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Preface

This is a textbook of elementary particle physics, intended for students
who have a secure knowledge of special relativity and have completed
an undergraduate course in quantum mechanics.

Particle physics has now reached the end of a major stage in its de-
velopment. The primary forces that act within the atomic nucleus, the
strong and weak interactions, now have a fundamental description, with
equations that are similar in form to Maxwell’s equations. These forces
are summarized in a compact mathematical description, called the Stan-
dard Model of particle physics. The purpose of this book is to explain
what the Standard Model is and how its various ingredients are required
by the results of elementary particle experiments.

Increasingly, there is a gap between the study of elementary particles
and other areas of physical science. While other areas of physics seem to
apply directly to materials science, modern electronics, and even biology,
particle physics describes an increasingly remote regime of very small
distances. Physicists in other areas are put off by the sheer size and
expense of elementary particle experiments, and by the esoteric terms by
which particle physicists explain themselves. Particle physics is bound
up with relativistic quantum field theory, a highly technical subject, and
this adds to the difficulty of understanding it.

Still, there is much to appreciate in particle physics if it can be made
accessible. Particle physics contains ideas of great beauty. It reveals
some of the most deep and surprising ideas in physics through direct
connections between theory and experimental results. In this textbook,
I attempt to present particle physics and the Standard Model in a way
that brings the key ideas forward. I hope that it will give students an
entryway into this subject, and will help others gain a better under-
standing of the intellectual value of our recent discoveries.

The presentation of elementary particle physics in this book has been
shaped by many years of discussion with experimental and theoretical
physicists. Particle physicists form a global community that brings to-
gether many different points of view and different national styles. This
diversity has been a key source of new ideas that have driven the field
forward. It has also been a source of intuitive pictures that make it pos-
sible to visualize physical processes in the distant and abstract domain of
the subnuclear forces. I have tried to bring as many of these pictures as
possible into my discussion here. My own way of thinking about particle
physics has been shaped by my connection with the great laboratories
at Cornell University and SLAC. I am indebted to many colleagues at
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these laboratories for central parts of the development given here.
I have been reminded often during the writing of this book that many

of the great figures responsible for the formulation of the Standard Model
have passed on to that symposium in the beyond. In only the past few
years, we have lost Sidney Drell, Martin Perl, Richard Taylor, Kenneth
Wilson, and, most recently, Burton Richter. All of these people influ-
enced me personally and profoundly affected my thinking about particle
physics. It is a challenge for us who follow them not only to finish their
work but also to open new chapters in the development of fundamental
physics. I hope that this book will provide useful background for those
who wish to do so.

The core of this presentation was developed as a set of lectures for
CERN summer students in 1997; I thank Luis Alvarez-Gaumé for the
invitation to present these lectures. I have presented parts of this mate-
rial at a number of summer schools and courses, in particular, the course
on elementary physics at the Perimeter Scholars International program
at the Perimeter Institute. Most recently, I have polished this material
by my teaching of the course Physics 152/252 at Stanford University. I
am grateful to Patricia Burchat for giving me this opportunity, and for
much advice on teaching a course at this level. I thank the students in
all of these courses for their patience with preliminary versions of this
book and their attention to errors they contained. I thank Sonke Ad-
lung, Harriet Konishi, Sal Moore, and their team at Oxford University
Press for their interest in this project. I thank Tim Cohen, Serge Den-
das, Christopher Hill, Sunghoon Jung, Andrew Larkoski, Aaron Pierce,
Daniel Schroeder, Bruce Schumm, and André David Tinoco for valuable
comments on the presentation, and Jongmin Yoon for an especially care-
ful reading of the manuscript. Most of all, I thank my colleagues in the
SLAC Theory Group for their advice and criticism that has benefited
my understanding of elementary particle physics.

Michael E. Peskin
Sunnyvale, CA
August, 2018
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Preliminaries and Tools





Introduction 1
The aim of this book is to describe the interactions of nature that act
on elementary particles at distances of the size of an atomic nucleus.

At this time, physicists know about four distinct fundamental inter-
actions. Two of these are macroscopic—gravity and electromagnetism.
Gravity has been known since the beginning of history and has been un-
derstood quantitatively since the time of Newton. Electrical and mag-
netic phenomena have also been known since ancient times. The unified
theory of electromagnetism was given its definitive form by Maxwell in
1865. Through all of these developments, there was no sign that there
could be additional fundamental forces. These would appear only when
physicists could probe matter at very small distances.

The first evidence for additional interactions of nature was Bequerel’s
discovery of radioactivity in 1896. In 1911, Rutherford discovered that
the atom consists of electrons surrounding a very tiny, positively charged
nucleus. As physicists learned more about atomic structure, it became
increasingly clear that the known macroscopic forces of nature could not
give the full explanation. By the middle of the 20th century, experiments
had revealed a series of questions that could not be resolved without new
particles and interactions. These included: These simple questions give the starting

point for the exploration of subnuclear
physics.• What is radioactivity? Why do some atomic nuclei emit high-

energy particles? What specific reactions are responsible? What
are the particles that are emitted in radioactive decay?

• What holds the atomic nucleus together? The nucleus is made of
positively charged protons and neutral neutrons. Electromagnetic
forces destabilize the nucleus—as we see from the fact that heavy
nuclei are unstable with respect to fission. What is the counter-
balancing attractive force?

• What are protons and neutrons made of? These particles have
properties that indicate that they are not elementary pointlike
particles. What gives them structure? What kinds of particles are
inside?

Experiments designed to study these issues produced more confusion
before they produced more understanding. The proton and the neutron
turned out to be the first of hundreds of particles interacting through
the nuclear force. The electron turned out to be only one of three appar-
ently pointlike particles with electric charge but no strong interactions.
All of these particles were observed to interact with one another through
a web of new, short-ranged interactions. Finally, as the 1960’s turned to
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the 1970’s, the new interactions were sorted into two basic forces—called
the strong and the weak interaction—and simple mathematical expres-
sions for these forces were constructed. Today, physicists refer to these
expressions collectively as “the Standard Model of particle physics”.

Sometimes, authors or lecturers present the table of elementary par-
ticles of the Standard Model and imply that this is all there is to the
story. It is not. The way that the forces of nature act on the elementary
particles is beautiful and intricate. Often, the telling details of these
interactions show up through remarkable aspects of the data when we
examine elementary particle behavior experimentally.

These ideas elicit a related question: Of all the ways that nature could
be built, how do we know that the Standard Model is the correct one?
It seems hardly possible that we could pin down the exact nature of new
fundamental interactions beyond gravity and electromagnetism. All of
the phenomena associated with the new forces occur at distances smaller
than an atomic nucleus, and in a regime where both special relativity
and quantum mechanics play an essential role.It is important to remember the theory

of particle physics must be studied to-
gether with the understanding of how
experiments are done and how their re-
sults are interpreted.

In this book, I will explain the answers to these questions. It turns
out that the new forces have common properties and can be built up
from simple ingredients. The presence of these ingredients is revealed
by well-chosen experiments. The dynamics of the new interactions be-
comes more clear at higher energies. With the benefit of hindsight, we
can begin our study today by studying these dynamical ingredients in
their simplest form, working out the consequences of these laws, and
comparing the resulting formulae to data from high energy accelerator
experiments that illustrate the correctness of these formulae in a very
direct way.

Our quest for a fundamental theory of nature is far from complete.
In the final chapter of the book, I will discuss a number of issues about
fundamental forces for which we still have no understanding. It is also
possible, as we probe more deeply into the structure of nature, that we
will uncover new interactions that work at even smaller distances than
those currently explored. But, at least, one chapter of the story, open
since 1896, is now finished. I hope that, working through this book,
you will not only understand how to work with the underlying theories
describing the strong and weak interactions, but also that you will be
amazed at the wealth of evidence that supports the connection of these
theories to the real world.

The book is organized into three Parts. Part I introduces the basicOutline of the book.

materials that we will use to probe the nature of new forces at short
distances. Parts II and III use this as a foundation to build up the
Standard Model theories of the strong and weak interactions.

Part I begins with basic theory that underlies the subject of particlePart I

physics. Even before we attempt to write theories of the subnuclear
forces, we expect that those theories will obey the laws of quantum
mechanics and special relativity. I will provide some methods for using
these important principles to make predictions about the outcome of
elementary particle collisions.
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In addition, I will describe the types of matter in the theories of
strong and weak interactions, the basic elementary particles that in-
teract through these forces. It turns out that there are two types of
matter particles that are elementary at the level of our current under-
standing. Of these, one type, the leptons, are seen in our experiments as
individual particles. There are six known leptons. Three have electric
charge: the electron (e), the muon (µ), and the τ lepton. The other three
are the neutrinos, particles that are electrically neutral and extremely
weakly interacting. Despite this, the evidence for neutrinos as ordinary
relativistic particles is very persuasive; I will discuss this in Part III.

Matter particles of the other type, the quarks, are hidden from view.
Quarks appear as constituents of particles such as protons and neutrons
that interact through the strong interaction. There are many known
strongly interacting particles, collectively called hadrons. I will explain
the properties of the most prominent ones, and show that they are nat-
urally considered in families. On the other hand, no experiment has
ever seen an isolated quark. It is actually a prediction of the Standard
Model that quarks can never appear singly. This makes it especially
challenging to learn their properties. One piece of evidence that the
description of quarks in the Standard Model is correct is found from the
fact it gives a simple explanation for the quantum numbers of observed
hadrons and their assortment into families. I will discuss this also in
Part I. In the process, I will give names to the hadrons that appear
most often in experiments, so that we can discuss experimental methods
more concretely.

In a relativistic quantum theory, forces are also associated with parti-
cles that can be thought to transmit them. The Standard Model contains
four types of such particles. These are the photon, the carrier of the elec-
tromagnetic interaction, the gluon, the carriers of the strong interaction,
the W and Z bosons, the carriers of the weak interaction, and the Higgs
boson, which plays a more subtle role. You will have already encoun-
tered the photon in your study of quantum mechanics. I will introduce
the gluon in Part II and the W , Z, and Higgs bosons in Part III.

To understand experimental findings about elementary particles, we
will need to know at least the basics of how experiments on elementary
particles are done, and what sorts of quantities describing their proper-
ties are measureable. I will discuss this material also in Part I.

Part II begins with a discussion of the most important experiments Part II

that give insight into the underlying character of the strong interaction.
One might guess intuitively that the most convincing data on the strong
interaction comes from the study of collisions of hadrons with other
hadrons. That is incorrect. The experiments that were most crucial in
understanding the nature of strong interaction involved electron scatter-
ing from protons and the annihilation of electrons and positrons at high
energy. This latter process has a initial state with no hadrons at all.
I will begin Part II with a discussion of the features of these processes
at high energy. Our analysis will introduce the concept of the current-
current interaction, which is an essential part of the physics of both the
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strong and weak interactions. Then, through a series of arguments that
pass back and forth between theory and experiment, we will explore the
nature of hadron-hadron collisions at high energy, as revealed today in
experiments at the Large Hadron Collider.

The final chapter of Part II presents our current understanding of the
masses of quarks. It might seem that it is straightforward to measure
the mass of a quark, but in fact this question brings in a number of
new, subtle concepts. This chapter introduces the important idea of
spontaneous symmetry breaking, and other ideas that will prove to be
essential parts of the theory of the weak interaction.

Part III presents the description of the weak interaction. Here I willPart III

begin from a proposal for the nature of the weak interaction that uses
the concept of the current-current interaction that has already proven
its worth in the description of the strong interaction. I will present
some quite counterintuitive, and even startling, predictions of that the-
ory and show that they are actually reproduced by experiment. From
this starting point, again in dialogue between theory and experiment,
we will build up the full theory. My discussion will include the precision
study of the carriers of the weak interaction, the W and Z bosons, and
the newest ingredients in this theory, the masses of neutrinos and the
properties of the Higgs boson.

This is not a complete textbook of elementary particle physics. In
general, I will concentrate on the simplest applications of the Standard
Model, the applications that make the underlying structure of the model
most clear. Most of the processes that I will consider will be studied in
the limit of very high energies, where the mathematical analysis can be
simplified as much as possible. A full discussion of the subject would
cover a more complete list of reactions, including some whose theoretical
analysis is quite complex. Such a full treatment of particle physics is
beyond the scope of this book.

In particular, many aspects of the theory of elementary particles can-
not be understood without a deep understanding of quantum field the-
ory. This book will explain those aspects of quantum field theory that
are absolutely necessary for the presentation, but will omit any sophis-
ticated discussion of this subject. A full description of the properties of
elementary particles needs more.

For students who would like to study further in particle physics, there
are many excellent references written from different and complementary
points of view. I have put a list of the most useful texts at the beginning
of the References.

A particularly useful reference work is the Review of Particle Physics
assembled by the Particle Data Group (Patrignani et al. 2016). This
volume compiles the basic properties of all known elementary particles
and provides up-to-date reviews of the major topics in this subject. All
elementary particle masses and other physical quantities quoted in this
book but not explicitly referenced are taken from the summary tables
given in that source.



Symmetries of Space-Time 2
We do not have complete freedom in postulating new laws of nature. Any
laws that we postulate should be consistent with well-established symme-
tries and invariance principles. On distance scales smaller than an atom,
space-time is invariant with respect to translations of space and time.
Space-time is also invariant with respect to rotations and boosts, the
symmetry transformations of special relativity. Many aspects of exper-
iments on elementary particles test the principles of energy-momentum
conservation, rotational invariance, the constancy of the speed of light,
and the special-relativity relation of mass, momentum, and energy. So
far, no discrepancy has been seen. So it makes sense to apply these pow-
erful constraints to any proposal for elementary particle interactions.

Perhaps you consider this statement too strong. As we explore new
realms in physics, we might well discover that the basic principles applied
in more familiar settings are no longer valid. In the early 20th century,
real crises brought on by the understanding of atoms and light forced
physicists to abandon Newtonian space-time in favor of that of Einstein
and Minkowski, and to abandon the principles of classical mechanics in
favor of the very different tools of quantum mechanics. By setting rela-
tivity and quantum mechanics as absolute principles to be respected in
the subnuclear world, we are making a conservative choice of orienta-
tion. There have been many suggestions of more radical approaches to
formulating laws of elementary particles. Some of these have even led to
new insights: The bootstrap of Geoffrey Chew, in which there is no fun-
damental Hamiltonian, is still finding new applications in quantum field
theory (Simmons-Duffin 2017); string theory, which radically modifies
space-time structure, is a candidate for the overall unification of parti-
cle interactions with quantum gravity (Zwiebach 2004, Polchinski 2005).
However, the most successful routes to the theory of subnuclear interac-
tions have taken translation invariance, special relativity, and standard
quantum mechanics as absolutes. In this book, I will make the assump-
tion that special relativity and quantum mechanics are correct in the
realm of elementary particle interactions, and I will use their principles
in a strong way to organize my exploration of elementary particle forces.

This being so, it will be useful to formulate the constraints from space-
time symmetries in such a way that we can apply them easily. We
would like to use the actual transformation laws associated with these
symmetries as little as possible. Instead, we should formulate questions
in such a way that the answers are expressions invariant under space-
time symmetries. Generally, there will be a small and well-constrained
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set of possible invariants. If we are lucky, only one of these will be
consistent with experiment.

2.1 Relativistic particle kinematics

As a first step in simplifying the use of constraints from special rel-
ativity, I will discuss the kinematics of particle interactions. Any iso-
lated particle is characterized by an energy and a vector momentum. In
special relativity, these are unified into a 4-vector. I will write energy-
momentum 4-vectors in energy units and notate them with an index
µ = 0, 1, 2, 3,Representation of the energy and mo-

mentum of a particle in 4-vector nota-
tion.

pµ = (E, ~pc)µ . (2.1)

I will now review aspects of the formalism of special relativity. Prob-
ably you have seen these formulae before in terms of rulers, clocks, and
moving trains. Now we will need to use them in earnest, because elemen-
tary particle collisions generally occur at energies at which it is essential
to use relativistic formulae.

Under a boost by v along the 3̂ direction, the energy-momentum
4-vector transforms as p→ p′, with

E′ =
1√

1− v2/c2
(E +

v

c
p3c) , p3′c =

1√
1− v2/c2

(p3c+
v

c
E) ,

p1,2′c = p1,2c . (2.2)

It is convenient to write this as a matrix transformation

p′ = Λp with Λ =


γ 0 0 γβ
0 1 0 0
0 0 1 0
γβ 0 0 γ

 , (2.3)

where

β =
v

c
γ =

1√
1− β2

. (2.4)

In multiplying matrices and vectors in this book, I will use the con-
vention that repeated indices are summed over. Then, for example, I
will write (2.3) as

p′µ = Λµν p
ν . (2.5)

omitting the explicit summation sign for the index ν. Lorentz trans-In this book, unless it is explicitly in-
dicated otherwise, repeated indices are
summed over. This convention is one
of Einstein’s lesser, but still much ap-
preciated, innovations.

formations leave invariant the Minkowski space vector product

p · q = EpEq − ~p · ~q . (2.6)

To keep track of the minus sign in this product, I will make use of
raised and lowered Lorentz indices. Lorentz transformations preserve
the metric tensor

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.7)
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Using this matrix, and the summation convention, we can write (2.6) as

p · q = pµηµνq
ν . (2.8)

Alternatively, let q with a lowered index be defined by I will use raised and lowered Lorentz
indices to keep track of the minus
sign in the Minkowski vector prod-
uct. Please pay attention to the po-
sition of indices—raised or lowered—
throughout this book.

qµ = ηµνq
ν = (Eq,−~q)µ . (2.9)

The invariant product of p and q is written

p · q = pµqµ . (2.10)

To form an invariant, we always combine a raised index with a lowered
index. As the equations in this book become more complex, we will
find this trick very useful in keeping track of the Minkowski space minus
signs.

A particularly important Lorentz invariant is the square of a Lorentz
vector,

p · p ≡ p2 = E2 − |~p|2c2 . (2.11)

Being an invariant, this quantity is independent of the state of motion
of the particle. In the rest frame

pµ = (E0,~0)µ . (2.12)

I will define the mass of a particle as its rest-frame energy The mass of a particle is a Lorentz-
invariant quantity that characterizes
that particle in any reference frame.(mc2) ≡ E0 . (2.13)

Since p2 is an invariant, the expression

(mc2)2 = p2 = E2 − |~p|2c2 (2.14)

is true in any frame of reference.
In this book, I will write particle momenta in two standard ways

pµ = (Ep, ~pc)
µ or pµ = mc2γ(1, ~β)µ , (2.15)

where Definitions of the quantities Ep, β, γ
associated with relativistic particle mo-
tion.

Ep = c(|~p|2 + (mc)2)1/2 , β =
|~p|c
Ep

, γ = (1− β2)1/2 . (2.16)

Especially, the symbol Ep will always be used in this book to represent
this standard function of momentum and mass. I will refer to a 4-vector
with E = Ep as being “on the mass shell”.

To illustrate these conventions, I will now work out some simple but
important exercises in relativistic kinematics. Imagine that a particle of
mass M , at rest, decays to two lighter particles, of masses m1 and m2. In
the simplest case, both particles have zero mass: m1 = m2 = 0. Then,
energy-momentum conservation dictates that the two particle energies
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are equal, with the value Mc2/2. Then, if the final particles move in the
3̂ direction, we can write their 4-vectors as

pµ1 = (Mc2/2, 0, 0,Mc2/2)µ pµ2 = (Mc2/2, 0, 0,−Mc2/2)µ . (2.17)

The next case, which will appear often in the experiments we will
consider, is that with m1 nonzero but m2 = 0. In the rest frame of the
original particle, the momenta of the two final particles will be equal
and opposite. With a little algebra, one can determine

pµ1 = (Ep, 0, 0, pc)
µ , pµ2 = (pc, 0, 0,−pc)µ (2.18)

(for motion in the 3̂ direction), whereThese kinematic formulae will be used
very often in this book.

Ep =
M2 +m2

1

2M
c2 , pc =

M2 −m2
1

2M
c2 . (2.19)

It is easy to check that these formulae satisfy the constraints of to-
tal energy-momentum conservation and that pµ1 satisfies the mass-shell
constraint (2.14).

Finally, we might consider the general case of nonzero m1 and m2.
Here, it takes a little more algebra to arrive at the final formulae

pµ1 = (E1, 0, 0, pc)
µ , pµ2 = (E2, 0, 0,−pc)µ (2.20)

with

E1 =
M2 +m2

1 −m2
2

2M
c2 , E2 =

M2 −m2
1 +m2

2

2M
c2 , (2.21)

and
p =

c

2M
(λ(M,m1,m2))1/2 , (2.22)

where the kinematic λ function is defined by

λ(M,m1,m2) = M4 − 2M2(m2
1 +m2

2) + (m2
1 −m2

2)2 . (2.23)

These three sets of formulae apply equally well to reactions with two
particles in the initial state and two particles in the final state. It is
only necessary to replace Mc2 with the center of mass energy ECM of
the reaction.

2.2 Natural units

In the discussion of the previous chapter, I needed to introduce many
factors of c in order to make the treatment of energy, momentum, and
mass more uniform. This is a fact of life in the description of high
energy particles. Ideally, we should take advantage of the worldview of
relativity to pass seamlessly among these concepts. Equally well, our
discussions of particle dynamics will take place in a regime in which
quantum mechanics plays an essential role. To make the best use of
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quantum concepts, we should be able to pass easily between the concepts
of momentum and wavenumber, or energy and frequency.

To make these transitions most easily, I will, in this book, adopt nat-
ural units,

h̄ = c = 1 . (2.24)

That is, I will measure momentum and mass in energy units, and I will
measure distances and times in inverse units of energy. For convenience The conventions that define natural

units.in discussing elementary particle physics, I will typically use the en-
ergy units MeV or GeV. This will eliminate a great deal of unnecessary
baggage that we would otherwise need to carry around in our formulae.

For example, to write the mass of the electron, I will write

not me = 0.91× 10−27g but rather me = 0.51 MeV . (2.25)

An electron with a momentum of the order of its rest energy has, ac-
cording to the Heisenberg uncertainty principle, a position uncertainty

h̄

mec
= 3.9× 10−11 cm , (2.26)

which I will equally well write as

1

me
= (0.51 MeV)−1 . (2.27)

Natural units make it very intuitive to estimate energies, lengths, and
times in the regime of elementary particle physics. For example, the Natural units are useful for estimation.

lightest strongly interacting particle, the π meson, has a mass

mπc
2 = 140 MeV . (2.28)

This corresponds to a distance

h̄

mπc
= 1.4× 10−13 cm (2.29)

and a time
h̄

mπc2
= 0.47× 10−22 sec . (2.30)

These give—within a factor 2 or so—the size of the proton and the The material in this book will be easier
to grasp if you make yourself comfort-
able with the use of natural units. This
will both simplify formulae and simplify
many estimates of energies, distances,
and times.

lifetimes of typical unstable hadrons. So, the use of mπ gives a good
first estimate of all dimensionful strong interaction quantities. To obtain
an estimate in the desired units—MeV, cm, sec—we would decorate
the simple expression mπ with appropriate factors of h̄ and c and then
evaluate as above.

It may make you uncomfortable at first to discard factors of h̄ and c.
Get used to it. That will make it much easier for you to perform calcu-
lations of the sort that we will do in this book. Some useful conversion
factors for moving between distance, time, and energy units are given in
Appendix B.
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One interesting quantity to put into natural units is the strength of
the electric charge of the electron or proton. The Coulomb potential is
given in standard notation by

V (r) =
e2

4πε0r
. (2.31)

I will use units for electromagnetism in which also

ε0 = µ0 = 1 . (2.32)

Then the Coulomb potential reads

V (r) =
e2

4π

1

r
. (2.33)

Since r, in natural units, has the dimensions of (energy)−1, the value of
the electric charge must have a form in which it is dimensionless. Indeed,

α ≡ e2

4πε0h̄c
(2.34)

is a dimensionless number, called the fine structure constant, with the
value

α = 1 / 137.036 . (2.35)

There are two remarkable things about this equation. First, it is sur-
prising that there is a dimensionless number α that characterizes the
strength of the electromagnetic interaction. Second, that number is
small, signalling that the electromagnetic interaction is a weak interac-
tion. One of the goals of this book will be to determine whether theThe intrinsic strengths of the basic el-

ementary particle interactions are not
apparent from the size of their effect—
or from their names. Here is a preview.

strong and weak subnuclear interactions can be characterized in the same
way, and whether these interactions—looking beyond their names—are
intrinsically strong or weak. I will discuss estimates of the strong and
weak interaction coupling strengths at appropriate points in the course.
It will turn out that the strong interaction is weak, at least when mea-
sured under the correct conditions. It will also turn out that the weakGroup theory plays an important role

in quantum mechanics, and this im-
portance extends to the study of el-
ementary particle physics. You have
encountered group theory concepts in
your quantum mechanics course, but it
is likely that those arguments did not
make explicit reference to group the-
ory concepts. In particle physics, we
lean much more heavily on group the-
ory, and so it is best to discuss these
concepts formally and give them their
proper names. Please, then, study Sec-
tions 2.3 and 2.4 carefully, especially
if you are uncomfortable with mathe-
matic abstraction. With careful read-
ing, you will see that the concepts I
describe generalize physical arguments
that are already familiar to you.

interaction is also weak in dimensionless terms. It is weaker than the
strong interactions, but not as weak as electromagnetism.

2.3 A little theory of discrete groups

Group theory is a very important tool for elementary particle physics.
In this section and the next, I will review how group theory is used in
quantum mechanics, and I will discuss some properties of groups that
we will meet in this book. For the most part, these sections will review
material that you have seen in your quantum mechanics course. But,
because there will be many appeals to group theory concepts in this
book, it will be best to put these concepts clearly in order. For this
reason, these two sections will be rather precise and formal. This level
of precision will pay off as we use these ideas in many examples.
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In quantum mechanics, we deal with groups on two levels. First,
there are abstract groups. In mathematics, a group is a set of elements
G = {a, b, . . .} with a multiplication law defined, so that ab is defined and
is an element of G. The multiplication law satisfies the three properties Here are the axioms that define a

group.

(1) Multiplication is associative: a(bc) = (ab)c.

(2) G contains an identity element 1 such that, for any element of G,
1a = a1 = a.

(3) For each a in G, there is another element a−1 such that aa−1 =
a−1a = 1.

Every symmetry of nature normally encountered in physics satisfies these
axioms and is described by an abstract group.

In quantum mechanics, the basic elements are vectors (or, quantum
states) in a Hilbert space. Symmetries convert one of these states to
another by a unitary transformation. The physics problem we are The action of a group on the Hilbert

space of states in quantum mechanics is
described through unitary representa-
tions of the group. Thus, unitary group
representations will be used in many as-
pects of the physics discussed in this
book.

interested in is described by a Hamiltonian H whose eigenvalues give
the energy levels. A symmetry of the problem is implemented by a
unitary transformation U . If [U , H] = 0, states linked by U have the
same energy.

This relation between symmetries of the Hamiltonian and unitary op-
erators gives special importance to the following construction: For any
group G with elements {a}, we can find unitary matrices Ua that obey
the multiplication law of the group. That is, if a, b, c are elements of G
with ab = c, then the corresponding matrices obey

UaUb = Uc (2.36)

by matrix multiplication. In particular, the unitary matrix correspond-
ing to 1 is the matrix 1, and the unitary matrix corresponding to a−1

is the matrix U−1 = U†. The set of matrices {Ua} is called a unitary
matrix representation of the group G. The group G is a symmetry of the
Hamiltonian H if this group has a unitary representation {Ua} acting
on the Hilbert space such that, for all a, [Ua, H] = 0.

These ideas are easiest to understand in the context of a small set
of quantum states that form a finite-dimensional Hilbert space. The
simplest example involves the abstract group called Z2 that contains
two elements {1,−1} satisfying the multiplication law

1 · 1 = (−1)(−1) = 1 1 · (−1) = (−1) · 1 = (−1) . (2.37)

Consider, then, a quantum mechanical system with two particles π+

and π−. Define the operator C to transform

C
∣∣π+

〉
=
∣∣π−〉 , C

∣∣π−〉 =
∣∣π+

〉
. (2.38)

The action of C on this 2-dimensional subspace is represented by the
matrix (

0 1
1 0

)
acting on

(
|π+〉
|π−〉

)
. (2.39)
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IfH is the Hamiltonian for this quantum-mechanical system and [C,H] =
0, that would imply that the masses and decay rates of π+ and π− must
be equal. On the same Hilbert space, we can define the trivial operation

1
∣∣π+

〉
=
∣∣π+

〉
, 1

∣∣π−〉 =
∣∣π−〉 . (2.40)

This is represented by(
1 0
0 1

)
acting on

(
|π+〉
|π−〉

)
. (2.41)

The unitary matrices {1, C} form a unitary representation of the group
Z2. If these matrices commute with H, we say that H has Z2 symmetry.

We can discuss the relation of C to H and its eigenstates without
making explicit reference to the fact that the unitary matrix C represents
a group. However, using the language of group theory connects this
example to others that we might have studied. Not all groups are as
simple to understand as Z2, and, the more complicated the group, the
more useful this connection is.

A group G is called Abelian if, for all a, b in G, ab = ba. A unitarity
representation of an Abelian group G consists of unitary matrices that
commute with one another. This means that they can be simultaneously
diagonalized. The operation of the group is then reduced to simple
numbers. In the example above, the matrices (2.41) and (2.39) areAn Abelian group is described by its

eigenstates and their eigenvalues. The
eigenvalues are precisely what physi-
cists call the quantum numbers of a
state.

diagonalized in a common basis. It is conventional to use C also as a
symbol for the eigenvalue of C on one of its eigenstates. In this case,
the eigenstates are

C = +1 : [
∣∣π+

〉
+
∣∣π−〉]/√2

C = −1 : [
∣∣π+

〉
−
∣∣π−〉]/√2 . (2.42)

Because C2 = 1, operating twice with the matrix C must give back the
original state: C · C |ψ〉 = |ψ〉. This must, in particular, be true for an
eigenstate. Then the eigenvalues of C can only be ±1. We say that the
first state in (2.42) has C = +1 and the second has C = −1.

Symmetries of the Hamiltonian may involve transformations of space-
time coordinates, such as the special relativity transformations discussed
in Section 2.1. These are called space-time symmetries. In the examples
like the one above, the symmetry relate different particles or quantum
states without reference to space-time. These are called internal sym-
metries. A given abstract group such as Z2 may describe a space-time
or an internal symmetry.

If G contains two elements a, b that do not commute, ab 6= ba, it is
called a non-Abelian group. If G is non-Abelian, and {Ua} is a unitary
representation of G, it is generally not possible to simultaneously diag-
onalize all of the unitary matrices in {Ua}. However, by a change of
basis, we can reduce these matrices to a common block-diagonal form

UR →

U1 0 0
0 U2 0
0 0 U3

 , (2.43)
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where the blocks U1, U2, U3, · · · are as small as possible. These minimal-
size unitary transformations representing G are called irreducible unitary
representations of G. For an irreducible representation {Ui}, the size of
the matrices is called the dimension di of the representation. The notion
of irreducible representations is probably more familiar to you in the
context of continuous groups. I will put your knowledge of the rotation The concept of an irreducible group

representation. Many physics problems
in quantum mechanics are solved by
breaking up a larger Hilbert space into
irreducible representations of an appro-
priate symmetry group.

group into this context in the next section.
It is a standard mathematical problem in group theory to work out

the set of irreducible representations of a group G that are inequivalent
by unitary transformations. It can be proved that, for a discrete group
G with n elements, the inequivalent unitary transformations satisfy∑

i

d2
i = n . (2.44)

An example is given by the group of Π3 of permutations on three
elements. We can represent such a permutation as the result of trans-
forming the set of labels [123] to a set of labels in another order. With
this representation, the group has 6 elements that can be written

{ [123] , [231] , [312] , [132] , [321] , [213] } . (2.45)

Permutations multiply a · b = c by composition, for example,

[231] · [231] = [312]

[132] · [312] = [321] . (2.46)

That is, applying the two permutations in order (right to left) gives the
resulting permutation as shown.

The 6 permutations in (2.45) can be associated with 6 states in a
Hilbert space. In this representation, the representation matrices are
6 × 6 matrices with entries 0 and 1. It can be shown that this is a
reducible representation. It contains two 1-dimensional irreducible rep-
resentations. One of these is the trivial representation that multiplies
each element by 1. Another is the representation that multiplies a state
by +1 for an even or cyclic permutation—the first three elements of
(2.45)—and multiplies a state by −1 for an odd permutation—the last
three elements of (2.45). There is also one 2-dimension representation,
presented in Problem 2.3. These three irreducible representations to-
gether satisfy (2.44).

2.4 A little theory of continuous groups

The concepts reviewed in the previous section extend to the situation
of groups with a continous set of elements. Important examples are
the basic space-time symmetries: the group of spatial translations, the
group of spatial rotations, and the group of Lorentz transformations,
which includes rotations and boosts.
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The group of space translations has the simplest structure. All trans-
lations commute with one another. You learned in quantum mechan-
ics that translations are implemented by unitary transformations. For
translations by a in one dimension

U(a) = exp[−iaP ] (2.47)

where P is the operator measuring the total momentum of the system.
This is made most clear by considering the wavefunction of a plane wave
of momentum p,

〈x|p〉 = eipx . (2.48)

Acting on the state |p〉 with (2.47), we findThe action of a space translation in
quantum mechanics gives a simple ex-
ample of a unitary representation of an
Abelian group.

〈x|U(a) |p〉 = eip(x−a) , (2.49)

which is the same wavefunction displaced by a. Using the language in-
troduced in the previous section, we say that the set of unitary operators
{U(a)} is a unitary representation of the group of space translations.

The expression of each U(a) as an exponential implies a relation be-
tween the group of translations and the Hermitian operator P . We
describe this relationship by saying that P is the generator of {U(a)} or
the generator of the group of translations.

The statement that P is Hermitian is equivalent to the statement that
the U(a) are unitary,

U(a)† = exp[+iaP †] = exp[+iaP ] = U(a)−1 . (2.50)

Then, continuous unitary transformations are generated by Hermitian
operators. In quantum mechanics, Hermitian operators correspond to
observables.

Observables have time-independent values if the corresponding opera-
tors commute with the Hamiltonian of the quantum mechanics problem.
In this example, momentum is conserved if [P,H] = 0. Through the cor-
respondence (2.47), this statement is exactly equivalent to the statement
that [U(a), H] = 0, that is, that the equations of motion of the system
are invariant under translations. This relation is completely general. IfIn quantum mechanics, every symme-

try that leaves the Hamiltonian invari-
ant is associated with a conserved quan-
tity. This follows from the connection
between Hermitan operators and uni-
tary symmetry transformations.

Q is a Hermitian operator on the Hilbert space, the statement that Q is
a conserved quantity,

[Q,H] = 0 . (2.51)

is equivalent to the statement that Q generates a symmetry of the equa-
tions of motion,

[UQ(a), H] = 0 for UQ(a) = exp[−iaQ] . (2.52)

This is the quantum-mechanical version of Noether’s theorem in classical
mechanics: Every symmetry of the equations of motion is associated
with a conservation law, and vice versa.

The group of translations is an Abelian group, since all translations
commute with one another. This implies that all of the matrices U(a)
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can be simultaneously diagonalized. Actually, for every U(a), the eigen-
states of U(a) are the eigenstates of P , that is, states of definite momen-
tum. Each eigenstate of P gives a one-dimensional unitary representa-
tion of the translation group.

A non-Abelian continuous group that should be familiar to you is the
rotation group in 3 dimensions. In quantum mechanics, rotations are The action of rotations in quantum me-

chanics gives an example of the unitary
representation of a non-Abelian group.

implemented on the Hilbert space by the unitary operators

U(~α) = exp[−i~α · ~J ] (2.53)

where ~α gives the axis and angle of the rotation and ~J are the opera-
tors of angular momentum. These operators satisfy the commutation As in the previous example, the con-

servation law of angular momentum is
associated with the symmetry of invari-
ance under rotations.

relation
[J i, Jj ] = iεijkJk . (2.54)

It can be shown that, if Hermitian operators J i satisfy (2.54), the unitary
operators constructed from them satisfy the composition rules of 3d
rotations. That is, if

U(~β)U(~α) = U(~γ) , (2.55)

then the rotation ~γ is the one that results from rotating first through
~α and then through ~β. The operators J i are thus the generators of
rotations. In fact the complete structure of the group of rotations is
specified by the commutation relation (2.54).

In quantum mechanics, finite-dimensional matrix representations of
the rotation group play an important role. The quantum states of atoms
are organized into multiplets of definite angular momentum, for example,
the 2P or 3D states of the hydrogen atom. States of definite angular mo-
mentum give the finite-dimensional irreducible matrix representations of
the rotation group.

Through the correspondence (2.53), a finite-dimensional representa-
tion of the rotation group is generated by a set of finite-dimensional
matrices that satisfy (2.54). The simplest such representations are the
trivial, 1-dimensional representation

J i = 0, (2.56)

the 2-dimensional representation

J1 =
σ1

2
, J2 =

σ2

2
, J1 =

σ3

2
, (2.57)

where σi are the Pauli sigma matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.58)

and the 3-dimensional representation

J1 =

 0 0 0
0 0 −i
0 i 0

 , J2 =

 0 0 i
0 0 0
−i 0 0

 , J3 =

 0 −i 0
i 0 0
0 0 0

 .

(2.59)
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It is instructive to check explicitly that (2.57) and (2.59) satisfy (2.54).
The three representations given here are those of spin 0, spin 1

2 , and
spin 1. We will meet these representations again and again in the ap-
plications I will discuss in this book. Similarly, for every integer or
half-integer value j, there is a set of three (2j + 1) × (2j + 1) matrices
satisfying these commutation relations. This is the spin j representation
of the rotation group.

One of the standard problems in atomic physics is to decompose a
set of quantum states into irreducible representations of the rotation
group. For example, states of an atom may be labelled by orbitalThe reduction of a set of states of an

atom with orbital and spin angular mo-
menta (`, s) into states of total angu-
lar momentum j is an example of the
reduction of a reducible representation
of a continuous group—in this case,
the rotation group—into a sum of ir-
reducible representations.

angular momentum ` and spin angular momentum s. This gives a set
of states with (2` + 1)(2s + 1) elements. The total angular momentum
j takes values

|`− s| ≤ j ≤ (`+ s) . (2.60)

Since [ ~J,H] = 0, each value of j gives a set of (2j + 1) states with the
same energy. In Section 4.1, we will translate this group theory exercise
into a statement about the energy levels of the hydrogen atom.

We can consider the group of rotations in 3 dimensions as an abstract
group whose multiplication law is defined by the composition of rota-
tions. This group is called SO(3). Similarly, there is an abstract group
of rotations in d dimensions, called SO(d). The case d = 2 is simple; it is
the group of rotations of a circle, an Abelian group of translations of an
angle φ, with φ identified with (φ+2π). This abstract group is the same
one that we meet when we consider the group of phase transformations

e−iφ → e−iαe−iφ . (2.61)

This is a transformation by a 1 × 1 unitary matrix, so we also call this
group U(1).

General n × n unitary matrices form a representation of an abstract
group called U(n). Any n×n unitary matrix can be written in the form
of (2.47) as generated by a set of n× n Hermitian matrices

U = exp[−iαata] . (2.62)

The sum over a runs over a basis of n × n Hermitian matrices, which
contains n2 elements. One of these elements is the unit matrix,

t0 = 1 (2.63)

This matrix commutes with all of the other ta. If we omit this elementDefinition of the group SU(n).

from the set of Hermitian matrices, we obtain a non-Abelian group of
matrices with n2−1 generators, the n×n Hermitian matrices with zero
trace. The group generated by these n2− 1 matrices is called SU(n). It
is the group of n× n unitary matrices with determinant 1.

For n = 2, the Pauli sigma matrices (2.58) form a basis for the 2× 2
traceless Hermitian matrices. Thus, SO(3) and SU(2) are names for the
same abstract group. (Mathematicians make a distinction between these
groups, but the difference will not be relevant to the calculations done
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in this book.) This abstract group describes rotations in three dimen-
sions, but it will also describe some internal symmetries of elemementary
particles that we will meet in the course of our discussion.

A continuous group of transformations generated by Hermitian matri-
ces, in the form (2.62), is called a Lie group. The commutation algebra
of the generators ta, This equation, which expresses the non-

commuting nature of the generators of
a Lie group, contains the full informa-
tion about the representations and the
geometry of the group.

[ta, tb] = ifabctc (2.64)

is called the Lie algebra of the group. The constants fabc are called
the structure constants of the Lie algebra. It can be shown that we can
always choose a basis for the ta such that the structure constants fabc are
completely antisymmetric in [abc]. These definitions straightforwardly
generalize the presentation that I have given of the rotation group in 3
dimension. In the case of the rotation group,

fabc = εabc . (2.65)

In the same way as for the rotation group, the Lie algebra of the gen-
erators determines the multiplication law of any two elements of the
group.

In this book, we will meet only special cases of Lie groups. The
particular groups U(1) = SO(2), SU(2) = SO(3), and SU(3) will
have important roles in our story. Still, the abstract properties of Lie
groups will be useful to us in understanding how to apply these groups
to particle physics. I will introduce some further formalism of Lie groups
when we will need it in Chapter 11.

2.5 Discrete space-time symmetries

The symmetries of special relativity include the continuous symme-
tries of rotations and Lorentz transformations. But they also include two
distinct space-time transformations that leave the metric tensor (2.7) in-
variant but cannot be constructed as a product of continuous rotations
and boosts. This will turn out to be an important issue for elemen-
tary particle physics. According to Noether’s theorem, conservation of
energy-momentum is equivalent to the invariance of the equations of
motion with respect to space-time translations, and the conservation of
angular momentum is equivalent to the invariance of the equations of
motion with respect to rotations and boosts. However, there is no funda-
mental principle that implies that extra, discrete space-time transforma-
tions must be symmetries of the Hamiltonian or that the conservation
of quantities associated with these extra discrete symmetries must be
conserved. This is a separate question that in principle can only be an-
swered by experiment. We will see in Part III that the answer given to
this question is quite surprising.

The two space-time transformations that are not part of the contin-
uous Lorentz group are parity (P ) and time reversal (T ). These Minkowski space has two extra space-

time symmetries: parity P and time-
reversal T .

space-time operations satisfy

P 2 = 1 T 2 = 1 (2.66)
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In quantum mechanics, these transformations are implemented by oper-
ators with eigenvalues±1. I will also refer to the eigenvalue of a quantum
state as the value P or T for that state. Continuous Lorentz invariance
does not imply that these values P and T are conserved. However, P
and T are observed to be conserved in electromagnetism and atomic
physics. The study of energy levels of nuclei confirms that P and T are
also conserved by the strong nuclear interaction.

Parity is defined as the operation on 4-vectors

xµ = (x0, ~x)µ → (x0,−~x)µ . (2.67)

A rotation matrix, for example,

Λ =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 , (2.68)

or, indeed, any matrix that implements a continuous Lorentz transfor-
mation, has

det Λ = +1 , (2.69)

while (2.67) is implemented by a matrix with det Λ = −1. Thus, this
matrix cannot be generated as a product of continuous rotations. Time
reversal is defined similarly as the operation

xµ = (x0, ~x)µ → (−x0, ~x)µ . (2.70)

By the same logic, time reversal cannot be continuously generated.
In quantum mechanics, an isolated particle can also have an intrinsic

parity. That is, under parity, its quantum state of momentum ~k canA quantum particle can have intrinsic
parity +1 or −1. transform as

P
∣∣∣A(~k)

〉
= +

∣∣∣A(−~k)
〉

or −
∣∣∣A(−~k)

〉
. (2.71)

We refer to these two cases as intrinsic parity (+1) or (−1). A particle
can also have an intrinsic quantum number under time reversal.

In quantum mechanics, time reversal is implemented by an anti-unitary
operator. In this book, I will avoid detailed analysis of time-reversal
properties as much as possible.

There is one more discrete transformation that is closely related to
these space-time operations. As we will see in the next chapter, quantum
field theory implies that, for each particle in nature, there must exist an
antiparticle with the same mass and opposite values of all conserved
charges. We can then define an operation called charge conjugation (C)
that converts each particle to its antiparticle and vice versa. C thenIt is useful to consider charge conjuga-

tion C as a discrete space-time trans-
formation on the same level as P and
T .

also naturally satisfies
C2 = 1 . (2.72)

Quantum states can have intrinsic values of C equal to +1 or −1. C
is observed to be conserved in electromagnetic and strong nuclear reac-
tions.
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I have already explained that it is a question for experiment whether
P , C, and T are conserved by all interactions in nature. However, it is
a theorem in quantum field theory that the combination CPT must be
a symmetry of all particle interactions. This statement can be tested
experimentally and, so far, it holds up. We will take up the issue of
the separate conservation of P , C, and T in our discussion of the weak
interaction in Part III.

Exercises

(2.1) Consider the decay of a particle of mass M , at
rest, into two particles with masses m1 and m2,
both nonzero. With an appropriate choice of axes,
the momentum vectors of the final particles can be
written

p1 = (E1, 0, 0, p) p2 = (E2, 0, 0,−p) (2.73)

with E2
1 = p2 +m2

1, E2
2 = p2 +m2

2.

(a) Show that

p =

[
(M4−2M2(m2

1+m2
2)+(m2

1−m2
2)2

]1/2

/2M

(2.74)

(b) Take the limit m2 → 0 and show that this
formula reproduces the result (2.19) for the
decay into one massive and one massless par-
ticle.

(c) Find formulae for E1 and E2 in terms of M ,
m1, m2.

(2.2) Using natural units, estimate the following quanti-
ties:

(a) If the photon has a mass, the electric fields
generated by charges will fall off exponentially
at distances larger than the photon Compton
wavelength. It is possible to obtain limits on
the photon mass by looking for this effect in
the solar system. For example, the magnetic
field of Jupiter is found to be a conventional
dipole field out to many times the radius of
the planet. Estimate the corresponding upper
limit on the photon mass in MeV.

(b) The range of the weak interaction is given by
Compton wavelength of the W boson, which
has a mass of 80.4 GeV. Estimate this length
in cm.

(c) If the electron is a composite particle with
a nonzero size, that will affect the ob-
served rate for electron-electron and electron-
positron scattering. Given that these rates
are in good agreement with the predictions
for pointlike electrons up to a center of mass
energy of 200 GeV, estimate the upper limit
on the size of the electron, in cm.

(2.3) Show that the following are unitary representations
of the permutation group Π3 by verifying that they
satisfy the multiplication law of Π3:

(a) The 1-dimension representation in which all
six permutations in (2.45) are represented by
1.

(b) The 1-dimension representation in which
[123], [231], and [312] are represented by 1
and [213], [321], and [132] are represented by
−1.

(c) The 2-dimensional representation that assigns

[123]→
(

1 0
0 1

)
[231]→

(
0 −1
1 −1

)
[312]→

(
−1 1
−1 0

)
[213]→

(
0 1
1 0

)
[321]→

(
1 −1
0 −1

)
[132]→

(
−1 0
−1 1

)
(2.75)

(2.4) This problem explores the non-Abelian nature of
the Lorentz group.

(a) The 4×4 matrix Λ3(β) that represents a boost
by β in the 3̂ direction is given by (2.3). Write
the corresponding 4×4 matrix Λ1(β) that rep-
resents a boost by β in the 1̂ direction.
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(b) Compute the composite Lorentz transforma-
tion ΛC = Λ1(β) Λ3(β). The component
ΛC

0
0 of this matrix should be the compos-

ite boost γC . From this, compute the new
velocity βC .

(c) By acting ΛC on the 4-vector (1, 0, 0, 0), show
that the elements ΛC

i
0 give the direction of

the boost. Show from this that the new veloc-
ity is ~βC = (β, 0, β/γ). Show that the mag-
nitude of this vector agrees with the result of
part (b).

(d) The matrix ΛC is not symmetric, so it cannot
be a pure boost. It is, in fact, a combination
of a boost and a rotation. To understand this
better, expand the elements of ΛC in powers
of β for small β, keeping terms up to order
β2.

(e) Write the Λ matrix for a pure boost to the ve-
locity ~βC . This matrix should be symmetric.
The space-space part should be

δij + (γC − 1)
βiCβ

j
C

β2
C

. (2.76)

(f) Expand the matrix found in part (d) to order
β2. Show that it explains the symmetric part
of the result found in part (d). Identify the
remaining antisymmetric part as an infinites-
imal rotation in the 3̂-1̂ plane. The rotation
that results from the non-commuting nature
of boosts in different directions is called a
Wigner rotation.

(2.5) Consider an event in which an unstable particle H
decays into two photons. Work in the rest frame
of the unstable particle. The photons are emitted
back-to-back. Take the 3̂ axis to be aligned with
the direction of the photons. Let photon 1 be the
one travelling in the +3̂ direction and photon 2 be
the one travelling the −3̂ direction.

(a) Argue that the spin of H must be integer, not
half-integer.

(b) Possible polarization vectors for the photon 1
are

~ε1R =
1√
2

(1̂ + i2̂) ~ε1L =
1√
2

(1̂− i2̂)

(2.77)
Rotate these vectors by φ about the 3̂ axis. A
state of angular momentum J3 = +1 gets a
phase e−iφ. Show that the two choices corre-
spond to photon states of angular momentum
J3 = +1 and −1, respectively, about the 3̂
axis.

(c) Write the corresponding polarization vectors
for photon 2, by rotating the vectors in (1) by
180◦ about 2̂. These have J3 = +1,−1 about
the direction of motion of the photon (which
is now −3̂).

(d) The wavefunction of the 2-photon state is
then a sum of terms of the form

~ε1X~ε2Y (2.78)

where X,Y = R,L. There are four possible
values for (X,Y ). For each, compute the total
J3 for the state (2). Show that, in the states
with X = R, Y = L or X = L, Y = R, the
spin of the original particle H must be ≥ 2.

(e) Consider the state with X = Y = R. Show
that this state is transformed into itself by a
rotation by 180◦ about 2̂. The same is true
for the state X = Y = L.

(f) If the original particle H has spin J and de-
cays to the state X = Y = R, it must have
been in the state |J0〉, with J3 = 0. How
does this state transform when rotated by
180◦ about 2̂? (The transformation must be
the same as that of the spherical harmonic
YJ0(θ, φ).)

(g) Conclude that an unstable particle of spin 1
may not decay to two photons. This result is
called the Landau-Yang theorem. (Note that
invariance under parity has not been used in
this argument.)



Relativistic Wave
Equations 3
In the previous chapter, I developed some simple rules for the treatment
of special relativity that will aid us in our search for the laws of ele-
mentary particle interaction. In this chapter, I will discuss some of the
concepts that we will need to use quantum mechanics effectively.

The standard treatment of 1-particle quantum mechanics will not be
adequate for our purposes. First of all, the Schrödinger equation is not
Lorentz-invariant. In that equation, time and space appear asymmet-
rically. In a relativistic theory, the wavefunctions of quantum particles
must obey wave equations in which time and space appear symmetri-
cally in accord with special relativity. In this chapter, I will discuss three
of the most important of these equations.

Standard quantum mechanics is inadequate in another way. In el- The Schrödinger equation is not ade-
quate to describe elementary particles.
We need a theoretical framework that
is relativistic, and that allows particles
to be created and destroyed.

ementary particle reactions, the number of particles can change as in-
dividual particles are created and destroyed. We have already noted in
the previous chapter that every particle must have an antiparticle with
the same mass. Typically, elementary particle interactions allow the
creation of a particle together with its antiparticle, or the annihilation
of a particle with its antiparticle. Then, quantum mechanics must be
generalized to a multiparticle theory.

Both generalizations are accomplished in relativistic quantum field
theory. However, there is no space in this small book for a complete
description of quantum field theory, or even for a derivation of its major
implications. Instead, I will use this chapter to explain some essential
points of quantum field theory that will be needed for our analysis. In
Chapter 7, I will explain how we use quantum field theory to make pre-
dictions for elementary particle reactions, and I will give some shortcuts
and heuristics that will allow us to apply these ideas easily.

3.1 The Klein-Gordon equation

A wave equation is said to be invariant under a group of symmetries
if, for any solution, the symmetry transform of that solution is another
solution of the wave equation. For a scalar field, the Lorentz transform
of a waveform is the same waveform evaluated at Lorentz-transformed
points. In an equation, Definition of a relativistically invariant

wave equation.

φ(x)→ φ′(x) = φ(Λ−1x) . (3.1)
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Canonically, Λ−1 appears in this formula so that, if φ(x) has a maximum
at x = a, φ′(x) will have a maximum at the Lorentz-transformed point
x = Λa. A Lorentz-invariant theory of waves should have the propertyIllustration of the transformation of a

scalar field as in (3.1):

.

that, if φ(x) solves the wave equation, then φ′(x) in (3.1) does also.
The simplest equation satisfying this property is the Klein-Gordon

equation (
∂2

∂t2
−∇2 +m2

)
φ(t, ~x) = 0 . (3.2)

In this equation, t and ~x appear in a symmetric way. The 4-gradient

∂µ = (
∂

∂t
,
∂

∂~x
)µ (3.3)

transforms under Lorentz transformations as a 4-vector with a lowered
index. That is, the quantities

p · ∂ = (E
∂

∂t
+ ~p · ~∇) and ∂2 = (

∂2

∂t2
−∇2) (3.4)

are Lorentz-invariant operators. Using (3.4), we can write the Klein-
Gordon equation (3.2) in a more manifestly Lorentz-invariant form,The Klein-Gordon equation.

(∂2 +m2)φ(x) = 0 . (3.5)

We can also see the invariance of (3.5) by examining the solutions of this
equation explicitly. These are

φ(x) = e−iEt+i~p·~x = e−ip·x , (3.6)

where pµ = (E, ~p)µ is a 4-vector satisfying

E2 − |~p|2 = p2 = m2 . (3.7)

This criterion is Lorentz-invariant. The Lorentz-invariance of the 4-
vector product is the statement that

p · x = (Λp) · (Λx) or (Λp) · x = p · (Λ−1x) . (3.8)

Then the boost of the solution (3.6) is

φ′(x) = e−ip·Λ
−1x = e−i(Λp)·x , (3.9)

which is also a solution of the equation.
The Klein-Gordon equation has the odd feature, from the point of

view of a quantum-mechanical interpretation, that it has solutions cor-
responding both to positive and negative energy. Solving (3.7) for E,
we find that both solutions

E = ±Ep (3.10)

are acceptable. This is a common property of all relativistic wave equa-
tions. Quantum field theory gives an attractive way to understand the
negative energy solutions, which I will explain below.
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Another way to derive the relativistic invariance of the Klein-Gordon
equation is to write a variational principle that gives rise to this equation.
You might be used to the variational principles of Lagrangian mechanics.
In that formalism, we write an action functional S

S[x(t), ẋ(t)] =

∫
dtL(x, ẋ) . (3.11)

The principle that S is stationary with respect to all variations of the so-
lution x(t) yields the equation of motion of the system. Mathematically,
if x(t)→ x(t) + δx(t), then we can write δS in the form

δS[x(t), ẋ(t)] =

∫
dt δx(t)

[
E [x(t), ẋ(t), ẍ(t)]

]
. (3.12)

Then the equation of motion is E = 0.
To obtain a relativistic equation of motion, we start with a relativis-

tically invariant expression for the action S. The action S should be a
function of the waveform φ(x). Instead of an integral over t only, I will
integrate symmetrically over all of Minkowski space. Then the action
principle takes the form By choosing an action S in this form,

we guarantee that the action is rela-
tivistically invariant. Then the equa-
tion of motion following from the vari-
ational principle must be a relativistic
field equation.

S[φ(x)] =

∫
d4x L(φ, ∂µφ) (3.13)

The function L is called the Lagrange density. I will choose the Lagrange
density to be relativistically invariant. Then S is the invariant integral
of a invariant function and thus is guaranteed to be Lorentz-invariant.

To illustrate how we apply this formalism, I will propose a simple form
for L. Consider, then, Lagrangian formulation of the Klein-

Gordon equation.

L =
1

2

(
∂µφ∂µφ−m2φ2

)
. (3.14)

There are no uncontracted 4-vector indices. Thus, this expression, and,
by extension its integral S over all space-time, is Lorentz-invariant. The
variation of L with respect to φ(x) is

δL = ∂µδφ ∂
µφ−m2δφφ (3.15)

Putting this under the integral d4x and integrating by parts in the first
term, we find

δS =

∫
d4x δφ(x)

[
(−∂2 −m2)φ(x)

]
. (3.16)

The variational principle states that the Lagrangian equation of motion
is the condition that δS vanishes for an arbitrary variation of φ(x). In
(3.16), this condition implies that the quantity in brackets must vanish.
This gives exactly the Klein-Gordon equation (3.5).

The Lagrangian formalism guarantees that the transform of any solu-
tion of the equation of motion is equally well a solution of the equation
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of motion. The logic is quite transparent: A solution φ of the wave equa-
tion is a stationary point of S[φ]. But, if S is invariant under Lorentz
transformations, then the Lorentz transform φ′ of this solution will have
the same value: S[φ] = S[φ′]. This will also be true of other, nearby,
field configurations. Thus, φ′ will also be a stationary point of S. Then
φ′ also will be a solution to the wave equation.

The principle that a relativistic field theory is described by a relativis-The Lagrangian formalism guarantees
that, if φ(x) solves the wave equation,
any boost or rotation of φ(x) also solves
the wave equation.

tically invariant Lagrange density is a very powerful one. This principle
will allow us to turn general ideas about the nature of new particle in-
teractions into concrete proposals for the equations of motion. I will
elaborate this variational approach further, by stages, in Sections 3.6
and 3.7, and later, in Chapters 11, 14 and 16. At the end of this de-
velopment, we will have a mathematical formalism that will allow us to
write the equations for the strong and weak interactions in a compact
and, I hope, persuasive, form.

3.2 Fields and particles

In principle, we could use the Klein-Gordon equation as a single-
particle quantum theory in which the Klein-Gordon wave replaces the
Schrödinger wavefunction. However, as I have explained above, a the-
ory of relativistic particles should actually have the capability to discuss
many particles, as many as we wish. To accomplish this, we need a
different strategy.

It can be shown that this is accomplished by writing the Hamiltonian
that leads to the Klein-Gordon equation and then quantizing that Hamil-
tonian. The resulting quantum theory has a Lorentz-invariant ground
state, called the “vacuum state”, and excited states with the energy-
momentum of particles with mass m. In this section, I will describe
some important properties of this quantum theory. These properties are
common to quantum field theories based on relativistic wave equations.

In the solution of the Klein-Gordon quantum theory, the field φ(x)
becomes an operator that can create and destroy particles. Let |0〉 be
the ground state of the Hamiltonian for the Klein-Gordon theory. This is
a state containing zero particles; it is called the vacuum state. Let |ϕ(p)〉In quantum field theory, |0〉 denotes the

vacuum state, the state of empty space
with no particles. |p〉 denotes a state
with one particle of momentum p. This
is an excited state with higher energy
than the vacuum state.

be a state with one particle of momentum p. This is a state of higher
energy, with energy Ep above the energy of the vacuum. The operator
φ(x) has a nonzero matrix element corresponding to destruction of the
particle,

〈0|φ(x) |ϕ(p)〉 = e−ip·x . (3.17)

The field operator φ(x) satisfies the Klein-Gordon equation, and soThe matrix element representing the
destruction of a spin 0 particle by its
quantum field.

the right-hand side of (3.17) must be a solution to the Klein-Gordon
equation. So, indeed, the right-hand side must be of the form of (3.6).
The 0 component of pµ is the positive energy solution from (3.10), with
p0 = +Ep. The field operator φ(x) destroys the particle ϕ at the space-
time point x. We should then interpret the right-hand side of (3.17)
as the wavefunction that the particle occupied at the moment it was
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destroyed. This is a Schrödinger wavefunction of standard form, with
momentum ~p and energy +Ep.

The complex conjugate of the equation (3.17) is an equation The matrix element representing the
creation of a spin 0 particle by its quan-
tum field.〈ϕ(p)|φ†(x) |0〉 = e+ip·x , (3.18)

Now the negative energy solution of the Klein-Gordon equation appears
on the right-hand side. This is natural also, because the particle ϕ now
appears in a bra vector, so that the right-hand side would be the complex
conjugate of the Schrödinger wavefunction into which the field creates
the particle at the point x.

The field φ(x) can be either real- or complex-valued. That is, we have
the two choices

φ†(x) = φ(x) or φ†(x) 6= φ(x) . (3.19)

In the second case, the positive energy solutions for φ†(x) give us a new
matrix element

〈0|φ†(x) |ϕ′(p)〉 = e−ip·x , (3.20)

where ϕ′ is a new particle distinct from ϕ. We will see below, in Sec-
tion 3.5, that if φ(x) carries electric charge Q, ϕ has charge Q while ϕ′

has charge −Q. The particles ϕ and ϕ′ have the same mass, because
their associated fields satisfy the same Klein-Gordon equation. We say
that ϕ′ is the antiparticle of ϕ.

If the field φ(x) is real-valued, the particles ϕ and ϕ′ can be identical.
In this case, the particle destroyed by φ(x) can be its own antiparticle.

The formulae for creation and destruction of particles by field oper-
ators will play an important role in all of the calculations done in this
book. I summarize the equations (3.17), (3.18), which apply to particles
of spin 0, and the corresponding formulae for particles of spin 1

2 and spin
1, in Appendix C.

3.3 Maxwell’s equations

The particles ϕ that appeared in the previous section carried no quan-
tum numbers except for energy and momentum. From nonrelativistic
quantum mechanics, we know that some particles can carry intrinsic an-
gular momentum. For example, electrons carry an intrisic spin of 1

2 h̄ in
addition to their orbital angular momentum. Similarly, photons carry
an intrisic spin of 1 · h̄. I will now discuss how particles with these
properties can be described by quantum field theory. Illustration of the transformation of a

vector field as in (3.21):

.

Begin with the case of spin 1. Spin 1 is the vector representation of
angular momentum. To encode this, consider a 3-vector field V i(x), that
is, a field that transforms under rotations R according to

V i(x)→ V i′(x) = RijV
j(R−1x) . (3.21)

In this equation, a rotation moves the coordinate of the field in the same
way as in (3.1) but also changes the orientation of the field by the same
rotation.
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If the field V i(x) is an operator in the quantum theory and destroys
a particle v, the matrix element corresponding to that operation would
have the formThe matrix element representing the

destruction of a spin 1 particle by its
quantum field. Note that the vector in-
dex of the field is carried on the right-
hand side by the polarization vector of
the particle.

〈0|V i(x) |v(p, ε)〉 = εie−ip·x , (3.22)

The part of the Schrödinger wavefunction representing momentum must
be the same as in the Klein-Gordon case, but now there must be an-
other element to carry the index i and represent the orientation under
rotations. So we need a 3-vector associated with the particle. For this,
I have introduced the 3-component vector εi. Under a rotation, the left-
hand side of this equation transforms with an overall matrix Rij . For
consistency, εi must transform as

εi → Rijε
j . (3.23)

Then the particle v carries a real 3-vector that rotates as the state
|v(p, ε)〉 is rotated. This vector is called the polarization vector of theDefinition of the polarization vector of

a spin-1 particle. particle.
In a similar way, we can construct fields corresponding to any spin j

representation of the rotation group. Let R(j)
ab be a rotation matrix in

the spin j representation. This would be a (2j + 1) × (2j + 1) matrix.
A spin-j field would transform under rotations according to

W a(x)→W a′(x) = RjabW
b(R−1x) . (3.24)

The field W a(x) would destroy a particle w according to the matrix
element

〈0|W a(x) |w(p, η)〉 = ηae−ip·x , (3.25)

The particle w would then carry a (2j + 1)-dimensional polarization
vector ηa which would transform as a spin-j vector under rotations. For
j = 1

2 , η would be a 2-component spinor.
The equations (3.22), (3.25) are not yet relativistically invariant. In

fact, it is subtle to construct relativistic wave equations for particles of
nonzero spin. In the remainder of this section, I will discuss the case of
spin 1.

There is an obvious generalization of (3.22) to a relativistic equation.There is a problem in constructing a
relativistic quantum theory for fields of
spin 1.

This is
〈0|V µ(x) |v(p, ε)〉 = εµe−ip·x , (3.26)

where εµ is now a 4-vector. But there is a problem. To preserve Lorentz
invariance of this state, the norm of the 1-particle state should be pro-
portional to

−εµεµ . (3.27)

I have put a minus sign here so that the expression is positive when
ε is a spacelike unit vector, as we would expect for the vector ε in
(3.22). However, if εµ could also be a timelike vector—for example,
ε = (1, 0, 0, 0)—the state would have negative norm and, formally in
quantum mechanics, negative probability. The spin 1 wave equation
must then somehow forbid timelike ε from appearing.
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Photons are spin 1 particles, and so we can ask if their wave equation
solves this problem. Indeed, it is so. Maxwell’s equations can be written
as equations for the 4-vector vector potential Aµ(x). But, as you learned
in your electrodynamics course, Maxwell’s equations have propagating
solutions with only two possible polarization vectors,

~A(x) = ~ε e−iE+i~p·x , (3.28)

where E = |p| (zero mass) and

~ε · ~p = 0 . (3.29)

We can view (3.28) as the wavefunction of a photon. Under a Lorentz
rotation, the form of (3.28) is preserved. Under a Lorentz boost, the
exponential is unchanged, but the polarization vector, while remaining
spacelike, acquires a component in the time direction. It can be shown Maxwell’s equations solve that problem

(in a way that is not quite obvious).that this Lorentz transformation of ~ε has no effect on the photon’s in-
teractions, as long as the electromagnetic current is conserved. Through
this logic, we obtain a description of the states that is Lorentz-invariant,
though not quite manifestly so. This makes it possible to quantize the
Maxwell field consistently using only states of positive norm.

This solution does not generalize in a simple way to spin 1 fields with a
vector boson mass. For those, we will need a special construction called
the Higgs mechanism, which I will explain in Chapter 16.

It will be instructive to write the variational principle for the Maxwell
field. I will start with the 4-vector potential

Aµ(x) = (φ(x), ~A(x))µ ; (3.30)

here, φ(x) is the scalar potential and ~A(x) is the conventional vector
potential. The electric and magnetic field strengths are contained in the
tensor

Fµν = ∂µAν − ∂νAµ . (3.31)

Working out the components of this tensor carefully, remembering that
the notation ∂µ = (∂/∂t,−~∇)µ leads to some extra minus signs, we find

F i0 = −∇iφ− ∂tAi = Ei

F ij = −∇iAj +∇jAi = −εijkBk . (3.32)

A simple, manifestly Lorentz-invariant Lagrange density for this sys-
tem is Lagrangian formulation of Maxwell’s

equations.L = −1

4
FµνFµν − jµAµ . (3.33)

I have added a new field jµ(x) to represent an external electromagnetic
current. This object should satisfy the equation of current conservation.
With

jµ = (ρ,~j)µ , (3.34)

that relation is
0 = ∂µj

µ = ∂tρ+ ~∇ ·~j . (3.35)
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Now vary (3.33) with respect to Aµ(x). The variation is

δL = −1

2
(∂µ δAν − ∂νδ Aµ)Fµν − δAνjν . (3.36)

Gathering terms under the integral
∫
d4x and integrating by parts, we

find

δS =

∫
d4x δAν

[
∂µF

µν − jν
]
. (3.37)

Thus, the field equations following from (3.33) are

∂µF
µν = jµ . (3.38)

Carefully inserting (3.32), (3.34), we see that these equations are pre-
cisely

∇iEi = ρ εijk∇jBk − ∂tEi = ji , (3.39)

which are exactly the inhomogeneous Maxwell equations written in nat-
ural units ε0 = µ0 = c = 1. It should be familiar to you, and it is
easily checked, that the formulae (3.32) automatically satisfy the homo-
geneous Maxwell equations. Since Maxwell’s equations follow from the
relativistically invariant action principle (3.33), they must automatically
be Lorentz invariant wave equations in the sense that I have discussed
in Section 3.1.

3.4 The Dirac equation

To describe spin 1
2 particles such as the electron, we need to construct

a relativistic wave equation for a spin 1
2 field. Dirac solved this problem

by constructing a special set of matrices that, viewed appropriately,
transform as a 4-vector. To construct these matrices, Dirac suggested
using anticommutation rather than commutation relations: {A,B} =
AB + BA. In particular, he introduced matrices γµ that satisfy the
Dirac anticommutation algebra{

γµ, γν
}

= 2ηµν , (3.40)

where the right-hand side is the metric (2.7) of special relativity. It can
be shown that there are no sets of 2× 2 or 3× 3 matrices satisfying this
algebra. The smallest such matrices are 4× 4. Here is a representation
of the algebra,This representation of the Dirac al-

gebra is useful for studying problems
in which spin 1

2
particles move non-

relativistically. γ0 =

(
1 0
0 −1

)
γi =

(
0 σi

−σi 0

)
, (3.41)

where the elements of these matrices are 2× 2 blocks and the σi are theThis representation of the Dirac algebra
is useful for studying problems in which
spin 1

2
particles move at speeds close

to the speed of light. We will use this
representation most often in our study
of the fundamental structure of particle
interactions.

2× 2 Pauli sigma matrices. Here is another representation

γ0 =

(
0 1
1 0

)
γi =

(
0 σi

−σi 0

)
. (3.42)
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It can be shown that all 4 × 4 representations of the Dirac algebra are
equivalent by unitary transformations.

Using γµ as if it were a 4-vector, we can write the Dirac field equation(
iγµ∂µ −m

)
Ψ = 0 . (3.43)

I will now prove three properties of this equation: First, any solution
of the Dirac equation is a solution of the Klein-Gordon equation. Then
the exponential part of the solution, at least, has the form

Ψ ∼ e−ip·x (3.44)

and is Lorentz invariant. Second, the solutions of the Dirac equation for
~p = 0 are precisely two positive-energy and two negative-energy solu-
tions. Third, a field satisfying the Dirac equation natually has a vector
current which is conserved. For electrons, this operator would be in-
terpreted as the electric charge current. To fully prove that the Dirac
equation is relativistic, we would have to define the Lorentz transforma-
tion properties of γµ carefully and prove that these matrices transform
as a 4-vector. That discussion is beyond the level of this book. You can
find it in any textbook of quantum field theory.

To prove the first property, multiply the Dirac equation by the oper-
ator (iγµ∂µ +m). We find

0 = (iγµ∂µ +m)(iγµ∂µ −m)Ψ

=
[
−γµγν∂µ∂ν + imγν∂ν − imγµ∂µ −m2

]
Ψ

=
[
−ηµν∂µ∂ν −m2

]
Ψ (3.45)

or finally
[−∂µ∂µ −m2]Ψ = 0 . (3.46)

So, indeed, all solutions of the Dirac equation satisfy the Klein-Gordon
equation.

Second, look for solutions of the Dirac equation with zero 3-momentum.
These would be of the form

Ψ =


a
b
c
d

 e−iEt . (3.47)

Use the first matrix representation given above. Then the Dirac equation
reads

(γ0E −m)


a
b
c
d

 = 0 , (3.48)

or [(
E
−E

)
−
(
m

m

)]
(
a
b

)
(
c
d

)
 = 0 . (3.49)
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There are two solutions with E = +m,

Ψ =

(
ξ
0

)
e−imt , (3.50)

where ξ is an arbitrary 2-component spinor, identified with the electron
spin. Similarly, there are two solutions with E = −m

Ψ =

(
0
η

)
e+imt , (3.51)

where η is another arbitrary 2-component spinor. These negative energy
solutions are identified with the antiparticles of the Dirac fermions. For
the Dirac equation describing electrons, the negative energy solutions
describe positrons. The spinor η is identified with the opposite of the
positron spin.

For nonzero ~p, the Dirac equation reads

(
E −m −~σ · ~p
~σ · ~p −E −m

)
(
a
b

)
(
c
d

)
 e−iEt+i~p·~x = 0 . (3.52)

The solutions of this equation are constructed in Problem 3.4. These
solutions are conventionally written

Ψ = Us(p) e−ip·x (3.53)

for the two positive energy solutions (s = 1, 2) and

Ψ = V s(p) e+ip·x (3.54)

for the two negative energy solutions (s = 1, 2). For (3.54), note that
the energy and momentum in the exponent are the opposites of the
antiparticle energy and momentum. Similarly the spin orientation in
V s(p) is the opposite of the antiparticle spin orientation.

For nonzero of p/m, the components of the Dirac fields that are zero
in (3.50), (3.51) become filled in. For example,

Ψ =

(
ξ

−~σ·~p2m ξ

)
e−iEp+i~p·~x . (3.55)

to first order in |~p|, with Ep = (p2 +m2)1/2 ≈ m+ p2/2m. I will discuss
the form of Us(p) and V s(p) at higher momentum, and, especially, for
extremely relativistic energies, in Chapter 8.

In a quantum field theory of Dirac particles (for definiteness, elec-The matrix element representing the

destruction of a spin- 1
2

particle by its
quantum field. Note that the spinor in-
dex of the field is carried on the right-
hand side by the Us spinor of the par-
ticle.

trons e−), the basic 1-particle states are states |e(p, s)〉 in which the
electron has a definite momentum p and spin s. The matrix elements
for destroying and creating one electron are

〈0|Ψa(x)
∣∣e−(p, s)

〉
= Us(p)e−ip·x ,〈

e−(p, s)
∣∣Ψ†a(x) |0〉 = U†s(p)e+ip·x . (3.56)
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In this theory, the electron has a spin- 1
2 antiparticle e+, the positron.

The matrix elements for destroying and creating a positron are

〈0|Ψ†a(x)
∣∣e+(p, s)

〉
= V †s(p)e−ip·x ,〈

e+(p, s)
∣∣Ψa(x) |0〉 = V s(p)e+ip·x . (3.57)

To construct the electric current, note first that the Dirac matrices
for µ = i = 1, 2, 3 are anti-Hermitian

The matrix element representing the
destruction of a spin- 1

2
antiparticle by

its quantum field. Note that the spinor
index of the field is carried on the right-
hand side by the V s spinor of the an-
tiparticle.

(γ0)† = γ0 (γi)† = −γi . (3.58)

To form Hermitian operators from the Dirac field, it is convenient to
note that

(γ0γµ)† = (γµ)†(γ0)† = +γ0γµ (3.59)

for all four cases µ = 0, 1, 2, 3. Then the square of the Dirac field

Ψ†Ψ (3.60)

is more conveniently written as the µ = 0 component of

Ψ†γ0γµΨ . (3.61)

This quantity is Hermitian,

(Ψ†γ0γµΨ)† = Ψ†(γ0γµ)†Ψ = Ψ†γ0γµΨ , (3.62)

and, it can be shown, it transforms as a 4-vector under Lorentz trans-
formations. From now on, I will write

Ψ = Ψ†γ0 (3.63)

so that the operator in (3.61) appears as The vector current operator of the
Dirac theory.

jµ = ΨγµΨ . (3.64)

It would be wonderful if this operator, which is now written manifestly
as a 4-vector, would turn out to be the operator that represents the
electromagnetic current of the electron field.

We can work out the equation of motion of this 4-vector. For this, we
need the complex conjugate of the Dirac equation. This is

−i∂µΨ†(γµ)† −mΨ† = 0 . (3.65)

Multiplying on the right by γ0, we find the simpler form

−i∂µΨ(γµ)−mΨ = 0 . (3.66)

Then

∂µ(ΨγµΨ) = (∂µΨ)γµΨ + Ψγµ∂µΨ

= imΨΨ− imΨΨ

= 0 . (3.67)
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So, indeed, (3.64) satisfies the standard equation of conservation of a
current

∂µj
µ = 0 . (3.68)

The Dirac equation can be coupled to an electromagnetic field in the
way that is standard in quantum mechanics, by introducing the electro-
magnetic vector potential into the derivatives. Relativistically and in
natural units, this replacement is written

The Dirac equation is coupled to an ex-
ternal electromagnetic field using the 4-
vector potential, generalizing the pre-
scription used to couple the electromag-
netic field to the Schrödinger equation
in non-relativistic quantum mechanics. ∂µ → Dµ = (∂µ + ieAµ) (3.69)

so that the Dirac equation becomes

[iγµ(∂µ + ieAµ)−m]Ψ = 0 . (3.70)

For example, for the hydrogen atom,

A0 = − e

4πr
, ~A = 0 . (3.71)

Then the Dirac equation for the hydrogen atom reads[
γ0(i

∂

∂t
+
α

r
) + i~γ · ~∇−m

]
Ψ = 0 . (3.72)

I will have much more to say about the logic of this principle for
coupling the Dirac equation to the electromagnetic field in Chapter 11.

Finally, I will write a variational principle for the Dirac equation. The
Lagrange density isLagrangian formulation of the Dirac

equation.

L = Ψ(iγµ∂µ −m)Ψ(x) (3.73)

Given that ΨγµΨ transforms under Lorentz transformations as a 4-
vector, this formula is manifestly Lorentz invariant. The variation of
(3.73) with respect to Ψ(x) gives the Dirac equation (3.43); the varia-
tion with respect to Ψ(x), after integration by parts, gives (3.66). These
equations then must be relativistically invariant wave equations.

It is one short step beyond this to write a Lagrangian for the inter-
action of electrons and photons. To do this, we only need to combine
Maxwell’s equations and the Dirac equation in a consistent way. This is
automatically accomplished by writing the Lagrangian containing both
ingredients,Lagrangian of Quantum Electrodynam-

ics (QED). L = −1

4
FµνFµν + Ψ(iγµDµ −m)Ψ , (3.74)

where Dµ = ∂µ + ieAµ as in (3.69). You can easily check that the
principle that action integral should be stationary leads to Maxwell’s
equations plus the Dirac equation. Notice that there is a term in the
Dirac Lagrangian that involves Aµ,

L = · · ·+ iΨγµ(+ieAµ)Ψ = · · · −Aµ[eΨγµΨ] . (3.75)

Comparing to (3.36), we see that the electromagnetic current that is the
source for the Maxwell fields is exactly

jµ = eΨγµΨ . (3.76)
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This completes the identification of (3.64) with the electromagnetic cur-
rent.

The quantum field theory based on (3.74) is called Quantum Electro-
dynamics or QED. This theory is in extraordinary agreement with the
actual properties of electrons and photons. The predictions of this the-
ory agree with the observed magnetism of the electron and the measured
properties of hydrogen atomic states to the accuracy of parts per billion
(Kinoshita 1990).

3.5 Relativistic normalization of states

The equations such as (3.17), (3.22), and (3.56) for the creation and
destruction of particles depend on a detail that I have not yet discussed.
The right-hand sides of these equations can have the simple Lorentz
transformation laws shown only if the particle states are normalized in
a Lorentz-invariant way. I will now explain how this must be done.

In nonrelativistic quantum mechanics, we typically normalize momen-
tum states according to the convention

〈p1|p2〉 = (2π)3δ(3)(~p1 − ~p2) . (3.77)

But this normalization is not relativistically invariant. To remedy this,
we must use the relativistic normalization In this book, all particle states are nor-

malized using this relativistically in-
variant prescription.〈p1|p2〉 = 2Ep1 (2π)3δ(3)(~p1 − ~p2) . (3.78)

I will now check that (3.78), rather than (3.77), is Lorentz invariant. We
boost a momentum vector p in the 3̂ direction, using the formulae (2.2)

E′p = γ(Ep + βp3) p1′ = p1

p3′ = γ(p3 + βEp) p2′ = p2 . (3.79)

Then the normalization equation (3.78) transforms to

〈p′1|p′2〉 = 2E′p1(2π)3δ(3)(~p′1 − ~p′2)

= 2γ(Ep1 + βp3
1)(2π)3δ(γ(p3

1 + βEp1)− p3′
2 )

δ(p1′
1 − p1′

2 )δ(p2′
1 − p2′

2 ) . (3.80)

In the last two delta functions, we can use (3.79) to replace p′ by p. To
simplify the first delta function, we must recall the transformation of a
delta function for an argument that vanishes at x = 0,

δ(g(x)) =
1

|dg/dx|
δ(x) (3.81)

Using this formula, we can rewrite the first delta function and find

〈p′1|p′2〉 = 2γ(Ep1 + βp3
1)(2π)3δ(p1

1 − p1
2)δ(p2

1 − p2
2)

· 1

γ(1 + β dEp1/dp
3
1)
δ(p3

1 − p3
2) . (3.82)
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Evaluating the term in the second line,

1 + β
dEp1
dp3

1

= 1 + β
p3

1√
p2

1 +m2
1

=
Ep1 + βp3

1

Ep1
. (3.83)

Assembling the pieces, we find

〈p′1|p′2〉 = 2Ep1 (2π)3δ(3)(~p1 − ~p2) . (3.84)

that is, the normalization condition (3.78) is invariant under Lorentz
transformations.

Another way to understand the relativistic invariance of the normal-
ization condition just given is to consider the related integral over phase
space. For the same reasons as described above, the integral∫

d3p

(2π)3
(3.85)

is not Lorentz-invariant. However, the integral∫
d4p

(2π)4
(2π)δ(p2 −m2) (3.86)

is manifestly relativistically invariant. The integral over p0 is∫
dp0δ(p2 −m2) =

∫
dp0δ((p0)2 − |~p|2 −m2) =

1

2p0

∣∣∣∣
p0=Ep

. (3.87)

Then ∫
d4p

(2π)4
(2π)δ(p2 −m2) =

∫
d3p

(2π)3

1

2Ep
. (3.88)

This gives the relativistically invariant integral over momentum space.
The factor 2Ep in the denominator is set up to cancel the factor 2Ep in
(3.78).

With this integral and the relativistically normalized states, the sum
over momentum states is writtenThe sum over a complete set of 1-

particle states with relativistic normal-
ization contains the extra factor 1/2Ep. 1 =

∫
d3p

(2π)3

1

2Ep
|p〉 〈p| . (3.89)

That is,

1 |k〉 =

∫
d3p

(2π)3

1

2Ep
|p〉 〈p|k〉 =

∫
d3p

(2π)3

1

2Ep
|p〉 2Ep(2π)3δ(~p−~k) = |k〉 .

(3.90)
In natural units, where all energies, momenta, and inverse distances

are written with the dimensions of GeV, the right-hand side of the nor-
malization condition has the dimensions

2Ep(2π)3δ(3)(~p1 − ~p2) ∼ (GeV) · (GeV)−3 = (GeV)−2 . (3.91)

Then relativistically normalized states have the dimensionsRelativistically normalized 1-particle
states have the mass dimension
(GeV)−1. |p〉 ∼ (GeV)−1 . (3.92)

It is only with these conventions that the matrix elements such as
(3.17) can be correct in all reference frames. In the remainder of this
book, I will normalize all states relativistically so that we can use simple
formulae that take maximum advantage of Lorentz invariance.
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3.6 Spin and statistics

In quantum field theory, all particles appear as quantum states found
in the quantization of relativistic wave equations. This blurs the distinc-
tion between the particles that make up matter, the quarks and leptons,
and the particles such as the photon that mediate forces. Each type
of particle has an associated wave equation. The only differences be-
tween these equations come as a consequence of the differing spins of
the particles or fields.

However, it turns out that there is profound difference between parti-
cles with integer spin and particles with half-integer spin. In 1940, Pauli
proved the connection between spin and statistics. It has since been
shown that this result, like the theorem of CPT conservation, can be
proved from a basic system of axioms for quantum field theory (Streater
and Wightman 2000). The theorem states:

• A field with integer spin creates and destroys particles with integer
spin that obey Bose-Einstein statistics

• A field with half-integer spin creates and destroys particles with
half-integer spin that obey Fermi-Dirac statistics.

This theorem implies that integer spin particles can come together to
form macroscopic fields of force. Half-integer spin particles obey the The connection between spin and

statistics is a consequence of quantum
field theory. This theorem explains why
particles of matter and forces, for ex-
ample, electrons and photons, can have
qualitatively different properties while
arising in essentially the same way from
the formalism of quantum fields.

Pauli exclusion principle and thus form rigid structures that we call
matter. Otherwise, both types of particles and fields are treated iden-
tically within quantum field theory. In this section, we have discussed
wave equations for fields of spins 0, 1

2 , and 1. In the spin 1 case, we
saw that there were nontrivial barriers to the formulation of appropriate
equations. These barriers become more formidable as the spin increases.
For spin 3

2 , there is an equation for the massless case, called the Rarita-
Schwinger equation. The extension of this equation to massive particles
requires the same special circumstances as for spin 1. For spin 2, the
only possible field equation for an interacting particle is Einstein’s field
equation for gravity. Beyond spin 2, there are no known field equations
for interacting fields of fixed spin, although some consistent systems of
equations are known that include families of particles with an infinite
number of different spins (Vasiliev 1990).

For the Standard Model of particle physics, we will need only fields of
spin 0, 1

2 , and 1. So we now have a foundation to use in searching for
that theory.
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Exercises

(3.1) Consider a quantum field theory defined by the La-
grangian

L =
1

2
(∂µϕ)2 − 1

2
m2φ2 − λ

4
ϕ4 . (3.93)

This model field theory is called ϕ4-theory.

(a) Use the Lagrangian to derive the field equa-
tion for ϕ(x).

(b) I claim that the Hamiltonian of this theory is

H =

∫
d3x

[
1

2
(
∂

∂t
ϕ)2 +

1

2
(~∇ϕ)2 +

λ

4
ϕ4

]
.

(3.94)
Use the equation of motion derived in (a) to
show that H is conserved: (d/dt)H = 0, if
boundary terms at infinity can be ignored.

(c) I claim that the total momentum of the field
in this theory is

~P =

∫
d3x

[
∂

∂t
ϕ ~∇ϕ

]
. (3.95)

Use the equation of motion derived in (a) to
show that ~P is conserved.

(3.2) The Dirac matrices γµ, µ = 0, 1, 2, 3, are 4× 4 ma-
trices that satisfy the algebra

{γµ, γν} = 2ηµν , (3.96)

where ηµν is the metric tensor of special relativity.

(a) Show that the matrices (3.41) satisfy the
Dirac algebra.

(b) Show that the matrices (3.42) satisfy the
Dirac algebra.

(c) Show that these representations are equiva-
lent. That is, write a 4× 4 unitary matrix U
such that

γµB = UγµAU
†

(3.3) Define the matrix γ5 by

γ5 = iγ0γ1γ2γ3 . (3.97)

(a) Show that γ5 anticommutes with all of the
matrices γµ.

(b) Work out the form of γ5 using the represen-
tation (3.41).

(c) For a wave with momentum ~p = p3̂ and en-
ergy Ep, find the solution of the Dirac equa-
tion (3.52) in which U(p) has (a, b) = (1, 0).
This solution represents an electron moving
in the 3̂ direction with spin up.

(d) Take the limit of the solution in (c) as p→∞.
Show that it is an eigenstate of γ5.

(e) For a wave with momentum ~p = p3̂ and en-
ergy Ep, find the solution of the Dirac equa-
tion (3.52) in which U(p) has (a, b) = (0, 1).
This solution represents an electron moving
in the 3̂ direction with spin down.

(f) Take the limit of the solution in (e) as p→∞.
Show that it is an eigenstate of γ5.



The Hydrogen Atom and
Positronium 4
Before we begin our study of elementary particle physics proper, we
will need one more set of introductory concepts. Physicists were able
to grasp the structure of strongly interacting particles because they saw
similarities between these particles and the quantum states of the the
hydrogen atom and other comparably simple quantum-mechanical sys-
tems. Because this analogy will be important to us, I will spend this
chapter reviewing important properties of the hydrogen atom. I will also
discuss a system very similar to the hydrogen atom, the bound state of
an electron and its antiparticle, the positron. Indeed, the study of the
electron-positron bound states is already elementary particle physics,
but with the well-understood interaction of electromagnetism playing
the role of the binding force.

There will be two major themes in this discussion. First, though you
certainly will have encountered Schrödinger’s solution of the hydrogen
atom in your quantum mechanics course, this gives only a part of the
physics of the hydrogen atom. Corrections due to relativity and the
spin of the electron create small energy splittings within the multiplets of
states found by Schrödinger. The analogous effects in the bound states of
the strong interaction are much larger. Thus, we will need to understand
the full spectrum of states of the hydrogen atom to understand the
qualitative features of the spectrum of strongly interacting particles.
Second, the space-time symmetry parity (P ) plays an important role in
hydrogen. The spectrum of electron-positron bound states, positronium,
is also strongly regulated by charge conjugation symmetry C. These
study of these systems will give us some examples of the use of P and
C before we apply them to the physics of the strong interaction.

4.1 The ideal hydrogen atom

To begin, let’s recall the basic formulae for the idealized hydrogen
atom of quantum mechanics textbooks. Consider the nonrelativistic
limit for the electron, and take the proton mass to be very large. The
potential felt by the electron is

V (r) = − e2

4πr
= −α

r
. (4.1)
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It is a standard topic in quantum mechanics to solve the Schrödinger
equation for this problem. The bound state energies are

E = −Ry
n2

, (4.2)

where n is an integer and Ry is the the Rydberg energy

Ry =
1

2

me4

(4π)2
= 13.6 eV . (4.3)

In natural units,The hydrogen atom’s Rydberg energy
and Bohr radius take a simple form in
natural units. Ry =

1

2
α2m . (4.4)

From this formula we see that the binding energy of hydrogen is much
smaller than the rest energy of the electron precisely because the elec-
tromagnetic interactions are weak. The Bohr radius of hydrogen also
takes a simple form in natural units

a0 = 1/αm . (4.5)

The velocity of the electron in the atom is of the order of v/c ∼ α; this
justifies the use of the nonrelativistic approximation.

The bound states of hydrogen are arranged in levels associated with
integers n = 1, 2, 3, . . .. Each level contains the orbital angular momen-
tum states

` = 0, 1, · · · , n− 1 m = −`, · · · , ` . (4.6)

The orbital wavefunctions are the spherical harmonics Y`m(θ, φ), which
are even under spatial reflection for even ` and odd for odd `. Then,
under P , these states transform as

P |n`m〉 = (−1)` |n`m〉 . (4.7)

4.2 Fine structure and hyperfine structure

The real hydrogen atom has more structure. First, add to the problem
the fact that the electron is a particle with intrinsic spin 1/2. Thus, it
has two spin states. Each state of fixed (n, `) then contains 2(2` + 1)
quantum states. In states with ` 6= 0, the spin and orbital motion
interact to split the degeneracy of these states. This is called the spin-
orbit interaction. This interaction has two sources, one dynamical, one
kinematic.

The action of P commutes with angular momentum and so preserves
the spin direction. It is easy to see that orbital angular momentum
~L = ~r × ~p commutes with P , since P reverses the direction of both ~r
and ~p. More pictorially, if you draw a spinning top and then perform a
spatial inversion, you will see that the spin direction remains the same.
So, states with the same values of L2, S2, and total angular momentum
J3 = L3 + S3 but different values of L3 and S3 can mix quantum-
mechanically.
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The dynamical source of spin-orbit interaction can be seen by consid-
ering the force acting on a spinning electron in its rest frame. A spinning
charged particle generally has a magnetic moment. A spinning classical
distribution of charges has a magnetic moment equal to

~µ =
Q

2M
~L . (4.8)

However, this formula is not quite correct for the magnetic moment of
the electron (or other fundamental spin- 1

2 particles) due to their intrinsic
spin. To correct the formula, it is conventional to include a fudge factor
called the Landé g-factor and parametrize Definition of the Landé g-factor that

gives the size of the magnetic moment
of an elementary particle.~µ = g

Q

2M
~S . (4.9)

Then, for an electron,

~µe = − g e
2m

~S . (4.10)

This vector has magnitude ~µe = (g/2)eh̄/2m. For the electron, the g-
factor is close to 2. The relativistic theory of the electron field, given
by the Dirac equation, predicts g = 2 precisely. Correction due to QED
interactions slightly modify this relation to

ge = 2(1 +
α

2π
+ · · ·) . (4.11)

An electron moving with velocity ~v through a Coulomb field feels, in
its rest frame, a magnetic field

~B′ = −~v × ~E = −~v × er̂

4πr2

= +
e

4πmr3
~L . (4.12)

This field tends to orient the electron spin. The effect is described by a
Hamiltonian

∆H = − ~B′ · ~µ =
ge

2m2r3

e2

4π
~L · ~S . (4.13)

A second influence on the electron spin comes from the dynamics
of spin in special relativity. An electron moving in a circle is subject
to acceleration toward the center and, thus, to a sequence of boosts.
The successive boosts do not commute with one another. Instead, they
multiply out to a net rotation. This effect is called Thomas precession.
It yields a precession of the spin at the angular velocity

~ω =
γ2

γ + 1
~a× ~v , (4.14)

where, as in (2.16),
γ = (1− v2)−1/2 . (4.15)

A derivation of the formula (4.14) is given in Exercise 4.3. For orbital
motion in a Coulomb field, the acceleration is

m~a = − e2

4πr2
r̂ (4.16)
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so the precession angular velocity is

~ω = −1

2

e2

4πmr2

~L

mr
. (4.17)

This effect is described by a Hamiltonian

∆H = − 1

2m2r3

e2

4π
~L · ~S . (4.18)

The two effects have opposite sign, leading to a total spin-orbit inter-
action

∆H =
g − 1

2

α

m2r3
~L · ~S . (4.19)

Since g ≈ 2, the second effect is about half of the first. The sign is such
that the state with ~L and ~S opposite in sign has lower energy.

For extremely relativistic motion of an electron in a magnetic field,
γ → 1 and the Thomas precision actually cancels the direct field-induced
precession up to the factor (ge − 2). The small but nonzero size of
the precession can be used to control the spin of polarized electrons in
magnetic transport systems.

It is straightforward to diagonalize the operator ~L · ~S. Let ~J be the
total angular momentum: ~J = ~L + ~S. The square of this operator, J2,
commutes with all scalar operators, including L2, S2, and ~L · ~S. Notice
that

~L · ~S =
1

2

(
(~L+ ~S)2 − L2 − S2

)
; (4.20)

that is,

~L · ~S =
1

2
(J2 − L2 − S2) . (4.21)

So, the 2(2`+ 1) states with given ` split into two levels, each of which
has a definite value of J2 = j(j + 1). For example, the 2 × 3 2P states
of hydrogen split into

2Pj=1/2 (2 states) + 2Pj=3/2 (4 states) . (4.22)

In the j = 1
2 state,

~L · ~S =
1

2

[1
2
· 3

2
− 1 · 2− 1

2
· 3

2

]
= −1 . (4.23)

In the j = 3
2 state,

~L · ~S =
1

2

[3
2
· 5

2
− 1 · 2− 1

2
· 3

2

]
= +

1

2
. (4.24)

It is important to note that the center of gravity of the full set of
states does not change. In this example,

2 · (−1) + 4 · (+1

2
) = 0 . (4.25)
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This happens very often in the energy splitting of a multiplet of degen-
erate states. The phenomenon is most easily understood by writing the
sum of the perturbations as proportional to

tr[~L · ~S] . (4.26)

We can evaluate this trace by summing over states with fixed L and S.
For example, ∑

S3

〈
S3
∣∣ ~S ∣∣S3

〉
= 0 . (4.27)

and similarly for states of fixed L. Then it is easy to see that (4.26) is
zero, so that the energies of the states, on average, are not shifted.

The order of magnitude of the spin-orbit interaction is〈 α

m2r3

〉
∼ α

m2a3
0

∼ α4m ∼ α2 Ry . (4.28)

Thus, this effect is a factor of 10−4 smaller than the splitting of the
principal levels of hydrogen. These splittings are called the fine structure
of the hydrogen atom.

More structure appears when we add in the spin of the proton. The
proton also has a magnetic moment

The spin-orbit interaction in hydrogen
is an effect of order α2 relative to the
Rydberg energy. It lowers the energy
of states with smaller J and raises the
energy of states with larger J .

~µp = gp
e

2mp

~S , (4.29)

where gp = 5.6. The fact that this number is nowhere near g = 2 tells
us that the proton is not an elementary Dirac fermion. I will present
the explanation for the large g-factor of the proton in Section 5.5.

The magnetic moments of the proton and the electron interact, with
the ground state favoring the configuration in which the two spins are
opposite. The Hamiltonian has the form

∆H = C~Sp · ~Se , (4.30)

where the constant C depends on the electron wavefunction. Then, for
example, the 1S state of hydrogen is split into two levels, corresponding
to total spin ~J = ~Se + ~Sp equal to 0 and 1,

J = 1 : |↑↑〉 1√
2
(|↑↓〉+ |↓↑〉) |↓↓〉

J = 0 : 1√
2
(|↑↓〉 − |↓↑〉) (4.31)

The value of the splitting is The spin-spin interaction in hydrogen is

an effect of order α2me/mp relative to
the Rydberg energy. It lowers the en-
ergy of states with smaller total S and
raises the energy of states with larger
total S.

8

3
gpα

2 ·Ry · me

mp
. (4.32)

It is smaller than the fine structure by another factor of 10−3, due to
the large mass of the proton. The spin-spin splittings in the spectrum
of hydrogen are called the hyperfine structure. The transition from the
1S(S = 1) to the 1S(S = 0) state of hydrogen by emission of a radio-
wavelength photon gives the 21 cm radiation line that plays a central
role in radio astrophysics.
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Fig. 4.1: Comparison of the 1S, 2S, and 2P energy levels of hydrogen and
positronium, from (Berko and Pendleton 1980).

4.3 Positronium

These same ideas can be applied to a particle-antiparticle system.
The simplest case is positronium, the bound state of an electron and
its antiparticle, the positron. It is relatively easy to make positronium.
While most unstable nuclei emit electrons through beta decay, some emit
positrons (β+ emitters). A positron moving slowly through a gas may
pick up an electron and form a positronium atom.

Figure 4.1 compares the spectra of hydrogen and positronium. There
are two important differences. First, the two-body problem in positron-
ium involves the reduced mass

µ =
m1m2

m1 +m2
=

1

2
me , (4.33)

so the Rydberg in positronium is 1
2 that in hydrogen. Second, the hy-

perfine splittings in positronium are roughly the same size as the fine
structure splittings, and both are of order α4me.

The eigenstates of positronium can be classified under parity, and also
under charge conjugation. Consider first P . The orbital eigenstate Y`m
gets a factor (−1)` under space inversion. An additional factor comes
from an odd property of the Dirac equation (unfortunately, not simply
explained). We are free to choose, by convention, that the electron has
even intrinsic parity,

P
∣∣e−(~p)

〉
= +

∣∣e−(−~p)
〉
. (4.34)

However, its antiparticle must then have odd intrinsic parity

P
∣∣e+(~p)

〉
= −

∣∣e+(−~p)
〉
. (4.35)

Combining this sign with the spatial reflection property (4.7), the positro-
nium states have parityQuantum number of a positronium

state under a parity transformation.
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P = (−1)`+1 . (4.36)

For the transformation properties under C, we must account three
effects. C converts the electron to the positron and the positron to the
electron. The electron and positron are fermions, and so, when we put
the electron and positron back into their original order in the wavefunc-
tion, we get a factor (−1). Reversal of the coordinate in the orbital
wavefunction gives a factor (−1)`. Finally, the electron and positron
spins are interchanged. The S = 1 state is symmetric in spin

S = 1 : |↑↑〉 1√
2

(|↑↓〉+ |↓↑〉) |↓↓〉 , (4.37)

but the S = 0 state is antisymmetric

S = 0 :
1√
2

(|↑↓〉 − |↓↑〉) (4.38)

and so gives another factor (−1). In all, the positronium states have C Quantum number of a positronium
state under a charge conjugation.

C = (−1)`+1 ·
{

1 S = 1
−1 S = 0

. (4.39)

The low-lying states of the positronium spectrum then have the JPC

values:

(4.40)

The 2P states 0++, 1++, and 2++ arise from coupling the L = 1 orbital
angular momentum to the S = 1 total spin angular momentum.

The photon couples to the electron with charge (−e) and to the
positron with charge (+e). In the quantum theory, the amplitude of
the photon-electron-electron interaction is proportional to (−e) and the
amplitude of the photon-positron-positron interaction is proportional to
(+e). Electrodynamics is consistent with C symmetry, then, only if we
assign the photon to be odd under C

C |γ(ε, p)〉 = − |γ(ε, p)〉 . (4.41)

Then, in the level diagram above, states of opposite C are linked by
photon transitions, e.g.

2P(J++)→ 1S(1−−), J = 0, 1, 2

2P(1+−)→ 1S(0−+)

1S(1−−)→ 1S(0−+) (4.42)
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In atomic physics, the strongest photon transitions are the E1 tran-
sitions, in which the electromagnetic field couples to the electric dipole
moment of the atom. E1 transitions reverse the P of the state. Transi-
tions in which the electromagnetic field couples to the magnetic dipole
moment of the atom are called M1 transitions. These have smaller rates,
by a factor α, and they do not change P . In (4.42), the first two transi-
tions are E1, the last is M1.

Charge conjugation invariance has a striking implication for the decayC has strong and surprising implica-
tions for the decay of positronium. rates of the ground states of positronium. Positronium, a massive parti-

cle, cannot decay to a single photon conserving energy and momentum.
In principle, it could decay to 2 photons. However, the 2-photon state
has C = +1, so only the S = 0 state (para-positronium) can decay in
this way. The S = 1 states (ortho-positronium) can decay only to 3
photons. The decay rate is then suppressed by a factor of α, and also
by some numerical factors. The formulae for the decay rates are: for the
S = 0 state,

1/τ =
1

2
α5m τ = 1.2× 10−10 sec , (4.43)

and for the S = 1 states,

1/τ =
2

9π
(π2 − 9)α6m τ = 1.4× 10−7 sec , (4.44)

So, when we emit positrons into a gas, 1/4 of the positronium atoms
decay in a tenth of a nanosecond, but then we must wait 1000 times
longer for the other 3/4 to decay. It is a strange result, but experiment
verifies it (Berko and Pendleton 1980).

Exercises

(4.1) Imagine that the electron had spin 1 instead of spin
1
2
. Show that the spin-orbit interaction would split

the 2P levels into states with three different ener-
gies. Compute the relative energy shifts. Show that
the center of gravity of the levels is not changed by
this energy splitting.

(4.2) The relativistic equations studied in Chapter 3 gen-
erally predict the the corresponding particles have
Landé g factor equal to 2. We can explore this for
particles of spin 1

2
using the Dirac equation.

(a) A field obeying the Dirac equation in the pres-
ence of a background electromagnetic field
also obeys the second-order equation

(iγµDµ +m)(iγνDν −m)Ψ = 0 , (4.45)

where Dµ = (∂µ + ieAµ). Simplify this equa-
tion by using the identity

γµγν =
1

2
{γµ, γν}+

1

2
[γµγν ] . (4.46)

and show that it reduces to the Klein-Gordon
equation plus one extra term.

(b) Simplify the new term by proving the identity

[Dµ, Dν ] = +ieFµν . (4.47)

Using the explicit form of the γµ matrices,
evaluate this term in a background magnetic
field for which Fij = −εijkBk and F0i = 0.

(c) Act the resulting equation on the Dirac equa-
tion solution (3.50). Show that, to first order
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in B, the energy of the state is shifted by a
term of the form of ∆E = −~µ · ~B. In the
expression for ~µ, identify g = 2.

(4.3) This problem explores Thomas precession .

(a) Using the commutation relation (2.54), show
that the Hamiltonian H = ~ω · ~S and the
Heisenberg equation of motion

i
d

dt
~S = [~S,H] (4.48)

lead to the equation of motion

d

dt
~S = ~ω × ~S . (4.49)

This is a precession of ~S with angular veloc-
ity ~ω. Using this relation, we can go back and
forth between computed values of the preces-
sion frequency and its description by an effec-
tive Hamiltonian.

(b) Now consider a particle moving in the +3̂ di-
rection and also being accelerated in the +1̂
direction. Write the 4×4 boost matrix Λ that
boosts the particle from its rest frame to the
velocity v3̂.

(c) In the lab, we observe the particle to be accel-
erated with acceleration a, so that it is now
moving with the velocity v3̂+aδt1̂. Write the
boost matrix Λ that boosts the particle from
its rest frame particle from the rest frame to
this new frame, working to first order in δt.
The space-space part of Λ should be

δij+(γ−1)
(v3̂ + aδt1̂)i(v3̂ + aδt1̂)j

v2
. (4.50)

(d) To understand this transformation, compute
Λ−1Λ. This matrix gives the effect of the ac-
celeration as seen by the particle in its rest
frame. Show this this takes the form of a
boost by γaδt and a rotation by (γ − 1)aδt/v
with the axis of rotation in the direction â×v̂.

(e) Using (4.15), show that the rotation found
here reproduces the formula for the Thomas
precession frequency quoted in (4.14).

(4.4) It is possible to solve exactly for the energy eigen-
values of the hydrogen atom problem using the rel-
ativistic equations for scalars (Klein-Gordon equa-
tion) and electrons (Dirac equation). The solution
is long but actually not so difficult, if you use the
tricks that are suggested below at the various stages
of the solution. Try it!

The electrostatic potential for an electron in the
hydrogen atom is conveniently written

V (r) = −α
r
. (4.51)

Let m be the electron mass. Take the proton to be
fixed and infinitely heavy.

(a) The nonrelativistic Schrödinger equation for
a particle in a potential is[
−∇2 + 2mV (r)− 2mE

]
ψ = 0 . (4.52)

Prepare for the diagonalization of this opera-
tor by making r dimensionless with the sub-
stitution ρ = r/a0 = rmα and letting ψ be
an eigenstate of L2 with eigenvalue `(` + 1).
Write the resulting equation, an ordinary dif-
ferential equation for ψ(ρ).

(b) The Klein-Gordon equation for a particle in a
potential is[

(E − V (r))2 +∇2 −m2

]
ϕ = 0 (4.53)

Expand out this equation, substitute ρ =
rEα, and let ϕ be an eigenstate of L2 with
eigenvalue `(`+1). Note that the form of this
equation is the same as that in (a), with small
changes in the constant factors.

(c) Look for solutions of these equations of the
form

ρν−1e−kρ . (4.54)

For the Schrödinger equation, show that ν =
`+ 1, k = 1/ν, and

E = −1

2

α2m

ν2
. (4.55)

For the Klein-Gordon equation, show that
ν = λ+ 1, where λ satisfies

`(`+ 1)− α2 = λ(λ+ 1) (4.56)

Define δ` by
λ = `− δ` (4.57)

Compute δ` and show that it is small, of the
order of α2.

(d) The other bound state solutions of the
Schrödinger equation are of the form

ρν−p−1Pp(ρ)e−kρ . (4.58)

where Pp(ρ) is a polynomial of degree p (an in-
teger). You can look up in your favorite quan-
tum mechanics book that it remains true that
k = 1/ν and that the formula (4.55) for the
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energy levels still holds. The same formulae
apply to the Klein-Gordon equation, except
that ν is no longer an integer. It is shifted
from an integer value by δ`, as in part (c).
Using these facts, you can immediately write
down the eigenvalue of the operator. This
gives an equation for E in the Klein-Gordon
case, which is an easy quadratic equation for
E. Show that the solution is

E =
m

[1 + α2/(n− δ`)2]1/2
, (4.59)

where n is an integer, the usual principal
quantum number. Note that the energy levels
now depend on both n and `.

(e) Expand (4.59) to order α4. Show that the
first two terms give back the nonrelativistic
answer, while the order α4 term gives a rela-
tivistic correction that depends on `.

(f) Now turn to the Dirac equation. The Dirac
equation in a potential is[

γ0(E − V (r)) + i~γ · ~∇−m
]

Ψ = 0 (4.60)

Choose the representation of the Dirac matri-
ces

γ0 =

(
0 1
1 0

)
~γ =

(
0 ~σ
−~σ 0

)
(4.61)

where all blocks are 2 × 2 and the ~σ are the
Pauli sigma matrices. Make this equation
second-order by multiplying by the operator[

γ0(E − V (r)) + i~γ · ~∇+m

]
. (4.62)

Show that all matrices disappear except for
one term in which ~∇ acts on V (r). This term
is proportional to

i~γγ0 =

(
i~σ 0
0 −i~σ

)
. (4.63)

So, the top two components of Ψ obey an
independent equation from the bottom two
components. Each equation is an equation for
a 2-component spinor field. You will find that
these equations have the same bound state
eigenvalues, so we only have to solve one of
these.

(g) Expand the squares and write out the equa-
tion as in the Klein-Gordon case. Again, let
ρ = rEα. You should find the same structure
as in the Klein-Gordon case, except that now
the coefficient of 1/r is

`(`+ 1)− α2 + iα~σ · r̂ , (4.64)

where r̂ is a unit vector in the radial direction.
This is, unfortunately, a 2× 2 matrix.

(h) To make (4.64) a number, we need a rather
subtle trick: The operator ~σ · r̂ commutes
with the total angular momentum J2. On the
other hand, the factor r̂ changes ` by ±1 unit.
So this operator must mix pairs of states with
the same j and different `. These are states
with ` = j + 1

2
and states with ` = j − 1

2
.

Show, however, that

(~σ · r̂)2 = 1 . (4.65)

This means that, in the basis just described

~σ · r̂ =

(
0 1
1 0

)
. (4.66)

Show that (4.64) can then be written(
(j − 1

2
)(j + 1

2
)− α2 iα

iα (j + 1
2
)(j + 3

2
)− α2

)
.

(4.67)

(i) Find the eigenvalues of this matrix. Show
that they are of the form λ(λ+ 1), where λ is
shifted from an integer by

δj = (j +
1

2
)− [(j +

1

2
)2 − α2]1/2 . (4.68)

(j) Put all of the pieces together and derive

E =
m

[1 + α2/(n− δj)2]1/2
. (4.69)

Note that this formula depends only on n and
j, not on `.

(k) Expand the formula to order α4 and find the
relativistic corrections to the energy levels of
the hydrogen atom according to the Dirac
equation. These formulae are in good agree-
ment with experiment (to this order in α).
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We now have ample preparation to begin a discussion of particle physics
and the strong and weak interactions. The first topic that I will discuss
is the nature of the strongly interacting particles created in nuclear re-
actions. These include the proton and neutron, the π mesons, and many
related particles. These particles are collectively called hadrons.

We now know that hadrons are not elementary particles. They are
bound states of more elementary constituents called quarks. However,
it is very important to have a sharp qualitative understanding of the
hadrons. As we will discuss at the end of this chapter, quarks are never
seen as isolated particles but only as constituents of hadrons. This
behavior is consistent with the laws of quantum mechanics, but it is
very counterintuitive. This has two implications for our study. First, if
quarks are not seen directly, the evidence for their existence inside bound
states must be especially strong. In this chapter, I will describe how
the observable properties of hadrons give a first level of this evidence
for quarks. We will see stronger evidence for the quark structure of
hadrons in Chapters 8 and 9. Second, if quarks are not seen directly,
our experimental measurements on the strong interaction must be done
at the level of hadrons. To understand what is actually measured in
the experiments I will discuss, you will need to keep in mind the names,
identities, and basic properties of the hadrons.

5.1 The discovery of the hadrons

The lightest strongly interacting particles are the π mesons, with
masses of

π± : 139.57 MeV π0 : 134.98 MeV (5.1)

The history of the discovery of these particles is fascinating. In 1935,
Yukawa showed that, in the quantum theory of the Klein-Gordon equa-
tion

(∂2 +m2)ϕ = 0 (5.2)

the interaction of the field with static sources leads to a potential (the
Yukawa potential)

V (r) =
g2

4πr
e−mr . (5.3)

The Yukawa potential is universally attractive, with characteristic range

1

m
or

h̄

mc
. (5.4)
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Fig. 5.1: Charged particle tracks in photographic emulsion, produced by cos-
mic rays, showing the decay of a π meson to a muon, from (Lattes, Occhialini,
and Powell 1947).

Comparing to the range of the nuclear forces, he concluded (Yukawa
1935) that these forces would be explained by a Klein-Gordon particle,
the meson, of mass

m ∼ 200 MeV . (5.5)

Shortly thereafter, a particle of mass about 100 MeV was discovered
in cosmic rays. It was quickly concluded that this was the Yukawa
meson. However, it was then found that this particle was extremely
penetrating, with a range in matter of tens of meters. Theorists set to
work inventing reasons why the basic particle of the nuclear force did
not in fact interact with nuclei. Then, in 1947, Lattes, Ochialini, and
Powell exposed photographic emulsion at high altitude, including at the
observatory at Mt. Chacaltaya in Bolivia. They found that another
particle was visible there and decayed to the supposed meson. They
observed that the first particle was produced in nuclear interactions. One
of the figures from their paper is shown in Fig. 5.1 (Lattes, Occhialini,
and Powell 1947).

After this discovery, the former meson was demoted to the µ, which
turned out on closer investigation to be a lepton. The new meson was
the π. This put us on the correct road to an understanding of the strong
interaction.

Over the next fifteen years, more strongly interacting particles, hadrons,
were discovered, first, in cosmic ray observations and, beginning in the
1950’s, in experiments at particle accelerators. Figs. 5.2 and 5.3 show
displays of collision events that give evidence for some of these parti-
cles. The pictures were made using a device called a bubble chamber, a
volume of liquid in which the passage of a relativistic charged particle
will produce a line of tiny bubbles, which can then be photographed.
The momenta of the particles responsible for the various tracks can be
measured, as we will discuss in Section 6.4, and specific charged parti-
cles can be identified. Neutral particles are gaps where no bubbles are
visible, ending in a decay to two or more charged particles. Adding the
momenta of these charged particles, one can find evidence for neutral
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Fig. 5.2: A 1957 photograph from the 10-inch bubble chamber at Lawrence
Berkeley National Laboratory, showing the reaction π−p→ K0Λ, with subse-
quent decays of the K0 and the Λ into two charged particles (figures courtesy
of LBNL).
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Fig. 5.3: A bubble chamber photograph from Brookhaven National Labora-
tory that proved the existence of the Ω− baryon, from (Barnes 1964).

particles of definite mass. The specific particles that appear in these
figures will be introduced in Sections 5.3 and 5.5. Eventually, over a
hundred strongly interacting particles were discovered. It appeared that
the π mesons were not fundamental particles but rather bound states
made of some more elementary constituents.

The discovery and characterization of the hadrons is a fascinating
chapter in the history of physics, but in this book I will simply present
the final understanding of this subject. Here, this subject will serve as a
starting point for the investigation of the strong interaction described in
Part II. Very informative accounts of the discovery of the hadrons may
be found in the historical account by Pais (1986) and in older textbooks
such as (Källén 1964) and (Gasiorowicz 1966).

By studying the systematics of the hadrons, physicists tried to guess
how they could be built up from more basic states. In 1964, Gell-Mann
and Zweig proposed the quark model (Gell-Mann 1964, Zweig 1964),
which I will describe in the following sections of the chapter. It was not
at all obvious at the time that the quark model was correct. In fact,
a large part of the high-energy physics community did not accept the
quark model until ten years later, when remarkable new evidence for it
was found. In this textbook account, I will start with this evidence and
then work backward to the description of the hadrons known in 1964.

5.2 Charmonium

A beautifully simple way to create any particle, together with its
antiparticle, is to annihilate electrons and positrons at high energy.

Electron-positron annihilation provides
a simple setting to study elementary
particles created in the annihilation
process. This is an expecially powerful
way to study strongly interacting par-
ticles.

The annihilation results in a short-lived excited state of electromagnetic
fields. This state can then re-materialize into any particle-antiparticle
pair that couples to electromagnetism and has a total mass less than the
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total energy of the annihilating e+e− system.
In the 1960’s, a number of e+e− colliders were constructed around

the world. At energies below 2 GeV, e+e− annihilation shows a series of
resonances, which become increasingly broad and blend together to give
an annihilation rate that depends smoothly on energy. For example, the
ρ′, at 1450 MeV, has a width of about 400 MeV. At higher energies,
the annihilation rate was expected to decrease as 1/E2

CM . The actual
measurements showed an increasing, and oddly inconsistent, rate.

In 1971, the e+e− collider SPEAR began operating at the SLAC Na-
tional Laboratory in California. In November 1974, the SPEAR ex-
perimenters discovered an enormous, very narrow, resonance, at about
3.1 GeV (Augustin et al. 1974). This resonance would correspond to Discovery of the J/ψ resonance in e+e−

annihilation and production at a mass
of 3.1 GeV.

a new strongly interacting particle. This particle decayed most often to
pions and other hadrons, but also, about 6% of the time, to electron-
positron pairs and the same to µ+µ− pairs. When they announced
this discovery, they learned that the group of Samuel Ting, working
at Brookhaven National Laboratory in Upton, New York, had also ob-
served this new particle (Aubert et al. 1974). Ting’s group had studied
the reaction

p+ p→ e+e− +X (5.6)

where the particles X are not observed. They had looked for a resonance
in the mass spectrum of the e+e− pair, which would indicate a state of
definite mass that decayed to e+e−. Again, an enormous enhancement
appeared. The two discovery papers appeared back-to-back in Physical
Review Letters. I reproduce the key plots in Fig. 5.4. This particle
is now called the J/ψ. The discovery shocked everyone because the
resonance was so narrow. As we will discuss in Section 7.1, the lifetime
τ of a particle is related to its observed width in energy Γ by τ = h̄/Γ.
Thus, a small width corresponds to a long lifetime, longer by three orders
of magnitude than the lifetimes of typical hadrons of mass 3 GeV. A few
weeks later, the SPEAR group discovered a second narrow resonance at
3686 MeV, the ψ′ (Abrams et al. 1974).

Another group of narrow resonances is found in e+e− annihilation at
higher energy. The lightest state of this family, called the Υ, has a mass
of 9600 MeV. It was discovered by the group of Leon Lederman in the
reaction pp→ µ+µ−+X at the Fermilab proton accelerator (Herb et al.
1977). The full family of resonances was later uncovered at the Cornell
University e+e− collider CESR. In Fig. 5.5, I show the data from the
CLEO experiment at CESR, showing evidence for 4 clear resonances
(Silverman 1981). Two more resonances, which are barely visible in this
plot, have since been established.

The physics of the e+e− annihilation process allows us to determine
the quantum numbers of these particles. In the process e+e− → hadrons,
the highest rate reactions are those in which the e+e− pair is annihilated
by the electromagnetic current ~j = ψ~γψ through the matrix element

〈0| ~j(x)
∣∣e+e−

〉
. (5.7)

The current has spin 1, P = −1, and C = −1. These must also be
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Fig. 5.4: Left: Accumulation of events from the reactions pp → e+e− + X
at a fixed value of the e+e− invariant mass, proving the existence of the
narrow resonance Jψ, from (Aubert et al. 1974). Right: Observation of a
resonance in e+e− annihilation near 3.1 GeV, proving the existence of the
J/ψ, from (Augustin et al. 1974). From top to bottom, the three plots show
the production rate of final states with (a) multiple hadrons, (b) e+e−, and
(c) pairs of µ, π, K.



5.2 Charmonium 55

Fig. 5.5: Resonances in e+e− annihilation to hadrons corresponding to the S
states of the Υ family, from (Silverman 1981). The inset extends the dataset
to higher center of mass energy.

properties of the annihilating e+e− state, and of the new state that is
produced. So, all of the ψ and Υ states must have JPC = 1−−. The
current creates or annihilates a particle and antiparticle at a point in
space. So, if these particles are particle-antiparticle bound states, the
wavefunctions in these bound states must be nonzero at the origin. Most
probably, they would be the 1S, 2S, etc. bound states of a potential
problem.

If this guess is correct, the states with higher L must also exist. They
might be produced in radiative decays of the ψ and Υ states. Indeed,
in the summer of 1975, the SPEAR group and the DASP group at the
DESY Laboratory in Hamburg, Germany, observed 2-photon decays of
the ψ′ (Braunschweig et al. 1975, Feldman et al. 1975)

ψ′ → γ+ χ

→ γ + J/ψ . (5.8)

Three intermediate states χ states were observed. Because the transi-
tions involve emission of a photon, these three states must have C = +1.
Some later evidence for these transitions, from the SPEAR experiment,
is shown in Fig. 5.6. Notice that the lower energy photons have a
somewhat narrow energy spread, while the higher energy photons are
broadened in energy. The broadening would naturally happen for the
photons from the χ decays to J/ψ, since the χ recoils against the first
photon and so its decay products are boosted in a direction uncorrelated
with the photon emission.

Because these transitions are the strongest photon decays of the ψ′, it
is tempting to identify them with E1 transitions, as are seen in atomic
physics and in positronium. In a bound state, E1 transitions reverse
the value of P and add orbital angular momentum L = 1. In this case,
the new states χ in (5.8) would have the quantum numbers JPC =
0++, 1++, 2++.
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Fig. 5.6: Distribution of ψγ invariant masses observed in the reaction ψ′ →
γγ J/ψ by the Mark I experiment at SPEAR, from (Tannenbaum et al. 1978).

Fig. 5.7: Energy spectrum of photons observed at the ψ′ resonance by the
Crystal Ball experiment, from (Scharre 1981).
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We now have the pattern of states,

(5.9)

Remarkably, this reproduces exactly the pattern of the lowest-energy
states of positronium. In the positronium spectrum, there are also The spectrum of states of the J/ψ and

its partners reproduces the form of the
positronium spectrum.

1S and 2S 0−+ states. These states, called ηc and η′c, were discovered
through weaker M1 photon transitions from ψ′. Fig. 5.7 shows the
amazing photon spectrum observed by the Crystal Ball experiment at
SPEAR, with peaks at the photon energies associated with almost all
of these transitions. The positronium spectrum also contains a 2P state
with quantum numbers 1+−. The analogous state in charmonium, called
hc, has C = −1, and so it cannot be reached from the ψ particles by
a photon. It was discovered later, at Fermilab, in the reaction pp →
hc → γηc → 3γ (Andreotti et al. 2005), and by the CLEO experiment
at Cornell, in the reaction ψ′ → π0hc → π0γη (Rosner et al. 2005).

The complete set of ψ and Υ family states now known is shown in
Figs. 5.8 and 5.9, from a recent review of Eichten, Godfrey, Mahlke,
and Rosner (2007). This makes even more clear that the analogy to
positronium is precise. These states are bound states of a spin 1

2 fermion The spin 1
2

particles whose particle-
antiparticle bound states form the J/ψ
and Υ systems of states are called
quarks.

and its antiparticle. In the case of the ψ family, the fermion is called the
charm quark (c); this quark has a mass of about 1.8 GeV. In the case of
the Υ family, the fermion is called the bottom quark (b); this quark has
a mass of about 5 GeV.

It is worth noting that the P states in these spectra lie below the
corresponding S states. In the hydrogen atom, the 2P and 2S states are
almost degenerate. This is a special property of the 1/r potential. Other
possible potentials give these states different energies. A potential that
increases at large distances can lift the 2S states above the 2P states.
The reason for this is that the the 2P states are smaller radially than
the 2S states,

〈r〉2P < 〈r〉2S , (5.10)

because the 2S state must be orthogonalized to the 1S state and therefore
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Fig. 5.8: Observed states and transitions of the J/ψ system, from (Eichten,
Godfrey, Mahlke, and Rosner 2008). Note that the lowest P and D states are
labelled 1P and 1D in this figure, whereas in the hydrogen atom they would
be called 2P and 3D. The dashed horizontal line marks the threshold for pair
production of D mesons, described in Section 5.4.

Fig. 5.9: Observed states and transitions of the Υ system, from (Eichten,
Godfrey, Mahlke, and Rosner 2008). The dashed horizontal line marks the
threshold for pair production of B mesons, described in Section 5.4.
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must extend further out from the origin. Potentials of the form

V (r) = A log r or V (r) = −A
r

+Br (5.11)

give a good fit to the observed energies of the states of the ψ and Υ
systems. With a potential of this form, quarks cannot escape from their
bound states but rather are permanently confined. This raises issues of
physics that I will discuss later in the course. It also makes it ambiguous
what we mean by the quark mass; again, we will return to this question
later.

With the information provided so far, it still seems a mystery why
the J/ψ and Υ states are so narrow. If these particles decay by strong It is difficult to understand why the

J/ψ and Υ are so long-lived. But, the
analogy with positronium suggests an
explanation.

interactions, we might expect that the quark and antiquark inside these
bound states would annihilate rapidly through the strong interaction,
leading to a width of hundreds of MeV. But the measured widths of
these resonances are:

J/ψ : 93 keV Υ : 54 keV . (5.12)

The widths of the ηc states are

ηc : 30 MeV η′c : 10 MeV , (5.13)

also very small compared to the expected values. We have seen the ratio
of about 1000 between the 0−+ and 1−− lifetimes in the previous chapter;
this is just the ratio of the ortho- and para-positronium lifetimes. The
long lifetimes of the J/ψ and Υ would be explained if these states could
only decay to weakly coupled spin 1, C = −1 bosons. I would like to
suggest here that the decays are to spin 1 particles, called gluons, that
are the basic quanta of the strong interaction,

ηc → 2g J/ψ → 3g . (5.14)

It still seems strange that the gluons would be weakly coupled to heavy
quarks. I will take up that issue later in Chapters 10 and 11.

5.3 The light mesons

Now we can go back to the π mesons and other relatively light hadrons.
There are three π mesons, π+, π0, π−. The lightest states of the ψ and
Υ families are the ηc and ηb, with the quantum numbers 0−+. We have
seen that this is natural for the S = 0, 1S bound states of a system of spin
1
2 particles. By detailed study of their interactions, it was determined
that the π mesons also had JP = 0−. The π0 decays to 2 photons, so it
is C = +1. All of this is consistent with the interpretation of the pions
as spin- 1

2 fermion-antifermion bound states.
In fact, it was found that the lightest-mass hadrons all have the JP

quantum numbers either 0− or 1−. There are 9 relatively light 0−
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hadrons, the pseudoscalar mesons,

(5.15)

and 9 somewhat heavier 1− hadrons, the vector mesons,

The family of light pseudoscalar (0−)
mesons.

The family of light vector (1−) mesons.

; (5.16)

The numbers in the figures give the masses of the particles in MeV. The
K and K∗ states are not produced singly in strong interactions. They
are only produced together with one another, or with special excited
states of the proton. For example, we see the reactions

π−p→ nK+K− π−p→ Λ0K0 , (5.17)

where Λ0 is a heavy excited state of the proton, but we do not see the
reaction

π−p→ nK0 . (5.18)

For this reason, the K mesons and the Λ0 baryon became known as the
strange particles. It was found that the rules for K and K∗ production
can be expressed simply by saying that the strong interaction preserves
a quantum number called strangeness, with K0, K+, K∗0, and K∗+

having strangeness S = −1, their antiparticles having S = +1, and the
Λ0 having S = +1.

The π0, η, and η′ decay to 2 photons, so these are C = +1 states.
The ρ0, ω, and φ decay to γπ0, so these are C = −1 states. These
observations favor an interpretation of these states as bound states of
three spin- 1

2 fermions and their corresponding antiparticles. These
fermions are called the up, down, and strange quarks,

u, d, s . (5.19)

For example, we can model the π+ and ρ+ as the ud bound states
with spin 0 and spin 1, respectively. States with strangeness +1 will be
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assigned one s quark, and states with strangeness −1 will have one s
antiquark.

The mass pattern of the 0− states is not so clear, but the mass pattern
of the 1− states is quite obvious. The K∗ states, with strangeness ±1,
are about 120 MeV heavier than the ρ and ω mesons, and the φ is about
120 MeV heavier than the K∗ states. We can then interpret the 9 1−

states as bound states of

(u, d, s)× (u, d, s) , (5.20)

with the s quark carrying strangeness S = −1 and being about 120 MeV
heavier than the u, d. The u quark should have an electric charge The spectrum of light mesons can be

built of as bound states of the three
quarks u, d, s with the corresponding
antiquarks. The s quark is some-
what heavier than the others and car-
ries the conserved quantum number
strangeness.

Qu = Qd + 1 = Qs + 1 . (5.21)

The φ is interpreted as an ss bound state. Quite properly, its main
decay modes are

φ→ K+K−,K0K
0
. (5.22)

In this model, the near mass degeneracy of the π+, π−, π0 and of the
K+, K0 would be a consequence of near mass degeneracy of the u and d
quarks. It is tempting to guess that these quarks are exactly degenerate,
up to small corrections due to electromagnetic effects from their different
electric charges. This point of view is not actually correct, but it will
serve for the moment. I will return to this set of issues in Section 14.4.
There I will explain the form of the mass spectrum of the pseudoscalar
mesons, and we will find a way to evaluate the masses of the u and d
quarks.

It is tempting to guess that the strong interactions are invariant under
the discrete symmetry

u↔ d (5.23)

and, approximately, under the additional discrete symmetries

u↔ s d↔ s . (5.24)

In fact, the symmetry of the strong interaction is larger. In the 1930’s,
Heisenberg suggested that the nuclear forces are invariant under a con-
tinuous symmetry, called isospin (Heisenberg 1932). In this viewpoint,
the proton and neutron are viewed as a 2-component system that can be
rotated by 2× 2 unitary transformations. The group of transformations
is SU(2), appearing here as an internal symmetry of the strong interac-
tion. Isospin turned out to be a powerful symmetry constraint on the
properties of nuclear energy levels. The group SU(2) is isomorphic to
the rotation group in 3 dimensions, and so the representations of isospin
are exactly the familiar ones of angular momentum. If we assign the u
and d quarks to a spin 1

2 representation of isospin(
u
d

)
→ U(α)

(
u
d

)
= e−i~α·~σ/2

(
u
d

)
, (5.25)
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then the combinations uu, ud, du, dd form the 1
2 ⊗

1
2 representation,

that is, a sum of spin 0 and spin 1. The isospin 1 representation has
three degenerate states, and we can identify these with the three π and
the three ρ mesons. The isospin 0 states can be identified with the η
and ω mesons. The continuous isospin symmetry is a larger symmetry
group than the discrete replacement symmetry and it is more powerful.
For example, isospin symmetry relates different elementary particle pro-
cesses by SU(2) Clebsch-Gordan coefficients. I give some examples of
isospin predictions of this type in Problem 5.2.

It is sometimes useful to ignore the mass difference between the s
quark and the lighter quarks and treat the three quarks (u, d, s) as having
identical strong interactions. These three states are transformed by an
SU(3) continuous symmetry. In this book, I will make references to
this symmetry, but I will avoid situations in which we need to compute
SU(3) Clebsch-Gordan coefficients.

In my discussion of the C of the 0− and 1− states above, it was awk-
ward to treat states like the π+ and π−. These states are interchanged
by C

C
∣∣π+

〉
=
∣∣π−〉 (5.26)

and thus are not eigenstates of C. To restore a simple transformation
law, we define G-parity byG-parity is a consequence of C and

isospin symmetry that is easier than C
to apply to reactions of the π meson. G = C eiπI2 = CR2(π) , (5.27)

that is, a rotation by 180◦ about the 2̂ axis of isospin, followed by charge
conjugation. G will be a good symmetry to the extent that both C and
isospin are conserved by the strong interactions.

Since
R2(π) (1̂ + i2̂) = −(1̂− i2̂) R2(π) 3̂ = −3̂ , (5.28)

we find that

R2(π)
∣∣π+

〉
= −

∣∣π−〉 R2(π)
∣∣π0
〉

= −
∣∣π0
〉
. (5.29)

Then

G
∣∣π+

〉
= −

∣∣π+
〉

G
∣∣π+

〉
= −

∣∣π+
〉

G
∣∣π0
〉

= −
∣∣π0
〉
. (5.30)

Then all three pions have G = −1. This leads to useful selection rules.
For example, when the J/ψ decays directly to pions, it always decays to
an odd number of pions. The J/ψ has I = 0 and C = −1, thus, G = −1,
so this rule is explained by G-parity.

According to the quark model, all mesons — bosonic hadrons — are
described as quark-antiquark bound states. In general, this description(Almost) all known mesons can be iden-

tified with qq bound states. works well. The situation is not completely clear because the pion is so
light. Mesons heavier than about 1300 GeV can decay rapidly by emit-
ting pions. They may have large resonance widths and large interference
or mixing between states. This leaves room for additional non-qq states.
If the strong interactions are indeed due to spin 1 gluons, we would ex-
pect to see hadrons that are gg bound states. There is some evidence
for such states, but the question is not yet settled even today.
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5.4 The heavy mesons

If the heavy quarks b and c are the same type of particle as the light
quarks u, d, s, we also expect to find heavy mesons with one light and
one heavy quark. Two families of these are known. First, near 2 GeV,
we have the long-lived 0− states

(5.31)

and the 1− states that decay to these by photon emission

The 0− and 1− meson states containing
one c quark.

(5.32)

These states are explained as cu, cd, and cs bound states. Each state
has a corresponding antiparticle. The 3S and higher states of the ψ
spectrum decay to pairs of these D mesons. Similarly, near 5 GeV, we
have the long-lived 0− states

(5.33)

and the 1− states that decay to these by photon emission

The 0− and 1− meson states containing
one b quark.

(5.34)

These states are explained as bu, bd, and bs bound states. Each state has
a corresponding antiparticle. The 4S and higher states of the ψ spectrum
decay to pairs of these B mesons. The full picture is again consistent
with expectations from the quark model. The connection between the
light and heavy quarks gives the electric charge assignments

Qc = Qu Qb = Qd = Qs = Qu − 1 . (5.35)

One more, very heavy quark is known. This is the top quark, t, with
mass about 173 GeV. Because of its large mass, it has a very rapid
decay, with a width of 1.2 GeV. The top quark actually decays before it
can form hadrons. So there are no hadron states containing t, but the
rapid decay allows us to observe the production and decay of the t at
the quark level rather than the hadron level.
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There are then 6 types of quarks:

u c t Q = Qu
d s b Q = Qd

(5.36)

From here on, I will refer to the identifying label of a quark (u, d, etc.)
as its flavor.Definition of flavor.

5.5 The baryons

There is another class of strongly interacting particles that includes
the proton and neutron. These are fermions, called baryons. Baryons
cannot be created or destroyed singly; rather, they can only be created
as particle-antiparticle pairs, or by the conversion of one type of baryon
to another. This rule can be described as the presence of a conserved
quantum number, called baryon number B, with B = +1 for baryons
and B = −1 for antibaryons. Baryon number conservation requires that
the lightest baryon, the proton, is absolutely stable. In principle, the
proton could decay by reactions such as

p→ e+π0 , p→ νK+ . (5.37)

These modes have been searched for; the lifetime limits are

τ > 8.2× 1033 yr τ > 6.7× 1032 yr (5.38)

(Note that observing 1 cubic meter of water (3×1028 water molecules) for
a year and seeing no decays places limits at the level of 1028 yr.) Other
baryons can decay by strong or weak interactions, eventually decaying
down to the proton. The neutron is unstable to β decay

n→ pe+ν . (5.39)

This process requires the weak interaction, which we will study in Part
III of this book.

As with the mesons, there are distinctive, relatively light, families of
baryons, in which the heavier members have increasing values of the
strangeness quantum number. These is a set of 8 spin- 1

2 states (the
octet)

The family of light spin- 1
2

baryons.

(5.40)

and a set of 10 spin- 3
2 states (the decuplet)

The family of light spin 3
2

baryons.

(5.41)
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All of these states are assigned P = +1. The choice P = +1 for the
proton is a convention. The intrinsic parities of the other baryons are
assigned relative to this convention. The relative parity of the heavier
baryons can be inferred from their decays. For example, since we know
that the pion has P = −1, the assignment P = +1 for the parity of
the ∆ requires that the decay ∆0 → pπ− have nonzero orbital angular
momentum. Indeed, experiments observe that the decay pion is in a
state of L = 1.

The almost degenerate sets of baryons fall into isospin representations

N : I =
1

2
Σ : I = 1 Ξ : I =

1

2

∆ : I =
3

2
Σ∗ : I = 1 Ξ∗ : I =

1

2
(5.42)

The complete family sizes 8 and 10 are the dimensions of irreducible
representations of SU(3).

A clue to the structure of the baryons is the observation that the
10-dimensional representation of SU(3) arises as the set of 3-index sym-
metric tensors. To understand this statement, we should discuss a few A few simple facts about the irreducible

representations of SU(3).properties of the simplest irreducible representations of SU(3). The fun-
damental representation of SU(3) is a 3-component vector transformed
by a 3× 3 unitary matrix,

ξa → Uabξb . (5.43)

The complex conjugate of this representation, called 3, is the a 3-component
vector transformated by

ξb → ξaU
†
ab . (5.44)

A tensor with two indices, each of which runs over i = 1, 2, 3, transforms
as

Aab → UacUbdAcd . (5.45)

This tensor has 9 components. These can be split into 6 components of a
symmetric 3×3 matrix and 3 components of an antisymmetric 3×3 ma-
trix. Each of these objects transforms independently of the other under
the transformation (5.45), leading to 6- and 3-dimensional representa-
tions of SU(3). This is an example of the idea discussed in Sections 2.3
and 2.4 that a group representation can often be split into a sum of
smaller, irreducible representations. For SU(3), the 3-dimensional anti-
symmetric tensor representation can be shown to be equivalent to the 3
representation presented in (5.44).

In a similar way, a tensor with three indices running over i = 1, 2, 3 and
totally symmetric in those indices forms an irreducible representation of
SU(3). The number of components of this tensor gives the dimension of
the representation; this is

3 · 4 · 5
3!

= 10 . (5.46)
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For a 3-index symmetric tensor in which the indices take only the values
j = 1, 2, the number of components is

2 · 3 · 4
3!

= 4 . (5.47)

This describes the symmetric combination of three spin- 1
2 objects, which

is just the spin- 3
2 representation of SU(2).

From these considerations, it is highly suggestive that the states in
the 10 are symmetric combinations of 3 quarks. For example, we can
assign ∣∣∣∣∆++(S3 =

3

2
)

〉
= |u ↑ u ↑ u ↑〉∣∣∣∣Ω−(S3 =

3

2
)

〉
= |s ↑ s ↑ s ↑〉 , (5.48)

all in a relative S-wave wavefunction. This gives a simple explanation
of the spin- 3

2 nature of the decuplet states and of their flavor quantum
numbers.

Actually, if we count both spin and flavor, the light quarks come in 6
states

u ↑ , u ↓ , d ↑ , d ↓ , s ↑ , s ↓ (5.49)

The number of states that we can build by taking three quarks in a
totally symmetric combination is

6 · 7 · 8
3!

= 56 . (5.50)

The decuplet states fill out 10 · 4 or 40 of these states. What remains is

56− 40 = 16 = 8 · 2 . (5.51)

that is, just enough states to fill out the baryon octet.
To see how this works in more detail, I will construct some baryon

wavefunctions. Start from the wavefunction of the ∆++ with spin S3 =Explicit forms for the ∆ and nucleon
wave functions in the quark model. 3

2 given in (5.48). The isospin lowering operator I− = I1−iI2 commutes
with I2 = I(I + 1) and lowers I3. This gives the ∆+ wavefunction∣∣∣∣∆+(S3 =

3

2
)

〉
=

1√
3

[
|u ↑ u ↑ d ↑〉+ |u ↑ d ↑ u ↑〉+ |d ↑ u ↑ u ↑〉

]
.

(5.52)
Applying also the spin-lowering operator S−, we find∣∣∣∣∆+(S3 =

1

2
)

〉
=

1√
9

[
|u ↑ u ↑ d ↓〉 + |u ↑ u ↓ d ↑〉+ |u ↓ u ↑ d ↑〉

+ |u ↑ d ↑ u ↓〉 + |u ↑ d ↓ u ↑〉+ |u ↓ d ↑ u ↑〉

+ |d ↑ u ↑ u ↓〉 + |d ↑ u ↓ u ↑〉+ |d ↓ u ↑ u ↑〉
]
.

(5.53)
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This is a state with electric charge +1, strangeness 0, S3 = 1
2 , I = 3

2 ,
and S = 3

2 . Among the octet and decuplet states, there is only one
other state that has Q = +1, strangeness 0, and S3 = 1

2 . That state
is the spin-up proton state. Since that state has I = S = 1

2 , it must
be orthogonal to the state written above. There is only one totally
symmetric state with this property, so the proton spin-up state must
have the form∣∣∣∣p(S3 =

1

2
)

〉
=

1√
18

[
2 |u ↑ u ↑ d ↓〉 − |u ↑ u ↓ d ↑〉 − |u ↓ u ↑ d ↑〉

− |u ↑ d ↑ u ↓〉 + 2 |u ↑ d ↓ u ↑〉 − |u ↑ d ↑ u ↓〉

− |d ↑ u ↑ u ↓〉 − |d ↑ u ↓ u ↑〉+ 2 |d ↓ u ↑ u ↑〉
]
.

(5.54)

All of the 8 S3 = + 1
2 states of the baryon octet can be constructed

in this way. The 6 states around the boundary of the octet have forms
precisely analogous to that of the proton. The construction of the Λ0

and Σ0 states is more subtle. One must first construct the (I = 1) Σ0

state as ∣∣Σ0
〉

=
1√
2
I−
∣∣Σ+

〉
(5.55)

and then write the Λ0 as a state orthogonal to this one.
These wavefunctions may seem complicated, but they pay an immedi-

ate dividend in explaining the values of the baryon magnetic moments.
You can work out the details in Problem 5.3.

From the quark content of the baryons, we can find the absolute elec-
tric charges of the quarks. We find

Qu = +
2

3
Qd = −1

3
. (5.56)

This is decidedly odd! Fractional electric charges have never been con-
vincingly observed in nature. After Gell-Mann and Zwieg proposed the
quark model, intensive searches were made for fractional charge in rocks,
sea water, clam shells, moon rocks, etc. No evidence for charge 1

3 was
found (Perl et al. 2001). Apparently, the quarks are inside hadrons, Quarks have fractional electric charges.

However, no particles with fractional
electric charge have been observed by
experiment. To explain this, we must
insist that quarks can never be liber-
ated from inside hadrons. A funda-
mental theory of the strong interaction
must address this issue.

but they cannot get out. In Part II of this book, we will see considerable
evidence that there are indeed charge 2

3 and − 1
3 quarks inside hadrons.

There is one more odd feature of the baryons. Spin-1
2 particles are

fermions, for which the spin-statistics theorem requires that the quan-
tum states are completely antisymmetric. But the baryon wavefunctions
that we constructed, beginning with (5.48), are totally symmetric. Han
and Nambu proposed that this could be understood if quarks have an
additional quantum number, called color, taking three values (red, green,
blue) (Han and Nambu 1965). If the baryon wavefunction is required
to be totally antisymmetric in color, it must be totally symmetric in all
other quantum numbers. The transformation among colors of quark The symmetry property of baryon

wavefunctions suggest the existence of
an additional quark quantum number,
color.

can be described as another SU(3) transformation. If we write indices
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i = 1, 2, 3 in the 3 representations as lowered and indices in the 3 as
raised, the basic invariants of SU(3) are

δab , εabc , εabc . (5.57)

So color-invariant combinations of quarks and antiquarks are

qaqa εabcqaqbqc εabcq
aqbqc . (5.58)

These are exactly the mesons, baryons, and antibaryons. These consid-
erations strongly suggest (1) that the color quantum number and color
SU(3) symmetry exists, and (2) that physical hadrons are invariant un-
der color SU(3) transformations.

Up to this point, I have only argued that the quark model, with six
quarks and color SU(3), gives a plausible explanation for the quan-
tum numbers of the most prominent hadrons. The model suggests that
quarks are spin- 1

2 fermions. Nevertheless, on the basis of the evidence I
have offered so far, this is at best still a hypothesis. To find the precise
nature of the strong interaction, we will need to look at experiments that
are more sensitive to the details of the interactions of quarks with one
another and with electromagnetic probes. We will take up this analysis
in Part II.

Exercises

(5.1) This problem will give you a chance to dip into the
tables of elementary particle properties produced
by the Particle Data Group (Patrignani et al. 2016)
and to use this information to understand better
the systematics of ψ family particle decays.

To work this problem, you should recall that a de-
cay rate in quantum mechanics is given by a par-
tial width Γ(A→ f), with units of energy. A partial
width gives the rate of a basic quantum mechanical
process. The total width of a resonance is

ΓA =
∑
f

Γ(A→ f) (5.59)

That is, it is the sum of the rates for all possible
decay processes. The lifetime of the resonance is
τ = h̄/ΓA. The branching ratio to the decay chan-
nel f , the probability that a particular decay of A
gives the final states f , is

BR(A→ f) = Γ(A→ f)/ΓA . (5.60)

Usually, it is easiest to meaure branching ratios,

but the real physics is in the actual rates. To ob-
tain these, we must extract the partial widths from
the information that we are given.

(a) The J/ψ can decay in four different ways. (1)
decay by cc annihilation directly to hadrons,
(2) decay by cc annihilation to a virtual pho-
ton (a short-lived state of electromagnetic
fields), which then materializes into an e+e−

or µ+µ− pair. The J/ψ is produced in e+e−

annihilation by e+e− annihilation into a vir-
tual photon which then materializes as a J/ψ.
This decay is the reverse of that process, (3)
decay by cc annihilation to a virtual photon,
which then materializes into hadrons, (4) de-
cay to 1 photon plus hadrons. There is also a
decay to 3 photons with a very small branch-
ing ratio (about 10−5).

Look up the listing for the J/ψ at the Particle
Data Group web site. The heading “pdgLive”
gives the most recently updated information.
Look under cc to find the information for the
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J/ψ. The entry J/ψ → ggg gives the branch-
ing ratio for direct decays to hadrons, mode
(1) above. Similarly, the entry J/ψ → γgg
gives the branching ratio for mode (4) above.
Write the branching ratio for each of the de-
cay modes (1)–(4). (These should add up to
100%, within the measurement errors.) Us-
ing the tabulated total width, find the partial
width for each channel.

(b) The ψ(2S) can decay by the 4 modes above
and also by 3 additional modes: (5) decay to
the heavy lepton τ+τ−, (6) decay to J/ψ plus
hadrons (ππ, π0, or η), (7) radiative decay to
the 1P states χc.
Using the information in the entry for the
ψ(2S), write the branching ratio for each
of the decay modes (1)–(7). (Again, these
should add up to 100%, within the mea-
surement errors.) Using the tabulated total
width, find the partial width for each chan-
nel.

(c) Compute the ratios of the partial widths be-
tween the J/ψ and the ψ(2S) for each of the
processes (1)–(4). How do these ratios com-
pare? Why would this result be expected?

(5.2) Consider the reaction of pion-nucleon scattering at
energies of a few hundred MeV. Two prominent
resonances are seen as the center of mass energy is
varied. These are the ∆ resonances at 1232 MeV
and the N∗ (“Roper”) resonance at 1440 MeV. The
∆ has I = 3

2
, S = 3

2
. The Roper has I = 1

2
, S = 1

2

and can be thought of as a radial excitation of the
nucleon. The absolute rates of the reactions that
form these resonances need to be computed from
a dynamical strong interaction theory. However,
the relative rates of different reactions producing
the same resonances can be computed using isospin
symmetry and Clebsch-Gordan coefficients.

The initial states in the reaction are the π mesons,
an I = 1 multiplet (π−, π0, π+), and the nucle-
ons, an I = 1

2
multiplet N = (p, n). The quantum

mechanical amplitude to produce a resonance of
isospin I from initial states with isospins (I1, I

3
1 )

and (I2, I
3
2 ) is proportional to the Clebsch-Gordan

coefficient
〈I1I2I3

1I
3
2 | I1I2II3〉 (5.61)

with I3 = I3
1 +I3

2 . The amplitude for the decay of a
resonance to two particles of definite isospin is sim-
ilarly proportional to the relevant Clebsch-Gordan
coefficient. You can find a very readable table of
Clebsch-Gordan coefficients for SU(2) at the Par-

ticle Data Group web site, under “Mathematical
Tools”.

(a) There are 4 ∆ states: (∆++,∆+,∆0,∆−).
These decay exclusively to 2-particle states
πN . Using isospin Clebsch-Gordan coeffi-
cients, compute the branching ratios for each
state to the 6 possible channels

(π+π0, π−)× (p, n)

(b) A crude description of the N∗ decays is that
60% of the decays go to πN and 40% go
to π∆, Using these values and the Clebsch-
Gordan coefficients, compute the branching
ratios of the N∗ states (N∗+, N∗0) to the 6
πN states in (a).

(c) The decay of the N∗ to π∆ followed by the
decay of the ∆ leads to the final state ππN . It
is easy to compute the branching ratios to the
various ππN states if we assume that there is
no quantum mechanical interference between
two decay processes. (This will be correct if
two pions emitted have significantly different
energies, which is actually not so true in this
case.) Using this approximation, compute the
branching ratios of N∗ to the various possible
ππN states.

(5.3) The quark model gives a theory of the magnetic
moments of the proton and neutron. If a quark
were an elementary Dirac fermion, its magnetic mo-
ment would be

~µ = g
Qfe

2mf

~S (5.62)

with Qf the quark charge, mf the quark mass, ~S
the quark spin. The Dirac equation predicts the
value of the Landé g-factor g = 2. In the proton
and neutron, we have only the u and d quarks. By
isospin symmetry, the u and d quark masses should
have the same value, mq ≈ 300 MeV. We could then
model the baryon magnetic moment as the sum of
the three quark magnetic moments,

~µB =
2Q1e

2mq

~S1 +
2Q2e

2mq

~S2 +
2Q3e

2mq

~S3 , (5.63)

where Q1, Q2, Q3 = +2/3 or -1/3 depending on
whether the quark is u or d.

(a) Using the quark model wavefunction for the
proton state with S3 = 1

2
written down in

(5.54), compute the magnetic moment of the
proton in this approximation. This is most
easily done by computing the diagonal ma-
trix element of the 3̂ component of the oper-
ator ~µB , given by (2), in this state. Express
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the result by computing the proton g factor
gp given by

~µp = gp
e

2mp

~Sp (5.64)

and the ratio mp/mq.

(b) Using the same method, compute the g factor
of the neutron, defined by

~µn = gn
e

2mp

~Sn . (5.65)

(c) The g factors for the proton and neutron are
very different from the value 2 predicted by
the Dirac equation. The measured values are

gp = +5.586 gn = −3.826 .

Compare these results to the predictions of
the quark model given in parts (a) and (b).
What value of the quark mass mq best ac-
counts for the data?
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Particles 6
Thus far in this book, my discussion of experimental results has only
been semi-quantitative. We have looked at symmetry principles and
energies of resonances but not yet at the values of rates of elementary
particle reactions. To understand measurements of rates, and to com-
pare to experimental data, we need to understand how the momenta and
energies of elementary particles are measured. This chapter will give a
very brief introduction to that subject. In-depth presentations of the
physics and design of particle detectors can be found in (Green 2005)
and (Grupen and Shwartz 2008).

Particle detectors are, generally, of one of two types. The first is a
detector of ionization or other energy loss. A particle comes in, deposits
energy in a sensor, and exits. The position of the energy deposition gives Two types of elementary particle detec-

tors: trackers and calorimeters.a point on the particle’s trajectory, and the amount of energy deposited
contains some additional information about the particle’s momentum.
A detector of this type is called a tracker. The second type of detector
is one that attempts to convert the entire energy of a particle into a
measurable signal. A detector of this type is called a calorimeter.

Particle detectors measure the properties of stable particles, or, at
least, of particles that have a macroscopic flight path of length of a
millimeter or greater. Unstable particles are measured by observing
the particles into which they decay. Trackers are usually sensitive only
to charged particles. Calorimeters are sensitive to charged and neutral
particles, but only to particles with strong interactions, or to electrons
and photons.

All particle detectors have their basis in the effects produced by a
relativistic particle moving through matter. Such a particle will knock
electrons out of atoms, producing ionization. It will interact electromag-
netically with atomic nuclei, transfering momentum and, in some cases,
producing additional photons, electrons, and positrons. High energy
hadrons will also scatter from nuclei through the strong interaction. A
fast charged particle will also interact with the material it passes through
in a collective way, through the macroscopic dielectric properties of the
medium. All of these effects are used to create different types of parti-
cle detectors that measure energy-momentum in different ways and also
discriminate one type of particle from another.

The theory of particle motion through matter is highly technically
developed. In this chapter, I will cover only some simple aspects of
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this theory. Excellent, more detailed, introductions to this subject can
be found in (Bichsel, Groom, and Klein 2016) and other articles from
the Review of Particle Physics (Patrignani et al. 2016), in the relevant
chapter of (Jackson 1998), and in the textbooks cited above.

Modern particle detectors are modular systems in which different
single-purpose detectors are placed one inside another. These systems
attempt to measure all properties of the particles produced in an ele-
mentary particle reaction, in a definite sequence. After we review the
basic mechanisms used by particle detectors, I will discuss some of these
larger-scale detector systems.

6.1 Energy loss by ionization

We begin with the theory of ioniziation. Consider a fast particleScattering of atomic electrons by a rel-
ativistic particle. of charge Qe that interacts electromagnetically with an electron in an

atom. This particle will kick electrons out of the atom and lose energy
in the process. I will assume that the fast particle suffers only a small
deflection. The geometry of the interaction is

(6.1)

where b is the impact parameter.
If the fast particle is moving relativistically, its field is a pancake in

the frame of the electron,

(E‖, E⊥) =
eQ

4π

(γvt, γb)

[b2 + (γvt)2]3/2
, (6.2)

with β = v/c, γ = 1/
√

1− β2. The electric field transfers momentumScattering of a relativistic particle from
an electron in an atom. to the electron

∆p =

∫
dt eE⊥ =

2e2Q

4π

1

bv
. (6.3)

Note that this is independent of γ. The energy transferred to the electron
is

∆E =
(∆p)2

2me
= 2(

e2

4π
)2Q2 1

b2
1

mev2
. (6.4)

The angular deflection of the incoming particle is

θ = 2Q
e2

4π

1

bv

1

p
. (6.5)

These formulae are of course just a crude approximation of the full
problem of a particle interacting with an electron bound to an atom.

To calculate the energy loss of the fast particle, we need to average
the possible values of the impact parameter b over a plane perpendicular
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to the trajectory of the particle. The average energy loss is then given
by the density of atomic electrons multiplied by the integral∫

d2b∆E(b) ∼ 2π

∫
db b

1

b2
∼ 2π

∫
db

b
. (6.6)

To estimate this logarithmic integral we need an estimate of the maxi-
mum and minimum values of b for which the scattering is effective. The
maximum value is set by the condition that, if b is large, the particle
passes by an atom over a long time, and the position of the electron
must be averaged over its orbit around the nucleus. The time for the
particle to pass the atom is

∆t ∼ b

vγ
. (6.7)

Let ω be a typical atomic frequency or energy difference, of the order of
eV. If ∆t > h̄/ω, the particle cannot act coherently on the electron; this
gives

bmax ∼
γv

ω
. (6.8)

The minimum value is set by the quantum-mechanical uncertainty in
the electron’s position, as seen by the incoming particle. This is

bmin ∼
h̄

γmev
. (6.9)

We then find for the energy loss per unit distance x (in cm)

dE

dx
= −nZ

∫
db b 2π ∆E(b)

= −4πα2Q2 nZ

mev2

∫ bmax

bmin

db

b

= −4πα2Q2 nZ

mev2
log

[
γ2mev

2

h̄ω

]
, (6.10)

where n is the number density of atoms (atoms/cm3) and Z is the atomic
number or the number of electrons per atom.

This simple derivation captures the main features of Bethe’s classic
treatment of this problem (Bethe 1930). By a somewhat more sophisti-
cated analysis, Bethe found Bethe’s formula for the energy loss of a

charged particle due to ionization.

dE

dx
= −4πα2Q2 nZ

mev2

[
log

2γ2mev
2

h̄ω
− v2

c2

]
. (6.11)

A large number of phenomenological improvements to this formula are
discussed in (Bichsel, Groom, and Klein 2016).
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Fig. 6.1: Energy loss in MeV/(g/cm2) for positive muons in copper as a
function of βγ, from (Bichsel et al. 2016).

The general form of the energy loss function dE/dx is

(6.12)

The formula depends on the velocity of the particle, but not its momen-
tum. (It also depends on the charge Q, but, for most of the particlesQualitative features of Bethe’s formula

for the energy loss of charged particles
include its rapid rise at low velocities,
its ionization minimum, and its rela-
tivistic rise with logE.

we consider, Q = ±1.) The ionization increases rapidly as the particle
slows down, as 1/v2; it also increases logarithmically as the particle be-
comes very relativistic. The latter effect is called the relativistic rise. Its
size depends on the absorbing material. The curve has a minimum for
βγ ∼ 1, this is called minimum ionization. The numerical value of the
minimum ionization is a few MeV/cm. More accurately, this value is
given by 1.5 MeV·ρ, where ρ is the density in g/cm3. The minimum of
the curve is quite shallow, so single relativistic particles are recognized
as contributing an energy deposition of one minimum ionizing particle
(1 MIP).Definition of a minimum ionizing par-

ticle. Figure 6.1 shows in more detail the energy loss dE/dx for a muon
passing through copper. At the lowest energies, the 1/v2 divergence is
rounded off by more careful consideration of the atomic physics. At very
high energies, another effect comes in, which I will describe in Section
6.2.

The path of a particle in a magnetic field depends on the momentum,
but not the velocity; the ionization depends on the velocity but not the



6.2 Electromagnetic showers 75

momentum. It is thus possible to use dE/dx measurements to measure
the particle mass. A heavier particle has a dE/dx curve shifted to higher
values of the momentum,

(6.13)

Measurement of dE/dx requires understanding of one more subtlety.
The theory I have given applies to the average value of dE/dx. However,
the energy loss in each atomic collision varies strongly with the impact
parameter of the scatter. If dE/dx is measured by sampling in slices of an
ionizing medium, the sampled values of energy loss will vary according
to a probability distribution, first computed by Landau (1944), that
includes rare events of very high energy loss. Then it is awkward The energy loss by ionization includes

the possibility of large positive fluctua-
tions. This must be taken into account
in measuring dE/dx.

to average measured values of dE/dx; rather, the particle velocity is
estimated from the most probable energy loss, given approximately by

∆E = −ξ
[
log

2γ2mev
2ξ

h̄ω
− v2

c2

]
. (6.14)

where ξ = (2πα2Q2nZ/mev
2)∆x, with ∆x the thickness of the sampler.

For more details, see (Bichsel 2016).

6.2 Electromagnetic showers

For very relativistic particles, another energy loss mechanism takes
over. A very high energy electron can emit a photon, moving roughly Important energy loss mechanisms for

relativistic electrons and photons are
bremsstrahlung and pair conversion.

collinear with electron, that carries a large fraction of its energy. This
effect is called bremsstrahlung. Similarly, a very high energy photon
easily converts to an electron-position pair, with both members of the
pair moving in the same direction as the photon.

Bremsstrahlung and pair-production are typically interactions between
a high energy particle and an atomic nucleus. They occur infrequently
along the path of a particle, but they are also significant events that
transfer substantial momentum. As such, they should not be described
by their average effects but rather by individual collisions occuring with
given probability along the path. The probability of scattering in a small
interval of the path dx is written as dx/λ. Then the probability P (x)
that the particle still has not scattered after a path length x satisfies the
equation

d

dx
P (x) = − 1

λ
P (x) or P (x) = e−x/λ . (6.15)



76 Detectors of Elementary Particles

The parameter λ is called the mean free path.
Bremsstrahlung and pair-production are the result of a peculiar prop-

erty of relativistic kinematics. An electron at rest cannot spontaneously
convert to an electron and a photon; this violates energy-momentum
conservation. However, if the energies of these particles are much larger
than mec

2, the required nonconservation of energy and momentum is
small. The momentum 4-vector of a relativistic electron can be written

pµ = (E, 0, 0,
√
E2 −m2

e) ≈ (E, 0, 0, E − m2
e

2E
) . (6.16)

Now imagine that the electron splitsRelativistic kinematic origin of

bremsstrahlung and e+e− pair
production. e−(P )→ e−(p′) + γ(q) (6.17)

into a photon carrying a fraction z of the original energy and an electron
carrying a fraction (1− z). The new 4-vectors are

q = (zE,E⊥, 0, zE −
p2
⊥

2zE
)

p′ = ((1− z)E,−p⊥, 0, (1− z)E −
p2
⊥ +m2

e

2(1− z)E
) (6.18)

For a momentum transfer of order p⊥ ∼ me, the required transfer of
energy or longitudinal momentum is of order

m2
e

E
, (6.19)

which, for a GeV electron, is of the order of keV. This is easily supplied
by the scattering of an electron off the electrostatic field of a heavy
nucleus.

An individual electron-nucleus scatter, then, can split the 4-momentum
of a relativistic electron into two pieces, giving an arbitrary fraction z
of the energy to a bremsstrahlung photon. In the same way, a photon-
nucleus scatter can split the 4-momentum of the photon into the two
momenta of an electron-positron pair.

A detailed calculation of the cross section for electron splitting gives
a formula for the electron scattering rate of the form of (6.15) but also
differential in the energy fraction z taken by the photon. The probability
of a scatter at a position x is written as an integral over z, the fraction
of the electron’s momentum that is transfered to the photon. ThenProbability formula for bremsstrah-

lung.
d

dx
P (x) = −

∫
dz

{
1

X0

1

z

[4
3

(1− z) + z2
] }

P (x) . (6.20)

For γ → e+e−, the corresponding formula isProbability formula for e+e− pair pro-
duction.

d

dxdz
P (x) = −

∫
dz

{
1

X0

[
1− 4

3
z(1− z)

] }
P (x) . (6.21)

The quantity X0 is called the radiation length; it is given approximately
by

1

X0
=

4α3

m2
e

nZ2 log
me

Qs
, (6.22)
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Fig. 6.2: Fractional energy loss per radiation length for electrons and
positrons in lead as a function of the electron or positron energy, from (Bichsel
et al. 2016).

where
1

Qs
= 1.4Z−1/3a0 , (6.23)

where a0 is the Bohr radius. Note that X0 depends strongly on the
nuclear charge Z. The length 1/Qs is the distance outside the core of
a heavy atom at which the nuclear charge is screened by the electrons,
computed in the Thomas-Fermi approximation. The appearance of this
screening length emphasizes that, while ionization is an interaction with
electrons, bremsstrahlung and pair production are interactions with the
atomic nuclei.

The formula (6.20) implies that the mean free path for an electron
to radiate a hard bremsstrahlung photon is of order X0, while soft Mean free paths for bremsstrahlung

and pair production.bremsstrahlung photons are emitted more frequently. To be more quan-
titative, let 〈E(x)〉 be the average energy of the electron after a distance
x. The energy lost in a bremsstrahlung emission is x 〈E(x)〉. From
(6.20), the expected energy obeys

d

dx
〈E(x)〉 = −

∫
dz

{
1

X0

1

z

[4
3

(1− z) + z2
] }

z 〈E(x)〉 . (6.24)

Performing the integral, we find

d

dx
〈E〉 = − 1

X0
〈E〉 , (6.25)

that is, X0 is the mean free path for the energy carried by the initial
electron. For photon splitting, the energy sharing is roughly equal be-
tween the electron and positron. We can simply integrate the right-hand
side of (6.21) over z and find

d

dx
P (x) = − 7

9X0
P (x) . (6.26)
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Fig. 6.3: Cross section for photon scattering from lead as a function of the
photon energy, from (Bichsel, Groom, and Klein 2016). The various reactions
that contribute are shown as separate curves; p.e. denotes the photoelectric
effect.

Then the mean free path for a photon to convert to an electron-positron
pair is λ = (9/7)X0.

An important quantity related to this physics is the critical energy
Ec. This is the energy below which ionization energy loss dominates
over bremsstrahlung. This cross-over is shown, for electrons in lead, in
Fig. 6.2. Photons have a similar low-energy cutoff for pair production,
just below the e+e− threshold. At still lower energies, their energy loss
is dominated by the photoelectric effect, as shown in Fig. 6.3.

Here is a table of the radiation length and critical energy for some
commonly used materials. I also include the pion interaction length λI ,
the mean path for a π+ to travel in the material before suffering an
inelastic collision with a nucleus. The values for many more materials
can be found in a useful table in (Patrignani et al. 2016).

X0 (cm) Ec (MeV) λI (cm)

Be 35.3 114 59.5
C 18.9 82 38.2
Fe 1.76 22 20.4
W 0.35 8 11.3
Pb 0.56 7 19.9

(6.27)

Once a photon or electron has been created by bremsstrahlung orRadiation lengths and pion interaction
lengths in some representative materi-
als.
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Fig. 6.4: Simulation of an electromagnetic shower in iron, showing the frac-
tional energy loss per radiation length as a function of depth, from (Bichsel,
Groom, and Klein 2016).

pair creation, it is free to initiate new processes of these kinds. Roughly,
then, the number of relativistic particles doubles every radiation length.
The result is an electromagnetic shower. The number of relativistic Description of an electromagnetic

shower.particles grows exponentially up to 5-8 radiation lengths. Then, the
electrons, positrons, and photons drop below the critical energy and
dissipate their energy directly without further particle production.

(6.28)

The energy deposition in a simulated electromagnetic shower in iron is
shown in Fig. 6.4. This example is typical, but the details of the particle
production will vary from shower to shower. The transverse size of the
shower is characterized by the Molière radius, given by

RM = X0 ·
21 MeV

Ec
. (6.29)

A cylinder with radius RM contains 90% of the energy deposition of an
electromagnetic shower.

6.3 Further effects of nuclear scattering

For heavier charged particles, even when they are relativistic, brems-
strahlung does not contribute significantly to their energy loss except
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at extremely high energy. For example, we see from Fig. 6.1 that the
critical energy for a muon in copper is about 3000 GeV. However, there
are two more effects of nuclear scattering that play an important role in
particle detectors.

First, a Coulomb scatter from an atomic nucleus can significantly
change the direction of the particle’s motion. In (6.5), we saw that a fastDeflection of the path of a charged par-

ticle by multiple scattering. particle scattering from an electron suffers a small deflection. Scattering
from all of the electrons in an atom, this effect is of order Z. But
scattering coherently from an atomic nucleus gives a deflection of order
Z2, and also one that is not cut off as strongly for larger momentum
transfer. Through the collective action of many such scatterings, the
orientation of the particle is smeared in angle, an effect called multiple
scattering. The increase in the mean square deflection per unit path
length travelled is

d
〈
θ2
〉

dx
=

13.6 MeV

βp
·Q ·

√
x

X0
. (6.30)

where, in this formula, the radiation length X0 defined in (6.22) again
sets the scale of distance.

In designing a tracking detector, it is necessary to compromise between
having enough material to see the particle track accurately and having
a sufficiently small amount of material that the angle of the track is not
smeared by multiple scattering. The balance between these effects is
explored in Exercise 6.3.

If the particle traversing the medium is a hadron, it can also interact
with atomic nuclei through the strong interaction. For example, a pionDescription of a hadronic shower.

moving through detector material will suffer an inelastic collision in the
distance called λI in (6.27). This collision will take energy from the pion
and convert this to the energy of several additional charged and neutral
hadrons. After many scatterings, the energy of the pion is converted to
the energy carried by many approximately collinear hadrons and their
reaction products. This process is called a hadronic shower.

Hadronic showers are more complex than electromagnetic showers,
because they involve a wider variety of processes with different length
scales. When a π+ has an inelastic collision with a nucleus, it cre-
ates a large number of relativistic particles, including π+, π−, and π0.
The π0’s are very short-lived, decaying almost immediately to 2γ. The
characteristic flight distance for a π0 is cτ = 25 nm. The photons ini-
tiate electromagnetic showers, whose depth is set by X0. If protons are
ejected from the nucleus in the collision, these deposit ionization in an
even shorter distance. On the other hand, the π+ and π− travel as min-
imum ionizing particles for a distance of order the interaction length λI
before their next inelastic collision.

(6.31)
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Hadronic showers thus develop over longer distances than electromag-
netic showers, and also contain considerably more fluctuation and irreg-
ularity in their components.

6.4 Energy loss through macroscopic properties of
the medium

There are two more mechanisms of energy loss that play a role in more
specialized detectors. These both exploit macroscopic electromagnetic
properties of media. The first is transition radiation. When a relativis- Description of transition radiation.

tic particle crosses an interface between vacuum and a medium, there is
a mismatch of its electromagnetic fields across the boundary. To repair
this, a burst of radiation is emitted. The intensity of this transition
radiation, for a conducting film, is estimated as

I = αQ2γ
h̄ωp

3
, (6.32)

where ωp is the plasma energy in the film. Note the dependence on γ.
We can discriminate electrons from pions by observing the difference in
their transition radiation, at equal momentum, passing through a stack
of Mylar foils.

The second of these mechanisms is Cherenkov radiation. A relativistic Description of Cherenkov radiation.

particle can easily move faster than the speed of light in a medium
cn = c/n. It is then accompanied by a shock wave of radiation similar
to a sonic boom. This is an outwardly moving cone of light, typically
peaking in the near ultraviolet. The direction of the radiation is

cos θC =
1

nβ
. (6.33)

Cherenkov light is a sharp discriminator of particle velocity, since it is
present only when β > 1/n. Special materials, called aerogels, are made
with index of refraction very close to 1 to discriminate relativistic pions
and kaons of equal momentum.

Cherenkov radiation can also be used as a tracking technology, by
using an array of photodetectors to measure the position and angle of
the cone of Cherekov light emitted by a relativistic particle. This is
the tracking technology used by very large water detectors for neutrinos
whose results we will discuss in Chapter 20.
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6.5 Detector systems for collider physics

Dectector elements based on these mechanisms for particle energy loss
can be assembled into detector systems meant to visualize all aspects
of an elementary particle collision. Today, experiments at the highest
energies are colliding beam experiments that bring together beams with
particles of equal energy at a collision point.

(6.34)

An important concept now used in all colliding beam experiments is the
idea of a cylindrical detector surrounding the beams and the collision
point. Different types of detectors are placed on concentric cylinders
in a definite order, inside to outside, to obtain as much information
as possible about the particles produced in the interaction. The first
multipurpose cylindrical collider detector was the Mark I detector of the
SLAC-LBL collaboration used in the discovery of the J/ψ described in
Section 5.2 (Augustin et al. 1975).

A cylindrical collider detector must be set up in such a way that the
measurements done by detectors in the inner cylinders do not unduly
compromise the measurements done by the outer detectors. This means
that the inner detectors will contain a low-mass tracker. Calorime-
ters, which destructively measure total energy, must be placed outside
all other important elements. The design must also have a place for a
magnet that can provide a solenoidal magnetic field to bend the tra-
jectories of charged particles and allow a momentum measurement. A
typical plan isPlan of a typical multipurpose cylindri-

cal collider detector.

(6.35)

I will now describe the various components of a multipurpose detector
from inside to outside. An excellent introduction to the two large LHC
detectors has been given by Froidevaux and Sphicas (2006). I take as
my primary example the ATLAS detector at the CERN Large Hadron
Collider (LHC), which is thoroughly documented in (Aad et al. 2008).
The passage of particles of different types through the ATLAS detector
is illustrated in Fig. 6.5.

We begin with the momentum measurement, which involves the inte-
rior tracker and the magnetic field. A relativistic particle moving per-
pendicular to a magnetic field travels in a circle. Measurement of points
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Fig. 6.5: Simulated energy deposition of elementary particles of different
types in a slice of the ATLAS detector (figure courtesy of CERN and the
ATLAS collaboration). The interaction point at the center of the detector
is at the bottom of this figure. Particles produced in collisions move upward
from this point. From left to right, we see the signals of a muon, which
penetrates the whole detector, a photon, which makes no track but is visible
in the electromagnetic calorimeter, a proton and a neutron, which are visible
in the hadronic calorimeter, and an electron. Finally, we see the trace of a
neutrino, which makes no signal at all.
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on the trajectory can determine the radius of this circle. In practical
units,

1

R
= QB

0.3

p
, (6.36)

where R is given in meters, B is in Tesla, and p is in GeV. More generally,
a charged particle in a magnetic field travels in a helix, whose cross
section depends on the component of the momentum perpendicular to
the magnetic field.

Measurements of the particle trajectory can be made by finely space
electrodes in volume of ionizing gas, or by finely etched silicon sensors.Charged particle momentum measure-

ment by tracking the motion of the par-
ticle through a magnetic field.

These measurements give us the curvature κ of the path, which is equal
to 1/R and, thus proportional to 1/p⊥. An uncertainty in the measure-
ment of κ produces an uncertainty

∆
1

p⊥
=

∆p⊥
p2
⊥

. (6.37)

Thus, the uncertainty in the momentum mesurement rises with momen-
tum. In the detectors for the Large Hadron Collider (LHC),

δp⊥
p⊥
∼ (few %) ·

(
p⊥

100 GeV

)
. (6.38)

At GeV energies, this uncertainty is sufficiently small that deflections
of the trajectory from multiple scattering are also important. Notice
that, for tracks of very high momentum, in the range of multi-TeV, even
the sign of the bending, which gives the sign of the electric charge, is
uncertain.

The next element, going outward, is the electromagnetic calorimeter.
This device contains and measures electromagnetic showers produced
by electrons and photons (with most of the photons from π0 → 2γ
decays). In the ATLAS detector at the LHC, the electromagneticElectron and photon energy measure-

ment by calorimetry. calorimeter is a set of lead plates in a bath of liquid argon. Lead (Pb)
is chosen as the showering medium because its small value of X0 gives
a relatively compact detector. The depth of the calorimeter is 24 X0,
enough to contain the shower quite well. Charged particles created in
the shower leave ionization in the liquid argon; the ionization electrons
can be drifted in this inert medium to electrodes, where they are counted
to estimate the deposited energy. Only a fraction of the total energy is
collected. This uncertainty in the energy measurement of the order of

∆E

E
∼ 10%√

E
, (6.39)

with E in GeV. The uncertainty is dominated by the counting of ioniza-
tion electrons, which would give ∆E ∼

√
Ne.

At this point, we have measured the charged track and electromagnetic
components of the event. What remains are neutral hadrons such as
n, Λ0, K0, etc., whose energies must be measured by the creation of
hadronic showers. For uniformity, ATLAS measures the total energy of
all hadrons by the same calorimetric technique.
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We have already noted at the end of Section 6.3 that hadronic showers
are more complex than electromagnetic showers, due to the variety of
interactions that they contain. In particular, most of the energy depo- Hadronic energy measurement by

calorimetry.sition comes from ionization in electromagnetic showers, which have a
size set by X0, while the size of the whole shower is set by the nuclear
interaction length λI . To measure the energy of a hadronic shower,
the calorimeter must compromise between having enough material to
provide a depth of many λI , while at the same time having sufficient
segmentation to minimize the sampling error. ATLAS uses iron as the
absorber and scintillating tile as the medium for sampling ionization.
The depth of the calorimeter, in the central region, is 11 λI .

Hadron calorimeters also have different performance in measuring the
energies of π+ and π0. For π0, all of the energy is deposited in electro-
magnetic showers, while, for π+, a significant amount of energy goes into
nuclear breakup and other mechanisms that are more difficult to sample.
Thus, the fluctuations in the fraction of π0’s generated in the first few
inelastic collisions increase the uncertainty in the energy measurement.
The performance of the ATLAS calorimeter is of the order of

∆E

E
∼ 50%√

E
. (6.40)

Muons have no strong interactions and only rarely radiate photons
to produce electromagnetic showers. Thus, they travel through all of Muons in large collider detectors.

the various layers of the cylindrical detector as simple minimum ionizing
particles. To first approximation, any particle that makes it through the
whole detector system and is observed as a track in the outer detector
layers is a muon. Tracking chambers are placed on the outside of the de-
tector to locate the muon tracks that penetrate through the calorimeters
and associate them with tracks measured in the inner detector.

Neutrinos have no strong or electromagnetic interactions, so they do
not interact with the detector through any of the mechanism discussed
in this chapter. Almost always, neutrinos produced in a particle col- Neutrinos in large collider detectors.

lision escape the detector without making any signal. The presence of
neutrinos (or other possible neutral, weakly interacting particles) can be
inferred if the total momentum of observed final-state particles is seen
to be unbalanced. Neutrinos do interact through the weak interaction.
Such neutrino reactions can be observed, as we will discuss in Chapter
15, using very massive detectors and high neutrino fluxes to compensate
for the very small rates of weak interaction processes.

The designs of two other large particle detectors are shown in Fig. 6.6
and Fig. 6.7. Figure 6.6 shows the overall design of the CMS detector Examples of complete detector designs.

at the LHC. In this detector, the solenoidal magnet is placed outside
the electromagnetic and hadron calorimeters. Because of this, however,
the hadron calorimeter is rather thin and relies on the iron outside the
magnet to complete the absorption of the hadronic shower. The iron
outside the magnet also returns the magnetic flux from the solenoid,
so it is magnetized in the direction opposite to the interior. The re-
verse bending of the muon in this region, is used to improve the muon



86 Detectors of Elementary Particles

Fig. 6.6: Overall design of the CMS detector at the CERN Large Hadron Col-
lider; figure courtesy of CERN. The figure shows the layered design, with (out-
ward from the center) a silicon tracking detector, an electromagnetic calorime-
ter, a hadronic calorimeter, the solenoidal magnet, and instrumented iron to
return the magnetic flux and identify muons.

momentum measurement at high energies.
Figure 6.7 shows the BaBar detector used at SLAC in the 2000’s for

studies of the weak interactions of B mesons. The colliding beam system
was designed to be asymmetric, colliding 9 GeV electrons and 3 GeV
positrons to produce the Υ(4S), for reasons that will be discussed when I
review these experiments in Chapter 19. The collisions are then boosted
to the right, and this is reflected in the detector layout. Two new de-
tector components are apparent here. The first (also present in CMS
and ATLAS, but too small to be visible in Fig. 6.6) is a silicon detector
located within cm of the interaction point to locate points on the charge
particle trajectories very precisely. This vertex detector specifically iden-
tifies B mesons, for which cτ = 0.5 mm. The second is a set of quartz
bars, shown in green, that form a Cherenkov ring imaging system. This
contributes to the tracking and separates π from K mesons.

We will see other ways of deploying the basic detectors in specific
experimental arrangements later in our discussion.
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Fig. 6.7: Overall design of the BaBar detector operating at the PEP-2 collider
at SLAC (figure courtesy of SLAC and the BaBar collaboration). The figure
shows the tracking and calorimetry layers, and also the vertex detector just
around the interaction point and the Cherenkov ring imaging detector used
to separately indentify π and K mesons.

Exercises

(6.1) For a 100 GeV electron moving through iron, esti-
mate the fraction of its energy that it loses to ion-
ization over a distance of 1 X0. For a 100 GeV
charged pion moving through iron, estimate the
fraction of its energy that it loses to ionization over
a distance of 1 λi.

(6.2) An extensive cosmic ray shower is the result of a
collision of a very high energy proton from space
with the nucleus of a molecule of air in the upper
atmosphere. Consider for definiteness a collision
that takes place at a height of 5 km. Take air to
have a uniform density of 10−3 g/cm3, and rock to
have a uniform density of 2.6 g/cm3. About 1000
charged pions might be produced in a very high
energy cosmic ray interaction.

(a) The probability of a π+p interaction can
be estimated by assigning the p an effective
cross sectional area (cross section) of 3 fb2 =
3× 10−26 cm2. Using this quantity, estimate
λi for this standard air and rock. (For π+-
nucleus scattering, the cross section is should

be multiplied by A2/3, where A is the nucleon
number. Why should this be?)

(b) If a π+ of 1 GeV is produced in the original p-
nucleus collision, what is the probability that
it suffers a nuclear collision before hitting the
earth? What is the probability that it decays?
The pion lifetime at rest is 2.6× 10−8 s. The
primary decay mode of the π+ is π+ → µ+ν,
with the µ+ taking most of its energy.

(c) The muons from π+ decay enter the earth.
How far do they go before stopping?

(d) About 10 pions might be produced with ener-
gies of 100 GeV. Do they have time to decay
to muons? If they decay, how far into the
earth do the muons penetrate?

(6.3) This problem illustrates the factors that influence a
momentum measurement with a tracking detector.
Consider a charged particle emitted from a high-
energy interaction, moving through a cylindrical
tracking chamber of radius L under the influence
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of a solenoidal magnetic field B. For simplicity,
assume that the particle moves in a plane perpen-
dicular to the axis of the cylinder and the direction
of the magnetic field.

(a) Since the initial direction of the particle is
not known a priori, the curvature is measured
from the sagitta s of its curved trajectory,
defined to be the maximum deviation of the
curve from a straight line between the point of
origin and the point where the particle exist
the chamber at radius L.

Show that, for small curvature,

s =
L2

8R
. (6.41)

Using (6.36), relate the sagitta to the mag-
netic field strength and the momentum of the
particle. If ∆s is the uncertainty in the mea-
surement of the sagitta, obtain a formula for
δp/p in terms of p, L, B, and ∆s.

(b) It can be shown that, if the tracking detec-
tor makes N equally spaced position measure-
ment, each with resolution ε, the uncertainty
in the measurement of the sagitta is

δs =
3.4ε√
N + 5

. (6.42)

For N = 50, ε = 100 µm, L = 1 m, and
B = 1 T, estimate the uncertainty in the ob-
tained value of p⊥.

(c) As the particle moves through an ionizing gas,
it will multiple scatter. If the cylinder in this
exercise is filled with nitrogen gas at atmo-
spheric pressure, compute the expected ∆θ
from multiple scattering over a distance L/2
as a function of p. (The radiation length in
N2 is X0 = (38/ρ) cm, where ρ is the gas den-
sity in g/cm3.) The error in the sagitta from
this source is roughly

δs =
L

2
δθ . (6.43)

At what value of p is multiple scattering a
more important effect than the resolution of
the position measurements?
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To compare the results of elementary particle experiments to proposed
theories of the fundamental forces, we must think carefully about what
quantities we can compute and measure. We cannot directly measure
the force that one elementary particle exerts on another. Most of our
information about the subnuclear forces is obtained from scattering ex-
periments or from observations of particle decay.

In scattering experiments, the basic measureable quantity is called
the differential cross section. In particle decay, the basic measureable Experiments on elementary paraticles

are set up to measure widths and cross
sections, which can then be compared
to the predictions of theoretical models.

quantity is called the partial width. In this chapter, I will define these
quantities, and I will give formulae that will allow us to predict the val-
ues of these quantities from theoretical models. These will provide the
calculational tools that we will use in Parts II and III to test possible the-
oretical ideas for elementary particle interactions against experimental
results.

7.1 Observables in particle experiments

The basic observable quantity associated with a decaying particle is
the rate of decay. In quantum mechanics, an unstable particle A de-
cays with the same probability in each unit of time. The probability of
survival to time t then obeys the differential equation

dP

dt
= − P

τA
, (7.1)

for which the solution is

P (t) = e−t/τA . (7.2)

The decay rate τ−1
A is also called the total width ΓA. Note that its Definition of the lifetime of a particle

τA and the width of the particle ΓA.
In conventional units, ΓA = h̄/τA.

units 1/sec are equivalent to GeV up to factors of h̄ and c.
If there are numerous decay processes A→ f , each process has a rate

Γ(A→ f) . (7.3)

This quantity is called the partial width. The total decay rate is

ΓA =
∑
f

Γ(A→ f) . (7.4)

The rate of a particle collision process is characterized by a cross
section. Imagine first that we shoot a beam of A particles of density nA
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and velocity vA at a fixed center B.

(7.5)

The rate at which we see scatterings from the beam has the form

events/sec = nA vA · σ (7.6)

where σ has units of cm2. This quantity is called the cross section for the
reaction. It is the effective area that the target B presents to the beam.
An alternative definition is given by the following situation: ImagineDefinition of the cross section σ for a

reaction A+B → X. two bunches of particles A and B aimed at one another. Let one bunch,
for example, B, have a smaller length and area, so that it fits inside the
other.

(7.7)

As the bunch B passes through the bunch A, the rate of scatters of A
particles from B particles is

events/sec = nA nB `B AB |vA − vB | · σ (7.8)

A typical scattering process is a reaction with n particles in the final
state

A+B → 1 + 2 + 3 + · · ·+ n . (7.9)

We can represent the probability of finding each given momentum con-
figuration of the final particles by a differential cross sectionDefinition of the differential cross sec-

tion.
dσ

d3p1d3p2 · · · d3pn
. (7.10)

The integral over final momenta gives the total rate or the total cross
section

σ(A+B → 1 + · · ·+ n) =

∫
d3p1 · · · d3pn

dσ

d3p1d3p2 · · · d3pn
. (7.11)

7.2 Master formulae for partial width and cross sec-
tions

Now I will write the formula for computing partial widths and differen-
tial cross sections. This formula is called Fermi’s Golden Rule. Versions
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of this formula are derived in standard quantum mechanics textbooks.
Here, I will write the formula in the way that is most appropriate for
reactions involving relativistic particles.

Begin with the decay rate. For this, we need the quantum mechanical
transition matrix element Definition of the invariant matrix ele-

ment M for a decay process.

〈12 · · ·n|T |A(pA)〉 =M(A→ 1+· · ·+n) (2π)4δ(4)(pA−
∑
j

pj) , (7.12)

where T is an appropriate operator representing time evolution. The
final state f contains particles 1, 2, . . . , n. The matrix element (7.12)
must contain an energy-momentum conserving delta function. The fac-
tor M in front of this delta function is called the invariant matrix ele-
ment. If indeed T is time evolution through the process and the states
are relativistically normalized, the invariant matrix element must be
Lorentz-invariant.

It is useful to work out the dimension of M. The operator T is
dimensionless, and, according to (3.92), the states have total dimension
GeV−(n+1). The delta function has units GeV−4. Then the invariant
matrix element has the units

M∼ GeV3−n . (7.13)

To find the total rate, we must integrate over all possible values of the
final momenta. This integral is called phase space. For n final particles,
the expression for the phase space integral is Phase space is the volume of momen-

tum space for n particles, subject to the
constraint of fixed total energy and mo-
mentum. It is an important ingredient
in the calculation of widths and cross
sections.

∫
dΠn =

∫
d3p1

(2π)32E1
· · · d3pn

(2π)32En
(2π)4δ(4)(P −

∑
j

pj) , (7.14)

where P is the total 4-momentum. Notice that I use the Lorentz invari-
ant integral over relativistically normalized momentum states (3.88).
The delta function, which is also Lorentz invariant, enforces energy and
momentum conservation. Then the whole expression for phase space
will be Lorentz invariant and can be used together with the Lorentz in-
variant matrix element M defined in (7.12). Similarly, a relativistically
normalized initial state |A〉 will yield the factor 1/2EA. Phase space has
the dimensions

Πn ∼ (GeV2)n ·GeV−4 = GeV2n−4 . (7.15)

The Fermi Golden Rule formula for a partial width to an n-particle
final state f is The master formula for the computa-

tion of a particle width.

Γ(A→ f) =
1

2MA

∫
dΠn |M(A→ f)|2 . (7.16)

I have not given you a derivation of this equation, but, on the other hand,
I have not given you a precise definition ofM or told you how to compute
it. A proper definition of the invariant matrix element requires more
advanced concepts from quantum field theory. For the computations
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done in this book, you only need to accept that this formula has the
correct structure. And it does. The rate is given by the square of a
quantum mechanical matrix element, integrated over the momenta of
the possible final state particles. The expression for the decay rate is
completely Lorentz-invariant. The expression has total dimension

Γ ∼ GeV−1 ·GeV2n−4 · (GeV3−n)2 ∼ GeV , (7.17)

which is correct.
If the final state particles have spin, we need to sum over final spin

states. The initial state A is in some state of definite spin. If we haveIn computing particle decay rates, we
must define the spins of the initial and
final particles. Alternatively, we aver-
age over the initial spin direction and
sum over the spin states of the final par-
ticles.

not defined the spin of A carefully, an alternative is to average over all
possible spin states of A. By rotational invariance, the decay rate of A
cannot depend on its spin orientation.

The formula for a cross section is constructed in a similar way. We
need the matrix element for a transition from the two initial particles to
the final particles through the interaction. This is writtenDefinition of the invariant matrix ele-

ment M for a scattering process.
〈12 · · ·n|T |A(pA)B(pB)〉 =M(A+B → 1 + · · ·+ n)

·(2π)4δ(4)(pA + pB −
∑
j

pj) . (7.18)

As before, the invariant matrix element M(A + B → 1 + · · · + n) is
indeed Lorentz invariant if the states are relativistically normalized. The
dimension of M can be computed as we did in the previous case. Here
we find

M∼ GeV2−n . (7.19)

The formula for a cross section is thenThe master formula for the computa-
tion of a cross section.

σ(A+B → f) =
1

2EA2EB |vA − vB |

∫
dΠn |M(A+B → f)|2 . (7.20)

The factor 2EA2EB in the prefactor comes from the relativistic normal-
ization of the state |AB〉. The factor |vA − vB | reflects the definition
(7.8), in which the cross section is multiplied by a flux factor to obtain
the rate of particle reactions. The dimension of the cross section should
be cm2, or GeV−2 in natural units. The formula (7.20) gives

σ ∼ GeV−2 ·GeV2n−4 · (GeV2−n)2 ∼ GeV−2 , (7.21)

which is correct.
The formula (7.20) should be summed over final particle spin states.

If we do not take care to prepare the initial state in a definite spin state,Typically, in computing cross sections,
we average over the spin states of the
initial particles and sum over the spin
states of the final particles.

the formula should be averaged over the initial spins.
The basic formulae for computing widths and cross sections are sum-

marized in Appendix D.

7.3 Phase space

Phase space plays a very important role in particle physics. The de-
fault assumption is that final state particles are distributed according to
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phase space. This assumption is correct unless the transition matrix el-
ement has nontrivial structure. So, to look for structure that gives clues
about the underlying dynamics, we must compare the results of exper-
iments with the results that would be expected if the matrix element
were constant and the process were shaped simply by phase space.

Most of the reactions we will discuss will have two particles in the
final state. So, it will be useful if I now simplify the expression for the
two-particle phase space once and for all. I will assume that the two
particles have arbitrary masses m1, m2. Then∫

dΠ2 =

∫
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ(4)(P − p1 − p2) . (7.22)

Work in the center of mass (CM) frame, where ~p1 +~p2 = 0. The integral
over the 3-momentum delta function enforces

~p1 = −~p2 . (7.23)

Then Reduction of the expression for two-
body phase space to a simple integral.

P = (ECM ,~0) , p1 = (E1, ~p) , p2 = (E2,−~p) , (7.24)

with

E1 =
√
p2 +m2

1 , E2 =
√
p2 +m2

2 . (7.25)

and (7.22) becomes∫
dΠ2 =

∫
d3p

(2π)3

1

2E12E2
(2π)δ(ECM − E1 − E2) . (7.26)

It is most convenient to view the remaing momentum integral in spher-
ical coordinates,

d3p = dp p2 dθ sin θ dφ = dp p2 dΩ , (7.27)

the integral over the remaining delta function becomes∫
dpδ(ECM − E1(p)− E2(p)) =

1∣∣dE1/dp+ dE2/dp
∣∣

=
1∣∣p/E1 + p/E2

∣∣ =
E1E2

(E1 + E2)p
.

(7.28)

Since E1 + E2 = Ecm, we find∫
dΠ2 =

∫
p2dΩ

16π2E1E2

E1E2

pECM
, (7.29)

or, finally, ∫
dΠ2 =

1

8π

(
2p

Ecm

) ∫
dΩ

4π
. (7.30)
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Oddly, two-body phase space is dimensionless; we could have seen this
already from (7.22). In the extreme relativistic limit E � m1,m2, the
expression (7.30) reduces to∫

dΠ2 =
1

8π

∫
dΩ

4π
. (7.31)

There is an important subtlety in integration over 2-body phase space
for identical particles. Consider, for example, the possible final state
π0π0. Bose statistics implies that the two states∣∣π0(~p)π0(−~p)

〉
and

∣∣π0(−~p)π0(~p)
〉

(7.32)

are identical. In the sum over states, we must sum over this state once
and not twice. Thus, for π0π0 and other systems of identical particles,
the integral over phase space should be taken over half of

∫
dΩ. The same

principle applies to multi-particle phase space when two final particles
are identical.Please note this subtlety: When there

are two identical particles in the final
state, we must integrate over only half
of phase space, so as not to count iden-
tical quantum states twice.

It is also possible to reduce the expression for three-body space to
a relatively simple formula. Work in the center of mass frame where
~p1 + ~p2 + ~p3 = 0. Let the total energy-momentum in this frame be Q,
with Q0 = ECM . The three vectors ~p1, ~p2, ~p3 lie in a common plane,
called the event plane. The integral (7.14) can be written as an integral
over the orientation of this plane and over the variablesReduction of the expression for three-

body phase space to a relatively simple
integral.

x1 =
2E1

ECM
, x2 =

2E2

ECM
, x3 =

2E3

ECM
, (7.33)

which obey the constraint

x1 + x2 + x3 = 2 . (7.34)

It can be shown that, after integrating over the orientation of the event
plane, the integral over three-body phase space can be written asI strongly encourage you to work

through Exercise 7.2, which derives this
formula and gives some applications.

∫
dΠ3 =

E2
CM

128π3

∫
dx1dx2 . (7.35)

The derivation of this formula is given in Exercise 7.2.
The variables x1 and x2 are to be integrated over all kinematically

allowed values, but it is often not easy to write the boundary of the
region of integration explicitly. When all three particles are massless,
the maximum energy of any particle is Ei = ECM/2, since a particle
achieves its maximum energy when the two other particles are collinear
in the opposite direction. Then the integral in (7.35) would be taken
over the region ∫ 1

0

dx1

∫ 1

1−x1

dx2 . (7.36)

When some particles are massive, the integration domain does not have
such a simple form. Its boundaries can be found implicitly by imposing
the three constraints −1 ≤ cos θij ≤ 1, where θij is the angle between ~pi
and ~pj in the event plane.
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It can be shown, further, that the integral (7.35) can alternatively be
written in terms of the invariant masses of pairs of the three vectors.
For example, if m2

12 = (p1 + p2)2 and m2
23 = (p2 + p3)2, then∫

dΠ3 =
1

128π3E2
CM

∫
dm2

12dm
2
23 . (7.37)

This formula leads to an important construction in hadron physics called
the Dalitz plot. This is also described in Exercise 7.2.

7.4 Example: π+π− scattering at the ρ resonance

One important type of structure that one finds in scattering ampli-
tudes is a resonance. In ordinary quantum mechanics, a resonance is
described by the Breit-Wigner formula

M∼ 1

E − ER + iΓ/2
. (7.38)

where ER is the energy of the resonant state and Γ is its decay rate.
The Fourier transform of this expression is

ψ(t) =

∫
dE

2π

e−iEt

E − ER + iΓ/2

= ie−iERte−Γt/2 . (7.39)

Then the probability of maintaining the resonance decays exponentially

Evaluate (7.39) by integrating around
the contour in the complex E plane

|ψ(t)|2 = e−Γt , (7.40)

corresponding to the lifetime

τR = 1/Γ . (7.41)

For the description of elementary particle reactions, we need a relativistic
version of the Breit-Wigner formula. I will write this in a moment.

It is useful to consider a specific example of a resonance in an elemen-
tary particle reaction. The ρ0 meson decays to π+π− and, conversely, it
can be produced in π+π− collisions. The ρ0 is then found in the reaction

π+π− → ρ0 → π+π− (7.42)

as a resonance at the ρ0 mass of 770 MeV. We can represent this process
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by a diagram of the evolution of the process in space-time

(7.43)

Using quantum field theory, Feynman introduced a method for comput-
ing M using space-time diagrams of the form shown in (7.43). In that
context, these diagrams are called Feynman diagrams. Whether or not
we use them for computation, I will use such diagrams to visualize the
elementary particle processes that we will discuss in this book.

Let us first consider the production of the ρ0 resonance through the
reaction

π+(pA)π−(pB)→ ρ0(pC) , (7.44)

with pA + pB = pC . For the moment, I will consider the ρ0 as a stable
particle with a definite mass mρ. The production is given by an invariant
matrix element

M(π+π− → ρ0) (7.45)

We can guess the structure of this matrix element based on the known
properties of the π and ρ mesons and Lorentz invariance. The ρ0 has
spin 1, so it has an associated polarization vector εµ. In the rest frame
of the ρ0, εµ should point in one of the three spatial directions. These
three directions are characterized by the condition

pC · ε = 0 , (7.46)

which is a Lorentz-invariant condition that can be applied in any frame.
Since I am normalizing all states relativistically, the matrix element

must be Lorentz invariant. It must also be proportional to ε∗(pC). The
only possible structure isIn this example, Lorentz invariance and

momentum conservation completely fix
the form of the invariant matrix ele-
ment.

M(π+π− → ρ0) = gρε
∗ · (pA − pB) , (7.47)

where gρ is a constant. The alternative structure

M(π+π− → ρ0) = gρε
∗ · (pA + pB) , (7.48)

is zero by (7.46), since pA + pB = pC . The constant gρ can be seen to
be dimensionless: According to (7.19), the invariant matrix element has
dimensions of GeV, while the right-hand side has dimensions

gρ · (GeV) . (7.49)
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Now we can write the cross section for formation of the ρ0 asThis analysis gives a model for the com-
putation of a cross section.

σ(π+π− → ρ0) =
1

2EA2EB |vA − vB |

∫
d3pC
(2π)3

1

2EC

|M|2(2π)4δ(4)(pC − pA − pB) . (7.50)

In the center of mass (CM) frame

pA = (E, p) pB = (E,−p) E = mρ/2 p = [m2
ρ/4−m2

π]1/2 .
(7.51)

In this frame, the ρ polarization vector ε points in a space direction, and
so

ε∗ · (pA − pB) = −~ε · (~pA − ~pB) = −2~ε · ~p. (7.52)

This expression has one power of momentum, so this is a P-wave scat-
tering process, as required for angular momentum conservation. We can
rewrite ∫

d3pC
(2π)3

1

2EC
=

∫
d4pC
(2π)4

2πδ(p2
C −m2

ρ) (7.53)

and then integrate d4pC over the energy-momentum conserving delta
function. The expression for the cross section reduces to

σ(π+π− → ρ0) =
1

4(mρ/2)2(4p/mρ)
2πδ((pA + pB)2 −m2

ρ)g
2
ρ · 4|~ε · ~p|2 .

(7.54)
Summing over ρ0 polarizations, we find

σ(π+π− → ρ0) = g2
ρ

p

mρ
(2π)δ((pA + pB)2 −m2

ρ) . (7.55)

Counting the dimension of the delta function as (GeV)−2, this has di-
mensions

GeV−2 ∼ cm2 , (7.56)

which is the correct result.
Conversely, we can compute the decay rate for ρ0 → π+π−. The

invariant matrix element that we need here is M(ρ0 → π+π−), which
is the complex conjugate of (7.47). The Fermi’s Golden Rule formula
gives

Γρ =
1

2mρ

∫
dΠ2|M|2 . (7.57)

Using the evaluation of 2-body phase space in (7.30), this reduces to

Γρ =
1

2mρ

1

8π

2p

mρ
g2
ρ

〈
4|~ε · ~p|2

〉
. (7.58)

The average over orientations of the outgoing pions gives

〈
4|~ε · ~p|2

〉
= 4

p2
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Now we can write the cross section for formation of the ρ0 asThis analysis gives a model for the com-
putation of a cross section.

σ(π+π− → ρ0) =
1
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Alternatively, we would obtain the same result by averaging over the
polarization of the ρ0. The final result is

Γρ =
g2
ρ

6π

p3

m2
ρ

. (7.60)

This, correctly, has units of GeV. The measured width of the ρ0 is
150 MeV. This requires

g2
ρ

4π
= 2.7 , (7.61)

a rather strong coupling.
Now we can put the pieces together, modelling the ρ0 as a relativistic

Breit-Wigner resonance. I propose the formRelativistic form of the Breit-Wigner
resonance formula.

M∼ 1

P 2 −m2
R + imRΓR

, (7.62)

where P is the total momentum 4-vector creating the resonance. If we
go to the CM frame and expand

P = (mR + ∆E,~0) P 2 = m2
R + 2mR∆E + · · · , (7.63)

this gives back the earlier Breit-Wigner expression (7.38), with the de-
nominator multiplied by 2mR.

With this relativistic formula for the resonance, the formula for the
cross section for π+π− → ρ0 → π+π− is

σ(π+(pA)π−(pB)→ ρ0 → π+(p′A)π−(p′B))

=
1

2EA2EB |vA − vB |

∫
dΠ2∣∣∣∣∑

ε

M(π+π− → ρ0(ε))M(ρ0(ε)→ π+π−)

(pA + pB)2 −m2
ρ + imρΓρ

∣∣∣∣2 . (7.64)

Inserting the explicit forms for the matrix elements, with the CM mo-
mentum of the initial π+ equal to ~p and that of the final π+ equal to
~p ′, we find

σ(π+π− → ρ0 → π+π−)

=
1

4mρp

1

8π

2p

mρ

∫
dΩ

4π

1

(E2
CM −m2

ρ)
2 +m2

ρΓ
2
ρ∣∣∣∣∑

ε

2gρ~ε · ~p 2gρ~ε · ~p ′
∣∣∣∣2 . (7.65)

Evaluating the sum over ρ polarizations, we find

σ(π+π− → π+π−) =
1

πm2
ρ

g4
ρ

(E2
CM −m2

ρ)
2 +m2

ρΓ
2
ρ

∫
dΩ

4π
|~p · ~p ′|2 (7.66)

This is a very concrete formula, for which we have determined all of the
parameters. It can be compared directly to experimental data on the
final energies and angles of the pions. Note that the factor

dσ

dΩ
∼ |~p · ~p ′|2 (7.67)



7.4 Example: π+π− scattering at the ρ resonance 99

is characteristic of a resonance in the L = 1 partial wave. The shape of
the resonance as a function of the CM energy is

(7.68)

As a check on the formalism, I will now perform the integral over the
final state momenta in the limit of a very long-lived or narrow resonance.
To illustrate the generality of the result, I will consider a general decay
of the ρ0 to a final state f . The argument is a bit long, but in the end
it will connect nicely to the easier formulae above.

The cross section formula for π+π− → ρ→ f is

σ(π+π− → ρ→ f) =
1

4mρp

∫
dΠf

∣∣∣∣∑
ε

[2gρ~ε
∗ · ~p ]M(ρ0

ε → f)

(pA + pB)2 −m2
ρ + imρΓρ

∣∣∣∣2 .
(7.69)

Rewrite the delta function in the phase space as

(2π)4δ(4)(pA + pB −
∑

pj) =

∫
d4pC
(2π)4

(2π)4δ(4)(pA + pB − pC)

(2π)4δ(4)(pC −
∑

pj) (7.70)

Now we can integrate over the final state phase space to find the total
decay rate. There is a subtlety here involving the spins. First, when we Notice how nicely the cross sections to

produce a given final state, summed
over all final states, reproduces the for-
mula (7.55) for the total rate to produce
the resonance.

sum over all final states, the decay rate is independent of ε. Second, since
the different ε correspond to different angular momentum states, when
we integrate over all final state configurations there is no interference
between the contributions from different ε. With this insight, we can
combine the phase space integral in (7.69) with square of the matrix
element M(ρ0 → f) to form the partial width for ρ0 decay to f . Then
(7.69) reduces to

σ(π+π− → ρ→ f) =
1

mρp

∫
d4pC
(2π)4

(2π)4δ(4)(pA + pB − pC)

·
∑
ε

|2gρ~ε ∗ · ~pA|2
1

(p2
C −m2

ρ)
2 + (mρΓρ)2

2mρΓ(ρ→ f) (7.71)

or

σ(π+π− → ρ→ f) =
1

mρp
4g2
ρp

2 (mρ/π) · Γ(ρ→ f)

(p2
C −m2

ρ)
2 + (mρΓρ)2

. (7.72)
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Summing over all possible final states, we find∑
f

σ(π+π− → ρ→ f) =
1

mρp
4g2
ρp

2 · (mρΓρ/π)

(p2
C −m2

ρ)
2 + (mρΓρ)2

. (7.73)

Finally, notice that, when Γρ is very small, the last factor in this
expression approximates a delta function. The normalization of this
delta function is given by the integral∫

dp2
C

mρΓρ/π

(p2
C −m2

ρ)
2 + (mρΓρ)2

=
mρΓρ
π

1

mρΓρ
tan−1

(s−m2
ρ

mρΓρ

)
. (7.74)

When the resonance is narrow, we can extend the integral from −∞ to
∞, to find ∫

ds
mρΓρ/π

(p2
C −m2

ρ)
2 + (mρΓρ)2

= 1 . (7.75)

In this limit, our expression collapses to

σ(π+π− → ρ→ f) =
g2
ρp

mρ
· 2πδ((pA + pB)2 −m2

ρ) (7.76)

This agrees precisely with our earlier calculation of the production rate
of the resonance.

We will put these formulae to work already in the next chapter.

Exercises

(7.1) At a mass of about 500 GeV, there is a very broad
resonance called the σ with spin 0 and isospin 0.
It is broad because it decays very rapidly into two
pions. (The Particle Data Group called this the
f0(500).) If we imagine that the σ were, instead,
a narrow resonance, we could study it using the
methods of Section 7.4.

(a) Write the matrix elements for σ formation as

M(πiπj → σ) = Gδij , (7.77)

where G is a constant and i, j = 1, 2, 3 are
isospin indices. The usual pion states are:
π± = π1 ± iπ2, π0 = π3. Show that the form
of (7.77) is consistent with angular momen-
tum, and isospin symmetry. What are the P
and G quantum numbers for the σ?

(b) Compute the matrix elementsM(π+π− → σ)
and M(π0π0 → σ) in terms of G.

(c) Compute the decay rate of σ to π+π−. You
should find

Γ(σ → π+π−) =
G2

16πmσ

2p

mσ
, (7.78)

where p = (m2
σ − 4m2

π)1/2.

(d) Compute the total width of σ. The answer
should be (3/2) of the result in (c). Why?
What is the branching ratio BR(σ → π0π0)?

(e) Compute the cross sections for the reactions
π+π− → π+π− and π+π− → π0π0, assuming
these are dominated by the σ resonance. How
do these cross sections reflect the spin 0 and
isospin 0 nature of the σ?

(7.2) This problem derives the formula (7.35) for 3-body
phase space and demonstrates an important appli-
cation of that expression. The problem is very long,
but it will be worth your time. The very last parts
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of this problem make direct contact with experi-
mental data.

In this problem, 1, 2, 3 will represent three par-
ticles with nonzero masses m1, m2, m3, and Q =
p1 + p2 + p3. In the center of mass (CM) frame,
Q = (ECM , 0, 0, 0). Let E1, E2, E3 be the energies
of the three particles in this frame.

(a) Define

x1 =
2Q · p1

Q2
, x2 =

2Q · p2

Q2
, x3 =

2Q · p3

Q2
,

(7.79)
Evaluate these quantities in the CM frame
and show that

x1 + x2 + x3 = 2 (7.80)

(b) Write expressions for the CM energies Ei and
the CM momentum values pi in terms of the
xi, i = 1, 2, 3.

(c) Show that the invariant mass of the system of
particles 1 and 2 is related to x3 by

m2
12 = (p1 +p2)2 = (1−x3)Q2 +m2

3 . (7.81)

There is a similar relation for m2
23 and m2

31.

(d) Let θ12 be the angle between the momenta
of 1 and 2 in the CM frame. Show that the
formula (7.81) determines θ12 as a function
of the xi. In fact, the whole configuration
of final state momenta is specified, up to an
overall rotation, when the xi are fixed.

(e) Write out the integral over 3-body phase
space in the CM frame. There are 9 integrals
and 4 delta functions. Three of these delta
functions can be removed by integrating out
~p3. Write the resulting expression as an inte-
gral over p1, p2 and 4 angles, constrained by
1 remaining delta function.

(f) Because we have eliminated ~p3 in terms of ~p1

and ~p2, the quantity E3 in the delta function
depends on |~p1 + ~p2| and therefore on cos θ12.
Do the integral over cos θ12, eliminating the
last delta function.

(g) The remaining three angles simply rotate the
overall configuration of momenta. Integrate
over these variables.

(h) All that remains are integrals over p1 and p2.
Using (a), convert these to integrals over x1

and x2. Then, using (b), convert these to in-
tegrals over m2

23 and m2
13. You should find∫

dΠ3 =
Q2

128π3

∫
dx1dx2

=
1

128π3Q2

∫
dm2

23dm
2
13 .(7.82)

(i) It is amazing that the integrand has no depen-
dence on x1, x2, x3! Dalitz suggested that, for
a 3-body decay A→ 1+2+3, we should make
a scatter plot of events in the plane of m2

23

vs. m2
13. If the matrix element is constant,

the data points will scatter evenly over this
plane. Write a formula for Γ(A → 1 + 2 + 3)
and justify this statement. If there is a res-
onance, that will be apparent as a clustering
of points in some region. The plot of m2

23 vs.
m2

13 is called the Dalitz plot.

(j) The integral in (7.82) should be taken over all
kinematically allowed values. It takes a little
work to find the boundary of the integration
region. Study this first for the case in which
a particle of mass M decays to three parti-
cles all of which are massless. In this case,
there are allowed configurations all the way
out to the boundaries m2

13 = 0, m2
23 = 0,

m2
12 = 0. Draw the region of integration on

the (m2
13,m

2
23) plane. For each segment of the

the boundary, draw a typical momentum con-
figuration. You should find that the bound-
aries of the Dalitz plot are given by configu-
rations in which two momentum vectors are
collinear and the third is directly opposite,
balancing the momentum.

(k) Now consider the case of the decay of a par-
ticle of mass M to three particles with m1 =
m2 = 0, m3 = m > 0. Again, the bound-
aries of the Dalitz plot are given by configu-
rations in which two momentum vectors are
collinear and the third is directly opposite.
Work out the positions of the boundaries in
the (m2

13,m
2
23) plane. The kinematic formu-

lae (2.19) will be helpful, as will the result in
part (c) above.
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(l) The figure above shows the Dalitz plot for a
process in pp annihilation at rest,

pp→ π+π−π0 , (7.83)

from (Abele 1999). Resonances are apparent.
Identify the resonances as specific hadrons.

(m) The following figure shows the Dalitz plot for
the decay

D0 → K−π+π0 , (7.84)

from (Kopp 2001). I hope you can make out
a heavy horizontal band across the lower part
of the plot, a vertical band on the left, and a
diagonal band on the right. These bands are
obscured by the fact that interference effects
cause the bands to be dark in some places but
light (zero) in others. Identify these bands as
specific hadrons.

(7.3) In Section 7.4, I wrote a formula for a reaction
A + B → 1 + 2 mediated by a narrow resonance
R that suggests the following general form:

σ(A+B → 1 + 2)

=
1

2EA2EB |vA − vB |

∫
dΠ2

·
∣∣∣∣∑
ε

M(A+B → R(ε)) · M(R(ε)→ 1 + 2)

P 2 −m2
R + imRΓR

∣∣∣∣2 ,
(7.85)

where P = (pA + pB). Quite generally,

M(A+B → R(ε)) = (M(R(ε)→ A+B))∗ .
(7.86)

(Technically, this follows from time-reversal invari-
ance for expressions at lowest order in quantum
field theory corrections.) Assume this statement
for the purpose of this problem. In the equation
above, ε represents the spin state of R. The parti-
cles A, B, etc. might also have spin. Let pA, p1 be
the momenta of A and 1 in the rest frame of R.

(a) Show that

Γ(R→ 1 + 2) =
1

16πm2
R

(
2p1

mR
)

·
〈
|M(R(ε)→ 1 + 2)|2

〉
, (7.87)

where the right-hand side is averaged over
the directions of the momenta of 1 and 2
and summed over the spins of these particles.
Note that the result is independent of ε, the
spin state of R.

(b) Use this observation to write the expression
(7.85) in terms of partial widths. Assume for
simplicity that that A, B, 1, 2 are spin 0 par-
ticles. Let R have spin J . Show that

σ(A+B → 1 + 2)

=
4πm2

R

p2
A

(2J + 1)

·Γ(R→ A+B)Γ(R→ 1 + 2)

(E2
CM −m2

R)2 +m2
RΓ2

R

.

(7.88)

(c) Let A, B, 1, 2 have spins JA, JB , J1, J2. As-
suming an unpolarized initial state, generalize
the formula in (b) appropriately. Show that
the factor (2J + 1) in the expression in (b) is
replaced by (2J + 1)/(2JA + 1)(2JB + 1), and
that this factor does not depend on J1 or J2.
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(d) Now consider the case of the J/ψ. In the
previous problem set, we learned that the
branching ratios of the J/ψ to e+e− and
µ+µ− are equal to B ≈ 6%, and that almost
all other decays of the J/ψ are to hadrons.
Assume for simplicity that these three modes
are the only modes of J/ψ decay, with branch-
ing ratios B, B, and (1 − 2B), respectively.
Write expressions for the cross sections for
e+e− → e+e−, e+e− → µ+µ−, and e+e− →
hadrons in the vicinity of the resonance, in
which the only free parameters are mJ/ψ, ΓJψ
and B. You may ignore non-resonant contri-
butions to the scattering amplitude, and con-
sider the electron and the muon to have zero

mass.

(e) Evaluate the expressions for the cross sec-
tions at the peak of the resonance. Show
that the peak value of the cross section for
e+e− → hadrons essentially measures B or
Γ(J/ψ → e+e−). This is somewhat counter-
intuitive. Write an explicit formula for B in
terms of the peak cross section for e+e− →
hadrons.

(f) Show that, with B determined, the integral
over the cross section through the resonance
–
∫
dECMσ(e+e− → hadrons) – determines

the width ΓJ/ψ. Notice that we can measure
ΓJ/ψ without having to make a detailed mea-
surement of the shape of the resonance.





Part II

The Strong Interaction





Electron-Positron
Annihilation 8
We now begin our search for a fundamental theory describing the strong
interaction. The first approaches to this problem attempted to build the
theory from the properties of the cross sections for the scattering of pions
and other mesons at low energies. Much later, it was realized that one
could gain much more insight from the study of meson production by the
photon and other electromagnetic probes. Most remarkably, the study of
electron-positron annihilation to mesons showed simple and remarkable
properties that are readily interpreted in relation to the quark model
of hadrons discussed in Chapter 5. In this chapter, I will describe the
important features of this reaction.

For reference in interpreting the results on hadrons, it will be useful
first to understand the purely electromagnetic process of e+e− annihi-
lation to a pair of muons. Using this process, I will also introduce the
current-current interaction, a basic coupling of spin 1

2 particles. This
interaction provides the basis for fermion scattering by electromagnetic
forces. Its properties are especially simple at very high energies, where
the fermion masses can be neglected. By performing experiments at high
energies, we can see whether the characteristic features of this coupling
appear in reactions involving the other fundamental forces. Indeed, we
will see that it plays a central role in the dynamics for both the strong
and the weak interaction.

8.1 The reaction e+e− → µ+µ−

We begin our study with the reaction e+e− → µ+µ−. The matrix ele-
ments for this process can be constructed by breaking the process down
into components. First, the e+e− state is annihilated by an electromag-
netic current. This current couples to a quantum state of electromag-
netic excitation. Finally, this state couples to another current matrix
element describing the creation of the muon pair. These elements are
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visualized in the Feynman diagram

(8.1)

In drawing this diagram, I label each line with the momentum carried by
the particle or resonance. We will make use of these momentum labels
later in this chapter.The evolution of a quantum mechanical

process in space-time is described by a
Feynman diagram.

I will describe the intermediate photon state as a Breit-Wigner reso-
nance at zero mass. Taking the limit of zero resonance mass in (7.62),
it would then contribute to the scattering amplitude a factor

1

q2
, (8.2)

where q is the momentum carried by the photon from the initial to
the final state. We consider the reaction at energies large compared to
the muon mass and, certainly, very far from the mass shell condition
q2 = 0 for a photon. A resonance contributing to an elementary particleA virtual particle is a particle that ap-

pears in a process as a resonance off its
mass shell.

reaction very far from its mass shell is called a virtual particle. In this
case, we say that the reaction is mediated by a virtual photon.

The remainder of the matrix element is formed from the product of
two electromagnetic current operators, one of which annihilates the e+e−

pair, the other of which creates the muon pair. Explicitly

M(e+e− → µ+µ−) = (−e)
〈
µ+µ−

∣∣ jµ |0〉 1

q2
(−e) 〈0| jµ

∣∣e+e−
〉
. (8.3)

Note that the electric charges of the electron and the muon, (−e) in
both cases, appear as the strengths of the couplings of these states to
the electromagnetic current.

The basic operator structureThe current-current interaction.

jµ jµ (8.4)

is called the current-current interaction. We have seen in Section 3.3 that
the photon interacts with other fields, in the Lagrangian description of
electromagnetism, by direct coupling to the current. The current-current
structure then arises naturally in electromagnetism. In fact, it will give
the basic form of the scattering amplitude in any model in which the
interaction is mediated by vector fields.

Our next task is to turn the expression (8.3) into an explicit formula
that we can compare to the measured cross section for e+e− → µ+µ−.
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8.2 Properties of massless spin-1
2

fermions

To evaluate (8.3), we need to compute the matrix elements of the
currents between fermion states. For our present purposes, I consider
energies so large that both the electrons and muons are moving rela-
tivistically and their masses can be neglected. I will now show that the
dynamics of fermions and the calculation of matrix elements is dramat-
ically simplified in that limit.

Consider, then, the properties of the Dirac equation when we take the
mass of the fermion to zero. In this approximation, the Dirac equation When the fermion mass is set equal to

zero, the Dirac equation takes an espe-
cially simple form.

takes the form

iγµ∂µΨ = 0 . (8.5)

To analyze this equation, it is convenient to choose the representation
(3.42) of the Dirac matrices

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
. (8.6)

It is convenient to write this representation as

γµ =

(
0 σµ

σµ 0

)
, (8.7)

defining the matrices

σµ = (1, ~σ)µ , σµ = (1,−~σ)µ . (8.8)

Using this representation, and writing

Ψ =

(
ψL
ψR

)
(8.9)

the Dirac equation splits into two 2-component equations,

iσ · ∂ψL = 0 iσ · ∂ψR = 0 . (8.10)

We will see in a moment that the fields ψL and ψR annihilate different
electron states and create different positron states. These states are not
connected by the Dirac equation in this massless limit. When we couple
the Dirac equation to electromagnetism, we modify the derivative to
include the Aµ field,

∂µ → Dµ = (∂µ − ieAµ) . (8.11)

This preserves the separation of the fields ψL and ψR and of the asso-
ciated electrons and positrons. The two pieces of the Dirac field com-
municate only through the mass term. Thus, for zero electron mass
or for very high energy where the mass can be neglected, there are es-
sentially two different species of electrons, e−L and e−R. Electromagnetic
interactions cannot turn electrons of one kind into the other.
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We now find the plane wave solutions of the 2-component equations.
Look first at the ψR equation.

(i∂t + i~σ · ~∇)ψR = 0 . (8.12)

A plane wave solution has the form

ψR(x) = uR(p)e−iEt+i~p·~x , (8.13)

where uR(p) is a 2-component spinor. For simplicity, look for a plane
wave moving in the 3̂ direction: ~p = p3̂. Then

(E − pσ3) uR =

(
E − p 0

0 E + p

)
uR = 0 . (8.14)

There are two solutions. The first has E = p > 0; this is

ψR =

(
1
0

)
e−iEt+iEx

3

. (8.15)

This state carries a spinor with spin S3 = + 1
2 , that is, spin up along the

direction of motion. The corresponding electron moves at the speed of
light and spins in the right-handed sense,

(8.16)

The field operator ψR(x) destroys an electron in this state. The second
solution has negative energy E = −p < 0.

ψR =

(
0
1

)
e+iEt+iEx3

. (8.17)

This solution corresponds to the creation of a positron by the Dirac
field. The positron will be moving in the −3̂ direction and will have a
spin opposite to the spinor shown. This spinor has S3 = − 1

2 , so the
positron has S3 = + 1

2 , which is spin down with respect to the direction
of motion. This is a positron moving at the speed of light and spinning
in the left-handed sense,

(8.18)

To describe these states, it is convenient to define the helicity of a par-
ticle, equal to the spin projected along the direction of motion,Definition of helicity.

h = p̂ · ~S . (8.19)

The solutions of the ψR equation correspond to an h = + 1
2 electron and

an h = − 1
2 positron. These states are particle and antiparticle.



8.2 Properties of massless spin- 1
2

fermions 111

The ψL equation

(i∂t − i~σ · ~∇)ψL = 0 . (8.20)

is solved in a similar way. Look for plane waves with ~p = p3̂. These
have the form

ψL =

(
0
1

)
e−iEt+iEx

3

. (8.21)

for positive energy, and

ψL =

(
1
0

)
e+iEt+iEx3

. (8.22)

for negative energy. The first of these describes the destruction of a
massless left-handed electron moving in the +3̂ direction; the second
describes the creation of a massless right-handed positron moving in the
−3̂ direction.

We can find the solutions for electrons and positrons moving in other
directions by rotating the expressions above. These plane wave solutions
appear in the matrix elements through which massless Dirac fields create
and destroy particles. For example,

〈0|ψR(x)
∣∣e−R(p)

〉
= uR(p) e−ip·x ,〈

e+
L(p)

∣∣ψR(x) |0〉 = vL(p) e+ip·x . (8.23)

Note that, by convention, the 2-component spinor is called u(p) in the
destruction of electrons and v(p) in the creation of positrons. The full
theory of the quantum Dirac equation gives the correct normalization of
the u and v spinors. The precise form of the spinors is, then, In the zero mass or high energy limit,

we treat electrons as belonging to two
distinct species of particles: e−R and its

antiparticle e+L , and e−L and its antipar-

ticle e+R.

destruction creation

e−R: uR(p) =
√

2E ξ+ e+
L : vL(p) =

√
2E ξ+

e−L : uL(p) =
√

2E ξ− e+
R: vR(p) =

√
2E ξ−

where, in these formulae, ξ+, ξ− are the spinors with spin up and spin
down, respectively, along the direction of motion. The normalization
factor of

√
2E will give the correct mass dimensions when we use these

expressions to evaluate matrix elements. We will see examples of this in
the next section.

In the basis (8.9), the full Dirac Lagrangian, including the fermion
mass term, takes the form

For a fermion at high energy, any flip
of helicity from e−R to e−L or vice versa
brings in a factor m/E.

L = ψ†R(iσ · ∂)ψR + ψ†L(iσ · ∂)ψR −m(ψ†RψL + ψ†LψR) . (8.24)

The components ψR and ψL are mixed by the mass term. Equivalently,
any helicity flip from e−R to e−L or vice versa requires a factor of m and
so is suppressed at high energy by a factor m/E.



112 Electron-Positron Annihilation

8.3 Evaluation of the matrix elements for e+e− →
µ+µ−

With these ingredients, we can construct the expectation values of jµ

in the expression for the e+e− → µ+µ− matrix element above. The
matrix elements will depend on the spin states of the electron, positron,
and muons. That analysis will be important to get an explicit theoretical
preduction for this reaction. But also, at the same time, this analysis will
illustrate how Feynman diagrams such as (8.1) and the corresponding
matrix element formulae such as (8.3) encode the physics of elementary
particle interactions. Please follow, in particular, the flow of angular
momentum from the e+e− system to the virtual photon and then to
the µ+µ− system. This will determine the observable form of the final
answer for the cross section.

Begin with the matrix element to annihilate a right-handed electron
and a left-handed positron,The evaluation of (8.3), described in

this section, is lengthy and somewhat
technical. Please work through this
derivation carefully, step by step. It is
the model for many other calcuations
done later in this book.

〈0| jµ
∣∣e−R(p−)e+

L(p+)
〉
. (8.25)

We saw in (3.64) that, for a Dirac field, the conserved electromagnetic
current is

jµ = ΨγµΨ (8.26)

Inserting the representation of the Dirac matrices

γ0γµ =

(
0 1
1 0

)(
0 σµ

σµ 0

)
=

(
σµ 0
0 σµ

)
, (8.27)

we find

jµ = ψ†Lσ
µψL + ψ†Rσ

µψR . (8.28)

Then, also, the current splits into pieces for left- and right-handed elec-
trons. The e−R can scatter into an e−R or annihilate an e+

L , but—in the
limit of zero electron mass—it cannot turn into an e−L or annihilate an
e+
R. These selection rules are called helicity conservation. Helicity con-Definition of helicity conservation.

This special simplification appears
specifically for massless fermions inter-
acting through current-current interac-
tions.

servation applies only to the massless limit of the Dirac equation; for
a massive fermion with energy E, the amplitude to flip from L to R is
proportional to m/E.

We can now evaluate the matrix element in the CM frame

(8.29)

with electron and positron momenta

p− = (E, 0, 0, E) p+ = (E, 0, 0,−E) (8.30)

The expression (8.25) becomes

〈0|ψ†Rσ
µψR

∣∣e−R(p−)e+
L(p+)

〉
. (8.31)
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The field ψR annihilates the e−R, giving a factor uR(p−). The field ψ†R
annihilates the e+

L , giving a factor v†L(p+). Putting in the explicit values,
we find that (8.31) becomes

v†L(p+)σµuR(p−) =
√

2E ( 0 1 ) (1, ~σ)
√

2E

(
1
0

)
= 2E (0, 1,+i, 0)µ . (8.32)

The result is very attractive. The vector

~ε+ =
1√
2

(1̂ + i2̂) (8.33)

represents angular momentum J3 = +1 along the 3̂ axis. This is the total
angular momentum—from the electron and positron spins—entering the
reaction.

(8.34)

The angular momentum is transferred from the e+e− system to the
virtual photon. Finally, we find

〈0| jµ
∣∣e−R(p−)e+

L(p+)
〉

= 2E ·
√

2 · (0,~ε+)µ . (8.35)

A current has the units of 1/cm3 (for ρ) or 1/cm2 sec (for ~j), both of
which are GeV3 in natural units. The two-particle state with relativis-
tic normalization has the units GeV−2, according to (3.92). Then the
matrix element should have units of GeV, and it does.

A similar calculation gives the matrix element for annihilation of
e−Le

+
R. We find

〈0| jµ
∣∣e−L (p−)e+

R(p+)
〉

= 〈0|ψ†Lσ
µψL

∣∣e−L (p−)e+
R(p+)

〉
= v†R(p+)σµuL(p−)

=
√

2E ( 1 0 ) (1,−~σ)
√

2E

(
0
1

)
= −2E (0, 1,−i, 0)µ . (8.36)

This gives

〈0| jµ
∣∣e−L (p−)e+

R(p+)
〉

= −2E ·
√

2 · (0,~ε−)µ . (8.37)

where

~ε− =
1√
2

(1̂− i2̂) (8.38)

is the vector representing the J3 = −1 angular momentum state.
The other two electron helicity combinations, e−Re

+
R and e−Le

+
L , make

no contribution to the annihilation rate in the limit of zero electron
mass. Similarly, in the muon pair production, only the helicity states
µ−Rµ

+
L and µ−Lµ

+
R can appear. The matrix elements for the production
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of these states by a current are the complex conjugates of the matrix
elements computed above, oriented appropriately along the direction of
the muon momenta. Let ~ε ′+ and ~ε ′− be the vectors representing angular
momentum +1 and −1 along this axis. Then〈

µ−R(p′−)µ+
L(p′+)

∣∣ jµ |0〉 = 2E ·
√

2 · (0,~ε ′∗+ )µ〈
µ−L (p′−)µ+

R(p′+)
∣∣ jµ |0〉 = −2E ·

√
2 · (0,~ε ′∗− )µ . (8.39)

Now we can assemble the pieces. For the reaction e−Re
+
L → µ−Rµ

+
L , the

matrix element (8.3) evaluates to

Matrix elements for the creation of
massless fermion pairs by a current.
Note that the matrix elements for the
two other possible helicity states are
forbidden by helicity conservation.

M = −e
2

q2
2(2E)2 ~ε ′∗+ · ~ε+

= −2e2~ε ′∗+ · ~ε+ . (8.40)

I have used the fact that, in the CM frame, q = (ECM ,~0), with ECM =
2E. The final result should be dimensionless, as we expect from (7.19).
This follows from the observation that we made in (2.34) that the electric
charge e is dimensionless in natural units.

So far, we only have abstract expressions for the matrix elements. To
make this more concrete, we need to evaluate these expressions for the
particular kinematics seen by an experiment. To do this, it is useful first
to write out the various momentum vectors and polarization vectors and
spinors explicitly in the CM frame.

(8.41)

p− = (E, 0, 0, E) p′− = (E,E sin θ, 0, E cos θ)

p+ = (E, 0, 0,−E) p′+ = (E,−E sin θ, 0,−E cos θ) ,

~ε± = (1,±i, 0)/
√

2 ~ε′± = (cos θ,±i,− sin θ)/
√

2 . (8.42)

The expressions for ~ε± respect the condition that ~ε± should be orthog-

It is always a good idea, for any Feyn-
man diagram calculation, to make a di-
agram like this one showing the explicit
kinematics of the reaction.

onal to the corresponding momentum vector. From these values,

~ε ′∗+ · ~ε+ = ~ε ′∗− · ~ε− =
1

2
(1 + cos θ) ,

~ε ′∗+ · ~ε− = ~ε ′∗− · ~ε+ =
1

2
(1− cos θ) . (8.43)

Putting the explicit polarization vectors from (8.42) into this equation,
we find the four nonzero matrix elements

|M(e−Re
+
L → µ−Rµ

+
L)|2 = |M(e−Le

+
R → µ−Lµ

+
R)|2 = e4(1 + cos θ)2 ,
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|M(e−Re
+
L → µ−Lµ

+
R)|2 = |M(e−Le

+
R → µ−Rµ

+
L)|2 = e4(1− cos θ)2 .

(8.44)

8.4 Evaluation of the cross section for e+e− → µ+µ−

Once we have derived the result (8.44), we can put the expressions for
the matrix elements into (7.20) and find the predictions for the e+e− →
µ+µ− cross sections. We can use (7.31) to evaluate the phase space
integral.

I will work out the cross sections first for processes in which the leptons
have definite polarization. For e−Re

+
L → µ−Rµ

+
L , we find

σ =
1

2E · 2E · 2

∫
dΠ2 |M|2

=
1

2E2
CM

1

8π

∫
d cos θ

2
e4(1 + cos θ)2 . (8.45)

This gives the different cross section for the reaction, The quantity dσ/d cos θ is a differential
cross section. It predicts the distribu-
tion of events as a function of cos θ.dσ

d cos θ
(e−Re

+
L → µ−Rµ

+
L) =

πα2

2E2
CM

(1 + cos θ)2 . (8.46)

Notice that the angular distribution is peaked in the forward direction.
The e+e− system, which has J3 = +1, transfers its angular momentum
to the final state most effectively when the µ−R is going forward.

In all, the process e+e− → µ+µ− has four amplitudes for the various
spin states that are permitted by helicity conservation. All of the dif-
ferential cross sections have the same structure. For e−Re

+
L → µ−Rµ

+
L and

e−Le
+
R → µ−Lµ

+
R,

dσ

d cos θ
=

πα2

2E2
CM

(1 + cos θ)2 , (8.47)

and, for e−Re
+
L → µ−Lµ

+
R and e−Le

+
R → µ−Rµ

+
L ,

dσ

d cos θ
=

πα2

2E2
CM

(1− cos θ)2 . (8.48)

It is possible to carefully prepare beams in polarized initial states Typically, to compare predictions from
Feynman diagrams to measured cross
sections, we must sum over final spin
states and average over initial spin
states.

and to gain information about the the muon polarization by stopping
the muons and analyzing their decays. But, typically, high energy
beams contain particles with random spin orientations, and the muon
polarization is also not observed. To represent this, we average over all
possible initial spin states and sum over all possible final states. This
gives the final result for the differential cross section

dσ

d cos θ
=

πα2

2E2
CM

(1 + cos2 θ) . (8.49)
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This angular distribution is characteristic of the fact that the muons in
the final state have spin 1

2 . In Exercise 8.1, you can compute the angular
distribution for e+e− to particles of spin 0 and show that the result is
qualitatively different from this one.

The shape of the spin-averaged differ-
ential cross section is

.

The integral of the differential cross section over cos θ gives the to-
tal cross section, which in turn predicts the total rate for muon pair
production in e+e− annihilation. The result is

σ =
4πα2

3E2
CM

. (8.50)

This result has the units of GeV−2, as expected. No dimensionful pa-
rameter appears in the formula except for the center of mass energy, so
the cross section must decrease as 1/E2

CM .
The standard unit used in nuclear and particle physics for expressing

cross sections is the barn,

1 barn = 10−24 cm2 = 100 fm2 . (8.51)

This is an area somewhat larger than the cross-sectional area of a large
nucleus. The proton-proton scattering cross section at high energies is
about 0.1 barn = 100 millibarn (mb). As we will see in Chapter 13,
important cross sections at the Large Hadron Collider have the size of
nb = 10−9 barn, or smaller. The conversion factor from GeV−2 to barns
is

(h̄c)2 = 0.389 GeV2 mb . (8.52)

Using this conversion factor, we can write the spin-averaged cross section
for e+e− → µ+µ− asThe final result for the e+e− → µ+µ−

cross section, in physical units.

σ(e+e− → µ+µ−) =
87 nb

E2
CM

, (8.53)

with ECM given in GeV.
The formulae we have just derived are the leading-order predictions

of QED. They do indeed give an accurate description of the rate and
angular distribution of the process e+e− → µ+µ− for energies up to
about 30 GeV. Above this energy, effects of the weak interaction must
also be included. We will discuss this in Chapter 17.

8.5 e+e− annihilation to hadrons

With this well-understood QED process as a reference point, we can
now discuss the process of e+e− annihilation to hadrons. The main
products of this reaction are observed to be π and K mesons. I will
consider this process at multi-GeV center of mass energies, energies much
higher than the masses of these mesons, and of the related spin 1 mesons
ρ, ω, K∗.

The quark model makes a prediction for the cross section for e+e−

annihilation to hadrons, but it is such a simple one that we are tempted
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to reject it out of hand. Imagine that we are at center of mass energiesThe “naive quark model” theory of the

cross section for e+e− → hadrons. at which we can ignore the quark masses. Then, since quarks are spin- 1
2

particles, the structure of the QED cross section for quark pair produc-
tion is exactly the same as that in the process of muon pair production
that we have just analyzed. If we stop here, we will be ignoring the
effects of the strong interaction, which play an essential role in forming
the mesons that appear in the final state. However, perhaps this model
would be useful as an estimate of the order of magnitude of the cross
section or as a reference value.

This model is so simple that we can write the cross section by making
just three changes in the calculation of muon pair production. The basic
elements of this calculation are unchanged, because we are assuming that
quarks are spin 1

2 particles, and that the energy is high enough that we
can ignore their masses. The changes are the following: First, we must
sum over the relevant quark species for which we can plausibly ignore
the masses at the energy we consider. Second, we need to change the
value of the electric charge of the produced particles, from −1 for the
muon to Qf = + 2

3 for u, c and Qf = − 1
3 for d, s, b. In (8.3), the matrix

element M contains one power of the final electric charge, so the cross
section is proportional to Q2

f . Finally, we learned from the structure
of baryons that quarks carry a hidden quantum number called color,
which takes three values. We need to sum over the final color states in
computing the total cross section. Thus, our simple model predicts the
same angular distribution as before

dσ

d cos θ
(e+e− → hadrons) ∼ (1 + cos2 θ) , (8.54)

while the total cross section is modified to

σ(e+e− → hadrons) =
∑
f

3Q2
f ·

4πα2

3E2
CM

, (8.55)

where the sum is taken over f = u, d, s and also c, b if the CM energy
is high enough that those quarks can be produced. This expression can
also be written in terms of the ratio of the production rates for hadrons
and muons, which can be directly measured in the same experiment at
any center of mass energy. For the contributions of different sets of
quarks, the model gives The naive quark model gives this very

simple prediction.

σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=
∑
f

3Q2
f =


2 u, d, s
3 1

3 u, d, s, c
3 2

3 u, d, s, c, b
(8.56)

How well does this oversimplified model work? Figure 8.1 shows the
experimental data on the total cross section for the process e+e− →
hadrons. The top plot gives the absolute cross section, showing clearly
the E−2

CM dependence. The bottom plot shows the ratio of the hadronic
and µ+µ− cross sections. The solid green line shows the prediction of the
lowest-order theory given above. The horizontal red curves show a more



118 Electron-Positron Annihilation

Fig. 8.1: Measurements of the total cross section for e+e− annihilation to
hadrons as a function of energy, compiled in (Patrignani 2016). The lower
figure shows the ratio R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−). The green
dotted curve is the prediction (8.56). The vertical red lines show the ψ and Υ
resonances. The horizontal red curve is the prediction (11.72).
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Fig. 8.2: Event display from the SLD experiment showing a typical e+e−

annihilation to hadrons event at a center of mass energy of 91 GeV (figure
courtesy of SLAC and the SLD collaboration).

sophisticated theory, to be explained in Chapter 11. The predictions
break down in a big way at the energies of the lightest mesons of each
new type. In particular, the J/ψ and Υ resonances appear as huge
delta functions on this plot. Away from quark thresholds, however, the
formula that we have derived works amazingly well. The feature called
Z is due to the weak interaction; we will study this resonance in Chapter
17.

The prediction for the angular distributions can also be tested exper-
imentally. Before considering any method of detailed comparison, we
need to ask what e+e− → hadrons events actually look like at high en-
ergies. Figure 8.2 shows a typical event at ECM = 91 GeV. The tracks
are mostly charged pions and kaons. The tracks clearly form two bun-
dles, with π and K mesons moving in opposite directions. We call such
a bundle of hadronic tracks a jet. The final states of e+e− annihilation In high energy reactions, quarks and

antiquarks are seen as jets, narrow
streams of high-energy hadrons.

to hadrons at high energy typically consist of two back-to-back jets.
It is very tempting to interpret the jets as the observable manifestation

of quarks and antiquarks. Quarks are not observed in isolation, only as
constituents of hadrons. However, it is not hard to imagine that a high-
energy quark might induce the creation of more quark-antiquark pairs
and that all of these might reform into pions and other hadrons. In
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Fig. 8.3: Distribution of the orientations of jet axes in e+e− annihilation to
hadrons as a function of | cos θ|, as measured by the ALEPH experiment at
the LEP e+e− collider, from (Decamp et al. (1990)).

this understanding, the central axes of the jets would be proxies for the
original directions of the quarks.

Figure 8.3 shows the orientation of the jet axes in e+e− annihilation to
hadrons at 91 GeV. It is not easy to tell quark jets from antiquark jets, so
the distribution is shown for | cos θ|. However, the functional form is very
close to (1 + cos2 θ)! Apparently, the overall momentum flow in e+e−

annihilation events directly reflects the electrodynamic interactions of
quarks, and the identification of quarks as spin- 1

2 particles. There is
almost no effect of the strong interactions of quarks on this property of
the final state.

How is it possible that the strong interactions can be strong and yet
these predictions for hadronic processes can be so accurate? More sur-
prises lie ahead.

Exercises

(8.1) The spectroscopy of mesons and baryons tells
us that quarks are spin- 1

2
particles, but we can

also check this from the angular distribution in
e+e− → hadrons. To analyze this, consider the
alternative hypothesis that quarks are spin 0 par-
ticles. Consider their electrodynamic interactions
at very high momentum where masses can be ne-
glected.

(a) The matrix element for the creation of a spin
0 particle of charge 1 and mass m and its an-
tiparticle by the electromagnetic current has
the form〈

φ−(p−)φ+(p+)
∣∣ ejµ(x) |0〉

= e(p− − p+)µe+ip−·x+ip+·x . (8.57)

To justifiy this, note that the right-hand side
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of this equation must be a 4-vector built from
the boson momenta pµ− and pµ+. Show, using
current conservation (∂µj

µ
EM = 0), that the

structure (p− + p+)µ cannot appear. Note
that p− and p+ are on shell, i.e., p2

− = p2
+ =

m2.

(b) Draw the Feynman diagram for e+e− →
φ+φ−. Write the expression for the matrix
element for this process the cases e−Re

+
L and

e−Le
+
R. You will need to use (8.57) and the ma-

trix elements of the electromagnetic current
between electron states, (8.35) and (8.37).

(c) Draw a diagram showing the kinematics of the
process. Work in the center of mass frame,
with the electron and the spin 0 boson hav-
ing initial energy E. Take the initial electron
and positron directions to be along the 3̂ axis
and the final boson directions to be along the
vector n̂ = cosθ3̂ + sin θ1̂. Write out the four
momentum 4-vectors.

(d) Evaluate the matrix elements from part (b),
square them, and compute the differential
cross section for e+e− → φ−φ+, averaged
over initial spins. Compare to the result
(8.49) for production of spin- 1

2
particles.

(e) Compute the total cross section for e+e− →
φ−φ+. Show that, form = 0, this is 1/4 of the
corresponding result for e+e− annihilation to
spin- 1

2
particles.

(8.2) The vector mesons ρ0, ω, and φ can decay to e+e−

or to µ+µ−. The decay rates to e+e− are better
known, since these can be measured from the in-
verse processes e+e− → ρ0, ω, φ.

(a) At the Particle Data Group website (Patrig-
nani et al. 2016), look up the total widths of
the vector mesons and their branching ratios
to e+e−. Compute the partial decays widths
of the three vector mesons to e+e−.

(b) To understand the relative sizes of these
widths, we will need to construct the quark
model wavefunctions of the three vector
mesons. Here is a mathematical warm-up ex-
ercise: For any group G, let {|a〉} be basis
states for a representation, and let {|a〉} be
basis states for the complex conjugate repre-
sentation. The generators of the group act on
the states of the representation by

T i |a〉 = (ti)ab |b〉 . (8.58)

For example, SU(2) acts on spinors by

J i |a〉 = (
σi

2
)ab |b〉 . (8.59)

Then the action on the complex conjugate
representation is

T i |a〉 = (−tiT )ab
∣∣b〉 , (8.60)

where T denotes the matrix transpose:
(tiT )ab = (ti)ba. Verify this by showing that

T i(
∑
a

|a〉 |a〉) =
∑
a

(T a |a〉) |a〉+|a〉 (T i |a〉) = 0

(8.61)
Then the state ∑

a

|aa〉 (8.62)

is invariant under G, as it should be.

(c) Now write the quark model flavor wavefunc-
tions ρ0, ω0, φ0, analogous to the wavefunc-
tion ∣∣ρ+

〉
=
∣∣ud〉 . (8.63)

For φ, this is easy. For ρ0 and ω0, you should
write different linear combinations of |uu〉 and∣∣dd〉. To obtain the correct combinations, you

will need to use the fact that ω0 is an isospin
0 state, while ρ0 is part of an isospin 1 multi-
plet.

(d) The matrix element for a vector meson to de-
cay to e+e− is proportional to

〈0| jµEM (0)
∣∣V 0
〉
, (8.64)

where V = ρ, ω, φ and

jµEM =
∑

f=u,d,s

Qfψfγ
µψf . (8.65)

Work out the relative size of the matrix ele-
ments (8.64) for ρ, ω, φ, using the approxi-
mation that the three quarks u, d, s have the
same masses and strong-interaction dynam-
ics, so that they differ only in their electric
charges. Notice that both the u and d quark
terms in jµEM contribute in the ρ and ω cases,
with a different sign for the interference in the
two cases.

(e) In this same approximation, find the ratios of
the decay rates. Compare to the ratios of the
partial widths found in (a).
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In the previous chapter, I showed that the main features of the reaction
of e+e− annihilation to hadrons could be described to quite a good
approximation by a naive model in which we ignore the fact that quarks
have strong interactions. The discovery that quarks can be described by
spin- 1

2 particles with simple electromagnetic interactions was actually
made, not with this process, but in an earlier experiment studying a
reaction in which this conclusion was even more surprising.

When electrons are scattered from protons, the simplest reaction that
can take place is elastic scattering, ep → ep. As electron scattering
is observed with larger transfers of momentum to the proton, elastic
collisions become infrequent. Most scattering events break the proton
open and produce a large number of hadrons. When the total mass of
the hadrons is much larger than the original proton mass, the reaction
is refered to as deep inelastic electron-proton scattering.

We will see in this chapter that the deep inelastic regime of electron-
proton scatting is well described using a picture in which electrons scat-
ter from free quarks inside the proton. If it is surprising that strongly-
interacting quarks behave as free particles when they are created out of
nothing in e+e− annhilation, it is more surprising that it is possible to
ignore the strong interaction, to a first approximation, in the scattering
of electrons from quarks inside protons.

Deep inelastic electron scattering was first studied in the 1960’s, at
the SLAC linear electron accelerator. In this chapter, I will describe the
results of this experiment, carried out by a SLAC-MIT collaboration
(Bloom et al. 1969), and its interpretation.

9.1 The SLAC-MIT experiment

The original motivation of the SLAC linear accelerator was to provide
very high energy electrons to study the structure of the proton through
elastic scattering. In the 1950’s, Robert Hofstadter at Stanford studied
the elastic scattering process e−p → e−p and similar elastic scattering
reactions for nuclei (Hofstadter 1957). He mapped out the size of the
proton and the shapes of nuclei. SLAC was built to continue these stud-
ies to higher energy and perhaps identify structure within the proton.

Figure 9.1 shows a photograph of the deep inelastic scattering experi-
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Fig. 9.1: Layout of the SLAC-MIT deep inelastic scattering experiment (fig-
ure courtesy of SLAC). Electrons strike a hydrogen target just under the
cylinder on the left of the figure. Scattered electrons, moving left to right,
pass through a string of magnets that measure their momenta, and then into
the large electromagnetic calorimeter on the right.

ment. In this description, “deep” means very large momentum transfer.
The cross section for elastic electron scattering from a proton falls off
rapidly above 1 GeV momentum transfer, indicating that the smallest
structures visible in this reaction are of size h̄/1 GeV or larger. To see
down to smaller distances, we must analyze scattering with a momentum
transfer above 1 GeV, which would necessarily be inelastic scattering.
The idea of the SLAC-MIT experiment was very simple: Bring in an
electron beam with as high an energy as possible. Let electrons dis-
rupt protons in a hydrogen target, giving up energy and momentum in
the process. Then measure the energy and momentum of the outgoing
electron to find the energy-momentum transfer in the reaction.

(9.1)

The odd genius of this experiment was that it ignored the hadronic final
state and instead concentrated on measuring the 4-momentum of the
outgoing electron with high precision. In Fig. 9.1, the electrons enter
from the left. The figure shows the line of magnets used to bend and
momentum-analyze the electron. The large orange box on the right
is an electromagnetic calorimeter used to discriminate electrons from
pions produced in the scattering reactions. The detector was mounted
on railroad tracks that allowed it to be swung around to any angle with
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respect to the beam.
A Feynman diagram for the process of electron scattering has the

form Kinematics of deep inelastic scattering.

(9.2)

The electron interacts through a simple current matrix element

〈
e−(k′)

∣∣ jµ ∣∣e−(k)
〉
. (9.3)

The current couples to a virtual photon, which then couples to another
current acting on the proton. The current matrix element between the
proton and the particular hadronic final states are probably not simple.

Denote the initial electron momentum by k and the final electron
momentum by k′. We prepare k and measure k′, so we know that the
momentum of the virtual photon is

q = (k − k′) . (9.4)

The mass W of the final hadronic system is given by

W 2 = (P + q)2 = m2
p + 2P · q + q2 . (9.5)

In my discussion here, I will use the simplifying approximation that
the energy transfer in the scattering process is much larger than the
mass of the proton, so that we can ignore both the electron and proton
mass. For a scattering process, q is spacelike, that is, there is a frame
where the energy transfer is zero and only momentum is transfered. It
is convenient to write Definition of Q2 for deep inelastic scat-

tering.

q2 = −Q2 . (9.6)

Large Q2 indicates large momentum transfer to the proton.
The cross sections as a function of W for increasing values of Q2 are

shown in Fig. 9.2. As W increases from left to right in each plot,
we see the ∆, N∗, etc., baryon resonances. However, at large Q2, the
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Fig. 9.2: Cross section for deep inelastic ep scattering as a function of the final
hadronic mass W , measured by the SLAC-MIT experiment, at low, medium,
and high values of Q2, from (Bloom et al. 1969).
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resonances become less visible over a smooth continuum rising with W .

(9.7)

The whole collection of data is quite complex, so it was a challenge to
understand how to interpret it.

9.2 The parton model

The crucial clue for understanding the deep inelastic scattering data
came from an important observation by Bjorken that I will describe in
Section 9.5. Feynman was then able to describe deep inelastic scatter-
ing using a simple picture based on free quarks and antiquarks that he
called the parton model. In this section, I will describe the model; in
the remainder of this chapter, we will work out its predictions for deep
inelastic scattering and compare those to data.

At very high energy, we may analyze the e−p scattering reaction from
the CM frame.

(9.8)

Feynman modeled the proton as a collection of constituents, called par-
tons. Some of these partons might be the quarks, which we already
expect are constituents of the proton. At high energy, all partons are
moving approximately in the direction of the proton. That is, all par-
tons have a large component of momentum along the direction of the
proton, while their momenta transverse to the proton direction remain
of the order of the momenta within the proton bound state. In the sim-
ple parton model, we ignore these transverse momentum components,
and the masses of the partons. We might expect that these approxima-
tions would be good for very high energy scattering processes. Then the
momentum vector of a parton can be written Statement of the parton model descrip-

tion of the proton wavefunction.

pµ = ξ Pµ , (9.9)

where P is the total energy-momentum of the proton and ξ is the fraction
of this energy-momentum carried by that parton. The parameter ξ runs
over the values

0 < ξ < 1 . (9.10)

Let fi(ξ)dξ be the probability of finding a parton of type i carrying the
momentum fraction ξ. In the following, I will assume that the partons
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that scatter electromagnetically are quarks and antiquarks. I will denote
these by a label f (the flavor) for quarks and f for antiquarks. There
might be additional partons that do not have electric charge. The whole
set of partons carry the total energy-momentum of the proton. This
implies the sum rule

∫ 1

0

dξ
∑
i

fi(ξ) · ξ = 1 . (9.11)

In the parton model, deep inelastic scattering is described by the
Feynman diagram

(9.12)

We take each quark or antiquark in the proton and consider it to scatter
from the electron as a pointlike spin- 1

2 particle. As in e+e− annihilation,
the outgoing quark cannot be seen in isolation. Rather, it must turn into
a jet of hadrons through processes that involve the strong interactions
in a nontrivial way. Here again, we will ignore the effects of the strong
interactions when we compute the cross section. We will interpret the
parton model cross section as giving the sum of the cross sections for all
possible hadronic final states. The parton model cross section is writtenThe cross section for deep inelastic elec-

tron scattering according to the parton
model.

σ(e−p→ e−X) =

∫
dξ
∑
f

[ff (ξ) + ff (ξ)]σ(e−q(ξp)→ e−q) . (9.13)

The symbol X stands for any collection of hadrons in the final state.

9.3 Crossing symmetry

To compute the cross section required for (9.13), we need to evaluate
the matrix elements for electron-quark scattering, a process described
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by the Feynman diagram

(9.14)

The form of this diagram is similar to that of (8.1), and so we can imme-
diately write down an expression for the corresponding matrix element,

M(e−qf → e−qf ) = (−e)
〈
e−
∣∣ jµ ∣∣e−〉 1

q2
(Qfe) 〈qf | jµ |qf 〉 . (9.15)

It is straightforward to evaluate this matrix element explicitly using the
methods described in Section 8.3. I describe this method in Problem 9.1.
However, there is a much easier way to determine the value of the matrix
element. This method requires explanation of a new concept, called
crossing symmetry. This concept ties to important general properties of
scattering matrix elements, so it will be worth a detour to explain it.

To begin, compare the diagram in (9.14) with the diagram for e+e− →
qq computed in the previous chapter

(9.16)

The two Feynman diagrams actually show the same process, laid out
in different ways in space-time. In eq scattering, there is an electron in
the final state and a quark in the initial state. In e+e− annihilation, the Crossing symmetry relates matrix ele-

ments for the reaction with outgoing
particles to those with incoming an-
tiparticles. This relation is true quite
generally for matrix elements in rela-
tivistic quantum field theory.

final electron is exchanged for the antiparticle of the electron, a positron,
in the initial state, and the initial quark is exchanged for a final-state
antiquark. The situations with a final electron and an initial positron,
and that with a final quark and an initial antiquark, are strongly related,
because the same quantum field that creates the electron destroys the
positron, and similarly for a quark and antiquark. This translates into
the simplest possible relation of the corresponding matrix elements: The
matrix elements have the same functional form with appropriate iden-
tification of the external momenta. This relation of processes is called
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crossing symmetry. It is another theorem of quantum field theory that
processes related by crossing symmetry are described by the same func-
tion of the external momenta. Thus, given our results for the e+e− → qq
matrix elements from the previous chapter, we are able to write down
the matrix elements for e−q → e−q without further calculation.

To use crossing symmetry most easily, it is useful to introduce a stan-
dard notation for the kinematic invariants of 2-body scattering processes.
Consider a general 2-particle scattering process 1 + 2→ 3 + 4. To write
maximally symmetric expressions, I will write all momenta as directed
outward,

(9.17)

For the reaction 1 + 2 → 3 + 4, we will have p0
3, p

0
4 > 0 and p0

1, p
0
2 < 0.

Negative energy here means that the particles are annihilated rather
than created. The same amplitude, evaluated for p0

1 > 0, p0
3 < 0 will

describe the reaction with the antiparticle of 3 in the initial state and
the antiparticle of 1 in the final state. Energy-momentum conservation
in the reaction implies

p1 + p2 + p3 + p4 = 0 . (9.18)

The matrix element M can depend only on Lorentz-invariant combina-
tions of the momenta. I will now count and classify these.

First of all, the squares of the 4-vectors are Lorentz-invariant. But
these are fixed to the masses of the particles

p2
1 = m2

1 , p2
2 = m2

2 , p2
3 = m2

3 , p2
4 = m2

4 . (9.19)

The remaining Lorentz invariants have the form pi ·pj . To express these,
we define the Mandelstam invariants, DefineDefinition of the kinematic variables s,

t, u.

s = (p1 + p2)2 = (p3 + p4)2

t = (p1 + p3)2 = (p2 + p4)2

u = (p1 + p4)2 = (p2 + p3)2 . (9.20)

Each variable has two definitions, related by (9.18). This implies that
the six products pi · pj actually reduce to three; for example,

2p1 · p2 +m2
1 +m2

2 = 2p3 · p4 +m2
3 +m2

4 . (9.21)
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There is one further relation. When we add up the three invariants, we
find

s+ t+ u =
1

2

[
p2

1 + 2p1p2 + p2
2 + p2

3 + 2p3p4 + p2
4

p2
1 + 2p1p3 + p2

3 + p2
2 + 2p2p4 + p2

4

p2
1 + 2p1p4 + p2

4 + p2
2 + 2p2p3 + p2

3

]
, (9.22)

and gather up the terms in the square of p1 + p2 + p3 + p4 ,

s+ t+ u =
1

2

[
(p1 + p2 + p3 + p4)2 + 2p2

1 + 2p2
2 + 2p2

3 + 2p2
4

]
. (9.23)

Using (9.19), we find An important identity linking s, t, and
u.

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 . (9.24)

So, finally, there are only two independent Lorentz invariants, specified
by any two of s, t, u. This is a general result for any 2-particle scattering
process.

To understand s, t, and u better, we can evaluate them for the scat-
tering of massless particles in the CM frame. The four momenta are

(9.25)

p1 = (−E, 0, 0,−E) p3 = (E,E sin θ, 0, E cos θ)

p2 = (−E, 0, 0, E) p4 = (E,−E sin θ, 0,−E cos θ) (9.26)

Note that I am still writing the negative of the momentum for the initial
state particles. We see that In the rest of this book, I will often

write
√
s for the center of mass energy

ECM .s = (2E)2 = E2
CM . (9.27)

In fact, even for general masses, s = (p1+p2)2 = E2
CM . It is conventional

in particle physics to write the center of mass energy of any reaction as√
s. For massless particles, t and u also have simple expressions.

t = (p1 + p3)2 = (0, E sin θ, 0, E(cos θ − 1))2

= −E2(sin2 θ + 1− 2 cos θ + cos2 θ) . (9.28)

Then
t = −2E2(1− cos θ) , (9.29)
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and, similarly
u = −2E2(1 + cos θ) . (9.30)

Note that the relation s + t + u =
∑
im

2
i = 0 is satisfied. The two

independent variables represented by s, t, u correspond to the CM energy
and the CM scattering angle.

An easy way to implement crossing symmetry is to permute the three
invariants s, t, and u as the legs of the diagram are switched between
the initial and the final state.

In Chapter 7, and again in Chapter 8, I argued that we could repre-
sent an intermediate state in a Feynman diagram with a Breit-Wigner
denominator

The quantities s, t, u provide a Lorentz-
invariant way to parametrize the two
key variables of a scattering process—
the center of mass energy and the scat-
tering angle.

1

(p1 + p2)2 −m2
R + imRΓR

. (9.31)

When the intermediate state separates the initial and the final state, the
denominator depends on (p1 + p2)2 = s.Feynman diagram for an s-channel pro-

cess:
1

s−m2
R + imRΓR

. (9.32)

We call this type of reaction an s-channel process. Crossing symmetry
relates this amplitude to other processes in which the virtual particle
exchange appears in other configurations. If the resonance amplitude
depends on t,Feynman diagram for an t-channel pro-

cess: 1

t−m2
R + imRΓR

, (9.33)

we have a t-channel process. Similarly, when the resonance is a function
of u,

Feynman diagram for an u-channel pro-
cess:

1

u−m2
R + imRΓR

. (9.34)

we have a u-channel process.
For each type of process, the channel determines the qualitative form

of the expression for the scattering cross section. As a simple example,
consider the implications for massless particles interacting through a
virtual photon exchange (mR = 0). The s-channel diagram leads to the
term

∣∣∣∣ ∣∣∣∣2 ∼ | 1

q2
|2 ∼ 1

s2
=

1

E4
CM

. (9.35)

The dependence of the cross section on cos θ comes only from the nu-
merator terms, as in e+e− annihilation. The t-channel diagram leads
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to

∣∣∣∣ ∣∣∣∣2 ∼ 1

t2
=

4

E4
CM (1− cos θ)2

=
1

E4
CM sin4 θ/2

. (9.36)

This expression is strongly peaked in the forward direction. You might
recognize this factor as the forward peak in the differential cross section
for Coulomb scattering. The u-channel diagram leads to

∣∣∣∣ ∣∣∣∣2 ∼ 1

u2
=

4

E4
CM (1 + cos θ)2

, (9.37)

which has a strong peak for backward scattering. It is illuminating, and
very pleasing, that we can infer the qualitative angular distribution of
the elementary particle reaction simply by looking at the form of the
corresponding Feynman diagram.

9.4 Cross section for electron-quark scattering

Crossing symmetry allows us to convert the calculations we did in
the previous chapter for e+e− annihilation into calculations of the in-
variant amplitudes for electron-quark scattering. In Chapter 8, using in
particular (8.44), we derived the results

|M(e−Re
+
L → qRqL)|2 = |M(e−Le

+
R → qLqR)|2 = Q2

fe
4(1 + cos θ)2 ,

|M(e−Re
+
L → qLqR)|2 = |M(e−Le

+
R → qRqL)|2 = Q2

fe
4(1− cos θ)2 ,

(9.38)

where Qf is the electric charge of the quark in question. Using (9.27),
(9.29), and (9.30), we can write these expressions in a Lorentz invariant
form as

|M(e−Re
+
L → qRqL)|2 = |M(e−Le

+
R → qLqR)|2 = 4Q2

fe
4u

2

s2
,

|M(e−Re
+
L → qLqR)|2 = |M(e−Le

+
R → qRqL)|2 = 4Q2

fe
4 t

2

s2
. (9.39)

These expressions are correct in any frame. And, in addition, they
yield the expressions for the crossed amplitudes after an appropriate
permutation of variables. For example, consider the crossing

(9.40)
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The eq scattering diagram on the right is obtained by moving the final
antiquark qL to the initial state, where it becomes the quark qR, and
moving the initial positron e+

L to the final state, where it becomes the
electron e−R. Note that the final process continues to respect helicity
conservation.

The interchange of momenta is

p1 → p1 p2 → p3 p3 → p4 p4 → p2 . (9.41)

This interchangesThis calculation demonstrates the use
of crossing symmetry to calculate one
matrix element from another known
matrix element.

s→ t t→ u u→ s . (9.42)

The matrix element for e−RqR → e−RqR is then given by

|M(e−RqR → e−RqR)|2 = 4Q2
fe

4 s
2

t2
. (9.43)

Similarly, the crossing

(9.44)

produces

|M(e−RqL → e−RqL)|2 = 4Q2
fe

4u
2

t2
. (9.45)

Notice that this matrix element is proportional toThe scattering amplitude for the polar-

ized reaction e−RqL → e−RqL has a zero
required by angular momentum conser-
vation.

u2 ∼ (1 + cos θ)2 (9.46)

and vanishes for backward scattering, cos θ = −1. If we look at the flow
of spin angular momentum,

(9.47)

we see that, in this case, backward scattering is forbidden by angular
momentum conservation. The matrix elements for the other helicity
combinations allowed by helicity conservation can be obtained in the
same way,

|M(e−LqL → e−LqL)|2 = 4Q2
fe

4 s
2

t2
,

|M(e−LqR → e−LqR)|2 = 4Q2
fe

4u
2

t2
. (9.48)
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We can now assemble the cross section for eq scattering. Averaging
over the spins in the initial state and summing over the spins in the final
state, the cross section is given by

σ(eq → eq) =
1

2E 2E 2

1

8π

∫
d cos θ

2

1

4

∑
spins

|M(e−q → e−q)|2. (9.49)

Note that there is no color factor of 3 in this equation. Whatever color
the quark has in the initial state, that color is passed to the quark in
the final state.

Summing over the matrix elements for the allowed processes, we find

dσ

d cos θ
=

1

2s
πα2 2

4

(
4Q2

f

s2 + u2

t2

)
, (9.50)

or
dσ

d cos θ
=
πQ2

fα
2

s

s2 + u2

t2
. (9.51)

We can write this result completely invariantly by using (9.29) to replace
the integral over cos θ,

dt =
1

2
s d cos θ . (9.52)

Then The final expression for the differential
cross section for electron-quark scatter-
ing.

dσ

dt
(eq → eq) =

2πQ2
fα

2

s2

s2 + u2

t2
. (9.53)

9.5 The cross section for deep inelastic scattering

Using the formula (9.13) together with (9.53), we obtain the parton
model prediction for the deep inelastic scattering cross section

σ(e−p→ e−X) =

∫
dξ

∫
dt̂
∑
f

[ff (ξ) + ff (ξ)]
2πQ2

fα
2

ŝ2

(
ŝ2 + û2

t̂2

)
.

(9.54)
In this formula, I use ŝ, t̂, û to denote the invariants for the electron- In a hadron reaction described by the

parton model, I will denote the parton-
level kinematic invariants by ŝ, t̂, û.

parton scattering process, reserving the symbols without hats for the
full electron-proton scattering reaction.

It is not so obvious how to interpret this formula, since it is not clear
how to measure the parton-level invariants. However, it is a beautiful
feature of deep inelastic scattering that each of the parton-level invari-
ants has a precise physical interpretation. We will now work these out.

First of all, t̂ = q2 = −Q2. I have already pointed out that this
quantity is directly measured in the deep inelastic scattering experiment.

Next, compare s for the full e−p reaction

s = (k + P )2 = 2k · P (9.55)

and for the parton reaction

ŝ = (k + p)2 = 2k · p = 2k · ξP . (9.56)
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We see that
ŝ = ξs . (9.57)

It is useful to define Definition of the deep inelastic scatter-
ing variable y.y =

2P · q
2P · k

. (9.58)

In the proton rest frame, this is

y =
q0

k0
. (9.59)

That is, y is the fraction of the initial electron energy that is transfered
to the proton. This implies that

0 < y < 1 . (9.60)

We can equally well evaluate

y =
2ξP · q
2ξP · k

=
2p · (k − k′)

2p · k
=
ŝ+ û

ŝ
. (9.61)

Then
û

ŝ
= −(1− y) , (9.62)

or
ŝ2 + û2 = ŝ2(1 + (1− y)2) . (9.63)

At this point, we have expressed

σ(e−p→ e−X) =

∫
dξ

∫
dQ2

∑
f

[ff (ξ)+ff (ξ)] 2πQ2
fα

2

(
1 + (1− y)2

Q4

)
.

(9.64)
There is one more important kinematic relation. In the parton model,

we assumed that the quark is a free pointlike Dirac particle and that the
electron-quark scattering is elastic

(9.65)

If the final quark is treated as massless, then

0 = (p+ q)2 = 2p · q + q2 = 2ξP · q −Q2 . (9.66)

Thus, the parameter ξ becomes identified with an observable combina-
tion of momenta x,Definition of the deep inelastic scatter-

ing variable x.
x =

Q2

2P · q
. (9.67)
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Fig. 9.3: Measurements of the quantity F2, defined by (9.71), by the SLAC-
MIT experiment, at different energy and angle settings, plotted as a function
of ω = 1/x, from (Breidenbach et al. 1969).

This is quite amazing. In the parton model, a deep inelastic scatter at a
fixed value of x is due to an initial parton carrying the fraction x of the
initial proton momentum. By measuring x, we sample the momentum
distribution of quarks in the proton wavefunction.

Finally, using (9.55) and (9.58), we see that

Q2 = xys . (9.68)

Then, with x fixed,
dt̂ = dQ2 = xs dy . (9.69)

This gives as our final formula for the deep inelastic scattering cross
section The final parton model formula for the

cross section for deep inelastic electron
scattering.dσ

dxdy
(e−p→ e−X) =

∑
f

xQ2
f [ff (x) + ff (x)] · 2πα2s

Q4
(1 + (1− y)2) .

(9.70)
Notice that both of the kinematic variables used here range over the
interval 0 < x, y < 1.

9.6 Bjorken scaling

It is conventional to write the expression for the deep inelastic cross
section as the product of an elementary QED cross section and an un-
known form factor F2 that contains the information about the proton
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Fig. 9.4: Measurements of the quantity F2 by the SLAC-MIT experiment,
at energy and angle settings giving Q2 > 1 GeV2, plotted as a function of x,
from (Peskin and Schroeder 1995).

structure,

dσ

dxdy
(e−p→ e−X) = F2 ·

2πα2s

Q4
(1 + (1− y)2) . (9.71)

In principle, the factor F2 could depend on the general kinematics of the
problem; that is, it could be a general function of x and Q2. However,
comparing (9.70) and (9.71), we see that the parton model prediction
for F2 is

F2(x) =
∑
f

Q2
fx[ff (x) + ff (x)] . (9.72)

It is striking that the predicted form depends only on x and its in-
dependent of Q2. This behavior is called Bjorken scaling. Bjorken pre-Definition of Bjorken scaling.

dicted this simple dependence based on more advanced hypotheses about
the behavior of current matrix elements at high energy (Bjorken 1966).
Bjorken encouraged the experimenters to plot the data shown in Fig. 9.2
as a function of x, or, rather, ω = 1/x. The result is shown in Fig. 9.3.
The deep inelastic cross sections from many settings of the beam energy
and scattering angle come together into a single function of ω. Figure 9.4
shows the plot of F2 versus x for the events with Q2 > 1 GeV2. All of
the data falls on a single curve as a function of x!

Over the past decades, F2 has been measured repeatedly at higher
energies, using muons and neutrinos produced by proton beams of hun-
dreds of GeV. Most recently, F2 has been measured at the HERA collid-
ing beam facility at the German high-energy physics laboratory DESY,
which collided 820 GeV protons with 30 GeV electrons. The full world
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Fig. 9.5: Measurements of the quantity F2 at increasing values of x as a
function of Q2, compiled by the Particle Data Group (Patrignani et al. 2016).
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Fig. 9.6: Event display for an ep scattering event at Q2 = 5800 GeV2, from
the ZEUS experiment at the ep collider HERA (figure courtesy of DESY and
the ZEUS collaboration). Electrons entering from the left collide with a pro-
tons entering from the right. The single track going upward in the figure,
associated with energy in the electromagnetic calorimeter, is the scattered
electron. The tracks moving downward from the collision point form a jet of
hadrons.

data set, collected by the Particle Data Group (Patrignani et al. 2016),
is shown in Fig. 9.5. Each row of points shows the value of F2 atIn fact, F2 is only approximately inde-

pendent of Q2, varying slowly on a log-
arithmic scale.

different values of Q2. In fact, there is a dependence on Q2, but it is
very slow, evolving on a logarithmic scale. F2 decreases for large values
of x and increases for small values of x. The explanation of this slow
evolution of F2 with Q2 requires an explanation that goes beyond the
simple parton model. I will discuss the physical origin of this behavior
in Chapter 12.

Figure 9.6 shows an event display from a typical deep inelastic scat-
tering event at Q2 = (100 GeV)2, from the ZEUS experiment at the
high energy electron-proton collider HERA at DESY. The electrons en-
ter from the left and the protons from the right. We see the final
electron scattered toward the upper left, shown as one track plus energy
in the electromagnetic calorimeter. Going downward, there is a jet with
four high energy hadronic tracks plus energy in the electromagnetic and
hadron calorimeters. The calorimeter hits on the left show the energetic
hadrons from the remnants of the proton left after one quark is ejected.
This precisely visualizes the parton model Feynman diagram that we
drew at the beginning of the chapter.
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Exercises

(9.1) In Section 9.3, we derived expressions for the
electron-quark scattering amplitudes using results
from e+e− → qq plus crossing symmetry. We found

|M(e−RqR → e−RqR)|2 = 4Q2
fe

4s2/t2 ,

|M(e−RqL → e−RqL)|2 = 4Q2
fe

4u2/t2 . (9.73)

Check these results by deriving them directly.
Treat both the electron and the quark as massless
fermions.

(a) Draw the Feynman diagram for electron-
quark scattering and argue that

M = Qfe
2
〈
e−(p′)

∣∣ψeγµψe ∣∣e−(p)
〉

·1
t

〈
q(k′)

∣∣ψqγµψq |q(k)〉 , (9.74)

where p, p′ are the initial and final electron
momenta and k, k′ are the initial and final
quark momenta.

(b) Draw a diagram showing the kinematics of the
process. Work in the center of mass frame,
with the electron and the quark having initial
energy E. Take the initial electron and quark
directions to be along the 3̂ axis and the final
electron and quark directions to be along the
vector n̂ = cosθ 3̂ + sin θ 1̂. Write out the four
momentum 4-vectors. Write the values of s,
t, and u.

(c) Show that the spinors with spin up and down
along the direction n̂ are

ξ+ =

(
cos θ/2
sin θ/2

)
, ξ− =

(
− sin θ/2
cos θ/2

)
.

(9.75)

(d) Construct the initial and final spinors u(p),
u(k), u(p′), u(k′) for the electron-quark scat-
tering reaction, both for e−RqR → e−RqR and
for e−RqL → e−RqL.

(e) Compute the matrix elements〈
e−(p′)

∣∣ψeγµψe ∣∣e−(p)
〉

(9.76)

for the cases of right- and left-handed elec-
trons. There are 4 cases, but 2 are zero.

(f) Compute the matrix elements〈
q(k′)

∣∣ψqγµψq |q(k)〉 (9.77)

for the two nonzero cases.

(g) Compute the matrix elements in (9.73) and
verify the results given.

(9.2) Consider the deep inelastic scattering of polarized
electrons on polarized protons. There are four in-
dependent different possible initial states: e−LpL,
e−LpR, e−RpL, and e−RpR. Analyze these cases in the
parton model. Ignore antiquarks and the heavier
quarks s, c, . . . in the proton wavefunction. Then
the proton state pR is described by four parton dis-
tribution functions:

fuR(x) , fuL(x) , fdR(x) , fdL(x) , (9.78)

corresponding to quark partons with flavor u, d and
with spin parallel or antiparallel to the spin of the
proton.

(a) Derive expressions, within the parton model,
for the cross sections

dσ

dxdy
(e−RpR) and

dσ

dxdy
(e−LpR)

(9.79)

(b) The cross sections for e scattering from pL
are related to these by parity. Write the pdfs
for pL in terms of the spin-dependent pdfs
for pR defined in (9.78). Compute the deep
inelastic scattering cross sections for e−L and
e−R scattering on a pL, the analogs of (9.79).
Check that the average over all initial state
spins gives the expression (9.70) for the unpo-
larized deep inelastic scattering cross section.

(c) Show that, because u and d quarks in the pro-
ton are antisymmetrized in color, the only
spin 0 state that can be build from these
quarks is a ud state with total I = 0 and
S = 0. Then, when one quark carries most
of the momentum of the proton, the proton
wavefunction is likely to be described by this
ud state at low momentum, plus an energetic
u quark with its spin parallel to the spin of
the proton. What predictions does this model
make for the limiting forms of the cross sec-
tions computed in (a) as x→ 1?





The Gluon 10
At the end of the previous chapter, we saw that e−p deep inelastic scat-
tering allows us to meaure a quantity F2(x), interpreted as a sum over
parton distributions for quarks and antiquarks in the proton. In this
interpretation, x is the fraction of the momentum of a proton carried
by a quark and ff (x), ff (x) are the parton distribution functions, the
probability distribution of quarks and antiquarks of flavor f in the pro-
ton as a function of x. Then our simple model for the deep inelastic
scattering cross section gave For the rest of this book, the proton will

be represented as bag of quarks, anti-
quarks, and gluons, each governed by
its parton distribution function (pdf).

F2(x) =
∑
f

Q2
fx[ff (x) + ff (x)] (10.1)

In this chapter, I will describe additional data on F2 that makes this
picture more concrete, and other measurements that reveal an additional
parton component of the proton.

From here on, I will refer to parton distribution functions, for brevity,
as pdfs. Any hadron will have a set of pdfs describing its wavefunction
in terms of quarks and antiquarks. However, when I write pdfs without
any further labels, I will be referring specifically to those of the proton.

10.1 Measurement of parton distribution functions

In the quark model, we would expect the major contributions to F2(x)
to be those from the two u quarks and one d in the proton wavefunction.
At this level, the formula (10.1) would read

F2(x) =
4

9
xfu(x) +

1

9
xfd(x) . (10.2)

These three quarks account for the proton electric charge and isospin
quantum numbers. Any additional quarks in the proton must appear as
quark-antiquark pairs. In quantum field theory, there are processes that
create a quark-antiquark pair of any flavor, so we expect nonzero values
for all of the possible pdfs

fu(x), fd(x), fs(x), · · · fu(x), fd(x), fs(x), · · · (10.3)

To give the correct quantum numbers Qp = +1, I3
p = +1

2 , S = 0, etc.,
the pdfs must satisfy the sum rules Flavor sum rules for pdfs.∫ 1

0

dx[fu(x)− fu(x)] = 2
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∫ 1

0

dx[fd(x)− fd(x)] = 1∫ 1

0

dx[fs(x)− fs(x)] = 0 , (10.4)

and similarly for the distributions of c, b, t.
The pdfs ff (x) must be determined from experiment. The deep in-

elastic scattering process e−p→ e−X gives us one combination of these
distributions. But there are other reactions that give us access to other,
orthogonal, combinations. From deep inelastic scattering on a deuterium
target, we can extract the cross section for deep inelastic electron scat-
tering from a neutron. In the parton model, this process is described
by the same formulae (9.71), (9.72), but with the pdfs of the proton re-
placed by those of the neutron. These two sets of quantities are related
by an isospin rotation

f (n)
u (x) = fd(x) , f

(n)
d (x) = fu(x) ,

f
(n)
u (x) = fd(x) , f

(n)

d
(x) = fu(x) , (10.5)

where the unlabeled pdfs are those of the proton. The pdfs for heavier
quarks should be identical between the proton and the neutron. In the
same approximation as in (10.2)

F
(n)
2 (x) =

4

9
xfd(x) +

1

9
xfu(x) . (10.6)

so these two sets of measurements already give us a first determination
of the separate pdfs for u and d.

Another important source of information is deep inelastic scattering
by neutrinos. Neutrinos interact with protons through the weak interac-
tion, and so we will need to understand the structure of that interaction
to interpret this data in detail. I will discuss neutrino interactions in
Chapter 15. It will be useful to give here a few details that will be
explained there. We will see in Chapter 15 that neutrinos also interact
through a form of the current-current interaction, and that, at the level
of the parton model, neutrino and antineutrino deep inelastic scatter-
ing is also described by a formula similar to (9.71). In the dominant
processes in neutrino scattering experiments, the neutrino converts to a
muon. The four most important parton-level processes areParton level neutrino reactions used in

the determination of pdfs.
ν + d→ u+ µ− , ν + u→ d+ µ+ ,

ν + u→ d+ µ− , ν + d→ u+ µ+ . (10.7)

As we will see in Chapter 15, the distributions in y are different for
scattering from quarks and antiquarks. So, by measuring the sign of
the final muon each event and the distribution of events in y, we can
separately measure u and d quark and antiquark distributions. By look-
ing for strange or charmed particles in the final states of deep inelastic
electron and neutrino scattering, we can also estimate the heavy quark
distributions

fs(x), fs(x), · · · (10.8)
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The sum rules (10.4) imply that the total numbers of heavy quarks
and antiquarks in the proton are equal, but they do not imply that
ff (x) = ff (x). In fact, some processes that add quark-antiquark pairs Physics considerations that explain the

differences in the shapes of quark and
antiquark pdfs for different flavors.

lead to different distributions. For example, the quantum fluctuation

p↔ Λ0 +K+ (10.9)

adds a strange quark in a distribution similar to the u quark pdf of the
proton, and an s at smaller x. The fluctuation

p↔ n+ π+ (10.10)

adds a d+ d, but no u, so we might expect more d than u antiquarks in
the proton. A proton at high momentum has a component in which one
u quark carries the proton spin and most of the momentum, while the
remaining ud pair form a low-energy I = 0, S = 0 state, This leads to
the expectation that, on average, the u quarks have larger momentum
fractions x than the d quark.

Using data from all of these reactions, it is possible to assemble a
quantitative model of the full set of pdfs. In setting up such a model,
we typically divide the u and d pdfs into valence and sea components.
The valence component contains exactly two u quarks and one d quark, The pdfs of the proton may be viewed

as valence pdfs containing 2 u quarks
and 1 d quark, plus a sea with equal
numbers of quarks and antiquarks of
each flavor.

at values of x of order 1. These distributions will have the general form

(10.11)

These valence quarks are accompanied by a sea of quarks and antiquarks.
The sea distributions are largest at much smaller values of x. They are
found to be divergent as x → 0, so that the proton contains a very
large number of quark-antiquark pairs carrying very small fractions of
the total proton momentum.

(10.12)
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Fig. 10.1: Parton distribution functions xfi(x) at Q = 3.1 GeV and at
Q = 100 GeV, according to the fit of the NNPDF collaboration, from (Foster
et al. 2016).

The divergences of the quark and antiquark pdfs must match so that
the integrals in (10.4) can be finite. Feynman called the partons at very
small x the wee partons. He argued that a 1/x behavior of the sea pdfs
would lead to the approximately constant value of the proton-proton
total cross section at high energies (Feynman 1972). This model of the
total cross section (now in a more modern form) is still debated.

These ideas can be incorporated in a quantitative model of the pdfs
whose parameters are then fit to the relevant data. In performing this
fit, we must take into account the physics of the Q-dependence of the
pdfs that I will discuss in Chapter 12. However, when this ingredient is
included, the entire data set is seen to be well described by the parton
model. The fit gives explicit forms for the valence and sea pdf functions.
Figure 10.1 shows the functions extracted by the NNPDF collaboration
(Ball et al. 2015). Two other collaborations, MSTW and CTEQ, alsoResults of an explicit fit to data from

deep inelastic scattering and other
sources for valence and sea pdfs.

have produced pdf fits to the global dataset, and all three collaborations
have quite consistent results. The current status of pdf fits is summa-
rized in (Rojo et al. 2015, Buckley et al. 2015).

As we have already seen in Fig. 9.5, the pdfs extracted from these fits
have a slow dependence on Q, visible when the data are considered on
a logarithmic scale. The left and right-hand figures show the pdfs at
Q = 3.1 GeV and at Q = 100 GeV. These figures illustrate the valence
plus sea form of the pdfs, and indicate clearly the growth of the sea
component as Q becomes very large.

The pdfs obey one more sum rule, already stated in (9.11). The parton
momenta must sum up to the total energy and momentum of the proton.
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Fig. 10.2: Event display, in three views, of the tracks from a 3-jet event ob-
served by the TASSO experiment at the e+e− collider PETRA, from (Bran-
delik et al. 1979).

Since each parton carries a fraction x of the proton’s energy-momentum,∫
dx x

∑
i

fi(x) = 1 . (10.13)

The fraction of the total energy-momentum of the proton carried by Momentum sum rule for pdfs.

quarks is given by the integral

Pq+q/P =

∫ 1

0

dx x
∑
f

[ff (x) + ff (x)] (10.14)

With the extra factor of x relative to (10.4), this integral easily converges
as x→ 0. The parton distributions determined as I have described give

Pq+q/P ≈ 0.5 . (10.15)

So, something is still missing. We need additional partons of another The quarks and antiquarks alone do not
account for the total energy-momentum
of the proton.

type, one that does not participate in deep inelastic scattering. Pre-
sumably, the proton must also contain the particle responsible for the
binding of quarks into hadron bound states. I will call this particle the
gluon. If gluons lead to the strong interaction, then, also, there should Introduction of the gluon as a quantum

of the strong interaction.be a field equation for the gluon field, and there should be physical gluon
particles. These particles should appear in the proton wavefunction and
should carry some fraction of its momentum.

If there is a gluon that interacts with quarks, it should be produced
in the reaction e+e− → hadrons. Even if the photon does not couple
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Fig. 10.3: Event display of a 3-jet event observed by the SLD experiment at
the e+e− collider SLC (figure courtesy of SLAC and the SLD collaboration).
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Fig. 10.4: Event display of a 4-jet event observed by the SLD experiment at
the e+e− collider SLC (figure courtesy of SLAC and the SLD collaboration).
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directly to gluons, the gluon should be radiated from the outgoing
quarks and antiquarks. We have seen that quarks and antiquarks appear
in experiments as jets of hadrons, and that typical events in e+e− →
hadrons at high energy are 2-jet events. If a gluon also appears as a
jet, we should also see 3-jet events, in which one jet is the product of a
gluon,

(10.16)

In fact, when the e+e− collider PETRA at the laboratory DESY began
to operate at ECM = 30 GeV, events of this type appeared. Figure
10.2 shows a 3-jet event recorded by the TASSO experiment (Brandelik
et al. 1979). Figures 10.3 and 10.4 show events recorded by the SLD
experiment at 91 GeV, a 3-jet event and also a 4-jet event.

10.2 Photon emission in e+e− → qq

To understand three-jet events in e+e− annihilation quantitatively, it
would be good to have a reference theory of gluon emission by quarks,
which we could then compare to the data. The simplest hypothesis is
that gluons are spin 1 particles like photons, and that they couple to the
conserved quark current in the same manner as the photon. The theory
of photon emission from relativistic charged particles is rather straight-
forward. We dipped into the theory of this emission—bremsstrahlung—
in our discussion of detectors. Now we have the tools to work out the
predictions of this theory more precisely. I will now compute the rate
of photon emission from the final-state quarks in e+e− → qq. In thisThe theory of photon emission from fi-

nal state fermions in e+e− annihila-
tion is a useful model for the descrip-
tion of gluon emission in e+e− anni-
hilation. We can work out this theory
by through calculations similar to those
done in Chapter 8.

discussion, I will continue to assume that quarks are structureless spin- 1
2

fermions, and that I can ignore their masses in high energy processes.
In the discussion of bremsstrahlung in Section 6.2, I explained that it

is easy for relativistic particles to radiate additional relativistic particles
with order-1 energy sharing, as long as the radiated particles are ap-
proximately collinear with the original particles. The final state of two
collinear particles has a momentum very close to that of the original
particle, so only a small momentum transfer is required. This process
is called collinear splitting. In particle detectors, splitting is inducedA relativistic quark emerging from a

particle reaction can readily convert
into a pair of collinearly moving rela-
tivistic particles. Photon emission pro-
vides our first example of such a pro-
cess.

by the interaction of the electron or photon with an atomic nucleus.
However, when a relativistic particle is produced in a hard-scattering
reaction, that reaction can give the small amount of extra momentum
needed to allow splitting. In this section, I will explain how this works
for a splitting that converts a quark to a collinear quark and photon.

Consider, then, Feynman diagram with e+e− → qq followed by photon
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emisson,

(10.17)

In the full process e+e− → qq+γ, photons can also be emitted from the
initial-state electron and positron, and all of these emissions must be
accounted to compare with data. However, it turns out that the domi-
nant contribution to the cross section consists of separate contributions
from each of the initial and final legs, so it makes sense to study these
separately.

To begin, I will analyze the kinematics of the splitting process. Notice
that the initial quark corresponds to an internal line of the Feynman
diagram, so it is described as a resonance and it can be slightly off the
mass shell. I will use coordinates in which the quark emerges from the
e+e− reaction moving in the 3̂ direction. Then Kinematic analysis of a model collinear

splitting process. We see that the ini-
tial quark must be only slightly off the
mass shell to allow the splitting.

p ≈ (E, 0, 0, E) . (10.18)

We can divide this momentum between the final photon and quark, each
moving at a small angle with respect the initial quark direction. If the
photon carries off a fraction z of the momentum of the original quark,
the two momentum vectors can be written

q = (zE, q⊥, 0, zE −
q2
⊥

2zE
)

k = ((1− z)E,−q⊥, 0, (1− z)E −
q2
⊥

2(1− z)E
) (10.19)

I have modified the 3̂ components of these 4-vectors to put the final
photon and quark on mass shell, q2 = k2 = 0, up to corrections of
relative order (q⊥/E)4. Energy-momentum conservation implies that
the original quark cannot be on its mass shell. Rather, the 3̂ component
of momentum must be

E − q2
⊥

2zE
− q2

⊥
2(1− z)E

. (10.20)

Then (10.18) can be written more precisely as

p = (E, 0, 0, E − q2
⊥

2z(1− z)E
) . (10.21)

Squaring this 4-vector, we find

p2 =
q2
⊥

z(1− z)
. (10.22)
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The quark of momentum p is an intermediate state in the process
illustrated by the Feynman diagram. It makes sense to treat this particle
as a resonance, assigning it the Breit-Wigner factor

(10.23)

Notice that, if q⊥ is small, the denominator is small, and thus the quan-
tum amplitude is very large. There is then a high probability that aThe fact that the initial quark is close

to its mass shell produces a small de-
nominator in the evaluation of the
Feynman diagram, leading to a large
rate for photon emission.

photon will be emitted in this process, with higher probably for photons
more collinear with the original quark.

The Feynman diagram suggests that the full amplitude can be com-
puted as a product of terms

M(e+e− → qqγ) =M(e+e− → qq) · 1

p2
· M(q(p)→ γ(q)q(k)) + · · ·

(10.24)
where the omitted terms contain the amplitude for emissions from the
antiquark and the initial e+ and e−. I will now analyze the emission
from the quark in some detail.

For definiteness, I assume that the initial quark is right-handed. (The
final answer for the rate will be the same for a left-handed quark.) Then,

M(qR → γqR) = Qfe 〈qR(k)| jµ |qR(p)〉 ε∗µ(q) , (10.25)

where εµ(q) is the polarization vector of the photon. Using the right-

hand part of the current jµ = ψ†Rσ
µψR, we findMatrix element computation for the

splitting process q → q + γ. This com-
putation is a model for other compu-
tations of splitting amplitudes that we
will meet later in this book. So, please
follow the steps carefully.

M(qR → γqR) = Qfeu
†
R(k)σµ uR(p) ε∗µ(q) . (10.26)

The needed spinors are

uR(p) =
√

2E

(
1
0

)
, uR(k) =

√
2(1− z)E

(
1

−q⊥/2(1− z)E

)
.

(10.27)
Notice that I have rotated the spinor uR(k) so that it is the spin-up
spinor in the direction of the momentum k in (10.19). It will suffice to
work to O(q⊥) in the calculation of M. The possible photon polariza-
tions are

εR =
1√
2

(0, 1, i,− q⊥
zE

) εL =
1√
2

(0, 1,−i,− q⊥
zE

) (10.28)

I have rotated these vectors to be orthogonal to q in (10.19) Assembling
the pieces, we can compute the matrix elements. First, for emission of



10.2 Photon emission in e+e− → qq 153

a left-handed photon,

u†Rσ · ε
∗
LuR = 2E

√
1− z

(
1 − q⊥

2(1−z)E
) 1√

2
[σ1 + iσ2 − q⊥

zE
σ3]

(
1
0

)
=

2E
√

1− z√
2

(
− q⊥

2(1− z)E
+

q⊥
2(1− z)E

− q⊥
zE

)
= −
√

2q⊥

√
1− z
z

. (10.29)

For emission of a right-handed photon,

u†Rσ · ε
∗
RuR = 2E

√
1− z

(
1 − q⊥

2(1−z)E
) 1√

2
[σ1 − iσ2 − q⊥

zE
σ3]

(
1
0

)
=

2E
√

1− z√
2

(
− q⊥

2(1− z)E
− q⊥

2(1− z)E
− q⊥
zE

)
= −
√

2q⊥

√
1− z

z(1− z)
. (10.30)

Summing the squared amplitudes over photon polarizations, The final result for the splitting ampli-
tude.∑

ε

|M(q → γq)|2 = 2Q2
fe

2q2
⊥(1− z) 1

z2(1− z)2
(1 + (1− z)2) . (10.31)

Now we need to combine the result (10.31) with the amplitude for the
production of the qq system and integrate the complete amplitude over
phase space. The complete formula for the cross section is

σ(e+e− → qqγ) =
1

2EA · 2EB · 2

∫
dΠ3 |M(e+e− → qqγ)|2 . (10.32)

If p is the momentum of the antiquark and Q is the total center of mass
momentum, the phase space integral is∫

dΠ3 =

∫
d3pd3kd3q

(2π)92p2k2q
(2π)4δ(4)(Q− p− q − k) (10.33)

Since k = p − q, d3k = d3p. Also, to first approximation, k = (1 − z)p,
q = zp. Then we can rearrange the phase space integral as∫

d3pd3p

(2π)62p2p
(2π)4δ(4)(Q− p− p) · d3q

(2π)3 z(1− z) 2p
. (10.34)

The d3q integral can be divided in to collinear and perpendular terms,

d3q = dq3d2q⊥ = pdzπdq2
⊥ . (10.35)

We can assemble the expression (10.32) by using the approximation
(10.24) to evaluate the amplitude,

σ(e+e− → qqγ) =
1

2EA · 2EB · 2

∫
dΠ2|M(e+e− → qq)|2

·
∫

dz πdq2
⊥

(2π)32z(1− z)
| 1

p2
|2|M(q → γq)|2 . (10.36)
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We recognize the first half of (10.36) as the cross section for e+e− → qq.
The second half of (10.36) is

∫
dzdq2

⊥
16π2z(1− z)

(
z(1− z)
q2
⊥

)2

2Q2
fe

2q2
⊥

1

z2(1− z)
(1 + (1− z)2) (10.37)

Then, finally, we find

σ(e+e− → qqγ) = σ(e+e− → qq) ·
Q2
fα

π

∫
dz

∫
dq⊥
q⊥

1 + (1− z)2

z
.

(10.38)
This equation gives the cross section for emission of a photon approx-The computation of the cross section

for e+e− → qqγ approximately factor-
izes into a piece associated with the
production process e+e− → qq and a
piece associated with the photon emis-
sion.

imately collinear with the final quark. For the full cross section for
photon emission in e+e− annihilation to hadrons, we must add similar
expressions for photon emission from the final antiquark and from the
initial electron and positron.

It is hard not to notice that the q⊥ and z integrals are divergent as
q⊥, z → 0. So the photon emission is strongly peaked for photons that
are soft and also collinear with respect to the original quark direction.
I will discuss the treatment of these singularities in the next chapter.
We will see that the reaction rates are not actually infinite; instead, the
divergent integrals reflect the fact that a very large number of photons
are emitted into these regions of small and collinear momentum.

I have derived this formula for photon emission from an outgoing
quark, but actually, the formula is correct for radiation from any charged
spin 1

2 fermions, either in the initial or the final state, as long as the
energies involved are high enough that we can ignore the fermion mass.
In general, then,The final formulae for photon emission

from very relativistic initial- and final-
state fermions.

σ(A→ B + f + γ) ≈ σ(A→ B + f) ·
∫
dz

∫
dq⊥
q⊥

Q2
fα

π

1 + (1− z)2

z
,

σ(A+ f → B + γ) ≈ σ(A+ f → B) ·
∫
dz

∫
dq⊥
q⊥

Q2
fα

π

1 + (1− z)2

z
,

(10.39)

where the approximation is correct for photons emitted approximately
collinearly with the fermion f . This formula is called the Weizsacker-Photon emission from a very relativis-

tic particle is strongly peaked in the di-
rection collinear with that particle. To
a first approximation, we can treat the
radiation from each external relativistic
particle separately.

Williams distribution. For an electron, we can estimate the integrals as
running over the ranges me to ECM or me/ECM to 1. Then

σ(A→ B + e− + γ) ≈ σ(A→ B + e−) · 2α

π
log2 ECM

me
. (10.40)

The radiation pattern is peaked in the directions collinear with the initial
and final particles. Then we can associate photon emission with each
relativistic particle in the intial and final state. We refer to this collinear
radiation as initial-state radiation and final-state radiation. In each
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case, the radiation follows the path of the relativistic particle,

(10.41)

10.3 Three-jet events in e+e− annihilation

If gluons are massless spin 1 particles coupling to the vector current,
and we can treat quarks as massless at high energy, the same formula
applies to the emission of gluons from quarks. Let gs be the strong
interaction coupling constant, and let αs = g2

s/4π. In the theory of
strong interactions that I will discuss in the next chapter, there is an
additional numerical factor 4

3 in the emission formula, associated with
the way that gs is defined in that theory. The rate of gluon emission
from a quark emitted into the final state of a strong interaction reaction
would then be Prediction of the theory in the previous

section for the rate of gluon emission in
e+e− annihilation, assuming that glu-
ons are massless spin 1 particles.

σ(A→ B + q + g) ≈ σ(A→ B + q) ·
∫
dz

∫
dq⊥
q⊥

4

3

αs
π

1 + (1− z)2

z
.

(10.42)
This formula applies only in the region where the gluon is emitted into
the collinear region. With more work, one can assemble the complete
formula for gluon emission in e+e− annihilation to leading order in αs
without making the approximation of collinear emission. To do this, we
must consider the processes of gluon emission from the final quark and
antiquark,

(10.43)

and add these contributions to M coherently. The processes interfere
constructively when the gluon is radiated into the region between the
quark and antiquark.

To actually carry out this computation would take us beyond the scope
of this book. However, the result is fairly simple to write in the CM frame
for the reaction e+e− → qqg. The final state has three particles, and so
we can use the kinematic relations for three-body phase space that lead
to the formula (7.35). Let the CM energies of q, q, and g be

Eq , Eq , Eg . (10.44)
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For ECM ≡ Q = Eq + Eq + Eg, let

xq =
2Eq
Q

, xq =
2Eq
Q

, xg =
2Eg
Q

, (10.45)

so that xq + xq + xg = 2. The variables xi have maximum value 1. For
example, xq = 1 corresponds to a configuration in which the antiquark
recoils against the quark and gluon, which share the recoil momentum,

(10.46)

The complete 3-body phase space is a triangle, with these collinear con-
figurations at the edges

(10.47)

In terms of these variables, the distribution of events with gluon emission
predicted by the sum of diagrams in (10.43) can be shown to be

σ(e+e− → qqg) = σ(e+e− → qq)

·
∫
dxqdxq

2αs
3π

x2
q + x2

q

(1− xq)(1− xq)
. (10.48)

We can readily check that this agrees with the previous computation in
the limit of collinear splitting. Take the limit xq → 1, and label the g,
q, and q momenta as q, k, and p, as above. We have

xg ≈ z , xq ≈ (1− z) (10.49)

Also

p2 = (q + k)2 = (Q− p)2 = Q2 − 2p ·Q = Q2(1− xq) . (10.50)

Then we can replace

dxq
(1− xq)

=
dq2
⊥

q2
⊥

= 2
dq⊥
q⊥

. (10.51)
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In this limit, the general expression becomes

σ(e+e− → qqg) = σ(e+e− → qq) ·
∫
dz

∫
dq⊥
q⊥

4α

3π

1 + (1− z)2

z
,

(10.52)
just as we found in the approximate computation for the collinear region.

The distribution of events predicted by (10.48) over the phase space
triangle has the form

(10.53)

Figure 10.5 shows the distribution of events in a related phase space
description used by the TASSO experiment (Brandelik et al. 1979). The In observed e+e− → 3 jet events, a pair

of jets tend to be collinear, as we would
expect if the third jet results from a
collinear splitting process.

bottom left-hand corner of the plot contains 2-jet-like events; the region
just below the diagonal in the plot contains planar events.

A more detailed comparison of this theory with data is shown in Figs.
10.6 and 10.7 (Abe et al. 1997). For a sample of e+e− → 3-jet events
analyzed using xi variables defined to be ordered in energy,

x1 > x2 > x3 , (10.54)

Figure 10.6 shows the predictions of jet production rates as a function of
x1, x2, x3. The predictions of the spin 1 gluon model are shown as the
solid curves, and they are compared to the predictions from alternative
models with spin 0 and spin 2 gluons. Figure 10.7 shows the data from The energy distributions for collinear

splitting differ depending on the spin of
the emitted particle. For 3-jet events in
e+e− annihilation to hadrons, experi-
ment favors the case of spin 1.

the SLD experiment, which is in excellent agreement with the spin 1
case. In the spin 1 model, the jet with the lowest energy is typically the
gluon. You can see that the x3 distribution has the expected shape

1 + (1− x3)2

x3
(10.55)

up to the point at large x3 where the gluon is no longer the least energetic
particle. The predicted distributions for spin 0 and spin 2 gluons are
significantly different, and are not in good agreement with the data.

10.4 Effects of gluon emission on pdfs

Just as we can radiate gluons from final-state quarks, we can radiate
gluons from initial-state quarks. In deep inelastic scattering, this process
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Fig. 10.5: Distribution of e+e− annhilation events observed by the TASSO
experiment in a two variables related to event shapes, from (Brandelik et
al. 1979). The lower left-hand corner of this plot corresponds to the upper
right-hand corner of the triangle in (10.53).
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Fig. 10.6: Expectation for the form of the plots in Fig. 10.7 for emission of
gluons of spin 0 (scalar), 1 (vector), 2 (tensor), from (Abe et al. 1997).

Fig. 10.7: Measurement of the rates of e+e− annihilation events as a function
of the variables x1, x2, x3 defined in (10.45), (10.54) by the SLD experiment,
from (Abe et al. 1997).. The data are compared to the simulation program
HERWIG, which gives the prediction of the spin 1 gluon model.
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is represented by the Feynman diagram

(10.56)

A parton radiates a gluon, and then scatters from the electron at a lower
momentum than it had previously. The effect is proportional to

4

3

αs
π

∫
dq⊥
q⊥
∼ 4

3

αs
π

log
Q

mp
, (10.57)

where q⊥ runs over the range mp < q⊥ < Q. Thus, the modification
of the parton distribution is proportional to logQ. The effect of gluon
emission is to shift the quark parton momenta to lower values of x, since
the quarks lose energy and momentum to the emitted gluons. Then weQuark pdfs should evolve with Q due

to collinear gluon emission, which in-
creases as Q increases. This physics
predicts that quark pdfs should de-
crease at large x as a function of Q.

expect the evolution

(10.58)

The effect can be seen in Fig. 10.8, which gives the u quark pdf from
the fit by the NNPDF collaboration (Ball et al. 2015) at Q = 2, 50,
1250 GeV.

There are other effects in pdf evolution that are still missing from
this description. Gluon emission alone does not produce the strong
peaking of pdfs as x→ 0, and it does not directly generate the antiquark
distributions. For this, we need the feedback of gluons into the quark and
antiquark distributions provided by the conversion of gluons to qq pairs,
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Fig. 10.8: Evolution of the u quark pdf xfu(x) from Q = 2 GeV to Q =
1250 GeV, showing the flow of valence quark energy-momentum into gluons.
The distributions are computed using the global fit to pdfs by the NNPFD
collaboration (Ball et al. 2015).

just as photons in a detector can convert to electron-positron pairs.

(10.59)

Including this process of gluon splitting not only produces the antiquark
distributions for light quarks; it also correctly predicts the quark and

antiquark distributions for c and b quarks. The comparison of measure-
ments of c and b production from the HERA collider to this parton
evolution model is shown in Fig. 10.9. In Chapter 12, I will add this
effect to our formalism in the context of a complete theory of the strong
interaction.
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Fig. 10.9: Measurements of the charm quark and antiquark pdf by the H1
and ZEUS experiments at the HERA collider, at increasing values of x as a
function of Q, from (Aktas et al. 2006). The measurements are compared to
expectations from the formulae that will be presented in Chapter 12.



Exercises 163

Exercises

(10.1) A very rough approximation to the u and d valence
parton distributions shown in Fig. 10.1 is given by

fval(x) = A(1 + ax)(1− x)β , (10.60)

where

u d

Q = 3.1 GeV a = 0.5 , β = 4 a = −0.6 , β = 4
Q = 100 GeV a = 0.3 , β = 5 a = −0.8 , β = 5

(10.61)

(a) For u and d at each value of Q, determine A
such the pdf satisfies its sum rule.

(b) For u and d and each value of Q, compute the
average value of the momentum fraction x.

(c) For each value of Q, determine the fraction
of the proton’s momentum carried by valence
quarks.

(10.2) If the gluon were a spin-0 particle G, it would cou-
ple to quarks according to the interaction

∆L = gsGψψ = gsGψ
†
LψR + ψ†RψL . (10.62)

This gives a different pattern of gluon radiation
that is straightforward to work out.

(a) Show that the interaction (10.62) leads to the
emission matrix element

M(qR → GqL) = gsu
†
L(k)uR(p) (10.63)

(b) Show that, in the coordinates used in Section
10.2, the spinors that should be used in this
calculation are

uR(p) =
√

2E

(
1
0

)
,

uL(k) =
√

2(1− z)E
(
q⊥/2(1− z)E

1

)
.

(10.64)

(c) Following the derivation of (10.31), show that

|M(q → Gq)|2 = g2
sq

2
⊥(1− z) 1

(1− z)2
.

(10.65)
Remember that a spin 0 particle has only one
polarization state.

(d) Work out the analogue of (10.38) for emission
of G from a quark. Show that the function
(1 + (1 − z)2)/z in the integrand of (10.38)
and (10.42) is replaced by the function z. This
difference is apparent in the x3 distributions
plotted in Fig. 10.6. The data clearly favors
the choice of spin 1 for the gluon.





Quantum Chromodynamics 11
We have now accumulated enough clues to guess at the underlying theory
of the strong interaction. This theory should be a theory of massless
spin 1 bosons — the gluons. The basic equations of the theory should
be some generalization of Maxwell’s equations. It would be good if
this theory accounted for two of the odd properties of hadrons. First,
there is the 3-valued quantum number color, which still needs a physical
interpretation. Second, there is a mystery that, although the strong
interactions are strong enough to bind quarks permanently into hadrons,
we can ignore the strong interactions to first order in analyzing the
dynamics of quarks in e+e− annihilation and deep inelastic scattering.

It turns out that these clues suggest a unique proposal for the funda-
mental theory that describes the strong interaction. This theory is called
Quantum Chromodynamics (QCD). In this chapter, I will describe some
new theoretical ideas that we will need to understand this theory. Then
I will write down the Lagrangian for QCD and discuss some of its prop-
erties.

11.1 Lagrangian dynamics and gauge invariance

To introduce QCD, I must first take a step away from the data and
continue the discussion of the Lagrangian dynamics of relativistic field
that we began in Chapter 3. We realized in Chapter 3 that Maxwell’s
equations provide a consistent quantum theory of spin 1 bosons. It is
logical to ask what other theories share the same advantages. In this
section, we will study the properties of Quantum Electrodynamics that
will allow us to construct natural generalizations of that theory.

In (3.74), I wrote the Lagrangian for QED as

L = −1

4
FµνFµν + Ψ(iγµDµ −m)Ψ , (11.1)

where
Dµ = ∂µ + ieAµ . (11.2)

The tensor Fµν contains the electromagnetic field strengths. This La-
grange density is manifestly Lorentz invariant. It is also invariant under
the symmetries P , C, and T . We checked in Chapter 3 that this La-
grangian leads to Maxwell’s equations coupled to the electron current
and to the Dirac equation coupled to the Maxwell Aµ field.

We should now look more closely at (11.1), and, in particular, at the
symmetries of this Lagrangian. In addition to the space-time symmetries
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just listed, the Lagrangian is invariant with respect to a phase rotation
of the Dirac field

Ψ(x)→ eiαΨ(x) Ψ(x)→ e−iαΨ(x) , (11.3)

This symmetry is known as global gauge invariance. You know from
your study of classical mechanics that every symmetry of the Lagrangian
yields a conservation law (Noether’s theorem). In this case, we obtain a
conservation law of QED associated with (11.3) by varying (11.1) with
respect to the transformation

δΨ(x) = iδα(x)Ψ(x) δΨ(x) = −iδα(x)Ψ(x) . (11.4)

This is the infinitesimal form of (11.3), but now with α(x) depending on
x. The action is not invariant under this transformation. The derivative
in the Dirac Lagrangian leads to a leftover term in which the derivative
acts on α(x),

δL = Ψ(iγµΨ)(i∂µα) , (11.5)

Putting this under the action integral and integrating by parts, this
becomes

δS =

∫
d4x(δα(x))∂µ(ΨγµΨ) (11.6)

which implies the field equation

∂µj
µ = 0 , (11.7)

the conservation of the vector current.
In fact, the Lagrangian contains a larger symmetry. We can combine

the transformation under a local phase transformation with a transfor-
mation of the Aµ fieldThe local gauge transformation of

QED.

δΨ(x) = iδα(x)Ψ(x) δΨ(x) = −iδα(x)Ψ(x)

δAµ(x) = −1

e
∂µδα(x) (11.8)

The change in the action from this variation is

δL = Ψ(iγµΨ)(i∂µδα) + Ψ(iγµ)(+ie)(−1

e
∂µδα)Ψ = 0 . (11.9)

Notice that Fµν is invariant to the transformation (11.8),

δFµν = −1

e

[
∂µ∂νδα− ∂ν∂µδα

]
= 0 . (11.10)

So the entire Lagrangian (11.1) is invariant under (11.8). The transfor-
mation (11.8) is called a local gauge transformation. We say that the
QED Lagrangian has local gauge invariance.

Local gauge invariance is a powerful, even magical, constraint on the
properties of the quantum theory of electromagnetism. Even at the
classical level, it requires the field equations to take the form of Maxwell’s
equations. It is also the principle that allows the 4-vector Aµ to contain
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only two polarization states, a principle that we saw in Section 3.3 was
necessary for the consistency of the quantum theory. A related problem
is the question of why the photon does not gain mass in the quantum
theory from its interaction with quantum fluctuations. This feature of
QED, which is absolutely necessary for its consistency, is actual quite
subtle to understand. The explanation makes essential use of gauge
invariance.

Local gauge invariance is a powerful
principle responsible for many of the
important and nontrivial features of
Quantum Electrodynamics.

11.2 More about Lie groups

In searching for a theory of the gluon, a massless spin 1 particle with
only the two transverse polarizations, it is natural to build on the idea
of local gauge invariance. But, the strong interaction is not simply a
slightly modified version of QED. QED, even with a stronger coupling
constant, does not have 3-fermion bound states. Also, if the QED cou-
pling were strong enough to bind quarks, it would not be possible to
ignore the effects of the QED interactions as we did in our discussions
of e+e− annihilation and deep inelastic scattering. We need a different
generalization that can change these properties.

In QED, the local symmetry is based on the group U(1) of phase
rotations, as in (11.3). In principle, we can find larger theories that
generalize QED by enlarging the local symmetry to a larger Lie group.
It turns out that the change from an Abelian to a non-Abelian local
symmetry group changes the theory profoundly. It will be interesting,
then, to develop the theory of spin 1 particles with non-Abelian local
symmetry.

In Section 2.4, we discussed some simple aspects of non-Abelian con-
tinuous groups. I explained that the action of of a non-Abelian group Please look back at Section 2.4 and

review the concepts and notation pre-
sented there. We will need these con-
cepts to describe local gauge invariance
under non-Abelian groups.

G is generated by the action of Hermitian operators T a. The number of
such operators is dG, and these operators obey the Lie algebra of G, a
set of commutation relations that can be written

[T a, T b] = ifabcT c , a, b, c = 1, . . . , dG , (11.11)

The structure constants fabc are totally antisymmetric in their indices.
A dR-dimensional unitary representation of G is generated by a set of
dG Hermitian matrices of size dR × dR that obey this algebra, The Lie algebra satisfied by the repre-

sentation matrices taR for the generators
of a Lie group.[taR, t

b
R] = ifabctcR . (11.12)

These matrices act on dR-dimensional complex vectors. The infinitesi-
mal group transformation of such a vector takes the form

Φ→ (1 + iαataR) Φ (11.13)

As I described in Section 2.4, the Hermitian matrices taR generate a set
of unitary transformations

U(α) = exp[iαataR] . (11.14)
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These matrices satisfy the group multiplication law of G. They also
tranform the vector Φ by the actions

Φ→ U(α) Φ , (11.15)

and these transformations also form a representation of G.
We have already met the Lie groups SU(N), at least for the cases

N = 2, 3. For any N such that N ≥ 2, SU(N) is the group of N × N
unitary matrices with determinant 1. SU(2) has the same structure as
the rotation group in 3 dimensions SO(3), and it has the same finite-
dimensional representations. The smallest nontrivial representation isThe simplest representations N and N

of SU(N) groups. the 2-dimension spinor representation, with generators given by (2.57).
For SU(3), the smallest nontrivial representations are 3-dimensional.
There are two inequivalent representations 3 and 3, which are complex
conjugates. In general, the smallest representations of SU(N) are N -
dimensional. The corresponding generator matrices taN are the N2 − 1
traceless N × N Hermitian matrices. I will make the convention that
these matrices are normalized to

tr[taN t
b
N ] =

1

2
δab . (11.16)

This convention fixes the normalization of the representation matrices
in all other irreducible representations. It is useful to define a scalar
quantity C(R) associated with each representation byThe definition of C(R), a normalization

associated to each irreducible represen-
tation R. tr[taRt

b
R] = C(R)δab . (11.17)

Some properties of C(R) are worked out in Exercise 11.4.
It is an interesting problem in algebra to find the complete set of

finite-dimensional irreducible representations of a Lie algebra (11.11).
In the easiest case of SU(2), these irreducible representations are the
representations of spin j, with j integer or half-integer. For more general
Lie groups, the solution to this problem is discussed in (Georgi 1999).

For our discussion of non-Abelian gauge theories, we will need to know
about one other representation of SU(N). This the adjoint representa-The adjoint representation of a Lie

group. tion, the representation under which the generators of the Lie algebra
transform. In Exercise 11.3, it is shown that the representation matrices
in the adjoint representation of any Lie group G can be written as

(tbG)ac = ifabc . (11.18)

Note that fabc, with b fixed, is a dG × dG matrix, as required. These
matrices are normalized to

tr[taGt
b
G] = facdf bcd = C(G)δab . (11.19)

For SU(N), C(G) has the value C(G) = N . For example, for SU(2),
fabc = εabc, and

εacdεbcd = 2δab . (11.20)

For SU(3), the adjoint representation is 8-dimensional (the octet repre-
sentation, corresponding to the set of 8 3× 3 traceless Hermitian matri-
ces, and C(G) = 3. The formula is proved for general N in Exercise 11.4.
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11.3 Non-Abelian gauge symmetry

With this preparation in the formalism of group theory, we can work
out the Lagrangian of fermions whose local gauge symmetry is a non-
Abelian Lie group G. Consider a Dirac field that also transforms under
the symmetry G according to the representation R. An example might
be the nucleon field Ψi, i = p, n, which is rotated by isospin transfor-
mations. This was the example considered by Yang and Mills in their
original construction of a non-Abelian generalization of QED (Yang and
Mills 1954). Honoring this contribution, a non-Abelian gauge theory is
also called a Yang-Mills theory.

Consider, then, the Lagrangian

L0 = Ψjiγ
µ∂µΨj . (11.21)

Let Ψ transform according to a representation R of the gauge group G.
Generalizing (11.13), an infinitesimal local gauge transformation of Ψ
would take the form

Ψj(x)→ Ψ′j(x) = (1 + iαa(x)taR)jkΨk . (11.22)

Then, as before

δL0 = Ψjiγ
µ(i∂µα

a(x)taR jk)Ψj . (11.23)

We can compensate this transformation by replacing the derivative ∂µ
by the covariant derivative To build a non-Abelian gauge theory,

we introduce one spin 1 field for each
generator of the gauge group.Dµ = ∂µ − igAaµtaR . (11.24)

Note that we must introduce one vector field for each generator of the
group G. We will see in a moment that the variation of the Lagrangian
is compensated if we assign the field Aaµ the transformation law

Aaµ(x)→ Aaµ(x) +
1

g
∂µα

a(x) +Abµf
abcαc(x) . (11.25)

This is very similar to the transformation of the Aµ field in (11.8), ex-
cept that it includes one additional nonlinear term. The parameter
αa(x) transforms according to the adjoint representation of G, so we
might expect that derivatives acting on αa(x) should also be promoted
to covariant derivatives. Using (11.18) for ta in (11.24), the covariant
derivative on αa(x) takes the form

Dµα
a(x) = ∂µα

a(x) + gAbµf
abcαc(x) . (11.26)

So (11.25) can be written more clearly as

Aaµ(x)→ Aaµ(x) +
1

g
Dµα

a(x) . (11.27)
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The extra nonlinear term in (11.25) is needed to make the Lagrangian
invariant. The variation of the Lagrangian

L = ΨiγµDµΨ (11.28)

is

δL = Ψ(iγµDµ)(iαataR)Ψ + Ψ(−iαataR)(iγµDµ)Ψ

+Ψ(iγµ)(−ig)
[1
g
∂µα

a + fabctaRA
b
µα

c
]
Ψ . (11.29)

The terms involving ∂µα
a cancel as before. However, there are now

three terms involving α with no derivatives,Nonlinear terms in the gauge trans-
formation law are needed in the non-
Abelian case to make the Lagrangian
invariant.

δL = Ψ(iγµ)(−igAbµtbR)(iαataR)Ψ + Ψ(−iαataR)(iγµ)(−igAbµtbR)Ψ

+Ψ(−iγµ)(gfabcAbµt
c
Rα

a)Ψ . (11.30)

Since ta and tb do not commute, the first two terms cancel only up to a
commutator. Using (11.12), we see that the third term cancels this last
piece.

The algebra of the previous paragraph is not the simplest, so let me
give it in another version. The finite transformation of Ψ is

Ψ→ e+iαataRΨ. (11.31)

The transformation (11.27) of Aaµ can be written as the finite local trans-
formation of Aaµ

Dµ[A]→ e+iαataR Dµ[A] e−iα
ataR . (11.32)

It is not so difficult to expand this equation and see that the terms of
order αa reproduce (11.27). Combining (11.32) and (11.31), we have(

DµΨ
)
→ e+iαataR

(
DµΨ

)
. (11.33)

That is, the transformation (11.27) gives the covariant derivative DµΨ
a simple transformation law. It is one that is easily compensated by the
transformation of Ψ so that the Lagrangian (11.28) is invariant.

We can also use the formula (11.32) to discover the gauge-invariant
kinetic term for Aaµ. According to (11.32), the commutator of covariant
derivatives [Dµ, Dν ] also transforms as

[Dµ, Dν ]→ eiα
ataR [Dµ, Dν ] e−iα

ataR . (11.34)

It is interesting to compute the commutator of covariant derivatives
(11.24) more explicitly, taking account that derivatives ∂µ act on all
fields to the right of them. We find

[Dµ, Dν ] =

[
(∂µ − igAaµtaR), (∂ν − igAaνtaR)

]
=−ig∂µAaνtaR + ig∂νA

a
µt
a
R + (−ig)2[Aaµt

a
R, A

b
νt
b
R] . (11.35)
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Note that the resulting expression has no derivatives acting to the right;
it is a pure field. In its form, it bears a strong similarity to (3.31). In
fact, it suggests that we should define the Yang-Mills field strength as

[Dµ, Dν ] = −igF aµνtaR , (11.36)

so that
F aµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (11.37)

Note that F aµν does not depend on the representation R used in the
construction. The transformation of this field strength tensor is

F aµνt
a
R → e+iαbtbR F aµνt

a
R e−iα

btbR . (11.38)

This transformation law implies that the quantity

tr[(F aµνt
a
R)(FµνataR)] (11.39)

is invariant to local gauge transformations. On the other hand, using
(11.17), we see that (11.39) is proportional to (F aµν)2. Then

The field strength for a non-Abelian
gauge field contains nonlinear terms.
Then also, the non-Abelian generaliza-
tion of Maxwell’s equations will contain
nonlinear interactions.

L = −1

4
FµνaF aµν (11.40)

is a gauge- and Lorentz-invariant Lagrangian for the Yang-Mills field.
A complete locally gauge-invariant Lagrangian with both vector bosons

and fermions is The locally gauge-invariant Lagrangian
with non-Abelian gauge symmetry for
Dirac fermions and gauge bosons.L = −1

4
FµνaF aµν + Ψ(iγµDµ −m)Ψ . (11.41)

The Dirac fields Ψ must be assigned to transform in some finite-dimensional
representation of G. This Lagrangian leads to the Dirac equation as the
field equation of Ψi. For the field equation of Aaµ, it gives a set of
equations very similar to Maxwell’s equations. However, because of the
extra, nonlinear term in (11.37), these equations are nonlinear. This
makes the dynamics of non-Abelian gauge theories more complex, and
more interesting, than that of ordinary electrodynamics.

11.4 Formulation of QCD

I am now in a position to make a proposal for the underlying theory of
the strong interaction. I propose that this should be a non-Abelian gauge
theory, with quarks as the fermions and gluons as the spin 1 bosons. For
the gauge group G, I will choose the SU(3) symmetry acting on the color
quantum number that we found in hadron spectroscopy. The quark field
of flavor f is Ψfαi, where α is a Dirac index, α = 1, . . . , 4, and i runs
over colors 1, 2, 3. From here on, I will write the representation matrices
ta3 simply as ta.

The covariant derivative acting on quark fields is

Dµ = ∂µ − igsAaµta (11.42)
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where ta is a 3× 3 traceless Hermitian matrix. The parameter gs is the
(dimensionless) strong interaction coupling constant. I will write

αs =
g2
s

4π
. (11.43)

The index a runs over the 8 generators of the SU(3) gauge group.
Finally, the Lagrangian of the theory isThe Lagrangian of Quantum

Chromodynamics—QCD.

L = −1

4
FµνaF aµν + Ψf (iγµDµ −m)Ψf . (11.44)

The index f runs over the quark flavors; This theory is called Quantum
Chromodynamics or QCD.

11.5 Gluon emission in QCD

To understand the theory (11.44) more concretely, we can make con-
tact with the formula (10.42) for the rate for gluon emission in high
energy processes. The amplitude is described by the Feynman diagram

(11.45)

where I have included all color indices. The corresponding matrix ele-
ment is

M(qf L,R i(p)→ gaL,R(q) + qf L,R j(k) = gsu(k)γµtajiu(p) εµ(q) , (11.46)

where u(p), u(k), ε(q) depend on the helicities of the quarks and gluon
in the way that I described in Section 10.2. When we compute a rate,
we square the amplitude, sum over final colors, and average over initial
colors. This gives the extra factor

1

3

∑
ija

g2
s |taij |2 =

g2
s

3
tr[tata] =

g2

3

1

2
· δaa (11.47)

or, summing over 8 values of a,

The color factor for the emission of a
gluon from a quark.

4

3
g2
s . (11.48)

This is the origin of the extra factor 4
3 that I introduced in the discussion

just above (10.42). For particles in the 8 or adjoint representation of
SU(3), this factor would be

1

8

∑
abc

g2
s |(tbG)ac|2 =

g2
s

8
tr[taGt

a
G] =

g2

8
3δaa , (11.49)
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or
3 g2

s . (11.50)

Up to this factor for the color indices, all of the results of Section 10.2
apply to QCD, provided that it is a good approximation to work only
to first order in αs. The formula that we derived gives a reasonable
description of the distribution of 3-jet events. But, it emphasizes the
question: If the strong interactions are strong, how could it possibly be
valid to treat αs as a small parameter?

11.6 Vacuum polarization

The answer to this question comes from theory, and it is a very sur-
prising one. It turns out that there is a special property of non-Abelian

The color factor for the emission of a
gluon from a gluon.

gauge theories that makes these theories unique among all quantum field
theories. I will discuss that now.

To understand the uniqueness of non-Abelian gauge theories, we first
need to discuss a property of the quantum corrections to QED. The
leading contribution to electron-electron scattering is associated with
the Feynman diagram

(11.51)

Quantum corrections to this process include the diagram

(11.52)

in which the virtual photon converts to an electron-positron pair, which
then reforms the photon. This effect is called vacuum polarization. It
is not so easy to compute the matrix element corresponding to this
diagram, but it is not difficult to describe its qualitative effect. In the
same way that a photon can convert to an electron-positron pair, any
electromagnetic disturbance can create a virtual electron-positron pair,
that is, a quantum state with an e+e− pair that contributes to the
complete wavefunction of the state. This effect causes the vacuum state
of QED to become a mixture of quantum states, most of which contain
one or more e+e− pairs. Through the influence of these states, the
vacuum in QED has properties of a dielectric medium. The virtual e+e−

pairs can screen electric charge, so that apparent strength of electric
charge is smaller than the original strength of the charge found in the
Lagrangian.
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The largest separation of a virtual electron-positron pair is the electron
Compton wavelength h̄/mec or 1/me. Pairs can be produced at all size
scales smaller than this. At distances short compared to 1/me, the
screening influence of virtual electron-positron pairs is scale-invariant;
charges are screened by the same factor at each length scale. Then, theThe effect of vacuum polarization

causes the apparent electric charge of
a charged particle to become smaller at
large distances or larger at larger mo-
mentum transfer.

apparent charge of the electron increases when the electron is probed
at shorter distances or scattered with larger momentum transfer. This
effect is described by the equation

For reasons that are not very obvious,
(11.53) is called the renormalization
group equation.

d

d logQ
e(Q) = β(e(Q)) (11.53)

where Q is the momentum transfer in the process under study and β(e)
is a positive function that depends on e but not directly on Q. An
explicit computation in quantum field theory, assuming that Q � me,
gives (Peskin and Schroeder 1995)

β(e) = +
e3

12π2
. (11.54)

To solve this equation, multiply by e and integrate with the initial con-
dition e(Q0) = e0 to find

e2(Q) =
e2

0

1− (e2
0/6π

2) log(Q/Q0)
. (11.55)

This can also be written as

α(Q) =
α0

1− (2α0/3π) log(Q/Q0)
. (11.56)

The value of α(Q) changes on a logarithmic scale when Q > me. At
distances larger than 1/me, α = 1/137, but at shorter distances, α(Q)
is stronger,

(11.57)

Figure 11.1 gives is a more detailed look at the evolution of α. According
to (11.56), α−1 should be a linear function of logQ. However, at Q ∼
mµ, states with virtual µ+µ− pairs also come into play, doubling the
slope of the linear function. As Q goes above the values of quark masses,
the quarks provide additional contributions to vacuum polarization. In
all, we have the picture shown in the figure. At low Q, the value of α is
1/137, but at Q ∼ 30 GeV, α = 1/130 and at Q ∼ 91 GeV, α = 1/129.

This effect is observed experimentally. Figure 11.2 shows the crossThe increase in the value of α at larger
values of Q predicted by QED is con-
firmed by experiment.

section for Bhabha scattering, e+e− → e+e−, at ECM = 29 GeV, mea-
sured by the HRS experiment at the e+e− collider PEP at SLAC. The
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Fig. 11.1: Dependence of α−1(Q) on the momentum transfer Q predicted by
the vacuum polarization effect. The three curves show the vacuum polarization
effect from electrons only, from electrons and muons, and from all leptons and
quarks. The effect of each particle f turns on for Q > 2mf .

Fig. 11.2: Differential cross section for e+e− → e+e− measured by the HRS
experiment (Derrick et al. 1986), showing the effect of vacuum polarization, ,
from (Peskin and Schroeder 1995). The dotted curve gives the leading order
prediction, the dashed curve shows the effect of omitting the vacuum polar-
ization correction while keeping other relevant higher-order corrections.
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specific effect of vacuum polarization raises the predicted cross section
by about 10%, giving good agreement with the data.

The idea that couplings are modified by QFT corrections on a logarith-
mic scale in momentum transfer or distance should not seem unfamiliar.
We have already seen that pdfs evolve on a log scale in Q as the result
of initial state gluon emission. We will see more examples of strong
interaction quantities evolving with logQ in the next two chapters.

11.7 Asymptotic freedom

Non-Abelian gauge theories also have a vacuum polarization effect,
corresponding to the Feynman diagram

(11.58)

However, this diagram actually contains two separable and distinct phys-
ical effects. The combination of effects is easiest to see if one considers
the scattering of heavy particles, for which the exchanged gluon creates
a Coulomb potential (Appelquist, Dine, and Muznich 1977)

(11.59)

The first effect is the creation of a virtual gluon pair by the Coulomb
potential, using the nonlinear interaction of the non-Abelian theory.

(11.60)

This effect contributes

dgs
d logQ

= +
1

3

g3
s

16π2
C(G) , (11.61)

where C(G) is the coefficient defined in (11.17), evaluated for the adjoint
representation. In (11.19), we saw that C(G) = N for SU(N). The other
contribution is of the formA new effect, present only in non-

Abelian gauge theories, causes the ap-
parent gauge charge to become smaller
at small distances or at larger momen-
tum transfer.

(11.62)
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The Coulomb potential creates a virtual gluon, which then changes the
color transferred by the Coulomb exchange. By explicit computation,
the effect of this diagram is to confuse what colors the potential is car-
rying. At short distances, the color carried by the potential becomes
indefinite, and, as a result, the apparent charge becomes smaller. The
precise size of the effect is

dgs
d logQ

= −12

3

g3
s

16π2
C(G) , (11.63)

In the non-Abelian case, this effect completely dominates the effect of
vacuum polarization.

In all, the coupling constant of a non-Abelian gauge theory satisfies
the equation

dgs
d logQ

= β(gs) , (11.64)

where

β(gs) = −(
11

3
C(G)− 4

3
nfC(R))

g3
s

16π2
. (11.65)

In (11.65), I have added the effect of nf flavors of fermions in the fun-
damental representation of SU(N).

For QCD, the equation (11.64) can be written

dgs
d logQ

= −b0
g3
s

16π2
, (11.66)

with

b0 = 11− 2

3
nf . (11.67)

The solution for the scale-dependent coupling is

αs(Q) =
αs(Q0)

1− (b0αs(Q0)/2π) log(Q/Q0)
. (11.68)

This can be written as

αs(Q) =
2π/b0

log(Q/Λ)
, (11.69)

defining Λ = Q0 exp[−2π/b0αs(Q0)]. Λ has the units of GeV. It is the
mass scale at which the QCD coupling, with the value αs(Q0) at the
scale Q0, becomes strong.

The new dynamics of the non-Abelian gauge theory causes αs(Q) to
decrease and actually tend to zero as Q increases. On the other hand,
for small Q or large distances, the coupling αs increases, apparently
without bound.

(11.70)
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Fig. 11.3: Measured values of αs from a variety of experiments, compiled in
(Bethke et al. 2016). In the figure, each values of αs is plotted at the value of
the momentum transfer Q associated with that measurement.

The remarkable effect—discovered by ’t Hooft, Politzer, Gross, and
Wilczek—is called asymptotic freedom (’t Hooft 1972, Gross and Wilczek
1973, Politzer 1973). Exhaustive analysis of other quantum field theo-
ries reveals that, in 4 dimensions, only non-Abelian gauge theories have
the property that β(g) < 0 for small g, so that the coupling flows to zero
as Q becomes large. The discovery of asymptotic freedom explained at a
stroke how we are able to have quark dynamics that needs a large value
of αs for strongly coupled bound states but a small value of αs to model
hard-scattering processes.

I have already explained that we can measure αs(Q) in a number of
different ways. The rate of the emission of gluon jets or the appearance of
3-jet final states in e+e− annihilation is proportional to αs(q⊥). The rate
of evolution of quark pdfs is proportional to αs(Q). At short distances,
gluon exchange produces a Coulomb potential between heavy quarks, of
the form

V (r) = −4

3

αs(r)

r
. (11.71)

The ψ and Υ bound states are sufficiently small that we can measure
the coefficient of this term in the potential. The total cross section for
e+e− → hadrons, computed to the next order in αs, is

σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= 3

∑
f

Q2
f

(
1 +

αs(s)

π
+ · · ·

)
. (11.72)

The correction proportional to αs explains the small difference that we
saw in Fig. 8.1 between the measured cross section and the lowest order
prediction.
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Figure 11.3 shows a compilation of these measured values as presented
in (Bethke, Dissertori, and Salam 2016). In the figure, each measurement
of αs is plotted at its appropriate value of Q. The values do become
smaller as Q increases, exactly following the QCD prediction shown by
the solid band.

From this set of measurements, the value of αs can be quoted as The decrease in the value of αs at larger
values of Q predicted by QCD is con-
firmed by experiment.

From the compilation of αs(Q) mea-
surements, we have a precise value for
the strength of the QCD coupling con-
stant.

αs(91. GeV) = 0.1181± 0.0011 ≈ 1/8.5 . (11.73)

Thus, it seems, the strong interactions are actually weak when viewed
at short distances, in a way that we can express quantitatively.

The fact that αs becomes strong, and even formally goes to infinity,
at large distances, tempts us to say that asymptotic freedom explains
the permanent confinement of quarks into hadrons. This is handwaving.
But in fact the permanent confinement of quarks is now understood
through a more precise analysis that is, unfortunately, beyond the scope
of this book. It is possible to compute the spectrum of QCD in an QCD accounts for the confinement of

quarks into hadrons and the absence of
strongly interaction particles with frac-
tional charge.

expansion for large values of the coupling constant gs (Wilson 1974).
In this expansion, the gauge fields emerging from each colored particle
form a tube of fixed cross section. An isolated particle with color would
then carry an infinite flux tube and would have infinite energy.

(11.74)

The only finite-energy states are those with zero total color, in other
words, states that are singlets of color SU(3).

(11.75)

We have seen in Chapter 5 that this principle gives the mesons and
baryons as the bound states of quarks and antiquarks.

There is as yet no rigorous proof that the increasing αs(Q) that we see
from the weak-coupling side takes us into the regime where this strong-
coupling analysis applies. But extensive numerical calculations have
shown that these two regions are indeed smoothly connected. These
numerical calculations also show that the low-lying energy eigenvalues
of the QCD Hamiltonian are in excellent agreement with the masses of
the light hadrons (Kronfeld 2012).
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Exercises

(11.1) Using (11.17), show that

C(R)fabc = −i tr
[
[[taR, t

b
R], tcR]

]
. (11.76)

Using the cylic property of the trace, show that it
follows from this relation that fabc is completely
antisymmetric.

(11.2) This problem discusses the complex conjugate of a
representation of a Lie group.

(a) The infinitesimal form of the group action of
a Lie group is given by (11.13). Take the com-
plex conjugate of this equation. Show that it
is of the same form as (11.13), with

ta
R

= −ta∗R . (11.77)

Show that the matrices (−ta∗R ) satisfy the Lie
algebra (11.12). . They form the complex con-
jugate representation of R, called R. This is
representation has dimension dR. Note that,
since taR is Hermitian, also ta

R
= −taTR .

(b) Show that C(R) = C(R).

(c) It is possible that the representation R is
equivalent to the representation R. For
the spinor representation of SU(2), given by
(2.57), show that

σ2(−ta∗)σ2 = ta . (11.78)

Show also that σ2 is a unitary matrix. Then,
in SU(2), the spinor representation 2 is equiv-
alent to 2 by a unitary transformation. In
SU(N), N > 2, the representations N and N
are inequivalent.

(11.3) This problem justifies (11.18) as the representation
matrices of the adjoint representation.

(a) Prove the Jacobi identity: If A, B, C are any
matrices,

[[A,B], C] + [[C,A], B] + [[B,C], A] = 0 .
(11.79)

The method of proof is to write (11.79) at
the top of a large piece of paper, expand the
commutators, and notice many cancellations.

(b) Write out the Jacobi identity for A = ta,
B = tb, C = tc, where the ta are represen-
tation matrices of some any representation of
a Lie group. Write out the various commuta-
tors using (11.12). Using (11.17), show that

fabdfdce − facdfdbe = fbcdfade . (11.80)

(c) Rearrange (11.80) to show that

[tbG, t
c
G] = ifbcdtdG . (11.81)

Then (11.18) generates a dG-dimensional rep-
resentation of the Lie group.

(11.4) This problem derives some properties of the quan-
tity C(R) in (11.17).

(a) Show that, if C2 = taRt
a
R, [C2, tbR] = 0 for all

generators tbR. This implies that C2 acts as a
constant on an irreducible representation. We
write

taRt
a
R = C2(R)1 , (11.82)

where 1 is the dR × dR unit matrix. C2(R) is
called the quadratic Casimir operator.

(b) By taking the trace of (11.82), find a relation
between C2(R) and C(R).

(c) Consider the product of representations R ⊗
R′. This is a dRdR′ -dimensional representa-
tion, whose representation matrices are

taRR′ = taR ⊗ 1R′ + 1R ⊗ taR′ . (11.83)

Show that taRR′ satisfies (11.12).

(d) The representation (11.83) might be reducible
into irreducible representations {Ri}. Argue
that dRdR′ =

∑
i
dRi .

(e) By studying tr[(taRR′)
2], show that

dRdR′(C2(R) + C2(R′)) =
∑
i

dRiC2(Ri) .

(11.84)

(f) In SU(N), the adjoint representation G is
(N2 − 1)-dimensional. Then N⊗N = 1 +G,
where 1 is the trivial representation with ta1 =
0. Use this information and (11.84) to show
that C2(G) = C(G) = N .

(g) In SU(3), 3⊗ 3 = 3 + 6. Compute C2(6).
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(11.5) This problem studies the QCD analogue of the
Coulomb potential. For the QCD interaction of
states in a representation R with states in a rep-
resentation R′, the QCD potential is given by the
operator

V (r) =
g2
s

4πr
taR ⊗ taR′ . (11.85)

The energies of states are found by diagonalizing
this operator.

(a) Using results of Exercise 11.3, show that
Coulomb energy depends on the breakdown
of the states R×R′ into irreducible represen-
tations. For a state in the irreducible repre-
sentation Ri, show that

V (r) =
g2
s

4πr
· 1

2
·
(
C2(Ri)−C2(R)−C2(R′)

)
.

(11.86)

(b) Show that, in a color-singlet quark-antiquark
state,

V (r) = −4

3

g2
s

4πr
. (11.87)

(c) Show that, in a color 8 quark-antiquark state,

V (r) = +
1

6

g2
s

4πr
. (11.88)

Notice that the center of gravity of (b) and
(c) is zero. Why?

(d) Show that a quark-quark (diquark) state in
the 3 representation has the Coulomb energy

V (r) = −2

3

g2
s

4πr
. (11.89)

That is, the diquark is bound. Notice that
this diquark can have a bound state with a
third quark; this model is sometimes used to
describe a baryon.

(e) Show that a quark and a gluon in the 3 com-
bination is bound.





Partons and Jets 12
In the previous chapter, I introduced QCD as a proposal for the theory
of the strong interaction. We saw that QCD explains the main puzzling
features of the strong interaction, the fact that the strong interactions
are strong, to bind hadrons, but can be neglected to first approximation
in hard scattering processes.

This understanding motivates us to look more closely at high energy
scattering to provide more evidence for the validity of QCD. Though
the QCD interactions are weak at high energy, they are not ignorable.
They produce an enhancement of the cross section for e+e− → hadrons,
required by the data. They give rise to 3-jet events. In our earlier
discussion, I explained in intuitive terms how quark-gluon interactions
give a theory of the evolution of pdfs with Q2. I will now return to
that theory and complete it, with insight from our new understanding
of QCD.

12.1 Altarelli-Parisi evolution of parton distribution
functions

In (10.42), we derived the expression for gluon emission from a quark
in the approximation of collinear emission,

Prob(q → gq) =

∫
dz

∫
dq⊥
q⊥

4

3

αs(q⊥)

π

1 + (1− z)2

z
. (12.1)

The q⊥ integral runs up to values where the momentum transfer is com-
parable to that in the hard-scattering process. In deep inelastic scatter-
ing, q⊥ can take values up to Q within the approximation that we are us-
ing. If we start from a distribution of quarks in the proton parametrized
by a pdf ff (ξ), the probability of finding a gluon emitted by one of
these quarks in the proton is∫

dxfg(x) =

∫
dξ

∫
dz

∫ Q dq⊥
q⊥

4

3

αs(q⊥)

π

1 + (1− z)2

z
ff (ξ) . (12.2)

The gluon will have a fraction of the proton’s momentum x = zξ. We
can change variables from ξ to x using

dξ =
dx

z
. (12.3)

Then (12.2) above becomes

fg(x) =

∫
dz

z

∫ Q dq⊥
q⊥

4

3

αs(q⊥)

π

1 + (1− z)2

z
ff (

x

z
) . (12.4)



184 Partons and Jets

We recognize that fg(x) satisfies the differential equationThe rate of gluon emission by an incom-
ing or outgoing quark can be computed
as the solution of a differential equation
in the momentum transfer Q.

d

logQ
fg(x) =

4

3

αs(Q)

π

∫ 1

x

dz

z

1 + (1− z)2

z
ff (

x

z
) . (12.5)

Note the limits of integration for the dz integral. The parent quark must
come from a higher momentum fraction ξ satisfying

x <
x

z
< 1 . (12.6)

Gluon partons of the proton can split into collinear qq pairs. Also,
using the nonlinear 3-gluon coupling of QCD, a gluon parton can split
into two collinear gluons. Then the evolution of pdfs must also contain
the processesQCD also predicts other collinear split-

ting processes for partons: g → qq,
g → gg.

(12.7)

These processes have collinear enhancements very similar to the one that
we found in q → g + q. One can compute the rates for these splittings
in the same way that we did for q → g + q and derive additional terms
in the differential equations. Putting all of the pieces together, we find
that pdfs obey a system of differential equations called the Altarelli-
Parisi equations or the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi) equations (Altarelli and Parisi 1977, Dokshitzer 1977)The Altarelli-Parisi equations that de-

scribe the evolution of parton distribu-
tions by the emission of quarks, anti-
quarks, and gluons.

d

logQ
fg(x) =

αs(Q)

π

∫ 1

x

dz

z

{
Pg←g(z)fg(

x

z
)

+
∑
f

Pg←q(z)[ff (
x

z
) + ff (

x

z
)]

}
,

d

logQ
ff (x) =

αs(Q)

π

∫ 1

x

dz

z

{
Pq←q(z)ff (

x

z
) + Pq←g(z)fg(

x

z
)

}
,

d

logQ
ff (x) =

αs(Q)

π

∫ 1

x

dz

z

{
Pq←q(z)ff (

x

z
) + Pq←g(z)ff (

x

z
)

}
.

(12.8)

The functions Pg←g(z), etc., are called the Altarelli-Parisi splitting
functions. We have computedThe Altarelli-Parisi splitting functions.

Pg←q(z) =
4

3

1 + (1− z)2

z
. (12.9)

The q → gq splitting also gives the q ← q splitting function by ex-
changing the final quark and gluon, that is, exchanging z ↔ (1 − z).
Then

Pq←q(z) =
4

3

[
1 + z2

(1− z)
+Aδ(z − 1)

]
. (12.10)
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The second term here is new and needs some explanation. In the process
q → gq, a new gluon is created, but no new quark is created; rather, a
quark is moved from higher x to lower x. This implies that∫ 1

0

dz Pq←q(z) = 0 . (12.11)

So whatever the number of quarks that appear at z < 1, that number
must be subtracted at z = 1. In fact, the integral over the first term
of Pq←q(z) diverges as z → 1. This actually makes no difference to the
evolution of the quark pdf, since it corresponds to the quark emitting
very soft gluons and changing its x value only infinitesimally. To control
this in a quantitative calculation, we might cut off the integral at z =
(1− ε) and assign

A = −[2 log
1

ε
− 3

2
] . (12.12)

to satisfy the sum rule.
The Altarelli-Parisi functions for the gluon splitting processes are

Pq←g(z) =
1

2
[z2 + (1− z)2] ,

Pg←g(z) = 3 [
1 + z4 + (1− z)4

z(1− z)
+Bδ(z − 1)] , (12.13)

where B includes a term that compensates the singularity of the first
term in Pg←g(z) at z = 1. The derivation of the splitting function for
g → gg is given in Problem 12.1. The Altarelli-Parisi splitting func-
tions are summarized, along with other important QCD formulae, in
Appendix E.

We have discussed the splitting of a gluon to a quark-antiquark pair
in Section 10.4. We saw there that this effect leads to the build-up
of the quark and antiquark sea distributions at small x, and to the
generation of heavy quarks and antiquarks in the proton wavefunction.
The splitting of a gluon to two gluons is a new effect that comes from
the nonlinear interactions of QCD. Because of the large coefficient in
this splitting function and its singular nature at small z, this effect is
typically the most important one in the generation of new partons by
final-state radiation.

The Altarelli-Parisi equations give a precise model for relating pdfs
measured at different values of Q2. To compare this model to the data,
we need knowledge of the evolution of αs and a model for the gluon
pdf fg(x). Typically, the gluon pdf is described by parameters that
are then varied in the fit. For an accurate theoretical prediction, the
corrections to the above formulae of order αs should also be included.
An example of a comparison of QCD theory and experiment for the
evolution of F2(x,Q) is shown in Fig. 12.1. The black circles are data
from measurements by the H1 experiment at the HERA electron-proton
collider; the open circles are data from muon deep inelastic scattering
experiments at CERN. QCD predicts that an emitted quark or

gluon will emit a cloud of soft gluons

that will surround it. The numb er of

soft gluons is larger for primary gluon

than for a primary quark by a factor of

9/4.
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Fig. 12.1: Comparison of the values of F2 measured in high-energy deep
inelastic scattering experiments with the evolution in Q2 predicted by QCD,
from (Aid et al. 1996).
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The most singular terms in the splitting functions are

Pg←q(z) ∼
4

3
· 2

z
, Pg←g(z) ∼ 3 · 2

z
, (12.14)

as z → 0. The ratio of these terms is 9/4, which is the ratio of the
SU(3) group theory factors for quarks and gluons, (11.48) vs. (11.50),
that appear with the the squared charge g2

s . These terms imply, first,
that quarks and gluons both accumulate a cloud of soft gluons as their
structure evolves with Q, and, second, that the number of these soft
gluons is larger for a primary gluon by more than a factor of 2. We will
see direct consequences of this in the next section and in Section 13.4.

12.2 The structure of jets

The physics of quark and gluon splitting gives us a picture of the
evolution from quarks and antiquarks produced as primary particles in
e+e− → hadrons to the pions, kaons, etc. that form the hadronic final
states. Begin from the initial qq pair. The quark will radiate a gluon,
with the highest probability of radiation in the collinear region, q1⊥ �√
s. This gluon, and also the recoiling quark, emits additional gluons,

with q2⊥ � q1⊥. Occasionally, a gluon splits to a quark-antiquark pair.
We obtain a shower of gluons, quarks, and antiquarks

(12.15)

At each stage, the momentum transfer decreases. So, the quarks and
gluons in the shower are all roughly collinear. Eventually, the q⊥ in Collinear QCD splitting of quarks, anti-

quarks, and gluons naturally generates
the stream of collinear hadrons that we
observe in event displays as a jet.

the splittings falls below 1 GeV, the value of αs(q⊥) becomes large, and
the strong interaction effects of QCD take over, combining quarks and
antiquarks into mesons and baryons. This gives a jet of hadrons, similar
to those we have seen in e+e− event displays.

To test this picture, we need to define a jet more precisely and quantify
its structure. This is not so easy. The coupling constant αs(q⊥) changes
only slowly with q⊥. If αs were constant, the quark-gluon splitting
process would be scale-invariant. Each parton in a jet would split to
produce a subjet with the same structure as the overall jet. Then we
would see subjets inside jets, with smaller subjets inside the subjets.
This is the structure of a fractal. The true behavior of QCD is not
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so far from this limit. To work with jets, we need to define observables
that capture their behavior, recognizing that higher resolution will unveil
more levels of structure inside each jet. An excellent introduction to the
study of jets can be found in (Salam 2010).

There are two solutions to the problem of giving quantitative predic-
tions for the structure of jets. First, we can define variables for a whole
event that are sensitive to the jet structure inside the event. Second, we
can attempt to find the jets in an event by clustering particles according
to some algorithm. In the latter case, a higher-resolution algorithm will
produce more jets, so to compare data to QCD theory we will need to
take care that the same resolution is used on each side.

To compare either approach to QCD calculations, we must take ac-
count of the fact that, when we integrate over soft and collinear emis-
sions, we encounter formal infinities in the limits where the emissions
are extremely soft or exactly collinear. The full predictions of QCD are
not actually infinite, but the infinities indicate regions where αs(q⊥) has
become large and a description in terms of weakly coupled quarks and
gluons breaks down. To be computable in a quark-gluon picture, an ob-
servable should be defined in such a way that its value is not affected by
these limiting cases of soft and collinear emissions. Such an observable
is called infrared and collinear safe or just IR-safe.

The earliest study of e+e− event shapes (Hanson et al. 1975) searched
for jets in the particle distributions by computing the sphericity tensor,
defined by

Qab =

[∑
i p
a
i p
b
i∑

i |~pi|2

]
. (12.16)

This definition is very convenient, because the tensor can be directly
computed from the particle momenta and then diagonalized. The prin-
cipal axis with the largest eigenvector of Q is called the sphericity axis.
Comparing with simulation, the sphericity axis was a good indicator of
the initial quark direction in e+e− → hadrons.

Sphericity has the defect, though, that it is not IR-safe and so is
difficult to use for quantitative comparison to QCD predictions. For
example, a collinear splitting affects the diagonal elements by converting

|~p|2 → |~q|2 + |~k|2 = (z2 + (1− z)2) · |~p|2 , (12.17)

giving a factor that is generally less than 1. The evolution of sphericity
can still be modeled using simulation programs, but the comparison of
the results of these programs to data depends on the model used for
conversion of quarks and gluons to hadrons.

A more useful observable for measuring the jettiness of an event is
the thrust. For an e+e− → hadrons event, thrust is defined as follows:The variable thrust, an IR-safe observ-

able that measures the 2-jet nature
of final states produced in e+e− →
hadrons.

Go to the CM frame. Choose an axis, represented by a unit vector n̂.
Compute

T = max
n̂

[∑
i |n̂ · ~pi|∑
i |~pi|

]
, (12.18)

where i runs over all particles or observed energy depositions in the
event, maximizing this quantity over all choices of n̂. The best choice of
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n̂ is called the thrust axis. This axis can be measured in each event and
used as a proxy for the initial quark and antiquark direction.

In a collinear splitting p→ q+k, it is approximately true that q = zp,
k = (1− z)p. Then

|~p| ≈ |~q|+ |~k| |n̂ · ~p| ≈ |n̂ · ~q|+ |n̂ · ~k| . (12.19)

and the value of the thrust is not affected by the splitting.
At the lowest order of approximation, an e+e− → hadrons event

contains only a quark and antiquark QCD physics that determines the shape
of the thrust distribution.

(12.20)

This state has T = 1. When one gluon is emitted, most events are still
near T = 1, though planar events with maximum energy sharing

(12.21)

can have values of T as low as 2
3 . As more gluons are emitted, still

lower values of T can be produced, but the probability to find such a
low value is proportional to many powers of αs. Also, any emission that
is not precisely collinear will move the event away from T = 1; then the
final distribution of T will have a zero at T = 1. This effect is called
Sudakov suppression. The final QCD prediction for the distribution of
T has the form

(12.22)

The peak near T = 1 should become steeper at higher ECM , since
the probability of emitting the first, hardest, gluon is proportional to
αs(ECM ). Figure 12.2 shows the thrust distribution measured by the
ALEPH experiment at the e+e− collider LEP at energies from 91 GeV
to 206 GeV, and a comparison to QCD theory (Heister et al. 2004).
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Fig. 12.2: Distribution of the thrust variable (12.18) in e+e− annihilation
events at energies from 91 GeV to 206 GeV, as measured by the ALEPH
experiment, from (Heister et al. 2004). The continuous lines show the distri-
butions predicted by QCD.
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Fig. 12.3: Fraction of e+e− annihilation events containing 1, 2, 3, etc. jets
shown as a function of the jet criterion ycut, measured by the ALEPH exper-
iment at 206 GeV, from (Heister et al. (2004).
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The other approach to the quantitative analysis of jets is to identify
the jets in each event by a clustering algorithm. If this algorithm Jets are identified in a particle produc-

tion event by the use of a clustering al-
gorithm

is IR-safe, the same algorithm can be applied to particles observed in
an e+e− event and to quarks and gluons in the QCD model. Many
studies use the JADE algorithm, developed in the JADE experiment at
the PETRA collider at DESY. For all pairs of particles i, j, computeThe JADE algorithm for clustering ob-

served particles in an e+e− → hadrons
event into jets. yij =

(pi + pj)
2

s
. (12.23)

This is the ratio of the invariant mass of the pair to the invariant mass of
all particles in the event. Choose a value ycut that will set the resolution
with which we observe the jets. To begin the clustering, choose the pair
i, j with the smallest value of yij , and combine these into a single particle

pi + pj → pk . (12.24)

Repeat until all values of yij are greater than ycut. The jets in the event
are defined to be the (composite) particles remaining at this stage. For
jet analysis at 100 GeV, a typical value of ycut used to count jets is
ycut = 10−2. Then we resolve the 100 GeV event into jets that are
clusters of particles with mass roughly 10 GeV.

The fractal nature of QCD is revealed when we change the value of
ycut. For large values of ycut, essentially all events are clustered into 2Applying the JADE algorithm to

e+e− → hadrons events reveals the
fractal substructure of jets, in agree-
ment with the predictions of QCD.

jets. As ycut is lowered, the number of jets increases as jets at one level
are resolved into pairs of jets at the next level. Figure 12.3 shows the
fraction of 2-, 3-, 4-, and 5-jet events in e+e− annihilation at 206 GeV
as a function of ycut, as measured by the ALEPH experiment.

Given the probabilities for quark and gluon splitting in QCD, it is
possible to write a computer program that models the physics of jet
production by emitting quarks and gluons stochastically according to
these laws. The transition from quarks and gluons to hadrons, at the
momentum scale of 1 GeV, is treated by an ad hoc model with many
adjustable parameters. Once these parameters are fit to low-energy
e+e− data, these simulation programs give predictions for the shapes
and numbers of jets in higher-energy reactions. The codes PYTHIA
and HERWIG, built according to this strategy, have been in develop-
ment since the 1980’s (Bahr et al. 2008, Sjöstrand et al. 2015). These
and a more recent competitor Sherpa (Gleisberg 2009) are used today
to model events for all high energy collider experiments. They fit the
data very effectively. Figure 12.3 shows the comparison of PYTHIA and
HERWIG simulations with the ALEPH data on the number of jets as a
function of resolution.

Exercises
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(12.1) The nonlinear terms in the QCD Lagrangian lead
to the following expression for the matrix element
for a gluon to radiate a gluon:

M
(
ga(p, εp)→ gb(q, εq) + gc(k, εk)

)
= gsf

abc

[
(k + p) · ε∗q ε∗k · εp − (p+ q) · ε∗k εp · ε∗q

+(q − k) · εp ε∗q · ε∗k

]
, (12.25)

where fabc is the structure constant in the commu-
tator of two group generaters. For SU(2), fabc =
εabc.

(a) To make the expression (12.25) more symmet-
ric among p, q, k, replace the incoming mo-
mentum p by an outgoing momentum (−p)
and εp by ε∗p. Show that the resulting ex-
pression is completely symmetric under inter-
change of any two gluons, as required by Bose
symmetry.

(b) Set up the kinematics of almost collinear
gluon radiation for g(p)→ g(q)g(k), following
the calculation in Section 10.2 of the matrix
elements for q(p) → γ(q)q(k). To order qT ,
the three 4-vectors are

p ≈ (E, 0, 0, E) ,

q ≈ (zE, qT , 0, zE) ,

q ≈ ((1− z)E,−qT , 0, (1− z)E) ,

(12.26)

Modify the 3 component of q and k, as we
did in (10.19), so that these vectors satisfy
q2 = k2 = 0 to order q2

T , and then modify the
3 component of p = q + k.

(c) Write the polarization vectors (for L and R
polarizations) for the three gluons. These po-
larization vectors should be transverse to the
corresponding momenta (for example, ~ε(q) ·
~q = 0), correct to order q1

⊥. Make tables of
the values of (ε · p) and (ε · ε) needed to com-
pute the matrix elements in (b) for all possible
polarizations.

(d) Work out the matrix element for gR → gLgL,
to order q1

T , and show that it is zero.

(e) Work out the matrix element for gR → gRgL.
And, changing just what needs to be changed,
work out the matrix element for gR → gLgR.

(f) Work out the matrix element for gR → gRgR.

(g) Show that the matrix elements for gL → gg
are given by reversing all polarizations in the
previous calculations.

(h) Square the matrix elements, sum over final
spins and colors, and average over initial spins
and colors. To compute the sum over colors,
you will need the identity (11.19).

(i) Write the analogous sum over matrix ele-
ments for q → gq, given by (10.31) with
Q2
fe

2 → 4
3
g2
s , and compare this to the result

found in (h).

(j) Finally, following the derivation for q → gq
and just changing what needs to be changed,
derive the expression for the emission of an
almost-collinear gluon from a gluon,

Prob(g → gg)

=
3αs
π

∫
dz

∫
dqT
qT

1 + z4 + (1− z)4

z(1− z) .

(12.27)

(12.2) Starting from (10.48), derive the leading-order
QCD prediction for the thrust distribution in
e+e− → hadrons events.

(a) To compute the thrust for a 3-parton config-
uration, we will need to identity the thrust as
a function of the variables (10.45). Show that
T = max{xq, xq, xg}. Show that T ≥ 2

3
for

any qqg configuration.

(b) Consider the region of phase space where xq is
the largest of the three variables. Show that
the contribution to dσ/dT from this region is
given by a one-dimensional integral over xq
over the interval 2(1 − xq) < xq < xq. Com-
pute this integral.

(c) Consider the region of phase space where xq is
the largest of the three variables. Show that
the contribution to dσ/dT from this region is
given by a one-dimensional integral over xq
over the interval 2(1 − xq) < xq < xq. Com-
pute this integral.

(d) Consider the region of phase space where xg
is the largest of the three variables. Sub-
stitute xq = 2 − xq − xg into the integrand
of (10.48). Show that the contribution to
dσ/dT from this region is then given by a one-
dimensional integral over xq over the interval
2(1− xg) < xq < xg. Compute this integral.

(e) Assemble the pieces and show that

dσ

dT
= σ(e+e− → qq)

·2αs
3π

[2(3T 2 − 3T + 2)

T (1− T )
log

2T − 1

1− T

−3(3T − 2)(2− T )

(1− T )

]
. (12.28)
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The understanding of pdfs and jets presented in the previous chapter,
gives us the conceptual tools to understand the basic features of proton-
proton and proton-antiproton collisions at very high energy. Protons are
composite states that contain quarks, antiquarks, and gluons. In a high-
energy pp or pp collision, these particles can interact softly or through
individual hard collisions. The soft collisions should be described by low-
momentum transfer QCD forces. The hard collisions should be described
by the QCD interactions of quarks and gluons.

Because QCD interactions are strong at low momentum transfer, the
dominant feature of high-energy proton-proton collisions should be soft
scattering events. It is useful to picture the protons as bags contain-
ing quarks, antiquarks, and gluon. The soft collisions can rip these
bags open, liberating many partons, which then reform into hadrons.
Soft collisions then should produce large numbers of final-state parti-
cles, but all with small transverse momentum relative to the original
collision axis. Hard scattering of quarks and gluons should occur much
more rarely. However, these hard-scattering reactions should be quite
distinctive, since they should generate jets with very large momentum
components transverse to the beam direction.

To the extent that we can separate the hard collisions from the soft
reactions, we can test QCD in high-energy hadron-hadron collisions.
In this chapter, I will describe the various levels of a hadron-hadron
collision and methods for finding jets in hadron-hadron collision events.
From this, we will see that QCD has characteristic predictions for hard-
scattering processes in hadron-hadron collisions that are confirmed by
experiment.

13.1 Hadron scattering at low momentum transfer

Figure 13.1 shows the total cross sections for a variety of hadron-
hadron scattering reactions as a function of

√
s. The top curves are The behavior of total cross sections for

hadron-hadron scattering.the pp and pp total cross sections. Notice that these cross sections
are dominated by s-channel resonances up to about 2 GeV. At higher
energies, the behavior is smooth, almost constant. Also, particle and
antiparticle cross sections become identical:

σ(pp)

σ(pp)
→ 1

σ(π−p)

σ(π+p)
→ 1 . (13.1)
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Fig. 13.1: Total cross sections for hadron-hadron collision processes, γp →
hadrons, and γγ → hadrons, as a function of center of mass energy, from
(Patrignani et al. 2016).
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Fig. 13.2: Lego plot of a typical pp collision event recorded by the CDF
experiment at the Tevatron collider at 2 TeV (figure courtesy of Fermilab and
the CDF collaboration). The plot shows the distribution of ET recorded by the
calorimeters (pink for the electromagnetic calorimeter, blue for the hadronic
calorimeter) as towers in the (η, φ) plane.

This behavior is called the Pomeranchuk theorem (Pomeranchuk 1958).
It indicates that, at very high energies, the bulk of the total cross section
is not generated by valence quarks but rather by soft collisions of the sea
quarks and gluons. The pp and pp total cross sections at TeV energies
are about 100 mb.

A typical pp event recorded by the CDF experiment at the Fermilab
Tevatron collider at 1.96 TeV is shown in Fig. 13.2. The vertical scale
shows the momentum transverse to the beam direction, called pT or ET ,
in GeV. Many particles are produced, but few have ET > 2 GeV. The
physics is that of many soft scatterings among the proton constituents.

I must pause for a moment to explain the coordinates used in this
figure. To make this plot, we wrap a cylinder around the beam axis,

(13.2)

We then divide this cylinder into cells, measure the calorimetric energy
deposition in each cell, and record the quantity ET is defined as the energy deposition

in a calorimeter, projected onto direc-
tions transverse to the beam direction:

.

ET = E sin θ , (13.3)

the deposited energy projected onto the direction transverse to the beam
axis. The quantity ET is called the transverse energy. Finally, we un-
wrap the cylinder and plot the measured ET in each cell as the height
of a tower. This event display is called a Lego plot, for obvious reasons.
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One coordinate is the azimuthal angle φ around the cylinder. We might
take the other coordinate to be the polar angle θ, but there is a better
choice.

A particle momentum (for simplicity, in the 1̂, 3̂ plane, where 3̂ is the
beam axis) has the form

(E, pT , 0, p‖) E2 = p2
T + p2

‖ +m2 . (13.4)

We can represent the components of this vector as

E = (p2
T +m2)1/2 cosh y p‖ = (p2

T +m2)1/2 sinh y . (13.5)

The variable y is called the rapidity,Definition of the rapidity y of a particle.

y = tanh−1 p‖

E
. (13.6)

If we boost along the 3̂ axis

E′ = γ(E + βp‖) p′‖ = γ(p‖ + βE) p′T = pT . (13.7)

For a boost by β, γ2(1− β2) = 1, so we can represent the magnitude of
the boost by writing

γ = coshα , γβ = sinhα . (13.8)

Then

E′ = (p2
T +m2)1/2[cosh y coshα+ sinh y sinhα]

p′‖ = (p2
T +m2)1/2[sinh y coshα+ cosh y sinhα] (13.9)

so that

E′ = (p2
T +m2)1/2 cosh(y + α) p′‖ = (p2

T +m2)1/2 sinh(y + α) .
(13.10)

We see that a boost along the beam axis is a simple translation of y.
In the parton model, the components of the proton have all values of
momentum, up to the total momentum of the proton. For most parton-
parton collisions, the CM system is boosted along 3̂ relative to the lab
frame. So it is useful to use a variable that is transformed very simply
by a boost.

At large values of the energy, we can often ignore the mass of the
particle. Then E = |~p| and the above relations become

p = pT cosh y p‖ = pT sinh y . (13.11)

Since
p+ p‖ = pT e

y , (13.12)

the quantity y can be computed asDefinition of the pseudo-rapidity of a
particle.

y = log
p+ p‖

pT
= log

1 + cos θ

sin θ
=

1

2
log

1 + cos θ

1− cos θ
. (13.13)
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Fig. 13.3: Lego plot of a pp collision event recorded by the CDF experiment at
the Tevatron collider at 2 TeV with two jets in the final state (figure courtesy
of Fermilab and the CDF collaboration).

Fig. 13.4: Lego plot of a pp collision event recorded by the CDF experiment at
the Tevatron collider at 2 TeV with four jets in the final state (figure courtesy
of Fermilab and the CDF collaboration).

It then makes sense to define the pseudo-rapidity η of a particle or an
energy deposition as

η =
1

2
log

1 + cos θ

1− cos θ
. (13.14)

This quantity is directly computable from the particle’s polar angle θ,
η without identifying the particle or even separating particles from one
another. For example, η can be computed from the location of an energy
deposition in a calorimeter. For pions, or for other hadrons at high
momentum, η is a good proxy for the rapidity. This is then the natural
variable to use instead of the polar angle in analyzing hadron-hadron
collisions. In typical pp collisions, the particle production is roughly
uniform in η and φ, at least for |η| < 3.

More rarely, pp collision events have the form shown in Fig. 13.3. We
see two jets with ET ∼ 50 GeV standing out above the soft debris from
the pp collision. It is not hard to imagine that this event contains a hard
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Fig. 13.5: QCD predictions as a function of center of mass energy for cross
sections for a variety of processes observable in pp collisions, from (Campbell
et al. 2013).

quark-antiquark collision. Multijet final states are also seen, as in Fig.
13.4.

Figure 13.5 shows a QCD prediction of the rates of various components
of the pp total cross sections as a function of CM energy for LHC energies
and above. At the 13 TeV CM energy of the LHC, the total cross
section is about 100 mb. The cross secton for production of a jet with
pT > 50 GeV is 20 µb, smaller by a factor of 10−4. This rate is still
enormous compared to the rates for more exotic processes such as the
production of weak-interaction bosons and top quarks. To study the
whole range of physics processes available at a hadron collider, it is
necessary to accumulate huge quantities of data and to filter this data
very effectively to find rare classes of events.

13.2 Hadron scattering at large momentum transfer

I have already remarked that it is difficult to build a quantitative
theory of the pp total cross section. However, we can build models of
jet production and other hard processes by combining the parton model
of the proton with scattering cross sections computed from QCD. I will
now sketch the theory for the rate of 2-jet events in pp collisions.
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To construct this theory, imagine taking one parton—a quark, anti-
quark, or gluon—from each proton using its known pdf. These partons
can then scatter, as shown in the process

(13.15)

Let θ∗ be the polar angle for scattering measured in the parton-parton
CM frame. Since the final jets are observed, we can boost to this frame
and measure θ∗. Each 2-jet reaction can then be viewed as a 2-parton
scattering process in QCD, with known kinematics. The 2-jet production
cross section is then given by the formula The parton model, combined with

quark-gluon scattering cross sections
from QCD, gives a definite prediction
for the rate of production of 2 jet events
in proton-proton scattering.

σ(pp→ 2 jets) =
∑
ijk`

∫
dx1fi(x1)

∫
dx2fj(x2)∫

d cos θ∗ ·
dσ

d cos θ∗
(ij → k`) , (13.16)

The cross sections needed on the right-hand side can be computed in
QCD as quark-gluon reactions. The indices i, j, k, ` run over all possible
quarks, antiquarks, and gluons.

The kinematics of the parton-parton scattering reaction are described
by the Lorentz invariants ŝ, t̂, û. The CM energy of the parton reaction
is related to the total CM energy by

ŝ = (pi + pj)
2 = 2pi · pj = 2x1x2P1 · P2 , (13.17)

where P1, P2 are the initial proton momenta. We can thus identify

ŝ = x1x2s . (13.18)

By measuring the momenta of the final jets, we can determine ŝ and θ∗
and, from these, obtain t̂, û. To evaluate the formula, we need to supply
the values of the differential cross sections for the various scattering
processes of quarks and gluons. This computation is straightforward
but somewhat beyond the level of this book. In the rest of this section,
I will sketch some accessible properties of these cross sections. The full
expressions for these cross sections, at leading order in QCD, are given
in Appendix E.

In Section 9.4, we computed the cross section for e−q scattering (9.51),

dσ

d cos θ
(eq → eq) =

πQ2
fα

2

s

s2 + u2

t2
. (13.19)
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The scattering of quarks of different flavor, for example ud → ud, is
described by the same formula, replacing α by αs and supplying an
appropriate factor for color. We must average over initial colors and
sum over final colors. The process

(13.20)

leads to the color factor

1

3
· 1

3

∑
ijk`a

|tajita`k|2 , (13.21)

where here ijk` are the color indices of the corresponding partons. Eval-
uating, (13.21) becomesComputation of the color factor for

quark-quark scattering.
1

9
(tbijtbk`)(tajit

a
`k) =

1

9
tr[tbta]tr[tbta]

=
1

9

1

2
δab

1

2
δab =

1

9
· 1

2
· 1

2
· 8 , (13.22)

so, finally, the color factor (13.21) is

1

3
· 1

3

∑
colors

|tajita`k|2 =
2

9
. (13.23)

Then
dσ

d cos θ∗
(ud→ ud) =

2

9

πα2
s

ŝ

ŝ2 + û2

t̂2
. (13.24)

For quarks of the same flavor, there is an additional Feynman diagram
that must be added to the amplitude M. In the process uu → uu,
because u quarks are identical particles, either final-state u quark can
go into either observed jet. Then the complete scattering amplitude is
a sum of the expressions for the two Feynman diagrams.

(13.25)

and the sum of diagrams is squared to give the total rate. This leads to
the expression

dσ

d cos θ∗
(uu→ uu) =

2

9

πα2

ŝ

[
ŝ2 + û2

t̂2
+
ŝ2 + t̂2

û2
− 2

3

ŝ2

ût̂

]
. (13.26)
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In the forward direction, θ∗ → 0, t̂ → 0, and û → −ŝ. Then (13.24)
and (13.26) both have the singular behavior

dσ

d cos θ∗
(qq → qq) ∼ 4

9

πα2

ŝ

ŝ2

t̂2
∼ 4

9

πα2

ŝ

1

sin4 θ/2
. (13.27)

We recognize this as Coulomb scattering by the QCD potential. The
formulae for scattering processes involving quarks and antiquarks are
slightly more complicated, but in all cases the singular Coulomb term is
the same. We must also include less singular processes such as uu→ dd,

Forward scattering of quarks and glu-
ons is described by Coulomb scattering
through the QCD Coulomb potential.

(13.28)

The most singular terms for qg, qg, and gg scattering follow in the
same way. For qg or qg scattering, the cross section for Coulomb ex-
change is obtained by replacing one factor of the quark squared charge
factor 4

3 by the gluon squared charge factor 3. This gives

dσ

d cos θ∗
(qq → qq) ∼ πα2

ŝ

ŝ2

t̂2
. (13.29)

The complete expression, obtained by summing the diagrams

(13.30)

is
dσ

d cos θ∗
(qg → qg) =

πα2

2ŝ

[
ŝ2 + û2

t̂2
− 4

9

( û
ŝ

+
ŝ

û

)]
. (13.31)

Less singular processes such as gg → qq must also be included.
For gg scattering, we replace two factors of 4

3 with two factors of 3 to
find

dσ

d cos θ∗
(gg → gg) ∼ 9

4

πα2

ŝ

ŝ2

t̂2
. (13.32)

The complete list of parton-parton QCD cross sections is given in Ap-
pendix E. By folding these expressions with the corresponding pdfs, we
find the leading order QCD prediction of the jet production cross section
in pp collisions. Figure 13.6 shows the leading-order QCD prediction for
proton-proton collisions at the LHC at a center of mass energy of 13 TeV. Properties of the QCD predictions for

2-jet production in proton-proton colli-
sions.

The prediction has two important features. First, the differential cross
section falls by 6 orders of magnitude as the jet pT is increased from
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Fig. 13.6: Leading order QCD prediction for the rate of jet production in
proton-proton collisions reactions as a function of the jet transverse momen-
tum. The three lower curves show the contributions from gg, qg, and qq
scattering processes.
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100 GeV to 1000 GeV. Second, different parton reactions dominate in
different regimes of pT . At low pT , gg scattering is most important,
since this process has the largest intrinsic cross section. However, the
valence quarks in the proton have higher energy than the gluons, so
quark scattering processes are increasingly important at high pT . As
pT increases across the figure, the dominant role is played, first by gg
scattering, then by qg scattering, and, finally, at the highest values of
pT , by qq scattering.

13.3 Jet structure observables for hadron collisions

To compare the QCD prediction to data, we need precise definitions
of the observables that we will relate between theory and experiment. If
we wish to discuss jets in hadron-hadron collisions, we will need to define
these jets in a robust way that we can apply to observed events. The jet
algorithms used for hadron collisions are somewhat different from those
we applied in the simpler environment of e+e− annihilation. I will then
first describe methods for defining jets in hadronic collisions and then
show how measurements on these jets compare to QCD predictions.

Hadron-hadron collisions contain many particles in the final state.
Most of these particles are not associated with a hard scattering pro-
cess but rather are liberated when the colliding protons are disrupted. Difficulties for defining jets in hadron-

hadron collisions.These soft particles are produced roughly uniformly in pseudo-rapidity.
Most of them, then, are emitted into angular regions near the beam di-
rection. Collider detectors such as ATLAS and CMS are not sensitive to
particles produced at very small angles with |η| > 5. So we cannot use

definitions that require knowledge of all particles in the event. Instead,
we need to define observables that are built from particles in the cen-
tral rapidity region and that emphasize particle with large transverse
momenta. Hadron collider experiments also typically measure calori-
metric energy, which sums over particles, rather than individual particle
momenta.

A useful approach is to look at the distribution of ET over the (η, φ)
plane, as we saw in the event displays. Instead of using yij as a criterion
for clustering particles as we did in (12.23), we can use distance in the
(η, φ) plane

∆Rij =

[
(∆ηij)

2 + (∆φij)
2

]1/2

. (13.33)

Again, we combine 4-vectors until all composite particles are separated
by a distance larger than a predetermined quantity R, called the cone
size. This clusters energy into jets that correspond roughly to circles in
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the (η, φ) plane or cones in 3 dimensions.

(13.34)

This cone jet algorithm is IR-safe. It remains IR-safe if the energyIR-safe algorithms for defining jets
that are well-adapted to the physics of
hadron-hadron collisions.

elements are weighted by their ET . A convenient definition used by the
LHC experiments is to use as the clustering criterion

λij = ∆R2
ij ·min(E−2

Ti , E
−2
Tj ) (13.35)

This defines the anti-kT jet algorithm (Cacciari et al. 2008). It gathers
elements with small ET in a neat circle or cone around a nearby element
with large ET . Experiments in pp scattering at the Tevatron typically
used cone jets with R = 0.7. Experiments in pp scattering at the LHC
typically use anti-kT jets with R = 0.4 or 0.5. It is important to remem-
ber that the cone size R is, in principle, arbitrary. Smaller R leads to
more or more highly resolved jets.

Figure 13.7 shows a comparison of theory and experiment for the jetUsing a fixed jet algorithm to define
jets, we can compare the rate of ob-
served rate of jet production to that
predicted by QCD.

production rate from the ATLAS experiment at the LHC. Both for the
theoretical calculation and for the analysis of the experimental data, the
jets are defined to be R = 0.4 anti-kT jets. The theory calculation is
carried out to higher order in QCD, so that it includes final states with
2 and more partons. The cross section for producing a jet at fixed pT ,
plus any other jet activity in the event, is compared, in intervals of η,
with the QCD theory. It is evident that QCD correctly tracks the full
dependence on pT and η.

13.4 The width of a jet in hadron-hadron collisions

The physics topics that we have discussed in this chapter can be com-
bined to produce a very rich array of predictions for high energy QCD
scattering processes. To conclude our discussion of hadron collisions, I
will present two of these.

The first of these involves the QCD prediction of the width of a jet
observed in hadron-hadron collisions as a function of pT . The prediction,
and the comparison with experiment, is shown in Fig. 13.8.

This measurement, in pp collisions at 1.96 TeV by the CDF experi-
ment, defines jets with a cone size R = 0.7. It is possible to define the
width of the jet by looking at the flow of transverse energy inside the
cone. To study this, we can construct the following quantity: Let ρ be
a parameter with values between 0 and 1. Let ETi label the individual
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Fig. 13.7: Comparison of QCD theory and experiment for the differential
cross section to produce a jet in pp collisions at 7 TeV over a large range of
pT and y (= η), measured by the ATLAS experiment at the LHC, from (Aad
et al. 2012b).



208 QCD at Hadron Colliders

Fig. 13.8: Measurement of the jet size variable ψ(ρ) as a function of pT in
pp collisions at 2 TeV by the CDF experiment at the Tevatron collider, and
comparison to QCD predictions from the simulation program PYTHIA, from
(Acosta et al. 2005).
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depositions of ET used to construct the jet. Then let

ψ(ρ) =
∑

∆R<ρR

ETi /
∑

∆R<R

ETi . (13.36)

This quantity measures the fraction of the jet ET that is contained within
a narrower cone, of size r = ρR on the same axis as the original cone of
size R. Clearly

0 < ψ(ρ) < 1 . (13.37)

Values of (1− ψ(ρ)) close to zero indicate very narrow jets.
In our lowest order description of QCD scattering, each jet contains

A parameter that measures the width
of a jet observed in hadron-hadron col-
lisions.

one parton, the one giving rise to the jet.

(13.38)

At the next order in αs, this parton can radiate, typically producing an
almost collinear gluon but sometimes radiating a parton at larger angle.
This gives the jet a width.

(13.39)

Emission of many quarks and gluons produces a range of widths. The
variable (1 − ψ(ρ)) can then be computed by summing QCD processes
or by a simulation program such as PYTHIA.

(13.40)

We might expect that, as pT is increased, the width of the jet would
decrease as αs(qT ) decreases. Two different effects predicted by QCD

are needed to explain the dependence
of jet width on pT . The combination of
these effects does successfully explain
the data.

However, there is another effect. As I explained in (12.14), gluon jets
contain more radiation than quark jets. As a result, gluon jets are wider
than quark jets. As we move from small pT to large pT , we move from
the region of the 2-jet pT distribution dominated by gg scattering to the
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Fig. 13.9: Measurements of the cross section for production of a pair of top
quarks in pp and pp collisions at the Tevatron collider and the LHC, as a func-
tion of energy, compared to predictions from QCD, from the LHC Top Quark
Working Group (figure courtesy of CERN and the ATLAS collaboration).

region dominated by valence qq scattering. This also leads to narrower
jets as a function of pT .

In Fig. 13.8, the average value of (1 − ψ) for r = 0.3 and R = 0.7,
measured as a function of the jet pT by the CDF experiment at the
Tevatron, is compared to the prediction from PYTHIA (Acosta et al.
2005). The top reference curve shows the variation in the width of gluon
jets as a function of pT . The bottom reference curve shows the variation
in the width of quark jets as a function of pT . The data interpolates
between these limits, showing both the narrowing of jets with pT and
the change in the jet sample composition.

13.5 Production of the top quark

The second of these QCD predictions concerns the rate of production
of the heavy quark t or top. The top quark has a mass of 173 GeV. In
QCD, the top quark can be pair-produced from quark-antiquark anni-
hilationMechanisms for top quark pair produc-

tion in hadron-hadron collisions.

(13.41)
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or from gluon-gluon annihilation.

(13.42)

Figure 13.9 shows measurements of the top quark pair production cross
section at the LHC at 7, 8, and 13 TeV and the average of measurements
at the Tevatron at 1.96 TeV. The blue and green curves are the QCD
theory predictions for pp and pp collisions as a function of energy.

The theory prediction has a quite unusual feature. As the energy
increases by only a factor of 3.5 to 4 from the Tevatron to the LHC,
the cross section increases by a factor of 20. The predicted LHC cross
section is actually a factor of 100 higher than the QCD prediction for
the cross section in pp collisions at 2 TeV. The measurements confirm
this energy-dependence with high accuracy. But, what is the origin of
this effect?

Two features of the QCD prediction come into play. First, top quark
pair production requires a parton-parton CM energy of 350 GeV or more.
So, at the Tevatron, it requires a collision of two partons, each of which is
carrying more than 15% of the total energy of the proton or antiproton.
This criterion is met only for the valence quarks and antiquarks. As the
energy of the collider is increased, more of the partons can participate
in tt production, increasing the predicted rate.

In addition, the production of tt from gluons has an intrinsically larger
cross section than the production from quarks of the same energy, by
about a factor of 5. As the collider energy is increased, gluons from Two distinct QCD effects explain the

sharp rise in the cross section for pro-
ducing top quark pairs over the collider
energy range 2 TeV to 13 TeV. The full
QCD theory is in good agreement with
the measurements.

the parton sea have enough energy to produce top quarks. The large
value of the cross section and the large value of the gluon pdf lead to
a dramatically increased prediction. The dominance of production by
gluons is seen in the theory prediction by the approximate equality of
the predictions for pp at pp collisions at the highest energies.

These two examples give just a sampling of the wide variety of phe-
nomena that are observed and explained by QCD in hadron collider
physics.
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Exercises

(13.1) Solve the relation (13.14) for cos θ in terms of the
pseudorapidity η. Find the corresponding values of
θ for η = 1, 2, 3, 4, 5, 6. What is the practical limit
in η for measuring the tracks of charged particles
produced in a hadron collider event?

(13.2) The W and Z bosons are massive spin 1 particles
that are the basic quanta of the weak interactions.
We will discuss their properties in detail in Chapter
17. Both the W and the Z were discovered by the
UA1 experiment at the CERN proton-antiproton
collider. The Z boson has a decay Z0 → e+e−, so
it is possible to observe the Z as a resonance by
identifying events with muone+e− pairs and plot-
ting the distribution of the e+e− invariant mass.
The corresponding decay of the W is W+ → e+ν.
This decay cannot be observed as a resonance be-
cause neutrinos are not observed by collider detec-
tors. This problem will explain how the mass of
the W was measured and give tools for computing
the mass of other particles that decay with unob-
servable decay products.

(a) Although neutrinos are not observed by
hadron collider detectors, these detectors can
observe other particles and measure the im-
balance of observed momentum in the final
state. Typically, the measurement of the
missing momentum ~pT in the two directions
orthogonal to the beam direction is good,
while the measurement of the missing p3, par-
allel to the beam direction, is poor. Why is
the imbalance of p3 difficult to measure? In
the following, we set ~pT (ν) equal to the miss-
ing transverse momentum.

(b) For a W+ produced at a hadron collider and
decaying to e+ν, we can treat the final e+ and
ν as massless. Write the 4-vectors for the mo-
menta of these particles in terms of the η and
~pT for each, where η is the pseudorapidity and
~pT is a 2-component vector transverse to the
beam asix.

(c) Using this representation of the 4-vectors,
compute m2

W = (p(e) + p(ν))2.

(d) Show that

m2
W ≥ m2

tr , (13.43)

where mtr, the transverse mass, is given by

m2
tr = (|~pT (e)|+ |~pT (ν)|)2−(~pT (e)+~pT (ν))2 .

(13.44)
In practice, the distribution of mtr is strongly
peaked toward this upper limit and thus al-
lows an accurate estimate of mW .

(13.3) The Drell-Yan process is the reaction in a pp or
pp collision that produces a muon or electron pair.
The underlying process is qq → e+e− or µ+µ−. In
this problem, we will work out the parton-model
description of this process. Ignore all quark and
lepton masses.

(a) Write the total cross section for qfqf → µ+µ−

as a function of the quark-antiquark center of
mass energy, ignoring all fermion masses. The
factor for color should be 1

3
rather than the

3 in the formula for the e+e− → qfqf cross
section. Why? Aside from this factor, you
can get the rest of the expression from our
analysis of e+e− → qfqf .

(b) In the parton model, the cross section for
pp→ µ+µ− +X is given by∑

f

[∫
dx1 ff (x1)

∫
dx2 ff (x2)

·σ(qf (x1P1)q
f
(x2P2)→ µ+µ−) + (f ↔ f)

]
,

(13.45)

where the sum runs over quark flavors. Write
an expression for ŝ for the parton reaction in
terms of x1, x2, and s for the pp collision.
Note that ŝ = M2, the mass-squared of the
observed µ+µ− system.

(c) Working in the pp CM system, write the 4-
vectors of the initial quark and antiquark.
Let (E , 0, 0,P) be the sum of these momenta.
This is also the total momentum of the µ+µ−

system. The rapidity y of the µ+µ− system is
defined by

tanh y = P/E (13.46)

Verify that E = M cosh y and P = M sinh y.
Write an expression for y in terms of x1 and
x2.
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(d) Write the converse expressions for x1 and x2

in terms of y and M (with s fixed). Notice
that in this process, as in deep inelastic scat-
tering, we can determine the values of the par-
ton momentum fractions by measuring only
the lepton momenta.

(e) In the cross section formula, change variables
from x1, x2 to M,y. Use the Jacobian deter-
minant to convert dx1dx2 to dMdy. Show
that

d

dMdy
σ(pp→ µ+µ− +X) =∑

f

[x1ff (x1)x2ff (x2) + x1ff (x1)x2ff (x2)]

·8
9

πα2

M3
, (13.47)

where x1 and x2 are the values derived from
the measurement of M and y.

(f) The equation (13.47) has two terms, one with
a quark from proton 1 and an antiquark from
proton 2, and the other in which the anti-
quark comes from proton 1. We might break
this down further into contributions from va-
lence quarks and sea quarks annihilating with
antiquarks. For concreteness, think about the
LHC, where the pp center of mass energy is
13000 GeV, a typical value of M is 90 GeV,
valence quarks have x > 0.05, and sea quarks
have x < 0.01 (see Fig. 10.1). Argue that,
near y = 0, most annihilations are sea with
sea. At what value of y should sea with va-
lence annihilations be important?

(13.4) The Drell-Yan process discussed in Problem 13.3
involves the annihilation of an initial-state q and
q. It is possible that a photon or a gluon could be
radiated in this annihilation process. This prob-
lem will estimate the probability of this initial-state

radiation. In Chapter 10, in (10.39) and (10.42),
we wrote expressions for the probability that an
initial-state highly relativistic quark emits an ap-
proximately collinear photon or gluon. The formula
is a double integral, dominated by a term with two
large logarithms. For the estimates in this problem,
it is sufficient to keep only the term from the eval-
uation of the integrals with this double logarithm.

(a) Find an expression, using the approximation
of keeping double logarithmic terms only, for
the probability that a Drell-Yan event with
a muon pair of mass M also contains a ra-
diated photon with momentum transverse to
the beam direction greater than pT . The
needed limits of integration can be obtained
from the following considerations: For the qT
integral, the radiated photon is no longer ap-
proximately collinear if qT > M/2. For the
z integral, the photon is no longer approxi-
mately collinear if the longitudinal momen-
tum of the photon, approximately zM/2 in
the parton-parton center of mass frame, is less
than qT .

(b) Evaluate this expression for some typical pa-
rameters of the Drell-Yan cross section mea-
surement at the LHC: M = 300 GeV, pT =
30 GeV.

(c) In a similar way, estimate the probability for
a Drell-Yan event to contain a radiated gluon
with transverse momentum greater than pT .
In this case, the final state will contain a
µ+µ− pair and the gluon jet.

(d) Evaluate this expression for M = 300 GeV,
pT = 30 GeV, using αs = 0.2. What is the
probability that one of these events will con-
tain a gluon jet?





Chiral Symmetry 14
Before we finish with the strong interactions, there is one more aspect of
QCD that we need to discuss. So far in this book, I have treated quark
masses as parameters of the nonrelativistic quark model—or ignored
them altogether. But, what are the values of the quark masses?

For heavy quarks, it is probably correct to use as a first approximation

mc ≈
1

2
m(J/ψ) ≈ 1.5 GeV ,

mb ≈
1

2
m(Υ) ≈ 4.5 GeV . (14.1)

These estimates of the masses can be refined using more accurate QCD
descriptions of the heavy quark-antiquark bound states.

To quote the masses of light quarks, however, we will need to develop a
better understanding of the properties of QCD at low energies. It turns
out that there is a new principle at work here, called chiral symmetry,
which gives additional insight into the nature of the lighest hadrons.

Chiral symmetry is a symmetry of QCD in the limit that the quark
masses are set equal to zero. However, this symmetry is not manifest in
the spectrum of hadron masses, even after we correct for the fact that
the masses of quarks are not exactly zero. Instead, this symmetry is
realized in a different way; it is said to be spontaneously broken. In the
course of this chapter, I will introduce the notion of a spontaneously
broken symmetry and discuss its consequences.

The concepts of chiral symmetry and spontaneous symmetry breaking
both have an important role to play in the theory of the weak interaction
that I will present in Part III. The study of this last aspect of QCD will
give us a useful starting point for the more general understanding of
these ideas.

14.1 Symmetries of QCD with zero quark masses

The Lagrangian of QCD was given in (11.44) as

L = −1

4
FµνaF aµν + Ψf (iγµDµ −m)Ψf . (14.2)

The symmetries of this Lagrangian include Lorentz invariance, P , C, and
T , global charge conservation (equivalent to quark or baryon number
conservation), and the SU(3) color symmetry of QCD.

Other symmetries might be present depending on the values of the
quark masses. Consider for the moment a model containing only the
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two quark species u and d. If mu = md, the Lagrangian of this model
would be invariant under the continuous group of isospin rotations

Ψi →
(
ei~α·~σ/2

)
ij

Ψj , (14.3)

where i, j run over the values u, d. More generally, let m be the 2 × 2
quark mass matrix,

m =

(
mu 0
0 md

)
. (14.4)

An isospin rotation changes the Lagrangian according to

Ψ(iγµDµ −m)Ψ→ Ψe−i~α·~σ/2(iγµDµ −m)ei~α·~σ/2Ψ

= Ψ(iγµDµ)−Ψ
(
e−i~α·~σ/2mei~α·~σ/2

)
Ψ. (14.5)

Then if [m,σa] = 0 for a = 1, 2, 3, the Lagrangian is invariant under
isospin. The criterion for this is mu = md.

In the special case mu = md = 0, there is an extension of the group
of symmetries. For each of the two flavors, write

Ψf =

(
ψfL
ψfR

)
. (14.6)

We will find it useful to define the 4× 4 matrixDefinition of the Dirac matrix γ5.

γ5 =

(
−1 0
0 1

)
. (14.7)

This matrix anticommutes will all four Dirac matrices γµ, as one can
see by explicit computation or by noting that

γ5 = iγ0γ1γ2γ3 . (14.8)

The components ψfL and ψfR can then be identified as the eigenstates
of γ5 with eigenvalues −1, +1, respectively. Parity reverses the three
space dimensions, so when γ5 appears in a Dirac bilinear, it will acquire
a factor −1 in a parity transformation.

Recall from our discussion in Section 8.2 that, if there is no mass
term, the two pieces of the Dirac fermion do not couple directly in the
Lagrangian. Using this idea, we can rewrite the QCD Lagrangian as

L = −1

4
(Fµνa)2 +

∑
f=u,d

{
ψ†fLiσ ·DψfL + ψ†fRiσ ·DψfR

}
. (14.9)

This expression is invariant under two separate isospin symmetriesDefinition of the chiral SU(2) symme-
try of QCD with massless u and d
quarks. ψL → ei~γ·~σ/2ψL , ψR → ei

~δ·~σ/2ψR , (14.10)

called SU(2)L and SU(2)R. Alternatively, we can take linear combina-
tions of these and write their actions on the Dirac fields

Ψ→ ei~α·~σ/2Ψ Ψ→ ei
~β·(~σ/2) γ5

Ψ , (14.11)
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The first of these symmetries is isospin. The second, which rotates the
L and R fields in opposite directions, is called chiral SU(2).

Corresponding to the two isospin symmetries, there are two currents

jµa = Ψγµ
σa

2
Ψ jµ5a = Ψγµγ5σ

a

2
Ψ (14.12)

The current jµa should be conserved when mu = md. Noting the Dirac
equations

(iγµDµ −m)Ψ = 0 − iDµΨγµ −mΨ = 0 , (14.13)

we can verify this explicitly,

∂µj
µa = Ψ

σa

2
γµDµΨ +DµΨγµ

σa

2
Ψ

= −iΨσa

2
mΨ + iΨm

σa

2
Ψ

= iΨ [m,
σa

2
]Ψ . (14.14)

So the current is conserved when [m,σa] = 0, in accord with (14.5).
We can also check the conservation of jµ5a, the chiral isospin current.
There is an extra (−1) in the first term from anticommuting γµ through
γ5. We find

∂µj
µ5a = −Ψ

σa

2
γ5γµDµΨ +DµΨγµγ5σ

a

2
Ψ

= iΨ {m, σ
a

2
}Ψ . (14.15)

So now the σa must anticommute with m if the current is to be con-
served. This is true only when mu = md = 0.

One might also imagine a symmetry

Ψ→ eiφγ
5

Ψ , (14.16)

called chiral baryon number. It can be shown that this is not actually a
symmetry of QCD. This is not obvious; in fact, the symmetry is broken
only when subtle quantum effects in QCD are taken into account. The
symmetry is broken by a strong-interaction effect involving the gluon
fields (’t Hooft 1976).

14.2 Spontaneous symmetry breaking

QCD with two massless flavors is thus invariant under the symmetry

U(1)× SU(2)× SU(2) , (14.17)

that is, baryon number, SU(2)L and SU(2)R. Real QCD might or might
not be close to this idealized limit.
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We immediately see that, if this symmetry is fully realized, there
is a problem. All hadron states would have to be assigned quantum
numbers under the full symmetry group. This would disturb the quark
model phenomenology. For example, we might assign the left- and right-
handed components of the nucleon the baryons number and SU(2) spin
quantum numbersChiral SU(2) symmetry cannot be a

manifest symmetry of QCD.

NL : (1,
1

2
, 0) NR : (1, 0,

1

2
) (14.18)

But then a nucleon mass term, which mixes NL and NR, would be
forbidden. An alternative strategy would be to assign the full nucleon
field to (1, 1

2 , 0). But then, by parity, there must be another, degenerate,
nucleon with the quantum numbers (1, 0, 1

2 ). Similar considerations hold
for the mesons. A theory with SU(2)L × SU(2)R and parity symmetry
requires doubling the number of mesons beyond those expected in the
quark model.

However, there is another option. It is possible for SU(2)L × SU(2)R
to be a symmetry, in the sense that its generators commute with the
Hamiltonian H, but one that is not respected by the states of the theory.
In quantum mechanics with a finite number of coordinates, it can be
shown that, if Q generates a symmetry of the theory, then the ground
state of the theory |0〉 must obey

Q |0〉 = 0 (14.19)

However, in a system with an infinite number of degrees of freedom,
(14.19) can be violated. There can be several ground states of H, all
with the same energy, such that any one of these states has an orien-
tation with respect to the symmetry transformations. This situation is
called spontaneous symmetry breaking. In any particular ground state,Definition of spontaneous symmetry

breaking. the symmetry is not obvious as a relation between the energy levels or
the particle interactions. However, there can be other observable con-
sequence of a spontaneously broken symmetry, as we will discuss in the
next section.

Quantum field theory has an infinite number of quantum degrees of
freedom, since it allows the creation of an infinite number of particles
from the vacuum state. If the Hamiltonian of a quantum field the-
ory possesses a symmetry, it is possible that there are multiple vacuum
states, in each one of which the theory appears asymmetric.

Condensed matter systems, in the thermodynamic limit, have an infi-
nite number of degrees of freedom, and they furnish many illustrations
of spontaneous symmetry breaking (Sethna 206). For example, in aExamples of spontaneously broken

symmetry in condensed matter physics. magnet, the Hamiltonian may be invariant under global rotations of the
electron spins. However, the state of lowest energy may have the major-
ity of electron spins preferentially aligned in some direction. Then this
state does not display spin rotation invariance, even though the rotation
generators ~S commute with the Hamiltonian. In this situation, there
will be several degenerate states of lowest energy, each of which has the
electron spins aligned in a different orientation.
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Another example occurs in the theory of superconductivity (Tinkham
1966). Electrons near the Fermi surface of a metal bind into pairs which
then form a Bose condensate within the metal. This Bose condensate
contains an indefinite number of electron pairs. If Φ(x) is a field operator
that has the quantum numbers of 2 electrons and can therefore annihilate
an electron pair, the ground state of a superconductor |G〉 has

〈G|Φ(x) |G〉 6= 0 . (14.20)

The operator Φ has electric charge 2, and so this expectation value would
be forbidden if the total electric charge of the ground state were zero
(or any other definite value). The fact that the ground state contains a
reservoir of electron pairs is the reason that superconductors have perfect
conductivity. The condensate can adjust itself to create a current flow in
response to any electrostatic perturbation. Similarly, in the superfluid
state of He4, a condensate forms that contains an infinite number of He
atoms. This condensate forms a separate fluid that flows frictionlessly.

If the expectation value (14.20) is a nonzero number, that number
may be complex with a definite phase. The degenerate vacuum states
of a superconductor or superfluid are characterized by different phases
of the expectation value (14.20) (Yang 1962).

A very similar condensate can appear in QCD. Massless quarks and Physical origin of a chiral symmetry
breaking qq condensate in QCD.antiquarks cost zero energy to produce. On the other hand, quark-

antiquark pairs are bound by QCD forces, which become strong at dis-
tances of 1 fm or 1/200 MeV. So it may be energetically favorable for
the QCD vacuum state to contain qq pairs. Consider, in particular, the
state uRuR

(14.21)

This state is color-singlet and a Lorentz scalar, so the create of such
a qq pair leaves a color-singlet, Lorentz-invariant vacuum state. The
analogy to superconductivity tells us that the vacuum should fill with
a condensate containing an indefinite number of these pairs (and the
corresponding states for uLuL, dRdR, and dLdL.

(14.22)

Now recall that uR is the antiparticle of uL. If the vacuum is full of
uRuR pairs, a uL can interact with the vacuum condensate and turn
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into a uR

(14.23)

This a mixing of the massless uL and uR. We have seen that this is
precisely the effect of a u quark mass term. So, on top of the vacuum
state with condensates, the u quark, and also the d quark, effectively
gets a mass. A similar effect is seen is superconductivity; an energy
gap in the electron spectrum opens at the Fermi surface. The u and
d quark effective masses should be at the QCD energy scale of a few
hundred MeV. Because of this effect, QCD with zero quark masses in the
Lagrangian predicts that valence quarks inside hadrons will apparenly
have masses of about 300 MeV. The vacuum condensates also allow the
proton and neutron to be massive.

Just as superconductivity is characterized by a nonzero operator ex-
pectation value in the vacuum, we can characterize the formation of the
quark condensates by an operator vacuum expectation value. Call the
vacuum state with condensates |0〉. The state uLuL is annihilated by
the operator

ψ†uRψuL . (14.24)

Thus, a nonzero vacuum expectation value of this operator

〈0|ψ†uRψuL |0〉 6= 0 (14.25)

indicates the presence of a condensate. If all four condensates uLuL,
dLdL, uRuR, dRdR are present in equal amounts, we would haveA nonzero vacuum expectation value

that we can use to characterize the bro-
ken symmetry vacuum of QCD. 〈0|ψ†iRψiL |0〉 = 〈0|ψ†iLψiR |0〉 = −∆δij , (14.26)

where ∆ is a value with the dimensions of (GeV)3. The state |0〉 is then
isospin-invariant and parity-invariant. However, |0〉 is not invariant
under chiral SU(2). To see this, act on |0〉 with SU(2)L. This is equiva-
lent to an SU(2)L rotation of the operator. We then find a new vacuum
state |~α〉 with

〈~α|ψ†iRψiL |~α〉 = −∆
(
ei~α·~σ/2

)
ij
. (14.27)

The state |α〉 has the same energy as |0〉, because the SU(2)L charge
commutes with the Hamiltonian. However, it is no longer either isospin
or parity symmetric. The parameter ~α can take any value. This gives an
infinite number of degenerate vacuum states, in one-to-one correspon-
dence with the elements of the group SU(2).

The logic of the previous paragraph implies that the ground states
of the QCD Hamiltonian with two massless quarks form a manifold
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isomorphic to the SU(2) group,

(14.28)

All of these ground states have the same energy, but none of them fully
respects the chiral SU(2) symmetry. In each of these vacuum states, the
chiral SU(2) symmetry is spontaneously broken.

14.3 Goldstone bosons

In the situation that the spontaneously broken symmetry is a continu-
ous symmetry such as U(1) or SU(2), the symmetry of the Hamiltonian
implies that there are new particles with special properties.

To investigate this statement in QCD, we start with the conserved
current associated with the broken SU(2) symmetry. Consider the state
created by this current from the broken symmetry vacuum∫

d3x j05a(x) |0〉 (14.29)

Now
∫
d3x j05a(x) = Q5a, the charge that generates the global chiral

SU(2) symmetry. The action of Q5a converts the vacuum state |0〉 into
a combination of the other degenerate ground states described in the
previous section. The energy of (14.29) must be equal to that of |0〉,
because Q5a commutes with the Hamiltonian.

Now consider the state∫
d3x e−i~p·~x j05a(x) |0〉 . (14.30)

This is a state with definite nonzero momentum ~p. As ~p→ 0, the energy
of this state (above the energy of the ground state) goes to zero. Thus,
this state must be a particle with rest energy zero, that is a particle
with zero mass. This observation is Goldstone’s theorem: For every Goldstone’s theorem: Every sponta-

neously broken continuous symmetry
leads to a massless particle, called the
Goldstone boson.

spontaneously broken continuous symmetry, there is a massless particle
created by the symmetry current (Goldstone 1961). This particle is
called a Goldstone boson.

The annihilation of a Goldstone boson π by the corresponding current
jµ is described by a matrix element

〈0| jµ5(x) |π(~p)〉 = i f pµe−i~p·~x , (14.31)
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where f is a parameter with the dimensions (GeV)1. This structure
(14.31) is the only form allowed by Lorentz symmetry. The parameter
f could in principle be a function of the Lorentz invariant p2, but for a
particle of definite mass, p2 = m2 is fixed.

Taking the divergence and using current conservation

0 = 〈0| ∂µjµ5(x) |π(~p)〉 = fp2e−i~p·~x . (14.32)

This implies
p2 = 0 . (14.33)

This is another way to see that a Goldstone boson must have zero mass.
In QCD with massless u and d quarks, there are three chiral SU(2)

currents. These must be spontaneously broken, as just explained, and
therefore we must find three Goldstone bosons. The annihilation equa-
tion reads

〈0| jµ5a(x)
∣∣πb(~p)〉 = ifπp

µδabe−i~p·~x , (14.34)

where a, b = 1, 2, 3. The right-hand side must be proportional to δab

by isospin invariance. The three chiral currents form an isospin triplet,
I = 1. The operators j05a have P = −1. Thus, the three Goldstone
bosons are spin 0, P = −1, and I = 1. We saw in Section 5.3 that the
three hadrons of lowest mass are the pions, which have exactly these
properties. Nambu and Jona-Lasinio developed this picture and identi-
fied the pions as the Goldstone bosons of spontaneously broken chiral
SU(2) (Nambu and Jona-Lasinio 1961).

The parameter fπ in the above equation is called the pion decay
constant. Its value isDefinition of the pion decay constant.

fπ = 93 MeV . (14.35)

I will explain how this value is determined in Section 15.3. Despite the
name, there is no intrinsic connection between fπ and the fact that pions
decay. On the contrary, fπ is a parameter of the strong interactions that
can be calculated (numerically) by solving QCD in the region of strong
coupling. The constant fπ plays an important role in the low-energy
dynamics of QCD.

14.4 Properties of π mesons as Goldstone bosons

The assumption that the pions are the Goldstone bosons of spon-
taneously broken chiral SU(2) turns out to contain much information
about the behavior of pions at low energy, and about other aspects of
strong interaction physics. For example, this assumption leads to specific
expressions for the low-energy limit of the pion-pion scattering ampli-
tude and the pion-nucleon scattering amplitude, in both cases, in good
agreement with experiment. These developments are described in some
detail in (Donoghue et al. 1992).

As an example, I will discuss the matrix element of the chiral isospin
current in a nucleon state, a quantity that is important in computing
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the rate of neutron beta decay. To begin, consider the matrix element
of the vector isospin current. This matrix element is given by

〈N(p′)| jµa |N(p)〉 = 1 · u(p′)γµu(p) · σ
a

2
+ · · · , (14.36)

where the omitted terms are less important at low momentum transfer.
The coefficient 1 reflects the fact that the nucleons have definite charge
I3 = ± 1

2 under isospin. Since the chiral isospin current is not respected
by the strong interactions, there is no similar argument for that current,
and so its nucleon matrix element can only be written

〈N(p′)| jµ5a |N(p)〉 = gA · u(p′)γµu(p) · σ
a

2
+ · · · , (14.37)

where gA is a dimensionless constant. However, it can be shown that
the assumption that the chiral SU(2) current is conserved and that the
pion is its Goldstone boson leads to the relation

gA =
fπ
mN

gπNN , (14.38)

where gπNN is the dimensionless pion-nucleon interaction strength. This
formula is called the Goldberger-Treiman relation (Goldberger and Trei-
man 1958). called the This quite nontrivial relation is reasonably well
satisfied. The value of gA measured from the β decay of the neutron
is 1.25, while the measured value gπNN = 13., gives a value for the
right-hand side of 1.31.

If there are small u and d quark masses, the pions will also obtain
small masses. One way to see this is to add to the Hamiltonian of the The idea of pions as Goldstone bosons

of spontaneously broken chiral SU(2)
gives us a way to evaluate the masses of
the light quarks taking account of the
effects of the strong interaction.

theory with mu = md = 0 the mass term

∆H = muΨuΨu +mdΨdΨd

= muψuRψuL +mdψdRψdL + (R↔ L) (14.39)

Taking the expectation value in the state |0〉 and using (14.26), we find

〈0|∆H |0〉 = −2∆(mu +md) . (14.40)

This is actually the minimum value of the energy among the set of
possible vacuum states |α〉. This effect will give the Goldstone bosons
masses proportional to

m2
π ∼ (mu +md) . (14.41)

To make this result more precise, go back to the equation (14.15) for
conservation of the chiral currents

∂µj
µ5a = iΨ{m, σ

a

2
}γ5Ψ (14.42)

and put in

m =

(
mu 0
0 md

)
=

1

2
(mu +md)1 +

1

2
(mu −md)σ

3 . (14.43)
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We find

∂µj
µ5a = i(mu +md)Ψ

σa

2
γ5Ψ , (14.44)

plus, for the case a = 3, an extra I = 0 term that will drop out at the
next step. Now take the matrix element between 〈0| and a 1-pion state

〈0| ∂µjµ5a
∣∣πb〉 = i(mu +md) 〈0|Ψ

σa

2
γ5Ψ

∣∣πb〉 . (14.45)

The left-hand side can be evaluated as in (14.32). By isospin invariance,
the right-hand side must be proportional to δab (and the additional term
from a = 3 must give zero). Then, (14.45) implies that

fπp
2δab = (mu +md)∆

′δab . (14.46)

Setting p2 = m2
π, the pion mass satisfies

m2
π =

(mu +md)

fπ
∆′ . (14.47)

The parameter ∆′ has the dimensions (GeV)2 and should be of the order
of the QCD scale. If we estimate

∆′ = (500 MeV)2 , (14.48)

and use the value fπ = 93 MeV, we find

mu +md ≈ 7 MeV . (14.49)

A modern numerical evaluation of the matrix element in QCD confirms
that this estimate for the values of the u and d quark masses is about
right (Manohar et al. 2016).

The picture that emerges is that real QCD is quite close to the limit
in which the u and d quark masses in the Lagrangian are zero. The
closeness to that limit is measured by the smallness of the ratio

m2
π

m2
ρ

= 0.03 . (14.50)

Note that, because of the spontaneous symmetry breaking, the u and
d quarks inside hadrons will move as if they have masses of the order
of the QCD scale, about 300 MeV, acquired from their interaction with
the quark-antiquark condensate. Thus, the successes of the quark model
are quite compatible with the idea that the fundamental masses of the
u and d quarks given in the Lagrangian are small.

We can take a further step by considering the model in which the u,
d, and s quark masses are all set to zero. In this case, the symmetry of
QCD analogous to (14.17) is

U(1)× SU(3)× SU(3) . (14.51)

The first SU(3) rotates the left-handed components of the three flavors;
the second separately rotates the right-handed components. Similarly



14.4 Properties of π mesons as Goldstone bosons 225

to the previous case, we can define vector and axial vector SU(3) sym-
metries. By the same logic as above, the axial vector symmetry should
be spontaneously broken. This leads to a number of Goldstone bosons
equal to the number of generators of SU(3), that is, 8. These should
all be spin 0, P = −1 mesons. The natural candidates are

π+ , π0 , π− , K+ , K0 , K
0
, K

−
, η0 . (14.52)

Repeating the argument above for the pion masses, one can derive the
mass formulae

m2
π = (mu +md) ·∆′/fπ ,

m2
K+ = (mu +ms) ·∆′/fπ ,

m2
K0 = (md +ms) ·∆′/fπ ,
m2
η = (4ms +mu +md)/3 ·∆′/fπ . (14.53)

where the parameters ∆′ all have the same value in the limit of small
quark masses. We should add to these expressions small contributions
from electromagnetism. For example, the electromagnetic interactions
of the pion raise the mass of the π± above the mass of the π0 by about
5 MeV.

These formulae then give us further information about the quark
masses. First

ms

(md +mu)/2
=

2m2
K

m2
π

= 27 . (14.54)

Also, the fact that the K0 is heavier than the K+ (and the fact that the
neutron is heavier than the proton) tells us that the d quark is heavier
than the u quark. Writing a formula that can be shown to cancel the
electromagnetic correction to the mass to first order,

md −mu

md +mu
=
m2
K0 −m2

K+ −m2
π0 +m2

π+

m2
π

= 0.3 , (14.55)

which implies Through this analysis, we learn that the
u and d masses are not close to being
equal. From this, we learn that isospin
symmetry is not a fundamental symme-
try of nature.

mu

md
= 0.6 . (14.56)

The relations in (14.53) give a formula for the mass of the η in terms
of the masses of the other pseudoscalar mesons

m2
η =

1

3

[
2m2

K0 + 2m2
K+ −m2

π

]
. (14.57)

This relation, called the Gell-Mann-Okubo formula, is satisfied reason-
ably well,

m2
η = (548 MeV)2 ≈ RHS = (567 MeV)2 , (14.58)

In our discussion of the nonrelativistic quark model in Section 5.3, we
were puzzled by the mass pattern of the pseudoscalar mesons. We now
see that this pattern is understood in terms of the interpretation of these
particles as Goldstone bosons.
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This analysis gives the values for the masses of the light quark masses
that appear in the QCD Lagrangian (Manohar et al. 2016):

mu = 2.2 MeV , md = 4.7 MeV , ms = 96. MeV . (14.59)

These values are quite surprising. First of all, these values are much
smaller that we might have expected from the meson and baryon masses.
Most of the mass of quarks inside hadrons comes from spontaneous
chiral symmetry breaking, not from the more fundamental masses that
appear in the Lagrangian. But, further, the masses of the u and d quarks
are completely different. We might have expected, by isospin symmetry,
that mu ≈ md. We now see that these values differ by a factor of 2.

Final values of the light quark masses
obtained from the analysis of the
masses of the pseudoscalar mesons.

Isospin is not a fundamental symmetry of nature; rather, it is an accident
due to the fact that the u and d masses are small. I will have more to
say about the quark masses in Chapter 18.

Exercises

(14.1) A field theory with spontaneous symmetry break-
ing can be constructed as follows: First, write the
Klein-Gordon Lagrangian for n fields φi,

L =
∑
i

[
1

2
(∂µφi)

2 − 1

2
m2
iφ

2
i

]
, (14.60)

then replace the mass term by V (φ), a general non-
linear function of the φi, to form

L =
∑
i

[
1

2
(∂µφi)

2

]
− V (φ) . (14.61)

The function V (φ) is the potential energy associ-
ated with the scalar field value. A system with
spontaneous symmetry breaking, V (φ) has its min-
imum at a value φ = Φ that does not respect the
symmetry of V (φ). This problem will explore some
properties of this theory.

(a) Show that the equations of motion of this the-
ory are

∂µ∂
µφi +

∂

∂φi
V (φ) = 0 (14.62)

(b) The minimum of the potential energy is a con-
stant vector Φi satisfying

∂

∂φi
V (φ)|φ=Φ = 0 (14.63)

Writing

φi(x) = Φi + ηi(x) , (14.64)

expand the equations of motion up to terms
of first order in ηi(x). Show that the n eigen-
values of the matrix

M2
ij =

∂2

∂φi∂φj
V (φ)|φ=Φ (14.65)

give n values of (mass)2 corresponding to n
scalar particles in the theory.

(c) Consider the potential

V (φ) = +
1

2
µ2(φ2) +

1

4
λ(φ2)2 , (14.66)

where φ2 =
∑

i
(φi)

2 and µ and λ are con-
stants. Sketch this potential. Find the mini-
mum of the potential. Find the masses of the
n particles.

(d) Consider the potential

V (φ) = −1

2
µ2(φ2) +

1

4
λ(φ2)2 , (14.67)

where everything is as before, except that I
have changed the sign in front of µ2. Sketch
this potential. Find the minimum of V among
constant fields of the form

φ = (0, 0, 0, · · · , 0, v) (14.68)
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Show that the minimum occurs for v 6= 0, and
find the value of v at the minimum. This is
spontaneous symmetry breaking. Show that
this potential V has an (n − 1)-dimensional
sphere of degenerate minima.

(e) Find the masses of particles in this theory.
Show that (n − 1) of these masses are zero.
This illustrates Goldstone’s theorem.

(14.2) The quark masses given by the Particle Data Group
(Patrignani et al. 2016) are “running masses in the
MS scheme”. Without going into too much detail
about the definition, I note that (1) like all other
quantities in QCD, the quark masses evolve as func-
tions of the momentum scale Q, and (2) therefore,
quark masses must be quoted at a particular value
of Q. The PDG chooses to evaluate the masses of
the light quarks u, d, s at a common value of the
scale Q0 = 2 GeV and the masses of the heavy
quarks c, b, t at different values of Q0 such that
mq(Q0) = Q0 for each quark. The PDG values
are:

flavor mf (Q0) Q0 flavor mf (Q0) Q0

u 0.0022 2 c 1.28 1.28
d 0.0047 2 b 4.18 4.18
s 0.096 2 t 164. 164.

(14.69)
with all mass values in GeV. In this problem, we
will compare the quark masses in a more invariant
way. Our analysis will be as simple as possible, to
leading order in QCD only.

(a) In (11.68), we found the following expression
for αs:

αs(Q) =
αs(Q0)

1 + (b0αs(Q0)/2π) log(Q/Q0)
,

(14.70)
where b0 = 11 − 2

3
nf and nf is the num-

ber of quark flavors with mf < Q. Start-
ing from the value of αs quoted in (11.73),
αs(91.) = 0.118, evaluate αs(Q) at the Q
values: mb = 4.18 GeV, 2 GeV, and mc =
1.28 GeV. Note that you will need to use dif-
ferent values of b0 for Q > mb and Q < mb to
convert the αs values.

(b) QCD gives the following equation for the Q-
dependence of a quark mass parameter,

d

d logQ
mf (Q) = −8

αs(Q)

4π
mf (Q) (14.71)

Using the formula for αs in (a), find the so-
lution of this equation that gives mf (Q) in
terms of a reference value mf (Q0).

(c) Compute the value of the charm quark mass
mc at Q = 2 GeV.

(d) Compute the values of the four lightest quark
masses at Q = mb.

(e) Compute the values of all quark masses at
Q = mt given above. You will need to find
αs(mt) from αs(91.) using (14.70).

(f) Compute the true ratios of quark masses com-
pared at this common value of Q.
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The Weak Interaction
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Now we turn to the other subnuclear interaction, the weak interaction.

QCD leads to a large spectrum of mesons and baryons. Most of these
are unstable, with decay rates of the order of 100 MeV, corresponding
to lifetimes of the order of 10−23 sec. However, the lightest particles of
each type are more stable. For example,

τ(π+) = 2.6× 10−8 sec , τ(Λ0) = 2.6× 10−10 sec ,

τ(K+) = 1.2× 10−8 sec , τ(B0) = 1.5× 10−12 sec . (15.1)

Most familiarly, the neutron is unstable by β decay,

n→ p e− νe , (15.2)

though it is very long-lived

τ(n) = 880 sec . (15.3)

The great difference between typical hadronic lifetimes and the lifetimes
just listed suggests that those particle decays are due to a completely
different subnuclear interaction. Now that we understand QCD, this
idea is even more compelling. The equations of motion of QCD con-
serve the number of each flavor of quark. So, any process that changes a
quark of one flavor into another—as would be required for all of the de-
cay processes just listed—must necessary require an interaction outside
QCD.

This new set of forces is called the weak interaction. In this chapter
and the next few, I will build up the structure of this interaction from
basic properties of weak-interaction decays. Remarkably, the current-
current interaction that served as the starting point for our understand-
ing of QED and QCD also plays a central role in this story. In this
chapter I will argue that the structure of certain weak-interaction de-
cays requires a special type of current-current interaction, called the
V−A interaction. Because this coupling has a current-current form,
it is natural to suggest that the weak interaction is mediated by a set
of spin 1 particles. Our pursuit of this hypothesis will lead us to new
theoretical aspects of non-Abelian gauge theories. However, once we un-
derstand these, we will be able to predict the properties of the new spin
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1 bosons, learn that these bosons actually exist, and test their predicted
properties against experiment.

15.1 Development of the V−A theory of the weak
interaction

Historically, it took some time to understand that β decay and related
processes required a new fundamental interaction. The first guess about
β decay was that it corresponded to the ejection of electrons from an
atomic nucleus. It was a mystery why the energy spectrum of electrons
seemed to be continous rather than a set of discrete lines, as one finds
for gamma ray emission from nuclei. In 1930, Pauli explained this by
postulating the existence of an invisible particle emitted along with the
electron (Pauli 1930). Fermi called this particle the neutrino and gave
a unified description of the β decays of nuclei using a general 4-fermion
interaction (Fermi 1934)

(15.4)

In the 1950’s, the discovery of strange particles added more elements
to the theory of the weak interaction. Strangeness was apparently con-
served in the strong interaction production of strange particles, but it
must be violated in their decays. This violation could be ascribed to the
weak interaction. In addition, it was found that the K0 could decay by
both of the processes

K0 → π+π− , K0 → π+π−π0 , (15.5)

to final states with P = +1 and P = −1, respectively. It seemed impos-
sible that these decays could belong to the same particle, since parity was
known to be an almost perfect symmetry of atomic physics and nuclear
physics. In 1956, Lee and Yang formally proposed the weak interaction
as a distinct fundamental force (Lee and Yang 1956). They pointed out
that parity conservation had never been tested for this force, and that
the weak interaction might indeed violate parity. Very soon after, parityViolation of parity invariance in par-

ticle decays showed that the weak in-
teraction was a distinct new force of
nature and gave important clues to its
structure.

conservation in β decay was tested by Wu, Ambler, Hayward, Hoppes,
and Hudson, in the decay of polarized Co60 nuclei, and by Garwin, Led-
erman, and Weinrich and Friedman and Telegdi, in the decay of muons
(Wu et al. 1957, Garwin et al. 1957, Friedman and Telegdi 1957). Parity
violation was not only nonzero, it was seen to be a large effect. In 1958,
Feynman and Gell-Mann and Marshak and Sudarshan proposed a model
of the weak interaction based on the idea that the weak interaction vi-
olates parity maximally (Feynman and Gell-Mann 1958, Marshak and
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Sudarshan 1958). This model, called the V−A theory, proposed that
all weak interaction matrix elements could be derived from a current-
current interaction of the form (in modern notation) The matrix element of the V−A de-

scription of the weak interaction.

M =

〈
4GF√

2
jµ+
L j−µL

〉
, (15.6)

where

jµ+
L = ν†Lσ

µeL + u†Lσ
µdL + · · ·

jµ−L = e†Lσ
µνL + d†Lσ

µuL + · · · (15.7)

In this equation, and henceforth, I will use the flavor labels e, µ, u, d,
etc., to represent the lepton and quark fields. It is a crucial property
that only the left-handed components of the Dirac field appear in (15.7)
The name V−A (“V minus A”) comes from rewriting

u†Lσ
µdL = uγ(

1− γ5

2
)d =

1

2
[uγµd− uγµγ5d] , (15.8)

a difference of the vector and axial vector currents. The parameter GF
is called the Fermi constant. It has the dimensions of (GeV)−2. Its value
is The Fermi constant that gives the

strength of the V−A interaction.GF = 1.166× 10−5 (GeV)
−2

. (15.9)

The most accurate determination of this value comes from the measure-
ment of the muon lifetime, for which the theory will be discussed in the
next section. The factor of

√
2 in the definition of GF is a relic of Fermi’s

original proposal, which assumed parity conservation.

15.2 Predictions of the V−A theory for leptons

The V−A theory of the weak interaction is very simple, but it is
surprisingly rich. It makes a number of detailed and rather unexpected
predictions for weak interaction processes that are confirmed by experi-
ment. In the rest of this chapter, I will describe four of these.

First, the theory predicts that electron emitted in the β decay of a
nucleus should be preferentially left-handed polarized. For extremely The polarization of electrons emitted in

β decay.relativistic particles, the field e†L creates only left-handed, and not right-
handed, electrons. In fact, though, electrons are emitted in nuclear β
decay over a wide range of energies. To understand the polarization
for a more slowly moving electron, we need to look at the form of the
corresponding Dirac spinors. It will still be useful to use the basis (8.7)
to represent the Dirac matrices. The matrix γ5 is diagonal in this basis,

γ5 =

(
−1 0
0 1

)
. (15.10)

so projected spinors such as eL, µL, qL correspond to the top two com-
ponents of 4-component Dirac spinors.
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Fig. 15.1: Polarization of electrons emitted in β decay, in units of h̄/2, as
a function of the velocity v/c of the emitted electron, from (Koks and van
Klinken 1976).
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For an electron moving in the 3̂ direction, with momentum pµ =
(E, 0, 0, p)µ, the Dirac equation takes the form(

0 E − pσ3

E + pσ3 0

)
U(p) = 0 . (15.11)

The solutions to this equation are the spinors

UR =


√
E − p

(
1
0

)
√
E + p

(
1
0

)
 , UL =


√
E + p

(
0
1

)
√
E − p

(
0
1

)
 . (15.12)

The polarization of an electron is computed as the ratio

Pol =
Prob(e−L )− Prob(e−R)

Prob(e−L ) + Prob(e−R)
. (15.13)

The operator e†L sees only the top components of these spinors. The
probabilities are proportional to the squares of the matrix elements. So,
electrons created by the V−A current (15.7) have the polarization

Pol =
(E + p)− (E − p)
(E + p) + (E − p)

=
p

E
. (15.14)

That is,

Pol =
v

c
. (15.15)

Figure 15.1 shows a compilation of data from β decay on a variety of
nuclei. Indeed, the prediction holds quite accurately. The highest energy
electrons emitted in β decay are almost perfectly left-handed polarized.

Next, we study the weak interaction decay of the muon. The muon
has its own neutrino νµ. It appears in the V−A theory as a separate
term in the currents

jµ+
L = · · ·+ ν†µσ

µµL + · · · jµ−L = · · ·+ µ†Lσ
µνµ + · · · (15.16)

We will see in Chapter 20 that neutrinos have small nonzero masses.
However, for the considerations of this chapter, these masses can be
ignored. Then helicity conservations implies that neutrinos produced
by the V−A interaction are always left-handed, and antineutrinos
produced by this interaction are always right-handed.

The muon decays through the process This somewhat technical section de-
rives the V−A prediction for the
energy-momentum distribution of elec-
trons emitted in muon decay.

µ− → νµe
−νe , (15.17)

with invariant matrix element

M =
〈
νµe
−νe

∣∣ 4GF√
2
ν†µσ

µµL e
†
Lσµνe |µ〉 (15.18)
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The Feynman diagram for this process has the form

(15.19)

Using the various fermion fields to destroy and create initial and final
particles, the matrix element in (15.18) gives

M =
4GF√

2
u†L(pν)σµuL(pµ) u†L(pe)σµvL(pν) . (15.20)

Now we need to reduce this to an explicit expression in terms of particle
4-vectors.

The matrix element (15.20) is very similar to one that we encountered
in our discussion of eq → eq, which is also mediated by a current-current
interaction. For that process, in the high-energy limit where we canEvaluation of the V−A matrix ele-

ment for muon decay. ignore all masses, we needed the value of the matrix element

M(e−LqL → e−LqL) ∼ u†L(p′e)σ
µuL(pe) u

†
L(p′q)σ

µvL(pq) .

(15.21)

Evaluating the spinors, we found in (9.48)∣∣∣∣u†L(p′e)σ
µuL(pe) u

†
L(p′q)σ

µvL(pq)

∣∣∣∣2 = 4s2 = 4(2pe · pµ)(2p′e · p′µ) .

(15.22)
For this current-current matrix element, the answer is similar,A guess at the evaluation of the matrix

element for µ decay, based on results
from Section 9.4.

∣∣∣∣u†L(pν)σµuL(pµ) u†L(pe)σ
µvL(pν)

∣∣∣∣2 =
1

2
· 4(2pe · pν)(2pµ · pν) , (15.23)

in the limit in which we ignore the masses of e−, νµ and νe. This is aDerivation of (15.23). I apologize that
this derivation uses a number of spe-
cial tricks. The equation can be derived
transparently using the more standard
methods for evaluating Feynman dia-
grams that you will find in textbooks
of quantum field theory.

decay, so the mass of the µ must be retained, and the expression (15.23)
does depend correctly on mµ. The average over the spin of the muon (at
rest) gives the factor of 1

2 . In next three paragraphs, I give the derivation
of (15.23).

The easiest way to evaluate the matrix element (15.20) is to use the
Fierz identity, an identity of the σµ matrices,

(σµ)αβ(σµ)γδ = 2εαγεβδ (15.24)

where α, β, γ, δ = 1, 2 are spinor indices and ε is the antisymmetric
symbol with ε12 = 1. There are 16 possible values of α, β, γ, δ, so
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you can check this identity by verifying it for each set of values. This
rewrites the product of spinors as

2
(
u†α(pν)εαγu

†
γ(pe)

)(
uβ(pµ)εβδvδ(pν)

)
. (15.25)

Each term in parentheses is Lorentz invariant. This means that we can
evaluate the two terms in different frames and still obtain the correct
result for (15.23).

To evaluate the first product, go to the CM frame of e− and νµ.
Both particles are massless. Their momenta are back-to-back and can
be taken to be along the 3̂ axis,

(15.26)

In this frame, the spinors are

uL(pν) =
√

2Eν

(
0
1

)
, uL(pe) =

√
2Ee

(
1
0

)
. (15.27)

Then ∣∣∣∣(u†(pν)αεαγu
†
γ(pe)

)∣∣∣∣2 = 4EνEe = 2pν · pe . (15.28)

To evaluate the second product in (15.25), work in the frame where
the µ− is at rest. The four-component spinor of the µ at rest is

U(pµ) =
√
mµ

(
ξ
ξ

)
, (15.29)

where ξ is the 2-component spinor representing the muon spin orienta-
tion. The V−A current sees only the top two components of (15.29).
The electron antineutrino can be taken to move in the +3̂ direction;
then its spinor is

vL(pν) =
√

2Eν

(
0
1

)
. (15.30)

The product is then∣∣∣∣(u(pµ)βεβδvδ(pν)
)∣∣∣∣2 = 2mµEν

∣∣ξ†( 0
1

)∣∣2 . (15.31)

Averaging over the two possible spin directions for ξ, this becomes∣∣∣∣(u(pµ)βεβδvδ(pν)
)∣∣∣∣2 = mµEν = pµ · pν . (15.32)

Assembling the results (15.28) and (15.32), and squaring the 2 in (15.25),
we find (15.23).

It is convenient to express this result in terms of variables similar to
those that we used in Chapter 10 to analyze 3-body phase space. As Integration of the muon decay matrix

element over phase space.in (10.45), let

xe =
2Ee
mµ

, xν =
2Eν
mµ

, (15.33)



238 The Current-Current Model of the Weak Interaction

The quantities xe and xν satisfy

0 < xe , xν < 1 . (15.34)

In these coordinates, the expression (15.23) for the square of the matrix
element is∣∣∣∣u†L(pν)σµuL(pµ) u†L(pe)σµvL(pν)

∣∣∣∣2 = 2m4
µ(1− xν)xν , (15.35)

where I have used

(pe + pν)2 = (pµ − pν)2 = p2
µ − 2pµ · pν = m2

µ(1− xν) . (15.36)

We can now evaluate the rate of muon decay by integrating this quan-
tity over phase space. The variables xi are just those used in (7.33), so
we can use the formula (7.35). We are ignoring the masses of the three
final particles, so, as in (10.47), the xi are to be integrated over the
triangle

(15.37)

Then the decay rate is

Γ =
1

2mµ

m2
µ

128π3

∫
dxedxν 16G2

Fm
3
µxν(1− xν)2

=
G2
Fm

5
µ

16π3

∫ 1

0

dxe

∫ 1

1−xe

dxν xν(1− xν) . (15.38)

The integrand is given in terms of the energy fraction of the νe, which is
unobservable. However, we can integrate over this variable to obtain an
expression that only involves the observable electron energy distribution.
The integral isThe final result for the V−A predic-

tion of the electron spectrum in muon
decay is a simple function that gives
a good description of the experimental
data.

∫ 1

1−xe

dxν xν(1− xν) =

∫ xe

0

dy(1− y)y =

(
x2
e

2
− x3

e

3

)
. (15.39)

Our final expresssion for the muon decay rate is

Γ =
G2
Fm

5
µ

32π3

∫ 1

0

dxe x
2
e(1−

2

3
xe) =

G2
Fm

5
µ

192π3
. (15.40)

The shape of the electron energy distribution then is predicted to be

(15.41)
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Fig. 15.2: Energy spectrum of positrons emitted in muon decay µ+ →
e+νµνe, and comparison to the V−A prediction, from (Bardon, et al. 1965).

This is a function with a very characteristic shape. It is quadratic in xe
for small xe and has a maximum at the endpoint xe = 1.

Figure 15.2 shows the experimental data on the electron energy dis-
tribution in the muon decay, which is in very good agreement with this
prediction. The slight deviations from the ideal form (15.40) are due to
the fact that the outgoing electron can radiate a photon, losing a small
fraction of its energy. The theoretical curve shown in the figure takes
account of this effect.

The comparison of the total rate formula with the measured value of
the muon lifetime gives a very accurate value of GF ,

GF = (1.1663787± 0.0000006)× 10−5 (GeV)−2 . (15.42)

Values of GF obtained from nuclear β decay are consistent with this
value (with one subtlety that I will discuss in Section 18.1). The V−A
interaction seems to have the constant GF as a universal strength.

There is one more interesting aspect of the prediction for muon de-
cay. At the endpoint xe = 1, the configuration of the electron and the A special property of muon decay —

the complete polarization of electrons
with energies at the kinematic end-
point.
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Fig. 15.3: Signal rates as a function of time, as the muon spin is precessed
in a magnetic field, in the TRIUMF measurement of the correlation of the
positron direction with the muon spin, from (Stoker et al. 1985).

neutrinos is

(15.43)

The νµ must be left-handed, the νe must be right-handed, and the elec-
tron must be left-handed. So the angular momenta of the neutrinos
cancel, and the total angular momentum in the final state is that car-
ried by the electron spin. This implies that the electron must be emitted
in a direction opposite to the spin of the muon. The predicted angular
distribution for electrons at the endpoint is

dΓ

d cos θ
∼ (1− cos θ) , (15.44)

with a maximum when the electron is moving opposite to the muon spin
and a zero when the electron is parallel to the muon spin. This prediction
was checked explicitly in an experiment at the TRIUMF laboratory in
Vancouver, Canada, in which µ+s from pion decay were stopped in an
absorber and then allowed to decay (Stoker et al. 1985). Muons from
pion decay are perfectly polarized, for a reason that I will discuss in
the next section. A magnetic field was used to precess the spins of the
stopped muons, and the decay electrons were counted as a function of
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time.

(15.45)

The signal was seen to oscillate as the muons precess. The data is shown
in Fig. 15.3. There is no suppressed zero; the observed extinction when
the muon spin points to the detector is almost complete. There is some
small depolarization of the muon as it stops in the absorbing medium.
When this is taken into account, the result is consistent with complete
left-handed electron polarization in µ decay at the endpoint.

15.3 Predictions of the V−A theory for pion decay

The third example I will discuss is pion decay. The charged pion
decays through the weak interaction, by the processes

π− → µ−νµ , π− → e−νµ . (15.46)

According to the V−A theory, the electron and the muon have identical
weak interactions. However, the ratio of branching ratios for these A mystery: If the weak interaction has

universal strength, why do pions decay
much more frequently to muons than to
electrons?

processes is observed to be

BR(π− → e−ν)

BR(π− → µ−ν)
= 1.23× 10−4 . (15.47)

How can this be consistent with the V−A theory?
For definiteness, analyze the case of decay to a muon. The V−A

interaction mediating the decay is

M =

〈
4GF√

2
µ†Lσ

µνµ u
†
LσµdL

〉
. (15.48)

We can evaluate the matrix element of the quark current between the
pion and the vacuum by casting it into the form of (14.34). Let |πa〉,
a = 1, 2, 3, be the pion states with definite isospin indices. Then∣∣π−〉 =

1√
2

(
∣∣π1
〉
− i
∣∣π2
〉
) . (15.49)

This allows us to evaluate

〈0|u†Lσ
µdL

∣∣π−(p)
〉

= 〈0|Ψuγ
µ (1− γ5)

2
Ψd

1√
2

(
∣∣π1(p)

〉
− i
∣∣π2(p)

〉
)
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= − 1

2
√

2
〈0|Ψuγ

µγ5
(σ1 + iσ2

2

)
Ψ(
∣∣π1(p)

〉
− i
∣∣π2(p)

〉
)

= − 1

2
√

2
〈0| (jµ51 + ijµ52)(

∣∣π1(p)
〉
− i
∣∣π2(p)

〉
)

= − 1√
2
ifπp

µ . (15.50)

The factor of pµ dots into the lepton current and gives the divergence
of this current, which we can evaluate using the Dirac equation as in
(14.15),

∂µ(µ†Lγ
µνµ) = imµ(µ†Rνµ) . (15.51)

Then the lepton matrix element is explicitly proportional to the mass of
the lepton.

An easier way to evalute the matrix element is to work in the rest
frame of the pion, where pµ = (mπ, 0, 0, 0)µ, and we find

ipµ
〈
µ−(pµ)νµ(pν)

∣∣µ†Lσµνµ |0〉 = mπu
†(pµ)vL(pν) . (15.52)

The matrix element (15.48) then evaluates to

M =
4GF√

2

1√
2
fπmπ u

†(pµ)vL(pν) . (15.53)

Let the muon 4-vector be pµ = (E, 0, 0, k)µ. Then the neutrino 4-vector
is pν = (k, 0, 0,−k)µ, with E + k = mπ. We have seen above in (15.12)
that the two top components of the spinor for a right-handed muon are

uR(pµ) =
√
E − k

(
1
0

)
. (15.54)

With

vL(pν) =
√

2Eν

(
1
0

)
, (15.55)

the spinor matrix element is∣∣∣∣u†R(pµ)vL(pν)

∣∣∣∣2 = 2k(E − k) . (15.56)

The square of the complete decay matrix element is

|M|2 = 4G2
F f

2
πm

2
π · 2k(E − k) . (15.57)

In a 2-body decay to one massive and one massless particle, the ener-
gies and momenta take the form found in (2.19). Here

E =
m2
π +m2

µ

2mπ
, k =

m2
π −m2

µ

2mπ
. (15.58)

Then

Γ =
1

2mπ

1

8π

2k

mπ
· 8G2

F f
2
πm

2
µmπ

m2
π −m2

µ

2mπ
. (15.59)
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Finally, we find

Γ(π− → µ−ν) =
G2
F f

2
πm

3
π

4π

m2
µ

m2
π

(
1−

m2
µ

m2
π

)2

. (15.60)

From this formula and the measured value of the pion decay rate, assum-
ing that the value of GF is universal, we obtain the value fπ = 93 MeV
quoted in (14.35).

Using either method of evaluation, the final formula for the decay am-
plitude is proportional to the mass of the muon. It is easy to understand
this by drawing the spins of the muon and neutrino resulting from the
pion decay. The pion has spin 0. By V−A , the antineutrino must be
right-handed. Then we must have Resolution of the mystery: Pion decay

requires a violation of helicity conser-
vation. Then the rate of pion decay to
a lepton ` is proportional to m2

`/m
2
π .

(15.61)

To conserve angular momentum, the muon must also be right-handed.
This violates helicity conservation, and also the preference of the V−A
interaction that the muon be left-handed. To flip the helicity of the
muon, we must invoke the muon mass.

The decay rate formula is then proportional to m2
µ. Thus, the V−A

interaction naturally predicts a much larger branching ratio for the pion
decay to muons rather than electrons. The ratio of these decay rates is
predicted to be

BR(π− → e−ν)

BR(π− → µ−ν)
=
m2
e

m2
µ

(
m2
π −m2

e

m2
π −m2

µ

)2

= 1.28× 10−4 , (15.62)

in good agreement with the measured value quoted in (15.47).

15.4 Predictions of the V−A theory for neutrino
scattering

The final test of the V−A theory that I will discuss comes in deep
inelastic neutrino scattering. It is possible to create a neutrino beam
using a proton beam from a high-energy accelerator. The method is to
shoot the proton beam into a target, produce pions, allow the pions to
pass through an empty volume in which they can decay, and then ab-
sorb all of the decay products except for the neutrinos, which interact
only through the weak interactions and are thus highly penetrating. At
Fermilab, the neutrino beam was created by shooting the pion beam hor-
izontally underground. After the pion decay region, the decay products
and undecayed pions and other hadrons passed through the earth. The
experimenters then dug a a pit 1 km downstream to house the neutrino
detector (Benvenuti et al. 1973).

The V−A theory predicts neutrino and antineutrino reactions with
quarks,

νLdL → µ−LuL νRuL → µ+
RdL (15.63)
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Fig. 15.4: Event displays of charged-current (top) and neutral-current (bot-
tom) neutrino deep inelastic scattering events recorded by the NuTeV ex-
periment at Fermilab (figures courtesy of Kevin McFarland and the NuTeV
collaboration).

and antiquarks,

νLuR → µ−LdR νRdR → µ+
RuR (15.64)

and similar reactions on the s and c quarks and antiquarks in the parton
sea. These reactions should be seen as events with hadronic energy de-Neutrino deep inelastic scattering.

position and an outgoing muon, called charged-current events. An event
display for such an event, recorded by the NuTeV experiment at Fermi-
lab (Goncharov et al. 2001), is shown in the upper part of Fig. 15.4. The
particle going out to the right is a muon, whose momentum is measured
using a magnetized-iron spectrometer. The experiments are thus very
similar in spirit to the classic electron deep inelastic scattering experi-
ments. The outgoing lepton is measured, and the hadronic final states
are not discriminated. The neutrino experiments also observe neutral-
current events, with a neutrino in the final state, as shown in the lower
event display in Fig. 15.4. I will discuss these events in Section 16.4.

To predict the cross section for deep-inelastic neutrino scattering, we
can follow the derivation that we used earlier for deep inelastic electron
scattering. That derivation was based on the formula for electron-quarkCalculation of cross sections for deep

inelastic neutrino and antineutrino
scattering.

scattering (9.51),
dσ

d cos θ
=
πQ2

fα
2

s

s2 + u2

t2
, (15.65)

derived from the formulae for the electromagnetic scattering matrix el-
ements

|M(e−LqL → e−LqL)|2 = 4Q2
fe

4 s
2

t2
,

|M(e−LqR → e−LqR)|2 = 4Q2
fe

4u
2

t2
. (15.66)
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Notice that we have the factor s2 in the numerator for the scattering of
like-helicity fermions and the factor u2 in the numerator for the scatter-
ing of opposite-helicity fermions. The latter factor appears because the
backward scattering of fermions with opposite helicity

(15.67)

is forbidden by angular momentum conservation. When we transform
to the variables x and y of deep inelastic scattering,

s2 → 1 u2 → (1− y)2 , (15.68)

as we discussed in Section 9.5.
In neutrino scattering, the V−A interaction fixes the helicity to be

left-handed for neutrinos and quarks and right-handed for antineutri-
nos and antiquarks. Changing the prefactors appropriately, the cross
sections for neutrino and antineutrino scattering on u and d quarks are

dσ

d cos θ
(νLdL → µ−LuL) =

G2
F

2πs
· s2 ,

dσ

d cos θ
(νRdL → µ+

RuL) =
G2
F

2πs
· u2 . (15.69)

To derive the formulae for deep inelastic scattering, we integrate these
with the pdfs, remembering to average over the initial quark spins. We
do not average over the neutrino or antineutrino spin, because the neu-
trinos are produced completely polarized from π decay. We then find,
for neutrino scattering, Characteristic distributions in y for

deep inelasticν and ν scattering from
quarks and antiquarks.d2σ

dxdy
((νp→ µ−X) =

GF s

π

[
xfd(x) + xfu(x) · (1− y)2

]
, (15.70)

and for antineutrino scattering

d2σ

dxdy
((νp→ µ+X) =

GF s

π

[
xfu(x) · (1− y)2 + xfd(x)

]
, (15.71)

plus small contributions from heavier sea quarks and antiquarks.
Notice that, if we concentrate only on the contribution of valence

quarks in the proton, we expect a distribution

dσ

dy
(νp) ∼ 1 (15.72)

for neutrinos, but a distribution

dσ

dy
(νp) ∼ (1− y)2 (15.73)
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Fig. 15.5: Distribution of neutrino and antineutrino deep inelastic scattering
events in y, as measured by the CDHS experiment at CERN, from (de Groot
et al. 1979).

for antineutrinos. For neutrino scattering from nuclear targets with
approximately equal numbers of protons and neutrons, the same regu-
larities should hold. Figure 15.5 shows the distribution in y of neutrino
and antineutrino scattering events from the CDHS experiment at CERN
(de Groot et al. 1979). The prediction is verified in a quite striking way,
though there are small deviations from the ideal result due to the effects
of antiquarks.

The V−A theory is thus dramatically successful at describing the
weak interactions of quarks and leptons. In the next chapter, I will
explain how to obtain the V−A interaction from deeper principles.

Exercises

(15.1) The Fierz identity (15.24) is useful in many con-
texts, so it is worth understanding it in some detail.

(a) Evalute the left- and right-hand sides of the
formula (15.24) for each of the 16 possible val-
ues of the indices α, β, γ, δ, and verify that
the results match in every case.

(b) Rearrange the expression

u†L(p′e)σ
µuL(pe) u

†
L(p′q)σµuL(pq) (15.74)

using the Fierz identity. Notice that the result
is a Lorentz-invariant product of the spinors
of p′e and p′q and a second, disconnected
Lorentz-invariant product of the spinors of pe



Exercises 247

and pq. Compare this result to (15.22) (or
(9.48)).

(c) We can apply the Fierz identity to products
of fermion field operators rather than prod-
ucts of spinors. Fermion field operators cre-
ate states that obey Fermi statistics, so inter-
changing the order of two fermion field oper-
ators must give a factor (−1) to reflect this.
Including this minus sign, show that, if ψL,
χL are fermion field operators,

ψ†Lσ
µψL χ

†
LσµχL = +ψ†Lσ

µχL χ
†
LσµψL .

(15.75)

(15.2) This problem studies weak interaction decays of the
τ lepton. The τ is a heavy lepton. The τ and its
neutrino ντ couple to the weak interaction in the
same way as the electron and the muon. The mass
of the τ is 1777 MeV.

(a) The V−A theory predicts that the τ will
decay by τ− → ντe

−νe and τ− → ντµ
−νµ.

These processes are very similar to muon de-
cay. Compute the partial widths for these
decays, using the formulae derived in Sec-
tion 15.2. (You may ignore the muon mass.)

(b) Next consider the partial width for the τ to
decay to quarks: τ → ντdu. Assume that
the τ mass is large enough that we can ignore
QCD and all quark masses. Then the calcula-
tion is just parallel to that for τ− → ντe

−νe.
QCD color must be included. We saw in
(11.72) that the first QCD correction is ob-
tained by mutiplying the zeroth order result
by

(1 +
αs(mτ )

π
) (15.76)

Combining this factor into the zeroth order
computation, compute the partial width for
τ → ντdu.

(c) From the results of parts (a) and (b), compute
the τ lifetime and the branching ratio of the
τ to leptonic modes. How do these numbers
compare with the measured values reported
by the Particle Data Group?

(d) A specific hadronic decay of the τ is τ− →
ντπ

−. Work out the kinematics of this reac-
tion in the frame where the τ is at rest. Let
the τ have its spin parallel to the 3̂ axis, and
let the π− go off at an angle θ with respect to
the 3̂ axis. Write the momentum vectors of
the π− and the ντ . Write the spinors u(p) for
the τ and the ντ . The 2-component spinor in
uL(ντ ) should be left-handed with respect to
the ντ direction of motion.

(e) Compute the matrix element for the decay
τ− → ντπ

−. The calculation is similar to
that for π decay to µν. For the hadronic half
of the amplitude, you will need the identity
related to (15.50)〈

π−(p)
∣∣ j−µL |Ω〉 = ifπp

µ/
√

2 (15.77)

where j−L is the charge-changing weak inter-
action current. For the leptonic half of the
amplitude, use the explicit spinors for the τ
and the ντ derived in (d).

(f) Compute the partial width for τ− → ντπ
−,

using fπ = 93 MeV. Predict the branching
fraction for this decay model, and compare to
the Particle Data Group value.

(g) Work out the angular distribution of the pion
in τ− → ντπ

− relative to the τ spin direc-
tion. Notice that the pion direction is corre-
lated with the τ spin, so measurement of pion
momenta in this decay gives an indication of
the τ spin direction.





Gauge Theories with
Spontaneous Symmetry
Breaking 16
The V−A theory, with its current-current interaction, strongly suggests
that the weak interaction is generated by the exchange of a spin 1 boson.
The current-current interaction would arise from the Feynman diagram

(16.1)

The new boson is called the W−. It must have an antiparticle W+. The universal V−A interaction can be
obtained from Feynman diagrams that
include a massive spin 1 boson, the W
boson.

And, it must be massive. In the diagram, the W− appears as a reso-
nance, with the Breit-Wigner denominator

1

q2 −m2
W

. (16.2)

But, there was no sign of the q2-dependence in the data that I showed
in the previous chapter. This implies that the W− boson is heavier than
about 30 GeV. When we discuss the W boson as a particle, in the next
chapter, we will see that its mass is about 80 GeV.

16.1 Field equations for a massive photon

Our need for a massive spin 1 boson forces us to face a problem that
we have avoided up to now: What is the wave equation for the associated
massive spin 1 field? As we discussed in Section 3.3, it is not straight-
forward to write a quantum theory for a spin 1 field that is positive and
Lorentz-invariant. Maxwell’s equations provide such a quantum theory,
but Maxwell’s equations also require that the associated particle, the
photon, is massless.

We might try simply to add a mass term to Maxwell’s equations,
but there is a problem. If we have a massive spin 1 particle, we can
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boost to its rest frame. In this frame, the polarization vector ~ε can
point in any of the three space directions. Then the particle must have
three independent quantum states. But a photon has only two quantum
states. So we not only need to add a mass term for the photon; we also
need to supply a new degree of freedom.

There is only one way known to solve this problem. That is to mix
the two concepts of gauge invariance and spontaneous symmetry break-
ing. In this chapter, I will give three examples of gauge theories with
spontaneous breaking of the gauge symmetry. In steps, we will build up
to the correct theory of the weak interaction.

First, consider a U(1) gauge theory that includes a complex scalar
field. The Lagrangian isThe simplest illustrative example of a

gauge theory with spontaneous symme-
try breaking: a U(1) gauge field (elec-
tromagnetism) coupled to a complex-
valued scalar field.

L = −1

4
(Fµν)2 +

∣∣Dµφ
∣∣2 − V (φ) . (16.3)

The covariant derivative on φ is

Dµφ = (∂µ − ieQAµ)φ , (16.4)

where Q is the charge of the field φ in units of e, and V (φ) is a potential
energy that depends on the value of φ.

Landau and Ginzburg wrote down this model as a phenomenological
description of the electrodynamics of a superconductor (Ginzburg and

Landau 1950). We reviewed part of the field-theoretic description of aThis model was originally introduced to
model superconductivity in metals at
extremely low termperature.

superconductor in Section 14.2. In a superconductor, e−e− pairs form,
and these pairs form a Bose condensate in the ground state. The ground
state contains an indefinite number of these pairs. This is signalled by
the fact that a field φ(x) that can destroy pairs has a nonzero expectation
value in the ground state |0〉,

〈0|φ(x) |0〉 =
v√
2
. (16.5)

This expectation value would correspond to the minimum of V (φ). Be-
cause this system has U(1) symmetry, there must actually be a manifold
of degenerate ground states, parametrized by

〈γ|φ(x) |γ〉 =
v√
2
eiγ . (16.6)

For definiteness, I will expand about the state |0〉 in which 〈φ〉 is real.
The expansion of φ(x) about this ground state has the form

φ(x) =
1√
2

(
v + χ(x) + iη(x)

)
. (16.7)

A constant value of η shifts the vacuum state to one with the phase
δγ = η. Thus, the field η is the Goldstone boson associated with this
symmetry breaking and must have zero mass.

The field φ has the quantum numbers of e−e−, and therefore it is
electrically charged, as reflected in the form of the covariant derivative
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above. To describe superconductivity, Q = 2. We can use a local gauge
transformation

φ(x)→ e−iQα(x)φ(x) (16.8)

to remove η(x). After doing this, the kinetic term of the φ field becomes∣∣Dµφ
∣∣2 =

∣∣(∂µ − ieQAµ)
1√
2

(v + χ(x))
∣∣2

=
∣∣−ieQAµ v√

2
+ · · ·

∣∣2 . (16.9)

This is a mass term for the Aµ field, Generation of a mass for the photon in
the Landau-Ginzburg model∣∣Dµφ

∣∣2 =
1

2
e2Q2v2AµA

µ =
1

2
m2
AAµA

µ . (16.10)

In a superconductor, the quantum state with energy mA is a quantized
oscillation at the plasma frequency. The fact the the photon obtains a
mass is manifested experimentally as the Meissner effect, the property
that a superconductor expels magnetic fields (Tinkham 1966).

It is instructive to count the degrees of freedom. The field Aµ(x) has
2 degrees of freedom. The Goldstone boson η(x) contributes one more
degree of freedom. We can eliminate the field η(x) by a choice of gauge,
but this returns one degree of freedom to Aµ(x), giving exactly the 3
degrees of freedom required for a massive scalar field. It is often said
that the vector field eats the Goldstone boson and becomes massive.

The polarization sum for a massive vector boson Aµ is∑
i=1,2,3

εµi (p)ε∗νi (p) = −
(
ηµν − pµpν

m2
A

)
. (16.11)

We can check this in the rest frame of the vector boson. In that frame,
the right-hand side is the projection onto three spacelike polarization
vectors. Since this expression is Lorentz-covariant, it must then be cor-
rect in any frame.

This complex of ideas for generating a massive spin 1 field was in-
troduced almost simultaneously in papers by Higgs (1964), Englert and
Brout (1964), and Guralnik, Hagen, and Kibble (1964). Parts of the
structure were anticipated by Nambu (1960) and Anderson (1963). For
brevity, it is called the Higgs mechanism. The field φ is called the
Higgs field. The physical quantum state created by the leftover scalar
field χ(x) is called the Higgs boson. We will see that these elements have
analogs in the realistic theory of the weak interaction.

16.2 Model field equations with a non-Abelian gauge
symmetry

Before going to a realistic model, I will consider another illustrative
example, this time with a non-Abelian symmetry group. Consider a
gauge theory with the gauge group SO(3). There are 3 gauge bosons

A1
µ , A2

µ , A3
µ , (16.12)
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corresponding to rotations about the 1̂, 2̂, 3̂ axes. Introduce a real-
valued scalar field Φa in the 3-vector representation. This is the adjoint
representation of SO(3), and so the covariant derivative on Φa is

DµΦa = ∂µΦa + gεabcAbµΦc . (16.13)

We can easily write a potential that is rotationally invariant in the Φa

space and is minimized when

| 〈Φa〉 | = v (16.14)

The minima cover a manifold that has the form of a sphere in 3 dimen-
sions.The Georgi-Glashow model—an SO(3)

gauge theory coupled to a scalar field
Φa.

For definiteness, I will choose to analyze the vacuum state that points
in the 3̂ direction in the Φa space,

〈0|Φa |0〉 = vδa3 . (16.15)

We can expand Φa about that vacuum,

Φ(x) = (π1(x), π2(x), v + h(x)) . (16.16)

The fields π1, π2 are Goldstone bosons. Again, we can use a gauge
transformation to remove those fields. Then

Φ(x) = (0, 0, v + h(x)) . (16.17)

The kinetic term of Φa is

1

2
(DµΦa)2 =

1

2
(gεab3Abµ(v + h(x)) + ∂µh(x)δa3)2 . (16.18)

Expanding about the chosen vacuum state, we find

1

2
(DµΦa)2 =

g2

2
εab3Abµε

ac3Aµcv2 + · · ·

=
g2v2

2

(
AbµA

µb −A3
µA

µ3
)
. (16.19)

The fields A1
µ and A2

µ obtain the mass

m2
W = g2v2 (16.20)

and A3
µ remains massless.

It is not difficult to understand why the A3
µ boson stays at zero mass.Physical explanation of the mass pat-

tern of the Georgi-Glashow model, in
which A1, A2 become massive but A3

remains massless.

If 〈~Φ〉 points in the 3̂ direction, the symmetry associated with rotation
about the 3̂ axis is not broken,

(16.21)
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The unbroken U(1) gauge symmetry protects A3 from obtaining mass.
The fields A1

µ, A2
µ can be combined into eigenstates of the rotation

about the 3̂ axis,

W± =
1√
2

(A1
µ ∓ iA2

µ) . (16.22)

We are now tempted to identify A3
µ as the photon and W±µ as the W

bosons responsible for creating the V–A interaction. This is a unified
model of weak and electromagnetic interactions. It is called the Georgi-
Glashow model (Georgi and Glashow 1972). Notice that, in this model,
the coupling constant g of the weak interaction bosons is equal to the
electric charge e.

This model is very attractive, but it is not correct. It identifies elec-
tric charge with I3, the generation of rotations about 3̂. The neutrino
has zero electric charge, but it must be in an isospin multiplet with the
electron so that it can be transformed into the electron by a weak inter-
action. The minimal size multiplet for the neutrino and the electron is
an I = 1 multiplet E+

ν
e−

 . (16.23)

Then there must be a heavy electron E+. The model predicts that
both of the fermions e− and E+ are produced in deep inelastic neutrino
scattering,

(16.24)

Production of the E+ has not been observed. Searches for the E+ put
a lower bound on the mass of this particle at about 400 GeV.

16.3 The Glashow-Salam-Weinberg electroweak model

Glashow suggested another way to construct a unified model of weak
and electromagnetic interactions (Glashow 1961). We choose the gauge
group The SU(2)×U(1) model of unified weak

and electromagnetic interactionsSU(2)× U(1) (16.25)

There are now 4 vector bosons,

A1 , A2 , A3 , B . (16.26)

In this structure, we can keep the neutrino-electron system as an I = 1
2

multiplet (ν, e−)L which transforms under the SU(2)× U(1) symmetry
as (

νL
e−L

)
→ ei~α·~σ/2e−iβ/2

(
νL
e−L

)
. (16.27)



254 Gauge Theories with Spontaneous Symmetry Breaking

As the Higgs mechanism became understood, Weinberg and Salam
showed that the required mass generation could be accomplished by a
Higgs field in the I = 1

2 representation (Weinberg 1967, Salam 1968).
This field transforms under SU(2)× U(1) as

ϕ =

(
ϕ+

ϕ0

)
→ ei~α·~σ/2eiβ/2

(
ϕ+

ϕ0

)
. (16.28)

Looking at the β terms in these transformation, the lepton doublet and
the Higgs field transform under the U(1) symmetry with charges − 1

2
and + 1

2 , respectively.
Let the potential for the Higgs field be

V (ϕ) = −µ2|ϕ|2 + λ(|ϕ|2)2 . (16.29)

The minimum of the potential satisfies

0 = −2µ2ϕ+ 4λϕ |ϕ|2 (16.30)

so, at the minimum,

|ϕ|2 = |ϕ+|2 + |ϕ0|2 =
µ2

2λ
. (16.31)

I will define
v =
√

2 〈|ϕ|〉 = µ/
√
λ . (16.32)

This Higgs field vacuum expectation value spontaneously breaks the
SU(2)× U(1) gauge symmetry.

The Higgs field has 4 degrees of freedom. The minima of V (φ) form
a sphere in this 4-dimensional space. All of these minima are equivalent
by SU(2) transformations. For definiteness, I will analyze the vacuum
state |0〉 where

〈ϕ〉 =

(
0

v/
√

2

)
. (16.33)

Expanding around this stateThe Higgs mechanism leaves one re-
maining physical degree of freedom in
the Higgs field ϕ. The corresponding
particle is the Higgs boson. ϕ(x) =

(
π+(x)

(v + h(x) + iπ3(x))/
√

2

)
. (16.34)

The fields π+ = (π1 + iπ2)/
√

2 and π3 are Goldstone bosons. We can
set these fields to zero by an SU(2) gauge transformation. This leaves
over one real-valued scalar field in ϕ. This remaining field h(x) is the
field of the Higgs boson.

The coupling of the gauge fields Aaµ and Bµ to any fermions and scalars
is specified by the covariant derivative

DµΨ = (∂µ − igAaµIa − ig′BµY )Ψ . (16.35)

Here Ia is a generator of the SU(2) gauge symmetry in the appropriate
representation. I will refer to the quantum number Ia as weak isospin. It
is an SU(2) quantum number, but it is important to understand that this
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is an exact symmetry, distinct from the approximate isospin symmetry
of the strong interaction. Y is the charge under the U(1) symmetry,

which is called the hypercharge. The theory has two coupling constants
g and g′ corresponding to the two independent gauge groups. These
coupling constants need not be equal. The ratio g′/g is a an important
free parameter in the theory.

The covariant derivative on the Higgs field is

Dµϕ = (∂µ − igAaµIa − ig′BµY )

(
0

v/
√

2

)
+ · · · . (16.36)

The kinetic term of the Higgs field is then

|Dµϕ|2 =
1

2
( 0 v )

(
gAaµ

σa

2
+ g′Bµ

1

2

)(
gAµb

σb

2
+ g′Bµ

1

2

)( 0
v

)
.

(16.37)
Evaluating this expression, the terms with A1

µ and A2
µ give

1

2
v2g2(

1

2
)2
(
(A1

µ)2 + (A1
µ)2
)
. (16.38)

In terms of the W fields defined in (16.22), this is

(
gv

2
)2 W+

µ W
µ− = m2

WW
+
µ W

µ− . (16.39)

The terms involving A3
µ and Bµ give

1

2
v2(

1

2
)2
(
−gA3

µ + g′Bµ
)2
. (16.40)

This expression is the mass term for one gauge field, which is a linear
combination of A3

µ and Bµ. It is convenient to define the weak mixing
angle θw by the relation Introduction of the weak mixing angle

θw. In the remainder of this book, I will
abbreviate cos θw = cw, sin θw = sw.

tan θw =
g′

g
, (16.41)

and to define parameters cw, sw

cw = cos θw =
g√

g2 + g′2
, sw = sin θw =

g′√
g2 + g′2

. (16.42)

Then we can write the two orthogonal combinations of the fields A3
µ and

Bµ as

Zµ = cwA
3
µ − swBµ

Aµ = swA
3
µ + cwBµ (16.43)

The boson Zµ receives mass

m2
Z =

(g2 + g′2)v2

4
, (16.44)
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and the boson Aµ remains massless.
In the next part of this section, we will see in detail that the massless

spin 1 boson Aµ should be identified with the photon. Then the SU(2)×
U(1) model is a unified model of weak and electromagentic interactions.
We call this unified force the electroweak interaction.

It is not difficult to see that there must be a massless spin 1 boson left
after the symmetry breaking. The transformation of the Higgs vacuum
expectation value is

The SU(2)×U(1) model leaves one ex-
actly masses vector boson, which I will
identify with the photon. The photon
and Z are linear combinations of the
original bosons A3 and B. Thus, in
this model, the weak and electromag-
netic interactions are different facets of
the same underlying structure. We call
these forces collectively the electroweak
interaction. ϕ =

(
0

v/
√

2

)
→ ei~α·~σ/2eiβ/2

(
0

v/
√

2

)
. (16.45)

Then a transformation with α3 = β leaves the vacuum expectation value
unchanged. This gauge symmetry is not broken. The corresponding
gauge boson—Aµ above—remains massless. Any realistic theory must
have a massless vector boson that can be identified with the photon.
This symmetry principle tells us how to insure that such a massless
particle is present.

The masses of the W and Z bosons areThe masses of the W and Z bosons of
the SU(2)× U(1) model.

mW =
gv

2
, mZ =

√
g2 + g′2v

2
. (16.46)

These obey the relationThe predicted mass relation mW =
mZcw provides an important test of the
SU(2)× U(1) model. mW = mZ · cw . (16.47)

If we can measure s2
w in another way, this relation is testable experimen-

tally. We will see in the next chapter that, when higher order corrections
are included, the relation is obeyed better than 1% accuracy.

To determine the couplings of the W and Z to quarks and leptons,
we need to rewrite the general expression for the covariant derivative in
terms of the mass eigenstates. Using the inverse of (16.43)The couplings of W , Z, A to quarks

and leptons are now predicted in terms
of the SU(2)×U(1) quantum numbers
of these particles. To find the precise
forms of the couplings, we simplify the
covariant derivative.

A3
µ = cwZµ + swAµ ,

Bµ = −swZµ + cwAµ , (16.48)

and the expression (16.22) for W±µ , we can write the covariant derivative
(16.35) as

DµΨ =

[
∂µ − i

g√
2

(W+
µ σ

+ +W−σ−)

−ig(cwZµ + swAµ)I3 − ig′(−swZµ + cwAµ)Y

]
Ψ . (16.49)

We can recast this as

In the electroweak theory, the basic
electric charge e is derived from g and
g′.

DµΨ =

[
∂µ− i

g√
2

(W+
µ σ

+ +W−σ−)− ieAµQ− i
g

cw
ZµQZ

]
Ψ . (16.50)

where I have set

e = gsw = g′cw =
gg′√
g2 + g′2

. (16.51)
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It is appropriate to identify e with the value of the unit electric charge.
The electric charge of a fermion or boson is then

Q = I3 + Y (16.52)

Similarly, the Z boson charge QZ for any boson or fermion is

The electric charge Q of each particle
in units of e is fixed by its quantum
numbers.

QZ = c2wI
3 − s2

wY (16.53)

or

In a similar way, the Z charge QZ of
each particle is fixed as a function of
its quantum numbers.

QZ = I3 − s2
wQ . (16.54)

To complete the model, we need to assign to all of the quarks and
leptons appropriate quantum numbers under SU(2)×U(1). I will ignore
all masses in this discussion. Then we can treat the left- and right-
handed parts of the Dirac field as independent fields. Because the left-
handed particles couple to the W bosons but the right-handed particles
do not, we will need to assign these fields different quantum numbers.
This is a mysterious but also absolutely crucial feature of the model. It
is the origin of the V−A structure that, as we have seen in the previous
chapter, is required by experiment. The assignment of different quantum

numbers to the left- and right-handed
fermions is the origin of the parity vio-
lation of the V−A interaction.

In the SU(2)×U(1) model, the left-handed fields will belong to dou-
blets of SU(2) (I = 1

2 ), and the right-handed fields will be in singlets
(I = 0). We then choose the values of Y to give the appropriate electric
charges. For the electron neutrino νe, the electron e−, the u quark, and
the d quark, the required charges are (I3, Y ) quantum numbers for the vari-

ous species of leptons and quarks.

νeL : I3 = +
1

2
, Y = −1

2
, Q = 0 νeR : I3 = 0 , Y = 0 , Q = 0

e−L : I3 = −1

2
, Y = −1

2
, Q = −1 e−R : I3 = 0 , Y = −1 , Q = −1

uL : I3 = +
1

2
, Y =

1

6
, Q =

2

3
uR : I3 = 0 , Y =

2

3
, Q =

2

3

dL : I3 = −1

2
, Y =

1

6
, Q =

2

3
dR : I3 = 0 , Y = −1

3
, Q = −1

3
(16.55)

Note that the right-handed component of the neutrino has zero coupling
to the vector fields and could be omitted from the model. We will return
to this point in Chapter 20.

The particles in (16.55) are laid out in SU(2) representations(
νL
e−L

)
e−R

(
uL
dL

)
uR dR . (16.56)

This structure is called a generation of quarks and leptons. There are Definition of a generation of quarks and
leptons.two more generations known, containing, respectively, νµ, µ−, c and s,

and ντ , τ−, t, and b. These have SU(2)× U(1) quantum numbers with
the same values as in (16.55).
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16.4 The neutral current weak interaction

Now that we have formulated a specific theory of the weak interaction,
we can work out its observational consequences. From the way that we
have constructed the model, with the W+ and W− fields coupling only
to the left-handed quarks and leptons, the Feynman diagram

(16.57)

will produce the current-current interaction

g2

2
jµ−

1

q2 −m2
W

j+
µ . (16.58)

If q2 � m2
W , we can ignore q2 in the denominator, and then we find

an amplitude with exactly the structure of (15.6). We can identify the
coefficient in that formula, in terms of parameters of the SU(2)× U(1)
model as,

4GF√
2

=
g2

2m2
W

(16.59)

or
GF√

2
=

g2

8m2
W

, (16.60)

where g is the SU(2) gauge coupling in (16.35). The SU(2)×U(1) weak
interaction theory replaces the dimensionful constant GF of the Fermi
theory with a dimensionless coupling strength g and a mass scale set by
mW .

The SU(2)×U(1) theory contains an additional interaction mediated
by a virtual Z boson, for example,

(16.61)

This diagram leads to the current-current interaction

1

2

g2

c2w
(jµ3
L − s

2
wj

µ
Q)

1

q2 −m2
Z

(j3
µL − s2

wjµQ) , (16.62)

where jµ3
L is the left-handed weak isospin current and jµQ is the electric

charge current

jµQ =
∑
f

Qf (fLσ
µfL + fRσ

µfR) . (16.63)
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I have included a factor 1
2 in (16.62) because any given quark or lepton

current can appear in either term.
At low energies, we can ignore q2 relative to m2

W , m2
Z . Then, using

the relation (16.47), we find a current-current interaction, generalizing
(15.6), of the form The complete Fermi interaction of the

SU(2)×U(1) model contains the V−A
charged current interaction and also a
neutral current interaction. Their coef-
ficients have perfect rotational symme-
try up to terms proportional to s2w.

M =

〈
4GF√

2

(
jµ+
L j−µL + (jµ3

L − s
2
wj

µ
Q)2

)〉
. (16.64)

The first term in this current-current interaction, mediated by the W ,
is called the charged current interaction. The second term, mediated by
the Z, is called the neutral current interaction.

The neutral current interaction produces a new event type in neutrino
scattering, in which a neutrino scatters elastically from a quark or lepton.
We have seen an example of an event of this type in the lower part of
Fig. 15.4.

For deep inelastic neutrino scattering, we can work out the cross sec-
tion for neutral current reactions in the same way that we worked out
the cross section for charged current reactions. Looking back at (15.70)
and (15.71), we see that the formulae for charged current deep inelastic
scattering have the form

d2σ

dxdy
∼ GF s

π
· xf(x) , (16.65)

with an extra factor (1 − y)2 if the helicities of the beam and target
fermion are not matched. The formulae for neutral current deep inelastic
scattering will be similar, except that we must include the explicit Z
charges from (16.54) or (16.64). These charges are nonzero both for left-
and right-handed quarks and antiquarks. For neutrino scattering, the
contribution from the quarks is then The cross section for deep inelastic neu-

trino scattering due to the neutral cur-
rent interaction.d2σ

dxdy
(νp→ νX)

∣∣∣∣
q

=
G2
F s

π

[
xfu(x)

{
(
1

2
− 2

3
s2
w)2 + (−2

3
s2
w)2(1− y)2

}
+xfd(x)

{
(−1

2
+

1

3
s2
w)2 + (

1

3
s2
w)2(1− y)2

}]
(16.66)

and the contribution from the antiquarks is

d2σ

dxdy
(νp→ νX)

∣∣∣∣
q

=
G2
F s

π

[
xfu(x)

{
(
1

2
− 2

3
s2
w)2(1− y)2 + (−2

3
s2
w)2
}

+xfd(x)
{

(−1

2
+

1

3
s2
w)2(1− y)2 + (

1

3
s2
w)2
}]

.

(16.67)

For an antineutrino beam, the positions of the factors 1 and (1 − y)2

reverse.
Neutrino experiments are typically done with very massive targets,

made of iron, mineral oil, or another material obtainable in bulk. Then
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Fig. 16.1: The relation between Rν and Rν predicted by (16.73), (16.74),
compared to data from the CDHS and CHARM neutrino deep inelastic scat-
tering experiments at CERN. The measured values are taken from (Amaldi et
al. 1987).

it is relevant to specialize the formulae just given to nuclei with ap-
proximately equal numbers of u and d quarks. Let fq(x) be the pdf for
quarks in a nucleus containing a total of A nucleons with equal numbers
of protons and neutrons

fq(x) = A(fu(x) + fd(x)) . (16.68)

The above formulae combine and simplify to

d2σ

dxdy
(νA→ νX) =

G2
F s

π

[
xfq(x)

{
(
1

2
− s2

w) +
5

9
s4
w[1 + (1− y)2]

}
+xfq(x)

{
(
1

2
− s2

w)(1− y)2 + +
5

9
s4
w[1 + (1− y)2]

}]
.

(16.69)

Similarly, the cross section for neutral current scattering of an antineu-
trino from an isospin singlet target nucleus is

d2σ

dxdy
(νA→ νX) =

G2
F s

π

[
xfq(x)

{
(
1

2
− s2

w)(1− y)2 +
5

9
s4
w[1 + (1− y)2]

}
+xfq(x)

{
(
1

2
− s2

w) + +
5

9
s4
w[1 + (1− y)2]

}]
. (16.70)

It is easier to understand these formulae if we divide by the corre-
sponding charged current cross sections

d2σ

dxdy
(νA→ µ−X) =

G2
F s

π

[
xfq(x) + xfq(x)(1− y)2

]
,

d2σ

dxdy
(νA→ µ+X) =

G2
F s

π

[
xfq(x)(1− y)2 + xfq(x)

]
. (16.71)
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The ratio of the two charged current cross sections can be reduced to

r =
σ(ν, CC)

σ(ν, CC)
=

〈
xfq(x)(1− y)2 + xfq(x)

xfq(x) + xfq(x)(1− y)2

〉
, (16.72)

where the expectation value indicates that numerator and denominator
are integrated over the range of (x, y) covered by the experiment. The
quantity r can be measured directly. It depends on the coverage of the
detector in x and y, and, typically, it has a value about 0.4. The ratio
of neutral to charged current rates for neutrinos and antineutrinos can
then be written (Llewellyn Smith 1983). The ratio of rates for neutral current

and charged current deep inelastic scat-
tering, for neutrinos and antineutri-
nos, provides a simple first test of the
SU(2)× U(1) model.

Rν =
σ(ν,NC)

σ(ν, CC)
=

1

2
− s2

w +
5

9
s4
w(1 + r) (16.73)

and

Rν =
σ(ν,NC)

σ(ν, CC)
=

1

2
− s2

w +
5

9
s4
w(1 +

1

r
) . (16.74)

For a given experiment, with the value of r known from this measure-
ment, the values of Rν and Rν lie on a specific curve in the plane of
possible values, parametrized by the value of s2

w. When this curve was
introduced, it was popularly known as “Weinberg’s nose”. Measure-
ments of Rν and Rν test the theory and measure the value of s2

w. Fig-
ure 1 shows the curve and the values measured by the two large CERN
neutrino experiments of the early 1980’s.

The theory passes this test, and the value of s2
w is seen to be close to

s2
w ≈ 0.23 . (16.75)

I will present higher-precision tests of the SU(2)×U(1) weak interaction
theory in the next chapter.

Exercises

(16.1) Another illustrative example of spontaneous break-
ing of a gauge symmetry is given by a theory called
topcolor (Hill 1995) in which, at very short dis-
tances, the (t, b) quarks transform under a differ-
ent SU(3) color group from the lighter quarks. For
simplicity, I ignore the weak interaction in this ex-
ercise.

(a) The gauge group of the topcolor theory is
SU(3)1×SU(3)2. The theory has two sets of
8 gauge bosons and two independent coupling
constants g1, g2. The light quarks transform

only under SU(3)1 according to

qu → (1 + iαa1t
a)qu , (16.76)

where ta is a 3 × 3 representation matrix for
SU(3). The b and t quarks transform simi-
larly under SU(3)2,

qt → (1 + iαa2t
a)qt , (16.77)

The model also contains a complex-valued
scalar field Φ which is a (3 × 3) matrix and
transforms as

Φ→ Φ + (iαa1t
a) Φ + Φ(−iα2t

a) . (16.78)
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Show that the covariant derivatives of the the-
ory are

Dµqu = (∂µ − ig1A
a
µ1t

a)qu ,

Dµqt = (∂µ − ig2A
a
µ2t

a)qt ,

DµΦ = ∂µΦ− i(g1A
a
µ1t

a)Φ + Φ(+ig2A
a
µ2t

a) .

(16.79)

The Lagrangian of the topcolor theory is

L = −1

4
(Fµνa1 )2 − 1

4
(Fµνa2 )2

+
∑

f=u,d,s,c

qf iγ ·Dqf +
∑
f ′=b,t

qf ′ iγ ·Dqf ′

+tr[(DµΦ)†DµΦ]− V (Φ) . (16.80)

(b) Assume that the minimum of the potential
V (Φ) is at the nonzero value

〈Φ〉 = V · 1 , (16.81)

where 1 is the 3×3 unit matrix and V is a con-
stant with the dimensions of mass. Find the
mass terms for Aaµ1 and Aaµ2. Show that one
linear combination of Aaµ1 and Aaµ2 remains
massless.

(c) Construct the normalized mass eigenstate
fields, by analogy to (16.48). Call the new
massless and massive vector fields, respec-
tively, Aaµ and Aa

µ. Show that the massive
field has the mass

m2 = (g2
1 + g2

2)V 2 . (16.82)

(d) Rewrite the covariant deratives on the quark
fields in terms of the mass eigenstate vector
fields. Show that all quarks now couple to the
field Aaµ with the same coupling constant g,
given by

1

g2
=

1

g2
1

+
1

g2
2

. (16.83)

So we find an SU(3) gauge theory just like
QCD, with a coupling g smaller than either g1

or g2. This property that coupling constants
combine like resistors in parallel is often seen
in models with spontaneous gauge symmetry
breaking.

(16.2) Consider an SU(3) gauge theory coupled to a Her-
mitian 3 × 3 matrix scalar field Φ, with Φ trans-
forming under SU(3) as

Φ→ Φ + (iαata) Φ + Φ(−iαata) . (16.84)

This theory has 8 gauge fields and one coupling
constant g. This theory was studied by Weinberg
(1972) for reasons that will become clearer as we
proceed.

(a) Write out the 8 3× 3 matrices that represent
the generators of SU(3). These are 3×3 Her-
mitian matrices orthonormalized such that

tr[tatb] =
1

2
δab . (16.85)

(b) Write the covariant derivative on Φ.

(c) Assume that the potential for Φ is minimized
at a configuration

〈Φ〉 = V

(
a 0 0
0 a 0
0 0 b

)
, (16.86)

with a 6= b. Write the mass matrix for the 8
gauge fields Aaµ.

(d) Show that 4 of the 8 gauge fields receive zero
mass. Show that the other 4 fields obtain
masses

m2 = g2(a− b)2V 2 . (16.87)

(e) Let ψ be a fermion field in the 3 representa-
tion of SU(3). Write the covariant derivative
on this field, keeping only the 4 massless vec-
tor fields. Show that this is identical to the
covariant derivative of an SU(2)×U(1) gauge
theory.

(f) Identify the upper two components of the 3-
component field ψ with the (ν, e)L doublet.
To relate this model to the SU(2) × U(1)
theory of weak interactions, rescale the cou-
pling constant of the U(1) gauge field so that
the charge multiplying this coupling constant
equals the appropriate hypercharge Y = 1

2
.

Show that, after this rescaling, the model has
SU(2) and U(1) gauge couplings

g = g , g′ = g/
√

3 (16.88)

(g) Compute sin2 θw and compare to the value
(16.75).
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In the previous chapter, I described the SU(2)×U(1) theory of weak and
electromagnetic interactions. In this theory, the V−A weak interaction
arises from exchange of the W boson, and there is an additional neutral
current interaction due to the exchange of a heavier boson Z. With
enough energy in the center of mass, it became possible to produce
these bosons directly and study their properties. The W and Z were
first seen directly by the UA1 and UA2 experiments at CERN, in a pp
collider designed for this purpose (Arnison et al. 1983a, 1983b, Banner et
al. 1983a, 1983b). Today, W and Z bosons are produced by the millions
at the LHC. Figures 17.1 and 17.2 show beautiful examples of events
collected by the ATLAS experiment at the LHC, showing W and Z
production with the decays

W± → e±ν Z → e+e− . (17.1)

The SU(2)×U(1) theory makes detailed predictions for the properties of
the W and Z bosons. In this chapter, we will work out those predictions
and compare them to experiment.

17.1 Properties of the W boson

To begin, I will work out the major decay rates and production cross
sections for the W boson.

From the covariant derivative of the SU(2) × U(1) model given in
(16.50), we read off the matrix element for the leptonic decay W+ →
νee

+ as Calculation of the partial widths for the
decay of the W boson to a pair of lep-
tons or quarks.

M(W+ → νLe
+
R) =

g√
2
u†L(pν)σµvL(pe) εWµ , (17.2)

where εWµ is the polarization vector of the W+. The product of spinors
is the same one that we have seen before in our discussion of e+e−

annihilation. From (8.37), we see that, in the νee
− center of mass frame,

u†L(pν)σµvL(pe) εWµ = 2
√

2E ε∗− · εW . (17.3)

We square the matrix element and average over 3 initial spin directions
(or average over angles for the νe direction relative to the W polariza-
tion). This gives

Γ(W+ → νe+) =
1

2mW

1

8π

g2

2
m2
W · 2 ·

1

3
(17.4)
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Fig. 17.1: Event display of a pp → W → eν event recorded by the ATLAS
experiment at the Large Hadron Collider (figure courtesy of CERN and the
ATLAS Collaboration).

Fig. 17.2: Event display of a pp→ Z → e+e− event recorded by the ATLAS
experiment at the Large Hadron Collider (figure courtesy of CERN and the
ATLAS Collaboration).
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or
Γ(W+ → νee

+) =
αw
12
mW , (17.5)

where

αw =
g2

4π
=

e2

4πs2
w

. (17.6)

Similarly,

Γ(W+ → νµµ
+) = Γ(W+ → νττ

+) =
αw
12
mW . (17.7)

For decays to quarks, we must add the color factor of 3. The rate is
enhanced by a QCD correction, the same factor that appears in the
e+e− → hadrons cross section (11.72). Then

Γ(W+ → ud) = Γ(W+ → cs) =
αw
12
mW · 3(1 +

αs(mW )

π
+ · · ·) . (17.8)

The top quark is sufficiently heavy that the decay W+ → tb is kinemat-
ically forbidden.

To evaluate these formulae, we need the value of αw. This is a good
place to pause and collect the values of all of the parameters of the
electroweak theory. The two quantities Values of the coupling constants g and

g′ and the dimensionful parameter v
that characterize the SU(2)×U(1) the-
ory.αw =

g2

4π
, α′ =

g′2

4π
(17.9)

give the intrinsic strengths of the SU(2) and U(1) interactions. We can
evaluate these quantities from the values of α and s2

w. In Section 17.4, I
will point out a number of experimental measurements on the Z bosons
that lead to very precise value of s2

w. The result will be

s2
w = 0.23116± 0.00012 . (17.10)

This value should be combined with the value of α evaluated at a mo-
mentum scale appropriate to the physics of W and Z. This is not
α(Q = 0) = 1/137 but rather

α(mZ) = 1/129. (17.11)

Making the combination, we find

αw =
α

s2
w

= 1/29.8 α′ =
α

c2w
= 1/99.1 (17.12)

The weak interactions are weak, but not exceptionally so. The apparent
“weakness” of the weak interactions comes from the small size of GF , a
dimensionful quantity, relative to the mass of the proton. This is due
less to the small value of the coupling constant than to the large value
of the W boson mass in GeV units. In fact, if we use (16.46) in the
relation (16.60) for GF , the size of the gauge coupling actually cancels
out,

GF =

√
2g2

8m2
W

=
1√
2v2

, (17.13)
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and we see that GF is completely determined by the Higgs field vacuum
expectation value, which we find to be

v = 246 GeV . (17.14)

The V−A weak interaction is weak because the Higgs vacuum expec-
tation value v is much larger than the proton mass.

Given the values for v, g, and g′, we can predict the values of the W
and Z masses from (16.46),Comparison of the predicted W and Z

boson masses to the values seen in ex-
periment. mW = 80.2 GeV mZ = 91.5 GeV . (17.15)

This is in reasonable agreement with the values found in direct measure-
ment of the particle masses

mW = 80.385± 0.015 GeV mZ = 91.1876± 0.0021 GeV . (17.16)

It is important to point out that, when comparing numbers at this level
of accuracy,we must include the effects of higher order quantum correc-
tions. A particularly important effect for the W and Z masses is the
quantum fluctuation of the bosons to quark-antiquark pairs, in particu-
lar, to top quarks,

(17.17)

The value of the top quark mass affects the ratio of the W and Z masses
at the 5% level. When the known value of the top quark mass is included,
the measured values of the W and Z masses are in very good agree-
ment with the predictions of the electroweak theory, as I will quantity
in Section 17.4. Indeed, before the top quark was discovered, preci-
sion electroweak measurement of the properties of the Z boson correctly
predicted the top quark mass to be in the range 160–180 GeV.

Using the value of αw above, we find for the total width of the W
boson

ΓW =
αw
12
mW ·

[
3 + 2 · (3.1)

]
= 2.1 GeV . (17.18)

The branching ratios of the W are predicted to beBranching ratios for the W boson de-
cays to lepton and quark pairs.

BR(eνe) = BR(µνµ) = BR(τντ ) = 11%

BR(ud) = BR(cs) = 34% , (17.19)

in good agreement with observations.

17.2 W production in pp collisions

The matrix element for W decay to ud can also be used in the opposite
direction to compute the production cross section for a W boson in a
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hadron-hadron collision. At a hadron-hadron collider, the heavy bosons
W and Z can be created by quark-antiquark annihilation, for example,
ud→ W+, uu→ Z. Such reactions, and reactions such as uu→ µ+µ−

involving a virtual photon or Z boson, are called Drell-Yan processes
(Drell and Yan 1970).

The cross section for Drell-Yan production of aW+ boson is assembled
by combining the parton-level cross section with the pdfs of the colliding
hadrons. The parton cross section is Computation of the Drell-Yan cross

section for W boson production in pp
collisions.

σ(ud→W+) =
1

2ŝ

∫
dΠ |M|2 , (17.20)

where phase space with one particle in the final state is given by∫
dΠ1 =

∫
d3pW

(2π)32EW
(2π)4δ(4)(pu + pd − pW ) . (17.21)

Comparing to (3.88), we see that∫
dΠ1 = 2πδ(ŝ−m2

W ) . (17.22)

We must average the squared matrix element over initial spins and colors
and sum over final polarization states. This sum and average is

1

2 · 2
1

3 · 3
∑

color, spin

|M|2 =
1

36
· 3 · g

2

2
m2
W · 2 =

g2

12
m2
W . (17.23)

Assembling the pieces, we find

σ(ud→W+) =
π2αw

3
δ(ŝ−m2

W ) . (17.24)

This result must be integrated over the pdfs for the initial state quarks
and antiquarks. For pp collisions,

σ(pp→W+) =

∫
dx1fu(x1)

∫
dx2fd(x2)

·σ(u(x1P1)d(x2P2)→W+) + (1↔ 2) ,(17.25)

plus contributions from heavier quarks and antiquarks. To simplify this
formula, go to the pp CM frame. The parton 4-vectors are

p1 = x1P1 = (x1E, 0, 0, x1E) p2 = x2P2 = (x2E, 0, 0,−x2E) .
(17.26)

The total momentum of the W boson is

pW =
(
(x1 + x2)E, 0, 0, (x1 − x2)E) . (17.27)

This vector is best parametrized by a mass M (eventually to be set equal
to mW ) and a rapidity,

pW =
(
M coshY, 0, 0,M sinhY ) . (17.28)
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The parameters M and Y are related to x1 and x2 by

x1 =
M√
s
eY x2 =

M√
s
e−Y . (17.29)

To rewrite the integral, we need the Jacobian

∂(x1, x2)

∂(M,Y )
=

∣∣∣∣ eY /
√
s e−Y /

√
s

MeY /
√
s −Me−Y /

√
s

∣∣∣∣ =
2M

s
. (17.30)

Then

dx1dx2δ(M
2 −m2

W ) = dM dY
2M

s
δ(M2 −m2

W )

=
dY

s .
(17.31)

Finally, we find the simple formula

dσ

dY
(pp→W+ +X) =

π2αW
3s

[
fu(x1)fd(x2) + fd(x1)fu(x2)

]
, (17.32)

where x1, x2 are derived from mW , Y using the formulae above. Soon,
the measurement of W and Z production cross sections at the LHC will
provide the most accurate information on the values of the antiquark
pdfs.

17.3 Properties of the Z boson

The properties of the Z boson can be worked out in a similar way.
Following the approach of (17.4), we find that the decay width of the Z
boson to one chiral species (for example, e−Le

+
R), is

Γ(Z → ff) =
1

2mZ

1

8π

g2

c2w
m2
Z

2

3
Q2
Z , (17.33)

where QZ is the Z charge given by (16.54). This is written more simply
as

Γ(Z → ff) =
αw
6c2w

mZQ
2
Z . (17.34)

The QZ take many values. It is useful to make a table of these for one
generation of quarks and leptons. Let QZL and QZR denote the values
of QZ for the left- and right-handed fermions, respectively. Then we
have

Table of the Z charges for the leptons
and quarks of each generation.

species QZL QZR Sf Af

ν + 1
2 − 0.250 1.00

e − 1
2 + s2

w +s2
w 0.126 0.15

u + 1
2 −

2
3s

2
w − 2

3s
2
w 0.144 0.67

d − 1
2 + 1

3s
2
w + 1

3s
2
w 0.185 0.94
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The quantities Sf and Af are defined by

Sf = Q2
ZL +Q2

ZR , Af =
Q2
ZL −Q2

ZR

Q2
ZL +Q2

ZR

. (17.35)

The total rate for Z decay to the species f is proportional to Sf . The
quantity Af gives the asymmetry between the production rates for left-
and right-handed fermions. Equivalently, it gives the polarization of lep-
tons or quarks emitted in Z boson. Notice that left-handed polarization
is always preferred, but the size of the polarization varies dramatically
among fermions with different quantum numbers.

Adding the partial widths for Z decay, to neutrinos, charged leptons,
u quarks, and d quarks, we find the total width of the Z to be Prediction of the total width of the Z

boson.

ΓZ =
αwmZ

6c2w

[
3 · 0.250 + 3 · 0.126 + 2 · (3.1) · 0.144 + 2.98 · (3.1) · 0.185

]
= 2.49 GeV (17.36)

The factor 3.1 is the same one that appears in (17.18); it includes the
color factor of 3 for quarks and the QCD correction. I have subtracted
2% from the partial width for Z → bb, for a reason to be explained
below. The branching ratios of the Z to the various fermions are Branching ratios for the Z boson decays

to lepton and quark pairs.

BR(νeνe) = 6.7% BR(e+e−) = 3.3%

BR(uu) = 11.9% BR(dd) = 15.3% (17.37)

and similarly for the fermions of the second and third generations.

17.4 Precision tests of the electroweak model

In the 1990’s, there was a concerted effort to test these predictions by
production of the Z boson as a resonance in e+e− annihilation. Figure
17.3 shows measurements by the DELPHI experiment at CERN of the
e+e− → µ+µ− and e+e− → hadrons cross sections at energies up to
200 GeV in the center of mass (Abreu et al. 1999). Both cross sections
have a huge peak at 91 GeV, increasing the base value by a factor of
100. This is the Z boson resonance

e+e− → Z → µ+µ− , qq . (17.38)

Two accelerators, the Large Electron-Positron collider (LEP) at CERN
and the Stanford Linear Collider (SLC) at SLAC, were constructed to

collect data at this resonance. The experiments at these accelerators
systematically tested the values of Sf and Af in the table above. The
complete suite of precision measurements on the properties of the Z
resonance is reviewed in (Schael et al. 2006).

The key test for Sf is the measurement of the total width of the Z
resonance. Figure 17.4 shows a measurement by the OPAL experiment The line shape of the Z resonance.

at LEP of the cross section at steps in energy through the resonance
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Fig. 17.3: Measurements of the cross section for e+e− → hadrons, e+e− →
µ+µ−, and e+e− → τ+τ−, as a function of center of mass energy, by the
DELPHI experiment at the LEP collider at CERN (Abreu et al. 1999).
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Fig. 17.4: Measurement of the Z boson resonance line shape in e+e− annihi-
lation by the OPAL experiment at the LEP collider at CERN; figure courtesy
of T. Mori, based on data from (Abbiendi et al. 2001).
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(Abbiendi et al. 2001). The experiment is compared to the prediction
of the electroweak theory for the best-fit value of s2

w. The agreement
between experiment and theory is quite extraordinary. The theory of
the resonance shape begins with a Breit-Wigner resonance∣∣∣∣ 1

s−m2
Z + imZΓZ

∣∣∣∣2 (17.39)

and includes the effects of single and multiple collinear photon emission
from the colliding electron and positron

(17.40)

This radiation decreases the peak height of the resonance and also pushes
the resonance to somewhat higher energies. It also gives the resonance
a long tail extending to very high energies.

(17.41)

The effect is shown in Fig. 17.5, along with measured cross sections
combined from the four LEP experiments (Schael et al. 2006).

The shape distortion of the Z resonance is an effect of QED. The width
of the resonance is determined by the weak interaction, with a 4% en-
hancement of the contribution from decays to quarks due to QCD. Thus,
all three of the fundamental interactions of particle physics contribute
the excellent agreement of theory and experiment shown in Fig. 17.4.

There are two particularly important outputs from this set of mea-
surements. First, the mass of the Z is measured very precisely. From
this, it is possible to determine the value of the weak mixing angle very
precisely. Using the SU(2)× U(1) formulae, we findFrom the well-measured observables α,

GF and mZ , we can construct a very
precise reference value of s2w.

sin2 2θw = (2cwsw)2 =
4πα(mZ)√

2GFm2
Z

. (17.42)

This translates to a very precise reference value of s2
w,

s2
w = 0.231079± 0.000036 . (17.43)
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Fig. 17.5: Measurement of the Z boson resonance parameters in e+e− an-
nihilation by the LEP experiments (Schael et al. 2006). The experimental
errors have been inflated by a factor 10 to make them visible. The dotted
curve shows the ideal resonance shape, the solid curve shows the predicted
resonance shape including the effect of initial-state photon radiation.
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Other measurements of quantities depending on s2
w can be compared to

this standard. The accuracy is such that higher order corrections must
be included to make a proper comparison. I will quote some results of
this comparison later in this section.

Second, the line-shape of the Z allow us to determine the number
of light neutrinos that couple to the Z with the standard SU(2)×U(1)
quantum numbers. Neutrinos are invisible in the Z experiments. Never-Measurement of the number of invisible

neutrino species to which the Z boson
decays.

theless, each neutrino contributes to the total width of the Z an amount

Γ(Z → νiνi) = 170 MeV , (17.44)

about 7% of the total width. The presence of one extra neutrino would
both increase the width of the resonance and decrease the peak height.

(17.45)

Careful measurement of the resonance parameters, and fitting to the
number of light neutrinos as a continuous variable, gives

nν = 2.9840± 0.0082 . (17.46)

Another important measurement related to the Sf is that ofPrediction of the decay rate of the Z to

bb, and its comparison to experiment.

Rb =
BR(Z → bb)

BR(Z → hadrons)
. (17.47)

This ratio can be measured very precisely by selecting e+e− → hadrons
events and then searching within these events for the short-lived B
mesons, using a vertex detector such as that described for the BaBar
detector at the end of Chapter 6. From our analysis so far, this quan-
tity would be predicted to have a value about 0.220. However, there
are higher order corrections involving virtual top quarks that contribute
specifically to the partial width for Z → bb through the processes

(17.48)

decreasing the rate for this mode by about 2%. The measurements give

Rb = 0.21629± 0.00066 , (17.49)
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Fig. 17.6: Measurements of the energy distribution of charged particles pro-
duced in the decay of τ leptons from Z → τ+τ−, as a function of x = E/Eτ ,
by the ALEPH experiment at the LEP collider, from (Heister et al. 2001).
The dashed and dot-dashed curves show the expectation from τ−L and τ−R , so
the fit to the data shown measures the polarization of τ leptons produced in
Z decay: left: τ → πν; right: τ → µντνµ.

in good agreement with the prediction, for the observed value of the top
quark mass.

The values of Af can be tested by measurements sensitive to polariza-
tion. This is especially interesting because the Af values are predicted
by the SU(2) × U(1) theory to take very different values for leptons, u
quarks, and d quarks.

I will describe two methods for measuring Af for leptons. The first Measurements of A`, the Z polarization
asymmetry in decays to leptons.makes use of the fact that the heavy lepton τ decays by the V−A

interaction which is sensitive to polarization. This is most clearly seen
by considering the decay

τ− → ντπ
− . (17.50)

Since the ντ is always left-handed and the pion has zero spin, the neu-
trino must be emitted in the direction opposite to the τ spin direction.
In the Z rest frame, the τ− is highly boosted. Then a τ−R will decay to a
higher-energy pion and a lower-energy neutrino, and the τ−L will decay
to a lower-energy pion and a higher-energy neutrino. The actual energy
distribution of pions observed at the Z resonance from τ decay, mea-
sured by the ALEPH experiment at LEP, is shown in Fig. 17.6 (Heister
et al. 2001). The fit to the distributions predicted for τ−L and τ−R shows
the expected 15% asymmetry. The similar effect in τ → µντνµ is shown
on the right-hand side of the figure.

At the SLC, the asymmetry Ae was measured as an asymmetry in the
total rate of Z production from e+e−. In a circular accelerator, electron
beam polarization is typically destroyed as the beams carry out many
circuits of the ring. However, linear acceleration naturally preserves
the electron polarization. The experiments at SLAC took advantage of
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Fig. 17.7: Measurement of the angular distribution of tagged b jets in Z → bb
events by the SLD experiment at the SLC collider at SLAC, from (Abe et al.
1998).

this. Using polarized laser light, electrons were produced with prefer-
ential left- or right-handed polarization at the front of the accelerator,
transported over 4 km to the collider interaction point, and then anni-
hilated with positrons to created Z bosons. The correlation of the laser
polarization with the rate for Z production allowed a measurement of
the asymmetry in which almost all systematic errors cancelled. The
experiment measured (Abe et al. 2001a)

Ae = 0.1516± 0.0021 . (17.51)

It is interesting that

Ae =
( 1

2 − s
2
w)2 − s2

w

( 1
2 − s2

w)2 + s2
w

=
1
4 − s

2
w

2s4
w + ( 1

4 − s2
w)
≈ 8 (

1

4
− s2

w) . (17.52)

Since the actual value of s2
w is close to 1

4 , this very accurate value of Ae
turns into an even more accurate value of s2

w,

s2
w = 0.23109± 0.00026 . (17.53)

For b quarks, the polarization asymmetry is expected to be almost
maximal. This prediction could be tested at the SLC by using the po-Measurements of Ab, the Z polarization

asymmetry in decays to b quarks. larized e− beam to produce events with b quarks in the final state. Recall
that the angular distributions in polarized e+e− annihilation depend on
the fermion polarizations

dσ

d cos θ
(e−Le

+
R → bLbR) ∼ (1 + cos θ)2 ,

dσ

d cos θ
(e−Re

+
L → bLbR) ∼ (1− cos θ)2 . (17.54)

If the production of bL dominates, the angular distribution should be
highly forward peaked for an e−L beam and highly backward peaked for
an e−R beam. The data from the SLD experiment at the SLC is shown
in Fig. 17.7 (Abe et al. 1998). The asymmetries are diminished because
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Fig. 17.8: Compilation of precision electroweak measurements, and compari-
son to the predictions of the SU(2)×U(1) model using the best-fit parameters,
from (Schael et al. 2006).
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it is difficult to distinguish the b from the b jet, but, nevertheless, the
effect is striking. The observed distributions are consistent with the
almost maximal asymmetry predicted by the SU(2)× U(1) theory.

Figure 17.8 gives a compilation of precision measurements on the W
and Z by the LEP Electroweak Working Group and the five major con-
tibuting experiments (Schael et al. 2006). The figure lists the measure-
ments of a large number of Z decay rates and asymmetries and some
other quantities that affect the SU(2) × U(1) predicitons. The second
column gives the measured values, averaged among the various experi-
ments. The third column gives the values predicted by the SU(2)×U(1)
theory for the best-fit values of g, g′, and mZ . The fourth column shows
graphically the discrepancy between the best-fit theory and experiment,
in units of the standard deviation of each masurement. The SU(2)×U(1)
model indeed gives a very accurate explanation of the properties of the
W and Z bosons.

Exercises

(17.1) The properties of the Z boson can be evaluated in
a similar way to the the properties of the W boson
computed in detail in the text.

(a) Derive the formula (17.34) for the partial
width of the Z boson decay to ff .

(b) Work out the formula corresponding to
(17.32) for the cross section for Drell-Yan pro-
duction of a Z boson in pp collisions.

(c) Estimate numerically the cross sections for
Drell-Yan W and Z production at LHC en-
ergies. Compute these cross sections to the
pp total cross section of about 100 mb.

(17.2) The Z can appear as an intermediate state in e+e−

annihilation. The contributions from the interme-
diate virtual γ and Z should be added in the am-
plitude and can interfere.

(a) Considering only an intermediate γ, recall the
differential cross sections for e−Le

+
R → µ−Lµ

+
R,

e−Le
+
R → µ−Rµ

+
L , e−Re

+
L → µ−Lµ

+
R, e−Re

+
L →

µ−Rµ
+
L computed in (8.47) and (8.48). For ex-

ample,

dσ

d cos θ
(e−Le

+
R → µ−Rµ

+
L) =

πα2

2s
(1 + cos θ)2 .

(17.55)

(b) Draw the Feynman diagrams for a virtual γ
and a virtual Z and compare them. Show that

the cross section for e−Le
+
R → µ−Lµ

+
R in the full

electroweak theory is given by multiplying the
result in (a) by∣∣∣∣1 +

1

c2ws2
w

(
1

2
− s2

w)2 s

s−m2
Z + imZΓZ

∣∣∣∣2 .
(17.56)

(c) In a similar way, compute the cross sections
for the other possible helicity states.

(d) The forward-backward asymmetry AFB for
the reaction e+e− → µ+µ− is defined by

AFB =
σ(cos θ > 0)− σ(cos θ < 0)

σ(cos θ > 0) + σ(cos θ < 0)
.

(17.57)
Compute the forward-backward asymmetry
for the polarized reaction in (a) and show that
it equals 3/4.

(e) Now consider the AFB for the unpolarized
process e+e− → µ+µ−. AFB obtains contri-
butions from each of the 4 possible polarized
reactions. Show that AFB = 0 for

√
s� m2

Z .
Find AFB just on the Z resonance, where
the contribution from the virtual γ can be ig-
nored.

(f) Write the leading term in the expression for
the cross section in (b) in the limit s� m2

Z .

(g) Consider the unbroken SU(2) × U(1) theory.
In this theory, the process e+e− → µ+µ−
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is mediated by virtual A3 and B boson ex-
change. Compute the cross section for the po-
larized process in (b). You should find agree-
ment with your answer in (e).

(h) Check this agreement for the other three he-

licity states. Apparently, spontaneous sym-
metry breaking only affects cross sections at
low energy. In some sense, a spontaneously
broken symmetry is restored at sufficiently
high energy.





Quark Mixing Angles and
Weak Decays 18
The theory of the weak interaction that we have developed so far still
omits some of the processes with which we began our discussion of this
theory. We still have not proposed a mechanism for the strangeness-
changing decays Experiment requires additional

charged-current interactions that
change the quark generation.K0 → π−e+ν Λ0 → pe−ν . (18.1)

These decays seem to call for a contribution to the weak charged current
of the form

u†Lσ
µsL . (18.2)

However, there is a strong constraint on this modification of the V−A
theory described in Chapter 15. Although the charged-current weak
interaction has sizable terms that change quark generation, the neutral- Weak decays that change the quark

generation can appear in charged-
current processes but are highly sup-
pressed in neutral-current processes.

current weak interaction does not. To see this, compare a process based
on s→ uµν,

BR(K0
L → πµν) = 0.27 , (18.3)

with one based on s→ dµ+µ−,

BR(K0
L → µ+µ−) = 7× 10−9 . (18.4)

Similarly, in B meson decays,

BR(b→ se+e−) ≈ BR(b→ sµ+µ−) = 4× 10−6 . (18.5)

Our theory of weak interactions must provide for flavor-changing charged-
current decays while restricting flavor-changing neutral current decays.
In this chapter, we will see that both aspects of generation change in
the weak interaction are naturally accounted for in the SU(2) × U(1)
model.

18.1 The Cabibbo mixing angle

To begin, we must work out what interaction strength we need for
the s → u weak decays. Writing the matrix elements for the weak
interaction as a V−A interaction with the Fermi constant measured in
muon dcay, I will write the weak interaction current as

jµ+ = ν†σµL + · · ·+ Vusu
†
Lσ

µsL + · · · . (18.6)
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That is, Vus gives the strength of the strangeness changing interaction
relative to the strength of the weak interaction in muon decay.

It is possible to determine the value of Vus from the rates of Λ0, Σ−,
and K meson β decay. Look back at the discussion of the normalizationMeasurement of the strength Vus of the

weak interaction transition s→ u. of current matrix elements in (14.36) and (14.37). The axial vector
current matrix elements may contain new dynamical factors such as
gA, but the vector current matrix elements, at zero momentum transfer,
have a fixed normalization given by the flavor charges. The best situation
is found for the decay K → π`ν. The matrix element

〈π|uγµ(1− γ5)s |K〉 (18.7)

involves only the vector current, because both K and π have P = −1. In
the limit of zero quark mass, in which K and π are massless Goldstone
bosons, the flavor current is conserved and this matrix element contains
only one allowed kinematic structure,

〈π|uγµs |K〉 = i(pπ + pK)µf+(q) (18.8)

where q = pK − pπ. At q = 0, the value of the matrix element is fixed
by the flavor charge,

f+(q = 0) = 1 . (18.9)

The corrections to these formulae are proportional to the u, d, and s
quark masses and can be worked out systematically. By measuring the
rate of K → πeν decays, the KLOE experiment at the INFN Frascati
laboratory in Frascati, Italy, determined (Ambrosino 2008)

Vus = 0.2249± 0.0010 . (18.10)

This question is coupled to another one. To a first approximation,
the strength of the V−A interaction in the β decay of nuclei is equal
to that in muon decay. But, is this equality exact? Beginning in theMeasurement of the strength Vud of the

weak interaction transition d→ u seen
in nuclear β decay.

late 1950’s, attempts were made to measure the strength of the weak
interaction in β decay precisely. To discuss this strength quantitatively,
we might parametrize the d→ u term in the V–A charged current as a
term in (18.6) of the form

jµ+ = · · ·+ Vudu
†
Lσ

µdL + · · · . (18.11)

In the SU(2)×U(1) theory as we have discussed it so far, gauge invari-
ance would require that theW boson couple to muon, electron, and (u, d)
doublets with the same strength. Then we would have Vud = 1. How-
ever, persistently, the values from experiment were somewhat smaller.
The best experimental determinations come from the rates of superal-
lowed β decay transitions between 0+ nuclei. These use only the vector
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current. An illustrative example is given by N14 and its excited states.

(18.12)

C14 is a β− emitter, O14 is a β+ emitter. These two states are members
of an I = 1 triplet with N14∗, a state that decays by gamma ray emis-
sion. The three vector current matrix elements are related by isospin,
so the weak interaction matrix elements can be normalized relative to
the measured rate of the electromagnetic decay. Then the normalization
factor Vud can be extracted from the rates of the weak interaction decays
(Hardy and Towner 2009). The best current value obtained from these
measurements is

Vud = 0.97425± 0.00022 . (18.13)

This value is significantly less than 1.
In 1963, working from the much more uncertain numbers then avail-

able, Cabibbo suggested that these two values fit together through the
relation (Cabibbo 1963) The reduced strength of the s → u

weak interaction transition is explained
by the Cabibbo angle.|Vud|2 + |Vus|2 = 1 . (18.14)

That is, we can represent

Vud = cos θC , Vud = sin θC , (18.15)

where θC is called the Cabibbo angle. Evaluating the relation from the
numbers above,

|Vud|2 + |Vus|2 = 0.9997± 0.0005 . (18.16)

Apparently, the SU(2) gauge interaction does couple with the same
strength to quarks as to leptons—as is required by the structure of the
gauge theory—but it couples the u quark to a linear combination of d
and s.

18.2 Quark and lepton mass terms in the Standard
Model

The structure I have just described can arise in a natural way in the
SU(2) × U(1) model. To understand this, we must first explore how
quark and lepton masses arise in that model. A mass term is a term in
the Lagrangian

∆L = −mf (f†RfL + f†LfR) (18.17)
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linking the two chiral components of a fermion field. However, we are
forbidden to write such a term for any quark or lepton. The SU(2)×U(1)
theory puts the left-handed quarks and leptons into I = 1

2 doublets but
assigns the right-handed quarks and leptons I = 0. Thus, any mass term
violates the SU(2) gauge symmetry.

Thus, generation of mass for any quark or lepton requires the spon-
taneous breaking of SU(2)× U(1). The Higgs field ϕ has the quantumIn the SU(2)× U(1) model, quark and

lepton masses arise from terms involv-
ing fermion interactions with the Higgs
field. These terms take the form of
mass terms after the Higgs field ac-
quires a vacuum expectation value.

numbers I = 1
2 , Y = 1

2 . So it is consistent with all symmetries of the
theory to add to the Lagrangian the terms

∆L = −yeL†aϕaeR − ydQ†aϕadR − yuQ†aεabϕ∗buR + h.c. (18.18)

where a, b = 1, 2 and

L =

(
ν
e−

)
L

, Q =

(
u
d

)
L

. (18.19)

The coefficients yf are called Yukawa couplings. Each term is invariant
under isospin, and each term has the sum of the hypercharges of the fields
summing to zero. For example, in the middle term, the hypercharges
are

−1

6
+

1

2
− 1

3
= 0 . (18.20)

Note that the Yukawa coupling term for the u quark has a slightly dif-
ferent structure from the others, with ϕ∗ rather tnan ϕ.

If we replace the Higgs field by its vacuum expectation value

ϕ→
(

0
v/
√

2

)
(18.21)

we find that (18.18) becomes

∆L = −yev√
2
e†LeR −

ydv√
2
d†LdR −

yuv√
2
u†LuR + h.c. (18.22)

Comparing this equation to (8.24), we see that it has just the structure
of mass terms for the e, d, and u. ThenFormula for the masses of quarks and

leptons in terms of their Yukawa cou-
plings to the Higgs field. mf = yf

v√
2

(18.23)

for all three species.
In writing (18.18) and (18.22), I have omitted mass terms for the

neutrinos. This is an excellent approximation for particle physics at
GeV energies. However, the assumption that the neutrino masses are
zero has important consequences in the analysis presented in Section
18.3. I will return to the question of neutrinos masses in Chapter 20.

The construction I have presented here gives an origin for the quark
and lepton mass terms. But, it does not solve the problem of the large
range of values of these terms. It only pushes the problem back one level,
onto the physics of the fermion couplings to the Higgs field. This does
not make the problem of quark and lepton masses any less mysterious.
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18.3 Discrete space-time symmetries and the Stan-
dard Model

In nature, we see three fermions with each type of quantum number,
for example, e, µ, and τ for charged leptons. We refer to the three
states of each kind as belonging to three generations. To give mass
to the second and third generations, we could simply repeat the struc-
ture above. However, it is instructive to write a more general set of
Yukawa couplings, in fact, the most general set of couplings consistent
with SU(2)×U(1) gauge invariance. In this section, I will analyze that
quite general theory and derive from it some surprising conclusions.

Gauge invariance requires that the gauge couplings of the fermions
of the three generations are absolutely identical. But, gauge invariance
puts much weaker constraints on the Yukawa couplings. The most gen-
eral Yukawa couplings consistent with gauge invariance include arbitrary
mixtures of couplings among the three generations. Letting i, j = 1, 2, 3
label generations, this most general set of Yukawa couplings is written The equation (18.24) seems to have

much more generality than we require
in our theory of the weak interaction.
But in this section, we will systemati-
cally simplify it, using several changes
of variables. You will be surprised by
the final result.

∆L = −yije L†ia ϕae
j
R + yijd Q

†i
a ϕad

J
R − yiju Q†ia εabϕ∗bu

j
R + h.c. (18.24)

where the yijf are complex-valued 3× 3 matrices of general symmetry.
We can simplify this structure by diagonalizing the yf matrices and

making appropriate changes of variables among the fields. The Yukawa
matrices are not Hermitian. But, they can be diagonalized as follows:
Construct the matrices

yfy
†
f , y†fyf . (18.25)

These are Hermitian and positive and have the same eigenvalues. We
can represent them as

yfy
†
f = U

(f)
L YfU

(f)†
L , y†fyf = U

(f)
R YfU

(f)†
R . (18.26)

where U
(f)
L , U

(f)
R are (in general, different) unitary matrices and Yf is

real, positive, and diagonal, and identical in the two formulae. Then if

Yf =
√

Yf =

√Yf1 √
Yf2 √

Yf3

 , (18.27)

we have
yf = U

(f)
L Yf U

(f)†
R . (18.28)

For leptons, we now make the change of variables Using the representation (18.28) for the
Yukawa matrix, we simplify the lepton
terms in the Lagrangian.eiR → U

(e)
Rije

j
R , Li → U

(e)
LijL

j . (18.29)

The matrices U
(e)
L , U

(e)
R disappear from the Yukawa couplings. The

lepton mass terms are now diagonal in generation, and the new fields
Li, eiR correspond to mass eigenstates. These are now the fields of the
familar leptons e, µ, and τ .
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The change of variables (18.29) moves the matrices U
(e)
L and U

(e)
R to

the lepton kinetic terms, for example,

e†R(iσ ·D)eR → e†RU
(e)†
R (iσ ·D)U

(e)
R eR . (18.30)

But these matrices cancel out completely, because the three generations
have the same gauge interactions. The formula (18.30) becomes

= e†R(iσ ·D)U
(e)†
R U

(e)
R eR = e†R(iσ ·D)eR . (18.31)

There are no interactions remaining that couple the lepton generations.Lepton number conservation is auto-
matic in the SU(2)× U(1) model with
zero neutrino masses.

Thus, lepton number conservation, separately for each generation, is a
consequence, not an assumption, of the SU(2)× U(1) theory.

Please note that, in this argument, I have used the property of our
SU(2) × U(1) model that there are no neutrino mass terms. If we

had included a neutrino mass term, the matrices U
(e)
L , U

(e)
R would not

have cancelled out of that term, and we would have found very small
generation-changing interactions proportional to the neutrino masses. I
will discuss this effect in Chapter 20.

The construction for the quarks is somewhat more complicated. We
make the change of variables

uiR → U
(u)
Riju

j
R uiL → U

(u)
Liju

j
L

diR → U
(d)
Rijd

j
R diL → U

(d)
Lijd

j
L (18.32)

After this change of variables, the matrices UL, UR have disappearedUsing the representation (18.28) for the
Yukawa matrices, we simplify the quark
terms in the Lagrangian.

from the Yukawa couplings. The new ui and di fields correspond to
mass eigenstates—the physical quarks u, c, t and d, s, b. The unitary
matrices are transfered to the quark kinetic terms. Then they cancel,
just as for the leptons—at least, in the couplings to the gluon, photon,
and Z boson. We now see that, for the most general structure of Yukawa
couplings, the neutral current interaction mediated by the Z boson is
always diagonal in flavor.

In the coupling to the W boson, the unitary matrices do not com-
pletely cancel. Instead, we find

u†L(iσµ)dL → u†LU
(u)†
L (iσµ)U

(d)
L dL

= u†L(iσµ)VCKMdL , (18.33)

where
VCKM = U

(u)†
L U

(d)
L . (18.34)

The UL matrices can thus be combined into a single unitary matrix,The last vestige of the unitary trans-
formations that diagonalize the quark
mass matrices produces precisely the
Cabibbo mixing in the weak interaction
and its generalization to three genera-
tions.

VCKM , called the Cabibbo-Kobayashi-Maskawa matrix. After the changes
of variables, this is the only term in the weak interaction Lagrangian
that contains generation-changing interactions. The matrix elements of
VCKM are exactly the parameters Vud, Vus, etc., that we introduced in
(18.6) and (18.11),

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (18.35)
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Thus, each physical u quark is linked by charged-current interactions
to a different linear combination of the d quarks. VCKM is a unitary
matrix, and so these linear combinations are orthogonal. At this point,
the combinations have complex coefficients. The imaginary parts of the
coefficients can be shown to lead to CP - and T -violating interactions.

However, we can simplify the structure even further. A 3× 3 unitary
matrix has 9 parameters. If this matrix were real-valued, it would be
a rotation matrix in 3 dimensions, parametrized by 3 Euler angles. So
a 3 × 3 unitary matrix is parametrized by 3 angles and 6 phases. By a
further change of variables to change the phases of the quark fields

ujL → eiαjujL , djL → eiβjdjL , (18.36)

we can remove 5 phases. The overall phase of the quark fields drops out
of the Lagrangian and cannot be used to simplify VCKM . So, finally,
VCKM can be written with 4 parameters—3 angles and 1 phase. This
phase is a single parameter that produces CP and T violation in the
weak interaction.

We will see in the next chapter that certain weak interaction decays
do show CP and T violation. This explanation for the origin of CP At the end of the simplifications, the

weak interaction contains one CP vi-
olating parameter. This parameter
could be transformed away if there were
fewer than three generatioms of quarks.

violation was first put forward by Kobayashi and Maskawa (1973). Note
that, if we had only 2 generations, VCKM would be a 2×2 parametrized
by one angle, the Cabibbo angle, and all phases could be removed. Thus,
the Kobayashi-Maskawa theory connects CP violation in the weak in-
teraction to the existence of three generations of quarks. Remarkably,
Kobayashi and Maskawa proposed the existence of the third generation
before the discovery of the τ lepton and even before the discovery of the
c quark.

It turns out that there is one defect in this argument. The same strong-
interaction physics of gluons that destroys the possible chiral U(1) sym-
metry of QCD with massless quarks also allows a possible CP -violating
term in QCD, parametrized by an angle θ. This term potentially gener-
ates CP - and T - violating effects in the strong interaction, for example,
the generation of an electric dipole moment for the neutron. Measure-
ments of the neutron electric dipole moment, which we will discuss in
Section 19.2, require that |θ| < 10−10. The θ parameter is shifted by the
phase transformation (18.36). Still, it is possible to introduce additional
mechanisms, requiring new particles or interactions, that guarantee that
θ is sufficiently small. Having called your attention to this problem, I
will ignore it from here on. For further discussion of this issue, see (Dine
2000).

18.4 The Standard Model of particle physics

We have now derived a remarkable result. We wrote down the most
general Lagrangian allowed by SU(3)× SU(2)×U(1) gauge symmetry.
After spontaneous symmetry breaking and some changes of variables,
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we have reduced that Lagrangian to the following form:

L = −1

4

∑
a

(F aµν)2 +m2
WW

+
µ W

−µ +
1

2
m2
ZZµZ

µ

+
∑
f

Ψf (iγ ·Df −mf )Ψf +
1

2
(∂µh)2 − V (h) . (18.37)

where the sum over a runs over the generators of SU(3)×SU(2)×U(1)
and the sum over f runs over all quark and lepton flavors. The covariant
derivatives Df are of the form

The Lagrangian of the Standard Model
of particle physics.

Dµf = ∂µ − ieQfAµ − i
g

cw
QZfZµ − igsAaµta , (18.38)

representing electromagnetic, Z, and gluon couplings to fermions, plus
a W± interaction that is diagonal in generations for the leptons and
proportional to VCKM for the quarks. The interactions of the Higgs
boson field h(x) are generated by the replacement v → v + h(x) in the
mass terms for W , Z, quarks, and leptons. This theory is called the
Standard Model of particle physics.

The Standard Model automatically has many highly accurate approx-
imate symmetries (Weinberg 1973, Nanopoulos 1973):The Standard Model is the most gen-

eral quantum field theory model of the
known particles with SU(3)× SU(2)×
U(1) gauge symmetry. After appropri-
ate changes of variables, this model has
many unexpected symmetries and con-
servation laws, These are the same ones
actually seen in nature.

(1) The Lagrangian conserves overall quark number or baryon number
and, separately, overall lepton number. Note that these conserva-
tion laws are outputs of the analysis, not assumptions.

(2) All terms except for the couplings of the W and Z bosons to
fermions conserve P , C, and T . In particular, it is automatically
true that the strong and electromagnetic interactions conserve P ,
C, and T .

(3) All terms except for the couplings of the W boson preserve the
fermion number for each individual fermion species. For the lep-
tons, the weak interaction also connects each charged lepton to
one neutrino. This explains the fact that, in experiment, each lep-
ton seems to carry a separate conserved quantum number. For
example,

BR(µ− → e−γ) < 2.4×10−12 , BR(τ− → µ−γ) < 4.4×10−8 .
(18.39)

(4) The W and Z couplings violate P and C in a maximal way. How-
ever, if these couplings are real-valued, they preserve the joint
symmetry CP . Since CPT is a symmetry of any quantum field
theory, real-valued couplings also preserve T . There is one possible
source of CP and T violation in the Standard Model, and that is
the one remaining phase in the CKM matrix. The Standard Model
associates CP violation with interactions of the third generation.
I will discuss tests of this idea in Chapter 19.
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18.5 Quark mixing including heavy quarks

We have already discussed the value of the CKM parameter Vus. Since
a two-generation theory has only one angle, we must use processes in-
volving the third generation to determine the other two angles. The
angle Vcb is extracted from the decay rate of B mesons. Ignoring for
a moment the effects of the strong interaction, we can estimate the rate
of B meson decay from the formula for b quark decay that is analogous
to the formula (15.40) for the rate of muon decay. That is, Determination of the parameters Vcb

and Vub that control the rate of b quark
decay.

Γ(b→ cff) = |Vcb|2
G2
Fm

5
b

192π3
(3 + 2 · 3) , (18.40)

where the decays to ff = eν, µν, τν, ud, and cs are included. The decays
to τ and c are substantially reduced by phase space, but also there is
a relatively large enhancement from QCD corrections. Evaluating the
simple formula (18.40), we find

Γ(b→ cff) = 4× 10−10 GeV · |Vcb|2 (18.41)

or
τ(b) = 1.7× 10−15 sec · |Vcb|2 . (18.42)

The measured B meson lifetime is

τ(B) = 1.5× 10−12 sec . (18.43)

If we interpret this as the rate of b quark decay, we would estimate
Vcb ≈ 0.03. The best current estimate, which includes the effects of the
strong interaction in the b quark binding and decay, is

Vcb = (4.09± 0.11)× 10−2 . (18.44)

Decays with b → u are a small fraction of B meson decays and are
somewhat harder to relate to measured quantities. The best current
estimate gives

Vub = (4.15± 0.49)× 10−3 . (18.45)

A very convenient parametrization of the CKM matrix is that devel-
oped by Wolfenstein (1983). This parametrization uses the fact that Wolfenstein’s useful parametrization of

the CKM matrix.Vus, Vcb, and Vub are successively smaller. From these elements, the
whole unitary matrix can be constructed using the requirement that, in
a unitary matrix, the rows and the column are orthogonal vectors. The
following formula maintains this orthogonality up to terms of order V 4

us:

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 . (18.46)

The current best values of the parameters are

λ = 0.225

A = 0.81

|ρ− iλ| = 0.37 (18.47)
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Wolfenstein placed the possible phase of the CKM matrix in the extreme
corners. This makes it more explicit that CP violation appears only in
processes that involve either the b or the t quark in some way.

To conclude this discussion, I return to the issue of flavor-changing
neutral weak interactions. In the Standard Model, leptons have noAlthough the Standard Model La-

grangian contains no flavor-changing
neutral current couplings, such pro-
cesses can be induced by higher-order
corrections. In this passage, I discuss
the flavor-changing amplitude that con-

verts a K0 to a K
0

and vice versa.

flavor-changing weak interactions. For quarks, there are no flavor-changing
terms neutral current terms in the Lagrangian, but very small flavor-
changing effects can be generated by Feynman diagrams that make use
of charged-current interactions. We can study this in the example of
the process sd→ ds, which converts a K0 meson to a K0 meson. I will
discuss this physical consequences of the mass mixing in Section 19.1.

The top left submatrix of the CKM matrix is, to a good approxima-
tion, (

cos θC sin θC
− sin θC cos θC

)
. (18.48)

This structure was originally proposed by Glashow, Iliopoulos, and Ma-
iani (1970) to explain the smallness of the K0–K0 mixing amplitude. As
we will see in a moment, the unitarity of the matrix (18.48) gives rise
to what is called a GIM cancellation that makes this amplitude much
smaller than one might expect.

Early in the study of the weak interaction, it was realized that it is
possible to convert K0 to K0 through the process

(18.49)

This matrix element has the form

m2(K0,K0) ∼ m2
Kf

2
K

G2
F

(4π)2
sin2 θC cos2 θC ·m2

W . (18.50)

In this formula, mK is the mass of the K0, and fK is the K meson
analogue of the pion decay constant defined in (14.34). Dimensional
analysis requires another factor with the dimensions of (GeV)2. I have
written this factor as m2

W because, in the computation of the diagram,
the momentum of the off-shell W bosons is allowed to run up to mW .
Evaluating this equation, we find

m2(K0,K0) ≈ 10−12 GeV2 . (18.51)

This result is much larger than the value measured in experiment,

m2(K0,K0) ≈ 3.5× 10−15 GeV2 . (18.52)

GIM suggested—in 1970, before the discovery of the J/ψ—that pos-
tulating a c quark with the weak interaction coupling structure above
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could solve this problem. In the GIM theory, there were three more
diagrams,

(18.53)
Note that the diagrams with both u and c have the opposite sign, from
the factors of (− sin θC). The four diagrams contain integrals over mo-

The fact that the charge-changing weak
interactions arise from a unitary matrix
leads to cancellations in the induced
amplitudes for neutral flavor-changing
processes. These GIM cancellations are
essential for agreement with the mea-
sured values.

menta that have the same form for exchanged momenta q � mc. So, the
four diagrams cancel for large momentum transfers. This cancellation
removes the entire region in which the momenta carried by the off-shell
W bosons is larger than mc. The sum of the four diagrams is then of
the form of (18.50) but with

m2
W → m2

c . (18.54)

This lowers the estimate of ∆mK by a factor of 10−4, to about the
correct value. A full QCD analysis with the now known parameters of
the Standard Model gives a value in good agreement with experiment.
Similar GIM cancellations predict that the D0–D0 and B0–B0 mixing
amplitudes also have very small values, again as required by experiment.

Exercises

(18.1) Since most of the degrees of freedom in the quark
Yukawa matrices can be transformed away, there
is a great deal of freedom to make proposals for
the underlying form of these matrices. A sim-
ple proposal, due to Fritzsch (1977), is that the u
quark Yukawa matrix is diagonal while the d quark
Yukawa matrix is symmetric with zeros on the di-
agonal.

(a) Fritzsch’s original proposal was for two gen-
erations (d, s). He proposed

Yd =

(
0 A
A B

)
. (18.55)

Diagonalize this matrix, obtaining formulae
for the s and d masses and the matrices U

(d)
L

and U
(d)
R . Construct the 2 × 2 CKM matrix

for this model.

(b) Show that the zero element of the original Yd
implies the relation

tan θC =
√
md/ms . (18.56)

(c) Evaluate this formula using (14.59) and
(18.10). How well does it work?

(d) A generalization to three generations is

Yd =

(
0 A 0
A 0 B
0 B C

)
. (18.57)

Show that the zero in the central element of
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this matrix leads to the prediction

Vts
Vcs
≈
√
ms

mb
. (18.58)

Evaluate this expression using the Wolfen-
stein parameters (18.47). How well does it
work?

(18.2) At the time that the b quark was discovered, there
was no direct evidence for the existence of the t
quark. An alternative possibility was that the bL
and bR were both SU(2) singlets. The b quark
would have weak interaction decays if the weak
interaction mixing matrix mixed the bR with the
other right-handed, Y = − 1

3
, quark fields.

(a) For simplicity, set θC = 0 and ignore the (u, d)
quarks. Then the masses of s, c, b can be gen-
erated by the Lagrangian terms

∆L = −ysQ†aϕas̃R − ycQ†aεabϕ∗bcR
−Mb†LbR + h.c. (18.59)

where Q = (c, s)L and

s̃R = cosα sR + sinα bR . (18.60)

Show that (18.59) is invariant under SU(2)×
U(1).

(b) Let the Higgs field acquire its vacuum expec-
tation value v. Write the quark mass matrix
and diagonalize it. Construct the matrices UL
and UR needed to diagonalize the (s, b) mass
matrix.

(c) Make the change of variables analogous to
(18.32). This removes UL and UR from the
Higgs couplings and introduces these matri-
ces in the weak interaction couplings. Write
the term in the Lagrangian that leads to the
charged-current weak interaction of b.

(d) Compute the decay rate for b → cµ−ν in the
simple approximation used in (18.40).

(e) Show that the flavor-changing neutral cur-
rent interaction of b is nonzero in this model.
Write the term in the Lagrangian that leads
to the neutral current weak interaction of b.

(f) Compute the decay rate for b → sµ+µ− in
the same approximation as in part (d).

(g) Compute the ratio of branching ratios

BR(b→ sµ+µ−)/BR(b→ cµ−ν) (18.61)

in this model. Compare your result to the
Particle Data Group values

BR(b→ µ−νX) = 0.11

BR(b→ sµ+µ−) = 4× 10−6 . (18.62)

(18.3) The fact that, in the Standard Model, the Higgs
boson couplings are exactly diagonal in flavor is

an important part of the understanding of K0–K
0

mixing. To see this, consider the consequences of
introducing another scalar particle h2 that could
mediate d-s flavor changes. In particular, write for
the h2 the interaction

∆L = i
y2√

2
h2(sγ5d− dγ5s) . (18.63)

(a) To evaluate the K0–K
0

mixing amplitude,
we need the value of 〈0| sγ5d

∣∣K0
〉
. Using

the derivation in Chapter 14 from (14.45) to
(14.48), evaluate this amplitude in terms of
the parameter ∆′ and then numerically.

(b) Draw the Feynman diagram by which an s-
channel exchange of the h2 generates a K0–

K
0

mixing amplitude. Evaluate the contribu-
tion to this amplitude in terms of the coupling
constant y2.

(c) Set y2 equal to the s quark Yukawa coupling
and the mass of the h2 to 100 GeV to estimate
the size of the induced mixing. How does this
compare to the measured value (18.52)?
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We saw in the previous chapter that the 3-generation SU(2) × U(1)
model has room for one phase angle, which would signal violation of
CP and T . In this chapter, I will discuss the evidence for CP violation
in hadronic weak decays. We will see that CP violation, though it
is a very small effect, is clearly observed in specific weak interaction
processes. These observations, as I will show, are well explained by
the Kobayashi-Maskawa phase in the mixing matrix for charge-changing
weak interactions.

The study of CP violation is fascinating from another point of view.
CP violation is difficult to observe directly using the observables that
we have discussed so far in this book. Typically, CP violation leads
to only very small asymmetries in the rates of weak interaction decays
between particles and antiparticles. The most compelling evidence for
CP violation comes from a different kind of experiment in which we
observe the time-dependent evolution of a particle that decays through
the weak interaction. In such a system, CP violation can be observed as
a nonzero phase in the quantum interference of two components of the
wavefunction of the decaying state. In some cases, this quantum inter-
ference plays out over macroscopic distances, of the order of meters. In
these systems, the experiments on weak interaction decay test not only
the details of a particle physics model but also the underlying funda-
mental principles of quantum mechanics. CP violation experiments are
reviewed from this point of view in (Testa 2007).

19.1 CP violation in the K0–K0 system

I will begin by describing the evidence for CP violation in the K0–
K0 system. In Section 18.5, I pointed out that there is a very small
amplitude that mixes the K0 and K0 states. This observation leads to
some unexpected phenomena in K0 decays even in the case where CP is
conserved. In this section, I will first develop this theory assuming CP
conservation, and then generalize it to the case in which CP is violated.

The neutral K meson is a 2-state quantum system that evolves ac-
cording to Evolution of an initial K0 state under

the influence of K0–K0 mixing, under
the assumption that CP is conserved.e−iMτ , (19.1)

where τ is the time measured in the rest frame (proper time), and M is
a mass matrix for the two-state system. If CP is conserved, M has the
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form

M =

(
m− iΓ/2 δm− iδΓ/2
δm− iδΓ/2 m− iΓ/2

)
, (19.2)

symmetrical between particles and antiparticles. The parameters m and
δm contribute to the masses of the eigenstate particles. The parameters
Γ and δΓ contribute to their decay rates; the factor of (−i) turns (19.1)
into an exponential decay. CPT requires that the diagonal elements of
this matrix are equal. C and P act on |K0〉 and |K0〉 as

P |K0〉 = −|K0〉 P |K0〉 = −|K0〉
C|K0〉 = +|K0〉 C|K0〉 = +|K0〉 . (19.3)

Thus, CP symmetry implies that the off-diagonal elements of (19.2) are
equal. The eigenstates of this mass matrix are CP eigenstates,

CP = +1 |K0
S〉 =

1√
2

(
|K0〉 − |K0〉

)
,

CP = −1 |K0
L〉 =

1√
2

(
|K0〉+ |K0〉

)
. (19.4)

The corresponding mass and decay rate eigenvalues are

MS = m− δm− i(Γ− δΓ)/2

ML = m+ δm− i(Γ + δΓ)/2 (19.5)

A particle produced as a K0 will propagate as a linear combination of
K0
S and K0

L. The two components of the wavefunction will have different
decay rates and will oscillate with different frequencies.

The K0 and K0 are stable with respect to the strong interaction but
can decay by the weak interaction, through

s→ ue−νe , s→ uµ−νµ , s→ udu . (19.6)

Computation of QCD corrections gives a large enhancement for the
purely hadronic decay modes. In particular, the decay

K0 , K0 → ππ (19.7)

is enhanced by about a factor of 100 relative to other modes. TheThe K0 splits into two components, K0
S

and K0
L, with lifetimes that differ by a

factor of almost 1000.
decay

K0 , K0 → 3π (19.8)

also has a QCD enhancement, but at the same time it is suppressed by
the large denominator in the formula for 3-body phase space and by the
fact that (mK − 3mπ) is small. For pions in an S-wave, the dominant
final states,

CP |ππ〉 = + |ππ〉 CP |πππ〉 = − |πππ〉 . (19.9)

Then the state called KS in (19.4) is allowed to decay to 2π, but for
the state called KL this decay is forbidden by CP conservation. This
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implies that the two mass eigenstates of the K0–K0 system have two
very different lifetimes

τS = 0.895× 10−10 sec cτS = 2.68 cm

τL = 5.116× 10−8 sec cτL = 15.34 m (19.10)

The two states are appropriately called “K-short” and “K-long”. It
is an interesting accident that the K0

L–K0
S mass difference

mL −mS = 3.48× 10−15 GeV ,
h̄

2(mL −mS)
= 0.95× 10−10 sec ,

(19.11)
corresponds to a time very close to the lifetime of the K0

S .
The structure of the K0

S and K0
L states leads to some remarkable

physical consequences. If a K0 is produced, for example, in the reaction

π−p→ Λ0K0 , (19.12)

the K0 state resolves itself into the two CP eigenstates. The K0
S com-

ponent decays to ππ in a few cm. This has a probably of 50%. The
other part of the K0 wavefunction decays to 3π and other final states
over a distance of tens of meters. This alternative possibility also has a
probability of 50%. If we created mutiple K0s using a beam of π−s, the
decay vertices appear as

(19.13)

If we go meters downstream from the K0 production target, we have
essentially a pure K0

L beam. The particles in this beam are coherent The K0
S component of the wavefunc-

tion may be regenerated by an absorber
placed in the path of the kaons.

mixtures of K0 and K0, as indicated in (19.4). By disturbing the quan-
tum state, it is possible to change the relative amplitudes of K0 and K0

in the wavefunctions. According to the rules of quantum mechanics, this
should regenerate a K0

S component. We can do this in practice by plac-
ing an absorber in the path of the kaon beam (Pais and Piccioni 1955).
The K0 (sd) state contains a d antiquark and so has a larger inelastic
cross section on matter. Thus, after the K0 state passes through the ab-
sorber, the original K0

L wavefunction now has a larger K0 component.
We can represent the kaon state that exits the absorber as the quantum
state

a|K0〉+ b|K0〉 = α|K0
L〉+ β|K0

S〉 , (19.14)

where, if a 6= b, β will be nonzero. We will then see K0 → ππ decays in
the few cm behind the absorber with probability |β|2,

(19.15)
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There are specific final states, such as π−e+ν, to which both K0
S and K0

L

can decay. For these final states, we will see quantum interference of the
two decay processes in this same region. Meters behind the regenerator,
the state reverts again to a pure K0

L state.
So far, I have been analyzing the K0–K0 system under the assumption

that CP is conserved. However, in 1964, the picture was made moreModification of the above analysis in
the true case that CP is violated. complicated. In an experiment at the Brookhaven National Laboratory,

Christenson, Cronin, Fitch, and Turlay (1964) carefully observed K0
L

decays in a meters-long decay region filled with helium. They discov-
ered that there is a small component of decays to π+π− with the time
dependence of the K0

L lifetime. This decay∣∣K0
L

〉
→ |ππ〉 (19.16)

cannot proceed unless CP is violated. The branching ratio is

BR(K0
L → ππ) = 2.8× 10−3 , (19.17)

so the effect is doubly small, a small effect in comparison to the already
small K0

L decay rate.
There is a place for this CP violating effect within the Standard

Model. The t quark can appear as an intermediate state in the K0–
K0 mixing amplitude, and diagrams with the t quark can carry a phase

(19.18)

The effect on the K0–K0 mass matrix is to change (19.2) to

M =

(
m− iΓ/2 δm(1 + iζ)− iδΓ/2

δm(1− iζ)− iδΓ/2 m− iΓ/2

)
, (19.19)

The eigenstates of this matrix are, to first order in ζ,

|K0
S〉 =

1√
2

(
(1 + ε)|K0〉 − (1− ε)|K0〉

)
,

|K0
L〉 =

1√
2

(
(1 + ε)|K0〉+ (1− ε)|K0〉

)
. (19.20)

where

ε =
iζ

δm− iδΓ/2
. (19.21)

The states |K0
S〉 and |K0

L〉 are not orthogonal, but this is permitted
because the modified mass matrix is not Hermitian.

The parameter δm is half of the K0
L–K0

S mass difference. The K0
S and

K0
L decay rates are

ΓS = Γ− δΓ ΓL = Γ + δΓ (19.22)
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which implies

δΓ ≈ −1

2
ΓS . (19.23)

Using these relations, we can write (19.21) as

ε =
2iζ

mL −mS + iΓS/2
. (19.24)

I have pointed out above that the real and imaginary parts of the de-
nominator are almost equal. This predicts the phase of ε to be close to
45◦. More precisely,

ε = |ε|eiφ with φ = 44◦ . (19.25)

To describe the effects of this change in the mass matrix, it is useful
to write the eigenstates of M, given by (19.20), in terms of the CP
eigenstates (19.4), which I will now refer to as |K0

+〉 and |K0
−〉. We find∣∣K0

S

〉
=
∣∣K0

+

〉
+ ε

∣∣K0
−
〉∣∣K0

L

〉
=
∣∣K0
−
〉

+ ε
∣∣K0

+

〉
. (19.26)

It follows from this formula that

Γ(K0
L → ππ)

Γ(K0
S → ππ)

= |ε|2 . (19.27)

Evaluating this formula, we find

|ε| = 2.23× 10−3 . (19.28)

Each of the states
∣∣K0

S

〉
,
∣∣K0

L

〉
evolves, in its rest frame, according to

e−imτe−Γτ/2 , (19.29)

where τ is proper time. For a moving K0 state, the oscillation plays
out as function of position along its path. A coherent state of

∣∣K0
S

〉
and∣∣K0

L

〉
then displays an interference pattern. Since both states can decay

to π+π−, we can see this interference in the decay rate to π+π−. For CP violation is manifested in a charac-
teristic pattern of quantum interference
between the K0

S and K0
L decays to ππ.

a K meson state behind a regenerator, with the wavefunction (19.14),
the decay rate is proportional to

Γ(K0 → ππ) ∼
∣∣∣∣ε α e−imLτ−ΓLτ/2 + β e−imSτ−ΓSτ/2

∣∣∣∣2
∼ |β|2

∣∣∣∣e−ΓSτ/2 +
ε α

β
e−i(mL−mS)τ−ΓLτ/2

∣∣∣∣2. (19.30)

This function has the form of an oscillation superposed on an exponential
decay,

(19.31)



298 CP Violation

Fig. 19.1: Distribution of K0 → π+π− decays behind a regenerator as a
function of proper time, from (Geweniger et al. 1974).

This is quantum interference over a macroscopic length scale. Some
examples of such interference patterns seen in real experiments are shown
in Figs. 19.1 and 19.2.

A different interference effect appears in the decays

K0 → π±e∓ν , K0 → π±µ∓ν . (19.32)

The K0 (sd) decays only to e+; the K0 (sd) decays only to e−. A
state that is originally K0 has its time-dependence determined by the
resolution into mass eigenstates,∣∣K0

〉
=

1√
2(1 + ε)

[∣∣K0
S

〉
+
∣∣K0

L

〉]
. (19.33)

From this formula, we can work out the K0 and K0 components of the
original K0 wavefunction as a function of τ ,∣∣K0(τ)

〉
=

1√
2(1 + ε)

[∣∣K0
S

〉
e−imSτ−ΓSτ/2 +

∣∣K0
L

〉
e−imLτ−ΓLτ/2

]
=

1

2(1 + ε)

[(
(1 + ε)

∣∣K0
〉
− (1− ε)

∣∣∣K0
〉)
e−imSτ−ΓSτ/2

+
(
(1 + ε)

∣∣K0
〉

+ (1− ε)
∣∣∣K0

〉)
e−imLτ−ΓLτ/2

]
. (19.34)

Looking at the K0 and K0 content of these eigenstates, we can read off
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Fig. 19.2: Distribution of K0 → π+π− decays behind a regenerator as a
function of proper time, from (Carithers et al. 1975).

the decay rate to e+

Γ(K0 → e+πν) ∼ |1 + ε|2

|1 + ε|2

∣∣∣∣e−imSτ−ΓSτ/2 + e−imLτ−ΓLτ/2

∣∣∣∣2 , (19.35)

and to e−

Γ(K0 → e−πν) ∼ |1− ε|
2

|1 + ε|2

∣∣∣∣e−imSτ−ΓSτ/2 − e−imLτ−ΓLτ/2

∣∣∣∣2 , (19.36)

The charge asymmetry CP violation in K0–K0 mixing also

predicts a small excess of K0 → e+νπ
over K0 → e−νπ decays, which is ob-
served.A(τ) =

N(e+)−N(e−)

N(e+) +N(e−)
(19.37)

goes through an oscillation, as shown in Fig. 19.3. The asymmetry tends
to a nonzero constant at large values of τ . This reflects the asymmetry
of the K0

L component of the state which remains at long times. We find

A(τ)→ |1 + ε|2 − |1− ε|2

|1 + ε|2 + |1− ε|2
≈ 2 Re ε . (19.38)

The numerical prediction for the asymmetry is

A(τ)→ 3.3× 10−3 , (19.39)

in good agreement with the data.
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Fig. 19.3: Charge asymmetry in K0 → e+π−ν / K0 → e−π+ν decays as a
function of proper time, from (Gjesdal et al. 1974).

19.2 Electric dipole moments

For a long time, CP violation was only seen in the K0–K0 system,
and all nonzero CP -violating observables were consistent with an origin
in the complex phase of the K0–K0 mixing amplitude. In the 1990’s,
a small CP -violating contribution to the K0 → ππ decay amplitude
was also discovered (Barr et al. 1993). Other quantities that might
show CP and T violation are the electric dipole moments of elementary
particles. For a spin- 1

2 particle, the spin indicates an orientation. AnCP violation can potentially lead to
nonzero electric dipole moments for el-
ementary particles. In the Standard
Model, electric dipole moments are pre-
dicted to be extremely small, in agree-
ment with experiment.

electric dipole moment is then a charge polarization in the direction
of the spin. T reverses the spin but does not reverse the polarization;
hence, an electric dipole moment is a T -violating effect. Naively, one
might expect that the electric dipole moment of the neutron might be
as large as

dn ∼ e · 1 fm ∼ 10−13e-cm . (19.40)

In fact, the neutron electric dipole moment is known to be much, much
smaller. The current limit is (Pendlebury et al. 2015, Serebrov et al.
2015)

dn < 0.3× 10−25e-cm . (19.41)

The limit on the electron electric dipole moment is (Baron et al. 2014)

de < 8.7× 10−29e-cm . (19.42)

These values turn out to be consistent with the expectations for these
quantities in the Standard Model. Since the neutron and the electron
contain, to high degree of approximation, only particles of the first gener-
ation, the CP -violating effects predicted for these systems are extremely
small.
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19.3 CP violation in the B0–B0 system

There is a more tantalizing way to search for additional quantities ex-
hibiting CP violation. In the Standard Model, CP violation is expected
to come from an order-1 phase associated with heavy quarks. If this is
true, there must be a heavy quark weak interaction process with order-1
CP violation. How do we find it?

Bigi, Carter, and Sanda suggested that one could see order-1 effects
of the CKM phase in the time-dependence of decays of B mesons to
exclusive final states with definite CP (Carter and Sanda 1980, Bigi
and Sanda 1981). The simplest example is

B0 , B0 → J/ψ K0
S . (19.43)

Consider, for definiteness, the decay of the B0 (bd). The B0 can reach
the J/ψK0

S final state in two ways. First, it can decay directly, through
the weak interaction process b→ ccs,

∼ VcbV ∗cs (19.44)

But also, it can decay through B0–B0 mixing, followed by the process
b→ ccs. The K0–K0 mixing matrix must also be used to cause the final
states to interfere. So the second path follows the Feynman diagram In the exclusive process B0 → J/ψK0

S
two alternative quantum paths inter-
fere with a phase that displays CP vi-
olation.

∼ V ∗cbVcs . (19.45)

The B0–B0 mixing amplitude is dominated by the process

∼ VtbV ∗tdV ∗tdVtb (19.46)
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and the K0–K0 mixing amplitude is dominated by the process

∼ V ∗csVcdVcdV ∗cs . (19.47)

The two paths then differ by a relative factor proportional to

−
[
V ∗cbVcsVtbV

∗
tdV
∗
csVcd

]2
, (19.48)

where the extra minus sign is that in the K0
S wavefunction (19.4). In

the Wolfenstein parametrization of the CKM matrix (18.46), the only
factor in this formula that has a phase is Vtd, which can be represented
as

Vtd = Aλ3(1− ρ− iη) = C e−iβ . (19.49)

So, the relative phase between the two paths is−e2iβ . Any phases arising
from the strong interaction matrix elements are identical along the two
paths and factor out of the decay amplitude.

I will now discuss how this phase can be measured experimentally in
the simplest situation. To explain this clearly, I will use a number of
approximations that are accurate for the particular process B0/B0 →
J/ψK0

S . For a complete discussion of this and other time-dependent B
decay processes, see (Bevan et al. 2014).

The B0–B0 system is somewhat simpler than the K0–K
0

system, in
that the hadronic decays of the B meson are decays to complex multi-
particle final states with both possible values of CP . Hence, the decay
rates of the two mass eigenstates are nearly equal, so that 4δΓ can be
neglected. The B0–B0 mass matrix is then well approximated by

M =

(
m− iΓ/2 −e2iβδm/2
−e−2iβδm/2 m− iΓ/2

)
. (19.50)

In writing (19.50), I have used the result in (19.46) that the B0 → B0

mixing amplitude has the phase of (V ∗td)
2 ∼ e2iβ . The parameter δm

is real-valued, and it turns out to be positive. The lifetime of the B0

mesons is

τ = 1.52× 10−12 sec Γ = 4.3× 10−13 GeV . (19.51)

The eigenstates of the matrix (19.50) are

|B0
L〉 =

1√
2

(
|B0〉+ e−2iβ |B0〉

)
,

|B0
H〉 =

1√
2

(
|B0〉 − e−2iβ |B0〉

)
, (19.52)
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with eigenvalues

m− δm/2− iΓ/2 , m+ δm/2− iΓ/2 (19.53)

for B0
L and B0

H , respectively. The mass difference of the two states is

mH −mL = δm = 3.3× 10−13 GeV , (19.54)

The value of (mH − mL) is accidentally quite close to the decay rate
Γ. This means that the time-dependent interference terms in B0 decay
might be observable.

The states |B0
L〉 and |B0

H〉 have simple time-dependence, for example,

|B0
L(τ)〉 = exp[−i(m− δm/2− iΓ/2)τ ]|B0

L〉 . (19.55)

Then we can use (19.52) to compute the time-dependence of the |B0〉
and |B0〉 states. For |B0〉,

|B0(τ)〉 =
1√
2

[
|B0
L(τ)〉+ |B0

H(τ)〉
]

=
1

2
e−imτ−Γτ/2

[
|B0〉(eiδm τ/2 + e−iδm τ/2)

+|B0〉e−2iβ(eiδm τ/2 − e−iδm τ/2)

]
= e−imτ−Γτ/2(

|B0〉 cos
δm τ

2
+ i|B0〉 e−2iβ sin

δm τ

2

)
.

(19.56)

Similarly, for |B0〉,

|B0(τ)〉 = e−imτ−Γτ/2(
|B0〉 cos

δm τ

2
+ i|B0〉 e+2iβ sin

δm τ

2

)
.

(19.57)

We have now dealt with the B0–B0 mixing, so all that remains is to
the decay the B0 and B0 states directly to J/ψ K0

S . Recalling again
that there is a minus sign between the sd and ds components of the K0

S ,
the matrix elements for the full process of time evolution and decay have
the form

M(B0(τ)→ J/ψ K0
S) = e−imτ−Γτ/2A(

|B0〉 cos
δm τ

2
− i|B0〉 e−2iβ sin

δm τ

2

)
.

M(B0(τ)→ J/ψ K0
S) = e−imτ−Γτ/2A(

|B0〉 cos
δm τ

2
− i|B0〉 e+2iβ sin

δm τ

2

)
.

(19.58)
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The decay amplitude A can be complex, with a phase due to the strong

interaction, but this factor is the same for B0 and B
0

decays due to the
CP invariance of the strong interaction.

Squaring the amplitudes (19.58), we find the time-dependence of the
decay rates

Γ(B0(τ)→ J/ψ K0
S) ∼ e−Γτ (1− sin δm τ sin 2β)

Γ(B0(τ)→ J/ψ K0
S) ∼ e−Γτ (1 + sin δm τ sin 2β) (19.59)

The asymmetry in the rates is

Γ(B0 → J/ψK0
S)− Γ(B0 → J/ψK0

S)

Γ(B0 → J/ψK0
S)− Γ(B0 → J/ψK0

S)
= + sin δm τ sin 2β (19.60)

So, the decay is shifted forward in time for an initial B0 and backward
in time for an initial B0. The asymmetry is predicted to have a time-
dependence governed by δm with amplitude sin 2β. For the process
B0/B0 → J/ψ K0

L, the relative minus sign in the decay amplitudes
from B0 and B0 becomes a plus sign, and so the asymmetry becomes
(− sin δmτ sin 2β). The angle β in this formula is the phase angle taken
directly from the CKM matrix, with no corrections due to the strong
interaction.

To understand how to measure this time-dependent asymmetry, we
must first think about the production of B0 and B0 mesons in e+e−

annihilation. We have seen that e+e− annihilation leads to a state with
J = 1. For production of a pair of spin 0 mesons, the two mesons are
in an L = 1 wavefunction, which must then be antisymmetric in the
other meson quantum numbers. The B mesons go outward from the
production point. After some time, one of the meson decays. A decay
to an e+ or µ+ tags this meson—at that time—as a B0. The other
meson must then be a B0. This state propagates for an additional time
∆t, possibly mixing to B0 during that time, and then decays to the
observed final state.

(19.61)

The relative time ∆t, or, rather τ = ∆t/γ, is the time that would
appear in the formula above. The relative time ∆t might be negative if
the leptonic decay takes place after the selected exclusive decay.
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Fig. 19.4: Proper time distribution of B0B0 → J/ψK0 decays at the Υ(4S),
measured by the BaBar experiment at the PEP-II collider at SLAC, from
(Aubert et al. 2002). Panel (a) shows the decay distributions for B0B0 →
J/ψK0

S . Panel (b) shows the rate asymmetry (19.60). Panel (c) shows the
decay distributions for B0B0 → J/ψK0

L. Panel (d) shows the corresponding
rate asymmetry (19.60).

The lifetime of the B meson is about 1.5 ps, so it is difficult to measure
the decay time directly. However, Oddone suggested that one might
construct an asymmetric colliding beam accelerator, in which the e+e−

center of mass frame is moving with respect to the lab (Oddone 1989).
In the realistic case, the boost of the center of mass is v/c ∼ 0.5. Then
the two B decays would be separated by about 200 microns, a distance
that is resolvable using a silicon tracking detector to pinpoint the decay
vertices. In the late 1990’s, two asymmetric e+e− colliders were The B0 decay distributions in time

can be converted to observable distri-
butions in space by creating the B0B0

states in an asymmetric e+e− collider.

constructed, one at SLAC (9.0 GeV e− × 3.1 GeV e+), for the BaBar
experiment, and one at KEK in Tsukuba, Japan (8.0 GeV e− × 3.5 GeV
e+), for the BELLE experiment. In 2001, both experiments observed the
CP -violating asymmetry in B0 → J/ψK0

S (Abe et al. 2001b, Aubert et
al. 2001).
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Figure 19.4 shows the displacements of the decay distributions for
B0 → J/ψK0 and B0 → J/ψK0 measured by the BaBar experiment
(Aubert et al. 2002). Note that the distributions are labelled by the
tagging B meson, so the points labeled “B0 tags” indicate B0(τ) decays,
and vice versa. The distributions for B0 and B0 are shifted substan-
tially with respect to one another, in just the directions predicted below
(19.60). The shifts are in the opposite directions for K0

L instead of K0
S

in the final state. The current best value of β from this measurement is

sin 2β = 0.679± 0.20 , (19.62)

that is, β = 21◦. This is indeed a large CP -violating effect.
A useful way to visualize the phase of the CKM matrix is to plot the

complex parameter (ρ + iη) and use it to define a triangle, called the
unitarity triangle (Bjorken and Dunietz 1987).The unitarity triangle is a visualization

of the CP violation of the Standard
Model. The Standard Model has CP -
violating interactions as long as the an-
gles β and γ are nonzero.

(19.63)

The internal angles of the triangle are called (α, β, γ) or, alternatively,
(φ2, φ1, φ3). The angle γ is the phase of (ρ + iη). The angle β is the
angle defined in (19.49). There is CP violation as long as β and γ are
nonzero and the triangle does not collapse to a line.

The left and right sides of this triangle can be expressed more generally
as

(ρ+ iη) = −VudV
∗
ub

VcdV ∗cb
, (ρ+ iη − 1) =

VtdV
∗
tb

VcdV ∗cb
. (19.64)

It should be noted that these ratios of VCKM matrix elements are invari-
ant to changes of phase of the quark fields. The closure of the triangle,

1− (ρ+ iη)− (1− ρ− iη) = 0 , (19.65)

is equivalent to the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (19.66)

which expresses the orthogonality of the first and third columns of the
CKM matrix.

The angles α and γ can also be measured by observable parameters
of B decays. The angle α is given by time-dependent asymmetries in B
decay to light quarks,

B0 → π+π− , π±ρ∓ , ρ+ρ− . (19.67)
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Fig. 19.5: Constraints on the CKM parameters (ρ, η) from measurements of
CP violation, showing the fit by the CKMFitter collaboration (Charles et al.
2005).

The angle γ can be extracted from asymmetries in B decays to DK.
These constraints are shown in Fig. 19.5, together with constraints from
the value of |Vub|, the values of the B0–B0 mixing amplitude, the value of

B0
s–B

0

s mixing amplitude, and the value of ε from the neutral K system
(Charles et al. 2005). In the Standard Model, all of these parameters
must be consistent with a common value of (ρ + iη). You can see that
this is the case, and also that the ρ and η parameters are quite well
determined.

I have told you earlier that any quantum field theory is invariant under
CPT , so CP violation implies T violation. However, it is interesting to
ask whether one can directly see T violation in heavy quark decays. The
BaBar experiment demonstrated this in the following way: We have seen
that, in e+e− annihilation, B mesons are produced as pairs in a quantum
coherent wavefunction. The decay of one meson breaks the coherence,
identifying one meson of the pair as a B0 or a B0, for a leptonic decay,
or as a CP = + or CP = − state (B+ or B−), for a decay to a CP
eigenstate. We can then pick out events in which the leptonic decay
happens first, followed by time evolution to a CP eigenstate, and also
events in which the CP decay happens first, followed by time evolution
to a state with a definite leptonic decay. If the equations of motion Measurement of the time-dependence

of B0B0 decays to exclusive final states
shows explicitly that T is violated by
the weak interaction.

of nature were T symmetric, the rates for time evolution in the two
directions would be equal. They are not. The asymmetries between the
rates for pairs of time-reversed processes (e.g., B0 → B− vs. B− → B0)
are shown in Fig. 19.6 (Lees et al. 2012). Note that the asymmetries
reverse when one changes from B0 to B0 and from even to odd CP ,
consistent with the physics described above. This is the most direct
evidence that the equations of nature violate time reversal invariance.
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Fig. 19.6: Time reversal violating asymmetries measured as a function of
proper time by the BaBar experiment at the PEP-II collider, from (Lees et al.
2012). The four panels refer to the transitions: (a). B0 → B−, (b). B+ → B0,
(c). B0 → B+, (d). B− → B0.

Exercises

(19.1) Consider the time-dependent B meson decay B0 →
π+π−.

(a) Draw the Feynman diagram similar to (19.44)
giving the direct decay of a B0 to π+π−. Col-
lect the factors of CKM matrix elements that
appear in the evaluation of this diagram.

(b) Draw the Feynman diagram similar to (19.45)
giving the direct decay of a B0 to π+π−

through B0–B0 mixing. Collect the factors
of CKM matrix elements that appear in the
evaluation of this diagram.

(c) Show that the quantum interference term be-
tween these diagrams is proportional to

(VudV
∗
ubVtbV

∗
td)

2 . (19.68)

Show that the phase of this quantity is given
by the angle α in (19.63).

(19.2) In the discussion of the K0–K0 system in Sec-
tion 19.1, I included CP violation in the neutral
kaon mass matrix but ignored the possibility of CP
violation in decay amplitudes of the various neutral

kaon states to pions. This problem will add that
effect. The analysis is straightforward but much
more involved than you might have expected.

(a) The neutral K mesons are particles with
strong interaction isospin I = 1

2
. A π me-

son has I = 1, so a ππ in the S wave has
I = 0 or I = 2. (Why is I = 1 not allowed?)
Write down the I = 0 state as a linear com-
bination of

∣∣π+(p1)π−(p2)
〉
,
∣∣π0(p1)π0(p2)

〉
,

and
∣∣π−(p1)π+(p2)

〉
. Show that, if the final

state of a K0 → ππ decay is purely I = 0,
then the decay amplitudes would satisfy

M(K → π+(p1)π−(p2))

=M(K → π0(p1)π0(p2)) . (19.69)

Remembering that, for identical particles, we
integrate phase space over only half of 4π,
show that this implies

Γ(K → π+π−) = 2Γ(K → π0π0) . (19.70)

(b) Assume that the decay amplitude for the neu-
tral K meson leads to I = 0 states only. This
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amplitude could have a CP -violating phase.
It also will have a phase δ0 resulting from
strong final state interactions between the two
pions. Include this complex decay amplitude
in the analysis leading to (19.27). Show that
the complex number is squared, so that the
CP -violating phase (and, in fact, any other
contribution from the decay amplitude) has
no effect on (19.27).

(c) CP violation in the decay amplitude can have
an observable effect as an interference be-
tween the phases of the decay amplitudes to
I = 0 and I = 2 ππ states. However, the
I = 0 (or ∆I = 1

2
) amplitude is found exper-

imentally to be much larger than the I = 2
(or ∆I = 3

2
) amplitude. The evidence for

this comes from the following observations:
First, the K+ meson can decay to π+π0 only
through the ∆I = 3

2
amplitude. Second, the

decay K+ → π+π0 is much slower than the
decay K0 → ππ. Verify these statements.
Argue that

∣∣π+π0
〉

in the S-wave is a state

with I = 2. Look up the lifetime of the K+

(and the branching ratio for K+ → π+π0) at
the Particle Data Group web site, compare to
(19.10), and estimate the ratio of the ∆I = 1

2

and the ∆I = 3
2

decay amplitudes. (QCD,
with numerical lattice calculations, does ex-
plain this large ratio.)

(d) Construct the ππ state with I = 2, I3 = 0,
noting that it must be orthogonal to the state
with I = 0, I3 = 0, and show that

M(K → π+(p1)π−(p2))

= −1

2
M(K → π0(p1)π0(p2)) .

(19.71)

(e) Add the I = 0 and I = 2 decay amplitudes
with factors a0 and a2 representing their mag-

nitudes. Show that the four possible ampli-
tudes are consistently represented as

M(K0 → π+π−) = a0e
iδ0 + a2e

iδ2

M(K0 → π+π−) = a∗0e
iδ0 + a∗2e

iδ2

M(K0 → π0π0) = a0e
iδ0 − 2a2e

iδ2

M(K0 → π0π0) = a∗0e
iδ0 − 2a∗2e

iδ2 .

(19.72)

Note that the strong interaction final-state
phases do not change sign when we replace
particles by antiparticles. According to part
(b), one overall phase is not observable. It is
conventional to represent this by taking a0 to
be real.

(f) Using the expressions in (19.72), work
through the derivation of (19.27) for the two
distinct final states and show that, for a0 �
|a2|,

Γ(K0
L → π+π−)

Γ(K0
S → π+π−)

,

= |ε(1 + i
Ima2

a0
ei(δ2−δ0))|2 ,

Γ(K0
L → π0π0)

Γ(K0
S → π0π0)

,

= |ε(1− 2i
Ima2

a0
ei(δ2−δ0))|2 .

(19.73)

These equations are conventionally written

Γ(K0
L → π+π−)

Γ(K0
S → π+π−)

= |ε+ ε′|2 ,

Γ(K0
L → π0π0)

Γ(K0
S → π0π0)

= |ε− 2ε′|2 . (19.74)

From experiment,

Re(ε′/ε) = (1.66± 0.23)× 10−3 . (19.75)





Neutrino Masses and
Mixings 20
In the Standard Model as I have presented it in the previous two chap-
ters, the neutrinos are assumed to have zero mass. This was a good
approximation for all of the processes that we have discussed so far.
However, it is straightforward to include the possibility that neutrinos
are massive.

The masses of neutrinos turn out to be very small on the scale of
other elementary particle masses. This makes it difficult to observe
these masses experimentally. We will see that the evidence for neutrino
masses is tied to the existence of another effect, the conversion of neu-
trinos from one flavor to another in flight. This latter phenomenon is
observable due to quantum interference of the sort that we saw in the

K0–K
0

and B0–B
0

system, but now playing out over larger distances
from km to thousands of km.

20.1 Neutrino mass and β decay

Studies of β decay require that the mass of the electron neutrino, at
least, is very small. A bound on the mass of the νe can be obtained
by studying the endpoint of the electron energy distribution in β decay.
The rate for β decay of a nucleus A to B has the form

Γ(A→ Be−ν) =
1

2mA

∫
d3pBd

3ped
3pν

(2π)92EB2Ee2Eν

(2π)4δ(4)(pA − pB − pe − pν)
∣∣M∣∣2 . (20.1)

Since A and B are very heavy compared to their mass difference, which Kinematics and phase space for β de-
cay.is typically a few MeV, it is a good approximation to assume that the

final nucleus B takes up the recoil momentum, so that the directions of
the electron and neutrino are uncorrelated. In this limit, the energies of
the final electron and neutrino sum to

Ee + Eν = m(A)−m(B) = ∆mAB . (20.2)

Then

Γ =
1

2mA

1

(2π)52mB

∫
dpep

2
e

2Ee

∫
dpνp

2
ν

2Eν
δ(∆mAB − Ee − Eν)

∣∣M∣∣2 .
(20.3)
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Fig. 20.1: Measurement of the endpoint of the electron energy spectrum in
tritium β decay, from (Kraus et al. 2005).

At the endpoint of the electron energy spectrum, we can approximate
the matrix element by a constant. Then, using

dpepe = dEeEe , dpνpν = dEνEν , (20.4)

we can write the decay rate as

Γ ∼
∫ ∆mAB

me

dEe

∫ ∆mAB−Ee

0

dEν pν . (20.5)

Assuming that the neutrino has zero mass, this givesThe Kurie plot, which visualizes the
distortion in the electron spectrum in
β decay due to the presence of a neu-
trino mass.

dΓ

dEe
∼ (∆mAB − Ee)2 . (20.6)

This energy distribution is conventionally represented by a Kurie plot,
plotting the square root of the event rate as a function of the electron
energy. This should be a straight line for a zero mass neutrino (Kurie et
al. 1936). If the neutrino is massive, the plot falls off at the kinematic
endpoint Ee = ∆mAB −mν ,

(20.7)

Measurements of β decay exclude νe masses of more than a few eV.
Unfortunately, for neutrino masses as small as eV, there are extra com-
plications. The β electron can lose an energy of order eV when it exits
the atom, and it loses eV/mm in traversing material. These energy
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losses must be accounted for in the interpretation of the electron energy
distribution. The most careful experiments, done with cryogenic tritium
films at Mainz and Troitsk (Kraus et al. 2005, Aseev et al. 2011), give a
limit

mνe < 2.05 eV . (20.8)

The endpoint of the Mainz spectrum is shown in Fig. 20.1. The large
open circles show data from an earlier version of the experiment in which
the energy loss of the electron was incorrectly estimated because of
roughening of the surface of the tritium film, an effect of having in-
sufficiently low temperature.

The direct limits on the masses of the νµ and ντ are weaker. However,
I will argue later that the three neutrino masses are all within 1 eV of
one another. Given this, there is another class of constraints on the
neutrino masses. Massive neutrinos moving relativistically in the early
universe would transfer energy and smear out cosmic structure, giving
an observably different distribution of clusters of galaxies if the neutrino
masses are sufficiently large. The absence of this effect gives a bound
currently estimated to be (Ade et al. 2016)∑

i=1,2,3

mνi < 0.23 eV . (20.9)

20.2 Adding neutrino mass to the Standard Model

Neutrino masses are thus very small compared to the weak interaction
mass scale, sufficiently small that it is unclear how they can be observed.
To understand the evidence for neutrino mass, we need to develop further
the theory of neutrino massses within the Standard Model.

If we assume SU(2) × U(1) symmetry, neutrino masses can arise in
one of two ways. The simplest mechanism is to assume that there exist
right-handed neutrinos that couple to the left-handed neutrinos through
Yukawa couplings. That is, we add to the Standard Model Lagrangian Consequences of adding a neutrino

mass term to the Standard Model La-
grangian.

a term
∆L = −yijν L†ia εabϕ∗bν

j
R + h.c. (20.10)

similar to the u quark mass term in (18.24). In principle, we could
treat this term in the same way that we treated the quark and lepton
mass terms in Section 18.3. However, this is not appropriate. In ele-
mentary particle reactions, neutrinos are typically emitted at MeV or
higher energies, at which effects of eV-scale masses are unimportant.
Therefore it is most convenient to retain our earlier convention that the
left-handed neutrinos are described in the basis that diagonalizes their
weak interactions. We then treat the new term by making the change
of variables

Li → U
(e)
LijL

j , (20.11)

just as we did in (18.29). This transforms

yν → y′ν = U
(e)†
L yν . (20.12)
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Notice that this transformation diagonalizes the charged lepton Yukawa
matrix but does not necessarily diagonalize the neutrino Yukawa ma-
trix. I will refer to this basis for neutrino states as the basis of flavor
eigenstates. In this basis, the νe is the linear combination of the threeDefinition of the flavor eigenstates of

neutrinos. The PMNS matrix relates
the neutrino flavor eigenstates to the
mass eigenstates.

neutrino states that is produced in weak interaction decay together with
an e+, and the νµ and ντ are defined similarly.

We can now diagonalize y′ν as before,

y′ν = U
(ν)
L YνU

(ν)
R , (20.13)

where Yν is real and diagonal. We can transform away U
(ν)
R , but we

cannot get rid of the matrix U
(ν)
L . This is a fixed unitary transformation

between the basis of flavor eigenstates and the basis of mass eigenstates.
I will refer to the the mass eigenstates as ν1, ν2, ν3, with masses m1, m2,
m3. As we did with the quark mixing matrix, we can redefine phases in
U

(ν)
L so that U

(ν)
L contains three angles but only one phase. The mixing

matrix U
(ν)
L is called the Pontecorvo-Maki-Nakagawa-Sakata or PMNS

matrix and is more commonly notated V or VPMNS (Pontecorvo 1958,
Maki, Nakagawa, and Sakata 1962).

I can now describe the physical effect of a neutrino mass term. I
choose the process of π+ decay as an example. The π+ decays to µ+νµ,
that is, specifically to the νµ weak interaction eigenstate. The νµ is a
linear combination of the three mass eigenstates. If the π+ energy is
fixed, the three components are emitted with slightly different values of
momentum

pi = E − m2
i

2E
+ · · · . (20.14)

This is permitted, because the pion decay region is of finite size, allow-
ing the momentum to be uncertain. This uncertainty is small enough
that the components of the νµ wavefunction are created with quantum
coherence.

The outgoing neutrino wavefunction then has the form∑
i=1,2,3

Vµie
+i(E−m2

i /2E)x . (20.15)

At very large distances x, the components of this wavefunction go out
of phase. Then the probability of finding a νµ is no longer 1. Instead,
we find

Prob(νµ → νµ) =

∣∣∣∣∑
i

VµiV
∗
µie
−i(m2

i /2E)x

∣∣∣∣2 . (20.16)

It is easiest to understand this formula if we evaluate it for the case of
two-neutrino mixing with mixing angle θ,

V =

(
cos θ − sin θ
sin θ cos θ

)
. (20.17)

In that case, the formula becomes

Prob(νµ → νµ) =

∣∣∣∣cos2 θe−i(m
2
1/2E)x + sin2 θe−i(m

2
2/2E)x

∣∣∣∣2 , (20.18)
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which can be rewritten as

Prob(νµ → νµ) = 1− sin2 2θ sin2
[δm2

4E
x
]
. (20.19)

There is an oscillation between the flavor eigenstates with an oscillation
length

L = 4π
E

∆m2
= (2.48 m)

E (MeV)

∆m2 (eV2)
. (20.20)

The conclusion is quite surprising. We can detect the presence of small
neutrino masses if the neutrinos also exhibit flavor mixing. Then the The evidence for the masses of neutri-

nos comes from the observation of os-
cillation between flavor eigenstates as
neutrino travel over macroscopic dis-
tances.

effect of the mass term is to generate a flavor oscillation as a function
of the distance from the neutrino source. For MeV neutrinos with 10−2

eV masses or for GeV neutrinos with 10−1 eV masses, the length scale
of the oscillation can be km.

This is just the opposite of the way that we determine the masses and
weak interaction flavor mixing among quarks. For quarks, we observe
the particles as mass eigenstates, inside hadrons of definite mass. Decays
through the weak interaction show that the mass eigenstates are linear
combinations of weak interaction eigenstates. For neutrinos, the primary
way that we observe the particles is through weak interaction decay.
Then we characterize the neutrino eigenstates according to their weak
interaction properties. It is the flavor mixing as the neutrinos travel
that demonstrates that there is a mass eigenstate basis, with different
masses for the three neutrinos, that is different from the flavor basis.

There is another way to add neutrino masses to the Standard Model
that is consistent with Lorentz invariance and SU(2) × U(1). We can
write

∆L = −1

2
µij(L

i
aαεabϕ

∗
b)(L

j
cβεcdϕ

∗
d)εαβ , (20.21)

where α, β = 1, 2 are the indices of 2-component spinors. The expression
(20.24) is Lorentz-invariant. It does not violate any gauge symmetry of
the Standard Model. The expression does violate lepton number, but
you might recall from Section 18.4 that lepton number conservation is
not a postulate in the description of the Standard Model. When the
Higgs field ϕ acquires an expectation value and breaks SU(2) × U(1),
(20.21) leads to a mixing of the νL states with their antiparticles νR,
generating masses given by the eigenvalues of

mij = µij
v2

2
. (20.22)

This mass term, resulting from particle-antiparticle mixing, is called a
Majorana mass term (Majorana 1937). The Majorana mass term for neutrinos.

The quantity µij has the dimensions (GeV)−1, so we might also write
the mass formula as

mij =
µijv

2/2

M
, (20.23)

where µ is dimensionless and M sets the mass scale. For reasons that I
will explain in a moment, the elements of µ might be expected to have
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the size of Yukawa couplings. If we estimate µ̃ ∼ (10−2)2, then we find
sub-eV neutrino masses for M ∼ 1010 eV. Yukawa couplings cover a
wide range, so M could be orders of magnitude larger or smaller.

We can obtain this structure naturally by starting from a Lagrangian
with neutrino Yukawa couplings and a lepton-number violating mass
term for the right-handed neutrinos,Origin of the Majorana neutrino mass

from the influence of very heavy right-
handed neutrinos. ∆L = −1

2
Mijν

i
Rαν

j
Rβεαβ + h.c. (20.24)

This is a direct Majorana mass term for the right-handed neutrinos.
Note that, because the right-handed neutrinos do not transform under
SU(2)×U(1), we are free to write this term without violating any sym-
metry of the Standard Model. Thus, while quark, lepton, and vector
boson masses are restricted to be of the size of the Higgs field expec-
tation value (17.14), there is no reason why the scale of masses in Mij

cannot be very much larger. When we use (20.24) together with the
neutrino Yukawa coupling (20.10), the diagram

(20.25)

generates Majorana masses for the left-handed neutrinos of the form
(20.23) with the mass scale M given by the right-handed neutrino mass.
This is called the seesaw mechanism for generating small neutrino masses.
It produces small masses by a modification of the theory at very high en-
ergies (Minkowski 1977, Gell-Mann, Ramond, and Slansky 1979, Yanagida
1980).

The consequences of the Majorana mass term for neutrinos are almost
the same as those of the Dirac mass term. We can diagonalize the
Majorana neutrino mass as

mij = (V mV T )ij , (20.26)

where m is complex diagonal and V is complex unitary. The matrix V
is the PMNS matrix, reducible to three angles and one phase. There
are two more possible phases in m. These have no significant effect on
neutrino flavor oscillations.

However the Majorana mass term generates a new weak interaction
process, called neutrinoless double β decay. At some points in theNeutrinoless double β decay.

periodic table, ordinary β decay is energetically forbidden, but double
β decay is allowed. For example,

m(Cs136) > m(Xe136) > m(Ba136) (20.27)

Then Xe136 can decay by

Xe136 → Ba136 + e−νee
−νe . (20.28)
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Fig. 20.2: Measurement of the flux of electron- and muon-type neutrinos from
atmospheric cosmic ray events, compared to models of neutrino production
with and without neutrino mixing, from (Ashie et al. 2005).

Double β decay processes are some of the rarest physical processes
known. For example, the EXO experiment measured (Ackerman et al.
2011)

τ(Xe136) = 2× 1021 yr . (20.29)

If the neutrino νe has a lepton-number violating Majorana mass term,
then also a decay process

Xe136 → Ba136 + e−e− . (20.30)

is allowed, with no final-state neutrinos. The rate of this decay is ex-
pected to be small even in comparison to (20.29). This and similar
decays are being intensively searched for, but none has yet been ob-
served.

20.3 Measurements of neutrino flavor mixing

Now that we know how to look for neutrino mass, we can discuss the
experimental evidence that the neutrino masses are indeed nonzero.

The first clear evidence for neutrino flavor mixing, and, thus, for neu-
trino mass, came in the study of the neutrinos produced in cosmic ray
interactions in the atmosphere. These were observed in underground
water Cherenkov detectors originally built to look for proton decay. Per-
sistently since the 1980’s, it was observed that the flux of νe from at-
mospheric interactions was close to the predictions, while the flux of νµ
was too small by a factor of 2. In 1998, the SuperKamiokande experi-
ment, a very large water Cherenkov detector in the Kamioka mine in
Japan, resolved this question by observing the directions of νµ’s from
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their conversion to muons in charge-changing interactions (Fukuda et al.
1998). The downward-going νµ were present with a flux that was essen-Flavor mixing of atmospheric neutri-

nos. tially unsuppressed, while upward-going νµ, created on the other side
of the earth, were highly supressed. For νe, the ratio of the predicted
to the observed flux was independent of direction. The data is shown
in Fig. 20.2. This strongly indicated a flavor mixing νµ ↔ ντ on the
scale of the earth’s diameter. The mixing angle was consistent with a
maximal value

sin2 2θ = 1 . (20.31)

This flavor mixing has since been confirmed by accelerator experiments
that create beams of νµ at GeV energies and detect the neutrinos over
a long path length. The experiment K2K has a baseline of 250 km,
from KEK to the Kamioka mine (Ahn et al. 2006). The experiment
MINOS has a baseline of 750 km, from Fermilab to the Soudan mine in
northern Minnesota (Michael et al. 2006). The current best values of
the oscillation parameters are

∆m2 = (2.43± 0.08)× 10−3 eV2 = (5× 10−2 eV)2 ,

sin2 θ = 0.386± 0.023 . (20.32)

The value of sin2 θ seems smaller than (20.31), but it is still consistent
within statistics with the maximal mixing value of 0.5.

The mass of the νe is related to another long-standing anomaly in
neutrino physics. In the 1960’s, John Bahcall suggested testing theProduction of neutrinos by the sun.

mechanism of energy generation in the sun by observing the flux of
neutrinos produced by the sun (Bahcall 1964). Raymond Davis took
up the challenge. He designed an experiment with a tank containing
600 tons of CCl4 underground in the Homestake mine in South Dakota.
Solar neutrinos would convert Cl37 to Ar37 at the rate of atoms/month.
The radioactive Ar atoms could then be extracted and counted. The
rate of Ar production was observed to be consistenly low compared to
the solar model prediction (Davis et al. 1968).

The production of neutrinos by the sun is quite complex. The domi-
nant process, accounting for 99% of solar neutrinos, is

pp→ D + e+νe , (20.33)

where D is a deuterium nucleus. However, the resulting neutrinos, at
0.5 MeV energy, are of too low energy to be detected in Davis’s exper-
iment. Instead, rarer reactions are needed to give neutrinos of energy
above the 0.8 MeV threshold for this detection technique. A typical so-
lar neutrino spectrum is shown in Fig. 20.3 (Serenelli et al. 2011). Over
the decades, solar neutrino experiments were mounted in other energy
regions, and eventually experiments with a gallium detection medium
observed the neutrinos from the dominant pp process. Always, the rate
was smaller than required.

Finally, the situation was resolved by the Sudbury Neutrino Observa-
tory (SNO) experiment, using a heavy water (D2O) Cherenkov detectorFlavor mixing of solar neutrinos.
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Fig. 20.3: Predicted energy spectrum of neutrinos from the sun (figure cour-
tesy of A. Serenelli, based on the analysis in (Serenelli, Haxton, and Pena-
Garay 2011).

Fig. 20.4: Fluxes of solar neutrinos of the various types, extracted from the
data of the SNO experiment, from (Ahmad et al. 2002). The estimates of νe
and νµ/ντ fluxes from the three processes listed in (20.34) are shown as the
red, blue, and green bands, respectively.
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Fig. 20.5: Probability of νe → νe for neutrinos from nuclear reactors as a
function of proper time, as measured by the KamLAND experiment, from
(Abe et al. 2008).

located in the Sudbury mine in northern Ontario (Ahmad et al. 2002).
This experiment was sensitive only to the highest energy solar neutri-
nos, from B8→ Be8e+νe. However, it was able to simultaneously observe
three different neutrino reactions,

νeD→ ppe− ,

νiD→ pnνi ,

νie
− → νie

− . (20.34)

The first reaction in (20.34), charged current neutrino scattering from
deuterium, measures the flux of νe. The second reaction is the neutral
current scattering from deuterium, which has equal cross section for
all three neutrino species. Neutrino-electron scattering is sensitive to
all neutrino species, but the cross section for νe is larger than that for
νµ, ντ by about a factor 6, reflecting contributions from both Z and W
exchange processes,

(20.35)

The flux determinations from SNO are shown in Fig. 20.4. The flux of νe
is indeed smaller than expected by more than a factor of 2, but the total
neutrino flux is in good agreement with the prediction for νe production
in solar models. Apparently, the solar neutrinos are converting to νµ
and ντ on their way to the earth.

This neutrino flavor oscillation, which requires a small ∆m2, was
confirmed by the KamLAND experiment, a scintillator detector in the
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Fig. 20.6: Probability of νe → νe for neutrinos from nuclear reactors as a
function of distance from the reactor, as measured by the Daya Bay experi-
ment, from (An et al. 2012).

Kamioka mine which observed neutrinos from nuclear reactors in Japan
at baselines of order 100 km (Abe et al.2008). The oscillation in the νe
survival probability as a function of neutrino energy is shown in Fig. 20.5.
The current best values for the oscillation parameters are

∆m2 = (7.54± 0.024)× 10−5 eV2 = (0.9× 10−2 eV)2 ,

sin2 θ = 0.307± 0.017 . (20.36)

So, there are two small neutrino mass differences of rather different
scale. The large ratio between the two ∆m2 values justifies the use
of two-neutrino mixing formula to parametrize each oscillation. The
values of ∆m2 imply that all of the neutrino masses must be within
about 0.1 eV of one another. However, these results do not give the
absolute scale of neutrino masses. They also do not give the ordering of
the levels. There are two possibilities, called the normal and inverted
hierarchy.

(20.37)

In each case, the isolated mass eigenstate is an almost pure combina-

Normal and inverted neutrino mass hi-
erarchy.

tion of νµ and ντ , while the two closely spaced states mix νe with the
orthogonal linear combination of νµ and ντ .

It is possible in principle to distinguish these possibilities by observing
the effect on neutrino mixing of neutrino interactions with matter as the
neutrinos pass through the earth over hundreds of km. So far, the issue
has not been resolved.

The next question we might address is that of whether ν3 contains
some admixture of νe. This mixing is controlled by the third mixing
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angle in the PMNS matrix. It can be detected by looking for an os-
cillation of reactor neutrinos at the oscillation ∆m2 of the atmospheric
neutrino oscillation, which corresponds to a km wavelength for neutri-
nos of MeV energy. This was finally observed in 2012 by the reactor
experiments Daya Bay, in China, and RENO, in Korea (An et al. 2012,
Ahn et al. 2012). These experiments constructed closely matched pairs
of detectors and contrasted the rate observed in a “far” detector with
that predicted from the rate observed in a “near” detector. Figure 20.6Direct measurement of the third PMNS

mixing angle. shows the comparison of near and far detector fluxes at Daya Bay. The
value of the third neutrino mixing angle is

sin2 θ13 = 0.0241± 0.0025 . (20.38)

The question remains of whether the possible phase in the PMNS
matrix is nonzero. There is room for this CP -violating term in the
neutrino mass matrix. Still, it is a fundamental question whether the
couplings of the neutrinos violate CP and T . In principle, CP violation
in the neutrino system can be measured by observing asymmetries such
as

Prob(νµ → νe) 6= Prob(νµ → νe) (20.39)

However, we do not have the answer yet.

Exercises

(20.1) Estimate quantitatively the neutrino flight path re-
quired for neutrino oscillations.

(a) Consider first the oscillation, mainly between
νµ and ντ , mediated by θ23. Assume a pure
νµ source. Using the parameters of this oscil-
lation given in the text, compute the position
of the first maximum for ντ appearance and
the position of the succeeding zero, for νµ en-
ergies of 1 GeV and 20 GeV (for neutrinos
from an accelerator source).

(b) Now consider the oscillation between νe and
other species that gives rise to the oscillation
of solar neutrinos. Compute the position of
the first maximum for νµ appearance (or max-
imal νe disappearance) and the position of the
succeeding zero, for νe energies of 1 MeV (for
reactor or solar neutrinos) and 1 GeV and
20 GeV.

(20.2) Compute the cross section for neutrino-electron
elastic scattering. Assume that s � m2

e, so that,
in the center of mass frame, both the electron and

the neutrino can be treated as massless. For this
very short-time interaction, you can neglect neu-
trino flavor mixing. Also, assume that s� m2

W , so
the interaction can be treated as pointlike.

(a) Consider first νµ-e scattering. This process
occurs through the first Feynman diagram in
(20.35). Write the spinors for the initial- and
final-state particles. Compute the scattering
amplitudes associated with this diagram for
νLe
−
L and νLe

−
R scattering.

(b) Square the amplitudes, integrate over phase
space, and compute the cross section. The
initial electron should be averaged over po-
larizations; the initial neutrino is, of couse,
purely left-handed. You should find

σ(νµe→ νµe) =
G2
F s

π

(1

4
− s2

w +
4

3
s4
w

)
.

(20.40)

(c) For νe-e scattering, both diagrams shown in
(20.35) contribute. Notice that the charge-
current diagram is present only for e−L . For
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this case, compute the scattering amplitude
associated with the second diagram. Use the
same spinors as you used in part (a) and keep
careful track of the relative sign between this
amplitude and the amplitude for the first di-
agram. You should find that the relative sign
is positive.

(d) However, there is one more contribution
to the relative sign of the two amplitudes.
Between the first and second diagrams in
(20.35), there is an exchange of positions of
two fermions. This gives an extra factor of
(−1). With this factor included, show that
the two diagrams interfere destructively.

(e) Compute the full cross section for νe-e scat-
tering, averaged over the electron spin. By
what factor is this cross section larger than
that for νµ or ντ scattering?

(20.3) This problem concerns the effect of propagation
through matter on neutrino flavor mixing. This
problem gives an application of the formula (15.75)
at the end of Exercise 15.1. So, it might be worth
reviewing (or working through) that problem be-
fore attempting this one.

(a) Write down the terms in the Lagrangian of
the Standard Model that include theW and Z
fields. Cross out the (Fµν)2 terms that involve
W and Z. This is equivalent to the approxi-
mation q2 � m2

W . Now the Lagrangian con-
tains only the W and Z mass terms and the
interactions with fermions, with no deriva-
tives. This structure is very simple. Write
the simplified field equations for W and Z,
and solve them. Plug the results back into
the Lagrangian. Show that this gives a term
in the Lagrangian

∆L = −4GF√
2

(j+µ
L j−µL + (jµ3 − s2

wj
µ
Q)2) .

(20.41)
This is actually a derivation of the weak inter-
action matrix element the we have seen before
in (16.64). However, we have now obtained
the overall sign in front, in a form that we
can compare to other terms in the Standard
Model that involve the quarks and leptons.

(b) For a massive neutrino of momentum p, with
p � m, simplify the kinetic energy term by

applying the time derivative to the neutrino
wavefunction. Show that this gives

ν†Liσ
0∂0ν = (p+

m2

2p
+ · · ·)ν†LνL . (20.42)

The factor in parentheses is the phase accu-
mulated by a neutrino per unit time of prop-
agation.

(c) If a neutrino flies through matter, it can in-
teract with the background matter. This can
be represented by taking

〈
j03
〉

and
〈
j0
Q

〉
to

be nonzero, so that the term

−4
√

2GF (ν†ν)
〈
jµ3 − s2

wj
µ
Q

〉
. (20.43)

must be added to the Lagrangian. In prin-
ciple, this contributes to the neutrino phase.
Show that this contribution is identical for the
three species of neutrino, so it does not affect
the flavor mixing.

(d) Let the background matter density be n
(baryons/cm3). Assume that the matter is
composed of atoms of light elements with
equal numbers of proton and neutrons. In
this approximation, evaluate the contribu-
tion from protons, neutrons, and electrons to〈
j03
〉

and
〈
j0
Q

〉
.

(e) Specifically for νe, there is another contribu-
tion. Apply the Fierz identity to the charged-
current term and show that this yields a term
proportional to

ν†eνe e
†
LeL . (20.44)

Show that
〈
e†LeL

〉
= n/4, where n is the back-

ground baryon density. Then we can interpret
this term as a shift of the (diagonal) νe mass.
Evaluate this term and show that this shift is

∆m2
e = −

√
2GF n · p . (20.45)

(f) The central density of the sun is approxi-
mately

ρ = 150 g/cm3 . (20.46)

For neutrinos of 1 MeV, compute the m2 shift
numerically and compare to the δm2 of the so-
lar oscillation. When the mass shift due to the
matter effect is much greater than the ∆m2

in vacuum, flavor mixing is turned off and the
νe propagates as an independent species.
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There is one more particle of the Standard Model of particle physics
that we still have not discussed—the Higgs boson. In Chapters 16 and
18, I have emphasized that the masses of all quarks, leptons, and vector
bosons arise from the spontaneous symmetry breaking of SU(2)× U(1)
gauge symmetry. In this chapter, I will describe the predictions of the
Standard Model for the properties of the Higgs boson and the extent to
which those predictions have been verified experimentally.

In Chapter 14, we saw that a phenomenon analogous to electroweak
symmetry breaking, the spontaneous breaking of the chiral symmetry
of QCD, has a dynamical explanation in terms of the attraction and
pair condensation of light quarks. It would be wonderful if there were
a physical mechanism that allowed us to understand qualitatively why
the SU(2) × U(1) symmetry of the weak interaction is spontaneously
broken. Today, we have no such understanding.

The Standard Model gives a simpler explanation for this symmetry
breaking. It postulates a scalar field, the Higgs field, with the potential
(16.29) and gauge and Yukawa couplings allowed by symmetry. The
potential has the correct shape for SU(2) × U(1) symmetry breaking
because it has a minus sign in front of the µ2 term. This explanation
is too ad hoc to be a final physics explanation. However, the Standard
Model at least gives us a definite theory that makes precise reference
predictions for the properties of the Higgs boson. Perhaps by measur-
ing the couplings of the Higgs boson and testing these predictions are
precisely as possible, we can obtain hints toward a deeper explanation.
That program has now begun.

21.1 Constraints on the Higgs field from the weak
interaction

Before entering into the specifics of the Standard Model theory of the
Higgs boson, I would like to point out two aspects of the Higgs field
theory that are fixed by aspects of the weak interaction that we have
already studied. Most of the tests of the SU(2) × U(1) gauge theory
that we have discussed so far are independent of the nature of the Higgs
field. They involve experiments using light quarks and leptons, whose
couplings are fixed by SU(2) × U(1) invariance alone. However, the
properties of the W and Z bosons do depend on the Higgs field.

In particular, there is one prediction involving the W and Z bosons
that depends on the mechanism of electroweak symmetry breaking and
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lets us glimpse into its properties. This is the relation (16.47),

mW = mZcw . (21.1)

In Chapter 16, we saw that this was a specific outcome of the Standard
Model, but it is interesting to inquire further. Thinking more generally,
the relation (21.1) comes from the fact that the gauge boson mass matrix,
in the original SU(2)× U(1) basis, has the form

m2 =
1

4


g2v2

g2v2

g2v2 −gg′v2

−gg′v2 g′2v2

 (21.2)

acting on the vector (A1
µ, A

2
µ, A

3
µ, Bµ). This structure does not require

every detail of the Standard Model, but it requires assymptions beyond
those of SU(2) × U(1) gauge symmetry. In particular, it follows from
the two assumptions: (1) The symmetry breaking leaves invariant an
SO(3) symmetry acting on A1

µ, A
2
µ, A

3
µ, which requires that the first

three diagonal elements are equal; (2) The symmetry breaking leavesCustodial SO(3) symmetry, a symme-
try of the interaction that breaks the
weak interaction gauge symmetry.

invariant a U(1) gauge symmetry, which requires that the matrix m2

have a zero eigevalue. We saw in Section 16.3 that these assumptions are
satisfied in the model of SU(2)×U(1) symmetry breaking by one I = 1

2
scalar field. However, these assumptions are also true in some more
complex models of electroweak symmetry breaking (Sikivie, Susskind,
Voloshin, and Zakharov 1980). The SO(3) symmetry, called custodial
symmetry, should be a property of any more advanced model that we
might propose.

Another aspect of the physics of W and Z bosons that bears directly
on the Higgs field is the behavior of their interactions in the limit of
very high energy. When high-energy W and Z bosons are emitted
in an elementary particle reaction, it is possible to see the presence of
the Higgs boson in the quantum states of the massive W and Z. An
illustrative example is found in the theory of the decay of the top quark.
Working out this theory using only the V−A structure of the weak
interaction, we find a Higgs field-like behavior. I will quote the main
results here; you can derive them in Exercise 21.1.

The top quark is sufficiently heavy that it can decay to a b quark
and an on-shell W boson. Starting from the standard weak interaction
coupling

g√
2
W−µ b

†
Lσ

µtL (21.3)

we find for the top quark decay rate.

Γt =
g2

64π

m3
t

m2
W

(
1 + 2

m2
W

m2
t

)(
1− m2

W

m2
t

)2
. (21.4)

This formula behaves oddly. We do not find the expected behavior

Γt ∼ αwmt (21.5)
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but, instead,

Γt ∼ αwmt ·
m2
t

m2
W

. (21.6)

The enhancement is associated with the decay to a longitudinally
polarized (helicity 0) W boson. It is important to remember that A helicity 0 W or Z boson couples like

the Higgs boson state that the vector
boson ate to become massive.

this state exists in the first place only if the SU(2) × U(1) symmetry
is broken and the massless W fields eat the resulting Goldstone bosons.
In the unbroken theory, the top quark would decay to a b quark and a
Goldstone boson. The predicted decay rate would be

Γt =
y2
t

32π
mt . (21.7)

Using the relation between yt and mt, we can convert this into a form
similar to (21.4). Since

y2
t

2
=
m2
t

v2
=
g2

4

m2
t

m2
W

, (21.8)

the prediction (21.7) is equal to

g2

64
mt

m2
t

m2
W

, (21.9)

which precisely reproduces the leading term in (21.4). The m2
t/m

2
W

enhancement of these terms is reflected in a dominance of helicity 0 W
bosons in top quark decays that is verified experimentally (Khachatryan
et al. 2016).

Apparently, the massive W boson automatically knew that it needed
to contain a Goldstone boson from symmetry breaking as a part of its
structure. There are many other examples in the physics of W and Z
bosons at high energy that illustrate this point (Chanowitz and Galliard
1985).

21.2 Expected properties of the Higgs boson

Now we look into the more specific properties of the Higgs field as
predicted by the Standard Model. The Higgs field of the Standard Model
contains only 4 degrees of freedom. We saw below (16.34) that 3 of these
are Goldstone bosons that are eaten as the W and Z bosons obtain mass.
What remains is only 1 dynamical field, the Higgs field h(x).

In the Standard Model Lagrangian h(x) always appears together with
the Higgs field vacuum expectation value v. Then the couplings of the
Higgs boson are generated by the replacement

v → v + h(x) . (21.10)

The couplings of h are then associated with the Standard Model mass
terms. The Higgs interaction terms in the Standard Model Lagrangian
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are

∆L = −
∑
f

mfff
h(x)

v
+ 2m2

WW
+
µ W

−µh(x)

v
+

2

2
m2
ZZµZ

µh(x)

v

−3m2
h

h(x)

v
+O(h4) (21.11)

These terms are all P and C conserving, so the Higgs boson is a spin 0
particle with P = +1. In (17.14), we found that v has the value

Couplings of the Higgs boson to Stan-
dard Model particles.

v = 246 GeV . (21.12)

So all of the couplings of the Higgs boson are highly suppressed, except
for the couplings to W , Z, and t. More general models of SU(2)×U(1)
symmetry breaking also have this problem. Either W , Z, or t must be
involved in the relevant processes, or the expected rates of Higgs boson
processes are extremely small.

I will now discuss the processes that we can use to observe the Higgs
boson. We must discuss both the production and decay processes. I
will start with the decays. If mh were greater than 2mW and 2mZ , the
dominant decays would be the decays to these particles

h→W+W− , h→ ZZ . (21.13)

These decays have been searched for at the LHC, but the only result has
been to put strong limits on the production cross sections (Khachatryan
et al. 2015). Thus, the mass of the Higgs boson must be below the
threshold for decay into WW .

In this case, the Higgs boson would decay dominantly into the next
lightest Standard Model particle, the b quark. Using methods discussedDecay of the Higgs boson to quarks and

leptons. in this book, it is not so difficult to work out the decay rate for Higgs
boson decay to bb. The calculation is described in Exercise 21.2. The
result is

Γ(h→ bb) = 3
αw
8
mh

m2
b

m2
W

(
1− 4m2

b

m2
h

)3/2
. (21.14)

The quark mass should be evaluated at Q ≈ mh, giving a value of about
3 GeV for mb. Then, for a Higgs boson of mass 125 GeV, we find

Γ(h→ bb) ≈ 2 MeV (21.15)

Recall that the width of the Z boson is about 2.5 GeV, a thousand
times larger. So the Higgs boson is very narrow, so narrow that it will
be difficult to measure the width directly. Other relevant decays to
quarks and leptons

h→ τ+τ− , h→ cc (21.16)

give decay rates about 10 times smaller than the decay rate to bb.
Because the decay to bb is so highly suppressed, higher-order decay

processes can compete with it. First, although h → WW,ZZ are for-
bidden, it is possible that the Higgs boson can decay through a diagram



21.3 Measurements of Higgs boson properties at the LHC 329

in which an off-mass-shell W and Z appears as a resonance,

(21.17)

These decays are called h → WW ∗, h → ZZ∗. The suppression from

Decay of the Higgs boson to off-mass-
shell W and Z pairs.

multi-body phase space and the tail of the Breit-Wigner distribution is
comparable to the suppression seen above from the small size of (mb/v)2.

It is also possible for a Higgs boson to decay through higher-order
processes involving virtual top quarks or W bosons. This gives decays Decay of the Higgs boson to gg and γγ.

to two gluons,

(21.18)

to two photons

(21.19)

and to γZ. For a 125 GeV Higgs boson, the rate for h → 2g is compa-
rable to the rate for h→ τ+τ− and h→WW ∗. The rate for h→ γγ is
about a factor of 50 smaller.

A full set of predictions for the branching ratios of the Higgs boson Finally, we find that, for a Higgs boson
of mass 125 GeV, the Standard Model
predicts 9 distinct decay modes with
branching ratios larger than 10−4 that
are potentially observable.

within the Standard Model, as a function of the Higgs boson mass, is
shown in Fig 21.1 (Heinemeyer et al.2013). These predictions of the
Standard Model do not involve any parameters other than those that I
have already discussed in this book. Thus, the predictions can be highly
precise. Does nature agree with these results?

21.3 Measurements of Higgs boson properties at the
LHC

Reversing the decay processes, we find processes for producing the
Higgs bosons in high energy collisions. An obvious production process
is

bb→ h . (21.20)
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Fig. 21.1: Branching ratios for decays of the Higgs boson as a function of the
Higgs boson mass, predicted in the Standard Model, from (Heinemeyer et al.
2013).

Fig. 21.2: Cross sections for production of the Higgs boson at the LHC as
a function of center of mass energy, predicted in the Standard Model, from
(Carena, Grojean, Kado, and Sharma 2014).
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However, at the LHC, the cross section for this process is multiplied by
the very small b quark pdf in the proton. The most promising production
mode at the LHC turns out to be gg → h, or gluon-gluon fusion,

(21.21)

using the Higgs coupling to two gluons shown above. The intrinsic
strength of the interaction is smaller, but the initial gluons can be taken
from the very large gluon pdf in the proton. At the 13 TeV LHC, a Reactions for the production of Higgs

bosons at the LHC.gluon momentum fraction of x ∼ 0.01 is all that is required.
Another important production process is vector boson fusion

(21.22)

in which high-x quarks in the proton create virtual W or Z bosons
that then combine to produce a Higgs boson. Notice that this process
results in a Higgs boson and two high-energy jets emitted in the forward
direction. The presence of the forward jets can then be used to enhance
the Higgs boson signal.

A third important reaction is production of a Higgs boson in asso-
ciation with a W or Z boson. This process can be imagined as qq
annihilation to the weak boson followed by radiation of a Higgs boson
using the relatively large Higgs coupling to these particles.

(21.23)

Predictions for these and other Higgs boson production processes at
the LHC are shown in Fig. 21.2 (Carena, Grojean, Kado, and Sharma
2014). For mh = 125 GeV and an LHC center of mass energy of 13 TeV,
the cross sections are

σ(pp→ gg → h) = 50 pb
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Fig. 21.3: Candidate pp → h → γγ event observed by the CMS experiment
at the LHC (figure courtesy of CERN and the CMS Collaboration).

σ(pp→WW → h) = 4 pb

σ(pp→Wh,Zh) = 2 pb (21.24)

These results should be compared with the proton-proton total cross
section of about 100 mb, which is higher by a factor of 2× 109!

At the LHC, we do not observe the total rate for Higgs production;
rather, we reconstruct the Higgs boson in a particular decay mode. The
quantity that we measure has the form of a cross section times branching
ratio, σ ·BR, for example,

σ(gg → h) ·BR(h→ bb) . (21.25)

In general, a separate selection must be used for each separate decay
mode.

Unfortunately, many of the most important Higgs boson decay modes
are difficult to observe at the LHC. For example, the processDifficulty of observing hadronic Higgs

decays at the LHC.

gg → h→ bb (21.26)

results in two b quark jets. However, the QCD process

gg → bb (21.27)

also produces pairs of b quark jets, with jet pair masses at and above
the Higgs boson mass, at a rate about a million times greater. In the
decays h→WW ∗ and h→ ZZ∗, events with hadronic decays of the W
and Z are difficult to recognize for the same reason.

To discover the Higgs boson, the ATLAS and CMS experiments at
the LHC concentrated their efforts on decay modes of the Higgs boson
to photons and leptons in which all final state particle would be visible.
These modes are

h→ γγ BR = 0.23%

h→ ZZ∗ → 4` BR = 0.016% . (21.28)
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Fig. 21.4: Mass distribution of γ pairs measured by the CMS experiment at
the LHC, from (Chatrchyan et al. 2012). In main plot, events more likely to
be well-reconstructed pp→ γγ events are given higher weight.

In all, Higgs boson production and decay into these modes occurs in
about 1 in 2×1012 pp collisions. It was quite a feat to collect such events
in the presence of enormous numbers of more ordinary LHC collisions.

By collecting a very large data set, the LHC experiments were able to
identify the Higgs boson in these channels. Figure 21.3 shows a candidate
h→ γγ event from CMS. Figure 21.4 shows the distribution of pp→ γγ
events found by CMS as of June 2012 as a function of the invariant
mass of the γγ pair. There is a clear resonance on the expected smooth Discovery of the Higgs boson at the

LHC using the decays h → γγ and
h→ ZZ∗.

background at a mass of about 125 GeV. Figure 21.5 shows a candidate
h→ e+e−µ+µ− event collected by the ATLAS experiment. Figure 21.6
shows the 4-lepton events seen by the ATLAS experiment as of June
2012, plotted as a function of the 4-lepton invariant mass. A signficant
resonance signal is seen at the same mass of 125 GeV. On July 4, 2012,
both experiments showed significant signals in both of these channels,
presenting strong evidence for the appearance of this particle.

With the new particle identified, we can ask whether it indeed has
the properties expected for the Higgs boson. First, is it a particle with
JP = 0+, as the Standard Model predicts? We showed in Exercise 2.4 Tests of the 0+ spin-parity of the Higgs

boson.that, If the new resonance decays to γγ, it cannot be a particle of spin
1. However, the possibilities of spin greater than 1, and of P = −1,
would still be open. These hypotheses can be addressed using h →
ZZ∗ → 4 lepton events. The relative orientations of the leptons in
these events give information on the polarizations of the Z bosons in
h → ZZ∗. Also, they allow tests of whether the particle production
and decay is independent of orientation, as would be expected for a
spin 0 particle. Figure 21.7 shows tests of the various spin and parity
hypotheses relative to the hypothesis of JP = 0+. In all cases, the 0+

hypothesis is favored. In most cases, this hypothesis is strongly favored
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Fig. 21.5: Candidate pp → h → e+e−µ+µ− event observed by the ATLAS
experiment at the LHC (figure courtesy of CERN and the ATLAS Collabora-
tion).

Fig. 21.6: Mass distribution in four-lepton events measured by the ATLAS
experiment at the LHC, from (Aad et al. 2012).
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Fig. 21.7: Comparison of hypotheses for the spin and parity of the 125 GeV
resonance from event distributions in h→ 4`, from (CMS Collaboration 2013).
What is shown in each plot is the distribution of a test statistic expected for
the Standard Model 0+ hypothesis (yellow) and for an alternative hypothesis
(blue). The arrow shows the value of the test statistic given by the data.

already with this sample of about 25 events.
The decay h → W+W− is more difficult to observe. The specific Observation of the decay h→WW .

process visible at the LHC is

h→W+W− → `+ν`−ν (21.29)

where ` is e or µ. That is, one looks for events with minimal jet activity,
two leptons of opposite sign, and unbalanced momentum carried off by
the neutrinos. The process pp → W+W−, where both W bosons are
on mass shell, is an obvious background that cannot be cleanly distin-
guished from the Higgs events. These processes differ in the details; the
leptons from Higgs decay tend to have lower invariant mass and a smaller
spread in angle. Figure 21.8 shows the distributions of `+`− invariant
mass for events with e or µ, unbalanced momentum, and 0 or 1 jet (Aad
et al. 2015). The small but significant excess over the expectation from
other Standard Model processes is due to the Higgs boson.

If the new particle is the Higgs boson that gives rise to the masses
of quarks and leptons, we should be able to discover events in which
the Higgs boson decays to quarks and leptons. The highest branching
ratios correspond to the heaviest available fermions, the b quark and the
τ lepton. I will first discuss the evidence for h→ τ+τ−. Observation of the decay h→ τ+τ−.

Higgs decays to τ+τ− are generally not sufficiently characteristic that
they can be identified in the main LHC reaction of gluon fusion. The
WW fusion process, in which events contain additional forward jets for
tagging and in which the main competition to Higgs events comes from
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Fig. 21.8: Distribution of `+`− invariant mass in LHC events at 8 TeV
collected by the ATLAS experiment, with eµ, unbalanced momentum, and 0
or 1 jet, from (Aad et al. 2015). The excess of events in red is attributed to
the Higgs boson decaying to WW ∗.

Fig. 21.9: Candidate pp→ h→ τ+τ− event observed by the ATLAS exper-
iment at the LHC, from (ATLAS Collaboration 2013).
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electroweak reactions, provides a much better setting for this search. A
candidate event is shown in Fig. 21.9 (ATLAS Collaboration 2013). This
event contains τ → e and τ → µ decays, two forward jets as expected
from the WW fusion process, and unbalanced momentum consistent
with the neutrinos emitted along the τ directions. Events of this type
can easily be faked by Standard Model reactions that do not involve the
Higgs boson. The most important examples are

pp→ Z → τ+τ− ,

pp→W + jet→ τν + π faking τ ,

pp→ Z → 2 jets , jets faking τ . (21.30)

Very recently, the CMS Collaboration demonstrated the presence of the
h → τ+τ− decay with a high degree of statistical significance, based
mainly on the analysis of WW fusion events (Sirunyan et al. 2017a).
The background rate, about 10 times the signal rate in the final sample,
was estimated by the study of related processes such as pp→ Z → µ+µ−

and extrapolation from kinematic regions outside the Higgs boson signal
region.

The observation of h → bb presents an even more challenging prob-
lem. In this case, the most promising reaction is Higgs production in Observation of the decay h→ bb.

association with a W or Z boson. In this setting, though, the reaction
pp → W + h, h → bb is difficult to distinguish from Standard Model
reactions without a Higgs boson

pp→W + Z , Z → bb ,

pp→W + g , g → bb . (21.31)

In the second reaction, the gluon is radiated off-shell from the initial
quark or antiquark and splits to a quark-antiquark pair through the
parton shower physics that we discussed in Chapter 12. Very recently,
the ATLAS and CMS Collaborations presented strong evidence for the
h→ bb decay based on very complex analyses that relied on the bb mass
distribution and more subtle features of the events. The final separation
of signal and background was done using machine learning technniques
(Aaboud et al. 2017, Sirunyan et al. 2017b). All major couplings of the Higgs boson

are now confirmed for the 125 GeV res-
onance, at least at the qualitative level.

Figure 21.10 shows the status of σ ·BR rate measurements as summa-
rized by the CMS collaboration at the end of 2017 (CMS Collaboration
2017). The quantity plotted on the horizontal axis is

µ =
σ ·BR(observed)

σ ·BR(SM)
, (21.32)

the ratio of the observed rate to the Standard Model prediction. The
figure shows clear evidence for all of the major decay modes of the Higgs
boson predicted by the Standard Model. With the new 2017 results,
we can now say that the whole pattern of Higgs boson decays predicted
by the Standard Model is well supported by data from the LHC. The
measurements agree with the predictions to the 20–30% level.
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Fig. 21.10: Ratios µ of the rates for Higgs boson production measured by
the CMS experiment in a variety of decay channels to the predictions of the
Standard Model, from (CMS Collaboration 2017). In the figure µ = 0 would
indicate no signal from the Higgs boson, and µ = 1 indicates the Standard
Model prediction.

Eventually, we will see measurements of the Higgs boson couplings to
1% accuracy. It is possible that nature will still follow the predictions
of the Standard Model, but it is also possible, consistent with all of our
knowledge, that these measurements will reveal additional contributions
from new interactions.

Exercises

(21.1) This problem works through the computation of
the partial width of the Higgs boson to bb.

(a) Draw the Feynman diagram for the h → bb
decay. Write the term in the Standard Model
Lagrangian that gives the vertex in this dia-
gram.

(b) The b quark mass appears in the Yukawa cou-
pling yb, but the b and b produced in the de-
cay are very relativistic. Thus, it is a good
approximation to neglect the b quark mass ev-
erywhere else in this calculation, and, in par-
ticular, to use massless spinors for the b and
b. Write the appropriate massless spinors and

use them to compute the decay amplitude.

(c) Square this amplitude, integrate over phase
space, and verify (21.14) to the leading order
in the mb.

(d) Repeat this calculation using the spinors of
the massive Dirac equation. Verify (21.14) in
full.

(21.2) Figure 21.1 shows that, if the Higgs mass were
greater than the W and Z boson masses, the decays
h→WW and h→ ZZ would dominate. Compute
these decay rates assuming mh > 2mW , 2mZ .

(a) Draw the Feynman diagrams that lead to the
h → WW and h → ZZ decays, and identify
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the terms in the Standard Model Lagrangian
that generate these vertices.

(b) Show that, since the Higgs boson has spin 0,
the final-state vector mesons must have equal
helicities. We must sum over three helicity
states, h = +1, 0,−1.

(c) Consider first h→WW . Choose coordinates
such that the W+ boson moves in the +3̂ di-
rection. For a W boson at rest, the three
W polarization vectors are the three space-
like unit vectors. Choosing vectors of definite
angular momentum, we can write these as

helicity + 1 : εµ+ = (0, 1, i, 0)µ/
√

2

helicity 0 : εµ0 = (0, 0, 0, 1)µ

helicity − 1 : εµ− = (0, 1,−i, 0)µ/
√

2 .

(21.33)

Boost these to the W momentum kµ =
(E, 0, 0, k)µ, where E = mh/2. Show that
the helicity +1 and −1 vectors are unchanged,
while the helicity 0 vector boosts to

εµ0 = (k, 0, 0, E)µ/mW . (21.34)

(d) Construct the polarization vectors for theW−

by rotating the vectors found in part (c) by
180◦.

(e) Compute the three nonzero decay amplitudes
to W boson pairs of definite helicity.

(f) Square these amplitudes and integrate over
phase space to obtain a total decay rate.
Show that, for mh > 2mW ,

Γ(h→WW ) =
αw
16

m3
h

m2
W

[
1− 4

m2
W

m2
h

+ 12
m4
W

m4
h

]
·(1− 4

m2
W

m2
h

)1/2 . (21.35)

(g) Find the corresponding expression for Γ(h→
ZZ) for mh > 2mZ .

(h) The growth of these decay rates proportional
tom3

h is a surprise. Which helicity amplitudes
are responsible for this growth? Exercise 21.3
might shed some additional light on this phe-
nomenon.

(21.3) The top quark is so heavy that it can decay to an
on-shell W boson and a bottom quark. The decay

matrix element is

M(t→ bW+) =
g√
2
uL(b)†σµuL(t)εµ∗(W )

(21.36)
Ignore the b quark mass. In this limit, the b is al-
ways left-handed. The spinor uL(t) is the top 2
components of the top quark Dirac spinor. In the
following, work in the top quark rest frame, and
assume for definiteness that the top quark is polar-
ized in the +3̂ direction.

(a) Write formulae for the energies and momenta
of the final state W and b in terms of mt,
mW . Assuming that the W+ momentum is
at an angle θ with respect to the 3̂ axis,

pW = (EW , pW sin θ, 0, pW cos θ) (21.37)

write the b quark momentum vector and the
b spinor uL(pb).

(b) Compute the partial width Γ(t→ bLW
+
− ), to

a W boson of helicity (−1). The appropriate
W polarization vector is

ε(W ) =
1√
2

(0, cos θ,−i,− sin θ) (21.38)

This is a rotation of the polarization vector
found in Exercise 21.2, part (c).

(c) Compute the partial width Γ(t→ bLW
+
+ ), to

a W with positive helicity. You should get
zero for the result. Why is this process for-
bidden?

(d) As was seen in Exercise 21.2, part (c),
the polarization vector for a helicity-
0 (longitudinally-polarized) boson boosted
along the 3̂ axis is

ε(W ) =
( pW
mW

, 0, 0,
EW
mW

)
. (21.39)

Rotate this polarization vector appropriately,
and compute the partial width Γ(t→ bLW

+
0 ),

to a W with helicity zero.

(e) Compute the total width of the top quark and
derive the formula (21.4).

(f) Compute the ratio of rates for top quark de-
cays to transverse and longitudinal W bosons.
Which mode accounts for the enhancement of
top decays discussed in Section 21.1?
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In this book, I have described the structure of the Standard Model of
particle physics and its correspondence with experiment. We have seen
that the amazing variety of elementary particle phenomena described in
this book can be accounted for quantitatively by the Standard Model
Lagrangian (18.37). It is remarkable that we have achieved this state of
knowledge of the fundamental interactions at very short distances.

The Standard Model is so powerful that many people assert that this
is the end of the story of elementary particles. But there are good rea-
sons to think that it is not. Though the Standard Model is a synthesis of
what came before it, it still lacks the simple and self-contained character
of, for example, Maxwell’s equations or Einstein’s theory of general rel-
ativity. It is not what Steven Weinberg imagined as a ”final theory” of
fundamental forces (Weinberg 1993). In this book, I have concentrated
on the questions in particle physics whose answers are known. But now
it is time to discuss what is not known, and what is yet to be discov-
ered. I will organize this discussion as a series of questions. For a few
of these questions, the Standard Model gives answers that are known to
be incorrect. For most of them, it is incapable of giving any answer at
all.

The questions are of three types. The first set of questions concerns
the structure of the Standard Model itself. The second set concerns the
relation of our understanding of particle physics to the picture of the
universe in the large that has recently emerged from astrophysics. The
third set concerns the relation of the Standard Model to grand questions
about the nature of space and time.

First, I will consider the questions that the Standard Model raises
about its own structure and leaves unanswered:

How do the pieces of the Standard Model fit together? The
Standard Model Lagrangian contains 3 different gauge symmetry groups
and 15 different fermion representations. In a final theory, shouldn’t
there just be one gauge symmetry and one type of matter? Are the SU(3), SU(2), and U(1) sym-

metries of the Standard Model pieces of
a “grand unification” symmetry group?

For the unification of the gauge symmetries, there is an attractive hy-
pothesis. The group SU(3)× SU(2)×U(1) can be considered as a sub-
group of the Lie group SU(5) or SO(10). Each generation of fermions
fills out an SU(5) or SO(10) representation. The case of SO(10) is
particularly elegant, since in this case, the quantum numbers of a com-
plete generation of quark and leptons (including a right-handed neu-
trino) are contained in a 16-dimensional irreducible representation of
SO(10). The idea that there is a single fundamental gauge group, and
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that this symmetry group is spontaneously broken at short distances to
SU(3)× SU(2)× U(1), is called grand unification.

The grand unified theory is a Yang-Mills theory with a single cou-
pling constant. This seems to contradict our knowledge that the SU(3),
SU(2), and U(1) coupling constants are very different, as expressed in
(11.73) and (17.12). However, since the QCD coupling becomes smallerGrand unification can qualitatively ex-

plain the sizes of the SU(3), SU(2), and
U(1) coupling constants.

at short distances while a U(1) coupling becomes larger (as we discussed
in Sections 11.6 and 11.7), it is not hard to imagine that the three Stan-
dard Model couplings meet at some small distance scale where the spon-
taneous breaking takes place. Expressed as an energy scale, the location
of the symmetry breaking turns out to be close to 1016 GeV. The theory
predicts the value of g′/g. The theory also predicts that the baryon
number is violated and baryons decay, however, with a long lifetime ex-
ceeding 1033 years. However, proton decay has not yet been observed.
Also, while the qualitative relation of the Standard Model couplings is
explained by grand unification, the precise values of these couplings dif-
fer somewhat from the grand unification predictions. There is not yet
an attractive grand unified theory that explains the presence of three
generations of fermions. More information about the theory of grand
unification and its experimental status can be found in (Ross 1984) and
(Raby 2006).

Perhaps the unification of the elements of the Standard Model requires
more ambitious ideas. I present some possibilities below.

Why do the quark and lepton masses vary over such a large
range? One of the most striking features of the Standard Model is that
it accomodates a top quark of mass about 170 GeV and an u quark
whose mass is 100,000 times smaller. In each case, the mass of the
quark is given by the size of the corresponding Higgs boson Yukawa
coupling. These coupling constants are inputs to the Standard Model.
In principle, any input would be acceptable, so the Standard Model gives
no explanation for the large mass ratios between the various quarks and
leptons.

Actually, the Standard Model does not even give insight into what
might seem to be an easier question: Is the top quark a “heavy” quark,
while the other quarks and leptons have more ordinary values, or does
the top quark have a “normal” value for its mass, while the masses ofIs the top quark a “heavy” quark or a

“normal” quark? all other fermions are for some reason suppressed? Since the mass of the
top quark is of the same order of magnitude as the masses of the W , Z,
and Higgs bosons, it is tempting to say that the top quark mass is of
the expected magnitude for fermion masses. However, there are theories
created to explain aspects of the Standard Model in which the large size
of the top quark Yukawa coupling plays an essential role. So even this
simpler question has, at the moment, no definite answer.

Why is the weak interaction gauge symmetry SU(2) × U(1)
spontaneously broken? In the Standard Model, we postulate one
multiplet of Higgs scalar fields and assume that these fields have the
potential (16.29) with the parameter µ2 assumed to have a negative
value. This does explain the breaking of SU(2) × U(1) symmetry, but



345

this explanation seems to be rather ad hoc.
In Section 14.2, we discussed the spontaneous breaking of the chiral

SU(2) × SU(2) symmetry of QCD. We gave an intuitive explanation
for the symmetry-breaking based on the properties of light quarks with
strong attractive interactions. That explanation was modelled on the
well-understood explanation for superconductivity in metals put forward
by Bardeen, Cooper, and Schrieffer. In my presentation of the Higgs
mechanism in Section 16.2, I emphasized that the original papers of Is there a physics explanation for the

spontaneous breaking of the weak in-
teraction SU(2)× U(1) symmetry?

Higgs, Englert and Brout, and Guralnik, Hagen, and Kibble all referred
to the theory of superconductivity as the inspiration for their propos-
als. There are many other condensed matter system with spontaneously
broken symmetries, and, in each case, there is a definite physical expla-
nation for the fact that an asymmetric ground state of the Hamiltonian
has the lowest energy. These explanations differ for superconductors,
superfluids, magnets, liquid crystals, and other systems presented, for
example, in (Sethna 2006). But, in each case, there is fascinating physics
there. Why should this not be true for the large physical system that
we call the universe?

Many theories have been put forward to provide an underlying expla-
nation for the shape of the potential energy of the Higgs field and its
preference for an asymmetric vacuum state. I have reviewed this subject
recently in (Peskin 2016). The models proposed are of many different
types, some relying on weak interactions and special symmetries of the
underlying theory, some on new strong interactions at short distances
and, possibly, composite structure of the Higgs bosons and the fermions.
The one feature that these models have in common is that the Standard
Model is not enough. New particles and new interactions must be added
to it. Any such explanation requires new fun-

damental forces that have not yet been
discovered.

I personally find it fascinating that, if one dismisses the Standard
Model Higgs potential as too simplistic and looks for a physics-based
explanation for the symmetry-breaking of SU(2)×U(1), it is unavoidable
that there exist new fundamental interactions still to be discovered at
higher energies or shorter distances.

Next, I will discuss the relation of the Standard Model to the picture
of the universe revealed by astrophysical observations.

This book has focussed almost completely on particle physics proper,
without even glances at the implications of particle physics for astro-
physics and cosmology. In truth, though, the subjects of particle physics
and cosmology are closely related. We have strong evidence from astro-
physics that the universe originated in a state of very high temperature,
the “Big Bang”. At this temperature, all of the particles of the Standard
Model would have been created by thermal pair production and would
have been present in large numbers. As the universe cooled, particles
and antiparticles would have annihilated, leaving us with the universe
with empty space and clumps of stable matter that we see today. In prin-
ciple, we should be able to understand the composition of the universe
and the growth of cosmic structure such as galaxies and galaxy clus-
ters by taking the high-temperature state as the initial condition and
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evolving from that point using the equations of the Standard Model.
An excellent introduction to cosmology that emphasizes its connection

to fundamental particle physics is (Dodelson 2003). As this reference em-
phasizes, the same period since the 1970’s in which the Standard Model
was validated in particle experiments showed tremendous improvements
in our observational knowledge about the universe. The interpretation
of these observations might have been another triumph for the StandardThe application of the Standard Model

to the physics of the universe has re-
vealed gaps that the model does not ex-
plain.

Model. But, in fact, the comparison of the current universe to that ex-
pected from the Standard Model alone has revealed essential gaps and
highlighted additional ingredients that need to be included. Thus, when
we are interested in the defects of the Standard Model rather than its
successes, we need to look to astrophysics for important evidence of what
is missing. Thus, we turn to the questions:

Why is the universe not uniform, but, rather, full of struc-
ture? If the universe were born in a uniform thermal state, it would
stay uniform, and there would be no galaxies, galaxy clusters, or other
cosmic structures. To grow these structures, we need, first, seeds given
by small density inhomogeneities, and, second, a mechanism for these
inhomogeneities to grow as the universe evolves. The growth of structure
can be accomplished by gravity, with small excesses of matter attract-Why did large scale structure—galaxies

and clusters of galaxies—form in the
early universe?

ing additional matter and growing into large density excesses. But how
did the small excess arise in the first place? The snapshot of the early
universe provided by the cosmic microwave background radiation tells
us that the original density inhomogeneities had some specific special
properties: Their statistical distribution was close to Gaussian, approxi-
mately scale-invariant, and essentially identical in widely separated parts
of the universe that were not causally connected. In particular, the tem-
perature of the cosmic microwave background is observed to be the same
at opposite poles of the sky, even though this radiation was created at
100,000 years after the Big Bang, when these regions were separated by
27 billion light-years.

In 1981, Alan Guth proposed an explanation of these features from
a model called the inflationary universe (Guth 1981). In this picture,
the universe began its evolution containing a scalar field with a very
large positive value of its potential energy. The coupling of this scalarThe “inflationary universe” can explain

at the qualitative properties of the
large-scale structure of the universe.

field to gravity leads to an exponential expansion of every small patch
of the universe. In the inflationary model, a patch of a few cm in size
expands to the size of the current universe. Inflation is terminated by
the transition of the scalar field to its ground state with much lower
potential energy. The conversion of the original potential energy into
heat provides the thermal energy of the Big Bang. A more detailed
review of inflation and its solutions to the problems listed in the previous
paragraph can be found in (Olive 1990) and in (Dodelson 2003).

So, already, in order to create the correct initial conditions for the
universe, we need to postulate at least one additional scalar field that is
not contained in the Standard Model.

Why does the universe contain more matter than antimatt-
ter? An obvious property of the observed universe is that it is full of
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matter (protons, neutrons, and electrons), with very little antimatter.
In principle, the universe could have begun with an initial small excess of
matter over antimatter. When quarks and antiquarks annihilated as the
temperature of the universe fell below 1 GeV, the excess quarks would
have been left over. An initial excess of only 1 part in 1010 is needed.

However, if we accept the idea that the initial conditions of the uni-
verse came from a period of inflation, this explanation cannot be valid.
The dramatic expansion required by inflation emptied the universe of
particles and set the initial matter-antimatter asymmetry to zero. Then
the needed asymmetry must have developed in the evolution of the uni-
verse after the Big Bang.

In principle, we can compute the evolution of the components of the
universe from the equations of the Standard Model. In particular, in
order to create a nonzero asymmetry between the numbers densities of
matter and antimatter, these equations must be asymmetric between
matter and antimatter, violating CP symmetry. The Standard Model
contains a CP -violating parameter, the CKM phase, and this does pro-
duce a matter-antimatter asymmetry in the early universe. However, it The excess of matter over antimatter in

the universe requires new CP -violating
interactions not yet observed in particle
physics.

turns out that this asymmetry is too small by a factor of 108 to pro-
duce today’s known matter density of the universe. The influence of
the CKM phase in the early universe is proportional to the product of
the light quark Yukawa couplings, and so is very small. Then, another
source of CP -violation is needed (Riotto and Trodden 1999).

Looking at models more general than the Standard Model, there are
many possibities for new CP -violating interactions. A model with two
Higgs field multiplets can contain an additional CP -violating phase.
There are many more complex possibilities. Most of the models dis-
cussed under the previous question as providing explanations of SU(2)×
U(1) symmetry breaking offer the possibility of new CP -violating pa-
rameters. Unfortunately, these models also allow other new flavor-
dependent terms, threatening some of the beautiful conclusions pre-
sented in Section 18.4.

One interesting suggestion is that the new source of CP violation is
the Majorana mass (20.24) for right-handed neutrinos (Fukugita and
Yanagida 1986). This neutrino mechanism for the production of a
baryon asymmetry is called leptogenesis. I have emphasized at the end
of Chapter 20 that the presence of CP violation in the neutrino sector
is highly suggested from the structure of the Standard Model but is not
yet experimentally established. Unfortunately, the CP -violating phase
that would lead to leptogenesis is not directly observable in neutrino
mixing experiments.

What is the “dark matter” of the universe? Another aspect of
modern cosmology that challenges the Standard Model is the accumu-
lating evidence that atoms made of Standard Model particles are not
the only type of matter in the universe. In fact, the internal dynamics
of galaxies and of clusters of galaxies require that these objects contain
large amounts of invisible and weakly interacting matter that interacts
gravitationally with the atoms. These observations are corroborated by
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observations of the cosmic microwave background. In addition, we now
know that the growth of structure in the universe since the Big Bang
would be too slow if the gravitational clumping of matter were driven by
the gravity of atomic matter only. From all of these sources, we deduce
that 85% of the non-relativistically moving matter in the universe is of
this new type, called dark matter (Bertone 2010).

Dark matter must be made of particles, but those particles cannot beMost of the matter in the universe is
“dark matter”, a type of matter not ac-
counted for by the Standard Model.

any of the particles in the Standard Model. For particle physicists, this
is a supreme embarassment: With all of our knowledge, we are ignorant
of the origin of most of the matter in the universe.

Models proposed to extend the Standard Model provide many possible
candidates for the particle of dark matter. Each proposal offers new
experiments that might discover the dark matter particle, and, at the
same time, give evidence for new particles and forces beyond those of
the Standard Model (Feng 2010). It is possible to search for dark matter
particles not only by production at accelerators but also by searching
for collisions of cosmic dark matter particles with detectors on Earth.
Unfortunately, so far, none of these experiments has given a positive
signal. Still, the dark matter is there in our astrophysical observations;
only its identity is missing.

What is the “dark energy” of the universe? In 1998, another
mysterious ingredient was added to this picture. From measurements
of the red shifts of distant supernovae, two groups of observers demon-
strated that the universe is in a phase of exponential expansion even
today (Riess et al. 1998, Perlmutter et al. 1999). This expansion would
be accounted for by a small potential energy in each unit volume of
empty space, due either to another new scalar field or to quantum ef-
fects from known and unknown elementary particles. This ingredient is
called dark energy. A contemporary summary of the resulting three-part
picture of the universe, with two mysterious ingredients, can be found
in (Bahcall et al. 1999).

In principle, quantum effects of the Standard Model can lead to a
vacuum energy that accounts for the dark energy. However, it is notThe universe contains a small but

nonzero vacuum energy. Its origin is
unknown, and its size defies all at-
tempts to predict it.

known how to compute the Standard Model contribution to the energy
of the vacuum state of space. The application of obvious methods leads
to a result 120 orders of magnitude too large. It is also mysterious why
the energy density of the vacuum today can be so much smaller—by a
similar number of orders of magnitude—than the energy density present
during the period of inflation.

It is important the students of particle physics should be aware of this
compelling evidence from astrophysics that our current fundamental un-
derstanding of nature is incomplete. At the same time, it is important
that both particle physicists and astrophysicists realize that the answers
to these questions cannot come purely from astronomical observations.
At some point, the initial conditions from astrophysics must be put to-
gether with a full dynamical model—at the level of the underlying par-
ticles and fields—to explain the evolution of the universe to its current
state.



349

Finally, we come to the questions about the relation of the Standard
Model of particle physics to deep questions about the nature of space
and time:

Are there higher symmetries of nature that lead to new par-
ticles and interactions? Many of the questions that we have already
considered—in particular, the missing explanations for SU(2) × U(1)
symmetry breaking, the generation of the observed matter-antimatter
asymmetry, and the dark matter of the universe—call for new particles
and interactions that must be added to the Standard Model. It is a very
attractive idea that these new interactions might have a fundamental ba-
sis. Perhaps, by extending the space-time symmetries of the Standard
Model, these new ingredients might naturally appear.

There is in fact a unique extension of the group of space-time sym-
metries, the translations, rotations, and Lorentz boosts. This extended
group adds supersymmetries, operations that change the total spin by
1
2 unit, transforming bosons into fermions and fermions into bosons. “Supersymmetry” is the most natural

extension of the Lorentz symmetry of
space-time. But, is supersymmetry ac-
tually present in nature?

The square of a supersymmetry operation is an infinitesimal translation
(Haag, Lopszanski, and Sohnius 1975).

Supersymmetry doubles the number of elementary particles. For each
known boson, it predicts a new fermion. For each quark or lepton, it
predicts a new boson. This gives ample material to propose solutions
to all of the questions that I have outlined above. In particular, the
supersymmetric partner of the photon is a fermion with zero charge and
very weak interactions that is an excellent candidate for the particle of
dark matter. The extension of the Standard Model to a supersymmetric
theory has been worked out in great detail. Descriptions of this theory
can be found in the review articles (Martin 1997) and (Peskin 2008) and
in the books (Drees, Godbole, and Roy 2004) and (Baer and Tata 2006).

The supersymmetric extension of the Standard Model gives the most
robust explanations for SU(2)×U(1) symmetry breaking and dark mat-
ter if gluon and the top quark have masses of several hundred GeV. The
ATLAS and CMS experiments at the LHC have searched diligently for
these particles and have essentially ruled out the possibility that these
particles have masses below 1000 GeV (Adam 2017). That was a sign-
ficant blow to proponents of supersymmetric models. The search for
supersymmetric particles continues, but models of this type no longer
have the pride of place that they held before the start of the LHC ex-
periments.

It is possible that nature is supersymmetric at extremely short dis-
tances, far above the TeV energies accessible to the LHC. This possibility
plays into the answers to the questions to follow.

How does gravity fit together with the Standard Model? A
truly final theory should incorporate all of the known forces of nature,
including gravity. The description of gravity at the classical level is given
by Einstein’s theory of general relativity. This is a very well-tested the-
ory. General relativity has a quantum version. In that theory, the grav-
itational force is mediated by a massless spin-2 particle, the graviton.
This quantum theory of gravity has a formalism of Feynman diagrams,
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similar to those of the Standard Model, from which scattering ampli-
tudes can be computed. From this point of view, the quantum theory of
gravity can simply be appended as another component of the Standard
Model, though its unification with the other forces is not explained.

There, is, however, a more serious problem with quantum gravity. The
quantum theory of gravity differs from the gauge theories of the Standard
Model in having a dimensionful coupling constant, Newton’s constant
GN . Expressed as an energy, Newton’s constant gives a mass parameter,The quantum theory of gravity is in-

complete. How is gravity related to the
interactions of the Standard Model?

the Planck scale mPl, equal to 1019 GeV. At energies below mPl, the
Feynman diagram expansion makes sense, but at energies approaching
mPl the theory becomes strongly coupled and our methods of calculation
fail catastrophically. Speaking roughly, Einstein’s theory predicts that,
at distances of 1/mPl, space-time itself becomes singular due to quantum
fluctuations.

Solutions to this problem have been proposed, but none are yet com-
pletely successful. The most interesting of these is string theory, which
discards the notion of point particles moving in continuous space-time
in favor of a picture in which all elementary particles, including the
graviton, are extended 1-dimensional objects (Zwiebach 2004, Polchin-
ski 2005). For reasons too subtle to explain here, string theory removes
all distances shorter than 1/mPl while at the same time retaining con-“String theory” is a possible framework

for unifying gravity with the Standard
Model. Does this idea have unique ob-
servable consequences?

tinous translation and Lorentz invariance. In addition to the massless
spin-2 graviton, string theory contains massless spin-1 particles with
the properties of Yang-Mills gauge bosons. Thus, string theory can be
the setting for a complete unified theory of all of the forces of nature.
However, it has not yet been possible to identify the Standard Model
gauge symmetry group as a unique consequence of string theory, or to
use string theory to give definitive solutions to the other questions that
I have posed in this chapter. Some approaches to these issues involve
extending string theory to a supersymmetric model, bringing all of the
virtues and challenges described for supersymmetry in the discussion
above.

Is space-time a fundamental concept that will survive in the
final theory? The difficulties of formulating a quantum theory of grav-
ity valid at all energies suggest the idea that continuous space-time itself
is an approximate notion that will be replaced in a more fundamental
theory. At currently explored energies, up to the energies probed by
the LHC, Lorentz invariance, the continuity of space, and the locality
of quantum field theory interactions are all extremely well tested (Kost-
elecky and Russell 2011). But it is a long way from TeV energies to the
Planck scale. Many surprises and new concepts might make themselves
apparent between here and there.

Even now, theoretical investigations of black holes have challengedProperties of black holes challenge the
basic notion of continuous space-time. the idea that space-time is ultimately continuous. The quantum theory

of black holes is partially understood, and what we know leads to para-
doxes. These issues are reviewed lucidly in (Polchinski 2016). Among
these is the fact that the number of quantum degrees of freedom of a
black hole is proportional to its area, not its volume, so a large black
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hole has many fewer degrees of freedom than one might expect in a de-
scription based on quantum field theory. These ideas have led to the
holographic principle, the idea that the quantum degrees of freedom in
any 3-dimensional volume are encoded on a 2-dimensional boundary.
This idea is fundamentally incompatible with quantum field theory ex-
cept as an approximation at energies much lower than the Planck scale
(Bousso 2002).

An idea pushing in the other direction is that of the existence of addi-
tional dimensions of space beyond those seen in our common experience. Are there extra dimensions of space vis-

ible at very short distances?These extra dimensions would need to be curled up to a small size R.
Then particle physics experiments at energies of order 1/R could pos-
sibly access them (Hewett and Spiropulu 2002). String theory actually
requires the existence of extra space dimensions and, in a sense, blurs the
distinction between the presence of dimensions of space and the presence
of extra quantum fields added to the Lagrangian.

It is fun to think about such dramatic modifications of our ideas of
space-time. It may be that new concepts drawn from these ideas are
needed to address the open questions of particle physics. On the other
hand, it is equally likely that the most pressing of problems that we have
highlighted—SU(2) × U(1) symmetry breaking, CP violation, and the
nature of dark matter—will be solved with new interactions compatible
with quantum field theory that are present at energies just beyond our
current reach. There are many aspects of quantum field theory that we New ideas are needed to answer all

of these questions. Can you discover
them?

do not yet understand, especially for theories that are strongly coupled.
New concepts as profound and unusual as asymptotic freedom and quark
confinement could drive the behavior of these new interactions. Just
as was true for the insights that led to the structure of QCD and the
electroweak theory, it may take new accelerator experiments at higher
energies to bring them to the surface.

The completion of the Standard Model with the discovery of the Higgs
boson closes this book on the concepts of elementary particle physics.
However, many question remain, enough to fill another book, perhaps
many more. Today, we have few clues to address the next level of ques-
tions about the fundamental interactions of physics. But, always, we
build our knowledge level by level. I hope that the concepts I have
presented in this book will aid you in confronting this new set of open
questions and, by discovering new principles, in pushing forward the
quest for an ultimate understanding of nature.





Notation A
Units

Throughout this book, I use natural units in which

h̄ = c = 1 . (A.1)

All masses and momenta are measured in energy units, typically in GeV.
Distances and times are computed in inverse energy units (GeV−1). For
example, I use the symbol me (the mass of the electron) to represent all
of the following quantities:

me = 9.10938× 10−28 g = 0.510999 MeV

= (3.86156× 10−11 cm)−1 = (1.28809× 10−21 sec)−1 . (A.2)

The conversion of quantities in natural units to quantities in more fa-
miliar units is discussed in Section 2.2.

Vectors and tensors

Vectors in 3 dimensions are notated with arrows or Latin indices.
Vectors in Minkowski space are denoted with Greek indices. Thus,

xµ = (x0, xi)µ or (x0, ~x)µ . (A.3)

Sometimes, I write x0 = t or, for momenta, p0 = E. Distances and
momenta naturally carry raised indices. Greek indices are raised and
lowered with the metric tensor of special relativity

ηµν = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.4)

Then the Lorentz-invariant product of vectors is written

x · y = xµηµνy
ν = xµyµ = x0y0 − xiyi = x0y0 − ~x · ~y . (A.5)

The Lorentz-invariant interval is

(x− y)2 = (x0 − y0)2 − (~x− ~y)2 . (A.6)

The derivative operator naturally carries a lowered index,

∂µ = (∂/∂x0, ∂/∂xi) , (A.7)
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This is set up so that
xµ∂µ (A.8)

is Lorentz-invariant. Note that

∂µ = ηµν∂ν = (∂/∂x0,−∂/∂xi) . (A.9)

The D’Alembertian operator

∂µ∂µ = ∂2/∂(x0)2 − ∂2/∂(xi)2 = ∂2/∂t2 − (~∇)2 (A.10)

is Lorentz-invariant.
The totally antisymmetric symbols εijk, εµνλσ satisfy

ε123 = +1 , ε0123 = +1 (A.11)

Note that this implies ε0123 = −1 after index lowering.

Momentum vectors

A particle of mass m has a momentum vector satisfying

p2 = (p0)2 − (~p)2 = m2 . (A.12)

The quantity Ep is defined in the text to be a function of ~p equal to

Ep = [(~p)2 +m2]1/2 ; (A.13)

it is the energy of a particle (on mass shell) with momentum ~p.

Basic quantum-mechanical operators

I write the energy and momentum operators acting on Schrödinger
wavefunctions as

E = i
∂

∂t
, ~p = −i ∂

∂~x
= −i~∇ . (A.14)

Note that, with (A.9), these combine into a 4-vector operator

pµ = i∂µ . (A.15)

The plane wave with 4-momentum k has wavefunction e−ik·x, since

pµ e−ik·x = i∂µ e−ik·x = kµ e−ik·x . (A.16)

The Pauli sigma matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.17)

These satisfy
(σi)2 = 1 σiσj = εijkσk . (A.18)
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Fourier transforms and distributions

The Dirac delta function in d dimensions is denoted δ(d)(x). This is
a distribution that equal zero for x 6= 0 and satisfies∫

ddx δ(d)(x) = 1 . (A.19)

In writing Fourier transforms, I always associate a factor 2π with the
momentum integral. In Minkowski space,

f(x) =

∫
d4k

(2π)4
e−ik·xf̃(k) f̃(k) =

∫
d4x e+ik·xf(x) (A.20)

Factors of 2π will also appear from∫
d4xeik·x = (2π)4δ(4)(x) . (A.21)

Electrodynamics

I use standard SI notation for electrodynamics but with ε0 = µ0 = 1
in natural units. The Coulomb potentail of a point charge is written

V (r) =
Q

4πr
. (A.22)

The electrodynamic potential and the vector potential form a 4-vector

Aµ(x) = (Φ(x), ~A(x))µ . (A.23)

The electromagnetic fields are contained in the tensor

Fµν = ∂µAν − ∂νAµ . (A.24)

It is a nice exercise to show that the components of this tensor form the
correct expressions for the ~E and ~B fields,

F i0 = Ei , F ij = εijkBk . (A.25)





Conversion factors and
physical constants B
Conversion factors

c = 2.99729× 108 m/sec
c−2 = 1.78266× 10−30 kg/MeV
h̄ = 6.582119× 10−22 MeV-sec
h̄c = 197.327 MeV-fm

(1 fm = 10−15 m; 1 barn = 10−24 cm2.)

α = e2/4πε0h̄c = 1/137.03560
re = e24πε0mec

2 = 2.817940× 10−15 m

Ry = e4me/2(4πε0)2h̄2 = 13.6057 eV

Standard magnetic moments and cyclotron frequencies Use these relations to convert from
MeV and sec to magnetic field
strengths.µB = eh̄/2me = 5.78838× 10−11 MeV/T

ωe/B = e/me = 1.75882× 1011 /sec/T
µN = eh̄/2mp = 3.15245× 10−14 MeV/T
ωp/B = e/mp = 9.5788× 107 /sec/T

(1 Tesla = 104 gauss)

Masses of leptons

m(e) = 0.510999 MeV
m(µ) = 105.658 MeV
m(τ) = 1776.9 MeV

Masses of baryons



358 Conversion factors and physical constants

m(p) = 938.272 MeV m(n) = 939.565MeV m(Λ) = 1115.68 MeV
m(Σ+) = 1189.37 MeV m(Σ0) = 1192.64 MeV m(Σ−) = 1197.45 MeV
m(Ξ0) = 1314.86 MeV m(Ξ−) = 1321.71 MeV
m(∆) = 1232. MeV m(Ω−) = 1672.5 MeV
m(Λc) = 2286.5 MeV m(Λb) = 5619.5 MeV

Masses of mesons

m(π+) = 139.570 MeV m(π0) = 134.977 MeV
m(K+) = 493.68 MeV m(K0) = 497.61 MeV
m(η) = 547.86 MeV m(η′) = 957.78 MeV
m(ρ+) = 139.570 MeV m(ρ0) = 134.977 MeV
m(K∗+)= 891.6 MeV m(K∗0) = 895.8 MeV
m(ω) = 782.6 MeV m(φ) = 1019.46 MeV
m(D+) = 1869.6 MeV m(D0) = 1864.8 MeV m(D+

s ) = 1968.2 MeV
m(ηc) = 2983.4 MeV m(J/ψ) = 3096.9 MeV m(ψ′) = 3686.1 MeV
m(B+) = 5279.3 MeV m(B0) = 5279.6 MeV m(B0

s ) = 5366.8 MeV
m(ηb) = 9399.0 MeV m(Υ) = 9460.3 MeV m(Υ′) = 10023.3 MeV

Masses of weak-interaction bosons

m(W ) = 80.385 GeV m(Z)= 91.1876 GeV

Strengths of the fundamental interactions at Q = 91. GeV

α = e2/4π = 1/129 αs = g2
s/4π = 1/8.5

αw = g2/4π = 1/29.8 α′ = g′2/4π = 1/99.1

All quantities in this appendix except for the final values of funda-
mental interaction strengths are taken from the summary tables in (Pa-
trignani et al. 2016).



Formulae for the creation
and destruction of
elementary particles C
Spin 0

〈0|φ(x) |ϕ(p)〉 = e−ip·x , 〈ϕ(p)|φ(x) |0〉 = e+ip·x . (C.1)

Spin 1/2

massive fermions:

〈0|Ψ(x) |fs(p)〉 = Us(p)e−ip·x , 〈fs(p)|Ψ(x) |0〉 = U
s
(p)e+ip·x ,

〈0|Ψ(x)
∣∣∣fs(p)〉 = V

s
(p)e−ip·x ,

〈
f
s
(p)
∣∣∣Ψ(x) |0〉 = V s(p)e+ip·x ,

(C.2)

where Ψ(x) is a 4-component spinor field and Us(p), V s(p) are 4-component
spinors, with s indicating the spin direction.

massless, chiral fermions:

〈0|ψL(x) |fL(p)〉 = uL(p)e−ip·x , 〈fL(p)|ψ†L(x) |0〉 = u†L(p)e+ip·x ,

〈0|ψ†L(x)
∣∣fR(p)

〉
= vR(p)e−ip·x ,

〈
fR(p)

∣∣ψ†L(x) |0〉 = vR(p)e+ip·x ,

〈0|ψR(x) |fR(p)〉 = uR(p)e−ip·x , 〈fR(p)|ψ†R(x) |0〉 = u†Rp)e
+ip·x ,

〈0|ψL(x)
∣∣fRp)〉 = v†L(p)e−ip·x ,

〈
fL(p)

∣∣ψ†R(x) |0〉 = vL(p)e+ip·x ,

(C.3)

where ψL(x), ψR(x) are a 2-component spinor fields and uL(p), uR(p),
vL(p), and vR(p) are 2-component spinors. For ~p ‖ 3̂,

uL(p) =
√

2E

(
0
1

)
= vR(p) ,

uR(p) =
√

2E

(
1
0

)
= vL(p) . (C.4)
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For fermions moving in the direction p̂ = cos θ3̂ + sin θ1̂,

uL(p) =
√

2E

(
− sin θ/2
cos θ/2

)
= vR(p)

uR(p) =
√

2E

(
cos θ/2
sin θ/2

)
= vL(p) . (C.5)

In particular, for fermions moving in the −3̂ direction,

uL(p) =
√

2E

(
−1
0

)
= vR(p)

uR(p) =
√

2E

(
0
1

)
= vL(p) . (C.6)

Spin 1

〈0|Aµ(x) |Vs(p)〉 = εµs (p)e−ip·x , 〈Vs(p)|Aµ(x) |0〉 = ε∗µs (p)e+ip·x ,
(C.7)

where s indicates the spin direction. The vectors εµs (p) satisfy

p · εs = 0 . (C.8)

For vector bosons moving in the 3̂ direction, these vectors are

εµ+ =
1√
2

(0, 1, i, 0)µ , εµ− =
1√
2

(0, 1,−i, 0)µ ,

εµ0 = (
p

m
, 0, 0,

E

m
)µ . (C.9)

For vector bosons moving in the direction p̂ = cos θ3̂ + sin θ1̂, these
vectors are

εµ+ =
1√
2

(0, cos θ, i,− sin θ)µ , εµ− =
1√
2

(0, cos θ,−i,− sin θ)µ ,

εµ0 = (
p

m
,
E

m
sin θ, 0,

E

m
cos θ)µ . (C.10)

For massless vector bosons (e.g., photons), the polarization state εµ0
is absent, and only the polarizations εµ± correspond to physical states.



Master formulae for the
computation of cross
sections and partial widths D
Partial widths

For decays of a particle X of mass mX ,

Γ(X → A1+· · ·+An) =
1

2mX

∫
dΠn |M(X → A1+· · ·+An)|2 , (D.1)

summed over final spins and, when appropriate, averaged over the spin
of X.

Cross sections

For the cross section of a reactions of particles A and B with initial
energies EA, EB and velocities vA, vB ,

σ(A+B → C1 + · · ·+ Cn)

=
1

EAEB |vA − vB |

∫
dΠn |M(A+B → C1 + · · ·+ Cn)|2 ,

(D.2)

summed over final spins and, when appropriate, averaged over the spins
of A and B.

Phase space

For n-body phase space,∫
dΠn =

n∏
i=1

∫
d3pi

(2π)32Ei
(2π)4δ(4)(PCM −

∑
i

pi) (D.3)

2-body phase space

For a system with center of mass energy ECM , in the center of mass
frame, 2-body phase space takes the form∫

dΠ2 =
1

8π

(
2k

ECM

)∫
dΩ

4π
, (D.4)
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where k is the momentum of each of the two products and dΩ is the
integral over their angular distribution.

3-body phase space

For a system with center of mass energy E2
CM = s and energies of the

three products E1, E2, E3, let

x1 =
2E1√
s
, x2 =

2E2√
s
, x3 =

2E3√
s
. (D.5)

In this frame ~p1 + ~p2 + ~p3 = 0. Then the three final momentum vectors
lie in a plane. Then 3-body phase space, integrated over the orientation
of this plane, takes the form∫

dΠ3 =
s

128π3

∫
dx1 dx2 . (D.6)

Since x1 + x2 + x3 = 2, any pair of xi can be used as the integration
variables.

The masses of the 2-particle combinations, for example, m2
12 = (p1 +

p2)2, are given by

m2
12 = s(1− x3) +m2

3 , m
2
23 = s(1− x1) +m2

1 , m
2
31 = s(1− x2) +m2

2 ,
(D.7)

so (D.6) can also be written as∫
dΠ3 =

1

128π3s

∫
dm2

12 dm
2
23 . (D.8)

As in (D.6), any two of m2
12, m2

23, m2
31 can be used as integration vari-

ables.



QCD formulae for hadron
collisions E
Parton model formula for cross sections

σ(pp→ X) =

∫ 1

0

dx1 dx2

∑
f1,f2

ff1(x1, Q) ff2(x2, Q) σ(f1f2 → X)

(E.1)

Altarelli-Parisi splitting functions

Pg←q(z) =
4

3

1 + (1− z)2

z

Pq←q(z) =
4

3

[ 1 + z2

(1− z)
+Aδ(z − 1)

]
Pq←g(z) =

1

2

(
z2 + (1− z)2

)
Pg←g(z) = 3

[1 + z4 + (1− z)4

z(1− z)
+Bδ(z − 1)

]
(E.2)

Differential cross sections for parton-parton scattering

dσ

d cos θ∗
(ud→ ud) =

2πα2
s

9s

[
s2 + u2

t2

]
dσ

d cos θ∗
(uu→ uu) =

2πα2
s

9s

[
s2 + u2

t2
+
s2 + t2

u2
− 2

3

s2

tu

]
dσ

d cos θ∗
(uu→ dd) =

2πα2
s

9s

[
t2 + u2

s2

]
dσ

d cos θ∗
(uu→ uu) =

2πα2
s

9s

[
s2 + u2

t2
+
t2 + u2

s2
− 2

3

u2

st

]
dσ

d cos θ∗
(uu→ gg) =

16πα2
s

27s

[
u

t
+
t

u
− 9

4

t2 + u2

s2

]
dσ

d cos θ∗
(ug → ug) =

2πα2
s

9s

[
−u
s
− s

u
+

9

4

s2 + u2

t2

]
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dσ

d cos θ∗
(gg → uu) =

πα2
s

12s

[
u

t
+
t

u
− 9

4

t2 + u2

s2

]
dσ

d cos θ∗
(gg → gg) =

9πα2
s

4s

[
3− tu

s2
− su

t2
− st

u2

]
(E.3)

An exceptionally swift and easy derivation of these cross section for-
mulae can be found in (Peskin 2011). That derivation makes use of some
abstract, but simple and quite fascinating, concepts from quantum field
theory.
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W/Z boson mass relation, 256
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Υ, 53, 119, 178
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α (CKM angle), 306
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value of, 265
α(mZ), 265
αs, 172, 179
αw, 265
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β (CKM angle), 302
β (velocity), 9
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β decay, 64, 231, 233, 282, 311

superallowed, 282
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ε, 296
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γ5, 216
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ŝ, 135, 201
t̂, 135, 201
û, 135, 201
ν1, ν2, ν3, 314
π meson, 11, 49, 59, 96, 222

decay, 241
ρ meson, 60, 96
σ, 90
τ lepton, 275, 335
θ parameter, 287
b quark, 57, 63
c quark, 57, 63
c2w, 255
d quark, 60
dE/dx, 73, 74
e, 256
fabc, 19
fπ , 222
g, 255
g′, 255
gA, 223, 282
s quark, 60
s, kinematic invariant, 130
s-channel process, 132
s2w, 255, 257

value of, 261, 265, 272, 276
t quark, 63, 210, 274, 326, 344
t, kinematic invariant, 130
t-channel process, 132
u quark, 60
u, kinematic invariant, 130
u-channel process, 132
v, 254, 256, 266, 316, 327
x, 136
y (rapidity), 198
y (variable of deep inelastic scattering),

136
y distribution, 246, 259
yf (Yukawa coupling), 284
ycut, 192
V−A interaction, 231, 233, 241, 243,

249, 275, 281
with the neutral current interaction,

259
4-vector, 8

Abelian group, 14
adjoint representation, 168
ALEPH experiment, 120, 189, 192, 275
Altarelli-Parisi equations, 184
Altarelli-Parisi splitting functions, 184
angular distribution, 116, 120, 276
anti-kT algorithm, 206
antiparticle, 20, 27, 33, 110
asymmetric colliding beam accelerator,

305
asymptotic freedom, 176, 178
ATLAS experiment, 82, 205, 206, 263,

333
average over initial spin states, 92, 115,

267

BaBar experiment, 86, 305, 307
barn, 116
baryon, 64
baryon decuplet, 64
baryon number conservation, 64
baryon octet, 64
BELLE experiment, 305
Bethe’s formula for energy loss, 73
Bhabha scattering, 174
Bjorken scaling, 137
Bolivia, 50
boost, 8
Bose-Einstein statistics, 37
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branching ratios
W boson, 266
Z boson, 269
Higgs boson, 329, 332

Breit-Wigner resonance, 95, 98, 108, 132,
272, 329

bremsstrahlung, 75, 78, 150
Brookhaven National Laboratory, 52, 53,

296
bubble chamber, 50

Cabibbo angle, 283, 290
Cabibbo-Kobayashi-Maskawa (CKM)

matrix, 286, 289, 347
calorimeter, 71, 82, 84, 205
CDF experiment, 197, 206
CDHS experiment, 246, 261
center of gravity of a multiplet, 42
CERN, 82, 120, 185, 189, 206, 246, 261,

263, 269, 333
charge conjugation, C, 20, 39, 45, 55
charged-current interaction, 244, 281, 320
CHARM experiment, 261
charmonium, 52
Cherenkov radiation, 81, 86, 317, 320
chiral SU(2), 217, 220, 222
chiral SU(3), 225
chiral symmetry, 215, 226
Christenson-Cronin-Fitch-Turlay

experiment, 296
CLEO experiment, 53, 57
cloud of soft gluons, 187
CMS experiment, 85, 205, 333
collinear splitting, 76, 150, 151, 160, 183,

189
of gluons, 160, 161

color, 117, 171
color SU(3), 67
color-singlet states, 68, 179
compromise, in detector design, 80
continuous group, 15
Cornell University, 53
cosmic structure, 313, 346
cosmology, 345
Coulomb potential, 12
Coulomb scattering, 133, 203
covariant derivative, 109, 165, 169, 171,

252, 254, 256, 288
creation of a particle, 27, 33, 110
critical energy, 78
cross section, 89, 116
crossing symmetry, 129
Crystal Ball experiment, 57
current

conservation of, 29, 166
electromagnetic, 29, 33, 53, 108, 112,

125, 152
matrix elements, 113, 152, 221, 282
weak-interaction, 281

current, chiral isospin, 217
current, isospin, 217
current-current interaction, 5, 107, 108,

144, 231, 249, 258
custodial symmetry, 326
cylindrical collider detector, 82

Dalitz plot, 95, 102
dark energy, 348
dark matter, 348
DASP experiment, 55
Davis experiment, 318
Daya Bay experiment, 322
decay rates
W boson, 266
Z boson, 269
t quark, 326
muon, 238
positronium, 46

deep inelastic scattering, 123, 128, 144,
183

neutrino, 144, 243, 259
DELPHI experiment, 269
destruction of a particle, 26, 32, 110
DESY, 55, 140, 150, 161, 185, 192
detector material properties, 78
detector systems, 82
detectors, 71
differential cross section, 89
dimensional analysis, 11, 36, 92, 94, 111,

113
Dirac algebra, 30
Dirac equation, 30, 31, 109

mass term, 283
solutions, 31

Dirac matrices, 30, 109
discrete group, 12
Drell-Yan process, 267

elastic scattering, 123
electric dipole moment

electron, 300
neutron, 287, 300

electromagnetic shower, 79, 84
electron-positron annihilation, 5
electroweak interaction, 255
electroweak symmetry breaking, 254,

284, 325, 344
energy loss in matter, 72
energy-momentum 4-vector, 8
energy-momentum fraction, 127, 155,

183, 201

factorization, 154
Fermi constant, GF , 233, 239, 258
Fermi weak interaction theory, 232
Fermi’s Golden Rule, 90, 97
Fermi-Dirac statistics, 37
Fermilab, 53, 57, 197, 206, 243, 318
fermion, 37, 67

Feynman diagram, 96, 108, 125, 128, 151,
160, 172, 173, 202, 258, 274,
290

field strength
electromagnetic, 29, 165
Yang-Mills theory, 171

Fierz identity, 236
final theory, 343
final-state radiation, 154, 185
fine structure, 43
fine structure constant, 12
flavor, 64, 233
flux of particles, 90, 92
flux tube, 179
fractal, 187, 192
fundamental representation, 168

Gell-Mann-Okubo formula, 225
generation, of quarks and leptons, 257,

285
generator of a continuous group, 16, 168
Glashow-Iliopoulos-Maiani (GIM)

cancellation, 290
Glashow-Salam-Weinberg model, 253
global gauge invariance, 166
gluon, 5, 59, 62, 147, 165, 183, 211
gluon-gluon fusion, 331
Goldberger-Treiman relation, 223
Goldstone boson, 221, 223, 250

eaten, 251
Goldstone’s theorem, 221
grand unification, 344
gravity, quantum theory, 349
group theory, 12

axioms, 13

H1 experiment, 161, 185
hadron, 49, 50
hadronic shower, 80, 85
hadrons, 5
Heisenberg uncertainty principle, 11
helicity, 110, 327
helicity conservation, 112, 245
HERA collider, 140, 161, 185
HERWIG, 192
Higgs boson, 5, 251, 254, 325

automatically present, 327
couplings, 327
production cross sections, 331

Higgs field, 251, 254, 284, 325, 345
Higgs mechanism, 29, 251
HRS experiment, 174
hydrogen atom, 34, 39
hypercharge, 255, 257
hyperfine structure, 43

identical particles, 37, 67, 94
ignoring the effects of the strong

interaction, 117, 128, 167
index raising and lowering, 9
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inflationary universe, 346
INFN Frascati, 282
initial-state radiation, 154, 183, 272
internal symmetry, 14, 19
intrinsic parity, 20, 65
invariant matrix element, 91, 92

dimensions, 91
inverted hierarchy, 321
ionization, 71, 72, 78
IR-safe algorithm, 206
IR-safe observable, 188
irreducible representation of a group, 15,

65
irreducible representations

of SU(2), 42, 168
of SU(3), 65

irreducible representations of a group,
168

isospin, 61, 216, 217, 220, 226, 283

JADE algorithm, 192
JADE experiment, 192
jet, 119, 140, 150, 187, 199, 201, 331
jet clustering algorithm, 188, 192, 205
jet cone, 205, 206

K2K experiment, 318
KamLAND experiment, 320
KEK, 305, 318
kinematic λ function, 10
kinematics, relativistic, 8
Klein-Gordon equation, 23, 24
KLOE experiment, 282
Kobayashi-Maskawa phase, 287, 293

Lagrange density, 25, 29
Lagrangian

Dirac theory, 34, 169
electrodynamics of a scalar field, 250
fermion-Higgs couplings, 284
Higgs boson couplings, 327
Klein-Gordon theory, 25
Maxwell’s equations, 29
neutrino mass, 313, 315
QCD, 172, 215
QED, 34, 165
Standard Model, 288
Yang-Mills theory, 170, 171

Lagrangian mechanics, 25
Landé g-factor, 41
Landau-Ginzburg theory, 250
Large Electron-Positron Collider, LEP,

189
Large Electron-Positron collider, LEP,

269
Large Hadron Collider, LHC, 6, 82, 116,

200, 203, 206, 211, 263, 331
Lawrence Berkeley Laboratory, 50
Lee and Yang’s proposal, 232
Lego plot, 197

LEP Electroweak Working Group, 278
leptogenesis, 347
lepton, 5
lepton number conservation, 286, 288
Lie algebra, 19, 167
Lie group, 19, 167
lifetime of a particle, 89
light quark masses, 226
local gauge invariance, 166, 250
local gauge transformation, 251, 252
long tail, 272
Lorentz invariance, 7
Lorentz invariants, 130
Lorentz transformation, 8, 198

of a field, 23, 25, 27

macroscopic quantum interference, 293,
298, 311, 315

magnetic moment, 41, 43, 67
magnetism, 218
Majorana mass term, 316, 347
Mandelstam invariants, 130
manifold of vacuum states, 218
mass of a particle, 9
massless spin 1 boson, 256
Maxwell’s equations, 27, 30, 165, 249
mean free path, 76
Meissner effect, 251
meson

pseudoscalar, 60, 63
vector, 60, 63

metric tensor, 8
minimum ionization, 74, 80
MINOS experiment, 318
Molière radius, 79
multiple scattering, 80, 84
muon, µ, 50, 85

decay, 235, 282

natural units, 10, 40
negative energy states, 24, 27, 110
negative norm, 28
neutral current interaction, 244
neutral-current interaction, 281, 286, 320
neutrino, 5, 85, 232, 311

electron, 311
flavor eigenstates, 314
mass, 284, 311, 314
number of, 274

neutrino flavor oscillation, 315, 322
neutrino-electron scattering, 320
neutrinoless double β decay, 316
neutron, 49
NNPDF collaboration, 146, 160
non-Abelian gauge theories, 167
non-Abelian gauge theory, 169
non-Abelian group, 14, 167
normal hierarchy, 321
normalization of states, relativistic, 35,

91, 96

not actually infinite, 154, 185, 188
not respected by the vacuum, 218
NuTeV experiment, 244

one-body phase space, 97, 267
OPAL experiment, 269

parity of an antifermion, 44
parity violation, 232, 257

maximal, 232, 288
parity, P , 19, 39, 44, 216, 220, 333
partial width, 89, 91
particle energy measurement, 84
particle momentum measurement, 84
parton distribution function, pdf, 143,

183, 267, 331
parton model, 127

deep inelastic scattering cross section,
135

parton shower, 187
algorithm, 192

pdf sum rule, 128, 143, 145, 146
PEP collider, 174
permutation group, 15
PETRA collider, 150, 192
phase space, 36, 91, 92
photon, 5, 46, 55, 63, 151, 255
pion decay constant, fπ , 222
pion interaction length, 78
polarization
τ lepton, 275
electron, 275

polarization vector, 28, 97, 152, 263
Pomeranchuk theorem, 197
Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix, 314, 316, 321
positronium, 44, 45, 55, 59
proton, 49

decay, 64, 344
pseudo-rapidity, η, 198, 205, 206
PYTHIA, 192, 210

Quantum Chromodynamics, QCD, 165,
171

asymptotic freedom of, 179
numerical calculations, 179

Quantum Electrodynamics, QED, 35, 165
quantum field theory, 6, 91, 96, 143, 173,

174, 350
theorems of, 21, 37, 129, 178, 197, 218,

221
quark, 5, 49, 57, 60

electric charge, 61, 67, 117, 133
quark confinement, 59, 67, 119, 179
quark masses, 6, 215, 224, 225
quark model, 52, 116, 224
quark-antiquark pairs, 145, 174, 219, 337

radiation length, 76
rapidity, y, 198, 267
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reduced mass, 44
relativistic wave equation, 23
RENO experiment, 322
renormalization group equation, 174
resonance, 62, 89, 95, 99, 125
rotation group, 17
running coupling constant, 174, 177
Rydberg energy, 40

sea quarks, 145, 197
SLAC, 53, 86, 119, 123, 174, 269, 276,

305
SLAC-MIT experiment, 123
SLD experiment, 119, 150, 157, 276
slow evolution with Q, 140, 146, 160,

174, 176, 178
solar neutrinos, 318
space-time symmetry, 14, 19
SPEAR, 53
sphericity, 188
spin 1

2
, 18, 30, 37, 64

spin 0, 18, 37, 60
spin 1, 18, 27, 28, 37, 249
spin 3

2
, 64, 66

spin and statistics, 37
spin of the gluon, 157
spin of the Higgs boson, 333
spin-orbit interaction, 18, 40
spontaneous symmetry breaking, 6, 215,

218, 226, 250, 325
Standard Model, 4, 288, 343
Stanford Linear Collider, SLC, 269, 275
strange particles, 60, 232
strangeness, 60, 281
string theory, 7, 350
strong interaction, 5

structure constants of a Lie group, 19,
167

Sudakov suppression, 189
Sudbury Neutrino Observatory, SNO,

experiment, 320
sum over final spin states, 92, 115
summation convention, 8
superconductivity, 219, 250, 345
SuperKamiokande experiment, 317
supersymmetry, 349

TASSO experiment, 150, 157
Tevatron, 211
Tevatron collider, 197, 206
Thomas precession, 41, 47
three-body phase space, 94, 156, 237, 294
three-jet event, 150
three-jet events, 155, 178
thrust, 189
time reversal, T , 19
total width, 89
tracker, 71, 82, 124
transition radiation, 81
translation group, 16
transverse energy, 197, 205, 206
transverse momentum, 197
tritium film, 313
TRIUMF, 240
two-body kinematics, 9, 114, 131, 242
two-body phase space, 93, 97

UA1 experiment, 263
UA2 experiment, 263
unitarity triangle, 306
unitary representation of a group, 13, 14,

17
unitary transformation, 16

vacuum expectation value, 220, 250, 254,
266, 327

vacuum polarization, 173, 176
vacuum state, 26, 348
valence quarks, 145, 205
vector boson fusion, 331
vector potential, 29
vector product, 9
vertex detector, 86, 274
virtual particle, 108, 267
W/Z boson, 328
t quark, 329
electron-positron pair, 173
gluon, 177
photon, 108, 125
quark, 151

weak interaction, 6, 231
weak isospin, 255, 257
weak mixing angle θw, 255
wee partons, 146
Weinberg’s nose, 261
Weizsacker-Williams distribution, 154
width, 89
width of a jet, 206
Wigner rotation, 22
Wolfenstein parametrization, 289, 302

Yang-Mills theory, 169
Yukawa potential, 49
Yukawa coupling, 284, 313
t quark, 327

Yukawa matrix, 285

ZEUS experiment, 140, 161
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