculation
manually.

The second advantage of using the B matrix is that it facilitates accounting for
contribution to the diffusive attenuation due to the imaging gradients. This source
usually leads to much smaller attenuation than the diffusion gradients. However,
it can be important when an accurate DT is sought or when imaging at high spatial
resolution. As with diffusion-gradient attenuation factors, the spectrometer software
can automatically build all the pulse sequence-specific corrections to the diffusion
attenuation factor into the B matrix. Once the B matrix for each diffusion gradient
is known, the calculation of the DT can be performed in a way that is independent
of the measurement method. Automatic calculation of the B matrix means that DTI
processing is greatly simplified from the operator’s point of view.

Equation (15.23) yields the signal attenuation for a known B matrix and a known
DT. In DTI measurements, where the DT is not known a priori, the inverse problem
must be solved: the DT needs to be determined from a set of NG ≥ 7 measurements
of the signal intensity. In this inverse problem, the inputs are NG distinct 3× 3 B
matrices (one B matrix for each diffusion gradient vector) and the corresponding
NG measured signal values. The DT is the output. In DT imaging, this problem
is solved for each voxel in the image, yielding a separate DT for each voxel (see
Fig. 15.10).

In practice, two typical scenarios are encountered:

(1) The diffusion gradient directions correspond to the “pure” elements of the
laboratory-frame DT: Dxx, Dxy, . . . , as shown in (15.21) and Fig. 15.2a.
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Fig. 15.10 Schematic
illustration of a DTI dataset.
Each voxel in the image is
characterized by a unique
diffusion tensor: three
eigenvalues (the principal
diffusivities) and three
mutually perpendicular
eigenvectors. In this
illustration, the lengths of the
eigenvectors are proportional
to the corresponding
eigenvalues

In this scenario, the diagonal elements of the laboratory-frame DT are simply the
diffusivities along the respective gradient directions:

Dii = −1
b

ln

(
Sii

S0

)
i = x,y,z. (15.25)

The off-diagonal elements are given by [27]:

Dxy = − 1
2b

(
ln

Sxx

S0
+ ln

Syy

S0

)
+

1
b

ln
Sxy

S0
,etc. (15.26)

Equations (15.25) and (15.26) are applicable only in the special case when the
gradient directions are given by (15.21). This special case is very instructive for
beginners because it visually and simply illustrates the meaning of the diagonal and
the off-diagonal elements of the DT.

(2) The second scenario is a data set containing more than the minimal number of
diffusion gradient directions, as illustrated in Fig. 15.2b.

In this case, the signal corresponding to each direction depends on a combination
of several (potentially all) elements of the DT. The DT is determined using least-
squares fitting of (15.23) to all the measured signal values simultaneously:

(i) Create a vector of length NG containing the signal values from the NG

measurements: s = (S1 . . . SNG).
(ii) For each n = 1 . . . NG, calculate yn = −ln(Sn);

(iii) Set up the linearized least-squares fit equation:

yn = A +
3

∑
i=1

3

∑
j=1

(bij)nDij. (15.27)
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Because the matrix D in (15.27) is symmetric (Dij ≡ Dji), the LSF involves 7
parameters: 6 independent elements of the symmetric DT and the 7th is the
amplitude of the nonattenuated signal.

(iv) Find the set of Dij that minimizes the sum of the squared differences between
sn and yn. This can be done using the standard linear LSF procedure [28] or
mathematical software packages such as Mathematica or Matlab. The elements
Dij comprise the reconstructed laboratory-frame DT.

The LSF-based approach of scenario (2) is generally applicable: it can be used
with an arbitrary pattern of the gradient directions (including the optimal-sampling
patterns discussed in Sect. 15.2) as well as the minimal 6 + 1 dataset. The zero-
gradient measurement S0 is crucially important in both scenarios. However, in the
LSF-based approach, the zero-gradient measurements do not have a special status:
the least-squares fitting procedure treats them on par with diffusion-attenuated
points. Nevertheless, the importance of the zero-gradient measurements can be
recognized by assigning a greater LSF weight to them than to diffusion-attenuated
measurements.

As discussed earlier, one advantage of the LSF-based approach is that it allows
the diffusive attenuation due to imaging gradients to be accounted for easily. Its
other advantage is that, when redundant measurements are available (i.e., when more
than the minimal set of 6+ 1 measurements was made), it enables an estimation of
the standard errors of the DT elements. This can be done as part of the LSF and does
not require additional computation time. In the absence of redundant measurements,
the seven parameters can always be adjusted to fit the 7 “minimal” measurements
exactly; therefore, this advantage is realized only when redundant measurements are
available.

15.3.2 Diagonalization of the DT

The laboratory-frame DT is difficult to interpret directly because its off-diagonal
elements lack a straightforward physical meaning. The off-diagonal elements can be
negative; therefore, they are not simply the diffusivities along the directions given
by (15.21) (any diffusivity must be positive).

To enable a physical interpretation, the laboratory-frame DT is usually subjected
to diagonalization. In the first approximation, diagonalization can be visualized as
a 3D rigid-body rotation that aligns the laboratory-frame coordinate axes with the
principal axes of the DT ellipsoid, as shown in Fig. 15.9. Such a rotation is described
by the Euler angles α, β, γ, which relate the orientation of the principal axes of
the DT to the laboratory axes. The lengths of the principal axes correspond to the
principal diffusivities (also known as the DT eigenvalues). The directions of the
principal axes relative in the laboratory frame are known as the DT eigenvectors.
DT eigenvectors tend to represent the alignment order in the tissue and therefore
provide a means of visualizing the tissue microstructure.
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Diagonalization may also involve improper rotations - rotations combined with
permutations of the coordinate axes or inversion of the signs of the axes. This
is because there is no physical distinction between the positive and the negative
direction of DT eigenvectors. In general, diagonalization is represented by a unitary
transformation:

D′ = U(α,β,γ)DU+ (α,β,γ), (15.28)

where U is a unitary matrix, defined as a matrix whose Hermitian conjugate equals
its inverse: UU+ = 1. Rotational transformations illustrated in Fig. 15.9 are a subset
of unitary transformations.

In general, a given DT can be diagonalized by more than one matrix U. U can be
found using the standard algorithms such as Jacobi diagonalization [28]. Packages
such as Mathematica or Matlab contain built-in diagonalization functions that can
be used for this purpose.

A general property of unitary transformations is that they conserve the sum of the
diagonal elements (the trace of the matrix). Therefore, the trace of the DT remains
unchanged under a transformation given by (15.28). This means that the mean
diffusivity can be found from the laboratory-frame DT without diagonalization:

Dav =
1
3
(D1 + D2 + D3) =

1
3
(Dxx + Dyy + Dzz). (15.29)

In the experimental setting, the measured signal inevitably contains a contribution
from random noise, which can distort the elements of the DT. In the limit of strong
noise, the distortion can be sufficiently large to make some of the diagonal elements
or the eigenvalues of the DT negative. In this case, the measurement should be
considered unreliable and the DT in the given voxel discarded. Alternatively, the
DT can be calculated using an algorithm that enforces its positive-definiteness [29].

15.3.3 Gradient Calibration Factors

Another important factor from the experimental standpoint is the need for gradient
calibration factors. On many NMR spectrometers, diffusion gradient amplitudes are
set as percentages of the maximum amplitude; however, the absolute amplitude
corresponding to “100%” may differ between the x, y, and z gradient coils. In this
case, it is useful to introduce unitless calibration factors relating the actual and the
nominal amplitude of each gradient:

greal =

⎛
⎜⎝

greal
x

greal
y

greal
z

⎞
⎟⎠= C ·gnom =

⎛
⎜⎝

Cx 0 0

0 Cy 0

0 0 Cz

⎞
⎟⎠ ·

⎛
⎜⎝

gnom
x

gnom
y

gnom
z

⎞
⎟⎠ . (15.30)
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The gradient calibration matrix, C, can be incorporated into the B matrix: in the
coordinate system of the hardware gradients, the actual and the nominal matrices
are related as breal = C · bnom ·C, where bnom is calculated from the uncalibrated
gradient values. It is important to note that C is not a unitary matrix – rather, it is a
rescaling matrix that scales different bij’s by the appropriate factors.

In a different coordinate system (say, the RPS coordinates), the B matrix can be
recalibrated according to

b′real = (UCU+) · (UbnomU+) · (UCU+) = C′ ·b′nom ·C′, (15.31)

where the ′ refers to the RPS coordinates.
An alternative approach is to make use of an isotropic region of the sample,

for example the saline surrounding the anisotropic tissue. In an isotropic region,
the diffusion attenuation should depend only on the b value (i.e., the trace of the
B matrix) and not on the direction of the diffusion gradient. By comparing the
attenuation factors of (15.17) corresponding to different gradient directions, one
can empirically introduce scalar calibration factors for each gradient direction. This
approach is often more robust than that given by (15.31).

15.3.4 Sorting Bias

Each eigenvalue of the DT is associated with a 3D vector that represents the
characteristic direction corresponding to that diffusivity, as illustrated in Fig. 15.10.
The greatest eigenvalue and the corresponding eigenvector are referred to as the
principal eigenvalue and the principal eigenvector. The second largest diffusivity is
referred to as the secondary eigenvalue (secondary eigenvector).

In the experimental context identifying the correct order of the eigenvalues is
not completely straightforward because of the presence of noise in the images.
Noise leads to the so-called sorting bias, which can be understood as follows.
Suppose that two voxels, A and B, contain physically identical tissue and are
therefore characterized by an identical underlying DT, DTrue, with eigenvalues
D1

True ≥ D2
True ≥ D3

True. The apparent DT is a combination of the underlying DT
and a contribution due to noise:

D1A = Dtrue
1A + ΔD1A D1B = Dtrue

1B + ΔD1B

D2A = Dtrue
2A + ΔD2A D2B = Dtrue

2B + ΔD2B

D3A = Dtrue
3A + ΔD3A D3B = Dtrue

3B + ΔD3B (15.32)

where ΔD1A . . . ΔD3B are contributions from noise. Therefore, although the under-
lying DT in the two voxels is the same, the experimentally measured tensors in
voxels A and B usually differ due to the random nature of the noise contribution.
Suppose that, in a particular instance, ΔD1A and ΔD2B are negative, while ΔD1B and
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ΔD2A are positive. If the noise is sufficiently large, or the DT anisotropy small, the
order of the eigenvalues in voxel A may be reversed: D1A < D2A but D1B > D2B. If
the sorting of the eigenvalues is based only on the magnitude of the diffusivity, then
the eigenvalues and the eigenvectors in voxel A will be assigned incorrectly: D2A

will be taken as the principal eigenvalue and D1A as the secondary eigenvalue. This
sorting bias has two main consequences:

(1) It results in an overestimation of the principal eigenvalue and underestimation
of the secondary eigenvalue. This happens because the diffusivity-based sorting
fails to take into account the possibility of negative ΔD1A, which introduces an
inherent bias into the distribution of the eigenvalues;

(2) In the example above, the direction of the principal DT eigenvector in voxel A
will be off by 90◦ because the eigenvalues are misidentified. Therefore, sorting
bias also introduces disjoint voxels in an eigenvector map.

The basic principles of techniques that minimize sorting bias can be understood
based on the following idea. If the morphology of the tissue varies slowly from
one voxel to another, then it can be assumed that the corresponding eigenvectors
in neighboring voxels should have similar directions. Conversely, in the biased
example described above, the apparent principal eigenvectors in voxels A and
B would be nearly perpendicular. Therefore, in order to minimize sorting bias,
the eigenvalues and eigenvectors need to be treated as pairs, and the sorting
of eigenvalues needs to take into account the directions of the corresponding
eigenvectors. A number of approaches exist that alleviate (but do not completely
eliminate) sorting bias [30].

15.3.5 Fractional Anisotropy

For a prolate DT (D1 > D2 ≈ D3), the FA is defined as

FA =

√
3
2

√
(D1 − D̄)2 +(D2 − D̄)2 +(D3 − D̄)2√

D2
1 + D2

2 + D2
3

=
1√
2

√
(D1 −D2)2 +(D2 −D3)2 +(D3 −D1)2√

D2
1 + D2

2 + D2
3

. (15.33)

This definition is appropriate for diffusion between long fibers (such as in AC) or
withiners (e.g., within nerve fiber tracts). In the case of extreme anisotropy, the FA
given by (15.33) equals 1, while in the perfectly isotropic case FA = 0.

For an oblate DT (D1 ≈ D2 > D3), the appropriate definition of the FA is

FA =

√
2
3

√
(D1 − D̄)2 +(D2 − D̄)2 +(D3 − D̄)2√

D2
1 + D2

2 + D2
3

. (15.34)
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The FA given by (15.34) can be used for diffusion between confining planes (e.g.,
diffusion of water molecules in the aqueous domain of lamellar lipid bilayers) and
also has the range between 1 (extreme anisotropy) and 0 (isotropic limit).

The value of FA represents the amount of restriction imposed on diffusional
displacement of water molecules by the solid component of the tissue (e.g., collagen
fibers or cell walls). The value of FA depends on both the relative volume fraction
occupied by the solid domain and the degree of alignment of the fibers or cells.
FA is therefore a useful morphological metric of the tissue. Specific examples of
the relationship between FA and the morphology of the tissue are presented in
Sect. 15.4.

The theoretical value of the FA defined according to (15.33) and (15.34) in the
isotropic case is zero. In practice, the presence of noise in MR signal leads to a
positive FA even when the underlying eigenvalues of the true DT are equal. The
origin of this is fundamentally the same as the origin of sorting bias discussed above.
If D1A

true = D2A
true = D3A

true, the measured eigenvalues D1A, D2A and D3A would
almost always be different due to the presence of noise, as shown in (15.32). By
combining (15.32) and (15.33), it is easily seen that the measured FA in this case
given by

FAnoise =

√
3
2

ΔD
D

. (15.35)

Equation(15.35) represents a “noise” FA that is observed in isotropic parts of the
sample such as water or saline surrounding the anisotropic tissue. Its magnitude
depends on the conditions of the measurement but typically lies in the range
0.01–0.1 [31–33]. Nonzero FA due to noise is also observed in Monte Carlo
simulations of the DT, where it is inversely proportional to the square root of the
ensemble size [28,34]. Noise FA should be taken as a baseline when interpreting the
values of FA in tissue. In the limit of low noise (ΔD/D << 1), the experimentally
measured FA is the sum of the “true” underlying FA (FAtrue) and the noise
contribution given by (15.35):

FA = FAtrue + FAnoise (15.36)

15.3.6 Other Anisotropy Metrics

The FA definitions of (15.33) and (15.34) are usually used to characterize axially
symmetric tensors (when two of the eigenvalues are equal or nearly equal to each
other). In the asymmetric case, the following model-free parameters can be applied
to characterize the DT anisotropy:

η =
1
3

[
D1 − (D2 + D3)

2

]
(15.37)
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ε =
D2 −D3

2
. (15.38)

In the case of axial symmetry, ε = 0.

15.4 Applications of DTI to Articular Cartilage

In Sect. 15.2.4, we discussed two ways of presenting DT images of the eye lens:
maps of individual DT elements and eigenvector maps. In this section, we focus on
another avascular tissue, articular cartilage (AC) [31–33]. We discuss several types
of DTI parameter maps used by us for visualizing the DT in this tissue. Different
types of parameter maps emphasize different aspects of the DT, and the choice
of the type of map to be used is determined by what characteristics of the tissue
microstructure need to be gleaned from the images.

15.4.1 Bovine AC

Figure 15.11 shows a spin echo MR image from a sample of bovine patellar
AC (with bone attached) recorded at a magnetic field strength B0 of 16.4 T. The
sample, immersed in Fomblin� oil (which gives no 1HNMR signal), was oriented
with the normal to the articular surface at 55◦ to the static magnetic field to: (1)
optimize the SNR, and (2) suppress the characteristic banding seen in conventional
MR images of AC to ensure relatively uniform signal intensity throughout the
cartilage [31]. Diffusion-weighted images were acquired with the minimal set of
diffusion gradients using a spin-echo pulse sequence with the following acquisition
parameters: echo time, 18 ms; repetition time 700 ms; average b value 1,550smm−2;
2 ms diffusion gradients; 12 ms diffusion interval; 10×12.8mm field of view; 50μm
in-plane resolution and 400μm slice thickness. Two images were acquired without
diffusion gradients, one of which is shown in Fig. 15.11. Total acquisition time was
14 h 38 m.

The magnitude of the FA is shown in Fig. 15.12a with black representing the
smallest FA. The direction of the principal diffusion eigenvector within the voxels is
incorporated into the map in Fig. 15.12b using color. Figure 15.13 shows the average
FA as a function of distance from the articular surface.

In Fig. 15.14, the principal eigenvectors are scaled by their eigenvalue to enable
visualization of how the collagen fibers ‘direct’ the diffusion of water perpendicular
to the supporting bone in the radial zone. The fibers are less ordered in the
transitional zone and align parallel to the articular surface in the superficial zone.
This figure shows the eigenvectors from two contiguous slices.
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Fig. 15.11 A raw SE image of an excised sample of bovine articular cartilage at 16.4 T

15.4.2 Human AC

The image in Fig. 15.15 was recorded at 7 T from a sample of human right lateral
tibia, obtained from a 57-year-old male undergoing complete knee replacement.
This region was the only remaining cartilage in the joint and was described
by the surgeon as being in poor condition. Acquisition parameters: echo time,
13.3 ms; repetition time 2,000 ms; 2 ms diffusion gradient duration; 8 ms diffusion
interval; average b value 1,075mm−2; 20×20mm field of view, with a 156μm in-
plane isotropic voxel dimension and 2 mm slice thickness. Total acquisition time
was 19 h.
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Fig. 15.12 (a) Fractional anisotropy map of the sample shown in Fig. 15.11. Black corresponds to
FA = 0; white to FA = 0.15. (b) Directional FA map of the same sample. The colors denote the
direction of the principal DT eigenvector: Read, Phase, and Slice gradient directions are shown in
red, green, and blue, respectively. Color intensity reflects the magnitude of the FA

Fig. 15.13 The average fractional anisotropy in the same sample plotted as a function of distance
from the articular surface
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Fig. 15.14 A quiver plot showing the directions of the principal DT eigenvectors in the same
cartilage sample
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Fig. 15.15 MR image of human cartilage recorded at 7 T in vitro

Fig. 15.16 The conventional (a) and the directional (b) FA maps of the same human cartilage
sample. In (b), the principal eigenvector direction is represented by colors: red, left-right (Read);
blue, up-down (Phase); and Green, in-out (Slice)

Figure 15.16 shows the conventional (a) and the directional (b) FA maps for the
human cartilage sample shown in Fig. 15.15. The color coding in the directional
map is identical to Fig. 15.12b.
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Fig. 15.17 The average FA
plotted against depth from the
articular surface

The profile of average FA (± std dev) as a function of distance from the articular
surface for the human cartilage sample is shown in Fig. 15.17. The FA is within
the expected range for cartilage of (0.04–0.28) [34], except for the region near the
supporting bone, where calcification is likely to contribute to an increase in the
observed FA.

Figure 15.18 shows a ‘quiver’ plot for a single slice of the same human cartilage
sample in which the principal eigenvector is represented by a line, proportional in
length to the principal eigenvalue.

In addition to DTI processing with the Matlab or Mathematica software packages
utilized by us, DTI data can be processed using proprietary software from the
scanner manufacturers if available, or transformed data to a common format, such
as DICOM, Analyse or NIFTI and processed using one of the readily available
shareware diffusion processing packages.
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Fig. 15.18 Quiver plot showing the principal DT eigenvector for each voxel in the sample
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Lantuéjoul, C., 42
Laplacian operator, 32, 41, 276
Larmor equation, 345
Lavaste, F., 217
Least mean square algorithm, 153
Lee, H., 98
Lee, R.L., 206
Le, H.M., 201
Lehmann, H., 310
Lei, T., 306
Lespessailles, E., 204, 206



Index 377

Levin, D., 310
Likelihood, 54, 70, 91, 102, 272, 279
Linear structures

multiple directional non-maximum
suppression (MDNMS), 168–169,
176, 178, 279

non-maximum suppression (NMS),
169–171, 182

Linear windows, 169, 170, 178, 180
Line Operator (LinOp), 146, 158, 161
Linked list. See Connected components
Li, W., 310
Local orientation, 146, 153–155
Lopera, J.E., 310
Lorenz, C., 147
Luengo Hendriks, C.L., 5
Lum, E.B., 301, 310
Lustig, M., 330, 332
Lynch, M., 102

M
Magnetic resonance imaging (MRI)

diffusion tensor images, 309, 341–368
echo time (TE), 91
frequency encoding, 346
gradient echo (GE), 90
inversion recovery, 90
longitudinal relaxation time (T1), 90, 320
pulsed field gradient spin echo (PFGSE),

347–349
pulse sequences, 90, 91
repetition time (TR), 91
spin echo (SE), 90, 349, 363
transverse relaxation time (T2), 90, 320

Ma, K.-L., 301
Malignancy associated change (MAC). See

Cervical cancer
Malik, R.A., 145
Malladi, R., 37, 71
Malm, P., 5
Mandelbrot,B.B., 210
Marker, 20, 29, 33, 34, 40, 44, 54, 148, 252,

261
Markov random field, 33, 60, 122
Marr–Hildreth theory, 32
Mask, 16, 19, 60, 176, 258, 261
Matched filter. See Filter, matched
MatLab (software), 6–10, 19, 351, 359, 368
Maximal continuous flow, 50–51
Max, N., 298
Medial axis, 17, 117, 123, 124, 131–133, 137,

138
Median filter. See Filter, median

Messidor database, 272, 273, 279, 282, 285
Microaneurysms, 249–251, 254–256, 259–263,

270–273, 279–285
Microarchitecture, 194–196, 198–221
Model-based filtering

deformable models, 121–122
geometry models, 120–121
intensity models, 120

Modulation transfer function (MTF), 214
Moments. See Texture
Momot, K.I., 341
Monogenic signal, 147, 158, 161
Monte Carlo methods, 353, 362
Morphology, gray-scale, 96, 169, 203, 211,

215, 258, 276, 279
Mortensen, E., 33
Mosaics. See Segmentation
Moving-average filter. See Filter, moving-

average
Mueller,K., 306
Mueller, K., 306
Multiple sclerosis. See Spinal cord

segmentation
Murakami, J.W., 94
Musacchio, M., 115

N
Najman, L., 27, 45, 125
Nerve fibers

nerve branch density, 150–151
nerve fiber density, 150–151
nerve fiber length, 150, 157, 161–162
neurites, 177, 185

Neumann, U., 307
NeuronJ (software), 276–279, 286
Neuropathy disability score (NDS), 160
Noise

additive, 32, 257
fractional Brownian, 213
reduction, 210
white, 32, 257

Nuclear magnetic resonance (NMR), 115, 320,
345–347, 350, 359

O
Odhner, D., 306
Opacity, 291, 298–300, 302
Opening, 125, 258–262
Orientation entropy, 264
Orientation field, 153–155
O’Shea, R., 188
Osher, S., 35, 71



378 Index

Osteopenia, 194, 212
Osteoporosis, 193–221, 231
Otsu method. See Segmentation

P
PACS systems, 230
Pan, X., 332
Papanicolaou, G.N., 10
Pap smear. See Cervical cancer
Parfitt, A.M., 200
Park, R.H., 98
Partial volume effect (PVE), 29, 82, 93–94,

118–119, 126, 201, 353
Passat, N., 115
Pauly, J.M., 330, 332
Payne, M., 167
Peng, Q., 91, 99, 100, 108
Peters, T.M., 291
Phase contrast microscopy, 189, 279
Phase dispersion, 347
Pipeline, 291–311
Polynomials, 69, 235–237
Pope, J.M., 341
Post, F.H., 306
Precession. See Larmor equation
Predictive power, 265
Prewitt, J.M.S., 12
Probability density function (PDF), 100–101
Pseudo-texture. See Texture

Q
Quaternions, 147
Quiver plot, 352, 366, 368, 369

R
Raggio, G., 332
Rajapakse, J.C., 94, 104
Rare event model, 15–16, 23
Rautek, P., 300, 302
Raycasting, 295, 296, 302–304, 306
Receiver operating characteristic (ROC), 158,

160
Reconstruction, 48, 81, 147, 199, 205, 220,

235, 236, 261, 272, 293, 298, 304,
321, 323, 325–327, 332, 335–338

Rendering. See Three-dimensional
visualization

Rezk-Salama, C., 300, 310
RGB color, 7, 252, 272, 279, 302
Rheingans, P., 301
Riesz transform, 147

Riggs, B.L., 220
Rockoff, S.D., 194, 217
Rottger, S., 298
Roughness. See Texture
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