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Preface

The role of the statistician in society is to undertake the quantitative study
of uncertainty and variability whatever the source of these disturbing yet fas-
cinating features of our daily experience. Of all the subjects studied by the
human mind the greatest uncertainty and variability are undoubtedly to be
found in the human body itself, not least in those aspects of its existence
which concern the function and malfunction of the body. The medical statis-
tician, who concentrates statistical argument and techniques on the problems
of uncertainty and variability in clinical practice and medical research, may
thus have an important contribution to make both to the well-being of the
individual and to the progress of clinical science.

To be effective the medical statistician, like any consulting statistician, has
to adopt a truly applied mathematical approach. He or she must recognize
that the aim is to analyse and answer the medical problems presented and
not, as can so easily happen in branches of applied mathematics, to invent
and develop statistical theory which may be applicable in medicine if the kind
of problem imagined in the theory chances to come along. The emphasis in
such work must be in tackling real problems with the aim of providing cus-
tomer satisfaction. It may be thought that this requirement of practicality
must inevitably lead to dull application of standard statistical techniques and
to limited intellectual satisfaction. The contrary is the case. Some of the most
challenging of theoretical statistical questions arise from such practical prob-
lems and the requirements of practice provide a sense of direction to the theory.
Nowhere is greater satisfaction to be found than in the happy combination of
stimulating theory and useful application.

It will be clear from these introductory remarks that medical statisticians
are faced early and repeatedly in their careers with new and non-standard
statistical problems. Any book which claims to expound the principles and
practice of medical statistics must therefore instil in its readers a confidence
and capability to approach new problems with an open mind, must demon-
strate the arts of problem formulation and statistical modelling and must pro-
vide techniques for developing statistical models towards solutions which are
relevant to the practical problems posed. In attempting to fulfil these injunc-
tions in this book we have, for illustrative purposes, drawn mainly on those
practical medical problems in which we have ourselves been substantially in-
volved over more than fifty man-years. One difficulty facing us has been how
to retain this open view of the subject as one of consultative statistics through
the challenge of actual problems and yet provide a connected and developing

vii
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viii PREFACE

account of the subject. The expository technique by which we have attempted
to resolve this issue has been to introduce the practical problems in such an
order that they provide a natural development of the relevant statistical con-
cepts and techniques as they relate to medical applications. How far this has
been successful must be left to the reader to judge. What cannot fail to be
appreciated is that medical statistics is a challenging and stimulating field in
which to enjoy the use of statistical abilities.

The participation of the statistician in a particular problem of medicine
may be an ephemeral one. For example, when called in to assist in devising
a system of differential diagnosis, based on a combination of tests possessing
only incomplete powers of discrimination, the statistician should realise that
the purpose of medical research may be to discover new and better diagnos-
tic tests to replace the existing ones and so indeed to make the statistician
redundant. Consultant statisticians must accept, and indeed welcome, such
advances. They may be assured that other urgent and equally intriguing prob-
lems will soon arise to test their skills. These advances do, however, create a
substantial and insuperable problem for the authors of a medical statistical
textbook. The period between the conception of a book and its publication
may be many years, in the present case over twenty years, so that events
may overtake the relevance of the medical aspects reported. All that authors
can do in such unavoidable circumstances is to report the problem as it was
presented and analysed at the time of their involvement. Since this book is
concerned with approach and analysis, and not with the current state of med-
ical knowledge, we hope that the reader will be generous enough to accept
this limitation and will not fall into the trap of quoting any conclusions as the
last word on present medical knowledge or practice.

Special features of this book which are worth noting in this preface are as
follows.
1. Most books on applied statistics develop their subject by way of statistical

topics, such as estimation, significance tests, analysis of variance, contin-
gency tables, illustrating each statistical technique by an appropriate ap-
plication. In the true spirit of applied mathematics this book takes as its
starting point the particular field of application, with the consequence that
the natural development of the subject proceeds by medical subdivisions.
Thus we have chapter titles such as observation, diagnosis and prognosis
and treatment. This approach has the advantage of providing a unified
development through the stages of the complicated clinical process which
attempts to transform a patient from a state of disease to one of health.

2. Most books on medical statistics confine attention to the types of statis-
tical problem arising in medical research. A much more extensive view of
medicine is taken here, including the actual practice of medicine as well as
medical research. We shall even investigate statistical problems of assessing
the performance of clinicians in their decision making. Moreover, in prob-
lems of medical statistics, no less than in the actual practice of medicine,
the individual patient is of paramount importance and so in all our formu-
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PREFACE ix

lation of statistical models and development of statistical methodology we
shall focus attention on how best to serve the interests of the individual
patient.

3. The approach is problem-oriented. As has already been explained we typ-
ically present each consultative problem in its original form as a challenge
to the reader and follow this successively by the process of problem for-
mulation, the construction of a suitable statistical model, the motivated
development of the model on statistical principles and finally the interpre-
tation of the statistical analysis in the context of the real problem. The
reader wishing to select examples of specific statistical techniques can do
so in two ways. First, the subject index provides for each statistical tech-
nique references not only to locations of theoretical consideration but also
to locations of applications. Secondly, within the chapters reviewing statis-
tical methodology, Chapters 3 and 4, the locations of further developments
and applications are provided.

4. There is no prealignment with any particular ideology of statistical in-
ference such as Bayesian, so-called classical or frequentist, fiducial, neo-
Bayesian or structuralist. The reasons for this are obvious. Each practical
problem is examined on its own merits. Thus for one problem there may be
features which suggest that a classical frequentist approach is more suitable;
for another problem the natural way of proceeding may be Bayesian. Often
more than one approach will be used, for example classical hypothesis-
testing techniques forming the basis of the first stage of arriving at a suit-
able statistical working model, and Bayesian techniques subsequently sup-
plying an appropriate development of the analysis within the framework
of the selected statistical model. Bayesian methods have often been dis-
missed as theoretically elegant and philosophically satisfying but of little
practical value. In so far as the book demonstrates that, for an appreciable
proportion of the problems investigated, the Bayesian approach has a de-
cided practical edge over a classical approach at the analytical stage, and
so speaks against this too glib dismissal of Bayesian methods, it may ap-
pear to have some pro-Bayesian message. We re-emphasize, however, that
a satisfactory resolution of the medical problem presented to the consulting
statistician must be the primary concern.

5. In any textbook which is aimed at a level of readership ranging from ad-
vanced undergraduate, through postgraduate to consultant statistician and
research worker, some basic knowledge of statistical concepts and tech-
niques must be assumed. The extent of this prerequisite knowledge is ap-
proximately the content of such textbooks as Hoel (1971), Silvey (1975),
Cox and Hinkley (1974) and the comparative review of Barnett (1982).
In our experience statistical consultative work in medicine, and indeed in
other disciplines, is considerably eased through familiarity with aspects of
statistical methodology mostly scattered throughout research journals and
seldom touched upon in textbooks. A connected account of the principles
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x PREFACE

and technicalities of these statistical methods, with special attention to
their role in serving the individual patient, is presented in Chapters 2–4.
They have a generality and wide applicability which can stand the consult-
ing statistician in good stead and make less daunting the approach of any
consultee with a new and probably non-standard problem. Some recent and
newly developed techniques are applied for the first time in this book.

6. To help in the provision of such training we have supplied at the end of each
chapter a further collection of problems in clinical medicine, against which
the reader may develop formulatory, analytic and interpretative skills. Al-
though the situations described in these problems are not real they are, we
believe, realistic and the reader should find them a significant challenge to
statistical modelling skills.

7. Although our concern is with the application of statistics to a particular
field the book is in its outlook a suitable basis for a course of data analy-
sis either at advanced undergraduate or at postgraduate level. Indeed the
problems have been successfully used in data analysis classes in three uni-
versities, providing in the appreciation of the reality of the data and in the
urgency of the questions posed a strong stimulus to the student’s search for
satisfactory answers. There is, of course, no substitute for real consultation,
but any training in consultation must inevitably be preceded by analyses
of as many real problems as possible.

8. Finally we express our grateful thanks to the many anonymous clinicians
and patients depicted within this book. In all our consultative work there
has been an agreement between consulting statistician and clinical consul-
tee that the statistician may use the data for the purposes of illustrating
statistical concepts and methodology. This is what we have tried to achieve
in this book and we hope that we may thereby have advanced the state of
clinical medicine by demonstrating ways in which the data of experience
may be brought to bear on the needs of the present patient. We also thank
our colleagues at the universities of Glasgow, Hong Kong and Virginia, the
anonymous reviewers for helpful comments on earlier drafts of the book
and also the staff at Chapman and Hall/CRC for their helpfulness.
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CHAPTER 1

The Field of Application

1.1 The role of the consulting statistician

The aim of every medical worker – general practitioner, consultant clinician,
radiologist, surgeon, psychiatrist, research biochemist, pharmacologist, phys-
iologist – is to provide through knowledge, experience and technical skill the
best possible medical care for each individual patient. Such is the commitment
of the Hippocratic oath, and for many of the day-to-day problems of clinical
practice and medical research the achievement of such an aim has fortunately
been reduced to effective routines; in such problems the statistician has no
significant role to play.

Human beings, however, often show great variability in the ways their bod-
ies function and malfunction and in their responses to treatment. There is thus
a large number of medical problems where uncertainty plays a dominant part,
and much of this chapter will be devoted to giving challenging examples of
this variability and uncertainty. Since the express aim of the science of statis-
tics is to provide and develop means of describing and analysing situations
involving variability and uncertainty it is clear that the statistician may have
an important technical contribution to make in determining the best possible
medical care for individual patients.

To be a successful consultant the statistician must first and foremost take
steps to become familiar with the real medical problem of interest. This can
be a slow and time-consuming part of the consultative process in which pa-
tience, understanding and determination are often required to overcome a
communication gap between the two disciplines of medicine and statistics.
The statistician must therefore be prepared not only to listen carefully to the
medical aspects of the problem but also to suggest in simple language how
the problem is being translated and formulated in statistical terms and so to
search, by trial and error and by question and dialogue, towards a sensible
formulation of the problem. This formulation will involve abstracting from
the real medical problem the essential relevant components, recognising their
possible interdependence and expressing this interdependence in the construc-
tion of a statistical model which may describe the clinical variability observed.
The next task is, through the tools of statistics and mathematics, to develop
the model in such a direction that there is a hope of answering the questions
initially posed by the clinician. Once the statistical development and analysis
of the model have been completed the answer obtained must be translated
back into terms of the real world, into a language that the clinician, and pos-

1
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2 THE FIELD OF APPLICATION

sibly even the patient, can understand. Moreover the answers obtained must
constantly be under review to ensure that the statistical methodology is ad-
equate. When it is possible to compare the answer provided by the model,
for example a suggested disease category for the patient, with an eventually
emerging ‘true’ answer, for example the actual disease category determined by
post mortem examination, then the reason for any discrepancy must be fully
probed and, if necessary, the model must be modified either by complication
or simplification to attain greater realism and effectiveness in application.

Throughout the presentation of medical statistics in this book we shall
use real medical problems as the motivating source for the development of
concepts, principles and techniques. A consequence of this problem-oriented
approach is that our subdivisions of the subject will be arrived at from med-
ical considerations. To obtain an early view of what these subdivisions may
sensibly be we record here a consultative problem as first presented and focus
interest on the problem of management of a particular patient.

1.2 A challenging problem in differential diagnosis

In the presentation of this first problem, as with all applications in this book,
we shall attempt to express it in terms as similar as possible to those of its
first referral to a statistician. Such an approach has the great advantage of
allowing the reader to experience to some extent the immediacy of the original
problem and to gain some idea of the nature of consultative work. The reader
will thus be placed in the position of posing many necessary questions. Have
I fully understood the problem? Is it really a problem for a statistician? How
relevant and reliable are the data? Have they been collected from past patients
in such a way that they may give a biased view of the pattern of variability we
are likely to encounter in new patients? Have I been given all the information
I need to formulate the problem in statistical terms? Have enough relevant
data been collected? Is this one of the standard statistical problems I am
already familiar with or does it involve considerable adaptation of current
methodology or even research? And so on. The advantage almost certainly
arises from the autobiographical nature of the material, mostly at first hand
from the authors’ consultative diaries. The one disadvantage is that some
of the problems must inevitably come from diaries of some years ago and
may therefore not be of immediate medical interest. We hope, however, that
awareness of their interest to the clinician at the original time of study may
offset any old-fashioned or outmoded look in the medical findings as assessed
today.

We hope that the appropriateness of the statistical analyses of the problems
recounted in this volume, whether a decade or a day old, may prove equally
interesting and encourage the reader to tackle new problems with the same
spirit of adventure and patience. The fact that our first problem, dating back
over thirty years, has been used repeatedly as a teaching example and has
never failed to rouse a vigorous response encourages us to believe that prob-
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A CHALLENGING PROBLEM IN DIFFERENTIAL DIAGNOSIS 3

lems, presented and accepted as consultative challenges, provide an adequate
stimulus to the acquisition of statistical skills. All problems will therefore be
introduced as if the clinician were conveying the problem for the first time to
a statistician.

Differential diagnosis in Conn’s syndrome
The following is a paraphrase of a clinician’s introduction of his problem to

a consulting statistician in 1969.
You probably know that at the Medical Research Council Blood Pressure

Research Unit at the Western Infirmary here in Glasgow our work is con-
cerned not only with trying to unravel the various physiological, biochemical
and psychological factors that influence blood pressure but also with the man-
agement of patients with blood pressure problems, mainly, of course, problems
of high blood pressure. One of these hypertensive conditions is Conn’s syn-
drome, so called because it was first described by Conn (1955); if you would
like an easily-read description have a look in the book on hypertension by
Pickering (1968, Chapter 28). At the Unit we have a special interest in this
syndrome, not just because its features throw considerable light on the regu-
latory mechanism of blood pressure, but more importantly because one of our
specialities is the treatment of Conn’s patients.

We now have a reasonable means of detecting when a patient has Conn’s
syndrome: there is hypertension, a high concentration of plasma aldosterone,
with low plasma potassium and low plasma renin. You probably don’t know
what these are but don’t worry for the moment. Anyway, there was a time
when we thought that the single cause of Conn’s syndrome was an aldosterone-
secreting adrenocortical adenoma – a benign lump somewhere on the ‘skin’ of
one of your two adrenal glands, a lump that secretes too much of the hormone
aldosterone and causes the abnormalities in these other plasma concentrations.
We also thought that treatment was straightforward if not trivial: operate, find
the tumour, remove it possibly with most of one adrenal gland and the patient is
virtually cured. We have had 31 patients with Conn’s syndrome over a number
of years – you can see it is a relatively rare condition – and all of these patients
have been operated on. Unfortunately in 11 of the cases the surgeon could find
no adenoma; instead both adrenal glands were found to be slightly enlarged
and to contain nodules, a condition we call bilateral hyperplasia. Knowing
your mathematical inclinations we could call adenoma form A and bilateral
hyperplasia form B of Conn’s syndrome.

Well, to cut a long story short I can sum up our state of knowledge like
this. If the patient has form A we want to operate, remove the adenoma and
so provide the patient with a permanent cure. If the patient has form B then
the operation is mostly ineffective, not without dangers, and it therefore seems
much more sensible to try to reduce blood pressure by a drug therapy such as
the use of spironolactone despite the possible side effects. So you can see our
problem. A new patient has been referred to us because of his very high blood
pressures and we know that he has Conn’s syndrome because of his elevated
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4 THE FIELD OF APPLICATION

Table 1.1 Preoperative information on 31 cases of Conn’s syndrome of known form
and on one case of unknown form. A1–A20 are of form A (adenoma) and B1–B11
are of form B (bilateral hyperplasia)

Case Age Na K CO2 Renin Aldo Syst Diast

A1 40 140.6 2.3 30.3 4.6 121.0 192 107
A2 37 143.0 3.1 27.1 4.5 15.0 230 150
A3 34 140.0 3.0 27.0 0.7 19.5 200 130
A4 48 146.0 2.8 33.0 3.3 30.0 213 125
A5 41 138.7 3.6 24.1 4.9 20.1 163 106
A6 22 143.7 3.1 28.0 4.2 33.0 190 130
A7 27 137.3 2.5 29.6 5.4 52.1 220 140
A8 18 141.0 2.5 30.0 2.5 50.2 210 135
A9 53 143.8 2.4 32.2 1.5 68.9 160 105
A10 54 114.6 2.9 29.5 3.0 144.7 213 135
A11 50 139.5 2.3 26.0 2.6 31.2 205 125
A12 44 144.0 2.2 33.7 3.9 65.1 263 133
A13 44 145.0 2.7 33.0 4.1 38.0 203 115
A14 66 140.2 3.1 29.1 4.7 43.1 195 115
A15 39 144.7 2.9 27.4 0.9 65.1 180 120
A16 46 139.0 3.1 31.4 2.8 192.7 228 133
A17 48 144.8 1.9 33.5 3.8 103.5 205 132
A18 38 145.7 3.7 27.4 2.8 42.6 203 117
A19 60 144.0 2.2 33.0 3.2 92.0 220 120
A20 44 143.5 2.7 27.5 3.6 74.5 210 114

B1 46 140.3 4.3 23.4 6.4 27.0 270 160
B2 35 141.0 3.2 25.0 8.8 26.3 210 130
B3 50 141.2 3.6 25.8 4.1 20.9 181 113
B4 41 142.0 3.0 22.0 4.7 20.4 260 160
B5 57 143.5 4.2 27.8 4.3 23.7 185 125
B6 57 139.7 3.4 28.0 5.2 46.0 240 130
B7 48 141.1 3.6 25.0 2.5 37.3 197 120
B8 60 141.0 3.8 26.0 6.5 23.4 211 118
B9 52 140.4 3.3 27.0 4.2 24.0 168 104
B10 49 140.0 3.6 26.0 6.3 39.8 220 120
B11 49 140.0 4.4 25.6 5.1 47.0 190 125

New 50 143.3 3.2 27.0 8.5 51.0 210 130
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A CHALLENGING PROBLEM IN DIFFERENTIAL DIAGNOSIS 5

aldosterone and lowered potassium and renin concentrations. But has he form
A, in which case we want to operate; or has he form B, in which case it
is highly undesirable, even dangerous, to operate, and drugs are advisable?
Oh, I’ve nearly forgotten to tell you the crucial point. The only way we can
tell for sure whether it is A or B is to operate and provide our pathologists
with part of the adrenal glands. But since an operation for a patient with
form B is dangerous you can see that we need some means of making our
differential diagnosis between A and B pre-operatively, on the basis of pre-
operative information.

20 25 30 35 40 45 50 55 60 65
Age(years)

137 138 139 140 141 142 143 144 145 146 147
Sodium (meq/l)

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Potassium (meq/l)

20.0 22.5 25.0 27.5 30.0 32.5 35.0
Carbon Dioxide (meq/l)

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
Renin (meq/l)

10 30 50 70 90 110 130 150 170 190
Aldosterone (meq/l)

130 150 170 190 210 230 250 270
Systolic BP (mmHg)

100 110 120 130 140 150 160
Diastolic BP (mmHg)

Figure 1.1 Eight recorded features of Conn’s syndrome for the 20 cases of form A
(crosses) and 11 cases of form B (circles) and a referred new patient (triangle).
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6 THE FIELD OF APPLICATION

For the 31 cases who were operated on and whose form is therefore known,
20 of form A and 11 of form B, we do have information on each of eight fea-
tures: age, plasma concentrations of sodium, potassium, carbon dioxide, renin
and aldosterone, and systolic and diastolic blood pressures. I have brought the
data (Table 1.1) along for you to see. Our problem is to find out whether this
information has any value in differentiating between forms A and B. For in-
stance, I’ve also brought along the data for a Conn’s syndrome patient who is
currently under investigation. If you look at his renin value of 8.5 meq/l you
will see that it falls within the range of B values but well outside the range of A
values so that on the basis of this feature alone the patient seems to have form
B. On the other hand his aldosterone measurement of 51.0 meq/l is above the
largest value of 47 meq/l experienced in form B patients and is nicely placed
in the range of A values, so that there seems to be evidence in this feature for
form A. We’ve drawn out separate scales for each of the eight features and
on each scale have shown the positions of the past 31 cases and this new case
(Figure 1.1). You can see that at least some of the features do seem to separate
out a bit for the two forms. Our question to you must now be obvious. Is there
any way that mathematics or statistics can help us to assess pre-operatively
whether our new patient has form A or form B?

1.3 Identifying the problem

Some experienced statistical readers may already have classified the problem
as one of discriminant analysis and be visualizing the construction, from the
data of the 31 cases of known form, of a linear discriminant, some linear
combination of the features which can conveniently be called a score and used
to separate A’s from B’s. The score for any new patient can then be calculated
and the patient allocated either to A or to B. Moreover some reasonable
estimate of the misclassification rate of such a process can be readily calculated
to measure the effectiveness of the allocation rule; and so on. Let us, however,
pause to ask if this is what the clinician is really wanting from the statistician.
We must surely recognize that whatever inference or decision we communicate
to the clinician about this patient is not the end of the clinical problem of
patient management. Only by further discussion between the clinician C and
the statistician S does a clearer picture of the problem emerge. The dialogue
continued along the following lines.

S. What will happen to your new patient if, for example, I can assure you
that he has almost certainly form A?

C. As I have already said we would operate and hope to remove the adenoma.
S. What will you do if all I can say is that the evidence favours form A but

form B can by no means be ruled out?
C. Well, there is actually another diagnostic investigative technique, an

adrenal venogram, which can give us a kind of X-ray picture of the
adrenal glands. Unfortunately in the current (1969) stage of develop-
ment the picture does not always show an adenoma, sometimes it shows
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IDENTIFYING THE PROBLEM 7

what looks like a lump where none is, and even more unfortunately the
investigation can occasionally cause serious damage to an adrenal gland.
But it is a technique which sometimes helps and if there was a suspicion
of an adenoma we might decide that it was reasonable to use it. Every-
thing, of course, depends on the patient’s general state of health. As you
must be realizing by now, patient management in this area can be very
complex.

After further similar exchanges, the statistician begins to visualize express-
ing the investigative and treatment possibilities for a Conn’s syndrome patient
in terms of a tentative decision tree. The statistician then asks whether the
clinician can perhaps supply information about the loss structure. Not un-
reasonably the clinician says that he cannot quantify this and that if the
statistician can somehow or other provide some comprehensible assessment
of the patient’s diagnostic position on the basis of the eight measurements
it is then the clinician’s responsibility to make the decisions. It thus seems
that what the clinician wants from the statistician is some assessment of what
might be realistic probabilities to assign to forms A and B on the basis of all
the information available. Further discussion reveals that the clinician fully
appreciates the notion of odds on and odds against and so it is agreed that
the statistician will attempt to do this in as realistic a way as possible.

In arriving at such diagnostic probabilities or odds, the statistician will in-
evitably have to make a number of assumptions. For example, in the present
problem assumptions may have to be adopted concerning the following as-
pects.

(i) The effect of the referral and selection of cases at blood pressure clinics
on the pattern of variability of the features in the 31 cases of known
type.

(ii) The relationship of the referral process of the new patient to that of the
31 cases in the basic data set.

(iii) The nature of the pattern of variability of the data. For example, is it
reasonable to assume that the variability of the features for a given form
is stable over time?

(iv) The form of any parametric class of distributions chosen to describe
patterns of variability.

(v) The deliberate exclusion of available features, such as the sex of the
patient, supposed to have no diagnostic value.

(vi) The degree of precision in observation and measurement, such as in the
determination of the plasma concentrations of renin and aldosterone.

(vii) Where more than one clinic is involved the extent of any differences in
their data collection processes.

All such assumptions form part of the modelling process and should be as
clearly stated as possible. In any problem we shall denote the collection of all
modelling assumptions generically as M , and indeed often refer to the model
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8 THE FIELD OF APPLICATION

M . Later we shall consider in much more detail processes of investigation of
assumptions towards the formulation of such a model M . For the moment,
let us suppose that such processes have been completed for the differential
diagnosis of Conn’s syndrome. If D denotes the given data set of 31 past cases
of known type in Table 1.1, if v denotes the vector of eight measurements for
our new patient and u his unknown form of Conn’s syndrome, then what is
required is an assessment of the two conditional probabilities

Pr(u|v,D,M) (u = A,B),

so that the odds on A, namely

Pr(u = A|v,D,M)
Pr(u = B|v,D,M)

,

can be quoted.
We shall certainly retain the M behind the conditioning vertical bar in

this chapter as a constant reminder that all statistical analysis, as indeed all
applied mathematics, depends to some extent, and sometimes crucially, on
the statistical model adopted. Arriving at a sensible model M is not always
a trivial exercise and we shall spend some effort in the following chapters
in discussing this aspect and in attempting to lay down some guidelines for
arriving at a reasonable M .

1.4 Communication with practitioners

Now that we have seen a typical consultancy process the following set of point-
ers and reminders may be of some help to inexperienced statistical consultants
in their communication with clinicians.

First, you must realise that clinicians will probably have virtually no sta-
tistical training or, sometimes even worse, have had some minimum and poor
instruction which has left them with misconceptions not easily eradicated and
fears difficult to subdue. Like any other expert they have their own jargon and
will inevitably use it regardless of how much they try not to, in an attempt
to make the communication of their problem easier for you. Careful listening
to the problem is essential, with questioning and re-questioning until you are
sure that you understand the problem. Never be afraid or ashamed to appear
simple-minded. You are more likely to get to the heart of the matter by such
a process than by assuming that you will be able to disentangle the remaining
problems in the quiet of your office or study. To say this is not to suggest
that everything about the problem must be resolved at the first encounter.
By all means go into retreat with uncertainties about the problem but only
with the intention of meeting again to check whether your studied interpre-
tation is really what the problem is or to ask further questions. The process
is an iterative one, and sometimes requires a substantial number of iterations
before convergence to an appropriate formulation.

Do not fall into the trap of simply verifying an analysis suggested by the
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COMPONENTS OF THE MEDICAL PROCESS 9

clinician without really discovering the problem. To do so is sloppy consulta-
tion, which you would never tolerate in a doctor’s surgery. You would regard
it as ridiculous for a doctor to confirm a diagnosis suggested by a patient with-
out carrying out a sufficiently detailed investigation. Equally, just because a
clinician has collected data into a two-way table and has carried out a chi-
squared test, it does not mean that this is necessarily the most efficient or
even an appropriate analysis of the data.

In your discussions use diagrams wherever possible, and do not hesitate
to use a situation simpler than that being considered in order to illustrate a
concept or a method and in order to verify whether an interpretation by you
of the clinician’s problem is a valid one. You and the clinician are equals in a
collaborative effort to help patients and you will probably find that the more
insights you gain into each other’s expertise the more fruitful the joint venture.
Thus it often pays to get over to the clinician the idea that you are model-
building, to show in as simple terms as you can the ingredients of the model
and to encourage the clinician to appreciate the steps at which translation
from the real world to the model and back again are taking place, and where
mathematics and statistical analysis are taking place.

Above all, when you meet to explain and interpret your statistical analysis
of the clinical problem, be as simple as you can without withholding necessary
caveats, and be as forbearing with the clinician’s questions, which you should
encourage, as the clinician has been with yours.

The greater the rapport between clinician client and statistical consultant
the more hope there is of helping patients

1.5 Components of the medical process

We shall later examine in some detail a number of the statistical problems
associated with the differential diagnosis of Conn’s syndrome as described in
Sections 1.2–1.3, but our present purpose is simply to use this consultative
problem to identify useful subdivisions of the complete process of patient
management so that we may isolate them for more intensive separate study.
Readers may find it useful to try to identify these subdivisions in their own
experience with clinicians.

Experience
In the assessment of a patient’s condition and in anticipating what will hap-

pen if a certain course of action is adopted, a clinician is continually referring
back to past experience, gained either personally or through communication
with others. A simple example of this is in the notion of the normal range of
some measurement or characteristic. For instance, in our discussion of Conn’s
syndrome the fact that plasma concentration of aldosterone was high and so
of significance in assessing the patient’s state was due to a comparison with
the variability that had been experienced in the aldosterone concentrations in
apparently normal and healthy persons. How can such experience most effec-
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10 THE FIELD OF APPLICATION

tively be summarized, particularly when there is a whole variety of different
measurements made on one individual? A common expression used by clini-
cians is that a case is completely outside previous experience of a condition.
Can this notion be quantified in any objective way?

Again, in our case of Conn’s syndrome we spoke of the blood pressure
readings as being well outside the normal range for the patient’s age. Does
experience justify the implication that blood pressure varies in some system-
atic way with age and if so what is the most convenient way of describing this
aspect of experience?

In situations where clinicians apparently require to take a great variety of
measurements on cases to describe experience is it possible that there are in-
terdependencies in the measurements such that fewer of them would be as
effective in describing experience? Some further consultative problems illus-
trating the need for medical statisticians to be concerned with modelling and
quantifying clinical experience are presented in Section 1.6.

The characterization and harnessing of experience to the clinician’s aid are
discussed in detail in Chapter 5.

Observation and measurement
Because of some discomfort or abnormality which a patient experiences a

doctor is consulted, or some screening process may suggest a need for further
investigation of the patient, and the process of observation and measurement
is formally started. The pattern is familiar. The patient is ‘under observation’.

Items of the patient’s history may be recorded: How old are you? What is
your occupation? Have you ever had rheumatic fever? Have you ever suffered
from a nervous disorder?

The patient may be questioned about current symptoms: Do you suffer from
indigestion? Are you sleeping well? Do you ever have any headaches? Do these
headaches always happen at the same time of day?

The clinician may then elicit signs by carrying out a routine clinical exam-
ination: What is the patient’s pulse rate? What is the patient’s temperature?
What are the systolic and diastolic blood pressures? Is there any sugar being
excreted in the urine? Further investigative observation and measurement may
be called for in the form of more specific tests: Does a heart X-ray show any ir-
regularities? Does a 24-hour I131 uptake test give any evidence of over-activity
of the thyroid gland? What is the plasma concentration of aldosterone?

Parts of this process are simple and straightforward. For example, in our
case of Conn’s syndrome the patient’s age is easily and accurately obtained.
Other parts of the observation and measurement process are more compli-
cated. The use of the sphygmometer in the recording of blood pressures de-
pends on subjective judgements by the clinician, and so questions arise about
the objectivity of the measurement. Would two clinicians get the same read-
ing? If there is some observer variability is it sufficient to influence decisions?
Is there any point in one clinician passing on a blood pressure reading to an-
other clinician if the measurement is personal to each clinician? Moreover the
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COMPONENTS OF THE MEDICAL PROCESS 11

patient’s blood pressure is itself a very variable quantity, and this variability
raises the whole question of the definability of the concept of a single mea-
surement of blood pressure. Such difficulties are not removed by automatic
measurement, such as the autoanalyser determination of plasma concentra-
tions of the electrolytes Na, K and CO2 for the case of Conn’s syndrome. How
communicable are such results? Could determinations made in the autoanal-
yser in one hospital be communicated to another hospital and used as if they
had been determined on that hospital’s autoanalyser?

Some measurements have to be made in a very indirect way. For example,
the direct isolation of aldosterone in blood plasma is not a feasible technique
of measurement and so it has to be measured by an assay technique, that is by
comparison of the effect of the unknown concentration of aldosterone on some
substance with which aldosterone interacts against the corresponding effects
of known concentrations of standard aldosterone samples. The fact that two
samples at the same concentration of aldosterone do not necessarily produce
the same effect in the other substance suggests that some statistical analysis
may be required to produce a satisfactory estimation technique and to assess
its reliability.

Some further introductory consultative problems will be considered in this
chapter: a problem of observation and observer variability in Section 1.7, direct
measurement problems in Section 1.8 and indirect measurement problems
of assay and calibration in Section 1.9. The modelling and analysis of the
processes of observation and direct measurement in clinical medicine form the
subject matter of Chapter 6; the problems of indirect measurement including
assay and calibration are studied in Chapter 7.

Diagnosis
In the process of tackling any problem, the human mind seems to find it

a help to try to place the problem in some category. Thus politicians can
be heard to say that our national problem is simply a balance of payments
problem. Mathematicians say that a particular problem is one of linear algebra
or of topology. A motor mechanic may trace the lack of response in your car
to a carburettor fault. This narrowing of the possible area of investigation is
also the spirit and nature of the diagnostic process in medicine. Hopefully the
clinician may assign the disturbance from normal in a patient to some specific
cause or diagnosis, such as a streptococcus infection or gallstones, and take
appropriate action to overcome or remove the cause. But the aetiology of a
disorder may be largely obscure. The diagnosis of benign hypertension, for
example, simply denotes moderately raised blood pressure, with no traceable
cause. The list of possible medical diagnoses is large and constantly changing
and indeed it is clear that from the patient’s point of view the concept is an
unnecessary one. The patient is not strictly interested in what the condition
is called, although some innocuous name may allay his or her anxieties, but
is more interested in some treatment which will speedily move him or her
from the current diseased state to some more comfortable or tolerable state.
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Yet, in the current decision-making processes of medicine, diagnosis or the
categorization of the problem certainly still plays an important role.

In our illustrative example of the medical process, diagnosis is clearly a
useful tool. The initial observation of very high blood pressure immediately
concentrates the clinician’s mind on a limited set of possibilities. The fact that
the patient is referred to a specialist blood pressure clinic is an indication
of a step forward in the detection process. The observation of high plasma
aldosterone and low plasma renin concentrations is in effect synonymous with
the labelling of the patient’s condition as Conn’s syndrome. Although this
diagnosis has greatly reduced the field of possibilities there still remains at
this stage a further diagnostic problem, that of differentiating between the
two possible forms, adenoma and bilateral hyperplasia, of Conn’s syndrome.
Thus after a primary diagnosis has been clearly established there may remain
problems of differential diagnosis.

In the presence of diagnostic tests which display variability and uncertainty
how can this diagnostic part of the process be defined, and what contribution
can the statistician make to the understanding and the effectiveness of the
diagnostic process?

The medical statistician will find that diagnostic problems come in many
shapes and sizes, and we present briefly two further consultative problems in
Section 1.10. We turn our attention to these problems in much greater detail
in Chapters 8 and 9.

Prognosis and treatment allocation
Once the clinicians had made a diagnosis of Conn’s syndrome for our pa-

tient they had to consider what it was possible to do to alleviate the patient’s
condition. Part of the kind of reasoning that took place then ran along the
following lines. If the patient is left untreated then future prospects are likely
to be poor. If the patient has an adenoma and we operate, locate and re-
move it then the chances are that there will be no further problems of Conn’s
syndrome type. If the patient has bilateral hyperplasia and is placed on a
spironolactone drug therapy we should be able to get reasonable control of
blood pressure though there might be some side effects. And so on. We notice
in the form of reasoning here two new concepts, those of treatment allocation
and of prognosis. Moreover the two concepts are very much involved with each
other. In order to choose rationally between alternative treatments we clearly
have to be able, for each of the possible treatments, to visualize, however in-
formally, what the responses and effects of the treatment are likely to be. In
other words we must formulate a prognosis for each possible treatment.

Since these two parts of the medical process are undoubtedly interlinked
we shall find it convenient to study them together. The statistical problems
involved in prognostic and treatment allocation aspects of medicine are treated
in Chapter 10, but we present briefly in Section 1.11 a consultative problem
to indicate the statistical nature of these aspects of clinical medicine.
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Assessment
Any trade, profession or business must always be reviewing the performance

of its procedures, skills and techniques, and so it is important to have methods
for assessing the effectiveness of such procedures as diagnosis and treatment.
Such techniques may focus attention on inconsistencies and irregularities so
that steps may be taken to reduce or remove them.

In Chapter 11 we shall discuss some recent techniques which allow for such
assessments and which can in fact throw considerable light on current practices
in medicine.

Illustrative medical problems
In the remaining sections of this chapter we present a series of actual prob-

lems in medical practice and research in the terms in which they were first met
by the authors. They are set out as a stimulus and challenge to the reader, and
to motivate much of the subsequent modelling and analysis, although many
other examples will be introduced as necessary to illustrate further points. It
should be emphasized here that the reader is not expected to make any ap-
preciable attempt to resolve these problems at this stage. Indeed the first step
in resolving some of them may be to pose to the consultee further questions
which have not been covered by the description of the situation so far. The
importance of these examples is to define the proper perspective for applied
statistical analysis, with the real problem motivating and dominating all.

These illustrative problems have been arranged as far as possible according
to the medical subdivisions we have arrived at in this section. Since these and
other problems will be repeatedly referred to in different parts of the book it
is convenient to have a simple system by which the reader may refer to the
data sets. We have therefore collected together all the data sets used in this
book in an appendix – see Appendix A.

1.6 Experience

The problem of describing and quantifying previous experience of some phe-
nomenon where there is variability and uncertainty is a recurrent one in
medicine.

Normal ranges of steroids
Our problem here concerns part, cases N1–N37, of data set cush; the re-

mainder of the data set will be required in the study of later problems.
For each of 37 normal healthy adults 14 steroid metabolites in a 24-hour

urine collection were separated and measured by a paper-chromatographic
method. These urine excretion rates (mg/24 hr) are shown in rows N1–N37
of data set cush. From these data there had been constructed, as is common
practice in clinical medicine, a table of ‘normal ranges’, here identified with
the actual ranges of the 37 cases, of urinary excretion rates of the 14 steroid
metabolites. The purpose of these normal ranges, shown in Tables 1.2-3, is to
attempt to communicate in some summary way the experience so far obtained
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Table 1.2 Normal ranges of urine excretion rates (mg/24h) of 14 steroid metabolites
based on 37 normal healthy adults and and data on four new individuals I1–I4

Steroid metabolite I1 I2 I3 I4 Normal Range

1 4.79 1.58 4.50 3.60 0.30–2.80
2 0.60 1.00 0.80 2.50 0.10–2.40
3 12.88 2.09 3.80 5.10 0.80–4.90
4 0.32 0.08 0.03 0.10 0.00–0.05
5 0.79 0.11 0.07 0.22 0.01–0.10
6 0.51 0.11 0.12 0.14 0.02–0.13
7 2.19 0.06 0.11 0.05 0.00–0.09
8 0.20 0.25 0.42 0.14 0.02–0.22
9 3.24 0.26 0.32 0.28 0.05–0.68
10 0.65 0.10 0.16 0.00 0.03–0.20
11 0.01 0.01 0.00 0.00 0.00–0.04
12 0.01 0.02 0.00 0.01 0.00–0.02
13 1.58 0.30 0.80 1.20 0.20–2.80
14 15.49 0.03 0.18 0.10 0.00–0.50

Table 1.3 Names of steroid metabolites

Steroid metabolite Name

1 Tetra hydrocortisol
2 Allo-tetrahydrocortisol
3 Tetra hydrocortisone
4 Reichstein’s compound U
5 Cortisol
6 Cortisone
7 Tetra hydro-11-desoxycortisol
8 Tetra hydrocorticosteron
9 Allo-tetrahydrocorticosteron
10 Tetra hydro11dehydrocorticosteron
11 Corticosteron
12 11-dehydrocorticosteron
13 Pregnanetriol
14 Pregnenetriol

in this particular area. The table also shows the urinary excretion rates of four
new individuals. The questions that are then posed are the following. Are these
cases ‘outside previous experience’ of normal persons? More generally, is the
normal range approach a valid and useful one?
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The facts that I1 with nine features greatly in excess of the upper limits of
the normal ranges is seriously ill and that I2 with only three features slightly
above these upper limits is healthy may seem fairly obvious. But what would
your judgment be about the normality or otherwise of I3 and I4? Our ability
to quantify subjectively the extent of abnormality of a case when several
features are involved is obviously in question. Readers who do not appreciate
the difficulty may wish to attempt to identify which of the individuals I3 and
I4 is seriously ill and to attempt to quantify the degree of abnormality in the
identified patient.

Here then is an area of clinical medicine which presents a challenge to the
statistician, namely to provide tools for the construction of appropriate normal
regions for multivariate measurements and, equally importantly, to make the
concepts clear to the clinician. To achieve this a main first aim must be to
describe in some realistic and usable way the pattern of variability that has
already been experienced in these past cases.

If we denote our previous experience, here cases N1–N37 of data set cush,
simply by D, then in quantifying that experience for the purpose of assessing
a new case with feature vector v we shall find ourselves interested in the
conditional probability density function

p(v|D,M) (v ∈ V ),

where V is the set of possible feature vectors and M is retained to emphasize
that our answer will depend on what modelling assumptions are made. This
tool for describing patterns of variability in past experience and for discussing
the status of a new case will be considered in detail in Chapter 3 and in Section
5.3.

In describing previous experience the clinician may often wish to make
allowances for other known measurements or characteristics. The following
problem illustrates this type of situation.

Normal range of anti-diuretic hormone
An elevated plasma concentration of anti-diuretic hormone can give an early

indication of a hormone-secreting tumour. It is therefore of some importance
to define in some suitable way the values of plasma concentrations of anti-
diuretic hormone to be expected in normal individuals. This may be compli-
cated because the plasma concentration of anti-diuretic hormone in a normal
individual may vary from time to time because of different urine osmolarity
values. Moreover, this variation may depend on the sex of the individual. In
order to investigate whether these other factors do indeed influence the plasma
concentration of anti-diuretic hormone and, if so, in what way, a study was
made of 61 males and 14 females, for whom urine osmolarity and plasma con-
centration of anti-diuretic hormone were determined. These are given in data
set adhorm.

If we denote the data set here byD, sex by v1, urine osmolarity by v2, plasma
concentration of anti-diuretic hormone by u, and our model assumptions by
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M then it appears that a first useful step in quantifying experience for the
above situation is to arrive at an assessment of

p(u|v,D,M) (u ∈ U),

for the given v = (v1, v2 ) of the new case, where U is the set of possible con-
centrations of anti-diuretic hormone. This problem is investigated in Section
5.4.1.

1.7 Observation

It is well known that different observers, presented with essentially the same
situation, may make different observations and arrive at different results. Such
problems of observer error and measurement difference abound in medicine.
The following is one such example.

Miniturization of X-ray films
This problem was first presented in the form of a letter received a week

before the date, 19 October, referred to in the letter.

Dear ...
The storage of standard large X-ray films is now becoming a serious problem

in many hospitals and, as an alternative, some people are suggesting that only
small copies of the originals should be stored. We have recently carried out a
study in which three radiologists were each asked to make diagnoses from a
random sequence of large X-ray films for 100 cases and also from a different
random sequence of the 100 small copies of these films. The correct diagnosis
for each of the 100 cases is known from other tests. You will find the results
set out in the attached sheets.

I think myself that these results show that those who advocate the storage of
the small copies only are on a very sticky wicket but I can’t see how to express
this as a statistical ‘significance’.

I would be very grateful for any comments you can give me on the results.
Unfortunately I have to give a talk at the ... Conference on the 19 October. Is
there any hope that you can complete your calculations by then?

Yours sincerely,

The results referred to are to be found in data set xrays. A glance at
them will show the source of the difficulty of the problems. A radiologist may
reach different conclusions with small and large films but these conclusions
do not invariably support one particular size. Moreover radiologists can reach
different conclusions even on the basis of the same film. How can we describe
such variability in performance and how does it relate to the basic problem
of the relative effectiveness of the large and small X-ray films as a diagnostic
aid to radiologists?

This problem is further analysed in Section 6.6.

© 2004 by Taylor & Francis Group, LLC

  



DIRECT MEASUREMENT 17

1.8 Direct measurement

Even the most direct methods of measurement may show annoying variability
which for its understanding requires some form of statistical analysis. The
following two examples are typical.

Table 1.4 Counts of bacterial colonies on 20 sedimentation plates

Plate no. Observer no.
1 2 3

1 768 847 1010
2 583 641 713
3 386 389 413
4 332 354 373
5 230 236 244
6 148 152 158
7 149 129 155
8 118 104 125
9 90 85 96
10 83 83 91
11 81 80 81
12 63 59 71
13 54 51 55
14 42 43 46
15 29 30 33
16 24 27 26
17 23 23 23
18 15 13 16
19 13 16 16
20 8 8 8

Bacterial colony counting
A research group involved in designing efficient air conditioning in hospitals,

in the course of its investigations, has to conduct many air-sampling experi-
ments with the subsequent assessment of infestations based on the counting
by human eye of the numbers of bacteria colonies cultivated on exposed petri
plates. The group is concerned about the reliability of the counting process
and has run a trial study to investigate sources of variability. In the study
three different observers obtained counts on each of 20 plates, the sequence
of presentation of plates being a different random ordering for different ob-
servers. The 60 counts are recorded in data set bact and shown in Table 1.4.

It is obvious to the naked eye that a large part of the variability in the

© 2004 by Taylor & Francis Group, LLC

  



18 THE FIELD OF APPLICATION

complete set of data is due to differences between the infestations of plates,
but there is also some variability between observers. How can we quantify
this variability and how can we decide whether any such observer variation
is of practical importance? Do we have to ask more questions of the research
group? Do we need more information before we can start to formulate the
problem in statistical terms?

This problem is further developed in Section 6.7.

Measurement of a diagnostic ratio from heart X-rays
In the examination of heart X-rays radiologists regard the ratio of the trans-

verse diameter of the heart to the transverse diameter of the thorax as a useful
diagnostic index. Traditionally the magnitude of this diagnostic ratio is judged
visually without any direct measurement being recorded. The question now
being posed is whether this ratio could be quantified in the sense that its com-
putation from measurements made by one radiologist would be conformable
with that from measurements made by another radiologist. Only in such cir-
cumstances would such a quantitative index be reliably objective.

To investigate the feasibility of this index as a worthwhile recordable mea-
surement an observer error study had been carried out as part of a larger-scale
assessment of the measurability of heart X-rays. Five consultant radiologists
were each presented with 65 heart X-rays on a standard displaying screen
in randomized order and asked to measure with a ruler and record certain
lengths and angles whose definitions all had agreed. For the moment we shall
confine our attention to the diagnostic ratio which is defined as (v1 + v2)/v3
which is the ratio heart width to thorax width. For two of the radiologists 15
of the heart X-rays were presented once again in a randomized order with-
out the radiologist’s knowledge that these were repeats. The complete set of
measurements is to be found in data set dratio.

The immediate question of the reliability of the diagnostic ratio and other
aspects of the larger study are considered in detail later in Section 6.3.

1.9 Indirect measurement

Radioimmunoassay of angiotensin II
The direct measurement of the concentration of angiotensin II in a blood

plasma specimen would require the isolation of this biochemical, an awkward
and costly technique. Assay techniques exist whereby such an unknown con-
centration may be assessed by comparing the measurable effect the specimen
has on some physical or biological system with the effects produced by spec-
imens of known concentration on similar systems. In the radioimmunoassay
of angiotensin II the measurable effect is the percentage bound of radioac-
tive tritium when the specimen is allowed to interact with tritium saturated
antigen.

The data set angio shows the information obtained from a particular ra-
dioimmunoassay. In the particular system in operation in the MRC Blood
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Figure 1.2 Plot of the percentage bound against the concentration of angiotensin II.

Pressure Unit in the Western Infirmary Glasgow the data were recorded on
paper tape direct from a scintillator counter. The percentage bounds corre-
sponding to standard preparations of volume 10 ml were recorded at a range
of concentrations of angiotensin II. For each such concentration two separate
preparations were used so that two replicates are available at each concen-
tration. Figure 1.2 shows the scattergram of percentage bound against con-
centration for these standard preparations. For each of the new specimens of
unknown concentration duplicate determinations of percentage bound were
obtained for aliquots of blood plasma.

The questions posed by the steroid chemist are straightforwardly stated.
Can you suggest an efficient method of estimating the concentrations of the
new specimens, and how reliable are the estimates? Are we making the most
of the facilities available to us in the design of these radioimmunoassays?

Here if we denote byD the data containing concentration and corresponding
percentage bound response for the standards and by v the percentage bound
measurements for the specimen of unknown concentration u then ideally we
would like a realistic assessment of the conditional probability density function

p(u|v,D,M) (u ∈ U),

where U is the set of possible concentrations and the inclusion of M after the
vertical bar reminds us that our assessment may well depend on the model
assumptions adopted.

We shall investigate this problem in full detail in Section 7.5.

Foetal age from crown rump length of foetus
It is often difficult from information obtained from pregnant women to
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20 THE FIELD OF APPLICATION

estimate with any great accuracy the foetal age. Some estimate of the foetal
age is important for a number of reasons. What is an approximate date of
birth? If an abortion is being requested, is the foetal age greater than some
minimum period beyond which a legal abortion is impossible? If we do not
know the foetal age how can we assess whether the foetus is growing normally?

Sonar screening has now provided a safe method of making measurements
on the foetus, and one such measurement is of the crown rump length. In
a study of the interrelationship of crown rump length and foetal age 194
pregnant women for whom foetal ages were reliable to within 3 days were
screened, some on a number of different occasions, and the crown rump lengths
determined. Altogether the study provided 339 pairs of observations for the
194 women according to the schedule recorded in data set foetal. A recent
referral to the clinic is a pregnant woman whose conception date is uncertain.
Sonar screening reveals a crown rump length of 35 mm for the foetus. What
can be deduced about the age of the foetus?

This is obviously a problem of indirect measurement, because we are trying
to infer the foetal age u of the new case from information about the crown
rump length v of her foetus and the data D contained in the data set foetal.
One such form of inference would be to attempt to provide some assessment
of the conditional density function

p(u|v,D,M) (u ∈ U),

where U is the set of possible foetal ages and M is again retained to emphasize
that model assumptions may have a central role to play in the evaluation. With
this conditional density function available we would obviously be in a strong
position to make inferential statements about foetal age.

We continue our analysis of this problem in Section 7.4.

1.10 Diagnosis

The problems that arise in medical diagnosis because of variability and un-
certainty have already been well illustrated by the challenge of differential
diagnosis of Conn’s syndrome discussed in Sections 1.2 and 1.5. The following
further examples are presented to indicate the varying nature of the problems
in this area of medicine.

Differential diagnosis of Cushing’s syndrome
Cushing’s syndrome is due to the over-secretion of cortisol by the adrenal

glands. There are, however, four different forms that this syndrome may take,
namely:

a: adrenal adenoma,
b: bilateral hyperplasia,
c: adrenal carcinoma,
d: ectopic carcinoma.
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Table 1.5 Urinary excretion rates (mg/24h) of the four steroid metabolites: Tetrahy-
drocortisone (v3), Reichstein’s compound U (v4), Cortisol (v5) and Pregnenetriol
(v14)

Type v3 v4 v5 v14 Type v3 v4 v5 v14

a1 3.1 0.10 0.19 12.60 d5 20.5 0.00 1.30 0.10
a2 3.0 0.00 0.22 1.20 d6 30.7 6.80 13.40 0.40
a3 2.6 0.04 0.40 5.10 d7 23.2 0.00 5.10 0.08
a4 1.9 0.24 0.24 0.00 d8 25.9 0.00 10.30 0.20
a5 3.8 0.16 0.40 0.04 d9 16.1 0.00 10.20 0.12
a6 4.1 0.11 0.42 0.30 d10 3.2 0.16 3.80 0.00
a7 1.9 0.02 0.30 0.00 n1 1.5 0.01 0.02 0.00
b1 15.4 0.10 0.41 0.06 n2 1.5 0.00 0.03 0.30
b2 7.1 0.04 0.16 0.00 n3 2.7 0.01 0.03 0.10
b3 5.1 0.00 0.26 0.80 n4 1.8 0.00 0.03 0.10
b4 15.7 0.04 0.34 0.80 n5 1.0 0.02 0.05 0.20
b5 13.6 0.00 1.12 2.00 n6 2.1 0.05 0.08 0.20
b6 4.2 0.00 0.15 0.00 n7 1.9 0.00 0.03 0.20
b7 5.5 0.00 0.20 0.04 n8 2.0 0.04 0.05 0.20
b8 13.0 0.04 0.26 0.34 n9 1.8 0.01 0.03 0.20
b9 5.7 0.08 0.56 0.00 n10 2.0 0.01 0.04 0.10
b10 8.3 0.08 0.26 0.00 n11 1.7 0.00 0.03 0.20
b11 3.8 0.04 0.16 0.16 n12 2.7 0.02 0.03 0.08
b12 8.3 0.12 0.56 0.14 n13 2.2 0.02 0.03 0.00
b13 3.9 0.08 0.36 0.00 n14 1.9 0.01 0.03 0.10
b14 6.4 0.08 0.26 0.10 n15 1.2 0.01 0.03 0.20
b15 8.3 0.06 0.48 0.40 n16 2.0 0.02 0.04 0.10
b16 7.7 0.05 0.80 0.30 n17 1.8 0.02 0.04 0.10
b17 6.5 0.12 0.40 0.10 n18 1.6 0.02 0.03 0.00
b18 4.9 0.09 0.22 0.10 n19 1.2 0.02 0.04 0.20
b19 7.7 0.16 0.24 0.20 n20 1.8 0.02 0.05 0.20
b20 7.8 0.12 0.56 0.70 n21 1.7 0.01 0.04 0.20
b21 3.9 0.00 0.40 0.07 n22 3.0 0.03 0.04 0.30
b22 7.8 0.12 0.88 0.20 n23 2.1 0.00 0.03 0.10
b23 9.1 0.06 0.44 0.10 n24 2.0 0.02 0.03 0.30
b24 7.8 0.05 0.24 0.10 n25 4.9 0.05 0.10 0.20
b25 3.8 0.06 0.27 0.20 n26 3.6 0.01 0.05 0.30
b26 4.5 0.08 0.18 0.00 n27 2.2 0.04 0.04 0.40
b27 3.8 0.09 0.60 0.10 n28 3.0 0.03 0.03 0.20
c1 10.2 0.12 0.80 3.30 n29 3.2 0.01 0.04 0.20
c2 9.2 0.00 1.44 10.80 n30 4.4 0.01 0.07 0.50
c3 9.6 0.08 1.30 1.70 n31 2.6 0.00 0.01 0.20
c4 53.8 0.08 3.84 1.00 n32 3.6 0.03 0.04 0.30
c5 15.8 0.30 0.88 10.60 n33 4.0 0.03 0.06 0.40
d1 12.7 0.00 2.00 0.16 n34 3.0 0.00 0.03 0.20
d2 15.4 0.00 1.30 0.16 n35 0.9 0.00 0.02 0.10
d3 3.9 0.00 2.00 0.00 n36 0.8 0.00 0.01 0.00
d4 9.0 0.00 1.60 0.16 n37 2.9 0.01 0.05 0.10
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22 THE FIELD OF APPLICATION

Since choice of treatment depends crucially on this differential form it is im-
portant to obtain as precise a preoperative diagnostic opinion as possible. The
question of the diagnostic value of the urinary excretion rates of the fourteen
steroid metabolites already referred to in Section 1.6 then arises. The data on
four of the steroid metabolites are shown in Table 1.5 and the full data set
cush gives the excretion rates for 87 cases of the following composition, where
n denotes normal cases:

a: 8,
b: 27,
c: 5,
d: 10,
n: 37.

A glance at the pregnenetriol column, for example, shows that for bilateral
hyperplasia patients the levels are moderate whereas for ectopic carcinoma
patients these are high, and so this diagnostic ‘test’ is of some value in dis-
tinguishing between hyperplasia and ectopic carcinoma. To what extent does
this differential ability extend to the other tests and with respect to the other
forms, and indeed to distinguishing between normal individuals and cases of
Cushing’s syndrome. Is it in fact necessary to use all the tests? Are there
any features of these tests which could make a misleading diagnosis possible?
Could we perhaps obtain as firm a diagnostic opinion with only a subset of
the tests?

The reader may at this stage wish to attempt an intuitive diagnostic assess-
ment for the four undiagnosed cases I1–I4 whose data are given in Table 1.2.

The problem here differs from that of Conn’s syndrome. Obvious aspects
are the larger number of disease types and the increased dimension of the
feature vector. More substantial differences, however, exist in the fact that the
abnormal cases comprise an aggregated set from different clinics with possible
variation in clinic referral processes. The selection process for normal cases
is yet again different. As indicated in Section 1.2 a question of considerable
importance is then the extent to which these data constitute a viable basis
for differential diagnosis.

Differential diagnosis of non-toxic goitre
Non-toxic goitre is a disease which may take one of three possible forms:

a: simple goitre,
b: Hashimoto’s disease,
c: thyroid carcinoma.

The case records for past cases showing the results of 4 tests are set out in
data set goitre. All the cases have been correctly diagnosed by histopatho-
logical examination. The questions to be asked are again of the same form
as previously. Do the 4 tests provide an adequate diagnostic basis, and if so,
what diagnosis do they provide for the as yet undiagnosed cases given in data
set goitre? One new aspect of this diagnostic problem is that all the fea-
ture components are no longer continuous: some, such as presence or absence
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of headache, are binary; some, such as consistency of gland (hard, medium,
soft), are ordinal; others, such as 24-hour I131 uptake, are continuous. Another
new aspect is that there is not a complete feature vector for every patient in
the data set nor in some of the new cases. Discussion of how these aspects
complicate the statistical analysis is deferred until Section 9.5.

Genetic counselling for possible haemophilia carriers
Haemophilia is a sex-linked genetic disease carried only by females and

affecting only males. The son of a carrier has probability 0.5 of being a
haemophiliac; the daughter of a carrier has a probability 0.5 of being a carrier.
Any offspring of a non-carrying mother is normal with respect to the disease,
that is, is not affected if a son and is a non-carrier if a daughter. There is no
known test which will distinguish clearly whether a childless woman is a car-
rier or not, but there are two blood tests which measure coagulation properties
(Factors I and IV) of the blood and which do seem to display some ability, al-
beit imperfect, to distinguish women who are carriers from non-carriers. The
test results for 20 known carriers and 23 non-carriers are given in data set
haemo.

The problem is then how to devise a system of genetic counselling which
will incorporate a woman’s family history (her genetic pedigree) and her co-
agulation test results into a realistic assessment of the chance of her being a
carrier. The following case with a very simple family history is sufficient to
give the flavour of the problem.

A married woman knows that her maternal grandmother was a carrier.
She also has two brothers who are not haemophiliacs. She agrees to take the
coagulation tests and her results are recorded. What advice can she be given
about her chances of having a child who is normal with respect to haemophilia?

If D denotes the data from the blood tests of the 43 past cases, v the
test results of the married woman, w her family history, and u her unknown
category, carrier (u = 1) or non-carrier (u = 2), then we are searching for a
means of arriving at a realistic assessment of the conditional probabilities

Pr(u|v, w,D,M) (u = 1, 2),

where M denotes the model assumptions adopted.
We undertake a full analysis of this case and study the problem in general

in Section 8.4.

1.11 Prognosis

Cutaneous malignant melanoma
Details of melanoma patients have been drawn from the records of the West

of Scotland section of the Scottish Melanoma Group, which records details of
all patients presenting with primary cutaneous malignant melanoma (CMM)
in Scotland. The data are available in data set malmel. A total of 4332 patients,
diagnosed as having invasive primary cutaneous malignant melanoma, were
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identified starting in 1979 and followed up until December 31st 1998. During
this period there were 971 deaths due to CMM, 672 deaths due to other causes
and 2775 patients were still alive. The survival times of patients in the last
two categories were taken as censored. The effects of five factors – deprivation
status, Breslow thickness, age group, histogenetic type and sex – are of interest
and this information was recorded at the initial presentation. A deprivation
‘score’ was derived for each patient, giving seven categories from the most
affluent (1) to the most deprived (7). There were five histogenetic types, type
1 to type 5, which are superficial spreading melanoma, nodular/polyploid,
lentigo maligna melanoma, acral/mucosal and other/unspecified. Ages were
grouped into six categories: <35, 35-44, 45-54, 55-64, 65-74 and >75 years.
The Breslow factor had six categories. The first five were defined in terms
of the thickness of the tumour, namely <1.5, 1.5-2.49, 2.5-3.49, 3.5-4.99 and
>5.0, in millimetres, while the sixth category indicated the presence of stage 2
spreading of the tumour. In the statistical analysis these variables are treated
as being of categorical type.

An individual referred patient presents with primary CMM and a given
profile of the five factors. What are her survival prospects in the future? We
will discuss this in Section 10.5.

1.12 Bibliographic notes

Many of the clinical problems introduced in this chapter and for which the
statistical analyses were reported to the client have never been published
and so we confine ourselves to citing only those for which further published
information is available. For clinical details of Conn’s sydrome see the original
identification in Conn (1955) and for further information see Pickering (1968).
Details of the specific problem of differential diagnosis between adenoma and
bilateral hyperplasia are contained in Brown et al. (1968, 1969) and an early
statistical analysis is presented in Aitchison and Dunsmore (1975). Clinical
details of Cushing’s syndrome are described in Pickering (1968). For details
of the paper chromatography measurement of steroid metabolites in urine
see, for example, Damkjaer Nielsen, Binder and Starup (1969) and Damkjaer
Nielsen, Lund and Munch (1972). For information on the use of ultrasound
in foetal scanning and, in particular, for crown rump length, see the excellent
history of the subject at

www.ob-ultrasound.net/history2.
Details of the background of studies in the differential diagnosis of non-toxic
goitre can be found in Boyle et al. (1965) and Taylor, Aitchison and McGirr
(1971).

The melanoma data were kindly provided by Professor David Hole and
further discussion is available in MacKie et al. (2002).
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1.13 Problems

The following problems are designed to widen the range of experience of typical
situations arising in clinical medicine. At this stage the reader should not
attempt to answer the questions posed in any detail, but merely try to identify
the particular aspects of uncertainty and variability which make the problems
statistical in nature. These aspects will be examined in further detail in end-
of-chapter problems in later chapters.

Problem 1.1 In an early assay technique the immune responsiveness of an
infected patient with a bacterial infection was measured by an index com-
puted in the following way. On examination of the blood of a patient R under
the microscope the total number nR of bacteria captured by 100 leucocytes
was counted. Under similar conditions a similar count nS was made of a per-
son, known to be non-infected. The index used was then the responsive ratio
nR/nS. Doubts were cast at the time about the reliability of this index as an
indication of the natural response of such patients. The table below gives the
results of the counts of four observers A,. . .,D on 10 infected persons R1,. . .,
R10 and their uninfected comparisons. How might you advise on the reliability
of the index?

Observers A B C D

Cases nR nS nR nS nR nS nR nS

R1 93 100 86 94 97 94 101 93
R2 88 99 84 96 96 105 79 113
R3 90 103 85 110 94 99 97 93
R4 104 128 107 121 94 137 96 117
R5 107 99 110 93 104 97 112 104
R6 107 115 110 116 117 106 103 103
R7 101 135 98 137 96 146 110 131
R8 113 100 110 109 105 106 102 90
R9 82 121 84 125 86 125 91 130
R10 118 137 118 132 108 140 116 129

Problem 1.2 The assay department of a clinic has consulted you about prob-
lems concerning a possible assay procedure. The objective is to find a reason-
ably reliable means of determining the dosage of drug in a patient’s blood.
The idea is to compare two responses of the patient against the two responses
recorded for standard known doses of the drug. The set of twenty standards
and their responses are set out in the table below. Specific questions being
asked by the department are the following. Which response is more reliable
as a means of measuring the dosage? If both responses are used do we obtain
a much more reliable assessment of the dosage?

How would you assess the dosages of two patients with values (i) 9.50 and
3.92 and (ii) 12.64 and 3.08 for responses 1 and 2?
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Standard Response 1 Response 2

20 7.14 4.46
40 8.29 4.25
60 9.77 3.77
80 9.79 3.75

100 10.42 3.49
120 10.88 3.54
140 10.96 3.58
160 11.06 3.47
180 10.98 3.40
200 11.37 3.42
220 11.61 3.26
240 12.30 3.13
260 12.11 3.22
280 12.19 3.22
300 12.32 3.06
320 12.21 3.21
340 12.26 3.16
360 12.47 3.05
380 12.34 3.12
400 12.92 3.01

Problem 1.3 A clinic with a differential diagnostic problem in distinguishing
between two forms A and B of a newly identified blood disorder seeks your
advice. For appropriate treatment it is important for the clinic to distinguish
between these forms and this can be eventually done but often much later than
desirable for the good of the patient. There is a possibility of speeding up the
differential diagnostic process through the use of a set of three symptoms a1,
a2, a3 (1=present, 0 = absent) and the composition of a blood sample in terms
of the proportions of four constituents c1, c2, c3, c4. For all the 40 cases, 15
of form A and 25 of form B, so far referred to the clinic, these symptoms and
compositions have been recorded in Table 1.6.

You have been asked to investigate the possibility of using these data as a
means of obtaining an early and reasonably reliable diagnosis of new patients.
How would you report?

Problem 1.4 A dispute about the relative efficacy of rival treatments for the
enhancement of low hormone level has given rise to a study of thirty patients,
each suffering from low hormone levels. The patients have been allocated to
one of the two treatments 1 and 2 at random and the enhanced level of hor-
mone at the end of the treatment has been recorded. Table 1.7 shows the
assignment of treatment and the initial and final hormone levels in standard
units for each of the thirty patients.

You are consulted for an opinion on which, if any of the two treatments, is
the more effective.
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Table 1.6 Data for Problem 1.3

Type a1 a2 a3 c1 c2 c3 c4

Form A 0 1 0 0.08 0.13 0.44 0.35
0 1 0 0.06 0.11 0.45 0.38
0 1 1 0.07 0.10 0.53 0.30
0 0 1 0.08 0.13 0.31 0.48
1 1 0 0.07 0.13 0.51 0.29
1 1 0 0.08 0.13 0.34 0.45
1 0 0 0.12 0.19 0.15 0.54
1 1 1 0.11 0.18 0.27 0.44
1 1 0 0.11 0.14 0.28 0.47
1 0 0 0.12 0.19 0.13 0.56
1 1 1 0.10 0.15 0.25 0.50
1 0 0 0.11 0.17 0.22 0.50
1 1 0 0.07 0.11 0.44 0.38
1 1 1 0.08 0.13 0.34 0.45
1 0 0 0.08 0.11 0.44 0.37

Form B 0 1 0 0.09 0.19 0.52 0.20
0 1 1 0.12 0.23 0.37 0.28
1 1 1 0.16 0.32 0.19 0.33
0 1 1 0.14 0.31 0.28 0.27
1 0 1 0.16 0.31 0.25 0.28
0 1 1 0.17 0.34 0.17 0.32
0 0 1 0.14 0.28 0.28 0.30
0 1 0 0.14 0.31 0.26 0.29
0 0 1 0.17 0.34 0.14 0.35
0 1 0 0.17 0.30 0.21 0.32
0 1 0 0.15 0.28 0.25 0.32
1 0 0 0.15 0.28 0.33 0.24
0 1 0 0.17 0.33 0.15 0.35
0 1 0 0.14 0.31 0.20 0.35
1 0 0 0.17 0.31 0.23 0.29
1 1 0 0.12 0.25 0.40 0.23
0 1 1 0.09 0.19 0.52 0.20
0 1 1 0.10 0.22 0.47 0.21
0 0 1 0.12 0.22 0.43 0.23
0 1 1 0.12 0.25 0.31 0.32
0 1 0 0.15 0.31 0.27 0.27
1 0 0 0.18 0.33 0.13 0.36
0 1 1 0.14 0.28 0.23 0.35
1 1 1 0.14 0.26 0.28 0.32
0 0 1 0.16 0.30 0.26 0.28
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Table 1.7 Data for Problem 1.4

Initial level Treatment Final level

332 1 798
301 1 739
343 2 846
252 1 650
196 2 570
290 2 745
286 2 734
83 2 336

242 1 655
324 2 794
404 2 970
377 2 975
450 2 1116
272 1 707
118 2 366
268 1 658
122 2 434
99 1 431

246 1 663
248 1 704
240 1 673
307 2 807
305 2 774
263 1 716
127 1 495
415 1 933
344 2 857
135 1 514
512 1 1086
488 2 1151

Problem 1.5 A clinic has developed a new technique of measuring the con-
centration of five recently discovered enzymes, labelled e1,. . ., e5, and hopes
to devise a means of determining whether new patients referred to the clinic
are within normal experience of these enzymes. Forty normal individuals, 20
female and 20 male, have been used to obtain a data base on normal levels of
these enzymes. The recorded values (in meq/l ) are given in Table 1.8.
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Table 1.8 Data for Problem 1.5

e1 e2 e3 e4 e5

Females 25 30 17 69 93
26 54 23 28 65
17 55 26 31 46
27 79 21 26 76
35 24 17 43 122
59 18 11 28 71
28 49 14 60 23
53 25 15 35 112
23 29 22 68 70
16 44 28 93 28
20 42 48 40 46
22 40 20 39 119
35 50 17 49 49
16 52 19 30 83
26 21 16 56 90
17 42 25 45 73
9 32 25 55 83

30 22 27 35 55
19 37 30 29 105
43 31 11 46 101

Males 35 31 32 31 14
67 33 34 18 47
26 42 14 42 62
25 26 51 13 38
37 47 21 32 24
25 29 22 62 47
44 34 40 31 22
51 12 33 39 31
35 27 20 23 72
39 21 21 27 48
29 20 20 61 73
27 11 20 36 43
18 14 40 19 49
25 27 25 23 85
16 28 9 70 42
54 15 22 33 24
23 20 33 39 30
18 42 32 37 35
16 27 25 77 39
36 25 18 44 39
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30 THE FIELD OF APPLICATION

Two questions have been asked of you as consultant. Is there any evidence
that females and males differ in normal enzyme levels? Whatever your answer
to this question devise a means of detecting enzyme abnormality for the clinic.

Problem 1.6 SLGD is a sex-linked genetic disease carried only by females
and affecting only males. The son of a carrier has probability 0.25 of being
SGLD; the daughter of a carrier has a probability 0.75 of being a carrier. Any
offspring of a non-carrying mother is normal with respect to the disease. There
is no foolproof test for determining whether a woman is a carrier or not, but
there are two independent tests which may be helpful. Past experience has
shown that with test 1, 75 per cent of carriers give a positive result whereas
only 10 per cent of non-carriers test positive: for test 2, 80 per cent of carriers
test positive while 18 per cent of non-carriers test positive.

A married woman knows that her maternal grandmother was a carrier. She
has a brother who is not SLGD and a sister who has two sons who are not
SLGD. She has undergone the two tests and has had a negative result in test
1 but a positive result in test 2. You are asked to assess her status as a carrier
of SLGD.
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CHAPTER 2

Relating the Present Patient to Past
Experience

2.1 Introduction

This chapter and the following two chapters are not intended to be a con-
cise textbook of statistical theory. We assume that the reader has a sound
grounding in basic statistical theory and we therefore concentrate on relat-
ing this knowledge to the particular requirements of the field of application
described in Chapter 1. This will lead us to introduce aspects of statistical
methodology not usually presented in standard texts and courses but essen-
tial for attaining confidence in medical statistical consultation. The emphasis
will be on encouraging an open-minded approach to the formulation of mod-
els, on providing a succinct account of general methods which will withstand
the attack of non-standard problems and on directing further, more-detailed
study of particular areas. The more flexible and adaptable to new situations
a statistician can become and remain the more successful and satisfying the
consulting experience is likely to be.

Our main aim is to collect for easy reference in later chapters a substantial
body of statistical concepts and methodology. Although much will be taken
for granted and no proofs will be given the aim is to give an overall picture in
sufficient detail to allow applications. Adequate references are supplied in the
bibliographic notes of Chapters 2-4 for readers wishing to pursue particular
techniques in greater detail. In presenting all of this material we must always
remain aware of the direction of our study towards solving problems in the
practice of clinical medicine such as those presented in Chapter 1. Thus we at-
tempt to obtain a balance between developing too much detailed methodology
before the practical problem provides the motivation and leaving too much of
the technical development until consideration of the practical problem with
the danger that the narrative then becomes broken. To achieve such a bal-
ance requires at the outset a clear view of what the basic statistical modelling
problem is – a view which leads to a framework within which the various
aspects of the clinical process can be more clearly formulated and studied.
The starting point for any investigation of the role of statistical expertise in
a medical problem is that central character, the present or referred patient,
and consideration of the methodological problems of relating this patient to
past experience.

31

© 2004 by Taylor & Francis Group, LLC



32 RELATING THE PRESENT PATIENT TO PAST EXPERIENCE

2.2 The referred patient

In problems of medical statistics, no less than in the actual practice of medicine,
the individual patient presently referred to us is of paramount importance
and this point must be immediately brought out in our approach to statistical
methodology in this chapter.

At a specific stage in the management of referred patient R there will usu-
ally be available a vector v of data specific to R: possibly personal information
such as age, sex; presenting symptoms such as cough, nausea; results of inves-
tigation such as systolic and diastolic blood pressures, plasma concentration of
potassium; current treatment. Before proceeding further in the management
of R we are involved in making some inference from this information v, and
hopefully also from relevant past experience, about some unknown aspect u
of the individual patient R. For example in Section 1.2 we know the vector v
of eight measurements on the referred patient awaiting differential diagnosis
of Conn’s syndrome but we do not know the disease category u: adenoma or
bilateral hyperplasia. Given v we wish to make some inference about u, and
a substantial step would be the assessment of the conditional probabilities of
u for given v, namely

pR(u|v). (2.1)

Even when there is no immediate patient in view we can still see more
clearly the nature of the problem through an imagined referred patient. For
example, in a clinical trial comparing two different treatments for cancer of
the uterus there might be no immediate patient. In any use of the experience
of the clinical trial we imagine a typical present patient referred to us with
information about the treatment she is undergoing but do not know what the
survival time u will be.

2.3 Data set of past experience

Having formulated the nature of the required inference pR(u|v) for the present
patient R referred to us we have to examine the relevant information available
in a set of selected past cases S1, . . . ,Sn. Ideally we would hope to have the
following assumptions satisfied.

Assumption 2.1 For the past case Si we know both ui and vi, defined sim-
ilarly as u and v for the referred patient R, so that the data set is

D = {(ui, vi) : i = 1, . . . , n}.
Assumption 2.2 The observation or measurement processes for ui and vi

are identical to those for u and v.

Assumption 2.3 The process of referral of the patient R is identical to the
process of selection of the past cases S1, . . . ,Sn.

In the example of differential diagnosis of Conn’s syndrome in Section 1.2 we
have n = 31 with S1, . . . ,Sn the past cases A1, . . . , A20, B1, . . . , B11. The
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MEASUREMENT PROBLEMS 33

data set conn is complete in the sense that we have recorded for each past case
the feature vectors v1, . . . , vn of the same nature as the feature vector v for the
present case. Moreover the disease category, the unknown u for the present
case, is recorded for each of the past cases. Hence Assumption 1 is satisfied.
We also know that the methods of measurement of the eight features in v
and vectors v1, . . . , vn are identical so that Assumption 2 is satisfied. Further,
since we know that the 31 cases selected form the complete set of past cases
referred to the clinic and that this present patient has been referred to the
clinic in a similar way we are assured that Assumption 3 holds.

When Assumptions 1-3 are satisfied we refer to the data set as complete. We
can, however, envisage circumstances under which each of these assumptions
is violated.

2.4 Incomplete data sets

First suppose that the clinic dealing with Conn’s syndrome now records a ninth
feature, plasma concentration of angiotensin, and that the present patient’s
concentration is 179 meq/l. It is quite clear that Assumption 1 is not valid.
Three possibilities arise.

(i) It may be possible to make the data set complete. For example, if there
are still available plasma samples from the 31 past cases it may be possible
to use them to obtain plasma concentrations of angiotensin and hence the
required 9-dimensional vectors to allow full conditioning.

(ii) If the data set D cannot be made complete all we can hope to provide is
an inference about u for the given 8-dimensional vector of features. We can
make use only of our relevant experience.

(iii) If we feel that (ii) is inadequate we must consider building up prospectively
a complete data setD∗, including plasma concentration of angiotensin, from
the present and future patients with Conn’s syndrome. A question that will
then arise is the extent to which we may use the current incomplete data
set D to supplement the complete prospective data set D∗. Clearly the
combined data set (D, D∗) has missing values in some of the v vectors and
this raises the question of missing data.

2.5 Measurement problems

Now suppose that the clinic has switched its measurement process for plasma
concentration of aldosterone from double isotope assay, used for the data set
conn, to a radioimmunoassay, used for the present patient. Two possibilities
arise.
(i) There may be the possibility of calibrating the radioimmunoassay against
the double isotope method of measurement. For example, data set aldo shows
the results of such a calibration experiment in which two aliquots were taken
from each of 72 plasma samples, one being assigned to double isotope assay and
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34 RELATING THE PRESENT PATIENT TO PAST EXPERIENCE

the other to radioimmunoassay. We then have to consider how the combined
data sets conn and aldo and the patient’s feature vector v may be used to
obtain an inference about the unknown disease category u.
(ii) If no such calibration is possible then all we can do is to delete the plasma
concentrations of aldosterone from the present patient vector v and all the
past case vectors v1, . . . , v31 and make our inference about u on the basis of
these reduced vectors.

2.6 Referral and selection

In order to make any valid inference about the referred patient R from the
patient’s feature vector v and the past experience embodied in the data set
D of the selected cases S1, . . . ,Sn we must examine the consequences of any
differences in the processes of referral of the present patient and the selection
of past cases. Failure to address the precise nature of the relationship between
referral and selection is, in our view, the source of much confusion and mis-
application in medical statistics. From our discussion so far we have seen that
a common aim in many problems is to obtain an assessment of pR(u|v), the
conditional probability function or probability density function of u for given
v for the referred patient. Note that we have introduced the subscript R so
that we shall be able to distinguish clearly between probabilistic statements
relating to the referred patient R and those related to a typical selected pa-
tient S. As a first step in statistical modelling the consultant statistician, after
arriving at an understanding of the clinical problem, must derive from knowl-
edge of the referral and selection processes a specific relationship of pR(u|v)
to assessable distributions associated with S.

There is a whole range of relationships between referral and selection but
it is not sensible to attempt to catalogue these here. Rather we shall use a
few of the practical problems from Chapter 1 to motivate and illustrate the
process of connecting R to S. An underlying concept is the ability to visualize
a common, background population Π for which the joint distribution of u
and v has probability density function π(u, v). We shall never need to assess
π(u, v): the sole purpose of its introduction is to provide a link between R and
S.

2.7 Referral of the present patient R

For the referred patient R we do not know u and so referral can depend
only on v. We shall assume that v contains all the information on which
referral is based and that the probability of referral of an individual with v
from the population Π is ρ(v). For example, referral of patients to a regional
blood pressure clinic may be based on general practitioners’ determinations of
systolic and diastolic blood pressures v1 and v2, with high v1 and v2 indicating
referral. Consider all individuals in Π with specific values v1 and v2. Not all of
these will consult their general practitioners, who may vary in their judgement
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SELECTION ON THE BASIS OF v 35

of ‘high’. The net effect is that some proportion of these individuals will be
referred to the clinic. Our referral probability ρ(v) is our model counterpart
of this proportion, and it must be clear that this is in general unknown. With
such a referral process the joint variability of u and v will differ from that in
Π with density function

pR(u, v) = ρ(v)π(u|v) =
ρ(v)
π(v)

π(u, v). (2.2)

We note that the effect of referral on the basis of v is simply to alter the
population joint distribution π(u, v) by a factor r(v) = ρ(v)/π(v), which de-
pends only on v, to produce the relevant pR(u, v) for the referred patient R.
In our study of referral and selection we shall use this multiplier r(v) rather
than the referral or selection probability.

We recall that our objective is to assess pR(u|v) and we have from (2.2) and
simple conditional probability properties that

pR(u|v) =
r(v)π(u, v)

r(v)
∑

U π(u, v)
=
π(u, v)
π(v)

,

where U is the set of all possible u. (Note that the summation sign would be
replaced by an integration sign if the set U is continuous.) Hence

pR(u|v) = π(u|v). (2.3)

Since the population conditional distribution does not depend on r(v) we
see that we shall make the same assessment of the conditional probability
for every referred patient with given v, whatever the nature of the referral
process.

2.8 Selection on the basis of v

Let us consider the 31 past cases of Conn’s syndrome as recorded in data set
conn, the complete experience of the clinic over a period of time. Each of these
cases, selected as our past experience, was sent to the clinic not on the basis
of disease type but on information contained in the feature vector v. We can
allow for the possibility of a change in the clinic referral process between past
and present cases by taking the probability that an individual with vector v
is selected from Π to be different from the referral probability of the present
patient. With such a selection process the joint variability of u and v in a
selected case S will be influenced by a factor s(v) different from r(v) and have
density function

pS(u, v) = s(v)π(u, v). (2.4)
By the same argument as led from (2.2) to (2.3) we have

pS(u|v) = π(u|v). (2.5)

From (2.3) and (2.5) we have immediately the simple relationship

pR(u|v) = pS(u|v) (2.6)
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36 RELATING THE PRESENT PATIENT TO PAST EXPERIENCE

between the assessment we require for our referred patient and those of se-
lected cases. The implication for statistical analysis is that we should attempt
to model the conditional probability of u for given v for selected cases, use
the selected cases in conn to ‘fit’ this model to obtain an assessment or ‘fit-
ted model’ for pS(u|v) and transfer this directly to obtain an assessment of
pR(u|v).

In this diagnostic situation it is interesting to note that the incidence prob-
abilities pR(u) and pS(u) for referred and selected patients and the prevalence
probability π(u) in the underlying population Π are in general different. More
specifically,

pR(u) =
∑

V
r(v)π(u, v), (2.7)

pS(u) =
∑

V
s(v)π(u, v), (2.8)

π(u) =
∑

V
π(u, v), (2.9)

where V is the set of possible feature vectors v.
All of the above may seem obvious in the context of a simple diagnostic

problem and we may seem to be using a statistical sledgehammer to crack an
already exposed nut. The stability of pS(u|v) with respect to changes in the
selection process is, however, a crucial consideration in the modelling process.
This stability is not enjoyed by the conditional distribution of pS(v|u) which
forms the basis of a form of modelling commonly used in statistical diagnosis in
medicine, for example discriminant analysis based on assumptions of different
patterns of variability of vector v for each given type u. From (2.4) we have

pS(v|u) =
s(v)π(u, v)∑
V s(v)π(u, v)

(2.10)

showing clearly the dependence of pS(v|u) on the selection process s(v). Thus
modelling of pS(v|u) is of doubtful value in such a situation.

The difficulties in the use of pS(v|u) as a basis of modelling in this simple
diagnostic problem can be more fully appreciated if we consider the convoluted
argument required to overcome this dependence on the unknown s(v). If for
Conn’s syndrome we let u denote adenoma and u∗ bilateral hyperplasia then
we have, from (2.8) and (2.10),

pS(v|u)
pS(v|u∗) =

π(u, v) /pS(u)
π(u∗, v) /pS(u∗)

=
π(u|v)
π(u∗|v)

/
pS(u)
pS(u∗)

. (2.11)

In our assessment of the referred patient R we may, instead of aiming for
pR(u|v), concentrate on the odds

pR(u|v)
pR(u∗|v) =

π(u|v)
π(u∗|v) (2.12)

from (2.3). From (2.11) and (2.12) we obtain

pR(u|v)
pR(u∗|v) =

pS(u)
pS(u∗)

pS(v|u)
pS(v|u∗) , (2.13)
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SELECTION INDEPENDENTLY WITH RESPECT TO v AND u 37

a relationship which is tantalizingly similar to the odds version of Bayes’s
formula:

Posterior odds = Prior odds × Likelihood ratio.
Notice, however, that the ‘prior odds’ on the right refer to incidence proba-
bilities in the selected group and not those associated with a referred patient.
In applications it is quite common practice to multiply the likelihood ratio,
estimated from the selected past cases, by a factor pR(u)/pR(u∗) which is an
assessment of the prior odds for a referred patient. It is clear that this is in-
correct unless the referral factor r(v) and the selection factor s(v) on the basis
of v are identical: the correct factor is pS(u)/pS(u∗), which can, of course, be
estimated from the numbers nu and nu∗ of selected cases of type u and u∗.

The instability of pS(v|u) with respect to changes in the selection process
and the complexity of the argument required to counteract our lack of in-
formation on s(v) should warn us to avoid modelling based on pS(v|u). The
stability of pS(u|v), in the sense of its independence of the selection process,
makes it the obvious candidate in any sensible modelling under selection de-
pendent on v. The question of how we should model pS(u|v), parametrically
or non-parametrically, in any particular situation will be considered later.

2.9 Selection independently with respect to v and u

Although past cases may have been referred to a clinic on the basis of v, their
subsequent selection for study as a summary of past experience may then be
made independently on the basis of u. For example in a diagnostic situation
where one of the disease types is rare the clinician may decide to use all cases
of the rare type while selecting a random sample of the other disease types.
In such a situation selection from the underlying population Π takes place in
two independent stages, the first being essentially referral to the clinic with a
factor s1(v) dependent on feature vector v and the second selection for further
study with a factor s2(u) dependent on disease type u. For the referred patient
we of course still have the relationship

pR(u|v) = π(u|v). (2.14)

For a selected patient we have

pS(u, v) = s1(v)s2(u)π(u, v) (2.15)

from which we obtain

pS(u|v) =
s2(u)π(u, v)∑
U s2(u)π(u, v)

(2.16)

and

pS(v|u) =
s1(v)π(u, v)∑
V s1(v)π(u, v)

(2.17)

as the two forms of conditional distribution. Each of these forms is depen-
dent on one stage of the referral process and we can simplify our subsequent
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38 RELATING THE PRESENT PATIENT TO PAST EXPERIENCE

discussion if we aim to find a relationship between the odds

pR(u|v)
pR(u∗|v) =

π(u|v)
π(u∗|v) (2.18)

for the referred patient and ratios involving S. From (2.16) we have

pS(u|v)
pS(u∗|v) =

s2(u)
s2(u∗)

π(u|v)
π(u∗|v) , (2.19)

so that
pR(u|v)
pR(u∗|v) =

pS(u|v)
pS(u∗|v)

/
s2(u)
s2(u∗)

. (2.20)

If therefore we know s2(u), the sampling fractions of selection of the various
disease types from the clinic’s experience, we see that it is appropriate to model
pS(u|v). In comparison with (2.18) the modification by the ratio s2(u)/s2(u∗)
is then seen simply as the price we have to pay for interference with a selection
process based solely on v. Now let us examine the possibility of using the other
conditional model of v for given u. The incidence probabilities pS(u) for the
selected experience are given by

pS(u) =
∑

V
pS(u, v) = s2(u)

∑
V
s1(v)π(u, v). (2.21)

From (2.17) and (2.21) we have

pS(v|u)
pS(v|u∗) =

π(u|v)
π(u∗|v)

/ ∑
V s1(v)π(u, v)∑
V s1(v)π(u∗, v)

=
π(u|v)s2(u)
π(u∗|v)s2(u∗)

/
pS(u)
pS(u∗)

so that
pR(u|v)
pR(u∗|v) =

pS(v|u)
pS(v|u∗)

s2(u)
s2(u∗)

/
pS(u)
pS(u∗)

.

Here pS(u)/pS(u∗) could be estimated by the ratio nu/nu∗ of the numbers
of selected cases in the various disease types but again we require knowledge
of the sampling fractions s2(u) of disease types to complete the inference
process for the referred patient. In view of the extra complexity we would be
well advised to base modelling again on the more direct form pS(u|v), recalling
also its advantage of stability with respect to selection on v.

2.10 Referral and selection for assay

Suppose that we wish to assess the unknown concentration u of some sub-
stance in the blood sample of a referred patient R by an assay technique. To
achieve this we have to compare some observed response v in the patient to
this unknown concentration with the responses v1, . . . , vn to selected, stan-
dard, known concentrations u1, . . . , un. In this situation since u and v are
both unknown at the time of referral we must suppose that referral has been
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based on some other aspect w, say, with referral factor r(w). Starting with an
imagined population Π with joint distribution π(u, v, w) we then have

pR(u, v, w) = r(w)π(u, v, w). (2.22)

Since we do not know r(w) our aim is again to attempt to assess pR(u|v) so
that a summation over w is required. We may also reasonably assume that,
for given u, the variability of v does not depend on w: more specifically,

π(v|u,w) = π(v|u). (2.23)

Since π(u, v, w) = π(u,w)π(v|u,w) we can then easily arrive at the following
form:

pR(u, v) = pR(u)π(v|u), (2.24)

where
pR(u) =

∑
W
r(w)π(u,w) (2.25)

can be considered the ‘incidence’ probability for u, in other words the proba-
bility, prior to assay, with which a referred person has concentration u.

In the assay situation the standard concentrations are deliberately selected
and we may suppose that s(u) is the rate or probability with which a stan-
dard with concentration u is selected. For assay to be possible the conditional
distribution of response v for given u must be the same as in the population
Π, namely π(v|u). Since

pS(u, v) = s(u)π(u, v) (2.26)

we indeed have
pS(v|u) = π(v|u). (2.27)

From (2.24) and (2.27) we then arrive at the relationship

pR(u|v) =
pR(u)pS(v|u)∑
U pR(u)pS(v|u) . (2.28)

In this application we would thus be directed towards modelling the experience
in the standards through the conditional distribution pS(v|u). To arrive at the
required inference we note the important fact that we require to have some
means of assessing pR(u).

2.11 Referral and selection for genetic counselling

For the genetic counselling problem described in Section 1.10 the unknown
aspect u of the referred patient R is whether or not she is a carrier. Referral has
clearly been made on the family history w with referral factor r(w), say, and
the feature vector v, consisting of her coagulation measurements, is determined
after referral. Starting from an underlying population Π with joint distribution
π(u, v, w) we have the following referral process,

pR(u, v, w) = r(w)π(u, v, w), (2.29)
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40 RELATING THE PRESENT PATIENT TO PAST EXPERIENCE

so that
pR(u|v, w) = π(u|v, w). (2.30)

A novel aspect now enters our argument: our knowledge of the genetics of
the disease transmission. Before we have any information about v we can,
given the family history w, compute π(u|w). To exploit this knowledge in
(2.30) we make use of simple properties of conditional probabilities:

π(u|v, w) =
π(u|w)π(v|u,w)∑
U π(u|w)π(v|u,w)

. (2.31)

We can next make use of a further realistic clinical assumption, namely that
the coagulation measurements depend only on whether a person is a carrier
or not and not on the particular family history: more specifically,

π(v|u,w) = π(v|u). (2.32)

Thus, combining (2.30)–(2.32) we have

pR(u|v, w) =
π(u|w)π(v|u)∑
U π(u|w)π(v|u) (2.33)

as the vehicle for assessing the status, carrier or non-carrier, of the referred
patient.

For a typical selected case we know the disease status, carrier or non-carrier,
and the feature vector v, but not the family history w, so that we can confine
our attention to π(u, v) for Π. Selection has been directed towards obtaining
a group of carriers and non-carriers and so is on the basis of some selection
factor s(u) based on u. Then

pS(u, v) = s(u)π(u, v) (2.34)

from which we easily obtain

pS(v|u) = π(v|u) (2.35)

which is stable relative to any change of selection policy. Hence assessment of
the referred patient R may proceed through the relationship

pR(u|v, w) =
π(u|w)pS(v|u)∑
U π(u|w)pS(v|u) , (2.36)

relying on our genetics-based assessment of π(u|w) and our modelling of the
selection-stable pS(v|u).

2.12 Bibliographic notes

The ideas used in this chapter require essentially only familiarity with prop-
erties of conditional probabilities, including Bayes’s formula, and have been
used implicitly in medical statistics over a number of years. The intention of
the chapter has been to clarify the arguments so that the reader may avoid
relating the referred patient to the selected experience in an incorrect way.
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An early paper connecting different views of referral and their consequences
is Day and Kerridge (1967). For two clear expositions of these aspects we
recommend Anderson (1972) and Dawid (1976). The latter gives an excep-
tionally clear exposition of all the concepts involved. The main difference in
our approach is that we have preferred to keep the development in terms of
conditional probabilities rather than the special notation of Dawid (1976).

2.13 Problems

Problem 2.1 In a large sample survey of a population, each person was clas-
sified into one of two types A and B and for each person two simple binary
tests, each with a positive or negative result, were carried out. The table below
gives the estimated probability p(u, v) of a person being of type u and giving
test result v.

Test Results Type u
A B

− − 0.05 0.16
− + 0.13 0.12
+ − 0.17 0.09
+ + 0.25 0.03

Construct the two sets of conditional probabilities p(u|v) and p(v|u). Which
would you regard as more appropriate for diagnoses of new cases if referral is
to be on the basis of the diagnostic tests?

As a consulting statistician you are asked to suggest suitable methods for
the following two situations.

(i) Experience in one clinic has suggested that different probabilities of referral
attach to different test results at the preclinic referral stage, as follows:

Test Results Probability
of referral

− − 0.1
− + 0.2
+ − 0.3
+ + 0.4

How should the clinic use the test results for diagnostic purposes?
(ii) Experience at a second clinic has shown that the incidence of type A and

type B cases that are referred to it are in the ratio 3 : 7. How should this
clinic use the test results for diagnostic purposes?

Problem 2.2 A certain genetic disease is carried only by females and affects
only males. There is no direct test which can ascertain whether a female is a
carrier, but affected males can be immediately recognised. The daughter of a
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42 RELATING THE PRESENT PATIENT TO PAST EXPERIENCE

carrier has probability 0.5 of herself becoming a carrier; the son of a carrier has
probability 0.5 of having the disease. The offspring of a non-carrying mother
are normal.

(i) A woman knows that her maternal grandmother was a carrier. What is the
chance that the woman is a carrier?

(ii) The woman’s mother gives birth to two normal sons. How does this affect
the chance that the woman is a carrier?

(iii) The woman herself subsequently gives birth to a normal son. What now is
the chance that she is a carrier?

Problem 2.3 A clinic has conducted a trial in which a typical patient S
referred to it on the basis of information v, and who has subsequently been
diagnosed to have disease type u, is allocated treatment t (from among a set
of trial treatments) and the outcome y of the treatment recorded. The clinic
has therefore been able to obtain a reasonable assessment of pS(y|u, v, t). A
new patient R with information vector vR but with unknown disease type uR

has now been referred to the clinic which is naturally interested in how the
patient will respond to treatment t, in other words to evaluate pR(yR|vR, t).
The clinic has already carried out an independent investigation into the use
of the information v for diagnostic purposes and so can evaluate pR(uR|vR).
Can you provide the clinic with a means of evaluating the effect of treatment
for this new patient?

Problem 2.4 A clinic has already carried out a trial to see how a typical
treatment t may be able to control a hormone level v to a lower level y and so
from the selected patients has produced an assessed conditional probability
pS(y|v, t). Unfortunately it has been necessary to switch to a more efficient
and less costly method of determining hormone level. A large number of blood
samples from patients has been used and for each sample both hormone level
v by the old method and hormone level w by the new method have been
determined so that assessments of both can be obtained. For a new patient R
with hormone level wR, determined by the new method, how would you assess
the required conditional probability p(yR|wR, t)?

Problem 2.5 In a simple case-control study to investigate the effect of ex-
posure v or non-exposure v∗ to a chemical on the possibility of developing (u)
or not developing (u∗) a certain disease, a random sample of patients suffer-
ing from the disease and another random sample of individuals not suffering
from the disease were selected and for each case it was determined whether
the individual had been exposed to the chemical or not. Use the technique of
the background population – with joint probability density function π(u, v),
selection into the study by factors s(u), s(u∗) and referral of a generic ‘new
patient’ R by factors r(v), r(v∗) – to show that it is possible to assess the
‘odds ratio’

pR(u|v)
pR(u∗|v)

/
pR(u|v∗)
pR(u∗|v∗)
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without knowledge of s(u), s(u∗), r(v), r(v∗). Consider how you might explain
the use of this odds ratio to a clinician.

Problem 2.6 Is the form of argument you have used in Problem 2.4 in any
way altered if further information w (for example sex) is available on each
individual in the study? In particular does such information alter in any way
the assessment of an odds ratio built on the further conditioning pR(u|w, t)?
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CHAPTER 3

A Review of Statistical Methodology

3.1 Introduction

We have seen in Chapter 2 that in attempting to assess the relevant conditional
distribution such as pR(u|v) for a referred patient R we are led to the problem
of modelling one or other of the conditional distributions pS(u|v) and pS(v|u)
for a typical selected case S. Once this modelling problem has been resolved
our subsequent task is to use the data set

D = {(ui, vi) : i = 1, . . . , n}
of the selected cases S1, . . . ,Sn to fit the model as a step towards arriving at
an assessment of the appropriate conditional pS distribution. To fix ideas for
the moment we shall concentrate on the modelling and fitting of pS(u|v).

In our role of consulting statistician we must assume that the clinician has
identified in u and v all that is possibly relevant to the referred patient’s
problem. In general u and v will be vectors and in our modelling we shall
start with these complete vectors. Our first aim is to find a framework within
which we can discuss the nature of the variability of the full vector u for
any given value of the full vector v. It is in this sense that we describe this
initial modelling stage as maximal: it envisages the extraction of the greatest
possible information about u obtainable from knowledge of v. One of the aims
of this maximal modelling is to provide a framework within which we can pose
searching questions about whether the whole of u or v are really relevant to
the modelling. Such questions take us into the area of hypothesis testing and
this will be the focus of Section 3.10. For the moment we confine our attention
to maximal modelling.

3.2 Maximal parametric modelling

Since the conditional distribution appropriate to the practical problem will
sometimes be pS(u|v) and sometimes be pS(v|u) it will be sensible in our
study of maximal modelling to use a neutral notation (x, y) for the two en-
tities involved in the conditioning process and concentrate on the modelling
of the conditional distribution p(y|x). In applications (x, y) will sometimes be
identified with (u, v) and sometimes with (v, u). Then the data set associated
with the selected cases is denoted by

D = {(xi, yi) : i = 1, . . . , n}.
Within statistical methodology there are two fundamentally different ap-
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proaches to the modelling of a conditional distribution p(y|x). We may adopt
a parametric approach by specifying some mathematical form p(y|x, θ) for
p(y|x), where θ is some, possibly vector, parameter which acts essentially as
an index in identifying the specific member of a class of distributions gener-
ated by varying the parameter over some set Θ. A familiar example is the
class of normal regression models with p(y|x, θ) of univariate normal form
with mean α+βx and variance σ2 with the parameter space Θ defined as the
set of all vectors (α, β, σ) in R3, three-dimensional real space, with σ > 0. An
alternative non-parametric approach might consider, for example, a method of
kernel density estimation for p(y|x). We shall consider such a non-parametric
approach in Section 4.8.

There are three main classes of parametric models that serve the require-
ments of many applications: the multivariate normal regression model, the
categorical regression model and the compositional regression model. These
are associated with three different sample spaces for the dependent vector or
variable y. After establishing some necessary notation and terminology for
standard distributions in Section 3.3, we recall the main properties of the first
two of these classes and the associated techniques of estimation in Sections
3.4–3.8. For convenience of reference we also collect in these sections some
simple, useful and little known recursive formulae which make it easy either
to remove a selected case from, or add a new selected case to, S1, . . . ,Sn, the
original set of selected cases. We discuss the compositional regression model
in Section 4.2.

3.3 Standard distributions

Seven classes of distribution, the gamma, beta, normal, lognormal, Student,
logStudent and Wishart, will play a central role in our analysis, and for con-
venience of reference we collect here their definitions in terms of their density
functions. In the specification of their sample spaces we have used Rd to de-
note d-dimensional real space, Rd

+ its positive orthant and Md the space of
all positive definite matrices of order d. Note that in considering vectors in
such d-dimensional spaces we adopt the convention that the vectors are row
vectors of dimension 1 × d.
Definition 3.1 The distribution of x ∈ R1

+ is said to be gamma, written
Ga(α), where α > 0, when its density function is

p(x|α) =
xα−1 exp(−x)

Γ(α)
(x > 0). (3.1)

The corresponding distribution function I(t|α) is given by

I(t|α) = Pr(x ≤ t) =
∫ t

0

p(x|α)dx (t > 0) (3.2)

and is the well-known incomplete gamma function.
Definition 3.2 The distribution of x ∈ (0, 1) is said to be Be(α, β), where
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α > 0, β > 0, when its density function is

xα−1(1 − x)β−1

B(α, β)
(0 < x < 1). (3.3)

The corresponding distribution function J(t|α, β) is given by

J(t|α, β) = Pr(x ≤ t) =
∫ t

0

p(x|α, β)dx (0 < t < 1) (3.4)

and is the well-known incomplete beta function.

Definition 3.3 The distribution of the 1 × d vector x ∈ Rd is said to be
multivariate normal, written Nd(µ,Σ), where the parameter µ is a 1×d vector
and the parameter Σ is a d × d positive definite matrix, when its density
function φd(x|µ,Σ) is

(2π)−d/2|Σ|− 1
2 exp
{−1

2 (x− µ)Σ−1(x− µ)T
}
. (3.5)

Definition 3.4 The distribution of the 1 × d vector x ∈ Rd
+ is said to be

multivariate lognormal, written Λd(µ,Σ), where the parameter µ is a 1 × d
vector and the parameter Σ is a d×d positive definite matrix, when its density
function λd(x|µ,Σ) is

(2π)−d/2|Σ|− 1
2

(
d∏

i=1

xi

)−1

exp
{−1

2 (log x− µ)Σ−1(log x− µ)T
}
. (3.6)

Definition 3.5 The distribution of the 1 × d vector x ∈ Rd is said to be
multivariate Student, written Std(k, µ,Σ), where the parameter µ is a 1 × d
vector and the parameter Σ is a d×d positive definite matrix, when its density
function is

Γ{ 1
2 (k + 1)}

πd/2Γ{ 1
2 (k − d+ 1)}|kΣ|1/2

1
{1 + (x− µ)(kΣ)−1(x− µ)T }(k+1)/2

.

Definition 3.6 The distribution of the 1 × d vector x ∈ Rd
+ is said to be

multivariate logStudent, written ΛStd(k, µ,Σ), where the parameter µ is a
1× d vector and the parameter Σ is a d× d positive definite matrix, when its
density function is

Γ{ 1
2 (k + 1)}(

d∏
i=1

xi)−1

πd/2Γ{ 1
2 (k − d+ 1)}|kΣ|1/2

1
{1 + (log x− µ)(kΣ)−1(log x− µ)T }(k+1)/2

.

Definition 3.7 The distribution of a random positive definite matrix W of
order d × d is said to be Wishart, written Wi(k,Σ), where the parameter Σ
is a d× d positive definite matrix, when its density function is

|W |(k−d+1)/2 exp{− 1
2 tr(Σ−1W )}

|12Σ|πd(d−1)/4Γ(k)Γ(k − 1
2 ) . . .Γ{k − 1

2 (d− 1)} (W ∈Md). (3.7)
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We will require later the following distributional property.

Property 3.1 Let x and W be independently distributed as Nd(0,Σ) and
Wi(k,Σ), respectively. Then

xW−1xT

(xW−1xT + 1)

is distributed as Be{ 1
2d,

1
2 (k − d+ 1)}.

3.4 Multivariate normal regression model

Information about a patient often consists of measurements made on con-
tinuous scales, for example: weight in kg, systolic blood pressure in mm of
Hg, quantity in ml of urine excreted in 24 hours, leading to a vector of real
numbers. We now consider the problem of the parametric modelling of the
conditional probability distribution p(y|x) when y is a d-dimensional real row
vector in Rd and when x is a c-dimensional row vector. To investigate this
problem of describing the extent to which the variability in y is explainable by,
or dependent on, x we make use of the familiar multivariate normal regression
model.

Definition 3.8 If the conditional distribution of y for given x is of Nd(xB,Σ)
form, where B is a c× d matrix parameter and Σ is a positive definite matrix
parameter of order d, then we have a multivariate normal regression model
for y with covariate x.

This type of modelling is often presented as a linear model in the following
form

y = xB + e, (3.8)
where the random error d-dimensional row vector e is Nd(0,Σ). For the se-
lected cases S1, . . . ,Sn with data set

D = {(xi, yi) : i = 1, . . . , n}
we can give a matrix expression to the combination of individual relationships
of form

Y = XB + E, (3.9)
where X,Y,E are n × c, n × d, n × d matrices formed from the row vectors
xi, yi, ei, respectively, and e1, . . . , en are identically and independently dis-
tributed as Nd(0,Σ). Note that each row of X,Y,E refers to an individual
selected case whereas each column refers to an individual feature or covariate,
including usually a vector of 1s corresponding to an intercept term. We shall
refer to (3.9) as a multivariate linear model or more briefly as a linear model.
Our next property records the essential maximum likelihood properties for
this model.

Property 3.2 The maximum likelihood estimate B̂ of B under the linear
model Y = XB + E is

B̂ = (XTX)−1XTY
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and the residual sum of squares and cross products matrix is

R = (Y −XB̂)T (Y −XB̂) (3.10)
= Y TY − B̂TXTY (3.11)
= Y T {I −X(XTX)−1XT }Y. (3.12)

Moreover an estimate of Σ, unbiased under the model defined in (3.9), is given
by

Σ̂ = (n− c)−1R.

Note. Two important assumptions have been made in the statement of Prop-
erty 3.2, namely that n > c and that XTX is non-singular. We thus envisage
more selected cases than the dimension of the covariate vector (n > c) and
that the n× c matrix X is of full rank c to ensure non-singularity of the c× c
matrix XTX. When this rank condition is not fulfilled it is still possible to
establish results similar to those of Property 3.2, for example in terms of a
pseudo-inverse of the now singular XTX, but we shall have no need for such
an elaboration.

We now record an important distributional property associated with the
estimation process for the linear model.

Property 3.3 For the linear model of (3.9), and for any given covariate vector
x, xB̂ and R are distributed independently as

Nd(xB, x(XTX)−1xT Σ) and Wid(n− c,Σ),

respectively.

Often we have to assess how closely a new case, either the referred patient
R or a further selected case S, follows the linear model pattern fitted from
the selected cases S1, . . . ,Sn. For our discussion of this problem later in this
chapter we shall require the technical result recorded in the following property.

Property 3.4 Suppose that a further case with covariate and feature vectors
x and y also follows the linear model with conditional distribution of y for given
x of Nd(xB,Σ) form, independent of cases S1, . . . ,Sn. Define the conditional
quadratic form q of (x, y) relative to cases S1, . . . ,Sn by

q = (y − xB̂)Σ̂−1(y − xB̂)T .

Then
q

[q + (n− c){1 + x(XTX)−1xT }]
is distributed as Be{ 1

2d,
1
2 (n− c− d+ 1)}.

We can see this as an immediate use of Property 3.3 to give

(y − xB̂)/{1 + x(XTX)−1xT } 1
2 and (n− c)Σ̂

distributed independently asNd(0,Σ) andWid(n−c,Σ), respectively, followed
by a direct application of Property 3.1.
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3.5 Recursive formulae

Suppose that we have carried out the linear model estimation procedure as
described in Property 3.2 and based on the data set D of the n selected
cases S1, . . . ,Sn. It is often important to see how such estimation results are
influenced by dropping out one of these selected cases or by including an extra
case. Simple recursive relationships for such purposes can easily be derived.
In deriving these relationships and others later we make repeated use of two
useful matrix identities.

Property 3.5 Let A be a non-singular matrix of order d, b a 1 × d vector
and c a scalar. Then(

A+ cbT b
)−1

= A−1 − cA−1bT bA−1

1 + cbA−1bT
,∣∣A+ cbT b

∣∣ = {1 + cbA−1bT } |A| .
We take as our starting point the linear model defined in (3.9) and the esti-
mates B̂, Σ̂ and residual matrix R as determined in Property 3.2. Let us now
consider the consequences of removing one pair (x, y) from D and denote this
reduced data set by D−. Then the linear model is reduced to

Y− = X−B + E−,

where Y−,X−, E− are simply Y,X,E with the rows appropriate to the (x, y)
case deleted. Then

XT
−Y− = XTY − xT y,

XT
−X− = XTX − xTx

and so, from Property 3.5,

(XT
−X−)−1 = (XTX)−1 +

(XTX)−1xTx(XTX)−1

1 − x(XTX)−1xT
.

The maximum likelihood estimate B̂− of B based on data set D− is now
readily obtained by Property 3.5 as

B̂− = (XTX)−1XTY − (XTX)−1xT (y − xB̂)
1 − x(XTX)−1xT

after some simplification. We can thus obtain B̂− as a simple adjustment to
B̂ since (XTX)−1 will already have been determined as a step towards the
computation of B̂. Note also that the vector r = y−xB̂ is the residual vector
of (x, y) with respect to the fitted linear model based on D. The corresponding
residual vector r− based on D− is easily related to r since

r− = y − xB̂− = r/(1 − h),

where
h = x(XTX)−1xT .
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Similar recursive relationships can be easily obtained between other entities,
such as R−, Σ̂−1

− and

q− = (y − xB̂−)Σ̂−1
− (y − xB̂−)T ,

and R, Σ̂−1 and q, as defined in Properties 3.2 and 3.4 and based on D. For
ease of reference we collect all of these relationships in Property 3.6.
Property 3.6 Let D− denote the data set

D = {(xi, yi) : i = 1, . . . , n}
with (x, y) deleted, and let subscript − indicate that estimates and other fac-
tors associated with the linear model of Property 3.2 are based on D− instead
of the full data set D. The following recursive relationships then provide the
adjustments to factors based on D to obtain the corresponding factors based
on D−.

B̂− = B̂ − (1 − h)−1(XTX)−1xT r,

r− = (1 − h)−1r,

R− = R− (1 − h)−1rT r,

Σ̂− =
n− c

n− c− 1

{
Σ̂ − rT r

(n− c)(1 − h)

}
,

Σ̂−1
− =

n− c− 1
n− c

{
Σ̂−1 +

Σ̂−1rT rΣ̂−1

(n− c)(1 − h) − q

}
,

|Σ̂−| =
(

n− c

n− c− 1

)d{
1 − q

(n− c)(1 − h)

}
|Σ̂|,

trace(Σ̂−) =
(

n− c

n− c− 1

)
trace(Σ̂) − rrT

(n− c− 1)(1 − h)
,

q− =
(n− c− 1)q

(1 − h){(n− c)(1 − h) − q} .

We obtain similar relationship if, instead of removing a vector from D, we
supplement D by adding a new vector (x, y) to obtain augmented data set
D+.
Property 3.7 Let D+ denote the data set D with (x, y) added to the cases,
and let subscript + indicate that estimates and other factors associated with
the linear model of Property 3.2 and based on D+ instead of the original data
set D. The following recursive relationships then provide the adjustments to
factors based on D to obtain the corresponding factors based on D+.

B̂+ = B̂ + (1 + h)−1(XTX)−1xT r,

r+ = (1 + h)−1r,

R+ = R+ (1 + h)−1rT r,

Σ̂+ =
n− c

n− c+ 1

{
Σ̂ +

rT r

(n− c)(1 + h)

}
,
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Σ̂−1
+ =

n− c+ 1
n− c

{
Σ̂−1 − Σ̂−1rT rΣ̂−1

(n− c)(1 + h) + q

}
,

|Σ̂+| =
(

n− c

n− c+ 1

)d{
1 +

q

(n− c)(1 + h)

}
|Σ̂|,

trace(Σ̂) =
(

n− c

n− c+ 1

)
trace(Σ̂) +

rrT

(n− c+ 1)(1 + h)
,

q+ =
(n− c+ 1)q

(1 + h){(n− c)(1 + h) + q} .

3.6 Categorical regression modelling

In a diagnostic problem the unknown u will belong to a set of disease types
and so is categorical in nature. We have seen in Chapter 2 that we may wish
to model pS(u|v) for such a diagnostic problem and so we require to consider
parametric classes of conditional distribution for a categorical variable u given
a covariate vector v. Fortunately there is such a versatile class, logistic regres-
sion models, and we collect here the important results which we shall require.
We start with the simplest version with just two categories and then extend
to any finite number of categories. Again we shall use the neutral notation of
(x, y) for the covariate and categorical variable, respectively.

Binary regression models
In specifying a conditional model for a categorical variable y with two pos-

sible categories 1 and 2 we have to assign probabilities to the events y = 1
and y = 2. These probabilities depend on the 1× c covariate row vector x. In
the interests of simplicity we might consider introducing linear combinations
xβT of the components of x as in the multivariate normal regression model.
Here β is a 1 × c row vector and we adopt the usual convention that the
first component of x may be a ‘dummy variable’ 1 to accommodate a con-
stant in the linear expression. A constraint in our modelling here, however, is
that probabilities have to be non-negative and indeed confined to the interval
(0, 1). Such non-negativity can, for example, be ensured by exploitation of the
properties of the exponential function and use of exp(xβT ) rather than xβT .
Since we require two probabilities dependent on x and summing to 1 we may
then consider

Ψ1(x, β) =
exp(xβT )

exp(xβT ) + 1
, (3.13)

Ψ2(x, β) =
1

exp(xβT ) + 1
(3.14)

as a basis for modelling.

Definition 3.9 The conditional distribution of a binary variable y for given
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covariate vector x is said to be of logistic regression form with vector parameter
β when

p(y = j|x, β) = Ψj(x, β) (j = 1, 2),

where the Ψj are defined in (3.13) and (3.14).

For such a logistic regression model the logarithm λ of the odds on y = 1
against y = 2 is given by

λ = log
p(y = 1|x, β)
p(y = 2|x, β)

= xβT ,

a linear combination of the components of the covariate vector x. We shall
refer to λ briefly as the logodds for covariate vector x.

We now consider maximum likelihood estimation of β based on the data set
D = {(xi, yi) : i = 1, . . . , n} of the selected cases S1, . . . ,Sn. The loglikelihood
l can be expressed as

l(β|D) =
n∑

i=1

[
δyi1xiβ

T − log
{
exp(xiβ

T ) + 1
}]
, (3.15)

where

δkj =
{

1 (j = k)
0 (j �= k)

is the Kronecker delta. The row vector l1 of first partial derivatives of l with
respect to the components of β can then be easily obtained in the following
form:

l1(β|D) =
n∑

i=1

{δyi1 − Ψ1(xi, β)}xi.

The likelihood derivative equations l1(β|D) = 0 have no explicit solution for
β and so recourse has to be made to a numerical method such as the Newton-
Raphson iteration or one of its modifications. For this purpose the matrix l2
of second derivatives is required:

l2(β|D) = −
n∑

i=1

Ψ1(xi, β)Ψ2(xi, β)xT
i xi.

DroppingD from the notation and writingM(β) for {−l2(β|D)}−1 the Newton-
Raphson iterative step from present iterate β(0) to next iterate β(1) can be
expressed as

β(1) = β(0) + l1(β(0))M(β(0)). (3.16)

Since there is now adequate computer software for this iterative procedure we
shall not consider this computational problem further. We may note, however,
that if β̂ denotes the converged vector, and so also the maximum likelihood
estimate of β, we may then use M(β̂) as an estimate of V (β̂), the covariance
matrix of β̂. An immediate consequence is that for the estimate λ̂ = xβ̂T of
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the logodds associated with covariate vector x we have an estimated standard
error

ese(λ̂) =
{
xM(β̂)xT

} 1
2
. (3.17)

With no explicit formula available for β̂ we cannot expect to obtain exact
recursive relations for the leave-one-out and add-one-in effects as we did for
the multivariate normal regression model. We can, however, obtain a useful
first approximation by the following argument. Consider the deletion of (x, y)
from the data set D to obtain D−. Again we use a − subscript to denote
estimates and other factors associated with the use of D− rather than D.
Then dropping the dependence on D

l−(β) = l(β) − [δy1xβ
T − log{exp(xβT ) + 1}], (3.18)

l1−(β) = l1(β) − {δy1 − Ψ1(x, β)}x. (3.19)

One way to obtain a first approximation to β̂− is to use the Newton-Raphson
iterative step with β(0) = β̂ and consider the resulting β(1) as our β̂−. The
matrix M(β) in (3.17) is, of course, based on l and D instead of on l− and D−
but this should not affect the iterative step too much; indeed it is common
practice in some forms of Newton-Raphson iteration not to recompute the M
matrix at each step. In the resulting iterative step, we can use the fact that
l1(β̂) = 0 in (3.19) to obtain

β̂− = β̂ − {δy1 − Ψ1(x, β̂)}xM(β̂).

Postmultiplication by xT and the use of (3.17) yields a corresponding result
for the logodds:

λ̂− = λ̂− {δy1 − Ψ1(x, β̂)}{ese(λ̂)}2.

Similar results hold for the addition of a case (x, y) to the data set D to obtain
an augmented data set D+ with the following approximate relationships:

β̂+ = β̂ + {δy1 − Ψ1(x, β̂)}xM(β̂), (3.20)

λ̂+ = λ̂+ {δy1 − Ψ1(x, β̂)}{ese(λ̂)}2. (3.21)

3.6.1 Alternative models

There is nothing intrinsically correct about the choice of the logistic functions
Ψj(x, β) as the functional forms for the categorical probabilities in the above
discussion. They are on the whole used because of their simplicity in providing
an appropriate model. Alternatives are possible. For example, for a binary
regression model we could have equally set

p(y = 1|x, β) = Φ(xβT ),
p(y = 2|x, β) = 1 − Φ(xβT ).

Indeed in terms of inferences and probability assessments experience suggests
that there is little, if any, practical difference between the logistic and normal
forms for binary regression models. The explanation for this close agreement
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undoubtedly lies in the fact that there is a good normal approximation to the
standard logistic distribution function Ψ(t) = exp(t)/(exp(t) + 1) of the form

Ψ(t) = Φ(0.59t).

Such an approximation ensures an error in the relative value of less than 1
percent over the range t > 0.

3.6.2 The d-category model

In our discussion above we have deliberately used a terminology and notation
which easily extends to the situation where y may be one of d categories
1, 2, . . . , d. Instead of the 1× c parameter vector β of the 2-category model we
now have d− 1 such 1 × c vectors β1, . . . , βd−1 and for subsequent analysis it
is convenient to string these out to form an extended 1 × c(d− 1) vector

β = [β1 · · ·βd−1]

with βj as its jth partition. We can then present the d-category model in the
following terms.

Definition 3.10 The conditional distribution of a d-category variable y for
given covariate x is said to be of logistic regression form with parameter vector
β of order c(d− 1) when

p(y = j|x, β) = Ψj(x, β),

where

Ψj(x, β) = exp(xβT
j )/

{
d−1∑
k=1

exp(xβT
k ) + 1

}
(j = 1, . . . , d− 1),

Ψd(x, β) = 1/{
d−1∑
k=1

exp (xβT
k ) + 1}

and βj are the 1 × c partitions of β.

The convenient way to consider logodds for the d-category model is to com-
pare each of the categories 1, . . . , d − 1 with category d. For example the
logodds on category j against category d,

λj = log
p(y = j|x, β)
p(y = d|x, β)

= xβT
j ,

is again a linear combination of the components of the covariate vector x.
The loglikelihood l(β|D) is only a little more complicated than the loglike-

lihood of the 2-category model in (3.15):

l(β|D) =
n∑

i=1

⎡
⎣d−1∑

j=1

δyijxjβ
T
j − log

{
d−1∑
k=1

exp(xiβ
T
k ) + 1

}⎤⎦ .
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The vector l1(β|D) of first derivatives of l is now of order 1 × c(d − 1) and
the matrix l2(β|D) of second derivatives of order c(d− 1)× c(d− 1). In what
follows we imagine these to be partitioned conformably with the partition of
β. The jth partition of l1(β|D), corresponding to first order partial derivatives
with respect to the components of β, is

n∑
i=1

{
δyij − Ψj(ii, βj)

}
xi.

The submatrices of l2(β|D) corresponding to the (j, j) and (j, k) partitions
are

−
n∑

i=1

Ψj(xi, β)
{
1 − Ψj(xi, β)

}
xT

i xi (j = k)

and

−
n∑

i=1

Ψj(xi, β)Ψk(xi, β)xT
i xi (j �= k),

respectively.
Again computer software is readily available and we present only the un-

familiar approximate recursive relationships corresponding to those in Prop-
erties 3.6 and 3.7. The matrix M(β) again denotes the inverse of −l2(β|D).
Denoting the submatrix in the (j, k) position of the partition of M(β) by
Mjk(β) we know that, for estimates λ̂j = xβ̂T

j of the logodds, cov(λ̂j, λ̂j) is
estimated by

estcov(λ̂j , λ̂k) = xMjk(β̂)xT .

We then have the following approximate recursive relations associated with
the removal of (x, y) from D to obtain D−:

β̂− = β̂ − [{δy1 − Ψ1(x, β)}x · · · {δy,d−1 − Ψd−1(x, β)}x]M(β̂),

λ̂j− = λ̂j −
d−1∑
k=1

{δyk − Ψk(x, β̂)}estcov(λ̂j , λ̂k).

For the d-category regression model there is no normal form directly compa-
rable with the simple logistic form. We could, however, envisage a 3-category
model of the following form:

p(y = 1|x, β) = Φ(xβT
1 ),

p(y = 2|x, β) = {1 − Φ(xβT
1 )}Φ(xβT

2 ),
p(y = 3|x, β) = {1 − Φ(xβT

1 )}{1 − Φ(xβT
2 )}.

(3.22)

This might be appropriate for example if category 1 referred to a normal
patient and categories 2 and 3 referred to two different forms of a disease.
Since

p(y = 1|x, β) = Φ(xβT
1 ),

p(y = 2 or 3|x, β) = {1 − Φ(xβT
1 )}
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and
p(y = 2|y = 2 or 3, x, β) = Φ(xβT

2 ),
p(y = 3|y = 2 or 3, x, β) = 1 − Φ(xβT

2 )

we see that the model defined in (3.22) is equivalent to a two-stage model. At
the first stage the separation is between normal and diseased patients with
β1 the relevant parameter. The parameter β2 at stage 2 then refers to the
differential diagnosis between categories 2 and 3.

3.7 Lattice testing towards a working model

In Section 3.2 we regarded the setting up of a maximal model for the condi-
tional distribution pS(y|x) as the most complex description of the dependence
of the pattern of variability of y on the covariate vector x we were prepared
to envisage. To what extent, however, may this be too complex a model to
describe variability in y? Would perhaps a subvector xH of x provide as ad-
equate a description of the pattern of variability of y as the complete vector
x? For example, if our maximal model is the multivariate normal regression
model of Definition 3.8

Y = XB + E, (3.23)

with X of order n × c, then consideration of only a subvector xH of the
covariate vector x is equivalent to consideration of the model

Y = XHBH + E, (3.24)

where XH is of order n × cH and is constructed from the appropriate sub-
vectors. Statistically, (3.24) provides a simpler explanation of the dependence
of y on x and is a linear hypothesis within the model (3.23); it is, of course,
equivalent to setting to zero the columns of B in (3.23) corresponding to the
omitted covariate components. Later we shall have to consider several such
hypotheses, but for the moment we confine our attention to the testing of a
single hypothesis within the maximal model. If we reject such a hypothesis we
conclude that the conditioning stated in the hypothesis does not provide an
adequate explanation of the variability of y and we are justified in retaining
the more complex explanation in the maximal model. If we cannot reject the
hypothesis then we are not justified in using the maximal model: we may then
consider use of the hypothesis as a working model on which to base subsequent
assessments.

3.8 Testing a single hypothesis

We first provide the basic procedures for testing a hypothesis within our two
forms of maximal model: the multivariate normal regression model and the
logistic regression model. To make clear what refers to the hypothesis we have
already introduced a subscript H as in (3.24); for further emphasis of the
distinction between model and hypothesis we also introduce a subscript M
when referring to the maximal model.
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Property 3.8 For testing the linear hypothesis H,

Y = XHBH + E,

where XH is n × cH and of full rank cH , within the multivariate normal
regression model M ,

Y = XMBM + E,

where XM is n× cM and of full rank cM , let t be the computed value of the
test statistic

T = 1 − (|RM |/|RH |)a
,

where RM and RH are the residual matrices under M and H respectively.
Then the significance probability is

1 − J(t|b, c) = J(1 − t|c, b),
where a, b, c for special cases are given in Table 3.1, k = cM − cH and J is the
incomplete beta function given in Definition 3.2. The result is exact for the
first four cases and approximate, for large n, in the final case.

Table 3.1 Characteristics of lattice tests in the normal case

d k n a b c

1 any > k + 1 1 1
2k

1
2 (n− k − 1)

2 any > k + 2 1
2 k n− k − 2

any 1 > d+ 1 1 1
2d

1
2 (n− d− 1)

any 2 > d+ 2 1
2 d n− d− 2(

d2 + k2 − 5
d2k2 − 4

)
any any ‘large’ 1

2dk
1
2 [{n− 1 − 1

2 (d+ k + 1)}a−1

− 1
2dk + 1].

Property 3.9 For testing the hypothesis H,

p(y = j|xH , βH) = Ψj(xH , βH) (j = 1, . . . , d),

where xH is a 1 × cH subvector of the 1 × cM covariate vector, within the
logistic regression model M ,

p(y = j|xM , βM ) = Ψj(xM , βM ) (j = 1, . . . , d),

let lM and lH be the maximized loglikelihoods under the model M and hy-
pothesis H, respectively. Let t denote the computed value of the generalized
likelihood ratio test statistic

T = 2(lM − lH).
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Then the significance probability is approximately

1 − I(2t|k/2),

where k = cM − cH and I is the incomplete gamma function from Defini-
tion 3.1.

3.9 The lattice of hypotheses

Seldom will our task be as simple as the testing of a single hypothesis within
a maximal parametric model. For example, in a diagnostic problem with two
disease types, we may be in some doubt as to which, if any, of the components
of the covariate (x1, x2, x3) have any diagnostic value. As our maximal model
suppose we adopt a logistic regression model

p(y = j|x, β) = Ψj(x, β) (j = 1, 2)

as in Definition 3.9. We assume here that x includes a dummy covariate 1
with coefficient β0. There are now many hypotheses of interest, for example
H2, that β2 = 0 or that only x1 and x3 are of diagnostic value and not x2;
or again H23, that β2 = β3 = 0 or that only x1 has diagnostic value. Such
hypotheses place constraints on the parameters of the maximal model. We can
then show clearly the hypotheses of interest and their relations of implication
with respect to each other and the maximal model in diagrammatic form in
a lattice.

The lattice of Figure 3.1 displays all the possible hypotheses for our simple
diagnostic problem. Note the following features of such a lattice. The hypothe-
ses and maximal model have been arranged in a series of levels. At the highest
level is the maximal model M with its four parameters β0, β1, β2, β3; at the
lowest level is the hypothesis of no dependence of disease type on the covariate
vector (x1, x2, x3), of essentially unexplained variability of disease type, with
only one parameter β0 related with the incidence rates of the disease types. At
intermediate levels are hypotheses of the same intermediate complexity such
as H23 described above with two parameters β0, β1 at level 2, with similarly
defined hypotheses H12 and H13, and H1 also described above at level 3 with
similarly defined H2 and H3. When a hypothesis at a lower level implies one at
a higher level the lattice shows a line joining the two hypotheses: for example,
the hypothesis H23 that β2 = β3 = 0 at level 2 implies H3 that β3 = 0 at level
3 and so a join is made between H23 and H3, whereas H23 does not imply H1

that β1 = 0 and so no join is made. In short, the lattice displays clearly the
relative simplicities and the hierarchy of implication of the hypotheses and
their relation to the model.

3.10 Testing within a lattice

Once the maximal model and relevant hypotheses have been set out in a
lattice, how should we proceed to test the various hypotheses? The problem is
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Level 3

Level 2

Level 1

Maximal Model M

H1 H2 H3

H12 H13 H23

H123

Figure 3.1 Lattice of hypotheses about the nature of disease type on components of
a covariate vector (x1, x2, x3).

clearly one of testing multiple hypotheses with no optimum solution unless we
can frame it as a decision problem with a complete loss structure, a situation
seldom realized for such problems. Some more ad hoc procedure is usually
adopted. In our approach here we adopt the simplicity postulate of Jeffreys
(1961), which within our context may be expressed as follows: we prefer a
simple explanation, with few parameters, to a more complicated explanation,
with many parameters. In terms of the lattice of hypotheses, therefore, we will
want to see positive evidence before we are prepared to move from a hypothesis
at a lower level to one at a higher level. In terms of standard Neyman-Pearson
testing, the setting of the significance level ε at some low value may be viewed
as placing some kind of protection on the hypothesis under investigation: if
the hypothesis is true our test has only a small probability, at most ε, of
rejecting it. With this protection, rejection of a hypothesis is a fairly positive
act: we believe that we really have evidence against it. This is ideal for our
view of hypothesis testing within a lattice of hypotheses under the simplicity
postulate. In moving from a lower level to a higher level we are seeking a
mandate to complicate the explanation by introducing further parameters.
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The rejection of a hypothesis gives us a positive reassurance that we have
reasonable grounds for moving to this more complicated explanation.

Our lattice testing procedure can then be expressed in terms of the following
rules.

1. In every test of a hypothesis within the lattice, regard the maximal model
as the alternative hypothesis.

2. Start the testing procedure at the lowest level, by testing each hypothesis
at that level within the maximal model.

3. Move from one level to the next higher level only if all hypotheses at the
lower level have been rejected.

4. Stop testing at the level at which the first non-rejection of a hypothesis
occurs. All non-rejected hypotheses at that level are acceptable as ‘work-
ing models’ on which further analysis such as assessment of conditional
probabilities may be based.

Assessment of conditional distributions for the working model
Suppose that we have arrived by lattice testing at a working parametric

model for the dependence of y on x for a selected case S, say pS(y|x,B,Σ)
of Nd(xB,Σ) form for multivariate normal regression modelling or pS(y|x, β)
equal to Ψy(x, β) for a logistic regression model. Suppose further that we
have carried out the maximum likelihood estimation procedures described
in Section 3.4 or 3.6 and have obtained B̂, Σ̂ or β̂ whichever is appropriate.
Hypothesis testing with the lattice and estimation are, however, not the end of
the statistical analysis but only a means towards the solution of the problem
as identified in Chapter 2, the assessment of the conditional density function
of y for given x for a typical selected case S. Let us denote such an assessment
based on the data set D of selected cases S1, . . . ,Sn by

pS(y|x,D).

It is tempting to imagine that for the multivariate normal regression model
all we require to do is to replace the parameters B and Σ in pS(y|x,B,Σ) by
their estimates B̂ and Σ̂ to give

pS(y|x,D) = pS(y|x, B̂, Σ̂),

which is, of course, of Nd(xB̂, Σ̂) form. Such an estimative method, which
uses the estimates as if they were the true values without taking any account
of their sampling variabilities, is now known to be less reliable than what has
come to be known as the predictive method. The predictive method recognizes
that values of B and Σ other than B̂ and Σ̂ are possible by forming a weighted
average of the possible pS(y|x,B,Σ) with weighting function w(B,Σ|D). As its
notation suggests the weights attaching to different (B,Σ) must depend on the
data setD. A popular way of arriving at such a weighting function is through a
Bayesian analysis with w(B,Σ|D) the posterior distribution p(B,Σ|D) based
on a prior distribution for the parameters (B,Σ). Much argument can then
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centre on what is an appropriate prior distribution. We shall adopt here the
pragmatic view that prior to observing D little is known about (B,Σ) and so a
standard vague prior is reasonably appropriate. The issue here is not whether
the approach should be Bayesian or otherwise but the practical necessity of
adopting a predictive assessment in face of the inadequacies of the estimative
assessment. The vague prior weighting function provides a reasonable means
of arriving at a predictive assessment.

For ease of future application we state the required predictive assessment
result for the multivariate normal regression model.

Property 3.10 For the multivariate normal regression model pS(y|x,B,Σ)
of Nd(xB,Σ) form for a typical selected case the vague prior predictive as-
sessment pS(y|x,D) based on the data set D = {(xi, yi) : i = 1, . . . , n} of n
selected cases S1, . . . ,Sn is of

Std
[
n− c, xB̂, {1 + x(XTX)−1xT }Σ̂

]
(3.25)

form, where B̂ and Σ̂ are the estimates described in Property 3.2.
In the special case in which there are no covariates, so that c = 1, x = 1

and x(XTX)−1xT = n−1, the vague prior predictive assessment has the form

Std
[
n− 1, x̄, {1 + n−1}σ̂2

]
. (3.26)

3.11 Measures of atypicality

We are now in a position to pose the following question for a referred patient
R with associated information (xR, yR). How typical is (xR, yR) of the expe-
rience we have met in the data set D = {(xi, yi) : i = 1, . . . , n} of selected
cases S1, . . . ,Sn or more specifically in relation to the working model we have
obtained for the relevant conditional distribution pS(y|x,D). We can con-
veniently base our assessment on the following considerations. The predictive
conditional distribution assigns a probability density to each possible y for the
given covariate xR of the referred patient. The smaller the density assigned to
a y the more it inclines towards atypicality. First determine the conditional
density associated with the actual yR of the referred patient. Then compute
the probability, on the basis of the conditional predictive distribution, that a
case with covariate xR has a conditional density greater than or equal to the
conditional density of the referred patient and call this the atypicality index of
the referred patient. Formally the definition of the atypicality index A(yR|xR)
of referred patient R is

A(yR|xR) =
∫

C(yR|xR)

p(y|xR,D)dy, (3.27)

where C(yR|xR) is the region

{y : p(y|xR,D) ≥ p(yR|xR,D)} (3.28)

of the space Y .
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The atypicality index therefore ranges between 0 and 1 and the closer the
index is to 1 the more atypical the referred patient is relative to the experience
of the selected cases.

3.11.1 The multivariate normal model

Fortunately the atypicality indices associated with the predictive density func-
tion of Property 3.10 are easily computed. The result is contained in the fol-
lowing property.

Property 3.11 Under the conditional predictive assessment of the multi-
variate regression model of Property 3.2 the atypicality index A(yR|xR) of a
referred patient R with data (xR, yR) is given by

J

[
qR

{qR + (n− c)(1 + hR)}
∣∣ 1

2 ,
1
2 (n− c− d+ 1)

]
,

where qR = (yR − xRB̂)Σ̂−1(yR − xRB̂)T is the Mahalanobis distance, hR is
the ‘hat’ value xR(XTX)−1xT

R of the referred patient and J is the incomplete
beta function.

Note that the hR value gives an indication of how typical the referred patient
R is with respect to the covariate experience of the selected set of cases.
Roughly speaking the larger the value of hR the further the referred case is
from the centre of the covariate cluster and the nearer we may be approaching
extrapolation rather than interpolation in our analysis. We note how this is
reflected in the atypicality index. For a given qR value, the larger the value of
hR then we can say the less atypical is R.

3.11.2 Extrapolation index

In the above conditional analysis we have assumed that the covariate vector xR

of the referred patient R is within the previous experience of covariate vectors
in the selected cases, and it is clearly important that this should be the case.
For example, in a clinical trial on the effect of a particular drug therapy on
patients with slightly raised systolic blood pressure, say in the range 110-130
mm Hg, we might record x as the covariate, current systolic blood pressure,
say, and y as the response, the reduction in systolic blood pressure. We would
surely be reluctant to apply any working model fitted to a new patient with
very high systolic blood pressure, say 190 mm Hg. We would be in danger of a
very risky form of extrapolation. It is therefore sensible to have some measure
of the degree of extrapolation as a check on whether the covariate vector x of
a referred patient is reasonably within previous experience.

We can construct such an extrapolation index ext(x) in the following way.
Let x̄ and Σ̂ be the sample mean vector and sample covariance matrix of the
selected set of covariate vectors. Define the Mahalanobis distance of selected
case Si as

qi = (xi − x̄)Σ̂−1(xi − x̄)T (i = 1, . . . , n)
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and let qmin and qmax be the minimum and maximum of these Mahalanobis
distances. For a referred case with covariate vector xR let

qR = (xR − x̄)Σ̂−1(xR − x̄)T

and consider
ext(xR) =

qR − qmin

qmax − qmin

as a possible indicator of extrapolation. If ext(xR) ≤ 1 then we can be rea-
sonably sure that we are involved in interpolation. If ext(xR) ≥ 1 then we are
involved in extrapolation and the amount of the excess over 1 will provide an
indication of just how risky the extrapolation may be.

3.11.3 The logistic regression model

Assessment of conditional distributions for the logistic regression model is less
tractable. We can, however, resolve the problem by numerical or approximate
methods. To arrive at a predictive assessment we have to apply a weighting
function p(β|D) to pS(y|x, β) or Ψy(x, β) to obtain

pS(y|x,D) =
∫

Rc(d−1)
Ψy(x, β)p(β|D)dβ. (3.29)

We are thus apparently faced not only with the difficulty of finding a rea-
sonable weighting function, but also with an integration over the whole of
c(d− 1)-dimensional real space. As a means of obtaining a reasonable weight-
ing function we may adopt the Bayesian version of the asymptotic normality
properties of maximum likelihood estimation by taking

p(β|D) = φc(d−1){β|β̂,M(β̂)}, (3.30)

using the notation of Definition 3.3. We may note, however, that Ψy(x, β)
depends on β only in the forms

λ1 = xβT
1 , . . . , λd−1 = xβT

d−1

and that the joint distribution of λ = (λ1, . . . , λd−1) is also normal with
density function φd−1{λ|λ̂, Λ̂}, where the (j, k)th element of Λ̂ is xMjk(β̂)xT ,
as already discussed in Section 3.6.2. Hence the c(d− 1)-dimensional integral
can be dramatically reduced to a (d− 1)-dimensional integral:

pS(y|x,D) =
∫

Rd−1
Ψy(λ)φd−1(λ|λ̂, Λ̂)dλ, (3.31)

where

Ψy(λ) =
exp(λy)

{exp(λ1) + · · · + exp(λd−1) + 1} (y = 1, . . . , d− 1),

Ψd(λ) =
1

{exp(λ1) + · · · + exp(λd−1) + 1} .

No explicit form for (3.31) is available and so recourse has to be made to some
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form of numerical integration or to an approximation. For d not too large the
integral in (3.31) is ideally suited to Hermitian integration and, since we shall
have recourse to this powerful technique in other problems, we append a note
at the end of this section.

To obtain an approximate result for (3.31) consider the Taylor expansion
of Ψy(λ) about λ̂ up to second order terms:

Ψy(λ) = Ψy(λ̂) + (λ− λ̂)DΨy(λ̂) + 1
2 (λ− λ̂)D2Ψy(λ̂)(λ− λ̂)T ,

where DΨ and D2Ψ denote the vector of first derivatives and matrix of second
derivatives with respect to λ, respectively. Since λ̂ is the mean of λ with respect
to the φd−1(λ|λ̂, Λ̂) density function the second term in the integration of
(3.31) is zero. Also since

(λ− λ̂)D2Ψy(λ̂)(λ− λ̂)T = trace{λ− λ̂)D2Ψy(λ̂)(λ− λ̂)T }
= trace{(λ− λ̂)T (λ− λ̂)TD2Ψy(λ̂)},

we arrive at the following approximation:

pS(y|x,D) = Ψy(λ̂) + 1
2 trace{Λ̂D2Ψy(λ̂)}.

We note that for the binary regression model a more satisfactory approxima-
tion may be obtained from the fact that a good normal approximation Φ(aλ)
may be obtained to the logistic function Ψ1(λ), where a = 0.59. Thus when
Ψ1(λ) and Ψ2(λ) in (3.13) and (3.14) are replaced by Φ1(aλ) and 1−Φ1(aλ) we
have one-dimensional convolution integrals so that the predictive assessments
in (3.29) become

pS(y = 1|x,D) = Φ
[
aλ̂/{1 + xM(β̂)xT } 1

2

]
, (3.32)

pS(y = 2|x,D) = 1 − Φ
[
aλ̂/{1 + xM(β̂)xT } 1

2

]
. (3.33)

The reliability distribution
The derivation of the predictive assessments in (3.32) and (3.33) above is

simply the computation of the expectation of p(y|x, β) with respect to the
posterior distribution p(β|D). In doing this we are looking at a single char-
acteristic, namely the mean of a distribution over the interval (0,1), namely
that induced on p(y|x, β) as a function of the parameter β by the distribution
p(β|D). Such a distribution provides some indication of the reliability of the
predictive assessment in the sense that we hope that there is not a great varia-
tion about the mean value. We shall thus term this distribution the reliability
distribution of the categorical regression model.

For the logistic binary regression model we can readily identify the form of
the reliability distribution. The predictive assessment splits the unit of prob-
ability available between two parts y = 1 and y = 2 and so is mathematically
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a two-part composition as defined in Section 4.2. The corresponding logratio

log
p(y = 1|x, β)
p(y = 2|x, β)

= xβT = λ

is, from the above discussion, of the approximate N(xβT , xMxT ) form, from
(3.30), and we have p(y = 1|x, β) distributed according to the logistic-normal
form L1(xβT , xMxT ). Logistic-normal distributions will be discussed in more
detail in Section 4.2. For our purposes here we require only the density function
of L1(µ, σ2) which has the form

1
σ
√

2πy(1 − y)
exp
{
− 1

2σ2
(log

y

1 − y
− µ)2
}

(0 < y < 1).

The idea clearly extends to the d-category case with the predictive assess-
ment composition

{p(y = 1|x, β), . . . , p(y = d|x, β)}
of the Ld−1(λ,Λ) form discussed in detail in Section 4.2.

We shall see in Chapter 8 how useful this concept of reliability distribution
can be. Figure 3.2 shows four examples (a)-(d) of reliability distributions, each
with the same predictive assessment p(y = 1|x,D) of 0.75. It is clear from
the reliability distributions that these inferences are in descending order of
reliability and that for (d) the mean value of 0.75 emerges only as a confusion
between stronger possibilities that p(y = 1|x, β) is more likely to be near 0 or
near 1 than near 0.75.

Extrapolation index in the logistic regression model
Investigation of atypicality for this model is not relevant but we can ask

as above whether the referred case R has a covariate xR which ensures that
we are not in danger of extrapolating in our inferences about R. Thus we
may examine ext(yR|xR) as above in the multivariate regression model to
give some indication of the extent to which we may be extrapolating rather
than interpolating from experience.

A note on multivariate Hermitian integration
Any integral of the form ∫

Rd

g(z) exp(−zT z)dz, (3.34)

where g(z) is a reasonably smooth function on Rd, can be approximated by a
multiple sum

k∑
i1=1

· · ·
k∑

id=1

wi1 . . . wid
g(z1, . . . , zd),

where w1, . . . , wk and z1, . . . , zk are the weights and points for Hermitian
integration of order k on R1; see, for example, Abramowitz and Stegun (1972).
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Figure 3.2 Four reliability curves each with the same predictive diagnostic assess-
ment.

In our statistical applications in clinical medicine we shall encounter a number
of integrals of the form ∫

Rd

f(y)φd(y|µ,Σ)dy,

where µ and Σ are known. For such an integral we can always find a transfor-
mation

y = µ+
√

2T z,

where AAT = Σ, and application of this yields∫
Rd

π−d/2f(µ+
√

2T z) exp(−z′z)dz,

which is of the form of (3.34) with

g(z) = π−d/2f(µ+
√

2T z).
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3.12 Concordance of data and model

The process of arriving at a working model to describe the pattern of vari-
ability observed in a data set is a complex one and it is sensible to undertake
a thorough review of how well working model and data are in agreement. Are
any of the assumptions of the working model challenged by the data? Are
there any cases which seem to be unduly influencing the choice of the work-
ing model? Methods of investigating such important questions are the subject
matter of this section.

3.12.1 Tests of normality

For the multivariate regression model the underlying assumption is that the
conditional distribution of y for given covariate vector x is Nd(xB,Σ). This
assumption of the normal form, essentially for the distribution of the resid-
ual vector e in the linear form y = xB + e, can be tested. From the bat-
tery of such tests we describe below the range of tests we have found most
useful. All these tests are based on a similar idea. From the set of residu-
als ri = yi − xiB̂ (i = 1, . . . , n) each test introduces some transformation
t = f(r) leading to ti (i = 1, . . . , n) whose distribution, under the assumption
of normality of e, is known, say with distribution function G(t). Then each
of zj = G(tj) (j = 1, . . . , n) is uniformly distributed over the interval (0,1)
and, although not strictly independent because of their common dependence
on the yi, are considered so in the assessment of significance probabilities.
The argument then continues that the set of (increasingly) ordered zj , say
z[j] (j = 1, . . . , n), should correspond approximately to quantiles of the uni-
form distribution over (0,1). There is some element of choice about which
particular set of quantiles are appropriate; in what follows we have chosen
those given by oj = (j − 0.5)/n (j = 1, . . . , n).

From the variety of tests based on the order statistics z[j] (j = 1, . . . , n),
each aimed at a different form of departure from normality, we have selected
three test statistics, the Anderson-Darling QA, the Cramer-von Mises QC and
the Watson QW , defined as follows:

QA = −(1/n)
n∑

i=1

(2i− 1){log z[i] + log(1 − z[n+1−i])} − n,

QC =
n∑

i=1

{z[i] − (2i− 1)/(2n)}2 + 1/(12n),

QW = QC − n(z̄ − 1/2)2.

Q-Q plots
Under the assumption of normality of the residuals r, if the ordered set of

residuals is plotted against the corresponding theoretical quantiles obtained
as r̄ + srΦ−1(o[i]), where r̄ and sr denote the mean and standard deviation
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of the residuals, then the resulting points should lie approximately along the
diagonal of the (square) plot. Such a diagram, often referred to as a Q-Q plot,
provides a useful visual guide with curvature often providing a clear indication
of the need to question the normality assumption and take remedial measures.
See Chapter 5 for examples of this form of plot.

Marginal tests
Corresponding to each component rj of a residual vector r we can obtain a

marginal test of normality through the transformation tj = rj/
√
σjj and by

setting G = Φ, the standard normal cumulative distribution function.

Bivariate tests
Since e has a Nd(0,Σ) distribution we can find a transformation w = Me

such that w has a spherical normal distribution Nd(0, Id). The transformation
matrixM will, of course, depend on Σ but can be approximated byM obtained
from the estimate Σ̂. Corresponding to each pair of components (rj , rk) of a
residual vector r we can obtain a bivariate angle test based on the following
considerations. Since the distribution of (wj , wk) is circular normal centred
on the origin, the angle tjk which the vector from (0,0) to (wj , wk) makes
with the wj axis should be uniformly distributed over the range (0, 2π). Then
z = G(t) = t/(2π) produces the necessary transformed residuals which should
be approximately uniformly distributed over (0,1).

Radius test
In this test t = rΣ−1rT , what we referred to as the Mahalanobis distance

in Section 3.11. Then G is the distribution function of the χ2(d) distribution
or, equivalently, of the Ga(1

2d) distribution.
The critical values for all these tests are based on slightly modified versions

of the test statistics and are provided in Table 3.2.

3.12.2 Transformations to normality

When a data set fails tests of normality a question often posed is whether
some transformation, say y(c)

j of the jth component of y, may yield residuals
which are closer to multivariate normality. One useful class of transformations
is the Box-Cox class, defined by

y
(tj)
j =

{
(ytj

j − 1)/tj (tj �= 0),
log(yj) (tj = 0).

On the assumption that y(t) follows a multivariate normal regression model
Nd(xB,Σ), the loglikelihood l(t,B,Σ) can be written as
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Table 3.2 Modified empirical distribution function test statistics and their critical
values

Significance Anderson- Cramer- Watson
level (per cent) Darling von-Mises

Marginal tests
QA

[
1 + 4

n − 25
n2

]
QC

[
1 + 1

2n

]
QW

[
1 + 1

2n

]
10 0.656 0.104 0.096
5 0.787 0.126 0.116

2.5 0.918 0.148 0.136
1 1.092 0.178 0.163

Bivariate angle and radius tests
QA

[
QC − 0.4

n + 0.6
n2

] [
QW − 0.1

n + 0.1
n2

]
× [1 + 1

n

] × [1 + 0.8
n

]
10 1.933 0.347 0.152
5 2.492 0.461 0.187

2.5 3.070 0.581 0.221
1 3.857 0.743 0.267

l(t,B,Σ) = −1
2d log(2π) − 1

2 log(|Σ|) +
d∑

j=1

(tj − 1)
n∑

i=1

yij

− 1
2 trace{(Y −XB)Σ−1(Y −XB)T }. (3.35)

Choice of t = (t1, . . . , td) is then determined by maximization of l with respect
to t,B,Σ. Since for given t the corresponding maximizing values of B,Σ are
simply

B̂t = (XTX)−1XTY (t),

Σ̂t = (Y (t) −XB̂t)T (Y (t) −XB̂t)/(n− d)

those obtained from replacing Y by Y (t) in the standard linear model given
in Definition 3.8, the usual maximization procedure is to program the easily
computed profile loglikelihood given by

lP (t) = maxB,Σl(t,B,Σ) = l(t, B̂t, Σ̂t)

and to maximize this profile loglikelihood with respect to t.
As a test of whether the use of the corresponding maximizing t is justified

we can carry out a test of the hypothesis t = 1 which corresponds to no
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transformation, with 1 denoting a d-vector of 1s. A simple approximate test
here is to compare

2{l(t̂, B̂t, Σ̂t) − l(t = 1, B̂, Σ̂)} (3.36)

against critical values of the χ2(d) distribution.

3.12.3 Atypicality

In Section 3.11 we introduced the concept of the atypicality index of a referred
patient R relative to the set S1, . . . ,Sn of selected cases. A useful way of
checking whether any one of the selected cases, say S with corresponding
vector (x, y), may be unduly influencing our inferences is to ask how typical
it would appear relative to the reduced data set D− consisting of D with the
case S removed. A simple way of assessing this is to compute the atypicality
index A(y|x) of S with respect to D−. The result is contained in the following
property.

Property 3.12 Under the conditional predictive assessment of the multi-
variate regression model the atypicality index A(y|x) of a selected case S with
vector (x, y) with respect to the reduced data set D− is given by

J

[
qS

qS + {(n− c)(1 − hS)}
∣∣ 1

2d,
1
2 (n− c− d)

]
,

where qS = (y − xB̂)Σ̂−1(y − xB̂)T is the conditional Mahalanobis distance,
hS = x(XTX)−1xT is the ‘hat’ value of the selected case S relative to the full
data set D and J is the incomplete beta function given in Definition 3.2.

The simplicity of this computation has exploited the recursive relationships
of Property 3.6 and to examine all the selected cases in this way requires the
qS and hS values to be computed only once relative to the full data set D. We
may also note here that the value of the atypicality depends upon two aspects
of the selected case, with hS reflecting the extent to which the position of S in
the covariate space is one of extrapolation and with qS measuring the extent of
the departure of S from the fitted regression model. We note particularly here
the way in which hS and qS combine in the form qS/(1−hS) in the formula for
the atypicality index. The larger either of those characteristics is the larger
will be the atypicality index.

3.12.4 Regression diagnostics

We have seen above in the leave-one-out atypicality index one measure of the
possible influence that a selected case may have on the inferences we make. We
should certainly ask questions about any such case with a high atypicality in-
dex relative to the associated reduced data set. There is now a large literature
under the general heading of regression diagnostics. In general these are hS or
qS separately or in some combination of the two characteristics. For example
hS is often referred to as the leverage of S and since the average value of all
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the leverages in the selected set is (1/n)trace{X(XTX)−1XT } it is sometimes
suggested that cases with leverage greater than 2c/n should be investigated
carefully as possibly having undue influence on the statistical analysis. In the
next subsection we consider one measure which seems particularly appropriate
within the context of assessing the relevant conditional distributions required
in clinical medicine.

3.12.5 Influence in terms of Kullback-Liebler divergences

In terms of the multivariate regression model if we were to leave out the
selected case S from the data set we would arrive at the relevant conditional
predictive density function p(y|x,D−) for describing the variability in the
y of S for given x. On the other hand, if we were to regard S as a new
case then the corresponding predictive density function would be p(y|x,D).
Clearly then in terms of the basic problem in clinical medicine of trying to
assess conditional distributions some measure of how far p(y|x,D) is from
the target p(y|x,D−) will be sensible in determining the extent to which S
is atypical or influential. Such a measure is provided by the Kullback-Liebler
directed divergence measure

K(y|x) =
∫

Y

p(y|x,D−) log
p(y|x,D−)
p(y|x,D)

dy.

With the use of the recursive relations of Property 3.6 this can readily be
evaluated in terms of hS and qS as

K(y|x) = − 1
2 (n− c)d− 1

2d log
n− c

n− c− 1
+ 1

2

h2
SqS

(1 − hS)2

− 1
2 log
(

1 − qS
(n− c)(1 − hS)

)

+1
2

n− c

n− c− 1

(
d− qS

(n− c)(1 − hS)

)
.

Note that this involves an expression h2
S/(1− hS) in hS alone which increases

with hS, with the remaining part involving the now familiar combination
qS/(1 − hS).

3.13 Bibliographic notes

Much of the statistical modelling and methodology of this chapter is obtain-
able in standard texts. For example, the normal regression model has a long
history and details can be found in such references as Anderson (1984), Rao
(1965), Johnston and Wichern (1998), Mardia, Kent and Bibby (1979), Mor-
rison (1976) and most statistical software supports the computational aspects
of the methods. Less well known, perhaps, are such aspects as the recurrence
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formula of Section 3.5 which are an extended version of Clarke (1971) and
Campbell (1985).

The categorical regression model dates back to probit analysis introduced by
Gaddum (1933) and Bliss (1934) and developed by R.A. Fisher; for a detailed
account and references see the monograph by Finney (1971). The simpler
logistic analysis is based on the alternative first introduced by Berkson (1944).
There was indeed a heated dispute over the relative merits of these approaches,
neither party seeming to realise that the practical differences were negligible
because of the closeness of the normal and logistic distribution functions.
For modern accounts see McCullagh and Nelder (1989), Collett (2003a) and
Agresti (2002).

Lattice testing is based on simplicity and parsimony concepts going back
to William of Ockam and well expressed in Jeffreys (1961). In our view when
faced with a multiple hypotheses situation the statistician is well advised to
construct a lattice as in Section 3.9. Our own experience in working with these
was developed in the 1970’s in collaboration with A D McLaren in statistical
laboratory work in the undergraduate classes in the University of Glasgow.
These were partly developed to counteract confusion caused in the use of
standard analysis of variance tables. The only text we are aware of which uses
such an approach is Aitchison (1986).

The use of the predictive distribution is old though not well known and is
traceable to Bayes (1763) for a very simple situation. Jeffreys (1961) also was
a strong advocate of the concept. For a detailed account of uses of predictive
distributions, see Aitchison and Dunsmore (1975).

Normal ranges, usually for univariate measurements, have been used in
clinical medicine for many years. An early advocate of the consideration of
multivariate measurements was Hamilton (1956) though no technique for im-
plementation was considered. The extension to multivariate measurements
through the use of the atypicality index seems relatively new with Aitchison
and Kay (1975) providing a formal definition and means of computation; see
also Aitchison and Dunsmore (1975).

The extrapolation index and reliability curve are, we believe, new to this
book.

Much is available on tests of concordance of data and model. The normal
tests are based on the expository article by Stephens (1982) and may be also
found in Aitchison (1986). Regression diagnostics, in both its normal and
categorical form, is a huge subject, covered in such texts and papers as Cook
and Weisberg (1982) and Pregibon (1981).

We believe that the use of the K-L influence measure is an appropriate one
in clinical problems and is, as far as we are aware, new.
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3.14 Problems

Problem 3.1 Using the general form of the results in Property 3.2 establish
for the simple univariate model of linear regression

yi = α+ βxi + ei (i = 1, . . . , n),

where ei (i = 1, . . . , n) are independent N(0, σ2) errors and the xi are real
numbers, that

β̂ =
n∑

i=1

(xi − x̄)(yi − ȳ)

/
n∑

i=1

(xi − x̄)2 ,

α̂ = ȳ − β̂x̄,

where x̄, ȳ are the means of the xi, yi observations.
Show that the h value corresponding to the last observation (xn, yn) is

h =
1
n

+
(xn − x̄)2∑n
i=1(xi − x̄)2

and hence find expressions for estimates of α and β formed from the data set
diminished by the removal of (xn, yn).

Problem 3.2 Suppose that a clinic has devised a differential diagnostic sys-
tem for two types t = 1, 2 and based on a 1 × c feature vector x on the basis
of a fitted binary normal model

Pr(t = 1|x, β) = 1 − Pr(t = 2|x, β) = Φ(xβT ).

Suppose further that the referred patients have feature vectors which follow
a N c(µ,Ω) distribution. Show that the clinic will diagnose a proportion

Φ

⎧⎨
⎩ µβT

(1 + βΩβT )
1
2

⎫⎬
⎭

of referred patients as of type 1.
Suppose that an alternative system based on a binary logistic model with

Pr(t = 1|x, γ) = 1 − Pr(t = 2|x, γ) = Ψ(xγT )

is used. Find an approximation to the proportion of referred patients diagnosed
as of type 1.

Problem 3.3 Identify some of the hypotheses of interest for problems 1.1,
1.3, 1.4, 1.5 and construct appropriate lattices for the investigation of these
hypotheses.

Problem 3.4 In assessing the infectivity of a patient a clinic has decided
that the variability of the total count of bacteria in 100 blood cells is well
described by a Poisson distribution with probability function

p(y|θ) = exp(−θ)θy/y! (y = 0, 1, 2, . . .).
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On the assumption that a Bayesian posterior distribution for θ of Ga(α, β)
form has been obtained from a set of selected patients what predictive form
for a patient count y would you suggest?

Problem 3.5 A clinic with large experience of the relationship of how a
measurement y varies with age x has decided that a reasonable predictive
conditional density function for the dependence of y on x is of lognormal form
Λ(α+βx, σ2). On the assumption that only large measurements are regarded
as atypical what atypicality index would you assign to a patient aged xR with
measurement yR ?

Problem 3.6 A study of the effects of a treatment for patients with a certain
history of blood pressure problems has been carried out. Recorded below are
the initial systolic and diastolic blood pressures in mm Hg of 15 patients in
the study and their corresponding blood pressures at the end of treatment.

Before treatment After treatment
Systolic Diastolic Systolic Diastolic

166 109 143 103
153 111 139 105
171 111 160 105
173 111 161 93
159 97 138 86
182 119 151 110
182 104 154 103
170 116 144 109
173 126 155 110
172 105 136 95
168 116 141 110
177 124 161 125
164 93 148 79
192 108 175 92
169 114 148 104

Compute the extrapolation indices of the patients in the study by the leave-
one-out method.

Would you regard it as reasonable to predict the effect of this treatment for
the following two patients with blood pressures as follows?

Patient Systolic Diastolic

1 160 120
2 185 95

Problem 3.7 In a study of the value of a diagnostic test result x for the
differential diagnosis of two types t = 1, 2 a clinic has arrived at a logistic
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regression model

Pr(t = 1|x, α, β) = 1 − Pr(t = 2|x, α, β) =
exp(α+ βx)

1 + exp(α+ βx)
,

with information about α, β contained in a posterior normal distribution with
mean vector (1.5,−0.2) and covariance matrix[

0.12 −0.05
−0.05 0.20

]
.

Sketch the reliability curves associated with the use of this system for patients
with test results x = 0.1, 2.0, 5.0, respectively.

Problem 3.8 The following two data sets consist of two different test results
(in standard units) on each of 20 normal patients. Draw the Q-Q plots for
each of these data sets and comment on the possible nature of the underlying
distributions.

Test 1 Test 2

99 702
73 1100

118 914
112 88
87 326
86 545
82 62

123 251
94 463
96 49
69 71

108 471
166 199
107 357
65 895

106 341
65 85

104 458
59 167

118 82
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CHAPTER 4

Further Statistical Methodology

4.1 Introduction

We consider in this chapter some statistical methods that are a little more
specialised. In Section 4.2 we present a discussion of regression analysis when
the response vector is compositional in nature and describe a methodology
for modelling such data. Following up on the material on binary logistic re-
gression contained in Chapter 3, we then consider in Section 4.3 a Bayesian
solution which overcomes the problem of complete separation. In Section 4.4
we discuss the challenge of statistical diagnosis when the types are naturally
tree-structured. In our applications we have used mixed-effects models, which
are briefly introduced in Section 4.5, and also Gibbs sampling, which is dis-
cussed in Section 4.6. Biplots often provide a useful summary of multivariate
data and we discuss them in Section 4.7 in the contexts of unconstrained
and compositional multivariate data. Finally in Section 4.8 we consider some
kernel methods which are useful in non-parametric modelling.

4.2 Compositional regression analysis

4.2.1 The nature of compositional data

Compositional data consisting of vectors of positive components summing to
unity, usually as proportions of some whole, arise in clinical medicine. For
example the compositions of renal calculi may be set out as the proportions
of occurrence of four different types of stone: calcium, struvite, uric acid or
cystine. A less obvious example is in differential diagnostic assessments, where
the available unit of probability is distributed among the set of mutually ex-
clusive and exhaustive categories of disease. Such compositional data can be
set out in a compositional data matrix Z = [zni] with zni the ith component
of the nth D-part composition. The typical vector (z1, . . . , zD) of such a D-
part composition has components zi (i = 1, . . . , D) subject to the unit-sum
constraint z1 + · · · + zD = 1. This unit-sum constraint reduces the effective
dimension of D-part compositions to d = D − 1, and an appropriate sample
space for the study of compositions is then the d-dimensional unit simplex
Sd. There is now an extensive literature demonstrating the folly of applying
standard statistical methodology such as product-moment correlation, which
was designed for the analysis of unconstrained multivariate data, to such con-
strained vectors either by ignoring the constraint or by dropping out one of
the components.

77
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Particularly important in the study of compositions is the concept of a sub-
composition, the counterpart of a marginal distribution in unconstrained mul-
tivariate analysis, and a requirement that any form of analysis must possess
subcompositional coherence. This is best considered in terms of two scientists
A and B, with A able to record all the D parts of the composition and so arrive
at the full composition (z1, . . . , zD), whereas B is aware of, or can record, only
some of the parts, say 1, . . . , C, and so arrives at the (1, . . . , C)-subcomposition
(s1, . . . , sc) = (z1, . . . , zc)/(z1 + · · · + zc).

The requirement of subcompositional coherence is then simply that any
inference which scientist A makes about the parts 1, . . . , C from the full com-
positions should coincide with the corresponding inference made about these
parts by scientist B from the subcompositions. Simplistic ideas such as the
product-moment correlation between raw components do not have this neces-
sary subcompositional coherence. A simple illustrative example shows the folly
of the use of product-moment correlation of the crude components, namely
corr(z1, z2) for A and corr(s1, s2) for B, as a means of communication. For
example, for the 4-part compositions

(0.1, 0.2, 0.1, 0.6), (0.2, 0.1, 0.1, 0.6), (0.3, 0.3, 0.2, 0.2)

and the 3-part subcompositions formed from parts 1, 2, 3, namely

(.25, .50, .25), (.50, 0.25, 0.25), (0.375, 0.375, 0.25),

we have corr(z1, z2) = 0.5 and corr(s1, s2)= −1.

4.2.2 Covariance structures for compositions

Our knowledge that any meaningful function of a composition must be ex-
pressible in terms of ratios of components and the obvious fact that ratios are
unaltered in the process of forming subcompositions (si/sj = zi/zj) leads us
inevitably to consideration of some form of covariance structure for compo-
sitions based upon ratios of components. We reiterate here that subcomposi-
tions play a central role in compositional data analysis, replacing the concept
of marginals in unconstrained multivariate data analysis.

Recognition that the study of compositions is concerned with relative and
not absolute magnitudes of the components has led to the advocacy of forms of
analysis which involve logarithms of the ratios of components. Note that such
a form of analysis meets the demands of subcompositional coherence, since ra-
tios and, a fortiori, logratios of components are invariant under the operation
of forming a subcomposition. There are three equivalent definitions of compo-
sitional covariance structure, the advantage of any particular form depending
on the nature of the application. For a D-part composition (z1, . . . , zD) these
are defined as the set of relative variances

τjk = var{log(zj/zk)} (j = 1, . . . , D − 1; k = j, . . . ,D), (4.1)
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the logratio covariance matrix Σ = [σjk] with

σjk = cov{log(zj/zD), log(zk/zD)} (j, k = 1, . . . , D − 1) (4.2)

and the centred logratio covariance matrix Γ = [γjk] with

γjk = cov{log(zj/g(z)), log(zk/g(z))} (j, k = 1, . . . , D), (4.3)

where g(z) is the geometric mean of the components of z.
Note that in terms of the logratio vector

y = {log(z1/zD), . . . , log(zD−1/zD)}
the covariance structure is being defined in terms of the covariance matrix of
y with typical elements σjk. The relationship of the τjk to the basic logratio
variances σjk is simply obtained as τjk = σjj + σkk − 2σjk.

There appears to be some reluctance to change from the bad habits and
meaningless consequences of ignoring the special nature of compositional data.
In the unconstrained world the concept of product-moment correlation is so
ingrained into statistical argument as a useful and straightforward tool for
the description of dependence that it is difficult to conceive of other ways
of describing dependence. For example, within logratio analysis the simplest
construct of two components is the logratio variance τjk = var{log(zj/zk)}
and this can range over all non-negative values. The value zero, in which case
zj and zk are in constant proportion, replaces the concept of ‘perfect positive
correlation’ whereas large values, corresponding to the components departing
substantially from constant proportionality, replace the concept of ‘negative
correlation’.

Despite the fact that the simplest of these covariance structure specifica-
tions, the set of relative variances, involves consideration of just two compo-
nents at a time, the unfamiliarity of the concept of a covariance structure
being defined by a set of variances and the additional complexity in the other
forms seem to act as deterrents to potential users of the logratio methodology.
Moreover, although it is obvious that any question concerning compositions
must be expressible in terms of ratios, and hence of logratios, there seems
to be misunderstanding as to the nature of logratio transformations in the
statistical analysis of compositional data. It is therefore of some importance
to attempt to provide insights into the nature of compositional data by as
simple means as possible. We shall see in Section 5.5.2 that compositional
biplots often provide such insights.

If we wish for a compositional data set something equivalent to the mean
vector and the covariance matrix for a data set of unconstrained vectors then
we can do no better than set out in a D×D variation array the obvious sample
estimates of E{log(zj/zk)} below the diagonal and the sample estimates of
var{log(zj/zk)} above the leading diagonal of the array.

© 2004 by Taylor & Francis Group, LLC

  



80 FURTHER STATISTICAL METHODOLOGY

4.2.3 Parametric classes of distributions on the simplex

The well-known Dirichlet class of distributions on the simplex with typical
density function proportional to

zα1−1
1 · · · zαD−1

D

is incapable of describing the vast majority of situations of compositional vari-
ability. The main reason for this is that the Dirichlet distribution has the max-
imum degree of independence available to compositions. For example, every
subcomposition is independent of any other non-overlapping subcomposition.
To describe real variability, and to allow the investigation of hypotheses of in-
dependence, some parametric class richer in dependence structure is required.
An answer to this is to be found in the old idea of inducing a distribution (for
example, the lognormal distribution) on an awkward space (the positive real
line) from one (the normal distribution) on a more familiar space (the real
line) by way of transformations (the exponential and logarithmic) between
the two spaces. Our situation with awkward space Sd and familiar space Rd

and its multivariate normal class is hardly more difficult than this early use
of the transformation technique. Probably the simplest transformation from
y ∈ Rd to z ∈ Sd is the ‘additive’ logistic transformation z = alg(y), defined
by

zj = exp(yj)/{exp(y1) + · · · + exp(yd) + 1} (j = 1, . . . , d),
zD = 1/{exp(y1) + · · · + exp(yd) + 1} (4.4)

with inverse transformation from Sd to Rd given by the logratio transforma-
tion y = alr(z), defined by

yj = log(zj/zD) (j = 1, . . . , d). (4.5)

There are, of course, many other possible such transformations which may
be of relevance to certain aspects of compositional data analysis but we shall
confine attention here to the simple version above.

We provide a formal definition of the logistic-normal parametric class of
distributions on the simplex

Sd = {(z1, . . . , zD) : zi > 0 (i = 1, . . . , D), z1 + · · · + zD = 1}.

Definition 4.1 AD-part composition z is said to be distributed with logistic-
normal form Ld(µ,Σ) if

y = alr(z) = {log(z1/zD), . . . , log(zd/zD)}
is distributed as Nd(µ,Σ) over Rd. The corresponding density function p(z)
is

1

(2π)d/2

(
D∏

i=1

zi

)
|Σ| 12

exp[− 1
2{alr(z) − µ}Σ−1{alr(z) − µ}T ] (z ∈ Sd).
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4.2.4 A methodology for compositional data analysis

The above discussion suggests a simple methodology for compositional data
analysis: transform each composition (z1, . . . , zD) to its logratio vector

y = {log(z1/zD), . . . , log(zd/zD)}
and, after reformulating your problem about compositions in terms of the
corresponding logratio vectors, apply the appropriate, standard multivariate
procedures to the logratio vectors.

Since any meaningful function of a composition must always be expressible
in terms of ratios, and therefore logratios, of components, the required refor-
mulation can always be achieved. The fact that the final component is used as
divisor raises the question of whether the choice of another divisor might lead
to a different conclusion. It can readily be established that standard multi-
variate statistical procedures are invariant under the group of permutations of
the parts 1, . . . , D of the composition, in particular with respect to a common
divisor zj different from zD.

4.2.5 Assessment of conditional distributions for the compositional
regression model

As we have seen above an appropriate form of analysis of compositional data
is to use the transformation from D-part composition (z1, . . . , zD) to logratio
vector y = alr(z) and then apply standard multivariate regression analysis to
the set of logratio vectors. In particular, the method considered in Property
3.10 of assessing conditional distributions applies straightforwardly.

4.3 The complete separation problem

We present a Bayesian solution to the complete separation problem. The stan-
dard binary regression model seeks to explain the variability of a binary re-
sponse y, labelled 1 or 2, in terms of some covariate, a 1× c vector x, through
the use of the conditional linear model

Pr(y = 1|x, β) = 1 − Pr(y = 2|x, b) = F (xβT ), (4.6)

where β is a 1 × c parameter and F is a cumulative distribution function,
commonly taken to be either the standard normal distribution function Φ or
the logistic distribution function Ψ defined by Ψ(t) = exp(t)/(1+ exp(t)). We
allow the possibility of a constant in the linear predictor xβT by adopting
the usual convention that the first element of the covariate vector x is 1.
Occasionally we shall use z = (z1, . . . , zc−1) to denote the true covariate, so
that x = (1, z). When, for the data set D = {(xi, yi) : i = 1, . . . , n} available
for fitting the model, there exists a value of β, say βs, such that xiβ

T
s is

positive for all i for which yi = 1 and negative for all i for which yi = 2 there
is complete separation in the covariate space of the sets of covariate vectors
associated with the two responses. The method of maximum likelihood then
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produces estimates which are infinite. This is readily seen from the form of
the likelihood function

L(β|D) =
∏

{i:yi=1}
F (xiβ

T )
∏

{i:yi=2}
{1 − F (xiβ

T )}

=
∏

{i:yi=1}
F (xiβ

T )
∏

{i:yi=2}
F (−xiβ

T ). (4.7)

Since the arguments of the function F associated with βs are positive in both
products it follows that L(kβs|D) is monotonic increasing in k and so the
maximum likelihood estimates are infinite with maximized likelihood equal
to 1. Any new cases would then be assigned to one of the categories with
certainty. While this may be reasonable for large data sets with complete sep-
aration the phenomenon often arises where the data set is modest in relation
to the dimension c of the covariate vector. For such situations common sense
dictates that there can be no certainty in the allocation of new cases and so
it is clear that there is a serious breakdown of maximum likelihood estima-
tion. The explosive nature of maximum likelihood can indeed occur when the
configuration in the covariate space is nearly separate, though not completely
separate in the sense described above. We shall see practical examples of this
in our applications in Sections 8.5 and 9.7. Such a breakdown is, of course,
not unique. Other cases have been reported, notably in estimation problems
where there is a range parameter in the underlying distribution, as with the
three-parameter lognormal distribution, where the absolute maximum of the
likelihood function is shown not to be at the local maximum but at a point at
infinity. For this lognormal estimation problem the situation was resolved by
the introduction of a vague prior on the parameters which essentially forces the
maximum likelihood estimate back to its local maximum position. A similar
feature arises with maximum likelihood estimation of the skewness parame-
ters of the recently introduced multivariate skew normal class where, for data
sets with substantial skewness, maximum likelihood tries to push the skew-
ness estimates above the range of possibility of the skew normal class. For the
complete separation problem of binary regression there is no local maximum
but we shall argue that the covariate information in the sample provides an
appropriate prior distribution for the parameter β which not only prevents the
complete separation explosion but which seems to provide categorical proba-
bility assessments which match those based on maximum likelihood estimates
even in the case of no separation.

4.3.1 Construction of a fair prior

The controlling effect of introducing a prior density function for the param-
eter vector β is readily seen. Any sensible p(β) will be such that p(β) de-
creases monotonically towards 0 as |β| → ∞. Moreover the likelihood L(β|D)
is bounded above by 1. If then we consider use of the posterior mode, the β
which maximizes L(β|D)p(β) cannot be infinite. The question of what con-
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stitutes a sensible p(β) is readily addressed. Clearly the information in the
covariate vectors may, indeed must, be used since, for example, any change
in the scale of the measurements would clearly affect the scale of the com-
ponents of β. Since binary regression is concerned with the modelling of the
conditional distribution of the binary response y for given covariate vector x,
the use of the covariate information in no way involves an implicit double use
of the data. We assume that the selection process for the cases in the data set
D has been on the basis of information, possibly including the covariate but
not involving the type or category. This, of course, is the reason for favouring
the binary regression model in the analysis, in our case describing the vari-
ability of y conditional on x. For simplicity of argument we suppose at this
stage that the numbers of responses 1 and 2 in our sample of n are n1 and
n2 with n1 = n2, It is well known that the differences between the use of the
normal distribution function Φ and the logistic distribution function Ψ are
seldom of any practical significance. Indeed each is well approximated by the
other through the relationship

Φ(t) = Ψ(0.59t), (4.8)

as discussed in Section 3.6.1. Here we will concentrate on the normal version
because it offers a more tractable argument. For convenience we set out the
arguments for our fair prior in numerical sequence.

1. For reasons of tractability we consider it reasonable to adopt a c-dimensional
normal distribution, say N c(b,B), for the prior density function.

2. The use of the prior density function p(β) with the model p(y|x, β) implies
a prior diagnostic assessment

p(y|x) =
∫
p(y|x, β)p(β)dβ = Φ

{
xbT

(1 + xBxT )
1
2

}
(4.9)

for every covariate vector x. Since we have no prior information on response
associated with specific x this, as an expression of ignorance, should lead
to a-priori odds 1 for every x. Obviously b = 0 is a necessary and sufficient
condition for this expression of prior ignorance. We recall here that with
the assumption that n1 = n2 we are effectively assuming an incidence rate
p(y = 1) = p(y = 2) = 1/2.

3. As already mentioned binary regression is concerned with modelling the
conditional distribution of y given x. With this in mind we see that as
long as we do not connect specific responses with specific covariates we
are acting fairly in the use of the existing data. Suppose that we retain
the order of the cases in the response vector y but consider assigning the
rows of the n × c covariate matrix by a random permutation P to the
responses y. Then we create a permuted data set DP = (PX, y). Because
of this random permutation there is little chance that there is now complete
separation, so that we should be able to obtain the maximum likelihood
estimate, say βP , for β from the data set DP . By generating a series of
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random permutations of X we should then have a series of ‘estimates’ of β
in the spirit of resampling techniques, and so be able to obtain a suitable
prior distribution.

4. The substantial amount of computation inherent in such a resampling
method is, however, unnecessary since we can discover the nature of such
a prior distribution by simple analysis. From standard binary regression
theory we know that the estimated covariance matrix of the estimator β̂
is cov(β̂) = {(PX)W (PX)T }−1, where W is a diagonal matrix whose ele-
ments are ‘weights’ associated with the different rows of X. Since, however,
we have no reason for supposing these weights to vary in any specific way
it seems quite reasonable to assume equality, in which case the covariance
matrix takes the form k(XXT )−1 since P , being a permutation matrix, is
orthogonal. Thus we are led to the conclusion that a fair prior distribution
for β takes the form N c{0, k(XXT )−1}.

5. The remaining task is to determine k in such a way as to express prior
vagueness about the nature of the conditional distribution of response for
given covariate. The implication of the adoption of the prior density func-
tion p(β) for diagnostic assessments can be analyzed at a deeper level than
in item (2) above. The type 1 response probability

px(β) = Pr(y = 1|x, β) = Φ(xβT ) (4.10)

as a function of β is a random variable with a distribution induced by that
of β. The requirement of item (2) above can then be interpreted as the
limited constraint that, for every x, Eβpx(β) = 1/2. We can ask the more
detailed question of what requirement should be placed on the induced
distribution of px(β) to express prior vagueness. For given x we can obtain
the distribution function of px as

Pr(px ≤ t) = Pr{xβT ≤ Φ−1(t)} = Φ{Φ−1(t)/(hxk)−
1
2 } (4.11)

and consequently its density function as

(hxk)−
1
2φ{Φ−1(t)/(hxk)−

1
2 }/φ{Φ−1(t)}, (4.12)

where hx is the well known ‘hat’ value x(XTX)−1xT corresponding to
the covariate row vector x. The distribution thus depends only on the
combination hxk and the density function can readily be graphed for any
such combination. In Bayesian analysis, expression of increasing vagueness
about a binomial probability such as px varies from the uniform distribu-
tion through beta density functions such as ta−1(1−t)b−1 to improper prior
density functions proportional to t−1(1 − t)−1. The question then arises:
is it possible to choose k so that, whatever the covariate vector x may be,
the prior distribution of β is never less vague than the uniform distribu-
tion? This can readily be achieved. First note from density function (4.12)
that the uniform distribution corresponds to the case hxk = 1. Moreover
the more that hxk exceeds 1 the more the density function approaches the
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vaguer U-shaped density functions. We also know that for every covariate
vector x in the covariate matrix X there are lower and upper bounds on
the value of hx, namely 1/n and 1. Thus if we take k = n we can en-
sure that hxk ≥ 1 for every covariate vector x in the data matrix X and
that the prior distribution on β is inducing extremely vague information
on px. Thus the fair prior distribution that we recommend for β is of form
N c(0, n(XXT )−1). There is an intuitive appeal in this form of prior, most
simply recognized if we make a reparametrizing transformation from β to
γ implied by working with a centred form of the linear predictor

xβT = β0+β1z1+· · ·+βc−1zc−1 = γ0+γ1(z1− z̄1)+· · ·+γc−1(zc−1− z̄c−1),

where z̄i is the mean of the ith covariate in the sample. The prior distribu-
tion on γ induced by the prior on β is easily derived as N c(0, C), where

C =
[

1 0
0 S−1

]

and S is the estimated covariance matrix of the set of all true covariate
vectors. A new feature here is that the prior distribution of γ0 is indepen-
dent of the prior distribution of (γ1, . . . , γc−1). This is sensible since it is
well known that the primary role of γ0 is the determination of the inci-
dence rate. We note that at the mean covariate position the model assigns
probability Φ(γ0) to response 1 and 1 − Φ(γ0) to response 2, so that the
N(0, 1) prior on γ0 allows a wide enough range of incidence rates for prac-
tical purposes. The role of S−1 is also appealing. If, for example, we change
the scale of the covariates, for example from gm to kg, that is by a factor
of 1000, we would expect the vector β to decrease by a factor 1/1000. The
variance of the prior, based on S−1, would exactly reflect this rescaling.

4.4 Diagnosis with tree-structured types

We now take up the challenge of producing a diagnostic system in cases where
the types are tree-structured. The motivating example for this analysis is
given by the Cushing syndrome study, described in Section 1.10, which will
be analysed later in Section 9.7. We discuss only the case of a binary tree;
more general versions of the theory for cases in which there are branches into
more than two nodes and/or when the types represented by these nodes are
ordinal rather than nominal can be easily constructed. Consider the tree in
Figure 4.1. Each terminal node in the tree corresponds to one of the types.
Terminal nodes are denoted by squares, whereas a circle indicates a branch
node. A terminal node at level m has m− 1 predecessor branch nodes in the
tree. The total number of branch nodes is equal to k−1, where k is the number
of types. Let the parameter vector βs be associated with the sth branch node
and suppose that v represents a vector of values of explanatory variables,
including a 1 to accommodate an intercept term, obtained from an individual
patient. Suppose also that F is a cumulative distribution function, which in
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Level 1

Level 2

Level 3

Level 4

Level 5

B1

B2

T2 T3 T4 B5

T5 T6

B4B3

T2

T1

Figure 4.1 An illustration of tree-structured types with six types represented by the
six terminal nodes T1-T6 and 5 branch nodes B1-B5.

special cases could be the logistic or normal. Without loss of generality we take
the probability associated with a left branch at node s to be Fs ≡ F (v;βs)
and that of a right branch 1 − Fs; in particular, Fs might take the special
form F (vβT

s ). At the sth node let zs be a binary variable which takes the
value 1 for a left-branch and 0 otherwise. We may write a general formula for
the unconditional probability that an individual belongs to type t as

lt−1∏
i=1

F
zsit
sit (1 − Fsit

)1−zsit (4.13)

where lt denotes the level of the tree containing the terminal node for type
t and sit is the branch predecessor node for type t at level i in the tree. For
example, in the illustrative tree in Figure 4.1 terminal node T4 has predecessor
nodes 1,2 and 4 on levels 1,2 and 3, respectively. Thus s14 = 1, s24 = 2, s34 = 4
and z1 = 0, z2 = 0, z4 = 1. Hence the unconditional probability associated
with terminal node T4 is

[1 − F (v;β1)][1 − F (v;β2)]F (v;β4).

Now suppose that there are nt training cases of the tth type, with vrt

denoting the rth training case of type t. Then using (4.13) we may write the
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likelihood function of β = (β1, β2, . . . , βk−1) as

k∏
t=1

nt∏
r=1

lt−1∏
i=1

F (vrt;βsit
)zsit [1 − F (vrt;βsit

)]1−zsit . (4.14)

Clearly, this likelihood function factorises into a product of k − 1 terms with
each of them involving the beta parameter at each branch node. If we also
assume that a priori the βs are independent then it follows that the posterior
distribution of β given the data will also factorise into a product of k−1 terms,
one for each branch node. This has the advantage that the estimation pro-
cess splits into separate processes for each branch node and so the unknown
parameters associated with the different branch nodes can be estimated si-
multaneously, in parallel. It is perhaps simplest to grasp what is involved by
using a simple example, and we consider the illustrative tree in Figure 4.1.
There are six terminal nodes and five branch nodes. The likelihood (4.14) may
then be written as a product of the following five terms.

Node 1
n1∏

r=1
F (vr1;β1) ×

6∏
t=2

nt∏
r=1

[1 − F (vrt;β1)]

Node 2
∏

t=2,3

∏nt

r=1 F (vrt;β2) × ∏
t=4,5,6

nt∏
r=1

[1 − F (vrt;β2)]

Node 3
n2∏

r=1
F (vr2;β3) ×

n3∏
r=1

[1 − F (vr3;β3)]

Node 4
n4∏

r=1
F (vr4;β4) × ∏

t=5,6

nt∏
r=1

[1 − F (vrt;β4)]

Node 5
n5∏

r=1
F (vr5;β5) ×

n6∏
r=1

[1 − F (vrt;β6)]

(4.15)

Examination of the terms in (4.15) shows that the analysis uncouples into
five separate problems which can be tackled in parallel using, say, logistic
regression. At node 1 we compute the probability that an individual is of type
1 against the alternative that he is one of types 2-6 using the training data for
type 1 and the combined training data for types 2-6. At node 2, we divide the
training data for types 2-6 into distinct sets for types 2-3 and 4-6, respectively,
and compute the probability that an individual is either of type 2 or type 3
against the alternative that he is of types 4, 5 or 6, and similarly for the other
nodes. The conditional diagnostic probability at node s that an individual
patient with feature vector v is of type t is obtained from

Pr(u = t|x,D) =
∫
F (v;β2)p(βs|Ds)dβs, (4.16)

where Ds denotes the training data relevant for the sth branch node. The
uncoupling of the diagnostic problem into separate problems leads to the easy
computation of the diagnostic probabilities for a new patient at each node in
the tree and thus a diagnostic probability tree can be easily constructed for a
new patient. The solution presented here could also have advantages in terms
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of feature selection. It could be that different subsets of the available features
might be most relevant as discriminators at different nodes in the tree and
this could be useful. This method developed here will be illustrated in the
context of Cushing’s syndrome in Section 9.7.

4.5 Mixed-effects models

In a few of the applications in Chapters 6 and 7 we make use of linear and non-
linear mixed effects models. Given data from a univariate response together
with p explanatory variables on n cases we may write a linear mixed-effects
model in the form

y = XφT + ZrT + e, (4.17)

where y = (y1, . . . , yn) is a n × 1 vector, φ is a 1 × (p + 1) vector containing
the fixed effects, X is a n× (p+ 1) matrix containing a column of 1s and the
values of the explanatory variables, r is a 1 × q vector of random effects, Z
is a n × q matrix of constants and e is a n × 1 vector of random errors. We
assume that the random vectors r and e are independent with r ∼ N(0,Σr)
and e ∼ N(0,Σ). The covariance matrices Σr and Σ contain unknown fixed
parameters, including variance components and covariances between random
effects, collected together in the parameter θ. In cases where there are different
independent sets of random effects the term ZrT in (4.17) may be written as
a sum of vectors, for example

ZrT = Z1r
T
1 + Z2r

T
2 + Z3r

T
3

in the case of three sets of independent random effects.
From (4.17) and the above assumptions we have that the marginal distri-

bution of y is
N(XφT ,Σ + ZΣrZ

T )

and so the log-likelihood of the parameters (φ, θ) is

l(φ, θ) = −1
2n log(2π) − 1

2 log |V | − 1
2 (y −XφT )TV −1(y −XφT ), (4.18)

where V = Σ+ZΣrZ
T . It follows from (4.18) by taking the partial derivative

of (4.18) with respect to φ for fixed θ that the estimate φ̂ of φ is the solution
of

φ(XTV −1XT ) = yV −1XT . (4.19)

Substituting (4.19) into (4.18) we obtain the profile loglikelihood function for
θ as

lP (θ) = −1
2n log(2π) − 1

2 log |V | − 1
2 (y −Xφ̂T )TV −1(y −Xφ̂T ). (4.20)

The maximum likelihood estimates of φ and θ may be obtained by first
maximising (4.20) with respect to θ and then substituting the answer into
(4.19). Usually the solution process requires iterative methods. An alternative
method for the estimation of the components of θ is to use restricted maxi-
mum likelihood estimates (REML) based on the profile restricted loglikelihood
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lR(θ), which is

−1
2 (n−p−1) log(2π)−1

2 log |V |− 1
2 log |XTV −1X|− 1

2 (y−Xφ̂T )TV −1(y−Xφ̂T ),
(4.21)

rather than (4.20). An advantage of the REML estimation is that that un-
biased estimates of variance components can be obtained as opposed to the
biased maximum likelihood estimates.

It is also possible to fit non-linear mixed-effects models and we will consider
an example of this in Section 7.6. Given data on a univariate response and a
single explanatory variable this type of model may be written as

yi = g(xi;φ+ r) + ei, (4.22)

where g is a non-linear function, the vector φ contains fixed effects, the vector
r contains random effects and the random errors are mutually independent
N(0, σ2) random variables and independent of the components of r, with
r ∼ N(0,Σr). The estimates of the fixed effects and the unknown parameters
in V are obtained using iterative methods. In our applications we have used
the package nlme, written by Pinheiro and Bates (2000), to fit these models.

4.6 Gibbs sampling

In many of the applications considered in Chapters 7–10 we will adopt a
Bayesian approach and perform the computation using Gibbs sampling in the
package WinBUGS. These applications involve two main types of computa-
tion, namely (a) the computation of the posterior expectation of some smooth
function g(Z) of the parameters or variables Z = (Z1, Z2, . . . , Zm) given data
D and (b) the estimation of the posterior distribution of Z itself, from which
highest posterior density intervals can be derived for the components of Z.
If it were possible to sample independent realisations of Z from the posterior
distribution p(Z|D) then the posterior expectation of g(Z) could be calculated
as

E{g(Z)|D} =
1
N

N∑
t=1

g(Z(t)), (4.23)

where Z(t) denotes the tth of the N realisations of Z. As N → ∞ this empirical
average converges to the required posterior expectation by the strong law of
large numbers. However, in many important examples it is not possible to gen-
erate independent realisations from p(Z|D) and recourse is made to Markov
chain Monte Carlo (MCMC) methods. The basic idea of an MCMC method
is to generate realisations from a Markov chain whose stationary distribution
is p(Z). While these realisations are no longer independent it is known under
mild regularity conditions that, as t→ ∞, Z(t) converges in distribution to Z,
where Z ∼ p(Z), and the empirical average in (4.23) converges almost surely
to the theoretical posterior expectation.

We wish to generate a sequence of m-vectors Z(t) = (Z(t)
1 , Z

(t)
2 , . . . , Z

(t)
m ).

Given a starting vector Z(0), and using a single-node updating procedure,
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at each iteration a realisation of each of the components of Z is generated
from the full conditional distribution of that component given all the other
components in Z. For example, a realisation of the ith component Zi is gen-
erated from the conditional distribution p(Zi|Z−i), where Z−i denotes the
components of Z other than the ith one evaluated at their current values – an
asynchronous updating procedure. The iterations proceed until the chain is in
equilibrium and then computation of the required quantities is based on some
further iterations; just how many iterations are required to reach equilibrium
and for the estimation of the quantities of interest depends on the particular
application, and in practice this is a matter of judgement.

The results of the initial iterations are discarded as ‘burn-in’– at least 500
iterations and often more. Then a sequence of iterations is used to assess
whether convergence to the stationary distribution has been attained. Much
useful information is available by examining trace plots of the values of the
quantities of interest as well as autocorrelation plots. Convergence may be as-
sessed by running several chains in parallel, each from a different starting
point, and then computing the Brooks-Gelman-Rubin (BGR) convergence
statistics. Suppose that c chains are run in parallel and that we are inter-
ested in producing a 100(1 − α)% highest posterior density interval for Zi

computed from the empirical 100(α/2) and 100(1 − α/2) percentiles of the
values of Zi. We may monitor the width of this interval in two ways as the
post-burn-in iterations proceed. First, we could pool all the values of Zi over
all c chains, form the interval and then compute its width, denoted by Rp.
Secondly, we could compute the width of the interval separately from each of
the c chains and then form the mean of these widths, denoted by Rw. Then
the main BGR convergence statistic is the ratio R = Rp/Rw of these widths.
As the chains converge to their stationary distributions the statistics Rp and
Rw will converge to stable values and R will converge to 1. If these checks are
satisfied then it is reasonable to consider the chains to have converged and es-
timates of the quantities of interest can be based on a further set of iterations.
The number of such iterations required depends on the autocorrelation in the
successive values of Zi. A simple rule-of-thumb suggested in the WinBUGS
manual is that sampling be continued until the Monte Carlo error is within
5% of the standard deviation of the values of the node being monitored and
this convention has been adopted in the applications we consider.

We consider the aldosterone data of data set aldo, which is discussed in
Section 7.2, and use the regression analysis of the RIA value of the concentra-
tion of aldosterone on the DI value as a simple illustrative example of Gibbs
sampling and the use of WinBUGS. We will also estimate the mean RIA con-
centration when the DI concentration is 40 mg/100ml. Assuming a normal
linear regression model for the data, we have for i = 1, . . . , 72

vi ∼ N(α+ β(ui − ū), σ2).

Note that in this model the DI values have been mean-centred in order to
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Figure 4.2 Representation of the aldosterone model as a directed acyclic graph.

improve the convergence of the iterations. There are four quantities of interest,
namely the parameters α, β, σ and µ = α+ β(40 − ū).

model
{
mean <- mean(u[])
for(i in 1:N)
{
v[i] ~ dnorm(m[i], tau)
m[i] <- alpha + beta*(u[i]-mean)

}
tau <- 1/pow(sigma,2)
alpha ~ dnorm(0, 1.0E-6)
beta ~ dnorm(0,1.0E-6)
sigma ~ dunif(0,1000)

mu <- alpha+beta*(40-mean)
}

The full model assumed for the aldosterone data is represented in Figure 4.2 as
a graphical model in the form of a directed acyclic graph. The graph indicates
the conditional independence structure in the model; for instance, the v[i] are
conditionally independent given α, β and σ. The programme of instructions
required to run this model in WinBUGS is given above. It is quite simple and
follows closely the above model formulation.
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Figure 4.3 Trace plots of five parallel chains from iteration 1,001 to 6,000 for the
parameters α, β, µ and σ in sequence from top to bottom.

We will assume independent ‘non-informative’ priors for the parameters α,
β and σ:

α ∼ N(0, 106), β ∼ N(0, 106), σ ∼ U(0, 1000),

where U denotes the uniform distribution. Initial values for α, β and σ will
be generated randomly from the prior distributions. This is alright in simple
problems but usually, to avoid numerical overflow or very slow convergence,
initial values would be specified. At each iteration the new values of α, β, σ
are generated from the full conditional distributions as follows,

α ∼ p(α|β, σ,D),
β ∼ p(β|α, σ,D),
σ ∼ p(σ|α, β,D).
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Figure 4.4 Plots of the BGR convergence statistics R (in bold), Rp and Rw for the
parameters α (top-left), β (top-right), σ (bottom-left) and µ (bottom-right).

The normal distribution is specified in terms of precision τ (=1/variance)
rather than variance. The nodes v[i], α, β and σ are stochastic nodes and
the τ and µ are logical nodes which define functions of the parameters in the
model.

Five parallel chains were run and the results from the first 1,000 iterations
were discarded as ‘burn-in’. The chains were then run for a further 5,000 itera-
tions in order to monitor convergence. The trace plots are shown in Figure 4.3
and indicate that the chains are stationary and well-mixed. The plots of the
BGR statistics are shown in Figure 4.4. The default 80% intervals were used
and the statistics were computed using the values from non-overlapping bins
of size 50 (the default). For plotting purposes the statistics Rp and Rw were
normalised to have a maximum value of unity. In all four cases the R statistic
appears to be straddling 1 from about iteration 2,000. However, the stability
of the other statistics is parameter-dependent, with σ being stable after about
1,000 iterations, β after 2,000, and µ and α stable after about 4,000 iterations.
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Thus, overall, we would be reasonably safe in assuming that convergence has
been reached after 4,000 iterations.

Table 4.1 WinBUGS output for the aldosterone example

node mean sd MC error 2.5% median 97.5%

α 22.05 0.5482 0.008438 20.99 22.05 23.13
β 0.9154 0.02931 4.234E-4 0.8581 0.9154 0.9739
µ 36.74 0.7189 0.009659 35.3 36.75 38.2
σ 4.63 0.3988 0.006391 3.922 4.604 5.482

Finally, we use the results obtained in a further 5,000 samples, 1,000 from
each chain, to estimate the quantities of interest. The output is presented in
Table 4.1. Note that in each case the Monte Carlo error is smaller than 5%
of the standard deviation of the values of the node. Thus we may read off a
95% highest posterior density interval for each parameter from the 2.5% and
97.5% columns.

4.7 Biplots

4.7.1 Unconstrained multivariate data

The singular value decomposition of a data matrix has proved a very suc-
cessful tool in exploratory analysis of unconstrained multivariate data and
forms the basis of a variety of useful graphical aids to interpretation, such as
principal component plots, biplots and correspondence analysis. The singular
value decomposition property states that any n × d matrix M of rank r can
be expressed as a product

M = Gdiag(s1, . . . , sr)HT ,

where G and H are of orders n× r and d× r, each with orthonormal columns,
and the positive numbers s1, . . . , sr, assumed here to be arranged in descend-
ing order of magnitude, are the singular values.

We start with the simplest situation of unconstrained multivariate data
(vectors in Rd) with no covariate vector involvement. It is standard practice
to centre such data at the mean vector by subtracting from each element of
the n × d data matrix Y its corresponding column average; in matrix terms
we consider the singular value decomposition of

M = {I − (1/n)1T 1}Y,
where 1 is a 1 × n row vector of unit components. The relationship of this
centred data matrix M and the singular value decomposition to aspects of
multivariate statistical analysis of the data matrix Y can be readily estab-
lished. For example, the sample estimate Σ̂ of the covariance matrix Σ is
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given by
(n− 1)Σ̂ = MTM.

From the relation
MTM = Hdiag(s21, . . . , s

2
r)H

T ,

we can identify (n−1)−1s21, . . . , (n−1)−1s2r as the eigenvalues and the columns
of H as the corresponding eigenvectors of a principal component analysis of
the multivariate data. As a dual property we have that

MMT = Gdiag(s21, . . . , s
2
r)G

T ,

and so we can identify the principal coordinates as

MH = Gdiag(s1, . . . , sr).

A further useful result is that the ‘Mahalanobis distances’ of the multivariate
data vectors relative to the mean vector are given by the diagonal elements of

M{MTM/(n− 1)}−1MT = (n− 1)GGT ,

so that the Mahalanobis distance of the ith case is easily obtained from the
sum of squares in the ith row of G.

A hope of the decomposition is that the singular values s1, . . . , sr will de-
crease rapidly so that M will be well approximated by the ath order approx-
imation

M (a) = Gadiag(s1, . . . , sa)HT
a ,

where Ga and Ha are the leading n × a and d × a submatrices of G and H
respectively. The degree of approximation is usually measured in terms of the
Frobenius norm ||M −M (a)|| of the difference between M and Ma, defined by

||M −M (a)||2 =
n∑

i=1

d∑
j=1

(mij −M
(a)
ij )2

and the optimizing property is that, of all matrices of rank at most a, M (a)

is that which minimizes this Frobenius norm with minimum value

||M −M (a)||2 = s2a+1 + · · · + s2r.

As a measure of the quality of the approximation we can thus take the cus-
tomary

(s21 + · · · + s2a)/(s21 + · · · + s2r),
which is the proportion of the total variability of the multivariate data set
retained by M (a) or equivalently the first a principal components.

In order to obtain any useful graphical representation of the compositional
data set we shall have to take a = 2 and in order to state the properties
of the biplot clearly we shall assume that r = 2 so that the relationship
M = G2diag(s1, s2)H2 is exact.

Suppose that with origin O in a two-dimensional diagram we plot the d
points

(s1hj1, s2hj2)/(n− 1)
1
2 (j = 1, . . . , d)
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O

i

j

k

Figure 4.5 Covariance diagram of the biplot showing the origin O and three rays
corresponding to the three variables i, j and k.

and regard these as the vertices j of the biplot for the multivariate data
matrix Y ; see, for example, Figure 4.5. Each vertex then corresponds to a
component of the vector y. We then term −→

Oj a ray of the diagram. It can
then be shown that this diagram, consisting of the set of rays together with
the various angles defined by rays, contains a complete quantitative picture of
the covariance structure of the multivariate data set and can conveniently be
termed the covariance diagram of the biplot. Specifically the representation is
contained in the following property.

Property 4.1 The relation of the diagram to the covariance structure of the
data matrix Y is provided by the following relationships:

|−→Oj|2 = estimate of var(yj),
−→
Oj.

−→
Ok = |Oj||Ok| cos jOk

= estimate of cov(yj , yk),
cos(jOk) = estimate of corr(yj , yk).

A simple corollary is that an acute angle between two rays indicates posi-
tive correlation between the associated components whereas an obtuse angle
indicates negative correlation. When two rays are at right angles then zero
correlation is indicated.

The covariance diagram just described is only one aspect of a biplot, pro-
viding through the singular values s1, s2 and the H2 matrix a view of the
covariance structure of the data set. It provides no information about vari-
ability between the n individual cases which form the rows of Y . We can,
however, introduce points in the diagram for each case which will allow us to
see clearly this variability. To do this we use the ith row of G2 to plot the
point (n− 1)

1
2 (gi1, gi2) as the marker representing the ith case (i = 1, . . . , n),

as in Figure 4.6.
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Figure 4.6 Diagram showing the origin O and eleven markers of a biplot.

Such markers have the following easily established property.

Property 4.2 The centred data matrix may be reconstructed through the
following relationship between the case markers and the rays.

mij = −→
Oi.

−→
Oj.

Thus −→
Oi.

−→
Oj represents the departure of yij from the average of this jth com-

ponent over all the cases. Let Pi denote the projection of the ray Oi on the
possibly extended ray Oj. Then −→

Oi.
−→
Oj = |OPi||Oj|, where the sign is taken to

be positive or negative according to whether angle iOj is acute or obtuse. A
simple interpretation can be obtained as follows. Consider the extended line
Oj as divided into positive and negative parts by the centre O, the positive
part being in the direction of Oj from O. If Pi falls on the positive (nega-
tive) side of this line then the jth component yij of the ith case exceeds (falls
short of) the average value of this component over all cases and the further
Pi is from O the greater is this exceedance (shortfall); if Pi coincides with O
then the jth component coincides with the average. In Figure 4.7 the kth case
clearly has a jth component ykj which falls short of the overall average of this
component.

Pi

Pk
O

k

i

j

Figure 4.7 Projection diagram of the biplot showing the origin O and the projections
of the case markers i and k onto ray Oj. These projections are respectively positive
and negative relative to the origin O.
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Although
|Oi|2 = (n− 1)(g2

i1 + g2
i2)

provides the Mahalanobis distance of the ith case when s3 = · · · = sr = 0 we
have found it as simple and more reliable to indicate possible outliers on the
diagram by using the complete singular value decomposition and the exact
Mahalanobis distance.

With this distance it is extremely simple to compute the atypicality index
of any case. Recall from Section 3.11 that this is roughly the probability that
a future case will be more typical or have a smaller Mahalanobis distance
than the considered feature vector. To avoid resubstitution bias the standard
leave-one-out technique is recommended and the atypicality index of a case
with Mahalanobis distance q computed from the singular value decomposition
for the full data set is, as already seen in Section 3.11,

J

[
qn

(n− 1)2
∣∣ 1

2 (d− 1), 1
2 (n− d)

]
,

where J is the incomplete beta function given in Definition 3.2.

4.7.2 Compositional data

Before we do the required centering for a compositional data matrix X we
require a preliminary transformation to ensure that we are working with
logratio vectors. The simplest way of achieving this and of treating all the
parts of each composition symmetrically is to use as common divisor the geo-
metric mean of the composition components. This centering of both rows and
columns produces a centred logratio data matrix M = [mij ] with

mij = log xij −D−1
D∑

j=1

log xij − n−1
n∑

i=1

log xij + (nD)−1
n∑

i=1

D∑
j=1

log xij

and with all row sums and column sums zero. This zero sum property carries
over to the columns of G and of H in the singular value decomposition of M .

The relationship of this centred logratio data matrix M and the singular
value decomposition to aspects of logratio analysis of the compositional data
set X can be readily established. For example, the sample estimate Γ̂ of the
centred logratio covariance matrix Γ is given by

(n− 1)Γ̂ = MTM.

From the relation
MTM = Hdiag(s21, . . . , s

2
r)H

T

we can again identify (n− 1)−1s21, . . . , (n− 1)−1s2r as the eigenvalues and the
columns of H as the corresponding eigenvectors of a logcontrast principal
component analysis of the compositional data. As a dual property we have
that

MMT = Gdiag(s21, . . . , s
2
r)G

T
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and so we can identify the logcontrast principal coordinates as

MH = Gdiag(s1, . . . , sr).

As for unconstrained multivariate data a further useful result is that the logra-
tio ‘Mahalanobis distances’ of the compositions from the mean logratio vector
are given by the diagonal elements of

M{MTM/(n− 1)}−MT = (n− 1)GGT ,

where A− denotes the Moore-Penrose inverse of A, so that the Mahalanobis
distance of the ith case is easily obtained from the sum of squares in the ith
row of G.

As for unconstrained multivariate data the quality of approximation at-
tained by an ath order approximation, that M will be well approximated by
M (a) = Gadiag(s1, . . . , sr)HT

a , is indicated by

(s21 + · · · + s2a)/(s21 + · · · + s2r),

which is the proportion of the total variability of the compositional data set
retained by M (a) or equivalently the first a principal components.

In order to obtain any useful graphical representation of the compositional
data set we shall have to take a = 2 and in order to state the properties
of the biplot clearly we shall assume that r = 2 so that the relationship
M = G2diag(s1, s2)H2 is exact.

Suppose that with origin O in a two-dimensional diagram we plot the d
points

(s1hj1, s2hj2)/(n− 1)
1
2 (j = 1, . . . , d)

and regard these as the vertices j of the biplot for the compositional data
matrix X. Each vertex then corresponds to a component of the vector x. We
then term Oj a ray of the diagram and the join jk between two vertices a
link.

It can then be shown that the relative variation diagram of Figure 4.8,
consisting of the set of vertices, rays and links, together with the various
angles defined by rays and links, contains a complete quantitative picture of
all the various covariance structures associated with the compositional data set
X. We collect below the main properties of this relative variation diagram.
The proofs of these properties depend simply on the relationships between
the covariance structures and some simple properties of the cosine formula of
elementary trigonometry and so are omitted.

Property 4.3 The origin O is the centroid of the vertices 1,. . ., D.

This consequence of the zero column sum property of H plays a central role
in the use of the relative variation diagram for subcompositional analysis.

Property 4.4 The squared lengths of the links represent the set of estimated
relative variances:

|jk|2 = estimate of var{log(xj/xk)}.
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k

link

j vertex

ray

O centre

ray

vertex

Figure 4.8 Relative variation diagram.

Property 4.5 Links and inter-link angles associated with part D represent
the estimated logratio covariance matrix Σ:

|jD|2 = estimate of var{log(xj/xD)},
−→
jD.

−→
kD = estimate of cov{log(xj/xD), log(xk/xD)}

so that

cos(jDk) = estimate of corr{log(xj/xD), log(xk/xD)}.
Property 4.6 Rays and inter-ray angles represent the centred logratio co-
variance matrix Γ:

|Oj|2 = estimate of var{log(xj/g(x))},
−→
Oj.

−→
Ok = estimate of cov{log(xj/g(x)), log(xk/g(x))}

so that

cos(jOk) = estimate of corr{log(xj/g(x)), log(xk/g(x))}.
A generalization of Property 4.6 involving four parts j, k, l,m is easily estab-

lished and proves extremely useful in the exploration of independence prop-
erties of compositional data sets.

Property 4.7 If the links jk and lm intersect at P then

cos (jP l) = estimate of corr{log(xj/xk), log(xl/xm)}.
Property 4.8 The measure of total compositional variability provided by the
relative variation diagram can be expressed in terms of the lengths of either
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rays or links, as

(s21 + s22)/(n− 1) =
D∑

j=1

|Oj|2 = D−1
∑
j<k

|jk|2.

Based on these properties we can now examine a number of aspects of the in-
terpretation of relative variation diagrams so that their exploratory strengths
may make more impact. Moreover we shall not bore the reader with pointing
out obvious features such as the more expansive the diagram the more vari-
able the compositional data set, but concentrate on four main ways in which
interpretation differs from similar diagrams for unconstrained data sets.

4.7.3 Coincident vertices and proportionality

When two vertices j and k coincide or are close together then their link jk
and, from Property 4.4, τjk = estimate of var{log(xj/xk)} is zero or small
and so components xj and xk are in constant proportion or nearly so. While
this is obvious it is not unimportant, particularly when we realise that the
whole covariance structure is most simply defined in terms of relative variances
and further that the concept of small relative variance with its associated
high dependence of one component on another is essentially what is required
to replace uninterpretable measures of dependence such as crude product-
moment correlations corr(xj , xk).

4.7.4 Subsets of vertices and subcompositional analysis

If we consider a subset, say 1, . . . , C, of parts of a D-part composition then
the concept of the subcomposition (w1, . . . , wC) formed from these parts and
defined by

(w1, . . . , wC) = (x1, . . . , xC)/(x1 + · · · + xC)

plays a central role in compositional data analysis. One of the main reasons
for claiming that relative variances provide the simplest specification of com-
positional covariance structure is that

var{log(wj/wk)} = var{log(xj/xk)} (j = 1, . . . , C; k = j + 1, . . . , C).

The fact that the relative variance of two parts is the same within a sub-
composition and within the full composition means that the relative varia-
tion diagram for any subcomposition is simply the subdiagram formed by the
links of parts, or equivalently by the selection of vertices, associated with the
subcomposition. Moreover the centre of the subcompositional diagram is, by
Property 4.3, at the centroid, say O′, of the subcompositional vertices. It is
thus very simple to inspect visually within the full diagram the nature of
any subcompositional variability. Indeed we could go further and estimate the
proportion of the total compositional variability of the subcomposition. For
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example for the subcomposition formed from parts 1, . . . , C this proportion is∑C
j=1 |O′j|2∑D
j=1 |Oj|2

.

Collinear vertices and constant logcontrasts
If a subset, say 1, . . . , C , of vertices is approximately collinear then we know

that the associated subcomposition has a relative variation diagram which is
one-dimensional. Remembering the nature of the singular value decomposition
we see that if we were to perform a principal component analysis on the set of
such subcompositions we would find that only one eigenvalue was appreciably
non-zero. An immediate implication therefore is that the subcompositional
variability is one-dimensional and the nature of the one-dimensionality can be
expressed as the constancy of C − 2 logcontrasts, of the form

C∑
j=1

aj log xj (a1 + · · · + aC = 0).

4.7.5 Orthogonal links and subcompositional independence

If two links jk and lm intersect at right angles then we see from Property 4.7
that

corr{log(xj/xk), log(xl/xm)} = 0

and so the ratios xj/xk and xl/xm are uncorrelated and, within the context
of additive logistic normality, independent. Thus in exploratory compositional
data analysis the search for ratios which vary independently is associated with
detecting orthogonal links. We may note that in this search for independent ra-
tios j, k, l,m need not be different. It is for example meaningful to ask whether
xj/xD and xk/xD are independent and in the relative variation diagram this
would be associated with jDk being right-angled.

There is also no need to confine this search to a pair of ratios. If two subsets
of vertices lie on two lines at right angles then the associated subcompositions
are independent while showing a highly dependent structure within each sub-
composition, because of the collinearity of vertices.

4.7.6 Composition markers

As for unconstrained multivariate data the relative variation diagram may be
regarded as part of a biplot in that we may introduce composition markers
which allow a visual inspection of the relationship of each composition to the
covariance structure of the compositional data set. To do this we use the ith
row of G2 to plot the point (n − 1)

1
2 (gi1, gi2) as the marker representing the

ith composition (i = 1, . . . , n).
Such markers have the easily established property that −→

Oi.
−→
jk represents

the departure of log(xij/xik) from the average of this logratio over all the
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k

O

PiQi

P

Figure 4.9 Part of a biplot showing the relation of a case i composition to link jk
and ray Oj.

replicates. Let P and Pi denote the projections of the centre O and the com-
positional marker on the possibly extended link kj, as in Figure 4.9. Then−→
Oi.

−→
kj = ±|PPi||kj|, where the positive sign is taken if the directions of PPi

and kj are the same and otherwise the negative sign is taken. A simple inter-
pretation can be obtained as follows. Consider the extended line kj as divided
into positive and negative parts by the point P , the positive part being in
the direction of kj from P . If Pi falls on the positive (negative) side of this
line then the logratio log(xj/xk) of the ith composition exceeds (falls short
of) the average value of this logratio over all replicates and the further Pi is
from P the greater is this exceedance (shortfall); if Pi coincides with P then
the compositional logratio coincides with the average. In Figure 4.9 the ith
composition clearly has a logratio log(xj/xk) which falls short of the overall
average of this logratio.

A similar form of interpretation can be obtained from the fact that −→
Oi.

−→
Oj

represents the departure of the centred logratio log{xj/g(x)} of the ith com-
position from the average of this centred logratio over all replicates. Let Qi

be the projection of the composition marker i on the possibly extended ray
Oj. Then −→

Oi.
−→
Oj = ±|OQi||Oj|, the positive or negative sign depending on

whether Qi and the vertex j lie on the same side or opposite sides from O. We
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then have the following simple interpretation. If Qi lies on the same (opposite)
side of the divided line as the vertex j then the centred logratio log{xj/g(x)}
of the ith composition exceeds (falls short of) the average of this logratio
over all replicates, and so we can infer that the jth component of the ith
composition is higher (lower) than average relative to the other components.
Obviously also the further Qi is from O the greater is the divergence from the
average.

Remarks similar to those for unconstrained multivariate data apply in re-
lation to Mahalanobis distance and atypicality for compositional data.

4.7.7 Differences between unconstrained and compositional biplots

It must be clear from the above aspects of interpretation that the fundamental
elements of a relative variation diagram are the links, not the rays as in the case
of variation diagrams for unconstrained multivariate data. The complete set
of links, by specifying all the relative variances, determines the compositional
covariance structure and provides direct information about subcompositional
variability and independence. It is also obvious that interpretation of the rel-
ative variation diagram is concerned with its internal geometry and would,
for example, be unaffected by any rotation or indeed mirror-imaging of the
diagram.

Another fundamental difference between the practice of biplots for uncon-
strained and compositional data is in the use of data scaling. For unconstrained
data if there are substantial differences in the variances of the components,
biplot approximation may concentrate its effort on capturing the nature of
the variability of the most variable components and fail to provide any pic-
ture of the pattern of variability within the less variable components. Since
such differences in variances may simply arise because of scales of measure-
ment a common technique in such biplot applications is to apply some form
of individual scaling to the components of the unconstrained vectors prior
to application of the singular value decomposition. No such individual scal-
ing is necessary for compositional data when the analysis involves logratio
transformations. Indeed, since

cov [log{(cjxj)/(ckxk)}, log{(clxl)/(cmxm)}] = cov{log(xj/xk), log(xl/xm)},
it is obvious that the relative variation diagram is unchanged by any differ-
ential scaling of the parts. As long as we measure each individual part in a
uniform set of units, the resulting biplot remains unaltered. Moreover any
attempt at differential scaling of the logratios of the components would be
equivalent to applying differential power transformations to the components
of the compositions, a distortion which would prevent any compositional in-
terpretation from the resulting diagram. It is perhaps worth pointing out here
that even for unconstrained multivariate data consisting of positive vectors
there is an advantage in the use of the logarithmic transformation, since bi-
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plots are then invariant to changes of scale because

cov{log(cjyj), log(ckyk)} = cov(log yj , log yk)

for any constants cj , ck.

4.8 Non-parametric modelling

4.8.1 Introduction

The methods so far discussed in this chapter have depended on the assumption
that there is a reasonable class of parametric density functions available to
model some conditional density function p(y|x, θ) of known form so that the
statistical interest was in how to reduce or handle the uncertainty in the
finite-dimensional parameter or index θ. In particular, attention was confined
to three particular forms for p(y|x, θ). We have no parametric answer for the
following situations.

(i) Continuous data resisting transformation to normality.
(ii) Discrete or categorical data.
(iii) Combinations of continuous and discrete data.

4.8.2 Kernel density estimation of an unconditional density function

Suppose that the task before us is to produce some estimate of an uncon-
ditional density function p(y) on a sample space Y based on a data set
D = {yi : i = 1, . . . , n} of n replicates. If the sample space were the real
line then a simple starting position might be to adopt the familiar histogram
approach with the width of interval chosen not too small so as to avoid too
peaked an appearance and not too large to avoid too flat an outline. The ker-
nel density estimation approach is a slightly more sophisticated version of the
histogram approach, whereby each little rectangle placed on an interval gives
way to the placing on each sample point a fixed density function, termed a
kernel, and the subsequent averaging of the overall picture. The kernel func-
tion contains a spread or width parameter λ, possibly a vector, analogous to
the width of the histogram interval.

More specifically suppose that K(y|η, λ) is a density function on Y , centred
in some sense on η ∈ Y . For example, for Y = R1,K(y|η, λ) might be taken
as the density function of the univariate normal distribution with mean η and
standard deviation λ, and for Y = Rd the density function of a d-dimensional
normal distribution with mean vector η and covariance matrix λ2Id. The tech-
nique is essentially to construct a density function on each of the observations
yi (i = 1, . . . , n) and then to average these to obtain a kernel density function
p(y|D,λ) given by

p(y|D,λ) = (1/n)
n∑

i=1

K(y|yi, λ).
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A well-tried method of determining a sensible value of the spread parameter
λ is an adaptation of ideas of maximum likelihood. In the construction of
a pseudo-likelihood here we must recognise that in estimating the density
function at a point yi in the data set we should avoid resubstitution bias and
base the estimate on D−i , the data set D depleted by the observation yi so
obtaining

p(yi|D−i, λ) = 1/(n− 1)
∑
j �=i

K(yi|yj , λ).

The pseudo-likelihood L(λ|D) to be maximized with respect to λ is then given
by

L(λ,D) =
n∏

i=1

p(yi|D−i, λ).

If λ̂ is the maximizing value of λ then the kernel density estimate of the
underlying density function is p(y|D, λ̂).

Examples of kernel density estimation of unconditional density functions
will be found in Chapter 5.

4.8.3 Computation of atypicality indices

We consider two methods for estimating atypicality indices, namely the mesh
technique and a Monte Carlo method.

First, consider the case where the sample space Y is the discrete set

{yi : i = 1, . . . , n}
and denote by p̂(y) the kernel estimate of the probability mass function p(y)
on Y . Then the atypicality index of a case with observed value yR is

Pr{p(y) ≥ p(yR)} =
∑
y∈Y

p(y)I{p(y) ≥ p(yR)},

where I(A) denotes the indicator function which takes the value 1 when event
A happens and 0 otherwise. Thus the atypicality index is estimated by replac-
ing p(y) by p̂(y) in this formula. If we let z denote the random variable p̂(y),
and let z have cumulative probability mass function F , then the atypicality
may be estimated by computing z = p̂(y) for each y ∈ Y and forming F (y).
Then the estimated atypicality is 1 − F{p̂(yR)}.

In the case where the sample space Y is continuous the atypicality may be
estimated by essentially discretising the sample space using a mesh technique.
Suppose that the effective support of the density function p(y) is divided into
N equal intervals, each of width ∆ and centred on the points

{ai : i = 1, . . . , n}.
Then form the probability elements ∆p̂(ai) (i = 1, . . . , n) and form their
cumulative probability mass function as in the discrete case above. Then the
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estimated atypicality is 1 − F{p̂(yR)}, where p̂(yR) is the kernel estimate of
the density function evaluated at yR.

If the new value yR �∈ D then the above calculations which are based on the
whole data set D and which use a value of the bandwidth based on D may
be used. However, if yR ∈ D then yR should be removed from the data set
D in the selection of the bandwidth and the formation of the kernel density
estimate. To ease the computation some approximations can be considered:
the bandwidth could be that obtained using the whole set D and perhaps also
the kernel density estimate could be based on the whole data set D.

An alternative approach in the case of a continuous sample space is to use
simulation to compute the atypicality index and we describe this method in
the case in which the kernel is normal. For a given bandwidth the kernel
density estimate is a mixture of n normal distributions, with the ith normal
having mean yi and standard deviation λ and the weights in the mixture being
n−1 for each normal. Let N = nk and simulate k values of y from each of the
normal kernel distributions. For each simulated value of y compute p̂(y) and
check whether it is greater than or equal to p̂(yR); record a 1 if this is the
case, and a 0 otherwise. Then estimate the atypicality of yR as the proportion
of 1s (and provide a confidence interval for the true atypicality). This method
is simple to program and works effectively when, say, N = 1000, although a
greater number of simulations could be required in cases of low atypicality.

Table 4.2 Some typical kernel functions

Data Kernel Kernel formula
Type Definition K(y|x, λ)

Continuous Normal (λσ
√

2π)−1 exp
{−(y − x)2/2λ2σ2

}
σ2 = (n− 1)−1

∑
(x− x̄)2

Binary Binary K(y|, x, λ) = λ (y = x)
λ ≥ 1/2 K(y|, x, λ) = 1 − λ (y �= x)

Unordered k-category K(y|, x, λ) = λ (y = x)
Categorical unordered K(y|, x, λ) = 1−λ

(k−1) (y �= x)

Ordered k-category K(y|, x, λ) = λ (y = x)
Categorical ordered K(y|, x, λ) = (1−λ)2y

(k−1)x (y < x)

K(y|, x, λ) = (1−λ)2(k+1−y)
(k−1)(k+1−x) (y > x)
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4.8.4 Some typical kernels

A number of typical kernels are given in Table 4.2. In Chapter 5 we also use
lognormal kernels which in the d-dimensional case are defined as follows:(

d∏
i=1

xiλσi

√
2π

)−1

exp

{
−1/(2λ2)

d∑
i=1

(yi − xi)2/σ2
i

}
, (4.24)

where σ2
i is the sample variance of the observed values of xi.

4.8.5 Kernel density estimation of a conditional kernel density function

When there is a covariate vector involved we then have to consider the mod-
ification to kernel density estimation as described in Section 4.8.2 to obtain
an estimate of the conditional density function p(y|x). To introduce the basic
idea here let us suppose that x and y are both real numbers and consider
a scattergram of the data set D = {(xi, yi) : i = 1, . . . , n}. In terms of the
conditional density function p(y|x, λ) a kernel density function K(y|xi, λ) on
Y asssociated with covariate xi where xi is close to x should contribute more
reliably than a kernel K(y|xj , λ) where xj is distant from x. This relative
reliability may be made specific by the introduction of a weighting factor
w(x, xi, µ), which in some sense is larger the closer xi is to x. Note that we
have introduced the possibility that this weighting factor may depend on a
weighting parameter µ and we also assume that

∑n
i=1 w(x, xi, µ) = 1. Such a

weighted kernel density function would thus take the form

p(y|x,D, λ, µ) = 1/n
n∑

i=1

K(y|yi, λ)w(x, xi, µ).

One appropriate weighting factor which we shall use takes the form

1 −G{d(x, xi)/µ},
where G is a distribution function on R1

+, d is a distance function and µ the
weighting parameter for w.

The cross-validatory method of Section 4.8.2 can again be applied, selecting
the values of λ and µ which maximize the pseudo-likelihood

L(λ, µ|D) =
n∏

i=1

p(yi|xi,D−i, µ, λ),

where

p(yi|xi,D−i, λ, µ) = 1/(n− 1)
∑
j �=i

K(yi|yj , λ)w(xi, xj , µ).

Examples of the application of this kernel density estimation for conditional
density functions will be found in Section 9.6.
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4.9 Bibliographic notes

Details of the recently introduced methodology for compositional data analysis
are available in Aitchison (1986); more recent expository papers are Aitchison
(1997, 2001). The logistic-normal distribution was first developed in Aitchison
and Shen (1980).

The resolution of the complete separation problem of binary regression is
new to this monograph, as is the material on dealing with tree-structured
types in statistical diagnosis.

The REML method of estimation of variance components was introduced
by Patterson and Thompson (1971); Searle, Casella and McCulloch(1992)
provide a detailed account of the topic. The package nlme was created by J.C.
Pinheiro and D.M. Bates. The package is available free from

http://nlme.stat.wisc.edu

and for discussion and illustration see Pinheiro and Bates (2000).
For details of the now frequently used Gibbs sampling and MCMC ap-

proaches see Gelman et al. (1995) and Gilks, Richardson and Spiegelhalter
(1996). The package WinBUGS was developed by Spiegelhalter et al. and is
available free from

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml;
see Spiegelhalter et al. (2003) and Schollnik (2002) for illustrations and excel-
lent discussion of the package.

The pioneer of biplot techniques in statistics was Gabriel (1971, 1981). The
extension of this excellent graphical aid to compositional data is set out in
Aitchison (1990) and Aitchison and Greenacre (2002).

There are now many approaches to non-parametric methods of kernel den-
sity estimation. For an overall view we suggest Silverman (1986), Wand and
Jones (1995) and Bowman and Azzalini (1997); for more specific problems,
see Aitchison and Aitken (1976), Aitchison and Lauder (1985), Titterington
(1980) and Simonoff (1996).

4.10 Problems

Problem 4.1 On the assumption that the variability of D-part compositions
in a selected set of cases follows a LD(µ,Σ) distribution and that maximum
likelihood estimates µ̂, Σ̂ for µ,Σ have been computed show that the atypical-
ity index of a referred patient R with composition zR is given by

J

[
qR

{qR + (n− 1)(1 + hR)} |
1
2 ,

1
2 (n− d)

]
,

where qR = {alr(zR)−µ̂}Σ̂−1{alr(zR)−µ̂}T , hR = 1/n and J is the incomplete
beta function.

Problem 4.2 Three-part compositions (a, b, c) of skin tissue have been col-
lected from 25 normal individuals and are recorded below. Display the data
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graphically in a triangular (ternary) diagram in S2. If you are unfamiliar with
triangular diagrams refer to the description in Chapter 11.

a b c a b c

0.38 0.05 0.57 0.17 0.30 0.53
0.29 0.11 0.60 0.22 0.20 0.58
0.11 0.43 0.46 0.09 0.51 0.40
0.29 0.09 0.62 0.50 0.01 0.49
0.45 0.03 0.52 0.38 0.04 0.58
0.32 0.05 0.63 0.20 0.26 0.54
0.40 0.06 0.54 0.14 0.30 0.56
0.06 0.52 0.42 0.21 0.21 0.58
0.15 0.34 0.51 0.31 0.08 0.61
0.52 0.01 0.47 0.40 0.03 0.57
0.24 0.14 0.62 0.21 0.22 0.57
0.44 0.03 0.53 0.31 0.12 0.57
0.11 0.49 0.40

Transform the data to logratio form and plot in R2 . Construct in R2 a 95
per cent predictive region for a new logratio vector observation. Translate this
region back to your ternary diagram.

Two new patients have been referred to the clinic with possibly abnormal
skin tissue compositions (0.10, 0.50, 0,40) and (0.46, 0.03, 0.51). Are they
within previous experience?

Problem 4.3 The data set below, recording the results of three diagnostic
tests in standard units, has been recorded with the intention of developing a
diagnostic system to differentiate between two types A and B of a recently
identified syndrome. Application of standard binary logistic software has given
a warning that there is no convergence and there are indications that in the
estimation of parameters the estimates are growing very large. This suggests
to you that this is a case of complete separation of the data for the two forms.
You could verify this conjecture by finding a three dimensional hyperplane
which separates the data sets. How would you find such a hyperplane?

After you have confirmed that there is complete separation the clinic in-
volved in the study suggests that there is a further test (test 4) which may
avoid this difficulty, with the following results for the 20 patients reported
above.

Form A: 156 177 131 120 206 136 182 107 154 229
Form B: 110 175 148 159 140 65 154 307 220 139

You should check whether this additional test avoids the complete separa-
tion problem. Would you recommend that this extra test should be part of
the differential diagnostic process?
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Form Test results
1 2 3

A 261 265 486
297 290 866
736 253 332
269 69 266
336 111 410
323 111 241
835 140 689
419 94 492
249 79 173
245 100 222

B 271 215 218
177 252 168
177 410 197
69 241 93

165 174 296
202 461 181
112 321 63
95 246 184

137 300 263
93 177 198

Problem 4.4 For readers with access to WinBUGS. For the data set of Prob-
lem 1.4 and the regression of final level on initial level and treatment follow the
procedure detailed in Section 4.6 to estimate relevant parameters and for this
simple situation compare your answers with a standard regression approach.
Problem 4.5 Review the software available to you and try to find a program
for the singular value decomposition of multivariate data or even a biplot
program. Apply the software so that you may construct a biplot for the female
data of Problem 1.5. Construct an estimate of the covariance matrix and
compare this with the estimates you obtain from the biplot.

For this biplot devise a method of plotting the male data of Problem 1.5.
What conclusion do you draw from the relative positions of the female and
male markers?

If in your biplot you have not considered the possibility of using a transfor-
mation, now repeat your analysis with the logarithms of the data. Comment
on any differences that you observe.
Problem 4.6 The compositional biplot for the three part-compositional data
set of Problem 4.2 should give an exact representation of the covariance struc-
ture and the relationship of the markers to the parts of the composition. Con-
struct the appropriate biplot and verify the exact correspondence.

Plot the markers of the two new patients and consider what inferences you
might draw from this graphical representation.
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Problem 4.7 Suppose that the use of a kernel density method is being sought
for the data set of Problem 4.3. Can you suggest any suitable kernels and how
you might proceed to use these in the analysis of the three-part compositional
data set?

Problem 4.8 Consider the special case of model (4.17),

y = XφT + e,

where the ei mutually independent N(0, σ2) random variables.
Show that the REML estimate of σ2 is given by rss/(n − p − 1) and that

the maximised profile restricted loglikelihood is equal to

−0.5(n− p− 1){log 2π + log[rss/(n− p− 1)] + 1} − 0.5 log |XTX|.
Derive expressions for the maximised profile restricted loglikelihood for the

following special cases of (4.17): (i) yi = µ+ ei and (ii) yi = α+ βxi.
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CHAPTER 5

Experience

5.1 Introduction

In Chapters 1-4 we have repeatedly noted that the clinician, when dealing
with a new patient, has often to draw heavily on previous experience. In
this chapter we seek ways in which we may usefully quantify and summarize
such experience. In particular, we try to find statistical counterparts to com-
monly voiced ideas such as ‘normal range’, ‘within previous experience’ and
‘completely atypical’. We shall therefore be assuming that there exists some
reliable and useful set of past observations or measurements. We leave to the
next chapter any discussion of the problems that have to be considered in
achieving this aim of a reliable and useful data set.

Statistically then our problem appears to be the following. We are given a
set

D = {(ui, vi) : i = 1, . . . , n}
of observations or measurements on n selected cases S1, . . . ,Sn with some in-
formation about how these data have been obtained. There is variability in
these data and we have then to find some suitable and sensible probability
mechanism which has plausibly given rise to this variability. We have in stan-
dard statistical language to go through some process of choosing and then
fitting a statistical model to describe, for a generic case S, one or other of the
conditional density functions pS(u|v), pS(v|u). But our task does not finish
there. The purpose in describing such past experience is to harness it to the
investigation and management of a new referred patient R. How is the fitted
statistical model to be adapted or developed for this use?

The nature of a typical observation (u, v) will vary from problem to problem.
Sometimes we may be faced with an unconditional problem with, for example,
no u present and the associated task of modelling the unconditional density
function pS(v). Moreover the sample space of either u or v will also vary, with
a real line, a d-dimensional real space, a d-dimensional simplex, a finite set of
categories, or some product of these being possibilities. The problems of the
remaining sections illustrate the variety of statistical problems that arise in
attempts to describe such experience.

5.2 Single measurement variability

The simplest problems of describing experience involve a single continuous
measurement v with no conditioning features. In clinical medicine a common

113
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practice based on a selected set v1, . . . , vn of measurements with sample mean
m and sample variance s2 is to quote, for example, a 95 per cent confidence
interval (m − 2s,m + 2s) as a normal range. In this section we use two con-
trasting clinical problems to provide some deeper insights into the nature of
the statistical problems involved.

5.2.1 Plasma concentration of potassium

An autoanalyser is being introduced into routine use in a hospital for the anal-
ysis of standard blood plasma samples. Among the characteristics measured
by the autoanalyser is the plasma concentration of K (potassium) recorded in
meq/l. The question has been raised about the range of values of plasma K
concentration as measured by the autoanalyser in normal, healthy persons and
to this end plasma samples of 200 such individuals have been autoanalysed.
The results are given in data set potass. Two new patients R1 and R2 have
had blood samples taken and the autoanalyser has given associated plasma
concentrations of 4.0 and 5.7 meq/l. What useful statements about these two
patients can be made on the basis of the information available to us. In other
words, how do these patients relate to past experience?

Histogram
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Figure 5.1 Relative frequency histogram of plasma concentration of potassium in 200
normal, healthy subjects.

Our first task is to obtain a clearer picture of the nature of the variability and
with such extensive data this can be obtained from a histogram (Figure 5.1).
The general form of this histogram suggests that we should be able to exploit a
parametric model approach and its symmetry invites us to hope that the very
tractable univariate normal statistical model N1(µ, σ2) will serve the purposes
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Figure 5.2 Relative frequency histogram of plasma concentration of potassium in 200
normal, healthy subjects, with fitted normal density function.

of the problem. The fitted normal model has µ̂ = 4.605 and σ̂ = 0.401 meq/l.
Figure 5.2 shows this fitted normal density function. We briefly indicate the
use of techniques from Section 3.12 which provide support for this hope.
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Figure 5.3 A quantile-quantile plot of plasma concentration of potassium in 200
normal, healthy subjects, based on a theoretical normal probability model.
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Q-Q plot
Figure 5.3 shows the Q-Q plot for this data set. The straightness of the

line encourages the view that the fitting of a univariate normal model is a
reasonable approach to describing such variability, although we may note a
tendency for the line not to pass through the centres of some of the groups.
The Filliben correlation coefficient of 0.995 is extremely high and provides
further support.

Box-Cox analysis
The profile likelihood curve is very flat with maximized value −693.3 occur-

ring in the range λ ∈ (1.2, 1.8), with the value at 1 only marginally different
at −693.5. There is therefore no justification for consideration of a transfor-
mation to improve the validity of the normal model assumption.

Tests of normality
The Anderson-Darling, Cramer-von Mises and Watson tests can be per-

formed in their marginal form. The computed values are QA = 0.796 for
the Anderson-Darling statistic, marginally significant at the 5 per cent level,
QC = 0.142 for the Cramer-von Mises statistic, significant at the 5 per cent
level, and QW = 0.143 for the Watson statistic, just significant at the 2.5 per
cent level. This apparent indication of some non-normality in these tests, at
first sight disappointing, really arises because of the rounded nature of the ob-
servations, there being in effect only about one significant digit distinguishing
them. We have found that the values of these test statistics can be substan-
tially enlarged by extreme discretization of what are conceptually continuous
measurements. For example, in the simulation of 200 observations from a
N1(4.605, 0.1611) model, corresponding to the fitted model of this problem,
the computed values of the three statistics were 0.412, 0.062, 0.053, all non-
significant, whereas when the observations were rounded to one decimal place
the corresponding computed test statistics were 0.926, 0.149, 0.140, all sig-
nificant at the 2.5 per cent level. In such circumstances we see no difficulty
in reconciling the apparent disparity between the previous analysis and the
marginal test analysis and adopting a normal model.

The predictive distribution
In Section 3.10 we saw that inference based on the experience of a set of

selected cases, here the 200 healthy persons, for the present referred patient
is made through the predictive distribution defined in Property 3.10. Here we
have n = 200, µ̂ = 4.605, σ̂2 = 0.1611 and so the relevant Student distribution
is St1{199, 4.605, 0.1611(1 + 1/200)}. Because of the large number of selected
cases this distribution is hardly distinguishable from the fitted normal distri-
bution shown in Figure 5.2 and so we do not show a separate graph of its
density function.

Atypicality indices
Although for such univariate measurements it may seem obvious if there are

any outliers or influential observations in the selected set, we can follow the
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atypicality and influence diagnostic investigations set out in Sections 3.11-12
for the more general multivariate regression model. The atypicality indices
of the selected cases computed on a leave-one-out basis range from 0.010
for K = 4.1, a value near the mean, to 0.995 for K = 3.5, the minimum
recorded value. There are 13 cases in the ranges K ≤ 3.8 and K ≥ 5.4 with
atypicality indices exceeding 0.95. These are also the cases with the highest
Kullback-Liebler influence measures. In view of the number of selected cases
these values do not seem exceptional and there seems to be no reason why we
should consider their exclusion from the selected data set.

Assessment of the new cases
We assess the two new cases in terms of their atypicality indices. In terms

of Property 3.11, with c = d = 1, n = 200, we have for case R1

hR = 1/200 = 0.005 and qR = (4.0 − 4.605)2/0.1611 = 2.27

and so an atypicality index 0.87, clearly within a reasonable range of experi-
ence. For R2 we have hR = 0.005, qR = 7.44 with an atypicality index 0.993.
These computations may seem unnecessary since for such a single continu-
ous measurement we seem able to judge by simple comparison that R1 is not
untypical, whereas R2, being above the observed range, is rather atypical of
previous experience. This is indeed so but when we come to multivariate mea-
surements such comparisons are problematic, particularly since it is extremely
difficult to make allowances for correlated measurements in such judgements.

It must of course be realized that such analyses are built merely on the data
presented and say nothing about the implications for the patient’s condition
and whether an attempt should be made to bring this aspect of the patient’s
condition nearer to the centre of the range. From a clinical point of view a
plasma concentration of 5.7 meq/l with atypicality index 0.993 with no indica-
tion of other irregularities may not require any treatment. On the other hand
a patient whose weight atypicality index is 0.993 may be strongly encouraged
to diet.

Kernel density assessment
We can apply the techniques of Section 4.8 to obtain a kernel density as-

sessment of the density function with the use of a normal kernel K(v|vi, λ).
The maximized value −104.323 of the pseudo-likelihood function occurs at
λ = 0.356. Figure 5.4 provides a graph of the resulting kernel density func-
tion. Recall from Section 4.8.4 that the bandwidth used is λσ̂ = 0.143. We note
that unlike the predictive density function there is a slight kink on the right
hand side which accords with a similar feature in the histogram of Figure 5.1.
Despite this the general results would be essentially the same as inference
through the use of the normal parametric model. For example, the range of
atypicality indices computed by the simulation technique of Section 4.8.3 is
from 0.001 to 0.995 and those for the new patients with plasma potassium
concentrations 4.0 and 5.7 meq/l are 0.862 and 0.993.
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Figure 5.4 Kernel estimate of the probability density function of plasma concentra-
tion of potassium in 200 normal, healthy subjects.

5.2.2 Urinary excretion rate of pregnenetriol

Within data set preg there are 37 observations of urinary excretion rates
(mg/24h) of pregnenetriol obtained from normal individuals. Uncritical use of
an underlying normal model in this problem would lead to sample estimates
m = 0.832 and s2 = 0.330 for the mean and variance and consequently to
(−0.316, 1.98) as a two-standard-deviation normal range. The fact that such
a range allows the possibility of negative excretion rates highlights the absur-
dity of such an approach. Any parametric modelling approach requires careful
consideration of the nature of the variability.

Histogram
The histogram for this data set is shown in Figure 5.5 together with the ob-

viously inappropriate predictive density function based on normal parametric
modelling. The positive skewness of the histogram is evident, ruling out the
possibility of normal modelling.

Q-Q plot
The curvature in the Q-Q plot of Figure 5.6 confirms the need for further in-

vestigation if some parametric modelling is to prove acceptable. The next step
in such an investigation is to consider whether some form of transformation
to normality is acceptable.

Box-Cox analysis
The profile likelihood has a maximum of −68.74 at λ1 = −0.25 with val-

ues of −69.62 and −91.57 at λ = 0 and λ = 1, respectively. The test of the
hypothesis that λ = 1 gives a computed test statistic value of 45.66 to be
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Figure 5.5 Relative frequency histogram of excretion rates of pregnenetriol in 37
normal individuals, with superimposed fitted Student density function.
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Figure 5.6 Quantile-quantile plot of excretion rates of pregnenetriol in 37 normal
individuals, based on a theoretical normal probability model.

compared with percentiles of the χ2(1) distribution and so we have no hes-
itation in deciding that a transformation is certainly necessary. Since there
is a minor difference between the effects of using λ = −0.25 and λ = 0, as-
sociated with the logarithmic transformation, we choose the mathematically
simpler logarithmic transformation. In effect we are making the assumption
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that a lognormal parametric model is appropriate. The improvement in the
straightness of the Q-Q plot for the transformed data shown in Figure 5.7 is
obvious and supports the appropriateness of this transformation.
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Figure 5.7 Quantile-quantile plot of logged excretion rates of pregnenetriol in 37
normal individuals, based on a theoretical normal probability model.

Tests of normality
For the untransformed data the computed values of the Anderson-Darling,

Cramer-von Mises and Watson test statistics are QA = 2.182, QC = 0.359
and QW = 0.312, all of which are highly significant being well beyond the
1 per cent values. Although again there is some degree of discretization of
this measurement it is clear that this in itself does not provide a reason
for such high values of these test statistics. For the logarithmically trans-
formed data the corresponding values of these test statistics are QA = 0.600,
QC = 0.092 and QW = 0.089, none of which shows significant departure from
normality.

The predictive distribution
The sample mean and variance of the transformed data are m = 0.181 and

s2 = 0.391 and the predictive distribution here takes the form of a logStudent
distribution ΛSt1(36, 0.181, 0.391(1 + 1/37)). Figure 5.8 shows this predictive
density function relative to the histogram.

Atypicality indices
Atypicality indices for the selected set based on the above predictive density

function and on the leave-one-out method range from 0.031 for the case with
pregnenetriol excretion rate 0.7 mg/24h to 0.980 for the case with pregnen-
etriol excretion rate 2.8 mg/24h, the largest recorded value. The cases with
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Figure 5.8 Relative frequency histogram of logged excretion rates of pregnenetriol in
37 normal individuals, with fitted logStudent density function superimposed.

the smallest and largest excretion rates are the only ones with atypicalities
larger than 0.95.
Kernel density assessment

The pseudo-likelihood function has maximum value −36.713 which is at-
tained at λ = 0.550. The atypicalities are mostly similar to those obtained via
parametric analysis, especially in the tails of the distribution, but there are
some discrepancies near the mode of the distribution due to the skewness in
the kernel density estimate. The atypicalities were computed using simulation
and they range from 0.039 to 0.985. The cases with the smallest and largest
excretion rates have atypicalities larger than 0.95.

Comment
All the above forms of analysis may seem too elaborate for any univariate

problem. It could be argued that it adds little to the sensible comparison of a
new observation against the histogram. Two points can be made here. First
we agree with this argument but point out that with modern computational
aids there seems less tendency to trouble to draw histograms. Secondly while
simple graphical comparison may be sufficient for univariate data, and possi-
bly bivariate data, it is of little use in higher dimensional problems. Yet the
univariate techniques carry over straightforwardly into higher dimensions.
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5.3 Multiple measurement variability

5.3.1 Cortisol-cortisone variability in bilateral hyperplasia

As a simple illustrative example of describing experience of the variability of
bivariate measurements of a group of selected cases we use the cortisol and
cortisone measurements obtained from the 27 bilateral hyperplasia patients in
the Cushing’s syndrome data which have been extracted into data set bilhyp.
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Figure 5.9 Scattergram of the cortisol and cortisone concentrations in 27 patients
with bilateral hyperplasia.

Figure 5.9 provides the scattergram for the bivariate (cortisol, cortisone)
concentrations of the 27 bilateral hyperplasia patients. Even at this simple
graphical level we can see that the pattern is not symmetric about the mean
vector, with indications of some positive skewness, raising some doubts as to
any assumption of normality.

Q-Q plots
The Q-Q plots for the two concentrations are shown separately in Fig-

ure 5.10. The plots, particularly the cortisol plot, show a marked departure
from the diagonal line.

Box-Cox analysis
The Box-Cox analysis applied separately to the two concentrations gives

maximizing values λ1 = −0.338, λ2 = 0.057 with maximized univariate profile
loglikelihoods of 7.93 and 21.03. If we compare these with the univariate profile
loglikelihood values 0.85 and 18.05 at λ1 = 1 and λ2 = 1 we see that the values
of the test statistic in (3.36) of 14.16 for cortisol and 5.96 for cortisone are
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Figure 5.10 Quantile-quantile plots of cortisol and cortisone concentrations in 27
patients with bilateral hyperplasia, based on a theoretical normal probability model.

highly significant when compared against percentiles of the χ2(1) distribution.
We can use these as starting values for a bivariate Box-Cox analysis leading to
the bivariate maximizing values λ1 = 0.187, λ2 = 0.723, substantially different
from the univariate values, and with a maximized profile loglikelihood of 43.99.
Comparison with the profile loglikelihood value 39.78 at λ1 = 1, λ2 = 1 gives
a value of 8.42 for the test statistic in (3.36) which, when compared with
percentiles of the χ2(2) distribution, shows that there is a formal Box-Cox
justification for a transformation. The profile loglikelihood surface is, however,
relatively flat around the maximizing point with, for example, the values at (0,
0), (0, 1), (0, 0.5) equal to 41.52, 43.06, 43.68, respectively, so that there is little
to distinguish between the quality of a number of possible transformations.

Tests of normality

Table 5.1 Values of the modified test statistics for the bilateral hyperplasia data

Test Variable(s) Anderson- Cramer- Watson
Darling von Mises

Marginal
Cortisol 1.397 0.204 0.173
Cortisone 0.813 0.132 0.119

Bivariate angle
Cortisol-Cortisone 0.444 0.065 0.062

Radius 0.504 0.087 0.059

Table 5.1 shows the values of the marginal, bivariate angle and radius
Anderson-Darling, Cramer-von Mises and Watson test statistics. All three

© 2004 by Taylor & Francis Group, LLC

  



124 EXPERIENCE

marginal tests for cortisol show substantial departure from normality at the
1 per cent significance level. There is similar evidence of departure from nor-
mality in the marginal tests for cortisone at the 5 per cent level of significance.
This supports our earlier visual assessment of the Q-Q plots. None of the bi-
variate angle nor radius tests suggests any significant departure from bivariate
normality.

Conclusion
How can we assess all this evidence regarding the normality or otherwise

of the bivariate concentration vector? The scattergram, Q-Q plots, univariate
Box-Cox analyses and marginal tests of normality all suggest that some trans-
formation is indicated. The bivariate Box-Cox analysis also suggests that a
transformation is necessary and the flatness of the profile loglikelihood sur-
face assures us that a range of transformations is certainly feasible. Both the
univariate and bivariate Box-Cox analysis suggest that a logarithmic trans-
formation for cortisol is appropriate and, with the flatness of the profile log-
likelihood surface in mind, it seems sensible to consider whether a logarithmic
transformation of both concentrations is supportable. Applied to the logged
data none of the battery of normality tests shows any significant departure
from normality. Moreover the Q-Q plots for the transformed data, shown in
Figure 5.11, are admirably diagonal.
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Figure 5.11 Quantile-quantile plots of logged cortisol and cortisone measurents in 27
patients with bilateral hyperplasia, based on a theoretical normal probability model.

The predictive distributions
In view of the above conclusion we shall work, in our parametric analysis, on

the assumption that the bivariate concentrations are distributed lognormally
as Λ2(µ,Σ). The sample estimates are

µ̂ = [ −1.067 −1.473 ], Σ̂ =
[

0.2948 0.2108
0.2108 0.2438

]
.
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The predictive distribution appropriate to new patients is then of logStudent
form

ΛSt2
[
k, µ̂, {1 + 1/n}Σ̂

]
,

where k =26, n =27.
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Figure 5.12 Predictive logStudent density surface of cortisol and cortisone concen-
trations in patients with bilateral hyperplasia.

In Figure 5.12 we provide on the untransformed concentration space a mesh
diagram of the surface of this predictive density function. Comparison with
the scattergram of Figure 5.9 shows a reasonable correspondence with the na-
ture of the variability of the data. We can report here that had we decided not
to transform the data and assumed a bivariate normal model we would have
found, as in the case of the pregnenetriol data of Section 4.2, that the predic-
tive distribution would have allowed the possibility of negative values of the
concentrations. This indeed is a compelling reason for considering logarithmic
transformations when faced with essentially positive measurements.

Atypicality indices of selected cases
The atypicality indices of the selected cases computed on the basis of the

predictive distribution and on the leave-one-out principle range from 0.092 to
0.9998, the only index exceeding 0.95 being 0.9998 for selected case 13, the
case with the smallest cortisone concentration. Within a group of 27 we may
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expect one case to have atypicality index above 0.95 and there is no clinical
evidence to regard this case as special.

Regions of experience
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Figure 5.13 Contour plot of the predictive logStudent density surface of cortisol and
cortisone concentrations in patients with bilateral hyperplasia.

With such bivariate data we can use isoprobability contours of the prob-
ability density surface (loci of points with the same probability density) to
define what could be termed a region of experience. Figure 5.13 shows a set
of such contours at heights 7, 4, 2, 1, and 0.14 for the concentration mea-
surements. More specifically we could define a region of actual experience as
the region within the contour associated with the most atypical selected case.
This is provided by the outermost contour of Figure 5.13. An alternative to
the use of isoprobability contours is to define a region in terms of atypical-
ity contours. For example, a region of 95 per cent experience would have its
boundary as the locus of points whose atypicality indices are 0.95. A claim
for such a region is that we may expect 95 per cent of future cases to have
bivariate measurements within this region. For a predictive distribution of the
form ΛStd{k, µ̂, (1 + n−1)Σ̂} we can find the equation of such a boundary.
First we determine the value of t ≡ t95 satisfying

J
{
t
∣∣ 1

2d,
1
2 (n− d)

}
= 0.95.

Then, any bivariate vector u whose corresponding Mahalanobis distance

q = (log u− µ̂)Σ̂−1(log u− µ̂)T

satisfies q/{q + (n2 − 1)/n} = t95 is on the boundary of the region of 95 per
cent experience. Thus the equation of the boundary is
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(log u− µ̂)Σ̂−1(log u− µ̂)T =
(n2 − 1)

n

t95
1 − t95

.

Figure 5.14 shows the region of 95 per cent experience for the bilateral hyper-
plasia group.
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Figure 5.14 95% region of experience of cortisol and cortisone concentrations in
patients with bilateral hyperplasia.

Kernel density assessment
Assessment of the density function by the non-parametric kernel method is

straightforward. Being aware of the inappropriateness of the normal kernel in
the pregnenetriol study of Section 4.2 we adopt the lognormal kernel defined in
(4.24) with d = 2 to ensure that no negative measurements are possible with
our method of assessment. The pseudo-loglikelihood maximization method
then leads to estimate λ = 0.465 of the smoothing parameter for the density
estimate. Figure 5.15 provides a mesh diagram of this kernel assessment of the
density function. Using the corresponding kernel assessments we can obtain
by the mesh method of Section 4.8.3 kernel atypicalities for the selected cases.
The main disagreements between the predictive and kernel assignments of
atypicality indices are that the kernel method assigns an atypicality index of
only 0.605 for case 13 and indicates one different possible outlier in case 5,
the case with the largest values of both concentrations, with an atypicality
index of 1.00. These discrepancies are clearly caused by the differences already
identified.

Assessment of referred patients
As an illustration of the assessment of new patients we consider the 7 se-

lected cases of adenoma, A1–A7, in data set cush. We can compute atypicality
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Figure 5.15 Plot of bivariate kernel density estimate based on the bilateral hyperpla-
sia data.

indices with respect to the bilateral hyperplasia group on the basis of our para-
metric or non-parametric analyses above. These are shown in Table 5.2. It is
clear that, while there is some variation in the indices of the cases showing
no appreciable atypicality, both assessments are identifying the most atypical
cases, namely A1 and A7.

Table 5.2 Atypicality indices for 7 adenoma patients computed using parametric and
kernel methods

Method Patient
A1 A2 A3 A4 A5 A6 A7

Parametric 0.98 0.67 0.28 0.82 0.28 0.85 0.99
Kernel 0.99 0.63 0.53 0.74 0.54 0.80 0.99

5.3.2 Coagulation measurements in genetic counselling in haemophilia

In order to use the coagulation measurements of data set haemo for genetic
counselling in haemophilia we have clearly to investigate the possibility of de-
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scribing the nature of the variability of the bivariate vectors of measurements
in both the carrier and non-carrier selected groups.
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Figure 5.16 Scattergram of coagulation measurements recorded on 20 carriers (c)
and 23 non-carriers (n) of haemophilia.

Figure 5.16 provides the scattergram for the bivariate coagulation measure-
ments of the 20 carriers and 23 non-carriers in the selected set. It is clear that
these measurements provide some separation of the two types and our pur-
pose here is to attempt to quantify this separation by obtaining appropriate
predictive distributions to describe the differences in this experience.

Q-Q plots
The Q-Q plots for the two coagulation measurements of the carriers and

the non-carriers are shown in Figure 5.17. The plot showing some departure
from the diagonal line is that for the first coagulation measurement of the
non-carriers, but the departure does not appear to be particularly strong.

Box-Cox analysis
For the 20 carriers, Box-Cox analysis applied separately to the two coagula-

tion measurements gives maximizing values λ11 = 0.582, λ12 = −0.042. Using
these as starting values for a bivariate Box-Cox analysis we obtain the bivari-
ate maximizing values λ11 = 0.585, λ12 = −0.036 with a maximized profile
loglikelihood of −190.72. Since the profile loglikelihood value is −192.24 at
λ11 = 1, λ12 = 1, comparison of the value 3.04 of the test statistic in (3.36)
with percentiles of the χ2(2) distribution shows that there is no Box-Cox jus-
tification for a transformation. Indeed the profile loglikelihood surface is very
flat around the maximizing value with, for example, the value −191.07 at
λ11 = 0, λ12 = 0. A similar analysis of the 23 non-carriers gives, for the two
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Figure 5.17 Quantile-quantile plots of the coagulation measurements for 20 carriers
and 23 non-carriers of haemophilia. Top left. Factor I measurement for carriers.
Top right. Factor I measurement for non-carriers. Bottom left. Factor IV mea-
surement for carriers. Bottom right. Factor IV measurement for non-carriers.

univariate analyses, λ21 = −0.244, λ22 = 0.115, and for the bivariate analysis
λ21 = −0.151, λ22 = 0.155 with a maximized profile loglikelihood of −202.97.
The value of the profile likelihood function is −205.85 at λ21 = 1, λ22 = 1
and −203.03 at λ12 = 0, λ22 = 0. Since the value of the test statistic in (3.36)
comparing the maximized value and the value at λ21 = 1, λ22 = 1 is 5.76, com-
parison with percentiles of the χ2(2) distribution shows that there is again no
Box-Cox justification for the use of a transformation.

Tests of normality
Table 5.3 shows the values of the marginal, bivariate angle and radius

Anderson-Darling, Cramer-von Mises and Watson test statistics separately
for the carrier and non-carrier cases. Comparing the results with the critical
values in Table 3.2 we see that the only tests showing significant departure
from normality are the marginal tests for the first coagulation measurements
in the non-carrier cases. This accords with the experience in the Q-Q plots
above.
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Table 5.3 Values of the modified test statistics for the haemophilia data

Test Variable(s) Anderson- Cramer- Watson
Darling von Mises

Carriers
Marginal

Factor I 0.310 0.048 0.048
Factor IV 0.774 0.099 0.099

Bivariate angle
Factor I-Factor IV 0.223 0.005 0.019

Radius 0.352 0.044 0.036

Non-carriers
Marginal

Factor I 0.999 0.145 0.131
Factor IV 0.505 0.059 0.059

Bivariate angle
Factor I-Factor IV 0.471 0.044 0.039

Radius 0.438 0.059 0.045

Conclusion
Any slight evidence for use of a transformation here appears to be confined

to the first measurement of the non-carrier group, with a logarithmic transfor-
mation the obvious choice. Such a transformation would involve specification
of different parametric models for the carrier and non-carrier groups. While
there is no theoretical reason for resisting such an asymmetrical approach there
may be some awkwardness in clinical practice in such asymmetry. Moreover
the obvious flatness of the profile loglikelihood surfaces and the maximizing
values (0.585,−0.036) for carriers and (−0.151, 0.155) for non-carriers suggest
that a sensible compromise solution may be to use a logarithmic transforma-
tion of all measurements. From the viewpoint of normality assumptions the
effects of this decision are that the Q-Q plots for the transformed data are
slightly more diagonal in appearance and only the marginal tests of normal-
ity for the second coagulation measurement of the carriers, with Anderson-
Darling, Cramer-von Mises, Watson test statistic values of 0.830, 0.129, 0.132,
are just significant at the 5 per cent significance level.

The predictive distributions
In view of the above conclusion we shall work, in our parametric analysis, on

the assumption that the bivariate coagulation measurements are distributed
lognormally as Λ2(µ1,Σ1) and Λ2(µ2,Σ2), respectively, in the carrier and non-
carrier groups. The sample estimates are

µ̂1 = [ 4.85 4.02 ], µ̂2 =
[

4.28 4.42
]
,
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Σ̂1 =
[

0.0952 0.0077
0.0077 0.1566

]
, Σ̂2 =

[
0.0989 0.0530
0.0530 0.0774

]
.

The predictive distributions appropriate to new patients are then of logStu-
dent form

ΛSt2
{
ki, µ̂i, (1 + 1/ni)Σ̂i

}
(i = 1, 2),

where k1 = 19, k2 = 22, n1 = 20, n2 = 23. In Figure 5.18 we provide a mesh
diagram of the surfaces of the two probability density functions. It can be seen
that these reflect the separation and roughly elliptical shape of the groups in
the scattergram of Figure 5.16.
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Figure 5.18 Probability density surfaces of the coagulation measurements for the
carriers and non-carriers of haemophilia.

Atypicality indices of selected cases
The atypicality indices of the selected cases computed on the leave-one-

out principle range from 0.085 to 0.926 for the carrier group and from 0.005
to 0.955 for the non-carrier group, so that there is no need here to consider
whether any of these cases should be regarded as outliers.
Regions of experience

As for the bilateral hyperplasia concentrations discussed above we can pro-
vide a region of 95 per cent experience for the bivariate coagulation measure-

© 2004 by Taylor & Francis Group, LLC

  



MULTIPLE MEASUREMENT VARIABILITY 133

0 50 100 150 200 250 300

Factor I

50
10

0
15

0
20

0
F

ac
to

r 
IV

  

  

Carrier

Non-carrier

Figure 5.19 95% regions of experience of the coagulation measurements for carriers
and non-carriers of haemophilia.

ments. These are shown separately for the carrier and non-carrier groups in
Figure 5.19.

Kernel density assessment
Assessment of the density functions by the non-parametric kernel method is

straightforward. Since the bivariate measurements are all well above zero the
use of a spherical bivariate normal kernel does not carry the danger of intro-
ducing the possibility of negative measurements as in the case of the pregnen-
etriol study in Section 5.2. Equally a lognormal kernel is available; see (4.24)
with d = 2. We prefer the lognormal approach because of its conformity with
the decision to use lognormal parametric modelling. The pseudo-loglikelihood
maximization method then leads to estimates λ1 = 0.660, λ2 = 0.543 of
the smoothing parameters for the carrier and non-carrier groups. Figure 5.20
shows the mesh surfaces of the two assessed kernel density functions for the
carriers and non-carriers, which are in broad agreement with the parametric
picture of Figure 5.18. Using these kernel assessments we can obtain by the
mesh method kernel atypicalities for the selected cases. These are in rough
agreement with the atypicalities found by lognormal parametric modelling,
ranging from 0.004 to 0.840 for carriers and from 0.001 to 0.788 for non-
carriers. Within the framework of this kernel density approach there is again
no evidence of outliers within the selected groups.

Assessment of the referred patients
For the 15 new patients of data set newhaem we can compute atypicality

indices with respect to the carrier and the non-carrier groups on the basis
of our parametric or non-parametric analyses above. Since we shall require
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Figure 5.20 Kernel density surfaces of the coagulation measurements for the carriers
and non-carriers of haemophilia.

the ratio of the carrier to non-carrier densities in Chapter 8 we provide those
‘odds’ in Table 5.4 together with the atypicalities. We shall reserve further
comments on these new cases until we consider the role of the assessments in
the setting of genetic counselling.

5.3.3 Experience of adenoma in Conn’s syndrome

In our analyses so far we have had the advantage of graphical aids such as
histograms, scattergrams and mesh surface diagrams, allowed by the low di-
mensions of the measurement vectors. We have seen that, relative to these
lower-dimensional data sets, concepts such as data transformation, predictive
and kernel density assessments and atypicality indices reflect what we can see
visually about our measurement experience. When we are faced with higher-
dimensional measurement vectors the same forms of analysis apply but we
have less recourse to graphical methods associated with the full measurement
vector. As an illustration of the problems of quantifying experience of the
variability of higher-dimensional measurements we investigate the possibility
of describing the adenoma experience in the selected group A1–A20 in data
set conn. We use abbreviated labels: N (sodium), K (potassium), C (carbon
dioxide), R (renin), A (aldosterone), S (systolic BP) and D (diastolic BP).
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Table 5.4 Atypicalities of 15 new patients with respect to the carrier and non-carrier
groups, computed using the parametric and kernel methods. The ‘odds’ in favour of
the carrier group are also given

Atypicalities Odds Ratio
Carriers Non-Carriers

Parametric Kernel Parametric Kernel

N1 0.77 0.71 0.69 0.56 0.40
N2 0.99 1.00 1.00 1.00 5.62
N3 0.97 0.97 0.47 0.48 0.02
N4 0.26 0.32 0.86 0.91 3.60
N5 0.64 0.65 0.83 0.76 1.24
N6 0.91 0.94 0.93 0.97 0.68
N7 0.78 0.69 0.95 0.93 2.68
N8 0.73 0.61 0.85 0.74 1.06
N9 0.99 1.00 0.96 0.98 0.01
N10 0.31 0.45 0.96 0.96 11.23
N11 0.87 0.87 0.64 0.62 0.17
N12 0.18 0.32 0.94 0.96 10.46
N13 0.41 0.33 1.00 1.00 7543.99
N14 0.37 0.05 0.94 0.87 7.58
N15 0.65 0.73 0.33 0.50 0.27

Q-Q plots
Only two of the seven Q-Q plots, those for N and A in Figure 5.21, show any

appreciable departure from the diagonal line. The main feature of the N plot
is the gap between the eighth and ninth points, due to the gap between 141.0
and 143.0 in the recorded N values. Clinically there is no reason for such a gap
since values within the range (141.0,143.0) are common in the new patients,
and we are clearly experiencing an effect of the small sample available. We
shall see the effects of this feature in our further analysis.

Box-Cox analysis
Use of Box-Cox analysis as a sledge-hammer approach to decisions on trans-

formation is here fraught with difficulties. For example, a univariate Box-Cox
analysis of the N concentrations leads to a maximizing value λN = 18.2 with
maximized profile loglikelihood −47.62, whereas the profile loglikelihood val-
ues at λN = 1 and λN = 0 are −47.28 and −47.36, hardly differing from the
maximized value. In view of our comment above about the unusual nature
of the gap in the N values it would certainly seem non-sensical to attempt
to raise the N concentrations to the power 18 in order to obtain a marginal
improvement in the normality of the sample. The unusual nature of the N
concentrations renders attempts to subject the full seven-dimensional mea-
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Figure 5.21 Quantile-quantile plots of the concentrations of sodium (left) and aldos-
terone (right) in blood plasma for 20 patients with an adenoma, based on a theoretical
normal probability model.

surement vector to a multivariate Box-Cox analysis impossible because of
resulting ill-conditioning and near-singularity of matrices. Multivariate Box-
Cox analysis applied to the six-dimensional vector (K,C,R,A,S,D) results in a
maximizing vector λ = [0.45, 0.46, 1.26,−0.21,−0.028,−1.20] with maximized
profile loglikelihood −342.66, compared with values −350.68 and −347.70 at
λ = [1, 1, 1, 1, 1, 1] and λ = [0, 0, 0, 0, 0, 0]. When twice the differences from the
maximized profile loglikelihood value are compared against percentiles of the
χ2(7) distribution there is nothing to distinguish between the last two vectors
of transformations, while the first two show a significant difference. Before we
decide on a course of action we report the results of the battery of tests of
normality.

Tests of normality
For the seven-dimensional vector here there are altogether 21 marginal tests,

63 bivariate angle tests and 3 radius tests. Of these, only the three marginal
tests for N and A show significant departure from normality, all at the 5 per
cent significance level, corroborating our view of the corresponding Q-Q plots.
The values of the Anderson-Darling, Cramer-von Mises, Watson test statistics
are 0.879, 0.153, 0.151 for N and 0.984, 0.148, 0.126 for A.

Conclusion
The results of the Q-Q plots and the tests of normality suggest that we

should first concentrate on the N and A concentrations. We have already con-
cluded that the sample of N concentrations is unusual and that a wide range
of Box-Cox transformations seem equally plausible. For the A concentrations
the value λA = −0.21 suggests that a logarithmic transformation may be ap-
propriate. When this is applied the Q-Q plot is beautifully diagonal and the
Anderson-Darling, Cramer-von Mises and Watson marginal test statistics re-
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duce to the non-significant values 0.126, 0.015, 0.015. We can also report that
the associated bivariate angle and radius test statistics all remain insignificant.

Let us now examine the R concentrations. The Box-Cox analysis with
λR = 1.26 suggests that there is no need to transform the R concentrations.
Since some of the R concentrations, such as 0.7 for A3 and 0.9 for A15, are low
we have to consider whether an assumption of normal variability might lead
to the possibility of negative concentrations as in the case of the pregnenetriol
study considered above. The estimated mean and standard deviation of the R
concentrations are 3.35 and 1.29 and so the estimated probability of a negative
concentration on the basis of a normality assumption is Φ(−µR/σR) = 0.0047,
probably too large for comfort. In order to avoid this possibility of allowing
negative concentrations for R we therefore advocate the use of a logarithmic
transformation. We have thus reached a position of advocating logarithmic
transformations for R and A, with knowledge that such a transformation for
N is also a possibility. The further fact that there is no significant difference
between the six-dimensional maximized profile loglikelihood −342.66 and the
value −347.70 associated with an overall logarithmic transformation of all
concentrations suggests that we should follow through the consequences of
applying a logarithmic transformation to all seven concentrations. With such
a transformation the only tests of normality suggesting significant departure
from normality are those for the R concentration, with Anderson-Darling,
Cramer-von Mises, Watson test statistics 1.50, 0.223, 0.186, all significant at
the 1 per cent significance level. Since in this case the logarithmic transfor-
mation has been introduced to ensure positivity of concentration we prefer to
persist with the transformation at the expense of some marginal departure
from normality.

Biplot
We now investigate the possibility of providing a graphical view of this

adenoma experience in terms of a biplot; see Section 4.7 for the theoretical
detail. We naturally use logarithmically transformed concentrations and since
the variances of the logged concentrations vary between 0.00035 for R and
0.471 for A we shall also use the standardization technique of Section 4.7.
Figure 5.22 provides this biplot, which captures a proportion 0.57 of the to-
tal variability. We can immediately see how the rays reflect the correlation
structure of the data if we examine the main correlations (> 0.4) between the
logged concentrations emphasised in the following array:⎡
⎢⎢⎢⎢⎢⎢⎣

K C R A S D
N −0.088 0.407 −0.112 0.102 0.072 −0.059
K −0.620 −0.060 −0.418 −0.259 −0.080
C 0.135 0.529 0.388 0.086
R 0.041 0.280 0.052
S 0.701

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Recall that for this type of biplot a correlation between two measurements,
such as N and R, is represented by the cosine of the angle NOR, and that
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Figure 5.22 Biplot of the logged concentrations of sodium, potassium, carbon diox-
ide, renin and aldosterone in blood plasma together with systolic and diastolic blood
pressures in 20 patients with an adenoma (circles) and 11 patients with bilateral
hyperplasia (triangles).

because this two-dimensional plot accounts for only 57 per cent of the total
variation in the data the representation is very approximate here. Note that
the positive correlation of 0.701 between S and D is reflected in the acuteness
of the angle between the rays OS and OD. Similarly the negative correlation of
−0.620 between K and C corresponds to the obtuseness of the angle between
OK and OC. Acute angles between ON and OC and between OA and OC cor-
respond, respectively, to the positive correlations 0.407 and 0.529 between the
associated logged concentrations, and obtuse angle KOA corresponds to the
negative correlation −0.418 between K and A. Indeed it can be verified that
for this data set the signs of all the correlations correspond to the acuteness
or obtuseness of all the associated angles.

In addition to the case markers for the adenoma cases we have plotted
the case markers for the bilateral hyperplasia cases B1–B11. It is clear that
there is some separation of the two groups which is encouraging from the
point of view of differential diagnosis, the main aim of the analyses of this
data set. Before we discuss the interpretation of the case markers we note
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that there is complete overlap of the projections of the adenoma and bilateral
hyperplasia case markers on the S and D rays so that we can anticipate that,
considered individually, these have no diagnostic value in differential diagnosis
in Conn’s syndrome, a view substantiated later in Chapter 8. We therefore
reduce the complexity of the diagram by providing in Figure 5.23 the biplot
for the five-dimensional concentration vector (N, K, C, R, A). This biplot
retains a proportion 0.66 of the total variability. It is again easy to check that
the angles between rays are in good accord with the correlation structure of
the concentrations.

A7

R

N

K

A

CO

A18

A5

B6

B7

B9

Figure 5.23 Biplot of the logged concentrations of sodium, potassium, carbon dioxide,
renin and aldosterone in blood plasma in 20 patients with an adenoma (circles) and
11 patients with bilateral hyperplasia (triangles).

Recall that the biplot through its case markers and rays gives an approxi-
mate representation of the complete data set in the sense that projections of
case marker vectors on a ray indicate the extent to which that standardized
concentration exceeds or falls short of the average for the data set. For exam-
ple, we can see that A7 is substantially above average in R; indeed it is the
adenoma case with the largest R. Case A5, with its large negative projection
on OC, is well below average in C; it is in fact the adenoma case with the
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smallest C value. From the relative positions of the adenoma and the bilateral
hyperplasia cases we might anticipate from the biplot that, for example, a
case of Conn’s syndrome with large K and small R may be more likely to be
of bilateral hyperplasia than of adenoma type. Equally, small C or A may also
indicate bilateral hyperplasia. In Chapter 8 we shall be in a position to test
such conjectures. The advantage of the biplot is that it provides a graphical
representation of the complete data set which may prove useful in explain-
ing in a consultative context the outcome of some sophisticated statistical
analysis.

The predictive distribution
On the assumption that the concentration vector (N, K, C, R, A) is log-

normally distributed as Λ5(µ,Σ) we can obtain the predictive distribution,
appropriate to inference of any referred patient, as of logStudent form,

ΛSt5(k, µ̂, (1 + 1/n)Σ̂),

where k = 19, n = 20, and

µ̂ =
[

4.96 1.20 3.38 1.10 3.96
]
,

Σ̂ = 10 ×

⎡
⎢⎢⎢⎢⎣

0.0035 −0.0028 0.0073 −0.0113 0.0131
−0.0028 0.2974 −0.1026 −0.0562 −0.4943

0.0073 −0.1026 0.0920 0.0706 0.3480
−0.0113 −0.0562 0.0706 2.9621 0.1540

0.0131 −0.4943 0.3480 0.1540 4.7056

⎤
⎥⎥⎥⎥⎦ .

Atypicality indices of selected cases
The atypicality indices of the selected adenoma cases A1–A20 can be readily

evaluated by the leave-one-out method. These range from 0.095 for A19 to
0.984 for A3, the case with the smallest R concentration of 0.7, and 0.974 for
A16, the case with the largest A concentration of 192.7. There is nothing here
clinically to suggest that we should regard any of these cases as outliers.

Kernel density assessment
Assessment of the density functions by the non-parametric kernel method

is again straightforward. We use a lognormal kernel for all the reasons put
forward in our discussion of transformations; see (4.24) with d = 5. The maxi-
mization based on the pseudo-loglikelihood method then leads to an estimate
λ = 0.847 of the smoothing parameter. The kernel density assessments asso-
ciated with the 20 selected cases A1–A20 are then

10−5 ×
[

0.116 0.654 0.098 0.766 0.044 0.740 0.117 0.780 0.541 0.104
0.305 0.655 0.674 0.301 0.118 0.014 0.293 0.184 0.626 0.368

]
.

Because of the higher dimensionality the mesh method of computing ker-
nel atypicality indices is not practicable. We can, however, identify the most
atypical cases judged on the basis of low kernel densities as A16 and A3, in
agreement with the parametric findings above.
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Assessment of the bilateral hyperplasia cases
We have already seen in the biplot some ways in which the bilateral hy-

perplasia cases differ from the adenoma cases. We can also calculate their
atypicality indices with respect to the adenoma group. The two largest atyp-
icality indices are 0.906 for B4, the case with the overall smallest values of
C and A, and 0.829 for B1. The fact that these atypicality indices are not
extreme is in agreement with the overlap of the two groups in the biplot and
suggests that there will be a degree of uncertainty in the differential diagnosis
of Conn’s syndrome.

We can also obtain the kernel density assessments for these cases with re-
spect to the adenoma kernel density above. For B1–B11 these are

10−5 × [ 0.108 0.131 0.812 0.136 0.221 0.329 0.271 0.257 0.996 0.167 0.031 ].

The most atypical on the basis of lowest kernel density is B11, the bilateral
hyperplasia case with the highest K and A concentrations. Note, however,
that its kernel density 0.031× 10−5 is larger than that of A16 and so, on this
kernel assessment, less atypical than A16.

5.4 Conditional variability

Often a clinical measurement of interest may depend on other known char-
acteristics or features of the patient and so in any attempt to define normal
ranges or regions it is important to take such features into account in at-
tempting to describe experience. A simple example is the now well known fact
that the range of blood pressure in healthy individuals rises with age; see, for
example, Pickering (1968, chapter 28). We now turn our attention to this type
of problem in two particular situations.

5.4.1 Anti-diuretic hormone variability in healthy persons

The problem of describing experience in the measurement of anti-diuretic
hormone (ADH) has been outlined in Section 1.6. The statistical problem is
to try to determine the extent, if any, to which ADH is dependent on gender
(G) and urine osmolarity (UO).
Scattergram

The scattergram of ADH against urine osmolarity measurement is shown
in Figure 5.24. We take as a starting point in modelling a tentative maximal
normal linear model with interaction between gender and osmolarity:

ADH = αG + βGUO + error (G = M,F).

Box-Cox analysis
With this maximal model we apply a Box-Cox transformation to the re-

sponse ADH and find that the maximizing λ = −0.12 with maximized profile
loglikelihood −355.3 compared with the value −373.1 at λ = 1. The value
35.6 of the test statistic in (3.36) in comparison with percentiles of the χ2(1)
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Figure 5.24 Scattergram of anti-diuretic hormone measurement and urine osmolarity
in 61 healthy male patients (m) and 14 healthy female patients (f).
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Figure 5.25 Quantile-quantile plot of standardised residuals obtained from a sim-
ple linear regression of logged anti-diuretic hormone measurement on logged urine
osmolarity and gender in 75 healthy patients.

distribution is highly significant (P < 0.001) and, since the value at λ = 0 of
−355.6 is hardly different from the maximum −355.6, we opt for a logarithmic
transformation. It seems sensible then to consider taking log UO as covariate
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to produce effectively a multiplicative model

E(log ADH
∣∣ G,UO) = αG + βG log UO (G = M,F), (5.1)

with independent N(0, σ2) errors. This model is now taken to be the maximal
model. Re-application of Box-Cox analysis, that is consideration of a Box-Cox
power transformation to log ADH, yields a maximizing power λ close to 0,
confirming the reasonableness of using the logarithm of ADH as the response
variable.

Tests of normality
We can investigate the assumption of normality of the error term in the

maximal model of (5.1) by the three marginal tests. The computed values
of the Anderson-Darling, Cramer-von Mises and Watson test statistics are
0.393, 0.043 and 0.044, all attesting to reasonable normality of error, and
this is confirmed by the diagonal nature of the corresponding Q-Q plot of
Figure 5.25.

Lattice of hypotheses

Table 5.5 Hypothesis-testing for the ADH data

Level Model Hypothesis Residual F P
tested s.s. (d.f)

4 αG + βG log UO 4.00 (71)

3a αG + β log UO βM = βF 4.07 (72) 1.40 0.24
3b α+ βG log UO αM = αF 4.08 (72) 1.58 0.21

2a αG βM = βF = 0 6.34 (73) 20.86 10−7

2b α+ β log UO αM = αF 4.12 (73) 1.12 0.33
βM = βF

1 α αM = αF 6.92 (74) 17.34 10−8

βM = βF = 0

Having established a maximal model we now turn our attention to ques-
tioning whether ADH does depend on gender and urine osmolarity UO. The
lattice for testing such dependence is shown in Figure 5.26. Following the test-
ing strategy of Section 3.10 we proceed up the lattice only as far as level 2,
where

E(log ADH
∣∣ G,UO) = α+ β log UO

is acceptable as a working model. In other words, there is no need to introduce
the complexity of different regressions for males and females. A summary of
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Level 4

Level 3

Level 2

Level 1

E(log ADH | G,UO) = αG + βG log UO G = (M,F )

βM = βF

Maximal Model

βM = βF

βM = βF = 0

αM = αF

βM = βF = 0
αM = αF

αM = αF

Figure 5.26 Lattice of hypotheses for the ADH Study.

the test statistics and p-values is given in Table 5.5. In this case the tests are
exact and standard F-tests have been used.

Predictive distribution
Our parametric working model is that ADH follows a lognormal distribution

Λ1(α+ β log UO, σ2). With estimates

α̂ = 0.462, β̂ = 0.220, σ̂2 = 0.0565

and k = 73, n = 75, so that (1 + 1/n)σ̂2 = 0.0572, the appropriate predictive
distribution for application to a new referred patient is of logStudent form

ΛSt1 (73, 0.462 + 0.220 log UO, 0.0572) .

Atypicality indices of the selected cases
On the basis of the predictive distribution and on the leave-one-out principle

we can compute the atypicality indices of the 75 selected cases. These range
from 0.002 to 0.999; case S48, with the smallest ADH value, has an atypicality
of 0.999 and case S14, with the largest ADH value, has an atypicality of 0.950.
There appears to be nothing exceptional clinically about S14 and S48 and in a
sample of size 75 we might expect a few cases with atypicality indices exceeding
0.95.
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Kullback-Liebler influence
Another way of testing the concordance of the data and model is through

the Kullback-Liebler divergence measure of influence as described in Section
3.12.5. The Kullback-Liebler measures range from < 10−4 to 0.0043, 0.0046,
0.0073, 0.0077 for S14, S7, S41, S48, respectively. We have already discussed
S14 and S48. S7 has the largest ADH value, equally with S14, and S41 has the
smallest value of UO. Examination of standardized residuals identifies only
one case, S48, outside the range (−3, 3). Overall there seem to be no grounds
for excluding any of the selected cases as outliers.

Assessment of new cases
We are now in a position to assess the new patients N1–N6 in data set

newadh by their atypicality indices as computed with the above predictive
distribution.

Patient N1 N2 N3 N4 N5 N6
Atypicality 0.137 0.821 0.987 0.987 0.048 0.931

These atypicalities give the clinician an indication of which cases may be
abnormal in their ADH measurements. For example, patient N3 has clearly
an abnormally high ADH relative to his low value of UO, whereas patient N4
has an abnormally low ADH relative to her low UO.

5.4.2 Calcium content of bones

A new method of measurement of the calcium contents CH and CF of the
heel and the forearm is under study and the extent to which the variability
depends on the following factors and other characteristics of the individual is
of interest:

G: Gender
A: Age
H: Height
W: Weight
SA: Surface area
MF: Strength of forearm
ML: Strength of leg
DC: Diameter of os calcis
AC: Area of os calcis
DR: Diameter of radius and ulna

The objective is to use this experience to determine whether a new patient
can be regarded as having normal calcium contents CH and CF, conditional
on any of these other characteristics which may be found to affect calcium
measurements. An aspect of this problem is the fact that some features, such
as G, A, H and W, are easy to record whereas the others are more trouble-
some. To some extent then an aim is to find out which, if any, of the more
troublesome measurements are necessary to obtain a satisfactory conditional
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model to describe variability in the bivariate measurement (CH, CF). Suppose
that we start our analysis on the basis of a maximal model of normal linear
regression form, as in Definition 3.8, with the response vector y the bivariate
calcium vector (CH, CF) and the covariate vector x of the form [1, G, A, H,
W, SA, MF, ML, DC, AC, DR], where 1 is a ‘dummy variable’ and G = −1
for males and G = +1 for females.

Box-Cox analysis
Starting with univariate analysis we find maximizing values λCF = 0.810,

λCH = 1.02 with corresponding profile loglikelihood values −407.7,−357.62.
The fact that these are almost identical with the values at λCF = 1, λCH = 1
suggests that no transformation will be necessary. Starting with the univariate
maximizing values we find that a bivariate Box-Cox analysis gives a maximiz-
ing vector (λCF, λCH) = (0.750, 1.021) with corresponding profile loglikelihood
−762.1, hardly different from the value −763.4 at (λCF, λCH) = (1, 1). On for-
mal Box-Cox analysis therefore there is no need for any transformation.

Q-Q plots
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Figure 5.27 Quantile-quantile plots of residuals obtained from fitting the maximal
model: CH response (left) and CF response (right).

The Q-Q plots associated with this maximal model are shown in Figure 5.27.
Both are satisfactorily diagonal.

Tests of normality
By comparing the results in Table 5.6 with the critical values contained

in Table 3.2 we see that the test statistics for all marginal, bivariate angle
and radius tests of normality of residuals are well below significance levels,
confirming the conclusions from the above Box-Cox analysis and the Q-Q
plots.

Lattice of hypotheses
In the following analysis we take an additive model as being the maximal

model, thus ignoring the possibility that gender might significantly interact
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Table 5.6 Values of the modified test statistics for the calcium data

Test Variable(s) Anderson- Cramer- Watson
Darling von Mises

Marginal
CH residual 0.417 0.071 0.069
CF residual 0.170 0.015 0.015

Bivariate angle
CH-CF residuals 0.213 0.018 0.018

Radius 0.997 0.118 0.049

Null Model

G,A,H,W

G,A,H,W,DR

Maximal Model

G,A,H,W,DR,DC

G,A,W,DR,DC

Figure 5.28 Lattice of hypotheses for the calcium data.

with at least one of the covariates; we leave this issue to be considered as
an end-of-chapter problem. Since the covariate vector here is ten-dimensional
the full lattice of hypotheses has 1024 nodes. We have, however, a convenient
starting node for our investigation of this lattice since we can explore to what
extent the easily recorded covariates (G, A, H, W) are necessary or sufficient
to provide a satisfactory description of experience. Figure 5.28 gives details
at some of the nodes explored. First, testing the (G, A, H, W) hypothesis
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within the maximal model gives a significance probability < 10−7. We must
therefore consider the various ways of supplementing (G, A, H, W). At the
next higher level the introduction of one of SA, MF, ML, DC, AC, DR leads
to significance probabilities < 10−4 except for DR which gives a significance
probability 0.0075. We then explore at the next higher level which covariate it
may be necessary to add to (G, A, H, W, DR). At this level the introduction
of one of SA, MF, ML, DC, AC leads to significance probabilities 0.0048,
0.0041, 0.0055, 0.41, 0.065, respectively. Thus starting with (G, A, H, W) we
have arrived at (G, A, H, W, DC, DR) as a reasonable working model, but we
must obviously now ask the question whether some of G, A, H, W may not be
necessary. Now starting with (G, A, H, W , DC, DR) and moving to the next
lower level in the lattice by deleting one of G, A, H, W we obtain significance
probabilities of < 10−5, < 10−10, 0.14, 0.028. We can thus exclude H from our
consideration and arrive at a working model involving (G, A, W, DC, DR).
Denoting [CH CF] by y and [1 G A W DC DR] by x we are now interested
in using the normal linear model y = xB + error in our assessment of new
patients.

Note that our investigation of the assumption of normality above was in
relation to the residuals in the maximal model. We confirm here that within
the working model there is also no significant evidence against the normality
assumption.

Predictive distribution
The estimates of B and Σ are

B̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−4.219 10.374
−3.768 −3.700
−0.315 −0.239

0.146 0.040
0.764 0.112
0.356 0.724

⎤
⎥⎥⎥⎥⎥⎥⎦

and

Σ̂ =
[

42.16 5.80
5.80 17.49

]
.

The conditional predictive distribution associated with a new referred patient
R with covariate vector xR is then

St2
[
k, xRB̂, (1 + hR)Σ̂

]
where k = 121 and hR is the ‘hat’ value for the new patient as defined in
Property 3.10. We note here the direction of the effects, as anticipated by
the clinicians involved, with calcium content on average higher for males than
females, decreasing with age, increasing with weight, diameter of os calcis and
diameter of radius and ulna.

© 2004 by Taylor & Francis Group, LLC

  



CONDITIONAL VARIABILITY 149

Atypicality indices of the selected cases
The above predictive distribution allows us to compute the atypicality in-

dices of the 127 selected cases on the leave-one-out principle. There are just
two cases S103 and S11 with atypicality indices 0.964 and 0.959 exceeding
0.95. While S103 has the smallest W and a low DC value neither of the two
cases appears exceptional clinically, and there is no reason to consider their
exclusion from the past experience data set.

Kullback-Liebler influence
The largest Kullback-Liebler influence measure is 0.106 associated with

S118, well above the next largest 0.047 of S27, all other selected cases having
values less than 0.040. Again there appears to be nothing exceptional clinically
in the apparently influential S118.

Assessment of new cases
With the predictive assessment we can readily compute the atypicality in-

dices of the four new patients N1–N4 from data set newbones.

Patient N1 N2 N3 N4
Atypicality 0.997 0.685 0.798 0.938
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Figure 5.29 95% regions of previous experience for referred patients N1 (left) and
N4 (right), with the points indicating their actual calcium contents.

Of these clearly N1 and possibly N4 require further investigation. For condi-
tional descriptions it is possible to produce a region of previous experience for
any specific covariate vector x along lines similar to the argument of Section
5.3.1, with k = 121, b = xB̂, c = (1 + h)Σ̂; note however that the raw data
are used here and the calculations are based on Property 3.4. The 95 per cent
regions of previous experience corresponding to the covariate vectors of N1
and N4 are shown in Figure 5.29, with the positions of the patients’ (CH,
CF) also shown. Given their respective conditioning features, N1 is clearly
deficient in both his calcium contents whereas N4 appears to be rather high
in the calcium content of her heel.
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A multiplicative model: an alternative approach
While the above analysis is no doubt adequate as a practical tool for the as-

sessment of new patients it is inevitably an artefact. If we reflect on the nature
of the ‘predictor’ we see that it contains a feature which is in part an additive
linear combination of weight and diameters. This seems unlikely in terms of
‘natural laws’; a more natural a priori expectation is that calcium content is
in some way proportional to some powers of these measurements. We can thus
consider the adoption of a maximal ‘multiplicative’ model which incorporates
this possibility, and the simplest starting point is to use logarithmically trans-
formed variables throughout, apart from G, and then to investigate a normal
linear regression model with these transformed data. We can report here that
testing with the lattice of hypotheses leads to a working model of the form

[log CH log CF] = [ 1 G log A log W log DR ]B + error,

with B and Σ estimated by

B̂ =

⎡
⎢⎢⎢⎢⎣

1.740 1.347
−0.165 −0.134
−0.428 −0.371

0.419 0.066
0.458 0.905

⎤
⎥⎥⎥⎥⎦

and

Σ̂ =
[

0.05321 0.01454
0.01454 0.03318

]
.

Note that with this multiplicative model there is one less covariate, namely
DC, involved in the working model. In practical terms this means that there is
one less of the awkward measurements to be made. In terms of the predictive
distribution arising from this multiplicative approach new patient N1 has a
large atypicality index 0.999, with the others N2, N3, N4 having atypicality
indices 0.659, 0.829, 0.748, respectively. In our view this multiplicative model
is still very much an artefact. Moreover, the three marginal tests associated
with the CH residual all give significant departure from normality at the
one per cent significance level, and there are six atypicality indices above
0.95 compared with only two for the additive model. In view of all these
disadvantages we prefer the above additive approach.

5.5 Compositional variability

The data recorded on patients in clinical medicine are sometimes composi-
tional in nature, that is where what are recorded are the proportions in which
parts of some whole occur. In this section we consider how to describe vari-
ability in such data in relation to two specific problems.
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A M

I

A M

I
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Figure 5.30 Ternary diagram for plots of three-part cell compositions (I, A, M) for
normal persons (×), patients with Crohn’s disease (�) and patients with ulcerative
colitis (◦).

5.5.1 Ulcerative colitis and Crohn’s disease

In an attempt to find some means of differential diagnosis between ulcerative
colitis and Crohn’s disease specimens of gut from 22 patients, 11 with known
ulcerative colitis and 11 with known Crohn’s disease, were examined and the
cells from these specimens classified into three categories I, A and M. In ad-
dition these cells were also counted in the gut of 11 normal persons. Since the
amount of gut varies it is the relative numbers or the proportions of these cells
that are of interest in exploring the possibility of their use in diagnosis. Data
set crohn shows the proportions of (I, A, M) cells in the 33 cases. Since each
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case provides a three-part composition we can obtain a graphical view of the
variability by plotting each composition as a point in a ternary diagram as
described in Section 4.2; see Figure 5.30. It is clear from the degree of overlap
in the ternary diagram that, while there may be some degree of discrimina-
tion between normal and ulcerative colitis and between normal and Crohn’s
disease, there is no possibility that such compositions can distinguish between
ulcerative colitis and Crohn’s disease. These views are readily confirmed by
testing of relative hypotheses after a logratio transformation as indicated in
Section 4.2. Tests of equality of bivariate mean logratios are significant for
a normal, ulcerative colitis comparison (P<0.05) and for a normal, Crohn’s
disease comparison (P<0.05) but there is no significant difference between ul-
cerative colitis and Crohn’s disease (P = 0.48). Since the primary aim of the
study was to find some form of differential diagnosis between ulcerative colitis
and Crohn’s disease, there seems little point in continuing this line of enquiry.

5.5.2 Comparison of steroid metabolite concentrations in normal adults and
children

We recall here the problem of differential diagnosis in Cushing’s syndrome
outlined in Section 1.10. In a previous attempt at diagnosis it was found that
a three-year old child was wrongly diagnosed as highly likely to have the
adenoma form when in fact the correct diagnosis was adrenal carcinoma. This
misdiagnosis is not surprising when we appreciate that the Cushing syndrome
patients in data set cush have ages ranging from 16 to 67 years. Since children
obviously excrete less per 24 hours than adults there is no reason to suppose
that a diagnostic system based on adult amounts of various excreted steroid
metabolites should be in any way applicable to children. Data set cushkids
records concentrations (mg/24 hrs) of 14 steroid metabolites of 30 normal
children; recall that data set cush introduced in Section 1.10 records the
same steroid metabolite concentrations of 37 normal adults. In considering
the general question of modelling the variability of these adults and children
we must have in mind the following question. Is it possible that a satisfactory
differential system can be built on the compositional aspect of the data rather
than the actual amounts? If this is so can such a system be applied to children?

In order for such a procedure to be feasible we require to investigate the
hypothesis that the compositional variability of steroid metabolites in children
is the same as that in adults. At the same time we may investigate a related
hypothesis that compositional variability in either group is independent of
total metabolite excretion. In our modelling let xA denote the composition
formed from the steroid metabolite vector of a typical adult and tA the as-
sociated total of the steroid metabolites. Let (xC , tC) be the corresponding
composition and total for a typical child. A convenient way to model the joint
density function p(x, t) of the adult (composition, total) vector (xA, tA) is in
the marginal, conditional form p(tA)p(xA|tA), where, for our adult data sets,
we can take p(tA) to be of lognormal form Λ1(µA, σ

2
A) and p(xA|tA) of logistic-
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normal form L1(αA + βAtA, τ
2
A). Modelling for the children’s data is similar

with subscript C replacing subscript A. We note that the parametric form
adopted for the variability of the total steroid metabolite is of no immediate
interest since our questions relate specifically to the conditional distribution.
Tests of the hypotheses βA = 0 and βC = 0 of no dependence of composi-
tion on total are readily carried out and result in significance probabilities P
=0.009 and P =0.029. Thus we have to conclude that there is a dependence of
composition on total both in adults and in children and we have to conclude
that there is no great hope that a differential diagnostic system devised for
adults is likely to be adaptable to children.

14
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6 9 2
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Figure 5.31 Compositional biplot for steroid metabolites in adults (+), with the rel-
ative positions of children (o).

We note also that if we had made a direct comparison of the compositions
formed from the adults and the children we would, for example, have found
a highly significant difference in their means. This is all very obvious if we
construct a compositional biplot for adults and also show on the biplot the
compositional markers for the children, as in Figure 5.31. Note how the chil-
dren are fairly well separated from the adults, having, for example, low pro-
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portions of metabolites 13 (pregnanetriol) and 14 (pregnenetriol) compared
with adults.

5.6 Multivariate binary data

So far we have considered the description of variability of data vectors whose
components are continuous or compositional. Other forms are possible and as
an example of the nature of such forms we tackle the problem of describing
the variability in experience in the problem of diagnosing Keratoconjunctivitis
sicca.

5.6.1 Describing experience in Keratoconjunctivitis sicca

The reliable diagnosis of Keratoconjunctivitis sicca (KCS) in patients with
rheumatoid arthritis by an opthalmic specialist is not always available at a
rheumatic clinic. In such circumstances the question arises as to whether it
is possible to use non-specialists and ten binary features (presence or absence
of certain symptoms) of patients to differentiate between cases of KCS and
non-KCS.

Data set kcs shows these binary features in 77 rheumatoid arthritis patients,
A1–A40 with KCS and B1–B37 with no KCS. This data set was obtained by
an opthalmic specialist first screening a group of rheumatoid arthritis patients
for KCS. Once the members A1–A40 of this KCS group had been identified a
group B1–B37 of similar size of patients with no KCS was taken as controls.
Selection of these cases has thus been made on the basis of disease type u
(1 for KCS, 2 for non-KCS) with subsequent recording of the 10-dimensional
multivariate binary feature vector v. In terms of our study here we wish to seek
a method of describing the variability in the ten-dimensional binary vectors
separately for each of the two groups.

Multivariate binary kernel density estimation
As we have earlier stated in Section 4.8 there are difficulties in the con-

struction of satisfactory parametric forms for modelling multivariate binary
data. We therefore consider the non-parametric approach of kernel density
estimation. Let y be a typical D-dimensional binary vector and x1, . . . , xD be
the binary vectors of the n selected subjects of one of the groups. Then we
consider a kernel of form

K(y|x, λ) = λd(x,y)(1 − λ)D−d(x,y),

where 0 ≤ λ < 1 and d(x, y) is the number of coincidences between the
components of x and y. As in Section 4.8 the smoothing parameter λ is selected
on the criterion of maximizing the pseudo-likelihood

1
n

n∏
i=1

∑
j �=i

K(xj |xi, λ)

with respect to λ. For the two groups the maximizing smoothing parameters
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are λ1 = 0.980 and λ2 = 0.844 with maximized pseudo-loglikelihoods −94.04
and −249.09.
Atypicality assessments

For the ten-dimensional binary vector here the discrete sample space con-
sists of 1024 (= 210) distinct points and there is no difficulty in computing
the kernel density

p(y|D) =
1
n

n∑
i=1

K(y|xi, λ)

for each y ∈ {0, 1}10. These densities can then be arranged in descending
order; then the cumulative sums computed from this ordered set provide the
atypicalities of the associated vectors. For the 40 subjects with KCS the atyp-
icalities, computed using the mesh method, range from 0.05 to 0.97, with only
three subjects having a value above 0.9. Only one subject has an atypicality
of more than 0.95 but there are no clinical grounds for not including them in
the analysis.

5.7 Bibliographic notes

The statistical analyses in this chapter are on the whole direct applications of
the methodology set out in Chapters 3 and 4 and so we draw attention only
to a few aspects of the analysis. The Box-Cox transformation analysis first
appeared in Box and Cox (1964); see also Aitkin et al. (1989) for its application
to general linear modelling. As pointed out in Chapter 3 the multivariate tests
of normality are based on Stephens (1982) with a concise set of tables available
in Aitchison (1986). Much of the description of clinical experience depends on
the use of a predictive distribution as described in detail in Aitchison and
Dunsmore (1975), where there is also a full discussion of atypicality indices
as a tool for assessing where individual patients lie in relation to previous
experience. The assessment of conditional variability is highly dependent on
the use of lattice testing and the reader is referred to Chapter 3 for details and
references. For analyses involving compositional data again refer to Aitchison
(1986). The problem of describing experience of Keratoconjunctivitis sicca in
rheumatoid arthritis patients is considered in Anderson et al. (1972) and the
use of the multivariate binary kernel method first appeared in Aitchison and
Aitken (1976).
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5.8 Problems

Problem 5.1 A clinic is attempting to set up a means of describing normal
experience of a newly discovered enzyme and has made determinations of the
enzyme concentration in 150 normal individuals. The results in standard units
are given below.

207 243 237 247 228 156 198 200 186 219
257 219 247 259 209 253 194 205 209 226
306 223 261 227 252 210 236 236 195 256
226 331 157 193 227 253 185 196 227 241
249 225 166 198 227 259 179 243 209 257
221 211 195 219 203 178 322 216 228 198
289 328 230 192 250 183 190 270 282 271
210 216 183 240 246 255 235 287 227 212
227 184 225 308 147 172 221 170 207 155
222 255 249 236 228 268 291 199 267 211
226 266 242 207 211 194 191 277 165 274
183 238 208 211 246 296 250 204 253 295
237 225 209 260 269 212 207 212 232 208
281 204 249 217 198 246 216 225 254 262
214 214 327 261 230 214 216 256 237 210

As consultant you are asked to investigate this possibility and to suggest a
means of ascribing atypicality indices to new patients. You are further asked to
demonstrate your method on patients whose recorded enzyme concentrations
are 150, 280, 350.

Problem 5.2 A clinic consults you on the possible use of the concentrations
(meq/l) of two hormones a and b in the detection of patients who may have
an overactive excreting gland. The clinic has determined the hormone levels
in 45 individuals known to have normal excretion and the hormone levels are
recorded in Table 5.7.

Since the clinic may decide to use only one of the hormone levels to de-
tect patients with overactive glands you are asked to consider each hormone
separately in your analysis of this experience and report to the clinic. You
decide also to consider how you would use both hormone levels as a means of
detecting irregular glandular behaviour.

How would you assign atypicality indices to two patients who have levels
(20.7, 25.6) and (30.4, 25.9), respectively, on hormones (a, b)?

Problem 5.3 Two indicators of a certain blood disease have been recorded
in 24 patients and the clinic has asked you to provide a means of detecting
whether new patients suspected of having the disease are within this previous
experience. The clinic is particularly interested in having some easy graphical
means of putting any screening method into operation. The data are shown
in Table 5.8.
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Table 5.7 Data for Problem 5.2

Hormone Hormone Hormone
a b a b a b

6.5 11.1 2.7 20.4 11.7 24.3
7.8 11.7 9.2 15.8 7.6 11.9
5.3 12.9 6.8 12.9 19.6 28.7
4.8 8.6 10.0 8.4 2.5 11.1
6.2 11.1 10.8 8.8 3.8 13.1
3.5 11.8 7.0 19.1 4.6 17.2
8.6 7.7 9.1 18.6 29.3 11.4
7.9 17.3 6.0 9.4 9.7 9.8
7.2 7.3 6.0 16.6 5.6 20.4
1.8 9.0 5.8 13.3 7.5 8.3
5.3 7.1 4.0 10.5 6.1 16.6
8.7 18.1 8.6 8.5 13.7 9.9
9.3 9.1 16.1 13.7 7.5 16.2
8.3 5.2 5.1 4.9 12.4 16.8
7.2 16.6 5.4 5.7 11.5 8.5

Table 5.8 Data for Problem 5.3

Indicator 1 Indicator 2 Indicator 1 Indicator 2

20.8 6.1 9.3 8.3
3.5 15.5 10.4 8.5

47.7 10.9 1.9 18.4
17.8 5.1 29.4 5.2
16.5 7.2 5.1 12.7
16.5 6.8 30.9 5.2
8.6 7.5 7.6 11.2
9.4 10.2 12.3 8.4
6.1 10.3 5.3 10.8
7.6 10.7 22.9 5.4

19.7 6.9 8.4 10.5
9.7 10.0 7.9 11.2

What conclusions would you draw about two new patients with indicators
(15.0, 10.5) and (5.0, 9.5)?

Problem 5.4 There is a need to describe experience in the levels of two
hormones, A and B, in normal individuals so that it may be possible to screen
persons suspected of being susceptible to a hormone deficiency condition. The
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hormone levels (in standard units) of 30 normal persons have been determined
and recorded as below.

You are asked to describe this normal experience and, if possible, to devise
a graphical method whereby persons outside this normal experience may be
easily detected.

In particular, how would you report on the normality or otherwise of two
new patients, the first with (A, B) levels (2.1, 6.9) and the second with
(A, B) levels (3.9, 5.0)?

Hormone levels Hormone levels Hormone levels

A B A B A B

3.71 4.74 1.35 11.40 9.27 1.64
6.72 4.24 1.67 7.38 10.63 1.62
1.91 6.33 7.00 2.34 8.63 2.62
1.23 7.82 1.42 4.62 1.11 9.59
4.81 3.46 2.03 6.03 2.33 4.33
2.79 3.81 1.90 7.24 2.36 7.96
1.59 11.64 8.54 1.49 3.37 4.75
2.55 6.44 2.87 3.22 1.81 6.61
0.65 9.86 1.26 7.83 1.36 9.42
5.85 2.00 1.22 6.28 1.98 4.99

Problem 5.5 A problem in defining normal experience has arisen in a new
blood screening situation which isolates a certain constituent of blood plasma.
It is now possible to determine the proportions of the three parts a, b, c of
this constituent. For twenty-five normal individuals this composition has been
determined in the hope that it will provide some indication of the nature of
variability within normal individuals. The compositional data are given below.

a b c a b c

0.21 0.11 0.68 0.15 0.08 0.77
0.19 0.21 0.60 0.25 0.29 0.46
0.26 0.22 0.52 0.20 0.43 0.37
0.14 0.15 0.71 0.16 0.24 0.60
0.19 0.16 0.65 0.05 0.12 0.83
0.16 0.13 0.71 0.20 0.26 0.54
0.19 0.22 0.59 0.23 0.59 0.18
0.31 0.45 0.24 0.32 0.27 0.41
0.11 0.32 0.57 0.08 0.04 0.88
0.09 0.05 0.86 0.20 0.18 0.62
0.28 0.17 0.55 0.12 0.22 0.66
0.11 0.18 0.71 0.11 0.07 0.82
0.21 0.17 0.62

You are asked to report on the possibility of describing normal experience
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and in particular whether you can provide a simple graphical means of deter-
mining whether a new individual is within normal experience.

Three new patients have been referred to the clinic and the proportions of
a, b, c have been determined. You are asked to make some statement about
how these patients relate to normal experience.

a b c

0.21 0.35 0.44
0.35 0.11 0.54
0.14 0.43 0.43

Problem 5.6 Re-read Section 5.3.3 and apply the analyses described there to
obtain an appropriate description of the experience in the hyperplasia group of
Cushing’s syndrome, restricting your analysis to the first seven concentrations.
In your analysis consider how you can compare this experience with that of
the adenoma group.

Problem 5.7 In a study of lethargic patients the responses of ten men and
ten women to different doses of a stimulus are given in the following table.
You have been asked to investigate fully the extent to which response depends
on the stimulus and gender.

Stimulus Response Gender

1 3.74 M
2 3.94 M
3 4.11 M
4 5.52 M
5 4.96 M
6 9.54 M
7 8.09 M
8 11.70 M
9 10.40 M
10 12.31 M
1 0.02 F
2 2.45 F
3 6.77 F
4 5.34 F
5 8.57 F
6 8.56 F
7 10.30 F
8 9.88 F
9 11.39 F
10 16.18 F

If you are asked to predict the response of a new male patient to a stimulus
of 8.5 units, how would you respond? In what way, if any, would your response
differ if the new patient had been female?
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Problem 5.8 Refer to Problem 1.3. It has been suggested that the blood
compositions of Form A patients are dependent on the three symptoms, whereas
the blood compositions of form B patients are not dependent on the three
symptoms. Investigate this conjecture.

Problem 5.9 A study has been carried out to see if the composition of four
constituents a, b, c, d in tissue obtained at biopsy is in any way dependent
on the size (mg) of the specimen analysed. The study so far has investigated
16 patients with the results recorded below. You have been asked to investi-
gate the situation and to recommend whether or not more patients should be
investigated.

Percentages of Size
constituents

a b c d mg

29 9 22 40 44
35 15 19 31 16
33 8 25 34 40
25 10 30 35 123
21 10 15 54 35
22 12 18 48 32
27 11 19 43 68
27 13 18 43 27
29 12 17 42 11
28 12 21 39 18
43 7 23 26 46
36 9 17 38 14
29 11 20 40 72
21 15 19 46 32
28 10 25 37 30
34 12 15 39 36

Problem 5.10 Consider the use of the symptom data of Problem 1.3 for
purposes of differential diagnosis of forms A and B. Do you consider the mul-
tivariate kernel approach of Section 5.6 adequate for this purpose?

Problem 5.11 In a study of obesity in a certain group of 40 men a clinic has
been assigning indices of obesity, breathlessness and unfitness, all measured
on the scale of 0 to 1, and is now wondering to what extent these indices relate
to height (cm), girth (cm), weight (kg) and a diet index, also measured on a
scale of 0 to 1. The data are given in Table 5.9. You are asked to produce a
full report on the clinic’s question.

Problem 5.12 Review Section 5.4.2 and investigate the possibility that gen-
der interacts with the covariates.

Problem 5.13 Review and prepare a report on Problem 1.5.
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Table 5.9 Data for Problem 5.11

Obesity Breath- Unfitness Height Girth Weight Diet index
lessness (cm) (cm) (kg)

0.35 0.59 0.74 169 111 76 0.68
0.54 0.79 0.75 149 93 64 0.64
0.57 0.77 0.75 162 126 78 0.67
0.62 0.84 0.97 145 125 77 0.89
0.28 0.78 0.59 155 107 63 0.58
0.48 0.80 0.99 158 117 70 0.96
0.33 0.64 0.91 150 101 60 0.82
0.63 0.69 0.35 164 117 81 0.42
0.44 0.74 0.53 153 110 69 0.53
0.87 0.86 0.47 163 156 100 0.47
0.80 0.67 0.78 172 116 105 0.61
0.66 0.71 0.55 171 116 81 0.56
0.82 0.70 0.61 163 122 85 0.66
0.77 0.77 0.87 184 138 103 0.87
0.61 0.79 0.94 153 130 89 0.71
0.72 0.77 0.65 163 127 90 0.59
0.78 0.79 0.72 156 125 89 0.61
0.70 0.76 0.71 167 129 87 0.72
0.36 0.71 0.70 158 108 65 0.70
0.23 0.61 0.71 179 106 66 0.63
0.72 0.84 0.64 161 144 106 0.55
0.18 0.64 0.63 184 93 64 0.63
0.78 0.80 0.96 172 147 110 0.82
0.26 0.64 0.99 171 105 65 0.93
0.22 0.49 0.36 159 90 61 0.46
0.85 0.85 0.75 166 153 108 0.73
0.72 0.78 0.82 164 131 89 0.70
0.25 0.58 0.84 147 91 56 0.77
0.53 0.73 0.79 171 124 83 0.66
0.63 0.77 0.95 170 133 90 0.89
0.58 0.74 0.68 168 115 85 0.60
0.67 0.74 0.99 165 123 88 0.87
0.54 0.67 0.95 168 114 89 0.80
0.76 0.75 0.94 171 123 91 0.91
0.34 0.69 0.79 169 112 76 0.68
0.62 0.82 0.84 154 136 76 0.77
0.16 0.61 0.94 164 92 54 0.85
0.51 0.71 0.91 167 111 75 0.84
0.84 0.77 0.67 168 130 98 0.64
0.59 0.71 0.93 168 115 86 0.78
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CHAPTER 6

Observation and Measurement

6.1 Introduction

In our analysis of experience in the preceding chapter we proceeded on the as-
sumption that the observations and measurements constituting the data were
worth using. In this chapter we take a more critical look at the problems of
observing and measuring. Clinical medicine abounds with difficult problems
of measurement such as the conformity of measurements made by different
clinicians under similar working conditions, the identification of sources of
variability, the transferability of data from one clinic to another, the compar-
ison of different methods of measurement, the development of measurement
strategies to eliminate or at least to counter any sources of irreproducibility
and the consensus problems between different observers for both continuous
and categorical data. Since all of these problems involve variability and un-
certainty the statistician has often an important role to play in assessing the
merits of a method of observing or measuring, in advising on how the method
may be improved and in quantifying the effects of any remaining imprecision.

First we identify the various components of observational problems by con-
sidering a number of simple examples. We then examine particular problems
when more than one observer is involved. This kind of problem is clearly a
fundamental one. If two clinicians investigating the same patient make dif-
ferent observations the whole question of communicability of information is
raised. Observer error studies are now a popular form of such investigation.

6.2 The components of an observational problem

Consider the following everyday clinical observational problem. A clinician
examining a patient decides that it would be sensible to measure the patient’s
blood pressure. His standard equipment for this purpose is a sphygmometer or
a non-mercury equivalent. A rubber cuff connected to a mercury manometer or
a non-mercury equivalent is placed round the seated patient’s upper arm and
inflated until the column of mercury is seen to be above the blood pressure
expected. The clinician then places his stethoscope on the patient’s lower
arm and gradually releases the pressure in the cuff. At a certain stage in this
releasing process the clinician will hear characteristic sounds (Korytuk sounds)
which indicate that the pressure in the cuff is now equal to the patient’s
systolic blood pressure, that is the pressure at the pumping stroke of the heart.
He then reads off this pressure (in mm Hg) on the mercury column. He then
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proceeds to release further the air in the cuff until further characteristic sounds
are heard. His reading this time is the patient’s diastolic blood pressure, at the
refilling stroke of the heart. These two readings, systolic and diastolic blood
pressures, are recorded as an indication of the patient’s circulatory condition.

We can now begin to identify the different components of any observational
situation with reference to this example. First a clinician may be involved
in recording blood pressures for a whole series of his patients. It is therefore
convenient to have a suitable name for the series of entities measured, and we
refer to such an entity as a case. We use this impersonal word since the case
may refer not to a person but to a petri dish with bacterial colonies which a
technician has the task of counting or to a blood sample of origin unknown
to the steroid chemist who has to analyse it. For each case there is some
defined characteristic or feature which it is of interest to observe or measure.
In the present example the feature is systolic blood pressure or diastolic blood
pressure. Instead of considering these two one-dimensional features separately
we can refer to the two-dimensional feature blood pressure with components
systolic blood pressure and diastolic blood pressure. To observe or measure
a defined feature we need a technique or method of observing or measuring.
In the illustrative example the method is described as the sphygmometric
method, and the feature is measured by this method in terms of the effect of
blood pressure on the height of the mercury column. There are other methods
of recording blood pressures, e.g. by a direct catheter insertion method or a
Rose-box method, and interest may centre on the compatibility or the relative
effectiveness of such methods. The clinician plays an important role as observer
in this measurement process and it is clearly important in modern medicine
that there should be no subjective component in the measurement. It is highly
desirable that the measurement should be substantially the same as would be
obtained by any other clinician or qualified observer.

There is another important component of our illustrative example which we
must not overlook, namely the conditions, whether temporal, psychological,
environmental or material, under which the measurement is made. Normally
the method should spell out as precisely as possible the controlled conditions
under which the measurement process should be conducted and the observer
should try to ensure that the conditions are strictly adhered to. In the sphyg-
mometric method we carefully specified that the patient was to be seated.
But what if he or she has had to rush to the consulting room in order to
arrive in time, or is bubbling over with indignation at being kept waiting for
half an hour, or has recently taken a sedative to reduce apprehension of the
consultation. Do such variable conditions have an effect on the measurement?
Or should reclining rather than sitting be a recommended condition to en-
sure greater consistency? Clearly in any observational problem the conditions
component may play an important role.

When called upon to analyse any observational problem concerning some
feature the statistician is well advised as a very first step to identify the
components: case, method, observer, conditions.
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Earlier in this section we begged an important question of measurement by
talking about a defined feature. For some features such as number of fingers
or age verified by birth certificate there may be no serious problem here but
for others such as the extent of mobility of a recently broken arm or skin
thickness there are clearly problems of definition. For the apparently simple
feature such as blood pressure there are serious problems. If a person’s blood
pressure is continually monitored over 24 hours very large fluctuations will oc-
cur depending apparently not only on the person’s physical activity but also
on his or her mental activity or stress or psychological state. If there is such a
dynamic feature temporal variability in what sense is it sensible or meaningful
to attempt to search for a single measurement? Is it perhaps necessary to take
a series of measurements spaced through time or even a continuous record to
characterise the feature we envisage when we talk about blood pressure? The
statistician may well have a role to play resolving such questions. The basic
criterion of good observation or measurement is reproducibility. It is as well to
realise that as an operational criterion the concept of reproducibility is related
to the working circumstances under which we wish the observed or measured
feature to be meaningfully communicable. If for the feature of plasma con-
centration of aldosterone a hospital will ensure that all its measurements are
made by one method (double isotope) under identical conditions (specimen
collection, storage) then the only practical concern is, that for a given case,
method and conditions, the measurements made by different observers (steroid
laboratory technicians) should be substantially the same. If such were the case
we would say that there is (observer|case, method, conditions) reproducibility.
In this terminology the components of observation to the left of the vertical
bar are those which can vary in working circumstances and those components
to the right are those factors which we are satisfied are held constant under
measurement circumstances.

Once the kind of reproducibility of importance is specified we can begin to
consider the kind of design required for a measurement study to investigate
the extent of the reproducibility. In the present case we would want either all
the observers (if few in number) or a random selection of such observers to
make replicate determinations on aliquots of a random selection of cases or
blood samples. Since any valid method is going to be applied to many cases
it is only sensible to investigate measurement over a representative subset of
cases. We would insist on replicates for two reasons. First to allow the inves-
tigation of whether there is any interaction between observers and cases. If
we find that there is observer variability then for any satisfactory measure-
ment of this plasma concentration we must clearly insist on the one observer
carrying out all determinations unless we can find subtler ways of overcoming
this irreproducibility. Even with a single observer we may not be out of the
woods since we have to consider (replicate|case, method, observer, conditions)
reproducibility, in other words how variable are replicate determinations made
on the same case with the same method by the same observer under the same
conditions.
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Again if two clinics, one using a double isotope method under constant con-
ditions and the other a radioimmunoassay method under constant conditions
and both clinics using more than one observer, are obliged to produce compat-
ible results we would require to investigate (method, observer|case, conditions)
reproducibility. For a satisfactory design for such a reproducibility investiga-
tion we should ideally have enough aliquots from each blood sample (case) to
allocate at least two to each (method, observer) combination.

It is surely now clear that there is a great variety of reproducibility problems
and that the design and analysis of the observational experiment must be
dictated by the circumstances of the practical situation. In particular areas of
study specialist words for reproducibility have been coined such as precision,
sensitivity, selectivity, repeatability. It is, however, sensible for the statistician
to model carefully any new situation in terms of the concepts just presented.
These concepts will be amply demonstrated and developed in the practical
applications in the remainder of this chapter.

It will be convenient to use a consistent subscript notation throughout to
identify the various components, and we use the subscript i for cases and j
for observers.

We summarise the main problems of observational experiments in terms of
the following questions which may usually be usefully posed.

(i) Identify case, feature, method, observer, conditions, replicate.
(ii) Does the method of measurement adequately represent the feature of

interest? Is the method of measurement feasible on grounds of cost,
ethics, etc?

(iii) Under what operational circumstances should observations be repro-
ducible?

(iv) Can we design an observational experiment to test for this reproducibil-
ity?

(v) If so, can we analyse the experiment to test for the reproducibility?
(vi) If there is irreproducibility is it of practical consequence in terms of

clinical vs. statistical significance and, if so, can we identify the sources
of the irreproducibility?

(vii) If irreproducibility is of practical importance and we cannot control the
factors responsible are there any devices of measurement by which we
can overcome its effect?

The role of sources of variation in maximal parametric modelling
We have outlined the possible sources of variation that can affect an observed
value. We now consider how these sources affect our approach to (a) model
fitting then (b) building up our experience.

We take the approach that in this situation our experimental data set D
constitutes observations made under different combinations of the conditions.
The probability model describingD is based on the probability model p(v|u, δ)
describing the observed v for true u under the given experimental conditions,
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where δ is the parameter in the maximal probability model p(v|u, δ). The aim
of the exercise is to analyse D to see to what extent we can reduce or relate
our maximal model to a working theoretical model p(v|D) for a new case,
estimated from D and indeed how the appropriate form of the probability
model fitted to D dictates how we build up future experience in a fashion
that appropriately reflects the sources of variation in the observations in D.

6.3 An observer error study of a diagnostic ratio

In the examination of heart X-rays radiologists regard the ratio of the trans-
verse diameter of the heart to the transverse diameter of the thorax as a
useful diagnostic index. Traditionally the magnitude of this diagnostic ratio
is judged visually without any direct measurement being recorded. The ques-
tion now being posed is whether this ratio could be quantified in the sense
that its computation from measurements made by one radiologist would be
conformable with that from measurements made by another radiologist. Only
in such circumstances would such a quantitative index be reliably objective.

To investigate the feasibility of this index as a worthwhile recordable mea-
surement an observer error study had been carried out as part of a larger scale
assessment of the measurability of heart X-rays.

Five consultant radiologists were each presented with 65 heart X-rays on
a standard displaying screen in randomised order and asked, by actual mea-
surement with a ruler, to record certain lengths and angles whose definitions
all had agreed. Table 6.1 shows the six basic measurements recorded in data
set dratio.

Table 6.1 Definition of the heart X-ray measurements

v1 : Heart size: midline to right heart border at widest part.
v2 : Heart size: midline to left heart border at widest part.
v3 : Transverse diameter of thorax at widest part.
v4 : Aortic knuckle: midline to right aortic margin.
v5 : Aortic knuckle: midline to left aortic margin.
v6 : Cardiac shadow area, by planimetry.

For the moment we shall confine our attention to the diagnostic ratio which
is defined as (v1+v2)/v3. For two of the radiologists 15 of the heart X-rays were
presented once again in a randomised order without the radiologist’s knowl-
edge that these were repeats. These data are recorded in data set dratio2.

Our first task in the analysis of this problem is to identify its components in
the terminology of the preceding paragraph and these are given in Table 6.2.
Since we are concerned only with the one simple method of measurement and
fairly constant measurement conditions we concentrate on the problem of case
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Table 6.2 Components in the diagnostic ratio study

Case: heart X-ray
Feature: diagnostic ratio
Observer: radiologist
Method: visual study and measurement with a ruler
Conditions: visual inspection conditions, such as lighting

reproducibility over observers. We adopt the notation

vijr (i = 1, . . . , 15; j = 1, 2; r = 1, 2)

to denote the rth replicate measurement of the diagnostic ratio of the jth
radiologist on the ith heart X-ray. Our aim then is to model the variability
in the vijr and to investigate the extent to which this depends on case and
observer. Since in this application the cases and the observers are simply rep-
resentative of the wider population of cases and observers we adopt a random
effects approach in our modelling. The fact that there is replication allows us
to consider the possibility of case-observer interaction in the variability. Our
model then sets

vijr = µ+ ai + bj + (ab)ij + eijr

where the ai, bj and (ab)ij are the random effects due to case, observer and
case×observer interaction and all are independently distributed as N(0, σ2

a),
N(0, σ2

b ) and N(0, σ2
ab), respectively, and the error terms eijr are distributed,

again independently, as N(0, σ2
e). Our first aim is to apply a maximum like-

lihood procedure to the testing of the lattice of hypotheses concerning σ2
a, σ

2
b

and σ2
ab. To achieve this we have to obtain the parameters of the normal

distribution of the 60-dimensional vector

v =
[
v1,11 v1,12 v1,21 v1,22 v2,11 v2,12 v2,21 v2,22 · · · v15,22

]
.

We may rewrite the model as the following linear mixed-effects model for
v, denoting by c a column-vector all of whose entries are unity.

v = µc+ Z1r
T
1 + Z2r

T
2 + Z3r

T
3 + e, (6.1)

where
r1 = [a1, a2, . . . , a15],
r2 = [b1, b2],
r3 = [(ab)1,1, (ab)1,2, . . . , (ab)15,1, (ab)15,2]

and

ZT
1 =

⎡
⎢⎢⎢⎣

1111 0000 · · · 0000
0000 1111 · · · 0000

...
...

. . .
...

0000 0000 · · · 1111

⎤
⎥⎥⎥⎦ ,
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ZT
2 =
[

11 00 11 00 · · · 11 00
00 11 00 11 · · · 00 11

]
,

ZT
3 =

⎡
⎢⎢⎢⎣

11 00 · · · 00
00 11 · · · 00
...

...
. . .

...
00 00 · · · 11

⎤
⎥⎥⎥⎦

and so the distribution of v, and hence the likelihood,

L
(
µ, σ2

a, σ
2
b , σ

2
ab, σ

2
e |v
)

is determined.

(87.2, P< 10−4)

σ2
a = 0, σ2

b = 0, σ2
ab = 0

(87.2, P< 10−4)

Case + Observer

(123.4, P=0.30)

Observer

Maximal Model: Case * Observer

σ2
ab = 0

(124.0, P=0.29)

Null

Case

σ2
a = 0, σ2

ab = 0

(124.6)
E(v|r1, r2, r3) = µc + Z1rT

1 + Z2rT
2 + Z3rT

3

σ2
b = 0, σ2

ab = 0

Figure 6.1 Lattice of hypotheses for the diagnostic ratio study. At each node the
value of the REML loglikelihood is shown, together with the P -value associated with
the approximate test of the stated hypothesis within the maximal model.

The variance components were estimated using the method of restricted
maximum likelihood (REML) under the maximal model, and the hypotheses
of the lattice of Figure 6.1 were tested using the nlme software package. For
the maximal model the REML estimates are

µ̂ = 0.450, σ̂2
a = 2.58 × 10−3, σ̂2

b = 2.86 × 10−5,

© 2004 by Taylor & Francis Group, LLC

  



170 OBSERVATION AND MEASUREMENT

σ̂2
ab = 9.04 × 10−5, σ̂2

e = 2.97 × 10−4,

with maximized REML loglikelihood 124.6. The results obtained using stan-
dard lattice testing from lower to higher levels and given in Figure 6.1 lead to
a working model associated with a case only effect:

vijr = µ+ ai + eijr,

with REML estimates

µ̂ = 0.450, σ̂2
a = 2.60 × 10−3, σ̂2

e = 3.76 × 10−4.

The P -values reported in Figure 6.1 are based on asymptotic likelihood ra-
tio tests. However, due to the fact that in each case the hypothesis lies on
the boundary of the parameter space, the P -values need to be viewed with
some caution. Normally, in order to compute more exact P -values, one would
conduct Monte Carlo versions of the tests, but in this case the results are
so clear that these are omitted. We note that while the observer error is not
deemed statistically significant its magnitude relative to the case error can be
estimated from the maximal model as σ̂b/σ̂e = 0.09. It is up to the clinician
to decide whether this is clinically significant. We may also obtain from the
nlme output confidence intervals for σa and σe and they are (0.0348, 0.0749)
and (0.0158, 0.0238), respectively.

It is important to distinguish between two different uses to which the work-
ing model may be put. First suppose that heart X-rays of the study are from
normal, healthy persons and we wish to provide some indication of the nor-
mal range of diagnostic indices. Then the appropriate distribution on which to
base the variability of a diagnostic index v is φ(v|µ, σ2

a+σ2
e) or some predictive

equivalent, and so an appropriate 95 per cent normal range would be{
µ̂− 2
√

(σ̂2
a + σ̂2

e), µ̂+ 2
√

(σ̂2
a + σ̂2

e)
}

= (0.341, 0.556).

Suppose, however, that we are assessing a new case and an observer has
recorded v for the diagnostic ratio, and we wish to make some statement
about the true diagnostic ratio u. Here we are not interested in the variabil-
ity between cases and any inference about imprecision must be based on the
appropriate distribution, namely φ(v|u, σ2

e). Thus as an approximate 95 per
cent interval for β we could take (v − 2σ̂e, v + 2σ̂e) so that for an observed
diagnostic ratio of 0.490 we would obtain an interval (0.451, 0.529).

In our maximum likelihood analysis for arriving at a normal range and at
a measure of imprecision for a new case we used an estimative method. We
now provide a Bayesian analysis which uses the predictive method and which
also avoids the possibility of negative components of variance.

For the normal range problem the working model for predicting the variabil-
ity of a new case with a possibly new observer is φ(v|µ, σ2

a+σ2
e) for one replicate

v. The predictive form for this model can be estimated simultaneously with
the variance components to give highest posterior density estimates. We also
compute a 95 per cent prediction interval for a future observation and, given
an observed diagnostic ratio of 0.49, a 95% inverse prediction interval for the

© 2004 by Taylor & Francis Group, LLC

  



AN OBSERVER ERROR STUDY OF A DIAGNOSTIC RATIO 171

corresponding true diagnostic ratio u. This analysis was performed using the
WinBUGS package with the following model.

vijr ∼ N(µi, σ
2
e ),

µi ∼ N(µ, σ2
a),

v1 ∼ N(µ, σ2
a + σ2

e ),
v2 ∼ N(u, σ2

e).

Note that the model for the vijr has been expressed using hierarchical re-
centering so as to avoid problems due to lack of identifiability. The term v1
denotes a future observed diagnostic ratio, while v2 and u denote, respec-
tively, an observed and the corresponding true diagnostic ratio. The following
independent non-informative priors were also used.

µ ∼ N(0, 106),
u ∼ N(0, 106),
σa ∼ U(0, 100),
σe ∼ U(0, 100).

In WinBUGS, three parallel chains were run. The results from a burn-in of
5,000 samples were discarded. The chains were run for a further 5,000 samples
and the output was used to check the equilibrium of the process. Examination
of autocorrelation plots and trace plots suggested that the chains were mixing
well and were in equilibrium and this was supported by the Brooks-Gelman-
Rubin convergence statistics. A further 5,000 samples were generated from
the three chains and the results are given in Table 6.3.

Table 6.3 WinBUGS output for the observer error study of diagnostic ratio

Node Mean SD MC error 2.5% Median 97.5%

v1 0.4499 0.0636 5.276E-4 0.3250 0.4501 0.5755
v2 0.4899 0.0199 1.450E-4 0.4510 0.4900 0.5290
µ 0.4501 0.0151 1.317E-4 0.4190 0.4502 0.4796
σa 0.0564 0.0126 1.362E-4 0.0378 0.0545 0.0872
σe 0.0199 0.0022 2.432E-5 0.0162 0.0197 0.0247

From the 2.5% and 97.5% columns we may find highest posterior intervals
for σa and σe and the predictive intervals for v1 and v2 and the true diagnostic
ratio, which are in reasonable agreement with the REML results. We note that
the Bayesian intervals for v1 and u are slightly wider than their estimative
counterparts, as we would expect because the uncertainties in the parameter
estimates are being accounted for in the modelling.
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6.4 An observer error study of multivariate heart measurements

In a larger study of heart X-ray measurements five consultant radiologists
recorded the six measurements v1, . . . , v6 of Table 6.1 for each of 65 cases
presented in randomized order, different for each radiologist. The complete set
of 325 six-dimensional vectors of measurements is given in data set dratio.

If vij denotes the vector of measurements of the ith heart X-ray by the jth
radiologist then the simple fixed effects multivariate model

vij = µ+ αi + βj + eij

will allow us to investigate the possibility of a radiologist effect. Note that
there is no replication within an observer in this study so that there is no
possibility of investigating case×observer interactions. For the sake of sim-
plicity we use fixed effects rather than random effects. This, of course, means
that the results are applicable only to the cases and observers included in this
experiment and that generalisation to other cases and observers is strictly not
possible on statistical grounds. The relevant lattice of hypotheses is shown in
Figure 6.2. The appropriate tests used here are discussed in Section 3.10 and
depend on the values of the determinants of the sums-of-squares and cross-
products residual matrices which are also shown in logged form in Figure 6.2.
All hypotheses are rejected so that we require to use the maximal model with
case effects, as we would expect, and observer effects.

αi = βj = 0
log|R|=63.1

P < 10−5

Null

log|R|=62.6log|R|=49.0

Case Observer

P < 10−5

log|R|=47.4

E(v) = µ + αi + βj

P < 10−5

αi = 0βj = 0

Maximal Model: Case + Observer

Figure 6.2 Lattice of hypotheses for multivariate heart measurements. At each node
the value of the logged residual determinant is shown, together with the P -value
associated with the approximate test of the stated hypothesis within the maximal
model.

In view of the finding in Section 6.3 that there was no statistically sig-
nificant observer error in diagnostic ratio assessments it is of interest to ask
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whether, despite significant error differences in this larger study, the diag-
nostic ratio may retain this stable between-observer property. By taking a
random-effects approach and performing a similar linear mixed-effects analy-
sis to that discussed in Section 6.3 we display the results of lattice-testing in
Figure 6.3. Since there is no replication there is no possibility of investigating
case×observer interaction. Box-Cox analysis and Q-Q plotting suggest that
no transformation is required. The inference is the same as for the previous
study in that there is significant variability among the cases but no signif-
icant observer variability. The 95% confidence intervals for σα and σe are
(0.047, 0.067) and (0.012, 0.014) respectively.

(805.5, P=0.13)

(806.7)

Observer

Maximal Model: Case + Observer

(465.8, P < 10−4)
σ2

a = 0, σ2
b = 0

σ2
a = 0σ2

b = 0
(465.8, P < 10−4)

E(v|r1, r2) = µ1 + Z1rT
1 + Z2rT

2

Case

Null

Figure 6.3 Lattice of hypotheses for the second diagnostic ratio study. At each node
the value of the REML loglikelihood is shown, together with the P-value associated
with the approximate test of the stated hypothesis within the maximal model.

6.5 An observer error study of cell counts

The objectives of this study are to determine whether ‘observer error’, either
in the form of an observer being unable to reproduce stable relative counts of
labelled to unlabelled cells or in the form of variability across selected areas of
tissue, is important and to provide an idea of the degree of precision attaching
to the counting process for a future patient. In the pilot study considered here
only one observer A is involved, making one count on a first area of tissue
and two (replicate) counts on a second area of tissue for each of ten cases.
For the purposes of our statistical analysis it is convenient to imagine three
‘observers’, defined in the following way:

Observer 1 is A with his only count on area 1.
Observer 2 is A with his first count on area 2.
Observer 3 is A with his second count on area 2.
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Note also that since only one person is involved in the counting process there
is no possibility of assessing the variability that there may be between different
persons assigned the counting process. Data set cells provides information
on the numbers L,U of labelled and unlabelled cells counted within each area.

Since each pair (L,U) is essentially determining the composition of the
area we use the natural logratio transformation v = log(L/U) in order to
investigate sources of variability. We again consider a linear mixed model
approach that is similar to that used in Section 6.3. Let vij denote the logratio
count recorded for case i (i = 1, 2, . . . , 10) by ‘observer’ j (j = 1, 2, 3). As a
first step in our analysis we may therefore imagine the maximum possible
explanation in the variation of the vij in terms of the model

vij = µ+ ai + bj + eij ,

where µ is a general mean, the ai are mutually independent N(0, σ2
a) random

effects, the bj are mutually independent N(0, σ2
b ) random effects and the εij

are independent N(0, σ2
e) random errors. Therefore σ2

a and σ2
b are components

of variability due respectively to cases and observers.

(-45.83, P< 10−5)

(-45.83, P< 10−5)(-30.82, P=1)

(-30.82)

Observer

Maximal Model: Case + Observer

σ2
a = 0, σ2

b = 0

σ2
a = 0σ2

b = 0

E(v|r1, r2) = µ1 + Z1rT
1 + Z2rT

2

Case

Null

Figure 6.4 Lattice of hypotheses for cell count study. At each node the value of the
REML loglikelihood is shown, together with the P -value associated with the approxi-
mate test of the stated hypothesis within the maximal model.

Hypotheses of interest can then be posed within this model in terms of
these variance components. The hypothesis σ2

a = 0 means that there is no
variation in logratio count from case to case, whereas the hypothesis σ2

b = 0
indicates that there is no variability among observers. Figure 6.4 shows the
complete lattice of hypotheses together with the associated tests. Standard
lattice testing results in the acceptance of the ‘inter-case variability’ hypothesis
as our working model. There is no statistically significant variability among
observers in addition to case-to-case variation. The 95% confidence intervals
for σa and σe are (0.66, 1.73) and (0.30, 0.56) respectively.
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Having reported this finding to the observer we added the following com-
ments. All the above is concerned with statistical significance. Let us put
to you another view of observer error studies which is more concerned with
clinical significance.

The objective of an observer error study is surely to determine the extent to
which variability within an observer (for example, you on replicated counts)
or between observers (this cannot be assessed in your study) is clinically sig-
nificant. Suppose that your true observer count proportion pT = L/(L + U)
and in log-ratio form vT = log{pT /(1− pT )}. In terms of our modelling above
the logratio

v = log
p

1 − p
varies for a given case about a mean vT normally with standard deviation σ.
You can imagine σ to make allowance for all the various kinds of observer
error (replication and area) you are prone to, together with any other unex-
plained error. In other words, we are supposing that the only differences lies
in cases but that counting is prone to imprecision. From the nlme output a
safe estimate σ̂ of σ would then be σ̂ = 0.411. Then we could place a 95 per
cent confidence interval (making allowance for observer and other error) on
vT as approximately

vobs − 2 × 0.411 < vT < vobs + 2 × 0.411

leading to a corresponding confidence interval for pT :

exp(vobs − 0.822)
1 + exp(vobs − 0.822)

< pT <
exp(vobs + 0.822)

1 + exp(vobs + 0.822)
.

Thus if the observed proportion of L to L + U is pobs = 0.1 (10 per cent)
then vobs = log(0.1/0.9) = −2.197 so that the confidence interval for the true
proportion pT is

0.047 < pT < 0.202.
Thus if, for example, the treatment of the new case depends on this proportion
being below, say, 0.15 a single count leading to an observed proportion 0.1
would leave doubts about whether to treat, or not.

6.6 A comparison of large and small X-rays for diagnosis

An interesting problem of observer error was introduced in Section 1.7. The
storage of standard X-rays is becoming an increasingly pressing problem and
various alternatives have been suggested. The current investigation concerns
the possibility of replacing the large film by a small one prepared from it.
Should a diagnostic assessment of the patient be required later when the large
film has been destroyed will the small film be adequate for this purpose? To
obtain a fair assessment of the relative effectiveness of the two sizes we clearly
require to study the diagnostic performance of radiologists presented with
large and small films for the same set of patients, whose diagnosis is known
from other investigations.
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In the study large and corresponding small X-rays of 90 patients, suffering
from a variety of conditions, were used. Each of three consultant radiologists
was presented with the sequence of 90 large films in random order and asked
to reach a diagnosis for each. They were then asked later to reach diagnoses
based on the 90 small films presented again in a random order different from
the order for the large films. Since the correct diagnosis was known for each of
the 90 cases the diagnosis reached by the radiologist for a particular film could
be recorded simply as correct (C) or wrong (W). Data set xrays presents these
results.

Since the diagnosis is known for each case we can conveniently consider the
observation v as a binary response with v = 1 denoting a correct, and v = 0 a
wrong, diagnosis. For case i (i = 1, . . . , 90) let vijk be the response of observer
j (j = 1, 2, 3) with the kth size of X-ray film (k = 1 for large, k = 2 for small).
A now standard way of modelling the response probabilities is

Pr(vijk = 1|case i, observer j, size k) =
exp(µ+ αi + βj + γk)

1 + exp(µ+ αi + βj + γk)
,

Pr(vijk = 0|case i, observer j, size k) =
1

1 + exp(µ+ αi + βj + γk)
.

Since there is no replication in this study there is no possibility of investigating
any interactions and we have not introduced any interaction terms in the linear
predictor µ+ αi + βj + γk.

The parameter dimension 96 here is high and although it is feasible to
proceed to a formal maximization of the full likelihood based on the vijk data
there is an elegant way of avoiding the embarrassment of the large number of
parameters. While it has been convenient in our initial modelling to introduce
the parameters αi (i = 1, . . . , 90) to remind ourselves that cases may differ
in difficulty these αi are essentially nuisance parameters and of no immediate
interest. We virtually know that the αi will differ and we need concentrate only
on β1, β2, β3 and γ1, γ2. This can be achieved by conditional density functions
or probabilities, which do not depend on the nuisance parameters and from
which a ‘partial likelihood’ may be formed and used to investigate relevant
hypotheses. To simplify our exposition of this partial likelihood method we
confine attention first to the radiologists’ performance with the large X-rays.

Analysis of the large X-ray study
In our modelling of performance with the large X-rays we may drop the

subscript k and let vij denote the response (correct or wrong) on the ith case
by the jth observer and adopt the full model with

Pr(vij = 1|case i, observer j) =
exp(µ+ αi + βj)

1 + exp(µ+ αi + βj)
,

Pr(vij = 0|case i, observer j) =
1

1 + exp(µ+ αi + βj)
.

For each case we can list in Table 6.4 eight possible triplets of responses
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Table 6.4 Large X-rays: response probabilities

Observers Probability
1 2 3

C C C δi1δi2δi3/∆i

W C C δi2δi3/∆i

C W C δi1δi3/∆i

C C W δi1δi2/∆i

W W C δi3/∆i

W C W δi2/∆i

C W W δi1/∆i

W W W 1/∆i

together with the associated probabilities given by the full model, with the
notation

δij = exp(µ+ αi + βj), ∆i =
3∏

j=1

(δij + 1).

We have grouped the response triplets according to the total number of wrong
diagnoses as it is on the basis of conditioning of these totals that we can elim-
inate the nuisance parameters. For example, given that exactly one diagnosis
is wrong the conditional probability that it is observer 1 who has the wrong
diagnosis (that is, that the triplet recorded is (1 0 0)) is

δi2δi3/∆i

δi2δi3/∆i + δi1δi3/∆i + δi1δi2/∆i

=
exp(β2 + β3)

exp(β2 + β3) + exp(β1 + β3) + exp(β1 + β2)

which does not depend on the nuisance parameters. The complete set of these
conditional probabilities is listed in Table 6.5. In this table

∆1 = eβ2+β3 + eβ1+β3 + eβ1+β2 , ∆2 =
3∑

i=1

eβi .

Each of the recorded response triplets contributes its appropriate condi-
tional probability to the partial likelihood, which is simply the product of all
these conditional probabilities. Note that the triplets (0, 0, 0) and (1, 1, 1)
make no contribution to the partial likelihood. This is intuitively obvious since
any case for which all three radiologists get the diagnosis correct (or wrong)
provides no possible clue as to the relative accuracies of the radiologists.

The parametrization of the model as specified is conveniently symmetric in
β1, β2, β3 but these parameters are technically not identifiable. For example,
β1 + κ, β2 + κ, β3 + κ yield the same conditional probabilities and therefore
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Table 6.5 Large X-rays: partial likelihood formulae

Observers Contribution to
1 2 3 Partial Likelihood

W C C eβ2+β3/∆1

C W C eβ1+β3/∆1

C C W eβ1+β2/∆1

W W C eβ3/∆2

W C W eβ2/∆2

C W W eβ1/∆2

the same partial likelihood as β1, β2, β3. This is easily remedied for compu-
tational purposes by the introduction of a simple constraint such as β1 = 0
or β1 + β2 + β3 = 0 and working effectively with two parameters β2, β3. The
hypothesis H of no observer error can then be expressed as β2 = β3 = 0 and
this can be tested readily within the maximal model M with general β2, β3.
The maximized loglikelihoods are lM = −26.86, lH = −28.56. Since the gen-
eralized likelihood ratio test at the 5 per cent level rejects the hypothesis of
no observer differences if 2(lM − lH) > 5.99, the 95 percentile of the χ2(2)
distribution, and since here 2(lM − lH) = 3.4, there is clearly in this study no
significant evidence of any radiologist effect. It should be pointed out, how-
ever, that although there are 90 cases in the study only 25 of these contribute
to the partial likelihood so that the effective sample size is 25.

Comparison of large and small X-rays
Returning to the main problem of whether there is any difference in the use

of large and small X-rays we have the unconditional probabilities associated
with the vijk.

Pr(vijk = 1|case i, observer j, size k) =
exp(µ+ αi + βj + γk)

1 + exp(µ+ αi + βj + γk)
,

Pr(vijk = 0|case i, observer j, size k) =
1

1 + exp(µ+ αi + βj + γk)
.

Again we can rid ourselves of the nuisance parameters αi by constructing
for each sextuplet of responses a partial likelihood based on conditional prob-
abilities given the total number of wrong diagnoses recorded. This process
is obviously more complicated than that for the large X-ray study and we
shall illustrate the contributions to the partial likelihood by a few examples.
Consider the sextuplet of responses ordered as follows:

Observer 1 Observer 2 Observer 3
Large Small Large Small Large Small
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Table 6.6 Probabilities of response configurations with two wrong diagnoses

Observer 1 Observer 2 Observer 3 Probability
Large Small Large Small Large Small

W W C C C C δi21δi22δi31δi32/∆i

W C W C C C δi12δi22δi31δi32/∆i

W C C W C C δi12δi21δi31δi32/∆i

W C C C W C δi12δi21δi22δi32/∆i

W C C C C W δi12δi21δi22δi31/∆i

C W W C C C δi11δi22δi31δi32/∆i

C W C W C C δi11δi21δi31δi32/∆i

C W C C W C δi11δi21δi31δi32/∆i

C W C C C W δi11δi21δi22δi31/∆i

C C W W C C δi11δi12δi31δi32/∆i

C C W C W C δi11δi12δi22δi32/∆i

C C W C C W δi11δi12δi22δi31/∆i

C C C W W C δi11δi12δi21δi32/∆i

C C C W C W δi11δi12δi21δi31/∆i

C C C C W W δi11δi12δi21δi22/∆i

Table 6.6 lists all the response sextuplets for which exactly two responses
are wrong together with the conditional probabilities. The notation used sets

δijk = exp(µ+ αi + βj + γk),

∆i =
3∏

j=1

2∏
k=1

{1 + exp(µ+ αi + βj + γk)}.

Each conditional probability is obtained from the corresponding unconditional
probability by dividing by the sum of the fifteen unconditional probabilities.
The probabilities are given in Table 6.6 and we now discuss the form of the
exponents of some of them. Thus for response pattern WW CC CC the ex-
ponent contains −2β1. This pattern provides no direct information on the
relative merits of large and small X-rays so that γ1 and γ2 are missing from
the exponent, whereas it indicates for that case the inferiority of observer 1
relative to observers 2 and 3 with the −2β1 feature. Similarly for response
pattern CW CC CW the exponent contains −β1 − β3 + γ1 − γ2 and this in-
dicates support for large against small with γ1 − γ2 in the exponent and also
indicates that observers 1 and 3 are inferior in this case with a subsequent
−β1 − β3 in the exponent.

It should now be obvious how conditional probabilities can be constructed
for other sextuplets and how the partial likelihood can be constructed as a
product of all the conditional probabilities associated with recorded sextu-
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Table 6.7 Comparison of models for X-ray data

Model Dimension Loglikelihood

Observer + Size 4 −107.4
Observer 3 −107.5

Size 2 −107.6
Null 1 −109.4

plets. We note again that the all correct sextuplet (CC CC CC) and the all
wrong sextuplet (WW WW WW) make no contribution to the partial likeli-
hood since neither gives information with respect to differences in observer or
size.

Again the non-identifiability of the parameters caused by the symmetric
development can be easily removed by setting β1 = 0 and working with the
parameters β2, β3 and γ = γ1 − γ2 . The relevant maximized loglikelihoods
and the parameter dimensions are given in Table 6.7. Clearly, no significant
observer or size effects are detected.

6.7 Bacteria counts

We now reconsider the data on hospital bacterial counts which were first
discussed in Section 1.8 and displayed in Table 1.4. We denote the count on
the ith plate from the jth observer by vij and take as maximal model the
following Poisson regression model with hierarchical random-effects:

M2 : vij ∼ Po(µij)

with
log µij = µ+ ai + bij ,

where the ai and the bij are mutually independent with ai ∼ N(0, σ2
1) and

bij ∼ N(0, σ2
2) and µ is a fixed effect. In this model the parameter σ2

1 represents
the variability in bacterial count from plate to plate while σ2

2 is the variability
in count among observers within plates. We also consider two special cases of
model M2: in model M1 σ

2
2 is zero and so only plate-to-plate count variability

is allowed for and in model M0 the mean count is taken to be a fixed constant
and both σ2

1 and σ2
2 are zero. All three models were fitted and parameter

estimates and model deviance computed using WinBUGS. The parameters µ,
σ1 and σ2 were assumed to be a priori independent with ‘non-informative’
priors

µ ∼ N(0, 104) σ1 ∼ U(0, 100) σ2 ∼ U(0, 100).

In the case of model M2 three parallel chains were run from dispersed ini-
tial values for the parameters. The results of the first 5,000 iterations were
discarded as burn-in and the chains run for a further 5,000 iterations during
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which convergence was monitored. Examination of trace and autocorrelation
plots showed that the chains were stationary and that the chain for σ1 indi-
cated the presence of a fair degree of autocorrelation. The BGR convergence
statistics were checked and showed no cause for alarm. Due to the autocorre-
lation in the σ1 chain the chains were each run for a further 10,000 iterations,
giving 30,000 in all. As the Monte Carlo error was sufficiently small relative
to the standard deviation of σ1, in particular, estimates were based on the
results of these 30,000 iterations. As the models M1 and M0 are simpler than
M2 the diagnostics were checked using the trace and autocorrelation plots of
a single chain and convergence was faster. The results for all three models are
shown in Table 6.8.

Table 6.8 Bacterial count models, interval estimates and deviances

Model 95% HPD Intervals Deviance
α σ1 σ2

M2 (3.8, 5.0) (1.01, 1.98) (0.040, 0.096) 40.7
M1 (3.8, 5.0) (1.01, 1.98) — 80.2
M0 (5.1, 5.2) — — 13,400.0

Clearly models M1 and M2 are strongly preferred to model M0 on the basis
of mean posterior deviance. The drop in deviance from model M1 to model
M2 is also large and this suggests that we should adopt the maximal model
M2. This means that there is significant observer variability within plates in
addition to the (much larger) variability from plate to plate.

6.8 Bibliographic notes

The objective of this chapter has been to give an overall view of how observer
error studies in a variety of forms can be used to ensure that the data used to
describe experience are reliable and reproducible. There is a wide literature
on such observer error studies and since most of it involves standard types of
analysis such as analysis of variance with fixed, random or mixed effects we
need not pick out any particular reference text; see, however, Dunn (1989).
What we do wish to emphasise is again the good sense of constructing at the
outset of such analyses a lattice of all the relevant hypotheses rather than use
so-called ANOVA (analysis-of-variance tables) and MANOVA (multivariate
analysis of variance tables), which, in our view, are little more than compu-
tational devices. In a way this chapter emphasises the good sense of spending
time modelling the situation presented. Good examples of this are the cell-
count problem of Section 6.5 and the comparison of large and small X-rays of
Section 6.6. In the first it is important to realise the compositional nature of
the data and model accordingly. In the second the fact that some of the data
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provide no information on the relative merits of large and small X-rays can
be easily overlooked. For example, we can report that when such a data set is
presented to mature statistical students in a practical class there is a tendency
to amalgamate the data into an uninformative contingency table and apply
an inappropriate chi-squared test. The analyses presented in Section 6.6 are
based on the concept of partial likelihood; see Cox (1975).

6.9 Problems

Problem 6.1 The determination of granule densities on microscopic slides
has been causing problems and so a series of observer error studies has been
conducted. The three studies are described in the tables below. You are asked
to report on the nature of the variability and to make recommendations on
future practice.

Replicate determinations of granule densities in five fields by two observers.

Observer Field
1 2 3 4 5

1.98 1.22 1.16 1.27 0.98
1 1.87 1.40 1.11 1.35 0.90

1.86 1.20 1.21 1.46 0.99

2.68 1.65 1.14 1.57 0.79
2 2.66 1.57 1.23 1.65 0.93

2.68 1.68 1.14 1.45 0.75

Replicate determinations of granule densities in ten fields by a single
observer.

Field
1 2 3 4 5 6 7 8 9 10

2.05 1.96 1.75 3.10 2.70 1.20 6.90 4.90 6.60 6.30
2.08 1.73 1.72 3.60 2.62 1.42 6.90 4.20 6.68 6.54
2.02 1.87 1.84 3.75 2.80 1.42 6.50 4.71 6.88 6.60
2.05 2.05 1.10 3.84 2.97 1.48 6.30 4.32 6.07 6.50
1.98 2.02 1.60 3.85 2.89 1.37 6.93 4.61 6.80 6.15
1.97 2.06 1.38 3.75 3.00 1.38 6.62 4.51 6.45 6.70
1.85 1.89 1.67 3.95 3.10 1.42 6.21 4.57 6.56 6.18
2.14 1.82 1.50 3.07 1.44 6.50 4.25 6.25 6.45
2.19 1.88 1.76 1.24 6.55 4.67 6.64 6.37
2.28 1.50 1.74 1.46 6.80 4.48 6.40 6.50
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Determinations made by a single observer of granule densities in unstained
(U) and stained (S) sections from ten different fields.

Field
1 2 3 4 5 6 7 8 9 10

U 1.18 1.70 0.84 3.39 3.10 4.96 2.13 1.70 2.50 0.96
S 1.33 2.20 1.02 3.48 5.60 5.06 3.18 1.73 2.67 1.80

Problem 6.2 New safety measurements in a hypertension clinic have meant
the replacement of the standard column-of-mercury meter by another cuff-
meter. Also there is a proposal that an innovative automatic recorder of blood
pressure should be introduced. A pilot investigation into the reproducibility
of blood pressure reading has been conducted. Three clinicians in the course
of their routine work have used the cuff-meter on 20 different patients, 60
patients in all, and their readings on these patients have been simultaneously
recorded by the automatic method, unseen by the clinicians. The results for
systolic blood pressures (mg Hg) are given below.

Clinician

C1 C2 C3

auto cuff auto cuff auto cuff

172 171 210 215 190 188
201 203 212 219 192 187
181 183 191 198 173 168
173 177 201 208 195 189
168 167 185 190 207 202
184 182 192 195 230 222
205 207 193 198 197 194
167 166 214 219 226 220
193 193 203 210 188 186
195 196 195 202 170 170
188 189 188 198 181 178
214 215 190 196 184 180
207 210 173 178 207 204
250 253 209 215 170 164
171 169 217 222 193 189
198 199 176 182 174 171
210 209 227 234 143 140
184 182 186 192 200 194
205 205 198 206 179 173
227 227 202 205 217 212

You are asked to investigate the reliability of the use of the cuff-meter
relative to the automatic recorder.
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Do you consider this investigation as satisfactory? If not, what design im-
provements would you recommend?

Problem 6.3 A new analytical technique for determining the percentages
of four parts (a, b, c, d) of the enzyme content of blood plasma is under
consideration. Three biochemists have trained in the new technique and have
been invited to analyse aliquots of 15 specimens with the results recorded
below.

Biochemist

B1 B2 B3
Percentages Percentages Percentages

a b c d a b c d a b c d

23 10 49 18 25 10 49 16 23 11 49 17
25 14 48 13 25 15 48 12 24 15 49 12
18 13 50 19 18 13 51 18 17 14 50 19
24 13 47 16 26 13 46 15 25 12 47 16
28 11 47 14 28 12 47 13 25 13 48 14
25 10 48 17 24 11 49 16 24 11 48 17
26 9 46 19 28 9 45 18 27 9 45 19
27 9 48 16 27 9 50 14 28 9 47 16
29 10 45 16 30 10 45 15 28 10 46 16
33 12 43 12 33 12 45 10 33 12 44 11
35 14 40 11 36 14 40 10 33 14 42 11
28 13 45 14 28 14 46 12 27 14 46 13
21 10 46 23 22 10 47 21 21 10 46 23
25 14 47 14 25 15 48 12 23 14 49 14
22 14 46 18 22 14 49 15 21 14 48 17

Investigate the new technique from the viewpoint of reliability.

Problem 6.4 Review and prepare a report on Problem 1.1.

Problem 6.5 In diagnosing a certain type of kidney dysfunction the clinical
problem is to decide which of the two kidneys, right or left, is the cause of the
problem. A new radiological technique has been suggested and to investigate
its effectiveness three radiologists have used the technique on 20 patients and
made decisions left (L) or right (R) for each case. The correct answer is avail-
able after substantial further investigation. The results recorded below give
the correct side and the sides chosen by the three radiologists.
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Correct Radiologists
answer R1 R2 R3

L L L L
R R L R
R R R L
R R L R
L L L L
R R R R
R L R R
L L L L
R R R R
L L R L
R R R R
R R L R
L L L L
L L L R
R R R R
R R R R
L L R L
L L L L
R R R L
R L R R

You are asked to consider whether the new technique is reliable.
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CHAPTER 7

Indirect Measurement: Assay and
Calibration

7.1 Introduction

When the statistical analysis described in Chapter 6 indicates that a direct
method of measurement cannot produce valid or reproducible observations,
due to too great variability in the conditions or materials involved in mea-
surement, we have then to study methods of indirect measurement. Assays of
many biochemical substances are of this type. Similar types of problem arise
if different methods of measurement are used in different clinics or if there is a
proposal to replace an established method by some cheaper or more efficient
alternative method.

We consider the appropriate applied statistical techniques for investigating
the reliability of the indirect measurement and its usefulness for predicting the
direct measurement. This can be achieved through the statistical technique of
calibration, leading to the calibrative density function. The complexity of the
calibration problem depends on the underlying functional relationship between
the direct and indirect measurements and the sources of variability affecting
the indirect measurement method. We look first of all at situations where a
linear relationship can be assumed, and investigate the problems posed by
the sources of variability met in practice. We also consider how non-linear
relationships can be handled in a tractable form. For both linear and non-
linear situations we present approximations as well as full Bayesian analysis
and illustrate their use.

Following the stability arguments of Chapter 2, the general calibration prob-
lem is concerned with assessing the calibrative density function p(u|v,D) for
the unknown direct measurement u, given the observation v associated with
the referred case and the data set D = {(ui, vi) : i = 1, . . . , n} of selected cases
observed under the identical experimental conditions. A parametric model
p(v|u, θ) is assumed for the distribution of v given both u and a vector of
unknown parameters θ. These parameters belong to a parameter set Θ and
they are involved in the functional relationship between the indirect and direct
measurements and also the relevant sources of variability. Based on a prior
distribution p(θ) on θ and the data D, the posterior distribution p(θ|D) of θ
given the data D is formed. We also assume a prior distribution p(u|D) for
u; this may depend on the observed ui contained in D, in the case of a natu-
ral calibration experiment, or simply be a function p(u) of u. The predictive
density function for a future value v given the corresponding u and the data

187
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D is then obtained as

p(v|u,D) =
∫

Θ

p(v|u, θ)p(θ|D)dθ.

The calibrative density of u given v and D is then given by

p(u|v,D) =
p(v|u,D)p(u|D)∫

U
p(v|u,D)p(u|D)du

,

or as

p(u|v,D) =
p(v|u,D)p(u)∫

U
p(v|u,D)p(u)du

,

if a separate prior assessment p(u) is available. The complexity, tractability
and subsequent realism of p(u|v,D) will depend on a functional relationship
between u and v and the diversity of sources of experimental variation.

We look first at situations where a linear relationship can be assumed and
investigate the problems posed by the sources of variability met in practice;
we then consider the non-linear case.

7.1.1 Simple linear calibration

The data set D = {(ui, vi) : i = 1, . . . , n} consists of independent pairs of
measurements sampled in the conditional form p(v|u) or the joint form p(u, v)
such that

E(vi|ui) = α+ βui + ei, (7.1)

where θ = (α, β, σ2) and the ei are mutually independent N(0, σ2) random
variables. We denote a future pair of values of the measurements by (u, v) and
assume that p(v|u,D) is N(α+βu, σ2). We now describe briefly two approxi-
mate methods for the computation of a calibrative interval for u together with
a fully Bayesian analysis in which all parameter uncertainties are taken into
account. Of these methods the Bayesian approach is generally the preferred
option.

Estimative approach
Ignoring the uncertainty in the estimation of the parameter θ we may take

p(v|u,D) to be N(α̂ + β̂u, σ̂2), where α̂ and β̂ are the maximum likelihood
estimates of α and β and σ̂2 is given by rss/(n − 2), where rss denotes the
residual sum of squares associated with the simple linear regression model. It
follows that

v − α̂− β̂u

σ̂
∼ N(0, 1)

and that a 100c% confidence interval for u is given by

v − α̂

β̂
±N(0, 1; (1 + c)/2)

σ̂

β̂
,

where N(0, 1; p) denotes the pth quantile of the N(0, 1) distribution.
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Classical approach
In the classical approach, a calibrative interval for u is based on the pivotal

function result

(v − α̂− β̂u)2

σ̂2(1 + 1/n+ (u− ū)2/Suu)
∼ F (1, n− 2),

where ū = 1/n
∑n

i=1 ui and Suu =
∑n

i=1(ui − ū)2. A 100c% confidence set for
u is then given by

(v − α̂− β̂u)2

σ̂2(1 + 1/n+ (u− ū)2/Suu)
≤ F (1, n− 2; c),

where F (a, b; c) denotes the cth quantile of the F (a, b) distribution. Equating
both sides of this inequality one obtains a quadratic equation which may be
solved for the unknown u. In the usual case, where the slope parameter β is
significantly non-zero, this procedure provides a finite calibrative interval for
u.

Predictive approach
In the following approach based on the predictive density p(v|u,D) a fully

Bayesian analysis is employed to take full account of the uncertainty in the
parameter θ. Assuming a vague prior distribution on θ it may be shown that
the predictive distribution p(v|u,D) is

St1
[
n− 2, α̂+ β̂u, (1 + 1/n+ (u− ū)2/Suu)σ̂2

]
.

In a natural calibration experiment the prior distribution p(u|D) takes the
form

St1
[
n− 1, ū, (1 + 1/n)

Suu

(n− 1)

]
.

The calibrative density function is then obtained by Bayes’s formula as

p(u|v,D) =
p(v|u,D)p(u|D)∫

U
p(v|t,D)p(t|D)dt

.

Computation of the calibrative interval requires the use of numerical in-
tegration techniques, but as an alternative we use Gibbs sampling via the
package WinBUGS. The methods defined here are illustrated using the aldos-
terone data in Section 7.2.

7.1.2 Non-linear calibration

In cases where the relationship between the indirect and direct measurement
methods does not have the linear form of (7.1) we resort to non-linear regres-
sion modelling based on the model

E(vi|ui) = g(ui; θ) + ei, (7.2)
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where g is a smooth, monotonic function and the ei are mutually indepen-
dent N(0, σ2) random variables. We again consider two approximate methods
together with the fully Bayesian approach.

Estimative approach
By replacing the parameter θ by its maximum likelihood estimate θ̂ we may

write down the pivotal function

v − g(u; θ̂)
σ̂

∼ N(0, 1).

In cases where feasible solutions exist, we may then obtain a 100c% calibrative
interval for u by solving the equations

g(u; θ̂) = v − σ̂N(0, 1; (1 + c)/2),

g(u; θ̂) = v + σ̂N(0, 1; (1 + c)/2),

where N(0, 1; p) denotes the pth percentile of the N(0, 1) distribution.

Asymptotic approach
Solving for u the equation v = g(u; θ) expresses u as a parametric function

h(v; θ) of θ, where h is the inverse of the function g. An approximate 100c%
calibration interval for u may then be obtained using the standard asymptotic
theory of maximum likelihood as

h(v; θ̂) ±N(0, 1; (1 + c)/2)
√
dTCd,

where d is the gradient vector of the function h, with respect to the components
of θ, evaluated at θ̂ and C is the estimated covariance matrix of θ̂.

Predictive approach
Exact distributional results are not available in the non-linear case and so

there is even more need for numerical methods. We will use Gibbs sampling
via the WinBUGS package in order to compute calibration intervals using a
fully Bayesian method. The methods for computation of calibrative intervals
in the non-linear case are illustrated in Sections 7.5 and 7.6.

7.2 Calibration of methods for aldosterone

It is the intention of a steroid laboratory to change its method of determin-
ing the plasma concentration of aldosterone from a double isotope method
to a radioimmunoassay method. The reasons for this intention are dimin-
ished cost, increased speed and smaller blood sample required. The problem
is that the double isotope method has been used to make determinations
which have formed the basis of a satisfactory differential diagnostic method.
If a changeover to the new radioimmunoassay method is to be made then it
is clearly necessary to compare these two methods for compatibility, and if
differences are established we must find a means of determining equivalent
double isotope measurements.
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To investigate this problem two aliquots of each of 72 blood samples, selected
to give a spread over the range of anticipated values, are used, one aliquot
being assigned to the double isotope method and the other aliquot to the
radioimmunoassay method. The results are shown in data set aldo.

Previous work has established reasonable (observer, conditions, method)
reproducibility so that our entire attention can now be devoted to dealing
with (method | case) reproducibility, where we drop the irrelevant factors of
observer and conditions. We must clearly treat the problem as one of cal-
ibration with the variable u denoting double isotope determination and v
radioimmunoassay determination.
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Figure 7.1 Concentrations of aldosterone in blood plasma, determined by the ra-
dioimmunoassay (RIA) and double isotope (DI) methods.

As a first step in this calibrative application we verify which marginal and
conditional probability functions are stable and estimable from D. The sam-
pling is in fact joint since each blood sample is split into two aliquots. Thus
p(u, v) is the basic sampling form represented in the data. Figure 7.1 shows
the scattergram of the (u, v) = (DI,RIA) data. The plot suggests that it
might be reasonable to assume a linear relationship between RIA and DI, al-
though there is clear evidence of heterogeneity especially for small values of
DI. It would be worth adopting a weighted analysis and considering trans-
formations but we leave such considerations as an end-of-chapter problem. In
the practical context it is the higher values of DI and RIA that are of most
direct interest, although we apply the methods also for a small value of RIA
to indicate how the method breaks down with the current model.

The joint nature of the sampling gives us the choice of direct modelling of
the conditional form p(u|v) or indirect modelling through p(u|v) ∝ p(v|u)p(u),
the more ‘standard’ calibration problem in most calibrative data sets. We can
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conveniently use this application to illustrate the standard problem. With
(ui, vi) denoting the double isotope (DI) and radioimmunoassay (RIA) con-
centrations of the ith blood sample we are here dealing with the standard
normal linear model defined in (7.1). The standard estimates of α, β (with
estimated standard errors) and σ2 are

α̂ = 0.1539 (0.8699), β̂ = 0.9148 (0.0286), σ̂2 = 20.75,

with ū = 23.95 and Suu = 25398.46.

Table 7.1 At three given aldosterone concentrations determined by the radioim-
munoassay (RIA) method, point estimates and 95% interval estimates of the corre-
sponding aldosterone concentrations which would be obtained using the double isotope
method are given, based on the Estimative, Classical and Predictive approaches

RIA Estimative Classical Predictive

50 54.5 (44.7, 64.3) 54.6 (44.4, 64.8) 54.6 (44.4, 65.0)
25 27.2 (17.4, 36.9) 27.2 (17.2, 37.2) 27.2 (17.0, 37.3)
6 6.4 (−3.4, 16.2) 6.3 (−3.8, 16.4) 6.3 (−3.9, 16.4)

The methods described in Section 7.1.1 were applied for three values of
RIA and the results are provided in Table 7.1. In the Bayesian analysis, the
model assumptions given in Section 7.1.1 were adopted, the DI data were
mean-centred and the prior distributions on α, β, σ and u were taken to be
independent with

α ∼ N(0, 106), β ∼ N(0, 106), σ ∼ U(0, 100), u ∼ N(0, 106).

In WinBUGS initial values of the variables were generated randomly from the
prior distributions and three parallel chains were run. The results from a burn-
in of 1,000 samples were discarded. The chains were run for a further 4,000
samples and the output was used to check the equilibrium of the process. Au-
tocorrelations plots and trace plots suggested that the chains were mixing well
and were in equilibrium and this was confirmed by considering the Brooks-
Gelman-Rubin convergence statistics. A further 5,000 samples were generated
from each chain and they were used to produce 95% highest posterior density
intervals for the unknown DI concentrations. The posterior mean of the sam-
ples is taken as the point estimate. The posterior densities are symmetric in
this case.

The three methods produce very similar point and interval estimates of the
unknown DI concentration in all three cases. The last interval at RIA=6 is
obviously unrealistic, as the DI concentration is a positive quantity. As already
indicated this interval is included only for the purpose of illustration.
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7.3 Glucose calibration

The glucose calibration problem concerns the use of a reflectance meter in
the diagnosis of neonatal hypoglycaemia. The standard measurement of glu-
cose concentration here is the biochemical oxidase method. The new method
of assessing glucose concentration is the reflectance meter method. Data set
gluc gives replicated reflectance meter readings for a set of individuals, whose
biochemical measurement was also determined. We denote by ui the biochem-
ical oxidase measurement and by vij (j = 1, . . . , ni) the ni reflectance meter
measurements of the ith individual (i = 1, . . . , 52). We note that in data set
gluc ni is either 2 or 3. The data are shown in Figure 7.2.
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Figure 7.2 Concentrations of glucose obtained using the reflectance meter and bio-
chemical oxidase methods, with two or three replicate measurements on each sample.

The plot exhibits a lot of variation but a linear relationship captures the
main upward trend in the data. Note that there are two components of vari-
ation in the reflectance meter readings due to the variability among replicate
readings within individuals and also the variability from individual to indi-
vidual. One way to account for these sources in the modelling would be to
take, in the model of (7.1), the random error for the ith individual to be the
sum of two independent terms with respective variances σ2

I and σ2
B . Then the

variance of the random errors is the sum σ2
I + σ2

B and these variances appear
as a sum in the modelling. Hence, as far as calibration is concerned, there is no
advantage in splitting the error variation into these separate terms. Therefore,
we adopt a simple linear regression model and assume that

vij = α+ βui + eij ,

where the eij are mutually independent N(0, σ2) random variables.
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The consultative question of interest is:
Given r replicate measurements v = (v1, v2, . . . , vr) of the glucose concentra-
tion made using the reflectance meter method, how accurately can we predict
u the corresponding concentration that would have been obtained using the
biochemical oxidase method?
In order to produce calibrative intervals for u we require to make the following
changes to the formulae given in Section 7.1.1, with v̄ = 1/r

∑r
i=1 vi denoting

the average of the replicate readings.

Estimative approach
The 100c% calibrative interval for u is based on the following pivotal func-

tion result
v̄ − α̂− β̂u

σ̂/
√
r

∼ N(0, 1),

and is given by
v̄ − α̂

β̂
±N(0, 1; (1 + c)/2)

σ̂√
rβ̂
.

Classical approach
The 100c% calibrative interval for u is based on the pivotal function

(v̄ − α̂− β̂u)2

σ̂2(1/r + 1/n+ (u− ū)2/Suu)
∼ F (1, n− 2),

and is defined by the set of values of u which satisfy the inequality

(v̄ − α̂− β̂u)2

σ̂2(1/r + 1/n+ (u− ū)2/Suu)
≤ F (1, n− 2; c).

Predictive approach
The predictive distribution p(v|u,D) is

St1
[
n− 2, α̂+ β̂u, (1/r + 1/n+ (u− ū)2/Suu)σ̂2

]
.

The methods described in Section 7.1.1 were applied for varying numbers
of replicates and the results are provided in Table 7.2.

In the Bayesian analysis, the model assumptions given in Section 7.1.1 were
adopted, the oxidase data were mean-centred and the prior distributions on
α, β, σ and u were taken to be independent with

α ∼ N(0, 106), β ∼ N(0, 106), σ ∼ U(0, 100), u ∼ N(0, 106).

In WinBUGS, the initial values for the variables were generated randomly
from the prior distributions and three parallel chains were run. The results
from a burn-in of 1,000 samples were discarded. The chains were runs for a
further 4,000 samples and the output was used to check the equilibrium of the
process. Autocorrelations plots and trace plots suggested that the chains were
mixing well and were in equilibrium and this was confirmed by considering the
Brooks-Gelman-Rubin convergence statistics. A further 10,000 samples were
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Table 7.2 The glucose concentrations, as determined by the reflectance meter method,
are given in two sets of data with varying numbers of replicates. Point estimates and
95% interval estimates of the corresponding glucose concentrations which would be
obtained using the biochemical oxidase method are given, based on the Estimative,
Classical and Predictive approaches

v Estimative Classical Predictive

30 36.0 (17.8, 54.3) 35.9 (17.4, 54.5) 35.8 (15.9, 55.5)
30,32 37.0 (24.1, 49.9) 36.9 (23.8, 50.1) 36.8 (22.5, 51.2)

30,32,33 37.7 (27.1, 48.2) 37.6 (26.8, 48.4) 37.5 (25.7, 49.1)

60 65.4 (47.1, 83.6) 65.5 (46.9, 84.0) 65.5 (45.5, 85.9)
60,62 65.9 (53.0, 78.8) 66.0 (52.8, 79.2) 66.0 (51.7, 80.2)

60,62,63 67.0 (56.5, 77.5) 67.1 (56.3, 78.0) 67.2 (55.4, 79.3)

generated from the three chains and they were used to produce 95% highest
posterior density intervals for the unknown glucose concentration that would
have been obtained using the biochemical oxidase method. The posterior mean
of the samples is taken as the point estimate. The posterior densities are
symmetric in this case.

The point and interval estimates are very similar in each case for all three
methods, with the Bayesian intervals being wider. The intervals are reflecting
a good deal of uncertainty in the estimate of glucose concentration which
would be obtained using the biochemical oxidase method. The use of replicates
results in a real gain in precision; in going from a single measurement to three
replicate measurements the width of the interval is generally reduced by about
41%. Even then the glucose concentration has an estimated error of ± 10.5
mg/100ml.

7.4 Calibration of foetal age by crown rump length

This application concerns the measurements in data set foetal. In this data
set crown rump length of the foetus in 194 pregnant women was recorded
along with the maturity in days of the foetus established to within three days.
The measurements were in some instances replicated over time as summarized
in the following table

r 1 2 3 4 5 6 7 8
nr 146 13 11 6 8 5 1 4

where r denotes the number of replicates over time and nr is the number of
women with r replicates. The data are shown in Figures 7.3 and 7.4.
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Figure 7.3 Plot of crown rump length against foetal maturity for the women who
were measured on more than one occasion, with a line connecting the data from each
foetus.
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Figure 7.4 Plot of crown rump length against foetal maturity for the women who
were measured on only one occasion.

The plots show a reasonably clear relationship between crown rump length
and foetal maturity but it appears to be non-linear. The plots suggest that the
square root of crown rump length is used as the response and this is supported
by Box-Cox analysis. The individual subject line plots of Figure 7.3 suggest
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that we consider a model which can take into account the possibility of random
between-subject variation in the intercepts and slopes of the individual plots.

For purposes of exposition of the calibrative method the imprecision in
maturity is ignored at this stage, but it will be dealt with later in Section 7.7.
The consultative questions here can be identified as follows.

Given the crown rump length v of a referred pregnant woman with foetus of
unknown maturity u how can we use the past experience in data set foetal to
obtain the calibrative distribution p(u|v,D)? How accurate is this as a predic-
tor of maturity? If we take replicate measurements v = (v1, . . . , vr) over fixed
known time intervals how much more accurate is our predictor of maturity?

We assume that the square roots of the crown-rump length measurements
vij are linearly dependent on maturity uij and adopt the linear mixed-effects
model

vij = α+ βuij + ai + biuij + eij (j = 1, . . . , ni; i = 1, . . . , 194) (7.3)

as the maximal model, where the random variables ai, bi and eij are mutu-
ally independent with ai ∼ N(0, σ2

a), bi ∼ N(0, σ2
b ) and eij ∼ N(0, σ2

e). In
this model the parameters α and β denote the fixed-effect population level
intercept and slope terms while the ai and the bi denote, respectively, random
intercept and slope effects. The model may be written more compactly in the
vector-matrix form

v = XφT + Z1r
T
1 + Z2r

T
2 + e, (7.4)

where
φ = [α, β]
r1 = [a1, a2, . . . , a194]
r2 = [b1, b2, . . . , b194]

and

XT =
[

1N

u

]
,

Z1 = diag{1n1 , 1n2 , . . . , 1n194},
Z2 = diag{u1, u2, . . . , u194},

where ui = {ui1, . . . , uini
}(i = 1, 2, . . . , 194), u = {u1, u2, . . . , u194},

N =
∑i=194

i=1 ni and 1n denotes a n × 1 column vector containing 1s. This
maximal model was fitted using the package nlme and the results are shown
in Table 7.3.

The intervals for the fixed effect parameters α and β do not contain zero and
so each of these terms is required in the model in addition to the others. The
interval for σa is fairly wide, indicating that it has not been estimated very
precisely, whereas the intervals for the other two standard deviations are fairly
precise. The size of σb might initially suggest that the random slope variation is
not important but recall that the size of this term is dependent on the scale of
the covariate. In order to test whether either of the two variance components
are required in the model we consider the lattice of hypotheses shown in
Figure 7.5. We find that the random intercept variation is not required in the
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Table 7.3 Point and interval estimates of the parameters of the model (7.3)

Parameter Estimate 95% Interval

α −2.827 (−2.991,−2.662)
β 0.122 (0.120, 0.125)
σa 0.114 (0.0237, 0.553)
σb 0.00318 (0.00208, 0.00486)
σe 0.238 (0.212, 0.268)

σ2
a = 0

σ2
a = 0, σ2

b = 0

(-97.2)

E(v|r1, r2) = XφT + Z1rT
1 + Z2rT

2

Maximal Model

(-128.8, P<0.0001)

σ2
b = 0

(-100.1, P=0.02)(-97.4, P=0.52)

Figure 7.5 Lattice of hypotheses for the crown rump length study. At each node the
value of the REML loglikelihood is shown, together with the P -value associated with
the approximate test of the stated hypothesis within the maximal model.

model and that the random slope variation is required. Hence we take as our
working model

v = XφT + Z2r
T
2 + e, (7.5)

in which the individual linear relationships for the women are assumed to
have the same fixed intercept but randomly-varying slopes. The parameter
estimates obtained with this model are given in Table 7.4. These results are
very similar to the estimates obtained using the maximal model.

We proceed to answer the consultative question posed above. Given the
complexity of this model we consider only a full Bayesian analysis in the
package WinBUGS. We consider an individual referred woman whose foetus
has a crown rump length measurement of 35mm at an unknown maturity
of u1 days. In addition we have a sequence of crown rump length measure-
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Table 7.4 Point and interval estimates of the parameters of the model (7.5)

Parameter Estimate 95% Interval

α −2.823 (−2.986,−2.660)
β 0.122 (0.120, 0.125)
σb 0.00353 (0.00294, 0.00425)
σe 0.240 (0.215, 0.269)

ments of 28, 35 and 48mm from this woman, taken at 7-day intervals, with
corresponding unknown maturity values of u2 − 7, u2 and u2 + 7 days.

In the Bayesian analysis, the prior distributions on β, σ, σb, u1 and u2 were
taken to be independent with

β ∼ N(0, 106), σ ∼ U(0, 10), σb ∼ U(0, 10), u1 ∼ N(0, 106), u2 ∼ N(0, 106).

The initial values of the variables were generated randomly from the prior
distributions and three parallel chains were run. The results from a burn-in of
1,000 samples were discarded. The chains were run for a further 4,000 samples
and the output was used to check the equilibrium of the process. Autocorre-
lations plots and trace plots suggested that the chains were mixing well and
were in equilibrium and this was confirmed by considering the Brooks-Gelman-
Rubin convergence statistics. A further 10,000 samples were generated from
the three chains and they were used to produce 95% highest posterior den-
sity intervals for the unknown maturity. The posterior distributions are fairly
symmetric. In the case where there is a single CRL measurement of 35mm
the estimate of the maturity of the foetus is 71.3 days, with 95% highest pos-
terior density interval (65.8, 76.9). In the case where the sequence of three
CRL measurements is available the estimate of maturity is 72.1 days with
95% highest posterior density interval (68.9, 75.2). Hence the effect of using
a sequence of three CRL measurements rather than a single measurement is
to reduce the length of the calibrative interval from 11.1 days to 6.3 days, a
reduction of 43% and thus a useful gain in precision.

7.5 Radioimmumoassay of angiotensin II

Data were collected in a designed calibration experiment in which the con-
centration of angiotensin II ui in the ith vial was recorded together with the
percentage bound vi, as described in Section 1.9. The data are given in data
set angio. A plot of the data is shown in Figure 7.6.

The plot clearly suggests that the percentage bound is non-linearly related
to the concentration of angiotensin II, but what form of relationship gives a
suitable model? Initial attempts were made to linearise the relationship via
transformation and it was found that, apart from the points at zero concen-
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Figure 7.6 Plot of the percentage bound against the concentration of angiotensin II.

tration, the logit of percentage bound was strongly linearly related to the
logarithm of concentration. It was then possible to re-work this finding in
such a way that the points at zero could be accommodated. This led to the
non-linear regression model.

vi = α+
β

γ + uδ
i

+ ei,

where α, β, γ and δ are unknown parameters and the ei are independent
N(0, σ2) random variables. This model was fitted to the data and it was
found that δ was not significantly different from unity. The model was then
re-expressed in order to reduce the correlations among the parameter esti-
mates and to ensure the positivity of the parameters. Finally the non-linear
regression model

vi =
eα + eβui

1 + eγui
+ ei (7.6)

was fitted to the data using non-linear least squares and the results are given
in Table 7.5. There are 13 degrees of freedom for error.

The estimated covariance matrix of θ̂, where θ = (α, β, γ), is⎡
⎣ 0.000131 0.001257 0.000755

0.001257 0.040292 0.019454
0.000755 0.019454 0.010013

⎤
⎦ .

A plot of the data together with the fitted curve is shown in Figure 7.7 and
this shows that the model provides a good fit to the data.

We now apply the three approaches discussed in Section 7.1.2. Working out
the details of the estimative approach leads to the following formula for an
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Table 7.5 Estimates and approximate 95% interval estimates for the parameters of
the model of (7.6)

Parameter Estimate 95% Interval

α 4.454 ( 4.431, 4.477)
β −0.923 (−0.522,−1.324)
γ −3.809 (−4.009,−3.609)
σ 1.64 ( 1.19, 2.64)
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Figure 7.7 Plot of the percentage bound against the concentration of angiotensin II
together with the fitted curve corresponding to (7.6).

approximate 100c% calibrative interval for the concentration of angiotensin II
u corresponding to a given value v for the percentage bound[

v − eα̂ + σ̂z

eβ̂ − (v + σ̂z)eγ̂
,

v − eα̂ − σ̂z

eβ̂ − (v − σ̂z)eγ̂

]
,

where z = N(0, 1; (1 + c)/2). In the Bayesian analysis, the prior distribu-
tions on α, β, σ and the unknown concentrations u1, u2, u3 were taken to be
independent with

α ∼ N(0, 106), β ∼ N(0, 106), γ ∼ N(0, 106),

σ ∼ U(0, 100), ui ∼ N(0, 106) (i = 1, 2, 3).
In the WinBUGS analysis three dispersed sets of initial values of α, β and
γ were employed, with the other variables being generated randomly from
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the prior distributions, and a chain run from each of the sets. The chains
were runs in Metropolis adaptive phase for 4,000 iterations and convergence
was monitored during the next 10,000 runs. After 15,000 iterations the trace
plots appeared to be stationary and the results were satisfactory according to
the Brooks-Gelman-Rubin convergence statistics. There was, however, some
autocorrelation among the variables, particularly the highly correlated β and
γ, and also the trace plots for β and γ were rather under-dispersed within
each chain even though the chains were overlapping and stationary. The fitted
model appeared to be fine, with parameter estimates similar to the maximum
likelihood estimates and the Monte Carlo error at each node was less than
5% of the node standard deviation. The chains were run for a further 5,000
iterations and then point estimates and highest posterior density intervals
computed.

Table 7.6 At three given values of percentage bound(PB), point estimates and 95%
interval estimates of the corresponding concentrations of angiotensin II which would
be obtained are given, based on the Estimative, Asymptotic and Predictive approaches

PB Estimative Asymptotic Predictive

38 108.0 (86.9, 137.1) 108.0 (99.6, 116.3) 107.6 (84.2, 142.6)
55 37.7 (31.1, 45.6) 37.7 (34.7, 40.8) 38.1 (30.0, 48.7)
75 8.7 (5.8, 11.9) 8.7 (7.6, 9.8) 8.8 (5.3, 12.9)

The results are given in Table 7.6. The results obtained using the estimative
and the predictive methods are fairly similar, with the predictive intervals
being wider. The asymptotic intervals are noticeably narrower than those of
the other two methods and this may simply be reflecting that the quadratic
approximation on which they are based is not suitable in this example. The
width of the predictive intervals vary from approximately 60 when the PB is
38 to 8 when the PB is 75. This reflects the shape of the calibration curve
shown in Fig 7.6. Hence the determination of the concentration of Angiotensin
II is much more precise for high values of percentage bound, where the curve
is falling steeply, compared with low values, where the curve is flattening out.

7.6 Calibration of tobramycin

Samples of blood were taken from each of 20 patients and placed on a plate
containing infected medium and on each plate the samples were exposed to
tobramycin at six known concentrations which covered the range of interest.
The clearance diameter was measured for each sample. For the ith patient data
are available consisting of the set {(uij , vij) : (j = 1, . . . , 6)}. The consultative
question is:
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Given a new blood sample of known clearance diameter, what is the corre-
sponding unknown concentration of tobramycin?
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Figure 7.8 Individual plots of clearance diameter against concentration of to-
bramycin.

The data, which are available in data set tobra, are shown in Figure 7.8.
Most of the patients’ plots follow a similar pattern, with some variability from
plot to plot. Some of the plots seem a little anomalous. For each patient the
relationship between clearance diameter and concentration is non-linear. Var-
ious non-linear regression models provide roughly the same level of agreement
between data and model and we consider here the Michaelis-Menten model.
This non-linear regression model has two parameters and we allow them to
be random in order to incorporate into the modelling the possibility that the
relationship varies randomly from patient to patient; thus we consider the
non-linear mixed-effects model

vij =
aiuij

bi + uij
+ eij , (j = 1, . . . , 6; i = 1, . . . , 20) (7.7)

where the eij , ai and bi are mutually independent with eij ∼ N(0, σ2
e),

ai ∼ N(α, σ2
a) and bi ∼ N(β, σ2

b ). This model was fitted to the data using
the nlme package and some relevant output is given in Table 7.7.

We see that the fixed-effects parameters α and β are quite precisely es-
timated and clearly significantly non-zero. The parameter σa is not well-
determined and its interval suggests that having this parameter in the model
is a case of over-fitting. The interval for the parameter σb is rather wide and
the lower endpoint is close to zero, suggesting that this parameter may be
unnecessary. In order to assess whether either of the variance components is
required in the working model we compare the models (7.7) and (7.8). The
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204 INDIRECT MEASUREMENT: ASSAY AND CALIBRATION

Table 7.7 Point and interval estimates of the parameters of the model (7.7)

Parameter Estimate 95% Interval

α 21.681 (21.326, 22.037)
β 0.531 (0.486, 0.577)
σa 0.00171 (2.1 ×10−60, 1.4 ×1054)
σb 0.0245 (0.00223, 0.271)
σe 0.980 (0.855, 1.125)

Table 7.8 Point and interval estimates of the parameters of the model (7.8)

Parameter Estimate 95% Interval

α 21.675 ( 21.304, 22.044)
β 0.529 (0.482, 0.576)
σe 1.004 (0.893, 1.157)

asymptotic generalised likelihood ratio test has a P -value of 0.91. We therefore
do not require to have random effects in the model and take as our working
model the fixed-effects non-linear regression model

vij =
αuij

β + uij
+ eij , (j = 1, . . . , 6; i = 1, . . . , 20). (7.8)

Fitting this model to the data gives the output shown in Table 7.8. The
fitted model is shown in Figure 7.9. The fit is fairly reasonable but could be
improved, but this might require non-parametric methods.

In the Bayesian analysis, the prior distributions on α, β, σ and the unknown
concentrations u1, u2, u3 were taken to be independent with

α ∼ N(0, 106), β ∼ N(0, 106), σ ∼ U(0, 100), ui ∼ U(0, 10) (i = 1, 2, 3).

We now consider how useful the three approaches are in determining the
unknown concentration of tobramycin given three single values of 13, 15 and
17mm for the clearance diameter.

In the WinBUGS analysis three dispersed sets of initial values of α, β and σ
of the variables were employed, with the other variables being generated ran-
domly from the prior distributions, and a chain run from each of the sets. The
chains were runs in Metropolis adaptive phase for 4,000 iterations, the results
from the next 1,000 iterations were discarded and convergence was monitored
during the next 10,000 runs. After 15,000 iterations the trace plots appeared
to be stationary and the Brooks-Gelman-Rubin convergence statistics were
satisfactory. The chains were run for a further 10,000 iterations and then
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Figure 7.9 Plot of clearance diameter against concentration of tobramycin together
with the fitted curve corresponding to model (7.8).

point estimates and highest posterior density intervals computed. Note that
there is a complication in this analysis. Due to the fact that the assumption
of an improper prior for u would lead to an improper posterior, it is essential
to restrict the prior for the ui’s and in this example it has been assumed that
they are uniform on the interval (0,10), the range of concentrations used in the
experiment. As the diameter increases beyond 17mm the calibrative intervals
depend strongly on this prior assumption and they are very wide indeed – too
wide to be useful in practice.

Table 7.9 At three given values of the clearance diameter, point estimates and 95%
interval estimates of the corresponding concentrations of tobramycin which would be
obtained are given, based on the Estimative, Asymptotic and Predictive approaches

Diameter Estimative Asymptotic Predictive

13 0.79 (0.55, 1.18) 0.79 (0.40, 1.57) 0.83 (0.56, 1.28)
15 1.19 (0.80, 1.91) 1.19 (0.60, 2.34) 1.28 (0.83, 2.19)
17 1.92 (1.19, 3.72) 1.92 (0.98, 3.79) 2.25 (1.30, 5.56)

The intervals are given in Table 7.9. If the asymptotic method is applied
then the resulting intervals are far too narrow to be realistic. Therefore this
method was applied to the logarithm of the unknown tobramycin concen-
trations and the intervals were back-transformed, resulting in rather wide
intervals. The predictive and estimative intervals are quite similar when the
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206 INDIRECT MEASUREMENT: ASSAY AND CALIBRATION

diameter is 13mm and 15mm but a little different when the clearance diameter
is 17mm. The intervals are wider as the clearance diameter increases and this
is to be expected given the shape of the calibration curve in Figure 7.9.

7.7 Imprecision

When we considered the data on crown rump length and foetal maturity in
Section 7.4 it was stated that foetal maturity was not known exactly but
rather only to within three days. This is an example of imprecision within the
context of a calibration problem; it could also be termed an issue of covariate
measurement error. We now consider an approach which allows the effects of
imprecision in either the direct measurement u or the indirect measurement
v, or both, to be assessed. Suppose that the observed pair (u, v) are an impre-
cise version of the exact data values (x, y). We assume further that forms of
stochastic relationship between the indirect measurements v and y and the di-
rect measurements u and x are known, apart from some unknown parameters
φ1 and φ2, to be p(v|y, φ1) and p(x|u, φ2), respectively, and that the model for
the exact data is p(y|x, φ). Then we may express the model for the imprecise
v given the imprecise u and unknown parameters θ = (φ1, φ, φ2) as

p(v|u, θ) =
∫ ∫

p(v|y, φ1)p(y|x, φ)p(x|u, φ2)dydx. (7.9)

Given data D the components of θ could be estimated using maximum like-
lihood or via a Bayesian approach. If we assume a prior distribution p(θ) for
θ we may convert this into a posterior distribution p(θ|D) and then form the
predictive distribution using

p(v|u,D) ∝
∫
p(v|u, θ)p(θ|D)dθ (7.10)

and then the calibrative density of u via

p(u|v,D) ∝ p(v|u,D)p(u|D). (7.11)

We now illustrate this approach using the crown rump length data from
Section 7.4. In this example the values of crown rump length are assumed to
be known exactly, even though they are recorded to the nearest mm, and so
there is imprecision only on the values of foetal maturity. We let xij denote
the exact value of foetal maturity corresponding to the observed square root
of crown rump length vij . We recall from Section 7.4 that p(vij |xij , bi, φ1) is

N(α+ βxij + bixij , σ
2
e).

We assume that p(xij |uij , σ
2
x) is N(uij , σ

2
x). It follows, by integrating xij out

of the product of these density functions, that p(vij |uij , bi, θ) is

N(α+ βuij + biuij , σ
2
e + b2iσ

2
x).

As in Section 7.4 we consider a Bayesian approach to this calibration prob-
lem for different assumed values of σx, namely 1, 3 and 5. We consider an
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IMPRECISION 207

individual referred woman whose foetus has a crown rump length measure-
ment of v0 = 35 mm at an unknown maturity of u days. In addition, we have a
sequence of crown rump length measurements of v1 = 28, v2 = 35 and v3 = 48
mm from this woman taken at 7-day intervals, with corresponding maturity
values u−7, u and u+7 days. The following modelling assumptions are made.

vij ∼ N(α+ biuij , σ
2
e + b2iσ

2
x),

bi ∼ N(β, σ2
b ),

α ∼ N(0, 106),
β ∼ N(0, 106),
σe ∼ U(0, 10),
σb ∼ U(0, 10),
v0 ∼ N(α+ b′u, σ2

e + b′2σ2
x),

v1 ∼ N(α+ b′(u1 − 7), σ2
e + b′2σ2

x),
v2 ∼ N(α+ b′u1, σ

2
e + b′2σ2

x),
v3 ∼ N(α+ b′(u1 + 7), σ2

e + b′2σ2
x),

b′ ∼ N(β, σ2
b ),

u ∼ N(0, 106),
u1 ∼ N(0, 106).

Table 7.10 At four values of the imprecision standard deviation σx, point estimates
and 95% highest posterior density estimates of the unknown foetal maturity are given
based on (a) a single measurement and (b) a sequence of three measurements of crown
rump length

σx Single measurement Sequence of measurements
Estimate Interval Estimate Interval

0 71.4 (67.4, 75.4) 72.2 (69.9, 74.6)
1 71.4 (65.8, 76.9) 72.2 (67.6, 76.8)
3 71.5 (64.9, 78.0) 72.2 (68.0, 76.5)
5 71.5 (61.7, 81.7) 72.2 (66.5, 78.1)

In WinBUGS the chain was run in Metropolis adaptive phase for 4,000 iter-
ations and the results from a further 1,000 iterations were discarded. Sampling
was continued for a further 10,000 iterations and, given satisfactory plots and
convergence statistics, these results were used to compute the 95% highest
posterior density intervals for u and u1, which are given in Table 7.10 to-
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208 INDIRECT MEASUREMENT: ASSAY AND CALIBRATION

gether with point estimates based on the posterior means. The case σx = 0 in
which the imprecision is ignored has been included for reference.

As one might expect, the intervals for the unknown foetal maturity become
increasingly wider as the extent of the imprecision increases, showing that tak-
ing account of the imprecision understandably results in greater uncertainty
in the estimate of foetal maturity. The point estimates of foetal maturity
are very stable in the presence of imprecision at the levels considered. In the
practical context the foetal maturity is known to within 3 days. Taking this
to mean that the imprecision standard deviation is approximately unity we
conclude that the point estimates of maturity obtained by ignoring this impre-
cision is probably alright but the interval estimates are understating the level
of uncertainty in the estimate by approximately 28% in the case of a single
measurement and 49% when three replicates are taken. Clearly, the larger the
imprecision standard deviation the greater the extent of this understatement
of uncertainty.

7.8 Bibliographic notes

The general problem of indirect measurement by calibration and assay from
the viewpoint of the predictive distribution is discussed in Aitchison and Dun-
smore (1975). The problem of calibration is discussed by Brown (1982, 1993).
The problem of non-linear calibration from a Bayesian perspective is discussed
in Racine-Poon (1988).

There are many publications on the use of statistical aspects of radioim-
munoassay techniques. We give a representative selection: Finney (1976),
Healey (1972), Prentice (1976).

For details of the use of the reflectance meter in the diagnosis of neonatal
hypoglycaemia, see Baxter (1974).

For further information of the use of ultrasound screening of the foetus and
the measurement of crown-rump length see Robinson and Fleming (1975). For
further details of the Michaelis-Menten model see Seber and Wild (1989).

7.9 Problems

Problem 7.1 Review the aldosterone assay problem of Section 7.2 consider-
ing the possibility of a weighted analysis and/or a transformation. Compare
your analysis with that of Section 7.2 and decide which you would recommend
to the clinic.

Problem 7.2 Two clinics using different methods of determining the amounts
of a certain hormone in the blood have agreed to conduct a calibration exper-
iment in which, for each of 24 patients, a blood specimen is divided into four
aliquots, two being analysed by clinic A and the other two by clinic B. The
results, reported in standard units, are set out in Table 7.11.

How would you report to the clinics in such a way that each clinic is able
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PROBLEMS 209

Table 7.11 Data for Problem 7.2

Clinic A B
Aliquot 1 2 3 4

54 55 42 42
141 176 101 136
143 148 92 115
503 588 341 344
105 126 95 61
73 70 78 43
85 61 74 58

219 280 183 180
109 86 52 67

1067 1093 765 605
347 418 238 273
276 251 159 211
158 191 136 116
248 280 222 227
799 726 644 452
23 25 15 14

832 695 511 523
136 156 99 85
214 236 146 178
592 395 372 445
451 483 338 275
39 46 30 24
56 50 36 36

351 330 354 184

to assess results from the other? Have you any comments to make on the
reliability of such an exchange?

Problem 7.3 Refer to Problem 1.2 and prepare a report for the clinic on the
questions of dosage assay which have been raised.
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210 INDIRECT MEASUREMENT: ASSAY AND CALIBRATION

Problem 7.4 In a radioimmunoassay of aldosterone two vials at each of
nine standard concentrations (pg/ml) were used and the proportions bound
recorded, as set out below.

Dose (pg/ml) Proportion bound

0 0.629, 0.629
6.25 0.584, 0.605
12.5 0.551, 0.571
25 0.507, 0.511
50 0.405, 0.411
75 0,311, 0.340
100 0,291, 0.312
150 0.231, 0.251
200 0.206, 0.196

On the same radioimmunoassay run two vials for each of four patients with
unknown aldosterone concentrations were used and the corresponding pro-
portions bound recorded as follows. You are asked to assess the aldosterone
concentrations for these four patients.

Patient Proportion bound

P1 0.352, 0.332
P2 0.314, 0.265
P3 0.537, 0.522
P4 0.210, 0.215

Problem 7.5 A clinic is faced with an unusual situation. For some time it
has been deciding on treatment reasonably successfully on the basis of an
expensive and slow technique of determining an (a, b, c) blood composition.
The clinic now faces the possibility of introducing an autoanalyser for this
purpose. A complication is that the autoanalyser recognises recent research
which has identified a fourth part d of the composition of blood. The clinic
recognises the obvious merits of the analyser, particularly with the possibility
that the extra component may prove useful in the future but would like to
be reassured that the four-part compositions available from it would provide
reasonable assessments of the three-part compositions already in use. The
clinic has conducted a calibration trial over the range of blood samples that
occur in its work. For each of 32 blood samples aliquots were assigned to the
existing method and the autoanalyser method, with results as recorded in
Table 7.12.

How would you advise the clinic on this problem?

Problem 7.6 An inexpensive quick chromatographic method for determining
the excretion rate (mg/24hr) of a certain steroid metabolite in urine has been
developed. It is hoped that this method may in the future replace the long and
costly, though accurate, bioassay technique currently used. The considerable
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Table 7.12 Data for Problem 7.5

Existing method Autoanalyser method
Percentages Percentages
a b c a b c d

14.1 20.2 65.7 16.0 16.9 63.7 3.4
31.0 51.2 17.8 27.6 40.1 15.1 17.2
28.7 43.9 27.4 26.8 37.4 26.1 9.7
23.9 49.4 26.7 20.8 34.7 22.6 21.9
23.9 54.4 21.7 23.5 39.3 18.6 18.6
9.1 50.5 40.4 10.7 38.5 35.7 15.1

16.3 54.5 29.2 14.6 39.8 21.7 23.9
14.0 73.8 12.2 9.5 34.1 6.7 49.7
17.0 74.8 8.2 12.0 42.1 5.7 40.2
23.5 47.1 29.3 22.4 36.2 24.9 16.5
20.6 55.6 23.8 18.4 37.5 20.1 24.0
19.0 71.5 9.5 15.2 43.8 6.7 34.3
26.5 35.4 38.1 25.0 28.0 40.1 6.9
24.9 45.8 29.3 24.5 38.2 26.6 10.7
12.6 54.5 32.9 11.9 42.7 28.9 16.5
29.2 41.2 29.6 27.4 37.0 24.8 10.8
14.1 63.1 22.9 12.4 37.0 18.0 32.5
31.9 44.2 23.9 33.1 39.0 22.9 5.0
15.4 65.5 19.1 18.1 45.9 19.1 16.9
17.2 43.6 39.2 18.0 32.7 40.6 8.7
19.4 34.2 46.4 17.1 29.4 43.6 9.9
20.0 52.5 27.5 16.8 35.2 18.6 29.4
11.1 23.5 65.4 12.2 19.8 63.7 4.3
20.8 52.5 26.7 24.6 38.0 24.3 13.1
12.7 53.1 34.2 12.3 35.8 29.1 22.8
20.7 51.5 27.8 21.3 36.4 26.1 16.2
14.0 70.8 15.2 12.1 44.4 10.2 33.3
11.5 37.3 51.2 12.8 28.3 43.0 15.9
13.4 66.3 20.3 10.8 35.5 13.6 40.1
21.1 56.4 22.5 18.5 35.0 16.3 30.2
23.4 50.9 25.7 20.6 36.6 19.3 23.5
18.5 51.9 29.6 21.1 44.3 27.1 7.5

past experience of such bioassays has shown that the excretion rates analysed
are approximately normally distributed with mean 2 mg/24hr and standard
deviation 0.5 mg/24hr. To explore the possibilities of the method, aliquots
from a number of urine samples are available. The experimenter has made
bioassay determinations on one aliquot from each urine sample and selected
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212 INDIRECT MEASUREMENT: ASSAY AND CALIBRATION

a subset which he felt gave adequate coverage of the range of excretion rates.
Three other aliquots from each urine sample of this subset were then assigned
to the chromatographic method and the results are tabled below.

Serial no Excretion rate (mg/24hr)
of urine Bioassay Chromatographic
sample method method

1 0.50 0.80, 0.88, 0.98
2 1.00 1.07, 1.10, 1.10
3 1.20 1.20, 1.23, 1.35
4 1.40 1.36, 1.48, 1.49
5 1.60 1.52, 1.53, 1.56
6 1.80 1.63, 1.72, 1.82
7 2.00 1.76, 1.80, 1.88
8 2.20 1.95, 2.00, 2.02
9 2.40 2.01, 2.04, 2.18
10 2.60 2.16, 2.28, 2.29
11 2.80 2.31, 2.40, 2.42
12 3.00 2.45, 2.51, 2.52
13 3.50 2.82, 2.94, 3.01

Explore the possibilities of using the chromatographic method in the future.
If the experimenter asks how the taking of more than three chromatographic
determinations would affect the reliability of the method how would you re-
spond?
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CHAPTER 8

Diagnosis

8.1 Introduction

The general problem of differential diagnosis in clinical medicine has been
well illustrated and motivated in previous chapters. In Chapter 1 data sets
such as Conn’s syndrome, Cushing’s syndrome, haemophilia and non-toxic
goitre were introduced. In Chapters 2–4 aspects and characteristics of the
probability distribution of such data were discussed. In order to retain the
logical sequence of the development of statistical concepts in clinical medicine
through experience, observation and measurement which are fundamental to
the data collection process, in this chapter we shall concentrate on what may
be termed the standard statistical differential diagnosis problem.

This problem depends on the availability of a data set D which has arisen
through experience, observation and measurement on patients who suffer from
one of a set {u : u = 1, . . . , k) of k disease types. The data in D consist of a
set of measurements: the feature vector denoted by v on each patient along
with the known disease type u for that patient. The data set

D = {(ui, vi) : i = 1, . . . , n}
is commonly referred to as the training set.

We assume that D is homogeneous and complete in the sense that each
case has been observed and measured in the same manner, for example that all
patients arise from one specialist clinic, that the typing methods are stable, for
example by post mortem or operation and that the features in v are measured
on all patients so that the vi are complete. There is no restriction on the
nature of the features: they can be continuous or discrete.

The aim of the statistical diagnostic process is to employ the data set D as
a vehicle for making a meaningful probability statement about a new patient
with known feature vector v who has been ascertained to have one of the k
disease types but so far the precise disease type u is unknown. We take the
view that this statement should be a realistic and easily interpreted diagnostic
aid to the clinical decision-making process. Inevitably the clinical decision will
depend on the typing indicated and its uncertainty. A secondary but important
consideration is that of past experience as discussed in Chapters 2–4. Has a
case of this nature appeared before; in other words is the case typical of the
experience in the training set D?

Statistical textbooks on medicine have a tendency to concentrate on so-
called standard methods. The consulting statistician when first faced with

213
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214 DIAGNOSIS

the diagnosis problem might well think of it as an example of the standard
classification problem in discriminant analysis. Thus a discriminant function
(linear or otherwise) could be constructed based on modelling the conditional
distribution of v on u = j (j = 1, . . . , k) as, for example, multivariate normal.
A new case is then allocated to disease type u depending on the value of the
discriminant function score.

The imposition of this procedure on diagnostic data can be criticized im-
mediately on the following grounds.

(i) The allocation procedure is based on long-run frequency considerations,
namely the proportion of time cases are misclassified. From a clinical
point of view this is unsatisfactory as it is the specific new undiagnosed
patient who is of immediate concern and not some hypothetical perfor-
mance over a long run of patients. What is best for the individual may
differ from what is determined on the basis of a conceptual population
of patients.

(ii) The procedure assumes that the conditional distributional forms for v
on u are stable multivariate normal. We have seen from our discussion
in Chapter 2 that this may be totally unjustified.

This line of reasoning leads us to the conclusion that as far as the individual
patient is concerned, the best practice is to calculate realistic probabilities for
the set of disease types as an aid to the clinical decision-making process. A
secondary consideration will be a back-up assessment of how typical the new
patient is of the past experience of patients in D.

8.2 Differential diagnosis in Conn’s syndrome

The problem of differential diagnosis between adenoma and bilateral hyper-
plasia in Conn’s syndrome with experience based on the data set conn has
already been described in detail in Chapter 1. With disease type of the ith
selected case denoted by ui (1 for adenoma, 2 for bilateral hyperplasia) and
the associated seven-dimensional feature vector denoted by v we thus have
available a data set

D = {(ui, vi) : i = 1, . . . , n}
for the selected cases S1, . . . ,Sn, where n = 31. We now have a new patient R
referred to the clinic, with recorded feature vector v and known to be suffering
from Conn’s syndrome but of unknown type u. The statistical problem is to
arrive at a realistic diagnostic probability assessment for the referred patient
based on the experience of D and the patient’s own feature vector v.

In our discussion in Chapter 2 on the relation of the referral and selection
processes in this differential diagnostic problem we saw that, because selection
was made on the basis of feature vector v and not on syndrome type u, the
appropriate connection between the referred patient R and a typical selected
case S is

pR(u|v) = pS(u|v).
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DIFFERENTIAL DIAGNOSIS IN CONN’S SYNDROME 215

Our first step is to adopt a parametric maximal model for the conditional
density function pS(u|v) and to fit this model using the techniques of Section
3.6. Since u is binary in nature the appropriate formulation is in terms of some
form of binary regression model and we choose the logistic form. We shall see
later that the normal form provides almost identical results.

8.2.1 Logistic form of binary regression analysis

A question that commonly arises when the covariate feature vector in such a
regression analysis consists of continuous components is whether some trans-
formation would enhance the effectiveness. There seems to be a tradition that
there may be advantages in having the covariate cluster as ellipsoidal as pos-
sible. A simple way of achieving this might be to subject the components
separately to the Box-Cox investigation for normality and to adopt such trans-
formations. Statistical diagnosis with the binary regression model, however,
does not depend on any distributional assumption of covariate vector vari-
ability. The main advantage that we see in making a transformation of the
covariate vector to obtain an ellipsoidal cluster is in determining the relation
of the covariate vector v of the referred case to past experience to ensure
that we are not extrapolating in our diagnostic assessment. Since Q-Q plots
indicated some evidence of non-normality, particularly in the potassium and
aldosterone components, we have taken logarithms of all of the components in
our analysis and verified that the resulting logged components are reasonably
normally distributed. We can report that the diagnostic assessments using the
untransformed components vary only slightly from those obtained here from
the transformed components.

For the data set conn there is no complete separation in the full covariate
space and the Newton-Raphson iterative procedure converges rapidly giving
the following linear predictor:

−168.7 − 89.29 logN − 22.88 logK + 4.168 logC
−1.76 logR+ 2.733 logA− 35.64 logD + 25.47 logS

and with maximized loglikelihood −5.65.
The full lattice here consists of 128 (= 27) nodes but as shown in Table 8.1

examination of level 1, at which only one of the features enters the model,
shows that the main contenders with possible diagnostic ability are potassium
(K), carbonate (C) and renin (R). The sequence of investigation of these three
features is shown in the lattice of Figure 8.1. Strict adherence to some fixed
significance rule would have meant stopping at the first or second level. We
have noted that at level 2 there is little to distinguish between the (K, C)
and the (K, R) combinations and, since there appears to be an appreciable
improvement in fit at level 3, we have taken the (K, C, R) combination as our
working model. The maximized loglikelihood for this working model is −6.88
and the linear predictor is

−22.25 − 12.66 logK + 12.72 logC − 2.99 logR, (8.1)

© 2004 by Taylor & Francis Group, LLC

  



216 DIAGNOSIS

Table 8.1 Loglikelihoods of models in part of the lattice for Conn’s data

Level Variable Loglikelihood

0 Null −20.16

1 logK −10.08
logC −12.15
logR −14.44
logA −16.57
logN −18.42
logS −19.90
logD −20.00

with estimated covariance matrix of the estimator β̂ given as follows.

(Intercept) logK logC logR

(Intercept) 1098.36 −89.19 −294.67 −16.27
logK −89.19 57.47 3.70 5.06
logC −294.67 3.70 88.19 0.67
logR −16.27 5.06 0.67 5.60

As a first step in assessing the effectiveness of the working model as a tool for
diagnosis we compute the predictive diagnostic assessments for the selected
cases of the training set D. In making these assessments we use the leave-
one-out technique. Table 8.2 provides the predictive assessments of p(u|v,D)
for the 31 cases. It will be seen that for adenoma cases A5 and A18 these
assessments favour bilateral hyperplasia, and for bilateral hyperplasia cases
B6, B7 and B9 the assessments favour adenoma. For this diagnostic problem
we also show the estimative assessments, simply to bring out the fact that the
predictive assessments are more conservative than the estimative assessments
in the sense that they are always closer to the (0.5, 0.5) allocation associated
with the greatest uncertainty. For the reasons set out in Chapter 3 we shall
use only the more realistic predictive assessments.

This diagnostic picture can be communicated in the biplot of Figure 5.23,
based on the standarized logarithmic values for the adenoma cases on which
the positions of the bilateral hyperplasia cases have also been plotted. It is
clear from this biplot that A5 and A18 are the adenoma cases most likely to
be confused with the bilateral hyperplasia cases; it is clear also that cases B6,
B7 and B9 are closest to the cluster of adenoma cases.

© 2004 by Taylor & Francis Group, LLC

  



DIFFERENTIAL DIAGNOSIS IN CONN’S SYNDROME 217

Maximal Model
-5.65

KCR
-6.86, P=0.62

KC KR CR
-8.11, P=0.31 -8.07, P=0.44 -9.64, P=0.16

K C R
-10.08, P=0.18 -12.15, P=0.09 -14.44, P=0.01

Null
-20.16, P=0.0001

Figure 8.1 Lattice of hypotheses for Conn’s data. At each node is given the maximised
loglikelihood and the P -value of the test of the model within the maximal model.

8.2.2 Influential cases

Since the diagnostic objective is to obtain reliable assessments of p(u|v,D)
we follow the argument of Section 3.11 in attempting to identify influential
cases in the selected set conn. More specifically we give in Table 8.3 the
Kullback-Liebler influence measure providing for each case the difference in
the assessments obtained by deleting and retaining the case. The cases that
require investigation are A5, A18, B4 and B7. Cases A5, A18 and B7 have
already been identified in the biplot of Figure 5.23 as cases which are within
the overlap of the adenoma and bilateral hyperplasia cases in the covariate
space. Case B4 has also been seen to be on the boundary of the bilateral
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Table 8.2 Diagnostic probability assessments for type 1(adenoma) of Conn’s syn-
drome for the 31 cases of the training set

Case no Predictive Estimative Kernel Bayesian

A1 0.86 1.00 0.98 0.85
A2 0.64 0.66 0.52 0.54
A3 0.92 1.00 1.00 0.82
A4 0.96 1.00 0.98 0.84
A5 0.02 0.01 0.14 0.24
A6 0.75 0.80 0.61 0.60
A7 0.92 0.99 0.91 0.76
A8 0.97 1.00 0.98 0.88
A9 0.98 1.00 1.00 0.95
A10 0.94 0.98 0.87 0.77
A11 0.94 1.00 0.92 0.81
A12 0.98 1.00 1.00 0.93
A13 0.95 1.00 0.97 0.83
A14 0.78 0.81 0.66 0.61
A15 0.93 1.00 0.99 0.84
A16 0.94 0.99 0.91 0.77
A17 0.98 1.00 1.00 0.95
A18 0.41 0.38 0.37 0.47
A19 0.98 1.00 1.00 0.94
A20 0.91 0.97 0.80 0.72

B1 0.03 0.00 0.23 0.12
B2 0.19 0.09 0.28 0.32
B3 0.23 0.23 0.40 0.39
B4 0.41 0.35 0.48 0.41
B5 0.19 0.09 0.31 0.34
B6 0.53 0.54 0.53 0.48
B7 0.62 0.66 0.51 0.50
B8 0.09 0.04 0.24 0.27
B9 0.62 0.64 0.57 0.52
B10 0.14 0.08 0.29 0.31
B11 0.05 0.01 0.19 0.20

hyperplasia biplot of Figure 5.23. In discussions with the consulting clinicians
there seemed to be no good reason for excluding any of these cases and they
have been retained in all subsequent analyses.
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Table 8.3 Kullback-Liebler influence for 31 cases of the training set for Conn’s syn-
drome

Case no Influence Case no Influence Case no Influence

A1 0.0000 A11 0.0000 B1 0.0000
A2 0.0048 A12 0.0000 B2 0.0027
A3 0.0000 A13 0.0000 B3 0.0018
A4 0.0000 A14 0.0034 B4 0.0301
A5 0.0525 A15 0.0000 B5 0.0025
A6 0.0023 A16 0.0001 B6 0.0172
A7 0.0001 A17 0.0000 B7 0.0534
A8 0.0000 A18 0.0338 B8 0.0003
A9 0.0000 A19 0.0000 B9 0.0076
A10 0.0001 A20 0.0002 B10 0.0009

B11 0.0000

8.2.3 Normal form of binary regression analysis

We can report here that use of the normal form for the binary regression
model leads through lattice inspection to the same form of working model
with linear predictor

−11.17 − 6.94 logK + 6.67 logC − 1.64 logR.

Note that the ratios of the coefficients in this normal form to those in the lo-
gistic form are 0.50, 0.55, 0.52, 0.55, and so approximately conforming to the
approximation Ψ(t) = Φ(0.59t) of Section 3.6. The ratios of the correspond-
ing standard errors of these estimated coefficients are 0.54, 0.52, 0.54, 0.55,
respectively, showing a similar conformity with the approximate relationship
between logistic and normal forms. The predictive diagnostic assessments and
atypicalities for this normal form do not differ from those of the logistic form
by more than 0.02.
Weighted kernel diagnostic assessments

We now compare the use of the working model of logistic binary regres-
sion form with that of the weighted kernel method of Section 4.8 for ob-
taining a direct assessment of the diagnostic probabilities p(u|v,D). Here
v = [v1, v2, v3] = [logK, logC, logR] and we use the binomial kernel

K(ui|uj) =
{

λ (ui = uj),
1 − λ (ui �= uj).

For the weighting factors we take

G(v, z) = 1 − exp{−d(v, z)/µ},
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where

d(v, z) =
3∑

j=1

(vj − zj)2/s2j

and sj is the estimated standard deviation of the jth component vj in the
data set conn. The pseudo-loglikelihood l(λ, µ) is easily computed for any
given (λ, µ) and the maximizing values (λ, µ) are readily obtained by a search
technique. For this data set we obtain λ = 1, the upper limit of the possible
range, and µ = 0.065. These values can be used to compute the kernel diag-
nostic assessments for the training set conn using the leave-one-out principle
to avoid resubstitution bias. These are shown in Table 8.2 and there is clearly
broad agreement in the inferences which would be drawn from the predictive
and the Bayesian assessments.

8.2.4 Diagnostic assessments for new cases

The diagnostic working model using the linear predictor of (8.1) can now be
applied to the cases of Clinic 2 to obtain the predictive diagnostic assessments
p(u = 1|v,D) shown in Table 8.4 for the 43 new cases recorded in newconn.
We recall that these assessments will be appropriate even if the selection
and referral process differs from that of Clinic 1. Application of the weighted
kernel method investigated above yields the diagnostic assessments also shown
in Table 8.4. Also shown in the table are the extrapolation indices relative to
the adenoma and to the bilateral hyperplasia experience.

First we note that the pattern of weighted kernel assessments is in broad
agreement with the predictive assessments and we therefore confine our com-
ments to the predictive assessment. Cases C1–C17 have predictive diagnos-
tic probabilities varying between 0.61 and 0.98 and favouring adenoma, now
known to be the true type. Moreover the extrapolation indices with respect
to adenoma for these cases are all less than 1 except for C17 for which the
excess over 1 is really negligible. Of the predictive assessments for D1–D4 only
those for D1 and D3 favour the true type, bilateral hyperplasia. Here again no
extrapolation difficulty arises. Of the cases E1–E22 of unknown type at the
time of assessment we see that the extrapolation indices associated with the
favoured type are all less than 1 except for cases E7 and E21. The reasons
for these extrapolation warnings are easily identified. For case E7 the K value
equals the maximum (in the bilateral hyperplasia group) and the C value is
greater than the overall maximum; for case E21 the R value is greater than
the overall value. For both of these cases the diagnostic assessment hardly
distinguishes between adenoma and hyperplasia.

As we have already stated the complete separation problem of maximum
likelihood estimation does not arise for this data set. We have, however, purely
for illustrative purposes, applied the Bayesian approach for handling complete
separation as described in Section 4.3. The resulting linear predictor based on
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Table 8.4 Diagnostic probability assessments for type 1(adenoma) for 43 cases of
Conn’s syndrome

Case no Predictive Kernel Bayesian Extrapolation index
Adenoma Hyperplasia

C1 0.93 0.99 0.82 0.53 6.05
C2 0.83 0.96 0.71 0.63 5.20
C3 0.98 1.00 0.95 0.41 8.28
C4 0.61 0.56 0.53 0.32 0.77
C5 9.95 0.93 0.79 0.00 2.51
C6 0.84 0.72 0.65 0.10 1.07
C7 0.97 0.99 0.90 0.21 5.48
C8 0.60 0.60 0.54 0.42 1.23
C9 0.85 0.94 0.72 0.47 4.07
C10 0.96 0.98 0.86 0.08 4.08
C11 0.92 0.89 0.75 0.22 2.25
C12 0.62 0.64 0.55 0.45 1.80
C13 0.97 0.99 0.86 0.27 4.30
C14 0.98 1.00 0.94 0.58 8.50
C15 0.76 0.88 0.65 0.61 3.77
C16 0.88 0.96 0.75 0.42 4.48
C17 0.87 0.99 0.77 1.07 8.49
D1 0.17 0.30 0.34 0.70 0.22
D2 0.79 0.63 0.61 0.14 0.80
D3 0.06 0.26 0.22 0.94 0.22
D4 0.56 0.55 0.52 0.37 0.94
E1 0.95 1.00 0.87 0.79 6.53
E2 0.44 0.46 0.46 0.52 1.16
E3 0.09 0.19 0.24 1.19 0.39
E4 0.29 0.36 0.40 0.71 0.31
E5 0.03 0.13 0.12 1.41 0.68
E6 0.05 0.16 0.21 1.02 0.23
E7 0.46 0.62 0.50 3.89 3.64
E8 0.30 0.36 0.40 1.50 1.40
E9 0.03 0.17 0.13 1.39 0.61
E10 0.81 0.93 0.69 0.73 4.52
E11 0.95 0.93 0.71 0.51 3.82
E12 0.15 0.32 0.31 0.72 0.08
E13 0.08 0.20 0.24 0.88 0.04
E14 0.22 0.29 0.36 1.34 0.67
E15 0.25 0.32 0.38 0.84 0.60
E16 0.76 0.79 0.63 0.42 2.26
E17 0.15 0.27 0.32 0.63 0.02
E18 0.30 0.37 0.40 0.77 0.73
E19 0.78 0.67 0.61 0.21 0.84
E20 0.03 0.10 0.12 1.51 0.72
E21 0.39 0.48 0.44 1.14 2.76
E22 0.90 0.96 0.76 0.39 4.08
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the normal form of binary regression is

−9.82 − 4.19 logK + 4.89 logC − 1.02 logR

and the resulting predictive assessments are presented in Tables 8.2 and 8.4.
As we would expect these assessments based on the vague prior distribution
on β are more conservative than those based on maximum likelihood method-
ology, reflecting the smaller values of the coefficients in the linear predictor.
The Bayesian assessments are, however, broadly of the same pattern as the
maximum likelihood assessments.

8.2.5 Reliability curves for new cases

We cannot overemphasize the good sense of investigating the reliability curves,
as described in Section 3.11, for assessing how reliable a particular differential
diagnosis is. To illustrate this we provide in Figure 8.2 the reliability curves
for six of the new patients to demonstrate the variability in the firmness of the
diagnosis. Patient C1 is a clear cut case of adenoma. Patient C4 whose dif-
ferential diagnosis is also adenoma has a curve clearly indicating unreliability.
Patient C6 is a fairly clear case of adenoma but with a reliability curve less
convincing than patient C1. Cases D1 and E12 have curves suggesting reliable
diagnoses of bilateral hyperplasia, with D1’s diagnosis firmer than that of E12.
Finally E22 has a very unreliable diagnosis placing roughly equal emphasis of
the two forms of Conn’s syndrome. We can report that overall the differential
diagnosis of Conn’s syndrome as described above is reliable, with most of the
reliability curves similar to those for patients C1, C6, D1 and E12.

8.2.6 General comments on the effectiveness of the diagnostic system

It must be fairly clear that although the experience of data set conn can be of
use in helping in the differential diagnostic process in Conn’s syndrome there
remain a number of cases where either the evidence points to the wrong type
or where the predictive assessment is split fairly evenly between the two types.
It can be reported that at the time of the use of the diagnostic system built on
this experience there appeared to be no other diagnostic tools available and so
it certainly played a helpful role for the cases where the inference was clear. A
postscript to this work allows us to emphasize the ephemeral nature of much
of statistical diagnosis. Put simply there is now a technique whereby blood
samples can be extracted from the neighbourhood of each adrenal gland. If
the aldosterone concentrations in these samples are approximately equal we
have a case of bilateral hyperplasia. If the concentrations are different, then we
have a case of an adenoma. Moreover the side with the higher concentration
identifies the adrenal with the adenoma, a highly desirable piece of information
in subsequent surgery.
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Figure 8.2 Reliability curves for a selection of new Conn’s syndrome patients.

8.3 Screening of rheumatoid arthritis patients

The reliable diagnosis of Keratoconjunctivitis sicca (KCS) in patients with
rheumatoid arthritis by an opthalmic specialist is not always available at a
rheumatic clinic. In such circumstances the question arises as to whether it
is possible to use non-specialists and ten binary features (presence or absence
of certain symptoms) of patients to differentiate between cases of KCS and
non-KCS.

Data set kcs shows these binary features in 77 rheumatoid arthritis pa-
tients, A1–A40 with KCS type and B1–B37 with no KCS. This data set was
obtained by an opthalmic specialist first screening a group of rheumatoid
arthritis patients for KCS. Once the members A1–A40 of this KCS group had
been identified a group B1–B37 of similar size of patients with no KCS was
taken as controls. Selection of these cases has thus been made on the basis of
disease type u (1 for KCS, 2 for non-KCS) with subsequent recording of the
10-dimensional multivariate binary feature vector v. The objective is thus to
use the information in this data set D to arrive at a diagnostic assessment
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p(u|v,D) for a new referred rheumatoid arthritis patient R or, equivalently,
the odds

pR(u = 1|v,D)
pR(u = 2|v,D)

.

In terms of our analysis of the relationship between referral and selection in
Chapter 2 we see that we have the following alternatives.
Method 1 We may use the data set kcs to model the conditional distribution
pS(v|u) and then arrive at odds for the referred patient R by the relationship

pR(u|v)
pR(u∗|v) =

π(u)
π(u∗)

pS(v|u)
pS(v|u∗)

where π(u)/π(u∗) is the true odds of KCS to non-KCS in the population of
rheumatoid arthritis patients.
Method 2 We may model the conditional distribution pS(u|v) and arrive at
odds for the referred patient R by the relationship

pR(u|v)
pR(u∗|v) =

pS(u|v)
pS(u∗|v)

{
π(u)
π(u∗)

/
s(u)
s(u∗)

}
,

where s(u)/s(u∗) is the ratio of the selection rates of cases within the KCS and
non-KCS groups. We note that factor {π(u)/π(u∗)}/{s(u)/s(u∗)} in method
2 is simply a correction for the possible difference between the true incidence
and the selection odds ratios.

For method 1 there is a lack of parametric models between the usually un-
realistic independent binary model with its 10 parameters and the full multi-
nomial model with its embarrassingly large number 1023 of parameters. An
alternative non-parametric approach is the multivariate kernel method al-
ready applied in Section 4.8 in its simplest form with one common smoothing
parameter within each group.

For method 2 a simple parametric model in the form of logistic binary re-
gression is available and this can be compared with a non-parametric weighted
kernel method, as for the differential diagnosis problem of Conn’s syndrome.

We shall report all our analyses on the basis that π(u)/π(u∗) = 1 and
s(u)/s(u∗) = 1. The adjustments for other values are obvious.

8.3.1 Logistic binary regression model

In order to investigate whether all the binary features are relevant to the di-
agnostic problem we first fit the maximal logistic model with covariate vector
the 10-dimensional binary vector and investigate the associated lattice of hy-
potheses. There is no problem of complete separation here and the resulting
maximal model has an estimated linear predictor

−4.02 + 4.45v1 + 2.10v2 + 1.14v3 + 4.68v4 + 3.48v5
+0.80v6 − 0.77v7 + 2.37v8 − 1.83v9 + 0.92v10

and the maximized loglikelihood is −10.37. The complete lattice here has
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1024 nodes, but exploration of the lower part of this soon shows that the
features v6, v7, v9, v10 are, individually, not the strongest contenders for entry
to a working model; see Table 8.5.

Table 8.5 Loglikelihoods of models in part of the lattice for the KCS data

Level Variable Loglikelihood

0 Null −54.32

1 v1 −28.27
v2 −31.32
v3 −36.52
v4 −31.34
v5 −43.65
v6 −48.12
v7 −52.59
v8 −45.03
v9 −50.84
v10 −46.91

Examination of the loglikelihoods in the lattice suggests that a reasonable
working model may be based on the subset (v1, v2, v4, v5, v8) of the binary
feature vector. The estimated linear predictor for this working model is

−4.14 + 3.68v1 + 2.73v2 + 4.45v4 + 3.55v5 + 2.93v8

with maximized loglikelihood −11.09. For the asymptotic likelihood ratio test
of this model within the maximal model the test statistic is 1.44 on 5 degrees
of freedom (P = 0.92). The estimated covariance matrix of the parameter
estimator is as follows.

(Intercept) v1 v2 v4 v5 v8

(Intercept) 1.40 −1.19 −0.79 −1.17 −1.27 −0.90
v1 −1.19 2.19 0.46 1.01 1.00 0.81
v2 −0.79 0.46 2.19 0.45 0.73 -0.20
v4 −1.17 1.01 0.45 2.58 1.02 0.69
v5 −1.27 1.00 0.73 1.02 2.47 0.81
v8 −0.90 0.81 -0.20 0.69 0.81 3.55
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Table 8.6 Diagnostic probability assessments for KCS for the 40 KCS cases of the
training set

Case no Predictive Weighted Multivariate
kernel binary kernel

A1 0.973 0.943 0.997
A2 0.998 0.993 1.000
A3 0.997 0.990 1.000
A4 0.998 0.993 1.000
A5 0.988 0.974 0.999
A6 0.973 0.943 0.997
A7 0.961 0.925 0.997
A8 0.988 0.974 0.999
A9 0.998 0.993 1.000
A10 0.278 0.113 0.197
A11 0.996 0.989 1.000
A12 0.961 0.925 0.997
A13 0.997 0.990 1.000
A14 0.998 0.992 1.000
A15 0.866 0.311 0.833
A16 0.988 0.974 0.999
A17 0.643 0.340 0.813
A18 0.994 0.975 1.000
A19 0.991 0.895 0.996
A20 0.988 0.974 0.999
A21 0.242 0.090 0.148
A22 0.997 0.990 1.000
A23 0.973 0.943 0.997
A24 0.996 0.989 1.000
A25 0.996 0.989 1.000
A26 0.431 0.154 0.288
A27 0.998 0.993 1.000
A28 0.988 0.974 0.999
A29 0.886 0.516 0.867
A30 0.988 0.974 1.000
A31 0.881 0.714 0.930
A32 0.997 0.990 1.000
A33 0.932 0.409 0.845
A34 0.988 0.974 0.999
A35 0.065 0.767 0.991
A36 0.996 0.989 1.000
A37 0.997 0.990 1.000
A38 0.802 0.652 0.916
A39 0.004 0.024 0.017
A40 0.881 0.714 0.930
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Table 8.7 Diagnostic probability assessments for KCS for the 37 non-KCS cases of
the training set

Case no Predictive Weighted Multivariate
kernel binary kernel

B1 0.504 0.260 0.355
B2 0.024 0.056 0.029
B3 0.323 0.167 0.303
B4 0,024 0.056 0.029
B5 0.423 0.123 0.347
B6 0.024 0.056 0.029
B7 0.024 0.056 0.029
B8 0.024 0.056 0.029
B9 0.024 0.056 0.029
B10 0.024 0.056 0.029
B11 0.323 0.167 0.303
B12 0.024 0.056 0.029
B13 0.024 0.056 0.029
B14 0.024 0.056 0.029
B15 0.024 0.056 0.029
B16 0.024 0.056 0.029
B17 0.024 0.056 0.029
B18 0.024 0.056 0.029
B19 0.480 0.241 0.309
B20 0.024 0.056 0.029
B21 0.024 0.056 0.029
B22 0.024 0.056 0.029
B23 0.024 0.056 0.029
B24 0.480 0.241 0.309
B25 0.504 0.260 0.366
B26 0.024 0.056 0.029
B27 0.024 0.056 0.029
B28 0.024 0.056 0.020
B29 0.024 0.056 0.029
B30 0.024 0.056 0.029
B31 0.724 0.322 0.557
B32 0.024 0.056 0.020
B33 0.024 0.056 0.029
B34 0.024 0.056 0.029
B35 0.024 0.056 0.029
B36 0.024 0.056 0.029
B37 0.024 0.056 0.029
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Tables 8.6 and 8.7 show the predictive assessments for KCS on a leave-one-
out basis for the 77 cases of the training set kcs, together with the Kullback-
Liebler measure of influence. The cases for which the predictive assessment
favours the wrong diagnosis are A10, A21, A26, A39 and B31 and these are
associated with influence measures in excess of 1. It is not difficult to identify
peculiarities of these cases which may account for their influence. It is clear
that overall KCS cases have more presences of symptoms than the non-KCS
cases. Of all the KCS cases there are just four with number of features present
at most 2 and these are A10, A21, A26 and A39 with 1, 1, 2, 0 presences, re-
spectively. Among the non-KCS cases, B31 is the only case with feature 4
present, with v4 = 1. Among the other KCS cases only A17 has an influence
measure in excess of 1, possibly explained by having only two presences, and
it is interesting that this is associated with a very uncertain diagnostic assess-
ment. Of the other non-KCS cases, B1, B5, B19, B24, B25 are very uncertainly
diagnosed and have influence measures in excess of 1. Of these cases B5 has by
far the largest influence measure of 2.72 and this can probably be explained
by the fact that B5 is the only non-KCS case with feature 8 present. There
is no reason to suspect anything unusual in the original observation of these
cases and so there is no justification for excluding them from the data set.

8.3.2 Weighted kernel diagnostic assessments

The weighted kernel method for assessing pS(u|v) follows similar lines to that
of Section 8.2 for the differential diagnosis of Conn’s syndrome. To compare
with the logistic binary regression model above we consider only the binary
features (v1, v2, v4, v5, v8). Again we use the binomial kernel

K(ui|uj) =
{

λ (ui = uj),
1 − λ (ui �= uj).

For the weighting factors we take

G(v, z) = 1 − exp{−d(v, z)/µ},
where

d(v, z) =
10∑

j=1

(vj − zj)2

is simply the number of disagreements in the binary features of v and z. The
pseudo-loglikelihood l(λ, µ) is easily computed for any given (λ, µ) and the
maximizing values (λ, µ) are readily obtained by a search technique. For this
data set we obtain λ = 0.994 and µ = 0.497 with maximized logarithm of
the pseudolikelihood equal to −19.85. With these values the kernel diagnostic
assessments for the training set using the leave-one-out principle are shown in
Tables 8.6 and 8.7. There is clearly broad agreement in the inferences which
would be drawn from the predictive logistic and the kernel assessments.
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Table 8.8 Diagnostic probability assessments for KCS on predictive, weighted kernel
and multivariate binary kernel bases for all symptom combinations

Symptom combination Predictive Weighted Multivariate
1 2 4 5 8 kernel binary kernel

0 0 0 0 0 0.023 0.055 0.028
0 0 0 0 1 0.312 0.102 0.200
0 0 0 1 0 0.388 0.210 0.229
0 0 0 1 1 0.803 0.308 0.776
0 0 1 0 0 0.560 0.276 0.371
0 0 1 0 1 0.880 0.628 0.902
0 0 1 1 0 0.935 0.636 0.896
0 0 1 1 1 0.980 0.805 0.993
0 1 0 0 0 0.262 0.144 0.224
0 1 0 0 1 0.728 0.612 0.883
0 1 0 1 0 0.803 0.429 0.834
0 1 0 1 1 0.952 0.708 0.989
0 1 1 0 0 0.892 0.779 0.942
0 1 1 0 1 0.978 0.901 0.996
0 1 1 1 0 0.984 0.894 0.996
0 1 1 1 1 0.995 0.970 1.000
1 0 0 0 0 0.412 0.227 0.268
1 0 0 0 1 0.818 0.450 0.856
1 0 0 1 0 0.897 0.666 0.900
1 0 0 1 1 0.965 0.901 0.995
1 0 1 0 0 0.944 0.640 0.921
1 0 1 0 1 0.981 0.886 0.996
1 0 1 1 0 0.991 0.933 0.997
1 0 1 1 1 0.995 0.983 1.000
1 1 0 0 0 0.831 0.736 0.930
1 1 0 0 1 0.962 0.946 0.997
1 1 0 1 0 0.974 0.955 0.997
1 1 0 1 1 0.991 0.790 1.000
1 1 1 0 0 0.988 0.976 0.999
1 1 1 0 1 0.996 0.990 1.000
1 1 1 1 0 0.997 0.990 1.000
1 1 1 1 1 0.998 0.993 1.000
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Table 8.9 Diagnostic probability assessments for KCS, for the test cases C1-C23,
and for not-KCS, for the test cases D1-D17, based on the predictive and weighted
kernel methods

Case no Predictive Weighted
kernel

C1 0.88 0.98
C2 0.95 0.98
C3 0.93 0.98
C4 0.93 0.98
C5 0.92 0.97
C6 0.95 0.94
C7 0.97 0.98
C8 0.84 0.96
C9 0.94 0.98
C10 0.92 0.98
C11 0.98 0.98
C12 0.97 0.98
C13 0.93 0.98
C14 0.98 0.87
C15 0.96 0.98
C16 0.92 0.94
C17 0.78 0.74
C18 0.94 0.84
C19 0.97 0.98
C20 0.86 0.94
C21 0.96 0.98
C22 0.98 0.97
C23 0.98 0.97
D1 0.67 0.95
D2 0.73 0.93
D3 0.43 0.78
D4 0.73 0.93
D5 0.83 0.93
D6 0.77 0.93
D7 0.96 0.91
D8 0.96 0.91
D9 0.77 0.93
D10 0.96 0.91
D11 0.96 0.91
D12 0.83 0.93
D13 0.96 0.91
D14 0.73 0.93
D15 0.96 0.91
D16 0.96 0.91
D17 0.77 0.93
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8.3.3 Multivariate binary kernel diagnostic assessments

In Section 5.6 we have already carried out the multivariate binary kernel
density estimation of pS(v|u) separately for the 40 KCS cases (u = 1) and
the 37 non-KCS cases (u =2) and for the full 10-dimensional binary feature
vector. In our analysis above we arrived at a working model confined to the
features (v1, v2, v4, v5, v8) and so for comparison purposes we report briefly
the results of applying this kernel method to the subset of binary features.
The estimates of λ for the A group (KCS) and the B group (non-KCS) are
λA = 0.806 and λB = 0.972 with the resulting maximized logarithms of the
pseudo-likelihood equal to −127.65 and −37.65 respectively. The resulting
diagnostic assessments in favour of KCS are shown in Tables 8.6 and 8.7. On
the whole and making allowances for the unspecified selection ratio, assumed
to be 1 in our presentation here, these assessments are broadly similar to
those of the predictive logistic assessments, with the greatest discrepancies
being with the influential cases identified above. These greater discrepancies
are probably the result of the kernel method forcing some peaking on these
apparently isolated cases.

8.3.4 Diagnostic assessments for new cases

For a working model involving five binary features it is possible to enumerate
the resulting diagnostic assessments in tabular form and these are collected in
Table 8.8. We emphasize that these assessments, intended for use on new cases,
differ from those of Tables 8.6 and 8.7 in that they are based on the full data
set kcs, whereas the previous assessments were based on the leave-one-out
principle.

The data set newkcs is a set of test data, with 23 cases C1–C23 of known
KCS type and 17 cases D1-D17 of known non-KCS type. Probability assess-
ments based on the predictive and weighted kernel methods are given in Ta-
ble 8.9.

Note that the extrapolation indices can again be evaluated here, and there
is no evidence that in the application of the system there is any case of ex-
trapolation.

8.4 Genetic counselling and haemophilia

The problem of the genetic counselling, briefly introduced in Section 1.10, of
a referred woman R who may be a haemophilia carrier is how to marshall the
information w from the woman’s family tree and the result v = (v1, v2) of
her coagulation tests to provide some quantitative assessment of her unknown
status u, carrier (u = 1) or non-carrier (u = 2). The objective is to obtain
a realistic assessment of the conditional probabilities pR(u|v, w) as diagnostic
assessments. Information about the pattern of variability of the coagulation
measurements for a selected set of 43 women, C1–C20 selected because of
their known carrier status and D1–D23 selected from normal, presumed non-
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carrier, women hospital workers. The patient has, of course, been referred for
counselling on the basis of the family tree w with subsequent determination
of her coagulation measurement v, whereas the 43 women in data set haemo
providing past experience of coagulation variability have been selected on the
basis of their known status u. In our detailed study of the relationship of
referral to selection in this problem of genetic counselling in Chapter 2 we
arrived at the following basis for assessing the relevant odds:

pR(u|v, w)
pR(u∗|v, w)

=
pR(u|w)
pR(u∗|w)

pS(v|u)
pS(v|u∗) ,

where we use u, u∗ to shorten the notation u = 1, u = 2.
We emphasize here that for the moment we are considering a situation

where the only person in the family tree who has undergone the coagulation
tests is the referred patient. There are then two stages to our task. First,
the use of our genetic knowledge and the family tree w allows us to obtain
diagnostic assessments pR(u|w), pR(u∗|w) for the referred patient R, prior to
the use of her coagulation test results. Secondly, we have to use the data
set haemo to obtain assessments of the two conditional distributions of the
bivariate measurement v for each of the statuses: carrier and non-carrier; in
other words we require to assess pS(v|u,D) from the experience of C1–C20
and pS(v|u∗,D) from D1–D23.

8.4.1 Analysis of the family tree

Such trees clearly start with the nearest antecedent, who is a known carrier,
traced back through the distaff side of the family: mother, maternal grand-
mother, mother of maternal grandmother, and so back. From such a starting
point, the only branches of the family tree which provide information on the
status of the referred patient are those leading to normal males. Moreover in
the evaluation of conditional probabilities of normal sons only the assumed
status of the mother of these sons need be retained in the conditioning. The
probabilistic argument can be best illustrated by a simple example.

Illustrative example A referred woman R, actually new case N15 from data
set newhaem, knows that her maternal grandmother G was a carrier. Her
mother M has nM normal sons, she herself has already nR normal sons, and
she has a sister S with nS normal sons. We wish to calculate, on the basis of
all this information, the probability that the referred patient R is a carrier.

We use cP (c̄P ) to denote the event that person P is a carrier (non-carrier)
and nP to denote the event that person P has nP normal sons. We can then
easily evaluate the probabilities of joint events such as (cM, cR, cS, nM, nR, nS)
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conditional on the knowledge that G is a known carrier. For example,

p(cM, c̄R, cS, nM, nR, nS|cG)

= p(cM|cG)p(nM|cG)p(c̄R|cM)p(nR|c̄R)p(cS|cM)p(nS|cS)

= 1
2 · ( 1

2 )nM · 1
2 · 1 · 1

2 · ( 1
2 )nS

= (1
2 )nM+nS+3.

By similar arguments we arrive at the following complete set of joint proba-
bilities:

p(cM, cR, cS, nM, nR, nS|cG) = (1
2 )nM+nR+nS+3,

p(cM, cR, c̄S, nM, nR, nS|cG) = (1
2 )nM+nR+3,

p(cM, c̄R, cS, nM, nR, nS|cG) = (1
2 )nM+nS+3,

p(cM, c̄R, c̄S, nM, nR, nS|cG) = (1
2 )nM+3,

p(c̄M, c̄R, c̄S, nM, nR, nS|cG) = (1
2 ),

with the other impossible joint events having probability 0. By simple condi-
tional probability arguments we arrive at the relevant conditional probability
p(cR|cG, nM, nR, nS) as

( 1
2 )nM+nR+nS+3 + (1

2 )nM+nR+3

( 1
2 )nM+nR+nS+3 + (1

2 )nM+nR+3 + (1
2 )nM+nS+3 + (1

2 )nM+3 + 1
2

.

For the referred woman of our original example we have

nM = 2, nR = 1, nS = 3,

so that the relevant probability p(u|w) of being a carrier is 0.032 and the
complementary probability of being a non-carrier π(u∗|w) is 0.968.

8.4.2 Analysis of the data set of coagulation measurement

The pattern of variability of the coagulation data of haemo has been studied
in detail from parametric and non-parametric views in Section 5.3.2. In the
parametric study we decided that the separate distributions of the bivariate
coagulation measurements are adequately described by bivariate lognormal
models for pS(v|u), pS(v|u∗) leading to predictive assessments of logStudent
form for the referred patient R, as in Section 5.3.2. The values of these density
functions corresponding to the referred woman’s coagulation measurements
(95, 90) are 0.0362 and 1.349, with odds ratio 0.268 from Table 5.4. Hence the
odds against of this referred patient being a carrier are estimated to be 113
to 1.
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8.5 Cushing’s syndrome

We consider the differential diagnosis of the two disease types adenoma
(type 1) and bilateral hyperplasia (type 2). The observation available on each
patient of known type, 7 of type 1 and 27 of type 2, is a 7-dimensional vec-
tor of urinary excretion rates (mg/24h) of seven steroid metabolites. Despite
the fact that there is considerable univariate overlap in the ranges of the two
types, as shown in Table 8.10, application of maximum likelihood estimation
reveals that there is complete separation in the 7-dimensional space.

Table 8.10 Ranges of steroid metabolite measurements (mg/24h) for two types of
Cushing’s syndrome

Steroid metabolite Type 1 Range Type 2 Range

Tetrahydrocortisol 1.600–6.405 3.205–19.905
Allotetrahydrocortisol 0.005–0.405 0.005– 3.305
Tetrahydrocortisone 1.905–4.105 3.805–15.705
Reichstein’s compound U 0.005–0.245 0.005– 0.165
Cortisol 0.195–0.425 0.155– 1.125
Cortisone 0.055–0.205 0.085– 0.605
Tetrahydro-11-desoxycortisol 0.325–4.405 0.025– 2.405

This complete separation persists if we use the logarithms of the data, a
transformation that is suggested by the skewness of each of the measurements.
Despite this complete separation the overlap of the ranges and the small sam-
ple size of 34 relative to the vector dimension 7 suggests that it would be
unwise to claim the extreme diagnostic probabilities of 1 and 0 assigned by
maximum likelihood. Application of the Bayesian method with the fair prior
described in Section 4.3 and the logged data gives the estimated linear pre-
dictor as

4.09 − 0.602v1 − 0.194v2 − 1.89v3 + 0.12v4 + 0.44v5 − 0.19v6 + 0.55v7,

where v1, . . . , v7 denote the logarithms of the seven measurements. In the as-
sociated predictive diagnostic assessments of the original cases using the leave-
one-out technique, all the type 2 cases are assigned probabilities in favour of
type 2 in the range 0.77 to 0.996. The type 1 cases have diagnostic probabil-
ities for type 1 of 0.81, 0.71, 0.85, 0.40, 0.91 and 0.90. The misclassified case
has steroid metabolite measurements

6.405 0.325 3.805 0.165 0.425 0.205 0.325,

four of which are at the boundaries of the type 1 range or nearly so. Thus
we see that the problem of complete separation, as far as assigning realistic
diagnostic probabilities for future referred patients is concerned, has been
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overcome by taking a Bayesian approach and particularly by adopting the
fair prior advocated in Section 4.3.

8.6 Bibliographic notes

Clinical diagnosis is a special form of the wider concept of taxonomy, and
probably the first attempt at a statistical model for the problem of classifica-
tion was the much quoted paper by Fisher (1936) on the distinction between
different varieties of Iris. The application of the emerging linear discriminant
approach was applied to the diagnosis of lung cancer by Hollingsworth (1959).
The use of the predictive method for multivariate normal discrimination is
considered by Geisser (1964) and Dunsmore (1966), and the predictive format
also emerges in a likelihood ratio approach by Anderson (1984). The distinc-
tion between estimative and predictive methods was highlighted in Aitchison
and Dunsmore (1975), Aitchison and Kay (1975) and Aitchison, Habbema
and Kay (1977).

For further details of the Keratoconjunctivitis sicca data see Anderson et
al. (1972) and for discussion of multivariate binary kernel modelling and its
application see Aitchison and Aitken (1976). For other methods of kernel
density estimation see Lauder (1983).

8.7 Problems

Problem 8.1 A baby is said to be dysmature if its weight at birth is below
a certain level. In an attempt to diagnose during pregnancy whether or not
a dysmature baby will be born the biparietal diameter (in cms) of the baby
is measured by an ultrasonic technique. Extensive study has shown that at a
certain time during pregnancy the distribution of biparietal diameter is nor-
mal with mean 5.7 cm and standard deviation 0.3 cm for dysmature babies
and with mean 6.1 cm and standard deviation 0.4 cm for normal babies. A
suggested diagnostic procedure classifies a baby as dysmature if the bipari-
etal diameter is less than 5.85 and as normal otherwise. Evaluate the two
probabilities of misclassification for such a procedure.

If it is thought necessary to ensure that only 1 in 100 dysmature babies
should be wrongly classified what critical level of biparietal diameter should
be used? Comment on this alternative procedure.

If it is known that 10 per cent of all babies are dysmature, what proportion
of babies will be misclassified under the two procedures?

Problem 8.2 A thirty-four year old married woman, Mrs R, knows that her
great-grandmother on the distaff side (her mother’s mother’s mother) was a
carrier of haemophilia because Mrs R had a haemophiliac great uncle. Mrs
R has a normal brother and her maternal aunt (her mother’s sister) has two
normal sons (cousins of Mrs R). Mrs R already has a daughter.

Mrs R has recently consulted a genetic counsellor and has undergone two
coagulation index tests A and B which may help in assessing probabilities
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of whether or not Mrs R is a carrier. The counsellor has information on the
ages and A and B coagulation indices of 20 known carriers and 20 apparently
normal women. These are provided in the table below.

Table 8.11 Data for Problem 8.2

Carriers Non-carriers
A B A B

309 355 131 490
199 383 151 594
199 476 295 314
236 493 136 364
249 421 171 431
270 393 164 327
325 402 315 450
294 408 206 447
126 438 124 285
299 537 120 337
307 455 323 398
295 539 337 303
343 349 316 316
273 335 111 249
202 552 185 380
239 460 186 421
77 485 222 279

283 422 160 283

Mrs R’s coagulation scores were recorded as 203 for A and 406 for B.

(i) On the basis of all the above information how should the counsellor assess
the probability that Mrs R is a carrier?

(ii) Mrs R is also seeking advice for her sixteen year old daughter who has A
and B coagulation scores of 280 and 487. What genetic counselling advice
would you provide for the daughter?

(iii) Mrs R now asks you if the information on her daughter in any way affects
your genetic counselling assessment in (i). What answer would you provide?

Problem 8.3 A clinician is investigating the pattern of hormone levels in
patients suffering from two mutually exclusive forms A and B of a hormone
imbalance syndrome. The table below (Type 1: healthy, 2: form A, 3: form
B) shows the levels (milli-equivalents per litre) of nine hormones H1-H9 in
11 healthy persons and in 9 forms of A and 5 forms of B syndrome patients.
The hormones are known to be produced only by three endocrine glands, the
adrenal, the pituitary and thyroid glands, according to the following scheme.
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Adrenal: H1-H6
Pituitary: H7-H8
Thyroid: H9, but also some of H6 and H8

You are asked by the clinician to help him in his attempts to describe the
pattern of variability in these hormone levels. In particular he is interested
in ways in which the pattern differs in the three categories, healthy, A and
B, and whether any such differences may provide some indication of which
glands are responsible for the different forms of the syndrome.

Case H1 H2 H3 H4 H5 H6 H7 H8 H9 Type

1 48 12.6 8.6 21 4.3 2.5 53 1.6 26 1
2 74 8.3 8.2 19 6.8 5.4 50 2.7 24 1
3 58 9.7 7.4 27 5.7 11.8 41 0.9 14 1
4 52 4.4 5.4 37 6.1 6.9 49 1.3 8 1
5 76 9.0 9.4 28 7.4 2.6 45 2.0 17 1
6 52 12.2 7.2 25 5.0 3.0 42 2.3 22 1
7 51 4.2 5.4 25 5.5 11.6 43 2.0 16 1
8 54 7.0 7.0 27 4.4 9.0 37 1.8 12 1
9 72 9.0 6.2 26 3.3 2.7 48 3.1 29 1
10 95 5.1 9.4 22 5.6 5.1 46 4.4 20 1
11 62 11.2 8.2 20 6.2 4.0 35 1.9 23 1
12 55 1.2 1.0 9 0.7 0.2 80 7.1 10 2
13 42 5.4 3.2 9 1.3 1.4 107 4.8 25 2
14 53 10.2 5.6 13 6.0 2.4 65 1.4 24 2
15 46 10.4 7.4 12 7.8 6.4 46 1.0 21 2
16 29 11.1 5.8 10 4.8 0.3 76 7.0 25 2
17 37 9.1 5.4 21 7.0 3.6 68 2.6 40 2
18 34 5.6 3.0 12 3.7 1.2 94 6.8 17 2
19 51 4.1 4.2 18 7.6 3.6 82 4.4 17 2
20 24 4.5 2.4 10 3.6 0.7 106 7.4 19 2
21 99 8.9 6.6 21 5.7 6.8 53 3.1 39 3
22 56 2.7 5.6 19 2.6 7.0 79 10.1 39 3
23 49 4.5 5.8 15 2.5 4.0 69 5.5 40 3
24 34 3.3 2.2 5 7.0 17.0 51 6.1 48 3
25 39 3.0 6.2 9 6.8 8.4 55 7.6 43 3

Problem 8.4 A question has arisen as to whether it may be possible to deter-
mine the category A or B of an ear infection quickly from seven easily elicited
symptoms, s1-s7, rather than delay for a laboratory assessment. Details of
the symptoms, present (1) or absent (0), for 25 category A and 20 category B
infected patients are given below.

Examine the possibility of differentiating between the two categories of in-
fection with these symptoms, including the question of whether they are all
necessary for reasonable differentiation.
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How would you apply your findings to the five new cases C1–C5 with symp-
tom combinations given in the tables below?

Category s1 s2 s3 s4 s5 s6 s7

A 1 0 1 1 0 0 0
A 0 0 0 0 1 0 0
A 1 1 0 0 0 0 0
A 1 0 0 0 1 0 0
A 1 0 1 0 0 0 0
A 0 0 1 0 0 0 0
A 1 1 1 0 1 0 1
A 0 0 1 0 1 1 0
A 1 0 1 0 1 0 0
A 1 0 0 0 0 1 0
A 1 1 0 0 0 1 0
A 1 0 0 1 0 1 1
A 0 0 1 0 1 0 0
A 1 1 1 0 1 0 0
A 0 1 1 0 0 1 0
A 1 0 0 1 1 0 1
A 1 0 0 0 0 1 1
A 1 0 0 1 1 1 1
A 0 0 1 0 0 0 0
A 1 0 1 0 0 0 1
A 0 0 0 1 0 0 1
A 0 1 1 1 0 0 0
A 1 0 0 0 1 0 1
A 1 1 1 0 1 0 0
A 1 0 0 0 1 0 1
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Category s1 s2 s3 s4 s5 s6 s7

B 1 0 1 0 0 1 1
B 0 0 1 0 0 1 1
B 0 1 1 1 0 1 1
B 1 1 1 1 1 1 1
B 1 1 1 0 0 1 0
B 0 1 1 0 0 0 0
B 0 0 0 0 0 1 0
B 0 1 0 0 0 0 1
B 0 1 1 1 0 0 1
B 0 1 1 0 0 1 1
B 1 1 0 0 0 1 0
B 1 1 0 0 1 0 1
B 0 1 1 0 1 1 1
B 0 1 0 1 0 1 1
B 1 0 1 1 0 1 1
B 0 1 1 0 0 1 1
B 0 1 0 0 0 1 1
B 0 0 1 0 0 1 1
B 1 0 0 0 0 1 0
B 0 0 0 1 0 0 1

Category s1 s2 s3 s4 s5 s6 s7

C1 0 1 1 1 0 1 1
C2 1 0 1 0 0 0 0
C3 1 1 1 0 1 1 1
C4 0 0 1 0 0 1 1
C5 1 0 1 1 1 0 0

Problem 8.5 Clinicians are having difficulty in distinguishing between two
forms X and Y of a rare blood disease. Certain cells in the blood can be
classified as being one of three different types A, B, C and the clinicians hope
that this information may help with this form of differential diagnosis. These
proportions have been determined for forty patients, 20 of each form, as they
have come into the clinic, and are set out below.
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Form X Form Y
A B C A B C

0.51 0.27 0.22 0.29 0.29 0.42
0.43 0.27 0.30 0.30 0.28 0.42
0.44 0.30 0.26 0.18 0.26 0.56
0.47 0.34 0.19 0.25 0.49 0.26
0.42 0.48 0.10 0.20 0.54 0.26
0.33 0.49 0.18 0.31 0.46 0.23
0.53 0.38 0.09 0.23 0.27 0.50
0.51 0.18 0.31 0.24 0.37 0.39
0.51 0.34 0.15 0.24 0.25 0.51
0.43 0.22 0.35 0.34 0.29 0.37
0.49 0.20 0.31 0.39 0.27 0.34
0.42 0.36 0.22 0.36 0.21 0.43
0.48 0.35 0.17 0.42 0.43 0.15
0.62 0.29 0.09 0.21 0.41 0.38
0.53 0.27 0.20 0.27 0.39 0.34
0.52 0.22 0.26 0.13 0.23 0.64
0.64 0.16 0.20 0.22 0.32 0.46
0.47 0.16 0.37 0.15 0.19 0.66
0.56 0.20 0.24 0.17 0.54 0.29
0.56 0.27 0.17 0.17 0.25 0.58

You have been asked to investigate the diagnostic potential of such data.
If you develop a diagnostic system based on these data how would you

report on the following new cases?

Case no A B C

1 0.40 0.26 0.34
2 0.50 0.26 0.24
3 0.17 0.14 0.69
4 0.34 0.24 0.42
5 0.27 0.21 0.52

Problem 8.6 A new syndrome with forms A and B has been discovered.
A clinic wishes to avoid the existing long, costly and disturbing process of
differential diagnosis and is investigating the possibility of the use of five
simple diagnostic tests (a, b, c, d, e) as an alternative to the existing diagnostic
procedure. For the 31 patients, 17 with form A and 14 with form B, recently
referred to the clinic, the five tests have been carried out and the results in
standard units are recorded below.
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Form A a b c d e

15 27 192 805 33
64 17 159 1185 20
77 26 640 1027 51
56 11 385 415 21
64 42 202 951 17
27 13 207 627 40
35 19 244 500 20
43 26 359 779 61
94 31 841 775 26
50 27 262 383 21

207 77 274 146 21
81 79 272 428 19
21 47 316 811 42
54 30 400 539 9
48 17 519 1529 24
79 20 213 452 19
64 11 186 1082 60

Form B a b c d e

55 8 127 234 29
41 18 39 375 15
34 9 130 93 51
6 37 44 141 117

37 25 105 316 35
20 14 36 262 59
31 13 172 283 27
29 11 232 481 21
17 37 281 240 39
54 15 244 103 22
43 16 60 351 28
29 8 152 197 22
67 21 166 98 16

106 97 35 622 14

You have been asked to investigate fully the possibility of the use of these
tests for differential diagnostic purposes and have been asked to report to the
clinic in terms the doctors will understand.

Problem 8.7 It is suspected that help in the differential diagnosis of three
forms I, II, III of a malignancy may be provided by determination of a three-
part composition (a, b, c) of tissue from a biopsy. In the study so far conducted
of 36 patients referred to a clinic the percentages of these parts have been
determined for patients with known form: 10 of form I, 12 of form II and 14
of form III, as recorded below.
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Form I Form II Form III
Percentages Percentages Percentages
a b c a b c a b c

38 41 21 38 55 8 26 44 30
47 39 14 51 42 7 28 27 45
27 50 23 56 35 9 36 23 40
53 25 23 37 45 18 35 32 33
46 21 33 47 43 9 22 14 64
23 34 42 36 52 12 38 27 35
55 26 19 29 58 13 23 23 54
45 27 29 24 70 6 24 21 54
55 33 12 40 50 10 25 18 57
45 34 21 38 50 13 30 17 53

45 46 8 18 19 62
51 40 9 34 33 33

25 21 53
44 17 39

You have been asked to study this data set and to offer recommendations
as to its value. It would be helpful if your report could include diagrammatic
evidence to support your conclusions.

Problem 8.8 A special feature of the diagnostic situation in Problem 1.3 is
that the feature vector consists of a mixture of binary and compositional data.
You are challenged to investigate the differential diagnostic problem and to
provide a full report for the clinic.

Problem 8.9 Review and prepare a report on Problem 1.6.
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CHAPTER 9

Special Aspects of Diagnosis

9.1 Introduction

In Chapter 8 we developed the basic techniques required for statistical diag-
nosis in the simple standard situation where there is: a single clinic; complete,
precise though possibly mixed feature vector v; disease type ascertained with
certainty and a well-defined relationship between selection of past cases and
referral of a new patient. In this chapter we consider realistic non-standard
situations in diagnosis which can be regarded as extensions or deviations from
the above. We consider the following situations.
Diagnostic system transfer: a calibration problem. Under what circum-
stances is it valid to use a diagnostic data set from one clinic to assess new
undiagnosed cases in another?
Clinic amalgamation: a calibration problem. If diagnostic data are avail-
able from more than one clinic on a given set of diseases, how can they be
combined to produce a more efficient diagnostic system, taking into account
the interplay of referral and selection? In relation to this and the preceding
question, how can we cope with features which are either measured in one
clinic but not in the other, or features which are not identical but related, for
example through calibration by an assay technique?
Imprecision in the feature vector. For a single clinic how do we deal with
imprecise features in v?
Missing features. For a situation with a single clinic how do we deal with
missing values in some feature vectors?
Uncertainty in ascertainment of type. How do we arrive at diagnostic
techniques in a clinic where the typings are uncertain and all the diagnostic
information we have about the type u of a case is a composite diagnosis giving
pr(u = j) (j = 1, . . . , k)?

We shall attempt to answer these questions systematically against the back-
ground of specific cases. The emphasis will be based on direct modelling of
p(u|v) mainly by parametric methods as this will be seen to be the most rel-
evant technique. Where appropriate, non-parametric techniques will be cited
and also indirect modelling via p(v|u). In other words, the emphasis will be
on what are robust methods of most use in specific practical situations rather
than an academic catalogue of all possible methodologies.

243
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9.2 Diagnostic system transfer

The system transfer problem arose from two particular and related problems
in diagnosis. For differentiating between two types of Conn’s syndrome a sta-
tistical diagnostic system had been developed for a particular Clinic A (see
Section 8.2). After use of the system for some years the clinic has changed its
method of measurement of one of the features, plasma concentration of the
hormone aldosterone, from a double isotope assay to a less expensive, more effi-
cient radioimmunoassay. Any new case of Conn’s syndrome will therefore have
this hormone measured by the new method only. Since the patients forming
the diagnostic training set have been discharged or are undergoing treatment
which affects the hormone concentration it is impossible to find the radioim-
munoassay counterparts of their original double isotope assay measurements
in order to construct a new diagnostic system directly from these patients.
Fortunately, however, although the concentration of hormone depends on the
type of syndrome the conditional distributions relating one hormone determi-
nation to the other are known not to depend on type or indeed on whether
the patient has the particular syndrome. We can therefore investigate the
possibilities of calibrating from the new to the old by measuring hormone
concentration by both methods on portions of blood from a number of people
not in the training set and not suffering from the disease; see Section 7.2.
Such pairs of observations are available on 72 blood samples. It is tempting to
suppose that all that is then necessary is to plot a scatter diagram, fit some
form of regression line and, for a given radioimmunoassay measurement, to
read off from the regression line the corresponding ‘calibrated’ value of double
isotope determination, and finally to use this directly in the original statistical
diagnostic system devised for clinic A. Unfortunately such a method, though
simple, takes no account of the unreliability of the calibrated value. It is our
purpose in this section to analyse the extent to which this naive calibration
method may differ from the full approach which takes full account of this
unreliability.

Another problem arose when requests were received from another clinic B to
process data from its patients through the statistical diagnostic system devised
for clinic A. Uncritical application of the system to data from clinic B on its
patients can give rise to serious failures with a subsequent loss of confidence
in the system in both clinics. The reason for such failures is almost invariably
that the clinics use different methods of determining some or all of the features
on which the statistical diagnosis is based. Again the circumstances and the
methods in the particular example were such that calibration information
could be obtained from blood samples on other patients. Thus statistically
these system transfer problems are identical, clinic B being interpreted as
different from clinic A and with different methods of measurement, or as clinic
A after it has changed to its new methods of measurement.

We suppose for simplicity that the methods of measurement of all features
differ from clinic A to clinic B. The data available for this system transfer
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problem arise from three sources. First, diagnostic data

DA = {(ui, vi) : i = 1, . . . , n}
from clinic A consisting of known types ui and known feature vectors vi of n
of its patients forming the diagnostic training set. Secondly, calibration data

CAB = {(yAj , yBj) : j = 1, . . . , k}
consisting of determinations of feature vectors made by both clinics on k indi-
viduals, yAj referring to measurement by clinic A and yBj the corresponding
measurement by clinic B. Thirdly, for a new case of unknown type u, we have
observed the feature vector vB by the methods of clinic B. The problem then
is to model the situation so as to obtain a realistic assessment of the condi-
tional probabilities p(u|vB ,DA, CAB), the plausibilities to be attached to the
possible disease types for this new case on the basis of the diagnostic and
calibration data and the patient’s own feature vector.

Our first step in the modelling is to postulate a sensible probabilistic mech-
anism for the generation of a complete record (u, vA, vB) for an individual
case, where u is the type of the case and vA and vB are the feature vectors
of this case as measured in clinics A and B, respectively. Postulating such a
model does not imply either that the complete records must be available in
the data set or that we contemplate the determination of complete records
for new cases. This basic model provides a conceptual link between the pa-
tient’s type and the two clinics’ methods of measurement. It simply consists
of formulating the joint distribution of (u, vA, vB) in terms of conditional dis-
tributions together with assumptions concerning separability of parameters
and independence of data sets. To provide an operational model we must pay
attention to a number of interrelated factors.

(i) The model should allow an expression of our understanding of the type-
feature relationship in clinic A.

(ii) It should allow an adequate description of the nature of the calibration
experiment.

(iii) It must allow a derivation of a likelihood function for the observed data
CAB , DA and vB .

(iv) It must allow the fulfilment of the purpose of the investigation, in our
case, the assessment of the probabilities p(u|vB , CAB ,DB).

We now consider six assumptions of a model for the system transfer problem,
discuss their relevance and then deduce from the assumptions the appropriate
method of calibrated diagnostic assessment.
Assumption 1. Any case has associated with it a unique type belonging to a
set U of possible types, and possesses a feature vector belonging to a set VA or
VB of possible feature vectors depending on whether the features are observed
in clinic A or clinic B. Assumption 2. The model is parametric with parameter
set Ω, so that the model corresponding to ω ∈ Ω is specified by the density
function

p(u, vA, vB |ω) (u ∈ U, vA ∈ VA, vB ∈ VB).
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Assumption 3. In the conditional specification

p(u|ω)p(vA|u, ω)p(vB |u, vA, ω)

of p(u, vA, vB |ω) the parameter ω and the parameter set Ω can be factored
into ω = (ψ, θ, δ) and Ω = Ψ × Θ × ∆ in such a way that they are separable:

p(u, vA, vB |ω) = p(u|ψ)p(vA|u, θ)p(vB |u, vA, δ).

Assumption 4. We have p(vB |u, vA, δ) = p(vB |vA, δ). Assumption 5. Given
ψ, θ, δ and the type u of the new case from clinic B the data sets CAB , DA

and vB are independent. Assumption 6. There is prior independence in that
p(ψ, θ, δ) = p(ψ)p(θ)p(δ).

In the clinical setting our first assumption is standard in statistical diagno-
sis, asserting that the disease types have been defined so as to be mutually
exclusive and exhaustive, and that symptoms, signs and the results of diag-
nostic tests constituting a feature vector can be obtained for each patient. Our
second assumption merely acknowledges that we are adopting a parametric
model.

In the third assumption the separation of ψ and θ follows the usual as-
sumption adopted in diagnostic models which recognise ψ as an incidence
parameter and θ as a structural parameter, in the sense that it reflects the
possible dependence of the feature variability on the disease type. The sepa-
ration of δ from θ and ψ is also often reasonable. Its only implication is that
if we know u and vA then the distribution of vB can be indexed by a separate
parameter. For example, in the case where p(vA, vB |u, ω) is multivariate nor-
mal, this can always be achieved by θ referring to the marginal mean vectors
and covariance matrices and δ to the familiar and separable parameters of the
regression distributions of vB on vA.

The fourth assumption is one which will require careful scrutiny in any
particular application. It asserts that the calibration relationship does not
depend on type. In the case of Conn’s syndrome, although a patient’s plasma
concentration of a substance such as aldosterone certainly depends on type,
the relationship of radioimmunoassay determination to double isotope assay
determination is one which holds irrespective of type or indeed irrespective of
whether the blood sample comes from a patient with Conn’s syndrome. All
that was necessary therefore was to select a range of blood samples to meet the
obvious calibration requirements that they cover the set of future values likely
to arise, and to make determinations by both methods on portions of these
samples. If this assumption does not hold then we may be in great difficulty.
For example, if vA were the concentration, measured in mg/dl, of a hormone
in urine and vB were the urinary excretion rate, measured in mg/day, and
if patients with type 1 had a tendency to retain body fluid compared with
patients of type 2, then the relationship of vB to vA would clearly depend
on type. To assess the density functions p(vB |vA, u, δ) we would require to be
able to observe the features in both clinics for patients of each possible type,
and this may be physically impossible. It is then only realistic to admit that
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no reliable system transfer can be achieved and that the only course open is
to start building up a new diagnostic training set within clinic B.

Since the three data sets, CAB ,DA and the feature vector vB of the new
case from clinic B, are associated with completely different sets of individuals
in our practical situations the fifth assumption automatically applies.

Our final assumption is common in such Bayesian formulations and asserts
that any prior information concerning ψ, θ and δ arises from independent
sources. The vague priors that we adopt in practice to ensure no overstate-
ment of odds satisfy this assumption. Its great merit is that of mathematical
tractability by ensuring, with Assumptions 3 and 5, that the posterior distri-
bution for these parameters separates in exactly the same way as the prior.

The consequences of these assumptions can easily be worked through and
we give a brief outline of the main steps. First, note that we can effectively
ignore the parameter ψ in the argument due to the separability assumptions
and the fact that its role is to perform incidence rate adjustment. Then the
essential step in forming the likelihood L(u, θ, δ|vB ,DA, CAB) is to note that

p(vB |u, θ, δ) =
∫

VA

p(vB |vA, u, θ, δ)p(vA|u, θ, δ)dvA

=
∫

VA

p(vB |vA, δ)p(vA|u, θ)dvA (9.1)

by Assumptions 3 and 4. The likelihood can thus, by Assumption 5, be ex-
pressed in the form

p(vB |u, θ, δ)p(DA|θ)p(CAB |δ).
Assumption 6 about the factorisation of the prior distribution then ensures
that the posterior distribution can be expressed in the form

p(u, θ, δ|vB ,DA, CAB) ∝ p(vB |u, θ, δ)p(θ|DA)p(δ|CAB),

invoking the equal incidence assumption. Integration with respect to θ and δ
then gives

p(u|vB ,DA, CAB | ∝
∫

Θ

∫
∆

p(vB |u, θ, δ)p(θ|DA)p(δ|CAB)dθdδ

∝
∫

VA

p(vB |vA, CAB)p(vA|u,DA)dvA (9.2)

by (9.1), where

p(vB |vA, CAB) =
∫

∆

p(vB |vA, δ)p(δ|CAB)dδ, (9.3)

p(vA|u,DA) =
∫

Θ

p(vA|u, θ)p(θ|DA)dθ, (9.4)

are the predictive calibrative and diagnostic distributions.
The mathematical problem involved in calibrated diagnosis is thus the eval-

uation of the convolution-type integral in (9.1), and this is seldom standard
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since the calibrative distribution p(vB |vA, CAB) may involve vA in a compli-
cated way.

We now describe the implementation of the modelling on the basis of nor-
mality assumptions and then consider an application to Conn’s syndrome.
Suppose that p(vA|u, θ) is N1(µu, σ

2) and p(vB |vA, δ) is N1(α+βvA, γ
2), and

that we adopt vague priors for the parameters. Then we have the predictive
calibrative density function

p(vB |vA, CAB) = St1
[
k − 2, a+ bvA, c

2{1 + 1/k + (vA − ȳA)2/SA}
]
,

where a, b are the usual regression estimates, c2 is the residual mean squared
error, ȳA and SA are the mean and corrected sum of squares of the yAj and,
as a basis of predictive diagnosis,

p(xA|u,DA) = St1
[
n− 1,mu, s

2(1 + n−1
u )
]
,

where nu is the number of xAi of type u, mu their mean and s2 the usual
pooled sample variance. In contrast the effect of applying naive calibration and
estimative diagnosis is to replace p(vB |u,DA, CAB) by a normal distribution
N1(a+ bmu, b

2s2).
The integral in (9.1) cannot be evaluated directly in terms of known func-

tions but we can obtain a useful approximation for comparison purposes by
first determining the mean and variance associated with this integral by the
usual iterated expectation method and then using a normal approximation
with this mean and variance. This results in a normal distribution with the
same mean a+bmu as the naive-calibration estimative-diagnostic method but
the variance is

fn(1 + n−1
u )b2s2 + fkc

2

{
1 + k−1 +

(mu − vA)2 + s2fn(1 + n−1
u )

SA

}
, (9.5)

where fr = (r − 2)/(r − 4), instead of the b2s2 of the naive-calibration
estimative-diagnostic method, and the differences between these terms could
well translate into appreciable differences between the methods in practice.

We have considered the situation where all of the features are measured
differently between clinics A and B but often there will be a number of features,
such as age, for which we may safely assume that observation or measurement
will lead to the same value in both clinics. We can thus partition vA into two
subvectors (v(1)

A , v
(2)
A ), where only v

(2)
A requires calibration. Then CAB need

contain calibrative information only on the subvectors y(2)
Aj , y

(2)
Bj while DA still

contains information on the whole vector vAi. Then if vB is the complete
feature vector of a new patient observed in clinic B we have as the basis of
our diagnostic assessment the counterpart of (9.1) that p(u|vB , CAB ,DA) is
proportional to

p(v(1)
A = v

(1)
B |u,DA)

∫
V

(2)
A

p(v(2)
B |v(2)

A , CAB)p(v(2)
A |u, v(1)

A = v
(1)
B ,DA)dv(2)

A .

(9.6)
We can now illustrate with reference to Conn’s syndrome the consequences
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of neglecting the full statistical problem of calibrating for diagnosis. Clinic B is
clinic A after it has switched from double isotope assay determination v(2)

A to
radioimmunoassay determination v(2)

B of plasma concentration of aldosterone,
the techniques of determining the other seven features v(1)

A remaining the
same, so that v(1)

B = v
(1)
A . For multivariate normality considerations we work

throughout in terms of transformed data and use the natural logarithms of the
feature observations. The calibrative experiment with a random selection of 72
blood plasma samples provides the set CAB of data from which we determine
p(v(2)

B |v(2)
A , CAB) using predictive methods as

St1
{

70, 0.647 + 0.749v(2)
A , 0.187 + 0.00194(v(2)

A − 2.70)2
}
.

The other factor in the integrand of (9.4) can be easily obtained for a particular
case. Using a new undiagnosed case for which

p(v(2)
A |u = 1, v(1)

A ,DA) = St1(19, 3.42, 0.483), (9.7)

p(v(2)
A |u = 2, v(1)

A ,DA) = St1(10, 2.74, 0.0583). (9.8)

We compare the naive and predictive calibration methods within the frame-
work of predictive diagnosis. For both methods the first factor of (9.6) takes
the same seven-dimensional Student form, so that the difference in the meth-
ods lies in the treatment of the second factor. The naive calibration method
replaces the second factor of (9.8) by

p(v(2)
A = v̂

(2)
A |v(1)

A , u,DA),

where v̂(2)
A = (v(2)

B − 0.647)/0.749 is the naive calibrate corresponding to v(2)
B .

For the particular case under discussion this naive method leads to odds
of 310 to 1 in favour of adenoma. The predictive calibration method requires
the numerical evaluation of the integral associated with the second factor in
(9.6) and this may be easily achieved by numerical integration and this leads
to odds of 2 to 1 on adenoma. The difference between these two sets of odds
would lead to quite different treatments for the patient. This case has been
used simply as a convenient and dramatic means of illustrating the contrast in
the naive and predictive calibration methods of resolving the system transfer
problem in diagnosis. For it the assay method was in fact identical to that
used in the training set so that the above analysis is only a pointer to what
might happen. In the analysis of 43 new cases in data set newconn, where the
assay methods differed from that of the training set, the odds assigned by the
naive and predictive calibrative methods are shown in Figure 9.1. We note
here that the ‘variance parameters’ of the conditional feature distributions in
(9.7) and (9.8) associated with the published case are substantially different.
The same is true for the conditional feature distributions of these 43 new
cases. There are obviously appreciable departures from the line of equal odds
assessments. Where both naive and predictive odds both exceed, or are both
below, unity by a substantial factor such differences would have little effect
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Figure 9.1 Comparison for 43 new cases of Conn’s syndrome of the predictive diag-
nostic odds as determined by naive and by predictive calibration. (Taken from Aitchi-
son, J. Biometrika, 64, 470, 1977, [Oxford University Press] with permission.)

on the treatment of the case. Although there is no case displaying as extreme
a difference as the illustrative case, there do remain eight cases, identified by
open circles in Figure 9.1, where the naive and predictive calibrative methods
are sufficiently different to lead to important differences in the assessment of
the next step in the clinical management.

9.3 Clinic amalgamation

Suppose that two or more clinics wish to pool their diagnostic data in order to
construct a more reliable diagnostic system than any one clinic could produce
by itself. Indeed when the differential diagnosis of a set of rare diseases is
involved it may be impossible for any one clinic to obtain enough cases to make
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construction of a diagnostic system a feasible proposition. When methods of
measurement of diagnostic features differ from clinic to clinic or have changed
over time within a clinic we then have a calibrative problem of diagnosis which
we can conveniently term the clinic amalgamation problem. The nature of the
clinic amalgamation problem can be clearly seen from its very simplest form
involving only two clinics, labelled 1 and 2, and faced with the problem of
differential diagnosis between just two mutually exclusive disease types, say
types 1 and 2. We suppose that we have two independent training sets D1

and D2 in the two clinics, with

Di = {(uij , vij) : j = 1, 2, . . . , ni},
where uij denotes the disease type and vij the feature vector of the jth case
in the ith clinic. Moreover we have available also a calibrative set of data C12,
assumed independent of D1 and D2, with

C12 = {(y1j , y2j) : j = 1, . . . , n},
where y1j and y2j are associated measurements on the jth calibrative case by
the methods of measurement in clinics 1 and 2 respectively. In what follows
we adopt the diagnostic paradigm, in which emphasis is laid on the assumed
stability of the conditional distribution of type for given feature vector, rather
than the sampling paradigm adopted in Section 9.2, where emphasis is laid
on the assumed stability of the conditional distribution of feature vector for
given type. Since, as we shall see later, the clinic amalgamation model con-
tains the system transfer model as a special case we will obtain a diagnostic
paradigm version of the system transfer model as an alternative to the sam-
pling paradigm version of system transfer.

Our objective is, in general, to provide each clinic with a diagnostic system
for use with its own method of measurement. Since modelling of the links
between the two clinics depends on the nature of the calibration experiment
we take this aspect as our starting point. If the calibration is a natural one,
in the sense that the measurements used occur naturally in bivariate form, we
have sufficient information to adopt a symmetrical approach, postulating con-
ditional parametric models p(v1|v2, γ1) and p(v2|v1, γ1) for calibrating from
v1 to v2 and from v2 to v1 respectively, where γ1 ∈ Γ1 and γ2 ∈ Γ2 are the
indexing parameters for the two classes of calibrative models. Because of this
symmetry we need only show the construction of a diagnostic system for clinic
1. Clinic 1 wishes to relate disease type u to its own feature measurements
v1 through a diagnostic paradigm p(u|v1, δ1), where δ1 ∈ ∆1 is the indexing
parameter of the class of diagnostic models. To use the diagnostic data D2

from clinic 2 for the construction of the diagnostic system for clinic 1 we re-
quire to obtain from the calibrative and diagnostic models for clinic 1, namely
p(v1|v2, γ1) and p(u|v1, γ1), an induced model

p(u|v2, γ1, δ1) =
∫

V1

p(u|v1, δ1)p(v1|v2, γ1)dv1 (9.9)
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for the explanation of the variability of the data D2 in terms of the clinic 1
parameters γ1 and δ1.

We can then focus our attention on the likelihood function for γ1 and δ1 for
given calibrative and diagnostic data C12,D1,D2 which is

n1∏
j=1

p(u1j |v1j , δ1)
n2∏

j=1

p(u2j |v2j , γ1, δ1)
n∏

j=1

p(y1j |y2j , γ1)

= L1(δ1)L2(γ1, δ1)L3(γ1) (9.10)

in an abbreviated notation which emphasises the extent of the dependence of
the three factors on the parameter components γ1 and δ1.

We may then make an assessment of the diagnostic probabilities within
clinic 1 by first obtaining from the likelihood and with, if necessary, vague
priors on γ1 and δ1 the posterior distribution p(γ1, δ1|C12,D1,D2) for γ1 and
δ1. Then, for a new case of unknown type but with known feature vector v1
measured in clinic 1, we compute the diagnostic assessment

p(u|v1, C12,D1,D2) =
∫

∆1

p(u|v1, δ1)p(δ1|C12D1,D2)dδ1, (9.11)

where the marginal density function p(δ1|C12,D1,D2) is obtained by integrat-
ing out γ1 in the full posterior distribution. The provision of an appropriate
system for clinic 2 follows exactly the same procedure with v1 and v2 inter-
changed and γ2 and δ2 replacing γ1 and δ1.

We now consider the implications of adopting particular parametric forms
for the calibration and diagnostic components of our model. For the diagnostic
paradigm for clinic 1 we adopt the normal distribution function form with
argument a linear form of the feature vector:

pr(u = 1|v1, δ) = 1 − pr(u = 2|v1, δ) = Φ(v1δT ), (9.12)

where Φ is the standard univariate normal distribution function and allowing
the first component of v1 to be 1 for the usual purpose of simplified notation
and yet recognising the necessity of a constant term in the linear form v1δ

T .
Note that for simplicity we have now dropped the suffix notation in the pa-
rameters γ and δ. For the calibrative paradigm we adopt the normal linear
regression model

p(v1|v2, γ) = φ(v1|v2A,B). (9.13)
With these particular normal linear forms (9.12) and (9.13) the awkwardness
of modelling, namely the multiple integration of Equation 9.9 involved in
formulating the induced diagnostic paradigm for clinic 2, is easily resolved by
reduction to a one-dimensional integral through the transformation x = v1δ

T ,
giving

pr(u = 1|v2, γ, δ) =
∫ ∞

−∞
Φ(x)φ(x|v2AδT , δBδT )dx = Φ(v2εT ), (9.14)

where ε = AδT /
√

(1 + δBδT ). Thus the induced diagnostic paradigm for clinic
2 is also of the normal linear form in (9.12) with parameter ε instead of δ.
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The simple forms of the (9.12)–(9.14) provide an easily computable like-
lihood function from which, by the Newton-Raphson iterative technique ex-
pressible in a modified probit analysis form, we can arrive at maximum like-
lihood estimates (c, d) for (γ, δ) and also at the information matrix inverse
J . The details are omitted here. By the standard Bayesian counterpart of
maximum likelihood large sample theory we adopt the approximate posterior
normal forms

p(γ, δ|C12,D!,D2) = φ2(γ, δ|c, d;J)

and
p(δ|C12,D1,D2) = φ1(δ|d,G),

where G is the appropriate submatrix of J .
For a new case of unknown type but with known feature vector v1 measured

in clinic 1 we have, by (9.11), the diagnostic assessment

pr(u = 1|v1, C12,D1,D2) =
∫

∆

Φ(v1δT )φ(δ|d,G)dδ

= Φ{v1δT /
√

(1 + v1GvT
1 )}. (9.15)

In Section 9.2 we considered a system transfer approach to dealing with the
problem which arose in the context of Conn’s syndrome due to the change in
the method used to measure the concentration of the hormone aldosterone.
Since the new method of measurement is now used on all new cases the des-
ignation of ‘clinics’ using the new and old methods of measurement as clinic
1 and 2, respectively, means that we need only aim for diagnostic assessments
of the form in (9.14) for new cases in clinic 1. The original training set D2

(conn) in clinic 2 consists of 20 cases of type 1 and 11 cases of type 2 with an
eight-dimensional feature vector, and clinic 1 has now, on the basis of cases
diagnosed by the system transfer method and with type subsequently con-
firmed histpathologically, another training set D1 (newconn) consisting of 17
cases of type 1 and 4 cases of type 2. In the analysis considered here we use
only the three most discriminating of the eight features, namely the plasma
concentrations of potassium, renin and aldosterone, the last of which is the
feature involved in the calibration aspect of the problem. The calibration data
C12 relevant here is that described in Section 9.2. We rewrite (9.12) using the
superscript 1 to denote that part of the feature vector not requiring calibration
and superscript 2 for that part requiring calibration as

pr(u = 1|v1, δ) = Φ(δ0 + v
(1)
1 δT

1 + v
(2)
1 δT

2 ) (9.16)

and confine the calibration regression model to the appropriate component by
writing

p(v(2)
1 |v(2)

2 , γ, δ) = φ(v(2)
1 |α+ βv

(2)
2 , σ2). (9.17)

Then (9.14) provides the basis for handling the diagnostic data D2 (conn) in
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clinic 2 by becoming

pr(u = 1|v2, γ, δ) = Φ
[
{δ0 + v

(1)
2 + δ2(α+ βv

(2)
2 )}/
√

(1 + δ22σ
2)
]
. (9.18)

Figure 9.2 Comparison of type 1 probabilities assigned by full clinic amalgamation
and system transfer methods: �, clinic 1 case of known type 1; �, clinic 1 case of
known type 2; •, new case in clinic 1 of unknown type. (Taken from Aitchison, J.
Biometrika, 66, 364, 1979, [Oxford University Press] with permission.)

The full clinic amalgamation method, the system transfer method and the
naive calibration method were each applied to obtain diagnostic assessments
for the 21 training cases in clinic 1, by resubstitution, and for 22 new cases of
unknown type. Figure 9.2 provides, for each of these 43 cases, a comparison of
probabilities of type 1 assigned by the clinic amalgamation and system transfer
methods. Note that on the whole the full clinic amalgamation method gives
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assessments of greater firmness than the system transfer method and in a
number of cases the differences are substantial.

It is not possible to show the results of the naive calibration method on
the same diagram since there is practically no difference from those of the full
clinic amalgamation method. An explanation of this finding has two aspects.
First, naive calibration here is directed towards producing a diagnostic sys-
tem for clinic 1 in contrast to the assessment for a new case in clinic 1 as in
system transfer. The calibration experiment is sizeable and so produces rea-
sonably reliable estimates of the regression parameters. Although for transfer
of a single case the naive calibrate has an appreciable unreliability, ignoring
this unreliability may yet produce, because of averaging over a number of
cases, a satisfactory diagnostic system for clinic 1. Secondly, since new cases
have features measured in clinic 1 there is no need for any additional calibra-
tion technique to be applied to the diagnostic assessment stage, in contrast
to the situation in system transfer where each new case requires individual
calibration.

9.4 Imprecision in the feature vector

We have assumed so far that the components recorded in the feature vector v
are precise. This is not always the case. For a variety of reasons features can
be imprecise; for example there may be physiological variability in the deter-
mination of a feature such as blood pressure, assessment may be by an assay
technique with a quantifiable imprecision, or there may be imprecision arising
from observer error. Later in this section we investigate how imprecision in the
determination of the steroid metabolite features in the differential diagnosis of
Cushing’s syndrome, where the coefficient of variation in the determinations
is quoted as 20 per cent, affects the reliability of the diagnoses. Also earlier
in this chapter we have been investigating essentially imprecision problems
which arise from a need to calibrate certain features between different clinics;
we have already considered imprecision within the context of calibration in
Sections 7.7 and 9.2. In view of this we introduce into our statistical modelling
of imprecision an extra degree of generality which will serve to simplify our
approach to these calibration problems.

We observe a feature vector v subject to imprecision which is related in
probabilistic fashion to a true underlying feature vector y for that individual.
Due to the fact that the observed feature vectors v could arise from different
clinical sources, with varying degrees of imprecision and possible selection on
the observed v or related factors, we again concentrate development on the
conditional density p(u|y, δ) for precise cases. This can be justified by the
fact that the imprecise feature v is related to the precise y for an individual
through the imprecision model p(y|v, γ), and the conditional form p(u|v, δ) for
the observed v is related to p(u|v, γ, δ) by

p(u|v, γ, δ) =
∫

Y

p(u|y, δ)p(y|v, γ)dy,
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which is clearly stable in terms of selection on v. We first consider the situa-
tion where there are just two types and where the feature measurements are
continuous.

9.4.1 Parametric modelling for two types

We have seen in Chapter 8 in terms of practical results there is nothing to
choose between normal and logistic forms for the modelling of the conditional
distribution of p(u|y, δ). Here for reasons of tractability we choose the normal
form. Specifying the model for precise y as pr(u = 1|y, δ) = Φ(yδT ), we have

pr(u = 1|v, γ, δ) =
∫

Y

Φ(yδT )p(y|v, γ)dy.

Realistic modelling of the error distribution p(y|v, γ) together with consider-
ation of tractability suggest a normal form. Looking back to our use of this
modelling in calibrative situations we may specify

p(y|v, γ) = φ(y|vA,B), (9.19)

the multivariate normal regression model with γ = (A,B). Then

pr(u|v, γ, δ) = Φ

{
vAδT√

(1 + δBδT )

}
. (9.20)

The choice of A = I is appropriate if v is quoted as an estimate of y with
computed variance B or, in the multivariate situation, estimated covariance
matrix B. We have retained the more general A since information about y
is sometimes obtained through some indirect form of measurement such as
calibration and assay. In general, individual cases of the training set will have
Ai and Bi (i = 1, . . . , n) differing from each other and from the A and B of
a new case, so that the precise form of the diagnostic model in (9.20) varies
from case to case.

We note that B = 0 corresponds to the case of a precise feature vector with
(9.20) reducing to Φ(yδT ). The obvious inequality

|Φ(vδT ) − 1
2 | ≤ |Φ

{
vAδT
/√

(1 + δBδT )
}

− 1
2 |

confirms the intuitive modelling requirement that knowledge of inaccurate v
rather than true y must lead us to diagnostic probabilities which are closer to
0.5, the diagnostic assessment expressing the greatest uncertainty.

The likelihood problem is easily resolved for the normal model since the
integrals take an explicit and easily computable form. It is tempting to hope
that the problems of taking account of imprecision are thereby automatically
resolved but we shall see that imprecision in clinical situations can cause
substantial, and at times insurmountable, further difficulties. Since we shall
assume that the parameters A and B are known or assumed from factors
outside the diagnostic problem we shall drop γ = (A,B) from the notation.
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The likelihood for a given data set D = {(ui, vi) : i = 1, . . . , n} is given
explicitly by

L(δ|D) =
n∏

i=1

p(ui|vi, δ),

where

pr(ui = 1|vi, δ) = Φ(viεi), p(ui = 2|vi, δ) = 1 − Φ(viεi),

and
εi =

Aiδ√
(1 + δBiδT )

.

To arrive at diagnostic assessments for new cases some simple form for p(δ|D)
must be obtained. We assume the applicability of the Bayesian form of large-
sample maximum likelihood theory; in other words, δ is assumed to be ap-
proximately multivariate normally distributed as N{δ̂, V (δ̂)}, where δ̂ is the
maximum likelihood estimate and V (δ̂) the usual asymptotic estimate of the
covariance V (δ), evaluated at δ̂. The algorithm to obtain δ̂ and V (δ̂) by the
Newton-Raphson method is only slightly more complicated than a straight-
forward binary regression in probit analysis form, each iterative step being
expressible in weighted regression form. Write

si =
viAiδ√

(1 + δBiδT )
, ω =

φ2

Φ(1 − Φ)

and define the weights wi as ω(si), and the regressor vector Xi and the re-
gressand Yi by

Xi = (1 + δBδT )−
3
2
{
(1 + δBiδ

T )viAi − viAiδBiδ
T
}
,

Yi = si + {2 − ui − Φ(si)}/φ(si).

The iterative relation determining the rth iterate is

δ(r) =

(∑
i

wiX
T
i Xi

)−1(∑
i

XT
i Yi

)
,

where the right-hand side is evaluated at the (r − 1)th iterate δ(r−1). At
convergence δ = δ(r) and V (δ) is the inverse matrix, the first factor of the
right-hand side.

For a new case with an exact feature vector, and so with B = 0, this multiple
integral can be evaluated explicitly to give

pr(u = 1|y,D) = Φ

⎡
⎣ yAδT√

(1 + yAV (δ̂)AT yT )

⎤
⎦ .

For a new case with B �= 0 there is no closed form for

p(u = 1|y,D) =
∫

∆

Φ

[
yAδT√

(1 + δBδT )

]
φ{δ|δ̂, V (δ̂}dδ. (9.21)
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This problem is identical to the probabilistic assessment for the system trans-
fer problem, a useful ‘control variate’ approximation being given by the control
term

Φ

⎡
⎣ yAδT√

(1 + δ̂Bδ̂T + yAV (δ̂)AT yT )

⎤
⎦ , (9.22)

which can be improved by addition of the integral∫
F (δ)φ{δ|δ̂, V (δ̂)}dδ,

where

F (δ) = Φ

{
yAδT√

(1 + δBδT )

}
− Φ

⎧⎨
⎩ yAδT√

(1 + δ̂Bδ̂T )

⎫⎬
⎭ .

Application to the differential diagnosis of Cushing’s syndrome
We provide here an illustration of this modelling to an imprecision problem

involving Cushing’s syndrome and data set cush. We confine attention here to
the problem of differentiating between the two benign forms, adrenal adenoma
(type 1) and adrenal hyperplasia (type 2). Such differentiation is of practical
importance because the treatments are quite different for the two types. A
training set of 7 type 1 and 27 type 2 cases is available, with each case, for
our limited illustration, having a two dimensional feature vector, consisting of
urinary excretion rates of two steroid metabolites, allo-tetrahydrocortisol and
tetrahydrocortisone, determined by the paper chromatography method which
has a 20% coefficient of variation. To take account of a coefficient of variation
equal to c the error model in (9.19) takes the form

p(v|y, S) = φ[v|y, {c× diag(y)}2], (9.23)

where diag(y) is the diagonal matrix whose diagonal elements are the compo-
nents of the vector y.

We reemphasize that our main purpose here is to investigate for new cases
the extent to which admission of this factor of imprecision alters the diagnostic
assessments which we would obtain using the excretion rates as if they were
precise. A general study of the effects of imprecision requires the evaluation of
the multiple integral in (9.21) for various degrees of imprecision in the training
set and in the new case. To avoid any possible confounding of imprecision
effects with the accuracy of the approximation in (9.22), we can conveniently
approach the general study in two stages. At the first stage we ask what is
the effect of recognizing imprecision only in the training set, with B = 0 for
a new case, when (9.21) takes the exact form in (9.22). The second stage is
then simply to let B increase from zero and to use (9.22) or a Monte Carlo
technique.

To study the first stage, (9.20) with the error distribution in (9.23) has
been fitted by the iterative procedure with coefficient of variation c = 0, that
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is considering the training set as accurate, and then with increasing values
of c up to 5 per cent. For each c, after convergence, the predictive diagnostic
probabilities were determined for 40 new cases. For all cases but one the
diagnostic probabilities changed substantially as illustrated by typical cases
in Figure 9.3, the probabilities moving towards one-half.

Figure 9.3 Changes in the diagnostic probabilities of typical cases as the coefficient
of variation increases. (Taken from Aitchison, J. and Lauder I.J. Biometrika, 66,
479, 1979, [Oxford University Press] with permission.)

At the second stage we investigated the additional effect of increasing the
coefficient of variation for a new case up to 5 per cent using the approximation
in (9.22). The further reduction in the diagnostic probabilities was smaller
than 2 per cent in all cases. The investigation was restricted to a maximum
coefficient of variation of 5 per cent instead of the actual 20 per cent. As
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the coefficient of variation increases past 5 per cent it becomes increasingly
difficult to obtain convergence by the Newton-Raphson iterative process.

A second application of dealing with the issue of imprecision involves an
alternative to the clinic amalgamation problem for Conn’s syndrome. Here,
two clinics wish to amalgamate their training sets but one of the features,
plasma concentration of aldosterone, is determined by different techniques in
the two clinics. In presenting this example to illustrate the new methods, we
have used the same three logged features for the differential diagnosis of the
two types of Conn’s syndrome as in Section 8.2. In brief, the training set is
here considered to consist of 21 cases from clinic 1, with 17 of type 1 and 4
of type 2, whose feature measurements, by the latest method, are regarded as
exact; and 31 cases from clinic 2 with 20 of type 1 and 11 of type 2, whose first
feature, because of its calibration to the first clinic standard, is imprecise but
whose other two feature measurements are exact. The Bi and Si then take
the forms

Bi = I4, Si = 0 (i = 1, . . . , 21),

Bi =
[
a b 0
0 0 I2

]
, Si = diag{0, c{d + e(v − f)2}, 0, 0} (i = 22, . . . , 52),

where a and b are the calibration regression coefficients, c is the residual mean
square of the calibration regression, d = 32/31, e = 1/Suu, f = ū and v is
the aldosterone measurement in clinic 2; see Section 7.1.1 under the heading
‘Predictive approach’. Our approach here thus completely separates out the
calibration problem from the diagnostic one, producing a single training set
with a mixture of precise cases and imprecise, calibrated cases, whereas the
approach adopted in Section 9.3 retains the two training sets using a calibra-
tion paradigm as the binding element. Where the calibration experiment is
large, as in the present problem, the two approaches are likely to give similar
results.

Here new cases are measured by the new technique so that B = I4, S = 0
and only the first stage, involving the effects of imprecision in the training set,
need be considered. The degree of imprecision in this example is represented by
c and so we can again study the effects of ignoring the imprecision by setting
c = 0 as well as to its actual value c = 0.184. For both assumptions about c,
there were no practical problems of numerical convergence in fitting the cumu-
lative normal model and (9.22) was applied to obtain the predictive diagnostic
probabilities for 22 new cases. The differences between the odds assigned on
a basis of ignoring imprecision and those taking account of the calibration
imprecision are negligible. This is in sharp contrast to the substantial differ-
ences in the application to Cushing’s syndrome. A possible explanation is that
precise cases are sufficiently frequent in the combined training set to prevent
the imprecise, calibrated cases from causing much of an effect at their actual
degree of imprecision. If, however, we let the degree of imprecision increase
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well beyond its actual value, up to c = 1, the odds do change by a factor of 3
in a substantial number of cases. From this result it is fairly safe to conclude
that it is the frequency and the magnitude of imprecision that dually affect
the assessments.

9.5 Missing features: non-toxic goitre

Data are available in the data set goitre on three types of goitre: Hashimoto’s
disease (type 1), simple goitre (type 2) and thyroid cancer (type 3). There are
40, 40 and 28 complete cases for types 1, 2, 3, respectively. Four features
are recorded for each case. Feature v1 is the continuous variable “erythrocyte
sedimentation rate”, feature v2 is the binary variable “recent increase in size”
recorded as 0 (no) or 1 (yes), feature v3 is the ordinal variable ‘consistency’
recorded as 1, 2 or 3 according to an observed firm, hard or soft consistency,
and feature v4 is the binary variable ‘tracheal deviation or compression on X-
ray’ recorded as 0 (no) or 1 (yes). In addition to the complete cases there are
31 incomplete cases, with 4 involving v4 and 27 of them involving variables v1
and v2. We first perform an analysis based on the 108 complete case records.

We have the data

D = {(ui, vi) : i = 1, . . . , 108},
where ui = (uij , j = 1, . . . , 3), with uij = 0 or 1 and

∑3
j=1 uij = 1 and

vi = (vij , j = 1, . . . , 4), with vij denoting the observation made of the jth
feature on the ith subject, with the variables v2 and v4 binary and the others
taken to be continuous. Then the model p(u|v) takes the form of a multinomial
logistic regression model. The full lattice of possible models is rather large in
this problem and so we present only some of the models and comparisons.
Given that there are two binary explanatory factors and two covariates the
most general maximal model M3 may be written as

M3 : ui|v ∼Mu(1, ψijrs),

where
ψijrs =

φijrs∑3
j=1 φijrs

,

with
log(φijrs) = ρjrs + σjrsvi1 + τjrsvi3,

subject to the corner-point constraints

ρ1rs = σ1rs = τ1rs = 0 (r = 1, 2, s = 1, 2).

Of the many sub-models in the lattice we present results only for the following:

M0 : ρjrs = αj , σjrs = τjrs = 0,
M1 : ρjrs = αj + γjvi2, σjrs = βj , τjrs = δj ,

M2 : ρjrs = αj + γjvi2 + εjvi4, σjrs = βj , τjrs = δj ,
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Table 9.1 Comparison of some sub-models with the maximal model M3 on the basis
of asymptotic likelihood ratio tests

Model Deviance Dimension TS(df) P

M3 90.1 24
M2 105.1 10 15.0(14) 0.37
M1 107.1 8 17.0(16) 0.38
M0 234.5 2 144.4(22) < 10−7

subject to the constraints α1 = 0, β1 = 0, γ1 = 0, δ1 = 0 and ε1 = 0.
The details of the formal comparisons of models M0, M1 and M2 within the

maximal model M3 are given in Table 9.1. Clearly model M1 is not rejected
and in fact this is the simplest of the sub-models which fails to be rejected
and so we adopt this as our working model in further analysis.
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Figure 9.4 Log10 odds in favour of the correct type for each of the 108 patients in
the training set. The types of the patients are indicated by squares (type 1), circles
(type 2) and triangles (type 3).

We may obtain estimated probabilities for each of the three types of goitre
for each patient. They were computed on a leave-one-out basis and the results
are shown in Figure 9.4 in the form of log10 odds in favour of the correct type
for each patient, labelled by type. We see that the estimated probabilities in
favour of the known type are fairly strong in several cases but doubtful in
other cases. If one were to consider the results from the viewpoint of classi-
fication of patients into their correct type then using the Bayes classifier the
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leave-one-out estimate of misclassification rate with future patients is 26%,
and the conditional estimates for the three types of goitre are 30%, 13% and
39%, respectively.

We now deal with all the cases by including those with missing data and
assume that the missing values are completely missing at random. There are
112 complete case records on variables v1-v3 and a further 21 cases in which
the value of v1 is missing and a further 6 cases in which v2 is missing. We
adopt a Bayesian approach to the imputation of the missing values and use
WinBUGS. We need to consider how to impute these missing values. Using the
112 complete records we build a linear model to predict v1 using the variables
v2, v3 and u and we also adopt a logistic regression model to predict v2 given
v1, v3 and u. These models are then used to predict the missing values in the
incomplete case records. At each iteration a missing value is imputed from
the posterior distribution of the missing node given the current values of all
connected variables in the model. Then using all 139 case records, including the
imputations, the multinomial logistic regression model M1 is used to predict
u. For a referred patient with covariate vector z = (1, z1, z2, z3) we wish to
estimate the posterior probability that she belongs to the jth type given the
data. If we let θj = (αj , βj , γj , δj) and θ = (θ1, θ2, θ3) we may write this
probability for j = 1, 2, 3 as∫

Θ

exp(θjz
T )∑3

r=1 exp(θrzT )
p(θ|data)dθ,

which is the posterior mean of the probability that the referred patient belongs
to type j. We compute these integrals using WinBUGS. Independent non-
informative priors were assumed for the parameters.

In the WinBUGS analysis three chains were run from dispersed initial val-
ues of the parameters. The chains were run for 4,000 iterations in Metropolis
adaptive phase and the results from the next 1,000 iterations were discarded.
Convergence was monitored during the next 5,000 iteration and on the basis
of trace plots, autocorrelation plots and the Brooks-Gelman-Rubin conver-
gence statistics the chains appeared to be in equilibrium. The sampling was
continued for a further 5,000 iterations and these results used. As there was
some degree of autocorrelation it was also checked that the Monte Carlo error
was less than 5% of the estimated standard deviation of the output at each
node. The posterior probabilities were computed for five referred patients and
the results are given in Table 9.2.

Simple goitre can be ruled out for patient N1 and this patient would appear
to be suffering from either Hashimoto’s disease or thyroid cancer. It seems
likely that patient N2 has cancer of the thyroid, patient N3 has simple goitre
and patient N5 has Hashimoto’s disease. Thyroid cancer can be ruled out for
patient N4 and it is more likely that this patient suffers from Hashimoto’s
disease rather than simple goitre but the probabilities are quite close.
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Table 9.2 Diagnostic assessments of five referred patients with non-toxic goitre

Patient v1 v2 v3 Probabilities

N1 33 1 1 (0.52, 0.00, 0.48)
N2 15 1 2 (0.09, 0.02, 0.89)
N3 4 0 3 (0.01, 0.99, 0.00)
N4 10 0 1 (0.58, 0.41, 0.01)
N5 18 0 1 (0.94, 0.05, 0.01)

9.6 Uncertainty of type

In situations where the type information on patients is uncertain, the training
set consists of cases each with the feature vector again of the d-dimensional
form v but with composite diagnosis w = (w1, . . . , wk), where

wj = p(u = j) (j = 1, . . . , k).

For example, the composite diagnosis w may be a consensus of the opinions
of a group of clinicians. General modelling considerations here again involve
the effect of selection s(v) on v and how the training set D can be employed
to give a realistic firm diagnostic statement p(u|v) for a new case with feature
vector v. Selection arguments now lead to p(w|v) as the stable estimable form
in v. The special feature of this situation is the composite or compositional
form of w, but we have seen in Section 4.2 how to deal appropriately with
such compositions. For direct modelling of p(w|v) we can clearly use a logistic
normal regression type model Lk−1(vB,Σ). Since pr(u = j|w) = wj we obtain
the following form for the diagnostic assessment of a new case:

p(u = j) =
∫

Sk−1
wjλ

k−1(w|vB,Σ)dw,

where λk−1 is the density function of the (k − 1)-dimensional logistic-normal
distribution. This integral can be transformed to more familiar multivariate
form by the additive logratio transformation z = alr(w):

p(u = j|v) =
∫
ψj(w)φk−1(z|vB,Σ)dz, (9.24)

where ψj(w) is the logistic function

exp(wj)∑k
r=1 exp(wr)

.

We note that this is essentially the same as first transforming w by a logratio
transformation z = alr(w) and then imposing a multivariate normal regres-
sion model on z for given v. The multivariate regression theory of Section
3.4 applies to the estimation of B and Σ, yielding B̂ and Σ̂. The estimative
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Table 9.3 Kernel functions for uncertain typing

1. Dirichlet:

K(w,w′) =
Γ(k − 1 + 1/λ)

Γ(1 + w′
1/λ) · · ·Γ(1 + w′

k/λ)
w

w′
1/λ

1 · · ·ww′
k/λ

k

2. Logistic Normal:

K(w,w′) = (w1 · · ·wk)−1φk−1(v|w′, λ2T ),

vj = log(wj/wk), Vj = log(w′
j/w

′
k),

T = (n− 1)−1
n∑

i=1

(Vi − V̄ )(Vi − V̄ )T .

T cannot be taken as diagonal in this instance. To ensure invariance of K
under permutations of the components of w, the above form is appropriate.

approach takes
p(z|v,D) = φ(z|vB̂, Σ̂)

and arrives at an estimative diagnostic assessment. A predictive assessment
may be obtained by assuming vague priors on B and Σ and from Property
3.10 we have

p(z|v,D) = Stk−1
[
n− c, vB̂, {1 + v(V TV )−1vT }Σ̂

]
. (9.25)

For discrete or mixed features or when the multivariate normality of p(z|v)
is questionable kernel methods can be used. The development follows the
weighted kernel arguments of Section 4.8 to give

p(w|v) =
n∑

i=1

K1(w,wi)w(v, vi),

where K1 is the Dirichlet kernel of Table 9.3, and

p(z|v) =
∑

K2(z, zi)w(v, vi),

with K2 the logistic normal kernel of Table 9.3 and w a weighting function.
Good approximate analytic reduction for p(u|v) when k = 2 can be obtained

from
p(u = 1|v) =

∑n
i=1 ψ(v′i)w(v, vi),

v′i = vi/
√

1 + λ2σ2
r/c

2 (k > 2),
but requires integration in the logistic case. The use of the Dirichlet kernel
is more complicated computationally, but explicit assessments for k ≥ 2 are
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Table 9.4 Probabilistic assessments of the electrocochleography cases by the estima-
tive parametric approach (E), the kernel method (K1) and the discrete kernel method
(K2) for groups 1 and 2, with probability of type 1 given for cases 1-23 and probability
of type 2 shown for cases 24-48

Case E K1 K2 Case E K1 K2

1 .83 .87 .90 24 .39 .22 .21
2 .83 .87 .90 25 .70 .45 .45
3 .73 .85 .87 26 .76 .83 .85
4 .70 .76 .77 27 .87 .87 .90
5 .74 .68 .69 28 .68 .87 .90
6 .87 .87 .90 29 .47 .13 .10
7 .80 .87 .90 30 .47 .18 .16
8 .43 .58 .58 31 .56 .18 .15
9 .75 .87 .90 32 .58 .42 .42
10 .39 .13 .11 32 .58 .42 .42
11 .74 .87 .90 33 .58 .42 .42
12 .56 .76 .78 34 .79 .87 .90
13 .60 .57 .58 35 .86 .87 .90
14 .88 .87 .90 36 .88 .87 .90
15 .63 .86 .90 37 .52 .55 .55
16 .72 .87 .90 38 .93 .87 .90
17 .88 .87 .90 39 .83 .87 .90
18 .46 .32 .31 40 .65 .38 .37
19 .78 .87 .90 41 .55 .78 .80
20 .61 .61 .62 42 .88 .87 .90
21 .55 .25 .23 43 .55 .24 .22
22 .71 .87 .90 44 .93 .87 .90
23 .90 .87 .90 45 .78 .87 .90

46 .57 .87 .90
47 .42 .47 .45
48 .86 .87 .90

given by

p(u = j|v) =
n∑

i=1

E(wij)w(v, vi)

with
E(wij) = (wij/λ+ 1)/(k + 1/λ),

where λ is a smoothing parameter.
When v is discrete or consists of mixed features, the weight function W can

be modified as appropriate. If the wi constitute a small set of values, then
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modelling the Vi as a discrete set can be accomplished by the kernel method
to give

p(u|v) = ΣZ(u, vi)w(v, vi)

with Z(w,wi) ∝ K(w,wi), such that∑
i

Z(w,wi) = 1.

The parametric and kernel methodology was applied to data set hearing:
the electrocochleography data. Four measurements of auditory dysfunction
were recorded for each of 93 patients. Each patient belonged to one of four
groups: normal hearing, conduction hearing loss, Menière’s disease and hair-
cell damage, with sample sizes 23, 25, 26, 19, respectively. The assessment
vectors ui were composite but constant within each group. The application
of the continuous normal model for p(z|v) is therefore open to question. The
kernel model can be used as a tool to ascertain the robustness and consequent
validity of the parametric approach for this particular application.

The estimative method and both kernel methods were applied to attempt
to form a diagnostic assessment of the patients in groups 1 and 2 on a
leave-one-out basis and the results are displayed in Table 9.4. The assessed
probabilities are generally similar across all three methods but there are ex-
ceptions, for example patients 10, 21, 29 and 43 in which the estimative and
kernel methods tend to disagree.

In the above analysis only two groups were compared. We now apply the
predictive approach using data from all four groups and we produce diag-
nostic assessments for three referred patients. We use WinBUGS to compute
the probability defined in (9.24). In this application WinBUGS is being used
in direct simulation mode simply to compute an expectation of the logistic
functions with respect to the predictive distribution in (9.25). The first 1,000
iterations were discarded and estimates were based on the output of the next
5,000 iterations. The results are given in Table 9.5. None of the diagnostic
assessments is particularly clear. Patients N1, N2 and N3 are most likely to
belong to groups 4, 3 and 1, respectively.

Table 9.5 Diagnostic assessments of three referred patients

Patient Type 1 Type 2 Type 3 Type 4

N1 0.10 0.29 0.05 0.56
N2 0.09 0.22 0.64 0.05
N3 0.48 0.15 0.29 0.08
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9.7 Cushing’s syndrome

The challenge of developing a diagnostic method to deal with the tree-like
nature of the decision-making in the management of patients with Cushing’s
syndrome was described in Section 1.10 and an approach was formulated in
Section 5.4. The nature of the tree-like structure of the types is shown in
Figure 9.5.
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Figure 9.5 The diagnostic structure of patient management in Cushing’s syndrome.

At the first stage a patient is either normal or has one of the forms of
Cushing’s syndrome. Secondly, if the patient has Cushing’s syndrome is it
a benign or cancerous form? Thirdly, if the form is benign is it due to an
adenoma or is it bilateral hyperplasia? Fourthly, if the form is cancerous is the
carcinoma ectopic or adrenal? The clinician could, given sufficient evidence,
stop at a particular node and not traverse the whole tree of possibilities. We
now apply the method introduced in Section 5.5 and produce full diagnostic
probability trees for three referred patients. For Cushing’s syndrome the tree
has three levels, five terminal nodes and four branch nodes and we now give
the likelihood factors for the four branch nodes.

Node 1
n1∏

r=1
F (vr1;β1) ×

5∏
t=2

∏nt

r=1[1 − F (vrt;β1)]

Node 2
∏

t=2,3

∏nt

r=1 F (vrt;β2) × ∏
t=4,5

nt∏
r=1

[1 − F (vrt;β2)]

Node 3
n2∏

r=1
F (vr2;β3) ×

n3∏
r=1

[1 − F (vr3;β3)]

Node 4
n4∏

r=1
F (vr4;β4) ×

n5∏
r=1

[1 − F (vrt;β4)]

(9.26)

In practical terms one can perform a logistic regression for each of the four
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branch nodes in the tree. At node 1 we attempt to distinguish a normal case
(type 1) from a Cushing case (types 2–5) and use the data from all cases in the
training set but now binary-coded as either type 1 or not type 1. At the second
node we attempt to distinguish a benign case (types 2 or 3) from a cancerous
case (types 4 or 5), but now using the training data only for types 2-5 with
each case now binary-coded as either a combined 2–3 type or a combined 4–5
type, and so on for the other nodes. We use the most promising four of the
fourteen steroid metabolites (tetrahydocortisone, Reichstein’s compound U,
cortisol and pregnenetriol) as features and we use the same four at each node,
although it is easy to incorporate different subsets at each node.

The data were logged and then standardised. Logistic regressions were run
for each node and it was found that the probabilities were very close to 0 or 1,
indicating problems due to complete or near-complete separation of the feature
vectors. Therefore we used the fair prior which was introduced in Section
4.3 as a prior for the β parameters at each of the branch nodes. Diagnostic
probabilities were computed for three referred patients using WinBUGS. The
initial values of the prior parameters β were generated randomly from the
prior distribution. The usual diagnostic checks were conducted and the results
from iterations 5,001 to 10,000 were used for the estimation of the diagnostic
probabilities and also the model parameters β. For each node the code given
below was used with the relevant data for the node in question. The b[i] are
the β parameters in the logistic regression, x1–x4 denote the four features
used in the model and z[j,k] denotes the value of the kth feature for the jth
referred patient. The prior on β is multivariate normal with mean vector mu
and precision matrix prec and p[j] is the probability of the ‘type’ coded 1 for
the jth referred patient. The values of x1–x4, z, mu and prec are input as data.

model {

for(i in 1:N) {
y[i]~dbin(phi[i],1)
logit(phi[i])<-b[1]+b[2]*x1[i]+b[3]*x2[i]+b[4]*x3[i]+b[5]*x4[i]}

b[1:5]~dmnorm(mu[1:5], prec[1:5,1:5])

for(j in 1:M)
{ t[j]<-b[1]+b[2]*z[j,1]+b[3]*z[j,2]+b[4]*z[j,3]+b[5]*z[j,4]
p[j]<-exp(t[j])/(1+exp(t[j])) }
}

The diagnostic trees are shown in Figures 9.6, 9.7 and 9.8.
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Figure 9.6 Diagnostic probability tree for referred patient N1. The unconditional
probabilities for each type are printed at the terminal nodes. All probabilities are
rounded to two decimal places.
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Figure 9.7 Diagnostic probability tree for referred patient N2. The unconditional
probabilities for each type are printed at the terminal nodes. All probabilities are
rounded to two decimal places.
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Figure 9.8 Diagnostic probability tree for referred patient N3. The unconditional
probabilities for each type are printed at the terminal nodes. All probabilities are
rounded to two decimal places.

9.8 Bibliographic notes

The modelling and applications of diagnostic system transfer and clinic amal-
gamation are developed in Aitchison (1977, 1979). The implications of im-
precision in feature vectors is discussed in Aitchison and Lauder (1979). The
problem of missing features is dependent on the basic concept of the EM al-
gorithm first formally and generally developed in Dempster, Laird and Rubin
(1977) though its origins date back to many special situations.

Details of modelling when the cases of the training set are imprecisely diag-
nosed are contained in Aitchison and Begg (1976) and a method of updating a
diagnostic system using unconfirmed cases is found in Titterington (1976). For
further details of the illustration discussed in Section 9.6, see Hermans et al.
(1975). The tree analysis of the differential diagnosis of Cushing’s syndrome
is, we believe, new, though related to the latent variable models of Lauder
(1981).

For an early consideration of situations where the feature vectors are of
mixed type, for example binary and continuous, see Krzanowski (1975).

9.9 Problems

Problem 9.1 A clinic is attempting to resolve a difficult problem in differen-
tial diagnosis between two types A and B and has determined the composition
of a group of metabolites in urine as a possible source of separation. These six-
part compositions are reproduced in Table 9.6 for 20 patients of known type A
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Table 9.6 Data for Problem 9.1

Patient Proportions of metabolites
X1 X2 X3 Y1 Y2 Y3

A1 0.173 0.359 0.232 0.040 0.035 0.159
A2 0.114 0.188 0.314 0.106 0.057 0.218
A3 0.129 0.147 0.112 0.109 0.169 0.331
A4 0.060 0.170 0.539 0.022 0.071 0.135
A5 0.078 0.404 0.303 0.071 0.052 0.089
A6 0.052 0.176 0.250 0.108 0.094 0.317
A7 0.120 0.175 0.317 0.091 0.157 0.138
A8 0.059 0.251 0.176 0.128 0.127 0.256
A9 0.079 0.170 0.315 0.040 0.157 0.235
A10 0.102 0.103 0.328 0.082 0.121 0.261
A11 0.031 0.116 0.572 0.036 0.062 0.181
A12 0.068 0.153 0.403 0.056 0.076 0.241
A13 0.143 0.221 0.207 0.073 0.112 0.241
A14 0.024 0.229 0.219 0.079 0.132 0.314
A15 0.160 0.222 0.320 0.107 0.076 0.111
A16 0.080 0.086 0.291 0.079 0.094 0.367
A17 0.151 0.091 0.375 0.077 0.182 0.121
A18 0.060 0.195 0.302 0.049 0.109 0.283
A19 0.048 0.159 0.174 0.061 0.038 0.519
A20 0.064 0.133 0.416 0.071 0.094 0.221
B1 0.042 0.144 0.183 0.184 0.085 0.360
B2 0.059 0.086 0.373 0.294 0.056 0.128
B3 0.070 0.100 0.138 0.118 0.110 0.463
B4 0.018 0.127 0.100 0.313 0.080 0.359
B5 0.057 0.147 0.115 0.165 0.167 0.346
B6 0.033 0.080 0.136 0.185 0.117 0.446
B7 0.048 0.139 0.105 0.079 0.148 0.477
B8 0.052 0.153 0.090 0.204 0.088 0.410
B9 0.102 0.154 0.200 0.073 0.078 0.390
B10 0.055 0.116 0.079 0.366 0.075 0.306
B11 0.033 0.080 0.030 0.218 0.098 0.537
B12 0.087 0.118 0.083 0.114 0.144 0.453
B13 0.067 0.061 0.084 0.422 0.118 0.246
B14 0.034 0.063 0.079 0.288 0.098 0.436
B15 0.150 0.074 0.253 0.147 0.059 0.314
B16 0.026 0.100 0.113 0.138 0.137 0.484
B17 0.057 0.100 0.159 0.204 0.029 0.448
B18 0.023 0.078 0.114 0.152 0.026 0.603
B19 0.058 0.266 0.099 0.122 0.080 0.374
B20 0.020 0.082 0.198 0.395 0.041 0.261
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and 20 patients of known type B. The metabolites are of two distinct forms
X and Y.

You are consulted by the clinic and asked three questions.

(a) Are the metabolite compositions of any diagnostic value and how should
the metabolite information be used in any differential diagnosis of new
patients?

(b) The Y-form metabolites are costly and time-consuming to separate and
so it would be very helpful to know whether simply measuring the X-
forms and the total Y-form would provide a reasonable differential diag-
nostic procedure. How would you answer this question?

(c) One clinician even conjectures that total X-form and total Y-form might
prove sufficient for diagnostic purposes. What is your view of this con-
jecture?

Problem 9.2 Refer to problem 8.2. You have now been told that the diag-
nostic tests a-e are not precise but are subject to coefficients of variation of
5, 3, 10, 10 and 5 per cent, respectively. How does this information alter your
report to the clinic?

Problem 9.3 Refer to Problem 8.3. Suppose that after you have submitted
your report to the clinic it becomes obvious that there is some degree of
imprecision in the determination of the three-part compositions. How would
you go about eliciting the extent of such imprecision and how might you
incorporate it into your modelling?

Problem 9.4 Clinic A has devised a differential diagnostic system between
two disease types a and b based on four diagnostic blood tests I - IV conducted
on 15 patients with known type a and 17 patients with known type b. The
data (in standard units) on which the system has been based are set out in
Table 9.7.

Clinic B is also engaged in this differential diagnosis problem and has col-
lected similar data on its patients but is not yet in a position to construct its
own diagnostic system. Moreover, while its methods of carrying out tests III
and IV are identical with those of clinic A there is considerable doubt about
the comparability of tests I and II with those of clinic A. To resolve this prob-
lem aliquots of 25 blood samples have been assigned to both clinics A and B
for comparison of the results of tests I and II. The results of this calibrative
experiment are set out in Table 9.8.

On the basis of all this information investigate the possibility of transferring
clinic A’s diagnostic system to the situation in clinic B, and prepare a full
report of your findings for the two clinics.

Problem 9.5 Refer to Problem 9.4. Clinic C, which has developed an inde-
pendent differential diagnostic system based on the data below, has contacted
clinic A with a view to amalgamating their systems. Again only the methods
of recording tests I and II are in doubt, and a calibrative experiment, similar
to that between clinics A and B, has been conducted for clinics A and C with
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Table 9.7 Data for Problem 9.4

Type a Type b
I II III IV I II III IV

56 72 95 48 72 54 70 57
58 51 71 43 90 49 75 61
36 55 76 42 71 67 70 53
46 72 84 41 66 65 81 46
41 86 90 35 75 58 85 51
72 74 78 37 57 56 79 45
59 65 80 42 69 50 100 43
72 69 92 49 75 40 74 40
66 71 74 38 67 43 79 37
65 91 95 52 68 47 57 50
53 69 94 36 72 56 70 55
63 80 80 47 74 62 58 51
46 69 92 33 88 62 74 50
52 61 98 36 91 47 63 50
53 73 89 39 77 68 69 46

56 65 67 63
74 76 74 48

Table 9.8 Data for Problem 9.4

Clinic A Clinic B Clinic A Clinic B
I II I II I II I II

56 95 62 82 98 75 107 76
94 67 106 63 73 48 84 44
95 75 107 77 65 61 73 59
75 69 85 64 72 65 79 65
73 70 78 70 82 72 90 73
91 65 100 65 84 80 98 74
75 68 83 66 82 53 93 48
76 81 89 76 74 67 80 63
95 75 107 71 70 62 76 60
83 55 91 51 92 62 102 58

100 73 111 67 105 74 117 72
72 98 74 95 104 85 110 77
74 69 76 68
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Table 9.9 Diagnostic data for clinic C

Type a Type b
I II III IV I II III IV

47 69 93 46 64 41 74 50
48 65 100 38 61 79 61 57
53 83 81 34 40 61 81 47
46 87 79 55 40 66 77 59
46 70 105 44 70 77 81 43
57 83 82 33 60 69 85 49
38 67 66 46 66 75 69 47
55 96 90 43 57 55 71 35
62 62 77 40 64 53 74 45
53 63 84 45 52 66 81 49
46 86 80 38 72 58 84 47
50 84 84 41 68 54 78 55
56 72 93 32

the results recorded in Tables 9.9 and 9.10. You are asked to report to clinics A
and C as to how they may use their combined data for a differential diagnostic
system. Clinic B asks you to investigate whether this amalgamated data could
be used to improve diagnosis within clinic B.

Table 9.10 Calibrative data between clinics A and C

Clinic A Clinic C Clinic A Clinic C
I II I II I II I II

77 76 72 82 82 62 73 67
53 79 44 82 57 58 52 61
61 58 51 61 34 81 33 83
55 70 49 72 53 84 49 85
68 67 62 69 80 74 74 80
82 63 71 66 56 67 51 72
44 96 38 100 61 67 53 65
67 67 62 71 58 62 50 66
53 62 48 65 63 75 54 78
74 79 66 82 48 78 42 83
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Problem 9.6 A clinic faced with distinguishing between two forms A and
B of a disease, only verifiable at post mortem, is attempting to define an
‘expert system’ based on 32 surviving cases. On the basis of assessments by
all the available clinicians and on the results of four diagnostic tests the clinic
has, for each case, placed consensus probabilities on forms A and B. These
probabilities together with the diagnostic test results (in standard units) are
recorded below.

Probabilities Test results
A B 1 2 3 4

0.53 0.47 76 59 61 55
0.74 0.26 69 50 67 54
0.96 0.04 81 38 82 58
0.26 0.74 71 73 62 72
0.76 0.24 83 44 76 64
0.28 0.72 66 61 63 49
0.88 0.12 83 30 74 61
0.25 0.75 76 74 83 43
0.75 0.25 88 60 69 56
0.27 0.73 58 101 80 50
0.74 0.26 84 44 85 69
0.16 0.84 70 72 68 57
0.75 0.25 77 44 60 59
0.21 0.79 78 79 83 63
0.87 0.13 65 57 76 50
0.12 0.88 72 76 90 70
0.83 0.17 76 50 76 64
0.38 0.62 58 58 58 54
0.74 0.26 77 53 84 60
0.27 0.73 65 70 80 59
0.23 0.77 62 58 72 51
0.06 0.94 49 75 59 49
0.85 0.15 79 48 59 52
0.06 0.94 54 62 65 64
0.75 0.25 82 55 72 61
0.07 0.93 63 64 81 46
0.80 0.20 103 59 66 50
0.06 0.94 47 76 72 59
0.11 0.89 47 84 77 59
0.83 0.17 86 51 92 65
0.05 0.95 64 76 62 58
0.12 0.88 62 60 87 66

You have been asked to express your views on this diagnostic assessment
system and report to the clinic.
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Table 9.11 Data for Problem 9.7

a1 a2 a3 c1 c2 c3 c4

Form A 1 1 1 9 6 70 15
0 1 1 21 14 28 37
0 1 1 21 13 28 38
x 1 0 11 7 62 21
0 0 1 11 8 58 23
0 1 0 x 11 56 33
0 0 1 11 7 62 20
1 x x 8 6 86 x
0 1 1 16 10 38 36
0 1 1 18 12 31 39
1 1 1 6 4 80 10
1 0 0 x x 50 50
0 1 x 21 14 14 51
0 0 1 12 8 54 26
0 0 1 19 13 28 40
0 0 1 17 11 41 32
0 0 1 20 12 34 33
1 1 1 18 12 39 31
0 1 1 11 8 58 23
1 0 1 12 8 56 24
1 1 0 18 13 34 35
1 x x 21 14 26 39

Form B 1 1 0 33 16 30 21
1 0 0 36 16 19 29
0 1 0 28 14 30 28
1 1 0 39 18 12 30
0 0 x x 19 52 29
1 0 0 28 15 33 24
1 0 1 25 11 44 20
1 0 0 19 15 47 19
1 0 0 33 17 21 29
0 0 1 30 16 24 30
1 1 1 53 x 47 x
0 1 0 25 13 40 21
x 1 x 18 11 46 25
1 0 0 24 12 38 27
1 0 0 31 14 31 24
1 1 1 21 11 49 19
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Problem 9.7 In a diagnostic problem similar to that of Problem 1.5 a clinic
has recorded similar binary and compositional data on 22 patients with form A
and 16 patients with form B. Unfortunately there are missing data problems.
For some patients some of the symptoms have not been elicited and for some
of the compositions some parts have not been obtained, in which case only
the subcompositions formed from the recorded parts are available. In the data
reported in Table 9.11 an x denotes the missing items.

Investigate whether these data provide a means of constructing a reasonable
differential diagnostic system.
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CHAPTER 10

Prognosis and Treatment

10.1 Introduction

The role of diagnosis in clinical medicine can be regarded as a preliminary
phase in which an attempt is made to discover the category or type of the
subsequent decision problem of patient management that next faces the clin-
ician. Our emphasis on this diagnostic phase has been conditioned not only
by its obvious importance in current medical thinking but also because it is
at present the best quantified phase of most medical problems. Let us now
turn our attention to the complex of less well quantified concepts and actions
which are usually considered under the headings of prognosis and treatment.

The main objective tool by which clinicians have attempted to compare
and assess treatments is undoubtedly the controlled clinical trial. Since much
has already been written and the concepts and practice of such trials are well
known, together with the question of ethics and the relative effectiveness of
sequential and fixed-size trials, we do not deal with the subject here. One
general point concerning controlled clinical trials does however provide the
motivation for our subsequent formulation of the decision problem, and we
can here illustrate it by a simple example. Suppose that in a clinical trial to
compare two treatments t1 and t2, 200 patients are allocated randomly, 100
to each treatment, that a check is made of the similarity of the composition of
the two groups and that the usual double blind requirements of management
of patients and assessment of treatment are met. Suppose that the results of
the trial are as follows:

Treatment
t1 t2

Success 50 70
Outcome

Failure 50 30

The standard statistical analysis would then test the null hypothesis of no
difference between the treatments by a standard chi-squared test. A significant
difference between the treatments would thus be revealed and, if the sole crite-
rion is to maximise the proportion of successful treatments, the accompanying
recommendation would be that treatment t2 should be used.

If we have to choose between using treatment t1 for all patients and using
treatment t2 for all patients we may be convinced that treatment t2 is to be
preferred. But we may not have made fully effective use of all the information

279
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available. For example, consider the conceptual classification of patients into
four mutually exclusive groups g11, g10, g01, g00, where the suffices i and j are
assigned for each patient by the following criterion:
i = 1 if treatment t1 would be successful with the patient, = 0 otherwise,
j = 1 if treatment t2 would be successful with the patient, = 0 otherwise.

It is of course impossible to assign a patient to these groups but the concept
allows us to make the following points. If p(gij) denotes the proportion of
patients in group gij in the trial then the only restrictions determined by the
results are:

p(g11) + p(g10) = 0.5
p(g11) + p(g01) = 0.7

It is clear that these can be satisfied by a number of specifications lying
between two extremes:

p(g11) = 0.5, p(g10) = 0, p(g01) = 0.2, p(g00) = 0.3

and
p(g11) = 0.3, p(g10) = 0.2, p(g01) = 0.5, p(g00) = 0.

If the first configuration is the case then we cannot improve on the overall
success rate 0.7 envisaged by the recommendation whereas if the second con-
figuration is the case and if we could identify patients in the various groups we
could clearly attain complete success with all patients. We ought therefore to
investigate the patients in the four treatment response categories to discover
whether there are any features that distinguish among them. For example if
the distributions of gender (M and F) in the patients were as follows:

Treatment
t1 t2

Success 50F 50M & 20F
Outcome

Failure 50M 30F

then it would surely be sensible to consider allocating males to treatment t2
and females to treatment t1.

Thus we consider shifting the emphasis in clinical trials and consequently
in prognosis from the customary question posed ‘which treatment is best?’
to ‘which treatment is best for which patient?’ In our illustrative example
we see that for the latter question to be answerable we require to know for
each patient in the clinical trial the triplet (v, t, s), where v ∈ V denotes an
observation on a set V of potentially useful indicating features (in our example,
gender), where t ∈ T denotes the treatment assigned in the trial, here t1 or t2,
and s ∈ S is an observation on a recognised set S of response features (here
success or failure).

A clinical trial will have achieved its purpose if it provides us with a clear
picture of the variability of s for given t and v. For this is simply the quantifi-
cation of the medical concept of prognosis for a patient in ‘present condition’
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v if put on treatment t, a concept that is clearly necessary however implic-
itly it may remain in the formal decision process. To investigate its possible
quantification we may consider some suitable parametric form labelled by the
parameter δ ∈ ∆, say

p(s|t, v, δ) (s ∈ S),

for the prognosis distributions, and use the data

D = {(vi, ti, si) : i = 1, . . . , n}
from the clinical trial to obtain, in the same kind of way as for the diagnostic
assessment, the predictive forms of the prognosis distributions

p(s|t, v,D).

There have been some recent attempts to tackle this kind of problem quan-
titatively in an estimative rather than predictive way such that the statistical
technique is indistinguishable from estimative diagnosis. An example of more
sophisticated model-building is implicit in the discussion of prognosis and the
effects of treatment is illustrated by an example. Suppose that plots of cu-
mulative survival percentages against blood pressure for patients on different
treatments support different straight line fits and suggest that the basic family
of prognostic distributions, with s the logarithm of survival time and v a mea-
sure of current blood pressure, are well characterised by normal distributions
with mean αt + βtv and variance σ2

t . It is easy to visualise circumstances in
which it will be desirable to give different treatments at different current blood
pressure levels; for example, if the αt are the same but the βt are different.

The discussion on clinical trials in terms of which treatment for which pa-
tient and the stratification introduced typified by the above blood pressure
example leads to the following formulation of the assessment of prognosis. The
prognostic model may be written as

p(s|t, u, v)p(u|v),
where v is the feature vector of concomitant variables for the patient; u is
the current status of the patient, for example disease type; t is the course of
action to be considered, for example do nothing or assign a specific treatment;
s is the measure of success or the prognostic index, for example, survival or
death, survival time, or cure or no cure.

Thus we can identify two stages in the prognostic development.

1. Assessment of the patient status u given v through p(u|v), the diagnostic
stage.

2. Assessment of the prognostic distribution p(s|t, u, v).
We see immediately that stage 1 is formally equivalent to the problem of dif-
ferential diagnosis discussed in Chapters 8 and 9. The prognostic process may
terminate at this stage as a straightforward risk analysis. At stage 2, which
may indeed be the main aim of the investigation, modelling and assessment
of p(s|t, u, v) are required. In the blood pressure example u is blood pressure
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range and v is age and we obtain the separate estimates of the survival curves
p(s|u, v).

In the simplest cases p(s|t, u, v) reduces to p(s), the lifetime probability
density function, which can be estimated by various methods. When covariates
or concomitant variables v are observed along with different treatments our
interest centres on p(s|t, v).

10.2 A prognostic study of paediatric head injury

Before we investigate more complicated modelling of prognosis we report a
straightforward application which involves the complete specification

p(s|t, u, v)p(u|v).
Table 10.1 gives the frequencies of the combinations of four binary variables
observed in children who suffer from injury to the skull. The frequencies are
given for two groups corresponding to different types of injury. For group one
the injury is serious (haematoma or brain swelling) and hospitalised treatment
is required. For group two the injury is not serious and hospitalisation is not
necessary. In terms of our prognostic model we have

v = (v1, v2, v3, v4), vi = 1 or 0, 1 ≤ i ≤ 4,

u = 1 (serious), u = 2 (not serious), t = treatment (≡ action), to hospitalise
(t = 1), or not (t = 2), and finally s is the measure for prognosis which may
be summarised as

Prognosis Good Poor
u = 1, t = 1, v

√
u = 1, t = 2, v

√
u = 2, t = 1, v

√
(but resources wasted)

u = 2, t = 2, v
√

In terms of our prognostic formulation, we require to allocate to treatment
t = 1 for large values of the likelihood ratio λv = pr(u = 1|v)/pr(u = 2|v).
The problem of determining the cut-off point λ such that allocation is to
t = 1 for λv ≥ λ depends on the sampling and selection of the data set.

For random sampling (p(u), p(v|u) observed), or selected sampling (p(v|u)
only observed), the rule can be based on the magnitudes of p(Vλ|u = 2), and
p(V ∗

λ |u = 1) or the odds ratio

pr(u = 1|Vλ)
pr(u = 2|Vλ)

/
pr(u = 1|V ∗

λ )
pr(u = 2|V ∗

λ )
,

where

Vλ =
{
v :

pr(u = 1|v)
pr(u = 2|v) ≥ λ

}
.

The suggested cut-off point in Table 10.1 is based on this form of argument.
Note that for random sampling pr(u = 2|Vλ) = 0.55, which could be regarded
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Table 10.1 Paediatric head injury

(1) (2) (3) (4)= (2)
159 (5) = (3)

9691 (6) (7) (8)

Frequency Cumulative
ISEV A+B C+D Relative Frequency Ratio (4)

(5) relative frequency
(t=1) (t=2) A+B C+D = λx A+B C+D

1111 6 3 .03774 .00031 122.000 .03774 .00031
1110 7 5 .00403 .00052 85.300 .08177 .00083
1101 28 22 .17610 .00227 77.600 .25787 .00310
1100 46 16 .28931 .00165 175.000 .54718 .00475
1011 2 7 .01258 .00072 17.400 .55976 .00547
1010 7 9 .04403 .00093 47.400 .60379 .00640
0111 1 3 .00629 .00031 20.300 .61008 .00671
0101 9 12 .05660 .00124 45.700 .66668 .00795
0110 1 4 .00629 .00041 15.200 .67297 .00836
1001 12 69 .07547 .00712 10.600 .74844 .01548
1000 22 89 .13836 .00918 15.100 .88680 .02466
0100 10 58 .06289 .00598 10.500 .94969 .03064
0011 1 11 .00629 .00114 5.500 .95598 .03178
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0001 3 4241 .01887 .43762 0.043 .97485 .46940
0010 0 40 .00000 .00413 0.000 .97485 .47353
0000 4 5102 .02516 .52647 0.048 1.00000 1.00000

159 9691

I: impaired consciousness A: haematoma
S: skull fracture B: brain swelling
E: epilepsy C: groups II, III, IV
V: vomiting · · ·: Proposed value for λ defining

Xλ above the line
1: symptom present
0: symptom absent

as a high wastage rate, but is unavoidable under this decision structure given
the incidence rates p(u). For sampling with selection on v,

pr(u = 1|v)/pr(u = 2|v)
is stable, but the odds-ratio is not estimable, and the decision has to be based
somewhat arbitrarily on the relative magnitudes of the λu.
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It is interesting to note that these data are complete in terms of the complete
sample space V being observed. If not all values are observed, the following
are possibilities.

(i) For natural or separate sampling, form kernel density estimates of the p(v|u)
and proceed as before for complete data.

(ii) For v–selected data, proceed to the logistic formulation, compute the λv in
estimative/predictive fashion and proceed as for complete selected data.

10.3 Prognosis and cervical cancer

In the hope of improving the survival prospects for patients who have cancer
of the uterus, a trial was conducted to compare the efficacy of two treat-
ments: treatment A, in which patients were treated in a hyperbaric oxygen
chamber as well as receiving radiotherapy, and treatment B which consisted
of radiotherapy alone. The data are available in data set cancer.
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Treatment A
Treatment B

Figure 10.1 Kaplan-Meier estimates of survival probability under treatments A and
B.

Each patient was randomly allocated to receive treatment A or treatment B.
The survival time (in days) was recorded, with the survival times of patients
who were lost to follow-up or who were still alive at the end of the study being
right-censored. No information is available on relevant factors or covariates.
Kaplan-Meier estimates of the survival functions are given in Figure 10.1. For
survival times in the range 300-1500 days treatment B shows a higher survival
probability than treatment A. Applying the log-rank test (chi-squared = 0.8,
P=0.37) shows that this observed difference in survival probability over time is
not statistically significant. Thus the hoped-for improved prognosis of patients
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on treatment A is not realised and so patients would be expected to have a
similar prognosis on either of the treatments. An estimated survival curve,
with pointwise confidence intervals, is given in Figure 10.2 and is based on the
pooled data. Hence the prognosis of each patient within previous experience
could be summarised as follows: the probability of survival falls fairly rapidly
over time and it is estimated that patients have a 67% chance (56% to 76%)
of surviving 500 days, a 50% chance (39% to 61%) of surviving 1000 days and
only a 26% chance (0.08% to 49%) of surviving 1500 days. Without relevant
factors or covariates it is not possible to make more specific conclusions for a
given referred patient.
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Figure 10.2 Estimated survival curve and pointwise 95% confidence intervals based
on the pooled survival data.

10.4 Kidney function

A nephrologist is interested in the possible relationship of the dosage of a new
drug NEP required to stabilise kidney function in a certain group of patients
to certain measurable concentrations in each patient. Data are available in
data set kidney from each of a selected set of patients with regard to sex,
creatinine, cholesterol and triglyceride concentrations, the stabilising dose of
NEP and the absence/presence of side effects. The measurements are given in
standard units. The nephrologist is interested in two questions, namely (a) to
what extent may it be possible to predict the stabilising dose of NEP for a pa-
tient from information on sex and the creatinine, cholesterol and triglyceride
concentrations? and (b) to what extent is the incidence of side effects depen-
dent on sex, triglyceride and stabilising dosage? In particular, the nephrologist
has just examined a female patient and creatinine, cholesterol and triglyceride

© 2004 by Taylor & Francis Group, LLC

  



286 PROGNOSIS AND TREATMENT

concentrations of 2.50, 300 and 120 were recorded; what may be said about
her stabilising dose of NEP and what is the chance that there may be some
side effect?

10.4.1 Prediction of NEP dose

Several linear models were fitted to the data, with NEP dosage as the response
variable and the other variables apart from side-effects as the explanatory
variables. The triglyceride concentrations were logged. We denote the obser-
vations obtained from the ith patient by vi, u1i, u2i, u3i and u4i, representing
the values of sex, creatinine, cholesterol and log(triglyceride), respectively. We
assume that

vi|u ∼ N(θi, σ
2)

and consider the maximal model

M3 : θi = µ+αu1i+β1u2i+β2u3i+β3u4i+β11u1iu2+β21u1iu3i+β31u1iu4i.

We present details of only three of the possible hypotheses as follows:

M0 : α = β1 = β2 = β3 = β11 = β21 = β31 = 0,
M1 : α = β11 = β21 = β31 = 0,
M2 : β11 = β21 = β31 = 0.

The details of the formal comparisons of the hypotheses M0, M1 and M2

with the maximal model M3 are given in Table 10.2. The simplest model
which is not rejected is model M1 and we adopt this as our working model,
even though the slope parameter for cholesterol is not significantly different
from zero, but it is borderline. Hence we use the measurements creatinine,
cholesterol and log(triglyceride) to predict NEP dosage.

Table 10.2 Tests of some hypotheses within the maximal model M3 on the basis of
standard F tests

Model Residual Residual TS P
sum of squares d.f.

M3 120.9 50
M2 125.6 53 0.65 0.58
M1 129.7 54 0.91 0.47
M0 189.4 57 4.05 0.001

On the basis of model M1 we then produce a 95% prediction interval for the
stabilising dose in the referred patient. It is 4.91 ± 3.25 units. This is a wide
interval, reflecting the substantial conditional variability in the NEP dosage
in the data, and thus there is a large uncertainty attached to predictions of
NEP dosage using the model.
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10.4.2 Incidence of side effects

We consider logistic regression models, with incidence of side effects as the
response variable and sex, log(triglyceride) concentration and dosage of NEP
as explanatory variables. Let vi denote the side effects indicator variable and
u1i, u2i and u3i denote, respectively, the sex, log(triglyceride) and NEP dosage
for the ith patient. Then the maximal model is

vi|u ∼ Bi(1, θi),

where

M3 : logit(θi) = µ+ αui1 + β1u2i + β2u3i + β11u1iu2i + β21u1iu3i.

We present details of only three of the possible hypotheses as follows:

M0 : α = β1 = β2 = β11 = β21 = 0,
M1 : β11 = β21 = 0,
M2 : β11 = 0.

The details of the formal tests of the hypotheses M0, M1 and M2 within
the maximal model M3 are given in Table 10.3. The simplest model which
is not rejected is model M1, but it is borderline, and we adopt model M2

as our working model. Therefore we use the variables sex, log(triglyceride),
NEP dosage and an interaction between sex and NEP dosage to predict the
incidence of side effects.

Table 10.3 Tests of some hypotheses within the maximal model M3 on the basis of
asymptotic likelihood ratio tests

Model Residual Residual TS(d.f.) P
deviance d.f.

M3 47.66 52
M2 47.99 53 0.33(1) 0.57
M1 53.18 54 5.52(2) 0.06
M0 80.13 57 32.47(5) 5 × 10−6

Using model M2, and taking the predicted value of 4.91 as the NEP dosage
for this patient, we then conclude that for the referred patient the estimated
chance of her experiencing a side effect is 55%, and a 95% confidence interval
for the true chance is 21% to 85%.

10.5 Cutaneous malignant melanoma

Details of melanoma patients were drawn from the records of the West of
Scotland section of the Scottish Melanoma Group, which records details of all
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patients presenting with primary cutaneous malignant melanoma (CMM) in
Scotland, and are given in data set malmel. A total of 4332 patients, diagnosed
as having invasive primary cutaneous malignant melanoma, were identified
starting in 1979 and followed up until December 31st 1998. During this period
there were 971 deaths due to CMM, 672 deaths due to other causes and 2775
patients were still alive. The survival times of patients in the last two categories
were taken as censored. The effects of five factors – deprivation status, Breslow
thickness, age group, histogenetic type and sex – are of interest and this
information was recorded at the initial presentation. The method of Carstairs
and Morris was used to determine a deprivation ‘score’ for each patient, giving
seven categories from the most affluent (1) to the most deprived (7). There
were five histogenetic types, type 1 to type 5, which are superficial spreading
melanoma, nodular/polyploid, lentigo maligna melanoma, acral/mucosal and
other/unspecified. Ages were grouped into six categories: <35, 35-44, 45-54,
55-64, 65-74 and >75 years. The Breslow factor had six categories: the first five
were defined in terms of the thickness of the tumour, namely <1.5, 1.5-2.49,
2.5-3.49, 3.5-4.99 and >5.0, in millimetres, while the sixth category indicated
the presence of stage 2 spreading of the tumour. In the statistical analysis
these variables are treated as being of categorical type.

We will investigate two aspects of prognosis in this study: given an individ-
ual referred patient who presents with primary CMM and a given profile of
the five factors, (a) what are his or her chances of surviving five years? and
(b) what are his or her survival prospects in the future?

10.5.1 Five-year survival

In investigating the issue of five-year survival we consider only patients who
presented before the end of 1993 in order that the five-year survival status
of each patient is known. Thus, data from 2938 patients were utilised and
are available in data set mel5. We consider a binary logistic regression model
in which the five-year status ui is the response variable and the five factors:
deprivation, thickness, age, type and sex, denoted in order by v1, v2, v3, v4, v5,
are the explanatory factors. Therefore we assume that, conditional on the five-
factor combination pqrst, the five-year status of the ith patient is ui, with

ui|v ∼ Bi(1, θpqrst)

where θpqrst is the conditional probability that a patient is alive five years on
from initial presentation. Given that there are many possible factor combina-
tions we take the model containing all two-way factor interactions

M4 : logit(θpqrst) = µ+ αp + βq + γr + δs + εt+
(αpβq) + (αpγr) + (αpδs) + (αpεt) + (βqγr)+
(βqδs) + (βqεt) + (γrδs) + (γrεt) + (δsεt),

subject to corner-point constraints, as a feasible maximal model. There is a
large number of possible sub-models in the full lattice and we present results
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only for the following:

M0 : logit(θpqrst) = µ,

M1 : logit(θpqrst) = µ+ βq + γr + δs + εt,

M2 : logit(θpqrst) = µ+ αp + βq + γr + δs + εt,

M3 : logit(θpqrst) = µ+ βq + γr + δs + εt + (βqγr).

The details of the formal comparisons of the sub-models M0, M1, M2 and
M3 within the maximal model M4 are given in Table 10.4. The simplest model
which is not rejected is model M3 and we adopt this as our working model.

Table 10.4 Comparison of some sub-models with the maximal model M4 on the basis
of asymptotic likelihood ratio tests

Model Residual Residual TS(df) P
deviance d.f.

M4 2533 2747
M3 2704 2897 172(150) 0.11
M2 2751 2916 218(169) 0.01
M1 2759 2922 227(175) 0.01
M0 3708 2937 1176(190) < 10−7

We will use the model as a basis of assessing the chances of five-year survival
for some individual patients. Before proceeding it is useful to consider how
good this model is likely to be if used to estimate five-year survival status.
In order to investigate this matter the data were split randomly into training
and test sets of size 1938 and 1000 respectively. The model M3 was fitted to
the training data and then used to estimate the five-year survival status of
the 1000 patients in the test set. The status of each patient was computed
using the Bayes classifier. Overall, the estimated classification accuracy was
76%, and 87% of patients who survived five years were correctly predicted
to survive five years, but only 52% of those who died within five years were
correctly classified. Thus, if used to predict the five-year survival status the
procedure has fairly good specificity but disappointing sensitivity.

We now consider the prognosis of four referred patients whose case infor-
mation is given in Table 10.5 together with the estimated odds of survival
beyond five years. Thus in terms of five-year survival the prognosis for patient
N1 looks good with strong odds in favour, but with odds in favour for patient
N4 being less convincing. Unfortunately the prognosis for patient N2 does
not look good, with clear odds against, and patient N3 has a 50-50 chance of
surviving five years. We now turn our attention to the more general matter of
the survival prospects of these patients in the future.
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Table 10.5 Odds of five-year survival for four referred patients with given combina-
tions of factors

Patient Deprivation Breslow Age Type Sex Odds
thickness group

N1 most <1mm <35 yrs acral/ female 19 to 1
affluent mucosal for

N2 most stage 2 65-74 yrs acral/ male 6 to 1
affluent mucosal against

N3 most stage 2 <35 yrs acral/ female 1.1 to 1
affluent mucosal against

N4 most < 1mm 65-74 yrs SSM male 3 to 1
deprived for

10.5.2 Survival prospects
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Figure 10.3 Kaplan-Meier estimates of the survival function for the different histo-
logical types. The curves are ordered from highest to lowest as type 3, type 1, type 2,
type 4 and type 5.

We consider the survival of the patients with CMM over time and we use
the data from all 4332 patients. Kaplan-Meier plots of survival probability
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Figure 10.4 Kaplan-Meier estimates of the survival function for the different cate-
gories of Breslow thickness. The curves are generally ordered from highest to lowest
according to increasing thickness of the tumour, with the stage 2 curve the lowest.

against time are given in Figures 10.3 and 10.4 for the different histological
types and different Breslow categories, respectively.

Patients of histological type 3 have good survival prospects, closely followed
by those of type 1. The patients with the other three types have notably
poorer prospects, with the survival probability falling more steeply initially
and then flattening out at about 50%. Patients with tumours less than 1.5 mm
thick have the best survival prospects, followed by those whose tumours are
between 1.5 and 2.5 mm thick. The survival probability over time continues
to be smaller as the thickness of the tumour increases. If the tumour is more
than 5 mm thick or the patient is in stage 2 then the chance of survival falls
markedly in the time period 0-5 years and then flattens out at about 30%.

The other factors also influence the survival function. Females have a higher
chance of survival over time than males. The most affluent patients have a
notably higher chance of survival over time than the other deprivation groups
and the survival curves are lower as the deprivation level increases.

Cox proportional hazard models were fitted to the data. We take as a feasible
maximal model

M2 : log
h(t|v)
h0(t)

= µ+ αp + βq + γr + δs + εt + (βqγr).

Here h(t|v) denotes the instantaneous hazard function at time t given that the
factors in v have levels p, q, r, s and t and h0(t) is the baseline hazard function.
As usual, the parameters are subject to corner-point constraints. The model
contains main effects for all five factors as well as an interaction between the
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Table 10.6 Comparison of some sub-models with the maximal model M2 on the basis
of asymptotic partial likelihood ratio tests

Model Residual Residual TS(df) P
deviance d.f.

M2 13454 4286
M1 13515 4311 61 (25) < 10−4

M0 14691 4332 1237(46) < 10−7

factors Age group and Breslow thickness. More complicated models were also
considered but this resulted in problems due to suspected over-fitting caused
by the sparsity of data in some combinations of the factors.

There are many sub-models but we present results here for only the follow-
ing:

M0 : log
h(t|v)
h0(t)

= µ,

M1 : log
h(t|v)
h0(t)

= µ+ αp + βq + γr + δs + εt.

The details of the formal comparisons of the sub-models M0 and M1 within
the maximal model M2 are given in Table 10.6. Both of the simpler models
are rejected and so we adopt model M2 as our working model.

We now consider the survival prognosis of the four referred patients consid-
ered in Table 10.4. Their estimated survival curves are given in Figure 10.5.
Patient N1 is female, is less than 35, is in the most affluent category, has
the smallest thickness category of tumour and is of histological type 4. Her
prognosis is very good with a high chance of survival over a 20 year period.
Patients N2 is male, is aged 65-74, is in the most affluent deprivation category
but is of histological type 4 and has stage 2 secondary spreading of his tumour.
His prognosis is therefore not too good, with rapidly decreasing survival prob-
ability in the first five years which remains less than 30% afterwards. Patient
N3 is female, less than 35, is in the most affluent category, but like patient
N2 she has histological type 4 and stage 2 spreading. Her prognosis is a little
better than that of patient N2. Patient N4 is male, is aged 65-74, is in the
most deprived category, has histological type 1 and has the smallest category
of thickness of tumour. His prognosis is good with a probability of survival
that is likely to be above 80% over a 20 year period.

10.6 Bibliographic notes

The statistical methods of this chapter depend largely on the theoretical ideas
set out in Chapters 2, 3 and 4 and few additional references are necessary. Most
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Figure 10.5 Estimated survival curves, with 95% pointwise confidence intervals, for
the referred patients N1 (top left), N2 (top right), N3 (bottom left)and N4 (bottom
right).

of the statistical analysis were performed as routine consultation within our
universities and remained unreported in the literature. For further details of
the techniques of survival analysis used in Section 10.3 and 10.5 see Collett
(2003b).

For further discussion of the important current problem of cutaneous ma-
lignant melanoma, see

http://www.ehendrick.org/healthy/melanoma.
For further information on the method of Carstairs and Morris see

http://datalib.ed.ac.uk/EUDL/carstairs.html.

10.7 Problems

Problem 10.1 A clinic believes that three measurements may indicate which
of two treatments 1 and 2 would best suit particular patients. To test this hy-
pothesis the clinic has allocated 50 patients at random, 25 to each treatment.
The success (1), failure (0) pattern and the indicants are set out below. You
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294 PROGNOSIS AND TREATMENT

are asked to investigate the clinic’s hypothesis and make recommendations
about the use of the indicants.

Treatment 1 Treatment 2
Outcome Indicants Outcome Indicants

0 40 42 21 1 36 70 21
0 52 63 30 1 26 74 19
1 39 52 14 0 65 61 35
1 44 66 34 1 50 51 42
1 26 73 20 1 20 46 26
0 35 79 50 1 39 75 17
1 37 46 37 0 58 56 36
1 51 45 23 1 45 51 42
1 35 67 48 1 44 71 34
0 41 44 30 0 45 67 37
1 40 51 24 1 39 53 41
1 34 61 21 1 30 72 23
0 51 51 35 1 48 61 31
1 54 65 34 0 63 51 35
1 43 49 39 1 26 37 25
0 46 65 33 1 43 45 30
0 47 49 33 1 46 50 32
1 27 52 14 0 50 71 44
0 53 78 26 1 41 61 18
1 20 67 20 1 47 60 25
1 30 62 43 1 61 41 31
0 34 54 11 0 41 42 27
1 44 53 21 1 26 74 18
1 43 73 27 1 23 76 11
1 34 53 26 1 32 54 26

Problem 10.2 A thyroid clinic is attempting to determine effective doses
of a new drug for the treatment of under-active thyroid gland. There is a
conjecture that the effective dose of the drug may depend on three indicant
measurements of thyroid activity i1, i2, i3. In a study of 18 female and 20 male
patients for whom these indicants have been measured the eventual effective
dose has been recorded. The table below gives complete details of the study.
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Females Males
Indicants Effective Indicants Effective

i1 i2 i3 dose i1 i2 i3 dose

51 208 150 178 73 177 168 347
42 210 331 410 51 239 356 566
33 235 589 619 77 150 241 401
61 180 193 266 72 197 114 333
65 190 262 351 82 119 49 170
52 169 249 257 71 171 205 381
39 203 457 503 72 194 384 519
74 163 138 209 64 210 487 788
46 217 326 409 60 259 350 683
59 146 184 308 67 189 137 242
49 170 280 344 85 128 221 276
63 188 339 397 88 106 210 329
53 231 309 364 57 211 323 488
45 266 338 350 74 192 274 409
51 215 221 205 70 144 101 310
49 206 179 243 71 168 132 273
64 210 280 322 78 79 277 312
57 210 317 395 60 237 307 561
60 232 185 387
73 196 237 384

You have been asked to investigate the extent, if any, that effect dose de-
pends on the indicants and on gender.

The clinic has two new patients, a woman with indicants 35, 243, 347 and
a man with indicants 74, 182, 422. What would your recommendation be for
treatment of these two patients?

Problem 10.3 Refer to Problem 1.4 and provide a report to the clinic on
the effectiveness of the two treatments.

Problem 10.4 Reconsider the melanoma study from Section 10.5. What are
the survival prospects for a 70 year-old female who is most deprived, has a
Breslow thickness of < 1 mm and is of histogenetic type acral/mucosal?

Problem 10.5 In a clinical trial comparing the success rates of two treat-
ments for a particular ailment for which there is no existing treatment, treat-
ment 1 has 65 successes and 87 failures, while treatment 2 has 90 successes
and 63 failures. What conclusion would you reach about the value of these
two treatments? You are subsequently given access to patient files and you
discover that there are two possible indicants of treatment, each recorded as
either high H or low L. On classifying the patients into categories HH, HL,
LH, LL you can reset the data in the following format.
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Treatment 1
Patient category

HH HL LH LL
Success 35 18 7 5
Failure 10 10 34 33

Treatment 2
Patient category

HH HL LH LL
Success 15 10 35 30
Failure 20 18 13 12

Would your report to the clinic now change in view of this additional infor-
mation?
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CHAPTER 11

Assessment

11.1 Introduction

In all the previous chapters we have been concerned with how statistical con-
cepts, principles and analysis may be applied to a great variety of problems in
clinical medicine, both in practice and research. It is, however, still true to say
that in clinical practice the majority of the inferences and decisions made are
not processed through any prescriptive statistical system but are in fact the
intuitive or ‘reasoned’ judgements of clinicians, radiologists, steroid chemists,
laboratory technicians, etc. In cases where there are prescriptive statistical
methods such as in diagnosis, where there may be eventually a true assess-
ment for a case, it is of interest to ask to what extent the clinician’s judgement
diverges from the normative assessment. This is an extension of the idea of
observer error studied in Chapter 6. There we were concerned with the quality
of the observation; here we are concerned with the much more complex prob-
lem of comparing inferences or decisions. Such studies are currently popular in
clinical medicine, and we shall examine a number of studies of different types
in diagnosis, prognosis, in calibration and assay and in treatment allocation.
The general structure of such performance analysis is discussed in Section 11.2.
We have found that such analyses have a considerable educational impact and
comparisons of different groups of subjects can be very illuminating.

There are many areas in medicine where no inference made or action taken
could be described as invalid since no absolute normative model can reason-
ably be postulated nor can we hope to elicit sufficient information from the
decision-maker to formulate a personal normative model against which to
make comparisons. Inference or action is then essentially a matter of opinion.
At first sight it is not at all obvious that statistical analysis could possibly have
a contribution to make in this area. The technique, however, of performance
simulation analysis can often throw considerable light on how the clinician
may be making inferences or decisions. Reporting back this information and
comparing the simulation analysis of different clinicians can bring to light in-
consistencies and discrepancies which hopefully may lead to more reasoned
and better clinical practice.

Assessment of performance falls naturally into two possible categories.
(1) Assessment of performance on inferential tasks.
(2) Assessment of performance on decision tasks.

Inferential tasks involve assessing the relative probabilities of several out-
comes, for example in differential diagnosis, while decision tasks relate to

297
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choice of a course of action from several possibilities, for example in treat-
ment assessment the choice between medication and surgery.

When it is possible to formulate a rational model according to which a
subject with the given information ought to be making inferences then we
can compare the subject’s actual conclusions with the corresponding norma-
tive inference. Radical differences between subjective and normative inferences
have been recorded in a number of studies. Many of these studies have been
conducted in artificial situations, subjects typically being presented with in-
ferences about urns of different compositions with small monetary rewards for
correct inferences. Despite all attempts at realism these must suffer from the
criticism that the subjects are making their inferences or decisions outside the
natural environment of their real-life problems. In the examples we shall study
here we try to avoid this artificiality by taking as subjects clinicians making
sequential inferences in a diagnostic situation with which they are familiar

There may not be sufficient understanding of the inferential process to allow
the statistician to construct a normative model so that subjects may rightly
claim that their inferences are as valid as any other. For example, classification
of certain psychiatric conditions may be a matter of subjective opinion. In such
circumstances it may still be possible to make useful analyses of a subject’s
performance. We shall consider this situation in terms of category 2 above,
studies of decision-making performance, and show how the construction of
performance simulation models can give insights into the consistency of the
subject and provide possible explanations of inferential behaviour.

Theory will be developed to analyse within and between observer variability
in performance for both (1) and (2). Practical examples will be presented along
with simulated ones to demonstrate the usefulness and relevance of the latter
method in this area. A special aspect that will also be investigated is the
extent to which all the information available is utilized by each subject and
how this varies between subjects.

11.2 Inferential tasks, statements and trials

11.2.1 Inferential tasks

In an inferential task (such as medical diagnosis or antibiotic assay) a subject
(clinician, biochemist) is presented with a case (patient, blood sample) for
which an inferential statement (diagnostic assessment, assessment of antibiotic
concentration) concerning the true index (true disease type, true concentration
of antibiotic) is required. The subject is aware that the case has associated
with it a unique but unknown index belonging to a known index set U (set of
feasible diseases, assumed or defined to be mutually exclusive; range of possible
concentrations). To help the subject arrive at an inferential statement for a
particular case the subject has available information concerning the case, data
on a number of features (results of diagnostic tests, clearance circle diameters)
which can thus be regarded as a feature vector in some defined feature space
V .
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Inferential statements may take many different forms but we shall confine
attention to studies whereby the subject can be induced to make a probabilis-
tic statement about the unknown true index.

11.2.2 Previous experience and training sets

The subject will normally have some training and experience in the kind of
inferential task under study, and this is seldom quantifiable. Examples again
are clinicians and biochemists with skills in diagnosis and assay. But inferential
tasks can be selected so that the relevant experience and training is under the
control of the experimenter, and hence quantifiable. Where diagnostic tests
unfamiliar to the clinician have been evolved the subject can be presented with
information on the complete training set of cases whose diagnoses and test
results are known. In antibiotic assay a training set is an essential ingredient
of the task: since clearance diameter is known to vary from batch to batch
of infected medium, it is essential for the subject to know the concentrations
and clearance diameters of a training set of cases, often referred to in assay
work as ‘the standards’.

We write D to denote the training set of n cases for each of which the true
index and feature vector are known. In some cases this training set is effectively
infinite, as for example in the Doctor’s Trilemma example of Section 11.7.1,
and then alternative simpler ways of presenting D can be used.

11.2.3 Inferential trials

In an inferential trial a subject S is presented with a test set of n unrelated
or independent cases and on the basis of their feature vectors v1, . . . , vn is
asked to make inferential statements about their unknown indices u1, . . . , un.
As indicated earlier we concentrate on inferential statements that require the
subject to provide density functions, say s1, . . . , sn on U , for the n test cases.
The performance data thus consist of the set

{(vi, si) : i = 1, . . . , n}.

11.3 Measures of normative comparison

11.3.1 Normative model and system

In situations where a normative model can be specified standard statistical
procedures can be applied to use the data D of the training set to obtain a
fitted model or normative system which can be applied to the cases of a test set
to produce inferential statements about these cases. The technical statistical
details of the construction of the normative system need not concern us here
until we consider specific areas of study. A normative system can thus be
expressed in the form of a conditional density function p(u|v,D) over U for a
test case with feature vector v.
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When the normative system is applied to the feature vectors v1, . . . , vn of
the test set it produces normative statements, say r1, . . . , rn, corresponding
to the subject’s inferential statements s1, . . . , sn.

11.3.2 Nature of comparisons

Comparison of how a subject’s performance departs from normative perfor-
mance thus requires the construction of measures of the extent of the state-
ments si from the normative statements ri (i = 1, . . . , n). In the tasks so far
defined we have considered the feature vector information being supplied in
one piece and there being a single final inferential statement. Later we shall
consider tasks where the feature vector information is supplied in sequence
to the subject with the requirement that an inferential statement is supplied
after each step in the sequence. In such circumstances when considering a
typical step we shall have information about the probabilities assigned to the
unknown index before as well as after the feature information is released. To
deal with this at the present stage of our discussion we therefore suppose that
for each case i the subject makes a composite inference statement qi prior to
receiving the feature vector vi for the ith case (i = 1, . . . , n).

For a single test case therefore we have to suppose that there is a prior
composite inferential statement q(u) on U , that on the basis of knowledge of
the feature vector v for the case we have to compare the subsequent inferential
statement s(u) on U with the corresponding normative inferential statement
r(u) on U .

11.3.3 Measures of performance

Degree of uncertainty
Associated with any composite inferential statement, say q(u) on U , there

is a degree of uncertainty H{q(u)} or H(q) remaining in the identification of
the true index:

H(q) = −
∑
U

q(u) log q(u) or −
∫

U

q(u) log q(u)du,

where q(u) log q(u) = 0 if q(u) = 0.

Inference discrepancy
Since the subject records an inferential statement s(u) on U which, accord-

ing to the normative system, should be r(u) on U we require, in order to
assess the subject’s ability in inference, a measure of the difference between
s(u) and the target r(u). This is provided by an information theory measure,
the Kullback-Liebler directed divergence measure:

I(r, s) =
∑
U

r(u) log
r(u)
s(u)

or
∫

U

r(u) log
r(u)
s(u)

du,
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with the property that I(r, s) is always non-negative and equal to zero if, and
only if, s = r.

Information gain index
We can quantify such notions as ‘underusing the information available’,

‘reading too much into the data’, ‘going contrary to the data’ in terms of
an information gain index G(q, r, s). Suppose that H(q) > H(r) so that the
normative system has removed H(q) − H(r) of uncertainty or equivalently
gained this amount of information about the index. The subject on the other
hand has gained an amount H(q) −H(s) of information in the move from q
to s. Consider now the ratio

G(q, r, s) =
H(q) −H(s)
H(q) −H(r)

.

If G(q, r, s) > 1 then the subject has removed more uncertainty than the
normative move and so can be said to be acting liberally or reading too much
into the data. If 0 < G(q, r, s) < 1 then the subject is acting conservatively
or underusing the data. If G(q, r, s) < 0 then the subject is increasing the
uncertainty when it ought to be being reduced and so the subject is running
contrary to the evidence.

The same kind of argument applies to G(q, r, s) when H(q) − H(r) < 0.
Hence we can use the information gain index G(q, r, s) to determine whether
a subject’s interpretation of the information is liberal (G > 1), conservative
(0 < G < 1) or contrary (G < 0).

Feature selection discrepancy
In a number of inferential problems the subject may be faced not only with

problems of updating an inferential statement on the basis of the observed fea-
ture vector v, but also that of selecting which feature from a set of alternatives
should be chosen. For example, in diagnosis the clinician would almost cer-
tainly have to choose which of a number of diagnostic tests should be carried
out.

Suppose that from a starting density function p(u) on U any one of a set F
of features is available. Consider the choice f ∈ F . If outcome v is observed
and leads to a normative posterior assessment p(u|v) then the reduction in
uncertainty or gain in information is H{p(u)}−H{p(u|v)}. In comparing the
relative merits of different feature selections we do not know the outcome v
and so we have to measure the merit of f in terms of the expected gain of
information for f from the starting density p(u):

K{f, p(u)} =
∫

V

[H{p(u)} −H{p(u|v)}] p(v).

The larger this is the more informative the feature is and so a normative choice
f∗ ∈ F is obtained as

f∗ = arg maxFK{f, p(u)}.
Note that f∗ depends on p(u): what is an optimum choice from one p(u)
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may be poor from some other starting position. If a subject, at a declared
assessment p(u) and faced with a choice of feature, chooses f then the amount
by which the expected gain of information falls short of the expected gain of
information from the optimum f∗ gives a measure

K{f∗, p(u)} −K{f, p(u)}
of the subject’s inability to select the most informative feature. The subject,
however, cannot do worse than choose f∗ defined by

f∗ = arg minFK{f, p(u)}.
We can then measure the feature selection ability relative to the worst possible
choice by recording the subject’s feature selection discrepancy

S{f, p(u)} =
K{f∗, p(u)} −K{f, p(u)}
K{f∗, p(u)} −K{f∗, p(u)} . (11.1)

The measure S is confined to the range 0 ≤ S ≤ 1 , the value 1 corresponding
to the worst possible selection and the value 0 to the normative selection.

11.3.4 Measures associated with normal assessments

For U a finite or discrete set, such as in the diagnostic inferential tasks already
cited, the computations of the measures described are comparatively simple
summations. When, as in prognostic, assay and calibration studies, U may
be a real line or a higher dimensional space then evaluation of the measures
for univariate or multivariate normal assessment and distributions can prove
useful in their own right or as approximations. We have the following results:

H(q) =

⎧⎨
⎩

1
2{1 + log(2πσ2)} when q(u) is N1(λ, σ2),

1
2{1 + log det(2πΣ)} when q(u) is Nd(λ,Σ).

When r(u) is Nd(λ,Σ) and s(u) is Nd(µ,Ω) then

I(r, s) = 1
2{trace(Ω−1Σ) − log det(Ω−1Σ)} + 1

2 (λ− µ)Ω−1(λ− µ)T.

The simplification for the univariate case when r(u) is N1(λ, σ2) and s(u) is
N1(µ, ω2) is

I(r, s) = 1
2{(σ/ω)2 − log(σ/ω)} + 1

2 ((λ− µ)/ω)2.

Note that the first bracketed part separates out a component of the inference
discrepancy which measures departure of the subject’s assessment of covari-
ance structure from the normative covariance value. The second component
does not, however, give an absolute measure of the disagreement of means be-
cause of its involvement with the subject’s variance or covariance assessment
ω or Ω; it gives instead a standardised measure akin to a signal-to-noise ratio.

Since G(q, r, s) is a simple construction of H values there is no need to
provide an explicit expression.
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When p(u) is Nd(λ,Σ) the form of K{f, p(u)} depends upon whether in the
inferential task it is more appropriate to specify p(v|u), say as Nd(α+uB,Γ),
or to specify p(u|v) as Nd(γ + v∆,Ω). In the first case,

K{f, p(u)} =
1
2

log
(
I + Γ−1BΣBT

)
,

and in the second case

K{f, p(u)} =
1
2

log det
(
Ω−1Σ
)
.

11.4 Sequential inferential tasks

The measures of performance of Section 11.3 have been defined on the basis
of the feature vector being presented as a whole for a single inferential task.
If it is meaningful to present the feature vector components one at a time
or in successive blocks then the subject can be faced with a sequential infer-
ential task, being required to update the initial assessment q(u) immediately
after each component v1, . . . , vn has been presented, resulting in successive
subjective assessments, say s1(u), . . . , sn(u). We can then clearly analyse the
subject’s performance after each such subjective assessment.

Such a sequential performance analysis can take two forms. The first is a rel-
ative one in which at the jth stage we treat the subject’s present view sj−1(u)
attained after stage j − 1 as the starting qj(u) in the evaluation of the nor-
mative assessment rj(u) against which sj(u) is to be judged. Secondly there
is an accumulating or absolute performance analysis which in the normative
updating rj(u) after the jth stage uses as starting assessment the previous
normative updating rj−1(u) rather than the subject’s sj−1(u). Which is more
appropriate will depend to some extent on the nature of the particular in-
ferential task. On the whole we prefer the relative analysis because it builds
successively on the subject’s immediately held belief and so has a greater op-
portunity of identifying particular circumstances in which discrepancies from
the normative occur.

The definition of feature selection discrepancy lends itself to sequential in-
ference tasks. At each stage of a sequential inference task, instead of presenting
the subject with the next component, we may ask which of the components not
so far revealed the subject believes is likely to remove the most uncertainty.
At the jth stage with the current subjective assessment at sj−1(u) if the sub-
ject chooses feature fj from the set Fj of features available, then replacement
of f, F, p(u) by fj , Fj , sj−1(u) in the definition of S at (11.1) produces the
appropriate feature selection discrepancy for the jth stage.

11.4.1 Subject assessment profiles for a sequential inferential task: Doctor’s
trilemma

Subjects were given information about a series of independent diagnostic tests
for differentiating three possible disease types A, B, C. Table 11.1 shows the
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Table 11.1 Conditional probabilities of a positive response on each test given each
type

Type Test Number
1 2 3 4 5 6 7 8 9 10

A 0.4 0.8 0.7 0.4 0.6 0.5 0.3 0.2 0.4 0.1
B 0.4 0.7 0.4 0.8 0.5 0.9 0.5 0.3 0.8 0.5
C 0.6 0.6 0.6 0.5 0.2 0.4 0.8 0.7 0.2 0.9

A

B C
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Normative path

A

B C

01
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34 5

6

7

8 9
10

Subject’s path

Figure 11.1 A comparison of the normative sequential inferential path and one pro-
duced by a subject.

conditional probabilities of a positive result on each of the ten tests for each
type of disease. Each subject was asked to draw their diagnostic path showing
their probability assessment within a ternary diagram ABC starting at the
assumed incidence rate (1/3, 1/3, 1/3). The results from tests 1-10 were given
in sequence and the subject updated after each test. We illustrate the exercise
with one of the test result sequences:

− + − + − − + + − + .
In Figure 11.1 we show the normative, Bayesian path based on these results

and also a subject’s path. We can then compute and show in the assessment of
this subject’s performance in terms of inference discrepancy and information
gain index set out in Section 11.3. Figure 11.2 compares the progress of the
normative removal of uncertainty with the much poorer performance by the
subject. There is substantial inference discrepancy I, apparently increasing
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Figure 11.2 Sequential measures of performance for the subject in Figure 11.1.

towards the later tests, these being the tests which are on the whole more
discriminating. Also the information gain index G shows examples of reading
too much into the data, of conservative and contrary use of the information.

In another study at each stage the subject was asked to choose the test
thought to be most informative and to move to the next point of a diagnostic
path towards a possible earlier diagnosis. In the study reported the subject
chose the tests in the order:

6 8 10 4 9 3 7 1 2 5
with the following sequence of results:

+ − + + − + + + − −.
Figure 11.3 shows the normative and subject’s paths. The profile of perfor-

mance assessments is shown in Figure 11.4. Note that the test number refers
to the sequence as carried out, so that test number 1 in Figure 11.4 refers to
the original test number 6 and so on. This subject hardly reduces any of the
initial uncertainty, has serious inference discrepancies, shows a whole range
of reading too much into the data, being conservative and contrary, in much
the same way as the previous subject. In choice of tests there is no great skill,
with only three correct choices in the sequential process.
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Figure 11.3 A comparison of the normative sequential inferential path and one pro-
duced by a subject.

11.5 Some specific inferential tasks

In this section we define areas of clinical medicine where inferential tasks
occur.

11.5.1 Diagnostic inferential tasks

First we emphasize that in these tasks diagnosis is presented as an inference
rather than a decision problem, the subject being required, for a sequence
of patients, to assign probabilities to the possible disease types on the basis
of patient information released either sequentially or as a whole. For a valid
performance analysis it is necessary to know exactly what information about
a case is known to the subject. It is therefore not possible to allow the subject
to see the patient lest visual or other information unknown to the analyst is
being acquired. Thus information must be supplied verbally or on some visual
display unit. To the extent that there is no contact with the patient it could
be claimed that such studies do not put clinician subjects into their natural
inference-making setting but most subjects seem to regard the tasks presented
as fair tests of diagnostic skills. Moreover when interest is in comparing the
inferential skills of clinicians with those of other professions direct access to
patients is clearly not possible.

Performance analysis studies of diagnostic inference differ in a number of
respects.

(i) The extent to which the experience of the subject in the particular di-
agnostic area has already been acquired and so is not determinable or
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Figure 11.4 Sequential measures of performance for the subject in Figure 11.3.

cannot be completely supplied by the analyst (see the previous comments
in Section 11.2).

(ii) The extent to which the information on a new case can be supplied
sequentially.

(iii) In a sequential task the extent to which the choice of the next feature is
required of the subject.

(iv) The extent to which any assumptions of the normative assessments are
valid.

It is clear that any real or simulated task in this diagnostic area can be
easily presented, the only constraint being that for real diagnostic tasks we
have available an appropriate and sufficient training set on which to base
normative assessments. One aspect of normative assessments is that predictive
rather than estimative assessments are to be recommended.

11.5.2 Predictive and prognostic inferential tasks

Since we shall be describing below a calibrative inferential task which calls
for a density-function type assessment similar to those required here we shall
confine ourselves to the bare outline of such tasks.

Suppose that we give a subject who is aware of the concept of the normal
density function a set of observations from a normal distribution set out on a
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horizontal scale and then pose the following task. Another observation is about
to be recorded. Can the subject draw a pattern of plausibilities, essentially an
unscaled density function, on the horizontal scale given, whose heights show
the subject’s assessments of the relative plausibilities of the various possible
values? This requires a composite assessment which we can convert to proper
density form s(u) to be compared against the normative assessment r(u). One
point worth noting here is that the usually fitted normal curve with sample
mean and standard deviation is, being an estimative form, not an appropriate
normative assessment and is better replaced by the predictive form, a Student
density function.

More complicated inferential tasks here involve regression-type situations.
In such a task the set U will usually be the real line, the set of possible re-
sponses or dependent variables, while V is one- or higher-dimensional and con-
sisting of possible explanatory, concomitant or covariate variables. A typical
simple inferential task in this area is to provide the subject with a regression-
type scattergram with v-axis horizontal and u-axis vertical, then ask the sub-
ject, after suitable explanation of the meaning of the task, to provide a density
function s(u) or ‘pattern of plausibility’ for the possible u values corresponding
to a given v.

11.5.3 Calibrative inferential tasks

The type of task here is best described in terms of a specific simple example
that we have given to a variety of subjects with some very interesting results.
For this task each subject receives a copy of Figure 11.5 which is the training
set, data for the ‘standard curve’ for an assay or calibration and the back-
ground to the problem is explained to the subjects. The problem concerns the
assay of the concentration u of an antibiotic in a patient’s blood. Droplets of
standard preparations of known concentrations ui of the antibiotic are placed
on a prepared infected medium on Petri dishes and, after cooking for 24 hours,
the diameters vi(mm) of the circles cleared, which are of course related to the
concentrations in a statistical rather than a deterministic way, are recorded.

In Figure 11.5 these (ui, vi) points are plotted. The subject is then made
aware that the problem is to try and infer something about the unknown
concentration of antibiotic in a patient’s blood from knowledge only of the
diameter of the clearance circle from a single droplet. He is invited to make
use of numbered patterns of variability, similar to those shown in Figure 11.6,
and supplied to him on a transparent sheet and to place what he regards as
an appropriate pattern on the horizontal u axis. The meaning of such patterns
is explained to him in some detail, for example,

(i) that the mode of the pattern selected should naturally be placed above
the concentration regarded as the most plausible;

(ii) that with such patterns the relative heights of the curve above any two
concentrations should reflect the subject’s view of the relative plausibil-
ities of these concentrations;
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Figure 11.5 Training data for the calibrative task of estimating the concentration of
antibiotic given value(s) of the clearance diameter.

Figure 11.6 Possible normal curves given to the subjects who undertake the calibra-
tive task.

(iii) that the ‘narrower’ the pattern chosen the more precise the subject is
regarding the method of assay;

(iv) that, since only a finite number of patterns can be provided, he is free
to choose an in-between pattern by ‘interpolation’ recording his choice
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to one decimal place; for example, a pattern 4.3 is intermediate between
pattern 4 and pattern 5 but nearer to pattern 4 than 5.

At the outset the subject is told that all concentrations are equally likely. In
our studies two tasks are given. First the subject is told that the diameter from
a single droplet of the patient’s blood was 19 mm and is asked to to identify
his pattern by writing down the most plausible value and the pattern curve
number. In the second he is told three diameters of 18.5, 18.5 and 20 mm.
Again he is asked to select, on the basis of this information, his pattern by
again noting his selected most plausible value and pattern curve number. The
assessments of performance can, of course, be easily quantified by comparison
of the selected curve s(u) with the normative curve r(u), such as the calibrative
density or a normal approximation to it. The measures of Section 11.3 are then
appropriate.

One interesting and surprising feature of the results is that in each of a
number of different groups – statistical students in various years, clinicians,
physicists – approximately one-half choose a wider pattern in the second task
than in the first, contrary to the common sense view that more experimen-
tation should provide a more precise inferential statement. This is clearly a
phenomenon that is worth further investigation. One possible explanation is
that with the single diameter some subjects have a tendency to forget about
or underestimate the variability in diameter for a given dose, whereas when
they are presented with three diameters showing variability they then take
account of this variability.

11.6 Distributions of inferential statements

When studying a single subject performing different inferential tasks or a
number of different subjects performing the same task we are faced with a set
of inferential statements s1, . . . , sn, each a probability distribution over a set
U . For statistical analysis of such data it is clearly an advantage to consider
probability distributions over U . Consider first the situation where U is a finite
set with D categories. Then s1, . . . , sn are probabilistic data in the sense that
they can be represented in the d-dimensional simplex Sd as defined in Section
4.2, where d = D − 1. In other words we are dealing here with compositional
data.

The logistic-normal distributions, as defined in Section 4.2, then provide
a rich class of distributions for the analysis of such inferential statements.
There are, indeed, some grounds for expecting that the pattern of variability
of inferential statements may follow such logistic-normal distributions. If, for
given u, the distribution of the components v1, . . . , vn of the feature vector
are independently distributed with density functions p(vj |u) then from prior
probabilities p(u)(u ∈ U) we have, by Bayes’s formula,

oi = log
p(ui|v)
p(uD|v) = log

p(ui)
p(uD)

+
n∑

j=1

log
pj(vj |ui)
pj(vj |uD)

.
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Provided that the distributions pj(vj |u) satisfy sufficient regularity conditions
for the central limit theorem to be valid and that n is a reasonable size, then
the oi, being sums, will tend to be normally distributed, and so the true in-
ferential statement will follow logistic-normal variability. Of course in practice
the independence assumption will not be valid, so that logistic-normality of
true inferential statements would have to rely on a central limit property for
dependent sums. But we suspect that subjects have considerable difficulty in
taking account of dependence in their assessments so that if their subjective
process does correspond to some rough and ready form of Bayes’s formula it
is likely to be in approximately independent form. All this is speculative and
it seems doubtful whether the subjective process can ever be investigated in
this amount of detail. But at least there is a prima facie case for investigating
logistic-normality of distributions of inferential statements associated with a
finite set U .

For U non-finite, such as the real line in the calibration problem, the descrip-
tion of the variability of inferential statements, now probability distributions
over the real line, is much more difficult. If the task takes the form of the se-
lection of a normal curve then an inferential statement is equivalent to (m, s),
where m and s are the mean and standard deviation of the selected normal
curve. For this task we then have to select some suitable joint distribution for
(m, s) and it is possible that some normal-Wishart form may be appropriate.

11.7 Two studies involving inferential tasks

We now illustrate the application of logistic-normal analysis to the inferential
statements of groups of subjects in performing diagnostic tests.

11.7.1 Doctor’s trilemma

The subjects were 48 first-course statistics students and each was presented
with four tasks, the four cases requiring a diagnosis between three types
with information from the ten independent binary tests presented sequen-
tially. Each test could have a positive or a negative result. The test results
for the tasks of classifying four new patients are shown in Table 11.2 and the
information on the conditional probabilities of a positive result on each test
given each of the three types is given in Table 11.1.

Each of the 24 possible orders of presentation of the cases was allocated
to two students, the allocating being at random. The trial was conducted in
two sessions. In each task the subjects were told that the types are equally
likely. At the first session, early in the course and before students had met the
appropriate technical tool of Bayes’s formula, each student tackled his first two
cases. The remaining two cases were presented at the second session, some six
weeks later, and after meeting Bayes’s formula in lectures. Subjects were not
informed that Bayes’s formula was the appropriate tool and were not allowed
to write anything on paper except their inferential statements. No feedback
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Table 11.2 Ten binary test results for four new patients

Patient Test Number
1 2 3 4 5 6 7 8 9 10

N1 − − − − − − + + − −
N2 − + + + − − − + − +
N3 + + − − + − − + − +
N4 + + + + + + − − + +

was given to the subjects as to their diagnostic performance after the first
session.

If sij denotes the inferential statement of the ith subject on the jth pre-
sented task then a model Ω for the analysis of the various effects is as follows:

sij ∼ L2(µ+ αi + βj + γk(i,j),Σ),

where k(i, j) is 1 or 2 according as the case comes before or after knowledge
of Bayes’s formula. The usual form of identifiability restrictions apply:

48∑
i=1

αi = 0,
4∑

j=1

βj = 0, γ1 + γ2 = 0.

Here the αi and βj denote subject and task effects and non-zero values of γ1

and γ2 will indicate some effect associated with knowledge of Bayes’s formula.

For testing any hypothesis ω within the model Ω the usual chi-squared
approximation at significance level α for the generalised likelihood ratio test
can be expressed in the form

192 log
det Σ̂ω

det Σ̂Ω

> χ2(r, 1 − α),

where Σ̂ω and Σ̂Ω are the maximum likelihood estimates of Σ under ω and
Ω, r is the number of independent constraints on the parameters required
to specialise Ω to ω and χ2(r, 1 − α) is the (1 − α)th quantile of the chi-
squared distribution with r degrees of freedom. Figure 11.7 gives the complete
lattice of hypotheses with the test quantities and their degrees of freedom in
parentheses. Moving up the lattice we can reject all hypotheses except γk = 0.
Thus we must conclude from this that there are significant subject and task
effects but that there is no significant evidence of a ‘Bayes effect’ on subjective
performance, though the shortfall of the test quantity 5.12 from the critical
value 5.99 is perhaps small enough to encourage the undertaking of more and
larger studies.
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General model

γk = 0
(5.12,2)

(296,4)

(151,47)

αi = βj = γk = 0

(154,48)

βj = 0
γk = 0

αi = 0βj = 0
(292,3)

αi = 0
βj = 0
(376,50)

(379,51)

αi = 0
γk = 0

Figure 11.7 Lattice of hypotheses associated with the Doctor’s Trilemma study. At
each node the appropriate value of the chi-squared test statistic is shown with the
associated number of degrees of freedom.

11.7.2 Statistician’s syndrome

In this analysis three groups of subjects, 56 professional statisticians, 11
second-year statistics students and 9 clinical consultants, were each presented
with five tasks involving the differential diagnosis of three types based on
six quantitative features. The complete training set of 36 cases, 12 of each
type, was given together with the information that for each of these equally-
prevalent types the distributions of the features were normally distributed, the
three mean vectors and covariance matrices also being given to the subjects.
Of the presented information the task information is displayed in Table 11.3,
the summary statistics are shown in Table 11.4 and the raw data are shown
in Figure 11.8, and are available in data set statsyn.
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Figure 11.8 Plot of the raw data used in the Statisticians’ Syndrome diagnostic chal-
lenge.

Table 11.3 Test results for five new patients with Statistician’s syndrome

Patient Test Number
1 2 3 4 5 6

N1 47.1 46.1 59.3 35.2 61.4 84.6
N2 64.3 71.2 63.2 34.0 19.6 64.5
N3 38.3 62.0 25.0 19.2 49.2 69.3
N4 42.7 38.0 25.1 10.8 31.4 80.5
N5 45.5 55.3 48.0 26.1 59.8 60.2

For each group there are highly significant subject and task effects. The ex-
tensive between-subject variability can be easily seen in Figure 11.9 which
shows in terms of triangular coordinates the inferential statements of the
56 statisticians for cases N1, N2, N4 and N5, the true types of these cases
being A, C, A and B respectively. If, for a given task, group g has inferen-
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Table 11.4 Summary information for Statistician’s Syndrome in the forms of sample
means(standard deviations) and correlation matrices

Type Test Number
1 2 3 4 5 6

A 30.4(9.8) 65.6(22.2) 39.7(12.8) 21.8(11.4) 56.3(19.5) 83.6(7.8)
B 60.6(13.9) 53.7(13.3) 30.8(8.2) 24.5(6.6) 53.6(15.8) 68.2(7.3)
C 62.4(9.2) 52.3(12.2) 55.9(8.1) 33.3(2.0) 48.7(13.2) 78.1(7.7)

A

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.24 −0.14 0.19 −0.53 0.30
1 −0.25 0.57 −0.82 0.40

1 0.11 0.42 −0.72
1 −0.40 −0.17

1 −0.53
1

⎤
⎥⎥⎥⎥⎥⎥⎦

B

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.24 −0.14 0.19 −0.53 0.30
1 −0.25 0.57 −0.82 0.40

1 0.11 0.42 −0.72
1 −0.40 −0.17

1 −0.53
1

⎤
⎥⎥⎥⎥⎥⎥⎦

C

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.24 0.52 0.16 0.21 −0.31
1 0.47 038 −0.49 −0.32

1 −0.11 −0.46 −0.16
1 0.16 −0.20

1 0.39
1

⎤
⎥⎥⎥⎥⎥⎥⎦

tial statements which distributed according to the logistic-normal distribution
L2(µg,Σg) then interest is in testing µ1 = µ2 = µ3 and Σ1 = Σ2 = Σ3. We
have made such comparisons among our three groups for each task with the
following results. For only one of the tasks is there no significant differences
among the groups. For all of the remaining four tasks there are significant
differences between the mean vectors, highly significant at the 0.1 per cent
level for three of these tasks, though for only one task is there a significant
difference, at the 5 per cent level, between the covariance matrices.

Thus there is evidence not only that subjects within a group vary but that
there can be significant between-group differences in the performance of sub-
jects. Since a normative statistical system can for each task supply a normative
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Figure 11.9 Patterns of variability in the responses of 56 professional statisticians
when faced with cases N1 (top-left), N2 (top-right), N4 (bottom-left) and N5 (bottom-
right) of the Statisticians’ Syndrome diagnostic study.

inferential statement translatable into a logratio value µ we can test whether
a group’s µg is significantly different from µ. For all three groups and all five
tasks there are significant differences of groups means from the normative
value.

11.8 Bibliographic notes

The concept of assessment of performance in clinical practice is probably the
least familiar of the contents of this monograph and so we give a reasonably
full set of references of the subject. In the 1960’s the resurgence of Bayesian in-
ference led to an interest in how subjects behave in relation to simple inference
and decision tasks, where well established conditional probability theory pro-
vides normative or optimal inferences and decisions. The problems presented
to the subjects in such early studies were usually simple and highly artificial,
seldom related to real situations. A typical study at this time is Phillips and
Edwards (1966). With extensive work in consultation on diagnostic problems
in clinical medicine came the opportunity to compare the diagnostic perfor-

© 2004 by Taylor & Francis Group, LLC

  



PROBLEMS 317

mance of clinicians with the application of statistical analysis. An early study
in this area, to differential diagnosis in non-toxic goitre, is described in Taylor,
Aitchison and McGirr (1971). The measures of performance in such a study
are based largely on the information ideas contained in Kullback and Liebler
(1951) and Lindley (1956). The original definitions of measures of subjective
performance contained in Taylor, Aitchison and McGirr (1971) were simplified
for easier interpretation in Aitchison (1981). For other studies in this general
area, see Aitchison (1974, 1978) and Aitchison and Kay (1973, 1975).

The possibility of comparing performance of various groups of individu-
als was made possible by developments in compositional data analysis as in
Aitchison (1986).

For other related studies in performance, as for example in treatment se-
lection, see Aitchison et al. (1973), Aitchison and Moore (1976), Moore et al.
(1974) and Taylor et al. (1975).

11.9 Problems

Problem 11.1 In the process of diagnosing a patient a doctor has reached
a stage where she is placing probabilities 0.5, 0.1, 0.4 on the three possible
diseases A, B, C. As a next step she has to choose between two tests, 1 and 2,
which yield positive or negative results according to the following probability
pattern.

Probability of + and − results for the different disease types.

Disease type Test 1 Test 2
+ − + −

A 0.2 0.8 0.7 0.3
B 0.3 0.7 0.5 0.5
C 0.6 0.4 0.1 0.9

For each test illustrate the moves in her diagnostic path for each of the
possible outcomes.

Which test should she choose if she wishes to maximise the expected gain
of information about the patient’s disease?

Problem 11.2 Review Section 11.3.4. with the various distribution of log-
normal instead of normal form. In what way are the measures of performance
altered?

Problem 11.3 The test results for a new case in the Doctor’s Trilemma
exercise of Section 11.7.1 were

- + - + - - + + - +
Compute and plot the diagnostic path for this case within an ABC ternary

diagram.

Problem 11.4 One subject presented with the case in Problem 11.3 drew a

© 2004 by Taylor & Francis Group, LLC

  



318 ASSESSMENT

diagnostic path based on steps leading from the starting probabilities
(1/3, 1/3, 1/3) to the following assessments

After test Diagnostic
assessment

A B C

1 0.16 0.58 0.26
2 0.25 0.45 0.30
3 0.17 0.50 0.33
4 0.18 0.48 0.34
5 0.23 0.36 0.41
6 0.40 0.15 0.45
7 0.21 0.21 0.58
8 0.12 0.27 0.61
9 0.16 0.21 0.63

10 0.11 0.25 0.64

Construct a performance profile of this subject showing the uncertainty H,
the inference discrepancy I, the information gain index G after each stage.

Problem 11.5 Either use the Doctor’s Trilemma framework of Section 11.5.1
or construct a similar situation of your own. Encourage some of your friends
to act as subjects, allowing them to attempt to choose optimum tests at each
stage. For each subject construct a H, I, G, S profile and attempt to explain
the nature of performance to each of your subjects.

Problem 11.6 A clinic is currently using an expensive, time-consuming, but
accurate method of determining the (a, b, c) composition of a certain type
of tissue in patients, and has been investigating the possibility of using the
tissue specimens to create a response in a certain medium to produce what
is believed to be a related (A, B, C) composition. In a trial with 25 standard
(a, b, c) tissues the corresponding (A, B, C) responses were recorded as below.
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Standard proportions Response proportions
a b c A B C

0.66 0.15 0.19 0.71 0.14 0.15
0.33 0.61 0.06 0.40 0.55 0.05
0.50 0.44 0.06 0.48 0.43 0.09
0.40 0.39 0.21 0.42 0.36 0.22
0.68 0.23 0.09 0.68 0.24 0.08
0.50 0.27 0.23 0.54 0.18 0.28
0.51 0.18 0.31 0.57 0.15 0.28
0.61 0.20 0.19 0.67 0.14 0.19
0.54 0.22 0.24 0.45 0.24 0.31
0.52 0.36 0.12 0.53 0.35 0.12
0.39 0.49 0.12 0.31 0.58 0.11
0.31 0.39 0.30 0.32 0.35 0.32
0.26 0.17 0.57 0.23 0.15 0.62
0.65 0.14 0.21 0.70 0.13 0.17
0.41 0.30 0.29 0.33 0.36 0.31
0.60 0.24 0.16 0.64 0.22 0.14
0.71 0.16 0.13 0.68 0.19 0.13
0.40 0.32 0.28 0.36 0.39 0.25
0.51 0.36 0.13 0.51 0.37 0.12
0.44 0.38 0.18 0.52 0.28 0.20
0.47 0.26 0.27 0.40 0.37 0.23
0.62 0.27 0.11 0.67 0.24 0.09
0.47 0.27 0.26 0.48 0.27 0.25
0.58 0.29 0.13 0.69 0.21 0.10
0.57 0.32 0.11 0.62 0.28 0.10

The clinicians believe that from the (A, B, C) compositional response to a
new patient’s tissue of unknown (a, b, c) composition they can reconstruct
the (a, b, c) composition. Design an assessment trial to investigate this claim.

Regardless of the outcome of such an investigation what would your recom-
mendation be to the clinic on this assay problem?
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APPENDIX A

Data and Software

The data sets which have been analysed, together with the data sets in the
end of chapter problems, are available from the book web-site at the following
address.

www.crcpress.com/e_products/downloads

Almost all of the work was performed in MATLAB or S-Plus or R. The pack-
ages nlme and WinBUGS were also used, as were the Venables and Rip-
ley (2002) libraries MASS, nnet and class. S/R scripts and WinBUGS pro-
grammes are also available from the book web-site.

A.1 Aldosterone

This problem involves the calibration of two methods of determining the con-
centration of aldosterone in blood samples. The methods are a radioimmunoas-
say method (RIA) and a double isotope method (DI) and data are available
from 72 blood samples. The data set aldo has 72 rows and 2 columns named
RIA and DI; see Section 7.2.

A.2 Angiotensin II

This problem concerns the determination of the concentration of angiotensin
II in samples of blood plasma using radioimmunoassay. Data are available
for 16 samples of blood plasma. The data set angio has two columns named
CONC and PERBD and 16 rows; see Section 7.5.

A.3 Auditory dysfunction

This is a problem of differential diagnosis of auditory dysfunction on the basis
of electrocochleography in which only a composite diagnosis is available for the
four types of hearing state: normal hearing, conduction hearing loss, Menière’s
disease and hair-cell damage. Data are available on 93 subjects consisting of
four derived measures from action potentials together with a type composition.
The data set hearing has 93 rows and 9 columns, with the first containing
case numbers, the next four containing the derived measures and the latter
four containing the composite type information; see Section 9.6.
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A.4 Bacteria

This problem concerns the reproducibility of observers in counting bacterial
colonies on petri plates. Data, in the form of numbers of colonies, are available
for 20 plates with each of three observers providing a count for each plate.
The data set bact has 3 columns named PLATE, OBSERVER and COUNT
and 60 rows; see Section 6.7.

A.5 Bilateral hyperplasia

It is required to describe the experience of measurements of cortisol and cor-
tisone in 27 patients who have bilateral hyperplasia. The data set bilhyp has
two columns named CSOL (cortisol) and CSONE (cortisone) and 27 rows; see
Section 5.3.1.

A.6 Calcium contents

This problem concerns the description of the variability of the calcium contents
CH and CF of the heel and forearm in relation to Gender (G), Age (A), Weight
(W), Height (H), Surface area (SA), Strength of forearm (MF), Strength of
leg (ML), Diameter of os calcis (OS), Area of os calcis (AC) and Diameter of
radius and ulna (DR). Data are available for 127 patients and the data set
bones has 12 columns, named G, A, W, H, SA, MF, ML, OS, AC, DR, CH
and CF, and 127 rows; see Section 5.4.2. Data in the same format as bones
are available for four new patients in data set newbones.

A.7 Cells

This problem involves an observer error study of cell counts in areas of tissue.
Data are available for 10 cases and three observers and the numbers of labelled
and unlabelled cells that are counted are given for each combination. The data
set cells has four columns, named CASE, OBS, LABCNT and UNLABCNT,
and 30 rows; see Section 6.5.

A.8 Cervical cancer

This problem is a randomised survival study of patients with cervical cancer
conducted to compare the usefulness of two treatments A and B. Data are
available on 105 patients and contained in the data set cancer which has three
columns and 105 rows. The columns contain for each patient the censoring
status (STATUS), the survival time (TIME) and their treatment (TREAT);
see Section 10.3.
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A.9 Conn’s syndrome

This problem is one of differential diagnosis of patients with Conn’s syndrome.
Data are available on concentrations of sodium (Na), potassium (K), carbon
dioxide (CO2), renin (Ren) and aldosterone (Aldo) in blood plasma, together
with systolic (SysBP) and diastolic (DiasBP) blood pressures, for 31 cases
with Conn’s syndrome from clinic 1 (20 with an adenoma (a) and 11 with
bilateral hyperplasia (b)). The data set conn has nine columns, named Case,
Na, K, CO2, Ren, Aldo, SysBP, DiasBP and Type, with 31 rows; see Table
1.1.

Data are also available on 21 patients from clinic 2, 17 of whom have an
adenoma and 4 have bilateral hyperplasia, and also for 22 undiagnosed cases.
These data are available in the data set newconn in the same format as data
set conn, but with Type being coded as c, d and e for the adenoma, bilateral
hyperplasia and undiagnosed patients, respectively; see Sections 1.2, 8.2 and
9.2-3.

A.10 Crohn’s disease

The problem here is one of differential diagnosis between patients with ulcer-
ative colitis and those with Crohn’s disease. Specimens were collected from
the guts of 33 patients – 11 with ulcerative colitis, 11 with Crohn’s disease
and 11 normal subjects – and the cells from these specimens were classified
as into three types: I, A and M. The data set crohn has four columns, named
I, A, M and Type, and 33 rows; see Section 5.5.1.

A.11 Crown rump length

This is a problem of determining the age of a foetus by means of its crown
rump length as determined by sonar techniques. Data are available from 194
mothers, some of whom were assessed on more than one occasion. Data set
foetal has three columns, named Patient, Maturity and CRL, and 339 rows;
see Section 7.4.

A.12 Cushing’s syndrome

This is a problem of differential diagnosis involving patients with Cushing’s
syndrome. Data are available for 87 patients on the 14 steroid metabolites
defined in Table 1.3. Data set cush has sixteen columns containing the case
identifiers in column 1, values of the 14 steroid metabolites in the next 14
columns and the Type of disease in column 16. Type is labelled as a (adenoma),
b (bilateral hyperplasia), c (adrenal carcinoma), d (ectopic carcinoma) and
n (normal). See Sections 1.10, 8.5 and 9.7 for more details. Data on the 14
steroid metabolites for 30 normal children are available in data set cushkids;
see Section 5.5.2.
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A.13 Cutaneous malignant melanoma

This is a problem involving the survival prognosis of patients with cutaneous
malignant melanoma. Complete data are available on 4332 patients in the
data set malmel which has 4332 rows and 8 columns, named DEP7 (depriva-
tion status), SEX, BRSLW5 (Breslow thickness), HIST4 (histogenetic type),
AGEGRP (age group), SURVYRS (survival time), STATUS (observed (1) or
censored (0)). Data on four new patients are available in data set newmel.
Data set mel5 contains data on a subset of 2938 of the patients for whom
five-year survival could be determined. This has the same format as data set
malmel except that there is a column named FIVE recording five-year sur-
vival (1= yes, 0 = no) in place of the column containing censoring status; see
Section 10.5.

A.14 Diagnostic ratio

This problem concerns observer error studies of heart X-rays. The are 65 X-
rays and the six measurements defined in Section 6.3 are made on each X-ray
by five observers. Data set dratio has 325 rows and 9 columns. The first col-
umn indicates the X-ray. Columns 2–7 contain the six heart measurements.
Column 8 contains the observer code and the ninth column gives the diagnos-
tic ratio. These data are discussed in Sections 6.3–4. The data set dratio2
contains replicated assessment on 15 of the heart X-rays by two of the ob-
servers; there are 60 rows and 4 columns containing information on the X-ray,
radiologist, replicate and diagnostic ratio; see Section 6.3.

A.15 Glucose

This problem concerns the calibration of two methods of determining glucose
concentration. Data are available from 52 individuals in the form of glucose
concentration as determined by the oxidase method and two or three corre-
sponding measurements made using the reflectance meter method. Data set
gluc has three columns, named as Subject, OXI (oxidase method) and RM
(reflectance meter), and 162 rows; see Section 7.3.

A.16 Goitre

This is a problem of the differential diagnosis of patients with non-toxic goitre
in the presence of missing data. There are three types of disease: Hashimoto’s
disease (1), simple goitre (2) and thyroid carcinoma (3). Data are available
from 143 patients in the form of four tests together with the known type
(1, 2 or 3). The data set goitre has 143 rows and five columns, the first four
of which contain the results of the four tests and the fifth contains the type
of goitre; see Section 9.5.
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A.17 Haemophilia

This is a problem of differential diagnosis of women as carriers or non-carriers
of haemophilia. Data in the form of results of two coagulation tests are avail-
able for 43 women, 20 of whom are known to be carriers (c) while the other 23
are non-carriers (n) of haemophilia. Data set haemo has four columns, named
Case, FactorI, FactorIV and Type, and 43 rows; see Sections 5.3.2 and 8.4.
Data on 15 new patients are available in data set newhaem.

A.18 Hormone

This problem concerns the variability of the measurements of an anti-diuretic
hormone in relation to gender and urine osmolarity. Data are available on 75
patients in data set adhorm which contains 75 rows and three columns: ADH,
UO and Sex. Data are available for 6 new patients in data set newadh; see
Section 5..4.1.

A.19 Keratoconjunctivitis sicca

This is a problem of diagnosing whether or not rheumatoid arthritis patients
have Keratoconjunctivitis sicca (kcs). Data on ten binary symptoms are avail-
able on 77 patients, 40 of whom have kcs while the remainder do not have
kcs. The data set kcs has 77 rows and 12 columns. The first column contains
the case identifiers, the next 10 columns contain presence/absence (1/0) of
the symptoms and the twelfth column contains the true type (y for kcs and
n for non-kcs). Data are available on forty further patients, 23 of whom have
kcs and 17 of whom do not, in data set newkcs; see Section 8.3.

A.20 Nephrology

This problem involves the prediction of dosage of the drug NEP and also the
occurrence of side-effects. Data set kidney contains data from 58 patients
on concentrations of creatine (CREAT), cholesterol (CHOL) and triglyceride
(TRIG) along with NEP dose (NEP), sex (SEX) and presence of side-effects
(SIDE); it has 58 rows and 6 columns; see Section 10.4.

A.21 Potassium

This problem concerns describing the experience of concentrations of potas-
sium in blood plasma. Data set potass has a single column containing mea-
surements of potassium concentration from 200 healthy patients; see Section
5.2.1.
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A.22 Pregnenetriol

This problem concerns describing the experience of urinary excretion rates of
pregnenetriol in 37 healthy patients. Data set preg has a single column con-
taining measurements of the urinary excretion rates for 37 healthy individuals;
see section 5.2.2.

A.23 Statistician’s syndrome

Data set statsyn contain the training data and data for the five new patients
on the six tests in Statistician’s syndrome. Rows 1–16, 17–32 and 33–48 con-
tain the data for types A, B and C, respectively, and rows 49–53 contain the
test results for 5 new patients; see section 11.7.2. In a study of statisticians at
a conference each of 56 volunteers were given data on 5 new cases and asked
to plot their assessment of the types in ternary diagrams. The resulting data
are available in data set ssresults which has 275 rows and 5 columns. The
first two columns contain the subject and case numbers and the last three
columns contain the assessed probabilities for types A, B and C; see Section
11.7.2.

A.24 Tobramycin

This is a problem of determining concentration of tobramycin from the clear-
ance diameter. Each of 20 patients contributed blood samples which were
tested at six known concentrations of tobramycin and the clearance diame-
ter recorded. Data set tobra has 120 rows and 3 columns named PATIENT,
CONC (concentration) and CLEAR (clearance diameter); see Section 9.6.

A.25 X-rays

This problem concerns observer error in two studies involving diagnoses made
on the basis of large and small X-rays by three observers. Data set xrays
contains data for 90 patients. For each patient there is a large X-ray and a
corresponding small X-ray, and three observers have reached correct or wrong
diagnoses on both sizes of X-ray. Data set xrays has 90 rows and six columns,
named AL, AS, BL, BS, CL and CS respectively. These columns contain binary
data (1 for a correct and 0 for a wrong diagnosis) for each of the observers A,
B and C on large and small X-rays; see Section 6.6.
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