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Foreword

More than a generation of German-speaking students around the world have worked their
way to an understanding and appreciation of the power and beauty of modern theoretical
physics—with mathematics, the most fundamental of sciences—using Walter Greiner’s
textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field of science in a
series of closely related textbooks is not a new one. Many older physicians remember with
real pleasure their sense of adventure and discovery as they worked their ways through the
classic series by Sommerfeld, by Planck, and by Landau and Lifshitz. From the students’
viewpoint, there are a great many obvious advantages to be gained through the use of
consistent notation, logical ordering of topics, and coherence of presentation; beyond this,
the complete coverage of the science provides a unique opportunity for the author to convey
his personal enthusiasm and love for his subject.

These volumes on classical physics, finally available in English, complement Greiner’s
texts on quantum physics, most of which have been available to English-speaking audiences
for some time. The complete set of books will thus provide a coherent view of physics that
includes, in classical physics, thermodynamics and statistical mechanics, classical dynam-
ics, electromagnetism, and general relativity; and in quantum physics, quantum mechanics,
symmetries, relativistic quantum mechanics, quantum electro- and chromodynamics, and
the gauge theory of weak interactions.

What makes Greiner’s volumes of particular value to the student and professor alike is
their completeness. Greiner avoids the all too common “it follows that . . . ,” which conceals
several pages of mathematical manipulation and confounds the student. He does not hesitate
to include experimental data to illuminate or illustrate a theoretical point, and these data,
like the theoretical content, have been kept up to date and topical through frequent revision
and expansion of the lecture notes upon which these volumes are based.

Moreover, Greiner greatly increases the value of his presentation by including something
like one hundred completely worked examples in each volume. Nothing is of greater
importance to the student than seeing, in detail, how the theoretical concepts and tools
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vi FOREWORD

under study are applied to actual problems of interest to working physicists. And, finally,
Greiner adds brief biographical sketches to each chapter covering the people responsible
for the development of the theoretical ideas and/or the experimental data presented. It
was Auguste Comte (1789–1857) in his Positive Philosophy who noted, “To understand a
science it is necessary to know its history.” This is all too often forgotten in modern physics
teaching, and the bridges that Greiner builds to the pioneering figures of our science upon
whose work we build are welcome ones.

Greiner’s lectures, which underlie these volumes, are internationally noted for their
clarity, for their completeness, and for the effort that he has devoted to making physics an
integral whole. His enthusiasm for his sciences is contagious and shines through almost
every page.

These volumes represent only a part of a unique and Herculean effort to make all of
theoretical physics accessible to the interested student. Beyond that, they are of enormous
value to the professional physicist and to all others working with quantum phenomena.
Again and again, the reader will find that, after dipping into a particular volume to review a
specific topic, he or she will end up browsing, caught up by often fascinating new insights
and developments with which he or she had not previously been familiar.

Having used a number of Greiner’s volumes in their original German in my teaching
and research at Yale, I welcome these new and revised English translations and would
recommend them enthusiastically to anyone searching for a coherent overview of physics.

D. Allan Bromley
Henry Ford II Professor of Physics
Yale University
New Haven, Connecticut, USA



Preface

Theoretical physics has become a many faceted science. For the young student, it is difficult
enough to cope with the overwhelming amount of new material that has to be learned,
let alone obtain an overview of the entire field, which ranges from mechanics through
electrodynamics, quantum mechanics, field theory, nuclear and heavy-ion science, statistical
mechanics, thermodynamics, and solid-state theory to elementary-particle physics; and this
knowledge should be acquired in just eight to ten semesters, during which, in addition, a
diploma or master’s thesis has to be worked on or examinations prepared for. All this can be
achieved only if the university teachers help to introduce the student to the new disciplines
as early as possible, in order to create interest and excitement that in turn set free essential
new energy.

At the Johann Wolfgang Goethe University in Frankfurt am Main, we therefore con-
front the student with theoretical physics immediately, in the first semester. Theoretical
Mechanics I and II, Electrodynamics, and Quantum Mechanics I—An Introduction are the
courses during the first two years. These lectures are supplemented with many mathemati-
cal explanations and much support material. After the fourth semester of studies, graduate
work begins, and Quantum Mechanics II—Symmetries, Statistical Mechanics and Ther-
modynamics, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory
of Weak Interactions, and Quantum Chromodynamics are obligatory. Apart from these,
a number of supplementary courses on special topics are offered, such as Hydrodynam-
ics, Classical Field Theory, Special and General Relativity, Many-Body Theories, Nuclear
Models, Models of Elementary Particles, and Solid-State Theory.

This volume of lectures, Classical Mechanics: Point Particles and Relativity, deals with
the first and more elementary part of the important field of classical mechanics. We have
tried to present the subject in a manner that is both interesting to the student and easily
accessible. The main text is therefore accompanied by many exercises and examples that
have been worked out in great detail. This should make the book useful also for students
wishing to study the subject on their own.

Beginning the education in theoretical physics at the first university semester, and not as
dictated by tradition after the first one and a half years in the third or fourth semester, has
brought along quite a few changes as compared to the traditional courses in that discipline.
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viii PREFACE

Especially necessary is a greater amalgamation between the actual physical problems and
the necessary mathematics. Therefore, we treat in the first semester vector algebra and
analysis, the solution of ordinary, linear differential equations, Newton’s mechanics of a
mass point culminating in the discussion of Kepler’s laws (planetary motion), elements
of astronomy, addressing modern research issues like the dark matter problem, and the
mathematically simple mechanics of special relativity.

Many explicitly worked-out examples and exercises illustrate the new concepts and
methods and deepen the interrelationship between physics and mathematics. As a matter of
fact, this first-semester course in theoretical mechanics is a precursor to theoretical physics.
This changes significantly the content of the lectures of the second semester addressed in
the volume Classical Mechanics: System of Particles and Hamiltonian Dynamics.

The new mathematical tools are explained and exercised in many physical examples. In
the lecturing praxis, the deepening of the exhibited material is carried out in a three-hour-
per-week theoretica, that is, group exercises where eight or ten students solve the given
exercises under the guidance of a tutor.

Biographical and historical footnotes anchor the scientific development within the general
context of scientific progress and evolution. In this context, I thank the publishers Harri
Deutsch and F. A. Brockhaus (Brockhaus Enzyklopädie, F.A. Brockhaus, Wiesbaden—
marked by [BR]) for giving permission to extract the biographical data of physicists and
mathematicians from their publications.

We should also mention that in preparing some early sections and exercises of our
lectures we relied on the book Theory and Problems of Theoretical Mechanics, by Murray
R. Spiegel, McGraw-Hill, New York, 1967.

Over the years, we enjoyed the help of several students and collaborators, in particular,
H. Angermüller, P. Bergmann, H. Betz, W. Betz, G. Binnig (Nobel prize 1986), J. Briechle,
M. Bundschuh, W. Caspar, C. v. Charewski, J. v. Czarnecki, R. Fickler, R. Fiedler, B. Fricke
(now professor at Kassel University), C. Greiner (now professor at JWG-University, Frank-
furt am Main), M. Greiner, W. Grosch, R. Heuer, E. Hoffmann, L. Kohaupt, N. Krug,
P. Kurowski, H. Leber, H. J. Lustig, A. Mahn, B. Moreth, R. Mörschel, B. Müller (now
professor at Duke University, Durham, N.C.), H. Müller, H. Peitz, J. Rafelski (now pro-
fessor at University of Arizona, Tuscon), G. Plunien, J. Reinhardt, M. Rufa, H. Schaller,
D. Schebesta, H. J. Scheefer, H. Schwerin, M. Seiwert, G. Soff (now professor at Technical
University Dresden), M. Soffel (now professor at Technical University Dresden), E. Stein
(now professor at Maharishi University, Vlodrop, Netherlands), K. E. Stiebig, E. Stämmler,
H. Stock, H. Störmer (Nobel prize 1998), J. Wagner, and R. Zimmermann. They all made
their way in science and society, and meanwhile work as professors at universities, as
leaders in industry, and in other places. We particularly acknowledge the recent help of
Dr. Sven Soff and Dr. Stefan Scherer during the preparation of the English manuscript. The
figures were drawn by Mrs. A. Steidl.

The English manuscript was copy-edited by Kristen Cassereau and the production of the
book was supervised by Timothy Taylor of Springer-Verlag New York, Inc.

Walter Greiner
Johann Wolfgang Goethe-Universität
Frankfurt am Main, Germany
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PART I
VECTOR CALCULUS



1 Introduction and
Basic Definitions

Physical quantities that are completely determined by the specification of one numerical
value and a unit are called

scalars (e.g., mass, temperature, energy, wavelength).

Quantities that for a complete description besides the numerical value and the physical

A

a B

Vector a pointing from A
to B.

unit still need the specification of their direction are called

vectors (e.g., force, velocity, acceleration, torque).

A vector may be represented geometrically by an oriented
distance, i.e., by a distance associated with a direction, such that
holds; for example: Let A be the initial point and B the endpoint
of the vector a (compare figure).

The magnitude of the vector is then represented by the length of the distance AB. A
vector is frequently described symbolically by a Latin letter with a small arrow attached to
elucidate the vector character. Other possible representations make use of German letters
or emphasize the quantity by bold printing.

The magnitude of a vector a is written as: |a| = a.

a

b
a b=

The vectors a and b are equal.

Definition: Two vectors a and b are called equal if

1. |a| = |b|,
2. a ↑↑ b (aligned; parallel).

We then write a = b.
That means: All distances of equal length and equal

orientation are representations of the same vector on equal
footing. Hence, the specific location of the vector in space is being disregarded.

A vector with opposite direction but equal magnitude of a is denoted as −a. Oppositely
equal vectors have the same length (|a| = | − a|) and are located on parallel straight lines
but have opposite orientations; that is, they are antiparallel (a ↑↓ −a). If, for instance,

a = −→
AB, then −a = −→

B A.

2



INTRODUCTION AND BASIC DEFINITIONS 3

b

a

ba
b+

Addition of the vectors a and b.

Addition: If two vectors a and b are added, the initial
point of the one vector is brought by a parallel shift to
coincide with the endpoint of the other one. The sum a+b,
also called the resultant, then corresponds to the distance
from the initial point of the first vector to the endpoint
of the second one. This sum may also be found as the
diagonal of the parallelogram formed by a and b (compare
the figure).

Rules of calculation: There hold

a + b = b + a (commutation law)

and
(a + b) + c = a + (b + c) (association law),

as is seen immediately (compare the figures).

b

b

a

a

b
a+

a b+

Illustration of the commutativity of the addi-
tion of vectors.

b
a b+

a b c+ +

b c+

c

Illustration of the associativity of the addi-
tion of vectors.

Subtraction: The difference of two vectors a and b is defined as

a − b = a + (−b).

a

–a

The zero vector.

Zero (Null) vector: The vector difference a − a is denoted
as zero vector (or null vector):

a − a = 0 or a − a = 0.

The zero vector has magnitude 0; it is orientationless.

Multiplication of a vector by a scalar: The product pa of a vector a by a scalar p,
where p is a real number, is understood as the vector having the same orientation as a and
the magnitude |pa| = |p| · |a|.



4 INTRODUCTION AND BASIC DEFINITIONS 1

a a

3a

The multiplication of a vector a by a scalar p (in
this case, p = 3).

Rules of calculation:

q(pa) = p(qa) = qpa (where p and q are real),

(p + q)a = pa + qa,

p(a + b) = pa + pb.

These rules are immediately intelligible
and don’t need any further explanation.



2 The Scalar Product

The physical quantities force and path are oriented quantities and are represented by the
vectors F and s. The mechanical work W performed by a force F along a straight path s is

W = Fs cos ϕ = |F| |s| cos ϕ,

where ϕ is the angle enclosed by F and s. W by itself, although originating from two
vectors, is a scalar quantity. With a view on physical applications of this kind, we therefore
define:

The scalar product a · b of two vectors is understood as

a · b = |a| · |b| · cos ϕ,

where ϕ is the angle enclosed by a and b. a · b is a real number. Expressed by words, the
scalar product is defined as follows: a · b = |a| multiplied by the projection of b onto a, or
vice versa.

|a
| c

os
ϕ

|b | cosϕ

b

b

a
aϕ ϕ

Illustration of the scalar product.

The visual meaning of the scalar product:

magnitude of the projection of b onto a multiplied by |a|, or

magnitude of the projection of a onto b multiplied by |b|.

5



6 THE SCALAR PRODUCT 2

Properties of the scalar product: a · b takes its maximum value for ϕ equal to zero
(cos 0 = 1, a parallel to b)

a · b = |a| · |b|.
For ϕ = π the scalar product takes its minimum value (cos π = −1, a antiparallel to b),
namely

a · b = −|a| · |b|.
For ϕ = π/2, a · b = 0 holds, even if a and b are nonzero (cos π/2 = 0,
a perpendicular to b); thus

a · b = 0 if a ⊥ b.

Rules of calculation: The following are true:

a · b = b · a (commutativity);

a · (b + c) = a · b + a · c (distributivity);

p(b · c) = (p b) · c (associativity).

The first and last rules are immediately intelligible; the second rule is illustrated in the
figure below.

If b, c, a are not coplanar, the rule of distributivity may easily be visualized by a triangle
located in space. The vector a may easily be visualized by a pencil or a pointing rod
(compare the figures!).

b

a

a

a

a
|a | |a |

|a |

c

c.

(b + c ).

b.
b + c

Illustration of the distributivity law.

b

( + )
b c

a

b
c+a

c

ca
ba

Illustration of the distributivity law in
space.

Unit vectors: Unit vectors are understood as vectors of magnitude 1. If a �= 0, then

e = a
|a|

is a unit vector pointing along a. Actually, the magnitude of e equals 1 since |e| =∣∣a/|a|∣∣ = |a|/|a| = 1. A possibility frequently used in physics is to assign a direction to
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a scalarly formulated equation by the unit vector. For example, the gravitational force has
the magnitude

F = γ
mM

r2
.

M

mr

er

The unit vector pointing
from the big mass to the
small mass is er = r/|r|.

It is acting along the connecting line between the two masses M
and m, hence

F = −γ
mM

r2

r
|r| .

F is the force applied by the mass M to the mass m. Its direction
is given by −er = −r/|r|. Hence it is acting toward the mass M .

Cartesian unit vectors: The unit vectors pointing along the positive x-, y-, and z-axes
of a Cartesian coordinate frame are defined as follows:

e1 (in x-direction) or also i;

e2 (in y-direction) or also j;

e3 (in z-direction) or also k.

There exist two kinds of Cartesian coordinate frames, namely right-handed frames and
left-handed frames (compare the figures below).

k
j

i

right-handed system: k points into the di-
rection of a right-handed screw when i �→ j
is rotated along the shortest possible way.

k

j

i

left-handed system: k points into the direc-
tion of a left-handed screw when i �→ j is
rotated along the shortest possible way.

We shall always use only right-handed frames in these lectures!

Orthonormality relations: i, j, k or e1, e2, e3 will be used in the following always con-
currently, depending on convenience.

We now consider the properties of the Cartesian unit vectors with respect to formation of
scalar products: Since the enclosed angle is each a right one, the following relations hold:

i · i = j · j = k · k = 1 (because of ϕ = 0, hence cos 0 = 1);
i · j = i · k = j · k = 0 (because of ϕ = π/2, hence cos π/2 = 0).

(2.1)
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These relations are combined by defining

eµ · e� = δµ�, where δµ� =
{

0 for � �= µ,

1 for � = µ,

and is called the Kronecker symbol.1 For the three-dimensional space, µ and � are running
from 1 to 3, e1 = i, e2 = j, e3 = k.

1Leopold Kronecker, b. Dec. 7, 1823, Liegnitz (Legnica)—d. Dec. 29, 1891, Berlin. Kronecker was a rich
private person who moved to Berlin in 1855. He taught for many years at the university there, without having
a chair. Only in 1883, after retirement of his teacher and friend Kummer, he took a professorship. His most
important publications concern arithmetics, theory of ideals, number theory, and elliptic functions. Kronecker
was the leading representative of the Berlin School, which claimed the necessity of arithmetization of the entire
mathematics.



3 Component
Representation
of a Vector

a

c

b

d

f

The vector polygon.

The vector a, which is uniquely represented by the sum of
vectors—in our example by the sum of the vectors b, c, d, f—
is called the linear combination of the vectors (e.g., b, c, d,
and f). The term “vectors” and their “linear combination” thus
graphically form a closed polygon, the vector polygon. One
may, of course, conclude from given vectors b, c, d on the
linear combination that yields the arbitrary (but fixed) vector a.

According to the definition introduced above, the vector a
then must be a linear combination of the vectors b, c, d;
thus

a = q1b + q2c + q3d.

q1, q2, and q3 are denoted as components of the vector a with respect to b, c, d. The vectors
b, c, d must be linearly independent, that is, none of the three vectors may be represented
by the other two vectors. Otherwise not every arbitrary vector a could be combined out
of the three basic vectors b, c, d. If, for example, d could be expressed by b and c, hence
d = αb + βc, then a = (q1 + q3α)b + (q2 + q3β)c would always be confined to lie in the
plane spanned by b and c. But an arbitrary vector a in general does not lie in this plane
(e.g., points out of this plane). One says: The base b, c is incomplete for arbitrary vectors
a. In the three-dimensional space one therefore always needs three basic vectors that are
linearly independent (i.e., cannot be expressed by each other).

Component representation of a vector in Cartesian coordinates: Any vector of the
three-dimensional space may be represented as a linear combination of the Cartesian unit

9



10 COMPONENT REPRESENTATION OF A VECTOR 3

z z′
y

y′

x′

x
1

11

k j

i

a

az
ay

ax

The components of a vector are obtained by
parallel projection.

vectors i, j, k. This representation leads to
simple and transparent calculations, due to
the orthogonality relations. One then has

a = ax i + ayj + azk,

where ax = a · i, ay = a · j, and az = a · k
are the projections of a onto the axes of the
frame. The unit vectors i, j, k (or e1, e2, e3)
are also called base vectors.

Besides the representation as a sum of vec-
tors along the unit vectors, the vector a still
may be represented as

a = (ax , ay, az) (row notation),

a =

⎛⎜⎜⎝
ax

ay

az

⎞⎟⎟⎠ (column notation).

If the base vectors are known, it is sufficient to know the three components.

Calculation of the magnitude of a vector from the components: According to the theo-
rem of Pythagoras, the magnitude of a vector a is calculated from its Cartesian components
as follows:

|a| =
√

a2
x + a2

y + a2
z .

Addition of vectors expressed by components: One has

a + b =
3∑

i=1

ai ei +
3∑

i=1

bi ei =
3∑

i=1

(ai + bi )ei

= (a1 + b1)e1 + (a2 + b2)e2 + (a3 + b3)e3

= (a1 + b1, a2 + b2, a3 + b3) .

Here both commutativity as well as associativity of vector addition have been used
repeatedly. Thus, the components of the sum vector are the sums of the corresponding
components of the individual vectors.

The scalar product in component representation: One has

a · b = (ax i + ayj + azk) · (bx i + byj + bzk),

= ax bx i · i + ax by i · j + ax bz i · k + aybx j · i + aybyj · j + aybzj · k

+ azbx k · i + azbyk · j + azbzk · k .
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Taking into account the orthonormality relations (2.1), we then get

a · b = ax bx + ayby + azbz . (3.1)

Finally, setting for the indices x =̂ 1, for y =̂ 2, and for z =̂ 3, then one can write

a · b =
3∑

i=1

ai bi . (3.2)

Hence, the scalar product of two vectors may be evaluated simply by multiplying the cor-
responding components of the vectors by each other and summing over the three products.

Problem 3.1: Addition and subtraction of vectors

A DC-10 “flies” north-west at 930 km/h relative to ground. A strong breeze blows from the west with
120 km/h relative to ground.

What are the velocity and direction of flight of the plane, assuming that there is no wind deflection?

North

West East

South

y

x

w

vo ey

ex

vm

ϕ

45º

The relative directions of wind and airplane velocity.

Solution Let

|vm | = 930 km/h, the velocity of the plane in the wind,

|v0| = the velocity of the plane without wind,

|w| = the wind velocity.

Now we can write

w = 120 ex ,

vm = −930 cos(45◦)ex + 930 sin(45◦)ey

= −657.61ex + 657.61ey,

v0 = vm − w = −777.61ex + 657.61ey

⇒ v0 = |v0| = 1018.39 km/h,

tan ϕ = |v0y |
|v0x | = 0.846

⇒ ϕ = 40.2◦.
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z

z

x
x

z

x

y

y
P (x,y,z)

|r
| =

x
+

y
+

z

2
2

2

x + y2
2

r =
(x

,y
,z

)

The position vector and its coordinates.

The position vector: A point P in space may be
uniquely fixed by specifying the vector beginning at
the origin of the coordinate frame and pointing to
the point P as endpoint.

The components of this vector, the position vec-
tor, then correspond to the coordinates (x, y, z) of
the point P . Thus, for the position vector, which is
mostly abbreviated by r, there holds

r = x i + yj + zk, or: r = (x, y, z);
|r| =

√
x2 + y2 + z2.

The angle between two vectors: From the knowl-
edge of the two possibilities for represent-
ing the scalar product

a · b = |a| |b| cos ϕ = ax bx + ayby + azbz,

one obtains the following relation for the angle enclosed by a and b:

cos ϕ = a · b
|a| |b| = ax bx + ayby + azbz√

a2
x + a2

y + a2
z

√
b2

x + b2
y + b2

z

.



4 The Vector Product
(Axial Vector)

One may define a further product between vectors. Here a new vector arises that is defined
as follows.

Definition: The vector product of two vectors a and b is the vector

a × b = (|a| · |b| sin ϕ)n, (4.1)

where n is the unit vector being perpendicular to the plane fixed by a and b, and pointing
out of the plane as a right-handed helix when rotating the first vector of the product into

ϕ
a

b h b= sin ϕ

Geometrical interpretation of the
absolute value of the vector prod-
uct as area.

the second vector. Note that the rotation has to be per-
formed along the shortest path.

The magnitude of the vector product is equal to the area
of the parallelogram spanned by a and b, as is seen from
the figure.

F = |a × b| = |a| · |b| sin ϕ = ab sin ϕ,

Properties of the vector product: a × b takes its maximum magnitude for ϕ = π/2,
sin(π/2) = 1, a perpendicular to b, |a × b| = |a| |b|.

a × b vanishes for ϕ = 0 (sin 0 = 0, a parallel to b).

a × b = 0

{
if a ↑↓ b or (↑↓ means antiparallel)

if a ↑↑ b. (↑↑ means parallel)

The formula also includes the special case a = b, thus

a × a = 0.

13



14 THE VECTOR PRODUCT (AXIAL VECTOR) 4

Notations:

	 represents a vector perpendicular to the drawing plane and pointing out of the plane
(arrowhead).

⊗ represents a vector perpendicular to the drawing plane and pointing into the plane
(arrowbase).

Rules of calculation: The vector product has the following properties:

I. a × b = −b × a (no commutativity);
II. a × (b + c) = a × b + a × c (distributivity);
III. a × (b × c) �= (a × b) × c (no associativity);
IV. p(a × b) = (pa) × b = a × (pb).

(4.2)

Rule I follows immediately from the definition of the vector product (compare with the
figure).

Rule III: The vector on the left side lies in the plane spanned by the vectors b and c; the
vector on the right side is in the plane spanned by a and b. The subsequent example also
shows that associativity does not hold. One has e1 ×(e2 ×e2) = 0, but (e1 ×e2)×e2 = −e1.

Rule II: The proof is given in two steps:

1. Let a be perpendicular (⊥) on b and c, that is, a · b = a · c = 0. Then a × (b + c) =
a × b + a × c. The proof for that may be read off immediately from the two figures.
a × b stands ⊥ on b and a, is rotated against b by 90◦, and is longer than b by the factor
|a|. The situation is similar for a × c and a × (b + c). The parallelogram of the vectors
a × b, a × c, a × (b + c) emerges from that of the vectors b, c, (b + c) by a rotation
about a by 90◦ and subsequent stretching by |a|.

ϕ

ϕa b�

b a a b= –� �

1
1

n

n

a

a
b

b

Illustration of the calculational rule I. The direction of rotation is shown.
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a b�

a c�

b

a

cb c+

a
b

c
�(

+
)

Perspective view of the special case: a ⊥ b and a ⊥ c.

a b�

a
c�

b a

cb c+

a
b

c
�

(
+

)

Plan view from top of the special case: a ⊥ b
and a ⊥ c.

b

b

b

c

c c

a

The general case: the vectors
b and c are both decomposed
into components parallel (‖) and
perpendicular (⊥) to a.

2. We now decompose in the general case

b = b⊥ + b||,
c = c⊥ + c||,

that is, b and c into components ⊥ and || to a (compare
with the figure).

Then, on the one hand, the following holds:

a × b = (|a| · |b| · sin ϕ)
a × b
|a × b| ;

and, on the other hand,

a × b⊥ = (|a| · |b⊥|) a × b
|a × b|

= (|a| · |b| · sin ϕ)
a × b
|a × b| ,

and therefore

a × b = a × b⊥. (4.3)

This holds for any arbitrary vector b. Therefore, one immediately concludes a × c =
a × c⊥. We may then conclude

a × (b + c) = a × (b + c)⊥ = a × (b⊥ + c⊥)

= a × b⊥ + a × c⊥ (because of the special case in 1)

= a × b + a × c (because of (4.3))

q.e.d.
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Rule IV: The rule for multiplication by a scalar p is immediately evident if we remind
ourselves of the meaning of pa.

Vector products of the Cartesian unit vectors: There holds

i × i = j × j = k × k = 0, and i × j = k,

or e1 × e1 = e2 × e2 = e3 × e3 = 0, and e1 × e2 = e3. (4.4)

This product satisfies the cyclic permutability. For an anticyclic permutation one has to
multiply by the factor −1, for example, j × i = −k.

Vector product in components: We now denote the Cartesian unit vectors by e1, e2, e3

instead of i, j, k.
Let

a = a1e1 + a2e2 + a3e3 =
3∑

i=1

ai ei and b =
3∑

i=1

bi ei

be two arbitrary vectors. When forming the vector product of the two vectors a = ∑3
i=1 ai ei

and b = ∑3
i=1 bi ei , one obtains

a × b = (a1e1 + a2e2 + a3e3) × (b1e1 + b2e2 + b3e3)

= a1b2e3 − a2b1e3 + a2b3e1 − a3b2e1 + a3b1e2 − a1b3e2 (4.5)

= (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3.

It is now practical to introduce the determinant notation.

Determinants: A rectangular array of numbers is called a matrix (see the figure).

column
↓⎛⎜⎜⎜⎝

a11 a12 . . . a1q

a21 a22 . . . a2q

. . . . . . . . . . . .

ap1 ap2 . . . apq

⎞⎟⎟⎟⎠ ← row

For the case q = p, the matrix is called quadratic. One then can assign a numerical value
D to it, called a determinant. It is defined as follows:

I. det(a11) ≡ |a11| = a11;

II. det

(
a11 a12

a21 a22

)
≡

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21; (4.6)
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III. det

⎛⎜⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎟⎠ ≡

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣ − a12

∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣ + a13

∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣ .

The evaluation of the 3×3 determinants may be simplified by using the so-called Sarrus
rule.1 The procedure is: Establish an additional auxiliary matrix by writing the first two
columns of the original matrix once again to its right side, and form the product terms,
involving signs, according to the following scheme.

a11

a21

a31

a12

a22

a32

a13

a23

a33

a11

a21

a31

a12

a22

a32

+ + +___

Multiple-row determinants may be reduced to determinants of lower order by expansion
with respect to a row or column (formation of subdeterminants), analogous to (eq. (4.6),
III). We will see this method at work in Example 4.4 on the Laplace expansion theorem.

Rules of calculation: The most important rules for calculations involving determi-
nants are

1. If two rows or columns of the quadratic matrix are identical or proportional to each
other, then the determinant of this matrix = 0.

2. When permuting any two neighboring rows or columns, the sign of the determinant
changes.

3. The determinant of the matrix reflected at the main diagonal (also called the transposed
matrix) is equal to the original determinant.

1Pierre Frédéric Sarrus, b. 1798—d. 1861, Saint Affriques. Sarrus was professor of mathematics in Strasbourg
from 1826 untill 1856. He dealt mainly with the numerical solution of equations with several unknowns (1832),
with multiple integrals (1842), and with the determination of comet orbits (1843). The rule for evaluating three-row
determinants is named after him.
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4. The expansion theorem that has been used in equation (4.6), III, with respect to the first
row, holds for the first column in the same way.

These rules may easily be checked explicitly in the cases quoted above (eq. (4.6), I, II,
III). The cases I –III are the most important ones in the present context. The properties
of the 3 × 3 determinants will be outlined and discussed in more detail in the context of
Problem 4.3. The rules hold, however, in general for arbitrary determinants.

The vector product (4.5) may now be written as a three-row determinant:

a × b =

∣∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣
= e1(a2b3 − a3b2) + e2(a3b1 − a1b3) + e3(a1b2 − a2b1) . (4.7)

If the two vectors of the cross product are equal, then the two lower rows of the determinant
are also equal, and the vector product vanishes.

Further, one may easily check based on equation (4.6), III, that the sign of the determinant
changes under permutation of rows (or columns). This corresponds to the anticommutativity
of the vector product.

Representation of the product vector: As we already stated in the definition of the
vector product, the magnitude of the product vector may be visualized by a distance but
better by the area of the parallelogram formed by the vectors. This vector is not determined
by its length and orientation only (such vectors are called polar vectors) but is called
an axial vector. To understand this difference, we consider space reflections: We thereby
change from the components a1, a2, a3 to the new base vectors a′

1 = −a1, a′
2 = −a2,

a′
3 = −a3. The vector a is thus reflected at the origin. Under a space reflection, which

is also called a parity transformation, a polar vector changes its sign: a → −a. An axial
vector, on the contrary, remains unchanged: a × b = (−a) × (−b).

The invention of these new vectors is necessary since certain physical quantities need a
handedness for a complete description. The handedness is taken into account by an axial
vector. Such kinds of quantities are, for instance, the angular velocity and the angular
momentum. One should get straight in one’s mind that a handedness remains unchanged
under a space reflection!

An axial vector may, however, also be represented by an oriented distance.

The double-vector product: The vector product a × (b × c) is called the double-vector
product. To evaluate it, we denote the components of b × c as follows: Let

(b × c)x be the x-component,

(b × c)y be the y-component, and

(b × c)z be the z-component.



THE VECTOR PRODUCT (AXIAL VECTOR) 19

For the x-component of the double-vector product, it then follows that

(a × (b × c))x = ay(b × c)z − az(b × c)y

= ay(bx cy − bycx ) − az(bzcx − bx cz).

We add ax bx cx − ax bx cx = 0 and obtain

(a × (b × c))x = bx (ax cx + aycy + azcz) − cx (ax bx + ayby + azbz)

= bx (a · c) − cx (a · b).

Analogous considerations for the y- and z-components of a × (b × c) yield the

Graßmann expansion theorem: One has

a × (b × c) = (a · c)b − (a · b)c,

while

(a × b) × c = (a · c)b − (b · c)a. (4.8)

This is another proof of the fact that the vector product is not associative (see (4.2), III).

Problem 4.1: Vector product

(a) The vector (1, a, b) is perpendicular to the two vectors (4, 3, 0) and (5, 1, 7). Find a and b.

(b) Evaluate in Cartesian coordinates the vector product a × b for a = (1, 7, 0) and b = (1, 1, 1).

(c) Show that

(a × b)2 = a2b2 − (a · b)2 .

Solution (a) It must hold that (1, a, b) · (4, 3, 0) = 0 and (1, a, b) · (5, 1, 7) = 0. This yields the two equations

4 + 3a = 0 and 5 + a + 7b = 0 ⇒ a = −4

3
, b = −11

21
.

(b)

(a × b)x = (aybz − azby) = 7;
(a × b)y = (azbx − ax bz) = −1;
(a × b)z = (ax by − aybx ) = −6.

(c)

(a × b)2 = (|a| · |b| · sin ϕ · en)
2 = |a|2|b|2 sin2 ϕ(en)

2

= |a|2|b|2(1 − cos2 ϕ)(en)
2

= a2b2 − (a · b)2

Here ϕ :<) (a, b) and en is the unit vector along a × b.
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Problem 4.2: Proof of theorems on determinants

The most important theorems on determinants are as follows:

(a) Under permutation of rows and columns (reflection at the main diagonal), the value of a deter-
minant remains unchanged.

(b) Under permutation of two arbitrary neighboring rows, the sign of the determinant changes.

(c) If all elements of a row contain a common factor c, then it may be pulled out of the determinant.

(d) If two rows of a determinant are proportional to each other, then the determinant = 0.

(e) The value of a determinant remains unchanged when adding a multiple of any row to another
row.

Check these rules for a general 3 × 3 determinant.

Solution From the lecture we know the definition of the 3-determinant:

D =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣
= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31. (4.9)

(a) Permutation of rows and columns of D (reflection at the main diagonal) leads to

D̃ =

∣∣∣∣∣∣∣∣
a11 a21 a31

a12 a22 a32

a13 a23 a33

∣∣∣∣∣∣∣∣
= a11(a22a33 − a32a23) − a21(a12a33 − a32a13) + a31(a12a23 − a22a13)

= a11a22a33 − a11a32a23 − a21a12a33 + a21a32a13 + a31a12a23 − a31a22a13

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31).

A comparison with D (see above) yields

D̃ = D. (4.10)

(b) Permutation of, for example, the second and third rows of D yields

D′ =

∣∣∣∣∣∣∣∣
a11 a12 a13

a31 a32 a33

a21 a22 a23

∣∣∣∣∣∣∣∣
= a11(a32a23 − a33a22) − a12(a31a23 − a33a21) + a13(a31a22 − a32a21)

= a11a32a23 − a11a33a22 − a12a31a23 + a12a33a21 + a13a31a22 − a13a32a21.

By means of 4.9, one immediately concludes that

D′ = −D. (4.11)
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This means: When we permute the second and third rows, the determinant changes its sign. Similarly,
one may check that for permuting other rows. From (a) the same result follows for the columns:
When we permute neighboring columns, the determinant also changes its sign.

(c) We investigate

D′′ =

∣∣∣∣∣∣∣∣
a11 a12 a13

ca21 ca22 ca23

a31 a32 a33

∣∣∣∣∣∣∣∣
= a11(ca22a33 − ca23a32) − a12(ca21a33 − ca23a31) + a13(ca21a32 − ca22a31)

= c [a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)]

and compare with 4.9. Obviously,

D′′ = cD. (4.12)

(d) For example, let the third row be proportional to the second row; thus

D̃′ =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

λa21 λa22 λa23

∣∣∣∣∣∣∣∣
= a11(λa22a23 − λa23a22) − a12(λa21a23 − λa23a21) + a13(λa21a22 − λa22a21)

= 0. (4.13)

Similarly, one may check the assertion for the proportionality of other rows. From (a), it follows
immediately that the determinant also vanishes if two columns are proportional to each other.

(e) We add, for example, a multiple of the first row to the second row. Then

D̃′′ =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 + λa11 a22 + λa12 a23 + λa13

a31 a32 a33

∣∣∣∣∣∣∣∣
= a11

[
(a22 + λa12)a33 − (a23 + λa13)a32

]
− a12

[
(a21 + λa11)a33 − (a23 + λa13)a31

]
+ a13

[
(a21 + λa11)a32 − (a22 + λa12)a31

]
= a11a22a33 + λa11a12a33 − a11a23a32 − λa11a13a32

− a12a21a33 − λa12a11a33 + a12a23a31 + λa12a13a31

+ a13a21a32 + λa13a11a32 − a13a22a31 − λa13a12a31

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31).

A comparison with 4.9 yields the assertion

D̃′′ = D. (4.14)
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Problem 4.3: Determinants

Calculate using the theorems on determinants:

(a)

∣∣∣∣∣∣∣∣
x x + 1 x + 2

0 1 2

3 3 3

∣∣∣∣∣∣∣∣ (b)

∣∣∣∣∣∣∣∣
a d xa + yd

b e xb + ye

c f xc + y f

∣∣∣∣∣∣∣∣ (c)

∣∣∣∣∣∣∣∣
4 5 22

8 11 44

3 7 1

∣∣∣∣∣∣∣∣
Solution (a) We form the linear combination

α · (2. row) + β · (3. row) with α = 1, β = x

3

and obtain (x, x + 1, x + 2), thus just the first row. From (i) and (ii) of (4.6) it follows that the
determinant is always equal to zero.

(b) The third column is a linear combination of the first and second columns with the factors x and y:

x

⎛⎝ a

b

c

⎞⎠ + y

⎛⎝ d

e

f

⎞⎠ =
⎛⎝ xa + yd

xb + yc

xc + y f

⎞⎠ .

From this it follows that the determinant becomes zero.

(c) We expand with respect to the first row:

4

∣∣∣∣∣11 44

7 1

∣∣∣∣∣ − 5

∣∣∣∣∣8 44

3 1

∣∣∣∣∣ + 22

∣∣∣∣∣8 11

3 7

∣∣∣∣∣ = 4(−297) − 5(−124) + 22(23) = −62.

Example 4.4: Laplace expansion theorem

Let A = (aik) be a n × n matrix, and Sik be the submatrices of A obtained by erasing the i th row and
the kth column of the matrix A. The matrices Sik thus are (n − 1) × (n − 1) matrices. For each i with
1 ≤ i ≤ n, it holds that

det A =
n∑

k=1

(−1)i+kaik det Sik (expansion with respect to i th row)

and also

det A =
n∑

k=1

(−1)i+kaki det Ski (expansion with respect to i th column).

We check the theorem explicitly for 3-determinants and expand at first the general 3×3 determinant:
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Expansion of det A =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ with respect to the first row yields

det A = (−1)1+1a11 S11 + (−1)1+2a12 S12 + (−1)1+3a13 S13 (4.15)

= a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣ − a12

∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣ + a13

∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣ . (4.16)

Expansion of the 3-determinant with respect to the second column yields

det A = (−1)1+2a12 S12 + (−1)2+2a22 S22 + (−1)3+2a32 S32. (4.17)

The first term on the right side is identical with the second term of 4.15. The last two terms of 4.17
read explicitly

a22

∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣ − a32

∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣ = a22(a11a33 − a13a31) − a32(a11a23 − a13a21). (4.18)

The sum of the first and third terms of 4.15 or 4.16 yields

a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣ + a13

∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣ = a11(a22a33 − a23a32) + a13(a21a32 − a22a31). (4.19)

Obviously, 4.18 and 4.19 coincide. Hence, it is clear that the expansions of the 3-determinant with
respect to the first row and the second column, respectively, yield the same. Similarly, one may
verify that the expansion with respect to other rows or columns leads to the same result. Hence, the
expansion theorem for 3-determinants is seen to be valid.

We still evaluate the 3 × 3 determinant by expanding with respect to the second row, and subse-
quently with respect to the second column, for the example of the determinant

det A =

∣∣∣∣∣∣∣∣
4 5 22

8 11 44

3 7 1

∣∣∣∣∣∣∣∣ .
This yields

(a) Expansion with respect to the second row:

det A = (−1)2+1a21 S21 + (−1)2+2a22 S22 + (−1)2+3a23 S23

= −a21

∣∣∣∣∣a12 a13

a32 a33

∣∣∣∣∣ + a22

∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣ − a23

∣∣∣∣∣a11 a12

a31 a32

∣∣∣∣∣
= −8

∣∣∣∣∣5 22

7 1

∣∣∣∣∣ + 11

∣∣∣∣∣4 22

3 1

∣∣∣∣∣ − 44

∣∣∣∣∣4 5

3 7

∣∣∣∣∣ = −62. (4.20)



24 THE VECTOR PRODUCT (AXIAL VECTOR) 4

(b) Expansion with respect to the second column:

det A = (−1)2+1a12 S12 + (−1)2+2a22 S22 + (−1)2+3a32 S32

= −a12

∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣ + a22

∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣ − a32

∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣
= −5

∣∣∣∣∣8 44

3 1

∣∣∣∣∣ + 11

∣∣∣∣∣4 22

3 1

∣∣∣∣∣ − 7

∣∣∣∣∣4 22

8 44

∣∣∣∣∣ = −62. (4.21)



5 The Triple Scalar
Product

Definition: The triple scalar product of the three vectors a, b, and c is defined as

a · (b × c) ,

that is, a combination of a scalar and vector product. The triple scalar product is therefore
also denoted as a mixed product. The triple scalar product is a scalar.

Triple scalar product in component representation:

a · (b × c) = (a1, a2, a3) · [(b1, b2, b3) × (c1, c2, c3)]

= (a1, a2, a3) ·

∣∣∣∣∣∣∣∣
e1 e2 e3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣
= (a1, a2, a3) · (b2c3 − b3c2, −b1c3 + b3c1, b1c2 − b2c1)

= a1(b2c3 − b3c2) − a2(b1c3 − b3c1) + a3(b1c2 − b2c1).

The three terms may again be combined to a determinant, such that

a · (b × c) =

∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣ = (a × b) · c. (5.1)

Cyclic permutability: The factors of the triple scalar product may be permuted cyclically.
One has

a · (b × c) = b · (c × a) = c · (a × b).

25
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These rules may be confirmed easily by successive permutations of the rows in the deter-
minant (5.1). The following simplified notation for the triple scalar product may be found
occasionally in the literature:

a · (b × c) = [a b c ] = [b c a ] = [c a b ].

a

c
bγ

ϕ

b c�

Illustration of the triple scalar product.

Geometrically, the triple scalar product represents
the volume

V = a · (b × c) = a cos ϕ bc sin γ

= abc cos ϕ sin γ

of a parallelepipedon formed by the three vectors (see
figure).

Note: The volume has a positive sign (+) if a
lies on the side of b × c, but a negative sign (−) if a lies on the side of −b × c . Hence the
volume might be associated with a sign. In general, however, this choice is not used, and a
positive sign is always required. This is achieved by the definition V = |a · (b × c)|.

Properties of the triple scalar product: From

a · (b × c) = 0 follows ϕ = π

2
and / or γ = 0, (5.2)

that is, the three vectors are coplanar or (and) two vectors lie on a straight line.
This is again a very clear proof of the theorems on determinants already mentioned

above:

1. If two row vectors (or column vectors) are equal or proportional to each other, then the
determinant equals zero.

2. When we permute two neighboring rows, the determinant changes by a factor (−1).



6 Application of Vector
Calculus

Application in mathematics:

Problem 6.1: Distance vector
z

y

x

P1

P2

a

r2
2 2 2

=( , , )
x y z

r 1
1

1
1

=(
,

,
)

x
y

z

The distance vector be-
tween the points r1 and
r2.

Calculate the length of the vector a that represents the distance vector
between the points r1 and r2.

Solution a = r2 − r1

= (x2e1 + y2e2 + z2e3) − (x1e1 + y1e2 + z1e3)

= (x2 − x1)e1 + (y2 − y1)e2 + (z2 − z1)e3;
hence a reads in row notation

a = (x2 − x1, y2 − y1, z2 − z1),

and the magnitude of a is therefore

|a| = √
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 .

Problem 6.2: Projection of a vector onto another vector

a

cec

b

(
+

)
a

b

The projection of the sum
a + b onto the vector c.

Given

a = (2, 1, 1),

b = (1, −2, 2),

c = (3, −4, 2),

what is the absolute value of the projection of the sum (a + b) onto
the vector c ?

Solution This projection is given by the scalar product of (a + b) and the unit vector ec along c.

ec = c
|c| = (3, −4, 2)√

32 + 42 + 22
,

27
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(a + b) = (2 + 1, 1 − 2, 1 + 2),

(a + b) · ec = 3 · 3 + (−1) · (−4) + 3 · 2√
29

= 19√
29

.

Problem 6.3: Equations of a straight line and of a plane

a

x
b

X

x

y

A

B

( - )
b a

The point-direction form of a straight
line.

Let the points A and B be given by their position vectors a and
b. What is the equation of the straight line through A and B?

Solution The straight line AB is parallel to (b − a). Moreover, it passes
through point A. Hence, the equation determining any position
vector x of a point X on the desired straight line reads

x = a + t (b − a),

with t being a real number (running parameter −∞ < t < ∞).
If two points A and B are not given but one point A and a vector
u specifying the orientation of the straight line are given, the
equation of the straight line reads

x = a + tu .

This is called the point-direction form of the equation of a straight line.

a xE

u
v

z

x

y

P
P0

t su v+

Representation of a plane in space spanned
by the vectors u and v from point P0.

Example:

a = (a1, a2, a3), u = (u1, u2, u3),

x = (a1 + tu1, a2 + tu2, a3 + tu3)

= (x, y, z).

A plane in space may be fixed by specifying be-
sides the position vector a and the orientation vector
u still a second orientation vector v:

xE = a + tu + kv,

where u ↑↑— v and also u ↑↓— v and k, t ∈ R. The
notation ↑↑— and ↑↓— indicates that u and v are neither
parallel nor antiparallel.

This is the point-direction form of the equation of
the plane.

Example 6.4: The cosine theorem

a

cb
γ

The vectors a, b, and c
characterize the sides of
the triangle.

The cosine law of plane trigonometry is obtained by scalar multiplication
of the equation c = a − b by itself:

c · c = (a − b) · (a − b) = a 2 + b 2 − 2a · b

= a2 + b2 − 2ab cos γ.

⇒ c2 = a2 + b2 − 2ab cos γ.

For γ = π/2 there results the theorem of Pythagoras.
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Example 6.5: The theorem of Thales

aa

a b+ b
b a–

B M A

C

ϑ

The theorem of Thales, demonstrated
with the help of vectors.

In order to prove the theorem of Thales1 we introduce the
following vectors according to the sketch:

−→
M A = −−→

M B = a,
−→
MC = b.

It holds that

|a| = |b|, −→
BC = a + b, and

−→
AC = b − a.

The scalar product (a + b) · (a − b) has the value

(a − b) · (a + b) = a 2 − b 2 = |a|2 − |b|2 = 0.

For the angle enclosed by (a + b) and (a − b), it follows that ϑ = π/2 or

(a + b) ⊥ (a − b) (theorem of Thales).

Example 6.6: The rotation matrix

e2cosβ

e1cosβ

e2sin β

– sine1 β

e2

e1e3

e ′2

e′1

r r= ′

β

β

Case 1: vector r stays at rest; the co-
ordinate system is rotated.

The opposite figure shows into which vectors e′
1 and e′

2 the
Cartesian unit vectors e1 and e2 are transformed under a
rotation in the x, y-plane by the angle β around the z-axis:

e′
1 = e1 cos β + e2 sin β + e3 · 0

e′
2 = e1(− sin β) + e2 cos β + e3 · 0 (6.1)

e′
3 = e1 · 0 + e2 · 0 + e3 · 1 .

This system of equations may be written in matrix form (see
equation 6.7):⎛⎝ e′

1

e′
2

e′
3

⎞⎠ =
⎛⎝ cos β sin β 0

− sin β cos β 0

0 0 1

⎞⎠ ·
⎛⎝ e1

e2

e3

⎞⎠

=
⎛⎝ d11e1 + d12e2 + d13e3

d21e1 + d22e2 + d23e3

d31e1 + d32e2 + d33e3

⎞⎠ (6.2)

or briefly as

e′
� =

3∑
µ=1

d�µeµ,

1Named after Thales of Milet, b. about 624 BC—d. 546 BC. He is the first representative of the Ionic School.
According to writings he did far travels (e.g., to Egypt) and was very active as a politician. The theorem named
after him was for the first time strictly formulated by him.
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where

d�µ = e′
� · eµ or (d�µ) =

⎛⎝ cos β sin β 0

− sin β cos β 0

0 0 1

⎞⎠
represent the direction cosines. Note that sin φ = cos(φ − π/2). The matrix (d�µ) describes the
transformation of the base vectors. For a rotation in the three-dimensional space in the x, y-plane
(i.e., about the z-axis), the rotation matrix reads

D̂ =
⎛⎝ cos β sin β 0

− sin β cos β 0

0 0 1

⎞⎠ ≡ (d�µ). (6.3)

Case 1: r = r′ fixed in space. If r = r′ is fixed in space but the coordinate frame rotates, one has∑
�

x�e� =
∑

µ

x ′
µe′

µ .

Multiplication of this equation with e′
µ isolates x ′

µ:

x ′
µ =

∑
�

x�(e� · e′
µ) =

∑
�

dµ�x� .

Thus, the transformation of the components of a position vector that is kept fixed in space is given by

r′ = D̂r, (6.4)

where D̂ denotes the rotation matrix. Explicitly, this means because of x ′
1 = x ′, x ′

2 = y′, x ′
3 = z′:

⎛⎝ x ′

y′

z′

⎞⎠
new base

=
⎛⎝ cos β sin β 0

− sin β cos β 0

0 0 1

⎞⎠ ·
⎛⎝ x

y

z

⎞⎠
old base

. (6.5)

The addendum “new base” at the column tuple shall indicate that the components x ′, y′, z′ of the
column tuple are to be interpreted as coefficients of the base vectors e′

1, e′
2, and e′

3. Written explicitly,
the vector in the new basis thus reads

r′ = x ′e′
1 + y′e′

2 + z′e′
3 .

e

e2

e1

e3 3= ′

e′2
e′1

r′

rβ

y′

y

x′ x
β

β

Case 2: vector r is rotated together
with the coordinate system.

Case 2: r is tightly fixed to the rotating coordinate frame.
Thus, r rotates with the coordinate frame. This means∑

�

x�e′
� =

∑
µ

x ′
µeµ

⇒ x ′
µ =

∑
�

x�(e′
� · eµ)

=
∑

�

d�µx�

=
∑

�

d̃µ�x� . (6.6)
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x ′
µ are the new components of the rotated vector with

respect to the fixed system eµ: x� are old components of
the vector with respect to the fixed system eµ.

Note: Both x ′
� as well as x� in this case are defined in the old system (base eµ). They denote the

components of the new (rotated) and old (not rotated) vector, respectively!
In the preceding we have already used the matrix multiplication. It shall once again be clearly

defined here.

Definition of the matrix product: The common element Ci j of the row i and the column j of the
product matrix Ĉ = Â · B̂ is obtained by forming the sum

Ci j =
∑

k

Aik Bkj , (6.7)

where Â and B̂ are the factor matrices.
Thus, the components of a vector a = (a1, a2, a3) under rotations of the coordinate frame would

change to⎛⎝ a′
1

a′
2

a′
3

⎞⎠
new base

= a′ =
⎛⎝ cos β sin β 0

− sin β cos β 0

0 0 1

⎞⎠ ·
⎛⎝ a1

a2

a3

⎞⎠

=
⎛⎝ cos β a1 + sin β a2

− sin β a1 + cos β a2

a3

⎞⎠ ,

a′
µ =

∑
�

dµ�a� .

The vector itself remains fixed in space. Its components change, however, because the base was
rotated (case 1). If the vector would rotate (case 2), then we would obtain according to 6.6⎛⎝ a′

1

a′
2

a′
3

⎞⎠
new base

=
⎛⎝ cos β a1 − sin β a2

sin β a1 + cos β a2

a3

⎞⎠ ; a′
µ =

∑
�

d̃µ�a� =
∑

�

d�µa�,

where d̃µ� = d�µ is the transposed rotation matrix. The transposed of a matrix is simply the matrix
reflected at the main diagonal (from the upper left to the lower right corner).

Application in physics:

Problem 6.7: Superposition of forces
a c

b
d20º

30º 45º
0 x

110N 100N

80N

160N

Forces acting on point 0.

Four coplanar forces are acting at the point 0, as shown
in the sketch.

Calculate the net force acting at the point 0!

Solution a = (−95.3, 55.0) N, b = (−150.4, −54.7) N,
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c = (70.7, 70.7) N, d = (80.0, 0.0) N

(
N = Newton = 1

kg m

s2

)
.

It holds that

Fges = a + b + c + d = (−95.0, 71.0) N,

|Fges| =
√

95.02 + 71.02 N = 118.6 N.

We remember that

a + b =
∑

i

ai ei +
∑

i

bi ei =
∑

i

(ai + bi )ei = (a1 + b1, a2 + b2, a3 + b3).

βa
b d

b′ a′

c′
c

F =119N

Graphical determination of the
net force F.

Graphical determination of the force: Representation by means
of polygon of forces.

The angle β enclosed by F and the x-axis may be calculated
easily. One has

F = (−95.0, 71.0) N,
Fy

Fx
= tan β = −71.0

95.0
;

from there it follows that β = 143◦.

Example 6.8: Equilibrium condition for a rigid body without fixed rotational axis

A rigid body is under the action of the forces Fi at the positions ri . We investigate the equilibrium at
the point A (position vector a) the body may rotate about. All forces Fi are now added and subtracted
at A such that nothing is changed in total.

0

B

A

F2 F1

r2
r1

r3
F3

a

b

A rigid body is in equilibrium with respect to
point A if the sum of all torques with respect to
A and the sum of all forces in A vanish. If this
condition is valid in A, it is also valid in every
point B.

r
F–F

A pair of forces results in a torque M =
r × F. These forces set the body on
which they act into rotation.



APPLICATION IN PHYSICS 33

The procedure is illustrated for the force F1 in the figure on the next page; for the other forces
we proceed in the same way. Now the forces F1 at r1 and −F1 at a are forming a pair of forces that
generates the torque (compare with the Problem 6.9)

M1(a) = (r1 − a) × F1 (6.8)

and will rotate the body. Similarly, all other forces Fi (at ri ) and −Fi (at a) are forming pairs of forces
with the torques

Mi (a) = (ri − a) × Fi . (6.9)

The total force acting at the point A is therefore

F =
∑

i

Fi , (6.10)

and the total torque about A is

M(a) =
∑

i

Mi (a) =
∑

i

(ri − a) × Fi . (6.11)

At the point B (position vector b ) a similar construction would yield the total force

F =
∑

i

Fi (6.12)

and the total torque about B,

0

1

1

1

1

F

F

r

F

a

b

c b a= –
B

A–

Equilibrium with respect to point A
implies equilibrium with respect to
point B.

M(b) =
∑

i

Mi (b) =
∑

i

(ri − b) × Fi . (6.13)

The total force F tries to accelerate the body as a whole.
The total torque tries to rotate the body. If there shall be
equilibrium with respect to point A (position vector a), then
both the total force F and the total torque M(a) must vanish:

F = 0, (6.14)

M(a) = 0. (6.15)

The question arises of whether an equilibrium at point A
also means an equilibrium at point B. To answer it, we
recalculate the eqs. 6.14, 6.15 to the point B (eqs. 6.12
and 6.13). We realize: 6.14 is identical with 6.12. Further, it holds that

M(b) =
∑

i

(ri − b) × Fi =
∑

i

(ri − (a + c)) × Fi

=
∑

i

(ri − a) × Fi −
∑

i

c × Fi

= M(a) − c ×
∑

i

Fi︸ ︷︷ ︸
=0 because of 6.14

= M(a) = 0.

Therefore we may claim: If the equilibrium conditions 6.14,6.15 are fulfilled at a point A, then they
also hold at any other point B.
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Problem 6.9: Force and torque

F2
F1

r2

r1

e1

e2e3

Center of
rotation

Rigid
body

Illustration of the torque induced
by two forces.

The following external forces are acting on a body:

F1 = (10, 2, −1) N at point P1(2, 0, 0) cm,

(N = Newton = 1
kg m

s2
)

F2 = (0, 0, 5) N at point P2(1, 3, 0) cm

and
F3 = (−6, 1, 8) N at point P3(6, 8, 1) cm.

Find

(a) components, magnitude, and orientation of the resulting force F,

(b) the torque with respect to P2.

Remark (kp = kilopond). The kilopond is no longer a legal unit, all forces are measured in
Newtons (N):

1 N = 1 kg · m

s2
= 105 g cm

s2
= 105 dyn,

1 kp = 9.81 N.

Solution (a)

F = F1 + F2 + F3 = (4, 3, 12) N,

|F| =
√

42 + 32 + 122 N = 13 N,

cos β1 = Fx

|F| = 0.308, β1 = 72◦,

cos β2 = Fy

|F| = 0.231, β2 = 77◦,

cos β3 = Fz

|F| = 0.923, β3 = 23◦.

These are the direction cosines of the force. They describe the direction of force

n = F
|F| = (cos β1, cos β2, cos β3) = (0, 308; 0, 231; 0, 923).

r F
F′

Center of
rotation

ϑ

The absolute value of the torque results from
the force component perpendicular to the dis-
tance vector.

(b) The torque of a force Fp acting at point
P(x, y, z), that is at the position r = (x, y, z), is
defined with respect to the coordinate origin (center
of rotation) as the vector

M = r × Fp.

Here r is the position vector from the cen-
ter of rotation to the action point of the force
Fp . The magnitude of M is obviously given by
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M = r · F ′, where F ′ = F sin ϑ is the force component perpendicular to the position vector (compare
in the figure). This may also be expressed as follows: M = distance from center of rotation to action
point of the force times force component perpendicular to the distance vector.

r–F

F

FCenter of
rotation

The pair of forces responsible for the
torque.

This torque M is also caused by a pair of forces, as
discussed in Example 6.8. If one adds at the center of
rotation the forces −F and F, in total 0 (compare to the
figure), then the forces −F at the center of rotation and F
at r form a pair of forces. The force F acting at the center
of rotation presses onto the bearing of the rotation axis and
is received there.

If several forces F� are acting on the rigid body at
the points r�, the total torque is

M =
∑

�

M� =
∑

�

r� × F�.

In our example

M = (r1 × F1) + (r2 × F2) + (r3 × F3),

r1 = p1 − p2 = (1, −3, 0) cm,

r2 = p2 − p2 = (0, 0, 0) cm,

r3 = p3 − p2 = (5, 5, 1) cm,

where p1, p2, and p3 are the position vectors of the points P1, P2, and P3. Hence one obtains

M1 = r1 × F1 = (3, 1, 32) N cm,

M2 = r2 × F2 = 0 N cm,

M3 = r3 × F3 = (39, −46, 35) N cm.

The total torque is

M = M1 + M2 + M3 = (42, −45, 67) N cm,

and |M| = 91.0 N cm.

Problem 6.10: Forces in a three-leg stand

Find the rod forces in a three-leg stand that is movably linked at the points A, B, C to a vertical wall
and loaded at the point D by the force F.

Solution Only longitudinal forces may act in the rods, because of the movable links of the suspension rods
(neglect of bending forces). The forces at the cut-out branching point D are to be considered as
external forces and are obtained from the equilibrium condition

F1 + F2 + F3 + F = 0. (6.16)

Using the unit vectors ei (i = 1, 2, 3) along the rod axes and the magnitudes Fi (i = 1, 2, 3) of
the rod forces, 6.16 may be written as

F1e1 + F2e2 + F3e3 = −F. (6.17)

To get the rod forces, 6.17 is scalar-multiplied successively by the vectors ei × ej (i �= j), where
(ei × ej ) by definition points perpendicular to ei , hence the scalar products ei · (ei × ej ) vanish.
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Using the definition of the triple scalar product A · (B × C), one then obtains from 6.17 for Fi

(i = 1, 2, 3)

F1 = − F · (e2 × e3)

e1 · (e2 × e3)
, F2 = − F · (e3 × e1)

e2 · (e3 × e1)
, F3 = − F · (e1 × e2)

e3 · (e1 × e2)
. (6.18)

Putting a coordinate frame into the branching point D according to the above figure, one gets for
the unit vectors

e1 = (− cos α, sin α, 0),

e2 = (cos α, sin α, 0), (6.19)

e3 = (0, sin β, − cos β).

Insertion of equation 6.19 into equation 6.18 yields

F · (e2 × e3) =

∣∣∣∣∣∣∣∣
Fx Fy Fz

cos α sin α 0

0 sin β − cos β

∣∣∣∣∣∣∣∣ (6.20)

= −Fx sin α cos β + Fy cos α cos β + Fz cos α sin β

and

e1 · (e2 × e3) =

∣∣∣∣∣∣∣∣
− cos α sin α 0

cos α sin α 0

0 sin β − cos β

∣∣∣∣∣∣∣∣ (6.21)

= 2 sin α cos α cos β.

From there one obtains for the component F1

F1 = 1

2

(
Fx

cos α
− Fy

sin α
− Fz tan β

sin α

)
. (6.22)

F
z

x
y

D

B
A

C
β

α
α

A three-leg stand fixed at a vertical wall.

F2

F

F1

F3

z

xy

D

The forces acting at the three-leg
stand.
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The calculation of the scalar triple products for F2 and F3 from equation 6.18 runs in an analogous
manner; one gets

F2 = 1

2

(
− Fx

cos α
− Fy

sin α
− Fz tan β

sin α

)
, (6.23)

F3 = Fz

cos β
.

Problem 6.11: Total force and torque

(a) Determine the components Fy , Fz of the force F = (2 N, Fy, Fz) acting at point P1(1, 2, 3) m such
that it is perpendicular to the plane defined by the three points P1, P2(2, 3, 4) m, and P3(2, 2, 1) m.

(b) What is the magnitude of the force F and which torque M does it apply with respect to the point
P4(0, 1, 2) m?

(c) What is the component of the torque vector M that points perpendicular to the plane?

r2

r4
r 3

r 1

z

x

y

P1

P4

P2

P3

F
r

r1
4

–

r
r

1
3

- r
r1

2
-

The force F acting at P1 applies a torque around P4.

Solution (a) Because the vectors (r1 − r2) and (r1 − r3) are within the represented plane, the vector product
R = (r1 − r2) × (r1 − r3) yields a normal vector R perpendicular to the plane. If the force F shall be
perpendicular to the plane, that is, parallel to the vector R, the following must hold:

R = (Rx , Ry, Rz) = (r1 − r2) × (r1 − r3) = λF = λ (2 N, Fy, Fz). (6.24)

From there it follows that

λ = 1

2 N
Rx , Fy = 1

λ
Ry , Fz = 1

λ
Rz . (6.25)

For the points P1(1, 2, 3) m, P2(2, 3, 4) m, P3(2, 2, 1) m, and P4(0, 1, 2) m specified in the problem,
one easily gets the position vectors ri (i = 1, 2, 3, 4) as well as their differences (ri − rj ) (i �= j):

(r1 − r2) = (−1, −1, −1) m,

(r1 − r3) = (−1, 0, 2) m, (6.26)

(r1 − r4) = (1, 1, 1) m.
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For the vector product in equation 6.24, it then results that

R = (r1 − r2) × (r1 − r3) = (−2, 3, −1) m2 = (Rx , Ry, Rz).

Inserting these values in 6.25, one obtains

λ = 1

2 N
Rx = −1 m2N−1,

Fy = Ry

λ
= −3 N, (6.27)

Fz = Rz

λ
= 1 N.

Thus, the components of the force F are

F = (2, −3, 1) N. (6.28)

(b) The magnitude of the force F is obtained as

|F| = (F2
x + F2

y + F2
z )1/2 = (22 + 32 + 1)1/2 N ≈ 3.74 N. (6.29)

The torque M with respect to the point P4 results from the vector product

M = (r1 − r4) × F = (1, 1, 1) × (2, −3, 1)Nm = (4, 1, −5) Nm. (6.30)

(c) The component of the torque vector M perpendicular to the plane, that is, along the orientation of
the force F, results from the definition of the triple scalar product as

|MF| = [(r1 − r4) × F ] · F
|F| = 0. (6.31)



7 Differentiation
and Integration
of Vectors

Formation of the differential quotient: The vector A may occur as a function of a
parameter. Let’s consider, for example, the position vector r(t) that—as a function of the
time t—describes the path of a mass point. If one decomposes A into its components with
respect to fixed unit vectors, then these components are functions of the parameter. We
write

A(u) = Ax (u)e1 + Ay(u)e2 + Az(u)e3. (7.1)

The differential quotient of a vector is formed by differentiating its components sepa-
rately, as corresponds to the differentiation rule for sums. Because the unit vectors are not
variables, they are conserved under differentiation,

dA(u)

du
= lim


u→0

A(u + 
u) − A(u)


u

= lim

u→0

(
Ax (u + 
u) − Ax (u)


u
e1 + Ay(u + 
u) − Ay(u)


u
e2

+ Az(u + 
u) − Az(u)


u
e3

)
.

The limit of the sum is equal to the sum of the limits, that is, when passing to the limit,
one obtains

dA(u)

du
= d Ax (u)

du
e1 + d Ay(u)

du
e2 + d Az(u)

du
e3. (7.2)
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By comparing (7.1) with (7.2), one notices that the differentiation of a vector in an
arbitrary coordinate frame with fixed unit vectors amounts to the differentiation of the
components of the vector. Generally, the rule for the n-fold differentiation of a vector reads

dnA(u)

dun
= dn Ax (u)

dun
e1 + dn Ay(u)

dun
e2 + dn Az(u)

dun
e3. (7.3)

Example 7.1: Differentiation of a vector

A(u) = (2u2 − 3u)︸ ︷︷ ︸
Ax (u)

e1 + (5 · cos u)︸ ︷︷ ︸
Ay (u)

e2 − (3 · sin u)︸ ︷︷ ︸
Az (u)

e3,

= (2u2 − 3u, 5 · cos u, −3 · sin u),

dA(u)

du
= (4u − 3)e1 − (5 · sin u)e2 − (3 · cos u)e3

= (4u − 3, −5 · sin u, −3 · cos u),

d2A(u)

du2
= 4e1 − 5 · cos u · e2 + 3 · sin u · e3

= (4, −5 · cos u, 3 · sin u).

For composite functions the usual differentiation rules apply. For example, for the product
of a scalar function and a vector function, or for the scalar or vector product of two vector
functions (parameter u), the product rule applies.

Differentiation of the product of a scalar and a vector:

d(φ(u)A(u))

du
= d

du
(φ(u)Ax (u)e1 + φ(u)Ay(u)e2 + φ(u)Az(u)e3) .

Now

d(φ Ax )

du
= dφ

du
Ax + φ

d Ax

du

and analogously for the other components:

d

du
(φ Ai ) = d

du
(φ)Ai + d

du
(Ai )φ (i = 1, 2, 3).

This yields

d(φ(u) · A(u))

du
= dφ

du
Ax e1 + dφ

du
Aye2 + dφ

du
Aze3 + φ

d Ax

du
e1 + φ

d Ay

du
e2 + φ

d Az

du
e3

or simply

d(φ(u)A(u))

du
= dφ

du
A + φ

dA
du

. (7.4)
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Differentiation of the scalar product: One has

d(A(u) · B(u))

du
= d

du

(
3∑

i=1

Ai (u)Bi (u)

)
=

3∑
i=1

d

du
(Ai (u)Bi (u))

=
3∑

i=1

(
d Ai (u)

du
Bi (u) + Ai (u)

d Bi (u)

du

)
and therefore,

d(A(u) · B(u))

du
= dA

du
· B + A · dB

du
. (7.5)

Differentiation of the vector product: It is performed analogously to the differentiation
of the scalar product. Because the vector product is not commutative, one has to take care
of the ordering of the factors.

d

du
(A(u) × B(u)) = dA(u)

du
× B(u) + A(u) × dB(u)

du
. (7.6)

This is easily proved by checking the individual components (e.g., the x-component) on
both sides of the equation.

Example 7.2: Differentiation of the product of a scalar and a vector

For the scalar function ϕ(x) = x + 5 and the vector function A(x) = (x2 + 2x + 1, 2x, x + 2) the
second derivative of the products ϕ · A is to be calculated.

The differentiation of the product yields

d2(ϕA)

dx2
= d

dx

(
dϕ

dx
A + ϕ

dA
dx

)
= d2ϕ

dx2
A + 2

dϕ

dx

dA
dx

+ ϕ
d2A
dx2

.

The derivatives of the individual functions read

dϕ

dx
= 1,

d2ϕ

dx2
= 0,

dA
dx

= (2x + 2, 2, 1),
d2A
dx2

= (2, 0, 0).

From the above, it results that

d2(ϕA)

dx2
= (4x + 4, 4, 2) + (2x + 10, 0, 0) = (6x + 14, 4, 2).

Application: Position, velocity, and acceleration of a mass point on a defined trajectory
may be represented as vectors. The position vector for the motion of the mass point on
an arbitrary trajectory B is the vector from the origin of the coordinate frame to the mass
point; the variation of the position of the mass point with the time may be represented as
time variation of the position vector (compare with the figure).
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z

y

x

B

r( )t

r(
+

)
t

t∆

∆ ∆r r r= ( + )– ( )t t t

Definition of the orbital velocity: 
r = r(t + 
t) − r(t) is a secant vector to the orbit at the point r(t). The
velocity is then given by v = lim
t→0 
r/
t .

The velocity is defined as the first derivative of the position vector r(t) of the orbital
curve with respect to the time:

v = lim

t→0


r

t

= lim

t→0

r(t + 
t) − r(t)

t

= dr
dt

. (7.7)

From equation (7.7) one notices that the vector of the velocity represents the limit position
of the secant through the position vectors r(t + 
t) and r(t) divided by the time interval

t in the limit 
t → 0, that is, the velocity points along the tangent to the trajectory at the
point r(t).

The acceleration is obtained as the first derivative of the velocity with respect to the time,
or as the second derivative of the position vector with respect to the time:

a(t) = dv(t)

dt
= lim


t→0


v

t

= d(dr /dt)

dt
= d2r(t)

dt2
. (7.8)

Because the position vector is a vector, its derivatives with respect to the scalar time (t)
are again vectors. Thus, the velocity and acceleration are vectors, too.

Problem 7.3: Velocity and acceleration on a space curve

Let the position vector be given by r = (t3 + 2t, −3e−t , t) m. Find the velocity and the acceleration
as well as their magnitudes for the time points t = 0 s and t = 1 s.

Solution For the velocity and acceleration, we get

v(t) = ṙ = (3t2 + 2, 3e−t , 1)
m

s
,

a(t) = r̈ = (6t, −3e−t , 0)
m

s2
.

For the time t = 0, the results are

v(0) = (2, 3, 1)
m

s
, a(0) = (0, −3, 0)

m

s2
,
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v(0) = √
14

m

s
, a(0) = 3

m

s2
.

For t = 1 s,

v(1) = (5,
3

e
, 1)

m

s
, a(1) = (6, −3

e
, 0)

m

s2
,

v(1) = 5.22
m

s
, a(1) = 6.1

m

s2
.

Example 7.4: Circular motion

The Cartesian components of a circular motion are given by

x(t) = R cos ωt,

y(t) = R sin ωt,

z(t) = 0.

ω is the so-called angular velocity or also angular frequency. It is related to the revolution period T

x t( )

y t( )

xR

y

ωt

v

r(
)t

Circular motion.

via ωT = 2π . The position vector is now

r(t) = (x(t), y(t), z(t))

= x(t)e1 + y(t)e2 + z(t)e3,

r(t) = (R · cos ωt, R · sin ωt, 0)

= R · cos ωt e1 + R · sin ωt e2 + 0e3.

For the velocity one gets

v = dr
dt

= (−ωR · sin ωt, Rω cos ωt, 0).

There holds

r · v = r · dr
dt

= 0 for any time point,

⇒ v ⊥ r,

which is immediately clear for a circular orbit.
For the magnitude of the velocity, one obtains

v = |v| =
√(

dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

=
√

ω2 R2 sin2 ωt + ω2 R2 cos2 ωt + 0

=
√

ω2 R2(sin2 ωt + cos2 ωt) = ωR = 2π R

T
= circumference

revolution period
.

The acceleration is obtained as

b = dv
dt

= d2r
dt2

= (−ω2 R cos ωt, −ω2 R sin ωt, 0) = −ω2(R cos ωt, R sin ωt, 0),

= −ω2r.
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It turns out that the acceleration points opposite the orientation of the position vector (centripetal
acceleration). The magnitude of the acceleration is given by

|b| =
√(

d2x

dt2

)2

+
(

d2 y

dt2

)2

+
(

d2z

dt2

)2

,

= ω2 R = v2

R
.

Example 7.5: The motion on a helix

x

Pitch
= 2h b . π

z

y

The helix and its pitch.

The Cartesian coordinates of the helix read

x(t) = R cos ωt, y(t) = R sin ωt, z(t) = bωt.

The position vector is obtained by insert-
ing in the relation

r(t) = (x(t), y(t), z(t)) ,

that is, it holds that

r(t) = (R cos ωt, R sin ωt, bωt).

Remark: b > 0 means right-handed he-
lix, b < 0 means left-handed helix.

The velocity results analogously to that
of circular motion

v = (−Rω sin ωt, Rω cos ωt, bω).

The third component v3 = bω implies a uniform (constant) upward velocity (z-direction) if the
parameter t represents the time.

One has

|v| =
√

R2ω2 + b2ω2 = ω
√

R2 + b2,

that is, the magnitude of the velocity is constant.
The acceleration is the derivative of the velocity

b = −ω2 · (R cos ωt, R sin ωt, 0) = −ω2r⊥,

where
r⊥ = (R cos ωt, R sin ωt, 0) = (r · er )er

and er = (cos ωt, sin ωt, 0) is the polar unit vector in the x, y-plane. We thus obtain the same
acceleration as for the circular motion. For the magnitude, it holds that |b| = ω2 R.

Integration of vectors: The integration rules may be applied also to vectors in the
customary way. For a vector A depending on a parameter (e.g., u), it follows that∫

A(u) du =
∫ (

Ax (u)e1 + Ay(u)e2 + Az(u)e3
)

du
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=
∫

Ax (u) e1 du +
∫

Ay(u) e2 du +
∫

Az(u) e3 du.

If the unit vectors are constant, they may be pulled out before the integral symbol:∫
A(u) du = e1

∫
Ax (u) du + e2

∫
Ay(u) du + e3

∫
Az(u) du.

Thus, we may formulate the following rule: A vector is integrated by integrating its
components. This vector integration graphically means a summation of a large number of
vectors according to the integral limits; for example, the sum of all forces acting on a body.
More strictly speaking: A(u) is a vector density, and dA = A(u) du is the vector associated
with the interval du. These dA are summed to yield the integral. An example is the impulse
of force K, which is understood as the force K acting on a body over a time interval; thus
K = ∫


t F(t ′) dt ′. The impulse of force is therefore the sum of the forces F(t ′) acting
during the time interval. For more details, see Chapter 17, equations (17.14) and (17.15).

Example 7.6: Integration of a vector

A = (2u2 − 3u, 5 cos u, −3 sin u),∫
A du =

(
2

3
u3 − 3

2
u2 + C1

)
e1 + (5 sin u + C2)e2 + (3 cos u + C3)e3

=
(

2

3
u3 − 3

2
u2

)
e1 + (5 sin u)e2 + (3 cos u)e3 + C1e1 + C2e2 + C3e3

=
(

2

3
u3 − 3

2
u2, 5 sin u, 3 cos u

)
+ C.

The integration constants arising in the components are composed to the vector C.

Problem 7.7: Integration of a vector

Calculate

2∫
0

A(n) dn with A = (3n2 − 1, 2n − 3, 6n2 − 4n).

Solution
∫ 2

0
A(n) dn =

∫ 2

0
(3n2 − 1, 2n − 3, 6n2 − 4n) dn

= [
(n3 − n, n2 − 3n, 2n3 − 2n2)

]2

0

= (6, −2, 8).
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Problem 7.8: Motion on a special space curve

(a) Which curve is passed by the vector

r(t) = (x(t), y(t), z(t)) = (t cos t, t sin t, t)

when t is running from 0 to 2π?

(b) Calculate the velocity and acceleration of the point at the time t .

(c) What are the velocity and acceleration for t = 0 and t = 2?

(d) How do the magnitudes of radius vector, velocity, and acceleration vary for large time t?

y

x

t = 0

t = 2π

2π

r ( )t~

The resulting spiral line with a radius
varying from 0 to 2π .

Solution (a) We first consider the vector r̃ (t) with z̃(t) ≡ 0
(projection onto the x, y-plane).

r̃ (t) = (t cos t, t sin t, 0).

Because

|̃r (t)| = (t2 cos2 t + t2 sin2 t)1/2 = t,

there results a spiral line with a radius from 0 to 2π .
If z(t) = t additionally runs from 0 to 2π , we obtain

a spiral line on the surface of a cone of height 2π with
the vortex at (0, 0, 0).

The figure at the top of the facing page illustrates this
result.

(b) For the velocity v(t) and acceleration b(t), it re-
sults that

v(t) = dr
dt

= (cos t − t sin t, sin t + t cos t, 1),

b(t) = dv
dt

= d2r
dt2

= (− sin t − sin t − t cos t, cos t + cos t − t sin t, 0),

= (−2 sin t − t cos t, 2 cos t − t sin t, 0),

(c) One has

v(t = 0) = (1, 0, 1); |v(t = 0)| = √
2 ,

v(t = 2) = (−2.23, 0.08, 1); |v(t = 2)| = √
6 ,

b(t = 0) = (0, 2, 0); |b(t = 0)| = 2 ,

b(t = 2) = (−0.99, −2.65, 0); |b(t = 2)| = √
8 .

(d)

|r(t)| = (
t2 cos2 t + t2 sin2 t + t2

)1/2 = √
2 |t |,

|v(t)| = (
(cos t − t sin t)2 + (sin t + t cos t)2 + 1

)1/2
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t = 2π

2π

r ( )t
t = 0

x

y

z

The spiral line on the surface of a cone.

= (2 + t2)1/2 = |t |
(

1 + 2

t2

)1/2

= |t |
{

1 + 1

t2
− O

(
1

t4

)}
t�1−→ |t | (by a series expansion of the square root),

|b(t)| = (
(2 sin t + t cos t)2 + (2 cos t − t sin t)2

)1/2

= (4 + t2)1/2 = |t |
(

1 + 4

t2

)1/2

= |t |
{

1 + 2

t2
− O

(
1

t4

)}
t�1−→ |t | (by a series expansion of the square root).

Problem 7.9: Airplane landing along a special space curve

An airplane is landing. Thereby it is moving on the space curve

r(t) = (x(t), y(t), z(t)) = (R cos ωt, R sin ωt, (H − bωt)),

with

R = 1000 m,

ω = 1

7
s−1,

H = 400 m,

b = H/6π,

t ∈ [0, 42π ] s.
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What is the velocity of the plane on landing (at t = 42π s)? Would you try landing this way?

Solution The velocity is calculated to be

v = dr
dt

= (−ωR sin ωt, ωR cos ωt, −bω),

and its magnitude is

|v| = (ω2 R2 sin2 ωt + ω2 R2 cos2 ωt + b2ω2)1/2

= ω(R2 + b2)1/2 .

Obviously, it is independent of t! Insertion of the values yields

|v| = 1

7

(
10002 + 4002

(6π)2

)1/2

m s−1

≈ 142.9 m s−1 =̂ 514.4 km h−1 .

This kind of landing is certainly unsuitable; the approach velocity should better be reduced.



8 The Moving Trihedral
(Accompanying
Dreibein)—the
Frenet Formulas

In some cases it may be simpler to express velocity and acceleration in natural coordinates.
This means that the velocity and acceleration are not derived from the variation of the
position vector with the time, but from its variation with the passed way s, the arc length,
the starting point being arbitrary. Let the curve itself be given by the position vector
r(t) = (x1(t), x2(t), x3(t)). For infinitesimally small segments, the increase of the arc
length is |dr| = ds.

0

∆s

∆r

r( )t
r( + )t t∆

In the limit of small 
t , the
absolute value of the secant
vector 
r becomes the line
element ds, that is, |
r| →
ds.

The arc length s of the curve between the parameter values
t0 and t is then obtained by integration:

s(t) =
∫ t

t0

ds =
∫ t

t0

|dr| =
∫ t

t0

|dr|
dt

dt (8.1)

=
∫ t

t0

√(
dx1

dt

)2

+
(

dx2

dt

)2

+
(

dx3

dt

)2

dt.

The magnitude of the velocity is

|v| =
∣∣∣∣dr
dt

∣∣∣∣ = |dr|
dt

= ds

dt
.

In order to become independent of the coordinate frame, a set of orthogonal unit vectors
is put at the point of the trajectory of the mass point given by s. The set of unit vectors
moves along with the mass point: it is therefore also called the “moving trihedral” or
“accompanying dreibein.” As unit vectors one uses

49
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T tangent vector,

N principal normal vector,

B binormal vector.

Because the vectors form an orthonormalized set, it holds that (N × B) = T, cyclically
permutable. In the following we give the precise definition of these three base vectors of
the moving trihedral and show how they are calculated for a given space curve r(t).

The function r(t) describes a space curve depending on the time t as a parameter. To
determine the moving trihedral, one has to convert the function r(t) into r(s); this is done
by substituting the time t = t (s) from s = s(t) (compare with equation (8.1)).

The moving trihedral is determined from the local properties of the trajectory. dr /ds is
a vector along the limit position of the secant, i.e., the tangent.

z

y

x

P
s

N

B

T( )t r( )t

∆T N~

T( + )t t∆

s0

A curve in space and the moving trihedral (shown at an arbitrary point P of the curve).

The magnitude of this vector is |
r|/
s. For infinitesimally small segments one has
|dr| = ds; thus |dr|/ds = 1. Hence one has determined the tangent unit vector:

T = dr
ds

.
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T( )s

T( )s

∆T

T( + )s s∆s s+∆

s

The difference vector 
T is a measure of the
curvature of the curve. 
T points toward the
“inner side” of the curve. A straight line has
no curvature, and the normal vector N is not
uniquely defined.

Because ds = |dr|, it also holds that

T = dr
|dr| = dr / dt

|dr / dt | = v
|v| .

In order to determine the principal normal
vector, one first forms

T · T = 1.

By differentiating the scalar product of the tan-
gent vector, one obtains

d

ds
(T · T) = dT

ds
· T + T · dT

ds
= 0.

Because the commutative law holds for the scalar product, T·dT/ds is zero. This implies
that dT /ds is perpendicular to T.

The vector dT /ds gives the orientation of the principal normal vector. We characterize
its position by constructing, besides the tangent defined by T(s), a second tangent T(s+
s)
(neighboring tangent) that differs from the first one only by an infinitesimal vector 
T (see
figure). The principal normal vector lies in the plane spanned by the two tangents T(s) and
T(s + 
s). Because the magnitude of dT /ds in general differs from unity, one still has to
introduce a factor κ for normalization:

κ · N = dT
ds

,

where κ = |dT/ds|. This is the first Frenet formula. The value κ is always defined as
positive. This is possible since the orientation of N may be chosen in an appropriate
manner. The factor κ is called the curvature of the space curve.

The third unit vector, the binormal vector, is formed out of T and N:

B = T × N.

The orientations of all three unit vectors are functions of the arc length.
The vectors of the moving trihedral (accompanying dreibein) may be differentiated with

respect to the arc length. The three differential quotients are called Frenet’s1 formulas and
read

dT
ds

= κN, (8.2)

dN
ds

= τB − κT, (8.3)

1Jean Frédéric Frenet, b. Feb. 7, 1816—d. June 12, 1900, Périgueux (Dordogne). In 1840 Frenet entered
the École Normale in Paris as a scholar, was appointed as professor in 1848, and taught until 1868 at Lyon
University. His research mainly concerned problems of differential geometry, and in 1847 he found the Frenet
forms independently of Serret.
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dB
ds

= −τN or |τ | =
∣∣∣∣dB

ds

∣∣∣∣ . (8.4)

τ is a conversion factor and is called the torsion. The torsion describes the winding of the
curve out of the T, N-plane. The quantity dB/ds is exactly a measure for this winding.
From the curvature and torsion one gets

� = 1

κ
curvature radius, σ = 1

τ
torsion radius.

The curvature radius of a curve at a definite point equals the radius of the osculating
circle having the same curvature as the curve at that point.

Formula (8.2) has already been introduced as a definition. For a transparent derivation
of the remaining formulas, one utilizes the statement that any vector may be represented as
a linear combination of the three unit vectors.

Derivation of the second Frenet formula: Because the moving trihedral spans the entire
three-dimensional space, it holds that

dN
ds

= αT + βN + γ B ,

where α, β, γ are to be determined. Because N is a unit vector, N · N = 1.
By differentiating the scalar product N · N, one obtains

d

ds
(N · N) = d

ds
(1) = 0

or in other notation (product rule) dN/ds ·N+N ·dN/ds = 0, or, because the commutative
law holds for the scalar product:

2N · dN
ds

= 0.

Because in the nontrivial case neither N nor dN /ds is equal to zero, this means that
dN /ds is perpendicular to N, i.e., there is no component of dN /ds along N. Therefore,

β = 0; i.e.,
dN
ds

= αT + γ B. (8.5)

Moreover, according to the definition of the unit vectors, T · N = 0. By forming the first
derivative of this scalar product one has

dT
ds

· N + T · dN
ds

= 0. (8.6)

Using the first Frenet formula, we find

dT
ds

· N = κN · N = κ. (8.7)
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By inserting (8.7) in (8.6), we obtain

κ + T · dN
ds

= 0, or T · dN
ds

= −κ.

Multiplication of equation (8.5) by T yields

T · dN
ds

= αT · T + γ B · T = α.

Because T · dN/ds = −κ , it follows that α = −κ . Hence

dN
ds

= −κT + τB,

where γ = τ is defined and inserted as conversion factor.

Derivation of the third Frenet formula: We first try with the preceding trick and start
from B · N = 0. If we differentiate the scalar product B · N, the product rule yields

dB
ds

· N + B · dN
ds

= 0.

But this does not help immediately. We therefore simply start from the definition of B.
Because B = T × N, it follows that

dB
ds

= d

ds
(T × N) = dT

ds
× N + T × dN

ds
. (8.8)

The first term of the equation may be transformed as follows:

dT
ds

× N = κN × N = 0. (8.9)

By inserting equation (8.9) in (8.8), it follows that

dB
ds

= T × dN
ds

.

With

dN
ds

= τB − κT,

it follows that

dB
ds

= T × (τB − κT),
dB
ds

= τ(T × B) − κ(T × T).

Because

T × B = −N and T × T = 0 ,

it follows that

dB
ds

= −τN.
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Darboux rotation vector: The Frenet formulas can be formulated in a very elegant way.
To this end, we define a vector D as follows:

D = τT + κB.

This vector D is called the Darboux2 rotation vector. We now consider

D × T = (τT + κB) × T

= τ(T × T) + κ(B × T).

Because T × T = 0 and B × T = N, it follows that

D × T = κN. (8.10)

Correspondingly, one has

D × N = (τT + κB) × N

= τ(T × N) + κ(B × N).

Because B × N = −T and T × N = B, it follows that

D × N = τB − κT (8.11)

and there holds

D × B = (τT + κB) × B

= τ(T × B) + κ(B × B).

Because B × B = 0 and T × B = −N, it follows that

D × B = −τN. (8.12)

Using (8.10), (8.11), and (8.12), one may rewrite Frenet’s formulas in the following,
highly symmetric form:

dT
ds

= D × T,
dN
ds

= D × N,
dB
ds

= D × B.

2Jean Gaston Darboux, b. Aug. 14, 1842, Nı̂mes—d. Feb. 23, 1917, Paris. Darboux came from modest
relations. After graduating from École Polytechnique and École Normale in 1861, he decided for a teacher’s
profession at the École Normale. Supported by influential Parisian scientists, he got two teaching assignments
after his doctorate in 1866. In 1881 he was appointed as professor. From 1880 on, he rendered merits as dean of
the faculty of natural sciences on reorganizing the Sorbonne. From 1900 he served as permanent secretary of the
Académie des Sciences. His main results concern the theory of areas. But he always aimed at joining to possibly
all branches of mathematics, to penetrate them geometrically, and to work out the organic connection between
mechanics, variational calculus, theory of partial differential equations, and theory of invariants.
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Problem 8.1: Curvature and torsion

Prove the relation

dr
ds

·
(

d2r
ds2

× d3r
ds3

)
= τ

�2
.

Solution By inserting Frenet’s formulas and T = dr /ds, it follows that

dr
ds

·
(

d2r
ds2

× d3r
ds3

)
= T ·

[
dT
ds

×
(

κ
dN
ds

+ dκ

ds
N

)]

= T ·
(

dT
ds

× κ
dN
ds

)
= T · (κN × κ(τB − κT))

= Tκ2 · (N × (τB − κT)) = κ2T · ((N × τB) − (N × κT))

= κ2T · (N × τB) = κ2τT · T = κ2τ = τ

�2
.

Examples on Frenet’s formulas:

Example 8.2: Frenet’s formulas for the circle

N

T r( )t

y

xR

ωt

Tangent and normal vector of the circle.

Given the position vector

r(t) = (R cos ωt, R sin ωt, 0),

calculate the vectors of the moving trihedral.

Tangent vector: One has

T = dr
ds

,

and with ds = |dr|, it follows that

T = dr
|dr| = dr/dt

|dr/dt | = v
|v| .

The velocity is

dr
dt

= v = (−Rω sin ωt, Rω cos ωt, 0) = Rω(− sin ωt, cos ωt, 0),

∣∣∣∣dr
dt

∣∣∣∣ = |v| =
√

R2ω2 sin2 ωt + R2ω2 cos2 ωt = Rω.

Hence, for the tangent vector one obtains

T = Rω(− sin ωt, cos ωt, 0)

Rω
= (− sin ωt, cos ωt, 0) .



56 THE MOVING TRIHEDRAL (ACCOMPANYING DREIBEIN)—THE FRENET FORMULAS 8

Normal vector: According to the first Frenet formula

κN = dT
ds

= dT /dt

ds/dt
.

We start from the time derivative:

dT
dt

= −ω(cos ωt, sin ωt, 0),

ds

dt
=

∣∣∣∣dr
dt

∣∣∣∣ = Rω,

dT
ds

= −ω(cos ωt, sin ωt, 0)

Rω
.

This means

κN = − 1

R
(cos ωt, sin ωt, 0) = − r

R2
.

One has

|(cos ωt, sin ωt, 0)| = 1.

Because the curvature κ is defined as a positive quantity, thus always κ > 0, the following holds

κN = 1

R
(− cos ωt, − sin ωt, 0), thus κ = |κ| |N| = 1

R
.

Thus κ = 1/R, and consequently one has

N = (− cos ωt, − sin ωt, 0).

As was expected, the curvature radius � = 1/κ = R because R is the radius of the circle. For an
arbitrary space curve the curvature radius in general varies continuously; it equals the radius of the
osculating circle at a point of the curve. The geometric position of the centers of curvature of a curve
(the centers of the osculating circles) is called the evolute. For the example of a circle the orientation
of the normal vector is opposite to that of the position vector. The normal unit vector always points
toward the center of the curvature circle. In this case the evolute is the center of the circle.

Binormal vector: The vector B is calculated from B = T × N.

B =

∣∣∣∣∣∣∣∣
e1 e2 e3

− sin ωt cos ωt 0

− cos ωt − sin ωt 0

∣∣∣∣∣∣∣∣ = e3(sin2 ωt + cos2 ωt) = e3.

B = (0, 0, 1).

dB
ds

= (0, 0, 0) = −τN, ⇒ τ = 0.

The torsion (winding) equals zero because the curve lies within a plane. One easily realizes that the
torsion vanishes for all plane curves because T and N are within the plane, therefore B = T × N ⊥ to
the plane and is therefore constant. Hence, from the third Frenet formula and from dB/ds = 0, it
follows that τ = 0. The torsion specifies how fast the curve is running out (winding out) of the plane.
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Example 8.3: Moving trihedral and helix

The moving trihedral of a helix is calculated analogously to the case of a circle. The position vector
describing the helix in space reads

r(t) = (R cos ωt, R sin ωt, bωt).

Tangent vector:

T = v
|v| = dr /dt

ds/dt
= (−Rω sin ωt, Rω cos ωt, bω)√

R2ω2(sin2 ωt + cos2 ωt) + b2ω2

= (−R sin ωt, R cos ωt, b)√
R2 + b2

.

Normal vector:

dT
ds

= dT /dt

ds/dt
= −Rω(cos ωt, sin ωt, 0)√

R2 + b2 · ω
√

R2 + b2
= |κ|N.

The curvature κ is always defined as positive; correspondingly, the orientation of N is fixed
(compare p. 51). One thus obtains

N = (− cos ωt, − sin ωt, 0), |κ| = R

R2 + b2
.

The curvature of the helix is somewhat smaller than that of the circle, which is geometrically
plausible.

Binormal vector: One forms the cross product

B = T × N.

In determinant notation:

B = 1√
R2 + b2

∣∣∣∣∣∣∣∣
e1 e2 e3

−R sin ωt R cos ωt b

− cos ωt − sin ωt 0

∣∣∣∣∣∣∣∣
= e1

b sin ωt√
R2 + b2

+ e2
−b cos ωt√

R2 + b2
+ e3

(R sin2 ωt + R cos2 ωt)√
R2 + b2

= 1√
R2 + b2

(b sin ωt, −b cos ωt, R).

For b → 0, B = −→
constant = (0, 0, 1). To calculate the torsion, one forms

dB
ds

= dB /dt

ds/dt
= (1/

√
R2 + b2)(bω cos ωt, bω sin ωt, 0)

ω
√

R2 + b2

= b

R2 + b2
(cos ωt, sin ωt, 0),
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dB
ds

= −τN .

The vector N has already been calculated above: N = (− cos ωt, − sin ωt, 0). From there follows
the torsion of the helix. It holds that

−τ = −b

R2 + b2
, τ = b

R2 + b2
.

The torsion radius: σ = 1/τ = (R2 + b2)/b.
For b = 0, it follows that τ = 0. τ is a measure for the variation of B, i.e., for dB /ds. In other

words: τ is a measure of how the curve is winding out of the plane.

The three unit vectors T, N, and B define three planes that have particular names:

T and N span the osculating plane,

N and B span the normal plane,

B and T span the rectifying plane.

Remark: For a straight line r(t) = a + te κ = 0 (� = ∞) and τ = 0 (σ = ∞). N and
B may then be put arbitrarily ⊥ to T = e. This is quite clear.

Velocity and acceleration of a mass point on an arbitrary space curve: For arbitrary
space curves it is sometimes convenient to express the velocity and the acceleration by
means of the new unit vectors. After introducing the vector T one has

T = v
|v| , v = |v| · T = vT.

This relation may be used to derive the acceleration.

b = d2r
dt2

= dv
dt

= d

dt
(v T) = dv

dt
T + v

dT
dt

.

By transforming the second term, one obtains for the acceleration

dT
dt

= dT
ds

ds

dt
= dT

ds
v,

b = dv

dt
T + v2 dT

ds
= dv

dt
T + v2κN = dv

dt
T + v2

�
N.

The acceleration is composed of two components: the tangential acceleration dv/dt T
pointing in the tangential direction, and the centripetal acceleration v2/� N pointing toward
the center of the circle of curvature. For a uniform motion of a mass point on a circle
(Example 7.4) there exists only the centripetal acceleration, because dv/dt = 0 due to the
uniformity of motion.
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J( )t
J( )t

T

TJ

r( )t

r( )t s
P0

P1

Parallel evolvents J(t) belonging to the
curve r(t).

The Evolute and the Evolvent: The evolute
E (t) of a curve r(t) is the geometric position of
the centers of curvature (centers of the osculating
circles) of the curve r(t):

E (t) = r(t) + �(t)N(t)

= r(t) + 1

κ(t)
N(t) ,

where 1/κ = � is the curvature radius of the curve
at point r. For plane curves, (τ = 0) this holds:
The tangents of the evolutes are simultaneously
normals of the initial curve, because

dE
dt

= dr
dt

+ d�

dt
N(t) + �

dN
dt

= T
ds

dt
+ d�

dt
N(t) + �

ds

dt
(τB − κT)

= T
(

ds

dt
− �κ︸︷︷︸

=1

ds

dt

)
+ d�

dt
N (because τ = 0)

= d�

dt
N.

The evolvent (or involute or unwinding curve) J(t) is the geometric position of the arc
length s plotted along the tangents:

J(t) = r(t) − s(t) · T(t).

s is measured from an initial point P0. Depending on the choice of the initial point P0,
one obtains a family of curves, whereby two evolvents in each point have a constant
relative distance in normal direction. Such curves are called parallel curves. This is seen
immediately by demonstrating that the tangent to the evolvent is perpendicular to the
tangent of the initial curve, i.e., T · TJ = 0. But this is evident because

TJ ∼ dJ
dt

= ds

dt
T − ds

dt
T︸ ︷︷ ︸

=0

−s(t)
dT
dt

; thus TJ ∼ −N.

If one is dealing with plane curves, then the construction of the evolutes and of the
evolvents are in some kind of inverse relation with respect to each other. One finds:

I. One of the evolvents of an evolute is the initial curve itself, symbolically written as

JEr(s) = r(s).

II. The evolute of each evolvent of a curve is the initial curve itself, that is,

EJr(s) = r(s).
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Here we have written the corresponding initial curve as an index; thus Jr(s) is the
evolvent of the curve r(s), and EJr(s) is again the evolute of the evolvent Jr(s).

We prove the second assertion: It reads

EJr(s) = Jr (s) + 1

κJ
NJ = (r(s) − sTr (s)) + 1

κJ
NJ .

The normal of the curve Jr is obtained by differentiation of the tangent vector TJ = −Nr

with respect to the arc length sJ (i.e. not with respect to s ≡ sr !). Therefore,

NJ = 1

κJ

dTJ

dsJ
= 1

κJ

ds

dsJ

(−dNr

ds

)
= − 1

κJ

ds

dsJ
(τBr − κTr) = κ

κJ

ds

dsJ
Tr

if the torsion τ vanishes (plane curve!).
The derivative of the arc length of the curve r with respect to the arc length of the evolvent

Jr is obtained because

TJ = dJr

dsJ
= dJr

ds

ds

dsJ
; thus

ds

dsJ
=

∣∣TJ
∣∣

|dJr /ds| = 1

s|dTr/ds| = 1

sκ
.

Because NJ and Tr are unit vectors, it must hold that

κ

κJ

ds

dsJ
= 1 or κJ = κ

ds

dsJ
= κ

1

sκ
= 1

s
.

We see that the curvature radius of the evolvent just equals the corresponding arc length
s of the “unwound” curve, as is expected clearly.

For the evolute of the evolvent, we now obtain

EJr = r(s) − sTr(s) + 1

κJ
NJ

= r(s) − sTr(s) + 1

κJ
Tr(s)

= r(s) − sTr(s) + sTr(s) = r(s).

Thus, assertion II is proved. Assertion I may be proved in a similar way.

Note: By adding a term pointing along the binormal direction, the definition of the evolute
may be generalized in such a way that the assertion holds also for general space curves
with torsion τ �= 0 (compare to Example 8.6).
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Example 8.4: Evolvent of a circle

The evolvent of a circle is a spiral. The centers of curvature of this spiral are located on the circle,
which therefore is the evolute of the spiral (compare the figure).

P0

P1

MEvolute

Evolvent

Evolvent

The circle and two of its evolvents.

Problem 8.5: Arc length

z
y

x

The space curve.

Calculate the arc length of the space curve given by

r(t) = 3 cosh(2t) ex + 3 sinh(2t) ey + 6tez

for the interval 0 ≤ t ≤ π . Outline the curve!

Solution One has

s =
∫

ds =
∫

ds

dt
dt =

∫ ∣∣∣∣dr
dt

∣∣∣∣ dt,

because ds = |dr|,
dr
dt

= 6 sinh(2t) ex + 6 cosh(2t) ey + 6ez,∣∣∣∣dr
dt

∣∣∣∣ = 6
√

sinh2(2t) + cosh2(2t) + 1 = 6
√

2 cosh2(2t),

because sinh2 x = cosh2 x − 1 → |dr /dt | = 6
√

2 cosh(2t),

s =
π∫

0

6
√

2 cosh(2t) dt = 1

2
6
√

2

2π∫
0

cosh x dx = 3
√

2 sinh(2π).

The space curve comes from the first octant, intersects the x, y-plane at the point (3,0,0), and enters
the eighth octant—twisted hyperbola: Consider the x, y-components: x = cosh 2t, y = sinh 2t, then
form x2 − y2 = cosh2 2t − sinh2 2t = 1 → x2 − y2 = k (k = constant). This is the equation of a
hyperbola, see Chapter 26.
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Example 8.6: Generalization of the Evolute

The definition of the evolute may be extended to the case of nonplanar curves, i.e., curves with torsion
τ(s) �= 0 in such a way that

JEr(s) = r(s) (8.13)

further holds. For this purpose we start from a general ansatz allowing that the evolute runs out of
the osculating plane of the curve r(s), namely

E(s) = r(s) + λ(s)N(s) + µ(s)B(s) (8.14)

with two indeterminate functions λ(s) and µ(s).
To calculate the evolvent of E, one needs the derivative

dE
ds

= dr
ds

+ dλ

ds
N + λ

dN
ds

+ dµ

ds
B + µ

dB
ds

= T(1 − κλ) + N(λ̇ − µτ) + B(µ̇ + τλ), (8.15)

where the Frenet formulas have been utilized. The dot denotes differentiation with respect to s.
The evolvent of the evolute then has the form

JEr(s) = Er(s) − sE (s)TE(s) = Er(s) − sE (s)
dE
dsE

(s)

= r + λN + µB − sE
ds

dsE

dE
ds

= r − ds

dsE
sE T(1 − κλ) + N

[
λ − sE

ds

dsE

(
λ̇ − µτ

)]
+ B

[
µ − sE

ds

dsE
(µ̇ + τλ)

]
. (8.16)

In order to fulfill 8.13, all additional terms on the right side of 8.16 must vanish. Because the
vectors of the moving trihedral are orthogonal, one is led to three independent equations:

1 − κλ = 0; (8.17)

λ − sE
ds

dsE
(λ̇ − µτ) = 0; (8.18)

µ − sE
ds

dsE
(µ̇ + τλ) = 0. (8.19)

The first equation again yields the old result

λ(s) = 1

κ(s)
. (8.20)

We now resolve equation 8.18:

sE
ds

dsE
= λ

λ̇ − µτ
= 1/κ

(−1/κ2)κ̇ − µτ
= −κ

κ̇ + µτκ2
(8.21)
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and insert this in equation 8.19:

µ + κ

κ̇ + µτκ2
(µ̇ + τλ) = 0. (8.22)

This is a differential equation of first order for the function µ(s),

µ̇ + τκµ2 + κ̇

κ
µ + τ

κ
= 0. (8.23)

In order to solve 8.23, we multiply by κ ,

(κµ̇ + κ̇µ) + τκ2µ2 + τ = 0. (8.24)

We substitute Y (s) = κ(s)µ(s); hence

d

ds
Y + τ

(
Y 2 + 1

) = 0. (8.25)

This may be integrated by separation of variables,

−
∫

dY

Y 2 + 1
= +

∫
ds τ + C,

hence

+arccotY =
s∫

0

ds ′τ(s ′) + C

or

µ(s) = 1

κ(s)
cot

⎛⎝ s∫
0

ds ′ τ(s ′) + C

⎞⎠ . (8.26)

The generalized definition of the evolute therefore reads

E(s) = r(s) + 1

κ(s)
N(s) + 1

κ(s)
cot

⎛⎝ s∫
0

ds ′ τ(s ′) + C

⎞⎠ B(s) . (8.27)

Because C is an arbitrary constant, there exists an entire set of evolutes.
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u
v

z
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y

v1
v2

v3

r( , )
3

r(
,

)
1

r(
,

)
2u

v

Illustration of the space curves r(u, vn).

It may happen that the position vector is not a func-
tion of one parameter only but depends on two pa-
rameters u and v:

r(u, v) = (x(u, v), y(u, v), z(u, v)).

The position vector then describes a surface in
space. This shall be visualized: Let r be a func-
tion of two parameters u and v. We first choose a
fixed value v1 for v and let u vary continuously.
r(u, v1) then describes a space curve (compare to
the figure).

Now we choose another fixed value of v that is
not widely spaced from v1 and denote it by v2. u is
again varied continuously.

There results a space curve r(u, v2) that does not differ too much from r(u, v1). This
procedure may be repeated many times, and one obtains many neighboring space curves
(see figure overleaf).

Then, the same procedure may be performed in the opposite manner. By choosing a fixed
value for u and varying v continuously, one obtains distinct neighboring lines r(un, v) for
a fixed un (see next figure).

If the spacings between u and v become more and more dense, one obtains a surface
in space. One may form the derivative along such a curve (e.g., fixed u = u2 and varying
v). The derivative in which one of the parameters is considered variable while the other
parameters are considered fixed is called a partial derivative and is denoted by a round ∂

(spoken: “d partial” or “d partially derived with respect to”).

u = ui = constant :
dr(ui , v)

dv
= rv = ∂r(u, v)

∂v
.

64
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y

v1 v2 v3

v4
v5
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v7
v8

v9

Coordinate lines with varying u are characterized by fixed values of v1, v2, . . . .
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v v
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r(
,

)

The net of coordinate lines.

In the same way one forms the tangent vector ru :

v = vi = constant :
dr(u, vi )

du
= ru = ∂r(u, v)

∂u
.

The plane fixed by ru and rv is called the tangent plane of the surface. From ru and rv , one
easily forms the normal vector n, which is perpendicular to the tangent plane.
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z

x

y

rv

ru

n

Illustration of a surface in space with
tangent and normal vectors and a tan-
gent plane in one point of the surface.

The normal vector is

n(u, v) = ru × rv

|ru × rv| .

If ru · rv = 0 at any point of the surface, the mesh
formed by the curves for u = constant and v =
constant, respectively, is called an orthogonal mesh.
For example, the meridians and parallels of constant
latitude of a sphere form an orthogonal mesh. A sur-
face for which a normal vector may be constructed
at any point is called orientable. There are surfaces
with only one side, as for example the Möbius strip
(see Section 14). On such a surface, any point can be
reached from any other point by a continuous dis-
placement of the normal vector. Such surfaces are
not orientable. Orientable surfaces have inner and outer sides. By a continuous displacement
of the normal vector, one stays always on the same side of a orientable surface. The normal
n of an orientable surface is defined as positive for external (convex) surfaces, and negative
for concave ones.

Example 9.1: Normal vector of a surface in space

The position vector r(u, v) = a cos u sin v e1 + a sin u sin v e2 + a cos v e3 with variable parameters
describes a surface in space.

Find the normal vector as a function of u and v.

Solution ru = −a sin u sin v e1 + a cos u sin v e2 + 0 e3,

rv = a cos u cos v e1 + a sin u cos v e2 − a sin v e3,

ru × rv =

∣∣∣∣∣∣∣∣
e1 e2 e3

−a sin u sin v a cos u sin v 0

a cos u cos v a sin u cos v −a sin v

∣∣∣∣∣∣∣∣
= −a2 cos u sin2 v e1 − a2 sin u sin2 v e2 − a2 sin v cos v e3 ,

|ru × rv| = a2
√

cos2 u sin4 v + sin2 u sin4 v + sin2 v cos2 v

= a2
√

(cos2 u + sin2 u) sin4 v + sin2 v cos2 v

= a2
√

sin2 v (sin2 v + cos2 v)

= a2| sin v|,
n = (− cos u sin v, − sin u sin v, − cos v) for sin v > 0.
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The result means that the normal vector always points opposite to the position vector, which is the
case for a sphere. One may easily prove that the function of the position vector represents a sphere,
by calculating the magnitude of the position vector:

x = a cos u sin v,

y = a sin u sin v,

z = a cos v .

The absolute value (the normalization) |r| = r of the position vector is calculated from

|r|2 = x2 + y2 + z2 = a2(cos2 u sin2 v + sin2 u sin2 v + cos2 v)

= a2(sin2 v (cos2 u + sin2 u) + cos2 v)

= a2.

From there it follows that r = a = constant, i.e., the given position vector determines the surface
of a sphere.

Because

ru · rv = −a2 sin u cos u sin v cos v + a2 sin u cos u sin v cos v + 0 (−a sin v) = 0,

the mesh spanned by the u, v-lines represents orthogonal coordinates. One easily confirms that the
u-v-lines are the meridians and parallels of equal latitude on a sphere.



10 Coordinate
Frames

In an n-dimensional space one may always define n linearly independent base vectors out
of which any arbitrary vector may be composed by a linear combination. For the sake of
simplicity, vectors of magnitude unity are usually adopted as base vectors.

Corresponding to the number of base vectors, the position of an arbitrary point may
be specified by n independent real numbers ui , i = 1, . . . , n. Each coordinate frame
is characterized by a mutually unique assignment between the space points and these n
numbers, the coordinates.

A vector in the n-dimensional space reads

r =
n∑

i=1

ui ei ,

where the n base vectors ei again shall satisfy the orthonormality relation ei · ej = δi, j .
The scalar product of two n-dimensional vectors a = {ai } and b = {bi } may be defined by
a · b = ∑n

i=1 ai bi , in analogy to the three-dimensional space.
The introduction of a coordinate frame implies that the coordinates of a space-fixed point

change if the frame is displaced or rotated. From there it follows that for any special system
a reference point and a definite orientation in space must be given.

Physically seen, both quantities may be fixed by tying the coordinate frame, for example,
in a rigid body as a reference body; in a completely empty space it would make no sense to
speak of the position of a point. Of course, a coordinate frame must not be “at rest” (e.g.,
all frames tied to the earth are accelerated frames due to the earth’s rotation).

Special examples

s

A caterpillar on a blade
of grass.

1. The position of a point on an arbitrarily curved line (n = 1)

is already specified by giving one number. In the simplest case
one adopts the arc length s measured from a reference point in
a defined direction of motion as a “natural parameter.” This is a
one-dimensional space.

68
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An ant crawling on a sphere.

2. The surface of the earth, although being formed in
a highly complicated manner (mountains, etc.), is an
area with n = 2. Each point on it may thus be uniquely
determined by two numbers. As is known this may be
achieved by fixing two angular quantities: geogra-
phic length and latitude. Arbitrarily chosen reference
quantities are the zero meridian through Greenwich
(geographic length = 0) and the equator (geographic
latitude = 0). This is a two-dimensional space.

In order to change from one coordinate frame (q1, q2, q3) to another one (here specifically
the Cartesian frame: x, y, z), the following equations have to be set up:

Transformation equations:

q1 = q1(x, y, z) x = x(q1, q2, q3)

q2 = q2(x, y, z) and their inversion y = y(q1, q2, q3)

q3 = q3(x, y, z) z = z(q1, q2, q3).

(10.1)

Z

X

Y

y

x

z P

0

e3

e2
e1

r

The definition of Cartesian coordinates.

Cartesian coordinates: Given are the three base
vectors e1, e2, e3 along the directions of three mu-
tually perpendicular axes. The coordinates x, y, z
of a point P are the projections of the position

vector r = −→
O P onto the axes,

r = xe1 + ye2 + ze3, |ei | = 1.

By convention the three unit vectors form a
right-handed frame. Because they are mutually
perpendicular, they constitute an orthogonal frame.
Moreover, the unit vectors are always parallel to
the axes, that is, fully independent of the position
of the point P in space.

This constancy of direction of the unit vectors combined with their orthogonality is
the reason for preferred usage of Cartesian coordinates. For many special problems with
particular symmetry, it turns out as convenient to use coordinate frames that are adapted to
the geometric conditions and therefore simplify the calculations. For example, the motion
of a plane pendulum may be described in terms of one angular coordinate, the motion of a
spherical pendulum in terms of two angular quantities.

Curvilinear coordinate frames: To explain the denotation, we suppose the coordinates
x, y, z of r to be expressed by q1, q2, q3 according to (10.1). There results

r(q1, q2, q3) = {x(q1, q2, q3), y(q1, q2, q3), z(q1, q2, q3)} .
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Two of these three coordinates q1, q2, q3 are now kept constant; let only the third one be
variable. All points satisfying this condition are located on a space curve. There arise the
three coordinate lines:

L1 : r = r(q1 , q2 = c2, q3 = c3),

L2 : r = r(q1 = c1, q2 , q3 = c3), (10.2)

L3 : r = r(q1 = c1, q2 = c2, q3 ).

As is immediately seen from the scheme, the three coordinate lines have exactly one
common intersection point P (c1, c2, c3).

In the Cartesian frame these lines are straight lines parallel to the three axes. If, however,
at least one of the lines is not straight, one speaks of curvilinear coordinates. One may still
proceed one step further and keep only one of the three coordinates constant, while the
other two remain variable. There arise two-dimensional (in general curved) areas in space.

Coordinate areas:

F1 : r = r(q1 = c1, q2 , q3),

F2 : r = r(q1 , q2 = c2, q3), (10.3)

F3 : r = r(q1 , q2 , q3 = c3).

z

y

x

q3 curve

q2 curveq1 curve

P

q c1 1=

q c3 3=

q c2 2=

Illustration of coordinate surfaces.

One may imagine the coordinate lines
as resulting from the intersection of two of
these areas. In the Cartesian system the co-
ordinate areas are planes with the common
point P .

Generally an arbitrary point may be rep-
resented as the intersection point of its three
coordinate areas (and, of course, also co-
ordinate lines). One presupposes that each
space point is traversed by exactly one area
from each of the three sets of coordinate
areas. The three fixed parameters of these
areas are the coordinates of the point.

The vector r(q1, q2, q3) as a function of the three parameters q1, q2, q3 describes a space
region. Actually, if one of the coordinates is kept fixed, e.g., q3 = q3, according to Chapter 9
we are dealing with an area in space. If q3 changes to q3 = q3 + 
q3, a neighboring area
emerges. If q3 is running continuously, there emerge more and more arbitrarily densely
located areas in space that, in total, cover a space region.

General specification of base vectors: As normalized base vector (unit vector) eq1 at
point P , we choose a vector of magnitude 1 tangential to the coordinate line q2 = c2, q3 = c3

at P . Its orientation shall correspond to the direction of passage of the coordinate line with
increasing value q1.
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This introduction of the unit vector corresponds exactly to the geometric meaning of
the partial derivative; hence, eq1 may be calculated by partial differentiation of the position
vector with respect to q1 and subsequent normalization:

eq1 = ∂r /∂q1

|∂r /∂q1| or
∂r
∂q1

= h1eq1 or
∂r
∂qi

= hi eqi ; i = 1, 2, 3. (10.4)

Here hi are scaling factors, namely hi = |∂r/∂qi |. In curvilinear coordinate frames the
direction of at least one of the coordinate lines changes by definition. Therefore, these
frames are, contrary to the Cartesian frame, coordinate frames with variable unit vectors.

ez

eϕ

eρr

Z

X

Y

z
P

ρ
ϕ

ρ ϕsin

ρ ϕcos

The definition of cylindrical coordinates.

Cylinder coordinates: The coor-
dinates used are

ϕ: angle between the projection of
the position vector onto the x, y-
plane and the x-axis,

�: separation of the point from the
z-axis,

z: length of the projection of the po-
sition vector onto the z-axis (as in
the Cartesian frame).

The coordinate areas extend to in-
finity (see figure, showing limited
sections) and are

� = �1: circular cylinders about the z-axis,

ϕ = ϕ1: half-planes containing the z-axis, (10.5)

z = z1: planes parallel to the x, y-plane.

Coordinate lines are two straight lines and a circle.

Transformation equations: From the figure one may directly read off the relations:

r = (x1, x2, x3) = (� cos ϕ, � sin ϕ, z)

or in detail:

x = � cos ϕ, � = √
x2 + y2,

y = � sin ϕ, ϕ = arctan
y

x
= arcsin

y

�
,

z = z, z = z.

(10.6)
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To ensure that one point cannot be characterized by distinct combinations of coordinates,
we agree on the following restrictions:

� ≥ 0; 0 ≤ ϕ < 2π.

The representation is not completely unique since the angle remains indefinite for points
with � = 0. But inversely—and this is the more important requirement—to each triple
�, ϕ, z only one space point is associated.

ρ ϕ

y

z

ez

eϕ

eρ

X

Z

Yx

P

ϕ

( , , )z

ρ

Illustration of cylindrical coordinates.

Unit vectors: According to the geometric
introduction as tangent vectors to the coordi-
nate lines, the unit vectors e�, eϕ , ez are given
by

e� = ∂r /∂�

|∂r /∂�| = (cos ϕ, sin ϕ, 0)

1
,

eϕ = ∂r /∂ϕ

|∂r /∂ϕ| = �
(− sin ϕ, cos ϕ, 0)

�
,

ez = ∂r /∂z

|∂r /∂z| = (0, 0, 1)

1
. (10.7)

e� is parallel to the x, y-plane and points in
radial direction from the z-axis outward.

eϕ is tangent to the circle z = z1, � = �1,
that is, also parallel to the x, y-plane.

ez corresponds to the Cartesian e3.

Thus, e� and eϕ may be projected onto the x, y-plane without any changes. One has

e� = cos ϕ e1 + sin ϕ e2,

eϕ = cos
(
ϕ + π

2

)
e1 + sin

(
ϕ + π

2

)
e2 = − sin ϕ e1 + cos ϕ e2,

e� = (cos ϕ, sin ϕ, 0),

eϕ = (− sin ϕ, cos ϕ, 0), (10.8)

ez = (0, 0, 1).

The same result follows by partial differentiation of r with respect to �, ϕ, z and subsequent
normalization (see equation (10.7)).

To check the unit vectors, we form the triple scalar product

e� · (eϕ × ez) =

∣∣∣∣∣∣∣∣
cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1

∣∣∣∣∣∣∣∣ = 1.
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This is the unit volume spanned by the vectors e�, eϕ, ez . Thus, the cylindrical coordinates
form an orthogonal frame with variable unit vectors. For solving kinematic problems it is
important to know the derivative of the unit vectors with respect to time. Let the functions
�(t), ϕ(t), z(t) be known. The generalization of the chain rule for a function of several
variables then yields

de�

dt
= ∂e�

∂�

d�

dt
+ ∂e�

∂ϕ

dϕ

dt
+ ∂e�

∂z

dz

dt

= 0 + (− sin ϕ, cos ϕ, 0)ϕ̇ + 0 = ϕ̇ eϕ,

deϕ

dt
= (− cos ϕ, − sin ϕ, 0)ϕ̇ = −ϕ̇ e�, (10.9)

dez

dt
= 0.

The derivative of a vector e of constant magnitude has no component along the direction
of e and hence must be perpendicular to it: e · e = constant ⇒ e · de/dt = 0!

The equations given above fulfill this condition! We still note that from now on we shall
frequently abbreviate the time derivative of a quantity by a dot above this quantity, as, for
example, dϕ/dt ≡ ϕ̇ or de�/dt ≡ ė�, etc.

Velocity and acceleration in cylindrical coordinates: Let a point move along a path
described by the position vector r(t). One has

(a) the velocity v(t) = dr/dt ,

(b) the acceleration b(t) = d2r/dt2 = dv/dt .

In cylindrical coordinates let �(t), ϕ(t), z(t) be given. The position vector is

r = �e� + zez . (10.10)

Note: These base vectors are now not fixed but are coordinate-dependent by themselves.
One has to take care in component representation: For instance one cannot simply dif-
ferentiate r = (�, 0, z)! In order to avoid errors, one has to write out the vector, as, for
example,

(a)

ṙ = �̇e� + �ė� + żez + zėz .

This yields the velocity:

ṙ = �̇e� + �ϕ̇eϕ + żez . (10.11)

(b)

r̈ = (�̈e� + �̇ė�) + (�̇ϕ̇eϕ + �ϕ̈eϕ + �ϕ̇ėϕ) + (z̈ez + żėz).
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This yields the acceleration:

r̈ = (�̈ − �ϕ̇2)e� + (�ϕ̈ + 2�̇ϕ̇)eϕ + z̈ez . (10.12)

Hence, in the cylindric frame both the velocity and acceleration are composed of three
components: a radial component, an azimuthal component, and a component in the z-
direction.

Spherical coordinates According to the figure below, the coordinates are

r : length of the position vector,

ϑ : angle between the position vector and the z-axis (polar angle),

ϕ: azimuth (as in the cylindric frame).

Z

X

Y
y

z

er

eϕ

eϑ
x ϕ

ϑ
P r( ,ϑ ϕ, )r

The definition of spherical coordinates.

The previous figure illustrates the various coor-
dinate areas and lines. The point P is the inter-
section point of a circular cone about the z-axis
with the vortex at the origin 0, a half-plane includ-
ing the z-axis, and a sphere with the center at 0
that results by keeping the radius r constant and
varying the two angles. The coordinate lines are
two circles and a straight line: (1) r = constant,
ϕ = constant, ϑ variable — meridian; (2) r =
constant, ϑ = constant, ϕ variable — parallel of
constant latitude; (3) ϕ = constant, ϑ = constant,
r variable — radial ray.

The coordinate areas are a conical area (ϑ =
constant), a half-plane (ϕ = constant), and a
spherical area (r = constant).

Transformation equations

r = x1e1 + x2e2 + x3e3 = r sin ϑ cos ϕ e1 + r sin ϑ sin ϕ e2 + r cos ϑ e3.

When the equations are written in detail, we get

x = r sin ϑ cos ϕ, r = √
x2 + y2 + z2,

y = r sin ϑ sin ϕ, ϕ = arctan
y

x
,

z = r cos ϑ, ϑ = arctan
(√

x2 + y2/z
)

.

(10.13)
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ez

eϑ

eϕ

eρ
er

eϕ

X
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X
X

X

X

Z

Z

Z Z

Z

Z

Y

Y

Y Y

Y

Y

P

ϕ

ϕ ϕ

ϑ
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ρ = const.

ϑ = const.

ϕ = const. ϕ = const.

z = const.

r = const.

r

z

ϕ ϕ

ϑ

Coordinate surfaces and coordinate lines for cylindrical coordinates (left) and spherical coordinates (right).
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To reach uniqueness, the following restrictions are agreed upon:

r ≥ 0, 0 ≤ ϕ < 2π, 0 ≤ ϑ < π. (10.14)

Unit vectors for spherical coordinates: The position vector is

r = r(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ).

Partial differentiation yields

∂r
∂r

= (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ), hr =
∣∣∣∣∂r
∂r

∣∣∣∣ = 1,

∂r
∂ϑ

= r(cos ϑ cos ϕ, cos ϑ sin ϕ, − sin ϑ), hϑ =
∣∣∣∣ ∂r
∂ϑ

∣∣∣∣ = r,

∂r
∂ϕ

= r(− sin ϑ sin ϕ, sin ϑ cos ϕ, 0), hϕ =
∣∣∣∣ ∂r
∂ϕ

∣∣∣∣ = r sin ϑ.

(10.15)

The unit vectors follow by normalization:

er = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ);
eϑ = (cos ϑ cos ϕ, cos ϑ sin ϕ, − sin ϑ); (10.16)

eϕ = (− sin ϕ, cos ϕ, 0).

Geometrical interpretation: One has rer = r; hence, er points along the position vector,
that is, it is the normal to the surface of the sphere.

eϕ lies tangential to the circle r = r1, ϑ = ϑ1, namely, parallel to the x, y-plane. Its
component representation may accordingly be seen from the previous figure when setting
the circle radius equal to r sin ϑ .

eϑ has a component sin ϑ along the negative z-direction. We know that eϑ is the tangent
vector of the ϑ-coordinate line, namely the tangent to the meridian. The question whether eϑ

points upward or downward is decided by the z-component (− sin ϑ): eϑ points downward
as in the figure.

One may easily convince oneself that the spherical coordinates also constitute an
orthogonal frame with variable unit vectors, by evaluating the triple scalar product
er · (eϑ × eϕ) = 1.

We write the equations (10.16) explicitly:

er = sin ϑ cos ϕ e1 + sin ϑ sin ϕ e2 + cos ϑ e3;
eϑ = cos ϑ cos ϕ e1 + cos ϑ sin ϕ e2 − sin ϑ e3; (10.17)

eϕ = − sin ϕ e1 + cos ϕ e2 + 0 e3.
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and solve them for e1, e2, e3 according to Cramer’s rule1. For example, for e1 one finds

e1 =

∣∣∣∣∣∣∣∣
er sin ϑ sin ϕ cos ϑ

eϑ cos ϑ sin ϕ − sin ϑ

eϕ cos ϕ 0

∣∣∣∣∣∣∣∣ /
/ ∣∣∣∣∣∣∣∣

sin ϑ cos ϕ sin ϑ sin ϕ cos ϑ

cos ϑ cos ϕ cos ϑ sin ϕ − sin ϑ

− sin ϕ cos ϕ 0

∣∣∣∣∣∣∣∣ ,

= er sin ϑ cos ϕ + eϑ cos ϑ cos ϕ + eϕ(− sin ϕ)

sin2 ϑ cos2 ϕ + cos2 ϑ cos2 ϕ + sin2 ϕ
,

e1 = sin ϑ cos ϕ er + cos ϑ cos ϕ eϑ − sin ϕ eϕ, (10.18)

and similarly for e2 and e3:

e2 = sin ϑ sin ϕ er + cos ϑ sin ϕ eϑ + cos ϕ eϕ;
e3 = cos ϑ er − sin ϑ eϑ . (10.19)

Velocity and acceleration in spherical coordinates: To calculate the velocity and ac-
celeration in spherical coordinates, we still need the time derivatives ėr , ėϑ , ėϕ . One finds

ėr = ∂er

∂ϑ
ϑ̇ + ∂er

∂ϕ
ϕ̇

= (cos ϑ cos ϕ, cos ϑ sin ϕ, − sin ϑ)ϑ̇ + (− sin ϑ sin ϕ, sin ϑ cos ϕ, 0)ϕ̇

= ϑ̇eϑ + sin ϑϕ̇eϕ, (10.20)

and similarly

ėϑ = −ϑ̇ er + cos ϑ ϕ̇ eϕ,

ėϕ = − sin ϑ ϕ̇ er − cos ϑ ϕ̇ eϑ . (10.21)

Now we may calculate the velocity in spherical coordinates. The following hold:

r = rer ,

ṙ = ṙer + r ėr

= ṙer + r ϑ̇eϑ + r sin ϑ ϕ̇ eϕ, (10.22)

r̈ = r̈er + ṙ ėr + ṙ ϑ̇eϑ + r ϑ̈eϑ + r ϑ̇ ėϑ

+ ṙ sin ϑ ϕ̇ eϕ + r cos ϑ ϑ̇ ϕ̇ eϕ + r sin ϑ ϕ̈ eϕ + r sin ϑ ϕ̇ ėϕ

(after inserting (10.20) and (10.21) )

1Gabriel Cramer, b. July 31, 1704, Geneva, as son of a physician—d. Jan. 4, 1752, Bagnols near Nı̂mes. After
his studies at the university of Geneva, Cramer became appointed as professor for philosophy and mathematics.
From 1727-1729 he made an informative trip through many European countries. After his return home Cramer
held important municipal posts in Geneva. His rapidly decaying state of health led him to southern France where
he soon died. His main work is the Introduction à l’Analyse des Lignes Courbes Algébriques (1750), where among
other things the theory of solving systems of equations by means of determinants is outlined.
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= (r̈ − r ϑ̇2 − r sin2 ϑ ϕ̇2)︸ ︷︷ ︸
br

er +
(

1

r

d

dt
(r2ϑ̇) − r sin ϑ cos ϑ ϕ̇2

)
︸ ︷︷ ︸

bϑ

eϑ

+
(

1

r sin ϑ

d

dt

(
r2 sin2 ϑ ϕ̇

))
︸ ︷︷ ︸

bϕ

eϕ

≡ br er + bϑeϑ + bϕeϕ. (10.23)

If ϑ ≡ π/2, that is, sin ϑ = 1, ϑ̇ = 0, cos ϑ = 0, (10.22) and (10.23) turn into

ṙ = ṙer + r ϕ̇eϕ

and

r̈ = (r̈ − r ϕ̇2)er + (2ṙ ϕ̇ + r ϕ̈)eϕ,

respectively. These expressions for velocity and acceleration in plane polar coordinates are
already known from the discussion on cylinder coordinates.

Problem 10.1: Velocity and acceleration in cylindrical coordinates

k

–k

ϕ 2k

y

x

The heart curve or cardioid.

A particle moves with constant velocity v along the heart curve
or cardioid r = k(1 + cos ϕ) (Greek kardia = heart). Find the
acceleration a, its magnitude, and the angular velocity. (Note
that r denotes here the coordinate � of the cylindrical coordinate
frame.)

Solution The differentiation of the path equation with respect to time yields

r = k(1 + cos ϕ), (10.24)

ṙ = −k sin ϕ ϕ̇, (10.25)

r̈ = −k(ϕ̇2 cos ϕ + ϕ̈ sin ϕ). (10.26)

For the discussion below it is useful to conclude from 10.24 that

cos ϕ = r

k
− 1 and sin2 ϕ = 1 −

( r

k
− 1

)2 = 2
r

k
− r 2

k2
. (10.27)

According to 10.25 we obtain

ṙ 2 = k2 sin2 ϕ ϕ̇2 = k2

(
2

r

k
− r 2

k2

)
ϕ̇2 = 2kr ϕ̇2 − r 2ϕ̇2 . (10.28)

Because we are dealing with plane polar coordinates, we write for the radius vector

r = rer , (10.29)

ṙ = ṙer + r ϕ̇eϕ, (10.30)

r̈ = (r̈ − r ϕ̇2)er + (r ϕ̈ + 2ṙ ϕ̇)eϕ. (10.31)
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Because the velocity is given as constant, from 10.30 it follows that

v =
√

ṙ 2 + r 2ϕ̇2 ,

and with 10.28 it follows for the angular velocity that

ϕ̇ = v√
2kr

,

because namely

v =
(√(

2
r

k
− r 2

k2

)
k2 + r 2

)
ϕ̇ = √

2kr ϕ̇;

hence

ϕ̇ = v√
2kr

. (10.32)

For r → 0, obviously ϕ̇ → ∞. This is due to the “turn-over” of the polar angle at r = 0 (compare
the remark at the end of the problem). The er -component of the acceleration is

ar = r̈ · er = r̈ − r ϕ̇2 = −k

(
v2

2kr
cos ϕ + sin ϕ ϕ̈

)
− v2

2k
. (10.33)

The angular acceleration ϕ̈ follows from 10.32, whereby v̇ = 0:

ϕ̈ = − vṙ

2r
√

2kr
= v2 sin ϕ

4r 2
. (10.34)

Equation 10.34 inserted in 10.33 yields

ar = −k
v2

4r 2

(
r

2

k
cos ϕ + sin2 ϕ

)
− v2

2k

= −k
v2

4k2(1 + cos ϕ)2

(
1 + 2 cos ϕ + cos2 ϕ

) − v2

2k
,

ar = −3

4

v2

k
, radial acceleration. (10.35)

For the second component of the acceleration (azimuthal acceleration),

aϕ = r̈ · eϕ = r ϕ̈ + 2ṙ ϕ̇

= v2 sin ϕ

4r
− 2k

v2 sin ϕ

2kr
= −3

4

v2 sin ϕ

r
= −3

4

v2

k
· sin ϕ

1 + cos ϕ
. (10.36)

Obviously, aϕ → −∞ for ϕ → 180◦ (the angle ϕ turns over — compare the remark at the end of the
problem).

Because the acceleration components ar er and aϕeϕ are orthogonal, the magnitude of the acceler-
ation is given by

a =
√

a2
r + a2

ϕ = 3

4

v2

k

√
1 + sin2 ϕ

(1 + cos ϕ)2
= 3

4

v2

k

√
2

1 + cos ϕ
.

For the total acceleration, it also holds that a → ∞ for ϕ → 180◦.
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v

d1

01

d2

02

dn

0n ωn=

ω2=

ω1=

v
dn

v
d2

v
d1

If the origin of the polar coordinates is located on the path, the
angular velocity becomes infinite.

Remark: The angular velocity
10.32 and the angular acceleration
10.34 become infinite for r = 0.
This singularity is implied by the
choice of the coordinate frame and
is independent of the motion along
the cardioid. Consider, for exam-
ple, the uniform motion of a parti-
cle on an arbitrary path in polar co-
ordinates. Let the origin be located
on a normal to the path. Because
ω = v/d, the angular velocity de-
pends on the separation between
origin and path: ω1 < ω2 < . . . <

ωn . In the limit with the origin lo-
cated on the path, the angular ve-
locity becomes infinite.

Problem 10.2: Representation of a vector in cylindrical coordinates

Write the vector A = ze1 + 2xe2 + ye3 in cylindrical coordinates.

Solution For the solution, we make the ansatz A = A�e� + Aϕeϕ + Azez . The unit vectors of the Cartesian
frame have to be replaced by those of the cylinder system. Moreover, the components, namely, z, 2x,

and y, have to be expressed by cylindrical coordinates.
The system of equations

e� = e1 cos ϕ + e2 sin ϕ,

eϕ = −e1 sin ϕ + e2 cos ϕ

may be solved for e1, e2 and yields

e1 = e� cos ϕ − eϕ sin ϕ,

e2 = e� sin ϕ + eϕ cos ϕ.

It further holds that

x = � cos ϕ, y = � sin ϕ, z = z.

Insertion yields

A = z(e� cos ϕ − eϕ sin ϕ) + 2� cos ϕ(e� sin ϕ + eϕ cos ϕ) + � sin ϕez .

Thus the components are

A� = z cos ϕ + 2� cos ϕ sin ϕ,

Aϕ = 2� cos2 ϕ − z sin ϕ,

Az = � sin ϕ.
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Problem 10.3: Angular velocity and radial acceleration

a a

S

P1

P2

ω
ϕ

Motion around P1 with angular ve-
locity ω.

A rod rotates about P1 in a plane with the angular velocity
ω = kesin ϕ . At the time t = 0, let ϕ = 0. The straight line
intersects a fixed circle of radius a at the point P2.

(a) Find the angular acceleration of the rod.

(b) Find the velocity v� and the acceleration b� of the point
P2 along the rod.

(c) Find the velocity and the acceleration of the point P2 with
respect to the center of the circle.

eϕ

eρ

a 0 a

S

P1

P2

ω

ϕ
ϕ
2ϕ

Motion around P1 as seen from O.

Solution (a) The angular velocity is

ω = ϕ̇ = kesin ϕ

⇒ for the angular acceleration

ω̇ = ϕ̈ = kω cos ϕesin ϕ

= k2e2 sin ϕ cos ϕ .

(b) The position vector to the point P2 on the rod is

r = �e� , where � = 2a cos ϕ ⇒ r = 2a cos ϕ e� .

The velocity of P2 is obtained from the relation

ṙ = �̇e� + �ϕ̇eϕ ,

and the acceleration is

r̈ = (�̈ − �ϕ̇2)e� + (�ϕ̈ + 2�̇ϕ̇)eϕ .

Insertion yields

v = ṙ = −2a sin ϕ ϕ̇ e� + 2a cos ϕ ϕ̇ eϕ

= 2a
(− sin ϕ ϕ̇ e� + cos ϕϕ̇eϕ

)
,

b = r̈ = 2a
[(−ϕ̈ sin ϕ − 2ϕ̇2 cos ϕ

)
e� + (

ϕ̈ cos ϕ − 2ϕ̇2 sin ϕ
)

eϕ

]
.

For the velocity and acceleration along the rod axis, that is, in the e�-direction, one obtains

v� = −2aϕ̇ sin ϕ e� , b� = −2a
(
ϕ̈ sin ϕ + 2ϕ̇2 cos ϕ

)
e�.

The negative sign indicates that both v� as well as b� point toward the center of rotation P1.
(c) The rotation angle of O P2 equals 2ϕ, and the velocity along the circle is

rP2 = a · 2ϕ ⇒ vP2 = 2aϕ̇ = 2akesin ϕ .

The normal acceleration is

bP2b = v2
P2

a
= 4ak2e2 sin ϕ ,
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the tangential acceleration is

bP2r = dvP2

dt
= 2aϕ̈ = 2ak2 cos ϕ e2 sin ϕ ,

and the total acceleration is

bP2 =
√

b2
P2b + b2

P2r = 2ak2e2 sin ϕ
√

4 + cos2 ϕ .



11 Vector Differential
Operations

Scalar fields: The notion of scalar field means a function φ(x, y, z) that assigns a scalar,
the value φ(x1, y1, z1), to any space point P(x1, y1, z1). Examples are temperature fields
T (x, y, z) and density fields �(x, y, z) (e.g., mass density, charge density).

Vector fields: A vector field correspondingly means a function A(x, y, z) that assigns a
vector A(x1, y1, z1) to any space point P(x1, y1, z1).

Vector fields are, for instance, electric and magnetic fields, characterized by the field
strength vectors E and H, or velocity fields υ(x, y, z) in flowing liquids or gases.

The operations gradient, divergence, and curl (rotation)

Gradient: Given a scalar field φ(x, y, z), the gradient of the scalar field at a fixed position
P0(x0, y0, z0), denoted by grad φ(x0, y0, z0), is a vector pointing along the steepest ascent
of φ, the magnitude of which equals the change of φ per unit length of the path along the
maximum ascent at the point P0(x0, y0, z0).

In this way, any point of a scalar field can be associated with a gradient vector. The set
of gradient vectors forms a vector field associated to the scalar field. Mathematically the
so-defined vector field is given by the relation

A(x, y, z) = grad φ = e1
∂

∂x
φ + e2

∂

∂y
φ + e3

∂

∂z
φ. (11.1)

To simplify the mathematical description, the following notation is used:

grad φ = ∇φ, where ∇ = e1
∂

∂x
+ e2

∂

∂y
+ e3

∂

∂z
.

(∇: spoken “nabla” or “nabla operator”.)

83
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Definition of an operator: The nabla operator is a symbolic vector (vector operator)
that, when applied to a function φ, generates the gradient of φ. Taken as such, the operator
is meaningless; it has to operate on something, for example a scalar function φ(x, y, z).

We now demonstrate that the vector field ∇φ has the properties quoted above. For this
purpose we need the total differential of φ, namely

dφ = ∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz. (11.2)

This quantity describes the main part of the total increase of the function φ if x changes by
dx, y by dy, z by dz, that is,


φ ≈ φ(x + dx, y + dy, z + dz) − φ(x, y, z).

The Taylor expansion up to the first-order term yields

φ(r + dr) = φ(x + dx, y + dy, z + dz)

= φ(x, y, z) + ∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz + · · · ,

and therefore


φ = φ(r + dr) − φ(r) = ∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz + · · ·

= dφ + terms of higher order. (11.3)

This explains the name total differential for the main part of the total increase of the function
φ. We thereby have used the Taylor expansion of a function (up to the first terms in the
small quantities dx, dy, dz). In Section 22 Taylor expansions will be outlined in detail and
explained by numerous examples. We recommend that you have a look at this section now.

Using the infinitesimal position vector dr = (dx, dy, dz), we may also write the total
differential as follows:

dφ = ∇φ · dr =
(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
· (dx, dy, dz)

= ∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz . (11.4)

Equipotential surfaces are surfaces on which the function φ takes a constant value,
φ(x, y, z) = constant.

As has been shown above, there is the relation

∇φ · dr = dφ, with dr = (dx, dy, dz). (11.5)

Because dφ represents the sum of the increases of φ in each direction dr, dφ = 0 means
to stay on an equipotential surface. For this case, it holds that

0 = dφ = ∇φ · drE S, (11.6)
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y
dr

dr

�φ

�φ

Hill

Minimum

Equipotential lines and the direction of the
gradient.

where drE S lies in the equipotential surface
E S. The scalar product ∇φ · drE S vanishes
only then if the cosine of the enclosed angle
vanishes (compare the opposite figure), pro-
vided that ∇φ �= 0. This implies that ∇φ and
drE S are perpendicular to each other. Thus the
gradient of φ is always perpendicular to the
equipotential areas.

We now consider the increase dφ along the
gradient vector at a fixed point of the scalar
field: Here dr is parallel to ∇φ and then ∇φ ·dr
takes the maximum value. Therefore, the vec-
tor grad φ = ∇φ always points in the direction
of the strongest increase of φ; see the opposite
figure.

Divergence: Contrary to the gradient operation, the divergence is applied to vector fields.
Given a vector field A = (Ax , Ay, Az), we further imagine a cuboid-shaped “control
volume” (rectangular box) with the edge lengths 
x, 
y, 
z.

The “vector flow” across an area represents the entity of vectors penetrating it perpen-
dicularly, that is, the normal components of the vectors integrated over the entire area.

y

z xx x x+∆

y y+∆

y

s1
s4

s2s3

A y yy y( + )∆ e

A yy y( )e

A x xx x( + )∆ eA xx x( )e

The flow across a cuboid. The extension in
the z-direction (out of the paper plane) is
not shown.

The lateral faces of the cuboid are denoted by
s1, s2, . . . , s6.

We now calculate the vector flow across all
lateral faces of the cuboid (rectangular box).
The edge lengths 
x, 
y, 
z shall be chosen
so small that the vector on the cuboid faces may
be considered as nearly constant, such that the
integration of the vector across the faces may be
replaced by a simple summation. We shall count
the vector flow as positive if it flows out of the
volume, and negative if it flows into the volume.

The vector flow through the faces is

s1: −Ax (x)
y
z,

s2: Ax (x + 
x)
y
z,

s3: −Ay(y)
x
z,

s4: Ay(y + 
y)
x
z,

(11.7)

and in the third space direction is

s5: −Az(z)
x
y,

s6: Az(z + 
z)
x
y.
(11.8)
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A Taylor series expansion up to terms of first order, which is satisfied for small 
x, 
y, 
z,
yields

Ax (x + 
x, y, z) = Ax (x, y, z) + ∂

∂x
Ax (x, y, z)
x + · · · ,

Ay(x, y + 
y, z) = Ay(x, y, z) + ∂

∂y
Ay(x, y, z)
y + · · · , (11.9)

Az(x, y, z + 
z) = Az(x, y, z) + ∂

∂z
Az(x, y, z)
z + · · · .

The terms indicated by dots · · · are of higher order in the small increments 
x , 
y, 
z
and may be neglected. The resulting vector flow through the control volume follows by
summation over the lateral faces:(

Ax (x + 
x, y, z) − Ax (x, y, z)
)

y
z

+ (
Ay(x, y + 
y, z) − Ay(x, y, z)

)

x
z

+ (
Az(x, y, z + 
z) − Az(x, y, z)

)

y
x,

= ∂

∂x
Ax (x, y, z)
x
y
z + ∂

∂y
Ay(x, y, z)
x
y
z + ∂

∂z
Az(x, y, z)
x
y
z

=
(

∂

∂x
Ax (x, y, z) + ∂

∂y
Ay(x, y, z) + ∂

∂z
Az(x, y, z)

)

V .

Thus the “flow” (total flow) through an infinitesimally small volume (
x → dx , 
y → dy,

z → dz) reads

dV ·
(

∂

∂x
Ax + ∂

∂y
Ay + ∂

∂z
Az

)
. (11.10)

n

n
A

A

∆V

Illustration of the divergence
as flow of the vector field
through a volume.

The expression in brackets is called divergence of the vector
field A:

div A = ∂

∂x
Ax + ∂

∂y
Ay + ∂

∂z
Az . (11.11)

Thus, the divergence represents the vector flow through a
volume 
V per unit volume. It may also be written in the
form

div A = ∇ · A(x, y, z). (11.12)

This last relation may be interpreted as analytic definition. As
has been shown, it is identical with the geometric definition,
namely:

div A = lim

V →0

flow of the vector field A through 
V


V
= lim


V →0

∫

F A · n d F


V
. (11.13)

While the argument of the gradient operation is a scalar, the divergence represents the
scalar product of the operator ∇ and the vector A. For a vanishing divergence, the total flow
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through an infinitesimal volume equals zero, that is, the in-flow just balances the out-flow.
If at some point of the vector field div A > 0, one says that the vector field there has a
source; for div A < 0, one speaks of a sink of the vector field. This is immediately clear
from the definition of the divergence as net flow = out-flow − in-flow per unit volume.

Curl (Rotation):1 The operation curl A assigns a vector field curl A to a given vector
field A. The vector field curl A informs about possible “vortices” of the field A (a vortex
exists if there is a closed curve in the vector field fulfilling the condition that the contour
integral

∮
A · ds �= 0—see theorem of Stokes). The mathematical formulation of curl A is

given by

1. curl A = ∇ × A, or

2. n · curl A = lim
F→0
(∮

A · ds
)
/
F .

n is a unit normal vector on 
F . n

∆F

Oriented surface
element.

The second definition states that the rotation may also be determined
by forming the contour integral. The integration is performed over the
vector field along a curve. More strictly speaking: One integrates over
the projection of A onto ds along the tangent to the curve forming the
border of 
F . After division by 
F , this yields the component of curl A
along n.

The rotation is thus determined by two distinct definitions. The first of these reads in
detail

curl A = ∇ × A =

∣∣∣∣∣∣∣∣
e1 e2 e3

∂/∂x ∂/∂y ∂/∂z

Ax Ay Az

∣∣∣∣∣∣∣∣
= e1

(
∂ Az

∂y
− ∂ Ay

∂z

)
+ e2

(
∂ Ax

∂z
− ∂ Az

∂x

)
+ e3

(
∂ Ay

∂x
− ∂ Ax

∂y

)
(11.14)

nA

A

A

A

∆F

��A

Illustration of a vector field A with vorticity on
surface element 
F with normal vector n.

One has to prove that both definitions are iden-
tical. Here we show the identity only for the
x-component.

x-component of the curl of A: One may
integrate about an area 
F = 4
y
z in the
y, z-plane (see the lower figure). n then points
along the x-axis, that is, n · curl A just yields
the x-component of curl A, namely (curl A)x .

1In German literature, curl is named rotation (rot), so curl A = rot A.
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y
y

z

z

x

y

z

P

P

P

P

y,z z

y,z z

y y,z y y,zy,z

2∆

2∆

4

1

3

2

+ ∆

–∆

–∆ + ∆

Calculating the x-component of the curl of A.

For the loop integral one has(∮
A · dr

)
x

=
∫
�

C

Ax dx +
∫
�

C

Aydy +
∫
�

C

Azdz, (11.15)

=
∫
�

C

(Aydy + Azdz),

since for this orientation of the area concerned (see figure) 
x = 0 (i.e., 
x does not enter
at all). In other words: Because x remains unchanged (dx = 0),

∫
Ax dx drops out. For the

exact definition of the contour or loop integral we refer to Chapter 12. It is recommended
to study this section in brief right now.

Remark:
∮

shall indicate that the integration is performed over a closed curve (contour
or loop integral) in the counter-clockwise direction.

∫
� means integration over a section of

the curve. For calculating a contour integral, we employ the values of the functions in the
middle of the individual sections (marked points).

(∮
A · dr

)
x

=
P2∫

P1

+
P3∫

P2

+
P4∫

P3

+
P1∫

P4

(Aydy + Azdz)

≈ Ay(x, y, z − 
z)2
y + Az(x, y + 
y, z)2
z

− Ay(x, y, z + 
z)2
y − Az(x, y − 
y, z)2
z. (11.16)

According to the Taylor expansion this yields

≈
[

Ay − ∂ Ay

∂z

z

]
2
y +

[
Az + ∂ Az

∂y

y

]
2
z
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−
[

Ay + ∂ Ay

∂z

z

]
2
y −

[
Az − ∂ Az

∂y

y

]
2
z

= 4
y
z

[
∂ Az

∂y
− ∂ Ay

∂z

]
.

The enclosed area is 
F = 4
y
z. From that, it follows that

lim

F→0

(∮
A · ds

F

)
x

= ∂ Az

∂y
− ∂ Ay

∂z
. (11.17)

Hence, the x-components corresponding to the two definitions of curl A coincide. For
the remaining two components, the equivalence of the definitions may be demonstrated in
an analogous way (which will be skipped), q.e.d.

The second definition of curl A implies that the rotation at some point of the field A
vanishes if the contour integral

∮
A · ds (loop integral) enclosing this point equals zero —

see the theorem of Stokes. From there originates the name “rotation.” A finite value of the
loop integral expresses a certain rotation, that is, vortex formation of the vector field (to be
visualized as a flow field).

Multiple application of the vector operator nabla: Given a scalar field f (r) and a
vector field g(r), then

(a)

∇ · (∇ f ) = ∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2
= div grad f (x, y, z) = 
 f (x, y, z), (11.18)

where 
 is introduced as a new operator:


 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
= ∇ · ∇

(
, spoken: delta, is called the Laplace operator2). ∇ · (∇ f ) = div ∇ f is a scalar field.

2Pierre Simon Laplace, b. March 23, 1749, Beaumont-en-Auge—d. March 5, 1827, Paris. After his school
education Laplace became a teacher in Beaumont and, by mediation of D’Alembert, became appointed as professor
at the Military School of Paris. Because Laplace used to quickly modify his political convictions, he was swamped
with honors both by Napoleon and by Louis XVIII. Among his works his Analytic Theory of Probability (1812)
and the Celestial Mechanics (1799 – 1825) became significant. The theory of probability calculus contains, for
example, the method of the generating functions, the Laplace transformations and the final formulation of the
mechanical materialism. The Celestial Mechanics presents, for instance, the cosmologic hypothesis of Laplace,
the theories of the earth’s shape and of the moon’s motion, the perturbation theory of planets, and the potential
theory with the Laplace equation.
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(b)

∇ × (∇ f ) = curl grad f =

∣∣∣∣∣∣∣∣
e1 e2 e3

∂
∂x

∂
∂y

∂
∂z

∂ f
∂x

∂ f
∂y

∂ f
∂z

∣∣∣∣∣∣∣∣ ≡ 0.

Thereby it is of course required that f is twofold continuously differentiable. The physicist
always presupposes functions that are sufficiently often continuously differentiable; this is
also assumed below. Hence, a gradient field has no vortices!

(c)

∇(∇ · g) = ∇
(

∂gx

∂x
+ ∂gy

∂y
+ ∂gz

∂z

)

= ∂

∂x

(
∂gx

∂x
+ ∂gy

∂y
+ ∂gz

∂z

)
e1 + ∂

∂y

(
∂gx

∂x
+ ∂gy

∂y
+ ∂gz

∂z

)
e2

+ ∂

∂z

(
∂gx

∂x
+ ∂gy

∂y
+ ∂gz

∂z

)
e3

= grad(div g) is a vector field.

ω

The velocity field of a rotating
rigid body: A = ω × r.

(d)

∇ · (∇ × g) = div(curl g) = 0.

Hence, a rotation field has neither sources nor sinks, as
is graphically clear: The vector field A = ω × r with

ω = −→
constant is so to speak an optimum vortex field (the

velocity field of a rigid body rotating with the angular
velocity ω).

The rotation of the ve-
locity field above: curl A =
curl ω × r = 2ω.

For this maximum vortex field one has curl A = 2ω, that is, it is a
constant vector field that obviously is divergence-free. One should
note the similarity of ∇ with a vector: The triple scalar product
involving identical vectors vanishes.

(e)

∇ × (∇ × g) = curl(curl g)

= ∇(∇ · g) − (∇ · ∇)g

= grad(div g) − 
g

is a vector field.
The proof is simple, because according to the expansion theorem,

C × (B × A) = B(C · A) − (C · B)A.

This twofold application of the rotation operator physically and geometrically means that
the vortices of the vortex field are calculated.
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(f)

div(B × C) = C · (curl B) − B · (curl C).

(g)

∇ · ( f g) = ∇ f · g + f ∇ · g.

(h)

∇ × ( f g) = ∇ f × g + f ∇ × g.

Problem 11.1: Gradient of a scalar field

Given the scalar field ϕ = x2 + y2 = r 2, find the gradient of ϕ.
Solution

∇ϕ = 2(xex + yey) = 2
√

x2 + y2er = 2rer .

Problem 11.2: Determination of the scalar field from the associated gradient field

Let ∇ϕ = (1 + 2xy) ex + (x2 + 3y2) ey . Find the associated scalar field.

Solution ∂ϕ

∂x
= (1 + 2xy) ⇒ ϕ(x, y) = x + x2 y + f1(y),

∂ϕ

∂y
= (x2 + 3y2) ⇒ ϕ(x, y) = x2 y + y3 + f2(x).

By comparison:

f1(y) = y3 + C1, f2(x) = x + C2;
thus,

ϕ(x, y) = x + x2 y + y3 + C .

∆V

The field of the position vector A(x , y , z) = r. Flow
out of the volume element 
V is larger than flow
into the volume element.

Problem 11.3: Divergence of a vector field

Calculate the divergence of the field of the po-
sition vectors:

r = x e1 + y e2 + z e3.
Solution

div r = ∂x

∂x
+ ∂y

∂y
+ ∂z

∂z
= 3.

Thus, the vector field r everywhere has a
finite divergence (i.e., source density) of mag-
nitude 3. To generate this field in practice by a
flow, one would have to attach sources of inten-
sity 3 to any space point.
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Problem 11.4: Rotation of a vector field

Calculate the rotation of the vector field

A = 3x2 ye1 + yz2e2 − xze3.

Solution curl A = e1

(
∂(−xz)

∂y
− ∂yz2

∂z

)
+ e2

(
∂3x2 y

∂z
− ∂(−xz)

∂x

)
+ e3

(
∂yz2

∂x
− ∂3x2 y

∂y

)
= −2yz e1 + z e2 − 3x2 e3.

Problem 11.5: Electric field strength, electric potential

Let a positive electric charge of magnitude Q be localized at the origin of the coordinate frame. The
field intensity E describing the electrostatic field is given by

E = Q

r 2
er ,

where r denotes the spatial distance from the coordinate origin, and er represents the corresponding
unit vector in radial direction. Calculate the associated potential field (let U denote the potential field,
then E = −∇U ) and show that it satisfies the Laplace equation 
U = 0, except for the origin.

Solution

E = Q

r 2
er = Q

r 2

r
r

E = −∇ U. (11.19)

Because E points in the radial direction and the gradient means the derivative along this direction,
one has

|E| = −dU

dr
,

and because E is a function of r only, it follows that

U = −
∫

|E|dr = −Q
∫

dr

r 2
= Q

1

r
+ C.

One easily confirms the relation 11.19 for this potential field, for example, for the x-component

−∂U

∂x
= − ∂

∂x

Q

r
= −Q

∂r

∂x

∂

∂r

(
1

r

)
= Q

x

r 3
= Ex ,

etc. The constant C is usually set to zero, that is, the potential vanishes for r → ∞.

div E = Q

{
∂

∂x

x

(x2 + y2 + z2)3/2
+ ∂

∂y

y

(x2 + y2 + z2)3/2
(11.20)

+ ∂

∂z

z

(x2 + y2 + z2)3/2

}
= 0, (11.21)

div(∇U ) = 
U = 0 for r �= 0. At r = 0, one has div E = − div ∇U �= 0 (see below: the Gauss
theorem).
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Problem 11.6: Differential operations in spherical coordinates

z

x

y

ϑ

ϕ dϕ

dϕ

dϑ
r dϑ

r sin dϑ ϕ

r
A

HD

G
E C

FB

Spherical coordinates: A reminder.

Given a scalar field φ(r, ϑ, ϕ) and a vector field A(r, ϑ, ϕ),
which are the relations for (a) ∇φ, (b) ∇ · A, (c) ∇ × A,
(d) ∇2φ in spherical coordinates?

Solution (a) Gradient: For the total differential, it holds that

dφ = ∇φ · dr. (11.22)

In spherical coordinates one has

dφ = ∂φ

∂r
dr + ∂φ

∂ϑ
dϑ + ∂φ

∂ϕ
dϕ , (11.23)

dr = ∂r
∂r

dr + ∂r
∂ϑ

dϑ + ∂r
∂ϕ

dϕ

= er dr + reϑ dϑ + r sin ϑ eϕ dϕ, (11.24)

and

∇φ = (∇φ)r er + (∇φ)ϑeϑ + (∇φ)ϕeϕ .

The partial derivatives of the position vector have already been calculated in Chapter 10 when
formulating the unit vectors:

∂r
∂r

= er ,
∂r
∂ϑ

= reϑ ,
∂r
∂ϕ

= r sin ϑ eϕ. (11.25)

By insertion and comparison of coefficients, 11.22 immediately yields for the components of the
gradient in spherical coordinates

(∇φ)r dr + (∇φ)ϑr dϑ + (∇φ)ϕr sin ϑ dϕ = ∂φ

∂r
dr + ∂φ

∂ϑ
· dϑ + ∂φ

∂ϕ
dϕ,

∇φ = ∂φ

∂r
er + 1

r

∂φ

∂ϑ
eϑ + 1

r sin ϑ

∂φ

∂ϕ
eϕ

= (∇φ)r er + (∇φ)ϑeϑ + (∇φ)ϕeϕ. (11.26)

(b) Divergence: The divergence may be expressed by the flow of the vector A across the surface
of an infinitesimal volume element 
V :

div A = lim

V →0

∫

F A · n d F


V
. (11.27)

The figure shows the volume element with the magnitude


V = r 2 sin ϑ 
r 
ϑ 
ϕ. (11.28)

Calculation of the flow components (to first approximation): The flow in the er -direction across
the area ADH E is

A(r, ϑ, ϕ)er
Fr = Arr 2 sin ϑ 
ϕ 
ϑ,
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the flow across the back area BCG F is

A(r + 
r, ϑ, ϕ)er
Fr+
r = Arr 2 sin ϑ 
ϕ 
ϑ + ∂

∂r

(
r 2 sin ϑ Ar 
ϕ 
ϑ

)

r.

The difference yields the contribution of the flow in the er -direction to the surface integral in 11.27.
The flow excess is

sin ϑ
∂

∂r
(r 2 Ar )
ϕ 
ϑ 
r. (11.29)

The flow excess in the eϑ -direction (areas AB F E and DCG H ) correspondingly follows as

r
∂

∂ϑ
(sin ϑ Aϑ ) 
ϕ 
r 
ϑ. (11.30)

The flow excess in the eϕ-direction is

r
∂

∂ϕ
Aϕ 
r 
ϑ 
ϕ. (11.31)

Summation of the contributions 11.29, 11.30, 11.31 yields the flow integral
∮

A · nd F . Then, 11.27
yields the expression for the divergence:

∇ · A = 1

r 2

∂

∂r
(r 2 Ar ) + 1

r sin ϑ

∂

∂ϑ
(sin ϑ Aϑ ) + 1

r sin ϑ

∂

∂ϕ
Aϕ. (11.32)

(c) Curl (Rotation): The geometric definition traces the rotation operation back to a contour integral:

n · curl A = lim

F→0

∮
A · ds

F

. (11.33)

Component along er :
The er -component of the rotation is obtained when performing the contour integral along the curve

ADH E A (n = er ). The enclosed area is then


F = r 2 sin ϑ 
ϑ 
ϕ (compare fig.), (11.34)∮
ADH E A

A · ds =
D∫

A

+
H∫

D

+
E∫

H

+
A∫

E

.

The partial integrals are

D∫
A

A · ds = A · eϑr
ϑ = Aϑr
ϑ,

A∫
E

A · ds = A · (−eϕ)r sin ϑ 
ϕ = −Aϕr sin ϑ 
ϕ.
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And to first approximation,

E∫
H

A · ds = −
(

r Aϑ
ϑ + ∂

∂ϕ
(r Aϑ
ϑ)
ϕ

)
,

H∫
D

A · ds = r sin ϑ Aϕ
ϕ + ∂

∂ϑ
(r sin ϑ Aϕ
ϕ)
ϑ.

Then the contour integral along the closed curve is∮
ADH E A

A · ds = r
∂

∂ϑ
(sin ϑ Aϕ)
ϕ 
ϑ − r

∂

∂ϕ
(Aϑ )
ϑ 
ϕ. (11.35)

From 11.33, 11.34, 11.35, it follows that the er -component of the rotation is

curl
r

A = 1

r sin ϑ

[
∂

∂ϑ
(sin ϑ Aϕ) − ∂

∂ϕ
Aϑ

]
. (11.36)

Accordingly for the curve AE F B A with 
F = r sin ϑ
r
ϕ,∮
AE F B A

A · ds = − ∂

∂r
(Aϕr sin ϑ
ϕ)
r + ∂

∂ϕ
(Ar
r)
ϕ

and because n = eϑ , it follows that

curl
ϑ

A = 1

r sin ϑ

[
∂

∂ϕ
Ar − sin ϑ

∂

∂r
(r Aϕ)

]
. (11.37)

Investigation of the curve ABC D A yields

curl
ϕ

A = 1

r

(
∂

∂r
(r Aϑ ) − ∂

∂ϑ
Ar

)
. (11.38)

The results 11.36, 11.37, 11.38 may be combined into a determinant:

∇ × A = 1

r 2 sin ϑ

∣∣∣∣∣∣∣∣
er reϑ r sin ϑ eϕ

∂

∂r
∂

∂ϑ

∂

∂ϕ

Ar r Aϑ r sin ϑ Aϕ

∣∣∣∣∣∣∣∣ .

(d) Laplace operator: The Laplace operator is defined by

∇2φ = div ∇φ. (11.39)

Using the results 11.26 and 11.32, it follows that

∇2φ = 1

r 2

∂

∂r

(
r 2 ∂φ

∂r

)
+ 1

r 2 sin ϑ

∂

∂ϑ

(
sin ϑ

∂φ

∂ϑ

)
+ 1

r 2 sin2 ϑ

∂2φ

∂ϕ2
. (11.40)
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Differential operators in arbitrary general (curvilinear) coordinates

In Chapter 10 we outlined curvilinear coordinates (e.g., spherical and cylindrical coordi-
nates). In Problem 11.6, the differential operators ∇, div, and curl have been derived in
spherical coordinates, basing on special considerations. Now we shall develop the general
approaches for calculating differential operators in arbitrary curvilinear coordinates.

Brief repetition: Let r(x�) = ∑3
�=1 x�e� be the position vector in Cartesian coordinates

x� (� = 1, 2, 3) that are related to the curvilinear coordinates qσ (σ = 1, 2, 3) via x� = x�

(q1, q2, q3). The x� may then be inserted in the position vector, which yields

r(x�) = r(x�(qσ )) = r(qσ ). (11.41)

The new unit vectors eqσ
, which in general are characteristic for the point qσ , may be

defined at each point qσ (σ = 1, 2, 3):

eqσ
= ∂r(qµ)/∂qσ

|∂r(qµ)/∂qσ | , σ = 1, 2, 3, (11.42)

or

∂r(qµ)

∂qσ

= hσ eqσ
with hσ =

∣∣∣∣∂r(qµ)

∂qσ

∣∣∣∣. (11.43)

Here the hσ (σ = 1, 2, 3) are scaling factors. The unit vectors eqσ
point along the qσ -

coordinate line toward increasing qσ .
The coordinate areas are obtained by solving the three equations x� = x�(q1, q2, q3)

for qσ :

qσ = qσ (x1, x2, x3) = qσ (xµ) . (11.44)

qσ = constant = cσ (σ = 1, 2, 3) are the equations for the coordinate areas.
U3

U1

E1

e1
e2

e3

E2

E3

U2

P

Different basis vectors at the same point P.

One may now construct other unit vectors
Eqσ

at the point P(x, y, z) = P(q1, q2, q3)

(see the figure), namely

Eqσ
= ∇qσ

|∇qσ | , σ = 1, 2, 3. (11.45)

The Eqσ
are obviously perpendicular to

the coordinate areas qσ = cσ . Thus, there
are two sets of unit vectors at each point
P(qσ ), namely eqσ

and Eqσ
. In general, these

sets are distinct. We shall demonstrate in the following that these two basic frames coincide
only then if the curvilinear coordinates are orthogonal. One also has to take into account
that both eqσ

(q1, q2, q3) as well as Eqσ
(q1, q2, q3) depend on the point P(q1, q2, q3), that

is, their orientations in general vary from point to point.
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An arbitrary vector A may now be expressed in terms of both the base eqσ
as well as

the Eqσ
,

A = A1eq1 + A2eq2 + A3eq3 = a1Eq1 + a2Eq2 + a3Eq3 . (11.46)

The Ai and ai , respectively, are the components of A in the bases concerned. Instead of the
normalized base vectors eqσ

or Eqσ
the nonnormalized vectors

bq�
= ∂r (qσ )

∂q�
(� = 1, 2, 3) (11.47)

and
Bq�

= ∇q� (� = 1, 2, 3) (11.48)

may also be used. They are called unitary base vectors and are in general not unit vectors.
For an arbitrary vector A,

A = C1
∂r
∂q1

+ C2
∂r
∂q2

+ C3
∂r
∂q3

= C1bq1 + C2bq2 + C3bq3 (11.49)

and
A = c1∇q1 + c2∇q2 + c3∇q3 = c1Bq1 + c2Bq2 + c3Bq3 .

The components C� (� = 1, 2, 3) are called contravariant components and c� (� = 1, 2, 3)

covariant components of the vector A. They play an important role in the general theory of
relativity where all coordinate frames are used on equal footing. In Cartesian coordinates
the co- and contravariant components of a vector are equal to each other, as is immediately
clear from their construction.

(a) Arc length and volume element: From r = r(q1, q2, q3), one obtains

dr = ∂r
∂q1

dq1 + ∂r
∂q2

dq2 + ∂r
∂q3

dq3 = h1dq1 eq1 + h2dq2 eq2 + h3dq3 eq3 . (11.50)

Therefore, for the differential ds of the arc length, it results that

ds2 = dr · dr, (11.51)

which for orthogonal coordinates (eqµ · eq� = δµ�) simplifies to

ds2 = h2
1 dq2

1 + h2
2 dq2

2 + h2
3 dq2

3 . (11.52)

For nonorthogonal coordinates, it holds that

bqµ
· bq�

= hµh�eqµ
· eq�

≡ gµ� �≡ hµh�δµ� , (11.53)

and therefore it follows from (11.50), (11.51), and (11.53) that

(ds)2 = dr · dr

=
(∑

µ

hµdqµeqµ

)
·
(∑

�

h�dq�eq�

)
=

∑
µ,�

gµ�dqµdq�. (11.54)



98 VECTOR DIFFERENTIAL OPERATIONS 11

dq3

q1

q2

q3

P

h3 3e

h2
2

dq2 e
h 1

1
dq 1

e

Illustration of the volume element.

This is the fundamental quadratic (or met-
ric) form. The gµ� are called metric coeffi-
cients (since they determine the measure-
ment in the coordinates q� via the length
element ds2) or also metric tensor (briefly:
metric). If gµ� = 0 for µ �= �, the coordinate
frame is orthogonal. In this case g11 = h2

1,
g22 = h2

2, g33 = h2
3. The metric tensor is

of basic importance in the general theory
of relativity. It is determined there from the
energy (mass-) distribution in space.

The equations enabling this are called
Einstein equations.

The volume element dV may easily be calculated for orthogonal coordinates (see the
figure):

dV = |(h1 dq1 eq1) · [(h2 dq2 eq2) × (h3 dq3 eq3)]|
= h1h2h3 dq1 dq2 dq3, (11.55)

because∣∣eq1 · (eq2 × eq3)
∣∣ = 1.

Problem 11.7: Reciprocal trihedral

Given are the three noncoplanar vectors a, b, c for which a·(b×c) �= 0. Show that the three reciprocal
vectors

a′ = b × c
a · (b × c)

, b′ = c × a
a · (b × c)

, c′ = a × b
a · (b × c)

(11.56)

are also noncoplanar and that
(a)

a′ · a = b′ · b = c′ · c = 1,

(b)

a′ · b = a′ · c = 0,

b′ · a = b′ · c = 0,

c′ · a = c′ · b = 0. (11.57)

(c) If a · (b × c) ≡ V , then a′ · (b′ × c′) = 1/V .

Solution (a)

a′ · a = a · (b × c)
a · (b × c)

= 1.
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In the same way one may conclude that

b′ · b = c′ · c = 1 .

(b)

a′ · b = b · a′ = ·b · (b × c)
a · (b × c)

= 0,

and similarly for the other cases.
(c) One has

a′ = b × c
V

, b′ = c × a
V

, c′ = a × b
V

.

Then it follows that

a′ · (b′ × c′) = (b × c) · [(c × a) × (a × b)]

V 3

= (a × b) · [(b × c) × (c × a)]

V 3

= (a × b) · [c · ((b × c) · a) − a · ((b × c) · c)]
V 3

= [(a × b) · c ][(b × c) · a ]

V 3
= [a · (b × c)]2

V 3
= V 2

V 3
= 1

V
.

From there it follows that a′, b′, c ′ are noncoplanar if a, b, c are noncoplanar.

Problem 11.8: Reciprocal coordinate frames

Let q1, q2, q3 be general coordinates. Show that ∂r/∂q1, ∂r/∂q2, ∂r/∂q3 and ∇q1, ∇q2, ∇q3 form
two reciprocal systems of vectors and that{

∂r
∂q1

·
(

∂r
∂q2

× ∂r
∂q3

)}
· {∇q1 · (∇q2 × ∇q3)} = 1 .

Solution One has to show that

∂r
∂q�

· ∇qµ =
{

1 for � = µ,

0 for � �= µ,
(11.58)

where µ, � may take any of the values 1,2,3. Now

dr = ∂r
∂q1

dq1 + ∂r
∂q2

dq2 + ∂r
∂q3

dq3.

and therefore after multiplication by ∇q1

∇q1 · dr = dq1 =
(

∇q1 · ∂r
∂q1

)
dq1 +

(
∇q1 · ∂r

∂q2

)
dq2 +

(
∇q1 · ∂r

∂q3

)
dq3.

From there it follows that

∇q1 · ∂r
∂q1

= 1, ∇q1 · ∂r
∂q2

= 0, ∇q1 · ∂r
∂q3

= 0.
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The other relations result in a similar way by forming ∇q2 · dr = dq2 and ∇q3 · dr = dq3. Thus,
the reciprocity of the vector systems ∂r/∂q� and ∇q� is demonstrated.

From the preceding problem it then immediately follows that{
∂r
∂q1

·
(

∂r
∂q2

× ∂r
∂q3

)}
· {∇q1 · (∇q2 × ∇q3)} = 1.

This statement is equivalent to the following theorem on Jacobi determinants:

J

(
q1, q2, q3

x, y, z

)
def.≡ ∇q1 · (∇q2 × ∇q3) =

∣∣∣∣∣∣∣∣∣∣∣

∂q1

∂x

∂q1

∂y

∂q1

∂z
∂q2

∂x

∂q2

∂y

∂q2

∂z
∂q3

∂x

∂q3

∂y

∂q3

∂z

∣∣∣∣∣∣∣∣∣∣∣
, (11.59)

which reads

J

(
x, y, z

q1, q2, q3

)
· J

(
q1, q2, q3

x, y, z

)
= 1 .

One can check easily that ∂r/∂qi and ∇qi fulfill relation 11.56 from Problem 11.7.

(b) Gradient in general orthogonal coordinates: Let φ(q1, q2, q3) be an arbitrary
function. We look for the components f1, f2, f3 of the gradient in the general base eq�

,
that is,

∇φ = f1eq1 + f2eq2 + f3eq3 . (11.60)

Because

dr = ∂r
∂q1

dq1 + ∂r
∂q2

dq2 + ∂r
∂q3

dq3

= h1eq1 dq1 + h2eq2 dq2 + h3eq3 dq3 ,

because of the presupposed orthogonality of the eq�
, it follows that

dφ = ∇φ · dr = h1 f1 dq1 + h2 f2 dq2 + h3 f3 dq3.

But it also holds that

dφ = ∂φ

∂q1
dq1 + ∂φ

∂q2
dq2 + ∂φ

∂q3
dq3.

A comparison of the last two relations yields

∇φ = eq1

h1

∂φ

∂q1
+ eq2

h2

∂φ

∂q2
+ eq3

h3

∂φ

∂q3
.

In operator notation this reads

∇ = eq1

(
1

h1

∂

∂q1

)
+ eq2

(
1

h2

∂

∂q2

)
+ eq3

(
1

h3

∂

∂q3

)
. (11.61)
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From there it follows especially for φ = q1 that

∇q1 = eq1

h1
, (11.62)

and therefore |∇q1| = 1/h1 or generally |∇q�| = 1/h� (� = 1, 2, 3).

Because

Eq�
= ∇q�

|∇q�|
(compare to (11.45)), it results that

Eq�
= ∇q�

|∇q�| = h�∇q� = h�
eq�

h�
= eq�

(� = 1, 2, 3).

This means that for orthogonal coordinates the reciprocal base systems Eq�
and eq�

coincide.
This happens, of course, in particular for Cartesian coordinates.

For the following, the relations

eq1 = h2h3∇q2 × ∇q3,

eq2 = h3h1∇q3 × ∇q1,

eq3 = h1h2∇q1 × ∇q2 (11.63)

are helpful. They may be checked quickly, for example,

h2h3∇q2 × ∇q3 = h2h3

(
eq2

h2
× eq3

h3

)
= h2h3

h2h3
(eq2 × eq3) = eq1 . (11.64)

(c) Divergence in general orthogonal coordinates:We shall now calculate

div A = ∇ · (A1eq1 + A2eq2 + A3eq3)

in general coordinates. For this purpose we consider at first

∇ · (A1eq1) = ∇ · (A1h2h3∇q2 × ∇q3)

= (∇(A1h2h3)) · (∇q2 × ∇q3) + A1h2h3∇ · (∇q2 × ∇q3)

= (∇(A1h2h3)) ·
(

eq2

h2
× eq3

h3

)
+ 0

= ∇(A1h2h3) · eq1

h2h3

=
[

eq1

h1

∂

∂q1
(A1h2h3) + eq2

h2

∂

∂q2
(A1h2h3) + eq3

h3

∂

∂q3
(A1h2h3)

]
· eq1

h2h3

= 1

h1h2h3

∂

∂q1
(A1h2h3).
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Similarly it follows that

∇ · (A2eq2) = 1

h1h2h3

∂

∂q2
(A2h1h3)

and

∇ · (A3eq3) = 1

h1h2h3

∂

∂q3
(A3h1h2).

Therefore,

div A = ∇ · (A1eq1 + A2eq2 + A3eq3) (11.65)

= ∇ · A1eq1 + ∇ · A2eq2 + ∇ · A3eq3 ,

div A = 1

h1h2h3

[
∂

∂q1
(A1h2h3) + ∂

∂q2
(A2h1h3) + ∂

∂q3
(A3h1h2)

]
. (11.66)

(d) Curl (Rotation) in general orthogonal coordinates: We have to calculate

∇ × A = ∇ × (A1eq1 + A2eq2 + A3eq3)

= ∇ × (A1eq1) + ∇ × (A2eq2) + ∇ × (A3eq3) .

It suffices to consider, for example, the term ∇ × (A1eq1) in more detail. We obtain

∇ × (A1eq1) = ∇ × (A1h1∇q1) = ∇(A1h1) × ∇q1 + A1h1∇ × ∇q1

= ∇(A1h1) × eq1

h1
+ 0

=
[

eq1

h1

∂

∂q1
(A1h1) + eq2

h2

∂

∂q2
(A1h1) + eq3

h3

∂

∂q3
(A1h1)

]
× eq1

h1

= eq2

h3h1

∂

∂q3
(A1h1) − eq3

h1h2

∂

∂q2
(A1h1).

Therefore,

∇ × A = eq1

h2h3

[
∂

∂q2
(A3h3) − ∂

∂q3
(A2h2)

]
+ eq2

h3h1

[
∂

∂q3
(A1h1) − ∂

∂q1
(A3h3)

]

+ eq3

h1h2

[
∂

∂q1
(A2h2) − ∂

∂q2
(A1h1)

]
.

In determinant notation this reads

∇ × A = 1

h1h2h3

∣∣∣∣∣∣∣∣∣
h1eq1 h2eq2 h3eq3

∂

∂q1

∂

∂q2

∂

∂q3

A1h1 A2h2 A3h3

∣∣∣∣∣∣∣∣∣ . (11.67)
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(e) The delta (Laplace) operator in general (orthogonal) coordinates: One has to
calculate 
ψ in orthogonal curvilinear coordinates. This does not provide any difficulties,
because


ψ = ∇ · ∇ψ = ∇ ·
(

eq1

h1

∂

∂q1
+ eq2

h2

∂

∂q2
+ eq3

h3

∂

∂q3

)
ψ.

Using now equation (11.66) for the divergence, where obviously

A� = 1

h�

∂

∂q�
(� = 1, 2, 3),

one immediately finds that


ψ = ∇ · ∇ψ (11.68)

= 1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂ψ

∂q1

)
+ ∂

∂q2

(
h3h1

h2

∂ψ

∂q2

)
+ ∂

∂q3

(
h1h2

h3

∂ψ

∂q3

)]
.

(f) Examples of special orthogonal coordinate frames

1. Cylinder coordinates

r(x, y, z) = xe1 + ye2 + ze3 (11.69)

= � cos ϕ e1 + � sin ϕ e2 + ze3 = r(�, ϕ, z).

Here � ≥ 0, 0 ≤ ϕ < 2π , −∞ < z < ∞.
We identify q1 = �, q2 = ϕ, q3 = z. According to (11.42), it then follows that

eq1 ≡ e� = cos ϕ e1 + sin ϕ e2 ,

eq2 ≡ eϕ = − sin ϕ e1 + cos ϕ e2 ,

eq3 ≡ ez = e3. (11.70)

Moreover,

h1 ≡ h� =
∣∣∣∣ ∂r
∂�

∣∣∣∣ = 1 ,

h2 ≡ hϕ =
∣∣∣∣ ∂r
∂ϕ

∣∣∣∣ = � ,

h3 ≡ hz =
∣∣∣∣∂r
∂z

∣∣∣∣ = 1 .

According to equation (11.61), it therefore follows that

∇φ = ∂φ

∂�
e� + 1

�

∂φ

∂ϕ
eϕ + ∂φ

∂z
ez .
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According to equation (11.65),

div A = ∇ · A = 1

�

[
∂

∂�
(�A�) + ∂

∂ϕ
Aϕ + ∂

∂z
(�Az)

]
,

ρ ϕ

ez

eϕ

eρ

X

Z

Y

( , , )z

z
P

yx
ϕ

ρ

Illustration of cylindrical coordinates.

where

A = A�e� + Aϕeϕ + Azez ≡
∑

�

A�eq�
.

Moreover, according to equation (11.67),

∇ × A = 1

�

∣∣∣∣∣∣∣∣∣
e� �eϕ ez

∂

∂�

∂

∂ϕ

∂

∂z

A� �Aϕ Az

∣∣∣∣∣∣∣∣∣
= 1

�

[(
∂ Az

∂ϕ
− ∂

∂z
(�Aϕ)

)
e� +

(
�

∂ A�

∂z
− �

∂ Az

∂�

)
eϕ

+
(

∂

∂�
(�Aϕ) − ∂ A�

∂ϕ

)
ez

]
,

and according to equation (11.68),


ψ = ∇2ψ = 1

�

[
∂

∂�

(
�

∂ψ

∂�

)
+ ∂

∂ϕ

(
1

�

∂ψ

∂ϕ

)
+ ∂

∂z

(
�

∂ψ

∂z

)]

= 1

�

∂

∂�

(
�

∂ψ

∂�

)
+ 1

�2

∂2ψ

∂ϕ2
+ ∂2ψ

∂z2
.

Cylinder coordinates are very useful when solving problems with axial symmetry.

2. Spherical coordinates

r(x, y, z) = xe1 + ye2 + ze3

= r sin ϑ cos ϕ e1 + r sin ϑ sin ϕ e2 + r cos ϑ e3

= r(r, ϑ, ϕ). (11.71)

Here r ≥ 0, 0 ≤ ϑ ≤ π , 0 ≤ ϕ < 2π .
We choose q1 = r , q2 = ϑ , q3 = ϕ. According to equation (11.42),

eq1 = er = sin ϑ cos ϕ e1 + sin ϑ sin ϕ e2 + cos ϑ e3,

eq2 = eϑ = cos ϑ cos ϕ e1 + cos ϑ sin ϕ e2 − sin ϑ e3,

eq3 = eϕ = − sin ϕ e1 + cos ϕ e2. (11.72)
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θ ϕ

Z

X

Y
y

z

er

eϕ

eθ
x ϕ

θ
P r( , , )r

Illustration of spherical coordinates.

Moreover,

h1 = hr =
∣∣∣∣∂r
∂r

∣∣∣∣ = 1,

h2 = hϑ =
∣∣∣∣ ∂r
∂ϑ

∣∣∣∣ = r,

h3 = hϕ =
∣∣∣∣ ∂r
∂ϕ

∣∣∣∣ = r sin ϑ.

Therefore, according to equation (11.61),

∇φ = ∂φ

∂r
er + 1

r

∂φ

∂ϑ
eϑ + 1

r sin ϑ

∂φ

∂ϕ
eϕ,

and according to equation (11.66),

div A = ∇ · A = 1

r2

∂

∂r
(r2 Ar ) + 1

r sin ϑ

∂

∂ϑ
(sin ϑ Aϑ) + 1

r sin ϑ

∂ Aϕ

∂ϕ
,

where A = Ar er + Aϑeϑ + Aϕeϕ .
Moreover, according to equation (11.67),

∇ × A = 1

r · r sin ϑ

∣∣∣∣∣∣∣∣∣
er reϑ r sin ϑ eϕ

∂

∂r

∂

∂ϑ

∂

∂ϕ

Ar r Aϑ r sin ϑ Aϕ

∣∣∣∣∣∣∣∣∣
= 1

r2 sin ϑ

{[
∂

∂ϑ
(r sin ϑ Aϕ) − ∂

∂ϕ
(r Aϑ)

]
er +

[
∂ Ar

∂ϕ
− ∂

∂r
(r sin ϑ Aϕ)

]
reϑ

+
[

∂

∂r
(r Aϑ) − ∂ Ar

∂ϑ

]
r sin ϑ eϕ

}
,

and corresponding to equation (11.68),


ψ = ∇ · ∇ψ

= 1

r · r sin ϑ

[
∂

∂r

(
r · r sin ϑ

∂ψ

∂r

)
+ ∂

∂ϑ

(
r sin ϑ

r

∂ψ

∂ϑ

)
+ ∂

∂ϕ

(
r

r sin ϑ

∂ψ

∂ϕ

)]

= 1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin ϑ

∂

∂ϑ

(
sin ϑ

∂ψ

∂ϑ

)
+ 1

r2 sin2 ϑ

∂2ψ

∂ϕ2
.

Spherical coordinates are highly useful when solving problems with spherical symmetry.
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3. Parabolic cylindrical coordinates

r(x, y, z) = xe1 + ye2 + ze3

= 1

2
(u2 − v2)e1 + uve2 + ze3

= r(u, v, z). (11.73)

Here −∞ < u < ∞, v ≥ 0, −∞ < z < ∞.
With q1 = u, q2 = v, and q3 = z, one easily evaluates

h1 = hu =
√

u2 + v2, h2 = hv =
√

u2 + v2, h3 = hz = 1.

All of the remaining follows according to the general methods (equations (11.61) –
(11.68)) outlined. The figure illustrates these parabolic coordinates in the x, y-plane.

0 0

5/25/2

5/2–5/2

22

2–2

3/23/2

3/2–3/2

11

1–1

1/21/2

1/2–1/2

e

e

x

y
v =u =

P

u

v

Projection of the coordinate surfaces of parabolic cylindrical coordinates into the x , y -plane. The z-
coordinate of a point is identical to its Cartesian z-coordiante. The (variable) unit vectors eu and ev are
shown in a point P.

4. Elliptic and hyperbolic cylindrical coordinates

r(x, y, z) = xe1 + ye2 + ze3

= a cosh u cos v e1 + a sinh u sin v e2 + ze3

= r(u, v, z). (11.74)
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Obviously,

x2 = a2 cosh2 u cos2 v,

y2 = a2 sinh2 u sin2 v,

and therefore

x2

a2 cosh2 u
+ y2

a2 sinh2 u
= 1, and

x2

a2 cos2 v
− y2

a2 sin2 v
= 1.

Here u ≥ 0, 0 ≤ v < 2π , −∞ < z < ∞.
With q1 = u, q2 = v, q3 = z, it follows that

h1 = hu = a
√

sinh2 u + sin2 v,

h2 = hv = a
√

sinh2 u + sin2 v,

h3 = hz = 1.

All other operators follow according to the general equations (11.61) – (11.68). The
projections of the coordinate areas u = constant, v = constant onto the x, y-plane are
illustrated in the figure. They represent confocal ellipses or hyperbolas.

y
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v
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v
v
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v

=

=

=5=4

=2

=

=7=5

=3

=

=7

=5

=0
=2

=2

=3

=2

=2

=3/2

=3/2

=1

=1

=0

π
π

ππ

π

π

ππ

π

π

π

π

π

π

/2

/3

/3/3

/3

/4

/4/4

/4

/6

/6

/6

/2

ee

P
(a,0)(-a,0)

Projection of the coordinate surfaces of u = constant and v = constant in elliptic cylindrical coordinates
into the x , y -plane.

5. Bipolar coordinates

r(x, y, z) = xe1 + ye2 + ze3
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= a sinh v

cosh v − cos u
e1 + a sin u

cosh v − cos u
e2 + ze3

= r(u, v, z). (11.75)

Here 0 ≤ u < 2π , −∞ < v < ∞, −∞ < z < ∞.
With q1 = u, q2 = v, q3 = z, one obtains

h1 = hu = a

cosh v − cos u
,

h2 = hv = a

cosh v − cos u
,

h3 = hz = 1 .

The differential operators then follow according to the general rules (11.61)–(11.68).
For an easier identification of the coordinate areas u = constant and v = constant

and their projection onto the x, y-plane, it is convenient to derive the following relations
from (11.75):

x2 + (y − a cot u)2 = a2cosec2u, (x − a coth v)2 + y2 = a2cosech2v, z = z.

v=
–0

.5 v
=

0.5v
=

–1

v
=

1v=
–2 v

=
2 x

eu

ev

u= /6π

u= /4π

u= /2π

u=7 /4π

u=11 /6π

u=3 /2π

y

( ,0) resp. =∞a v

(- ,0) resp. =–∞a v

Projection of the bipolar coordinate surfaces of u = constant and v = constant in the x , y -plane. The
(variable) unit vectors eu and ev are shown in an arbitrary point P.



12 Determination of
Line Integrals

If A specifies a force field, the line integral (path integral)
∫ P2

P1
A · dr is the energy (work)

that has to be supplied during a motion from P1 to P2, or is released, respectively. We shall
make that clear now:

C
∆r

A
A A A

ϕ

The work integral (integral along a curve)
along the curve C.

We ask for the work that is needed to move from
the point P1 along a space curve r = r(t) in the force
field (vector field) to the point P2. We decompose the
space curve into small path sections 
r, calculate the
expression A
r cos(A, 
r), which represents the
wanted work on the section 
r , and sum up over
all 
r . The work is then given by∑


ri

Ai
ri cos(Ai , 
ri ).

When changing to infinitesimally small path sections dr, the work is then obtained as the
line integral∫

C

A · dr = lim

ri →0

∑

ri

Ai
ri cos(Ai , 
ri ) = lim

ri →0

∑

ri

Ai · 
ri ,

where A · dr is the scalar product of the field A and the vector dr. C denotes the space
curve r(t) between the initial point r(t1) and the endpoint r(t2).
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∆r

r( )t
r( +

)
t

t∆

( )rAy

x

P2

P1

A path from P1 to P2 through the vector field A(r).

A line integral is calculated as follows:
We first form the indefinite integral. To this end we decompose the vector field A in its

Cartesian components and insert this into the integral:∫
A · dr =

∫
(Ax , Ay, Az) · dr.

These Cartesian components still depend on the position, that is,

Ax = Ax (x, y, z), Ay = Ay(x, y, z), Az = Az(x, y, z).

The given space curve may also be written in components as

r(t) = (x(t), y(t), z(t)).

To perform the integration, we need the components of the vector field A along the space
curve depending on the parameter t . These are obtained by inserting the corresponding
components of the space curve r(t) into Ax , Ay , and Az :

Ax (t) = Ax (x(t), y(t), z(t));
Ay(t) = Ay(x(t), y(t), z(t));
Az(t) = Az(x(t), y(t), z(t)).

Because r = r(t), we may form the total differential and write

dr = dr
dt

dt.

Insertion yields the integral:∫
c

A · dr =
∫
c

(
Ax (x, y, z), Ay(x, y, z), Az(x, y, z)

) · dr
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=
∫
c

[(
Ax (x(t), y(t), z(t)), Ay(x(t), y(t), z(t)), Az(x(t), y(t), z(t))

) · dr
dt

]
dt.

Because of

dr
dt

=
(

dx

dt
,

dy

dt
,

dz

dt

)
,

one further has∫
c

A · dr =
∫ [

Ax (t)
dx(t)

dt
+ Ay(t)

dy(t)

dt
+ Az(t)

dz(t)

dt

]
dt.

This integral, as a rule, may be evaluated easily. Insertion of the limits after the integration
yields the wanted line integral.

Example 12.1: Line integral over a vector field

The vector field A and the space curve r = r(t) are given by

A = (3x2 − 6yz, 2y + 3xz, 1 − 4xyz2),

r(t) = (t, t2, t3).

The components of the space curve are

x = t ⇒ ẋ = 1,

y = t2 ⇒ ẏ = 2t,

z = t3 ⇒ ż = 3t2.

We now insert∫
A · dr =

∫ (
Ax

dx

dt
+ Ay

dy

dt
+ Az

dz

dt

)
dt

=
∫ [(

3t2 − 6t5
) · 1 + (

2t2 + 3t4
) · 2t + (

1 − 4t9
) · 3t2

]
dt.

The integral with the limits t1 = 0 and t2 = 2 is then

2∫
0

A · dr = −4064.



13 The Integral Laws
of Gauss and
Stokes

Gauss Law:1

By means of the concept of divergence worked out in the preceding chapter, one may also

1Carl Friedrich Gauss, b. April 30, 1777, Brunswick—d. Feb. 23, 1855, Göttingen. Gauss was the son of a
day laborer and attracted attention very early by his exceptional mathematical talent. The Duke of Brunswick
sponsored the costs of his education as of 1791. Gauss studied from 1794–1798 in Göttingen and got his doctorate
in 1799 in Helmstedt. As of 1807 Gauss was director of the observatory and professor at the university in Göttingen.
He refused all offers to come, for example, to Berlin at the academy. Gauss started his scientific work in 1791
with investigations on the geometric-arithmetic mean, on the distribution of prime numbers, and in 1792 on the
foundations of geometry. Already in 1794 he found the least-squares method, and from 1795 dates the intensive
investigation of number theory, e.g., with the quadratic reciprocity law. In 1796 Gauss published his first paper
containing the proof that, except for the known cases, regular n-gons may be constructed by means of circle and
ruler if n is a Fermat prime number. In particular, this applies to the 17-gon. In his dissertation (1799) Gauss gave
the first exact proof of the fundamental law of algebra, which was followed by further ones. From the unpublished
works it is known that in the same year Gauss already had the foundations of the theory of elliptic and module
functions. The first extensive work Gauss published in 1801 is his famous Disquisitiones arithmeticae, which are
considered as the start of the more recent number theory. There one finds, for example, the theory of quadratic
congruences and the first proof of the quadratic reciprocity theorem, the “theorema aureum,” as well as the theory
of cyclotomy.

Around 1801 Gauss became interested in astronomy. The results of these studies were as follows: In 1801 the
orbit calculation of the planet Ceres; in 1809 and 1818 the investigations on secular perturbations; and in 1813 on
the attraction by the general ellipsoid. In 1812 the treatise on the hypergeometric series was published; it contains
the first correct and systematic study of convergence.

As of 1820 Gauss increasingly dealt with geodesy. The most important theoretical achievement is 1827’s theory
of surfaces with the “theorema egregium.” Gauss also pursued practical geometry, he performed very extensive
measurements in 1821–1825. Despite such costly work, in 1825 and 1831 his papers on biquadratic remainders
appeared. The second of these treatises contains the representation of complex numbers in the plane and a new
theory of prime numbers.

In his last years Gauss also became interested in physical problems. The most important results are 1833–1834’s
invention (together with W. Weber) of the electric telegraph and 1839–1840’s potential theory, which became a
new branch of mathematics.

Many important results of Gauss are only known from the diary and the letters. For example, already in 1816
Gauss had developed the non-Euclidean geometry. The reason for the attitude not to publish important results is
to be seen in the extraordinarily high standard Gauss set also to the form of his works and in the attempt to avoid
needless discussion.
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calculate the excess of the outgoing over the incoming vector flow of a vector field A
for an arbitrarily large volume V . For this purpose we decompose this volume into small
volume elements dV , calculate the divergence for each volume element, and sum up over
all volume elements, that is, the total flow is given by a volume integral:

φ =
∫
V

div A dV .

Because the in- or outgoing vector flow of this volume has to pass across the surfaces F ,
it may also be represented by a surface integral

φ =
∫
F

A · n d F.

The combination of the surface integral with the integral over the volume yields the Gauss
law:∫

V

div A dV =
∫
F

A · n d F.

This relation clearly states: The sum of the partial flows out of each or into each volume
element dV , respectively, equals the flow of the vector field A across the surface of this
volume.

In the interior of the volume, the flows from one volume element into the next one
mutually cancel. Hence, when integrating over the volume elements, there remains only
the flow out of or into the total volume.

div A
A

A

A

A( , , )x y z

A( , , )x y z

n

n

The divergence of the vector
field A describes the sources
and sinks of A.

The proof of the Gauss theorem may be performed some-
what more formally by means of the definition of the diver-
gence

div A = lim

V →0

∫

F A · n d F


V
= lim


V →0

∫

F A · dF


V
.

There is∫
V

div A dV = lim

Vi →0

∑
i

(div A)i
Vi

= lim

Vi →0

∑
i

1


Vi

∫

Fi

A · n d F
Vi

= lim

Vi →0

∑
i

∫

Fi

A · n d F =
∫
F

A · n d F.

The in-flows and out-flows at neighboring cells cancel each other, except for those on
the surface.
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z

y

x

A

A

A

A
d ( , , )F x y z

n

V

Illustration of the flow of the vector field A through the volume V . The flow through the surface equals
the sum of the intensities of sources and sinks within the volume. This is the meaning of the Gauss
theorem.

The Gauss theorem:
n n

n

a
0

0

dΩ

dΩ
dΩ

F´

F

4

3 1

2

Proofing the Gauss theorem.

Besides the Gauss law we have just encountered,
there holds also a theorem for special vector fields
which is called the Gauss theorem. Central force
fields, for example, the gravitational field of a mass
point or the electrostatic field of a point charge, are
of the form

K = κ
r
r3

, (13.1)

where κ is a coupling constant. For these fields the
Gauss theorem holds:

Let F be a closed area and r the position vector of an arbitrary point (x, y, z) measured
with respect to the origin O (center of force).

For the force flow through the area it holds that

∫∫
F

K · n d F = κ

∫∫
F

n · r
r3

d F =
{

4πκ if O is inside F ,

0 if O is outside F .
(13.2)
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The force flow of such a central force through a closed surface about the center of force O
is therefore 4π · intensity κ of the force field. This may be realized as follows: According
to the Gauss theorem, it holds that∫∫

F

n · r
r3

d F =
∫∫∫

V
∇ · r

r3
dV . (13.3)

But now according to problem 11.5, div r/r3 = 0 everywhere except for r = 0 (i.e., at the
origin). Hence, the second case of equation (13.2) has been demonstrated: If O is outside
F , then div r/r3 = 0 holds everywhere inside the closed surface F .

But if O is within the surface, we form a spherical surface F ′ of radius a around O . For
the closed volume limited by F and F ′, it then holds that∫∫

F+F ′

n · r
r3

d F =
∫∫

F

n · r
r3

d F +
∫∫

F ′

n · r
r3

d F =
∫∫∫

V −V ′
∇ · r

r3
dV = 0. (13.4)

Here V − V ′ is the volume enclosed by the surfaces F and F ′. Within V − V ′ again
div r/r3 = 0 everywhere, as the coordinate origin O lies outside this volume. From (13.4)
it now follows that∫∫

F

n · r
r3

d F = −
∫∫

F ′

n · r
r3

d F. (13.5)

On the spherical surface F ′ holds: n = −r/a, where |r| = a, such that

n · r
r3

= − (r /a) · r
a3

= −r · r
a4

= −a2

a4
= − 1

a2
.

Therefore, for equation (13.5), it holds that∫∫
F

n · r
r3

d F = −
∫∫

F ′

n · r
r3

d F = −
∫∫

F ′

(
− 1

a2

)
d F = 4πa2

a2
= 4π. (13.6)

This is the first statement of equation (13.2).

Geometric interpretation of the Gauss theorem:

n
n

0 1

d =Ω dω
r2

dω
r

dF

The area of the shadow under central pro-
jection of the surface dF on the unit sphere
equals the solid angle.

Let d F be a surface element. If the border of
this surface element is connected with O (see
opposite sketch), there arises a cone.

dω denotes that area cut out of a spherical
surface with the center O and the radius r by
this cone. The solid angle d� determined by
the area d F and the point O is defined by

d� = dω

r2
(13.7)
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and is numerically identical with the surface
fraction cut out by the cone from a unit sphere
of radius 1 centered about O .

The positive normal vector to the area d F is denoted by n. If � is the angle between n
and r, there results the relation

cos � = n · r
r

. (13.8)

From there follows the expression

dω = ±d F cos � = ±n · r
r

d F; (13.9)

thus, one can write for d�

d� = ±n · r
r3

d F. (13.10)

Depending on whether the vectors n and r enclose an acute or obtuse angle, the positive or
negative sign in equations (13.9) and (13.10) is chosen.

Let F be the surface in the figure on page 114 that is characterized by the fact that any
straight line may intersect it in at most two points. If O lies outside F , then, according to
(13.10), for the area element 1 the following expression results:

n · r
r3

d F = d�. (13.11)

Analogously, for the area element 2 it holds that

n · r
r3

d F = −d�. (13.12)

Integration over these two regions yields the value zero, as their solid angle contributions
mutually compensate. If the integration is now performed over the entire surface F , one
immediately sees that the integral∫∫

F

n · r
r3

d F = 0, (13.13)

because for any positive contribution there exists a corresponding negative contribution.
If O now lies within F , then for any of the area elements 3 and 4

n · r
r3

d F = d�. (13.14)

This now implies that the contributions of the two regions to the surface integral are
adding up. Because the total solid angle is identical to the surface of the unit sphere,
namely has the value 4π , it follows that∫∫

F

n · r
r3

d F = 4π. (13.15)
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F

0

0

4

3
2

1

The Gauss theorem: The center of force lies
within (left part), respectivly, out of (right part)
the surface F .

If the surface F has such a shape that a
straight line may intersect it at more than two
points (see figure), one may show that the
considerations in the context of the figure
on page 113 hold also in this case. If now
O lies outside F , the cone with the apex
at O cuts the surface F in an even num-
ber of positions. The contributions of these
area elements to the surface integral com-
pensate each other pairwise such that the
surface integral over the area F equals zero.
If, however, O lies within F , the cone cuts
the surface in an odd number of positions.

Because the respective contributions to the surface integral cancel each other pairwise,
the surface integration performed over the area F as shown in the figures on this page and
on page 113 again yields the value 4π .

Stokes law:3

A

n

dr

curl ( , , )A x y z

∆F x y z( , , )

C

The Stokes theorem: The surface F is arbi-
trarily extended over the curve C, making C
the boundary of F .

Given a vector field A, we calculate the contour
integral along a closed loop:

W =
∮

C
A · dr.

If we now interpret the closed loop s as the bor-
der of an arbitrary area, W may be thought as
originating by summing up arbitrarily small
partial contributions dW : These cancel out
when integrating over the area elements, ex-
cept for the path elements along the external
free border representing the course of the bor-
derline:

3Sir George Gabriel Stokes, b. Aug. 13, 1819, Skreen (Ireland)—d. Feb. 1, 1903, Cambridge. Since 1849
Stokes was professor of mathematics in Cambridge. Besides his contributions to analysis, such as the Stokes
integral formula, he made important contributions to physics, for example, on fluorescence, and on the motion of
viscous liquids. He also worked on geodesy.
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C

C3 C2

C4 C1

A r.d A r.d
i Ci C

=

Explanation of Stokes theorem: The sum of the contour integrals over the curves Ci yields the contour
integral over the border curve C.

The infinitesimal contributions dW may be represented by the flow of curl A through the
area elements d F , as follows:


Wi = (n · curl A)i
Fi =
∮

CFi

A · dr

Fi

· 
Fi =
∮

CFi

A · dr, (13.16)

where n is the vector pointing perpendicular to the area element d F . We integrate (see also
figure on this page) and obtain

W =
∮

c
A · dr =

∑
i

∮
ci

A · dr =
∑

i

(n · curl A)i
Fi =
∫
F

n · curl A d F . (13.17)

By inserting the preceding line into the contour integral, one obtains the Stokes law:∮
C

A · dr =
∫
F

n · curl A d F. (13.18)

This may be expressed somewhat less precisely as follows: The sum of vortices over an
area yields the vortex about the border of the area.

Problem 13.1: Path independence of a line integral

Show by means of the Stokes theorem that, assuming A = ∇φ, the line integral from point P1 to
point P2 is independent of the path.

Solution We first form the rotation of the vector field A; because A = ∇φ, we obtain

curl A = curl ∇φ = ∇ × ∇φ = 0.

By inserting this in the Stokes theorem, we obtain∫
F

curl A · n d F =
∮

A · dr = 0.
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The above relation is fulfilled for arbitrary but closed curves. One has (compare figure):∮
C1+C2

A · dr =
P2∫

P1C1

A · dr +
P1∫

P2C2

A · dr =
P2∫

P1C1

A · dr −
P2∫

P1C2

A · dr = 0.

y

x

C1

P2

P1

C2

The line integral from P1 to P2
does not depend on the path for
conservative vector fields (curl A =
0). The line integral vanishes for
closed paths.

The line integral is path-independent since the path from P1

to P2 must not coincide with the path from P2 to P1, and never-
theless the relation

P2∫
P1C1

A · dr −
P2∫

P1C2

A · dr = 0

is fulfilled. This may also be proved in an alternative way:

2∫
1

∇φ · dr =
2∫

1

dφ = φ(2) − φ(1).

Thus, the integral depends only on the function values φ at positions 1 and 2, but not on the special
path of integration. This discovery is highly important because it allows us to understand for which
force fields a potential exists.

Additional remark: If A = grad φ ⇒ curl A = 0, because curl grad φ = 0, and
therefore, according to Stokes,

∮
A·dr = 0. Inversely, if for arbitrary closed paths

∮
A·dr =

0, then it follows from the definition of rotation n · curl A = lim
F→0(
∮

A · dr/
F) that
curl A = 0. From there in turn it follows that A = ∇φ, where φ = ∫ r

r1
A(r′)dr′. The

arising integral may then be taken along an arbitrary path from r1 to r (because of the path
independence of the integral). This important statement shall now be proved:

Given

A(r) with curl A(r) = 0,

if the line integral

φ(r) =
r∫

r1

A(r′) · dr′ (13.19)

is independent of the specially selected path, one has

A(r) = ∇φ(r) . (13.20)

Proof: Because the integration contour may be chosen arbitrarily, we adopt especially

(x1, y1, z1)
x−→ (x, y1, z1)

y−→ (x, y, z1)
z−→ (x, y, z) (see figure),

φ(x, y, z) =
r∫

r1

A(r) · dr =
r∫

r1

[A1(r) dx + A2(r) dy + A3(r) dz] (13.21)
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=
x∫

x1

A1
(
x ′, y1, z1

)
dx ′ +

y∫
y1

A2
(
x, y′, z1

)
dy′ +

z∫
z1

A3
(
x, y, z′) dz′.

z

y

x

(x,y,z1)

(x,y1,z1)(x1,y1,z1)

(x,y,z)

A special integration path for cal-
culating φ(x , y , z).

For the function φ constructed in this way it holds that

∂φ

∂z
= A3(x, y, z),

∂φ

∂y
= A2(x, y, z1) +

∫ z

z1

∂ A3(x, y, z′)
∂y

dz′

= A2(x, y, z1) +
∫ z

z1

∂ A2(x, y, z′)
∂z′ dz′.

Here we used curl A = 0, which means for the x-
component ∂ A3/∂y = ∂ A2/∂z.

In the following we also employ the vanishing of the other components of curl A = 0:

∂φ

∂y
= A2(x, y, z1) + A2(x, y, z′)

∣∣∣∣z

z1

= A2(x, y, z)

∂φ

∂x
= A1(x, y1, z1) +

∫ y

y1

∂ A2(x, y′, z1)

∂x
dy′ +

∫ z

z1

∂ A3(x, y, z′)
∂x

dz′

= A1(x, y1, z1) +
∫ y

y1

∂ A1(x, y′, z1)

∂y′ dy′ +
∫ z

z1

∂ A1(x, y, z′)
∂z′ dz′

(because curl A = 0)

= A1(x, y1, z1) + A1(x, y, z1) − A1(x, y1, z1) + A1(x, y, z) − A1(x, y, z1).

The terms cancel each other out pairwise up to one summand, such that it finally remains
that

∂φ

∂x
= A1(x, y, z) .

In total we thus have demonstrated that the function φ(r) defined by the line integral
φ(r) = ∫ r

r1
A · dr satisfies the equation A = ∇φ . Hence, for a given vector field A

satisfying curl A = 0, one may always calculate the potential function φ(r) by a line
integral. The function −φ(r) will later be called the potential of the force field A(r)
(compare Problem 13.4 and Chapter 17).

This very detailed proof that, with definition 13.21 we have grad φ(r) = A(r), can be
given in a more succinct and elegant way: Because

φ(r + dr) = φ(r) + grad φ · dr,

we find

grad φ · dr = φ(r + dr) − φ(r) =
∫ r+dr

r
A(r′) · dr′ = A(r) · dr .



STOKES LAW 121

Because this holds for any arbitrary dr, it follows that

grad φ(r) = A(r) .

Problem 13.2: Determination of the potential function

Show for the vector field

A = (2xy + z3, x2 + 2y, 3xz2 − 2)

that
∫

A · dr for a path from (1, −1, 1) to (2, 1, 2) is independent of the path. Calculate the value of
the integral. Find the potential function φ(x, y, z).

Solution One has curl A = 0. We check this, for example, for the x-component: (curl A)x = ∂ Az/∂y −
∂ Ay/∂z = 0 − 0 = 0. The other components of curl A will be calculated similarly.

The integral φ(r) = ∫ r
r1

A · dr is therefore path-independent, and A = grad φ = ∇φ. According
to (13.21), with the arbitrarily and hence effectively choosable r1 = {0, 0, 0} (we sometimes adopt
braces for notation of vectors), we then obtain

φ(x, y, z) =
∫ x

0
A1(x ′, y1, z1) dx ′ +

∫ y

0
A2(x, y′, z1) dy′ +

∫ z

0
A3(x, y, z′) dz′

= 0 +
∫ y

0
(x2 + 2y′) dy′ +

∫ z

0
(3xz′2 − 2) dz′

= x2 y′ + y′2
∣∣∣∣y

0

+ xz′3 − 2z′
∣∣∣∣z

0

= x2 y + y2 + xz3 − 2z.

Indeed we easily check

∇φ = (2xy + z3)e1 + (x2 + 2y)e2 + (3z2x − 2)e3.

Because A = ∇φ, the line integral is path-independent. The value of the integral is determined as
follows:∫ (2,1,2)

(1,−1,1)

A · dr =
∫ (2,1,2)

(1,−1,1)

∇φ · dr =
∫ (2,1,2)

(1,−1,1)

dφ,

= φ(2, 1, 2) − φ(1, −1, 1),

= (4 + 1 + 16 − 4) − (−1 + 1 + 1 − 2) = 18.

Of course, the line integral might be determined also in another way, by integrating, for instance,
along an arbitrary contour (an arbitrary curve r(t) between the points {1, −1, 1} and {2, 1, 2}).

Problem 13.3: Vortex flow of a force field through a half-sphere

Let A = zxex − (xy −3z)ey + (4yz − x)ez be a given force field. Calculate the flow of curl A through
the half-sphere above the x, y-plane. (Use spherical coordinates for the integration.)

There are

A = xzex − (xy − 3z)ey + (4yz − x)ez ,

curl A = (4z − 3)ex + (x + 1)ey − yez .
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1. Solution: The upper half-sphere is parametrized by

r = a

⎛⎝ cos ϕ sin ϑ

sin ϕ sin ϑ

cos ϑ

⎞⎠ with 0 ≤ ϕ < 2π, 0 ≤ ϑ ≤ π

2
.

The nonnormalized normal vector is

n = ∂r
∂ϑ

× ∂r
∂ϕ

= · · · = a sin ϑ r.

The area element is given by dF = (∂r/∂ϑ)dϑ × (∂r/∂ϕ)dϕ = n dϑ dϕ.
In the new coordinates curl A reads

curl A =
⎛⎝ 4a cos ϑ − 3

a cos ϕ sin ϑ + 1

−a sin ϕ sin ϑ

⎞⎠ .

Thereby the integral becomes

I =
∫∫

curl A · dF

=
∫ π/2

0
dϑ

∫ 2π

0
dϕ n · curl A

=
∫ π/2

0
dϑ

∫ 2π

0
dϕ a2 sin ϑ

(
4a cos ϕ sin ϑ cos ϑ − 3 cos ϕ sin ϑ

+ a sin ϕ cos ϕ sin2 ϑ + sin ϕ sin ϑ − a sin ϕ sin ϑ cos ϑ
)

= 0 ,

because∫ 2π

0
sin ϕ dϕ =

∫ 2π

0
cos ϕ dϕ =

∫ 2π

0
sin ϕ cos ϕ dϕ = 0 .

2. Solution: According to the Stokes theorem,

I =
∫∫

curl A · dF =
∫

C
A · dr,

where C is the border of the half-sphere,

r = a

⎛⎝ cos t

sin t

0

⎞⎠ with 0 ≤ t < 2π,

dr = a

⎛⎝ − sin t

cos t

0

⎞⎠ dt,

I = −a3

∫ 2π

0
dt sin t cos2 t = 0.
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Problem 13.4: On the conservative force field

What is a conservative force field? Is the force field F = (3xz − y)ex − xey +(3/2)x2ez conservative?
If yes, determine the potential V and the work A to be performed to move a particle from point (1,
1,1) to (2, 2, 2).

Solution One has F = (3xz − y)ex − xey + (3/2)x2ez .
A force field F is conservative if it can be represented by F = −∇V . Then it holds that curl F = 0,

because curl(∇V ) ≡ 0.
One easily checks that ∇ × F = curl F = 0:

curl F =

∣∣∣∣∣∣∣∣
ex ey ez

∂/∂x ∂/∂y ∂/∂z

3xz − y −x 3
2 x2

∣∣∣∣∣∣∣∣ = 0 .

Thus, it holds that

F = −∇V = −∂V

∂x
ex − ∂V

∂y
ey − ∂V

∂z
ez

= (3xz − y)ex − xey + 3

2
x2ez .

Comparison of coefficients yields:

(1)
∂V

∂x
= −3xz + y; (2)

∂V

∂y
= x; (3)

∂V

∂z
= −3

2
x2.

By integration follows:

(1) V = −3

2
x2z + xy + f1(y, z);

(2) V = xy + f2(x, z);

(3) V = −3

2
x2z + f3(x, y).

These equations coincide if one chooses

f1(x, y) = c,

f2(x, z) = −3

2
x2z + c,

f3(x, y) = xy + c .

From that it follows that

V = −3

2
x2z + xy + c .
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Because F is conservative, for the work A we have

A =
∫

F · dr = −
∫

∇V dr = −
∫

dV

⇒ A = −V (2, 2, 2) + V (1, 1, 1)

= −
[
−3

2
x2z + xy + c

](2,2,2)

(1,1,1)

= 7
1

2
.



14 Calculation of
Surface Integrals

Given an area F and a vector field A, we look for the flow of the field through the area.
For this purpose we subdivide the area into surface elements 
Fi and calculate the product
A · n · 
Fi , which represents the flow of the field A through the area element 
Fi . Here
n is the normal vector of magnitude 1 pointing perpendicularly to the area element 
Fi .
We now sum up these products over all i and, by changing to infinitesimal area elements,

z

y

x

x-Coordinate -Coordinate
Line

y
Line

n
e3

e3

dFdF

dx
dy

Example of a surface and its shadow area
when calculating surface integrals.

obtain the surface integral:∫
F

A · n d F,

which represents the wanted flow. To calculate
this integral, we convert 
Fi to Cartesian co-
ordinates. The area elements d F are always
positive. We therefore set absolute bars:

|n · e3|d F = dx dy

or

d F = dx dy

|n · e3| .

We insert this expression into the surface in-
tegral and obtain∫

F

A · n d F =
∫
F

A · n
|n · e3| dx dy .

The surface integral is thereby traced back to a double integral over the shadow area in
the x-y-plane.

125
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One now has to distinguish between two cases:

1. If n is parallel to z, then d F = dx dy, because n · e3 = 1, that is, the projection exactly
corresponds to the prototype.

2. If n is inclined against e3, the projection is smaller than the prototype, that is, d F >

dx dy. In this case n · e3 < 1, and the relation |n · e3| · d F = dx dy is fulfilled.

If the projection of the primordial area onto the x, y-plane (or any other plane) is not
unique, such as for areas “hanging over,” uniqueness may always be achieved after some
appropriate subdivisions. In such cases the area integral turns into a sum of area integrals
over partial areas.

Example 14.1: On the calculation of a surface integral

Given the surface V ≡ 2x + 3y + 6z = 12 (described by the position vector r(x, y) =
{x, y, (12 − 2x − 3y)/6}) and a vector field A = {18z, −12, +3y}, find the flow of the field
through the part of this area that is cut out by the three coordinate axes in the first octant.

2

4

6

z

x

y

The y -integral runs from y = 0 to the
intersection of the surface with the
x , y -plane, i.e., to y = 4 − (2/3)x .

For the calculation, the surface integral is traced back to
an integral in the x, y-plane. The integral then takes the form∫

F

A · n
|n · e3| dx dy.

We evaluate the individual quantities separately:

n = ∇V (x, y, z)

|∇V | (compare equation (11.6))

= {2, 3, 6}
7

= −−−−→
constant.

For n · e3, it therefore results that

n · e3 = 6

7
.

To calculate n, one may start also from the position vector r(x, y):

n = rx × ry

|rx × ry | = (1, 0, −2/6) × (0, 1, −3/6)

|(1, 0, −3/6) × (0, 1, −3/6)| = (2/6, 1/2, 1)√
49/36

= (2, 3, 6)

7
.

For A ·n, it results that A ·n = (36/7)z − (36/7)+ (18/7)y. From there one obtains for the surface
integral∫

A · n d F =
∫∫ (

36

7
z − 36

7
+ 18

7
y

)
7

6
dx dy.
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We replace z by (12 − 2x − 3y)/6 and multiply; then we find for the integral the following
expression:∫

A · n d F =
∫∫

(12 − 2x − 3y + 3y − 6) dx dy

=
∫∫

(6 − 2x) dx dy.

To get the limits of the integral, we consider the straight line along which the area V intersects the
x, y-plane (z = 0):

2x + 3y = 12; y = 4 − 2

3
x .

From there it follows that the y-integration runs between the limits

y = 0 and y = 4 − 2

3
x .

The x-integration (integration) of all strips parallel to the y-axis (see figure) is performed between
the limits x = 0 and x = 6.

Insertion of the calculated limits yields

∫
A · n d F =

6∫
x=0

4− 2
3 x∫

y=0

(6 − 2x) dx dy

=
6∫

x=0

(6 − 2x)

⎛⎜⎝ 4− 2
3 x∫

y=0

dy

⎞⎟⎠ dx

=
6∫

x=0

(6 − 2x)

(
4 − 2

3
x

)
dx

=
6∫

x=0

(
24 − 12x + 4

3
x2

)
dx

= 24 .

Problem 14.2: Flow through a surface

Given the area F ≡ x2 + y2 = 16 and the vector field A = (z, x, −3y2z) between z = 0 and z = 5,
find the flow of the field through the part of the area covering the first octant.

Solution Analogously to the first example, we evaluate n · e2 and A · n; for this end we first determine the
normal vector n:

n = ∇F

|∇F | = (x, y, 0)

4
.

For A · n, we get
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A · n = zx

4
+ xy

4
.

5

F

4

4

0

dz

z

x

y

Illustration of the cylindrical surface F .

We obtain

n · e2 = y

4
.

By inserting this into the surface integral, we get∫
A · n d F = 1

4

∫∫
4(zx + xy)

y
dx dz.

We replace y = √
16 − x2 and integrate in the limits

from x = 0 to x = 4 or from z = 0 to z = 5 (the shadow
area in the x-z-plane):∫

A · n d F =
∫ 4

x=0

∫ 5

z=0

(
zx√

16 − x2
+ x

)
dx dz .

Integration over z yields∫
A · n d F =

∫ 4

x=0

(
z2

2

x√
16 − x2

+ zx

)∣∣∣∣5

0

dx

=
∫ 4

x=0

(
1

2

25x√
16 − x2

+ 5x

)
dx

= −25

2

√
16 − x2

∣∣∣∣4

0

+ 5x2

2

∣∣∣∣4

0

= 90.

The Möbius strip: The areas in the examples treated so far were orientable, that is, for
arbitrary travels over the area the normal vector of the area always remains on one side of
the area. But there exist nonorientable areas; one example is the Möbius strip.1

In the case of the Möbius strip, there is no outer and inner side, that is, the Möbius strip
has only one side. The vector flow through the Möbius strip vanishes; on the contrary, the
vector flow through the represented orientable area in general does not vanish.

1August Ferdinand Möbius, b. Nov. 17, 1790, Schulpforta as son of a dance teacher—d. Sept. 26, 1868,
Leipzig. Möbius attended the school in Schulpforta and then the university in Leipzig. A donation allowed
him to go on a study trip, leading him among others to Gauss. In 1810 Möbius was appointed director of the
observatory in Leipzig and later also served as a professor at the university. Möbius supported the development of
geometry by his contributions to the extension of the traditional concept of coordinates, and to the (unconsciously)
group-theoretical classification of geometry.
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C
A

D
B

n
(a)

C

DB

A

(b)

C
D

n

n

B
A

(c)
(a) Orientable surface, (b) Rolled-up strip, and (c) Nonorientable surface (Möbius strip).



15 Volume (Space)
Integrals

Let �(x, y, z) = �(r) be a scalar function of the position, for example, the mass density;
the volume integral∫

V
� dV ≡

∫∫∫
V

�(x, y, z) dx dy dz = lim
∑

k

�(rk)
Vk (15.1)

then gives the total mass. 
Vk thereby means small volume cells that in the limit turn over
in dxdydz. Volume integrals may be performed also with a vector field F(r) (speaking
more exactly: F(r) is a vector density, and F(r)dV is a vector):∫

V
F(r) dV =

∫
V

F(x, y, z) dx dy dz = lim
∑

k

F(rk)
Vk . (15.2)

This corresponds to the sum over all vectors of a vector field F in a volume V , for example,
the sum over all forces acting on a rigid body. F(r) is then a force density, and F(r) dV is
the force acting on the volume dV . The mathematical evaluation of a volume integral is
performed according to the following scheme: One constructs a grid consisting of planes
parallel to the x, y-, y, z-, and x, z-planes; thus the volume V is subdivided into partial
volumes (cuboids). In this case the triple integral over V may be written as an iterative
integral of the form∫ b

x=a

∫ g2(x)

y=g1(x)

∫ f2(x,y)

z= f1(x,y)

F(x, y, z) dx dy dz

=
∫ b

x=a

{∫ g2(x)

y=g1(x)

[∫ f2(x,y)

z= f1(x,y)

F(x, y, z) dz

]
dy

}
dx .

For the given subdivision the innermost integration has to be performed first. This innermost
integration over z corresponds to integrating up columns of cross section dx dy along the
z-axis. The lower limit of the columns is given by the area z = f1(x, y), the upper limit by
z = f2(x, y). The y-integration then corresponds to summing up these columns in strips
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parallel to the y-axis. The strips are limited by the function g1(x) and g2(x), respectively.
The disks arising this way are integrated along the x-axis by means of the x-integration.

In general, one has to subdivide the volume into larger regions, such that the total triple
integral may be calculated as sum over partial integrals. We still note that the integration
may, of course, be performed in an arbitrary sequence. This will now be explained by the
following examples.

Example 15.1: Calculation of a volume integral

Let �(r) = 45x2 y, and let the volume V be limited by the four planes 4x + 2y + z = 8, x = 0, y =
0, z = 0. Calculate

∫
�(r)dV (see figure).

If � means a mass density, then the integral represents the total mass of the volume V . One has

∫
V

�(r) dV =
2∫

x=0

4−2x∫
y=0

8−4x−2y∫
z=0

(45x2 y) dz dy dx .

z

x

y

8

4

2

SP
R

Q

0

∆ ∆ ∆ ∆V x y zk k k k=

Illustration of the integration volume.

Here the integration is performed at
first over z, then over y, and finally over
x . The integration limits are determined
as follows (see figure): z runs for fixed
x and y from z = 0 up to the plane
z = 8 − 4x − 2y. y runs from 0 up to
the straight line y = 4 − 2x in the x, y-
plane (cut of the plane 4x + 2y + z = 8
with the x, y-plane), and x runs from zero
to 2 (intersection point of the straight line
y = 4 − 2x with the x-axis). The calcula-
tion now yields

2∫
x=0

4−2x∫
y=0

8−4x−2y∫
z=0

(45x2 y)dz dy dx

= 45

2∫
x=0

4−2x∫
y=0

x2 y

(
z
∣∣∣8−4x−2y

0

)
dy dx

= 45

2∫
x=0

4−2x∫
y=0

(x2 y)(8 − 4x − 2y) dy dx

= 45

2∫
x=0

[
x2(8 − 4x)

(
y2

2

∣∣∣∣4−2x

0

)
− 2x2

(
y3

3

∣∣∣∣4−2x

0

)]
dx

= 45

2∫
x=0

1

3
x2(4 − 2x)3 dx = 128.
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Problem 15.2: Calculation of a total force from the force density

z

y

x

y=0

0

z x= 2

P

z=4

z=6

R Q S

Illustration of the integration volume.

Integrate the force density f = (2xz, −x, y2)

N/cm3 over the volume V limited by the
five areas x = 0, y = 0, y = 6 cm, z =
x2 cm, z = 4 cm (see figure).

Solution The integral∫∫∫
V

f(x, y, z) dV

obviously means the total force acting on
the body with this volume. We obtain

2∫
x=0

6∫
y=0

4∫
z=x2

(2xze1 − xe2 + y2e3) dz dy dx

= e1

2∫
0

6∫
0

4∫
z=x2

2xz dz dy dx + e2

2∫
0

6∫
0

4∫
x2

(−x) dz dy dx

+ e3

2∫
0

6∫
0

4∫
x2

y2 dz dy dx

= 128 e1 − 24 e2 + 384 e3 .

The physical dimension of the overall force is, of course,

N

cm3
· cm3 = N = Newton.

The unit “Newton” will be explained in the Chapter 17.



PART II
NEWTONIAN MECHANICS



16 Newton’s Axioms

The Newtonian1 or classical mechanics is governed by three axioms, which are not inde-
pendent of each other:

1. the law of inertia,

2. the fundamental equation of dynamics,

3. the interaction law,

and as a supplement: the theorems on independence concerning the superposition of forces
and of motions.

Premises of Newtonian mechanics are as follows:

1. The absolute time; that means that the time is the same in all coordinate frames, that
is, it is invariant: t = t ′. One may determine in any coordinate frame whether events

1Isaac Newton, b. Jan. 4, 1643, Woolsthorpe (Lincolnshire)—d. March 31, 1727, London. Newton studied in
1660 at Trinity College in Cambridge, particularly with the eminent mathematician and theologian L. Barrow.
After getting various academic degrees and making a series of essential discoveries, in 1669 Newton became
successor of his teacher in Cambridge. In 1672 he was member and in 1703 president of the Royal Society. From
1688 to 1705, he was also member of Parliament, since 1696 attendant and since 1701 mint-master of the Royal
mint. Newton’s life’s work comprises, besides theological, alchemistic, and chronological-historical writings,
mainly works on optics and on pure and applied mathematics. In his investigations on optics he describes the
light as a flow of corpuscles and by this way interprets the spectrum and the composition of light, as well as the
Newton color rings, diffraction phenomena and double-refraction. His main opus Philosophiae Naturalis Principia
Mathematica (printed in 1687) is fundamental for the evolution of exact sciences. It includes the definition of the
most important basic concepts of physics, the three axioms of mechanics of macroscopic bodies, the principle
of “actio et reactio,” the gravitational law, the derivation of Kepler’s laws, and the first publication on fluxion
calculus. Newton also dealt with potential theory and with the equilibrium figures of rotating liquids. The ideas
for the great work emerged mainly in 1665–1666 when Newton had left Cambridge because of the pestilence.

In mathematics Newton worked on the theory of series, for example, in 1669 on the binomial series, on
interpolation theory, approximation methods, and the classification of cubic curves and conic sections. But
Newton could not remove logical problems even with his fluxion calculus that was represented in 1704 in detail.
His influence on the further development of mathematical sciences can hardly be judged, because Newton disliked
publishing. When Newton made his fluxion calculus public, his kind of treatment of problems of analysis was
already obsolete as compared to the calculus of Leibniz. The quarrel over whether Newton or Leibniz deserved
priority for developing the infinitesimal calculus continued until the 20th century. Detailed studies have shown
that they both obtained their results independently of each other [BR].
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are simultaneous, because in classical physics one may imagine that signals are being
exchanged with infinitely large velocity.

2. The absolute space; that means that a coordinate frame, being at absolute rest, which
spans the full space, exists. This absolute space may be thought of as being represented
by the world ether, which shall be at absolute rest and so to speak embodies the absolute
space. Newton by himself did not believe in the ether; he could imagine the absolute space
also as being empty. In most recent time the 2.7 Kelvin radiation has been discovered.
This radiation is believed to originate from the Big Bang that presumably generated our
universe. A coordinate frame in which this radiation is isotropic—of equal intensity in
all directions—might also serve as such an absolute coordinate frame.

3. The mass being independent of the velocity.

4. The mass of a closed system of bodies (or mass points) is independent of the processes
going on in this system, no matter what kind these processes are.

The concepts of absolute time and absolute space, as well as the velocity independence of
the mass, are lost in the special theory of relativity. Finally, the fourth premise is no longer
fulfilled in high-energy processes as, for example, p + p → p + p + π+ + π−. Here new
masses are generated.

Newton formulated his axioms essentially as follows:

Lex prima: Each body remains in its state of rest or uniform rectilinear motion as long
as it is not forced by acting forces to change this state.

Lex secunda: The change of motion is proportional to the effect of the driving force and
tends toward the direction of that straight line along which the force is acting.

Lex tertia: The action always equals the reaction, or the actions of two bodies onto each
other are always of equal magnitude and of opposite direction.

Lex quarta: Supplement to the laws of motion: Rule of the parallelogram of forces, that
is, forces add up like vectors. Thereby the superposition principle of the actions of forces
is postulated (principle of unperturbed superposition).

Because we deal in the following only with point mechanics, we have to introduce the
model representation of the mass point. Here one abstracts from shape, size, and rotational
motions of a body and considers only its translational motion. Newton’s axioms in modern
form then read as follows:

Axiom 1: Any mass point remains in the state of rest or rectilinear uniform motion until
this state is terminated by the action of other forces (i.e., by transfer of forces). This is a
special case of the second axiom. Namely,

F = 0, then m · v = −−−−→
constant.
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Because of the presupposed velocity independece of the mass, it then holds that

v = −−−−→
constant.

If the “quantity of motion” p = m · v is denoted as the linear momentum of the mass point,
then the law of inertia is identical with the law of conservation of the linear momentum.

Axiom 2: The first time derivative of the linear momentum p of a mass point is equal to
the force F acting on it:

F = d(m · v)

dt
= dp

dt
= ṗ,

where
p = mv

is the linear momentum.2.
Because in general the mass is a velocity-dependent quantity, that is, it is also time-

dependent, it must not simply be pulled in front of the bracket. In the nonrelativistic
Newtonian mechanics (v � c ; c = 3 ·108 m s−1), the mass m is, however, treated as being
independent of the time, and one thus obtains the dynamic fundamental equation:

F = m
dv
dt

= m
d2r
dt2

= mr̈ = ma.

That means that the acceleration a of a mass point is directly proportional to the force acting
on it and coincides with the direction of the force.

If several forces are acting simultaneously onto a mass point, then the above relation
according to the principle of superposition of forces reads

dp
dt

=
n∑

i=1

Fi .

Axiom 3: The forces exerted by two mass points onto each other have equal magnitude
and opposite directions; force = – counterforce:

Fi j = −Fj i , where i �= j .

Here Fi j is the force exerted by the j th point onto the i th point. Fj i is the force exerted
by the i th onto the j th point.

Remark: The relation F = d(mv)/dt is on the one hand a definition of the force, on the
other hand a law. The statutory aspect is that, for example, the first time derivative of the
linear momentum occurs, but not the third or fourth or something else. Because the force

2The time derivatives are often abbreviated with a dot, for example d f/dt ≡ ḟ , v = dr/dt = ṙ, or a =
d2r/dt2 = r̈ We will use this notation wherever it seems appropriate.
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is the derivative of a vector with respect to a scalar (the time), it is a vector itself. Hence,
the addition of forces is governed, for instance, by the law of force parallelogram.

Problem 16.1: Single-rope pulley

e

T

T

W1

W2

A boy and a weight hang-
ing at the ends of a rope.

A weight W1 = M1g hangs at the end of a rope. Here, g = 9.81 m/s2

is the gravitational acceleration of all bodies at the surface of the earth.
At the other end of the rope, hanging over a roller, a boy of weight
W2 = M2g pulls himself upward. Let his acceleration relative to the
tightly mounted roller be a. What is the acceleration of the weight W1?

Solution Let b be the acceleration of W1 and T the rope tension. The Newtonian
equations of motion then read

(a) For the mass M2 (boy):

−M2 · ae = M2g e − T e; (16.1)

(b) for the mass M1 (weight W1):

M1b e = M1g e − T e. (16.2)

These are two equations with two unknowns (T, b). Their solution may be given immediately:

T = M2(a + g); (16.3)

b = g − T

M1

= g − M2

M1
(a + g)

= (M1 − M2)g − M2a

M1
. (16.4)

If M1 = M2, it follows that b = −a, as it should be. On the other hand, if a = 0, it follows that
b = (M1−M2)

M1
g and vanishes for the case M1 = M2, as expected.

Problem 16.2: Double-rope pulley

A mass M1 hangs at one end of a rope that is led over a roller A (compare the figure). The other end
carries a second roller of mass M2, which in turn carries a rope with the masses m1 and m2 fixed to
its ends. The gravitational force is acting on all masses. Calculate the acceleration of the masses m1

and m2, as well as the tensions T1 and T in the ropes.
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e

T

T1

T

T1

M 1

m1

M 2

m2

A

Masses and forces at the double-
rope pulley.

Solution We introduce the unit vector e ⊥ pointing upward (see figure)
and denote the string tensions by T = T e and T1 = T1e,
respectively (see figure). The individual masses are influ-
enced by the string tension (i.e., the force in the rope) and
by the gravitational force. We now write down the equations
of motion for the individual masses according to Newton’s
fundamental law.

M1a1e = −M1ge + T e ,

−M2a1e = −M2ge + T e − 2T1e ,

m1(a2 − a1)e = −m1ge + T1e ,

m2(−a2 − a1)e = −m2ge + T1e . (16.5)

The acceleration of the mass M1 has been denoted by a1e,
that of the mass M2 is then (because of the constant rope
length) −a1e; the acceleration of the mass m1 relative to the
mass M2 is a2e, that of the mass m2 is −a2e. 16.5 represents
a set of four equations with the four unknowns: a1, a2, T, T1.
Subtraction of the second equation from the first one yields

(M1 + M2)a1 = −(M1 − M2)g + 2T1 . (16.6)

The addition of the last two equations of 16.5 leads to

−(m1 + m2)a1 + (m1 − m2)a2 = −(m1 + m2)g + 2T1 . (16.7)

The subtraction of 16.7 from 16.6 then yields a relation between a1 and a2:

(M1 + M2 + m1 + m2)a1 − (m1 − m2)a2 = (−M1 + M2 + m1 + m2)g . (16.8)

A second relation of this kind is obtained by subtracting the last two equations 16.5 from each
other, namely

−(m1 − m2)a1 + (m1 + m2)a2 = −(m1 − m2)g . (16.9)

The accelerations a1 and a2 are now found from equations 16.8 and 16.9:

a1 = −M1(m1 + m2) + M2(m1 + m2) + 4m1m2

(m1 + m2)(M1 + M2) + 4m1m2
g; (16.10)

a2 = −2M1(m1 − m2)

(m1 + m2)(M1 + M2) + 4m1m2
g, (16.11)

such that the total acceleration of mass m1 is obtained as

a2 − a1 = −M1m1 + 3M1m2 − M2(m1 + m2) − 4m1m2

(m1 + m2)(M1 + M2) + 4m1m2
g (16.12)

and that of mass m2 is

(−a2 − a1) = M1(3m1 − m2) − M2(m1 + m2) − 4m1m2

(m1 + m2)(M1 + M2) + 4m1m2
g . (16.13)
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If all masses were identical (M1 = M2 = m1 = m2), then

a2 − a1 = −1

2
g, a2 = 0,

and

−a2 − a1 = −1

2
g, a1 = 1

2
g, (16.14)

as one would expect. The string tension T1 follows with 16.10 from equation 16.6 after a simple
calculation as

T1 = 1

2
(M1 + M2)a1 + 1

2
(M1 − M2)g

= 4m1m2 M1

(m1 + m2)(M1 + M2) + 4m1m2
g. (16.15)

The rope tension T is obtained from the first two equations 16.5, using 16.10 and 16.15, as

T = (M1 − M2)a1

2
+ (M1 + M2)g

2
+ T1

= M1a1 + M1g = M1(a1 + g)

= 2(m1 + m2)M1 M2 + 8m1m2 M1

(m1 + m2)(M1 + M2) + 4m1m2
g. (16.16)

According to 16.15 the rope tension T1 vanishes if one of the masses m1, m2, M1 vanishes. In this
case the rope is rolling without tension, as is clearly expected. The rope tension T vanishes if either
M1 = 0, or M2 and one of the masses m1 or m2 (or both) vanish. If m1 = m2 = m = 0 and if M1 �= 0,
M2 �= 0, a limit m → 0 can be taken:

T = 2M1 M2

M1 + M2
g.

This is the rope tension in the case of the single roller with the two masses M1 and M2 at the rope
ends.



17 Basic Concepts
of Mechanics

Inertial systems

–

z

x

y

P z´

r
ŕ

x´ 0´ y´

0

R
r r

=
´

The point P in relation to the coordi-
nate systems x , y , z and x ′, y ′, z ′.

We ask for the forces acting on a mass point P , as seen
from two coordinate frames x , y, z and x ′, y′, z′ that
are moving relative to each other, with correspondingly
convected observers 0 and 0′, respectively. Let r and r′
be the position vectors of P in x , y, z and in x ′, y′, z′,
respectively. One then obtains the position vector from
0 to 0′ as the difference r − r′ = R.

According to Newton’s basic equation:

F = m
d2r
dt2

and F′ = m
d2r′

dt2
. (17.1)

The difference of the observed forces is

F − F′ = m
d2

dt2
(r − r′) = m

d2R
dt2

. (17.2)

Because m �= 0, this difference vanishes then and only then if

d2R
dt2

= 0 or
dR
dt

= −−−−→
constant = vR . (17.3)

This means that the forces are then equal if the two coordinate frames are moving with
constant velocity vR relative to each other. Such systems are called inertial systems if one of
them—and thus all of them—fulfills Newton’s axioms. The statement that in such inertial
systems the Newtonian equations (17.1) have the same form and the forces are also the
same (F = F′) is called the classical relativity principle.
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Measurement of masses

Masses are measured by comparison with an arbitrarily defined unit mass. If there are three
distinct masses m1, m2, and m3, with m1 representing the unit mass, one may determine
experimentally, for example, m3, starting from the second and third Newton laws, as the
quotient of the accelerations:

a1

m1

a3

m3

Central collision.

m1 m3

Noncentral collision.

m1
dv1

dt
= −m3

dv3

dt
, m1 a1 = −m3 a3,

force = −counterforce.

From there it follows that

m3 = m1
|a1|
|a3| ,

where m1 is the unit mass, and a1 and a3 may be determined. Thus,
m3 may be measured in units of m1. In the process
of measurement (collision) the basic laws (second and third Newtonian laws) are employed.

Correspondingly, it then also holds that

m2 = m1
|a1|
|a2| . (17.4)

Work

M

P1

P2

F
C

ϕ
dr

The work integral.

A force F causes a displacement of a mass point M by an infinites-
imally small path element dr and thereby performs the work dW
that is defined as follows:

dW = F · dr = |F||dr| cos(F, dr).

The unit of this scalar is therefore

g cm2

s2
= 1 erg or

kg m2

s2
= 1 Nm ⇒ 1 erg =̂ 10−7 Nm.

Here 1 Newton (N) = kg m/s2 is the unit of force.
The total work W needed to move M along a curve C between the points P1 and P2 is

given by the following line integral:

W =
∫
C

F · dr =
P2∫

P1

F · dr . (17.5)
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Power is work performed per unit time:

dW

dt
= F · dr

dt
= F · v. (17.6)

The unit of power is
[
g cm2/s3 = erg/s

]
or

[
kg m2/s3 = Nm/s

]
.

Kinetic energy

In order to accelerate a mass point and to bring it to a definite velocity, work must be
performed. This work is then stored in the mass point in the form of kinetic energy. We
therefore start from the integral of work:

W =
r2∫

t1

F · dr =
r2∫

t1

F · v dt

=
t2∫

t1

m
dv
dt

· v dt = 1

2
m

v2∫
v1

d(v · v)

= 1

2
m(v2

2 − v2
1) = T2 − T1 ,

T = 1

2
mv2 = kin. energy. (17.7)

Conservative forces

A force is called conservative if the force field F may be represented by

F = − grad V (x, y, z) (definition). (17.8)

If this is true, then the work integrals are path-independent:

P2∫
P1

F · dr = −
P2∫

P1

grad V · dr = −
P2∫

P1

dV (see total differential; Chapter 11)

= V (P1) − V (P2) ≡ V1 − V2

= −(V2 − V1). (17.9)

Hence one has

W = V1 − V2 ,
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where V is a scalar field that associates a numerical value to each space point. W is therefore
path-independent. But this further means that for an integration along a closed curve the
total work must vanish:∮

C
F · dr = 0 (17.10)

for conservative forces. An equivalent requirement for conservative forces is

curl F = ∇ × F = 0 .

Indeed we can also conclude this immediately from equation (17.8) since

curl grad V (r) = 0.

Potential

If F(r) = −∇V (r), then the scalar quantity V (x, y, z) is called potential energy, scalar
potential, or, briefly, potential:

V (x, y, z) = −
(x,y,z)∫

(x0,y0,z0)

F · dr . (17.11)

Example 17.1: Potential energy

P1

P2

x y z0 0 0

Calculation of the potential en-
ergy difference between in the
points P1 and P2.

Calculation of the potential energy between two points looks like

W =
P2∫

P1

F · dr

=
(x0,y0,z0)∫

P1

F · dr +
P2∫

(x0,y0,z0)

F · dr.

The presupposition is a conservative force field, and thus path-
independence of the work integral.

W = −
P1∫

(x0,y0,z0)

F · dr +
P2∫

(x0,y0,z0)

F · dr = V (x1 y1z1) − V (x2 y2z2).

Therefore, the work represents a potential difference that is independent of the choice of the reference
point. The potential itself is always defined relative to a reference point (x0, y0, z0) and is therefore
undetermined by an additive constant. The zero point of the potential may be set arbitrarily. This
arbitrariness corresponds to the (arbitrary) additive constant in the potential.



144 BASIC CONCEPTS OF MECHANICS 17

Energy law

On deriving the kinetic energy, we found the following relation for the work:

W = T2 − T1.

For conservative fields there also holds the other relation between the same points P1

and P2:

W = V1 − V2.

This implies

T2 + V2 = T1 + V1. (17.12)

This is the energy conservation law (briefly: energy law), where T + V = E represents
the total energy of the mass point.

Written out in detail, the energy conservation law reads

1

2
mv 2

2 +
(

−
∫ P2

P0

F · dr
)

= 1

2
m v 2

1 +
(

−
∫ P1

P0

F · dr
)

(17.13)

or
1

2
m v 2

2 + V2 = 1

2
m v 2

1 + V1

or
E2 = E1 .

The premises for this energy conservation law for the motion of a mass point are

1. The basic assumptions and basic laws of the Newtonian mechanics (e.g., nonrelativistic
treatment of the mass);

2. conservative force fields, that is, the forces may be written as the negative gradient of
a potential. For force fields that are constant in time, it then holds that E = T + V =
constant.

Equivalence of impulse of force and momentum change

If a mass point is affected by a force over a time interval t = t2 − t1, the time integral over
this force is called impulse of force:

t2∫
t1

F(t) dt = impulse of force. (17.14)

The impulse of force is equivalent to the momentum change or momentum difference. This
is seen as follows:
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From the definition of the linear momentum p = mv and from the second Newtonian
fundamental equation, it follows that

t2∫
t1

F dt =
t2∫

t1

d

dt
(m v) dt =

t2∫
t1

d(m v) = mv2 − mv1 = p2 − p1. (17.15)

m

m

p v1 1= m

p v2 2= m p p2 1– = .F ∆t

F
. ∆t

p1

Situation before (top) and after (bottom) the
impulse of force.

Thus a force acting on the mass causes a
change of momentum: That is, only of its mag-
nitude if F points along p1, and a change of
both magnitude and direction if F points in an
arbitrary angle relative to p1.

If the force F acts during the time �t ,
the corresponding difference in momentum
is F�t = p2 − p1. After the collision, the
mass moves on a straight line with linear mo-
mentum p2.

Problem 17.2: Impulse of momentum by a time-dependent force field

F( )t1

F( )t2

Force field at different times t1 and t2: homogenous
(equal at every point in space) at any time, but vari-
able with time. For a fixed moment t in time we have
curl F(t) = 0, because F(t) is constant in space. There-
fore, we have a time-dependent potential.

A particle of mass m = 2 g moves in the
time-dependent uniform force field:

F =
(

24
t2

s2
, 3

t

s
− 16, −12

t

s

)
dyn.

The initial conditions are

r(t=0) = r0 = (3, −1, 4) cm

and

v(t=0) = v0 = (6, 15, −8)
cm

s
.

Here we make use of the units of force

1 dyn = g
cm

s2
= 10−5 N and 1 N = 1 Newton = 1kg

m

s2
.

Find the following quantities:

1. The kinetic energy at the time t = 1 s and t = 2 s.

2. The work performed by the field to move the particle from r1 = r(t=1 s) to r2 = r(t=2 s).

3. The linear momentum of the particle at r1 and r2.

4. The momentum transferred by the field to the particle over the time interval t = 1 s until t = 2 s.
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Solution

To 1: v is obtained from F = ma = m(dv/dt) as

v =
∫

dv =
∫

F
m

dt + v0.

Using the data of the problem, we get for v

v(t) =
(

4
t3

s3
,

3

4

t2

s2
− 8

t

s
, −3

t2

s2

)
cm

s
+ (6, 15, −8)

cm

s

and

v(t=1 s) = (
10, 7 3

4 , −11
) cm

s
,

v(t=2 s) = (38, 2, −20)
cm

s
.

From there we get for the energy

T = 1

2
m v 2 = 1

2
m v2,

T1 = 281 erg , T2 = 1848 erg .

To 2: The work performed by the field equals the difference of the kinetic energies:

W = T2 − T1 = 1567 erg.

To 3: The momentum of the particle is p = mv:

p1 = (
20, 15 1

2 , −22
)

g
cm

s
,

p2 = (76, 4, −40) g
cm

s
.

To 4: The momentum transferred by the field is obtained from the difference of momenta p2 and p1:

p = p2 − p1 = (
56, −11 1

2 , −18
)

g
cm

s
.

Problem 17.3: Impulse of force

A railway carriage of mass m = 18000 kg starts from a roll-off plateau of height 3 m. What is the
change of momentum of the carriage, and which mean force is acting on it when colliding onto a
buffer at the bottom of the hill, if the carriage within 0.2 s

(a) Comes to rest ?

(b) Is pushed back to a height of 0.5 m?

Discuss the momentum conservation.
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Solution At the moment of impact the carriage has a momentum p1 that results from the potential energy at
the start from the roll-off plateau:

1

2
m v2

1 = mgh ⇒ p1 = m v1 = m(2gh)1/2e1 .

In case (a) the momentum p2 after the impact equals zero; hence

�p = p1 − p2 = m(2gh)1/2e1

= 138 096.5 m kg s−1 · e1;
the mean force acting over �t = 0.2 s is then

F = �p
�t

= 690 482.4 N.

In case (b) the momentum p2 is given by

p2 = m v2 = −m(2gh′)1/2e1,

where h′ is the height regained in the bouncing-back. The momentum change is then

�p = p1 − p2 = me1

[
(2gh)1/2 + (2gh′)1/2

]
= 194 474.1 m kg s−1 e1;

for the mean force we obtain

F = �p
�t

= 972 370.7 N.

The carriage alone does not represent a closed system: The reactive force imposed by the tightly
mounted buffer is an external force; therefore, the momentum cannot be conserved.

Problem 17.4: The ballistic pendulum

mG

l

mK y

h

θ θ

m mG K+

Ballistic pendulum and bullet.

The velocity of a bullet may be measured by
means of the ballistic pendulum. This device
consists of a string with negligible weight and a
weight of mass mG fixed to the string. The bullet
(mass mK , velocity vK ) is shot into the block,
where it gets stuck. The arc length s covered by
the center of the mass mG is measured.

(a) Determine the velocity of the block vG after
the collision, and

(b) Determine the velocity of the bullet vK if
the following quantities are specified: mG =
4 kg, l = 1.62 m, mK = 0.055 kg, s =
6.5 cm.

Solution (a) From the momentum conservation law, it follows that

mK vK = (mG + mK )vG (17.16)
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and from there for the velocity vG of the block just after the collision

vG = mK

mG + mK
· vK . (17.17)

For the kinetic energy it results immediately that

T = 1

2
(mG + mK ) · v2

G = mK

mG + mK

(
1

2
mK v2

K

)
. (17.18)

This energy coincides with the kinetic energy of the bullet reduced by the factor mK /(mG + mK ).
One may wonder why the kinetic energy of the block differs from the kinetic energy 1

2 mK v2
K of the

bullet? Where is the energy lost,

�E = 1

2
mK v2

K − mK

mG + mK

(
1

2
mK v2

K

)
= mG

mG + mK

(
1

2
mK v2

K

)
?

Obviously it must correspond to the heat released by the bullet getting stuck in the block. For
mG 	 mK , almost the total energy of the bullet is converted to heat.

Another point is worth being mentioned: On calculating the velocity vG of the block, we started
from the momentum conservation law 17.16 but not, as might be thought first, from the energy
conservation law ( 1

2 mK v2
K = 1

2 (mK + mG)v2
G). Which of these two possibilities is now correct?

The puzzle of two seemingly existing possibilities originates from the incomplete formulation of
the problem. Actually, the percent fraction of the energy converted to heat ought to be specified in
addition. Without any knowledge of this fraction we may, however, argue as follows: We know by
experience that in the process of the bullet getting stuck, no small particles of the block (smallest
pieces, molecules) are flying off, but rather the block moves as an entity. The block itself also becomes
heated up by the friction of the bullet. In any case, the momentum conservation law must hold strictly,
because the heat as a disordered molecular motion on the average does not carry off momentum, but
for sure dissipates energy. In other words: Because the momentum conservation law 17.16 is strictly
fulfilled, we actually may imagine that the energy loss �E has been converted to heat. If we had
strictly required energy conservation without any production of heat, 1

2 mK v2
K = 1

2 (mG +mG)v2
G ; this

would imply a momentum loss, about which we would have no idea how it might evolve.
(b) From the figure in the context of the problem, we get for the height of lift of the block

h = l(1 − cos θ) = 2l sin2 θ

2
(17.19)

and in the limit of small displacements θ

h = 2l

(
θ

2

)2

= 2l
( y

2l

)2 = y2

2l
, (17.20)

where sin θ = y/ l and sin θ = θ.

The change of the potential energy of the block after being hit by the bullet is—at maximal
elongation of the pendulum—according to the energy conservation law:

�V = g(mG + mK )h = T = mK

(mK + mG)

(
1

2
mK v2

K

)
. (17.21)

From equations 17.20 and 17.21, we then obtain

gh = m2
K

2(mG + mK )2
v2

K = g
y2

2l
. (17.22)
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In the approximation mK + mG ≈ mG , the velocity vK of the bullet is given by

vK = mG

mK
y

√
g

l
. (17.23)

Insertion of the data given in the formulation of the problem yields

vK = 4

0.055
· 6.5 · 10−2

√
9.81

1.62
= 11.6

m

s
.

Angular momentum and torque

y

x

m
p

r

L r p= �

The definition of angular
momentum: L = r × p.

Angular momentum and torque are always defined with respect
to a fixed point, the pivot. If r is the vector from this point to the
mass point, then the angular momentum is given by

L = r × p. (17.24)

If we put the coordinate frame into the reference point, then
r is the position vector of the mass point, and p is its linear
momentum.

L is an axial vector. L defines an axis through the pivot,
the rotational axis, which points perpendicularly to the plane
spanned by r and p.

F
y

x

m

r

D F= �r

The definition of torque:
D = r × F.

The corresponding definition holds for the moment of the force,
which is defined by

D = r × F, (17.25)

and is also called torque. The time variation of the angular mo-
mentum is equal to the torque:

L̇ = D,

because

L̇ = dL
dt

= d

dt
(r × mv) = dr

dt
× mv + r × d(mv)

dt

= v × mv + r × dp
dt

= r × F, (17.26)

because v × mv = 0.

The torque of the acting force (r × F) is equal to the time variation of the angular
momentum.

If, in particular, D = r × F = 0 = L̇, it then follows that L = −−−−−→
constant . This is the

conservation law for the angular momentum. But the quantity r × F vanishes only then
(except for the trivial cases r = 0, F = 0) if r and F point along the same or the opposite
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direction. A force that acts exclusively parallel or antiparallel to the position vector is called
the central force.

This implies that central forces obey the

Conservation law of angular momentum

L = −−−−−→
constant , because D = 0.

Law of conservation of the linear momentum

As long as no forces are acting, the linear momentum p is a constant quantity. In general,

F = d(mv)

dt
= m

dv
dt

;

and therefore it follows for F = 0 that

m
dv
dt

= 0.

From there again we get

mv = p = −−−−→
constant.

The momentum conservation law is identical to Newton’s Lex prima.

Summary

The premises of the conservation laws concerning the energy, angular momentum, and linear
momentum for a mass point in the Newtonian mechanics (compare to the introduction) are

(a) Energy conservation: If the forces acting on a mass point are conservative (gradient
field: F = −∇V ), then the total energy E = T + V of the mass point is conserved.

(b) Angular momentum conservation: The total angular momentum L is constant in
time if the applied (external) torque vanishes, that is, if one is dealing with central force
fields (r × F = 0).

(c) Momentum conservation: If the total external force equals zero then the total linear
momentum is conserved (equivalent to Newton’s Lex prima).
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The law of areas

(See also Chapter 26 on planetary motions; in particular, the Kepler laws.) The premises
and contents of the three conservation laws (total energy, linear momentum, angular mo-
mentum) have been formulated already. The angular momentum conservation holds only in
central force fields, as arise, for example, in planetary motion. Conservation of the angular
momentum means constancy of its orientation as well as its magnitude.

Conservation of orientation

Conservation of L = r×p means that the plane spanned by r and p remains fixed in spatial
orientation; hence the motion proceeds in a plane.

dF
drr

The area dF = 1
2 |r × dr|

spanned by the vectors r
and dr.

Conservation of the magnitude of the angular momentum is
often denoted as law of areas. The area covered by the “radius
vector” r during the time element dt is

d F = 1

2
|r × dr | = 1

2
|r × v | dt .

With L = r × p = r × mv = m(r × v), it holds that

d F = 1

2m
|L| dt or

d F

dt
= 1

2m
|L| ,

where d F/dt is the area velocity of the radius vector (area covered per unit time). For the
planetary motion, the law of areas is identical to the second Kepler law:

The radius vector of a planet covers equal areas in equal times.

The law of areas follows directly from the angular momentum conservation law and

r
M

Sun

m
Planet

Illustration of the law of equal areas.

holds generally for arbitrary central fields, that is,
also for the gravitational force, which is a central
force with the sun as center. In the perihelion (clos-
est distance to sun) the planet is moving faster than
in the aphelion (largest distance to sun).

The situation in the example of Problem 17.5 is
similar: The area velocity is constant, and hence
the velocity v at r = ±b is maximum; at r = ±a
it is minimum.

Example 17.5: Forces in the motion on an ellipse

We calculate the force to be applied to a mass point of constant mass to get it moving along the ellipse

r = a cos ωt e1 + b sin ωt e2 .
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It is easy to verify from this parameterization the normal form of the equation of an ellipse (see also
Chapter 26),

x2

a2
+ y2

b2
= 1.

Starting from the second Newtonian axiom, the following ansatz results:

F = m
dv
dt

= m
d2r
dt2

= m
d2

dt2
(a cos ωt e1 + b sin ωt e2)

= −mω2 [(a cos ωt) e1 + (b sin ωt) e2]

= −mω2r.

The force acts opposite to the direction of the position vector; it is an attractive central force. The
force center lies at the midpoint of the ellipse.

Such forces that increase linearly with the distance play an important role, for example, for the
spring (Hooke’s law – see Section 18) and between the quarks, the primordial constituents of protons,
neutrons, and mesons.

The planets also move around the sun along elliptic orbits. The sun as the center of attraction is
located in one of the focal points of the ellipse. As we will see later in Chapter 26, the force acting is

FG = −γ
mM

r 2

r
r

,

that is, the gravitational force between the sun (mass M) and the planet (mass m).
We show that this force field is conservative. A necessary and sufficient condition for this property

is the vanishing of the rotation of the force:

curl F = 0,

curl F = −mω2 curl r; hence it suffices to calculate the rotation of r:

curl r =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

∂

∂x

∂

∂y

∂

∂z
x y z

∣∣∣∣∣∣∣∣∣
= e1

(
∂z

∂y
− ∂y

∂z

)
+ e2

(
∂x

∂z
− ∂z

∂x

)
+ e3

(
∂y

∂x
− ∂x

∂y

)
= 0,

namely, the rotation of the position vector vanishes.

y

x
A

P

a

b r

Illustration of elliptic motion.

Calculation of the potential at a point P (at the position r)
with respect to the zero of the potential at point A (at the
position a): We take a fixed point A on the ellipse (see sketch)
and calculate the potential difference between A and the points of
the trajectory given by r.

V (x, y, z) = −
r∫

a

F · dr = mω2

r∫
a

r · dr
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= 1

2
mω2

r∫
a

d(r · r)

= 1

2
mω2r 2

∣∣∣∣r

a

= 1

2
mω2(r 2 − a 2).

With r 2 = r 2, it results that

V (x, y, z) = 1

2
mω2(r 2 − a2).

For r = a, one has V (a) = 0, as it should be.

Calculation of the kinetic energy: The velocity is

v = ṙ = (−ωa sin ωt)e1 + (ωb cos ωt)e2 ,

|v| =
√

ω2a2 sin2 ωt + ω2b2 cos2 ωt = v ,

T = 1

2
mv2 = 1

2
mω2

(
a2 sin2 ωt + b2 cos2 ωt

)
.

The kinetic energy is always positive and nonzero, as it must be in this case, to keep the mass point
on the trajectory.

Calculation of the total energy: The total energy is the sum of E = T + V . By inserting the
derived relations for T and V , we get

E = 1

2
mω2

[
a2

(
sin2 ωt + cos2 ωt

) + b2
(
cos2 ωt + sin2 ωt

) − a2
]

= 1

2
mω2

(
a2 + b2 − a2

)
= 1

2
mω2b2 = constant,

that is, the total energy is time-independent. The distinction of the half-axis b stems from our choice of
referring the potential energy to the point (x = a, y = 0). For r = ±a the total energy is exclusively
kinetic energy; for r = ±b the kinetic energy is maximum, the potental energy is minimum, namely

V (b) = 1

2
mω2(b2 − a2).

Problem 17.6: Calculation of angular momentum and torque

Find the torque D and the angular momentum L with respect to the origin for a mass point m moving
on the trajectory r = (a cos ωt, b sin ωt).

Solution r = (a cos ωt, b sin ωt) where a, b = constant

L = r × p = r × mv = m(r × v),

v = ṙ = (−aω sin ωt, bω cos ωt),
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L =

∣∣∣∣∣∣∣∣
e1 e2 e3

a cos ωt b sin ωt 0

−aω sin ωt +bω cos ωt 0

∣∣∣∣∣∣∣∣ · m

= me3(ab ω cos2 ωt + ab ω sin2 ωt)

= ab ω me3,

that is, L is time-independent, because L = −−−−−→
constant . From there it follows that

D = L̇ = 0.

Hence, the force must be a central force. The mass point moves along an ellipse with the half-axes
a and b, because

x = a cos ωt, y = b sin ωt,

and, therefore,

x2

a2
+ y2

b2
= cos2 ωt + sin2 ωt = 1.

Problem 17.7: Show that the given force field is conservative

Show that the following force field is conservative:

F = (y2z3 − 6 xz2)e1 + 2xyz3e3 + (3xy2z2 − 6x2z)e3 .

Solution One has to show that curl F = 0:

curl F =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

∂

∂x

∂

∂y

∂

∂z
y2z3 − 6xz2 2xyz3 3xy2z2 − 6x2z

∣∣∣∣∣∣∣∣∣
= e1

[
∂

∂y

(
3xy2z2 − 6x2z

) − ∂

∂z

(
2xyz3

)]

+ e2

[
∂

∂z

(
y2z3 − 6xz2

) − ∂

∂x

(
3xy2z2 − 6x2z

)]

+ e3

[
∂

∂x

(
2xyz3

) − ∂

∂y

(
y2z3 − 6xz2

)]
= e1

(
6xyz2 − 6xyz2

) + e2

[(
3y2z2 − 12xz

) − (
3y2z2 − 12xz

)] + e3

(
2yz3 − 2yz3

)
= 0,

that is, F is a conservative force field.
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Problem 17.8: Force field, potential, total energy

(a) Show that F = ηr 3r is conservative.

(b) Calculate the potential of a mass point in this field.

(c) What is the total energy of the mass point?

Solution (a)

curl F = ∇ × F

= −η
[
e1

[
3zy

(
x2 + y2 + z2

)1/2 − 3zy
(
x2 + y2 + z2

)1/2
]

+ e2

[
3xz

(
x2 + y2 + z2

)1/2 − 3xz
(
x2 + y2 + z2

)1/2
]

+ e3

[
3xy

(
x2 + y2 + z2

)1/2 − 3xy
(
x2 + y2 + z2

)1/2
]]

= 0,

where |r| = √
x2 + y2 + z2 and |r|3 = r 3 = (x2 + y2 + z2)3/2 have been used.

(b) Potential:

V =
r∫

r0=0

F · dr = η

r∫
r0=0

r 3r · dr = η

r∫
r0=0

r 4dr = η
r 5

5
,

with r · dr = 1
2 d(r · r) = 1

2 d(r 2) = 1
2 d(r 2) = r dr.

(c) Because the force field is conservative, the energy law E = T + V = constant holds:

T = 1

2
mṙ 2; V (r) = 1

5
ηr 5.

It then follows that

E = 1

2
mṙ 2 + 1

5
ηr 5.

Problem 17.9: Momentum and force at a ram pile

A crane lifts a mass of weight 1000 kg by 8.5 m upward. Afterward the weight falls onto a ram pile.

(a) Determine the transferred momentum.

(b) Determine the force acting onto the pile if the time of the impulse is 1/100 s.
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m

v

p

Forces at a ram pile.

Solution (a) After the crane releases the weight, it falls under the action of gravity
with the velocity

v = gt.

From the considerations on the free fall we know that

s = 1

2
gt2 and t =

√
2s

g

and thus obtain for the velocity of the falling mass

v = √
2sg =

√
2 · 8.5 · 9.81

m2

s2
= 12.9

m

s

and for the momentum

p1 = mv1 = 1.29 · 104 kg m

s
.

F t( )

F0

t1

t1

t2

t2

t

The force at the ram pile at a func-
tion of time.

After the impact onto the pile the momentum practically
equals zero, that is,

p2 ≈ 0,

and the momentum change is

�p = p1 − p2 ≈ p1.

Hence, the momentum transferred to the pile is

P = �p = 1.29 · 104 kg m

s
.

(b) Assuming that the impulse is transferred within 1/100
s and the force is constant over this time interval, one obtains
for the acting force (see the figure)

F0 = �p

�t
= 1.29 · 104 kg m/s

10−2 s
= 1.29 · 106 N.

Example 17.10: Elementary considerations on fictitious forces

A manned satellite was launched into an orbit about earth. We assume that gravity is absent everywhere
within the satellite. We discuss the correctness of this assertion.

As is known, the only force acting on the satellite is the gravitational force of earth (see figure on
next page). The acceleration

aR = G M

R2
(17.27)

points toward the center of earth; therefore, the satellite moves on a closed elliptical or spherical orbit.
If we consider the earth as being at rest, a fictitious force acts on each mass m in the frame of the

satellite,

Fs = −maR,
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which points away from the earth’s center. In the satellite frame any body is under the action of the
gravitation Fg and of the centrifugal fictitious force Fs ,

R

Fg=

F = 0

F maR R=

GMm
R2

A manned satellite in a circular orbit around earth.
Due to the gravitaional attraction of the earth, the
same acceleration is acting on the satellite and
every object within the satellite. In the system of
the satellite, no forces act on these objects.

F = Fg + Fs = m
G M

R2
− maR .

In view of equation 17.27 it is seen immedi-
ately that the resulting force on all bodies van-
ishes and that these bodies seemingly move
acceleration-free within the satellite.

If we consider the problem in the earth-fixed
system, then both the satellite as well as its
objects are affected by the same acceleration
and therefore follow the same path. Nothing is
any more gravitation-free, and the objects in
the satellite fall toward earth with the accel-
eration aR (compare equation 17.27). But the
satellite also falls with the same acceleration
aR , such that the relative acceleration between
the objects and the satellite itself vanishes.
Please note that this coordinate system is not an
inertial system! In this example the centrifugal force just compensates the earth’s attraction force. In
other cases, for example, if an aircraft performs a loop, the centrifugal force may exceed the attractive
force.

Another typical example for the appearance of fictitious forces is the acceleration meter. Let
us consider a closed railway carriage in which a mass m is suspended at the ceiling by a string,
allowing for free vibrations. If the carriage is accelerated, an observer sitting inside may notice that
the pendulum is deflected by the angle θ against the vertical. The mass feels the fictitious force
Fs = −ma, with a being the acceleration of the carriage. Because the resulting force must point
away from the suspension point, the pendulum is deflected by the angle θ , because

tan θ = Fs

Fg
= a

g
.

If the carriage is at rest or in uniform motion, the string of the pendulum hangs vertically downward.
(a) If the carriage is accelerated, then a fictitious force drives the mass in the opposite direction.
Because both the fictitious force as well as the gravitational force are acting, the angle θ results.

N F= – g

Fg F F F= +s g

P P

m
m

F g= –m

F a= –m
N

a θ

θ

Railway carriage in uniform motion or at rest (left) or accelerated (right).
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B B B

N N N

Fs
Fs

a a

(a) (b) (c)

The balloon experiment.

An amusing version of an acceleration meter is a vehicle with a helium balloon below a glass bell
fixed to the vehicle (see the figure below). In which direction will the balloon move if the vehicle is
accelerated forward?

An acceleration meter is realized by a helium balloon below a glass bell fixed to a vehicle. If the
vehicle is at rest or moves uniformly, the balloon stands vertically (a). If the vehicle is accelerated,
the balloon is deflected in the same direction (c). Case (b) is wrong.

One might imagine intuitively that the balloon moves to the back since the sum of fictitious force
Fs and buoyancy force B would point to the back (see figure — case (b). But this is wrong; the
balloon moves forward (case (c)).

This may be explained as follows. Why does the balloon fly? It flies because the “pressure” below
the balloon is higher than above it. This is due to the attractive force onto the air molecules. The
difference of pressure causes a force that exceeds the attractive force onto the helium inside the
balloon by the buoyancy force B. If the vehicle is accelerated, then the fictitious force acts on the air
molecules; these drift to the backward side and create an overpressure that drives the balloon forward.

N N
a

–a
–a
–a

–a

F
F gg= (– )(– )m

F as= (– )(– )m N F= –

a

Explanation of the balloon experiment.

An ingenious theoretical trick may be applied to this example. Because the balloon is pushed
upward against the gravitational force, we consider the balloon as an object of negative mass, −m.
The gravitational force is then

Fg = (−m)(−g) = mg = B.

The fictitious force points parallel to the direction of acceleration, because one has

Fs = (−m)(−a) = +ma.



18 The General
Linear Motion

We consider a linear (one-dimensional) motion of a mass point in the potential

V = V (x) = −
x∫

0

F(x ′) dx ′. (18.1)

A potential always exists in this case because

curl F(x) =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

∂

∂x

∂

∂y

∂

∂z
F(x) 0 0

∣∣∣∣∣∣∣∣∣ = 0. (18.2)

This result is rather plausible, because rotation cannot develop in only one dimension.
In a conservative force field, the energy law holds:

E = T + V = 1

2
mv2 + V (x) = 1

2
m

(
dx

dt

)2

+ V (x). (18.3)

In the one-dimensional problem this law always applies, provided that the forces are only
position-dependent. Velocity-dependent forces (e.g., friction forces) in general may not be
represented by a potential and hence are not conservative.

Equation (18.3) is a differential equation of first order; its solution yields the dependence
of the position on time, that is x(t).

Differential equations are equations for unknown functions (in our case x(t)) that also
involve the derivatives of these functions (in our case ẋ(t)). If dn x/dtn occurs as the highest
derivative in the equation, the differential equation is called to be “of nth order.”

Equation (18.3) is solved by “separation of variables” and subsequent definite integration:

1

2
m

(
dx

dt

)2

= E − V (x). (18.4)

159
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The transformation is performed in such a way that all terms containing x stand on one
side, and terms depending on t stand on the other side:

± dx√
(2/m)

(
E − V (x)

) = dt. (18.5)

The integration may then be performed and yields

x∫
x1

dx√
(2/m)

(
E − V (x)

) = ±
t∫

t1

dt,

t = t (x) = t1 ±
x∫

x1

dx√
(2/m)

(
E − V (x)

) . (18.6)

The wanted solution is obtained by forming the inverse function x = x(t) of the function
t = t (x).

V x( )

-a a xe1

The potential of the linear harmonic
oscillator.

As an application of the general linear motion, we
shall investigate a motion in the oscillator potential
(parabola potential):

V (x) = 1

2
k x2

(k > 0); r = (x, 0, 0).

The force F(x) results from the potential

F(x) = − grad V = −∇V = −∂V

∂x
e1,

that is,

F(x) = −kx e1. (18.7)

Therefore, k is also called a force constant.
At the point x = 0 no force is acting; here the body moves force-free. If x > 0, the

force is negative, F ↑↑ −e1; if x < 0, then F ↑↑ e1. That means the force is backdriving
and tries to counteract any displacement. One may expect that this type of motion is a
vibrational one.

Let the following initial conditions be given: At the time t = 0, let x = a and ẋ = v = 0,
that is, the mass point is at rest at the position x = a and is released at the time t = 0. The
total energy of the system is then

E = 1

2
k a2. (18.8)



THE GENERAL LINEAR MOTION 161

Hence: T + V = E , or explicitly,

1

2
m

(
dx

dt

)2

= 1

2
k a2 − 1

2
k x2.

From this it follows that

dx

dt
= ±

√
k

m
(a2 − x2),

dx√
a2 − x2

= ±dt

√
k

m
. (18.9)

In the last step we have separated the variables x and t : To the left, dx together with the
x-dependent factor 1/

√
a2 − x2; to the right, dt multiplied by

√
k/m. From this equation,

we get by indefinite integration∫
dx√

a2 − x2
= ±

∫ √
k

m
dt (18.10)

or

arcsin
( x

a

)
=

√
k

m
t + constant (18.11)

We have adopted the positive sign in (18.9). One may easily check that the same result
is obtained when using the negative sign. The function arcsin x is the inverse function of
sin x . The result of the integration becomes clear by differentiation: If y = arcsin x , then
x = sin y, and further:

dy

dx
= 1

dx/dy
= 1

cos y
= (1 − sin2 y)−

1
2 = (1 − x2)−

1
2 . (18.12)

The integration constant is now determined from the initial conditions. At the time t = 0,
there is x = a, and therefore

constant = arcsin
(a

a

)
= π

2
.

The function obtained therefore reads

arcsin
( x

a

)
=

√
k

m
t + π

2
. (18.13)

From there the inverse function x = x(t) is obtained as

x

a
= sin

(√
k

m
t + π

2

)
or

x = a sin

(√
k

m
t + π

2

)
. (18.14)
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We introduce the abbreviation ω = √
k/m; ω is called the angular frequency. ω = 2π�; �

is the frequency. We thus obtain the function in the form

x = a sin
(
ωt + π

2

)
= a cos ωt. (18.15)

For t = T = 2π/ω = 1/�, the particle is again back at the starting point. T is called the
period of vibration or the vibration time. For t = T/2 = π/ω, we have x = −a and ẋ = 0.

–a a0 x

m

The vibrating spring: Its position at
rest is x = 0. There, the spring is
in equilibrium. Its elongation may
be positive (x > 0—the spring is
stretched) or negative (x < 0—the
spring is compressed).

Here we are dealing with harmonic vibrations. For
x = ±a the potential equals the total energy of the
system, for x = 0 the kinetic energy. An example of a
motion in a potential of the form V (x) = 1

2 k x2 is the
spring vibration for not too large displacements a (see
figure).

The spring vibration obeys the Hooke1 law:
The force is proportional to the displacement. Hence

there holds a linear force law:

F(x) = −kxe1.

1Robert Hooke, British naturalist, b. July 18, 1635, Freshwater (Isle Wight)—d. March 3, 1703, London.
Hooke was at first assistant with R. Boyle, became in 1662 Curator of Experiments of the Royal Society, in 1665
professor of geometry at Gresham College in London, and from 1677 to 1682 secretary of the Royal Society.
Hooke improved already known methods and instruments, for example, the air pump and the composed microscope
(described in his Micrographia in 1664). He frequently became involved in disputes on priority, for example,
with Ch. Huygens, J. Hevelius, and in particular with I. Newton, with whom he was hostile. Hooke proposed,
among other things, the melting point of ice as zero point of the thermometric scale (1664); he recognized the
constancy of the melting point and boiling point of substances (1668); and he first observed the black spots on
soap bubbles. He gave a conceptionally good definition of elasticity, and in 1679 he invented what we now call
Hooke’s law [BR].



19 The Free Fall

We consider the motion of a body under the influence of gravity. To make the problem
tractable, we make a number of simplifications. We assume that the attraction by earth is
constant, that is, the distance traversed in the fall shall be very small as compared with the
earth’s radius. Except for gravitation, no other forces shall act. This means: We neglect
the air friction and consider the earth as an inertial frame. These simplifications will be
dropped gradually to get a complete description of the problem.

h

R

r R h= +

The earth with radius R. The height above the
surface of the earth is z. z is supposed to be
small compared to R.

h

0

z

–mgez

ez

A useful coordinate system for motion near
the earth’s surface has its z-axis (ez ) show-
ing radially away outward from the center of
the earth.

ms M s

r

The distance vector r be-
tween two masses ms and Ms.

The gravitational force of a point mass Ms on another point
mass ms at the mutual distance r is

Fms = −γ
Msms

r2

r
r
.

This force law is fundamental for the classical (not generally relativistic) theory of
gravitation. Here γ is the gravitational constant, which is given by (compare Example 26.1)

γ = 6.67 · 10−11 N m2

kg2 .
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The earth, although being extended, is assumed to have its total mass Ms united at the
earth’s center. In the vicinity of the earth’s surface, this force may be simplified:

F = −γ
Msms

(R + z)2
er

≈ −γ
Msms

R2

(
1 − 2

z

R

)
er

= −g ms

(
1 − 2

z

R

)
er

≈ −g mser for z � R.

Here g is the gravitational acceleration

g = γ · Ms

R2
= 9.81

m

s2
.

According to the second Newtonian axiom, we therefore write for the free fall

mt z̈ e3 = F = −ms g e3. (19.1)

The indices shall point out that the concept of “mass” denotes two basically distinct
properties of the body. The inert mass mt is a property exhibited by the body under changes
of its state of motion (acceleration). The heavy mass ms is the origin of gravitation. The
equality of heavy and inert mass is therefore not at all trivial. Only in the general theory of
relativity the equivalence of inertial forces and gravitational forces is shown.

If we cancel out the masses in (19.1) and change over to scalar notation, there results the
differential equation

z̈ = −g,

which has to be solved with the initial conditions z(0) = h, ż(0) = 0. We obtain

dż

dt
= −g,

from which it follows by integration that

ż(t) = −gt + C = −gt.

Because for t = 0 ż(0) = 0, there must be C = 0. A further integration yields

z(t) = h − 1

2
g t2.

Vertical throw

If we solve the differential equations (19.1) with the initial conditions z(0) = 0 and
ż(0) = v0, we describe a vertical throw upward. The solution is

ż(t) = v0 − gt, (19.2)
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z(t) = v0t − 1

2
gt2. (19.3)

The time of ascent t = T may be determined as follows: At the reversal point we have
ż(T ) = 0, and by inserting in (19.2) we get

T = v0

g
.

If we now insert T into equation (19.3), we obtain the maximum height of ascent:

z(T ) = −gv2
0

2g2
+ v2

0

g
= h; h = v2

0

2g
. (19.4)

By means of (19.2) and (19.3), the velocity v may be given as function of the height of
ascent z:

z = v0t − g

2
t2,

v(t) = ż = v0 − gt;
hence

t = v0 − v

g
.

Now z is obtained as a function of v:

z(t) = −g(v0 − v)2

2g2
− 2(v0v − v2

0)

2g
= v2

0 − v2

2g
(where h = v2

0

2g
);

z(t) = h − v2

2g
.

Solving for v yields the wanted function

v(z) = √
2g(h − z) .

v(z) may also be determined via the energy conservation law, which must hold because
curl F = curl(−ms ge3) = 0.

The potential is

V (r) = −
z∫

0

F · dr

= −
z∫

0

(0, 0, −mg) · (dx, dy, dz)

=
z∫

0

mg dz = mgz.
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Thus, the energy law reads

E = m

2
v2 + mgz.

For z = 0, v = v0, and t = 0, the total energy is

E = m

2
v2

0 + 0.

From there it follows that

E = m

2
v2

0 = m

2
v2 + mgz,

and with v2
0 = 2gh, it further follows that

mgh − mgz = m

2
v2 ,

and therefore

v(z) = √
2g(h − z) .

Inclined throw

We assume the same simplifications to apply as for the free fall. The initial velocity now
has two components (in e2- and e3- directions).

e3

v0

e2

z

y
α

Initial condition of the inclined
throw.

Initial conditions: Let at the moment t = 0

r = 0

and
ṙ = v0 = v0(cos α e2 + sin α e3);

α is the throw angle (see figure).
According to Newton’s law, it again holds that

m
d2r
dt2

= −mge3

or
dv
dt

= −ge3 .

After separation of variables and integration, we get

v(t) = −gte3 + c1.

From the initial conditions we obtain for c1

c1 = v0 = v0(cos α e2 + sin α e3);
hence

v(t) = (v0 sin α − gt)e3 + v0 cos α e2. (19.5)
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The time of ascent T is characterized by the vanishing of the e3-component of the velocity,
e3 · v(T ) = 0:

v0 sin α − gT = 0,

and we obtain

T = v0 sin α

g
.

The position as a function of the time is obtained by integrating equation (19.5):

r(t) =
(
v0t sin α − g

2
t2

)
e3 + v0t cos α e2. (19.6)

Because r(t) = 0 for t = 0, the integration constant also must be zero. The shape of the
curve of motion is obtained by splitting (19.6) into components and eliminating the time.
We have

y = tv0 cos α; thus t = y

v0 cos α
.

Furthermore, we have for the e3-component z:

z = −g

2
t2 + v0t sin α.

Inserting t yields

z = −g

2

(
y

v0 cos α

)2

+ y tan α. (19.7)

This equation is a parabola equation of the form −Ay2 + By = z, that is, a parabola
downward open in the y, z-plane (see figure).

z

yl

The parabola of inclined throw.

The time of throw t0 that passes until the body again
reaches the ground is obtained from the condition
z(t) = 0 for t �= 0. We then have

v0t0 sin α − g

2
t2
0 = 0

and therefore

t0 = 2v0 sin α

g
= 2T .

The time of throw is twice the time of ascent; thus, the curve of the throw motion is
symmetric. The range of throw l is obtained by inserting the throw time 2T into (19.6):

l = 2T v0 cos α = 2v2
0 sin α cos α

g
,
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and converted:

l = v2
0 sin 2α

g
.

We immediately see that for the constant v0 there is a maximum range of throw for the
throw angle α = 45◦, because for sin 2α = 1, we have α = 45◦.

Problem 19.1: Motion of a mass in a constant force field

A mass point of mass m moves along a straight line under the action of the constant force F. Its initial
velocity at the time t = 0 is v0.

Determine v(t) and x(t).

Solution The equation of motion holds:

F = mb = m
dv

dt
.

Separation of the variables and subsequent integration yield

F

m
dt = dv,

v(t) − v(0) = F

m
t, or

v(t) = v0 + F

m
t.

The initial velocity v0 corresponds to the position x = x0; therefore, a further integration yields

x(t) = x0 + v0t + F

2m
t2.

Problem 19.2: Motion on a helix in the gravitational field

A small body of mass m glides by its own weight G = {0, 0, −mg} frictionless downward along the
helix r = {a cos ϕ(t), a sin ϕ(t), cϕ(t)}.
(a) Calculate ϕ(t) as well as the path velocity and the guiding pressure as a function of the time.

(b) Calculate ϕ(t) again by means of the energy law. The numerical data are m = 1 kg, a = 2 m,
c = 0.5 m.

Solution (a) The motion of the mass m on the given helix is characterized by the following forces:

• the net weight G = {0, 0, −mg},
• the guiding pressure F = FN N + FBB normally to the path.

Thus, we need the tangent, normal, and binormal vector for further considerations.
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y

z

x

Pitch
= 2h c . π

A mass point on a helix.

We have

r = r(ϕ) = {a cos ϕ, a sin ϕ, cϕ},
r′ = dr

dϕ
= {−a sin ϕ, a cos ϕ, c},

r ′′ = d2r
dϕ2

= {−a cos ϕ, −a sin ϕ, 0}.

Thus, the vectors of the moving trihedral are

T = r′

|r′| = 1√
a2 + c2

{−a sin ϕ, a cos ϕ, c},

T′ = 1√
a2 + c2

{−a cos ϕ, −a sin ϕ, 0},

N = T′

|T′| = (a2 + c2)−1/2(−a cos ϕ, −a sin ϕ, 0)

a(a2 + c2)−1/2

= {− cos ϕ, − sin ϕ, 0},
B = T × N

= 1√
a2 + c2

∣∣∣∣∣∣∣∣
ex ey ez

−a sin ϕ a cos ϕ c

− cos ϕ − sin ϕ 0

∣∣∣∣∣∣∣∣
= 1√

a2 + c2
{c sin ϕ, −c cos ϕ, a}.

For the equation of motion we get

mr̈ = G + F = G + FN N + FBB,

and after scalar multiplication by T, N, and B:

multiplication by T: (mr̈ − G) · T = 0, (19.8)

multiplication by N: (mr̈ − G) · N = FN , (19.9)

multiplication by B: (mr̈ − G) · B = FB . (19.10)

The time derivatives of r are

ṙ = d

dt
r = dr

dϕ

dϕ

dt
= r′ϕ̇,

r̈ = d

dt
(ṙ) = d

dt
(r′ϕ̇) = r ′′ϕ̇2 + r′ϕ̈.

After inserting the equation of the space curve, we find

r̈ = {−a cos ϕ, −a sin ϕ, 0}ϕ̇2 + {−a sin ϕ, a cos ϕ, c}ϕ̈.

Thereby the term (mr̈ − G) in equations 19.8, 19.9, 19.10 turns into

mr̈ − G = m{−aϕ̇2 cos ϕ − aϕ̈ sin ϕ, −aϕ̇2 sin ϕ + aϕ̈ cos ϕ, cϕ̈ + g}.
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After scalar multiplication by the vectors of the moving trihedral, it follows for equation

19.9: FN = (mr̈ − G) · N = maϕ̇2, (19.11)

19.10: FB = (mr̈ − G) · B = mga
(
a2 + c2

)−1/2
, (19.12)

19.8: 0 = (mr̈ − G) · T = m√
a2 + c2

[(
a2 + c2

)
ϕ̈ + cg

] ; (19.13)

thus

ϕ̈ = −g
c

a2 + c2
; hence ϕ = C2 + C1t − g

2
t2 c

a2 + c2
.

From the initial conditions ϕ(t = 0) = ϕ0 and ϕ̇(t = 0) = 0, it follows for the two integration
constants: C1 = 0 and C2 = ϕ0. Finally,

ϕ = ϕ(t) = ϕ0 − c

a2 + c2

g

2
t2,

ϕ̇(t) = −cgt
(
a2 + c2

)−1
.

For FN we get according to equation 19.11:

FN = mg2ac2t2

(a2 + c2)2
,

and for the resulting guiding pressure

F =
√

F2
N + F2

B = mga(a2 + c2)−1/2 ·
√

1 + g2c4

(a2 + c2)3
t4 = F(t).

The path velocity is

v(t) = ṙ = r′ϕ̇ = |r′|ϕ̇T = ϕ̇
√

a2 + c2 · T.

The magnitude of the velocity—along the tangent—is

v(t) = ϕ̇
√

a2 + c2 = −gt
c√

a2 + c2
.

The negative sign characterizes the “downward motion” (for c > 0) .
(b) To determine ϕ(t) by means of the energy law, we compare the initial position z0(v(z0) = 0)

with an arbitrary intermediate position z. The result is

mgz0 = mgz + m

2
v2

or, rewritten,

2g(z0 − z) = v2 = ṙ 2 = r
′2ϕ̇2 .

Using r
′2 = a2 +c2 and z = cϕ with z0 = cϕ0, we obtain the following differential equation for ϕ(t):

ϕ̇2 + 2gc

a2 + c2
(ϕ − ϕ0) = 0 ,
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or with the substitution ψ = ϕ − ϕ0:

ψ̇2 + 2gc

a2 + c2
ψ = 0 or ψ̇ = i

√
2gc

a2 + c2
· ψ = dψ

dt
.

Separation of the variables leads to

i

√
2gc

a2 + c2
dt = dψ√

ψ
,

and integration yields

i

√
2gc

a2 + c2

∫
dt =

∫
dψ√

ψ
or i

√
2gc

a2 + c2
t = 2

√
ψ,

and after forming the square:

ψ = − g

2
t2 c

a2 + c2
.

Resubstitution finally yields

ϕ = ψ + ϕ0 = ϕ(t) = ϕ0 − c

a2 + c2

g

2
t2.

Problem 19.3: Spaceship orbits around the earth

A spaceship orbits around the earth at the height h above ground. Calculate (a) the orbital velocity,
and (b) the orbital period such that zero gravity occurs in the spaceship. (c) Discuss these results for
the case h � R.

Solution (a) Zero gravity ⇔ earth attraction = centrifugal force.

mv2

R + h
= γ Mm

(R + h)2
= gR2m

(R + h)2
, because

γ Mm

R2
= mg for h = 0

⇒ v = R

R + h

√
(R + h)g “orbital velocity.”

(b)

v = path length

period
= 2π(R + h)

T
⇒ T = 2π

(
R + h

R

) √
R + h

g
.

(c) For h � R it follows that v ≈ √
Rg and T ≈ 2π

√
R/g.

The orbital velocity for R = 6371 km and g = 9.81m/s2 is then

v ≈ 7.9
km

s
,

and the orbital period T ≈ 84 min.



20 Friction

In general, any moving body undergoes a deceleration due to the interaction with its
environment being at rest. The occurring friction forces are always directed opposite to the
direction of motion; they are not conservative (the contour integral along a closed path is
nonzero).

If we consider only the mechanical process, the energy conservation law does not apply:
Kinetic energy is converted to heat.

Friction phenomena in a viscous medium

vFR( )v
Oil

Illustration of friction in a vis-
cous medium.

The friction of a body in gases and liquids is governed by
the general ansatz

FR = −F(v)
v
v
.

It always acts against the velocity v. The function
F(v) is in general not simple and must be determined empirically.

As an approximation two approaches prove successful.

Stokes’ friction FR = −βv, β = constant > 0 (holds, e.g., for rapidly moving missiles
or for the motion in viscous liquids).

F II

F

T

Friction of a solid body on a support.

Newtonian friction FR = −γ vv, γ = constant > 0
(holds, e.g., for slowly moving missiles).

Friction phenomena between solid bodies: A solid
body presses onto its support with the force F⊥. One
may realize two distinct types of friction.

(a) Dynamic friction (v �= 0)

The effective friction force is over a wide range independent of the area of support and
the velocity and is proportional to the force F⊥ pressing the body onto the area (support
load). Thus we may adopt the empirical ansatz:

FR = −µg F⊥ v
v

(Coulomb),

where µg is called the dynamic friction coefficient.
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(b) Static friction (v = 0)

If the body is at rest, tractive forces F acting parallel to the support area are just compen-
sated by static friction. This applies as long as the acting force remains below a maximum
value that is proportional to the support load. Only if F‖ becomes larger than a certain value
µh F⊥ does the body begin to move. It is vividly clear that this “limit force” is proportional
to the support load F⊥.

F

FII

F

T

The decomposition of the gravita-
tional force in components normal
and parallel to the inclination of the
plane.

Thus, the body remains at rest as long as

F‖ < µh F⊥,

where µh is the static friction coefficient.
Thus, static friction obeys a similar law as dynamic

friction does, although with another friction coeffi-
cient.

Empirically, we obtain the relation for the coeffi-
cients

0 < µg < µh .

Their magnitude depends sensitively on the surface properties.

Example 20.1: Free fall with friction according to Stokes

z

x

m

mgk

-β| |v k

k

k is the unit vector in the nega-
tive z-direction, i.e., k = −ez .

As an example we consider the motion of a body (e.g., parachute)
with the initial velocity v = v0 at the time t = 0. The motion is
one-dimensional; the equation of motion reads

mz̈ = −mg − β ż,

or

m
dv

dt
= (−mg − βv). (20.1)

The gravitational force acts along the −z-direction; the friction
force points opposite to the velocity.

After separation of the variables, we have

m dv

mg + βv
= −dt,

m

v∫
v0

dv

mg + βv
= −

t∫
0

dt = −t.

The integral to the left is solved by substituting mg + βv = u and dv = du/β:

m

v∫
v0

dv

mg + βv
= +m

β

mg+βv∫
mg+βv0

du

u
= m

β
ln

mg + βv

mg + βv0
.



174 FRICTION 20

Therefore,

t = m

β
ln

(
mg + v0β

mg + βv

)
.

Exponentiation of both sides of the equation yields

e
β
m t = mg + βv0

mg + βv
;

and rewritten this reads

mg + βv0 = (mg + βv)e
β
m t .

Solving for v leads to

v(t) = −mg

β
+

(
mg

β
+ v0

)
e− β

m t . (20.2)

One easily sees from this velocity-time function that for increasing t the velocity v(t) approaches a
limit value, that is, for large times v(t) becomes constant. Let us denote the limit velocity for large
times by v∞. According to 20.2,

v∞ = lim
t→∞ v(t) = −mg

β
. (20.3)

This may already be concluded from the dynamic equation 20.1 for the case of a vanishing
acceleration z̈ = 0. In 20.2 we will approximate the exponential function by the first two terms of the
corresponding Taylor expansion for small friction forces (β/m)t � 1:

v(t) = −mg

β
+

(
v0 + mg

β

) (
1 − βt

m
+ · · ·

)
.

Investigation of the limit for β → 0 yields

lim
β→0

v(t) = v0 − gt,

that is the expected result for the case without friction.
We still determine z(t) and its limit for t → ∞: From 20.2 it follows by integration (dz/dt = v(t))

that

z(t) = −mgt

β
− m

β

(
v0 + mg

β

)
e− β

m t + c2,

where, because z = 0 for t = 0, the integration constant is

c2 = m

β

(
v0 + mg

β

)
and therefore z(t) finally reads

z(t) = −mgt

β
+ m

β

(
v0 + mg

β

) (
1 − e− β

m t
)

,

lim
t→∞ z(t) = v∞t + m

β
(v0 − v∞).
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That means that for large times z increases linearly with the time. From z(t) one calculates the
acceleration a(t) as

z̈(t) = a(t) = −β

m

(
v0 + mg

β

)
e− β

m t .

It vanishes for large times. Then the gravitational force and the friction force just balance each other.

Example 20.2: The inclined throw with friction according to Stokes

z

y

mg

α

v0

The inclined throw.

Adopted initial conditions: At the time t = 0, let

r(0) = 0,

v(0) = v0

= v0 cos α e2 + v0 sin α e3.

Equation of motion:

mr̈ = −β ṙ − mge3 or v̇ + β

m
v = −ge3.

To integrate this vectorial differential equation, we multiply by e
β
m t :

v̇e
β
m t +

(
β

m

)
v e

β
m t = −ge3e

β
m t .

The left side of this equation is just the time derivative of v e
β
m t according to the product rule, so that

it may be integrated right now:

v e
β
m t = −

∫
g e

β
m t e3 dt = −g

m

β
e

β
m t e3 + c1.

Because v(0) = v0, c1 = v0 + g m
β

e3. Ordered by components, the velocity is

v = v0 cos α e− β
m t e2 +

[
−mg

β
+

(
v0 sin α + mg

β

)
e− β

m t

]
e3

or

v = −g
m

β

(
1 − e− β

m t
)

e3 + v0e− β
m t .

The position r(t) of the missile may be found by integration of the velocity:

r = −m

β
v0 cos α e− β

m t e2 +
[−mg

β
t − m

β

(
v0 sin α + mg

β

)
e− β

m t

]
e3 + c2

or

r = −g
m

β

(
t + m

β
e− β

m t

)
e3 − v0

m

β
e− β

m t + c2 .
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Because r(0) = 0, the integration constant is

c2 = m

β
v0 cos α e2 + m

β

(
v0 sin α + mg

β

)
e3.

Inserting this integration constant, for the position we get

r = m

β
v0 cos α

(
1 − e− β

m t
)

e2 +
[
−mg

β
t + m

β

(
v0 sin α + mg

β

) (
1 − e− β

m t
)]

e3.

Remark: The same results for r(t) and v(t) would have been found by separate considerations of
the two differential equations

mÿ + β ẏ = 0,

mz̈ + β ż = −mg.

If one adopts the ansatz of Newtonian friction, the equation of motion of the problem is no longer
separable, because mr̈ = −β|ṙ|ṙ − mge3 decays into

mÿ + β
√

ẏ2 + ż2 ẏ = 0,

mz̈ + β
√

ẏ2 + ż2 ż = −mg,

that is, in a set of coupled nonlinear differential equations. In most cases such equations may not be
solved analytically. The linearity and nonlinearity of differential equations is discussed in Chapters 23
and 25.

Discussion of the motion

For large times (t 	 m/β) the exponential factor exp(− β

m t) tends to zero. That means
(a) limt→∞ v(t) = −(mg/β)e3. The motion turns over to the vertical fall with constant limit

velocity. The horizontal velocity component vanishes for large times, namely, the motion in y-
direction comes to rest.

(b) limt→∞ y(t) = (m/β)v0 cos α ≡ y0. With increasing time the motion in the horizontal direction
tends asymptotically against the maximum distance y0.

The path equation may be found explicitly by eliminating the time parameter from the equations
for r · e2 and r · e3. We get

z(y) = m2

β2
g ln

(
1 − βy

mv0 cos α

)
+

(
v0 sin α + mg

β

)
y

v0 cos α
.

To investigate the trend of the trajectory for very low friction, we may employ the Taylor expansion
of the logarithm:

ln(1 + x) = x − x2

2
+ x3

3
− + · · · .

Then

z(y) = −m2

β2
g

[
βy

mv0 cos α
+ 1

2

(
βy

mv0 cos α

)2
]

+
(

v0 sin α + mg

β

)
y

v0 cos α
+ · · ·
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= − g

2v2
0 cos2 α

y2 + y tan α + R.

Here

R = −1

3

β

m
g

(
y

v0 cos α

)3

− · · ·

is a remainder term. Note that the first two terms are the same as in the formula of the parabola of
inclined throw, equation (19.7).

From this relation we may realize that

(a) For vanishing friction the result approaches the throw parabola.

(b) If friction is present, the trajectory runs below the throw parabola; for small y, it osculates the
parabola (osculation of second order).

z

y

10β0

l10β0
l3β0

l2β0
lβ0

3β0 2β0 β0 β=0

Trajectories for the inclined throw with different friction.

Motion in a viscous medium with Newtonian friction

We consider the motion of a body affected only by a velocity-dependent friction force. The
case of Stokes friction has already been treated in the preceding example. We therefore
now consider Newtonian friction.

Let the (necessarily rectilinear) motion proceed along the x-direction; the unit vector e1

is therefore omitted. We choose the initial conditions v(t = 0) = v0, x(t = 0) = 0.
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The equation of motion reads

mẍ = −γ ẋ2,

and the separation of variables yields

m
dv

v2
= −γ dt.

The integration leads to

−m
1

v
= −γ t + c1.

From the initial conditions it follows that

c1 = − m

v0
.

By inserting the integration constant and solving for v, we get the velocity

v(t) = m

γ v0t + m
v0.

The position is obtained by a further integration. To solve the integral we substitute z =
γ v0t + m, dz = γ v0dt .

x = mv0

∫
dt

γ v0t + m
= m

γ

∫
dz

z
= m

γ
ln(γ v0t + m) + c2.

The integration constant is c2 = −(m/γ ) ln m. Hence, the path is

x(t) = m

γ
ln

( γ

m
v0t + 1

)
.

Discussion: For increasing time t → ∞, we have the two limits

lim
t→∞ v(t) = 0 , lim

t→∞ x(t) = ∞.

FR=0

Newton ~F vR
2

Stokes ~F vR

x

t
Illustration of the path x(t) for different cases of friction.
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Although the velocity becomes smaller and smaller, the body moves arbitrarily far under
the influence of Newtonian friction.

Generalized ansatz for friction:

In the following we adopt a more general ansatz for the velocity-dependent friction force,
which is of particular interest for low velocities, namely

FR = −�vn v
v
.

Here n ≥ 0 because the friction shall decrease when v decreases. The equation of motion
then reads

mẍ = −�ẋ n

or
dv

vn
= − �

m
dt for n �= 1

(n = 1 corresponds to Stokes friction). Integration yields

v−n+1

−n + 1
= − �

m
t + C1, C1 = v1−n

0

1 − n
,

with v(t = 0) = v0. From there it follows for the velocity that

v(t) =
(
v1−n

0 − (1 − n)
�

m
t
)1/(1−n)

.

Here one may distinguish two cases:

• 0 ≤ n < 1:
The expression in the brackets may vanish. Therefore, the body comes to rest after some
finite time t0;

t0 = m

�

v1−n
0

1 − n
.

As soon as t ≥ t0, the derived formula no longer holds; the body remains at rest.

• n > 1:
The body does not come to rest completely, but its velocity becomes arbitrarily small
because

lim
t→∞ v(t) = lim

t→∞
1

(v−α
0 + α

�

m t)1/α
= 0 with α = n − 1 > 0.
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The necessary second integration becomes simpler by considering v(x(t)). According
to the chain rule,

dv

dt
= dv

dx
· dx

dt
= dv

dx
v.

Insertion into the equation of motion yields

dv · v1−n = − �

m
dx .

Integration yields

1

2 − n
v2−n = − �

m
x + C2.

With

v(x = 0) = v(t = 0) = v0,

we get

C2 = 1

2 − n
v2−n

0 .

Hence

x(v) = m

�

1

n − 2
(v2−n − v2−n

0 ).

Or, by inserting v(t), the path is obtained as a function of the time as

x(t) = m

�

1

n − 2

[(
v1−n

0 − (1 − n)
�

m
t
) n−2

n−1 − v2−n
0

]
.

Here two distinct cases also exist, which may most simply be extracted from the function
x(v), namely

0 ≤ n < 2: lim
v→0

x(v) = m

�

1

2 − n
v2−n

0 = l,

n > 2: lim
v→0

x(v) = m

�β
lim
v→0

(
1

vβ
− 1

v
β

0

)
= ∞

(with β = n − 2 > 0—for n = 2; see Newtonian friction).
In total, we thus may distinguish between three types of motion, namely

(a) 0 ≤ n < 1:
The motion comes to rest at the time t0 at the distance l.

(b) 1 ≤ n < 2:
The velocity tends to zero while the body approaches a finite limit point at the distance l.
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(c) n ≥ 2:
The velocity asymptotically approaches zero while the distance increases beyond any
limit.

FR

n=1

1< <2nn>2

n<1

v
Different types of friction.

The already treated cases are limit cases of the
types of motion (b) (Stokes, n = 1) and (c) (New-
ton, n = 2). The figure illustrates the distinct
trends. For very low velocities the friction force—
independent of the coefficient—tends to zero the
faster the larger the exponent n is. On the other
hand, for small n the deceleration decreases so
slowly (i.e., the decelerating force is for small n
so strong) that the motion even comes to rest.

Problem 20.3: Free fall with Newtonian friction

A body begins to fall at the time t = 0 at the point z = 0 with the initial velocity v0. Determine
the fall velocity v(t) and the path z(t), assuming Newtonian friction. Which approximations hold for
small times if v0 = 0?

Solution The equation of motion reads

mz̈ = −mg − γ ż|ż| or v̇ = −g

(
1 + γ

mg
v|v|

)
= −g

(
1 + v|v|

v2∞

)
.

With the abbreviation

v∞ =
√

mg

γ
follows v2

∞

v∫
v0

dv

v2∞ + v|v| = −g

t∫
0

dt.

Integration of the equation of motion yields

−gt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
v∞ arctan

v

v∞

]v

v0

for v ≥ 0,

[
v∞ Artanh

v

v∞

]v

v0

for −v∞ < v < 0,

[
v∞ Arcoth

v

v∞

]v

v0

for v < −v∞.

One therefore has to distinguish three cases, depending on the magnitude of the initial velocity.
1. v0 ≥ 0. Initial velocity and gravitational force are opposite to each other. After integration it

follows that

−gt = v∞ arctan
v

v∞
− v∞ arctan

v0

v∞
.
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The meaning of the constant term becomes obvious if v = 0:

gt0 = gt (v = 0) = v∞ arctan
v0

v∞
,

and thus

−g(t − t0) = v∞ arctan
v

v∞
or

v = −v∞ tan
g

v∞
(t − t0).

Because the motion must be continuous also for t = t0, the integration between t0 and t yields

−g(t − t0) = v∞ Artanh
v

v∞
− 0,

hence

v = −v∞ tanh
g

v∞
(t − t0); t ≥ t0.

The body moves upward against the gravitational force, comes to rest at t0, and falls downward.
2. −v∞ < v0 ≤ 0. Integration yields

−gt = v∞ Artanh
v

v∞
− v∞ Artanh

v0

v∞
.

If we imagine the velocity function as continued for negative times t < 0, the constant term again
has a clear meaning:

t0 = t (v = 0) = v∞
g

Artanh
v0

v∞
.

The velocity function may then be expressed by

v = −v∞ tanh
g

v∞
(t − t0).

3. v0 < −v∞.

−gt = v∞ Arcoth
v

v∞
− v∞ Arcoth

v0

v∞
.

Similar to the other cases we abbreviate

t (v = −∞) = t− = v∞
g

Arcoth
v0

v∞

and thus

v = −v∞ coth
g

v∞
(t − t−).

In all three cases the velocity asymptotically approaches the limit velocity

−v∞ = −
√

mg

γ
.
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v v v

t0 t0 t0

v0>0 < <0v0 v0<

–v

–v –v

t t t
8

8 8

Velocity as function of time for three different initial velocities.

The function z(t) may be calculated straightforward from v(t).
1.

z = v∞
∫

tan
g

v∞
(t0 − t) dt = +m

γ
ln cos

g

v∞
(t0 − t) + K1, t ≤ t0;

z = −v∞
∫

tanh
g

v∞
(t − t0) dt = −m

γ
ln cosh

g

v∞
(t − t0) + K1, t ≥ t0;

where

K1 = −m

γ
ln cos

g

v∞
t0.

2.

z = −m

γ
ln cosh

g

v∞
(t − t0) + K2 ,

K2 = m

γ
ln cosh

(
− g

v∞
t0

)
.

3.

z = −v∞
∫

coth
g

v∞
(t − t−) dt = −m

γ
ln sinh

g

v∞
(t − t−) + K3 ,

K3 = m

γ
ln sinh

(
− gt−

v∞

)
.

In particular, for v0 = 0 one has t0 = 0, and therefore

v = −v∞ tanh
gt

v∞
,

z = −v2
∞
g

ln cosh
gt

v∞
.

There hold the series expansions

sinh u = u + u3

3!
+ · · · ,
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cosh u = 1 + u2

2!
+ u4

4!
+ · · · ,

ln(1 + u) = u − u2

2
+ − · · · .

For small times (t � v∞/g) we may then write approximately
1. Velocity:

v ≈ −u + 1
6 u3

1 + 1
2 u2

v∞ ≈ −v∞u

(
1 − 1

3
u2

)
with u = gt

v∞
,

≈ −gt

(
1 − 1

3

(
gt

v∞

)2
)

.

2. Path:

z ≈ −v2
∞
g

ln

(
1 + u2

2
+ u4

24

)
≈ −v2

∞
g

[
u2

2
+ u4

24
− 1

2

(
u4

4
+ · · ·

)]
,

≈ −1

2
gt2

(
1 − 1

6

(
gt

v∞

)2
)

.

Problem 20.4: Motion of an engine with friction

An engine of mass m moves without driving force but under the influence of the friction force
f (v) = α + βv2 on horizontal rails. Let the initial velocity be v0.

(a) After which time does the engine come to rest? What is the maximum deceleration time
(v0 → ∞)?

(b) What distance has then been covered?

Solution The equation of motion reads

mẍ = − f (v) = −α − β ẋ2

and will be integrated after separation of the variables:
(a)

m
dv

dt
= −(α + βv2);

m

β

0∫
v=v0

dv

α/β + v2
= −

t0∫
t=0

dt;

m

β

√
β

α

(
arctan 0 − arctan

√
β

α
v0

)
= −t0;
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t0 = m√
αβ

arctan

√
β

α
v0; lim

v0→∞ t0 = m√
αβ

π

2
.

(b) If we use x and v as variables, the equation of motion reads

m
dv

dx

dx

dt
= −(α + βv2).

This is transformed and integrated:

m

2β

0∫
v=v0

2βv

α + βv2
dv = −

x0∫
x=0

dx;

m

2β

[
ln α − ln

(
α + βv2

0

)] = −x0.

The total path covered is therefore

x0 = m

2β
ln

(
1 + β

α
v2

0

)
.

For an infinite initial velocity v0 the engine covers an infinite distance until the rest, although the
deceleration to velocity 0 takes only the finite time (m/

√
αβ)(π/2).

Example 20.5: The inclined plane

So far we have considered the motion of a free massive body under the action of external forces. If its
freedom of motion is, however, restricted to a defined area or line by certain constraints, one speaks of
a bound motion. A constraining force must then act on the body that keeps it on the prescribed path.

In a motion on a solid area or rail the body undergoes a reactive force by the support that just
balances the normal component of the force acting on it. When taking into account this constraining
force, the equation of motion may be formulated according to the second Newtonian axiom.

α

e

f FR

Fs

Fs Fs
II

T

Forces acting on a mass at the
inclined plane

The simplest example is the motion on the inclined plane.

(a) Without friction

We introduce the following denotations (compare figure):
Fs : gravitational force;
F‖

s , F⊥
s : parallel and normal components of the weight force;

FR : reactive force;
s: covered path.
The following relations exist between the forces:

F⊥
s = −FR

(according to the third Newtonian axiom);

Fs = F⊥
s + F‖

s = −mge3;
F‖

s = mg sin α e (see figure).
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The equation of motion is then

ms̈e =
∑

i

Fi = Fs + FR = F‖
s = mg sin α e.

Only the parallel component of the weight force causes the acceleration (slope drift):

s̈ = g sin α ≡ g′.

This is exactly the differential equation of the free fall with an earth acceleration reduced by the factor

α

e

e3

FR

Fs

Fs

T Fs
II

s

Decomposition of the forces on the in-
clined plane.

sin α. Twofold integration leads again to the solutions

v(t) = g sin αt + v0,

s(t) = 1

2
g sin αt2 + v0t + s0.

(b) With friction

Besides the constraining force FR along the area normal,
there also acts a parallel component f on the body that
always points opposite to the friction force. According to
the figure, the support force is

F⊥
s = cos α mg,

and therefore the dynamic friction force is

f = ∓µgmg cos α e if v
>
< 0.

Hence, the equation of motion reads

ms̈ e = Fs + FR + f = F‖
s + f = mg(sin α ∓ µg cos α)e

if v
>
< 0.

This again yields the differential equation

s̈ = g(sin α ∓ µg cos α) ≡ g‖,

with the solutions

v(t) = g(sin α ∓ µg cos α)t + v0, for v
>
< 0,

s(t) = 1

2
g(sin α ∓ µg cos α)t2 + v0t + s0 .

If the motion points downward (v > 0), we may distinguish among three distinct cases:

(a) g‖ > 0: that is, tan α > µg or α > αg = arctan µg . The body is positively accelerated.

(b) g‖ = 0: tan α = µg , α = αg . The body moves uniformly, the gravitational force component and
the friction mutually cancel.

(c) g‖ < 0: tan α < µg . The body is decelerated and comes to rest after the time

t = v0

g(µg cos α − sin α)
.
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If v < 0, namely the direction of motion is upward, then g‖ = g(sin α + µg cos α) > 0; the body
comes to rest in any case. It depends on the magnitude of the coefficient µg of the now-acting static
friction whether the body begins to move out of the state of rest.

The inclined plane allows us to determine the two friction coefficients by varying the slope angle α:

µg = tan α if the body uniformly moves (v > 0),

µh = tan α if the body just starts sliding.

Problem 20.6: Two masses on inclined planes

α

α

β

β

e1

m1

m1g m2g

e2

m2
F1 F2

A

T
T

Two masses on inclined planes.

Two masses m1 and m2 are lying each on one
of two joined planes that enclose the angles
α and β with the horizontal (see figure). The
two masses are connected by a massless and
nonductile rope running over a roller fixed at
point A.

Determine the acceleration a of the masses
m1 and m2, taking the friction into account.

Solution The friction mentioned in the problem is dy-

namic
(

FR = −µg F⊥v /v
)

. Because the ve-

locity v points along e1 or e2, respectively, the
quantity v /v just equals e1 or e2!

Hence

m1ae1 = m1g sin α e1 − T e1 − µg F⊥
1 e1 (20.4)

and
−m2ae2 = m2g sin β e2 − T e2 + µg F⊥

2 e2. (20.5)

T is the string tension. The signs in front of the two last terms on the right-hand side (the friction
terms) are valid only for positive acceleration, a > 0. We have to check this at the end of the
calculation. We now have to calculate F⊥

1 and F⊥
2 . From the sketch we see that

F⊥
1 = m1g cos α and F⊥

2 = m2g cos β .

F⊥
1 and F⊥

2 inserted in 20.4 and 20.5 yield

m1ae1 = m1g sin α e1 − T e1 − µgm1g cos α e1, (20.6)

−m2ae2 = m2g sin β e2 − T e2 + µgm2g cos β e2. (20.7)

From 20.6 it follows that T = m1g sin α − m1a − µgm1g cos α. T is now inserted in 20.7:

−a(m1 + m2) = m2g sin β − m1g sin α + µgm1g cos α + µgm2g cos β

⇔ a = m1 sin α − m2 sin β − µgm1 cos α − µgm2 cos β

m1 + m2
g.

Thus, the acceleration has been determined. Finally, we consider two special cases:
(1) µg = 0, that is, there is no friction; therefore,

a = m1 sin α − m2 sin β

m1 + m2
g .
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(2) α = β = 90◦; the acceleration then becomes

a = m1 − m2

m1 + m2
g.

Problem 20.7: A chain slides down from a table

e Z

A chain sliding down from a table

A uniform chain of total length a hangs with a piece of length
b (0 ≤ b ≤ a) over the edge of a plane table. Calculate the
time in which the chain slides from the table under the influence
of gravity but without friction. Let the initial velocity be 0 (see
figure).

Investigate the same problem, assuming now a dynamic fric-
tion µg .

Solution (a) Without friction
The length of the fraction of the chain hanging vertically down is denoted by z; the mass per unit

length is �. The equation of motion then reads

�az̈ = �zg ⇔ d2z

dt2
= g

a
z. (20.8)

This differential equation states that z(t) differentiated twice with respect to t reproduces itself up
to the factor g/a. This condition is fulfilled by one of the two independent exponential functions

e
√

g/a t and e−
√

g/a t

such that the general solution reads

z(t) = Ae
√

g/a t + Be−
√

g/a t . (20.9)

A and B are integration constants, which are determined from the initial conditions

z(0) = b = A + B,

ż(0) = 0 = A

√
g

a
− B

√
g

a
⇒ A − B = 0 . (20.10)

This yields A = b/2, B = b/2, and therefore for 20.9

z(t) = b

2

(
e
√

g/a t + e−
√

g/a t
)

= b cosh

√
g

a
t. (20.11)

The time T of sliding follows from the condition

z(T ) = a = b

2

(
e
√

g/aT + e−
√

g/aT
)

. (20.12)

From there it follows with x = e
√

g/aT that

2a

b
= x + 1

x
⇔ x2 − 2a

b
x = −1

⇒ x1,2 = a

b
±

√
−1 + a2

b2
= a

b
± 1

b

√
a2 − b2 = 1

b
(a ±

√
a2 − b2) . (20.13)
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One finds

T =
√

a

g
ln

(
a + √

a2 − b2

b

)
. (20.14)

The negative root in 20.13 has to be ruled out because it leads to negative times, which is physically
senseless. This we may realize as follows: To get positive times from 20.13 the argument of the
logarithm must be ≥ 1. But the negative root is always ≤ 1 because

a

b
−

√
a2

b2
− 1 ≤ 1 ⇔ a

b
≤ 1 +

√
a2

b2
− 1

⇔ a2

b2
≤ 1 + 2

√
a2

b2
− 1 + a2

b2
− 1 ⇔ 0 ≤

√
a2

b2
− 1.

Because a/b ≥ 1, this last inequality is always fulfilled, and the first one obviously, too. One may
easily check that for b → 0, T → ∞, as it should be.

(b) With friction
In this case the equation of motion 20.8 reads

�az̈ = �zg − µg F⊥ = �zg − µg�(a − z)g (20.15)

⇒ z̈ = g

a
z − µgg

a
(a − z) = g

a
(1 + µg)z − µgg. (20.16)

This is an inhomogeneous differential equation of second order. Its general solution is given by
one particular solution of the inhomogeneous differential equation plus the general solution of the
homogeneous differential equation. The homogeneous differential equation reads

z̈1 = g

a
(1 + µg)z1

and, because of 20.8 and 20.9, the general solution is

z1(t) = zhom(t) = Ae
√

g
a (1+µg ) t + Be−

√
g
a (1+µg ) t . (20.17)

A particular solution of 20.16 is (z̈ = 0)

z2(t) = zpart = + µga

1 + µg
= constant. (20.18)

One easily confirms that the sum z(t) = z1(t)+z2(t) satisfies the inhomogeneous differential equation
20.16. The general total solution of 20.16 therefore reads

z1(t) + z2(t) = z(t)

= Ae
√

g
a (1+µg ) t + Be−

√
g
a (1+µg ) t + µga

1 + µg
. (20.19)

As above, the initial conditions lead to the two equations

z(0) = A + B + µga

1 + µg

!= b,

ż(0) = 0 = A

√
g

a
(1 + µg) − B

√
g

a
(1 + µg) = A − B,
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with the solution

A = b

2
− µga

2(1 + µg)
, B = b

2
− 1

2

µga

(1 + µg)
.

Thus, the complete solution reads

z(t) =
(

b

2
− µga

2(1 + µg)

) [
e
√

g
a (1+µg ) t + e−

√
g
a (1+µg ) t

]
+ µga

1 + µg
. (20.20)

The time of sliding T is determined by the equation

z(T ) = a =
(

b

2
− µga

2(1 + µg)

) [
e
√

g
a (1+µg ) T + e−

√
g
a (1+µg ) T

]
+ µga

1 + µg

⇒ a

(
1

1 + µg

)
=

(
b − µg

1+µg
a
)

2

(
x + 1

x

)
, (20.21)

where

x = e
√

g
a (1+µg ) T . (20.22)

The quadratic equation 20.21 has the solution

x1,2 =
a

(
1

1+µg

)
b

(
1 − µg

1+µg

a
b

) ± 1

b
(

1 − µg

1+µg

a
b

)
√

a2

(
1

1 + µg

)2

− b2

(
1 − µg

1 + µg

a

b

)2

.

The solution x2 drops out similarly as above. Therefore, the time of sliding T is evaluated as

T =
√

a

g(1 + µg)
× ln

a +
√

a2 − (
b + µg(b − a)

)2

b + µg(b − a)
. (20.23)

We note that it may be seen from equation 20.16 that the chain begins to slide only then if z̈ > 0,
that is,

b >
µg

1 + µg
a.

The time of sliding T increases under friction. This is not seen from 20.23 at first glance, and one
needs to perform an expansion by µg , which will be saved here.

Problem 20.8: A disk on ice—the friction coefficient

ez

ex mg

FR

z

x

N

Forces acting on a sliding disk.

A disk is sliding on ice. At a certain point of the straight
path it has the velocity v0. It comes to rest at the distance
x0 beyond this point. Determine the friction coefficient
(e.g., for v0 = 40 km/h; x0 = 30 m).

Solution The initial conditions are

t = 0, x = 0, v = v0,

t = t0, x = x0, v = 0.
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The individual forces are denoted as follows:

W = −mgez (weight),

N = −W (normal force),

FR = −µg|N| ex ⇒
FR = −µgmgex (friction force).

For the equation of motion one then obtains

m
dv
dt

ex = −µgmgex ⇒ dv

dt
= −µgg.

Separation of the variables and integration yield

v∫
v0

dv′ = −µgg

t∫
0

dt ′ ⇒ v = v0 − µggt

and
x∫

0

dx ′ =
t∫

0

(v0 − µggt ′) dt ′ ⇒ x = v0t − 1

2
µggt2.

The disk comes to rest if v = 0, namely at the time t0 = v0/µgg ⇒ inserted in x : x0 =
(1/2)(v2

0/µgg), or solved for the friction coefficient: µg = (1/2)(v2
0/x0g) ≈ 0.21.

Problem 20.9: A car accident

An accident happens on a straight-plane village street (allowed velocity 50 km/h). After activating
the brakes, the car slides 39 m until it stops (friction coefficient: µ = 0.5).

mg

FR

z

x

R

Forces acting on a sliding car.

Find out whether the driver is guilty.

Solution Because the weight mg and the reactive force mutually cancel each
other, only the friction force FR acts on the car. The equation of
motion then reads

m
d2x

dt2
= −µmg ⇒ d2x

dt2
= −µg.

We now have

d2x

dt2
= d

dt

(
dx

dt

)
= dẋ

dx

dx

dt
= v

dv

dx

⇒ v
dv

dx
= −µg

⇒
0∫

v0

v dv = −µg

x0+s∫
x0

dx,
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where x0 is the position where full breaking begins, and s is the braking distance. Thus we get

1

2
v2

0 = µgs ⇒ v0 = √
2µgs.

With the numerical data it follows that

v2
0 = 2 · 0.5 · 9.81 · 39

m2

s2

⇒ v0 = 19.56
m

s
or v0 = 70.42

km

h
.

The driver drove too fast by about 20 km/h.

Problem 20.10: A particle on a sphere

Let a particle of mass m be positioned at the “north pole” of a frictionless smooth sphere of radius
b. After a small displacement let it slide down at the sphere. At which time does it separate from the
sphere, and what is its velocity in that moment?

Solution If the particle is at P , it is pressed to the sphere by the normal force

N = −mg sin θ er ,

while the centrifugal force

Z = (mv2)/b er

tries to pull it off the sphere. At the moment at which both forces are balancing each other,

N + Z = 0,

the particle separates from the sphere!

et

ere2

e1

N

h

x

y
m

b

Z

P
W

θ

s

Forces acting on a particle on a sphere.

(a) Solution via the energy law: One has
1
2 mv2 + mgh = T + V = E = mgb, where E
remains constant in time. Then

v2 = 2g(b − h) = 2gb(1 − sin θ)

and, therefore,

N + Z = −mg sin θ er + mv2

b
er

= [2mg(1 − sin θ) − mg sin θ ] er .

In order to have N+Z = 0, it must hold that

2mg(1 − sin θ) − mg sin θ = 0

or

3 sin θ = 2, i.e., sin θ = 2

3
,

θ = 41.8◦.
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From there we immediately find that at the moment of separation

h = 2

3
b and v =

√
2

3
gb .

(b) Solution via the equation of motion: Consider the sphere as (locally) an inclined plane. At P
there acts the slope drift

H = −mg cos θ et .

We call s the distance of the particle from the north pole, as measured along the surface of the sphere.
Because

s = b
(π

2
− θ

)
,

we have

s̈ = −bθ̈ .

Hence, the equation of motion reads

−m
d2s

dt2
et − H = −m

d2s

dt2
et + mg cos θet = 0

or

−d2s

dt2
+ g cos θ = bθ̈ + g cos θ = 0.

Multiplication by θ̇ yields

bθ̈ θ̇ + g cos θ θ̇ = 0.

Integration of this differential equation leads to

1

2
bθ̇ 2 + g sin θ = c.

For t = 0, we have θ̇ = 0 and θ = 90◦; thus c = g

⇒ θ̇2 = −2
g

b
(sin θ − 1).

For the moment of separation, we obtain

N + Z = m

(
v2

b
− g sin θ

)
er = 0

or with v = bθ̇ :

θ̇2b − g sin θ = −2g(sin θ − 1) − g sin θ = 0

⇒ 3 sin θ = 2 or sin θ = 2

3
; θ ≈ 41◦ 49′.

For the velocity results,

v = θ̇b = √
2g(1 − sin θ)b =

√
2

3
gb.
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Problem 20.11: A ladder leans at a wall

x

y
z

lc
o

s
θ

l sin θ

( sin )l θ
2

-

θ

B

NW

NF

Ff

C

A

F gg=m

Forces acting on the ladder.

A ladder of length l and mass m leans at a vertical wall,
enclosing the angle θ with the wall. The gravity force op-
erates on the center of the ladder (see figure). The friction
coefficient between the ground and ladder is µh , while the
friction between the wall and ladder is being neglected.

Determine the maximum angle θ at which the ladder
may lean against the wall without sliding down.

Solution The forces acting on the ladder are the reactive force NF ez

at point A and the reactive force NW ex at point B.
In addition, at A the friction force −Ff ex still acts in

the negative x-direction. The gravitational force −Fgez =
−mgez acts on the center of the ladder.

The conditions that the system is in equilibrium are

(a) The sum over all forces must be zero.

(b) The sum over all torques with respect to a point must
be zero.

From the figure we find the component representation:∑
i

F x
i = 0 : Nw − Ff = 0, (20.24)∑

i

F z
i = 0 : −mg + NF = 0. (20.25)

The torques acting with respect to point A are caused by the forces −Fgez = −mgez and Nwex .
We obtain

MA =
∑

i

ri × Fi =
(

−mg

(
l

2
sin θ

)
+ Nw(l cos θ)

)
ey = 0, (20.26)

or resolved for Nw:

Nw = mg

2
tan θ. (20.27)

According to equation 20.24, the friction force Ff is

Ff = mg

2
tan θ. (20.28)

Because the friction force cannot exceed the product of reactive force NF and friction coefficient µh

(see figure),

Ff (max) = NFµh = mgµh, (20.29)

we obtain as equilibrium condition

Nw = mg

2
tan θ = Ff < Ff (max) = mgµh , (20.30)
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or

mg

2
tan θ < mgµh ,

and for the angle θ :

tan θ < 2µh . (20.31)

The maximum angle θ is independent of the mass and length of the ladder. It is only a function of the
friction coefficient µh .

Problem 20.12: A mass slides under static and dynamic friction

m1

e1

e2

m3

m2

A sliding mass.

Two masses of m1 = 6 kg and m2 = 10 kg are fixed to a
nonstretchable rope that runs over a roller (see figure). The static
friction coefficient for m1 and the support has the value µh =
0.625. The dynamic friction coefficient is µg = 0.33.

(a) What is the minimum value of the mass m3 such that m1 does
not move?

(b) What is the acceleration of the system if the mass m3 is
removed?

Solution (a) If the system is at rest, a static friction force FH acts on the
rope that is caused by the masses m1 and m3 and the support area:

FH = −µH F⊥ · v1

v1
.

v1 points, however, along −e1; hence FH = µH (m1 + m3)ge1. The forces acting along −e1 are

−(m1 + m3)ae1 = −T e1 + µH (m1 + m3)ge1, (20.32)

and the forces acting along e2 are

m2ae2 = −T e2 + m2ge2, (20.33)

where T is the rope tension. Insertion of T from 20.33 in 20.32 yields

a = m2g − µH (m1 + m3)g

m1 + m2 + m3
. (20.34)

We get as equilibrium condition

m3 = m2

µH
− m1, m3 = 10 kg.

(b) If the system moves, µH must be replaced by µG (m3 = 0):

a = g
m2 − µG m1

m1 + m2
; a = 0.5 g.



21 The Harmonic
Oscillator

The eminent meaning of the harmonic oscillator is due to the fact that it does not occur in
mechanics only, but in an analogous manner governs extended sections of electrodynamics
and atomic physics. Many complicated vibrational processes may be approximately de-
scribed as harmonic oscillations and thus be treated simply in this way. The reason is the
following: In the equilibrium (at x = 0) the forces acting on the mass point must vanish,
that is, F = −∇V = 0. If one expands the potential in a Taylor series

V (x) = V0 + a1x + a2

2
x2 + . . . ,

the equilibrium condition implies that a1 = 0 must hold, just because F(0) = 0. Therefore,

V (x) = V0 + a2

2
x2 + . . .

must hold. For small displacements from the equilibrium the potential is therefore always
harmonic. In mechanics we are dealing with a harmonic oscillator if a force acting on a
body is proportional to, but oppositely directed to, its displacement from the rest position.
This linear force law may be generated by a spring obeying Hooke’s law (see also p. 162
in Section 18). To simplify the problem, we consider the harmonic oscillator only in the
x-direction, i.e., the force law is

F = −kxe1.

For the linear force law, obviously

curl F = −e2
∂

∂z
(kx) + e3

∂

∂y
(kx) = 0.

This implies: The force is conservative. Consequently, the energy law also holds:

1

2
mv2 + V (x) = E = constant.

196
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x=0

xx

x

F

e1

m

A mass coupled to a spring.

The potential is calculated as

V (x) = −
x∫

0

F · dr = −
x∫

0

(−kx, 0, 0) · (dx, dy, dz)

=
x∫

0

kx dx = 1

2
kx2.

Inserting V (x) in the energy equation, we obtain

1

2
mv2 + 1

2
kx2 = E .

We have already solved this equation as an example for the general potential motion (see
Chapter 18). There we found

x(t) = a cos(ωt − ϕ), (21.1)

with a being the maximum displacement (amplitude) and ω2 = k/m.
To get more experience in solving differential equations and to learn other solving

methods, we shall use a second way of solving. For this purpose we start directly from the
Newtonian basic equations:

m
d2x

dt2
e1 = F = −kxe1.

We turn over to the scalar equation and divide by the mass m:

d2x

dt2
− = − k

m
x = −ω2x,

where we again have set k/m = ω2. We write this equation in the simpler form:

ẍ + ω2x = 0. (21.2)

It is a differential equation of second order. That means that the highest derivative
occuring in the differential equation is of the second order (ẍ = d2x/dt2 !). When solving
this equation, two (integration) constants arise that are determined by the initial conditions.
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The initial velocity ẋ(0) and the initial position x(0) must be arbitrarily selectable. The
general solution, therefore, must involve two free constants. Moreover, the differential
equation (21.2) is homogeneous since a zero arises on the right. In other words, there is no
x-independent term, for example, of the form

ẍ + ω2x = f (t) .

For a more detailed outline of the mathematical problems, we refer to Chapter 25. The
differential equation is also linear. If we have two particular solutions of the differential
equation, for example, x1(t) and x2(t), then any linear combination

x(t) = A x1(t) + B x2(t) (21.3)

also satisfies this differential equation. Here A and B are arbitrary, freely selectable con-
stants. This is the characteristic feature of linear differential equations. This linear com-
bination x(t) involves two free constants A and B, that is, the linear combination x(t) is
already the general solution of equation (21.2). In order to check the correctness of our
assumption, we imagine two particular solutions x1(t) and x2(t) of the differential equation
(21.2), that is, there shall hold

ẍ1 + ω2x1 = 0,

ẍ2 + ω2x2 = 0. (21.4)

Inserting x(t) = Ax1(t) + Bx2(t) in the differential equation (21.2), we obtain

ẍ + ω2x = (Aẍ1 + Bẍ2) + ω2(Ax1 + Bx2)

= (Aẍ1 + ω2 Ax1) + (Bẍ2 + ω2 Bx2)

= A(ẍ1 + ω2x1) + B(ẍ2 + ω2x2)

= 0. (21.5)

Hence, x(t) solves the differential equation. This is the proof of validity of the superposition
principle for the solutions of the harmonic oscillator: From two solutions one may generate
other solutions by linear combination. In order to solve the differential equation (21.2), we
need two solutions (x1 and x2). The solutions are, for example,

x1(t) = cos ωt, (21.6)

x2(t) = sin ωt. (21.7)

We form the second derivatives of the solutions (21.6 21.7):

ẍ1(t) = −ω2 cos ωt, (21.8)

ẍ2(t) = −ω2 sin ωt, (21.9)

and insert (21.6) and (21.8), or (21.7) and (21.9) in the differential equation (21.2), and so
we obtain

ẍ1 + ω2x1 = −ω2 cos ωt + ω2 cos ωt = 0,

ẍ2 + ω2x2 = −ω2 sin ωt + ω2 sin ωt = 0.
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Both approaches fulfill our differential equation. Moreover, sine and cosine are linearly
independent functions, that is, there is no constant C such that C sin ωt = cos ωt holds for
all times t .

The general solution of the differential equation of the harmonic oscillator therefore
reads

x(t) = A cos ωt + B sin ωt. (21.10)

The earlier form of the equation (21.1) has another form. We try to rewrite our solution
(21.10) to this form and write

A cos ωt + B sin ωt =
√

A2 + B2

(
A√

A2 + B2
cos ωt + B√

A2 + B2
sin ωt

)
.

By setting A(A2 + B2)−1/2 = cos ϕ, then

sin ϕ =
√

1 − cos2 ϕ =
√

1 − A2

A2 + B2
= B√

A2 + B2
.

We thus obtain

x(t) =
√

A2 + B2 (cos ϕ cos ωt + sin ϕ sin ωt).

We write this result as

x(t) = D cos(ωt − ϕ), (21.11)

where D = √
A2 + B2 and tan ϕ = B/A. The symbols mean

� = ω

2π
: frequency,

T = 1

�
= 2π

ω
: vibration period,

ω: angular frequency,

D: amplitude,

ϕ: phase angle.

The vibrational curve is obtained by superposing the sine and cosine curves of the vibration
(superposition method), that is, the function values of both components are added for
all times. The subsequent figure illustrates the approach; the components A · cos ωt and
B · sin ωt are plotted in the upper part, and the sum of both in the lower part. The addition
then yields (21.11).

In the vibration equation

x(t) = A cos ωt + B sin ωt
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the free constants A and B do not yet have a physically evident meaning. But they are
uniquely determined by the initial conditions. If we make the settings x(0) = x0 and
v(0) = v0, A and B may be calculated:

x0 = x(t = 0) = A cos ω0 + B sin ω0 = A,

v0 = v(t = 0) = ẋ(t = 0) = −Aω sin ω0 + Bω cos ω0 = Bω;
hence:

x0 = A and v0 = Bω.

Thus we may write our solution in the form

x(t) = x0 cos ωt + v0

ω
sin ωt . (21.12)

Transformation yields

x(t) =
√

x2
0 + v2

0

ω2
cos(ωt − ϕ), (21.13)

where tan ϕ = v0/(ωx0). From this form we may immediately read off the vibration
amplitude:

D =
√

x2
0 + v2

0

ω2
.

x t( )

t

A B

3 /2TT/2 T

B

t
sin

ω

A

t
cos ω

The superposition of a sine and a cosine . . .

x t( )

t

B

3 /2TT/2 T

D tcos ( - )ω ϕ

ϕ
ω

. . .yields a cosine shifted by a phase ϕ.
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Finally, we shall investigate what the vibration equation looks like in several important
special cases.

1. We displace the oscillator at the beginning by x0, then release it and investigate its
vibration. The initial conditions obviously are

x0 = x(0), v0 = v(0) = 0.

By inserting them in the general equation (21.12), we find

x(t) = x0 cos ωt.

The initial elongation is at the same time the amplitude of the vibration.
2. We apply an impulse to the body in its rest position, giving it instantaneously the

velocity v0. This case occurs (in higher order), for example, in the elastic collision (ballistic
measuring instruments). The initial conditions then read

x0 = x(0) = 0, v(0) = v0.

From (21.12) we obtain

x(t) = v0

ω
sin ωt = v0

ω
cos

(
ωt − π

2

)
.

The amplitude of the vibration is D = v0/ω. This may also be derived from the energy
law. One has

1

2
mv2 + 1

2
kx2 = E = 1

2
mv2

0 .

When the body has reached the maximum displacement D, then v = 0. Hence

1

2
k D2 = 1

2
mv2

0,

and therefore

D2 = m

k
v2

0 = ω−2v2
0 or D = v0

ω
.

As was indicated already at the begin of this chapter, a large number of (vibrational)
processes in physics obey the laws of the harmonic oscillator.

If, however, the corresponding potentials in the vicinity of an equilibrium configuration
have a somewhat different form, they may frequently be described in the important ranges
of small displacements by a harmonic approximation. Here we quote several examples
of anharmonic potentials in mechanics and atomic physics together with the associated
harmonic approximation.1

1The theory of rotation and vibration of atomic nuclei and nuclear molecules is described in detail in J.M.
Eisenberg and W. Greiner, Nuclear Theory, Vol 1: Nuclear Models, 3rd ed., North Holland Publ. Company,
Amsterdam and New York, 1987.
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1. The pendulum

The potential of the mathematical pendulum has the form

V (x) = mgh = mgl(1 − cos x) = c(1 − cos x),

where c = mgl. It may be approximated by a harmonic potential centered at x = 0:

V (x) = c

2
x2 .

The zero point of the potential has been set to x = 0, that is, for the pendulum hanging
vertically downward.

x
l

h
mgm

h l x= (1– cos )

On the calculation of the
potential of the pendu-
lum.

V x( )

xx0

Harmonic
Approximation

(Parabola)

The potential of the pendulum.

2. Dumb-bell molecules

In a two-atomic molecule the individual atoms may vibrate along the longitudinal molecular
axis. The mutual binding of the atoms is achieved by so-called molecular electrons, or
electrons that are bound to both nuclei. “Atomic electrons,” on the contrary, are hull
electrons orbiting around the one or the other atomic nucleus (compare the schematic
figures).

Atomic Electron Orbits

Molecular
Electron Orbits

Schematic view of a dumb-bell molecule.

x

V x( )

x0

Repulsion of positively charged
Nuclei at small Distance

Attraction of the Atoms
by molecular Electrons

Harmonic Approximation

Qualitative form of a molecular potential.
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3. Atomic nuclei

Some atomic nuclei (e.g., the rare earth elements Sm, Gd, Er, Yb) have the shape of a thick
cigar. They may deform along their axis and in this way perform vibrations.

Rotation γ-Vibrations

β-Vibrations

Illustration of the vibrations (β-
and γ -vibrations) and rotations of
a deformed nucleus.

x

V x( )

True Potential
for β-Vibrations

Harmonic
Approximation

Qualitative form of the potential of β-vibrations of
an atomic nucleus.

The contractions and extensions of the “cigar” are called β-vibrations. The contractions
and thickenings of the “belly” are called γ -vibrations.

The cigar-shaped deformed nucleus also performs rotations. In doing so, γ quanta are

x

V x( ) Repulsive
Compression Potential

Coulomb
repulsive
Potential

Contact Point
of the Nuclei

Attractive
Nuclear Potential

Harmonic
Approximation

Short range nuclear forces yield a locally attractive
potential, giving rise to nuclear molecules.

emitted. The so-called rotational-vibrational
spectra generated in this way are de-
scribed by the so-called rotation-vibration
model.2

4. Nuclear molecules

If certain atomic nuclei (e.g., C12, O16)
mutually penetrate each other, they may
form short-lived but stable molecule-
like states. The potential of the two nu-
clei plotted as a function of their dis-
tance follows the trend shown in the
figure.

2For details, see again J.M. Eisenberg and W. Greiner, loc. cit.
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Problem 21.1: Amplitude, frequency and period of a harmonic vibration

An object of mass 2 · 104 g performs harmonic vibrations along the x-axis. Find for the initial
conditions

x(t = 0) = 400 cm, v(t = 0) = −150
cm

s
,

a(t = 0) = −1000
cm

s2

(a) the position at the time t ,
(b) amplitude, period, and frequency of the vibration,
(c) the acting force at the time t = π/10 s.

Solution (a) We have the equations:

F = ma, k = − F

x
, ω2 = k

m
.

From there, we get

ω2 = −a

x
= −a(t = 0)

x(t = 0)
= 2.5 s−2,

or

ω = 1

2

√
10 s−1.

By inserting

x(t) =
√

x2
0 + v2

0

ω2
cos(ωt − ϕ),

we obtain the course of vibration

x(t) = 130
√

10 cm · cos

(
t

2

√
10 s−1 + 0.237

)
= 411 cm · cos(t · 1.58 s−1 + 0.237).

(b) From the equation for x(t) we read off the amplitude

D = 411 cm.

Period and frequency are obtained as follows:

T = 2π

ω
= 3.97 s; � = 1

T
= 0.252 Hz.

(c) One has F = m ẍ = −2.06 · 102 N · cos(t · 1.58 s−1 + 0.237).
For our particular time value, we obtain

F
(

t = π

10
s
)

= m ẍ
(

t = π

10
s
)

= −1.53 · 102 N.

Problem 21.2: Mass hanging on a spring

A mass of 20 g hangs on a massless spring and thereby stretches it by 6 cm.
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(a) Determine its position at arbitrary time if is pulled down at time t = 0 by 2 cm and then is
released.

(b) Find the amplitude, period, and frequency of vibration.

Solution (a) Again we have k = −F/x and ω2 = k/m.
Because F = −mg, we find

ω2 = g

x
= 981 cm · s−2 1

6 cm
= 163.5 s−2

and thus ω = 12.8 s−1. With v0 = 0, we obtain from

x(t) = x0 cos ωt + v0

ω
sin ωt

the vibration equation

x(t) = x0 cos ωt = −2 cm · cos(t · 12.8 s−1).

(b) Amplitude, period, and frequency are obtained as in the last problem:

D = 2 cm; T = 2π

ω
= 0.491 s; � = 1

T
= 2.035 Hz.

Problem 21.3: Vibration of a mass at a displaced spring

Solve the last problem with the assumption that the weight at time t = 0 was pulled down by 3 cm
and was thrown downward with a velocity of 2 cm/s.

Solution (a) We use equation (21.13): There are x(t = 0) = −3 cm and v(t = 0) = −2 cm/s and therefore,

x(t) = −3.004 cm · cos(t · 12.8 s−1 − 0.052).

(b) Only the amplitude is changed. We now get

D = 3.004 cm.

Problem 21.4: Vibration of a swimming cylinder

A cylinder swims with vertical axis in a liquid of density σ and has weight W and cross-sectional
area A. What is the vibration period if the cylinder is slightly pressed down and then released?

Solution The body is pressed down by the distance −z. Two forces are then acting on the cylinder: The weight

W = −mge3,
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z

z0

e3

B

W

The swimming cylinder.

and the buoyancy

B = −σ Ag(z0 + z)e3,

where z0 is the immersion depth in equilibrium. But in
the equilibrium state it holds that

W = −B(z0), i.e., mg = −σ Agz0.

Hence, for an arbitrary position,

B = −(−mg + σ Agz)e3.

Therefore, the equation of motion reads

mz̈ = W + B = −mg − (−mg + σ Agz) = −σ Agz

or

z̈ + σ Ag

m
z = 0.

Thus, we find ω2 = σ Ag/m = (σ A/W )g2, and further T = 2π/ω = 2π/g
√

W/(σ A) as
vibration period.

Problem 21.5: Vibrating mass hanging on two strings

Let a mass of 50 g be suspended by identical massless springs with elasticity constants of 0.5 N/m
(see figure). In the rest position they form an angle of α0 = 30◦ against the horizontal and have the
length l0 = 2m; outside the rest position the angle is α = α0 + �α. Determine the period of the
vibration that occurs when pulling the mass down by �x and then releasing it.

α0

x0
l0

∆α

a

∆x

m

A mass suspended on two strings.
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Solution The mass is under the action of the sum of weight force (along the x-direction) and the vertical
projection of the backdriving force of the springs. Hence the equation of motion reads

mẍ = mg − 2k(l − l̄) sin α, (21.14)

where l̄ denotes the length of the springs at rest (absence of external forces). The equilibrium position
(position at rest) is defined by the vanishing of the force mẍ , hence

mg = 2k(l0 − l̄) sin α0. (21.15)

In order to solve the differential equation 21.14, both l as well as α must be expressed by the
displacement x . It holds that

l =
√

x2 + a2, (21.16)

sin α = x

l
= x√

x2 + a2
. (21.17)

With

l̄ = l0 − mg

2k sin α0
, (21.18)

from 21.15 the equation of motion may be transformed to

mẍ = mg − 2kx + 2kl0 sin α − mg
sin α

sin α0

= mg − 2kx + 2kx
l0√

x2 + a2
− mg

x

x0

l0√
x2 + a2

. (21.19)

This is a very complicated nonlinear differential equation that has no simple analytic solution. But
we are interested in vibrations of low amplitude

x = x0 + �x, �x � x0. (21.20)

With this condition, 21.19 may be linearized by expanding the right side in a Taylor series about the
point x0. We employ the formula

l0√
x2 + a2

= l0√
(x0 + �x)2 + a2

≈ l0√
x2

0 + 2x0�x + a2

= 1√
1 + 2x0�x

l2
0

≈ 1 − x0�x

l2
0

. (21.21)

Thus, up to the order O((�x)2), 21.19 may be written out as follows:

m�ẍ ≈ mg − 2k(x0 + �x) + 2k(x0 + �x)

(
1 − x0�x

l2
0

)
− mg

x0 + �x

x0

(
1 − x0�x

l2
0

)
≈ �x

(
−2k

x2
0

l2
0

− mg

x0
+ mg

x0

l2
0

)
. (21.22)

Expressed in terms of sin α0 = x0/ l0, the linearized equation of motion finally reads

�ẍ +
(

2k

m
sin2 α0 + g

l0

cos2 α0

sin α0

)
�x = 0. (21.23)
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The expression in brackets is the square of the angular frequency ω. Hence, the vibration period
reads

T = 2π

ω
= 2π√

2k

m
sin2 α0 + g

l0

cos2 α0

sin α0

. (21.24)

For the given values of k, m, α0, l0 this leads to the value T = 1.79 s. In the limit α0 → 90o, the mass
vibrates according to 21.24 just as if it were suspended on a spring with twice the spring constant:

T = 2π

√
m

2k
. (21.25)

The limit α0 → 0o, for fixed l0, makes no sense, since according to 21.18 this would lead to a
nonphysical negative value of l̄.

Example 21.6: Composite springs

k1

k2

F

Series connection
of springs.

k1
k2

F

Parallel connection
of springs.

(a) Series connection

The figure illustrates the case of two springs with spring constants k1 and
k2. The force F occurs in both of the springs and causes a variation of length
y1 = F/k1 and y2 = F/k2. From y1 + y2 = F/k there results for the
“effective spring constant” k:

1

k
= 1

k1
+ 1

k2
, k = k1k2

k1 + k2
,

such that k < k1 and k < k2. The generalization to n springs is trivial:

1

k
= 1

k1
+ 1

k2
+ · · · + 1

kn
.

(b) Parallel connection

Because now both springs undergo the same variation of length, namely,
y1 = y2 = y, the resulting spring constant k is calculated from

F = k1 y1 + k2 y2 = ky

as
k = k1 + k2 .

The generalization to n springs in parallel connection is

k = k1 + k2 + · · · + kn .

The eigenfrequency is then

ω =
√

k

m
.
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Problem 21.7: Vibration of a rod with pivot bearing

aϕ

ϕ

lϕ

kaϕ

A

ey
ex

eϕ

eρ

a
l

B
G

Vibration of a rod with pivot bearing.

A weight mg is fixed to the upper end of a rod AC (assumed
as massless), which is supported by a pivot bearing at point
A, and is fixed at point B to a spring with the constant k
(compare the figure).

(a) Determine the approximate eigenfrequency of the sys-
tem for vibrations of small elongations ϕ.

(b) What is the maximum value of G = mg in order to
ensure harmonic motion for a small displacement?

Solution (a) The forces acting on the system in the limit sin ϕ ≈ ϕ,
cos ϕ ≈ 1 are

G = −mgey, weight force,

and
F = kaϕex , spring force,

and the reactive force FR along the connecting rod.
Hence,

mr̈ = −mgey + kaϕex
a

l
+ FR, FR = Re� ,

or in polar coordinates

m(−�ϕ̇2e� + �ϕ̈eϕ) = −mg(cos ϕe� − sin ϕeϕ) + kaϕ
(a

l

)
(− sin ϕ e� − cos ϕ eϕ) + Re�.

The components of the weight force and the spring force along the direction e� are neutralized by
the reactive force FR , such that we obtain

m�ϕ̈ = mg sin ϕ − k
a2

l
ϕ cos ϕ

and resolved for ϕ̈

ϕ̈ = 1

�
gϕ − k

m�

a2

l
ϕ or ϕ̈ + ka2 − mgl

ml2
· ϕ = 0.

This vibration equation may also be written as

ϕ̈ + ω2
1ϕ = 0

with the eigenfrequency ω1 = √
(ka2 − mgl)/ml2.

(b) The vibrational control remains harmonic while

ω2
1 > 0 or mg <

ka2

l
.



22 Mathematical
Interlude—Series
Expansion,
Euler’s Formulas

In the following sections we need the series expansion of functions and the Euler relations,
which shall be explained now: Many continuous, arbitrarily often differentiable functions
f (x) can be expanded in power series:

f (x) = a0 + a1x + a2x2 + · · · =
∑

n

an xn. (22.1)

The expansion coefficients an may be determined by inserting in equation (22.1) and its
nth derivatives the corresponding values for x = 0; for example,

f (0) = a0,

f ′(0) = a1,

f ′′(0) = 1 · 2a2,

...

f (n)(0) = n! an,

or generally an = f (n)(0)/n!. f ′ denotes the first, f (n) the nth derivative of the function
f (x) with respect to x . Therefore, the series expansion (22.1) may also be written as
follows:

f (x) =
∞∑

n=0

f (n)(0)

n!
xn. (22.2)

This is the well-known Taylor expansion. We now give several examples:

210
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1. Example f (x) = ex .

f ′(x) = f ′′(x) = · · · = f (n)(x) = ex .

Thus, equation (22.2) just yields the series expansion of the exponential function, namely

ex =
∞∑

n=0

1

n!
xn = 1 + x

1!
+ x2

2!
+ x3

3!
+ · · · . (22.3)

By setting x = iϕ and taking into account i2 = −1, i3 = −i , i4 = 1, etc., we
immediately obtain

eiϕ =
∞∑

n=0

1

n!
i nϕn

= 1 − ϕ2

2!
+ ϕ4

4!
− ϕ6

6!
+ ϕ8

8!
− · · · + i

(
ϕ

1!
− ϕ3

3!
+ ϕ5

5!
− ϕ7

7!
+ − · · ·

)
. (22.4)

2. Example f (x) = sin x .

f (0) = 0; f ′(0) = cos 0 = 1, f ′′(0) = − sin 0 = 0, f ′′′(0) = − cos 0 = −1, etc.

According to equation (22.2), this obviously yields

sin x = x − x3

3!
+ x5

5!
− x7

7!
± · · · . (22.5)

3. Example f (x) = cos x .

f (0) = 1; f ′(0) = − sin 0 = 0, f ′′(0) = − cos 0 = −1, f ′′′(0) = sin 0 = 0, etc.

According to equation (22.2), it therefore results that

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
± · · · . (22.6)

Because sin(−x) = − sin(x) and cos(−x) = cos(x), (22.5) must involve only odd powers,
and (22.6) only even powers xn .
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4. Example By comparing the results (22.4), (22.5), and (22.6), we arrive at the Euler
formulas:1

eiϕ = cos ϕ + i sin ϕ; e−iϕ = cos ϕ − i sin ϕ;
cos ϕ = eiϕ + e−iϕ

2
; sin ϕ = eiϕ − e−iϕ

2i
. (22.7)

Problem 22.1: Various Taylor series

Taylor series: In many cases, a function that is arbitrarily often differentiable in an interval I (with
0 ∈ I ) can be represented by expansion about the point 0 in a power series of the form

f (x) =
∞∑

n=0

f (n)(0)

n!
xn .

Let f (n)(0) be the nth derivative at the point x = 0, f (0)(0) = f (0), and n! (n factorial) = 1·2·3· · · · n
(0! = 1).

Expand the following functions according to this prescription:

(a) ax , (b)
1

1 − x
, (c) ln(1 + x).

Solution (a) Equation (22.3) states that

ex = 1 + x + 1

2!
x2 + 1

3!
x3 + · · · =

∑
n

xn

n!
,

1Leonhard Euler, b. April 15, 1707, Basel as son of a priest with extended mathematical interests—d. Sept.
18, 1783, St. Petersburg. Euler studied in Basel, since 1720 philosophy and since 1723 theology. Moreover, he
attended private lectures by Johann Bernoulli. In 1727 Euler went to St. Petersburg, there in 1730 he became
professor of physics, and in 1733 professor of mathematics at the Academy. In 1741 he was called to Berlin as
professor of mathematics and director of the class of mathematics at the Academy. Later on in Berlin the relation
between Euler and Friedrich II. went to the worse; he returned to St. Petersburg in 1766. Even his complete
blindness in the same year could not stop his mathematical creative power, and already in his last years he was
considered as a legendary phenomenon.

The total opus of Euler comprises 886 titles, among them many voluminous treatises. In many branches his kind
of representation became final, and all eminent mathematicians of the following era took it over. This concerns
the Introductio in Analysin Infinitorum (1748), in which, for example, the theory of series, trigonometry, analytic
geometry, elimination theory, and the zeta function are outlined, and also the Institutiones Calculi Differentialis
(1755) and the Institutiones Calculi Integralis (1768–1774), which not at all deal with elementary relations only.
In 1736 his treatise of mechanics was published which contains the first analytic development of the Newtonian
dynamics, and 1744 the first outline of variational calculus. Important personal achievements are the Euler
polyhedron theorem, the Euler straight line, the Euler constant, the quadratic reciprocity law, and the solution of
the Königsberg bridge problem, as well as the convention that the logarithm is infinitely ambiguous (1749). Euler
made essential contributions also on astronomy, on the theory of moon and celestial mechanics, on construction of
ships, cartography, optics, hydraulics, philosophy, and theory of music. His manner of approaching mathematical
problems was characterized by intuitive realization of the essentials and by an eminent formal mastery. But Euler,
like by the way all mathematicians before Gauss, often failed to give a fully correct reasoning for his conclusions.
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and therefore,

ax = ex ln a = 1 + x ln a + 1

2!
x2 ln2 a + 1

3!
x3 ln3 a + · · · =

∑
n

(x ln a)n

n!
.

(b)

1

1 − x
= 1 + x + x2 + x3 + x4 + · · · =

∑
n

xn ,

because

f ′(x) = 1

(1 − x)2
, f ′′(x) = 2

(1 − x)3
, f ′′′(x) = 6

(1 − x)4
, . . . .

This is, of course, nothing else but the infinite geometric series.
(c)

ln(1 + x) = 0 + x − 1

2
x2 + 1

3
x3 − 1

4
x4 + · · · =

∑
n

(−1)n+1

n
xn ,

because

f ′(x) = 1

1 + x
, f ′′(x) = −1

(1 + x)2
,

f ′′′(x) = 2

(1 + x)3
, f ′′′′(x) = −6

(1 + x)4
, · · · .



23 The Damped
Harmonic
Oscillator

As an example of a damped harmonic oscillator, we again consider a mass m connected to
a spring. Let the mass slide frictionless on the support, but the friction at the surrounding
medium shall add a velocity-dependent friction force (e.g., air resistance). For the latter
one we adopt the Stokes ansatz:

FR = −βv.

F f

x

x = 0

A mass fixed to a spring and sliding on a plane is an example of a damped harmonic oscillator.

Hence, we arrive at the equation of motion

m
dv

dt
= −kx − βv. (23.1)

Putting all quantities to the left side and writing for the velocity ẋ instead of v, the
equation reads

mẍ + β ẋ + kx = 0. (23.2)

When dividing by m and setting 2γ = β/m, ω2 = k/m, the equation takes the form

ẍ + 2γ ẋ + ω2x = 0. (23.3)

214
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It is a linear differential equation that may easily be checked, similar to the case of the
nondamped harmonic oscillator (see equations (21.3), (21.4) ff.). Moreover, the equation
is homogeneous and of second order. To solve this differential equation, we first have to
look for two linear independent solutions x1(t) and x2(t), and then obtain the most general
solution of the differential equation by an arbitrary choice of the coefficients A and B.
Because the equation, apart from constant coefficients, contains only derivatives of x(t),
and because the exponential function remains unchanged under differentiation—apart from
constant coefficients—we try the ansatz

x(t) = eλt

and obtain

λ2eλt + 2γ λeλt + ω2eλt = 0. (23.4)

We divide by eλt , because eλt �= 0 always, and obtain the following conditional equation
for λ:

λ2 + 2γ λ + ω2 = 0.

This is called the characteristic equation. It is fulfilled by the two values

λ1,2 = −γ ±
√

γ 2 − ω2 . (23.5)

Thus we have found two particular solutions:

x1(t) = eλ1t = e−γ t e
√

γ 2−ω2 t ,

x2(t) = eλ2t = e−γ t e−
√

γ 2−ω2 t . (23.6)

The general solution of our equation is therefore

x(t) = A eλ1t + B eλ2t . (23.7)

There are three cases of the vibrational equation, depending on the value of the expression√
γ 2 − ω2:

(a) γ 2 < ω2: the root is imaginary.

(b) γ 2 = ω2: The root vanishes; the ansatz yields only one solution.

(c) γ 2 > ω2: The root is real.

(a) Weak damping

In this case, (γ 2 < ω2), the general solution is

x(t) = e−γ t
(

Aei
√

ω2−γ 2 t + Be−i
√

ω2−γ 2 t
)

. (23.8)
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It seems that this general solution is a complex one. But for an appropriate choice of A and
B, this is not so. To get a real form we remind ourselves of the Euler formulas

eiϕ = cos ϕ + i sin ϕ, e−iϕ = cos ϕ − i sin ϕ. (23.9)

By addition of these two equations we obtain

eiϕ + e−iϕ = 2 cos ϕ, (23.10)

and by subtracting the second equation from the first one:

eiϕ − e−iϕ = 2i sin ϕ. (23.11)

Using these results we now rewrite the solutions of the differential equation as follows:
First we set �2 = ω2 − γ 2; then we obtain from our two special solutions

x1(t) = e−γ t · ei�t , x2(t) = e−γ t · e−i�t , (23.12)

two other solutions as a linear combination:

x ′
1(t) = 1

2
e−γ t (ei�t + e−i�t ), x ′

2(t) = − i

2
e−γ t (ei�t − e−i�t ). (23.13)

The solutions (23.12) are just as useful as the other solutions (23.13). By means of the
formulas ((23.9)–(23.11)) obtained above, we may write these solutions also in the form

x ′
1(t) = e−γ t cos �t, x ′

2(t) = e−γ t sin �t.

From there it immediately follows the most general form of the vibration equation:

x(t) = e−γ t
(

A cos �t + B sin �t
)
,

where �2 = ω2 − γ 2. In this equation the coefficients A and B are real, contrary to the
form we started from.

This equation—analogous to equation (21.11)—may also be written in the form

x(t) = De−γ t cos(�t − ϕ),

where again D2 = A
2 + B

2
and tan ϕ = B/A (see (21.10), (21.11)).

The graphical representation of the solution displays a damped harmonic vibration
confined between two exponential curves:

Let xn and xn+1 be two successive maximum elongations belonging to the times tn and
tn + T = tn + (2π/�), respectively. One obtains xn/xn+1 = eγ T = eγ 2π/�, and therefore

ln
xn

xn+1
= γ T = γ

2π

�
.

This is the logarithmic decrement, which may be used for experimental determination
of the decay constant γ and the damping constant β by measuring xn and xn+1.
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x

t

xn

tn

xn+1

tn n+1= +t 2π
Ω

Graphical representation of the amplitudes of a weakly damped oscillator with the initial conditions
x(0) = 0, ẋ(0) > 0.

(b) Critical damping

If in the case of damped vibration (see above) the friction continues to increase, already the
second elongation may become relatively small. Finally, the mass no longer passes the rest
position but so to speak comes to rest just at the moment when reaching the rest position.
This particular case occurs for γ 2 = ω2.

However, we have to state that in this case the two solutions obtained above coincide.
Hence, only one solution is at disposal, namely

x1(t) = e−γ t .

To get a second solution, we don’t consider our limiting case but a somewhat stronger
damped vibration:

γ 2 = ω2 + ε2.

Then, according to (23.7) there exist two solutions that may be expanded into a Taylor
series:

eλ1t = e−γ t · eεt = e−γ t

(
1 + ε t + ε2

2!
t2 + ε3

3!
t3 + · · ·

)
;

eλ2t = e−γ t · e−εt = e−γ t

(
1 − ε t + ε2

2!
t2 − ε3

3!
t3 + · · ·

)
.

We subtract the second solution from the first one and divide by ε. Then we let ε

approach 0:

lim
ε→0

x1 − x2

ε
= lim

ε→0

e−γ t

ε

(
2ε t + 2

ε3

3!
t3 + 2

ε5

5!
t5 + · · ·

)
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= lim
ε→0

e−γ t

(
2t + 2

ε2

3!
t3 + 2

ε4

5!
t5 + · · ·

)
= 2te−γ t . (23.14)

Because the differential equation (23.3) is linear, the linear combination (23.14) also must
be a solution of (23.3). We shall check that and insert x = te−γ t in the differential equation
to be solved. Then, actually,

ẍ + 2γ ẋ + ω2x = (γ 2te−γ t − 2γ e−γ t ) + 2γ (e−γ t − γ te−γ t ) + ω2te−γ t

= (ω2 − γ 2)te−γ t = 0,

because in our limiting case γ 2 = ω2, that is, in this case x = te−γ t is a solution of the
differential equation.

We now again have two particular solutions, and with

x1(t) = e−γ t ,

x2(t) = te−γ t ,

we may immediately write down the general solution:

x(t) = (A + Bt)e−γ t . (23.15)

(c) Overdamped system

t

(c)
2

>
2

(b)
2

=
2

x

Illustration of the motion in the case of critical
damping (b) and creeping motion (c).

If the damping becomes even stronger than
in the case just discussed, that is, if γ 2 >

ω2, the mass returns much slower to the rest
position.

The general solution is then

x(t) = e−γ t (Ae
√

γ 2−ω2 t + Be−
√

γ 2−ω2 t ).

In this case the mass after the first elon-
gation creeps gradually back to the rest
position, namely, the oscillator performs a
creeping motion.

We now consider the graphical representation of the last two cases, namely

(b) critical damping,

(c) creeping motion.

For critical damping the oscillator obviously returns most quickly to the rest position.
Therefore, this case is very important for the damping of measuring instruments (e.g.,
mirror galvanometer): In the limit of critical damping the measured value is displayed most
quickly, because the measuring instrument (the damped oscillator) performs a vibration but
due to the damping “gets stuck” after the first quarter of the period.
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Finally we still investigate the energy content of the vibrating system with damping. To
this end we start directly from the differential equation:

ẍ + ω2x = −2γ ẋ .

We multiply the entire equation by ẋ :

ẍ ẋ + ω2 ẋ x = −2γ ẋ2.

The left side represents a complete differential, namely

d

dt

(
1

2
ẋ2 + ω2

2
x2

)
= −2γ ẋ2.

If the equation is still multiplied by m, the left side just represents the time derivative of
the total energy of the vibrating system:

d

dt

(
m

2
ẋ2 + k

2
x2

)
= d

dt
(T + V ) = d

dt
E = −β ẋ2 ≤ 0. (23.16)

Hence the time derivative of the total energy of the spring is negative, that is, the total
energy of the system permanently decreases due to damping, as energy is permanently
converted to heat by friction and is released to the environment.

m

Oil Bath

Flywheel Universal Joint

Rail

F t( )

Visualization of a damped system with pe-
riodic external force.

Damped vibration with a periodic external force

Let a mass m be suspended via an elastic spring
with the spring constant k and rigidly connected
to a damping piston immersed into a liquid.

If the spring is displaced by a periodically act-
ing external force F = F0 · cos αt , the system
performs a variation of the position depending
on the time which corresponds to the graph of
a damped vibration. A downward motion of the
mass is related with a spring force pointing up-
ward and proportional to the displacement

Ff = −kx,

and moreover with a friction or damping force
Fr that is proportional to v:

Fr = −β ẋ .

Together with the periodic external force F(t) = F0 cos αt , there results the following
differential equation for this system:

m
d2x

dt2
= −kx − β ẋ + F0 cos αt, (23.17)
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or rewritten

ẍ + 2γ ẋ + ω2x = f0 cos αt (23.18)

with the abbreviations:

2γ = β

m
; ω2 = k

m
; f0 = F0

m
.

This differential equation is inhomogeneous (there occurs a term independent of x ,
namely f0 cos αt , in the differential equation) and describes a damped forced vibration.
The general solution of an inhomogeneous differential equation is composed of the general
solution of the homogeneous differential equation x1(t), x2(t) and a particular solution
x0(t) of the inhomogeneous differential equation, such that the general solution has the
form

x(t) = x0(t) + Ax1(t) + Bx2(t) . (23.19)

Thus the general solution again involves two free constants A and B that are needed to
fulfill the initial conditions (initial position and initial velocity).

These three solving approaches obey the differential equations

ẍ0 + 2γ ẋ0 + ω2x0 = f0 cos αt, (23.20)

ẍ1,2 + 2γ ẋ1,2 + ω2x1,2 = 0. (23.21)

These equations follow directly from the meaning (definition) of the various solutions:
x0(t) shall be a particular solution of the inhomogeneous differential equation, as is ex-
pressed by (23.20), while x1(t) and x2(t) shall be solutions of the homogeneous differential
equation (23.21).

To get a particular solution x0(t), we make the following consideration:
After termination of the initial transient process, (“Einschwingvorgang”) the mass m

will vibrate with the frequency α of the acting force. We therefore try the ansatz for the
particular solution

x0(t) = C1 cos αt + C2 sin αt. (23.22)

Inserting this ansatz in (23.20) yields

f0 cos αt = −α2(C2 sin αt + C1 cos αt) + 2γ (C2α cos αt − C1α sin αt)

+ ω2(C2 sin αt + C1 cos αt)

By combining and rearranging, we obtain

sin αt (−α2C2 − 2γαC1 + ω2C2) + cos αt (−C1α
2 + 2γαC2 + C1ω

2) = f0 cos αt.

As sine and cosine are linearly independent, a comparison of coefficients yields

C1(2γα) + C2(α
2 − ω2) = 0,

−C1(α
2 − ω2) + C2(2γα) = f0. (23.23)
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From there it follows for C1 and C2 that

C1 = −(α2 − ω2) f0

4γ 2α2 + (α2 − ω2)2
,

C2 = f02γα

4γ 2α2 + (α2 − ω2)2
. (23.24)

Inserting the values found for C1 and C2 in the ansatz, we then obtain the particular
solution:

x0(t) = f0

[
− α2 − ω2

(α2 − ω2)2 + 4γ 2α2︸ ︷︷ ︸
A

cos αt + 2γα

(α2 − ω2)2 + 4γ 2α2︸ ︷︷ ︸
B

sin αt

]
, (23.25)

or rewritten, we obtain with

A cos αt + B sin αt =
√

A
2 + B

2
cos(αt − ϕ),

tan ϕ = B

A
:

x0(t) = f0

√
4γ 2α2 + (α2 − ω2)2

((α2 − ω2)2 + 4γ 2α2)2
cos(αt − ϕ), (23.26)

x0(t) = f0√
(α2 − ω2)2 + 4γ 2α2

cos(αt − ϕ), tan ϕ = −2γα

α2 − ω2
.

Because the solutions of the homogeneous differential equation (23.21) for weak damping
are x1(t) = e−γ t sin �t and x2(t) = e−γ t cos �t , the complete solution of the differential
equation is

x(t) = f0√
(α2 − ω2)2 + 4γ 2α2

cos(αt − ϕ) + e−γ t (A sin �t + B cos �t)

= f0√
(α2 − ω2)2 + 4γ 2α2

cos(αt − ϕ) + De−γ t cos(�t − ϑ) (23.27)

with D2 = A2 + B2, �2 = ω2 − γ 2, and ϑ = arctan(B/A).
Whatsoever the initial conditions are, for a nonvanishing damping (γ > 0) after suf-

ficiently long time only the first term, the particular solution of the differential equation
x0(t), survives. The second term in (23.27) that decays proportional to e−γ t depends on
the constants A, B, which are fixed by the initial conditions. This second term obviously
describes the initial transient process, which is “forgotten” after some time.

For the particular excitation frequency

α =
√

ω2 − 2γ 2, (23.28)
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x

t

Graphical representation of the motion (4) of a weakly damped oscillator with periodic external force.
The initial transient process (“Einschwingvorgang”) depends on the initial conditions.

a maximum elongation is reached. The damping constant γ determines also the half-width
of the resonance. It can, however, not become bigger than γ = ω/

√
2, as can be seen from

equation (23.28).
The amplitude of the forced vibration (23.27) is plotted in the folowing figure as a

function of the forced frequency α for various damping values. Near the eigenfrequency ω

of the oscillator at α = √
ω2 − 2γ 2, the system is resonating (a resonance occurs). In the

case without damping (γ = 0), the amplitude at the resonance becomes infinitely large (the
spring breaks—resonance catastrophe). In the case of very strong damping, the resonance
is barely visible.

γ = 0

γ small

γ large

γ ~~

α

A
m

pl
itu

de
f 0

(
-

)
+

 (
2

)
ω

α
γα

2
2

2
2

ω γ2 2-2

ω
2

The amplitude of the forced damped oscillation as a function of the external frequency α.

The associated phase of vibration is plotted for various damping values in the second
figure. At very low frequency α (α � ω) of the imposed force, the phase shift ϕ between



THE DAMPED HARMONIC OSCILLATOR 223

Ph
as

e
ϕ lim ( , )

0
ϕ α γ

γ

γ small

γ large

ω α

0

90

180

°

°

°

The phase shift of the damped oscillator against the extarnal force as a function of the external frequency
α, thus a plot of ϕ = − arctan[2γα/(ω2 − α2)].

force and motion of the mass vanishes. At very high frequency (α 	 ω), the corresponding
phase shift is 180◦. Both results are plausible.

Problem 23.1: Damped vibration of a particle

A particle of mass 5 kg moves along the x-direction under the influence of two forces:

1. A force toward the origin with the value 40 N
m · x , and

2. A velocity-proportional friction force of, e.g., 200 N for v = 10 m/s. Let x(t = 0) = 20 m,
ẋ(t = 0) = 0.

Find

(a) the differential equation of the motion,

(b) x(t) analytically and graphically,

(c) amplitude, period, and frequency of the vibration, and

(d) the ratio of two successive amplitudes (logarithmic decrement).

Solution (a) The equation of motion reads

m ẍ = −kx − β ẋ,

where k = 40 N/m. The friction coefficient β may be determined from the condition Freib = −βv.
One finds

β = 200 N

10 m/s
= 20

N s

m
.
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By setting ω2 = k/m = 8 s−2, 2γ = β/m = 4 s−1, the equation of motion turns into

ẍ + 2γ ẋ + ω2x = 0

or
ẍ + 4ẋ + 8x = 0.

(b) From ω2 = 8 s−2 and γ 2 = 4 s−2 it follows that ω2 > γ 2, that is, there is a weak damping. The
general solution of the differential equation of a damped harmonic motion is given by 1

x(t) = exp (−γ t) [A cos(�t) + B sin(�t)] ,

where � = √
ω2 − γ 2 = 2 s−1. The constants A and B may be determined from the initial conditions:

x0 = x(t = 0) = A = 20 m,

ẋ = −γ e−γ t (A cos(�t) + B sin(�t)) + e−γ t (−A� sin(�t) + B� cos(�t)) ,

ẋ(t = 0) = 0 = −γ x0 + B�, B = x0
γ

�
= x0 = 20 m.

Hence

x(t) = 20 (cos �t + sin �t)e−γ t m. (23.29)

Because

A cos �t + B sin �t =
√

A2 + B2 cos(�t − ϕ),

with

tan ϕ = B

A
,

for x(t) it results that

x(t) = 20
√

2 cos
(
�t − π

4

)
e−γ t m

or

x(t) = 20
√

2e−γ t cos
(
�t − π

4

)
m.

When setting ẋ(t) = 0, we obtain a necessary condition for extrema: t = kπ/2 s, with k an integer
number. The zeros follow from cos(�t − π

4 ) = 0. Thus, we get the following table:

t 0
3π

8
= 1.18

π

2
= 1.57

7π

8
= 2.75 π = 3.14

11π

8
= 4.32

x(t) 20 0 −0.86 0 0.04 0

Obviously this vibration is damping out rapidly. Actually, the parameters γ = 2/s and ω = √
8/s

are close before the critical damping.
(c) I. The amplitudes are therefore

a(t) = 20
√

2e−γ t m.

1Here we use a frequently adopted notation for the exponential function: exp(x) ≡ ex .
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x

20

15

10

5

0

–2
1 2 3 4 t

The solution function.

II. The frequency is

� = √
ω2 − γ 2 = 2 s−1.

III. For the period, it results that

T = 2π
1

�
= π s.

(d) For two successive maximal elonga-
tions, we obtain

xn = 20
√

2e−γ t m,

xn+1 = 20
√

2e−γ (t+2π/�) m,

from which it follows that

xn

xn+1
= eγ T

(
where T = 2π

�

)
.

Therefore,

ln

(
xn

xn+1

)
= γ T (23.30)

is the logarithmic decrement. The meaning
of this quantity is due to the fact that according to equation 23.30 the damping constant γ may be
determined directly by measuring the ratio of successive maximal elongations.

Problem 23.2: The externally excited harmonic oscillator

(a) An oscillator with the eigenfrequency ω be undamped and excited by a harmonic external force
of the same frequency ω (e.g., by a balance wheel). The amplitude of the oscillator then increases
as a function of time according to the equation

x = A cos ωt + B sin ωt + f0t

2ω
sin ωt.

Check that!

(b) Give a physical interpretation!

Solution (a) The force law reads

m
d2x

dt2
= −kx − β

dx

dt
+ F0 cos αt

and there must be β = 0 because the oscillator shall be undamped. By rewriting it follows that

ẍ + ω2x = f0 cos αt, where α = ω and ω2 = k

m
. (23.31)

To get the general solution of the equation, we add to the general homogeneous solution, that is, to
the solution of

ẍ + ω2x = 0 , (23.32)
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a particular solution of 23.31. The general solution of 23.32 now reads

x = A cos ωt + B sin ωt. (23.33)

It is convenient to adopt the following ansatz for the particular solution:

x = t (C1 cos ωt + C2 sin ωt). (23.34)

Here C1 and C2 are so far unknown coefficients. Differentiation yields

ẋ = t (−ωC1 sin ωt + ωC2 cos ωt) + (C1 cos ωt + C2 sin ωt) (23.35)

and
ẍ = t

(−ω2C1 cos ωt − ω2C2 sin ωt
) + 2(−ωC1 sin ωt + ωC2 cos ωt). (23.36)

We insert equations (23.34), (23.35), and (23.36) in (23.31) and obtain after simplifying

−2ωC1 sin ωt + 2ωC2 cos ωt = f0 cos ωt.

From there it follows that C1 = 0 and C2 = f0/2ω. Thus the particular solution 23.34 reads

x = f0

2ω
t sin ωt. (23.37)

x

t

Amplification of an externally driven
oscillator.

The general solution then reads

x = A cos ωt + B sin ωt + f0

2ω
t sin ωt. (23.38)

(b) The constants A and B are determined from the initial
conditions. Because there is no damping, the terms propor-
tional to A and B do not become small at large times. But
for large times (t → ∞), the term proportional to t increases
beyond any limits such that the spring finally will break. A
drawing of the latter term shows the increase of the vibration
amplitudes with time: This is the typical case of “amplifica-
tion” of a vibration as is well known from everyday life, for
instance, on swinging, periodic pulling of a cut-in tree to cause
its breaking, etc.

Problem 23.3: Mass point in the x , y-plane

A mass moves in the x, y-plane. In the x-direction the harmonic force Fx = −mω2x and the additional
force Kx = αmω2 y (α > 0) act, in the y-direction only the harmonic force Fy = −mω2 y acts.

(a) Solve the equations of motion with the initial conditions

x(0) = y(0) = 0, ẋ(0) = 0, ẏ(0) = Aω.

(b) Draw a qualitative figure of the path of the mass point.

Solution (a) The equations of motion read

mẍ = −ω2mx + αmω2 y,

ẍ = −ω2(x − αy), (23.39)

and
ÿ = −ω2 y. (23.40)
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Equation 23.40 is solved by the general ansatz

y(t) = a sin ωt + b cos ωt .

The initial conditions yield

y(0) = b = 0, ẏ(0) = aω = Aω.

Hence the solution for y(t) reads

y(t) = A sin ωt. (23.41)

For 23.39 we then get with the help of 23.41

ẍ = −ω2(x − αA sin ωt). (23.42)

We guess a particular solution of the inhomogeneous equation

xs(t) = ct cos ωt,

ẍs(t) = −2cω sin ωt − cω2t cos ωt,
!= −ω2ct cos ωt + αAω2 sin ωt

⇒ −2c = αAω, c = −αAω

2
.

The general solution of 23.42 is then

x(t) = d cos ωt + e sin ωt − αAω

2
t cos ωt. (23.43)

The initial conditions yield

x(0) = d = 0, ẋ(0) = eω − αAω

2
= 0

⇒ e = αA

2
.

Hence, the solution of the equations of motion reads

x(t) = αA

2
[sin ωt − ωt cos ωt] ,

y(t) = A sin ωt.

(b) In the y-direction one obviously observes a harmonic vibration with amplitude A:

y
(
t A
n

) = ±A for t A
n = (2n + 1)π

2ω
, n = 0, 1, 2, . . . .

The associated x-coordinate reads

x
(
t A
n

) = ±αA

2
.

The zero passages of y are obtained from

y
(
t0
n

) = 0 for t0
n = nπ

ω
, n = 0, 1, 2, . . . (23.44)

⇒ x
(
t0
n

) = −αA

2
nπ(−1)n . (23.45)
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The motion of the particle is shown in the following figure.

x

y
A

–A

– /2A α

A /2α

The motion of the particle. The path of the particle is stretching more and more in a cigar shape along
the x-direction, while its width approaches the maximum value 2A.



24 The Pendulum

A mass m vibrating in a plane, suspended on a string of length l (let the mass of the string be
negligibly small), is called a mathematical pendulum. The vibration period of the pendulum
shall be calculated.

(a) Without damping

ϕ

l

S
m

ϕ
mg

FR

The pendulum: S gives the
lenght of the arc, FR the act-
ing force.

The backdriving force FR after displacing the mass by the
angle ϕ is the component of the earth attraction along the
direction of motion of the pendulum

FR = −mg sin ϕ.

Hence, the differential equation for the pendulum without
damping is

ms̈ = −mg sin ϕ,

s̈ + g sin ϕ = 0,

s = lϕ,

s̈ = lϕ̈,

lϕ̈ + g sin ϕ = 0,

ϕ̈ + g

l
sin ϕ = 0,

ϕ̈ + ω2 sin ϕ = 0. (24.1)

This differential equation is nonlinear. Howver, for small angles ϕ the sine of the angle
can be replaced by the angle itself, that is, for ϕ � 1 we can use sin ϕ = ϕ. The differential
equation for the pendulum vibration for small displacements thus reads

ϕ̈ + ω2ϕ = 0.

229
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This is a linear differential equation. Its general solution is

ϕ = A cos ωt + B sin ωt, ω =
√

g

l
,

from which we get the vibration period

T = 2π

ω
= 2π

√
l

g
. (24.2)

(b) Vibration of the pendulum with friction but for small elongations

The differential equation reads

ms̈ = −mg sin ϕ − β ṡ.

The last term −β ṡ represents the friction force. After division by m · l and by 2γ =
β/(ml), we have

ϕ̈ + ω2 sin ϕ + 2γ ϕ̇ = 0. (24.3)

For small vibration amplitudes this turns into

ϕ̈ + ω2ϕ + 2γ ϕ̇ = 0.

The general solution is now (compare to Chapter 23)

ϕ =
(

A cos
√

ω2 − γ 2 t + B sin
√

ω2 − γ 2 t
)

e−γ t (weakly damped vibration),

or

ϕ =
(

Ae−
√

γ 2−ω2t + Be
√

γ 2−ω2 t
)

e−γ t (strong damping),

or
ϕ = (At + B)e−γ t (critical damping).

In all of these cases the pendulum comes to rest at some time (t → ∞).

(c) Solution of the pendulum equation without friction, but for large elongations

We begin with the nonlinear differential equation (24.1)

d2ϕ

dt2
+ ω2 sin ϕ = 0

and substitute the angular velocity u = dϕ/dt :

du

dϕ
· dϕ

dt
+ ω2 sin ϕ = 0, hence u

du

dϕ
+ ω2 sin ϕ = 0.
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Separation of the variables and integration yield∫
u du = −

∫
ω2 sin ϕ dϕ or

u2

2
= ω2 cos ϕ + C.

With the boundary condition that for ϕ = ϕ0, u = 0, we obtain

0 = ω2 cos ϕ0 + C, C = −ω2 cos ϕ0,

or
u2

2
= ω2(cos ϕ − cos ϕ0),

dϕ

dt
= u = √

2ω
√

cos ϕ − cos ϕ0.

Another separation of variables and integration yield

ϕ∫
ϕ1

dϕ√
cos ϕ − cos ϕ0

=
∫ √

2ω dt = √
2ωt .

ϕ1 is an arbitrary initial angle. It is determined such that for t = 0 we get ϕ = 0. This
means

t = +
√

l

2g

ϕ∫
0

dϕ√
cos ϕ − cos ϕ0

, (24.4)

and in particular

T

4
= +

√
l

2g

ϕ0∫
0

dϕ√
cos ϕ − cos ϕ0

or

T = 4

√
l

2g

ϕ0∫
0

dϕ√
cos ϕ − cos ϕ0

. (24.5)

To evaluate the integrals (24.4, 24.5), we substitute cos ϕ = cos(ϕ/2 + ϕ/2) = cos2 ϕ/2 −
sin2 ϕ/2 = 1 − 2 sin2 ϕ/2, which yields

T = 4

2

√
l

g

ϕ0∫
0

dϕ√− sin2 ϕ/2 + sin2 ϕ0/2
.

The further substitution of

sin
ϕ

2
= sin

ϕ0

2
sin φ
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means a stretching of the variable ϕ that varies between 0 ≤ ϕ ≤ ϕ0 over the range
0 ≤ φ ≤ π/2. Then

cos φ =
√

1 − 1

sin2 ϕ0/2
sin2 ϕ/2 . (24.6)

Furthermore, we have

1

2
cos

ϕ

2
dϕ = sin

ϕ0

2
cos φ dφ,

and therefore

dϕ = 2 sin ϕ0

2 cos φ dφ√
1 − sin2 ϕ0

2 sin2 φ
.

With the abbreviation k2 = sin2 ϕ0/2, we get

T = 2

√
l

g
·

π/2∫
0

2 sin
ϕ0

2
cos φ dφ

√
1 − k2 sin2 φ ·

√
sin2

ϕ0

2

(
1 − 1

sin2 ϕ0

2

sin2 ϕ

2

) ,

or according to (24.6)

T = 4

√
l

g

π/2∫
0

cos φ dφ

(
√

1 − k2 sin2 φ) cos φ
= 4

√
l

g

π/2∫
0

dφ√
1 − k2 sin2 φ

.

For

ϕ0 � π

2
⇒ T = 4

√
l

g

π/2∫
0

dφ = 2π

√
l

g
,

that is, for small pendulum elongations the result known from equation (24.2) is reproduced.
For larger elongations φ, the equation for the vibration period T with x(φ) = −k2 sin2 φ

reads

T = 4

√
l

g

π/2∫
0

dφ√
1 + x(φ)

. (24.7)

This is an elliptic integral. Such types of integrals arise, for example, on calculating the
arc length of an ellipse, which explains the name. It may be evaluated approximately by
expansion. Using the general binomial theorem

(1 + x)p = 1 +
(

p

1

)
x +

(
p

2

)
x2 +

(
p

3

)
x3 + · · · ,
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thus

(1 + x)p = 1 + px + p(p − 1)x2

1 · 2
+ p(p − 1)(p − 2)x3

1 · 2 · 3
+ · · · ,

which may also be proved by means of a Taylor expansion (Chapter 22), follows for
1/

√
1 + x , which may also be written as (1 + x)−1/2:

(1 + x)−1/2 = 1 +
(

−1

2
x

)
+ −1/2(−3/2)

2
x2 + · · · ,

(1 + x)−1/2 = 1 − 1

2
x + 3

8
x2 − · · · ,

(1 − k2 sin2 φ)−1/2 = 1 + 1

2
k2 sin2 φ + 3

8
k4 sin4 φ + · · · ,

T = 4

√
l

g

π/2∫
0

(
1 + 1

2
k2 sin2 φ + 3

8
k4 sin4 φ + · · ·

)
dφ.

By using the recursion formula∫
sinm x dx = − 1

m
sinm−1 x · cos x + m − 1

m

∫
sinm−2 x dx for m �= 0,

which is obtained by partial integration, we obtain

π/2∫
0

sin2n ϕ dϕ = 1 · 3 · 5 · . . . (2n − 1)

2 · 4 · 6 . . . (2n)
· π

2
.

Then we get for the vibration period

T = 4

√
l

g

[
π

2
+ 1

2
k2 π

4
+ 3

8
k4 3

8

π

2
+ · · ·

]
or

T = 2π

√
l

g

[
1 + 1

4
k2 + 9

64
k4 + · · ·

]
.

With k2 = sin2 ϕ0/2, this expression finally turns into

T ≈ 2π

√
l

g

[
1 + 1

4
sin2 ϕ0

2
+ . . .

]

= T0

(
1 + 1

4
sin2 ϕ0

2
+ . . .

)
, where T0 = 2π

√
l

g
.

If ϕ0 � 1, we obviously obtain the old formula. If ϕ0 becomes larger, the vibration
period increases over T0. This is plausible as the backdriving forces are ∼ sin ϕ. Harmonic
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approximation means sin ϕ ≈ ϕ. For larger ϕ the backdriving forces become smaller than
∼ ϕ, and therefore T > T0.

Problem 24.1: The cycloid

A circle of radius a rolls on a straight line. A given point on this circle then performs a cycloid. Find
the parameter representation of this cycloid.

2a

y P M
a

a
t

0 x xA
Rolling a circle yields a cycloid.

Solution One has (see figure)

O A = a · t, O A = x + a sin t,

a = y + a cos t,

and therefore,

x = at − a sin t, y = a − a cos t,

x = a(t − sin t), y = a(1 − cos t).

This is the wanted parameter representation of the cycloid. Elimination of t yields the trajectory
in x-y-representation,

x(y) = −√
2ay − y2 + a arccos

(
a − y

a

)
.

Problem 24.2: The cycloid pendulum
0

A C
B

x

y

The string of the pendulum is warped along
the two branches of the cycloid (gray). The
mass m moves again on a cycloid.

In a vibration of a pendulum of mass m the string
shall osculate forth and back to the two branches O A
and OC of a cycloid (cycloid pendulum). The length
of the string shall be half of the length of the cycloid
bow.

Show that the curve ABC again is a cycloid.

Solution The equation of the cycloid branches reads

x = a(φ − sin φ), y = a(1 − cos φ).

The equation of the curve generated by the pendulum is

x = x1 + �x, x1 = a(φ1 − sin φ1), (24.8)

y = y1 + �y, y1 = a(1 − cos φ1).

(Equation of the cycloid. φ1 is the curve parameter of the cycloid point where the string lifts off
from the osculation curve.)

Moreover,

(�y)2 + (�x)2 = l2
1 and l1 = l − s1. (24.9)

The calculation of s1 runs as follows:(
ds

dφ

)2

=
(

dx

dφ

)2

+
(

dy

dφ

)2
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= a2
[
(1 − cos φ)2 + sin2 φ

]
= a2

[
1 − 2 cos φ + cos2 φ + sin2 φ

]
= 2a2(1 − cos φ),

s1∫
0

ds =
φ1∫

0

a
√

2
√

(1 − cos φ) dφ.

Moreover, we set 1 − cos φ = 2 sin2 φ

2 , φ

2 = z, hence dz
dφ

= 1
2 , and dφ = 2 dz. We then obtain

s1 = −4a cos
φ

2

∣∣∣∣φ1

0

= 4a

(
1 − cos

φ1

2

)
.

Hence, the total length of the cycloid bow is 8a, and therefore the string length is l = 4a and

x

y

x1

y1

l1

s1

∆x

α

∆y

x x1+∆

y y1+∆

The determination of �x .

l1 = l − s1 (equation 24.9), that is,

l1 = 4a cos
φ1

2
. (24.10)

To get the equation of the trajectory of the vibrating mass,
we now need the quantity �x according to equation 24.9. It
holds that (see figure)

tan α = dy1

dx1

= = sin φ1

1 − cos φ1

= = sin φ1

2 sin2 φ1/2
,

and therefore

�x = l1 cos α = 4a cos
φ1

2
· 1√

1 + tan2 α
= 4a cos

φ1

2
sin

φ1

2
.

The quantity �y is calculated in a similar way, namely

�y = l1 sin α = 4a cos
φ1

2

tan α√
1 + tan2 α

= 4a cos
φ1

2
cos

φ1

2
= 4a cos2 φ1

2
.

From there the x- and y-coordinates of the path result according to equation 24.8 as

x = x1 + �x = a

[
(φ1 − sin φ1) + 4 sin

φ1

2
cos

φ1

2

]
and because

1

2
sin φ1 = cos

φ1

2
sin

φ1

2
,

x = a[φ1 + sin φ1],

x = a[φ1 − sin(φ1 + π)],
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y = y1 + �y = a

[
(1 − cos φ1) + 4 cos2 φ1

2

]
= a [(1 − cos φ1) + 2(cos φ1 + 1)] ,

y = a[3 + cos φ1] = a[1 − cos(φ1 + π) + 2],

y = a[1 − cos(φ1 + π)] + 2a.

The trajectory of the vibrating mass again is a cycloid, namely

x = a[(φ1 + π) − sin(φ1 + π)] − πa,

y = a[1 − cos(φ1 + π)] + 2a.

It has the same form as the branches of the generating cycloid. The pendulum, however, is shifted
with respect to the generating cycloid branches, namely by 2a in the y-direction, and by −aπ in
the x-direction. Thus, one may ensure by this simple construction that a mass suspended by a string
vibrates along a cycloid. Such a pendulum is called a cycloid pendulum.

Problem 24.3: A pearl slides on a cycloid

A pearl of mass m is forced to slide down on a frictionless wire with the contour of a cycloid. Let the
pearl start from the rest position x = y = 0. The wire hangs in the gravitational field near the earth’s
surface (compare figure).

(a) Calculate the velocity of the pearl at the point y = 2a.

(b) Show that the vibration period of this motion equals that of a pendulum of length 4a.

m
x

y

2a

g (Gravitational
Acceleration)

Motion of a pearl along a cycloid.

Solution (a) According to the energy law, the balance for an arbitrary point P on the wire reads as follows:

Epot(P) + Ekin(P) = Epot(0, 0) + Ekin(0, 0),

that is,

mg(2a − y) + 1

2
m

(
ds

dt

)2

= mg(2a) + 0

or

2mga − mgy + 1

2
mv2 = 2mga

or
v2 = 2gy
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and finally,

v = √
2gy.

We ask for the velocity v at the position y = 2a:

v(2a) = √
2g · 2a = √

4ga = 2
√

ga.

This result is so far independent of the special curve of the wire.
(b) From the first part of the problem ⇒ (ds/dt)2 = 2gy.
The square of velocity along the cycloid reads(

ds

dt

)2

=
(

dx

dt

)2

+
(

dy

dt

)2

= a2(1 − cos β)2β̇2 + a2 sin2 β · β̇2 = 2a2(1 − cos β)β̇2,

because the cycloid is given by x = a(β − sin β), y = a(1 − cos β). Therefore,

2a2(1 − cos β)β̇2 = 2ga(1 − cos β),

namely

β̇2 = g

a
⇒ β̇ = dβ

dt
=

√
g

a
⇒ β = t

√
g

a
+ C1.

The last step is performed by integration after separating the variables. The initial conditions are
β = 0 for t = 0, β = 2π for t = T/2, T period of vibration. Therefore T = 4π

√
a/g =

2π
√

4a/g.
By comparison with the formula for the simple pendulum, we find

Tpendulum = 2π

√
l

g
and Tcycloid = 2π

√
4a

g
⇔ l = 4a .

Problem 24.4: The search for the tautochrone

y

x
S

The quantities used to find the tautochrone.

The problem of the tautochrone1 is the
search for that curve for which the vibra-
tion period is independent of the elonga-
tion: Which trajectory must be passed by
a mass point m to ensure that the vibration
period T of a frictionless vibrational mo-
tion becomes independent of the value of
the initial elongation h?

Solution Let s be the arc length on the wanted tau-
tochrone (see figure). With v = ds/dt ,
the energy law yields for the initial position and an arbitrary intermediate position

m

2

(
ds

dt

)2

+ mgy = mgh,

1Greek: tautos chronos = equal time.
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or
m

2

(
ds

dt

)2

= mg(h − y),

from which, using

ds = ds

dy
dy = s ′(y) dy,

after separation of the variables it follows that

dt = 1√
2g

s ′(y) dy√
h − y

,

or after integration along a quarter of vibration

1

4
T = 1

4
T (h) = 1√

2g

h∫
y=0

s ′(y) dy√
h − y

,

and with the transformation y/h = u

T (h) =
√

8

g

1∫
0

s ′(hu)
√

h du√
1 − u

. (24.11)

Here T obviously is still a function of the parameter h occuring under the integral. In the sense of the
formulated problem (T = constant) we now have to require

dT (h)

dh
= 0 =

√
8

g

1∫
0

d

dh

[
s ′(hu)

√
h√

1 − u

]
du =

√
8

g

1∫
0

√
h · us ′′(hu) + 1

2
√

h
s ′(hu)

√
1 − u

du .

This is definitely fulfilled if the numerator of the integrand vanishes, that is, if the differential equation

2hus ′′(hu) + s ′(hu) = 0 = 2ys ′′(y) + s ′(y)

or
s ′′(y)

s ′(y)
= − 1

2y
(24.12)

is fulfilled. Now

s ′′(y)

s ′
(y)

= d

dy
[ln s ′(y)] and − 1

2y
= d

dy
ln

√
C1

y
.

Hence from 24.12 it follows that

d

dy

[
ln s ′(y) − ln

√
1

y
− ln

√
C1

]
= 0

or after integration

ln s ′(y) = ln

√
C1

y
or s ′(y) =

√
C1

y
.
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From 24.12 it follows with ds = √
1 + (dx/dy)2 dy = (ds/dy)dy = s ′(y) dy, hence

√
C1/y =√

1 + (dx/dy)2 , from which after separation of variables

dx =
√

C1

y
− 1 dy = √

C1 y − y2
dy

y
,

and after integration with the new integration constant C2 it finally results in

x =
∫ √

C1 y − y2
dy

y

= √
C1 y − y2 − C1

2
arccos

2y − C1

C1
+ C2 . (24.13)

We check: With

f = √
C1 y − y2,

it follows that

f ′(y) = C1 − 2y

2
√

C1 y − y2
,

and with

g(y) = arccos

(
2y − C1

C1

)
,

it follows that

g′(y) = − 2

C1

√
1 −

(
2y − C1

C1

)2
= − 2√−4y2 + 4yC1

= − 1√
C1 y − y2

,

such that in fact(
f (y) − C1

2
g(y)

)′
= C1 − 2y

2
√

C1 y − y2
+ C1

2
√

C1 y − y2
= C1 − y√

(C1 − y)y
=

√
C1 y − y2

y
.

Hence, the curve 24.13 is a cycloid (compare to Problem 24.1). This result becomes even more
obvious if we determine the integration constants C1 and C2 from the boundary conditions y(x =
0) = 0, y(x = πa) = 2a as C1 = 2a and C2 = aπ , so that for 24.13 it finally follows that

x = √
2ay − y2 − a arccos

y − a

a
+ aπ

= √
2ay − y2 + a

(
π − arccos

y − a

a

)
.

We still check the vibration period, using 24.11. With s ′(y) = √
C1/y = √

2a/y, we get according
to 24.13:

T =
√

8

g

h∫
0

s ′(y) dy√
h − y

=
√

8

g

h∫
0

√
2a dy√

y(h − y)
= 2

√
4a

g

h∫
0

dy√
y(h − y)

,
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= −2

√
4a

g
· arcsin

(
1 − 2y

h

)∣∣∣∣∣
h

0

= 2π

√
4a

g
= 2π

√
lr

g
, (lr = 4a),

namely, actually a value that is independent of the initial elongation h. We shall prove the uniqueness
of the solution in Vol. 2 of the lectures, after we have become familiar with the Fourier series.

a

y

x

2a

aπ
Cycl.

Cycloid

Cyc
lo

id

The cyloid as the tautochrone (left), and used as jaws in Huygens’ construction of a pendulum whose
period does not depend on the amplitude (right).

Historical remark: The treatment of this problem may be traced back to Huygens,2 who aimed at
the construction of a pendulum, with the vibration period being independent of the amplitude. Because
the evolvent of a cycloid again represents a cycloid, a cycloid string pendulum may be constructed by
forcing the pendulum motion of the mass m into a cycloid trajectory by an appropriate assembly of
two cycloid jaws (compare the figure and Problem 24.2). Such a construction was realized in 1839 by
the Austrian engineer Stampfer for the clock of the City Hall tower in Lemberg. This clock excelled
by a very high accuracy of performance until its destruction by lightning.

2Christiaan Huygens, physicist and mathematician, b. April 14, 1629, Den Haag—d. there July 8, 1695. After
first studying jurisprudence, he turned to mathematical research and published among others in 1657 a treatise
on probability calculus. At the same time he invented the pendulum clock. In March 1655 he discovered the
first Saturn moon; in 1656 the Orion nebula and the shape of the Saturn ring. Already then he was also familiar
with the laws of collisions and those of central motion, but published them—without proofs—only in 1669.
In 1663 Huygens became elected as member of the Royal Society. In 1665 he settled in Paris, as a member
of the newly founded French Academy of Sciences, from where he returned to the Netherlands in 1681. After
publishing his Systema Saturnium, sive de causis mirandorum Saturni phaenomenon already in 1657, his main
work Horologium oscillatorium (The pendulum clock) emerged in 1673, which, besides the description of an
improved clock construction, contains a theory of the physical pendulum. Also contained there are treatises on
the cycloid as an isochrone and important theorems on central motion and the centrifugal force. From 1675 dates
Huygens’ invention of the spring watch with balance spring; from 1690 the Tractatus de lumine, the treatise on
light where a first version of the wave theory of double refraction of Iceland spar is developed. The spherical
propagation of the action about the light source is explained there by means of Huygens’ principle. The French
edition of the Traité de la lumière (Leiden, 1690) also includes a Discours de la cause de la pesanteur as a
supplement [BR].



25 Mathematical
Interlude:
Differential
Equations

On treating mechanical problems we became familiar with differential equations. An (or-
dinary) differential equation is a relation between an independent variable (t), a function
x(t), and one or several of its derivatives (ẋ, ẍ, . . .) from which the wanted function x(t)
shall be calculated. The differential equation is said to be of first order if only the first of
its derivatives is involved. Such a differential equation may be written as

F(t, x, ẋ) = 0 (25.1)

or, when solving for ẋ , as

ẋ(t) = f (t, x). (25.2)

A differential equation is of second order if no higher derivative than the second one occurs.
A differential equation of second order therefore has the form

F(t, x, ẋ, ẍ) = 0

or, resolved for ẍ ,

ẍ = f (t, x, ẋ). (25.3)

The meaning of a differential equation of first order (25.2) is understood as follows: ẋ
determines the direction of the curve x(t) in the t, x-plane. The differential equation (25.2)
assigns a direction to any point t, x ; it defines a direction field. We may visualize this field,
for example, by plotting in a sufficiently dense lattice of points t, x the direction at each
lattice point by a short dash (see the figure). The differential equation is solved by plotting
curves into this direction field; the directions of these curves at any point correspond to the

241
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direction field. If f (t, x) is a reasonable function, one may interpolate between the plotted
directions in the direction field. In this way one obtains a set of curves. In other words: The
differential equation (25.2) allows a set of solving functions x(t). An individual curve of
the set is specified by prescribing the value of x belonging to a fixed value of t (in the figure,
the value x0 for t = 0). Such a set of curves in which the individual curve is determined by
a single number (a parameter) is called a one-parametric set of curves. We therefore may
state:

x

t

x0

Direction field of a differen-
tial equation of first order.

A differential equation of first order (25.2)—with a rea-
sonable function f (t, x)—determines a one-parametric set
of curves. The general solution contains an arbitrary integra-
tion constant (x(0) = x0).

This also holds vice versa: To any (reasonable) one-parametric
set of nonintersecting curves in the t, x-plane there corre-
sponds a differential equation of first order. The curves of the
set may namely be described by the equation

ϕ(t, x) = c , (25.4)

where c for each curve takes a distinct value. The function ϕ is not uniquely determined by
the set of curves, as any possible function ϕ may be replaced by a function of ϕ, that is, by
F(ϕ) = F(c) = C and nevertheless describes the same set of curves. For the direction of
the curves it follows that

∂ϕ

∂t
dt + ∂ϕ

∂x
dx = 0, (25.5)

or (assuming ∂ F/∂ϕ �= 0)

∂ F

∂ϕ

(
∂ϕ

dt
dt + ∂ϕ

∂x
dx

)
= 0 ⇒ ∂ϕ

∂t
dt + ∂ϕ

∂x
dx = 0, (25.6)

that is, always the relation (25.5). From this relation it then follows that

ẋ = − ϕt (t, x)

ϕx (t, x)
≡ f (t, x), (25.7)

where ϕt and ϕx denote the partial derivatives with respect to t and x , respectively. If ϕ

is replaced by a function of ϕ, we obtain according to (25.6) the same equation (25.7).
A one-parametric set of curves therefore essentially corresponds to a single differential
equation of first order. We therefore may state: A one-parametric set of curves (25.4) is
equivalent to a differential equation. Particularly simple differential equations of first order
are of the type

ẋ = f (t) (25.8)

and
ẋ = f (x). (25.9)
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In these cases the direction field depends only on one of the variables t or x , respectively.
The solution of (25.8) may be obtained immediately:

x(t) =
t∫

0

f (t ′) dt ′ + x0. (25.10)

Obviously all solutions originate from a single solution by adding an arbitrary constant
to x(t) (by shifting the solution curves along the x-direction). The solution of (25.9) is
obtained via the transformation

dt = dx

f (x)
(25.11)

by the integral

t (x) =
x∫

0

dx ′

f (x ′)
+ t0. (25.12)

In this case all solutions are generated from a single (fixed) solution by adding an arbitrary
constant to t (by shifting the solution curve in the t-direction). A differential equation of
first order may be solved easily also then if it may be put into the form

g(x) dx = h(t) dt, (25.13)

that is, if the variables may be separated. We then get

x∫
x0

g(x ′) dx ′ =
t∫

0

h(t ′) dt ′. (25.14)

We now turn to the discussion of a differential equation of second order. The function
f (t, x, ẋ) in (25.3) ascribes to each point t, x and to each given direction (ẋ) through
this point a defined change of direction. For a reasonable function f (t, x, ẋ), we may find
graphical solutions as follows: We begin at an arbitrary point of the t, x-plane with an
arbitrary direction of the curve, and then calculate the associated value of ẍ according
to (25.3). The curve is then continued as a parabola in the assumed direction (ẍ) with the
calculated value of ẍ (a parabola with a vertical axis has the same value of ẍ everywhere).
After a certain piece of continuation we have a new point t, x and a new direction ẋ . There
we again calculate ẍ according to (25.3) and continue the curve by the corresponding new
parabola, etc. The solution curve obtained this way depends on the choice of the position
and direction when starting the procedure. In total, we obtain an entire set of solutions. The
individual solution curve is thus determined by specifying two numbers, for example, the
values of x and ẋ at a certain time point (t-value). A set of curves in which the individual
curve is determined by giving two numbers is called a two-parametric set of curves (see
figure). Thus we may state:

A differential equation of second order (25.3) with a reasonable function f (t, x, ẋ)

determines a two-parametric set of curves.
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The general solution contains two arbitrary integration constants.
Particularly simple differential equations of second order (which we met already) are

ẍ = f (t), (25.15)

ẍ = f (ẋ), (25.16)

ẍ = f (x). (25.17)

x

t

Set of solutions of a differ-
ential equation of second
order.

In the first case, (25.15), the acceleration is given as a func-
tion of time; in the second case, (25.16), the acceleration is
given as a function of the velocity; and in the third case, (25.17),
as a function of the position. (25.15) may be solved by a twofold
integration. (25.16) is of first order in ẋ , thus it may be rewritten
with v = ẋ into v̇ = f (v) and may then be solved as (25.9).
(25.17) is transformed to

ẋ ẍ = f (x)ẋ,

ẋ d ẋ = f (x) dx, (25.18)

1

2
ẋ2 =

x∫
x0

f (x ′) dx ′ + c ,

and we thereby obtain a differential equation

ẋ = ϕ(x),

which may be solved as (25.9). In physics the linear differential equations are of particular
importance because the phenomena described by these equations obey the superposition
principle (compare equations (21.4) and (21.5) ff.). We shall outline this point of view for
a differential equation of second order; the reader may extend that to other orders. The
differential equation is linear if x, ẋ, ẍ occur linearly, that is, if the equation has the form

Aẍ + Bẋ + Cx + D = 0, (25.19)

where A, B, C, D may be functions of t . If the term D is missing, the equation is called
homogeneous. If x1(t) solves a homogeneous linear differential equation, then cx1 with c
being a constant is also a solution. If x1(t) and x2(t) are solutions, then c1x1 + c2x2 with
arbitrary constants c1 and c2 is also a solution (compare equations (21.4) and (21.5) ff.).
Because the general solution of a differential equation of second order contains two and
only two arbitrary constants, a homogeneous linear differential equation of second order
has been solved generally if two distinct (linearly independent) solutions are known. If we
know a solution x1(t) of an inhomogeneous linear differential equation (25.19), that is,

Aẍ1(t) + Bẋ1(t) + Cx1(t) + D = 0, (25.20)

and if x0(t) is a solution of the homogeneous equation that arises by omitting the term D,
that is,

Aẍ0(t) + Bẋ0(t) + Cx0(t) = 0 , (25.21)
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then (x0 + x1) is again a solution of equation (25.19). We have namely

A(ẍ0 + ẍ1) + B(ẋ0 + ẋ1) + C(x0 + x1) + D

= Aẍ0 + Bẋ0 + Cx0︸ ︷︷ ︸
=0

+ Aẍ1 + Bẋ1 + Cx1 + D︸ ︷︷ ︸
=0

= 0.

Hence, an inhomogeneous linear equation is solved generally if one has solved generally the
homogeneous equation and then adds a particular solution of the inhomogeneous equation.
We have already used this statement in the context of the forced vibration (Chapter 23).
One may convince oneself by means of (25.20) that two possibly distinct solutions of the
inhomogeneous differential equation, x1(t) and x2(t), must be equal to each other, apart
from a solution of the homogeneous equation (25.21). From Aẍ1 + Bẋ1 + Cx1 = −D =
Aẍ2 + Bẋ2 + Cx2, it follows namely that

Aẍ1 + Bẋ1 + Cx1 = Aẍ2 + Bẋ2 + Cx2;
hence

A(x1 − x2)
·· + B(x1 − x2)

· + C(x1 − x2) = 0,

that is, the difference x1 − x2 of the two particular solutions must be a solution of the
homogeneous equation. Homogenous linear equations with constant coefficients (A, B, C)

are solved by means of the ansatz

x(t) = eλt .

From the differential equation

Aẍ + Bẋ + Cx = 0

results the algebraic equation (it is called characteristic equation)

Aλ2 + Bλ + C = 0

for λ. Its two solutions yield, if they don’t just coincide, two solutions of the differential
equation and thus the general solution

x = c1eλ1t + c2eλ2t .

If the quadratic equation in λ has only one solution, then

x = c1eλt + c2teλt

is the general solution of the differential equation, as may be checked easily (directly or by
a limiting process).



26 Planetary Motions

In this chapter we shall investigate the motion in a central force field. As usual in physics, we
begin with experimental observations—in our case the Kepler laws of planetary motion—
and deduce the forces–in ur case the gravitational force between two masses. Later we
shall reverse this process and start our reasoning with the forces and Newton’s equations
of motion, and we shall then derive Kepler’s laws, As will become evident, theory then
predicts new phenomena not contained in Kepler’s laws, for example the orbits of comets,
perhelion motion, and other facts.

Accordingsly, let us now consider in particular the planetary motion and start from the
three Kepler laws, which were derived by Johannes Kepler1 from the observations of planets
made by Brahe.2 These three laws are as follows:

1Johannes Kepler, b. Dec. 27, 1571, Weil der Stadt—d. Nov. 15, 1630, Regensburg. Kepler was son of a trader
who often also served in military, first attended the school in Leonberg, and later the monastic school in Adelberg
and Maulbronn. In 1589 Kepler began his studies in Tübingen, to become a theologian, but in 1599 he took the
position of professor of mathematics in Graz offered to him. In 1600 Kepler had to leave Graz, because of the
counterreformation, and he went to Prague. After the death of Tycho Brahe (Oct. 24, 1601) Kepler as his successor
became imperial mathematician. After the death of his patron, emperor Rudolf II, Kepler left Prague and went
in 1613 to Linz as a land surveyor. From 1628 Kepler lived as employee of the powerful Wallenstein mostly in
Sagan. Kepler died fully unexpectedly during a visit to the meeting of electors in Regensburg.

Kepler’s main fields were astronomy and optics. After extraordinarily lengthy calculations he found the
fundamental laws of planetary motion: the Kepler’s first and second laws were published 1609 in Astronomia
Nova, the third one 1619 in Harmonices Mundi. In 1611 he invented the astronomical telescope. His Rudolphian
Tables (1627) continued to be one of the most important tools of astronomy until the modern age. In the field
of mathematics he developed heuristic infinitesimal considerations. His best-known mathematical writing is the
Stereometria Doliorum (1615) where, e.g., Kepler’s tub rule is given.

2Tycho Brahe, Danish astronomer, b. Dec. 14, 1546, Knudstrup on Schonen—d. Oct. 24, 1601, Prague. He
first studied law, secretly dealt with astronomy until he inherited a considerable fortune, and then continued his
study in Germany. In 1572 he became known by the discovery of a new star, the Nova Cassiopeiae, which was in
fact a supernova. He lectured in Copenhagen and, by recommendation by Wilhelm IV, count of Hessen-Kassel,
who dealt with astronomy, he got the support of the Danish king Friedrich II, who in 1576 transferred to him the
island Ven in the Sound near Copenhagen. At the observatory “Uranienborg” built there Brahe dealt with research
and education and tutoring his numerous scholars and assistants. The troubles he met after the death of Friedrich
II (1588) forced him to leave the country in 1597. After a two-year stay with the count Rantzau in Wandsbek near
Hamburg, he served as imperial astronomer with Rudolf II. In Prague he again gathered a couple of coworkers,
among them Christian Ljöngberg (Longomontanus) and first of all Johannes Kepler.

246
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1. All planets are moving on ellipses. The sun stands in one of their focal points.

2. The radius vector sun–planet covers equal areas in equal times (area theorem).

3. The squares of the revolution periods of two planets are related to each other as the
cubes of the large semi-axes of their trajectories.

θ
e1

e2

er

eθ

r

Unit vectors for Cartesian and polar co-
ordinates.

Let us denote the large semi-axis by a� and the
revolution period of the �th planet by T�; then

T 2
1

a3
1

= T 2
2

a3
2

.

This means for a planet: T 2 ∼ a3.
We adopt two approaches: First we try to find out

the properties of the force field from the Kepler laws.
Later on we shall start from the force field that will be
assumed to be given, and deduce the properties of the
path. In order to formulate the motion and the force
law, it is appropriate to formulate the equations of
motion in polar coordinates. According to the first of Kepler’s laws, the motion must be a
planar motion.

We therefore introduce the local unit vectors er and eθ at each point. They are defined
by the equations

er = cos θ e1 + sin θ e2,

eθ = − sin θ e1 + cos θ e2.

We know them already from Chapter 10 but shall briefly remind the essentials. The orien-
tation of these unit vectors is time-dependent. Therefore,

ėr = (− sin θ e1 + cos θ e2)θ̇ = θ̇eθ ,

ėθ = (− cos θ e1 − sin θ e2)θ̇ = −θ̇er .

We now express the velocity and acceleration in terms of these coordinates. Twofold
differentiation yields

r = rer ,

ṙ = ṙer + r ėr = ṙer + r θ̇eθ ≡ v,

Brahe was the most significant observing astronomer before the invention of the telescope. He practically
reached the possible accuracy of observations with the bare eye. The observations of Brahe and his coworkers
formed the prerequisite for Kepler’s works on the orbits of planets. Brahe tried to substitute the Copernican world
system by his own system, according to which sun and moon are orbiting about the earth resting at the center
of the universe, while the remaining planets orbit about the sun. The Tychonian system was favored in the 17th
century since the assumption of the incredibly large distances of the fixed stars that had to be presupposed by
Copernicus were not needed in Brahe’s system. Brahe proved that the comets are not phenomena caused by the
earth’s atmosphere, as was assumed, for example, by Aristotle [BR].
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v̇ = r̈er + ṙ ėr + ṙ θ̇eθ + r θ̈eθ + r θ̇ ėθ

= (
r̈ − r θ̇2

)
er + (

r θ̈ + 2ṙ θ̇
)

eθ . (26.1)

The area theorem now reads simply

r2θ̇ = h (h = constant). (26.2)

This may be seen as follows: Let the force center be at the coordinate origin; then

d A = |dA| = 1

2
|r × dr|

is the infinintesimal area element, and furthermore

d A

dt
= 1

2

∣∣∣∣r × dr
dt

∣∣∣∣ = 1

2
|r × v| = 1

2
h = constant , (26.3)

where 1
2 |r × v| is the “area velocity” of the radius vector. Hence:

|r × v| = r2θ̇ = h.

From the area theorem found empirically by Kepler, it now follows that

d(r2θ̇ )

dt
= r(2ṙ θ̇ + r θ̈ ) = 0.

A comparison with (26.1) yields for the wanted force field

r̈ · eθ = 0, (26.4)

that is, no acceleration and hence no force is acting along the eθ -direction. The area theorem
thus implies that we are dealing with a central force field. This is already known from earlier
(Chapter 17). And vice versa, a central force field requires the area theorem to be valid: For
central forces the torque vanishes, D = r × F = 0. Hence, for central forces conservation
of the angular momentum generally holds:

L̇ = r × F = 0, L = −−−−→
constant;

hence,

L = r × p = (r × v)m = −−−−→
constant.

From there one may immediately derive

|L| = r2θ̇m = hm . (26.5)

Mathematical interlude: consideration of conic sections in polar coordinates—
ellipse, parabola, hyperbola:

The equation in polar coordinates

r = k

1 + ε cos θ
(26.6)



PLANETARY MOTIONS 249

describes

circles (for ε = 0),

ellipses (for ε < 1),

parabolas (for ε = 1),

hyperbolas (for ε > 1).

Equation (26.6) is therefore the general equation for conic sections in polar coordinates.
We make that clear in detail now:

y

xa

a a

c c

b

y
r´

F´ r

F x
θ

The geometry of the ellipse.

(a) Ellipse

It is the set of all points whose distances from
two fixed focal points F and F ′ in a distance of
2c (see figure) have a constant sum 2a, which is
larger than F F ′. Thus (compare figure), r + r ′ =
2a, c2 + b2 = a2, where a and b are the major
and minor semi-axes of the ellipse, respectively.
Further it holds that

c =
√

a2 − b2 = ε · a, ε < 1.

ε is called eccentricity. For the circle ε = 0 (both focal points coincide, i.e., c = 0).
Obviously (compare figure)

r +
√

(2c)2 + r2 + 2(2c)r cos θ = 2a

or
4ε2a2 + r2 + 4εar cos θ = (2a − r)2,

r = a(1 − ε2)

1 + ε cos θ
≡ k

1 + ε cos θ
,

where

k = a(1 − ε2) = a

(
1 − a2 − b2

a2

)
= b2

a2
.

We still give the equation of an ellipse in Cartesian coordinates. From the figure one may
immediately read off

r =
√

(x − c)2 + y2, r ′ =
√

(x + c)2 + y2 ,

such that the defining equation for the ellipse reads

r + r ′ =
√

(x − c)2 + y2 +
√

(x + c)2 + y2 = 2a .
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Forming twice the square, together with b2 = a2 − c2, then leads to

x2

a2
+ y2

b2
= 1.

(b) Circle

Circles casually fit in as special cases of ellipses (ε = 0).

(c) Parabola

The parabola is the geometric locus of all points P of a plane that have equal distance from

y

x

Guideline

c

c

d
r

P

F θ

The geometry of the parabola.

the fixed guideline L and the fixed focal point F .
Therefore,

r = d = 2c − r cos θ

or

r = 2c

1 + cos θ
≡ k

1 + ε cos θ
,

where ε = 1 and k = 2c. We shall also write the
parabola in Cartesian coordinates. From the figure we read

r =
√

(c + x)2 + y2 ,

such that from

r = d = c − x

after squaring follows

y2 = −4cx .

y

xa c

r´

F´

r

F
θ

The geometry of the hyperbola.

(d) Hyperbola

The hyperbola is the geometric locus of all points of
a plane whose distances from two fixed points on the
plane (the focal points) F and F ′ (with distance 2c)
have a constant difference. Hence

r − r ′ = 2a < F F ′

or

r −
√

r2 + 4c2 + 4rc cos θ = 2a.
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With c = εa (ε > 1, see figure) it follows that

r = a(1 − ε2)

1 + ε cos θ
≡ k

1 + ε cos θ
, k = a(1 − ε2).

In Cartesian coordinates the hyperbola equation follows from the defining equation

r − r ′ = 2a

or √
(c − x)2 + y2 −

√
(c + x)2 + y2 = 2a

after squaring twice and using b2 = c2 − a2 as

x2

a2
− y2

b2
= 1.

Thus, the general form (26.6) of conical sections is founded.
We now continue our physical considerations and return to the further investigation of

Kepler’s laws. In order to derive the special form of the force law from the Kepler laws, we
now take into account that the trajectory is an ellipse with the sun at one focal point. The
equation of the ellipse reads in polar coordinates

r = k

1 + ε cos θ
, (26.7)

with the parameter

k = a(1 − ε2) = a2 1 − ε2

a
= a2 − c2

a
= b2

a
,

and the eccentricity

ε =
√

a2 − b2

a
< 1 .

We already know from (26.4) that the force, and hence the acceleration, must be central,
namely, proprtional to er . We thus can calculate the central acceleration—see (26.1)—and
taking into account (26.2), we get

ṙ = dr

dθ
θ̇ = ε

k
sin θ r2θ̇ = ε

k
h sin θ,

r̈ = ε

k
h cos θ θ̇ = εh2

kr2
cos θ,

and, using (26.2) and (26.7) for the component of (26.1) along er , finally

r̈ − r θ̇2 = h2

r2

(
ε

k
cos θ − 1

r

)
= − h2

kr2
. (26.8)
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The central force of the wanted field for a planet of mass m is therefore given by (see
also (26.1))

F(r) = m(r̈ − r θ̇2)er = −h2

kr2
m

r
r
.

At first the quantity h2/k appears as a constant that is specific for each planet. But keeping
in mind the third Kepler law, we find that h2/k has the same value for all planets. This
may be seen as follows: Because h/2 is the area velocity of the radius vector for a defined
planet, the area of the ellipse equals πab and b2 = ak, it follows for the revolution period
T that

h

2
T = πab,

h · T = 2πab = 2π
√

a3k,

and
T 2

a3
= 4π2k

h2
⇒ h2

k
= 4π2a3

T 2
;

Because

a3

T 2
= constant ⇒ h2

k
= constant. (26.9)

Because according to the third Kepler law a3/T 2 is equal for all planets, the same obviously
holds also for h2/k. The quantity h2/k is the same for all planets. Therefore, all planets
obey the force law

F(r) = − constant
m

r2

r
r
.

If, according to the principle of actio and reactio, the mass of the central star is still
factorized out from the constant (finally the force must vanish if the sun mass M vanishes),
the gravitational law thus takes the form

F = −γ
Mm

r2
· r

r
. (26.10)

It is remarkable how this fundamental force law may be deduced from Kepler’s laws. As
we have seen, it is completely contained in these laws. Already Newton realized that the
acceleration a planet feels due to the attraction by the sun is of the same nature as the
acceleration on a freely falling body by the earth gravitation. The factor const = γ M in the
law (26.10) is of course only then the same if the attracting body is the same in both cases,
for example, the earth. Newton therefore compared the acceleration of fall near the earth’s
surface, roughly 10 m/s2, with the central acceleration of the moon on its orbit about the
earth. The latter one is

ω2a = 4π2a

T 2
= 40 · 6370 · 105 · 60

272 · 242 · 602 · 602

cm

s2
,
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where the distance of moon a is set equal to 60 times the earth’s radius (6370 km), and the
circulation period of the moon equal to 27 days. Because

40 · 6370 · 102

272 · 242 · 60
≈ 1,

it follows that

ω2a ≈ 103

602

cm

s2

and
ω2a / g ≈ 1 / 602;

that is, the acceleration of the moon on circulating about earth is actually related to the
acceleration of free fall near the earth’s surface inversely as the squares of the distances
from the earth’s center.

Example 26.1: The Cavendish experiment

2l

Fiber

m1

m 1́

m2

m 2́Mirror

S

Light
Source

Torsional balance for the determination of
the gravitational constant.

In principle the gravitational constant γ may be de-
termined by measuring the attractive force between
two bodies of known mass. In practice, however, the
gravitational force is so weak that it becomes highly
difficult to demonstrate it in the laboratory. In the
so-called Cavendish experiment (Cavendish,3 1798)
the force between two masses is determined from the
torsion of an elastic suspension string (see figure).

The masses m1 and m ′
1 are fixed to the ends of a

light scale beam of length 2l suspended by a very thin
quartz fiber. Already a very weak force may force the
fiber to rotate about its axis (torsion), such that the
torsion angle may provide a measure for very weak
forces. To make the small torsion of the string visible,
a mirror is attached to this string, which is hit by a
light ray. Observation of the reflected ray allows us
to measure any rotation of the string, and thus of the
mirror.

In the measurement of the gravitational constant γ two large masses m2 and m ′
2 are positioned close

to the masses m1 and m ′
1, as shown in the left figure below. Because of the gravitational attraction

the small masses m1, m ′
1 move and thereby twist the string by the angle θ . After stabilization of this

configuration, within several hours the masses m2, m ′
2 are brought into a new position, as represented

in the right figure below.

3Henry Cavendish, chemist, b. Oct. 10, 1731, Nizza—d. Feb. 28, 1810, London. He investigated gases in
detail, isolated carbon dioxide and hydrogen as distinct kinds of gases (1766); he realized the composition of air,
discovered the explosionlike combination of hydrogen and oxygen (oxyhydrogen gas) and hence the composition
of water. When working on nitrogen he discovered nitric acid. His determination of the gravitational constant by
means of the torsional balance was of particular significance.
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b

b

F´

F´

θ
F
F

The first position of the masses m2 and
m′

2 for the determination of the gravi-
tational constant.

F´
F´

2θ
F

F b

The second position of the masses
m2 and m′

2.

The string is now twisted anew by the gravitational force, namely in opposite direction by the
angle 2θ . The system does not reach the final equilibrium state right now but rather oscillates with
decreasing amplitude toward the final position (weakly damped oscillator—see figure on the next
page). The period of oscillation amounts to about 8 min, and after about 30 min the system reaches the
final equilibrium state. From these data the force between the spheres is determined, and with known
mass and known distance between the centers of the spheres, we may calculate the gravitational
constant γ from Newton’s gravitational law:

γ = 6.67 · 10−11 m3

kg s2 .

From the defining equation for the gravitational acceleration on the earth’s surface

g = γ · m E

R2
E

(m E : mass of earth, RE : radius of earth)

and with the known constant γ we may now calculate the mass of earth. We obtain

m E = g · R2
E

γ
= 5.97 · 1024 kg,

where RE = 6.37 · 106 m, g = 9.81m/s2 have been assumed. This implies a mean mass density of

T=
8.3 min

0 10 20 30 40 50 t (min)

60

50

44S0

Sd

End
Position

Oscillations with weak dampening around the end position.
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earth of

� = m

V
= m E

4
3 π R3

E

≈ 5.5 · 103 kg

m3

or
� ≈ 5.5 g/cm3

(
�(iron) = 7.86 g/cm3

)
.

Derivation of the Kepler laws from the force law

So far we have derived the gravitational law from the Kepler laws. Now we shall investigate
central force fields in general. One may start from the assumption that the force field is
known. The central force field has the following properties:

1. Central force fields F = f (r) r
r with arbitrary radial dependence f (r) are conservative,

that is, the energy conservation law is valid because

curl F =

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂

∂x

∂

∂y

∂

∂z

f (r)
x

r
f (r)

y

r
f (r)

z

r

∣∣∣∣∣∣∣∣∣∣∣
= 0.

With r = √
x2 + y2 + z2 =

√
x2

1 + x2
2 + x2

3 and ∂r/∂xi = xi/

√
x2

1 + x2
2 + x2

3 = xi/r
there holds, for example, for the e1-component

∂

∂y

[
f (r)

z

r

]
− ∂

∂z

[
f (r)

y

r

]
= z

∂

∂r

(
f (r)

r

)
∂r

∂y
− y

∂

∂r

(
f (r)

r

)
∂r

∂z

= ∂

∂r

(
f (r)

r

) ( zy

r
− yz

r

)
= 0.

The vanishing of the the other components can be deduced in an analogous way. This is
also vividly clear, as a central force field that points only toward the center or off center
cannot have vortices.

2. If a body moves on an orbit in the central force field, then the orbital angular momentum
is conserved. That means that the area theorem holds. For central force fields, we have

D = r × F = r × f (r)

r
r = 0 = L̇;

thus

L = r × p = m(r × v) = −−−−→
constant = mh

or
1

2
|r × v| = d A

dt
= 1

2
h = constant.
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3. A body in the central force field always moves in a plane, because from

r × v = h = −−−−→
constant

it follows that

r · h = r · (r × v) = 1

m
r · L = 0.

Hence, r points perpendicular to L. Because L is constant, r always lies in a plane. In
other words: The body moves only within a plane perpendicular to the angular momentum
vector. Based on the conservation of energy E and of the angular momentum L, we shall
try to make statements on the orbital motion. The conservation laws concerning the angular
momentum and the energy according to (26.5) read

mr2θ̇ = L , (26.11)
1

2
mv2 + V (r) = E (26.12)

with the gravitational potential

V (r) = −
∫

F(r) · dr

= γ Mm

r∫
∞

r · dr
r3

= γ Mm

r∫
∞

dr

r2
= −γ Mm

r
.

The gravitational potential has been chosen such as to vanish at infinity (i.e., for r → ∞).
This is always possible since we know that the potential is determined only up to an additive
constant. Using

v2 = ṙ2 + r2θ̇2,

we rewrite the energy conservation law (26.12) into

m

2
(ṙ2 + r2θ̇2) + V (r) = E .

With the angular momentum (26.11), it follows that

m

2
ṙ2 + L2

2mr2
+ V (r) = E . (26.13)

Hence, the total energy is composed of three components: a radial kinetic energy (m
2 ṙ2);

a rotational energy (L2/2mr2); and a potential energy (V (r)). The rotational energy is
usually written in the form L2/2J , where J = mr2 is the moment of inertia of the mass
point (the planet) with mass m when revolving at a distance r from the axis of rotation. This
will be treated in more detail in the second part of the mechanics course. From equation
(26.13) we may now easily determine r(t), because

ṙ =
√

2

m
(E − V (r) − L2/2mr2) , (26.14)
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dt = dr√
2
m (E − V (r) − L2/2mr2)

(separation of variables), (26.15)

t − to =
r∫

r0

dr√
2
m (E − V (r) − L2/2mr2)

. (26.16)

As already mentioned, the total energy (26.13) consists of three terms; here 1
2 mṙ2 is

denoted as kinetic radial energy, and L2/2mr2 as rotational energy. This rotational energy
may be incorporated into the potential, as L2 is constant and L2/2mr2 therefore acts like a
potential term in (26.13). The term L2/2mr2 is therefore also called rotational potential or
centrifugal potential. Thus one is led to the effective potential

Veff = V (r) + L2

2mr2

consisting of the gravitational potential V (r) and the centrifugal potential L2/2mr2. From
(26.11) we may calculate the orbit, using the expression (26.14) for ṙ . It then results that

dθ = L dt

mr2
= L dr

r2
√

2m(E − V − L2/2mr2)

= dr

r2
√

2m E/L2 − 2mV (r)/L2 − 1/r2

or

θ − θ0 =
r∫

r0

dr

r2
√

(2m/L2) (E − V ) − 1/r2
. (26.17)

The integrals (26.16) and (26.17) yield t = t (r) and θ = θ(r), respectively. The motion
r(t) and r(θ) may be determined by means of the inverse functions. There always enter
four integration constants: E , L , r0, and t0 or θ0. Energy and angular momentum may, of
course, also be expressed by the initial velocities ṙ0 and θ̇0. In principle from (26.17), the
function θ(r) or r(θ) may be determined. As will be seen later on, it is, however, easier to
calculate u(θ) ≡ 1/r(θ) directly from the dynamic basic law (force law). We now shall
follow the second approach.

The equation for the orbit in the gravitational field

The path of a body in the Newtonian force field

F(r) = −γ
Mm

r2
· r

r



258 PLANETARY MOTIONS 26

shall now be determined. We don’t start from the integrals (26.16) and (26.17) but shall
derive a differential equation for r(θ) and look for the possible solutions in the gravitational
potential. The energy law is (see equation (26.13))

1

2
m(ṙ2 + r2θ̇2) + V (r) = E , (26.18)

and the angular momentum conservation law reads

r2θ̇ = h.

Then

ṙ = dr

dθ
θ̇ = dr

dθ

h

r2
,

and the energy law (26.18) thus can be written as

1

2
m

h2

r4

((
dr

dθ

)2

+ r2

)
+ V (r) = E . (26.19)

We expect the conic sections (26.6) as solutions. Therefore, it is obvious to consider the
variable u(θ) = 1/r(θ) = (1 + ε cos θ)/k. For u(θ) one may expect a simple differential
equation. By substituting u = 1/r , we have with dr/du = −1/u2

dr

dθ
= dr

du

du

dθ
= − 1

u2
· du

dθ
,

ṙ = dr

dθ
θ̇ = − 1

u2

du

dθ
hu2 = −h

du

dθ
, (26.20)

and we obtain for (26.19)

1

2
mh2u4

(
1

u4

(
du

dθ

)2

+ 1

u2

)
+ V

(
1

u

)
= E,

or

1

2
mh2

((
du

dθ

)2

+ u2

)
= E − V

(
1

u

)
. (26.21)

These relations will be useful later on. The function wanted is u = u(θ). It could be
calculated directly by integration, but another path is much easier. For this end we start
from the Newtonian equation for the central force

F(r) = m(r̈ − r θ̇2) .

Replacing again r by u, then with the use of (26.20) it holds that

r̈ = −h
d

dt

(
du

dθ

)
= −h

d2u

dθ2
θ̇

= −h2 1

r2

d2u

dθ2
= −h2u2 d2u

dθ2
,
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and with r2θ̇ = h it then results that

d2u

dθ2
+ u = − 1

mu2h2
F

(
1

u

)
. (26.22)

F(1/u) may now be determined from the gravitational law (26.10). We have

F = F(r)er = −γ
Mm

r2
er = −Hu2er , (26.23)

where
H = γ Mm. (26.24)

Hence, (26.22) turns into

d2u

dθ2
+ u = H

mh2
. (26.25)

This inhomogeneous differential equation is to be solved. The solution of the corre-
sponding homogeneous differential equation

d2u

dθ2
+ u = 0

is, however,

u(θ) = A cos θ + B sin θ. (26.26)

A particular solution of the inhomogeneous differential equation is easily found, namely

u = constant = H

mh2
. (26.27)

The general solution of equation (26.25) therefore reads

u = H

mh2
+ A cos θ + B sin θ, (26.28)

or written in another form—see (21.10) and (21.11):

u = H

mh2
+ C cos(θ − φ), (26.29)

where φ is a constant angle; its magnitude depends on the choice of the coordinate frame.
As no assumptions on the coordinate frame were made yet, one may choose it now such
that φ = 0. One then obtains for u(θ):

u(θ) = H

mh2
+ C cos θ = 1

r(θ)
. (26.30)

Solving for r(θ) yields

r(θ) = mh2/H

1 + (Cmh2/H) cos θ
. (26.31)
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With a look at the equation of the conical sections (26.6) we introduce the constants
k = mh2/H and ε = Cmh2/H . We then obtain for the path equation

r(θ) = k

1 + ε cos θ
, k = mh2

H
, ε = Cmh2

H
. (26.32)

This is just the equation of a conic section. The particular shape of the path curve is
determined by the eccentricity ε:

ε = 0: r(θ) describes a circle,

0 < ε < 1: an ellipse,

ε = 1: a parabola,

ε > 1: a hyperbola.

We shall now investigate on which physical quantities (e.g., energy, angular momentum)
the eccentricity depends. For this purpose we first determine the constant C by means of
the energy law:

u(θ) = H

mh2
+ C cos θ (26.33)

is differentiated and inserted into the energy equation (26.21); hence

1

2
mh2

((
du

dθ

)2

+ u2

)
= E − V

(
1

u

)
, (26.34)

1

2
mh2

(
C2 sin2 θ +

(
H

mh2
+ C cos θ

)2
)

= E − V

(
1

u

)
, (26.35)

where V = V (r) is the potential. It reads

V (r) = −
∫

F · dr =
r∫

∞

γ Mm

r2
dr = −γ

Mm

r
= −Hu = V

(
1

u

)
.

We now insert V (1/u) = −Hu in the energy equation, which leads to

1

2
mh2

(
C2 sin2 θ +

(
H

mh2
+ C cos θ

)2
)

= E + H

(
H

mh2
+ C cos θ

)
.

With the intermediate calculation

1

2
mh2

[
C2(sin2 θ + cos2 θ) +

(
H

mh2

)2

+ 2C
H

mh2
cos θ

]

= E + H

(
H

mh2
+ C cos θ

)
,
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we may solve for C and obtain

C =
√

H 2

m2h4
+ 2E

mh2
. (26.36)

From there we calculate ε according to (26.32) as

ε =
√

1 + 2Emh2

H 2
. (26.37)

Hence, the shape of the path depends on the total energy E and the angular momentum
l = mh of the moving body, and it holds that

for a parabola: ε = 1, hence E = 0,

for an ellipse: 0 < ε < 1, hence E < 0, −γ 2 M2m

2h2
< E < 0,

for a circle: ε = 0, hence E = − H 2

2mh2
= −γ 2mM2

2h2
,

for a hyperbola: ε > 1, hence E > 0.

The effective potential—overview on path types

If one writes the total energy in the form (26.13)

m

2
ṙ2 + V (r) + L2

2mr2
= E

and introduces the effective potential

Veff(r) = V (r) + L2

2mr2
,

hence
m

2
ṙ2 + Veff(r) = E, (26.38)

then this equation just corresponds to a one-dimensional motion under a force depending
only on r ; the potential energy of this one-dimensional motion is just the effective potential
energy Veff(r). We shall discuss its trend. Let the angular momentum L be given as fixed.
Then Veff consists of the attractive gravitational potential ∼ −1/r , which dominates at
large distances, and of the repulsive angular momentum barrier ∼ L2/r2, which governs
the motion at small distances. The superposition of both terms yields a potential, as shown
in the sketch.

We now consider various energy values E . At the reversal points of the orbital motion
one has ṙ = 0, that is, according to (26.38), Veff = E . These positions correspond to the
points with the maximum and minimum distances from the central star. For the parabola
and the circle there exists only one solution for a given Veff , but there exist, on the contrary,
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Radial Kinetic Energy

L=0

r

rmin

Veff

r rmax

Ehyperbola

Eparabola

Eellipse

Ecircle

circle

Classification of different orbit types with the help of the effective potential.

infinitely many choices for hyperbolic and elliptic orbits. For the parabola and hyperbola,
there are no bound solutions (the kinetic energy is large). The bodies come in from the
infinite, are then reflected by the effective potential, and disappear again to infinity. Such
processes play an important role also in atomic and nuclear physics: For example, atomic
nuclei scattered by other atomic nucei are moving on hyperbolic paths, the same holds
for electrons scattered by atoms or nuclei. Electrons may also be bound (Bohr’s model of
atoms). These considerations, which were developed in the context of the gravitation law,
may also be transferred to the Coulomb force law, as both types of forces have the same
radial dependence and in both cases central forces are acting.

Path parameters, the third Kepler law, and the scattering problem

The semi-axes a and b of the elliptic orbit may be determined from the path equation (26.32).
We have

a = 1

2
[r(θ = 0) + r(θ = π)] = 1

2

[
k

1 + ε
+ k

1 − ε

]
= k

1 − ε2

= mh2/H

−2Emh2/H 2
= − H

2E
= −γ Mm

2E
, (26.39)

b =
√

a2 − c2 =
√

a2 − ε2a2 = a
√

1 − ε2 = k√
1 − ε2

= mh2/H√−2Emh2/H 2
= mh√−2Em

=
√−m

2E
h. (26.40)
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This allows us to calculate the period of revolution T , based on the constant area velocity
d A/dt = h/2, equation (26.3), and equation (26.37):

T = πab

d A/dt
= πk2

(1 − ε2)3/2h/2
= π(mh2/H)2

(−2Emh2/H 2)3/2h/2
,

such that

T 2

a3
= π2b2

a · (h/2)2
= π2k2/(1 − ε2)

k/(1 − ε2) · (h/2)2

= 4π2k

h2
= 4π2mh2

h2 · H

= 4π2mh2

h2γ Mm
= 4π2

γ M
.

Thus, T 2/a3 depends only on the universal gravitational constant γ and the mass M of
the central star. Therefore,

T 2

a3
= constant = 4π2

γ M
(26.41)

for all planets. This is the third Kepler law. We note, however, that in the derivation of
the Kepler laws recoil effects were neglected. Therefore, there result minor deviations

Orbits with the same energy have
identical large half-axis.

Perihelion Aphelion

Orbits with the same area constant (constant an-
gular momentum). All orbits with identical area
constant h intersect at r (� = π/2) = k =
h2/(γ M).

of the order m/M . For the earth orbit, for
example, such corrections are of the or-
der m/M ∼ 1/3 · 10−5. For the case of
just two bodies interacting by gravitation,
these recoil effects can be treated exactly
with the help of the reduced mass; see Ex-
ample 26.10.

According to (26.32) and (26.37) the
constants of the elliptic orbits k, a, ε de-
pend on the constants E (energy) and h =
L/m (angular momentum constant). In
particular, according to (26.39) the ma-
jor semi-axis of a planet of mass m de-
pends only on the energy E , the quantity
k = mh2/H = h2/γ M only on the angu-
lar momentum constant.

The first statement is immediately evi-
dent from the discussion of planetary or-
bits in terms of the effective potential: For
given Veff (i.e., given angular momentum)
both rmax and rmin depend only on E . If one
initiates, for example, an elliptic motion by
ejecting the mass m from a fixed position
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with a fixed initial velocity, then the direction of the initial velocity has no influence on the
magnitude of the major semi-axis. The left-hand figure ahead shows elliptic trajectories of
identical energy; the right-hand figure shows elliptic, parabolic, and hyperbolic trajectories
of identical area constant (identical magnitude of angular momentum) h. Among the tra-
jectories of equal energy the circular orbit has the maximum angular momentum constant;
among the trajectories of equal area constant the circular orbit has the minimum energy.

Hyperbolic orbits—the scattering problem

δ
δ
2ϕ

ϕ
Θ

M

b

8

Typical orbit for the scattering of
opposite electrical charges on
each other or of two masses with
gravitational interaction.

We have already seen that for comets E > 0 may also
occur. Because there are also other central force fields of
the type

F ∼ 1

r2

r
r

, (26.42)

for example, the electric forces between two charges q1

and q2

Fel. = q1q2

r2

r
r
, (26.43)

the case E > 0 has general significance. We ask for the deflection δ of a mass point (mass
m) coming in from infinity with a velocity v∞ and an impact parameter b (“distance”) and
passing the center of force (mass M) caused by the attractive force (see figure). For the
deflection angle δ, it holds that

2ϕ + δ = π ⇒ δ

2
= π

2
− ϕ. (26.44)

The quantities ϕ and �∞ are further related by

ϕ = π − �∞ . (26.45)

Insertion in (26.44) yields

δ

2
= �∞ − π

2

⇒ sin
δ

2
= sin

(
�∞ − π

2

)
= − cos �∞. (26.46)

The radius in polar coordinates is given by

r(�) = k

1 + ε cos �
. (26.47)
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For r = ∞, it follows from (26.47) that

1 + ε cos �∞ = 0 ⇒ 1 − ε sin
δ

2
= 0 ⇒ sin

δ

2
= 1

ε
.

It then holds that

tan

(
δ

2

)
= sin δ/2

cos δ/2
= sin δ/2√

1 − sin2 δ/2

= 1/ε√
1 − 1/ε2

= 1√
ε2 − 1

. (26.48)

ε is, however, given by

ε =
√

1 + 2Emh2

(γ Mm)2
, (26.49)

with the constants E (energy) and h = L/m (constant of angular momentum):

E = 1

2
mv2

∞ ;

h = |L|
m

= mbv∞
m

= bv∞. (26.50)

Insertion of (26.49) and (26.50) into (26.48) then yields

tan

(
δ

2

)
= 1√

(2Emh2)/(γ 2m2 M2)
= γ M

√
m√

2 1
2 mv2∞b2v2∞

= γ M

b v2∞
. (26.51)

–8 –4 0 4 8

–

–

/2

0

/2

Scattering angle δ as a function of x = γ M/(b v2∞).

For the deflection angle δ, we thus obtain

δ = 2 arctan

(
γ M

bv2∞

)
. (26.52)

If v∞ increases from 0 to ∞, δ/2 decreases
from π/2 to 0, or δ from π to 0, respec-
tively. We still briefly consider the case of
a repulsive force of the form (26.42). The
calculation follows the same lines, only the
coupling constant γ changes its sign, and the
deflection angle is given by the same equa-
tion (26.51) but with γ = −|γ |.

These scattering problems play an im-
portant role in particle physics. Also in the
modern heavy-ion physics heavy nuclei may be interpreted as classical particles that are
scattered by the central force field of another nucleus. This so-called Coulomb scattering
gets important, both in Coulomb excitations of nuclei (the nuclei scatter by each other but
don’t get in touch—nevertheless the individual nuclei are excited by the electric (Coulomb)
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forces), as well as in peripheral nucleus–nucleus collisions (the nuclear forces hardly play a
role in a grazing touch of nuclei—only very few nucleons may be excanged between nuclei).
(see, e.g., J.M. Eisenberg and W. Greiner, Nuclear Theory, Vols. 1–3, North Holland,
Amsterdam, 1985).

Problem 26.2: Force law of a circular path

A particle moves on a circular path through the origin under the action of a force pointing to the

a x

y

r

θ

Illustration of the orbit and the coordinates used.

origin. Find the force law

F = + f (r)er . (26.53)

Solution 1. (using the energy law):
The path equation expressed in plane polar

coordinates reads

r = 2a cos θ. (26.54)

For central forces holds the energy equation (26.19):

E = mh2

2r 4

((
dr

dθ

)2

+ r 2

)
+ V (r) = constant,

h = L

m
.

When differentiating the total energy with respect to r , we get

−2
mh2

r 5

((
dr

dθ

)2

+ r 2

)
+ mh2

2r 4

(
d

dr

(
dr

dθ

)2

+ 2r

)
+ dV

dr
= 0. (26.55)

We have

dr

dθ
= −2a sin θ,

d

dr

(
dr

dθ

)2

= d

dr
(4a2 − r 2) = −2r. (26.56)

From F = − grad V , it follows that dV/dr = − f (r). Inserting (26.56) in (26.55) hence yields

f (r) = −2mh2

r 5

(
4a2 sin2 θ + 4a2 cos2 θ

) = −8a2mh2

r 5
, (26.57)

meaning the force law reads

F = −8a2mh2

r 5
er . (26.58)

Solution 2. (using equation (26.22)):
We may obtain the force F also by taking into account equation (26.22) because

f (r) = f

(
1

u

)
= −mu2h2

(
d2u

dθ2
+ u

)
, where u = 1

2a cos θ
. (26.59)
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To get f (r), we first have to form d2u/dθ 2:

du

dθ
= 1

2a
· sin θ

cos2 θ
, (26.60)

d2u

dθ 2
= 1

2a
· cos3 θ + 2 sin2 θ cos θ

cos4 θ
= 1

2a

(
1

cos θ
+ 2 sin2 θ

cos3 θ

)
. (26.61)

Inserting 26.61 in 26.59, we obtain

f (r) = −mh2 1

4a2 cos2 θ

(
2

2a cos θ
+ 2 sin2 θ

2a cos3 θ

)
= −mh2 · 2

8a3 cos3 θ

(
1 + 1 − cos2 θ

cos2 θ

)
= −2mh24a2

r 3
· 1

4a2 cos2 θ
= −2mh24a2

r 5
= −8mh2a2

r 5
.

From there it again follows that

F = −8a2mh2

r 5
er .

Problem 26.3: Force law of a particle on a spiral orbit

A particle in a central force field with the center at the origin of the coordinate frame moves on a
spiral path of the form r = e−θ . What is the force law?

Solution Central forces obey equation (26.22) with F(r) = f (r)er :

f

(
1

u

)
= −mh2u2

(
d2u

dθ2
+ u

)
,

with u = 1/r . Here u = eθ , u = u′′. By insertion we find f (1/u) = −2mh2u3; hence

f (r) = −2mh2

r 3
.

Problem 26.4: The lemniscate orbit

Determine the force field that forces a particle to follow the lemniscate path r 2 = 2 a2 cos(2θ).

Solution For central forces again equation (26.22) holds:

f

(
1

u

)
= −mh2u2

(
d2u

dθ2
+ u

)
,

where u = 1/r . The path equation then implies

r = a
√

2 cos 2θ, u = 1

a
√

2 cos 2θ
,

du

dθ
= sin 2θ

a
√

2(cos 2θ)3/2
,

d2u

dθ 2
= 1

a
√

2

(
3 sin2 2θ

(cos 2θ)5/2
+ 2√

cos 2θ

)
= 1

a
√

2

(
3

(cos 2θ)5/2
− 1√

cos 2θ

)
.
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y

x

The lemniscate r2 = 2a2 cos 2θ . For 45◦ < θ <

135◦, cos θ is negative, and hence there is no
“standing figure 8” part in the lemniscate.

Insertion into the above equation yields

f

(
1

u

)
= −12mh2a4u7

⇒ f (r) = −12mh2a4

r 7
.

This lemniscate path is illustrated in the figure.
For the sake of completeness we still remind

ourselves of the definition of a lemniscate: The
lemniscate is a particular Cassini4 curve that is
defined as the set of all points P of a plane for
which the product of the distances r1 = |P F1|
and r2 = |P F2| from two fixed points F1 and F2 have a constant value a2 (see figure),

r1 · r2 = a2.

The distance of the two fixed points is |F1 F2| = 2e. If a = e, the Cassini curve turns by definition

�e �e

a = 10

7
6

4

e = 6

The definition of Cassini curves.

into a lemniscate. Let F1 and F2 have the co-
ordinates (+e, 0) and (−e, 0) in a Cartesian
coordinate frame. Then r 2

1 = (x −e)2 + y2 and
r 2

2 = (x + e)2 + y2 hold. From r1 · r2 = a2 we
get after squaring the equation

(x2 + y2) − 2e2(x2 − y2)

= a4 − e4

of the Cassini curve. It is a fourth-order curve.
In the special case of the lemniscate, a = e,
hence

(x2 + y2) − 2e2(x2 − y2) = 0. (26.62)

When changing to polar coordinates (x = r cos ϕ, y = r sin ϕ), we get

r 2 = e2 cos 2ϕ ±
√

e4 cos2 2ϕ + (a4 − e4). (26.63)

The shape of a Cassini curve depends on the ratio of a to e. Again, for the special case of the
lemniscate, a = e, we get

r 2 = 2 e2 cos 2ϕ . (26.64)

Problem 26.5: Escape velocity from earth

What must be the initial velocity of a projectile to leave the earth? The air friction is to be neglected!

4Giovanni Domenico Cassini, b. June 8, 1625, Parinaldo—d. Sept. 14(?), 1712, Paris. Cassini was professor of
astronomy in Bologna, at the same time fortress architect and appointed to work on river regulation. From 1667
he was director of the observatory in Paris. He mostly published astronomic papers. The Cassini curves were
supposed to replace the Kepler ellipses. However, they were published only in 1740 by his son, Jacques Cassini
(1677–1756), in his book Elements d’Astronomie.
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Solution The attractive force of earth is F = −γ mM/r 2. At the earth’s surface r = R, there is −F = mg =
γ m M/R2, that is, g = γ M/R2.

The equation of motion reads

mr̈ = −γ
mM

r 2
.

With r̈ = dv/dt = (dv/dr)(dr/dt) = v(dv/dr), it follows that

v∫
v0

v · dv = −
r∫

R

γ M

r 2
dr;

hence

1

2
(v2 − v2

0) = +γ M

(
1

r
− 1

R

)
.

This is nothing else but the energy law, which we could have written down immediately:

1

2
mv2 − γ m M/r = 1

2
mv2

0 − γ mM

R
.

If the missile shall leave earth, that means r → ∞. The minimum initial velocity results if the velocity
of the missile arriving at r = ∞ just became equal to zero—v(r → ∞) = 0—and therefore

v2
0 = 2γ M

R
= 2gR, v0 ≈ 11

km

s
.

This is called the escape velocity that a body (independent of its mass) must have to leave the earth’s
gravitational field.

Problem 26.6: The rocket drive

m

v

∆m

v0

e3

The rocket prob-
lem.

A rocket of initial mass m0 per unit time expels the quantity of gas α = �m/�t >

0 with the constant velocity v0. We look for the equation of motion. The gravi-
tational force shall be assumed as constant. That means that the rocket problem
shall be considered only near the earth’s surface.

Solution The rocket of mass m(t) moves upward with velocity v(t). Thereby the mass
�m is expelled downward with the constant velocity v0 (relative to the rocket).

To describe the motion of the rocket, we must adopt the Newtonian force law
in its original form

dp
dt

= F

because the mass of the rocket is variable. It therefore holds that

dp
dt

= m
dv
dt

+ v
dm

dt
,

where

v = ve3
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means the vertical velocity. Within the time interval �t , the expelled gases carry off the momentum

�p′ = �m(v − v0)e3 = α(v − v0)�t e3 .

This implies a force on the rocket (recoil force) of the magnitude

F ′ = −�p ′

�t
= −α(v − v0)e3.

In addition, there acts the gravity force −mge3. Hence, the Newtonian force law reads

m
dv

dt
+ v

dm

dt
= −α(v − v0) − mg = −mg − dm

dt
(v0 − v).

This balance holds in the inertial system that is tightly fixed to earth. With m = m0 − αt and
dm/dt = −α, it follows that

m
dv

dt
e3 = +αv0e3 − mge3.

The term αv0 on the right side represents the recoil force. We further conclude that

v∫
0

dv =
t∫

0

(
αv0

m0 − αt
− g

)
dt,

v(t) = −gt + v0 ·
t∫

0

α/m0 dt

1 − (α/m0) t

= −gt − v0

[
ln

(
1 − α

m0
t

)]t

0

= −gt − v0 ln

(
1 − α

m0
t

)
.

Obviously, the rocket velocity depends linearly on the exit velocity v0 of the recoil gases. A further
integration yields the altitude h(t) the rocket reached:

h =
h∫

0

v dt = −1

2
gt2 − v0

t∫
0

ln

(
1 − α

m0
t

)
dt.

With the substitution u = 1 − (α/m0) t , du = −(α/m0) dt , we get

v0m0

α

t∫
t=0

ln u du = v0m0

α

[
u ln u − u

]t

t=0

= v0

α
m0

[(
1 − α

m0
t

)
ln

(
1 − α

m0
t

)
−

(
1 − α

m0
t

)]t

t=0

= v0m0

α

[(
1 − α

m0
t

)
ln

(
1 − α

m0
t

)
+ α

m0
t

]
.
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Hence, the altitude of the rocket after time t is

h = −1

2
gt2 + v0m0

α

(
1 − α

m0
t

)
ln

(
1 − α

m0
t

)
+ v0t.

To determine the moment T of the burnout, we introduce the mass of the casing m1. We then have
m0 = m1 + αT , where αT is the mass of fuel.

T = m0 − m1

α
.

At the moment of burnout, the rocket has the velocity

v1 = v(T ) = −g
m0 − m1

α
− v0 ln

m1

m0
= −g

m0 − m1

α
+ v0 ln

m0

m1

and the altitude

h1 = h(T ) = −1

2
g

(
m0 − m1

α

)2

+ v0

[
m0 − m1

α
+ m1

α
ln

m1

m0

]
.

The final velocity depends linearly on the exit velocity v0 of the recoil gases and is proportional to
the logarithm of the ratio of initial to final mass. The further motion of the rocket follows according
to the energy law:

1

2
m · v2

1 = m · g · h2 .

The additional altitude h2 the rocket reaches after burnout is calculated as

h2 = v2
1

2g
.

The total ascension altitude of the rocket is therefore

h = h1 + h2 = h1 + v2
1

2g
,

h = 1

2
g

(
m0 − m1

α

)2

− 1

2
g

(
m0 − m1

α

)2

+ v0

(
m0 − m1

α

)
ln

m1

m0

+ v2
0

2g
ln2 m1

m0
+ v0

m0 − m1

α
+ v0

m1

α
ln

m1

m0
,

=
(

ln
m1

m0
+ 1

)
v0

m0 − m1

α
+ v0 ln

m1

m0

(
v0

2g
ln

m1

m0
+ m1

α

)
.

Problem 26.7: A two-stage rocket

Establish the equation of motion of a two-stage rocket in the homogeneous gravitational field of earth.

Solution Let T be the burnout time of the first stage. For t ≤ T , the quantities s(t) and v(t) are obtained as in
Problem 26.6. The mass at start is

m0 = m1 + αT + αT ′ + m2;
m1: casing of first stage, αT fuel of first stage,

m2: casing of second stage, αT ′ fuel of second stage.
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For t = T , the mass is m ′
0 = m2 + αT ′. For t > T (h′(t) and v′(t) have the analogous meaning as in

26.6) we have

h(t) = h′(t − T ) + h(T ) + v(T )(t − T ),

v(t) = v′(t − T ) + v(T ).

Problem 26.8: Condensation of a water droplet

A dust particle of negligible mass being under the influence of gravitation begins to fall at time
t = 0 through saturated water vapor. The steam thereby condensates with constant rate λ [gram per
centimeter] on the dust particle and forms a water droplet of steadily increasing mass.

(a) Calculate the acceleration of the droplet as a function of its velocity and the traversed path.

(b) Determine the equation of motion of the droplet by integrating the expression for the acceleration.
Neglect friction, collisions, etc.

Solution (a) The only external force acting on the droplet is the gravitational force

Fg = mg.

According to Newton’s law,

mg = dm

dt
v + m

dv

dt
and

dm

dt
= dm

dx

dx

dt
= λv, (26.65)

because the increase of mass dm/dx = λ shall be a constant. According to equation 26.65, the
acceleration is

a = dv

dt
= mg − λv2

m
, (26.66)

and, because the mass of the dust particle at time t = 0 and position x = 0 is assumed to be negligible,
we have m = λx , and for equation 26.66 we get the acceleration

a = g − v2

x
. (26.67)

(b) The equation of motion for the dust particle shall now be determined by integration of equation
26.67. From 26.67 it follows for x �= 0 that

x · d2x

dt2
+

(
dx

dt

)2

− gx = 0. (26.68)

To solve this nonlinear differential equation, we try the ansatz

x = Atn

and substitute it in equation 26.68. We obtain

(Atn)n(n − 1)Atn−2 + (Antn−1)2 − g Atn = 0,

A2n(n − 1)t2n−2 + A2n2t2n−2 − g Atn = 0. (26.69)

Equation 26.69 is fulfilled for n = 2, that is, if the powers of t are equal. By insertion equation 26.69
yields

A(2n2 − n) = g or A = g/6
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and therefore as solution for x

x = g

6
t2. (26.70)

The proposed ansatz may be verified by inserting this solution into equation 26.68. Differentiation
of equation 26.70 yields

v = (g/3)t and a = g/3 ,

that is, the acceleration of the droplet is constant and, independent of x , equal to g/3.

Problem 26.9: Motion of a truck with variable load

M0

v0

λ [kg/sec]

A truck with variable load.

An empty truck of mass M0 moves frictionless with velocity
V0 on a stretch of track. At the position x = 0 at time t = 0,
the truck is loaded with sand with the load rate λ kg/s (see
figure). Determine the position of the truck as a function of
time.

Solution As no external forces are acting on the truck, the change of
momentum is

d

dt
(mv) = 0 or mv = constant, (26.71)

although both m and v are functions of the time. With the initial conditions at the time t = 0 (m = M0

and v = V0), equation 26.71 becomes

mv = M0V0. (26.72)

Because the truck is being loaded with constant rate, the mass change dm/dt = λ is a constant, and
we have

m = M0 + λt.

Insertion into equation 26.72 yields for the velocity

v = M0V0

M0 + λt
. (26.73)

With v = dx/dt, equation 26.73 after separation of the variables yields

dx = M0V0
dt

M0 + λt
(26.74)

= M0V0

λ

d(M0 + λt)

M0 + λt
= M0V0

λ

(
dk

k

)
, (26.75)

where k = M0 + λt , and dt = dm/λ = d(M0 + λt)/λ. Integration of equation 26.74 leads to

x = M0V0

λ
ln k + c (26.76)

= M0V0

λ
ln(M0 + λt) + c. (26.77)
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The position of the truck as a function of time.

From the initial conditions x = 0 at time
t = 0, the constant c is evaluated as

c = − M0V0

λ
ln(M0), (26.78)

and thus equation 26.76 becomes

x = M0V0

λ
ln

(
M0 + λt

M0

)
. (26.79)

Equation 26.79 is plotted in the opposite fig-
ure as a function of the dimensionless quan-
tities tλ/M0 and xλ/M0V0. The coordinate
x thus increases steadily but logarithmically
with time.

Example 26.10: The reduced mass

In our treatment of the Kepler problem, we had considered up to now one fixed, massive center of
gravitation (the sun) and small bodies (the planets) orbiting in the field of the immobile central mass.
What happens if we consider two bodies of comparable mass that are bound together by gravitation,
for instance, two stars in a double-star system?

Solution In a system that consists of two interacting masses m1 and m2 and that is not influenced by exterior
forces, the force F between the masses can depend only on the distance vector r = r1−r2 and possibly
on time derivatives of r. This is due to the assumption of homogeneity of space. The equations of

r

R

r1

m2

m1

r2

The definition of the center of mass.

motions for the two masses thus read

m1r̈1 = F(r, ṙ, t), (26.80)

m2r̈2 = −F(r, ṙ, t). (26.81)

According to Newton’s third law meaning
“action equals minus reaction,” the force on
m2 is opposite equal to the force on m1. One
defines the position vector of the center of mass
of the two-body system by

R = m1r1 + m2r2

m1 + m2
. (26.82)

With this definition, we can decompose the mo-
tion of the two-body system into the motions
of the center of mass R and of the distance
vector r.

Adding equations 26.80 and 26.81 shows that the second time derivative of R vanishes, that is, the
center of mass moves uniformly along a straight line through space:

m1r̈1 + m2r̈2 = 0, (26.83)

R̈ = 0 . (26.84)
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If one multiplies equation 26.80 by m2/(m1 + m2) and subtracts equation 26.81, multiplied by
m1/(m1 + m2), one obtains the important relation

m1m2

m1 + m2
r̈ = F(r, ṙ, t) . (26.85)

Thus a clear, physical picture emerges for the motion of the two-body system: The motion of the center
of mass is, according to equation 26.82, uniform along a straight line and completely independent of
the relative motion of the two masses, which is described by equation 26.85. According to 26.85, the
relative motion of the two masses m1 and m2 (on which no extarnal forces are acting) corresponds to
the motion of one single mass, called the reduced mass µ,

µ = m1m2

m1 + m2
, (26.86)

in a force field described by F(r, ṙ, t). Thus, the two-body problem has been reduced to an effective
one-body problem for the reduced mass µ. Upon computation of the relative motion r(t) by integrating
equation 26.85, the position vectors of the masses m1 and m2 of the two-body system can be obtained as

r1(t) = R(t) + m1

m1 + m2
r(t), (26.87)

r2(t) = R(t) − m2

m1 + m2
r(t). (26.88)

r1( )t

r2( )t

m2

m1

S

The motion of two masses m1 and m2 under the influence of their mutual gravitational interaction. Both
masses move along elliptic orbits whose focal points lie in the center of mass of the two bodies.

Problem 26.11: Path of a comet

A comet moves on a parabolic path in the gravitational field of the sun being at rest. Its orbital plane
coincides with the orbital plane (idealized as a circle) of earth. The perihelion distance is a third of
the radius of the earth’s orbit (RE = 1.49 · 1011 m). What is the time of flight of the comet within the
earth’s orbit (a perturbation of the comet path by the planets shall be neglected)?



276 PLANETARY MOTIONS 26

S

A
rmin

RE

B

Orbit of Comet

Orbit of Earth

The orbit of a comet crossing the orbit of the earth
at B.

Solution The comet moves on a parabola, namely E =
0, ε = 1, with the path equation

r = k

1 + cos θ
, k = L2

γ Mmµ
.

We have

L: angular momentum of

reduced mass µ = Mm

M + m
,

M : sun mass,

m: comet mass,

γ : gravitational constant.

According to (26.13), the energy law reads

µ

2
ṙ 2 + L2

2µr 2
+ V (r) = E = 0.

We evaluate this relation at the point A where the term (µ/2)ṙ 2 vanishes because there is no radial
kinetic energy (the orbit is symmetric with respect to the straight line through A and S):

L2

2µ(rmin)2
= −V (rmin) = γ

Mm

rmin
(26.89)

⇒
(

L

µ

)
= (2γ (M + m)rmin)

1/2 =
(

2

3
γ (M + m)RE

)1/2

. (26.90)

Let the planet be at the perihelion A at the instant t0. The flight time until leaving the radius RE of
the earth’s orbit at point B is, according to (26.16),

t − t0 =
RE∫

rmin

dr√
2
µ
(−V (r) − L2

2µr2 )

(E = 0) (26.91)

=
RE∫

RE /3

dr · r√
2
µ
(γ Mmr − L2

2µ
)

=
√

µ

2γ M · m

RE∫
RE /3

dr · r√
r − L2

2µγ Mm

. (26.92)

However, according to 26.89,

L2

2µγ Mm
=

(
2

3
γ (M + m)RE

)
1

2
µ

1

γ Mm

= 1

3
RE = rmin,
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and therefore,

t − t0 =
√

µ

2γ M · m

RE∫
RE /3

dr · r√
r − RE/3

; (26.93)

with the substitution x := √
r − RE/3, dx = (1/2x) dr , 26.93 may be solved:

t − t0 =
√

µ

2γ M · m

( 2
3 RE )1/2∫

0

2x(x2 + RE/3) dx

x

=
√

µ

2γ M · m

[
2

3
x3 + 2

3
RE x

]( 2
3 RE )1/2

0

= 10

9

√
2

3
R3/2

E

√
µ

2γ M · m

= 10

9
R3/2

E (3γ (M + m))−1/2 .

For the total residence time of the comet within the earth’s orbit (Ttot = 2(t − t0)), we then obtain

Ttot = 20

9
R3/2

E (3γ (M + m))−1/2 . (26.94)

For an “ordinary” comet, the mass m may be neglected against the sun’s mass M (M ≈ 330 000
earth masses). Insertion of the values RE = 1.49 · 1011 m, γ M = 1.32 · 1020 m3s−2 yields

Ttot = 74.34 days.

Problem 26.12: Motion in the central field

A mass m moves in the central force field with the potential

U (r) = −α

r
(α > 0).

(a) Show that any orbit of finite motion (hence not at infinity) is closed. What happens if an additional
term of the form β/r 3 is added to U (r)?

(b) Show that the vector (Lenz vector)

V = 1

mα
[L × p] + r

r

is a conserved quantity. How may it be interpreted?

Solution (a) Because we are dealing with a central force, we may use the expression (26.17) for the variation
of the angle as a function of the radius:

θ =
∫

L dr

r 2
√

2m(E − U (r)) − L2/r 2
.



278 PLANETARY MOTIONS 26

Here L is the angular momentum. A revolution of the mass is characterized by the fact that the
radius varies, for example, from rmax over rmin back to rmax. The corresponding variation of the angle
is then

�θ = 2

rmax∫
rmin

L dr

r 2
√

2m(E − U (r)) − L2/r 2
. (26.95)

We now insert U (r) = −α/r and obtain

�θ = 2

rmax∫
rmin

L dr

r 2
√

2m E + 2mα/r − L2/r 2

= 2

rmax∫
rmin

L dr

r 2
√−(L/r − mα/L)2 + m2α2/L2 + 2m E

= 2

rmax∫
rmin

L dr

Cr 2
√

1 − (L/r − mα/L)2/C2
,

where we set (m2α2)/L2+2m E = C2. This may be integrated immediately ((arccos x)′ = −1/
√

1 − x2
)

:

�θ = 2 arccos
(L/r − mα/L)

C

∣∣∣∣rmax

rmin

. (26.96)

Because the motion shall be finite, the mass moves on a Kepler ellipse

r = k

1 + ε cos θ
, with k = L2

mα
.

rmin and rmax are then uniquely fixed (for given total energy):

rmin = k

1 + ε
, rmax = k

1 − ε
, 0 ≤ ε < 1, ε =

√
1 + 2E L2

mα2
.

Insertion yields

�θ = 2 arccos
(
− mαε

L · C

)
− 2 arccos

( mαε

L · C

)
.

Because

C =
√

2m E + m2α2

L2
= mα

L

√
1 + 2E L2

mα2
= mα

L
ε,

we obtain

�θ = 2
([

π + n · 2π
]

− n · 2π
)

= 2π.

But this just means that the path is closed.
If one adds to the potential U (r) an additional term in the form of a small perturbation β/r 3, then

�θ �= 2π or �θ = 2π + δθ ; one then observes rosette orbits (perihelion motion).
(b) We show that V̇ = 0. We have

V = 1

mα
[L × p ] + r

r
,
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rmax rmax
rmin

rmin
Aphelion

Aphelion

Perihelion

Perihelion

Kepler ellipse (left) and rosette orbit.

and therefore

V̇ = 1

mα
L̇︸︷︷︸

=0, since
L=constant

×p + 1

mα
L × ṗ + 1

r
ṙ − ṙ

r 2
r.

Using L = m(r × ṙ) and ṗ = mv̇ = −αr/r 3, we get

V̇ = 1

α
(r × ṙ) ×

(
− α

r 3
r
)

+ 1

r
ṙ − ṙ

r 2
r

= 1

r 3

[
r 2ṙ − (ṙ · r) r − (r × ṙ) × r

]
= 1

r 3

[
r 2ṙ − (ṙ · r)r + (r · ṙ)r − (r · r) ṙ

] = 0.

Here we made use of the relation (a × [b × c]) = (a · c)b − (a · b)c. Hence, it follows that

V = constant (26.97)

ϕ
r

v

The elliptic orbit.

Both [L × p ] as well as r are within the orbital plane; we now
calculate the angle ϑ enclosed by the Lenz vector and the radius
vector:

V · r = V · r cos ϑ = 1

mα
[L × p ] r + r · r

r
(26.98)

= − 1

mα
L · [r × p ] + r = r − 1

mα
L2

⇒ r = L2/mα

1 − V cos ϑ
. (26.99)

This is exactly the path curve of a conical section if V = |V| is identified with the eccentricity ε

and ϑ with (ϕ + π): For an ellipse the Lenz vector points from the focal point to the center, and its
magnitude equals the eccentricity of the orbit. The figure illustrates this result.

Problem 26.13: Sea water as rocket drive

(For pre-Christmas entertainment)
In the near future the sun will cool down so much that no life will be possible any more on earth.

A desperate physicist proposes to drill a hole until reach the hot earth’s interior (T = 4000 K) and
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then letting the sea water in. The emerging jet of steam shall be utilized as rocket drive to move the
earth closer to the sun or—if necessary—to another star. How do you judge that proposal?

Solution The molecules of water vapor of T = 4000 K have the kinetic energy 1
2 mw2 = 3

2 kT ⇒ velocity of
w ≈ 2.4 km/s (with the Boltzmann constant k = 1.38 · 10−23 kg m2/K s2, m = 2.99 · 10−26 kg). The
spherical surface is A = 4π R2. The water volume is V = A · h, where h is the thickness of the water
layer (ocean layer) (h = 4 km). As only 75 % of the earth’s surface is covered by water, it follows that
V = 0.75 · 4π R2 · h ≈ 1.5 · 109 km3 =̂ 1, 5 · 1021 kg = mω; the mass of earth is M = 5.6 · 1024 kg,
i.e., mw/M ≈ 1/4000. The velocity v of earth caused by expelling the water vapor is given by the
momentum conservation as

vM = wmw → v = mw

M
· w ≈ 1

4000
w ≈ 0.6

m

s
.

As compared to the orbital velocity of earth of 30 km/s, the recoil velocity of 0.6 m/s is negligible.
Thus, the attempt would be useless—except for a depopulation of earth by an induced super-disaster
(no life without water). But the attempt is bound to fail in any case, because the molecules of
water vapor cannot leave earth at all: w ≈ 2.4 km/s are significantly below the escape velocity
v∞ ≈ 11 km/s. The vapor thus cannot be expelled at all by earth. The proposed rocket drive does
not work, as earth and the water vapor form a closed system.

Example 26.14: Historical remark

One might wonder whether Kepler was denied discovering the force law (gravitational law—see
equation (26.10)). After all, it seemingly follows “so easily” from his own laws. Of course, we cannot
and will not accuse Kepler of any lack of brilliance and fantasy. He clearly was a master in empirical
research and demonstrated fantasy in far-reaching speculations, sometimes even imaginations: for
example, in his thoughts on the possible number of planets: Like the Pythagoreans, he, too, was
convinced that God had created the world in number and size according to a definite law of numbers.
The explanation is as follows: Kepler was a contemporary of Galileo, who survived him by 12 years.
Hence, Kepler knew about Galileo’s mechanics, in particular the central concept of acceleration, the
laws of inertia and throw, by correspondence and hearsay, but probably did not realize their meaning
in full. Kepler died in 1630, eight years before the appearance of Galileo’s Discorsi in which his
mechanics was outlined in 1638. Even more decisive is the fact that Kepler was not equipped with
the theory of curvilinear motion. The elaboration of this theory was begun by Huygens for circular
motion and was completed by Newton for general paths. Without the concept of acceleration for
curvilinear motions, it is impossible to derive the form (26.8) of the radial acceleration from Kepler’s
laws by means of simple mathematical operations.

The Newtonian gravitational mechanics emerging from (26.8, 26.10) and the principle of action
and reaction may be considered as a further development of the throw motion discovered by Galileo.
Newton writes on this topic:

“That the planets are kept in their orbits by the central forces may be seen from the motion of
thrown stones (stone-bullets). A (horizontally) thrown stone is deflected from the straight path since
gravity is acting on it, and finally it falls to earth along a curved line. If it is thrown with higher velocity
it flies further off, and so it might happen that it finally flies beyond the borders of earth and does
no more fall back. Hence, the stones thrown off with increasing velocity from the top of a mountain
would describe more and more wide parabola bows and finally—at a definite velocity—return to the
top of mountain and by this way move about earth.”



PLANETARY MOTIONS 281

An explanation that convinces by intuition and logical conclusions! The “definite velocity” is today
called orbital velocity. Its magnitude has been correctly given by Newton from mv2/R = mg for
horizontal throw as v = √

gR = 7900 m sec−1. For a vertical throw into the universe, the necessary
velocity (escape velocity) results from the energy law (compare Problem 26.5) as v = √

2gR =
11 200 m sec−1. Both results hold without taking into account the friction losses by the air.

The English physicist Hooke (1635–1703), the founder of the law named after him in the theory of
elasticity, also came close to the gravitational law. This is evident from the following of his statements:
“I shall develop a world system which in every respect agrees with the known rules of mechanics.
This system is founded on three assumptions: 1. All celestial bodies exhibit an attraction (gravity
force) directed towards their center; 2. all bodies that are brought into a straight and uniform motion
will move as long on a straight line, until they are deflected by some force and are forced into a
curvilinear path; 3. the attractive forces are the stronger, the closer the body is on which they are
acting. I could not yet establish by experiments what the various degrees of attraction are. But it is
an idea that will enable the astronomers to determine all motions of the celestial bodies according to
one law.”

These remarks show that Newton did not at all create his monumental work Principia out of
nothing: It took, on the contrary, his eminent mental power and bold ideas to summarize all that what
Galileo, Kepler, Huygens, and Hooke had created in the fields of physics, astronomy, and mathematics
in a unified manner, and in particular to realize that the force that lets the planets circulate on their
orbits about the sun is identical with the force that causes the bodies on earth to fall to ground.

Mankind needed one-and-a-half millennia to realize this discovery if one considers that already
Plutarch (46–120) in the Moralia (“De facie quae in orbe lunae apparet”) stated that the moon is
prevented from falling to earth because of the impetus of its circulation, just as does a body being
“swung around” by a sling. It was the ingenious Newton, who realized what the “sling” of the planets
is!

Some more remarks on the versatility and brillance of Hooke: In 1665 he wrote the prophetic
lines: “I often thought that it should be possible to find an artificial glue-like substance being equal
or superior to that excrement from which the silkworms produce their cocoon, and that may be
spun to fibers by means of nozzles.” It is the basic idea of the manmade fibers which—though two
and a half centuries later—has revolutionized the textile industry! In the same year he anticipated
the mechanical theory of heat (hence also the kinetic gas theory) in speculative thought: “That the
particles of all bodies, whatsoever solid they may be, nevertheless are vibrating doesn’t need to my
opinion any other proof than the fact that all bodies include a certain amount of heat by themselves,
and that an absolutely cold body never has been found yet.”
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Calculation of the forces of an extended
mass distribution on a point mass M.

The gravitational field of extended bodies

So far only the interactions between pointlike masses
have been considered. Now we shall investigate ex-
tended bodies concerning their gravitational action.
Because of its linearity, the gravitational field of
an extended body may be composed by superposi-
tion of the fields of individual (thought as pointlike
in their action) partial bodies. When performing a
limit transition with the volumes �V ′ of the indi-
vidual partial bodies approaching zero, the problem
is reduced to an integration. The force acting on a
mass point M is

F = lim
�mi →0

∑
i

(
−γ M�mi

|r − r′
i |3

(r − r′
i )

)
= −γ M

∫
V

r − r′

|r − r′|3 dm ′.

Depending on the kind of mass distribution the differential dm is replaced by volume,
area, or line densities (weight functions) multiplied by the corresponding space element
dV , d F , or ds. In the three-dimensional case, the force is given by

F = −γ M
∫

�(r′)
(r − r′)
|r − r′|3 dV ′ ,

and correspondingly the potential energy is

V = lim
�mi →0

∑
i

(
−γ M�mi

|r − r′
i |

)
= −γ M

∫
V

�(r′)
1

|r − r′| dV ′.

Here �(r) = dm/dV is the mass density.
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The attractive force of a spherical mass shell

A spherical shell of negligible thickness with the radius a is uniformly covered by mass
(constant area density σ = dm/d f ). What is the force on a point of mass M at the distance
R from the center of the shell?

adϑ

adϑ
ϑ

a sin ϑ

r

R

dFdF

dFII

n
M

ψ

T

Calculation of the gravitational force of a spherical shell on
a point mass M.

Because the mass is distributed
over an area, twofold integration
suffices. We first decompose the
spherical surface into circular rings
(see following figure).

The radius of a ring is a sin ϑ ,
and the surface of the ring is d f =
2πa sin ϑ a dϑ. The result of the
first integration along the circum-
ference may be given immediately
by exploiting the axial symmetry of
the mass distribution. To each sec-
tion of the circular ring there is a
second one, with the force component dF⊥ (perpendicular to n) being equal but oppositely
directed to the first one. Therefore, only the parallel components −dF‖ = d F cos ψ n are
efficient, and the attractive force of the total mass ring is

dF = −γ Mσ d f

r2
cos ψ n.

The total force of the spherical shell then follows by integration over all circular rings:

F =
∫

d F = −γ Mσ2πa2
∫

cos ψ sin ϑ

r2
dϑ.

We replace the angles by the distance r via the following geometric relations:
(a)

r2 = a2 + R2 − 2a R cos ϑ (cosine law),

and in differential form

2r dr = 2a R sin ϑ dϑ or sin ϑ dϑ = r dr

a R
,

and

cos ϑ = a2 + R2 − r2

2a R
.

(b)

a2 = R2 + r2 − 2r R cos ψ (cosine law).
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This yields

cos ψ = R2 + r2 − a2

2Rr
.

Insertion then yields the force

F = −γ Mσ2πa2
∫

R2 + r2 − a2

2Rr3

r dr

a R

= −γ Mσπa

R2

∫ (
1 + R2 − a2

r2

)
dr.

We first consider the case that the mass point M is outside the sphere (R ≥ a). The desired
total attractive force on M is obtained by integration between the limits R − a and R + a:

F = −γ Mσπa

R2

R+a∫
R−a

(
1 + R2 − a2

r2

)
dr

= −γ Mσπa

R2

(
r

∣∣∣∣R+a

R−a

− R2 − a2

r

∣∣∣∣R+a

R−a

)
= −γ Mm

R2
,

where m = 4πa2σ denotes the mass of the spherical shell. Hence: A hollow sphere (of
low thickness) with a uniformly distributed mass is acting on the outer space with respect
to its mass attraction so as if its total mass were concentrated at the center. This statement
also holds for homogeneous full spheres (see Problem 27.3) and serves as the base for any
calculations of celestial mechanics.

Now let the mass point M be inside the sphere (R ≤ a). The integration is now performed
between the limits a − R and a + R:

F = −γ Mσπa

R2

(
r

∣∣∣∣a+R

a−R

− R2 − a2

r

∣∣∣∣a+R

a−R

)
= 0.

Inside a hollow sphere uniformly covered with mass there is no gravitational force.
Because the electric force between two charges q1 and q2 is of a similar structure as the
gravitational force, namely

Fe = q1q2

|r1 − r2|2
r1 − r2

|r1 − r2| ,

all results obtained here may immediately be transferred to the corresponding electrical
charge distributions. In particular, one sees that a uniformly charged spherical shell does
not admit fields (forces) in its interior.
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The gravitational potential of a spherical shell covered with mass

Because the potential is a scalar, the potential of a circular ring is

dV = −γ Mσ d f

r
,

a M

R

Case 1: Point outside
the sphere

and the potential of the spherical shell is

V =
∫

dV = −γ Mσ2πa2
∫

sin ϑ dϑ

r
= −γ Mσ2πa

R

∫
dr.

We again distinguish the two cases, namely:
1. Point outside the sphere (R ≥ a)

The integration limits are then (R − a) . . . (a + R).

V = −2π
γσa

R
M((R + a) − (R − a)) = −γ M

R
4πa2σ = −γ Mm

R
.

a M

R

Case 2: Point
inside the sphere

2. Point inside the sphere (R ≤ a)

The integration limits are then (a − R) . . . (a + R).

V = −2π
γσaM

R
((a + R) − (a − R)) = −4πγσ Ma = −γ Mm

a
.

The same result may, of course, also be derived from F(r):
R ≥ a:

V (R) = −
R∫

∞
F · dr = γ Mm

R∫
∞

1

r2

r
r

dr

= γ Mm

R∫
∞

1

r2
dr = −γ Mm

R
.

R ≤ a: The contribution F · dr vanishes everywhere; therefore, the potential must
be constant everywhere within the spherical shell. If one requires continuity for R = a
(otherwise the forces become infinite), then it follows that

V (R) = −γ Mm

a
for R ≤ a.

The forces in a central field point along the radial direction. They are conservative and
therefore in polar coordinates of the form

F(r) = −∇V (r) = − ∂

∂r
V (r) er .

The potential in the interior of a spherical shell is constant. As electrostatics is also gov-
erned by a 1/r2-force law, one there observes the same phenomenon: In the interior of a
charged hollow body, no potential differences (voltages) and hence no forces may occur
(Faraday cup).
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a
r

V r( )

F r( )

The potential and the force between a point mass and a hollow sphere.

Problem 27.1: Gravitational force of a homogeneous rod

y

m

b
ϑ

e2

–a �a xdM

r x b= �
2 2

Calculation of the interaction between a mass point
and a rod.

Find the gravitational force of a homogeneous
rod of length 2a and mass M on a particle of
mass m that is positioned at distance b from the
rod in a plane perpendicular to the rod through
the rod center.

Solution We have

d F = −γ m d M

r 2

and

cos ϑ = b√
x2 + b2

.

d F may be decomposed into force compo-
nents parallel and perpendicular to the rod. The
components parallel to the rod mutually compensate each other. Only the force components perpen-
dicular to the rod, d F⊥ = d F cos ϑ , are efficient.

d F⊥ = −γ m d M cos ϑ

r 2
= −γ mσ dx cos ϑ

x2 + b2
= −γ mσ dx b

(x2 + b2)3/2
,

F =
a∫

x=−a

d F⊥ = −2bγ mσ

a∫
0

dx

(x2 + b2)3/2
= − 2γ mσa

b
√

a2 + b2
,

F = − γ Mm

b
√

a2 + b2
e2 because M = 2aσ.

For b 	 a, a series expansion of the square root yields F ∼ 1/b2, as expected.
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Problem 27.2: Gravitational force of a homogeneous disk

m

ϑ

R r b= �
2 2

b

r
dr

a

Calculation of the force between a mass
point m and a homogeneous disk.

Let a particle of mass m be on the axis of a disk of
radius a at the distance b from the center of the disk.
Find the attractive force between the bodies. The disk
is assumed to be homogeneously covered with mass.

Solution The circular disk is decomposed into concentric
rings. Only the force components perpendicular to
the disk are efficient; the parallel components com-
pensate each other.

d F⊥ = d F cos ϑ = −γ m d M cos ϑ

R2
,

cos ϑ = b√
r 2 + b2

, R =
√

r 2 + b2 ,

d M = σ(2πrdr).

Hence the force between the circular ring and the
mass is

d F⊥ = −γ mσ2πr dr b

(r 2 + b2)3/2
,

and the total attractive force is

F =
∫

d F⊥ = −2πγ mσb

a∫
0

r dr

(r 2 + b2)3/2
.

The integral is solved by substituting u2 = r 2 + b2, r dr = u du,

F = −2πγ mσb

√
a2+b2∫
b

u du

u3
= −2πγσm

(
1 − b√

a2 + b2

)
.

For b 	 a, it follows by expansion of the square root that F = −γ mM/b2 with M = πa2σ , as it
must be.

Problem 27.3: Gravitational potential of a hollow sphere

Show that the gravitational potential of a homogeneous hollow sphere with the outer radius b and the
inner radius a has the form

V (R) = −2πγ M� ·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

3
(b3 − a3)R−1

b2 − a2

b2 − 2

3

a3

R
− 1

3
R2

for

⎧⎪⎪⎨⎪⎪⎩
R ≥ b,

a ≥ R,

b ≥ R ≥ a.
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a

dm d ´r
r´dϑ

ϑ
0

b

r

R er

M

Calculation of the potential between a mass
point m and a hollow sphere of homogenous
mass density ρ.

Solution We call ϑ : polar angle, ϕ: azimuth (for rotation
about the straight O M). According to the cosine
law,

r 2 = r ′2 + R2 − 2r ′ R cos ϑ,

2r dr = 2r ′ R sin ϑ dϑ,

or

sin ϑ dϑ = r dr

r ′ R
. (27.1)

The potential energy dV due to the mass element
dm of the hollow sphere is dV = −γ M dv �/r ,
where the volume element is dv = dr ′ · r ′dϑ ·
r ′ sin ϑ dϕ. M is the mass of the probe particle at
point M (see figure). To get the total energy, one
has to integrate over ϕ, ϑ , and r ′.

V (R) = −γ M�

b∫
a

π∫
0

2π∫
0

r ′2 sin ϑ dϕ dϑ dr ′

r

= −γ M�2π

b∫
a

π∫
0

r ′2 sin ϑ dϑ dr ′

r
with 27.1

= A

R

b∫
a

rmax∫
rmin

r ′ dr dr ′ with A = −2πγ M�.

We now distinguish three cases:
1. R ≥ b: Then rmin = R − r ′, rmax = R + r ′, and we get

V (R) = A

R
2

b∫
a

r ′2dr ′ = A
2

3

b3 − a3

R

(
= −γ Mm

R

)
.

2. R ≤ a: rmin = r ′ − R, rmax = r ′ + R. Thus we obtain

V (R) = A

R
2R

b∫
a

r ′dr ′ = A(b2 − a2).

3. a ≤ R ≤ b: The point M lies at the outer border of a spherical shell with the radii a and R, and
at the same time at the inner border of a spherical shell between R and b. The energy may then be
composed of the contributions according to cases 1 and 2:

V (R) = A

(
2

3

R3 − a3

R
+ b2 − R2

)
= A

(
b2 − 2

3

a3

R
− 1

3
R2

)
.

The forces are calculated by F = − ∂V
∂r er .

1. R ≥ b:

F = −4

3
πγ�M

b3 − a3

R2
er = −γ

mM

R2
er .
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In this case the force on M is such as if the total mass m of the hollow sphere were united at the
center.

2. R ≤ a: F = 0. In the interior (empty) space of the hollow sphere, there is no gravitational force
at all.

3. a ≤ R ≤ b:

F = γ M
4

3
π�

(
a3

R2
− R

)
er = −γ M� 4

3 π(R3 − a3)

R2
er = −γ Mm(R)

R2
er ,

where m(R) is the mass of the spherical shell with inner radius a and outer radius R (position of the
particle with mass M). The mass shell beyond R does not contribute to the force on M .

Problem 27.4: A tunnel through the earth

A tunnel for mail transportation is drilled from Frankfurt to Sydney (Australia). Determine the time
needed for the freely falling air tube casing to cover this distance, assuming the earth is at rest and
has a homogeneous mass distribution. Let the air friction be negligible.

R

M

F

S

C
xr

ϑ

Illustration of the earth with Frank-
furt (F ) and Sydney (S) as end-
points of a tunnel.

Solution The gravitational force within a homogeneous sphere points
to the center M and has the magnitude kr (compare Problem
27.3). At the surface of the sphere, one has mg = k R; hence
k = mg/R. From the figure we read off r = x/ sin ϑ . The com-
ponent of the gravitational force along the tunnel is therefore
−kr sin ϑ = −(mg/R) x .

Hence, the equation of motion is ẍ + (g/R) x = 0, that is,
the air tube casing performs a harmonic vibration between F
and S with the period T = 2π

√
R/g.

The time needed between F and S is τ = T/2 = π
√

R/g.
With R = 6370 km and g = 9.81 m/s2, it follows that τ = 42
min. Note that this short time does not depend on the distance
between F and S.

Stability of circular orbits

In any attractive central force field, the attractive force and the centrifugal force may be
brought into equilibrium, such that circular orbits are always possible. In practice (e.g.,
telecommunication satellites on geostationary orbits, particles in accelerators), however, it
is moreover important that the circular motion is not destroyed by small elongations. We
therefore investigate how a central force field must be structured to allow for stable circular
orbits. We first consider the field with the particular force law

F(r) = − K

rn
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ρ
r

Veff

Feff > 0 Feff < 0

The effective potential around a stable
orbit.

and look for the powers n for which stable orbits
exist. By adding the centrifugal force we obtain the
effective force

Feff(r) = − K

rn
+ mθ̇2r with θ̇ = L

mr2

= − K

rn
+ L2

mr3
,

and hence the effective potential

Veff(r) = −
r∫

∞
Feff dr = − K

(n − 1)rn−1
+ L2

2mr2
; n �= 1.

To get a stable circular orbit with the radius r = �,
the effective potential Veff(r) must have a minimum
at this position:

⇒ Fcentrifug = Fattr.

Thus, the following conditions shall be fulfilled:

∂Veff

∂r

∣∣∣∣
r=�

= 0 and
∂2Veff

∂r2

∣∣∣∣
r=�

> 0.

The second condition is essential for the path stability. It ensures that for small displacements
of the orbit a backdriving force occurs, pushing the particle toward the stable radius �,
namely Feff > 0 for r < � and Feff < 0 for r > �.

The two conditions lead us to
(a)

∂Veff

∂r

∣∣∣∣
r=�

= K

�n
− L2

m�3
= 0, �n−3 = mK

L2
,

(b)

∂2Veff

∂r2

∣∣∣∣
r=�

= − nK

�n+1
+ 3L2

m�4
> 0,

which is equivalent to

− nK

�n−3
+ 3L2

m
> 0.

Elimination of � yields

(−n + 3)
L2

m
> 0.
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The condition for stable circular orbits in a central force field of the form F = −K/rn

is n < 3.
We now omit the restriction to the power law and investigate arbitrary central force fields.
For all central motions it holds, using the angular momentum L = mr2θ̇ , that

F(r) = m(r̈ − r θ̇2) = mr̈ − L2

mr3
= m

(
r̈ − L2

m2r3

)
.

We abbreviate:

g(r) = − F(r)

m
, then − g(r) = r̈ − L2

m2r3
.

ρ

x

Reference
Orbit

Oscillating
real Orbit

Reference orbit and (oscillating)
real orbit.

The particle circulates on the reference orbit with the
radius �. A small perturbation shall not displace it sig-
nificantly from its path. After a small elongation x , the
new orbit is

r = � + x,

where

x � �,
x

�
� 1.

Because � = constant (circular orbit), r̈ = ẍ .

−g(r) = ẍ − L2

m2(� + x)3
= ẍ − L2

m2�3(1 + x/�)3
.

Because x/� � 1, the last term may be expanded into a Taylor series. We now assume
that g(r) may also be represented by a Taylor expansion about r = �:

g(� + x) = g(�) + xg′(�) + · · · .

Neglecting all terms with higher powers than x , we obtain

−(g(�) + xg′(�)) = ẍ − L2

m2�3

(
1 − 3

x

�

)
.

A consideration of the reference orbit r = �, x = 0, ẍ = 0 yields

g(�) = L2

m2�3

which allows us to eliminate the angular momentum. This yields

ẍ +
(

3g(�)

�
+ g′(�)

)
x = 0.
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This is just the equation ẍ + ω2x = 0 of the undamped harmonic oscillator with the
angular frequency

ω =
√

3g(�)

�
+ g′(�).

For ω2 > 0, the solution x = Aeiωt + Be−iωt yields harmonic vibrations. For ω2 < 0 x
tends to infinity as Be|ω|t . In the first case the particle “oscillates” on its actual orbit about
the reference orbit. In the second case the particle in general runs away from the reference
orbit.

The condition for stable circular orbits thus reads ω2 > 0. For ω2 > 0:

x(t) = Aeiωt + Be−iωt ⇒ x(t) = D sin(ωt + ϕ) (stable);
for ω2 < 0 (ω = i |ω|):

x(t) = Ae−|ω|t + Be+|ω|t (unstable).

In the first case the particle vibrates with the small amplitude x about its reference orbit if

3g(�)

�
+ g′(�) > 0,

or
3

�
+ g′(�)

g(�)
> 0.

Because mg(�) = −F(�), this implies for the force the

stability condition:
3

�
+ F ′(�)

F(�)
> 0.

When applied to the particular central force field F(r) = −K/rn , the stability condition
implies

F ′(�) = n
K

�n+1
; hence

3

�
− n

�n

�n+1
> 0.

We obtain the condition n < 3, which agrees with our former calculation. This of course
must be so, since by insertion of Veff one easily realizes that the new stability condition is
equivalent to ∂2Veff/∂r2 > 0.

The investigation of path stability may refer, among others, in the atomic range to
the electric field of the nuclei. The simple Coulomb potential V (r) = −K/r allows for
stable circular orbits, as was shown already. When taking into account the influence of an
oppositely charged electron shell, this potential is weakened: An electron in the outer region
“sees” only a small fraction of the nuclear charge. This phenomenon may be taken into
account by multiplication by a correction factor < 1. An approximation for the “screened
Coulomb potential” is

V (r) = − K

r
e−r/a .
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a characterizes the exponential decay of the 1/r -term. Stable circular orbits are also possible
for the screened potential. One should note that this potential allows for closed orbits even
for positive energies. The figures illustrate the trend of the potential and the effective
potential. The closed orbits of positive energy are fully stable in classical mechanics we are
treating here. In quantum mechanics, however, we shall see that these orbits decay, because
the particles on such orbits of positive energy may “tunnel” through the potential barrier
(tunnel effect).

V r( )

V eff

V eff =

r

r

−

−

− +

K
r

K
r

K
r

e−r a/

L
mr

2

22

effective
Coulomb  :
Potential

(a)

(b) (c)

Coulomb Potential

screened Coulomb Potential

V eff

V eff =

r

− +K
r

e−r a/ L
mr

2

22

a a= 1

a a= 2

E2

E1

possible closed Orbit
with positive Energy
1/ < 1/a a1 2

screened effective
Potentials

Shape of the potential: The screened Coulomb potential (a) decreases rapidly for distances r > a and approaches
zero faster than the unsceened potential. Effective Coulomb potential (b) and effective screened Coulomb potential (c).
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Problem 27.5: Stability of a circular orbit

Show that for �2 K > K ′ the circular orbit with r = � in the force field F(r) = −K/r 2 − K ′/r 4 is
stable (for K , K ′ > 0).

Solution The stability condition reads

3

�
+ F ′(�)

F(�)
> 0;

hence

3

�
+ 2K/�3 + 4K ′/�5

−K/�2 − K ′/�4
> 0, 3�2 K + 3K ′ > 2�2 K + 4K ′, �2 K > K ′.

Problem 27.6: Stability of a circular orbit

Show that a force field with the potential

U (r) = − K

r
e−r/a with K > 0, a > 0,

allows for stable circular orbits.

Solution F(r) = − ∂

∂r
U (r) = −K

(
1

ar
+ 1

r 2

)
e−r/a,

F ′(r) = −K

(
− 1

ar 2
− 2

r 3

)
e−r/a + K

a

(
1

ar
+ 1

r 2

)
e−r/a

= K

(
1

a2r
+ 2

ar 2
+ 2

r 3

)
e−r/a .

Insertion into the stability condition yields for r = �

3

�
− 1/a2 + 2/�a + 2/�2

1/a + 1/�
> 0.

This means

a2 + a� − �2 > 0

or rewritten(�

a

)2 − �

a
− 1 < 0.

This is fulfilled for

�

a
<

1 + √
5

2
≈ 1.62.



28 The Earth and
our Solar System

General notions of astronomy

Stars: Stars are celestial objects (suns) mostly of high mass concentration that emit light
produced by nuclear reactions. In the core zone of our sun, for example, hydrogen (H)
is burning to helium (4He). In other, older stars, higher burning processes are going on,
such as 34He → 12C, 12C +4He →16O, etc. They are rather subtle in the details. A clear
representation of these processes may be found in J. M. Eisenberg and W. Greiner, Nuclear
Theory 1: Nuclear Models, 3rd ed., North Holland, Amsterdam (1987).

Planets: Planets are bodies circulating in the central force field of a star. They may reflect
light (the ratio of reflected to incoming luminous flux is called albedo), but hardly emit any
light by themselves (up to some thermal radiation corresponding to their temperatures).
The point of maximum distance between a planet and its central body is called aphelion,
th point of minimum distance is called perihelion.

Meteors: Collective noun for the light phenomena that are caused by penetration of solid
particles (meteorites) into the earth’s atmosphere. The meteorites that may have masses
between 10−3 g and 106 kg enter the atmosphere with velocities between 10 and 200 km/s
and usually burn out completely.

Comets: Comets are celestial bodies of low mass concentration (most likely all of them)
moving in the central force field of a star. A comet has a core out of dust and ice grains.
Under sufficient irradiation by the sun it develops a gas shell (coma) and a tail. The total
length may reach up to 300 millions of km.

Satellites: Satellites are bodies circulating about planets. One may distinguish between
natural satellites, the moons, and artificial ones (the first one was Sputnik I (10/14/1957)).
In the case of earth satellites, the longest and shortest distance from earth is denoted as the
apogee and perigee, respectively.

295
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Asteroids and planetoids: These are pieces of rock. The size is small as compared to
the usual planets. They are orbiting about the sun in the range between Mars and Jupiter
and mostly have similar orbital data. Therefore, they were presumed to be the residues
of a decayed planet (the orbits of the planetoids are crossing each other). There are also
commensurability gaps within the belt of planetoids, presumably caused by Jupiter.

Period: The period denotes the time of a full course of any periodic motion. In astronomy
one mostly means the sidereal period, namely, the time a mass needs for a complete
revolution about its central body.

Solar system: The sun together with its associated planets and their moons, as well as
the planetoids, comets, and swarms of meteors, in total constitute the solar system.

Ecliptic: The plane in which the center of mass of the system earth–moon orbits around
the sun is called ecliptic.

Determination of astronomic quantities

We shall now briefly indicate how astronomic quantities are determined in practice.

The distance between planets and earth

(a) The distances may be determined by triangulation. From a measurement of the obser-
vation angles of the planet as seen from two distinct points and of the distance between
these points, the distance of the planet may be calculated.

N

S Earth

Planet
Parallax

Principal scheme for measuring distances by triangulation.

(b) Distances may be measured by radar. Because the propagation speed of electromagnetic
waves is known, one may conclude from the transit time of radar signals on the distance.
This method works only for the immediate neighbors of the earth.

(c) In the sense of (a), the earth’s orbit may also be used as a base for triangulation to
measure the distance of the near fixed stars.
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(d) The sun (and the planets) are moving uniformly by about 610 millions of km/year (or
4.09 astronomic units per year) toward the sun’s apex in the constellation of Hercules
(see later: “A model of the sun’s environment” and “The spatial motion of the sun” on
page 318 ). This may also be used for parallax measurements, and thus for measuring
the distances of fixed stars up to more than 100 lightyears.

Determination of the distance of far away astronomical objects

The universe is expanding. The farther away the astronomical objects are, the larger their
velocity is. This extraordinary discovery is due to Edwin Hubble,1 who looked at the
large-scale behavior of matter in the universe. The Hubble law

v = H0d

allows the determination of the distance d of extragalactic objects from their recessional
velocity v if the numerical value of the constant H0 is known. Within the theoretical
framework of the Big Bang, the Hubble law is quite plausible. Matter that has been
created with high initial velocity travels the longest distance within time T : d = vT ; thus
v = 1/T · d . For nonrelativistic speeds, the recessional velocity v equals the product of the
speed of light and the redshift z, which can be measured in the spectrum of the observed
object,

z = λ − λ0

λ0
.

Here, λ is the observed wavelength of a reference line in the line spectrum of the object and
λ0 is the wavelength of this line when the relative velocity between source and observer
vanishes. If the period of the emitted light is T , we have λ0 = cT and λ = (c + v)T , or

λ0

c
= λ

c + v
,

from which we obtain v = zc.
In order to obtain the Hubble constant H0, the distances of a suitable sample of galaxies

have to be measured. Astronomical distances are usually measured step by step, progressing
gradually from the solar system over nearby stars to ever more distant objects, finally
reaching faraway galaxies.2

The first step is the determination of the size of the solar system and of the distances of the
planets. This can be done today very accurately with the help of radar delay measurements.

1Edwin Hubble (1889–1953). American astronomer who determined the extragalactic distance scale by locating
Cepheid variables in the galaxy M31 (the Andromeda galaxy) from the Mount Wilson Observatory in 1924 and
NGC 6822 in 1925. Extending distance determinations by using the brightest star in galaxies, he proposed the
Hubble law in 1929.

2For more details about the measurement of astronomical and cosmological distances, see, e.g., Rowan-
Robinson, M.: The Cosmological Distance Ladder, W.H. Freeman and Company, 1985.
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The only possible way for the direct determination of further distances is the method of
triangulation. This method is suited for the determination of distances of stars in our Milky
Way neighborhood. Here, the change of the direction to a star when observing from two
different points at a distance d is measured. The line between the two observation points
is called the baseline; the angle difference is called the parallax of the star. The parallax is
the same angle under which the baseline would be seen when observed from the star. The
distance to the star can then be calculated by simple trigonometry. In the ideal (and most
simple) case, the observed star lies in the plane perpendicular to the baseline and cuts the
baseline in half. Then, the distance is, to a very good approximation, given by

d = b

α
,

where b is the length of the baseline and α is the parallax angle. The longest available
baseline is the line between two opposite points of the earth’s orbit around the sun. This is
also the origin of the distance unit of Parsec (pc). One pc is the distance from which the
orbit of the earth is seen under an angle of one arc-second, or, equivalently, the distance
yielding a parallax of one arc-second. 1 Parsec corresponds to 3.26 lightyears.

The range of applicability of the parallax method is given by the error in the determination
of the angle δα and by the restriction in the length of the available baseline. Gaussian error
propagation yields a relative error for the distance from the parallax method of∣∣∣∣δd

d

∣∣∣∣ =
∣∣∣∣ b

α2

∣∣∣∣ δα
1

d
= δα

d

b
.

This means that for a given error in the measurement of the angle α and with a given
baseline b, not just the absolute error for the distance d, but also the relative error will
increase.

The first parallax of a star was measured by the German astronomer Friedrich Wilhelm
Bessel. In 1838, Bessel published his value of 0.314 arc-seconds for the parallax of the
star 61 Cygni, corresponding to a distance of about 10 lightyears. The correct value of the
parallax of 61 Cygni is 0.292 arc-seconds, or 11.2 lightyears.

During the 1990s, the Hipparcos satellite mission measured the parallax of 118,000 stars
accurately down to 1 milliarc-seconds (mas), yielding a very exact picture of the distances in
our Milky Way neighborhood.3 But even before the advent of the Hipparcos data, there had
been possibilities to measure distances beyond the range of the triangulation method. With
the help of the star drift parallax (also called convergent-point method) one can measure
the distance to nearby open star clusters and thus determine the absolute luminosity of main
sequence stars.

The method of the star drift parallax is based on the determination of the two components
of a star’s motion that can be observed from the earth: The radial velocity (the velocity
along the line of sight) can be measured from the Doppler shift in the spectrum of the star,
while the proper motion of the star (the motion on the celestial sphere) can be converted
to the transversal velocity if the distance of the star is known. Both velocity components
taken together yield the compete, three-dimensional velocity vector of the star. If, on the

3See, e.g., Perryman, M.: “The Hipparcos astrometry mission,” Physics Today (June 1998),
http://astro.estec.esa.nl/Hipparcos/
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other hand, the direction of the velocity vector and the radial velocity of a star are known,
the distance of the star can be calculated from the proper motion. This is used for the
determination of distances by the star drift parallax method.

If one knows the apparent convergence point of a cluster of stars in collective, parallel
motion, one can deduce the transversal motion of the stars in the cluster from the measure-
ment of their radial velocities. By comparison with the proper motion, one can determine
the distance of the stars. The accuracy of this method relies on the large number of measured
stars. The most prominent example for the use of the star drift parallax is the determination
of the distances of the Hyades.4 The distance thus obtained for the Hyades is 45 pc. The
determination of the distance to the Hyades serves as a gauge point for methods reaching
still farther out such as the Cepheid method.

When plotting in a diagram the absolute luminosity of stars versus their surface tem-
perature, which can be inferred from their spectra, one finds a large class of stars showing
a strong monotonic relation between these two observables. Such stars are called main
sequence stars. The diagram is called the Hertzsprung–Russell diagram after its inventors.
The fitting of large clusters of stars at the main sequence uses this relation between surface
temperature and absolute luminosity in order to estimate the absolute luminosity of the stars
and, by comparison with the measured apparent luminosities, the distance of the cluster.
Thus, the ratio of apparent luminosities of stars in different clusters allows conclusions
about the ratio of the distances of the clusters to the solar system.

The methods of star drift parallax and fitting to the main sequence thus allow the
determination of the distance of faraway star clusters. When observing Cepheid stars in
such clusters, one can gauge the period–luminosity relation of this class of variable stars and
measure distances up to 4 Mpc, reaching beyond the Milky Way in extragalactic regions.

The Cepheid are a class of variable stars that show a definite relation between their
absolute luminosities (i.e., the total amount of energy released as visible light) and the
period of variation of their luminosity. They are named after the first known object of this
type, the variable star δ Cephei. When observing a distant Cepheid, measuring the period
of variation thus allows the calculation of the absolute luminosity. Comparing with the
apparent luminosity (the light received in a telescope), one can determine the distance of
the star. In order to obtain reliable results, one must take into account the attenuation of the
light by interstellar matter.

The astrophysical mechanism responsible for the pulsation of Cepheid stars and the
relation to absolute luminosity are quite well known. Modern astrophysics differentiates
between classical Cepheids and W -Virginis stars, which show different light curves and
spectra. Furthermore, one knows the relatively dim R R-Lyrae stars, which can be identified
from their short periods. R R-Lyrae stars have a constant absolute luminosity, which can be
used to determine their distance. However, since they are not as bright as Cepheids, they
can be used only over shorter distances.

With the help of extragalactic Cepheids, one can determine the absolute diameter of the
H-II regions of galaxies. Assuming that the diameters of large H-II regions of different

4The hyades, an association of several hundred stars, are an open star cluster in the constellation of Taurus (the
bull). With a distance of about 145 lightyears, it is the second-closest star cluster to Earth. On the celestial globe,
the hyades are centered around Aldebaran, the brightest star in Taurus, which, however, is not part of the hyades
cluster.
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galaxies are approximately equal, one can then determine the distance to other galaxies.
Using this method, one reaches distances up to 25 Mpc.

H-II regions bear their name from the simply ionized hydrogen they consist of. The as-
sumption that these regions—which are supposed to play an important role in the formation
of stars—are all approximately equal in size relies on the hypothesis that the UV radiation
from the core of their galaxies which makes them glow always has the same range. This
would imply that the observable radius is constant.

The next step uses the distances of the H-II regions in order to determine the absolute
luminosities of so-called Sc-I galaxies. In the Hubble classification of galaxies, Sc-I galaxies
are a class of old spiral galaxies with wide, open spiral arms and a small core. All galaxies
of this class have approximately the same absolute luminosity.

Measuring the apparent luminosity of far away Sc-I galaxies and using their known
absolute luminosity, one can infer their distance. This finally allows us to determine the
relation between distance and redshift and yields a value for the Hubble constant H0.

For every step of the measurement of distances, there also exist alternative methods.
Besides the well-established Cepheid calibration, one can look for novae, which have
a definite relation between their maximal absolute luminosity and the time scale of the
decrease of luminosity, or for bright main sequence stars, which can be identified from their
spectra and whose absolute luminosity is well known. Supernovae can still be observed in
the huge distance of 400 Mpc. While all supernovae approximately reach the same absolute
luminosity, this value is not easy to calibrate. Still another method uses the third brightest
galaxy in a small galaxy cluster, making the assumption that all such galaxies have nearly
the same absolute luminosity. Experience has shown that the third-brightest galaxy is better
suited for this purpose than the brightest or second-brightest galaxy. Another possibility for
the determination of distances is the use of the brightest globular clusters of far galaxies.
Finally, a radio-astronomical method uses the observed close relation between the half-
width of the 21-cm line of hydrogen and the absolute luminosity of a galaxy in the blue
spectral band.

The combination of all these different methods yields today a quite coherent picture of
the distances in the universe. As for the Hubble constant, the accepted value from different
measurements by the Hubble space telescope5 is H0 = 72 ± 8 km s−1Mpc−1.

The orbital velocity of the planets

(a) For circular orbits the velocity may be determined from the measurable quantities
orbital radius and revolution time (period).

(b) For elliptic orbits the velocity may be determined from the measurable quantities
semi-axes and period.

5Freedman, Wendy L. et al.: “Final Results from the Hubble Space Telescope Key Project to Measure the
Hubble Constant,” The Astrophysical Journal 553 (2001) 47-72.
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The mass of the planets

(a) From the gravitational law and the equation for the centripetal force the relation γ M =
4π2 a3 T −2 follows; see equation (26.41). This is the third Kepler law. M here means
the mass of the central body, which is large as compared to the mass of the orbiting
body. From this equation one may calculate the mass of the sun and the mass of every
planet having moons.

(b) If planets don’t have moons, their mass is determined from the orbital perturbations of
the neighboring planets.

The rotational velocity of a planet or star

The rotational velocity of a planet may be determined by observation of marked points
on its surface. For stars that are visible only as a pointlike light source, this method fails.
For these objects the rotational velocity may be derived from their spectra and from the
distortion of a spectral line due to the Doppler effect (distinct shift—red, blue—at opposite
sides of the rotating star). The east border of the sun shows, for example, a red shift, and
the west border a blue shift from which follows a rotational velocity of the surface of the
sun of 2 km/s.

Detection of gases in the universe

Elements occuring in stars may be determined from the spectrum of the star light. In the
case of planets one has to take into account that they only reflect or absorb light. The gases
of the atmosphere may be identified by the absorption spectrum (Fraunhofer lines).

The tides

Two masses are moving in the gravitational field of a third mass M (see figure).

Ma2 a1

Two masses in the gravitational field of a mass M are subject to different accelerations a1 and a2 due
to the inhomogeneities of the gravitational field.

The first mass is subject to an acceleration a1 = γ M/r2
1 , the second mass is accelerated

by a2 = γ M/r2
2 . An observer on one of the masses therefore establishes that the other

mass moves away from it with the acceleration a1 − a2 = γ M(1/r2
1 − 1/r2

2 ). Hence, the
distinct magnitude of the gravitational force implies a force between the two masses, which
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thereby are pulled apart from each other. Such a force always arises if the gravitational
field is inhomogeneous; it is called a tidal force because the tides on earth are caused by
the same effect.

Low tide and high tide are generated by the motion of the earth in the gravitational
field of the moon (mass MM). At point A or B (see figure) a body gets an acceleration
a = γ MM/(r ± R)2 due to the attractive force of the moon, where r is the distance between
the centers of earth and moon, respectively, and R is the earth’s radius.

S

C

MA

D
Earth

B

aMaM azazMoon

Explanation of the tides: Earth and moon orbit around the common center of mass S.

The Taylor expansion yields a ≈ (γ MM/r2)(1 ∓ 2R/r). The acceleration at the earth’s
center is az = γ MM/r2, such that the difference is a−az = a−γ MM/r2 = ∓2γ MM R/r3.
This difference always points off the earth’s surface and has the magnitude 8 · 10−5 cm/s2.
At points A and B the earth’s acceleration is thus reduced by this amount.

The common center of mass S of earth and moon is apart from the earth’s center by
about 3

4 R. Because the center of mass is conserved, both earth and moon are moving with
the same angular velocity about this point S. The center of earth thus moves on a circle
of radius 3

4 R about S. This circular motion is the same for all points on earth and leads
to a centrifugal acceleration az that points along the axis earth–moon off the center of the
circle. At the earth’s center the centrifugal acceleration and the gravitational acceleration
γ MM/r2 just compensate each other.

The reduction of the earth acceleration at points A and B leads to formation of tide
waves. Because the problem is symmetric about the axis moon–earth, one observes low-
tide valleys in the ring through C and D perpendicular to this axis. The points A and B are
floating along the earth’s surface, in accord with the moon’s circulation about earth and the
rotation of the earth about its axis, such that the highest tide occurs twice within 24 3

4 h at a
given position.

If the earth were completely covered by oceans, the height of the tide wave would amount
to about 90 cm. By the various shapes of the coastlines, the times of the highest tide may
shift, and tide waves with heights of several meters may evolve.

The gravitational field of the sun also causes tidal forces on earth that amount to about
half of the lunar tidal forces. If sun, moon, and earth lie on a straight line (i.e., at full moon
and at new moon, i.e., each 13 1

2 days), the tidal forces add up and a particularly high tide
arises (spring tide); at half-moon one observes a neap tide (see figure).
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Half
Moon

New Moon

Full Moon

EarthEarth

Neap TideSpring Tide

Sun

Explanation of spring tide and neap tide.

The friction between the waters and
earth implies a deceleration of the earth
rotation, such that the day became longer
by 0.0165 s during the last 1000 years.
Because the total angular momentum
of the earth–moon system is conserved,
the decrease of the earth’s angular mo-
mentum must be joined with an in-
crease of the moon’s angular momen-
tum. The moon’s angular momentum
with repect to the earth’s center is

Lmoon = MMvr.

The gravitational force just balances
the centrifugal force:

γ ME MM

r2
= MMv2

r
⇒ v =

√
γ ME

r
.

Hence: Lmoon = MM
√

γ MEr . If Lmoon increases, the distance earth–moon also increases.
This increase amounts to about 3 cm per year.

The transfer of angular momentum from earth to moon is explained in the following
somewhat simplified model. The friction between the waters of the oceans and the earth
crust causes the two high-tide waves to flow with some delay behind the earth–moon axis
(see figure). The differences in the gravitational forces N and F result in a torque that
decreases the earth’s angular momentum. The sum of the reactive forces acting on the
moon has a component along the moon motion. Hence, there exists a torque that increases
the angular momentum of the moon.

The tidal forces of the earth onto the moon over the ages have resulted in the moon always
showing the same face toward earth: The eigenrotation of the moon is already decelerated
so much that its period coincides with the revolution time of the moon about earth.6

N
N

F
F

Earth Moon

The high-tide waves are partly convected by the earth rotation.

6We recommend for further reading: Peter Brosche: The deceleration of the earth rotation, Contemporary
physics (Physik in unserer Zeit) 20 no. 3 (1989) 70.
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Precession and nutation of the earth

In the following considerations we always take into account that the celestial bodies (e.g.,
earth) have a finite spatial extension.

As the earth has no exact spherical shape but is a flattened rotational ellipsoid, and because
the rotational axis of the earth is inclined against the ecliptic, the sun performs a torque D
onto the earth that generates a change of angular momentum dL of the earth: L̇ = D or
dL = D dt . The torque D and hence also dL are perpendicular to the angular momentum
L. Because this relation holds at any time, the vector L moves along the surface of a cone,
whose axis is the polar axis of the ecliptic. This cone is called the precession cone. The
problem of motion of spinning bodies will be treated in more detail in connection with the
theory of the top in Classical Mechanics: Systems of Particles and Hamiltonian Dynamics.

Ecliptical Pole

Ecliptical Plane

Earth axis

N

23.4˚

L

S

The geometry of the earth’s precession. The bulge of the geoid is exaggerated.

We consider the problem from the earth’s point of view and base it on the assumptions
that the sun were circulating about the earth and that the sun’s mass is uniformly distributed
along the assumed path. (This will be justified below.) For our consideration there exists
a mass ring about earth at the distance earth–sun. This mass ring generates a change of
angular momentum for the spinning top “earth,” which causes a rotation of the angular
momentum axis about the pole of the ecliptic. In the figure, the pole of the ecliptic stands
perpendicular to the assumed (hatched) sun orbit plane, the ecliptic.

The angular momentum axis describes a precession cone about the pole of the ecliptic.
The revolution period of the earth precession is 25,730 years (the so-called “platonic year”).
This now justifies our assumption of the homogeneous mass ring “sun” since the sun would
have performed 25,730 turns about the earth during one period of the precession motion.

Besides the attraction by the sun, still other attractive forces by the moon and other
planets are acting on earth, which also produce a change of the angular momentum.

The largest perturbations are caused by the moon; they result in precession motions with
a period of 9.3 years.
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Because of the flattening of the earth, the earth’s axis and the angular momentum axis
do not coincide exactly, such that the earth’s axis moves about the angular momentum
axis. These fluctuations of the earth’s axis are called nutations. The measured period of the
nutation motion of earth is 433 days.

A detailed quantitative discussion of these phenomena is given in the chapter on the
theory of the spinning top (gyroscope) in the volume Classical Mechanics: Systems of
Particles and Hamiltonian Dynamics of these lectures.

Small bodies in the solar system

The more thoroughly the astronomers investigate the solar system, the more difficult it
becomes to maintain the classical subdivision into the various categories for the smaller
celestial bodies. Several of the moons orbiting about the planets meanwhile have been
uniquely identified as captured small planets (asteroids). Most of the asteroids, which
presumably consist of the material of a “prevented” planet, are orbiting about the sun
between the orbits of Mars and Jupiter. Several of them, however, on their flight also
closely approach the earth’s orbit.

It became possible by refined observation techniques to detect even small planets with a
diameter of few meters in our neighborhood. Thus, in size they are comparable to meteorites.

At certain time intervals of the year, shooting stars are piling up in the sky, namely always
when the earth is crossing the path of a comet. From that phenomenon the astronomers
conclude that many meteorites are fragments of comets. Other meteorites display a com-
position that suggests an origin from small planets. It is also known that comets may split
up and decay into debris. Initially intact comets later returned as twin comets.

Such a decay may obviously happen also among small planets. An English–Australian
observation program has led to the discovery of an asteroid in 1991 denoted as 1991 RC
and later dubbed “5786 Talos”.7 This object practically follows the same path as the small
planet Icarus did, which had approached the earth in 1968 to only 6 million km.

In October 1990, the astronomers discovered a small planet with a diameter of only 60 to
120 m. One month earlier a telescope on the Kit Peak in Arizona had been set into operation
for a systematic search for small planets in the close vicinity to earth, which raises serious
problems for the classification of small cosmic objects. By means of this device, a “small
planet” (1991 BA) of only 5- to 10-m diameter had been detected, which 12 hours later
passed earth at a distance of 170, 000 km. At tihs time, it was the closest object to earth
ever detected, and so small that it might also be a meteor.

The systematic search on the Kit Peak for cosmic rocks is performed for the first time
by means of electronic detectors (CCD). Therefore, one has to expect such findings more
frequently in the future. In just October and November 1991, four more objects were found
with diameters less than 30 m each. Whether these were small planets or meteors could not
be cleared in either case. For a meteor observed in 1972 in the west of the United States,

7D. Steel, Nature 354 265-267 (1991).
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it has been estimated that the glowing body had a diameter of 4 m—that is, not much less
than the object 1991 BA.

By means of the telescope on the Kitt Peak, during only 10 months the astronomers found
evidence for 15 formerly unknown “small planets” on their way toward earth, moreover
2000 further asteroids per month. The frequency of collision of such objects with earth
will soon have to be calculated anew with additional data. At a conference held in 1991
in St. Petersburg (“The Asteroid Hazard”) the participants still estimated the impact rate
of a rock of 50-m diameter to be one event per century. This seems to be a major danger.
Actually, meteors so far only rarely have caused noticable damages, because only a very
small fraction of the earth’s surface is inhabited.

If the object 1991 BA collided with earth, the impact energy—assuming a mass density
of typical meteorite material—would be equivalent to about 40 kilotons of TNT. This is
three times the energy of the Hiroshima bomb. For some time the American space agency
NASA made plans and, indeed, has arranged for systematically localizing small objects
moving toward earth and, if necessary, to destroy them before a collision. Whether such
a project is meaningful and feasible with present-day means and wether it finds continous
funding remains to be seen.

In this respect it is worthwhile to note that in December 2001, NASA took the decision
to stop a routine search program for small nearby asteroids with the help of the 300-m
radio telescope in Arecibo/Puerto Rico. The American Congress had instructed NASA to
track down until 2008 all astronomical bodies larger than 1 km that may represent any
danger to earth. However, Congress did not provide enough funding to accomplish this
task, NASA says. The observations with the telescope in Aceribo are extremely important
for the determination of the actual position, velocity, and orientation of the orbit of possibly
dangerous small objects. Moreover, the telescope allows to take radar maps of some of
these bodies. The only remaining radio telescope for the search for the “NEOs” (near-earth
objects) is now the antenna of NASA’s Deep Space Network at Goldstone/California. All
other telescopes involved in the search for NEOs are optical telescopes.

Recent research on the solar system—Jupiter’s large family of moons.

The exploration of our solar system is, obviously, far from complete. This view may be
corroborated by the discovery of 11 hitherto unknown moons of Jupiter in December 2001,
and of further 18 moons during the year 2002, bringing the total number of moons of the
largest planet of our solar system to 58 (as of April 2003).

Jupiter has clearly captured several asteroids and minor planets within its gravitational
field. The recently discovered moons had been found during a well-directed search program
by a group of astronomers from Britain and Hawaii.8 One expects that the overall number
of satellites of Jupiter with a diameter of at least 1 km is well into the hundreds. Further
discoveries will surely be made.

8See, e.g., the web page of the group leader, David Jewitt, from the University of Hawaii, at
http://www.ifa.hawaii.edu/~sheppard/satellites/jup.html.
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This schematic view shows the orbits of the irregular satellites of Jupiter. The outermost regular satellite of Jupiter, the
Galilean moon Callisto, is shown for reference. The orbits of the new satellites are shown in black. ( c©University of
Hawaii, reproduced with kind permission)

The newly discovered moons all are so-called irregular satellites of Jupiter, characterized
by wide, elliptic orbits that do not lie inside the ecliptic. Many of those irregular satellites
(including all the new ones) move along retrograde orbits, namely in a direction opposite
to the direction of Jupiter’s rotation.

The largest one of the irregular satellites, Himalia, was detected already in 1904. The
retrograde orbit of these bodies is a clear hint that they are not primordial satellites of
Jupiter, but captured objects. How Jupiter could capture and bind these small planetoids is
not yet known. Astronomers cannot explain these events by celestial mechanics alone. It
may be possible that Jupiter in the early stages of its history had a far-reaching atmosphere
that could slow down the small planetoids.
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Jupiter’s new moons all have diameters between 2 and 4 km. They were discovered
with the help of the Canada–France–Hawaii telescope (diameter 3.6 m) with one of the
largest digital imaging cameras in the world, the “12K”. This camera obtained sensitive
images of a wide area around Jupiter. The digital images were processed using high-
speed computers and then searched with an efficient computer algorithm for objects with
movements characteristic of small moons that are near Jupiter. When the program detected
an object, visual confirmation was made by eye. If the candidate looked good, it was
observed during succeeding months at the University of Hawaii’s 2.2-m telescope. These
observations allowed the computation of their orbits.

Properties, position, and evolution of the solar system

General facts on the solar system

Our solar system belongs to the spiral nebula “Milky Way.” A lateral view of Milky Way
is shown in the following figure. The lines denote zones of equal matter density, with the
density decreasing from inside to outside. Our solar system is about 10 kpc apart from the
center of the galaxy. (The length unit parsec has the magnitude 1 pc = 3.086 · 1013 km
= 3.26 lightyears. This value stems from the following definition: 1 pc is the distance from
where the major radius of the earth’s orbit is seen under 1′′.)

Sun
Spiral Arms

4 kpc

30 kpc

~~10 light years5 Galactic Halo

Schematic profile of the Milky Way galaxy. The galactic halo is scarcely occupied with old stars, but
perhaps filled with so-called dark matter.

Top view of the Milky Way galaxy.

The two figures show how our Milky Way galaxy would
look if we could see it from the top or from the side.
This “synthetic photography” has been established by a
computer from data measured within our galaxy.

Data on the solar system are compiled in the following
figures. When considering the solar system, keep in mind
that all planets have the same direction of revolution and
almost the same orbital plane. Only Pluto displays larger
deviations in its data, which led to the assumption that



PROPERTIES, POSITION, AND EVOLUTION OF THE SOLAR SYSTEM 309

Side view of the Milky Way galaxy.

Pluto was captured by the sun only after the evolution of
the planetary system. In the context of the formation of
the solar system the following, so far not yet explained
empirical law for the major semi-axes of the planets de-
serves interest (the planetoids are well fitting in there). It
is the called the Titius–Bode relation for the major semi-axes an of the planets: an = a0kn .
Thereby a0 = 1 AU and k ≈ 1.85. The abbreviation “AU” means “astronomical unit” =
major semi-axis of the earth’s orbit. The integer numbers n are associated to the planets
(see the figure on p. 309).

Mercury
Venus

M
er

cu
ry

V
en

us

Earth
Mars
Planetoids
Jupiter
Saturn
Uranus
Neptune
Pluto

E
ar

th

M
ar

s

C
er

es

Ju
pi

te
r

Sa
tu

rn

U
ra

nu
s

N
ep

tu
ne

Pl
ut

o

n = 2
1
0
1
2
3
4
5
6
7

−
−

0 1 2 3 4 5 6 7 n

− −2 1

ln
a
a

n

0

Illustration of the Titius–Bode relation.
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Our solar system in figures.

Name Sun Mercury Venus Earth Mars
Ceres

(planetoid)

Symbol —
Year of discovery — — — — — 1801

Discoverer — — — — —
Piazzi
Gauss

Sidereal period
(in earth years)

— 0.205 0.615 1 1.88 4.6

Mean distance
Sun–planet
in AE

— 0.387 0.723 1 1.524 2.767

Mean distance
Sun–planet
in 106 km

— 57.9 108.2 149.6 227.9 —

Eccentricity
of orbit

— 0.206 0.007 0.017 0.093 0.076

Inclination
of orbit

— 7◦ 3◦ 0◦ 1◦51′ 10◦37′

Inclination
of equator

— ∼ 2◦ ∼ 3◦ 23◦27′ 23◦59′ —

Radius in
earth radii

109 0.382 0.949 1 0.533 0.055

Mass in
earth masses

3.3 · 105 0.054 0.814 1 0.107 ∼ 0.0001

Surface gravity
in g

— 0.4 0.0.9 1 0.4 —

Density
(g/cm3)

1.4 5.46 5.06 5.52 3.93 3.3

Sidereal
rotation period

∼ 25 d 58d17h −243d 23h56m 24h37m 9h0.5m

Moons — 0 0 1 2 0
Mean surface

temperature (in K)
5785 100–625 740 288 216 160

Spectroscopically
found gases
in atmosphere

H, He He, H
CO2, N2,

H2O
N2, O2

CO2, N2,
O2, H2O

—

Supposed chemical
composition
(main components)

H, He Fe, Si
Fe, Si,

O
Fe, Si,

O
Fe, Si —
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mEarth = 5.976 · 1024 kg, 1 AE = 1.496 · 106 km.

Name Jupiter Saturn Uranus Neptune Pluto

Symbol
Year of discovery — — 1781 1846 1930

Discoverer — — Herschel
Leverrier

Galle
Lowell

Tombaugh
Sidereal period

(in earth years)
11.8 29.45 84.015 164.78 247.7

Mean distance
Sun–planet
in AE

5.203 9.539 19.128 30.057 39.50

Mean distance
Sun–planet
in 106 km

779 1432 2888 4509 5966

Eccentricity
of orbit

0.048 0.056 0.047 0.009 0.247

Inclination
of orbit

1◦18′ 2◦29′ 0◦46′ 1◦46′ 17◦10′

Inclination
of equator

3◦04′ 26◦44′ 98◦ 29◦ > 50◦

Radius in
earth radii

10.97 9.03 3.72 3.43 0.24 (?)

Mass in
earth masses

317.45 95.21 14.9 17.2 0.002 (?)

Surface gravity
in g

2.4 0.9 0.9 1.7 0.1

Density
(g/cm3)

1.33 0.71 1.55 2.41 0.8 (?)

Sidereal
rotation period

9h55m 10h40m −23h50m 17h50m 6h23m

Moons 39 21 5 8 1
Mean surface

temperature (in K)
134 97 60 57 43 (?)

Spectroscopically
found gases
in atmosphere

H2, He,
CH4, NH3,

H2O

H2, He,
CH4, NH3

H2, CH4
H2, He,

CH4, NH3
(?)

Supposed chemical
composition
(main components)

H, He H, He
H2O, CH4,

NH3
H, He (?)
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Asteroid Belt

Jupiter

Mercury
Venus
Earth
Mars

Saturn

Jupiter

Pluto

Neptune

Uranus

1 AU 10 AU

Maps of the solar system in two different scales. 1 AU (astronomical unit) is the radius of the earth’s
orbit. The symbol of each planet is given at the perihelion of its orbit.

Closed orbits and perihelion motion

As we have seen, there exist spatially fixed closed orbits in the 1/r -force field. But if the
gravitational potential differs somewhat from r−1, hence V (r) �= r−1, for example,

V (r) = Ar−1 + Br−2 + Cr−3 + · · · ,
a rosette motion may arise. The effective potential has a minimum as before, such that

a minimum and a maximum radius exists. But in general the paths are no longer closed
curves as in the case of the 1/r -potential. They then must be rosette orbits. (We refer to
Problem 26.12.)

Deviations from V (r) ∼ r−1, such that the potential differs from cr−1, are caused by
the influence of other planets on the path of a given planet, or by deformation (flattening)
of the central star. These perturbations generate both a perihelion motion of the planets

V r( ) ~ V r( ) =1
r

1
r

rmin

rmax

Closed orbits and rosette orbits in the force field of a central mass.
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as well as the typical rosette path. The planetary orbits agree with the values calculated
according to Newton, except for the case where the planet is very close to the sun. The
normal mutual perturbations of the planets may be calculated by means of the tools of
celestial mechanics. For Mercury, however, the observed value for the forward motion of
the Mercury perihelion is too large to be traced back in full to perturbations by other planets
and to the flattening of the sun. The calculated value is by 43′′ per century smaller than the
measured one. Einstein’s theory of general relativity explains this effect.

For the mathematical treatment of the perihelion motion, we refer to Problems 26.12
and 28.4.

Evolution of the solar system

A sun is formed if a dense cloud of interstellar gas and dust contracts under the action
of the gravitational force. Our sun is surrounded, however, by many other bodies forming
the planetary system. The evolution of this planetary system is at present not yet fully
understood. There are competing theories that always explain only some of the properties
of the planetary system.

The multitude of theories may be grouped into three main classes that differ in the
mechanism of formation of the planets.

1. Theories stating that the formation of planets is independent of the formation of the sun:
The planets only emerged when the sun was already a normal star. This class includes,
for instance, the tidal theories.

2. Theories stating that after the formation of the sun, the planets were generated from
interstellar matter. These are the so-called accretion theories, which assume an increase
of mass within a plane (the ecliptic).

3. Theories according to which the planets are formed out of the same nebula and by a
similar process as the sun is formed (nebular hypotheses).

In the following paragraphs, several of the basic mechanisms of these theories will be
further described.

1. Tidal theories (Bickerton, 1878; Chamberlain, 1901; Moulton, 1905; Jeans, 1916;
Jeffreys, 1918)

Two suns pass each other but without mutually capturing each other. Due to the tidal
forces, matter is pulled out of the suns that shall condensate to planets. Aside from the
low probability of such an encounter, this theory has several further deficiencies. It could
in no way explain the chemical composition of the planets, and the planet orbits should
be strongly elliptic according to this theory. Moreover, some later calculations (Spitzer,
1939) showed that matter ejected by a star cannot condense to a planet, because of its high
temperature. Therefore, the tidal theories meanwhile have been dropped.
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2. Accretion theories (Hoyle and Littleton, 1939)
If the sun moves through a cloud of interstellar matter, it can bind particles by the

gravitational force. Due to the attractive force between the particles and by collisions,
larger masses may be formed that shall grow up to the size of the present planets. One
also has to take into account the consequences of electromagnetic effects (Alfven, 1942).
As shown in Example 28.2, the magnetic field of the sun prevents a particle with charge q
and mass m to come closer to the sun than to a critical radius rc, which is proportional to
(q/m)2/3. Therefore, the heavier particles pile up near the sun. By appropriate assumptions
on the magnetic field of the sun, the chemical composition of the planets may be roughly
explained.

3. Nebular theories (Descartes, 1644; Kant,9 1755; Laplace, 1796)
The gas nebula from which the sun originated was flattened by its rotation. Because of

turbulences, parts of the nebula split off, which then begin to contract. They thereby rotate
faster and faster because the angular momentum is conserved. The central part of the nebula
forms the sun, while the peripheral region leads to many proto-planets. In the interior of
these proto-planets a core evolves from the solid fractions of the nebula. The number of
proto-planets may decrease by collisions.

In more recent time the following mechanism has been investigated: The solid fractions of
the nebula are enriched in the middle plane of the disk-shaped gas nebula by the gravitational
force (see figure). With increasing concentration, this dust disk becomes unstable and decays
into regions of several kilometers of diameter. These regions are the cores for further mass
accumulation. Larger and larger objects develop by attraction of further solid particles and
by collisions, which grow to the size of planets.

Motion of dust particles in the central plane of a nebula.

9Immanuel Kant, philosopher, b. April 22, 1724, Königsberg—d. there Feb. 12, 1804.
Kant originated from a workman’s family. He attended the pietistic Friedrich gymnasium in his hometown

and until 1746 studied there natural sciences, mathematics, and philosophy; from 1747 to 1754 he was a private
tutor. In 1755 he did his Habilitation in Königsberg as magister of philosophy; he also served as subordinate
librarian of the library of the castle. In 1763 he refused an offer for a professorship for poetry; in 1770 he became
professor for logic and metaphysics. In 1786 and 1788 he administrated the principalship. In 1796 he stopped
lecturing for health reasons. His life passed without striking external events: He never left East Prussia and rarely
left Königsberg [BR].
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If a certain size is exceeded, then the gaseous residues of the nebula (H2, He) may be
bound by gravitation; hence this theory may also explain the formation of Jupiter and
Saturn.

There occurs a temperature gradient within the gas nebula such that the nonevaporating
substances (dust particles) are condensing in the hot zone in the interior, while the gases
(e.g., H2O, NH3, and CH4) may condense only in the colder zones at larger distance from
the young sun. This mechanism, in principle, can possibly explain the chemical composition
of the planets.

The angular momentum of our solar system resides to a large extent in the planets. Our
sun contains 99.87 % of the mass but only 0.54 % of the total angular momentum available in
the solar system. If the total angular momentum were concentrated to the sun, the resulting
value would be typical for young stars. Thus one may conclude that the sun must have
transferred angular momentum to the planets. A mechanism for this process is provided by
magneto-hydrodynamics (Hoyle, 1960; Edgeworth, 1962): In the plasma (ionized matter) of
the gas nebula, very large perturbations may occur, and stabilized magnetic fields, “frozen”
in the plasma, may be convected. The transfer of angular momentum from the center to the
peripheral region may be explained in this way, similar to the principle of the eddy-current
brake.

Only in the most recent time have detailed computer simulations of the evolution of a
gaseous nebula been performed. One must take into account further physical effects (e.g.,
pressure, friction, solar wind, tidal forces, etc.). In due time one may judge whether these
theories actually explain the presently observed properties of the planetary system.

World views

Geocentric—the Ptolemaic world view (about 140 AD)

The Ptolemaic10 world view was the base of astronomy until the 17th century. It considers
the earth as the world center being at rest. The moon, sun and the planets orbit about
earth. The fact that this world view could survive undisputedly over such a long period is
explained best by a sketch, showing that predictions on the position of the planets could
actually be made, based on this view. It thus had “predictive power.”

If one considers the actual situation (sun in the center of the planetary system), one
gets the upper two figures for which hold rp = R + rE or R = rp − rE , respectively.

10Claudius Ptolemy, b. after 83 AD, Ptolemais (middle Egypt)—d. after 161 AD. It is only known that he
worked in Alexandria. He is considered as the most important astronomer of the Ancient World. He is the
main representative of the geocentric world view. His Great Astronomic System—in the Arabic translation
Kitab al-magisti known as Almagest—constituted the fundamental work on astronomy until Copernicus. In
his representation, Ptolemy used the theory of epicycles of the Apollonios, a trigonometry of secants, and the
stereographic projection. Ptolemy still published an Optics, the very influential astrologic work Tetrabiblos, and
the most valuable Introduction to Geography, which was extraordinarily influential on science of the Middle
Ages, just as astrology.
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Sun Sun

Earth

Earth
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Planet

Inner
Planet
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RrE
rErp
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Inner and outer planets in a heliocentric world model.

Correspondingly, rp circulates about the sun once in one planetary year, and rE does the
same in one earth year. For the geocentric world view, we obtain a different figure:

The equation R = rp −rE also holds in the geocentric world view, but here the Ptolemaic
deferent has been introduced. It is an immaterial circle performed by rp with the siderean
revolution of the planet about the earth. Because one could not yet determine the distance
of a planet, only the direction of R mattered but not its magnitude. This explains why the
theory of epicycles describes the planetary motion correctly.

Sun Sun

Earth Earth

Upper
Planet

Inner
Planet

R
R

rE

rE

rp

rp

Epicycle

Epicycle

Deferent

Deferent

Understanding the theory of epicycles.
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2. The heliocentric system—the Copernican world view

In the Copernican world view,11 the sun is understood as the center (central body) of our
planetary system. It culminated in Kepler’s laws that allowed one to calculate all processes
in the planetary system easily and exactly.

11Nicolaus Copernicus, German Koppernigk, Polish Kopernik, astronomer and founder of the heliocentric
world view, named after him Copernican, b. Feb. 19, 1473, Thorn—d. May 24, 1543, Frauenburg (East Prussia).
In 1491 he began humanistic, mathematical, and astronomical studies at Cracow University. From 1496–1500
he studied civil and clerical law in Bologna. At the instigations of his uncle, Bishop Lucas Watzelrode, he was
admitted to the chapter of Ermland at Frauenburg in 1497. From autumn 1501 he studied in Padua and Ferrara,
graduated there on May 31, 1503, as doctor of canonical law, and then studied medicine. After returning home
in 1506, he lived in Heilsberg as secretary of his uncle from 1506 until his uncle’s death in 1512 and was
involved in administrating the diocese Ermland. As chancellor of the chapter Copernicus lived from 1512 mostly
in Frauenburg. He resided as governor of the chapter from 1516–1521 in Mehlsack and Allenstein, and in 1523
he served as administrator of the diocese of Ermland. From 1522–1529 he represented the order chapter as deputy
at the Prussian state parliaments and there in particular also supported a monetary reform.

His paternal family originates from the diocesian country Neiss in Silesia; hence his German origin may be
considered as established, since in writing he utilized only the German and Latin languages. Copernicus was also
considered as a famous physician, as is indicated by the lily of the valley in one of his woodcuts. As astronomer,
Copernicus completed what Regiomontan had imagined: A revision of the doctrine of planetary motion, taking
into account a series of critically evaluated observations. Only on such a basis could one then speculate on a
calendar reform. The urgency of this reform was generally recognized at the beginning of the 16th century.
Copernicus was presumably influenced by these considerations. In the course of his work he then decided to
accept a heliocentric world system, inspired by vague antique writings. A brief, preliminary report on this topic
is the “Commentariolus,” presumably written before 1514. Already here the decisive assumptions are expressed:
The sun is in the center of circular planetary orbits, and the earth also circulates about the sun; the earth rotates
daily about its axis and in turn is orbited by the moon. The wider public got the first information on the Copernican
doctrine by the Narratio Prima of G. J. Rheticus.

The main work of Copernicus, the Six Books on the Orbits of Celestial Bodies (De Revolutionibus Orbium
Coelestium Libri VI, 1543, German 1879, new edition 1939), emerged only in the year Cpernicus died. It was
dedicated to Pope Paul II, but the original foreword of Copernicus was replaced by a foreword of the Protestant
theologist A. Osiander that inverted the meaning of the whole subject. The doctrines of Copernicus remained
uncontested by the Church until the edict of the index congregation of 1616. The remaining imperfections of the
Copernican theory of planets were removed by J. Kepler. But just as Copernicus, Kepler could also not prove in
modern sense the correctness of the heliocentric system. Still at the time of I. Newton, the astronomic data were
not precise enough to establish the very small “Copernicus effects.” This was achieved only in 1728 by J. Bradley
with the discovery of the aberration of the fixed stars, and in 1839 by F.W. Bessel by the first measurement of a
fixed star’s parallax. The objections of the opponents of the Copernican view are intelligible, since for most of the
fixed stars the parallaxes are not detectable even by modern methods of measurement, due to the large distances
from the sun. His opponents urged, for example, the famous observer T. Brahe to establish his own model of the
planetary system, which represents a compromise between the geocentric and the heliocentric systems [BR].



318 THE EARTH AND OUR SOLAR SYSTEM 28

A model of the sun’s environment12

Already the nearest stars are so far away from earth that it is difficult to get an idea on the
dimension. The following model shall assist on that point: The planetary system and the
environment of the sun are reduced by the scale 1:100 billions. Then 1 cm in the model
corresponds to 1 million km in nature. The solar system then could be accomodated on a
schoolyard or on a large crossroads: The sun itself would have a diameter of 1.4 cm. At
1.5 m apart the earth of a size of 0.1 mm would be localized. At nearly 8-m distance from
the sun follows Jupiter with a size of 1.4 mm, and at a distance of 59 m follows the outer
planet Pluto with 0.05-mm size. Proxima Centauri would be apart from there by 410 km,
Sirius by 820 km, etc. This scale model is shown in the following figure:

Frankfurt

Procyon

61 Cygni

Sirius

α Centauri

Barnard’s
star

560 km

410 km

820 km

1050 km

1070 km

0 500 km

The closer environment of the sun in a model: Our sun is located in Frankfurt; its diameter on this
scale (1 : 1011) is only 1.5 cm. The next star is α Centauri at a distance of 410 km from Frankfurt, i.e.,
approximately in Paris.

The nearest stars to the sun are collected in the following table:

12We follow here the excellent booklet of J. Hermann: dtv-Atlas zur Astronomie (Tafeln und Texte mit
Sternatlas), Deutscher Taschenbuch Verlag München.
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Star Constellation Distance in lightyears

α Centauri/Proxima Centauri Centaurus 4.3
Barnard’s arrow star Ophiuchus 5.9
Wolf 359 Leo 7.7
Luyten 726-8 Cetus 7.9
Lalande 21 185 Ursa Maior 8.2
Sirius Canis Maior 8.7
Ross 154 Sagittarius 9.3
Ross 248 Andromeda 10.3
ε Eridani Eridanus 10.8
Ross 128 Virgo 10.9
61 Cygni Cygnus 11.1
Luyten 789-6 Aquarius 11.2

Other planetary systems?

Due to the large distances between the stars and the fact that planets for themselves are
very dim, there have only recently been successful attempts to obtain strong evidence for
the existence of other planetary systems besides the solar system.13 The star 51 Pegasi (in
a distance of about 45 lightyears from the solar system in the constellation of Pegasus)
showed periodic variations of its radial velocity (see figure).

This observation can be explained by the motion of the star and an assumed planet around
their common center of mass. The radial motion of the star was deduced from observations
of the Doppler shift of approximately 5000 absorption lines in the spectrum of the star.
This methods allows results as precise as 15 m/s. In order to give a better impression of this
velocity, we mention that the velocity of the sun, which is caused by the common motion of
the sun and Jupiter is about 13 m/s. The indirectly observed planet, 51 Peg B, is supposed
to have roughly the mass of Jupiter (0.5MJ ≤ M ≤ 2MJ) and a nearly circular orbit around
its solar-type star (ε ≈ 1) with a radius of only 0.05 AU and the short period of T ≈ 2d.
This means that when compared to our solar system, the planet would move around clearly
within the orbit of Mercury. Other possible explanations for the varying radial velocity of
51 Pegasi are very improbable.

Current models for the formation of planets do not foresee the emergence of such giant
planets so close to their central stars, leaving the origin of 51 Peg B (and of similar planets
that have been found since with similar methods) somewhat obscure. Beside the possible
migration of a giant, Jupiterlike planet to such a close orbit, another explanation may be
the possible capture of a so-called brown dwarf. Brown dwarfs are dim stars whose mass
is not sufficient in order to ignite the thermonuclear burning of hydrogen in the center of

13M. Major, D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature 378 (1995) 355; see also, e.g.,
Europhysics News 26 (1995) 123.
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The orbital motion of the star 51 Pegasi, corrected for long-term variations of the velocity of the center of
mass. The points, plotted as a function of the phase of the orbital rotation, correspond to experimental
estimates of the radial velocity as determined from the spectroscopic data. The solid line is the theoretical
curve fitted for a circular orbit with a period of 4.2293±0.0011 days. It shows that the data are remarkably
stable and sinusoidal. (From M. Mayor, D. Queloz, Nature 378 355 (1995) c©Nature Publishing Group,
reproduced with kind permission)

the star.14 The periodic variations of the radial velocity of 51 Pegasi show a superimposed
periodic perturbation with a longer period, hinting at a farther planet that is less massive and
orbits a greater distance from the star. This implies that one can talk about a real planetary
system.

Before the discovery of the planet 51 Peg B orbiting a solar-type star, one had already
found two planets with masses comparable to the earth’s mass and periods of several
months, orbiting, however, a pulsar.

A further discovery has been the periodic variation of the luminosity of some stars,
due to the partial eclipse of the central star by the transit of an orbiting planet15. The
following figure illustrates this method: Data taken with the Hubble space telescope show
the light curve (the luminosity as a function of time) of the solar-type star HD 209458 in the
constellation of Pegeasus. This star has a jupiter-like companion in a very close orbit with

14A good overview and an explanation of the different burning cycles in the interior of a star that is contracting
by the gravitational forces can be found in Chapter 18 of J.M. Eisenberg and W. Greiner: Nuclear Theory. Vol 1:
Nuclear Models, 3rd ed., North Holland, Amsterdam, 1987.

15L. R. Doyle, H.-J. Deeg, T. M. Brown: Searching for shadows of other Earths, Scientific American, Sep. 2000,
p. 38
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Left: The light curve of the star HD 209458. The star is partially eclipsed by the transit of its planet. Right: Schematic
view of the partial eclipse of HD 209458 by its planet and the resulting light curve. (from T. M. Brown et al., Astrophysical
Journal 552 699-709 (2001), c©American Astronomical Society, reproduced by permission of the AAS.)

a period of about 3.5 days. Every transit of the planet in front of the star yields a dimming
of the star, which is clearly visible in the light curve.

In the meantime (2001), more than 40 planets are believed to exist around stars in the
vicinity of our solar system.

The spatial motion of the sun

From the spatial motion of the stars one may conclude that our sun also moves through
the universe. The method of how to determine this motion is illustrated by the following
example.

A driver moves by car along a straight road through the woods. If there were no chance
to learn about the direction and speed of motion from other observations, one might derive
it from the motion of the trees. When looking forward along the direction of motion, the
trees seem to diverge. When looking perpendicular to the motion, the trees seem to pass the
car in backward direction. If one looks in backward direction, the trees seem to converge
(compare the following figure).
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Apex

Antapex

Motional effects that allow the determination of the speed and the direction when driving with constant
speed on a road bordered by trees.

Sun
− +Apex Antapex

Radial velocities have the largest
negative value in the direction of the
apex, the largest positive value in
the direction of the antapex (dashed
double arrows). The tangetial veloc-
ities of stars are largest in the direc-
tion vertical to the sun’s motion (bold
arrows), whereas the radial veloci-
ties there are smallest.

The same holds also for the motion of the sun
through the universe: One has to observe the system-
atic effects of motion of the stars. A complication as
compared to the case of the moving car, however, is
due to the fact that the stars don’t stand fixed as the
trees, but are moving by themselves. But one may ex-
pect that in a statistical observation of very many stars
the individual motions of the other stars will no longer
show up too much, such that the effect described above
manifests itself clearly.

This will of course work only then if the observed
stars display no systematic motions, i.e., their individ-
ual spatial motions are actually distributed in a purely
random manner (statistically). If certain directions of
motion show up with some preferences, there may arise faults when deriving the spatial
motion of the sun.

This may easily be visualized by assuming, for example, that the trees in the above
example move all in one direction, say from left ahead to right behind the car, looking
along the direction of motion.

Actually the premise of arbitrary directions of motion of the stars is not strictly fulfilled,
which makes an exact determination of the sun’s motion rather difficult. Rough assignments,
however, could be made already by W. Herschel,16 who at that time investigated only 13

16Sir (since 1816) Friedrich Wilhelm (Willam) Herschel, b. Nov. 15, 1738, Hannover—d. Aug. 25, 1822,
Slough near Windsor. At first musician, he went in 1765 as organist to Great Britain. The theory of music led him
to mathematics and optics, and in 1766 he began to cut mirrors with such a success that no less than 400 mirrors
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stars. Later on the investigations were extended to a much higher number of stars. The sun
apex, the target point of the spatial motion of the sun, has the coordinates α = 18 h 04 m,
δ = +30◦, that is, is localized in the constellation of Hercules.

Hercules

Solar Apex

Ras-alhague
Ras-algethi

Ophiuchus

Aquila

Lyra

Vega

The position of the sun apex in the constellation of Hercules. Our solar system as a whole—located in
the Orion branch of the Milky Way—moves toward the apex with a speed of 19.4 km/s ≈ 610 million
km/year.

The velocity of the sun’s motion may be derived from a systematic distribution of the
radial velocities of the stars. The stars located in the direction toward the sun apex on the
average show a negative radial velocity. As a result, one obtains a velocity of 19.4 km/s (610
million km/year) for the spatial motion of the sun. This motion relative to the neighboring
stars is also denoted as peculiar motion (in contrast to the rotational velocity about the
center of the Milky Way system).

In 1967 the peculiar motion of the sun could be determined for the first time also by
radio-astronomic means, namely by the Doppler shift of the 21-cm radiation of interstellar
neutral hydrogen. Taking into account the possible errors of measurement, this result agrees
with the optical observations.

left his workshop. The largest one had a diameter of 1.22 m and 12-m focal length. The observations with his
mirrors made him an astronomer. In 1781 he discovered the planet Uranus; in 1783 he established the motion of
the solar system toward the constellation Hercules; in 1787 he found the two outer moons of Uranus; and in 1789
the two inner Saturn moons. His observations of double stars, nebula spots, and stellar clusters opened new fields
of astronomy, and his star gauges founded the explorations of the structure of the Milky Way system.
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Neighbourhood of our Milky Way

Our spiral nebula, the Milky Way, is embedded within the so-called local group, a cluster of
about 9–10 galaxies. The Milky Way and the Andromeda nebula, just as the M33-galaxy,
are spiral nebulas; all other galaxies are of a type of spherical clusters. A widespread
phenomenon in the extended universe is the accumulation of galaxies to galaxy clusters.
The first group of galaxies outside the local group is located toward the constellation Virgo;
it consists of 2500 galaxies and is at a distance of about 60 million lightyears away.

One should make clear to oneself the ratios of distances: Our Milky Way has a diameter
of 105 lightyears; the mean distance of two stars within the Milky Way is about 5 lightyears.
The Andromeda nebula is separated from the Milky Way by 2 · 106 lightyears. The Milky
Way is further “orbited” by two small satellite galaxies: The Small and the Large Magellanic
Cloud.

The famous supernova explosion in the great Magellan cloud was seen on earth on
February 24, 1987, the only one in our time whose light curve and neutrino showers have
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M 33
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And III
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And II

M 31  (Andromeda Nebula) 

Ursa Major

Galaxy (Milky Way)
LMC (Large Magellanic Cloud)

SMC (Small Magellanic Cloud)

The local group. Only larger galaxies are shown. The circles indicate the distance from the Milky Way in millions of
lightyears.
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been recorded experimentally. Satellite galaxies are frequently observed. Andromeda also
has two “small” satellite galaxies. The following figure illustrates our neighboring galaxies.

On the evolution of the universe

Our knowledge about the beginning of the universe is rather obscure, because it was born
out of a state which cannot be described by any physical law we know of. We simply call
these indescribable moments of birth of our universe the Big Bang.

Indeed, spectroscopic measurements have shown the existence of a relation between
the redshift observed in all star spectra and the distance of the stars from earth. If we
assume the Doppler effect as responsible for this shift, then the universe must expand in all
directions. If all motions are now considered in a backward direction, then all bodies meet
simultaneously in a certain space region. Here the cosmic “Big Bang” must have happened
about 14 · 109 years ago. One imagines that matter (energy) was created by the transition
from one state of the vacuum (true vacuum with zero energy) to an energetically deeper
state of vacuum.

After the Big Bang, the universe rapidly expanded from an incredibly small region with
dimensions of 10−33 cm and an unthinkably high energy density of 1094 g/cm3—this initial
phase of the Universe in known as the Planck aera. The Grand Unified Theories17 of today
suggest that physics was probably much simpler under the extreme conditions of the Planck
aera, because all the forces we nowadays know of—gravitation, electromagnetism, weak
interactions, and strong interactions—were one and the same, or indistinguishable. The
world was then governed by an universal state of symmetry. However, while the universe
was expanding rapidly, this symmetry was quickly broken into present–day forces with
vastly different strength and range.

At the extremly short time of 10−23 s after the initial event, the entire now-existing
matter at that time existed in the form of free elementary particles (photons, quarks,
gluons, leptons—that is, electrons and neutrinos—, perhaps other, yet unknown elementary
particles like supersymmetric particles) of enormous concentration (ρ = 1055 g/cm3) and
temperature (T = 1022 K). The expansion and the thereby implied cooling enabled the
assembling of nucleons to nuclei, and finally the formation of complete atoms. Under the
influence of gravitation, the cosmic primordial cloud then condensed to galaxies, and finally
to individual stars.

In the following sections we shall give a short discussion of the modern ideas about the
early universe.18

17see e. g. W. Greiner and B. Müller, Gauge Theories of Weak Interactions, Springer Verlag New York, 2000
18In this and the subsequent section about dark matter, we follow closely the excellent article by Klaus Pretzl,

In Search of the Dark Matter in the Universe, Spatium 7, May 2000, available from Association Pro ISSI at
http://www.issi.unibe.ch/spatium.html.
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The evolution of the universe: Modern physics and experimental observations document the history of the universe
from an incremental fraction of time after the Big Bang some 14 billions of years ago up to its present state. Dark matter
is seen today as having played a key role in the formation of stars and galaxies. ( c©CERN Publications, July 1991,
reproduced with kind permission)

Inflation and the very early universe.

One observes nowadays enormous homogeneity of the distribution of matter in the universe
(averaged over large scales), and also within the Cosmic Microwave Background (CMB)
radiation. This is very puzzling because there are regions in the expanding universe which
have never been in causal contact, that is, light never had sufficient time to travel from one
of these regions to another one.

To overcome this difficulty, some cosmologists (A. Guth, A. Linde, and others) suggested
an exponentially rapid expansion of the universe, blowing up the universe by about a factor
3 · 1043 between 10−36 s to 10−34 s after the Big Bang. This expansion is called inflation
of the universe. All this reasoning seems utopic, but is helps to understand the present-day
observations.
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The inflationary phase ended abruptly due to the creation of photons and all the elemen-
tary building blocks of matter—quarks and leptons. Equal numbers of matter and antimatter
were present, but most of the energy resided in radiation. The latter lost its energy faster
due to the expansion, so that after 104 years the energy balance of the universe shifted on
favour of matter.

The hadronic phase transition in the early universe and the CP problem

The quark gluon phase of matter ended about 10−6 seconds after the Big Bang, when the
universe cooled to a temperature of 2 · 1012 Kelvin. At that temperature a phase transition
from a quark gluon plasma to a nucleonic phase of matter took place, where the protons
and neutrons were formed.

In this process three quarks of different flavors (so-called up-quarks and down-quarks)
combine together to form a proton (two up-quarks and one down-quark) or a neutron
(one up-quark and two down-quarks) and similarly antiprotons (two antiup-quarks and one
antidown-quark) or an antineutron (one antiup-quark and two antidown-quarks).

The gluons were given their name because they provide the glue for holding the quarks
together in the nucleus. They mediate the strong force by exchange between the force
centers (color charges) similarly as photons mediate the electromagnetic force between
electric charges.

It is worthwhile to mention that in heavy nucleus–nucleus collisions at very high energies,
one creates such a quark gluon plasma nowadays in the laboratory, for example, at CERN or
at RHIC (Brookhaven). The idea is that in such collisions strong compression (up to 5–10
times nuclear density) and high temperatures (∼ 1012 Kelvin) occur in a kind of nuclear
shockwaves. Under such conditions, the protons and neutrons in the nuclei melt and set
free quarks and gluons.

After the hadronic phase transition, one would expect to end up with the same number
of nucleons and antinucleons, which annihilate each other after creation, leaving us not a
chance to exist. Fortunately, this was not the case. The reason that we live in a world of
matter with no antimatter is believed to be due to a very subtle effect, which treats matter
and antimatter in a different way during the phase of creation. This effect, known as CP-
violation (charge conjugation and parity violation), was first discovered in an accelerator
experiment by V. Fitch19 and J. Cronin20 in 1964, for which they got the Nobel Prize in
1980, and was used by A. Sakharov21 to explain the matter–antimatter asymmetry in the
universe.

19Val Logsdon Fitch, American nuclear physicist, b. 1923, Merriman, Nebraska. He received his Ph.D. from
Columbia University in 1954. After working on muons and muonic atoms, he started investigating the properties
of kaons, where he found in 1964, together with Cronin, the CP violation in the decay of the neutral mesons. Fitch
and Cronin shared the 1980 Nobel Prize in physics for this discovery.

20James Watson Cronin, American nuclear physicist, b. 1931, Chicago, Illinois. He received his Ph.D. from
University of Chicago, 1955. His interest in strange particles was stimulated by Gell-Mann, and he worked mostly
on kaons, first in Brookhaven, later in Princeton, joining the group of Fitch.

21Andrei Sakharov, Soviet physicist, b. 1921, Moscow—d. 1989. He was fascinated by fundamental physics
and cosmology, but first he spent two decades designing nuclear weapons. He came to be regarded as the father of
the Soviet hydrogen bomb. Gradually Sakharov became one of the regime’s most courageous critics, a defender
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Primordial nucleosynthesis

After further expansion the universe cooled to a temperature of 109 Kelvin, when protons
and neutrons started to hang on to each other to form the light elements like helium,
deuterium, lithium, and beryllium. This phase of nucleosynthesis began a few seconds after
the Big Bang. The heavier elements were only formed many millions years later, mainly
during star formation and supernova explosions. After their formation, the light nuclei had
hundreds of thousands of years of time in order to catch electrons and build atoms.

The cosmic background radiation

About 300 thousand years after the Big Bang, radiation had not enough energy left
to interact with matter because the excited states of atoms were appreciably higher than
the photon energies contained in the cosmic radiation. Therefore, the universe became
transparent for electromagnetic radiation. This radiation from the early universe was first
discovered by R. Wilson22 and A. Penzias23 in 1965. They received the Nobel Prize for this
finding in 1978. Their discovery was made by chance, since they were on a mission from
Bell Laboratories to test new microwave receivers to relay telephone calls to earth-orbiting
satellites. No matter in what direction they pointed their antenna, they always measured the
same noise. At first, this was rather disappointing to them. But they happened to learn of the
work of the physicist G. Gamow24 and the astronomers R. Dicke25 and P. Peebles,26 thus

of human rights and democracy. His commitment as a “spokesman for the conscience of mankind” was honored
by the Nobel Peace Prize in 1975.

22Robert Woodrow Wilson, b. 1936.
23Arno Allan Penzias, b. 1933, Munich, Germany, from where his family could escape to the United States in

1939.
24George Gamow, b. 1904, Odessa, Russia—d. 1968. Russian-American physicist who worked out the theory

of alpha decay in terms of tunneling through the nucleus’s potential barrier. Gamow showed that, as a star burns
hydrogen, the star heats up. He supported the “Big Bang” theory of Lemaitre. He was also a popularizer of science,
publishing many works including Mr. Tompkins in Wonderland (1937) and Thirty Years that Shook Physics (1966).

25Robert Dicke, b. 1916, St. Louis—d. 1997. Dicke received his his Ph.D. in 1941 from the University of
Rochester. Dicke is widely known for his leadership in developing experimental tests of gravity physics and
of the standard gravitational model for the large-scale evolution of our universe. Working at Princeton, he was
responsible for the famous 1965 paper that proposed that radiation detected near one centimeter wavelength is
left over from the hot Big Bang start of expansion of the universe. Dicke was building a radio antenna to test his
theory when Penzias and Wilson discovered the echo by accident. Some physicists thought that Dicke had been
unfairly excluded from sharing the 1978 Nobel Prize with them.

26Philip James Edwin Peebles, b. 1935, Winnipeg. He graduated from the University of Manitoba in 1958. He
then went to Princeton University as a graduate student in physics, and he has been there ever since, currently
as Albert Einstein Professor of Science Emeritus. With Robert Dicke and others he predicted the existence of
the cosmic background radiation and planned to seek it just before it was found by Penzias and Wilson. He has
investigated characteristics of this radiation and how it may be used to constrain models of the universe. He has
led statistical studies of clustering and superclustering of galaxies. He has calculated the universal abundances
of helium and other light elements, demonstrating agreement between Big Bang theory and observation. He has
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Full sky map of the cosmic background radiation as seen by the COBE mission. After subtraction of the
dipole anisotropy, which is due to the motion of our solar system within the background radiation (still
visible at top) and our own galaxy’s emission (center), temperature variation of 0.01% unveils matter
density fluctuations in the very early universe (bottom). ( c©NASA Goddard Space Flight Center and
the COBE Science Working Group. Reproduced with kind permission.)



330 THE EARTH AND OUR SOLAR SYSTEM 28

realizing that the noise they were measuring was finally not the noise of the receiver, but
rather the cooled-down cosmic microwave background radiation (CMB) from the Big Bang.
From the frequency spectrum and Planck’s law of black body radiation, the temperature of
the CMB was derived to be 2.7 Kelvin.27 Regardless of which direction the cosmic radiation
was received from, the temperature came out to be the same everywhere, demonstrating
the enormous homogeneity of the universe. The most accurate CMB measurements come
from the Cosmic Background Explorer satellite mission (COBE), which was sent into orbit
in 1989.28. They found temperature variations only at a level of one part in a hundred
thousand.

Presently it cannot yet be predicted whether the course of evolution observed so far will
be inverted and the universe will collapse again. If it would expand more and more expand
and evaporate into an infinite vacuum, we would be dealing with an “open universe.” A
periodic expansion and compression, that is, a “pulsating” universe, is also conceivable.

Dark Matter

Where does dark matter come from?

What about the dark matter? Why dark matter at all? When and how is it created? What is
it made of? A partial answer to this question is given to us by the COBE cosmic microwave
background radiation measurements. They show islands of lower and higher temperatures
appearing on the map of the universe which are due to density fluctuations (see lower part
of last figure). They were already present at the time radiation decoupled from matter,
300 thousand years after the Big Bang, long before matter was clumping to from galaxies
and clusters of galaxies. We have reasons to believe that these density fluctuations are
due to the dark matter, which was probably created from quantum fluctuations during the
inflationary phase of the universe. These tiny fluctuations expanded first through inflation
and then retarded their expansion due to gravitational binding forces. They then formed
the gravitational potential wells into which ordinary matter fell to form galaxies and stars
billions of years later. All galaxies and clusters of galaxies seem to be embedded into halos
of dark matter.

provided evidence of the existence of large quantities of dark matter in the halos of galaxies, and he continues to
work on the origin of galaxies. Peebles was one of the first to resurrect Einstein’s cosmological constant, suggesting
it was needed in the 1980s. His books on physical cosmology have had a significant impact in convincing physicists
that the time has come to study cosmology as a respectable branch of physics.

27For more details, see W. Greiner, L. Neise, H. Stöcker, Thermodynamics and Statistical Mechanics, Springer,
Berlin, New York, Tokyo, 1994.

28See, e.g., G. Smoot, Wrinkles in Time, New York, 1993, a popular account by the COBE leading scientist,
the COBE homepage http://space.gsfc.nasa.gov/astro/cobe/, and Ch. L. Bennett, M. S. Turner, and M. White,
“The cosmic Rosetta Stone,” Physics Today, Nov. 1997, for a summary of the scientific results of COBE.
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How much matter is in the universe?

At first this question seems to be highly academic. It is not. The fate of our universe depends
on its mass and its expansion velocity.

In the 1920s the famous astronomer Edwin Hubble demonstrated that all galaxies are
moving away from us and from each other—we have already mentioned this in the section on
“Evolution of the universe.” His discovery was the foundation stone of modern cosmology,
which claims that the universe originated about 15 billion years ago in an unthinkably small
volume with an unthinkably high-energy density, the so-called Big Bang, and is expanding
ever since.

However, this expansion is counteracted by the gravitational pull of the matter in the
universe. Depending on how much matter there is, the expansion will continue forever or
come to a halt, which subsequently could lead to a collapse of the universe ending in a Big
Crunch, the opposite of the Big Bang. The matter density needed to bring the expansion
of the universe to a halt is called the critical mass density, which today would be roughly
the equivalent of 10 hydrogen atoms per cubic meter. This seems incredibly small, like a
vacuum, when compared to the density of our earth and planets, but seen on a cosmic scale
it represents a lot of matter.

How can we find out how much matter there is? When estimating the visible matter in
the universe, astronomers look in a very wide and very deep region in space and count
the number of galaxies. Typical galaxies containing hundreds of billions of luminous stars
have a brightness proportional to their mass.
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NGC 3198

Kepler’s law

The observation of constant orbital velocities of stars around the galactic center (here the spiral galaxy
NGC 3198) as a function of the radial distance provides convincing evidence for the presence of an
extended halo of dark matter surrounding the galaxy. The expected curve from Kepler’s law if there
were no dark matter is also shown. (From K. Pretzl, Spatium 7, May 2000 c©Association Pro ISSI,
reproduced with kind permission)



332 THE EARTH AND OUR SOLAR SYSTEM 28

Thus, by simply counting galaxies over a large volume in space and by assuming that
galaxies are evenly distributed over the entire universe, one can estimate the total mass they
contribute in form of visible mass to the universe.

However, it turns out to be only 1% of the critical mass of the universe. Therefore, if the
visible matter in the form of stars and galaxies were the only matter in the universe, the
universe would expand forever. We neglected here the amount of matter in form of planets,
because they contribute not more than a few percent of the mass of a star. However, it came
as a surprise when Vera Rubin29 and her team found out in the 1970s that the visible stars
are not the only objects making up the mass of the galaxies. They measured the orbital
speeds of stars around the center of spiral galaxies and found that they move with a constant
velocity independent of their radial distance from the center (see figure). This is in apparent
disagreement with Kepler’s law, which says that the velocity should decrease as the distance

Our galaxy (Milky Way) as seen schematically from a distant point in the galactic plane. Dark matter
forms a large halo extending far outside the outer edges of the galaxy. (From K. Pretzl, Spatium 7, May
2000 c©Association Pro ISSI, reproduced with kind permission)

29Vera Cooper Rubin, b. 1928, Ph.D. from Georgetown University in 1954, working as an astronomer at the
Carnegie Institution of Washington. Most of her work centers about the distribution and motion of galaxies.
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of the star from the galactic center increases, provided that all mass is concentrated at the
center of the galaxy, which seems to be the case if only the luminous matter is considered.

Indeed, starting from Kepler’s third law,

T 2

a3
= 4π2

γ M
,

and assuming circular orbits for simplicity, we get

v = 2πa

T
=

√
γ M

a
∼ 1√

a
.

This distance-dependence is indicated in the figure at the curve labeled “Kepler’s law”.
Now, if Kepler’s law, which describes the orbital motion of the planets in our solar system
very correctly, is valid everywhere in the universe, then the rotational velocities of the stars
can only be explained if the mass of the galaxy is increasing with the radial distance from
its center. This is seen from our formula above, which tells us that v = constant implies
M ∼ a, that is, the mass inside the orbit has to grow proportionally to the radius a of the
orbit.

Experimental analysis of the rotational velocities in the Andromeda Galaxy M31 from optical observa-
tions (V. Rubin, W. Ford, Astrophysical Journal 159 379-404 (1970)) and radio observations at 21-cm
wavelength (M. Roberts, R. Whitehurst, Astrophysical Journal 201 327-346 (1975)). (From K. Pretzl,
Spatium 7, May 2000 c©Association Pro ISSI, reproduced with kind permission)

Numerical calculations show that there must be at least an order of magnitude more
matter in the galaxies than is visible. From measurements that were repeated on hundreds
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of different galaxies, it is conjectured that each galaxy must be embedded in an enormous
halo of dark matter, which reaches out even beyond the visible diameter of the galaxy
(see figure). Spiral galaxies are surrounded also by clouds of neutral hydrogen, which
themselves do not contribute considerably to the mass of the galaxy, but which serve as
tracers of the orbital motion beyond the optical limits of the galaxies. The hydrogen atoms
in the clouds are emitting a characteristic radiation with a wavelength of 21 cm, which is
due to a hyperfine interaction between the electron and the proton in the hydrogen atom and
which can be detected. The Doppler shift of this characteristic radiation tells the velocity
with which the hydrogen atoms (and thus the matter out there) are moving.

These measurements show that the dark matter halo extends far beyond the optical
limits of the galaxies (see figure). But, how far does it really reach out? Very recently
gravitational lensing observations seem to indicate that the dark matter halo of galaxies
may have dimensions larger than 10 times the optical diameter. It is quite possible that
the dark halos have dimensions that are already typical for distances between neighboring
galaxies within galactic clusters.

Determining the mass in the universe

The effect of gravitational lensing is a consequence of Einstein’s general relativity. Because
radiation consists of photons, every photon with frequency ω carries the energy Ephoton =
hω/2π . According to Einstein (see Chapter 33), each mass m carries the energy E = mc2,
and, consequently, each photon can be attributed a (dynamical) mass

mphoton = hω

2πc2
.

Hence, photons (and therefore radiation) can be deflected by a mass M due to gravitational
forces. This is described in more detail in Problem 33.14 and Example 34.4.

The deflection of light by the sun was first observed in 1919, when the apparent angular
shift of stars close to the solar limb was measured during a total solar eclipse. This was the
first, important proof for the validity of Einstein’s theory, according to which light coming
from a distant star is bent when grazing a massive object due to the space curvature caused
by the gravity of the object (see figure).

It was Fritz Zwicky30 in 1937 who realized that the effect of gravitational lensing would
provide the means for the most direct determination of the mass of very large galactic
clusters, including dark matter. But it took more than 50 years until his suggestion was
finally realized and his early determination of the mass of the COMA cluster, in 1933, was
confirmed. With the Hubble telescope in space and the Very Large Telescopes (VLT) at the

30Fritz Zwicky, (1898–1974). Swiss-American astronomer who was professor of astronomy at Caltech. He
studied extragalactic supernovae and the distribution of galaxies in Coma Berenices. From his observations of the
Coma galaxy cluster, he suggested already in 1933 that a large amount of matter in this cluster must be invisible
in order to explain the dynmics of the galaxies in the cluster. In 1937 he was the first to consider gravitational
lensing by extragalactic objects.
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Space is curved by gravity. The light rays from a distant star are bent by the gravity field of the sun.The
distant star therefore appears at a different position. (From K. Pretzl, Spatium 7, May 2000 c©Association
Pro ISSI, reproduced with kind permission)

Southern Observatory in Chile, astronomers now have very powerful tools, which allow
them to explore not only the visible, but also the dark side of the universe with gravitational
lensing.

An observer sees a distorted multiple image of a light source in the far background,
when the deflecting massive object in the foreground is close to the line of sight. The light
source appears to be a ring, the so-called Einstein ring, when the object is exactly in the
line of sight (see figure). If one knows the distance of the light source and the object to
the observer, one is able to infer the mass of the object from the lensing image. With this
method it was possible to determine the mass of galactic clusters, which turned out to be
much larger than the luminous matter. It seems that the gravitational pull of huge amounts
of dark matter is preventing individual galaxies from moving away from each other and is
keeping them bound together in large clusters, like, for example, the famous Coma cluster.
By adding the total matter (dark and luminous matter) in galaxies and clusters of galaxies,
one ends up with a total mass that corresponds to about 30% of the critical mass of the
universe. With only 1% luminous mass, this would mean that there is 30 times more dark
mass in the universe. In addition, the universe would be growing forever, since its total
mass is subcritical to bring the expansion to a halt. But as we will see, this seems not to be
the full story.
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Gravitational lensing occurs when the gravity field of a massive celestial object bends the path of light
emitted by a distant source. Einstein predicted the deflection of starlight by the sun (top) and the ring
that would appear if the star and the celestial body were aligned perfectly (center). Lens systems found
to date result from the alignment of extragalactic quasars and galaxies (bottom). (From Edwin L. Turner:
“Gravitational Lenses”, Scientific American, July 1988 c©Scientific American, Inc. reproduced with kind
permission.)
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The discovery of dark energy

The big surprise came in 1998 from a supernovae type 1a survey performed by the Super
Cosmology Project (SCP) and the High z-Supernova Search (HZS) groups.31 Supernovae
of type 1a are 100 thousand times brighter than ordinary stars. They are still visible at
very great distances, for which their light needed several million years to travel until it
reached us. In principle, we experience now supernovae explosions that happened several
million years ago. Since in every supernova type1a explosion there is always the same
total amount of energy released, they all have the same brightness and therefore they
qualify as standard candles in the cosmos. Their distance from us can then be inferred
from the measurement of their apparent brightness. By probing space and its expansion
with supernovae distance measurements, astrophysicists learned that the universe has not
been decelerating, as assumed so far, but has rather been expanding with acceleration (see
figure). More measurements are still needed to corroborate these astonishing findings of the
supernovae survey. But it already presents a surprising new feature of our universe, which
revolutionizes our previous views and leaves us with a new puzzle. In order to speed up the
expansion of the universe, a negative pressure is needed, which may be provided by some
unidentified form of dark energy.

Recent supernovae distance measurements show that the expansion of the universe is accelerating
rather than decelerating as assumed before. This observation suggests the presence of dark energy.
(From Craig J. Hogan et al.: "Surveying Space-time with Supernovae", Scientific American, January
1999 c©Scientific American, Inc. reproduced with kind permission.)

31For a recent account, see, e.g., C. J. Hogan, R. P. Kirshner and N. B. Suntzef, “Surveying Space-time with
Supernovae;” L. M. Krauss, “Cosmological Antigravity,” both in Scientific American, Jan. 1999.
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This ubiquitous dark energy amounts to 70% of the critical mass of the universe and has
the strange feature that its gravitational force does not attract—on the contrary, it repels.
This is hard to imagine since our everyday experience and Newton’s law of gravity tell us
that matter is gravitationally attractive. In Einstein’s law of gravity, however, the strength
of gravity depends not only on mass and other forms of energy, but also on pressure. From
the Einstein equation, which describes the state of the universe, it follows that gravitation
is repulsive if the pressure is sufficiently negative and it is attractive if the pressure is
positive. In order to provide enough negative pressure to counterbalance the attractive force
of gravity, Einstein originally introduced the cosmological constant to keep the universe in
a steady state. At that early time all observations seemed to favor a steady-state universe
with no evolution and no knowledge about its beginning and its end. When Einstein learned
about the Hubble expansion of the universe in 1920, he discarded the cosmological constant
by admitting that it was his biggest blunder.

For a long time cosmologists assumed the cosmological constant to be negligibly small
and set its value to zero, as it did not seem to be of any importance in describing the
evolution of the universe. This has changed very recently, because we know about the
accelerated expansion of the universe. However, there remain burning questions like why is
the cosmological constant so constant over the lifetime of the universe and has not changed
similar to the matter density, and what fixes its value. Besides the cosmological constant,
other forms of dark energy are also discussed by cosmologists, such as vacuum energy,
which consists of quantum fluctuations providing negative pressure, or quintessence, an
energy source, that, unlike vacuum energy and the cosmological constant, can vary in space
and time.

In contrast to dark matter, which is gravitationally attractive, dark energy cannot clump.
Therefore, it is the dark matter that is responsible for the structure formation in the universe.
Although the true nature of the dark energy and the dark matter is not known, the latter can
eventually be directly detected, while the former cannot.

What is the nature of the dark matter?

Baryonic dark matter

The obvious thing is to look for nonluminous or very faint ordinary matter in the form of
planetary objects like jupiters or brown dwarfs, for example. If these objects represent the
dark matter, our galactic halo must be abundantly populated by them.

Because they may not be visible even if searched for with the best telescopes, B. Pac-
zynski32 suggested to look for them by observing millions of individual stars in the Large
and the Small Magellanic Cloud to see whether their brightness changes with time due to
gravitational lensing when a massive dark object is moving through their line of sight (see
figure).

32Bohdan Paczynski, Polish astronomer, b. 1940, Wilno, Poland, now professor of astrophysics, Department
of Astrophysical Sciences, Princeton University. His main current interest and effort are in the work related to the
Optical Gravitational Lensing Experiment.
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Massive dark objects (Massive Astrophysical Compact Halo Objects, MACHOs) moving through the
line of sight between the observer and a distant star in the Large Magellanic Cloud cause the apparent
luminosity to change. (From Bild der Wissenschaft 2/1997, c©bild der wissenschaft)
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Several research groups looked for these so-called Massive Astrophysical Compact Halo
Objects (MACHOs) using gravitational lensing. They found some of these dark objects
with masses smaller than the solar mass, but by far not enough to explain the dark matter
in the halo of our galaxy. Other objects like black holes or neutron stars could also have
been detected by this method, but there are not many of them in the galactic halo.

Do we know how much ordinary matter exists in the universe? Under ordinary matter
or so-called baryonic33 matter, we understand matter in the form of chemical elements
consisting of protons, neutrons, and electrons. About 3 minutes after the Big Bang, the
light elements, like hydrogen, deuterium, and helium, were produced via nucleosynthesis.
From the measurement of their present abundances, one can estimate the total amount of
the baryonic matter density in the universe. This amounts to not more than 6% of the critical
mass density of the universe. It shows that most of the baryonic matter is invisible and most
of the dark matter must be of nonbaryonic nature.

Nonbaryonic dark matter

The most obvious candidates for nonbaryonic matter would be the neutrinos, if they had a
mass. Neutrinos come in three flavors. If the heaviest neutrino had a mass of approximately
10−9 times the mass of a hydrogen atom, namely mneutrinoc2 = 10−9 · 1GeV = 1eV, it
would qualify to explain the dark matter. This looks like an incredibly small mass, but the
neutrinos belong to the most abundant particles in the universe and outnumber the baryons
by a factor of 1010. For a long time it was assumed that neutrinos have no mass. The
standard model of particle physics34 includes this assumption. All experimental attempts
to determine the mass of the neutrinos ended in providing only upper limits.

However, in 1998 an underground detector with the name SUPER-Kamiokande in Japan
observed anomalies in the atmospheric neutrino flux which is highly suggestive of neutrino
oscillations, which can only occur if neutrinos have indeed a mass. These observations
will have to be reproduced and further substantiated by planned accelerator experiments,
like K2K in Japan, MINOS in the United States, and OPERA in Europe. The OPERA
experiment will be constructed in the underground Gran Sasso laboratory, which is located
about 100 km northeast of Rome. For this experiment, a neutrino beam will be sent from
CERN to the Gran Sasso laboratory. If neutrinos have a mass, they would change their
flavor during their journey over the 735-km distance from CERN to the Gran Sasso. The
neutrinos would start as muon-neutrinos at CERN and would arrive as tau-neutrinos at the
Gran Sasso. This change of flavor can be detected. Massive neutrinos may also provide the
solution to the puzzle of the missing neutrinos from our sun.

33Barys meaning strong or heavy in ancient Greek.
34For more details about neutrinos, see, e.g., W. Greiner, B. Müller, Gauge Theory of Weak Interactions,

Springer Verlag New York, 2000.
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A cocktail of nonbaryonic dark matter, neutralinos, and WIMPs

Computer models allow us to study the development of small- and large-scale structures
under the hypothesis of various nonbaryonic dark matter candidates. Two main categories
are distinguished, namely the so-called hot and cold dark matter. Neutrinos would qual-
ify under the category hot dark matter, since their velocities were very large when they
decoupled from matter, a few milliseconds after the Big Bang. Because of their speed
they were not able to clump on small, typical galactic scales, but their gravitational force
would still allow for clustering on very large, typical supercluster scales. Thus in a hot
dark matter-dominated universe, only the formation of large-scale superclusters would be
favored. In such a model superclusters would fragment into smaller clusters at a later time.
Hence galaxy formation would be a relatively recent phenomenon, which, however, is in
contrast to observation. Cold dark matter candidates, on the other hand, would have small
velocities at early phases and therefore would be able to aggregate into bound systems at all
scales. A cold dark matter-dominated universe would therefore allow for an early formation
of galaxies in good agreement with observations, but it would overpopulate the universe
with small-scale structures, which does not fit our observations. Questions like how much
hot and how much cold, or only cold dark matter, are still not answered. Some computer
models yield results that come closest to observations when using a cocktail of 30% hot
and 70% cold dark matter.

Exotic particles like neutralinos are among the most favored cold dark matter candidates.
Neutralinos are stable elementary particles predicted to exist by Super Symmetry (SUSY),
a theory that is an extension of the standard model of elementary particles. Thus if they
exist, they would solve two problems at the same time, namely the dark matter as well as
SUSY, which is a prerequisite for the unification of all forces in nature, the so-called grand
unification theory (GUT). Experiments at the Large Hadron Collider (LHC) at CERN,
which is under construction and will be operational in 2005, will also search for these
particles.

If the dark matter consisted of neutralinos, which would have been produced together
with other particles in the early universe and which would have escaped recognition because
they only weakly interact with ordinary matter, special devices would have to be built for
their detection. These detectors would have to be able to measure very tiny energies, which
these particles transfer in elastic scattering processes with the detector material. Because
of the very weak coupling to ordinary matter, these particles are also called WIMPs, for
Weakly Interacting Massive Particles. They would abundantly populate the halo of our
galaxy and would have a local density in our solar system equivalent to one hydrogen atom
in 3 cm3. Because they would be bound to our galaxy, allowing for an average velocity
of 270 km/s, their flux (density times velocity) would be very large. However, because
they only weakly interact with matter, the predicted rates are typically less than one event
per day per kilogram detector material. WIMPs can be detected by measuring the nuclear
recoil energy in the rare events when one of these particles interacts with a nucleus of the
detector material. It is like measuring the speed of a billiard ball sitting on a pool table after
it has been hit by another ball. Because of the background coming from the cosmic rays
and the radioactivity of the material surrounding the detector, which yield similar signals
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in the detector as the WIMPs, the experiment must be carried out deep underground, where
cosmic rays cannot penetrate, and must be shielded locally against the rest radioactivity of
materials and the radioactivity in the rock.

There is presently a race for WIMPs, with several groups in the United States, in Europe
and in Japan searching for WIMPs employing different techniques.

Problem 28.1: Mass accretion of the sun

Find the approximate accretion rate d M/dt of the sun if it moves with velocity vs through a homo-
geneous gaseous cloud of density �.

Solution A particle is captured by the sun if its velocity w in a coordinate frame convected with the sun is
smaller than the escape velocity to leave the sun. According to Problem 26.5, the escape velocity
reads

v2
0 = 2γ M

R
. (28.1)

For a given constant w all particles will be captured that are localized within a sphere about the
sun with the critical radius

R0 = 2γ M

w2
. (28.2)

This formula holds, of course, only if R0 exceeds the sun’s radius. To determine the accretion rate,
one has to specify how many particles flow into the sphere of radius R0 per unit time.

Let the mean thermal velocity of the gas molecules be vG . We distinguish between two limits:
(a) vs � vG : In this case the motion of the sun may be neglected, and the mean velocity of the

gas molecules in the coordinate frame fixed to the sun may be set equal to vG .
The critical radius according to equation 28.2 is therefore

R0 = 2γ M

v2
G

. (28.3)

If the sun were not existent, the numbers of particles flowing into and out of the sphere would be
the same, provided that the velocity vectors vG are distributed isotropically. Not only the molecules
flowing into the sphere will be captured by the sun, but also the particles flying outward will be
prevented from escaping and thus will also be captured. Therefore, the mean flow (= particles per
unit area per unit time) of captured particles is approximately equal to �vG . The accretion rate equals
the flow multiplied by the surface of the sphere:

d M

dt
= 4π R2

0�vG = 16πγ 2 M2�

v3
G

. (28.4)

(b) vs 	 vG : In this case, the thermal motion of the gas molecules may be neglegted. In the
coordinate frame of the sun, all particles then move with the velocity vs . The critical radius is therefore

R0 = 2γ M

v2
s

. (28.5)
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Because all gas molecules are moving in from the same direction, they “see” only the cross-sectional
area of this sphere. The accretion rate therefore equals the flow �vs multiplied by the area of a circle
of radius R0:

d M

dt
= π R2

0�vs = 4πγ 2 M2�

v3
s

. (28.6)

Numerical example

We set vs = 0 and thus obtain an upper limit for the accretion rate. For vG we assume a value of
103 ms−1 (this corresponds to a temperature of about 100 K for hydrogen molecules). A typical value
for the density of an interstellar cloud is � = 10−18 kg m−3. The sun mass is M = 1.99 · 1030 kg, and
the gravitational constant is γ = 6.67 · 10−11 m3 kg−1 s−2.

According to equation 28.4, it then results that

d M

dt
= 8.86 · 1014 kg s−1

= 2.79 · 1022 kg/year

= 4.67 · 10−3 ME /year

with the earth mass ME = 5.975 · 1024 kg.

Example 28.2: Motion of a charged particle in the magnetic field of the sun

If the sun moves through a cloud of interstellar matter, one has to take into account also electromagnetic
effects in the calculation of the mass accretion. These shall be estimated below in a simplified model.

The cloud shall contain both gases in ionized form as well as charged solid particles. We consider
the motion of a charged particle of mass m and charge q that moves from far away toward the sun in
the gravitational field and magnetic field of the sun.

For sake of simplicity we assume the magnetic field of the sun as being generated by a dipole
with the magnetic dipole moment µ (for a definition of the dipole moment, see Chapter III in Vol.
3: Electrodynamics). Moreover, we shall restrict ourselves to particles moving in the plane passing
through the center of the sun and being perpendicular to µ.

The Lorentz force acting on the particle in the magnetic field B in this plane is (see volume 3,
Electrodynamics):

Fmagn = q

c
ṙ × B = q

c

ṙ × µ

r 3
, (28.7)

where c is the speed of light.
According to (26.10), the gravitational force reads

Fgrav = −γ Mm
r
r 3

(28.8)

with the sun mass M . Hence, the equation of motion of the particle is

mr̈ = −γ Mm
r
r 3

+ q

c

1

r 3
ṙ × µ.

In plane polar coordinates (r, ϕ) this equation, taking into account (10.11) and (10.12), reads

m
((

r̈ − r ϕ̇2
)

er + (r ϕ̈ + 2ṙ ϕ̇) eϕ

) = −γ Mm
er

r 2
+ q

c

1

r 3

(
ṙer + r ϕ̇eϕ

) × µ. (28.9)
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Because µ is perpendicular to er and eϕ , this equation may be split with respect to the two
components:

m(r ϕ̈ + 2ṙ ϕ̇) = −q

c

µṙ

r 3
(28.10)

mr̈ = −γ Mm

r 2
+ q

c

µϕ̇

r 2
+ mr ϕ̇2. (28.11)

We begin with the first equation. The left side may be transformed such that the following holds:

m

r

d

dt
(r 2ϕ̇) = −q

c

µṙ

r 3
. (28.12)

Integration of this equation yields

mr 2ϕ̇ = −qµ

c

∫
ṙ

r 2
dt = −qµ

c

∫
dr

r 2
= qµ

cr
+ constant (28.13)

The integration constant may be set to zero if we require the boundary condition that at large
distances from the sun the particle shall have no angular momentum with respect to the sun (the left
side of this equation just represents the angular momentum).

By inserting the result 28.13 in equation 28.11, we obtain

mr̈ = −γ Mm

r 2
+ 2q2µ2

mc2r 5
. (28.14)

Because

r̈ = dṙ

dt
= dṙ

dr
ṙ (28.15)

we get

ṙ
dṙ

dr
= −γ M

r 2
+ 2q2µ2

m2c2r 5
. (28.16)

Integration of this equation yields

ṙ 2 = 2γ M

r
− q2µ2

m2c2r 4
+ constant (28.17)

With the boundary condition ṙ = 0 for r → ∞, we may set the integration constant to zero. There
is still another point rc at which the radial velocity vanishes. Solving the equation

2γ M

rc
− q2µ2

m2c2r 4
c

= 0 (28.18)

yields

rc =
(

q2µ2

2γ Mm2c2

)1/3

. (28.19)

Hence, a particle coming from outside can never approach the sun closer than to the radius rc.
The only particle parameter entering the formula for rc is the ratio q/m. The interstellar matter

typically contains two kinds of particles: atoms (mainly hydrogen) and solid particles. Solid particles
have a significantly smaller value for q/m than an ionized hydrogen atom and thus may approach the
sun much closer than the hydrogen atoms may do.
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An estimate of the magnetic field of the sun yields a value of rc of about 1010 km for hydrogen. The
actual value of rc should be somewhat smaller because hydrogen atoms are ionized only at velocities
of about 5 · 104 ms−1, such that the boundary condition for equation 28.17 must be a distinct one.
In any case the minimum distance for hydrogen atoms lies in the external regions of the planetary
system where the large gas planets are actually localized.

For the solid particles one may assume that only their surface is ionized. One may then estimate
their q/m-ratio to be proportional to the ratio of surface to volume, that is, inversely proportional to
their radius. The radius of, for example, an interstellar dust particle is typically about 500 times larger
than that of a proton, such that for rc ∼ (q/m)2/3 there should result a value being by about a factor
of 100 smaller. This is just the radius of the inner planetary orbits.

Example 28.3: Excursion to the external planets

Many new insights about our solar system have been collected by unmanned space probes such as
Voyager I and II. The passage of Saturn by Voyager I (on Nov. 12, 1980) and of Voyager II (on Aug.
25, 1981) provided much new knowledge on this planet.35

The Cassini gap of the Saturn rings, caused by the largest moon Titan, is not empty but is also
interspersed by a number of narrow rings. The Saturn rings consist of countless individual rings, the
widths being about 2 km. Besides the classical 10 Saturn moons, 7 further ones with diameters of
less than 100 km have been detected.

5. Sept. 77
20. Aug. 77

Jupiter
5. Mar ch 79

Jupiter
9. July 79

Saturn
12. Nov . 80

Saturn
25. Aug. 81

Neptune
24. Aug. 89

Uranus
24. Jan. 86

Pluto
Aug. 89

Voyager 2

Voyager 1

Typical pearl string configuration of the exterior planets with the orbits of the Voyager space probes
shown. Note the “swing-by” maneuver, i.e., the optimized passages of the planets by the space probes
in a kind of “planet swing.”

35The discussion of this problem goes back to suggestions of students of the mechanics course in Frankfurt,
using material from various sources.
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The newly discovered outer ring, called the F-ring, is slightly eccentric, contrary to the other rings.
Moreover, one could detect “spokes” in the Saturn rings. Their origin has not yet been explained,
but presumably they may be traced back to a sun flare of the sunlight by tiny ice crystals. After
about 4 · 104 years Voyager I will reach the vicinity of the star AC + 793 888 in the constellation
Ursa Minor. Voyager II, after an encounter with Neptune on August 24, 1989, will travel a long way
through innterstellar space, and after 3.58 · 105 years will pass Sirius, the main star of Canis Maior
and the brightest fixed star of the firmament, at a distance of 0.8 lightyears. A difficulty in exploring
the outer planets are the long flight times. These may, however, be shortened significantly if the
probe exploits the gravitational field of a planet on its route for a calculated change of flight direction
(swing-by). A rare constellation of the four largest planets Jupiter, Saturn, Neptune and Uranus that is
particularly suited for this purpose arose in the 1980’s: The planets didn’t stand in a straight line but
nevertheless along a flat curve. Such a “pearl string configuration” occurs only once in 175 years and
allows Voyager II to pass our four largest planets. Due to the increase of kinetic energy by the various
passages of planets (“swing-bys”), as is seen from the preceding figure, the program of Voyager II
may be finished already after 12 years, while a direct flight with equivalent energy expense would
last about 30 years.

The essential aspects of the calculated trajectories with gravitational support for such a mission
may already be elaborated from the equations on planetary motion in Chapter 26.

For exploring the outer planets, the start should generally be performed in the direction of the
earth’s circulation about the sun. The velocity of earth vE moving on an almost circular orbit of radius
rE and period τE about the sun is given by

vE = ωErE = 2π

τE
rE = 2π · 1.5 · 108 km

365 · 24 · 3600s
= 30

km

s
. (28.20)

A spaceship of mass m with an initial distance rE from the sun (�) needs a minimum escape
velocity v�

Fl to leave the gravitational field of the sun (compare to Problem 26.5):

E = 0 = 1

2
m(v�

Fl)
2 − γ mM�

rE
. (28.21)

On the other hand, the circular orbit of the earth about the sun obeys

MEv2
E

rE
= γ ME M�

r 2
E

. (28.22)

From equations 28.20 to 28.22, we obtain

1

2
m(v�

Fl)
2 = γ mM�

rE
⇔ v�

Fl =
√

2γ M�

rE
= √

2 vE
∼= 42 km/s. (28.23)

Equation 28.23 yields a general relation for the escape velocity for leaving the solar system from
a planetary orbit. The planet moves on a circular path of radius r with the velocity vu about the
gravitational center (sun).

v�
Fl(r) = √

2 vu(r). (28.24)

In a start from the earth moving with vE , the escape velocity out of the gravitational field of the
sun reduces according to 28.20 to

ṽ
�
Fl =

(√
2 − 1

)
vE = 12 km/s. (28.25)

The spaceship needs an additional initial velocity (∼ 11 km/s) to leave the attraction by the earth.
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For a direct flight to Uranus with minimum driving energy, the start should therefore be performed
along the earth’s orbit about the sun, such that the spaceship switches into a Kepler ellipse about the
sun, with the earth standing in the perihelion and Uranus in the aphelion. Note that the shape of this
ellipse (shown below) is uniquely fixed by two conditions:

(a) The distance between earth and Uranus fixes the major semi-axis, and therefore according
to (26.39)

a = −γ Mm

2E
= k

1 − ε2
,

also the energy.
(b) The condition that the probe shall enter the Kepler ellipse at the perihelion position and parallel

to the earth’s orbit uniquely fixes the angular momentum constant

k = L2

m2γ M
= L2

m H

and therefore also the eccentricity. Moreover, the launching time from the earth must be chosen such
that the arrival of Uranus and that of the satellite in its aphelion position coincide in time. To calculate
the trajectory in the following figure, we still need the orbit radii of earth and Uranus about the sun.
These are

rE = 1.5 × 108 km ≡ 1 AU (astronomic unit),

rU = 19.2 AU.

Uranus Uranus
at launch

Earth

Sun

Elliptical orbit of a space probe for a direct passage from earth to Uranus.
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According to (26.32), we obtain the following expression for the perihelion and aphelion positions
of the ellipse:

r(θ = 0) = rE = k

1 + ε
, (28.26)

r(θ = π) = rU = k

1 − ε
,

⇔ ε = rU − rE

rE + rU
= 0.9 (ellipse),

k = rE (1 + ε) = 1.9 AU.

The resulting trajectory to Uranus reads

r(θ) = 1.9 AU

1 + 0.9 cos(θ)
; (28.27)

a = 1

2
(rE + rU ) = 10.1 AU (28.28)

is the major semi-axis of the ellipse.
To get an expression for the velocity at an arbitrary point of the trajectory, we start from equa-

tion (26.39):

E = −γ mM�

2a
= 1

2
mv2 − γ mM�

r
. (28.29)

From there it follows that

v =
√

2γ M�
(

1

r
− 1

2a

)
,

and with equation 28.23,

v = v�
Fl

√
rE

r
− rE

2a
, (28.30)

such that the incident velocity at the perihelion of the ellipse to Uranus is given by

vp = v�
Fl

√
1 − rE

2a
= v�

Fl

√
192

202
∼= 41 km/s. (28.31)

By subtracting the orbital velocity of earth about the sun, we obtain the incident velocity ṽp =
11 km/s.

To calculate the flight time for approaching Uranus, we apply the third Kepler law(
τ1

τ2

)2

=
(

a1

a2

)3

. (28.32)

When denoting the circulation time of the earth by τE and the major semi-axis by aE
∼= rE , we

obtain

τ

2
= τE

2

(
a

rE

)3/2

= 1

2
(10.1)3/2a ∼= 16 years.
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This flight time, with an equivalent energy expense, may be shortened by 11 years by choosing a
trajectory supported by the gravitational field of Jupiter. The idea on which the following calculation
is based rests on the assumption that an elastic collision takes place in the gravitational well of
Jupiter, whereby an infinitesimal fraction of the planetary kinetic energy is transferred to the satellite
(see following figures). We begin with the same heliocentric path (sun in the center of gravity) as
in the preceding case, but choose the start time such that a meeting with Jupiter in its circulation
orbit happens. The reaction of the satellite onto Jupiter and therefore onto its orbital velocity VJ are
neglected because MJ /m 	 1, and moreover the interaction time is small against the orbital period
of the planet.

Earth

Sun Jupiter
at launch

Encounter with Jupiter

Uranus
at passage

Uranus
at launch

Using the gravitational potential well of Jupiter for an optimized voyage (shorter in time) of a space
probe to Uranus.
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The momenta of the spaceship before and after the meeting with Jupiter in the heliocentric system
are denoted by pi and p f , respectively. The following equations hold:

pi = p′
i + mVJ , (28.33)

p f = p′
f + mVJ , (28.34)

where VJ is the orbital velocity of Jupiter, and p′
i , p′

f are the momenta of the spaceship in the
center-of-mass system of the planet. The Galileo transformation 28.33, which is meaningful only for
nonrelativistic velocities, yields for the momentum transfer

�p = p f − pi .

The momentum transfer is the same in both reference frames:

�p = �p′. (28.35)

The change of kinetic energy, however, depends on the reference frame from which the spaceship
is observed. In the heliocentric reference frame, we get

�T = p2
f − p2

i

2m
= �T ′ + VJ · �p′. (28.36)

In the center-of-mass system of Jupiter, we had required an elastic scattering, such that �T ′ = 0
and hence

�T = VJ · �p = VJ · �p′. (28.37)

In the center-of-mass system of the sun, however, the scattering causes an energy increase of the
satellite which is supplied by the planet Jupiter.

The strong gravitational field of the sun almost exclusively governs the path curve of the satellite.
Only in the immediate vicinity of Jupiter is the gravitational field of the sun relatively constant, and
the trajectory of the satellite is then essentially determined by the gravitational field of Jupiter (see
following figure).

If ui and u f denote the velocities of the probe when entering and leaving the range of attraction of
Jupiter in its center-of-mass system, energy and momentum conservation lead to

E ′ = 1

2
mu2

i = 1

2
mu2

f + 1

2
MJ�v2 = 1

2
mu2

f + 1

2
MJ

[
m

MJ
(u f − ui )

]2

, (28.38)

where �v is the change in the velocity of Jupiter due to the momentum transfer �p = m(u f − ui ).
Because m � MJ, the recoil energy onto Jupiter may be neglected, from which it follows that

ui ≈ u f ≡ u. (28.39)

Because the energy E ′ is positive, we may conclude from the classification of conic sections on p.
261 that the path is a hyperbola. In the heliocentric frame, one gets for the velocity of the spaceship
at the border of the attraction range of Jupiter (comparable to the gravitational field of the sun),
neglecting the change of VJ (see following figure):

dvi = ui + VJ , (28.40)

v f = u f + VJ . (28.41)

For the asymptotic velocity on the hyperbola, it follows with 28.39 that

u =
√

v2
i + V 2

J − 2vi VJ cos βi . (28.42)
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Vj

Vj
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uf
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θ=
0

in
go

in
g 

A
sy

m
pt

ot
e

outgoing

Asymptote
θs

θ0

Jupiter

Geometry of the elastic scattering of the satellite at Jupiter (“swing-by”).

With the circulation period of 11.9 years and the orbital radius rJ = 5.2 AU of Jupiter, the orbital
velocity VJ is

VJ = 2π

τJ
rJ = 2π · 5.2 · 1.5 · 108 km

11.9 · 365 · 24 · 3600 s
= 13 km/s. (28.43)

The velocity of the spaceship when approaching Jupiter may be estimated from 28.30, with
r = rJ = 5.2 AU:

vi = 42 km/s

√
1

5.2
− 1

2 · 10.1
= 16 km/s. (28.44)

We now calculate the angle βi enclosed by the flight trajectory of the probe and the planetary orbit:

cos βi = vi · VJ

vi VJ
= (vi )θ

vi
. (28.45)
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The projection of vi along VJ (i.e., (vi )θ ) may be derived from the angular momentum conservation
in the Jupiter meeting and in the perihelion of the path:

L = m(vi )θ rJ = mvprE (28.46)

⇔ (vi )θ = vp

(
rE

rJ

)
= 41 km/s

1

5.2
∼= 8 km/s. (28.47)

According to 28.45, we then obtain for the angle

cos βi = 1

2
. (28.48)

According to 28.42, the asymptotic hyperbola velocity is

u = 14.7 km/s. (28.49)

The hyperbolic path of the spaceship around the planet Jupiter is determined by the initial values
for the energy, E ′ = 1

2 mu2, and the angular momentum, L ′ = mub. Contrary to the energy E ′,
which is fixed by the asymptotic hyperbola velocity, the angular momentum depends via the collision
parameter b on the distance between Jupiter and satellite during the meeting and therefore on the start
time. The meeting shall now proceed in such a way to make the energy transfer to the satellite, and
thus its final velocity v f , a maximum. From equations 28.36 and 28.40, we may calculate the energy
transfer to the spaceship:

�E = mVJ · (u f − ui ) = mVJ · (v f − vi ). (28.50)

From the velocity diagram in the next figure, we see that the velocity v f becomes a maximum if
v f is parallel to VJ .

v f = (VJ + u)
VJ

|VJ | . (28.51)

From the available data, we obtain

v f = 13 km/s + 14.7 km/s = 27.7 km/s, (28.52)

as compared to vi = 16 km/s !
The scattering angle �s between ui and u f is also determined from the following figure:

VJ = vi cos βi + ui cos(π − �s) (28.53)

⇔ cos �s = vi cos βi − VJ

ui
= −0.34.

Accordingly, the probe is deflected by �s = 110◦.
We now shall investigate whether the minimum distance rmin of the hyperbolic orbit about Jupiter

is indeed larger than its radius RJ . For this purpose we write the hyperbola path in the customary
form:

r(�) = k ′

1 + ε′ cos(� − �0)
, (28.54)

where r is the distance to Jupiter, and �0 is the symmetry angle of the probe orbit with respect to the
initial and final velocities ui and u f . To calculate the eccentricity ε′, we employ the initial condition
that for � = 0 r → ∞. From that it follows that

ε′ cos(�0) = −1. (28.55)
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Θs βiVJ

vf

v iui

uf

Velocity diagram for the passage of Jupiter in the general case. Note that in the special case used in
the calculation (equation 28.53), vf ‖ VJ . See also preceding figure.

We further see from the figure on p. 351 that 2�0 − �s = π , and therefore

ε′ = − 1

cos(π/2 + �s/2)
= 1.23. (28.56)

To determine the angular momentum constant k ′, we make use of (26.37):

ε′ =
√

1 + 2E ′|L|2
m H 2

; (28.57)

with k ′ = |L|2/(m H), it follows from 28.57 that

k ′ = H

2E ′ (ε
′2 − 1) (28.58)

⇔ k ′ = γ MJ

u2
(ε′2 − 1), (28.59)

or in terms of the escape velocity from the planet Jupiter

v J
Fl =

√
2γ MJ

RJ
= 60 km/s (28.60)

⇒ k ′ = 1

2
RJ

(
v J

Fl

u

)2

(ε′2 − 1) = RJ · 1

2

(
60

14.7

)2

(1.232 − 1) = 4.27 RJ . (28.61)
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Hence, for the path it follows that

r = 4.27 RJ

1 + 1.23 cos(� − 144◦)
. (28.62)

At the point of closest approach, � = �0, which implies r = 1.9 RJ , ensuring a safe passage.
When leaving the sphere of influence of Jupiter, the spaceship switches with a final velocity v f

parallel to VJ into a new conic-sectionlike trajectory about the sun with perihelion at r = rJ . The
type of orbit of this new heliocentric path depends on the energy transfer of Jupiter to the probe. The
escape velocity for leaving the solar system is, according to 28.24,

v�
escape = √

2 VJ . (28.63)

Depending on the magnitude of the final velocities v f , there result the following types of paths:

v f <
√

2 VJ ellipse,

v f = √
2 VJ parabola, (28.64)

v f >
√

2 VJ hyperbola.

In our example, v f /VJ = 1.5, and therefore a hyperbola results, which again may be written in
the usual form:

r = k ′′

1 + ε′′ cos �
. (28.65)

The distance of closest approach lies at � = 0, r = rJ :

rJ = k ′′

1 + ε′′ . (28.66)

Because the probe leaves Jupiter along its orbit about the sun, one has L ′′ = mv f rJ , and with
k ′′ = L ′′2/(m H) it follows that

k ′′ = v2
f r 2

J

γ M� ⇒ ε′′ = v2
f

γ M�/rJ
− 1 =

(
v f

VJ

)2

− 1 (28.67)

⇒ ε′′ = 3.54, k ′′ = 23.6 AU. (28.68)

The trajectory from Jupiter to Uranus is therefore completely given by

r(�) = 23.6 AU

1 + 3.54 cos �
. (28.69)

The start time for the path plotted in the figure on p. 349 must be chosen such that the planets
are in a constellation enabling the gravitational-field-supported swing-by at the planet Jupiter and the
passage flight at Uranus. The premise for such a Jupiter mission repeats every 14 years.

We still calculate the flight times for the path sections earth–Jupiter (equation 28.27) and Jupiter–
Uranus (equation 28.69) plotted in the figure on p. 349 from the angular momentum conservation
|L| = r 2�̇m:

⇔ �t =
t2∫

t1

dt = m

|L|
�2∫

�1

r 2 d�; (28.70)
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with r = k/(1 + ε cos �) and k = L2/Hm it follows that

�t = k2m

L

�2∫
�1

d�

(1 + ε cos �)2
(28.71)

⇔ �t = k3/2

(γ M�)1/2

�2∫
�1

d�

(1 + ε cos �)2
. (28.72)

To work with convenient units, this is expressed by the orbital velocity of the earth (compare
to 28.23):√

γ M� = vE
√

rE = 2π

τE
(rE )3/2 (28.73)

⇒ �t =
( τE

2π

) (
k

rE

)3/2
�2∫

�1

d�

(1 + ε cos �)2
. (28.74)

From the integral tables (e.g., Bronstein, # 350 and # 347), we find∫
d�

(1 + ε cos �)2
= ε sin �

(ε2 − 1)(1 + ε cos �)

− 1

ε2 − 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
ε2 − 1

ln

∣∣∣∣∣ (ε − 1) tan �

2 + √
ε2 − 1

(ε − 1) tan �

2 − √
ε2 − 1

∣∣∣∣∣ for ε2 > 1,

2√
1 − ε2

arctan

(
(1 − ε) tan �

2√
1 − ε2

)
for ε2 < 1.

(28.75)

For the elliptic path to Jupiter at the start �1 = 0, �2 is determined from 28.27:

r = rJ = 5.2 AU = 1.9 AU

1 + 0.9 cos �2
⇒ �2

∼= 135◦,

and with 28.75 and ε2 < 1, we obtain

�t ∼= 1.21 years. (28.76)

For the hyperbola-type path from Jupiter to Uranus, we determine �2 analogously from

r = rU = 23.6 AU

1 + 3.54 cos �2
⇒ �2

∼= 86.3◦

and analogously from 28.75 with ε2 > 1:

�t ∼= 3.74 years. (28.77)

The total flight time for an excursion from the earth to Uranus could be reduced from 16 to 5 years
by a swing-by at Jupiter. The given data are, of course, approximate values, as we have assumed the
gravitational forces of the planets and of the sun onto the spaceship to be independent of each other.
By using numerical methods, one can drop this approximation and, for example, confirm the data in
the figure on p. 345. For this goal, however, a number of refinements of the approximations made in
our simple calculation are needed.
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Problem 28.4: Perihelion motion

A planet of mass m moves in the gravitational potential of the sun:

U (r) = −κ

r
− B

r 3
,

where the additional term is due to a polar flattening of the sun. Calculate the perihelion motion δ�

of the planetary orbit per revolution.
Hint
B shall be small such that the orbit may be assumed as a superposition of a fixed elliptic orbit and

a perturbation:

u(�) = u0(�) + εv(�) + O(ε2).

Solution From the potential U (r) = −κ/r − B/r 3, the force F(r) follows:

F(r) = −∇U (r) = −
(

κ

r 2
+ 3B

r 4

)
er ≡ F(r)er ,

or expressed in u(�) = r−1(�) (see (26.20) ff.)

F

(
1

u

)
= −κu2 − 3Bu4. (28.78)

We are dealing with a central force. The differential equation to be solved is therefore (see (26.22) of
the lecture):

F

(
1

u

)
= −mh2u2

(
d2u

d�2
+ u

)
, (28.79)

which explicitly reads

u′′(�) + u(�) = κ

mh2
+ 3B

mh2
u2 (28.80)

= A + ε

A
u2 . (28.81)

Here we have set

A = κ

mh2
and ε = 3κ B

m2h4
.

One realizes that the differential equation without the term ε again leads to the Kepler problem
with a fixed elliptic orbit.

Assuming that B and hence also ε is small, the following ansatz (“perturbation ansatz”) is obvious:

u(�) = u0(�) + εv(�) + O(ε2). (28.82)

We now demonstrate that u0 yields the original Kepler ellipse, and v represents the perturbation
leading to the perihelion motion. Insertion of 28.82 into 28.80 yields

u′′
0(�) + εv′′(�) + u0(�) + εv(�)

= A + ε

A
u2

0(�) + ε3

A
v2(�) + 2ε2

A
u0(�)v(�) + O

(
ε4

)
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⇒ u′′
0(�) + u0(�) + ε

{
v′′(�) + v(�)

}
= A + ε

{
1

A
u2

0(�)

}
+ O

(
ε2

) + O
(
ε3

) + O
(
ε4

)
. (28.83)

Only terms without ε and terms linear in ε are considered; hence:
(a) Terms without ε:

u′′
0(�) + u0(�) = A. (28.84)

This is the differential equation (26.25) of the Kepler motion known already from the lectures,
which is solved by

u0(�) = A + C sin � + D cos �

or
u0(�) = A + E cos(� − ϕ) .

Without restriction of generality, the coordinate frame may be selected such that ϕ ≡ 0, and one gets
the trajectory

r(�) = 1

A + E cos �
= A−1

1 + (E/A) cos �
. (28.85)

(b) Terms linear in ε:

v′′(�) + v(�) = 1

A
u2

0(�)

= 1

A
(A2 + 2AE cos � + E2 cos2 �)

=
(

A + E2

2A

)
+ 2E cos � + E2

2A
cos 2�,

where 2 cos2 ϕ = 1 + cos 2ϕ has been used. Because the differential equation is linear in v, we may
write the solution as a superposition of three individual solutions:

v(�) = v1(�) + v2(�) + v3(�),

with

v′′
1 + v1 = A + E2

2A
, (28.86)

v′′
2 + v2 = 2E cos �,

v′′
3 + v3 = E2

2A
cos 2�. (28.87)

The corresponding solutions are

v1(�) = A + E2

2A
, (28.88)

v2(�) = E� sin �,

v3(�) = − E2

6A
cos 2�. (28.89)
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The solution of the path equation up to first order in ε is then given by

u(�) = u0(�) + εv(�)

= A + E cos � + ε

(
A + E2

2A

)
+ εE� sin � − ε

E2

6A
cos 2�. (28.90)

The cos 2�-term is periodic in �; hence it cannot cause a perihelion motion. A perihelion motion
must therefore originate from the (� sin �)-term, which increases oscillatory with �.

We now employ the approximations

cos α ≈ 1 for α � 1,

sin α ≈ α for α � 1,

and the identity cos(α − β) = cos α cos β + sin α sin β:

cos(� − ε�) = cos � cos(ε�) + sin � sin(ε�)

≈ cos � + sin �(ε�) (ε� � 1).

Hence, u(�) may be written as

u(�) = A + E cos(� − ε�) + ε

{
A + E2

2A
− E2

6A
cos 2�

}
. (28.91)

The last term oscillates with the period π between the values ε(A+ E2/3A) and ε(A+2E2/3A), that
is, the radius shows, besides the variation due to the motion along the Kepler orbit, a slow periodical
variation:

r(�) = 1

A + E cos(� − ε�) + ε �(2�)
, �(2�) = A + E2

2A
− E2

6A
cos 2�

= 1

A + E cos(� − ε�)
·

⎡⎢⎢⎣ 1

1 + ε �(2�)

A + E cos(� − ε�)

⎤⎥⎥⎦ ;

hence,

r(�) ≈ 1

A + E cos(� − ε�)
· [

1 − ε�̃(ε, 2�)
]
, �̃ = �(2�)

A + E cos(� − ε�)
.

The perihelion is defined as the minimum of r(�):

⇒ cos(� − ε�) = 1

⇒ � − ε� = 2πn, n = 0, 1, 2, . . . .

This yields

�min = 2πn

1 − ε
= 2πn(1 + ε) + O(ε2).

The perihelion thus moves for each circulation by the amount

δ� = 2πε = 6πκ B

m2h4
.
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RadialVariations
~ε∆

Precession of
thePerihelion δΘ

Aphelion

Perihel motion and variations of the radius due to a small, perturbative potential term.
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PART III
THEORY OF RELATIVITY



29 Relativity
Principle and
Michelson–
Morley
Experiment

For the mathematical description of a mass point one specifies its relative motion with
respect to a coordinate frame. It is convenient for this purpose to adopt a nonaccelerated
reference frame (inertial system).

To an arbitrarily selected inertial system there are, however, arbitrarily many alternative
ones that are moving uniformly against the first one. If one now changes from such an
inertial system (K ) into another one (K ′), then the laws of Newtonian mechanics remain
unchanged. As a consequence, one cannot decide from mechanical experiments whether
an inertial system at absolute rest exists.

z

z´

y

y´

x

x´

K

K´

r

r´

v0
t

Two coordinate systems with constant relative velocity v0 (inertial systems).
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The transformation specifying the transition from one reference frame to another
frame moving with constant velocity v0 against the former one is the called Galileo
transformation.1 The corresponding transformation equations read (see figure)

x ′ = x − v0x t,

y′ = y − v0yt,

z′ = z − v0z t.

1Named after Galilei, Galileo, Italian mathematician and philosopher, b. Feb. 15, 1564, Pisa—d. Jan. 8, 1642,
Arcetri near Florence. He studied in Pisa. At the Florentine Accademia del Dissegno he got access to the writings
of Archimedes. On recommendation of his patron Guidobaldo del Monte, in 1589 he got a professorship for
mathematics in Pisa. Whether he performed fall experiments at the tilted tower is not proved incontestably; in any
case they should confirm a false theory he proposed. In 1592 Galileo took the professorship of mathematics in
Padua, not because of disagreement with colleagues but because of the better salary. He invented a proportional
pair of compasses, furnished a precision mechanic workshop in his flat, found the laws for the string pendulum,
and derived the fall laws in 1604 from false and in 1609 from correct assumptions. Galileo copied the telescope
invented one year earlier in the Netherlands. He used it for astronomic observations and published the first results
in 1610 in his Nuncius Sidereus, the Star Message. Galileo discovered the mountainous nature of the moon, the
abundance of stars of the Milky Way, the phases of Venus, the moons of Jupiter (Jan. 7, 1610), and, in 1611 the
sunspots, but on these Johannes Fabricius was before him.

Only since 1610 did Galileo, who returned to Florence as Court’s mathematician and philosopher of the Grand
Duke, publicly support the Copernican system. By his overkeenness in the following years he provoked, however,
in 1614 the ban of this doctrine by the Pope. He was urged not to advocate it further by speech or writing. During
a dispute on the nature of the comets of 1618, where Galileo was not in all points right, he wrote as one of
his most profound treatises the Saggiatore (inspector with the gold balance, 1623), a paper dedicated to Pope
Urban VIII. Because the former cardinal Maffeo Barberini had been well-disposed toward him, Galileo believed
to win him as Pope for accepting the Copernican doctrine. He wrote his Dialogo, the Talk on the two main world
systems, the Ptolemyan and the Copernican, gave the manuscript in Rome for examination, and published it in
1632 in Florence. Because he obviously had not included the agreed changes of the text thoroughly enough and
had shown his siding with Copernicus too clearly, a trial set up against Galileo ended with his renouncement
and condemnation on June 22, 1633. Galilieo was imprisoned in the building of inquisition for a few days. The
statement “It (the earth) still moves” (Eppur si muove) is legendary. Galileo was sentenced to unrestricted arrest
that he spent with short breaks in his country house at Arcetri near Florence. There he also wrote for the further
development of physics his most important work: the Discorsi e Dimonstrazioni Mathematiche, the Conversations
and Proofs on Two New Branches of Science: The Mechanics (i.e. the Strength of Materials), and the Branches of
Science Concerning Local Motions (Fall and Throw) (Leiden, 1638).

In older representations of Galileo’s life there are many exaggerations and mistakes. Galileo is not the creator of
the experimental method, which he utilizes not more than many others of his contemporaries, although sometimes
more critically than the competent Athanasius Kircher. Galileo was not an astronomer in the true sense, but a
good observer, and as an excellent speaker and writer he won friends and patrons for a growing new science and
its methods among the educated of his age, and he stimulated further research. Riccioli and Grimaldi in Bologna
confirmed Galileo’s laws of free fall by experiment. His scholars Torricelli and Viviani developed one of Galileo’s
experiments—for disproving the horror vacui—in 1643 to the barometric experiment. Chr. Huygens developed
his pendulum clock based on Galileo’s ideas, and he converted Galileo’s kinematics to a real dynamics.

Galileo was one of the first Italians who also used their mother’s language in their works for presenting
scientific problems. He defended this attitude in his correspondence. His prose takes a special position within the
Italian literature, since it distinguishes by its masterly clarity and simplicity from the prevailing baroque bombast
Galileo had reproved also in his literary-critical essays on Tasso et al. In his works Dialogo Sopra i due Massimi
Sistemi (Florence, 1632) and I Dialoghi delle Nouve Scienze (Leiden, 1638), he utilized the form of dialogue that
came down from the Italian humanists, to be understood by a broad audience [BR].
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In compact vector notation this simply becomes

r ′ = r − v0t, v0 = −−−−→
constant, (29.1)

or more general:

r′ = r − v0t − R0 (with v0 = constant),

if the coordinate origins (r = r′ = 0) at the time t = 0 differ by R0 in the x-frame.
Twofold differentiation yields

F = mr̈ = mr̈′ = F′. (29.2)

From this equation (29.2), one immediately realizes that Newton’s law, if it holds in one
inertial system, also holds in any other inertial system, that is, the Newtonian mechanics
remains unchanged. One says that the Newtonian mechanics is Galileo-invariant. In other
words: The dynamic fundamental equation of mechanics is Galileo-invariant.

In the Galileo transformation it is assumed that in each inertial system the time t is the
same, namely, when changing from one system to another one the time remains unchanged:

t = t ′.

Hence, the time is an invariant; one speaks of an absolute time. In this premise one
implicitly assumes that there is no upper limit for the velocity but that it is possible to
transmit a message (comparison of clocks) with arbitrarily high velocity. Only then can
one speak of an absolute time. We will come back to the problem of measuring times in the
following chapters (see, for instance, Chapter 31).

The Michelson–Morley experiment

In the physics of the 19th century it was assumed that the light was bound to a material
medium, the so-called ether. Just as sound propagates in air as a density oscillation, the
light should propagate in the world ether.

It was obvious to declare the ether as “being at absolute rest” and then to try to find an
“absolutely resting” inertial system, making use of electrodynamic experiments.

Imagine a spaceship moving in the ether. If this spaceship flies against the rays of light,
then according to the ether theory the speed of light measured in the spaceship is larger;
in the case of opposite direction of motion, it is lower. To check this theory Michelson2

2Albert Abraham Michelson, American physicist, b. Dec. 19, 1852, Strelno (Posen)—d. May 9, 1931, Pasadena
(Calif.). From 1869–1881 he was a member of the Navy, taught at the Navy colleges in Annapolis, New York,
and Washington, then was appointed professor in New York, Washington, Cleveland, Worchester, and Chicago.
In 1880/81 Michelson performed an experiment in Potsdam, aimed at the proof of an absolute motion of earth.
This attempt, as well as a repetition thereof performed commonly with the American chemist E.W. Morley (born
Jan. 29, 1838, died Feb. 24, 1923), gave a negative result. Michelson further fixed the value of the normal meter
to high accuracy, using interferometry. In 1925–1927 he performed precision measurements of the speed of light,
and in 1923 he proposed an interference method to determine the absolute diameter of fixed stars. In 1907 he got
the Nobel Prize of Physics for his “precision interferometer and the spectroscopic and meteorologic investigations
performed with it.” [BR]
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adopted the earth as a spaceship moving with a speed of 30 km/s about the sun. If the ether
theory applies, then the light must propagate along the direction of motion of the earth with
higher speed than in any other direction.

To demonstrate these differences of speed, Michelson performed an experiment, which
is sketched in the following.

S2

S1

l1 x

l2

S 2́

S 1́
S S´

L

Screen

v

Scheme of the Michelson–Morley experiment.

The monochromatic light source L emits a light ray, which is split into two bundles by
the semitransparent mirror S. After the distances l1 and l2, these hit the mirrors S1 and S2,
respectively. Here they are reflected into themselves and finally again hit onto S, where the
two bundles superpose. If the experiment is organized such that the two light bundles have
different times of flight, one observes interference fringes on the screen.

The path difference between l1 and l2 in the frame at rest is

�S = 2(l1 − l2).

In the frame (v ||l1) moving uniformly against the ether, the situation is as follows: The
light ray passing the distance l1 needs the time

tL = path = l1

velocity = c
.

In the ether at rest, the speed of light is always equal to c. The path of the light ray is
l1 + x ; x is the distance traversed by earth (or the mirror) during the time tE .

tE = x

v
; tL = l1 + x

c
.

Because tE = tL , it follows that

x

v
= l1 + x

c
⇒ x = l1v/c

1 − v/c
= l1v

c − v
. (29.3)
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xl1

S1 S 1́S

v

The path of the light moving ↑↑ with respect to the direction of flight is l1 + x .

If we now consider the light ray moving back, the path traversed by the light ray equals
l1 − x ′. x ′ is the distance traversed by the oncoming earth during the time t ′

E = x ′/v.

S´ S 1́S1

v

l1 x

l1- ´x

S

The path of the light moving ↑↓ with respect to the direction of flight is l1 − x . The background should
denote the ether, in which the light was supposed to propagate.

The backmoving light ray needs the time t ′
L = (l1 − x ′)/c. Because t ′

E = t ′
L , it follows

that

x ′

v
= l1 − x ′

c
⇒ x ′ = l1v/c

1 + v/c
= l1v

c + v
. (29.4)

The total distance passed by the light ray is

s1 = l1 + x + l1 − x ′. (29.5)

By inserting x and x ′ (from (29.3) and (29.4)) into equation (29.5), we obtain

s1 = 2l1 + l1v

c − v
− l1v

c + v

and after rewriting, we get

s1 = 2l1

1 − v2/c2
.

We now consider the path of rays of l2: While the ray is running to S2, the time

t = y

v
=

√
l2
2 + y2

c
(29.6)
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passes. On the way back the ray needs the same time, that is, it covers the same distance as
on the way forward. From there it follows that

s2 = 2
√

l2
2 + y2. (29.7)

y

S S´

l2

S 2́

The path of the light moving ⊥ with re-
spect to the direction of flight.

We first determine y2 from (29.6):

y2

v2
= l2

2 + y2

c2
.

Solving for y2 yields

y2 = (v2/c2) l2
2

1 − v2/c2
.

Inserting y2 into (29.7) yields

s2 = 2

√
l2
2 + (v2/c2) l2

2

1 − v2/c2
,

s2 = 2l2
1√

1 − v2/c2
.

The path difference between s1 and s2 in the moving frame becomes

�s = s1 − s2 = 2l1

1 − (v/c)2
− 2l2√

1 − (v/c)2
; (29.8)

the difference of the transit times is correspondingly (the propagation speed of light in the
ether is always equal to c)

�t = �s

c
= 2

c

(
l1

1 − (v/c)2
− l2√

1 − (v/c)2

)
. (29.9)

If the experimental set-up is rotated by −90◦, l1 turns to the direction of l2, and l2 to the
direction of l1, that is, l2 points along the direction of motion of earth. The light ray covers
the distance l2 faster than before the 90◦ rotation, and the distance l1 is traversed slower.
For (v ||l2) an analogous expression results, namely

�̃s = s1 − s2 = 2l1√
1 − (v/c)2

− 2l2

1 − (v/c)2
. (29.10)

This would cause a shift of the interference fringes, because

�s − �̃s = (2l1 + 2l2) ·
(

1

1 − (v/c)2
− 1√

1 − (v/c)2

)
≈ (l1 + l2)

(v

c

)2
.

If, on the contrary, the frame is at rest (v = 0), then �s ′ in the rotated frame is equal
to �s in the nonrotated frame, namely the interference fringes are not shifted. Michelson
observed, however, that also for v 	= 0 no shift of the interference fringes arises when
rotating the apparatus.
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This result might be understood if the speed of light were c = ∞. According to (29.8),
one then would have �s = �̃s = 2(l1−l2) for both orientations of the Michelson apparatus.
Then there were no shift of the interference fringes. But it is known that c = 300, 000 km/s.
Hence this explanation is ruled out.

Because the Michelson experiment did not show any shift of the interference fringes and
it would be unreasonable to assume the ether to follow the complicated motion of earth,
Einstein3 set up the following postulates to explain the result of the Michelson–Morley
experiment:

The speed of light in vacuum has the same magnitude in all uniformly moving reference frames.

In this case the difference of the light paths s1 − s2 = 2l1 − 2l2 is independent of
the orientation of the Michelson apparatus. If the speed of light is actually the same no
matter whether the observer is moving toward the light source or away from it, always
�s = s1 − s2 = 2l1 − 2l2 and also �̃s = s1 − s2 = 2l1 − 2l2, hence �s − �̃s = 0.
Then there is no shift of the interference fringes, so to speak a priori. Moreover, Einstein
postulated the relativity principle:

3Albert Einstein, physicist, b. March 14, 1879, Ulm—d. April 18, 1955, Princeton (N.J.). He grew up in
Munich, then moved to Switzerland at the age of 15 years. As a “technical expert of third class” of the patent
office at Bern he published in 1905 three highly important papers in Vol. 17 of the Annalen der Physik.

In his Theory of the Brownian Motion Einstein gave a direct and final proof of the atomistic structure of matter
on a purely classical base. In the treatise “On the electrodynamics of moving bodies” he founded the special theory
of relativity, based on a penetrating analysis of the concepts of space and time. From this theory he concluded a
few months later on the general equivalence of mass and energy, expressed by the well-known formula E = mc2.
In the third paper Einstein extended the quantum theorem of M. Planck (1900) to the hypothesis of light quanta
and thereby made the decisive second step in the development of quantum theory, which immediately implies the
duality conception wave – particle. The idea of light quanta was considered by most physicists as being too radical
and was accepted with much scepticism. The swing of opinion came only after the proposition of the theory of
atoms by N. Bohr (1913).

In 1909 Einstein was appointed as professor at Zurich University. In 1911 he went to Prague; in 1912 again to
Zurich to the Eidgenössische TH. In 1913 he was called to Berlin as full-time member of the Prussian Academy
of Sciences and head of the Kaiser Wilhelm Institute for Physics. In 1914/15 he founded the general theory of
relativity, starting from the strict proportionality of heavy and inert mass. The successful check of the theoretical
prediction by the British expedition for observing the solar eclipse in 1919 made him publicly known far beyond
the circle of experts. His political and scientific opponents tried to organize a campaign against him and the theory
of relativity, which, however, remained meaningless. The Nobel Committee nevertheless considered it advisable
to award the Nobel Prize for Physics of the year 1921 to Einstein not for the proposition of the theory of relativity
but rather for his contributions to quantum theory.

As of 1920 Einstein tried to create a “unified theory of matter,” which should comprise besides gravitation also
electrodynamics. Even then when H. Yukawa had shown that besides the gravitation and electrodynamics there
exist still other forces, Einstein continued his efforts that remained however without a final success. Although he
had published in 1917 a landmark paper on the statistical interpretation of quantum theory, he later brought about
serious objections against the “Copenhagen interpretation” by N. Bohr and W. Heisenberg, which originated in
his philosophical world view.

Offenses because of his Jewish origin caused Einstein in 1933 to resign his academic positions in Germany. He
found a new sphere of activity in the United States at the Institute for Advanced Studies in Princeton. Einstein’s
last life period was clouded by the fact that he—being all his life a convinced pacifist—had given the impetus
to build the first American atomic bomb, initiated by a letter of August 2, 1939, commonly written with other
scientists to President Roosevelt, that was motivated by fear of German aggression [BR].
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In all uniformly moving frames there hold the same laws of nature.
(covariance of the laws of nature)

Henri Poincaré, the great French mathematician, statesman, and contemporary of Ein-
stein, expressed it as follows: The relativity law states that the laws of physical phenomena
shall be the same both for an observer being at rest, as well as for one put into uniform
motion, that is, we have no, and cannot have a possibility to judge whether we are in such
a kind of motion or not.

These requirements, first set up by Einstein, are not necessarily an implication of the
Michelson–Morley experiment. On the contrary, many physicists tried to stick to the ether
hypothesis by other possible explanations. An example of such an attempt is a hypothesis
brought forward independently by Lorentz and Fitzgerald which is denoted in literature
somewhat pathetically as “fatal cry of ether.”

The basic idea is that the Maxwell equations hold in and only in the rest frame of
the ether. Under this premise there result of course modifications of the electromagnetic
interaction—additional electric and also magnetic fields—between those charged particles
moving relative to the ether.

With this assumption Lorentz could prove that a system of charged particles moving in
such a way against the “ether wind” is shortened by the modified electromagnetic forces.4

In order to apply this idea to the Michelson–Morley experiment, one has to get straight
in mind that the surrounding matter, and in particular the measuring apparatus, consists of
electric charges. In this way Lorentz could show that the arm of the device pointing along
the motion of earth is shortened by just such an amount, that the actually longer transit time
of light along this direction is compensated. As a consequence, one cannot observe changes
of the interference patterns when rotating the measuring apparatus, just as is demonstrated
experimentally.

Although this idea cannot be disproved in a simple way, it seems very unlikely that nature
applies such complicated means to keep our absolute state of motion secret from us.

The goal is now, being confronted with the result of the Michelson–Morley experiment,
to find transformation equations that mediate the transition between two inertial systems
K and K ′. These transformation equations are called Lorentz transformations; named after
the Dutch theoretical physicist Hendrik Antoon Lorentz,5 who for the first time derived
the Lorentz transformation from the Michelson–Morley experiment, but did not realize its
general validity, and hence also not the philosophically new element.

4H.A. Lorentz, De Relative Bewegung van de AARDE en dem Aether, Amsterdam (1892), Vers. 1, p. 74.
5Hendrik Antoon Lorentz, Dutch physicist, b. July 18, 1853, Arnheim—d. Feb. 4, 1928, Haarlem. He was

professor in Leiden and since 1912 curator of the cabinet of natural sciences of the Teyler foundation in Haarlem.
Lorentz joined the Maxwellian field theory with the electro-atomistic ideas: The most striking success of this
theory is the explanation of the splitting of spectral lines in a magnetic field, detected in 1896 by P. Zeeman.

Lorentz thoroughly treated the relation between electric and optical phenomena in moving bodies, based on
the electron theory, and he gave a first explanation of the result of the Michelson–Morley experiment by assuming
a length contraction of the moving body in the direction of motion (Lorentz contraction). He contributed to the
development of the theory of relativity and the quantum theory. After his retirement he was involved as leader
in the scientific project to drain the Zuidersee. In 1902 he was awarded together with P. Zeeman with the Nobel
Prize for Physics [BR].



30 The Lorentz
Transformation

Let us consider two systems moving uniformly against each other with the relative ve-
locity v: The system (x, y, z, t) and the system (x ′, y′, z′, t ′), and perform the following
thought experiment.

At the time t = t ′ = 0, the origins of the two coordinate frames shall coincide. At this
moment a light shall flash up at the origin of the two coordinate frames.

We follow Einstein’s postulate—stated in order to explain the result of the Michelson–
Morley experiment—that the speed of light has the same value c in each coordinate frame,
that is, both an observer in the nonprimed system as well as an observer in the primed system
see a spherical wave propagating with the same velocity c. That the wave is spherical in both
systems and not an ellipsoidally deformed wave in the moving system (as one might expect
at first) can be explained by the postulate of the relativity principle. This is an additional
requirement set up by Einstein, according to which the state of motion (the velocity of
the system) cannot be read off from any observation (equation) in any inertial system. An
ellipsoidally deformed wave in the moving system or another propagation velocity would
allow one to establish the state of motion, and thus would violate the relativity principle.
Hence the light flash must be a spherical wave in both systems. Thus, the wave front obeys
the equation

S : x2 + y2 + z2 = c2t2 (30.1)

in the nonprimed system and also

S′ : x ′2 + y′2 + z′2 = c2t ′2 (30.2)

in the primed system.
Because S specifies the spherical wave in K , the equation S′ shall according to the

relativity principle also specify a spherical wave in K ′. We further postulate that also for
a finite space-time distance x2 + y2 + z2 − c2t2 	= 0 in the system at rest, there shall
be a corresponding finite space-time distance in the moving system, namely, x ′2 + y′2 +
z′2 − c2t ′2 	= 0. One situation shall follow from the other, and vice versa. Therefore, S′

370
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must follow from S; there must exist a corresponding functional relation between these
equations; for example,

x ′2 + y′2 + z′2 − c2t ′2 = F
(
x2 + y2 + z2 − c2t2, v

)
= F̂(v)

(
x2 + y2 + z2 − c2t2

)
.

In the last step we have written the functional connection as an operator equation.
The operator F̂ thereby acts on the combination (x2 + y2 + z2 − c2t2). The function
F(x2 + y2 + z2 − c2t2, v) still might explicitly depend on the space-time coordinates
x, y, z, t (not only in the combination x2 + y2 + z2 − c2t2), and on the relative velocity v of
the inertial systems, namely, F(x2 + y2 + z2 − c2t2; x, y, z, t, v). In operator notation this
reads F̂(x, y, z, ct, v)(x2 + y2 + z2 − c2t2). In this case the operator F̂ depends on the
space-time point (x, y, z, ct) and on the velocity v. But we require homogeneity of space
and time. In other words: Each space-time point (x, y, z, t) shall have equal rights. The
physical process then cannot depend on x, y, z, and t . This means that F̂ cannot explicitly
depend on the space-time point x, y, z, t , and we obtain F(x2 + y2 + z2 − c2t2, v). More-
over, the space shall be isotropic, that is, the function F must not depend on the orientation
of v. In particular then it holds that

F
(
x2 + y2 + z2 − c2t2, v

) = F
(
x2 + y2 + z2 − c2t2, −v

)
,

or in operator form

F̂(v)
(
x2 + y2 + z2 − c2t2

) = F̂(−v)
(
x2 + y2 + z2 − c2t2

)
.

But because K is related to K ′ just as K ′ is to K , there must hold with the same function F :

x2 + y2 + z2 − c2t2 = F̂(−v)
(
x ′2 + y′2 + z′2 − c2t ′2)

= F̂(v)
(
x ′2 + y′2 + z′2 − c2t ′2) (30.3)

= F̂(v)F̂(v)
(
x2 + y2 + z2 − c2t2

)
.

This is only possible if the operator F̂ means multiplication by ±1. The negative sign
is excluded because in the limit v → 0 all primed quantities continuously turn into the
nonprimed ones. The only remaining possibility is

x ′2 + y′2 + z′2 − c2t ′2 = x2 + y2 + z2 − c2t2. (30.4)

This relation was derived for light waves, and for these it is actually trivial. It is now
generalized in the following sense:

The transformation between the two systems K and K ′ shows similarities with a rotation
of the coordinate frame in a three-dimensional space: Under a rotation the magnitude of
the position vector r2 = x2 + y2 + z2 remains conserved; under a Lorentz transformation
the quantity s2 ≡ x2 + y2 + z2 − c2t2 is conserved analogously.

We refer the reader to the subsequent considerations in the context of equation (30.43)!
In other words: We now interprete the relation (30.4) in a more general sense, that is,
we don’t assume its validity to be restricted to light sources only, but require that the
space-time length of the space-time vector {x, y, z, ct} remains unchanged under Lorentz
transformations.
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In order to get more insight on the relation of the Lorentz transformation to a rotation,
we first consider the rotation of a three-dimensional coordinate frame.

Rotation of a three-dimensional coordinate frame

To get a relation between the vector r ′ in the rotated frame S′ and the vector r in the frame
S, one adopts for simplicity orthogonal coordinate frames, where r and r′ of course always
describe the same physical points:

r → r′.

A unit vector in the primed frame must be representable by a linear combination of the
unit vectors in the nonprimed frame. One obtains the following system of equations:

e′
1 = R11e1 + R12e2 + R13e3,

e′
2 = R21e1 + R22e2 + R23e3, (30.5)

e′
3 = R31e1 + R32e2 + R33e3.

In matrix notation the three equations read⎛⎝ e′
1

e′
2

e′
3

⎞⎠ =
⎛⎝ R11 R12 R13

R21 R22 R23

R31 R32 R33

⎞⎠ ·
⎛⎝ e1

e2

e3

⎞⎠ . (30.6)

For one of the equations one may also write

e′
i =

3∑
k=1

Rikek, i = 1, 2, 3. (30.7)

Let its inversion read as follows:

ei =
3∑

k=1

Uike′
k, i = 1, 2, 3. (30.8)

To get an idea of what the coefficients Rjk are, we multiply equation (30.7) by em :

e′
i · em =

3∑
k=1

Rikek · em . (30.9)

Because we have restricted ourselves to an orthogonal system, it holds that

ei · ek = δik .

This means

e′
i · em = Rim = cos(e′

i , em).

Just in the same way, (30.8) implies

ei · e′
k = Uik = Rki . (30.10)
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Thus, the inverse rotation matrix is the transposed (permuted indices) of the original
matrix R̂ (compare to Example 6.6).

The coefficients represent the cosines of the angles between the corresponding primed
and nonprimed coordinate axes. Such a cosine is also called direction cosine.

From e′
i · e′

j = δi j it follows because of (30.7) that

δi j =
3∑

k,k ′=1

Rik Rjk ′ek · ek ′ =
3∑

k=1

Rik Rjk . (30.11)

This is the row orthogonality of the matrix Ri j . The column orthogonality

3∑
k=1

Rki Rkj = δi j (30.12)

follows from the row orthogonality of the Uik utilizing (30.10), namely, Uik = Rki .
For a vector r we have

r =
3∑

i=1

xi ei .

Because we have required that the vectors r and r′ shall describe the same physical point,
we have r = r′. The vector is kept fixed in space; the base frame rotates. Hence

3∑
i=1

x ′
i e

′
i =

3∑
i=1

xi ei .

Multiplying this equation by e′
k yields

3∑
i=1

x ′
i e

′
i · e′

k =
3∑

i=1

xi ei · e′
k .

We have ei · e′
k = Rki and e′

i · e′
k = δik , from which it follows that

x ′
k =

3∑
i=1

Rki xi ,

or after renaming the indices

x ′
i =

3∑
k=1

Rik xk, (30.13)

and analogously the inversion

xi =
3∑

k=1

Uik x ′
k =

3∑
k=1

Rki x
′
k . (30.14)

Thus, the transformation equation for the components is completely analogous to the
transformation equation for the unit vectors (equations (30.7), (30.8)).
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Taking into account (30.13) and (30.14), for the normalization of r in both frames it
results that

|r|2 = x2 + y2 + z2 = x ′2 + y′2 + z′2,
or

3∑
i=1

x2
i =

3∑
i=1

x ′2
i . (30.15)

Inversely, from the invariance of the magnitude of a vector it follows according to (30.15)
that the underlying transformation (30.13) and (30.14) must be an orthogonal transfor-
mation (i.e., (30.11) and (30.12) must hold). This will be proved in the following for
four-dimensional vectors, starting from equation (30.17).

The Minkowski space1

In order to point out further analogies between a rotation in 3D space and the Lorentz
transformation, we have to change to a four-dimensional space. This 4D space is called
Minkowski space. We introduce the four coordinates

x1 = x, x2 = y, x3 = z, x4 = ict.

A vector in the Minkowski space will be called four-vector. The position vector reads

r = x1e1 + x2e2 + x3e3 + x4e4.

The Minkowski space is an orthogonal space. The orthogonality relations

ei · ek = δik, i, k = 1, 2, 3, 4,

hold. By introducing these coordinates, the propagation of a flash of light as described
by (30.1)

x2 + y2 + z2 − c2t2 = 0

1Hermann Minkowski, b. June 22, 1864, Aleksotas (near Kaunas)—d. Jan. 12, 1909, Göttingen. Minkowski
got his school leaving certificate in Königsberg (Kaliningrad) at the age of 15 years. Still during his college days
in Königsberg and Berlin he won in 1883 the Great Prize of the mathematical sciences of the Academy at Paris
with a paper on quadratic forms. In 1885 Minkowski did his doctorate in Königsberg, followed by his Habilitation
in 1887 in Bonn, and since 1892 was appointed professor in Bonn, Königsberg, and Zurich, since 1902 in
Göttingen. His most important achievement is the “geometry of numbers,” which he developed, allowing him to
obtain number-theoretical results by means of geometric methods. These investigations naturally led him also to
research on the foundations of geometry. He also contributed significantly to theoretical physics, in particular to
electrodynamics, which deeply influenced the development of the special theory of relativity.
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may be written in a simpler form, namely,

4∑
j=1

x2
j = 0.

The expression

4∑
i=1

x2
i (30.16)

is the square of the magnitude (square of normalization) of the position vector in the
Minkowski space. The particular feature is that the normalization of a four-vector may also
be negative. We have seen by (30.4) that this normalization is conserved under a Lorentz
transformation, that is, for Lorentz transformations

4∑
i=1

x ′2
i =

4∑
k=1

x2
k . (30.17)

holds. This important relation is no additional, intuitively found postulate. It may be
concluded from the covariance of the light flashes (30.1) and (30.2). This will soon become
evident: The starting points for determining the Lorentz transformation are equations (30.1)
and (30.2). They express the covariance (equality of phenomena) of the spherical light wave
in uniformly moving coordinate frames. Hence we look for a coordinate transformation
between x ′

i (x ′, y′, z′, ict ′) and xk(x, y, z, ict) that converts (30.1) into (30.2), and vice
versa. In analogy to the three-dimensional rotations, we try with a linear transformation

x ′
n =

4∑
j=1

αnj xj , (30.18)

or written out⎛⎜⎜⎜⎝
x ′

1

x ′
2

x ′
3

x ′
4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎟⎠ , (30.19)

where the αnj constitute the transformation matrix. That the transformation must be linear
may be understood as follows: Linear transformations are the only ones that map a straight
line in one frame again on a straight line in other frames. In more general transformations
it would happen that a uniform motion appears as accelerated motion in another inertial
system. This would contradict the relativity principle. The matrix of a transformation that
conserves the magnitude (30.16) of the position vector is an orthogonal matrix, that is, the
row vectors or the column vectors are orthogonal to each other. The matrix αik is such an
orthogonal matrix.
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We may realize that by replacing in the relations

4∑
k=1

x2
k = 0,

4∑
i=1

x ′2
i = 0

the primed coordinates by

x ′
i =

4∑
k=1

αik xk, x ′
i =

4∑
�=1

αi�x�. (30.20)

By introducing

x ′2
i =

4∑
�=1

4∑
k=1

αikαi�xk x�

in (30.2), the requirement that (30.2) follows from (30.1) and vice versa implies conditions
for the αik :

0 =
4∑

i=1

x ′2
i =

4∑
i=1

4∑
�=1

4∑
k=1

αikαi�xk x�

=
4∑

�=1

4∑
k=1

(
4∑

i=1

αikαi�

)
xk x�

!=
4∑

k=1

x2
k .

That means that

4∑
i=1

αikαi� = 1 for k = �,

4∑
i=1

αikαi� = 0 for k 	= �.

must hold. This is written briefly as

4∑
i=1

αikαi� = δk�. (30.21)

Hence, the column orthonormality for the matrix (αik) holds. The row orthonormality
also follows from equations (30.1) and (30.2) by starting from the transformation inverse
to (30.20)

xi =
4∑

k=1

bik x ′
k . (30.22)



THE MINKOWSKI SPACE 377

From

0 =
4∑

i=1

x2
i =

4∑
i=1

4∑
k,�=1

bikbi�x ′
k x ′

�
!=

4∑
k=1

x ′2
k ,

it then follows analogously that

4∑
i=1

bikbi� = δk�,

or after renaming the indices

4∑
k=1

bki bk� = δi�. (30.23)

Hence, the bik-matrix is orthonormal also with respect to the columns. But now the bik

from (30.22) are related to the αik from (30.20), because from (30.20) and (30.22) it follows
that

x ′
i =

4∑
k=1

αik xk =
4∑

k=1

4∑
�=1

αikbk�x ′
�

⇒
4∑

k=1

αikbk� = δi�. (30.24)

A comparison of (30.23) and (30.24) yields

αik = bki , (30.25)

namely, the matrix bki is the transposed αik-matrix. Insertion into (30.23) yields

4∑
k=1

αikα�k = δi�,

and a further renaming of indices yields

4∑
i=1

αkiα�i = δk�. (30.26)

This is the row orthonormality of the matrix (αik). Although we have performed these
considerations for the four-dimensional space, each individual step also holds in N dimen-
sions. Hence, the relations (30.21) and (30.26) also hold in N dimensions.

With the column orthogonality (30.21) and the row orthogonality (30.26), it follows in
general that always∑

i

x ′2
i =

∑
i

x2
i .

This is the invariance of the “magnitude” of the space-time distance under Lorentz
transformations (30.15). Hence, this relation (30.15) holds not only for zero vectors (light
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vectors)—that is, those for which
∑

x2
i = 0—but for all vectors in the Minkowski space,

hence also for those with
∑

i x2
i 	= 0. One says: It holds for all four-vectors. Later the

concept of four-vector will be further specified.
We now turn to the explicit determination of the Lorentz transformation. In the following

consideration the frames K and K ′ are moving against each other only in the x1-direction.
The x ′

1-direction is chosen parallel to the x1-direction; also the x2- and x ′
2- or x3- and

x ′
3-directions are chosen parallel (see the figure). In this simple case it must be y′ = y,

z′ = z. Moreover, because of the homogeneity of space, the values of x ′
1 and x ′

4 must not
depend on x2 and x3 because the choice of the coordinate origin in the x2, x3-plane has no
physical meaning. The Lorentz transformation therefore simplifies to

y

y´

x´

x

v

Two inertial systems of equal ori-
entation move with relative veloc-
ity v along the z-axis.

x ′
1 = α11x1 + 0 + 0 + α14x4, (30.27)

x ′
2 = 0 + x2 + 0 + 0, (30.28)

x ′
3 = 0 + 0 + x3 + 0, (30.29)

x ′
4 = α41x1 + 0 + 0 + α44x4. (30.30)

The αjn may now be determined by the already known
orthonormality conditions (30.21) and (30.26). One has
row orthonormality

α2
11 + α2

14 = 1, (30.31)

α2
41 + α2

44 = 1, (30.32)

α11α41 + α14α44 = 0, (30.33)

and column orthonormality

α2
11 + α2

41 = 1, (30.34)

α2
14 + α2

44 = 1, (30.35)

α11α14 + α41α44 = 0. (30.36)

From (30.27), it results that

x ′
1 = α11x1 + α14x4 = α11

(
x1 + α14

α11
x4

)
= α11

(
x1 + α14

α11
ict

)
.

Now we consider the coordinate origin of K ′. There x ′
1 = 0; thus

0 = α11

(
x1 + α14

α11
ict

)
⇒ x1 = −α14

α11
ict.

For the velocity it holds that

v = ẋ1 = −α14

α11
ic ⇒ α14

α11
= i

v

c
≡ iβ with β = v

c
. (30.37)

According to (30.31),

α2
11 + α2

14 = 1,
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α2
11

(
1 + α2

14

α2
11

)
= 1,

α2
11

(
1 − β2

) = 1,

α11 = 1

±√
1 − β2

.

For low velocities the relativistic mechanics must turn into the Newtonian mechanics.
But there x ′

1 = x1,; hence α11 = 1. Therefore, we find the limit

β → 0:
1

±√
1 − β2

→ 1.

From there it follows that only the positive sign holds. We therefore conclude

α11 = 1√
1 − β2

⇒ α14 = iβ√
1 − β2

.

From (30.32) and (30.35), we obtain

α2
14 = α2

41,

α14 = ±α41, (30.38)

and from (30.33) it follows that

α44 = −α11α41

α14
= ∓α11 = ∓ 1√

1 − β2
. (30.39)

The sign may be fixed by a similar consideration as that above. We have

x ′
4 = α41x1 + α44x4

or
ict ′ = α41x + α44ict.

For

v → 0 ⇒ t ′ → t

and for

β → 0 ⇒ 1√
1 − β2

→ 1.

Again only the positive sign holds. This implies

α44 = 1√
1 − β2

.

From the relation (30.39)

α44 = +α11
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and equation (30.38), we obtain

α14 = −α41;
hence

α41 = −iβ√
1 − β2

.

The sign again may be determined directly, just as above. A compilation (relative motion
of the two frames only in x-direction) leads to the transformation matrix:

(αik) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1√
1 − β2

0 0
iβ√

1 − β2

0 1 0 0

0 0 1 0
−iβ√
1 − β2

0 0
1√

1 − β2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (30.40)

The Lorentz transformation equations (30.27) to (30.30) therefore read

x ′ = x√
1 − β2

− v√
1 − β2

t,

y′ = y,

z′ = z,

t ′ = t√
1 − β2

− v/c2√
1 − β2

x . (30.41)

A quick glance at these equations shows that for v  c, that is, v → 0 and/or c → ∞,
the Lorentz transformation (30.41) turns into the Galileo transformation (29.1). Actually,
for v → 0 both coordinate frames become identical (x ′ = x , y′ = y, z′ = z, t ′ = t), and for
c → ∞ the Lorentz transformations (30.41) turn into the known Galileo transformations

x ′ = x − vt, z′ = z,

y′ = y, t ′ = t (30.42)

(compare Chapter 17, section on inertial systems).

Definition of the four-vector

Four numbers {x1, x2, x3, x4 = ict} that, with the base vectors e1, e2, e3, e4 of the Minkowski
space, form a four-vector according to

r̂ = x1e1 + x2e2 + x3e3 + x4e4



THE MINKOWSKI SPACE 381

are called components of the four-vector. They transform under Lorentz transformations
according to (30.41). Conversely, if four numbers x� (� = 1, 2, 3, 4) transform according
to (30.41), namely, under Lorentz transformations in a transition from an inertial system K
to another one K ′, then these numbers form the components of a four-vector. They form—
briefly spoken—a four-vector. This is similar to the vectors of the three-dimensional space,
the components of which must transform under space rotations according to the rotational
matrix.

We still note that the magnitude of a four-vector remains unchanged under Lorentz trans-
formations (30.41). This is evident from equation (30.17) implied by the row and column
orthonormality, but may also be verified explicitly by calculation. Actually, from (30.41) it
follows that

x ′2
1 + x ′2

2 + x ′2
3 + x ′2

4 = x ′2 + y′2 + z′2 − c2t ′2

= 1

1 − β2
(x − vt)2 + y2 + z2 − c2

1 − β2

(
t − v

c2
x
)2

=
[

1

1 − β2
− v2/c2

1 − β2

]
x2 + y2 + z2 − c2t2

[
1

1 − β2
− v2/c2

1 − β2

]
− t x

[
2v

1 − β2
− 2v

1 − β2

]
= x2 + y2 + z2 − c2t2

= x2
1 + x2

2 + x2
3 + x2

4 . (30.43)

Thus, the invariance of the magnitude (30.16, 30.17) of a four-vector generally holds for
arbitrary vectors in Minkowski space. Analogously to the rotations of the three-dimensional
space for which according to (30.15) the magnitude of a vector remains invariant, Lorentz
transformations are also denoted as rotations in the Minkowski space. In equation (30.4)
the invariance (30.43) served as the starting point of our derivation of the Lorentz transfor-
mation. To be more precise, we have postulated the invariance of (30.43) because of the
covariance of the spherical flash of light, (30.1) and (30.2), and constructed the Lorentz
transformation from this postulate. We have confirmed this once again for the particular
transformation (30.40).

It is important to note once more that we inferred the Lorentz transformations from the
covariance (and invariance) of the expression

x2 + y2 + z2 − c2t2 = 0 = x ′2 + y′2 + z′2 − c2t ′2 .

Vectors of this kind are called light vectors or better zero vectors. The propagation of light
is described by such a zero vector. But now we point out that these Lorentz transformations
keep also arbitrary (i.e., not only zero-type) four-vectors invariant in magnitude.
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Problem 30.1: Lorentz invariance of the wave equation

Show that the wave equation �ψ − (1/c2) (∂2ψ/∂t2) = 0 is invariant under Lorentz transformation,
but is not invariant under Galileo transformation.

To simplify the problem, only the time and one space component shall be considered, that is,
ψ(x, y, z, t) shall be restricted to ψ(x, t) or ψ(x ′, t ′).

Solution The equation then reads

∂2ψ

∂x2
− 1

c2

∂2ψ

∂t2
= 0.

The Lorentz transformation for the position and time coordinate reads

x ′ = x − vt√
1 − β2

, t ′ = t − vx/c2√
1 − β2

.

The partial derivatives with respect to the nonprimed coordinates must be replaced by derivatives
with respect to the primed coordinates. For ∂/∂x one has as complete partial derivative ∂/∂xi =∑

j (∂x ′
j/∂xi )(∂/∂x ′

j ), and hence

∂

∂x
= ∂x ′

∂x

∂

∂x ′ + ∂t ′

∂x

∂

∂t ′ ,

∂

∂x
= 1√

1 − β2

∂

∂x ′ − v/c2√
1 − β2

∂

∂t ′ .

According to the same scheme we obtain the second derivative:

∂2

∂x2
= 1

1 − β2

∂2

∂x ′2 − 2v

c2

1

1 − β2

∂

∂x ′
∂

∂t ′ + v2

c4(1 − β2)

∂2

∂t ′2 .

∂/∂t may be written as

∂

∂t
= ∂t ′

∂t

∂

∂t ′ + ∂x ′

∂t

∂

∂x ′ ,

∂

∂t
= 1√

1 − β2

∂

∂t ′ − v√
1 − β2

∂

∂x ′ ,

∂2

∂t2
= 1

1 − β2

∂2

∂t ′2 − 2v

1 − β2

∂

∂x ′
∂

∂t ′ + v2

1 − β2

∂2

∂x ′2 .

By insertion into the wave equation, we obtain

∂2ψ

∂x2
− 1

c2

∂2ψ

∂t2
= 1

1 − β2

(
∂2ψ

∂x ′2 − 2v

c2

∂2ψ

∂x ′∂t ′ + v2∂2ψ

c4∂t ′2 − 1

c2

∂2ψ

∂t ′2 + 2v

c2

∂2ψ

∂x ′∂t ′ − v2

c2

∂2ψ

∂x ′2

)
= 1

1 − β2

[
∂2ψ

∂x ′2 − 1

c2

∂2ψ

∂t ′2

]
− v2/c2

1 − β2

[
∂2ψ

∂x ′2 − 1

c2

∂2ψ

∂t ′2

]
= ∂2ψ

∂x ′2 − 1

c2

∂2ψ

∂t ′2 = 0.
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Hence, the invariance under the Lorentz transformation is proved. This result may be obtained more
quickly by noting that the four-gradient

∇̂ = ∂

∂x1
e1 + ∂

∂x2
e2 + ∂

∂x3
e3 + ∂

∂x4
e4

is a four-vector, and therefore the four-scalar product

∇̂ · ∇̂ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

+ ∂2

∂x2
4

= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
− 1

c2

∂2

∂t2
.

must be a Lorentz invariant.
We still investigate the wave equation with respect to the Galileo transformation. The Galileo

transformation reads

x ′ = x − vt, t ′ = t.

The partial derivatives are related by

∂

∂x
= ∂x ′

∂x

∂

∂x ′ + ∂t ′

∂x

∂

∂t ′ ,
∂

∂t
= ∂t ′

∂t

∂

∂t ′ + ∂x ′

∂t

∂

∂x ′ ,

∂

∂x
= ∂

∂x ′ ,
∂

∂t
= ∂

∂t ′ − v
∂

∂x ′ ,

∂2

∂x2
= ∂2

∂x ′2 ,
∂2

∂t2
= ∂2

∂t ′2 + v2 ∂2

∂x ′2 − 2v
∂

∂t ′
∂

∂x ′ .

Insertion into the equation yields

∂2ψ

∂x2
− 1

c2

∂2ψ

∂t2
= ∂2ψ

∂x ′2 − 1

c2

∂2ψ

∂t ′2 − v2

c2

∂2ψ

∂x ′2 + 2v

c2

∂2ψ

∂t ′∂x ′

= 0 = ∂2ψ

∂x ′2 − 1

c2

(
∂

∂t ′ − v
∂

∂x ′

)/

2ψ.

Obviously the wave equation is not invariant under the Galileo transformation. It is noteworthy, and
we may be surprised in retrospect that the Lorentz transformations, as those coordinate transformations
which keep the wave equation invariant, were not detected long before Einstein. After all, the
wave equation was known since Maxwell. Obviously, basic discoveries mostly are not made in a
straightforward way.

Group property of the Lorentz transformation

A nonvoid set G of elements G = {g0, g1, g2, . . .} with gi , gk, gj ∈ G and a combination
law (⊗) are called a group if they have the following properties:

1. The combination (⊗) is an inner combination that to each pair of elements gi , gk ∈ G
assigns a uniquely determined element gj = gi ⊗ gk out of G.

2. The associative law (gi ⊗ gj ) ⊗ gk = gi ⊗ (gj ⊗ gk) holds.
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3. There exists a unit element g0 in G with the property

g0 ⊗ gi = gi ⊗ g0 = gi for all gi ∈ G.

4. To each gi ∈ G there exists an inverse element g−1
i also belonging to G and satisfying

gi ⊗ g−1
i = g0.

The set G has now the Lorentz transformations as elements (set of operations—as
an operation one considers here the transition from one coordinate frame to a second
coordinate frame moving with uniform relative velocity v with respect to the first frame);
the combination means a successive application of the Lorentz transformations. As far as
condition (1) is concerned, this means that the Lorentz transformation from K to K ′′ is
equivalent to the successive application of two transformations from K to K ′ and from K ′ to
K ′′. For sake of simplicity, here we again consider only particular Lorentz transformations
in x1-direction with parallel axes of K , K ′, and K ′′.

Transformation from K to K ′:

x ′
σ =

4∑
µ=1

ασµ(β1)xµ,

with

ασµ(β1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
1 − β2

1

0 0
iβ1√

1 − β2
1

0 1 0 0

0 0 1 0
−iβ1√
1 − β2

1

0 0
1√

1 − β2
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The transformation matrix from K ′ to K ′′ is

x ′′
� =

4∑
σ=1

α�σ (β2)x ′
σ .

α�σ (β2) is composed just as ασµ(β1), with the only difference that v1 and β1 are to be
substituted by v2 and β2, respectively. For the transformation from K to K ′′ it now results
that

x ′′
� =

∑
σ

α�σ (β2)
∑

µ

ασµ(β1)xµ (�, σ, µ = 1, 2, 3, 4)

=
∑
σ,µ

α�σ (β2)ασµ(β1)xµ

=
∑

µ

α�µ(β)xµ,

where we have set α�µ(β) = ∑
σ α�σ (β2)ασµ(β1) .
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The expression
∑

σ α�σ (β2)ασµ(β1) simply means a matrix multiplication. In order to
calculate α�µ(β), we will determine the individual coefficients of this matrix. For example:

α11(β) = α11(β2)α11(β1) + α12(β2)α21(β1) + α13(β2)α31(β1) + α14(β2)α41(β1),

α11(β) = 1√
1 − β2

2

1√
1 − β2

1

+ β2 · β1√
1 − β2

2

√
1 − β2

1

= 1√
(1 − β2

2 − β2
1 + β2

1β2
2 )/(1 + β1β2)2

= 1√
1 − [(β1 + β2)/(1 + β1β2)]2

= 1√
1 − β2

,

with

β = β1 + β2

1 + β1β2
. (30.44)

From here we already get a prescription for the addition of velocities, namely

v = v1 + v2

1 + v1v2/c2
. (30.45)

In the subsequent text this “addition theorem” of velocities still shall be derived directly
by another method. The other coefficients of the matrix αik(β) may be determined in the
same manner. We finally obtain

α�µ(β) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1√
1 − β2

0 0
iβ√

1 − β2

0 1 0 0

0 0 1 0
−iβ√
1 − β2

0 0
1√

1 − β2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (30.46)

where v and β are determined according to (30.45).
From there it follows that the velocity of K ′′ against K is equal to the addition of the

velocities of K ′ against K , and of K ′′ against K ′, according to the addition law (30.45)
for relativistic velocities. At the same time we see: Two Lorentz transformations applied
successively again yield a Lorentz transformation. This is nothing else but the closure
property of the set of Lorentz transformations performed successively (condition (1)).

Because of the principal equality of inertial frames K , there is no difference whether
one performs at first a transformation from K to K ′ and subsequently from K ′ to K ′′ or
vice versa, that is, the combination “Lorentz transformation” is even commutative; the
successive application of Lorentz transformations is arbitrary with respect to the sequence.
This can also be seen immediately from (30.44). But be careful! This holds only for Lorentz
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transformations with the same direction of the velocities, thus for inertial frames moving
in the same direction.

The second group property, the associativity of the Lorentz transformation, is also ful-
filled. This follows by repeated application of equation (30.45), because for the Lorentz
transformation with the velocities β1, β2, β3, we get

(L(β1) ⊗ L(β2)) ⊗ L(β3) = L(β),

with

β = (β1 + β2)/(1 + β1β2) + β3

1 + (β1 + β2)β3/(1 + β1β2)
= β1 + β2 + β3 + β1β2β3

1 + β1β2 + β1β3 + β2β3

and

L(β1) ⊗ (L(β2) ⊗ L(β3)) = L(β ′),
with

β ′ = β1 + (β2 + β3)/(1 + β2β3)

1 + β1(β2 + β3)/(1 + β2β3)
= β1 + β2 + β3 + β1β2β3

1 + β1β2 + β1β3 + β2β3
.

Obviously, β ′ = β and, therefore, L(β) = L(β ′).
But this means

(L(β1) ⊗ L(β2)) ⊗ L(β3) = L(β1) ⊗ (L(β2) ⊗ L(β3)), q.e.d.

The unit element has the form

g0 =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ .

It corresponds to the Lorentz transformation from a system onto itself, namely, no change
of the inertial frame. As required, the combination with the unit matrix is commutative
(condition (3)).

To any Lorentz transformation there exists an inverse one of the form

v → −v or β → −β,

g−1
i j = αi j (−β) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1√
1 − β2

0 0
−iβ√
1 − β2

0 1 0 0

0 0 1 0
iβ√

1 − β2
0 0

1√
1 − β2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Due to the orthogonality of the Lorentz transformation, the inverse element is obtained
by permuting columns and rows in the transformation matrix; this simply means a reflection
at the main diagonal of the matrix. One may easily verify that

∑
j αi j (−β)αjk(+β) = δik
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(condition (4)). Hence, the initially imposed four conditions for the group properties of a
set are fulfilled for the set of Lorentz transformations, that is, the Lorentz transformations
form an infinite, continuous group (the number of elements of the set is not restricted).

Problem 30.2: Rapidity

The Lorentz transformation relating the coordinates t, z and t ′, z′ of two coordinate systems S and S′

in uniform relative motion along the z-axis with velocity v = βc is given by

t = +t ′γ + z′βγ,

z = −t ′βγ + z′γ . (30.47)

This transformation is similar in its structure to a rotation in the t, z-plane,

t = +t ′ cos ϕ + z′ sin ϕ,

z = −t ′ sin ϕ + z′ cos ϕ . (30.48)

However, the factors γ and βγ in (30.47) are greater than 1, which can be achieved with the sine
and cosine functions only for an imaginary argument ϕ. One can make instead an ansatz for the
transformation using the hyperbolic functions sinh and cosh with a real argument y:

t = +t ′ cosh y + z′ sinh y,

z = −t ′ sinh y + z′ cosh y. (30.49)

The argument y in these transformation equations is called the rapidity.

(a) Calculate the dependence of y from γ and β.

(b) When applying two consecutive rotations, the two rotation angles can simply be added. Check
whether this relation also holds for the rapidity in the consecutive application of two Lorentz
transformations.

Solution (a) Comparision of (30.47) and (30.49) yields

γ = cosh y and γβ = sinh y .

The factor β can thus be obtained as

β = tanh y .

(b) If t ′ and z′ are written as

t ′ = +t ′′ cosh y′ + z′′ sinh y′ ,

z′ = −t ′′ sinh y′ + z′′ cosh y′ , (30.50)

then inserting this in (30.49) yields

t = +t ′′(cosh y cosh y′ + sinh y sinh y′) + z′′(sinh y cosh y′ + cosh y sinh y′),

z = −t ′′(sinh y cosh y′ + cosh y sinh y′) + z′′(cosh y cosh y′ + sinh y sinh y′). (30.51)
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Using the addition theorems of the hyperbolic functions or reducing them to the exponential functions
gives the resulting equations

t = +t ′′ cosh(y + y′) + z′′ sinh(y + y′),

z = −t ′′ sinh(y + y′) + z′′ cosh(y + y′) . (30.52)

This corresponds to a single Lorentz transformation with rapidity

y′′ = y + y′ .

Thus, the rapidity variable is additive for two consecutive Lorentz transformations along the same
direction, in the same way as the rotation angle is additive for two consecutive rotations around the
same axis.
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Time dilatation

l

l

y

y´

K

K´

x

x´

S

S

Q E,

E QM

v

The path of a light ray on the way from
sender Q to detector E in the inertial
system at rest (K ) and moving with re-
spect to the source (K ′). An observer
at rest in K ′ sees the light ray emerg-
ing from point Q, hitting the mirror (at
rest in K ) at M and reaching the x ′-
axis again at E .

We first note that clocks at distinct positions x1, x2, . . .

in an inertial frame may always be mutually synchro-
nized, that is, made to show equal times. This may be
achieved, for example, by emission of light signals
in second intervals from clock 1 (time t1) to clock 2
(time t2). At the moment of arrival at x2, the time
(x2 − x1)/c passed, such that

t2 = t1 + x2 − x1

c
.

We now consider the following example:
A light ray is emitted by the light source Q in the

system K and after reflection by the mirror S is re-
ceived at E . The measured time interval is �t = 2l/c.

In the system K ′ flying by, one measures a longer
time interval for the same process, as in this system
the light has to traverse a longer path to reach the
receiver.

Vice versa, an observer in the system K would also
see such a time interval in the system K ′ as dilated,
as the path now appears longer.

In the K -system it holds that

�t = t2 − t1 = 2 · l

c
.

389
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After the Lorentz transformation in the system K ′, it holds that

�t ′ = t ′
2 − t ′

1,

where

t ′
� = t� − (v/c2) x�√

1 − β2

for � = 1, 2. We now have x1 = x2 because the light pulse is emitted and received at the
same position in the K -system. Hence the interval is given by

�t ′ = �t√
1 − β2

.

The time interval �t in the system at rest corresponds to the time interval �t ′ in the moving
system. For our example it results that

�t ′ = 2
l

c

1√
1 − β2

.

The dilatation of the time intervals by the Lorentz transformation is of course independent
of the special definition of the time interval adopted here. If in one system the time T
passed, an observer moving relative to the system finds that his clock displays the longer
time T/

√
1 − β2. An observer will consider time intervals in systems moving relative to

him always as dilated. This fact led to the concept of time dilatation.
The same result is obtained in a somewhat modified experiment: If signals are emitted

from the same position x in K at the times t1 and t2, they will be received in K ′ with the
time distance

t ′
2 − t ′

1 = t2 − (v/c2) x√
1 − β2

− t1 − (v/c2) x√
1 − β2

= t2 − t1√
1 − β2

.

In the system K ′, the signals are emitted at distinct positions x ′
1 and x ′

2. We have

x ′
1 − x ′

2 = x − vt1√
1 − β2

− x − vt2√
1 − β2

= v(t2 − t1)√
1 − β2

= v(t ′
2 − t ′

1).

This phenomenon will be elucidated further by the following example 31.1. It is important
that the clock in the system at rest (in our case, the system K ) always ticks at the same
position (x1 = x2) while, on the contrary, in the moving system (in our case, the system K ′)
these signals are emitted at distinct positions (x ′

1 	= x ′
2). This type of measuring process is

the reason for the different values of the observation times in both systems.
One may construct, although somewhat artificially, a measurement of the time intervals

in such a way that the moving observer faces a shortening: At the times t1 and t2 in the
system K at rest there occur two events at all points of a distance that is parallel to the
x-axis (flashing of various lamps connected in coincidence – note that this cannot be a
fluorescent tube). The time distance t ′

2 − t ′
1 of the events is measured by means of a moving

clock from the moving coordinate frame.
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We then have

t ′
2 − t ′

1 = t2 − t1 − (v/c2)(x2 − x1)√
1 − β2

.

Let the measurement be performed always at the same position in the moving system; hence
we have

x ′
2 − x ′

1 = 0 = x2 − x1 − v(t2 − t1)√
1 − β2

,

and by elimination of x2 − x1

t ′
2 − t ′

1 = (t2 − t1)
√

1 − β2.

It is evident that this kind of measuring time intervals, for example, for the decaying muon
in the following example, does not apply.

Example 31.1: Decay of the muons

The time dilatation may be proved by means of a cosmic process: The earth is surrounded by an
atmosphere of about 30-km thickness screening us off from influences from the universe. If a proton
from the cosmic radiation hits the atmosphere, π -mesons are produced; several of them decay further
into a muon (a “heavy electron”) and a neutrino each. Now one establishes the following: The muon
has a mean lifetime of �t = 2 · 10−6 s in its rest system. Classically, according to s = v · �t , it
might traverse even with the speed of light only a distance of 600 m. Nevertheless the particle has
been recorded at the earth’s surface.

In the relativistic approach, however, this contradiction is resolved: Muons at rest have a mass of
m0 c2 = 108 eV. The “cosmic” muons are created at an altitude of ca. 10 km with a total energy of
E = 5 · 109 eV.

Hence we have

s ′ = v�t ′ = v�t√
1 − β2

= �x ′ :

s ′ = vm0c2

m0c2
√

1 − β2
�t = v

m0c2
E�t.

The expression for the relativistic energy E = m0 c2/
√

1 − β2 used here will be derived later on in
Chapter 33.

�t is the lifetime of the muons in their rest system. �x ′ is the path of the muon during its lifetime
�t ′ = �t/

√
1 − β2 in the moving system (i.e., we and the detector, fixed to the earth). �t ′ is

determined by emission of two signals: The first one indicates the creation, the second one the decay
of the muon in the moving system K ′.
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To get an upper estimate, we replace v by the speed of light; thus we find

s ′ ≈ 3 · 1010

108
· 5 · 109 · 2 · 10−6 cm = 30 km.

More precise measurements1 actually gave a value of 38 km.

Problem 31.2: On time dilatation

We consider a spaceship that moves away from earth with the velocity v = 0.866c. It emits two light
signals to earth spaced by �t ′ = 4 s (spaceship time).

(a) What is the time distance �T (earth time) between the two signals arriving on earth?

(b) What distance, measured from earth, did the spaceship cover between emitting the two signals?

(c) A body at rest in the spaceship has the mass m0 = 1 kg. What is its kinetic energy measured from
earth?

Solution (a) We denote the emission of the first and second light flashes as events A and B, respectively. In
the spaceship frame S′ they have the space-time coordinates (x ′

A, t ′
A) and (x ′

B = x ′
A, t ′

B = t ′
A + �t ′);

in the earth-fixed frame S the coordinates (xA, tA) and (xB = xA + �x , tB = tA + �t). The relation
between the two coordinate frames is given by

x = γ (x ′ + vt ′), t = γ
(

t ′ + v

c2
x ′

)
,

with γ = (1 − (v/c)2)−1/2 = 2 for x = xA or xB , etc. Therefore,

xA = γ (x ′
A + vt ′

A), tA = γ
(

t ′
A + v

c2
x ′

A

)
,

xB = γ (x ′
B + vt ′

B), tB = γ
(

t ′
B + v

c2
x ′

B

)
,

hence, using x ′
B − x ′

A = 0,

xB − xA = �x = γ v�t ′ , tB − tA = �t = γ�t ′ .

In S the two signals are emitted at the distance �t = γ�t ′. During this time the spaceship moved
forward by the distance �x . The two light signals arrive at the earth-fixed point x0 at the time TA and
TB = TA + �T , respectively. TA and TB are calculated as

TA = tA + xA − x0

c
, TB = tB + xB − x0

c
,

where (xA − x0)/c and (xB − x0)/c represent the transit times of the signals in S from point xA and
xB , respectively, to the point x0. Hence

TB − TA = �T = tB − tA + 1

c
(xB − xA) = �t + 1

c
�x,

1The first experiments of this kind were carried out in the late 1930s and early 1940s; see, e.g., Bruno Rossi,
Norman Hilberry, J. Barton Hoag: “The variation of the hard component of cosmic rays with height and the
disintegration of mesotrons,” Phys. Rev. 57 (1940) 461–469, and Bruno Rossi, David B. Hall: “Variation of the
rate of decay of mesotrons with momentum,” Phys. Rev. 59 (1941) 223–228. The “mesotron” in these papers is
the lepton, which is today known as the muon.
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that is, the measured time difference between the received signals is composed of the time difference
�t in S (the emissions), and a transit time difference. With the equations derived above, we have

�T = γ
(

1 + v

c

)
�t ′ = (1 + v/c)�t ′

√
(1 + v/c)(1 − v/c)

=
√

1 + v/c

1 − v/c
�t ′.

With the data of our example, we obtain �T = 15 s.
(b) The path �x covered by the spaceship between the two emissions as seen from earth is

�x = γ v�t ′ = 2.1 · 109 m.
(c) The body has a total mass of m = m0γ = 2 kg and a kinetic energy of Ekin = (m − m0)c2 =

9 · 1016 J, which corresponds to about 0.7% of the total electric energy produced in the United States
in 1999. The expression for the kinetic energy used here will be substantiated in detail in Chapter 33.

Problem 31.3: Relativity of simultaneity

y y´

y´

x
v x´

x´

z z´

z´

Earth Galaxy

tA

tB

A galaxy moving with velocity v perpendic-
ular to the distance from earth.

We observe that in a remote galaxy two events A and
B happen at the same position within the galaxy. In
galaxy time the event B happens by 4 s later than the
event A. Further let the distance between earth and
galaxy be practically constant for our problem, that
is, the galaxy shall move with a constant velocity v
perpendicular to the visual line earth–galaxy (see fig-
ure).

On earth the event B is recorded by 6 s later than
the event A. Find the velocity |v| of the galaxy relative
to earth.

Solution The coordinate frame in the galaxy is denoted by primed quantities (S′), the earth-fixed frame by
nonprimed quantities (S). The event A [B] takes place at galaxy time t ′

A [t ′
B], and the signal originating

there is received on earth at the time tA [tB]. According to the condition the signals emitted by the
galaxy from the events A and B traverse the same way to earth, such that the time difference between
�t ′ = t ′

B − t ′
A = 4 s and �t = tB − tA = 6 s is caused by the time dilatation only. Hence:

tB − tA = γ (t ′
B − t ′

A)

or

γ = tB − tA

t ′
B − t ′

A

= 6

4
= 1.5.

From γ immediately follows the velocity v = |v| of the galaxy relative to earth:

γ = 1√
1 − v2/c2

, γ 2 = 1

1 − v2/c2
.

1 − v2/c2 = 1/γ 2, and v is thus obtained as

v = c

√
γ 2 − 1

γ 2
= c

√
1, 52 − 1

1, 52
= 0.75 c.
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Lorentz–Fitzgerald length contraction

A further property of the Lorentz transformation is the length contraction measured under
a relative motion of observer and object. Let us consider a rod of length l resting in the
nonprimed frame K , and an observer in the moving frame K ′; the frame K ′ moves with a
relative velocity v parallel to the rod axis.

The measurement of the length is performed in such a way that the coordinates of the rod
ends are determined in the observer’s system at the same time (�t ′ = 0) and the difference
is formed, l ′ = x ′

2 − x ′
1.

According to the Lorentz transformation,

x ′ = x − vt√
1 − β2

.

The rod length is then

x ′
2 − x ′

1 = x2 − x1 − v(t2 − t1)√
1 − β2

. (31.1)

Simultaneity of the reading-off for the observer means t ′
2 − t ′

1 = 0; that means

t ′
2 − t ′

1 = (t2 − t1) − (v/c2)(x2 − x1)√
1 − β2

= 0.

From that we may determine the time interval t2 − t1. If we still set x2 − x1 = l and
investigate equation (31.1), there results

l ′ = x ′
2 − x ′

1 = l
√

1 − β2. (31.2)

For the moving observer, the rod resting in K appears to be shortened by the factor√
1 − β2z.
The cause of the length contraction is again the finiteness of the speed of light. Among the

light rays from the rod ends—exploited in the measurement—which arrive simultaneously
at the observer’s position, the first one leaves the rod at the time t1; then a time interval
t2 − t1 = vl/c2 passes until the second light ray leaves the other rod end.

Because the rod (or the observer’s frame) is moving farther during this interval, a
contraction of the rod is seen by the observer. Because only the relative motion of observer
and rod matters, we always get a length contraction, no matter whether the frame of the
observer or that of the rod is considered as being at rest (or moving).

Let the volume of the cube in its rest frame be V = �x �y �z; in the moving frame the
volume is

V ′ = �x ′ �y′ �z′ = �x
√

1 − β2�y �z = V
√

1 − β2. (31.3)

Thus, the moving observer measures a smaller volume. This measurement proceeds in
such a way that one measures from the moving frame perpendicularly to the direction of
motion the distances �y′ = �y and �z′ = �z, and parallel to the direction of motion the
distance �x ′ = �x

√
1 − β2.
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y´ y

x´

x∆x

∆y

v

Volume contraction.

The phenomenon that time intervals appear as
extended for the moving observer, while space dis-
tances appear as shortened, is due to the distinct
nature of the measuring process in these cases (in
the case of time measurement, we have already met
two possibilities leading to dilatation or shortening,
respectively).

If the measurement of length were performed by
emitting signals at the ends of the distance that are
simultaneous in the resting system, and by determining the position of the signals with the
moving rule, then t1 = t2 and

x ′
2 − x ′

1 = x2 − x1√
1 − β2

.

In this measurement the moving observer would find no contraction but rather a dilatation
of the distance. The difference as compared with the earlier prescription of measurement
lies in the fact that the two measured values are now recorded simultaneously in the resting
frame, but formerly simultaneously in the moving frame.

Problem 31.4: Classical length contraction

Let a rod of length l0 move with constant velocity v along the z-axis of a coordinate frame. Show that
an observer at rest in this frame sees this rod as contracted also “fully without the theory of relativity”
if the light propagates with finite velocity (classical length contraction). Hint: One should think about
how the observer will define the length of the rod.

Solution The observer will conclude on the length of the rod from the light emitted by the beginning and by
the end of the rod, and arriving simultaneously at his position. For simplicity we assume the observer
to be at one end of the rod at some instant.

v

B zl
~

B´

Because of the finite speed of light c, the observer B sees the end of the rod at an earlier instant
τ = l̃/c at which the rod still was shifted left by the amount vτ . Thus, he finds for the length of the
rod

l̃ = l − vτ = l − v
l̃

c

⇒ l̃ = l

1 + v/c
.
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This is the classical length contraction. However, if the rod is moving toward the observer, this
classical consideration yields a length dilatation—similar to the situation with the classical Doppler
effect. The classical consideration thus results—depending on the case at hand—in either a length
contraction or a length dilatation.

The relativistic consideration, however, yields a length contraction in all cases.

Problem 31.5: On the length contraction

A measuring rule of rest length l moves relative to an observer with the velocity v. The observer
measures the length of the rule to be 2

3 l. Find the velocity v.

Solution We first derive the equation for the Lorentz contraction; according to the Lorentz transformations, it
holds that

x ′ = x − vt√
1 − β2

. (31.4)

The length of the rule as measured by the observer is then

x ′
2 − x ′

1 = x2 − x1 − v(t2 − t1)√
1 − β2

. (31.5)

Simultaneity of the reading-off for the observer means that t ′
2 − t ′

1 = 0; that is,

t ′
2 − t ′

1 = (t2 − t1) − (v/c2)(x2 − x1)√
1 − β2

= 0

⇒ t2 − t1 = v

c2
(x2 − x1).

With l ′ = x ′
2 − x ′

1 and l = x2 − x1, it follows after insertion in (31.5) that

l ′ = l
√

1 − β2 . (31.6)

According to the data, l ′ = 2
3 l. Equation (31.6) then implies√

1 − v2

c2
= 2

3
.

From there it follows for the velocity that(v

c

)2 = 1 − 4

9
= 5

9
⇒ v = 0.745 c.

Note on the invisibility of the Lorentz–Fitzgerald length contraction

From the result of the length contraction it has been concluded that an observer would see
a cube moving relative to him as a cuboid, and a sphere as an ellipsoid. However, this is
not the case, as we will see now.
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This fallacy has been noted by the Austrian physicist Anton Lampa2 in 1924, but his
short paper (in German) remained virtually unnoticed. Only in 1959 were Lampa’s main
ideas independently rediscovered by James Terrell3.

It turns out that the length contraction of spatial distances along the direction of motion
under distinct methods of observation has distinct consequences. For elucidation we con-
sider the optical image of a moving cube produced on a photographic plate parallel to a
lateral face of the cube.

A AA

D DD

B

B

B

C
C

C

l

l
l

ll

A D, D DA AB C, B B

a) c)b)

lβ lβl l=́ 1−β
2

l l= 1−β
2

v

α

α

Optical appearance of a cube at rest (a) and in uniform motion (b). Figure (c) shows the apparent
rotation of the cube by the angle α.

The condition of recording is again the simultaneous arrival of all light in the frame of
the photographic plate. If the relative velocity v equals zero, we see (for the appropriate
arrangement) only the face AB; the lateral faces AD and BC are not visible.

If the cube is moving then, due to the finite speed of light, the light arriving simultaneously
on the plate has been emitted by the cube at distinct times. Although the record is made
under the same conditions as in the first case, this implies that the side face AD now
becomes visible.

A light ray from the point D travels by the time T = l/c longer, that is, it was emitted
earlier by this time, than a ray from the point A arriving simultaneously with the first ray.
The same holds for the other points of the face AD. During the time l/c, the cube moved

2Anton Lampa, “Wie erscheint nach der Relativitätstheorie ein bewegter Stab einem ruhenden Beobachter?”
(How does a moving rod appear to an observer at rest according to the theory of relativity?), Z. Physik 27 (1924)
138–148. Anton Lampa, b. Jan. 17 1868, Budapest, Hungary—d. Jan. 27 1938, Vienna. Lampa was a distiguished
experimentalist working in the field of electrodynamics and electromagnetic properties of matter, and a talented
teacher. The eminent nuclear physicist Lise Meitner was among his students in Vienna. From 1909–1919, Lampa
was professor for experimental physics and head of the physics institute at the German University in Prague (now
Czechia). He was one of the first German physicists fully grasping the importance of Einstein’s new special theory
of relativity and managed to get Einstein on his first full professorship, the chair for theoretical physics at the
German University in Prague, in 1909. After the Great War, Lampa had to resign from his post in Prague and
returned to Vienna. He did hardly any physics research anymore, but committed himself to adult education. In
fact, his note on the appearence of a moving rod is his sole physics paper after 1919.

3J. Terrell, “Invisibility of the Lorentz contraction,” Phys. Rev. 116 (1959) 1041–1045.
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farther by the distance s = v · l/c = l · β, namely, the face AD is recorded on the plate as
shortened by the factor β. According to the Lorentz–Fitzgerald contraction, the face AB
is recorded as shortened by the factor

√
1 − β2. From the two-dimensional photoplate one

thus gets the impression that the cube is rotated by the angle α (tan α = γβ = β/
√

1 − β2)

and that the body apparently retained its shape.

The visible appearance of quickly moving bodies4

Until the appearance of the paper of James Terrell in 1959, it was generally believed that a
moving body seems to contract along the direction of motion by a factor (1 − (v/c)2)1/2—
Lampa’s note on this subject seems to have had no impact at all. The passenger of a fast
spaceship would see spherical bodies as reduced ellipsoids, which, however, is impossible
according to Terrell’s opinion and for the particular case of the sphere has been proved by
R. Penrose.5 The reason for that is seen by the following consideration: If we see or take
a photograph of an object, then we receive certain quantities of light emitted by the body
that arrive simultaneously on the retina or on the film. This includes the possibility that
these quantities of light are not emitted simultaneously by all points of the body. The eye or
the photographic device therefore perceives a distorted image of the moving object. In the
special theory of relativity, this distortion has the remarkable consequence to compensate
the Lorentz contraction such that the object appears not as distorted but only as rotated.
This, however, holds exactly only for bodies that lie within a small solid angle—only then
the image consists mainly of parallel light pulses.

Optical appearance of a quickly moving cube

To elucidate the situation we consider the image distortion under nonrelativistic conditions,
that is, the light propagates with the velocity c in a frame at rest against the observer, and
that the motion of the object does not cause a Lorentz contraction. In the frame of the object
moving with velocity v, the speed of light along the direction of motion would be c − v,
and in the opposite direction it would be equal to c + v.

We first consider a cube of edge length l that moves parallel to an edge and is observed
from a direction perpendicular to the direction of motion (it is observed from a large distance
to keep the solid angle covered by the cube possibly small). The square ABC D opposite
to the observer is perceived as nondistorted as all points of the face have the same distance
to the observer. The situation is different for the square AB E F being perpendicular to the
direction of motion. If the cube is moving, the face AB E F becomes visible: Due to the
time shift of the light signals from the points E and F , which are emitted by (l/c) seconds

4We follow a paper by V.F. Weisskopf, Physics Today Sept. 1960.
5R. Penrose, Cambridge Phil. Soc. 55 (1959) 137.
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Direction towards
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E

E
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v classical
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Optical appearance of a cube (classical and relativistic).

earlier than the signals from the points A and B, the points E and F are observed with a
spatial displacement of (l/c)v at the positions E ′ and F ′.

The face AB E F is thus seen as a rectangle with a height l and a width (v/c) l. This
means that the image of the cube is distorted. In a nondistorted image of a rotated cube, both
faces would appear as shortened; if the face AB E F were shortened by the factor (v/c),
the face ABC D should be shortened by the factor (1 − (v/c)2)1/2, while nevertheless the
face ABC D appears as a square. Therefore, in the classical consideration, the image of the
cube appears as extended in the direction of motion. A similar consideration for a moving
sphere shows that it would appear as an ellipsoid extended along the direction of motion by
the factor (1 + (v/c)2)1/2. One gets still considerably more paradox results if the image of
a moving cube in a nonrelativistic world is not considered under an angle of 90◦ relative to
the direction of motion but under an angle of 180◦ − α, where α is a very small angle. We
now look at the object to the left while it moves from the left toward our position. In order
to simplify the consideration we assume v/c = 1. The figure illustrates the new situation.
The edges AB, C D, E F are denoted by the numbers 1, 3, 2. We assume that the edge 1
emits its light quantum at the moment t = 0. One sees that edge 2 must emit its light much
earlier and edge 3 much later to get a simultaneous arrival at the observer’s position.

Actually edge 2 must emit its light if it reaches the position of the point 2′, which is
defined by the equality of the distances 2′2 and 2′M (the velocity v was assumed to coincide
with the speed of light c!).

2

22´

2

1

1

1,3

3

3 3´

classical

relativistic

α
α
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N

III

II
I Observer

Optical appearance of a cube moving (nearly) toward the observer.
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The interval 2′2 is the distance traversed by edge 2 between the emission of 1 and 2.
The length 2′M is the distance traversed by the light from 2′ to be “in line” with the light
emitted by 1. Both the light as well as the edge move with the speed c; one can see that the
distance 1M is equal to 12 (1M = 12 = l). The corresponding also holds for edge 3. The
intercept theorems imply

3′N
l sin α

= 1N

l cos α
= 13′

l
= l + 1N

l
,

and therefore,

3′N = l sin α (1 − cos α)−1.

Note that 33′ = 1N !
The image of the cube is indicated in the figure by the points I, II, III. We see a strongly

deformed cube, with edge 2 to the left of 1, such as if the cube were viewed from backward,
and edge 3 far to the right of 1. In the direction of flight there results an extended image;
the area between 1 and 2 appears as a square.

The theory of relativity simplifies the situation. It removes the image distortion such
that there results a nondistorted but rotated image of the object. This may be seen directly
from the quoted examples. Let us assume that the cube is observed perpendicularly to its
direction of motion; the Lorentz contraction reduces the spacing between edges AB and
C D by the factor (1− (v/c)2)1/2 and keeps the spacing between AB and E F invariant. The
image of the face ABC D is thus represented as shortened exactly by the amount needed to
yield a nondistorted image of the cube rotated by the angle arcsin(v/c). If the cube moves
with the speed of light toward us (α = 0), then the Lorentz contraction reduces the spacing
between edges 1 and 3 to zero. The resulting image is a regular square that is identical with
the lateral face AB E F of the cube. In the general case (finite α), the cube is observed as
nondistorted, but rotated by an angle of (180◦ − α).

Basing on the following consideration, we may show that this result is generally valid
for any object.

Optical appearance of bodies moving with almost the speed of light

A
B

C
D

k

The points A, B, . . . emit light
that arrives at the same time
in the plane of the observer.

It is assumed that a bundle of light pulses originating from N
points of the body moves along the direction of k such that
all light pulses are on a plane perpendicular to k (see figure).
This light bundle arrives simultaneously at the observer and
creates the seen shape of the body.

Such a bundle of light rays will be called a “picture.” Un-
der nonrelativistic conditions the “picture” does not remain
an image when seen from a moving reference system. The
reason is that in a moving frame the plane of the light pulses
is no longer perpendicular to the direction of propagation.
In a relativistic world the situation is different. There the



OPTICAL APPEARANCE OF BODIES MOVING WITH ALMOST THE SPEED OF LIGHT 401

“picture” remains an image in any reference frame. The light pulses arrive simultaneously
at the observer in any reference frame.

This fact may be proved in the following manner. The light pulses are visible, that is,
one may imagine them as being embedded in an electromagnetic wave just there where
this wave has a peak (wave group). It is known that electromagnetic waves are transverse
in all reference systems, namely, that the front side of the wave or the plane of the wave
peak is perpendicular to the propagation direction in any system (the vectors of the electric
and magnetic field oscillate ⊥ to the propagation direction k). It may also be shown that
the spacing between the light pulses is an invariant quantity. One only has to introduce a
coordinate frame, the x-axis of which is parallel to the propagation direction.

The only variable quantity is the direction of propagation—the vector k. The change of
the propagation direction is given by the aberration relation to be derived in the following.

A light ray that encloses the angle θ with the x-axis is observed under the angle θ
′

in a
frame moving with the velocity v along the x-axis. The angle θ

′
is the angle under which

the observer sees the incident light coming in (see figure). As may be seen from the figure,
in the resting frame the light needs the time t = P0 P1/c = P0 P3/(c · sin θ) for traversing
the distance P0 P1.

During this time, point P2 moves to P1. The distance P2 P1 is

P2 P1 = v · t = v

c

P0 P3

sin θ
.

y´
v

P1 P3

P2

P0

θ´

θ

θ´

θ

y

x´

x
Deduction of the relation for the aberration of light.
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Taking into account the relation

P1 P3 = c · cos θ · t = P0 P3 · cot θ

for the distance P2 P3 results in the expression

P2 P3 = P2 P1 + P1 P3 = P0 P3

sin θ

(v

c
+ cos θ

)
.

The nonrelativistic aberration results from the fact that the light is observed under the
angle (θ ′)n.r. given by

sin(θ ′)n.r. = sin(π − θ
′
n.r.) = sin(θ

′
)n.r.

= P0 P3√
P0 P3

2 + P2 P3
2

= sin θ√
1 + 2(v/c) cos θ + v2/c2

.

Because θ = π − θ , we thereby obtained the relation between θ ′ and θ in the nonrela-
tivistic case. To get the functional dependence of the observer angle θ ′ on the angle θ in the
relativistic case, one has to take into account that the determined distance P2 P3 in the rest
frame of the telescope (observer) because of the length contraction has the value P2 P3

′
,

which is calculated from the relations

P2 P3
′√

1 − v2/c2 = P2 P3

or

P2 P3
′ = P2 P3√

1 − v2/c2
(31.7)

(see (31.2)). The rest length here is the distance P2 P ′
3. It appears in the frame of the resting

light source as P2 P3 and is related with that quantity through (31.2) or (31.7). From there
now results the wanted aberration relation:

sin θ ′ = sin(π − θ
′
) = sin θ

′ = P0 P3√
P0 P3

2 + P2 P3
′2

= P0 P3√
P0 P3

2 + P0 P3
2

(1 − (v/c)2) sin2 θ
(v/c + cos θ)2

=
√

1 − (v/c)2 sin θ

1 + (v/c) cos θ
=

√
1 − (v/c)2 sin θ

1 − (v/c) cos θ
, (31.8)

because θ = π − θ . When changing from the frame “moving observer – light source at
rest” to the frame “observer at rest – moving light source,” one has only to replace v → −v

in (31.8), which yields

sin θ ′ =
√

1 − (v/c)2 sin θ

1 + (v/c) cos θ
. (31.9)
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Expressed by the angles (compare the figure)

θ ′ = π − θ ′, θ = π − θ, (31.10)

(31.9) finally reads

sin θ ′ =
√

1 − (v/c)2 sin θ

1 − (v/c) cos θ
. (31.11)

Formally this is the same relation as (31.8), but—and this is important—the angles
changed their meaning: According to (31.10), they are the supplement angles for θ ′, θ
to 180◦.

By the way, the inversion of equation (31.11) reads

sin θ =
√

1 − (v2/c2) sin θ ′

1 − (v/c) cos θ ′ , (31.12)

which is symmetric to (31.11), that is, only θ and θ ′ are interchanged, as one would expect.
From the invariance of the image of a point, we may draw the following conclusions:

The image of a moving point observed under the angle θ ′ is identical with the image of the
same point at rest and observed under the angle θ . We therefore see a nondistorted image of
a moving object (point set) that is virtually rotated by the angle θ ′ − θ . A spherical object
therefore continues to appear as a sphere.

θ´

θ

π π

ππ/2
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<<

v c~~

~~ 1– /v c2 2

Illustration of the aberration relation.

This should not be interpreted as nonex-
istence of Lorentz contraction. Of course,
the Lorentz contraction happens, but it only
compensates for the extension of the im-
age caused by the finite propagation speed
of light (see (31.7)). The classically ex-
pected image extension is just balanced by
the Lorentz contraction!

It is appropriate to plot the angle θ ′ ac-
cording to equation (31.11) as a function of
θ . The figure shows this graph for v = 0 (1),
for a small value of v/c (2), and also for
v/c ≈ 1 (3). We see that the virtual rota-
tion is always negative. This means that one
sees also that side of an object that points
opposite to the direction of motion. In the
extremum case v ≈ c, the angle θ ′ is extraordinarily small for all values of θ , except for
those where the angle 180◦ − θ corresponds to the value (1 − (v/c)2)1/2.

Because for an object moving past the angle θ ranges from 180◦ to 0◦, we find that for
v ≈ c the front face of the object is visible only in the very beginning. During the oncoming
the object rotates; hence also its face pointing opposite to the direction of motion becomes
visible to us. This state continues until the object leaves us. From that moment one sees the
object from the back. This paradox situation is possibly not so surprising, if we remember
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the fact that the aberration angle amounts to almost 180◦ for v ≈ c. If the object is moving
toward our position, we see the light from it coming up to us.

Light intensity distribution of a moving isotropic emitter

The situation becomes more transparent if we consider the light distribution as seen from
the observer in more detail. Let us assume the moving object to emit rays that are isotropic
in their own reference system, namely, their intensity is independent of the emission angle
θ . This radiation does not at all appear as isotropic in the frame of an observer at rest
(laboratory system): Here it seems to be concentrated in the forward direction. For v ≈ c,
most of the emitted light seems to form a very small angle θ ′ with the direction of motion.
This effect implies that an isotropic radiation appears as if almost the entire radiation were
emitted into a spotlight cone.

The connection between the angular distribution I (θ) of the radiation intensity in the
rest frame of the light source and the angular distribution I (θ ′) in the rest frame of the
observer (in which the light source is moving) is obtained as follows: We consider a light
beam that in the frame of the light source is emitted with the intensity I (θ) under the angle
θ and passes an infinitesimal area element d F = r2 sin θdθdϕ (compare the figure).

r´

r

y´

y

x´

x

d ´F

dF

θ´

θ

–v

Angular distribution of light in two frames in relative motion to each other.

In the frame of the observer, this light beam is detected with the intensity I (θ ′) under the
angle θ ′. It thereby passes through the infinitesimal area element d F ′ = r ′2 sin θ ′dθ ′dϕ′. It
is clear that the quantity of light passing through d F ′ in the frame of the observer must be
the same as that passing through d F in the frame of the light source,

I (θ)d F = I (θ ′)d F ′.

It is also clear that the increment dϕ′ = dϕ, because here dϕ is perpendicular to the image
plane (compare the figure) and therefore is not affected by the transformation between the
moving and the resting frame.
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Moreover, we may choose r = r ′ = 1: The factor r2(r ′2) in the equation for d F(d F ′)
describes only the geometric widening of the light beam if we don’t let it pass at a defined
distance (here r = r ′ = 1) from the coordinate origin through the test area. We therefore
obtain

I (θ) sin θdθ = I (θ ′) sin θ ′dθ ′.

The aberration formula (31.9) thereby provides the relation between θ and θ ′. We use
(31.9) because the light source shall move relative to the observer (see the following figure).

dθ ′

dθ
=

√
1 − v2/c2

1 + (v/c) cos θ
,

dθ

dθ ′ =
√

1 − v2/c2

1 + (v/c) cos θ ′ .

Thus, we obtain as ratio of the radiation intensities

I (θ)

I (θ ′)
= sin θ ′ dθ ′

sin θ dθ
= K (θ) = 1 − v2/c2

(1 + (v/c) cos θ)2
(31.13)

or
I (θ ′)
I (θ)

= sin θ dθ

sin θ ′ dθ ′ = K (θ ′) = 1 − v2/c2

(1 + (v/c) cos θ ′)2
. (31.14)
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The relation of intensities K (θ ′) as function of the angle of observation θ ′.

The last formula (31.14) is the really interesting one because it expresses the intensity
I (θ ′) in the frame of the resting observer as function of his observation angle θ ′. I (θ) is the
intensity distribution of the light source in the frame of the resting source. As was already
stated above, we will assume the source as isotropic, namely, we set I (θ) = constant.



406 PROPERTIES OF THE LORENTZ TRANSFORMATION 31

Here θ ′ is the observation angle with forward direction at θ ′ = π . The function K (θ ′) is
plotted versus θ ′ in the figure. We see the maximum in the forward direction (θ ′ = π) and
the minimum in the backward direction (θ ′ = 0).

At high velocities v/c = 1, the maximum becomes extremely sharp, such that the main
fraction of the radiation is emitted within a small angle about θ ′ = π . The beam width is
obtained from

1 − (v/c)2

(1 + (v/c) cos θB)2
= 1

2

1 + v/c

1 − v/c
= 1

2
K (π).

Here, θB is the so-called half-maximum angle: At the angle θB , the intensity of the forward-
directed “spotlight cone” is reduced to half of the maximal intensity, which is reached at
θmax = π . Rewriting of the first equation yields

√
2

(
1 − v

c

)
= 1 + v

c
cos θB .

One immediately sees that not every value of v is allowed, for example, v = 0 leads to
the contradiction

√
2 = 1. The reason is that for v = 0 there is no change of the intensity

I (θ) = constant due to aberration. Hence there is no forward-directed “spotlight cone” that
reaches half of its maximum intensity ratio at θB .

It is evident that the light source must move at least with such a speed that θB may take at
least the value 0 (at backward angles the intensity ratio reaches only half of the maximum
value). With cos θ = cos 0 = 1, it then follows that v must take at least the value

v = c ·
√

2 − 1√
2 + 1

≈ 0.172c.

For larger velocities one may evaluate a θB ∈ [0, π ] as solution of the equation

cos θB = c

v
(
√

2 − 1) − √
2.

For high velocities θB ≈ π , or θB = π − ϑ , where ϑ is a small positive angle. With
cos (π − ϑ) = − cos ϑ ≈ −1 + 1

2θ2 = −1π + 1
2 (π − θB)2, it follows that

θB ≈ π −
√

2(
√

2 − 1)
( c

v
− 1

)
,

that is, the width takes about the value
√

2(
√

2 − 1)(c/v − 1). The value of θ ′ for which
K (θ ′) = 1 (θ ′ = θ1) may also be given in a straightforward way. Then

1 −
(v

c

)2

(
1 + v

c
cos θ1

)2 = K (θ1) = 1

must hold, that is,

cos θ1 = c

v

(√
1 −

(v

c

)2 − 1

)
.
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For high velocities again θ1 ≈ π , namely, by means of an argument analogous to that
above, one may determine θ1 as

θ1 ≈ π −
√√√√1 − c

v

(
1 −

√
1 −

(v

c

)2
)

.

Doppler shift of quickly moving bodies6

y

x

v

k

k

θ

The light source is at rest, while the ob-
server moves by with velocity v .

An observer moving with the velocity v observes
in the moving frame (i.e., in his rest frame) light
of frequency ω′ = 2π�′ emitted by a resting light
source with frequency ω = 2π�.

We are working in the frame of the light
source K .

The light source emits light of frequency ω

(period T ) under an angle θ against the x-axis. In
the figure each bar perpendicular to k indicates
a “wave peak” of the light wave. What is the
situation for the moving observer?

1

2

θ

y

xx1 x2

a
b

Instant t1: The first wave peak arrives and is
detected.

cT

1

2

θ

y

xx1

Instant t2: The second wave peak ar-
rives and is detected.

6We also refer to the detailed work of Hasselkamp, Mandry, and Scharmann, Zeitschrift für Physik A289
(1979) 151.
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However, the observer moved with v toward the wave peak (therefore, he will measure
a shorter spacing between the wave peaks, and, consequently, measure the ultraviolet shift
of the Doppler effect).

There holds (sure): x2 −x1 = v(t2 − t1). (The observer meanwhile moved with v in the x-
direction.) Moreover (compare figure): λ = cT = a+b = c(t2 − t1)+(x2 −x1) cos(π −θ).
a is the distance covered by the wave peak 1 during the time t2 − t1; b follows from the
geometry of the right-angled triangle.

Therefore,

cT = c(t2 − t1) + v(t2 − t1) cos(π − θ)

⇔ T = (t2 − t1)
(

1 − v

c
cos θ

)
.

But t2 − t1 is just the time difference that would be measured by the observer as a period:
It is just the time he sees passing between the arrival of two wave peaks—apart from the
fact that he measures with a clock that is at rest in his moving frame. Thus one still has to
Lorentz-transform:

v
y´

x´
θ´

θ´θ x

y

true Position apparent Position

The real and apparent position of the
light source.

Path 1:

t ′
2 − t ′

1 = γ
(

t2 − t1 − v

c2
(x2 − x1)

)
= γ (t2 − t1)

(
1 − v2

c2

)
= 1

γ
(t2 − t1),

thus
t2 − t1 = γ (t ′

2 − t ′
1).

Path 2:

t2 − t1 = γ
(

t ′
2 − t ′

1 + v

c2
(x ′

2 − x ′
1)

)
(in the primed frame the point of arrival of the two wave peaks is always the origin
x ′

2 = x ′
1 = 0)

t2 − t1 = γ
(
t ′
2 − t ′

1

)
.

Both arguments yield the same result (as it must be). We now denote t ′
2 − t ′

1 = T ′, that is,
the period measured by the moving observer in his frame.

We get

T = γ T ′
(

1 − v

c
cos θ

)
or

T ′ = 1

γ
T

1

1 − v

c
cos θ
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ω′ = γω
(

1 − v

c
cos θ

)
This is the Doppler formula!

Actually ω′ is larger if the observer
moves toward the light source, because
then θ ∈ [π/2, π ] ⇔ cos θ ∈ [−1, 0].
The additional factor γ then provides
the Doppler shift caused by the aber-
ration: Even if the light source emits
its radiation under θ = 90◦, the ob-
server measures a higher frequency.
The reason is: The observer still must
tilt his telescope against the direction
of motion because of the relativistic
aberration. He therefore virtually sees
the light source coming up to him (al-
though it just passes him; see figure).
This implies the (relativistic) Doppler
effect!

This important relation still may be
understood in another way: If we con-
sider the light as a plane wave7

ψ = ψ0ei(K·r−ωt),

and generalize the wave number vec-
tor to a four-vector (compare to Chap-
ter 33)

Kµ =
(

K, i
ω

c

)
,

ψ = ψ0e
i
∑

µ
Kµxµ

,

we may investigate the behavior of the four-wave number vector under Lorentz trans-
formations and also calculate the Doppler effect. Kµ must be a four-vector. The phase∑4

µ=1 Kµxµ in the plane wave must be a scalar, because otherwise the interference prop-
erties in distinct Lorentz systems would be different. But this cannot be true. Because now
xµ is a four-vector, Kµ also must be a four-vector.

7Plane waves can be described by functions of the type �0 cos(K · r − ωt). The planes of constant phase
φ = K · r − ωt are planes that are moving in the direction of K with the velocity v = ω/|K| = ω/K . We
use the complex exponential in our description of the plane wave for technical reasons only. The imaginary part
i�0 sin(K · r − ωt) is also a plane wave. It is carried along, but not used.
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In the frame I ′ moving with v, the plane wave is observed in the x ′, y′-plane under the
angle θ ′ against the x ′-axis with a frequency ω′. The wave number vector Kµ of the plane
wave in the resting frame I of the light source is related to the four-vector K ′

µ via a Lorentz
transformation (compare to (30.40)):

K ′
µ = ω′

c

⎛⎜⎜⎜⎝
cos θ ′

sin θ ′

0

i

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
γ 0 0 iβγ

0 1 0 0

0 0 1 0

−iβγ 0 0 γ

⎞⎟⎟⎟⎠ ω

c

⎛⎜⎜⎜⎝
cos θ

sin θ

0

i

⎞⎟⎟⎟⎠ .

That this transformation correctly describes the situation of the figure may easily be realized
by considering the corresponding transformation of the position vector,

x ′ = γ (x − βct),

y′ = y,

z′ = z,

t ′ = γ

(
t − β

c
x

)
.

From there it follows that the origin of the coordinate frame I ′(x ′ = y′ = z′ = 0) has
the x-coordinate x = βct = vt in the frame I , as it must be because the frame I ′
moves relative to I with v in the x-direction (and we have synchronized the times at
t = t2 = t ′ = 0). Conversely, the origin of the frame I (x = y = z = 0) has the x ′-
coordinate x ′ = −γβct = −βct ′ = −vt ′ in the frame I ′, which is evident because the
frame I moves relative to I ′ with v in the (−x ′)-direction.

For the first and fourth components of the K ′
µ-vector, we obtain

ω′

c
cos θ ′ = ω

c
(γ cos θ − βγ ),

i
ω′

c
= ω

c
(−iβγ cos θ + iγ ).

Solving the system of equations for ω′ and cos θ ′ yields

cos θ ′ = −β + cos θ

1 − β cos θ
, cos θ = β + cos θ ′

1 + β cos θ ′ ,

ω′ =
√

1 − β2

1 + β cos θ ′ ω, ω′ = √
K (θ ′)ω.

Here K (θ ′) is the quantity already defined in equation (31.14). As is easily checked
by using the relation sin θ ′ = √

1 − cos2 θ ′, the first line is equivalent to equation (31.8)
(see above). The dependence of the frequency ω′ of the received light on the observation
angle θ ′ coincides with the relation obtained by geometric consideration. This is the wanted
aberration relation.
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The aberration of the light emitted by fixed stars was first discovered and explained by
James Bradley8 (1728).

To ensure that the light from a far remote star hits the eye of the observer moving with
the earth, the observer must tilt his telescope according to the aberration relation.

We shall get this phenomenon straight to our mind by a particular case of the aberration
relation. Let us assume that the k-vector in the resting frame I of the light source just takes
the angle θ = π/2 against the x-axis, that is, that the light is emitted just perpendicular
to the x-axis and parallel to the y-axis. This corresponds to the case t = t2 = t ′ = 0 in
the above figure. We now ask under which angle θ ′ the observer in the moving frame I ′
receives the light. According to the aberration relation, one then has (cos θ = cos π/2 = 0)

cos θ ′ = −β,

namely, θ ′ > π/2, as is also indicated in the figure. But this means that the observer has
to tilt his telescope against the direction of motion to get the k′-vector pointing along the
telescope axis (see the following figure).

v

θ´
θ

Star

Observer
at rest

Observer
in motion

Explaining the aberration of the light from fixed stars.

We still discuss the Doppler shift. If the observer moves from a wide distance directly
toward the light source, the light must be emitted under θ = π for him to receive it.
According to the above formula, then also θ ′ = π and

ω′ =
√

1 + β

1 − β
ω > ω,

8James Bradley, British astronomer, b. end of March 1693, Sherborne (near Dorchester)—d. July 13, 1762,
Chalford (near Gloucester). Bradley was professor of astronomy at Oxford, then, following Edmund Halley on
this post, astronomer royal and professor at Greenwich Observatory. In 1728, while searching for the parallax of
stars, Bradley discovered the aberration of star light and used this observation to calculate the speed of light. In
1748, he confirmed the nutation of the earth’s axis, which had been predicted by I. Newton. Bradley compiled at
Greenwich a catalog with the precise locations of more than 3200 stars.
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that is, the received frequency ω′ is larger than the genuine light frequency ω. If the observer
at far distance moves off the light source, then θ = θ ′ = 0 and

ω′ =
√

1 − β

1 + β
ω < ω,

that is, the received frequency ω′ is smaller than the genuine light frequency. The particular
case θ = π/2 is also of interest. We have seen that then cos θ ′ = −β (aberration formula),
and therefore

ω′ = 1√
1 − β2

ω = γω > ω. (31.15)

Although the light was emitted under θ = π/2, it is received in the observer’s frame
under θ ′ > π/2, that is, such as if the observer moved toward the light source. This is
accompanied with the usual Doppler shift to higher frequencies!

We now describe what will be seen if an object moves away with nearly the speed of
light: We first observe under an angle close to θ ′ = 180◦. Here we see the front side of
the object whereby, due to the strong Doppler shift, a high intensity and a shift to very
high frequencies are observed. One looks into the spotlight beam of the radiation. If the
observation angle reaches the magnitude θ ′ = π − (1 − (v/c)2)

1/2
, the color changes to

lower-frequency values, the intensity decreases, and the object seems to rotate.
If θ ≈ π − 21/4(1 − (v/c)2)1/2, thus is still close to 180◦, we are beyond the “spotlight

ray”; the color now has significantly lower-frequency values than in a frame convected with
the object. The object has now rotated completely, and we see its side pointing opposite to
the direction of motion. The front side is invisible because all rays emitted forward in the
moving frame join into the small “spotlight cone.” The images seen at angles smaller than
π − 21/4(1 − (v/c)2)

1/2
remain essentially unchanged until the object disappears.

All these considerations are only then exact if the object is confined within a very small
solid angle. Only then the image nearly consists of parallel light pulses. At larger values
of the solid angle, we expect distinct rotations for the various fractions of the image that
lead to image distortions. Whatsoever, Penrose has shown that the image of a sphere has a
circular circumference also at large observation angles.

Relativistic space-time structure—space-time events

In a four-dimensional coordinate frame, as was introduced for the mathematical description
of the Minkowski space, we may no longer operate with the concept “position” as in three-
dimensional space. We therefore introduce the concept “event” to stress the equality of
spatial and time coordinates. The four-dimensional space of three position coordinates and
one time coordinate is frequently denoted simply as space-time.

A mass point that moves or is at rest relative to its inertial frame is described as a function
of time and space, thus as a curve in space-time. This curve in the Minkowski space is
called a world line.
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ct
A

B

v c=

x

World line of a point at rest (a), in
accelerated motion (b), and mov-
ing at the speed of light (c).

The time behavior of a point being at rest (A) (repre-
sentation in the two-dimensional subspace of the Minkowski
space), as well as that of a mass point moving relative to
an inertial frame (B) may be described geometrically as
is shown in the graph. The reciprocal slope of the curve
specifies the velocity of a moving mass point.

At an angle of 45◦ against the x-axis one has the line
of light; it holds that

tan α = ct

x
= 1 ⇒ c = x

t
.

A curve bent to the right represents a mass point
getting faster; a curve bent to the left represents a per-
manently decelerated point. Because the speed of light
cannot be exceeded, the smallest possible slope equals 1.

Relativistic past, present, future

In the Minkowski space the length element ds2 = dx2 + dy2 + dz2 − c2dt2 is invariant

Light cone

ds2 = 0
ds2 < 0

ds2 < 0

x

ct

Past

Future

Present ds2 > 0

ds2 > 0

Two-dimensional subspace of the four-
dimensional space-time.

against Lorentz transformations. Because of the
coordinate ict in the four-dimensional space-time
compound, the length element is no longer positive-
definite. The following cases may be distinguished:

(a) ds2 > 0
This distance is called spacelike since the “spa-

tial” part of the length element is larger than the
time part, that is,

dx2 + dy2 + dz2︸ ︷︷ ︸
spatial part of ds2

> c2dt2︸ ︷︷ ︸
time part of ds2

If, for example, two events happen at the same
time but at distinct positions, then dx2 + dy2 +
dz2 	= 0 and c2dt2 = 0.

For an observer at the origin of the above frame, those events that have a space-like
distance to him cannot be found out because of the finite speed of light. No information
may be obtained from this region. The speed of the information transfer would have to be
larger than the speed of light. The spacelike distance remains spacelike under any Lorentz
transformation.

(b) ds2 < 0
Such distances are called timelike, because the time part of ds2 dominates, that is,

c2 dt2 > dx2 + dy2 + dz2.

One is dealing with events that happened already or will happen, thus events that we
“have seen” or “shall see” if we understand ourselves again as observers at the origin.
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Events from the past may be identified by their aftereffects; conversely, we may influence
the future by events that have lasting effects. The region of the Minkowski space for which
ds2 > 0 remains inaccessable to us.

The timelike distance specifies that dx2 + dy2 + dz2 < c2 dt2. In this case there exists a
Lorentz transformation for which ds2 = ds ′2 = −c2 dt ′2 and dx ′2 + dy′2 + dz′2 = 0. This
means that these events may be observed.

(c) ds2 = 0
This is the region of the light cone; the region of the greatest possible signal velocity

that characterizes the zero elements. The spatial part of the length element is equal to the
time part, namely

dx2 + dy2 + dz2 = c2 dt2. (31.16)

Vectors dr̂ with ds2 = dr̂ · dr̂ = 0 are also called zerolike or lightlike. They lie on a cone
in four dimensions, because we would have to draw four coordinate axes for a complete
description of this hypersurface.

For a resting observer at the position x = 0 at the instant t = 0 all those events constitute
the present which also happen at the time t = 0. The past corresponds to the events with
t < 0, the future to all events with t > 0. This convention is independent of the position.
The observer has access only to those events that for him are in the timelike region.

As simultaneous one declares all those events for which in any moving frame it holds
that t ′

1 = t ′
2. Simultaneous with the event x ′ = 0, t ′ = 0 for an observer moving with v are

the events

t ′ = t − (v/c2)x√
1 − β2

= 0,

that is, all events for which in a resting frame

t = v

c2
x .

holds. Every event in the interval −x/c < t < x/c (the hatched region in the last figure—
the present) may for an observer moving with the appropriate velocity between ±c be
simultaneous with the event at x ′ = 0, ct ′ = 0. In other words: Two events that lie in a
spacelike distance to each other can be made simultaneous. For this purpose one has only
to describe these events in an inertial system with the appropriate velocity.

The causality principle

The causality principle of classical mechanics states that an event cannot happen earlier
than its cause, that is, the triggering event must have taken place earlier than the resulting
one.

If this principle shall continue to hold in the theory of relativity, there must not exist an
inertial system in which the causal relation of the events is inverted.
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As an example of an appropriate course, one may take the blackening of a photographic
plate following a light flash. If the causing event happens in the system K at the time t1
at the position x1, the resulting event at the later time t2 > t1 at the position x2, then any
transformation to a K ′-system must satisfy

t ′
2 − t ′

1 ≥ 0.

As the speed of light represents the greatest possible signal velocity, for the causal
relation in the frame K

c ≥ x2 − x1

t2 − t1

holds; that means

c(t2 − t1) ≥ (x2 − x1).

For the time difference in the frame K ′ moving with v relative to K ,

t ′
2 − t ′

1 = c(t2 − t1) − (v/c)(x2 − x1)

c
√

1 − β2
.

holds. Because now c(t2 − t1) ≥ (x2 − x1) and v/c ≤ 1, there follows that for all inertial
frames

t ′
2 − t ′

1 ≥ 0.

The order of sequence of causally related events is therefore independent of the reference
frame; the causality principle remains valid in relativistic mechanics.

The Lorentz transformation in the
two-dimensional subspace of the Minkowski space

The length contraction and the time dilatation may well be visualized in this subspace.
We distinguish between the real coordinates x(x ′) and ct (ct ′) on the one hand, and the
Minkowski coordinates x(x ′) and ict (ict ′) on the other hand. At first the representation is
in real coordinates:

The relation between two systems moving relative to each other is given by

x ′ = x − (v/c) · ct√
1 − β2

, ct ′ = ct − (v/c) · x√
1 − β2

. (31.17)

To get the position of the primed coordinate axes, we set

x ′ = 0 = x − v

c
ct (t ′-axis)

and

ct ′ = 0 = ct − v

c
x (x ′-axis).
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The inclination angle α of the ct ′-axis against the ct-axis is determined by tan α =
x/ct = v/c. The inclination angle β of the x ′-axis against the x-axis is given by tan β =
ct/x = v/c. Hence α = β, that is, both axes are inclined by the same angles against the
corresponding coordinate axes of the resting system (x, ct) (compare the figure).

For a complete representation of Lorentz contraction and time dilatation we consider the
behavior of the unit scales on the two axes. Because s2 = s ′2 = x2 − c2t2 = x ′2 − c2t ′2 is
invariant under Lorentz transformation, x2 − c2t2 = 1 represents the invariant unit scale in
all Lorentz systems. The associated world lines are equilateral hyperbolas with light cone
as asymptote (compare the figure).
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x ct=
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Á

Graphical representation of the Lorentz trans-
formation in real coordinates.

These hyperbolas cut out the unit scales on
the axes. The unit scale in the (x, ct)-frame
(K ) is O A. An observer at rest in the frame
(x ′, ct ′) (K ′) sees it with the length O B ′,
that is, shorter than his own scale O A′. The
measuring signals are namely emitted at the
points x = 0 and x = 1 in K ; the endpoints
of the distance 01 in K are represented by
the world lines x = 0 and x = 1 (parallels
to the t-axis). This corresponds to the unit
distance at rest in K . In the frame K ′ at the
same time (t ′ = 0) a picture is taken, that is,
the intersection point of the x ′-axis with the
world lines of the points 0 and 1 resting in K
is determined.

Conversely, an observer at rest in K sees the scale O A′ as O B, that is, shorter than his
own scale O A. Hence the Lorentz contraction is a mutual effect. The mutual control of the
clocks proceeds in the corresponding manner.

A more convenient geometrical representation of time dilatation and Lorentz contraction
that makes the comparison with unit scales unnecessary is obtained by using the coordinate
x4 = ict instead of the time coordinate ct . Equations (31.17) then turn into

x ′
1 = (x1 + iβx4)√

1 − β2
, x ′

2 = x2 , x ′
3 = x3 , x ′

4 = (x4 − iβx1)√
1 − β2

. (31.18)

The associated Lorentz transformation is

αµ� =

⎛⎜⎜⎜⎝
γ 0 0 iγβ

0 1 0 0

0 0 1 0

−iγβ 0 0 γ

⎞⎟⎟⎟⎠ . (31.19)

Here 1/
√

1 − β2 = γ has been abbreviated. αµ� is an orthogonal transformation and
may therefore be represented as

x ′
1 = cos ϕ x1 + sin ϕ x4, x ′

4 = − sin ϕ x1 + cos ϕ x4. (31.20)
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By comparison of coefficients of (31.18) and (31.20), we get

cos ϕ = γ ≥ 1 and sin ϕ = iβγ or tan ϕ = iβ. (31.21)

Because cos ϕ = γ ≥ 1, ϕ must be an imaginary angle. The trigonometric functions
cos ϕ, sin ϕ, tan ϕ, cot ϕ for imaginary arguments ϕ = iα (α real) are defined by the
corresponding series expansions. For example, cos ϕ = cos(iα) = 1−(iα)2/2!+(iα)4/4!−
· · · = 1 + α2/2! + α4/4! + · · · > 1. Hence, cos iα is larger than 1 and may even diverge to

ϕ

x4

x1

x 1́

x 4́
P

Graphical representation of the
Lorentz transformation in Minkowski
coordinates.

infinity in the limit α → ∞. Correspondingly, sin iα =
iα/1! − (iα)3/3! + · · · = i(α/1! + α3/3! + · · ·), namely,
purely imaginary. In fact, the series expansions of the
trigonometric functions sin and cos for imaginary argu-
ment iα yield the hyperbolic functions, sinh and cosh. If
we compare with Example 30.2, we see that α is just the
rapidity introduced there.

Because orthogonal transformations are angle-conserving,
(31.20) may be represented as a simple rotation of the axes
(compare figure).

ϕ ϕ

ϕ

L0
x1

x4
x 4́ x 1́

L 0
T
0

L

L

b)

a)

T

Lorentz transformation in Minkowski coor-
dinates.

Lorentz contraction and time dilatation be-
come evident from the figure by geometrical con-
siderations:

One has

L = L0

cos ϕ
= L0

γ

and
T = T0 cos ϕ = T0γ. (31.22)

When using x4 = ict , the geometric relations
for the Lorentz contraction and time dilatation
may be read off directly from the diagram. It is not necessary to investigate the behavior of
the unit scales! But be careful! Only the geometry is correctly reproduced by the drawing:
For Example, T in the diagram is smaller than T0, but actually it holds that

T = T0√
1 − β2

; thus T > T0.

The relation for the length contraction and time dilatation is mutual for both inertial
frames. This fact has been explained for the length contraction by the cases (a) L0 rests in
K ′, and (b) L0 rests in K in the above figure: In both cases one always measures in the
correspondingly other (moving) system

L = L0

cos ϕ
= L0

√
1 − β2.

The length measurement in a coordinate frame is always performed at the same instant; for
example, in case (a) at fixed x4, and in case (b) at fixed x ′

4.
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Problem 31.6: Lorentz transformation for arbitrarily oriented relative velocity

Let S be an inertial frame. Let a frame S′ move with uniform velocity v against S. Show that the
Lorentz transformation from S to S′ looks as follows:

x′ = x⊥ + γ
[
x|| − β(ct)

]
, γ = 1√

1 − β2
,

ct ′ = γ [ct − β · x] , β = v
c
,

with x⊥ and x|| denoting the components of x perpendicular and parallel to β, respectively.

Solution (a) If v points in the x-direction, then one gets the well-known relation

x ′ = γ [x − β(ct)], y′ = y, γ = 1√
1 − β2

,

ct ′ = γ [ct − βx], z′ = z, β = v

c
.

(b) The general Lorentz transformation is then determined by the condition

x′2 − (ct ′)2 = x2 − (ct)2.

This is now fulfilled by the above relations:

x′2 − (ct ′)2 = x2
⊥ + γ 2

[
x2

|| − 2β x||ct + β2(ct)2 − (ct)2 + 2β x ct − (β x)2
]

= x2
⊥ + γ 2 = [

(1 − β2)x2
|| − (ct)2(1 − β2)

]
= x2 − (ct)2.

Remark: The generalization of the Lorentz transformation for an arbitrarily oriented relative ve-
locity may also be performed by writing down the formulas analogous to (31.18) for a translation
parallel to the y- and z-axis, respectively, and then performing these three special Lorentz transfor-
mations successively. But one has to be careful, because Lorentz transformations do generally not
commute, that is, the order of the transformations is important.

The second generalization for arbitrarily oriented axes may be made based on the remark that the
rotations of the ordinary three-dimensional space, for unchanged time, also belong to the general
Lorentz transformation. It then suffices to add such rotations to the special Lorentz transformations
and to suspend the parallelity of the axes.



32 Addition Theorem
of the Velocities

In this chapter we investigate the behavior of the velocities under a Lorentz transformation.
For this purpose we consider a particle with the velocity w in the coordinate frame K . What
is the velocity of the particle in the frame K ′ moving against K with the relative velocity
v = (vx , 0, 0)?

We first restrict ourselves to the x-components of the velocity. According to the Lorentz
transformation, we have

x ′ = x − vt√
1 − β2

, t ′ = t − (v/c2) x√
1 − β2

,

or for the differentials:

dx ′ = dx − v dt√
1 − β2

, dt ′ = dt − (v/c2) dx√
1 − β2

.

In the frame K we have dx = wx dt, dy = wydt, dz = wzdt , with w = (wx , wy, wz)

being the velocity in the frame K . By inserting dx = wx dt in dx ′ and dt ′, we get

dx ′ = (wx − v) dt√
1 − β2

, dt ′ = (1 − (v/c2)wx ) dt√
1 − β2

. (32.1)

The x-component of the velocity in the primed system is given by w′
x = dx ′/dt ′. By

forming the quotient of the differentials (32.1), we find

dx ′

dt ′ = w′
x = wx − v

1 − (v/c2)wx
.

w′
y is obtained in a similar way from (32.1) with y′ = y, dy′ = dy = wydt , and dt ′:

w′
y = wy

√
1 − β2

1 − (v/c2)wx
.

419



420 ADDITION THEOREM OF THE VELOCITIES 32

K

K´
w ẃ

x
x´

v

Illustration of the velocity vec-
tors w (in K ) and w′ (in K ′).
The relative velocity of both
systems is v = vez .

w′
z is obtained in the same manner as w′

y :

w′
z = wz

√
1 − β2

1 − (v/c2)wx
.

Therefore, the velocity w′ of the particle (with the velocity
w in K ) as seen from the frame K ′ moving relative to K
is completely determined by the transformation equation for
the three components w′

x , w′
y , w′

z :

w′ = 1

1 − (v/c2)wx

(
wx − v, wy

√
1 − β2, wz

√
1 − β2

)
.

(32.2)

The first component of this result is identical with our earlier one, equation (30.45), when
replacing v → −v.

If one assumes that a massless particle propagates in K with the speed of light |w| = c
and that the relative velocity of K ′ with respect to K again equals v = (v0, 0, 0) the question
arises which velocity w′ is observed in K ′.

We insert in |w′|2 = w′2 = w′2
x + w′2

y + w′2
z the nonprimed quantities from (32.2):

w′2 = (wx − v)2 + (w2
y + w2

z )(1 − β2)

(1 − v wx/c2)2
,

= c4

[
w2

x − 2wxv + (v2/c2)w2
x + v2 + w2

y + w2
z − (v2/c2)(w2

x + w2
y + w2

z )

(c2 − vwx )2

]
.

Because the particle is moving in K with the speed of light, we have w2
x +w2

y +w2
z = c2.

Hence we obtain

w′2 = c4

[
c2 − 2wxv + (v2/c2)w2

x

(c2 − vwx )2

]
= c2 (c2 − vwx )

2

(c2 − vwx )2
= c2.

K

K´

wx

wx´

x

x´

v

t

t´

In the inertial frame K , light is mov-
ing with the velocity c along the
x-axis. The frame K ′ is moving with
velocity v = −cex onto the frame K .

It is evident that also in K ′ no larger velocity than the
speed of light c can be measured, independent of the
magnitude of the velocity v of the relative motion of the
two coordinate frames against each other. If we set

v = (−c, 0, 0),

w = (c, 0, 0),

the particle moves in K with the speed of light, and K ′
also moves with the speed of light relative to K in the
opposite direction.
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This interesting case shall be discussed here in brief. Naively one might expect to get
“twice as fast light.” But this is not true: For the x-component, according to (32.2), it holds
that

w′
x = wx − v

1 − (v/c2) wx
.

After insertion we get

w′
x = 2c

1 + c2/c2
= c, i.e., w′

x = c.

One might also try to generate “light resting” in K ′ by setting v = (c, 0, 0). The K ′-frame
moves so to speak with the speed of light parallel to the light beam. The transformation
(32.2) yields in this case

w′
x = wx − v

1 − (v/c2) wx
= wx − c

(c − wx )/c
= −c,

also in the limit wx → c. The observer in the system K ′ thus sees the light as propagating
with the speed of light along the negative x ′-direction. One again realizes the meaning of
the speed of light c as limiting velocity for any motions. For v  c, (32.2) turns into the
Galileo transformation:

w′ = (wx − v, wy, wz),

as expected.

Supervelocity of light, phase, and group velocity

The addition theorem of velocities discussed in the preceding sections implies that the
speed of light must be considered as upper limiting velocity for the propagation of physical
phenomena.

But nevertheless, one may quote physical phenomena or experiments where a superve-
locity of light may be reached:

1. The light ray emitted by a rotating light source (compare figure) shall hit on a far remote
screen. If the screen is sufficiently far away from the light source, then the luminous
spot caused by the light ray on the screen moves with supervelocity of light.

Light source

v c= (Light ray)

Screen

>
(Spot)
v c

The luminous spot on the screen may move with superluminous velocity.
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2. In optics the speed of light in a dispersive medium is calculated from the law of refraction

c0/c = n, (32.3)

where c0 is the vacuum speed of light, n is the refractive index, and c is the wanted
propagation velocity of light in the corresponding medium. There are substances (e.g.,
metals) with a refractive index n < 1, such that because c = c0/n one has c > c0, that
is, supervelocity of light in media with n < 1.

One has to distinguish between the phase and the group velocity:
The phase velocity is the traveling velocity of the phase of a propagating wave. Visually,

the phase is the instantaneous state of motion of a vibration. For example: ψ = A cos(kx −
ωt) is a wave (more strictly: a plane harmonic wave). Its maximum amplitude ψ = A is
reached, for example, for values of the argument (the phase) kx − ωt = 0. This maximum
amplitude obviously moves with the velocity dx/dt = x/t = ω/k. For the traveling
velocity of the other maximum amplitudes at kx − ωt = nπ , one obtains the same result.

Amplitude
PhasePhase

s t,

Illustration of a plane wave.

This is the phase velocity

vph = ω

k
.

It is important to understand that such
a plane wave extending from −∞ to
+∞ cannot transfer information. In or-
der to transfer information, the unifor-
mity and “monotony” of the wave must
be destroyed, that is, one must create a wave peak (wave group) and see how it propagates.
Only this perturbation is visible (recordable).

–2π 2π–π π0

c( )ϕ

ϕ ∆= –t x k)(d
d

ω
k

Illustration of a wave packet.

The group velocity, on the contrary,
is the propagation velocity of a wave
packet (pulse of waves), that is, the su-
perposition of several individual waves.

According to the given definition of
the wave group, a wave packet ψ(x, t)
may be represented by the expression

ψ(x, t) =
k0+�k∫

k0−�k

c(k)ei(ωt−kx) dk, (32.4)

where k0 = 2π/λ0 is the wave number about which the wave numbers involved in the wave
packet are centered (�k is assumed to be small). Here and in the following discussion, what
is really used is only the real part of the function ei(ωt−kx), thus e cos(ωt−kx). The imaginary
part of the function is simply taken along, but not used. This makes the calcultations easier.
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Because �k is small, we may expand the frequency ω, which in general is a function of k,
into powers of (k − k0):

ω = ω0 +
(

dω

dk

)
0

(k − k0) + · · · ;
k = k0 + (k − k0),

and set k − k0 = ξ . Taking ξ = k − k0 as the new integration variable and assuming the
amplitude c(k) to be a slowly varying function of k, ψ(x, t) may be represented in the form

ψ(x, t) = c(k0)e
i(ω0t−k0x)

�k∫
−�k

ei((dω/dk)0t−x)ξ dξ.

Performing the simple integration with respect to ξ , we find

ψ(x, t) = 2c(k0)
sin {[(dω/dk)0t − x] �k}

[(dω/dk)0t − x]
ei(ω0t−k0x)

= c(x, t) · ei(ω0t−k0x). (32.5)

Because the argument of the sine involves the small quantity �k, the quantity c(x, t)
as a function of the time t and the coordinate x will vary only slowly. Hence, c(x, t) may
be considered as the amplitude of an almost monochromatic wave, and (ω0t − k0x) as the
phase. We now evaluate the point x where the amplitude c(x, t) takes its maximum. This
point shall be denoted as the center of the wave group. Obviously the desired maximum
occurs at the point

x =
(

dω

dk

)
0

t.

This implies that the group center will move with a velocity v that is obtained by
differentiating the preceding equation with respect to t ; this velocity is the group velocity

vgr =
(

dω

dk

)
0

. (32.6)

The theory of relativity makes only a statement on the speed of light as an upper limit
for the propagation of particles and the transport of energy (signals), that is, on the group
velocity. For the phase velocity, on the contrary, which is not capable of transmitting
signals, namely, cannot transport energy and therefore cannot mediate causal relations,
such a restriction (as expressed by an upper limiting velocity) does not exist.

In the first example, this means that the observer at the screen cannot use the luminous
spot moving with v > c to transmit signals with supervelocity of light. He would have to
“radio” to the light source after passage of the luminous spot, in order to control the further
course of the spot on the screen.

Also in the second example (32.2) the phase velocities c0, c determine the refractive
index. We shall see in the lectures on electrodynamics that also in media with n < 1 the
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signal velocity of light is always < c0 (compare the volume of the lectures about Classical
Electrodynamics, Chapter 19).

This distinction between the two velocities removes the seeming contradiction occuring
in the two examples: Supervelocities of light may occur only for the phase velocity, that
is, the phase of a wave may actually propagate with a velocity v > c. Physical information
may, however, be transferred only by a wave group. The group velocity of signals (signal
velocity) is always smaller than the speed of light in vacuum for all physical situations
studied so far.



33 The Basic
Quantities of
Mechanics in
Minkowski Space

A vector in R3 is characterized by specifying three quantities, for example, the position
vector

r = (x, y, z)

by the three spatial coordinates. They transform under rotations of the coordinate frame
according to the three-dimensional rotation group (see equations (30.13), (30.14)). Corre-
spondingly, a four-vector is characterized by four quantities that transform according to the
Lorentz transformation (compare the discussion in Chapter 30).

The analog to the position vector is in the four-dimensional Minkowski space the vector
⇒
r = (x1, x2, x3, x4) = (x, y, z, ict),

which is denoted as world vector (four-vector). It includes, besides the three space coor-
dinates, an imaginary additional component being proportional to the time. Four-vectors
shall be identified by a double-arrow, such as

⇒
r .

A four-vector transforms under the Lorentz transformation similarly as a vector in
R3 transforms under a rotation. This will become clearer by interpreting the Lorentz
transformation as a rotation in the Minkowski space with an imaginary rotational angle ϕ,
compare (31.20) and (31.21), yielding

cos ϕ = 1√
1 − β2

> 1.

425
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Lorentz scalars

Scalar quantities, both in R3 as well as in R4, are characterized by their invariance against
a corresponding rotation. Let us consider once again the square of the distance. By using
the orthonormality relations, we obtain

s ′2 =
∑

n

x ′2
n =

∑
n

x ′
n x ′

n =
∑

n

(∑
j

Rnj xj

∑
k

Rnk xk

)

=
∑

n

∑
k

∑
j

Rnj Rnk xj xk =
∑

k

∑
j

(∑
n

Rnj Rnk

)
xj xk

=
∑

k

∑
j

δjk xj xk =
∑

j

xj xj =
∑

j

x2
j = s2,

with n, k, j = 1, 2, 3 in R3, and n, k, j = 1, 2, 3, 4 in R4. The orthonormality of the
transformation matrices Rni reads

δjk =
∑

n

Rnj Rnk

with n, j, k = 1, 2, 3 in R3, and n, j, k = 1, 2, 3, 4 in R4.
Such an invariant (scalar) against Lorentz transformations is also the infinitesimal square

of distance in the Minkowski space

ds2 = ds ′2 = dx2 + dy2 + dz2 − c2dt2 = dx ′2 + dy′2 + dz′2 − c2dt ′2,

because it is the four-scalar product d
⇒
r · d

⇒
r , where d

⇒
r = {dx, dy, dz, ic dt} is the

infinitesimal world vector. One then also speaks of a Lorentz invariant or of a Lorentz
scalar. The time t by which one differentiates in Newtonian mechanics, for example, when
calculating the velocity or the acceleration, is not transformation-invariant, because “ict”
is the fourth component of the world vector, and hence is no scalar. But now we have
to find a Lorentz-invariant time, mainly for the reason to obtain again a four-vector when
differentiating a four-vector. In other words: We want to establish clear relations concerning
the transformation behavior of the various quantities (velocity, acceleration).

To get a Lorentz-invariant time unit, we start from

−ds2 = c2dt2 − (dx2 + dy2 + dz2)

and define

dτ ≡ +
√−ds2

c2
= +

√
dt2 − dx2 + dy2 + dz2

c2

= dt

√
1 − 1

c2

dx2 + dy2 + dz2

dt2

= dt
√

1 − β2.
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The quantity dτ has the dimension of a time. dτ is denoted as the proper time of the
system, as in the rest system (proper system) it is identical with the coordinate time dt
measured there, because there v = 0 and therefore β = 0. Depending on whether dτ is real
or imaginary, one distinguishes timelike- and spacelike-related domains of the Minkowski
space.

As already stated: In the rest frame of a body its proper time τ is equal to the coordinate
time t ; from there also originates the name “proper time.”

We consider in the following how the three-dimensional quantities of the Newtonian me-
chanics are modified in the four-dimensional Minkowski space. We thereby follow the idea
that the natural laws are Lorentz-covariant, namely, must be formulated as four-dimensional
laws (expressed by four-scalars, four-vectors, etc.). This is basically the principle of rela-
tivity: In all inertial frames there hold (formally) equal natural laws.

Four-velocity in Minkowski space

To get the four-velocity, one must differentiate the world vector
⇒
r = (x1, x2, x3, x4)

with respect to the Lorentz-invariant proper time dτ :

⇒
v= d

⇒
r

dτ
=

(
ẋ1√

1 − β2
,

ẋ2√
1 − β2

,
ẋ3√

1 − β2
,

ẋ4√
1 − β2

)

= 1√
1 − β2

(v, ic). (33.1)

Obviously,

⇒
v · ⇒

v=
4∑

i=1

vivi = 1

1 − v2/c2
(v2 − c2) = −c2. (33.2)

The expression

⇒
v= 1√

1 − β2
(v, ic) (33.3)

represents the four-velocity and reflects the relation with the “ordinary” three-dimensional
velocity v. The fourth component at first sight has no particular meaning. The components
of

⇒
v= {v1, v2, v3, v4} transform under Lorentz transformations (30.40) according to

v′
i =

∑
k

αikvk .

One should be clear that if we had differentiated in (33.1) with respect to the ordinary
coordinate-time t (and not with respect to the proper time τ ), then we would have obtained
the four-component quantity {ẋ1, ẋ2, ẋ3, ic}. But this quantity is no four-vector. Its trans-
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formation behavior against Lorentz transformations is not clear (complicated). Only the
pre-factor 1/

√
1 − β2 in (33.1) converts this four-component quantity into a four-vector.

Momentum in Minkowski space

In R3 the momentum is defined as

p = m0v. (33.4)

The question arises as how to generalize this momentum into the four-dimensional.
The nonrelativistic relation (33.4) must be generalized in such a way that (33.4) is always
obtained as the nonrelativistic limit. We are looking for a four-momentum vector.

Analogously to (33.4), we therefore define the momentum in R4 by

⇒
p= m0

⇒
v =

(
m0√

1 − β2
vx ,

m0√
1 − β2

vy,
m0√

1 − β2
vz,

icm0√
1 − β2

)
= (mv, ic m) = (p, ic m). (33.5)

The first three components, as it must be, convert in the nonrelativistic limit into the

Newtonian momentum (33.4). The fourth component will be interpreted later on.
⇒
p obvi-

ously is a four-vector because the rest mass m0 shall be a scalar, and
⇒
v is a four-vector, as

we just have seen.
Note that the mass m is no longer a constant but varies according to the equation

m = m0√
1 − β2

, (33.6)

with m0 being the rest mass of the particle in the state of rest (m = m0 for v = 0). The rest
mass is a Lorentz scalar, that is, it is the same in any inertial frame. The mass m, on the
contrary, is no Lorentz scalar but, as is seen, up to the factor ic is the fourth component of
the four-momentum vector. The mass m thus varies with the velocity. For v → c, the mass
becomes infinitely large. Therefore, one must expend more and more energy in particle
accelerators to further increase the velocity of highly relativistic particles (v ≈ c).

Minkowski force (four-force)

In R3 the force is defined by Newton’s force law as

K = d

dt
(mv) = d

dt
(p), (33.7)
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the Newtonian force. This relation must also be generalized to four dimensions, namely
such that the four-force becomes a four-vector and that the Newtonian force (33.7) results
as the nonrelativistic limit. Analogously to (33.7), we define the force in R4 by

⇒
F= d

dτ
(
⇒
p) = 1√

1 − β2

d

dt
(
⇒
p). (33.8)

This is also the Lorentz-covariant basic equation of relativistic mechanics. There occur four-
vectors to the left and right, similarly as in Newtonian mechanics expressed by the basic
law (33.7) with three-vectors on both sides of the equation. This dynamic basic law (33.8)
has been guessed. The principle of relativity (Lorentz covariance of the equations), the
simplicity and the analogy to the nonrelativistic basic law (33.7), as well as the fact that
the latter one must be contained in the new law (33.8) as a particular case served as guide
for setting up (finding, guessing) equation (33.8). Similar to the nonrelativistic case, the
basic law (33.8) has not only statutory character but also the character of a definition.
Equation (33.8) defines the special form of the four-force and its relation to the three-force,
which reads in detail

⇒
F= 1√

1 − β2

d

dt
(mv, ic m). (33.9)

Because in (33.8) the four-vector
⇒
p is differentiated with respect to the (Lorentz-scalar)

proper time τ , the four-force formed this way is again a four-vector. From there result as
components of the Minkowski force or four-force:

F1 = Kx√
1 − β2

with Kx = d

dt
(mvx ) = m0

d

dt

(
vx√

1 − β2

)
;

F2 = Ky√
1 − β2

with Ky = d

dt
(mvy) = m0

d

dt

(
vy√

1 − β2

)
;

F3 = Kz√
1 − β2

with Kz = d

dt
(mvz) = m0

d

dt

(
vz√

1 − β2

)
;

F4 = 1√
1 − β2

d

dt

(
icm0√
1 − β2

)
= icm0√

1 − β2

[
β · β̇

(1 − β2)3/2

]

= icm0
β · β̇

(1 − β2)2
. (33.10)

Here Kx , Ky, Kz are the components of the ordinary three-dimensional force. The fourth
component F4 has for the time being no meaning in the three-dimensional case. But one
should note that the relativistic mass (33.6) has already been included in Kx , Ky, Kz . This is
also an important point of relativistic mechanics. The velocity-dependent mass is no fiction
but manifests itself directly in the basic law. This has been proved experimentally by many
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experiments; such as by the experiments of Kaufmann, who demonstrated that electrons
of high velocity are deflected in magnetic fields actually according to the relativistic mass
(compare Example 33.2). In the rest frame of the particle (β = 0) the four-force

(F1, F2, F3, F4) = (Kx , Ky, Kz, 0) (33.11)

in its first three components is identical with the ordinary (three-) force. We may in principle
construct the four-force also by starting from the rest frame, namely, from the right side
of (33.11), and derive the four-force in an inertial frame in which the particle is moving by
a Lorentz transformation. This idea will be pursued in the following example.

Example 33.1: Construction of the four-force by Lorentz transformation

We will derive the four-force

Fµ = {γ K, iγ
v
c

· K} (33.12)

from the Lorentz transformation properties of Fµ. Here K = d/dt (mv) is the three-force, and v = cβ
is the velocity of the particle. In the rest frame of the particle it shall hold that

Fµ

0 = {K0, 0}, (33.13)

that is, the relativistic four-force is in its first three components identical with the three-force in this
system. This equation is consistent with (33.12) to be proved. In a frame in which the particle moves
with v, (because we obtain this frame from the rest frame of the particle by a boost in (−v)-direction)
it holds that

Fµ = αµ
� (−v)F�

0

or

F|| = γ
(

F0|| − i
v

c
F4

0

)
= γ F0|| = γ K0||,

F⊥ = F0⊥ = K0⊥, (33.14)

F4 = γ
(

F4
0 + i

v

c
F0||

)
= iγ

v

c
F0|| = iγ

v

c
K0||.

Here F|| and F⊥ denote the spatial components of the four-force parallel and perpendicular to the
direction of motion, respectively. The similar holds for K0|| and K0⊥. In order to prove equation
(33.12), we still have only to find out how K is related to K0. Then K0 may be substituted on the right
sides of (33.14), and we shall obtain (33.12). The relation between the three-forces K and K0 may be
derived as follows:

We consider the force acting on a particle of velocity v and mass m = m0γv = m0/

√
1 − v2

c2 in the
inertial frame S:

K = d

dt
(mv). (33.15)

In another inertial frame S′ moving relative to S with V = (V, 0, 0), the force on this particle is
given by

K′ = d

dt ′ (m
′v′), (33.16)
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with

t ′ = γV (t − (V/c2)x),

m ′ = m0γv′ = m
γv′

γv

,

v′ =
(

vx − V

1 − (vx V )/c2
,

√
1 − V 2/c2vy

1 − (vx V )/c2
,

√
1 − V 2/c2vz

1 − (vx V )/c2

)
,

γV = 1√
1 − V 2/c2

, γv′ = 1√
1 − (v′2)/c2

, γv = 1√
1 − v2/c2

. (33.17)

Obviously (addition theorem of velocities),

1

1 − v′2/c2
= 1

1 − v2
x + V 2 − 2vx V + (

1 − V 2/c2
)
v2

y + (
1 − V 2/c2

)
v2

z(
1 − vx V/c2

)2
c2

=
(
1 − vx V/c2

)2
c2

c2 − 2vx V + v2
x V 2/c2 − v2

x − V 2 + 2vx V − v2
y − v2

z + (
V 2/c2

) (
v2

y + v2
z

)
=

(
1 − vx V/c2

)2
c2

c2 − v2 − V 2 + v2V 2/c2
=

(
1 − vx V/c2

)2(
1 − v2/c2

) (
1 − V 2/c2

) ,

and therefore,

m ′ = m
1 − vx V/c2√

1 − v2/c2
√

1 − V 2/c2

√
1 − v2/c2 = m

1 − vx V/c2√
1 − V 2/c2

. (33.18)

Thus we have

K ′
x = dt

dt ′
d

dt

(
m

1 − vx V/c2√
1 − V 2/c2

vx − V

1 − vx V/c2

)

= 1
dt ′

dt

d

dt

(
m

vx − V√
1 − V 2/c2

)

= 1

γV

(
1 − V

c2
vx

) d

dt

⎛⎜⎜⎝m
vx − V√
1 − V 2

c2

⎞⎟⎟⎠ (33.19)

because V = constant and dx/dt = vx .
It further follows (because γV = 1/

√
1 − V 2/c2 = constant) that

K ′
x = 1

1 − V vx/c2

(
d

dt
mvx − V

dm

dt

)
. (33.20)

Now

d

dt
mvx = Kx ,
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and
dm

dt
= m0

d

dt
γv = m0γ

3
v

v · v̇
c2

= m0γv

(
1 + v2

c2
γ 2

v

)
v · v̇
c2

= v
c

·
(

m0γv

v̇
c

)
+ v2

c2
m0γ̇v = v

c
·
(

m0γv

v̇
c

)
+ v

c

(v
c

m0γ̇v

)
= v

c

d

dt

(
m0γv

v
c

)
= v · K

1

c2
, (33.21)

yielding for K ′
x

K ′
x = 1

1 − vx V

c2

(
Kx − V

c2
vx Kx − V

c2
vy Ky − V

c2
vz Kz

)

= Kx −
V

c2

1 − vx V

c2

(vy Ky + vz Kz) . (33.22)

If the particle was at rest in the frame S (vx = vy = vz = 0), then

K ′
x = Kx . (33.23)

For the other components of the force K′ it holds that

K ′
y = 1

γV

(
1 − V vx

c2

) d

dt

(
m

1 − vx V/c2√
1 − V 2/c2

√
1 − V 2/c2vy

1 − vx V/c2

)

= 1

γV

(
1 − V vx

c2

) d

dt
(mvy) =

√
1 − V 2/c2

1 − V vx

c2

Ky, (33.24)

and analogously:

K ′
z =

√
1 − V 2/c2

1 − V vx

c2

Kz . (33.25)

If the particle was at rest in the frame S, then

K ′
y = √

1 − V 2/c2 Ky,

K ′
z = √

1 − V 2/c2 Kz . (33.26)

Equations (33.26) have been derived with the assumption that the frame S′ moves relative to S with
V = (V, 0, 0). For an arbitrary direction of motion we introduce the notations || (for components
parallel to V) and ⊥ (for components perpendicular to V) and obtain

K ′
|| = K||,

K′
⊥ = 1

γ V

K⊥. (33.27)
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The frame S shall now be that frame in which the particle is at rest, the frame S′ that one in which the
particle moves with v. Then obviously γV = 1√

1−V 2/c2
= 1√

1−v2/c2
, and therefore (with the notations

of (33.14)),

K|| = K0||,

K⊥ = 1

γ
K0⊥. (33.28)

By inserting this in (33.14), it follows that

F|| = γ K||,

F⊥ = γ K⊥,

F4 = iγ
v

c
K|| = iγ

v
c

· K, (33.29)

because v · K⊥ = 0 by definition, that is,

Fµ =
{
γ K, iγ

v
c

· K
}

, q.e.d. (33.30)

Because of (33.21) (v · K)/c2 = dm/dt , one immediately sees that

F4 = ciγ
dm

dt
. (33.31)

Hence one obtains the expression for F4 already known from (33.10).

Kinetic energy

The kinetic energy in Newtonian mechanics is calculated as follows:

T (t) =
t∫

t0

K · dr
dt ′ dt ′.

Differentiation with respect to the time yields

dT

dt
= K · v = dp

dt
· v. (33.32)

By inserting here for K = dp /dt = m0 dv /dt , that is, the relation according to
Newtonian mechanics, we find

dT = m0 v · dv

or after integration

T2 − T1 = m0

2
v2

2 − m0

2
v2

1 .

This is the well-known expression for the kinetic energy in classical (Newtonian) me-
chanics.
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On the contrary, when inserting for p = mv = (m0/
√

1 − β2) v, that is, the relativistic
(three-dimensional) momentum (see equation (33.5)), into the relation (33.32), we obtain

dT

dt
= v · d

dt

(
m0√

1 − β2
v

)
,

and with v = ve, we get

dT

dt
= v

d

dt

(
m0v√
1 − β2

)
e · e + v

(
m0v√
1 − β2

)
e · ė,

and because e · e = 1, e · ė = 0:

dT

dt
= v

d

dt

(
m0v√
1 − β2

)
= c2β

d

dt

(
m0

β√
1 − β2

)

= m0c2 d

dt

(
1√

1 − β2

)
,

because

β
d

dt

(
β√

1 − β2

)
= d

dt

(
1√

1 − β2

)
,

as one may prove by differentiation. Integration with respect to the time yields

T = m0c2

t∫
t0

d

dt

(
1√

1 − β2

)
dt = m0c2√

1 − β2

∣∣∣∣t

t0

= m0c2

[
1√

1 − v2(t)/c2
− 1√

1 − v2(0)/c2

]
.

If for t0 = 0, v = 0, or β = 0, one finally obtains

T = m0c2√
1 − β2

− m0c2 = (m − m0)c
2. (33.33)

The expression m0c2 is practically denoted as rest energy. By rearranging the terms, we
get the relation

T + m0c2 = mc2 = E . (33.34)

The famous equation

E = mc2 (33.35)

is one of the most important statements of the theory of relativity: Energy and mass are
equivalent. E is called total energy: That is the entire energy of a free particle. For free
particles it is composed of the rest energy (m0 c2) and the kinetic energy ((m − m0)c2).



KINETIC ENERGY 435

For particles in a force field, the total energy includes also the potential energy (compare
the text later on): The interpretation of the rest energy m0 c2 as a new independent fraction
of energy must ultimately be verified by questioning of nature (experiment). Examples
in this context will be presented in the following. But we may already now provide an
argument for the physical reality of the rest energy, by considering a fission process of a
particle of mass m0 into two daughter particles m1 and m2. In general, m0 	= m1 + m2. The
rest energy therefore contributes to the energy balance in the decomposition of a particle.
This possibility would get lost if we would consider in (33.34) the rest energy as always
being constant and would absorb it into the constant E on the right-hand side. For v  c,
thus β  1, the relativistic kinetic energy must turn into the kinetic energy of Newtonian
mechanics. From

T = m0 c2√
1 − β2

− m0 c2, (33.36)

one obtains by expanding the square root

T = m0 c2

(
1 + 1

2
β2 + 1 · 3

2 · 4
β4 + · · ·

)
− m0 c2

or

T = m0 c2 + 1

2
m0 v2 + · · · − m0 c2 ≈ 1

2
m0 v2 + · · · .

At low velocity (v  c) one has to a very good approximation T = 1
2 m0 v2, which

corresponds to the nonrelativistic expression for the kinetic energy.
The equivalence between mass and energy (33.34) has been confirmed in nuclear physics

in a variety of cases; for example, in nuclear fission an atomic nucleus of mass M splits into
two nuclei of about the same size with the masses M1 and M2. One finds M > M1 + M2.
The mass defect corresponds to the energy difference

�E = (M − M1 − M2)c
2,

which is released as kinetic energy in the fission process. 1

Example 33.2: Einstein’s box

In the following thought experiment invented by A. Einstein in 19062 we shall consider the relation
between the inertia of matter and radiation energy. We will investigate which amount of inert mass
(quotient of momentum and velocity) is equivalent to a given energy. For this purpose we assume
that at the left end of a box of mass M and length L being initially at rest (displayed in the figure (a))
a cloud of photons of energy E is emitted.

1A detailed discussion of masses and energy relations may be found in J.M. Eisenberg and W. Greiner, Nuclear
Theory Vol 1: Nuclear Models, 3rd ed., North-Holland, Amsterdam, 1987.

2A. Einstein, Annalen der Physik 20 (1906) 627–633.
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E

E

M

L

∆x

a)

b)

Einsteins box: The emission of a bunch of photons (a) at the left border of the box creates a recoil. This
results in a motion of the box towards the left by the distance �x , until the light is reabsorbed at the
right border of the box (b).

The photon cloud or radiation carries a momentum of p = E/c; see (33.61). Because the total
momentum of the system must vanish as before the emission act, the box gets a momentum transfer
of p = −E/c. Because of this recoil, the box moves with the velocity v:

v = − E

Mc
. (33.37)

After the time �t the radiation hits on the opposite wall of the box, which thereby again comes to rest,
because the momentum transferred by the stopping equals the negative initial momentum. Therefore,
the box is displaced by a distance �x given by

�x = v�t = − E L

Mc2
. (33.38)

If we put the center of mass Rs of the system into the coordinate origin, then its position must
remain unchanged also after termination of the experiment. This is only then possible if we attribute
a mass m to the photon cloud, such that

Rs = �x M + mL

m + M
= 0. (33.39)

Together with (33.38), we thereby obtain

−mL

M
= − E L

Mc2
⇔ E = mc2. (33.40)

Verbally expressed: Equation (33.40) describes the inertia of the energy, that is, any change �E
of the energy of a body causes a corresponding change �m of its inert mass.

In our example this means: At that end of the box where the photon cloud is emitted, the inert mass
reduces by E/c2. Correspondingly, the inert mass of the box increases again by the same amount
when the photon cloud is stopped or thermalized at the other end of the box. We still note that by
taking into account this circumstance as well as the transit time changed by the recoil of the box, the
result of (33.40) remains unchanged.
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Example 33.3: On the increase of mass with the velocity

Source

y
B

x
d

D

Plate capacitor

Photographic plate

Simplified, schematic view of Bucherer’s experiment, which uses a capacitor as a velocity filter. After
leaving the capacitor, the β rays (electrons) are deviated by a magnetic field and detected on a pho-
tographic plate. The magnetic field B is oriented into the plane of the drawing. It is denoted by the
crosses (×).

Already in 1897 Thomson could measure the ratio of e/m for electrons by using cathode rays.
In 1901 W. Kaufmann3 demonstrated, utilizing the parabola method, that the value e/m depends on
the velocity of the β-rays. In 1908 A.H. Bucherer4 from Bonn performed an improved experiment to
determine e/m using β-rays. The experimental set-up is shown in the figure: β-rays from a radium
source were emitted between the plates of a large capacitor. The potential difference between the
plates creates an E-field in negative y-direction, whereby an electron experiences the force FE = −eE
along the y-direction (e > 0!). Due to the applied magnetic field an electron moving in the x-direction
undergoes the Lorentz force FB = −ev/c × B along the negative y-axis (compare Volume III of the

D

d

2R d–

Height D in the right-
angled triangle.

lectures: Classical Electrodynamics). Because the plate diameter of the
capacitor is large against the spacing of the plates, only such electrons may
escape for which |FE | = |FB |, hence,

e
v

c
B = eE,

v

c
= E

B
. (33.41)

(Remark: This relation holds also in the relativistic case although we have
calculated with the nonrelativistic expressions for FE and FB . The reason
for that is that a factor 1/

√
1 − v2/c2 cancels on both sides of (33.41),

compare vol. III of the lectures.) Hence the capacitor acts as a velocity filter
(crossed fields).

3W. Kaufmann, Gött. math.-nat. Klasse 143 (1901); Phys. Zeitschr. 4 (1902) 55.
4A. H. Bucherer, Verh. d. Deutschen Phys. Ges. 6 (1908) 688.
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After leaving the E-field the electron moves on a circular path of radius R due to the B-field (this
also holds in the relativistic case; compare the volume of the lectures about electrodynamics). From
the geometry of the figure one reads off, using the well-known theorem for right-angled triangles,

d(2R − d) = D2,

R = D2 + d2

2d
. (33.42)

By setting the Lorentz acceleration equal to the centripetal acceleration, one gets

mv = e

c
B · R

or

R = mv

Be
c ⇒ D2 + d2

2d
= mv

Be
c.

Bucherer’s results for e/m of β-rays (electrons)

v/c e/m = e
√

1 − v2/c2

m0
e/m0

0.3173 1.661 ·1011 C/kg 1.752 ·1011 C/kg
0.3787 1.630 1.761
0.4281 1.590 1.759
0.5154 1.511 1.763
0.6870 1.283 1.766

3

2

1

0
0 0.2 0.4 0.6 0.8 1.0

v c/

m
v

m
(

)/
0

Kaufmann
Bucherer
Guye & Lavanchy

The inertial mass of the electron as a function of its velocity. The measurements are by Kaufmann
(Phys. Zeitschr. 4 (1902) 55), Bucherer (Verh. DPG 6 (1908) 688), and Guye and Lavenchy (Arch. de
Genève 41 (1916) 286, 353, 441).
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With equation (33.41), it results that

e

m
= 2d

(D2 + d2)

E

B2
c2 . (33.43)

Bucherer reversed the polarity of the E- and B-fields, yielding a second luminous spot on the
photographic plate, and he determined d as the half-distance between the two luminous spots. The
experiment was performed for various B- and E-field intensities or electron velocities. The results
are listed in the table.

The value for e/m0 is calculated from the measured values for e/m and v/c. The following figure
summarizes the experiments of Kaufmann, Bucherer, and Guye and Lavanchy,5 which impressively
demonstrate the velocity dependence of the electron mass.

Problem 33.4: Relativistic mass increase

Calculate the velocity and the path of a relativistic particle of rest mass m0 in the gravitational field
of the earth for the initial condition r(t = 0) = 0 and v(t = 0) = v0ez .

Solution Insertion of the velocity-dependent mass

m(v) = m0 c√
c2 − v2

(33.44)

in the equation of motion yields

d

dt
(m(v)v) = m(v)v̇ + m(v)

c2 − v2
(v̇ · v) v

= m(v)gez . (33.45)

The velocity components in x- and y-directions vanish because of the initial condition. From
(33.45) it then follows that

v̇z + 1

c2 − v2
v2

z v̇z = g

⇒ v̇z

(
1 + v2

z

c2 − v2
z

)
= g

⇒ v̇z = g
1

1 + v2
z /(c

2 − v2
z )

= g
c2 − v2

z

c2 − v2
z + v2

z

= g

(
1 −

(vz

c

)2
)

. (33.46)

The solution of (33.46) results from
vz∫

v0

dv′
z(c

2 − v′2
z )−1 = 1

c

(
Artanh

vz

c
− Artanh

v0

c

)

= 1

c
Artanh

(
vz − v0

c − vz v0/c

)
= g

c2
t. (33.47)

5Ch.E. Guye and Ch. Lavanchy, Arch. de Genève 41 (1916) 286, 353, 441.
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We thereby have used the relation

Artanh x − Artanh y = Artanh
x − y

1 − xy
. (33.48)

The velocity of the relativistic particle is

v(t) =
(
v0 + c tanh

( g

c
t
)) (

c + v0 tanh
( g

c
t
))−1

c ez . (33.49)

For t → ∞ (or tanh gt/c → 1) it approaches the limit velocity c.
The function z(t) is obtained by integration of (33.49):

z(t) = c

t∫
0

dt ′
v0 cosh

( g

c
t ′
)

+ c sinh
( g

c
t ′
)

c cosh
( g

c
t ′
)

+ v0 sinh
( g

c
t ′
)

= c2

g
ln

[
cosh

( g

c
t
)

+ v0

c
sinh

( g

c
t
)]

. (33.50)

With cosh x � 1 + x2/2, sinh x � x and ln(x + 1) � x for x  1, we obtain

z(t) � 1

2
gt2 + v0t for t  c

g
,

namely, the normal free falling.
For t → ∞, one has z � ct if v0  c.

Problem 33.5: Deflection of light in the gravitational field

Einstein speculated in 1911 whether the relation m = E/c2 for the inert mass of radiation energy
may be inserted in the gravitational field to describe the deflection of light rays from remote stars
by the sun. The deflection causes that an observer supposes the position of the star to be along the
extension of the straight line a (dashed line). Thus, the direction of the star seems to be displaced
(see figure, in particular figure (b)).

(a) (b)

θ

P

F
R

C M

0
x

p

∆p

α
Light ray
from Star

Apparent
Position of Star

ObserverTrue Position

of Star

Classical sketch (a) of the deflection of a photon grazing the rim of the sun at O, and the real deflection
behavior (b).

Already in 1901 the German astronomer J. Soldner had made a similar calculation in which he
described the light as a Newtonian particle with the velocity c. Calculate the deflection angle α of a
photon grazing the border of the sun (see figure) with the assumption that the photon passes the sun
with the velocity c on a straight line. Let the component of the gravitational force perpendicular to
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the path of flight (F cos θ ) integrated over the entire flight orbit provide the transverse momentum
component.

Solution The transverse momentum component �p = ∫
F cos θ dt represented in the figure is calculated

between the limits ±∞ whereby the origin of the path x is put into the point of contact 0. The
momentum is p = E/c—see equation (33.61)—and dt = dx/c. For the distance C P , one may take
from the figure

(C P)2 = x2 + R2

⇒ �p =
∞∫

−∞
F cos θ

dx

c
= 1

c

∞∫
−∞

F
R√

x2 + R2
dx (33.51)

= γ mM R

c

∞∫
−∞

(x2 + R2)−3/2dx

= γ m M R

c

x

R2
√

x2 + R2

∣∣∣∣∣
∞

−∞
= 2γ mM

Rc
.

We thus obtain for the deflection angle α ≈ tan α = �p/p

α = 2γ m M

Rcmc
= 2γ M

Rc2
. (33.52)

Insertion of the numerical values M� = 1.99 · 1030 kg, R� = 6.96 · 108 m, γ = 6.67 ·
10−11 m3/(kg s2), c = 2.998 · 108 m/s yields a deflection angle of α = 0.875′′, a result that at
first is believed as quantitatively only conditionally correct. Surprisingly, in the general theory of rel-
ativity the calculation of the deflection of a light ray in the Schwarzschild field yields the same value
except for a factor of 2, thus α = 4γ M/Rc2 = 1.75′′. Experimental investigations between 1919 and
1954 yielded values between 1.5′′ and about 3′′ (Finlay-Freundlich, 1955; von Kluber, 1960). These
measurements on the average seem to yield 2.2′′, which would be too large by 25 %. In 1952 van
Biesbroeck found in a precision experiment the value 1.7′′ ± 0.1′′. More recent measurements from
1970 (Hill, 1971; Sramek, 1971) at Mullard Radio Astronomy Observatory of Cambridge University
and at the National Radio Observatory (USA) essentially confirm the value obtained by van Bies-
broeck, which agrees well with the theoretical prediction. The most accurate measurements of the
deflection of radio waves grazing the sun using state-of-the-art long-baseline interferometry6 yield
a confirmation of the general relativistic prediction for the deflection of 0.9998±0.0008. It should
be noted that the most sophisticated optical observations7 during solar eclipses can give no better
confirmation than 0.95±0.11 of the Einstein prediction.

6D. E. Lebach et al., “Measurement of the solar gravitational deflection of radio waves using very-long-baseline
interferometry,” Phys. Rev. Lett. 75 (1995) 1439–1442.

7R. A. Brune, Jr. et al., “Gravitation deflection of light: solar eclipse of 30 June 1973. I. Description of
procedures and final results,” Astron. J. 81 (1976) 452.
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The Tachyon hypothesis

We have seen that the speed of light is an upper limiting velocity. But a limit has two sides.
With this hint the hypothesis has been set up that there might exist particles with a lower
limiting velocity that equals the speed of light.

These hypothetical particles are called tachyons (Greek: tachys = fast). Their existence
does not contradict the theory of relativity. If the relativistic energy E = m0 c2/

√
1 − β2

(compare to (33.33)) is plotted as function of the velocity, then the pole at β = 1 separates
the velocity range into two regions. The range v < c is the (so far) accessible one, the range
v > c is that of the tachyons. However, it must be assumed that the rest mass M0 of the
tachyons is purely imaginary (M0 = im0) to ensure that their energy

E = M0 c2√
1 − β2

= im0 c2

i
√

β2 − 1
= m0 c2√

β2 − 1

for β > 1 (which characterizes the tachyons) remains real. Thus one drops the reality of
the rest mass but sticks to the requirement for always real energy. Finally, it is the energy of
a particle that is being measured. Its mass is – more or less – a proportionality factor (e.g.,
in the basic law of dynamics).

c
Pole

v

Tachyon region

E =
m c0

2

21– β

The tachyon hypothesis: What is the energy at v > c?

From the preceding sketch one may immediately read off several further properties of
tachyons.

1. Tachyons have a lower limit of velocity = c. There is no upper velocity limit (c ≤
|vtach.| < ∞).

2. For real energy the rest mass M0 of tachyons has an imaginary value.

3. If a tachyon has the speed of light, then its energy and momentum become infinitely
large.

4. If a tachyon loses energy, then its velocity increases. At E = 0 one has |vtach.| = ∞.

Further properties shall be
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5. Tachyons may in any energy state emit massless particles (photons, neutrinos). They
therefore must carry additional quantum numbers, such as electric charge.

6. The number of tachyons at a given instant in a given space is not uniquely determined.
It depends on the position of the observer.

7. Assumption: Tachyons are electrically charged particles. This is necessary, as already
noted in (5), to enable them to radiate light waves (photons).

This latter property significantly increases the chance of detection (if these particles
should exist at all). According to the theory an electrically charged tachyon should release
a Tscherenkov radiation8 (these are electromagnetic head shock waves (more precisely:
Mach shock waves), which always arise if ordinary charged particles are passing a medium
with a higher speed than the speed of light in this medium).9

A useful comparison for elucidation is the Mach cone.10 It arises, for example, by an
aeroplane flying with supersonic speed.

v

Airplane

Wave Front

Illustration of the Mach cone at supersonic flight.

8Ravel Aleksejevich Tscherenkov, Soviet physicist, b. July 28, 1904, near Voronesh, since 1959 professor and
since 1964 member of the Academy in Moscow. In 1934 he discovered the Tscherenkov radiation. In 1958 he was
awarded with the Nobel Prize, together with I.M. Frank and I. Tamm. After the war Tscherenkov was involved in
the construction of an electron synchrotron at the Lebedev Institute.

9The principle of Tscherenkov radiation finds application in experimental high-energy physics and nuclear
physics in the so-called Tscherenkov counters. They consist essentially of a medium of high refractive index,
such that the velocity of fast charged particles entering the counter exceeds the speed of light in this medium and
these particles therefore emit Tscherenkov radiation. The radiation may be observed and thus indirectly serves for
detecting the particles.

10Ernst Mach, physicist and philosopher, b. Feb. 18, 1838, Turas (Moravia)—d. Feb. 19, 1916, Haar near
Munich. In 1864 he was appointed professor of physics in Graz, in 1867 in Prague, in 1895–1901 professor of
philosophy in Vienna. As physicist he investigated in particular acoustic and optical problems. He improved the
stroboscopic method and successfully applied Toepler’s schlieren method for investigating flying missiles. He
especially studied the motion of solids with supersonic speed.
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The Tscherenkov radiation is the analog to Mach’s shock wave that arises during the
motion of a body with a speed above the phase velocity of the elastic wave in the surrounding
medium. 11

Because a tachyon always moves with superspeed of light, it should permanently emit
visible Tscherenkov radiation in vacuum. The disadvantage is that the tachyon loses energy,
and therefore its velocity increases to infinity during the radiation process. This difficulty
shall be circumvented by a permanent supply of energy to the tachyon mediated by an
electric field. Thereby the velocity would decrease again, and the Tscherenkov radiation
should be recordable.

Finally, it should be pointed out that the tachyons so far are nothing else but a “possibility
of theory.” An experimental proof is still missing.

Derivation of the energy law in the Minkowski space

Let us consider the scalar product of four-force and four-velocity:

⇒
F ·d

⇒
r

dτ
= m0

d2 ⇒
r

dτ 2
q · d

⇒
r

dτ
= m0

2

d

dτ

(
d

⇒
r

dτ

)2

. (33.53)

The normalization of the four-velocity is constant and equals the negative square of the
speed of light(

d
⇒
r

dτ

)2

= ⇒
v · ⇒

v=
(

1√
1 − β2

(v, ic)

)2

= 1

1 − β2
(v2 − c2) = −c2. (33.54)

Therefore the scalar product vanishes,

⇒
F ·d

⇒
r

dτ
= 0.

Evaluation of the scalar product component by component yields the relation(
Kx√

1 − β2
,

Ky√
1 − β2

,
Kz√

1 − β2
,

1√
1 − β2

d

dt

(
icm0√
1 − β2

))

·
(

1√
1 − β2

(
dx

dt
,

dy

dt
,

dz

dt
, ic

))
= 0

11In nuclear physics Mach shock waves were detected by H. Gutbrod et al. in a fast, “supersonic” collision of a
small nucleus through a large one. They were predicted almost 15 years earlier by Scheid, Müller, and Greiner (W.
Scheid, H. Müller, and W. Greiner, Phys. Rev. Lett. 32 (1974) 741). These nuclear compression waves represent
the key mechanism for the compression of nuclear matter. This phenomenon is exploited for studying the equation
of state of nuclear matter, see, e.g., W. Greiner and H. Stöcker, Scientific American, Jan. 1985, and H. Gutbrod
and H. Stöcker, Scientific American, Nov. 1991. Furthermore, the shock-induced compression of nuclear matter
can compress and at the same time heat the elementary matter so strongly that the nucleons are decomposed to
their constituents, quarks and gluons. This reaction is supposed to create a quark-gluon plasma, a state of matter
that existed in the very first instants of the world shortly after the Big Bang.
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or

1

1 − β2

(
Kx

dx

dt
+ Ky

dy

dt
+ Kz

dz

dt
+

(
d

dt
(imc)

)
ic

)
= 1

1 − β2

(
K · dr

dt
− d

dt

(
mc2

))
= 0.

From that follows

(K · dr − d(mc2)) = −(dV + d(mc2)) = 0, (33.55)

where the relation V (r) = V (x, y, z) = − ∫ r
r0

K · dr has been used, which means a
restriction to conservative force fields. The integration of (33.55) yields the relativistic
energy law

V (x, y, z) + mc2 = constant = E . (33.56)

Also here we see, in a different way than earlier, that mc2 must be interpreted as the total
energy (rest energy m0c2 + kinetic energy (mc2 − m0c2)) of the mass m.

The fourth momentum component

So far we could not yet interpret the fourth component of the four-momentum (33.5). We
will now express the momentum by the energy. For this purpose we first calculate the fourth
momentum component. By insertion of E = mc2 into the fourth momentum component
p4 = imc, it follows that

p4 = imc = i
mc2

c
= i E

c
.

The components of the four-momentum then read

p1 = mv1, p2 = mv2, p3 = mv3, p4 = i E

c
, (33.57)

with

m = m0√
1 − β2

.

Hence, the fourth momentum component essentially represents the energy of the mass
point.
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Conservation of momentum and energy for a free particle

From (33.8) and (33.9), it follows (see also (33.10)) that

d
⇒
p

dτ
= 1√

1 − β2

d

dt

(
mv, i

E

c

)
=⇒

F

=
(

K√
1 − β2

,
icm0ββ̇

(1 − β2)2

)
. (33.58)

If no three-forces are acting (i.e., K = 0), from the first three components it obviously
follows that

d

dt
(mv) = 0;

hence,

mv = m0√
1 − β2

v = −→
constant .

This is the relativistic form of the momentum conservation law for a free particle. This
vector equation immediately implies that the direction of v is constant. If we now consider
the magnitude of the vector equation and employ m0 = constant, then it follows that
(v ≡ |v|)

v√
1 − (v/c)2

= constant,

that is, the magnitude of v also must be constant. Therefore, also β = v/c = constant, i.e.,
β̇ = 0. Hence, from the fourth component of (33.58) follows:

d E

dt
= 0 or E = mc2 = constant

This is the energy law for a free particle.

Relativistic energy for free particles

The scalar multiplication of two four-momenta yields
⇒
p · ⇒

p= (p, imc) · (p, imc) = p2 − m2c2 = p2 − m2c2

and also
⇒
p · ⇒

p= m2
0

⇒
v · ⇒

v= −m2
0c2,

because
⇒
v · ⇒

v= −c2 (see equation (33.54) above). From there we get

p2 − m2c2 = −m2
0c2,
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and with mc = E

c
:

p2 − E2

c2
= −m2

0c2,

E2 = p2c2 + m2
0c4,

or
E2 = (pc)2 + (m0c2)2 = (mc2)2. (33.59)

This is the relativistic energy–momentum relation for a free particle since no additional
potential occurs. Note that formally also negative energies are possible.

E1 = +
√

(pc)2 + (m0c2)2 , E2 = −
√

(pc)2 + (m0c2)2. (33.60)

If a particle has the rest mass zero (photon, neutrino), then

E = p · c. (33.61)

For photons the quantum theory states that their energy is proportional to the frequency, i.e.,
E = h̄ω. Here h̄ denotes Planck’s elementary quantum of action. According to equation
(33.61), for the momentum p of the photon it immediately follows that

p = E

c
= h̄

ω

c
= h̄

2π�

c
= h̄2π

1

T c
= h̄

2π

λ
= h̄k, (33.62)

with k as wave number. This is the de Broglie relation between momentum p and wave
number k. It plays an important role in the discovery of quantum mechanics. Since now the
momentum direction p surely must coincide with the propagation direction k of the light
wave (only this is physically meaningful), this equation may also be written in vector form,
namely

p = h̄k. (33.63)

E

m c0
2

–m c0
2

Positive Energy
Continuum

Negative
Energy Continuum
(occupied by Electrons

The relativistic energy spectrum of a free par-
ticle. • means an electron, ◦ means a hole
(positron).

The relativistic energy spectrum (33.60)
is illustrated in the figure. This spectrum
later on follows also in the relativistic quan-
tum mechanics from the Dirac equation, the
relativistic form of the Schrödinger equa-
tion. It is valid for fermions with spin 1/2,
hence, for example, for electrons. An elec-
tron being in a state of positive energy might
“spontaneously” switch to arbitrary lower
states and thereby radiate off energy. This
process would never terminate since there
always exist further, lower states for elec-
tron transitions.

A radiation catastrophe that of course never has been observed would be unavoidable.
In order to avoid this difficulty, one must assume that the states of negative energy are
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completely occupied: An electron then cannot change to the negative energy states since
this is forbidden according to the Pauli principle. The energy continuum occupied with
electrons (the “Dirac sea”) is homogeneously and isotropically distributed over the entire
space. The Dirac sea so to speak represents the vacuum. It shall carry neither charge nor
mass. A hole (unoccupied electron state in the sea) behaves like a positive electron, which
is a positron. A light quantum (photon) with sufficient energy h̄ω > 2m0c2 may lift an
electron from the negative sea into the positive energy continuum and thereby leave behind
a hole (positron). This is the base of the electron–positron pair production or, more generally,
the particle–antiparticle production, which thus is founded by the theory of relativity.

The theory sketched here also meets with difficulties; first of all the infinitely large mass
and the infinitely large charge of the vacuum (occupied negative energy continuum) must
be eliminated (“renormalized”). This concept will be formulated and realized in quantum
electrodynamics.12

Examples on the equivalence of mass and energy

(a) An example on the equivalence of mass and energy is the positron–electron annihilation.
The positron is the antiparticle of the electron. Antiparticles are in general elementary par-
ticles that may arise in reactions with very large energy conversions together with ordinary
particles, and in essential properties (electric charge, magnetic moment) appear so to speak
as their mirror image. An interpretation of their appearance is given by quantum mechanics
in its relativistic generalization of the Dirac wave equation. According to this theory the
particles may have both positive and negative energy states. Particles and antiparticles dis-
appear (annihilate) in common just as they appear in common (pair annihilation and pair
production, respectively).

(b) The mass defect: If one adds the individual masses of the protons and neutrons
forming an atomic nucleus, and compares the sum with the result of measuring the mass
of that nucleus in the mass spectrograph, one realizes that the composite nucleus has
a lower mass than the sum of the individual masses of its nucleons. A fraction of the
mass “disappeared”; it has been converted into energy (binding energy). This is a further
confirmation of the equation E = mc2. For example: The mass of an He nucleus (α particle)
is Mαc2 = 3727.44 MeV; on the contrary 2Mpc2 + 2Mnc2 = 3755.44 MeV. The binding
energy of the α particle is therefore

2Mpc2 + 2Mnc2 − Mαc2 = 28 MeV.

Problem 33.6: Mass loss of sun by radiation

The mean sun energy density irradiated onto the earth’s surface is

ε = 1.4 · 106 erg · cm−2 · s−1 .

12We refer to Volume 7 of the lectures: W. Greiner and J. Reinhardt: Quantum Electrodynamics, Spinger Verlag
New York 2003.
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How much of mass is lost per second by the sun when recalculating this energy loss to mass loss?
What would be the lifetime of the sun if this rate of loss remained constant (ms = 1.99 · 1033 g)?

Solution The sun shall radiate energy uniformly and isotropically. A spherical surface about the sun at the
distance sun–earth (re = 1.5 · 1013 cm) has the area

F = 4πr 2
e = 2.83 · 1027 cm2.

The energy release in the interval �t = 1 s is therefore

�E = ε · F · �t

= 1.4 · 106 · 2.82 · 1027 · erg · cm−2 s−1 · cm2 · s

= 3.96 · 1033 erg.

This corresponds to a loss of mass per second of

�m = �E

c2
= 4.4 · 1012 g (c = 3 · 1010 cm · s−1).

For the lifetime of the sun, we then get

T = �t
ms

�m
= 1.99 · 1033 g · 1 s

4.4 · 1012 g
= 4.53 · 1020 s = 1.43 · 1013 years.

This problem is, however, unrealistic because due to energy conservation laws for the elementary
particles only a fraction of the mass may annihilate at all. If one assumes that about 1/1000 of the sun
mass may annihilate, there remains a lifetime of the sun of about 1010 years, which compares with
the estimated age of the world.

Problem 33.7: Velocity dependence of the proton mass

The rest mass of the proton is m0(p) = 1.66 · 10−27 kg. Calculate the mass of the proton moving with
(a) 3 · 107 m/s and (b) 2.7 · 108 m/s.

Compare the kinetic energy of the proton in both cases according to the classical and the relativistic
calculation. (1 Joule = 1 kg m2/s2 = 0.62 · 1013 MeV.)

Solution For the given velocities one evaluates the following values for

β2 = v2

c2
and γ = 1√

1 − β2

(a) β = 0.1, γ = 1.005,

(b) β = 0.91, γ = 2.3.

For the proton mass it follows from the relation that

m = m0√
1 − β2

= γ m0

(a) m = 1.005m0
∼= 1.67 · 10−27 kg,

(b) m = 2.300m0
∼= 3.82 · 10−27 kg.

The relativistic kinetic energy

T = E − E0 = m0c2(γ − 1)
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is then
(a)

T = m0 · (3 · 108)2 m2

s2
· 0.005 = (1.5 · 10−10)kg

m2

s2
· 0.005

= 7.5 · 10−13 Joule,

(b)

T = m0 · (3 · 108)2 m2

s2
· 1.3 = 1.3 · 10−10 Joule.

A comparison of the velocities and the kinetic energies shows that cases (a) and (b) differ by a
factor 9 in the velocity, but by a factor 260 in the energy.

The classical calculation of the kinetic energy

T = 1

2
m0v

2 = 1

2
m0c2β2

yields

(a) T = 7.5 · 10−13 J and (b) T = 6.1 · 10−11 J.

For case (a) the classical and relativistic energy are roughly equal. For case (b) the relativistic value
is by a factor 3.2 higher than the classical result, which is also expected from the calculated β-values.

Problem 33.8: Efficiency of a working fusion reactor

In 1970 the total energy consumption of the world amounted to 5.5 · 1013 kWh (kilowatt hour). A
fusion reactor could produce energy by the reaction 2D +2 D →4 He + energy. (2D—deuterium with
m0(

2D) = 2.0147 amu, 4He—helium with m0(
4He) = 4.0039 amu, where 1 amu = 1 atomic mass

unit = 1/12 (rest mass of 12
6 C) = 1.685 · 10−27 kg.) How many kg deuterium would be needed to

generate the world energy consumption of 1970?

Solution The rest mass of two deuterium nuclei before the reaction is

m0(before) = 2m0(
2D) = 4.0294 amu,

while the rest mass after the reaction is

m0(after) = m0(
4He) = 4.0039 amu.

Hence, the mass loss during the reaction is

�m = m0(before) − m0(after) = 0.0255 amu.

The released energy �E is calculated according to the relation E = mc2 as �E = (�m)c2 .
This means that per deuterium–mass the energy

�E

2m0(2D)
= �m

2m0(2D)
c2 = (0.00633)c2

is produced. Inversely, the quantity of deuterium (mass M) needed for a definite quantity of energy
E to be produced is

M(2D) = E

c2
· 1

0.00633
.
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The factor 0.00633 is a measure of the efficiency of the reaction 2D +2 D →4 He + energy. For an
annual energy consumption of (1 kWh = 3.6 · 106 Joule)

E = 5.5 · 1013 · 3.6 · 106 Joule ≈ 2 · 1020 Joule,

one therefore would need (1 Joule = 1 kg m2 s−2)

M(2D) = 2 · 1020

(3 · 105)2
· 1

0.00635

Joule s2

km2 ≈ 3.5 · 105 kg = 350 t

of deuterium.
As the earth’s oceans contain ca. 0.2 0/00 deuterium, mankind would get rid of any energy problem

for 1 million years—if fusion reactors were available.

Problem 33.9: Decay of the π+-meson

The rest mass of the π+-meson is mπ = 139.6 MeV/c2. The π+-meson decays into a anti-muon (µ+

lepton, a “heavy positron”) with the rest mass mµ = 105.7 MeV/c2 and a neutrino �µ with the rest
mass m� = 0. Find the momentum and the energy of the arising muon µ+.

Solution In the figure below the quoted decay is sketched, (a) in the rest frame of the π+, and (b) in the
laboratory system, as bubble-chamber record, with the subsequent decay µ+ → e+�e�̄µ in a positron
and two neutrinos.

b)a)

π+-meson
(at rest)

µ+

µ+

e+

π+-meson

pµ

pν

neutrino

The requirement for conservation of the four-momentum

⇒
pπ=⇒

pµ + ⇒
p�

implies the conservation of both the momentum as well as the energy. In the following we employ
the relation for the magnitude of the three-momentum p =| p� |=| pµ |. The total energy of the
anti-muon µ+ is then

E2
µ = c2 p2 + m2

µc4,

and the energy of the neutrino is

E2
� = c2 p2 because m� = 0.
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It further holds that

Eπ = Eµ + E�

or

mπ c2 =
√

c2 p2 + c4m2
µ + cp.

Forming the square and rearranging yields

cp = c2

2

(
m2

π − m2
µ

mπ

)
= 1

2

[
mπ c2 − (mµc2)2

mπ c2

]
,

and by inserting the rest masses mπ = 139.6 MeV/c2 and mµ = 105.7 MeV/c2 we get

cp = 1

2

[
139.6 − 105.7

139.6
· 105.7

]
MeV = 29.8 MeV.

For the kinetic energy of the anti-muon µ+, it then follows that

Tµ = E − mµc2 =
√

c2 p2 + m2
µc4 − mµc2

=
[√

(29.8)2 + (105.7)2 − 105.7
]

MeV = 4.1 MeV. (33.64)

Problem 33.10: Lifetime of the K +-mesons

0 10 20 30 40 50 l(m)

1.0

0.1

0.01

N
N 0

N
N

1
0 e

N
N

1
0 e

=

=

(at = 15m)l

(at =12m)l

P= 20P=1,6 GeV
c

GeV
c

Decay of Kaons from emitters with different ve-
locities, as seen in the laboratory frame.

The lifetime of a K +-meson (the positively
charged variety of the K -mesons) is τ = 1.235 ·
10−8 s when measured for K -mesons at rest.
The following figure displays the decay data of
a K -meson emitter with a momentum of 1.6
GeV/c and 2.0 GeV/c in the laboratory system.
Here the fraction (N/N0) of the surviving K -
mesons (N0 is the total number of K -mesons in
the beam) is plotted versus the flight path cov-
ered. Let the origin of the length scale be chosen
arbitrarily. Because the K -mesons are moving
practically with the speed of light, the scaling on
the abscissa may also be understood as a time
scale as adopted in the laboratory system.

One sees, however, from the figure that the
K -mesons with a larger laboratory momentum
are virtually (in the laboratory) longer-lived.
However, to a certain time interval in the lab-
oratory system there corresponds a shortened
time interval in the rest frame of the K -meson,
due to the time dilatation. The latter interval
becomes shorter, the larger the momentum of the K -meson in the laboratory system is. Show that
the data given in the figure are consistent with the lifetime of a K +-meson quoted above, if the
phenomenon of time dilatation, as is required by the special theory of relativity, is taken into account.
(The rest energy of the K -meson is m0c2 = 0.494 GeV.)
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Solution The figure shows the quantity N/N0 versus the flight path l in semilogarithmic scale. The two decay
curves are straight lines in this representation, i.e. the decay data obey the equation

N = N0e−l/λ, (33.65)

because then ln(N/N0) depends linearly on l, corresponding to the scale on the ordinate. But then it
holds that

ln

(
N

N0

)
= − l

λ
, (33.66)

and we see right now that λ denotes that flight length after which the surviving rate of K -mesons
dropped to the value 1/e. From the figure one therefore extracts

λ = 12 m for momentum p = 1.6 GeV/c,

λ = 15 m for momentum p = 2.0 GeV/c.

Denoting the velocity of a K -meson by v = βc, a meson needs the time �t to cover the distance l:

�t = l

βc
.

We therefore may write equation (33.65) in the form

N = N0e−�tβc/λ. (33.67)

We compare this result with the known form of the decay law:

N = N0e−�t ′/τ , (33.68)

where �t ′ denotes a time interval measured in the rest frame of the K -meson. Such an interval �t ′

undergoes a dilatation in the laboratory frame and is measured there as �t = γ�t ′. A comparison of
(33.67) with

N = N0e−�t ′/τ = N0e−�t/γ τ (33.69)

therefore leads to

βc

λ
= 1

γ τ
or τ = λ

βγ c
. (33.70)

Because of the relation (33.68) τ is the lifetime of the K -meson as is measured in its rest frame.
For K -mesons with momenta in the given order of magnitude the velocity v practically equals the
speed of light, i.e., β ≈ 1. The momentum of the particles may, however, be calculated exactly;
according to

pc = moγβc2 (p = mv = m0γ v = m0γβc), (33.71)

we obtain

βγ = pc

m0c2
= 1.6

0.494
= 3.239 for p = 1.6 GeV/c,

= 2.0

0.494
= 4.049 for p = 2.0 GeV/c.
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For the mean lifetime τ in the rest frame of the K -meson, one thus obtains from relation (33.70)

τ =
(

12 m

3 · 108 m/s

)
· 1

3.239
= 1.235 · 10−8 s for p = 1.6 GeV/c,

and

τ =
(

15 m

3 · 108 m/s

)
· 1

4.049
= 1.235 · 10−8 s for p = 2.0 GeV/c,

which agrees with the value given in the formulation of the problem. However, the lifetime measured
in the laboratory frame is obviously

τ ′ = γ τ = λ

βc
(33.72)

because of relation (33.69), such that the lifetime in the laboratory frame appears as extended by a
factor of ≈ 3 or ≈ 4 against the lifetime in the rest frame of the K -meson. The faster the K -meson
moves, the larger is the time dilatation and the longer is its “lifetime” in the laboratory frame. To
determine the velocity of the K -mesons, we write α = βγ and obtain

α2 = β2γ 2 = β2

1 − β2
or β2 = α2(1 − β2)

or rewritten(
1 + α2 = 1 + β2

1 − β2
= 1

1 − β2

)

β2 = α2

1 + α2
or β = α√

1 + α2
= βγ√

1 + β2γ 2
.

For a K -meson of momentum 1.6 GeV/c, we found βγ = 3.239; thus for β

β = 3.239√
1 + 10.49

= 0.955,

results, that is, v = 0.955c. The K -mesons practically move with the speed of light, as was assumed
above.

Problem 33.11: On nuclear fission

One of the basic reactions in nuclear fission is

n + 235
92 U → 236

92 U → 92
38Sr + 140

54 Xe + 4n .

The masses of the essential reaction partners are:

m0(
235U) = 235.175 amu,

m0(
92Sr) = 91.937 amu,

m0(
140Xe) = 139.947 amu,

m0(n) = 1.009 amu

(amu = “atomic mass unit,” 1 amu = 1.6585 ·10−27 kg). Calculate the energy released per reaction.
How many kg of uranium are needed to produce the worldwide total electric energy consumed in
1970 (5.5 · 1012 kWh) with an efficiency of η = 0.5?
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Solution m0(n) + m0(
235U) = 236.184 amu = 391.711 · 10−27 kg .

m0(Sr92) + m0(Xe140) + 4m0(n) = 235.92 amu = 391.273 · 10−27 kg .

Thus, the mass defect of the reaction is

�m = 0.438 · 10−27 kg

or
�E = 3.94 · 10−11 J.

To release 5.5 · 1012 kWh of electric energy (1 kWh = 3.6 · 106 J), one needs about 3920 t of
uranium 235U. With a density of 18.7 g/cm3, this would correspond to a cube with an edge length of
5.94 m.

Problem 33.12: Mass–energy equivalence in the example of the π0-meson

The π 0-meson is an electrically neutral particle that decays into two high-energetic photons. The rest
energy of the π0-meson is m0c2 = 135 MeV.

(a) Find the energy of the photons if a π0 decays at rest.

(b) Find the maximum and minimum energy of the γ -rays in the laboratory frame if the π0 there has
a total energy of Etot = 426 MeV.

γ1

p1

p2

γ2

π0

Decay of the π0-meson
into two photons.

Solution (a) Let the two emitted photons have the energies E1, E2 and the
momenta p1 and p2, respectively. Because of the energy–momentum
conservation law then

E1 + E2 = E = m0c2, p1 + p2 = 0,

thus |p1| = |p2| (see figure).
Moreover,

|pi | = Ei

c
(i = 1, 2),

and therefore,

E1 = E2 = E

2
= 67.5 MeV.

(b) Because Etot = mc2 = 3.16 m0c2 = √
10 m0c2 for the velocity of the π0-meson in the laboratory

frame, it follows that γ 2 = 10 or β = 0.9486. The π0-meson thus moves with a velocity of
|v| = 0, 9486 c in the laboratory frame. In the rest frame of the meson it now decays into two photons
as was described in (a). In the laboratory frame the two γ ′s may now be emitted under arbitrary angles
against the beam axis (direction of v ) and there also appear as more or less red- or ultraviolet-shifted
(see below).

Eγ (max) is obtained if an emitted γ moves along the direction of v (see figure), Eγ (min) is obtained
if a γ moves against the direction of v. We denote the rest frame S of π 0 by nonprimed quantities,
the laboratory frame S′ by primed quantities. The energy E0(γ ) = 67.5 MeV (measured in S) of an
emitted photon transforms as the timelike component of a four-vector, thus:

E ′ = γ [E0 − β · (cp)].
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γ1

p1

p2

m0
γ2

vπ0,Etot

vπ0

or

Eγ(min) Eγ(max)

The situation before (left) and after (right) the decay of the π0-meson.

In S one has |p| = E0/c, and the maximum (minimum) γ -energy is obtained if p points in negative
(positive) β-direction (as seen from the S-frame). Hence:

Eγ (max) = γ · E0(1 + β) =
√

1 + β

1 − β
· E0 = 416 MeV,

and

Eγ (min) = γ · E0(1 − β) =
√

1 − β

1 + β
· E0 = 10.9 MeV.

Problem 33.13: On pair annihilation

Let an isolated system contain 6 · 1027 protons and the same number of antiprotons at rest. (m0(p) =
m0(p) = 1.7 ·10−27 kg.) Let all protons and antiprotons annihilate each other and produce 30 ·1027π -
mesons. What is the mean kinetic energy of the π -mesons? (m0(π)/m0(p) = 0.15.)

Solution The total mass of the system is Mtotal = 12 · 1027 m(p). Because 30 · 1027π -mesons are created,
each of them on the average has a total energy of m total(π) = 12

30 m0(p) = 0.4 m0(p). From there
immediately follows a mean kinetic energy of

Ekin(π) = [m total(π) − m0(π)]c2 =
[

0.4 − m0(π)

m0(p)

]
mpc2

= (0.4 − 0.15) · 0.937 GeV = 234 MeV.

Problem 33.14: Kinetic energy of the photon

L

Sour ce

Photon Source

Detector Detector

ν

ν

ν ν ν>

Emission and detection of photons in
the gravitational field of the earth.

A certain radioactive nucleus emits photons of energy
E = h� and momentum p = h�/c. A precision tech-
nique based on the “Mössbauer effect” allows frequency
measurements up to an accuracy of d�/� = 10−15. The
photons of frequency � are absorbed by a detector. If the
emitter and the detector are at equal altitude above the
earth’s surface, the detector receives a photon of frequency
�′ = �. This is no longer true if the emitter is at an altitude
L above the detector (see figure).

(a) The rest mass of a photon is m0 = 0. What is the
actual mass of a photon of energy E = h�?

(b) If a photon falls through an altitude L in the earth’s
gravitational field, then its potential energy decreases.
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As a result, the photon gains “kinetic” energy. How large is the photon energy E ′ when the photon
hits the detector?

(c) What frequency �′ is measured by the detector?

(d) Assume that the photon falls from an altitude L = 10 m. Could one measure the frequency shift
in the gravitational field of earth by means of the Mössbauer effect?

(e) Could this effect have a bearing on the light emission of very heavy stars?

Solution (a) Because E = h� = mc2, it follows for the mass of a photon that

m = h�

c2
.

(b) The potential energy of a photon of mass m at the altitude L above ground follows from

d E

dx
= mg = E

c2
g

by integration; thus

E ′ = E egl/c2 ≈ E

(
1 + gL

c2

)
= h�

(
1 + gL

c2

)
.

If the photon “falls down” by the altitude L , it gains this energy according to

E ′ = E + mgL =
(

1 + gL

c2

)
h�.

(c) The new frequency immediately results from there as

�′ =
(

1 + gL

c2

)
�.

(d) As a relative frequency shift, we consider the quantity

��

�
= gL

c2
= 10−15, for L = 10 m.

That is, with a fall distance of 10 m on earth, the effect is measurable by means of the Mössbauer
effect. The experiment was performed first in 1960 by Pound13 and Rebka with a fall distance of 72
ft (about 22 m). They obtained an experimental value of (5.13 ± 0.51) · 10−15 as compared with the
theoretical prediction of 4.92 · 10−15.

(e) If light leaves the gravitational field of the emitting body, it gains potential energy and therefore
appears as red-shifted. We therefore see very heavy stars “colder” than they actually are at their
surface.

13Robert Vivian Pound, b. 1919, Ridgeway, Ontario, Canada. He held research positions at MIT from 1942–
1946, and at Harvard from 1946–1989. Pound did pioneering work in the areas of nuclear magnetic resonance
(NMR), radar, and experimental tests of Einstein’s general theory of relativity. The experiment of “weighting
photons” was done in collaboration with his graduate student Glen Rebka.
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Problem 33.15: The so-called twin paradox

On the earth are living triplets A, B, and C . At earth time t = 0, B and C each board a spaceship
and go away from earth on straight lines. A observes the travels of the brothers from the earth and
realizes the following by his clocks and scales: B for one year experiences a uniform acceleration,
such that he comes from velocity zero to a velocity of v = 0.8 c. He then flies for another year with
this constant velocity. During a further year B reduces his velocity and reverses it to −0.8 c. He again
flies for one year with this velocity, and in the course of a further year he reduces his velocity to zero
to land again on earth. C makes a similar trip as B, during which he, as stated by A, in one year
uniformly accelerates to a velocity of 0.8 c, but then flies 11 years with this velocity, within a further
year returns in the same way as B, with constant velocity flies back 11 years, and then reduces his
velocity during one year to zero and lands again at A on earth. Let B and C have determined the
duration of their trip with the same kinds of clocks as A did.

(a) Sketch the states of motion of the three brothers in a space-time (t, x) diagram.

(b) The two brothers B and C compare the duration of their trips after the landing of C on earth.
What difference exists between the duration of C’s trip determined by C’s clock and the duration
of B’s trip determined by B’s clock?

(c) For the observer A on earth, the time difference between the duration of C’s trip and that of B
amounted to 20 years. Compare this statement with the result from (b). Doesn’t this lead to a
contradiction to the postulate of relativity of the special theory of relativity, which states that all
inertial frames are on equal rights?

(d) Let us assume that a further observer D at the moment t = 0 was accelerated instantaneously to
its velocity v = 0.8 c. According to A on earth, D moves away from earth for 10 years with this
constant velocity; then he instantaneously turns his velocity around by a strong acceleration and
flies back to earth with v = 0.8 c. After 10 more years of flight with constant speed, he again
reaches the earth, where he instantaneously reduces his speed to zero and lands at A. We shall
assume that the number of heartbeats of A and D measures their corresponding proper time that
has passed. How does the space-time diagram of A and D look like? How much did A and D age
during the flight of D?

Solution (a) In the space-time diagram, the motions of A, B, and C look as plotted in the figure:

25

20

15

10

5

0

t (years)

x

A C

B

Space-time map of the journeys of the triplets A, B, and C.
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(b) Since B and C have passed acceleration periods, we cannot calculate the proper times τB and
τC of the trips of B and C , respectively. However, the acceleration periods for B and C were identical,
hence we may calculate the difference of the proper times τC − τB by considering only the intervals
of constant velocity. As seen from earth these are for the motion of B in total 2 years, for C in total
22 years. B and C flew during these periods with the same velocity of v = 0.8 c relative to earth. We
then may calculate �τ ≡ τC − τB by means of the time dilatation factor:

�t = 20 y = γ�τ

or

�τ = γ −1 · 20 y =
√

1 − 0.82 · 20 y = 12 years.

Thus, if B and C compare the trip durations measured by their own clocks, they realize that C was
12 years longer on the way than B. If they directly compare the display of their clocks, it turns out
that C’s clock shows 8 years less than the clock of B, who after his return to earth still had to wait 20
earth years for C’s return.

(c) Although after landing of C on earth all three brothers may compare their clocks at one position
on earth, the time difference of the trips of C and B according to their statements amounts to 12
years, although A states 20 years for that. One might now argue as follows: During the phases of
constant speed A moves with a speed of |v| = 0.8 c relative to B or C , such that both B and C see
the time evolutions at A slowed down. For reasons of symmetry the relativity principle should then
imply that the above difference on their statements was not permissible. This reasoning is, however,
wrong. There is no symmetry between the motion of A and the motion of B or C , because the latter
both were accelerated (absolutely) and thus did not always stay in an inertial frame.

(d) The space-time diagram of A and D looks as follows:

20

15

10

5

0

t (years)

x

A
D

Space-time map of the journey of voyager D.

During the flight of D 20 years of proper time passed for A, while D ages by only �τD =
�t · γ −1 = 12 years. Thus D aged by 8 years less than A did. The proper time that passed between
two space-time points x and y thus depends on the trajectory T of the observer between x and y. It
is given by the arc length τ(T ) = 1

c

∫ y
x ds of the trajectory between x and y. That in our example

τD < τA, although the world line of D in the above figure is larger than that of A, is a consequence
of the indefinite metric of the space-time continuum.
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Problem 33.16: Kinetic energy of a relativistic particle

The kinetic energy of a nonrelativistic particle reads

T = 1

2
m0v2 = p2

2m0
,

where p = m0v is the momentum of the particle. Find a formally similar expression for the relativistic
kinetic energy.

Solution One has

E = mc2 = m0c2√
1 − v2/c2

(33.73)

for the relativistic total energy of a free particle and

p = mv = m0v√
1 − v2/c2

(33.74)

for the relativistic momentum. According to (33.59) for (33.73) the following form still exists:

E2 = c2p2 + (
m0c2

)2

= c2p2 + E2
0 , (33.75)

with E0 = m0c2 the rest energy. Hence

c2p2 = E2 − E2
0 = (E − E0)(E + E0),

and therefore it follows for the relativistic kinetic energy that

T = E − E0 = c2p2

(E + E0)
= c2p2

(m + m0)c2

= p2

m + m0
. (33.76)

This is the desired form. Obviously one has

lim
v→0

T = p2

m0 + m0
= p2

2m0
(33.77)

and

T = m2v2

m0

(
1 + 1/

√
1 − v2/c2

) = m2
√

1 − v2/c2 v2

m0

(
1 + √

1 − v2/c2
)

= mv2

1 + √
1 − v2/c2

=︸︷︷︸
v→c

mv2 = p · v.

These relations were pointed out first by W.G. Holladay (Vanderbilt University, Nashville, Ten-
nessee.).



34 Applications of
the Special
Theory of
Relativity

The elastic collision

In the general collision problem we are interested in the changes of momenta and energies
of the colliding particles. The only assumption about the interaction adopted here is that it
shall act only at very small distances between the particles. The problem may be solved by
means of the conservation laws of momentum and energy. We denote the four-momenta of

the two particles before the collision by
⇒
p and

⇒
P , and after the collision by

⇒
p′ and

⇒
P ′. The

four-momentum conservation law then reads
⇒
p + ⇒

P=
⇒
p′ +

⇒
P ′ . (34.1)

The four-vector equation comprises two conservation laws, namely that for the usual
three-momentum

p + P = p′ + P′ (34.2)

(see equation (33.57)), and that for the energy

e + E = e′ + E ′ = E, (34.3)

where with the rest masses of the particles m0 and M0

e2

c2
= m2

0c2 + p2,
E2

c2
= M2

0 c2 + P2 (34.4)

461
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are the energies of the particles before the collision. Because the collision was supposed as
elastic, the rest masses m0 and M0 remain unchanged in the collision process. Therefore,
the energies of the particles after the collision are given by e′ and E ′, where

e′2

c2
= m2

0c2 + p′2,
E ′2

c2
= M2

0 c2 + P′2. (34.5)

The total energy of the considered system has been denoted by E . In (34.2) and (34.3), the
rest masses and the components of the initial momenta are to be considered as given. We are
looking for the components of the final momenta p′ and P′. Hence, we have four equations
for six unknown quantities, such that the general solution will contain two undetermined
parameters.

The collision problem becomes most simple in that coordinate frame where the initial
momenta p and P are oppositely equal. This is the frame in which the total momentum
vanishes and therefore the center of mass of the two particles is at rest. This is the rest frame
of the center of mass, which is often denoted more briefly as the center-of-mass system.
In this frame because of (34.1) also the final values p′ and P′ of the momenta must be
oppositely equal.

α
p

p´

P´

P

The elastic collision in the center-of-
mass system.

On the other hand, the energy law (34.3) requires
that the magnitudes |p| = |P| and |p′| = |P′| of the
momenta remain unchanged in the collision:

|p| = |p′|
or simply

p = p′, (34.6)

with the abbreviations p = |p|, P = |P′|, etc. In the
collision process only the straight line along the initial
direction of the two momenta is arbitrarily rotated in
space (see figure).

The deflection angle α represents one of the unde-
fined parameters. The second parameter is the azimuth
angle specifying the position of the plane defined by p and p′, which evidently may be
arbitrarily rotated about the direction of p.

Of particular interest for physical applications is the case with one of the particles, for
example, the second one, being at rest before the collision:

P = 0. (34.7)

Formula (34.2) then simplifies to

p = p′ + P′. (34.8)

The energy equation retains its form (34.3), but now from (34.4) it follows that

E

c
= M0c. (34.9)



THE ELASTIC COLLISION 463

α
θp
p´

P´

Momentum balance of a colliding par-
ticle and a particle at rest.

In this case one may choose the angle θ or α as the
first undetermined parameter (figure). The second pa-
rameter is again the azimuth angle, which determines
the position of the drawing plane of the figure that
may be arbitrarily rotated about the direction of p; it
has no meaning for the following calculation.

The solution of this particular collision problem
might be found from the solution in the center-of-mass
system by Lorentz-transforming to the rest frame of
the second particle. Here we shall derive the final formula from (34.8), (34.3), and (34.9)
by straightforward calculation.

We choose the angle θ as parameter and write down the trigonometric formula that
follows immediately from the figure (see also equation (34.8))

P ′2 = p′2 + p2 − 2p p′ cos θ. (34.10)

By forming the square of the relation following from (34.5) and (34.3) (ε = E/c)

ε −
√

M2
0 c2 + P ′2 =

√
m2

0c2 + p′2 ,

there results

p′2 + m2
0c2 = P ′2 + M2

0 c2 + ε2 − 2ε

√
M2

0 c2 + P ′2 .

When inserting in this relation the value (34.10) of P ′2, the resulting equation contains
besides the term with the square root only a part linear in p′. Thus, one may eliminate the
square root by one more squaring and obtain an equation of second degree in p′:

(m2
0c2 − M2

0 c2 − p2 − ε2 + 2p p′ cos θ)2 − 4ε2(M2
0 c2 + p2 + p′2 − 2p p′ cos θ) = 0 .

By explicitly calculating the square and rearranging the terms, one gets

4
(

p2 cos θ − ε2
)

p′2 + 4p p′ cos θ
(
m2

0c2 − M2
0 c2 − p2 + ε2

)
(34.11)

+ (
m2

0c2 − M2
0 c2

)2 − 2
(

p2 + ε2
)

m2
0c2 + (

ε2 − p2
)

M2
0 c2 + (

p2 − ε2
)2 = 0 .

This equation can be brought to a simpler form by making use of the relations

ε =
√

p2 + m2
0c2 + M0c, (34.12)

ε = e

c
+ M0c (34.13)
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which follow from (34.3), (34.4), and (34.7). By inserting (34.13) in the first summand of
(34.11) and (34.12) in the second and third summands, a further muliplication by −1/4
yields((e

c
+ M0c

)2 − p2 cos θ

)
p′2 (34.14)

− 2pp′ cos θ

(
m2

0c2 + M0c
√

p2 + m2
0c2

)
− p2c2

(
M2

0 − m2
0

) = 0 .

In the second summand, one now replaces
√

p2 + m2
0c2 by e/c according to (34.4), and

finally one ends up with a quadratic equation for p′:((e

c
+ M0c

)2 − p2 cos θ

)
p′2 (34.15)

− 2pp′ cos θ
(

m2
0c2 + M0c

e

c

)
− p2c2

(
M2

0 − m2
0

) = 0 .

Solving for p′ yields the final result

p′ = p

(M0c + e/c)2 − p2 cos2 θ

{
cos θ

(
m2

0c2 + M0c
e

c

)
±

(e

c
c + M0c2

) √
M2

0 − m2
0 sin2 θ

}
. (34.16)

We still note that for M0 > m0 only the positive sign before the square root in (34.16)
must be admitted. According to (34.12), ε > p and therefore ε2 − p2 cos2 θ > 0. The
explanation for this behavior is provided by (34.16). In the case M0 < m0, the angle θ

passes twice through the range 0 ≤ θ ≤ θmax, whereby θmax follows from

M0 = m0 sin θmax.

Therefore to any angle θ in this range will correspond two solutions of the collision problem.
In the case M0 > m0, however, θ passes the range 0 ≤ θ ≤ π once, hence for any value of
θ there is only one solution.

By inserting the value (34.16) of p′ in the first of equations (34.5), there results after an
elementary calculation the value of e′/c. The final formula reads

e′

c
= 1

(M0c + e/c)2 − p2 cos2 θ

{(e

c
+ M0c

) (
M0c

e

c
+ m2

0c2
)

± cp2 cos θ

√
M2

0 − m2
0 sin2 θ

}
. (34.17)

To finish the calculation, we still have to give formulas for P′ and E ′/c. P′ may be
calulated immediately from (34.7), namely

P′ = p − p′, (34.18)
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since p′ is determined by p′ and the angle θ . The energy E ′/c is most simply calculated
from (34.3) and (34.9):

E ′

c
= M0c + e

c
− e′

c
. (34.19)

The formulas (34.16) to (34.19) represent the complete solution of the given collision
problem.

Compton scattering

We will apply these formulas to the case of the collision of a photon with an electron at
rest. The special feature of the photon is that its rest mass is extremely small against the rest
mass of the electron and possibly even strictly equals zero. This simplifies considerably the
algebra we had needed in the previous section.

In the course on quantum mechanics, we will see in detail how the photon energy e is
related to the frequency and the wavelength λ of the radiation. We will find

e = h̄ω = h� = h̄c · 2π

λ
= hc

λ
. (34.20)

Here h̄ = h/2π is the Planck quantum of action (h̄ = 1.054571 × 10−34 Js), and ω = 2π�
is the angular frequency of the photon oscillation. The momentum of the photon is given by

p = h̄k (34.21)

which defines the so-called wave vector k of the photon.
When photons of X-rays are scattered by electrons, a frequency shift can be observed,

the amount of this shift depending on the scattering angle. This effect was discovered
by Compton in 1923 and explained on the basis of the photon picture simultanously by
Compton himself and Debye.

α
θp
p´

P´

Conservation of momentum in Comp-
ton scattering.

The figure illustrates again the kinematical situa-
tion. We assume the electron is unbound and at rest
before the collision. Then the conservation of energy
and momentum reads

h̄ω + m0c2 = h̄ω′ + m0c2√
1 − β2

, (34.22)

h̄k = h̄k′ + m0v√
1 − β2

(34.23)

To obtain a relation between the scattering angle θ and the frequency shift, we split up
(34.23) into components parallel and vertical to the direction of incidence. This yields, with
k = ω/c,

h̄ω

c
= h̄ω′

c
cos θ + m0v√

1 − β2
cos α (34.24)
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and
h̄ω′

c
sin θ = + m0v√

1 − β2
sin α . (34.25)

From these two component equations, we can first eliminate α and then, by (34.22), the
electron velocity v (β = v/c). To this end, we bring the cos θ term from equation (34.24)
to the left hand side, sqare and add the square of equation (34.25):(

h̄ω

c
− h̄ω′

c
cos θ

)2

+
(

h̄ω′

c
sin θ

)2

=
(

m0v√
1 − β2

)2 (
cos2 α + sin2 α

)
(34.26)

or (
h̄ω

c

)2

− 2
h̄ω

c

h̄ω′

c
cos θ +

(
h̄ω′

c

)2

=
(

m0v√
1 − β2

)2

= m2
0v

2

1 − v

c
2

. (34.27)

From (34.22) we get

(
h̄ω − h̄ω′ + m0c2

)2 =
(
m0c2

)2

1 − v2

c2

, (34.28)

or

1 − v2

c2
=

(
m0c2

)2(
h̄ω − h̄ω′ + m0c2

)2 , v2 = c2

(
1 −

(
m0c2

)2(
h̄ω − h̄ω′ + m0c2

)2

)
. (34.29)

Hence,

m2
0v

2

1 − v

c
2

= m2
0c2

(
1 −

(
m0c2

)2(
h̄ω − h̄ω′ + m0c2

)2

)
·
(
h̄ω − h̄ω′ + m0c2

)2(
m0c2

)2

= m2
0c2

((
h̄ω − h̄ω′ + m0c2

)2(
m0c2

)2 − 1

)
T

= 1

c2

((
h̄ω − h̄ω′ + m0c2

)2 − (
m0c2

)2
)

= 1

c2

((
h̄ω − h̄ω′)2 + 2

(
h̄ω − h̄ω′) m0c2

)
=

(
h̄ω

c

)2

+
(

h̄ω′

c

)2

− 2
h̄ω

c

h̄ω′

c
+ 2h̄

(
ω − ω′) m0 .

Inserting this in (34.23), we obtain

2
h̄ω

c

h̄ω′

c
(1 − cos θ) = 2h̄

(
ω − ω′) m0 . (34.30)
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Using the trigonometric identity

1 − cos θ = 2 sin2 θ

2
, (34.31)

we finally obtain the following result for the frequency difference:

ω − ω′ = 2h̄

m0c2
ωω′ sin2 θ

2
. (34.32)

If we put ω = 2πc/λ, we obtain the Compton scattering formula in the usual form with
the difference in wavelength as a function of the scattering angle θ ,

λ′ − λ = 4π
h̄

m0c
sin2 θ

2
= 2λc sin2 θ

2
. (34.33)

The scattering formula shows that the change in wavelength depends only on the scattering
angle θ . During the collision the photon loses a part of its energy, and the wavelength
increases (λ′ > λ).

The factor 2πh̄/m0c is called the Compton wavelength λc of a particle with rest mass
m0 (here, an electron). The Compton wavelength can be used as a measure of the size of a
particle. The electron has the Compton wavelength λc = 2.426 × 10−12 m.

The kinetic energy of the scattered electron is

T = h̄ω − h̄ω′ = h̄2πc

(
1

λ
− 1

λ′

)
, (34.34)
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or, using

1

λ
− 1

λ′ = λ′ − λ

λ′λ
= 1

λ

2λC sin2 θ
2

λ + 2λC sin2 θ
2

(34.35)

and, again with 2πc/λ = ω,

T = h̄ω
2λC sin2 θ

2

λ + 2λC sin2 θ
2

. (34.36)

Thus the energy of the scattered electron is directly proportional to the energy of the photon.
Therefore the Compton effect can only be observed in the domain of short wavelengths,
such as X-rays and γ -rays. To appreciate this observation fully, we mention that in classical
electrodynamics, no alteration in frequency is permitted in the scattering of electromagnetic
waves – this change in frequency is only possible if scattering occurs at light quanta
with momentum p = h̄k end energy e = h̄ω. Thus the idea of light quanta has been
experimentally confirmed by the Compton effect.

The inelastic collision

In an inelastic collision, kinetic energy is lost. By definition, also the rest masses of both or
at least one of the colliding particles are changing. In this case the values of the rest masses
before the collision shall be denoted by m0 and M0, the values after the collision by m ′

0 and
M ′

0. Equations (34.1), (34.4), and (34.2, 34.3) hold also here without any modification. On
the contrary, (34.5) changes to(

e′

c

)2

= m ′2
0 c2 + p′2,

(
E ′

c

)2

= M ′2
0 c2 + P ′2. (34.37)

We still note that according to the adopted definition the inelastic collision must not
necessarily be connected with a loss of kinetic energy. Kinetic energy is consumed only
then if the sum of the rest masses is increased by the collision process, namely, if m ′

0+M ′
0 >

m0 + M0. In the case m ′
0 + M ′

0 < m0 + M0, on the contrary, kinetic energy is created.
The formulas (34.1), (34.4), (34.2), (34.3), and (34.37) may also then be applied if

the two colliding particles disappear and two new particles are produced in the collision
process. m ′

0 and M ′
0 then represent the rest masses of the new arising particles. Such a

case is the annihilation of an electron-positron pair, where m0 = M0 = rest mass of the
electron (positron) and m ′

0 = M ′
0 = rest mass of the photon = 0. We consider this process

in the center-of-mass system of the electron-positron pair. Then p = −P. Therefore,
according to the momentum conservation law (34.2), also p′ = −P′, that is, the two
photons are emitted in opposite directions with equal momenta, hence also equal energies
(figure). The relation between p and p′ follows from the energy conservation law. Because

e/c = E/c =
√

m2
0c2 + p2 and e′/c = E ′/c = p′, from (34.3) we get

p′ =
√

m2
0c2 + p2. (34.38)



THE INELASTIC COLLISION 469

According to (34.20), the energy of every photon is

h� = cp′ =
√

m2
0c4 + p2c2. (34.39)

The smallest photon energy therefore corresponds to the case p = 0 and is equal to the
rest energy m0c2 of the electron.

p

p´

P´

P

Momentum balance of a binary collision
in the center-of-mass frame.

The inverse process of annihilation—the creation
of an electron-positron pair—occurs in the interac-
tion of a sufficiently energetic photon with an atomic
nucleus. This is a process that differs from the col-
lision considered so far. Before the interaction two
particles are present also here: the photon and the
atomic nucleus. After the collision, however, three
particles are involved: the atomic nucleus and the
electron-positron pair. The most important feature
of this process, which is significant for the experi-
mental verification of the theorem on the inertia of
energy, can however be derived immediately from
the energy conservation law.

If we denote the photon energy by h̄ω, the rest mass of the atomic nucleus and the
electron (positron) by M0 and m0, and the final values of the momenta of the three particles
by P, p−, and p+, we have

h̄ω + M0c2 =
√

M2
0 c4 + P2c2 +

√
m2

0c4 + p2−c2 +
√

m2
0c4 + p2+c2. (34.40)

Here we assumed that the atomic nucleus was at rest before the interaction. From this
relation follows immediately

h̄ω > 2m0c2. (34.41)

This means that the process is possible only with photons of an energy exceeding the sum of
the rest energies of two electrons. This has been explained already in the preceding chapter.

As another example of inelastic collisions we mention the nuclear reactions. If thereby
only two particles are present also after the collision then the process is again described by
equations (34.1), (34.4), (34.2), (34.3), and (34.37). But in this case the energy equation
may be simplified since, as a rule, the velocities of all particles are small against the speed
of light. For such particles, which are usually denoted as nonrelativistic, there holds to good
approximation the relation following from (34.4) and (33.34):

e = m0c2 + 1

2
m0q2.

Therefore, the energy law (34.3) reduces to

(m0 + M0)c
2 + Ekin = (m ′

0 + M ′
0)c

2 + E ′
kin. (34.42)
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Here Ekin and E ′
kin denote the sum of the kinetic energies before and after the collision

calculated by means of (33.34). When denoting the velocities of the particles before and
after the collision by q, Q and q ′, Q′, respectively, this means

Ekin = 1

2
m0q2 + 1

2
M0 Q2, E ′

kin = 1

2
m ′

0q ′2 + 1

2
M ′

0 Q′2. (34.43)

Decay of an unstable particle

The most simple case is obviously that the unstable particle decays into two new particles.
The most important results may also be derived here from the conservation laws. For sake
of simplicity we consider the process in the rest frame of the original particle. From the
momentum conservation then follows that the momenta p′ and p′′ of the two new particles
must sum up to zero,

p′ = −p′′. (34.44)

When denoting the rest mass of the original particle by M0, and the rest masses of the
new particles by m ′

0, m ′′
0, the energy conservation law reads

M0c =
√

m ′2
0 c2 + p′2 +

√
m ′′2

0 c2 + p′2. (34.45)

We thereby have taken into account the relation p′′ = p′ following from (34.44). If the
rest masses M0, m ′

0 and m ′′
0 are known, one may determine the value of p′ from (34.45). In

this decay mode thus in the decay of particles at rest the new particles are always emitted
with the momentum p′ following from (34.45), and therefore with the uniquely defined
energy values

e′ =
√

m ′2
0 c4 + p′2c2, e′′ =

√
m ′′2

0 c4 + p′2c2. (34.46)

The decay into more than two new particles may also be treated in a similar way. If one
deals, for example, with a decay into three new particles, the conservation laws in the rest
frame of the original particle read

0 = p′ + p′′ + p′′′, (34.47)

M0c =
√

m ′2
0 c2 + p′2 +

√
m ′′2

0 c2 + p′′2 +
√

m ′′′2
0 c2 + p′′′2. (34.48)

We shall not discuss these equations in detail but mention only an important qualitative
conclusion. Contrary to the preceding case, the momentum equation now can no longer re-
duce the momentum values arising after the decay p′, p′′, p′′′ to a single quantity. Therefore,
from the energy equation determined values of these quantities no longer follow uniquely.
In a decay with more than two product particles, the new particles are no longer—as in
the case of two product particles—emitted with uniquely determined energy values but



DECAY OF AN UNSTABLE PARTICLE 471

shall show a continuous energy spectrum. This fact, by the way, led W. Pauli1 in 1930 to
postulate the neutrino as a hypothetical decay product in the β-decay of the neutron.2 Later
on these particles were actually experimentally detected.

Problem 34.1: The relativistic rocket

If rockets reach velocity ranges comparable to the speed of light, the equations of motions must
be based on relativistic mechanics. Formulate the general equation of motion for this problem and
discuss it for the one-dimensional case.

Solution We denote by pµ the four-momentum of the spaceship, and by dqµ = δm ·ωµ the four-momentum of
the mass δm expelled by the ship per unit time, as seen from an inertial frame. Energy conservation
requires

pµ = dqµ + (pµ + dpµ) (34.49)

with the new four-momentum of the ship pµ + dpµ. We insert dqµ and dpµ = d(muµ) and divide
by the proper time dτ :

0 = δm

dτ
ωµ + dm

dτ
uµ + m

duµ

dτ
. (34.50)

δm/dτ und dm/dτ are the rates for the expelled masses and for the related decreasing mass of the
ship. The relation δm/dτ = −dm/dτ now no longer holds! We define λ = δm/dτ :

ṁuµ + mu̇µ = −λωµ. (34.51)

We multiply (34.51) by uµ and employ uµuµ = −c2 and uµu̇µ = 0 (here the Einstein sum
convention is used, which means an automatic sum over pairs of equal indices), because

d

dτ
(uµuµ) = u̇µuµ + uµu̇µ = 0.

1Wolfgang Pauli, Swiss physicist of Austrian descent, b. April 25, 1900, Vienna—d. Dec. 15, 1958, Zurich.
Pauli was a student of Arnold Sommerfeld in Munich, where he also became acquainted with Werner Heisenberg.
At a student in his third year, he wrote a review article on the theory of relativity for the Enzyklopädie der
mathematischen Wissenschaften. With his doctoral thesis from 1921 he for the first time cast doubt on the then-
prevailing quantum theory (model of the atom of Bohr and Sommerfeld). His discussions with Heisenberg, Max
Born, and Niels Bohr did contribute eminently to the development of matrix mechanics, the algebraic formulation
of quantum mechanics. In 1926 he successfully applied the new theory on the hydrogen atom. Already in 1924
he had discovered the exclusion principle (Pauli priciple), for which he was honored with the 1945 Nobel Price
(awarded in 1946). Also in 1924 Pauli postulated the existence of the spin of the atomic nucleus in oder to
explain the hyperfine structure of atomic spectra. In 1927 he formulated a field equation for the electron, taking
into account the spin in a non-relativistic manner. Pauli was a professor in Hamburg from 1926–1928, and at
ETH Zurich from 1928 on. In 1930, he formulated the neutrino hypothesis, which was later on corroborated
by experiment. From 1940–1945, he stayed in the United States, working mainly on the theory of mesons. His
later works back in Zurich in 1946 centered mainly around particle physics and the quantum theory of fields.
Pauli made a lasting impression on modern physics and its way of thinking. With his profound analysis of the
epistemological foundations of this science and his harsh criticism of obscure thinking, he was known as the
“conscience of physics.”

2see e. g. W. Greiner and B. Müller, Gauge Theories of Weak Interactions, Springer Verlag New York, 2000
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From there it follows that

λ = ṁ
c2

uµωµ
. (34.52)

Hence we have the equation of motion of a body with variable mass, as is represented by the
rocket.

d

dτ
(muµ) = − ṁc2

u�ω�
ωµ. (34.53)

Solving this equation for a one-dimensional problem causes no trouble. We write for the two
velocities ω and u

ω

c
≡ tanh φ,

u

c
≡ tanh θ, (34.54)

and using h = c tan α and α = θ − φ we may express the velocity of the expelled matter relative to
the ship.

u�ω
µ = c2(sinh θ sinh φ − cosh θ cosh φ) = −c2 cosh(θ − φ) = −c2 cosh α. (34.55)

Equation (34.53) for µ = 1 then takes the following form:

d

dτ
(m c sinh θ) = ṁc2

c2 cosh α
c sinh φ, (34.56)

and finally reduces to the simple differential equation

ṁ sinh θ + mθ̇ cosh θ = ṁ
sinh φ

cosh α
,

ṁ sinh θ cosh α + mθ̇ cosh θ cosh α = ṁ sinh φ,

ṁ(sinh θ cosh α − sinh φ) + mθ̇ cosh θ cosh α = 0,

ṁ sinh α + mθ̇ cosh α = 0

⇒ mθ̇ + ṁ
h

c
= 0. (34.57)

Here we have made use of the relation

sinh φ = sinh(θ − α) = sinh θ cosh α − cosh θ sinh α .

If with h the relative expulsion velocity of the mass is constant, θ may be given as a function of the
mass:

θ = log
( m

M

)−h/c
. (34.58)

M is the integration constant, which here plays the role of the start mass of the spaceship.

u

c
= tanh θ = 1 − e−2θ

1 + e−2θ
= 1 − (m/M)2h/c

1 − (m/M)2h/c
.

If we assume that the relative expulsion velocity of the expelled mass is about h ≈ c and half of
the start mass is released, then the final velocity is

u

c
= 1 − (0.5)2

1 + (0.5)2
= 3

5
.
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Problem 34.2: The photon rocket

The emission of electromagnetic radiation is considered as an option for driving spaceships in future.
Start from the equation (34.51) of the problem of the relativistic rocket and compare the two

propulsion systems.

Solution The equation of motion reads

d

dτ
(muµ) = −λPµ. (34.59)

Pµ is the four-momentum vector of the emitted radiation. We again multiply by uµ and get, using
again the Einstein sum convention, which means an automatic sum over pairs of equal indices,

muµu̇µ + ṁuµuµ = −λuµ Pµ (34.60)

⇒ λ = ṁ2c2

uµ Pµ
because of uµuµ = −c2 and uµu̇µ = 0.

Thus, equation (34.59) reads

d

dτ
(muµ) = −

(
ṁc2

u� P�

)
Pµ. (34.61)

We are already familiar with this result from the relativistic rocket. The difference is that the photon
four-momentum vector is a zero vector, because of the vanishing mass:

Pµ Pµ = 0. (34.62)

We again consider the one-dimensional case. Equation (34.62) then reduces to(
P1

)2 − (
P4

)2 = 0 ⇔ P1 = ±P4. (34.63)

If the spaceship flies in positive x-direction, the photons necessarily should have a negative
momentum:

P1 = −P4. (34.64)

We now write down the discrete photon energy, using the de Broglie relation, thus

W = h� ⇒ P4 = h�

c
, P1 = −h�

c
, (34.65)

u� P� = u1 P1 − u4 P4 = (
u1 + u4

)
P1 = − (

u1 + u4
)

P4. (34.66)

Equation (34.61) for µ = 1 and µ = 4 then becomes(
u1 + u4

) d

dτ

(
mu1

) = −ṁc2, (34.67)

(
u1 + u4

) d

dτ

(
mu4

) = ṁc2. (34.68)

The sum of these two equations yields

d

dτ

(
mu1 + mu4

) = 0 ⇒ mu1 + mu4 = Mc, (34.69)
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where with M the start mass of the rocket was introduced via the integration constant; this is the
situation with u1 = 0 and u4 = c.

Rewriting again the equation by means of the definitions

u1 = c sinh θ u4 = c cosh θ (34.70)

there results

m(sinh θ + cosh θ) = M ⇔ m = Me−θ

⇒ u

c
= tanh θ = 1 − (m/M)2

1 + (m/M)2
. (34.71)

Thus, the final velocity does not depend on the frequency of the radiation. Nevertheless, it will
presumably take some time to overcome the enormous difficulties in developing photon engines.
Such an engine should of course provide a sufficient thrust. We also don’t see an advantage of such a
type of engine over engines emitting massive particles near the speed of light.

Problem 34.3: The relativistic central force problem

Solve the central force problem relativistically for a particle of mass m with the charge q and a central
charge Q that is tightly fixed to the origin of the coordinate frame. You should take into consideration
only the electrostatic interaction K = (Qq/r 2) er .

Solution The relativistic form of the second Newtonian axiom is the four-vector equation

Fµ = m0
d

dτ
uµ, (34.72)

with Fµ being the four-force (33.8), p. 429, and uµ the four-velocity (33.3):

Fµ =
(
γ K, iγ

v
c

· K
)

, (34.73)

uµ = (γ v, iγ c) , γ = 1√
1 − v2

c2

. (34.74)

K and u are the force and velocity according to Newtonian mechanics, respectively. The expression
used here for the fourth component F4 of the four-force Fµ,

F4 = iγ
v
c

· K = i
γ

c

d

dt
mc2,

follows immediately from (??), which states

d

dt
mc2 = v · K .

But we must use as the only force K in the relativistic expression only the Lorentz force acting on
a charged particle. The other important interaction, the gravitation, cannot be treated without further
ado in this calculus, since it depends on the masses involved. These problems will be treated in the
general theory of relativity. Our central force problem is based on the electrostatic interaction of the
two charges Q and q .

K = Qq

r 2
er , (34.75)
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⇒ Fµ =
(

γ
Qq

r 2
er , iγ

Qq

r 2

v
c

er
Qq

r 2
u · er

)
. (34.76)

We shall use cylindrical coordinates for this problem. But we have to take into account the dependence
of the unit vectors on the time. To do this, we recall that the four-velocity uµ(µ = 1, 2, 3, 4) is the
derivative of the world vector xµ = (x1, x2, x3, ict) with respect to proper time,

uµ = dxµ

dτ
=

(
1√

1 − β2

dx
dt

,
ic√

1 − β2

)
= (γ v, icγ ) ,

where γ = 1/
√

1 − β2, β = v/c, and v = dx/dt the usual three-velocity. In cylindrical coordinates,
we have

xµ = (rer , z, ict) ,

uµ = dxµ

dτ
=

(
d

dτ
(rer ),

dz

dτ
, ic

dt

dτ

)
= ((rer )

•, ż, icγ ) . (34.77)

Here, the dot • means the derivative with respact to proper time τ , thus

(. . .)• = d

dτ
= 1√

1 − β2

d

dt
.

In planar cylindrical coordiantes (z = 0), the world vector reduces to

xµ = (rer , 0, ict) ,

where r = rer and the unit vectors in radial and in ϕ-direction are

er = (cos ϕ, sin ϕ) ,

eϕ = (− sin ϕ, cos ϕ).

The four-velocity hence is

dxµ

dτ
= ((rer )

•, 0, icγ ) = (ṙer + r ėr , 0, icγ ) .

Because

ėr = ϕ̇eϕ , ėϕ = −ϕ̇er ,

we get

⇒
u= dxµ

dτ
= (

ṙer + r ϕ̇eϕ, 0, icγ
)

, (34.78)

d2xµ

dτ 2
=

(
r̈er + ṙ ėr + ṙ ϕ̇eϕ + r ϕ̈eϕ + r ϕ̇ėϕ, 0, ic

dγ

dτ

)
,

= ((
r̈ − r ϕ̇2

)
er + (2ṙ ϕ̇ + r ϕ̈) eϕ, 0, icγ̇

)
. (34.79)

Newton’s equations in their relativistic four-form read

d

dτ
pµ = Fµ or m0

d

dτ

(
dxµ

dτ

)
= Fµ;
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hence in our case here

m0

((
r̈ − r ϕ̇2

)
er + (2ṙ ϕ̇ + r ϕ̈) eϕ, 0, icγ̇

) =
(

γ
Qq

r 2
er , iγ

Qq

r 2

v
c

er
Qq

r 2
u · er

)
. (34.80)

Comparing the components of the four-vectors and taking into account that

γ v = ṙer + ϕ̇eϕ , (34.81)

we end up with the three equations

γ
Qq

r 2
= m

(
r̈ − r φ̇2

)
, (34.82)

0 = m
(
2ṙ φ̇ + r φ̈

)
, (34.83)

1

c

Qq

r 2
ṙ = m

d

dτ
(γ c) = mγ̇ c. (34.84)

The dots always denote derivation with respect to the proper time τ .
Equation (34.83) multiplied by r yields as in the nonrelativistic case the angular momentum

conservation:

m0

(
2r ṙ φ̇ + r 2φ̈

) = m0
d

dτ

(
r 2φ̇

) ⇒ L ≡ m0r 2φ̇ = constant. (34.85)

The equation (34.84) ensures the conservation of energy:

d

dτ

(
m0γ c + 1

c

Qq

r

)
= 0 ⇒ E = m0γ c2 + Qq

r
= constant

⇔ γ = E

m0c2
− Qq

m0c2r
. (34.86)

Now we still wish to extract from (34.82) an equation of motion. For this purpose we employ the
two conservation laws just obtained.(

E

m0c2
− Qq

m0c2r

)
Qq

r 2
= m0

(
r̈ − L2

m2
0r 3

)
. (34.87)

We introduce the variable s = 1/r and, as in the nonrelativistic Kepler problem, transform to a
differential equation for s(φ).

ṙ = −r 2 ds

dφ
φ̇ = − L

m0

ds

dφ
, (34.88)

r̈ = − L

m0

d2s

dφ2
φ̇ = − L2

m2
0

s2 d2s

dφ2
(34.89)

⇒ 1

m0c2
(E − Qq s)Qq s2 = − 1

m0

(
L2 s2 d2s

dφ2
+ L2 s3

)

s ′′ + s =
(

Qq

cL

)2

s − E Qq

L2c2
. (34.90)
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We define the “angular frequency” �2 = 1 − (Qq/mLc)2 and thereby may at once give the
solution of this well-known differential equation:

1

r
= s = − E Qq

m2
0 L2c2�2

+ A cos(�φ). (34.91)

There are bound solutions to the problem if

q Q < 0 and A <
E |Qq|

m2
0 L2c2�2

.

In equation 34.91 we already have used that we wish to start with φ = 0 at the perihelion. Since
� differs from 1, there is no closed path, but rather an orbital precession arises (perihelion motion).
A closed orbit does only exist for q = 0 or Q = 0, hence if there is no force. This means that
the relativistic Kepler problem always yields rosette orbits, which show perihelion motion. This is
plausible if we recall our discussion in Chapters 26 and 28.

The constant A may be determined by inserting our solution in the following relation, which must
be obeyed by the four-velocity uµ = (ṙ , φ̇, 0, γ c) from equation 34.78:

⇒
u · ⇒

u= uµuµ = −c2 = ṙ 2 + r 2φ̇2 − (cγ )2 (34.92)

Inserting in this equation the definition of angular momentum 34.85, the conservation of energy
34.86, and the relation 34.88 for ṙ , we get

L2

m2
0

(
ds

dφ

)2

+ s2 L2

m2
0

− c2

(
E

m0c2
− Qq

m0c2
s

)2

= −c2. (34.93)

If we further insert the solution 34.91 for the orbit, we get an equation we can solve for A:

−c2 = L2

m2
0

(
A� sin(�φ)

)2

+
(

A cos(�φ) − E Qq

m2
0 L2c2�2

)2 L2

m2
0

− c2

(
E

m0c2
− Qq

m0c2

(
A cos(�φ) − E Qq

m2
0 L2c2�2

))2

= A2 L2�2

m2
0

sin2 �φ + A2 L2 cos2 �φ

m2
0

− 2A
E Qq cos �φ

m4
0c2�2

+ E2 Q2q2

m6
0 L2c4�4

− E2

m2
0c2

+ 2
E Qq

m2
0c2

(
A cos(�φ) − E Qq

m2
0 L2c2�2

)

− Q2q2

m2
0c2

(
A2 L2 cos2 �φ

m2
0

− 2A
E Qq cos �φ

m4
0c2�2

+ E2 Q2q2

m6
0 L2c4�4

)
. (34.94)

Collecting all the terms yields

A =
√(

E

Lc�2

)2

−
(m0c

L�

)2 = c

L�

√(
E

m0c2�2

)2

− 1 . (34.95)

For A = 0, that is, for E/m0c2 = � = √
1 − (Qq/m0cL)2, the orbit 34.91 becomes a circle.

We still note that α2 in general may also become negative (Qq > mLc). Periodic solutions
of (34.90) would then no longer exist. This case might occur if one lets, for example, the angular
momentum L become very small. When considering this in an atom with a nucleus of charge Q = Ze,
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and taking into account that the angular momentum of an electron (q = e) is of the order of magnitude
mL ≈ h̄ (Planck’s quantum of action), we may expect this case for the following charge number Z :

Z ≥ h̄c

e2
≈ 137. (34.96)

That means that this collapse occurs in atoms with a nuclear charge Z ≥ 137, due to relativistic effects
in the approximation of a point nucleus. The quantity c2/h̄c1 ∼= 1/137 is known as the Sommerfeld
fine structure constant.

Discussion of the solution The solution 34.91 is very similar to the Kepler orbits that we know
already from Chapter 26 about planetary motions, see, for example, equation(26.32). We thus can
write 34.91 as

r(φ) = r0

ε cos(�φ) ± 1
, (34.97)

where

r0 = L2c2�2

E |Qq| , (34.98)

ε = L2c2�2

E |Qq|

√(
E

Lc�2

)2

−
(m0c

L�

)2 = Lc

E |Qq|
√

E2 − m2
0c4�2. (34.99)

Here, the upper (lower) sign in 34.97 relates to attractive (repulsive) interaction, that is, unequal
(Qq < 0) or equal (Qq > 0) charges. In the nonrelativistic limit, we have � � 1 and E = m0c2 + Enr

with |Enr|  m0c2 and 34.97–34.99 reduce exactly to the conic sections of Kepler motion, where,
obviously, the force constant γ Mm has to be repalced by |Qq|. One ends up with

r0 � L2

m0|Qq| (34.100)

and eccentricity

ε �
√

1 + 2Enr L2

m0|Qq|2 . (34.101)

This corresponds to the results from Chapter 26. In the nonrelativistic limit, one thus finds again
the well-known cicular, elliptic, parabolic, and hyperbolic orbits. The relativistic treatment, however,
yields two interesting differences.

1. Because � = √
1 − (Qq/Lc)2 < 1, the period of the orbit for periodic solutions is larger

than 2π . Hence for 0 < ε < 1 there are no closed elliptic orbits any more, but 34.97 describes a
rosette orbit. At each period, the turning points preceed by an angle �φ, as shown in the figure (for
� = 0.93). The constraint �(2π + �φ) = 2π yields for this angle of precession for � close to 1

�φ = 2π

(
1

�
− 1

)
= 2π

⎛⎜⎜⎜⎜⎝ 1√
1 −

(
Qq

Lc

)2
− 1

⎞⎟⎟⎟⎟⎠
� 2π

(
1 + 1

2

(
Qq

Lc

)2

− 1

)
= π

(
Qq

Lc

)2

. (34.102)
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∆φ

A rosette orbit showing precession of the
turning point.

When expressed with the help of the ellipse parameters
eccentricity ε and major semi-axis a = r0/(1−ε2), using
the approximation 34.100 yields for the precession angle

�φ = π
|Qq|

m0c2a
(
1 − ε2

) . (34.103)

Although our derivation was done for a charged particle
in the electric field of a point source, one may be tempted
to apply the result 34.103 also on planetary motion, since
force laws of Newton for gravity and of Coulomb for elec-
trostatic interaction have the same form. Newtonian grav-
ity with a correction by special realtivity hence makes a
prediction for the perihel motion of planetary orbits of

�φ = π
γ M

c2

1

a
(
1 − ε2

) . (34.104)

This formula gives extremly small values for the perihel motion of the planets of the solar system.
The overall precession of the perihel of the orbit of Mercury, for example, is predicted by this formula
to be only 7 arc seconds per century. The observed value not accounted for by perurbations of the
other planets, however, is 42 arc seconds per century. This discrepancy can be resolved only within
the framework of general relativity. The result obtained there is larger then formula 34.104 by a factor
6. Hence, gravitation and electrostatic interaction differ fundamentally, the similarities in the force
law notwithstanding

2. In the case of large charges Qq or small angular momentum L the parameter �2 may become
negative. This changes the character of the solutions qualitativly. If we define in this case

�̃2 =
(

Qq

Lc

)2

− 1 > 0, (34.105)

the general solution of the differential equation 34.90 is

s(φ) = c1e−�̃φ + c2e+�̃φ + E Qq

L2c2�̃2
. (34.106)

From uµuµ = −c2, a lengthy calculation along the lines leading to equation 34.95 yields

4c1c2 =
(

E

Lc�̃2

)2

+
(

m0c

L�̃

)2

. (34.107)

The collapse of the electronic orbit
in a logarithmic spiral.

Because the right hand side is positive, c1 and c2 must have
the same sign. Without restricting the general case, one can
choose the coefficients to be equal, c1 = c2 = 1

2 Ã, since any
difference can be balanced by a rotation φ → φ + φ0 of the
coordinate system. Hence, the general solution is

s(φ) = Ã cosh(�̃φ) + E Qq

L2c2�̃2
, (34.108)

with the prefactor

Ã = ±
√(

E

Lc�̃2

)2

+
(

m0c

L�̃

)2

. (34.109)
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Thus, in 34.91 the trigonometric functions have to be replaced by hyperbolic functions.
With repulsive interaction (Qq > 0) there are hyperbolic orbits further on. (Here one has to choose

Ã < 0. Positive Ã together with 34.86 yields unphysical solutions with a Lorentz factor γ < 0.)
However, when the force is attractive (Qq < 0), there are dramatic changes in the type of the

orbit. Because the hyperbolic function grows exponentially, r(φ) goes to zero for large angles φ;
the orbit has the form of a logarithmic spiral as shown in the figure. This “fall onto the center” will
happen because the Coulomb force is enhanced by the Lorentz factor γ in such a way that the angular
momentum barrier can be surmounted at small distances.

Such a collapse cannot be seen in macroscopic physics, already due to the finite extent of charged
bodies. However, the question becomes of interest for (pointlike) electrons with charge q = −e in
the field of a nucleus with Q = Ze. If one treats the motion of the electron within the framework
of classical mechanics, but takes into account that atomic angular momenta are in the range of the
Planck constant, L � h̄, the following condition for the collapse of the orbit results:

Z ≥ h̄c

e2
≡ α−1 � 137, (34.110)

where α � 1/137.036 is konwn as the Sommerfeld3 fine structure constant. Hence, one would expect
a collpase of the electronic orbits in atoms with nuclear charge Z ≥ 137.

Of course, this problem transcends the range of applicability of classical mechanics. But also
relativistic quantum mechanics predicts a similar collapse if in an atom the parameter Zα becomes
greater than 1. This is closely related to the hypercritical problem of quantum electrodynamics that

3Arnold Johannes Wilhelm Sommerfeld, b. Dec. 5, 1868, Königsberg, then Prussia (now Kaliningrad, Russia)—
d. April 26, 1951, Munich. Sommerfeld attended the Gymnasium in Königsberg (two slightly older pupils at the
same school were Minkowski and Wien) and started his studies at the University of Königsberg where he was
taught by Hilbert, Hurwitz, and Lindemann. At this time the University of Königsberg was famous for its school of
Theoretical Physics, which had been founded by Franz Neumann, but Sommerfeld’s interests were in mathematics
rather than physics. In 1891 Sommerfeld was awarded his doctorate from Königsberg. In 1893 Sommerfeld went
to Göttingen, where he became Klein’s assistant. His research there was immediately influenced by Klein, who at
this time was involved in applying the theory of functions of a complex variable, and other pure mathematics, to a
range of physical topics from astronomy to dynamics. Important work Sommerfeld undertook included the study
of the propagation of electromagnetic waves in wires and the study of the field produced by a moving electron.
As of 1897 Sommerfeld taught at Clausthal, where he became professor of mathematics at the mining academy.
Then, three years later, he became professor of mechanics at the Technische Hochschule of Aachen. In 1897 (first
as a professor of mathematics at the mining academy at Clausthal, then, after 1900, as professor of mechanics at
the Technische Hochschule of Aachen), Sommerfeld began a 13-year study of gyroscopes working on a 4-volume
work jointly with Klein. In 1906 he became professor of theoretical physics at Munich and worked on atomic
spectra. He studied the hypothesis that X-rays were waves, which was proved by his collegue Max von Laue by
using crystals as three-dimensional diffraction gratings. From 1911 his main area of interest became quantum
theory. Sommerfeld’s work led him to replace the circular orbits of the Niels Bohr atom with elliptical orbits; he
also introduced the magnetic quantum number in 1916 and, four years later, the inner quantum number. It was
theoretical work attempting to explain the inner quantum number that led to the discovery of electron spin. In the
later part of his career, Sommerfeld used statistical mechanics to explain the electronic properties of metals. This
replaced an earlier theory due to Lorentz in 1905 based on classical physics. Sommerfeld’s approach was to regard
electrons in a metal as a degenerate electron gas. He was able to explain features that were unexplained by the
earlier classical theory. Sommerfeld had built up a very famous school of theoretical physics at Munich—among
his most famous students are Heisenberg and Pauli—but its 30 years of fame ended with the Nazi rise to power. In
1940 the school closed, but by this time Sommerfeld was 71 years old. He survived World War II and eventually
died in a street accident in Munich.



DECAY OF AN UNSTABLE PARTICLE 481

has been investigated extensively by the Frankfurt school and has far-reaching consequences. For
example, it leads to a new understanding of the question “What is the vacuum; is the vacuum always
empty?” We refer to the volume of the lectures on quantum electrodynamics, and the literature quoted
there.4

Example 34.4: Gravitational lenses

The demonstration of light deflection at the border of the sun and its correct interpretation and
theoretical description in the frame of the general theory of relativity, a few years after its formulation,
represented one of the greatest triumphs of the new theory of gravitation by Einstein. According to
the general theory of relativity, gravitation manifests itself as a modification of the plane Minkowski
space-time geometry. In the vicinity of heavy masses, the space-time is distorted. Light rays that,
as everybody knows, propagate along certain geodesic lines, that is, shortest (one may also say
“straightest”) lines between two world points with ds2 = 0, no longer follow straight lines in the
Euclidean sense but in general bent curves (see figure).

Lens optics for the Einstein ring.

Thus, in a certain sense gravitational fields affect the light propagation just as an optically more
dense medium with a definite refractive index does, as is known from geometric optics. We may
well imagine that certain arrangements of masses create such a gravitational field, such that light
emitted by a far remote object may be deflected when passing this gravitational field, similarly as
on passing of an optical lens. Gravitational fields with such properties are denoted as gravitational
lenses, analogous to the optical lenses.

Einstein made a calculation on this problem where for the first time the following simple config-
uration is considered: Let a massive object as source of a gravitational field be positioned between
earth and a far remote source of light (e.g., a star), positioned exactly on the optical axis. In such a
perfect alignment of successive objects only those light rays from the star may reach the earth which
are focused toward earth by the intermediate gravitational field (see figure).

Because of the azimuthal symmetry the star is imaged as a ring visible from earth. Because the
star cannot be observed directly because of the intermediate object, one should see only a so-called
Einstein ring instead of a pointlike light source. But the configuration just discussed represents a

4For popular representations of this domain see, e.g., J. Reinhardt and W. Greiner, Physik in unserer Zeit, no. 6
(1976) 171; W. Greiner and J. H. Hamilton, American Scientist 19 (1980) 154; J. Greenberg and W. Greiner,
Physics Today (Aug. 1982) 24. A comprehensive, scientific presentation of the subject can be found in W. Greiner,
B. Müller, J. Rafelski, Quantum Eletrodynamics of Strong Fields, Springer-Verlag, Berlin, Heidelberg, New York,
1985.
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Deflection of light at the rim of the sun.

particularly simple idealized case, and it may be highly unlikely to observe exactly such a situation.
In any case one may calculate the imaging properties of general lens systems. It turns out that, besides
such ringlike images, there is also a chance for double or triple images of an object.

Particularly interesting objects of astronomy are quasars, known since 1963. Quasars are starlike
(i.e., pointlike as seen from earth) light and radio sources displaying a strong red shift in the spectra.
Therefore, they cannot be stars of our Milky Way but rather are very far remote objects, the red shift
of which is a consequence of the expansion of the universe.

In 1979 a pair of very closely spaced quasars was detected. The analysis of their spectra showed
that these agree both in the relative intensity of the spectral lines as well as in their red shift. Further
observations have shown that there is a galaxy with low red shift (i.e., closer to us) just between the
two quasars. Hence it became likely that the double-quasar does not consist of two distinct objects
but that the astronomers—because of the light deflection in the gravitational field of the galaxy—
(see Problem 33.3) see two images of a single object.5 Meanwhile, many more double- and even
triple-images of quasars by gravitational lensing have been detected.

The wave fronts emerging from the light source (quasar) are folded in the vicinity of a large mass
(galaxy) such that three wave fronts are passing the observer (see figure). On earth one therefore sees
three images of the quasar. That one sees only two images in the case of double-quasars may be due
to the circumstance that one of the images is very faint or that two images are so closely spaced that
they are no longer separated optically.

The gravitational lens effect may be observed only in the radiation from quasars since the deflection
angle as seen from earth is proportional to the gravitational potential of the lens at the position of earth.
An estimation of the mass distribution in the universe shows that the probability of a gravitational
lens effect with a remote galaxy as lens is by about the factor 104 larger than the probability of such
an effect with a star from our Milky Way as deflecting mass.

The first observations of gravitational lensing very done with arrays of radio telescopes. This
technique yielded in 1987 the dicovery of an almost perfect Einstein ring.6

Meanwhile, with the advent of the Hubble space telescope and large, modern ground-based
telescopes with adaptive optics, the observation of gravitational lenses has become very common in

5For an account by one of the discoverers of this first “double-quasar”, see F. H. Chaffee: The Discovery of a
Gravitational Lens, Scientific American, November 1980, 60–68.

6Jaqueline. N. Hewitt et al.: Unusual Radio Source MG 1131+0456—A Possible Einstein Ring Nature 333,
537-540 (1988). An overview from this period is given by Edwin L. Turner: Gravitational Lenses, Scientific
American, July 1988, 26-32.
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Propagation of a wave front by a galaxy leading to a gravitational lens.

astronomy. It is even used as a tool to extend the range of possible observations and to explore into
new issues such as the quest for dark matter or the history of the universe.7

Thus, by observing gravitational lens systems, one hopes to clarify a number of highly interesting
problems. The light observed has passed cosmic distances. Therefore, gravitational lenses should be
affected already by the geometry of space-time as a whole. As the optical properties of a gravitational
lens can be calculated exactly, one may take also the influence of the expansion of the universe into
account. In principle it will be possible to determine the so-called Hubble constant, which, roughly
speaking, connects the extension and the expansion velocity of the universe. A further interesting
aspect arises concerning the so-called dark matter as discussed earlier in Section 28. Gravitational
lenses must not necessarily be constituted of mass distributions (e.g., quasars, galaxies) that are visible
via their electromagnetic radiation. From the relative rate of gravitational lens phenomena, one now
might also conclude on the rate of distributions of dark matter in the universe. An estimation of their
mass would then have a bearing on the decision between cosmologic models, which all involve a
mean mass density as parameter. We shall stop with these remarks and may wait with the expectation
for further observations that will make the solution of these problem areas more accessible.

7Examples for the various modern “applications” of gravitational lenses are give in the article by Joachim
Wambsganss: Gravity’s Kaleidoscope, Scientific American, November 2001, 52-59. See also our remarks in
connection with the dark matter problem in Chapter 28.
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K -meson, 452
π -meson, 451, 455

aberration formula, 405
aberration relation, 410
acceleration, 42, 58, 73
accretion theory, 314
addition theorem of velocities, 385, 419
angular momentum, 149, 153
angular velocity, 81, 230
aphelion, 295
apogee, 295
arc length, 49, 61
area theorem, 247
association law, 3
asteroid, 295
astronomy, 295
azimuthal acceleration, 79

base, 9
base vector, 68
base vectors, 10
base vectors, unitary, 97
basic vectors, 9
Big Bang, 135
binomial theorem, general, 232
binormal vector, 50, 56, 57, 168

cardioide, 78
causality principle, 414
Cavendish experiment, 253

central force, 150
central force field, 114
central force problem, relativistic, 474
centrifugal potential, 257
chain rule, 73, 180
characteristic equation, 215, 245
circular motion, 43
column orthogonality, 373
comets, 295
commutation law, 3
Compton sattering, 465
conic sections, 248
conservative force, 142
contour integral, 87
convex surface, 66
coordinate areas, 70
coordinate frame, 68
coordinate frame, Cartesian, 7
coordinate frame, curvilinear, 69
coordinate frame, reciprocal, 99
coordinate lines, 70
coordinates, 68
coordinates, bipolar, 107
coordinates, Cartesian, 69
coordinates, natural, 49
Copernican world view, 317
cosine law, 28
Cramer’s rule, 77
creeping motion, 218
critical damping, 217
curl, 87

485



   

486 INDEX

curvature, 51, 55
curvature radius, 52
curve, nonplanar, 62
curve, plane, 59
curves, parallel, 59
cyclic permutability, 16, 25
cycloid, 234, 236
cylindrical coordinates, 71, 73, 78, 80, 103
cylindrical coordinates, elliptic, 106
cylindrical coordinates, hyperbolic, 106
cylindrical coordinates, parabolic, 105

damping, critical, 218
Darboux rotation vector, 54
de Broglie relation, 447
delta operator, 103
determinant, 16, 17
differential equation, 159, 241
differential equation of second order, 197
differential quotient, 39
differentiation, 40, 41
differentiation of a vector, 40
Dirac equation, 447
Dirac sea, 448
direction cosine, 34, 373
direction cosines, 30
distance vector, 27
distance, spacelike, 413
distance, timelike, 413
divergence, 83, 85, 101
Doppler shift, 407, 411
dynamic friction, 172

eccentricity, 249
ecliptic, 296
Einstein’s box, 435
ellipse, 249
elliptic integral, 232
energy law, 144
energy, kinetic, 142
equation of plane, 28
equation of straight line, 28
equipotential area, 84
ether, 364
Euler formulas, 212, 216
evolute, 56, 58–60
evolute, generalization, 62
evolvent, 58–60

fermion, 447
fictitious force, 156
force, 5, 34
force constant, 160
force field, 109
forced vibration, 220
four-force, 428
four-vector, 374, 378, 380, 425
four-velocity, 427
Frenet’s
friction, 172
friction, Newtonian, 172
friction, Stokes, 172

Galileo transformation, 363, 380
Galileo-invariant, 364
Gauss law, 112
Gauss theorem, 114
Graßmann expansion theorem, 19
gradient, 83, 100
gravitational force, 7
gravitational lenses, 481
group, 383
group velocity, 421

harmonic oscillator, 196
heart curve, 78
helix, 44, 57
high tide, 302
Hooke’s law, 162, 196
hyperbola, 249

impulse of force, 45, 144, 146
inertial system, 140, 362
initial condition, of a differential equation, 160
integration, 45
integration of vectors, 44
involute, 59

Jacobi determinant, 100

kinetic energy, 433
Kronecker symbol, 8

Laplace expansion theorem, 22
law of areas, 151
left frames, 7
left-handed helix, 44
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lemniscate, 267
length contraction, 394, 396
length contraction, classical, 395
Lenz vector, 277
light cone, 414
light vectors, 381
lightlike distance, 414
line integral, 109
linear combination, 9, 68
local group, 324
logarithmic decrement, 216, 225
loop integral, 88, 89
Lorentz contraction, 417
Lorentz scalar, 426
Lorentz transformation, 370, 378
Lorentz
low tide, 302

magnitude, 2
mass, heavy, 164
mass, inert, 164
matrix, 16
matrix product, 31
matrix, transposed, 17
meridian, 76
meteors, 295
metric coefficients, 98
metric tensor, 98
Michelson–Morley experiment, 364
Milky Way, 308
Minkowski space, 374, 381
momentum, 136
muons, 391

neap tide, 302
nebular theory, 314
Newton’s axioms, 134, 135
normal acceleration, 81
normal plane, 58
normal vector, 56, 57, 65, 168
nuclear fission, 454
nuclear reactions, 469
null vector, 3
nutation, of earth, 304

operator, 83
orientable surface, 66
orientation, 68

orthogonality, column, 373
orthogonality,
oscillator potential, 160
osculating plane, 58

pair annihilation, 456
pair of forces, 33
parabola, 249
parallelepipedon, 26
parallelogram, 13, 14
parity transformation, 18
partial derivative, 64
path integral, 109
pendulum, 202, 229
pendulum, ballistic, 147
perigee, 295
perihelion, 295
perihelion motion, 356
period, 296
phase velocity, 421
photon, 448
planetoid, 295
planets, 295
point mechanics, 135
point-direction form, 28
polygon of forces, 32
position vector, 12
positron, 448
potential, 143
potential, effective, 261, 290
power, 142
power series, 210
precession, of earth, 304
principal normal vector, 50
product rule, 52
projection, 27
proper time, 427
Ptolemaic world view, 315

radial acceleration, 79, 81
rapidity, 387
rectifying plane, 58
reduced mass, 274
reference
relativistic energy law, 445
relativity principle, 362, 368, 370
relativity principle, classical, 140
resonance, 222
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resonance catastrophe, 222
rest energy, 434
rest mass, 428
resultant, 3
right frames, 7
right-handed frame, 69
right-handed helix, 13, 44
rope pulley, 137
rotation, 83, 87, 102
rotation matrix, 29
rotation matrix, transposed, 31
row orthogonality, 373

Sarrus rule, 17
satellites, 295
scalar, 2
scalar field, 83
scalar product, 5
scaling factors, 71, 96
secant, 42
shooting stars, 305
sink, 87
solar system, 296
solid angle, 115
source, 87
space curve, 64
space reflection, 18
space-time, 412
spacelike
spherical coordinates, 74, 104
spring tide, 302
stars, 295
static friction, 173
Stokes law, 117
submatrix, 22
suns, 295
superposition principle, 136, 198, 244
surface integral, 125

tangent plane, 65
tangent unit vector, 50
tangent vector, 50, 55, 57, 168
tangential acceleration, 82
tautochrone, 237
Taylor expansion, 84, 210
Taylor series, 196, 212
Thales, theorem of, 29
throw, inclined, 166

throw, vertical, 164
tidal theory, 313
tides, 301
time dilatation, 389, 392, 417
time of throw, 167
timelike distance, 413
torque, 33, 34, 149, 153
torsion, 52, 55, 56
torsion radius, 52, 58
total differential, 84, 142
transient process, 221
transposed matrix, 373
trihedral, moving, 49, 57, 169
trihedral, reciprocal, 98
triple scalar product, 25, 72, 90
Tscherenkov radiation, 443
tunnel effect, 293
twin paradox, 458

ultraviolet shift, 408
unit vector, 6
unit vectors, Cartesian, 7
unit vectors, variable, 71
unwinding curve, 59

vector, 2
vector density, 45
vector field, 83
vector flow, 85
vector polygon, 9
vector product, 13, 16, 18
vector product, double, 18
vector, axial, 13, 18
vector, normal, 56
vector, polar, 18
velocity, 42, 58, 73
volume integral, 130
vortex, 87

wave equation, 382
work, 109, 141
work, mechanical, 5
world line, 412
world vector, 425

zero meridian, 69
zero vector, 3
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