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Preface

The methods and techniques of physics are becoming more and more important in
medicine. A number of universities have reacted to this trend, and have created dif­
ferent educational opportunities – from enrichment courses to separate majors – to
address it. This book is intended primarily for students majoring in the natural sci­
ences or technical fields, who have a solid basic education in physics. The first section
is comprised of topics relating to the physics of the body, and the second deals with
diagnostic and therapeutic methods. Special attention has been given to choosing
exercises and examples that relate to practical applications. The overview presented
before each chapter will serve to deepen understanding of the section’s content.

January 2012 Wieland Alexander Worthoff
Hans Georg Krojanski

Dieter Suter
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1 Breathing and Metabolism

Life processes are based on chemical and biochemical reactions, and require energy.
While most plants can generate this energy through photosynthesis and synthesize
energy-rich compounds themselves, animals must acquire it by consuming suste­
nance. The energy contained within compounds consumed, however, must first be
liberated by using a sufficient quantity of oxygen. This necessary oxygen is taken in
through breathing. In the process, oxygen (O

2
) enters the lungs and diffuses into the

red blood cells; these then distribute it throughout the entire body. Diffusion is also re­
sponsible for the transfer of oxygen from the blood cells through differentmembranes
into the cells of the body, where energy is liberated through biochemical reactions. A
measure for the concentration of oxygen is partial pressure. In arterial blood, the par­
tial pressure is roughly 20 kPa and falls along the airway to around 13 kPa. In tissue, it
is around ≈ 6 kPa. When breathing, other components of air also enter into the lungs
in addition to oxygen; these components are either useless or dangerous to the body.
These substances, as well as carbon dioxide (CO

2
) exchanged out of the blood, are

expelled by the lungs in exhalation.
The process of inhaling and exhaling takes place through a change in the vol­

ume of the chest, accomplished by the muscles that surround the chest cavity: the
diaphragm, and the intercostal musculature. An adult moves around 0.5 l of air in
each breath. Both lungs contain between 300 and 400 million alveoli, with a surface
area of up to 100m

2. On this surface is located a network of capillaries. The exchange
of oxygen between the air breathed in and the blood, as well as that of carbon diox­
ide between the blood and air breathed out, is controlled by diffusion; due to partial
pressure gradients of the two substances in the boundary layer between alveoli and
capillaries, molecular O

2
and CO

2
flows occur. These flows take place in opposite di­

rections. Beyond the boundary layer, transport generally takes place convectively. The
same transfer mechanism takes place at cell walls and boundaries.

Cell boundaries separate the material contained within cells from the exterior,
the extracellular space – for example, from air or blood. Generally, the intracellu­
lar space is characterized by a negative electric charge; in contrast, the extracellu­
lar space is positively charged. The difference is termed the membrane potential. The
membrane potential is controlled by the active and passive exchange of ions, above
all by sodium ions (Na+), potassium ions (K+), and chlorine ions (Cl−). In analogy to
the process of respiration in the lungs, this cellular process is termed cellular respi­
ration. The calculation of material passage through a membrane – the calculation of
the amount of material transported per unit time – is very complicated, and assumes
knowledge of material transfer on both sides of the membrane. Concentration pro­
files, material transfer and diffusion coefficients, fluid dynamic and thermodynamic
parameters, and anatomic geometry valuesmust be known. These parameters all vary
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4 | 1 Breathing and Metabolism

considerably with the health and age of a person, and calculation is often only possi­
ble to an approximation.

Illnesses can significantly disrupt the metabolic functions of certain organs, like
the kidneys. If the functional tissue in a kidney is destroyed by up to 70% uremia re­
sults. Uremia describes a condition in which toxic substances build up in the blood
due to kidney failure. The over-concentration of these toxins in the blood also disrupts
or destroys themetabolic processes of other organs of the body. Oneway to handle the
situation is through the use of an artificial kidney. Hemodialysis, a technique of puri­
fying the blood outside the body, has proven effective. In order to maintain a patient’s
life, a dialysis apparatusmust reliably be able to remove urea and other nitrogen-con­
taining products, aswell as regulate the electrolyte concentrations ofNa+,K+, andCl

−

in the blood. While modern dialysis devices can perform these tasks nearly ideally to­
day, they are still not ready to completely take over an additional function of organic
kidneys. This function is the production of hormones that contribute to the creation of
red blood cells. This deficiency means that dialysis treatment must be accompanied
by hormone therapy.

1.1 Breathing

The average breath stream for inhalation and exhalation in humans is𝑉∗
= 10 l/min.

1. What is the average air velocity in the windpipe (diameter of the windpipe
𝑑
𝐿𝑅

= 1.5 cm) and (in breathing through the mouth) between the lips, with an
open-mouth area of 𝐴

𝑀
= 9 cm

2 at 0 ∘
C at sea level?

2. What is the dependency of air pressure and density on elevation 𝑧, and what
breathing problems can result when climbing mountains? Calculate by consid­
ering an approximation of the value by which the flow of breath must increase at
an elevation of 8,000m.

For modeling purposes, assume breathing dynamics in the form of a right-angle oscil­
lation.
[air values: molar mass 𝑀

𝐿
= 28.96 g/mol; density at 0 ∘

C at sea level 𝜌
𝐿0

= 1.29 kg/m3

universal gas constant 𝑅 = 8.314 J/molK; air temperature 𝑇 = 0
∘
C]

Breathing is a periodic process, under non-stationary conditions. However, because
we are given and are looking for average values over half the cycle time here, the con­
tinuity equation in stationary form 𝑉

∗
= 𝑤𝐴 can be used. Therefore, average flow

velocity is

𝑤 =
𝑉

∗

𝐴
=

4𝑉
∗

𝜋𝑑2
.
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1.1 Breathing | 5

1. Therefore, for the windpipe,

𝑤
𝐿𝑅

=
4𝑉

∗

𝐿

𝜋𝑑
𝐿𝑅

=
4 ⋅ 10 l/min

𝜋 (1.5 cm2)
= 0.94 m/s

and for the mouth,

𝑤
𝑀

=
𝑉

∗

𝐿

𝐴
𝑀

=
10 l/min

9 cm2
= 0.185 m/s.

2. When climbing a mountain, pressure 𝑝 is a function of elevation 𝑧. To determine
𝑝 (𝑧), consider an element of volume 𝑑𝑥 𝑑𝑦 𝑑𝑧 of air at elevation 𝑑𝑧. In order for
this volume element to remain at equilibrium, the weight force must be compen­
sated for exactly by the difference in pressure between the upper and lower sur­
faces:

[𝑝 (𝑧 + 𝑑𝑧) − 𝑝 (𝑧)] 𝑑𝑥 𝑑𝑦 + 𝜌
𝐿
𝑔 𝑑𝑥 𝑑𝑦𝑑𝑧 = 0.

With
𝑝 (𝑧 + 𝑑𝑧) = 𝑝 (𝑧) +

𝜕𝑝

𝜕𝑧
𝑑𝑧

we have
𝜕𝑝

𝜕𝑧
+ 𝜌

𝐿
𝑔 = 0.

Considering air as an ideal gas, the ideal gas equation gives

𝑝

𝜌
𝐿

=
𝑝
0

𝜌
𝐿0

.

The differential equation relating 𝑝 and 𝑧 is then

𝑑𝑝

𝑝
= −

𝜌
𝐿0

𝑝
0

𝑔 𝑑𝑧.

Integrating, we have
𝑝

∫

𝑝
0

𝑑𝑝

𝑝
= −

𝜌
𝐿0

𝑝
0

𝑔

𝑧

∫

0

𝑑𝑧

and therefore
𝑝 (𝑧) = 𝑝

0
𝑒
−𝛾 𝑧

with 𝛾 = (
𝜌
𝐿0

𝑝
0

)𝑔.

Numerically, 𝛾 =
1.29 kg/m

3
⋅9.81 m/s

2

1⋅10
5
Pa

= 1.265 ⋅ 10
−4

m
−1
.

The pressure at 8,000m elevation is

𝑝
8,000

= (1 ⋅ 10
5
Pa) exp [(−1.265 ⋅ 10

−4
) ⋅ 8,000]

= 36.349 Pa = 0.36 bar.
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6 | 1 Breathing and Metabolism

The dependence of density 𝜌
𝐿
follows from the ideal gas equation

𝑝 𝑣
𝐿
=

1

𝑀
𝐿

𝑅𝑇.

Here, 𝑣
𝐿
=

1

𝜌
𝐿

is the specific volume of air. Density is then

𝜌
𝐿
(𝑧) =

𝑝 (𝑧)𝑀
𝐿

𝑅𝑇
=

𝑝
0
𝑀

𝐿

𝑅𝑇
𝑒
−𝛾 𝑧

.

The density at 8,000m elevation 𝜌
𝐿8,000

is therefore

𝜌
𝐿8,000

=
𝑝
8,000

𝑀
𝐿

𝑅𝑇
=

36.349 ⋅ 0.02896

8.314 ⋅ 273

kg/m3 = 0.4637 kg/m3.

Assuming the volumetric flow in breathing remains roughly constant, the mass
flow of air is reduced by

Δ𝑚
∗

𝐿
= 𝑉

∗

𝐿
(𝜌

𝐿0
− 𝜌

𝐿8,000
)

= 10 l/min (1.29 − 0.4637) kg/m3 = 8.263 g/min.

With an oxygen proportion of 𝜇
O
2
= 23.2% (by mass), the intake of oxygen over

time is therefore reduced by

Δ𝑚
∗

O
2

= 𝜇
O
2
⋅ Δ𝑚

∗

𝐿
= 0.232 ⋅ 8.263 g/min = 1.917 g/min.

By increasing airflow by

𝑉
∗

𝐿8,000
=

𝜌
𝐿0
𝑉

∗

𝐿

𝜌
𝐿8,000

= 27.82 l/min.

it is possible to compensate. This is nearly three times the flow at sea level. In this
calculation, only oxygen compensation through increased airflow is considered.
For the transfer of oxygen from the lungs into the blood, the partial pressure dif­
ference between these phases is also important. This is ignored within the scope
of this approximation.
Methods of increasing oxygen flow:
(a) training the diaphragmmusculature to reduce lung pressure
(b) elevating breathing rate
(c) using an oxygen device

1.2 Human Elevation Limits

If the partial pressure of oxygen in the alveoli falls below the critical value of around
𝑝(O

2
, alveoli) = 50mmHg brain function is disrupted. This value is reached if the par­

tial pressureof oxygen in theair falls to𝑝(O
2
) = 12.9 kPa. Using thebarometric formula
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for barometric elevation, determine the corresponding elevation atwhich this value is
reached; consider the composition of the air to be constant (nitrogen and noble gases:
79.1%, oxygen: 20.9%, carbon dioxide: 0.03%). Is the elevation limit calculated realis­
tic? Can people live at even higher elevations? What determines the "ultimate" eleva­
tion limit?
[density of air 𝜌 = 1.29 kg/m3, air pressure at sea level 𝑝 (0) = 101.3 kPa]

Barometric formula:

𝑝(ℎ) = 𝑝(0)𝑒
−
𝜌0𝑔ℎ

𝑝0 ⇔ ℎ =
𝑝(0)

𝜌
0
𝑔

⋅ ln (
𝑝(0)

𝑝(ℎ)
) .

The reference pressure of air is 101.3 kPa. Using the oxygen partial pressure 𝑝(O
2
)

given, the air pressure is 𝑝(ℎ) is

𝑝(ℎ) =
𝑝(O

2
)

20.9%
= 61.7 kPa.

The height boundary is therefore around 4,000m

ℎ =
101.3 ⋅ 10

3
Pam

3
s
2

1.29 kg ⋅ 9.81m
ln (

101.3

61.7
) = 3,968.8 m.

Hyperventilation can raise the partial pressure of oxygen in the blood. By employing
it, breathing without technological assistance is possible up to around 7,000m. In the
compensation zone of 3,000m − 5,300m, the body can adapt. In the disruption zone
(5,300m − 7,000m) most people experience a severe reduction in capabilities. Some
examples of adaptation to life at high altitudes include the lama cloister of Rongbuk
in Tibet (≈ 5,000m) and the mountain worker settlement of Auncanquilcha in Chile
(≈ 5,300m). At elevations of more than 5,300m acclimatization is no longer possible,
and stays are always limited.

Presence at higher elevations is made possible by breathing oxygen from pressur­
ized bottles (when 𝑝(O

2
) is nearly as great as 𝑝air, external, 𝑝(O2

) in the alveoli rises).
This technique allows people to survive up to 12 km. With hyperventilation, the limit
rises to 14 km. Modern airplanes fly up to that elevation but remain beneath it due to
the danger of a sudden loss of pressure.

At elevations of more than 14 km people can only survive in pressure cabins or
pressure suits (space suits). (Without protective measures, for example, bodily fluids
will begin to boil beyond 20 km as 𝑝

air
< 𝑝vapor pressure(H2

O) at 37∘C).

1.3 Oxygen Transfer in the Brain

The supplying of oxygen by diffusion from capillaries in the human cerebral cortex
can be presented using coaxial cylinders surrounding these capillaries (see Figure).
Blood flows in the capillaries, and brain tissue is located in the outer cylinders. Such
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8 | 1 Breathing and Metabolism

cylinders lie in bundles, parallel to one another. Cell boundaries are permeable mem­
branes to oxygen. Calculate the distribution of partial pressure of oxygen 𝑝(𝑟) in the
external cylinder (in the brain tissue), using the diffusion equation in cylindrical co­
ordinates (see Equation (1.1)). At capillary edge 𝑟 = 𝑅 saturation pressure is 𝑝

𝑠
, and at

the surface of the cylinder at 𝑟 = 𝑅
𝐴
, the partial pressure of oxygen is minimal so that

𝑑𝑝

𝑑𝑟
|
𝑟=𝑅

𝐴
= 0. Consumption and material parameters of diffusion are contained in the

quantity 𝐾, which is known. Considering stationary and axially symmetric relation­
ships,

𝑑
2
𝑝

𝑑𝑟2
+
1

𝑟

𝑑𝑝

𝑑𝑟
= 𝐾. (1.1)

cylindercapillary

Fig. 1.1. Schema of a cross-section of the cerebral cortex, with its capillaries and their concentric
cylinders.

The differential equation
𝑑
2
𝑝

𝑑𝑟2
+
1

𝑟

𝑑𝑝

𝑑𝑟
= 𝐾

is identical to
𝑑

𝑑𝑟
(𝑟

𝑑𝑝

𝑑𝑟
) = 𝐾 𝑟.

Integrating twice gives
𝑝 (𝑟) =

1

4
𝐾 𝑟

2
+ 𝐶

1
ln 𝑟 + 𝐶

2
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with the integration constants 𝐶
1
and 𝐶

2
. As at 𝑟 = 𝑅

𝐴
the partial pressure of oxygen

should be minimal, 𝑑𝑝

𝑑𝑟
|
𝑟=𝑅

𝐴
= 0. This expression, and the boundary condition that at

𝑟 = 𝑅 the saturation partial pressure of air occurs – 𝑝(𝑅) = 𝑝
𝑆
– gives 𝐶

1
= −

1

2
𝐾𝑅

2

𝐴

and 𝐶
2
= 𝑝

𝑆
−

1

4
𝐾𝑅

2
+

1

2
𝐾𝑅

2

𝐴
ln 𝑅. Therefore,

𝑝 (𝑟) = 𝑝
𝑆
+ 𝐾 [

1

4
(𝑟

2
− 𝑅

2
) +

1

2
𝑅

2

𝐴
ln

𝑅

𝑟
] .

2RA
2R

p(RA)

ps

p(r)

r

Fig. 1.2. The concentration 𝑝(𝑟) between the capillaries has its minima at 𝑅
𝐴
.

1.4 Photosynthesis

1. Of the total radiation power of the sun, 𝑃
S
= 2 ⋅ 10

17
W strike the Earth. What

percent of this power is converted through photosynthesis if 𝑚∗

O
2

= 2 ⋅ 10
12

t/a are
liberated? The chemical reaction equation of photosynthesis is

6 CO
2
+ 6H

2
O → C

6
H

12
O

6
+ 6O

2
.

A Gibbs molar enthalpy of Δ𝐺 = +2,868 kJ/mol is required.
2. Estimate the annual consumption of oxygen through human breathing𝑁

∗

O
2
,total

at
a global population of 𝑛 = 7 billion. A person consumes𝑁∗

O
2

= 1.1 ⋅ 10
22 molecules

of oxygen per minute. What is the ratio of oxygen breathed in by people to the
oxygen liberated by photosynthesis across the world?
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1. The radiation power of the sun is 𝑃
S
= 2 ⋅ 10

17
W. In the course of a year, energy is

𝐸
S
= 𝜏 𝑃

S
= (1 a) ⋅ (2 ⋅ 10

17
J/s) = 6.32 ⋅ 10

24
J.

The chemical reaction equation of photosynthesis

6 CO
2
+ 6H

2
O → C

6
H

12
O

6
+ 6O

2
with Δ𝐺 = +2,868 kJ/mol

says that for each iteration, a specific enthalpy of Δ𝐺 = 2,868 kJ/mol is consumed
and 𝑁

O
2
It

= 6 molecules of oxygen are liberated (see the Note on the opposite
page). As such, the annual number of moles of oxygen generated through photo­
synthesis is

𝑁
∗

O
2
Ph

=

𝑚
∗

O
2

𝑀
O
2

=

(2 ⋅ 10
12

t/a) (10
6
g/t)

32 g/mol

= 6.25 ⋅ 10
16

mol/a,

with𝑀
O
2
as the molar mass of the oxygen molecule.

The total energy required per year is therefore 𝐸
Ph

̃𝐸
Ph

=

𝑁
∗

𝑂
2
Ph
𝜏 Δ𝐺

𝑁
O
2It

=

(6.25 ⋅ 10
16

mol/a) (1 a) (2,868 kJ/mol)

6

= 2.987 ⋅ 10
22
J.

The proportion 𝛷 of solar energy used in photosynthesis is therefore

𝛷 =
𝐸

Ph

𝐸
S

⋅ 100% =
2.98 ⋅ 10

22
J

6.25 ⋅ 1024J
⋅ 100% = 0.473%.

2. A person uses 𝑁∗

O
2

= 1.1 ⋅ 10
22

1/min molecules of oxygen each minute. This corre­
sponds to

𝑁
∗

O
2
mol

=

𝑁
∗

O
2

𝑁
A

with𝑁
A
as Avogadro’s number. Numerically,

𝑁
∗

𝑂
2
mol

=
1.1 ⋅ 10

22
1/min

6.02 ⋅ 1023 1/mol

= 1.81 ⋅ 10
−2

mol/min.

The total amount of oxygen 𝑁
∗

O
2
total

consumed annually by a world population of
𝑛 = 7 ⋅ 10

9 people is therefore

𝑁
∗

O
2
total

= 𝑛 ⋅ 𝑁
∗

O
2
mol

.

Numerically,

𝑁
∗

O
2
total

= (7 ⋅ 10
9
) (0.01806 mol/min) = 1.26 ⋅ 10

8
mol/min

= (1.26 ⋅ 10
8
mol/min) (5.26 ⋅ 10

5
min/a) = 6.65 ⋅ 10

13
mol/a.

The material ratio𝛹 of inhaled oxygen to liberated oxygen is therefore

𝛹 =

𝑁
∗

O
2
total

𝑁
∗

O
2Ph

⋅ 100% =
6.65 ⋅ 10

13

6.25 ⋅ 1016
⋅ 100% = 0.11%.
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Additional Note on the Reaction Equation:
6CO

2
+ 6H

2
O → C

6
H

12
O

6
+ 6O

2
with Δ𝐺 = +2,868 kJ/mol.

Consider the molar Gibbs energy in the expression [kJ/mol]; this is the mol-specific energy that must
be added to the chemical reactions each time to make them possible (if Δ𝐺 is negative, heat must be
removed). It can be helpful to multiply this equation with the unit mol:

6mol CO
2
+ 6molH

2
O → 1molC

6
H

12
O

6
+ 6molO

2
.

With each iteration, 1molC
6
H

12
O

6
is produced. As a molar heat quantity of ΔG is required for each

iteration, for 1mol C
6
H

12
O

6
the reaction requires

Δ𝐸
𝑍
= Δ𝐺 ⋅

1

1
mol = 2,868 kJ

and for the creation of 1molO
2

Δ𝐸
𝑆
= Δ𝐺 ⋅

1

6
mol = 478 kJ.

1.5 Erythrocytes: Oxygen Transport in the Body

1. Howmanymolecules of oxygen𝑁
∗

O
2

are transported per minute in the blood if the
minute breath volume of a human is 𝑉∗

O
2

= 10 l/min? The oxygen concentrations
in inhaled and exhaled air are 𝑐

O
2
𝛼
= 21Vol% and 𝑐

O
2
𝜔

= 16.5 Vol% at pressure
𝑝 = 10

5
Pa and temperature 𝑇 = 300 K.

2. At saturation, a molecule of hemoglobin transports 4 molecules of oxygen. How
manymolecules of hemoglobin𝑁

HG
are in an erythrocyte in𝑉

𝐵
= 6 l of blood,with

an average blood circulation time of 𝜏 = 50 s andwith𝑁
Ery

= 5⋅10
6
1/μl erythrocytes

in the blood?
3. What is the average life span 𝜏

𝐿
of erythrocytes if𝑁∗

Ery,𝛼
= 3 ⋅ 10

6 erythrocytes are
generated in the body per second?

1. The number of oxygen molecules per unit time 𝑁
∗

O
2

can be determined from the
ideal gas equation. Here, it is

𝑝𝑉
∗

O
2

= 𝑁
∗

O
2

𝑘𝑇

with 𝑘 as the Boltzmann constant. Solving for𝑁∗

O
2

, we have

𝑁
∗

𝑂
2

=

𝑝𝑉
∗

O
2

𝑘𝑇
=

𝑝𝑉
∗
Δ𝑐

O
2

𝑘𝑇

with Δ𝑐
O
2
= 𝑐

O
2
𝛼
− 𝑐

𝑂
2
𝜔.
Numerically,

𝑁
∗

O
2

=
10

5
Pa 10 l/min (0.21 − 0.165)

1.38 ⋅ 10−23J/K 300K
= 1.09 ⋅ 10

22
min

−1
.
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2. As a hemoglobin molecule transports 4 molecules of oxygen, the flow of hemo­
globin is

𝑁
∗

HG
=

𝑁
∗

O
2

4
=

1.087

4
⋅ 10

22
min

−1

= 2.718 ⋅ 10
21
min

−1
.

As 6 l of blood flow through the entire body in circulation time 𝜏 = 50 s, blood flow
is

𝑉
∗

𝐵
=

𝑉
𝐵

𝜏
=

6 l

50 s
= 0.12 l/s = 0.12 l/𝑠 60 s/min = 7.2 l/min.

In a liter of blood there are𝑁
Ery

= 5 ⋅ 10
12
erythrocyes, and the erythrocyte flow is

𝑁
∗

Ery
= 7.2 l/min 5 ⋅ 10

12
1/l = 3.6 ⋅ 10

13
min

−1

This assumes that all erythrocytes circulate through the body in 50 s; they come
into the lungs without an oxygen load, and are saturated with oxygen there. The
ratio is then

𝑁
∗

HG

𝑁
∗

Ery

=
𝑁

HG

𝑁
Ery

=
2.718 ⋅ 10

21

3.6 ⋅ 1013
= 7.55 ⋅ 10

7
.

In an erythrocyte there are𝑁
HG

= 7.55 ⋅ 10
7 hemoglobin molecules.¹

3. For the erythrocytes, several rate equations apply. These say that the rate with
which the number of erythrocytes in the body changes is equal to the difference
between the rate of creation and destruction, which is proportional to the number
of erythrocytes and inversely proportional to the lifespan 𝜏

𝐿
(𝜏

𝐿
is constant).

𝑑𝑁
Ery

𝑑𝑡
= −

𝑁
Ery

𝜏
𝐿

+ 𝑁
∗

Ery,𝑎.

At equilibrium, the number of erythrocytes does not change, and the erythrocyte
creation rate is

𝑁
∗

Ery,𝛼
=

𝑁
Ery

𝜏
𝐿

.

Solving for the average life span 𝜏
𝐿
, we have

𝜏
𝐿
=

𝑁
Ery

𝑁
∗

Ery,𝛼

=
3 ⋅ 10

13

3 ⋅ 106
s = 10

7
s = 116 d.

1.6 Network Theory of the Human Breathing Apparatus

The laws of transport phenomena (mass flows, electric currents, water currents, and
impulseflows) are of similar formandallow formanyanalogies. As such, they canalso

||
1 Compare with values from the literature; E. Buddecke gives the mass of hemoglobin in an erythro­
cyte as (30–32) pg, and P. Karlson gives themolar mass of hemoglobin as 6.7000 g/mol. An average value
for𝑁

HG
can then be calculated as 6.4 ⋅ 10

7.
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be described using similar models. Due to relatively simple experiments and reason­
ablemeasurement techniques, themodeling ofmechanical flow problems using anal­
ogous electrical quantities is especially popular. As a basicmodel, consider a charged
capacitor with capacitance 𝐶 that is discharged over a circuit with Ohm resistance 𝑅
during time 𝑡.With such amodel, the flow of breath in the lungs can also be described.
The electric resistance 𝑅 corresponds to the flow resistance of the lungs: Δ𝑝

𝑉
∗
, with 𝑉

∗

as the flow of breath; the electric capacitance𝐶 corresponds to the expansibility of the
lungs Δ𝑉

Δ𝑝
.

1. What is the corresponding differential equation for the time dependence of the
electric loading current 𝐼 (𝑡) in an electrical system, and what is the solution with
initial condition 𝐼 (𝑡 = 0) = 𝐼

0
?

2. What is the differential equation analogous to (1) for breath flow in the lungs, and
its solution with breath volume 𝑉

0
?

3. Is the time required to exhale 99% of the air inhaled longer for newborns with
stiffer lungs than it is for adults?

[ adults: 𝑅
𝐸
= 0.15

kPa⋅s

l
; 𝐶

𝐸
= 2,000

ml

kPa
; newborns: 𝑅

𝑁
= 2.5

kPa⋅s

l
; 𝐶

𝑁
= 75

ml

kPa
]

Fig. 1.3. Sketch of the principles of the electric model.

1. For the electric current,
𝐼
1
= 𝐼

2
= 𝐼 (1.2)

and for the potentials,
𝑈

𝐶
= −𝑈

𝑅
. (1.3)
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As 𝑈
𝐶
=

𝑄

𝐶
with 𝑄 as the charge of the capacitor, and 𝑈

𝑅
= 𝐼𝑅 , we have

𝑄

𝐶
= −𝐼𝑅. (1.4)

Taking the derivative gives the differential equation

𝑑𝐼

𝑑𝑡
= −

𝐼

𝑅𝐶
. (1.5)

Separating variables and integrating gives
𝐼

∫

𝐼
0

1

𝐼
𝑑𝐼 = −

1

𝑅𝐶

𝑡

∫

0

𝑑𝑡

and
𝐼(𝑡) = 𝐼

0
exp (−

1

𝑅𝐶
𝑡) . (1.6)

2. Use the following analogies: the flow of breath corresponds to the electric cur­
rent (𝑉∗

=̂ 𝐼); the intake volume of the lungs corresponds to the electric charge
(𝑉=̂𝑄); lung pressure corresponds to electric potential (𝑝=̂𝑈). The expansibility
of the lungs corresponds to capacitance𝐶 =

Δ𝑉

Δ𝑝
. Therefore,(1.6) is here given anal­

ogously as

𝑉 = 𝑉
0
exp (−

1

𝑅𝐶
𝑡) = 𝑉

0
exp ( −

1

Δ𝑝

𝑉
∗

Δ𝑉

Δ𝑝

𝑡) = 𝑉
0
exp (−

𝑉
∗

Δ𝑉
𝑡) . (1.7)

3. We can then calculate time 𝜏, at which 99% of the air inhaled has been exhaled,
as

𝜏 = −𝑅𝐶 ln 0.01 = 𝑅𝐶 ln 100 = 4.61 𝑅𝐶.

lung

body

frictional resistance 
of the airways

exterior

V2
*

p0 ∆pL

∆pR

V1
*

Fig. 1.4. Sketch of the principles of breath flow.
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For adults, the value is

𝑅𝐶 = 𝑅
𝐸
𝐶

𝐸
= 0.15 kPa s2.000 ml/kPa = 0.3 s

and for newborns:

𝑅𝐶 = 𝑅
𝑁
𝐶

𝑁
= 2.5 kPa s75ml/kPa = 0.19 s.

Therefore, we have 𝜏
𝐸
= 1.38 s for adults and 𝜏

𝑁
= 0.86 s for newborns. The time it

takes to exhale inhaled air is less for infants than it is for adults. This means that
infants breathe faster, but the quantity of air per breath is smaller for infants than
it is for adults.

1.7 Transport Phenomena at the Cell Membrane

Oxygen from the air encounters the membrane surface of a cell. The oxygen must dif­
fuse through a boundary layer located in front of the membrane. Consider the air as a
two-component gas, comprised of O

2
(Index 1) and N

2
(Index 2). Nitrogen is the car­

rier gas. The following values are known: the concentration values of oxygen at the
membrane surface 𝑐

1𝑀
and outside the boundary layer 𝑐

1𝐿
, the diffusion coefficients

(both equal to𝐷 for the flows of oxygen and nitrogen), the membrane surface area 𝐴,
and the boundary layer thickness 𝛿.
Determine an equation to calculate themolar flow 𝑛

∗

1
– the flowof oxygen into the cell.

Note: If a gas component (1) diffuses through a boundary layer, the concentration of
both component 1 and carrier gas (2) drops, as the sum of the molar concentrations
remains constant. Due to this fall in concentration, the carrier gas diffuses away from
the membrane; however, it is not expelled from the membrane, as the membrane is
impermeable to the carrier gas. The additional contribution occurs through convec­
tion from the interior of the gas in the direction of the membrane. This flow brings
additional component (1) with it, and so increases diffusion at the boundary layer.

m
em

br
an

e

Fig. 1.5. The concentrations of oxygen within the cell (𝑥 ≤ 0), in the boundary layer (0 < 𝑥 ≤ 𝛿), and
in the air (𝑥 > 𝛿),as well as the consequent molar flow 𝑛

∗

1
.
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Diffusion is a purely molecular movement. Individual components of a mixture ex­
change places, though the total fluid that comprises the mixture remains at rest. Dif­
fusion can, however, cause a reactive convection flow, as in the case discussed previ­
ously. Convection refers to the movement of the total mass. Generally, for the diffusion
of component 𝑗, Fick’s law in one axis holds:

𝑛
∗

𝑗
= −𝐷𝐴

𝑑𝑐
𝑗

𝑑𝑥
. (1.8)

By (1.8) the gradient 𝑑𝑐
𝑗

𝑑𝑥
causes amolar flow through surface𝐴, which is perpendicular

to the 𝑥-direction.

m
em

br
an

e

Fig. 1.6. The concentrations and flows in the transition region before the membrane.

The figure shows the behavior of concentration 𝑐
𝑗
(𝑥) for the component 𝑗 (1 = oxygen;

2 = nitrogen). As a measure of concentration, we use the mole fraction

𝑐
𝑗
=

𝑛
𝑗

∑𝑛
𝑗

. (1.9)

𝑛
𝑗
is the number of moles of component 𝑗. 𝑥 is the membrane separation coordinate.

For a two-material system, we have

𝑐
1
(𝑥) + 𝑐

2
(𝑥) = 1 (1.10)

and therefore
𝑑𝑐

1

𝑑𝑥
= −

𝑑𝑐
2

𝑑𝑥
. (1.11)
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From (1.8) we have, with 𝐴 as membrane surface area,

oxygen diffusion flow 𝑛
∗

1𝐷
= −𝐷𝐴

𝑑𝑐
1

𝑑𝑥
(1.12a)

nitrogen diffusion flow 𝑛
∗

2𝐷
= −𝐷𝐴

𝑑𝑐
2

𝑑𝑥
. (1.12b)

Considering (1.11), nitrogen diffusion flow is also given as

𝑛
∗

2𝐷
= 𝐷𝐴

𝑑𝑐
1

𝑑𝑥
. (1.13)

This diffusive flow leads to nitrogen transport in the 𝑥-direction, away from the mem­
brane. As, however, no nitrogen can be delivered out of the membrane, the diffusion
causes a convective flow of nitrogen in the direction of the membrane; this is known
as Stefan flow 𝑛

∗

2𝑆
. As the total flow of nitrogen 𝑛

∗

2
at each position 𝑥 on the boundary

layer disappears, the Stefan flow must be exactly equal and opposite to the diffusive
nitrogen flow:

𝑛
∗

2𝑆
= −𝑛

∗

2𝐷
. (1.14)

Considering that the Stefan flow represents the flow of nitrogen, and by definition,
only a portion of the total convection flow 𝑛

∗

𝐾
, we have 𝑛∗

2𝑆
= 𝑐

2
𝑛
∗

𝐾
. Therefore,

𝑛
∗

𝐾
=

1

𝑐
2

𝑛
∗

2𝑆
.

This flow 𝑛
∗

𝐾
also transports oxygen. The proportion of oxygen 𝑛

∗

1𝑆
is 𝑐

1
𝑛
∗

𝐾
, so that

𝑛
∗

1𝑆
=

𝑐
1

𝑐
2

𝑛
∗

2𝑆

and in considering (1.14),
𝑛
∗

1𝑆
= −

𝑐
1

𝑐
2

𝑛
∗

2𝐷
. (1.15)

Inserting (1.13) into (1.15), we have

𝑛
∗

1𝑆
= −

𝑐
1

𝑐
2

𝐷𝐴
𝑑𝑐

1

𝑑𝑥
. (1.16)

The total flow of oxygen in the direction of the membrane in comprised additively of
the convective portion 𝑛

∗

1𝑆
and the diffusive potion 𝑛

∗

1𝐷
:

𝑛
∗

1
= 𝑛

∗

1𝑆
+ 𝑛

∗

1𝐷
. (1.17)

Inserting (1.16) and (1.12a) into (1.17), we have

𝑛
∗

1
= −

𝑐
1

𝑐
2

𝐷𝐴
𝑑𝑐

1

𝑑𝑥
− 𝐷𝐴

𝑑𝑐
1

𝑑𝑥
= −(1 +

𝑐
1

𝑐
2

)𝐷𝐴
𝑑𝑐

1

𝑑𝑥
.
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Separating the variables and integrating over the boundary layer

𝛿

∫

0

𝑛
∗

1
𝑑𝑥 = −

𝑐
1𝐿

∫

𝑐
1𝑀

(1 +
𝑐
1

𝑐
2

)𝐷𝐴𝑑𝑐
1

we have, considering equation (1.10)

𝑛
∗

1

𝛿

∫

0

𝑑𝑥 = 𝐷𝐴

𝑐
1𝑀

∫

𝑐
1𝐿

1

1 − 𝑐
1

𝑑𝑐
1
.

Integration yields
𝑛
∗

1
𝛿 = 𝐷𝐴 ln (

1 − 𝑐
1𝑀

1 − 𝑐
1𝐿

) .

The flow of oxygen 𝑛
∗

1
through the membrane is therefore

𝑛
∗

1
=

𝐷𝐴

𝛿
ln (

1 − 𝑐
1𝑀

1 − 𝑐
1𝐿

) =
𝐷𝐴

𝛿
ln (

𝑐
2𝑀

𝑐
2𝐿

) .

1.8 Dielectric Measurement of Exocytosis Processes

In an experiment to calculate the capacitance 𝐶 and the resistance 𝑅 of a cell mem­
brane, an alternating potential between intra- and extracellular space is applied using
𝜇-electrodes. The time-dependence of current 𝐼(𝑡) is measured.
1. How can values for 𝐶 and 𝑅 be calculated from the function 𝐼 (𝑡), and what is the

complex impedance 𝑍?
2. The membrane that surrounds a nerve cell with diameter 𝑑 = 100 μm can be de­

scribed for modeling purposes, to a first approximation, as a capacitor. The sur­
face of the capacitor corresponds to the surface 𝐴 of the cell, and the separation
between the surfaces of different charge is membrane thickness 𝛿 = 10 nm. The
cell membrane has dielectric constant 𝜀. What is, in this model, the dependence
of capacitance 𝐶 on the geometric parameters and the dielectric constant of the
membrane? The separation of the electrodes from the membrane should be ig­
nored.

3. In exocytosis, materials are expelled from the interior of the cell. How does this
method make the observation of such processes possible?

1. First, consider flow through the parallel circuit.

𝐼 = 𝐼
𝑅
+ 𝐼

𝐶
. (1.18)

With 𝐼
𝑅
=

𝑈

𝑅
and 𝐼

𝐶
= 𝐶

𝑑𝑈

𝑑𝑡
we have

𝐼 =
𝑈

𝑅
+ 𝐶

𝑑𝑈

𝑑𝑡
, (1.19)
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cell membrane

Fig. 1.7. Sketch of the equivalent electrical circuit for the membrane.

with 𝑈 (𝑡) = 𝑈
0
𝑒
𝑖𝜔𝑡 and 𝑑𝑈

𝑑𝑡
= 𝑖𝜔𝑈 (𝑡)

𝐼 =
𝑈

𝑅
+ 𝑖𝜔𝐶𝑈. (1.20)

Therefore, the complex impedance is

𝑍 =
𝐼

𝑈
= (

1

𝑅
+ 𝑖𝜔𝐶)

−1

.

In 𝑍, a phase relationship between 𝐼 and 𝑈 is coded; this can be determined by
transferring 𝑍 into the Euler formulation of complex numbers:

𝑍 = |𝑍| 𝑒
𝑖𝜑
.

𝜑 is the phase
tan 𝜑 = −𝜔𝑅𝐶

and |𝑍| is the apparent impedance

|𝑍| = √𝑍 ⋅ 𝑍 = 𝑅(1 + 𝑅
2
𝜔

2
𝐶

2
)
−1/2

= 𝑅 (1 + tan
2
𝜑)

−1/2

= 𝑅 cos 𝜑 = −
1

𝜔𝐶
sin 𝜑.

The apparent impedance is therefore

|𝑍| =
𝑈

eff

𝐼
eff

= 𝑅 cos 𝜑 = −
1

𝜔𝐶
sin 𝜑.

The resistance and capacity can then be calculated:

𝑅 =
𝑈

eff

𝐼
eff

1

cos 𝜑
, 𝐶 = −

𝐼
eff

𝑈
eff

sin 𝜑

𝜔
.

2. The thickness 𝛿 ≈ 10 nm of the membrane is small in comparison to the diameter
𝑑 ≈ 100 μm of the nerve cell considered here, 𝛿 ≪ 𝑑. Locally, therefore, planar
geometry is a good approximation, and themembrane can be described as a plate
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capacitor with plate separation 𝑎 = 𝛿. The surface of the capacitor plates 𝐴 is
equal to the surface area of the membrane 𝐴

𝑀
= 𝜋𝑑

2, if considering a spherical
cell. The capacitance of a plate capacitor is 𝐶 = 𝜖

0
𝜖 𝐴/𝑑, and in the case above,

𝐶 = 𝜖
0
𝜖
𝐴

𝑀

𝛿
= 𝜖

0
𝜖
𝜋𝑑

2

𝛿
,

with 𝜖
0
as the dielectric constant of a vacuum, and 𝜖 as the dielectric number. A

change in the thickness and the surface of the membrane leads to a change in
capacitance𝐶.

3. In exocytosis, vesicles from the interior of the cell are temporarily fused with the
cell membrane. This changes the geometry of the membrane, and therefore, the
capacitance.

1.9 Diffusion and Scale Qualities

Consider oxygen entering into an amoeba and a blue whale in the case that for both
organisms, material transfer occurs only through diffusion. The forms of the amoeba
and the blue whale should be assumed to be spherical (diameter of the amoeba 𝑑

𝐴
=

1 μm; blue whale 𝑑
𝑊

= 13m). The concentration of oxygen in water 𝑐
𝑜
= 11mg/l is 10

times larger than at position 𝑟 = 0.1 𝑑 in the organism. The oxygen is consumed at the
center of the organism. As a material transfer mechanism, would diffusion alone be
sufficient to maintain life in large animals like the whale? Assume that no oxygen is
consumed along the diffusion path.
[diffusion constant ofO

2
in the organism and in water:𝐷 = 2.1 ⋅ 10

−9
m

2
s
−1, density of

oxygen: 𝜌
𝑜
2
= 1.429 kg/m3]

The diffusion equation, in general in spherical coordinates, is

𝜕𝑐
O
2

𝜕𝑡
= 𝐷∇

2
𝑐
O
2
=

𝑑
2
𝑐
O
2

𝑑𝑟2
+
2

𝑟

𝑑𝑐
O
2

𝑑𝑟
,

in which derivatives with respect to the angular coordinate are set = 0, as isotropic
relationships are assumed. In the stationary case, the distribution of concentration
is constant, and the derivative with respect to time disappears. This familiar sec­
ond-order differential equationwith variable coefficients can be transformed into one
with constant coefficients through the substitution 𝑟 = 𝑒

𝑥. It is then

𝑑
2
𝑐
O
2

𝑑𝑥2
+
𝑑𝑐

O
2

𝑑𝑥
= 0.

Integrating twice gives
𝑐
O
2
= 𝐴 𝑒

−𝑥
+ 𝐵 =

𝐴

𝑟
+ 𝐵.
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With boundary conditions 𝑐(𝑟 = 0.1 𝑑) =
𝑐
0

10
and 𝑐(𝑟 = 0.5 𝑑) = 𝑐

0
we have the integra­

tion constants 𝐴 = −0.112 𝑑 𝑐
0
and 𝐵 = 1.22 𝑐

0
, and therefore the solution

𝑐
𝑂
2
= 𝑐

0
(1.22 − 0.112

𝑑

𝑟
) .

The concentration gradient in the radial direction is therefore, at the surface,

[
𝑑𝑐

O
2

𝑑𝑟
]

𝑟=
𝑑

2

=
0.112 𝑐

𝑜
𝑑

𝑑2/4
= 0.45

𝑐
𝑜

𝑑
,

and is indirectly proportional to the diameter of the organism. The flow per unit area
is, according to Fick’s Law, proportion to the gradient. As the surface area increases
with the square of the diameter, the total transport of oxygen through the surface rises
linearly with the diameter. Consumption, however, rises cubically with weight under
the assumption of constant energy use. This demonstrates that transport by diffusion,
as used by amoebas, would not be sufficient to keep larger animals adequately sup­
pliedwith oxygen. As such, thewhale, like all higher animals, has a circulatory system
that delivers oxygen to its organs.
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2 Biomechanics

In biomechanics, the laws of classicalmechanics are applied to biological systems. In
this chapter we give particular consideration to the static characteristics and strength
of the skeletal system. The bones that comprise this system are composite materials
made of inorganic crystals and proteins that are assembled and dismantled by living
cells. Because of this they are very adaptable; bone construction, for example, can be
augmented when bones are under loads. These loads include external forces 𝐹⃗, the
local effect of which will be discussed as stress (force per area). When forces apply
perpendicularly to a surface 𝑑𝐴 they are referred to as normal stress 𝜎; if they occur in
the surface, they are called tangential or shear stress𝜏. General stresswill bedescribed
using stress tensors 𝑇.

Stresses cause deformation of the bones. So that a bone is not damaged, this de­
formation may not exceed an allowable limit. This limitation, in turn, requires that
external loads not bring about a state of stress that causes an irreversible change in
the form of the bone material, or destroys the bone (bone fracture). For the sake of
simplicity, we primarily concentrate here only on cases of single-axis stress – either
normal stress, or pure shear stress. The corresponding changes in form are pure strain
(and compression), bending, shearing, or torsion. The critical stresses thatmaynot be
exceeded will also be characterized, along with the strength of bones.

The strain 𝜖 of amaterial body is the change in its length Δ1 under an axial load of
value 𝐹with respect to the original length 𝑙 (𝜖 = Δ𝑙

𝑙
). Strain 𝜖 is proportional to the ap­

plied normal stress 𝜎 =
𝐹

𝐴
up to the critical stress 𝜎

𝑃
. The relationship between stress

𝜎 and strain 𝜖 is 𝜎 = 𝐸𝜖 for 𝜎 ≤ 𝜎
𝑃
. The proportionality factor 𝐸 is called the tensile

modulus (or Young’s modulus). There is an analogous relationship for the shearing
of a body. Here, due to a tangential force of magnitude 𝐹, shear stress 𝜏 =

𝐹

𝐴
is pro­

portional to the shear angle 𝛾 up to the allowed stress 𝜏
𝑃
(𝜏 = 𝐺𝛾 for 𝜏 ≤ 𝜏

𝑃
). The

proportionality factor 𝐺 is called the shear modulus. The relationships 𝜎 = 𝐸𝜖 and
𝜏 = 𝐺𝛾 are called Hooke’s Laws for Strain and Shearing Stress, respectively. 𝐸 and 𝐺

are characteristics of materials, as are 𝜎
𝑃
and 𝜏

𝑃
; their values for bone material will

be discussed. The stresses 𝜎
𝑃
and 𝜏

𝑃
mark the upper bound of Hooke’s Law (propor­

tionality boundaries). At higher values, the proportionality breaks down, and plastic
deformation occurs in the bone. Even if the stresses lessen, a permanent deformation
remains. If the stresses increase further, the bonewill break at𝜎

𝐵
and 𝜏

𝐵
. The region of

plasticity is relatively small for bones, so strength against plastic deformation 𝜎
𝑃
and

𝜏
𝑃
can be set numerically equal to strength again breaking 𝜎

𝐵
and 𝜏

𝐵
.

The intensity of local stress is not only determined by the intensity of the external
force, but also by its point of application. These are usually described asmoments; the
bending moment 𝑀

𝑏
, for example, corresponds to the product of the external force

and the length of the lever arm. Bending stress 𝜎
𝑏
=

𝑀
𝑏

𝑊
𝑏

is generated, with the section
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modulus
𝑊

𝑏
=

1

𝑒
𝑅

∫𝑥
2
𝑑𝐴.

For torsion, torque𝑀
𝑡
produces torsional stress 𝜏

𝑡
according to 𝜏

𝑡
=

𝑀
𝑡

𝑊
𝑝

, with the
polar section modulus

𝑊
𝑝
=

1

𝑒
𝑅

∫ 𝑟
2
𝑑𝐴.

The section moduli are also calculated as integrals over all surfaces 𝑑𝐴, weighted
by the square of the distance from the reference axis; 𝑒

𝑅
is the distance of the boundary

from the neutral axis. Stresses may not exceed the maximal values of bone strength
for bending and torsion, either.

Bones must be able to bear the greatest possible forces and moments with the
smallest possible deviations, and yet remain as light as possible. This optimization
problem is solved by the body using “lightweight construction”. The external parts
of the bones are relatively dense, but internally they are, for the most part, porous
throughout. Bone is structured as an extracellular matrix that is primarily comprised
of calcium hydroxylapatite. This gives the bone resistance to compression. The rest of
the bone is comprised principally of protein, which is primarily responsible for longi­
tudinal strength against strain.

The forces that affect bones are bodyweight, and loads from outside the body. Ad­
ditionally, there are alsomuscle forces that can apply torques through coupled action,
and can lead to bending of the bones. An example is the skeletalmuscle system. These
muscles, with 40–50% of the entire body weight, are by far the body’s heaviest organ.
This is the muscle system that allows motion. The functional qualities of the skele­
tal muscles that allow for this motion result from bundled muscle fibers. Eachmuscle
fiber is a long, cytoplasmic tube with diameters of 10−100 μm and lengths of 1–5 cm,
without cell boundaries, so that a cell can have many hundreds of cell nuclei. These
fibers usually extend throughout the entire muscle, and end in conjunctive tendons
the bind the muscle to the bone. Amuscle cell contains a large number of microfibrils
that can change their length. They run parallel to one another along the longitudinal
axis of the muscle, and are usually around 2.5 μm long.

A muscle generates its maximum force through isometric contraction – for ex­
ample, in holding up a weight. When the muscle shortens under constant stress, its
behavior is called isotonic contraction – for example, in lifting a weight. These differ­
ent behaviors are illustrated by rest strain graphs. Here, a tensile force is applied to a
muscle at rest, and the strain ismeasured. These graphs shownon-Hookean behavior,
and describe the natural elasticity of muscle fibres. The energy conversion efficiency 𝜂
of muscle movement – the relationship of the mechanical work done to the chemical
energy consumed – depends on the type of contraction. In isometric loading there is
no motion in the direction of force, and so no mechanical work is done. The energy
conversion efficiency is therefore 𝜂 = 0. In isotonic loading, with a force that is less
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than 30% of the maximum possible, there is an energy conversion efficiency on the
order of 0.4 ≤ 𝜂 ≤ 0.5. The remaining chemical energy is converted into heat.

As bones need to be able to move in relation to one another, the body constructs
joints. Because bones are not protected against friction, bone-to-bone contact is
avoided by and bridged with cartilage. This material possesses a high resistance to
compressive loads, with little friction. Additionally, the cartilage takes on a dampen­
ing role under shock loads. Coefficients of friction are lessened through joint fluidity;
this avoids dry friction. Ligaments stabilize the joints, and also guide the tendons.

2.1 Achilles Tendon

With the help of the Achilles tendons, the main muscle of the leg is able to hold up
the body of a person of mass 𝑚 = 50 kg standing on one leg, at an angle between the
foot and the surface of the floor of 𝛼 = 20

∘. In this situation, what is themuscular force
𝐹
𝑀
if the length of the foot is 𝑙 = 13 cm and the instep is 𝑎 = 10 cm? Assume that due

to the anatomy of the foot (the ligaments), the tendons always act perpendicularly on
the bones of the foot. If we assume that the muscular force acts as the strain force of a
spring with spring constant 𝑘 = 10

3
N/cm, what is the required spring displacement 𝑠?

First, consider the geometry shown in the following diagram.

l

a

FS

A

B

FA

Fig. 2.1. The foot as a lever.
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In static equilibrium, the following relationships must hold:

𝑛

∑

𝑖=1

𝐹⃗
𝑖
= 0, (2.1)

𝑚

∑

𝑗=1

𝑀⃗
𝑗
= 0. (2.2)

Here, the forces 𝐹⃗
𝑖
acting upon a body from outsidemust also be considered, aswell as

the reaction forces that arise from a load. Internal forces cancel these out, and there­
fore donot enter into the calculation. From thefirst condition,wehave the equilibrium
reaction force 𝐹⃗

𝐴
of the ground at Point A due to the weight of the person:

⃗𝐹
𝐺
+ 𝐹⃗

𝐴
= 0.

The reaction force 𝐹⃗
𝐴
is opposite the weight force 𝐹⃗

𝐺
. As such, the magnitudes of 𝐹

𝐴

and 𝐹
𝐺
are equal. The second conditionmust hold for each surface point at which the

force applies. Because of this, we can freely choose any point to formulate the sum of
themoments such that they disappear. It is convenient to take the sumof themoments
around Point B, as there, the weight force itself delivers nomoment (the lever armhas
length zero). Therefore,

𝐹
𝑆
⋅ (𝑙 − 𝑎) − 𝐹

𝐴
⋅ 𝑎 cos 𝛼 = 0.

As 𝐹
𝐴
= 𝐹

𝐺
and the force of the tendon 𝐹

𝑆
must be equal to the force of the muscle 𝐹

𝑀
,

we have
𝐹
𝑀

= (
𝑎

𝑙 − 𝑎
)𝑚𝑔 cos 𝛼.

Numerically
𝐹
𝑀

=
10

3
⋅ 50 kg ⋅ 9.81 m/s2 cos 20

∘
= 1,536N.

If wemodel the muscle as a spring that builds up its force 𝐹
𝑀
over displacement 𝑠, we

find
𝐹
𝑀

= 𝑘𝑠

and therefore
𝑠 =

𝐹
𝑀

𝑘
=

1,536N

103 N/cm
= 1.54 cm.

2.2 Bone Structures of the Ulna and Radius

Consider a forearm held at 90∘ relative to the body. The hand holds a full mug of beer
(volume𝑉 = 1 l; weight of themugwhen empty 𝐹

𝐺𝐾
= 10N). The arm is 𝑙 = 50 cm long.

To model the problem, we shall take a round rod to represent the ulna and the radius,
to which half of the forces applied to both bones will be allotted. Howmust this rod –
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and therefore, the ulna and radius – be formed so that at each position 𝑥 (length coor­
dinate of the bone), strength (bending stress) is equal?What is theminimumdiameter
the bones must have at the elbow in order to hold the mug of beer steady?

The following two models of bones should be considered:
1. Solid rod
2. Hollow rod with diameter ratio 𝐷

𝑑
= 2, with 𝐷 as the external diameter and 𝑑 as

the internal diameter.

We will ignore the weight of the bones themselves. The failure stress of the bone ma­
terial is 𝜎

𝐵
= 100MPa.

We can assume the solution of this integral:

∫𝑧
2 √𝑎2 − 𝑧2 𝑑𝑧 = −

𝑧

4

√(𝑎2 − 𝑧2)
3
+
𝑎
2

8
[𝑧√(𝑎2 − 𝑧2) + 𝑎

2
arcsin (

𝑧

𝑎
)] + 𝐶.

l = 50 cm

FGx

Fig. 2.2. The ulna and the radius are modeled as two rods. They are oriented at a right angle to the
upper arm, and are loaded with a mug of beer at their far end.

1. Solid rod:
The shear force 𝐹⃗ is responsible for the load that acts at the end of the arm:

𝐹⃗ = 𝐹⃗
𝐺𝐾

+ 𝐹⃗
𝐺𝐵

with 𝐹⃗
𝐺𝐾

as the weight force of the mug and 𝐹⃗
𝐺𝐵

as the weight force of the beer.
𝐹
𝐺𝐵

= 󰜚
𝐵
𝑔𝑉 with 𝑉 as the contents of the mug, and 󰜚

𝐵
as the density of the beer.

For 󰜚
𝐵
, we can assume the density of water 󰜚

𝑊
: 󰜚

𝐵
= 󰜚

𝑊
= 1,000 kg/m3

We have shear force

𝐹 = 10N + 1,000 kg/m3 ⋅ 9.81 m/s2 ⋅ 0.001 m
3
= 19.81 N.

Half of this shear force loads each of the bones, so that the rod force is 𝐹
𝑆
=

𝐹

2
=

9.9 N. As the rod is held steady, there is also a bending moment across the length
of the rod:𝑀

𝑏
(𝑥)

𝑀
𝑏
(𝑥) = 𝐹

𝑆
(𝑙 − 𝑥) .
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The bending moment is at its greatest at the fixing point (𝑥 = 0), the elbow:

𝑀
𝑏,max

= 𝐹
𝑆
𝑙 = 9.9 N ⋅ 0.5 m = 4.95 Nm.

𝐹
𝑆
and𝑀

𝑏
(𝑥) together load the rod at eachpoint 𝑥.However, because the length of

the rod 𝑙 is much greater than the rod radius𝐷, only𝑀
𝑏
is of measurablemeaning

for the stress state in the rod.¹ The bending moment causes an identical reaction
moment at each point 𝑥 according to its magnitude:

𝑀
∇

𝑏
(𝑥) = ∫

𝐴

𝜎(𝑧) 𝑧 𝑑𝐴 =

1

2
𝐷(𝑥)

∫

−
1

2
𝐷(𝑥)

𝜎(𝑧) 𝑧 𝐵(𝑥, 𝑧) 𝑑𝑧

with 𝐵(𝑧) as the width of the rod. The rod is round, and therefore

𝐵(𝑥, 𝑧) = √[
𝐷(𝑥)

2
]

2

− 𝑧2.

The distribution of stress 𝜎 (𝑧)must be linear because the frontal areas of the rod
remain undeformed under bending. This means that all “fibers” in the 𝑧 direction
are linearly squeezed or stretched byΔ𝑙 (𝑧). Themiddle fibers remainunstretched.
They are termed the “neutral fibers” (neutral axis). Δ𝑙 (𝑧) is, therefore, a linear
function. As Hooke’s law 𝜎 = 𝐸𝜀 applies in the elastic region, with 𝜀 (𝑧) =

Δ𝑙(𝑧)

𝑙
, the

dependency 𝜎 (𝑧)must also be linear. The function 𝜎 (𝑧) is

𝜎 (𝑥, 𝑧) =
2𝜎

0
(𝑥)

𝐷
𝑧

with 𝜎
0
(𝑥) as the tension value at position [𝑥, 𝑧] = [𝑥,

𝐷(𝑥)

2
]. Therefore,

𝑀
∇

𝑏
(𝑥) =

2𝜎
0
(𝑥)

𝐷(𝑥)

+
1

2
𝐷(𝑥)

∫

−
1

2
𝐷(𝑥)

𝑧
2 √

𝐷(𝑥)

2

2 − 𝑧2 𝑑𝑧,

and by symmetry,

𝑀
∇

𝑏
(𝑥) = 2

2𝜎
0
(𝑥)

𝐷(𝑥)

1

2
𝐷(𝑥)

∫

0

𝑧
2 √[

𝐷(𝑥)

2
]

2

− 𝑧2 𝑑𝑧.

The integral

2

1

2
𝐷(𝑥)

∫

0

𝑧
2 √[

𝐷(𝑥)

2
]

2

− 𝑧2 𝑑𝑧 = 𝐽
𝑎

||
1 In the case that 𝑙 ≪ 𝐷 we refer to a “slender” rod, and the deformation possible is curvature, to a
good approximation. If 𝑙/𝐷 ≈ 1, though, additional deformations appear, along with additional shear
stresses.
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is also written as the area moment of inertia 𝐽
𝑎
, and 𝐽

𝑎

𝑏
= 𝑊

𝑎
as the axial section

modulus² with 𝑏 as the distance of the neutral fibers from the boundary (edge)
fibers. 𝑏 is 1

2
𝐷(𝑥) in the previous case. Therefore, we have

𝑀
∇

𝑏
(𝑥) =

2𝜎
0
(𝑥)

𝐷(𝑥)
𝐽
𝑎
= 𝜎

0
(𝑥)𝑊

𝑎
.

The integration of 2 ∫
1

2
𝐷(𝑥)

0
𝑧
2√[

𝐷(𝑥)

2
]
2

− 𝑧2 𝑑𝑧 yields (considering the integration
solution given in the problem), for values 𝐽

𝑎
and𝑊

𝑎
,

𝐽
𝑎
=

𝜋𝐷(𝑥)
4

64
and 𝑊

𝑎
=

𝜋𝐷(𝑥)
3

32
.

And therefore
𝑀

∇

𝑏
(𝑥) =

𝜋

32
𝐷(𝑥)

3
𝜎
0
(𝑥).

As𝑀
𝑏
(𝑥) and𝑀

∇

𝑏
(𝑥)must be equal, we have

𝐹
𝑆
𝑙 (1 −

𝑥

𝑙
) =

𝜋

32
𝐷(𝑥)

3
𝜎
0
(𝑥).

And therefore
𝜎(𝑥) =

32

𝜋𝐷(𝑥)3
𝐹
𝑆
𝑙 (1 −

𝑥

𝑙
) .

As long as strength remains constant over 𝑥, 𝜎
0
(𝑥) = constant, and is therefore

not a function of 𝑥. Additionally, 𝜎
0
cannot exceed the failure stress 𝜎

𝐵
; with the

condition that 𝜎
0
= 𝜎

𝐵
the condition of minimum security is fulfilled. Therefore,

𝐷
3
(𝑥) =

32𝐹
𝑆
𝑙

𝜋𝜎
𝐵

(1 −
𝑥

𝑙
) .

And the form of the bones becomes

𝐷(𝑥) = 𝐷
0

3
√1 −

𝑥

𝑙

with

𝐷
0
=

3
√
32𝑀

𝑏,max

𝜋𝜎
𝐵

as the diameter of the bone at the elbow 𝑥 = 0.
With𝑀

𝑏,max
= 4.95 Nm; 𝜎

𝐵
= 100MPa = 10

8
Pa we have𝐷

0
= 7.96mm.

||
2 Note that both expressions 𝐽

𝑎
and𝑊

𝑎
are not moduli in the sense of force × lever arm, but rather are

purely geometric quantities. 𝐽
𝑎
has unitm4 and𝑊

𝑎
has unitm3.
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Table 2.1. Bone diameter at different positions

𝑥 [cm] 0 5 10 20 30 40 50

Solid rod 𝐷solid [mm] 8.0 7.7 7.4 6.7 5.9 4.7 0

Hollow rod 𝐷hollow [mm] 8.2 8.0 7.6 7.0 6.1 4.8 0

2. Hollow rod:
Here, the geometric quantities 𝐽

𝑎
and𝑊

𝑎
change:

𝐽
𝑎(hollow)

= 2
[
[

[

1

2
𝐷(𝑥)

∫

0

𝑧
2 √

𝐷(𝑥)2

4
− 𝑧2 𝑑𝑧 −

1

2
𝑑(𝑥)

∫

0

𝑧
2 √

𝑑(𝑥)2

4
− 𝑧2 𝑑𝑧

]
]

]

=
𝜋

64
[𝐷(𝑥)

4
− 𝑑(𝑥)

4
]

𝑊
𝑎(hollow)

=
𝜋

32
𝐷(𝑥)

3
[1 − (

𝑑

𝐷
)
4
] .

With 𝑑

𝐷
= 0.5 we have

𝑊
𝑎(hollow)

=
𝜋

32
𝐷(𝑥)

3
⋅ 0.9375.

As𝑀
𝑏
= 𝑊

𝑎
𝜎
𝐵
, we have at position 𝑥 = 0

𝑀
𝑏,max

=
0.9375 𝜋

32
𝐷

3

0
𝜎
𝐵

and therefore

𝐷
0(hollow)

=
3
√

32𝑀
𝑏,max

0.9375 ⋅ 𝜋 ⋅ 𝜎
𝐵

= 1.03 𝐷
0(solid)

= 8.13mm.

di
am

et
er

 D
 (m

m
)

position x (mm)

solid rod
hollow rod

Fig. 2.3. The forms of the bones in comparison to one another.
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Conclusion: At the same strength, the hollow rod has a diameter barely greater than
that of the solid rod. Bones are therefore hollow in most cases. Advantages of this
structure include a reduced amount of bone mass required, a reduction in dead
weight, and more space for vessels and nerve fibers. The thickness of the arm bones
is greater in adults than the value calculated here, as a human can hold more than a
mug of beer.

2.3 Ski Bindings

Consider a ski binding that releases if the shear force 𝐹⃗ at the top of the binding ex­
ceeds a limit. Determine this limit, with a quadruple safety contingency ( 𝜏

𝐵

𝜏
max

) against
torsion fracture (four times maximum shear stress must be smaller than the fracture
stress of bone). Assume that the bone structure, including the knee, in the human leg
can be described as a round rod of length 𝑙 and diameter 𝑑. This rod is held firm at
its upper end. Assume that the rod has the physical properties of bone material. Also,
determine the angle 𝜑

max
that the body has rotated relative to the axis of the skis at the

moment at which the binding releases.
[rod: diameter 𝑑 = 4 cm; length 𝑙 = 1m; failure stress of bone 𝜏

𝐵
= 65MPa;

shear modulus of the bone mass 𝐺 = 3.7 GPa

additionally: shoe size 𝑠 = 25 cm; safety factor 𝜈 = 4]

For the torque 𝑀⃗
𝑠
that the ski binding exerts on the ski, we have

𝑀⃗
𝑠
= 𝐹⃗ ⋅ ⃗𝑠. (2.3)

s

F

Fig. 2.4. The ski with the binding, from overhead.
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Here, 𝐹⃗ is the shear force, and the length of the vector ⃗𝑠 corresponds to the shoe size.
The torque that affects the leg is

𝑀 = ∫

𝐴

𝜏 (𝑟) 𝑟 𝑑𝐴

with 𝜏 (𝑟) as the shear stress distribution over a cross section of the rod. The distribu­
tion of stress 𝜏(𝑟) is, due to

𝜏(𝑟)

𝜏
0

=
𝑟

𝑅

with 𝜏
0
= 𝜏(𝑟 = 𝑅),

𝜏 (𝑟) = 𝜏
0

𝑟

𝑅
. (2.4)

The element of area 𝑑𝐴 can be expressed using the radial coordinate 𝑟: 𝑑𝐴 = 2𝜋𝑟𝑑𝑟.
Then the torque becomes

𝑀 = 𝜏
0
(
2𝜋

𝑅
)

𝑅

∫

0

𝑟
3
𝑑𝑟 = 𝜏

0
𝑊

𝑃
. (2.5)

The polar section modulus𝑊
𝑃
for a round, solid rod is

𝑊
𝑃
=

2𝜋

𝑅

𝑅

∫

0

𝑟
3
𝑑𝑟 = (

𝜋

2
)𝑅

3
= (

𝜋

16
) 𝑑

3
. (2.6)

Therefore,

𝑀 =
𝜋𝜏

0
𝑑
3

16
. (2.7)

The maximum allowable torque𝑀
max

can be determined from the condition that the
maximum shear stress 𝜏

0
multiplied by the safety factor 𝑣 must remain smaller than

the failure stress 𝜏
𝐵
of the bone, 𝜏

0
≤ 𝑣 𝜏

𝐵
:

𝑀
max

=
𝜋𝜏

𝐵
𝑑
3

16 𝑣
.

By setting this torque and the torque applied equal (2.3),𝑀
max

= 𝑀
𝑠
, we have, for the

release force,

𝐹 =
𝜋𝜏

𝐵
𝑑
3

16 𝜈𝑠
= 314.4 N. (2.8)

Geometrically – see Figure 2.5 – the twisting angle 𝜑 is related to the shear angle 𝛾 by

𝑙𝛾 = 𝑅𝜑 =
𝑑

2
𝜑 → 𝜑 =

2 𝑙

𝑑
𝛾. (2.9)

Therefore, the maximum twisting angle 𝜑
max

at which the ski binding releases is

𝜑
max

=
2 𝑙

𝑑
𝛾
max

. (2.10)
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l 

d 

Fig. 2.5. The leg during torsion, with twisting angle 𝜑 and shear angle 𝛾.

FromHooke’s Law for torsion 𝜏 = 𝐺𝛾, for 𝜏 < 𝜏
𝐵
with𝐺 as the shear modulus, we have

𝛾 =
𝜏

𝐺
and 𝛾

max
=

𝜏
𝐵

𝜈𝐺
. (2.11)

Therefore, the maximum twisting angle is

𝜑
max

= 2
𝜏
𝐵
𝑙

𝜈𝐺𝑑
=̂ 𝜑

∘

max
= 180

∘ 𝜑max

𝜋
= 360

∘ 𝜏
𝐵
𝑙

𝜈𝜋𝐺𝑑
. (2.12)

With 𝑙 = 1m; 𝐺 = 3.7 GPa; 𝜏
𝐵
= 65MPa and 𝑑 = 4 cm we have

𝜑
max

= 360
∘ 65MPa ⋅ 1m

4𝜋 ⋅ 3.7 GPa ⋅ 0.04m
= 12.6

∘
.

In reality, the angle 𝜑
max

is significantly larger, because the leg – in spite of the as­
sumption – is not fixed at the hip (ball-and-socket joint), and because the two parallel
bones in the lower leg – tibia and fibula – permit greater rotational motion without
harming the bones.

2.4 Elasticity of the Vertebrae

A man pulls on a rope tied to a wall with a force of 𝐹 = 200N (see figure). As a result,
his spine begins to bend. Calculate this curvature – the deflection curve of the spine.
The spine, fixed in place in the pelvis, is modeled as a straight elastic rod, orthogonal
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shoulder
pelvis

arm and rope

Fig. 2.6. Geometry for the determination of the deflection curve.

to the ground, with a square cross section. The pelvis remains at rest while the man
pulls. The connection of the shoulders to the spine is fixed. What is the maximum
deflection due to this load?
[Young’s modulus of the spine (with the musculature) 𝐸 = 6.25 GPa (effective value);
length of the spine 𝑙 = 1m; width of the square spine 𝑏 = 4 cm; failure stress of the
bone material 𝜎

𝐵
= 120 N/mm

2]

The external load on the spine is given by the force of the rope 𝐹
𝑆
, which arises to

counter the pulling force 𝐹. This produces the 𝑥-dependent bending moment𝑀(𝑥)

𝑀(𝑥) = 𝐹
𝑆
𝑥.

y

x

d

d

R

C

Q

P

ds

Fig. 2.7. Geometry for the determination of the deflection curve.
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This moment leads to stresses in the spine that can, to a good approximation, be con­
sidered as pure normal stresses. So that the system remains static, the external mo­
ment must be equal and opposite to the internal moment. This is dependant on posi­
tion – on the length coordinate 𝑥, as well as on the 𝑦 coordinate:

𝑑𝑀 (𝑥, 𝑦) = 𝜎(𝑥)𝑦 𝑑𝐴.

Here, 𝜎(𝑥) =
2𝜎

0
(𝑥)

𝑏
𝑦 with 𝜎

0
(𝑥) as the tension on the upper boundary fibers of the

spine. The element of area 𝑑𝐴 = 𝑏 𝑑𝑦 is a cross sectional element of the spine. There­
fore,

𝑀(𝑥) =
2𝜎

0
(𝑥)

𝑏

𝑏/2

∫

−𝑏/2

𝑦
2
𝑏 𝑑𝑦 =

2𝜎
0
(𝑥)

𝑏
𝐼
𝑎

with the axial area moment of inertia

𝐼
𝑎
= 2𝑏

𝑏/2

∫

0

𝑦
2
𝑑𝑦 = 𝑏 [

𝑦
3

3
]

𝑏/2

0

=
𝑏
4

12
.

The bending moment becomes

𝑀(𝑥) =
2𝜎

0
(𝑥)𝐼

𝑎

𝑏

and
𝜎
0
(𝑥) =

𝑀(𝑥) 𝑏

2 𝐼
𝑎

.

Thedeflection curve canbe described by the function𝑦(𝑥). 𝑦(𝑥) is related to the radius
of curvature 𝑅(𝑥).
We have

tan 𝛼 =
𝑑𝑦

𝑑𝑥
= 𝑦

󸀠

and we can derive
𝑑𝛼

cos2 𝛼
= 𝑦

󸀠󸀠
𝑑𝑥.

Furthermore, we have 𝑑𝑠2 = 𝑑𝑥
2
+ 𝑑𝑦

2, and therefore

𝑑𝑠

𝑑𝑥
= √1 + (

𝑑𝑦

𝑑𝑥
)

2

= √1 + 𝑦󸀠2.

With 𝑑𝛼 =
𝑑𝑠

𝑅
, we have, for the radius of curvature,

𝑅 =
𝑑𝑠

𝑑𝛼
=

𝑑𝑠

𝑑𝑥

𝑑𝑥

𝑑𝛼
.
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The relationship sin
2
𝛼 + cos

2
𝛼 = 1 can also be written in the form tan

2
𝛼 + 1 =

1

cos
2
𝛼
,

or, considering the terms mentioned above,

𝑦
󸀠2
+ 1 =

1

cos2 𝛼
= 𝑦

󸀠󸀠 𝑑𝑥

𝑑𝛼

𝑅 = √1 + 𝑦󸀠2 ⋅
(1 + 𝑦

󸀠2
)

𝑦󸀠󸀠
=

(1 + 𝑦
󸀠2
)

𝑦󸀠󸀠

3/2

.

When considering the bending of bones, only small curvatures occur. For small cur­
vatures, 𝑦󸀠 becomes small and 𝑦

󸀠2 is even smaller, so we find, for the relationship be­
tween radius of curvature 𝑅(𝑥) and deflection curve 𝑦(𝑥),

𝑅(𝑥) =
1

𝑦󸀠󸀠(𝑥)
→ 𝑦

󸀠󸀠
(𝑥) =

1

𝑅(𝑥)
.

In order to show how the radius of curvature depends on the load, we must consider
the strain geometry according to Figure 2.8. For the distance of a point in the spine
from the center of the circle that describes the curvature,wewill use 𝑟. The load causes
strain 𝑑𝑙 on the outermost fiber 𝑟 = 𝑅+

𝑏

2
, and compression −𝑑𝑙 on the innermost fiber

𝑟 = 𝑅 −
𝑏

2
. The middle fibers of the spine 𝑟 = 𝑅 remain undeformed (neutral fibers).

𝑑𝑥

𝑅
=

𝑑𝑙

𝑏

2

=
2 𝑑𝑙

𝑏
.

As 𝑑𝑙

𝑑𝑥
= 𝜖

0
is the strain on the outermost fiber, we have

1

𝑅
=

2 𝜀
0

𝑏
.

Considering Hooke’s Law 𝜎
0
= 𝐸𝜖

0
we have

1

𝑅
=

2 𝜎
0

𝐸 𝑏
.

Because 1

𝑅
= 𝑦

󸀠󸀠 is valid for large radii of curvature, and for 𝜎
0
=

𝑀⋅𝑏

2 𝐼
𝑎

(see above), we
have, for the second derivative of the deflection curve, the condition

𝑦
󸀠󸀠
(𝑥) =

𝑀(𝑥)

𝐼
𝑎
𝐸

.

In the previous case,𝑀(𝑥) = 𝐹
𝑆
𝑥, and 𝐼

𝑎
=

𝑏
4

12
; therefore,

𝑦
󸀠󸀠
=

12 𝐹
𝑆
𝑥

𝑏4𝐸
= 𝐴𝑥.

Then we have
𝑦
󸀠
= 𝐴

𝑥
2

2
+ 𝐵

and
𝑦 = 𝐴

𝑥
3

6
+ 𝐵 𝑥 + 𝐶.
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neutral fiber

Fig. 2.8. Strain and compression of the material of the bones of the spine on both sides of the neu­
tral fiber.

We have boundary conditions

𝑦 (𝑙) = 0

𝑦
󸀠
(𝑙) = 0,

which lead to

𝐵 = −
𝐴 𝑙

2

2

= −
6 𝐹

𝑆
𝑙
2

𝑏4𝐸

𝐶 = −
𝐴 𝑙

3

6
+
𝐴 𝑙

3

2
=

4 𝐹
𝑆
𝑙
3

𝑏4𝐸
.

The deflection curve is therefore

𝑦(𝑥) =
2 𝐹

𝑆

𝑏4𝐸
𝑥
3
−
6 𝐹

𝑆
𝑙
2

𝑏4𝐸
𝑥 +

4 𝐹
𝑆
𝑙
3

𝑏4𝐸

=
2 𝐹

𝑆

𝑏4𝐸
(𝑥

3
− 3 𝑙

2
𝑥 + 2 𝑙

3
) .

As the maximum curvature occurs at 𝑥 = 0, we have

𝑦
max

= 𝑦(0) =
4 𝐹

𝑆
𝑙
3

𝑏4𝐸
.

Numerically,

𝑦
max

=
4 ⋅ 200

0.044 ⋅ 6.25 ⋅ 109

Nm
3

m4Pa
= 5 cm.
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Naturally, the solution is only valid if the bone material is not damaged by the load.
The spine would break if the load exceeded the fracture stress 𝜎

𝐵
at any point. The

maximum stress that could be caused by the load given is 𝜎
0,max

= 𝜎
0
(𝑙):

𝜎
0,max

=
𝑀 (𝑙) 𝑏

2 𝐽
𝑎

=
𝐹
𝑆
𝑙 𝑏

2
𝑏
4

12

=
6 𝐹

𝑆
𝑙

𝑏3
.

Numerically,
𝜎
0,max

=
6 ⋅ 200 ⋅ 1,000

403

Nmm

mm3
= 18.75 N/mm

2.

As the fracture stress of bone material is 𝜎
𝐵
= 120 N/mm

2, we have demonstrated that
𝜎
0,max

≪ 𝜎
𝐵
. The bone can handle the load.

2.5 Lifting a Patient

The lifting device at a hospital bed is comprised of a fixed frame to which a round steel
bar with length 𝑙 = 1m is fixed perpendicularly (parallel to the ground). At the end of
this bar is a triangular handle that makes standing up easier for the patient. We wish
to find thenecessary external diameter𝐷, the deflection curve𝑦(𝑥), and themaximum
curvature 𝑦

max
of the bar while considering its own weight for a𝑚

𝑃
= 100 kg patient.

1. for a solid bar
2. for a tube with a ratio of the inner diameter to the outer diameter of 𝑑

𝐷
= 0.95.

Quadruple safety from the bar breaking is required.
[Material values for steel: Young’s modulus 𝐸 = 206 GPa; fraction stress 𝜎

𝐵
= 981MPa;

density 𝜌 = 7,800 kg/m3]

Determination of the External Diameter
1. Solid bar:

The external load is given by the weight of the patient and the bar’s own weight,
and leads to the 𝑥-dependant bending moment𝑀(𝑥)

𝑀(𝑥) = 𝑀
𝑃
(𝑥) + 𝑀

𝐸
(𝑥).

Here,
𝑀

𝑃
(𝑥) = 𝑚

𝑃
𝑔 (𝑙 − 𝑥)

is the contribution of the patient’s weight to the bending moment, and

𝑀
𝐸
(𝑥) = 󰜚𝑔𝐴

𝑙

∫

𝑥

(𝑙 − 𝑥) 𝑑𝑥 =
𝜋

8
󰜚𝑔𝐷

2
(𝑙 − 𝑥)

2

is the contribution of the bar’s own weight. Under the assumption that the pa­
tient’s entire weight is applied to the bar, we have

𝑀(𝑥) = 𝑔 (𝑙 − 𝑥) {𝑚
𝑃
+
𝜋

8
󰜚𝐷

2
(𝑙 − 𝑥)} .
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round rod

patient

rig
id

 fr
am

e

Fig. 2.9. Lifting device at the bed.

At position 𝑥 = 0 the bending moment is at its greatest, which means that there,
the load is greatest.𝑀

max
is then

𝑀
max

= 𝑀 (𝑥 = 0) = 𝑔𝑙 (𝑚
𝑃
+
𝜋

8
󰜚𝐷

2
𝑙) .

This bending moment causes stresses in the bar that create an internal moment
equal to the external moment. The contributions to this internal moment depend
on position 𝑧, the coordinate in the vertical direction perpendicular to the neutral
fiber:

𝑑𝑀 (𝑧) = 𝜎𝑧𝑑𝐴.

The position-dependant normal stress is 𝜎 =
2𝜎

0

𝐷
𝑧 and 𝜎

0
is the value of the stress

on the upper boundary fiber. The element of area is

𝑑𝐴 = 2√
𝐷2

4
− 𝑧2 𝑑𝑧.

The bending moment becomes

𝑀 =
4𝜎

0

𝐷

𝐷/2

∫

−𝐷/2

𝑧
2 √

𝐷2

4
− 𝑧2 𝑑𝑧 =

8𝜎
0

𝐷

𝐷/2

∫

0

𝑧
2√𝐷2 − 𝑧2 𝑑𝑧 =

2𝜎
0

𝐷
𝐼
𝑎
.
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𝐼
𝑎
is the axial area moment of inertia

𝐼
𝑎
= 4

𝐷/2

∫

0

𝑧
2 √

𝐷2

4
− 𝑧2 𝑑𝑧

= 4[

[

𝑧

4

√(
𝐷2

4
− 𝑧2)

3

+
𝐷

2

32
(𝑧√

𝐷2

4
− 𝑧2 +

𝐷
2

4
arcsin

2 𝑧

𝐷
)]

]

𝐷/2

0

=
𝐷

4

32
arcsin 1 =

𝐷
4

32

𝜋

2
=

𝜋𝐷
4

64
.

Then,

𝑀 =
2𝜎

0
𝐼
𝑎

𝐷
=

𝜋𝜎
0
𝐷

3

32
.

The stress 𝜎
0
at position 𝑥 = 0 cannot become greater than the allowed stress 𝜎all

𝜎all =
𝜎
𝐵

𝜈

with𝜎
𝐵
as the fracture stress of steel; 𝜈 is the safety factor. As such, the permissible

internal moment is
𝑀all =

𝜋𝜎
𝐵
𝐷

3

32𝜈
.

𝑀all is, however, equal to the external moment𝑀
max

:

𝜋𝜎
𝐵
𝐷

3

32𝜈
= 𝑔𝑙 (𝑚

𝑃
+
𝜋

8
󰜚𝐷

2
𝑙)

or
𝐷

3
−
4󰜚𝑔𝜈𝑙

2

𝜎
𝐵

𝐷
2
=

32𝑚
𝑃
𝑔𝑙𝜈

𝜋𝜎
𝐵

.

Solving for the diameter of the bar, we have

𝐷
3
− 0.00125 cm ⋅ 𝐷

2
= 0.00004 cm

3

𝐷 = 3.40 cm.

2. Hollow bar:
For the hollow bar, the contribution of the patient’s weight remains the same. The
contribution of the bar’s own weight is

𝑀
𝐸
=

𝜋

8
󰜚
𝑆𝑇
𝑔𝐷

2
[1 − (

𝑑

𝐷
)

2

] (𝑙 − 𝑥)
2

and for the total bending moment,

𝑀
max

= 𝑔 {𝑚
𝑃
+
𝜋

8
󰜚𝐷

2
𝑙
2
[1 − (

𝑑

𝐷
)

2

]}.

The internal moment is
𝑀all =

𝜋𝜎
𝐵

32𝜈
(1 − 𝛿

4
)𝐷

3
.
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Using𝑀
max

= 𝑀all we have

𝜋𝜎
𝐵

32𝜈
[1 − (

𝑑

𝐷
)

4

]𝐷
3
= 𝑔 {𝑚

𝑃
+
𝜋

8
󰜚𝐷

2
𝑙
2
[1 − (

𝑑

𝐷
)

2

]}.

and in normal form,

𝐷
3
− {

4󰜚𝑔𝜈𝑙
2

𝜎
𝐵

[
1 − (

𝑑

𝐷
)
2

1 − (
𝑑

𝐷
)4
]}𝐷

2
=

32𝑚
𝑃
𝑔𝑙𝜈

𝜋𝜎
𝐵
[1 − (

𝑑

𝐷
)
4

]

.

Numerically in standard units,

𝐷
3
− 0.00069 𝐷

2
= 0.000219

𝐷 = 0.06m = 6 cm and 𝑑 = 5.70 cm.

Calculation of the Deflection Curve and the Maximum Deflection
As discussed in the previous example, 𝑦󸀠󸀠

=
𝑀

𝐼
𝑎
𝐸
. As such we have for the

1. solid bar:
𝑦
󸀠󸀠
=

𝑀(𝑥)

𝐼
𝑎𝑉

𝐸
.

Here, the index𝑉 stands for quantities related to the solid bar.With 𝐼
𝑎𝑉

=
𝜋𝐷

4

64
and

𝑀(𝑥) = 𝑚𝑔 (𝑙 − 𝑥) +
𝜋𝐷

2

8
𝑔󰜚 (𝑙 − 𝑥)

2 we have

𝐴
𝑉
=

64𝑚
𝑃
𝑔

𝜋𝐷4𝐸
= 7.3 ⋅ 10

−2
m

−2 and 𝐵
𝑉
=

8 𝑔󰜚

𝐷2𝐸
= 2.6 ⋅ 10

−3
m

−3
.

Therefore,

𝑦
󸀠󸀠
= 𝐴

𝑉
(𝑙 − 𝑥) + 𝐵

𝑉
(𝑙

2
− 2𝑙𝑥 + 𝑥

2
)

𝑦
󸀠
= 𝐴

𝑉
(𝑙𝑥 −

𝑥

2

2

) + 𝐵
𝑉
(𝑙

2
𝑥 − 𝑙𝑥

2
+
𝑥

3

3

) + 𝐶

𝑦 = 𝐴
𝑉
(
𝑙𝑥

2

2
−
𝑥
3

6
) + 𝐵

𝑉
(
𝑙
2
𝑥
2

2
−
𝑙𝑥

3

3
+
𝑥
4

12
) + 𝐶𝑥 + 𝐷.

We have boundary conditions 𝑦󸀠
(𝑥 = 0) = 0 and 𝑦(𝑥 = 0) = 0, which lead to

𝐶 = 𝐷 = 0. The deflection curve is then

𝑦(𝑥) =
1

2
𝐴

𝑉
𝑥
2
(𝑙 −

𝑥

3
) +

1

2
𝐵
𝑉
𝑥
2
(𝑙

2
−
2𝑙𝑥

3
+
𝑥
2

6
)

and the maximum deflection is

𝑦
max

= 𝑦(𝑥 = 𝑙) =
2

3
𝐴

𝑉
𝑙
3
+
1

4
𝐵
𝑉
𝑙
4
.

Numerically:
𝑦
max

= 4.9 ⋅ 10
−2

m + 6.5 ⋅ 10
−4

m = 5 cm.
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2. tube:
𝑦
󸀠󸀠
=

𝑀(𝑥)

𝐼
𝑎𝑅
𝐸
.

The index 𝑅 is related to the values of the hollow bar.
With 𝐼

𝑎𝑅
=

𝜋𝐷
4

64
[1 − (

𝑑

𝐷
)
4
] and𝑀(𝑥) = 𝑚

𝑃
𝑔(𝑙 − 𝑥) +

𝜋

8
𝑔𝐷

2
󰜚 [1 − (

𝑑

𝐷
)
2
] the deflection

curve becomes

𝑦(𝑥) =
1

2
𝐴

𝑅
𝑥
2
(𝑙 −

𝑥

3
) +

1

2
𝐵
𝑅
𝑥
2
(𝑙

2
−
2𝑙𝑥

3
+
𝑥
2

6
)

with 𝐴
𝑅
=

64𝑚
𝑝
𝑔

𝜋𝐷4𝐸
[1 − (

𝑑

𝐷
)
4
] = 0.057m

−2 and 𝐵
𝑅
=

8𝑔󰜚

𝐷2𝐸
[
1−(

𝑑

𝐷
)
2

1−(
𝑑

𝐷
)
4
] = 0.00052 m

−3
. The

maximum deflection is
𝑦
max

=
2

3
𝐴

𝑅
𝑙
3
+
1

4
𝐵
𝑅
𝑙
4
.

Numerically,
𝑦
max

= 3.8 ⋅ 10
−2

m + 2.2 ⋅ 10
−4

m = 3.82 cm.

As can be seen, the maximum deflection of the tube is less than that of the solid
bar.

2.6 Animal Proportions

A mountain farmer would like to change from herding cattle to herding elephants.
Above all, he does not want to give up the traditional “Almabtrieb” – driving the ani­
mals down from theirmountain pastures into the valley in autumn –duringwhich the
animalswear bells around their necks. As the elephants have the same proportions as
the cattle, but are twice as big, the farmer thinks the elephant bells can be twice as big
while still exerting the same load on the neck. Is this correct? Assume that the animals
are comprised of two spheres, with radius 𝑟 for the head and𝑅 for the rigid body. These
spheres are connected by a round,massless solid rod (length 𝑙, diameter𝐷). Construct
the relationship from the maximum tensions that occur in the necks of both animals.
What consequences do the results have in relation to the maximumpossible size of an
animal?

l
2r 2R

Fig. 2.10. Sphere–rod–sphere model of the head-neck-body of a cow and an elephant.
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Due to geometric similarity, all length values for the cow and the elephant have the
ratio 1 : 2. This means that for the radii of the bodies and heads, 𝑅

𝐸
= 2𝑅

𝑅
, 𝑟

𝐸
= 2𝑟

𝑅
;

the same is true of the length and diameter of the neck. As such, we have, for the
volume of the heads,

𝑉
𝐸

𝑉
𝑅

= (
𝑟
𝐸

𝑟
𝑅

)

3

= (
2𝑟

𝑅

𝑟
𝑅

)

3

= 2
3
= 8

and therefore,
𝑉
𝐸
= 8𝑉

𝑅
.

Under the assumption that both animals are of the same density, we have

𝑚
𝐸
= 8𝑚

𝑅
.

This yields the load on the head of each animal 𝐹
𝐾
as

𝐹
𝐾,𝐸

= 8𝐹
𝐾,𝑅

.

The stress distribution 𝜎(𝑥) in the neck of the animal is (see Exercise 2.2)

𝜎(𝑥) =
32𝐹

𝐾
𝑙

𝜋𝐷3
(1 −

𝑥

𝑙
) .

The maximum stress applied to body (𝑥 = 0) is

𝜎
max

=
32

𝜋𝐷3
𝐹
𝐾
𝑙.

Therefore,
1. for the elephant

𝜎
max,𝐸

=
32

𝜋𝐷
3

𝐸

𝐹
𝐾,𝐸

𝑙
𝐸
=

32

𝜋 (2𝐷
𝑅
)
3
8𝐹

𝐾,𝑅
2𝑙

𝑅

2. for the cow
𝜎
max,𝑅

=
32

𝜋𝐷
3

𝑅

𝐹
𝐾,𝑅

𝑙
𝑅

And therefore,
𝜎
max,𝐸

= 2 𝜎
max,𝑅

.

The maximum stress is therefore twice for the elephant what it is for the cow. How­
ever, the failure stress 𝜎𝐵 is equal for both animals, as their bones are comprised of
the same material. This makes it clear that a geometric enlargement of the body has
its limits. This is why, in nature, we do not find any geometric similarity in the neck
area. In general, larger animals have a smaller neck length and an over-proportional
thickness of neck vertebrae. This is the case with elephants with respect to cattle. As
the elephants can no longer reach their food on the ground as easily, this may be the
reason that elephants developed trunks. The principle is also relevant in considering
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the size of the bells. The relationship of the weights of the cattle bell to the elephant
bell is

𝐹
𝐺𝑙,𝐸

𝐹
𝐺𝑙,𝑅

=
󰜚
𝐺𝑙
𝑔𝑉

𝐺𝑙,𝐸

󰜚
𝐺𝑙
𝑔𝑉

𝐺𝑙,𝑅

=
𝑉
𝐺𝑙,𝐸

𝑉
𝐺𝑙,𝑅

= (
𝑑
𝐺𝑙,𝐸

𝑑
𝐺𝑙,𝑅

)

3

.

If the elephant bell has a doubled value,

𝑑
𝐺𝑙,𝐸

= 2 𝑑
𝐺𝑙,𝑅

,

and so,
𝐹
𝐺𝑙,𝐸

𝐹
𝐺𝑙,𝑅

= 2
3
= 8.

The result is identical to the relationship of the loads on the head: the elephant bell
weights eight times as much as the cattle bell. However, as the strength of the neck
area (see above) does not rise directly with the increase of proportions, the farmer
should not use larger bells for the elephants.

2.7 Bones of Uniform Strength

Howmust a bone of uniform strength be designed if it is to be subjected to a load dis­
tributed evenly across its entire length 𝑙? As a model, use a horizontal beam of length
𝑙 fixed on one side on which an evenly distributed load is resting. The cross section of
the beam is rectangular; width 𝑏 is constant, while height ℎ(𝑥) should be adjusted so
that the principal stress 𝜎(𝑥) along the beam does not depend on 𝑥. Which figure of
uniform strength is obtained? (Assume the end of the beam as the origin of the 𝑥 axis.)

For a body of uniform strength, bending stress is constant 𝜎(𝑥) = 𝜎
max

. Bending stress
is the ratio of bending moment 𝑀

𝐵
and section modulus 𝑊: 𝜎(𝑥) =

𝑀
𝐵
(𝑥)

𝑊(𝑥)
. Section

modulus𝑊 can be calculated using the area moment of inertia 𝐼:

𝑊 =
𝐼

𝑒
𝑅

=

1

12
𝑏ℎ

3

ℎ

2

=
1

6
𝑏ℎ

2
.

𝑒
𝑅
is the distance of the boundary fibers from the neutral fiber that runs through the

focal point of the cross section of the beam. On one side of the neutral fiber compres­
sive load dominates; on the other side, there is a tensile load. The bending moment
𝑀

𝐵
is the product of the force 𝐹 and the lever arm. Here we must integrate so that for

the beam fixed at one end, the force with uniform line load 𝑓 [
N

m
] increases linearly

with 𝑥:

𝑀
𝐵
(𝑥) =

𝑥

∫

0

𝑑𝑀
𝐵
(𝑥) =

𝑥

∫

0

𝑑𝑥𝐹(𝑥) =

𝑥

∫

0

𝑑𝑥𝑓 ⋅ 𝑥 =
1

2
𝑓𝑥

2
.
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The line load is constant 𝑓 =
𝐹

𝑙
, and the maximum bending moment is 𝑀

𝐵
(𝑙) = 𝐹

𝑙

2
.

For the bending stress we have in total

𝜎(𝑥) =
𝑀

𝐵
(𝑥)

𝑊(𝑥)
=

1

2
𝑓𝑥

2

1

6
𝑏ℎ2(𝑥)

; 𝜎
max

=

1

2
𝑓𝑙

2

1

6
𝑏ℎ2

max

.

The dependency on position 𝑥 disappears if ℎ(𝑥) ∝ 𝑥. Under this condition the body
of uniform strength has the form of a triangle, and its height changes linearly with 𝑥.

2.8 Lifting Weights

If one bends forward to pick up a heavy object, the spine is more heavily loaded than
if one lifts the object from the knees with a straight back. Use the model shown in
Figure 2.11 to calculate the load on the spine if the object is𝑚 = 20 kg.

In themodelwemake the simplifyingassumption that the spine (shownasabeam
with mass 𝑀 = 35 kg) bends primarily at the fifth lumbar vertebra. The supporting
force comes from a group of muscles that are gathered here into one, secured at a
distance of 2/3 of the length of the upper body. The angle between the spine and this
fictitious muscle is 𝛼 = 12

∘ (see Figure 2.11). Calculate the tensioning force 𝐹
𝑆
in the

back muscle and the compressive force 𝐹
𝑥
that squeezes the spine together.

m

mgMg

2/3 1/3

Fy

Fx

FS

Fig. 2.11. Lifting weights.

First, consider the equality of forces in the vertical directionwith𝐹
1
= 𝑀𝑔 and𝐹

2
= 𝑚𝑔

𝐹
𝑦
+ 𝐹

𝑆,𝑦
− 𝐹

1
− 𝐹

2
= 0

and in the horizontal direction,

𝐹
𝑥
− 𝐹

𝑆,𝑥
= 0 ⇔ 𝐹

𝑥
= 𝐹

𝑆,𝑥
=

𝐹
𝑆,𝑦

tan 𝛼
.
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46 | 2 Biomechanics

For the torque (𝑙 is the length of the beam, and the origin is at the intersection of both
forces 𝐹

𝑥
and 𝐹

𝑦
in the figure):

+
2

3
𝑙𝐹

𝑆,𝑦
−

𝑙

2
𝐹
1
− 𝑙𝐹

2
= 0.

Therefore,

𝐹
𝑆,𝑦

=
3

2
𝐹
2
+
3

4
𝐹
1
= (

3

2
⋅ 20 kg +

3

4
⋅ 35 kg) ⋅ 9.81

m

s2
= 551 N.

The compressive force that presses on the spine is then

𝐹
𝑦
=

𝐹
𝑆,𝑦

tan 𝛼
=

551N

tan 12∘
= 2,596N

and the tensional force in the back muscle is

𝐹
𝑆
=

𝐹
𝑆,𝑦

sin 𝛼
=

551 N

sin 12∘
= 2,654N.

The compressive load on the spine corresponds to a mass of 264 kg and the tensile
force in the muscle corresponds to the weight of a mass of 271 kg, if a 20 kg mass is
lifted in this manner.
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3 Fluid Dynamics of the Circulatory System

Biofluid dynamics is concerned with the flows of bodily fluids, especially blood,
through the cardiovascular system. The most important roles of this system are the
supplying of the cells of the bodywith nutrients, and the removal of waste products. In
addition to the network of blood vessels, the human body also has a lymphatic system
that deals with materials that cannot enter the bloodstream through cell membranes
due to their size. Lymph (lymphatic fluid) transports germs, along with other mate­
rials, to the lymph nodes, where they are rendered harmless. As such, the lymphatic
system, along with the circulatory system, plays a central role in immune defense.

Blood is a relatively complex fluid, phenomenologically a suspension. It is com­
prised of red and white blood cells, and blood plasma as a carrier fluid in which a
large number of materials are dissolved. Red blood cells (erythrocytes) transport oxy­
gen, and white blood cells are responsible for immune defense. The blood cells can
easily change their physical form. This characteristic lends blood a fluid elasticity.
Such media are termed viscoelastic fluids. In spite of this, blood is often treated as a
homogeneous fluid.

The most significant mechanical quantity in fluids, aside from fluid density 𝜌,
is viscosity 𝜂. It is a measurement of the inner friction of a fluid when subjected to
shearing forces. Unlike dry friction, fluid friction disappears in static conditions. Even
with high viscosity, the velocity of a fluid remains finite as long as a force is applied.
Shear stress, however, leads to a gradient of flow velocity ̇𝛾. For Newtonian fluids,
shear stress 𝜏 and flow velocity gradient ̇𝛾 are proportional to one another: 𝜏 = 𝜂 ̇𝛾.
For non-Newtonian fluids, 𝜂 is a function of shear stress. Fluids in which viscosity de­
creases under increasing shear stress are termed pseudoplastic or viscoelastic. Table
3.1 gives an overview of typical measurements, flow velocities, and pressure gradients
in different blood vessels.

Table 3.1. Typical flow parameters of vessels in the human body.

Bloodstream Diameter Avg. Flow Velocity Avg. Shear Rate
𝐷 = 2𝑅 [mm] 𝑤 [m s

−1
] ̇𝛾 [s

−1
]

aorta 25 0.48 155
artery 4 0.45 900
arteriole 0.05 0.05 8,000
capillary 0.008 0.001 1,000
venule 0.02 0.002 800
vein 5 0.1 160
vena cava 30 0.38 3,300
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48 | 3 Fluid Dynamics of the Circulatory System

Although blood flow actually occurs in pulses, its mathematical treatment gen­
erally assumes stationary flow with an average flow velocity that remains constant
over time. In this mathematical treatment of fluid flow problems, balance equations
of mechanics are valid: continuity equations, conservation of momentum, and con­
servation of energy. Using the Newtonian formulation in the conservation of momen­
tum equation yields, for a stationary process, the Navier–Stokes equation 𝜌 (𝑤⃗∇) 𝑤⃗ +

∇𝑝 − 𝜂∇
2
𝑤⃗ = 0, which is important for fluid mechanics. In the context of estimation

or approximate calculation, a special form of the conservation of energy equation is
significant: the Bernoulli equation 𝑝 +

𝜌

2
𝑤

2
+ 𝜌𝑔ℎ = const. The Bernoulli equation is

valid for continuous processes when friction is not taken into account. It describes the
ideal case of frictionless flow.

For all flows, including blood flow in the veins, two distinctly different flow
regimes occur: laminar and turbulent. The stream lines of laminar flow run parallel
to one another, while those of turbulent flow appear stochastic. Each flow begins as
laminar at low velocity, and suddenly breaks into turbulence while velocity is increas­
ing. This is a stability problem. Without going into further details, it is still important
to select criteria for the determination of flow regime. This can be accomplished by
considering similitude theory, which has formulated relationships among constants
for pipe flow using the flow-influencing quantities (Δ𝑝, 𝑤, 𝑑, 𝜌, 𝜂). Here, the relation­
ship for smooth pipe flow 𝐸𝑢 = 𝑓(𝑅𝑒) holds, with 𝐸𝑢 =

Δ𝑝

𝜌𝑤
2
and 𝑅𝑒 =

𝜌𝑤𝑑

𝜂
. The value

of the Reynolds number has proven effective as a criterion for judging flow regime.
For pipe flow, the laminar flow regime is stable when 𝑅𝑒 < 2,300; when 𝑅𝑒 > 2,300,
turbulent flow occurs.

As a pump for blood, the heart’s job is to deliver it to the body. From the perspec­
tive of fluid dynamics, the heart, as a double pump (two-chamber system), belongs to
two coupled circuits: the pulmonary (lung) circulation, and the systemic (body) cir­
culation. Its function is accomplished through a contraction of cardiac muscle. This
contraction is termed cardiac systole, and relaxation is called cardiac diastole. The
amplitude of average blood flow is calculated through the heart’s frequency (heart
rate), and the stroke volume. Resting heart rate is around 70 beats per minute, and
rises sharply with physical exertion. Stroke volume can also be changed, for example,
by the height of cardiac systole. Blood flow depends on many different internal and
external factors. It is governed by an autonomous regulatory system in the body.

The calculation of the pulsing process is extremely complicated, and can only
be accomplished under very idealizing assumptions. Considering the bloodstream
as a rigid tube (in cylindrical coordinates), with radius 𝑅 and blood as a Newtonian
fluid, we have, for blood flow 𝑚̇ under the assumption of a harmonic oscillation of
the pressure gradient 𝑑𝑝

𝑑𝑧
in steady state with frequency 𝜔 in complex notation (𝐽

0
as a
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first-order Bessel function)

𝑚̇ (𝑡) =
𝜋𝑅

2

𝑖𝜔
⋅
𝑑𝑝

𝑑𝑧
⋅
[
[

[

1 −

𝐽
0
(𝑟√−𝑖

𝜔𝜌

𝜂
)

𝐽
0
(𝑅√−𝑖

𝜔𝜌

𝜂
)

]
]

]

⋅ 𝑒
𝑖𝜔𝑡
.

The assumption of a sinusoidal/cosinusoidal oscillation for the pressure gradient is a
crude simplification of reality. Even so, the equation is both qualitatively and practi­
cally appropriate in describing blood flow. A full treatment of the phenomenon would
require consideration of many other effects, like, for example, the elasticity of the
blood vessels.

Arteriosclerotic changes often lead to disruptions in blood flow. Arterial occlusive
diseases are of especially vital significance here. In most cases, plaque has built up in
a blood vessel; this can develop into an acute blockage of flow and can significantly
influence the flow behavior of the blood beyond a certain point. At that point, ad­
ditional problems begin to occur simultaneously. The bloodstream gets smaller, and
certain organs are no longer sufficiently supplied with oxygen and nutrients. Fatigue,
andpossibly pain in the area around the heart, are the results. Additionally, the occlu­
sion causes the development of vortices and stagnant regions in the flow behind it. In
these regions blood stagnates through local circular flow, which can lead to thrombo­
sis. The situation can be addressed with medications that reduce the viscosity of the
blood and strengthen the heart, or, at an advanced stage of the disease, with surgical
intervention (for example, a bypass operation).

Anumber of illnesses change theviscosity of theblood significantly. As such,mea­
surement of this viscosity can be used diagnostically. This requires the use of certain
measuring devices. Today, in addition to the classic erythrocyte sedimentation rate
method, there is a range of measurement techniques that allow for investigation of
blood rheology in vivo.

3.1 From the Aorta to the Capillaries

Estimate the number of capillaries found in the human body. Take the diameter of
the aorta to be 𝐷 = 2.5 cm. For the capillaries, an average diameter 𝑑 = 8 μm can be
assumed. All capillaries experience the same pressure gradient, six times higher than
that in the aorta.

According to the Hagen–Poiseuille equation, volume flow under constant pressure
gradient is

𝑉
∗

𝑖
∝ 𝐷

4

𝑖
and 𝑤

𝑖
∝ 𝐷

2

𝑖
.

Considering the different pressure gradients we have

𝑤

𝑤
𝐴

= 6 (
𝑑

𝐷
)

2
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50 | 3 Fluid Dynamics of the Circulatory System

with 𝑤
𝐴
as the flow velocity in the aorta and 𝑤 as the flow velocity in the capillaries.

We have the continuity equation

𝑤
𝐴
𝐴

𝐴
= 𝑁𝐴𝑤

with 𝐴
𝐴
as the average aorta cross section area and 𝐴 for the average capillary cross

section area.𝑁 is the number of capillaries

𝑁 =
𝑤

𝐴
𝐴

𝐴

𝑤𝐴
,

and therefore,

𝑁 =
𝑤

𝐴

𝑤
(
𝐷

𝑑
)

2

=
1

6
(
𝐷

𝑑
)

4

.

Numerically, we have

𝑁 =
1

6
(

2.5

8 ⋅ 10−4
)

4

= 1.6 ⋅ 10
13
.

3.2 The Blood as a Power Fluid

Due to the elastic characteristics of the blood cells, blood demonstrates non-Newton-
ian behavior as it flows. Thismeans that the dependence of shear stress 𝜏 on the shear
rate ̇𝛾 is nonlinear. For such functions, a power equationapproach is commonlyused–
for example, 𝜏 = 𝑘 ̇𝛾

𝑛. For viscoelastic fluids (like blood), 𝑛 < 1; for dilatant fluids,
𝑛 > 1. For Newtonian fluids, 𝑛 = 1 and 𝑘 = 𝜂. 𝑘 and 𝑛 take on the roles of material
qualities of the fluid. For blood in an artery of length 𝐿, under the assumption of a
“power fluid” and under stationary relationships, we wish to find
1. shear stress distribution 𝜏(𝑟)

2. velocity profile 𝑤(𝑟)
3. flow rate 𝑉∗

4. average flow velocity 𝑤̄

5. ratio of the maximum and minimum flow velocities 𝑤
max

𝑤̄
.

1. Consider the following cylindrical volume element 𝑑𝑉 = 𝜋𝑟
2
𝑑𝑧.

Under stationary conditions, the sum of forces on the element of volume disap­
pears

0 = 𝐹
𝑃
− 𝐹

𝑅

with 𝐹
𝑃
as the compressive force and 𝐹

𝑅
as the friction force, which both act in the

𝑧-direction. Therefore,

0 = 𝑝𝜋𝑟
2
− [𝑝 + (

𝜕𝑝

𝜕𝑧
) 𝑑𝑧] 𝜋𝑟

2
− 𝜏2𝜋𝑟𝑑𝑧.

Solving for 𝜏, we find the distribution of shear stress by radial coordinate 𝑟 in the
artery:

𝜏 (𝑟) = − (
𝜕𝑝

𝜕𝑧
)
𝑟

2
.
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r

dz

FP(z) FP(z+dz)

z

Fig. 3.1. Shear stress 𝜏 and compressive force 𝐹
𝑃
act on the cylindrical volume element 𝑑𝑉.

As 𝜕𝑝

𝜕𝑧
is not a function of 𝑧, 𝑝 (𝑧)must be linear. Therefore, 𝜕𝑝

𝜕𝑧
can also be substi­

tuted with 𝑝
2
−𝑝

1

𝑧
2
−𝑧

1

=
−Δ𝑝

𝐿
, with Δ𝑝 = 𝑝

1
− 𝑝

2
. The distribution of stress is then

𝜏 (𝑟) = (
Δ𝑝

𝐿
)
𝑟

2
.

2. For a power fluid, Ostwald de Waele’s approach gives 𝜏 = 𝑘 ̇𝛾
𝑛 with ̇𝛾 as the shear­

ing gradient, which becomes ̇𝛾 = −
𝑑𝑤

𝑑𝑟
for axial flows in cylindrical geometries.

The sign is negative because velocity is decreasing in the 𝑟-direction. Therefore,

𝜏 = 𝑘 (−
𝑑𝑤

𝑑𝑟
)

𝑛

.

Introducing the power approach into the shear stress distribution, we have
𝑘(−

𝑑𝑤

𝑑𝑟
)
𝑛
= (

Δ𝑝

𝐿
)
𝑟

2
, and therefore,

𝑤 = − [(
Δ𝑝

𝐿 2 𝑘
)]

1

𝑛

∫ 𝑟
1

𝑛𝑑𝑟.

Integration leads to the velocity distribution𝑤(𝑟)

𝑤(𝑟) = −[
𝑛

1 + 𝑛
(
Δ𝑝

2𝑘𝐿
)

1

𝑛

]𝑟
1+𝑛

𝑛 + 𝐶

= 𝐶 − 𝐵𝑟
1+𝑛

𝑛 with 𝐵 =
𝑛

1 + 𝑛
(
Δ𝑝

2𝑘𝐿
)

1

𝑛

.

For 𝑟 = 𝐷

2
, 𝑤 = 0 due to wall adhesion, so that from this condition the integration

constant 𝐶 can be determined. From 0 = 𝐶 − 𝐵(
𝐷

2
)
1+𝑛

𝑛 we have

𝐶 = 𝐵(
𝐷

2
)

1+𝑛

𝑛

and

𝑤(𝑟) = 𝐵[ − 𝑟
1+𝑛

𝑛 + (
𝐷

2
)

1+𝑛

𝑛

] = 𝐵 (
𝐷

2
)

1+𝑛

𝑛

[1 − (
2𝑟

𝐷
)

1+𝑛

𝑛

].
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After back substitution of 𝐵 we have 𝑤 (𝑟) as

𝑤(𝑟) =
𝑛

1 + 𝑛
(

Δ𝑝

2 𝑘𝐿
)

1

𝑛

(
𝐷

2
)

1+𝑛

𝑛

[1 − (
2𝑟

𝐷
)

1+𝑛

𝑛

].

3. For volume throughput, volume flow is 𝑉∗. For 𝑉∗ we have

𝑉
∗
= 2𝜋

𝐷/2

∫

0

𝑟𝑤(𝑟) 𝑑𝑟

= 2𝜋
1 + 𝑛

𝑛
[ (

Δ𝑝

2𝑘𝐿
)

1

𝑛

] (
𝐷

2
)

1+𝑛

𝑛

𝐷/2

∫

0

[1 − (
2𝑟

𝐷
)

1+𝑛

𝑛

] 𝑑𝑟

=
𝑛𝜋

1 + 3𝑛
(
Δ𝑝

2𝑘𝐿
)

1

𝑛

(
𝐷

2
)

1+3𝑛

𝑛

.

4. Average velocity 𝑤̄ is an assumed velocity, constant over 𝑟, thatmakes throughput
equal: 𝑤 (𝑟). Therefore, for average velocity, we have

𝑤̄𝐴 = 𝑉
∗

with 𝐴 as the flow cross section. 𝐴 is a circular cross section for the artery, with
𝐴 =

𝜋𝐷
2

4
. Therefore, we have for 𝑤̄

𝑤̄ =
𝑛

1 + 3𝑛
(

Δ𝑝

2 𝑘𝐿
)

1

𝑛

(
𝐷

2
)

1+𝑛

𝑛

.

5. Flow velocity is at its maximum in the center at 𝑟 = 0. Therefore,

𝑤
max

= 𝑤(𝑟 = 0) =
𝑛

1 + 𝑛
(

Δ𝑝

2 𝑘𝐿
)

1

𝑛

(
𝐷

2
)

1+𝑛

𝑛

.

We have the ratio 𝑤
max

𝑤̄

𝑤
max

𝑤̄
=

1 + 3𝑛

1 + 𝑛
.

For 𝑛 = 1 and 𝑘 = 𝜂 we have, using the equations above, the corresponding solu­
tions for Newtonian fluids

𝑤(𝑟) =
Δ𝑝𝐷

2

16𝜂𝐿
[1 − (

2𝑟

𝐷
)

2

]

𝑉
∗
=

𝜋Δ𝑝𝐷
4

128𝜂𝐿
(Hagen–Poiseuille).

As such, for Newtonian fluids, average velocity is 𝑤̄ =
Δ𝑝𝐷

2

32𝜂𝐿
, maximum velocity in

the capillaries is 𝑤
max

=
Δ𝑝𝐷

2

16𝜂𝐿
, and the ratio of these velocities is 𝑤

max

𝑤̄
= 2.



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 53
�

�

�

�

�

�

3.3 Branching | 53

3.3 Branching

Consider a model of the arterial system in which, after a certain length 𝐿, the artery
splits into two branches of equal diameter. The largest arterial diameter is𝐷 = 2.5 cm.
1. By what factor 𝛷must the diameter 𝐷

𝑛
change from level to level if at each level,

the reduction in pressure is to remain constant?
2. By what factor 𝛹 does flow velocity change from level to level?
3. After how many levels𝑁 is diameter𝐷

𝑁
just 25 μm?

1. For each level, pressure drop is

Δ𝑝 = Δ𝑝
𝑛
= Δ𝑝

𝑛+1
= const

with 𝑛 = 1, 2, 3, ..., 𝑁. From the Hagen–Poiseuille equation, 𝑉∗
=

𝜋𝐷
4

128𝜂
(
Δ𝑝

𝐿
) and

therefore,

Δ𝑝

𝐿
=

128𝜂𝑉
∗

𝜋𝐷4

(
Δ𝑝

𝐿
)

𝑛

=
128𝜂𝑉

∗

𝑛

𝜋𝐷4

𝑛

(
Δ𝑝

𝐿
)

𝑛+1

=
128𝜂𝑉

∗

𝑛+1

𝜋𝐷
4

𝑛+1

.

We can also obtain the ratios of the diameters of two levels, one following the
other

(
𝐷

𝑛

𝐷
𝑛+1

)

4

=
𝑉

∗

𝑛

𝑉
∗

𝑛+1

.

Due to continuity, the amount of material flowing through an artery in the 𝑛th
level must be equal to the amount of material flowing through both subsequent
arteries, 𝑉∗

𝑛
= 2𝑉

∗

𝑛+1
. Therefore,

𝐷
𝑛+1

𝐷
𝑛

= (
1

2
)

1/4

= 0.84 = 𝛷.

2. For the flow velocities of the individual branches, due to 𝑤
𝑛
𝐴

𝑛
= 𝑤

𝑛+1
𝐴

𝑛+1
, we

have the condition

𝑤
𝑛

𝑤
𝑛+1

=
𝐴

𝑛+1

𝐴
𝑛

= (
𝐷

𝑛+1

𝐷
𝑛

)

2

= (
1

2
)

1/2

= 0.71 = 𝛹.

3. After𝑁 branches the diameter ratio is: 𝐷
𝑁

𝐷
= (

𝐷
𝑛+1

𝐷
𝑛

)
𝑁. And so,

𝑁 =

log (
𝐷
𝑁

𝐷
)

log (
𝐷
𝑛+1

𝐷
𝑛

)

=

log (
𝐷
𝑁

𝐷
)

log (𝛷)
.
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With𝐷 = 2.5 cm and𝐷
𝑁
= 25 μm we have

𝑁 =

log (
0.025

25
)

log (0.84)
=

log (10
−3
)

−0.075
=

−3

−0.075
= 40.

After 40 levels, the arteries are only 25 μm thick.

3.4 Bypass

Due to a “calcification”, a patient’s aortic diameter 𝐷 has narrowed to 2 cm. The re­
sulting loss of pressure leads to a life-threatening decrease in blood flow. As such, a
bypass operationwill be performed: an additional vessel will be added to the aorta, so
that blood flow can return to its normal level. What must the diameter 𝑑 of the bypass
be so that the drop in pressure Δ𝑝

𝑉
and the flow rate𝑉∗ reach the values of a healthy

aorta? Stationary and laminar conditions should be assumed.
[pressure drop in the healthy aorta Δ𝑝

𝑉
= Δ𝑝

𝑉norm
= 87.6 Pa; blood flow 𝑉

∗
= 𝑉

∗

norm
=

7 l/min; aorta length 𝑙 = 40 cm; blood viscosity 𝜂 = 1.8 ⋅ 10
−2

Pa ⋅ s]

Using the Hagen–Poiseuille equation, we have

𝛥𝑝
𝑉
=

128𝜂𝑉
∗

norm
𝑙

𝜋𝐷4
.

After the OP, the bloodstream 𝑉
∗

norm
splits into two branches (𝑉∗

𝐵𝑦
is the flow of blood

through the bypass, and 𝑉
∗

𝐴
is the flow through the aorta)

𝑉
∗

norm
= 𝑉

∗

𝐴
+ 𝑉

∗

𝐵𝑦
=

𝜋𝛥𝑝
𝑉norm

128 𝑙 𝜂
(𝑑

4
+ 𝐷

4
) .

Solving for bypass diameter:

𝑑
4
=

128𝜂𝑉
∗

norm
𝑙

𝜋Δ𝑝
𝑉norm

− 𝐷
4

𝑑 =

4

√
128 ⋅ 1.8 ⋅ 10−2 Pa ⋅ s ⋅ 7 l/min ⋅ 40 cm

𝜋 ⋅ 87.6 Pa
− 24cm4 = 2.19 cm.

3.5 Hemorheometry Using a Rotating Sphere Viscometer

The viscosity of blood (blood plasma) can be measured using a rotating sphere vis­
cometer. This system is comprised of an inner solid sphere that rotates concentri­
cally with angular frequency 𝑛 within a hollow sphere; a shearing load occurs in the
space between the spheres. The driving torque 𝑀 is measured, in its dependency on
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angular frequency 𝑀(𝑛). The rotating sphere viscometer is especially well suited for
hemorheometry because the fluid chamber is isolated from the atmosphere. The di­
ameter of the inner solid sphere is 𝑑, and the diameter of the outer hollow sphere is
𝐷. We want to find the evaluation relationships for the determination of the function
𝜂( ̇𝛾) function for a rotating sphere system with a very narrow gap (𝛿 = 𝑑/𝐷 ≈ 1), with
̇𝛾 = 𝑓(𝑛) and 𝜂 = 𝑓(𝑀, 𝑛). The shear rate ̇𝛾 is, in spherical coordinates, ̇𝛾 = −𝑟

𝜕

𝜕𝑟
(
𝑤
𝜑

𝑟
).

measurement 
gap

rotating 
inner
sphere
stationary
hollow
sphere

Fig. 3.2. Geometry of a rotating sphere viscometer.

The velocity field 𝑤⃗ in the sphere gap can be described as 𝑤⃗ (𝑤
𝑟
, 𝑤

𝜑
, 𝑤

𝜗
); (𝑟, 𝜑, 𝜗)

are spherical coordinates (𝑟 – radial length; 𝜑 – azimuthal angle; 𝜗 – polar angle).
For 𝛿 = 𝑑/𝐷 → 1 (very narrow gap), the three-dimensional rotational flow occurs,
approximately, in a single layer flow (shear flow) 𝑤⃗ (𝑤

𝜑
, 0, 0)with 𝑤

𝜑
= 𝑤

𝜑
(𝑟, 𝜗). The

equation of motion is
𝐷

𝐷𝑡
𝑤⃗ = [∇⃗ ⋅ 𝜎

=
]

with 𝐷

𝐷𝑡
as substantial derivative and 𝜎

=
as the stress tensor. As only the 𝜑-components

of the equation of motion contribute, considering the narrow gap the equation of mo­
tion takes the form

𝜕𝜎
𝑟𝜑

𝜕𝑟
+ 3

𝜎
𝑟𝜑

𝑟
= 0. (3.1)

The component 𝜎
𝑟𝜑
of the stress tensor is, due to the shear flow, identical to the shear

stress 𝜏. Furthermore, 𝜎
𝑟𝜑

= 𝜏. From the equation of motion (3.1) we have, after inte­
grating over 𝑟, the relationship 𝜏 =

𝐶

𝑟
3
; for fluids for which the Newtonian approach is
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sufficient, this leads to the equation

̇𝛾 =
𝐶

𝜂𝑟3
. (3.2)

The shear rate ̇𝛾 for rotation flow with flow direction 𝜑 that experiences shear stress
in the 𝑟 direction is

̇𝛾 = −𝑟
𝜕

𝜕𝑟
(
𝑤

𝜑

𝑟
)

and yields, considering 𝜏 = 𝜂 ̇𝛾 =
𝐶

𝑟
3
,

−𝜂𝑟
𝜕

𝜕𝑟
(

𝑤
𝜑

𝑟
) =

𝐶

𝑟3
.

This leads to the differential equation

𝑑 (

𝑤
𝜑

𝑟
) = − (

𝐶

𝜂𝑟4
)𝑑𝑟

with solution
𝑤

𝜑

𝑟
= (

𝐶

3𝜂𝑟3
) + 𝐵.

Because the inner sphere rotates with angular velocity 𝜔 and the outer sphere remains
at rest, the boundary conditions are

𝑤
𝜑
(𝑟 = 𝑑/2) =

𝑑

2
𝜔 sin 𝜗

and
𝑤

𝜑
(𝑟 = 𝐷/2) = 0.

Therefore, for 𝐵 and 𝐶, we have the correspondence equations

𝜔 sin 𝜗 = 𝐵 + (
8𝐶

3𝜂𝑑3
) und 0 = 𝐵 + (

8𝐶

3𝜂𝐷3
) .

Therefore,

𝐶 =
3𝜂𝑑

3
𝜔 sin 𝜗

8 (1 − 𝛿3)
und 𝐵 = −

𝛿
3
𝜔 sin 𝜗

1 − 𝛿3
.

𝐶 substituted in (3.2) yields

̇𝛾 (𝑟, 𝜗) =
3

8
(
𝑑

𝑟
)

3
𝜔 sin 𝜗

1 − 𝛿3
.

The shearing gradient at the surface of the inner sphere ̇𝛾(
𝑑

2
, 𝜗) = ̇𝛾

𝑑
is

̇𝛾
𝑑
(𝜗) = 3𝜔 (

sin 𝜗

1 − 𝛿3
) = 6𝜋𝑛(

sin 𝜗

1 − 𝛿3
) .
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̇𝛾
𝑑
depends on 𝜗. That means that for each angle 𝜗, other ̇𝛾

𝑑
values exist that cor­

respond to the driving torque 𝑀 over the entire shear region of the inner sphere
(0 ≤ 𝜗 ≤ 𝜋). An average shear rate across the entire shear region ̇𝛾

eff
is

̇𝛾
eff

=
6 𝑛

1 − 𝛿3

𝜋

∫

0

sin 𝜗 𝑑𝜗 = −
6𝑛

1 − 𝛿3
cos 𝜗|

𝜋

0

Therefore, for the evaluation equation for the shear rate dependent on speed 𝑛, we
have the relationship

̇𝛾 =
12 𝑛

1 − 𝛿3
. (3.3)

Thedriving torque is calculated from the𝜎
𝑟𝜑
components of the stress tensor for 𝑟 = 𝑑/2,

which is identical to the shearing stress on the surface of the inner sphere 𝜏
𝑑
= 𝜏 (𝑑/2),

as

𝑀 =
𝜋𝑑

3

2
𝜏
𝑑

𝜋

2

∫

0

sin
2
𝜗 𝑑𝜗 =

𝜋
2
𝑑
3

8
𝜏
𝑑
.

For a Newtonian fluid with flow function 𝜏 = 𝜂 ̇𝛾 we have, considering (3.3),

𝑀 = 2𝜋
2
𝜂𝑛(

𝑑
3

1 − 𝛿3
) .

Solving for 𝜂, we have the evaluation equation for the determination of viscosity from
the measured values𝑀 and 𝑛:

𝜂 =
1 − 𝛿

3

2𝜋2𝑑3
(
𝑀

𝑛
) ≈

1 − 𝛿
3

20 𝑑3
(
𝑀

𝑛
) . (3.4)

With (3.3) and (3.4), we obtain, from𝑀 and 𝑛, the curve 𝜂 ( ̇𝛾); from this, using 𝜏 = 𝜂 ⋅ ̇𝛾,
the flow curve can also be calculated.

3.6 Flow Coefficients

The dimensionless coefficients 𝑅𝑒 (Reynolds number) and 𝐸𝑢 (Euler number) are de­
fined, for capillary flow, as

𝑅𝑒 =
𝑑𝑤 𝜌

𝜂
and 𝐸𝑢 =

𝛥𝑝

𝜌𝑤2

with 𝑤 as the average flow velocity in the capillary, 𝑑 as the diameter of the capillary,
𝜌 as the density of the fluid, 𝜂 as the dynamic viscosity, and 𝛥𝑝 as the pressure drop
along the length of the vessel 𝑙. The Hagen–Poiseuille equation can be written in di­
mensionless form using these constants. What advantages does this form have?
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The Hagen–Poiseuille equation is

𝑉
∗
=

𝜋𝑑
4
Δ𝑝

128𝜂𝑙

Volume flow is 𝑉∗
= 𝑤𝐴 =

𝑤𝜋𝑑
2

4
. Therefore,

𝑤𝜋𝑑
2

4
=

𝜋𝑑
4
Δ𝑝

128 𝜂𝑙

This gives pressure difference

Δ𝑝 =
32 𝑙𝜂𝑤

𝑑2
= 32 (

𝑙

𝑑
)(

𝜂𝑤

𝑑
).

Dividing both sides by 󰜚𝑤2, we find that

Δ𝑝

󰜚𝑤2
= 32 (

𝑙

𝑑
) (

𝜂

󰜚𝑤𝑑
)

and
𝐸𝑢 = 32 (

𝑙

𝑑
)𝑅𝑒

−1

With 𝐸𝑢
󸀠
= (

𝑑

𝑙
) 𝐸𝑢 as the modified Euler number, we also have

𝐸𝑢
󸀠
=

32

𝑅𝑒

In the subject literature, in addition to the Euler number, a coefficient of equal value
exists that is written as tube friction coefficient 𝜆; 𝜆 =

Δ𝑝

𝜌

2
𝑤
2

𝑑

𝑙
. With 𝜆, the relationship

between 𝜆 and 𝑅𝑒 is given as
𝜆 =

64

𝑅𝑒
.

As the Hagen–Poiseuille equation only applies to laminar capillary flow (𝑅𝑒 ≤ 2,300),
𝐸𝑢

󸀠
= 32/𝑅𝑒 (that is, 𝜆 = 64/𝑅𝑒) is only valid in this case. When considering turbulence,

other functional dependencies apply¹ that must be determined using experimental
validations of models. In planning and evaluating these experiments, the dimension­
less form is very advantageous, as the number of variables is reduced from 5 to 2.
To calculate the function 𝐸𝑢

󸀠
= 𝑓(𝑅𝑒) (that is, 𝜆 = 𝑓(𝑅𝑒)), we only need to vary 𝑅𝑒,

and to measure 𝐸𝑢
󸀠 (that is, 𝜆). This is most simply done by changing the flow ve­

locity 𝑤. If, on the other hand, the dimension-dependent form of the function with
Δ𝑝 = 𝑓(𝑤, 𝑑, 𝑙, 󰜚, 𝜂) had to be used, we would have to vary 𝑤, 𝑑, 𝑙, 󰜚, and 𝜂 in many
different trials.

||
1 for example, by Blasius: 𝜆 = 0.316 (𝑅𝑒)

−0.25 for 2,300 ≤ 𝑅𝑒 ≤ 10
5; by Nikuradse: 𝜆 = 0.0032 +

0.22(𝑅𝑒)
−0.24 for 105 ≤ Re ≤ 3 ⋅ 10

6
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Additionally, the dimensionless formallows for “model transfer”. Thismethod al­
lows measured data obtained from an experiment to be scaled up significantly. Here,
the following condition applies: all the constants that describe a problem must cor­
respond in the model, and in the main executions (𝛱-theory of Buckingham). If, for
example, a researcher attempted to investigate blood flow through an experiment us­
ing water, he would need to consider in evaluating the data

𝑅𝑒
𝐵
= 𝑅𝑒

𝑊
and 𝐸𝑢

𝐵
= 𝐸𝑢

𝑊
.

3.7 Narrowing of the Aorta

In an investigation, a pathological change of the flow cross section of the aorta of a
patient is diagnosed. The free diameter is seen using X-ray imaging to be narrowed to
𝑑 = 1 cm. Estimate the resulting loss in pressure Δ𝑝

𝑣
in the aorta. The flow should be

assumed to be laminar and under stationary relationships. Inertial effects should be
ignored.
Note: In the calculation, consider that a circular hole is the boundary value of a hy­
perboloid. In using hyperbolic coordinates here, the coordinate of the wall hyperbola
goes to zero. Therefore, first calculate the general loss of pressure in flow through a hy­
perbola in hyperbolic coordinates, and concretizeΔ𝑝

𝑣
by the numerical calculation of

the hole-like narrowing.
[average blood viscosity: 𝜂 = 0.018 Pa ⋅ s; blood flow: 𝑉∗

= 7 l/min]

In Figure 3.3 the geometry of the hyperbolic narrowing in the (𝑥𝑧)-plane of a Cartesian
coordinate system at the origin is presented. The narrowed point has separation 2𝑎;
the focus distance is 2𝑒.

 

-e

e

2a

x

z

Fig. 3.3. Hyperbolic flow lines in the region of the narrowing.
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The equation of the wall hyperbola in the (𝑥𝑧)-plane is

𝑥
2

𝑎2
−

𝑧
2

𝑒2 − 𝑎2
= 1.

Confocal hyperbolas and ellipses are defined as

𝑥
2

𝑒2 (1 − 𝜏2)
−

𝑧
2

𝑒2𝜏2
= 1 with 𝜏

0
≤ 𝜏 ≤ 1 [hyperbolas]

and
𝑥
2

𝑒2 (1 + 𝜎2)
+
𝑧
2

𝑒2
= 1 with 0 ≤ 𝜎 ≤ ∞ [ellipses] ,

where 𝜏
0
= √1 −

𝑎
2

𝑒
2
. The confocal hyperbolas and ellipses are orthogonal to one an­

other;𝜎 and 𝜏are the coordinates of these curves. For thebloodflow, theNavier–Stokes
equation gives in this case

𝜂∇⃗ × ∇⃗ × 𝑤⃗ + ∇⃗𝑝 = 0.

Using the following transformation relationships

𝑊⃗ =
𝑤⃗𝑒

2

𝑉∗
𝑋 =

𝑥

𝑒

∇̂ = 𝑒∇⃗ 𝑌 =
𝑦

𝑒

𝑃 =
𝑝𝑒

3

𝜂𝑉∗
𝑍 =

𝑧

𝑒

the Navier–Stokes equation can be written dimensionlessly as

∇̂ × ∇̂ ×
󳨀→
𝑊 + ∇̂𝑃 = 0.

The surfaces created are now given by the following equations:

𝑋
2
+ 𝑌

2

1 + 𝜎2
+
𝑍

2

𝜎2
= 1 rotation ellipsoid

𝑋
2
+ 𝑌

2

1 − 𝜏2
−
𝑍

2

𝜏2
= 1 rotation hyperboloid.

Using the transformation formulae

𝑋
2
= (1 + 𝜎

2
) (1 − 𝜏

2
) cos

2
𝜑

𝑌
2
= (1 + 𝜎

2
) (1 − 𝜏

2
) sin

2
𝜑

𝑍
2
= 𝜎

2
𝜏
2

we can calculate the metric coefficients as

𝑔
𝜎𝜎

=
𝜎
2
+ 𝜏

2

1 + 𝜎2
; 𝑔

𝜏𝜏
=

𝜎
2
+ 𝜏

2

1 − 𝜏2
; 𝑔

𝜑𝜑
= (1 + 𝜎

2
) (1 − 𝜏

2
) .



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 61
�

�

�

�

�

�

3.7 Narrowing of the Aorta | 61

For the surface element of an ellipsoid we have the relationship 𝑑𝐴 = √𝑔
𝜎𝜎
𝑔
𝜑𝜑

𝑑𝜑𝑑𝜏,
and for the section of the ellipsoidal element on the interior of the wall hyperbola, we
have the throughput relationship

−∮ 𝑊
𝜎
𝑑𝐴 = 1.

Here, we consider the portion of the narrowing that acts against flow in the +𝜎 −

Richtung direction. From the continuity equation

∇̂ ⋅
󳨀→
𝑊 =

1

√𝑔
𝜎𝜎
𝑔
𝜏𝜏
𝑔
𝜑𝜑

[
𝜕

𝜕𝜎
(√𝑔

𝜏𝜏
𝑔
𝜑𝜑

𝑊
𝜎
) +

𝜕

𝜕𝜏
(√𝑔

𝜎𝜎
𝑔
𝜑𝜑

𝑊
𝜏
)] = 0

we can see that the components of the velocity vector 󳨀→𝑊 can be calculated from a flow
function 𝛹:

𝑊
𝜎
= −

1

√𝑔
𝜏𝜏
𝑔
𝜑𝜑

𝜕𝛹

𝜕𝜏

𝑊
𝜏
= +

1

√𝑔
𝜎𝜎
𝑔
𝜑𝜑

𝜕𝛹

𝜕𝜎
.

Forming the rotationof thedimensionlessNavier–Stokes equations, and inserting into
the resulting equation

∇̂ × ∇̂ × ∇̂ ×
󳨀→
𝑊 = 0

the expressions for𝑊
𝜎
and𝑊

𝜏
, we have the differential equation

𝐷
4
𝛹 = 0.

Here, 𝐷4
𝛹 = 𝐷

2
(𝐷

2
𝛹) is, with the differential operator,

𝐷
2
=

1

𝑔
𝜎𝜎

𝜕
2

𝜕𝜎2
+

1

𝑔
𝜏𝜏

𝜕
2

𝜕𝜏2
.

To solve this differential equation, we can use an approach in the form𝛹 = 𝑚 (𝜏). The
throughput relationship is satisfied most easily by using this approach. Substitution
gives

𝐷
4
𝛹 =

1

(𝜎2 + 𝜏2)
3
[4 (1−𝜏

2
) (1 + 𝜎)

2 𝑑
2
𝑚

𝑑𝜏2
−4𝜏 (1−𝜏

2
) (1 + 𝜎

2
)
𝑑
3
𝑚

𝑑𝜏3
]+

+
1 − 𝜏

2

𝜎2 + 𝜏2

𝑑
4
𝑚

𝑑𝜏4
.

As thedifferential equationmusthold for all𝜎- and 𝜏-values,wehave the relationships

𝑑
4
𝑚

𝑑𝜏4
= 0 and 𝑑

2
𝑚

𝑑𝜏2
−𝜏

𝑑
3
𝑚

𝑑𝜏3
= 0,
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whose common solution, considering the boundary condition 󳨀→
𝑊(𝜏 = 𝜏

0
) = 0, is

𝛹 = 𝐶(𝜏
3
− 3𝜏

2

0
𝜏)

The constant 𝐶 can be calculated by considering the throughput condition

𝐶 =
1

2𝜋 (1 − 3𝜏
2

0
+ 2𝜏

3

0
)
.

This makes the velocity field of the blood flow 󳨀→
𝑊

󳨀→
𝑊 = (𝑊

𝜎
, 0, 0) with 𝑊

𝜎
=

−3𝐶 (𝜏
2
− 𝜏

2

0
)

√(1 + 𝜎2) (𝜎2 + 𝜏2)

.

Aswecan see, the stream lines runalong the confocal hyperbolas. To calculate the loss
in pressure along the axis of rotation, 󳨀→𝑊 must be substituted into the dimensionless
Navier–Stokes equation. Solving for ∇̂𝑃, this is then ∇̂𝑃 = −∇̂ × ∇̂ ×

󳨀→
𝑊, and in compo­

nent description,

𝜕𝑃

𝜕𝜎
= +√

𝑔
𝜎𝜎

𝑔
𝜏𝜏
𝑔
𝜑𝜑

𝜕

𝜕𝜏
[√

𝑔
𝜑𝜑

𝑔
𝜎𝜎
𝑔
𝜏𝜏

𝜕

𝜕𝜏
(√𝑔

𝜎𝜎
𝑊

𝜎
)]

𝜕𝑃

𝜕𝜏
= −√

𝑔
𝜏𝜏

𝑔
𝜎𝜎
𝑔
𝜑𝜑

𝜕

𝜕𝜎
[√

𝑔
𝜑𝜑

𝑔
𝜎𝜎
𝑔
𝜏𝜏

𝜕

𝜕𝜎
(√𝑔

𝜎𝜎
𝑊

𝜎
)]

We can now express the pressure gradient on the axis of rotation as

𝜕𝑃

𝜕𝜎
|
𝜏=1

= −
12𝐶

(1 + 𝜎2)
2
.

and, after integration of the loss in pressure,

𝑃 (𝜎) |
𝜏=1

= 𝑃
∞

− 6𝐶 (
𝜎

1 + 𝜎2
+ arctan 𝜎)

and the total loss in pressure

Δ𝑃 = 24 𝐶

∞

∫

0

1

(1 + 𝜎2)
2
𝑑𝜎 =

3

1 − 3𝜏
2

0
+ 2𝜏

3

0

between +∞ ≤ 𝜎 ≤ −∞. As we are considering here a spasmodic narrowing, we can
set 𝜏

0
= 0, and in the case 𝜏

0
→ 0 the hyperboloid degenerates to a circular hole with

radius 𝑒 = 𝑎 =
𝑑

2
. Therefore, the dimensionless loss in pressure becomes Δ𝑃 = 3, or,

dimensionally,

Δ𝑝
𝑉
=

3𝜂𝑉
∗

𝑎3
=

24𝜂𝑉
∗

𝑑3
.
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Numeric evaluation yields

Δ𝑝
𝑉
=

24 ⋅ 0.018 Pa ⋅ s ⋅ 7 l/min

1 cm3
=

24 ⋅ 0.018 Pa ⋅ s ⋅ 7 l/min

60 s/min ⋅ 1,000 l/m3 ⋅ 0.013m3
= 50.4 Pa.

In the scope of this treatment, inertial effects were ignored. These are, however, re­
sponsible for the vortices that frequently arise behind narrowings. These can further
increase pressure loss (see also Exercise 3.8). Vortices are especially dangerous in the
blood streambecausebloodwithin themstagnates. This leads todanger of blood clots,
which can cause thrombosis.

3.8 Stepwise Narrowing of the Aorta

Consider the loss in pressure of a narrowing of the aorta according to the image; the di­
ameter narrows from 𝑑

1
= 2.5 cm to 𝑑

2
= 1 cm. Calculate the resulting loss in pressure

Δ𝑝
𝑣
in the aorta for the case in which this loss in pressure occurs only due to vortices.

Ignore fluid friction. Make sure to consider that directly after the narrowing, the effec­
tive flow cross section is further restricted due to inertial effects to 𝐴

󸀠. The size of this
restriction is described by the contraction number 𝑘, which is defined as the ratio 𝐴

󸀠

𝐴
2

;
𝑘 is dependent on the Reynolds number 𝑅𝑒 = 󰜚

blood
𝑑
2
𝑤
2

𝜂
blood

and the ratio𝛷 =
𝐴
2

𝐴
1

. Modeling
experiments define this dependency as 𝑘 = 4.6 ⋅ 10

−3
𝑅𝑒 𝛷. The average blood flow of

the patient is determined to be 𝑉∗
= 7 l/min. For the solution, assume stationary rela­

tionships.
[blood density 𝜌

blood
= 1,050 kg/m3, blood viscosity 𝜂

blood
= 0.018 Pa ⋅ s]

A1
A2

A’

Fig. 3.4. Stepwise narrowing in the cross-section of an artery

Due to the sharp-edged, right-angle narrowing, the flow lines cannot follow the
90

∘ edge lines directly. Instead, they describe a continuous trajectory, and vortices
arise as stagnant zones. Additionally, due to the inertia of the fluid, flow is further
reduced relative to the geometric narrowing by a cross-sectional area𝐴󸀠. The creation
of vortices due to this narrowing means a loss of mechanical energy, which corre­
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sponds to a drop in pressure of Δ𝑝
𝑉
. This drop in pressure is the difference between

the pressure that would enter into a new cross section of the aorta without vortex cre­
ation (represented by the Bernoulli pressure 𝑝

2𝐵
), and the actual pressure 𝑝

2
. As such,

point 2 is chosen, where the blood can flow again without hindrances. As the drop in
pressure before the narrowing contributes to the experimentally obtained contraction
number 𝑘, to determine the drop in pressure, only the flow behind the narrowing is
considered (here, flow spreads out again); the pressures 𝑝󸀠 and 𝑝

󸀠

𝐵
in the most narrow

flow cross section 𝐴
󸀠 can be assumed to be equal.

Δ𝑝
𝑉
= 𝑝

2𝐵
− 𝑝

2
. (3.5)

Ideal pressure 𝑝
2𝐵
can be expressed using the Bernoulli equation, and the real pres­

sure 𝑝
2
can be described using the momentum equation. The Bernoulli equation is

𝑝
2𝐵

+
𝜌
blood

2
𝑤

2

2
= 𝑝

󸀠

𝐵
+
𝜌
blood

2
𝑤

󸀠2
.

Therefore,

𝑝
2𝐵

− 𝑝
󸀠

𝐵
=

𝜌
blood

2
𝑤

2

2
(
𝑤

󸀠2

𝑤
2

2

− 1) . (3.6)

The momentum equation (single-axis and stationary) is

0 = 𝑚
∗
(𝑤

󸀠
− 𝑤

2
) + 𝐴

2
(𝑝

󸀠
− 𝑝

2
) .

Considering𝑚
∗
= 𝜌

blood
𝐴

2
𝑤

2
, 𝑝

2
− 𝑝

󸀠 becomes

𝑝
2
− 𝑝

󸀠
=

𝜌
blood

2
𝑤

2

2
(
2𝑤

󸀠

𝑤
2

− 2) . (3.7)

(3.6) and (3.7) substituted into (3.5) yield, considering 𝑝
󸀠
= 𝑝

󸀠

𝐵
, the pressure drop Δ𝑝

𝑉

Δ𝑝
𝑉
=

𝜌
blood

2
𝑤

2

2
[ (

𝑤
󸀠

𝑤
2

)

2

− 2
𝑤

󸀠

𝑤
2

+ 1]

=
𝜌
blood

2
𝑤

2

2
(
𝑤

󸀠

𝑤
2

− 1)

2

.

As the continuity equation is𝑉 = 𝑤
󸀠
𝐴

󸀠
= 𝑤

2
𝐴

2
, we have

𝑤
󸀠

𝑤
2

=
𝐴

2

𝐴󸀠
=

1

𝑘

with 𝑘 as the contraction number. From the relationship 𝑘 = 4.6 ⋅ 10
−3

𝑅𝑒𝛷 we have,
with 𝑅𝑒 =

𝑤
2
󰜚
blood

𝑑
2

𝜂
blood

= 850 and 𝛷 =
𝐴
2

𝐴
1

=
0.8

4.9
= 0.16, the value 𝑘 = 0.63.

This value can be used to calculate the loss in pressure Δ𝑝
𝑉
due to the narrowing:

Δ𝑝
𝑉
=

𝜌
blood

2
(
𝑉

∗

𝐴
2

)

2

(
1

𝑘
− 1)

2

.

Numerically, with 𝜌
blood

= 1,050 kg/m3; 𝑉∗
= 7 l/min = 2.33 ⋅ 10

−4
𝑚
3

/𝑠; 𝐴
2
= 0.8 cm

2, and
𝑘 = 0.63, the drop in pressure is Δ𝑝

𝑉
= 384 Pa.
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3.9 Blood Pressure in the Aorta

What is the loss in pressure due to fluid friction in the aorta of a healthy person? To
perform the calculation, assume stationary relationships and laminar flow. Is this last
condition justified?What is the loss in pressure due to friction in relation to the loss in
pressure due to narrowing of the aorta? As an estimate of pressure loss from narrow­
ing, assume the sum value of spasmodic and stepped narrowing corresponding to the
preceding exercises.
[aorta diameter 𝐷 = 2.5 cm; aorta length 𝑙 = 40 cm; blood viscosity 𝜂 = 0.018 Pa s;
blood flow 𝑉

∗
= 7 l/min]

The loss of pressure in the aorta Δ𝑝
𝐴
can be calculated from the Hagen–Poiseuille

equation, if laminar conditions apply. This is the case if the Reynolds number is 𝑅𝑒 <
2,300. The Reynolds number is

𝑅𝑒 =
𝜌𝑤𝐷

𝜂
=

𝜌𝐷𝑉
∗

𝜂𝐴
=

4

𝜋

𝜌

𝜂

𝑉
∗

𝐷
.

Numerically, with 𝐷 = 2.5 cm, 𝑅𝑒 is 𝑙 = 40 cm; 𝑉∗
= 7 l/min; 𝜂 = 0.018 Pa ⋅ s, and 𝜌 =

1,050 kg/m3

𝑅𝑒 = 337.

This fulfills the criteria for laminar flow, and we can use the Hagen–Poiseuille equa­
tion.

𝑉
∗
=

𝜋𝐷
4

128 𝜂

Δ𝑝
𝐴

𝑙
.

Solving for Δ𝑝
𝐴
,

Δ𝑝
𝐴
=

128 𝜂𝑙

𝜋𝐷4
𝑉

∗
= Δ𝑝

𝐴
= 360 Pa.

If there is narrowing in the aorta with pressure drop due to friction (see Exercise 3.7)
Δ𝑝

𝑉𝑅
= 50.4 Pa and due to turbulence (see Exercise 3.8 Δ𝑝

𝑉𝑊
= 384 Pa), the drop in

pressure rises to

Δ𝑝 = (Δ𝑝
𝐴
+ Δ𝑝

𝑉𝑅
+ Δ𝑝

𝑉𝑊
) = 360 Pa + 50.4 Pa + 384 Pa = 794.4 Pa.

The ratio of the drop due to narrowing to the drop due to friction in the aorta is

Δ𝑝
𝑉

Δ𝑝
𝐴

=
794.4 Pa

360 Pa
= 2.2.

As is clear, the loss of pressure more than doubles due to this massive narrowing.
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3.10 Pulsatile Blood Flow

Consider pulsing blood flow. Calculate blood flow strength 𝑉
∗

𝑆

1. for the case in which the heart rate of a patient has dropped to 𝜔
𝑆
= 50min

−1

(normal value 𝜔 = 70min
−1), and compare this result with the stationary value

for the same pressure gradient 𝑝󸀠;
2. for another patient with heart flutter (a disturbance in the rhythm of the heart,

with a suddenly elevated heart rate).

For the solution, start with the distribution of velocity

𝑤 (𝑟, 𝑡) =
𝑝
󸀠
𝑒
𝑖𝜔𝑡

𝑖𝜔𝜌

[
[

[

1 −

𝐽
0
(𝑟√−𝑖

𝜌𝜔

𝜂
)

𝐽
0
(𝑅√−𝑖

𝜌𝜔

𝜂
)

]
]

]

and calculate𝑤 (𝑟, 𝑡) to a second-order approximation. The 𝑟 coordinate is the distance
of a particle of blood from the axis of a blood vessel. This allows us to calculate the
average velocity 𝑤̄ and to compare it with the corresponding relationship from the
Hagen–Poiseuille equation. The average velocity 𝑤̄ corresponds to an average over 𝑟,
which, in the middle of a pulse, creates the same throughput as the velocity profile
𝑤 (𝑟, 𝑡) (weighted average).
[blood density 𝜌 = 1,050 kg/m3; blood viscosity 𝜂 = 0.018 Pa s; aorta radius 𝑅 = 1.25 cm]

Before the average velocity can be calculated, the Bessel function 𝐽
𝑛
(𝑥) in the existing

equation for 𝑤 (𝑟, 𝑡) should be developed in a series. We have

𝐽
𝑛
(𝑥) =

𝑥
𝑛

2𝑛𝛤 (𝑛 + 1)
[1 −

𝑥
2

2 (2𝑛 + 2)
+

𝑥
4

8 (2𝑛 + 2) (2𝑛 + 1)
− . . . + . . . ] .

and the Bessel function of zero order 𝐽
0
(𝑥) is

𝐽
0
(𝑥) =

1

𝛤 (1)
[1 −

𝑥
2

4
+
𝑥
4

16
− . . . + . . .]

Considering that the gamma function is 𝛤 (1) = 1 in the desired approximation,

𝐽
0
(𝑥) ≈ 1 −

𝑥
2

4
.

The ratio of the Bessel function in the exit equation is then

𝐽
0
(𝑟√−𝑖

𝜌𝜔

𝜂
)

𝐽
0
(𝑅√−𝑖

𝜌𝜔

𝜂
)

=
4𝜂 + 𝑖 𝑟

2
𝜌𝜔

4𝜂 + 𝑖 𝑅2𝜌𝜔
.

Substituting this in the solution for 𝑤 (𝑟, 𝑡) we have

𝑤 (𝑟, 𝑡) = 𝑝
󸀠
𝑒
𝑖𝜔𝑡

[

(𝑅
2
− 𝑟

2
)

4𝜂 + 𝑖 (𝜌𝜔𝑅2)
] .
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𝑝
󸀠 is the peak of the periodic pressure gradient. Considering the Euler formula for

complex numbers 𝑒𝑖𝑧 = cos 𝑧 + 𝑖 sin 𝑧 we have

𝑤 (𝑟, 𝑡) = 𝑝
󸀠
[

(𝑅
2
− 𝑟

2
)

4𝜂 + 𝑖 (𝜌𝜔𝑅2)
] [cos (𝜔𝑡) + 𝑖 sin (𝜔𝑡)]

= 𝑝
󸀠𝑅

2

4𝜂

[1 − (
𝑟

𝑅
)
2

] [cos (𝜔𝑡) + 𝑖 sin (𝜔𝑡)]

1 + 𝑖
𝜌𝜔𝑅

2

4𝜂

.

The value 𝜌𝜔𝑅
2

𝜂
that occurs in the equation can be understood as a Reynolds number

constructed with the pulse frequency, and is abbreviated as 𝑅𝑒. Therefore,

𝑤(𝑟, 𝑡) =
𝑝
󸀠
𝑅

2

4𝜂

{[1 − (
𝑟

𝑅
)
2

]} {cos (𝜔𝑡) + 𝑖 sin (𝜔𝑡)}

1 + 𝑖
1

4
𝑅𝑒

.

For the oscillation, only the real portion of this complex expression is relevant. We
must expand using the complex conjugate denominator 1 − 𝑖

1

4
𝑅𝑒; the real portion is

then

𝑤 (𝑟, 𝑡) =
𝑝
󸀠
𝑅

2

4𝜂
[1 − (

𝑟

𝑅
)

2

]
cos (𝜔𝑡) +

1

4
𝑅𝑒 sin (𝜔𝑡)

1 +
1

16
𝑅𝑒

2
.

As can be seen, we are dealing with a superimposed sin/cosine oscillation over time
𝑡 with a parabolic dependence of radius 𝑟, that corresponds to the velocity profile of
Hagen–Poiseuille𝑤(𝑟) = 𝑝

󸀠
𝑅
2

4𝜂
[1−(

𝑟

𝑅
)
2
]at𝜔 = 0. Theaveragevelocity 𝑤̄ is,withbalance,

2𝑤̄ 𝐴

𝜔
= ∫

𝐴

∫

𝑡

𝑤 (𝑟, 𝑡) 𝑑𝐴 𝑑𝑡

with the cross-sectional area 𝐴 of the aorta. As 𝐴 = 𝜋𝑅
2 and 𝑑𝐴 = 2𝜋𝑟𝑑𝑟, we have

𝑤̄ =
2 𝑝

󸀠

4 𝜂

𝑅

∫

0

2
𝜔

2

𝜋

2𝜔

∫

0

𝑟[1 − (
𝑟

𝑅
)
2

]
cos (𝜔𝑡) +

1

4
𝑅𝑒 sin (𝜔𝑡)

1 +
1

16
𝑅𝑒

2
𝑑𝑟 𝑑𝑡.

Because the variables 𝑟 and 𝑡 occur separately in the equation, we can integrate inde­
pendently over 𝑑𝑟 and 𝑑𝑡:

𝑤̄ =
𝑝
󸀠
𝑅

2

8 𝜂

𝜔

1 +
1

16
𝑅𝑒

2

𝜋

2𝜔

∫

0

cos (𝜔𝑡) +
1

4
𝑅𝑒 sin (𝜔𝑡) 𝑑𝑡

=
𝑝
󸀠
𝑅

2

8 𝜂

𝜔

1 +
1

16
𝑅𝑒

2
[
sin (𝜔𝑡) −

1

4
𝑅𝑒 cos (𝜔𝑡)

𝜔
]

𝜋

2𝜔

0

=
𝑝
󸀠
𝑅

2

8 𝜂
[
1 +

1

4
𝑅𝑒

1 +
1

16
𝑅𝑒

2
].



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 68
�

�

�

�

�

�

68 | 3 Fluid Dynamics of the Circulatory System

The average velocity 𝑤̄
𝐻𝑃

by the Hagen–Poiseuille is

𝑤̄
𝐻𝑃

=
𝑝
󸀠
𝑅

2

8 𝜂
.

And the ratio𝛩 =
𝑤̄

𝑤̄
𝐻𝑃

becomes

𝛩 =
1 +

1

4
𝑅𝑒

1 +
1

16
𝑅𝑒

2

1. In the case of a disruption in heart function with heart rate reduced to 𝜔
𝑆
= 50 s

−1

we have blood stream strength

𝑉
∗

𝑆
= 𝜋𝑤

𝑆
𝑅

2
=

𝜋𝑝
󸀠
𝑅

4

8 𝜂

[

[

1 +
1

4
𝑅𝑒

𝑆

1 +
1

16
𝑅𝑒

2

𝑆

]

]

with 𝑅𝑒
𝑆
=

𝜌𝜔
𝑆
𝑅

2

𝜂
.

Hagen–Poiseuille gives

𝑉
∗

𝐻𝑃
=

𝜋𝑝
󸀠
𝑅

4

8 𝜂

and therefore, the ratio
𝑉

∗

𝑆

𝑉
∗

𝐻𝑃

= [

[

1 +
1

4
𝑅𝑒

𝑆

1 +
1

16
𝑅𝑒

2

𝑆

]

]

.

With 𝜔
𝑆
= 50min

−1, 𝑅𝑒
𝑆
= 7.6, and

𝑉
∗

𝑆

𝑉
∗

𝐻𝑃

= [
1 +

1

4
7.6

1 +
1

16
7.62

] = 0.63⋅

Due to the disturbance in heart function, the blood stream strength of the patient
(considering the approximation) is 63% smaller than in the case of a stationary
calculation using Hagen–Poiseuille.

2. Heart rate disruptions due to heart flutters lead to 𝜔 → ∞ and therefore also
𝑅𝑒 → ∞. As such, the expression 𝑉

∗

𝑆

𝑉
∗

𝐻𝑃

is unknown. Using Hospital’s rule, we have

lim

𝑅𝑒 → ∞
(

𝑉
∗

𝑆

𝑉
∗

𝐻𝑃

) =
lim

𝑅𝑒 → ∞
(

1

4

1

8
𝑅𝑒

) =
lim

𝑅𝑒 → ∞
(

2

𝑅𝑒
) = 0;

that is, when 𝑅𝑒 → ∞ blood flow is 𝑉∗

𝑆
→ 0. This gives rise to a life-threatening

situation that can lead to cardiac infarction if countermeasures, like the use of a
defibrillator, are not immediately taken.
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3.11 Cardiac Output

To estimate cardiac output, assume that the average systolic pressure of the left ven­
tricle is 𝑝

𝑙𝑣
= 100mmHg, and that of the right ventricle is 𝑝

𝑟𝑣
= 15mmHg. The heart

has a volume of 𝑉 = 300ml and the stroke volume of a ventricle is 70ml.
1. Assuming that the volume of the ventricle is shifted against a constant systolic

pressure during a heartbeat, what is the mechanical work done by the heart per
heartbeat?

2. What is the average power at heart rate 𝜈 of 72 beats perminute?What is the power
density?

3. Is the power density from section (b) achievable with an aquarium pump? The
pump has volume 𝑉 = 0.2 l, and can carry 10 l of water to a height of ℎ = 6.12m

per minute.
4. Up until now, we have ignored that blood pumped out must be accelerated. What

is the percent portion of the work of acceleration with respect to the total work?
The expulsion velocity is 𝑣 = 0.5

m

s
, and the density of blood is 𝜌 = 1.05

kg

l
.

1. The mechanical work is comprised of the contributions of the left and right ven­
tricles:𝑊 = 𝑊lV + 𝑊rV. The unit still used in medicinemmHg – the Torr – corre­
sponds to 133.32 Pa. With𝑊 = 𝑝𝑉we have

𝑊lV = 100 ⋅ 133.32 Pa ⋅ 0.070 ⋅ 10
−3
m

3
= 0.93 J

𝑊rV = 15 ⋅ 133.32 Pa ⋅ 0.070 ⋅ 10
−3
m

3
= 0.14 J.

2. The average power is

𝑃 = 𝑊
ges
𝜈 = (0.93 + 0.14) J ⋅

72 1/min

60 s/min

= 1.28W

and the power exerted per volume is

𝑃

𝑉
=

1.28W

300ml
= 4.27

kW

m3
.

3. The power of the aquarium pump is calculated from the discharge 𝑉
∗

= 𝑉𝜈 =

10
l

min
as

𝑃 = 𝑊𝜈 = 𝑚𝑔ℎ ⋅ 𝜈 = 𝜌𝑔ℎ ⋅ 𝑉
∗
= 10

3 kg

m3
⋅ 9.81

m

s2
⋅ 6.12m ⋅

10 ⋅ 10
−3
m

3

60 s
= 10W.

For power density, we have

𝑃

𝑉
=

10W

0.2 ⋅ 10−3 m3
= 50

kW

m3
.

The power density would suffice; the difficulty in developing an artificial heart
lies elsewhere.
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4. The acceleration work is

𝑊
𝐵
=

1

2
𝑚𝑣

2
=

1

2
𝜌𝑉𝑣

2
=

1

2
⋅ 1.05

kg

l
⋅ 2 ⋅ 0.070 l ⋅ 0.5

2m
2

s
= 0.018 J.

Its portion of the total work done is only

𝑊
𝐵

𝑊
𝐵
+𝑊

=
0.018 J

0.018 J + 1.073 J
= 0.016 = 1.6%.

3.12 Mitral Valve Opening Surface

The pressure difference between the front and back sides of the closed mitral valve of
a human heart is 2mmHg. Additionally, the heart index, the ratio of the heart minute
volume to the body surface area 𝐴

0
, is 𝑞 = 3.5

l

m
2
min

. What is the opening surface of
the mitral valve for a person that weighs𝑚 = 75 kg and is 𝑙 = 170 cm tall?

To solve theproblem, use the continuity equation𝑉∗
= 𝑤̄⋅𝐴 aswell as themodified

DuBois formula for an approximate calculation of the surface area of the body:

𝐴
0
= 𝑘 ⋅ √𝑚 ⋅ 𝑙,

with constant 𝑘 = 0.167 √
m3

kg
. 𝑉∗ is the volume flow (volume per time) of blood with

average velocity 𝑤̄ through a surface 𝐴.

Using the heart index 𝑞 and the DuBois formula, we have, for volume flow 𝑉
∗

𝑉
∗
= 𝐴

0
𝑞 = 0.167 √m

3

/kg ⋅ √75 kg ⋅ 1.7m ⋅ 3.5
l

m2 min

= 6.6
l

min
= 1.1 ⋅ 10

−4 m
3

s
.

With a rapid opening of the mitral valve, we can assume that the entire pressure dif­
ference 𝛥𝑝 is available for propulsion. The pressure difference is

𝛥𝑝 = 𝜌
Hg

⋅ 𝑔 ⋅ 𝛥ℎ = 13.6 ⋅ 10
3 kg

m3
⋅ 9.81

m

s2
⋅ 2 ⋅ 10

−3
m = 266.8 Pa.

Considering the Bernoulli equation 1

2
𝜌𝑤̄

2
= 𝛥𝑝we have, for average flow velocity 𝑣̄

𝑤̄ = √
2 𝛥𝑝

𝜌
= √

2 ⋅ 266.8 Pa

1.08 ⋅ 103kg/m3
= 0.7

m

s
.

As the blood only flows out during half of the cardiac cycle, we have, as an estimate
of the surface of the mitral valve,

𝐴 =
2 ⋅ 𝑉

∗

𝑤̄
=

2 ⋅ 1.1 ⋅ 10
−4
m

3
s

0.7 m s
= 3.14 ⋅ 10

−4
m

2
= 3.14 cm

2
.
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3.13 Dialysis

A device used for dialysis operates on the principle of ultrafiltration. The blood at the
membrane is required to have an excess pressure of Δ𝑝 = 10

5
Pa. Before the blood

flows back into the body of the patient, this pressure difference must be mitigated.
This is achieved by the use of𝑁 capillaries of length 𝐿 = 0.5m connected in parallel.
All capillaries have the same diameter 𝑑. The shear stress at the capillary walls may
not exceed 𝜏

𝑅
= 25 Pa, in order to avoid the risk of hemolysis. The volumetric flow is

𝑉̇ = 5 ⋅ 10
−6

m
3

/s. The fluidic properties of the blood can be modeled using the Rabi­
nowitsch approach², which relates the shear stress 𝜏 and fluid velocity gradient ̇𝛾 for
various fluids by choice of appropriate constants 𝑎 and 𝑐 by a third order polynomial

̇𝛾

𝑐
=

𝜏

𝑎
+ (

𝜏

𝑎
)

3

.

Assuming that the relevant parameters are 𝑎 = 1.2 Pa and 𝑐 = 12 1/s, how many capil­
laries are required and how large should be their diameter?

Since the shear stress at the capillary wall is 𝜏
𝑅
= Δ𝑝

𝑑

4𝐿
, we can write for the diameter

𝑑 = 4𝐿
𝜏
𝑅

Δ𝑝
= 4 ⋅ 0.5 ⋅

25⋅

105
m = 5 ⋅ 10

−4
m = 0.5mm.

The volumetric flow 𝑉̇
𝐼
through one capillary can be calculated using, with fluid ve­

locity 𝑤 (𝑟),

𝑉̇
𝐼
= 2𝜋

𝑑

2

∫

0

𝑟𝑤 (𝑟) 𝑑𝑟.

Integrating by parts yields

𝑉̇
𝐼
= 𝜋

[
[

[

𝑑
2

4
𝑤(𝑟 =

𝑑

2
) −

𝑑

2

∫

0

𝑟
2
𝑑𝑤

]
]

]

,

and due to 𝑤(𝑟 =
𝑑

2
) = 0 it follows that

𝑉̇
𝐼
= −𝜋

𝑑

2

∫

0

𝑟
2
𝑑𝑤 = −𝜋

𝑑

2

∫

0

𝑟
2 𝑑𝑤

𝑑𝑟
𝑑𝑟 = 𝜋

𝑑

2

∫

0

𝑟
2
̇𝛾 𝑑𝑟 = 𝜋

𝑑

2

∫

0

𝑟
2
𝑓 (𝜏) 𝑑𝑟 (3.8)

Since the shear stress distribution can be assumed to be linear 𝜏 = 𝜏
𝑅

2

𝑑
𝑟 and thus

𝑑𝜏

𝑑𝑟
=

2𝜏
𝑅

𝑑
→ 𝑑𝑟 =

𝑑

2𝜏
𝑅

𝑑𝜏 (3.9)

||
2 The Rabinowitsch model describes, similar to the potential law of fluids, the correlation between
the shear rate 𝜏 and velocity gradient ̇𝛾 for some fluids
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and because 𝜏2 = 𝜏
2

𝑅

4

𝑑
2
𝑟
2

𝑟
2
=

𝑑⋅

4

𝜏
2

𝜏
2

𝑅

. (3.10)

Substitution of Equation (3.9) and Equation (3.10) into Equation (3.8) yields

𝑉̇
𝐼
=

𝜋

8
(
𝑑

𝜏
𝑅

)

3
𝜏
𝑅

∫

0

𝜏
2
𝑓 (𝜏) 𝑑𝜏.

Using the Rabinowitsch approach, the expression for 𝑉̇
𝐼
is

𝑉̇
𝐼
=

𝜋

8
(
𝑑

𝜏
𝑅

)

3

𝑐

𝜏
𝑅

∫

0

𝜏
2
[
𝜏

𝑎
+ (

𝜏

𝑎
)

3

] 𝑑𝜏 =
𝜋

8
(
𝑑

𝜏
𝑅

)

3

𝑐 (
𝜏
4

𝑅

4𝑎
+

𝜏
6

𝑅

6𝑎
)

=
𝜋

8
𝑑
3
𝑐 (

𝜏
𝑅

4𝑎
+

𝜏
3

𝑅

6𝑎
) =

𝜋

8
(5 ⋅ 10

−4
)
3

12 (
25

4 ⋅ 1.2
+

25
3

6 ⋅ 1.2
)m

3

/s

= 77 cm
3

/min.

Thus, the number of capillaries𝑁 is

𝑁 =
𝑉̇

𝑉̇
𝐼

=
5 ⋅ 10

−6

1.28 ⋅ 10−6
=

5

1.28
= 4.
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For humans, in addition to the senses of taste and smell, the senses of sight and hear­
ing are themost important.We take in the greatest portion of our information through
sight, which ismade possible by both the eyes and a part of the brain. Light strikes the
eye, which then sends a nerve impulse to the brainwhere it is transformed into usable
information. The eye itself is comprised of the cornea, the anterior chamber, the lens,
the iris with the pupil, the vitreous humor, the retina, and the optical nerve. Using its
musculature as well as the eyelids and the tear (lachrymal) glands, the eye is able to
adapt to changing requirements. The eyeball is comprised of a gelatinous fluid that is
98% water. The remaining 2% is primarily collagen and hyaluronan, which bind the
water. The intraocular pressure is between 2 and 3 kPa greater than that of the sur­
roundings. The ocular fluid is constantly refreshed in order to ensure a high optical
quality. The cornea, with its high transparency, is constantly wetted with lachrymal
fluid; this keeps its surface smooth and removes debris.

Incident light is refracted by the cornea and lens; their curvatures are the most
important part of the lensing mechanism of the eye. The lens itself is flexible across a
certain range; this allows the eye to focus on specific objects. The iris with the pupil,
a variable aperture, contributes to adaptation to brightness and focusing at different
depths. Images are generated on the retina, and are converted into electrical nerve
impulses by the optical cells. The retina is the site of the blind spot, and the macula
lutea. The latter lies in the optical center of the eye and has the greatest density of op­
tical cells. As such, the sharpest images are created at it. The blind spot is the position
at which the optical nerve and the blood vessels connect to the eye. Here there are no
sensory cells, and no sensory perception occurs. Everywhere else, though, the retina
contains sensory cells. There are two kinds of photoreceptors: rods and cones. Rods
detect brightness and darkness, and cones detect colors. They are primarily concen­
trated in the macula, and the best perception of color occurs there. There are signifi­
cantly more rods than cones, especially in the outer regions of the retina. The field of
sight of a humaneye extends from roughly−60∘ to+120∘ horizontally, and from roughly
−75

∘ to +60∘ vertically. Because both eyes’ regions of vision overlap in humans, we can
also perceive distances within this range.

The lensing effect in the eye is due principally to the curved cornea and the lens.
Each surface layer contributes a component of refraction,which canbedescribedwith
the lens formula 𝑛

1

𝑔
+

𝑛
𝑁+1

𝑏
= ∑

𝑁

𝑖=1

𝑛
𝑖+1

−𝑛
𝑖

𝑟
𝑖

, with 𝑔 as the object distance, 𝑏 as the image
distance, 𝑛 as the index of refraction, and 𝑟

𝑖
as the radius of curvature of the boundary

layer. The term Δ𝑛

𝑟
is called the refractivity or optical power, with unit (m−1). In optics,

this unit is also called the diopter (dpt).
Like every system of lenses, even a healthy eye has a number of optical imperfec­

tions. Among them are the spherical and chromatic aberrations. The formermanifests
itself in the dark, when the pupil diameter is large. Under these conditions, the sig­
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nals of multiple neighboring sensory cells are “averaged” to produce a signal strong
enough for perception. The chromatic aberration refers to the fact that blue light is re­
fractedmore sharply than red light. In the wavelength range of 400–700 nm, the error
is around 2dpt. Formost sensory cells, though, the difference in the index of refraction
is too small to be noticeable. Another flaw comes from the fact that images are only
sharp in the vicinity of the macula. However, because (as explained above) there are
manymore sensory cells there than in rest of the retina, the image can still be detected
with sharp resolution.

The change in the index of refraction is due to a deformation of the lens known
as accommodation. At rest, the lens is kept tense by suspending ligaments, and is
relatively flat; as such, the index of refraction is small. This allows distant objects to
be seen in clear focus. If the ciliary muscle is contracted, the ligaments slacken and
the lens curves more steeply; the index of refraction rises, and the focal point moves
closer to the eye. While children can see objects that are relatively close (around 7 cm)
clearly, for adults, this distance grows with age as the flexibility of the lens decreases.
Because the lens is made of extracellular material, it does not regenerate itself. This
is why many older people need reading glasses to assist with accommodation. Near­
sightedness occurs when the focal length is too short, and the image appears in the
interior of the eye rather than on the retina. In this case, a diverging lens is required
(negativediopters). Farsightedness requires that the focal length be shortened inorder
to project the image on the retina. In this case, glasses feature a converging lens.

The eye is sensitive to a range in wavelengths of 380 to 780nm. This portion of
the spectrum corresponds well with the spectrum of solar radiation that occurs at the
surface of the Earth. Both the sensitivity of the sensory cells and absorption in the
entire eye play roles in the dependency of sensory perception on wavelength. Short­
-wave light is almost completely absorbed before reaching the retina, as water and all
molecular materials absorb relatively strongly in the ultraviolet range and at larger
wavelengths. In the process, a portion of the optical energy absorbed is re-radiated
in the form of florescent light. Because this florescent light appears as a diffuse back­
ground, it disturbs the remaining sensory perception. Nearly half of the light left over
is scattered, and is lost as far as sensory perception is concerned. In the sensory cells,
a portion of the incident light is absorbed; the maximum absorption depends on the
type of sensory cell and total brightness, at a wavelength between 400 and 600nm.

Processing images, which occurs in the visual center of the brain, is extremely
complicated. The brain receives necessary information through the optical nerve,
which transmits it from the light-sensitive cells (rods and cones). A portion of the
visual cortex is present in the retina as three layers of neurons, which can be thought
of as an “appendage” of the brain. The action potentials of the sensory cells are trans­
mitted fromplace to place by neurons. Directly after these sensory cells are the bipolar
cells. These activate the nerve fibers, which can be divided into an “on-channel” and
an “off-channel”. In the “on-channel”, exposure to light causes a rise in the frequency
of spontaneous discharge; in the off-channel, discharge is suppressed. Most signals
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to the brain utilize both on- and off-channels. This has the advantage that in average
lighting, not all neurons need to work at half power. The horizontal cells modulate
signal transmission. Further processing occurswithin the brain itself. The nerve fibers
run fromdifferent parts of the retina to the correspondingparts of the brain; the nerves
from the right side of both eyes run through the optic chiasm to the right half of the
brain, and vice versa. The visual cortex is located in the rear of the brain. The brain
also controls the orientation of the eye and makes sure that the central portions of
images are formed on the macula.

The fact that we see our surroundings in color relies on both the dependency on
wavelength of absorption, scattering, and reflection of light by materials, and on the
ability of the eye to selectively detect different wavelengths of light using the cones.
Depending on the relative stimulation of different kinds of cones, color effects occur in
the brain. In addition to the encoding of color and spatial data, there are also neurons
that react specifically to motion – to changes in information. These signals serve, for
example, to turn the eye in the direction of motion.

Because the constituent elements of information processing only develop in early
childhood, strabismus (constantly crossing the eyes) must be dealt with at that age to
avoid degeneration of the optical nerves. In addition, it has becomepossible to replace
individual visual cells. An “artificial retina” system is comprised of a camera and an
electronic component that is implanted into the eye; the system stimulates the optical
nerves directly, according to the video feed.

The sense of sound occurs when sound waves are transmitted through the ears to
the auditory nerves. The ear is comprised of three parts: outer ear, middle ear, and in­
ner ear. The ears create two cavities that begin at the temporal bone and lead deep into
the skull, where the nerve fibers that deliver the signals to the brain are located. Sound
waves are variations in air pressure. The amplitudes of these variations are termed
sound pressure. The frequency range of human hearing stretches from 𝜈 = 16Hz to
20 kHz. From the quietest but still audible 2 kHz sound up to the pain threshold, the
range extends over Δ𝑝

𝑒𝑓𝑓
= 20 μPa to 20 Pa. At the hearing threshold (20 μPa), intensity

is 𝐼
0
≈ 10

−12
W/m2; at the pain threshold, it is roughly 𝐼

max
≈ 1W/m2. Hearing perceives

sound pressure somewhat logarithmically. As such, it makes sense to use a logarith­
mic sound pressure scale. Using reference pressure Δ𝑝

0
, the definition of sound level

is 𝐿 = 20 ⋅ log(
Δ𝑝

Δ𝑝
0

) = 10 ⋅ log(
𝐼

𝐼
0

). If we take the sensory boundary of human hearing
as a baseline, then we have Δ𝑝

0
= 20√2 μPa = 28.3 μPa. The sonic value calculated

is measured in decibels (dB). In addition to this parameter there is another measure­
ment, the phon, that takes into account the physiological impact of the volume. The
two values are not linearly related.

The outer ear is comprised of the pinna (auricle) and the outer auditory canal,
with the eardrum at the end. This membrane divides the outer ear from the middle
ear. Transfer of sound occurs through the eardrum, and the three adjoining auditory
ossicles: the malleus (hammer), the incus (anvil), and the stapes (stirrup). The stapes
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is connected to the oval window, behind which is the inner ear. This is comprised of
the bony labyrinth; its voids are filledwith a fluid, the perilymph. The sensory cells are
located between the individual chambers of this region, and transform movements
of the membranes into nerve impulses. Additionally, the inner ear contains three
archways in which is located the vestibular system. The outer ear serves to amplify
sounds, and to filter incoming sound waves according to their direction. In the middle
ear impedance matching of the air to the perilymph occurs. Without this impedance
matching, the middle ear would only be able to transmit around 1% of the energy
received by the outer ear to the inner ear. The inner ear conducts an analysis of the
frequency and amplitude of the sound waves, and the signals are then processed
in the cerebral cortex. A relatively narrow canal, the Eustachian tube, connects the
middle ear to the pharynx. It serves to keep air pressure equal on both sides of the
eardrum.

The detection of pitch and volume is accomplished by different sensory cells in
the ear, lending further importance to the transfer mechanisms of wave propagation.
The acoustic oscillations of the air are converted multiple times before they are pro­
cessed as nerve impulses. First, a membrane oscillation begins at the eardrum; it is
transmitted from the eardrum through the mechanical connections of the auditory
ossicles to the membrane of the oval window. This creates fluid waves in the cochlea,
and through the membranous labyrinth, in the endolymph as well. This leads to the
oscillation of additional membranes in the cochlea – the basilar and tectorial mem­
branes. The relative movements of these two membranes generate a displacement of
hair cells. Themagnitudeof this displacement is transmitted to thebrain as anerve im­
pulse. Themechanical characteristics of the transportmedia, likemembraneelasticity
andmass, viscosity of the fluids, dampening behaviors, and reflections determine the
pitch and the extent of oscillation propagation. As such, high-frequency waves pene­
trate deeper into the cochlea than low-frequency ones. The signals released from the
rear nerve cells are interpreted by the brain as higher pitches. The brain determines
spatial orientation by using the difference in intensity of the sound waves between
both ears, as well as differences in phase.

In addition to the transmission path of the sound waves, sound waves are also
directly transmitted through the bones of the skull. This sound transfer mechanism,
termed bone conduction, bypasses the outer and middle ears and transports the
sound waves through oscillations of the skull. It does not usually perform a signifi­
cant role in hearing, as bone does not conduct nearly as much sound as air.

As theygrowolder,manypeople suffer to a greater or lesser extent fromdifficulties
in hearing. There aremany causes of this phenomenon. Hearing loss can often only be
corrected through the use of hearing aids, which strengthen the amplitude of sound
waves arriving at the ear. As most devices strengthen the entire spectrum of sound
waves linearly, they significantly reduce the differentiation and weighting of signals
that healthy ears can achieve.
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4.1 Information Processing

To read an assigned section of this book, a student needs 15min. The section contains
3,000 words in total [Wt], with an average of 7 characters [Sz] each.
1. What is the flow of information, if the informational content of a character is

1.5 bit?
2. What amount of time 𝑡

theo
would the student need to grasp themeaning of the text

if, in processing the information, he reaches the maximum information capacity
of they eye 𝐶 = 3 ⋅ 10

6
bit/s?

1. If reading 𝑁 = 3,000Wt with 𝑠 = 7 Sz/Wt requires 𝑡 = 15min, then, under the as­
sumption that information content is 𝑖 = 1.5 bit/Sz, information flow is

𝐼
∗
=

𝑁 𝑠 𝑖

𝑡
=

(3,000Wt) (7 Sz/Wt) (1.5 bit/Sz)

15min
= 2,100 bit/min = 35 bit/s.

2. With the maximum information capacity of the eye as 𝐶 = 3 ⋅ 10
6
bit/s, for the the­

oretical amount of time we have

𝑡
theo

=
𝐼

𝐶
.

With
𝐼 = 3,000 ⋅ 7 ⋅ 1.5 = 31,500 bit

we have
𝑡
theo

=
31,500 bit

3 ⋅ 106 bit/s
= 10.5ms.

4.2 Glasses

In a simple model of the eye, the convex lens 𝐿 takes the place of the combination of
the cornea and the lens in the eye. At a distance of 𝑙 = 2 cm is the retina 𝑅, assumed to
be a flat screen. The lens 𝐿 projects an object 𝐺 at distance 𝑑 = 30 cm onto the retina,
but refraction is too strong. In order to achieve a sharp projection of this object, the
retina must be located 𝛿 = 5mm closer to the lens of the eye. To obtain a sharp image,
refraction should be reduced by wearing glasses 𝑍, which provide an additional lens
at a distance of 𝑠 = 1.2 cm from 𝐿.
1. Whatmust the focal distance𝑓

𝑍
of lens𝑍 be to project a sharp image on the retina?

2. In order to see a sharp image without glasses, the distance of the object 𝐺𝐿 = 𝑑

can be changed by 𝑑
󸀠 while keeping image distance (𝐿𝑅 = 𝑙) constant. At what

distance 𝑑󸀠 must the object be placed so that 𝐿 projects a sharp image on 𝑅?
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1. Because the lens of the eye is convex, for refraction, we have

1

𝑓
𝐿

=
1

𝑑
+

1

𝑙 − 𝛿
.

Therefore, for the focal distance we have

𝑓
𝐿
=

𝑑 (𝑙 − 𝛿)

𝑑 + 𝑙 − 𝛿
.

Numerically, this is 𝑓
𝐿

=
30(2−0.5)

30+2−0.5
cm = 1.43 cm. We need a concave lens in the

glasses, as we need to reduce refraction. For the combination of lenses (eye and
glasses) we have, for the notional refraction, 1

𝑓
𝑍𝐿

, and therefore for the focal dis­
tance 𝑓

𝑍𝐿

1

𝑓
𝑍𝐿

=
1

𝑔
+
1

𝑏
and 𝑓

𝑍𝐿
=

𝑔 𝑏

𝑏 + 𝑔
.

The geometry of the optical path gives

𝑔 + 𝑏 = 𝑑 + 𝑙, so that 𝑏 = 𝑑 + 𝑙 − 𝑔

𝐵

𝐺
=

𝑏

𝑔
and

𝐵

𝐺
=

𝑙 − 𝛿

𝑑
and therefore 𝑏 = 𝑔 (

𝑙 − 𝛿

𝑑
)

with 𝐵 as the size of the image,𝐺 as the size of the object, and 𝑏 and 𝑔 as the image
and object distances. We then have

𝑑 + 𝑙 − 𝑔 = 𝑔(
𝑙 − 𝛿

𝑑
) and 𝑑 + 𝑙 = (1 +

𝑙 − 𝛿

𝑑
)𝑔

and therefore
𝑔 =

𝑑 + 𝑙

1 +
𝑙−𝛿

𝑑

and 𝑏 =
𝑑 + 𝑙

1 + (
𝑑

𝑙−𝛿
)

.

Numerically, we have, with 𝑙 = 2 cm; 𝑑 = 30 cm; 𝛿 = 0.5 cm → 𝑔 =
32

1+
1.5

30

cm =

30.48 cm, and 𝑏 =
32

1+
30

1.5

= 1.52 cm and finally

𝑓
𝑍𝐿

=
30.48 ⋅ 1.52

1.52 + 30.48
cm = 1.45 cm

For the combination of lenses we have the lens formula
1

𝑓
𝑍𝐿

=
1

𝑓
𝑍

+
1

𝑓
𝐿

−
𝑠

𝑓
𝑍
𝑓
𝐿

From this expression, the focal distance of the glasses 𝑓
𝑍
can be eliminated:

𝑓
𝑍
=

(𝑓
𝐿
− 𝑠) 𝑓

𝑍𝐿

𝑓
𝐿
− 𝑓

𝑍𝐿

With 𝑠 = 1.2 cm, using the assumptions above, we have

𝑓
𝑍
=

(1.43 − 1.2) 1.43

1.43 − 1.45
cm = −18.125 cm
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2. If the object distance is changed by 𝑑
󸀠, a sharp image can be projected on the

retina. Then we have
1

𝑓
𝐿

=
1

𝑑󸀠
+
1

𝑙

Therefore,
1

𝑓
𝐿

=
1

𝑑󸀠
+

1

𝑙 − 𝛿
=

(𝑙 − 𝛿) + 𝑑

𝑑 (𝑙 − 𝛿)
.

and finally

𝑑
󸀠
= [

𝑑 + 𝑙 − 𝛿

𝑑 (𝑙 − 𝛿)
−
1

𝑙
]

−1

.

We can evaluate 𝑑󸀠 as→ 𝑑
󸀠
= [

31.5

30⋅1.5
−

1

2
] cm

−1
= [0.7 − 0.5]

−1
cm = 5 cm.

4.3 Geometry of Glasses Lenses

For a pair of glasses, a lens is to be ground from glass with index of refraction 𝑛 = 1.4.
The refraction is 𝐷 = 2 diopters. The diameter of the lens is 𝑎 = 5 cm. If the lens has
radii of curvature 𝑟

1
and 𝑟

2
, as well as thickness 𝑑, its refraction is given as

𝐷 = (𝑛 − 1) (
1

𝑟
1

+
1

𝑟
2

) + {
(𝑛 − 1)

2

𝑛

𝑑

𝑟
1
𝑟
2

}.

1. What radii of curvature must the surfaces on both sides have if they are to be ex­
actly equal?

2. How wide will the lens be at its thickest point?
3. Would treating the lens as a “thin lens” in this case have been reasonable?

a

d

h

r

r

Fig. 4.1. Bi-convex spherical lens with radius of curvature 𝑟.
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1. The radii of curvature are equal, so with 𝑟
1
= 𝑟

2
= 𝑟we have

𝐷 =
2 (𝑛 − 1)

𝑟
+
(𝑛 − 1)

𝑛

2
𝑑

𝑟2
. (4.1)

From the Pythagorean Theorem we have

(𝑟 − ℎ)
2
+ (

𝑎

2
)

2

= 𝑟
2

ℎ = 𝑟 − √𝑟2 − (
𝑎

2
)

2

𝑑 = 2 ℎ = 2 𝑟 − 2√𝑟2 − (
𝑎

2
)

2

. (4.2)

(4.2) in (4.1) gives

𝐷 =
2 (𝑛 − 1)

𝑟
+
(𝑛 − 1)

2

𝑛

[
[
[

[

2𝑟 − 2

√𝑟2 − (
𝑎

2
)
2

𝑟2

]
]
]

]

=
2 (𝑛 − 1)

𝑟
+ 2𝑟

(𝑛 − 1)
2

𝑛𝑟

[

[

1 − 𝑟
2 √1 − (

𝑎

2𝑟
)

2

]

]

.

The solution can be found by iteration: 𝐷 = 2 diopters gives 𝑟 = 0.4m.
2. For the thickest point 𝑑 of the lens we have (4.2)

𝑑 = 2 𝑟 − 2√𝑟2 − (
𝑎

2
)

2

.

Numerically,

𝑑 = 0.8m − 2√(0.4) m
2 − (

0.05m

2
)

2

= 0.001564 m = 1.564 mm.

3. With a thin lens, the thickness of the lens is negligible in comparison to the ra­
dius of curvature. In addition, the radius of curvature is sufficiently large that the
second term of the equation, which scales quadraticallywith the inverse of the ra­
dius of curvature, becomes insignificant. In this case, the equation for refraction
reduces to

𝐷 = (𝑛 − 1)
2

𝑟
𝐷

.

If we use this equation to calculate the radius of curvature, we have

𝑟
𝐷
=

𝐷

2 (𝑛 − 1)
= 0.25m = 0.6 r,

a discrepancy of 40%. The equation for a thin lens does not give a good approxi­
mation in this case.
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4.4 Optical Illusions

A fisherman stands on a riverbank. In the water, a fish is swimming away from him
at depth 𝑡 = 1m beneath the water’s surface. The fisherman thinks that the fish is
𝑙 = 2m long and assumes that its tail fin is 𝑠 = 8m away from him horizontally. The
fisherman’s line of sight is ℎ = 2m above the surface of the water. How big is the fish
in reality?
[index of refraction of water 𝑛

𝑊
=

4

3
]

h 

t 

δ  s δ 

ε  s ε

l’

ls

α

η

β

θ

s’ 

Fig. 4.2. Optical path at the water-air boundary layer. The shaded ellipses represent the fish at its
actual and apparent positions.

We calculate the angle as

tan 𝛽 =
ℎ + 𝑡

𝑙 + 𝑠
and therefore 𝛽 = arctan (

ℎ + 𝑡

𝑙 + 𝑠
) = arctan (

3m

10m
) = 16.7

∘

tan 𝛼 =
ℎ + 𝑡

𝑠
and therefore 𝛼 = arctan (

ℎ + 𝑡

𝑠
) = arctan (

3m

8m
) = 20.6

∘

and by Snell’s law
sin 𝛾

sin 𝛾󸀠
=

𝑛
𝑊

𝑛
𝐿

with 𝑛
𝑊
as the index of refraction of water and 𝑛

𝐿
as the index of refraction of air; 𝛾

is the angle of incidence and 𝛾
󸀠 is the angle of reflection relative to the perpendicular.

From this we have
sin (90

∘
− 𝛼)

sin 𝜂
=

4

3

and therefore
𝜂 = arcsin [

3 sin (90
∘
− 20.6

∘
)

4
] = 44.6

∘
.
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For the ray to the fisherman’s head, we have

sin (90
∘
− 𝛽)

sin 𝜃
=

4

3

and
𝜃 = arcsin [

3 sin (90
∘
− 16.7

∘
)

4
] = 45.9

∘

tan 𝜂 =
𝛿

𝑡
and tan 𝛼 =

ℎ

𝛿
𝑆

𝑠
󸀠
= 𝛿

𝑠
+ 𝛿 and 𝑠

󸀠
+ 𝑙

󸀠
= 𝜀

𝑠
+ 𝜀.

Additionally,

𝑠
󸀠
=

ℎ

tan 𝛼
+ 𝑡 tan 𝜂 = 6.32m and 𝑠

󸀠
+ 𝑙

󸀠
=

ℎ

tan 𝛽
+ 𝑡 tan 𝜃 = 7.70m.

And therefore, the true length is

𝑙
󸀠
= (𝑠

󸀠
+ 𝑙

󸀠
) − 𝑠

󸀠
= 7.7m − 6.32m = 1.38m.

4.5 Retina Implantation

The retina of a human eye can be compared to a square CCD sensor with edge length
measuring 𝑑CCD = 1 cm and with 5megapixelx of display.
1. What is the separation 𝑑

CCD
between the centers of the CCD cells in comparison

to the average separation 𝑑
𝑁
of the cones in the retina?

2. What are the minimum detectable angles of incidence 𝜃
CCD

and 𝑑
𝑁
if the retina,

or CCD cells, are 2 cm in front of the iris?
3. A vertical segment comprised bright and dark lines of equal width strikes the

retina.What is the minimumwidth𝐷 of these lines such that they can be resolved
by the retina and the CCD?

1. The edge length of the CCD is 𝑑CCD, and along an edge, there are √5 ⋅ 10
3 pixels

with sensory cell separation of 𝑑CCD =
1 cm

√5⋅10
3
= 4.5 μm. The average separation ̄𝑑

𝑁

between receptors in the retina is ̄𝑑
𝑁
= 6.6 μm. Therefore,

𝑑
CCD

𝑑
𝑁

=
4.5

6.6
= 0.68.

2. The angle of incidence for the CCD is 𝜃
CCD

=
4.4 μm

2 cm
= 220 μrad, and for the retina:

𝜃
𝑁
=

6.6 μm

2 cm
= 330 μrad.

3. For the width of the lines, 𝐷 ≥ 2 𝑑. This means that 𝐷
𝑁
for the retina must be at

least𝐷
𝑁
= 13.2 μm; for the CCD, it must be at least𝐷

CCD
= 8.8 μm.
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4.6 Threshold of Vision of the Human Eye

The absolute energy threshold 𝐸
𝑆
of the human eye (energy of an incident flash of light

that immediately leads to a sensation of sight) is, according tomeasurements of a light
wave with 𝜆 = 510 nm, 4.0 ⋅ 10

−17
J.

1. How many quanta of light are necessary to cause sensation of sight in this situa­
tion?

2. We can correct this number by considering the following reductions to it: reflec­
tion at the cornea 4%, scattering in the optical media of the eye 50%, absorption
in the rhodopsin 20%.

1. The energy of a photon of wavelength 𝜆 = 510 nm is

𝐸 = ℎ𝜈 =
ℎ𝑐

𝜆
=

6.626 ⋅ 10
−34

J s ⋅ 3 ⋅ 10
8
m/s

510 ⋅ 10−9m
= 3.898 ⋅ 10

−19
J.

The energy threshold, therefore, corresponds to

𝑁 =
𝐸

𝑆

𝐸
=

4.0 ⋅ 10
−17

J

3.898 ⋅ 10−19J
= 103

photons.
2. This seems like very few; however, it is only the number of photons that strike the

surface of the eye. After reflection at the cornea only 99 light quanta remain, and
due to absorption and scattering in the eye only 49 light quanta actually arrive at
the retina. Of these, 10 are absorbed by rhodopsin. Amazingly, these are sufficient
to allow the eye to sense the light!

4.7 Visual Angle and Resolution

Due to diffraction phenomena, the eye has a limited physical capacity for optical res­
olution. Two points of an object will only be perceived as separate from each other if
the visual angle does not fall below a minimum value. The visual angle can be made
greater if the object is brought closer to the eye. The ability to reduce the distance be­
tween the eye and the object is limited by the eye’s accommodation. In order to be
able to see clearly, a minimumdistance between the object and the eye must be main­
tained; this minimum distance can only be reduced with the assistance of a convex
lens.
1. Which cardinal point of the optical system of the eye must align with the image-­

side focal point of a thin convex lens so that the visual angle of the eye aided by
the lens is not dependent on the position of the object? The object has size 𝐺 and
is located within the simple focal distance 𝑓 of the lens.
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2. How close must the object be brought to the eye (to the opposing center point𝑀
of the optical system of the eye) if, with accommodation of∞, a sharp image will
be produced? The focal distance of the lens is 5 cm.

3. What is the angular magnification𝑉 =
tan 𝛼

󸀠

tan 𝛼
(angle magnification) with respect to

the conventional visual range of 250mm? 𝛼󸀠 is the visual angle of the aided eye,
and 𝛼 is the visual angle of the unaided eye.

4. Whatwould the value of the image scale𝑀 =
𝐺
󸀠

𝐺
be for the convex lens if the image

was at 𝑓

2
? Use the expression for thin lenses.

1. The object-side node 𝑀 of the optical system of the eye must align with the im­
age-side focal point of the thin convex lens. If 𝑔 ≤ 𝑓, then the visual angle 𝜎

󸀠 of
the aided eye does not depend on the position of the object (see Figure 4.3).

2. An eye at infinite accomodation sees a sharp image if the beams of light enter the
eye in parallel. This corresponds to 𝑏 = ∞, and from the lens equation we have

1

𝑓
=

1

𝑔
+
1

𝑏
.

This is the case when the object is located at the focal point: 𝑔 = 𝑓.𝑀 is located,
according to section (a), at the image-side focal point of the convex lens; as given
in the exercise, it is 5 cm away. According to Figure 4.3, the object can be brought
up to 2 ⋅ 𝑓 = 10 cm to the object-side node of the eye.

3. For the visual angle with the lens, we have

tan 𝛼
󸀠
=

𝐺

𝑓

f f

G1

B2

G2

B1=

σ’

∞

Fig. 4.3. Construction of the images of two objects of equal size 𝐺
1,2
. 𝐵

𝑖
is the image size of object 𝑖,

and 𝑓 are the focal distances of the lens (designated as the line with the double arrow). In the case
of object 1, located exactly at the focal point of the lens, the image is infinitely far away. 𝜎󸀠 is the
visual angle of the eye.



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 85
�

�

�

�

�

�

4.8 The Aphakic Eye | 85

and for the visual angle of the unaided eye,

tan 𝛼 =
𝐺

250mm
.

As such, the angular magnification is:

𝑉 =
tan 𝛼

󸀠

tan 𝛼
=

𝐺

𝑓

𝐺

250mm

=
250mm

50mm
= 5.

4. In order to calculate the image scale, we can use the lens equation (see part (2))
and the ray law

𝐺

𝐵
=

𝑔

𝑏
,

As 𝑔 =
𝑓

2
,

1

𝑏
=

1

𝑓
−

1

𝑓

2

= −
1

𝑓

and the image scale is

|𝑀| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐵

𝐺

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏

𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

1

𝑓

𝑓

2

= 2.

4.8 The Aphakic Eye

1. In order to calculate the refraction of the cornea and the lens, we will use values
for the indices of refraction and radii of curvature of the schematic eye according
to Gullstrand (see Figure 4.4).

2. Many maladies of the eye require the removal of the lens, after which the aphakic
eye remains. Does the image of an infinitely distant image appear on the retina,
or somewhere else (at a certain distance away from the retina)? Where does the
image of an object closer to the eye appear?

[index of refraction of air 𝑛
0
= 1; index of refraction for the cornea 𝑛

𝐾
= 1.376; index of

refraction for the vitreous humor 𝑛
𝑊

=1.336; index of refraction for the lens 𝑛
𝐿
= 1.414;

radius of curvature of the apex of the cornea 𝑟
1
= 7.7mm; radius of curvature of the

cornea 𝑟
2
= 6.8mm]

1. With the values given

𝑛
0
= 1

𝑛
𝐾
= 1.376

𝑛
𝑊

= 1.336

𝑟
1
= 7.7mm

𝑟
2
= 6.8mm
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0.50 5.6 7.2 24.4

7.7 6.8 10.0 -6.0

1.336 1.414 1.3361.376indices of refraction

radii of curvature [mm]

distance from apex 
of cornea [mm]

cornea lens retina

optical
axis

vitreous humor

Fig. 4.4. Gullstrand’s schematic eye.

we have, for refraction according to Gullstrand,

𝐷
𝐾
=

𝑛
𝐾

𝑓
𝐾

= −
𝑛
0

𝑔
+
𝑛
𝑊

𝑏

𝐷
𝐾
=

𝑛
𝐾
− 𝑛

0

𝑟
1

+
𝑛
𝑊

− 𝑛
𝐾

𝑟
2

𝐷
𝐾
=

1.3776 − 1

7.7mm
+
1.336 − 1.376

6.8 mm
= 0.04295 1/mm = 42.95 dpt.

n0 nwnk

r2

r1

Fig. 4.5.Model of the cornea. 𝑛
𝑖
are the respec­

tive indices of refraction; 𝑟
𝑖
are the radii of cur­

vature of the lens surfaces.

nwnk

r2

r1

nw

Fig. 4.6.Model of the lens. 𝑛
𝑖
are the respective

indices of refraction; 𝑟
𝑖
are the radii of curvature

of the lens surfaces.
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2. Wemust take into account that the radius of curvature 𝑟
2
must be counted as neg­

ative. The refraction of the lens is therefore

𝐷
𝐿
=

𝑛
𝐿

𝑓
𝐿

=
𝑛
𝐿
− 𝑛

𝑊

𝑟
1

+
𝑛
𝑊

− 𝑛
𝐿

𝑟
2

𝐷
𝐿
=

1.414 − 1.336

10mm
+
1.336 − 1.414

−6mm
= 0.0208 1/mm = 20.8 dpt.

In total, we have

𝐷 = 𝐷
𝐾
+ 𝐷

𝐿
= 42.95 dpt + 20.8 dpt = 63.75 dpt.

For an object infinitely far away (𝑔 = ∞),

𝑏 = 𝑓 = 𝑓
𝐾
=

𝑛
𝐾

𝐷
𝐾

=
1.376

42.95 dpt
= 32mm.

The image is 32mm − 24.4mm: 8mm behind the retina (if more fluid were there).
Closer objects would be resolved even further back.

4.9 Threshold of Hearing, and Thermal Motion in Comparison

We can compare the intensity of a soundwave at the threshold of hearing at𝑓 = 1 kHz

with the intensity of a sound wave propagating in the eardrum, at 𝑇 = 20
∘
C and the

same frequency. The sound wave at the threshold of hearing corresponds to a deflec­
tion amplitude 𝜒

0
= 0.11Å which transports an energy of 𝑘

𝐵
𝑇 per period. The surface

area of the eardrum is 𝐴 = 0.5 cm
2. The speed of sound is 𝑐 = 330 m/s, and the density

of the air is 𝜌 = 1.3 kg/m3. If the pain threshold is at 120 dB, how much higher is the in­
tensity in comparison to the threshold of hearing? By what factor do the deflection 𝜒

and pressure amplitude 𝛥𝑝 vary?
[Note: the energy density of the sound wave is𝑊 =

1

2
𝜌𝜔

2
𝜒
2]

Due to thermal effects, the sound wave at frequency 𝑓 has the intensity 𝐼 = 𝑃

𝐴
=

3𝑓𝑘
𝐵
𝑇

2𝐴
.

With 𝑓 = 1 kHz and the values provided for 𝐴 = 0.5 cm
2 and 𝑇 = 293 K the intensity is

𝐼 = 9.09 ⋅ 10
−14

W/m2.

The intensity of a 1 kHz sinusoidal sound wave at the threshold of hearing is

𝐼
0
= 𝑊𝑐 =

1

2
𝜌
𝐿
𝑐 (2𝜋𝑓𝜒

0
)
2
= 10

−12
W/m2.

The ratio to the threshold of hearing (𝐼/𝐼0)𝐻 becomes

(𝐼/𝐼0)𝐻 = 9.09 ⋅ 10
−2
.
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Therefore,

𝐼 ∝ 𝜒
2

and 𝜒 ∝ 𝑝

→ 𝐼 ∝ 𝑝
2

and 𝐼 ∝ Δ𝑝
2

𝐿 = 10 log (𝐼/𝐼0)

= 20 log (Δ𝑝/Δ𝑝
0)

= 20 log (𝜒/𝜒0) .

Therefore, we have

𝐼/𝐼
0
= 10

𝐿/10

Δ𝑝/Δ𝑝
0
= 𝜒/𝜒

0
= 10

𝐿/20
.

As 𝐿 has the value 𝐿 = 𝐿
𝑆

= 120 dB at the pain threshold, we have the following
relationships:

(𝐼/𝐼0)𝑆 = 10
𝐿𝑆/10

= 10
12

(𝜒/𝜒0)𝑆 = (Δ𝑝/Δ𝑝
0)𝑆 = 10

𝐿𝑆/20
= 10

6
.

4.10 Sound Propagation

A mountain guide observes an avalanche at a distance. He perceives two noises, one
after the other. One propagates through the air; the other, through the ground. Two
seconds pass between the sounds. How far away did the avalanche occur if the speeds
of sound in air and in the ground are 𝑐 = 330 𝑚/s and 𝑐

𝐺
= 4,000 𝑚/s respectively?

We have
𝑐
𝐺
=

𝑠

𝑡
and 𝑐 =

𝑠

𝑡 + Δ𝑡

with 𝑠 as the path of the sound, 𝑡 as the time between the avalanche and the arrival of
the first sound, andΔ𝑡 as the time between the first and second sounds. For 𝑠we have,
from the second equation,

𝑠 = 𝑐𝑡 + 𝑐Δ𝑡.

Introducing 𝑡 from the first equation, we have

𝑠 =
𝑐

𝑐
𝐺

𝑠 + 𝑐Δ𝑡 =
𝑐𝑐

𝐺

𝑐
𝐺
− 𝑐

Δ𝑡 =
330m/s ⋅ 4,000 m/s

(4,000 − 330) m/s
2 s = 719m.



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 89
�

�

�

�

�

�

4.11 Loudspeakers | 89

4.11 Loudspeakers

At full volume, a loudspeaker can produce sounds with frequencies from 30Hz to
18 kHz with steady intensity; the maximum deviation from the average value of the
sound level in this range is 3 dB. By what factor does the intensity change relative to
the average value at maximum deviation?

Average intensity 𝐼
1
gives average sound level 𝐿

𝐼
1
. For 𝐼

2
we have

𝐿
𝐼
2
= 𝐿

𝐼
1
+ 3 dB,

and
𝐿

𝐼
2
− 𝐿

𝐼
1
= 10 log

𝐼
2

𝐼
0

− 10 log
𝐼
1

𝐼
0

= 10 log
𝐼
2

𝐼
1

= 3 dB.

Therefore,
log

𝐼
2

𝐼
1

= 0.3,

and
𝐼
2

𝐼
1

= 10
0.3

≈ 2.

±3 dB corresponds to a doubling – that is, a halving of the intensity.

4.12 Threshold of Hearing

Calculate the maximum displacement of air molecules in a sound wave of frequency
1 kHz at the threshold of hearing.
[threshold f hearing at 1 kHz : 10

−12
W/m2]

With a sinusoidalwaveformof frequency𝑓wecanwrite thedisplacementof the sound
wave as

𝜒(𝑥, 𝑡) = 𝜒
0
sin(𝜔𝑡 − 𝑘𝑥),

with 𝜒
0
as the amplitude of the wave (and therefore as the maximum displacement),

and 𝜔 = 2𝜋𝑓. The velocity 𝑣(𝑥, 𝑡) of the particles can be written as a time-dependent
derivative:

𝑣(𝑥, 𝑡) =
𝜕

𝜕𝑡
𝜒(𝑥, 𝑡) = 𝜒

0
𝜔 cos(𝜔𝑡 − 𝑘𝑥).

The corresponding kinetic energy density is

𝑤
𝑘𝑖𝑛

=
1

2
𝜌𝑣

2
= 𝜌𝜒

2

0
𝜔

2
cos

2
(𝜔𝑡 − 𝑘𝑥),

with 𝜌 as the density of the medium. We assume that the average density does not
change significantly throughout the wave. At the threshold of hearing the amplitude
is so small that this is a very reasonable assumption. The average density of the ki­
netic energy is given by the average value of ⟨cos2⟩ =

1

2
. In addition, considering the
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elastic energy that delivers the same contribution on average, the total energy density
becomes

𝑤 = 𝜌𝜒
2

0
𝜔

2
.

The intensity of a wave is generally equal to the product of energy density and propa­
gation velocity:

𝐼 = 𝑤𝑐 = 𝑐𝜌𝜒
2

0
𝜔

2
.

Solving for 𝜒
0
, we have

𝜒
0
=

1

𝜔
√

2𝐼

𝜌
0
𝑐
=

1

2𝜋103s−1
√
2 ⋅ 10−12

1.3 343

Wm3s

m2 kgm
= 1.1 ⋅ 10

−11
m.

4.13 Sound Interference with Point Sources

At an open-air concert, two subwoofers are placed next to the stage, at a distance of
𝑑 = 10m from one another, to amplify the bass. Where should someone who dislikes
the bass stand?What about someonewho prefers loud bass? Determine an expression
that describes all maxima andminima of intensity in the audience (in Cartesian coor­
dinates). The preferred locations for both groups of the public are on certain arrays of
curves. What kind of curved form is appropriate?
[sound velocity in air 𝑐 = 330m/s; frequency of the bass 𝑓 = 68Hz]

For wavelength 𝜆 we have

𝜆 =
𝑐

𝑓
=

330 m/s

68Hz
= 4.85m.

The path difference 𝛥𝑙 between the sound waves determines whether they interfere
to produce a maximum or a minimum. If 𝛥𝑙 is a multiple of the sound wavelength, a
maximum is produced, and𝛥𝑙 = 𝑛𝜆 (with 𝑛 = 0, 1, 2, . . .). Minima occur at𝛥𝑙 = (𝑛+

1

2
)𝜆.

Those audience members that prefer loud bass should stand on the lines of the max­
ima, and the others should stand at the minima. As all the points of these arrays of
curves have the same difference in distance from two fixed points, we must be deal­
ing with hyperbolas. As proof, consider a triangle with vertices at both loudspeakers
(−

𝑑

2
, 0), ( 𝑑

2
, 0) and in the middle of the audience (𝑥, 𝑦). The two edges that do not run

along the stage have length 𝑙
1
from (−

𝑑

2
, 0) to (𝑥, 𝑦) and 𝑙

2
from (

𝑑

2
, 0) to (𝑥, 𝑦). There­

fore, for the amplitudes of the sound waves at (𝑥, 𝑦)we have

𝑙
1
= √(𝑑/2 + 𝑥)

2
+ 𝑦2 and 𝑙

2
= √(𝑑/2 − 𝑥)

2
+ 𝑦2.

The path-length difference is therefore

Δ𝑙 = √(𝑥 − 𝑑/2)
2
+ 𝑦2 − √(𝑥 + 𝑑/2)

2
+ 𝑦2.
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For the maxima,
Δ𝑙 =

2𝜋

𝑘
𝑛 = 𝜆𝑛.

This equation can be written in the normal form

𝑥
2

𝑎2
−
𝑦
2

𝑏2
= 1

of a hyperbola.

4.14 Echolocation

Echolocation is a form of sensory perception of certain animals, like bats. These an­
imals emit sound waves that are reflected by obstacles. The reflected signal is recog­
nized by the animal. The wave sent out by a bat for echolocation has a frequency of
50 kHz. What is its wavelength 𝜆, and how long does it take for the bat to receive a
signal reflected from an obstacle 20m away?
[bulk modulus of air 𝑘 = 1.41 ⋅ 10

5
Pa; density of air 𝜌 = 1.3 kg/m3]

For longitudinal waves, we have 𝑐 = √
𝑘

𝜌
for sound velocity. As such, 𝑐 in the air be­

comes

𝑐 = √
1.41 ⋅ 105 N/m2

1.3 kg/m3
= 329 m/s.

Because 𝜆 =
𝑐

𝑓
, we have

𝜆 =
329m/s

5 ⋅ 104 Hz
= 6.6mm.

The signal travels the distance 𝑠 from the bat to the obstacle twice. It requires

𝑇 =
2𝑠

𝑐
=

2 ⋅ 20m

329 m/s
= 0.12 s.

4.15 Impedance Matching

So that the soundwaves that enter the ear are not too attenuated by the time they reach
the inner ear, impedance matching occurs at the eardrum. The sound pressure at the
oval window is raised by a factor 𝛼 relative to that at the eardrum through the lever
action of the malleus and incus. Calculate the improvement in transmission through
this mechanism relative to the situation without impedance matching.
1. From the conservation of energy, expressed as 𝐼

𝑒
= 𝐼

𝑟
+ 𝐼

𝑡
, as well as the continu­

ity expression for the displacement, 𝜒
𝑒
+ 𝜒

𝑟
= 𝜒

𝑡
(see Figure 4.7) we can express

transmission as 𝑇 :=
𝐼
𝑡

𝐼
𝑒

=
4𝑍

1
𝑍
2

(𝑍
1
+𝑍

2
)
2
.
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Z1 Z2

Ie

Ir

It

Fig. 4.7. In the region of the incident (𝑒) and reflected (𝑟) wave, impedance is 𝑍
1
, and in the region of

the transmitted (𝑡) wave it is 𝑍
2
.

2. Show that the sound pressure that proceeds from the oval window is raised by
the factor 𝛼 :=

𝐹
1

𝐹
2

⋅
𝑙
1

𝑙
2

relative to the sound pressure at the eardrum. 𝐹
1
= 55mm

2 is
the surface area of the eardrum, which is connected to the handle of the malleus;
𝐹
2
= 2.8mm

2 is the surface area of the oval window, and 𝑙
1

𝑙
2

= 1.3 is the ratio of the
lever arms of the incus and the handle of the malleus.

3. Correct the formula from Part 1 to take into account the amplification factor 𝛼.
Note: the amplification factor changes the continuity expression for the displace­
ment to 𝜒

𝑒
+ 𝜒

𝑟
= 𝛼 ⋅ 𝜒

𝑡
.

4. What percent of the intensity of the incident sound would be transmitted with­
out impedance matching? By what percent does the transmission coefficient
𝑇 change through impedance matching? For wave impedance of the air, we
have 𝑍

1
= 414 kg/m2

s, and for that of the lymph fluid in the inner ear, we have
𝑍

2
= 10

5
kg/m2

s.

1. Continuity requirements for the intensity:

𝐼
𝑖
= 𝐼

𝑡
+ 𝐼

𝑟
.

With 𝑍 = 𝜌
0
𝑐 and

𝐼 =
1

2
𝜌
0
𝑣
2

0
𝑐 =

1

2
𝑍𝜔

2
𝜒
2

0

we have
1

2
𝑍

𝑖
𝜔

2
𝜒
2

𝑒
=

1

2
𝑍

𝑟
𝜔

2
𝜒
2

𝑟
+
1

2
𝑍

𝑡
𝜔

2
𝜒
2

𝑡
.

With 𝑍
𝑒
= 𝑍

𝑟
= 𝑍

1
and 𝑍

𝑡
= 𝑍

2
we obtain by rearranging

𝑍
1
(𝜒

2

𝑒
− 𝜒

2

𝑟
) = 𝑍

2
𝜒
2

𝑡
. (4.3)

Together with the continuity requirement for the displacements

𝜒
𝑒
+ 𝜒

𝑟
= 𝜒

𝑡



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 93
�

�

�

�

�

�

4.15 ImpedanceMatching | 93

we obtain

𝑍
1
(𝜒

2

𝑒
− 𝜒

2

𝑟
) = 𝑍

2
(𝜒

𝑒
+ 𝜒

𝑟
)
2

𝑍
1
(𝜒

𝑒
− 𝜒

𝑟
) (𝜒

𝑒
+ 𝜒

𝑟
) = 𝑍

2
(𝜒

𝑒
+ 𝜒

𝑟
)
2

𝑍
1
(𝜒

𝑒
− (𝜒

𝑡
− 𝜒

𝑒
)) = 𝑍

2
𝜒
𝑡

2𝑍
1
𝜒
𝑒
= (𝑍

1
+ 𝑍

2
)𝜒

𝑡

𝜒
𝑡
=

1

𝑍
1
+ 𝑍

2

⋅ 2𝑍
1
⋅ 𝜒

𝑖
.

For transmitted intensity, it follows that

𝐼
𝑡
=

1

2
𝑍

2
𝜔

2
𝜒
2

𝑡
=

1

2
𝑍

2
𝜔

2
4𝑍

2

1
𝜒
2

𝑒

(𝑍
1
+ 𝑍

2
)
2

=
1

2
𝑍

1
𝜔

2
𝜒
2

𝑒
⋅

4𝑍
1
𝑍

2

(𝑍
1
+ 𝑍

2
)
2
= 𝐼

𝑖
⋅

4 𝑍
1
𝑍

2

(𝑍
1
+ 𝑍

2
)
2
.

2. The force on the eardrum is
𝐹
1
= Δ𝑝

𝑒
⋅ 𝐴

1

and on the oval window in the middle ear

𝐹
2
= Δ𝑝

𝑖
⋅ 𝐴

2
,

where Δ𝑝
𝑒
and Δ𝑝

𝑖
refer to the corresponding pressure amplitudes. The auditory

ossicles transform the forces into torques. With lever arms 𝑙
1
and 𝑙

2
we have

𝐹
1
𝑙
1
= 𝐹

2
𝑙
2

Δ𝑝
𝑒
𝐴

1
𝑙
1
= Δ𝑝

𝑖
𝐴

2
𝑙
2
.

Solving for Δ𝑝
𝑖
we obtain the pressure at the oval window:

Δ𝑝
𝑖
= Δ𝑝

𝑒

𝐴
1

𝐴
2

𝑙
1

𝑙
2

= 𝛼 ⋅ Δ𝑝
𝑒
.

The amplifying factor 𝛼 by which the sound pressure is increased is

𝛼 =
55

2.8
⋅ 1.3 = 25.5.

3. The solution method is like that in (a), but this time, the amplifying factor 𝛼 is
considered for the displacement. Its continuity condition is

𝜒
𝑒
+ 𝜒

𝑟
= 𝛼 ⋅ 𝜒

𝑡
.

Substituting into (4.3) yields

𝑍
1
(𝜒

𝑒
− 𝜒

𝑟
) (𝜒

𝑒
+ 𝜒

𝑟
) = 𝑍

2

1

𝛼2
(𝜒

𝑒
+ 𝜒

𝑟
)
2

𝑍
1
(2𝜒

𝑒
− 𝛼 ⋅ 𝜒

𝑡
) = 𝑍

2

1

𝛼2
⋅ 𝛼𝜒

𝑡

2𝑍
1
𝜒
𝑒
= 𝜒

𝑡
{
𝑍

2

𝛼
+ 𝛼𝑍

1
}
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and therefore,
𝜒
𝑡
=

2𝑍
1
𝛼

{𝑍
2
+ 𝛼2𝑍

1
}
⋅ 𝜒

𝑒
.

Substituting again into the equation for transmitted intensity, we have

𝐼
𝑡
=

1

2
𝑍

2
𝜔

2
𝜒
2

𝑡
=

1

2
𝑍

2
𝜔

2
𝜒
2

𝑒

4𝑍
2

1
𝛼
2

(𝑍
2
+ 𝛼2𝑍

1
)
2

= 𝐼
𝑒

4𝑍
1
𝑍

2
⋅ 𝛼

2

(𝑍
2
+ 𝛼2𝑍

1
)
2
.

4. Without impedance matching, only

𝐼
𝑡

𝐼
𝑒

=
4 ⋅ 414 ⋅ 10

5

(414 + 105)2
= 0.016 = 1.6 %

of the intensity would be transmitted. Impedance matching increases this value
by

𝐼
𝑡

𝐼
𝑒

=
4 ⋅ 414 ⋅ 10

5
⋅ (25.5)

2

(414 ⋅ (25/5)2 + 105)2
= 0.79 = 79%.

In actuality, this value is between 40% and 60%.

4.16 Acoustic Pain Threshold

If a jet 30m away starts up, the sound level is 𝐿 = 140 dB SPL – above the pain thresh­
old. Is this pain the same that one would experience if one were to dive without com­
pensating for pressure (e.g., by swallowing)? To answer this question, calculate the
depthatwhich the incremental pressure in thewater corresponds to the effective value
of sound pressure of the jet at startup.

Sound level 𝐿 is a logarithmic measure of sound pressure relative to 𝑝
0
= 20 ⋅ 10

−6
Pa

𝐿 := 20 ⋅ log
10
(

Δ𝑝
eff

20 ⋅ 10−6 Pa
) .

The effective value of the sound pressure at sound level 140 dB is therefore

Δ𝑝
eff

= 𝑝
0
⋅ 10

𝐿

20 = 20 ⋅ 10
−6

Pa ⋅ 10
7
= 200 Pa.

At water depth ℎ we have pressure 𝑝
𝑤

= 𝜌𝑔ℎ. The pressure required is therefore
reached at a depth of

ℎ =
𝑝
𝑤

𝜌𝑔
=

Δ𝑝
eff

𝜌𝑔
=

200 Pa

103 kg/m3 ⋅ 9.81m/s2
= 20.4mm.

The sound pressure at the pain threshold corresponds to the pressure at water depth
2 cm. As we do not experience any pain in water at this depth, this is not the cause of
pain beyond the pain threshold.
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5 Electric Currents, Fields, and Potential

Bioelectric signals originate in potential differences between the interiors and exteri­
ors of biological cells. These differences arise due to differing ion concentrations. The
lipid bilayer of a cell is only a few nanometers thick, and is electrically insulating. As
such, capacitance is very high, typically on the order of magnitude of 1 μF

cm2
. The mem­

branes of muscle and nerve cells contain proteins that create important ion channels
between the tails and heads of the lipid bilayer. The permeability of these channels
to ions like K

+, Na+, Ca2+, and Cl
− can be controlled. In addition, there are other se­

lective channels for certain types of ions. Transport through these channels occurs
either due to electrostatic forces, or through diffusion due to concentration gradients.
There are also protein structures – known as ion pumps – that can pump ions against
the direction of passive transport, from the interior to the exterior or vice versa. En­
ergy must be consumed to do so, while passive transport occurs on its own and does
not require additional energy. There are also proteins that function as gatekeepers
and allow or prevent passive transport. The most import ion pumps are the Na

+
/K

+

pumps, which continuously transport potassium ions into the interior of cells and de­
liver sodium ions to the exterior. The concentration of potassium ionswithin the cell is
notably higher, while for sodium ions, the situation is reversed. Ultimately, all of these
processes give rise to the restingmembrane potential that characterizes the quiescent
state of a cell.Na+,K+, andCl

− are primarily responsible for the restingmembrane po­
tential; their concentrations can differ by a factor of 10 to 30. The potential difference
Δ𝑈 can be calculated using the Goldmann equation:

Δ𝑈 =
𝑘
𝐵
𝑇

𝑒
⋅ ln (

𝑃
K
𝑐
𝑒

K
+ 𝑃

Na
𝑐
𝑒

Na
+ 𝑃

Cl
𝑐
𝑖

Cl

𝑃
K
𝑐
𝑖

K
+ 𝑃

Na
𝑐
𝑖

Na
+ 𝑃

Cl
𝑐
𝑒

Cl

) .

The weighting factors 𝑃
𝑖
are designated motility or permeability. The superscript in­

dexes 𝑒 and 𝑖 signify whether the respective value corresponds to the exterior or the
interior of the cell. Because the motility of a potassium ion is roughly 30 times greater
than that of a sodium ion, the influence of the K+ ions is usually dominant.

The permeability of cells can be influenced by external factors, like electric fields
(conductive stimulation) or the presence of certain chemical messengers (non-con­
ductive stimulation). When the ion channels open, ion motility through the channels
rises to such an extent that the mechanisms of passive transport overwhelm the active
pumpingmechanisms. Consequentially, resting potential rises rapidly. Generally, the
Na

+ channels openmore quickly than theK+ channels, which can lead to a short-term
“overshoot” of themembranepotential into positive territory. After this rapid depolar­
ization of the cell, a state of equilibrium is restored again by the ion pumps.

The stimulation of a cell can be transmitted by nerve fibers. There are two types of
stimulus conduction: continuous and saltatory. If the nerve fibers donot have amyelin
sheath, current flow occurs continuously in the immediate environment. Myelinated



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 96
�

�

�

�

�

�

96 | 5 Electric Currents, Fields, and Potential

nerve fibers, on the other hand, are encased in an insulating lipid layer – the myelin
sheath. At intervals of a few millimeters, these are interrupted by nodes of Ranvier
(sheath gaps); the potential change jumps from one gap to the next, and is therefore
substantially faster than continuous stimulus conduction.

A cell specialized for stimulus conduction is called a nerve cell (neuron). These
cells can be separated into three segments: the dendrites, which serve as receptors,
the neurite (axon and nerve fibers), which function as effectors, and the perikaryon
(soma), which, as the cell body, forms the central region for cell metabolism. In the
central nervous system the axons are generally bound together with bundles of fibers;
in the peripheral nervous system, to nerve fibers and nerves. The nervous system is
tasked with transmitting information as a sequence of action potentials. In order to
do this, the information must be transmitted to other neurons. This transmission oc­
curs through structures that are generally known as synapses. For electric synapses,
stimulus transfer occurs through tunnel-like connections between the synapses; for
chemical synapses, stimuli are transferred with the assistance of neurotransmitters
across gaps. The sources of electromagnetic fields that arise along the axons can be
modeled as electric quadrupoles. The electric processes behind the synapses can be
described as electric dipoles. As signals from this kind of source fall off very quickly
as distance from the source increases, and as they are generally stochastically dis­
tributed, these signals can only be measured when they add up due to anatomic con­
ditions. If, for example, 105 nerve cells in one square millimeter of the cerebral cortex
fire simultaneously, electric potentials of only around 10 μV (which can be seen using
an EEG (electroencephalogram)), or magnetic flux densities of around 100 fT, arise at
the scalp. In comparison, the electric depolarization of the heart leads to a signals a
hundred times greater as measured by an EKG (electrocardiogram).

Because the four chambers of the heart (right and left atrium and ventricle) work
together in a coordinated manner, there is a nervous cardiac conduction system in
the heart in addition to the cardiac muscle cells (myocardium). The sinoatrial node
works largely autonomously, and is both the control center and the origin of impulses.
The release of an impulse can be influenced from the central nervous system through
the sympathetic and parasympathetic nervous systems. The impulse spreads from the
sinoatrial node to the neighboring cardiomyocytes of the atria, and after around 40

milliseconds, the impulse reaches the atrioventricular (AV) node in the center of the
heart. The AV node delivers the impulse through the bundle of His, which transmits
it along both of its branches to the Purkinje fibers. The impulse progresses relatively
quickly through these both ventricles. There, impulse transfer slows back down to
normal speed due to the absence of specialized cells.

Using an electrocardiogram (EKG) we can observe this transmission of the electri­
cal impulse. Electric potentials, weakened across the extracellular fluid, aremeasured
on the surface of the body. These potentials are roughly in the range of a millivolt (for
which there are standard derivations). The most recognizable EKG signals are found
when the lead electrodes are attached to the right forearm (−) and the left foot (+). A
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groundingelectrode is attached to the right foot in order to suppress external perturba­
tions. In addition to this normal EKG, a vectorcardiogram can also be produced. Each
cell stimulated functions as an electric dipole, and the vector sum of all cells stimu­
lated at a point in time yields the resulting electric dipole (also termed the integral
vector or cardiac vector). If multiple normal EKGs are combined, the position of this
cardiac vector canbe followed in time. The direction of the largest cardiac vector (theR
wave in the EKG) defines the electric axis of the heart. Generally, this correspondswith
the heart’s anatomical condition. As such, the condition of the heart when altered by
illness in a characteristic way can be determined.

5.1 Nerve Conduction in the Giant Axons of Squid

The mechanism of nerve stimulation and conduction has been investigated in the gi­
ant axons of squid. The diameter of these cylindrical giant axons is 𝑑 = 0.5mm. The
interior of an axon, the axoplasm, can be considered as a passive electrical conductor
and an ion reservoir. The concentrations of sodium and potassium ions in the axo­
plasmare 𝑐𝑖

Na
= 50mol/dm3 Na

+ and 𝑐
𝑖

K
= 400 mol/dm3 K

+, and in the extracellularmedium
𝑐
𝑒

Na
= 460mol/dm3 Na

+ and 𝑐
𝑒

K
= 10mol/dm3 K

+. Stimulation takes place principally at the
nerve membrane.

We can use the Goldman equation to find the solution:

Δ𝑈 =
𝑘𝑇

𝑒
ln (

𝑝
K
𝑐
𝑒

K
+ 𝑝

Na
𝑐
𝑒

Na

𝑝
K
𝑐
𝑖

K
+ 𝑝

Na
𝑐
𝑖

Na

) .

1. Measurements of isotope flow gave the permeability ratio (relative motility)
𝑃
K

𝑃
Na

= 15. What is the resting potential? (𝑇 = 300 K)
2. For a passive cable, voltage 𝑈

0
applied at one end drops off exponentially with

length, 𝑈 = 𝑈
0
𝑒
−𝑥/𝑙, with decay distance 𝑙 = √

𝑟 𝑅
𝑚

2 𝑅
𝑖

. What percent of an applied
voltage 𝑈

0
is still measurable at the end of a 𝑙 = 1 cm giant axon if it is treated as

a passive cable? The specific resistance of the axoplasm is 𝑅
𝑖
= 30Ωm, and the

specific resistance of the sheath is 𝑅
𝑚
= 700Ω cm

2.

1. Here, the Goldmann equation is

Δ𝑈 =
𝑘𝑇

𝑒
ln (

𝑝
K
𝑐
𝑒

K
+ 𝑝

Na
𝑐
𝑒

Na

𝑝
K
𝑐
𝑖

K
+ 𝑝

Na
𝑐
𝑖

Na

) =
𝑘𝑇

𝑒
ln (

𝑐
𝑒

Na
+

𝑝
K

𝑝
Na

𝑐
𝑒

K

𝑐
𝑖

Na
+

𝑝
K

𝑝
Na

𝑐
𝑖

K

)

=
1.38 ⋅ 10

−23
J/K ⋅ 300 K

1.6 ⋅ 10−19C
⋅ ln (

460mol/dm3 + 15 ⋅ 10 mol/dm3

50mol/dm3 + 15 ⋅ 400 mol/dm3
)

= −59.4mV.
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2. The decay distance is

𝑙 = √
𝑟𝑅

𝑚

2𝑅
𝑖

= √
0.25 ⋅ 10−3m ⋅ 700 ⋅ 10−4 Ωm2

2 ⋅ 30 Ωm
= 5.4 ⋅ 10

−4
m.

and therefore,

𝑈 (𝑥 = 0.01m)

𝑈
0

= 𝑒
−

0.01m

5.4⋅10
−4

m = 9 ⋅ 10
−9

= 9 ⋅ 10
−7
%.

5.2 Nerve Stimulation

Nerve stimulation changes the difference in potential across the neural pathway by
Δ𝑈 = 100mV, principally due to an influx ofNa+ ions into the nerve fibers. Howmany
Na

+ ions𝑁
Na

+ per unit area of the cell membrane are necessary to charge amembrane
with capacitance𝐶 = 1 μF/cm2 by the amount Δ𝑈?

The necessary charge is

𝑄
+
= 𝐶 ⋅ Δ𝑈 = 10

−6
F/cm2 ⋅ 0.1 V = 10

−7
C/cm2,

corresponding to

𝑁
Na

+ =
𝑄

+

𝑒
= 6.25 ⋅ 10

11
ions/cm2.

5.3 Electrical Model of a Cell Membrane

Consider a piece cut from the cell membrane. Boundary effects should be ignored. The
cell membrane has a specific conductivity of 𝜎

𝑀
= 10

−10
(Ω cm)

−1, dielectric constant
𝜀
𝑀

= 8, and thickness 𝑑
𝑀

= 7.5 nm. On both sides of the membrane are two boundary
layers with equal specific conductivity 𝜎

𝑃
= 𝜎

𝐼
= 10

−2
(Ω cm)

−1. The thickness of these
layers is 𝑑

𝑃
= 50 nm and 𝑑

𝐼
= 100 nm respectively, and their capacitance is negligible.

1. What is the simplest possible equivalent circuit diagram that captures these pas­
sive electrical characteristics?

2. What are the resistance and capacitance that occur in this equivalent circuit dia­
gram if the area of the membrane surface considered is 𝐴 = 1 μm

2?
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1. Equivalent electrical circuit diagram:

CM

RM

RP RI

Fig. 5.1. 𝑅
𝑃
is in series with (𝐶

𝑀
||𝑅

𝑀
) and 𝑅

𝐼
.

2. Generally,
𝑅 =

𝜌𝑙

𝐴
=

𝑙

𝜎𝐴
.

For the individual resistances, considering 1

Ω cm
= 10

2 1

Ωm
and A=1 μm

2
=10

−12
m

2,
we have:

𝑅
𝑃
=

𝑑
𝑃

𝐴𝜎
𝑃

=
50 ⋅ 10

−9
m

10−12 m2 ⋅ 1/Ωm

= 5 ⋅ 10
4
Ω

𝑅
𝐼
=

𝑑
𝐼

𝐴𝜎
𝐼

=
100 ⋅ 10

−9
m

10−12 m2 ⋅ 1/Ωm

= 1 ⋅ 10
5
Ω

𝑅
𝑀

=
𝑑
𝑀

𝐴𝜎
𝑀

=
7.5 ⋅ 10

−9
m

10−12 m2 ⋅ 10−8 1/Ωm

= 7.5 ⋅ 10
11
Ω.

For the capacitance, we use the assumption of a plate capacitor:

𝐶
𝑀

= 𝜀
0
𝜀
𝑟

𝐴

𝑑
𝑀

= 8.854 ⋅ 10
−12

F/m ⋅ 8 ⋅
10

−12
m

2

7.5 ⋅ 10−9 m
= 9.44 ⋅ 10

−15
F.

5.4 Measurement of Cell Membrane Potentials

At a nerve cell, the membrane potential 𝑈
𝑀
of a cell membrane in the quiescent state

shall be measured (see Diagram 5.2).
1. What is the relationship of the potential measured,𝑈

𝑥
, to themembrane potential

𝑈
𝑀
, if 𝑅

𝑖
= 20 kΩ, 𝑅

𝐸
= 50 kΩ, and 𝑅

𝑖,𝑉
= 1MΩ?

2. What is 𝑈
𝑥

𝑈
𝑀

if 𝑅
𝐸
≫ 𝑅

𝑖,𝑉
?

3. What is 𝑈
𝑀
in case (1) if the reading from the measurement instrument is 40mV?
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RE

Ri 

Ri,V

UM 

inner resistance of the
measurement device

membrane
voltage

electrolyte resistance

membrane resistance

site of injury
in the membrane

Fig. 5.2.Measurement of cell membrane potentials.

1. From the equivalent circuit diagramwe have

𝑅
𝑥
= 𝑅

𝐸
||𝑅

𝑖,𝑉
=

1

1

𝑅
𝐸

+
1

𝑅
𝑖,𝑉

=
𝑅

𝐸
𝑅

𝑖,𝑉

𝑅
𝐸
+ 𝑅

𝑖,𝑉

=
50 kΩ ⋅ 1,000 kΩ

50 kΩ + 1,000 kΩ
= 47.6 kΩ.

For the potentials,
𝑈

𝑥

𝑈
𝑀

=
𝑈

𝑥

𝑈
𝑖
+ 𝑈

𝑥

=
𝑅

𝑥
𝐼

(𝑅
𝑖
+ 𝑅

𝑥
)𝐼

=
47.6 kΩ

20 kΩ + 47.6 kΩ
= 0.704.

2. If 𝑅
𝐸
≫ 𝑅

𝑖,𝑉
, then 𝑅

𝑥
≈ 𝑅

𝑖,𝑉
and therefore we have

𝑈
𝑥

𝑈
𝑀

≈
𝑅

𝑖,𝑉

𝑅
𝑖
+ 𝑅

𝑖,𝑉

=
10

3
kΩ

20 kΩ + 103kΩ
= 0.98.

3. The membrane potential 𝑈
𝑀
with measured potential 𝑈

𝑥
= 40mV is

𝑈
𝑀

=
𝑈

𝑥

0.704
=

40mV

0.704
= 56.82mV.

5.5 EKG and Cardiac Dipole

In the diagram, the equilateral Einthoven triangle and the corresponding standard
leads I, II, and III for the EKG are portrayed. 𝑀⃗ is the dipole component of the cardiac
vector in the plane of the equilateral triangle that is formed by the lead points R, L,
and F. A planar coordinate system (𝑟, 𝜃) is assumed, with the origin at the center of the
triangle, where direction 𝜃 = 0 corresponds to the direction of the cardiac dipole (this
is shown in Figure 5.3). Under this configuration, we have for the dipole potential

𝜑
𝐷
=

|𝑀⃗| cos 𝜃

4𝜋𝜀
𝑟
𝜀
0
𝑟2

= 𝐾 cos 𝜃.
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L, ϕL

M

I

II III

R, ϕR

60°

60° 60°

F, ϕF

Ψ

Fig. 5.3. EKG and cardiac dipole. I is the lead between the right arm and the left arm, II is between
the right arm and the left leg, and III is between the left arm and the left leg. The direction 𝜃 = 0 is,
in this diagram, equal to that of the cardiac dipole 󳨀→

𝑀.

1. Calculate the three potentials 𝑈
𝐼
, 𝑈

𝐼𝐼
, 𝑈

𝐼𝐼𝐼
as a function of 𝛹 (see diagram).

2. How do potentials |𝑈
𝐼
| : |𝑈

𝐼𝐼
| behave, with the standard leads, for a normal posi­

tion with 𝛹 = 60
∘ and a left position with 𝛹 = −45

∘?

1. For the angle used in the solution, consider Figure 5.4.
From these, we have:

𝜑
𝐷
(𝜃) = 𝐾 cos 𝜃.

cos(𝜃
𝐿
) = cos(360

∘
− 𝛹 − 𝛼) = cos(−𝛹 − 𝛼) = cos(𝛹 + 𝛼)

2𝛼 + 𝛽 = 180
∘
; 𝛽/2 = 60

∘
; ⇒ 𝛼 = 30

∘

𝜃
𝑅
= 360

∘
− 𝛹 − (𝛼 + 𝛽) = 360

∘
− 𝛹 − 150

∘
.

I

II III

R L

F

60°

60° 60°

α

β

β/2

60°/2
I L

I

II III

R L

F

θL
θR

θF

Ψ Ψ

Fig. 5.4. On the right, the angles 𝛼 and 𝛽 used in the solution are indicated; on the left are the an­
gles used for the calculation of the dipole potentials 𝜃

𝐹
, 𝜃

𝑅
, and 𝜃

𝐿
.
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For potential 𝑈
𝐼
:

𝑈
𝐼
= 𝜑

𝐿
− 𝜑

𝑅

𝑈
𝐼
= 𝐾 cos 𝜃

𝐿
− 𝐾 cos 𝜃

𝑅

𝑈
𝐼
= 𝐾 cos(𝛹 + 30

∘
) − 𝐾 cos(𝛹 + 150

∘
)

𝑈
𝐼
= 𝐾 {cos𝛹 cos 30

∘
− sin𝛹 sin 30

∘
− cos𝛹 cos 150

∘
+ sin 𝛹 sin 150

∘
}

𝑈
𝐼
= 𝐾{

√3

2
cos 𝛹 −

1

2
sin𝛹 − (−

√3

2
) cos 𝛹 +

1

2
sin 𝛹}

𝑈
𝐼
= 𝐾√3 cos𝛹.

Analogously, we have

𝑈
𝐼𝐼
= 𝐾 {cos(𝛹 + 150

∘
) − cos(𝛹 + 270

∘
)}

𝑈
𝐼𝐼
= −𝐾{

√3

2
cos𝛹 +

3

2
sin𝛹}

and

𝑈
𝐼𝐼𝐼

= 𝐾 {cos(𝛹 + 270
∘
) − cos(𝛹 + 30

∘
)}

𝑈
𝐼𝐼𝐼

= 𝐾{
3

2
sin 𝛹 −

√3

2
cos𝛹} .

The sum of all three parts is therefore

𝑈
𝐼
+ 𝑈

𝐼𝐼
+ 𝑈

𝐼𝐼𝐼
= 𝐾{𝐾√3 cos 𝛹 −

√3

2
cos𝛹 −

3

2
sin𝛹 +

3

2
sin𝛹 −

√3

2
cos 𝛹}

= 0.

2. From the above, we have

|𝑈
𝐼
|

|𝑈
𝐼𝐼
|
=

|𝐾√3 cos𝛹|

| − 𝐾 (
√3

2
cos 𝛹 +

3

2
sin 𝛹) |

.

Normal position
|𝑈

𝐼
|

|𝑈
𝐼𝐼
|
=

√3 cos 60
∘

√3

2
cos 60∘ +

3

2
sin 60∘

=
1

2
.

Left position

|𝑈
𝐼
|

|𝑈
𝐼𝐼
|
=

√3 cos (−45
∘
)

√3

2
cos (−45∘) +

3

2
sin (−45∘)

=
2√3

|√3 ⋅ −3|
= 2.73.

Cabrera circle: the electrical cardiac axes correspond to the anatomical cardiac
axes; therefore, the condition of the heart can be determined by using a vector­
cardiogram. Certain illnesses are connected to atypical heart conditions.
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5.6 Electric Shock

If more than 100mA pass through a person’s chest, cardiac death is the most likely
result.
1. Estimate the resistance of the human body from hand to hand by calculating the

conductivity of a “physiological solution” of 9 g NaCl in a liter of water. (ion motil­
ity in an aqueous solution at 18∘C: 𝜇+

(Na) = 4.6⋅10
−8

m
2

/Vs; 𝜇−
(Cl) = 6.85⋅10

−8
m

2

/V𝑠.)
The distance fromhand to hand is 𝑙 = 1.5 m, and the cross section at the narrowest
point is 𝐴 = 10 cm

2.
2. What potentials can become dangerous for a person?
3. Why are people often advised to keep one hand in their pocket (or on their back)

when working on open electric devices?

1. The conductivity 𝜎 is the relationship of current density 𝑗 and electric field
strength 𝐸. The current density is the product of the volume charge density 𝜌

and the average velocity 𝑣̄ of the charge carrier:

𝜎 =
𝑗

𝐸
=

𝜌𝑣̄

𝐸
.

The average velocity, in turn, is the product of the total ion motility 𝜇
tot

and the
field strength. The total ion motility is the sum over the contributions of the in­
dividual ions; this sum is itself dependent on charge 𝑍, particle density 𝑛, and
motility 𝜇:

𝜎 =
𝜌 ⋅ 𝜇

tot
𝐸

𝐸
= 𝜌𝜇

tot
= (𝑍

+
𝑛
+
𝜇
+
+ 𝑍

−
𝑛
−
𝜇
−
) .

When NaCl dissolves in water, the quantity and charge of both ions are numeri­
cally equal in the solution:

𝑛
+
= 𝑛

−
=: 𝑛 ; 𝑍

+
= 𝑍

−
=: 𝑒.

Therefore, we have conductivity

𝜎 = 𝑛𝑒 (𝜇
+
+ 𝜇

−
)

In order to determine the number of charge carriers from the givenmass𝑚 and the
volumeof the solution𝑉, wewill use the relativemolarmasses𝑚

mol
of sodiumand

chlorine, and calculate, using the Avogadro constant𝑁
𝐴
:

𝑚 = 𝑁
mol

⋅ 𝑚
mol

= 𝑁
mol

⋅ (𝑚
mol

(Na) + 𝑚
mol

(Cl))

𝑁
mol

(NaCl) =
9 g

22.990 g/mol + 35.453 g/mol

= 0.154mol

𝑛 =
𝑁

𝑉
=

𝑁
𝐴
𝑁

mol

𝑉
=

6.022 ⋅ 10
23

1/mol ⋅ 0.154mol

10−3m3
= 9.27 ⋅ 10

25
m

−3

𝜎 = 9.27 ⋅ 10
25
m

−3
⋅ 1.6 ⋅ 10

−19
C ⋅ (4.6 + 6.85) ⋅ 10

−8
m

2

/Vs = 1.698 1/Ωm.
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Therefore, resistance is

𝑅 =
𝜌𝑙

𝐴
=

𝑙

𝜎𝐴
=

1.5m

1.698 1/Ωm ⋅ 10−3m2
= 883Ω.

2. When one’s hands are wet, contact resistance can be ignored. The potentials that
are dangerous for people are, then, relatively small:

𝑈
crit

= 𝑅𝐼
crit

= 883Ω ⋅ 0.1 A = 88.3 V.

3. If one is working on an open electrical device with both hands, current can pass
through the heart if an electric shock occurs. That can lead to dangerous heart
flutters. If one only touches the device with one hand, the danger is lessened.
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Biothermics deals with the thermodynamic processes of living organisms in interac­
tionwith their environments. A healthy person generates a nearly constant amount of
heat over time, whichmust be dissipated so that body temperature remains constant.
For a healthy person, the normal internal body temperature is 𝑇

𝑖
= 37.2

∘
Cwith varia­

tion Δ𝑇
𝑖
within small bounds (Δ𝑇

𝑖
= ±0.5

∘
C). Inflammation in the body can cause el­

evated temperatures. The upper bound of survivable temperature is 42.8 ∘
C, as at that

point, proteins denature. The lower bound is 27 ∘
C. The body attempts to maintain the

desired core temperature as long as possible (for example, by losing heat in the case
of a fever or physical exertion through increased blood circulation and sweating; in
the case of hypothermia, by retaining heat through reduced circulation in the skin).
Under normal conditions, the temperature of the surrounding environment𝑇

𝑎
is lower

than the internal temperature of the body 𝑇
𝑖
. As such, there is a natural flow of heat

out of the body’s core into the external environment. Additional sources of heat can
also develop in the body through radiation or laser therapy. The heat created by these
sources over time must be dissipated, too. The transfer mechanisms available to do
so are thermal conduction and convection. Both heat transport phenomena, conduc­
tion and convection, are dependent on physical matter. While in thermal conduction
a molecular process occurs in which the exterior of the matter remains at rest, con­
vection is a macroscopic process in which the movement of the matter itself does the
work of heat transfer.

In thermal conduction, the quantity of heat 𝑑𝑄 that is transferred over time 𝑑𝑡

through surface 𝐴 is designated heat flux density ̇𝑞 =
𝑑𝑄

𝐴𝑑𝑡
. This term can be related

to the temperature gradient ∇⃗𝑇 using the thermal conduction coefficient 𝜆, yielding
̇𝑞 = −𝜆∇⃗𝑇 (Fourier’s approach). This leads to the general thermal conduction equation

𝜕𝑇

𝜕𝑡
=

𝜆

𝜌𝑐
𝑊

∇
2
𝑇.

Here, 𝜌 is the density of the thermoconductive body tissue, and 𝑐
𝑊
is its specific heat.

In the general case of the body under stationary conditions, the thermal conduction
equation can be solved as a boundary value problem. Considering 𝑛 layers of tissue
from the center of the body to the skin, with thermal conduction coefficient 𝜆

𝑗
, layer

density 𝛿
𝑗
, and skin temperature 𝑇

𝐻
, we find for heat flux density ̇𝑞 the relationship

̇𝑞 =
𝑇
𝑖
− 𝑇

𝐻

∑

𝑛

𝛿
𝑗

𝜆
𝑗

.

Heat convection occurs only in moving fluids; in organisms, these are primarily blood
and air. The individual particles of fluid transport not onlymass, but also the enthalpy
that they contain. At phase boundary layers, like at the surface of the skin, both trans­
fer mechanisms – conduction and convection – occur. This is termed heat transfer.
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This process is very complex, and is described as 𝑞̇ = 𝛼Δ𝑇withheat transfer coefficient
𝛼 and temperature difference Δ𝑇 = 𝑇

𝐻
− 𝑇

𝑎
. The entire heat transfer phenomenon is

captured in the heat transfer coefficient𝛼. It is not a pure quantity like𝜆, but a function
of the material characteristics of the fluid, the geometry of the phase boundary layer,
and the fluid dynamics and thermal relationships of the system. Using it, for example,
the sensationof temperature experiencedby the skin (termed sensible heat) canbede­
termined from the value of 𝛼. In a subzero temperature environment, everyone feels
colder when the wind is blowing than when it is not. Due to the large number of vari­
ables that determine𝛼, it iswise touseadimensionless characterization to address the
problemaccording to the laws of analogy. Under these conditions there arises a depen­
dency in the form𝑁𝑢 = 𝑓 (𝑅𝑒, 𝑃𝑟, 𝐺𝑟)with Nusselt number𝑁𝑢 =

𝛼𝑙

𝜆
, Reynold number

𝑅𝑒 =
𝑤𝑙𝜌

𝜂
, Prandtl number 𝑃𝑟 =

𝑐
𝑊
𝜂

𝜆
, and Grashof number 𝐺𝑟 =

𝑔𝛽𝜌
2
𝑑
3
Δ𝑇

𝜂
2

. The quantity
𝑙 is the characteristic geometric length; 𝜆 is the thermal conductivity, 𝜌 the density, 𝜂
the dynamic viscosity, 𝑐

𝑊
the specific heat, and 𝛽 the coefficient of volume expansion;

𝜆, 𝜌, 𝜂, 𝑐
𝑊
, and 𝛽 are all related to the fluid and represent its material characteristics.

The flow velocity𝑤describes the condition of the flow, and the temperature difference
Δ𝑇 = 𝑇

𝐻
− 𝑇

𝑎
describes the thermal environment. In the literature there are a range

of criteria-dependent equations for this function that are applicable in many different
circumstances. In addition to these mechanisms, heat transfer can also occur through
thermal radiation. This radiation requires no transmission medium, and follows the
Stefan-Bolzmann Law ̇𝑞 = 𝐶𝑇

4 with radiation constant𝐶 and absolute temperature of
the radiating surface 𝑇. The body’s own thermal radiation does not play a significant
roll in dissipating heat from its core. However, the thermal radiation that originates
with sun – especially infrared radiation – is quite important. It plays a crucial role in
determining the temperature of the surroundings, upon which the magnitude of heat
loss is dependent.

6.1 Skiwear

To protect himself from the cold, a skier wears a 𝑠 = 4 cm-thick down parka. The
parka has an inner and outer surface area of 𝐴

𝐷
= 2m

2; the surface temperature is
𝑇
𝐷
= −15

∘
C. In this case, what is the heat flow𝛷? How does𝛷 change if the parka gets

so wet in freezing rain that the down lining shrinks to 1/4 of its original width, and the
thermal conductivity of the down rises 20 − fold? What is the skin temperature 𝑇

𝑆
in

both cases, if internal body temperature remains constant at 𝑇
𝑖
= 37.4

∘
C?

[thermal conductivity coefficients: down feathers 𝜆
𝐷

= 0.025 W/Km; human tissue
and skin 𝜆

𝑆
= 0.2W/Km; temperature boundary layer thickness in the skin and tissue

𝑑 = 4.5 cm (estimated)]
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Fig. 6.1. Temperature profile of the skin and clothing.

We assume that the skin and clothing form two layers without any space between
them, as shown in Figure 6.1. In the steady state, we have
– heat flow in the body

𝛷
𝐵
=

𝜆
𝑆
𝐴

𝑆

𝑑
(𝑇

𝑖
− 𝑇

𝑆
) (6.1)

– heat flow in the down parka

𝛷
𝐷
=

𝜆
𝐷
𝐴

𝐷

𝑠
(𝑇

𝑆
− 𝑇

𝐷
) . (6.2)

In each layer, heat flow is the same

𝛷
𝐵
= 𝛷

𝐷
= 𝛷,

so that with (6.1) and (6.2), we have two equations that we can use to determine the
desired quantities 𝛷 and 𝑇

𝑆
. We then obtain

𝛷 =
𝑇
𝑖
− 𝑇

𝐷

𝑑

𝜆
𝑆
𝐴
𝑆

+
𝑠

𝜆
𝐷
𝐴
𝐷

and 𝑇
𝑆
= 𝑇

𝑖
−

𝑇
𝑖
− 𝑇

𝐷

1 +
𝑠

𝑑

𝜆
𝑆
𝐴
𝑆

𝜆
𝐷
𝐴
𝐷

.

Evaluating numerically, we get
– in dry conditions

𝛷
𝑡
=

37.4 − (−15)

0.045

0.2⋅2
+

0.04

0.025⋅2

W = 57W

𝑇
𝑆
𝑡
= (37.4 − 6.5)

∘
C = 30.9

∘
C.

– in freezing rain

𝛷
𝑛
= 428W

𝑇
𝑆
𝑛
= −10.7

∘
C.
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Due to its altered thermal conductivity, 7.5 times greater than in dry conditions, the
parka’s insulating effect becomes correspondingly weaker. In the rain, skin tempera­
ture is critical – at −10.7 ∘

C the skin is prone to frostbite. In addition, after a period of
time, the body will no longer be able to maintain its 37.4 ∘

C core temperature. Fatigue
and exhaustion will result.

6.2 Heat Loss

The human body is continually losing heat through thermal conduction, as the tem­
perature of the body is generally higher than the temperature of its surroundings.
1. Determine the heat flow from an unclothed person under the following assump­

tions: let the surface area of the body be𝐴 = 1.60m
2; skin temperature 𝑇

𝑆
= 30

∘
C;

inner body temperature 𝑇
𝑖
= 37.4

∘
C; the tissues that border the skin and in which

there is a temperature gradient shall be 𝛿 = 4.5 cm thick; let the thermal conduc­
tivity of human tissue be 𝜆

𝑆
= 0.2W/m⋅K.

2. During physical exertion, a higher rate of heat dissipation is necessary thanwhen
resting; this is because as performance increases, so does heat generation within
the body. Measurements of an athlete showed that after a workout, 250Wmust be
dissipated from the body. How does the body react to this situation?

1. The general heat transfer equation

𝜕𝑇

𝜕𝑡
= 𝑎 ∇

2
𝑇

reduces, in this stationary, one-dimensional situation, to

0 =
𝑑
2
𝑇

𝑑𝑥2

with 𝑥 in the direction of the heat flow 𝛷. Integrating, we obtain

𝑑𝑇 = 𝐶
1

und 𝑇 = 𝐶
1
𝑥 + 𝐶

2
.

Considering the boundary conditions 𝑇 = 𝑇
𝑖
for 𝑥 = 0 and 𝑇 = 𝑇

𝑆
for 𝑥 = 𝛿, we

have the following conditional equations for constants 𝐶
1
and 𝐶

2
:

𝑇
𝑖
= 𝐶

2
and 𝑇

𝑆
= 𝐶

1
𝛿 + 𝑇

𝑖
,

which lead to𝐶
1
=

𝑇
𝑆
−𝑇

𝑖

𝛿
. Using this, we describe the temperature distribution𝑇(𝑥)

as
𝑇(𝑥) =

𝑇
𝑆
− 𝑇

𝑖

𝛿
𝑥 + 𝑇

𝑖
.

Fourier gives heat flow as
𝛷 = −𝜆

𝑆
𝐴
𝑑𝑇

𝑑𝑥
.
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Substituting the temperature distribution, we have

𝛷 =
𝜆
𝑆
𝐴

𝛿
(𝑇

𝑖
− 𝑇

𝑆
) .

Using 𝜆
𝑆
= 0.2W/m⋅K; 𝐴 = 1.6m

2; 𝛿 = 0.045m; 𝑇
𝑖
= 37.4

∘
C and 𝑇

𝑆
= 30

∘
C, we have

𝛷 =
1.6m

2
0.2W/m⋅K

0.045m
(7.4 K) = 52.62W.

2. During physical exertion, the heat dissipation across the skin that was calculated
in Exercise 6.1 is not enough to cool the body. The body reacts by sweating (loss
of heat through the evaporation of sweat), and stronger breathing (utilization of
additional surface area in the lungs). If that is not sufficient, the body must be
cooled through additionalmeans so that body temperature does not rise too high.
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Part II: The Physics of Diagnostics and Therapy
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7 X-Ray Diagnostics and Computer Tomography

Shortly after the discovery of X-rays byWilhelm ConradRöntgen onNovember 8, 1895,
their significance to medical diagnostics was recognized. Using these diagnostic tech­
niques, the part of the body under investigation is irradiated with X-rays; the attenu­
ated radiation is then detected behind the body. As this attenuation is determined by
the electron density in living beings, it is influenced principally by heavy atoms. Due
to this effect, for example, bones are markedly different from the soft tissue that sur­
rounds them. This tissue, in turn, canbe further investigated through the introduction
of contrast agents (as in, for example, coronary angiography). The first digital system
of projection radiography was digital subtraction angiography (DSA), with which a
clean image of the network of vessels can be obtained. In computer tomography (CT),
many different projection X-ray recordings can be taken by rotating the source of the
X-rays and the detector around the object under investigation. From these readings, a
three-dimensional image that represents electron density is calculated.

An X-ray tube is comprised of a high-vacuum tube in which a heatable cath­
ode and an anode are located. Between the cathode and the anode, a voltage 𝑈 of
10–150 kV is usually applied, and a current of 1−2,000mA. Due to the thermoelectric
effect, electrons flow out from the cathode. These electrons are accelerated through
thehigh voltage.When the beamof electrons strikes the anode, X-rays are created. The
majority of these incident electrons transfers their energy through interaction with
the electron shells of the anode material, which heats up as a result. A small portion
of the electrons is slowed down in the field of the atomic nuclei of the anodematerial.
The greatest possible frequency of this bremsstrahlung is achieved if the entire kinetic
energy of the electrons 𝐸

kin
= 𝑒𝑈 is completely converted into the energy of a photon:

𝑓
max

=
𝐸
Photon

ℎ

!

=
𝐸
kin

ℎ
=

𝑒𝑈

ℎ
. The bremsstrahlung spectrum of an X-ray tube is continu­

ous up to this boundary frequency. If an atom is ionized by an incident electron, the
gap that occurs can be filled by energetically higher-positioned electrons. This is the
origin of the characteristic radiation through the transition of outer-shell electrons to
vacant spaces. The energy released through this process is radiated away in the form
of X-rays with discrete energy, and is known as characteristic radiation.

To investigate human tissue, not all portions of the X-ray spectrum are appropri­
ate. The long-wave portion is immediately absorbed in the first layer of tissue. This
contributes to radiation damage, but not to the image in the detector. As such, filers
are employed to absorb this “weak” X-ray radiation.

The classical method of detecting X-rays is the use of X-ray films. These are com­
prised of a carrier foil with emulsion layers that contain silver bromide crystals. As
X-ray quanta strike these layers, the bromine ions are oxidized, and electrons are lib­
erated. These electrons are captured at seeds, andneighboring silver ions are reduced.
These silver seeds are developed and fixed. The advantage of X-ray films is their ex­
cellent spatial resolution; their disadvantage is the relatively high dose of radiation
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required. In a film-foil system, therefore, the emulsion is surrounded by an amplify­
ing foil with a layer of luminescent material. The luminescent light that occurs in this
layer illuminates the film. The advantage of this method is a dose amplification by a
factor of 10 to 20; concurrently, though, the sharpness of the image is somewhat re­
duced. Additional options include the introduction of imaging plates, selenium films,
or solid-state detectors (scintillators).

The absorption of an X-ray in a thin object can be described through microscopic
absorbers; for each of these, a designated surface 𝜎, the cross section, is completely
covered by the radiation. Integration over many such thin layers yields the Lam­
bert-Beer law, which describes the entire attenuation of the intensity 𝐼 of the X-ray
through an object with thickness 𝑑:

𝐼 = 𝐼
0
𝑒
−𝜇𝑑

.

In this equation, 𝜇 is the (linear) attenuation coefficient. This is the inverse of the aver­
age penetration depth 𝑥̄ = 1/𝜇. As the interaction of X-rays with the tissue is affected
by electron density, the attenuation coefficient is, in first approximation, proportional
to the density 𝜌 of the tissue:

𝜇 = 𝑛𝜎 =
𝑁

𝐴
𝜌

𝑚
mol

𝜎

(𝑁
𝐴
: Avogadro constant,𝑚

mol
:molarmass of thematerial). Frequently, themass atten­

uation coefficient 𝜇/𝜌 is used when discussing the attenuation of X-rays. The energy
deposited per unit mass by the ionizing radiation is designated as the dose𝐷.

Image quality is the contribution of the imaging system to the quality of an X-ray
image. It can be described physically by the image sharpness, contrast, noise, and by
the artifacts that can occur.

The sharpness of an image is limited by several effects: geometric diffuseness that
results from thefinite limits ofX-ray focus, image converter blurrinessdue to scattering
effects, blurriness due to movement, and absorption blurriness, as radiation attenu­
ation does not vary in discrete steps. Spatial resolution can refined through the use
of a modulation transfer function (MTF). Very generally, a linear transfer system may
be characterized by the impulse response ℎ(𝑥, 𝑦) of the system. Its two-dimensional
Fourier transform is called the (complex) transfer function𝐻(𝑘

𝑥
, 𝑘

𝑦
). The MTF is the

value of the normalized transfer function:

MTF =

󵄨󵄨󵄨󵄨󵄨
𝐻(𝑘

𝑥
, 𝑘

𝑦
)
󵄨󵄨󵄨󵄨󵄨

|𝐻(0, 0)|
.

If this (measured) MTF is presented graphically, the resolution capacity is the inter­
cept with a straight line that represents just-perceivable contrast. In practice, it is very
important that the entire MTF of a system is divisible into the individual MTFs of the
parts of the system. In this manner, complicated systems like X-ray image enhancers
can be analyzed more easily.
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In the interaction of X-rays with tissue, the radiation is not just attenuated; in ad­
dition to useful radiation, diffuse scattered radiation is also generated, primarily due
to Compton scattering (at the energies employed in X-ray diagnostics). The scattered
radiation does not contribute to the formation of an image, and reduces the contrast
of the image. If 𝐷

1
and 𝐷

2
are two neighboring dose values in a measured dosage

profile, the contrast is given as 𝐾 =
|𝐷1

−𝐷
2|

𝐷
1
+𝐷

2

. Using the useful radiation (dose 𝐷
𝑁
)

and the scattered radiation (dose 𝐷
𝑆
) , the total radiation contrast can be calculated:

𝐾
𝐺
=

1

1+𝛼
⋅ 𝐾

𝑁
. In this expression, 𝛼 :=

2𝐷
𝑆

𝐷
1,𝑁

+𝐷
2,𝑁

in the region of the thorax typically
has the value 𝛼(thorax) ≈ 2, and in the abdomen, around 𝛼(abdomen) ≈ 7. In order to
reduce scattered radiation, screens are inserted that are comprised of alternating re­
gions of interspacing material (which are transparent to X-rays) and lead slats (which
absorb X-rays). The scattered radiation screen is characterized by geometric quanti­
ties, like the height and thickness of the lead slats and of the interspacingmaterial, as
well as the number of lead slats per millimeter. The most important physical quantity
is selectivity 𝑆 :=

𝑇
𝑁

𝑇
𝑆

, which shows the relationship between the transparency to use­
ful radiation 𝑇

𝑁
:= 𝐷

𝑁,in
/𝐷

𝑁,out
and to scattered radiation 𝑇

𝑆
:= 𝐷

𝑆,in
/𝐷

𝑆,out
, and is,

therefore, a measurement of the quality of the screen. The selectivity can have values
in the range from 5 to 15 according to the radiation energy employed. Through the use
of the radiation screen, the parameter 𝛼 can be reduced by 1/𝑆, and total radiation
contrast can be elevated.

Image noise has a number of causes, but the greatest contribution comes from
quantumnoise. It results from the statistical nature of X-ray radiation. The probability
distribution to measure 𝑥 quanta is given as a Poisson distribution 𝑝(𝑥) =

𝜇
𝑥
𝑒
−𝜇

𝑥!
. As

such, with even irradiation, the number 𝑥 of photons striking the detector fluctuates
around the average value 𝜇, with variance 𝜎2

= 𝜇. As quantum noise is characteristic
of nature, it cannot be removed by any X-ray image intensifier, no matter how good.
Therefore, specification by what factor the noise is made worse by quantum noise is
important to judge the quality of an image-producing system. The detective quantum
efficiency (DQE) is defined as the ratio of the square of the signal-noise ratio (SNR)
when exiting relative to that when entering, and is consequently always less than 1.
For values in a Poisson distribution, SNR =

𝜇

√𝜇
= √𝜇, and therefore,

DQE :=
SNR

2

out

SNR
2

in

=
𝜇
out

𝜇
in

.

Just like MTF, the DQE of an entire system is the product of its component systems.
Computer tomography (CT) employs the same physical principle as projection

X-ray. However, multiple individual projection images are taken, and a three-dimen­
sional image of electron density is calculated by using a computer and rear projec­
tion. Iterative reconstruction was used in the early days of CT. Today, it is only used
in nuclear diagnostics. Instead, filtered rear projection is employed. The idea here is
to describe an arbitrary, integrable function 𝑔(𝑥, 𝑦) through all straight line integrals
over the definition region of 𝑔. Due to the redundant information, not all of these line
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integrals are necessary; this makes application of the technique in CT possible. The
aggregate of all projections

𝑝(𝜉, 𝛩) :=

+∞

∫

−∞

𝑑𝜂 𝑔(𝑥, 𝑦)

is described as a Radon transform. 𝜉, 𝜂 here stand for the coordinates of a coordinate
system rotated around 𝛩, relative to that of the object. The image function 𝑔(𝑥, 𝑦) de­
sired is found using

𝑔(𝑥, 𝑦) =
1

2𝜋

𝜋

∫

0

𝑑𝛩 {𝑝(𝜉, 𝛩) ⋆ 𝐹𝑇
−1

{|𝑘|}} .

In the integrand, the convolution of 𝑝(𝜉, 𝛩) is next to the core of the convolution, the
inverse Fourier transform of the function 𝑓(𝑘) = |𝑘|. This filtering function cannot be
solved in general, and only yields actual filters under a bandwidth boundary of the
signal. The convolution core is, however, independent from the angle of projection,
and as such all measured projections are convoluted with the same core. This allows
for the possibility of replacing the core with amodified filtering function. In this man­
ner, for example, smoothing and high-resolution filters can be used in rear projection,
and therefore, in image production.

7.1 Bouguer–Lambert Law

1. Deduce an expression for the line probability density for the absorption of a pho­
ton (probability of absorption per penetration depth 𝜔 =

𝑤

𝛥𝑥
) that penetrates a

block with frontal area 𝐴 at a right angle. The block is made of a mixture of mate­
rials 𝑖, with densities 𝜌

𝑖
; molar masses𝑀

𝑖
and an effective cross section 𝜎

𝑖
.

2. Calculate the dependence on location of the intensity 𝐼(𝑥) of incident radiation
for propagation through the block. The intensity of the incident radiation is 𝐼

0
.

Also, show that the effective absorption coefficient 𝜇 is equal to the sum of the
absorption coefficients of the individual materials.

3. Consider a sphere of radius 𝑅 = 2 cm that undergoes irradiation. Behind the
sphere is a screen at a right angle to the direction of radiation. The absorption co­
efficient of the sphere’s material is 𝜇 = 0.2 cm

−1. What does the relative intensity
profile 𝑖(𝑟) = 𝐼(𝑟)

𝐼
max

on the screen look like?

1. For the absorption probability, we have

𝑤 =
surface of absorber

total area
=

𝐴abs
𝐴

.

The total area over which the photon can be absorbed can be calculated using the
line density 𝑁

𝑖

𝑉
𝐴, weighted with the effective cross section and the penetration
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depth 𝛥𝑥 for all the materials of the block.

𝐴abs = ∑

𝑖

𝑁
𝑖

𝑉
𝐴𝛥𝑥𝜎

𝑖

with𝑁
𝑖
as thenumber of particles ofmaterial 𝑖. Therefore for𝑁

𝑖
, for theprobability

of absorption, we have
𝑤 = ∑

𝑁
𝑖

𝑉
𝛥𝑥𝜎

𝑖
,

in relation to the penetration depth,

𝜔 =
𝑤

𝛥𝑥
= ∑

𝑁
𝑖

𝑉
𝜎
𝑖
.

From the definition of the molar mass

𝑀
𝑖
=

𝑁
𝐴

𝑁
𝑖

𝑚
𝑖

we have, for particle density,

𝑛
𝑖
=

𝑁
𝑖

𝑉
=

𝜌
𝑖
𝑁

𝑖

𝑚
𝑖

=
𝜌
𝑖
𝑁

𝐴

𝑀
𝑖

.

The probability of absorption per penetration depth is therefore

𝜔 =
𝑤

𝛥𝑥
= ∑

𝜌
𝑖
𝑁

𝐴

𝑀
𝑖

𝜎
𝑖
.

For 𝜔, the designation of absorption coefficient 𝜇
𝑖
is also useful.

2. The intensity 𝐼 of a photon ray with photon energy 𝐸
𝛾
and with photon flux 𝛷

(number of photons per area and per time) is

𝐼 = 𝐸
𝛾
𝛷.

For photons with frequency 𝜈 and flux 𝛷 =
𝑑
2

𝑑𝑡𝑑𝐴
𝑁

𝛾
, we have through substitution

𝐼 = ℎ𝜈
𝑑
2

𝑑𝑡𝑑𝐴
𝑁

𝛾
.

As the photon beam propagates through the block, the intensity after distance 𝑑𝑥
(the 𝑥-axis is the propagation axis of the photons) changes by

𝑑𝐼 = 𝐼(𝑥 + 𝑑𝑥) − 𝐼(𝑥),

and the number of photons corresponding to 𝑑𝑁
𝛾

𝑑𝑁
𝛾
= 𝑁(𝑥 + 𝑑𝑥) − 𝑁

𝛾
(𝑥).

As the number of photons can only change through interaction with the material
of the block, 𝑑𝑁

𝛾
must be, through absorption probability

𝑤 =
interacting photons
total incident photons
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(with respect to 𝜔) expressed as

𝑑𝑁
𝛾
= −𝑑𝑥 𝜔𝑁

𝛾
(𝑥)

and
𝑁

𝛾
(𝑥 + 𝛿𝑥) = 𝑁

𝛾
(𝑥) − 𝑑𝑥𝜔𝑁

𝛾
(𝑥).

Therefore, we have the first-order differential equation
𝑑𝑁

𝛾

𝑑𝑥
= −𝜔𝑁

𝛾
(𝑥) = −𝜇𝑁

𝛾
(𝑥)

with effective absorption coefficient 𝜇 = ∑𝜇
𝑖
= ∑𝜔

𝑖
= ∑

𝜌
𝑖
𝑁
𝐴

𝑀
𝑖

𝜎
𝑖
.

By employing the “intensity operator”: ̂𝐼 = ℎ𝜈
𝑑
2

𝑑𝑡𝑑𝐴
, we have the differential equa­

tion
𝑑𝐼

𝑑𝑥
= −𝜇𝐼

with the known exponential function as the solution:

𝐼 = 𝐼
0
𝑒
−𝜇𝑥

.

3. Thedistance that thebeam travels between its source anddetection canbedivided
into three elements: distance 𝐿

1
from source to sphere surface, distance within

sphere 𝑑, and separation 𝐿
2
from the discharge from the sphere to the screen.

First, consider distance 𝑑. This is for a beam that runs parallel to the equatorial
plane at distance 𝑟

𝑑(𝑟) =
{

{

{

2√𝑅2 − 𝑟2 𝑟 ≤ 𝑅

0 𝑟 > 𝑅

with 𝑅 as the radius of the sphere. The entire distance that the beam travels is
therefore

𝐷 = 𝐿
1
(𝑟) + 𝑑(𝑟) + 𝐿

2
(𝑟).

It encounters the material with absorption probabilities 𝜇
0
on paths 𝐿

1
and 𝐿

2
,

and 𝜇 on path 𝑑 (total path 𝐿). As such, we have, for the intensity of the beam on
the detector

𝐼(𝑟) = 𝐼
0
𝑒
−𝜇

0
𝐿
1𝑒

−𝜇𝑑
𝑒
−𝜇

0
𝐿
1

= 𝐼
0
𝑒
−𝜇

0
(𝐿−𝑑)

𝑒
−𝜇𝑑

.

As such, a beam that missed the sphere has the highest intensity (if 𝜇 > 𝜇
0
)

𝐼
max

= 𝐼
0
𝑒
−𝜇

0
𝐿
.

The relative intensity profile is therefore described as

𝐼(𝑟)

𝐼
max

=
𝐼
0
𝑒
−𝜇

0
(𝐿−𝑑)

𝑒
−𝜇𝑑

𝐼
0
𝑒−𝜇0𝐿

= 𝑒
𝜇
0
𝑑
𝑒
−𝜇𝑑

.
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Fig. 7.1. Relative intensity on the screen, dependent on radial coordinate 𝑟.

As absorption in the paths outside of the sphere should be neglected, we can set
𝜇
0
= 0. Therefore,

𝑖(𝑟) =
𝐼(𝑟)

𝐼
max

= 𝑒
−𝜇𝑑

= exp (−2𝜇√𝑅2 − 𝑟2) .

Abeamon the 𝑥-axis will have theminimum relative intensity, as here, beampath
is 𝑑 = 2𝑅

𝑖
min

(𝑟) =
𝐼
min

𝐼
max

= 0.45.

7.2 X-Ray Tubes

An X-ray tube is comprised of an evacuated bulb in which are located a cathode as a
thermal source of electrons, and an anode made of tungsten. During operation, there
is a potential difference between cathode and anode of 100 kV, and an electric current
of 100mA is flowing. In this system, 1% of the electric power is used for the creation of
X-rays. Howmany electrons strike the anode each second? What is the power emitted
as X-ray radiation? How long can the X-ray tube work without the anode fusing? How
can this amount of time be lengthened?
[mass of the anode𝑚 = 74 g; tungsten: specific heat 𝑐

𝑝
= 0.33 J/kgK; melting tempera­

ture 𝑇
𝑆
= 3,000 K]

For the electric charge we have |𝑄| = 𝑁𝑒with𝑁 as the number of electrons that strike
the anode. Therefore,

|𝐼| =
𝑑|𝑄|

𝑑𝑡
=

𝑑𝑁𝑒

𝑑𝑡
= 𝑒

𝑑𝑁

𝑑𝑡
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and therefore,
𝑑𝑁

𝑑𝑡
=

|𝐼|

𝑒
=

0.1 A

1.6 ⋅ 10−19 C
= 6.25 ⋅ 10

17
s
−1
.

Thermal power 𝑃
𝑡ℎ
is

𝑃
𝑡ℎ

= 𝑃
𝑒𝑙
− 𝑃

𝑅

with 𝑃
𝑒𝑙
as the power of the incident electrons, and 𝑃

𝑅
as the power lost through X-ray

radiation. We have 𝑃
𝑒𝑙
= 𝑈𝐼 and 𝑃

𝑅
= 𝜂𝑃

𝑒𝑙
with 𝜂 = 0.01. Therefore,

𝑃
𝑅
= 0.01 𝑈𝐼 = 0.1 kW,

𝑃
𝑡ℎ

= 𝑈𝐼 (1 − 0.01) = 9.9 kW.

The quantity of heat 𝑄
𝑆
that would raise the anode from the temperature of the sur­

roundings 𝑇
0
to melting temperature 𝑇

𝑆
is

𝑄
𝑆
= 𝑚𝑐

𝑝
(𝑇

𝑆
− 𝑇

0
) ≈ 0.074 kg 0.33 J/kgK ( 3,000 K − 293K ) = 66.1 J.

The time 𝜏 until melting is given by the ratio

𝜏 =
𝑄

𝑆

𝑃
𝑡ℎ

=
66.1Ws

9.9 kW
= 6.67ms.

The X-ray tube can only be driven in pulses. A longer driving time can be reached by
using a larger anode mass (1 to 2 kg), or by using water cooling.

7.3 Spectrum of an X-Ray Tube

1. Describe the function of an X-ray tube.
2. The spectrum of an X-ray tube is continuous, but is truncated at a certain wave­

length (𝜆
min

). In general, a number of characteristic peaks also appear in the spec­
trum. Explain the origin of these phenomena. How can the boundary wavelength
(𝜆

min
) be calculated easily?

1. An X-ray tube is comprised of an evacuated bulb in which a voltage is applied
across a glowing cathode and an anode. The glowing cathode emits electrons,
which are accelerated by this voltage and which strike the anode. The electrons
are slowed down in the anode, and emit X-rays.

2. The continuous portion is due to bremsstrahlung. The electrons are slowed down
by the atomic nuclei in the anode (kinetic energy of the electrons is transformed
into radiation). The maximum radiation energy (the energy of a 𝛾) is determined
by the voltage applied: if an electron with maximum kinetic energy 𝑉𝑒

− is sud­
denly slowed down, a photon with 𝜆

min
=

ℎ𝑐

𝑉𝑒
−
is emitted. The bremsstrahlung

adds a significant contribution to the X-ray spectrum, and can be influenced by
changes in the acceleration voltage. A higher acceleration voltage yields a smaller
𝜆
min

.
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7.4 Intensity Attenuation

When a patient’s upper leg is absorbing X-rays, the X-ray, after leaving the X-ray tube
with original intensity 𝐼

0
= 4W/m2, passes through the following layers:

– layer of air, of distance 𝑥
𝐿
= 30 cm; attenuation coefficient 𝜇

𝐿
= 0.001 cm

−1;
– soft tissue of thickness 𝑥

𝑊
1
= 7 cm; attenuation coefficient 𝜇

𝑊
= 0.18 cm

−1;
– bone, with a diameter of 𝑥

𝐾
= 2 cm; attenuation coefficient 𝜇

𝐾
= 1.6 cm

−1;
– soft tissue of thickness 𝑥

𝑊
2
= 6 cm.

What is the intensity of the X-ray when it strikes the photo plate?
[Note: the bone should be considered to be solid, not hollow]

Intensity 𝐼
𝐿𝑊

after travel through the air, at the boundary layer (air | soft tissue)

𝐼
𝐿𝑊

= 𝐼
0
exp (−𝜇

𝐿
𝑥
𝐿
)

= 4.0W/m2 exp (−0.001 cm
−1

⋅ 30 cm) = 3.88W/m2.

Intensity 𝐼
𝑊𝐾

after the first layer of soft tissue, at the next boundary layer (soft
tissue | bone)

𝐼
𝑊𝐾

= 𝐼
𝐿𝑊

exp (−𝜇
𝑊
𝑥
𝑊

1

) = 3.88W/m2 𝑒
−1.26

= 1.1W/m2.

Intensity 𝐼
𝐾𝑊

after the bone, at the next boundary layer (bone | soft tissue)

𝐼
𝐾𝑊

= 𝐼
𝑊𝐾

exp (−𝜇
𝐾
𝑥
𝐾
) = 1.1W/m2𝑒

−3.2
= 0.045W/m2.

Intensity 𝐼
𝑃
after the second layer of soft tissue, at the photo plate

𝐼
𝑃
= 𝐼

𝐾𝑊
exp (−𝜇

𝑊
𝑥
𝑊

2

) = 0.045W/m2𝑒
−1.08

= 0.015W/m2.

or, in total,

𝐼
𝑝
= 𝐼

0
exp {− [𝜇

𝐿
𝑥
𝐿
+ 𝜇

𝑊
(𝑥

𝑊1
+ 𝑥

𝑊2
) + 𝜇

𝐾
𝑥
𝐾
]}

= 4.0W/m2 exp {− [0.03 + 0.18 (7 + 6) + 3.2]} =

= 4.0W/m2 exp (−5.57) = 0.015W/m2.

7.5 Contrast

1. Formulate a simple expression for the contrast 𝐶 between the two image regions
A and B (see Figure).

2. The intensity of the transmitted rays 𝐼
𝑎
, 𝐼

𝑏
can be found as the sum of primary

and scattered components (𝐼 = 𝑃 + 𝑆). How does the contrast change under the
assumption that the scattered radiation has the same intensity in both cases?
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3. In order to be able to differentiate clearly between two regions in an X-ray image,
a contrast of 𝐶 ≥ 0.3 is necessary. If this contrast does not occur at first, it can be
achieved through the introduction of the contrast agent iodine. The isotope 131

53
J

is used. Estimate the minimum concentration of iodine 𝑐
𝐽
=

𝑁
𝐽

𝑁
𝐵

, introduced by
injecting iodine into the blood stream, that is necessary to be able to distinguish
a vein from the soft tissue that surrounds it.

[blood 𝜇
𝐵

= 0.17 cm
−1; soft tissue 𝜇

𝑊
= 0.18 cm

−1; diameter of the vein 𝑑 = 1mm;
charge number of blood 𝑍

𝐵
= 𝑍

𝑎
= 7]

μW

μB

Ia Ib

d

I0

BA

Fig. 7.2. Different beam paths in tissue; one of the beams strike a circular region with absorption
coefficient 𝜇

𝐵
.

1. The (Weber) contrast¹ 𝐶 is defined as

𝐶 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐼
𝑏
− 𝐼

𝑎

𝐼
𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (7.1)

For image region A, we have, with 𝐼
0
as the original intensity

𝐼
𝑎
= 𝐼

0
exp (−𝜇

𝐵
𝑥) . (7.2)

||
1 alternative: Michelson contrast

𝐶
𝑀

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐼
𝑏
− 𝐼

𝑎

𝐼
𝑎
+ 𝐼

𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

exp(−𝑑Δ𝜇) − 1

exp(−𝑑Δ𝜇) + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

Expanding as a series for 𝛾 = 𝑑Δ𝜇 yields:

𝐶
𝑀

= 𝐶
𝑀 (0) +

𝑑𝐶
𝑀

𝑑𝛾
𝛾 + . . . ≅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−
1

2
𝛾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑Δ𝜇

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

For small 𝑑 and Δ𝜇, this give the half-Weber contrast.
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For region B

𝐼
𝑏
= 𝐼

0
exp [−𝜇

𝐵
(𝑥 − 𝑑) − 𝜇

𝑊
𝑑] = 𝐼

0
exp [−𝑥𝜇

𝐵
− 𝑑(𝜇

𝑊
− 𝜇

𝐵
)]

= 𝐼
0
exp (−𝑑Δ𝜇) exp (−𝜇

𝐵
𝑥) = 𝐼

0
exp (−𝑑Δ𝜇) exp (−𝜇

𝐵
𝑥)

with Δ𝜇 = 𝜇
𝑊

− 𝜇
𝐵
. Therefore, contrast 𝐶 is

𝐶 =
󵄨󵄨󵄨󵄨exp(−𝑑Δ𝜇) − 1

󵄨󵄨󵄨󵄨 . (7.3)

For the estimate, the consideration of small 𝑑Δ𝜇 is sufficient. As such, the term
exp (−𝑑Δ𝜇) can be decomposed and disregarded after the second term. We have

exp (−𝑑Δ𝜇) ≅ 1 − 𝑑Δ𝜇. (7.4)

(7.4) substituted in (7.3) yields

𝐶 ≅
󵄨󵄨󵄨󵄨1 − 𝑑Δ𝜇 − 1

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑑Δ𝜇

󵄨󵄨󵄨󵄨 .

2. For the change in contrast Δ𝐶, we have

Δ𝐶 = 𝐶
𝑚𝑆

− 𝐶
𝑜𝑆
, (7.5)

in which 𝐶
𝑚𝑆

is the contrast with scattering, and 𝐶
𝑜𝑆
is the contrast without scat­

tering. The total intensity 𝐼 is then

𝐼
𝑎
= 𝑃

𝑎
+ 𝑆

𝑎
and 𝐼

𝑏
= 𝑃

𝑏
+ 𝑆

𝑏

with 𝑃 for primary radiation and 𝑆 for scattered radiation. In the case that 𝑆
𝑎
=

𝑆
𝑏
= 𝑆, (7.5) is, considering (7.1),

Δ𝐶 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑎
+ 𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −
2 𝑃

2

𝑎
+ 𝑃

𝑎
𝑆 + 𝑃

𝑏
𝑆

𝑃
𝑎
(𝑃

𝑏
+ 𝑆)

. (7.6)

Because all values are positive in (7.6), the numerical value ofΔ𝐶 is negative. This
means that the contrast with scattering is lower that the contrast without scatter­
ing. ².

||
2 For Michelson contrast, we have contrast change

Δ𝐶
𝑀

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑏
+ 𝑃

𝑎
+ 2𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑎
+ 𝑃

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨
𝑃
2

𝑏
− 𝑃

2

𝑎

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨(𝑃𝑏

+ 𝑃
𝑎
+ 2𝑆) (𝑃

𝑏
− 𝑃

𝑎
)
󵄨󵄨󵄨󵄨

(𝑃
𝑎
+ 𝑃

𝑎
) (𝑃

𝑏
+ 𝑃

𝑎
+ 2𝑆)

=

󵄨󵄨󵄨󵄨󵄨
𝑃
2

𝑏
− 𝑃

2

𝑎

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
(𝑃

2

𝑏
− 𝑃

2

𝑎
+ 2𝑆 (𝑃

𝑏
− 𝑃

𝑎
))
󵄨󵄨󵄨󵄨󵄨

(𝑃
𝑎
+ 𝑃

𝑎
) (𝑃

𝑏
+ 𝑃

𝑎
+ 2𝑆)

.
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3. To ensure acceptable differentiability, contrast must be 𝐶 > 0.3. For 𝑑 = 1, there­
fore, Δ𝜇must have at least the value

Δ𝜇
min

=
𝐶

min

𝑑
=

0.3

0.1 cm
= 3 cm

−1
.

For blood, 𝜇
𝐵
= 0.17 cm

−1, and for soft material 𝜇
𝑊

= 0.18 cm
−1. Therefore, Δ𝜇 =

0.01 cm
−1. This means that in this case, assured differentiability is not possible.

As such, the contrast agent iodine 53 is introduced into the blood. The amount𝑁
𝐽

that is sufficient to achieve a𝐶
𝑚𝑖𝑛

value of 0.3m−1 depends on the amount of blood
𝑁

1
= 𝑁

𝐵
. The ratio 𝑁

𝐽

𝑁
𝐵

is the desired concentration 𝑐
𝐽
. For the attenuation coeffi­

cient 𝜇
𝑖
and charge number 𝑍

𝑖
of component 𝑖, the proportionality relationship

is:³ 𝜇
𝑖
∝ 𝑁

𝑖
𝑍

4.5

𝑖
. Therefore,

𝜇
𝐽

𝜇
𝐵

= (
𝑁

𝐽

𝑁
𝐵

)(
𝑍

𝐽

𝑍
𝐵

)

4.5

= 𝑐
𝐽
(
𝑍

𝐽

𝑍
𝐵

)

4.5

.

With 𝑍
𝐽
= 53 and 𝑍

𝐵
= 7, we have

𝑐
𝑗
=

1

9.0 ⋅ 104
(
𝜇
𝐽

𝜇
𝐵

) .

||
Considering the corresponding parameter space (positive), we can differentiate between two cases.

Case 1. 𝑃
𝑏
> 𝑃

𝑎

Δ𝐶
𝑀

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑏
+ 𝑃

𝑎
+ 2𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑎
+ 𝑃

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑏
+ 𝑃

𝑎
+ 2𝑆

−
𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑎
+ 𝑃

𝑎

=
−2𝑆 (𝑃

𝑏
− 𝑃

𝑎
)

(𝑃
𝑎
+ 𝑃

𝑎
) (𝑃

𝑏
+ 𝑃

𝑎
+ 2𝑆)

< 0.

Case 2. 𝑃
𝑏
< 𝑃

𝑎

Δ𝐶
𝑀

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑏
+ 𝑃

𝑎
+ 2𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑎
+ 𝑃

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −
𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑏
+ 𝑃

𝑎
+ 2𝑆

+
𝑃
𝑏
− 𝑃

𝑎

𝑃
𝑎
+ 𝑃

𝑎

=
2𝑆 (𝑃

𝑏
− 𝑃

𝑎
)

(𝑃
𝑎
+ 𝑃

𝑎
) (𝑃

𝑏
+ 𝑃

𝑎
+ 2𝑆)

< 0.

As is clear, the second term in the numerator is greater than the first in both cases; this means that the
Michelson contrast also inherently declines.
3 According to “Effekte der Physik und ihre Anwendungen” by Ardenne, Musoil, and Klemrad, the
dependency varied between𝑍

4.6 for light atoms and𝑍
4 for heavy atoms; here, wewill assume a power

of 4.5 for simplicity.
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As 𝜇
𝐽
− 𝜇

𝑊
= Δ𝜇

𝑚𝑖𝑛
= 3 cm

−1 we have 𝜇
𝐽
= 3 cm

−1
+ 𝜇

𝑊
= 3.18 cm

−1
.

This yields⁴ for 𝑐
𝐽

𝑐
𝑗
=

1

9.0 ⋅ 104
(
3.18

0.17
) = 2.1‰.

7.6 Scattered Radiation

The proportion of scattered radiation in an X-ray imaging sequence is around 80%.
Assume that the differences in dosage of useful radiation across the entire field are
very small. The contrast is to be improved through the use of a grate.
1. What is the total radiation contrast without the grate (relative to the contrastwith­

out scattered radiation𝐾
𝑁
)?

2. If the grate used has a transparency to useful radiation of 𝑇
𝑁
= 60%, and a trans­

parency to scattered radiation of 𝑇
𝑆
= 5%, what is the improvement in contrast?

1. 𝑆: scattered radiation;𝑁: useful radiation; 𝐺: total radiation. For the total radia­
tion contrast𝐾

𝐺
we have

𝐾
𝐺
= 𝐾

𝑁

1

1 + 𝛼

with
𝛼 =

2𝐷
𝑆

𝐷
1𝑁

+ 𝐷
2𝑁

.

𝐷
1𝑁

and 𝐷
2𝑁

are two neighboring doses of useful radiation, and 𝐷
𝑆
is the dose

of scattered radiation. If the proportion of scattered radiation, as set forth in the
problem, comprises 80% of the total radiation, then 20% of this total remains
available as useful radiation. Considering the approximation given that the dif­
ferences in doses of useful radiation are very small – 𝐷

1𝑁
≈ 𝐷

2𝑁
– we have

𝛼 ≈
2𝐷

𝑆

2𝐷
𝑁

=
𝐷

𝑆

𝐷
𝑁

=
𝐷

𝑆
/𝐷

𝐺

𝐷
𝑁
/𝐷

𝐺

=
80%

20%
= 4.

⇒ 𝐾
𝐺
= 𝐾

𝑁
/5 = 0.2 ⋅ 𝐾

𝑁
.

||
4 In the case of Michelson contrast,

Δ𝜇
min

=
2

𝑑
𝐶

Min
= 6 cm

−1

and therefore
𝑐
𝑗
=

1

9.0 ⋅ 104
(
6.18

0.17
) = 4.0‰.
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2. The selectivity of the grate is

𝑆 =
𝑇
𝑁

𝑇
𝑆

=
60%

5%
= 12.

Therefore, for the total radiation contrast, we have

𝐾
𝐺
= 𝐾

𝑁

1

1 + 𝛼/𝑆
= 𝐾

𝑁

1

1 + 4/12
= 0.75 ⋅ 𝐾

𝑁
.

7.7 Quantum Noise of an X-Ray Image Intensifier

Calculate the quantum noise of an X-ray image intensifier at dose power (dose per
time) of 0.1 μGy

s
, pixel size 0.2mm ⋅ 0.2 mm, and exposure time 0.45 s per image. From

the calibration measurement, the conversion factor 𝛾 of the energy dose (in [Gy]) ex­
pressed as the number of quanta per mm is known:

𝛾 = 2 ⋅ 10
4 quanta

mm2μGy

Assume a Poisson distribution, and calculate the quantumnoise and the relative error
1. for incident quanta
2. for the number of quanta actually attested if the absorption at the entrance win­

dow is 10%, and the effective absorptance of CsJ for the energy used is 70%
3. for the photons of visible light after conversion, under the assumption that 3,000±

100 photons/X-ray quantum are generated.

1. We have

#quanta

pixel ⋅ s
= 2 ⋅ 10

4 #

mm2μGy
⋅ (0.2 mm)

2
⋅ 0.1

μGy

s
= 80

#

pixel ⋅ s
.

For the exposure time, we have, for the number of quanta per pixel,

𝑁 = 80
#

pixel ⋅ s
⋅ 0.45 s = 36

#

pixel
.

For a Poisson distribution we have

𝜎
𝑁
= √𝑁

and therefore,
𝑁 = 36 ± 6

and
𝜎
𝑁,rel

=
6

36
= 0.167 = 16.7%.
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2. After the window and absorption of 10% the number of quanta is

𝑁
n.F.

= 0.9N = 32.4.

The number of attested quanta is then

𝑁
attest.

= 0.7 ⋅ 𝑁
n.F.

= 22.7.

and
𝑁

attest.
= 22.7 ± √22.7 = 22.7 ± 4.8

and
𝜎
𝑁
attest.

,rel
=

4.8

22.7
= 0.211 = 21.1%.

3. At a quantum yield of

𝐴 = (3,000 ± 100)
#photons

X-ray quantum

we have
𝑁

Ph
= 𝐴 ⋅ 𝑁

attest.
= 3,000 ⋅ 22.7 = 68,100

photons created. Using the Gaussian error propagation method, we determine

𝜎
𝑁
Ph

= √𝑁
2

attest.
𝜎
2

𝐴
+ 𝐴2𝜎

2

𝑁
attest.

= √22.72 ⋅ 1002 + 3,0002 ⋅ 4.82 = 14,578.

𝑁
Ph

= 68,100 ± 14,578.

𝜎
𝑁
Ph,rel

=
14,578

68,100
= 0.214 = 21.4%.

7.8 Fourier Reconstruction of an Image

Consider the reconstruction of an image from the projections measured. The two-di­
mensional Fourier transform of the image 𝑔(𝑥, 𝑦) is 𝐺(𝑘

𝑥
, 𝑘

𝑦
). It can be reconstructed

from the one-dimensional Fourier transform 𝑃(𝑘, 𝛩) of the projections measured
𝑝(𝜉, 𝛩),

𝑃(𝑘, 𝛩) =

+∞

∫

−∞

𝑑𝜉 𝑝(𝜉, 𝛩) 𝑒
−𝑖2𝜋𝑘𝜉

,

and for a slice through the two-dimensional Fourier transform 𝐺(𝑘
𝑥
, 𝑘

𝑦
) at angle 𝛩:

𝐺(𝑘, 𝛩) = 𝑃(𝑘, 𝛩). Show that the inverse two-dimensional Fourier transform

𝑔(𝑥, 𝑦) =
1

(2𝜋)2

+∞

∬

−∞

𝑑𝑘
𝑥
𝑑𝑘

𝑦
𝐺(𝑘

𝑥
, 𝑘

𝑦
) 𝑒

+𝑖2𝜋(𝑥𝑘
𝑥
+𝑦𝑘

𝑦
)
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p(ξ,θ)

g(x,y)
x

y

ξ
θ

η

Fig. 7.3. Example of a projection measurement 𝑝(𝜉, 𝜃).

is given by

𝑔(𝑥, 𝑦) =
1

2𝜋

𝜋

∫

0

𝑑𝛩 {𝑝(𝜉, 𝛩) ∗ 𝐹𝑇
−1
{|𝑘|}}

In the expression, 𝐹𝑇−1
{|𝑘|} is the inverse Fourier transform of the function 𝑓(𝑘) = |𝑘|,

and ∗ is the convolution of the two functions. (Note: the Cartesian coordinates 𝑘
𝑥
, 𝑘

𝑦

must be converted into polar coordinates)

𝑔(𝑥, 𝑦) =
1

(2𝜋)2

∞

∫

−∞

𝑑𝑘
𝑥

∞

∫

−∞

𝑑𝑘
𝑦
𝐺(𝑘

𝑥
, 𝑘

𝑦
)𝑒

𝑖2𝜋(𝑥𝑘
𝑥
+𝑦𝑘

𝑦
)
.

With polar coordinates
𝑘
𝑥
= 𝑘 cos 𝜃; 𝑘

𝑦
= 𝑘 sin 𝜃

and the Jacobian determinant

|𝐽| = det(

𝜕𝑘
𝑥

𝜕𝑘

𝜕𝑘
𝑦

𝜕𝑘

𝜕𝑘
𝑥

𝜕𝜃

𝜕𝑘
𝑦

𝜕𝜃

) = |𝑘|(cos
2
𝜃 + sin

2
𝜃) = |𝑘|
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we have

𝑔(𝑥, 𝑦) =
1

(2𝜋)2

𝜋

∫

−𝜋

𝑑𝜃

∞

∫

0

𝑑𝑘 |𝑘| 𝐺(𝑘 cos 𝜃, 𝑘 sin 𝜃)𝑒
𝑖2𝜋𝑘(𝑥 cos 𝜃+𝑦 sin 𝜃)

=
1

(2𝜋)2

𝜋

∫

−𝜋

𝑑𝜃

∞

∫

0

𝑑𝑘 |𝑘| 𝐺(𝑘, 𝜃)𝑒
𝑖2𝜋𝑘(𝑥 cos 𝜃+𝑦 sin 𝜃)

=
1

(2𝜋)2

𝜋

∫

−𝜋

𝑑𝜃

∞

∫

0

𝑑𝑘 |𝑘| 𝑃(𝑘, 𝜃)𝑒
𝑖2𝜋𝑘(𝑥 cos 𝜃+𝑦 sin 𝜃)

.

With

𝑥 = 𝜉 cos 𝜃 − 𝜂 sin 𝜃,

𝑦 = 𝜉 sin 𝜃 + 𝜂 cos 𝜃

we have

𝑔(𝑥, 𝑦) =
1

(2𝜋)2

𝜋

∫

−𝜋

𝑑𝜃

∞

∫

0

𝑑𝑘 |𝑘| 𝑃(𝑘, 𝜃)𝑒
𝑖2𝜋𝑘𝜉

=
1

(2𝜋)2

𝜋

∫

0

𝑑𝜃

∞

∫

−∞

𝑑𝑘 |𝑘| 𝑃(𝑘, 𝜃)𝑒
𝑖2𝜋𝑘𝜉

=
1

2𝜋

𝜋

∫

0

𝑑𝜃{
1

2𝜋

∞

∫

−∞

𝑑𝑘 |𝑘| 𝑃(𝑘, 𝜃)𝑒
𝑖2𝜋𝑘𝜉

}

=
1

2𝜋

𝜋

∫

0

𝑑𝜃 {𝐹𝑇
−1
(𝑃(𝑘, 𝜃) ⋅ |𝑘|)}

=
1

2𝜋

𝜋

∫

0

𝑑𝜃 {𝐹𝑇
−1
(𝑃(𝑘, 𝜃)) ⋆ 𝐹𝑇

−1
(|𝑘|)}

=
1

2𝜋

𝜋

∫

0

𝑑𝜃 {𝑝(𝜉, 𝜃) ⋆ 𝐹𝑇
−1
(|𝑘|)} .

7.9 Radon Transform of a Circular Object

We wish to find the Radon transform 𝑝(𝛩, 𝑠) of a circular object at angle 𝛩 = 0 (that
is, the projection in this direction). Within the circle with radius 𝑅, the corresponding
function should have the value 𝑓(𝑥, 𝑦) = 𝑎, and outside of it, the function should be
zero. What form does the Radon transform have for 𝑎 =

1

2
, and for any other values

𝑎 > 0?
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For the function, we have:

𝑓(𝑥, 𝑦) = 𝑎 for 𝑥
2
+ 𝑦

2
≤ 𝑅

2

𝑓(𝑥, 𝑦) = 0 outside

Therefore, for the projection at angle 𝛩 = 0, we have:

𝑝(0, 𝑥) =

+√𝑅
2
−𝑥

2

∫

−√𝑅
2
−𝑥

2

𝑑𝑦 𝑎 = 𝑎 ⋅ 2√𝑅2 − 𝑥2 für |𝑥| ⩽ 𝑅

𝑝(0, 𝑥) = 0 für |𝑥| > 𝑅

If 𝑎 =
1

2
, then

𝑝(0, 𝑥) = √𝑅2 − 𝑥2

describes a half-circle with radius 𝑅. Otherwise, this is half of an ellipse.

7.10 Beam Hardening and Partial Volume Artifacts in CT

1. Explain, as shown in Figure 7.4, the origin of beam hardening artifacts in CT. The
emission spectrum of the X-ray tube is marked as 1 in the diagram, and the arrow
perpendicular to it shows the median of the distribution. The mass attenuation
coefficient 𝜇/𝜌 of the (homogeneously) irradiated body is also indicated. It is as­
sumed that the emission spectrum is valid for the first half of the path of the X-ray
through the body; for the second half, the spectrum labeled 2 is valid. Why does
the “median” of the distribution shift after the X-ray has passed through a portion
of the body, as depicted in this crude model?

2. What is the origin of partial volume artifacts in CT? Consider a region within one
pixel (the underlying voxel of the object) that possesses two different X-ray atten­
uation coefficients. Also, discuss the two cases shown on the right in Figure 7.4.
For the solution, it is sufficient to only consider one incident beam direction in
the upper case, while in the lower case irradiation from two directions, 1 and 2,
should be discussed.

1. The median shifts due to the absorption of the X-ray in the body (here, in the first
half). Especially weak X-rays are absorbed. Two different medians (for halves 1
and 2) also have, as in the diagram, different values for 𝜇, although (according to
the assumption) we are considering a homogeneous material. The value for 𝜇/𝜌 for
the second half corresponds to the value that is obtained for harder X-rays. This
is the origin of the term beam hardening artifact.
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Jν
μ/ρ

μ/ρ

1

2

0 50 150100
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1 Voxel (Pixel)

1 Voxel (Pixel)

1

1

2

2photon energy [keV]

X-ray radiation

X-ray radiation

Fig. 7.4. Left: spectra of X-ray tubes. Right: The occurrence of partial volume artifacts. In both cases
(above and below), a pixel is presented with two regions, each of a different X-ray attenuation coef­
ficient 𝜇

𝑖
. The arrows show the direction of incident X-rays (1 and 2mare two projections at different

times).

2. In the upper portion of Figure 7.4, for the irradiation direction indicated, the total
X-ray power at the detector is

𝐽
𝐷
=

𝐽
0

2
(𝑒

−𝜇
1
𝑙
+ 𝑒

−𝜇
2
𝑙
) . (7.7)

In the lower portion of the image 7.4, the X-ray power at the detector for radiation
from direction 1 is

𝐽
𝐷
= 𝐽

0
𝑒
−(𝜇

1
+𝜇

2
)𝑙/2

= 𝐽
0
𝑒
− ̄𝜇𝑙 (7.8)

and for radiation from direction 2, the solution is again expression (7.7). The dif­
ferent outcomes (7.7) and (7.8) lead to the conclusion that in the second case, dif­
ferent projections lead to different attenuations for the same pixel (partial volume
artifact).

7.11 Modulation Transfer Function of a CT Scanner

The (one-dimensional) impulse response (point spread function) of the detector of a
CT-scanner is box-shaped, with width 𝑎

𝐷
:

ℎ
𝐷
(𝑥) = 𝛩(𝑥 − 0) − 𝛩(𝑥 − 𝑎

𝐷
).

1. Find the complex transfer function 𝐻(𝑘) and the modulation transfer function
(MTF) of this detector.

2. The impulse response for the X-ray tube in the CT scanner should have the same
form as that of the detectors, but with width 𝑎

𝑅
. What is the MTF of the entire

system, detector and tube?
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3. The geometric significance of 𝑎
𝐷
and 𝑎

𝑇
can be seen in Figure 7.5. The separation

between tube and detector is 𝑑 = 30 cm, the focus value in the tube is 𝐹 = 1mm,
the size of the detector is 𝐷 = 0.7mm, and the distance between the X-ray tube
and the center of rotation (the black point in Figure 7.5) is 𝑟 = 10 cm. What are the
effective focus values of the tube (𝑎

𝑇
) and the detector (𝑎

𝐷
) in this case?

4. At what distance 𝑟
opt
, measured in units of 𝑑, is the minimum focus value 𝑎

min

(maximum resolution) achieved? Make the general assumption that the focus of
the tube is twice as large as the diameter of the detector – 𝐹 = 2𝐷.

1. The complex transfer function is, in general,

𝐻(𝑘) :=

∞

∫

−∞

𝑑𝑥 ℎ(𝑥)𝑒
−𝑖𝑘𝑥

.

For the detector, this becomes

𝐻
𝐷
(𝑘) =

∞

∫

−∞

𝑑𝑥 {𝛩(𝑥 − 0) − 𝛩(𝑥 − 𝑎
𝐷
)} 𝑒

−𝑖𝑘𝑥
=

𝑎
𝐷

∫

0

𝑑𝑥𝑒
−𝑖𝑘𝑥

=
1

−𝑖𝑘
[𝑒

−𝑖𝑘𝑥
]
𝑎
𝐷

0
=

1

−𝑖𝑘
(𝑒

−
𝑖𝑘𝑎𝐷

2 − 1)

=
1

−𝑖𝑘
𝑒
−
𝑖𝑘𝑎𝐷

2 (𝑒
−
𝑖𝑘𝑎𝐷

2 − 𝑒
+
𝑖𝑘𝑎𝐷

2 ) = 𝑒
−
𝑖𝑘𝑎𝐷

2

sin (
𝑘𝑎

𝐷

2
)

𝑘

2

.

tube

detector

d

D

aD

aT

r

F

Fig. 7.5. Schematic diagram of beam path in a CT system.
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For the MTF, consider the boundary case

|𝐻
𝐷
(0)| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

lim
𝑘→0

sin (
𝑘𝑎

𝐷

2
)

𝑘

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
−
𝑖𝑘𝑎𝐷

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

lim
𝑘→0

𝑑

𝑑𝑘
sin (

𝑘𝑎
𝐷

2
)

𝑑

𝑑𝑘

𝑘

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

lim
𝑘→0

𝑎
𝐷

cos(
𝑘𝑎

𝐷

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑎
𝐷
.

Therefore,

MTF
𝐷
(𝑘) =

|𝐻
𝐷
(𝑘)|

|𝐻
𝐷
(0)|

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
−
𝑖𝑘𝑎𝐷

2 ⋅

sin (
𝑘𝑎

𝐷

2
)

𝑘

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑎
𝐷

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sin (
𝑘𝑎

𝐷

2
)

𝑘𝑎
𝐷

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

The MTF is a normalized sinc function.
2. The great advantage in using the MTF as the descriptor is that it can bemultiplied

into a whole

MTF
ges

= MTF
𝐷
⋅MTF

𝑅
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sin (
𝑘𝑎

𝐷

2
)

𝑘𝑎
𝐷

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sin (
𝑘𝑎

𝑅

2
)

𝑘𝑎
𝑅

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

3. From the beam intercept laws as applied to the diagram, we have

𝑎
𝐷
= 𝐷

𝑟

𝑑
=

7 ⋅ 10
−4
m⋅0.1m

0.3m
= 2.33 ⋅ 10

−4
m = 0.23mm,

𝑎
𝑇
= 𝐹

(𝑑 − 𝑟)

𝑑
= 10

−3
m

(0.3 − 0.1) m

0.3m
= 0.67mm.

4. 𝑟
opt

is determined if 𝑎
𝐷
= 𝑎

𝑇
:

𝑎
𝐷
= 𝑎

𝑇
,

𝐷𝑟

𝑑
=

𝐹(𝑑 − 𝑟)

𝑑
,

𝑟 = 2 (𝑑 − 𝑟) =
2

3
𝑑.
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8 Ultrasound

Ultrasound refers to sound waves with frequencies beyond the threshold of hearing,
from around 16 kHz up. Although sound frequencies of up to 1GHz are technically
producible today,medical diagnostics primarilymakes use of frequencies in the range
of a few megahertz. This is because below 2MHz resolution is too slight, while with
frequencies above around 10MHz, absorption in the tissue is too strong.

In ultrasound diagnostics, ultrasonic waves of low power are directed into the hu­
manbody. Inwater and inhuman tissue, these waves propagatewith a speed of sound
of around 1,500m/s, and as such, their wavelengths at frequencies of a fewMHz are in
the range of 𝜆 < 1mm. As a result, the ultrasound can be focused, reflected, scattered,
and absorbed in the tissue, analogously to an optical beam. If the regions of interest
in the tissue differ in any of these effects, imaging is possible (at least in principle).
Through the interaction of the coupled waves with the environment, ultrasonic sig­
nals arise that are recorded in diagnostic application and are analyzed. These signals
are used to produce ultrasound images, to characterize tissues, for the biometry of or­
gans, and also to understand how bodily functions are taking place. Ultrasound diag­
nostics has a number of advantageous characteristics: it is non-invasive and painless,
can be completed relatively quickly and without special preparation of the patient,
and is relatively cost-effective. While the method was originally used to complement
other methods of investigation, ultrasound diagnostics is deliveringmore andmore of
its own findings today.

While with the diagnostic use of ultrasound, the body is very likely not to be af­
fected, the effects of ultrasound on organs and tissue are used in therapeutic contexts.
The sound wave transports energy and momentum, and acts in a targeted way on the
intended region of the body. This process employsmechanical friction and thermal ef­
fects; in addition, under certain condition, is can influence physico-chemical reaction
processes.

The propagation of soundwaves takes place through the action of pressure waves
in a medium.With a change in pressure 𝑝, a corresponding change in density occurs:

𝜕𝑝

𝜕𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜌
0

=
1

𝜅𝜌
0

.

In the expression, 𝜌
0
is the equilibrium value of density 𝜌 without the sound wave,

and 𝜅 is the compressibility. Instead of the compressibility, the compression modulus
𝐾 =

1

𝜅
is also used. In order to describe the propagation of the sound, the displacement

𝜒( ⃗𝑟, 𝑡) of the molecules by the sound wave can be observed. For small oscillations in
pressure, propagation can be described by the wave equation

𝜕
2
𝜒

𝜕𝑡2
= 𝑐

2
⋅ Δ𝜒.

In the expression, 𝑐 = 1

√𝜅𝜌
0

is the phase velocity of the sound wave.
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In medical applications, the wavelengths 𝜆 of ultrasound waves are in the range
of 1mm to 40 μm. As these wavelengths are frequently small in comparison the di­
mension being investigated, sound propagation in the 𝑥-direction can be described to
a good approximation as plane waves: 𝜒(𝑥, 𝑡) = 𝜒

0
sin(𝜔𝑡 − 𝑘𝑥). The amplitude of the

velocity 𝑣 =
𝜕𝜒

𝜕𝑡
of the air molecules is termed the sound particle velocity: 𝑣

0
= 𝜔𝜒

0
.

An analogous wave equation to the molecular displacement 𝜒 can also be found
for the density and the pressure. Inserting a plane wave for pressure demonstrates
that the sound particle velocity 𝑣

0
is proportional to the sound pressure Δ𝑝:

Δ𝑝
0
= 𝜌

0
𝑐 ⋅ 𝑣

0
= 𝑍 ⋅ 𝑣

0

Sound impedance 𝑍 plays a role in ultrasound similar to that of impedance in elec­
tro-technology (there, Δ𝑝

0
corresponds to voltage 𝑈 and 𝑣

0
to current 𝐼). As such, 𝑍

is also described as wave resistance. In fluids and gases, sound pressure and sound
particle velocity are in phase, and 𝑍 is a real quantity. In air and water, impedance is
𝑍

air
= 430 Ns/m

3 and 𝑍
water

= 1.46 ⋅ 10
6
Ns/m

3 respectively.
The energy density of the sound wave is

𝑤 =
1

2
𝜌
0
𝑣
2

0
=

1

2

Δ𝑝
2

0

𝜌
0
𝑐2
.

This yields, for intensity,
𝐼 = 𝑤𝑐 =

1

2𝑍
Δ𝑝

2

0
.

Ultrasound diagnostics are used primarily to investigate soft tissues with low shearing
stiffness. As such, consideration of longitudinal waves suffices. In solid bodies like
bones, however, transverse waves can also occur. These will not be considered here.

Incident sound waves with intensity 𝐼
𝑒
are partially reflected (intensity 𝐼

𝑟
) and

partially transmitted (intensity 𝐼
𝑡
) at a boundary layer between two regions with dif­

ferent sound impedances 𝑍
1
and 𝑍

2
. With perpendicular incidence, the transmission

coefficient is calculated as 𝑇 :=
𝐼
𝑡

𝐼
𝑒

=
4𝑍

1
𝑍
2

(𝑍
1
+𝑍

2
)2
, and the reflection coefficient is 𝑅 :=

𝐼
𝑟

𝐼
𝑒

=
(𝑍

1
−𝑍

2
)
2

(𝑍
1
+𝑍

2
)
2
. At incidence at angle 𝜃

1
relative to the plumb line from the boundary

layer, the law of refraction sin 𝜃
1

sin 𝜃
2

=
𝑐
1

𝑐
2

, like in geometric optics, also applies; 𝜃
2
is the

angle of the transmitted wave relative to the plumb line, and 𝑐
𝑖
is the corresponding

phase velocity. Similarly, at reflection at an acoustically dense medium (𝑍
2
> 𝑍

1
),

a phase change of the wave by 𝜋 occurs; at reflection at an optically thin medium, it
does not. Furthermore, with sound transmission, there are also interference effects. As
such, acoustic impedancematching can also be carried out here in order to couple the
sound waves between two regions with very different sound impedance characteris­
tics without loss. To do so, the thickness of the layermust correspond to a fourth of the
sound wavelength, and the impedance of the antireflex layer must be 𝑍

𝑎𝑟
= √𝑍

1
𝑍

2
.

As in optics, one or more boundary surfaces can be used to focus ultrasound waves.
If an ultrasound wavemeets an obstacle of dimensions comparable to its wavelength,
deflection effects occur.
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The sound wave experiences attenuation during its propagation. In a homoge­
neous medium the intensity of the wave falls off exponentially: 𝐼(𝑥) = 𝐼

0
𝑒
−𝜇𝑥. The

attenuation coefficient 𝜇 is generally comprised of an absorption component and a
scattering component: 𝜇 = 𝜇

Abs
+ 𝜇

scat
. In sound absorption, sound energy is changed

into other forms of energy (heat above all). In scattering at inhomogeneities of size 𝑑,
the dependency of the attenuation coefficient on frequency 𝑓 differs according to the
scattering region. In the geometric region (𝑑 ≫ 𝜆), 𝜇 is independent of frequency (dif­
fuse scattering); in the stochastic region, 𝜇 ∼ 𝑓

2 generally applies, and in the Rayleigh
region, 𝜇 ∼ 𝑓

4.
In anultrasound transducer, coupled soundwaves in the body are created and the

returning echo is detected. The piezoelectric effect is used to change acoustic signals
into electric signals. In certain materials, an elastic deformation leads to a change in
the electric polarization, and therefore to an electric potential. This principle is used in
the detection of soundwaves. In reverse, through the application of electric potential,
sound waves can be created using a piezoelectric crystal. The sound field created de­
pends on the geometry of the ultrasonic transducer, and can be influenced by lenses
or through the simultaneous use of individual piezocrystals in an array.

Usingultrasounddiagnostics, reflectionor transmissionmeasurements canbeac­
complished. To produce images (echography, sonography), the reflected signals that
arise after short, directed sound impulses are usually used in processing. Amplitude
modulation employs echolocation techniques. Using the temporal delay between the
transmission of the impulse and the echo, or between echoes themselves, the dura­
tion of the sound can be calculated; using this value, the sound path and the dis­
tance to the origin of the echo signal can be determined. With brightness modulation,
the echo intensity is transformed into brightness. Through the movement of the ultra­
sound head, an image in the direction of motion of the sound is created. This can be
traced by hand, or followed by automatic mechanical or electrical systems. Through
the combination of several two-dimensional images, if information on position is also
registered, a three-dimensional image can be created.

Doppler ultrasound employs the Doppler effect tomeasure the velocity of a fluid –
for example, blood in the heart or in the blood vessels. The blood cells correspond to
moving transmission sources, and therefore, the frequency shift of the sound wave at
flow velocity 𝑣 and angle 𝛼 between flow direction and the direction of the incident
sound wave is described as Δ𝑓

𝑓
=

2𝑣

𝑐
cos 𝛼. With Doppler ultrasound measurements

in continuous wave mode, separate senders and receivers in the measurement head
are used. If the distance to the source of the Doppler signal is also to be calculated,
the pulse-Doppler technique can be used. In it, the same pulses as in sonography are
used, and the frequency shift of the reflected signals is also detected.
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8.1 Doppler Ultrasound

A Doppler ultrasound measurement device is used to measure the flow velocity of
blood in an artery. The emitting and simultaneously receiving instrument is brought
to the skin above the artery to be investigated, at angle 𝛼 = 45

∘; the artery has a flow
diameter of 𝑑 = 1.7 cm (see Figure). In this case, a blood cell located exactly in the
flow axis of the artery is struck with ultrasound. The frequency of the emitted sound
wave is𝑓 = 5.5MHz. The Doppler device shows the response to have a frequency shift
of |Δ𝑓| = 920Hz. The flow character of blood should be considered Newtonian (blood
density is 𝜌 = 1,050 kg/m3; viscosity is 𝜂 = 0.018 Pa s).

1. What is the velocity 𝑣 of the blood cell being investigated? The speed of sound is
𝑐 = 1,500m/s.

2. Under normal conditions, an average velocity of around 𝑣
𝑁
= (0.8−0.9) m/s occurs

in the artery in question. What conclusions can be drawn from the results of the
inquiry?

V

45°

Fig. 8.1.Measurement assembly used to calculate the flow velocity of blood by Doppler ultrasound.

1. The frequency of the wave emitted is 𝑓 = 5.5 ⋅ 10
6
Hz. The blood cell that reflects

the wave ismovingwith velocity 𝑣 in the artery. Here, the sender is stationary, and
the reflector (the blood cell) is moving. From the frame of reference of the particle
in which it is at rest, the frequency is then

𝑓
󸀠
= 𝑓 (1 −

𝑣

𝑐
cos 𝛼)

with 𝑐 as the speed of sound. This is also the frequency of the scattered wave in
the frame of reference of the particle. The receiver registers the frequency

𝑓
󸀠󸀠
=

𝑓
󸀠

1 +
𝑣

𝑐
cos 𝛼

= 𝑓 (
1 −

𝑣

𝑐
cos 𝛼

1 +
𝑣

𝑐
cos 𝛼

) ,
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that is, as frequency shift

Δ𝑓 = 𝑓
󸀠󸀠
− 𝑓 = 𝑓(

1 − 𝑥

1 + 𝑥
− 1) = 𝑓 (

1 − 𝑥 − 1 − 𝑥

1 + 𝑥
) = 𝑓 (−

2𝑥

1 + 𝑥
) ,

with 𝑥 =
𝑣

𝑐
cos 𝛼. Solving for 𝑥 =

𝜈

𝑐
cos 𝛼 yields

𝑣

𝑐
cos 𝛼 =

Δ𝑓

𝑓

2 −
Δ𝑓

𝑓

and therefore, for velocity,

𝑣 = (
𝑐

cos 𝛼
)(

Δ𝑓

𝑓

2 −
Δ𝑓

𝑓

) = (
1,500 𝑚/𝑠

0.71
)(

920

5.5⋅10
6

2 −
920

5.5⋅10
6

) = 0.17 m/s.

2. As the blood cell observed is located in the axis of the artery, the flow velocity of
the blood cell, under laminar, Newtonian conditions, is twice a great as the aver­
age velocity 𝑣

𝑚
. As such, 𝑣

𝑚
= 0.085 m/s. Obviously, 𝑣

𝑚
≈ 𝑣

𝑁
, velocity in the normal

region. Although the assumption of laminar flow is justified, it can be tested by
considering the Reynolds number, which must be less than 𝑅𝑒

𝐺
= 2,300 for lami­

nar conditions. In this case, it is

𝑅𝑒 =
𝜌𝑑𝑣

𝑚

𝜂
=

1,050 ⋅ 0.017 ⋅ 0.1

0.018
= 99.2 ≪ 𝑅𝑒

𝐺
→ laminar!

8.2 Impedance Matching for Sound Waves

Between the ultrasound device and the skin, a special transition layer is usually ap­
plied to achieve thehighest possible transmissionof energybetween layers of different
impedance. This is known as impedance matching. The sound waves have the form

𝑝
𝑛
= 𝑝

𝑛
𝑖
+ 𝑝

𝑛
𝑟
= 𝐴

𝑛
𝑒
𝑖(𝑤𝑡−𝑘𝑥)

+ 𝐵
𝑛
𝑒
𝑖(𝑤𝑡+𝑘𝑥)

. (8.1)

Considering the corresponding continuity conditions for pressure 𝑝 and particle ve­
locity ̇𝜒, for the boundary surfaces shown in the diagrambetween the three layerswith
impedances 𝑍

1
, 𝑍

2
, and 𝑍

3
, show that for the transmission coefficient 𝑇 for sound at

layer thickness 𝑙 =
𝜆
2

4
(with 𝜆

2
as the wavelength of the sound in the transmission

medium 2), the following expression is valid:

𝑇 =
𝑍

1
𝐴

2

3

𝑍
3
𝐴

2

1

= 1, if 𝑍
2

2
= 𝑍

1
𝑍

3
. (8.2)
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1 2 3
p1i p2i p3t

p1r p2r

x = 0 x = l

Fig. 8.2. Separating layer (2) increases the efficiency of sound transfer from (1) to (3). Here, 𝑝
𝑛𝑖

stands for incident sound waves, and 𝑝
𝑛𝑟
stands for reflected waves.

For pressure wave 𝑝 = 𝑝
0
+𝑝 (𝑡, 𝑥), at boundary surface (a|b), the continuity condition

is

𝑝
𝑎
= 𝑝

𝑏

𝑝
𝑎𝑖
+ 𝑝

𝑎𝑟
= 𝑝

𝑏𝑖
+ 𝑝

𝑏𝑟
.

The index 𝑖 stands for the incidentwave; the index 𝑟 stands for the reflected wave, and
therefore,

𝐴
𝑎
𝑒
𝑖(𝜔𝑡−𝑘

𝑎
𝑥)

+ 𝐵
𝑎
𝑒
(𝑖𝜔𝑡+𝑘𝑎𝑥) = 𝐴

𝑏
𝑒
𝑖(𝜔𝑡−𝑘𝑏𝑥) + 𝐵

𝑏
𝑒
𝑖(𝜔𝑡+𝑘𝑏𝑥)

𝐴
𝑎
𝑒
−𝑖𝑘

𝑎
𝑥
+ 𝐵

𝑎
𝑒
𝑖𝑘
𝑎
𝑥
= 𝐴

𝑏
𝑒
−𝑖𝑘

𝑏
𝑥
+ 𝐵

𝑏
𝑒
𝑖𝑘
𝑏
𝑥
.

At the boundary surface (1|2) 𝑥 = 0, and so

𝐴
1
+ 𝐵

1
= 𝐴

2
+ 𝐵

2
. (8.3)

At the boundary surface (2|3) 𝑥 = 𝑙, and therefore

𝐴
2
𝑒
−𝑖𝑘

2
𝑙
+ 𝐵

2
𝑒
𝑖𝑘
2
𝑙
= 𝐴

3
𝑒
−𝑖𝑘

3
𝑙
. (8.4)

𝐵
3
= 0, as after the third layer, the wave goes on forever. For particle velocity ̇𝜂, at

boundary layer (a|b), the continuity condition is

̇𝜒
𝑎
= ̇𝜒

𝑏
.

From the definition of acoustic impedance 𝑍
𝑎
=

𝑝
𝑎

̇𝜂
𝑎

, we have

̇𝜒
𝑎
=

𝑝
𝑎𝑖
− 𝑝

𝑎𝑟

𝑍
𝑎

.

And therefore,
𝑝
𝑎𝑖
− 𝑝

𝑎𝑟

𝑍
𝑎

=
𝑝
𝑏𝑖
− 𝑝

𝑏𝑟

𝑍
𝑏

.
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At boundary surface (1|2) with 𝑥 = 0 we have

𝐴
1
− 𝐵

1

𝑍
1

=
𝐴

2
− 𝐵

2

𝑍
2

,

or
𝑍

2
(𝐴

1
− 𝐵

1
) = 𝑍

1
(𝐴

2
− 𝐵

2
) . (8.5)

At boundary surface (2|3) with 𝑥 = 𝑙, we have

𝐴
2
𝑒
−𝑘

2
𝑙
− 𝐵

𝑖𝑘
2
𝑙

2

𝑍
2

=
𝐴

3
𝑒
−𝑖𝑘

3
𝑙

𝑍
3

that is,
𝑍

3
(𝐴

2
𝑒
−𝑘

2
𝑙
− 𝐵

2
𝑒
𝑖𝑘
2
𝑙
) = 𝑍

2
𝐴

3
𝑒
−𝑖𝑘

3
𝑙
. (8.6)

Using (8.3) and (8.5) after eliminating 𝐵
1
with 𝑍

𝑎

𝑍
𝑏

= 𝛾
𝑎,𝑏

we have

𝐴
1
=

1

2
[(1 + 𝛾

1,2
) 𝐴

2
+ (1 − 𝛾

1,2
) 𝐵

2
] . (8.7)

Using (8.4) and (8.6), correspondingly,

𝐴
2
=

1

2
𝑒
𝑖𝑘
2
𝑙
(1 + 𝛾

2,3
) 𝐴

3
. (8.8)

Substituting 𝐴
2
from (8.8) into (8.7) and solving this equation for 𝐵

2
, we have

𝐵
2
=

1

2
𝑒
−𝑘

2
𝑙
(1 − 𝛾

2,3
) 𝐴

3
. (8.9)

A combination of (8.8) and (8.9) yields

𝐴
1
=

1

4
𝐴

3
[(1 + 𝛾

1,2
) (1 + 𝛾

2,3
) 𝑒

𝑖𝑘
2
𝑙
+ (1 − 𝛾

1,2
) (1 − 𝛾

2,3
) 𝑒

−𝑘
2
𝑙
]

or
𝐴

1
=

1

2
𝐴

3
[(1 + 𝛾

1,3
) cos 𝑘

2
𝑙 + 𝑖 (𝛾

1,2
+ 𝛾

2,3
) sin 𝑘

2
𝑙] with 𝛾 = 𝛾

1,2
𝛾
2,3
.

For 𝑙 = 𝜆
2

4
we have 𝑘

2
𝑙 =

𝜋

2
, so

𝐴
1

𝐴
3

=
1

2
[𝑖 (𝛾

1,2
+ 𝛾

2,3
)] ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐴
3

𝐴
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

=
4

(𝛾
1,2

+ 𝛾
2,3
)
2
. (8.10)

Expanding (8.8) with 𝛾
1,3

we obtain the transmission coefficient

𝑇 =
4 𝛾

1,3

(𝛾
1,2

+ 𝛾
2,3
)
2

=
4 𝛾

1,3

𝛾
2

1,2
+ 𝛾

2

2,3
+ 2𝛾

1,3

. (8.11)
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This can only be 𝑇 = 1 if the denominator from [8.8] is equal to 4 𝛾
1,3
! This means that

𝛾
2

1,2
+ 𝛾

2

2,3
= 2𝛾

1,3

or
(
𝑍

1

𝑍
2

)

2

+ (
𝑍

2

𝑍
3

)

2

= 2
𝑍

1

𝑍
3

.

Rearranging yields the equation

𝑍
4

2
+ 𝑍

2

1
𝑍

2

3
− 2𝑍

2

2
𝑍

3
𝑍

1
= 0

that is,
𝑍

2

2
= 𝑍

3
𝑍

1
± √𝑍

2

3
𝑍

2

1
− 𝑍

2

1
𝑍

2

3
= 𝑍

3
𝑍

1
.

8.3 Bats

A bat moves at 𝑣
𝐹
= 5.75 m/s. The bat encounters a mosquito moving at 𝑣

𝑀
= 3.5 m/s.

The bat emits a soundwave of frequency 𝑓󸀠

𝐹
= 51 kHz. What frequency is registered by

the bat if the sound wave is reflected by the mosquito?

In the bat’s frame of reference, we have

𝑓
󸀠

𝐹
= 𝑓 (

𝑐 + 𝑣
𝐹

𝑐
)

with 𝑓 as the frequency in the laboratory frame of reference. The frequency 𝑓
󸀠

𝑟
of the

reflected wave in the mosquito’s frame of reference is

𝑓
󸀠

𝑟
= 𝑓

󸀠

𝐹
(
𝑐 + 𝑣

󸀠

𝑀

𝑐
)

with 𝑣
󸀠

𝑀
= 𝑣

𝐹
+ 𝑣

𝑀
. For the frequency 𝑓

󸀠󸀠

𝑟
of the reflected wave in the bat’s frame of

reference, we have

𝑓
󸀠󸀠

𝑟
= 𝑓

󸀠

𝑟
(

𝑐

𝑐 − 𝑣
𝑀

) = 𝑓
󸀠

𝐹
(
𝑐 + 𝑣

󸀠

𝑀

𝑐 − 𝑣
𝑀

) .

With 𝑐 = 330m/s; 𝑓󸀠

𝐹
= 51 kHz; 𝜈

𝐹
= 5.75 m/s; 𝜈

𝑀
= 3.5 m/s; and 𝜈

󸀠

𝑀
= 9.25 m/s we find the

numerical value
𝑓

󸀠󸀠

𝑟
= 51 kHz (

330 + 9.25

330 − 9.25
) = 53.94 kHz.

53.94 kHz is the frequency that the bat receives from the mosquito.

8.4 Ultrasound Transducer Array

An ultrasound transducer is comprised of 𝑁 = 5 individual responsive piezoelectric
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crystals that are brought together perpendicular to the direction of an outgoing wave
at a distance of Δ𝑑 = 0.25 cm from one another. These transducers create sound with
a frequency of 𝑓 = 310 kHz, which is focused in the tissue of a patient at a distance
of 𝑑 = 5 cm perpendicular to the crystal arrangement. What must the phase 𝜑

𝑛
of the

individual waves that exit the crystals be? That is, what time delay 𝜏
𝑛
of the driving

signal must be chosen? Assume that the middle crystal lies at the focus of the next
one. The tissue has the qualities of water (𝑐 = 1,500 m/s).

Each crystal is a point source, and the sound waves emitted from them have a dis­
placement that depends on the distance to the source and the phase:

𝑢
𝑛
∝ 𝑒

−𝑖(−𝑘𝑟𝑛+𝜙𝑛).

The distance to the desired point of focus is 𝑟
𝑛
= √𝑑2 + (𝑛 ⋅ Δ𝑑)

2.
At the focus,

𝑈 =

𝑁

2

∑

𝑛=−
𝑁

2

𝑢
𝑛
∝ ∑

𝑛

𝑒
−𝑖(−𝑘𝑟𝑛+𝜙𝑛).

The intensity is 𝐼 ∝ 𝑈
2, and 𝐼 is maximized when 𝑈 is maximized. This is the case

when 𝜑 is chosen so that 𝑒−𝑖(−𝑘𝑟𝑛+𝜙𝑛) = 1; that is,

𝑘𝑟
𝑛
+ 𝜙

𝑛
= 0.

Therefore, the phases must be chosen as

𝜙
𝑛
= −𝑘√𝑑2 + (𝑛 ⋅ Δ𝑑)

2

Calculating the phase shift 𝜑
𝑛
with respect to the middle element, we have

𝜑
𝑛
= 𝜙

𝑛
− 𝜙

0
= −𝑘√𝑑2 + (𝑛 ⋅ Δ𝑑)

2
− 𝑘𝑑

or 𝜑
0
= 0, 𝜑

±1
= −0.081, and 𝜑

±2
= −0.324. The phase shift corresponds to a temporal

delay of

−𝜏
𝑛
= −

𝜑
𝑛

𝜔
= −

𝜑
𝑛

2𝜋𝑓
.

𝜏
1
= −41 ns,

𝜏
2
= −166 ns.

This corresponds to 𝜏
±1

= −41 ns and 𝜏
±2

= −166 ns – a negative time delay. The signals
must be emitted earlier.
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8.5 Material of an Ultrasonic Lens

A useful ultrasonic lens must have the lowest possible reflection, and the highest pos­
sible index of refraction 𝑛. Assume that the lens is located in water, and that sound
strikes it perpendicularly (that is, assume a small opening angle of the sound bundle,
and a thin lens). Which of the materials listed should be chosen for the lens? To an­
swer the question, calculate both the relative index of refraction 𝑛 =

sin 𝛼
1

sin 𝛼
2

(index 1:
lens, index 2: water), as well as the corresponding degree of reflectance 𝑅 =

𝐼
𝑟

𝐼
𝑒

.

Table 8.1. Density and sound velocity of different materials.

Material Density 𝜌 ⋅ 10−3 [kg/m3] Sound Velocity 𝑐 [m/s]

Water 1.00 1,480
Iron 7.90 5,000
Aluminium 2.71 5,200
Glass FK 1 2.27 4,900
Polystyrene 1.06 1,800
Plexiglass 1.18 1,840

With index 1 (lens) and index 2 (water), the index of refraction is

𝑛 =
sin 𝛼

1

sin 𝛼
2

=
𝑐
1

𝑐
2

.

For perpendicular incidence, the degree of reflectance is then

𝑅 =
(𝑍

1
− 𝑍

2
)
2

(𝑍
1
+ 𝑍

2
)2
.

With𝑍 = 𝜌𝑐, the values in Table 8.2 can be obtained. As the index of refraction should
be maximized, and the degree of reflectance minimized, the optimal materials are
glass and polystyrene.

Table 8.2. Indices of refraction and degrees of reflectance of materials.

Material 𝑛 𝑅

Iron 3.4 0.86
Aluminium 3.5 0.66
Glass FK 1 3.3 0.59
Polystyrene 1.2 0.02
Plexiglass 1.2 0.04
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8.6 Measurement of the Lens of the Eye using Ultrasonic
Pulse-Echo Technique

Ultrasonic pulse-echo technique can be used tomeasure the thickness𝐷 of the lens of
the eye. In the method, ultrasonic pulses are received by an oscilloscope. How thick is
the lens if two pulses are registered by the oscilloscopewith a time delay ofΔ𝑡

1
= 2 μs?

A third pulse is detected by the oscilloscope Δ𝑡
2
= 17.26 μs after the second pulse,

originatingwith a foreign body in the eye. How deep is this object in the eye if distance
from the apex of the cornea to the lens is 𝑑 = 5.6mm (see 4.4)? The average velocity of
sound in the lens is ̄𝑐 = 1,630m/s, and the speed of sound in water is 𝑐

H
2
O
= 1,480 m/s.

From Figure 8.3 we have
2𝐷 = ̄𝑐 ⋅ Δ𝑡

1
.

Therefore,

𝐷 =
̄𝑐 ⋅ Δ𝑡

1

2
=

1,630 m/s ⋅ 2 ⋅ 10
−6
s

2
= 1.63 mm.

Additionally,
2𝑥 = 𝑐

H
2
O
⋅ Δ𝑡

2

and
𝑥 =

𝑐
H
2
O
⋅ Δ𝑡

2

2
=

1,480m/s ⋅ 17.26 ⋅ 10
−6

s

2
= 12.77mm.

The separation between the foreign body and the apex of the cornea is therefore

𝑦 = 5.6mm + 𝐷 + 𝑥 = (5.6 + 1.63 + 12.77) mm = 20mm.

t
Δt1 Δt2

d D x
Fig. 8.3. Experimental setup and time sequence of
the pulses. On the left is the cornea; in the mid­
dle is the lens, and the black box on the far right
represents the foreign body in the eye.
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8.7 Ultrasound Transducers

A high-frequency generator emits an effective power of 150W through the excitation
of an ultrasonic quartz. This electro-acoustic transducer works at efficiency 𝜂 = 60%.
The diameter of the quartz plate of the transducer is 𝑑 = 80mm.
1. What is themaximumultrasonic intensity that canbe produced by the transducer

(with equal distribution over the surface of the transducer)?
2. The frequency of the device is 𝜈 = 900 kHz. What is the effective value of the (al­

ternating) pressure in the air, and in the muscles (ignore reflections)? Use: 𝑍
air

=

43 g/cm2
s, 𝑍

muscle
= 1.63 ⋅ 10

5
g/cm2

s; 𝑐
air

= 331 m/s, 𝑐
muscle

= 1,568 m/s. Is this device
intended for therapeutic use?

1. We have

𝑃
𝑈𝑆,max

= 𝜂𝑃
𝑒𝑙
= 0.6 ⋅ 150W = 90W.

𝐼
max

=
𝑃
𝑈𝑆,max

𝐴
=

90W

𝜋 ⋅ 402mm2
= 17,905W/m2 = 1.79W/cm2.

2. The effective value of the alternating pressure can be found from

𝐼 =
1

2𝑍
Δ𝑝

2
=

1

𝑍
Δ𝑝

2

eff

leading to

Δ𝑝
2

eff
(air) = √𝐼𝑍 = √430 kg/m2

s ⋅ 1.79 ⋅ 104W/m2

= 2,774 N/m2 = 0.028 ⋅ 10
5
Pa = 0.028 bar = 28mbar

Δ𝑝
2

eff
(muscles) = √𝐼𝑍 = √1.63 ⋅ 106kg/m2

s ⋅ 1.79 ⋅ 104W/m2

= 170,813 N/m2 = 1.71 ⋅ 10
5
Pa = 1.71 bar.

The device is intended for use in muscle massage and therapy.
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Nuclear magnetic resonance imaging shows concentrations of nuclear spin. In med­
ical applications, the nuclei in question are almost always hydrogen nuclei (1H, pro­
tons), and the following discussion will be limited to these. Normally, both nuclear
spin states are degenerate. If an external magnetic field 𝐵⃗

0
is applied, these split due

to the nuclear Zeeman effect by an energy difference Δ𝐸 = 𝛾 ⋅ 𝐵
0
. The gyromagnetic

ratio 𝛾 of the nucleus gives the ratio of the magnetic moment ⃗𝜇 to the nuclear spin ⃗𝐼ℏ

coupled to it: 𝜇⃗ = 𝛾 ⃗𝐼ℏ. For protons with 𝐼 =
1

2
, 𝛾(1H) = 2.675 ⋅ 10

8 rad

T⋅s
. To encourage

transitions between these two energy levels an alternating magnetic field is applied;
its frequency 𝜈

rf
satisfies the resonance condition ℎ𝜈

rf
= ℏ𝜔

rf

!

= Δ𝐸 = 𝛾𝐵
0
= ℏ𝜔

0
.

This alternating magnetic field 𝐵⃗
1
must be oriented perpendicular to the static field

𝐵⃗
0
= 𝐵

0
⋅ ⃗𝑒

𝑧
. In units of frequency, 𝛾(1H) ≈ 43

MHz

T
; this gives, for the typical fields used

in clinical applications of 𝐵
0
= 1.5 T, a resonant frequency of around 𝜈

0
≈ 65MHz. 𝜔

0
,

or 𝜈
0
=

𝜔
0

2𝜋
, is also known as the Larmor frequency.

Torque 𝑇⃗ = 𝜇⃗ × 𝐵⃗ affects the magnetic moment 𝜇⃗ of the protons in a magnetic
field 𝐵⃗. As the torque corresponds to the temporal change in the magnetic angular
momentum ℏ ⃗𝐼, the equation of motion 𝑑𝜇⃗

𝑑𝑡
= 𝜇⃗ × 𝛾𝐵⃗ results. Because the macroscopic

magnetization 𝑀⃗ is the vector sumof themagnetic moments of all protons by volume,
the magnetization is given as

𝑑𝑀⃗

𝑑𝑡
= 𝑀⃗ × 𝛾𝐵⃗ = 𝑀⃗ × 𝜔⃗.

The solution to this equation of motion describes a precession of the magnetization
around the magnetic field.

If the entire volume𝑉 of a biologic sample with spin density 𝑛 =
𝑁

𝑉
is brought into

a Zeeman field 𝐵⃗
0
= 𝐵

0
⋅ ⃗𝑒

𝑧
, an equilibrium state of magnetization 𝑀⃗

0
= 𝑀

0
⋅ ⃗𝑒

𝑧
occurs

due to the unequal occupation of the nuclear energy levels of the protons in thermal
equilibrium (at temperature 𝑇). This magnetization is proportional to the magnetic
field:

𝑀
0
= 𝑛 ⋅

(ℏ𝛾)
2
𝐼(𝐼 + 1)

𝑘
𝐵
𝑇

⋅ 𝐵
0
.

If this equilibriummagnetization is inverted by using an alternating field of a certain
amplitude and duration – a 𝜋-pulse – then the angular momentum disappears, and
no precession occurs. However, a slow change of the magnetization in the direction
towards the equilibrium state does take place, and can be described as a function of
time by the equation

𝑀
𝑧
= 𝑀

0
(1 − 𝑒

−
𝑡

𝑇1 ).

The transverse components𝑀
𝑥
and𝑀

𝑦
remain = 0. The characteristic time 𝑇

1
for this

process is termed the longitudinal relaxation time.
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If the equilibriummagnetization is pulsed through the application of a 𝜋

2
-pulse in

the 𝑥−𝑦-plane perpendicular to the static magnetic field, the resulting magnetization
precesses in the𝑥−𝑦 planeaccording to𝑀

𝑥
= 𝑀

0
⋅cos(𝜔

0
𝑡+𝜑),𝑀

𝑦
= −𝑀

0
⋅ sin(𝜔

0
𝑡 + 𝜑),

and𝑀
𝑧
= 0 around 𝐵⃗

0
= 𝐵

0
⋅ ⃗𝑒

𝑧
. Additionally, there is also a slow change in the ampli­

tude of the magnetization in direction to the equilibriums state, as𝑀
𝑥
= 𝑀

𝑦
= 0. This

process can generally be described as exponential damping:

𝑀
𝑥
= 𝑀

0
⋅ cos(𝜔

0
𝑡 + 𝜑) ⋅ 𝑒

−
𝑡

𝑇2 , 𝑀
𝑦
= −𝑀

0
⋅ sin(𝜔

0
𝑡 + 𝜑) ⋅ 𝑒

−
𝑡

𝑇2 .

The corresponding time constant 𝑇
2
is termed the transverse relaxation time.

This attenuation of the x- and y-components is subject to the conservation of en­
ergy. One contribution comes from the slightly different precession speeds of the indi­
vidual magnetic moments. As the magnetization is the vector sum of these moments,
this dephasing of the individual spins leads to a decay in the transverse magnetiza­
tion. The origin of the differing precession speeds, and therefore of the dephasing, lies
in locally fluctuatingmicroscopic fields; influences like slight inhomogeneities Δ𝐵

0
in

the static magnetic field, which lead to slightly different resonant frequencies, also
play a part. In total, the transverse relaxation rate is 1

𝑇
∗

2

=
1

𝑇
2

+
𝛾⋅Δ𝐵

0

2
. Independently,

after the 𝜋

2
-pulse, the𝑀

𝑧
-components return again.

If the transverse and longitudinal relaxations are considered, the equations of
movement for the magnetization – the Bloch equations – are

𝑑𝑀
𝑥

𝑑𝑡
= 𝑀

𝑦
𝜔

𝑜
−
𝑀

𝑥

𝑇
2

,

𝑑𝑀
𝑦

𝑑𝑡
= −𝑀

𝑥
𝜔

0
−

𝑀
𝑦

𝑇
2

,

𝑑𝑀
𝑧

𝑑𝑡
= −

(𝑀
𝑧
−𝑀

0
)

𝑇
1

.

In order to induce the nuclear spins, an alternatingmagnetic field 𝐵⃗
1
oriented perpen­

dicular to the Zeeman field must be applied. In order to create this, a pulse of alter­
nating current with this frequency is sent through a coil. Because the excitation must
be resonant, the necessary frequencies are in the radio-frequency region. Assuming
that a solenoid coil is oriented in the x-direction, 𝐵⃗

1
(𝑡) = 2𝐵

1
cos (𝜔

rf
𝑡 + 𝜙) ⃗𝑒

𝑥
. If the lin­

ear alternating field 𝐵⃗
1
(𝑡) is decomposed into two rotating components opposite one

another, only the portion of the field that precesses around 𝐵⃗
0
in the same direction

as the spin is able to cause excitation. As such, the effective amplitude of the RF field
𝐵⃗
1
(𝑡) in the case of a simple coil is just 𝐵

1
. To improve efficiency, the coil is usually

connected to an oscillating circuit. If power 𝑃 is introduced to an oscillating circuit
with Q factor 𝑄 and excitation volume 𝑉, then, for the amplitude of the alternating
field, 𝐵

1
∼ √

𝑃𝑄

𝑉𝜔
0

; the resonance frequency of the oscillating circuit corresponds to the
Larmor frequency 𝜔

0
of the spin. If the strength of the alternating field is fixed, the

duration of the RF irradiation by which the equilibrium magnetization is effected is
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determined. This then rotates under irradiation around the 𝐵⃗
1
-direction according to

the precession equation. The angle of themagnetizationwith the 𝑧-axis (Zeemanfield)
at time 𝑡 after the beginning of the irradiation is 𝜃 = 𝜔

1
𝑡 = 𝛾𝐵

1
𝑡. If the duration of the

irradiation is chosen so that 𝜃 =
𝜋

2
, then the irradiation is termed a 𝜋

2
- or 90∘-pulse

and the magnetization, at the end of the RF pulse, lies in the 𝑥-𝑦-plane. Similarly, the
pulse is termed a 𝜋- or 180∘-pulse if the angle of rotation is 𝜃 = 𝜋. For typical 𝐵⃗

1
field

strengths at the order of magnitude of a few mT, the necessary pulse durations for
protons are in the range of μs.

The excited spins can be detected by using the Faraday effect through a receiver
coil. A time-variant magnetization of the sample yields a time-dependent potential,
according to Faraday’s law of induction:𝑈 ∼

𝑑𝛷

𝑑𝑡
. In this expression 𝛷 is the magnetic

flux through the coil, which is determined by the spin density. Due to the time depen­
dency, the signal is also proportional to 𝜔

0
, and only the transverse components of the

magnetization contribute (linearly) to the signal.
According to the Bloch equations, a signal is expected after the application of a

𝜋

2
-pulse to a spin system in thermal equilibrium:

𝑠(𝑡) = 𝑠
0
cos (𝜔

0
𝑡 + 𝜑) ⋅ 𝑒

−
𝑡

𝑇2 .

The dephasing of the spin can be partially undone by using an RF pulse of a certain
duration and direction. If this rephasing pulse is applied after time 𝑇

𝐸
/2 after the end

of the excitation pulse, a slowly building signal is observed that reaches a maximum
after total time𝑇

𝐸
; this is termed (spin) echo.After thismaximum, the signal dephases

again. The application of multiple rephrasing pulses allows an entire sequence of sig­
nals to be detected with just one excitation pulse. This saves a considerable amount of
time in comparison to the repeated application of excitation pulses with direct detec­
tion, as, in this case, the researcher must wait between measurements each time until
the equilibriummagnetization is established again. This gain in time is especially im­
portant in imaging through the use of magnetic resonance.

After an excitation pulse, all the nuclear spins in the receiver coil contribute to the
signal. As such, location coding of the signals received is necessary in all three spatial
dimensions. This leads to the use of a magnetic field gradient, which can, through
the use of individual selectable gradients that can be turned on an off in a targeted
manner (pulsed gradients). If, for example, an additional linear gradient field 𝐵⃗( ⃗𝑟) =

𝐵⃗
0
+𝐺

𝑧
⋅ 𝑧 ⋅ ⃗𝑒

𝑧
is applied parallel to the static magnetic field during the excitation of the

nuclear spins, the resonant frequency of the spin in the sample changes linearly along
the 𝑧-axis. Only the spatial region where the resonant frequency is equal to that of the
incident RF field is excited, and contributes to the signal. Because, using this method,
a layer can be selected, 𝐺

𝑧
is termed the slice selection gradient. Through the finite

excitation bandwidth of the RF pulse, which is inversely proportional to the duration
of the pulse 𝜏

p
, the thickness𝐷 of the selected layer can be determined: 1

𝐷
=

𝛾

2𝜋
⋅𝐺

𝑧
⋅𝜏

p
.

In order to achieve a uniform excitation of the layer, the excitation pulses take the
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form sin 𝑥

𝑥
with respect to time, corresponding to a rectangular function with respect to

frequency.
By using a layer selection gradient during the excitation of the nuclear spins, a

slice is selected from the object under investigation for imaging. Location encoding
in the 𝑥- and 𝑦-directions is achieved through frequency/phase encoding gradients.
The frequency encoding gradient is switched on as the signal is read, and is there­
fore called readout gradient. If this is switched in the 𝑥-direction, the precession fre­
quency of the spin is position-dependent along this axis. If a Fourier transform of the
signal is carried out, signals from different 𝑥-regions emerge at different locations in
the spectrum. As such, the different portions of the signal can be connected to their
corresponding locations. In order to form a three-dimensional image, the direction of
the readout gradient can be changed, and multiple one-dimensional images can be
combined with the assistance of projection reconstruction algorithms. Today, phase
encoding is generally used in the other spatial direction (𝑦). An experiment with the
same layer selection gradient and readout gradient is repeated, and a phase encod­
ing gradient is switched on in the 𝑦-direction at a particular point in the experiment.
In each repetition, the strength of this phase encoding gradient is changed, and a
new spectrum is observed. If, for example, 128 points are desired for the image in the
𝑦-direction, the experiment must be repeated 128 times as the phase encoding gradi­
ent is varied from original value −𝐺

𝑦
stepwise through zero up to +𝐺

𝑦
.

The classic experiment, and workhorse in the day-to-day operations of a clinic,
is the spin echo sequence. Because this method gives the best image quality it is fre­
quently used as a reference for other methods. With other pulse sequences, a portion
of the image quality or resolution is sacrificed, usually in order to achieve quicker im­
age production. In spin echo sequencing a selective 𝜋

2
-pulse is first applied, with a

layer selection gradient. Then, for a short time, a phase encoding gradient is switched
on following a selective 𝜋-pulse for echo creation. During the uptake of the signal,
the readout gradient is switched on. The time from the middle of the excitation pulse
to the echo’s maximum is termed the echo time 𝑇

𝐸
. This experiment is repeated with

different phase encoding gradient values after time𝑇
𝑅
, duringwhich the state of equi­

librium can be re-established, until data observation for an entire layer image is com­
plete. Typical values for digital resolution are 128, 256, or even 512 phase coding steps
(and therefore points). 𝑇

𝐸
is in the range of 10−100ms, and 𝑇

𝑅
is 0.5−3 s. If relaxation

is considered, the signal amplitude of the echo is

𝑆 = 𝑆
0
⋅ 𝑒

−
𝑇𝐸

𝑇2 ⋅ (1 − 𝑒

𝑇𝑅

𝑇1 ).

The parameters𝑇
𝐸
and𝑇

𝑅
can be selected, while𝑇

1
and𝑇

2
are determined by the sam­

ple (the tissue). If, for example, 𝑇
𝑅
≈ 𝑇

1
is chosen, and 𝑇

𝐸
≪ 𝑇

2
, then the contrast of

the image is most significantly influenced by the tissue parameter𝑇
1
. In choosing this

𝑇
1
-weighting, the structure of the tissue can be imaged especially well. By choosing

𝑇
𝑅
≫ 𝑇

1
and𝑇

𝐸
≈ 𝑇

2
,𝑇

2
isweightedheavily; under this condition the image is very sen­

sitive to pathological processes in which a relatively large amount of water is present
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in the tissue. For several investigations in the head or the spine regions, a pure proton
density image is sometimes desired. In this case, choose 𝑇

𝑅
≫ 𝑇

1
and 𝑇

𝐸
≪ 𝑇

2
. A high

proton density will then have high brightness in the image. In addition to the values
chosen for pulse sequence parameters, contrast media can also be used. In combina­
tionwith a wide range of specialized pulse sequences, this yields enormous flexibility
and versatility of MRI (magnetic resonance imaging) for medical investigations.

Analogous to the Fourier transform with respect to time, which leads to a fre­
quency spectrum, a Fourier transform can also be carried out with respect to location.
This is especially useful with MRI because the location frequencies 𝑘

𝑥
and 𝑘

𝑦
are, ac­

cording to
𝑘
𝑥,𝑦

= 𝛾 ⋅ ∫ 𝑑𝑡 𝐺
𝑥,𝑦

(𝑡),

functions of the magnetic field gradients in the corresponding spatial directions. As
such, the signal can be described as

𝑆(𝑘
𝑥
, 𝑘

𝑦
) = ∫ 𝑑𝑥∫𝑑𝑦𝑀

𝑇
(𝑥, 𝑦) ⋅ 𝑒

−𝑖(𝑘
𝑥
⋅𝑥+𝑘

𝑦
⋅𝑦)
.

The transverse magnetization 𝑀
𝑇
(𝑥, 𝑦) desired can be calculated through the back-­

transformation of the signal in 𝑘-space. An individual scan with a constant readout
gradient (𝑥-direction) corresponds to a row in 𝑘-space. In spin echo experiments, the
data matrix in 𝑘-space is filled in line by line along the 𝑘

𝑥
-axis as scans progress. Im­

age reconstruction yields a periodic image. As this periodicity is of no interest in MRI,
the image region is limited to one period, the field of view (FOV). The width of this re­
gion is given by the increment Δ𝑘 in 𝑘-space: FOV =

2𝜋

Δ𝑘
. The resolution of the image is

given by the maximum value 𝑘
max

in 𝑘-space: 𝛿𝑥 =
2𝜋

𝑘
max

. The same holds for the other
spatial direction 𝑦. The image information is distributed over the entire 𝑘-space, but
the data in the center of the 𝑘-space have deep location frequencies (𝑘-values), and
therefore contribute information strongly to the signal-noise relationship; they con­
tain, however, no image details. The data at the edges of 𝑘-space contain, due to their
high location frequencies, information on fine structures. Due to these relationships,
filters can also be used before image reconstruction, in order to enhance or suppress
certain information present in the raw data. As the use of filters requires advanced
knowledge of the details of their effects, only unfiltered data is generally used in ev­
eryday clinical studies.

Artifacts in MRI images have a wide range of possible origins. Motion artifacts oc­
cur due to the involuntary or physiological movement of the patient during the imag­
ing process. Inhomogeneity artifacts occur due to faults in the devices and suscepti­
bility effects within the body. Digital image artifacts stem from the reconstruction of
the image with the assistance of Fourier transforms.

In addition to the conventional spin-echomethod, gradients can be used to create
an echo signal instead of a 𝜋-pulse. There are two families of pulse sequences in MRI
that are based on either the spin-echo, or the gradient-echo. From these, a wide range
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of pulse sequences have beendeveloped, eachwith specific advantages anddisadvan­
tages. In addition to the possibility of drastically reducing the duration of the process
relative to the spin-echo experiment, experiments have also been developed to inves­
tigate dynamic parameters like the motion of water molecules. These methods even
allow for differentiation between diffuse and directed motion. Furthermore, through
the use of hyperpolarized gases, very strong signals can be read from the lungs, and
in vivo spectroscopy can be carried out. An additional and prominent area of appli­
cation is functional imaging (fMRI), in which the change of signals in dependency on
specific activities is observed. This allows for glimpses of how the brain functions. The
foundation of these techniques is the BOLD effect (blood oxygen level dependency).
Hemoglobin molecules that are bound to oxygen are diamagnetic; those without oxy­
gen are paramagnetic. This has an effect on the signal; as such, for example, local
oxygen consumption in the brain – which indicates increased activity – is made visi­
ble.

9.1 Zeeman Effect and Nuclear Spin Resonance

Calculate:
1. The resonant frequency 𝑓 of the NMR transition of protons in a magnetic field of

𝐵 = 3T.
2. The wavelength of photons that cause these transitions. In what range of the elec­

tromagnetic spectrum do these wavelengths occur?

1. For resonance with Zeeman splitting Δ𝐸, for a proton with magneton 𝜇
𝑃
,

Δ𝐸 = ℎ𝜔 = ℎ𝑓 = 2 𝜇
𝑃
𝐵.

Solving for frequency yields
𝑓 =

2 𝜇
𝑃
𝐵

ℎ
.

Numerically, with 𝜇
𝑃
= 2.79𝜇

𝑁
= 1.4 ⋅ 10

−26
J/T, 𝐵 = 3 T and the Planck constant

ℎ = 6.6 ⋅ 10
−34

Jswe find the resonant frequency

𝑓 =

2 (1.4 ⋅ 10
−26

J/T) 3 T

6.6 ⋅ 10−34 Js
= 127MHz.

2. The wavelength is

𝜆 =
𝑐

𝑓
=

3 ⋅ 10
8
m/s

127MHz
= 2.36m.

This wavelength is in the radio frequency region of the spectrum, in the very high
frequency (VHF) range.
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9.2 Magnetization and its Relaxation

From the equation ofmotion for the angularmomentum 𝑑 ⃗𝐼

𝑑𝑡
= 𝜇⃗×𝐵⃗, derive the equation

of motion for magnetization 𝑀⃗.
[𝜇 is the magnetic moment, and 𝐵 is the magnetic field]
1. in a static magnetic field along the 𝑧-axis.
2. Additionally, in an RF field that rotates in the 𝑥𝑦-plane with angular frequency 𝜔.

Relaxation processes can be ignored.
3. The equations should be modified so that the longitudinal and transverse relax­

ation times 𝑇
1
and 𝑇

2
are considered. What is described by these times?

1. For the torque,

⃗𝜏 =
𝑑 ⃗𝐼

𝑑𝑡
= 𝜇⃗ × ⃗𝐵.

Themagneticmoment 𝜇⃗ canbe expressed using ⃗𝜇 = 𝛾 ⃗𝐼with 𝛾 as the gyromagnetic
ratio, leading to

𝑑 ⃗𝜇

𝑑𝑡
= 𝛾

𝑑 ⃗𝐼

𝑑𝑡
= 𝛾 ( ⃗𝜇 × 𝐵⃗) = 𝛾(

𝜇
𝑦
𝐵
𝑧
− 𝜇

𝑧
𝐵
𝑦

𝜇
𝑧
𝐵
𝑥
− 𝜇

𝑥
𝐵
𝑧

𝜇
𝑥
𝐵
𝑦
− 𝜇

𝑦
𝐵
𝑥

).

For 𝐵⃗ = (

0

0

𝐵
0

) we have

⃗𝜇 × 𝐵⃗ = (

𝜇
𝑦
𝐵
0

−𝜇
𝑥
𝐵
0

0

) = 𝐵
0
(

𝜇
𝑦

−𝜇
𝑥

0

) .

Therefore, the equation of motion is

𝑑 ⃗𝜇

𝑑𝑡
= 𝛾𝐵

0
(

𝜇
𝑦

−𝜇
𝑥

0

) .

2. For

𝐵⃗ = (

𝐵
1
cos (𝜔 𝑡)

𝐵
1
sin (𝜔 𝑡)

𝐵
0

)

we have

𝜇⃗ × 𝐵⃗ = (

𝜇
𝑦
𝐵
0
− 𝜇𝑧𝐵

1
sin (𝜔 𝑡)

𝜇
𝑧
𝐵
1
cos (𝜔 𝑡) − 𝜇

𝑥
𝐵
0

𝜇
𝑥
𝐵
1
sin (𝜔 𝑡) − 𝜇

𝑦
𝐵
1
(cos 𝜔 𝑡)

) .

In a coordinate system that rotates around the 𝑧-axis with angular frequency 𝜔,
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𝐵eff = 𝐵
0
+ 𝐵

1
(𝜔 𝑡) +

𝜔

𝛾
= (

𝐵
1

0

𝐵
0
+

𝜔

𝛾

)

and therefore

𝑑𝜇⃗

𝑑𝑡
= 𝛾(

𝜇
𝑦
(𝐵

0
+

𝜔

𝛾
)

𝜇
𝑧
𝐵
1
− 𝜇

𝑥
(𝐵

0
+

𝜔

𝛾
)

−𝜇
𝑦
𝐵
1

).

3. Here,

𝑑 ⃗𝜇

𝑑𝑡
= 𝛾(

𝜇
𝑦
𝐵
0
− 𝜇

𝑧
𝐵
1
sin (𝜔 𝑡)

𝜇
𝑧
𝐵
1
cos (𝜔 𝑡) − 𝜇

𝑥
𝐵
0

𝜇
𝑥
𝐵
1
sin (𝜔 𝑡) − 𝜇

𝑦
𝐵
1
cos (𝜔 𝑡)

) +(

−
𝜇
𝑥

𝑇
2

−
𝜇
𝑦

𝑇
2

−
𝜇
𝑧
−𝜇

0

𝑇
1

).

The longitudinal relaxation time 𝑇
1
describes the decay of the 𝑧-components of

the magnetization to their equilibrium values. The transverse relaxation time 𝑇
2

describes the decay of the 𝑥- and 𝑦-components.

9.3 NMR Pulses and the Rotating Coordinate System

In a laboratory frame of reference, the following magnetic field is applied:

𝐵⃗ = 𝐵
0
(

0

0

1

) + 𝐵
1
(

cos (𝜔
𝑅𝐹

𝑡 + 𝜑)

0

0

) . (9.1)

1. What is the corresponding effective magnetic field 𝐵⃗
eff
in a coordinate system ro­

tating with the Larmor frequency 𝜔
𝐿
?

2. What happens if 𝜔
𝑅𝐹

is resonant? What role does the phase 𝜑 of the RF field play?
3. How long does it take for the magnetization to rotate by 90∘ and 180

∘ if the RF field
has an amplitude of 𝐵

1
= 10

−4
T?

1. Express the magnetization 𝑀⃗ using the unit vectors ̂𝑖, ̂𝑗, 𝑘̂:

𝑀⃗ = 𝑀
𝑥
̂𝑖 + 𝑀

𝑦
̂𝑗 + 𝑀

𝑧
𝑘̂

and then,

𝑑𝑀⃗

𝑑𝑡
=

𝜕𝑀
𝑥

𝜕𝑡

̂𝑖 + 𝑀
𝑥

𝜕 ̂𝑖

𝜕𝑡
+

𝜕𝑀
𝑦

𝜕𝑡

̂𝑗 + 𝑀
𝑦

𝜕 ̂𝑗

𝜕𝑡
+
𝜕𝑀

𝑧

𝜕𝑡
𝑘̂ + 𝑀

𝑧

𝜕𝑘̂

𝜕𝑡
.
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For the partial derivatives with respect to time of the unit vectors, we have

𝜕 ̂𝑖

𝜕𝑡
= 𝜔 × ̂𝑖

𝜕 ̂𝑗

𝜕𝑡
= 𝜔 × ̂𝑗

𝜕𝑘̂

𝜕𝑡
= 𝜔 × 𝑘̂.

(
𝑑𝑀⃗

𝑑𝑡
)
static

= (
𝑑𝑀⃗

𝑑𝑡
)
rot

+ 𝜔⃗ × 𝑀⃗.

As ( 𝑑𝑀⃗
𝑑𝑡

)
static

= 𝛾 𝑀⃗ × 𝐵, we have

(
𝑑𝑀⃗

𝑑𝑡
)
rot

= 𝛾𝑀⃗ × 𝐵⃗ − 𝜔⃗ × 𝑀⃗ = 𝛾𝑀⃗ × (𝐵⃗ +
𝜔⃗

𝛾
) = −𝛾(𝐵⃗

eff
× 𝑀⃗)

and therefore,
𝐵
eff

= 𝐵⃗ +
𝜔⃗

𝛾
.

For 𝜔⃗

𝛾
= −𝐵⃗

0
, 𝐵⃗

eff
becomes

𝐵⃗
eff

= 𝐵⃗
1
cos (𝜔

𝑅𝐹
𝑡) .

In the laboratory frame of reference, 𝐵⃗
eff
is

𝐵⃗
eff

= 𝐵
1
(

cos (𝜔
𝑅𝐹

𝑡 + 𝜑)

0

0

) .

Transforming the 𝑥- and 𝑦-components into a rotating coordinate system yields

𝐵⃗
eff

= 𝐵
1
(
cos(−𝜔

𝐿
𝑡) sin(−𝜔

𝐿
𝑡)

sin(−𝜔
𝐿
𝑡) cos(−𝜔

𝐿
𝑡)
)(

cos(𝜔
𝑅𝐹

𝑡 + 𝜑)

0
)

= 𝐵
1
(

cos(𝜔
𝐿
𝑡) cos(𝜔

𝑅𝐹
𝑡 + 𝜑)

− sin(𝜔
𝐿
𝑡) cos(𝜔

𝑅𝐹
𝑡 + 𝜑)

).

Using trigonometric identities, this becomes

cos (𝜔
𝐿
𝑡) cos (𝜔

𝑅𝐹
𝑡 + 𝜑) =

1

2
[cos [(𝜔

𝐿
+ 𝜔

𝑅𝐹
) 𝑡 + 𝜑] + cos [(𝜔

𝐿
− 𝜔

𝑅𝐹
) 𝑡 − 𝜑]] ,

sin (𝜔
𝐿
𝑡) cos (𝜔

𝑅𝐹
𝑡 + 𝜑) =

1

2
[sin [(𝜔

𝐿
+ 𝜔

𝑅𝐹
) 𝑡 + 𝜑] + sin [(𝜔

𝐿
− 𝜔

𝑅𝐹
) 𝑡 + 𝜑]] .

The values with (𝜔
𝐿
+ 𝜔

𝑅𝐹
) 𝑡 are not resonant, and can therefore be ignored. Then

𝐵⃗
eff

=
1

2
𝐵
1
(

cos[(𝜔
𝐿
− 𝜔

𝑅𝐹
)𝑡 − 𝜑]

− sin[(𝜔
𝐿
− 𝜔

𝑅𝐹
)𝑡 − 𝜑]

).

2. In the resonant case,𝜔
𝐿
= 𝜔

𝑅𝐹
. Then

𝐵⃗
eff

=
1

2
𝐵
1
(

cos(−𝜑)

− sin(−𝜑)
) =

1

2
𝐵
1
(
cos 𝜑

sin 𝜑
).

𝐵⃗
eff
is constant in a rotating coordinate system. 𝜑 describes the direction of 𝐵⃗

eff
in

the 𝑥-𝑦-plane.
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3. For 𝜔we have
𝜔 =

𝑑𝛩

𝑑𝑡
= −𝛾𝐵

1
.

The flip angle is therefore

𝛩 (𝑡) =

𝑡

∫

0

(−𝛾𝐵
1
) 𝑑𝑡 =

󵄨󵄨󵄨󵄨−𝛾𝐵1
𝑡
󵄨󵄨󵄨󵄨 .

The required pulse duration is
𝑡 =

𝛩

𝛾𝐵
1

.

For 𝛩 = 𝜋, 𝑡 = 𝑡
180

∘ =
𝜋

𝛾𝐵
1

and for 𝛩 = 𝜋/2, 𝑡 = 𝑡
90

∘ =
𝑡
180

∘

2
.

With 𝛾 = 2.675 ⋅ 10
8
rad/Ts and 𝐵

1
= 1 ⋅ 10

−4
T we have

𝑡
180

∘ =
𝜋

(2.675 ⋅ 108 1/Ts) (1 ⋅ 10−4 T)
= 120 μs,

𝑡
90

∘ =
𝑡
180

∘

2
= 60 μs.

9.4 Fat Signal Suppression through Inversion Recovery

In a simple measurement technique to determine relaxation time 𝑇
1
the following se­

quence of pulses is used:

t180° t90°

t=0

I1

I0

t

R
F 

pu
ls

e

signal

Fig. 9.1. The pulse sequence.

1. What pulse duration 𝑡
180

∘ must be chosen for amplitude 𝐵
1
of the RF field to in­

vert the magnetization? How long should the second pulse be in the same field to
create the maximum signal?

2. What is the time dependency of the magnetization𝑀
z
(𝑡) after the 180∘-pulse if the

system is in equilibrium before the first pulse?
3. What must 𝜏 be so that 𝑧-magnetization is𝑀

z
(𝜏) = 0?



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 157
�

�

�

�

�

�

9.4 Fat Signal Suppression through Inversion Recovery | 157

4. Tissue comprised of water (
H
2
O
𝑇
1
= 1.2 s) and fat (

fat
𝑇
1
= 260ms) is to be investi­

gated.
(a) Why will image reconstruction in the MRI be mademore difficult by the pres­

ence of fat within the tissue, with respect to frequency coding?
(b) How can the methods here be used to suppress the signal from the fat? How

strongly will the signal of water be suppressed in the process?

1. Equilibrium is

𝑀(−𝑡
180

∘) = (

0

0

𝑀
0

).

The first pulse inverts this state

𝑀(0) = (

0

0

−𝑀
0

).

The pulse lengths are
𝑡
180

∘ = 2 𝑡
90

∘ = 𝜋 (𝛾𝐵
1
)
−1

.

2. The equation of motion for the 𝑧-component is

𝑀̇
𝑧
= −(

𝑀
𝑧
−𝑀

0

𝑇
1

) .

For𝑀
𝑧
(0) = −𝑀

0
the solution is

𝑀
𝑧
(𝑡) = 𝑀

0
(1 − 2 𝑒

−𝑡/𝑇1
) .

3. Using the condition𝑀
𝑧
(𝜏) = 0 we have

0 = 𝑀
0
(1 − 2 𝑒

−𝜏/𝑇1
) ⇒ 2 𝑒

−𝜏/𝑇1
= 1.

Solving for 𝜏
𝜏 = 𝑇

1
ln 2.

4. Due to differing material characteristics, the 𝑧-magnetizations of fat and water
decay with different time constants.
(a) Due to the influence of chemical shifting on the location coding, two overlaid

images that are spatially displaced are produced in theMRI image reconstruc­
tion.

(b) If the 90∘-pulse is applied at exactly themoment atwhich the 𝑧-magnetization
of the fat disappears (

fat
𝑀

𝑧
= 0), only the remainingmagnetization of the wa­

ter in the (𝑥, 𝑦)-plane will be captured. Only a weakened signal can be mea­
sured, but it is not disturbed by signals from fat in other parts of the sample.

𝜏 =
fat
𝑇
1
ln 2.



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 158
�

�

�

�

�

�

158 | 9 Nuclear Magnetic Resonance

H
2
O
𝑀

𝑧
(𝜏) = 𝑀

0
(1 − 4𝑒

−fat 𝑇1/H2O
𝑇1
) = 72%𝑀

0
.

As the signal measured is proportional to the magnetic flux through the re­
ceiver coil, and therefore to magnetization, the signal from water is reduced
by 28%.

9.5 Gradient Echo

There are two large families of MRI pulse sequences: those based on spin echoes, and
those that use gradient echoes to produce signals. The signal of a gradient echo ex­
periment is given by

𝑆 = 𝑆
0
𝑒
−

𝑇𝐸

𝑇
∗

2 (1 − 𝑒
−
𝑇𝑅

𝑇1 ) .

Here, 𝑇
𝐸
is the echo time, and 𝑇

𝑅
is the repetition time.

1. Describe the process of such an experiment according to the pulse diagram.
2. If this sequence of pulses is used in anMRI experiment, whatmust the parameters

𝑇
𝐸
and 𝑇

𝑅
be to obtain a 𝑇

1
-weighting? What is this 𝑇

1
weighting generally used

to do?
3. How would a 𝑇∗

2
-weighting be accomplished, and what would it be used to do?

4. What is PD (proton density) weighting, and how must the parameters be chosen
to achieve it?

1. The initialization pulse of length 𝑡
init

breaks themagnetization out of equilibrium.

tinit

TR

I1

I0
t

R
F

TE

G1

G0
t

-G1

tinit

gr
ad

ie
nt

echo

Fig. 9.2. Pulse sequence of a gradient echo experiment. Above: radiofrequency pulses. Below: serial
magnetic field gradient.
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Directly after this pulse, the gradient with strength 𝐺
1
is applied. After time 1

2
𝑇
𝐸

after the end of the initialization pulse, the polarity of the gradient is flipped, so
that after another period of time 1

2
𝑇
𝐸
the echo maximum is achieved. After the

echo there is a waiting period in which the magnetization can relax, until the se­
quence is carried out again. The repetition time 𝑇

𝑅
describes the amount of time

that passes between repetitions of the initialization pulse. As such, the time pa­
rameters can be used to achieve weighting with respect to the time constants 𝑇

1

and 𝑇
∗

2
for signal production.

2. If 𝑇
𝐸
is set to be as small as possible, 𝑆 ≈ 𝑆

0
(1− 𝑒

−
𝑇𝑅

𝑇1 ). This means that the contrast
between different𝑇

1
is expressed strongly. Long𝑇

1
-times are expected with fluids,

while tissues usually have a short 𝑇
1
. As such, an edema (swelling) or a region full

of blood will produce a dark image, while the neighboring tissue will be light. 𝑇
𝐸

set as small as possible is, however, not the optimum. (An optimization can only
be achieved through effective pulse sequencing.)

3. If𝑇
𝑅
is set long, so that the𝑇

1
-relaxation cangoonas longaspossible, it is possible

to determine the contrast of 𝑇∗

2
. Fluids tend to show up light with 𝑇

∗

2
-weighting,

while tissues comprised of water and fat are resolved in shades of gray. Usually,
undesired substances in thepatient showupbright; as such,𝑇∗

2
-weighting is often

used in diagnosing illnesses.
4. 𝑆

0
is proportional to𝑀

𝑥𝑦
, which again depends on the 𝑧-magnetization at the be­

ginning of the 90
∘-pulse. Here, the equilibrium magnetization, which is propor­

tional to proton density, also plays a role (see also Exercise 9.6).
If 𝑇

𝐸
is chosen to be short, and 𝑇

𝑅
to be long, a signal is obtained that primarily

depends on 𝑆
0
(𝑀

𝑥𝑦
). This weighting was especially frequently used in the early

days of MRI, when 𝑇
∗

2
-weighting took too much time. PD weighting can be used

to differentiate between cortical bones and meniscus.

9.6 Contrast in MRI Imaging

In an MRI experiment, tissue with different 𝑇
1
- and 𝑇

2
-times in two different regions,

but the same proton density throughout, is to be investigated. In inversion recovery
preparation, the 𝑧-magnetization is first recorded (at time 𝑡 = 0, the magnetization of
both regions is rotated by 180∘). After time 𝑇, a 90

∘-pulse is applied.
1. Determine an expression for the Michelson contrast 𝐶 =

𝐼
2
−𝐼

1

𝐼
2
+𝐼

1

of the signal mea­
sured (after the 90

∘-pulse) of the two regions of tissue. Show that the contrast,
depending on measurement time 𝑡 (the time difference 𝑡 − 𝑇), is

𝐶(𝑡 − 𝑇) =
1 − 𝜉𝑒

−
𝑡−𝑇

𝜙

1 + 𝜉𝑒
−
𝑡−𝑇

𝜙

.
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Using the parameters given, derive expressions for 𝜉 and 𝜙. Note that the receiver
coil detects 𝑥𝑦-magnetization.

2. In an inversion recovery experiment on the human brain, the inversion time is
(𝑇) 200ms. How long must the measurement time (time after the 90

∘-pulse until
the next inversion) be at a minimum, if a contrast of at least 80% between gray
material (

𝐴
𝑇
1
= 600ms,

𝐴
𝑇
2
= 100ms) and cerebrospinal fluid (

𝐵
𝑇
1
= 1155ms,

𝐵
𝑇
2
= 145ms) is desired?

1. Solving the Bloch equation for𝑀
𝑧
(first in analogy to Exercise 9.4),

𝑑𝑀
𝑧

𝑑𝑡
=

𝑀
0
−𝑀

𝑧

𝑇
1

.

Boundary conditions:𝑀
𝑧
(𝑡 = 0) =

𝑖
𝑀

𝑧
and𝑀

0
is the equilibriummagnetization

𝑑𝑀
𝑧

𝑀
0
− 𝑀

𝑧

=
1

𝑇
1

𝑑𝑡,

ln
𝑀

0
−𝑀(𝑡)

𝑀
0
−

𝑖
𝑀

𝑧

= −
𝑡

𝑇
1

,

𝑀
0
−𝑀(𝑡) = (𝑀

0
−

𝑖
𝑀

𝑧
) 𝑒

−
1

𝑇1 .

Due to the complete inversion at time 𝑡 = 0 we have
𝑖
𝑀

𝑧
= −𝑀

0
, and therefore,

𝑀(𝑡) = 𝑀
0
(1 − 𝑒

−
𝑡

𝑇1 ) +
𝑖
𝑀

𝑧
𝑒
−

𝑡

𝑇1 .

2. Due to the array of coils in MRI tomography, the signal 𝐼 is proportional to the
value of 𝑥𝑦-magnetization: 𝐼 ∝

󵄨󵄨󵄨󵄨󵄨
𝑀

𝑥𝑦

󵄨󵄨󵄨󵄨󵄨
. In order to make the 𝑧-magnetization visi­

ble, the signal is captured with a 90
∘-pulse at time 𝑇 in the 𝑥𝑦-plane. This means

that𝑀
𝑥𝑦

= 𝑀
𝑧
(𝑇), which leads to the expression

𝑀
𝑥𝑦
(𝑡) = (𝑀

0
(1 − 𝑒

−
𝑇

𝑇1 ) +
𝑖
𝑀

𝑧
𝑒
−

𝑇

𝑇1 ) 𝑒
−
𝑡−𝑇

𝑇2 .

For both materials with different 𝑇
1
and 𝑇

2
, there are, therefore, different signal

strengths and corresponding contrast:

𝐼
𝐴
(𝑡) = (

𝐴
𝑀

0
(1 − 𝑒

−
𝑇

𝐴𝑇1 ) +
𝑖𝐴
𝑀

𝑧
𝑒
−

𝑇

𝐴𝑇1 ) 𝑒
−

𝑡−𝑇

𝐴𝑇2 ,

𝐼
𝐵
(𝑡) = (

𝐵
𝑀

0
(1 − 𝑒

−
𝑇

𝐵𝑇1 ) +
𝑖𝐵
𝑀

𝑧
𝑒
−

𝑇

𝐵𝑇1 ) 𝑒
−

𝑡−𝑇

𝐵𝑇2 .

To isolate numerator and denominator of the contrast,

𝐼
𝐵
− 𝐼

𝐴
= (

𝐴
𝑀

0
(1 − 𝑒

−
𝑇

𝐴𝑇1 ) +
𝑖𝐴
𝑀

𝑧
𝑒
−

𝑇

𝐴𝑇1 ) 𝑒
−

𝑡−𝑇

𝐴𝑇2

− (
𝐵
𝑀

0
(1 − 𝑒

−
𝑇

𝐵𝑇1 ) +
𝑖𝐵
𝑀

𝑧
𝑒
−

𝑇

𝐵𝑇1 ) 𝑒
−

𝑡−𝑇

𝐵𝑇2

.

𝐼
𝐵
+ 𝐼

𝐴
= (

𝐴
𝑀

0
(1 − 𝑒

−
𝑇

𝐴𝑇1 ) +
𝑖𝐴
𝑀

𝑧
𝑒
−

𝑇

𝐴𝑇1 ) 𝑒
−

𝑡−𝑇

𝐴𝑇2

+ (
𝐵
𝑀

0
(1 − 𝑒

−
𝑇

𝐵𝑇1 ) +
𝑖𝐵
𝑀

𝑧
𝑒
−

𝑇

𝐵𝑇1 ) 𝑒
−

𝑡−𝑇

𝐵𝑇2 .
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The equilibriummagnetization is calculated using the proton density𝑀
0
= ∑𝜇 ∝

𝜌
𝑝
+ . If the proton density is the same for both materials, and both components

begin with inverted 𝑧-magnetization,

𝐼
𝐵
− 𝐼

𝐴
=

𝐴
𝑀

0
(1 − 2𝑒

−
𝑇

𝐴𝑇1 ) 𝑒
−

𝑡−𝑇

𝐴𝑇2 −
𝐵
𝑀

0
(1 − 2𝑒

−
𝑇

𝐵𝑇1 ) 𝑒
−

𝑡−𝑇

𝐵𝑇2 ,

𝐼
𝐵
+ 𝐼

𝐴
=

𝐴
𝑀

0
(1 − 2𝑒

−
𝑇

𝐴𝑇1 ) 𝑒
−

𝑡−𝑇

𝐴𝑇2 +
𝐵
𝑀

0
(1 − 2𝑒

−
𝑇

𝐵𝑇1 ) 𝑒
−

𝑡−𝑇

𝐵𝑇2 ,

𝐼
𝐵
− 𝐼

𝐴

𝐼
𝐵
+ 𝐼

𝐴

=

𝐴
𝑀

0
(1 − 2𝑒

−
𝑇

𝐴𝑇1 ) 𝑒
−

𝑡−𝑇

𝐴𝑇2 −
𝐵
𝑀

0
(1 − 2𝑒

−
𝑇

𝐵𝑇1 ) 𝑒
−

𝑡−𝑇

𝐵𝑇2

𝐴
𝑀

0
(1 − 2𝑒

−
𝑇

𝐴𝑇1 ) 𝑒
−

𝑡−𝑇

𝐴𝑇2 +
𝐵
𝑀

0
(1 − 2𝑒

−
𝑇

𝐵𝑇1 ) 𝑒
−

𝑡−𝑇

𝐵𝑇2

=

(1 − 2𝑒
−

𝑇

𝐴𝑇1 ) 𝑒
−

𝑡−𝑇

𝐴𝑇2 −
𝐵
𝑀

0

𝐴
𝑀

0

(1 − 2𝑒
−

𝑇

𝐵𝑇1 ) 𝑒
−

𝑡−𝑇

𝐵𝑇2

(1 − 2𝑒
−

𝑇

𝐴𝑇1 ) 𝑒
−

𝑡−𝑇

𝐴𝑇2 +
𝐵
𝑀

0

𝐴
𝑀

0

(1 − 2𝑒
−

𝑇

𝐵𝑇1 ) 𝑒
−

𝑡−𝑇

𝐵𝑇2

=

1 −

(1−2𝑒
−

𝑇

𝐵𝑇1 )

(1−2𝑒
−

𝑇

𝐴𝑇1 )

𝑒
−(

1

𝐵𝑇2

−
1

𝐴𝑇2

)(𝑡−𝑇)

1 +

(1−2𝑒
−

𝑇

𝐵𝑇1 )

(1−2𝑒
−

𝑇

𝐴𝑇1 )

𝑒
−(

1

𝐵𝑇2

−
1

𝐴𝑇2

)(𝑡−𝑇)

=
1 − 𝜉𝑒

−
𝑡−𝑇

𝜙

1 + 𝜉𝑒
−
𝑡−𝑇

𝜙

.

Here, 𝜉 is the ratio of both proton densities (of the equilibrium magnetizations)
( 𝐵𝑀0

𝐴
𝑀

0

),

𝜉 =

(1 − 2𝑒
−

𝑇

𝐵𝑇1 )

(1 − 2𝑒
−

𝑇

𝐴𝑇1 )

.

Additionally,
𝜙
−1

= (
1

𝐵
𝑇
2

−
1

𝐴
𝑇
2

) .

𝜙
−1 can be interpreted as the effective 𝑇

2
-time.

3. If 𝑇 = 200ms,
𝐴
𝑇
1
= 600ms,

𝐴
𝑇
2
= 100ms,

𝐵
𝑇
1
= 1155ms,

𝐵
𝑇
2
= 145ms the

parameters have the following values: 𝜉 =
1−2⋅1.2

1−2⋅1.4
= 0.78 and 𝜙 = 59.2ms. As such,
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for contrast of 80%, we need

0.8 =
1 − 𝜉𝑒

−
𝑡−𝑇

𝜙

1 + 𝜉𝑒
−
𝑡−𝑇

𝜙

,

0.8 (1 + 𝜉𝑒
−
𝑡−𝑇

𝜙 ) = 1 − 𝜉𝑒
−
𝑡−𝑇

𝜙 ,

−0.2 = −1.8𝜉𝑒
−
𝑡−𝑇

𝜙 ,

0.2

1.8
= 𝜉𝑒

−
𝑡−𝑇

𝜙 ,

59.2 ms ⋅ ln (
0.2

1.8 ⋅ 0.78
) = 𝑡 − 𝑇,

𝑡 − 𝑇 = 115.37 ms.

After 115.37ms the contrast exceeds 80% – 315.37ms after inversion. A disadvan­
tage of this method is the necessity of repeated measurements. Because each ex­
perimentmust begin fromequilibrium, a long totalmeasurement time is required.

9.7 BOLD

If activity has occurred in the brain, the body overcompensates by delivering oxy­
gen-rich blood to the corresponding region. As oxygenated blood is diamagnetic, and
deoxygenated blood is paramagnetic, 𝑇∗

2
changes. How does 𝑇∗

2
change through the

Blood-Oxygenation-Level-Dependent-Signal (BOLD), and what influence does this
have on a reconstructed 𝑇

∗

2
-weighted image?

Diamagnetic blood has a susceptibility closer to that of tissue; the magnetic field of
diamagnetic blood is less distorted than the magnetic field of paramagnetic blood.
Due to the higher homogeneity of the magnetic field in the region of diamagnetic
blood, 𝑇∗

2
is longer. A 𝑇

∗

2
-weighted image therefore possesses greater intensities in

regions with oxygenated blood. The time between cell activity and maximum BOLD
signal is roughly 5 s, and the return to normal conditions takes around 30 s.

9.8 FOV and Resolution

An object is given in 𝑘-space by 𝐹(𝑘
𝑥
, 𝑘

𝑦
).

1. What is the relation between the size of a pixel in position space, and the field of
view (FOV) in 𝑘-space?

2. A gradient of 𝐺 = 1mT/m is applied for 𝑡 = 0.6 ms in 𝑁 = 256 steps. What is the
smallest step width Δ𝑘, and the FOV in 𝑘-space? How big is a pixel in position
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space? Assume that the gradient field 𝐺⃗ is point-symmetric around the center of
the layer.

3. What must the gradient 𝐺
new

be chosen to be so that at 𝑡
new

= 0.4ms acquisition
time, the same resolution and the same FOV are obtained?

1. The FOV is given by the number of steps 𝑁 and the step width Δ𝑘 in the corre­
sponding space𝑁Δ𝑘:

Δ𝑥 =
2𝜋

𝑁Δ𝑘
=

2𝜋

FOV
𝑘

.

2. Considering the point symmetry of 𝐺⃗,

FOV
𝑘
= 2 ⋅ 2𝜋𝐺 𝑡 𝛾 = 4𝜋 ⋅ 1mT/m ⋅ 0.6 ms ⋅ 2.675 ⋅ 10

8
rad/T s = 2,017m

−1
,

and the smallest unit in 𝑘-space is Δ𝑘 =
FOV

𝑘

𝑁
=

2,017m
−1

256
= 7.88m

−1. A pixel in
position space is therefore Δ𝑥 =

2𝜋

FOV
𝑘

=
2𝜋

2.017
mm = 3.11mm.

3. As the values are not dependent on one another, it is sufficient to require that one
of them remains; for example, FOV

𝑘
= 2,017m

−1
∝ 𝐺 𝑡, and therefore

𝐺
new

=
𝐺 ⋅ 𝑡

𝑡
new

= 1.5mT/m.

9.9 Slice Selection

To determine location in a 3 TMRI tomography, the static magnetic field 𝐵⃗
0
with gra­

dient field 𝐺⃗ is applied (|𝐺⃗| = 2mT/m). The following relationship for magnetic field
strength applies:

𝐵 = 𝐵
0
+ ⃗𝑟 ⋅ 𝐺⃗.

The signals are received during measurement duration of 𝜏
𝑟
= 10ms.

1. What frequency resolution andwhat spatial resolution can be achieved using this
device?

2. What is the bandwidth of the expected signal if the density of the layer in this
system is 5mm?

3. A squaring demodulator multiplies the incoming signal by 𝑒
−𝑖𝜔

0
𝑡. What happens

to the signal in frequency space –whywould this demodulator be used, andwhat
should 𝜔

0
be chosen to be?

[gyromagnetic ratio 𝛾 = 8.5𝜋 ⋅ 10
7
1/sT]

1. Temporal resolution:
For the sampling interval we have 𝑡 =

𝜏
𝑟

𝑁
, and therefore, sampling frequency is

𝑓
max

=
1

𝑡
=

𝑁

𝜏
𝑟

. The incident frequencies are therefore 0, 1

𝜏
𝑟

, 2

𝜏
𝑟

, 3

𝜏
𝑟

,. . . , (𝑁−1)

𝜏
𝑟

, with
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resolution
Δ𝑓 =

1

𝜏
𝑟

= 100Hz.

Spatial resolution:
Generally, between the resonant frequency and the applied magnetic field, we
have

𝜔 = 𝛾𝐵 → Δ𝜔 = 𝛾Δ𝐵.

The value of the magnetic field changes in spatial dependency on the gradient 𝐺

𝐵 = 𝐵
0
+ ⃗𝑟.𝐺⃗.

This yields a difference for 𝐵 between two points separated at Δ𝑟 of

Δ𝐵 = 𝐵( ⃗𝑟 + Δ ⃗𝑟) − 𝐵( ⃗𝑟) = Δ ⃗𝑟 ⋅ 𝐺⃗.

leading to a relationship to frequency resolution

Δ𝜔 = 2𝜋Δ𝑓 = 𝛾Δ ⃗𝑟 ⋅ 𝐺⃗.

If Δ ⃗𝑟 is small enough that it connects two minimally resolvable points, we have

Δ𝑟
min

=
2𝜋Δ𝑓

𝛾𝐺
=

2𝜋 100Hz

8.5𝜋 ⋅ 107
1

sT
2mT/m

= 0.118mm.

2. The bandwidth can be calculated by substituting the maximum separation of
points in the layer for Δ𝑟:

Δ𝑓
𝑏
=

8.5𝜋 ⋅ 10
7 1

sT
2mT/m 5mm

2𝜋
= 425Hz.

3. A shift in frequency space leads tomodulation in the time domain, and vice versa:
𝐹(𝜔 − 𝜔

0
) 󴀘󴀯 𝑒

−𝑖𝜔
0
𝑡
𝑓(𝑡). The modulator eliminates the contribution of 𝐵

0
compo­

nents if frequency is set to 𝜔
0
= 𝛾𝐵

0
.

9.10 Longitudinal Relaxation Time

A 180
∘-RF pulse inverts the equilibrium magnetization𝑀

0
of a sample of water (pro­

ton signal). Calculate, using the Bloch equation, the temporal behavior of the return
to equilibrium, 𝑀

𝑧
(𝑡). How long does it take, with a longitudinal relaxation time of

𝑇
1
= 1 s, until 90% of 𝑀

0
is restored? What is 𝑀

0
in a sample of water in a field of

𝐵
0
= 2 T and at temperature 𝑇 = 36,5

∘
C?
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The Bloch equation is
𝑑𝑀

𝑧

𝑑𝑡
= −

𝑀
𝑧
−𝑀

0

𝑇
1

; 𝑀
𝑧
(𝑡 = 0) = −𝑀

0
.

Using it, we have the temporal behavior of the return to equilibrium

𝑀
𝑧
= 𝑀

0
(1 − 2 ⋅ 𝑒

−
𝑡

𝑇1 ) .

Until 90% of the equilibriummagnetization is restored, the time 𝑡
𝑔
that passes is

0.9𝑀
0
= 𝑀

0
(1 − 2 ⋅ 𝑒

−
𝑡𝑔

𝑇1 ).

𝑡
𝑔
= −𝑇

1
⋅ ln 0.05 = −1 s ⋅ ln 0.05 ≈ 3 s.

For the calculation of the equilibriummagnetization,we need the number of spins per
volume 𝑉 (also designated 𝑛). As the proton signal is measured, and both protons of
the water molecule contribute to the signal, we have

𝑛 =
𝑁

Spins

𝑉
=

2𝑁
H
2
O

𝑉
.

The number of water molecules 𝑁
H
2
O
can be calculated from the density 𝜌 of water

and the molar mass𝑚
mol

(H
2
O) (𝑚 is the mass in kg, 𝑛

mol
is the number of moles,𝑁 is

the number of particles, and𝑁
𝐴
is the Avogadro constant):

𝜌 =
𝑚

𝑉
=

𝑛
mol

𝑚
mol

𝑉
=

𝑁𝑚
mol

𝑁
𝐴
𝑉

⇒
𝑁

H
2
O

𝑉
= 𝜌

𝑁
𝐴

𝑚
mol

.

𝑚
mol

(H
2
O) = 2 ⋅ 1 g/mol + 16 g/mol = 18 g/mol.

We have

𝑛 =
2𝑁

H
2
O

𝑉
= 2𝜌

𝑁
𝐴

𝑚
mol

= 2 ⋅ 1 g/cm3 ⋅
6 ⋅ 10

23
#/mol

18 g/mol

=

= 6.7 ⋅ 10
22

#/cm3 = 6.7 ⋅ 10
28

#/m3.

The equilibriummagnetization of the water sample is therefore

𝑀
0
= 𝑛

𝛾
2
ℏ
2
𝐼(𝐼 + 1)

3𝑘𝑇
𝐵
0

= 6.7 ⋅ 10
28

#/m3 ⋅
(2.675 ⋅ 10

8
1/Ts)(6.626 ⋅ 10

−34
Js)

2 1

2
(
1

2
+ 1)

3 ⋅ 1.38 ⋅ 10−23J/K ⋅ 310 K ⋅ (2𝜋)2
2 T

= 6.2 ⋅ 10
−3

A/m.

9.11 Frequency and Phase Encoding

1. What is the frequency difference𝑓 of two point objects (protons) in amagnet with
a separation in the direction of the gradient of 𝑠 = 10 cm from one another? The
readout gradient is 𝐺

𝑥
= 2mT/m.
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2. A phase encoding gradient of 𝐺
𝑦
= 0.1 mT/m is switched on for 2ms, with 0.5ms

of linear buildup time, and the same amount of fall-off time. What is the phase
difference of the spins from the first part of the exercise?
[gyromagnetic ratio 𝛾 =2.675⋅108 ⋅ 1/Ts]

1. For frequency encoding, we have

Δ𝜔 = 2𝜋Δ𝑓 = 𝛾𝐺
𝑥
Δ𝑥.

Therefore, the frequency difference is

Δ𝑓 =
1

2𝜋
𝛾𝐺

𝑥
Δ𝑥 =

1

2𝜋
⋅ 2.675 ⋅ 10

8
1/Ts ⋅ 2 ⋅ 10

−3
T/m⋅0.1m = 8.515 kHz.

2. The phase gradient increases linearly from the beginning, remains constant, and
falls off linearly. In total, for the phase difference, we have

𝛷 = 𝛾∫𝑑𝑡 𝐺
𝑦
Δ𝑦

= 𝛾Δ𝑦 {
1

2
⋅ 0.5 ms ⋅ 𝐺

𝑦
+ 1ms ⋅ 𝐺

𝑦
+
1

2
⋅ 0.5ms ⋅ 𝐺

𝑦
}

=
3

2
𝛾𝐺

𝑦
Δ𝑦 ⋅ 1ms

=
3

2
⋅ 2.675 ⋅ 10

8
1/Ts ⋅ 0.1 ⋅ 10

−3
T/m ⋅ 0.1m ⋅ 10

−3
s

= 4.01 rad = 230
∘
.

9.12 Gradient Strength and Field of View (FOV)

The phase encoding gradient 𝐺
𝑦
is varied from −𝐺

max
to +𝐺

max
in an MRI reading;

the gradient pulse has a total duration of 2ms, with an increase and decrease time
of 0.5ms. What maximum gradient strength 𝐺

max
is necessary if a measurement field

(FOV) of 200mm with resolution 256 points is to be phase coded?
[gyromagnetic ratio 𝛾 = 2.675 ⋅ 10

8 1

T⋅s
]

The phase change due to the gradient pulse is

𝛷 = 𝛾∫𝑑𝑡 𝐺
𝑦
𝑦 = 𝛾 {

1

2
⋅ 0.5 ms + 1ms +

1

2
⋅ 0.5 ms}𝐺

𝑦
𝑦 = 1.5ms ⋅ 𝛾𝐺

𝑦
𝑦.

In measuring, there should be no ambiguity. This means that a phase encoding step
causes a phase of 2𝜋 over the entire FOV.

⇒ 2𝜋 = 1.5ms ⋅ 𝛾𝐺
𝑦
⋅ FOV.



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 167
�

�

�

�

�

�

9.13 Muscle Stimulation Using Pulsed Gradients | 167

As such, the required phase gradient is

𝐺
𝑦
=

2𝜋

𝛾 ⋅ 1.5ms ⋅ FOV
=

2𝜋

1.5ms ⋅ 2.675 ⋅ 1081/Ts ⋅ 0.2 m
= 7.83 ⋅ 10

−5
T/m.

The maximum gradient strength is therefore

𝐺
max

= 128 ⋅ 𝐺
𝑦
= 10

mT

m
.

9.13 Muscle Stimulation Using Pulsed Gradients

The lower limit for the simulationof amuscle is at induced currentdensity 𝑗 = 1 A/m2. Is
this current density achieved in amusclewith conductivity 𝜎 = 0.4 S/m and an external
radius of 𝑅 = 9 cm? Calculate the current density at the external surface of the muscle
if the pulsed magnetic fields are applied parallel to the axis of the muscle at rate 𝑑𝐵

𝑑𝑡
=

60 T/s.

The external surface of the muscle can be considered as a conductor loop inwhich the
time-dependent magnetic field gives rise to a potential

𝑈 = 𝐴 ⋅ 𝐵̇ = 𝜋𝑅
2
⋅ 𝐵̇

according to Faraday’s law of induction. This corresponds to a field strength in the
tangential direction of

𝐸 =
𝑈

2𝜋𝑅
=

𝜋𝑅
2
⋅ 𝐵̇

2𝜋𝑅
=

𝑅 ⋅ 𝐵̇

2
.

This leads to a current density

𝑗 = 𝜎𝐸 = 𝜎
𝑅 ⋅ 𝐵̇

2
= 0.4 Sv/m ⋅

0.09m

2
⋅ 60 T/s = 1.08 A/m.

As this is somewhat above the boundary value, stimulation of the muscle is possible.

9.14 Multislice Technique In Spin-Echo Procedure

In a spin-echo experiment, with echo time chosen as 𝑇
𝐸
= 15ms, a cycle of data read­

outs concludes after 25ms. The repetition time, however, is 𝑇
𝑅

= 500ms due to the
desired contrast. As the data readout is already complete at 25ms, though, the repe­
tition time can be used effectively; for example, during this time, other raw data from
additional layers can be obtained. This technique is called multislice imaging.
1. How many layers in total can be measured during time 𝑇

𝑅
?

2. The desired resolution is 256 rows and 256 columns. What is the total measure­
ment time?
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1. The number of layers is, at most,

𝑁 =
𝑇
𝑅

𝑇
𝐷

=
500ms

25ms
= 20.

In reality, it is usually somewhat smaller.
2. The total time is

𝑡
ges

= 𝑁
𝑃ℎ

⋅ 𝑇
𝑅
= 256 ⋅ 500ms = 128 s.

9.15 Turbo Spin-Echo Sequences

In a turbo-spin-echo sequence (TSE, also known as Fast Spin Echo – FSE), with
𝑇
2
-weighting, multiple rows of raw data are taken from the same layer after excitation

with a 90
∘-pulse. This occurs as multiple 180

∘-refocusing pulses are used to get an
echo. These 180∘-refocusing pulses, one after the other, are equidistant. So that more
raw data can be obtained, each refocusing pulse has another phase coding gradient.
More details are given in the Figure.

HF
Gz

Gx
Gy

90° 180°180°

**

etc.

echo echo

Fig. 9.3. Principles of a TSE sequence.𝐻𝐹 is the high frequency stimulation, 𝐺
𝑧
is the layer selection

gradient, 𝐺
𝑥
is the readout gradient, and 𝐺

𝑦
is the phase coding gradient. The first echo belongs to

another raw data row as the second, as can be seen in the different phase coding gradients. After
each readout of the echo, the phase coding gradient used must be reversed so that another row
of raw data can be acquired. These additional gradients are marked with asterisks. (In the image,
multislice technique is not considered.)

A TSE sequence for 𝑇
2
-weighting delivers an echo every 15 ms, and the echo train is

150 ms long from the beginning of the first gradient to the end of the last. Ten layers
are to be measured, at a resolution of 200 rows and 256 columns.
1. How many echoes occur in the echo train?
2. How many echo trains are necessary to achieve the desired resolution?
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3. The TSE canbe combinedwith themultislice technique described in Exercise 9.14.
If all layers are to be measured in 𝑇

𝑅
, what is the minimum repetition time 𝑇

𝑅,min
?

4. How long does the measurement last when using this minimum repetition time
𝑇
𝑅,min

, if four accumulations are used to raise the signal-to-noise ratio?
5. How long would the same measurement last with accumulation with a conven­

tional spin-echo with repetition time 2 s?
6. Does obtainingmore rowsof rawdatausingTSE sequencing lead toproblemswith

𝑇
2
-weighting? If so, what are these problems?

1. In an echo train,
𝑁

echoes
=

150ms

15ms
= 10

echo trains pass. This corresponds to ten rows in the image.
2. To achieve the desired resolution,

𝑁
𝐸𝑍

=
𝑁

𝑃ℎ

𝑁
echoes

=
200

10
= 20

echo trains are required.
3. An echo train lasts for 𝑡

𝐸𝑍
= 150ms. If all ten layers are to be observed during 𝑇

𝑅

the required minimum repetition time is

𝑇
𝑅,min

= 10 ⋅ 150ms = 1.5 s.

4. Under the boundary conditions given, the measurement lasts

𝑡
measurement

= 4 ⋅ 20 ⋅ 𝑇
𝑅,𝑚𝑖𝑛

= 120 s.

5. The conventional spin-echowould have lasted, for an accumulationwith ten lay­
ers and 200 rows,

𝑡
measurement,SE

= 10 ⋅ 200 ⋅ 2 s = 4,000 s

6. As different rows of rawdata are received at different times, they have different𝑇
2
-

weightings.

Another effect of the TSE sequencing is that some tissues, in spite of equal echo time,
resolve somewhat differently. For example, the fat signal is slightly increased with
TSE. The origin of this effect is that multiple 180∘-pulses suppress certain interactions
(J-modulations). This leads to a longer decay for the signal.

9.16 Radiation Protection in MRI (HF Absorption)

1. Determine the specific absorption rate SAR (of absorbed HF power) in W/kg of a
turbo-spin sequence with 11 echoes per pulse train. To simplify, assume that the
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180 RF pulse lasts for 2.5 seconds, and has anmedian voltage amplitude of 150 V.
The 90

∘-pulse has the same duration as the 180
∘-pulse. The sequence should be

applied to 15 layers, with a repetition time of 𝑇𝑅 = 4 s. Furthermore, assume that
half of the power is absorbed, and that the application of wave resistance is per­
fectly at 50Ω. The absorbed power is distributed evenly across a body of mass
60 kg.

2. By howmanydegrees would the body havewarmedup after an hour under theHF
power from (1) if thebodywas comprisedofwater only, andnocoolingmechanism
was available?

1. The power of a 180
∘-pulse is

𝑃
180

=
𝑈

2

𝑅
=

(150 V)
2

50Ω
= 450W,

and the energy is

𝐸
180

= 𝑃
180

𝑡
𝑝
= 450W ⋅ 2.5 ⋅ 10

−3
s = 1.125 J.

For a 90∘-pulse with the same length as the 180∘-pulse, the HF field strength must
be halved; therefore, the flip angle is

𝛩 = 𝜔
1
𝑡
𝑝
= 𝛾𝐵

1
𝑡
𝑝
,

and the RF magnetic field strength is proportional to the applied voltage

𝐵
1
∼ √𝐼 ∝ √𝑃 ∝ 𝑈.

This leads to the power of the excitation pulse

𝑃
90

=
(𝑈/2)

2

𝑅
=

1

4
𝑃
180

= 112.5W ⇒ 𝐸
90

= 0.2812 J.

The total energy of the TSE sequence is

𝐸
tot

= 15 ⋅ (1 ⋅ 𝐸
90
+ 11 ⋅ 𝐸

180
) = 15 ⋅ (0.2812 J + 11 ⋅ 1.125 J) = 190 J.

The average power is
𝑃̄ =

𝐸
tot

𝑇
𝑅

=
190 J

4 s
= 47.46W.

Therefore, as only half of the power is absorbed by the body,

SAR =
1

2
⋅
𝑃̄

𝑚
=

47.46W

2 ⋅ 60 kg
= 0.4W/kg.

2. For weight 60 kg, the energy absorption after an hour is

𝐸 = SAR ⋅ 𝑚 ⋅ 𝑡 = 0.4𝑊/kg ⋅ 60 kg ⋅ 3600 s = 86.4 kJ,

and with the specific head of water 𝑐
𝑊

= 4.187 kJ/kgK, the increase in temperature
is

Δ𝑇 =
𝐸

𝑚 𝑐
𝑊

=
86.4 kJ

60 kg 4.187 kJ/kgK
= 0.34

∘
C.
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10 Nuclear Diagnostics and Positron Emission
Tomography

Nuclear diagnostics utilizes radioactive elements to make functional processes in the
human body visible. To some extent, these techniques can show how these processes
play out over time. Frequently, the introduction of radioactive isotopes offers a unique
opportunity to follow howmaterial is taken in by the body, processed, stored, and ex­
creted. Morphological information (for example, the position and shape of the body’s
organs), though, is better obtained with other imaging techniques like ultrasound,
X-rays, and magnetic resonance imagining (MRI).

Nuclear diagnostics is divided into two distinct areas: scintigraphy, and the inves­
tigation of kinetics. Scintigraphy involves the measurement of the spatial distribution
of applied radioactivity in the body at a particular point in time. Kinetics is concerned
with the changes in the distribution of this radioactivity in the body over time. It in­
volves some procedures that are completed without any imaging. Kinetics is not de­
termined using only radioactive decay, but also by the physiological processes of the
body. For nuclear diagnostic investigations, a radioactive isotope is generally intro­
duced into the patient’s body; this can be achieved by injection into the bloodstream,
by swallowing into the gastrointestinal tract, or by inhalation into the lungs. In order
to track the radioactivity to be measured to the desired part of the body, tracers are
introduced. These are radioactively marked molecules that reveal whether they are
participating in the processes to be studied (for example, metabolism), or which dif­
fuse into the target organs. The information desired from the nuclear diagnostic study
determines what molecules can be introduced as tracers.

The decay of a radioactive nucleus is described by the law of decay:

𝑁(𝑡) = 𝑁
0
𝑒
−𝜆𝑡

.

Here,𝑁(𝑡) is the number of radioactive nuclei still present at time 𝑡,𝑁
0
is the original

number of radioactive nuclei at the moment of application 𝑡 = 0, and 𝜆 is the rate of
decay (decay constant). This is inversely proportional to the half-life 𝑇1/2

, after which
exactly half of the radioactive nuclei originally present are still there: 𝑇1/2

=
ln 2

𝜆
. The

activity 𝐴(𝑡) of an amount of radioactive material is defined as the number of decays
per unit time,

𝐴(𝑡) := −
𝑑𝑁

𝑑𝑡
= 𝐴

0
𝑒
−𝜆𝑡

,

and ismeasured in becquerels (Bq). Earlier, the unit curie (Ci) was used. It was defined
as the activity of a gram of radium-226; later, though, 1 Ci = 3.7 ⋅ 10

10
Bq was defined.

In nuclear diagnostics, the amount of activity introduced into the body is known,
and can be calculated for subsequent points in time using the decay period from the
law of decay. The goal of nuclear diagnostic measurement is to determine when and
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where in the body this activity is distributed. As such, 𝐴(𝑥, 𝑦, 𝑧, 𝑡) is measured. Typ­
ical activities in nuclear medicine diagnostics are in the range of between 100MBq

and 1GBq – that is, 108 − 10
9 decays per second. Only nuclides with half-lives in the

range from a few seconds to a few hours can be used. Shorter half-lives correspond to
nuclides that decay too quickly to be used in ameaningful way; with longer half-lives,
measurement times are very long, and the radiation exposure for the patient is too
high.

The nuclides that occur in nature have half-lives much too long, are not nearly
radio-chemically pure enough, are often radiotoxic, and do not emit only the de­
sired kind of radiation. As such, the radionuclides that are used in nuclear medicine
diagnostics are created artificially in a nuclear reactor or with a cyclotron. Tech­
netium-99m performs a particularly significant role in nuclear medicine because it
emits only gamma radiation (the m refers to ametastable state of the nucleus), and as
such does not expose the patient to much radiation. Production of technetium-99m
from molybdenum-99 is an example of the production of radionuclides; this process
is accomplished in a nuclear reactor through neutron capture or nuclear fission. It
is then brought into the clinic in lead containers, where the molybdenum-99 with a
half-life of 66.7 seconds changes into metastable technetium-99m with half-life of 6
hours. The resulting pertechnetate is, unlike the molybdenum compound, soluble
in water; as such, it can be washed out, drawn into a syringe, and injected. After
around a week of daily “milking”, the radionuclide generator is used up, andmust be
exchanged for a new one.

For image-producing measurements of gamma rays, scintillation counters have
gained favor because they have high sensitivity, good energy resolution, and short
cool-down periods. They are usually utilized in the range of 50−511 keV. A scintilla­
tion counter is principally comprised of a scintillation crystal (scintillator) with an
adjacent photomultiplier. An incident gamma quantum is absorbed by the scintilla­
tor and creates optical photons, the number of which is proportion to the energy that
the gamma quantum imparted to the crystal. With full absorption a flash of light oc­
curs, and its quantity of photons is a directmeasurement for the energy of the incident
gamma quantum. These photons strike the photocathode of the photomultiplier, and
photoelectrodes are created. These are amplified through a cascade of downstream
dynodes by the “avalanche effect”, until they finally strike the anode and are detected
electrically. The scintillator must have the correct size for the measurement, be very
homogeneous, and be as optically transparent as possible. Its size can vary from 1 cm

2

to 40 ⋅ 60 cm
2 for full-body scintigrams. So that the entire energy of the gamma quanta

is detected, the scintillator must be thick enough, and its material must have a high
effective atomic number. As such, thallium-doped sodium iodide crystals (NaI:Tl), or
BGO (Bi

4
Ge

3
O

12
), is used. While luminous efficiency is highest for NaI:Tl, the likeli­

hood of absorption is higher for BGO.
In addition to the number of photons, their originmust also be determined for the

measurement of activity distribution in the body. In order to obtain information on the
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direction from which a detected photon comes, collimators are used. The dispersion
direction of scattered gamma quanta no longer contains any information about their
origin positions, and they only contribute to image noise. As these scattered gamma
quanta lose energy at each scattering, a discriminator that only registers events in a
predetermined range of momenta is used. This requires a compromise in determining
the threshold so that noise is suppressed, while avoiding the elimination of too many
primary gamma quanta of lower energies.

In order to simultaneously observe the distribution of activity in a large region of
thebody, thegammacamerawasdeveloped. In it, a fairly small number of photomulti­
pliers (around 40 to 100) are connected over a resistance network so that despite their
small number, a high spatial resolution can be achieved. As the quality of a gamma
camera depends crucially on the uniform and stable sensitivity of the individual pho­
toreceptors, regular calibration with a known source of distribution is necessary.

Planar scintigraphy corresponds to x-ray projection in that, as with the gamma
camera, line integrals of activity are measured. SPECT, or Single Photon Emission
Computer Tomography, is based on the same principle as planar scintigraphy – ex­
cept it produces three-dimensional images. Analogously to x-ray computed tomogra­
phy (CT), a computer reconstructs the three-dimensional distribution of activity using
many different projections. There are multiple designs of SPECT devices; these have
one or more measuring heads, which rotate around the patient in circular or elliptical
fashion. Filtered rear projection is the most frequently utilized reconstruction tech­
nique. If it is possible to consider the absorption processes in the body along with a
comparative model of the object, iterative reconstruction delivers better images.

In positron emission tomography (PET), the molecular marking of the tracers is
donewith a positron emitter. The average path length of a positron emitted in tissue is
several millimeters, before the particle annihilates with an electron. At annihilation,
two gamma quanta appear, each with an energy of 511 keV, that move away in es­
sentially opposite directions. Due to the finite momentum of electrons and positrons,
there is a change in angle of the relative directions of propagation of both photons of
only around 0.3

∘. As opposed to SPECT, no collimators are necessary; yield is demon­
strably greater, and the necessary activity applied is therefore significantly less. The
decay of positrons is demonstrated by a coincidence measurement. To perform it, de­
tectors are positioned around the patient. In order to achieve a high probability of
proof, the detectors must be adjusted to the relatively high energy of 511 keV. The
standardmaterial for PET detectors is BGO. For image reconstruction, like when using
SPECT, both rear projection and iterative processing can be used.

10.1 Decay Reaction

A sample contains 1.5 μg of pure nitrogen 13

7
N with half-life 𝑇1/2

= 10min.
1. How many nuclei𝑁

0
are there at the beginning?
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2. What is the activity at the beginning, and after 1 h?
3. How long is it until activity falls below 1 s

−1?

1. As molar mass is 13 g/mol, 13 g of the isotope contain 13

7
N → 6.02 ⋅ 10

23 nuclei (Avo­
gadro constant𝑁

𝐴
). There are 1.5 mg = 1.5 ⋅ 10

−6
g available. Therefore,

𝑁
0

𝑁
𝐴

=
1.5 ⋅ 10

−6

13

and therefore,𝑁
0
= 6.94 ⋅ 10

16.
2. For 𝑡1/2 the relationship is

𝑇1/2
=

ln 2

𝜆
.

The decay constant 𝜆 becomes

𝜆 =
0.693

10min
=

0.693

600 s
= 1.16 ⋅ 10

−3
s
−1
.

At time 𝑡 = 0 we have

𝑑𝑁

𝑑𝑡
|
𝑡=0

= 𝜆𝑁
0
= (1.16 ⋅ 10

−3
s
−1
) (6.94 ⋅ 10

16
) = 8.05 ⋅ 10

13
s
−1
.

After 𝑡
1
= 1 h = 3,600 s, activity is

𝑑𝑁

𝑑𝑡
|
𝑡=1 h

= (
𝑑𝑁

𝑑𝑡
|
𝑡=0

) 𝑒
−𝜆𝑡

1 = (8.05 ⋅ 10
13
s
−1
) exp [(−1.16 ⋅ 10

−3
s
−1
) (3,600 s)]

= 1.23 ⋅ 10
12
s
−1
.

3. The amount of time 𝑡
𝑆
after which 𝑑𝑁

𝑑𝑡
≤ 1 s

−1, can be calculated as

exp (−𝜆𝑡
𝑆
) =

𝑑𝑁

𝑑𝑡
|
𝑡=𝑡

𝑆

𝑑𝑁

𝑑𝑡
|
𝑡=0

=
1 s

−1

8.05 ⋅ 1013 s−1
= 1.25 ⋅ 10

−14
.

Therefore,

𝑡
𝑆
=

ln (−1.25 ⋅ 10
−14

)

1.16 ⋅ 10−3s−1
=

32

1.16 ⋅ 10−3
s = 7.67 h.

10.2 Age of a Mummy

During a person’s lifetime, the isotope ratio of 14

6
C to 12

6
C in the bones is constant at

1.3⋅10
−12. 14

6
C is a radioactive isotope that decayswith half-life 𝑡1/2 = 5730 a. After death,

the 14

6
C isotope decays. As such, the current activity of a bone canbeused to determine

the bone’s age (as was done with Ötzi the Iceman). As an example, consider a bone
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with carbonmass𝑚
𝐾
= 200 g. Activity is measured as 16 s−1. How old is the bone (that

is, how long ago 𝑡
𝐴
did the person die)?

The entire mass of carbon 𝑚
𝐾

= 200 g corresponds to 𝑛
𝐶

= 200/12 = 16.7 moles,
and therefore to 𝑛

𝐶
𝑁

𝐴
= 16.7 ⋅ 6 ⋅ 10

23
= 10

25 atoms. Of these, there are 𝑁
𝐶14

=

10
25

⋅ 1.3 ⋅ 10
−12

= 1.3 ⋅ 10
13 14C nuclei. From 𝑡1/2 =

ln 2

𝜆
we have the decay rate

𝜆 =
0.693

5,730 a
= 3.83 ⋅ 10

−12
s
−1
.

So, for the original activity of 14

6
C, we have

𝑑𝑁

𝑑𝑡
|
𝑡=0

= 𝜆𝑁
0
= (3.83 ⋅ 10

−12
s
−1
) (1.3 ⋅ 10

13
) = 50 s

−1

and for the activity dependent on the age 𝑡
𝐴
of the bone

𝑑𝑁

𝑑𝑡
|
𝑡=𝑡

𝐴
= (

𝑑𝑁

𝑑𝑡
|
𝑡=0

) exp (−𝜆𝑡
𝐴
) = 16 s

−1
.

Solving for 𝑡
𝐴
we have

𝑡
𝐴
=

1

𝜆
ln (

𝑑𝑁

𝑑𝑡
|
𝑡=0

𝑑𝑁

𝑑𝑡
|
𝑡=𝑡

𝐴

) =
1

3.83 ⋅ 10−12s−1
ln (

50

16
) = 3.0 ⋅ 10

11
s = 9,506 a.

10.3 Iodine

The iodine isotope 131

53
I is used clinically to diagnosemalfunctions of the thyroid gland.

Calculate the activity
1. immediately after the patient is given 550 μg,
2. after 1, 2, and 10 hours,
3. after 6months and 1 year. The half-life 𝑇1/2

of 131

53
𝐼 is 8.02 days.

1. The original quantity𝑁
0
of nuclei of 131

53
I is

𝑁
0
=

𝑚
𝐽

𝑀
𝐽

𝑁
𝐴
=

(5.5 ⋅ 10
−4

g) (6.02 ⋅ 10
23
mol

−1
)

131 g/mol

= 2.53 ⋅ 10
18
.

2. From 𝑇1/2
= 8.02 d = 6.93 ⋅ 10

5
s =

ln 2

𝜆
we have

𝜆 =
0.693

6.93 ⋅ 105 s
= 10

−6
s
−1

and

𝑑𝑁

𝑑𝑡
|
𝑡=0

= 𝜆𝑁
0
= (1 ⋅ 10

−6
) (2.53 ⋅ 10

18
s
−1
) = 2.53 ⋅ 10

12
s
−1
.

𝑑𝑁

𝑑𝑡
|
𝑡=𝑡

𝑗
= 𝑁

0
𝑒
−𝜆𝑡

𝑗 = 2.53 ⋅ 10
12
exp [− (10

−6
s
−1
) ⋅ (3,600 s/h) 𝑡

𝑗
]

= 2.53 ⋅ 10
12
exp [− (0.0036 h

−1
) 𝑡

𝑗
] .
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For 𝑡
𝑗
= 1 h, 2 h, 10 h, the activities are

𝑡
𝑗
[ h ] 1 2 10

𝑑𝑁

𝑑𝑡
|
𝑡=𝑡𝑗

[s
−1

] 2.53 ⋅ 10
12

2.52 ⋅ 10
12

1.77 ⋅ 10
12

3. For 6 months with 𝑡
𝑗
= 1/2 a =

8,766 h

2
= 4,383 h and for a year with 𝑡

𝑗
= 8,766 h we

find

6 months 1 year

𝑡
𝑗 [ h ] 4,383 8,766

𝑑𝑁

𝑑𝑡
|
𝑡=𝑡𝑗

[ s
−1

] 3.54 ⋅ 10
5

4.95 ⋅ 10
−2

10.4 Photomultiplier

A photomultiplier is to be used for the detection of 𝛾 radiation. In front of the barium
oxide cathode of the photomultiplier, there is a scintillator that changes the 𝛾 photons
into visible light.
1. What maximum wavelength 𝜆

0
should the photons emitted from the scintillator

have if they are to be detected, if the work function for barium oxide is 1.3 eV?
2. Assume that such a photon strikes the bariumoxide cathode and liberates an elec­

tron. At a minimum, how highmust the electric potential of the first barium oxide
dynode be if, when the original electron strikes,𝑍 = 5 secondary electrons will be
liberated?

3. The photomultiplier is made up of 𝑁 = 10 dynodes in total. These are arranged
such that the same number of secondary electrons is always liberated for each
incident electron. How long does it take for the signal to reach the anode? The
separation of the dynodes is 𝛿 = 1 cm.

4. In this case, how high is the measurable electron current 𝐼 at the exit point if pho­
tons with power 𝑃 = 2.08 ⋅ 10

−16
W strike the cathode?

1. With ℎ as Planck’s constant, 𝑓 as the frequency, and𝑚
𝑒
as the electron mass,

ℎ𝑓 = 𝑊
𝑎
+
𝑚

𝑒
𝑣
2

2
.

With velocity 𝑣 = 0, we have 𝑊
𝑎
= ℎ𝑓 for the energy. Because ℎ𝑐

𝜆
0

= 𝑊
𝑎
, for the

wavelength, we have

𝜆
0
=

ℎ𝑐

𝑊
𝑎

=

(6.63 ⋅ 10
−34

Js) (3 ⋅ 10
8
m/s)

1.3 eV (1.6 ⋅ 10−19) J/eV
= 9.52 ⋅ 10

−7
m = 952 nm.



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 177
�

�

�

�

�

�

10.4 Photomultiplier | 177

2. The original electron is absorbed. In order to be able to liberate 𝑍 electrons, its
energy must be at least

𝐸
sec

= 𝑊
𝑎
𝑍.

With charge 𝑞, 𝐸
sec

= 𝑞Δ𝑉. Therefore, 𝑞Δ𝑉 = 𝑊
𝑎
𝑍 – that is,

Δ𝑉 =
𝑊

𝑎
𝑍

𝑞
=

1.3 V 5

1.6 ⋅ 10−19 C
= 6.5 V.

3. Under the assumption that the dynode and anode have the same potential and
the same separation 𝛿, the acceleration of the electron is

𝑎 =
𝑞Δ𝑉

𝛿𝑚
𝑒

.

Set the original velocity = 0. Therefore, the electron travels 𝛿 = 𝑎 𝜏
2
/2 at constant

acceleration. The time 𝜏 between two dynodes is therefore

𝜏 = 𝛿√
2𝑚

𝑒

𝑞 Δ𝑉
.

In total, there are (𝑁 + 1) flight paths. The entire flight time is therefore

𝜏
tot

= (𝑁 + 1) 𝛿√
2𝑚

𝑒

𝑞 Δ𝑉
= 4.6 ⋅ 10

−7
s = 146 ns.

4. For power 𝑃, we have

𝑃 =
𝑑𝐸

𝑑𝑡
=

ℎ𝑐

𝜆
0

(

𝑑𝑁
𝛾

𝑑𝑡
)

rearranged,
𝑑𝑁

𝛾

𝑑𝑡
=

𝑃 𝜆
0

ℎ𝑐
.

With𝑁
𝑒
= 𝑍

𝑁
𝑁

𝛾
we have

𝑍
−𝑁 𝑑𝑁

𝑒

𝑑𝑡
=

𝑃 𝜆
0

ℎ𝑐
.

As 𝑑𝑁
𝑒

𝑑𝑡
𝑒
−
= 𝐼, we have

𝑍
−𝑁

⋅ 𝐼 =
𝑃 𝜆

0

ℎ𝑐

that is,

𝐼 =
𝑃𝜆

0
𝑍

𝑁

ℎ𝑐
𝑒
−
= 𝑃

𝑍
𝑁
𝑒
−

𝐸
0

.

Numerically, with 𝑃 = 2.08 ⋅ 10
−16

W = 1.3 ⋅ 10
3
eV/s,

𝐼 = (1.3 ⋅ 10
3
eV/s) (

5
10
𝑒
−

1.3 eV
) = 4.8 μA.
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10.5 Radionuclide Generator

Assume that molybdenum 99
Mowill decay only to technetium 99m

Tc in a radionuclide
generator. The technetium decays with a half-life of 𝑇1/2

= 6.03 h. At time 𝑡 = 0, all
technetium is washed out, and as such only𝑁

1
molybdenum atoms are available.

1. Determine the rate equation for 99m
Tc and integrate it under the assumption that

the number𝑁
1
does not change significantly due to decay.

2. After how many hours is the number of 99m
Tc constant up to 10

−3?

1. We have
𝑑𝑁

2

𝑑𝑡
= 𝜆

1
𝑁

1
(𝑡) − 𝜆

2
𝑁

2
(𝑡) ≈ 𝜆

1
𝑁

1
− 𝜆

2
𝑁

2
(𝑡).

Use𝑁
2
(𝑡) = 𝐶

1
+ 𝐶

2
𝑒
−𝜆

2
𝑡. From the original condition𝑁

2
(0) = 0 = 𝐶

1
+ 𝐶

2
we have

𝐶
1
= −𝐶

2
= 𝐶 and𝑁

2
(𝑡) = 𝐶(1 − 𝑒

−𝜆
2
𝑡
). Substituting into the equation of motion

yields
𝑑𝑁

2

𝑑𝑡
= 𝜆

2
𝐶𝑒

−𝜆
2
𝑡
= 𝜆

1
𝑁

1
− 𝜆

2
𝐶(1 − 𝑒

−𝜆
2
𝑡
).

Solving for 𝐶, we have
𝐶 = 𝜆

2
𝐶𝑒

−𝜆
2
𝑡
= 𝑁

1

𝜆
1

𝜆
2

.

Therefore, the number of 99m
Tc nuclei is

𝑁
2
(𝑡) = 𝑁

1

𝜆
1

𝜆
2

(1 − 𝑒
−𝜆

2
𝑡
).

2. The relative deviation from equilibrium is 𝑒−𝜆2𝑡. The value falls to < 10
−3 after time

𝑡
𝑔
=

3 ⋅ ln 10

𝜆
2

=
3 ⋅ ln 10

ln 2
⋅ 𝑇

1/2
= 9.97 ⋅ 6.03 h = 60 h.

10.6 Positron Emission Tomography

In PET, a radiopharmaceutical is introduced into an organism. The annihilation of an
emitted positron and an electron from surrounding tissue produces two photons that
can be found by using a detector matrix.
1. If positrons and electrons create a quasi-atom with their spins directed opposite

one another, this exotic structure is termed positronium. Show that in the decay
of such a particle, two photons are emitted in opposite directions if the speeds of
the electron and the positron are ignored. What energy 𝐸 does such a photon have
(in eV)?

2. What effects occur if (a) the positroniumquasi-atompossesses kinetic energy, and
(b) what relevance does this have for image production?
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3. For ortho-positronium, the spins of the individual particles are aligned.Whatdoes
this mean with respect to the emitted photons and their energy?

4. The organism is comprised of coaxial layerswith absorption coefficients𝜇(𝑟). Sim­
ilarly, there is a coaxial, circular detector matrix around the organism with diam­
eter 20 cm. What is the probability that both photons strike the detector matrix if
a slow positronium quasi-atom decays 4 cm from the center?

𝜇(𝑟) =

{{

{{

{

𝜇
blood

= 0.18 cm
−1

𝑟 ≤ 3 cm

𝜇
tissue

= 0.17 cm
−1

3 cm < 𝑟 < 7 cm

0 7 cm ≤ 𝑟

1. Energy balance for the positronium quasi-atom:

𝐸 = 𝐸
𝑝+

+ 𝐸
𝑒−

=
1

2
𝑚

𝑝+
𝑣
2

𝑝+
+ 𝑚

𝑝+
𝑐
2
+
1

2
𝑚

𝑒−
𝑣
2

𝑒−
+ 𝑚

𝑒−
𝑐
2

=
1

2
𝑚

𝑒
(𝑣

2

𝑝
+ + 𝑣

2

𝑒
−) + 2𝑚

𝑒
𝑐
2
.

For vanishing velocity, we then have

𝐸 = 2𝑚
𝑒
𝑐
2
.

For the energy of the photons, we have 𝐸
𝛾
=

1

2
𝐸 = 𝑚

𝑒
𝑐
2
= 511 keV.

For the positronium quasi-atom, the total sum of the spins must add up to zero.
Photon emission must also be limited to an even number; as the probability of
emission of more than two photons is very small, however, it can be assumed that
in this decay two photons are emitted.
The momentum balance is

𝑃⃗ = 𝑝⃗
𝑝+

+ 𝑝⃗
𝑒−

= 0 = 𝑝⃗
𝛾
1
+ 𝑝⃗

𝛾
2

and therefore
𝑝⃗
𝛾
1
= −𝑝⃗

𝛾
2

2. If the kinetic energy of the positronium quasi-atom is > 0, the following changes
occur:
(a) The Doppler effect causes a shift in the photon wavelength.
(b) The angle between the two photons becomes < 180

∘, and the photons do not
move in opposite directions. This spoils the location coding.

3. Charge parity (charge conjugation operator 𝐶̂, eigenvalue 𝐶) is a conserved quan­
tity in electromagnetic interactions. The ortho-positroniumquasi-atomhas a total
spin of 𝐽 = 1 and𝐶 = −1. As the charge conjugation operator functionsmultiplica­
tively, for 𝑛 photons, we have𝐶 = (−1)

𝑛. If the ortho-positronium decays and in so
doing emits photons, the charge parity of the photon system must correspond to
that of the ortho-positronium; therefore, it decays to an odd number of photons.
Due to the Lorentz invariance, though, cases of 𝑛 < 3 are forbidden. The energy
spectrum is continuous.
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4. Theprobability𝑊 of detecting both photons is given by the product of the individ­
ual probabilities𝑤

𝛾
that a photon on path 𝑙 from the point of decay to the detector

will not be absorbed:
𝑊 = 𝑤

𝛾
1
𝑤

𝛾
2
.

The individual probabilities are given as

𝑤
𝛾
1
∝ exp [ −

𝑥
1

∫

𝑥

𝜇(𝑙)𝑑𝑙]

and considering the opposite directions of propagation,

𝑤
𝛾
2
∝ exp [

𝑥
2

∫

𝑥

𝜇(𝑙)𝑑𝑙].

Therefore, we have

𝑊 ∝ exp [ −

𝑥
1

∫

𝑥

𝜇(𝑙)𝑑𝑙 +

𝑥
2

∫

𝑥

𝜇(𝑙)𝑑𝑙] exp [ −

𝑥
1

∫

𝑥
2

𝜇(𝑙)𝑑𝑙].

This term is independent of the coordinate 𝑥, the position at which the positron­
ium quasi-atom undergoes recombination.
Considering the corresponding symmetries, we have

𝑊 ∝ exp [ − 2(

7 cm

∫

3 cm

𝜇
tissue

𝑑𝑙 +

3 cm

∫

0

𝜇
blood

𝑑𝑙)]

∝ exp [−2 (𝜇
tissue

𝑙
󵄨󵄨󵄨󵄨

7 cm

3 cm
+ 𝜇

blood
𝑙
󵄨󵄨󵄨󵄨

3 cm

0
)]

∝ exp [−2 (0.17 ⋅ 4 + 0.18 ⋅ 3)] = 8.7%.

This value is normalized to the probability that both photons are detected in a
vacuum.
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For all image-producing techniques, a picture of material properties or of a physical
process is created. In order to accomplish this, subsequent processing of raw data,
or the reconstruction of the objects from individual projections, is necessary in most
cases. Especially important is the fact that measurement data are only available dis­
cretely, and are often cluttered with different artifacts. As such, analysis requires a
detailed understanding of individualmeasurement techniques, and knowledge of the
mathematical evaluation of measurement data.

In nuclear diagnostics, the most frequently utilized reconstruction technique is
filtered back projection; it is used, for example, in single photon computed tomogra­
phy (SPECT) and also serves as the basis of algorithms for computer tomography. This
technique has the advantage of a relatively short image reconstruction time in com­
parison to iterative methods, as the computational cost is significantly lower. With
SPECT the speed of quanta is relatively high, so analysis is limited to relatively small
spatial frequencies. The resulting image resolution is in the range of 10 to 15mm. Bet­
ter images can be obtained through iterative reconstruction techniques if absorption
processes in the body are also taken into account. A direct reconstruction of the image
produces a number of artifacts. The most important causes of these are:
– the collimators employed do not produce ideal beams of radiation, and the scat­

tered radiation is not completely suppressed
– useful radiation is partially absorbed on its way to the detector

A possible correction to this problem is to compare two measurements in opposite
directions. Without differences in absorption, both should yield identical line inte­
grals. Considering absorption in the tissue and assuming first that the tissue is ho­
mogeneous with respect to absorption, the radiation that reaches a detector in the
𝑥-direction in this system has the value 𝑆

𝐴
= 𝑘 ⋅ 𝐴 ⋅ exp (−𝜇𝑥), where 𝑘 is a calibration

factor, 𝐴 is the activity at position 𝑥, and 𝜇 represents the average attenuation coef­
ficient of the tissue. A corresponding measurement in the opposite direction yields
𝑆
𝑃
= 𝑘 ⋅ 𝐴 ⋅ exp [−𝜇(𝐷−𝑥)], with 𝐷 as the diameter of the object. The undesired de­

pendency on position 𝑥 can as such be eliminated by taking the geometric average
𝑆
𝐺𝑀

= √𝑆
𝐴
⋅ 𝑆

𝑃
= 𝑘⋅𝐴⋅exp(−

𝜇𝐷

2
). An exact correction presupposes knowledge of the at­

tenuation coefficients. These can be determined, for example, using a corresponding
measurement of transmission. Within the scope of the iterative reconstruction tech­
nique, the attenuation coefficients can be adjusted to produce an optimal image. One
possible application is the validation of the state of the cardiac musculature, for ex­
ample after a heart attack. The cardiacmuscle is still living if the tissue is still supplied
with blood, and activity can be measured at this location.

Positron emission tomography, or PET for short, serves to portray metabolic pro­
cesses and to answer various clinical questions. Themethod has taken on a significant
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role in the field of oncology. It offers the possibility of determining absolute concen­
trations of activity, and the resulting quantitative metabolic parameters. As opposed
to SPECT, with PET, positron-emitting substances are introduced into the body, and
their bio-distribution as well as specific oncological information relating to the nour­
ishment of tumors are acquired as raw data by detector systems. This method also
requires subsequent image reconstruction using this data by different processes. Due
to the development of computer systemswith higher processing power, statistical and
iterative processes are used more and more today for image reconstruction in PET. A
constant repetition of calculation is common to all of them, in order to achieve the
most mathematically exact image representation of the distribution of tracers possi­
ble. Powerful calculation systems are not only necessary due to the enormous quan­
tity of incoming data that is processed into image reconstructions, but also for the
correction of mistakes. Iterative methods calculate observed signals for an object by
reference to amodel. As such, for example, absorption in the tissue can also be consid­
ered. Parameters that describe the object are optimized until the best correspondence
possible between calculated and measured signals is achieved. This method is sig­
nificantly more complex than rear projection, but delivers sharper images. Imaging
mistakes arise in ways similar to SPECT:
– absorption in the tissue;
– accidental coincidences during high counting rates;
– detection of scattered quanta.

BecausewithPETdetection is always in twoopposite directions, absorption correction
is fundamentally simpler and more precise. The probability that a photon created at
position 𝑥 reaches Detector 1 at 𝑥

1
is𝑤

1
∝ exp [− ∫

𝑥
1

𝑥
𝜇(𝑙) 𝑑𝑙]. The corresponding prob­

ability that the second photon reaches Detector 2 at 𝑥
2
is 𝑤

2
∝ exp[− ∫

𝑥

𝑥
2

𝜇(𝑙) 𝑑𝑙]. The
probability of coincidence is 𝑤 = 𝑤

1
𝑤

2
∝ exp[− ∫

𝑥
2

𝑥
1

𝜇(𝑙) 𝑑𝑙]. As such, only the line in­
tegral ∫𝑥

12

𝑥
21

𝜇(𝑙) 𝑑𝑙 arises, and the dependency on position on this line disappears. It is
exact if the integral ∫ 𝜇(𝑥) 𝑑𝑥 of a transmission measurement is calculated along the
measurement path.

Reconstruction techniques are also necessary to produce images using MRI. The
first MRI images were created, as with x-ray CT, by using back projection techniques.
The Fourier technique, in which the image is created using a 2D Fourier transform,
is both faster and leaves fewer artifacts. There is a relationship between the spatial
resolution and the noise of an image. If, for a certain total measurement time, spa­
tial resolution is increased, this also leads to greater noise. The use of more powerful
magnetic fields is a possibility with otherwise equal parameters to improve the SNR
(signal-to-noise) relationship; however, there are technical limits on the maximum
usable field strengths. In addition to Fourier transforms, a range of digital filters are
usually used in data reconstruction. The most important are the high-pass filter to
bring out contrast edges, and the low-pass filter to suppress noise. In any case, in clini­
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cal applications the use of filtering algorithms is frequently avoided in order to prevent
mistakes in interpretation – for example, due to artifacts. Another concept in modern
reconstruction techniques deals with joining often incomplete data with high-resolu­
tion, complete image data (reference images) that were previously recorded. Through
reconstruction, artifacts can surface. Artifacts are pieces of the reconstructed image to
which there is no correspondence in the real image. Themost important of these with
MRI include:
– movement artifacts;
– inhomogeneity artifacts;
– digital image artifacts.

Movement artifacts occur due to the involuntary or physiological movement of the pa­
tient. This leads to ghost signals along the phase coding direction. Countermeasures
include certain triggers, or the use of extremely rapid sequences of pulses. Inhomo­
geneity artifacts have their origin, among other causes, in differences in susceptibil­
ity within the body. As a consequence, differences in intensity and image distortions
can occur. According to the situation, these problems can be circumvented by using
frequency coding, in which the sampling rate is chosen to be high enough, or by us­
ing phase coding. Digital image artifacts arise from the reconstruction of the image
by using Fourier transforms, and can lead to a wide range of image flaws, like de­
creased contrast and phantom images. However, artifacts can also occur due to non-­
compensated spin evolution – for example, by diffusion or the movement of the or­
ganismwithin the pulse sequence. When using gradients, undesired dephasingmust
frequently be compensated for again; if this is ignored, characteristic artifacts can oc­
cur in the image even if the rest of the scan functions ideally.

As has been mentioned several times, the Fourier transform plays a significant
role in the applicable reconstruction technique. The forward and back-transforma­
tions, which make the connection between the function 𝑓 (𝑡) and its transform 𝐹 (𝜔),
are given by

𝐹 (𝜔) = F {𝑓 (𝑡)} =

∞

∫

−∞

𝑓 (𝑡) 𝑒
−𝑖𝜔𝑡

𝑑𝑡

𝑓 (𝑡) = F
−1

{𝐹 (𝜔)} =
1

2𝜋

∞

∫

−∞

𝐹 (𝜔) 𝑒
𝑖𝜔𝑡
𝑑𝑡.

𝐹(𝜔) is also known as the spectral density function 𝑓(𝑡). By targeted manipulation
of the spectral density function of an image data set and subsequent back-transfor­
mation, filter algorithms can be implemented. In practice, measurement data exist in
digital form. As such, the discrete Fourier transform (DFT) is used to process them; it
is implemented numerically as the “fast Fourier transform” (FFT).
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11.1 Discrete Fourier Transform

Consider a function 𝑓(𝑡) that repeats with period 𝑇. Calculate the corresponding
Fourier coefficients 𝑐

𝑗
in the Fourier series

𝑓(𝑡) =

∞

∑

𝑗=−∞

𝑐
𝑗
𝑒
𝑖𝜔

𝑗
𝑡

with 𝜔
𝑗
=

2𝜋

𝑇
𝑗

for a function 𝑓(𝑡), and discretize it to yield the smallest possible interval Δ𝑡 that al­
lows for division into𝑁 steps. What is the discrete Fourier transform of this 𝑓(𝑡):

𝑓(𝑡) = 𝑡 for 0 ≤ 𝑡 < 𝑇 𝑓(𝑡) = 𝑓(𝑡 + 𝑇)? (11.1)

For a periodic function𝑓(𝑡)with period𝑇, the functional value 𝑓(𝑡) = 𝑓(𝑡+𝑇) is valid.
The coefficients of the Fourier series are given by

𝑐
𝑗
=

1

𝑇

𝑇

∫

0

𝑓 (𝑡) 𝑒
−𝑖𝜔

𝑗
𝑡
.

For a periodic function with period 𝑇, the functional value 𝑓(𝑡) = 𝑓(𝑡 + 𝑇) is valid.
Through discretization, 𝑁 steps (sampling points) in interval Δ𝑡 are present, so
𝑇 = 𝑁Δ𝑡 and 𝑡 = 𝑘Δ𝑡. The Fourier coefficients are then

𝑐
𝑗
=

1

Δ𝑡

𝑁−1

∑

𝑘=0

𝑓 (𝑘Δ𝑡) Δ𝑡 𝑒
−2𝜋𝑖𝑗 𝑘Δ𝑡/𝑛Δ𝑡

=
1

𝑁

𝑛−1

∑

𝑘=0

𝑓
𝑘
𝑒
−2𝜋𝑖𝑗 𝑘/𝑁

with 𝑓
𝑘
= 𝑓 (𝑘Δ𝑡) . Therefore, the Fourier transform becomes 𝐹

𝑗
= 𝑐

𝑗
and the back-

transform is

𝑓
𝑘
=

𝑛−1

∑

𝑗=0

𝐹
𝑗
𝑒
2𝜋𝑖𝑗𝑘/𝑁

.

Here, in the interval 0 ≤ 𝑡 < 𝑇, the function 𝑓 (𝑡) = 𝑡 holds, and therefore 𝑓
𝑘
becomes

𝑓
𝑘
= 𝑘Δ𝑡. Therefore,

𝐹
𝑗
=

Δ𝑡

𝑁

𝑁−1

∑

𝑘=0

𝑘 𝑒
−2𝜋𝑖𝑗𝑘/𝑁

.

11.2 Transfer Function

Consider a signal 𝑦(𝑡) that is comprised of a linear combination of differential opera­
tions of sufficiently smooth entrance signals 𝑓(𝑡) in the following manner:

𝑦(𝑡) =

𝐿−1

∑

𝑗=0

𝑎
𝑗

𝑑
𝑗
𝑓 (𝑡)

𝑑𝑡𝑗
(11.2)

with 𝐿 > 1.
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1. Using a continuous Fourier transform, develop an expression of the transfer func­
tion𝐻(𝜔) for which

𝑌(𝜔) = 𝐻(𝜔)𝐹(𝜔),

where 𝐹(𝜔) = F(𝑓(𝑡)) and 𝑌(𝜔) = F(𝑦(𝑡)).
2. In using discrete (equidistant) data𝑦

𝑘
= 𝑦 (𝑘 𝛿𝑡), the differential operators in (11.2)

are only valid over finite intervals of duration 𝛿𝑡. Show that 𝑦
𝑘
can be written as

𝑦
𝑘
=

𝐿−1

∑

𝑗=0

𝐴
𝑗
𝑓
𝑘+𝑗

.

Use this form to derive the corresponding discrete transfer function𝐻
𝑗
.

3. Using the smoothing algorithm 𝑦
𝑘
=

1

3
(𝑓

𝑘−1
+ 𝑓

𝑘
+ 𝑓

𝑘+1
), a diffuser is to be imple­

mented. What is the corresponding transfer function𝐻
𝑗
?

1. We have

𝑦 (𝑡) =

𝐿−1

∑

𝑗=0

𝑎
𝑗

𝑑
𝑗
𝑓

𝑑𝑡𝑗

𝑌 (𝜔) =

∞

∫

−∞

(

𝐿−1

∑

𝑗=0

𝑎
𝑗

𝑑
𝑗
𝑓

𝑑𝑡𝑗
)𝑒

𝑖2𝜋𝑓𝑡
𝑑𝑡 = {

𝐿−1

∑

𝑗=0

[𝑎
𝑗
(𝑖𝜔)

𝑗
]}𝐹 (𝜔)

= 𝐻 (𝜔) 𝐹(𝜔).

The transfer function𝐻(𝜔) is

𝐻(𝜔) =

𝐿−1

∑

𝑗=0

𝑎
𝑗
(𝑖𝜔)

𝑗
.

2. First, consider the customarydifferential expression for a sufficiently smooth𝑓 (in
the case that 𝑗 > 0). According to the definition, this is, dependent on the (𝑗 − 1)th
derivative,

𝑑
𝑗

𝑑𝑡𝑗
𝑓 = lim

Δ𝑡→0

[
𝑓
(𝑗−1)

(𝑡 + Δ𝑡) − 𝑓
(𝑗−1)

(𝑡)

Δ𝑡
] ,

or, as a function of the (𝑗 − 𝑛)-th derivative, with the binomial coefficient ( 𝑗
𝑚
) =

𝑗!

𝑚!(𝑗−𝑚)!
,

𝑑
𝑗
𝑓

𝑑𝑡𝑗
= lim

Δ𝑡→0

[

𝑛

∑

𝑚=0

(−1)
(𝑚+𝑛)

(
𝑛

𝑚
)

𝑓
(𝑗−𝑛)

(𝑡 + 𝑚Δ𝑡)

Δ𝑡𝑛
] .

Substitution of 𝑡 → 𝑘𝛿𝑡, 𝑑𝑡 → 𝑑𝑘 𝛿𝑡, and Δ𝑡 → Δ𝑘𝛿𝑡 yields

𝑑
𝑗
𝑓
𝑘

𝑑𝑘𝑗
= 𝛿𝑡

𝑗 𝑑
𝑗
𝑓(𝑡)

𝑑𝑡𝑗

= 𝛿𝑡
𝑗
lim
Δ𝑘→0

[

𝑛

∑

𝑚=0

(−1)
(𝑚+𝑛)

(
𝑛

𝑚
)

𝑓
(𝑗−𝑛)

(𝑡 + 𝑚Δ𝑡)

𝛿𝑡𝑛Δ𝑘𝑛
] .
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In order to find an expression that depends on the values of the original function
𝑓
𝑘
= 𝑓(𝑘 𝛿𝑡), we have, with 𝑛 = 𝑗

𝑑
𝑗
𝑓
𝑘

𝑑𝑘𝑗
= 𝛿𝑡

𝑗
lim
Δ𝑘→0

[

𝑗

∑

𝑚=0

(−1)
(𝑚+𝑗)

(
𝑗

𝑚
)

𝑓(𝑡 + 𝑚Δ𝑡)

𝛿𝑡𝑗Δ𝑘𝑗
]

= lim
Δ𝑘→0

[

𝑗

∑

𝑚=0

(−1)
(𝑚+𝑗)

(
𝑗

𝑚
)

𝑓(𝑡 + 𝑚Δ𝑡)

Δ𝑘𝑗
].

A discrete representation can be found if the limit is replaced with Δ𝑘 = 1. The
differential expression is then replaced with a forward difference.¹

𝑑
𝑗
𝑓
𝑘

𝑑𝑘𝑗
≈

𝑗

∑

𝑚=0

(−1)
(𝑚+𝑗)

(
𝑗

𝑚
)𝑓(𝑡 + 𝑚Δ𝑡)

=

𝑗

∑

𝑚=0

(−1)
(𝑚+𝑗)

(
𝑗

𝑚
)𝑓

𝑘+𝑚
.

The case 𝑘 = 0must give the function value 𝑓
𝑘
, and must be checked specifically:

𝑑
𝑗
𝑓
𝑘

𝑑𝑘𝑗
≈

{{{

{{{

{

𝑗

∑

𝑚=0

(−1)
(𝑚+𝑗)

(
𝑗

𝑚

)𝑓
𝑘+𝑚

𝑗 > 0

𝑓
𝑘

𝑗 = 0

With this result, the function 𝑦 can be given in its discrete form

𝑦
𝑘
= 𝑎

0
𝑓
𝑘
+𝑎

1
(𝑓

𝑘+1
− 𝑓

𝑘
)+𝑎

2
(𝑓

𝑘+2
− 𝑓

𝑘+1
+ 𝑓

𝑘
)+. . .+𝑎

𝐿−1
[𝑓

𝑘+𝐿−1
+ .... + (−1)

𝐿−1
𝑓
𝑘
] .

This expression can only be simplified through the introduction of the coefficient
𝐴

𝑙
, for which

𝐴
𝑙
=

{{{

{{{

{

−∑
𝐿−1

𝑗=𝑙
(−1)

𝑗
(
𝑗

𝑙

)𝑎
𝑗

𝑙 > 0

∑
𝐿−1

𝑗=0
(−1)

𝑗
𝑎
𝑗

𝑙 = 0,

so that

𝑦
𝑘
=

𝐿−1

∑

𝑙=0

𝐴
𝑙
𝑓
𝑘+𝑙

.

If the discrete Fourier transform is applied to the sequence 𝑦
𝑘
, we have

𝑌
𝑗
= F

𝐿−1

∑

𝑙=0

𝐴
𝑙
(𝑓

𝑘+𝑙
)

=
1

𝑁

𝑁−1

∑

𝑘=0

𝐿−1

∑

𝑙=0

𝐴
𝑙
(𝑓

𝑘+𝑙
) 𝑒

−
2𝜋𝑖𝑘𝑗

𝑁 .

||
1 The use of a backwards-difference (𝑓

𝑘
−𝑓

𝑘−𝑗
) or of a gradient (𝑓

𝑘+𝑗
−𝑓

𝑘−𝑗
) is possible in this situation

as an alternative, but will not be considered here.
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Now, substitute 𝑘 → 𝑘
󸀠
− 𝑙, and exchange the sequence of the sums:

𝑌
𝑗
=

1

𝑁

𝐿−1

∑

𝑙=0

𝐴
𝑙

1

𝑁

𝑁−1+𝑙

∑

𝑘
󸀠
=𝑙

𝑓
𝑘
󸀠𝑒

−
2𝜋𝑖(𝑘

󸀠
−𝑙)𝑗

𝑁 .

The phase factor, which is not dependent on 𝑘
󸀠, can be written before the inner

sum:

𝑌
𝑗
=

𝐿−1

∑

𝑙=0

𝐴
𝑙
𝑒
2𝜋𝑖𝑙𝑗

𝑁 [
1

𝑁

𝑁−1+𝑙

∑

𝑘󸀠=𝑙

𝑓
𝑘
󸀠𝑒

−
2𝜋𝑖𝑘

󸀠
𝑗

𝑁 ].

Considering the periodicity of the Euler exponents, we can find the discrete
Fourier transform 𝐹

𝑗
from the inner sum

(

𝐿−1

∑

𝑙=0

𝐴
𝑙
𝑒
2𝜋𝑖𝑙𝑗

𝑁 ) 𝐹
𝑗
= 𝐻

𝑗
𝐹
𝑗
.

The discrete transfer function𝐻
𝑗
becomes

𝐻
𝑗
=

𝐿−1

∑

𝑙=0

𝐴
𝑙
𝑒
𝑖
2𝜋𝑗Δ𝑡 𝑙

𝑁Δ𝑡 =

𝐿−1

∑

𝑙=0

𝐴
𝑙
𝑒
𝑖𝜔

𝑗
Δ𝑡 𝑙

,

with discrete angular frequency 𝜔
𝑗
=

2𝜋𝑗

𝑁Δ𝑡
.

3. To determine the transfer coefficients 𝐴
𝑗
from the function 𝑦

𝑘
=

1

3
(𝑓

𝑘−1
+𝑓

𝑘
+𝑓

𝑘+1
),

we must first consider the periodic exponent. We can use 𝐴
−1

= 𝐴
𝑁−1

. Therefore
𝐴

𝑁−1
=

1

3
, 𝐴

0
=

1

3
, and 𝐴

1
=

1

3
; the transfer function is

𝐻
𝑗
=

𝐿−1

∑

𝑙=0

1

3
(1 + 𝑒

𝑖𝜔
𝑗
Δ𝑡

+ 𝑒
𝑖(𝑁−1)𝜔

𝑗
Δ𝑡
) =

1

3
[1 + 2 cos (𝜔

𝑗
Δ𝑡)] .

11.3 Filtered Back Projection

In an image reconstruction technique, a high-pass filter {𝑔
𝑘
} = {0, 1, 2, 3} is used that

repeats periodically. Carry out two projections along the 𝑥 and 𝑦 axes, and form the
row and column sums (𝑓

𝑖
= ∑

𝑗
𝑎
𝑖𝑙
, 𝑓

𝑙
) to convolve these with the inverse Fourier trans­

form of the filter.
𝑎
00

𝑎
10

𝑎
20

𝑎
30
𝛴 →

𝑦
𝑓
0

𝑎
01

𝑎
11

𝑎
21

𝑎
31
𝛴 →

𝑦
𝑓
1

𝑎
02

𝑎
12

𝑎
22

𝑎
32
𝛴 →

𝑦
𝑓
2

𝑎
03

𝑎
13

𝑎
23

𝑎
33
𝛴 →

𝑦
𝑓
3

𝛴 ↓ 𝛴 ↓ 𝛴 ↓ 𝛴 ↓

𝑥
𝑓
0 𝑥

𝑓
1 𝑥

𝑓
2 𝑥

𝑓
3
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Then, project the filtered data back to find the reconstructed image. The following ob­
jects should be used:

a)

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

b)

1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

c)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

d)

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 .

discrete convolution: ℎ
𝑘
= (𝑎 ⊗ 𝑏)

𝑘
= ∑

𝑙
𝐴

𝑙
𝐵
𝑘−𝑙

The Fourier transform of 𝑔 is

F
−1

{ 𝑔
𝑘
} =

𝑁−1

∑

𝑘=0

𝑔
𝑘
exp (−

2𝜋

𝑁
𝑖𝑙𝑘) = 𝐺

𝑙
.

With𝑁 = 4 and 𝑔
𝑘
= 𝑘, we have

𝐺
𝑙
= 0 + 1 ⋅ exp (−

𝜋

2
𝑖𝑙) + 2 ⋅ exp (−𝜋𝑖𝑙) + 3 ⋅ exp ( −

3𝜋

2
𝑖𝑙)

and therefore,
𝐺

0
= 0 + 1 𝑒

0
+ 2 𝑒

0
+ 3 𝑒

0
= 6

that is,

𝐺
1
= 0 + 1 ⋅ exp (−

𝜋

2
𝑖) + 2 ⋅ exp (−𝜋𝑖) + 3 ⋅ exp ( −

3𝜋

2
𝑖)

= −2 + 2𝑖

and

𝐺
2
= −2

𝐺
3
= −2 − 2𝑖.

These terms can be convoluted with the results of the projection by substitution into
the equation ℎ

𝑘
= ∑

3

𝑙=0
𝑓
𝑙
𝐺

𝑘−𝑙
.

1. (𝑦)

↓ ↓ ↓ ↓

(𝑥) → 1 0 0 0 →
𝑦
𝑓
0
= 1

→ 0 0 0 0 →
𝑦
𝑓
1
= 0

→ 0 0 0 0 →
𝑦
𝑓
2
= 0

→ 0 0 0 0 →
𝑦
𝑓
3
= 0

↓ ↓ ↓ ↓

𝑥
𝑓
0
= 1

𝑥
𝑓
1
= 0

𝑥
𝑓
2
= 0

𝑥
𝑓
3
= 0 .
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For the projection along the 𝑦-direction, we have

𝑥
ℎ
0
=

𝑥
𝑓
0
𝐺

0
+

𝑥
𝑓
1
𝐺

1
+

𝑥
𝑓
2
𝐺

2
+

𝑥
𝑓
3
𝐺

3
= 6

𝑥
ℎ
1
=

𝑥
𝑓
0
𝐺

1
+

𝑥
𝑓
1
𝐺

0
+

𝑥
𝑓
2
𝐺

3
+

𝑥
𝑓
3
𝐺

2
= −2 + 2𝑖

𝑥
ℎ
2
=

𝑥
𝑓
0
𝐺

2
+

𝑥
𝑓
1
𝐺

1
+

𝑥
𝑓
2
𝐺

0
+

𝑥
𝑓
3
𝐺

3
= −2

𝑥
ℎ
3
=

𝑥
𝑓
0
𝐺

3
+

𝑥
𝑓
1
𝐺

2
+

𝑥
𝑓
2
𝐺

1
+

𝑥
𝑓
3
𝐺

0
= −2 − 2𝑖.

Along the 𝑥-direction, due to symmetry, we have
𝑥
ℎ =

𝑦
ℎ. The back projection is

𝑥
ℎ
0
+

𝑦
ℎ
0 𝑥

ℎ
1
+

𝑦
ℎ
0 𝑥

ℎ
2
+

𝑦
ℎ
0 𝑥

ℎ
3
+

𝑦
ℎ
0

𝑥
ℎ
0
+

𝑦
ℎ
1 𝑥

ℎ
1
+

𝑦
ℎ
1 𝑥

ℎ
2
+

𝑦
ℎ
1 𝑥

ℎ
3
+

𝑦
ℎ
1

𝑥
ℎ
0
+

𝑦
ℎ
2 𝑥

ℎ
1
+

𝑦
ℎ
2 𝑥

ℎ
2
+

𝑦
ℎ
2 𝑥

ℎ
3
+

𝑦
ℎ
2

𝑥
ℎ
0
+

𝑦
ℎ
3 𝑥

ℎ
1
+

𝑦
ℎ
3 𝑥

ℎ
2
+

𝑦
ℎ
3 𝑥

ℎ
3
+

𝑦
ℎ
3
.

Substituting in the numerical values,

12 4 + 2𝑖 4 6 − 2𝑖

4 + 2𝑖 −4 + 4𝑖 −4 + 2𝑖 −4

4 −4 + 2𝑖 −4 −4 − 2𝑖

6 − 2𝑖 −4 −4 − 2𝑖 −4 − 4𝑖.

Take note of the artifacts that occur. Use only the positive real portion; unnormal­
ized, we have

12 4 4 6

4 0 0 0

4 0 0 0

6 0 0 0 .

2.
(𝑦)

↓ ↓ ↓ ↓

(𝑥) → 1 1 1 1 →
𝑦
𝑓
0
= 4

→ 1 0 0 0 →
𝑦
𝑓
1
= 1

→ 1 0 0 0 →
𝑦
𝑓
2
= 1

→ 1 0 0 0 →
𝑦
𝑓
3
= 1

↓ ↓ ↓ ↓

𝑥
𝑓
0
= 4

𝑥
𝑓
1
= 1

𝑥
𝑓
2
= 1

𝑥
𝑓
3
= 1.
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For the projection along the 𝑦-direction, we have

𝑥
ℎ
0
= 4𝐺

0
+ 𝐺

1
+ 𝐺

2
+ 𝐺

3
= 21 + 3𝑖

𝑥
ℎ
1
= 4𝐺

1
+ 𝐺

0
+ 𝐺

3
+ 𝐺

2
= −5 + 9𝑖

𝑥
ℎ
2
= 4𝐺

2
+ 𝐺

1
+ 𝐺

0
+ 𝐺

3
= −5 + 3𝑖

𝑥
ℎ
3
= 4𝐺

3
+ 𝐺

2
+ 𝐺

1
+ 𝐺

0
= −1 + 6𝑖.

In this case, symmetry also allows
𝑥
ℎ =

𝑦
ℎ. As such, we have a symmetric matrix

with the elements

42 + 6𝑖 16 + 15𝑖 16 + 6𝑖 20 + 9𝑖

16 + 15𝑖 −10 + 18𝑖 −10 + 12𝑖 −6 + 15𝑖

16 + 6𝑖 −10 + 12𝑖 −10 + 6𝑖 −6 + 15𝑖

20 + 9𝑖 −6 + 15𝑖 −6 + 15𝑖 −2 + 12𝑖.

The artifacts occur again. Ignoring the imaginary portions and the negative num­
bers, the upper left-hand value is still too large.

42 16 16 20

16 0 0 0

16 0 0 0

20 0 0 0 .

3. (𝑦)

↓ ↓ ↓ ↓

(𝑥) → 1 0 0 0 →
𝑦
𝑓
0
= 1

→ 0 1 0 0 →
𝑦
𝑓
1
= 1

→ 0 0 1 0 →
𝑦
𝑓
2
= 1

→ 0 0 0 1 →
𝑦
𝑓
3
= 1

↓ ↓ ↓ ↓

𝑥
𝑓
0
= 1

𝑥
𝑓
1
= 1

𝑥
𝑓
2
= 1

𝑥
𝑓
3
= 1 .

For the 𝑦-projection, we have
𝑥
ℎ
0
=

𝑥
ℎ
1
=

𝑥
ℎ
2
=

𝑥
ℎ
3
= 0, and correspondingly for

the 𝑥-direction. Here, through rear projection, we have

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 .

Obviously, the diagonal object cannot be found. We need another projection – for
example along the diagonal!
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4. (𝑦)

↓ ↓ ↓ ↓

(𝑥) → 1 1 1 1 →
𝑦
𝑓
0
= 4

→ 1 1 1 1 →
𝑦
𝑓
1
= 4

→ 1 1 1 1 →
𝑦
𝑓
2
= 4

→ 1 1 1 1 →
𝑦
𝑓
3
= 4

↓ ↓ ↓ ↓

𝑥
𝑓
0
= 4

𝑥
𝑓
1
= 4

𝑥
𝑓
2
= 4

𝑥
𝑓
3
= 4 .

For the 𝑦-direction, we have
𝑥
ℎ
0
=

𝑥
ℎ
1
=

𝑥
ℎ
2
=

𝑥
ℎ
3
= 0, and correspondingly for

the 𝑥-direction. Rear projection gives

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 .

Result: the object cannot be detected. It seems as if it is not there. This is a con­
sequence of the fact that only the spatial frequency 0 is contained, which is sup­
pressed by the high-pass filter.
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12 Radiation Medicine and Protection

If the kinetic energy of photons or particles is high enough (in eV), they can create ions
in material; as such, these photons or particles are known as ionizing radiation. In
medicine, ionizing radiation is primarily used in two areas: for imaging using X-rays,
and for radiation therapywith X-rays, gamma rays, or charged particles (like electrons
or atomic nuclei). While with X-rays, the ionizing effects are kept to the minimumpos­
sible, radiation therapy is interested in delivering the maximum energy possible to a
specific location in order to, for example, destroy malignant tissue.

All forms of radiation have primary and secondary effects. The primary effects
involve the interaction of the incident radiation itself with the material. For photons,
this interaction occurs primarilywith electrons. In the case of heavy particles, interac­
tionwith nuclei also plays a role. Neutrons interact almost exclusively with the atomic
nuclei of materials. If enough energy is delivered to the electrons by the primary pro­
cesses, these can be liberated, and can themselves serve as a source of ionization for
secondary processes.

For electromagnetic radiation it is true to a first approximation that transmitted
intensity falls off exponentially with penetration depth 𝑥 if the material is homoge­
neous: 𝐼(𝑥) = 𝐼

0
𝑒
−𝜇𝑥. The attenuation coefficient 𝜇 is the inverse of the average free

path length 𝑥̄, and is proportional to the particle density 𝑛 and to the cross section 𝜎:
𝜇 = 𝑛𝜎. As the average free path length of 1MeV photons in water is 𝑥̄ = 14.4 cm, the
cross section is 𝜎 = 2.1 ⋅ 10

−24
cm

2, or 2.1 barn.
The attenuation coefficient is comprised additively of the scattering coefficient 𝛴

and the absorption coefficient 𝜏: 𝜇 = 𝛴 + 𝜏. The scattering coefficient corresponds to
the probability of a change in direction of a photon, and the absorption coefficient
corresponds to the probability of the absorption of the radiation. Rayleigh scattering
(coherent scattering by the entire atom) and Thomson scattering (elastic scattering by
bound electrons) contribute to the scattering coefficient. The photoelectric effect, the
Compton Effect, and pair production all contribute to the absorption coefficient.

A simple model for scattering uses an electron moving in the potential of a har­
monic oscillator with a characteristic frequency 𝜔

0
and damping 𝛤 < 𝜔

0
The driving

force comes from the electric field of an incident wave, with frequency 𝜔. In the scope
of this model, the typical resonance curve for the total cross section is:

𝜎
total

= 𝜎
𝑇
⋅

𝜔
4

(𝜔
2

0
− 𝜔2)2 + 𝜔2𝛤2

.

For very high frequencies 𝜔 ≫ 𝜔
0
, the boundary case of Thomson scattering is ob­

tained: 𝜎
total

≈ 𝜎
𝑇
=

8

3
𝜋𝑟

2

𝑒
(𝑟

𝑒
=

𝑒
2

4𝜋𝜀
0
𝑚
𝑒
𝑐
2
is the classical electron radius), and for very

small frequencies 𝜔 ≪ 𝜔
0
, Rayleigh scattering with 𝜎

total
≈ 𝜎

𝑅
= 𝜎

𝑇
⋅
𝜔
4

𝜔
4

0

.
In the photoelectric effect, the photon gives up its entire energy to a valence elec­

tron of the absorbing material. The cross section for photon absorption is at a maxi­
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mum if the energy of the photon corresponds to the biding energy. There is, however,
no simple analytical expression for the dependence of the penetration depth on en­
ergy and material. In the realm of biological tissues with atomic numbers 𝑍 < 10,
photoabsorption (𝜏

Ph
) rises roughly with the cube of 𝑍; with heavy nuclei, roughly

as 𝑍4. The photoelectric effect dominates for lower energies of the incident electro­
magnetic radiation. In the Compton Effect, the energy of the incident photon is only
partially transmitted to a relatively weakly bound electron. This process dominates
for middle energies, and its effect depends on the electron density of the absorbing
material: 𝜏

C
∝ 𝜌𝑍. For quantum energy of greater than 2 ⋅ 511 keV, pair production

becomes possible. Through the interaction of the photon with the strong electromag­
netic field of the atomic nucleus, the incident photon can spontaneous convert into
an electron-positron pair. The probability of occurrence of pair production increases
with the square of the atomic number: 𝜏

P
∝ 𝜌𝑍

2. After pair production, the positron
can move for several millimeters until it is annihilated by an electron. This leads to
the emission of two photons in opposite directions, known as annihilation radiation.

For chargedparticles, theCoulomb interactionwith thevalence electronsof atoms
dominates as the particles pass through material. For a mass𝑚with 𝑧 ⋅ 𝑒 charged par­
ticles passes opposite the valence electrons, energy transfer per path length can be
calculated by using the Bethe-Bloch formula:

−
𝑑𝐸

𝑑𝑥
= 4𝜋𝑧

2
𝑟
2

𝑒

𝑚𝑐

(4𝜋𝜀
0
)2𝛽2

⋅ 𝑛 ⋅ 𝑍 ⋅ {ln (
2𝑚𝑐

2
𝛽
2

𝐼(1 − 𝛽2)
) − 𝛽

2
} .

In the expression, 𝑟
𝑒
is the classical electron radius (see above),𝑍 is the atomicnumber

of themedium, and 𝐼 is the average ionpotential (𝐼 ≈ 𝑍⋅13.5 eV).𝛽 := 𝑣/𝑐 is ameasure­
ment of the velocity of the particle, 𝑛 =

𝑁
𝐴
𝜌

𝑚
mol

is the number of atoms per unit volume
in the medium (𝑁

𝐴
: Avogadro constant,m

mol
: molar mass, 𝜌: density of the medium).

𝑆(𝐸) := −
𝑑𝐸

𝑑𝑥
is also called the linear stopping power (LSP), while in dosimetry, the con­

cept of linear energy transfer (LET) is useful. Due to −
𝑑𝐸

𝑑𝑥
∼

𝑧
2

𝑣
2
, energy transfer grows

with the charge of the particle, and with falling velocity. As such, charged particles in
a material have a finite penetration depth. The damage to material increases as this
depth increases until a maximum is reached where the particles are slowed to zero.
In this manner, for example, energy can be deposited in tumors in a targeted way; the
tissue above the tumor experiences less damage, and the tissue beneath the tumor
receives practically no dose.

In comparison to positively charged particles, the interaction of incident elections
with the valence electrons of amaterial can lead to a change in direction. Furthermore,
collision between identical particles occurs, so the Pauli principlemust be considered.
The Bethe-Bloch formula modified for electrons is:

−
𝑑𝐸

𝑑𝑥
= 2𝜋𝑟

2

𝑒

𝑚𝑐
2

𝛽2
⋅ 𝑛 ⋅ 𝑍 ⋅ { ln (

𝜏
2
(𝜏 + 2)

2 (
𝐼

𝑚𝑐
2
)
2
) − 𝐹(𝜏)}.
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𝜏 :=
𝐸
kin

𝑚𝑐
2
is the ratio of kinetic energy to rest energy, and

𝐹(𝜏) := 1 − 𝛽
2
+
𝜏
2
/8 − (2𝜏 + 1) ln(𝑧

2
)

(𝜏 + 1)2
.

In addition to collisions, bremsstrahlung also contributes to the loss of energy from
the electrons. This contribution can be described as

−
𝑑𝐸

𝑑𝑥
= 4𝑍

2
𝑛𝑟

2

𝑒
𝐸 ⋅ ln (

183

𝑍
1

3

) .

For small energies, the collision contribution dominates; for large energies, brems­
strahlung loss is predominant. The energy at which both contributions are equal is
called the critical energy 𝐸

crit
. It ranges from 9.5MeV in lead up to around 100MeV in

water.
As uncharged particles, neutrons do not experience Coulomb interactions. As

such, in addition to scattering, the capture of slow neutrons is possible. As the mag­
netic interaction of neutrons with atomic shells can be ignored, energy transfer occurs
primarily through a collision process with nuclei. The transfer of energy at collision
angle 𝜃 is:

Δ𝐸 =
4
𝑚
𝑁

𝑀

(1 +
𝑚
𝑁

𝑀
)

⋅ 𝐸
𝑁
cos

2
𝜃.

This transfer is maximized if the mass of𝑀 of the atomic nucleus is comparable to the
mass𝑚

𝑁
of the neutron. Then, Δ𝐸 ≈ 𝐸

𝑁
cos

2
𝜃, and in isotropic media around half of

the neutron’s energy is transferred in a single collision. As, in addition, the cross sec­
tion of the neutron-proton collision is especially large, and that of other biologically
significant nuclei like oxygen and carbon is especially small, around 90% of the loss
in energy from neutrons is due to interaction with water. A second method of energy
loss is the absorption of neutrons for the construction of a compound nucleus. This
makes an effective local deposition of energy possible in treating tumors.

Through the primary interaction of charged particles in a material, additional
charged particles, the secondary particles, can be created. These also interact with
the material. The secondary electrons are also termed 𝛿-particles. As many of the sec­
ondary particles are created with relatively little energy, they lose their energy close
to the primary ionization. This generates primary ionization clusters.

Different processes contribute to tissue damage by ionizing radiation. Radiation
injuries result from excitation, ionization, and dissociation of atoms and molecules,
but the most serious damage in the long term is due to damage to the DNA. As such
ionizing damage to DNA also occurs naturally (not only due to natural radioactivity),
there are highly effective repair mechanisms in biological systems to combat it.

A description of the effect of ionizing radiation onbiological tissue is not complete
with the specification of the activity of a radioactive source. The specification of the
energy dose 𝐷 :=

𝑑𝐸

𝑑𝑚
(unit Gray, Gy) and energy dose power 𝐷̇ :=

𝑑𝐷

𝑑𝑡
is also not com­

plete, as the method of delivery of the energy to the tissue must also be considered.
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As such, an equivalent dose𝐻 := 𝑄 ⋅ 𝐷 is introduced in which the dose is rated with
a biological quality factor 𝑄. Although the quality factor is unitless, the value of the
equivalent dose is given its own unit, the Sievert (Sv).

In radiationprotection, the effective dose𝐸 is calculated as theweighted sumover
the individual organ dose𝐻

𝑇
. For radiation𝑅, organ dose is found according to𝐻

𝑇,𝑅
=

𝑤
𝑅
⋅ 𝐷

𝑇,𝑅
. In this expression𝐷

𝑇,𝑅
is the average energy dose across the tissue or organ

(designated with 𝑇), and 𝑤
𝑅
is the beam-weighting factor (to differentiate from the

quality factor𝑄). If the radiation affecting the tissue or organ is comprised of different
types with different values of 𝑤

𝑅
, then the entire organ dose is 𝐻

𝑇
= ∑

𝑅
𝑤

𝑅
𝐷

𝑇,𝑅
. For

the effective dose, with the corresponding tissue weighting factors𝑤
𝑇
, the expression

is therefore:
𝐸 = ∑

𝑇

𝑤
𝑇
𝐻

𝑇
= ∑

𝑇

𝑤
𝑇
∑

𝑅

𝑤
𝑅
𝐷

𝑇,𝑅
.

While the tissue weighting factors are in the range of between 𝑤
𝑇
= 0.01 for skin or

bone surface and 𝑤
𝑇
= 0.20 for gonads, radiation weighting factors 𝑤

𝑅
have values of

𝑤
𝑅
= 1 for photons, electrons, and muons of all energies, and range up to 𝑤

𝑅
= 20 for

neutrons in the energy region of 0.1 − 2MeV, alpha particles, fission fragments, and
heavy nuclei. Details can be found in regulations dealing with radiation protection
requirements.

12.1 Interactions of a High-Energy Primary Photon

Complete the schematic of possible interactions of a high-energy primary photon.

primary photon

primary 
interactions

charged 
secondary
particle

uncharged 
particle
photons

Fig. 12.1. Schema of possible interactions.
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primary photon

elastic scattering photoelectric effect Compton scattering

Compton 
electrons

Auger
electrons

characteristic
X-ray radiation

Compton photon annihilation
radiation

pair production

electron-
positron
pairs

scattered 
primary photon

primary 
interactions

charged 
secondary
particle

uncharged 
particle
photons

Fig. 12.2. Schema of possible interactions.

12.2 Pair Production in Radiation Therapy

1. Which effects are relevant for the transfer of energy from photons to material in
radiation therapy? Which effect dominates at low (≤ 0.1MeV), middle, and high
photon energies (≥ 1MeV)?

2. Why can’t pair production occur in a vacuum?

1. The corresponding effects are
(a) photoelectric effect (dominates at low energies)
(b) Compton Effect (dominates at mid-range energies)
(c) pair production (begins at higher energies)

2. The energy and momentum of a photon are proportional to each other according
to the expression

𝐸
𝛾
= 𝑝

𝛾
𝑐.

Assuming that two particles that move with velocities 𝑣
1
and 𝑣

2
are created from

the photon, the total energy of the particle can be written as

𝐸 = 𝑚
0
𝑐
2
(𝛾 (𝑣

1
) + 𝛾 (𝑣

2
)) with 𝛾 (𝑣) =

1

√1 − (
𝑣

𝑐
)
2

For the momentum of both particles,
󵄨󵄨󵄨󵄨𝑝⃗
󵄨󵄨󵄨󵄨 = 𝑚

0

󵄨󵄨󵄨󵄨𝛾 (𝑣1) ⃗𝑣
1
+ 𝛾 (𝑣

2
) 𝑣⃗

2

󵄨󵄨󵄨󵄨 .

Therefore, its maximum value is

𝑝
max

= 𝑚
0
(𝛾 (𝑣

1
) 𝑣

1
+ 𝛾 (𝑣

2
) 𝑣

2
) .
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Substituting this expression into the conservation equations for energy 𝐸
𝛾
= 𝐸

and momentum 𝑝
𝛾
=
󵄨󵄨󵄨󵄨𝑝⃗
󵄨󵄨󵄨󵄨,

(𝛾 (𝑣
1
) + 𝛾 (𝑣

2
)) 𝑚

0
𝑐
2
=
󵄨󵄨󵄨󵄨𝛾 (𝑣1) 𝑣⃗1 + 𝛾 (𝑣

2
) 𝑣⃗

2

󵄨󵄨󵄨󵄨 𝑚0
𝑐.

This equation can only be solved for 𝑣
1
= 𝑣

2
= 𝑐; this is physically impossible, and

would also violate the conservation of energy. As such, at some point in the pro­
cess, energy and/or momentum must be exchanged with an additional partner –
the process cannot take place in a vacuum.

12.3 Compton Scattering

A photon of energy ℎ𝜈 = 1.173MeV is scattered by an electron at angle 𝛩 = 55
∘. Cal­

culate
1. the energy 𝐸 of the scattered photon
2. the change Δ𝜆 in the wavelength
3. the recoil energy 𝑇 of the electron

1. The scattered photon has energy

𝐸
󸀠

𝛾
=

𝐸
𝛾

1 +
𝐸
𝛾

𝑚𝑐
2 (1 − cos 𝛩)

=
1.173MeV

1 +
1.173MeV

0.511MeV
(1 − cos 55∘)

= 0.593MeV.

2. The wavelength changes by

Δ𝜆 : = 𝜆
󸀠
− 𝜆 = 𝜆 ⋅

𝐸
𝛾

𝑚𝑐2
(1 − cos 𝛩) =

ℎ

𝑚𝑐
(1 − cos 𝛩)

=
6.626 ⋅ 10

−34
Js

0.91 ⋅ 10−30kg ⋅ 3 ⋅ 108m/s
(1 − cos 55

∘
) = 1.04 ⋅ 10

−12
m.

3. The recoil energy of the electron is

𝑇 = 𝐸
𝛾
− 𝐸

󸀠

𝛾
= 1.173MeV − 0.593MeV = 0.58MeV.

12.4 Radiation Damage from Potassium

The percentage proportion of potassium in an adult human can be estimated as 𝛷 =

0.35%. How many microcuries of 40
K are in the body of a person whose mass is 𝑚 =

70 kg? The natural occurrence of 40
K is𝛩 = 0.012%, and the half-life is 𝑇1/2

= 1.8 ⋅ 10
9
a.
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For the activity we have
𝐴 = −

𝑑𝑁

𝑑𝑡
=

ln 2

𝑇1/2

⋅ 𝑁,

with𝑁 as the number of atoms. We can calculate this from the mass𝑚
𝐾
of potassium

in the body:

𝑚
𝐾
= 𝛷 ⋅ 𝑚 = 0.35% ⋅ 70 kg = 0.0035 ⋅ 70 kg = 0.245 kg

and from the isotopic proportion and molar mass𝑚
𝑚𝑜𝑙

= 40 g as

𝑁 = 𝑁
𝐴

𝑚40
𝐾

𝑚
mol

= 6 ⋅ 10
23

#/mol

245

40
1.2 ⋅ 10

−4
= 4.4 ⋅ 10

20
.

The activity is

𝐴 =
ln 2

𝑇1/2

⋅ 𝑁 =
0.693 ⋅ 4.4 ⋅ 10

20

1.8 ⋅ 109 ⋅ 365 ⋅ 24 ⋅ 3,600 s
= 5,100 #/s = 5.1 kBq = 0.14 μCi.

12.5 Lethal Energy Dose

The fatal dose of energy 𝐷 during the whole-body irradiation of a person of mass𝑚 =

75 kg is 500 rd. How many degrees of temperature Δ𝑇 can 𝑚
𝑊

= 75 kg of water be
warmed if an amount of energy equivalent to the lethal dose is applied to the water in
the form of heat energy?
[specific heat of water 𝑐

𝑊
= 4.187 ⋅ 10

3
J/kgK]

The conversion between the dated unit rad and the unit Gray is 1 Gy = 100 rd. For the
energy 𝐸 deposited in the body, then, we have

𝐸 = 𝐷𝑚 = 5Gy ⋅ 75 kg = 375 J.

To warm the water by Δ𝑇, we require energy

𝐸 = 𝑐
𝑊
𝑚

𝑊
Δ𝑇.

Therefore,
Δ𝑇 =

𝐸

𝑐
𝑊
𝑚

𝑊

=
375 J

4.187 ⋅ 103J/kgK ⋅ 75 kg
= 1.2 ⋅ 10

−3
K.

12.6 Fatal Dose Equivalents

1. What full-body dose does a 70 kg physics lab assistant exposed to a 60

27
Co source

with 40mCi receive? On average over the day, he is 4m away from the source. 60
27
Co

emits 𝛾 rays with energies 1.33MeV and 1.17MeV (one photon of each per decay).
In the body, the 𝛾 radiation deposits half of its energy. The projection surface of
the lab assistant is 1m2. Discuss the result while considering that, for 𝛾 rays, the
relative biological efficiency as an assessment factor is equal to 1.
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2. Assuming that the person contains around 2 ⋅10
9 nucleotide base pairs per strand

of DNA, estimate the volume 𝑉 of such a strand. To be destroyed in the biological
sense, 1,000 ionizations are necessary in this volume. As such, what is the rough
fatal dose equivalent for a person?

[the average relative molecular mass of a corresponding nucleotide is 𝑀 = 330 g/mol;
the ion charge is 𝑞 = 1.6⋅10

−19
C; the ionizationpotential of human tissue is𝜑

𝐺
= 33.7 V]

1. The total energy of the 𝛾 ray per decay is

𝐸
𝐶𝑜

= (1.33 + 1.17)MeV = 2.50MeV

and the total energy emitted by the source is

𝐸 = 𝐸
𝐶𝑜

𝑑𝑁

𝑑𝑡
.

As 1 Ci = 3.7 ⋅ 10
10 decays per second, we have

𝐸 = (2.5MeV) (0.04 Ci) (3.7 ⋅ 10
10
Ci

−1
s
−1
) = 3.7 ⋅ 10

9
MeVs

−1
.

The ray propagates spherically away from the source. A person 4m away only re­
ceives a portion of it. This portion can be calculated using the ratio of the projec­
tion area of the person 𝐴

𝑝
on a spherical surface with radius 𝑟 = 4m:

𝐴
𝑃

𝐴
𝑘

=
𝐴

𝑝

4𝜋𝑟2
=

1.0m
2

4𝜋 (4m)
2
= 6.33 ⋅ 10

−3
.

Because only half of the emitted energy interacts with the body, the active portion
𝐸

𝑎
=

1

2

𝐴
𝑃

𝐴
𝑘

𝐸 is

𝐸
𝑎
= 0.5 (6.33 ⋅ 10

−3
) (3.7 ⋅ 10

9
MeV/s) (1.6 ⋅ 10

−13
J/MeV) = 1.88 ⋅ 10

−6
J/s.

The SI unit for absorbed radiation dose is the Gray [Gy]. 1Gy = 1 J/kg. Therefore,
the rate of the whole-body dose of a 70 kg person is

𝑑𝐷

𝑑𝑡
=

1.88 ⋅ 10
−6

J/s

70 kg
= 2.69 ⋅ 10

−8
J/kg s = 2.69 ⋅ 10

−8
Gy/s.

Within 4 h hours, this dose is

𝐷 = (4 h) (3,600 s/h) (2.69 ⋅ 10
−8

Gy/s) = 3.87 ⋅ 10
−4

Gy.

This physical dose has, in biological material, dose equivalent

𝐷eq = 𝑄 ⋅ 𝐷



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 201
�

�

�

�

�

�

12.6 Fatal Dose Equivalents | 201

with 𝑄 as the relative biological effectiveness. 𝐷eq is given in Sieverts [Sv] ¹. For 𝛾
rays, 𝑄 = 1 Sv/Gy. Therefore,

𝐷eq = 1 Sv/Gy (3.9 ⋅ 10
−4

Gy) = 0.39mSv.

The legal yearly dosage limit𝐷∗

leg is

For a normal person, 5mSv/a

For someone exposed to radiation, 50mSv/a.

This means that the radiation-exposed lab assistant receives around ca. 1% of his
yearly allowed dose eachday. In order to reduce this number, the radiation source
should be shielded. Without additional shielding, he should only work in the ra­
diation laboratory for 128 d out of the year. The higher value of allowed radiation
dose for those exposed is due to the medical check-ups that these people undergo
frequently.

2. As the person has 𝑛
𝑝

= 2 ⋅ 10
9 nucleotide base pairs per strand of DNA, and 1

nucleotide has an average relative molecular mass of𝑀
𝑁

= 330 g/mol, the relative
molecular mass of a strand is

𝑀St = 𝑛
𝑝
𝑀

𝑁
= 2 ⋅ 10

9
⋅ 330 = 6.6 ⋅ 10

11
g/mol.

The mass of a strand of DNA is therefore

𝑚St =
𝑀St
𝑁

𝐴

=
6.6 ⋅ 10

11
g/mol

6 ⋅ 10231/mol

= 10
−12

g = 10
−15

kg.

If we assume that 𝜌
DNS

= 𝜌
H
2
O
, the volume of a DNA strand is then

𝑉St =
𝑚St
𝜌
DNS

=
10

−15
kg

103 kg/m3
= 10

−18
m

3
.

With 𝑛
ion

= 1,000 ionizations, the ionized volume per strand is

𝑉
ion

=
𝑉St
𝑛
ion

=
10

−18
m

3

103
= 10

−21
m

3
.

The number of ion pairs per volume 𝑗
2
is

𝑗
2
=

1

𝜌
DNS

𝑉
ion

= 10
18 ion pairs

kg
.

With ion charge 𝑞
ion

= 1.6 ⋅ 10
−19

C/ion per ion, the fatal dose is

𝐷
𝐶
= 2 𝑞

ion
𝑗
2
= 2 ⋅ 1.6 ⋅ 10

−19 C

ion pairs
⋅ 10

18 ion pairs
kg

= 0.32 C/kg.

||
1 The unit [rem] “rad equivalent man” is also sometimes used: 1 Sv = 100 rem
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The corresponding dose of energy𝐷
𝐸
can be found using the ionization potential

of human tissue, 𝜑
𝐺
= 33.7 V:

𝐷
𝐸
= 𝜑

𝐺
𝐷

𝐶
= 33.7 V ⋅ 0.32 C/kg = 10.8 J/kg = 10.8 Gy.

As the relative biological effectiveness is𝑄 = 1 Sv/Gy, the fatal dose equivalent is

𝐷
𝑀

= 𝑄 ⋅ 𝐷
𝐸
= 1 Sv/Gy ⋅ 10.8 Gy = 10.8 Sv.

12.7 Dose Burden from Milk Consumption

What is the effective annual dose that an adult with mass𝑚E = 70 kg and a baby with
mass 𝑚S = 5 kg are exposed to if each of them drinks 𝑉 = 3/4 l of milk each day? In
cow’s milk, the potassium isotope 40

19
K occurs, and decays with a specific activity of

𝑎 = 2 nCi/kg. The retention time of milk in the body is 𝜏 = 12 h, and 𝜅 = 12% of the
energy 𝑃 = 1.5MeV liberated in each decay is absorbed by the body. What percent of
the permitted annual dose is absorbed in each case?
[density of milk 𝜌

𝑀
= 0.95 kg/l]

The daily dose absorbed𝐷
∗ for a person 𝑗 is

𝐷
∗

𝑗
=

𝜅𝜏 𝑎 𝑃𝜌
𝑀
𝑉

𝑚
𝑗

Numerically,

𝑚
𝐽
𝐷

∗

𝑗
= 0.12 (12 h) (2 ⋅ 10

−9
Ci/kg) (1.5MeV) (0.95 kg/l) (0.75 l) ⋅

⋅ (1.6 ⋅ 10
−13

J/MeV) (3.7 ⋅ 10
10

1/Cis) (3,600 s/h) .

With 𝑚
𝑗
= 𝑚E = 70 kg for the adult, the annual dose is

𝐷
∗

E = 5 ⋅ 10
−7

Gy/a

Under the assumption of a relative biological effectiveness of 𝑄 = 1 Sv/Gy, the effective
annual dose 𝐷∗

eff,E
is

𝐷
∗

eff,E
= 𝐷

∗

E ⋅ 𝑄 = (5 ⋅ 10
−7

Gy/a) (1 Sv/Gy) = 0.5 μSv/a.

With 𝑚
𝑗
= 𝑚S = 5 kg for the baby, we have a 𝑚E

𝑚S
=

70

5
= 14 times higher value for the

effective annual dose:
𝐷

∗

eff,S
= 14 ⋅ 0.5 μSv/a = 7 μSv/a.

In comparison to the permitted annual dose of𝐷∗

leg
= 1 mSv/a, we have, for

– adults: 𝐷
∗

E
𝐷
∗

leg

=
0.5

1,000
= 0.5‰

– babies: 𝐷
∗

S
𝐷
∗

leg

=
7

1,000
= 7‰

of the annual dose allowed.
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Laser light, and light from conventional sources, differ in that a laser generates coher­
ent light. In medicine, this spatial and temporal coherence is significant. The spatial
coherence allows laser light to be focused in very small beam diameters in the range
of a few optical wavelengths; this allows practitioners to achieve the high intensities
that are important in therapy. The temporal coherence permits a high degree of time
resolution, and is useful primarily in diagnostics. The creation of laser light is based
on the principle of stimulated emission: when a photon strikes an electron in an ex­
cited state, it can cause this electron to return to its ground state. Energy is liberated
in the process, and is emitted as a photon that has the same frequency and phase as
the original photon. In order for this to occur efficiently there must be more electrons
in the excited state than in the ground state, a condition termed inversion.

One of the first lasers was the ruby laser. The active amplifying material is com­
prised of ruby, which is excited by irradiation with light. The laser beam is emitted
from the front surface of the ruby rod. In addition to the solid material category in
which ruby is classified, gases and dyes are also used in laser as amplifiers. With solid
materials, semiconductors have become more and more important in recent years.
The first applications of coherent radiation were their use in ophthalmology. Appli­
cations in surgery and in other areas of medicine followed. Today, targeted lasers with
a very short penetration depth in biological tissue are being developed. Lasers also
play an important role in the diagnostic, physiological investigations of tissue, espe­
cially in the search for tumors. Lasers can excite fluorescent materials in a targeted
manner. Florescent markers are attached, for example, to molecules, which are then
preferentially stored in tumors. Lasers are also used to clarify molecular processes,
as in “Förster Resonant Energy Transfer” (FRET), in which energy transport between
molecules is investigated with the help of lasers.

A focused laser beam can produce very strong electric fields. As such, small trans­
parent particles are brought into the focus of a laser beam. If the beam ismoved, these
particles move along with it. These mechanisms are called “optical tweezers”; they
are not only used to move particles at higher spatial resolution within cells (even or­
ganelles) in a targeted way, but can simultaneously measure the resulting forces that
occur. Through this use it is possible, for example, to determine the mechanical char­
acteristics of body cells, like their elasticity and/or shear modulus, and to come up
with a diagnosis of tissue condition through comparison of healthy andpathologically
altered values. Generally, these moduli are significantly reduced in cancerous cells.

Although light is strongly scattered in human tissue, and it is therefore impossible
to obtain optical images of the entire inner body, an image in the region of the body’s
surface can nonetheless be generated using “optical coherence tomography” (OCT).
This technique is principally used in studying the eye, and works interferometrically.
Three-dimensional imageswith very high spatial resolution canbe generated byusing
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light sources with a wide range of wavelength spectra. An OCT image is comprised of
a number of sectional images that are processed into a tomogram.

A laser beam can be absorbed, reflected, or scattered when it strikes some mate­
rial. While reflected laser beams are of no use in medical applications, both absorp­
tion and scattering are important in therapy and diagnosis. The amount of absorption
is substantively determined by the absorption coefficient of water, as human tissue is
primarily comprised of this substance. Because biological tissue is inhomogeneous, in
addition to absorption, simple and complex scattering can occur. The size of the par­
ticle with respect to the wavelength of the light beam determines which type of scat­
tering, Rayleigh or Mie, will occur. For Rayleigh scattering, as wavelength decreases,
scattering increases sharply; in the ultraviolet region, penetration depth and the free
path length of the light in the tissue becomes shorter.

The therapeutic processes of laser application are photochemistry, photother­
mics, photomechanics, and photodisruption. Photochemical processes occur in tis­
sues under low-intensity laser light (below 100W/cm2) with long application times, as
in wound repair and pain therapy. From an intensity of 100W/cm2, the tissue is coagu­
lated – photothermically altered. This process is used in managing tumors, to shrink
tissues, and to control bleeding. At intensities of above 106W/cm2 photoablation occurs,
which is also known as photomechanics. A bounded volume of tissue is heated up
and vaporized using pulses of light. Due to the short amount of time required for this
vaporization, no heat is transferred by thermal conduction to the remaining tissue. In
eye surgery, lasers with very short pulses (around 20 ns) are used. Even higher inten­
sities can be achieved with special solid-state lasers. This leads to photodisruption,
which creates plasma. This technique is used after cataract surgery. As all medical
applications of lasers involve the creation of heat energy, the phenomenon of heat
transfer must be considered with special attention. Above all, the effect of this energy
on biological tissue must be taken into account. How far the energy introduced by a
laser into tissue spreads depends on the parameters of the material, like water com­
position, density, heat conductivity, and heat capacity. The effects differ depending
on the type of tissue. It must be remembered that in proteins, at temperatures over
40

∘C, conformational changes occur; above 50 ∘C, different enzymes lose their ability
to function. Above around 60

∘C, denaturation occurs. In place of a scalpel, surgeons
can use a CO

2
-Laser laser with a wavelength of 10 μm in operations. At this wave­

length, penetration depth in water is around 20 μm. As opposed to the scalpel, the
laser offers the primary advantage that less bleeding occurs (due to coagulation by
the laser beam).

13.1 Lasers in Ophthalmology

A detached retina can be “welded” back into place by a pulse from an excimer laser
focused on different spots. The laser generates pulses with a duration of 𝜏 = 20ms,
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wavelength 𝜆 = 600 nm, and pulse power 𝑃 = 60mW. At the welding point (at the
focus), the laser has a circular cross section with beam diameter 𝑑 = 125 μm. The
energy is absorbed in a layer of thickness 𝑙 = 268 μm .
1. What is the pulse energy 𝐸

𝑃
?

2. What is the average number𝑁
𝛾
of photons in each pulse?

3. How much is the tissue in focus warmed?

[specific heat of the tissue 𝑐
𝑤
= 4 kJ/kgK]

1. As the duration of the pulse is 𝜏 = 20ms = 20⋅10
−3

s, with pulse power 𝑃 = 0.06W,
the pulse energy is

𝐸
𝑃
= 𝑃𝜏 = (0.06 J/s) (20 ⋅ 10

−3
s) = 1.2 ⋅ 10

−3
J.

2. The energy of a photon is

𝐸
𝛾
=

ℎ𝑐

𝜆
=

6.63 ⋅ 10
−34

Js ⋅ 3 ⋅ 10
8
m/s

600 ⋅ 10−9m
= 3.3 ⋅ 10

−19
J.

The average number of photons𝑁
𝛾
is calculated as

𝑁
𝛾
=

𝐸
𝑃

𝐸
𝛾

=
1.2 ⋅ 10

−3
J

3.3 ⋅ 10−19J
= 3.6 ⋅ 10

15
.

3. Assume that the beam in this region is roughly equivalent to a cylinder, and the
corresponding volumewith beam cross section 𝑑 = 125 μm and penetration depth
𝑙 = 268 μm is

𝑉 =
𝜋

4
𝑙𝑑

2
= 3.3 ⋅ 10

−3
mm

3
.

The mass of the tissue𝑚
𝑁
in volume 𝑉 can be approximated using the density of

water
𝑚

𝑁
= 𝜌𝑉 = 10

3 kg

m3
⋅ 3.3 ⋅ 10

−3
mm

3
= 3.3 ⋅ 10

−9
kg.

The pulse energy 𝐸
𝑝
leads to awarming of the tissue.We have𝐸

𝑝
= 𝑚

𝑁
𝑐
𝑊
Δ𝑇, and

so after a pulse, the increase in temperature is

Δ𝑇 =
𝐸

𝑃

𝑚
𝑁
𝑐
𝑊

=
1.2 ⋅ 10

−3
J

3.3 ⋅ 10−6g 4 J/gK
= 91K.

13.2 Optical Sizing of Bacteria

On a glass plate are a number of spherical bacteria; a researcher wishes to determine
their diameter 𝑑. A laser beam with wavelength 𝜆 = 642 nm strikes the glass plate,
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and creates a diffraction pattern on a screen 𝑠 = 3m behind the plate; the pattern is
comprised of dark, circular rings in a light spot. The smallest ring has diameter 𝑎 =

20 cm. How can the desired diameter 𝑑 of the bacteria be determined from 𝑎?

The spherical bacteria create the same diffraction pattern as circular apertures with
the same diameter. As such, the formulas necessary for evaluation will be derived
from the circular aperture case. According to theHuygens principle, elementarywaves
proceed from all points within an aperture. Each element of area 𝑑𝐴 of the aperture
contributes to the total amplitude of the elementary wave. If 𝜑 is the angle between
the direction of the laser beam and the direction 𝑟 of an elementary wave, for the total
amplitude, we have

𝛩 = ∫

𝐴

cos 𝑥 𝑑𝐴 with x = x (𝜑) =
2𝜋

𝜆
𝑟 (𝜑) .

Here,𝐴 is the surfaceof the circular aperture, and 𝑟(𝜑) is thedistance from theaperture
to the point on the screen in question. The solution is¹

𝛩 (𝜑) ∝
𝐽
1
[2 𝑧 (𝜑)]

𝑧 (𝜑)
with 𝑧 (𝜑) =

𝜋𝑑

2𝜆
sin 𝜑.

For the intensity 𝐼 (𝜑), squaring yields

𝐼 (𝜑) = 𝐼
0
{
𝐽
1
[2 𝑧 (𝜑)]

𝑧 (𝜑)
}

2

.

The first root (corresponding to the smallest ring) has a Bessel function at 𝑥 = 3.84,
and therefore

2𝑧|
min

= 3.84

or
𝜋𝑑 sin 𝜑|

min
= 3.84 ⇒ sin 𝜑|

min
= 1.22

𝜆

𝑑
.

Considering the geometry of the array with 𝑠 as the separation between the aperture
and the screen, and 𝑎 as the diameter of the smallest ring,

sin 𝜑|
min

=
𝑎/2

𝑠

and finally,
𝑑 = 2.44

𝜆 𝑠

𝑎
.

Because, as explained, the diffraction gratings of a circular aperture and of a sphere
(and also of a circular disk) are equivalent, the final equation canbe used to determine
the diameter 𝑑 of the bacteria. With 𝜆 = 6.42 ⋅ 10

−7
m, 𝑠 = 3m, and 𝑎 = 0.2m, we find

𝑑 = 2.44
6.42 ⋅ 10

−7
m 3m

0.2m
= 9.63 ⋅ 10

−6
m = 9.63 μm.

||
1 as a first approximation of the Bessel function, use: 𝐽

1
(𝑥) = √

2

𝜋𝑥
sin (𝑥 −

𝜋

4
)
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13.3 Small Particles in Optical Tweezers

1. Show, by solving the Heisenberg equation of motion, that the force that a laser
beam exerts on a dielectric particle (small in comparison to the laser wavelength)
with dipolemoment ⃗𝑑 and linear polarizability𝛼 is directed opposite the intensity
gradient of the laser beam.

2. An optical tweezer is used with a laser beam of wavelength 𝜆, with a Gaussian
intensity profile (TEM

00
). The beam diameter is𝑤 (𝑧); at 𝑧 = 0 the diameter has its

minimum value 𝑤
0

𝑤 (𝑧) = 𝑤
0
√1 + (

𝑧

𝑧
𝑅

)

2

with 𝑧
𝑅
=

𝜋

𝜆
𝑤

2

0
for the Rayleigh length. The intensity profile is, in this case, given

as
𝐼 (𝑟, 𝑧) = 𝐼

0
(

𝑤
0

𝑤 (𝑧)
)

2

exp (−
2𝑟

2

𝑤2 (𝑧)
) .

𝐼
0
is the laser intensity in the center of the beam waist. The force field occurs in a

plane along the direction of propagation. Calculate themaximumtransverse force
on a particle of polarizability 𝛼 at position 𝑧 along the propagation axis.

3. An optical tweezer with laser intensity 𝐼
0
= 1.2 ⋅ 10

9
W/m2 and wavelength 𝜆 =

615 nmhasabeamdiameter of𝑤
0
= 10 μm.What is the forceof this optical tweezer

onaparticle of tissue that is primarily comprisedofwater?Thepolarizability𝛼 can
be determined from the Clausius–Mosotti equation

𝜀
𝑟
− 1

𝜀
𝑟
+ 2

𝑀
𝑚

𝜌
=

𝑁
𝐴

3𝜀
0

𝛼

The molar mass of water is 𝑀
𝑚

= 18 g/mol, and the density is 𝜌 = 1,000 kg/m3. The
relative permittivity constant 𝜀

𝑟
is, in the optical frequency range, 𝜀

𝑟
= 1.7 (for

water), and 𝜀
0
= 8.85 ⋅ 10

−12
C
2

/Nm
2.

1. The Hamiltonian operator that describes the interaction between the electric field
⃗𝐸 and a dipole ⃗𝑑 is

𝐻̂ = − ⃗𝑑 ⋅ ⃗𝐸.

Using the Heisenberg equation of motion

−𝑖ℏ
𝑑𝑝̂

𝑑𝑡
= [𝑝̂, 𝐻̂]

the interaction force can be written as

𝐹⃗ =
𝑑𝑝̂

𝑑𝑡
=

𝑖

ℏ
{( − 𝑖ℏ∇⃗) ( − ⃗𝑑 ⋅ ⃗𝐸) − ( − ⃗𝑑 ⋅ ⃗𝐸) ( − 𝑖ℏ∇⃗)}

= −∇⃗ ( ⃗𝑑 ⋅ ⃗𝐸) + ( ⃗𝑑 ⋅ ⃗𝐸) ∇⃗.
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Using the equivalent of the chain rule for the gradients of a scalar product, and
simplifying with the identities for the triple cross product, we have

∇⃗( ⃗𝑑 ⋅ ⃗𝐸) = ( ⃗𝐸 ⋅ ∇⃗) ⃗𝑑 + ( ⃗𝑑 ⋅ ∇⃗) ⃗𝐸 + ⃗𝑑 × (∇⃗ × ⃗𝐸) + ⃗𝐸 × (∇⃗ × ⃗𝑑)

with

⃗𝑑 × (∇⃗ × ⃗𝐸) = ( ⃗𝑑 ⋅ ⃗𝐸)∇⃗ − ( ⃗𝑑 ⋅ ∇⃗) ⃗𝐸

⃗𝐸 × (∇⃗ × ⃗𝑑) = ( ⃗𝑑 ⋅ ⃗𝐸)∇⃗ − ( ⃗𝐸 ⋅ ∇⃗) ⃗𝑑

we have

⃗𝐸 × (∇⃗ × ⃗𝑑) + ⃗𝑑 × (∇⃗ × ⃗𝐸) = 2( ⃗𝑑 ⋅ ⃗𝐸)∇⃗ − ( ⃗𝑑 ⋅ ∇⃗) ⃗𝐸 − ( ⃗𝐸 ⋅ ∇⃗) ⃗𝑑

∇⃗( ⃗𝑑 ⋅ ⃗𝐸) = 2( ⃗𝑑 ⋅ ⃗𝐸)∇⃗

and then,

𝑑𝑝̂

𝑑𝑡
= −

1

2
∇⃗( ⃗𝑑 ⋅ ⃗𝐸) + ∇⃗ ( ⃗𝑑 ⋅ ⃗𝐸)

=
1

2
∇⃗( ⃗𝑑 ⋅ ⃗𝐸).

For a linear dipole moment with polarizability 𝛼, the dipole moment is

⃗𝑑 = 𝛼 ⃗𝐸

and therefore, the force applies in the direction of the intensity gradient of the
laser beam, with 𝑐 as the speed of light and 𝜀 as the permittivity constant:

𝐹⃗ =
1

2
𝛼∇⃗( ⃗𝐸 ⋅ ⃗𝐸)

=
𝛼

𝜀
𝑟
𝜀
0
𝑐
∇⃗𝐼.

2. The intensity profile of a Gaussian beam is

𝐼 (𝑟, 𝑧) = 𝐼
0
(

𝑤
0

𝑤 (𝑧)
)

2

exp (−
2𝑟

2

𝑤2 (𝑧)
)

= 𝐼
0

1

1 + (
𝑧

𝑧
𝑅

)
2
exp ( −

2𝑟
2

𝑤
2

0
(1 + (

𝑧

𝑧
𝑅

)
2
)

).

This leads to an intensity gradient

∇⃗𝐼 (𝑟, 𝑧) =
𝜕𝐼

𝜕𝑟
̂𝑟 +

1

𝑟

𝜕𝐼

𝜕𝜃

̂𝜃 +
𝜕𝐼

𝜕𝑧
𝑧̂.

Due to the rotational symmetry of the intensity profile, the gradient 𝜕

𝜕𝜃
disappears,

so that
𝜕𝐼

𝜕𝜃
= 0.



�

�
Wieland Alexander Worthoff, Hans Georg Krojanski, Dieter Suter: Medical

Physics — 2013/11/13 — 9:49 — page 209
�

�

�

�

�

�

13.3 Small Particles in Optical Tweezers | 209

The radial and axial components are calculated as

𝜕𝐼

𝜕𝑟
= −

4𝑤
2

0
𝑟

𝑤4
(𝑧)

𝐼
0
exp [−

2𝑟
2

𝑤2
(𝑧)

] ,

𝜕𝐼

𝜕𝑧
= 2𝑤

4

0

𝑧

𝑧
2

𝑅

{
2 𝑟

2

𝑤6 (𝑧)
−

1

𝑤4 (𝑧)
} 𝐼

0
exp [−

2 𝑟
2

𝑤2 (𝑧)
] .

Therefore, the force that acts on a particle is

𝐹⃗ = (

𝐹
𝑟

0

𝐹
𝑧

) = −
𝛼

𝜀
𝑟
𝜀
0
𝑐
(

4𝑟

𝑤2(𝑧)

0

2𝑤
4

0

𝑧

𝑧
2

𝑅

{
2 𝑟

2

𝑤6(𝑧)
−

1

𝑤4(𝑧)
}

)

𝑟, 𝜃, 𝑧

𝐼
0
exp [−

2𝑟
2

𝑤2
(𝑧)

] .

In order to find the maximum of the force in the radial direction, we differenti­
ate the corresponding components of the force vector. A laser tweezer with laser
intensity 𝐼

0
= 1.2 ⋅ 10

9
W/m2 and wavelength 𝜆 = 615 nm has a beam diameter

𝑤
0
= 10 μm.

𝐹
𝑟
= −

𝛼

𝜀
𝑟
𝜀
0
𝑐

4𝑟

𝑤2 (𝑧)
𝐼
0
exp [−

2𝑟
2

𝑤2 (𝑧)
] ,

𝜕𝐹
𝑟

𝜕𝑟
= −

𝛼

𝜀
𝑟
𝜀
0
𝑐

4

𝑤2 (𝑧)
{1 −

4𝑟
2

𝑤2 (𝑧)
} 𝐼

0
exp [−

2𝑟
2

𝑤2 (𝑧)
]

leading to the maximum force that acts at half the beam diameter 𝑟 = ±
1

2
𝑤 (𝑧) of

𝐹
𝑟,max

= −
2𝛼𝐼

0

𝜀
𝑟
𝜀
0
𝑐𝑤

0

exp [−
1

2
] = −1.2

2𝛼𝐼
0

𝜀
𝑟
𝜀
0
𝑐𝑤

0

.

.equipotential lines
boundary of Gaussian beam
interaction force field

propagation axis z / zR
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di
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 w
0

Fig. 13.1. Equipotential lines and forces in the region of the beam waist.
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The force in the axial direction is

𝐹
𝑍
= −

𝛼

𝜀
𝑟
𝜀
0
𝑐
2𝑤

4

0

𝑧

𝑧
2

𝑅

{
2 𝑟

2

𝑤6 (𝑧)
−

1

𝑤4 (𝑧)
} 𝐼

0
exp [−

2𝑟
2

𝑤2 (𝑧)
] .

For the middle of the beam 𝑟 = 0, we have

𝐹
𝑧
=

2𝛼𝐼
0
𝑧
2

𝑅

𝜀
𝑟
𝜀
0
𝑐

⋅
𝑧

(𝑧2 + 𝑧
2

𝑅
)
2
,

𝜕𝐹
𝑧

𝜕𝑧
= 𝐶

(𝑧
2
+ 𝑧

2

𝑅
)
2

− 4𝑧
2
(𝑧

2
+ 𝑧

2

𝑅
)

(𝑧2 + 𝑧
2

𝑅
)
4

.

𝐹
𝑧
is maximized at position 𝑧 = 𝑧

0
,, at which 𝜕𝐹

𝑧

𝜕𝑧
= 0. Therefore,

(𝑧
2

0
+ 𝑧

2

𝑅
)
2

− 4𝑧
2

0
(𝑧

2

0
+ 𝑧

2

𝑅
) = 0

(𝑧
2

0
+ 𝑧

2

𝑅
) − 4𝑧

2

0
= 0

3𝑧
0
= 𝑧

𝑅

𝑧
0
=

1

√3
𝑧
𝑅
.

And therefore,

𝐹
z, max

=
3√3 𝛼𝐼

0

16 𝜀
𝑟
𝜀
0
𝑐 𝑧

𝑅

=
3√3 𝛼𝐼

0
𝜆

16 𝜋𝜀
𝑟
𝜀
0
𝑐 𝑤

2

0

= 0.1
𝛼𝜆𝐼

0

𝜀
𝑟
𝜀
0
𝑐𝑤

2

0

⋅

The value of 𝐹
max

is

𝐹
max

= √𝐹2

r, max
+ 𝐹2

z, max

=
1.2 𝛼𝐼

0

𝜀
𝑟
𝜀
0
𝑐𝑤

0

√1 + (
0.1 𝜆

1.2 𝑤
0

)

2

.

3. For the numerical calculation, the polarizability 𝛼 must first be calculated. Ac­
cording to the Clausius–Mosotti equation we have

𝜀
𝑟
− 1

𝜀
𝑟
+ 2

⋅
𝑀

𝑚

𝜌
=

𝑁
𝐴

3𝜀
0

⋅ 𝛼

and, solving for 𝛼,
𝛼 =

3𝜖
0

𝑁
𝐴

⋅
𝜀
𝑟
− 1

𝜀
𝑟
+ 2

⋅
𝑀

𝑚

𝜌
.

For water, the values are 𝜀
𝑟
= 1.7, 𝑀

𝑚
= 18 ⋅ 10

−3
kg/mol, and 𝜌 = 1,000 kg/m3. With

Avogadro constant 𝑁
𝐴

= 6.03 ⋅ 10
23

1/mol and permittivity in a vacuum 𝜀
0
= 8.85 ⋅

10
−12

C
2

/Nm
2, the polarizability is

𝛼 =
3 ⋅ 8.85 ⋅ 10

−12
C
2

/Nm
2

6.03 ⋅ 10231/mol

⋅ (
1.7 − 1

1.7 + 2
) ⋅

18 ⋅ 10
−3

kg/mol

1.000 kg/m3
= 1.5 ⋅ 10

−40
mC

2

/N.
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Using this, we can find with the values given – 𝐼
0
= 1/2 ⋅ 10

9
W/m2; 𝑤

0
= 10 μm, and

𝜆 = 615 nm – the maximum force

𝐹
max

=
1.2 𝛼𝐼

0

𝜀
𝑟
𝜀
0
𝑐𝑤

0

√1 + (
0.1 𝜆

1.2 𝑤
0

)

2

=
1.2 ⋅ 1.5 ⋅ 10

−40
1.2 ⋅ 10

9

1.7 ⋅ 8.85 ⋅ 10−123 ⋅ 108
√1 + (

0.1 ⋅ 6.15 ⋅ 10−7

1.2 ⋅ 1 ⋅ 10−5
)

2

N = 4.62 ⋅ 10
−29

N.
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A Constants, Material Parameters, and Values

A.1 Table of Values

Table A.1. Constants of Nature

Constant Symbol Value Unit

Avogadro constant 𝑁
𝐴

6.02 ⋅ 10
23

mol
−1

Boltzmann constant 𝑘
𝐵

1.38 ⋅ 10
−23

J ⋅ K
−1

universal gas constant 𝑅 8.314 J ⋅ mol
−1

⋅ K
−1

Planck constant ℎ 6.626 ⋅ 10
−34

J ⋅ s

reduced Planck constant ℏ =
ℎ

2𝜋
1.055 ⋅ 10

−34
J ⋅ s

speed of light in a vacuum 𝑐 2.998 ⋅ 10
8

m ⋅ s
−1

atomic mass unit 𝑢 =
1

12
𝑚(

12
𝐶) 1.66 ⋅ 10

−27
kg

proton magnetic moment 𝜇
𝑝

1.41 ⋅ 10
−26

J ⋅ T
−1

proton gyromagnetic ratio 𝛾
𝑝

2.675 ⋅ 10
8

rad ⋅ T
−1

⋅ s
−1

Table A.2.Material Properties of Air and Water

Property Symbol Value Unit

density of air 𝜌
𝐿

1.3 kg ⋅ m
−3

speed of sound in air 𝑐
𝐿

330 m ⋅ s
−1

acoustic impedance of air 𝑍
𝐿

430 N ⋅ s ⋅ m
−3

density of water 𝜌
𝐿

1.0 kg ⋅ m
−3

speed of sound in water 𝑐
𝑊

1,480 m ⋅ s
−1

acoustic impedance in water 𝑍
𝑊

1.48 ⋅ 10
6

N ⋅ s ⋅ m
−3
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