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Preface

This is a textbook of elementary particle physics, intended for students
who have a secure knowledge of special relativity and have completed
an undergraduate course in quantum mechanics.

Particle physics has now reached the end of a major stage in its de-
velopment. The primary forces that act within the atomic nucleus, the
strong and weak interactions, now have a fundamental description, with
equations that are similar in form to Maxwell’s equations. These forces
are summarized in a compact mathematical description, called the Stan-
dard Model of particle physics. The purpose of this book is to explain
what the Standard Model is and how its various ingredients are required
by the results of elementary particle experiments.

Increasingly, there is a gap between the study of elementary particles
and other areas of physical science. While other areas of physics seem to
apply directly to materials science, modern electronics, and even biology,
particle physics describes an increasingly remote regime of very small
distances. Physicists in other areas are put off by the sheer size and
expense of elementary particle experiments, and by the esoteric terms by
which particle physicists explain themselves. Particle physics is bound
up with relativistic quantum field theory, a highly technical subject, and
this adds to the difficulty of understanding it.

Still, there is much to appreciate in particle physics if it can be made
accessible. Particle physics contains ideas of great beauty. It reveals
some of the most deep and surprising ideas in physics through direct
connections between theory and experimental results. In this textbook,
I attempt to present particle physics and the Standard Model in a way
that brings the key ideas forward. I hope that it will give students an
entryway into this subject, and will help others gain a better under-
standing of the intellectual value of our recent discoveries.

The presentation of elementary particle physics in this book has been
shaped by many years of discussion with experimental and theoretical
physicists. Particle physicists form a global community that brings to-
gether many different points of view and different national styles. This
diversity has been a key source of new ideas that have driven the field
forward. It has also been a source of intuitive pictures that make it pos-
sible to visualize physical processes in the distant and abstract domain of
the subnuclear forces. I have tried to bring as many of these pictures as
possible into my discussion here. My own way of thinking about particle
physics has been shaped by my connection with the great laboratories
at Cornell University and SLAC. I am indebted to many colleagues at
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these laboratories for central parts of the development given here.

I have been reminded often during the writing of this book that many
of the great figures responsible for the formulation of the Standard Model
have passed on to that symposium in the beyond. In only the past few
years, we have lost Sidney Drell, Martin Perl, Richard Taylor, Kenneth
Wilson, and, most recently, Burton Richter. All of these people influ-
enced me personally and profoundly affected my thinking about particle
physics. It is a challenge for us who follow them not only to finish their
work but also to open new chapters in the development of fundamental
physics. I hope that this book will provide useful background for those
who wish to do so.

The core of this presentation was developed as a set of lectures for
CERN summer students in 1997; I thank Luis Alvarez-Gaumé for the
invitation to present these lectures. I have presented parts of this mate-
rial at a number of summer schools and courses, in particular, the course
on elementary physics at the Perimeter Scholars International program
at the Perimeter Institute. Most recently, I have polished this material
by my teaching of the course Physics 152/252 at Stanford University. I
am grateful to Patricia Burchat for giving me this opportunity, and for
much advice on teaching a course at this level. I thank the students in
all of these courses for their patience with preliminary versions of this
book and their attention to errors they contained. I thank Sonke Ad-
lung, Harriet Konishi, Sal Moore, and their team at Oxford University
Press for their interest in this project. I thank Tim Cohen, Serge Den-
das, Christopher Hill, Sunghoon Jung, Andrew Larkoski, Aaron Pierce,
Daniel Schroeder, Bruce Schumm, and André David Tinoco for valuable
comments on the presentation, and Jongmin Yoon for an especially care-
ful reading of the manuscript. Most of all, I thank my colleagues in the
SLAC Theory Group for their advice and criticism that has benefited
my understanding of elementary particle physics.

Michael E. Peskin
Sunnyvale, CA
August, 2018
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Introduction

The aim of this book is to describe the interactions of nature that act
on elementary particles at distances of the size of an atomic nucleus.

At this time, physicists know about four distinct fundamental inter-
actions. Two of these are macroscopic—gravity and electromagnetism.
Gravity has been known since the beginning of history and has been un-
derstood quantitatively since the time of Newton. Electrical and mag-
netic phenomena have also been known since ancient times. The unified
theory of electromagnetism was given its definitive form by Maxwell in
1865. Through all of these developments, there was no sign that there
could be additional fundamental forces. These would appear only when
physicists could probe matter at very small distances.

The first evidence for additional interactions of nature was Bequerel’s
discovery of radioactivity in 1896. In 1911, Rutherford discovered that
the atom consists of electrons surrounding a very tiny, positively charged
nucleus. As physicists learned more about atomic structure, it became
increasingly clear that the known macroscopic forces of nature could not
give the full explanation. By the middle of the 20th century, experiments
had revealed a series of questions that could not be resolved without new
particles and interactions. These included:

e What is radioactivity? Why do some atomic nuclei emit high-
energy particles? What specific reactions are responsible? What
are the particles that are emitted in radioactive decay?

e What holds the atomic nucleus together? The nucleus is made of
positively charged protons and neutral neutrons. Electromagnetic
forces destabilize the nucleus—as we see from the fact that heavy
nuclei are unstable with respect to fission. What is the counter-
balancing attractive force?

e What are protons and neutrons made of? These particles have
properties that indicate that they are not elementary pointlike
particles. What gives them structure? What kinds of particles are
inside?

Experiments designed to study these issues produced more confusion
before they produced more understanding. The proton and the neutron
turned out to be the first of hundreds of particles interacting through
the nuclear force. The electron turned out to be only one of three appar-
ently pointlike particles with electric charge but no strong interactions.
All of these particles were observed to interact with one another through
a web of new, short-ranged interactions. Finally, as the 1960’s turned to

These simple questions give the starting
point for the exploration of subnuclear
physics.
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It is important to remember the theory
of particle physics must be studied to-
gether with the understanding of how
experiments are done and how their re-
sults are interpreted.

Outline of the book.

Part I

the 1970’s, the new interactions were sorted into two basic forces—called
the strong and the weak interaction—and simple mathematical expres-
sions for these forces were constructed. Today, physicists refer to these
expressions collectively as “the Standard Model of particle physics”.

Sometimes, authors or lecturers present the table of elementary par-
ticles of the Standard Model and imply that this is all there is to the
story. It is not. The way that the forces of nature act on the elementary
particles is beautiful and intricate. Often, the telling details of these
interactions show up through remarkable aspects of the data when we
examine elementary particle behavior experimentally.

These ideas elicit a related question: Of all the ways that nature could
be built, how do we know that the Standard Model is the correct one?
It seems hardly possible that we could pin down the exact nature of new
fundamental interactions beyond gravity and electromagnetism. All of
the phenomena associated with the new forces occur at distances smaller
than an atomic nucleus, and in a regime where both special relativity
and quantum mechanics play an essential role.

In this book, I will explain the answers to these questions. It turns
out that the new forces have common properties and can be built up
from simple ingredients. The presence of these ingredients is revealed
by well-chosen experiments. The dynamics of the new interactions be-
comes more clear at higher energies. With the benefit of hindsight, we
can begin our study today by studying these dynamical ingredients in
their simplest form, working out the consequences of these laws, and
comparing the resulting formulae to data from high energy accelerator
experiments that illustrate the correctness of these formulae in a very
direct way.

Our quest for a fundamental theory of nature is far from complete.
In the final chapter of the book, I will discuss a number of issues about
fundamental forces for which we still have no understanding. It is also
possible, as we probe more deeply into the structure of nature, that we
will uncover new interactions that work at even smaller distances than
those currently explored. But, at least, one chapter of the story, open
since 1896, is now finished. I hope that, working through this book,
you will not only understand how to work with the underlying theories
describing the strong and weak interactions, but also that you will be
amazed at the wealth of evidence that supports the connection of these
theories to the real world.

The book is organized into three Parts. Part I introduces the basic
materials that we will use to probe the nature of new forces at short
distances. Parts II and III use this as a foundation to build up the
Standard Model theories of the strong and weak interactions.

Part I begins with basic theory that underlies the subject of particle
physics. Even before we attempt to write theories of the subnuclear
forces, we expect that those theories will obey the laws of quantum
mechanics and special relativity. I will provide some methods for using
these important principles to make predictions about the outcome of
elementary particle collisions.



In addition, I will describe the types of matter in the theories of
strong and weak interactions, the basic elementary particles that in-
teract through these forces. It turns out that there are two types of
matter particles that are elementary at the level of our current under-
standing. Of these, one type, the leptons, are seen in our experiments as
individual particles. There are six known leptons. Three have electric
charge: the electron (e), the muon (1), and the 7 lepton. The other three
are the neutrinos, particles that are electrically neutral and extremely
weakly interacting. Despite this, the evidence for neutrinos as ordinary
relativistic particles is very persuasive; I will discuss this in Part III.

Matter particles of the other type, the quarks, are hidden from view.
Quarks appear as constituents of particles such as protons and neutrons
that interact through the strong interaction. There are many known
strongly interacting particles, collectively called hadrons. 1 will explain
the properties of the most prominent ones, and show that they are nat-
urally considered in families. On the other hand, no experiment has
ever seen an isolated quark. It is actually a prediction of the Standard
Model that quarks can never appear singly. This makes it especially
challenging to learn their properties. One piece of evidence that the
description of quarks in the Standard Model is correct is found from the
fact it gives a simple explanation for the quantum numbers of observed
hadrons and their assortment into families. I will discuss this also in
Part 1. In the process, I will give names to the hadrons that appear
most often in experiments, so that we can discuss experimental methods
more concretely.

In a relativistic quantum theory, forces are also associated with parti-
cles that can be thought to transmit them. The Standard Model contains
four types of such particles. These are the photon, the carrier of the elec-
tromagnetic interaction, the gluon, the carriers of the strong interaction,
the W and Z bosons, the carriers of the weak interaction, and the Higgs
boson, which plays a more subtle role. You will have already encoun-
tered the photon in your study of quantum mechanics. I will introduce
the gluon in Part II and the W, Z, and Higgs bosons in Part III.

To understand experimental findings about elementary particles, we
will need to know at least the basics of how experiments on elementary
particles are done, and what sorts of quantities describing their proper-
ties are measureable. I will discuss this material also in Part I.

Part II begins with a discussion of the most important experiments
that give insight into the underlying character of the strong interaction.
One might guess intuitively that the most convincing data on the strong
interaction comes from the study of collisions of hadrons with other
hadrons. That is incorrect. The experiments that were most crucial in
understanding the nature of strong interaction involved electron scatter-
ing from protons and the annihilation of electrons and positrons at high
energy. This latter process has a initial state with no hadrons at all.
I will begin Part II with a discussion of the features of these processes
at high energy. Our analysis will introduce the concept of the current-
current interaction, which is an essential part of the physics of both the

Part I1
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Part III

strong and weak interactions. Then, through a series of arguments that
pass back and forth between theory and experiment, we will explore the
nature of hadron-hadron collisions at high energy, as revealed today in
experiments at the Large Hadron Collider.

The final chapter of Part II presents our current understanding of the
masses of quarks. It might seem that it is straightforward to measure
the mass of a quark, but in fact this question brings in a number of
new, subtle concepts. This chapter introduces the important idea of
spontaneous symmetry breaking, and other ideas that will prove to be
essential parts of the theory of the weak interaction.

Part III presents the description of the weak interaction. Here I will
begin from a proposal for the nature of the weak interaction that uses
the concept of the current-current interaction that has already proven
its worth in the description of the strong interaction. I will present
some quite counterintuitive, and even startling, predictions of that the-
ory and show that they are actually reproduced by experiment. From
this starting point, again in dialogue between theory and experiment,
we will build up the full theory. My discussion will include the precision
study of the carriers of the weak interaction, the W and Z bosons, and
the newest ingredients in this theory, the masses of neutrinos and the
properties of the Higgs boson.

This is not a complete textbook of elementary particle physics. In
general, I will concentrate on the simplest applications of the Standard
Model, the applications that make the underlying structure of the model
most clear. Most of the processes that I will consider will be studied in
the limit of very high energies, where the mathematical analysis can be
simplified as much as possible. A full discussion of the subject would
cover a more complete list of reactions, including some whose theoretical
analysis is quite complex. Such a full treatment of particle physics is
beyond the scope of this book.

In particular, many aspects of the theory of elementary particles can-
not be understood without a deep understanding of quantum field the-
ory. This book will explain those aspects of quantum field theory that
are absolutely necessary for the presentation, but will omit any sophis-
ticated discussion of this subject. A full description of the properties of
elementary particles needs more.

For students who would like to study further in particle physics, there
are many excellent references written from different and complementary
points of view. I have put a list of the most useful texts at the beginning
of the References.

A particularly useful reference work is the Review of Particle Physics
assembled by the Particle Data Group (Patrignani et al. 2016). This
volume compiles the basic properties of all known elementary particles
and provides up-to-date reviews of the major topics in this subject. All
elementary particle masses and other physical quantities quoted in this
book but not explicitly referenced are taken from the summary tables
given in that source.



Symmetries of Space-Time

We do not have complete freedom in postulating new laws of nature. Any
laws that we postulate should be consistent with well-established symme-
tries and invariance principles. On distance scales smaller than an atom,
space-time is invariant with respect to translations of space and time.
Space-time is also invariant with respect to rotations and boosts, the
symmetry transformations of special relativity. Many aspects of exper-
iments on elementary particles test the principles of energy-momentum
conservation, rotational invariance, the constancy of the speed of light,
and the special-relativity relation of mass, momentum, and energy. So
far, no discrepancy has been seen. So it makes sense to apply these pow-
erful constraints to any proposal for elementary particle interactions.
Perhaps you consider this statement too strong. As we explore new
realms in physics, we might well discover that the basic principles applied
in more familiar settings are no longer valid. In the early 20th century,
real crises brought on by the understanding of atoms and light forced
physicists to abandon Newtonian space-time in favor of that of FEinstein
and Minkowski, and to abandon the principles of classical mechanics in
favor of the very different tools of quantum mechanics. By setting rela-
tivity and quantum mechanics as absolute principles to be respected in
the subnuclear world, we are making a conservative choice of orienta-
tion. There have been many suggestions of more radical approaches to
formulating laws of elementary particles. Some of these have even led to
new insights: The bootstrap of Geoffrey Chew, in which there is no fun-
damental Hamiltonian, is still finding new applications in quantum field
theory (Simmons-Duffin 2017); string theory, which radically modifies
space-time structure, is a candidate for the overall unification of parti-
cle interactions with quantum gravity (Zwiebach 2004, Polchinski 2005).
However, the most successful routes to the theory of subnuclear interac-
tions have taken translation invariance, special relativity, and standard
quantum mechanics as absolutes. In this book, I will make the assump-
tion that special relativity and quantum mechanics are correct in the
realm of elementary particle interactions, and I will use their principles
in a strong way to organize my exploration of elementary particle forces.
This being so, it will be useful to formulate the constraints from space-
time symmetries in such a way that we can apply them easily. We
would like to use the actual transformation laws associated with these
symmetries as little as possible. Instead, we should formulate questions
in such a way that the answers are expressions invariant under space-
time symmetries. Generally, there will be a small and well-constrained
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Representation of the energy and mo-
mentum of a particle in 4-vector nota-
tion.

In this book, unless it is explicitly in-
dicated otherwise, repeated indices are
summed over. This convention is one
of Einstein’s lesser, but still much ap-
preciated, innovations.

set of possible invariants. If we are lucky, only one of these will be
consistent with experiment.

2.1 Relativistic particle kinematics

As a first step in simplifying the use of constraints from special rel-
ativity, I will discuss the kinematics of particle interactions. Any iso-
lated particle is characterized by an energy and a vector momentum. In
special relativity, these are unified into a 4-vector. I will write energy-
momentum 4-vectors in energy units and notate them with an index
w=0,1,2,3,

p = (E,pc)* . (2.1)

I will now review aspects of the formalism of special relativity. Prob-
ably you have seen these formulae before in terms of rulers, clocks, and
moving trains. Now we will need to use them in earnest, because elemen-
tary particle collisions generally occur at energies at which it is essential
to use relativistic formulae.

Under a boost by v along the 3 direction, the energy-momentum
4-vector transforms as p — p’, with

1 v 1 v
E’:7E+f3c, oe=—o (pPc+ —-F ,
ﬁ7@2/62( RN ﬁ7”2/62(29 2B
ph¥e = phie. (2.2)
It is convenient to write this as a matrix transformation
vy 00 98
;o . o 0 1 0 O
p'=Ap with A= 0 0 1 0 , (2.3)
8 0 0 ~
where v 1
B8 =- = . 2.4
c VT —p (2.4)

In multiplying matrices and vectors in this book, I will use the con-
vention that repeated indices are summed over. Then, for example, I
will write (2.3) as

Pt = A", p¥ . (2.5)

omitting the explicit summation sign for the index v. Lorentz trans-
formations leave invariant the Minkowski space vector product

pag=EE;—p-q. (2.6)

To keep track of the minus sign in this product, I will make use of
raised and lowered Lorentz indices. Lorentz transformations preserve
the metric tensor

1 0 0 0 1 0 0 0
(o -1 0 o w [0 =1 0 0

=109 o -1 o | " 0o 0 -1 o | @D
00 0 -1 00 0 -1
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Using this matrix, and the summation convention, we can write (2.6) as
P a=r"nwg" . (2.8)

Alternatively, let ¢ with a lowered index be defined by
Gu = Nuvq” = (Eqs =@ - (2.9)

The invariant product of p and ¢ is written
p-q=pq, . (2.10)

To form an invariant, we always combine a raised index with a lowered
index. As the equations in this book become more complex, we will
find this trick very useful in keeping track of the Minkowski space minus
signs.
A particularly important Lorentz invariant is the square of a Lorentz
vector,
p-p=p*>=FE*—|p*?. (2.11)

Being an invariant, this quantity is independent of the state of motion
of the particle. In the rest frame

P = (Eo,0)" . (2.12)
I will define the mass of a particle as its rest-frame energy
(mc*) = Ey . (2.13)
Since p? is an invariant, the expression
(mc?)? = p* = E? — |p)*c? (2.14)

is true in any frame of reference.
In this book, I will write particle momenta in two standard ways

-,

P = (Bp, o) or p'=mc*y(1,B8)" (2.15)
where
B = el + me) 2, =00 gy )
p

Especially, the symbol E, will always be used in this book to represent
this standard function of momentum and mass. I will refer to a 4-vector
with E/ = E, as being “on the mass shell”.

To illustrate these conventions, I will now work out some simple but
important exercises in relativistic kinematics. Imagine that a particle of
mass M, at rest, decays to two lighter particles, of masses m; and ms. In
the simplest case, both particles have zero mass: m; = mg = 0. Then,
energy-momentum conservation dictates that the two particle energies

Relativistic particle kinematics 9

I will use raised and lowered Lorentz
indices to keep track of the minus
sign in the Minkowski vector prod-
uct. Please pay attention to the po-
sition of indices—raised or lowered—
throughout this book.

The mass of a particle is a Lorentz-
invariant quantity that characterizes
that particle in any reference frame.

Definitions of the quantities E,, 3, v
associated with relativistic particle mo-
tion.
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These kinematic formulae will be used
very often in this book.

are equal, with the value M¢? /2. Then, if the final particles move in the
3 direction, we can write their 4-vectors as

pi = (Mc?/2,0,0, Mc*/2)*  ph = (Mc?/2,0,0,—Mc*/2)* . (2.17)

The next case, which will appear often in the experiments we will
consider, is that with my nonzero but mo = 0. In the rest frame of the
original particle, the momenta of the two final particles will be equal
and opposite. With a little algebra, one can determine

Py = (Ep,0,0,pc)" | ph = (pc, 0,0, —pc)# (2.18)
(for motion in the 3 direction), where

E _M2+m%02

M?—m?
T VR c

57 (2.19)

pc=
It is easy to check that these formulae satisfy the constraints of to-
tal energy-momentum conservation and that p/ satisfies the mass-shell
constraint (2.14).

Finally, we might consider the general case of nonzero m; and mo.
Here, it takes a little more algebra to arrive at the final formulae

plf = (Ela 07 Oapc)u 5 pIQL = (E27 Oa Oa _pC)M (220)
with
M2 2 2 M2 — m2 2
E = —ZZE e, B = —2”;} Ty (201)
and .
p= 5ot MMy ms) /2 (2.22)

where the kinematic A function is defined by
MM, my,mg) = M* —2M*(m? + m3) + (m? —m3)? . (2.23)

These three sets of formulae apply equally well to reactions with two
particles in the initial state and two particles in the final state. It is
only necessary to replace Mc? with the center of mass energy Ecs of
the reaction.

2.2 Natural units

In the discussion of the previous chapter, I needed to introduce many
factors of ¢ in order to make the treatment of energy, momentum, and
mass more uniform. This is a fact of life in the description of high
energy particles. Ideally, we should take advantage of the worldview of
relativity to pass seamlessly among these concepts. Equally well, our
discussions of particle dynamics will take place in a regime in which
quantum mechanics plays an essential role. To make the best use of



quantum concepts, we should be able to pass easily between the concepts
of momentum and wavenumber, or energy and frequency.
To make these transitions most easily, I will, in this book, adopt nat-
ural units,
h=c=1. (2.24)

That is, I will measure momentum and mass in energy units, and I will

measure distances and times in inverse units of energy. For convenience

in discussing elementary particle physics, I will typically use the en-

ergy units MeV or GeV. This will eliminate a great deal of unnecessary

baggage that we would otherwise need to carry around in our formulae.
For example, to write the mass of the electron, I will write

not me =0.91 x 107%"g  but rather m, = 0.51 MeV .  (2.25)

An electron with a momentum of the order of its rest energy has, ac-
cording to the Heisenberg uncertainty principle, a position uncertainty

=39x10"" cm (2.26)

MmeC

which I will equally well write as

L (051 Mev) ! (2.27)

Me

Natural units make it very intuitive to estimate energies, lengths, and
times in the regime of elementary particle physics. For example, the
lightest strongly interacting particle, the 7 meson, has a mass

mac® =140 MeV . (2.28)

This corresponds to a distance

=1.4x 107" cm (2.29)
MyC
and a time "
5 =047 x 107 sec . (2.30)
MyC

These give—within a factor 2 or so—the size of the proton and the
lifetimes of typical unstable hadrons. So, the use of m, gives a good
first estimate of all dimensionful strong interaction quantities. To obtain
an estimate in the desired units—MeV, cm, sec—we would decorate
the simple expression m, with appropriate factors of # and ¢ and then
evaluate as above.

It may make you uncomfortable at first to discard factors of i and c.
Get used to it. That will make it much easier for you to perform calcu-
lations of the sort that we will do in this book. Some useful conversion
factors for moving between distance, time, and energy units are given in
Appendix B.

2.2 Natural units 11

The conventions that define natural
unats.

Natural units are useful for estimation.

The material in this book will be easier
to grasp if you make yourself comfort-
able with the use of natural units. This
will both simplify formulae and simplify
many estimates of energies, distances,
and times.
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The intrinsic strengths of the basic el-
ementary particle interactions are not
apparent from the size of their effect—
or from their names. Here is a preview.

Group theory plays an important role
in quantum mechanics, and this im-
portance extends to the study of el-
ementary particle physics. You have
encountered group theory concepts in
your quantum mechanics course, but it
is likely that those arguments did not
make explicit reference to group the-
ory concepts. In particle physics, we
lean much more heavily on group the-
ory, and so it is best to discuss these
concepts formally and give them their
proper names. Please, then, study Sec-
tions 2.3 and 2.4 carefully, especially
if you are uncomfortable with mathe-
matic abstraction. With careful read-
ing, you will see that the concepts I
describe generalize physical arguments
that are already familiar to you.

One interesting quantity to put into natural units is the strength of
the electric charge of the electron or proton. The Coulomb potential is
given in standard notation by

Vir) = < (2.31)
4dmegr
I will use units for electromagnetism in which also
€ =po=1. (2.32)
Then the Coulomb potential reads
e? 1
V(r)= yraet (2.33)

Since r, in natural units, has the dimensions of (energy)~!, the value of
the electric charge must have a form in which it is dimensionless. Indeed,

e2

o=

—_— 2.34
4dmeghc ( )

is a dimensionless number, called the fine structure constant, with the
value

o =1/137.036 . (2.35)

There are two remarkable things about this equation. First, it is sur-
prising that there is a dimensionless number o that characterizes the
strength of the electromagnetic interaction. Second, that number is
small, signalling that the electromagnetic interaction is a weak interac-
tion. One of the goals of this book will be to determine whether the
strong and weak subnuclear interactions can be characterized in the same
way, and whether these interactions—looking beyond their names—are
intrinsically strong or weak. I will discuss estimates of the strong and
weak interaction coupling strengths at appropriate points in the course.
It will turn out that the strong interaction is weak, at least when mea-
sured under the correct conditions. It will also turn out that the weak
interaction is also weak in dimensionless terms. It is weaker than the
strong interactions, but not as weak as electromagnetism.

2.3 A little theory of discrete groups

Group theory is a very important tool for elementary particle physics.
In this section and the next, I will review how group theory is used in
quantum mechanics, and I will discuss some properties of groups that
we will meet in this book. For the most part, these sections will review
material that you have seen in your quantum mechanics course. But,
because there will be many appeals to group theory concepts in this
book, it will be best to put these concepts clearly in order. For this
reason, these two sections will be rather precise and formal. This level
of precision will pay off as we use these ideas in many examples.
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In quantum mechanics, we deal with groups on two levels. First,
there are abstract groups. In mathematics, a group is a set of elements
G = {a,b, ...} with a multiplication law defined, so that ab is defined and
is an element of G. The multiplication law satisfies the three properties

(1) Multiplication is associative: a(bc) = (ab)e.

(2) G contains an identity element 1 such that, for any element of G,
la = al = a.

(3) F01; each a in G, there is another element a~! such that aa™! =

a ta=1.
Every symmetry of nature normally encountered in physics satisfies these
axioms and is described by an abstract group.

In quantum mechanics, the basic elements are vectors (or, quantum
states) in a Hilbert space. Symmetries convert one of these states to
another by a unitary transformation. = The physics problem we are
interested in is described by a Hamiltonian H whose eigenvalues give
the energy levels. A symmetry of the problem is implemented by a
unitary transformation Y. If [, H] = 0, states linked by U have the
same energy.

This relation between symmetries of the Hamiltonian and unitary op-
erators gives special importance to the following construction: For any
group G with elements {a}, we can find unitary matrices U, that obey
the multiplication law of the group. That is, if a,b, ¢ are elements of G
with ab = ¢, then the corresponding matrices obey

UUy = U, (2.36)

by matrix multiplication. In particular, the unitary matrix correspond-
ing to 1 is the matrix 1, and the unitary matrix corresponding to a~!
is the matrix U~! = UT. The set of matrices {U,} is called a unitary
matrix representation of the group G. The group G is a symmetry of the
Hamiltonian H if this group has a unitary representation {U,} acting
on the Hilbert space such that, for all a, [U,, H] = 0.

These ideas are easiest to understand in the context of a small set
of quantum states that form a finite-dimensional Hilbert space. The
simplest example involves the abstract group called Zs that contains
two elements {1, —1} satisfying the multiplication law

1-1=(-1)(-1)=1 1-(-1)=(-1)-1=(-1). (2.37)

Consider, then, a quantum mechanical system with two particles 7+
and 7~. Define the operator C to transform

Clrty=|r"), Clr=)=|rt) . (2.38)

The action of C' on this 2-dimensional subspace is represented by the

matrix 01 )
. T
(1 0) acting on ( ) ) . (2.39)

Here are the axioms that define a
group.

The action of a group on the Hilbert
space of states in quantum mechanics is
described through unitary representa-
tions of the group. Thus, unitary group
representations will be used in many as-
pects of the physics discussed in this
book.
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An Abelian group is described by its
eigenstates and their eigenvalues. The
eigenvalues are precisely what physi-
cists call the quantum numbers of a
state.

If H is the Hamiltonian for this quantum-mechanical system and [C, H] =
0, that would imply that the masses and decay rates of 7+ and 7~ must
be equal. On the same Hilbert space, we can define the trivial operation

1|at) =|zt), Llr7)=|x") . (2.40)

This is represented by

(é (1)) acting on (':ii) . (2.41)

The unitary matrices {1, C} form a unitary representation of the group
Zs. If these matrices commute with H, we say that H has Z5 symmetry.

We can discuss the relation of C' to H and its eigenstates without
making explicit reference to the fact that the unitary matrix C represents
a group. However, using the language of group theory connects this
example to others that we might have studied. Not all groups are as
simple to understand as Z5, and, the more complicated the group, the
more useful this connection is.

A group G is called Abelian if, for all a, b in G, ab = ba. A unitarity
representation of an Abelian group G consists of unitary matrices that
commute with one another. This means that they can be simultaneously
diagonalized. The operation of the group is then reduced to simple
numbers.  In the example above, the matrices (2.41) and (2.39) are
diagonalized in a common basis. It is conventional to use C' also as a
symbol for the eigenvalue of C' on one of its eigenstates. In this case,
the eigenstates are

C=+41: [|=")+ |7T7>]/\/§
C=-1: [|=t) =[x )/V2. (2.42)

Because C? = 1, operating twice with the matrix C' must give back the

original state: C - C'|1) = [¢). This must, in particular, be true for an
eigenstate. Then the eigenvalues of C' can only be £1. We say that the
first state in (2.42) has C' = 41 and the second has C' = —1.

Symmetries of the Hamiltonian may involve transformations of space-
time coordinates, such as the special relativity transformations discussed
in Section 2.1. These are called space-time symmetries. In the examples
like the one above, the symmetry relate different particles or quantum
states without reference to space-time. These are called internal sym-
metries. A given abstract group such as Z> may describe a space-time
or an internal symmetry.

If G contains two elements a,b that do not commute, ab # ba, it is
called a non-Abelian group. If G is non-Abelian, and {U,} is a unitary
representation of G, it is generally not possible to simultaneously diag-
onalize all of the unitary matrices in {U,}. However, by a change of
basis, we can reduce these matrices to a common block-diagonal form

ug; 0 0

Ur— | 0 Uz 0O |, (2.43)
0 0 Us
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where the blocks Uy, Us, Us, - - - are as small as possible. These minimal-
size unitary transformations representing G are called irreducible unitary
representations of G. For an irreducible representation {U;}, the size of
the matrices is called the dimension d; of the representation. The notion
of irreducible representations is probably more familiar to you in the
context of continuous groups. I will put your knowledge of the rotation
group into this context in the next section.

It is a standard mathematical problem in group theory to work out
the set of irreducible representations of a group G that are inequivalent
by unitary transformations. It can be proved that, for a discrete group
G with n elements, the inequivalent unitary transformations satisfy

> di=n. (2.44)

An example is given by the group of II3 of permutations on three
elements. We can represent such a permutation as the result of trans-
forming the set of labels [123] to a set of labels in another order. With
this representation, the group has 6 elements that can be written

{ [123], [231], [312], [132], [321], [213] }. (2.45)
Permutations multiply a - b = ¢ by composition, for example,

[231] - [231] = [312]
[132] - [312] = [321] . (2.46)

That is, applying the two permutations in order (right to left) gives the
resulting permutation as shown.

The 6 permutations in (2.45) can be associated with 6 states in a
Hilbert space. In this representation, the representation matrices are
6 x 6 matrices with entries 0 and 1. It can be shown that this is a
reducible representation. It contains two 1-dimensional irreducible rep-
resentations. One of these is the trivial representation that multiplies
each element by 1. Another is the representation that multiplies a state
by +1 for an even or cyclic permutation—the first three elements of
(2.45)—and multiplies a state by —1 for an odd permutation—the last
three elements of (2.45). There is also one 2-dimension representation,
presented in Problem 2.3. These three irreducible representations to-
gether satisfy (2.44).

2.4 A little theory of continuous groups

The concepts reviewed in the previous section extend to the situation
of groups with a continous set of elements. Important examples are
the basic space-time symmetries: the group of spatial translations, the
group of spatial rotations, and the group of Lorentz transformations,
which includes rotations and boosts.

The concept of an irreducible group
representation. Many physics problems
in quantum mechanics are solved by
breaking up a larger Hilbert space into
irreducible representations of an appro-
priate symmetry group.
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The action of a space translation in
quantum mechanics gives a simple ex-
ample of a unitary representation of an
Abelian group.

In quantum mechanics, every symme-
try that leaves the Hamiltonian invari-
ant is associated with a conserved quan-
tity. This follows from the connection
between Hermitan operators and uni-
tary symmetry transformations.

The group of space translations has the simplest structure. All trans-
lations commute with one another. You learned in quantum mechan-
ics that translations are implemented by unitary transformations. For
translations by a in one dimension

U(a) = exp[—iaP)] (2.47)

where P is the operator measuring the total momentum of the system.
This is made most clear by considering the wavefunction of a plane wave
of momentum p,

(z|p) = eP* . (2.48)

Acting on the state |p) with (2.47), we find
(| U(a) |p) = ", (2.49)

which is the same wavefunction displaced by a. Using the language in-
troduced in the previous section, we say that the set of unitary operators
{U(a)} is a unitary representation of the group of space translations.

The expression of each U(a) as an exponential implies a relation be-
tween the group of translations and the Hermitian operator P. We
describe this relationship by saying that P is the generator of {U(a)} or
the generator of the group of translations.

The statement that P is Hermitian is equivalent to the statement that
the U(a) are unitary,

U(a)" = exp[+iaP'] = exp[+iaP] = U(a)"" . (2.50)

Then, continuous unitary transformations are generated by Hermitian
operators. In quantum mechanics, Hermitian operators correspond to
observables.

Observables have time-independent values if the corresponding opera-
tors commute with the Hamiltonian of the quantum mechanics problem.
In this example, momentum is conserved if [P, H] = 0. Through the cor-
respondence (2.47), this statement is exactly equivalent to the statement
that [U(a), H] = 0, that is, that the equations of motion of the system
are invariant under translations. This relation is completely general. If
Q) is a Hermitian operator on the Hilbert space, the statement that () is
a conserved quantity,

[Q,H|=0. (2.51)

is equivalent to the statement that () generates a symmetry of the equa-
tions of motion,

[Ug(a),H] =0 for Ug(a) = exp[—iaQ] . (2.52)

This is the quantum-mechanical version of Noether’s theorem in classical
mechanics: Every symmetry of the equations of motion is associated
with a conservation law, and vice versa.

The group of translations is an Abelian group, since all translations
commute with one another. This implies that all of the matrices U(a)
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can be simultaneously diagonalized. Actually, for every U(a), the eigen-
states of U(a) are the eigenstates of P, that is, states of definite momen-
tum. Each eigenstate of P gives a one-dimensional unitary representa-

tion of the translation group.

A non-Abelian continuous group that should be familiar to you is the

rotation group in 3 dimensions. In quantum mechanics, rotations are

implemented on the Hilbert space by the unitary operators

—

U(&) = exp[—id - J|

The action of rotations in quantum me-
chanics gives an example of the unitary
representation of a non-Abelian group.

(2.53)

where @ gives the axis and angle of the rotation and J are the opera-

tors of angular momentum. These operators satisfy the commutation

relation o N
[Ji, 9] = i€k gk

As in the previous example, the con-
servation law of angular momentum is
associated with the symmetry of invari-
ance under rotations.

(2.54)

It can be shown that, if Hermitian operators J satisfy (2.54), the unitary
operators constructed from them satisfy the composition rules of 3d

rotations. That is, if

U(B)U(@) =U(A),

(2.55)

then the rotation v is the one that results from rotating first through
@ and then through 5. The operators J* are thus the generators of
rotations. In fact the complete structure of the group of rotations is

specified by the commutation relation (2.54).

In quantum mechanics, finite-dimensional matrix representations of
the rotation group play an important role. The quantum states of atoms
are organized into multiplets of definite angular momentum, for example,
the 2P or 3D states of the hydrogen atom. States of definite angular mo-
mentum give the finite-dimensional irreducible matrix representations of

the rotation group.

Through the correspondence (2.53), a finite-dimensional representa-
tion of the rotation group is generated by a set of finite-dimensional
matrices that satisfy (2.54). The simplest such representations are the

trivial, 1-dimensional representation
Ji =0,

the 2-dimensional representation

where ¢* are the Pauli sigma matrices

L (01 s (0 —i s (1 0
A=(00) (0 0) -6 5

and the 3-dimensional representation

00 0 0 0 i 0 —i
Jt=10 0 —i | ,J2=l0 0 0] ,J3=4i 0
0 i 0 —i 0 0 0 0

(2.56)

(2.57)

(2.58)

(2.59)
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The reduction of a set of states of an
atom with orbital and spin angular mo-
menta (¢, s) into states of total angu-
lar momentum j is an example of the
reduction of a reducible representation
of a continuous group—in this case,
the rotation group—into a sum of ir-
reducible representations.

Definition of the group SU(n).

It is instructive to check explicitly that (2.57) and (2.59) satisfy (2.54).
The three representations given here are those of spin 0, spin %, and
spin 1. We will meet these representations again and again in the ap-
plications I will discuss in this book. Similarly, for every integer or
half-integer value j, there is a set of three (25 4+ 1) x (2j + 1) matrices
satisfying these commutation relations. This is the spin j representation
of the rotation group.

One of the standard problems in atomic physics is to decompose a
set of quantum states into irreducible representations of the rotation
group.  For example, states of an atom may be labelled by orbital
angular momentum ¢ and spin angular momentum s. This gives a set
of states with (2¢ 4+ 1)(2s + 1) elements. The total angular momentum
7 takes values

[l—s|<j<(l+5s). (2.60)

Since [J, H] = 0, each value of j gives a set of (2j + 1) states with the
same energy. In Section 4.1, we will translate this group theory exercise
into a statement about the energy levels of the hydrogen atom.

We can consider the group of rotations in 3 dimensions as an abstract
group whose multiplication law is defined by the composition of rota-
tions. This group is called SO(3). Similarly, there is an abstract group
of rotations in d dimensions, called SO(d). The case d = 2 is simple; it is
the group of rotations of a circle, an Abelian group of translations of an
angle ¢, with ¢ identified with (¢4 27). This abstract group is the same
one that we meet when we consider the group of phase transformations

L (2.61)

This is a transformation by a 1 x 1 unitary matrix, so we also call this
group U(1).

General n X n unitary matrices form a representation of an abstract
group called U(n). Any n X n unitary matrix can be written in the form
of (2.47) as generated by a set of n x n Hermitian matrices

U = exp[—iat?] . (2.62)

The sum over a runs over a basis of n x n Hermitian matrices, which
contains n? elements. One of these elements is the unit matrix,

' =1 (2.63)

This matrix commutes with all of the other ¢*. If we omit this element
from the set of Hermitian matrices, we obtain a non-Abelian group of
matrices with n2 — 1 generators, the n x n Hermitian matrices with zero
trace. The group generated by these n? — 1 matrices is called SU(n). It
is the group of n X n unitary matrices with determinant 1.

For n = 2, the Pauli sigma matrices (2.58) form a basis for the 2 x 2
traceless Hermitian matrices. Thus, SO(3) and SU(2) are names for the
same abstract group. (Mathematicians make a distinction between these
groups, but the difference will not be relevant to the calculations done
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in this book.) This abstract group describes rotations in three dimen-
sions, but it will also describe some internal symmetries of elemementary
particles that we will meet in the course of our discussion.

A continuous group of transformations generated by Hermitian matri-
ces, in the form (2.62), is called a Lie group. The commutation algebra
of the generators t%,

[t ] = ifebete (2.64)
is called the Lie algebra of the group. The constants fo*¢ are called
the structure constants of the Lie algebra. It can be shown that we can
always choose a basis for the ¢ such that the structure constants f2¢ are
completely antisymmetric in [abc]. These definitions straightforwardly
generalize the presentation that I have given of the rotation group in 3
dimension. In the case of the rotation group,

foebe =ette (2.65)

In the same way as for the rotation group, the Lie algebra of the gen-
erators determines the multiplication law of any two elements of the
group.

In this book, we will meet only special cases of Lie groups. The
particular groups U(1l) = SO(2), SU(2) = SO(3), and SU(3) will
have important roles in our story. Still, the abstract properties of Lie
groups will be useful to us in understanding how to apply these groups
to particle physics. I will introduce some further formalism of Lie groups
when we will need it in Chapter 11.

2.5 Discrete space-time symmetries

The symmetries of special relativity include the continuous symme-
tries of rotations and Lorentz transformations. But they also include two
distinct space-time transformations that leave the metric tensor (2.7) in-
variant but cannot be constructed as a product of continuous rotations
and boosts. This will turn out to be an important issue for elemen-
tary particle physics. According to Noether’s theorem, conservation of
energy-momentum is equivalent to the invariance of the equations of
motion with respect to space-time translations, and the conservation of
angular momentum is equivalent to the invariance of the equations of
motion with respect to rotations and boosts. However, there is no funda-
mental principle that implies that extra, discrete space-time transforma-
tions must be symmetries of the Hamiltonian or that the conservation
of quantities associated with these extra discrete symmetries must be
conserved. This is a separate question that in principle can only be an-
swered by experiment. We will see in Part III that the answer given to
this question is quite surprising.

The two space-time transformations that are not part of the contin-
uous Lorentz group are parity (P) and time reversal (T').  These
space-time operations satisfy

PP=1 T?=1 (2.66)

Discrete space-time symmetries 19

This equation, which expresses the non-
commuting nature of the generators of
a Lie group, contains the full informa-
tion about the representations and the
geometry of the group.

Minkowski space has two extra space-
time symmetries: parity P and time-
reversal T'.
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A quantum particle can have intrinsic
parity +1 or —1.

It is useful to consider charge conjuga-
tion C as a discrete space-time trans-
formation on the same level as P and
T.

In quantum mechanics, these transformations are implemented by oper-
ators with eigenvalues +1. I will also refer to the eigenvalue of a quantum
state as the value P or T for that state. Continuous Lorentz invariance
does not imply that these values P and T are conserved. However, P
and T are observed to be conserved in electromagnetism and atomic
physics. The study of energy levels of nuclei confirms that P and T are
also conserved by the strong nuclear interaction.

Parity is defined as the operation on 4-vectors

ot = (20, 8" — (20, 2" . (2.67)
A rotation matrix, for example,

1 0 0 0
0 cosf —sinf 0
0 sinf cosf® 0]’
0 0 0 1

A= (2.68)

or, indeed, any matrix that implements a continuous Lorentz transfor-
mation, has
det A =41, (2.69)

while (2.67) is implemented by a matrix with det A = —1. Thus, this
matrix cannot be generated as a product of continuous rotations. Time
reversal is defined similarly as the operation

ot = (20, D) — (=2, B)" . (2.70)

By the same logic, time reversal cannot be continuously generated.

In quantum mechanics, an isolated particle can also have an intrinsic
parity. That is, under parity, its quantum state of momentum k can
transform as

P ‘A(E)> :+‘A(—E)> or —)A(_E)> . (2.71)

We refer to these two cases as intrinsic parity (+1) or (—1). A particle
can also have an intrinsic quantum number under time reversal.

In quantum mechanics, time reversal is implemented by an anti-unitary
operator. In this book, I will avoid detailed analysis of time-reversal
properties as much as possible.

There is one more discrete transformation that is closely related to
these space-time operations. As we will see in the next chapter, quantum
field theory implies that, for each particle in nature, there must exist an
antiparticle with the same mass and opposite values of all conserved
charges. We can then define an operation called charge conjugation (C)
that converts each particle to its antiparticle and vice versa. C' then
also naturally satisfies

c?=1. (2.72)

Quantum states can have intrinsic values of C' equal to +1 or —1. C
is observed to be conserved in electromagnetic and strong nuclear reac-
tions.
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I have already explained that it is a question for experiment whether
P, C, and T are conserved by all interactions in nature. However, it is
a theorem in quantum field theory that the combination C'PT must be
a symmetry of all particle interactions. This statement can be tested
experimentally and, so far, it holds up. We will take up the issue of
the separate conservation of P, C, and T in our discussion of the weak
interaction in Part III.

Exercises

(2.1) Consider the decay of a particle of mass M, at

rest,

into two particles with masses m; and ma,

both nonzero. With an appropriate choice of axes,
the momentum vectors of the final particles can be
written

P1

= (E170707p) P2 = (E270707 _p) (273)

with E? = p? +m?2, E2 = p?> + m3.

(a)

(b)

()

Show that

1/2

p= |(M*=2M*(mi+m3)+(mi-m3)*|  /2M

(2.74)

Take the limit ms — 0 and show that this
formula reproduces the result (2.19) for the
decay into one massive and one massless par-
ticle.

Find formulae for F; and F> in terms of M,
mi, ma.

(2.2) Using natural units, estimate the following quanti-

ties:

(a)

If the photon has a mass, the electric fields
generated by charges will fall off exponentially
at distances larger than the photon Compton
wavelength. It is possible to obtain limits on
the photon mass by looking for this effect in
the solar system. For example, the magnetic
field of Jupiter is found to be a conventional
dipole field out to many times the radius of
the planet. Estimate the corresponding upper
limit on the photon mass in MeV.

The range of the weak interaction is given by
Compton wavelength of the W boson, which
has a mass of 80.4 GeV. Estimate this length
in cm.

(c) If the electron is a composite particle with

a nonzero size, that will affect the ob-
served rate for electron-electron and electron-
positron scattering. Given that these rates
are in good agreement with the predictions
for pointlike electrons up to a center of mass
energy of 200 GeV, estimate the upper limit
on the size of the electron, in cm.

(2.3) Show that the following are unitary representations
of the permutation group IIs by verifying that they
satisfy the multiplication law of IIs:

(a) The 1-dimension representation in which all

six permutations in (2.45) are represented by
1.

(b) The 1-dimension representation in which

[123], [231], and [312] are represented by 1
and [213], [321], and [132] are represented by
—1.

(c) The 2-dimensional representation that assigns

[123] — ((1] ?) [231] — (? f)
[312] — (_i (1)) [213] — (2 (1))
[321] — ((1) j) [132] — (j (1))

(2.75)

(2.4) This problem explores the non-Abelian nature of
the Lorentz group.

(a) The4x4 matrix As(8) that represents a boost

by f in the 3 direction is given by (2.3). Write
the corresponding 4 x4 matrix A1 (8) that rep-
resents a boost by 8 in the 1 direction.
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(b)

Compute the composite Lorentz transforma-
tion Ac = A1(B)As(B). The component
Ac®y of this matrix should be the compos-
ite boost vc. From this, compute the new
velocity Bc.

By acting A¢ on the 4-vector (1,0,0,0), show
that the elements Ac’o give the direction of
the boost. Show from this that the new veloc-
ity is Be = (8,0,8/v). Show that the mag-
nitude of this vector agrees with the result of
part (b).

The matrix A¢ is not symmetric, so it cannot
be a pure boost. It is, in fact, a combination
of a boost and a rotation. To understand this
better, expand the elements of Ac in powers
of 8 for small 3, keeping terms up to order
B2.

Write the A matrix for a pure boost to the ve-
locity Ec. This matrix should be symmetric.
The space-space part should be

BLBL
BE

0 4+ (ve —1) (2.76)
Expand the matrix found in part (d) to order
B2. Show that it explains the symmetric part
of the result found in part (d). Identify the
remaining antisymmetric part as an infinites-
imal rotation in the 3-1 plane. The rotation
that results from the non-commuting nature
of boosts in different directions is called a
Wigner rotation.

(2.5) Consider an event in which an unstable particle H
decays into two photons. Work in the rest frame
of the unstable particle. The photons are emitted
back-to-back. Take the 3 axis to be aligned with
the direction of the photons. Let photon 1 be the
one travelling in the +3 direction and photon 2 be
the one travelling the —3 direction.

(a)

Argue that the spin of H must be integer, not
half-integer.

(b)

Possible polarization vectors for the photon 1
are

e = i?(i —i2)
(2.77)
Rotate these vectors by ¢ about the 3 axis. A
state of angular momentum J* = +1 gets a
phase e~*®. Show that the two choices corre-
spond to photon states of angular momentum

J® = 41 and —1, respectively, about the 3
axis.

Write the corresponding polarization vectors
for photon 2, by rotating the vectors in (1) by
180° about 2. These have J® = +1, —1 about
the direction of motion of the photon (which
is now —3).

The wavefunction of the 2-photon state is
then a sum of terms of the form

€1x €y (2.78)
where X,Y = R, L. There are four possible
values for (X,Y). For each, compute the total
J? for the state (2). Show that, in the states
with X = R)Y = Lor X = L,Y = R, the
spin of the original particle H must be > 2.

Consider the state with X =Y = R. Show
that this state is transformed into itself by a

rotation by 180° about 2. The same is true
for the state X =Y = L.

If the original particle H has spin J and de-
cays to the state X =Y = R, it must have
been in the state |J0), with J® = 0. How
does this state transform when rotated by
180° about 2? (The transformation must be
the same as that of the spherical harmonic
Yi0(0,4).)

Conclude that an unstable particle of spin 1
may not decay to two photons. This result is
called the Landau-Yang theorem. (Note that
invariance under parity has not been used in
this argument.)



Relativistic Wave
Equations

In the previous chapter, I developed some simple rules for the treatment
of special relativity that will aid us in our search for the laws of ele-
mentary particle interaction. In this chapter, I will discuss some of the
concepts that we will need to use quantum mechanics effectively.

The standard treatment of 1-particle quantum mechanics will not be
adequate for our purposes. First of all, the Schrodinger equation is not
Lorentz-invariant. In that equation, time and space appear asymmet-
rically. In a relativistic theory, the wavefunctions of quantum particles
must obey wave equations in which time and space appear symmetri-
cally in accord with special relativity. In this chapter, I will discuss three
of the most important of these equations.

Standard quantum mechanics is inadequate in another way. In el-
ementary particle reactions, the number of particles can change as in-
dividual particles are created and destroyed. We have already noted in
the previous chapter that every particle must have an antiparticle with
the same mass. Typically, elementary particle interactions allow the
creation of a particle together with its antiparticle, or the annihilation
of a particle with its antiparticle. Then, quantum mechanics must be
generalized to a multiparticle theory.

Both generalizations are accomplished in relativistic quantum field
theory. However, there is no space in this small book for a complete
description of quantum field theory, or even for a derivation of its major
implications. Instead, I will use this chapter to explain some essential
points of quantum field theory that will be needed for our analysis. In
Chapter 7, I will explain how we use quantum field theory to make pre-
dictions for elementary particle reactions, and I will give some shortcuts
and heuristics that will allow us to apply these ideas easily.

3.1 The Klein-Gordon equation

A wave equation is said to be invariant under a group of symmetries
if, for any solution, the symmetry transform of that solution is another
solution of the wave equation. For a scalar field, the Lorentz transform
of a waveform is the same waveform evaluated at Lorentz-transformed
points. In an equation,

$(a) = ¢ (2) = $(A™'2) . (3.1)

The Schrodinger equation is not ade-
quate to describe elementary particles.
We need a theoretical framework that
is relativistic, and that allows particles
to be created and destroyed.

Definition of a relativistically invariant
wave equation.



24 Relativistic Wave Equations

Illustration of the transformation of a
scalar field as in (3.1):

®)

®

The Klein-Gordon equation.

Canonically, A~! appears in this formula so that, if ¢(z) has a maximum
at © = a, ¢'(x) will have a maximum at the Lorentz-transformed point
x = Aa. A Lorentz-invariant theory of waves should have the property
that, if ¢(z) solves the wave equation, then ¢'(z) in (3.1) does also.

The simplest equation satisfying this property is the Klein-Gordon
equation

& 2 2 =
In this equation, ¢ and & appear in a symmetric way. The 4-gradient
o 0
0u = (57 52 (33)

transforms under Lorentz transformations as a 4-vector with a lowered

index. That is, the quantities

0 = 02

0=(E—+p-V) and 9*= (-

are Lorentz-invariant operators. Using (3.4), we can write the Klein-
Gordon equation (3.2) in a more manifestly Lorentz-invariant form,

- V?) (3.4)

(0% +m?)p(z) =0 . (3.5)

We can also see the invariance of (3.5) by examining the solutions of this
equation explicitly. These are

(25(1') — efiEt+iﬁ»:i“ _ efipa: , (36)
where p* = (E, p)* is a 4-vector satisfying
B> —|p?* =p* =m®. (3.7)

This criterion is Lorentz-invariant. The Lorentz-invariance of the 4-
vector product is the statement that

p-z=(Ap)-(Az) or (Ap)-z=p- (A" z). (3.8)
Then the boost of the solution (3.6) is
¢,({,C) _ e—ip»Aflx — e—i(Ap)~x , (39)

which is also a solution of the equation.

The Klein-Gordon equation has the odd feature, from the point of
view of a quantum-mechanical interpretation, that it has solutions cor-
responding both to positive and negative energy. Solving (3.7) for E,
we find that both solutions

E=+E, (3.10)

are acceptable. This is a common property of all relativistic wave equa-
tions. Quantum field theory gives an attractive way to understand the
negative energy solutions, which I will explain below.



Another way to derive the relativistic invariance of the Klein-Gordon
equation is to write a variational principle that gives rise to this equation.
You might be used to the variational principles of Lagrangian mechanics.
In that formalism, we write an action functional S

Sa(t), #(t)] = /dtL(:v,js) . (3.11)

The principle that S is stationary with respect to all variations of the so-
lution x(t) yields the equation of motion of the system. Mathematically,
if x(t) — x(t) + 0x(t), then we can write 6.5 in the form

8S[z(t), i (t)] = / dt 5z(t) [S[x(t),:'c(t),jé(t)]] . (3.12)

Then the equation of motion is £ = 0.

To obtain a relativistic equation of motion, we start with a relativis-
tically invariant expression for the action S. The action S should be a
function of the waveform ¢(z). Instead of an integral over ¢ only, I will
integrate symmetrically over all of Minkowski space. Then the action
principle takes the form

Slo(x)] = / d'x £(6,0,0) (3.13)

The function L is called the Lagrange density. 1 will choose the Lagrange
density to be relativistically invariant. Then S is the invariant integral
of a invariant function and thus is guaranteed to be Lorentz-invariant.

To illustrate how we apply this formalism, I will propose a simple form
for £. Consider, then,

L= %(a#qsauqs —m2¢?) . (3.14)

There are no uncontracted 4-vector indices. Thus, this expression, and,
by extension its integral S over all space-time, is Lorentz-invariant. The
variation of £ with respect to ¢(z) is

6L = 0,600 —m*66 ¢ (3.15)

Putting this under the integral d*2 and integrating by parts in the first
term, we find

58 = /d4a: S¢(x) [(—62 - m2)¢(x)} . (3.16)

The variational principle states that the Lagrangian equation of motion
is the condition that 4.5 vanishes for an arbitrary variation of ¢(x). In
(3.16), this condition implies that the quantity in brackets must vanish.
This gives exactly the Klein-Gordon equation (3.5).

The Lagrangian formalism guarantees that the transform of any solu-
tion of the equation of motion is equally well a solution of the equation

3.1 The Klein-Gordon equation 25

By choosing an action S in this form,
we guarantee that the action is rela-
tivistically invariant. Then the equa-
tion of motion following from the vari-
ational principle must be a relativistic
field equation.

Lagrangian formulation of the Klein-
Gordon equation.
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The Lagrangian formalism guarantees
that, if ¢(x) solves the wave equation,
any boost or rotation of ¢(z) also solves
the wave equation.

In quantum field theory, |0) denotes the
vacuum state, the state of empty space
with no particles. |p) denotes a state
with one particle of momentum p. This
is an excited state with higher energy
than the vacuum state.

The matrix element representing the
destruction of a spin 0 particle by its
quantum field.

of motion. The logic is quite transparent: A solution ¢ of the wave equa-
tion is a stationary point of S[¢]. But, if S is invariant under Lorentz
transformations, then the Lorentz transform ¢’ of this solution will have
the same value: S[¢] = S[¢’]. This will also be true of other, nearby,
field configurations. Thus, ¢’ will also be a stationary point of S. Then
¢’ also will be a solution to the wave equation.

The principle that a relativistic field theory is described by a relativis-
tically invariant Lagrange density is a very powerful one. This principle
will allow us to turn general ideas about the nature of new particle in-
teractions into concrete proposals for the equations of motion. I will
elaborate this variational approach further, by stages, in Sections 3.6
and 3.7, and later, in Chapters 11, 14 and 16. At the end of this de-
velopment, we will have a mathematical formalism that will allow us to
write the equations for the strong and weak interactions in a compact
and, I hope, persuasive, form.

3.2 Fields and particles

In principle, we could use the Klein-Gordon equation as a single-
particle quantum theory in which the Klein-Gordon wave replaces the
Schrédinger wavefunction. However, as I have explained above, a the-
ory of relativistic particles should actually have the capability to discuss
many particles, as many as we wish. To accomplish this, we need a
different strategy.

It can be shown that this is accomplished by writing the Hamiltonian
that leads to the Klein-Gordon equation and then quantizing that Hamil-
tonian. The resulting quantum theory has a Lorentz-invariant ground
state, called the “vacuum state”, and excited states with the energy-
momentum of particles with mass m. In this section, I will describe
some important properties of this quantum theory. These properties are
common to quantum field theories based on relativistic wave equations.

In the solution of the Klein-Gordon quantum theory, the field ¢(x)
becomes an operator that can create and destroy particles. Let |0) be
the ground state of the Hamiltonian for the Klein-Gordon theory. This is
a state containing zero particles; it is called the vacuum state. Let |o(p))
be a state with one particle of momentum p. This is a state of higher
energy, with energy £, above the energy of the vacuum. The operator
¢(x) has a nonzero matrix element corresponding to destruction of the
particle,

(0] 6(x) lp(p)) = e™7 . (3.17)

The field operator ¢(x) satisfies the Klein-Gordon equation, and so
the right-hand side of (3.17) must be a solution to the Klein-Gordon
equation. So, indeed, the right-hand side must be of the form of (3.6).
The 0 component of p# is the positive energy solution from (3.10), with
p’ = +E,. The field operator ¢(z) destroys the particle ¢ at the space-
time point . We should then interpret the right-hand side of (3.17)
as the wavefunction that the particle occupied at the moment it was



destroyed. This is a Schrodinger wavefunction of standard form, with
momentum p and energy +£E,,.
The complex conjugate of the equation (3.17) is an equation

(e(p)] () |0) = eTP* (3.18)

Now the negative energy solution of the Klein-Gordon equation appears
on the right-hand side. This is natural also, because the particle ¢ now
appears in a bra vector, so that the right-hand side would be the complex
conjugate of the Schrédinger wavefunction into which the field creates
the particle at the point x.

The field ¢(z) can be either real- or complex-valued. That is, we have
the two choices

¢l(x) = ¢(x) or ¢f(z) # ¢(a) . (3.19)

In the second case, the positive energy solutions for ¢f(z) give us a new
matrix element
(0[o () ¢ (p)) = =7, (3.20)

where ¢’ is a new particle distinct from . We will see below, in Sec-
tion 3.5, that if ¢(x) carries electric charge @, ¢ has charge @ while ¢’
has charge —@Q. The particles ¢ and ¢’ have the same mass, because
their associated fields satisfy the same Klein-Gordon equation. We say
that ¢’ is the antiparticle of .

If the field ¢(z) is real-valued, the particles ¢ and ¢’ can be identical.
In this case, the particle destroyed by ¢(x) can be its own antiparticle.

The formulae for creation and destruction of particles by field oper-
ators will play an important role in all of the calculations done in this
book. I summarize the equations (3.17), (3.18), which apply to particles
of spin 0, and the corresponding formulae for particles of spin % and spin
1, in Appendix C.

3.3 Maxwell’s equations

The particles ¢ that appeared in the previous section carried no quan-
tum numbers except for energy and momentum. From nonrelativistic
quantum mechanics, we know that some particles can carry intrinsic an-
gular momentum. For example, electrons carry an intrisic spin of %h in
addition to their orbital angular momentum. Similarly, photons carry
an intrisic spin of 1 - A. I will now discuss how particles with these
properties can be described by quantum field theory.

Begin with the case of spin 1. Spin 1 is the vector representation of
angular momentum. To encode this, consider a 3-vector field V*(z), that
is, a field that transforms under rotations R according to

Vi(z) —» V¥(x) = R;;VI(R ') . (3.21)

In this equation, a rotation moves the coordinate of the field in the same
way as in (3.1) but also changes the orientation of the field by the same
rotation.

3.3  Mazxwell’s equations 27

The matrix element representing the
creation of a spin 0 particle by its quan-
tum field.

Illustration of the transformation of a
vector field as in (3.21):

®

=)



28 Relativistic Wave Equations

The matrix element representing the
destruction of a spin 1 particle by its
quantum field. Note that the vector in-
dex of the field is carried on the right-
hand side by the polarization vector of
the particle.

Definition of the polarization vector of
a spin-1 particle.

There is a problem in constructing a
relativistic quantum theory for fields of
spin 1.

If the field Vi(x) is an operator in the quantum theory and destroys

a particle v, the matrix element corresponding to that operation would
have the form

0| Vi(z) [v(p,€)) = e P | (3.22)

The part of the Schrodinger wavefunction representing momentum must
be the same as in the Klein-Gordon case, but now there must be an-
other element to carry the index ¢ and represent the orientation under
rotations. So we need a 3-vector associated with the particle. For this,
I have introduced the 3-component vector €. Under a rotation, the left-
hand side of this equation transforms with an overall matrix R;;. For
consistency, €' must transform as

€ — Rijel . (3.23)

Then the particle v carries a real 3-vector that rotates as the state
|v(p,€)) is rotated. This vector is called the polarization vector of the
particle.

In a similar way, we can construct fields corresponding to any spin j
representation of the rotation group. Let R((ljb) be a rotation matrix in
the spin j representation. This would be a (2j + 1) x (25 + 1) matrix.
A spin-j field would transform under rotations according to

We(z) » W(z) = R, W(R 'z) . (3.24)

The field W*(z) would destroy a particle w according to the matrix
element ,
OIW (@) lw(p,n)) =n*e™"" (3.25)

The particle w would then carry a (2j + 1)-dimensional polarization
vector n* which would transform as a spin-j vector under rotations. For
j= %, n would be a 2-component spinor.

The equations (3.22), (3.25) are not yet relativistically invariant. In
fact, it is subtle to construct relativistic wave equations for particles of
nonzero spin. In the remainder of this section, I will discuss the case of
spin 1.

There is an obvious generalization of (3.22) to a relativistic equation.
This is

(0] VH(2) [u(p, €)) = ee™ P, (3.26)
where € is now a 4-vector. But there is a problem. To preserve Lorentz
invariance of this state, the norm of the 1-particle state should be pro-

portional to
—ele,, . (3.27)

I have put a minus sign here so that the expression is positive when
€ is a spacelike unit vector, as we would expect for the vector e in
(3.22). However, if e could also be a timelike vector—for example,
e = (1,0,0,0)—the state would have negative norm and, formally in
quantum mechanics, negative probability. The spin 1 wave equation
must then somehow forbid timelike € from appearing.



Photons are spin 1 particles, and so we can ask if their wave equation
solves this problem. Indeed, it is so. Maxwell’s equations can be written
as equations for the 4-vector vector potential A, (x). But, as you learned
in your electrodynamics course, Maxwell’s equations have propagating
solutions with only two possible polarization vectors,

A(x) = e e BHHe (3.28)
where FE = |p| (zero mass) and
e p=0. (3.29)

We can view (3.28) as the wavefunction of a photon. Under a Lorentz
rotation, the form of (3.28) is preserved. Under a Lorentz boost, the
exponential is unchanged, but the polarization vector, while remaining
spacelike, acquires a component in the time direction. It can be shown
that this Lorentz transformation of € has no effect on the photon’s in-
teractions, as long as the electromagnetic current is conserved. Through
this logic, we obtain a description of the states that is Lorentz-invariant,
though not quite manifestly so. This makes it possible to quantize the
Maxwell field consistently using only states of positive norm.

This solution does not generalize in a simple way to spin 1 fields with a
vector boson mass. For those, we will need a special construction called
the Higgs mechanism, which I will explain in Chapter 16.

It will be instructive to write the variational principle for the Maxwell
field. I will start with the 4-vector potential

A (x) = (p(x), A(z))" ; (3.30)

here, ¢(z) is the scalar potential and A(z) is the conventional vector
potential. The electric and magnetic field strengths are contained in the
tensor

FrY =AY — 9" A* . (3.31)

Working out the components of this tensor carefully, remembering that

—

the notation 9" = (9/0t, —V)# leads to some extra minus signs, we find

FiO _ _vi(b_atAi _ Ei
Fi = VAT 4+ VIAT = —¢7kBh (3.32)

A simple, manifestly Lorentz-invariant Lagrange density for this sys-
tem is

1
L= F"Fuy = jHA, . (3.33)

I have added a new field j#(z) to represent an external electromagnetic
current. This object should satisfy the equation of current conservation.
With .
3* = (p )", (3.34)
that relation is
0=08,j" =0p+V-j. (3.35)
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Maxwell’s equations solve that problem
(in a way that is not quite obvious).

Lagrangian formulation of Maxwell’s
equations.
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This representation of the Dirac al-
gebra is useful for studying problems
in which spin % particles move non-
relativistically.

This representation of the Dirac algebra
is useful for studying problems in which
spin % particles move at speeds close
to the speed of light. We will use this
representation most often in our study
of the fundamental structure of particle

interactions.

Now vary (3.33) with respect to A#(x). The variation is
1
0L = —5(5)# 0A, — 0,0 A )FH — A5 . (3.36)

Gathering terms under the integral [ d*z and integrating by parts, we
find

59 = / d*z 6A, [aﬂFW - j”] : (3.37)
Thus, the field equations following from (3.33) are
B, FH = j . (3.38)

Carefully inserting (3.32), (3.34), we see that these equations are pre-
cisely o
V'E'=p

€IPIBF — 9,E = jt | (3.39)

which are exactly the inhomogeneous Maxwell equations written in nat-
ural units ¢ = pg = ¢ = 1. It should be familiar to you, and it is
easily checked, that the formulae (3.32) automatically satisfy the homo-
geneous Maxwell equations. Since Maxwell’s equations follow from the
relativistically invariant action principle (3.33), they must automatically
be Lorentz invariant wave equations in the sense that I have discussed
in Section 3.1.

3.4 The Dirac equation

To describe spin % particles such as the electron, we need to construct
a relativistic wave equation for a spin % field. Dirac solved this problem
by constructing a special set of matrices that, viewed appropriately,
transform as a 4-vector. To construct these matrices, Dirac suggested
using anticommutation rather than commutation relations: {4, B} =
AB + BA. In particular, he introduced matrices v* that satisfy the
Dirac anticommutation algebra

{2} =2,

where the right-hand side is the metric (2.7) of special relativity. It can
be shown that there are no sets of 2 x 2 or 3 x 3 matrices satisfying this
algebra. The smallest such matrices are 4 x 4. Here is a representation

of the algebra,
0 1 0 i 0 ot
v 0 -1 v -t 0 )

where the elements of these matrices are 2 x 2 blocks and the ¢! are the
2 x 2 Pauli sigma matrices. Here is another representation

0_01 P OO'i
T=\1 0 T=\ot 0 )"

(3.40)

(3.41)

(3.42)



It can be shown that all 4 x 4 representations of the Dirac algebra are
equivalent by unitary transformations.
Using v* as if it were a 4-vector, we can write the Dirac field equation

(iv"0, —m)¥ =0 . (3.43)

I will now prove three properties of this equation: First, any solution
of the Dirac equation is a solution of the Klein-Gordon equation. Then
the exponential part of the solution, at least, has the form

U~ e (3.44)

and is Lorentz invariant. Second, the solutions of the Dirac equation for
P = 0 are precisely two positive-energy and two negative-energy solu-
tions. Third, a field satisfying the Dirac equation natually has a vector
current which is conserved. For electrons, this operator would be in-
terpreted as the electric charge current. To fully prove that the Dirac
equation is relativistic, we would have to define the Lorentz transforma-
tion properties of v* carefully and prove that these matrices transform
as a 4-vector. That discussion is beyond the level of this book. You can
find it in any textbook of quantum field theory.

To prove the first property, multiply the Dirac equation by the oper-
ator (iv*0d, +m). We find

0= (iv*0, + m)(iv"d, — m)¥
= [‘7“7”(9“81, +im~y"0, —imy"0,, — m2] o
= [~ 0,0, — m*] ¥ (3.45)
or finally
[~0"0, —m*|W =0 . (3.46)

So, indeed, all solutions of the Dirac equation satisfy the Klein-Gordon
equation.

Second, look for solutions of the Dirac equation with zero 3-momentum.

These would be of the form

o o

e (3.47)
d

Use the first matrix representation given above. Then the Dirac equation
reads

(V'E —m)

KE —E> - (m m)

=0, (3.48)

QU O o

or

=0. (3.49)

QO o

3.4 The Dirac equation 31
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The matrix element representing the
destruction of a spin—% particle by its
quantum field. Note that the spinor in-
dex of the field is carried on the right-
hand side by the U? spinor of the par-
ticle.

There are two solutions with £ = +m,

U= (g) e imt (3.50)

where £ is an arbitrary 2-component spinor, identified with the electron

spin. Similarly, there are two solutions with £ = —m
0 +imt
U= . e , (3.51)

where 7 is another arbitrary 2-component spinor. These negative energy
solutions are identified with the antiparticles of the Dirac fermions. For
the Dirac equation describing electrons, the negative energy solutions
describe positrons. The spinor 7 is identified with the opposite of the
positron spin.

For nonzero p, the Dirac equation reads

E—-m —-6-p
c-p —-E—-—m

The solutions of this equation are constructed in Problem 3.4. These
solutions are conventionally written

S Q

e HELFIPE — (3.52)

IS}

U =Us(p) e ™ (3.53)
for the two positive energy solutions (s = 1,2) and
U =V3(p) etire (3.54)

for the two negative energy solutions (s = 1,2). For (3.54), note that
the energy and momentum in the exponent are the opposites of the
antiparticle energy and momentum. Similarly the spin orientation in
V5(p) is the opposite of the antiparticle spin orientation.

For nonzero of p/m, the components of the Dirac fields that are zero
in (3.50), (3.51) become filled in. For example,

U = (_§5 ) R (3.55)

2m

to first order in |p], with E, = (p?> + m?)"/2 ~ m + p?/2m. T will discuss
the form of U*(p) and V*(p) at higher momentum, and, especially, for
extremely relativistic energies, in Chapter 8.

In a quantum field theory of Dirac particles (for definiteness, elec-
trons e”), the basic 1-particle states are states |e(p,s)) in which the
electron has a definite momentum p and spin s. The matrix elements
for destroying and creating one electron are

(01 a(a) e~ (0,)) = U (e
(e (p,s)| ¥} (z)|0) = UT(p)e™™ . (3.56)



In this theory, the electron has a Spin—% antiparticle e™, the positron.
The matrix elements for destroying and creating a positron are

(0] wi(@) [e*(p, 5)) = VI*(p)e ",
(et (p,s)| Wa(x)]0) = Vo(p)et ™™ . (3.57)

To construct the electric current, note first that the Dirac matrices
for p =i =1,2,3 are anti-Hermitian

()T=+"  ()=—". (3.58)

To form Hermitian operators from the Dirac field, it is convenient to
note that

() = ()T = 10y (3.59)
for all four cases p =0, 1,2,3. Then the square of the Dirac field
AR (3.60)
is more conveniently written as the 4 = 0 component of
(ARERTS (3.61)
This quantity is Hermitian,
(W0 )T = Wi (70910 = WiyOkw (3.62)

and, it can be shown, it transforms as a 4-vector under Lorentz trans-
formations. From now on, I will write

U = 0ly0 (3.63)
so that the operator in (3.61) appears as
Gt = Uy (3.64)

It would be wonderful if this operator, which is now written manifestly
as a 4-vector, would turn out to be the operator that represents the
electromagnetic current of the electron field.

We can work out the equation of motion of this 4-vector. For this, we
need the complex conjugate of the Dirac equation. This is

—i0, Ui (y")T —m¥t =0 . (3.65)
Multiplying on the right by 7°, we find the simpler form
—i0, U (y*) —=m¥ =0 . (3.66)
Then

(U 0) = (8, W)y W + UyH5, W
= imUV — imTT
0. (3.67)
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The matrix element representing the
destruction of a spin-l antiparticle by
its quantum field. Note that the spinor
index of the field is carried on the right-
hand side by the V* spinor of the an-
tiparticle.

The vector current operator of the
Dirac theory.
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The Dirac equation is coupled to an ex-
ternal electromagnetic field using the 4-
vector potential, generalizing the pre-
scription used to couple the electromag-
netic field to the Schrodinger equation
in non-relativistic quantum mechanics.

Lagrangian formulation of the Dirac
equation.

Lagrangian of Quantum Electrodynam-
ics (QED).

So, indeed, (3.64) satisfies the standard equation of conservation of a
current

Oujt" =0. (3.68)

The Dirac equation can be coupled to an electromagnetic field in the

way that is standard in quantum mechanics, by introducing the electro-

magnetic vector potential into the derivatives. Relativistically and in
natural units, this replacement is written

Oy — Dy = (0, +ieA,) (3.69)
so that the Dirac equation becomes
[iv*(0y +1eA,) —m|¥ =0 . (3.70)

For example, for the hydrogen atom,
e —

AV = — — A=0. 3.71
4’ ( )

Then the Dirac equation for the hydrogen atom reads

0 -

yo(ia+ Y+iy-V—m|¥=0. (3.72)

I will have much more to say about the logic of this principle for

coupling the Dirac equation to the electromagnetic field in Chapter 11.

Finally, I will write a variational principle for the Dirac equation. The
Lagrange density is

(0%
r

L=U(iv"d, —m)¥(z) (3.73)

Given that Wy#W¥ transforms under Lorentz transformations as a 4-
vector, this formula is manifestly Lorentz invariant. The variation of
(3.73) with respect to ¥(z) gives the Dirac equation (3.43); the varia-
tion with respect to U(z), after integration by parts, gives (3.66). These
equations then must be relativistically invariant wave equations.

It is one short step beyond this to write a Lagrangian for the inter-
action of electrons and photons. To do this, we only need to combine
Maxwell’s equations and the Dirac equation in a consistent way. This is
automatically accomplished by writing the Lagrangian containing both
ingredients,

1 v U (7~
L= _ZF“ Fu + 9 ("D, —m)¥ (3.74)

where D, = 0, + ieA, as in (3.69). You can easily check that the
principle that action integral should be stationary leads to Maxwell’s
equations plus the Dirac equation. Notice that there is a term in the
Dirac Lagrangian that involves A4,

L= +iUyH(4ied,)V = — A,[e¥y"T] . (3.75)

Comparing to (3.36), we see that the electromagnetic current that is the
source for the Maxwell fields is exactly

e TV (3.76)
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This completes the identification of (3.64) with the electromagnetic cur-
rent.

The quantum field theory based on (3.74) is called Quantum Electro-
dynamics or QED. This theory is in extraordinary agreement with the
actual properties of electrons and photons. The predictions of this the-
ory agree with the observed magnetism of the electron and the measured
properties of hydrogen atomic states to the accuracy of parts per billion
(Kinoshita 1990).

3.5 Relativistic normalization of states

The equations such as (3.17), (3.22), and (3.56) for the creation and
destruction of particles depend on a detail that I have not yet discussed.
The right-hand sides of these equations can have the simple Lorentz
transformation laws shown only if the particle states are normalized in
a Lorentz-invariant way. I will now explain how this must be done.

In nonrelativistic quantum mechanics, we typically normalize momen-
tum states according to the convention

(p1lp2) = (2m)36® (pi — p3) . (3.77)

But this normalization is not relativistically invariant. To remedy this,
we must use the relativistic normalization

(p1lp2) = 2By, (2m)%6® (pi —p3) . (3.78)

I will now check that (3.78), rather than (3.77), is Lorentz invariant. We
boost a momentum vector p in the 3 direction, using the formulae (2.2)

E, =+(E, + 8p*) p" =p'
P’ =’ +BE,)  p¥=p". (3.79)

Then the normalization equation (3.78) transforms to

—
/

Whps) = 28, (2m)°6® (5] — 1))
= 29(Ep, + Bp})(2m)°6((p} + BEp,) — p3)
8" —py )Y —p3) . (3.80)
In the last two delta functions, we can use (3.79) to replace p’ by p. To

simplify the first delta function, we must recall the transformation of a
delta function for an argument that vanishes at x = 0,

Slo(a)) = 1z rrd(e) (381)

Using this formula, we can rewrite the first delta function and find
(plpa) = 29(By, + Bp7)(27)°8(p1 — p3)d (0} — p3)

) 1 3.3
y(1+ BdEpl/dp?)é(pl P2) - (3.82)

In this book, all particle states are nor-
malized using this relativistically in-
variant prescription.
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Evaluating the term in the second line,
dEp, pi_ By +Pp

1+ =144 = (3.83)
dp? P} +m? Ep,
Assembling the pieces, we find
(P Ip) = 2B, (2m)°0% (B — ) - (3.84)
that is, the normalization condition (3.78) is invariant under Lorentz

transformations.

Another way to understand the relativistic invariance of the normal-
ization condition just given is to consider the related integral over phase
space. For the same reasons as described above, the integral

3
/ (;17:;3 (3.85)

is not Lorentz-invariant. However, the integral

/ AP o — m?) (3.86)
(2m)*
is manifestly relativistically invariant. The integral over p° is
1
[ a5t = m?) = [ a5 = - mt) = 55 (387)
2p pOZEP
Then
dp d3p 1
2m)d(p® — 2=/ s - 3.88
| Gaemint —mt) = [ S (3.88)

This gives the relativistically invariant integral over momentum space.
The factor 2E, in the denominator is set up to cancel the factor 2E, in
(3.78).
With this integral and the relativistically normalized states, the sum
The sum over a complete set of 1- over momentum states is written

particle states with relativistic normal- 43 1
ization contains the extra factor 1/2E),. 1_/(271'])732E |p> <p| . (3.89)
p
That is,
dp 1 Bp 1 -
1k)=[| ——-— k)= | —=-—= 2E,(27)35(p—k) = |k) .
0= [ G D0 = [ s 0 2B2m0 23 ! )>

In natural units, where all energies, momenta, and inverse distances
are written with the dimensions of GeV, the right-hand side of the nor-
malization condition has the dimensions

2E,(27)363) (5, — pa) ~ (GeV) - (GeV) ™3 = (GeV) 72 . (3.91)

Relativistically normalized 1-particle Then relativistically normalized states have the dimensions
states have the mass dimension

(GeV)~ L. Ip) ~ (GeV)~! . (3.92)
It is only with these conventions that the matrix elements such as
(3.17) can be correct in all reference frames. In the remainder of this
book, I will normalize all states relativistically so that we can use simple
formulae that take maximum advantage of Lorentz invariance.



3.6 Spin and statistics

In quantum field theory, all particles appear as quantum states found
in the quantization of relativistic wave equations. This blurs the distinc-
tion between the particles that make up matter, the quarks and leptons,
and the particles such as the photon that mediate forces. Each type
of particle has an associated wave equation. The only differences be-
tween these equations come as a consequence of the differing spins of
the particles or fields.

However, it turns out that there is profound difference between parti-
cles with integer spin and particles with half-integer spin. In 1940, Pauli
proved the connection between spin and statistics. It has since been
shown that this result, like the theorem of C'PT conservation, can be
proved from a basic system of axioms for quantum field theory (Streater
and Wightman 2000). The theorem states:

e A field with integer spin creates and destroys particles with integer
spin that obey Bose-Einstein statistics

e A field with half-integer spin creates and destroys particles with
half-integer spin that obey Fermi-Dirac statistics.

This theorem implies that integer spin particles can come together to
form macroscopic fields of force. Half-integer spin particles obey the
Pauli exclusion principle and thus form rigid structures that we call
matter. Otherwise, both types of particles and fields are treated iden-
tically within quantum field theory. In this section, we have discussed
wave equations for fields of spins 0, %, and 1. In the spin 1 case, we
saw that there were nontrivial barriers to the formulation of appropriate
equations. These barriers become more formidable as the spin increases.
For spin %, there is an equation for the massless case, called the Rarita-
Schwinger equation. The extension of this equation to massive particles
requires the same special circumstances as for spin 1. For spin 2, the
only possible field equation for an interacting particle is Einstein’s field
equation for gravity. Beyond spin 2, there are no known field equations
for interacting fields of fixed spin, although some consistent systems of
equations are known that include families of particles with an infinite
number of different spins (Vasiliev 1990).

For the Standard Model of particle physics, we will need only fields of
spin 0, %, and 1. So we now have a foundation to use in searching for
that theory.
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The connection between spin and
statistics is a consequence of quantum
field theory. This theorem explains why
particles of matter and forces, for ex-
ample, electrons and photons, can have
qualitatively different properties while
arising in essentially the same way from
the formalism of quantum fields.
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Exercises

(3.1) Consider a quantum field theory defined by the La-
grangian
1 2 1 55 Ay
2 _ = _2
2( 1 p) 27” ® 1

This model field theory is called ¢*-theory.

L= (3.93)

(a) Use the Lagrangian to derive the field equa-
tion for ¢(z).
(b) I claim that the Hamiltonian of this theory is

3 )2 l e 2, Ay
= /d [2 a?) Ta(Ver T e
(3.94)
Use the equation of motion derived in (a) to
show that H is conserved: (d/dt)H = 0, if
boundary terms at infinity can be ignored.

(¢) I claim that the total momentum of the field
in this theory is

ﬁ:/d3:€ {gt<pVg0:|.

Use the equation of motion derived in (a) to
show that P is conserved.

(3.95)

(3.2) The Dirac matrices v*, u = 0,1,2, 3, are 4 X 4 ma-
trices that satisfy the algebra

(A =2
where " is the metric tensor of special relativity.

(a) Show that the matrices (3.41) satisfy the
Dirac algebra.

(3.96)

(b) Show that the matrices (3.42) satisfy the
Dirac algebra.

(c) Show that these representations are equiva-
lent. That is, write a 4 X 4 unitary matrix U
such that

5 =UraU"
(3.3) Define the matrix v° by

0.1 2 3
v° =iyt

(3.97)
(a) Show that 7° anticommutes with all of the
matrices v*.

(b) Work out the form of 4° using the represen-
tation (3.41).

(c) For a wave with momentum 7 = p3 and en-
ergy Fp, find the solution of the Dirac equa-
tion (3.52) in which U(p) has (a,b) = (1,0).
This solution represents an electron moving
in the 3 direction with spin up.

(d) Take the limit of the solution in (c) as p — co.
Show that it is an eigenstate of v°.

(e) For a wave with momentum % = p3 and en-
ergy Fp, find the solution of the Dirac equa-
tion (3.52) in which U(p) has (a,b) = (0,1).
This solution represents an electron moving
in the 3 direction with spin down.

(f) Take the limit of the solution in (e) as p — oo.
Show that it is an eigenstate of v°.



The Hydrogen Atom and
Positronium

Before we begin our study of elementary particle physics proper, we
will need one more set of introductory concepts. Physicists were able
to grasp the structure of strongly interacting particles because they saw
similarities between these particles and the quantum states of the the
hydrogen atom and other comparably simple quantum-mechanical sys-
tems. Because this analogy will be important to us, I will spend this
chapter reviewing important properties of the hydrogen atom. I will also
discuss a system very similar to the hydrogen atom, the bound state of
an electron and its antiparticle, the positron. Indeed, the study of the
electron-positron bound states is already elementary particle physics,
but with the well-understood interaction of electromagnetism playing
the role of the binding force.

There will be two major themes in this discussion. First, though you
certainly will have encountered Schrodinger’s solution of the hydrogen
atom in your quantum mechanics course, this gives only a part of the
physics of the hydrogen atom. Corrections due to relativity and the
spin of the electron create small energy splittings within the multiplets of
states found by Schrodinger. The analogous effects in the bound states of
the strong interaction are much larger. Thus, we will need to understand
the full spectrum of states of the hydrogen atom to understand the
qualitative features of the spectrum of strongly interacting particles.
Second, the space-time symmetry parity (P) plays an important role in
hydrogen. The spectrum of electron-positron bound states, positronium,
is also strongly regulated by charge conjugation symmetry C. These
study of these systems will give us some examples of the use of P and
C before we apply them to the physics of the strong interaction.

4.1 The ideal hydrogen atom

To begin, let’s recall the basic formulae for the idealized hydrogen
atom of quantum mechanics textbooks. Consider the nonrelativistic
limit for the electron, and take the proton mass to be very large. The
potential felt by the electron is

(4.1)
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It is a standard topic in quantum mechanics to solve the Schrodinger
equation for this problem. The bound state energies are

1 me*
Ry = =13.6 eV 4.3
The hydrogen atom’s Rydberg energy In natural units, 1
and Bohr radius take a simple form in _ 2
natural units. Ry = 504 m. (4'4)

From this formula we see that the binding energy of hydrogen is much
smaller than the rest energy of the electron precisely because the elec-
tromagnetic interactions are weak. The Bohr radius of hydrogen also
takes a simple form in natural units

ap=1/am . (4.5)

The velocity of the electron in the atom is of the order of v/c ~ «; this
justifies the use of the nonrelativistic approximation.

The bound states of hydrogen are arranged in levels associated with
integers n = 1,2,3,.... Each level contains the orbital angular momen-
tum states

{=0,1,---,n—1 m=—{,--- 0. (4.6)

The orbital wavefunctions are the spherical harmonics Yz, (0, ¢), which
are even under spatial reflection for even ¢ and odd for odd ¢. Then,
under P, these states transform as

P |ntm) = (—1)¢ |ntm) . (4.7)

4.2 Fine structure and hyperfine structure

The real hydrogen atom has more structure. First, add to the problem
the fact that the electron is a particle with intrinsic spin 1/2. Thus, it
has two spin states. Each state of fixed (n,¢) then contains 2(2¢ + 1)
quantum states. In states with ¢ # 0, the spin and orbital motion
interact to split the degeneracy of these states. This is called the spin-
orbit interaction. This interaction has two sources, one dynamical, one
kinematic.

The action of P commutes with angular momentum and so preserves
the spin direction. It is easy to see that orbital angular momentum
L=7x p commutes with P, since P reverses the direction of both 7
and p. More pictorially, if you draw a spinning top and then perform a
spatial inversion, you will see that the spin direction remains the same.
So, states with the same values of L2, S2, and total angular momentum
J? = L3 4+ S2 but different values of L? and S% can mix quantum-
mechanically.
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The dynamical source of spin-orbit interaction can be seen by consid-
ering the force acting on a spinning electron in its rest frame. A spinning
charged particle generally has a magnetic moment. A spinning classical
distribution of charges has a magnetic moment equal to

L Q=
=—17L. 4.8
E=5a7 (4.8)
However, this formula is not quite correct for the magnetic moment of
the electron (or other fundamental spin—% particles) due to their intrinsic
spin. To correct the formula, it is conventional to include a fudge factor

called the Landé g-factor and parametrize

. Q &
= g—3 . 4.
B=95375 (4.9)
Then, for an electron, ge
i, =—2—§ . 4.10
fi Sy (4.10)

This vector has magnitude fi. = (g/2)efi/2m. For the electron, the g-
factor is close to 2. The relativistic theory of the electron field, given
by the Dirac equation, predicts g = 2 precisely. Correction due to QED
interactions slightly modify this relation to
@
=214+ —+--). 4.11
go=2(1+ 5= ++) (a.11)
An electron moving with velocity ¢ through a Coulomb field feels, in
its rest frame, a magnetic field

er

Arr2

e -
= L. 4.12
+47rm7“3 ( )

B'=—-UxE=—7x

This field tends to orient the electron spin. The effect is described by a
Hamiltonian e

AH=-B j=-2% _21.3 (4.13)

©2m2r3 Ar

A second influence on the electron spin comes from the dynamics

of spin in special relativity. An electron moving in a circle is subject

to acceleration toward the center and, thus, to a sequence of boosts.

The successive boosts do not commute with one another. Instead, they

multiply out to a net rotation. This effect is called Thomas precession.
It yields a precession of the spin at the angular velocity

,YQ

v+1

&= ax7, (4.14)

where, as in (2.16),

y=(1-0%)"12, (4.15)
A derivation of the formula (4.14) is given in Exercise 4.3. For orbital
motion in a Coulomb field, the acceleration is

mi = ———# (4.16)

Definition of the Landé g-factor that
gives the size of the magnetic moment
of an elementary particle.
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so the precession angular velocity is

1 ¢ L
J=—=—-—" 4.17
“ 2 4rmr2 mr (4.17)
This effect is described by a Hamiltonian
1 2., .
AH = I (4.18)

Com2r34n

The two effects have opposite sign, leading to a total spin-orbit inter-
action

g—1 a - =
AH=2— L-S.
2 m?2r3

(4.19)
Since g = 2, the second effect is about half of the first. The sign is such
that the state with L and S opposite in sign has lower energy.

For extremely relativistic motion of an electron in a magnetic field,
v — 1 and the Thomas precision actually cancels the direct field-induced
precession up to the factor (g. — 2). The small but nonzero size of
the precession can be used to control the spin of polarized electrons in
magnetic transport systems.

It is straightforward to diagonalize the operator L-S. Let J be the
total angular momentum: J=L+S. The square of this operator, J?2,
commutes with all scalar operators, including L?, S2, and L-S. Notice
that

(L+8)? - L? - 8% ; (4.20)

that is,

—

L-S= %(JQ —1?-5?). (4.21)

So, the 2(2¢ + 1) states with given ¢ split into two levels, each of which
has a definite value of J? = j(j + 1). For example, the 2 x 3 2P states
of hydrogen split into

2Pj:1/2 (2 states) + QPj:3/2 (4 states) . (422)

In the j = % state,

- - 1.1 3 13
_ir2.2_ R )
L-§=3[3-5-12-33] (4.23)
In thejz%state,
- 2 135 13 1
L-S=2[2.2 _1.29-2.2]1=4=. 4.24
2[2 2 2 2] +2 (4.24)

It is important to note that the center of gravity of the full set of
states does not change. In this example,

2 (1) 44+ (43) = 0. (4.25)
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This happens very often in the energy splitting of a multiplet of degen-
erate states. The phenomenon is most easily understood by writing the
sum of the perturbations as proportional to

tr[L- 5] . (4.26)

We can evaluate this trace by summing over states with fixed L and S.

For example,

> (% S]s%) =0. (4.27)

SB
and similarly for states of fixed L. Then it is easy to see that (4.26) is
zero, so that the energies of the states, on average, are not shifted.

The order of magnitude of the spin-orbit interaction is
@ @ 4 9

Thus, this effect is a factor of 10™* smaller than the splitting of the
principal levels of hydrogen. These splittings are called the fine structure
of the hydrogen atom.

More structure appears when we add in the spin of the proton. The
proton also has a magnetic moment

e —

S, (4.29)

—

Hp = 9p om
P

where g, = 5.6. The fact that this number is nowhere near g = 2 tells
us that the proton is not an elementary Dirac fermion. I will present
the explanation for the large g-factor of the proton in Section 5.5.

The magnetic moments of the proton and the electron interact, with
the ground state favoring the configuration in which the two spins are
opposite. The Hamiltonian has the form

AH=CS,- 8, , (4.30)

where the constant C' depends on the electron wavefunction. Then, for
example, the 18 state of hydrogen is split into two levels, corresponding
to total spin J = S, + S, equal to 0 and 1,

J=1: ) LU AED) [
J=0: () - [4) (4.31)

The value of the splitting is

ggpoz2 - Ry - %: . (4.32)
It is smaller than the fine structure by another factor of 1073, due to
the large mass of the proton. The spin-spin splittings in the spectrum
of hydrogen are called the hyperfine structure. The transition from the
1S(S = 1) to the 1S(S = 0) state of hydrogen by emission of a radio-
wavelength photon gives the 21 cm radiation line that plays a central
role in radio astrophysics.

The spin-orbit interaction in hydrogen
is an effect of order o2 relative to the
Rydberg energy. It lowers the energy
of states with smaller J and raises the
energy of states with larger J.

The spin-spin interaction in hydrogen is
an effect of order azme/mp relative to
the Rydberg energy. It lowers the en-
ergy of states with smaller total S and
raises the energy of states with larger
total S.
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Quantum number of a positronium

state under a parity transformation.

Hydrogen Positronium
f
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Fig. 4.1: Comparison of the 1S, 2S, and 2P energy levels of hydrogen and
positronium, from (Berko and Pendleton 1980).

4.3 Positronium

These same ideas can be applied to a particle-antiparticle system.
The simplest case is positronium, the bound state of an electron and
its antiparticle, the positron. It is relatively easy to make positronium.
While most unstable nuclei emit electrons through beta decay, some emit
positrons (8% emitters). A positron moving slowly through a gas may
pick up an electron and form a positronium atom.

Figure 4.1 compares the spectra of hydrogen and positronium. There
are two important differences. First, the two-body problem in positron-
ium involves the reduced mass

mims 1
= — = —Me , 4.33
mi + mo 2m ( )

so the Rydberg in positronium is % that in hydrogen. Second, the hy-

perfine splittings in positronium are roughly the same size as the fine
structure splittings, and both are of order a*m.

The eigenstates of positronium can be classified under parity, and also
under charge conjugation. Consider first P. The orbital eigenstate Yy,
gets a factor (—1)* under space inversion. An additional factor comes
from an odd property of the Dirac equation (unfortunately, not simply
explained). We are free to choose, by convention, that the electron has

even intrinsic parity,

P le= (@) =+ (=) - (4.34)
However, its antiparticle must then have odd intrinsic parity
P et () == et (-p)) - (4.35)

Combining this sign with the spatial reflection property (4.7), the positro-
nium states have parity



P=(-1)"". (4.36)

For the transformation properties under C, we must account three
effects. C' converts the electron to the positron and the positron to the
electron. The electron and positron are fermions, and so, when we put
the electron and positron back into their original order in the wavefunc-
tion, we get a factor (—1). Reversal of the coordinate in the orbital
wavefunction gives a factor (—1)*. Finally, the electron and positron
spins are interchanged. The S = 1 state is symmetric in spin

1
ﬁ(lT@ +ND) D (4.37)

but the S = 0 state is antisymmetric
1
V2

and so gives another factor (—1). In all, the positronium states have C'

S=1: I

S=0 : (1) — [41)) (4.38)

C:(A)”l-{i1 gié . (4.39)

The low-lying states of the positronium spectrum then have the JF¢
values:

e 1--

Qs — ot — aft

qp — 0 —

— "

S=2 0
S=1\

N s 77
— o—+

(4.40)

The 2P states 0*+, 17, and 27" arise from coupling the L = 1 orbital
angular momentum to the S = 1 total spin angular momentum.

The photon couples to the electron with charge (—e) and to the
positron with charge (4e€). In the quantum theory, the amplitude of
the photon-electron-electron interaction is proportional to (—e) and the
amplitude of the photon-positron-positron interaction is proportional to
(+e€). Electrodynamics is consistent with C' symmetry, then, only if we
assign the photon to be odd under C

Clv(e,p)) = —Iv(ep)) - (4.41)

Then, in the level diagram above, states of opposite C are linked by
photon transitions, e.g.

2P(J ) = 1S(177), J=0,1,2

2P(177) = 1S(0™ 1)

1S(177) — 1S(0~ 1) (4.42)
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Quantum number of a positronium
state under a charge conjugation.
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In atomic physics, the strongest photon transitions are the E1 tran-
sitions, in which the electromagnetic field couples to the electric dipole
moment of the atom. E1 transitions reverse the P of the state. Transi-
tions in which the electromagnetic field couples to the magnetic dipole
moment of the atom are called M1 transitions. These have smaller rates,
by a factor «, and they do not change P. In (4.42), the first two transi-
tions are E1, the last is M1.

C has strong and surprising implica- Charge conjugation invariance has a striking implication for the decay

tions for the decay of positronium. rates of the ground states of positronium. Positronium, a massive parti-
cle, cannot decay to a single photon conserving energy and momentum.
In principle, it could decay to 2 photons. However, the 2-photon state
has C = +1, so only the S = 0 state (para-positronium) can decay in
this way. The S = 1 states (ortho-positronium) can decay only to 3
photons. The decay rate is then suppressed by a factor of o, and also
by some numerical factors. The formulae for the decay rates are: for the
S = 0 state,

1
/7= §a5m 7=12x 107" sec, (4.43)
and for the S =1 states,

2
/7= 9—(71'2 —9)a’m 7=1.4x10"" sec, (4.44)
™
So, when we emit positrons into a gas, 1/4 of the positronium atoms
decay in a tenth of a nanosecond, but then we must wait 1000 times
longer for the other 3/4 to decay. It is a strange result, but experiment
verifies it (Berko and Pendleton 1980).

Exercises

(4.1) Imagine that the electron had spin 1 instead of spin where D, = (9, +ieA,). Simplify this equa-
%. Show that the spin-orbit interaction would split tion by using the identity
the 2P levels into states with three different ener- 1 1
gies. Compute the relative energy shifts. Show that Ay = 5{’7”, ¥+ 5[’7”7"] . (4.46)
the center of gravity of the levels is not changed by
this energy splitting. and show that it reduces to the Klein-Gordon

ti lus tra t .
(4.2) The relativistic equations studied in Chapter 3 gen- Cquation pIis one extra term

erally predict the the corresponding particles have (b)
Landé g factor equal to 2. We can explore this for
particles of spin % using the Dirac equation.

Simplify the new term by proving the identity
[Dy, D,] = +ieF,. . (4.47)

Using the explicit form of the " matrices,
evaluate this term in a background magnetic
field for which Fy; = —e;jxB" and Fo; = 0.

(c) Act the resulting equation on the Dirac equa-
(V" Dy +m)(iv" Dy, —m)¥ =0, (4.45) tion solution (3.50). Show that, to first order

(a) A field obeying the Dirac equation in the pres-
ence of a background electromagnetic field
also obeys the second-order equation



in B, the energy of the state is shifted by a

—

term of the form of AEF = —ji - B. In the
expression for [, identify g = 2.

(4.3) This problem explores Thomas precession .

(a) Using the commutation relation (2.54), show
that the Hamiltonian H = & - S and the
Heisenberg equation of motion

d

iS5 =[S, H] (4.48)

lead to the equation of motion
~S5=ax§. (4.49)

This is a precession of S with angular veloc-
ity @. Using this relation, we can go back and
forth between computed values of the preces-
sion frequency and its description by an effec-
tive Hamiltonian.

(b) Now consider a particle moving in the +3 di-
rection and also being accelerated in the +1
direction. Write the 4 X 4 boost matrix A that
boosts the particle from its rest frame to the
velocity v3.

(¢) In the lab, we observe the particle to be accel-
erated with acceleration a, so that it is now
moving with the velocity v3+adti. Write the
boost matrix A that boosts the particle from
its rest frame particle from the rest frame to
this new frame, working to first order in 6t.
The space-space part of A should be

(v3 + adtl) (v3 + adti)’
02

874+ (y-1) - (4.50)
(d) To understand this transformation, compute
A~YA. This matrix gives the effect of the ac-
celeration as seen by the particle in its rest
frame. Show this this takes the form of a
boost by yadt and a rotation by (y — 1)adt/v
with the axis of rotation in the direction ax 0.

(e) Using (4.15), show that the rotation found
here reproduces the formula for the Thomas
precession frequency quoted in (4.14).

(4.4) It is possible to solve exactly for the energy eigen-

values of the hydrogen atom problem using the rel-
ativistic equations for scalars (Klein-Gordon equa-
tion) and electrons (Dirac equation). The solution
is long but actually not so difficult, if you use the
tricks that are suggested below at the various stages
of the solution. Try it!
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The electrostatic potential for an electron in the
hydrogen atom is conveniently written
Vir)=-2. (4.51)
r
Let m be the electron mass. Take the proton to be
fixed and infinitely heavy.

(a) The nonrelativistic Schrédinger equation for
a particle in a potential is

V2 42mV(r) —2mE|[¢p=0. (4.52)

Prepare for the diagonalization of this opera-
tor by making r dimensionless with the sub-
stitution p = r/ag = rma and letting ¢ be
an eigenstate of L? with eigenvalue £(¢ + 1).
Write the resulting equation, an ordinary dif-
ferential equation for ¢ (p).

(b) The Klein-Gordon equation for a particle in a
potential is

(E-V(@E) +V2—=m’lp=0 (4.53)

Expand out this equation, substitute p =
rEa, and let ¢ be an eigenstate of L? with
eigenvalue £(¢+1). Note that the form of this
equation is the same as that in (a), with small
changes in the constant factors.

(c) Look for solutions of these equations of the
form

pl e (4.54)

For the Schréodinger equation, show that v =
L+1,k=1/v, and

2
1a"m

E=—-
2 2
For the Klein-Gordon equation, show that

v = A+ 1, where X satisfies
((4+1)—a> =X\ +1) (4.56)
Define §,; by

(4.55)

A=/L—d (4.57)
Compute §, and show that it is small, of the
order of o,
(d) The other bound state solutions of the
Schrédinger equation are of the form

P PP (p)e (4.58)

where P,(p) is a polynomial of degree p (an in-
teger). You can look up in your favorite quan-
tum mechanics book that it remains true that
k = 1/v and that the formula (4.55) for the
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energy levels still holds. The same formulae
apply to the Klein-Gordon equation, except
that v is no longer an integer. It is shifted
from an integer value by d¢, as in part (c).
Using these facts, you can immediately write
down the eigenvalue of the operator. This
gives an equation for E in the Klein-Gordon
case, which is an easy quadratic equation for
E. Show that the solution is
m

E= [1+a2/(n—6.)2)/2"° (4.59)
where n is an integer, the usual principal
quantum number. Note that the energy levels
now depend on both n and /.

Expand (4.59) to order a!. Show that the
first two terms give back the nonrelativistic
answer, while the order a* term gives a rela-
tivistic correction that depends on /.

Now turn to the Dirac equation. The Dirac
equation in a potential is

[VO(E — V() +i7-V — m] W =0 (4.60)

Choose the representation of the Dirac matri-
ces

o(0l) a=(5 7)o

where all blocks are 2 x 2 and the & are the
Pauli sigma matrices. Make this equation
second-order by multiplying by the operator

{VO(E — V() +i7-V+ m} . (4.62)
Show that all matrices disappear except for
one term in which V acts on V(r). This term
is proportional to

_o_(ig 0
=\ o g )

So, the top two components of ¥ obey an
independent equation from the bottom two
components. Each equation is an equation for
a 2-component spinor field. You will find that
these equations have the same bound state
eigenvalues, so we only have to solve one of
these.

(4.63)

(8)

Expand the squares and write out the equa-
tion as in the Klein-Gordon case. Again, let
p = rEa. You should find the same structure
as in the Klein-Gordon case, except that now
the coefficient of 1/r is

(L+1)—a® +iad -7, (4.64)
where 7 is a unit vector in the radial direction.
This is, unfortunately, a 2 X 2 matrix.

To make (4.64) a number, we need a rather
subtle trick: The operator & - # commutes
with the total angular momentum J2?. On the
other hand, the factor 7 changes £ by 41 unit.
So this operator must mix pairs of states with
the same j and different ¢. These are states
with ¢ = j + % and states with £ = j — %
Show, however, that

(@-#)?=1. (4.65)

This means that, in the basis just described

s (01
(e = 1 0 .

Show that (4.64) can then be written

(4.66)

(u— D +1)-a? ia

(i)

ia (j+§)(j+§)—a2> ‘
(4.67)
Find the eigenvalues of this matrix. Show

that they are of the form A(A+ 1), where X is
shifted from an integer by

6 =0+ %) -G+ %)2 —a?M? . (4.68)

Put all of the pieces together and derive

E= [1+a2/(n—6;)21/2 " (4.69)

Note that this formula depends only on n and
j, not on £.

Expand the formula to order a* and find the
relativistic corrections to the energy levels of
the hydrogen atom according to the Dirac
equation. These formulae are in good agree-
ment with experiment (to this order in «).



The Quark Model

We now have ample preparation to begin a discussion of particle physics
and the strong and weak interactions. The first topic that I will discuss
is the nature of the strongly interacting particles created in nuclear re-
actions. These include the proton and neutron, the m mesons, and many
related particles. These particles are collectively called hadrons.

We now know that hadrons are not elementary particles. They are
bound states of more elementary constituents called quarks. However,
it is very important to have a sharp qualitative understanding of the
hadrons. As we will discuss at the end of this chapter, quarks are never
seen as isolated particles but only as constituents of hadrons. This
behavior is consistent with the laws of quantum mechanics, but it is
very counterintuitive. This has two implications for our study. First, if
quarks are not seen directly, the evidence for their existence inside bound
states must be especially strong. In this chapter, I will describe how
the observable properties of hadrons give a first level of this evidence
for quarks. We will see stronger evidence for the quark structure of
hadrons in Chapters 8 and 9. Second, if quarks are not seen directly,
our experimental measurements on the strong interaction must be done
at the level of hadrons. To understand what is actually measured in
the experiments I will discuss, you will need to keep in mind the names,
identities, and basic properties of the hadrons.

5.1 The discovery of the hadrons

The lightest strongly interacting particles are the m mesons, with
masses of

7t . 139.57 MeV 7 134.98 MeV (5.1)

The history of the discovery of these particles is fascinating. In 1935,
Yukawa showed that, in the quantum theory of the Klein-Gordon equa-
tion

(D* +m*)p=0 (5.2)
the interaction of the field with static sources leads to a potential (the

Yukawa potential)
2

9° o
V(ir)=—=——e ™" . 5.3
(=" c (53)
The Yukawa potential is universally attractive, with characteristic range
1 h
— or —. (5.4)

m mc
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Fig. 5.1: Charged particle tracks in photographic emulsion, produced by cos-
mic rays, showing the decay of a 7 meson to a muon, from (Lattes, Occhialini,
and Powell 1947).

Comparing to the range of the nuclear forces, he concluded (Yukawa
1935) that these forces would be explained by a Klein-Gordon particle,
the meson, of mass

m ~ 200 MeV . (5.5)

Shortly thereafter, a particle of mass about 100 MeV was discovered
in cosmic rays. It was quickly concluded that this was the Yukawa
meson. However, it was then found that this particle was extremely
penetrating, with a range in matter of tens of meters. Theorists set to
work inventing reasons why the basic particle of the nuclear force did
not in fact interact with nuclei. Then, in 1947, Lattes, Ochialini, and
Powell exposed photographic emulsion at high altitude, including at the
observatory at Mt. Chacaltaya in Bolivia. They found that another
particle was visible there and decayed to the supposed meson. They
observed that the first particle was produced in nuclear interactions. One
of the figures from their paper is shown in Fig. 5.1 (Lattes, Occhialini,
and Powell 1947).

After this discovery, the former meson was demoted to the p, which
turned out on closer investigation to be a lepton. The new meson was
the . This put us on the correct road to an understanding of the strong
interaction.

Over the next fifteen years, more strongly interacting particles, hadrons,
were discovered, first, in cosmic ray observations and, beginning in the
1950’s, in experiments at particle accelerators. Figs. 5.2 and 5.3 show
displays of collision events that give evidence for some of these parti-
cles. The pictures were made using a device called a bubble chamber, a
volume of liquid in which the passage of a relativistic charged particle
will produce a line of tiny bubbles, which can then be photographed.
The momenta of the particles responsible for the various tracks can be
measured, as we will discuss in Section 6.4, and specific charged parti-
cles can be identified. Neutral particles are gaps where no bubbles are
visible, ending in a decay to two or more charged particles. Adding the
momenta of these charged particles, one can find evidence for neutral
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Fig. 5.2: A 1957 photograph from the 10-inch bubble chamber at Lawrence
Berkeley National Laboratory, showing the reaction 7~ p — K°A, with subse-

quent decays of the K° and the A into two charged particles (figures courtesy
of LBNL).
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Electron-positron annihilation provides
a simple setting to study elementary
particles created in the annihilation
process. This is an expecially powerful
way to study strongly interacting par-
ticles.

Fig. 5.3: A bubble chamber photograph from Brookhaven National Labora-
tory that proved the existence of the Q™ baryon, from (Barnes 1964).

particles of definite mass. The specific particles that appear in these
figures will be introduced in Sections 5.3 and 5.5. Eventually, over a
hundred strongly interacting particles were discovered. It appeared that
the m mesons were not fundamental particles but rather bound states
made of some more elementary constituents.

The discovery and characterization of the hadrons is a fascinating
chapter in the history of physics, but in this book I will simply present
the final understanding of this subject. Here, this subject will serve as a
starting point for the investigation of the strong interaction described in
Part II. Very informative accounts of the discovery of the hadrons may
be found in the historical account by Pais (1986) and in older textbooks
such as (Kéllén 1964) and (Gasiorowicz 1966).

By studying the systematics of the hadrons, physicists tried to guess
how they could be built up from more basic states. In 1964, Gell-Mann
and Zweig proposed the quark model (Gell-Mann 1964, Zweig 1964),
which I will describe in the following sections of the chapter. It was not
at all obvious at the time that the quark model was correct. In fact,
a large part of the high-energy physics community did not accept the
quark model until ten years later, when remarkable new evidence for it
was found. In this textbook account, I will start with this evidence and
then work backward to the description of the hadrons known in 1964.

5.2 Charmonium

A beautifully simple way to create any particle, together with its
antiparticle, is to annihilate electrons and positrons at high energy.
The annihilation results in a short-lived excited state of electromagnetic
fields. This state can then re-materialize into any particle-antiparticle
pair that couples to electromagnetism and has a total mass less than the



total energy of the annihilating ete™ system.

In the 1960’s, a number of ete™ colliders were constructed around
the world. At energies below 2 GeV, ete™ annihilation shows a series of
resonances, which become increasingly broad and blend together to give
an annihilation rate that depends smoothly on energy. For example, the
p', at 1450 MeV, has a width of about 400 MeV. At higher energies,
the annihilation rate was expected to decrease as 1/E%,,. The actual
measurements showed an increasing, and oddly inconsistent, rate.

In 1971, the eTe™ collider SPEAR began operating at the SLAC Na-
tional Laboratory in California. In November 1974, the SPEAR ex-
perimenters discovered an enormous, very narrow, resonance, at about
3.1 GeV (Augustin et al. 1974). This resonance would correspond to
a new strongly interacting particle. This particle decayed most often to
pions and other hadrons, but also, about 6% of the time, to electron-
positron pairs and the same to ptp~ pairs. When they announced
this discovery, they learned that the group of Samuel Ting, working
at Brookhaven National Laboratory in Upton, New York, had also ob-
served this new particle (Aubert et al. 1974). Ting’s group had studied
the reaction

p+p—ete +X (5.6)

where the particles X are not observed. They had looked for a resonance
in the mass spectrum of the eTe™ pair, which would indicate a state of
definite mass that decayed to eTe™. Again, an enormous enhancement
appeared. The two discovery papers appeared back-to-back in Physical
Review Letters. I reproduce the key plots in Fig. 5.4. This particle
is now called the J/t¢. The discovery shocked everyone because the
resonance was so narrow. As we will discuss in Section 7.1, the lifetime
7 of a particle is related to its observed width in energy I" by 7 = //T.
Thus, a small width corresponds to a long lifetime, longer by three orders
of magnitude than the lifetimes of typical hadrons of mass 3 GeV. A few
weeks later, the SPEAR group discovered a second narrow resonance at
3686 MeV, the ¢’ (Abrams et al. 1974).

Another group of narrow resonances is found in ete™ annihilation at
higher energy. The lightest state of this family, called the T, has a mass
of 9600 MeV. It was discovered by the group of Leon Lederman in the
reaction pp — utpu~ + X at the Fermilab proton accelerator (Herb et al.
1977). The full family of resonances was later uncovered at the Cornell
University eTe™ collider CESR. In Fig. 5.5, I show the data from the
CLEO experiment at CESR, showing evidence for 4 clear resonances
(Silverman 1981). Two more resonances, which are barely visible in this
plot, have since been established.

The physics of the eTe™ annihilation process allows us to determine
the quantum numbers of these particles. In the process ete~ — hadrons,
the highest rate reactions are those in which the e™e™ pair is annihilated
by the electromagnetic current ; = 1)y through the matrix element

(0] 5(3:) |€+€7> . (5.7)
The current has spin 1, P = —1, and C' = —1. These must also be

+
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Discovery of the J/v resonance in et e~
annihilation and production at a mass
of 3.1 GeV.
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Fig. 5.4: Left: Accumulation of events from the reactions pp — ete™ + X
at a fixed value of the eTe™ invariant mass, proving the existence of the
narrow resonance Ji, from (Aubert et al. 1974). Right: Observation of a
resonance in eTe” annihilation near 3.1 GeV, proving the existence of the
J/¢, from (Augustin et al. 1974). From top to bottom, the three plots show
the production rate of final states with (a) multiple hadrons, (b) e™e™, and

(c) pairs of u, 7, K.
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Fig. 5.5: Resonances in eTe™ annihilation to hadrons corresponding to the S
states of the T family, from (Silverman 1981). The inset extends the dataset
to higher center of mass energy.

properties of the annihilating ete™ state, and of the new state that is
produced. So, all of the ¥ and Y states must have J©¢ = 17—, The
current creates or annihilates a particle and antiparticle at a point in
space. So, if these particles are particle-antiparticle bound states, the
wavefunctions in these bound states must be nonzero at the origin. Most
probably, they would be the 1S, 2S, etc. bound states of a potential
problem.

If this guess is correct, the states with higher L must also exist. They
might be produced in radiative decays of the ¥ and Y states. Indeed,
in the summer of 1975, the SPEAR group and the DASP group at the
DESY Laboratory in Hamburg, Germany, observed 2-photon decays of
the ¢’ (Braunschweig et al. 1975, Feldman et al. 1975)

Y =+ x
=+ J/. (5.8)

Three intermediate states x states were observed. Because the transi-
tions involve emission of a photon, these three states must have C = +1.
Some later evidence for these transitions, from the SPEAR experiment,
is shown in Fig. 5.6. Notice that the lower energy photons have a
somewhat narrow energy spread, while the higher energy photons are
broadened in energy. The broadening would naturally happen for the
photons from the x decays to J/v, since the x recoils against the first
photon and so its decay products are boosted in a direction uncorrelated
with the photon emission.

Because these transitions are the strongest photon decays of the v, it
is tempting to identify them with E1 transitions, as are seen in atomic
physics and in positronium. In a bound state, E1 transitions reverse
the value of P and add orbital angular momentum L = 1. In this case,

the new states x in (5.8) would have the quantum numbers JF¢ =
O-H-7 1-&-+7 2t+.
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We now have the pattern of states,

R uss

"lc X — 355
363% — Ry

346

— Iy

29%0

C=+1\ C= -\ C=2%|
(5.9)

Remarkably, this reproduces exactly the pattern of the lowest-energy
states of positronium. In the positronium spectrum, there are also
1S and 2S 0~ states. These states, called 7. and 7, were discovered
through weaker M1 photon transitions from ¢’. Fig. 5.7 shows the
amazing photon spectrum observed by the Crystal Ball experiment at
SPEAR, with peaks at the photon energies associated with almost all
of these transitions. The positronium spectrum also contains a 2P state
with quantum numbers 17~. The analogous state in charmonium, called
h¢, has C' = —1, and so it cannot be reached from the 1 particles by
a photon. It was discovered later, at Fermilab, in the reaction pp —
he = 0. = 3y (Andreotti et al. 2005), and by the CLEO experiment
at Cornell, in the reaction v’ — 7°h, — 7%yn (Rosner et al. 2005).

The complete set of ¥ and Y family states now known is shown in
Figs. 5.8 and 5.9, from a recent review of Eichten, Godfrey, Mahlke,
and Rosner (2007). This makes even more clear that the analogy to
positronium is precise. These states are bound states of a spin % fermion
and its antiparticle. In the case of the 1 family, the fermion is called the
charm quark (c); this quark has a mass of about 1.8 GeV. In the case of
the T family, the fermion is called the bottom quark (b); this quark has
a mass of about 5 GeV.

It is worth noting that the P states in these spectra lie below the
corresponding S states. In the hydrogen atom, the 2P and 2S states are
almost degenerate. This is a special property of the 1/r potential. Other
possible potentials give these states different energies. A potential that
increases at large distances can lift the 2S states above the 2P states.
The reason for this is that the the 2P states are smaller radially than
the 2S states,

(M)ap < (r)ag » (5.10)

because the 2S state must be orthogonalized to the 1S state and therefore
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The spectrum of states of the J/v¢ and
its partners reproduces the form of the
positronium spectrum.

The spin % particles whose particle-

antiparticle bound states form the J/v
and Y systems of states are called

quarks.
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must extend further out from the origin. Potentials of the form
A
V(r)=Alogr or V(r)= -t Br (5.11)

give a good fit to the observed energies of the states of the ¢ and T
systems. With a potential of this form, quarks cannot escape from their
bound states but rather are permanently confined. This raises issues of
physics that I will discuss later in the course. It also makes it ambiguous
what we mean by the quark mass; again, we will return to this question
later.

With the information provided so far, it still seems a mystery why
the J/¢ and T states are so narrow. If these particles decay by strong
interactions, we might expect that the quark and antiquark inside these
bound states would annihilate rapidly through the strong interaction,
leading to a width of hundreds of MeV. But the measured widths of
these resonances are:

J/Y 93 keV T : 54keV. (5.12)
The widths of the 7, states are
ne : 30MeV 7. : 10 MeV, (5.13)

also very small compared to the expected values. We have seen the ratio
of about 1000 between the 0~F and 1~ lifetimes in the previous chapter;
this is just the ratio of the ortho- and para-positronium lifetimes. The
long lifetimes of the J/v¢ and T would be explained if these states could
only decay to weakly coupled spin 1, C' = —1 bosons. I would like to
suggest here that the decays are to spin 1 particles, called gluons, that
are the basic quanta of the strong interaction,

Ne — 29 J/p — 3g . (5.14)

It still seems strange that the gluons would be weakly coupled to heavy
quarks. I will take up that issue later in Chapters 10 and 11.

5.3 The light mesons

Now we can go back to the m mesons and other relatively light hadrons.
There are three 7 mesons, 77, 7°, 7—. The lightest states of the ) and
Y families are the 7, and 7, with the quantum numbers 0~. We have
seen that this is natural for the S = 0, 1S bound states of a system of spin
% particles. By detailed study of their interactions, it was determined
that the 7 mesons also had J¥ = 0~. The 7° decays to 2 photons, so it
is C = +1. All of this is consistent with the interpretation of the pions
as Spin—% fermion-antifermion bound states.

In fact, it was found that the lightest-mass hadrons all have the J

quantum numbers either 0~ or 1. There are 9 relatively light 0~
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It is difficult to understand why the
J/¢ and T are so long-lived. But, the
analogy with positronium suggests an
explanation.
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The family of light pseudoscalar (0~

mesons.

)

The family of light vector (17) mesons.

hadrons, the pseudoscalar mesons,

)
n]__ asy
L c43
k- kg k*
_— — — — 499
w n° =t
i — — 140
(5.15)
and 9 somewhat heavier 1~ hadrons, the vector mesons,
°
i \820
’K'.c K+° K*+
ST
wo
C— = = T
R ; (5.16)

The numbers in the figures give the masses of the particles in MeV. The
K and K™ states are not produced singly in strong interactions. They
are only produced together with one another, or with special excited
states of the proton. For example, we see the reactions

mp—nKTK™ 7 p— AK° | (5.17)

where A° is a heavy excited state of the proton, but we do not see the
reaction
7 p—nK°®. (5.18)

For this reason, the K mesons and the A° baryon became known as the
strange particles. It was found that the rules for K and K* production
can be expressed simply by saying that the strong interaction preserves
a quantum number called strangeness, with K°, K+, K*0 and K*t
having strangeness S = —1, their antiparticles having S = +1, and the
A° having S = +1.

The 7%, , and 7’ decay to 2 photons, so these are C' = 41 states.

The p°, w, and ¢ decay to yr¥, so these are C = —1 states. These
observations favor an interpretation of these states as bound states of
three spin—% fermions and their corresponding antiparticles. These

fermions are called the up, down, and strange quarks,
u,d,s . (5.19)

For example, we can model the 7t and pT as the ud bound states
with spin 0 and spin 1, respectively. States with strangeness +1 will be



assigned one s quark, and states with strangeness —1 will have one 5
antiquark.

The mass pattern of the 0~ states is not so clear, but the mass pattern
of the 1™ states is quite obvious. The K* states, with strangeness +1,
are about 120 MeV heavier than the p and w mesons, and the ¢ is about
120 MeV heavier than the K* states. We can then interpret the 9 1~
states as bound states of

(w,d,3) x (u,d,s) , (5.20)

with the s quark carrying strangeness S = —1 and being about 120 MeV
heavier than the u, d. The u quark should have an electric charge

Qu=Qa+1=Qs;+1. (5.21)

The ¢ is interpreted as an Ss bound state. Quite properly, its main
decay modes are
¢ — KtK~ KK . (5.22)

In this model, the near mass degeneracy of the 77, 7, 7° and of the
K™, K° would be a consequence of near mass degeneracy of the « and d
quarks. It is tempting to guess that these quarks are exactly degenerate,
up to small corrections due to electromagnetic effects from their different
electric charges. This point of view is not actually correct, but it will
serve for the moment. I will return to this set of issues in Section 14.4.
There I will explain the form of the mass spectrum of the pseudoscalar
mesons, and we will find a way to evaluate the masses of the u and d
quarks.

It is tempting to guess that the strong interactions are invariant under
the discrete symmetry

u < d (5.23)

and, approximately, under the additional discrete symmetries
u+rs des. (5.24)

In fact, the symmetry of the strong interaction is larger. In the 1930’s,
Heisenberg suggested that the nuclear forces are invariant under a con-
tinuous symmetry, called isospin (Heisenberg 1932). In this viewpoint,
the proton and neutron are viewed as a 2-component system that can be
rotated by 2 x 2 unitary transformations. The group of transformations
is SU(2), appearing here as an internal symmetry of the strong interac-
tion. Isospin turned out to be a powerful symmetry constraint on the
properties of nuclear energy levels. The group SU(2) is isomorphic to
the rotation group in 3 dimensions, and so the representations of isospin
are exactly the familiar ones of angular momentum. If we assign the u
and d quarks to a spin % representation of isospin

(@)= o
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The spectrum of light mesons can be
built of as bound states of the three
quarks wu,d,s with the corresponding
antiquarks. The s quark is some-
what heavier than the others and car-
ries the conserved quantum number
strangeness.
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G-parity is a consequence of C' and
isospin symmetry that is easier than C'
to apply to reactions of the m meson.

(Almost) all known mesons can be iden-
tified with ¢g bound states.

then the combinations wu, ud, du, dd form the % ® % representation,
that is, a sum of spin 0 and spin 1. The isospin 1 representation has
three degenerate states, and we can identify these with the three = and
the three p mesons. The isospin 0 states can be identified with the 7
and w mesons. The continuous isospin symmetry is a larger symmetry
group than the discrete replacement symmetry and it is more powerful.
For example, isospin symmetry relates different elementary particle pro-
cesses by SU(2) Clebsch-Gordan coefficients. I give some examples of
isospin predictions of this type in Problem 5.2.

It is sometimes useful to ignore the mass difference between the s
quark and the lighter quarks and treat the three quarks (u, d, s) as having
identical strong interactions. These three states are transformed by an
SU(3) continuous symmetry. In this book, I will make references to
this symmetry, but I will avoid situations in which we need to compute
SU(3) Clebsch-Gordan coefficients.

In my discussion of the C' of the 0~ and 1~ states above, it was awk-
ward to treat states like the 7 and 7. These states are interchanged
by C

Clat)y=|=") (5.26)
and thus are not eigenstates of C. To restore a simple transformation
law, we define G-parity by

G =Ce™2 = CRy(m) , (5.27)

that is, a rotation by 180° about the 2 axis of isospin, followed by charge
conjugation. GG will be a good symmetry to the extent that both C' and
isospin are conserved by the strong interactions.

Since
Ro(m) (14142)=—(1—-1i2)  Ry(n)3=-3, (5.28)
we find that
Ry(m) |7ty = —|n7) Ry(m) |7%) = — |7%) . (5.29)
Then

Glrt)=—|=")  Glrt)=—|z")  Ga")=—|=") . (530)

Then all three pions have G = —1. This leads to useful selection rules.
For example, when the J/1) decays directly to pions, it always decays to
an odd number of pions. The J/¢ has I = 0 and C = —1, thus, G = —1,
so this rule is explained by G-parity.

According to the quark model, all mesons — bosonic hadrons — are
described as quark-antiquark bound states. In general, this description
works well. The situation is not completely clear because the pion is so
light. Mesons heavier than about 1300 GeV can decay rapidly by emit-
ting pions. They may have large resonance widths and large interference
or mixing between states. This leaves room for additional non-gq states.
If the strong interactions are indeed due to spin 1 gluons, we would ex-
pect to see hadrons that are gg bound states. There is some evidence
for such states, but the question is not yet settled even today.



5.4 The heavy mesons

If the heavy quarks b and c are the same type of particle as the light
quarks u, d, s, we also expect to find heavy mesons with one light and
one heavy quark. Two families of these are known. First, near 2 GeV,
we have the long-lived 0~ states

-
s 19¢8

> 7
— — 1% (5.31)

and the 1~ states that decay to these by photon emission

LR
T an
,D‘o d-f
= == P’ (5.32)

These states are explained as ¢, cd, and ¢ bound states. Each state
has a corresponding antiparticle. The 3S and higher states of the
spectrum decay to pairs of these D mesons. Similarly, near 5 GeV, we
have the long-lived 0~ states

e C363

®

and the 1~ states that decay to these by photon emission
4
B’
O
— - 2k (5.34)

g

These states are explained as b, bd, and b5 bound states. Each state has
a corresponding antiparticle. The 4S and higher states of the ¢ spectrum
decay to pairs of these B mesons. The full picture is again consistent
with expectations from the quark model. The connection between the
light and heavy quarks gives the electric charge assignments

Qc:Qu Qb:Qd:Qs:Qu_l- (5'35)

One more, very heavy quark is known. This is the top quark, t, with
mass about 173 GeV. Because of its large mass, it has a very rapid
decay, with a width of 1.2 GeV. The top quark actually decays before it
can form hadrons. So there are no hadron states containing ¢, but the
rapid decay allows us to observe the production and decay of the ¢ at
the quark level rather than the hadron level.
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The 0~ and 1~ meson states containing
one ¢ quark.

The 0~ and 1~ meson states containing
one b quark.
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Definition of flavor.

The family of light spin—% baryons.

The family of light spin % baryons.

There are then 6 types of quarks:

u c t Q=0Qu

PR o—0" (5.36)
From here on, I will refer to the identifying label of a quark (u, d, etc.)
as its flavor.

5.5 The baryons

There is another class of strongly interacting particles that includes
the proton and neutron. These are fermions, called baryons. Baryons
cannot be created or destroyed singly; rather, they can only be created
as particle-antiparticle pairs, or by the conversion of one type of baryon
to another. This rule can be described as the presence of a conserved
quantum number, called baryon number B, with B = +1 for baryons
and B = —1 for antibaryons. Baryon number conservation requires that
the lightest baryon, the proton, is absolutely stable. In principle, the
proton could decay by reactions such as

p—etn’, p—vKt. (5.37)
These modes have been searched for; the lifetime limits are
7>82x10¥ yr 7> 6.7x10% yr (5.38)

(Note that observing 1 cubic meter of water (3x102® water molecules) for
a year and seeing no decays places limits at the level of 10%® yr.) Other
baryons can decay by strong or weak interactions, eventually decaying
down to the proton. The neutron is unstable to 8 decay

n — petv. (5.39)

This process requires the weak interaction, which we will study in Part
IIT of this book.

As with the mesons, there are distinctive, relatively light, families of
baryons, in which the heavier members have increasing values of the
strangeness quantum number. These is a set of 8 spin—% states (the
octet)

= = 1S
i'" °

= = =2

'—,\7 nig

N, X
133 (5.40)
and a set of 10 spin-3 states (the decuplet)

&
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—_—— —— —— 1232 (5'41)




All of these states are assigned P = +1. The choice P = +1 for the
proton is a convention. The intrinsic parities of the other baryons are
assigned relative to this convention. The relative parity of the heavier
baryons can be inferred from their decays. For example, since we know
that the pion has P = —1, the assignment P = +1 for the parity of
the A requires that the decay A? — pr~ have nonzero orbital angular
momentum. Indeed, experiments observe that the decay pion is in a
state of L = 1.

The almost degenerate sets of baryons fall into isospin representations

~
I

~
Il
oW —

¥ I=1 S I:% (5.42)

The complete family sizes 8 and 10 are the dimensions of irreducible
representations of SU(3).

A clue to the structure of the baryons is the observation that the
10-dimensional representation of SU(3) arises as the set of 3-index sym-
metric tensors. To understand this statement, we should discuss a few
properties of the simplest irreducible representations of SU(3). The fun-
damental representation of SU(3) is a 3-component vector transformed
by a 3 x 3 unitary matrix,

§a = Uanlp - (5.43)

The complex conjugate of this representation, called 3, is the a 3-component

vector transformated by
& — EaU(Ib . (5.44)

A tensor with two indices, each of which runs over i = 1, 2, 3, transforms
as

Aab — UacUbdAcd . (545)

This tensor has 9 components. These can be split into 6 components of a
symmetric 3 X 3 matrix and 3 components of an antisymmetric 3 X 3 ma-
trix. Each of these objects transforms independently of the other under
the transformation (5.45), leading to 6- and 3-dimensional representa-
tions of SU(3). This is an example of the idea discussed in Sections 2.3
and 2.4 that a group representation can often be split into a sum of
smaller, irreducible representations. For SU(3), the 3-dimensional anti-
symmetric tensor representation can be shown to be equivalent to the 3
representation presented in (5.44).

In a similar way, a tensor with three indices running over ¢ = 1,2, 3 and
totally symmetric in those indices forms an irreducible representation of
SU(3). The number of components of this tensor gives the dimension of
the representation; this is

=10. (5.46)
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A few simple facts about the irreducible
representations of SU(3).
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Explicit forms for the A and nucleon
wave functions in the quark model.

For a 3-index symmetric tensor in which the indices take only the values
j =1,2, the number of components is

2-3-4

g =4 (5.47)

This describes the symmetric combination of three spin-1 objects, which

2
is just the spin-2 representation of SU(2).
From these considerations, it is highly suggestive that the states in
the 10 are symmetric combinations of 3 quarks. For example, we can
assign

ATt =) =fut ut ut
075t =) =lst st 5 (5.48)

all in a relative S-wave wavefunction. This gives a simple explanation
of the spin-% nature of the decuplet states and of their flavor quantum
numbers.

Actually, if we count both spin and flavor, the light quarks come in 6
states

wt, wl, dt, di, st, si (5.49)

The number of states that we can build by taking three quarks in a
totally symmetric combination is

6-7-8
3T

The decuplet states fill out 10 -4 or 40 of these states. What remains is

56 . (5.50)

56—40 =16 =82 . (5.51)

that is, just enough states to fill out the baryon octet.

To see how this works in more detail, I will construct some baryon
wavefunctions. Start from the wavefunction of the At with spin S3 =
3 given in (5.48). The isospin lowering operator I~ = I' —iI? commutes
with 1?2 = I(I + 1) and lowers I3. This gives the At wavefunction

A*(S3=§)>=;§ ut wt dt)+lut dt ut)+ldt ut uﬂ .
i (5.52)

Applying also the spin-lowering operator S—, we find

A+<S3=1>>=\}§ t ut dl)+ut ul dt) 4l ut d)
Flut dt oud)+ut dd ut)+lul dt ut)
ST Tl T ekt it ).

(5.53)



This is a state with electric charge +1, strangeness 0, S% = %7 I = %7
and S = % Among the octet and decuplet states, there is only one
other state that has Q = +1, strangeness 0, and S% = % That state
is the spin-up proton state. Since that state has I = § = %, it must
be orthogonal to the state written above. There is only one totally
symmetric state with this property, so the proton spin-up state must

have the form

1 1
’p(53:z>>:m[2'“ wt dl)—lut ul di)—ful ut df)

“Jut dt ud)+2ut ddout) —fut dt ul)
—ldt ut wl) — At ud ut)+2ldd ut ut)

(5.54)

All of the 8 S3 = +% states of the baryon octet can be constructed
in this way. The 6 states around the boundary of the octet have forms
precisely analogous to that of the proton. The construction of the A°
and X0 states is more subtle. One must first construct the (I = 1) X°
state as 1

0\ _ — |+
|E > \/il |E > (5.55)
and then write the AY as a state orthogonal to this one.

These wavefunctions may seem complicated, but they pay an immedi-
ate dividend in explaining the values of the baryon magnetic moments.
You can work out the details in Problem 5.3.

From the quark content of the baryons, we can find the absolute elec-
tric charges of the quarks. We find

Qu=rts  Qu=-3. (5.56)

This is decidedly odd! Fractional electric charges have never been con-
vincingly observed in nature. After Gell-Mann and Zwieg proposed the
quark model, intensive searches were made for fractional charge in rocks,
sea water, clam shells, moon rocks, etc. No evidence for charge % was
found (Perl et al. 2001).  Apparently, the quarks are inside hadrons,
but they cannot get out. In Part II of this book, we will see considerable
evidence that there are indeed charge % and —% quarks inside hadrons.
There is one more odd feature of the baryons. Spin—% particles are
fermions, for which the spin-statistics theorem requires that the quan-
tum states are completely antisymmetric. But the baryon wavefunctions
that we constructed, beginning with (5.48), are totally symmetric. Han
and Nambu proposed that this could be understood if quarks have an
additional quantum number, called color, taking three values (red, green,
blue) (Han and Nambu 1965). If the baryon wavefunction is required
to be totally antisymmetric in color, it must be totally symmetric in all
other quantum numbers. The transformation among colors of quark

can be described as another SU(3) transformation. If we write indices
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Quarks have fractional electric charges.
However, no particles with fractional
electric charge have been observed by
experiment. To explain this, we must
insist that quarks can never be liber-
ated from inside hadrons. A funda-
mental theory of the strong interaction
must address this issue.

The symmetry property of baryon
wavefunctions suggest the existence of
an additional quark quantum number,
color.
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i = 1,2,3 in the 3 representations as lowered and indices in the 3 as
raised, the basic invariants of SU(3) are

51? ) eabc ) €abc - (557)
So color-invariant combinations of quarks and antiquarks are

QGQa eabcqaqch €abc§a§b§C . (558)

These are exactly the mesons, baryons, and antibaryons. These consid-
erations strongly suggest (1) that the color quantum number and color
SU(3) symmetry exists, and (2) that physical hadrons are invariant un-
der color SU(3) transformations.

Up to this point, I have only argued that the quark model, with six
quarks and color SU(3), gives a plausible explanation for the quan-
tum numbers of the most prominent hadrons. The model suggests that
quarks are spin—% fermions. Nevertheless, on the basis of the evidence I
have offered so far, this is at best still a hypothesis. To find the precise
nature of the strong interaction, we will need to look at experiments that
are more sensitive to the details of the interactions of quarks with one

another and with electromagnetic probes. We will take up this analysis

in Part II.
l
Exercises
(5.1) This problem will give you a chance to dip into the but the real physics is in the actual rates. To ob-
tables of elementary particle properties produced tain these, we must extract the partial widths from
by the Particle Data Group (Patrignani et al. 2016) the information that we are given.
and to use this information to understand better
the systematics of ¢ family particle decays. (a) The J/4 can decay in four different ways. (1)

To work this problem, you should recall that a de- decay by cc arinihilffxt%on .directly tf’ hadrons,
cay rate in quantum mechanics is given by a par- (2) decay by cc annihilation to a virtual pho-

tial widthT'(A — f), with units of energy. A partial ton (a short-lived state of electromagnetic
fields), which then materializes into an ete”

or utp~ pair. The J/4 is produced in ete”

annihilation by e*e™ annihilation into a vir-

Ta= Z INV/EE D! (5.59) tual photon which then materializes as a J/.

7 This decay is the reverse of that process, (3)

decay by cc annihilation to a virtual photon,

which then materializes into hadrons, (4) de-

cay to 1 photon plus hadrons. There is also a

decay to 3 photons with a very small branch-
ing ratio (about 107°).

Look up the listing for the J/v at the Particle

BR(A — f)=T(A— f)/Ta . (5.60) Data Group web site. The heading “pdgLive”

gives the most recently updated information.

Usually, it is easiest to meaure branching ratios, Look under c¢ to find the information for the

width gives the rate of a basic quantum mechanical
process. The total width of a resonance is

That is, it is the sum of the rates for all possible
decay processes. The lifetime of the resonance is
7 = h/T a. The branching ratio to the decay chan-
nel f, the probability that a particular decay of A
gives the final states f, is



J/¢. The entry J/1¢ — ggg gives the branch-
ing ratio for direct decays to hadrons, mode
(1) above. Similarly, the entry J/v¥ — vygg
gives the branching ratio for mode (4) above.
Write the branching ratio for each of the de-
cay modes (1)-(4). (These should add up to
100%, within the measurement errors.) Us-
ing the tabulated total width, find the partial
width for each channel.

(b) The 9(2S) can decay by the 4 modes above

and also by 3 additional modes: (5) decay to
the heavy lepton 7777, (6) decay to J/¢ plus
hadrons (w7, ©°, or ), (7) radiative decay to
the 1P states xe.
Using the information in the entry for the
1(2S), write the branching ratio for each
of the decay modes (1)—(7). (Again, these
should add up to 100%, within the mea-
surement errors.) Using the tabulated total
width, find the partial width for each chan-
nel.

(c) Compute the ratios of the partial widths be-
tween the J/v¢ and the ¢(2S5) for each of the
processes (1)—(4). How do these ratios com-
pare? Why would this result be expected?

(5.2) Consider the reaction of pion-nucleon scattering at

energies of a few hundred MeV. Two prominent
resonances are seen as the center of mass energy is
varied. These are the A resonances at 1232 MeV
and the N* (“Roper”) resonance at 1440 MeV. The
Ahas]z%,S:% TheRoperhaSI:%,S:%
and can be thought of as a radial excitation of the
nucleon. The absolute rates of the reactions that
form these resonances need to be computed from
a dynamical strong interaction theory. However,
the relative rates of different reactions producing
the same resonances can be computed using isospin
symmetry and Clebsch-Gordan coefficients.

The initial states in the reaction are the m mesons,
an I = 1 multiplet (7, 7% 7"), and the nucle-
ons, an [ = % multiplet N = (p,n). The quantum
mechanical amplitude to produce a resonance of
isospin I from initial states with isospins (I1,I})
and (I, I3) is proportional to the Clebsch-Gordan
coefficient

(WL IS | I I IT?) (5.61)

with I? = I$ 4+ I3. The amplitude for the decay of a
resonance to two particles of definite isospin is sim-
ilarly proportional to the relevant Clebsch-Gordan
coefficient. You can find a very readable table of
Clebsch-Gordan coefficients for SU(2) at the Par-
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ticle Data Group web site, under “Mathematical
Tools”.

(a) There are 4 A states: (AT AT A° A7).
These decay exclusively to 2-particle states
wN. Using isospin Clebsch-Gordan coeffi-
cients, compute the branching ratios for each
state to the 6 possible channels

7% 77) x (p,n)

(b) A crude description of the N* decays is that
60% of the decays go to mN and 40% go
to mA, Using these values and the Clebsch-
Gordan coefficients, compute the branching
ratios of the N* states (N*T, N*%) to the 6
wN states in (a).

(¢) The decay of the N* to wA followed by the
decay of the A leads to the final state 7w N. It
is easy to compute the branching ratios to the
various 7w N states if we assume that there is
no quantum mechanical interference between
two decay processes. (This will be correct if
two pions emitted have significantly different
energies, which is actually not so true in this
case.) Using this approximation, compute the
branching ratios of N* to the various possible
mr N states.

(m

(5.3) The quark model gives a theory of the magnetic

moments of the proton and neutron. If a quark
were an elementary Dirac fermion, its magnetic mo-
ment would be
L Qgeg
=g——S5 5.62
A= 99, (5.62)
with Qs the quark charge, m; the quark mass, s
the quark spin. The Dirac equation predicts the
value of the Landé g-factor ¢ = 2. In the proton
and neutron, we have only the u and d quarks. By
isospin symmetry, the u and d quark masses should
have the same value, mq ~ 300 MeV. We could then
model the baryon magnetic moment as the sum of
the three quark magnetic moments,
N 2Q16 = 2Q26 = 2Q3e =
= S S S. 5.63
KB 2y 1+2mq 2+2mq 3, ( )
where Q1, Q2, Q3 = +2/3 or -1/3 depending on
whether the quark is u or d.

(a) Using the quark model wavefunction for the
proton state with S° = % written down in
(5.54), compute the magnetic moment of the
proton in this approximation. This is most
easily done by computing the diagonal ma-
trix element of the 3 component of the oper-

ator jip, given by (2), in this state. Express
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the result by computing the proton g factor
gp given by

N e

Hp = gpﬂgp (5.64)

and the ratio m,/mq.
(b) Using the same method, compute the g factor
of the neutron, defined by

e —

S, . (5.65)

Hn =9n 2myp

(c) The g factors for the proton and neutron are
very different from the value 2 predicted by
the Dirac equation. The measured values are

gp = +5.586 g, = —3.826 .

Compare these results to the predictions of
the quark model given in parts (a) and (b).
What value of the quark mass my best ac-
counts for the data?



Detectors of Elementary
Particles

Thus far in this book, my discussion of experimental results has only
been semi-quantitative. We have looked at symmetry principles and
energies of resonances but not yet at the values of rates of elementary
particle reactions. To understand measurements of rates, and to com-
pare to experimental data, we need to understand how the momenta and
energies of elementary particles are measured. This chapter will give a
very brief introduction to that subject. In-depth presentations of the
physics and design of particle detectors can be found in (Green 2005)
and (Grupen and Shwartz 2008).

Particle detectors are, generally, of one of two types. The first is a
detector of ionization or other energy loss. A particle comes in, deposits
energy in a sensor, and exits. The position of the energy deposition gives
a point on the particle’s trajectory, and the amount of energy deposited
contains some additional information about the particle’s momentum.
A detector of this type is called a tracker. The second type of detector
is one that attempts to convert the entire energy of a particle into a
measurable signal. A detector of this type is called a calorimeter.

Particle detectors measure the properties of stable particles, or, at
least, of particles that have a macroscopic flight path of length of a
millimeter or greater. Unstable particles are measured by observing
the particles into which they decay. Trackers are usually sensitive only
to charged particles. Calorimeters are sensitive to charged and neutral
particles, but only to particles with strong interactions, or to electrons
and photons.

All particle detectors have their basis in the effects produced by a
relativistic particle moving through matter. Such a particle will knock
electrons out of atoms, producing ionization. It will interact electromag-
netically with atomic nuclei, transfering momentum and, in some cases,
producing additional photons, electrons, and positrons. High energy
hadrons will also scatter from nuclei through the strong interaction. A
fast charged particle will also interact with the material it passes through
in a collective way, through the macroscopic dielectric properties of the
medium. All of these effects are used to create different types of parti-
cle detectors that measure energy-momentum in different ways and also
discriminate one type of particle from another.

The theory of particle motion through matter is highly technically
developed. In this chapter, I will cover only some simple aspects of

Two types of elementary particle detec-
tors: trackers and calorimeters.
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Scattering of atomic electrons by a rel-
ativistic particle.

Scattering of a relativistic particle from
an electron in an atom.

this theory. Excellent, more detailed, introductions to this subject can
be found in (Bichsel, Groom, and Klein 2016) and other articles from
the Review of Particle Physics (Patrignani et al. 2016), in the relevant
chapter of (Jackson 1998), and in the textbooks cited above.

Modern particle detectors are modular systems in which different
single-purpose detectors are placed one inside another. These systems
attempt to measure all properties of the particles produced in an ele-
mentary particle reaction, in a definite sequence. After we review the
basic mechanisms used by particle detectors, I will discuss some of these
larger-scale detector systems.

6.1 Energy loss by ionization

We begin with the theory of ioniziation.  Consider a fast particle
of charge Qe that interacts electromagnetically with an electron in an
atom. This particle will kick electrons out of the atom and lose energy
in the process. I will assume that the fast particle suffers only a small
deflection. The geometry of the interaction is

N
Q 35
®

et (6.1)

where b is the impact parameter.
If the fast particle is moving relativistically, its field is a pancake in
the frame of the electron,

\y
I Q__(wih)
EWE)= s 2
! ( ||? l) 47_(_ [b2+(’}/vt)2]3/2 J (6 )
with 8 = v/e, v = 1/4/1 — 2. The electric field transfers momentum
to the electron

2e2Q 1
Ap= [ dteE| = — . 6.3
P / Bl 4 bv (6.3)
Note that this is independent of y. The energy transferred to the electron
is
(Ap)* e? 9yl 1
AE = =2(— — . 6.4
2m, (47r) @ b2 mev? (6.4)
The angular deflection of the incoming particle is
e? 11
0=2Q0——-. 6.5
Q47r bvp (6:5)

These formulae are of course just a crude approximation of the full

problem of a particle interacting with an electron bound to an atom.
To calculate the energy loss of the fast particle, we need to average

the possible values of the impact parameter b over a plane perpendicular



to the trajectory of the particle. The average energy loss is then given
by the density of atomic electrons multiplied by the integral

1 db
/d%AE(b) NZﬂ/dbbb—2 ~ 271'/? : (6.6)

To estimate this logarithmic integral we need an estimate of the maxi-
mum and minimum values of b for which the scattering is effective. The
maximum value is set by the condition that, if b is large, the particle
passes by an atom over a long time, and the position of the electron
must be averaged over its orbit around the nucleus. The time for the
particle to pass the atom is

b
At~ . .
o (6.7)

Let w be a typical atomic frequency or energy difference, of the order of
eV. If At > h/w, the particle cannot act coherently on the electron; this
gives

YU
bmaz ~ — - 6.8
; (63)

The minimum value is set by the quantum-mechanical uncertainty in
the electron’s position, as seen by the incoming particle. This is

brmin ~ WZQU . (6.9)
We then find for the energy loss per unit distance x (in cm)
% = fnZ/dbb27r AE(b)
= —471a’Q? ﬂ?jz /b:”:’ %
— _4ra2Q? T:i _ 1og{72;”;”2] , (6.10)

where n is the number density of atoms (atoms/cm?®) and Z is the atomic
number or the number of electrons per atom.

This simple derivation captures the main features of Bethe’s classic
treatment of this problem (Bethe 1930). By a somewhat more sophisti-
cated analysis, Bethe found

dFE nz
— = —471a?Q? 1 ——. 11
dx TatQ mev? 8 hw c? (6.11)

A large number of phenomenological improvements to this formula are
discussed in (Bichsel, Groom, and Klein 2016).
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Bethe’s formula for the energy loss of a
charged particle due to ionization.
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Qualitative features of Bethe’s formula
for the energy loss of charged particles
include its rapid rise at low velocities,
its ionization minimum, and its rela-
tivistic rise with log E.

Definition of a minimum tonizing par-
ticle.
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Fig. 6.1: Energy loss in MeV/(g/cm?) for positive muons in copper as a
function of B, from (Bichsel et al. 2016).

The general form of the energy loss function dE/dx is

A
A%

>3X
(6.12)

The formula depends on the velocity of the particle, but not its momen-
tum. (It also depends on the charge @, but, for most of the particles
we consider, @ = £1.) The ionization increases rapidly as the particle
slows down, as 1/v?; it also increases logarithmically as the particle be-
comes very relativistic. The latter effect is called the relativistic rise. Its
size depends on the absorbing material. The curve has a minimum for
By ~ 1, this is called minimum ionization. The numerical value of the
minimum ionization is a few MeV/cm. More accurately, this value is
given by 1.5 MeV-p, where p is the density in g/cm®. The minimum of
the curve is quite shallow, so single relativistic particles are recognized
as contributing an energy deposition of one minimum ionizing particle
(1 MIP).

Figure 6.1 shows in more detail the energy loss dE/dx for a muon
passing through copper. At the lowest energies, the 1/v? divergence is
rounded off by more careful consideration of the atomic physics. At very
high energies, another effect comes in, which I will describe in Section
6.2.

The path of a particle in a magnetic field depends on the momentum,
but not the velocity; the ionization depends on the velocity but not the



momentum. It is thus possible to use dE/dz measurements to measure
the particle mass. A heavier particle has a dF/dx curve shifted to higher
values of the momentum,

4E
ax

™

5
7

P (6.13)

Measurement of dE/dz requires understanding of one more subtlety.
The theory I have given applies to the average value of dE/dx. However,
the energy loss in each atomic collision varies strongly with the impact
parameter of the scatter. If dE/dx is measured by sampling in slices of an
ionizing medium, the sampled values of energy loss will vary according
to a probability distribution, first computed by Landau (1944), that
includes rare events of very high energy loss. Then it is awkward
to average measured values of dF/dx; rather, the particle velocity is
estimated from the most probable energy loss, given approximately by

2v2mev2€ v

AE = —¢|log =~ = (6.14)

where ¢ = (2ra?Q?*nZ/m.v?)Ax, with Az the thickness of the sampler.
For more details, see (Bichsel 2016).

6.2 Electromagnetic showers

For very relativistic particles, another energy loss mechanism takes
over. A very high energy electron can emit a photon, moving roughly
collinear with electron, that carries a large fraction of its energy. This
effect is called bremsstrahlung. Similarly, a very high energy photon
easily converts to an electron-position pair, with both members of the
pair moving in the same direction as the photon.

Bremsstrahlung and pair-production are typically interactions between
a high energy particle and an atomic nucleus. They occur infrequently
along the path of a particle, but they are also significant events that
transfer substantial momentum. As such, they should not be described
by their average effects but rather by individual collisions occuring with
given probability along the path. The probability of scattering in a small
interval of the path dx is written as dx/A. Then the probability P(x)
that the particle still has not scattered after a path length x satisfies the

equation

iP(m)z—%P(x) or P(z)=e ">, (6.15)
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The energy loss by ionization includes
the possibility of large positive fluctua-
tions. This must be taken into account
in measuring dE/dzx.

Important energy loss mechanisms for
relativistic electrons and photons are
bremsstrahlung and pair conversion.
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Relativistic ~ kinematic  origin  of
bremsstrahlung and eTe™  pair
production.

Probability formula for bremsstrah-
lung.

Probability formula for ete™ pair pro-
duction.

The parameter A is called the mean free path.

Bremsstrahlung and pair-production are the result of a peculiar prop-
erty of relativistic kinematics. An electron at rest cannot spontaneously
convert to an electron and a photon; this violates energy-momentum
conservation. However, if the energies of these particles are much larger
than mec?, the required nonconservation of energy and momentum is
small. The momentum 4-vector of a relativistic electron can be written

2

P = (E,0,0,\/E2 —m2) ~ (E,0,0,E — %) . (6.16)

Now imagine that the electron splits

e (P) = e (p) +7(a) (6.17)

into a photon carrying a fraction z of the original energy and an electron
carrying a fraction (1 — z). The new 4-vectors are

2
by
=(zE,E_,0,zFE —
q (Z , 1,U,2 2ZE)

2 2

+m
' — (1 - 2 E. — 0.(1 — 2)E — p1 T Mme
P =((1-2)E,-p1,0,(1-=z) 21— 2)E
For a momentum transfer of order p; ~ m,, the required transfer of
energy or longitudinal momentum is of order

) (6.18)

2

c 1
e, (619)

which, for a GeV electron, is of the order of keV. This is easily supplied
by the scattering of an electron off the electrostatic field of a heavy
nucleus.

An individual electron-nucleus scatter, then, can split the 4-momentum
of a relativistic electron into two pieces, giving an arbitrary fraction z
of the energy to a bremsstrahlung photon. In the same way, a photon-
nucleus scatter can split the 4-momentum of the photon into the two
momenta of an electron-positron pair.

A detailed calculation of the cross section for electron splitting gives
a formula for the electron scattering rate of the form of (6.15) but also
differential in the energy fraction z taken by the photon. The probability
of a scatter at a position z is written as an integral over z, the fraction
of the electron’s momentum that is transfered to the photon. Then

%P(aj) = —/dz{;,o %[%(1 —z) + 27 } P(z). (6.20)

For v — eTe™, the corresponding formula is

dxddZP(x) = —/dz{;o [1- gz(l —z)] } P(z) . (6.21)

The quantity Xy is called the radiation length; it is given approximately
by

1 403 .
X = % nZz? logg— , (6.22)
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Fig. 6.2: Fractional energy loss per radiation length for electrons and

positrons in lead as a function of the electron or positron energy, from (Bichsel
et al. 2016).

h
where 1

— =142 3q,, (6.23)

S

where ag is the Bohr radius. Note that X, depends strongly on the
nuclear charge Z. The length 1/Q; is the distance outside the core of
a heavy atom at which the nuclear charge is screened by the electrons,
computed in the Thomas-Fermi approximation. The appearance of this
screening length emphasizes that, while ionization is an interaction with
electrons, bremsstrahlung and pair production are interactions with the
atomic nuclei.

The formula (6.20) implies that the mean free path for an electron
to radiate a hard bremsstrahlung photon is of order Xy, while soft
bremsstrahlung photons are emitted more frequently. To be more quan-
titative, let (E(x)) be the average energy of the electron after a distance

x. The energy lost in a bremsstrahlung emission is z (E(z)). From
(6.20), the expected energy obeys
d 1 1.4
— (E(2)) = — — -[z(1- 2 E(z)) . 24
R R R | ST RCEY
Performing the integral, we find
d 1
—(F)=——(F 6.25
B =5 (B) (6.25)

that is, Xy is the mean free path for the energy carried by the initial
electron. For photon splitting, the energy sharing is roughly equal be-
tween the electron and positron. We can simply integrate the right-hand
side of (6.21) over z and find

d 7
@P(x) =——P(x).

6.26
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Mean free paths for bremsstrahlung
and pair production.
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Radiation lengths and pion interaction
lengths in some representative materi-
als.
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Fig. 6.3: Cross section for photon scattering from lead as a function of the
photon energy, from (Bichsel, Groom, and Klein 2016). The various reactions
that contribute are shown as separate curves; p.e. denotes the photoelectric
effect.

Then the mean free path for a photon to convert to an electron-positron
pair is A = (9/7) Xo.

An important quantity related to this physics is the critical energy
E.. This is the energy below which ionization energy loss dominates
over bremsstrahlung. This cross-over is shown, for electrons in lead, in
Fig. 6.2. Photons have a similar low-energy cutoff for pair production,
just below the eTe™ threshold. At still lower energies, their energy loss
is dominated by the photoelectric effect, as shown in Fig. 6.3.

Here is a table of the radiation length and critical energy for some
commonly used materials. I also include the pion interaction length Ap,
the mean path for a 7% to travel in the material before suffering an
inelastic collision with a nucleus. The values for many more materials
can be found in a useful table in (Patrignani et al. 2016).

Xo (cm)  E. MeV) Ar (cm)
Be 35.3 114 59.5
C 18.9 82 38.2 (6.27)
Fe 1.76 22 20.4
W 0.35 8 11.3
Pb 0.56 7 19.9

Once a photon or electron has been created by bremsstrahlung or
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Fig. 6.4: Simulation of an electromagnetic shower in iron, showing the frac-
tional energy loss per radiation length as a function of depth, from (Bichsel,
Groom, and Klein 2016).

pair creation, it is free to initiate new processes of these kinds. Roughly,

then, the number of relativistic particles doubles every radiation length.

The result is an electromagnetic shower.  The number of relativistic = Description of an electromagnetic
particles grows exponentially up to 5-8 radiation lengths. Then, the shower

electrons, positrons, and photons drop below the critical energy and

dissipate their energy directly without further particle production.
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The energy deposition in a simulated electromagnetic shower in iron is
shown in Fig. 6.4. This example is typical, but the details of the particle
production will vary from shower to shower. The transverse size of the
shower is characterized by the Moliére radius, given by

21 MeV

Ry =Xo - 7

(6.29)
A cylinder with radius Rjs contains 90% of the energy deposition of an

electromagnetic shower.

6.3 Further effects of nuclear scattering

For heavier charged particles, even when they are relativistic, brems-
strahlung does not contribute significantly to their energy loss except
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Deflection of the path of a charged par-
ticle by multiple scattering.

Description of a hadronic shower.

at extremely high energy. For example, we see from Fig. 6.1 that the
critical energy for a muon in copper is about 3000 GeV. However, there
are two more effects of nuclear scattering that play an important role in
particle detectors.

First, a Coulomb scatter from an atomic nucleus can significantly
change the direction of the particle’s motion. In (6.5), we saw that a fast
particle scattering from an electron suffers a small deflection. Scattering
from all of the electrons in an atom, this effect is of order Z. But
scattering coherently from an atomic nucleus gives a deflection of order
Z?, and also one that is not cut off as strongly for larger momentum
transfer. Through the collective action of many such scatterings, the
orientation of the particle is smeared in angle, an effect called multiple
scattering. The increase in the mean square deflection per unit path
length travelled is

d(6?) 136 MeV.Q. Kl
dv — fBp Xo

where, in this formula, the radiation length X, defined in (6.22) again
sets the scale of distance.

In designing a tracking detector, it is necessary to compromise between
having enough material to see the particle track accurately and having
a sufficiently small amount of material that the angle of the track is not
smeared by multiple scattering. The balance between these effects is
explored in Exercise 6.3.

If the particle traversing the medium is a hadron, it can also interact
with atomic nuclei through the strong interaction. For example, a pion
moving through detector material will suffer an inelastic collision in the
distance called Ay in (6.27). This collision will take energy from the pion
and convert this to the energy of several additional charged and neutral
hadrons. After many scatterings, the energy of the pion is converted to
the energy carried by many approximately collinear hadrons and their
reaction products. This process is called a hadronic shower.

Hadronic showers are more complex than electromagnetic showers,
because they involve a wider variety of processes with different length
scales. When a 7T has an inelastic collision with a nucleus, it cre-
ates a large number of relativistic particles, including 7=+, 7, and 7°.
The 7°’s are very short-lived, decaying almost immediately to 2y. The
characteristic flight distance for a 7% is ¢ = 25 nm. The photons ini-
tiate electromagnetic showers, whose depth is set by Xg. If protons are
ejected from the nucleus in the collision, these deposit ionization in an
even shorter distance. On the other hand, the 77 and 7~ travel as min-
imum ionizing particles for a distance of order the interaction length A;
before their next inelastic collision.

(6.30)
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Hadronic showers thus develop over longer distances than electromag-
netic showers, and also contain considerably more fluctuation and irreg-
ularity in their components.

6.4 Energy loss through macroscopic properties of
the medium

There are two more mechanisms of energy loss that play a role in more
specialized detectors. These both exploit macroscopic electromagnetic
properties of media. The first is transition radiation. When a relativis-  Description of transition radiation.
tic particle crosses an interface between vacuum and a medium, there is
a mismatch of its electromagnetic fields across the boundary. To repair
this, a burst of radiation is emitted. The intensity of this transition
radiation, for a conducting film, is estimated as

I= an’y% ,
3

where wy, is the plasma energy in the film. Note the dependence on 7.
We can discriminate electrons from pions by observing the difference in
their transition radiation, at equal momentum, passing through a stack
of Mylar foils.

The second of these mechanisms is Cherenkov radiation. A relativistic  Description of Cherenkov radiation.
particle can easily move faster than the speed of light in a medium
¢n = ¢/n. It is then accompanied by a shock wave of radiation similar
to a sonic boom. This is an outwardly moving cone of light, typically
peaking in the near ultraviolet. The direction of the radiation is

(6.32)

1
cosfc = R (6.33)

Cherenkov light is a sharp discriminator of particle velocity, since it is
present only when 8 > 1/n. Special materials, called aerogels, are made
with index of refraction very close to 1 to discriminate relativistic pions
and kaons of equal momentum.

Cherenkov radiation can also be used as a tracking technology, by
using an array of photodetectors to measure the position and angle of
the cone of Cherekov light emitted by a relativistic particle. This is
the tracking technology used by very large water detectors for neutrinos
whose results we will discuss in Chapter 20.
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Plan of a typical multipurpose cylindri-
cal collider detector.

6.5 Detector systems for collider physics

Dectector elements based on these mechanisms for particle energy loss
can be assembled into detector systems meant to visualize all aspects
of an elementary particle collision. Today, experiments at the highest
energies are colliding beam experiments that bring together beams with
particles of equal energy at a collision point.

—%%/
—P <<

An important concept now used in all colliding beam experiments is the
idea of a cylindrical detector surrounding the beams and the collision
point. Different types of detectors are placed on concentric cylinders
in a definite order, inside to outside, to obtain as much information
as possible about the particles produced in the interaction. The first
multipurpose cylindrical collider detector was the Mark I detector of the
SLAC-LBL collaboration used in the discovery of the .J/v described in
Section 5.2 (Augustin et al. 1975).

A cylindrical collider detector must be set up in such a way that the
measurements done by detectors in the inner cylinders do not unduly
compromise the measurements done by the outer detectors. This means
that the inner detectors will contain a low-mass tracker.  Calorime-
ters, which destructively measure total energy, must be placed outside
all other important elements. The design must also have a place for a
magnet that can provide a solenoidal magnetic field to bend the tra-
jectories of charged particles and allow a momentum measurement. A
typical plan is

(6.34)
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(6.35)

I will now describe the various components of a multipurpose detector
from inside to outside. An excellent introduction to the two large LHC
detectors has been given by Froidevaux and Sphicas (2006). I take as
my primary example the ATLAS detector at the CERN Large Hadron
Collider (LHC), which is thoroughly documented in (Aad et al. 2008).
The passage of particles of different types through the ATLAS detector
is illustrated in Fig. 6.5.

We begin with the momentum measurement, which involves the inte-
rior tracker and the magnetic field. A relativistic particle moving per-
pendicular to a magnetic field travels in a circle. Measurement of points
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Electromagnetic
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Transition
Radiation
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Fig. 6.5: Simulated energy deposition of elementary particles of different
types in a slice of the ATLAS detector (figure courtesy of CERN and the
ATLAS collaboration). The interaction point at the center of the detector
is at the bottom of this figure. Particles produced in collisions move upward
from this point. From left to right, we see the signals of a muon, which
penetrates the whole detector, a photon, which makes no track but is visible
in the electromagnetic calorimeter, a proton and a neutron, which are visible
in the hadronic calorimeter, and an electron. Finally, we see the trace of a
neutrino, which makes no signal at all.
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Charged particle momentum measure-
ment by tracking the motion of the par-
ticle through a magnetic field.

Electron and photon energy measure-
ment by calorimetry.

on the trajectory can determine the radius of this circle. In practical
units, ) 0.3

7= QB pall (6.36)
where R is given in meters, B is in Tesla, and p is in GeV. More generally,
a charged particle in a magnetic field travels in a helix, whose cross
section depends on the component of the momentum perpendicular to
the magnetic field.

Measurements of the particle trajectory can be made by finely space
electrodes in volume of ionizing gas, or by finely etched silicon sensors.
These measurements give us the curvature x of the path, which is equal
to 1/R and, thus proportional to 1/p; . An uncertainty in the measure-
ment of kK produces an uncertainty

NI
b1 b

(6.37)

Thus, the uncertainty in the momentum mesurement rises with momen-
tum. In the detectors for the Large Hadron Collider (LHC),

opL pL

At GeV energies, this uncertainty is sufficiently small that deflections
of the trajectory from multiple scattering are also important. Notice
that, for tracks of very high momentum, in the range of multi-TeV, even
the sign of the bending, which gives the sign of the electric charge, is
uncertain.

The next element, going outward, is the electromagnetic calorimeter.
This device contains and measures electromagnetic showers produced
by electrons and photons (with most of the photons from 70 — 2y
decays).  In the ATLAS detector at the LHC, the electromagnetic
calorimeter is a set of lead plates in a bath of liquid argon. Lead (Pb)
is chosen as the showering medium because its small value of X gives
a relatively compact detector. The depth of the calorimeter is 24 X,
enough to contain the shower quite well. Charged particles created in
the shower leave ionization in the liquid argon; the ionization electrons
can be drifted in this inert medium to electrodes, where they are counted
to estimate the deposited energy. Only a fraction of the total energy is
collected. This uncertainty in the energy measurement of the order of

AE  10%

E VE '
with E in GeV. The uncertainty is dominated by the counting of ioniza-
tion electrons, which would give AE ~ /N,.

At this point, we have measured the charged track and electromagnetic
components of the event. What remains are neutral hadrons such as
n, A%, K° etc., whose energies must be measured by the creation of
hadronic showers. For uniformity, ATLAS measures the total energy of
all hadrons by the same calorimetric technique.

(6.39)
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We have already noted at the end of Section 6.3 that hadronic showers
are more complex than electromagnetic showers, due to the variety of
interactions that they contain. In particular, most of the energy depo-
sition comes from ionization in electromagnetic showers, which have a
size set by Xg, while the size of the whole shower is set by the nuclear
interaction length A;. To measure the energy of a hadronic shower,
the calorimeter must compromise between having enough material to
provide a depth of many A;, while at the same time having sufficient
segmentation to minimize the sampling error. ATLAS uses iron as the
absorber and scintillating tile as the medium for sampling ionization.
The depth of the calorimeter, in the central region, is 11 Aj.

Hadron calorimeters also have different performance in measuring the
energies of 7+ and 7°. For 70, all of the energy is deposited in electro-
magnetic showers, while, for 7+, a significant amount of energy goes into
nuclear breakup and other mechanisms that are more difficult to sample.
Thus, the fluctuations in the fraction of 7%’s generated in the first few
inelastic collisions increase the uncertainty in the energy measurement.
The performance of the ATLAS calorimeter is of the order of

AE  50%
E VE

Muons have no strong interactions and only rarely radiate photons
to produce electromagnetic showers. Thus, they travel through all of
the various layers of the cylindrical detector as simple minimum ionizing
particles. To first approximation, any particle that makes it through the
whole detector system and is observed as a track in the outer detector
layers is a muon. Tracking chambers are placed on the outside of the de-
tector to locate the muon tracks that penetrate through the calorimeters
and associate them with tracks measured in the inner detector.

Neutrinos have no strong or electromagnetic interactions, so they do
not interact with the detector through any of the mechanism discussed
in this chapter. Almost always, neutrinos produced in a particle col-
lision escape the detector without making any signal. The presence of
neutrinos (or other possible neutral, weakly interacting particles) can be
inferred if the total momentum of observed final-state particles is seen
to be unbalanced. Neutrinos do interact through the weak interaction.
Such neutrino reactions can be observed, as we will discuss in Chapter
15, using very massive detectors and high neutrino fluxes to compensate
for the very small rates of weak interaction processes.

The designs of two other large particle detectors are shown in Fig. 6.6
and Fig. 6.7. Figure 6.6 shows the overall design of the CMS detector
at the LHC. In this detector, the solenoidal magnet is placed outside
the electromagnetic and hadron calorimeters. Because of this, however,
the hadron calorimeter is rather thin and relies on the iron outside the
magnet to complete the absorption of the hadronic shower. The iron
outside the magnet also returns the magnetic flux from the solenoid,
so it is magnetized in the direction opposite to the interior. The re-
verse bending of the muon in this region, is used to improve the muon

(6.40)

Hadronic energy measurement by
calorimetry.

Muons in large collider detectors.

Neutrinos in large collider detectors.

Examples of complete detector designs.
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Fig. 6.6: Overall design of the CMS detector at the CERN Large Hadron Col-
lider; figure courtesy of CERN. The figure shows the layered design, with (out-
ward from the center) a silicon tracking detector, an electromagnetic calorime-
ter, a hadronic calorimeter, the solenoidal magnet, and instrumented iron to
return the magnetic flux and identify muons.

momentum measurement at high energies.

Figure 6.7 shows the BaBar detector used at SLAC in the 2000’s for
studies of the weak interactions of B mesons. The colliding beam system
was designed to be asymmetric, colliding 9 GeV electrons and 3 GeV
positrons to produce the Y(4S), for reasons that will be discussed when I
review these experiments in Chapter 19. The collisions are then boosted
to the right, and this is reflected in the detector layout. Two new de-
tector components are apparent here. The first (also present in CMS
and ATLAS, but too small to be visible in Fig. 6.6) is a silicon detector
located within cm of the interaction point to locate points on the charge
particle trajectories very precisely. This vertex detector specifically iden-
tifies B mesons, for which ¢m = 0.5 mm. The second is a set of quartz
bars, shown in green, that form a Cherenkov ring imaging system. This
contributes to the tracking and separates 7 from K mesons.

We will see other ways of deploying the basic detectors in specific
experimental arrangements later in our discussion.
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Fig. 6.7: Overall design of the BaBar detector operating at the PEP-2 collider
at SLAC (figure courtesy of SLAC and the BaBar collaboration). The figure
shows the tracking and calorimetry layers, and also the vertex detector just
around the interaction point and the Cherenkov ring imaging detector used

to separately indentify m and K mesons.

Exercises

(6.1) For a 100 GeV electron moving through iron, esti-
mate the fraction of its energy that it loses to ion-
ization over a distance of 1 Xy. For a 100 GeV
charged pion moving through iron, estimate the
fraction of its energy that it loses to ionization over
a distance of 1 A;.

(6.2) An extensive cosmic ray shower is the result of a
collision of a very high energy proton from space
with the nucleus of a molecule of air in the upper
atmosphere. Consider for definiteness a collision
that takes place at a height of 5 km. Take air to
have a uniform density of 10™% g/cm?, and rock to
have a uniform density of 2.6 g/cm®. About 1000
charged pions might be produced in a very high
energy cosmic ray interaction.

(a) The probability of a 7w'p interaction can
be estimated by assigning the p an effective
cross sectional area (cross section) of 3 fb? =
3 x 1072% cm?. Using this quantity, estimate
A; for this standard air and rock. (For at-
nucleus scattering, the cross section is should

be multiplied by A%/3, where A is the nucleon
number. Why should this be?)

(b) Ifant of 1 GeV is produced in the original p-
nucleus collision, what is the probability that
it suffers a nuclear collision before hitting the
earth? What is the probability that it decays?
The pion lifetime at rest is 2.6 x 10°% s. The
primary decay mode of the 71 is 77 — pTv,
with the p taking most of its energy.

(c) The muons from 7t decay enter the earth.
How far do they go before stopping?

(d) About 10 pions might be produced with ener-
gies of 100 GeV. Do they have time to decay
to muons? If they decay, how far into the
earth do the muons penetrate?

(6.3) This problem illustrates the factors that influence a
momentum measurement with a tracking detector.
Consider a charged particle emitted from a high-
energy interaction, moving through a cylindrical
tracking chamber of radius L under the influence
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of a solenoidal magnetic field B. For simplicity,
assume that the particle moves in a plane perpen-
dicular to the axis of the cylinder and the direction
of the magnetic field.

(a) Since the initial direction of the particle is
not known a priori, the curvature is measured
from the sagitta s of its curved trajectory,
defined to be the maximum deviation of the
curve from a straight line between the point of
origin and the point where the particle exist
the chamber at radius L.

Show that, for small curvature,
12

B8R’
Using (6.36), relate the sagitta to the mag-
netic field strength and the momentum of the
particle. If As is the uncertainty in the mea-
surement of the sagitta, obtain a formula for
op/p in terms of p, L, B, and As.

s (6.41)

(b)

It can be shown that, if the tracking detec-
tor makes N equally spaced position measure-
ment, each with resolution ¢, the uncertainty
in the measurement of the sagitta is

5y — —>de (6.42)
N+5

For N = 50, ¢ = 100 pm, L = 1 m, and
B =1 T, estimate the uncertainty in the ob-
tained value of p .

As the particle moves through an ionizing gas,
it will multiple scatter. If the cylinder in this
exercise is filled with nitrogen gas at atmo-
spheric pressure, compute the expected A0
from multiple scattering over a distance L/2
as a function of p. (The radiation length in
N3 is Xo = (38/p) cm, where p is the gas den-
sity in g/cm®.) The error in the sagitta from
this source is roughly

ds = 559 . (6.43)

At what value of p is multiple scattering a
more important effect than the resolution of
the position measurements?
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To compare the results of elementary particle experiments to proposed
theories of the fundamental forces, we must think carefully about what
quantities we can compute and measure. We cannot directly measure
the force that one elementary particle exerts on another. Most of our
information about the subnuclear forces is obtained from scattering ex-
periments or from observations of particle decay.

In scattering experiments, the basic measureable quantity is called
the differential cross section. In particle decay, the basic measureable
quantity is called the partial width. In this chapter, I will define these
quantities, and I will give formulae that will allow us to predict the val-
ues of these quantities from theoretical models. These will provide the
calculational tools that we will use in Parts IT and III to test possible the-
oretical ideas for elementary particle interactions against experimental
results.

7.1 Observables in particle experiments

The basic observable quantity associated with a decaying particle is
the rate of decay. In quantum mechanics, an unstable particle A de-
cays with the same probability in each unit of time. The probability of
survival to time t then obeys the differential equation

dP P
—_— = 7.1
dt TA ’ ( )
for which the solution is
P(t)=e t/m (7.2)

The decay rate 7';1 is also called the total width I'y. Note that its
units 1/sec are equivalent to GeV up to factors of /& and c.
If there are numerous decay processes A — f, each process has a rate

I'A—f). (7.3)
This quantity is called the partial width. The total decay rate is
Ty=> T(A=f). (7.4)
f

The rate of a particle collision process is characterized by a cross
section. Imagine first that we shoot a beam of A particles of density n 4

Experiments on elementary paraticles
are set up to measure widths and cross
sections, which can then be compared
to the predictions of theoretical models.

Definition of the lifetime of a particle
74 and the width of the particle T'4.
In conventional units, 'y = h/74.
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Definition of the cross section o for a
reaction A+ B — X.

Definition of the differential cross sec-
tion.

and velocity va at a fixed center B.

&) e

Naq

(7.5)
The rate at which we see scatterings from the beam has the form
events/sec =mnj v -0 (7.6)

where ¢ has units of cm?. This quantity is called the cross section for the
reaction. It is the effective area that the target B presents to the beam.
An alternative definition is given by the following situation: Imagine
two bunches of particles A and B aimed at one another. Let one bunch,
for example, B, have a smaller length and area, so that it fits inside the
other.

<[] Qg

—_—

g

(7.7)

As the bunch B passes through the bunch A, the rate of scatters of A
particles from B particles is

events/sec =nanplp Aglva —vp| o (7.8)

A typical scattering process is a reaction with n particles in the final
state
A+B—-14+2434+---+n. (7.9)

We can represent the probability of finding each given momentum con-
figuration of the final particles by a differential cross section
do
Bpi1dBps - d3py,
The integral over final momenta gives the total rate or the total cross
section

(7.10)

do
Eprdips - d3p,

a(A+B—>1+---+n):/d3p1~~-d3pn (7.11)

7.2 Master formulae for partial width and cross sec-
tions

Now I will write the formula for computing partial widths and differen-
tial cross sections. This formula is called Fermi’s Golden Rule. Versions
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of this formula are derived in standard quantum mechanics textbooks.
Here, I will write the formula in the way that is most appropriate for
reactions involving relativistic particles.

Begin with the decay rate. For this, we need the quantum mechanical
transition matrix element

(12---n|T|A(pa)) = M(A = 14--4n) (27)*6@ (p4— Zp] (7.12)

where T is an appropriate operator representing time evolution. The
final state f contains particles 1,2,...,n. The matrix element (7.12)
must contain an energy-momentum conserving delta function. The fac-
tor M in front of this delta function is called the invariant matriz ele-
ment. If indeed T is time evolution through the process and the states
are relativistically normalized, the invariant matrix element must be
Lorentz-invariant.

It is useful to work out the dimension of M. The operator T is
dimensionless, and, according to (3.92), the states have total dimension
GeV~("*t1 The delta function has units GeV~%. Then the invariant
matrix element has the units

M~ GeV3" . (7.13)

To find the total rate, we must integrate over all possible values of the
final momenta. This integral is called phase space. For n final particles,
the expression for the phase space integral is

d3p
11,, . n 9 (4) 14
/d / 2 32E1 (27)32E, (2m)*a ij , o (7.14)

where P is the total 4-momentum. Notice that I use the Lorentz invari-
ant integral over relativistically normalized momentum states (3.88).
The delta function, which is also Lorentz invariant, enforces energy and
momentum conservation. Then the whole expression for phase space
will be Lorentz invariant and can be used together with the Lorentz in-
variant matrix element M defined in (7.12). Similarly, a relativistically
normalized initial state |A) will yield the factor 1/2E 4. Phase space has
the dimensions

I, ~ (GeV?)" . GeV™* = GeV?"™* | (7.15)

The Fermi Golden Rule formula for a partial width to an n-particle
final state f is

DA f) = ﬁ/dﬂn MA = 2. (7.16)

I have not given you a derivation of this equation, but, on the other hand,
I have not given you a precise definition of M or told you how to compute
it. A proper definition of the invariant matrix element requires more
advanced concepts from quantum field theory. For the computations

Definition of the invariant matrix ele-
ment M for a decay process.

Phase space is the volume of momen-
tum space for n particles, subject to the
constraint of fixed total energy and mo-
mentum. It is an important ingredient
in the calculation of widths and cross
sections.

The master formula for the computa-
tion of a particle width.
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In computing particle decay rates, we
must define the spins of the initial and
final particles. Alternatively, we aver-
age over the initial spin direction and
sum over the spin states of the final par-
ticles.

Definition of the invariant matrix ele-
ment M for a scattering process.

The master formula for the computa-
tion of a cross section.

Typically, in computing cross sections,
we average over the spin states of the
initial particles and sum over the spin
states of the final particles.

done in this book, you only need to accept that this formula has the
correct structure. And it does. The rate is given by the square of a
quantum mechanical matrix element, integrated over the momenta of
the possible final state particles. The expression for the decay rate is
completely Lorentz-invariant. The expression has total dimension

[~ GeV !l GeV" ™. (GeVP™™)2 ~ GeV (7.17)

which is correct.

If the final state particles have spin, we need to sum over final spin
states. The initial state A is in some state of definite spin. If we have
not defined the spin of A carefully, an alternative is to average over all
possible spin states of A. By rotational invariance, the decay rate of A
cannot depend on its spin orientation.

The formula for a cross section is constructed in a similar way. We
need the matrix element for a transition from the two initial particles to
the final particles through the interaction. This is written

(12 0| T |A(pa)Bpp)) = M(A+ B = 1+ -+ 1)

(2m)*6W (pa +ps — Y _pj) -
j

(7.18)

As before, the invariant matriz element M(A+ B — 1+ ---+n) is
indeed Lorentz invariant if the states are relativistically normalized. The
dimension of M can be computed as we did in the previous case. Here
we find

M~ GeV* ™ .
The formula for a cross section is then
1
2EA2ER|vs — vp|

(7.19)

o(A+B— f) = dIl, IM(A+ B — f)|* . (7.20)

The factor 2E42F g in the prefactor comes from the relativistic normal-
ization of the state |AB). The factor |[va — vp]| reflects the definition
(7.8), in which the cross section is multiplied by a flux factor to obtain
the rate of particle reactions. The dimension of the cross section should
be cm?, or GeV~? in natural units. The formula (7.20) gives

o~ GeV72.GeV™ ™. (GeV?™™)2 ~ GeV2 (7.21)

which is correct.

The formula (7.20) should be summed over final particle spin states.
If we do not take care to prepare the initial state in a definite spin state,
the formula should be averaged over the initial spins.

The basic formulae for computing widths and cross sections are sum-
marized in Appendix D.

7.3 Phase space

Phase space plays a very important role in particle physics. The de-
fault assumption is that final state particles are distributed according to



phase space. This assumption is correct unless the transition matrix el-
ement has nontrivial structure. So, to look for structure that gives clues
about the underlying dynamics, we must compare the results of exper-
iments with the results that would be expected if the matrix element
were constant and the process were shaped simply by phase space.

Most of the reactions we will discuss will have two particles in the
final state. So, it will be useful if I now simplify the expression for the
two-particle phase space once and for all. I will assume that the two
particles have arbitrary masses my, msy. Then

ddpl d3p2 4
dll 9 @(p_p — ' 99
/ 2 / 2m)32E, 27T)32E2( m) 6 ( P1—p2) (7.22)

Work in the center of mass (CM) frame, where p; +po = 0. The integral
over the 3-momentum delta function enforces

pL = —p2 . (7.23)
Then

P=(Ecm,0), pi=(E,p), p2=(E2—p), (7.24)

Ey =\/p?+m?, Ey =\/p?+m3. (7.25)

and (7.22) becomes

with

/ dIl, = / EeE E; 5 (2m)é(Beu — B~ Ba) (7.26)

It is most convenient to view the remaing momentum integral in spher-
ical coordinates,

d*p = dpp? df sin @ dp = dp p* d2 (7.27)

the integral over the remaining delta function becomes

1
dpS(Ecy — Ev(p) — E =
/p( om = Ei(p) — Ez(p)) |dE1 /dp + dE, /dp|
B 1 _ E1E2
|p/E1+p/E2| (E1+ Eq)p

(7.28)

Since Fy + Fy = E.,,, we find

2dQ FEFE,
dIl 2
/ 2= / 672, B> pEcyy (7.29)

1/ 2p ds2
/ AT, — 877( ) = (7.30)

or, finally,

7.3 Phase space 93

Reduction of the expression for two-
body phase space to a simple integral.
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Please note this subtlety: When there
are two identical particles in the final
state, we must integrate over only half
of phase space, so as not to count iden-
tical quantum states twice.

Reduction of the expression for three-
body phase space to a relatively simple
integral.

I strongly encourage you to work
through Exercise 7.2, which derives this
formula and gives some applications.

Oddly, two-body phase space is dimensionless; we could have seen this
already from (7.22). In the extreme relativistic limit E > my, ma, the
expression (7.30) reduces to

1 d§2
dlly = — — . 7.31
/ 27 8 4 ( )
There is an important subtlety in integration over 2-body phase space
for identical particles. Consider, for example, the possible final state
7970, Bose statistics implies that the two states

ywo(ﬁ)wo(—ﬁ» and |7T0(—ﬁ)7r0(ﬁ)> (7.32)

are tdentical. In the sum over states, we must sum over this state once
and not twice. Thus, for 7%7% and other systems of identical particles,
the integral over phase space should be taken over halfof [ dQ. The same
principle applies to multi-particle phase space when two final particles
are identical.

It is also possible to reduce the expression for three-body space to
a relatively simple formula. Work in the center of mass frame where
p1 + P2 + p3 = 0. Let the total energy-momentum in this frame be Q,
with Q° = Ecyr. The three vectors pi, P2, ps lie in a common plane,
called the event plane. The integral (7.14) can be written as an integral
over the orientation of this plane and over the variables

2F, 2F, 2F5

T3 = , 7.33
2= B (7.33)

Ty = , Lo = 3
Ecom Eonm

which obey the constraint
T+ a2+ 23=2. (734)

It can be shown that, after integrating over the orientation of the event
plane, the integral over three-body phase space can be written as

2
/ dlls = 12%2{3 dzidzy . (7.35)
The derivation of this formula is given in Exercise 7.2.

The variables 1 and x5 are to be integrated over all kinematically
allowed values, but it is often not easy to write the boundary of the
region of integration explicitly. When all three particles are massless,
the maximum energy of any particle is E; = Ecpr/2, since a particle
achieves its maximum energy when the two other particles are collinear
in the opposite direction. Then the integral in (7.35) would be taken

over the region . .
0 17([1

When some particles are massive, the integration domain does not have
such a simple form. Its boundaries can be found implicitly by imposing
the three constraints —1 < cos§;; < 1, where §;; is the angle between pj
and p; in the event plane.
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It can be shown, further, that the integral (7.35) can alternatively be
written in terms of the invariant masses of pairs of the three vectors.
For example, if m$, = (p1 + p2)? and m3; = (p2 + p3)?, then

1
/ dlly = ———— / dm3ydm3, . (7.37)

1287°E2,,

This formula leads to an important construction in hadron physics called
the Dalitz plot. This is also described in Exercise 7.2.

7.4 Example: 777~ scattering at the p resonance

One important type of structure that one finds in scattering ampli-
tudes is a resonance. In ordinary quantum mechanics, a resonance is
described by the Breit- Wigner formula

1

MNE—ER+2'F/2'

(7.38)

where Ep is the energy of the resonant state and I' is its decay rate.
The Fourier transform of this expression is

dE e iEt
o [ e
o E — Ep +i0/2
= je~Erte=Tt/2 (7.39)

Then the probability of maintaining the resonance decays exponentially

W) =e ", (7.40)
corresponding to the lifetime
TR=1)T . (7.41)

For the description of elementary particle reactions, we need a relativistic
version of the Breit-Wigner formula. I will write this in a moment.

It is useful to consider a specific example of a resonance in an elemen-
tary particle reaction. The p® meson decays to 7t~ and, conversely, it
can be produced in 7+ 7~ collisions. The p° is then found in the reaction

ata = p) —»ata~ (7.42)

as a resonance at the p mass of 770 MeV. We can represent this process

Evaluate (7.39) by integrating around
the contour in the complex E plane

e EF_;_['/Z
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In this example, Lorentz invariance and
momentum conservation completely fix
the form of the invariant matrix ele-
ment.

by a diagram of the evolution of the process in space-time

Q time

.W'i' -

* (7.43)
Using quantum field theory, Feynman introduced a method for comput-
ing M using space-time diagrams of the form shown in (7.43). In that
context, these diagrams are called Feynman diagrams. Whether or not
we use them for computation, I will use such diagrams to visualize the

elementary particle processes that we will discuss in this book.
Let us first consider the production of the p° resonance through the

reaction

7 (pa)m” (pB) = p°(pc) (7.44)

with p4 + pg = pc. For the moment, I will consider the p° as a stable
particle with a definite mass m,. The production is given by an invariant
matrix element

M(rtn™ = pY) (7.45)

We can guess the structure of this matrix element based on the known
properties of the 7 and p mesons and Lorentz invariance. The p° has
spin 1, so it has an associated polarization vector €”. In the rest frame
of the p°, € should point in one of the three spatial directions. These
three directions are characterized by the condition

pc-e=0, (7.46)

which is a Lorentz-invariant condition that can be applied in any frame.

Since I am normalizing all states relativistically, the matrix element
must be Lorentz invariant. It must also be proportional to €*(pc). The
only possible structure is

M(rTr™ = p°) = gpe* - (pa — pB) , (7.47)
where g, is a constant. The alternative structure
M(rTr™ = p°) = gpe* - (pa +pB) , (7.48)

is zero by (7.46), since pa + pp = pc. The constant g, can be seen to
be dimensionless: According to (7.19), the invariant matrix element has
dimensions of GeV, while the right-hand side has dimensions

g+ (GeV) . (7.49)
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Now we can write the cross section for formation of the p° as

1 d?’pc 1
+
%
o(mtn™ =) = 9E2E5|va —vg| ) (27)3 2Ec

IM?(2m)*6W (pc — pa —pB) . (7.50)
In the center of mass (CM) frame

pa=(E,p) pp=(E,—-p E=m,/2 p=[mi/A-ml]'/?.

(7.51)

In this frame, the p polarization vector e points in a space direction, and
S0

€ - (pa—pp)=—€-(Pa—pB) = —2€-p. (7.52)

This expression has one power of momentum, so this is a P-wave scat-
tering process, as required for angular momentum conservation. We can

rewrite 5 ) g
bc pbc 2
/ n) 250 / L 2106 (pZ —m) (7.53)

and then integrate d*pc over the energy-momentum conserving delta
function. The expression for the cross section reduces to

1
o(ntr™ = p%) = 215 ((pa + )% —m2)g> - 4]€- p)? .
( ) = ToTa i) 270+ 90— md)gE 417
(7.54)
Summing over p° polarizations, we find
- p
ol n = ) = g L (m)a(pa + o) —m) (7.55)

P

Counting the dimension of the delta function as (GeV)~™2, this has di-
mensions

GeV2 ~ cm? | (7.56)

which is the correct result.

Conversely, we can compute the decay rate for p° — w+7~. The
invariant matrix element that we need here is M(p® — 77 =), which
is the complex conjugate of (7.47). The Fermi’s Golden Rule formula
gives

1
I, =—— [ dllo| M. .
o= gy [ M (757)

Using the evaluation of 2-body phase space in (7.30), this reduces to

112 ,

r,=——"44 2y 7.58
p 2mp87rmpgp< € 71 > ( )

The average over orientations of the outgoing pions gives

(afe-712) = 42

This analysis gives a model for the com-
putation of a cross section.
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Relativistic form of the Breit-Wigner
resonance formula.

Alternatively, we would obtain the same result by averaging over the
polarization of the p°. The final result is

_ 91

= — .
6 me

p (7.60)
This, correctly, has units of GeV. The measured width of the p° is
150 MeV. This requires )
9o _o7, (7.61)
4w
a rather strong coupling.
Now we can put the pieces together, modelling the p° as a relativistic
Breit-Wigner resonance. I propose the form
1

~ 7.62
M Pz—m%-i—imRI‘R ’ ( )

where P is the total momentum 4-vector creating the resonance. If we
go to the CM frame and expand

P=(mr+AE,0) P =m%+2mprAE+---, (7.63)

this gives back the earlier Breit-Wigner expression (7.38), with the de-
nominator multiplied by 2mpg.

With this relativistic formula for the resonance, the formula for the
cross section for 77~ — p° — 7t~ is

o(m(pa)m (pB) = p° = 7 (Pa)7 (P))
1
= dIl
2EA2Eg|va — vg| / 2

3 Mt = p2())M(p°(e) = mha) |°
(pa +pB)? —m2 +im,T,

(7.64)

€

Inserting the explicit forms for the matrix elements, with the CM mo-
mentum of the initial 77 equal to 7 and that of the final 7 equal to
p’, we find
T = 0 =t

11y / do 1

dmpp 8rm, | 4w (EZ,, —m2)? +m2T2
2

o(m

3" 29,6 529,75 (7.65)
Evaluating the sum over p polarizations, we find
1 9 Q
o +o) = P D52
— = —|p- 7.66
o(r'w ) — (E%M—m%)2+m%1—%/47fp P ( )

This is a very concrete formula, for which we have determined all of the
parameters. It can be compared directly to experimental data on the
final energies and angles of the pions. Note that the factor

do )
o (7.67)
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is characteristic of a resonance in the L = 1 partial wave. The shape of
the resonance as a function of the CM energy is

’Y

<

- . "
\ > Een
Ul
e (7.68)
As a check on the formalism, I will now perform the integral over the
final state momenta in the limit of a very long-lived or narrow resonance.
To illustrate the generality of the result, I will consider a general decay
of the p° to a final state f. The argument is a bit long, but in the end
it will connect nicely to the easier formulae above.
The cross section formula for 777~ — p — f is

1
P

o 2
3 29,6 * - PIM(p? = f)
. (pA +pB)2 - m?, +1im,l,
(7.69)
Rewrite the delta function in the phase space as

2m)*6W(pa+ps — Y pj) = / éf; (2m)*6™W (pa + pB — pC)

(2m)*6@ (pe = > py) (7.70)

Now we can integrate over the final state phase space to find the total
decay rate. There is a subtlety here involving the spins. First, when we
sum over all final states, the decay rate is independent of €. Second, since
the different e correspond to different angular momentum states, when
we integrate over all final state configurations there is no interference
between the contributions from different e. With this insight, we can
combine the phase space integral in (7.69) with square of the matrix
element M (p° — f) to form the partial width for p° decay to f. Then
(7.69) reduces to

1 d*pc

+ = = —_— 4 (4) -

o(rnmn” = p—f) mpp/(27r)4 (2m)*0'Y (pa +pB — pc)
1

'S 20,8 - al? 9m,T(p— f) (7.71

- | 9p€ pA| (p%—m,%)2+(mprp)2 Mp (p f) ( )

or

+

T f) = —— 4g%p? (mp/m) -T(p = [)

. 7.72
mp 297 G m2E 4 (mr,e

o(m

Notice how nicely the cross sections to
produce a given final state, summed
over all final states, reproduces the for-
mula (7.55) for the total rate to produce
the resonance.
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Summing over all possible final states, we find

1 (m,I,/m)
+ - _ 2,2 plp
o(n™n™ = p— f)=—4g5p° - 7.73
2 = M G m T
Finally, notice that, when I', is very small, the last factor in this
expression approximates a delta function. The normalization of this
delta function is given by the integral

m,L, /7 m,l, 1 s —m?
dp? L_L = —£° tan ™ LY . (7.74
/ bo (p% - m%)2 + (mplp)? m myl, ( mpl’y ) ( )

When the resonance is narrow, we can extend the integral from —oo to
oo, to find

m,L,/m
ds p_r =1. 7.75
[ (773

In this limit, our expression collapses to

2
_ g,p
tTnT s p—f)= mL 28 ((pa +pB)? — mi) (7.76)
P

o(m

This agrees precisely with our earlier calculation of the production rate
of the resonance.
We will put these formulae to work already in the next chapter.

Exercises

(7.1) At a mass of about 500 GeV, there is a very broad (c) Compute the decay rate of o to 7t7~. You
resonance called the o with spin 0 and isospin 0. should find
It is broad because it decays very rapidly into two )
pions. (The Particle Data Group called this the Io—nta )= G~ 2 , (7.78)
f0(500).) If we imagine that the o were, instead, 16mme mo
a narrow resonance, we could study it using the 172

(2 a2
methods of Section 7.4. where p = (mg — 4m7)

(d) Compute the total width of 0. The answer
(a) Write the matrix elements for o formation as should be (3/2) of the result in (c). Why?

» ; What is the branching ratio BR(c — 7°7°)?
M(m'n? = o) = G§* 7907 . .
( ) ’ ( ) (e) Compute the cross sections for the reactions

atn” = ata” and 7t — 7970, assuming
these are dominated by the o resonance. How
do these cross sections reflect the spin 0 and

isospin 0 nature of the o7

where G is a constant and ¢,j = 1,2,3 are
isospin indices. The usual pion states are:
7t = ! £ir?, 7° = 7°. Show that the form
of (7.77) is consistent with angular momen-
tum, and isospin symmetry. What are the P (7.2) This problem derives the formula (7.35) for 3-body
and G quantum numbers for the o'? phase space and demonstrates an important appli-
(b) Compute the matrix elements M(rT 7~ — o) cation of that expression. The problem is very long,
and M(7°7® — o) in terms of G. but it will be worth your time. The very last parts



of this problem make direct contact with experi-
mental data.

In this problem, 1, 2, 3 will represent three par-
ticles with nonzero masses mi, ma, ms, and Q =
p1 + p2 + ps. In the center of mass (CM) frame,
Q = (Ecm,0,0,0). Let E1, E2, Es be the energies
of the three particles in this frame.

(a)

Define
_2Q-;m _2Q - p2 _2Q - p3
1= Q 2= Q 3= Q2
(7.79)

Evaluate these quantities in the CM frame
and show that

r1+To+x3 =2 (7,80)

Write expressions for the CM energies E; and
the CM momentum values p; in terms of the
xi, 1 =1,2,3.

Show that the invariant mass of the system of
particles 1 and 2 is related to x3 by

miy = (pr4p2)? = (1—23)Q* +m? . (7.81)

There is a similar relation for m3; and m3;.

Let 612 be the angle between the momenta
of 1 and 2 in the CM frame. Show that the
formula (7.81) determines 612 as a function
of the x;. In fact, the whole configuration
of final state momenta is specified, up to an
overall rotation, when the x; are fixed.

Write out the integral over 3-body phase
space in the CM frame. There are 9 integrals
and 4 delta functions. Three of these delta
functions can be removed by integrating out
p3. Write the resulting expression as an inte-
gral over p1, p2 and 4 angles, constrained by
1 remaining delta function.

Because we have eliminated p5 in terms of p1
and pa, the quantity F3 in the delta function
depends on |p1 + p2| and therefore on cos 62.
Do the integral over cos6i2, eliminating the
last delta function.

The remaining three angles simply rotate the
overall configuration of momenta. Integrate
over these variables.

All that remains are integrals over p1 and pa.
Using (a), convert these to integrals over zi
and x2. Then, using (b), convert these to in-
tegrals over m2; and m2;. You should find

Q2
/dH3 = 1287T3 /dx1dx2

(i)
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1

= 580 / dm3sdm?s (7.82)

It is amazing that the integrand has no depen-
dence on x1, x2, x3! Dalitz suggested that, for
a 3-body decay A — 1+2+3, we should make
a scatter plot of events in the plane of m2,
vs. m?;. If the matrix element is constant,
the data points will scatter evenly over this
plane. Write a formula for I'(A — 1+ 2 + 3)
and justify this statement. If there is a res-
onance, that will be apparent as a clustering
of points in some region. The plot of m2; vs.
m3, is called the Dalitz plot.

The integral in (7.82) should be taken over all
kinematically allowed values. It takes a little
work to find the boundary of the integration
region. Study this first for the case in which
a particle of mass M decays to three parti-
cles all of which are massless. In this case,
there are allowed configurations all the way
out to the boundaries m?; = 0, m3; = 0,
m3, = 0. Draw the region of integration on
the (m3s,m35) plane. For each segment of the
the boundary, draw a typical momentum con-
figuration. You should find that the bound-
aries of the Dalitz plot are given by configu-
rations in which two momentum vectors are
collinear and the third is directly opposite,
balancing the momentum.

Now consider the case of the decay of a par-
ticle of mass M to three particles with m; =
mg = 0, mg = m > 0. Again, the bound-
aries of the Dalitz plot are given by configu-
rations in which two momentum vectors are
collinear and the third is directly opposite.
Work out the positions of the boundaries in
the (m?5, m33) plane. The kinematic formu-
lae (2.19) will be helpful, as will the result in
part (c) above.
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x10°

m¥(nn%)/MeV?/c]

2000

x 10
m*(n*n®) /IMeV? /]

0 500 1000 1500 2500 3000

e figure above shows the Dalitz plot for a
1) The fig b h he Dali lot f
process in pp annihilation at rest,

+ (7.83)

pp—o i,
from (Abele 1999). Resonances are apparent.

Identify the resonances as specific hadrons.

The following figure shows the Dalitz plot for
the decay

D’ - K ntr? | (7.84)
from (Kopp 2001). I hope you can make out
a heavy horizontal band across the lower part
of the plot, a vertical band on the left, and a
diagonal band on the right. These bands are
obscured by the fact that interference effects
cause the bands to be dark in some places but
light (zero) in others. Identify these bands as
specific hadrons.

3111100011
— 1

20— — T

'] (n*n“)i (GeV/c?)? R
o n

1~4
12

1 2
M (K2 (GeV/c?)?

s

(7.3) In Section 7.4, I wrote a formula for a reaction
A+ B — 1+ 2 mediated by a narrow resonance
R that suggests the following general form:
1

= dIl
2EA2EB\vA—vB|/ 2

_ZM(A+B—>R(E)).M(R(6)—>1+2) :

P2 — m% +imgrlr
€

oc(A+B—1+2)

)

(7.85)
where P = (pa + pg). Quite generally,

M(A+ B — R(e)) = (M(R(e) = A+ B))" .
(7.86)
(Technically, this follows from time-reversal invari-
ance for expressions at lowest order in quantum
field theory corrections.) Assume this statement
for the purpose of this problem. In the equation
above, € represents the spin state of R. The parti-
cles A, B, etc. might also have spin. Let pa, p1 be

the momenta of A and 1 in the rest frame of R.

(a) Show that

1 (Qﬂ)
16mm?% “mrg

(IM(R(e) > 1+2)]%)

I(R—1+2)=

(7.87)

where the right-hand side is averaged over
the directions of the momenta of 1 and 2
and summed over the spins of these particles.
Note that the result is independent of €, the
spin state of R.

Use this observation to write the expression
(7.85) in terms of partial widths. Assume for
simplicity that that A, B, 1, 2 are spin 0 par-
ticles. Let R have spin J. Show that

oc(A+B—1+2)

_ 4rm%
2

(27 +1)
A

T(R—> A+ B)I'(R—1+2)
(E&a —mp)* +mpl'g

(7.88)

Let A, B, 1, 2 have spins Ja, Jg, Ji, J2. As-
suming an unpolarized initial state, generalize
the formula in (b) appropriately. Show that
the factor (2J + 1) in the expression in (b) is
replaced by (2J+1)/(2J4+1)(2Jp +1), and
that this factor does not depend on Ji or Ja.



(d) Now consider the case of the J/¢. In the

previous problem set, we learned that the
branching ratios of the J/¢ to ete™ and
putp” are equal to B = 6%, and that almost
all other decays of the J/1 are to hadrons.
Assume for simplicity that these three modes
are the only modes of J/v decay, with branch-
ing ratios B, B, and (1 — 2B), respectively.
Write expressions for the cross sections for
ete” —wete™, ete™ = puTp, and ete™ —
hadrons in the vicinity of the resonance, in
which the only free parameters are m/y, I'yy
and B. You may ignore non-resonant contri-
butions to the scattering amplitude, and con-
sider the electron and the muon to have zero

()
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mass.

Evaluate the expressions for the cross sec-
tions at the peak of the resonance. Show
that the peak value of the cross section for
ete™ — hadrons essentially measures B or
['(J/¥ — ete™). This is somewhat counter-
intuitive. Write an explicit formula for B in
terms of the peak cross section for ete™ —
hadrons.

Show that, with B determined, the integral
over the cross section through the resonance
- deCMJ(6+67 — hadrons) — determines
the width I';,,,. Notice that we can measure
I'y/y without having to make a detailed mea-
surement of the shape of the resonance.






Part 11

The Strong Interaction






Electron-Positron
Annihilation

We now begin our search for a fundamental theory describing the strong
interaction. The first approaches to this problem attempted to build the
theory from the properties of the cross sections for the scattering of pions
and other mesons at low energies. Much later, it was realized that one
could gain much more insight from the study of meson production by the
photon and other electromagnetic probes. Most remarkably, the study of
electron-positron annihilation to mesons showed simple and remarkable
properties that are readily interpreted in relation to the quark model
of hadrons discussed in Chapter 5. In this chapter, I will describe the
important features of this reaction.

For reference in interpreting the results on hadrons, it will be useful
first to understand the purely electromagnetic process of eTe™ annihi-
lation to a pair of muons. Using this process, I will also introduce the
current-current interaction, a basic coupling of spin % particles. This
interaction provides the basis for fermion scattering by electromagnetic
forces. Its properties are especially simple at very high energies, where
the fermion masses can be neglected. By performing experiments at high
energies, we can see whether the characteristic features of this coupling
appear in reactions involving the other fundamental forces. Indeed, we
will see that it plays a central role in the dynamics for both the strong
and the weak interaction.

8.1 The reaction ete™ — utpu~

We begin our study with the reaction e¥e™ — pTp~. The matrix ele-
ments for this process can be constructed by breaking the process down
into components. First, the eTe™ state is annihilated by an electromag-
netic current. This current couples to a quantum state of electromag-
netic excitation. Finally, this state couples to another current matrix
element describing the creation of the muon pair. These elements are
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The evolution of a quantum mechanical
process in space-time is described by a
Feynman diagram.

A wvirtual particle is a particle that ap-
pears in a process as a resonance off its
mass shell.

The current-current interaction.

visualized in the Feynman diagram

- PL P4

PR
1

<7 Ne
) Ps (8.1)

In drawing this diagram, I label each line with the momentum carried by
the particle or resonance. We will make use of these momentum labels
later in this chapter.

I will describe the intermediate photon state as a Breit-Wigner reso-
nance at zero mass. Taking the limit of zero resonance mass in (7.62),
it would then contribute to the scattering amplitude a factor

1
2’ (8.2)
where ¢ is the momentum carried by the photon from the initial to
the final state. We consider the reaction at energies large compared to
the muon mass and, certainly, very far from the mass shell condition
g% = 0 for a photon. A resonance contributing to an elementary particle
reaction very far from its mass shell is called a wvirtual particle. In this
case, we say that the reaction is mediated by a wvirtual photon.

The remainder of the matrix element is formed from the product of
two electromagnetic current operators, one of which annihilates the eTe™
pair, the other of which creates the muon pair. Explicitly

METe = 1) = (=) ([ 710) (=) Ol fee™) - (53)

Note that the electric charges of the electron and the muon, (—e) in
both cases, appear as the strengths of the couplings of these states to
the electromagnetic current.

The basic operator structure

3" Ju (8.4)
is called the current-current interaction. We have seen in Section 3.3 that
the photon interacts with other fields, in the Lagrangian description of
electromagnetism, by direct coupling to the current. The current-current
structure then arises naturally in electromagnetism. In fact, it will give
the basic form of the scattering amplitude in any model in which the
interaction is mediated by vector fields.

Our next task is to turn the expression (8.3) into an explicit formula
that we can compare to the measured cross section for eTe™ — putpu™.
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8.2 Properties of massless spin-% fermions

To evaluate (8.3), we need to compute the matrix elements of the
currents between fermion states. For our present purposes, I consider
energies so large that both the electrons and muons are moving rela-
tivistically and their masses can be neglected. I will now show that the
dynamics of fermions and the calculation of matrix elements is dramat-
ically simplified in that limit.

Consider, then, the properties of the Dirac equation when we take the
mass of the fermion to zero. In this approximation, the Dirac equation
takes the form

"9, ¥ =0. (8.5)

To analyze this equation, it is convenient to choose the representation
(3.42) of the Dirac matrices

re() (D) e

It is convenient to write this representation as

= (;)u UO“> 7 (8.7)

defining the matrices
ot =(1,5)*", ot =(1,-a)" . (8.8)

Using this representation, and writing

- (jﬁ;) (8.9)

the Dirac equation splits into two 2-component equations,
ic - 0Yr =0 ic-0Yr =0 . (8.10)

We will see in a moment that the fields ¢, and g annihilate different
electron states and create different positron states. These states are not
connected by the Dirac equation in this massless limit. When we couple
the Dirac equation to electromagnetism, we modify the derivative to
include the A, field,

0, — Dy = (0 — icA,,) . (8.11)

This preserves the separation of the fields ¥ and 1r and of the asso-
ciated electrons and positrons. The two pieces of the Dirac field com-
municate only through the mass term. Thus, for zero electron mass
or for very high energy where the mass can be neglected, there are es-
sentially two different species of electrons, e; and ey. Electromagnetic
interactions cannot turn electrons of one kind into the other.

When the fermion mass is set equal to
zero, the Dirac equation takes an espe-
cially simple form.
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Definition of helicity.

We now find the plane wave solutions of the 2-component equations.
Look first at the ¥ equation.

(i +iG - V)r =0 . (8.12)
A plane wave solution has the form
Yr(x) = ugp(p)e FHIT (8.13)

where ug(p) is a 2-component spinor. For simplicity, look for a plane
wave moving in the 3 direction: p = p3. Then

E-— 0
(E — po?) uR:< 0 p E+p>u3=0. (8.14)

There are two solutions. The first has £ = p > 0; this is
YR = (é) emiBtHIB (8.15)
This state carries a spinor with spin S3 = —&—%, that is, spin up along the

direction of motion. The corresponding electron moves at the speed of
light and spins in the right-handed sense,

R

(8.16)
The field operator ¥)g(x) destroys an electron in this state. The second
solution has negative energy £ = —p < 0.
_ [0\ +iBt+ima®
Yr = (1) e . (8.17)

This solution corresponds to the creation of a positron by the Dirac
field. The positron will be moving in the —3 direction and will have a
spin opposite to the spinor shown. This spinor has §% = —%, so the
positron has S = +%, which is spin down with respect to the direction
of motion. This is a positron moving at the speed of light and spinning

in the left-handed sense,

+
Q
% (8.18)

To describe these states, it is convenient to define the helicity of a par-
ticle, equal to the spin projected along the direction of motion,

h=p-S. (8.19)

The solutions of the 1z equation correspond to an h = —l—% electron and
an h = —% positron. These states are particle and antiparticle.
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The v, equation

(i0, —iG - V) =0 (8.20)

is solved in a similar way. Look for plane waves with g = p3. These

have the form
_ (0 —iEt+iEa?
¢L = (1> (& .

for positive energy, and

(8.21)

Vr = <(1)> ptiBt+iBL® (8.22)
for negative energy. The first of these describes the destruction of a
massless left-handed electron moving in the +3 direction; the second
describes the creation of a massless right-handed positron moving in the
—3 direction.

We can find the solutions for electrons and positrons moving in other
directions by rotating the expressions above. These plane wave solutions
appear in the matrix elements through which massless Dirac fields create
and destroy particles. For example,

(0l Yr(x) leg(p)) = ur(p) e ",
(ef ()| ¥r(x)10) = vi(p) ™™ (8.23)
Note that, by convention, the 2-component spinor is called u(p) in the
destruction of electrons and v(p) in the creation of positrons. The full
theory of the quantum Dirac equation gives the correct normalization of
the u and v spinors. The precise form of the spinors is, then,

destruction ‘ creation
ep: ur(p) =V2E & | ef: vr(p) =V2E &
er: up(p)=vV2E & | ef: wr(p) = V2E &

where, in these formulae, £, £&_ are the spinors with spin up and spin
down, respectively, along the direction of motion. The normalization
factor of v2F will give the correct mass dimensions when we use these
expressions to evaluate matrix elements. We will see examples of this in
the next section.
In the basis (8.9), the full Dirac Lagrangian, including the fermion
mass term, takes the form
L= ¢h(io - O)r + v} (iT - )b — m(Phyr +vivr) . (8.24)
The components ¥r and v, are mixed by the mass term. Equivalently,

any helicity flip from e}, to e or vice versa requires a factor of m and
so is suppressed at high energy by a factor m/E.

In the zero mass or high energy limit,
we treat electrons as belonging to two
distinct species of particles: ej, and its

antiparticle ez, and e; and its antipar-

+

ticle ep,.

For a fermion at high energy, any flip
of helicity from e to e or vice versa
brings in a factor m/E.
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The evaluation of (8.3), described in
this section, is lengthy and somewhat
technical. Please work through this
derivation carefully, step by step. It is
the model for many other calcuations
done later in this book.

Definition of helicity conservation.
This special simplification appears
specifically for massless fermions inter-
acting through current-current interac-
tions.

8.3 Evaluation of the matrix elements for ete- —
+ p—
php

With these ingredients, we can construct the expectation values of j*
in the expression for the ete™ — u™p~ matrix element above. The
matrix elements will depend on the spin states of the electron, positron,
and muons. That analysis will be important to get an explicit theoretical
preduction for this reaction. But also, at the same time, this analysis will
illustrate how Feynman diagrams such as (8.1) and the corresponding
matrix element formulae such as (8.3) encode the physics of elementary
particle interactions. Please follow, in particular, the flow of angular
momentum from the ete™ system to the virtual photon and then to
the p+ ™ system. This will determine the observable form of the final
answer for the cross section.

Begin with the matrix element to annihilate a right-handed electron
and a left-handed positron,

(015" |er(p=)ef (p+)) - (8.25)

We saw in (3.64) that, for a Dirac field, the conserved electromagnetic
current is
G = UyH (8.26)

Inserting the representation of the Dirac matrices
01 0 ot o’ 0
Okt = =
7 (1 0) (U“ 0) <0 a“) ’ (8.27)

Gt = latyn + ot yg . (8.28)

Then, also, the current splits into pieces for left- and right-handed elec-
trons. The ey can scatter into an ey or annihilate an eJLr, but—in the
limit of zero electron mass—it cannot turn into an e; or annihilate an
e} These selection rules are called helicity conservation. Helicity con-
servation applies only to the massless limit of the Dirac equation; for
a massive fermion with energy F, the amplitude to flip from L to R is
proportional to m/E.
We can now evaluate the matrix element in the CM frame

- . N
e —> < =) -‘—) 3

with electron and positron momenta

we find

(8.29)

p— :(Ea()aO)E) p"r:(E?OaOy_E) (830)
The expression (8.25) becomes

(Ol ¥ho"vr |er(p-)ef (p4)) - (8.31)
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The field 1 i annihilates the ey, giving a factor ugr(p—). The field z/JJI[-i
annihilates the e}, giving a factor v} (p+). Putting in the explicit values,
we find that (8.31) becomes

L)t un(p-) = VIE(0 1) (1,6) VIE ( g )
= 2F (0,1, +4,0)" . (8.32)

The result is very attractive. The vector
& = —=(1+12) (8.33)

represents angular momentum J3 = +1 along the 3 axis. This is the total
angular momentum—ifrom the electron and positron spins—entering the
reaction.
- —_ +
Ry ——» ——
(8.34)

The angular momentum is transferred from the ete™ system to the
virtual photon. Finally, we find

015" leg(p=)ef (p+)) = 2E - V2 (0,&)" . (8.35)

A current has the units of 1/cm?® (for p) or 1/cm? sec (for j), both of
which are GeV? in natural units. The two-particle state with relativis-
tic normalization has the units GeV~2, according to (3.92). Then the
matrix element should have units of GeV, and it does.

A similar calculation gives the matrix element for annihilation of
eLeR We find

0|JM ’eL eR(p+)> = <0‘ q/’LUW/}L |6L eR(p+)>

= vk (p+)7"ur(p-)

2E(1 0) (1,-3) @(?)

= —2F (0,1,—4,0)" . (8.36)
This gives
013 o7 (p-)ef(p)) = —2E V2 (0.6 . (837)

where

(1-142) (8.38)

is the vector representing the J> = —1 angular momentum state.

The other two electron helicity combinations, epe}, and e; e}, make
no contribution to the annihilation rate in the limit of zero electron
mass. Similarly, in the muon pair production, only the helicity states
uéuz and py, ME can appear. The matrix elements for the production

—ptpT

113
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Matrix elements for the creation of
massless fermion pairs by a current.
Note that the matrix elements for the
two other possible helicity states are
forbidden by helicity conservation.

It is always a good idea, for any Feyn-
man diagram calculation, to make a di-
agram like this one showing the explicit
kinematics of the reaction.

of these states by a current are the complex conjugates of the matrix
elements computed above, oriented appropriately along the direction of
the muon momenta. Let €/ and €’ be the vectors representing angular
momentum +1 and —1 along this axis. Then

()t (W) 5"10) = 2B - V2 (0,€/7)"
(g W)k@)] 3 10) = 2B - V2 (0,&7)" . (8.39)
Now we can assemble the pieces. For the reaction egez — ,u}},uj{, the
matrix element (8.3) evaluates to
2

e S o
M v 202E)* e/ &

=—2%¢/" & . (8.40)

I have used the fact that, in the CM frame, ¢ = (Ecy, 6), with Eopr =
2E. The final result should be dimensionless, as we expect from (7.19).
This follows from the observation that we made in (2.34) that the electric
charge e is dimensionless in natural units.

So far, we only have abstract expressions for the matrix elements. To
make this more concrete, we need to evaluate these expressions for the
particular kinematics seen by an experiment. To do this, it is useful first
to write out the various momentum vectors and polarization vectors and
spinors explicitly in the CM frame.

b ~
A
e —> /\'? "
4

»

wd

(8.41)
p— =(E,0,0,F) p_ = (E,Esind,0, E cos0)
pr = (E,0,0,—F) p'. = (E,—FEsin6,0,—E cosb) ,
& = (1,4i,0)/V2 &, = (cos @, +i, —sinf)/V2 . (8.42)

The expressions for €4 respect the condition that €4 should be orthog-
onal to the corresponding momentum vector. From these values,

e 1
€ ep =" e :5(1+c059) ,
1
e e =& = 5(1 —cosf) . (8.43)
Putting the explicit polarization vectors from (8.42) into this equation,
we find the four nonzero matrix elements

(Meger = npup)l* = [Mlepeq — ppup)* = e*(1+ cos0)? |
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(M(eger = npup)l* = [Mlepeq — ppnp)® = e*(1 - cos0)* .
(8.44)

8.4 Evaluation of the cross section for ete™ — putpu~

Once we have derived the result (8.44), we can put the expressions for
the matrix elements into (7.20) and find the predictions for the ete™ —
pTp~ cross sections. We can use (7.31) to evaluate the phase space
integral.

I will work out the cross sections first for processes in which the leptons
have definite polarization. For epef — pput, we find

1
- I 2
7 2E~2E~2/d 2 M|
1 1 dcosf
= — 1 )% . 4
QE%M&r/ 5 e* (14 cosb) (8.45)

This gives the different cross section for the reaction,

do , _ _ o’
m(eReJLr — pppf) = ==5—(1 +cos6)? . (8.46)

Notice that the angular distribution is peaked in the forward direction.
The ete™ system, which has J3 = +1, transfers its angular momentum
to the final state most effectively when the pp is going forward.

In all, the process eTe™ — p+u~ has four amplitudes for the various
spin states that are permitted by helicity conservation. All of the dif-
ferential cross sections have the same structure. For ezef — uppu) and
epel = HL IR

do ma?

_ 2
Teosh QE%’M(l +cosf)” , (8.47)

and, for ege}f — /JZ,UE and e;e}g — ,ug/fi,

do mo?

dcosf 2E%,

(1 —cosh)? . (8.48)

It is possible to carefully prepare beams in polarized initial states
and to gain information about the the muon polarization by stopping
the muons and analyzing their decays. But, typically, high energy
beams contain particles with random spin orientations, and the muon
polarization is also not observed. To represent this, we average over all
possible initial spin states and sum over all possible final states. This
gives the final result for the differential cross section

do _ ra?
dcosf  2EZ,,

(14 cos?6) . (8.49)

The quantity do/dcos € is a differential
cross section. It predicts the distribu-
tion of events as a function of cos 6.

Typically, to compare predictions from
Feynman diagrams to measured cross
sections, we must sum over final spin
states and average over initial spin
states.
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The final result for the ete™ — putp—
cross section, in physical units.

This angular distribution is characteristic of the fact that the muons in
the final state have spin % In Exercise 8.1, you can compute the angular
distribution for ete~ to particles of spin 0 and show that the result is
qualitatively different from this one.

The integral of the differential cross section over cosf gives the to-
tal cross section, which in turn predicts the total rate for muon pair

production in eTe~ annihilation. The result is

dra?

o= SE2,, (8.50)
This result has the units of GeV~2, as expected. No dimensionful pa-
rameter appears in the formula except for the center of mass energy, so
the cross section must decrease as 1/E% ;.

The standard unit used in nuclear and particle physics for expressing
cross sections is the barn,

1 barn = 107 cm? = 100 fm? . (8.51)

This is an area somewhat larger than the cross-sectional area of a large
nucleus. The proton-proton scattering cross section at high energies is
about 0.1 barn = 100 millibarn (mb). As we will see in Chapter 13,
important cross sections at the Large Hadron Collider have the size of
nb = 107 barn, or smaller. The conversion factor from GeV~2 to barns
is

(he)? = 0.389 GeVZ mb . (8.52)

Using this conversion factor, we can write the spin-averaged cross section
for efe™ — putpu~ as

(8.53)

with Ecps given in GeV.

The formulae we have just derived are the leading-order predictions
of QED. They do indeed give an accurate description of the rate and
angular distribution of the process ete™ — utpu~ for energies up to
about 30 GeV. Above this energy, effects of the weak interaction must
also be included. We will discuss this in Chapter 17.

8.5 e'e annihilation to hadrons

With this well-understood QED process as a reference point, we can
now discuss the process of ete™ annihilation to hadrons. The main
products of this reaction are observed to be 7 and K mesons. I will
consider this process at multi-GeV center of mass energies, energies much
higher than the masses of these mesons, and of the related spin 1 mesons
p, w, K*.

The quark model makes a prediction for the cross section for ete™
annihilation to hadrons, but it is such a simple one that we are tempted

The s
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to reject it out of hand. Imagine that we are at center of mass energies
at which we can ignore the quark masses. Then, since quarks are spin—%
particles, the structure of the QED cross section for quark pair produc-
tion is exactly the same as that in the process of muon pair production
that we have just analyzed. If we stop here, we will be ignoring the
effects of the strong interaction, which play an essential role in forming
the mesons that appear in the final state. However, perhaps this model
would be useful as an estimate of the order of magnitude of the cross
section or as a reference value.

This model is so simple that we can write the cross section by making
just three changes in the calculation of muon pair production. The basic
elements of this calculation are unchanged, because we are assuming that
quarks are spin % particles, and that the energy is high enough that we
can ignore their masses. The changes are the following: First, we must
sum over the relevant quark species for which we can plausibly ignore
the masses at the energy we consider. Second, we need to change the
value of the electric charge of the produced particles, from —1 for the
muon to Qy = —|—§ for u, cand Qy = —% for d, s, b. In (8.3), the matrix
element M contains one power of the final electric charge, so the cross
section is proportional to ch. Finally, we learned from the structure
of baryons that quarks carry a hidden quantum number called color,
which takes three values. We need to sum over the final color states in
computing the total cross section. Thus, our simple model predicts the
same angular distribution as before

do

dcosﬂ(e+e_ — hadrons) ~ (1 + cos?6) , (8.54)
while the total cross section is modified to
4 2
o(ete” — hadrons) = > 3Q%- ?)ELS‘ , (8.55)
f CM

where the sum is taken over f = u,d, s and also ¢, b if the CM energy
is high enough that those quarks can be produced. This expression can
also be written in terms of the ratio of the production rates for hadrons
and muons, which can be directly measured in the same experiment at
any center of mass energy. For the contributions of different sets of
quarks, the model gives

u,d, s
; % u,d,s,c (8.56)
f 35 wu,d,s,cb

o(ete™ — hadrons) ZBQQ B g
olefem — utpu~) a

How well does this oversimplified model work? Figure 8.1 shows the
experimental data on the total cross section for the process ete™ —
hadrons. The top plot gives the absolute cross section, showing clearly
the Eajzw dependence. The bottom plot shows the ratio of the hadronic
and pt ™ cross sections. The solid green line shows the prediction of the
lowest-order theory given above. The horizontal red curves show a more

+
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The naive quark model gives this very
simple prediction.
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Fig. 8.1: Measurements of the total cross section for e™e™ annihilation to
hadrons as a function of energy, compiled in (Patrignani 2016). The lower
figure shows the ratio R = o(eTe™ — hadrons)/o(e*e™ — utp™). The green
dotted curve is the prediction (8.56). The vertical red lines show the ¢ and T
resonances. The horizontal red curve is the prediction (11.72).
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Fig. 8.2: Event display from the SLD experiment showing a typical ete™
annihilation to hadrons event at a center of mass energy of 91 GeV (figure
courtesy of SLAC and the SLD collaboration).

sophisticated theory, to be explained in Chapter 11. The predictions
break down in a big way at the energies of the lightest mesons of each
new type. In particular, the J/¢¥ and Y resonances appear as huge
delta functions on this plot. Away from quark thresholds, however, the
formula that we have derived works amazingly well. The feature called
Z is due to the weak interaction; we will study this resonance in Chapter
17.

The prediction for the angular distributions can also be tested exper-
imentally. Before considering any method of detailed comparison, we
need to ask what ete™ — hadrons events actually look like at high en-
ergies. Figure 8.2 shows a typical event at Ecpys = 91 GeV. The tracks
are mostly charged pions and kaons. The tracks clearly form two bun-
dles, with 7 and K mesons moving in opposite directions. We call such
a bundle of hadronic tracks a jet. The final states of ete™ annihilation
to hadrons at high energy typically consist of two back-to-back jets.

It is very tempting to interpret the jets as the observable manifestation
of quarks and antiquarks. Quarks are not observed in isolation, only as
constituents of hadrons. However, it is not hard to imagine that a high-
energy quark might induce the creation of more quark-antiquark pairs
and that all of these might reform into pions and other hadrons. In

et
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In high energy reactions, quarks and

antiquarks are seen as jets,
streams of high-energy hadrons.

narrow
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Fig. 8.3: Distribution of the orientations of jet axes in e*e™ annihilation to

hadrons as a function of |cosf|, as measured by the ALEPH experiment at
the LEP eTe™ collider, from (Decamp et al. (1990)).

this understanding, the central axes of the jets would be proxies for the
original directions of the quarks.

Figure 8.3 shows the orientation of the jet axes in eTe™ annihilation to
hadrons at 91 GeV. It is not easy to tell quark jets from antiquark jets, so
the distribution is shown for | cos 6|. However, the functional form is very
close to (1 + cos?f)! Apparently, the overall momentum flow in ete~
annihilation events directly reflects the electrodynamic interactions of
quarks, and the identification of quarks as spin—% particles. There is
almost no effect of the strong interactions of quarks on this property of
the final state.

How is it possible that the strong interactions can be strong and yet
these predictions for hadronic processes can be so accurate? More sur-
prises lie ahead.

Exercises

(8.1) The spectroscopy of mesons and baryons tells (a) The matrix element for the creation of a spin
us that quarks are spin—% particles, but we can 0 particle of charge 1 and mass m and its an-
also check this from the angular distribution in tiparticle by the electromagnetic current has
eTe™ — hadrons. To analyze this, consider the the form

alternative hypothesis that quarks are spin 0 par- _ n "
ticles. Consider their electrodynamic interactions <¢ (p-)e™ (p 7L)| €l (m) |0>
at very high momentum where masses can be ne- =e(p_ — py)letP=TTIPET (8.57)

glected. To justifiy this, note that the right-hand side



of this equation must be a 4-vector built from
the boson momenta p* and p/,. Show, using
current conservation (9.j%,; = 0), that the
structure (p— + p+)* cannot appear. Note
that p_ and p; are on shell, i.e., p> = p3 =
m2.

Draw the Feynman diagram for ete™ —

¢+t¢~. Write the expression for the matrix
element for this process the cases epe} and
ey €. You will need to use (8.57) and the ma-
trix elements of the electromagnetic current
between electron states, (8.35) and (8.37).

Draw a diagram showing the kinematics of the
process. Work in the center of mass frame,
with the electron and the spin 0 boson hav-
ing initial energy E. Take the initial electron
and positron directions to be along the 3 axis
and the final boson directions to be along the
vector 7 = cosf3 + sin 1. Write out the four
momentum 4-vectors.

Evaluate the matrix elements from part (b),
square them, and compute the differential
cross section for eTe”™ — ¢ ¢T, averaged
over initial spins. Compare to the result
(8.49) for production of spin—% particles.
Compute the total cross section for ete™ —
¢~ ¢". Show that, for m = 0, this is 1/4 of the
corresponding result for eTe™ annihilation to
spin-% particles.

(8.2) The vector mesons p°, w, and ¢ can decay to eTe™

or to ;ﬁ,uf.

The decay rates to ete™ are better

known, since these can be measured from the in-

+

verse processes eTe” — p’,w, ¢.

(a)

At the Particle Data Group website (Patrig-
nani et al. 2016), look up the total widths of
the vector mesons and their branching ratios
to eTe”. Compute the partial decays widths

of the three vector mesons to ete™.

To understand the relative sizes of these
widths, we will need to construct the quark
model wavefunctions of the three vector
mesons. Here is a mathematical warm-up ex-
ercise: For any group G, let {]a)} be basis
states for a representation, and let {|a)} be
basis states for the complex conjugate repre-
sentation. The generators of the group act on
the states of the representation by

T'|a) = (t')as [b) - (8.58)
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For example, SU(2) acts on spinors by

i i
J*a) = (F)av [b) - (8.59)
Then the action on the complex conjugate
representation is

T fa) = (—t'")a [b) (8.60)
where T denotes the matrix transpose:
(t’T)ab = (t")ba. Verify this by showing that

'3 la)[@) =Y (T ]a)) [@)+]a) (T7 @) = 0

’ (8.61)
Then the state

(8.62)

> |aa)

is invariant under G, as it should be.

Now write the quark model flavor wavefunc-
tions p°, w’, ¢°, analogous to the wavefunc-

tion

p") = |ud) . (8.63)
For ¢, this is easy. For p° and w®, you should
write different linear combinations of |uu) and
|d3>. To obtain the correct combinations, you
will need to use the fact that w° is an isospin
0 state, while p° is part of an isospin 1 multi-
plet.

The matrix element for a vector meson to de-
cay to eTe” is proportional to

(0] 3l (0) V), (8.64)
where V = p, w, ¢ and
Jev= D, Qrby"vr. (865

f=u,d,s

Work out the relative size of the matrix ele-
ments (8.64) for p, w, ¢, using the approxi-
mation that the three quarks u, d, s have the
same masses and strong-interaction dynam-
ics, so that they differ only in their electric
charges. Notice that both the u and d quark
terms in j%,, contribute in the p and w cases,
with a different sign for the interference in the
two cases.

In this same approximation, find the ratios of
the decay rates. Compare to the ratios of the
partial widths found in (a).






Deep Inelastic Electron
Scattering

In the previous chapter, I showed that the main features of the reaction
of ete™ annihilation to hadrons could be described to quite a good
approximation by a naive model in which we ignore the fact that quarks
have strong interactions. The discovery that quarks can be described by
Spin—% particles with simple electromagnetic interactions was actually
made, not with this process, but in an earlier experiment studying a
reaction in which this conclusion was even more surprising.

When electrons are scattered from protons, the simplest reaction that
can take place is elastic scattering, ep — ep. As electron scattering
is observed with larger transfers of momentum to the proton, elastic
collisions become infrequent. Most scattering events break the proton
open and produce a large number of hadrons. When the total mass of
the hadrons is much larger than the original proton mass, the reaction
is refered to as deep inelastic electron-proton scattering.

We will see in this chapter that the deep inelastic regime of electron-
proton scatting is well described using a picture in which electrons scat-
ter from free quarks inside the proton. If it is surprising that strongly-
interacting quarks behave as free particles when they are created out of
nothing in e*e™ annhilation, it is more surprising that it is possible to
ignore the strong interaction, to a first approximation, in the scattering
of electrons from quarks inside protons.

Deep inelastic electron scattering was first studied in the 1960’s, at
the SLAC linear electron accelerator. In this chapter, I will describe the
results of this experiment, carried out by a SLAC-MIT collaboration
(Bloom et al. 1969), and its interpretation.

9.1 The SLAC-MIT experiment

The original motivation of the SLAC linear accelerator was to provide
very high energy electrons to study the structure of the proton through
elastic scattering. In the 1950’s, Robert Hofstadter at Stanford studied
the elastic scattering process e”p — e~ p and similar elastic scattering
reactions for nuclei (Hofstadter 1957). He mapped out the size of the
proton and the shapes of nuclei. SLAC was built to continue these stud-
ies to higher energy and perhaps identify structure within the proton.

Figure 9.1 shows a photograph of the deep inelastic scattering experi-
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Fig. 9.1: Layout of the SLAC-MIT deep inelastic scattering experiment (fig-
ure courtesy of SLAC). Electrons strike a hydrogen target just under the
cylinder on the left of the figure. Scattered electrons, moving left to right,
pass through a string of magnets that measure their momenta, and then into
the large electromagnetic calorimeter on the right.

ment. In this description, “deep” means very large momentum transfer.
The cross section for elastic electron scattering from a proton falls off
rapidly above 1 GeV momentum transfer, indicating that the smallest
structures visible in this reaction are of size ii/1 GeV or larger. To see
down to smaller distances, we must analyze scattering with a momentum
transfer above 1 GeV, which would necessarily be inelastic scattering.
The idea of the SLAC-MIT experiment was very simple: Bring in an
electron beam with as high an energy as possible. Let electrons dis-
rupt protons in a hydrogen target, giving up energy and momentum in
the process. Then measure the energy and momentum of the outgoing
electron to find the energy-momentum transfer in the reaction.

/
- @’4
e —_—

H{t af 39.*

(9.1)

The odd genius of this experiment was that it ignored the hadronic final
state and instead concentrated on measuring the 4-momentum of the
outgoing electron with high precision. In Fig. 9.1, the electrons enter
from the left. The figure shows the line of magnets used to bend and
momentum-analyze the electron. The large orange box on the right
is an electromagnetic calorimeter used to discriminate electrons from
pions produced in the scattering reactions. The detector was mounted
on railroad tracks that allowed it to be swung around to any angle with



respect to the beam.
A Feynman diagram for the process of electron scattering has the
form

(9.2)

The electron interacts through a simple current matrix element
<e‘(k’)‘ Vs ’e_(kj)> . (9.3)

The current couples to a virtual photon, which then couples to another
current acting on the proton. The current matrix element between the
proton and the particular hadronic final states are probably not simple.

Denote the initial electron momentum by k and the final electron
momentum by k’. We prepare k and measure k', so we know that the
momentum of the virtual photon is

qg=(k—Fk). (9.4)
The mass W of the final hadronic system is given by
W2:(P+q)2:ml27+2P-q+q2. (9.5)

In my discussion here, I will use the simplifying approximation that
the energy transfer in the scattering process is much larger than the
mass of the proton, so that we can ignore both the electron and proton
mass. For a scattering process, ¢ is spacelike, that is, there is a frame
where the energy transfer is zero and only momentum is transfered. It
is convenient to write

¢ =-Q. (9.6)

Large Q? indicates large momentum transfer to the proton.

The cross sections as a function of W for increasing values of Q? are
shown in Fig. 9.2. As W increases from left to right in each plot,
we see the A, N*, etc., baryon resonances. However, at large Q2, the
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Kinematics of deep inelastic scattering.

Definition of Q2 for deep inelastic scat-
tering.
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Fig. 9.2: Cross section for deep inelastic ep scattering as a function of the final
hadronic mass W, measured by the SLAC-MIT experiment, at low, medium,
and high values of @2, from (Bloom et al. 1969).



resonances become less visible over a smooth continuum rising with W.

low & L\-‘S\\ Q

v

et
W
(9.7)

The whole collection of data is quite complex, so it was a challenge to
understand how to interpret it.

9.2 The parton model

The crucial clue for understanding the deep inelastic scattering data
came from an important observation by Bjorken that I will describe in
Section 9.5. Feynman was then able to describe deep inelastic scatter-
ing using a simple picture based on free quarks and antiquarks that he
called the parton model. In this section, I will describe the model; in
the remainder of this chapter, we will work out its predictions for deep
inelastic scattering and compare those to data.

At very high energy, we may analyze the e™p scattering reaction from
the CM frame.

o == T (9.8)
Feynman modeled the proton as a collection of constituents, called par-
tons. Some of these partons might be the quarks, which we already
expect are constituents of the proton. At high energy, all partons are
moving approximately in the direction of the proton. That is, all par-
tons have a large component of momentum along the direction of the
proton, while their momenta transverse to the proton direction remain
of the order of the momenta within the proton bound state. In the sim-
ple parton model, we ignore these transverse momentum components,
and the masses of the partons. We might expect that these approxima-
tions would be good for very high energy scattering processes. Then the
momentum vector of a parton can be written

pr=& P (9.9)

where P is the total energy-momentum of the proton and ¢ is the fraction
of this energy-momentum carried by that parton. The parameter £ runs
over the values

0<é<t. (9.10)

Let f;(£)d¢ be the probability of finding a parton of type i carrying the
momentum fraction £. In the following, I will assume that the partons
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Statement of the parton model descrip-
tion of the proton wavefunction.
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The cross section for deep inelastic elec-
tron scattering according to the parton
model.

that scatter electromagnetically are quarks and antiquarks. I will denote
these by a label f (the flavor) for quarks and f for antiquarks. There
might be additional partons that do not have electric charge. The whole
set of partons carry the total energy-momentum of the proton. This
implies the sum rule

1
/0 i S i) E=1. (9.11)

In the parton model, deep inelastic scattering is described by the
Feynman diagram

e\ e

E’\r»
4

(9.12)

We take each quark or antiquark in the proton and consider it to scatter
from the electron as a pointlike spin—% particle. Asin eTe™ annihilation,
the outgoing quark cannot be seen in isolation. Rather, it must turn into
a jet of hadrons through processes that involve the strong interactions
in a nontrivial way. Here again, we will ignore the effects of the strong
interactions when we compute the cross section. We will interpret the
parton model cross section as giving the sum of the cross sections for all

possible hadronic final states. The parton model cross section is written
olep e X) = [dET Q) + HOl(e aler) e 9. (013
!

The symbol X stands for any collection of hadrons in the final state.

9.3 Crossing symmetry

To compute the cross section required for (9.13), we need to evaluate
the matrix elements for electron-quark scattering, a process described



by the Feynman diagram

a:> \
TN
€ b

The form of this diagram is similar to that of (8.1), and so we can imme-
diately write down an expression for the corresponding matrix element,

(9.14)

M(e™qp = emqp) = (—e) (™[ " [e7) qflz(Qfe) {arldulas) - (9-15)

It is straightforward to evaluate this matrix element explicitly using the
methods described in Section 8.3. I describe this method in Problem 9.1.
However, there is a much easier way to determine the value of the matrix
element. This method requires explanation of a new concept, called
crossing symmetry. This concept ties to important general properties of
scattering matrix elements, so it will be worth a detour to explain it.

To begin, compare the diagram in (9.14) with the diagram for ete™ —
qq computed in the previous chapter

‘L\i

—

2 o'

(9.16)

The two Feynman diagrams actually show the same process, laid out
in different ways in space-time. In eq scattering, there is an electron in
the final state and a quark in the initial state. In e*e™ annihilation, the
final electron is exchanged for the antiparticle of the electron, a positron,
in the initial state, and the initial quark is exchanged for a final-state
antiquark. The situations with a final electron and an initial positron,
and that with a final quark and an initial antiquark, are strongly related,
because the same quantum field that creates the electron destroys the
positron, and similarly for a quark and antiquark. This translates into
the simplest possible relation of the corresponding matrix elements: The
matrix elements have the same functional form with appropriate iden-
tification of the external momenta. This relation of processes is called
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Crossing symmetry relates matrix ele-
ments for the reaction with outgoing
particles to those with incoming an-
tiparticles. This relation is true quite
generally for matrix elements in rela-
tivistic quantum field theory.
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Definition of the kinematic variables s,
t, u.

crossing symmetry. It is another theorem of quantum field theory that
processes related by crossing symmetry are described by the same func-
tion of the external momenta. Thus, given our results for the ete™ — ¢g
matrix elements from the previous chapter, we are able to write down
the matrix elements for e~ ¢ — e~ ¢ without further calculation.

To use crossing symmetry most easily, it is useful to introduce a stan-
dard notation for the kinematic invariants of 2-body scattering processes.
Consider a general 2-particle scattering process 1+ 2 — 3 4+ 4. To write
maximally symmetric expressions, I will write all momenta as directed
outward,

T Py
.

2
i f (9.17)

For the reaction 1+ 2 — 3 + 4, we will have p$,p} > 0 and p{,p < 0.
Negative energy here means that the particles are annihilated rather
than created. The same amplitude, evaluated for p} > 0,p) < 0 will
describe the reaction with the antiparticle of 3 in the initial state and
the antiparticle of 1 in the final state. Energy-momentum conservation
in the reaction implies

p1+p2+p3+ps=0. (9.18)

The matrix element M can depend only on Lorentz-invariant combina-
tions of the momenta. I will now count and classify these.

First of all, the squares of the 4-vectors are Lorentz-invariant. But
these are fixed to the masses of the particles

p%:m%, p%:m%, p%:m%, pi:mi. (9.19)

The remaining Lorentz invariants have the form p;-p;. To express these,
we define the Mandelstam invariants, Define

s=(p1 +p2)2 = (p3 +104)2

t=(p1+p3)® = (p2+pa)
u=(p1+p1)® = (p2+p3)*. (9.20)

Each variable has two definitions, related by (9.18). This implies that
the six products p; - p; actually reduce to three; for example,

2

2p1-p2+m%+m§:2p3~p4+m§+mi. (9.21)



There is one further relation. When we add up the three invariants, we
find

s+t+u= {p%+2p1p2+p§+p§+2p3194+?i

N |

Pt + 2p1ps + p3 + p5 + 2papa + pi

P+ 2p1pa + P + P + 2paps +p§} . (9.22)

and gather up the terms in the square of p; + ps + ps +ps4

1
s+tt+u= 2[(]91 +p2 + p3 + pa)® + 2% + 2p5 + 2p3 +2pﬁ] - (9.23)

Using (9.19), we find
s+t+u=m?+mi+mi+m;. (9.24)

So, finally, there are only two independent Lorentz invariants, specified
by any two of s, ¢, u. This is a general result for any 2-particle scattering
process.

To understand s, ¢, and u better, we can evaluate them for the scat-
tering of massless particles in the CM frame. The four momenta are

e
7

l.t

(9.25)

p1=(-F,0,0,-F) p3 = (E,Esinf,0, Ecost)
p2=(-FE,0,0,E) ps = (E,—Esing,0,—Ecosf) (9.26)

Note that I am still writing the negative of the momentum for the initial
state particles. We see that

s=(2E)* = EZ, - (9.27)

In fact, even for general masses, s = (p1+p2)? = E% ar- It is conventional
in particle physics to write the center of mass energy of any reaction as
\/s. For massless particles, ¢t and u also have simple expressions.

t=(; +P3)2 = (0, E'sin#,0, E(cos 6 — 1))2
= —F*(sin? 0 +1 — 2cosf + cos? 0) . (9.28)

Then
t=—2F%*(1 —cosb) , (9.29)

9.3 Crossing symmetry 131

An important identity linking s, ¢, and
u.

In the rest of this book, I will often
write /s for the center of mass energy
Ec-
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The quantities s, t, u provide a Lorentz-
invariant way to parametrize the two
key variables of a scattering process—
the center of mass energy and the scat-
tering angle.

Feynman diagram for an s-channel pro-

cess:

Feynman diagram for an ¢-channel pro-

N

Feynman diagram for an u-channel pro-

cess:
/
Z
7

and, similarly
u=—2F*1+cosf) . (9.30)

Note that the relation s +¢t+wu = >, m? = 0 is satisfied. The two
independent variables represented by s, ¢, u correspond to the CM energy
and the CM scattering angle.

An easy way to implement crossing symmetry is to permute the three
invariants s, t, and u as the legs of the diagram are switched between
the initial and the final state.

In Chapter 7, and again in Chapter 8, I argued that we could repre-
sent an intermediate state in a Feynman diagram with a Breit-Wigner
denominator

Coom) 1
1
(p1 +p2)? —m% +implr

(9.31)

When the intermediate state separates the initial and the final state, the
denominator depends on (p; + p2)? = s.

1
s—m%+implp

(9.32)

We call this type of reaction an s-channel process. Crossing symmetry
relates this amplitude to other processes in which the virtual particle
exchange appears in other configurations. If the resonance amplitude

depends on t, )

t—m%}rimRPR ’

(9.33)

we have a t-channel process. Similarly, when the resonance is a function

of u,
1

2 - :
u—mp+imgrl'r

(9.34)

we have a u-channel process.

For each type of process, the channel determines the qualitative form
of the expression for the scattering cross section. As a simple example,
consider the implications for massless particles interacting through a
virtual photon exchange (mpr = 0). The s-channel diagram leads to the
term

1 1 1
NP = (9.35)
‘ q* s? Eé’M

The dependence of the cross section on cos comes only from the nu-
merator terms, as in ete™ annihilation. The t-channel diagram leads
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to

This expression is strongly peaked in the forward direction. You might
recognize this factor as the forward peak in the differential cross section
for Coulomb scattering. The u-channel diagram leads to

1 4

~
‘ AR Ed (14 cos)?

which has a strong peak for backward scattering. It is illuminating, and
very pleasing, that we can infer the qualitative angular distribution of
the elementary particle reaction simply by looking at the form of the
corresponding Feynman diagram.

7=

2 4 1

~ == = . (9.36
2 By (1—cos)>  EL,, sin0/2 (9.36)

Al
%

(9.37)

9.4 Cross section for electron-quark scattering

Crossing symmetry allows us to convert the calculations we did in
the previous chapter for eTe™ annihilation into calculations of the in-
variant amplitudes for electron-quark scattering. In Chapter 8, using in
particular (8.44), we derived the results

(M(eger = qray)” = IM(epef, = a1dp)* = QFe' (1 + cos6)?
(M(egel = qrgp)’ = IM(epef, = qrap))> = QFe'(1 - cos0)?
(9.38)

where Q5 is the electric charge of the quark in question. Using (9.27),
(9.29), and (9.30), we can write these expressions in a Lorentz invariant
form as

2

- = - _ u
(M(eger = qrqy)” = IM(epef = qrgp)l* = 4Q§e437 ;

_ _ N _ t2
(M(egel — quip)® = IM(egef; = qrqp)* = 462?648—2 - (9.39)

These expressions are correct in any frame. And, in addition, they
yield the expressions for the crossed amplitudes after an appropriate
permutation of variables. For example, consider the crossing

-

'i'p. 1 L é@ ‘L
'8
ﬂ \
v “t ¢, ie

(9.40)
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This calculation demonstrates the use
of crossing symmetry to calculate one
matrix element from another known
matrix element.

The scattering amplitude for the polar-
ized reaction epqr — epqr has a zero
required by angular momentum conser-
vation.

The eq scattering diagram on the right is obtained by moving the final
antiquark g; to the initial state, where it becomes the quark gr, and
moving the initial positron e} to the final state, where it becomes the
electron ey. Note that the final process continues to respect helicity
conservation.

The interchange of momenta is

P1r—Pp1 P2 —7P3 P37 P4 Ps—DP2- (9.41)
This interchanges
s—t t—u u—s. (9.42)

The matrix element for epqr — epqr is then given by

2
_ _ s
IM(epqr — epqr)|* = 4Q?e4t—2 . (9.43)

Similarly, the crossing

—
i& 'e:\_ i" LL
(9.44)
produces )
- _ u
IM(erqr — erqr)* = 4Q?e4t—2 . (9.45)
Notice that this matrix element is proportional to
u? ~ (1 + cos 6)? (9.46)
and vanishes for backward scattering, cos§ = —1. If we look at the flow
of spin angular momentum,
e 1L e LW
—— —— \*_’ «“— —_—
=5 = - (9.47)

we see that, in this case, backward scattering is forbidden by angular
momentum conservation. The matrix elements for the other helicity
combinations allowed by helicity conservation can be obtained in the
same way,

2
45

IM(epqr — e qr)]* = 4Q?e 7

2
_ _ u
IM(epqr — erqr)]* = 4che4t—2 . (9.48)
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We can now assemble the cross section for eq scattering. Averaging
over the spins in the initial state and summing over the spins in the final
state, the cross section is given by

1 1 dcosf 1
2E2FE 2 8w 2 4

spins

oleq — eq) = IM(e=q— e )| (9.49)

Note that there is no color factor of 3 in this equation. Whatever color
the quark has in the initial state, that color is passed to the quark in
the final state.

Summing over the matrix elements for the allowed processes, we find

do 1 52 +u
= 4Q2 9.50
dcos® 25 ( @ ) ’ (9:50)
or
do Q2042 2+ u?
= . 9.51
dcos s 12 ( )

We can write this result completely invariantly by using (9.29) to replace
the integral over cosf,

1
dt = 58 dcosb . (9.52)
Then 9 9 The final expression for the differential
o 27TQ Fe 52 + u? cross section for electron-quark scatter-
o —(eq — eq) = —w gz (9.53)  ing.

9.5 The cross section for deep inelastic scattering

Using the formula (9.13) together with (9.53), we obtain the parton
model prediction for the deep inelastic scattering cross section

2703202 52 4 42
olep—oe X)= /df/dthf +ff )] 7TC§22fa< ;; )

(9.54)

In this formula, I use §, £, & to denote the invariants for the electron- In a hadron reaction described by the
parton scattering process, reserving the symbols without hats for the parton model, I will denote the parton-
full electron-proton scattering reaction. level kinematic invariants by 3, , d.

It is not so obvious how to interpret this formula, since it is not clear
how to measure the parton-level invariants. However, it is a beautiful
feature of deep inelastic scattering that each of the parton-level invari-
ants has a precise physical interpretation. We will now work these out.

First of all, { = ¢> = —Q?. 1 have already pointed out that this
quantity is directly measured in the deep inelastic scattering experiment.

Next, compare s for the full e”p reaction

s=(k+P)?=2k-P (9.55)
and for the parton reaction

s=(k+p?=2k-p=2k-(P . (9.56)
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We see that

§=¢s . (9.57)
It is useful to define op Defini

o - q ing vz

y= Pk (9.58)
In the proton rest frame, this is
0
q
y = ok (9.59)

That is, y is the fraction of the initial electron energy that is transfered
to the proton. This implies that

O<y<l1. (9.60)

We can equally well evaluate

_2P-q 2p-(k—FkK) s+a

Y=%P kT 2k (9.61)
Then 4
3= 1=y, (9.62)
or
Fat =51+ 1-y)?). (9.63)
At this point, we have expressed
N2
step e X) = [ de [ aQ> Tltyierearen 2nier(FHTE ).
f
(9.64)

There is one more important kinematic relation. In the parton model,
we assumed that the quark is a free pointlike Dirac particle and that the
electron-quark scattering is elastic

P (9.65)

If the final quark is treated as massless, then
0=(p+q)°=2p-q+¢*=2P-q—Q°. (9.66)
Thus, the parameter £ becomes identified with an observable combina-

Definition of the deep inelastic scatter-  tion of momenta z,
ing variable z. Q2

Top.g-

(9.67)
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Fig. 9.3: Measurements of the quantity F», defined by (9.71), by the SLAC-
MIT experiment, at different energy and angle settings, plotted as a function
of w =1/z, from (Breidenbach et al. 1969).

This is quite amazing. In the parton model, a deep inelastic scatter at a
fixed value of x is due to an initial parton carrying the fraction x of the
initial proton momentum. By measuring x, we sample the momentum
distribution of quarks in the proton wavefunction.

Finally, using (9.55) and (9.58), we see that

Q% = xys . (9.68)
Then, with z fixed,
dt =dQ* = s dy . (9.69)
This gives as our final formula for the deep inelastic scattering cross
section The final parton model formula for the
do Irals cross section for deep inelastic electron
_ — o 2 - 2 ttering.
Togy P € X) = 20 aQil @)+ f@)] S (L (1)) seatterng

1
(9.70)

Notice that both of the kinematic variables used here range over the
interval 0 < z,y < 1.

9.6 Bjorken scaling

It is conventional to write the expression for the deep inelastic cross
section as the product of an elementary QED cross section and an un-
known form factor Fy that contains the information about the proton
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Definition of Bjorken scaling.
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Fig. 9.4: Measurements of the quantity F> by the SLAC-MIT experiment,
at energy and angle settings giving Q? > 1 GeV?, plotted as a function of =,
from (Peskin and Schroeder 1995).

structure,

2ra’s

Q4
In principle, the factor F5 could depend on the general kinematics of the
problem; that is, it could be a general function of z and Q?. However,
comparing (9.70) and (9.71), we see that the parton model prediction
for Fy is

? (eTp—me X)=F, -

dxdy 1+1-y)?) . (9.71)

Fy(x) =) QFalfs(x) + f5(a)] - (9.72)
!

It is striking that the predicted form depends only on x and its in-
dependent of Q2. This behavior is called Bjorken scaling. Bjorken pre-
dicted this simple dependence based on more advanced hypotheses about
the behavior of current matrix elements at high energy (Bjorken 1966).
Bjorken encouraged the experimenters to plot the data shown in Fig. 9.2
as a function of x, or, rather, w = 1/x. The result is shown in Fig. 9.3.
The deep inelastic cross sections from many settings of the beam energy
and scattering angle come together into a single function of w. Figure 9.4
shows the plot of Fy versus z for the events with Q2 > 1 GeV?2. All of
the data falls on a single curve as a function of z!

Over the past decades, F» has been measured repeatedly at higher
energies, using muons and neutrinos produced by proton beams of hun-
dreds of GeV. Most recently, F5 has been measured at the HERA collid-
ing beam facility at the German high-energy physics laboratory DESY,
which collided 820 GeV protons with 30 GeV electrons. The full world
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In fact, F» is only approximately inde-
pendent of Q2, varying slowly on a log-
arithmic scale.

Fig. 9.6: Event display for an ep scattering event at Q% = 5800 GeV?, from
the ZEUS experiment at the ep collider HERA (figure courtesy of DESY and
the ZEUS collaboration). Electrons entering from the left collide with a pro-
tons entering from the right. The single track going upward in the figure,
associated with energy in the electromagnetic calorimeter, is the scattered
electron. The tracks moving downward from the collision point form a jet of
hadrons.

data set, collected by the Particle Data Group (Patrignani et al. 2016),
is shown in Fig. 9.5.  Each row of points shows the value of Iy at
different values of Q2. In fact, there is a dependence on @2, but it is
very slow, evolving on a logarithmic scale. F5 decreases for large values
of x and increases for small values of x. The explanation of this slow
evolution of Fy with Q2 requires an explanation that goes beyond the
simple parton model. I will discuss the physical origin of this behavior
in Chapter 12.

Figure 9.6 shows an event display from a typical deep inelastic scat-
tering event at Q? = (100 GeV)?, from the ZEUS experiment at the
high energy electron-proton collider HERA at DESY. The electrons en-
ter from the left and the protons from the right. We see the final
electron scattered toward the upper left, shown as one track plus energy
in the electromagnetic calorimeter. Going downward, there is a jet with
four high energy hadronic tracks plus energy in the electromagnetic and
hadron calorimeters. The calorimeter hits on the left show the energetic
hadrons from the remnants of the proton left after one quark is ejected.
This precisely visualizes the parton model Feynman diagram that we
drew at the beginning of the chapter.
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Exercises

(9.1) In Section 9.3, we derived expressions for the (g) Compute the matrix elements in (9.73) and

electron-quark scattering amplitudes using results

from eTe™ — ¢g plus crossing symmetry. We found
[M(erar — epgr)|” = 4Qje"s*/t* ,

(M(ergr — egqr)l® = 4QFe"u’ /t* . (9.73)

Check these results by deriving them directly.

Treat both the electron and the quark as massless
fermions.

(a) Draw the Feynman diagram for electron-
quark scattering and argue that

M =Qse® (e” ()| ey e | (p))
() Bt lah) S O74)

where p, p’ are the initial and final electron
momenta and k, k' are the initial and final
quark momenta.

(b) Draw a diagram showing the kinematics of the
process. Work in the center of mass frame,
with the electron and the quark having initial
energy E. Take the initial electron and quark
directions to be along the 3 axis and the final
electron and quark directions to be along the
vector A = cos 3 +sin@ 1. Write out the four
momentum 4-vectors. Write the values of s,
t, and u.

(c) Show that the spinors with spin up and down
along the direction n are

0/2 —sin6/2
e A G
(9.75)

(d) Construct the initial and final spinors u(p),
u(k), u(p'), u(k’) for the electron-quark scat-
tering reaction, both for epqr — epgr and
for epqr — egqr.

(e) Compute the matrix elements

(=] DA "ve [e” (p)) (9.76)

for the cases of right- and left-handed elec-
trons. There are 4 cases, but 2 are zero.

(f) Compute the matrix elements

{a(K")| yv" g la(k)) (9.77)

for the two nonzero cases.

verify the results given.

(9.2) Consider the deep inelastic scattering of polarized

electrons on polarized protons. There are four in-
dependent different possible initial states: e, pr,
€. PR, €gPL, and e;pr. Analyze these cases in the
parton model. Ignore antiquarks and the heavier
quarks s, ¢, ... in the proton wavefunction. Then
the proton state pr is described by four parton dis-
tribution functions:

fur(®) ,  fur(z), far(z), far(z), (9.78)

corresponding to quark partons with flavor u, d and
with spin parallel or antiparallel to the spin of the
proton.

(a) Derive expressions, within the parton model,
for the cross sections

do , _ do _
m (erPr) and ———(erpr)

dxdy
(9.79)

(b) The cross sections for e scattering from py,
are related to these by parity. Write the pdfs
for pr, in terms of the spin-dependent pdfs
for pr defined in (9.78). Compute the deep
inelastic scattering cross sections for e; and
ey scattering on a pr, the analogs of (9.79).
Check that the average over all initial state
spins gives the expression (9.70) for the unpo-
larized deep inelastic scattering cross section.

(c) Show that, because u and d quarks in the pro-
ton are antisymmetrized in color, the only
spin 0 state that can be build from these
quarks is a ud state with total I = 0 and
S = 0. Then, when one quark carries most
of the momentum of the proton, the proton
wavefunction is likely to be described by this
ud state at low momentum, plus an energetic
u quark with its spin parallel to the spin of
the proton. What predictions does this model
make for the limiting forms of the cross sec-
tions computed in (a) as x — 17






The Gluon

At the end of the previous chapter, we saw that e~ p deep inelastic scat-
tering allows us to meaure a quantity Fy(z), interpreted as a sum over
parton distributions for quarks and antiquarks in the proton. In this
interpretation, x is the fraction of the momentum of a proton carried
by a quark and f(z), f?(x) are the parton distribution functions, the
probability distribution of quarks and antiquarks of flavor f in the pro-
ton as a function of x. Then our simple model for the deep inelastic
scattering cross section gave

Fy(z) =Y Qfalfs(z) + f(@)] (10.1)
f

In this chapter, I will describe additional data on F, that makes this
picture more concrete, and other measurements that reveal an additional
parton component of the proton.

From here on, I will refer to parton distribution functions, for brevity,
as pdfs. Any hadron will have a set of pdfs describing its wavefunction
in terms of quarks and antiquarks. However, when I write pdfs without
any further labels, I will be referring specifically to those of the proton.

10.1 Measurement of parton distribution functions

In the quark model, we would expect the major contributions to Fy(z)
to be those from the two u quarks and one d in the proton wavefunction.
At this level, the formula (10.1) would read

Fy(z) = gxfu(x) + %xfd(x) . (10.2)

These three quarks account for the proton electric charge and isospin
quantum numbers. Any additional quarks in the proton must appear as
quark-antiquark pairs. In quantum field theory, there are processes that
create a quark-antiquark pair of any flavor, so we expect nonzero values
for all of the possible pdfs

fu(l'),fd(ﬂ?),fs(l‘),"' fﬂ(x)vfg(x)vfg(x)f" (103)

To give the correct quantum numbers @, = +1, IS = —|—%, S =0, etc.,
the pdfs must satisfy the sum rules

/O dalfu() — fulw)] =2

For the rest of this book, the proton will
be represented as bag of quarks, anti-
quarks, and gluons, each governed by
its parton distribution function (pdf).

Flavor sum rules for pdfs.
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Parton level neutrino reactions used in
the determination of pdfs.

| deltut@) = pytn =1
| delt@) = s =o. (104)

and similarly for the distributions of ¢, b, t.

The pdfs f;(x) must be determined from experiment. The deep in-
elastic scattering process e”p — e~ X gives us one combination of these
distributions. But there are other reactions that give us access to other,
orthogonal, combinations. From deep inelastic scattering on a deuterium
target, we can extract the cross section for deep inelastic electron scat-
tering from a neutron. In the parton model, this process is described
by the same formulae (9.71), (9.72), but with the pdfs of the proton re-
placed by those of the neutron. These two sets of quantities are related
by an isospin rotation

FP@) = fa@) £V (@) = fula)
K@) = fa@) . L7 (@) = fala) | (10.5)

where the unlabeled pdfs are those of the proton. The pdfs for heavier
quarks should be identical between the proton and the neutron. In the
same approximation as in (10.2)

Fz(n) (z) = %xfd(m) + éxfu(:r) . (10.6)

so these two sets of measurements already give us a first determination
of the separate pdfs for v and d.

Another important source of information is deep inelastic scattering
by neutrinos. Neutrinos interact with protons through the weak interac-
tion, and so we will need to understand the structure of that interaction
to interpret this data in detail. I will discuss neutrino interactions in
Chapter 15. It will be useful to give here a few details that will be
explained there. We will see in Chapter 15 that neutrinos also interact
through a form of the current-current interaction, and that, at the level
of the parton model, neutrino and antineutrino deep inelastic scatter-
ing is also described by a formula similar to (9.71). In the dominant
processes in neutrino scattering experiments, the neutrino converts to a
muon. The four most important parton-level processes are

v+d—=u+pu vHu—d+pupt,
v+u—d+pu, v4+d—su+put. (10.7)

As we will see in Chapter 15, the distributions in y are different for
scattering from quarks and antiquarks. So, by measuring the sign of
the final muon each event and the distribution of events in y, we can
separately measure v and d quark and antiquark distributions. By look-
ing for strange or charmed particles in the final states of deep inelastic
electron and neutrino scattering, we can also estimate the heavy quark
distributions

fs(@), fs(z), - (10.8)
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The sum rules (10.4) imply that the total numbers of heavy quarks
and antiquarks in the proton are equal, but they do not imply that
fr(zx) = f?(x) In fact, some processes that add quark-antiquark pairs
lead to different distributions. For example, the quantum fluctuation

pe A+ KT (10.9)

adds a strange quark in a distribution similar to the v quark pdf of the
proton, and an s at smaller z. The fluctuation

perntat (10.10)

adds a d + d, but no @, so we might expect more d than @ antiquarks in
the proton. A proton at high momentum has a component in which one
u quark carries the proton spin and most of the momentum, while the
remaining ud pair form a low-energy I = 0, S = 0 state, This leads to
the expectation that, on average, the u quarks have larger momentum
fractions z than the d quark.

Using data from all of these reactions, it is possible to assemble a
quantitative model of the full set of pdfs. In setting up such a model,
we typically divide the v and d pdfs into valence and sea components.
The valence component contains exactly two u quarks and one d quark,
at values of x of order 1. These distributions will have the general form

i

(10.11)

These valence quarks are accompanied by a sea of quarks and antiquarks.
The sea distributions are largest at much smaller values of x. They are
found to be divergent as z — 0, so that the proton contains a very
large number of quark-antiquark pairs carrying very small fractions of
the total proton momentum.

§ :
‘M

(10.12)

Physics considerations that explain the
differences in the shapes of quark and
antiquark pdfs for different flavors.

The pdfs of the proton may be viewed
as valence pdfs containing 2 u quarks
and 1 d quark, plus a sea with equal
numbers of quarks and antiquarks of
each flavor.



146 The Gluon

Results of an explicit fit to data from
deep inelastic scattering and other

sources for valence and sea pdfs.
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Fig. 10.1: Parton distribution functions zf;(z) at Q@ = 3.1 GeV and at
Q = 100 GeV, according to the fit of the NNPDF collaboration, from (Foster
et al. 2016).

The divergences of the quark and antiquark pdfs must match so that
the integrals in (10.4) can be finite. Feynman called the partons at very
small x the wee partons. He argued that a 1/x behavior of the sea pdfs
would lead to the approximately constant value of the proton-proton
total cross section at high energies (Feynman 1972). This model of the
total cross section (now in a more modern form) is still debated.

These ideas can be incorporated in a quantitative model of the pdfs
whose parameters are then fit to the relevant data. In performing this
fit, we must take into account the physics of the Q-dependence of the
pdfs that I will discuss in Chapter 12. However, when this ingredient is
included, the entire data set is seen to be well described by the parton
model. The fit gives explicit forms for the valence and sea pdf functions.
Figure 10.1 shows the functions extracted by the NNPDF collaboration
(Ball et al. 2015). Two other collaborations, MSTW and CTEQ, also
have produced pdf fits to the global dataset, and all three collaborations
have quite consistent results. The current status of pdf fits is summa-
rized in (Rojo et al. 2015, Buckley et al. 2015).

As we have already seen in Fig. 9.5, the pdfs extracted from these fits
have a slow dependence on @, visible when the data are considered on
a logarithmic scale. The left and right-hand figures show the pdfs at
@ = 3.1 GeV and at Q@ = 100 GeV. These figures illustrate the valence
plus sea form of the pdfs, and indicate clearly the growth of the sea
component as () becomes very large.

The pdfs obey one more sum rule, already stated in (9.11). The parton
momenta must sum up to the total energy and momentum of the proton.
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Fig. 10.2: Event display, in three views, of the tracks from a 3-jet event ob-
served by the TASSO experiment at the ete™ collider PETRA, from (Bran-
delik et al. 1979).

Since each parton carries a fraction x of the proton’s energy-momentum,

/dx foi(x) =1. (10.13)

The fraction of the total energy-momentum of the proton carried by
quarks is given by the integral

Pa/P = [ de 3115w + fy(a) (10.14)
f

With the extra factor of z relative to (10.4), this integral easily converges
as x — 0. The parton distributions determined as I have described give

Pya/P~0.5. (10.15)

So, something is still missing. We need additional partons of another
type, one that does not participate in deep inelastic scattering. Pre-
sumably, the proton must also contain the particle responsible for the
binding of quarks into hadron bound states. I will call this particle the
gluon. If gluons lead to the strong interaction, then, also, there should
be a field equation for the gluon field, and there should be physical gluon
particles. These particles should appear in the proton wavefunction and
should carry some fraction of its momentum.

If there is a gluon that interacts with quarks, it should be produced
in the reaction ete~ — hadrons. Even if the photon does not couple

Momentum sum rule for pdfs.

The quarks and antiquarks alone do not
account for the total energy-momentum
of the proton.

Introduction of the gluon as a quantum
of the strong interaction.
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Fig. 10.3: Event display of a 3-jet event observed by the SLD experiment at
the eTe™ collider SLC (figure courtesy of SLAC and the SLD collaboration).
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Fig. 10.4: Event display of a 4-jet event observed by the SLD experiment at
the eTe™ collider SLC (figure courtesy of SLAC and the SLD collaboration).
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The theory of photon emission from fi-
nal state fermions in eTe™ annihila-
tion is a useful model for the descrip-
tion of gluon emission in ete™ anni-
hilation. We can work out this theory
by through calculations similar to those
done in Chapter 8.

A relativistic quark emerging from a
particle reaction can readily convert
into a pair of collinearly moving rela-
tivistic particles. Photon emission pro-
vides our first example of such a pro-
cess.

directly to gluons, the gluon should be radiated from the outgoing

quarks and antiquarks. We have seen that quarks and antiquarks appear
in experiments as jets of hadrons, and that typical events in eTe™ —
hadrons at high energy are 2-jet events. If a gluon also appears as a
jet, we should also see 3-jet events, in which one jet is the product of a
gluon,

%

}J
\

-

b (10.16)

In fact, when the ee™ collider PETRA at the laboratory DESY began
to operate at Ecps = 30 GeV, events of this type appeared. Figure
10.2 shows a 3-jet event recorded by the TASSO experiment (Brandelik
et al. 1979). Figures 10.3 and 10.4 show events recorded by the SLD
experiment at 91 GeV, a 3-jet event and also a 4-jet event.

10.2 Photon emission in ete™ — g

To understand three-jet events in eTe™ annihilation quantitatively, it
would be good to have a reference theory of gluon emission by quarks,
which we could then compare to the data. The simplest hypothesis is
that gluons are spin 1 particles like photons, and that they couple to the
conserved quark current in the same manner as the photon. The theory
of photon emission from relativistic charged particles is rather straight-
forward. We dipped into the theory of this emission—bremsstrahlung—
in our discussion of detectors. Now we have the tools to work out the
predictions of this theory more precisely. I will now compute the rate
of photon emission from the final-state quarks in eTe™ — ¢g. In this
discussion, I will continue to assume that quarks are structureless spin—%
fermions, and that I can ignore their masses in high energy processes.

In the discussion of bremsstrahlung in Section 6.2, I explained that it
is easy for relativistic particles to radiate additional relativistic particles
with order-1 energy sharing, as long as the radiated particles are ap-
proximately collinear with the original particles. The final state of two
collinear particles has a momentum very close to that of the original
particle, so only a small momentum transfer is required. This process
is called collinear splitting. In particle detectors, splitting is induced
by the interaction of the electron or photon with an atomic nucleus.
However, when a relativistic particle is produced in a hard-scattering
reaction, that reaction can give the small amount of extra momentum
needed to allow splitting. In this section, I will explain how this works
for a splitting that converts a quark to a collinear quark and photon.

Consider, then, Feynman diagram with eTe™ — ¢g followed by photon
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emisson,

(10.17)

In the full process eTe™ — g+ v, photons can also be emitted from the
initial-state electron and positron, and all of these emissions must be
accounted to compare with data. However, it turns out that the domi-
nant contribution to the cross section consists of separate contributions
from each of the initial and final legs, so it makes sense to study these
separately.

To begin, I will analyze the kinematics of the splitting process. Notice
that the initial quark corresponds to an internal line of the Feynman
diagram, so it is described as a resonance and it can be slightly off the
mass shell. T will use coordinates in which the quark emerges from the
ete™ reaction moving in the 3 direction. Then

p~ (E,0,0,E) . (10.18)

We can divide this momentum between the final photon and quark, each
moving at a small angle with respect the initial quark direction. If the
photon carries off a fraction z of the momentum of the original quark,
the two momentum vectors can be written

2
a1
= (zF 0,zF —
q (Z ,q1,Y,%2 2ZE)
2
k:((l_Z)Ev_qJ_a07(l_Z)E_ -

Teap) (10.19)

I have modified the 3 components of these 4-vectors to put the final
photon and quark on mass shell, ¢> = k> = 0, up to corrections of
relative order (¢, /E)*. Energy-momentum conservation implies that
the original quark cannot be on its mass shell. Rather, the 3 component
of momentum must be

al a1

E— — . 10.20
2zE  2(1-2)E ( )

Then (10.18) can be written more precisely as

at
=(F,0,0,E — ————) . 10.21
Squaring this 4-vector, we find
@

p=—L—. (10.22)

z2(1—2)

Te” = qg 151

Kinematic analysis of a model collinear
splitting process. We see that the ini-
tial quark must be only slightly off the
mass shell to allow the splitting.
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The fact that the initial quark is close
to its mass shell produces a small de-
nominator in the evaluation of the
Feynman diagram, leading to a large
rate for photon emission.

Matrix element computation for the
splitting process ¢ — g + y. This com-
putation is a model for other compu-
tations of splitting amplitudes that we
will meet later in this book. So, please
follow the steps carefully.

The quark of momentum p is an intermediate state in the process
illustrated by the Feynman diagram. It makes sense to treat this particle
as a resonance, assigning it the Breit-Wigner factor

< -

P‘L
(10.23)

Notice that, if ¢ is small, the denominator is small, and thus the quan-
tum amplitude is very large. There is then a high probability that a
photon will be emitted in this process, with higher probably for photons
more collinear with the original quark.

The Feynman diagram suggests that the full amplitude can be com-
puted as a product of terms

METe™ = qq) = M(ete = a5 Malp) = Y (a)ak) +
(10.24)
where the omitted terms contain the amplitude for emissions from the
antiquark and the initial e™ and e~. I will now analyze the emission
from the quark in some detail.
For definiteness, I assume that the initial quark is right-handed. (The
final answer for the rate will be the same for a left-handed quark.) Then,

M(qr — vqr) = Qre{qr(k)| 3" lar(p)) €. (q) , (10.25)

where €,(q) is the polarization vector of the photon. Using the right-
hand part of the current j* = T/JLO"U’TZ)R, we find

M(qr — Yqr) = Qfeuk(k) o ur(p) €,(q) - (10.26)
The needed spinors are

ur) =VEE () unlt) = VB )
(10.27)
Notice that I have rotated the spinor ug(k) so that it is the spin-up
spinor in the direction of the momentum & in (10.19). It will suffice to
work to O(q,) in the calculation of M. The possible photon polariza-
tions are

1 . 1 ,
(071727_%) €L = 5(0713_13_%) (1028)

I have rotated these vectors to be orthogonal to ¢ in (10.19) Assembling
the pieces, we can compute the matrix elements. First, for emission of
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a left-handed photon,
t . B I 1 . qL 1
URU-GLUR—QE\/l—Z(l —Z(JIZ)E)\/ﬁ[O-l—FZo'Q_ZE‘UB}(O)
_ ZE\/ 1—=2 B ql1 + q.l _ qi
V2 20—-2)E  2(1—-2)E zFE
v1-—=z2
o _ (10.29)
For emission of a right-handed photon,
t s L Loy .o aqu A1 L
Upo - €qupr = 2EvV1 —z (1 —2(1272))5)%[0 —i0" = —2o ]<0)
_ Byl q1 _ q1 _q1
f " 20—2)E 2(0—2)E :zE
V1—2z
. 10.30
—V2q —— 21— 2) ( )
Summing the squared amplitudes over photon polarizations, The final result for the splitting ampli-

tude.

D IM(g = vg)? =2Q%*¢1 (1 - 2) (1+(1—2)%) . (10.31)

1
22(1 — z)?
Now we need to combine the result (10.31) with the amplitude for the
production of the ¢g system and integrate the complete amplitude over
phase space. The complete formula for the cross section is

+

1
olee” = qqy) = 2B, 2B, 2

/dH3 IM(eTe™ — qgy)|? . (10.32)

If p is the momentum of the antiquark and @ is the total center of mass
momentum, the phase space integral is

Eplhd®q o sy -
/dH3 / 27T)92p2k2q(27r) INQ—-p—q—k) (10.33)

Since k = p — q, d®k = d3p. Also, to first approximation, k = (1 — 2)p,
q = zp. Then we can rearrange the phase space integral as

d’pd’ 45(4 _ d3
/(275272;2]3(277) sQ-p-p)- m . (10.34)

The d3q integral can be divided in to collinear and perpendular terms,
d*q = d¢®d*q, = pdzmdq’ . (10.35)

We can assemble the expression (10.32) by using the approximation
(10.24) to evaluate the amplitude,

_ _ 1 _ _
a(e+e —qqY) = m/dHQ\M(e+e — QQ)|2

dz mdg? 1
'/mbﬁm”‘(q =79l (10.36)
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The computation of the cross section
for eTe™ — ggy approximately factor-
izes into a piece associated with the
production process ete™ — ¢g and a
piece associated with the photon emis-
sion.

The final formulae for photon emission
from very relativistic initial- and final-
state fermions.

Photon emission from a very relativis-
tic particle is strongly peaked in the di-
rection collinear with that particle. To
a first approximation, we can treat the
radiation from each external relativistic
particle separately.

We recognize the first half of (10.36) as the cross section for e*e
The second half of (10.36) is

T —qq.

dzdq? 2(1—2) 1 ,
/ 16722(1J__ 2) ( 2 ) 2Q7¢? qu(l—F (1-2)%) (10.37)

Then, finally, we find

2a d 1+(1-
olete” = qqy) =o(ete” — qQ) f / / gL 1+ ( Z)

(10. 38)
This equation gives the cross section for emission of a photon approx-
imately collinear with the final quark. For the full cross section for
photon emission in eTe™ annihilation to hadrons, we must add similar
expressions for photon emission from the final antiquark and from the
initial electron and positron.

It is hard not to notice that the ¢; and z integrals are divergent as
q1,z — 0. So the photon emission is strongly peaked for photons that
are soft and also collinear with respect to the original quark direction.
I will discuss the treatment of these singularities in the next chapter.
We will see that the reaction rates are not actually infinite; instead, the
divergent integrals reflect the fact that a very large number of photons
are emitted into these regions of small and collinear momentum.

I have derived this formula for photon emission from an outgoing
quark, but actually, the formula is correct for radiation from any charged
spin % fermions, either in the initial or the final state, as long as the
energies involved are high enough that we can ignore the fermion mass.
In general, then,

o(A—sB+f+7)~c(A—B+f)- / /dCIJ_ Q;;Oél—l—(lz—z) ’
oA+ f—=B+y)=ao(A+f— B)- / /dql Q;M*(l;z) 7
(10.39)

where the approximation is correct for photons emitted approximately
collinearly with the fermion f. This formula is called the Weizsacker-
Williams distribution. For an electron, we can estimate the integrals as
running over the ranges m. to Ecp or me/Ecp to 1. Then

2 Eom
Me

J(A%B‘Feiﬁ*’}/)NU(A—)B+€7)‘2?alog (10.40)

The radiation pattern is peaked in the directions collinear with the initial
and final particles. Then we can associate photon emission with each
relativistic particle in the intial and final state. We refer to this collinear
radiation as initial-state radiation and final-state radiation. In each
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case, the radiation follows the path of the relativistic particle,

))/ / Snd st
o

r«&\..k ™~

e wdd
7> SN P PN

(10.41)

10.3 Three-jet events in eTe~ annihilation

If gluons are massless spin 1 particles coupling to the vector current,
and we can treat quarks as massless at high energy, the same formula
applies to the emission of gluons from quarks. Let gs be the strong
interaction coupling constant, and let oy = g2?/4mw. In the theory of
strong interactions that I will discuss in the next chapter, there is an
additional numerical factor % in the emission formula, associated with
the way that g, is defined in that theory. The rate of gluon emission
from a quark emitted into the final state of a strong interaction reaction
would then be

dgr 4as1+(1—2)2

U(A—>B+q+g)%a(A—>B+q)~/dz —_— -
q. 3w z

(10.42)
This formula applies only in the region where the gluon is emitted into
the collinear region. With more work, one can assemble the complete
formula for gluon emission in eTe™ annihilation to leading order in aj,
without making the approximation of collinear emission. To do this, we
must consider the processes of gluon emission from the final quark and
antiquark,

_ s s
3 1) % 4 %
+ X
~ (10.43)

and add these contributions to M coherently. The processes interfere
constructively when the gluon is radiated into the region between the
quark and antiquark.

To actually carry out this computation would take us beyond the scope
of this book. However, the result is fairly simple to write in the CM frame
for the reaction eTe™ — ¢ggg. The final state has three particles, and so
we can use the kinematic relations for three-body phase space that lead
to the formula (7.35). Let the CM energies of ¢, g, and g be

E,, E;, E,. (10.44)

Te™ annihilation 155

Prediction of the theory in the previous
section for the rate of gluon emission in
eTe™ annihilation, assuming that glu-
ons are massless spin 1 particles.
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For Ecpyy =Q = Ey+ E5+ Ey, let

_ 2B,

2E; 2F
T = ——] ]

Q 9 l'q - Q b Ig - Q I
so that x4 4+ x5 + x4 = 2. The variables x; have maximum value 1. For

example, xg = 1 corresponds to a configuration in which the antiquark
recoils against the quark and gluon, which share the recoil momentum,

(10.45)

(10.46)

The complete 3-body phase space is a triangle, with these collinear con-
figurations at the edges

1— 3%

X

|
?

(,9
N
[
|
@

(10.47)

In terms of these variables, the distribution of events with gluon emission
predicted by the sum of diagrams in (10.43) can be shown to be

+ +

e” —qqg) =o(e’e” — qq)
201 x2 + a2
N degdry =——9 9 (10.48
/ R (1—24)(1—2xg) ( )

We can readily check that this agrees with the previous computation in
the limit of collinear splitting. Take the limit z7 — 1, and label the g,
q, and ¢ momenta as ¢, k, and p, as above. We have

ole

Ty Rz, g~ (1—2) (10.49)
Also
PP=0G+k’=Q-0*=Q"-20-Q=Q*(1—zg) .  (10.50)
Then we can replace
_ 2
drg __dag _ 500, (10.51)

(1—=z7) (Ji q1
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In this limit, the general expression becomes

dgi dal+(1-2)?
q. 37 z

)

(10.52)

just as we found in the approximate computation for the collinear region.

The distribution of events predicted by (10.48) over the phase space
triangle has the form

olete” — qqg) = oleTe™ — qq) - /dz

t S+ @
~ - 'n(‘
. . . \§4
g ¢ i ,‘{
()
°© )

(10.53)

Figure 10.5 shows the distribution of events in a related phase space

description used by the TASSO experiment (Brandelik et al. 1979). The Inobserved ete™ — 3 jet events, a pair

bottom left-hand corner of the plot contains 2-jet-like events; the region  of jets tend to be collinear, as we would

just below the diagonal in the plot contains planar events. Ezﬁfﬁgafsgﬁtf:;iritesfsults from a
A more detailed comparison of this theory with data is shown in Figs.

10.6 and 10.7 (Abe et al. 1997). For a sample of eTe™ — 3-jet events

analyzed using z; variables defined to be ordered in energy,

xr1 > T2 > T3, (1054)

Figure 10.6 shows the predictions of jet production rates as a function of
x1, T2, x3. The predictions of the spin 1 gluon model are shown as the
solid curves, and they are compared to the predictions from alternative
models with spin 0 and spin 2 gluons. Figure 10.7 shows the data from The energy distributions for collinear
the SLD experiment, which is in excellent agreement with the spin 1 splitting differ depending on the spin of

. . . . . the emitted particle. For 3-jet events in
case. In the spin 1 model, the jet with the lowest energy is typically the ¢te— annihilation to hadrons, experi-

gluon. You can see that the x3 distribution has the expected shape ment favors the case of spin 1.
1+ (1 —x3)?
Ly -m) (10.55)
x3

up to the point at large x3 where the gluon is no longer the least energetic
particle. The predicted distributions for spin 0 and spin 2 gluons are
significantly different, and are not in good agreement with the data.

10.4 Effects of gluon emission on pdfs

Just as we can radiate gluons from final-state quarks, we can radiate
gluons from initial-state quarks. In deep inelastic scattering, this process
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Fig. 10.5: Distribution of eTe™ annhilation events observed by the TASSO
experiment in a two variables related to event shapes, from (Brandelik et
al. 1979). The lower left-hand corner of this plot corresponds to the upper
right-hand corner of the triangle in (10.53).
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Fig. 10.6: Expectation for the form of the plots in Fig. 10.7 for emission of
gluons of spin 0 (scalar), 1 (vector), 2 (tensor), from (Abe et al. 1997).
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Fig. 10.7: Measurement of the rates of e™e™ annihilation events as a function
of the variables x1, 22, x3 defined in (10.45), (10.54) by the SLD experiment,
from (Abe et al. 1997).. The data are compared to the simulation program
HERWIG, which gives the prediction of the spin 1 gluon model.
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Quark pdfs should evolve with Q due
to collinear gluon emission, which in-
creases as (Q increases. This physics
predicts that quark pdfs should de-
crease at large x as a function of Q.

is represented by the Feynman diagram

%
—

s (10.56)

A parton radiates a gluon, and then scatters from the electron at a lower
momentum than it had previously. The effect is proportional to

4045 dql 4as Q
—— | — ~ =-—log— 10.57
3 q. 3 8 my ( )

where ¢, runs over the range m, < ¢, < . Thus, the modification
of the parton distribution is proportional to log Q). The effect of gluon
emission is to shift the quark parton momenta to lower values of z, since
the quarks lose energy and momentum to the emitted gluons. Then we
expect the evolution

tigh Q

|

(10.58)

The effect can be seen in Fig. 10.8, which gives the u quark pdf from
the fit by the NNPDF collaboration (Ball et al. 2015) at Q@ = 2, 50,
1250 GeV.

There are other effects in pdf evolution that are still missing from
this description. Gluon emission alone does not produce the strong
peaking of pdfs as x — 0, and it does not directly generate the antiquark
distributions. For this, we need the feedback of gluons into the quark and
antiquark distributions provided by the conversion of gluons to ¢q pairs,
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Fig. 10.8: Evolution of the v quark pdf zf,(z) from Q = 2 GeV to Q =
1250 GeV, showing the flow of valence quark energy-momentum into gluons.
The distributions are computed using the global fit to pdfs by the NNPFD
collaboration (Ball et al. 2015).

just as photons in a detector can convert to electron-positron pairs.

(10.59)

Including this process of gluon splitting not only produces the antiquark

distributions for light quarks; it also correctly predicts the quark and
antiquark distributions for ¢ and b quarks. The comparison of measure-
ments of ¢ and b production from the HERA collider to this parton
evolution model is shown in Fig. 10.9. In Chapter 12, I will add this
effect to our formalism in the context of a complete theory of the strong
interaction.
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Fig. 10.9: Measurements of the charm quark and antiquark pdf by the H1
and ZEUS experiments at the HERA collider, at increasing values of = as a
function of @, from (Aktas et al. 2006). The measurements are compared to
expectations from the formulae that will be presented in Chapter 12.
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Exercises

(10.1) A very rough approximation to the v and d valence
parton distributions shown in Fig. 10.1 is given by

foar(@) = A(1 4 az)(1 — 2)° | (10.60)

where
U d

Q=31GeV a=05,=4 a=-06,=4
Q=100GeV a=03,=5 a=-08,5=5
(10.61)
(a) For u and d at each value of @, determine A
such the pdf satisfies its sum rule.
(b) For u and d and each value of @, compute the
average value of the momentum fraction x.

(c) For each value of @, determine the fraction
of the proton’s momentum carried by valence
quarks.

(10.2) If the gluon were a spin-0 particle G, it would cou-
ple to quarks according to the interaction

AL = g.Gyp = g Gy pr + PRy . (10.62)

This gives a different pattern of gluon radiation
that is straightforward to work out.
(a) Show that the interaction (10.62) leads to the
emission matrix element

M(qr — Gar) = goul (k)ur(p)  (10.63)

(b) Show that, in the coordinates used in Section
10.2, the spinors that should be used in this
calculation are

wnt) = v2E 1)

ur (k) = zu—z)E<m/2<1l—z)E> |

(10.64)
(c) Following the derivation of (10.31), show that

1
(M(q— Gq)” = g2q1 (1 - Va2
(10.65)
Remember that a spin 0 particle has only one

polarization state.

(d) Work out the analogue of (10.38) for emission
of G from a quark. Show that the function
(1 + (1 — 2)?)/z in the integrand of (10.38)
and (10.42) is replaced by the function z. This
difference is apparent in the z3 distributions
plotted in Fig. 10.6. The data clearly favors
the choice of spin 1 for the gluon.






Quantum Chromodynamics

We have now accumulated enough clues to guess at the underlying theory
of the strong interaction. This theory should be a theory of massless
spin 1 bosons — the gluons. The basic equations of the theory should
be some generalization of Maxwell’s equations. It would be good if
this theory accounted for two of the odd properties of hadrons. First,
there is the 3-valued quantum number color, which still needs a physical
interpretation. Second, there is a mystery that, although the strong
interactions are strong enough to bind quarks permanently into hadrons,
we can ignore the strong interactions to first order in analyzing the
dynamics of quarks in eTe™ annihilation and deep inelastic scattering.

It turns out that these clues suggest a unique proposal for the funda-
mental theory that describes the strong interaction. This theory is called
Quantum Chromodynamics (QCD). In this chapter, I will describe some
new theoretical ideas that we will need to understand this theory. Then
I will write down the Lagrangian for QCD and discuss some of its prop-
erties.

11.1 Lagrangian dynamics and gauge invariance

To introduce QCD, I must first take a step away from the data and
continue the discussion of the Lagrangian dynamics of relativistic field
that we began in Chapter 3. We realized in Chapter 3 that Maxwell’s
equations provide a consistent quantum theory of spin 1 bosons. It is
logical to ask what other theories share the same advantages. In this
section, we will study the properties of Quantum Electrodynamics that
will allow us to construct natural generalizations of that theory.

In (3.74), I wrote the Lagrangian for QED as

1 .
L= —ZF“ Fu + ¥ ("D, —m)¥ (11.1)

where
D, =0, +ieA, . (11.2)

The tensor F),, contains the electromagnetic field strengths. This La-
grange density is manifestly Lorentz invariant. It is also invariant under
the symmetries P, C, and T. We checked in Chapter 3 that this La-
grangian leads to Maxwell’s equations coupled to the electron current
and to the Dirac equation coupled to the Maxwell A, field.

We should now look more closely at (11.1), and, in particular, at the
symmetries of this Lagrangian. In addition to the space-time symmetries
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The local gauge transformation of
QED.

just listed, the Lagrangian is invariant with respect to a phase rotation
of the Dirac field

U(z) — "V (x) U(z) — e "“V(z) , (11.3)

This symmetry is known as global gauge invariance. You know from
your study of classical mechanics that every symmetry of the Lagrangian
yields a conservation law (Noether’s theorem). In this case, we obtain a
conservation law of QED associated with (11.3) by varying (11.1) with
respect to the transformation

U (x) = ida(x)¥(z) SU(x) = —ida(z)¥(z) . (11.4)

This is the infinitesimal form of (11.3), but now with «(z) depending on
z. The action is not invariant under this transformation. The derivative
in the Dirac Lagrangian leads to a leftover term in which the derivative
acts on a(z),

6L = U (iy" W) (i) (11.5)

Putting this under the action integral and integrating by parts, this
becomes

08 = /d4x(6a(m))8#(@'y“\ll) (11.6)
which implies the field equation
ot =0, (11.7)

the conservation of the vector current.

In fact, the Lagrangian contains a larger symmetry. We can combine
the transformation under a local phase transformation with a transfor-
mation of the A, field

0V (z) = ida(x)¥(x) 0U(z) = —ida(z)¥(z)
0A,(z) = —éauéa(m) (11.8)

The change in the action from this variation is
5L = (i) (i0,50) + E(i’y“)(—&-ie)(—%(%éa)@ —0.  (1.9)
Notice that F},, is invariant to the transformation (11.8),
§F,, = —é [0,0,6a — 0,0,0a] =0 . (11.10)

So the entire Lagrangian (11.1) is invariant under (11.8). The transfor-
mation (11.8) is called a local gauge transformation. We say that the
QED Lagrangian has local gauge invariance.

Local gauge invariance is a powerful, even magical, constraint on the
properties of the quantum theory of electromagnetism. Even at the
classical level, it requires the field equations to take the form of Maxwell’s
equations. It is also the principle that allows the 4-vector A, to contain



only two polarization states, a principle that we saw in Section 3.3 was
necessary for the consistency of the quantum theory. A related problem
is the question of why the photon does not gain mass in the quantum
theory from its interaction with quantum fluctuations. This feature of
QED, which is absolutely necessary for its consistency, is actual quite
subtle to understand. The explanation makes essential use of gauge
invariance.

11.2 More about Lie groups

In searching for a theory of the gluon, a massless spin 1 particle with
only the two transverse polarizations, it is natural to build on the idea
of local gauge invariance. But, the strong interaction is not simply a
slightly modified version of QED. QED, even with a stronger coupling
constant, does not have 3-fermion bound states. Also, if the QED cou-
pling were strong enough to bind quarks, it would not be possible to
ignore the effects of the QED interactions as we did in our discussions
of eTe™ annihilation and deep inelastic scattering. We need a different
generalization that can change these properties.

In QED, the local symmetry is based on the group U(1) of phase
rotations, as in (11.3). In principle, we can find larger theories that
generalize QED by enlarging the local symmetry to a larger Lie group.
It turns out that the change from an Abelian to a non-Abelian local
symmetry group changes the theory profoundly. It will be interesting,
then, to develop the theory of spin 1 particles with non-Abelian local
Symmetry.

In Section 2.4, we discussed some simple aspects of non-Abelian con-
tinuous groups. I explained that the action of of a non-Abelian group
G is generated by the action of Hermitian operators 7. The number of
such operators is dg, and these operators obey the Lie algebra of G, a
set of commutation relations that can be written

[T, T = if*eTe a,bc=1,....dg , (11.11)

The structure constants f°¢ are totally antisymmetric in their indices.
A dg-dimensional unitary representation of G is generated by a set of
de Hermitian matrices of size dg X dgr that obey this algebra,

[t%, t%] = ifebets, (11.12)

These matrices act on dg-dimensional complex vectors. The infinitesi-
mal group transformation of such a vector takes the form

® — (1+iat%) ® (11.13)

As I described in Section 2.4, the Hermitian matrices ¢% generate a set
of unitary transformations

U(a) = expliat] . (11.14)
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Local gauge invariance is a powerful
principle responsible for many of the
important and nontrivial features of
Quantum Electrodynamics.

Please look back at Section 2.4 and
review the concepts and notation pre-
sented there. We will need these con-
cepts to describe local gauge invariance
under non-Abelian groups.

The Lie algebra satisfied by the repre-
sentation matrices t%, for the generators
of a Lie group.
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The simplest representations N and N
of SU(N) groups.

The definition of C'(R), a normalization
associated to each irreducible represen-
tation R.

The adjoint representation of a Lie
group.

These matrices satisfy the group multiplication law of G. They also
tranform the vector ® by the actions

®— Ua)®, (11.15)

and these transformations also form a representation of G.

We have already met the Lie groups SU(N), at least for the cases
N = 2,3. For any N such that N > 2, SU(N) is the group of N x N
unitary matrices with determinant 1. SU(2) has the same structure as
the rotation group in 3 dimensions SO(3), and it has the same finite-
dimensional representations. The smallest nontrivial representation is
the 2-dimension spinor representation, with generators given by (2.57).
For SU(3), the smallest nontrivial representations are 3-dimensional.
There are two inequivalent representations 3 and 3, which are complex
conjugates. In general, the smallest representations of SU(N) are N-
dimensional. The corresponding generator matrices t% are the N2 — 1
traceless N x N Hermitian matrices. I will make the convention that
these matrices are normalized to

1
tr[tth] = Eéab : (11.16)

This convention fixes the normalization of the representation matrices
in all other irreducible representations. It is useful to define a scalar
quantity C'(R) associated with each representation by

tr[thth] = C(R)6 . (11.17)

Some properties of C(R) are worked out in Exercise 11.4.

It is an interesting problem in algebra to find the complete set of
finite-dimensional irreducible representations of a Lie algebra (11.11).
In the easiest case of SU(2), these irreducible representations are the
representations of spin j, with j integer or half-integer. For more general
Lie groups, the solution to this problem is discussed in (Georgi 1999).

For our discussion of non-Abelian gauge theories, we will need to know
about one other representation of SU(N). This the adjoint representa-
tion, the representation under which the generators of the Lie algebra
transform. In Exercise 11.3, it is shown that the representation matrices
in the adjoint representation of any Lie group G can be written as

(t%)ae = if*0 . (11.18)

Note that f®°, with b fixed, is a dg X dg matrix, as required. These
matrices are normalized to

trtdtl] = foed foed = C(G)o° . (11.19)

For SU(N), C(G) has the value C'(G) = N. For example, for SU(2),
fabc — €abc’ and

acdebed — ggab (11.20)

For SU(3), the adjoint representation is 8-dimensional (the octet repre-

sentation, corresponding to the set of 8 3 x 3 traceless Hermitian matri-
ces, and C(G) = 3. The formula is proved for general N in Exercise 11.4.
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11.3 Non-Abelian gauge symmetry

With this preparation in the formalism of group theory, we can work
out the Lagrangian of fermions whose local gauge symmetry is a non-
Abelian Lie group G. Consider a Dirac field that also transforms under
the symmetry G according to the representation R. An example might
be the nucleon field ¥;, i« = p,n, which is rotated by isospin transfor-
mations. This was the example considered by Yang and Mills in their
original construction of a non-Abelian generalization of QED (Yang and
Mills 1954). Honoring this contribution, a non-Abelian gauge theory is
also called a Yang-Mills theory.

Consider, then, the Lagrangian

,CO = \I/ji'y“B#\Ilj . (1121)

Let ¥ transform according to a representation R of the gauge group G.
Generalizing (11.13), an infinitesimal local gauge transformation of ¥
would take the form

Uj(x) = Wi(z) = (14 ia®(2)th)x Vs - (11.22)
Then, as before
(SLO = Eji’y“(iaﬂaa(x)t“Rjk)\Ilj . (1123)

We can compensate this transformation by replacing the derivative 9,
by the covariant derivative

D, =8, — igAdt%, . (11.24)

Note that we must introduce one vector field for each generator of the
group G. We will see in a moment that the variation of the Lagrangian
is compensated if we assign the field A}, the transformation law

Al (z) — A%(z) + éaua“(x) + AL febeal(x) (11.25)

This is very similar to the transformation of the A, field in (11.8), ex-
cept that it includes one additional nonlinear term. The parameter
a®(z) transforms according to the adjoint representation of G, so we
might expect that derivatives acting on a®(x) should also be promoted
to covariant derivatives. Using (11.18) for ¢* in (11.24), the covariant
derivative on o®(z) takes the form

D,ao%(z) = 0,a%(z) + gAZfabcozc(x) . (11.26)
So (11.25) can be written more clearly as

Al (z) — Aj(x) + éDuoﬂ(x) . (11.27)

To build a non-Abelian gauge theory,
we introduce one spin 1 field for each
generator of the gauge group.
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Nonlinear terms in the gauge trans-
formation law are needed in the non-
Abelian case to make the Lagrangian
invariant.

The extra nonlinear term in (11.25) is needed to make the Lagrangian
invariant. The variation of the Lagrangian

L = Viy' D,V (11.28)
is
SL = W (iy"D,)(ia*th)V + U(—ia®th)(iy"D,)¥
+W (iy") (—ig) [éaua“ + [ ALl . (11.29)

The terms involving J,a® cancel as before. However, there are now
three terms involving o with no derivatives,

L = @(i'y“)(figAZtl}%)(iaataR)\P + @(—iaat‘}%)(i’y“)(figAﬁtl}%)\IJ
+T(—i") (gf e AL tHa") U (11.30)
Since t* and t* do not commute, the first two terms cancel only up to a
commutator. Using (11.12), we see that the third term cancels this last
piece.

The algebra of the previous paragraph is not the simplest, so let me
give it in another version. The finite transformation of W is

U — et Ry, (11.31)

The transformation (11.27) of A, can be written as the finite local trans-
formation of A7,

D,[A] — TR D [A] e7 "tk (11.32)

It is not so difficult to expand this equation and see that the terms of
order a® reproduce (11.27). Combining (11.32) and (11.31), we have

(D, W) — etk (D, V) . (11.33)

That is, the transformation (11.27) gives the covariant derivative D, ¥
a simple transformation law. It is one that is easily compensated by the
transformation of ¥ so that the Lagrangian (11.28) is invariant.

We can also use the formula (11.32) to discover the gauge-invariant
kinetic term for Af. According to (11.32), the commutator of covariant
derivatives [D,,, D,] also transforms as

[D,,D,] — €% [D,,D,] etk (11.34)

It is interesting to compute the commutator of covariant derivatives
(11.24) more explicitly, taking account that derivatives 0, act on all
fields to the right of them. We find

(D, Do) = | (O — igAjitR), (9 — igAytR)

=ig0, ALt} + ig0, Alth, + (—ig)?[ALth, AVth] . (11.35)



Note that the resulting expression has no derivatives acting to the right;
it is a pure field. In its form, it bears a strong similarity to (3.31). In
fact, it suggests that we should define the Yang-Mills field strength as

[Dy, D) = —igFj,th (11.36)
so that
F, = 0,A% — 0,A% + gf** AL A (11.37)

Note that F, does not depend on the representation R used in the
construction. The transformation of this field strength tensor is

Foth — etio'th po g omia'ly (11.38)
This transformation law implies that the quantity

tr[(FO %) (Frre)] (11.39)

ng

is invariant to local gauge transformations. On the other hand, using
(11.17), we see that (11.39) is proportional to (F,)*. Then
1 nra mpa
L= _ZF ELV
is a gauge- and Lorentz-invariant Lagrangian for the Yang-Mills field.
A complete locally gauge-invariant Lagrangian with both vector bosons
and fermions is

(11.40)

1 .
L= _EFM aFﬁV‘F\II(Z’YMDM —m)\I/ . (1141)

The Dirac fields ¥ must be assigned to transform in some finite-dimensional
representation of G. This Lagrangian leads to the Dirac equation as the
field equation of W;. For the field equation of Af, it gives a set of
equations very similar to Maxwell’s equations. However, because of the
extra, nonlinear term in (11.37), these equations are nonlinear. This
makes the dynamics of non-Abelian gauge theories more complex, and

more interesting, than that of ordinary electrodynamics.

11.4 Formulation of QCD

I am now in a position to make a proposal for the underlying theory of
the strong interaction. I propose that this should be a non-Abelian gauge
theory, with quarks as the fermions and gluons as the spin 1 bosons. For
the gauge group G, I will choose the SU(3) symmetry acting on the color
quantum number that we found in hadron spectroscopy. The quark field
of flavor f is W,i, where « is a Dirac index, a = 1,...,4, and 7 runs
over colors 1,2, 3. From here on, I will write the representation matrices
1§ simply as t®.

The covariant derivative acting on quark fields is

D, =9, — igs Ast® (11.42)
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The field strength for a non-Abelian
gauge field contains nonlinear terms.
Then also, the non-Abelian generaliza-
tion of Maxwell’s equations will contain
nonlinear interactions.

The locally gauge-invariant Lagrangian
with non-Abelian gauge symmetry for
Dirac fermions and gauge bosons.
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The Lagrangian of Quantum
Chromodynamics—QCD.

The color factor for the emission of a
gluon from a quark.

where t% is a 3 x 3 traceless Hermitian matrix. The parameter g, is the
(dimensionless) strong interaction coupling constant. I will write

92
a= 7> (11.43)

The index a runs over the 8 generators of the SU(3) gauge group.
Finally, the Lagrangian of the theory is
1 va rha XU (4
L= _iFﬂ Fl, +Y(iv" Dy —m)¥y . (11.44)

The index f runs over the quark flavors; This theory is called Quantum
Chromodynamics or QCD.

11.5 Gluon emission in QCD

To understand the theory (11.44) more concretely, we can make con-
tact with the formula (10.42) for the rate for gluon emission in high
energy processes. The amplitude is described by the Feynman diagram

% Q
T N
1‘53 (11.45)

where I have included all color indices. The corresponding matrix ele-
ment is

M(qrr,ri(p) = 97,r(0) + a7 1,r (k) = gsu(k)y"t5;ulp) €.(q) , (11.46)

where u(p), u(k), e(q) depend on the helicities of the quarks and gluon
in the way that I described in Section 10.2. When we compute a rate,
we square the amplitude, sum over final colors, and average over initial
colors. This gives the extra factor

2

1
- E 2| gst (tete] = L = . gae (11.47)
2
ija 3
or, summing over 8 values of a,
4
3 g% . (11.48)

This is the origin of the extra factor % that I introduced in the discussion
just above (10.42). For particles in the 8 or adjoint representation of
SU(3), this factor would be

93 g
72 (t)acl? = Turltte] = 535, (11.49)

abce



or
3g2. (11.50)

Up to this factor for the color indices, all of the results of Section 10.2
apply to QCD, provided that it is a good approximation to work only
to first order in as. The formula that we derived gives a reasonable
description of the distribution of 3-jet events. But, it emphasizes the
question: If the strong interactions are strong, how could it possibly be
valid to treat as as a small parameter?

11.6 Vacuum polarization

The answer to this question comes from theory, and it is a very sur-
prising one. It turns out that there is a special property of non-Abelian
gauge theories that makes these theories unique among all quantum field
theories. I will discuss that now.

To understand the uniqueness of non-Abelian gauge theories, we first
need to discuss a property of the quantum corrections to QED. The
leading contribution to electron-electron scattering is associated with
the Feynman diagram

7

(11.51)
Quantum corrections to this process include the diagram
e <
; +
< (11.52)

in which the virtual photon converts to an electron-positron pair, which
then reforms the photon. This effect is called vacuum polarization. It
is not so easy to compute the matrix element corresponding to this
diagram, but it is not difficult to describe its qualitative effect. In the
same way that a photon can convert to an electron-positron pair, any
electromagnetic disturbance can create a virtual electron-positron pair,
that is, a quantum state with an eTe™ pair that contributes to the
complete wavefunction of the state. This effect causes the vacuum state
of QED to become a mixture of quantum states, most of which contain
one or more ete~ pairs. Through the influence of these states, the
vacuum in QED has properties of a dielectric medium. The virtual eTe~
pairs can screen electric charge, so that apparent strength of electric
charge is smaller than the original strength of the charge found in the
Lagrangian.
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The color factor for the emission of a
gluon from a gluon.
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The effect of vacuum polarization
causes the apparent electric charge of
a charged particle to become smaller at
large distances or larger at larger mo-
mentum transfer.

For reasons that are not very obvious,
(11.53) is called the renormalization
group equation.

The increase in the value of « at larger
values of @ predicted by QED is con-
firmed by experiment.

The largest separation of a virtual electron-positron pair is the electron
Compton wavelength 7i/mec or 1/m.. Pairs can be produced at all size
scales smaller than this. At distances short compared to 1/m., the
screening influence of virtual electron-positron pairs is scale-invariant;
charges are screened by the same factor at each length scale. Then, the
apparent charge of the electron increases when the electron is probed
at shorter distances or scattered with larger momentum transfer. This
effect is described by the equation

d
allogQe

where @ is the momentum transfer in the process under study and 3(e)
is a positive function that depends on e but not directly on Q. An
explicit computation in quantum field theory, assuming that Q > m.,
gives (Peskin and Schroeder 1995)

(@) = B(e(Q)) (11.53)

e3

=4+—-. 11.54
To solve this equation, multiply by e and integrate with the initial con-

dition e(Qp) = ep to find

2 _ e%
= T 6m) 1o/ Q0) (11.58)
This can also be written as
Q) 20 (11.56)

" 1 (200/3m)10g(Q/Qo)

The value of a(Q) changes on a logarithmic scale when Q > m.. At
distances larger than 1/m., a = 1/137, but at shorter distances, a(Q)

is stronger,

~(Q)

b & (11.57)

Figure 11.1 gives is a more detailed look at the evolution of a. According
to (11.56), a~! should be a linear function of log Q. However, at Q ~
my,, states with virtual g p~ pairs also come into play, doubling the
slope of the linear function. As @) goes above the values of quark masses,
the quarks provide additional contributions to vacuum polarization. In
all, we have the picture shown in the figure. At low @, the value of « is
1/137, but at @ ~ 30 GeV, a = 1/130 and at @ ~ 91 GeV, o = 1/129.

This effect is observed experimentally. Figure 11.2 shows the cross
section for Bhabha scattering, ete™ — ete™, at Ecpr = 29 GeV, mea-
sured by the HRS experiment at the eTe™ collider PEP at SLAC. The
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Fig. 11.1: Dependence of o™ !(Q) on the momentum transfer Q predicted by
the vacuum polarization effect. The three curves show the vacuum polarization
effect from electrons only, from electrons and muons, and from all leptons and
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Fig. 11.2: Differential cross section for eTe™ — eTe™ measured by the HRS
experiment (Derrick et al. 1986), showing the effect of vacuum polarization, ,
from (Peskin and Schroeder 1995). The dotted curve gives the leading order
prediction, the dashed curve shows the effect of omitting the vacuum polar-
ization correction while keeping other relevant higher-order corrections.
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A new effect, present only in non-
Abelian gauge theories, causes the ap-
parent gauge charge to become smaller
at small distances or at larger momen-
tum transfer.

specific effect of vacuum polarization raises the predicted cross section
by about 10%, giving good agreement with the data.

The idea that couplings are modified by QF T corrections on a logarith-
mic scale in momentum transfer or distance should not seem unfamiliar.
We have already seen that pdfs evolve on a log scale in () as the result
of initial state gluon emission. We will see more examples of strong
interaction quantities evolving with log @ in the next two chapters.

11.7 Asymptotic freedom

Non-Abelian gauge theories also have a vacuum polarization effect,
corresponding to the Feynman diagram

%

3 (11.58)

However, this diagram actually contains two separable and distinct phys-
ical effects. The combination of effects is easiest to see if one considers
the scattering of heavy particles, for which the exchanged gluon creates
a Coulomb potential (Appelquist, Dine, and Muznich 1977)

>

The first effect is the creation of a virtual gluon pair by the Coulomb
potential, using the nonlinear interaction of the non-Abelian theory.

NQ<

(11.59)

(11.60)

This effect contributes

dgs 1 g}
dlog@Q  316m2

where C(G) is the coefficient defined in (11.17), evaluated for the adjoint
representation. In (11.19), we saw that C(G) = N for SU(N). The other
contribution is of the form

y

(@), (11.61)

(11.62)



The Coulomb potential creates a virtual gluon, which then changes the
color transferred by the Coulomb exchange. By explicit computation,
the effect of this diagram is to confuse what colors the potential is car-
rying. At short distances, the color carried by the potential becomes
indefinite, and, as a result, the apparent charge becomes smaller. The
precise size of the effect is

dgs 12 g}
dlog@Q 3 16m2

c@), (11.63)

In the non-Abelian case, this effect completely dominates the effect of
vacuum polarization.
In all, the coupling constant of a non-Abelian gauge theory satisfies

the equation
dgs

dlog Q = ﬂ(gs) , (11.64)
where 1 A .
Blgs) = ~(5-C(G) — 5nsC(R)) 13;2 . (11.65)

In (11.65), I have added the effect of n; flavors of fermions in the fun-
damental representation of SU(N).
For QCD, the equation (11.64) can be written

dgs gs
= —bhy—=2+ 11.66
dlog Q 01672 ° ( )

with 9
bg=11-— §nf . (11.67)

The solution for the scale-dependent coupling is

Qg (QO)

Q) = T (Qo) o) 0a(@) Qo) | (11.68)
This can be written as
as(Q) = bé?@% , (11.69)

defining A = Qg exp[—27/boas(Qp)]- A has the units of GeV. It is the
mass scale at which the QCD coupling, with the value as(Qqg) at the
scale g, becomes strong.

The new dynamics of the non-Abelian gauge theory causes a4(Q) to
decrease and actually tend to zero as @) increases. On the other hand,
for small @ or large distances, the coupling a, increases, apparently
without bound.

Ala)

£ (11.70)
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Fig. 11.3: Measured values of as from a variety of experiments, compiled in
(Bethke et al. 2016). In the figure, each values of « is plotted at the value of
the momentum transfer () associated with that measurement.

The remarkable effect—discovered by 't Hooft, Politzer, Gross, and
Wilczek—is called asymptotic freedom ('t Hooft 1972, Gross and Wilczek
1973, Politzer 1973). Exhaustive analysis of other quantum field theo-
ries reveals that, in 4 dimensions, only non-Abelian gauge theories have
the property that $(g) < 0 for small g, so that the coupling flows to zero
as @ becomes large. The discovery of asymptotic freedom explained at a
stroke how we are able to have quark dynamics that needs a large value
of a for strongly coupled bound states but a small value of s to model
hard-scattering processes.

I have already explained that we can measure a,(Q) in a number of
different ways. The rate of the emission of gluon jets or the appearance of
3-jet final states in e*e™ annihilation is proportional to (g ). The rate
of evolution of quark pdfs is proportional to as(Q). At short distances,
gluon exchange produces a Coulomb potential between heavy quarks, of
the form

4 ay(r)

3 r

The v and T bound states are sufficiently small that we can measure
the coefficient of this term in the potential. The total cross section for
eTe™ — hadrons, computed to the next order in «y, is

o(ete™ — hadrons) 5 as(s)
olete™ = utpu™) B 3;Qf (1 + T - ) : (11.72)

Vir) = (11.71)

The correction proportional to o explains the small difference that we
saw in Fig. 8.1 between the measured cross section and the lowest order
prediction.



Figure 11.3 shows a compilation of these measured values as presented
in (Bethke, Dissertori, and Salam 2016). In the figure, each measurement
of ay is plotted at its appropriate value of (). The values do become
smaller as ) increases, exactly following the QCD prediction shown by
the solid band.

From this set of measurements, the value of a can be quoted as

as(91. GeV) =0.1181 +£0.0011 ~ 1/8.5 . (11.73)

Thus, it seems, the strong interactions are actually weak when viewed
at short distances, in a way that we can express quantitatively.

The fact that as becomes strong, and even formally goes to infinity,
at large distances, tempts us to say that asymptotic freedom explains
the permanent confinement of quarks into hadrons. This is handwaving.
But in fact the permanent confinement of quarks is now understood
through a more precise analysis that is, unfortunately, beyond the scope
of this book. It is possible to compute the spectrum of QCD in an
expansion for large values of the coupling constant g, (Wilson 1974).
In this expansion, the gauge fields emerging from each colored particle
form a tube of fixed cross section. An isolated particle with color would
then carry an infinite flux tube and would have infinite energy.

e
2) = (11.74)

The only finite-energy states are those with zero total color, in other
words, states that are singlets of color SU(3).

% (11.75)

We have seen in Chapter 5 that this principle gives the mesons and
baryons as the bound states of quarks and antiquarks.

There is as yet no rigorous proof that the increasing a;(Q) that we see
from the weak-coupling side takes us into the regime where this strong-
coupling analysis applies. But extensive numerical calculations have
shown that these two regions are indeed smoothly connected. These
numerical calculations also show that the low-lying energy eigenvalues
of the QCD Hamiltonian are in excellent agreement with the masses of
the light hadrons (Kronfeld 2012).
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The decrease in the value of as at larger
values of @ predicted by QCD is con-
firmed by experiment.

From the compilation of as(Q) mea-
surements, we have a precise value for
the strength of the QCD coupling con-
stant.

QCD accounts for the confinement of
quarks into hadrons and the absence of
strongly interaction particles with frac-
tional charge.
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Exercises

(11.1) Using (11.17), show that

C(R)f*° = —i tr[[[th. tr], t7]] - (11.76)

Using the cylic property of the trace, show that it

follows from this relation that f

abe i completely

antisymmetric.

(11.2) This problem discusses the complex conjugate of a
representation of a Lie group.

(a)

The infinitesimal form of the group action of
a Lie group is given by (11.13). Take the com-
plex conjugate of this equation. Show that it
is of the same form as (11.13), with

oo

=—t% . (11.77)
Show that the matrices (—t%") satisfy the Lie
algebra (11.12). . They form the complex con-
jugate representation of R, called R. This is
representation has dimension dr. Note that,

since {% is Hermitian, also ¢% = —ta.
Show that C(R) = C(R).
It is possible that the representation R is
equivalent to the representation R.  For
the spinor representation of SU(2), given by
(2.57), show that

o2 (=t )o® =t* . (11.78)
Show also that o2 is a unitary matrix. Then,
in SU(2), the spinor representation 2 is equiv-
alent to 2 by a unitary transformation. In
SU(N), N > 2, the representations N and N
are inequivalent.

(11.3) This problem justifies (11.18) as the representation
matrices of the adjoint representation.

(a)

Prove the Jacobi identity: If A, B, C' are any
matrices,

[[4, B],C] +[[C, A}, B] + [[B,C], 4] = 0 .
(11.79)
The method of proof is to write (11.79) at
the top of a large piece of paper, expand the
commutators, and notice many cancellations.

(b)

Write out the Jacobi identity for A = t¢,
B = t*, C = t° where the ¢t* are represen-
tation matrices of some any representation of
a Lie group. Write out the various commuta-
tors using (11.12). Using (11.17), show that

fabdfdce _ facdfdbe _ fbcdfa,de ) (1180)
Rearrange (11.80) to show that
[th,t8] = ifP g (11.81)

Then (11.18) generates a dg-dimensional rep-
resentation of the Lie group.

(11.4) This problem derives some properties of the quan-
tity C(R) in (11.17).

(a)

(8)

Show that, if Co = tht%, [Ca,t%] = 0 for all
generators t%. This implies that C» acts as a
constant on an irreducible representation. We
write

tete = C2(R)1 (11.82)
where 1 is the dr X dr unit matrix. C3(R) is
called the quadratic Casimir operator.
By taking the trace of (11.82), find a relation
between C>(R) and C(R).
Consider the product of representations R ®
R’. This is a drdg/-dimensional representa-
tion, whose representation matrices are

thr =th @ 1p + 1@ th . (11.83)

Show that t% 5/ satisfies (11.12).

The representation (11.83) might be reducible
into irreducible representations {R;}. Argue
that drdgr = ZZ dr;.

By studying tr[(t%p/)?], show that

drdp/ (C2(R) + C2(R))) =Y dr,Ca(R:) -

(11.84)
In SU(N), the adjoint representation G is
(N? —1)-dimensional. Then N@ N =1+ G,
where 1 is the trivial representation with ¢ =
0. Use this information and (11.84) to show
that C2(G) = C(G) = N.
In SU(3), 3® 3 = 3+ 6. Compute C2(6).



(11.5) This problem studies the QCD analogue of the

Coulomb potential. For the QCD interaction of
states in a representation R with states in a rep-
resentation R, the QCD potential is given by the

operator
2

gS a a
V(r) = t th . 11.85
(=2 e (11.85)
The energies of states are found by diagonalizing

this operator.

(a) Using results of Exercise 11.3, show that
Coulomb energy depends on the breakdown
of the states R x R’ into irreducible represen-
tations. For a state in the irreducible repre-
sentation R;, show that

2
gs 1 /
V(r) = dnr 2 (CQ(Ri) —C2(R)—C2(R )) .
(11.86)
(b) Show that, in a color-singlet quark-antiquark
state, )
Vi) = -2 9 (11.87)
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(c) Show that, in a color 8 quark-antiquark state,

V(r) =+~ g: (11.88)

Notice that the center of gravity of (b) and
(c) is zero. Why?

(d) Show that a quark-quark (diquark) state in
the 3 representation has the Coulomb energy

Vir)= —29s (11.89)

That is, the diquark is bound. Notice that
this diquark can have a bound state with a
third quark; this model is sometimes used to
describe a baryon.

(e) Show that a quark and a gluon in the 3 com-
bination is bound.






Partons and Jets

In the previous chapter, I introduced QCD as a proposal for the theory
of the strong interaction. We saw that QCD explains the main puzzling
features of the strong interaction, the fact that the strong interactions
are strong, to bind hadrons, but can be neglected to first approximation
in hard scattering processes.

This understanding motivates us to look more closely at high energy
scattering to provide more evidence for the validity of QCD. Though
the QCD interactions are weak at high energy, they are not ignorable.
They produce an enhancement of the cross section for eTe™ — hadrons,
required by the data. They give rise to 3-jet events. In our earlier
discussion, I explained in intuitive terms how quark-gluon interactions
give a theory of the evolution of pdfs with @2. I will now return to
that theory and complete it, with insight from our new understanding
of QCD.

12.1 Altarelli-Parisi evolution of parton distribution
functions

In (10.42), we derived the expression for gluon emission from a quark
in the approximation of collinear emission,

dg; 4as(qr) 1 1-—
Prob(qg — ¢q) /dz / qrdonfg) 1+ (1-2) . (12.1)
qL 3 z

The ¢, integral runs up to values where the momentum transfer is com-
parable to that in the hard-scattering process. In deep inelastic scatter-
ing, ¢, can take values up to ) within the approximation that we are us-
ing. If we start from a distribution of quarks in the proton parametrized
by a pdf fr(§), the probability of finding a gluon emitted by one of
these quarks in the proton is

/d:cfg /dg/ / dgi das(qr) 1+ (1-2)? £1(6) . (12.2)

qL37r z

The gluon will have a fraction of the proton’s momentum =z = z§. We
can change variables from £ to z using

¢ = d; . (12.3)

Then (12.2) above becomes

/dz /quﬂas qu) 1+ (1—2)?

qrL 3 w z

). (24
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The rate of gluon emission by an incom-
ing or outgoing quark can be computed
as the solution of a differential equation
in the momentum transfer Q.

QCD also predicts other collinear split-
ting processes for partons: g — qq,
g—4g9-

The Altarelli-Parisi equations that de-
scribe the evolution of parton distribu-
tions by the emission of quarks, anti-
quarks, and gluons.

The Altarelli- Parisi splitting functions.

We recognize that f,(x) satisfies the differential equation

d _ 4a,(Q)
log Q folz) = 3 7

Note the limits of integration for the dz integral. The parent quark must
come from a higher momentum fraction £ satisfying

1 N2
EIHOZ ).

(12.5)

s 2 z

r<Z <1, (12.6)
z
Gluon partons of the proton can split into collinear ¢g pairs. Also,
using the nonlinear 3-gluon coupling of QCD, a gluon parton can split
into two collinear gluons. Then the evolution of pdfs must also contain
the processes

»/‘/“Ci

These processes have collinear enhancements very similar to the one that
we found in ¢ — g + ¢. One can compute the rates for these splittings
in the same way that we did for ¢ — ¢ + ¢ and derive additional terms
in the differential equations. Putting all of the pieces together, we find
that pdfs obey a system of differential equations called the Altarelli-
Parisi equations or the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi) equations (Altarelli and Parisi 1977, Dokshitzer 1977)

d (@) ['d:

log @ R - z

%

~—~—
3 3 1

(12.7)

{Prcs s ®)
SO T
f

i) =D [ )+ Ao}
=D [l pE) s RaeRG]

(12.8)

The functions Py ,4(2), etc., are called the Altarelli-Parisi splitting
functions. We have computed

41+ (1-2)?
Pyeq(z) = g% :

The ¢ — gq splitting also gives the ¢ < ¢ splitting function by ex-
changing the final quark and gluon, that is, exchanging z < (1 — z2).
Then

(12.9)

471422
Pyeyq(2) = 3

(12.10)
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The second term here is new and needs some explanation. In the process
q — gq, a new gluon is created, but no new quark is created; rather, a
quark is moved from higher = to lower x. This implies that

1
dz Pyq(2)=0. (12.11)
0

So whatever the number of quarks that appear at z < 1, that number
must be subtracted at z = 1. In fact, the integral over the first term
of P, 4(z) diverges as z — 1. This actually makes no difference to the
evolution of the quark pdf, since it corresponds to the quark emitting
very soft gluons and changing its  value only infinitesimally. To control
this in a quantitative calculation, we might cut off the integral at z =
(1 — €) and assign
1 3

A= —[2log ; 2] . (12.12)

to satisfy the sum rule.
The Altarelli-Parisi functions for the gluon splitting processes are

Prcg(s) = o[22 +(1-2)?] ,

2
Prey(s) =3 (P ) g2y

where B includes a term that compensates the singularity of the first
term in Py, 4(z) at z = 1. The derivation of the splitting function for
g — gg is given in Problem 12.1. The Altarelli-Parisi splitting func-
tions are summarized, along with other important QCD formulae, in
Appendix E.

We have discussed the splitting of a gluon to a quark-antiquark pair
in Section 10.4. We saw there that this effect leads to the build-up
of the quark and antiquark sea distributions at small z, and to the
generation of heavy quarks and antiquarks in the proton wavefunction.
The splitting of a gluon to two gluons is a new effect that comes from
the nonlinear interactions of QCD. Because of the large coeflicient in
this splitting function and its singular nature at small z, this effect is
typically the most important one in the generation of new partons by
final-state radiation.

The Altarelli-Parisi equations give a precise model for relating pdfs
measured at different values of Q2. To compare this model to the data,
we need knowledge of the evolution of a, and a model for the gluon
pdf fy(z). Typically, the gluon pdf is described by parameters that
are then varied in the fit. For an accurate theoretical prediction, the
corrections to the above formulae of order o, should also be included.
An example of a comparison of QCD theory and experiment for the
evolution of Fy(x,Q) is shown in Fig. 12.1. The black circles are data
from measurements by the H1 experiment at the HERA electron-proton
collider; the open circles are data from muon deep inelastic scattering
experiments at CERN.

QCD predicts that an emitted quark or
gluon will emit a cloud of soft gluons
that will surround it. The number of
soft gluons is larger for primary gluon
than for a primary quark by a factor of
9/4.
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Fig. 12.1: Comparison of the values of F» measured in high-energy deep
inelastic scattering experiments with the evolution in Q? predicted by QCD,
from (Aid et al. 1996).



The most singular terms in the splitting functions are

4 2 2

Pyeq(z) ~ 5~ Pog(z) ~3-—, (12.14)
as z — 0. The ratio of these terms is 9/4, which is the ratio of the
SU(3) group theory factors for quarks and gluons, (11.48) vs. (11.50),
that appear with the the squared charge g2. These terms imply, first,
that quarks and gluons both accumulate a cloud of soft gluons as their
structure evolves with ), and, second, that the number of these soft
gluons is larger for a primary gluon by more than a factor of 2. We will
see direct consequences of this in the next section and in Section 13.4.

12.2 The structure of jets

The physics of quark and gluon splitting gives us a picture of the
evolution from quarks and antiquarks produced as primary particles in
ete™ — hadrons to the pions, kaons, etc. that form the hadronic final
states. Begin from the initial gg pair. The quark will radiate a gluon,
with the highest probability of radiation in the collinear region, ¢ <
\/s. This gluon, and also the recoiling quark, emits additional gluons,
with g21 < q11. Occasionally, a gluon splits to a quark-antiquark pair.
We obtain a shower of gluons, quarks, and antiquarks

L

Lo

g2

———————

b (12.15)

At each stage, the momentum transfer decreases. So, the quarks and
gluons in the shower are all roughly collinear. Eventually, the ¢, in
the splittings falls below 1 GeV, the value of (g, ) becomes large, and
the strong interaction effects of QCD take over, combining quarks and
antiquarks into mesons and baryons. This gives a jet of hadrons, similar
to those we have seen in ete™ event displays.

To test this picture, we need to define a jet more precisely and quantify
its structure. This is not so easy. The coupling constant a; (g, ) changes
only slowly with ¢,. If as were constant, the quark-gluon splitting
process would be scale-invariant. Each parton in a jet would split to
produce a subjet with the same structure as the overall jet. Then we
would see subjets inside jets, with smaller subjets inside the subjets.
This is the structure of a fractal. The true behavior of QCD is not
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Collinear QCD splitting of quarks, anti-
quarks, and gluons naturally generates
the stream of collinear hadrons that we
observe in event displays as a jet.
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The variable thrust, an IR-safe observ-
able that measures the 2-jet nature
of final states produced in ete™ —
hadrons.

so far from this limit. To work with jets, we need to define observables
that capture their behavior, recognizing that higher resolution will unveil
more levels of structure inside each jet. An excellent introduction to the
study of jets can be found in (Salam 2010).

There are two solutions to the problem of giving quantitative predic-
tions for the structure of jets. First, we can define variables for a whole
event that are sensitive to the jet structure inside the event. Second, we
can attempt to find the jets in an event by clustering particles according
to some algorithm. In the latter case, a higher-resolution algorithm will
produce more jets, so to compare data to QCD theory we will need to
take care that the same resolution is used on each side.

To compare either approach to QCD calculations, we must take ac-
count of the fact that, when we integrate over soft and collinear emis-
sions, we encounter formal infinities in the limits where the emissions
are extremely soft or exactly collinear. The full predictions of QCD are
not actually infinite, but the infinities indicate regions where a4(q, ) has
become large and a description in terms of weakly coupled quarks and
gluons breaks down. To be computable in a quark-gluon picture, an ob-
servable should be defined in such a way that its value is not affected by
these limiting cases of soft and collinear emissions. Such an observable
is called infrared and collinear safe or just IR-safe.

The earliest study of eTe™ event shapes (Hanson et al. 1975) searched
for jets in the particle distributions by computing the sphericity tensor,

defined by
Qab — [Zzpzpf] . (1216)
>l

This definition is very convenient, because the tensor can be directly
computed from the particle momenta and then diagonalized. The prin-
cipal axis with the largest eigenvector of Q is called the sphericity azis.
Comparing with simulation, the sphericity axis was a good indicator of

the initial quark direction in eTe™ — hadrons.
Sphericity has the defect, though, that it is not IR-safe and so is
difficult to use for quantitative comparison to QCD predictions. For
example, a collinear splitting affects the diagonal elements by converting

P12 = @2 + k? = (22 + (1= 2)?) - [9? (12.17)

giving a factor that is generally less than 1. The evolution of sphericity
can still be modeled using simulation programs, but the comparison of
the results of these programs to data depends on the model used for
conversion of quarks and gluons to hadrons.

A more useful observable for measuring the jettiness of an event is
the thrust. For an eTe™ — hadrons event, thrust is defined as follows:
Go to the CM frame. Choose an axis, represented by a unit vector n.
Compute L

T = max {W} , (12.18)
where ¢ runs over all particles or observed energy depositions in the
event, maximizing this quantity over all choices of 7. The best choice of



n is called the thrust axis. This axis can be measured in each event and
used as a proxy for the initial quark and antiquark direction.

In a collinear splitting p — g+ k, it is approximately true that ¢ = zp,
k= (1-z)p. Then

Pald+F laed~laed R (1219)

and the value of the thrust is not affected by the splitting.
At the lowest order of approximation, an eTe™ — hadrons event
contains only a quark and antiquark

G e 2
b & (12.20)

This state has T = 1. When one gluon is emitted, most events are still
near T' = 1, though planar events with maximum energy sharing

/ '
%
can have values of T as low as 2

5. As more gluons are emitted, still
lower values of T' can be produced, but the probability to find such a
low value is proportional to many powers of as. Also, any emission that
is not precisely collinear will move the event away from 7" = 1; then the
final distribution of T" will have a zero at T = 1. This effect is called
Sudakov suppression. The final QCD prediction for the distribution of
T has the form

(12.21)

¥ “
o 2
h
T (12.22)

The peak near T = 1 should become steeper at higher E¢j;, since
the probability of emitting the first, hardest, gluon is proportional to
as(Ecp). Figure 12.2 shows the thrust distribution measured by the
ALEPH experiment at the ete™ collider LEP at energies from 91 GeV
to 206 GeV, and a comparison to QCD theory (Heister et al. 2004).
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QCD physics that determines the shape
of the thrust distribution.
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butions predicted by QCD.
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The JADE algorithm for clustering ob-
served particles in an ete™ — hadrons
event into jets.

Applying the JADE algorithm to
ete™ — hadrons events reveals the
fractal substructure of jets, in agree-
ment with the predictions of QCD.

The other approach to the quantitative analysis of jets is to identify
the jets in each event by a clustering algorithm. If this algorithm
is IR-safe, the same algorithm can be applied to particles observed in
an ete” event and to quarks and gluons in the QCD model. Many
studies use the JADE algorithm, developed in the JADE experiment at
the PETRA collider at DESY. For all pairs of particles i, j, compute

2
yij = (p“%]) . (12.23)
This is the ratio of the invariant mass of the pair to the invariant mass of
all particles in the event. Choose a value y.,; that will set the resolution
with which we observe the jets. To begin the clustering, choose the pair
i, 7 with the smallest value of y;;, and combine these into a single particle

Pi +Dj = Pk - (12.24)

Repeat until all values of y;; are greater than yc,:. The jets in the event
are defined to be the (composite) particles remaining at this stage. For
jet analysis at 100 GeV, a typical value of y.,; used to count jets is
Yeut = 1072, Then we resolve the 100 GeV event into jets that are
clusters of particles with mass roughly 10 GeV.

The fractal nature of QCD is revealed when we change the value of
Yeut- For large values of y.,¢, essentially all events are clustered into 2
jets. AS yeut is lowered, the number of jets increases as jets at one level
are resolved into pairs of jets at the next level. Figure 12.3 shows the
fraction of 2-, 3-, 4-, and 5-jet events in eTe~ annihilation at 206 GeV
as a function of y.,;, as measured by the ALEPH experiment.

Given the probabilities for quark and gluon splitting in QCD, it is
possible to write a computer program that models the physics of jet
production by emitting quarks and gluons stochastically according to
these laws. The transition from quarks and gluons to hadrons, at the
momentum scale of 1 GeV, is treated by an ad hoc model with many
adjustable parameters. Once these parameters are fit to low-energy
ete™ data, these simulation programs give predictions for the shapes
and numbers of jets in higher-energy reactions. The codes PYTHIA
and HERWIG, built according to this strategy, have been in develop-
ment since the 1980’s (Bahr et al. 2008, Sjostrand et al. 2015). These
and a more recent competitor Sherpa (Gleisberg 2009) are used today
to model events for all high energy collider experiments. They fit the
data very effectively. Figure 12.3 shows the comparison of PYTHIA and
HERWIG simulations with the ALEPH data on the number of jets as a

function of resolution.
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(12.1) The nonlinear terms in the QCD Lagrangian lead
to the following expression for the matrix element
for a gluon to radiate a gluon:

M (ga(pv &) —

gb(q,EQ) +'gc(k7€k))

= gs /" |(k+p) €5 e € —

+(q—k)~6p62'672 )

where %€ is the structure constant in the commu-
tator of two group generaters. For SU(2), fo*¢ =

eabc.

(a)

To make the expression (12.25) more symmet-
ric among p, q, k, replace the incoming mo-
mentum p by an outgoing momentum (—p)
and €, by €,. Show that the resulting ex-
pression is completely symmetric under inter-
change of any two gluons, as required by Bose
symmetry.

Set up the kinematics of almost collinear
gluon radiation for g(p) — g(q)g(k), following
the calculation in Section 10.2 of the matrix
elements for q(p) — v(q)q(k). To order gr,
the three 4-vectors are

p~ (F,0,0,F) ,

q=~ (zF,qr,0,zE) ,

g~ ((1-2)E,—qr,0,(1-2)E) ,
(12.26)

Modify the 3 component of ¢ and k, as we
did in (10.19), so that these vectors satisfy
¢*> = k% = 0 to order ¢%, and then modify the
3 component of p = q + k.

Write the polarization vectors (for L and R
polarizations) for the three gluons. These po-
larization vectors should be transverse to the
corresponding momenta (for example, €(q) -
¢ = 0), correct to order ¢}. Make tables of
the values of (e-p) and (e - €) needed to com-
pute the matrix elements in (b) for all possible
polarizations.

Work out the matrix element for gr — grgr1,
to order gr, and show that it is zero.

Work out the matrix element for gr — grgr.
And, changing just what needs to be changed,
work out the matrix element for gr — grgr.
Work out the matrix element for gr — grgr-
Show that the matrix elements for g, — gg
are given by reversing all polarizations in the
previous calculations.

(12.25)

(h)

(P+a)-€eneg

(12.2) Starting from (10.48),
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Square the matrix elements, sum over final
spins and colors, and average over initial spins
and colors. To compute the sum over colors,
you will need the identity (11.19).

Write the analogous sum over matrix ele-
ments for — gq, given by (10.31) with
Q?e2 — 3957 and compare this to the result
found in (h).

Finally, following the derivation for ¢ — gq
and just changing what needs to be changed,
derive the expression for the emission of an
almost-collinear gluon from a gluon,

Prob( g — g9)
dgr 1+ 2* —l—(l—z)
- e [ S
(12.27)

derive the leading-order

QCD prediction for the thrust distribution in

+

e'e

(a)

(e)

— hadrons events.

To compute the thrust for a 3-parton config-
uration, we will need to identity the thrust as
a function of the variables (10.45). Show that
T = max{zy, x7,¥4}. Show that T > 2 for
any ¢gg configuration.
Consider the region of phase space where x, is
the largest of the three variables. Show that
the contribution to do/dT from this region is
given by a one-dimensional integral over xz
over the interval 2(1 — z4) < 27 < 4. Com-
pute this integral.
Consider the region of phase space where x7 is
the largest of the three variables. Show that
the contribution to do/dT from this region is
given by a one-dimensional integral over z,
over the interval 2(1 — z7) < 4 < zz. Com-
pute this integral.
Consider the region of phase space where x4
is the largest of the three variables. Sub-
stitute 7 = 2 — x4 — x4 into the integrand
of (10.48). Show that the contribution to
do /dT from this region is then given by a one-
dimensional integral over x, over the interval
2(1 — z4) < g < z4. Compute this integral.
Assemble the pieces and show that

do

9 _ ete = qa
I oleTe” — qq)
205 12(37% — 3T +2), 2T —1
. [ log
3m T(1-1T) 1-T
,W] . (12.28)

-1






QCD at Hadron Colliders

The understanding of pdfs and jets presented in the previous chapter,
gives us the conceptual tools to understand the basic features of proton-
proton and proton-antiproton collisions at very high energy. Protons are
composite states that contain quarks, antiquarks, and gluons. In a high-
energy pp or pp collision, these particles can interact softly or through
individual hard collisions. The soft collisions should be described by low-
momentum transfer QCD forces. The hard collisions should be described
by the QCD interactions of quarks and gluons.

Because QCD interactions are strong at low momentum transfer, the
dominant feature of high-energy proton-proton collisions should be soft
scattering events. It is useful to picture the protons as bags contain-
ing quarks, antiquarks, and gluon. The soft collisions can rip these
bags open, liberating many partons, which then reform into hadrons.
Soft collisions then should produce large numbers of final-state parti-
cles, but all with small transverse momentum relative to the original
collision axis. Hard scattering of quarks and gluons should occur much
more rarely. However, these hard-scattering reactions should be quite
distinctive, since they should generate jets with very large momentum
components transverse to the beam direction.

To the extent that we can separate the hard collisions from the soft
reactions, we can test QCD in high-energy hadron-hadron collisions.
In this chapter, I will describe the various levels of a hadron-hadron
collision and methods for finding jets in hadron-hadron collision events.
From this, we will see that QCD has characteristic predictions for hard-
scattering processes in hadron-hadron collisions that are confirmed by
experiment.

13.1 Hadron scattering at low momentum transfer

Figure 13.1 shows the total cross sections for a variety of hadron-
hadron scattering reactions as a function of y/s. The top curves are
the pp and pp total cross sections. Notice that these cross sections
are dominated by s-channel resonances up to about 2 GeV. At higher
energies, the behavior is smooth, almost constant. Also, particle and
antiparticle cross sections become identical:

2
g\

—1. (13.1)

2
)
2
S
+
3

The behavior of total cross sections for
hadron-hadron scattering.
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Fig. 13.1: Total cross sections for hadron-hadron collision processes, vp —
hadrons, and vy — hadrons, as a function of center of mass energy, from
(Patrignani et al. 2016).
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Fig. 13.2: Lego plot of a typical pp collision event recorded by the CDF
experiment at the Tevatron collider at 2 TeV (figure courtesy of Fermilab and
the CDF collaboration). The plot shows the distribution of Er recorded by the
calorimeters (pink for the electromagnetic calorimeter, blue for the hadronic
calorimeter) as towers in the (7, ¢) plane.

This behavior is called the Pomeranchuk theorem (Pomeranchuk 1958).
It indicates that, at very high energies, the bulk of the total cross section
is not generated by valence quarks but rather by soft collisions of the sea
quarks and gluons. The pp and pp total cross sections at TeV energies
are about 100 mb.

A typical pp event recorded by the CDF experiment at the Fermilab
Tevatron collider at 1.96 TeV is shown in Fig. 13.2. The vertical scale
shows the momentum transverse to the beam direction, called pr or Erp,
in GeV. Many particles are produced, but few have Ep > 2 GeV. The
physics is that of many soft scatterings among the proton constituents.

I must pause for a moment to explain the coordinates used in this
figure. To make this plot, we wrap a cylinder around the beam axis,

(13.2)
We then divide this cylinder into cells, measure the calorimetric energy
deposition in each cell, and record the quantity Er is defined as the energy deposition
in a calorimeter, projected onto direc-
Er = Esinf , (13.3) tions transverse to the beam direction:
v ol
the deposited energy projected onto the direction transverse to the beam
axis. The quantity Ep is called the transverse energy. Finally, we un- '\9
wrap the cylinder and plot the measured E7 in each cell as the height P

of a tower. This event display is called a Lego plot, for obvious reasons.
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Definition of the rapidity y of a particle.

Definition of the pseudo-rapidity of a
particle.

One coordinate is the azimuthal angle ¢ around the cylinder. We might
take the other coordinate to be the polar angle 6, but there is a better
choice.

A particle momentum (for simplicity, in the 1, 3 plane, where 3 is the
beam axis) has the form

(E,pr,0,p)) E? = p7 +pjj +m? . (13.4)

We can represent the components of this vector as

E = (p% +m?)/2 coshy p| = (p7 + m?)Y?sinhy . (13.5)
The variable y is called the rapidity,
y = tanh ™! % . (13.6)
If we boost along the 3 axis
E'=y(E+pp)  pj=(p) +BE) pr=pr. (13.7)

For a boost by 3, v2(1 — 3%) = 1, so we can represent the magnitude of
the boost by writing

v=cosha , vB =sinha . (13.8)
Then
E' = (p% + m?)Y/?[cosh y cosh a + sinh i sinh o
pfl = (p% +m?)Y/?[sinh y cosh a + cosh y sinh o (13.9)
so that

E' = (pp +m*) P cosh(y+a)  p| = (pF +m?)"/sinh(y +a) .
(13.10)

We see that a boost along the beam axis is a simple translation of y.
In the parton model, the components of the proton have all values of
momentum, up to the total momentum of the proton. For most parton-
parton collisions, the CM system is boosted along 3 relative to the lab
frame. So it is useful to use a variable that is transformed very simply
by a boost.

At large values of the energy, we can often ignore the mass of the
particle. Then E = |p] and the above relations become

p = prcoshy p| = prsinhy . (13.11)
Since
p+p| =pre, (13.12)
the quantity y can be computed as

p+p| _10g1+0089 B 110 1+ cosf

pr sin @ 2 %1 " cosh

y = log (13.13)
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Fig. 13.3: Lego plot of a pp collision event recorded by the CDF experiment at
the Tevatron collider at 2 TeV with two jets in the final state (figure courtesy
of Fermilab and the CDF collaboration).

Fig. 13.4: Lego plot of a pp collision event recorded by the CDF experiment at
the Tevatron collider at 2 TeV with four jets in the final state (figure courtesy
of Fermilab and the CDF collaboration).

It then makes sense to define the pseudo-rapidity n of a particle or an

energy deposition as . - )
cos

n=g log T —cosd (13.14)
This quantity is directly computable from the particle’s polar angle 6,
1 without identifying the particle or even separating particles from one
another. For example, 1 can be computed from the location of an energy
deposition in a calorimeter. For pions, or for other hadrons at high
momentum, 7 is a good proxy for the rapidity. This is then the natural
variable to use instead of the polar angle in analyzing hadron-hadron
collisions. In typical pp collisions, the particle production is roughly
uniform in 7 and ¢, at least for |n| < 3.

More rarely, pp collision events have the form shown in Fig. 13.3. We
see two jets with Er ~ 50 GeV standing out above the soft debris from
the pp collision. It is not hard to imagine that this event contains a hard
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Fig. 13.5: QCD predictions as a function of center of mass energy for cross
sections for a variety of processes observable in pp collisions, from (Campbell
et al. 2013).

quark-antiquark collision. Multijet final states are also seen, as in Fig.
13.4.

Figure 13.5 shows a QCD prediction of the rates of various components
of the pp total cross sections as a function of CM energy for LHC energies
and above. At the 13 TeV CM energy of the LHC, the total cross
section is about 100 mb. The cross secton for production of a jet with
pr > 50 GeV is 20 ub, smaller by a factor of 10~*. This rate is still
enormous compared to the rates for more exotic processes such as the
production of weak-interaction bosons and top quarks. To study the
whole range of physics processes available at a hadron collider, it is
necessary to accumulate huge quantities of data and to filter this data
very effectively to find rare classes of events.

13.2 Hadron scattering at large momentum transfer

I have already remarked that it is difficult to build a quantitative
theory of the pp total cross section. However, we can build models of
jet production and other hard processes by combining the parton model
of the proton with scattering cross sections computed from QCD. I will
now sketch the theory for the rate of 2-jet events in pp collisions.
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To construct this theory, imagine taking one parton—a quark, anti-
quark, or gluon—from each proton using its known pdf. These partons
can then scatter, as shown in the process

L

(13.15)

Let 6, be the polar angle for scattering measured in the parton-parton
CM frame. Since the final jets are observed, we can boost to this frame
and measure #,. Each 2-jet reaction can then be viewed as a 2-parton
scattering process in QCD, with known kinematics. The 2-jet production
cross section is then given by the formula

o(pp — 2 jets) :Z/dxlfi<xl)/dx2fj($2)

ijkt
do
Y (ij . (131
/dcos@ Teos 6. (ij = k€), (13.16)

The cross sections needed on the right-hand side can be computed in
QCD as quark-gluon reactions. The indices 14, j, k, £ run over all possible
quarks, antiquarks, and gluons.

The kinematics of the parton-parton scattering reaction are described
by the Lorentz invariants 8, £, &. The CM energy of the parton reaction
is related to the total CM energy by

§=(pi+p;)° =2pi-pj =2a122P - Py, (13.17)
where P, P, are the initial proton momenta. We can thus identify
§=mz1@28 . (13.18)

By measuring the momenta of the final jets, we can determine § and 6,
and, from these, obtain ¢, @&. To evaluate the formula, we need to supply
the values of the differential cross sections for the various scattering
processes of quarks and gluons. This computation is straightforward
but somewhat beyond the level of this book. In the rest of this section,
I will sketch some accessible properties of these cross sections. The full
expressions for these cross sections, at leading order in QCD, are given
in Appendix E.

In Section 9.4, we computed the cross section for e~ ¢ scattering (9.51),

WQ?&Q s2 + u?
(eq — eq) =

dcosf s 12 (13.19)

The parton model, combined with
quark-gluon scattering cross sections
from QCD, gives a definite prediction
for the rate of production of 2 jet events
in proton-proton scattering.
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Computation of the color factor for
quark-quark scattering.

The scattering of quarks of different flavor, for example ud — wud, is
described by the same formula, replacing a by as and supplying an
appropriate factor for color. We must average over initial colors and
sum over final colors. The process

(13.20)
leads to the color factor

e, (13.21)

215

ijkla

w\»—l
oo\»—u

where here ijk/¢ are the color indices of the corresponding partons. Eval-
uating, (13.21) becomes

1 1
§(tbz‘jtbk£)(t°.‘.t;k) = §tr[tbt“]tr[tbt“]
1 1 1 1
925“’ 5% = 55758 (13.22)
so, finally, the color factor (13.21) is
1
33 Z |t 19 |2 = (13.23)
Colors
Then
do 2 ma? 82 + 02
d d g — 13.24
d cos 0, (ud = ud) = 9 3 2 ( )

For quarks of the same flavor, there is an additional Feynman diagram
that must be added to the amplitude M. In the process uu — uu,
because u quarks are identical particles, either final-state u quark can
go into either observed jet. Then the complete scattering amplitude is
a sum of the expressions for the two Feynman diagrams.

25
SN

«

(13.25)

and the sum of diagrams is squared to give the total rate. This leads to
the expression

= = = = . 13.2
(uu — uu) e > 2 30 (13.26)

o 2ma? 82462 §2+¢2 2482
dcosb,
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In the forward direction, 6, — 0, f — 0, and @ — —5. Then (13.24)
and (13.26) both have the singular behavior

(g0 — qq) 4702 §? 4 Ta? 1
WU~ 975 2 79 5 sinte)2

13.27
dcosf, ( )

We recognize this as Coulomb scattering by the QCD potential. The
formulae for scattering processes involving quarks and antiquarks are
slightly more complicated, but in all cases the singular Coulomb term is
the same. We must also include less singular processes such as ut — dd,

4 d

b e (13.28)

The most singular terms for gg, gg, and gg scattering follow in the
same way. For gg or gg scattering, the cross section for Coulomb ex-
change is obtained by replacing one factor of the quark squared charge
factor % by the gluon squared charge factor 3. This gives

wa? §2

(99 = a99) ~ —— % (13.29)

dcosf,

The complete expression, obtained by summing the diagrams
KK
1S 3 % q 1 N (

do (49 — q9) = ra?[82+4a% 4
dcosd, 19 7 9= 55 2 9
Less singular processes such as gg — ¢¢ must also be included.

For gg scattering, we replace two factors of % with two factors of 3 to
find

13.30)

is

(a + §)]. (13.31)

5 u

9 ra? §2

ag
AL 13.32
dcose*(gg%gg) 13 P ( )

The complete list of parton-parton QCD cross sections is given in Ap-
pendix E. By folding these expressions with the corresponding pdfs, we
find the leading order QCD prediction of the jet production cross section
in pp collisions. Figure 13.6 shows the leading-order QCD prediction for
proton-proton collisions at the LHC at a center of mass energy of 13 TeV.
The prediction has two important features. First, the differential cross
section falls by 6 orders of magnitude as the jet pr is increased from

Forward scattering of quarks and glu-
ons is described by Coulomb scattering
through the QCD Coulomb potential.

Properties of the QCD predictions for
2-jet production in proton-proton colli-
sions.
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Fig. 13.6: Leading order QCD prediction for the rate of jet production in
proton-proton collisions reactions as a function of the jet transverse momen-
tum. The three lower curves show the contributions from gg, qg, and qq
scattering processes.
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100 GeV to 1000 GeV. Second, different parton reactions dominate in
different regimes of pr. At low pr, gg scattering is most important,
since this process has the largest intrinsic cross section. However, the
valence quarks in the proton have higher energy than the gluons, so
quark scattering processes are increasingly important at high pr. As
pr increases across the figure, the dominant role is played, first by gg
scattering, then by qg scattering, and, finally, at the highest values of
pr, by qq scattering.

13.3 Jet structure observables for hadron collisions

To compare the QCD prediction to data, we need precise definitions
of the observables that we will relate between theory and experiment. If
we wish to discuss jets in hadron-hadron collisions, we will need to define
these jets in a robust way that we can apply to observed events. The jet
algorithms used for hadron collisions are somewhat different from those
we applied in the simpler environment of eTe™ annihilation. I will then
first describe methods for defining jets in hadronic collisions and then
show how measurements on these jets compare to QCD predictions.

Hadron-hadron collisions contain many particles in the final state.
Most of these particles are not associated with a hard scattering pro-
cess but rather are liberated when the colliding protons are disrupted.
These soft particles are produced roughly uniformly in pseudo-rapidity.
Most of them, then, are emitted into angular regions near the beam di-
rection. Collider detectors such as ATLAS and CMS are not sensitive to

particles produced at very small angles with |n| > 5. So we cannot use

definitions that require knowledge of all particles in the event. Instead,
we need to define observables that are built from particles in the cen-
tral rapidity region and that emphasize particle with large transverse
momenta. Hadron collider experiments also typically measure calori-
metric energy, which sums over particles, rather than individual particle
momenta.

A useful approach is to look at the distribution of Er over the (1, ¢)
plane, as we saw in the event displays. Instead of using y;; as a criterion
for clustering particles as we did in (12.23), we can use distance in the

(n,¢) plane

1/2
ARj; = |(An)? + (Agi)?| - (13.33)

Again, we combine 4-vectors until all composite particles are separated
by a distance larger than a predetermined quantity R, called the cone
size. This clusters energy into jets that correspond roughly to circles in

Difficulties for defining jets in hadron-
hadron collisions.
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IR-safe algorithms for defining jets
that are well-adapted to the physics of
hadron-hadron collisions.

Using a fixed jet algorithm to define
jets, we can compare the rate of ob-
served rate of jet production to that
predicted by QCD.

the (n, ¢) plane or cones in 3 dimensions.

= (13.34)

This cone jet algorithm is IR-safe. It remains IR-safe if the energy
elements are weighted by their Er. A convenient definition used by the
LHC experiments is to use as the clustering criterion

Xij = ARY - min(Br2, Br?) (13.35)

This defines the anti-kr jet algorithm (Cacciari et al. 2008). It gathers
elements with small E7 in a neat circle or cone around a nearby element
with large Ep. Experiments in pp scattering at the Tevatron typically
used cone jets with R = 0.7. Experiments in pp scattering at the LHC
typically use anti-kp jets with R = 0.4 or 0.5. It is important to remem-
ber that the cone size R is, in principle, arbitrary. Smaller R leads to
more or more highly resolved jets.

Figure 13.7 shows a comparison of theory and experiment for the jet
production rate from the ATLAS experiment at the LHC. Both for the
theoretical calculation and for the analysis of the experimental data, the
jets are defined to be R = 0.4 anti-kr jets. The theory calculation is
carried out to higher order in QCD, so that it includes final states with
2 and more partons. The cross section for producing a jet at fixed pr,
plus any other jet activity in the event, is compared, in intervals of 7,
with the QCD theory. It is evident that QCD correctly tracks the full
dependence on pr and 7.

13.4 The width of a jet in hadron-hadron collisions

The physics topics that we have discussed in this chapter can be com-
bined to produce a very rich array of predictions for high energy QCD
scattering processes. To conclude our discussion of hadron collisions, I
will present two of these.

The first of these involves the QCD prediction of the width of a jet
observed in hadron-hadron collisions as a function of pr. The prediction,
and the comparison with experiment, is shown in Fig. 13.8.

This measurement, in pp collisions at 1.96 TeV by the CDF experi-
ment, defines jets with a cone size R = 0.7. It is possible to define the
width of the jet by looking at the flow of transverse energy inside the
cone. To study this, we can construct the following quantity: Let p be
a parameter with values between 0 and 1. Let Ep; label the individual
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Fig. 13.7: Comparison of QCD theory and experiment for the differential
cross section to produce a jet in pp collisions at 7 TeV over a large range of
pr and y (= 1), measured by the ATLAS experiment at the LHC, from (Aad

et al. 2012b).
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Fig. 13.8: Measurement of the jet size variable 1)(p) as a function of pr in
pp collisions at 2 TeV by the CDF experiment at the Tevatron collider, and
comparison to QCD predictions from the simulation program PYTHIA, from
(Acosta et al. 2005).



13.4  The width of a jet in hadron-hadron collisions 209

depositions of Er used to construct the jet. Then let

Wp)= > EBri/ Y Eni. (13.36)

AR<pR AR<R

This quantity measures the fraction of the jet Er that is contained within
a narrower cone, of size r = pR on the same axis as the original cone of
size R. Clearly

0<yp)<l. (13.37)

Values of (1 — ¢(p)) close to zero indicate very narrow jets.
In our lowest order description of QCD scattering, each jet contains
one parton, the one giving rise to the jet.

(13.38)

At the next order in ay, this parton can radiate, typically producing an
almost collinear gluon but sometimes radiating a parton at larger angle.
This gives the jet a width.

(13.39)

Emission of many quarks and gluons produces a range of widths. The
variable (1 — 1(p)) can then be computed by summing QCD processes
or by a simulation program such as PYTHIA.

(13.40)

We might expect that, as pr is increased, the width of the jet would
decrease as a(gr) decreases.

However, there is another effect. As I explained in (12.14), gluon jets
contain more radiation than quark jets. As a result, gluon jets are wider
than quark jets. As we move from small pr to large pr, we move from
the region of the 2-jet pr distribution dominated by gg scattering to the

A parameter that measures the width
of a jet observed in hadron-hadron col-
lisions.

Two different effects predicted by QCD
are needed to explain the dependence
of jet width on pp. The combination of
these effects does successfully explain
the data.
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Mechanisms for top quark pair produc-
tion in hadron-hadron collisions.
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Fig. 13.9: Measurements of the cross section for production of a pair of top
quarks in pp and pp collisions at the Tevatron collider and the LHC, as a func-
tion of energy, compared to predictions from QCD, from the LHC Top Quark
Working Group (figure courtesy of CERN and the ATLAS collaboration).

region dominated by valence ¢q scattering. This also leads to narrower
jets as a function of pr.

In Fig. 13.8, the average value of (1 — ) for r = 0.3 and R = 0.7,
measured as a function of the jet pr by the CDF experiment at the
Tevatron, is compared to the prediction from PYTHIA (Acosta et al.
2005). The top reference curve shows the variation in the width of gluon
jets as a function of py. The bottom reference curve shows the variation
in the width of quark jets as a function of pr. The data interpolates
between these limits, showing both the narrowing of jets with py and
the change in the jet sample composition.

13.5 Production of the top quark

The second of these QCD predictions concerns the rate of production
of the heavy quark ¢ or top. The top quark has a mass of 173 GeV. In
QCD, the top quark can be pair-produced from quark-antiquark anni-
hilation

e

(13.41)
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or from gluon-gluon annihilation.

a9
® S 3 (1342

Figure 13.9 shows measurements of the top quark pair production cross
section at the LHC at 7, 8, and 13 TeV and the average of measurements
at the Tevatron at 1.96 TeV. The blue and green curves are the QCD
theory predictions for pp and pp collisions as a function of energy.

The theory prediction has a quite unusual feature. As the energy
increases by only a factor of 3.5 to 4 from the Tevatron to the LHC,
the cross section increases by a factor of 20. The predicted LHC cross
section is actually a factor of 100 higher than the QCD prediction for
the cross section in pp collisions at 2 TeV. The measurements confirm
this energy-dependence with high accuracy. But, what is the origin of
this effect?

Two features of the QCD prediction come into play. First, top quark
pair production requires a parton-parton CM energy of 350 GeV or more.
So, at the Tevatron, it requires a collision of two partons, each of which is
carrying more than 15% of the total energy of the proton or antiproton.
This criterion is met only for the valence quarks and antiquarks. As the
energy of the collider is increased, more of the partons can participate
in t¢ production, increasing the predicted rate.

In addition, the production of ¢ from gluons has an intrinsically larger
cross section than the production from quarks of the same energy, by
about a factor of 5. As the collider energy is increased, gluons from
the parton sea have enough energy to produce top quarks. The large
value of the cross section and the large value of the gluon pdf lead to
a dramatically increased prediction. The dominance of production by
gluons is seen in the theory prediction by the approximate equality of
the predictions for pp at pp collisions at the highest energies.

These two examples give just a sampling of the wide variety of phe-
nomena that are observed and explained by QCD in hadron collider
physics.

Two distinct QCD effects explain the
sharp rise in the cross section for pro-
ducing top quark pairs over the collider
energy range 2 TeV to 13 TeV. The full
QCD theory is in good agreement with
the measurements.
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Exercises

(13.1)

(13.2)

Solve the relation (13.14) for cos@ in terms of the
pseudorapidity 1. Find the corresponding values of
0 for n =1,2,3,4,5,6. What is the practical limit
in n for measuring the tracks of charged particles
produced in a hadron collider event?

The W and Z bosons are massive spin 1 particles
that are the basic quanta of the weak interactions.
We will discuss their properties in detail in Chapter
17. Both the W and the Z were discovered by the
UA1 experiment at the CERN proton-antiproton
collider. The Z boson has a decay Z° — eTe™, so
it is possible to observe the Z as a resonance by
identifying events with muone®e™ pairs and plot-
ting the distribution of the eTe™ invariant mass.
The corresponding decay of the W is WT — eTv.
This decay cannot be observed as a resonance be-
cause neutrinos are not observed by collider detec-
tors. This problem will explain how the mass of
the W was measured and give tools for computing
the mass of other particles that decay with unob-
servable decay products.

(a) Although neutrinos are not observed by
hadron collider detectors, these detectors can
observe other particles and measure the im-
balance of observed momentum in the final
state. Typically, the measurement of the
missing momentum pr in the two directions
orthogonal to the beam direction is good,
while the measurement of the missing p®, par-
allel to the beam direction, is poor. Why is
the imbalance of p® difficult to measure? In
the following, we set pr(v) equal to the miss-
ing transverse momentum.

(b) For a W™ produced at a hadron collider and
decaying to et v, we can treat the final e and
v as massless. Write the 4-vectors for the mo-
menta of these particles in terms of the n and
pr for each, where 7 is the pseudorapidity and
pr is a 2-component vector transverse to the
beam asix.

(c) Using this representation of the 4-vectors,
compute miy = (p(e) + p(v))?.
(d) Show that

miy > mi (13.43)

where myy, the transverse mass, is given by

miy = (|5 (e)| + 15T (v)])* = (Fr(e) + 51 (v))* .

(13.44)
In practice, the distribution of my; is strongly
peaked toward this upper limit and thus al-
lows an accurate estimate of myy .

(13.3) The Drell-Yan process is the reaction in a pp or

pp collision that produces a muon or electron pair.
The underlying process is ¢ — ete™ or p p™. In
this problem, we will work out the parton-model
description of this process. Ignore all quark and
lepton masses.

(a) Write the total cross section for q;g, — p'p~
as a function of the quark-antiquark center of
mass energy, ignoring all fermion masses. The
factor for color should be % rather than the
3 in the formula for the ete™ — qrqy cross
section. Why? Aside from this factor, you
can get the rest of the expression from our
analysis of ete™ — qrd;-

(b) In the parton model, the cross section for
pp — pTp” + X is given by

Z{/dfﬂl ff(m)/dm Fo(x2)

7
o (qf (@1 P)g(w2P2) = @ u”) + (f < )
(13.45)

where the sum runs over quark flavors. Write
an expression for § for the parton reaction in
terms of z1, x2, and s for the pp collision.
Note that § = M?, the mass-squared of the
observed ptpu~ system.

(¢) Working in the pp CM system, write the 4-
vectors of the initial quark and antiquark.
Let (£,0,0,P) be the sum of these momenta.
This is also the total momentum of the p*p~
system. The rapidity y of the p™ ™ system is
defined by

tanhy = P/E (13.46)

Verify that £ = M coshy and P = M sinhy.
Write an expression for y in terms of z; and
2.



(d) Write the converse expressions for z1 and z2
in terms of y and M (with s fixed). Notice
that in this process, as in deep inelastic scat-
tering, we can determine the values of the par-
ton momentum fractions by measuring only
the lepton momenta.

(e) In the cross section formula, change variables
from z1,z2 to M,y. Use the Jacobian deter-
minant to convert dridzrs to dMdy. Show

that
W(jdy olpp = p'p” +X) =
> lw1 fr (@)@ (@) + 21 f7(mn)ws fr (w2)]
f
8 ma?
'§W ) (13.47)

where 1 and zo are the values derived from
the measurement of M and y.

(f) The equation (13.47) has two terms, one with
a quark from proton 1 and an antiquark from
proton 2, and the other in which the anti-
quark comes from proton 1. We might break
this down further into contributions from va-
lence quarks and sea quarks annihilating with
antiquarks. For concreteness, think about the
LHC, where the pp center of mass energy is
13000 GeV, a typical value of M is 90 GeV,
valence quarks have x > 0.05, and sea quarks
have © < 0.01 (see Fig. 10.1). Argue that,
near y = 0, most annihilations are sea with
sea. At what value of y should sea with va-
lence annihilations be important?

(13.4) The Drell-Yan process discussed in Problem 13.3

involves the annihilation of an initial-state ¢ and
q. It is possible that a photon or a gluon could be
radiated in this annihilation process. This prob-
lem will estimate the probability of this initial-state
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radiation. In Chapter 10, in (10.39) and (10.42),
we wrote expressions for the probability that an
initial-state highly relativistic quark emits an ap-
proximately collinear photon or gluon. The formula
is a double integral, dominated by a term with two
large logarithms. For the estimates in this problem,
it is sufficient to keep only the term from the eval-
uation of the integrals with this double logarithm.

(a) Find an expression, using the approximation
of keeping double logarithmic terms only, for
the probability that a Drell-Yan event with
a muon pair of mass M also contains a ra-
diated photon with momentum transverse to
the beam direction greater than pr. The
needed limits of integration can be obtained
from the following considerations: For the gr
integral, the radiated photon is no longer ap-
proximately collinear if gr > M/2. For the
z integral, the photon is no longer approxi-
mately collinear if the longitudinal momen-
tum of the photon, approximately zM/2 in
the parton-parton center of mass frame, is less
than gr.

(b) Evaluate this expression for some typical pa-
rameters of the Drell-Yan cross section mea-
surement at the LHC: M = 300 GeV, pr =
30 GeV.

(¢) In a similar way, estimate the probability for
a Drell-Yan event to contain a radiated gluon
with transverse momentum greater than pr.
In this case, the final state will contain a
T~ pair and the gluon jet.

(d) Evaluate this expression for M = 300 GeV,
pr = 30 GeV, using as = 0.2. What is the
probability that one of these events will con-
tain a gluon jet?






Chiral Symmetry

Before we finish with the strong interactions, there is one more aspect of
QCD that we need to discuss. So far in this book, I have treated quark
masses as parameters of the nonrelativistic quark model—or ignored
them altogether. But, what are the values of the quark masses?

For heavy quarks, it is probably correct to use as a first approximation

1
me R Em(J/@ZJ) ~ 1.5 GeV ,

my & %m(T) ~ 4.5 GeV . (14.1)
These estimates of the masses can be refined using more accurate QCD
descriptions of the heavy quark-antiquark bound states.

To quote the masses of light quarks, however, we will need to develop a
better understanding of the properties of QCD at low energies. It turns
out that there is a new principle at work here, called chiral symmetry,
which gives additional insight into the nature of the lighest hadrons.

Chiral symmetry is a symmetry of QCD in the limit that the quark
masses are set equal to zero. However, this symmetry is not manifest in
the spectrum of hadron masses, even after we correct for the fact that
the masses of quarks are not exactly zero. Instead, this symmetry is
realized in a different way; it is said to be spontaneously broken. In the
course of this chapter, I will introduce the notion of a spontaneously
broken symmetry and discuss its consequences.

The concepts of chiral symmetry and spontaneous symmetry breaking
both have an important role to play in the theory of the weak interaction
that I will present in Part III. The study of this last aspect of QCD will
give us a useful starting point for the more general understanding of
these ideas.

14.1 Symmetries of QCD with zero quark masses
The Lagrangian of QCD was given in (11.44) as
1 va rha X (A
£:—1F“ Fi, + 9 (iv" Dy —m)¥y . (14.2)

The symmetries of this Lagrangian include Lorentz invariance, P, C, and
T, global charge conservation (equivalent to quark or baryon number
conservation), and the SU(3) color symmetry of QCD.

Other symmetries might be present depending on the values of the
quark masses. Consider for the moment a model containing only the




216 Chiral Symmetry

Definition of the Dirac matrix ~°.

Definition of the chiral SU(2) symme-
try of QCD with massless u and d
quarks.

two quark species v and d. If m, = my, the Lagrangian of this model
would be invariant under the continuous group of isospin rotations

¥ o (@),

(14.3)

where 7, j run over the values u,d. More generally, let m be the 2 x 2

quark mass matrix,
m, O
m = < 0 md) . (14.4)

An isospin rotation changes the Lagrangian according to

U(in"D,, — m)¥ — We ' ¥9/2(ix1 D, — m)e'¥9/2 P
= U(iv"D,) — ﬁ(e_i&"?mmem'&m)‘l/. (14.5)
Then if [m,0% = 0 for a = 1,2,3, the Lagrangian is invariant under
isospin. The criterion for this is m, = mg.

In the special case m, = mgq = 0, there is an extension of the group
of symmetries. For each of the two flavors, write

U= (i}{;) . (14.6)

We will find it useful to define the 4 x 4 matrix

7> = (01 ?) . (14.7)

This matrix anticommutes will all four Dirac matrices v*, as one can
see by explicit computation or by noting that

7° =iy (14.8)
The components ¢ ¢r, and 1sr can then be identified as the eigenstates
of v° with eigenvalues —1, +1, respectively. Parity reverses the three
space dimensions, so when 7® appears in a Dirac bilinear, it will acquire
a factor —1 in a parity transformation.
Recall from our discussion in Section 8.2 that, if there is no mass
term, the two pieces of the Dirac fermion do not couple directly in the
Lagrangian. Using this idea, we can rewrite the QCD Lagrangian as

1 o )
L= (Fue)® + > {w}Lm - Dy + P gio - quf,-,,} . (14.9)
f=u,d
This expression is invariant under two separate isospin symmetries

v — T2, VR — 27 YR | (14.10)

called SU(2) and SU(2)gr. Alternatively, we can take linear combina-~
tions of these and write their actions on the Dirac fields

U 872y D g (14.11)
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The first of these symmetries is isospin. The second, which rotates the
L and R fields in opposite directions, is called chiral SU(2).
Corresponding to the two isospin symmetries, there are two currents

_ g@ . o
jua _ \11’7“?\1/ ju5a — \I/fyﬂfy57\lj (14.12)
The current j#* should be conserved when m, = mgy. Noting the Dirac
equations
(iv"D,, — m)¥ =0 —iD,UA* —m¥ =0 , (14.13)

we can verify this explicitly,

O_a

g% —
0" = Wn" Dy + DUy -0

O.CL

—iT?m\If + i@m%kﬂ

=iV [m, %]\IJ . (14.14)

So the current is conserved when [m,o®] = 0, in accord with (14.5).

We can also check the conservation of j#5¢, the chiral isospin current.

There is an extra (—1) in the first term from anticommuting v* through
7®. We find

a a
aILjHSa — 7\1}%757”DH\IJ + D/L\I/’Y#'YS%‘I/
a

=T {m, %}w . (14.15)

So now the ¢% must anticommute with m if the current is to be con-
served. This is true only when m, = my = 0.
One might also imagine a symmetry

T — ey (14.16)

called chiral baryon number. It can be shown that this is not actually a
symmetry of QCD. This is not obvious; in fact, the symmetry is broken
only when subtle quantum effects in QCD are taken into account. The
symmetry is broken by a strong-interaction effect involving the gluon
fields ('t Hooft 1976).

14.2 Spontaneous symmetry breaking
QCD with two massless flavors is thus invariant under the symmetry
U(1) x SU(2) x SU(2) , (14.17)

that is, baryon number, SU(2);, and SU(2)r. Real QCD might or might
not be close to this idealized limit.
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Chiral SU(2) symmetry cannot be a
manifest symmetry of QCD.

Definition of spontaneous symmetry
breaking.

Examples of spontaneously broken
symmetry in condensed matter physics.

We immediately see that, if this symmetry is fully realized, there
is a problem. All hadron states would have to be assigned quantum
numbers under the full symmetry group. This would disturb the quark
model phenomenology. For example, we might assign the left- and right-
handed components of the nucleon the baryons number and SU(2) spin
quantum numbers

Np (1, %,O) Ngr : (1,0, %) (14.18)
But then a nucleon mass term, which mixes Ny and Ng, would be
forbidden. An alternative strategy would be to assign the full nucleon
field to (1, %, 0). But then, by parity, there must be another, degenerate,
nucleon with the quantum numbers (1,0, 1). Similar considerations hold
for the mesons. A theory with SU(2); x SU(2)gr and parity symmetry
requires doubling the number of mesons beyond those expected in the
quark model.

However, there is another option. It is possible for SU(2);, x SU(2)r
to be a symmetry, in the sense that its generators commute with the
Hamiltonian H, but one that is not respected by the states of the theory.
In quantum mechanics with a finite number of coordinates, it can be
shown that, if () generates a symmetry of the theory, then the ground

state of the theory |0) must obey
Q10) =0 (14.19)

However, in a system with an infinite number of degrees of freedom,
(14.19) can be violated. There can be several ground states of H, all
with the same energy, such that any one of these states has an orien-
tation with respect to the symmetry transformations. This situation is
called spontaneous symmetry breaking. In any particular ground state,
the symmetry is not obvious as a relation between the energy levels or
the particle interactions. However, there can be other observable con-
sequence of a spontaneously broken symmetry, as we will discuss in the
next section.

Quantum field theory has an infinite number of quantum degrees of
freedom, since it allows the creation of an infinite number of particles
from the vacuum state. If the Hamiltonian of a quantum field the-
ory possesses a symmetry, it is possible that there are multiple vacuum
states, in each one of which the theory appears asymmetric.

Condensed matter systems, in the thermodynamic limit, have an infi-
nite number of degrees of freedom, and they furnish many illustrations
of spontaneous symmetry breaking (Sethna 206). For example, in a
magnet, the Hamiltonian may be invariant under global rotations of the
electron spins. However, the state of lowest energy may have the major-
ity of electron spins preferentially aligned in some direction. Then this
state does not display spin rotation invariance, even though the rotation
generators S commute with the Hamiltonian. In this situation, there
will be several degenerate states of lowest energy, each of which has the
electron spins aligned in a different orientation.
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Another example occurs in the theory of superconductivity (Tinkham
1966). Electrons near the Fermi surface of a metal bind into pairs which
then form a Bose condensate within the metal. This Bose condensate
contains an indefinite number of electron pairs. If ®(z) is a field operator
that has the quantum numbers of 2 electrons and can therefore annihilate
an electron pair, the ground state of a superconductor |G) has

(G| 2(2)|G) #0. (14.20)

The operator ® has electric charge 2, and so this expectation value would
be forbidden if the total electric charge of the ground state were zero
(or any other definite value). The fact that the ground state contains a
reservoir of electron pairs is the reason that superconductors have perfect
conductivity. The condensate can adjust itself to create a current flow in
response to any electrostatic perturbation. Similarly, in the superfluid
state of He*, a condensate forms that contains an infinite number of He
atoms. This condensate forms a separate fluid that flows frictionlessly.

If the expectation value (14.20) is a nonzero number, that number
may be complex with a definite phase. The degenerate vacuum states
of a superconductor or superfluid are characterized by different phases
of the expectation value (14.20) (Yang 1962).

A very similar condensate can appear in QCD. Massless quarks and
antiquarks cost zero energy to produce. On the other hand, quark-
antiquark pairs are bound by QCD forces, which become strong at dis-
tances of 1 fm or 1/200 MeV. So it may be energetically favorable for
the QCD vacuum state to contain ¢q pairs. Consider, in particular, the
state urup

W O—-

This state is color-singlet and a Lorentz scalar, so the create of such
a ¢q pair leaves a color-singlet, Lorentz-invariant vacuum state. The
analogy to superconductivity tells us that the vacuum should fill with
a condensate containing an indefinite number of these pairs (and the
corresponding states for u @y, drdg, and dpdy,.

(14.21)

e {‘t =" J
@"q—‘\‘-j _ ‘\il.::) (\ . & v (’u/—"ﬂ}
= d :\ﬂ — Upn n-/ a B
( L ( j (14.22)

Now recall that ug is the antiparticle of uy,. If the vacuum is full of
URUR pairs, a uy can interact with the vacuum condensate and turn

Physical origin of a chiral symmetry
breaking ¢g condensate in QCD.
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A nonzero vacuum expectation value
that we can use to characterize the bro-
ken symmetry vacuum of QCD.

into a ug

Ug .
N, (14.23)

This a mixing of the massless ur, and ur. We have seen that this is
precisely the effect of a u quark mass term. So, on top of the vacuum
state with condensates, the u quark, and also the d quark, effectively
gets a mass. A similar effect is seen is superconductivity; an energy
gap in the electron spectrum opens at the Fermi surface. The u and
d quark effective masses should be at the QCD energy scale of a few
hundred MeV. Because of this effect, QCD with zero quark masses in the
Lagrangian predicts that valence quarks inside hadrons will apparenly
have masses of about 300 MeV. The vacuum condensates also allow the
proton and neutron to be massive.

Just as superconductivity is characterized by a nonzero operator ex-
pectation value in the vacuum, we can characterize the formation of the
quark condensates by an operator vacuum expectation value. Call the
vacuum state with condensates |0). The state upwy is annihilated by
the operator

U gt - (14.24)

Thus, a nonzero vacuum expectation value of this operator

(019! gtz [0) #0 (14.25)

indicates the presence of a condensate. If all four condensates urury,,
drdy, uruR, drdg are present in equal amounts, we would have

(O ptbin 10) = (0] ] vir |0) = —Ad;; (14.26)

where A is a value with the dimensions of (GeV)3. The state |0) is then
isospin-invariant and parity-invariant. = However, |0) is not invariant
under chiral SU(2). To see this, act on |0) with SU(2). This is equiva-
lent to an SU(2)y, rotation of the operator. We then find a new vacuum
state |@) with

(@] lptin |@) = —A('F/2) (14.27)

ij
The state |o) has the same energy as |0), because the SU(2); charge
commutes with the Hamiltonian. However, it is no longer either isospin
or parity symmetric. The parameter @ can take any value. This gives an
infinite number of degenerate vacuum states, in one-to-one correspon-
dence with the elements of the group SU(2).

The logic of the previous paragraph implies that the ground states
of the QCD Hamiltonian with two massless quarks form a manifold



isomorphic to the SU(2) group,

o)

All of these ground states have the same energy, but none of them fully
respects the chiral SU(2) symmetry. In each of these vacuum states, the
chiral SU(2) symmetry is spontaneously broken.

(14.28)

14.3 Goldstone bosons

In the situation that the spontaneously broken symmetry is a continu-
ous symmetry such as U(1) or SU(2), the symmetry of the Hamiltonian
implies that there are new particles with special properties.

To investigate this statement in QCD, we start with the conserved
current associated with the broken SU(2) symmetry. Consider the state
created by this current from the broken symmetry vacuum

/ d®z §95(2) |0) (14.29)

Now [d®z j%*(z) = Q°, the charge that generates the global chiral
SU(2) symmetry. The action of Q°® converts the vacuum state |0) into
a combination of the other degenerate ground states described in the
previous section. The energy of (14.29) must be equal to that of |0),
because Q°* commutes with the Hamiltonian.

Now consider the state

/ d3z e T 95 (1) )0) . (14.30)

This is a state with definite nonzero momentum p. As p'— 0, the energy
of this state (above the energy of the ground state) goes to zero. Thus,
this state must be a particle with rest energy zero, that is a particle
with zero mass. This observation is Goldstone’s theorem: For every
spontaneously broken continuous symmetry, there is a massless particle
created by the symmetry current (Goldstone 1961). This particle is
called a Goldstone boson.

The annihilation of a Goldstone boson 7 by the corresponding current
j* is described by a matrix element

(01 54°(2) [w()) =i f pHe” P, (14.31)
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Goldstone’s theorem: Every sponta-
neously broken continuous symmetry
leads to a massless particle, called the
Goldstone boson.
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Definition of the pion decay constant.

where f is a parameter with the dimensions (GeV)!. This structure
(14.31) is the only form allowed by Lorentz symmetry. The parameter
f could in principle be a function of the Lorentz invariant p2, but for a
particle of definite mass, p? = m? is fixed.

Taking the divergence and using current conservation

0 = (0] 9,5"°(x) | (7)) = fp*e™ 7T . (14.32)

This implies
p>=0. (14.33)

This is another way to see that a Goldstone boson must have zero mass.
In QCD with massless u and d quarks, there are three chiral SU(2)
currents. These must be spontaneously broken, as just explained, and
therefore we must find three Goldstone bosons. The annihilation equa-

tion reads
(0174 (x) |7*(§)) = ifap"8%e~ 77, (14.34)

where a,b = 1,2,3. The right-hand side must be proportional to 6%
by isospin invariance. The three chiral currents form an isospin triplet,
I = 1. The operators j%°¢ have P = —1. Thus, the three Goldstone
bosons are spin 0, P = —1, and I = 1. We saw in Section 5.3 that the
three hadrons of lowest mass are the pions, which have exactly these
properties. Nambu and Jona-Lasinio developed this picture and identi-
fied the pions as the Goldstone bosons of spontaneously broken chiral
SU(2) (Nambu and Jona-Lasinio 1961).

The parameter f, in the above equation is called the pion decay
constant. Its value is

fr =93 MeV . (14.35)

I will explain how this value is determined in Section 15.3. Despite the
name, there is no intrinsic connection between f. and the fact that pions
decay. On the contrary, f is a parameter of the strong interactions that
can be calculated (numerically) by solving QCD in the region of strong
coupling. The constant f; plays an important role in the low-energy
dynamics of QCD.

14.4 Properties of 7 mesons as Goldstone bosons

The assumption that the pions are the Goldstone bosons of spon-
taneously broken chiral SU(2) turns out to contain much information
about the behavior of pions at low energy, and about other aspects of
strong interaction physics. For example, this assumption leads to specific
expressions for the low-energy limit of the pion-pion scattering ampli-
tude and the pion-nucleon scattering amplitude, in both cases, in good
agreement with experiment. These developments are described in some
detail in (Donoghue et al. 1992).

As an example, I will discuss the matrix element of the chiral isospin
current in a nucleon state, a quantity that is important in computing
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the rate of neutron beta decay. To begin, consider the matrix element
of the vector isospin current. This matrix element is given by

a
(NGO IN (@) = 1T )y up) - T+ (14.36)
where the omitted terms are less important at low momentum transfer.
The coefficient 1 reflects the fact that the nucleons have definite charge
I? = j:% under isospin. Since the chiral isospin current is not respected
by the strong interactions, there is no similar argument for that current,
and so its nucleon matrix element can only be written

a

(N3 IN(p)) = ga - TP ) ulp) - 5+ (14.37)

where g4 is a dimensionless constant. However, it can be shown that
the assumption that the chiral SU(2) current is conserved and that the
pion is its Goldstone boson leads to the relation

gaA = figﬂ'NN y (1438)
mn

where g,y is the dimensionless pion-nucleon interaction strength. This
formula is called the Goldberger-Treiman relation (Goldberger and Trei-
man 1958). called the This quite nontrivial relation is reasonably well
satisfied. The value of g4 measured from the 8 decay of the neutron
is 1.25, while the measured value g,yy = 13., gives a value for the
right-hand side of 1.31.

If there are small v and d quark masses, the pions will also obtain
small masses. One way to see this is to add to the Hamiltonian of the
theory with m, = my = 0 the mass term

AH = muﬁu‘lfu + md@dllld
= MuVurVur + Mab gtar, + (R < L) (14.39)

Taking the expectation value in the state |0) and using (14.26), we find
(0| AH |0) = —2A(my, +mygq) . (14.40)

This is actually the minimum value of the energy among the set of
possible vacuum states |a). This effect will give the Goldstone bosons
masses proportional to

m2 ~ (my +myg) . (14.41)

To make this result more precise, go back to the equation (14.15) for
conservation of the chiral currents

0,515 = i {m, %}75\11 (14.42)

and put in

The idea of pions as Goldstone bosons
of spontaneously broken chiral SU(2)
gives us a way to evaluate the masses of
the light quarks taking account of the
effects of the strong interaction.
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We find

8,5 = i(my + md)@%'fq/ : (14.44)

plus, for the case a = 3, an extra I = 0 term that will drop out at the
next step. Now take the matrix element between (0] and a 1-pion state

(0] 0,,3"% | 7Y = i(my +ma) (0| @%aﬁp |7y . (14.45)

The left-hand side can be evaluated as in (14.32). By isospin invariance,
the right-hand side must be proportional to §?° (and the additional term
from a = 3 must give zero). Then, (14.45) implies that

frD?0% = (my +mg)A'6% . (14.46)
Setting p? = m2, the pion mass satisfies

m2 = Mt ma) (14.47)
fx
The parameter A’ has the dimensions (GeV)? and should be of the order
of the QCD scale. If we estimate

A" = (500 MeV)? , (14.48)
and use the value f, =93 MeV, we find
My +mg =7 MeV . (14.49)

A modern numerical evaluation of the matrix element in QCD confirms
that this estimate for the values of the u and d quark masses is about
right (Manohar et al. 2016).

The picture that emerges is that real QCD is quite close to the limit
in which the v and d quark masses in the Lagrangian are zero. The
closeness to that limit is measured by the smallness of the ratio

m2

U
m2 =0.03 . (14.50)
Note that, because of the spontaneous symmetry breaking, the v and
d quarks inside hadrons will move as if they have masses of the order
of the QCD scale, about 300 MeV, acquired from their interaction with
the quark-antiquark condensate. Thus, the successes of the quark model
are quite compatible with the idea that the fundamental masses of the
u and d quarks given in the Lagrangian are small.

We can take a further step by considering the model in which the u,
d, and s quark masses are all set to zero. In this case, the symmetry of
QCD analogous to (14.17) is

U(1) x SU(3) x SU(3) . (14.51)

The first SU(3) rotates the left-handed components of the three flavors;
the second separately rotates the right-handed components. Similarly
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to the previous case, we can define vector and axial vector SU(3) sym-
metries. By the same logic as above, the axial vector symmetry should
be spontaneously broken. This leads to a number of Goldstone bosons
equal to the number of generators of SU(3), that is, 8. These should
all be spin 0, P = —1 mesons. The natural candidates are

a0 Kt KO R, R, . (14.52)

Repeating the argument above for the pion masses, one can derive the
mass formulae

= (my +mq) - A/ fr
mK+ = (mu + m@) : A//fw s
mKo = (ma+ms) - A/ fr
= (4ms +my +mg)/3- A/ fr . (14.53)

where the parameters A’ all have the same value in the limit of small
quark masses. We should add to these expressions small contributions
from electromagnetism. For example, the electromagnetic interactions
of the pion raise the mass of the 7% above the mass of the 7° by about
5 MeV.
These formulae then give us further information about the quark
masses. First
My 2m3,
(mg+my)/2  m2

Also, the fact that the K° is heavier than the K+ (and the fact that the
neutron is heavier than the proton) tells us that the d quark is heavier
than the u quark. Writing a formula that can be shown to cancel the
electromagnetic correction to the mass to first order,

=27 . (14.54)

mq — My, mrf( mK+—m 4—m+

= =0.3 14.55
e T 7 (14.55)
which implies m
— =06. (14.56)
mq

The relations in (14.53) give a formula for the mass of the 1 in terms
of the masses of the other pseudoscalar mesons

1
my = 3 [2mio +2mic, —m7] . (14.57)
This relation, called the Gell-Mann-Okubo formula, is satisfied reason-
ably well,

= (548 MeV)? ~ RHS = (567 MeV)? | (14.58)

In our discussion of the nonrelativistic quark model in Section 5.3, we
were puzzled by the mass pattern of the pseudoscalar mesons. We now
see that this pattern is understood in terms of the interpretation of these
particles as Goldstone bosons.

Through this analysis, we learn that the
u and d masses are not close to being
equal. From this, we learn that isospin
symmetry is not a fundamental symme-
try of nature.
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This analysis gives the values for the masses of the light quark masses
that appear in the QCD Lagrangian (Manohar et al. 2016):

Final values of the light quark masses ) ' 99 MoV | g =47 MeV,  my =96. MeV .  (14.59)

obtained from the analysis of the
masses of the pseudoscalar mesons. . . .
These values are quite surprising. First of all, these values are much

smaller that we might have expected from the meson and baryon masses.
Most of the mass of quarks inside hadrons comes from spontaneous
chiral symmetry breaking, not from the more fundamental masses that
appear in the Lagrangian. But, further, the masses of the u and d quarks
are completely different. We might have expected, by isospin symmetry,
that m, =~ mg. We now see that these values differ by a factor of 2.
Isospin is not a fundamental symmetry of nature; rather, it is an accident
due to the fact that the u and d masses are small. I will have more to
say about the quark masses in Chapter 18.

Exercises

(14.1) A field theory with spontaneous symmetry break- Writing
ing can be constructed as follows: First, write the
Klein-Gordon Lagrangian for n fields ¢;, ¢i(x) = @i +ni(z) , (14.64)

expand the equations of motion up to terms
L= Z |: (Oupi)® — *mz ¢z:| (14.60) of first order in 7;(z). Show that the n eigen-
values of the matrix

2
then replace the mass term by V(¢), a general non- M2 = 9 % 14.65
linear function of the ¢;, to form Y 0¢p;0¢; (@)lo=e (14.65)

1 ) give n values of (mass)? corresponding to n
L= Z [2(6u¢i) :| - V(o). (14.61) scalar particles in the theory.

(c) Consider the potential
The function V(¢) is the potential energy associ- 1,
ated with the scalar field value. A system with Vi(g) = o 1 (6°) + )\(¢ )? . (14.66)
spontaneous symmetry breaking, V' (¢) has its min-
imum at a value ¢ = ® that does not respect the
symmetry of V(¢). This problem will explore some
properties of this theory.

where ¢? = Zz(qﬁl) and p and A are con-
stants. Sketch this potential. Find the mini-
mum of the potential. Find the masses of the
n particles.

(a) Show that the equations of motion of this the- (d) Consider the potential
ory are : 1
9 Vi(g) = f§u2(¢2) + ZA(&)Q . (14.67)
00" i + 8—V(¢>) =0 (14.62)
s where everything is as before, except that I
(b) The minimum of the potential energy is a con- have changed the sign in front of M2- Sketch
stant vector ®; satisfying this potential. Find the minimum of V among

constant fields of the form

0
%V(Cb)b:@ =0 (14.63) ¢ =(0,0,0,---,0,v) (14.68)



Show that the minimum occurs for v # 0, and
find the value of v at the minimum. This is
spontaneous symmetry breaking. Show that
this potential V' has an (n — 1)-dimensional
sphere of degenerate minima.

(e) Find the masses of particles in this theory.
Show that (n — 1) of these masses are zero.
This illustrates Goldstone’s theorem.

(14.2) The quark masses given by the Particle Data Group

(Patrignani et al. 2016) are “running masses in the
M S scheme”. Without going into too much detail
about the definition, I note that (1) like all other
quantities in QCD, the quark masses evolve as func-
tions of the momentum scale @, and (2) therefore,
quark masses must be quoted at a particular value
of Q. The PDG chooses to evaluate the masses of
the light quarks u, d, s at a common value of the
scale Qo = 2 GeV and the masses of the heavy
quarks ¢, b, t at different values of QQp such that
mq(Qo) = Qo for each quark. The PDG values
are:

flavor  ms(Qo) Qo ‘ flavor  ms(Qo) Qo

u 0.0022 2 c 128 128
d 0.0047 2 b 418 418
5 0.096 2 t 164. 164

(14.69)

with all mass values in GeV. In this problem, we
will compare the quark masses in a more invariant
way. Our analysis will be as simple as possible, to
leading order in QCD only.
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(a) In (11.68), we found the following expression

for as:
_ as(Qo)
(@) = 15 b Qo) /2m) 108(Q/Q0) |
(14.70)
where bp = 11 — 2ny and ny is the num-

ber of quark flavors with my < Q. Start-
ing from the value of o, quoted in (11.73),
as(91.) = 0.118, evaluate as(Q) at the @
values: mp = 4.18 GeV, 2 GeV, and m. =
1.28 GeV. Note that you will need to use dif-
ferent values of by for Q@ > myp and Q < my to
convert the o values.

(b) QCD gives the following equation for the Q-
dependence of a quark mass parameter,

d _ ¢ as(@)
dlongf(Q) =8 47

m(Q) (14.71)

Using the formula for s in (a), find the so-
lution of this equation that gives my(Q) in
terms of a reference value my(Qo).

(c) Compute the value of the charm quark mass
me at Q = 2 GeV.

(d) Compute the values of the four lightest quark
masses at Q = myp.

(e) Compute the values of all quark masses at
Q = my given above. You will need to find
as(my) from as(91.) using (14.70).

(f) Compute the true ratios of quark masses com-
pared at this common value of Q.
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The Weak Interaction






The Current-Current
Model of the Weak
Interaction

Now we turn to the other subnuclear interaction, the weak interaction.

QCD leads to a large spectrum of mesons and baryons. Most of these
are unstable, with decay rates of the order of 100 MeV, corresponding
to lifetimes of the order of 10723 sec. However, the lightest particles of
each type are more stable. For example,

7(7T) = 2.6 x 1078 sec , 7(A%) = 2.6 x 10710 sec ,
7(KT)=1.2x 1078 sec , 7(B%) = 1.5 x 107 sec . (15.1)

Most familiarly, the neutron is unstable by 8 decay,
n—pe U, (15.2)
though it is very long-lived
7(n) = 880 sec . (15.3)

The great difference between typical hadronic lifetimes and the lifetimes
just listed suggests that those particle decays are due to a completely
different subnuclear interaction. Now that we understand QCD, this
idea is even more compelling. The equations of motion of QCD con-
serve the number of each flavor of quark. So, any process that changes a
quark of one flavor into another—as would be required for all of the de-
cay processes just listed—must necessary require an interaction outside
QCD.

This new set of forces is called the weak interaction. In this chapter
and the next few, I will build up the structure of this interaction from
basic properties of weak-interaction decays. Remarkably, the current-
current interaction that served as the starting point for our understand-
ing of QED and QCD also plays a central role in this story. In this
chapter I will argue that the structure of certain weak-interaction de-
cays requires a special type of current-current interaction, called the
V—A interaction. Because this coupling has a current-current form,
it is natural to suggest that the weak interaction is mediated by a set
of spin 1 particles. Our pursuit of this hypothesis will lead us to new
theoretical aspects of non-Abelian gauge theories. However, once we un-
derstand these, we will be able to predict the properties of the new spin
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Violation of parity invariance in par-
ticle decays showed that the weak in-
teraction was a distinct new force of
nature and gave important clues to its
structure.

1 bosons, learn that these bosons actually exist, and test their predicted
properties against experiment.

15.1 Development of the V—A theory of the weak
interaction

Historically, it took some time to understand that 5 decay and related
processes required a new fundamental interaction. The first guess about
[ decay was that it corresponded to the ejection of electrons from an
atomic nucleus. It was a mystery why the energy spectrum of electrons
seemed to be continous rather than a set of discrete lines, as one finds
for gamma ray emission from nuclei. In 1930, Pauli explained this by
postulating the existence of an invisible particle emitted along with the
electron (Pauli 1930). Fermi called this particle the neutrino and gave
a unified description of the 8 decays of nuclei using a general 4-fermion
interaction (Fermi 1934)

(15.4)

In the 1950’s, the discovery of strange particles added more elements
to the theory of the weak interaction. Strangeness was apparently con-
served in the strong interaction production of strange particles, but it
must be violated in their decays. This violation could be ascribed to the
weak interaction. In addition, it was found that the K could decay by
both of the processes

K° = ntn— | K° — nta= 7%, (15.5)

to final states with P = +1 and P = —1, respectively. It seemed impos-
sible that these decays could belong to the same particle, since parity was
known to be an almost perfect symmetry of atomic physics and nuclear
physics. In 1956, Lee and Yang formally proposed the weak interaction
as a distinet fundamental force (Lee and Yang 1956). They pointed out
that parity conservation had never been tested for this force, and that
the weak interaction might indeed violate parity. Very soon after, parity
conservation in S decay was tested by Wu, Ambler, Hayward, Hoppes,
and Hudson, in the decay of polarized Co® nuclei, and by Garwin, Led-
erman, and Weinrich and Friedman and Telegdi, in the decay of muons
(Wu et al. 1957, Garwin et al. 1957, Friedman and Telegdi 1957). Parity
violation was not only nonzero, it was seen to be a large effect. In 1958,
Feynman and Gell-Mann and Marshak and Sudarshan proposed a model
of the weak interaction based on the idea that the weak interaction vi-
olates parity mazimally (Feynman and Gell-Mann 1958, Marshak and
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Sudarshan 1958). This model, called the V—A theory, proposed that
all weak interaction matrix elements could be derived from a current-
current interaction of the form (in modern notation)

4GF St —
M= <\/§Jg ]ML> ) (15.6)

where

jz+ = VZE“eL + UEE“dL + -

G = el otup + di T + - - (15.7)

In this equation, and henceforth, I will use the flavor labels e, u, u, d,
etc., to represent the lepton and quark fields. It is a crucial property
that only the left-handed components of the Dirac field appear in (15.7)
The name V—A (“V minus A”) comes from rewriting

1—4° 1

5 )d = sl d —uy"y°d] (15.8)

uTLE“dL =uy(

a difference of the vector and axial vector currents. The parameter Gp
is called the Fermi constant. It has the dimensions of (GeV)~2. Its value
is

Gr =1.166 x 107° (GeV) 2 . (15.9)

The most accurate determination of this value comes from the measure-
ment of the muon lifetime, for which the theory will be discussed in the
next section. The factor of v/2 in the definition of G is a relic of Fermi’s
original proposal, which assumed parity conservation.

15.2 Predictions of the V—A theory for leptons

The V—A theory of the weak interaction is very simple, but it is
surprisingly rich. It makes a number of detailed and rather unexpected
predictions for weak interaction processes that are confirmed by experi-
ment. In the rest of this chapter, I will describe four of these.

First, the theory predicts that electron emitted in the 5 decay of a
nucleus should be preferentially left-handed polarized. For extremely
relativistic particles, the field eTL creates only left-handed, and not right-
handed, electrons. In fact, though, electrons are emitted in nuclear
decay over a wide range of energies. To understand the polarization
for a more slowly moving electron, we need to look at the form of the
corresponding Dirac spinors. It will still be useful to use the basis (8.7)
to represent the Dirac matrices. The matrix +® is diagonal in this basis,

7> = (01 (1]) . (15.10)

so projected spinors such as ey, ur, qr correspond to the top two com-
ponents of 4-component Dirac spinors.

The matrix element of the V—A de-
scription of the weak interaction.

The Fermi constant that gives the
strength of the V—A interaction.

The polarization of electrons emitted in
B decay.
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kinetic energy (keV)

1 ——320 40 X0 ——300 1000
Foco%e He
0 LAZARUS

o8l &  ECKARDT
a WENNINGER

A ! = BROSI H"}

O e VAN KLINKEN ﬁ
7

v BIENLEIN

osl ¥ uLLMAN M

. high v;ocrties
04| present H-data ..
at low velocities . %
Pk
Q2} .' )
] 3
l N cm—— —
intermediate
velocities
0 L A L L A A
0 Q2 04 06 08 1
v/c

Fig. 15.1: Polarization of electrons emitted in 8 decay, in units of h/2, as
a function of the velocity v/c of the emitted electron, from (Koks and van
Klinken 1976).
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For an electron moving in the 3 direction, with momentum p# =
(E,0,0,p)*, the Dirac equation takes the form

0 E — po® _
(E ot 0 > U(p)=0. (15.11)

The solutions to this equation are the spinors

1 0
E(, VET( |
Ur = 1 , U = 0 (15.12)
vVE+p 0 E—p 1
The polarization of an electron is computed as the ratio
Prob(e; ) — Prob(ep
pol — Lrobley) = Problep) (15.13)

Prob(ey ) + Prob(eg) -
The operator eTL sees only the top components of these spinors. The
probabilities are proportional to the squares of the matrix elements. So,
electrons created by the V—A current (15.7) have the polarization

pol— E+tP) —(E—-p) _
(E+p)+(E-p)

(15.14)

&l

That is,
Pol = > . (15.15)
(&

Figure 15.1 shows a compilation of data from 5 decay on a variety of
nuclei. Indeed, the prediction holds quite accurately. The highest energy
electrons emitted in 8 decay are almost perfectly left-handed polarized.

Next, we study the weak interaction decay of the muon. The muon
has its own neutrino v,. It appears in the V—A theory as a separate
term in the currents

jz+:...+VL§/‘ML+... jg_:...+MEEILVN+... (15.16)

We will see in Chapter 20 that neutrinos have small nonzero masses.
However, for the considerations of this chapter, these masses can be
ignored. Then helicity conservations implies that neutrinos produced
by the V—A interaction are always left-handed, and antineutrinos
produced by this interaction are always right-handed.

The muon decays through the process

wo = vue U, (15.17)

with invariant matrix element

4G
M = (v, 7| \/;VZEMML eTLE,Ll/e ) (15.18)

This somewhat technical section de-
rives the V—A prediction for the
energy-momentum distribution of elec-
trons emitted in muon decay.
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Evaluation of the V—A matrix ele-
ment for muon decay.

A guess at the evaluation of the matrix
element for p decay, based on results
from Section 9.4.

Derivation of (15.23). I apologize that
this derivation uses a number of spe-
cial tricks. The equation can be derived
transparently using the more standard
methods for evaluating Feynman dia-
grams that you will find in textbooks
of quantum field theory.

The Feynman diagram for this process has the form

e -
Vo
“ )

. (15.19)

Using the various fermion fields to destroy and create initial and final
particles, the matrix element in (15.18) gives

M= 45; up ()" ur (p) uf (Pe)Tuv (7) - (15.20)

Now we need to reduce this to an explicit expression in terms of particle
4-vectors.

The matrix element (15.20) is very similar to one that we encountered
in our discussion of eq — eq, which is also mediated by a current-current
interaction. For that process, in the high-energy limit where we can
ignore all masses, we needed the value of the matrix element

M(epar — egar) ~ up (pL)a" ur(pe) ul, (py)a"vL(py) -

N

Evaluating the spinors, we found in (9.48)

(15.21)

2
= 4s® = 4(2p. - p.) (20, - P),) -
(15.22)

ul (pl)a"ur (pe) ul (pl)"vr(py)

For this current-current matrix element, the answer is similar,
2

ul ()7 ur, (py) ul (pe) 7 vi(p7)| = % 4(2pe - py) (2, - o) 5 (15.23)

in the limit in which we ignore the masses of e~, v, and T.. This is a
decay, so the mass of the u must be retained, and the expression (15.23)
does depend correctly on m,,. The average over the spin of the muon (at
rest) gives the factor of % In next three paragraphs, I give the derivation
of (15.23).

The easiest way to evaluate the matrix element (15.20) is to use the
Fierz identity, an identity of the o* matrices,

(") ap(Tu)ys = 2€ar€ss (15.24)

where «a, 3,7,6 = 1,2 are spinor indices and € is the antisymmetric
symbol with €15 = 1. There are 16 possible values of «, 3, v, J, so
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you can check this identity by verifying it for each set of values. This
rewrites the product of spinors as

2(ul, (pv)earuul (pe)) (up () ep5vs (p9)) - (15.25)
Each term in parentheses is Lorentz invariant. This means that we can
evaluate the two terms in different frames and still obtain the correct
result for (15.23).
To evaluate the first product, go to the CM frame of e~ and v,.
Both particles are massless. Their momenta are back-to-back and can
be taken to be along the 3 axis,

_— Y

. (15.26)

e <
In this frame, the spinors are

wlp)=v2E (1) wl)=VEE (y) . (520

Then )

(uT(pu)aeomuTy(pe)) =4E,E. = 2p, - p. . (1528)

To evaluate the second product in (15.25), work in the frame where
the p~ is at rest. The four-component spinor of the p at rest is

Upp) = /My <§> , (15.29)

where £ is the 2-component spinor representing the muon spin orienta-
tion. The V—A current sees only the top two components of (15.29).
The electron antineutrino can be taken to move in the +3 direction;

then its spinor is
0
vr(pw) = \/2E,,(1) . (15.30)

The product is then
2
(u(pu)ﬁeﬂévé (W))

= 2m, By ¢! (‘1)>|2. (15.31)

Averaging over the two possible spin directions for £, this becomes
2

(u(pu)pessvs(pw))| = muEy = pyu - pw - (15.32)

Assembling the results (15.28) and (15.32), and squaring the 2 in (15.25),
we find (15.23).

It is convenient to express this result in terms of variables similar to
those that we used in Chapter 10 to analyze 3-body phase space. As
in (10.45), let

2F, 2E5
Te = , Ty = , (15.33)
my my

Integration of the muon decay matrix
element over phase space.
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The final result for the V—A predic-
tion of the electron spectrum in muon
decay is a simple function that gives
a good description of the experimental
data.

The quantities z. and x5 satisfy
0<xe, xzz<1. (15.34)

In these coordinates, the expression (15.23) for the square of the matrix

element is
2

ul (p)7"ur (pu) ul,(pe)FuvL(py)| = 2mi(1 - ap)am,  (15.35)
where I have used

(Pe + D)2 = (P —pr)? =02 — 20 pr =m2(1—27) . (15.36)

We can now evaluate the rate of muon decay by integrating this quan-

tity over phase space. The variables x; are just those used in (7.33), so

we can use the formula (7.35). We are ignoring the masses of the three
final particles, so, as in (10.47), the x; are to be integrated over the

triangle

5 '
\\ 3 \. \
P

¥ X
(15.37)
Then the decay rate is
1 2
2m“ 1287r3 /da:edx,, 16GFm x7(1 — z7)
— 1671'3 alxe/1 . dry v5(1 — x5) . (15.38)

The integrand is given in terms of the energy fraction of the 7., which is
unobservable. However, we can integrate over this variable to obtain an
expression that only involves the observable electron energy distribution.
The integral is

1 Te IQ 1,3
/ dry v5(1 — x5) = / dy(1 —y)y = < - > - (15.39)
- A 2 3

Our final expresssion for the muon decay rate is

GimS (1 2 GZmb
- L dre 22(1 — Sap) = 1 15.4
som3 ), We el = 3% = 9555 (15.40)

The shape of the electron energy distribution then is predicted to be

(15.41)
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Fig. 15.2: Energy spectrum of positrons emitted in muon decay p™ —
et v, v., and comparison to the V—A prediction, from (Bardon, et al. 1965).

This is a function with a very characteristic shape. It is quadratic in z,
for small z, and has a maximum at the endpoint z. = 1.

Figure 15.2 shows the experimental data on the electron energy dis-
tribution in the muon decay, which is in very good agreement with this
prediction. The slight deviations from the ideal form (15.40) are due to
the fact that the outgoing electron can radiate a photon, losing a small
fraction of its energy. The theoretical curve shown in the figure takes
account of this effect.

The comparison of the total rate formula with the measured value of
the muon lifetime gives a very accurate value of G,

Gp = (11663787 = 0.0000006) x 107° (GeV) ™2 . (15.42)

Values of G obtained from nuclear 5 decay are consistent with this

value (with one subtlety that I will discuss in Section 18.1). The V—-A

interaction seems to have the constant G as a universal strength.
There is one more interesting aspect of the prediction for muon de-

cay. At the endpoint z. = 1, the configuration of the electron and the A special property of muon decay —
the complete polarization of electrons
with energies at the kinematic end-
point.
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Fig. 15.3: Signal rates as a function of time, as the muon spin is precessed
in a magnetic field, in the TRIUMF measurement of the correlation of the
positron direction with the muon spin, from (Stoker et al. 1985).

neutrinos is

Vp
-
i Qe -
;a [ —_— t
= (15.43)

The v, must be left-handed, the 7. must be right-handed, and the elec-
tron must be left-handed. So the angular momenta of the neutrinos
cancel, and the total angular momentum in the final state is that car-
ried by the electron spin. This implies that the electron must be emitted
in a direction opposite to the spin of the muon. The predicted angular
distribution for electrons at the endpoint is

dr’
dcosf

~ (1 —cos®) , (15.44)

with a maximum when the electron is moving opposite to the muon spin
and a zero when the electron is parallel to the muon spin. This prediction
was checked explicitly in an experiment at the TRIUMF laboratory in
Vancouver, Canada, in which uTs from pion decay were stopped in an
absorber and then allowed to decay (Stoker et al. 1985). Muons from
pion decay are perfectly polarized, for a reason that I will discuss in
the next section. A magnetic field was used to precess the spins of the
stopped muons, and the decay electrons were counted as a function of
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time.

(15.45)

The signal was seen to oscillate as the muons precess. The data is shown
in Fig. 15.3. There is no suppressed zero; the observed extinction when
the muon spin points to the detector is almost complete. There is some
small depolarization of the muon as it stops in the absorbing medium.
When this is taken into account, the result is consistent with complete
left-handed electron polarization in u decay at the endpoint.

15.3 Predictions of the V—A theory for pion decay

The third example I will discuss is pion decay. The charged pion
decays through the weak interaction, by the processes

TS WU, T e U,. (15.46)

According to the V—A theory, the electron and the muon have identical

weak interactions. = However, the ratio of branching ratios for these
processes is observed to be
BR(r~ — e D)

T T —1923x 107 15.47
BR(n~ — pu~D) ( )
How can this be consistent with the V—A theory?
For definiteness, analyze the case of decay to a muon. The V—A
interaction mediating the decay is
AGp iy i >
M=(—u;o"v, uyo,d . 15.48
< V2 L w4 pdL ( )
We can evaluate the matrix element of the quark current between the
pion and the vacuum by casting it into the form of (14.34). Let |7%),
a =1,2,3, be the pion states with definite isospin indices. Then
— 1 1 12
)= —(|7") —i|m7)) . 15.49
77 = Z5 () —il=*)) (15.49)

This allows us to evaluate

Olufa#ds v () = 01Ty T 0y ()~ i[%0)))

A mystery: If the weak interaction has
universal strength, why do pions decay
much more frequently to muons than to
electrons?
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N _% <0|Ww‘w5(%)‘1’(!w1(m> —i[7*(®)))
N _ﬁ (O (7% + 322 (|7 (p) — i 7> (p)))
_ _Lipru . (15.50)

V2

The factor of p* dots into the lepton current and gives the divergence
of this current, which we can evaluate using the Dirac equation as in

(14.15),

O vp) = iy (i) - (15.51)
Then the lepton matrix element is explicitly proportional to the mass of
the lepton.

An easier way to evalute the matrix element is to work in the rest
frame of the pion, where p* = (m,,0,0,0)*, and we find

ip (1~ )V (00)| 1] 071, 0) = mcut (p)vr (o) - (15.52)

The matrix element (15.48) then evaluates to
_4Gr 1
V2 V2

Let the muon 4-vector be p,, = (E, 0,0, k)*. Then the neutrino 4-vector
is p, = (k,0,0,—k)*, with E + k = m,. We have seen above in (15.12)
that the two top components of the spinor for a right-handed muon are

fﬂ'mﬂ' UT(pu)vL(pﬁ) . (1553)

ur(py) = VE—F (é) . (15.54)

With
o (pw) = 2&(5) (15.55)

the spinor matrix element is

2

uh(pu)vL(ps)| = 2k(E — k) . (15.56)

The square of the complete decay matrix element is
M2 = 4G% f2m?2 - 2k(E — k) . (15.57)

In a 2-body decay to one massive and one massless particle, the ener-
gies and momenta take the form found in (2.19). Here

m2 +m? m2 —m?
J R E— f=—"———% 15.58
2m, 2ma, ( )
Then N ) )
1 12 m; —m
= == 8GEfrmim,——" (15.59)

T 2m, 877Tm7r
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Finally, we find

~ oy Grfimd my AN
N#r~ = pv)= . mz (1 mi) . (15.60)
From this formula and the measured value of the pion decay rate, assum-
ing that the value of G is universal, we obtain the value f, = 93 MeV
quoted in (14.35).

Using either method of evaluation, the final formula for the decay am-
plitude is proportional to the mass of the muon. It is easy to understand
this by drawing the spins of the muon and neutrino resulting from the
pion decay. The pion has spin 0. By V—A | the antineutrino must be
right-handed. Then we must have

VYV &= = -

g e (15.61)
To conserve angular momentum, the muon must also be right-handed.
This violates helicity conservation, and also the preference of the V—A
interaction that the muon be left-handed. To flip the helicity of the
muon, we must invoke the muon mass.

The decay rate formula is then proportional to mi. Thus, the V—A
interaction naturally predicts a much larger branching ratio for the pion
decay to muons rather than electrons. The ratio of these decay rates is
predicted to be

_ e
2

BR(r~ — e D) mi2 (mfr —m?
BR(r= = p~v)  m2 m

2
) =1.28x107%, (15.62)

2 _
m2 —m

in good agreement with the measured value quoted in (15.47).

15.4 Predictions of the V—A theory for neutrino
scattering

The final test of the V—A theory that I will discuss comes in deep
inelastic neutrino scattering. It is possible to create a neutrino beam
using a proton beam from a high-energy accelerator. The method is to
shoot the proton beam into a target, produce pions, allow the pions to
pass through an empty volume in which they can decay, and then ab-
sorb all of the decay products except for the neutrinos, which interact
only through the weak interactions and are thus highly penetrating. At
Fermilab, the neutrino beam was created by shooting the pion beam hor-
izontally underground. After the pion decay region, the decay products
and undecayed pions and other hadrons passed through the earth. The
experimenters then dug a a pit 1 km downstream to house the neutrino
detector (Benvenuti et al. 1973).

The V—A theory predicts neutrino and antineutrino reactions with
quarks,

vrdr — Hrur VRur, — M;dL (1563)

Resolution of the mystery: Pion decay
requires a violation of helicity conser-
vation. Then the rate of pion decay to
a lepton £ is proportional to m%/mgr
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Neutrino deep inelastic scattering.

Calculation of cross sections for deep

inelastic

scattering.

neutrino and antineutrino

’II'II“ILI|||l||‘|||||H‘||\||.1II||||I|

m uumuwm

(I
,l....u.ml!HlIHm

Fig. 15.4: Event displays of charged-current (top) and neutral-current (bot-
tom) neutrino deep inelastic scattering events recorded by the NuTeV ex-
periment at Fermilab (figures courtesy of Kevin McFarland and the NuTeV
collaboration).

and antiquarks,
VLUR — uZER ﬁRER — ,U,EHR (1564)

and similar reactions on the s and ¢ quarks and antiquarks in the parton
sea. These reactions should be seen as events with hadronic energy de-
position and an outgoing muon, called charged-current events. An event
display for such an event, recorded by the NuTeV experiment at Fermi-
lab (Goncharov et al. 2001), is shown in the upper part of Fig. 15.4. The
particle going out to the right is a muon, whose momentum is measured
using a magnetized-iron spectrometer. The experiments are thus very
similar in spirit to the classic electron deep inelastic scattering experi-
ments. The outgoing lepton is measured, and the hadronic final states
are not discriminated. The neutrino experiments also observe neutral-
current events, with a neutrino in the final state, as shown in the lower
event display in Fig. 15.4. T will discuss these events in Section 16.4.
To predict the cross section for deep-inelastic neutrino scattering, we
can follow the derivation that we used earlier for deep inelastic electron
scattering. That derivation was based on the formula for electron-quark
scattering (9.51), s s
do 1Rl sS4t (15.65)
dcosf s 12
derived from the formulae for the electromagnetic scattering matrix el-
ements

2
_ _ s
[Mlepar — epan)” = 4Q7e 5

2
_ _ u
(Mlepar = epan)|® = 4Q7e" 5 - (15.66)
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Notice that we have the factor s? in the numerator for the scattering of
like-helicity fermions and the factor u? in the numerator for the scatter-
ing of opposite-helicity fermions. The latter factor appears because the
backward scattering of fermions with opposite helicity

S -

%
> < &=
e — —_ b=
L
e (15.67)

is forbidden by angular momentum conservation. When we transform
to the variables x and y of deep inelastic scattering,

2 =1 u? = (1—y)?, (15.68)
as we discussed in Section 9.5.

In neutrino scattering, the V—A interaction fixes the helicity to be
left-handed for neutrinos and quarks and right-handed for antineutri-
nos and antiquarks. Changing the prefactors appropriately, the cross
sections for neutrino and antineutrino scattering on v and d quarks are

do GQF. 9

dCOSH(VLdL = ppuL) = ors 0
do G2
Jeosg PRIL = pRuL) = 727:; cu? (15.69)

To derive the formulae for deep inelastic scattering, we integrate these
with the pdfs, remembering to average over the initial quark spins. We
do not average over the neutrino or antineutrino spin, because the neu-
trinos are produced completely polarized from 7 decay. We then find,
for neutrino scattering,

d*o Grps| )
X)) = () - (1 —y)? 15.
dxdy((vp%u ) _xfd(x) +afz(z) - (1-y) | (15.70)
and for antineutrino scattering
Ao Grs | i
dmdy((up —ptX) = Ll xfy(z) - (1— y)2 +axfi(z)| , (15.71)

plus small contributions from heavier sea quarks and antiquarks.
Notice that, if we concentrate only on the contribution of valence
quarks in the proton, we expect a distribution

do
— ~1 15.72
dy(vp) (15.72)
for neutrinos, but a distribution
do
= ~ (1 —q)2 15.
)~ (1) (15.73)
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Characteristic distributions in y for
deep inelasticv and v scattering from
quarks and antiquarks.



246 FEzercises

£, = 30 - 200 GeV

Fig. 15.5: Distribution of neutrino and antineutrino deep inelastic scattering
events in y, as measured by the CDHS experiment at CERN, from (de Groot
et al. 1979).

for antineutrinos. For neutrino scattering from nuclear targets with
approximately equal numbers of protons and neutrons, the same regu-
larities should hold. Figure 15.5 shows the distribution in y of neutrino
and antineutrino scattering events from the CDHS experiment at CERN
(de Groot et al. 1979). The prediction is verified in a quite striking way,
though there are small deviations from the ideal result due to the effects
of antiquarks.

The V—A theory is thus dramatically successful at describing the
weak interactions of quarks and leptons. In the next chapter, I will
explain how to obtain the V—A interaction from deeper principles.

Exercises

(15.1) The Fierz identity (15.24) is useful in many con- (b) Rearrange the expression

texts, so it is worth understanding it in some detail. f e foe
up, (pe)o’uL(pe) up, (pg)Tuur(pg)  (15.74)

(a) Evalute the left- and right-hand sides of the using the Fierz identity. Notice that the result
formula (15.24) for each of the 16 possible val- is a Lorentz-invariant product of the spinors
ues of the indices «, 8, v, J, and verify that of p. and p, and a second, disconnected

the results match in every case. Lorentz-invariant product of the spinors of pe



()

and pq.
(9.48)).
We can apply the Fierz identity to products
of fermion field operators rather than prod-
ucts of spinors. Fermion field operators cre-
ate states that obey Fermi statistics, so inter-
changing the order of two fermion field oper-
ators must give a factor (—1) to reflect this.
Including this minus sign, show that, if ¢y,
xr are fermion field operators,

Compare this result to (15.22) (or

$i e yn xEFuxe = 917 X XL -
(15.75)

(15.2) This problem studies weak interaction decays of the
7 lepton. The 7 is a heavy lepton. The 7 and its
neutrino v, couple to the weak interaction in the
same way as the electron and the muon. The mass
of the 7 is 1777 MeV.

(a)

The V—A theory predicts that the 7 will
decay by 77 — vre Ve and 7T — vrp Uy
These processes are very similar to muon de-
cay. Compute the partial widths for these
decays, using the formulae derived in Sec-
tion 15.2. (You may ignore the muon mass.)

Next consider the partial width for the 7 to
decay to quarks: 7 — vrdu. Assume that
the 7 mass is large enough that we can ignore
QCD and all quark masses. Then the calcula-
tion is just parallel to that for 7= — v,e V..
QCD color must be included. We saw in
(11.72) that the first QCD correction is ob-
tained by mutiplying the zeroth order result
by

(14 2elmo),y (15.76)

Combining this factor into the zeroth order
computation, compute the partial width for
T — vrdu.

(c)

FExercises 247

From the results of parts (a) and (b), compute
the 7 lifetime and the branching ratio of the
7 to leptonic modes. How do these numbers
compare with the measured values reported
by the Particle Data Group?

A specific hadronic decay of the 7 is 77 —
v . Work out the kinematics of this reac-
tion in the frame where the 7 is at rest. Let
the 7 have its spin parallel to the 3 axis, and
let the 7~ go off at an angle § with respect to
the 3 axis. Write the momentum vectors of
the 7~ and the v-. Write the spinors u(p) for
the 7 and the v,. The 2-component spinor in
ur, (VT) should be left-handed with respect to
the v, direction of motion.

Compute the matrix element for the decay
7~ — vym . The calculation is similar to
that for 7 decay to uv. For the hadronic half
of the amplitude, you will need the identity
related to (15.50)

(7= ()] 4" 19 = ifap"/V2  (15.77)
where j; is the charge-changing weak inter-
action current. For the leptonic half of the

amplitude, use the explicit spinors for the 7
and the v, derived in (d).

Compute the partial width for 7= — v,77,
using fr = 93 MeV. Predict the branching
fraction for this decay model, and compare to
the Particle Data Group value.

Work out the angular distribution of the pion
in 77 — vym~ relative to the 7 spin direc-
tion. Notice that the pion direction is corre-
lated with the 7 spin, so measurement of pion
momenta in this decay gives an indication of
the 7 spin direction.






Gauge Theories with
Spontaneous Symmetry
Breaking

The V—A theory, with its current-current interaction, strongly suggests
that the weak interaction is generated by the exchange of a spin 1 boson.
The current-current interaction would arise from the Feynman diagram

-

e - 3
v, > -
R, / Ve
‘)1\
©- (16.1)

The new boson is called the W~. It must have an antiparticle WT.
And, it must be massive. In the diagram, the W~ appears as a reso-
nance, with the Breit-Wigner denominator

1

2 2
q° — my,

(16.2)
But, there was no sign of the ¢?>-dependence in the data that I showed
in the previous chapter. This implies that the W~ boson is heavier than
about 30 GeV. When we discuss the W boson as a particle, in the next
chapter, we will see that its mass is about 80 GeV.

16.1 Field equations for a massive photon

Our need for a massive spin 1 boson forces us to face a problem that
we have avoided up to now: What is the wave equation for the associated
massive spin 1 field? As we discussed in Section 3.3, it is not straight-
forward to write a quantum theory for a spin 1 field that is positive and
Lorentz-invariant. Maxwell’s equations provide such a quantum theory,
but Maxwell’s equations also require that the associated particle, the
photon, is massless.

We might try simply to add a mass term to Maxwell’s equations,
but there is a problem. If we have a massive spin 1 particle, we can

The universal V—A interaction can be
obtained from Feynman diagrams that
include a massive spin 1 boson, the W
boson.
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The simplest illustrative example of a
gauge theory with spontaneous symme-
try breaking: a U(1) gauge field (elec-
tromagnetism) coupled to a complex-
valued scalar field.

This model was originally introduced to
model superconductivity in metals at
extremely low termperature.

boost to its rest frame. In this frame, the polarization vector € can
point in any of the three space directions. Then the particle must have
three independent quantum states. But a photon has only two quantum
states. So we not only need to add a mass term for the photon; we also
need to supply a new degree of freedom.

There is only one way known to solve this problem. That is to mix
the two concepts of gauge invariance and spontaneous symmetry break-
ing. In this chapter, I will give three examples of gauge theories with
spontaneous breaking of the gauge symmetry. In steps, we will build up
to the correct theory of the weak interaction.

First, consider a U(1) gauge theory that includes a complex scalar
field. The Lagrangian is

L= LB+ Dl - V(o). (163)

The covariant derivative on ¢ is
D¢ = (0, —1eQA,)d , (16.4)

where @ is the charge of the field ¢ in units of e, and V(¢) is a potential
energy that depends on the value of ¢.

Landau and Ginzburg wrote down this model as a phenomenological
description of the electrodynamics of a superconductor (Ginzburg and
Landau 1950). We reviewed part of the field-theoretic description of a
superconductor in Section 14.2. In a superconductor, e”e™ pairs form,
and these pairs form a Bose condensate in the ground state. The ground
state contains an indefinite number of these pairs. This is signalled by
the fact that a field ¢(x) that can destroy pairs has a nonzero expectation
value in the ground state |0),

-7

This expectation value would correspond to the minimum of V(¢). Be-
cause this system has U(1) symmetry, there must actually be a manifold
of degenerate ground states, parametrized by

(0] ¢(z) [0) (16.5)

v

x = —e7. 16.6

(vl o) [7) 7 (16.6)

For definiteness, I will expand about the state |0) in which (¢) is real.
The expansion of ¢(z) about this ground state has the form

é(z) = % (v + x(x) + in(x)) - (16.7)

A constant value of 7 shifts the vacuum state to one with the phase

6y = n. Thus, the field n is the Goldstone boson associated with this
symmetry breaking and must have zero mass.

The field ¢ has the quantum numbers of e~e™, and therefore it is

electrically charged, as reflected in the form of the covariant derivative



16.2  Model field equations with a non-Abelian gauge symmetry 251

above. To describe superconductivity, @ = 2. We can use a local gauge
transformation _
$(w) = e (x) (16.8)
to remove 7(xz). After doing this, the kinetic term of the ¢ field becomes
1

|Du¢|2 G ieQAH)E(” + X(w))|2

v 2
= |-ieQA,— + - 16.9
ie@d, | (165
This is a mass term for the A, field,
1 1
1D.o|" = SECQPALAN = SR A, A (16.10)

In a superconductor, the quantum state with energy m,4 is a quantized
oscillation at the plasma frequency. The fact the the photon obtains a
mass is manifested experimentally as the Meissner effect, the property
that a superconductor expels magnetic fields (Tinkham 1966).

It is instructive to count the degrees of freedom. The field A, (x) has
2 degrees of freedom. The Goldstone boson 7(x) contributes one more
degree of freedom. We can eliminate the field n(z) by a choice of gauge,
but this returns one degree of freedom to A, (z), giving exactly the 3
degrees of freedom required for a massive scalar field. It is often said
that the vector field eats the Goldstone boson and becomes massive.

The polarization sum for a massive vector boson A, is

> et ) = —(n“” — Wj) . (16.11)

m
i=1,2,3 A

We can check this in the rest frame of the vector boson. In that frame,
the right-hand side is the projection onto three spacelike polarization
vectors. Since this expression is Lorentz-covariant, it must then be cor-
rect in any frame.

This complex of ideas for generating a massive spin 1 field was in-
troduced almost simultaneously in papers by Higgs (1964), Englert and
Brout (1964), and Guralnik, Hagen, and Kibble (1964). Parts of the
structure were anticipated by Nambu (1960) and Anderson (1963). For
brevity, it is called the Higgs mechanism.  The field ¢ is called the
Higgs field. The physical quantum state created by the leftover scalar
field x(x) is called the Higgs boson. We will see that these elements have
analogs in the realistic theory of the weak interaction.

16.2 Model field equations with a non-Abelian gauge
symmetry

Before going to a realistic model, I will consider another illustrative
example, this time with a non-Abelian symmetry group. Consider a
gauge theory with the gauge group SO(3). There are 3 gauge bosons

AL A% A3 (16.12)

Generation of a mass for the photon in
the Landau-Ginzburg model
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The Georgi-Glashow model—an SO(3)
gauge theory coupled to a scalar field
P,

Physical explanation of the mass pat-
tern of the Georgi-Glashow model, in
which A!, A2 become massive but A3
remains massless.

corresponding to rotations about the 1, 2, 3 axes. Introduce a real-
valued scalar field ®® in the 3-vector representation. This is the adjoint
representation of SO(3), and so the covariant derivative on ®% is

D, ®" = 9,0" + ge*™ AL ®° . (16.13)

We can easily write a potential that is rotationally invariant in the ®¢
space and is minimized when

[(@*) | = (16.14)

The minima cover a manifold that has the form of a sphere in 3 dimen-
sions.

For definiteness, I will choose to analyze the vacuum state that points
in the 3 direction in the ®* space,

(0] @ |0) = v3*? . (16.15)
We can expand ®¢ about that vacuum,
O(x) = (r' (), 7%(x),v + h(z)) . (16.16)

The fields 7!, 72 are Goldstone bosons. Again, we can use a gauge
transformation to remove those fields. Then

O(z) = (0,0,v+ h(x)) . (16.17)
The kinetic term of ® is
1 1
5(D,;b“)2 = §(geab3AZ(v + h(z)) + O h(z)5°)? . (16.18)

Expanding about the chosen vacuum state, we find

1 a\2 92 ab3 b _ac3 ppuc, 2
i(D'u(P) 256 AHE A v +

B g%
2
The fields A}L and Aﬁ obtain the mass

b Aub
(A}, AR — A AR3) (16.19)

my = g*v* (16.20)
and A% remains massless.
It is not difficult to understand why the Az boson stays at zero mass.

If (5} points in the 3 direction, the symmetry associated with rotation
about the 3 axis is not broken,

(16.21)
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The unbroken U(1) gauge symmetry protects A% from obtaining mass.
The fields A}, A% can be combined into eigenstates of the rotation
about the 3 axis, )

V2
We are now tempted to identify Ai as the photon and Wiﬁ as the W
bosons responsible for creating the V—A interaction. This is a unified
model of weak and electromagnetic interactions. It is called the Georgi-
Glashow model (Georgi and Glashow 1972). Notice that, in this model,
the coupling constant g of the weak interaction bosons is equal to the
electric charge e.

This model is very attractive, but it is not correct. It identifies elec-
tric charge with I, the generation of rotations about 3. The neutrino
has zero electric charge, but it must be in an isospin multiplet with the
electron so that it can be transformed into the electron by a weak inter-
action. The minimal size multiplet for the neutrino and the electron is
an I = 1 multiplet

w* (A}, FiA2) . (16.22)

Et
v | . (16.23)

e

Then there must be a heavy electron E+. The model predicts that
both of the fermions e~ and E* are produced in deep inelastic neutrino
scattering,

(16.24)

Production of the ET has not been observed. Searches for the E™ put
a lower bound on the mass of this particle at about 400 GeV.

16.3 The Glashow-Salam-Weinberg electroweak model

Glashow suggested another way to construct a unified model of weak
and electromagnetic interactions (Glashow 1961). We choose the gauge

group
SU(2) x U(1) (16.25)

There are now 4 vector bosons,
Al A2

A® B. (16.26

~

) )

In this structure, we can keep the neutrino-electron system as an I =
multiplet (v,e™)r which transforms under the SU(2) x U(1) symmetr

as
(VL> Ly i05/2,~iB/2 (’/L> . (16.27)
er, €L

NI

The SU(2) xU(1) model of unified weak
and electromagnetic interactions
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The Higgs mechanism leaves one re-
maining physical degree of freedom in
the Higgs field ¢. The corresponding
particle is the Higgs boson.

As the Higgs mechanism became understood, Weinberg and Salam
showed that the required mass generation could be accomplished by a
Higgs field in the I = % representation (Weinberg 1967, Salam 1968).
This field transforms under SU(2) x U(1) as

+ +
_ (¥ ia-6/2 ,iB/2 (ﬂp >
= —e e . 16.28
2 ( (po > on ( )

Looking at the § terms in these transformation, the lepton doublet and
the Higgs field transform under the U(1) symmetry with charges f%
and —5—%, respectively.

Let the potential for the Higgs field be

V(e) = —1lol* + Alel*)? . (16.29)

The minimum of the potential satisfies

0= —2up + 4 p |p|? (16.30)
S0, at the minimum,
2
ol =l PP+ 1¢°17 = o5 - (16.31)

I will define
v=VZ{lel) = /v . (16.32)

This Higgs field vacuum expectation value spontaneously breaks the
SU(2) x U(1) gauge symmetry.

The Higgs field has 4 degrees of freedom. The minima of V(¢) form
a sphere in this 4-dimensional space. All of these minima are equivalent
by SU(2) transformations. For definiteness, I will analyze the vacuum

state |0) where
{p) = (v/?@) . (16.33)

Expanding around this state

_ ()
wlz) = ((v + h(z) + 27r3(x))/\/§> ' (16.34)

The fields 7+ = (7! + iw?)/v/2 and 73 are Goldstone bosons. We can
set these fields to zero by an SU(2) gauge transformation. This leaves
over one real-valued scalar field in ¢. This remaining field h(x) is the
field of the Higgs boson.

The coupling of the gauge fields A}, and B, to any fermions and scalars
is specified by the covariant derivative

D,V = (8, —igA%I® —ig' B,Y)V . (16.35)

Here I° is a generator of the SU(2) gauge symmetry in the appropriate
representation. I will refer to the quantum number I* as weak isospin. It
is an SU(2) quantum number, but it is important to understand that this
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is an exact symmetry, distinct from the approximate isospin symmetry
of the strong interaction. Y is the charge under the U(1) symmetry,
which is called the hypercharge. The theory has two coupling constants
g and ¢’ corresponding to the two independent gauge groups. These
coupling constants need not be equal. The ratio ¢’/g is a an important
free parameter in the theory.
The covariant derivative on the Higgs field is

. ara - 0
Dy = (0, —igARI" —ig'B,Y) <U/ﬂ> o (16.36)

The kinetic term of the Higgs field is then

1 o 1 ab 1, /0
2 a b
|Dupl” = 3 (0 ) (QAH7 +9/Bu§) (gA* 53 +9/B”§) v
(16.37)
Evaluating this expression, the terms with A}L and Aﬁ give
1 1
51;292(5)2((14}‘)2 +(4,)%) - (16.38)
In terms of the W fields defined in (16.22), this is
(%)2 WHWH™ = m3, WEWr— . (16.39)
The terms involving Ai and B, give
Ly (gas 1 ¢B,)? 16.40
2’0 (2) ( g 173 + g ,U«) . ( N )

This expression is the mass term for one gauge field, which is a linear
combination of Ai and B,,. It is convenient to define the weak mizing
angle 0,, by the relation

/

tanf, = L | (16.41)
9

and to define parameters ¢, S

/

9 _q

Then we can write the two orthogonal combinations of the fields Az and
B, as

Cw = cos by, = Sw =sinf,, = (16.42)

Z, = chz — swBy
Ay = s A + cwBy (16.43)

The boson Z,, receives mass

(g + 9

i : (16.44)

my =

Introduction of the weak mixing angle
6. In the remainder of this book, I will
abbreviate cos 0y = ¢y, Sin By, = Sy .
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The SU(2) x U(1) model leaves one ex-
actly masses vector boson, which I will
identify with the photon. The photon
and Z are linear combinations of the
original bosons A3 and B. Thus, in
this model, the weak and electromag-
netic interactions are different facets of
the same underlying structure. We call
these forces collectively the electroweak
interaction.

The masses of the W and Z bosons of
the SU(2) x U(1) model.

The predicted mass relation myy =
mzcqy provides an important test of the
SU(2) x U(1) model.

The couplings of W, Z, A to quarks
and leptons are now predicted in terms
of the SU(2) x U(1) quantum numbers
of these particles. To find the precise
forms of the couplings, we simplify the
covariant derivative.

In the electroweak theory, the basic

electric charge e is derived from g and
!

g .

and the boson A, remains massless.

In the next part of this section, we will see in detail that the massless
spin 1 boson A, should be identified with the photon. Then the SU(2) x
U(1) model is a unified model of weak and electromagentic interactions.
We call this unified force the electroweak interaction.

It is not difficult to see that there must be a massless spin 1 boson left
after the symmetry breaking. The transformation of the Higgs vacuum
expectation value is

= (v/?/i) et (”/(3/5> .

Then a transformation with o = 3 leaves the vacuum expectation value
unchanged. This gauge symmetry is not broken. The corresponding
gauge boson—A, above—remains massless. Any realistic theory must
have a massless vector boson that can be identified with the photon.
This symmetry principle tells us how to insure that such a massless
particle is present.

The masses of the W and Z bosons are

gu /92 + g/2v

mw = —+, mz =

2 2

(16.45)

(16.46)

These obey the relation

mwy =mg - Cy - (16.47)

w . w . I herimen-
If we can measure s2, in another way, this relation is testable experimen

tally. We will see in the next chapter that, when higher order corrections
are included, the relation is obeyed better than 1% accuracy.

To determine the couplings of the W and Z to quarks and leptons,
we need to rewrite the general expression for the covariant derivative in
terms of the mass eigenstates. Using the inverse of (16.43)

Ai = cwly + SwAy

B, = —swZ,+ cw, (16.48)

and the expression (16.22) for Wﬁc, we can write the covariant derivative
(16.35) as

_ . 9 + o+ - -
D,V = {au—z\/i(Wua +W=o7)

—ig(cwZy + 8w AP —ig (=8wZ, + CwAu)Y] U . (16.49)

We can recast this as

. g -\ . 9
D,V = [au—zﬁ(w,jﬁJrW o )—zeAMQ—zchMQZ} U . (16.50)
where I have set

/

99

Nl

e=gsy =g'cy = (16.51)
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It is appropriate to identify e with the value of the unit electric charge.
The electric charge of a fermion or boson is then

Q=I+Y (16.52)
Similarly, the Z boson charge @)z for any boson or fermion is
Qz=c,I°—slY (16.53)
or
Qz=1"-s.Q. (16.54)

To complete the model, we need to assign to all of the quarks and
leptons appropriate quantum numbers under SU(2) x U(1). I will ignore
all masses in this discussion. Then we can treat the left- and right-
handed parts of the Dirac field as independent fields. Because the left-
handed particles couple to the W bosons but the right-handed particles
do not, we will need to assign these fields different quantum numbers.
This is a mysterious but also absolutely crucial feature of the model. It
is the origin of the V—A structure that, as we have seen in the previous
chapter, is required by experiment.

In the SU(2) x U(1) model, the left-handed fields will belong to dou-
blets of SU(2) (I = %), and the right-handed fields will be in singlets
(I =0). We then choose the values of Y to give the appropriate electric
charges. For the electron neutrino v,, the electron e~, the u quark, and
the d quark, the required charges are

The electric charge @ of each particle
in units of e is fixed by its quantum
numbers.

In a similar way, the Z charge Qz of
each particle is fixed as a function of
its quantum numbers.

The assignment of different quantum
numbers to the left- and right-handed
fermions is the origin of the parity vio-
lation of the V—A interaction.

(I3,Y) quantum numbers for the vari-
ous species of leptons and quarks.

1 1

Vel : ﬁ:+§,Y:—§,Q:O VeR I’=0,Y=0,Q=0
e; - 13:7573/:,5,@:7 en P=0,Y=-1,Q=-1

1 1 2 2 2

. P=4-,Y=2= == . IP=0,Y == ==

ur, +23 67Q 3 UR 07 3aQ 3
1 1 2 1 1
dp : IPP=—-,Y=-=,Q== dg: IP=0,Y=->,Q=—-
L 2a 67Q 3 R 5 35Q 3
(16.55)

Note that the right-handed component of the neutrino has zero coupling
to the vector fields and could be omitted from the model. We will return
to this point in Chapter 20.

The particles in (16.55) are laid out in SU(2) representations

14 _ u
() o (1) o

This structure is called a generation of quarks and leptons. There are
two more generations known, containing, respectively, v,, =, c and s,
and v;, 77, t, and b. These have SU(2) x U(1) quantum numbers with
the same values as in (16.55).

(16.56)

Definition of a generation of quarks and
leptons.
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16.4 The neutral current weak interaction

Now that we have formulated a specific theory of the weak interaction,
we can work out its observational consequences. From the way that we
have constructed the model, with the W and W~ fields coupling only
to the left-handed quarks and leptons, the Feynman diagram

- ML
I
—
N
wr
") JL
t (16.57)

will produce the current-current interaction

2
g° ., 1 .
Z_gH 23:{_

16.58
2 q? —miy, ( )

If > < m%,V, we can ignore g2 in the denominator, and then we find
an amplitude with exactly the structure of (15.6). We can identify the
coefficient in that formula, in terms of parameters of the SU(2) x U(1)

model as, )
4G g
—_— = (16.59)
N
or G 9
F g
w

where g is the SU(2) gauge coupling in (16.35). The SU(2) x U(1) weak
interaction theory replaces the dimensionful constant Gz of the Fermi
theory with a dimensionless coupling strength g and a mass scale set by
my .

The SU(2) x U(1) theory contains an additional interaction mediated
by a virtual Z boson, for example,

VL U
}v;
\)L UL

This diagram leads to the current-current interaction

(16.61)

1 92 .13 . 1 . .
52 UL~ Sijé)f —— Uz = SuinQ) » (16.62)
w zZ

where jf?’ is the left-handed weak isospin current and jg is the electric
charge current

o= Qs(fro"fr+ fro"fr) - (16.63)
f
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I have included a factor % in (16.62) because any given quark or lepton
current can appear in either term.

At low energies, we can ignore ¢* relative to m%,, m%. Then, using
the relation (16.47), we find a current-current interaction, generalizing
(15.6), of the form

M= (S8 (i + G - 287)) - (o
The first term in this current-current interaction, mediated by the W,
is called the charged current interaction. The second term, mediated by
the Z, is called the neutral current interaction.

The neutral current interaction produces a new event type in neutrino
scattering, in which a neutrino scatters elastically from a quark or lepton.
We have seen an example of an event of this type in the lower part of
Fig. 15.4.

For deep inelastic neutrino scattering, we can work out the cross sec-
tion for neutral current reactions in the same way that we worked out
the cross section for charged current reactions. Looking back at (15.70)
and (15.71), we see that the formulae for charged current deep inelastic
scattering have the form

d20' GFS

ddy - zf(z) , (16.65)

with an extra factor (1 — y)? if the helicities of the beam and target
fermion are not matched. The formulae for neutral current deep inelastic
scattering will be similar, except that we must include the explicit Z
charges from (16.54) or (16.64). These charges are nonzero both for left-
and right-handed quarks and antiquarks. For neutrino scattering, the
contribution from the quarks is then

2 S
= S ot - 55+ (3P0

d2
7 (vp = vX)
Y

q

Fafao) (-5 + 3R+ G-

and the contribution from the antiquarks is

20' 2 S
oy = 7] = G - 500 (37
+x E(w){(—% + %83)2(1 —y)?+ (;33)2}} )
(16.67)

For an antineutrino beam, the positions of the factors 1 and (1 — y)?2
reverse.

Neutrino experiments are typically done with very massive targets,
made of iron, mineral oil, or another material obtainable in bulk. Then

The complete Fermi interaction of the
SU(2) x U(1) model contains the V—A
charged current interaction and also a
neutral current interaction. Their coef-
ficients have perfect rotational symme-
try up to terms proportional to 5121,.

The cross section for deep inelastic neu-
trino scattering due to the neutral cur-
rent interaction.
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Fig. 16.1: The relation between R” and R” predicted by (16.73), (16.74),
compared to data from the CDHS and CHARM neutrino deep inelastic scat-
tering experiments at CERN. The measured values are taken from (Amaldi et
al. 1987).

it is relevant to specialize the formulae just given to nuclei with ap-
proximately equal numbers of u and d quarks. Let f,(z) be the pdf for
quarks in a nucleus containing a total of A nucleons with equal numbers
of protons and neutrons

fo(@) = A(fulz) + fa(@)) - (16.68)
The above formulae combine and simplify to
d*c G%s 1 5 4 9
A vX) = T2 e f@)](G - )+ sbl+ (1-9)%)

Fefo){( — )=y + o shl1+ (1= )7}
(16.69)

Similarly, the cross section for neutral current scattering of an antineu-
trino from an isospin singlet target nucleus is

20 9 s
ddey(vA —7X) = G;: {qu(:c){(; —82)(1—y)?+ gﬁu[l -y
+i’ffa(l’){(% —su)+ +gsi‘u[l +(1- y)Q]}} . (16.70)

It is easier to understand these formulae if we divide by the corre-
sponding charged current cross sections

20_ 2 s
A ) = S a0 o)1 - 2]

20_ 2 s
ddxdy (PA—uTX) = G7F [qu(w)(l —y)’+ qu(m)} . (16.71)



The ratio of the two charged current cross sections can be reduced to

_ o(v,CC) _ <qu(x)(1 —y)? +:17fq(x)>
zfo(x) +afg(x)(1—y)2 /)~

o(v,CC)
where the expectation value indicates that numerator and denominator
are integrated over the range of (z,y) covered by the experiment. The
quantity r can be measured directly. It depends on the coverage of the
detector in = and y, and, typically, it has a value about 0.4. The ratio
of neutral to charged current rates for neutrinos and antineutrinos can
then be written (Llewellyn Smith 1983).

(16.72)

, o, NC) 1 5 by
= 7 —s7 (1 16.
R o.CC0) 2 sw—i-gsw( +7) (16.73)
and @#,NC) 1 5 1
v _ 7\ 2 4
= TWAY) 2 2y Ty 16.74
R = @o0) ~2 sttt (16.74)

For a given experiment, with the value of » known from this measure-
ment, the values of R” and RY lie on a specific curve in the plane of
possible values, parametrized by the value of s2. When this curve was
introduced, it was popularly known as “Weinberg’s nose”. Measure-
ments of R and R” test the theory and measure the value of s2,. Fig-
ure 1 shows the curve and the values measured by the two large CERN
neutrino experiments of the early 1980’s.

The theory passes this test, and the value of s2 is seen to be close to

52 ~0.23 . (16.75)

I will present higher-precision tests of the SU(2) x U(1) weak interaction
theory in the next chapter.
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The ratio of rates for neutral current
and charged current deep inelastic scat-
tering, for neutrinos and antineutri-
nos, provides a simple first test of the
SU(2) x U(1) model.

Exercises

(16.1) Another illustrative example of spontaneous break- only under SU(3); according to
ing of a gauge symmetry is given by a theory called . a,a
topcolor (Hill 1995) in which, at very short dis- gu = (1+30{t")qu , (16.76)
tances, the (¢,b) quarks transform under a differ- where ¢t is a 3 x 3 representation matrix for
ent SU(3) color group from the lighter quarks. For SU(3). The b and ¢t quarks transform simi-
simplicity, I ignore the weak interaction in this ex- larly under SU(3)a2,
ercise.

(a) The gauge group of the topcolor theory is
SU(3)1 x SU(3)2. The theory has two sets of
8 gauge bosons and two independent coupling

g — (1+1ia5t")q: , (16.77)

The model also contains a complex-valued
scalar field ® which is a (3 x 3) matrix and
transforms as

constants g1, ge. The light quarks transform D — &+ (iaft?) &+ P(—iast®) . (16.78)
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Show that the covariant derivatives of the the-
ory are

Dyugu = (Op — iglAtha)Qu ,

Dpgt = (Op — i92AZQta)qt )

D,® = 8u<1> — i(g1AZ1ta)<I) + (I>(+iggAZ2ta) .

(16.79)
The Lagrangian of the topcolor theory is
L P
L= = (P = L(FE)

+ Z qyiy - Dgy + Z Gty - Dy

f=u,d,s,c f'=b,t

+tr[(D,®) D" ®] — V(®) .

Assume that the minimum of the potential
V(®) is at the nonzero value

(@) =V-1, (16.81)

where 1 is the 3 x 3 unit matrix and V' is a con-
stant with the dimensions of mass. Find the
mass terms for A}, and Aj,. Show that one
linear combination of Aj; and A}, remains
massless.

Construct the normalized mass eigenstate
fields, by analogy to (16.48). Call the new
massless and massive vector fields, respec-
tively, A, and Aj,. Show that the massive
field has the mass
m? = (gi + 3)V* . (16.82)

Rewrite the covariant deratives on the quark
fields in terms of the mass eigenstate vector
fields. Show that all quarks now couple to the
field Aj, with the same coupling constant g,
given by

i_1.1

9> 9 g
So we find an SU(3) gauge theory just like
QCD, with a coupling g smaller than either g;
or g2. This property that coupling constants
combine like resistors in parallel is often seen
in models with spontaneous gauge symmetry
breaking.

(16.83)

(16.2) Consider an SU(3) gauge theory coupled to a Her-
mitian 3 X 3 matrix scalar field ®, with ® trans-
forming under SU(3) as

® = @+ (iat") &+ B(—ia"t") . (16.84)

(16.80)

This theory has 8 gauge fields and one coupling
constant g. This theory was studied by Weinberg
(1972) for reasons that will become clearer as we
proceed.

(a)

Write out the 8 3 x 3 matrices that represent
the generators of SU(3). These are 3 x 3 Her-
mitian matrices orthonormalized such that

tr[t“t"] = %5“’ . (16.85)

Write the covariant derivative on ®.

Assume that the potential for ® is minimized
at a configuration

a 0 O
)=V ([0 a 0],
0 0 b

with a # b. Write the mass matrix for the 8
gauge fields Aj,.

(16.86)

Show that 4 of the 8 gauge fields receive zero
mass. Show that the other 4 fields obtain
masses

m? = g*(a —b)*V?. (16.87)
Let 1 be a fermion field in the 3 representa-
tion of SU(3). Write the covariant derivative
on this field, keeping only the 4 massless vec-
tor fields. Show that this is identical to the
covariant derivative of an SU(2) x U(1) gauge
theory.

Identify the upper two components of the 3-
component field ¢ with the (v,e)r doublet.
To relate this model to the SU(2) x U(1)
theory of weak interactions, rescale the cou-
pling constant of the U(1) gauge field so that
the charge multiplying this coupling constant
equals the appropriate hypercharge ¥ = %
Show that, after this rescaling, the model has
SU(2) and U(1) gauge couplings

9=9,

g =g/V3 (16.88)

Compute sin?6,, and compare to the value
(16.75).



The VWV and Z Bosons

In the previous chapter, I described the SU(2) x U(1) theory of weak and
electromagnetic interactions. In this theory, the V—A weak interaction
arises from exchange of the W boson, and there is an additional neutral
current interaction due to the exchange of a heavier boson Z. With
enough energy in the center of mass, it became possible to produce
these bosons directly and study their properties. The W and Z were
first seen directly by the UA1 and UA2 experiments at CERN, in a pp
collider designed for this purpose (Arnison et al. 1983a, 1983b, Banner et
al. 1983a, 1983b). Today, W and Z bosons are produced by the millions
at the LHC. Figures 17.1 and 17.2 show beautiful examples of events
collected by the ATLAS experiment at the LHC, showing W and Z
production with the decays

W* setv Zoefe . (17.1)

The SU(2) xU(1) theory makes detailed predictions for the properties of
the W and Z bosons. In this chapter, we will work out those predictions
and compare them to experiment.

17.1 Properties of the W boson

To begin, I will work out the major decay rates and production cross
sections for the W boson.

From the covariant derivative of the SU(2) x U(1) model given in
(16.50), we read off the matrix element for the leptonic decay W+ —
veet as

€
MW = vret) = -2 b (p,)5" ) (17.2
LeR) = G uy (py)o"vr(pe) ewp 2)
where ey, is the polarization vector of the W*. The product of spinors
is the same one that we have seen before in our discussion of eTe™
annihilation. From (8.37), we see that, in the v.e™ center of mass frame,

ul (py)T" v (pe) €wp = 2V2E € e . (17.3)

We square the matrix element and average over 3 initial spin directions
(or average over angles for the v, direction relative to the W polariza-
tion). This gives

1 1 g2

1
TW* s vet)= — 92 0.1 17.4
W o) = sr w23 (174)

Calculation of the partial widths for the
decay of the W boson to a pair of lep-
tons or quarks.
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CATLASH

A EXPERIMENT

W-ev candidate in

7 TeV collisions
p,le+) =34 GeV

nle+) = -042

E ™= =26 GeV

M, =57 GeV

Fig. 17.1: Event display of a pp — W — ev event recorded by the ATLAS
experiment at the Large Hadron Collider (figure courtesy of CERN and the
ATLAS Collaboration).

CATLAS

A EXPERIMENT

Fig. 17.2: Event display of a pp — Z — eTe™ event recorded by the ATLAS
experiment at the Large Hadron Collider (figure courtesy of CERN and the
ATLAS Collaboration).



or
TWt = vet) = %mw , (17.5)
where B 2 B o2 )
Y= g 42, '
Similarly,
T(WT = vu™) =T(WT = vrt) = %”mw . (17.7)

For decays to quarks, we must add the color factor of 3. The rate is
enhanced by a QCD correction, the same factor that appears in the
eTe~™ — hadrons cross section (11.72). Then

P(WH = ud) =T(WT = c5) = C;—;Umw -3(1+ @ +--). (17.8)
The top quark is sufficiently heavy that the decay W+ — tb is kinemat-
ically forbidden.

To evaluate these formulae, we need the value of «,,. This is a good
place to pause and collect the values of all of the parameters of the
electroweak theory. The two quantities

g° ;97
[0

frng E s — E
give the intrinsic strengths of the SU(2) and U(1) interactions. We can
evaluate these quantities from the values of o and s2. In Section 17.4, I
will point out a number of experimental measurements on the Z bosons
that lead to very precise value of s2. The result will be

(17.9)

Aoy

s2 = 0.23116 + 0.00012 . (17.10)

This value should be combined with the value of « evaluated at a mo-
mentum scale appropriate to the physics of W and Z. This is not
a(Q = 0) = 1/137 but rather

a(mz) =1/129. (17.11)

Making the combination, we find

Q= =1/298 o =2 =1/99.1 (17.12)
w Cw

The weak interactions are weak, but not exceptionally so. The apparent
“weakness” of the weak interactions comes from the small size of G, a
dimensionful quantity, relative to the mass of the proton. This is due
less to the small value of the coupling constant than to the large value
of the W boson mass in GeV units. In fact, if we use (16.46) in the
relation (16.60) for G, the size of the gauge coupling actually cancels

out,
V2g? 1
= o2 = 7\/5 5 (17.13)
w v

Gr
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Values of the coupling constants g and
g’ and the dimensionful parameter v
that characterize the SU(2) x U(1) the-
ory.
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Comparison of the predicted W and Z
boson masses to the values seen in ex-
periment.

Branching ratios for the W boson de-
cays to lepton and quark pairs.

and we see that G is completely determined by the Higgs field vacuum
expectation value, which we find to be

v =246 GeV . (17.14)

The V—A weak interaction is weak because the Higgs vacuum expec-
tation value v is much larger than the proton mass.

Given the values for v, g, and ¢’, we can predict the values of the W
and Z masses from (16.46),

my = 80.2 GeV mz = 91.5 GeV . (17.15)

This is in reasonable agreement with the values found in direct measure-
ment of the particle masses

mw = 80.385 £ 0.015 GeV mz = 91.1876 + 0.0021 GeV . (17.16)

It is important to point out that, when comparing numbers at this level
of accuracy,we must include the effects of higher order quantum correc-
tions. A particularly important effect for the W and Z masses is the
quantum fluctuation of the bosons to quark-antiquark pairs, in particu-

lar, to top quarks,
W 2° %

The value of the top quark mass affects the ratio of the W and Z masses
at the 5% level. When the known value of the top quark mass is included,
the measured values of the W and Z masses are in very good agree-
ment with the predictions of the electroweak theory, as I will quantity
in Section 17.4. Indeed, before the top quark was discovered, preci-
sion electroweak measurement of the properties of the Z boson correctly
predicted the top quark mass to be in the range 160-180 GeV.

Using the value of «,, above, we find for the total width of the W
boson

(17.17)

Ty = Ol‘—;’mw [34+2-(31)] =21 GeV . (17.18)
The branching ratios of the W are predicted to be

BR(ev.) = BR(uv,) = BR(tv,) = 11%
BR(ud) = BR(c3) = 34% , (17.19)

in good agreement with observations.

17.2 W production in pp collisions

The matrix element for W decay to ud can also be used in the opposite
direction to compute the production cross section for a W boson in a
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hadron-hadron collision. At a hadron-hadron collider, the heavy bosons
W and Z can be created by quark-antiquark annihilation, for example,
ud — W, utt — Z. Such reactions, and reactions such as uz — ptp~
involving a virtual photon or Z boson, are called Drell-Yan processes
(Drell and Yan 1970).

The cross section for Drell-Yan production of a W™ boson is assembled
by combining the parton-level cross section with the pdfs of the colliding
hadrons. The parton cross section is

o (ud = W) = / 4T |M]? | (17.20)
where phase space with one particle in the final state is given by
a3 bw 4
dit 2m) 6@ (p,, - : 17.21
/ 1= / ) 2B (2m)*6" (pu + pa — pw) ( )

Comparing to (3.88), we see that

/dﬂl =275(3 —m3y) . (17.22)

We must average the squared matrix element over initial spins and colors
and sum over final polarization states. This sum and average is

1 2 1 g9 2 g9 2
= — . — . 2 = — . 1 .2
2.23.3 cok;spm M= 5535 mw 12" (17.23)
Assembling the pieces, we find
olud - W) = Y55 —miy) . (17.24)

This result must be integrated over the pdfs for the initial state quarks
and antiquarks. For pp collisions,

o(pp = W) = /dxlfu(xl)/dl‘zfg(@)
o(u(zy Py)d(zePy) — W) + (1 « 2) (17.25)

plus contributions from heavier quarks and antiquarks. To simplify this
formula, go to the pp CM frame. The parton 4-vectors are

p1=x1P = (11E,0,0,2,F) p2 = 2P = (22F,0,0, —22F) .
(17.26)
The total momentum of the W boson is

bw = ((1‘1 +22)E,0,0, (21 — 22)E) . (17.27)

This vector is best parametrized by a mass M (eventually to be set equal
to my) and a rapidity,

pw = (M coshY,0,0, M sinhY) . (17.28)

Computation of the Drell-Yan cross
section for W boson production in pp
collisions.
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Table of the Z charges for the leptons
and quarks of each generation.

The parameters M and Y are related to x; and x5 by

M M
%ey Ty = %e_y . (17.29)

To rewrite the integral, we need the Jacobian

daran) _| )5 eViE | 2M
SOLY) ~ | MY IE e s T s (17.:30)

xr1 =

Then

oM
dridrod(M? —m3,) = dM dY =— §(M? — m3,)
S
Y
= i— (17.31)

Finally, we find the simple formula

do
dY 3s

where x1, xo are derived from myy, Y using the formulae above. Soon,
the measurement of W and Z production cross sections at the LHC will

provide the most accurate information on the values of the antiquark
pdfs.

ST pp > W+ X) = ZW ) p (@) () + fa(@) fulw)| 5 (17.32)

17.3 Properties of the Z boson

The properties of the Z boson can be worked out in a similar way.
Following the approach of (17.4), we find that the decay width of the Z
boson to one chiral species (for example, eZeE), is

NZ o ) = = L e 20 (17.33)

T 2mg8me2, 43¢ '
where @z is the Z charge given by (16.54). This is written more simply
as

D(Z— ff)= 62 —mzQ% . (17.34)

The @z take many values. It is useful to make a table of these for one
generation of quarks and leptons. Let Q7 and QQzr denote the values
of Q7 for the left- and right-handed fermions, respectively. Then we
have

species  Qzr, Qzr Sy Ay
v +3 - 0.250  1.00
e —14s2  4s3 0126 015
u +1-2s2 252 0144 067
d —3+ 352 +4s2 0185 0.94
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The quantities Sy and Ay are defined by

2 2 Q%L — Q%r
Sp=Qz,+Qzr , Ar= -3 102,
ZL ZR

The total rate for Z decay to the species f is proportional to Sy. The
quantity Ay gives the asymmetry between the production rates for left-
and right-handed fermions. Equivalently, it gives the polarization of lep-
tons or quarks emitted in Z boson. Notice that left-handed polarization
is always preferred, but the size of the polarization varies dramatically
among fermions with different quantum numbers.

Adding the partial widths for Z decay, to neutrinos, charged leptons,
u quarks, and d quarks, we find the total width of the Z to be

(17.35)

Ty = O‘ggz 3.0.250 +3-0.126 +2- (3.1) - 0.144 4+ 2.98 - (3.1) - 0.185 ]
=249 GeV (17.36)

The factor 3.1 is the same one that appears in (17.18); it includes the
color factor of 3 for quarks and the QCD correction. I have subtracted
2% from the partial width for Z — bb, for a reason to be explained
below. The branching ratios of the Z to the various fermions are

BR(v.v.) = 6.7% BR(ete™) =3.3%

BR(ut) = 11.9% BR(dd) = 15.3% (17.37)

and similarly for the fermions of the second and third generations.

17.4 Precision tests of the electroweak model

In the 1990’s, there was a concerted effort to test these predictions by
production of the Z boson as a resonance in eTe™ annihilation. Figure
17.3 shows measurements by the DELPHI experiment at CERN of the
ete™ — ptu~™ and eTe” — hadrons cross sections at energies up to
200 GeV in the center of mass (Abreu et al. 1999). Both cross sections
have a huge peak at 91 GeV, increasing the base value by a factor of
100. This is the Z boson resonance

tem = Z —=sutu, qq. (17.38)

e
Two accelerators, the Large Electron-Positron collider (LEP) at CERN
and the Stanford Linear Collider (SLC) at SLAC, were constructed to
collect data at this resonance. The experiments at these accelerators
systematically tested the values of Sy and Ay in the table above. The
complete suite of precision measurements on the properties of the Z
resonance is reviewed in (Schael et al. 2006).

The key test for Sy is the measurement of the total width of the Z
resonance. Figure 17.4 shows a measurement by the OPAL experiment
at LEP of the cross section at steps in energy through the resonance

Prediction of the total width of the Z
boson.

Branching ratios for the Z boson decays
to lepton and quark pairs.

The line shape of the Z resonance.
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Fig. 17.3: Measurements of the cross section for ete™ — hadrons, ete™ —

ptp~, and eTe”™ — 7777, as a function of center of mass energy, by the
DELPHI experiment at the LEP collider at CERN (Abreu et al. 1999).
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Fig. 17.4: Measurement of the Z boson resonance line shape in e*e™ annihi-
lation by the OPAL experiment at the LEP collider at CERN; figure courtesy
of T. Mori, based on data from (Abbiendi et al. 2001).
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(Abbiendi et al. 2001). The experiment is compared to the prediction
of the electroweak theory for the best-fit value of s?. The agreement
between experiment and theory is quite extraordinary. The theory of
the resonance shape begins with a Breit-Wigner resonance

1 2

2 .
s—my +imzlz

(17.39)

and includes the effects of single and multiple collinear photon emission
from the colliding electron and positron

?9

< -
(17.40)
This radiation decreases the peak height of the resonance and also pushes

the resonance to somewhat higher energies. It also gives the resonance
a long tail extending to very high energies.

idead

v. N&o}lﬁ\

(17.41)

The effect is shown in Fig. 17.5, along with measured cross sections
combined from the four LEP experiments (Schael et al. 2006).

The shape distortion of the Z resonance is an effect of QED. The width
of the resonance is determined by the weak interaction, with a 4% en-
hancement of the contribution from decays to quarks due to QCD. Thus,
all three of the fundamental interactions of particle physics contribute
the excellent agreement of theory and experiment shown in Fig. 17.4.

There are two particularly important outputs from this set of mea-
surements. First, the mass of the Z is measured very precisely. From
this, it is possible to determine the value of the weak mixing angle very

From the well-measured observables a, precisely. Using the SU(Z) X U(l) formulae, we find
GFr and myz, we can construct a very

precise reference value of s2,. - 47ra(mz)

N \@Gpm% '

This translates to a very precise reference value of s2,

sin? 20, = (2¢45,)? (17.42)

52 = 0.231079 =+ 0.000036 . (17.43)
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Fig. 17.5: Measurement of the Z boson resonance parameters in e*e™ an-

nihilation by the LEP experiments (Schael et al. 2006). The experimental
errors have been inflated by a factor 10 to make them visible. The dotted
curve shows the ideal resonance shape, the solid curve shows the predicted
resonance shape including the effect of initial-state photon radiation.
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Measurement of the number of invisible
neutrino species to which the Z boson
decays.

Prediction of the decay rate of the Z to
bb, and its comparison to experiment.

Other measurements of quantities depending on s2, can be compared to

this standard. The accuracy is such that higher order corrections must
be included to make a proper comparison. I will quote some results of
this comparison later in this section.

Second, the line-shape of the Z allow us to determine the number
of light neutrinos that couple to the Z with the standard SU(2) x U(1)
quantum numbers. Neutrinos are invisible in the Z experiments. Never-
theless, each neutrino contributes to the total width of the Z an amount

['(Z — v;7;) = 170 MeV | (17.44)

about 7% of the total width. The presence of one extra neutrino would
both increase the width of the resonance and decrease the peak height.

3v

4v

(17.45)

Careful measurement of the resonance parameters, and fitting to the
number of light neutrinos as a continuous variable, gives

n, = 2.9840 + 0.0082 . (17.46)
Another important measurement related to the Sy is that of

_ BR(Z - W)
"~ BR(Z — hadrons)

Ry (17.47)
This ratio can be measured very precisely by selecting ete™ — hadrons
events and then searching within these events for the short-lived B
mesons, using a vertex detector such as that described for the BaBar
detector at the end of Chapter 6. From our analysis so far, this quan-
tity would be predicted to have a value about 0.220. However, there
are higher order corrections involving virtual top quarks that contribute
specifically to the partial width for Z — bb through the processes

" b I
? Nt
+ -\ 7 +
® W J‘f‘d
§2°
(17.48)
decreasing the rate for this mode by about 2%. The measurements give

Ry = 0.21629 +£ 0.00066 |, (17.49)
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Fig. 17.6: Measurements of the energy distribution of charged particles pro-
duced in the decay of 7 leptons from Z — 777, as a function of z = E/E;,,
by the ALEPH experiment at the LEP collider, from (Heister et al. 2001).
The dashed and dot-dashed curves show the expectation from 7, and 7, so
the fit to the data shown measures the polarization of 7 leptons produced in
Z decay: left: 7 — wv; right: 7 — pv,v,.

in good agreement with the prediction, for the observed value of the top
quark mass.

The values of Ay can be tested by measurements sensitive to polariza-
tion. This is especially interesting because the A values are predicted
by the SU(2) x U(1) theory to take very different values for leptons, u
quarks, and d quarks.

I will describe two methods for measuring A for leptons. The first
makes use of the fact that the heavy lepton 7 decays by the V—A
interaction which is sensitive to polarization. This is most clearly seen
by considering the decay

TT =S Um . (17.50)

Since the v, is always left-handed and the pion has zero spin, the neu-
trino must be emitted in the direction opposite to the 7 spin direction.
In the Z rest frame, the 77 is highly boosted. Then a 75 will decay to a
higher-energy pion and a lower-energy neutrino, and the 7, will decay
to a lower-energy pion and a higher-energy neutrino. The actual energy
distribution of pions observed at the Z resonance from 7 decay, mea-
sured by the ALEPH experiment at LEP, is shown in Fig. 17.6 (Heister
et al. 2001). The fit to the distributions predicted for 7, and 75 shows
the expected 15% asymmetry. The similar effect in 7 — pv,7,, is shown
on the right-hand side of the figure.

At the SLC, the asymmetry A, was measured as an asymmetry in the
total rate of Z production from e*e™. In a circular accelerator, electron
beam polarization is typically destroyed as the beams carry out many
circuits of the ring. However, linear acceleration naturally preserves
the electron polarization. The experiments at SLAC took advantage of

Measurements of Ay, the Z polarization
asymmetry in decays to leptons.
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Measurements of Ay, the Z polarization
asymmetry in decays to b quarks.
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Fig. 17.7: Measurement of the angular distribution of tagged b jets in Z — bb
events by the SLD experiment at the SLC collider at SLAC, from (Abe et al.
1998).

this. Using polarized laser light, electrons were produced with prefer-
ential left- or right-handed polarization at the front of the accelerator,
transported over 4 km to the collider interaction point, and then anni-
hilated with positrons to created Z bosons. The correlation of the laser
polarization with the rate for Z production allowed a measurement of
the asymmetry in which almost all systematic errors cancelled. The
experiment measured (Abe et al. 2001a)

A, =0.1516 £ 0.0021 . (17.51)
It is interesting that
(3 —s2)2 - g2 1_ g2 1
A, =2 "w v - 4w ~8 (= —s2). 17.52
(3 —s%)%+s2 258+ (5 —52) (77 %) (17.52)

Since the actual value of s2, is close to %, this very accurate value of A,
turns into an even more accurate value of s2,

2 = 0.23109 = 0.00026 . (17.53)

For b quarks, the polarization asymmetry is expected to be almost
maximal. This prediction could be tested at the SLC by using the po-
larized e~ beam to produce events with b quarks in the final state. Recall
that the angular distributions in polarized e*e™ annihilation depend on
the fermion polarizations

do  _ -
ST (ezeh = bubr) ~ (1+ cos)?
%(eéez — brbr) ~ (1 —cos6)? . (17.54)

If the production of b;, dominates, the angular distribution should be
highly forward peaked for an e; beam and highly backward peaked for
an e beam. The data from the SLD experiment at the SLC is shown
in Fig. 17.7 (Abe et al. 1998). The asymmetries are diminished because



Measurement Fit

17.4  Precision tests of the electroweak model 277

[ omeas_ofitl / Gmeas

0

i

1

2

3

A“Emsa)d(mz)
m, [GeV]
T, [GeV]
o, [nb]
F‘l
A
A(P)
R
RC
Ay
Ay
A
A

c

A(SLD)

b

b

0.02758 + 0.00035 0.02767
91.1875+0.0021 91.1874
2.4952+£0.0023  2.4965
41.540 +0.037 41.481
20.767 £ 0.025 20.739
0.01714 £ 0.00095 0.01642
0.1465+0.0032  0.1480
0.21629 + 0.00066 0.21562
0.1721 £0.0030  0.1723
0.0992 +0.0016  0.1037
0.0707 £0.0035  0.0742
0.923 + 0.020 0.935
0.670 +0.027 0.668
0.1513 £ 0.0021 0.1480

sin’057(Q,) 0.2324+0.0012  0.2314

m,, [GeV]

T, [GeV]
m, [GeV]

80.425 + 0.034 80.389
2.133 £ 0.069 2.093
178.0+4.3 178.5

-

O

2

3

Fig. 17.8: Compilation of precision electroweak measurements, and compari-
son to the predictions of the SU(2) x U (1) model using the best-fit parameters,
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it is difficult to distinguish the b from the b jet, but, nevertheless, the
effect is striking. The observed distributions are consistent with the
almost maximal asymmetry predicted by the SU(2) x U(1) theory.
Figure 17.8 gives a compilation of precision measurements on the W
and Z by the LEP Electroweak Working Group and the five major con-
tibuting experiments (Schael et al. 2006). The figure lists the measure-
ments of a large number of Z decay rates and asymmetries and some
other quantities that affect the SU(2) x U(1) predicitons. The second
column gives the measured values, averaged among the various experi-
ments. The third column gives the values predicted by the SU(2) x U (1)
theory for the best-fit values of g, ¢’, and mz. The fourth column shows
graphically the discrepancy between the best-fit theory and experiment,
in units of the standard deviation of each masurement. The SU(2)xU (1)
model indeed gives a very accurate explanation of the properties of the

W and Z bosons.

Exercises

(17.1) The properties of the Z boson can be evaluated in
a similar way to the the properties of the W boson
computed in detail in the text.

(a)
(b)

()

(17.2) The Z can appear as an intermediate state in e

Derive the formula (17.34) for the partial
width of the Z boson decay to ff.

Work out the formula corresponding to
(17.32) for the cross section for Drell-Yan pro-
duction of a Z boson in pp collisions.
Estimate numerically the cross sections for
Drell-Yan W and Z production at LHC en-
ergies. Compute these cross sections to the
pp total cross section of about 100 mb.

+o-

annihilation. The contributions from the interme-
diate virtual v and Z should be added in the am-
plitude and can interfere.

(a)

Considering only an intermediate -y, recall the
diﬁejential Srois segti?rns for 67265 —>7u£ u'}%,
€rer — HpMp, €grep — HpHp, €rep —
ppiy computed in (8.47) and (8.48). For ex-
ample,

2
™

2s

do

_ 1 . 2.
dcosf (14 cos0)

(17.55)

Draw the Feynman diagrams for a virtual ~
and a virtual Z and compare them. Show that

(epeh — waut) =

the cross section for e} e}, — uj pu}; in the full

electroweak theory is given by multiplying the

result in (a) by
11

Lt 5 (5 = sw)’

s
Civ Sty (2

s—m% +imzlz
(17.56)

In a similar way, compute the cross sections

for the other possible helicity states.

The forward-backward asymmetry App for

the reaction eTe™ — pTpu~ is defined by

o(cos® > 0) — o(cosf < 0)
o(cos® > 0) +o(cosf < 0)
(17.57)
Compute the forward-backward asymmetry
for the polarized reaction in (a) and show that
it equals 3/4.
Now consider the Arpp for the unpolarized
process ete” — ,u*;f. Arp obtains contri-
butions from each of the 4 possible polarized
reactions. Show that App = 0 for /s < m.
Find Arp just on the Z resonance, where
the contribution from the virtual v can be ig-
nored.

AFB -

Write the leading term in the expression for
the cross section in (b) in the limit s > m3%.
Consider the unbroken SU(2) x U(1) theory.
In this theory, the process ete™ — ptpu~



is mediated by virtual A% and B boson ex-
change. Compute the cross section for the po-
larized process in (b). You should find agree-
ment with your answer in (e).

(h) Check this agreement for the other three he-
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licity states. Apparently, spontaneous sym-
metry breaking only affects cross sections at
low energy. In some sense, a spontaneously
broken symmetry is restored at sufficiently
high energy.






Quark Mixing Angles and
Weak Decays

The theory of the weak interaction that we have developed so far still
omits some of the processes with which we began our discussion of this
theory. We still have not proposed a mechanism for the strangeness-
changing decays

K’ = n7ety A’ = pe T . (18.1)

These decays seem to call for a contribution to the weak charged current
of the form

ul sy, . (18.2)

However, there is a strong constraint on this modification of the V—A
theory described in Chapter 15. Although the charged-current weak
interaction has sizable terms that change quark generation, the neutral-
current weak interaction does not. To see this, compare a process based
on s — upy,

BR(KY — muv) =0.27 , (18.3)

with one based on s — dut ",
BR(KY = pnTpu™)=7x107° . (18.4)
Similarly, in B meson decays,
BR(b— seTe”) ~ BR(b— suTp~) =4x107% . (18.5)

Our theory of weak interactions must provide for flavor-changing charged-
current decays while restricting flavor-changing neutral current decays.
In this chapter, we will see that both aspects of generation change in
the weak interaction are naturally accounted for in the SU(2) x U(1)
model.

18.1 The Cabibbo mixing angle

To begin, we must work out what interaction strength we need for
the s — wu weak decays. Writing the matrix elements for the weak
interaction as a V—A interaction with the Fermi constant measured in
muon dcay, I will write the weak interaction current as

gt =vGuL + -+ VusuTLE”sL +oeee (18.6)

Experiment requires additional
charged-current  interactions  that
change the quark generation.

Weak decays that change the quark
generation can appear in charged-
current processes but are highly sup-
pressed in neutral-current processes.
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Measurement of the strength Vs of the
weak interaction transition s — wu.

Measurement of the strength V,,4 of the
weak interaction transition d — u seen
in nuclear S decay.

That is, Vs gives the strength of the strangeness changing interaction
relative to the strength of the weak interaction in muon decay.

It is possible to determine the value of V,; from the rates of A%, ¥,
and K meson [ decay. Look back at the discussion of the normalization
of current matrix elements in (14.36) and (14.37). The axial vector
current matrix elements may contain new dynamical factors such as
ga, but the vector current matrix elements, at zero momentum transfer,
have a fixed normalization given by the flavor charges. The best situation
is found for the decay K — mfv. The matrix element

(m|uy" (1 —~°)s |K) (18.7)

involves only the vector current, because both K and 7 have P = —1. In
the limit of zero quark mass, in which K and 7 are massless Goldstone
bosons, the flavor current is conserved and this matrix element contains
only one allowed kinematic structure,

(rlun*s |K) = i(px + pr )" f+(q) (18.8)

where ¢ = px — pr. At ¢ = 0, the value of the matrix element is fixed
by the flavor charge,

frlg=0)=1. (18.9)

The corrections to these formulae are proportional to the u, d, and s
quark masses and can be worked out systematically. By measuring the
rate of K — mwev decays, the KLOE experiment at the INFN Frascati
laboratory in Frascati, Italy, determined (Ambrosino 2008)

Vs = 0.2249 4+ 0.0010 . (18.10)

This question is coupled to another one. To a first approximation,
the strength of the V—A interaction in the S decay of nuclei is equal
to that in muon decay. But, is this equality exact? Beginning in the
late 1950’s, attempts were made to measure the strength of the weak
interaction in 8 decay precisely. To discuss this strength quantitatively,
we might parametrize the d — u term in the V-A charged current as a
term in (18.6) of the form

In the SU(2) x U(1) theory as we have discussed it so far, gauge invari-
ance would require that the W boson couple to muon, electron, and (u, d)
doublets with the same strength. Then we would have V,,; = 1. How-
ever, persistently, the values from experiment were somewhat smaller.
The best experimental determinations come from the rates of superal-
lowed B decay transitions between 07 nuclei. These use only the vector
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current. An illustrative example is given by N4 and its excited states.

C\q }JN + O 4

=\ e

N

(18.12)

C' is a B~ emitter, O™ is a B+ emitter. These two states are members
of an I =1 triplet with N'*, a state that decays by gamma ray emis-
sion. The three vector current matrix elements are related by isospin,
so the weak interaction matrix elements can be normalized relative to
the measured rate of the electromagnetic decay. Then the normalization
factor V, 4 can be extracted from the rates of the weak interaction decays
(Hardy and Towner 2009). The best current value obtained from these
measurements is

Vwa = 0.97425 £+ 0.00022 . (18.13)

This value is significantly less than 1.

In 1963, working from the much more uncertain numbers then avail-
able, Cabibbo suggested that these two values fit together through the
relation (Cabibbo 1963)

That is, we can represent
Vua = cosbc Vua = sinfc (18.15)

where 0¢ is called the Cabibbo angle. Evaluating the relation from the
numbers above,

Vaud|? + |Vius|* = 0.9997 + 0.0005 . (18.16)

Apparently, the SU(2) gauge interaction does couple with the same
strength to quarks as to leptons—as is required by the structure of the
gauge theory—but it couples the v quark to a linear combination of d
and s.

18.2 Quark and lepton mass terms in the Standard
Model

The structure I have just described can arise in a natural way in the
SU(2) x U(1) model. To understand this, we must first explore how
quark and lepton masses arise in that model. A mass term is a term in
the Lagrangian

AL = —mf(f;r%fL‘f'fsz) (18.17)

The reduced strength of the s — wu
weak interaction transition is explained
by the Cabibbo angle.
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In the SU(2) x U(1) model, quark and
lepton masses arise from terms involv-
ing fermion interactions with the Higgs
field. These terms take the form of
mass terms after the Higgs field ac-
quires a vacuum expectation value.

Formula for the masses of quarks and
leptons in terms of their Yukawa cou-
plings to the Higgs field.

linking the two chiral components of a fermion field. However, we are
forbidden to write such a term for any quark or lepton. The SU(2)xU(1)
theory puts the left-handed quarks and leptons into I = % doublets but
assigns the right-handed quarks and leptons I = 0. Thus, any mass term
violates the SU(2) gauge symmetry.

Thus, generation of mass for any quark or lepton requires the spon-
taneous breaking of SU(2) x U(1). The Higgs field ¢ has the quantum
numbers [ = %, Y = % So it is consistent with all symmetries of the
theory to add to the Lagrangian the terms

AL = —yeLZLpaeR — delcpadR — yuQZeabcpZuR + h.c. (18.18)

where a,b = 1,2 and

(), o),

The coefficients y; are called Yukawa couplings. Each term is invariant
under isospin, and each term has the sum of the hypercharges of the fields
summing to zero. For example, in the middle term, the hypercharges
e 111

6 + 5 3= 0. (18.20)
Note that the Yukawa coupling term for the u quark has a slightly dif-
ferent structure from the others, with ¢* rather tnan ¢.

If we replace the Higgs field by its vacuum expectation value

0
we find that (18.18) becomes

AL = —%6263 - %d}d - yL\/;uTLuR + h.c. (18.22)

Comparing this equation to (8.24), we see that it has just the structure
of mass terms for the e, d, and u. Then

v
myg =ys NG (18.23)
for all three species.

In writing (18.18) and (18.22), I have omitted mass terms for the
neutrinos. This is an excellent approximation for particle physics at
GeV energies. However, the assumption that the neutrino masses are
zero has important consequences in the analysis presented in Section
18.3. I will return to the question of neutrinos masses in Chapter 20.

The construction I have presented here gives an origin for the quark
and lepton mass terms. But, it does not solve the problem of the large
range of values of these terms. It only pushes the problem back one level,
onto the physics of the fermion couplings to the Higgs field. This does
not make the problem of quark and lepton masses any less mysterious.
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18.3 Discrete space-time symmetries and the Stan-
dard Model

In nature, we see three fermions with each type of quantum number,
for example, e, u, and 7 for charged leptons. We refer to the three
states of each kind as belonging to three generations. To give mass
to the second and third generations, we could simply repeat the struc-
ture above. However, it is instructive to write a more general set of
Yukawa couplings, in fact, the most general set of couplings consistent
with SU(2) x U(1) gauge invariance. In this section, I will analyze that
quite general theory and derive from it some surprising conclusions.

Gauge invariance requires that the gauge couplings of the fermions
of the three generations are absolutely identical. But, gauge invariance
puts much weaker constraints on the Yukawa couplings. The most gen-
eral Yukawa couplings consistent with gauge invariance include arbitrary
mixtures of couplings among the three generations. Letting ¢,57 = 1,2,3
label generations, this most general set of Yukawa couplings is written

AL =~y Ll el + v Qi vad, — v Qi eappyuly + hoc.  (18.24)

where the y}j are complex-valued 3 x 3 matrices of general symmetry.

We can simplify this structure by diagonalizing the y; matrices and
making appropriate changes of variables among the fields. The Yukawa
matrices are not Hermitian. But, they can be diagonalized as follows:
Construct the matrices

vryh . yhyr (18.25)

These are Hermitian and positive and have the same eigenvalues. We
can represent them as

yfy} — Uéf)YfUI(Jf)T 7 y}yf _ Uz(zf)Yng)T ) (18.26)

where U éf )7 1({) are (in general, different) unitary matrices and Yy is
real, positive, and diagonal, and identical in the two formulae. Then if

VY1

Yi=Y;= Yo : (18.27)
VY73
we have
y; =0 v, U (18.28)
For leptons, we now make the change of variables
ep = Usheh, Li=US L. (18.29)

The matrices Uf), U 1(;) disappear from the Yukawa couplings. The
lepton mass terms are now diagonal in generation, and the new fields
L, eiR correspond to mass eigenstates. These are now the fields of the
familar leptons e, 4, and 7.

The equation (18.24) seems to have
much more generality than we require
in our theory of the weak interaction.
But in this section, we will systemati-
cally simplify it, using several changes
of variables. You will be surprised by
the final result.

Using the representation (18.28) for the
Yukawa matrix, we simplify the lepton
terms in the Lagrangian.



286 Quark Mizing Angles and Weak Decays

The change of variables (18.29) moves the matrices U ée) and U 1(;) to
the lepton kinetic terms, for example,

eh(io - DYer — e, U (io - D)U ey . (18.30)
But these matrices cancel out completely, because the three generations
have the same gauge interactions. The formula (18.30) becomes

= el(io - DYUSYTU ep = el (io - D)er . (18.31)

Lepton number conservation is auto- 'There are no interactions remaining that couple the lepton generations.
matic in the SU(2) x U(1) model with  Thus, lepton number conservation, separately for each generation, is a
ZeTO NEULTINO MAsses. consequence, not an assumption, of the SU(2) x U(1) theory.
Please note that, in this argument, I have used the property of our
SU(2) x U(1) model that there are no neutrino mass terms. If we
had included a neutrino mass term, the matrices U ée), U I(,-f) would not
have cancelled out of that term, and we would have found very small
generation-changing interactions proportional to the neutrino masses. I
will discuss this effect in Chapter 20.
The construction for the quarks is somewhat more complicated. We
make the change of variables

W= Uijuh  wh = Ufijuy
k= Ul d L UL d), (18.32)

Using the representation (18.28) for the ~ After this change of variables, the matrices Uy, Ur have disappeared
Yukawa matrices, we simplify the quark  from the Yukawa couplings. The new u’ and d’ fields correspond to
terms in the Lagrangian. mass eigenstates—the physical quarks u, ¢, t and d, s, b. The unitary
matrices are transfered to the quark kinetic terms. Then they cancel,
just as for the leptons—at least, in the couplings to the gluon, photon,
and Z boson. We now see that, for the most general structure of Yukawa
couplings, the neutral current interaction mediated by the Z boson is
always diagonal in flavor.
In the coupling to the W boson, the unitary matrices do not com-
pletely cancel. Instead, we find

ul (i7")dy, — ul UM (iU Py,

= b (i7" WVormdr (18.33)
where .,
Vern = UMT (18.34)

The last vestige of the unitary trans- The Up matrices can thus be combined into a single unitary matrix,
formations that diagonalize the quark V., called the Cabibbo-Kobayashi-Maskawa matriz. After the changes
mass matrices produces precisely the . S . . . .

. o - X of variables, this is the only term in the weak interaction Lagrangian
Cabibbo mixing in the weak interaction ; X . . R .
and its generalization to three genera- that contains generation-changing interactions. The matrix elements of
tions. Veorxn are exactly the parameters V4, Vys, etc., that we introduced in

(18.6) and (18.11),

Vud Vus Vub
Vekr = Vea Ves Ve | - (18.35)
Viae Vie Vi
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Thus, each physical u quark is linked by charged-current interactions
to a different linear combination of the d quarks. Vogas is a unitary
matrix, and so these linear combinations are orthogonal. At this point,
the combinations have complex coefficients. The imaginary parts of the
coefficients can be shown to lead to C P- and T-violating interactions.
However, we can simplify the structure even further. A 3 x 3 unitary
matrix has 9 parameters. If this matrix were real-valued, it would be
a rotation matrix in 3 dimensions, parametrized by 3 Euler angles. So
a 3 X 3 unitary matrix is parametrized by 3 angles and 6 phases. By a
further change of variables to change the phases of the quark fields

w) = el d = ePid) (18.36)

we can remove 5 phases. The overall phase of the quark fields drops out
of the Lagrangian and cannot be used to simplify Vogas. So, finally,
Veorxa can be written with 4 parameters—3 angles and 1 phase. This
phase is a single parameter that produces CP and T violation in the
weak interaction.

We will see in the next chapter that certain weak interaction decays
do show C'P and T violation. This explanation for the origin of CP
violation was first put forward by Kobayashi and Maskawa (1973). Note
that, if we had only 2 generations, Vo s would be a 2 X 2 parametrized
by one angle, the Cabibbo angle, and all phases could be removed. Thus,
the Kobayashi-Maskawa theory connects C'P violation in the weak in-
teraction to the existence of three generations of quarks. Remarkably,
Kobayashi and Maskawa proposed the existence of the third generation
before the discovery of the 7 lepton and even before the discovery of the
¢ quark.

It turns out that there is one defect in this argument. The same strong-
interaction physics of gluons that destroys the possible chiral U(1) sym-
metry of QCD with massless quarks also allows a possible C'P-violating
term in QCD, parametrized by an angle . This term potentially gener-
ates C'P- and T- violating effects in the strong interaction, for example,
the generation of an electric dipole moment for the neutron. Measure-
ments of the neutron electric dipole moment, which we will discuss in
Section 19.2, require that |§] < 10710, The # parameter is shifted by the
phase transformation (18.36). Still, it is possible to introduce additional
mechanisms, requiring new particles or interactions, that guarantee that
0 is sufficiently small. Having called your attention to this problem, I
will ignore it from here on. For further discussion of this issue, see (Dine
2000).

18.4 The Standard Model of particle physics

We have now derived a remarkable result. We wrote down the most
general Lagrangian allowed by SU(3) x SU(2) x U(1) gauge symmetry.
After spontaneous symmetry breaking and some changes of variables,

At the end of the simplifications, the
weak interaction contains one CP vi-
olating parameter. This parameter
could be transformed away if there were
fewer than three generatioms of quarks.
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The Lagrangian of the Standard Model
of particle physics.

The Standard Model is the most gen-
eral quantum field theory model of the
known particles with SU(3) x SU(2) x
U(1) gauge symmetry. After appropri-
ate changes of variables, this model has
many unexpected symmetries and con-
servation laws, These are the same ones
actually seen in nature.

we have reduced that Lagrangian to the following form:

1

;C:*i -

1
(Fi)? 4 miy WIW ™ 4 om3 2, 2"
_ 1
+> Wiy Dy —mp) ¥y + 5(0uh)? =V(h) . (18.37)
f

where the sum over a runs over the generators of SU(3) x SU(2) x U(1)
and the sum over f runs over all quark and lepton flavors. The covariant
derivatives Dy are of the form

Dyp = 0, —ieQ A, —i2-Qps 2, —ig A%t (18.38)
. o

representing electromagnetic, Z, and gluon couplings to fermions, plus
a W interaction that is diagonal in generations for the leptons and
proportional to Vg for the quarks. The interactions of the Higgs
boson field h(z) are generated by the replacement v — v + h(z) in the
mass terms for W, Z, quarks, and leptons. This theory is called the
Standard Model of particle physics.

The Standard Model automatically has many highly accurate approx-
imate symmetries (Weinberg 1973, Nanopoulos 1973):

(1) The Lagrangian conserves overall quark number or baryon number
and, separately, overall lepton number. Note that these conserva-
tion laws are outputs of the analysis, not assumptions.

(2) All terms except for the couplings of the W and Z bosons to
fermions conserve P, C, and T. In particular, it is automatically

true that the strong and electromagnetic interactions conserve P,
C,and T.

(3) All terms except for the couplings of the W boson preserve the
fermion number for each individual fermion species. For the lep-
tons, the weak interaction also connects each charged lepton to
one neutrino. This explains the fact that, in experiment, each lep-
ton seems to carry a separate conserved quantum number. For
example,

BR(u™ —e™v) <24x107*,  BR(T™ — pu 7y) <44x107%.
(18.39)

(4) The W and Z couplings violate P and C in a maximal way. How-
ever, if these couplings are real-valued, they preserve the joint
symmetry C'P. Since CPT is a symmetry of any quantum field
theory, real-valued couplings also preserve T'. There is one possible
source of CP and T violation in the Standard Model, and that is
the one remaining phase in the CKM matrix. The Standard Model
associates C'P violation with interactions of the third generation.
I will discuss tests of this idea in Chapter 19.
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18.5 Quark mixing including heavy quarks

We have already discussed the value of the CKM parameter V,,;. Since
a two-generation theory has only one angle, we must use processes in-
volving the third generation to determine the other two angles. The
angle V,, is extracted from the decay rate of B mesons. Ignoring for
a moment the effects of the strong interaction, we can estimate the rate
of B meson decay from the formula for b quark decay that is analogous
to the formula (15.40) for the rate of muon decay. That is,

GEmj,
19273
where the decays to ff = ev, uv, v, ud, and ¢35 are included. The decays
to 7 and ¢ are substantially reduced by phase space, but also there is

a relatively large enhancement from QCD corrections. Evaluating the
simple formula (18.40), we find

T(b—cff) = |Va|? (3+2-3), (18.40)

L(b—cff)=4x10"1 GeV - |Vy|? (18.41)

or
7(b) = 1.7 x 107" sec - [Vy|? . (18.42)

The measured B meson lifetime is
7(B) = 1.5 x 1072 sec . (18.43)

If we interpret this as the rate of b quark decay, we would estimate
Vep = 0.03. The best current estimate, which includes the effects of the
strong interaction in the b quark binding and decay, is

Vi, = (4.09+0.11) x 1072 . (18.44)

Decays with b — u are a small fraction of B meson decays and are
somewhat harder to relate to measured quantities. The best current
estimate gives

Vi = (4.1540.49) x 1072 . (18.45)

A very convenient parametrization of the CKM matrix is that devel-
oped by Wolfenstein (1983). This parametrization uses the fact that
Vs, Vep, and Vyp, are successively smaller. From these elements, the
whole unitary matrix can be constructed using the requirement that, in
a unitary matrix, the rows and the column are orthogonal vectors. The
following formula maintains this orthogonality up to terms of order V2 :

1—)%/2 A AX3(p —inm)
Veru = - 1— )22 AN? . (18.46)
AN (1 —p—in) —AN? 1
The current best values of the parameters are
A =0.225
A=0381

lp—iX| = 0.37 (18.47)

Determination of the parameters Vg
and V,,;, that control the rate of b quark
decay.

Wolfenstein’s useful parametrization of
the CKM matrix.
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Wolfenstein placed the possible phase of the CKM matrix in the extreme
corners. This makes it more explicit that C'P violation appears only in
processes that involve either the b or the ¢ quark in some way.
To conclude this discussion, I return to the issue of flavor-changing
Although the Standard Model La- neutral weak interactions. In the Standard Model, leptons have no
grangian contains no flavor-changing  flavor-changing weak interactions. For quarks, there are no flavor-changing
neutral current couplings, such pro- s .
. . terms neutral current terms in the Lagrangian, but very small flavor-
cesses can be induced by higher-order . .
corrections. In this passage, I discuss changing effects can be generated by Feynman diagrams that make use
the flavor-changing amplitude that con- of charged-current interactions. We can study this in the example of
verts a K to a K and vice versa. the process 3d — ds, which converts a K% meson to a K° meson. I will
discuss this physical consequences of the mass mixing in Section 19.1.
The top left submatrix of the CKM matrix is, to a good approxima-

tion,
cosfc  sinfc
( —sinfe  cosbc ) ’ (18.48)

This structure was originally proposed by Glashow, Iliopoulos, and Ma-
iani (1970) to explain the smallness of the K%K mixing amplitude. As
we will see in a moment, the unitarity of the matrix (18.48) gives rise
to what is called a GIM cancellation that makes this amplitude much
smaller than one might expect.

Early in the study of the weak interaction, it was realized that it is
possible to convert K° to K° through the process

J W S

Cos eg 9'-“6‘-
a
. YLS)
%et E 1 W d $5e
(18.49)
This matrix element has the form
_ G2
m*(K°, K°) ~ m2% f2 —L_ sin? ¢ cos® ¢ - m¥y, . (18.50)

—~

47)?

In this formula, myg is the mass of the K°, and fx is the K meson
analogue of the pion decay constant defined in (14.34). Dimensional
analysis requires another factor with the dimensions of (GeV)?2. I have
written this factor as m3%, because, in the computation of the diagram,
the momentum of the off-shell W bosons is allowed to run up to myy.
Evaluating this equation, we find

m?(K° K% ~ 107'2 GeV? . (18.51)
This result is much larger than the value measured in experiment,
m?(K°, K°) ~ 3.5 x 107'° GeV? . (18.52)

GIM suggested—in 1970, before the discovery of the J/i¢)—that pos-
tulating a ¢ quark with the weak interaction coupling structure above



could solve this problem. In the GIM theory, there were three more
diagrams,

- Y ) s
3 . ) S
—~5mOe sl"\gc S50 |~ &@g - @s®),
T “u Iy < < < .
=@ ) us D¢ SO, ~$m8¢ @, -90nO
S Yy ¢ %
B 4
g 4
(18.53)

Note that the diagrams with both v and ¢ have the opposite sign, from
the factors of (—sinf¢). The four diagrams contain integrals over mo-
menta that have the same form for exchanged momenta g > m.. So, the
four diagrams cancel for large momentum transfers. This cancellation
removes the entire region in which the momenta carried by the off-shell
W bosons is larger than m,.. The sum of the four diagrams is then of
the form of (18.50) but with

my, —m? . (18.54)

This lowers the estimate of Amg by a factor of 107%, to about the
correct value. A full QCD analysis with the now known parameters of
the Standard Model gives a value in good agreement with experiment.
Similar GIM cancellations predict that the D°-D° and B°-B° mixing
amplitudes also have very small values, again as required by experiment.
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The fact that the charge-changing weak
interactions arise from a unitary matrix
leads to cancellations in the induced
amplitudes for neutral flavor-changing
processes. These GIM cancellations are
essential for agreement with the mea-
sured values.

Exercises
(18.1) Since most of the degrees of freedom in the quark and Ul({d). Construct the 2 x 2 CKM matrix
Yukawa matrices can be transformed away, there for this model.

is a great deal of freedom to make proposals for
the underlying form of these matrices. A sim-
ple proposal, due to Fritzsch (1977), is that the w
quark Yukawa matrix is diagonal while the d quark
Yukawa matrix is symmetric with zeros on the di-

(b) Show that the zero element of the original Yy
implies the relation

tanfc = v/mq/ms . (18.56)

agonal. (c) Evaluate this formula using (14.59) and
(a) Fritzsch’s original proposal was for two gen- (18.10). How well does it work?
erations (d, s). He proposed (d) A generalization to three generations is
0 A 0 A 0
Ya = . 18.55
¢ <A B) ( ) Yd:<A 0 B) . (18.57)
0 B C

Diagonalize this matrix, obtaining formulae

for the s and d masses and the matrices Uéd) Show that the zero in the central element of
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this matrix leads to the prediction

Vis
Ves

ms

~

. 18.58
e (18.58)
Evaluate this expression using the Wolfen-
stein parameters (18.47). How well does it
work?

(18.2) At the time that the b quark was discovered, there
was no direct evidence for the existence of the ¢
quark. An alternative possibility was that the br,
and br were both SU(2) singlets. The b quark
would have weak interaction decays if the weak
interaction mixing matrix mixed the br with the
other right-handed, ¥ = —%, quark fields.

(a) For simplicity, set 8¢ = 0 and ignore the (u, d)
quarks. Then the masses of s, ¢, b can be gen-
erated by the Lagrangian terms

AL = —y:Qlpadr — ycQleapicr
~Mblbg + h.c. (18.59)

where Q = (¢, s)r and

Sr =cosasg +sinabr . (18.60)

Show that (18.59) is invariant under SU(2) x
U(1).

Let the Higgs field acquire its vacuum expec-
tation value v. Write the quark mass matrix
and diagonalize it. Construct the matrices Uy,
and Ug needed to diagonalize the (s,b) mass
matrix.

Make the change of variables analogous to
(18.32). This removes Ur and Ugr from the
Higgs couplings and introduces these matri-
ces in the weak interaction couplings. Write
the term in the Lagrangian that leads to the
charged-current weak interaction of b.

Compute the decay rate for b — cu~ 7 in the
simple approximation used in (18.40).

(e) Show that the flavor-changing neutral cur-
rent interaction of b is nonzero in this model.
Write the term in the Lagrangian that leads
to the neutral current weak interaction of b.

Compute the decay rate for b — sup~ in
the same approximation as in part (d).

Compute the ratio of branching ratios

BR(b— su"pu”)/BR(b— cu” D) (18.61)
in this model. Compare your result to the
Particle Data Group values

BR(b— p vX)=0.11
BR(b— sp pu”) =4 x107° . (18.62)

(18.3) The fact that, in the Standard Model, the Higgs
boson couplings are exactly diagonal in flavor is
an important part of the understanding of K oK’
mixing. To see this, consider the consequences of
introducing another scalar particle he that could
mediate d-s flavor changes. In particular, write for
the ho the interaction

AL = i%fm(gf’d —dy’s) . (18.63)

(a) To evaluate the K"K’ mixing amplitude,
we need the value of <0|§75d|K0>. Using
the derivation in Chapter 14 from (14.45) to
(14.48), evaluate this amplitude in terms of
the parameter A’ and then numerically.

Draw the Feynman diagram by which an s-
channel exchange of the hy generates a K°—
%’ mixing amplitude. Evaluate the contribu-
tion to this amplitude in terms of the coupling
constant ys2.

Set y2 equal to the s quark Yukawa coupling
and the mass of the hs to 100 GeV to estimate
the size of the induced mixing. How does this
compare to the measured value (18.52)7?



C' P Violation

We saw in the previous chapter that the 3-generation SU(2) x U(1)
model has room for one phase angle, which would signal violation of
CP and T. In this chapter, I will discuss the evidence for C'P violation
in hadronic weak decays. We will see that C'P violation, though it
is a very small effect, is clearly observed in specific weak interaction
processes. These observations, as I will show, are well explained by
the Kobayashi-Maskawa phase in the mixing matrix for charge-changing
weak interactions.

The study of C'P violation is fascinating from another point of view.
CP violation is difficult to observe directly using the observables that
we have discussed so far in this book. Typically, C'P violation leads
to only very small asymmetries in the rates of weak interaction decays
between particles and antiparticles. The most compelling evidence for
CP violation comes from a different kind of experiment in which we
observe the time-dependent evolution of a particle that decays through
the weak interaction. In such a system, C'P violation can be observed as
a nonzero phase in the quantum interference of two components of the
wavefunction of the decaying state. In some cases, this quantum inter-
ference plays out over macroscopic distances, of the order of meters. In
these systems, the experiments on weak interaction decay test not only
the details of a particle physics model but also the underlying funda-
mental principles of quantum mechanics. C'P violation experiments are
reviewed from this point of view in (Testa 2007).

19.1 CP violation in the K°~K° system

I will begin by describing the evidence for CP violation in the K%
KO system. In Section 18.5, I pointed out that there is a very small
amplitude that mixes the K° and K° states. This observation leads to
some unexpected phenomena in K° decays even in the case where CP is
conserved. In this section, I will first develop this theory assuming C'P
conservation, and then generalize it to the case in which C'P is violated.

The neutral K meson is a 2-state quantum system that evolves ac-
cording to

e MT (19.1)

where 7 is the time measured in the rest frame (proper time), and M is
a mass matrix for the two-state system. If C'P is conserved, M has the

Evolution of an initial K© state under

the influence of K°~K° mixing, under
the assumption that CP is conserved.
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The K splits into two components, K2

and K 2, with lifetimes that differ by a

factor of almost 1000.

form

_( m—iT/2 &m—idl/2
M= <5m—i(5I‘/2 7 — iT/2 ) ’ (19:2)

symmetrical between particles and antiparticles. The parameters 7 and
dm contribute to the masses of the eigenstate particles. The parameters
T and dT contribute to their decay rates; the factor of (—i) turns (19.1)
into an exponential decay. C'PT requires that the diagonal elements of
this matrix are equal. C and P act on |K°) and |K°) as

PIK?) = —|K") PIK?%) = —-|K°)
C|K") = +|K°) C|K% = +|K") . (19.3)

Thus, C' P symmetry implies that the off-diagonal elements of (19.2) are
equal. The eigenstates of this mass matrix are C'P eigenstates,

S

V2
L

V2

The corresponding mass and decay rate eigenvalues are

CP=+1 |K3) = (K% — |K®)) ,

CP=-1 |K?) = —=(|K°) +|K")) . (19.4)

Ms =m — ém —i(T — 6I")/2
My =m+dm —i(T +6I)/2 (19.5)

A particle produced as a K° will propagate as a linear combination of
K2 and K. The two components of the wavefunction will have different
decay rates and will oscillate with different frequencies.

The K° and K° are stable with respect to the strong interaction but
can decay by the weak interaction, through

s — ue U, S = up U, , s — udu . (19.6)

Computation of QCD corrections gives a large enhancement for the
purely hadronic decay modes. In particular, the decay

K, K° = 7w (19.7)

is enhanced by about a factor of 100 relative to other modes.  The
decay o
K% K°—3rm (19.8)

also has a QCD enhancement, but at the same time it is suppressed by
the large denominator in the formula for 3-body phase space and by the
fact that (mg — 3m,) is small. For pions in an S-wave, the dominant
final states,

CP|rmy =+ |nm) CP|rrm) = — |wom) . (19.9)

Then the state called Kg in (19.4) is allowed to decay to 2w, but for
the state called K this decay is forbidden by C'P conservation. This
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implies that the two mass eigenstates of the K°-K? system have two
very different lifetimes

75 = 0.895 x 10710 sec cTs = 2.68 cm
7 = 5.116 x 1078 sec err, = 15.34 m (19.10)

The two states are appropriately called “K-short” and “K-long”. It
is an interesting accident that the K?-K9 mass difference

mp —mg = 3.48 x 1071° GeV , =0.95 x 10710 gec ,

(19.11)

2(mg —mg)

corresponds to a time very close to the lifetime of the Kg.
The structure of the K3 and K9 states leads to some remarkable
physical consequences. If a K is produced, for example, in the reaction

7 p— A°KY (19.12)

the K state resolves itself into the two C'P eigenstates. The K2 com-
ponent decays to ww in a few cm. This has a probably of 50%. The
other part of the K° wavefunction decays to 37 and other final states
over a distance of tens of meters. This alternative possibility also has a
probability of 50%. If we created mutiple Ks using a beam of 7~s, the
decay vertices appear as

[

wn (19.13)

If we go meters downstream from the K° production target, we have
essentially a pure K9 beam. The particles in this beam are coherent The K9 component of the wavefunc-
mixtures of K and KV, as indicated in (19.4). By disturbing the quan-  tion may be regenerated by an absorber
tum state, it is possible to change the relative amplitudes of K° and K° placed in the path of the kaons.
in the wavefunctions. According to the rules of quantum mechanics, this
should regenerate a K g component. We can do this in practice by plac-
ing an absorber in the path of the kaon beam (Pais and Piccioni 1955).
The K° (sd) state contains a d antiquark and so has a larger inelastic
cross section on matter. Thus, after the K© state passes through the ab-
sorber, the original K9 wavefunction now has a larger K component.
We can represent the kaon state that exits the absorber as the quantum
state

alK%) 4+ b|K°%) = a|K?) + B|KS) , (19.14)

where, if a # b, 8 will be nonzero. We will then see K° — 77 decays in
the few cm behind the absorber with probability |3|?,

LA T .

VS
e il (19.15)
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Modification of the above analysis in
the true case that CP is violated.

There are specific final states, such as m~e* v, to which both K9 and K9
can decay. For these final states, we will see quantum interference of the
two decay processes in this same region. Meters behind the regenerator,
the state reverts again to a pure K9 state.

So far, I have been analyzing the K%~ K° system under the assumption
that CP is conserved. However, in 1964, the picture was made more
complicated. In an experiment at the Brookhaven National Laboratory,
Christenson, Cronin, Fitch, and Turlay (1964) carefully observed K9
decays in a meters-long decay region filled with helium. They discov-
ered that there is a small component of decays to 777~ with the time
dependence of the K? lifetime. This decay

|K2) — |m7) (19.16)
cannot proceed unless C'P is violated. The branching ratio is
BR(K? — ) =28 x 1072, (19.17)

so the effect is doubly small, a small effect in comparison to the already
small K9 decay rate.

There is a place for this CP violating effect within the Standard
Model. The ¢ quark can appear as an intermediate state in the K-
K mixing amplitude, and diagrams with the ¢ quark can carry a phase

d S
Ny = AX(=@=m) o Ve
t e
Ve = - A ] Ved
s . (19.18)

The effect on the K'~K° mass matrix is to change (19.2) to

M= <5m(1 —i¢) —idT'/2 7 — T /2 ; (19.19)
The eigenstates of this matrix are, to first order in ¢,
1 —
|Kg> = ﬁ((l +e)|K% — (1 - €)|KO>) ’
1 —
|K2> = ﬁ((1+6)|K0> +(1*€)|K0>) ) (19.20)
where
S
= Sm—ior/2 (19.21)

The states |K2) and |K{) are not orthogonal, but this is permitted
because the modified mass matrix is not Hermitian.

The parameter ém is half of the K9-K?2 mass difference. The K2 and
K9 decay rates are

ls=T—-6I' Tp=T+6I (19.22)
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which implies

1
o0~ 2T . (19.23)
Using these relations, we can write (19.21) as
9
€= ic (19.24)

mr —mg + ’LTS/Q '
I have pointed out above that the real and imaginary parts of the de-
nominator are almost equal. This predicts the phase of € to be close to
45°. More precisely,
e=lele’  with ¢ =44°. (19.25)

To describe the effects of this change in the mass matrix, it is useful
to write the eigenstates of M, given by (19.20), in terms of the C'P
eigenstates (19.4), which I will now refer to as |[K9) and |[K"). We find

K9) = |2+ [ K2)

|K2) =|K) +¢|KQ). (19.26)
It follows from this formula that
(K9 — ) 9
< = . 19.27
[(KS — 7m) el ( )
Evaluating this formula, we find
le| =223 x 1072 . (19.28)

Each of the states |K), |[K?) evolves, in its rest frame, according to
e~ imTe /2 (19.29)

where 7 is proper time. For a moving K° state, the oscillation plays

out as function of position along its path. A coherent state of ‘K g> and

’K 2> then displays an interference pattern. Since both states can decay

to T, we can see this interference in the decay rate to 7w —. For CP violation is manifested in a charac-

a K meson state behind a regenerator, with the wavefunction (19.14), teristic pattern of quantum interference
. . between the K and K9 decays to wr.

the decay rate is proportional to S L

2

F(KO s 7T7T) ~ eaefierfFLT/2 _|_l867im57'71‘57'/2

2

e—FsT/Q + ge_i(mL_mS)T_FLT/2 . (1930)

~ |6

This function has the form of an oscillation superposed on an exponential
decay,

(19.31)
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Fig. 19.1: Distribution of K° — 77~ decays behind a regenerator as a
function of proper time, from (Geweniger et al. 1974).

This is quantum interference over a macroscopic length scale. Some

examples of such interference patterns seen in real experiments are shown
in Figs. 19.1 and 19.2.
A different interference effect appears in the decays

K° = nteFv, K% = 7nfufu. (19.32)

The K° (sd) decays only to e*; the K° (sd) decays only to e”. A
state that is originally K° has its time-dependence determined by the
resolution into mass eigenstates,

#{
V2(1+¢)

From this formula, we can work out the K° and K° components of the
original K° wavefunction as a function of T,

|[K7) = |[K8) + |KL)] - (19.33)

1 —imgsT—IgT —imr7—Ip7
K0 = g (B9 et e
1

T 2(1te)

+((1+e) K%+ (1—¢)

[((1 +€) |KO> —(1-¢ FO>)67im377F57/2

K0>)eimLTF”/2}. (19.34)

Looking at the K° and K° content of these eigenstates, we can read off
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Fig. 19.2: Distribution of K° — 77~ decays behind a regenerator as a
function of proper time, from (Carithers et al. 1975).

the decay rate to et

1 20 A 2
I{}(O»-e+wu)ru:1_i§L emimsTlST/2 g emimiT=TLT/2) 1 (19.35)
and to e”
0 - |1 — 6|2 —imgT—Ig7/2 —imrT—Lr7/2 ?
K" — e ) ~ e —e (19.36)
The charge asymmetry CP violation in K°-K° mixing also
N( +) N( ) predicts a small excess of K0 — eTvr
e’)— e over K9 — e~ v decays, which is ob-
AG) = N TN ) (19.37) oo

goes through an oscillation, as shown in Fig. 19.3. The asymmetry tends
to a nonzero constant at large values of 7. This reflects the asymmetry
of the K? component of the state which remains at long times. We find

1+ef —[1—¢? _
(1) T S 2Ree (19.38)

The numerical prediction for the asymmetry is

A(T) =33 x 1073, (19.39)

in good agreement with the data.
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CP violation can potentially lead to
nonzero electric dipole moments for el-
ementary particles. In the Standard
Model, electric dipole moments are pre-
dicted to be extremely small, in agree-
ment with experiment.
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Fig. 19.3: Charge asymmetry in K° — etn v / K° = e n"7 decays as a
function of proper time, from (Gjesdal et al. 1974).

19.2 Electric dipole moments

For a long time, C'P violation was only seen in the K9-K° system,
and all nonzero C P-violating observables were consistent with an origin
in the complex phase of the K°~K° mixing amplitude. In the 1990’s,
a small CP-violating contribution to the K° — 77 decay amplitude
was also discovered (Barr et al. 1993). Other quantities that might
show C'P and T violation are the electric dipole moments of elementary
particles. For a spin—% particle, the spin indicates an orientation. An
electric dipole moment is then a charge polarization in the direction
of the spin. T reverses the spin but does not reverse the polarization;
hence, an electric dipole moment is a T-violating effect. Naively, one
might expect that the electric dipole moment of the neutron might be

as large as
dp~e-1fm~10""3e-cm . (19.40)

In fact, the neutron electric dipole moment is known to be much, much
smaller. The current limit is (Pendlebury et al. 2015, Serebrov et al.
2015)

dy, < 0.3 x 10" %e-cm . (19.41)

The limit on the electron electric dipole moment is (Baron et al. 2014)
de <87 x 107 e-cm . (19.42)

These values turn out to be consistent with the expectations for these
quantities in the Standard Model. Since the neutron and the electron
contain, to high degree of approximation, only particles of the first gener-
ation, the C' P-violating effects predicted for these systems are extremely
small.
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19.3 CP violation in the B°-B° system

There is a more tantalizing way to search for additional quantities ex-
hibiting C'P violation. In the Standard Model, C'P violation is expected
to come from an order-1 phase associated with heavy quarks. If this is
true, there must be a heavy quark weak interaction process with order-1
CP violation. How do we find it?

Bigi, Carter, and Sanda suggested that one could see order-1 effects
of the CKM phase in the time-dependence of decays of B mesons to
exclusive final states with definite C'P (Carter and Sanda 1980, Bigi
and Sanda 1981). The simplest example is

B, B = J/y K2 . (19.43)

Consider, for definiteness, the decay of the B° (bd). The B° can reach
the J/¢ K g final state in two ways. First, it can decay directly, through
the weak interaction process b — ccs,

CC sh..
3

L od ~ ViV (19.44)

But also, it can decay through B°-~B° mixing, followed by the process
b — ¢c5. The K°-K° mixing matrix must also be used to cause the final
states to interfere. So the second path follows the Feynman diagram

q

~ViVes . (19.45)
The B%-B° mixing amplitude is dominated by the process
9 B
! 3

b * *
d ~ Vi Vi Vi Vi (19.46)

In the exclusive process B? — J/ Kg
two alternative quantum paths inter-
fere with a phase that displays CP vi-
olation.
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and the K9~ K° mixing amplitude is dominated by the process

P s

n!
N

3 d . .
s ~ViEVeaVeaViE, . (19.47)

The two paths then differ by a relative factor proportional to
~[VaVesVaViaVaVed” (19.48)

where the extra minus sign is that in the K2 wavefunction (19.4). In
the Wolfenstein parametrization of the CKM matrix (18.46), the only
factor in this formula that has a phase is V34, which can be represented
as

Via=AN(1—p—in)=Ce . (19.49)

So, the relative phase between the two paths is —e**#. Any phases arising
from the strong interaction matrix elements are identical along the two
paths and factor out of the decay amplitude.

I will now discuss how this phase can be measured experimentally in
the simplest situation. To explain this clearly, I will use a number of
approximations that are accurate for the particular process B°/B% —
J /ng. For a complete discussion of this and other time-dependent B
decay processes, see (Bevan et al. 2014).

The B% B° system is somewhat simpler than the KO K system, in
that the hadronic decays of the B meson are decays to complex multi-
particle final states with both possible values of C'P. Hence, the decay
rates of the two mass eigenstates are nearly equal, so that 46T can be
neglected. The B°~BY mass matrix is then well approximated by

_( m—il/2 —e*Bim/2
M= (e2i55m/2 m—il/2 ) - (19.50)

In writing (19.50), I have used the result in (19.46) that the B® — B°
mixing amplitude has the phase of (V%)% ~ e*#. The parameter dm
is real-valued, and it turns out to be positive. The lifetime of the B°
mesons is

T=152x10""2sec T =43x10"1 GeV . (19.51)

The eigenstates of the matrix (19.50) are

BY) = %03% + e 2B |
IBY) = ——(|B%) — e 27[BY)) | (19.52)

Sl

2
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with eigenvalues
m—om/2—il'/2, m+om/2 — /2 (19.53)
for BY and BY, respectively. The mass difference of the two states is
myg —myp =0m =33 x10" GeV , (19.54)

The value of (mpy — myp) is accidentally quite close to the decay rate
I'. This means that the time-dependent interference terms in B° decay
might be observable.

The states |BY) and |BY) have simple time-dependence, for example,

|BY (7)) = exp[—i(m — dm/2 —i['/2)7]|BY) . (19.55)

Then we can use (19.52) to compute the time-dependence of the |B°)
and |B°) states. For |BY),

_ L

V2

— lefiﬁ'rfl“'r/Q [|B()>(6i6m7/2 + efiém'r/Z)

BO(r) [|B%(T>> n |B%<T>>]

2
+‘§0>672i6(eiém7/2 _ efi5m 7/2)

_ efzm‘rfF‘r/Q

(|B0> cos omT + B e~ %" sin 5mr) )
(19.56)
Similarly, for |BY),
BO(r)) = e~ T7/2
(15°) cos 227 +41%) &+ sin 22T
(19.57)

We have now dealt with the B%-~B° mixing, so all that remains is to
the decay the BY and B states directly to J/¢ K2. Recalling again
that there is a minus sign between the sd and ds components of the K32,
the matrix elements for the full process of time evolution and decay have
the form

M(B(r) = J/pp K§) = e” ™ 17/2 4

(|B%) cos om7 _ i|B%) e=2 sin 5m7)
M(B (1) = JJip K9) = e~ T7/2 4
(|B%) cos om7 _ i|B%) et sin (Sm—T) .

(19.58)
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The decay amplitude A can be complex, with a phasoe due to the strong
interaction, but this factor is the same for B® and B~ decays due to the
CP invariance of the strong interaction.
Squaring the amplitudes (19.58), we find the time-dependence of the
decay rates
T(B°(7) — J/ K3) ~ e '7(1 —sindm 7 sin2p)
D(B°(71) = J/i K$) ~ e "7 (1 +sindmr sin2p)  (19.59)
The asymmetry in the rates is
I'(B° — J/YKY) —T(B° — J/¢YK2)

I'(B° — J/$KQ) —T(B® — J/YKY) =+sindm7 sin28  (19.60)

So, the decay is shifted forward in time for an initial B® and backward
in time for an initial B®. The asymmetry is predicted to have a time-
dependence governed by dm with amplitude sin23. For the process
B°/BY — J/v K9, the relative minus sign in the decay amplitudes
from B°® and B° becomes a plus sign, and so the asymmetry becomes
(—sindm7 sin23). The angle 8 in this formula is the phase angle taken
directly from the CKM matrix, with no corrections due to the strong
interaction.

To understand how to measure this time-dependent asymmetry, we
must first think about the production of B® and B°® mesons in eTe™
annihilation. We have seen that e*e™ annihilation leads to a state with
J = 1. For production of a pair of spin 0 mesons, the two mesons are
in an L = 1 wavefunction, which must then be antisymmetric in the
other meson quantum numbers. The B mesons go outward from the
production point. After some time, one of the meson decays. A decay
to an et or put tags this meson—at that time—as a B°. The other
meson must then be a BY. This state propagates for an additional time
At, possibly mixing to B during that time, and then decays to the
observed final state.

(19.61)

The relative time At, or, rather 7 = At/~, is the time that would
appear in the formula above. The relative time At might be negative if
the leptonic decay takes place after the selected exclusive decay.
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Fig. 19.4: Proper time distribution of B°B® — J/9%K° decays at the Y(4S),
measured by the BaBar experiment at the PEP-II collider at SLAC, from
(Aubert et al. 2002). Panel (a) shows the decay distributions for B°B° —
J/¢YK2. Panel (b) shows the rate asymmetry (19.60). Panel (c) shows the
decay distributions for B°B® — J/¢K?. Panel (d) shows the corresponding
rate asymmetry (19.60).

The lifetime of the B meson is about 1.5 ps, so it is difficult to measure
the decay time directly. However, Oddone suggested that one might
construct an asymmetric colliding beam accelerator, in which the ete™
center of mass frame is moving with respect to the lab (Oddone 1989).
In the realistic case, the boost of the center of mass is v/c ~ 0.5. Then
the two B decays would be separated by about 200 microns, a distance
that is resolvable using a silicon tracking detector to pinpoint the decay
vertices.  In the late 1990’s, two asymmetric eTe™ colliders were
constructed, one at SLAC (9.0 GeV e~ x 3.1 GeV et), for the BaBar
experiment, and one at KEK in Tsukuba, Japan (8.0 GeV e~ x 3.5 GeV
e™), for the BELLE experiment. In 2001, both experiments observed the
C P-violating asymmetry in B® — J/1¢ K3 (Abe et al. 2001b, Aubert et
al. 2001).

The B° decay distributions in time
can be converted to observable distri-
butions in space by creating the BOB°
states in an asymmetric eTe™ collider.
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The unitarity triangle is a visualization
of the CP violation of the Standard
Model. The Standard Model has C'P-
violating interactions as long as the an-
gles 8 and « are nonzero.

Figure 19.4 shows the displacements of the decay distributions for
B® — J/YK° and BY — J/9K° measured by the BaBar experiment
(Aubert et al. 2002). Note that the distributions are labelled by the
tagging B meson, so the points labeled “B° tags” indicate B°(T) decays,
and vice versa. The distributions for B and B° are shifted substan-
tially with respect to one another, in just the directions predicted below
(19.60). The shifts are in the opposite directions for K9 instead of K32
in the final state. The current best value of § from this measurement is

sin28 = 0.679 £ 0.20 , (19.62)

that is, 8§ = 21°. This is indeed a large C P-violating effect.

A useful way to visualize the phase of the CKM matrix is to plot the
complex parameter (p + in) and use it to define a triangle, called the
unitarity triangle (Bjorken and Dunietz 1987).

(em)

A %

1
(19.63)

The internal angles of the triangle are called (o, 3,7) or, alternatively,
(¢2, 1, ¢3). The angle v is the phase of (p + in). The angle S is the
angle defined in (19.49). There is C'P violation as long as § and ~ are
nonzero and the triangle does not collapse to a line.

The left and right sides of this triangle can be expressed more generally

* VadV ViV

VeaV, VeaVg,
It should be noted that these ratios of V¢ i as matrix elements are invari-
ant to changes of phase of the quark fields. The closure of the triangle,

(p+in) = (p+in—1)= (19.64)

1=(p+in)—(1—-p—in)=0, (19.65)
is equivalent to the relation
VuaVy + VeaVy + ‘/;fd‘/;;z =0, (19.66)

which expresses the orthogonality of the first and third columns of the
CKM matrix.

The angles o and  can also be measured by observable parameters
of B decays. The angle « is given by time-dependent asymmetries in B
decay to light quarks,

B s ata=, nfpT, ptp . (19.67)
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Fig. 19.5: Constraints on the CKM parameters (p,n) from measurements of
CP violation, showing the fit by the CKMFitter collaboration (Charles et al.
2005).

The angle v can be extracted from asymmetries in B decays to DK.
These constraints are shown in Fig. 19.5, together with constraints from
the value of |V,;3|, the values of the B’~B® mixing amplitude, the value of
B%-B_ mixing amplitude, and the value of € from the neutral K system
(Charles et al. 2005). In the Standard Model, all of these parameters
must be consistent with a common value of (p 4+ in). You can see that
this is the case, and also that the p and 1 parameters are quite well
determined.

I have told you earlier that any quantum field theory is invariant under
CPT, so CP violation implies T violation. However, it is interesting to
ask whether one can directly see T violation in heavy quark decays. The
BaBar experiment demonstrated this in the following way: We have seen
that, in eTe™ annihilation, B mesons are produced as pairs in a quantum
coherent wavefunction. The decay of one meson breaks the coherence,
identifying one meson of the pair as a BY or a B°, for a leptonic decay,
or as a CP = + or CP = — state (B4 or B_), for a decay to a CP
eigenstate. We can then pick out events in which the leptonic decay
happens first, followed by time evolution to a C'P eigenstate, and also
events in which the C P decay happens first, followed by time evolution
to a state with a definite leptonic decay. If the equations of motion
of nature were T' symmetric, the rates for time evolution in the two
directions would be equal. They are not. The asymmetries between the
rates for pairs of time-reversed processes (e.g., B® — B_ vs. B_ — B?)
are shown in Fig. 19.6 (Lees et al. 2012). Note that the asymmetries
reverse when one changes from B° to BY and from even to odd CP,
consistent with the physics described above. This is the most direct
evidence that the equations of nature violate time reversal invariance.

Measurement, of the time-dependence
of BYBY decays to exclusive final states
shows explicitly that 7" is violated by
the weak interaction.
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Fig. 19.6: Time reversal violating asymmetries measured as a function of
proper time by the BaBar experiment at the PEP-II collider, from (Lees et al.
2012). The four panels refer to the transitions: (a). B® — B_, (b). By — B°,
(¢). B = By, (d). B — B°.

Exercises
(19.1) Consider the time-dependent B meson decay B° — kaon states to pions. This problem will add that
Tt effect. The analysis is straightforward but much

) o more involved than you might have expected.
(a) Draw the Feynman diagram similar to (19.44)

giving the direct decay of a B® to 7+ 7. Col- (a) The neutral K mesons are particles with
. . . . 1

lect the factors of CKM matrix elements that strong interaction isospin .I = 3. A mme-

appear in the evaluation of this diagram. son has I = 1, so a 77 in the S wave has

I'=0o0rI=2. (WhyisI=1not allowed?)
Write down the I = 0 state as a linear com-
bination of ’7r+(p1)7r_(p2)>, |770(p1)770(p2)>,
and |7r_(p1)7r+(p2)>. Show that, if the final
state of a K° — 7x decay is purely I = 0,
then the decay amplitudes would satisfy

(b) Draw the Feynman diagram similar to (19.45)
giving the direct decay of a B® to ntn~
through B°-B° mixing. Collect the factors
of CKM matrix elements that appear in the
evaluation of this diagram.

(¢) Show that the quantum interference term be-
tween these diagrams is proportional to M(K — 77 (p1)m ™ (p2))

= M(K — 7°(p1)7°(p2)) . (19.69)

(VudVau VirVia)® - (19.68)
Remembering that, for identical particles, we
Show that the phase of this quantity is given integrate phase space over only half of 47,
by the angle o in (19.63). show that this implies
(19.2) In the discussion of the K°-K° system in Sec- DK - ntn™) = 2D(K — 7°7°%) . (19.70)
tion 19.1, I included CP violation in the neutral
kaon mass matrix but ignored the possibility of C' P (b) Assume that the decay amplitude for the neu-

violation in decay amplitudes of the various neutral tral K meson leads to I = 0 states only. This



amplitude could have a C'P-violating phase.
It also will have a phase dp resulting from
strong final state interactions between the two
pions. Include this complex decay amplitude
in the analysis leading to (19.27). Show that
the complex number is squared, so that the
CP-violating phase (and, in fact, any other
contribution from the decay amplitude) has
no effect on (19.27).

C'P violation in the decay amplitude can have
an observable effect as an interference be-
tween the phases of the decay amplitudes to
I = 0 and I = 2 7w states. However, the
I =0 (or AI = 1) amplitude is found exper-
imentally to be much larger than the I = 2
(or AI = %) amplitude. The evidence for
this comes from the following observations:
First, the K+ meson can decay to 777 only
through the Al = 5 amplitude. Second, the
decay KT — 77 7% is much slower than the
decay K° — 7. Verify these statements.
Argue that |7r > in the S-wave is a state
with I = 2. Look up the lifetime of the K
(and the branching ratio for K™ — 77 7%) at
the Particle Data Group web site, compare to
(19.10), and estimate the ratio of the AT = %
and the AT = % decay amplitudes. (QCD,
with numerical lattice calculations, does ex-

plain this large ratio.)

Construct the 7 state with I = 2, I = 0,
noting that it must be orthogonal to the state
with I =0, I® = 0, and show that

MK = 7t (p)7™ (p2)
- _%M(K — 7 (p1)7°(p2)) -
(19.71)

Add the I = 0 and I = 2 decay amplitudes
with factors ap and as representing their mag-
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nitudes. Show that the four possible ampli-
tudes are consistently represented as

M(KO —s7atn7) =ao €0 4 g,et?
M(K® = ntrn7) = aé 0 4 ghe'?
M(K® = 7°7°%) = ape’™® — 2a0e™?
M(K® = 7°7°%) = age™ — 2a3e™2 .
(19.72)

Note that the strong interaction final-state
phases do not change sign when we replace
particles by antiparticles. According to part
(b), one overall phase is not observable. It is
conventional to represent this by taking ao to
be real.

(f) Using the expressions in (19.72), work
through the derivation of (19.27) for the two
distinct final states and show that, for ag >
|(12|7

I(K? —atr)

NKY — owtr—)
Imay

= le(1 4= e
ao

I'(K? — 7n%72°)

(K2 — w0x0) ’

= Je(1 — 2602 i(2—50)y2
ao

I

(19.73)

These equations are conventionally written

0
(K, »ntr) e+,
N(KY —ntr—)
I'(K? — 7%70)
- = e —2 19.74
(K2 — 7070) =le—2¢1. (19.74)

From experiment,

Re(€'/e) = (1.66 £ 0.23) x 107% . (19.75)






Neutrino Masses and
Mixings

In the Standard Model as I have presented it in the previous two chap-
ters, the neutrinos are assumed to have zero mass. This was a good
approximation for all of the processes that we have discussed so far.
However, it is straightforward to include the possibility that neutrinos
are massive.

The masses of neutrinos turn out to be very small on the scale of
other elementary particle masses. This makes it difficult to observe
these masses experimentally. We will see that the evidence for neutrino
masses is tied to the existence of another effect, the conversion of neu-
trinos from one flavor to another in flight. This latter phenomenon is
observable due to quantum interference of the sort that we saw in the
K% K" and B* B system, but now playing out over larger distances
from km to thousands of km.

20.1 Neutrino mass and 3 decay

Studies of 8 decay require that the mass of the electron neutrino, at
least, is very small. A bound on the mass of the v, can be obtained
by studying the endpoint of the electron energy distribution in 8 decay.
The rate for 8 decay of a nucleus A to B has the form

1 / d3de3ped3pV
9ma ) (27)°2Ep2E.2E,

(2m)*6@ (pa — p — pe — p)|M|? . (20.1)

Since A and B are very heavy compared to their mass difference, which
is typically a few MeV, it is a good approximation to assume that the
final nucleus B takes up the recoil momentum, so that the directions of
the electron and neutrino are uncorrelated. In this limit, the energies of
the final electron and neutrino sum to

I'(A— Be™7) =

E.+ E,=m(A) —m(B)=Amagp . (20.2)
Then

1 dpep? / dp.p; 2
= E Y §(Amap — Ee. — B,
2ma (27) 52mB/ map )|M|
(20.3)

Kinematics and phase space for 3 de-
cay.
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The Kurie plot, which visualizes the
distortion in the electron spectrum in
[ decay due to the presence of a neu-
trino mass.
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Fig. 20.1: Measurement of the endpoint of the electron energy spectrum in
tritium S decay, from (Kraus et al. 2005).

At the endpoint of the electron energy spectrum, we can approximate
the matrix element by a constant. Then, using

dpepe = dEeEe ) dpupu = dEVEU ; (204)

we can write the decay rate as

AmAB AmAB_Ee
T~ / dE, / dE, p, . (20.5)
0

Me
Assuming that the neutrino has zero mass, this gives

dr’

T (Amap — E.)? . (20.6)

This energy distribution is conventionally represented by a Kurie plot,
plotting the square root of the event rate as a function of the electron
energy. This should be a straight line for a zero mass neutrino (Kurie et
al. 1936). If the neutrino is massive, the plot falls off at the kinematic
endpoint E, = Amap — m,,

W,

LLOVE L

te (20.7)

Measurements of 3 decay exclude v, masses of more than a few eV.
Unfortunately, for neutrino masses as small as eV, there are extra com-
plications. The [ electron can lose an energy of order eV when it exits
the atom, and it loses eV/mm in traversing material. These energy
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losses must be accounted for in the interpretation of the electron energy
distribution. The most careful experiments, done with cryogenic tritium
films at Mainz and Troitsk (Kraus et al. 2005, Aseev et al. 2011), give a
limit
my, < 2.05eV . (20.8)

The endpoint of the Mainz spectrum is shown in Fig. 20.1. The large
open circles show data from an earlier version of the experiment in which
the energy loss of the electron was incorrectly estimated because of
roughening of the surface of the tritium film, an effect of having in-
sufficiently low temperature.

The direct limits on the masses of the v, and v, are weaker. However,
I will argue later that the three neutrino masses are all within 1 eV of
one another. Given this, there is another class of constraints on the
neutrino masses. Massive neutrinos moving relativistically in the early
universe would transfer energy and smear out cosmic structure, giving
an observably different distribution of clusters of galaxies if the neutrino
masses are sufficiently large. The absence of this effect gives a bound
currently estimated to be (Ade et al. 2016)

> my, <0.23eV . (20.9)
i=1,2,3

20.2 Adding neutrino mass to the Standard Model

Neutrino masses are thus very small compared to the weak interaction
mass scale, sufficiently small that it is unclear how they can be observed.
To understand the evidence for neutrino mass, we need to develop further
the theory of neutrino massses within the Standard Model.

If we assume SU(2) x U(1) symmetry, neutrino masses can arise in
one of two ways. The simplest mechanism is to assume that there exist
right-handed neutrinos that couple to the left-handed neutrinos through
Yukawa couplings. That is, we add to the Standard Model Lagrangian
a term 4

AL = —yI Ll eppvih + hec. (20.10)

similar to the u quark mass term in (18.24). In principle, we could
treat this term in the same way that we treated the quark and lepton
mass terms in Section 18.3. However, this is not appropriate. In ele-
mentary particle reactions, neutrinos are typically emitted at MeV or
higher energies, at which effects of eV-scale masses are unimportant.
Therefore it is most convenient to retain our earlier convention that the
left-handed neutrinos are described in the basis that diagonalizes their
weak interactions. We then treat the new term by making the change
of variables

L' UL (20.11)

just as we did in (18.29). This transforms

g =y, =UTy, . (20.12)

Consequences of adding a neutrino
mass term to the Standard Model La-
grangian.
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Definition of the flavor eigenstates of
neutrinos. The PMNS matrix relates
the neutrino flavor eigenstates to the
mass eigenstates.

Notice that this transformation diagonalizes the charged lepton Yukawa
matrix but does not necessarily diagonalize the neutrino Yukawa ma-
trix. I will refer to this basis for neutrino states as the basis of flavor
etgenstates. In this basis, the v, is the linear combination of the three
neutrino states that is produced in weak interaction decay together with
an e, and the v, and v, are defined similarly.

We can now diagonalize y!, as before,

y, =UM YUY (20.13)

where Y, is real and diagonal. We can transform away U 1({)7 but we
cannot get rid of the matrix Ug/). This is a fixed unitary transformation
between the basis of flavor eigenstates and the basis of mass eigenstates.
I will refer to the the mass eigenstates as vy, vo, v3, with masses my, mao,
mgs. As we did with the quark mixing matrix, we can redefine phases in
U so that U contains three angles but only one phase. The mixing
matrix Ug’) is called the Pontecorvo-Maki-Nakagawa-Sakata or PMNS
matriz and is more commonly notated V' or Vparys (Pontecorvo 1958,
Maki, Nakagawa, and Sakata 1962).

I can now describe the physical effect of a neutrino mass term. I
choose the process of 71 decay as an example. The 7% decays to utv,,
that is, specifically to the v, weak interaction eigenstate. The v, is a
linear combination of the three mass eigenstates. If the 7T energy is
fixed, the three components are emitted with slightly different values of

momentum )

ms
g =E— L ..., 20.14
p 25 (20.14)

This is permitted, because the pion decay region is of finite size, allow-
ing the momentum to be uncertain. This uncertainty is small enough
that the components of the v, wavefunction are created with quantum
coherence.

The outgoing neutrino wavefunction then has the form

3 VyetiEmmi2E (20.15)
i=1,2,3

At very large distances x, the components of this wavefunction go out
of phase. Then the probability of finding a v,, is no longer 1. Instead,
we find

2

Prob(v, = v,) = (20.16)

Z V#Z_Viie—i(m?/2E);r

It is easiest to understand this formula if we evaluate it for the case of
two-neutrino mixing with mixing angle 6,

V= (6089 smH) ‘ (20.17)

sinf cosd

In that case, the formula becomes
2

PrOb(V“ — Vl»“) = COS2 ge—i(m%/QE):v + Sin2 ge—i(mg/QE)z

(20.18)
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which can be rewritten as

2

Prob(v, — v,) = 1 — sin® 20 sin” [Ex] .

(20.19)
There is an oscillation between the flavor eigenstates with an oscillation
length

L= 47ri2 _ (248 m) 2 MeV) (20.20)

Am Am? (eV?)

The conclusion is quite surprising. We can detect the presence of small
neutrino masses if the neutrinos also exhibit flavor mixing. Then the
effect of the mass term is to generate a flavor oscillation as a function
of the distance from the neutrino source. For MeV neutrinos with 1072
eV masses or for GeV neutrinos with 107! eV masses, the length scale
of the oscillation can be km.

This is just the opposite of the way that we determine the masses and
weak interaction flavor mixing among quarks. For quarks, we observe
the particles as mass eigenstates, inside hadrons of definite mass. Decays
through the weak interaction show that the mass eigenstates are linear
combinations of weak interaction eigenstates. For neutrinos, the primary
way that we observe the particles is through weak interaction decay.
Then we characterize the neutrino eigenstates according to their weak
interaction properties. It is the flavor mixing as the neutrinos travel
that demonstrates that there is a mass eigenstate basis, with different
masses for the three neutrinos, that is different from the flavor basis.

There is another way to add neutrino masses to the Standard Model
that is consistent with Lorentz invariance and SU(2) x U(1). We can
write

1 i * j *
AL = =5 pij(Loacarpy) (Ligecai)as (20.21)

where «, 8 = 1, 2 are the indices of 2-component spinors. The expression
(20.24) is Lorentz-invariant. It does not violate any gauge symmetry of
the Standard Model. The expression does violate lepton number, but
you might recall from Section 18.4 that lepton number conservation is
not a postulate in the description of the Standard Model. When the
Higgs field ¢ acquires an expectation value and breaks SU(2) x U(1),
(20.21) leads to a mixing of the v, states with their antiparticles Tg,
generating masses given by the eigenvalues of

U2

This mass term, resulting from particle-antiparticle mixing, is called a
Magorana mass term (Majorana 1937).

The quantity y;; has the dimensions (GeV)™!, so we might also write
the mass formula as

my = 2112 (20.23)

where [z is dimensionless and M sets the mass scale. For reasons that I
will explain in a moment, the elements of 7 might be expected to have

The evidence for the masses of neutri-
nos comes from the observation of os-
cillation between flavor eigenstates as
neutrino travel over macroscopic dis-
tances.

The Majorana mass term for neutrinos.
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the size of Yukawa couplings. If we estimate ji ~ (1072)2, then we find
sub-eV neutrino masses for M ~ 100 eV. Yukawa couplings cover a
wide range, so M could be orders of magnitude larger or smaller.

We can obtain this structure naturally by starting from a Lagrangian
with neutrino Yukawa couplings and a lepton-number violating mass

Origin of the Majorana neutrino mass term for the right-handed neutrinos,
from the influence of very heavy right- 1

handed neutrinos. AL = =5 MijVpaVigeas + hac. (20.24)

This is a direct Majorana mass term for the right-handed neutrinos.
Note that, because the right-handed neutrinos do not transform under
SU(2) xU(1), we are free to write this term without violating any sym-
metry of the Standard Model. Thus, while quark, lepton, and vector
boson masses are restricted to be of the size of the Higgs field expec-
tation value (17.14), there is no reason why the scale of masses in M;;
cannot be very much larger. When we use (20.24) together with the
neutrino Yukawa coupling (20.10), the diagram

< ’b’ M <¢>

Vo a

v
A . (20.25)

generates Majorana masses for the left-handed neutrinos of the form
(20.23) with the mass scale M given by the right-handed neutrino mass.
This is called the seesaw mechanism for generating small neutrino masses.
It produces small masses by a modification of the theory at very high en-
ergies (Minkowski 1977, Gell-Mann, Ramond, and Slansky 1979, Yanagida
1980).

The consequences of the Majorana mass term for neutrinos are almost
the same as those of the Dirac mass term. We can diagonalize the
Majorana neutrino mass as

mij = (VmVT)” R (20.26)

where M is complex diagonal and V' is complex unitary. The matrix V'
is the PMNS matrix, reducible to three angles and one phase. There
are two more possible phases in m. These have no significant effect on
neutrino flavor oscillations.
However the Majorana mass term generates a new weak interaction
Neutrinoless double § decay. process, called neutrinoless double B decay. At some points in the
periodic table, ordinary 8 decay is energetically forbidden, but double
[ decay is allowed. For example,

m(Cs™®%) > m(Xe'?%) > m(Ba'?®) (20.27)
Then Xe'36 can decay by
Xe®® - Bal®® + e 7.7, . (20.28)
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Fig. 20.2: Measurement of the flux of electron- and muon-type neutrinos from
atmospheric cosmic ray events, compared to models of neutrino production
with and without neutrino mixing, from (Ashie et al. 2005).

Double 8 decay processes are some of the rarest physical processes
known. For example, the EXO experiment measured (Ackerman et al.
2011)

7(Xe%) =2 x 10% yr . (20.29)

If the neutrino 7, has a lepton-number violating Majorana mass term,
then also a decay process

Xe' - Ba'® feme . (20.30)

is allowed, with no final-state neutrinos. The rate of this decay is ex-
pected to be small even in comparison to (20.29). This and similar
decays are being intensively searched for, but none has yet been ob-
served.

20.3 Measurements of neutrino flavor mixing

Now that we know how to look for neutrino mass, we can discuss the
experimental evidence that the neutrino masses are indeed nonzero.

The first clear evidence for neutrino flavor mixing, and, thus, for neu-
trino mass, came in the study of the neutrinos produced in cosmic ray
interactions in the atmosphere. These were observed in underground
water Cherenkov detectors originally built to look for proton decay. Per-
sistently since the 1980’s, it was observed that the flux of v, from at-
mospheric interactions was close to the predictions, while the flux of v,
was too small by a factor of 2. In 1998, the SuperKamiokande experi-
ment, a very large water Cherenkov detector in the Kamioka mine in
Japan, resolved this question by observing the directions of v,’s from
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Flavor mixing of atmospheric neutri-
nos.

Production of neutrinos by the sun.

Flavor mixing of solar neutrinos.

their conversion to muons in charge-changing interactions (Fukuda et al.
1998). The downward-going v, were present with a flux that was essen-
tially unsuppressed, while upward-going v,,, created on the other side
of the earth, were highly supressed. For v, the ratio of the predicted
to the observed flux was independent of direction. The data is shown
in Fig. 20.2. This strongly indicated a flavor mixing v, <+ v, on the
scale of the earth’s diameter. The mixing angle was consistent with a
maximal value

sin?20 =1 . (20.31)

This flavor mixing has since been confirmed by accelerator experiments
that create beams of v, at GeV energies and detect the neutrinos over
a long path length. The experiment K2K has a baseline of 250 km,
from KEK to the Kamioka mine (Ahn et al. 2006). The experiment
MINOS has a baseline of 750 km, from Fermilab to the Soudan mine in
northern Minnesota (Michael et al. 2006). The current best values of
the oscillation parameters are

Am? = (243 +0.08) x 1072 eV? = (5 x 1072 eV)? |
sin? § = 0.386 4 0.023 . (20.32)

The value of sin?# seems smaller than (20.31), but it is still consistent
within statistics with the maximal mixing value of 0.5.

The mass of the v, is related to another long-standing anomaly in
neutrino physics. In the 1960’s, John Bahcall suggested testing the
mechanism of energy generation in the sun by observing the flux of
neutrinos produced by the sun (Bahcall 1964). Raymond Davis took
up the challenge. He designed an experiment with a tank containing
600 tons of CCly underground in the Homestake mine in South Dakota.
Solar neutrinos would convert C137 to Ar37 at the rate of atoms/month.
The radioactive Ar atoms could then be extracted and counted. The
rate of Ar production was observed to be consistenly low compared to
the solar model prediction (Davis et al. 1968).

The production of neutrinos by the sun is quite complex. The domi-
nant process, accounting for 99% of solar neutrinos, is

pp—D+etr,, (20.33)

where D is a deuterium nucleus. However, the resulting neutrinos, at
0.5 MeV energy, are of too low energy to be detected in Davis’s exper-
iment. Instead, rarer reactions are needed to give neutrinos of energy
above the 0.8 MeV threshold for this detection technique. A typical so-
lar neutrino spectrum is shown in Fig. 20.3 (Serenelli et al. 2011). Over
the decades, solar neutrino experiments were mounted in other energy
regions, and eventually experiments with a gallium detection medium
observed the neutrinos from the dominant pp process. Always, the rate
was smaller than required.

Finally, the situation was resolved by the Sudbury Neutrino Observa-
tory (SNO) experiment, using a heavy water (D20) Cherenkov detector
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Fig. 20.3: Predicted energy spectrum of neutrinos from the sun (figure cour-
tesy of A. Serenelli, based on the analysis in (Serenelli, Haxton, and Pena-
Garay 2011).
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Fig. 20.4: Fluxes of solar neutrinos of the various types, extracted from the
data of the SNO experiment, from (Ahmad et al. 2002). The estimates of v
and v, /v, fluxes from the three processes listed in (20.34) are shown as the
red, blue, and green bands, respectively.
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Fig. 20.5: Probability of v — v. for neutrinos from nuclear reactors as a
function of proper time, as measured by the KamLAND experiment, from
(Abe et al. 2008).

located in the Sudbury mine in northern Ontario (Ahmad et al. 2002).
This experiment was sensitive only to the highest energy solar neutri-
nos, from B® — Befetv,. However, it was able to simultaneously observe
three different neutrino reactions,

v.D — ppe™
v;D — pny;
vieT — e . (20.34)

The first reaction in (20.34), charged current neutrino scattering from
deuterium, measures the flux of v,. The second reaction is the neutral
current scattering from deuterium, which has equal cross section for
all three neutrino species. Neutrino-electron scattering is sensitive to
all neutrino species, but the cross section for v, is larger than that for
v, vr by about a factor 6, reflecting contributions from both Z and W
exchange processes,

Vo e e Ve
; -+ A~
g w

Ve o Ve e

(20.35)

The flux determinations from SNO are shown in Fig. 20.4. The flux of v,
is indeed smaller than expected by more than a factor of 2, but the total
neutrino flux is in good agreement with the prediction for v, production
in solar models. Apparently, the solar neutrinos are converting to v,
and v, on their way to the earth.

This neutrino flavor oscillation, which requires a small Am?, was
confirmed by the KamLAND experiment, a scintillator detector in the
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Fig. 20.6: Probability of v. — v. for neutrinos from nuclear reactors as a
function of distance from the reactor, as measured by the Daya Bay experi-
ment, from (An et al. 2012).

Kamioka mine which observed neutrinos from nuclear reactors in Japan
at baselines of order 100 km (Abe et al.2008). The oscillation in the 7,
survival probability as a function of neutrino energy is shown in Fig. 20.5.
The current best values for the oscillation parameters are

Am? = (7.54 £0.024) x 107° eV? = (0.9 x 1072 eV)? ,
sin? @ = 0.307 £ 0.017 . (20.36)

So, there are two small neutrino mass differences of rather different
scale. The large ratio between the two Am? values justifies the use
of two-neutrino mixing formula to parametrize each oscillation. The
values of Am? imply that all of the neutrino masses must be within
about 0.1 eV of one another. However, these results do not give the
absolute scale of neutrino masses. They also do not give the ordering of
the levels. There are two possibilities, called the normal and inverted
hierarchy.

)

L1

_ 3
=

—_— W

3

(20.37)

In each case, the isolated mass eigenstate is an almost pure combina-
tion of v, and v,, while the two closely spaced states mix v, with the
orthogonal linear combination of v,, and v;.

It is possible in principle to distinguish these possibilities by observing
the effect on neutrino mixing of neutrino interactions with matter as the
neutrinos pass through the earth over hundreds of km. So far, the issue
has not been resolved.

The next question we might address is that of whether v3 contains
some admixture of v.. This mixing is controlled by the third mixing

Normal and inverted neutrino mass hi-
erarchy.



322 Ezxercises

Direct measurement of the third PMNS
mixing angle.

angle in the PMNS matrix. It can be detected by looking for an os-
cillation of reactor neutrinos at the oscillation Am? of the atmospheric
neutrino oscillation, which corresponds to a km wavelength for neutri-
nos of MeV energy. This was finally observed in 2012 by the reactor
experiments Daya Bay, in China, and RENO, in Korea (An et al. 2012,
Ahn et al. 2012). These experiments constructed closely matched pairs
of detectors and contrasted the rate observed in a “far” detector with

that predicted from the rate observed in a “near” detector. Figure 20.6
shows the comparison of near and far detector fluxes at Daya Bay. The

value of the third neutrino mixing angle is

sin? 613 = 0.0241 + 0.0025 .

(20.38)

The question remains of whether the possible phase in the PMNS
There is room for this C'P-violating term in the
neutrino mass matrix. Still, it is a fundamental question whether the
couplings of the neutrinos violate CP and T'. In principle, C'P violation
in the neutrino system can be measured by observing asymmetries such

matrix is nonzero.

as
Prob(v,, — v.) # Prob(v, — 7.) (20.39)
However, we do not have the answer yet.
\
Exercises
(20.1) Estimate quantitatively the neutrino flight path re- the neutrino can be treated as massless. For this

quired for neutrino oscillations.

(a)

Consider first the oscillation, mainly between
v, and v, mediated by 623. Assume a pure
v, source. Using the parameters of this oscil-
lation given in the text, compute the position
of the first maximum for v, appearance and
the position of the succeeding zero, for v, en-
ergies of 1 GeV and 20 GeV (for neutrinos
from an accelerator source).

Now consider the oscillation between v. and
other species that gives rise to the oscillation
of solar neutrinos. Compute the position of
the first maximum for v, appearance (or max-
imal v, disappearance) and the position of the
succeeding zero, for v, energies of 1 MeV (for
reactor or solar neutrinos) and 1 GeV and
20 GeV.

(20.2) Compute the cross section for neutrino-electron
elastic scattering. Assume that s > m2, so that,
in the center of mass frame, both the electron and

very short-time interaction, you can neglect neu-
trino flavor mixing. Also, assume that s < m2,, so
the interaction can be treated as pointlike.

(a)

Consider first v,-e scattering. This process
occurs through the first Feynman diagram in
(20.35). Write the spinors for the initial- and
final-state particles. Compute the scattering
amplitudes associated with this diagram for
VLeZ and Z/Le;{ scattering.

Square the amplitudes, integrate over phase
space, and compute the cross section. The
initial electron should be averaged over po-
larizations; the initial neutrino is, of couse,
purely left-handed. You should find

Grs 1
o(vue = vue) = =L S(

4

4
5121, + gsi,) .
(20.40)
For v.-e scattering, both diagrams shown in
(20.35) contribute. Notice that the charge-
current diagram is present only for e;. For



this case, compute the scattering amplitude
associated with the second diagram. Use the
same spinors as you used in part (a) and keep
careful track of the relative sign between this
amplitude and the amplitude for the first di-
agram. You should find that the relative sign
is positive.

However, there is one more contribution
to the relative sign of the two amplitudes.
Between the first and second diagrams in
(20.35), there is an exchange of positions of
two fermions. This gives an extra factor of
(—=1). With this factor included, show that
the two diagrams interfere destructively.

Compute the full cross section for v.-e scat-
tering, averaged over the electron spin. By
what factor is this cross section larger than
that for v, or v, scattering?

(20.3) This problem concerns the effect of propagation
through matter on neutrino flavor mixing. This
problem gives an application of the formula (15.75)
at the end of Exercise 15.1. So, it might be worth
reviewing (or working through) that problem be-
fore attempting this one.

(a)

Write down the terms in the Lagrangian of
the Standard Model that include the W and Z
fields. Cross out the (F,)? terms that involve
W and Z. This is equivalent to the approxi-
mation ¢ <« m%,. Now the Lagrangian con-
tains only the W and Z mass terms and the
interactions with fermions, with no deriva-
tives. This structure is very simple. Write
the simplified field equations for W and Z,
and solve them. Plug the results back into
the Lagrangian. Show that this gives a term
in the Lagrangian

AL= —%(ﬁ“m + (7" = s0if)?) -
(20.41)
This is actually a derivation of the weak inter-
action matrix element the we have seen before
in (16.64). However, we have now obtained
the overall sign in front, in a form that we
can compare to other terms in the Standard

Model that involve the quarks and leptons.

For a massive neutrino of momentum p, with
p > m, simplify the kinetic energy term by
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applying the time derivative to the neutrino
wavefunction. Show that this gives

2
m
— 1+ -)I/II/L .

1/2@'50801/ =(p+ o

(20.42)
The factor in parentheses is the phase accu-
mulated by a neutrino per unit time of prop-
agation.

If a neutrino flies through matter, it can in-
teract with the background matter. This can
be represented by taking <j03> and <j%> to
be nonzero, so that the term

—4V2Gr (v'v) ("% — shjb) . (20.43)
must be added to the Lagrangian. In prin-
ciple, this contributes to the neutrino phase.
Show that this contribution is identical for the
three species of neutrino, so it does not affect
the flavor mixing.

Let the background matter density be n
(baryons/cm®). Assume that the matter is
composed of atoms of light elements with
equal numbers of proton and neutrons. In
this approximation, evaluate the contribu-
tion from protons, neutrons, and electrons to
<j03> and <]22>

Specifically for v, there is another contribu-
tion. Apply the Fierz identity to the charged-
current term and show that this yields a term
proportional to

vive eler . (20.44)

Show that <eTLeL> = n/4, where n is the back-
ground baryon density. Then we can interpret
this term as a shift of the (diagonal) v. mass.
Evaluate this term and show that this shift is

Am2=—-V2Grn-p. (20.45)

The central density of the sun is approxi-
mately

p =150 g/cm® . (20.46)

For neutrinos of 1 MeV, compute the m? shift
numerically and compare to the §m? of the so-
lar oscillation. When the mass shift due to the
matter effect is much greater than the Am?
in vacuum, flavor mixing is turned off and the
Ve propagates as an independent species.






The Higgs Boson

There is one more particle of the Standard Model of particle physics
that we still have not discussed—the Higgs boson. In Chapters 16 and
18, T have emphasized that the masses of all quarks, leptons, and vector
bosons arise from the spontaneous symmetry breaking of SU(2) x U(1)
gauge symmetry. In this chapter, I will describe the predictions of the
Standard Model for the properties of the Higgs boson and the extent to
which those predictions have been verified experimentally.

In Chapter 14, we saw that a phenomenon analogous to electroweak
symmetry breaking, the spontaneous breaking of the chiral symmetry
of QCD, has a dynamical explanation in terms of the attraction and
pair condensation of light quarks. It would be wonderful if there were
a physical mechanism that allowed us to understand qualitatively why
the SU(2) x U(1) symmetry of the weak interaction is spontaneously
broken. Today, we have no such understanding.

The Standard Model gives a simpler explanation for this symmetry
breaking. It postulates a scalar field, the Higgs field, with the potential
(16.29) and gauge and Yukawa couplings allowed by symmetry. The
potential has the correct shape for SU(2) x U(1) symmetry breaking
because it has a minus sign in front of the p? term. This explanation
is too ad hoc to be a final physics explanation. However, the Standard
Model at least gives us a definite theory that makes precise reference
predictions for the properties of the Higgs boson. Perhaps by measur-
ing the couplings of the Higgs boson and testing these predictions are
precisely as possible, we can obtain hints toward a deeper explanation.
That program has now begun.

21.1 Constraints on the Higgs field from the weak
interaction

Before entering into the specifics of the Standard Model theory of the
Higgs boson, I would like to point out two aspects of the Higgs field
theory that are fixed by aspects of the weak interaction that we have
already studied. Most of the tests of the SU(2) x U(1) gauge theory
that we have discussed so far are independent of the nature of the Higgs
field. They involve experiments using light quarks and leptons, whose
couplings are fixed by SU(2) x U(1) invariance alone. However, the
properties of the W and Z bosons do depend on the Higgs field.

In particular, there is one prediction involving the W and Z bosons
that depends on the mechanism of electroweak symmetry breaking and
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Custodial SO(3) symmetry, a symme-
try of the interaction that breaks the
weak interaction gauge symmetry.

lets us glimpse into its properties. This is the relation (16.47),
My = MzCy - (21.1)

In Chapter 16, we saw that this was a specific outcome of the Standard
Model, but it is interesting to inquire further. Thinking more generally,
the relation (21.1) comes from the fact that the gauge boson mass matrix,
in the original SU(2) x U(1) basis, has the form
g20?
1 2,2
m? = 1 gy 92112 —gg’v2 (21.2)
_gg/v2 g/2,U2

acting on the vector (A}“ A%Ai, B,,). This structure does not require
every detail of the Standard Model, but it requires assymptions beyond
those of SU(2) x U(1) gauge symmetry. In particular, it follows from
the two assumptions: (1) The symmetry breaking leaves invariant an
SO(3) symmetry acting on A}L,Ai,Ai, which requires that the first
three diagonal elements are equal; (2) The symmetry breaking leaves
invariant a U(1) gauge symmetry, which requires that the matrix m?
have a zero eigevalue. We saw in Section 16.3 that these assumptions are
satisfied in the model of SU(2) x U(1) symmetry breaking by one I = 1
scalar field. However, these assumptions are also true in some more
complex models of electroweak symmetry breaking (Sikivie, Susskind,
Voloshin, and Zakharov 1980). The SO(3) symmetry, called custodial
symmetry, should be a property of any more advanced model that we
might propose.

Another aspect of the physics of W and Z bosons that bears directly
on the Higgs field is the behavior of their interactions in the limit of
very high energy.  When high-energy W and Z bosons are emitted
in an elementary particle reaction, it is possible to see the presence of
the Higgs boson in the quantum states of the massive W and Z. An
illustrative example is found in the theory of the decay of the top quark.
Working out this theory using only the V—A structure of the weak
interaction, we find a Higgs field-like behavior. I will quote the main
results here; you can derive them in Exercise 21.1.

The top quark is sufficiently heavy that it can decay to a b quark
and an on-shell W boson. Starting from the standard weak interaction

coupling
g

V2

we find for the top quark decay rate.

Wbty (21.3)

2 .3 2 2
9 m miy\ o Miy 2
e = 64 m2, (1+2 m? ) m? ) (21.4)

This formula behaves oddly. We do not find the expected behavior

Ft ~ Qg TNt (215)
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but, instead,
m?
Ft ~ QMg - mT . (216)

w
The enhancement is associated with the decay to a longitudinally
polarized (helicity 0) W boson. It is important to remember that
this state exists in the first place only if the SU(2) x U(1) symmetry
is broken and the massless W fields eat the resulting Goldstone bosons.
In the unbroken theory, the top quark would decay to a b quark and a
Goldstone boson. The predicted decay rate would be

_ Y

= e (21.7)

t

Using the relation between y; and m;, we can convert this into a form
similar to (21.4). Since

vi _mi _ 9" mi (21.8)
2 w2 4Ami '
the prediction (21.7) is equal to
2 2
g my
9t (21.9)
64 "m3,

which precisely reproduces the leading term in (21.4). The m?/m%,
enhancement of these terms is reflected in a dominance of helicity 0 W
bosons in top quark decays that is verified experimentally (Khachatryan
et al. 2016).

Apparently, the massive W boson automatically knew that it needed
to contain a Goldstone boson from symmetry breaking as a part of its
structure. There are many other examples in the physics of W and Z
bosons at high energy that illustrate this point (Chanowitz and Galliard
1985).

21.2 Expected properties of the Higgs boson

Now we look into the more specific properties of the Higgs field as
predicted by the Standard Model. The Higgs field of the Standard Model
contains only 4 degrees of freedom. We saw below (16.34) that 3 of these
are Goldstone bosons that are eaten as the W and Z bosons obtain mass.
What remains is only 1 dynamical field, the Higgs field h(x).

In the Standard Model Lagrangian h(z) always appears together with
the Higgs field vacuum expectation value v. Then the couplings of the
Higgs boson are generated by the replacement

v—v+h(z) . (21.10)

The couplings of h are then associated with the Standard Model mass
terms. The Higgs interaction terms in the Standard Model Lagrangian

A helicity 0 W or Z boson couples like
the Higgs boson state that the vector
boson ate to become massive.
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Couplings of the Higgs boson to Stan-
dard Model particles.

Decay of the Higgs boson to quarks and
leptons.

are
— h(z) _,h(x) 2 h(x)
AL =— §f mfffT + 2my W,IW NT + imQZZ#Z“
h
—3mi% +O(hh) (21.11)

These terms are all P and C' conserving, so the Higgs boson is a spin 0
particle with P = +1. In (17.14), we found that v has the value

v =246 GeV . (21.12)

So all of the couplings of the Higgs boson are highly suppressed, except
for the couplings to W, Z, and t. More general models of SU(2) x U(1)
symmetry breaking also have this problem. Either W, Z, or ¢ must be
involved in the relevant processes, or the expected rates of Higgs boson
processes are extremely small.

I will now discuss the processes that we can use to observe the Higgs
boson. We must discuss both the production and decay processes. I
will start with the decays. If mj, were greater than 2my, and 2my, the
dominant decays would be the decays to these particles

h—WW— | h— 27 . (21.13)

These decays have been searched for at the LHC, but the only result has
been to put strong limits on the production cross sections (Khachatryan
et al. 2015). Thus, the mass of the Higgs boson must be below the
threshold for decay into WV

In this case, the Higgs boson would decay dominantly into the next
lightest Standard Model particle, the b quark. Using methods discussed
in this book, it is not so difficult to work out the decay rate for Higgs
boson decay to bb. The calculation is described in Exercise 21.2. The
result is

- o' m? 4m? . 3/2
T(h — bb) = 3—Lm),—2 (1 - —t ) 21.14

The quark mass should be evaluated at Q =~ my,, giving a value of about
3 GeV for my. Then, for a Higgs boson of mass 125 GeV, we find

T'(h — bb) ~ 2 MeV (21.15)

Recall that the width of the Z boson is about 2.5 GeV, a thousand
times larger. So the Higgs boson is very narrow, so narrow that it will
be difficult to measure the width directly. Other relevant decays to
quarks and leptons

h— 7t h — cc (21.16)

give decay rates about 10 times smaller than the decay rate to bb.
Because the decay to bb is so highly suppressed, higher-order decay

processes can compete with it. First, although h — WW, ZZ are for-

bidden, it is possible that the Higgs boson can decay through a diagram
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in which an off-mass-shell W and Z appears as a resonance,

v v ' " d
A pr N
W W z 2

h h

These decays are called h — WW™* h — ZZ*. The suppression from
multi-body phase space and the tail of the Breit-Wigner distribution is
comparable to the suppression seen above from the small size of (m;,/v)?.

It is also possible for a Higgs boson to decay through higher-order
processes involving virtual top quarks or W bosons. This gives decays
to two gluons,

(21.17)

% 3
L

h (21.18)

to two photons
X ¥ X ¥

] y

T \/t + W N W

. " (21.19)

and to vZ. For a 125 GeV Higgs boson, the rate for h — 2g is compa-
rable to the rate for h — 777~ and h — WW?*. The rate for h — v is
about a factor of 50 smaller.

A full set of predictions for the branching ratios of the Higgs boson
within the Standard Model, as a function of the Higgs boson mass, is
shown in Fig 21.1 (Heinemeyer et al.2013). These predictions of the
Standard Model do not involve any parameters other than those that I
have already discussed in this book. Thus, the predictions can be highly
precise. Does nature agree with these results?

21.3 Measurements of Higgs boson properties at the
LHC

Reversing the decay processes, we find processes for producing the
Higgs bosons in high energy collisions. An obvious production process
is

bb — h . (21.20)

Decay of the Higgs boson to off-mass-
shell W and Z pairs.

Decay of the Higgs boson to gg and 7.

Finally, we find that, for a Higgs boson
of mass 125 GeV, the Standard Model
predicts 9 distinct decay modes with
branching ratios larger than 10~% that
are potentially observable.
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Fig. 21.1: Branching ratios for decays of the Higgs boson as a function of the
Higgs boson mass, predicted in the Standard Model, from (Heinemeyer et al.
2013).
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Fig. 21.2: Cross sections for production of the Higgs boson at the LHC as
a function of center of mass energy, predicted in the Standard Model, from
(Carena, Grojean, Kado, and Sharma 2014).
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However, at the LHC, the cross section for this process is multiplied by
the very small b quark pdf in the proton. The most promising production
mode at the LHC turns out to be gg — h, or gluon-gluon fusion,

h

: * (21.21)

using the Higgs coupling to two gluons shown above. The intrinsic
strength of the interaction is smaller, but the initial gluons can be taken
from the very large gluon pdf in the proton. At the 13 TeV LHC, a  Reactions for the production of Higgs
gluon momentum fraction of x ~ 0.01 is all that is required. bosons at the LHC.
Another important production process is vector boson fusion

}J\‘;‘w-(
" d

in which high-z quarks in the proton create virtual W or Z bosons
that then combine to produce a Higgs boson. Notice that this process
results in a Higgs boson and two high-energy jets emitted in the forward
direction. The presence of the forward jets can then be used to enhance
the Higgs boson signal.

A third important reaction is production of a Higgs boson in asso-
ciation with a W or Z boson. This process can be imagined as ¢q
annihilation to the weak boson followed by radiation of a Higgs boson
using the relatively large Higgs coupling to these particles.

W2 h

(21.22)

W

-

% %

Predictions for these and other Higgs boson production processes at
the LHC are shown in Fig. 21.2 (Carena, Grojean, Kado, and Sharma
2014). For my, = 125 GeV and an LHC center of mass energy of 13 TeV,
the cross sections are

(21.23)

o(pp — gg — h) =50 pb
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Difficulty of observing hadronic Higgs
decays at the LHC.

Fig. 21.3: Candidate pp — h — 7 event observed by the CMS experiment
at the LHC (figure courtesy of CERN and the CMS Collaboration).

olpp = WW — h) =4 pb
o(pp = Wh,Zh) =2 pb (21.24)

These results should be compared with the proton-proton total cross
section of about 100 mb, which is higher by a factor of 2 x 10°!

At the LHC, we do not observe the total rate for Higgs production;
rather, we reconstruct the Higgs boson in a particular decay mode. The
quantity that we measure has the form of a cross section times branching
ratio, o - BR, for example,

(g9 — h) - BR(h — bb) . (21.25)

In general, a separate selection must be used for each separate decay
mode.

Unfortunately, many of the most important Higgs boson decay modes
are difficult to observe at the LHC. For example, the process

g9 — h — bb (21.26)
results in two b quark jets. However, the QCD process
gg — bb (21.27)

also produces pairs of b quark jets, with jet pair masses at and above
the Higgs boson mass, at a rate about a million times greater. In the
decays h — WW* and h — ZZ*, events with hadronic decays of the W
and Z are difficult to recognize for the same reason.

To discover the Higgs boson, the ATLAS and CMS experiments at
the LHC concentrated their efforts on decay modes of the Higgs boson
to photons and leptons in which all final state particle would be visible.
These modes are

h— vy BR = 0.23%
h— ZZx 40  BR=0.016%. (21.28)
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Fig. 21.4: Mass distribution of v pairs measured by the CMS experiment at
the LHC, from (Chatrchyan et al. 2012). In main plot, events more likely to
be well-reconstructed pp — =7y events are given higher weight.

In all, Higgs boson production and decay into these modes occurs in
about 1 in 2 x 102 pp collisions. It was quite a feat to collect such events
in the presence of enormous numbers of more ordinary LHC collisions.

By collecting a very large data set, the LHC experiments were able to
identify the Higgs boson in these channels. Figure 21.3 shows a candidate
h — vy event from CMS. Figure 21.4 shows the distribution of pp — vy
events found by CMS as of June 2012 as a function of the invariant
mass of the v~ pair. There is a clear resonance on the expected smooth
background at a mass of about 125 GeV. Figure 21.5 shows a candidate
h — eTe " utu~ event collected by the ATLAS experiment. Figure 21.6
shows the 4-lepton events seen by the ATLAS experiment as of June
2012, plotted as a function of the 4-lepton invariant mass. A signficant
resonance signal is seen at the same mass of 125 GeV. On July 4, 2012,
both experiments showed significant signals in both of these channels,
presenting strong evidence for the appearance of this particle.

With the new particle identified, we can ask whether it indeed has
the properties expected for the Higgs boson. First, is it a particle with
JP =01, as the Standard Model predicts? We showed in Exercise 2.4
that, If the new resonance decays to 7y, it cannot be a particle of spin
1. However, the possibilities of spin greater than 1, and of P = —1,
would still be open. These hypotheses can be addressed using h —
Z7Z* — 4 lepton events. The relative orientations of the leptons in
these events give information on the polarizations of the Z bosons in
h — ZZ*. Also, they allow tests of whether the particle production
and decay is independent of orientation, as would be expected for a
spin 0 particle. Figure 21.7 shows tests of the various spin and parity
hypotheses relative to the hypothesis of J = 0%. In all cases, the 0F
hypothesis is favored. In most cases, this hypothesis is strongly favored

Discovery of the Higgs boson at the
LHC using the decays h — <~ and
h— ZZ*.

Tests of the 01 spin-parity of the Higgs
boson.
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Fig. 21.5: Candidate pp — h — eTe "yt~ event observed by the ATLAS
experiment at the LHC (figure courtesy of CERN and the ATLAS Collabora-
tion).
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Fig. 21.6: Mass distribution in four-lepton events measured by the ATLAS
experiment at the LHC, from (Aad et al. 2012).
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Fig. 21.7: Comparison of hypotheses for the spin and parity of the 125 GeV
resonance from event distributions in h — 44, from (CMS Collaboration 2013).
What is shown in each plot is the distribution of a test statistic expected for
the Standard Model 0" hypothesis (yellow) and for an alternative hypothesis
(blue). The arrow shows the value of the test statistic given by the data.

already with this sample of about 25 events.
The decay h — WTW ™ is more difficult to observe. The specific Observation of the decay h — WW.
process visible at the LHC is

h—WW~™ = tul™p (21.29)

where £ is e or . That is, one looks for events with minimal jet activity,
two leptons of opposite sign, and unbalanced momentum carried off by
the neutrinos. The process pp — WTW ™, where both W bosons are
on mass shell, is an obvious background that cannot be cleanly distin-
guished from the Higgs events. These processes differ in the details; the
leptons from Higgs decay tend to have lower invariant mass and a smaller
spread in angle. Figure 21.8 shows the distributions of £7¢~ invariant
mass for events with e or p, unbalanced momentum, and 0 or 1 jet (Aad
et al. 2015). The small but significant excess over the expectation from
other Standard Model processes is due to the Higgs boson.

If the new particle is the Higgs boson that gives rise to the masses
of quarks and leptons, we should be able to discover events in which
the Higgs boson decays to quarks and leptons. The highest branching
ratios correspond to the heaviest available fermions, the b quark and the
7 lepton. I will first discuss the evidence for h — 77 77. Observation of the decay h — 77

Higgs decays to 777~ are generally not sufficiently characteristic that
they can be identified in the main LHC reaction of gluon fusion. The
WW fusion process, in which events contain additional forward jets for
tagging and in which the main competition to Higgs events comes from
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Fig. 21.8: Distribution of £7¢~ invariant mass in LHC events at 8 TeV
collected by the ATLAS experiment, with eu, unbalanced momentum, and 0
or 1 jet, from (Aad et al. 2015). The excess of events in red is attributed to
the Higgs boson decaying to WW™.
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Fig. 21.9: Candidate pp — h — 777~ event observed by the ATLAS exper-
iment at the LHC, from (ATLAS Collaboration 2013).
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electroweak reactions, provides a much better setting for this search. A
candidate event is shown in Fig. 21.9 (ATLAS Collaboration 2013). This
event contains 7 — e and 7 — u decays, two forward jets as expected
from the WW fusion process, and unbalanced momentum consistent
with the neutrinos emitted along the 7 directions. Events of this type
can easily be faked by Standard Model reactions that do not involve the
Higgs boson. The most important examples are

pp— Z —1rr
pp = W +jet — 7v + 7 faking 7 ,
pp — Z — 2 jets , jets faking 7 . (21.30)

Very recently, the CMS Collaboration demonstrated the presence of the
h — 7777 decay with a high degree of statistical significance, based
mainly on the analysis of W fusion events (Sirunyan et al. 2017a).
The background rate, about 10 times the signal rate in the final sample,
was estimated by the study of related processes such as pp — Z — putp~
and extrapolation from kinematic regions outside the Higgs boson signal
region.

The observation of h — bb presents an even more challenging prob-
lem. In this case, the most promising reaction is Higgs production in
association with a W or Z boson. In this setting, though, the reaction
pp — W + h, h — bb is difficult to distinguish from Standard Model
reactions without a Higgs boson

pp—>W+2, Z —bb,
pp—W+g, g — bb . (21.31)

In the second reaction, the gluon is radiated off-shell from the initial
quark or antiquark and splits to a quark-antiquark pair through the
parton shower physics that we discussed in Chapter 12. Very recently,
the ATLAS and CMS Collaborations presented strong evidence for the
h — bb decay based on very complex analyses that relied on the bb mass
distribution and more subtle features of the events. The final separation
of signal and background was done using machine learning technniques
(Aaboud et al. 2017, Sirunyan et al. 2017b).

Figure 21.10 shows the status of o - BR rate measurements as summa-
rized by the CMS collaboration at the end of 2017 (CMS Collaboration
2017). The quantity plotted on the horizontal axis is

0 BR(observed)
H= "G BR(SM) °

(21.32)

the ratio of the observed rate to the Standard Model prediction. The
figure shows clear evidence for all of the major decay modes of the Higgs
boson predicted by the Standard Model. With the new 2017 results,
we can now say that the whole pattern of Higgs boson decays predicted
by the Standard Model is well supported by data from the LHC. The
measurements agree with the predictions to the 20-30% level.

Observation of the decay h — bb.

All major couplings of the Higgs boson
are now confirmed for the 125 GeV res-
onance, at least at the qualitative level.
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Fig. 21.10: Ratios p of the rates for Higgs boson production measured by
the CMS experiment in a variety of decay channels to the predictions of the
Standard Model, from (CMS Collaboration 2017). In the figure p = 0 would
indicate no signal from the Higgs boson, and p = 1 indicates the Standard

Model prediction.

Eventually, we will see measurements of the Higgs boson couplings to
1% accuracy. It is possible that nature will still follow the predictions
of the Standard Model, but it is also possible, consistent with all of our
knowledge, that these measurements will reveal additional contributions
from new interactions.

Exercises

(21.1) This problem works through the computation of
the partial width of the Higgs boson to bb.

(a)

Draw the Feynman diagram for the h — bb
decay. Write the term in the Standard Model
Lagrangian that gives the vertex in this dia-
gram.

The b quark mass appears in the Yukawa cou-
pling 45, but the b and b produced in the de-
cay are very relativistic. Thus, it is a good
approximation to neglect the b quark mass ev-
erywhere else in this calculation, and, in par-
ticular, to use massless spinors for the b and

b. Write the appropriate massless spinors and

(c)

(d)

use them to compute the decay amplitude.

Square this amplitude, integrate over phase
space, and verify (21.14) to the leading order
in the my.

Repeat this calculation using the spinors of
the massive Dirac equation. Verify (21.14) in
full.

(21.2) Figure 21.1 shows that, if the Higgs mass were

greater than the W and Z boson masses, the decays
h — WW and h — ZZ would dominate. Compute
these decay rates assuming my > 2mw,2mz.

(a)

Draw the Feynman diagrams that lead to the
h — WW and h — ZZ decays, and identify



the terms in the Standard Model Lagrangian
that generate these vertices.

(b) Show that, since the Higgs boson has spin 0,
the final-state vector mesons must have equal
helicities. We must sum over three helicity
states, h = +1,0, —1.

(c) Consider first h — WW. Choose coordinates
such that the W boson moves in the +3 di-
rection. For a W boson at rest, the three
W polarization vectors are the three space-
like unit vectors. Choosing vectors of definite
angular momentum, we can write these as

helicity +1 :

helicity 0 :
helicity — 1 :

" =(0,1,i,0)"/V2

e =(0,0,0,1)"

e =(0,1,—i,0)"/V2 .
(21.33)

Boost these to the W momentum k¥ =
(E,0,0,k)*, where E = my/2. Show that
the helicity +1 and —1 vectors are unchanged,
while the helicity 0 vector boosts to

Eg = (k7O7OaE)H/mW . (2134)

(d) Construct the polarization vectors for the W~
by rotating the vectors found in part (c) by
180°.

(e) Compute the three nonzero decay amplitudes
to W boson pairs of definite helicity.

(f) Square these amplitudes and integrate over
phase space to obtain a total decay rate.
Show that, for mp > 2mw,

Qp mi

2 4
C(h — WW) = 1—4%“2"1—?

16 m, 2 mj
2
m 1/2
(1 =42 (21.35)
mj,
g) Find the corresponding expression for —
Find th di ion for I'(h
ZZ) for mp, > 2my.

(h) The growth of these decay rates proportional
tom} is a surprise. Which helicity amplitudes
are responsible for this growth? Exercise 21.3
might shed some additional light on this phe-
nomenon.

(21.3) The top quark is so heavy that it can decay to an

on-shell W boson and a bottom quark. The decay
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matrix element is

M(t = bW = %uL(b)TE“uL(t)e”*(W)
(21.36)

Ignore the b quark mass. In this limit, the b is al-
ways left-handed. The spinor ur(t) is the top 2
components of the top quark Dirac spinor. In the
following, work in the top quark rest frame, and
assume for definiteness that the top quark is polar-
ized in the +3 direction.

(a) Write formulae for the energies and momenta
of the final state W and b in terms of my,
mw. Assuming that the W' momentum is
at an angle 6 with respect to the 3 axis,

pw = (Ew,pw sin®,0, pw cosf)  (21.37)

write the b quark momentum vector and the
b spinor ur (ps).

(b) Compute the partial width T'(t — b W), to
a W boson of helicity (—1). The appropriate
W polarization vector is

- L
V2

This is a rotation of the polarization vector
found in Exercise 21.2, part (c).

(c) Compute the partial width I'(t — b W}}), to
a W with positive helicity. You should get
zero for the result. Why is this process for-
bidden?

(d) As was seen in Exercise 21.2, part (c),
the polarization vector for a helicity-
0 (longitudinally-polarized) boson boosted
along the 3 axis is

e(W) (0,cos 6, —i,—sinf)  (21.38)

pw Ew
W)= (——,0,0,—) . 21.39
()= (B 0,0, 2%) . (21.39)
Rotate this polarization vector appropriately,
and compute the partial width T'(t — b Wg),
to a W with helicity zero.

(e) Compute the total width of the top quark and
derive the formula (21.4).

(f) Compute the ratio of rates for top quark de-
cays to transverse and longitudinal W bosons.
Which mode accounts for the enhancement of
top decays discussed in Section 21.17
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Epilogue

In this book, I have described the structure of the Standard Model of
particle physics and its correspondence with experiment. We have seen
that the amazing variety of elementary particle phenomena described in
this book can be accounted for quantitatively by the Standard Model
Lagrangian (18.37). It is remarkable that we have achieved this state of
knowledge of the fundamental interactions at very short distances.

The Standard Model is so powerful that many people assert that this
is the end of the story of elementary particles. But there are good rea-
sons to think that it is not. Though the Standard Model is a synthesis of
what came before it, it still lacks the simple and self-contained character
of, for example, Maxwell’s equations or Einstein’s theory of general rel-
ativity. It is not what Steven Weinberg imagined as a ”final theory” of
fundamental forces (Weinberg 1993). In this book, I have concentrated
on the questions in particle physics whose answers are known. But now
it is time to discuss what is not known, and what is yet to be discov-
ered. I will organize this discussion as a series of questions. For a few
of these questions, the Standard Model gives answers that are known to
be incorrect. For most of them, it is incapable of giving any answer at
all.

The questions are of three types. The first set of questions concerns
the structure of the Standard Model itself. The second set concerns the
relation of our understanding of particle physics to the picture of the
universe in the large that has recently emerged from astrophysics. The
third set concerns the relation of the Standard Model to grand questions
about the nature of space and time.

First, I will consider the questions that the Standard Model raises
about its own structure and leaves unanswered:

How do the pieces of the Standard Model fit together? The
Standard Model Lagrangian contains 3 different gauge symmetry groups
and 15 different fermion representations. In a final theory, shouldn’t
there just be one gauge symmetry and one type of matter?

For the unification of the gauge symmetries, there is an attractive hy-
pothesis. The group SU(3) x SU(2) x U(1) can be considered as a sub-
group of the Lie group SU(5) or SO(10). Each generation of fermions
fills out an SU(5) or SO(10) representation. The case of SO(10) is
particularly elegant, since in this case, the quantum numbers of a com-
plete generation of quark and leptons (including a right-handed neu-
trino) are contained in a 16-dimensional irreducible representation of
SO(10). The idea that there is a single fundamental gauge group, and

Are the SU(3), SU(2), and U(1) sym-
metries of the Standard Model pieces of
a “grand unification” symmetry group?
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Grand unification can qualitatively ex-
plain the sizes of the SU(3), SU(2), and
U(1) coupling constants.

Is the top quark a “heavy” quark or a
“normal” quark?

that this symmetry group is spontaneously broken at short distances to
SU(3) x SU(2) x U(1), is called grand unification.

The grand unified theory is a Yang-Mills theory with a single cou-
pling constant. This seems to contradict our knowledge that the SU(3),
SU(2), and U(1) coupling constants are very different, as expressed in
(11.73) and (17.12). However, since the QCD coupling becomes smaller
at short distances while a U(1) coupling becomes larger (as we discussed
in Sections 11.6 and 11.7), it is not hard to imagine that the three Stan-
dard Model couplings meet at some small distance scale where the spon-
taneous breaking takes place. Expressed as an energy scale, the location
of the symmetry breaking turns out to be close to 10'® GeV. The theory
predicts the value of ¢’/g. The theory also predicts that the baryon
number is violated and baryons decay, however, with a long lifetime ex-
ceeding 1033 years. However, proton decay has not yet been observed.
Also, while the qualitative relation of the Standard Model couplings is
explained by grand unification, the precise values of these couplings dif-
fer somewhat from the grand unification predictions. There is not yet
an attractive grand unified theory that explains the presence of three
generations of fermions. More information about the theory of grand
unification and its experimental status can be found in (Ross 1984) and
(Raby 2006).

Perhaps the unification of the elements of the Standard Model requires
more ambitious ideas. I present some possibilities below.

Why do the quark and lepton masses vary over such a large
range? One of the most striking features of the Standard Model is that
it accomodates a top quark of mass about 170 GeV and an w quark
whose mass is 100,000 times smaller. In each case, the mass of the
quark is given by the size of the corresponding Higgs boson Yukawa
coupling. These coupling constants are inputs to the Standard Model.
In principle, any input would be acceptable, so the Standard Model gives
no explanation for the large mass ratios between the various quarks and
leptons.

Actually, the Standard Model does not even give insight into what
might seem to be an easier question: Is the top quark a “heavy” quark,
while the other quarks and leptons have more ordinary values, or does
the top quark have a “normal” value for its mass, while the masses of
all other fermions are for some reason suppressed? Since the mass of the
top quark is of the same order of magnitude as the masses of the W, Z,
and Higgs bosons, it is tempting to say that the top quark mass is of
the expected magnitude for fermion masses. However, there are theories
created to explain aspects of the Standard Model in which the large size
of the top quark Yukawa coupling plays an essential role. So even this
simpler question has, at the moment, no definite answer.

Why is the weak interaction gauge symmetry SU(2) x U(1)
spontaneously broken? In the Standard Model, we postulate one
multiplet of Higgs scalar fields and assume that these fields have the
potential (16.29) with the parameter u? assumed to have a negative
value. This does explain the breaking of SU(2) x U(1) symmetry, but



this explanation seems to be rather ad hoc.

In Section 14.2, we discussed the spontaneous breaking of the chiral
SU(2) x SU(2) symmetry of QCD. We gave an intuitive explanation
for the symmetry-breaking based on the properties of light quarks with
strong attractive interactions. That explanation was modelled on the
well-understood explanation for superconductivity in metals put forward
by Bardeen, Cooper, and Schrieffer. In my presentation of the Higgs
mechanism in Section 16.2, I emphasized that the original papers of
Higgs, Englert and Brout, and Guralnik, Hagen, and Kibble all referred
to the theory of superconductivity as the inspiration for their propos-
als. There are many other condensed matter system with spontaneously
broken symmetries, and, in each case, there is a definite physical expla-
nation for the fact that an asymmetric ground state of the Hamiltonian
has the lowest energy. These explanations differ for superconductors,
superfluids, magnets, liquid crystals, and other systems presented, for
example, in (Sethna 2006). But, in each case, there is fascinating physics
there. Why should this not be true for the large physical system that
we call the universe?

Many theories have been put forward to provide an underlying expla-
nation for the shape of the potential energy of the Higgs field and its
preference for an asymmetric vacuum state. I have reviewed this subject
recently in (Peskin 2016). The models proposed are of many different
types, some relying on weak interactions and special symmetries of the
underlying theory, some on new strong interactions at short distances
and, possibly, composite structure of the Higgs bosons and the fermions.
The one feature that these models have in common is that the Standard
Model is not enough. New particles and new interactions must be added
to it.

I personally find it fascinating that, if one dismisses the Standard
Model Higgs potential as too simplistic and looks for a physics-based
explanation for the symmetry-breaking of SU(2)xU (1), it is unavoidable
that there exist new fundamental interactions still to be discovered at
higher energies or shorter distances.

Next, I will discuss the relation of the Standard Model to the picture
of the universe revealed by astrophysical observations.

This book has focussed almost completely on particle physics proper,
without even glances at the implications of particle physics for astro-
physics and cosmology. In truth, though, the subjects of particle physics
and cosmology are closely related. We have strong evidence from astro-
physics that the universe originated in a state of very high temperature,
the “Big Bang”. At this temperature, all of the particles of the Standard
Model would have been created by thermal pair production and would
have been present in large numbers. As the universe cooled, particles
and antiparticles would have annihilated, leaving us with the universe
with empty space and clumps of stable matter that we see today. In prin-
ciple, we should be able to understand the composition of the universe
and the growth of cosmic structure such as galaxies and galaxy clus-
ters by taking the high-temperature state as the initial condition and
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Is there a physics explanation for the
spontaneous breaking of the weak in-
teraction SU(2) x U(1) symmetry?

Any such explanation requires new fun-
damental forces that have not yet been
discovered.
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The application of the Standard Model
to the physics of the universe has re-
vealed gaps that the model does not ex-
plain.

Why did large scale structure—galaxies
and clusters of galaxies—form in the
early universe?

The “inflationary universe” can explain
at the qualitative properties of the
large-scale structure of the universe.

evolving from that point using the equations of the Standard Model.

An excellent introduction to cosmology that emphasizes its connection
to fundamental particle physics is (Dodelson 2003). As this reference em-
phasizes, the same period since the 1970’s in which the Standard Model
was validated in particle experiments showed tremendous improvements
in our observational knowledge about the universe. The interpretation
of these observations might have been another triumph for the Standard
Model. But, in fact, the comparison of the current universe to that ex-
pected from the Standard Model alone has revealed essential gaps and
highlighted additional ingredients that need to be included. Thus, when
we are interested in the defects of the Standard Model rather than its
successes, we need to look to astrophysics for important evidence of what
is missing. Thus, we turn to the questions:

Why is the universe not uniform, but, rather, full of struc-
ture? If the universe were born in a uniform thermal state, it would
stay uniform, and there would be no galaxies, galaxy clusters, or other
cosmic structures. To grow these structures, we need, first, seeds given
by small density inhomogeneities, and, second, a mechanism for these
inhomogeneities to grow as the universe evolves. The growth of structure
can be accomplished by gravity, with small excesses of matter attract-
ing additional matter and growing into large density excesses. But how
did the small excess arise in the first place? The snapshot of the early
universe provided by the cosmic microwave background radiation tells
us that the original density inhomogeneities had some specific special
properties: Their statistical distribution was close to Gaussian, approxi-
mately scale-invariant, and essentially identical in widely separated parts
of the universe that were not causally connected. In particular, the tem-
perature of the cosmic microwave background is observed to be the same
at opposite poles of the sky, even though this radiation was created at
100,000 years after the Big Bang, when these regions were separated by
27 billion light-years.

In 1981, Alan Guth proposed an explanation of these features from
a model called the inflationary universe (Guth 1981). In this picture,
the universe began its evolution containing a scalar field with a very
large positive value of its potential energy. The coupling of this scalar
field to gravity leads to an exponential expansion of every small patch
of the universe. In the inflationary model, a patch of a few cm in size
expands to the size of the current universe. Inflation is terminated by
the transition of the scalar field to its ground state with much lower
potential energy. The conversion of the original potential energy into
heat provides the thermal energy of the Big Bang. A more detailed
review of inflation and its solutions to the problems listed in the previous
paragraph can be found in (Olive 1990) and in (Dodelson 2003).

So, already, in order to create the correct initial conditions for the
universe, we need to postulate at least one additional scalar field that is
not contained in the Standard Model.

Why does the universe contain more matter than antimatt-
ter? An obvious property of the observed universe is that it is full of



matter (protons, neutrons, and electrons), with very little antimatter.
In principle, the universe could have begun with an initial small excess of
matter over antimatter. When quarks and antiquarks annihilated as the
temperature of the universe fell below 1 GeV, the excess quarks would
have been left over. An initial excess of only 1 part in 100 is needed.

However, if we accept the idea that the initial conditions of the uni-
verse came from a period of inflation, this explanation cannot be valid.
The dramatic expansion required by inflation emptied the universe of
particles and set the initial matter-antimatter asymmetry to zero. Then
the needed asymmetry must have developed in the evolution of the uni-
verse after the Big Bang.

In principle, we can compute the evolution of the components of the
universe from the equations of the Standard Model. In particular, in
order to create a nonzero asymmetry between the numbers densities of
matter and antimatter, these equations must be asymmetric between
matter and antimatter, violating C'P symmetry. The Standard Model
contains a C'P-violating parameter, the CKM phase, and this does pro-
duce a matter-antimatter asymmetry in the early universe. However, it
turns out that this asymmetry is too small by a factor of 10® to pro-
duce today’s known matter density of the universe. The influence of
the CKM phase in the early universe is proportional to the product of
the light quark Yukawa couplings, and so is very small. Then, another
source of C'P-violation is needed (Riotto and Trodden 1999).

Looking at models more general than the Standard Model, there are
many possibities for new C P-violating interactions. A model with two
Higgs field multiplets can contain an additional CP-violating phase.
There are many more complex possibilities. Most of the models dis-
cussed under the previous question as providing explanations of SU(2) x
U(1) symmetry breaking offer the possibility of new CP-violating pa-
rameters. Unfortunately, these models also allow other new flavor-
dependent terms, threatening some of the beautiful conclusions pre-
sented in Section 18.4.

One interesting suggestion is that the new source of C'P violation is
the Majorana mass (20.24) for right-handed neutrinos (Fukugita and
Yanagida 1986). This neutrino mechanism for the production of a
baryon asymmetry is called leptogenesis. 1 have emphasized at the end
of Chapter 20 that the presence of C'P violation in the neutrino sector
is highly suggested from the structure of the Standard Model but is not
yet experimentally established. Unfortunately, the C P-violating phase
that would lead to leptogenesis is not directly observable in neutrino
mixing experiments.

What is the “dark matter” of the universe? Another aspect of
modern cosmology that challenges the Standard Model is the accumu-
lating evidence that atoms made of Standard Model particles are not
the only type of matter in the universe. In fact, the internal dynamics
of galaxies and of clusters of galaxies require that these objects contain
large amounts of invisible and weakly interacting matter that interacts
gravitationally with the atoms. These observations are corroborated by
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The excess of matter over antimatter in
the universe requires new C P-violating
interactions not yet observed in particle
physics.
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Most of the matter in the universe is
“dark matter”, a type of matter not ac-
counted for by the Standard Model.

The universe contains a small but
nonzero vacuum energy. Its origin is
unknown, and its size defies all at-
tempts to predict it.

observations of the cosmic microwave background. In addition, we now
know that the growth of structure in the universe since the Big Bang
would be too slow if the gravitational clumping of matter were driven by
the gravity of atomic matter only. From all of these sources, we deduce
that 85% of the non-relativistically moving matter in the universe is of
this new type, called dark matter (Bertone 2010).

Dark matter must be made of particles, but those particles cannot be
any of the particles in the Standard Model. For particle physicists, this
is a supreme embarassment: With all of our knowledge, we are ignorant
of the origin of most of the matter in the universe.

Models proposed to extend the Standard Model provide many possible
candidates for the particle of dark matter. Each proposal offers new
experiments that might discover the dark matter particle, and, at the
same time, give evidence for new particles and forces beyond those of
the Standard Model (Feng 2010). It is possible to search for dark matter
particles not only by production at accelerators but also by searching
for collisions of cosmic dark matter particles with detectors on Earth.
Unfortunately, so far, none of these experiments has given a positive
signal. Still, the dark matter is there in our astrophysical observations;
only its identity is missing.

What is the “dark energy” of the universe? In 1998, another
mysterious ingredient was added to this picture. From measurements
of the red shifts of distant supernovae, two groups of observers demon-
strated that the universe is in a phase of exponential expansion even
today (Riess et al. 1998, Perlmutter et al. 1999). This expansion would
be accounted for by a small potential energy in each unit volume of
empty space, due either to another new scalar field or to quantum ef-
fects from known and unknown elementary particles. This ingredient is
called dark energy. A contemporary summary of the resulting three-part
picture of the universe, with two mysterious ingredients, can be found
in (Bahcall et al. 1999).

In principle, quantum effects of the Standard Model can lead to a
vacuum energy that accounts for the dark energy. However, it is not
known how to compute the Standard Model contribution to the energy
of the vacuum state of space. The application of obvious methods leads
to a result 120 orders of magnitude too large. It is also mysterious why
the energy density of the vacuum today can be so much smaller—by a
similar number of orders of magnitude—than the energy density present
during the period of inflation.

It is important the students of particle physics should be aware of this
compelling evidence from astrophysics that our current fundamental un-
derstanding of nature is incomplete. At the same time, it is important
that both particle physicists and astrophysicists realize that the answers
to these questions cannot come purely from astronomical observations.
At some point, the initial conditions from astrophysics must be put to-
gether with a full dynamical model—at the level of the underlying par-
ticles and fields—to explain the evolution of the universe to its current
state.



Finally, we come to the questions about the relation of the Standard
Model of particle physics to deep questions about the nature of space
and time:

Are there higher symmetries of nature that lead to new par-
ticles and interactions? Many of the questions that we have already
considered—in particular, the missing explanations for SU(2) x U(1)
symmetry breaking, the generation of the observed matter-antimatter
asymmetry, and the dark matter of the universe—call for new particles
and interactions that must be added to the Standard Model. It is a very
attractive idea that these new interactions might have a fundamental ba-
sis. Perhaps, by extending the space-time symmetries of the Standard
Model, these new ingredients might naturally appear.

There is in fact a unique extension of the group of space-time sym-
metries, the translations, rotations, and Lorentz boosts. This extended
group adds supersymmetries, operations that change the total spin by
% unit, transforming bosons into fermions and fermions into bosons.
The square of a supersymmetry operation is an infinitesimal translation
(Haag, Lopszanski, and Sohnius 1975).

Supersymmetry doubles the number of elementary particles. For each
known boson, it predicts a new fermion. For each quark or lepton, it
predicts a new boson. This gives ample material to propose solutions
to all of the questions that I have outlined above. In particular, the
supersymmetric partner of the photon is a fermion with zero charge and
very weak interactions that is an excellent candidate for the particle of
dark matter. The extension of the Standard Model to a supersymmetric
theory has been worked out in great detail. Descriptions of this theory
can be found in the review articles (Martin 1997) and (Peskin 2008) and
in the books (Drees, Godbole, and Roy 2004) and (Baer and Tata 2006).

The supersymmetric extension of the Standard Model gives the most
robust explanations for SU(2) x U(1) symmetry breaking and dark mat-
ter if gluon and the top quark have masses of several hundred GeV. The
ATLAS and CMS experiments at the LHC have searched diligently for
these particles and have essentially ruled out the possibility that these
particles have masses below 1000 GeV (Adam 2017). That was a sign-
ficant blow to proponents of supersymmetric models. The search for
supersymmetric particles continues, but models of this type no longer
have the pride of place that they held before the start of the LHC ex-
periments.

It is possible that nature is supersymmetric at extremely short dis-
tances, far above the TeV energies accessible to the LHC. This possibility
plays into the answers to the questions to follow.

How does gravity fit together with the Standard Model? A
truly final theory should incorporate all of the known forces of nature,
including gravity. The description of gravity at the classical level is given
by Einstein’s theory of general relativity. This is a very well-tested the-
ory. General relativity has a quantum version. In that theory, the grav-
itational force is mediated by a massless spin-2 particle, the graviton.
This quantum theory of gravity has a formalism of Feynman diagrams,
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“Supersymmetry” is the most natural
extension of the Lorentz symmetry of
space-time. But, is supersymmetry ac-
tually present in nature?
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The quantum theory of gravity is in-
complete. How is gravity related to the
interactions of the Standard Model?

“String theory” is a possible framework
for unifying gravity with the Standard
Model. Does this idea have unique ob-
servable consequences?

Properties of black holes challenge the
basic notion of continuous space-time.

similar to those of the Standard Model, from which scattering ampli-
tudes can be computed. From this point of view, the quantum theory of
gravity can simply be appended as another component of the Standard
Model, though its unification with the other forces is not explained.

There, is, however, a more serious problem with quantum gravity. The
quantum theory of gravity differs from the gauge theories of the Standard
Model in having a dimensionful coupling constant, Newton’s constant
Gn. Expressed as an energy, Newton’s constant gives a mass parameter,
the Planck scale mpi, equal to 10'° GeV. At energies below mp;, the
Feynman diagram expansion makes sense, but at energies approaching
mp; the theory becomes strongly coupled and our methods of calculation
fail catastrophically. Speaking roughly, Einstein’s theory predicts that,
at distances of 1/mpj, space-time itself becomes singular due to quantum
fluctuations.

Solutions to this problem have been proposed, but none are yet com-
pletely successful. The most interesting of these is string theory, which
discards the notion of point particles moving in continuous space-time
in favor of a picture in which all elementary particles, including the
graviton, are extended 1-dimensional objects (Zwiebach 2004, Polchin-
ski 2005). For reasons too subtle to explain here, string theory removes
all distances shorter than 1/mp; while at the same time retaining con-
tinous translation and Lorentz invariance. In addition to the massless
spin-2 graviton, string theory contains massless spin-1 particles with
the properties of Yang-Mills gauge bosons. Thus, string theory can be
the setting for a complete unified theory of all of the forces of nature.
However, it has not yet been possible to identify the Standard Model
gauge symmetry group as a unique consequence of string theory, or to
use string theory to give definitive solutions to the other questions that
I have posed in this chapter. Some approaches to these issues involve
extending string theory to a supersymmetric model, bringing all of the
virtues and challenges described for supersymmetry in the discussion
above.

Is space-time a fundamental concept that will survive in the
final theory? The difficulties of formulating a quantum theory of grav-
ity valid at all energies suggest the idea that continuous space-time itself
is an approximate notion that will be replaced in a more fundamental
theory. At currently explored energies, up to the energies probed by
the LHC, Lorentz invariance, the continuity of space, and the locality
of quantum field theory interactions are all extremely well tested (Kost-
elecky and Russell 2011). But it is a long way from TeV energies to the
Planck scale. Many surprises and new concepts might make themselves
apparent between here and there.

Even now, theoretical investigations of black holes have challenged
the idea that space-time is ultimately continuous. The quantum theory
of black holes is partially understood, and what we know leads to para-
doxes. These issues are reviewed lucidly in (Polchinski 2016). Among
these is the fact that the number of quantum degrees of freedom of a
black hole is proportional to its area, not its volume, so a large black



hole has many fewer degrees of freedom than one might expect in a de-
scription based on quantum field theory. These ideas have led to the
holographic principle, the idea that the quantum degrees of freedom in
any 3-dimensional volume are encoded on a 2-dimensional boundary.
This idea is fundamentally incompatible with quantum field theory ex-
cept as an approximation at energies much lower than the Planck scale
(Bousso 2002).

An idea pushing in the other direction is that of the existence of addi-
tional dimensions of space beyond those seen in our common experience.
These extra dimensions would need to be curled up to a small size R.
Then particle physics experiments at energies of order 1/R could pos-
sibly access them (Hewett and Spiropulu 2002). String theory actually
requires the existence of extra space dimensions and, in a sense, blurs the
distinction between the presence of dimensions of space and the presence
of extra quantum fields added to the Lagrangian.

It is fun to think about such dramatic modifications of our ideas of
space-time. It may be that new concepts drawn from these ideas are
needed to address the open questions of particle physics. On the other
hand, it is equally likely that the most pressing of problems that we have
highlighted—SU (2) x U(1) symmetry breaking, C'P violation, and the
nature of dark matter—will be solved with new interactions compatible
with quantum field theory that are present at energies just beyond our
current reach. There are many aspects of quantum field theory that we
do not yet understand, especially for theories that are strongly coupled.
New concepts as profound and unusual as asymptotic freedom and quark
confinement could drive the behavior of these new interactions. Just
as was true for the insights that led to the structure of QCD and the
electroweak theory, it may take new accelerator experiments at higher
energies to bring them to the surface.

The completion of the Standard Model with the discovery of the Higgs
boson closes this book on the concepts of elementary particle physics.
However, many question remain, enough to fill another book, perhaps
many more. Today, we have few clues to address the next level of ques-
tions about the fundamental interactions of physics. But, always, we
build our knowledge level by level. I hope that the concepts 1 have
presented in this book will aid you in confronting this new set of open
questions and, by discovering new principles, in pushing forward the
quest for an ultimate understanding of nature.
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Notation

Units

Throughout this book, I use natural units in which
h=c=1. (A1)

All masses and momenta are measured in energy units, typically in GeV.
Distances and times are computed in inverse energy units (GeV~—1). For
example, I use the symbol m, (the mass of the electron) to represent all
of the following quantities:

me = 9.10938 x 10728 g = 0.510999 MeV
= (3.86156 x 107! cm) ™! = (1.28809 x 1072 sec)™! . (A.2)

The conversion of quantities in natural units to quantities in more fa-
miliar units is discussed in Section 2.2.

Vectors and tensors

Vectors in 3 dimensions are notated with arrows or Latin indices.
Vectors in Minkowski space are denoted with Greek indices. Thus,

ot = (20, 2" or (2, 2)" . (A.3)

Sometimes, I write z° = ¢ or, for momenta, p° = E. Distances and
momenta naturally carry raised indices. Greek indices are raised and
lowered with the metric tensor of special relativity

1 0 0 0
) 0 -1 0 0
77“ =N = 0 0 1 0 . (A4)

0o 0 0 -1

Then the Lorentz-invariant product of vectors is written
z-y =ty = aty, = 2% — o'yt =% - Z- 7. (A.5)
The Lorentz-invariant interval is
(z—y)* =" ~y")?— (@ -9)*. (A.6)
The derivative operator naturally carries a lowered index,

0, = (0/02°,0/0a") , (A7)
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This is set up so that

"0, (A.8)
is Lorentz-invariant. Note that
o =, = (0/02°,—0/dx") . (A.9)
The D’Alembertian operator
9", = 9%/9(x°)? — 8% /0(x")* = & ot — (V)? (A.10)

is Lorentz-invariant.
The totally antisymmetric symbols €%, A7 gatisfy

P =41, P =41 (A.11)
Note that this implies €p123 = —1 after index lowering.
Momentum vectors

A particle of mass m has a momentum vector satisfying
p?= (") - ()’ =m". (A.12)
The quantity E), is defined in the text to be a function of p equal to
B, = [(? +m’"?; (A.13)
it is the energy of a particle (on mass shell) with momentum p.

Basic quantum-mechanical operators

I write the energy and momentum operators acting on Schrodinger
wavefunctions as

.0 .0 =
E—za, P=—igs= iV . (A.14)

Note that, with (A.9), these combine into a 4-vector operator

pHt =0t . (A.15)
The plane wave with 4-momentum % has wavefunction e~"*®, since
pt e T — jgr emkT — pp ik (A.16)

The Pauli sigma matrices are

01:((1) é) 02=<? _OZ) 032((1) _01> (A17)

These satisfy 4 o g
(0‘7’)2 =1 olo! = E”kok . (A18)



Fourier transforms and distributions

The Dirac delta function in d dimensions is denoted §(¥)(z). This is
a distribution that equal zero for x # 0 and satisfies

/ dl 5@ (z) =1 . (A.19)

In writing Fourier transforms, I always associate a factor 2w with the
momentum integral. In Minkowski space,

d4k —ik-x 3 ik-x
flo) = [ e ™) f = [ateett s (a0)
Factors of 27 will also appear from

/ dize*® = (2m)46W () . (A.21)

Electrodynamics

I use standard SI notation for electrodynamics but with ey = pug = 1
in natural units. The Coulomb potentail of a point charge is written

Vir)= % . (A.22)

The electrodynamic potential and the vector potential form a 4-vector
AP (z) = (P(x), A(z))" . (A.23)

The electromagnetic fields are contained in the tensor
F,, =0,A, - 0,4, . (A.24)

It is a nice exercise to show that the components of this tensor form the
correct expressions for the £ and B fields,

FO=F"  Fi9=¢ikph, (A.25)
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Conversion factors and
physical constants

Conversion factors

)
Il

2.99729 x 10® m/sec

c = 1.78266 x 1073% kg/MeV
6.582119 x 1022 MeV-sec
= 197.327 MeV-fm

|
N
|

St S
o
Ll

(1 fm = 1071 m; 1 barn = 10724 cm?.)

a = €2 /4meghe = 1/137.03560
re = e24megmec? = 2.817940 x 1071 m
Ry = e*m./2(47m€y)?h? = 13.6057 eV

Standard magnetic moments and cyclotron frequencies

pup = eh/2m, = 5.78838 x 10711 MeV/T
we/B = e/me = 1.75882 x 10! /sec/T
pn = eh/2m, = 3.15245 x 10714 MeV/T
wp/B = e/m, = 9.5788 x 107 /sec/T

(1 Tesla = 10* gauss)

Masses of leptons

m(e) = 0.510999 MeV
m(p) = 105.658 MeV
m(r) = 1776.9 MeV

Masses of baryons

Use these relations to convert from

MeV and
strengths.

sec

to

magnetic

field
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m(p) = 938.272 MeV
m(=t) = 1189.37 MeV
m(Z0) = 1314.86 MeV
m(A) = 1232. MeV
m(Ae) = 2286.5 MeV

Masses of mesons

m(rt) = 139.570 MeV
m(K+) = 493.68 MeV
m(n) = 547.86 MeV
m(pT) = 139.570 MeV
m(K**T)= 891.6 MeV

m(w) = 782.6 MeV

m(D+) = 1869.6 MeV
m(n.) = 2983.4 MeV
m(B*) = 5279.3 MeV
m(np) = 9399.0 MeV

m(n) = 939.565MeV
m(2°) = 1192.64 MeV
m(E7) = 1321.71 MeV
m(Q~) = 1672.5 MeV
m(Ay) = 5619.5 MeV

m(

(
m(n) = 957.78 MeV
m(p®) = 134.977 MeV
m(K*°) = 895.8 MeV
m(¢) = 1019.46 MeV
m(D%) = 1864.8 MeV
m(J/¢) = 3096.9 MeV
m(B%) = 5279.6 MeV
m(YT) = 9460.3 MeV

Masses of weak-interaction bosons

m(W) = 80.385 GeV  m(Z)=

91.1876 GeV

m(A) = 1115.68 MeV

m(X7) = 1197.45 MeV
m(DF) = 1968.2 MeV
m(y') = 3686.1 MeV
m(BY) = 5366.8 MeV
m(Y) = 10023.3 MeV

Strengths of the fundamental interactions at () = 91. GeV

a=e?/4r =1/129
= g*/4m = 1/29.8

as=g2/Am = 1/85
o =g /4 =1/99.1

All quantities in this appendix except for the final values of funda-
mental interaction strengths are taken from the summary tables in (Pa-

trignani et al. 2016).



Formulae for the creation

and destruction of
elementary particles

Spin 0

(Olp(@) le(p) =™, (p(p)l ¢(x)[0) = ™7 . (C.1)

Spin 1/2

massive fermions:

O [F0) = U™ () Fa) 0) = T (e
<0|$(a’;) ‘fs(p)> — VS (p)e—z'p'.r 7 <?S(p)‘ \I/(a:) |O> _ Vs(p)e-i,-i,p.m ’
(C.2)

where U(z) is a 4-component spinor field and U*(p), V*(p) are 4-component
spinors, with s indicating the spin direction.

massless, chiral fermions:

(0191 (2) [ 1)) = ur(p)e™"* (FL(p) 0} (2)[0) = uf(p)e ™,
01w (@) [Fr(p)) = vr@)e™™™ , (Fr()| ¥} (2)]0) = vr(p)e™™
(01v&() | fr(p)) = ur(p)e™ ™" (Fr(P)] V(@) |0) = ufp)et ™,
(019 () | frp)) = v (p)e ™" (FL®)| vk (@) 0) = vr(p)et™™,

(C.3)

where ¢, (), ¥r(x) are a 2-component spinor fields and ur,(p), ur(p),
vr,(p), and vgr(p) are 2-component spinors. For p'|| 3,

uslp) = VE (§ ) = onlo)
un(p) = @(3) —u(p) (C.4)
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For fermions moving in the direction p = cos 03 + sin 01,

uslp) = VI ("% ) = on)

cos /2
unle) = V2B (o2 ) = o) (©5)

In particular, for fermions moving in the —3 direction,

ur(p) = V2E (_01> = vr(p)
urle) =V2E (] ) = o) ()

Spin 1
(0] A (@) [Vs(p)) = ek (p)e™ ", (Vs(p)| A*(2)[0) = e (p)e ™,
(C.7)
where s indicates the spin direction. The vectors e (p) satisfy
p-es=0. (C.8)
For vector bosons moving in the 3 direction, these vectors are
o= o000, &= (0,1,-4,0)
+ \/i s 4y by ) — 5 ) Ly ) )
e — (2 0.0, Ey (C.9)
0 m7 ) m

For vector bosons moving in the direction p = cos 03 + sinf1, these
vectors are

1
(0,cos0,i,—sin0)* e =

(0,cos8, —i, —sin6)* |

S

no_
G 2

E E
€ = (%, - siné, 0, i cos@)* . (C.10)

For massless vector bosons (e.g., photons), the polarization state e
is absent, and only the polarizations €/ correspond to physical states.



Master formulae for the
computation of cross
sections and partial widths

Partial widths
For decays of a particle X of mass mx,
1
HX%&+WMM:%r/mMMM%Aﬁ~+MW,@U
X

summed over final spins and, when appropriate, averaged over the spin
of X.

Cross sections
For the cross section of a reactions of particles A and B with initial

energies F 4, Ep and velocities va, vp,

G(A+B—Cr+-+Cp)
1

= [dll, M(A+B—=Ci+---+C))?,
EAEB‘UA—UB|/ | ( 1 )|

(D.2)

summed over final spins and, when appropriate, averaged over the spins
of A and B.

Phase space

For n-body phase space,
[ . - H / TP ()15 Py Sr o 03
2m)32E;

2-body phase space

For a system with center of mass energy Ecjys, in the center of mass
frame, 2-body phase space takes the form

1 2k 2
dIl — D4
/ 2= 87T <ECM> 471' ’ ( )
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where k is the momentum of each of the two products and df2 is the
integral over their angular distribution.

3-body phase space

For a system with center of mass energy E% u = s and energies of the

three products E1, Fs, E3, let

2F, 2F,

r1 = —— T =

\/g )

Vs

In this frame p7 + p> + p3 = 0. Then the three final momentum vectors
lie in a plane. Then 3-body phase space, integrated over the orientation

of this plane, takes the form

S
\/ngzw/dﬂfldIQ .

Since x1 + x2 + 3 = 2, any pair of z; can be used as the integration

variables.

The masses of the 2-particle combinations, for example, m2, = (p; +

p2)?, are given by

2

mfg :s(lfxg)erg , Mg :8(17x1)+m%, mgl :5(17x2)+m§ ,

so (D.6) can also be written as

1
/d]._.[g = m/dm%Q dmgg .

As in (D.6), any two of m?,, m3;, m3; can be used as integration vari-

ables.



QCD formulae for hadron
collisions

Parton model formula for cross sections

1
oop = X) = [ dzides 3 1(@01.Q) f1(@2.Q) (12— X)

e (E.1)
Altarelli-Parisi splitting functions
Ppeyfz) = 21022
Preals) =5 [ff_f) T A6(z — 1)]
Pyca(s) = 5 (2 + (1= 2?)
Ppy(z) —3[LHE =T g ) (E.2)

z(1—2)

Differential cross sections for parton-parton scattering

do 2ma? [ s 4+ u?

dcos 6, (ud = ud) = 9s | 2 }
2ra? [s2 +u? 2+t 2 §?

d cos 0, (= uu) = 9s | 2 e T3 m]

do = 2mal [ P
dcos b, (uit — dd) = 9s | s? }

do _ o 2ma? [+ 4w 2 P
d cos 0, (i = wit) = 9s | t2 e T 3 st]

do (uTi — gg) = 167a? {u t9t2+u2}
dcos@, 27s |t uw 4 s2

o 2ra?[ uw s 9s*+u?

dcosﬁ*(ug_)uw: 9s [_s_u 4 2 }
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do (g9 — uT) TS
dcos 0, g9 — uu

do (99 = gg) = %
dcos 0, 99 = 99) =
(E.3)

An exceptionally swift and easy derivation of these cross section for-
mulae can be found in (Peskin 2011). That derivation makes use of some

abstract, but simple and quite fascinating, concepts from quantum field
theory.
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final theory, 343
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Heisenberg uncertainty principle, 11
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irreducible representations
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kinematic A function, 10
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Klein-Gordon equation, 23, 24
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Lagrangian
Dirac theory, 34, 169
electrodynamics of a scalar field, 250
fermion-Higgs couplings, 284
Higgs boson couplings, 327
Klein-Gordon theory, 25
Maxwell’s equations, 29
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QCD, 172, 215
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Standard Model, 288
Yang-Mills theory, 170, 171
Lagrangian mechanics, 25
Landé g-factor, 41
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Lawrence Berkeley Laboratory, 50
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lepton number conservation, 286, 288
Lie algebra, 19, 167
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lifetime of a particle, 89
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local gauge invariance, 166, 250
local gauge transformation, 251, 252
long tail, 272
Lorentz invariance, 7
Lorentz invariants, 130
Lorentz transformation, 8, 198
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macroscopic quantum interference, 293,
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magnetic moment, 41, 43, 67
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mass of a particle, 9
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Maxwell’s equations, 27, 30, 165, 249
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multiple scattering, 80, 84
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natural units, 10, 40
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neutral current interaction, 244
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electron, 311

flavor eigenstates, 314
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neutrino-electron scattering, 320
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non-Abelian gauge theories, 167
non-Abelian gauge theory, 169
non-Abelian group, 14, 167
normal hierarchy, 321
normalization of states, relativistic, 35,
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parton distribution function, pdf, 143,
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parton model, 127
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pion decay constant, fr, 222
pion interaction length, 78
polarization
T lepton, 275
electron, 275
polarization vector, 28, 97, 152, 263
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numerical calculations, 179
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