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Preface

With the rate at which technology is advancing and the level of research being
conducted in various fields, particularly Digital Signal Processing (DSP), it is
vital to keep up with the times.

By the grace of almighty Allah, We are able to complete my book in
the form of Fourth edition, which we feel it is complete course book for
undergraduate students. It has been our prime aim to streamline the flow of
the book by connecting the numerical problems with the theory in a manner
which will be most beneficial to the student. We wish to thank all our students
and colleagues in suggesting improvements for this book. The organization
of the book is as follows:

Chapter 1 includes the introduction of Digital Signal Processing, with a brief
history of DSP, classification of signals and application of DSP signal.

Chapter 2 is devoted entirely to the characterization and analysis of linear
time invariant continuous and discrete time signals and systems, block diagram
representation of discrete time systems, which can be left if the students
have already gone through the course of Signals and Systems in previous
semesters.

Chapter 3 is devoted to impulse response, convolution sum, application of
convolution, properties of convolution, and different methods and techniques
of finding convolution, correlation and its properties, application, and corre-
lation coefficients.

Chapter 4 plays an important role in signal processing applications which
brushes up the Z-transform, its properties which has been introduced are used
to solve the problem, three cases of inverse Z-Transform, classical method for
solution of difference equations with different forcing functions has also been
included.

xix
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Chapter 5 describes the classical method of solution of difference equation.
Classical method for solution of difference equations with different forcing
functions has also been included.

Chapter 6 covers Fourier synthesis, discrete time Fourier transform (DTFT),
discrete Fourier transform (DFT), and its properties and finally fast Fourier
transform (FFT) of radix-2 by two methods, decimation in time fast Fourier
transform (DIT-FFT) and decimation in frequency fast Fourier transform
(DIF-FFT).

Chapter 7 focuses on the realization structures of the FIR and IIR digital filter
using interconnection of basic building block, few basic structures of the filter
has been included to give basic concepts of it such as direct form-1, direct
form-2, cascade, parallel and lattice, and lattice-ladder form.

Chapter 8 gives a basic knowledge about filter types used in DSP, criteria
for selecting digital filters, design steps, advantage and disadvantage of Finite
Impulse Response (FIR) and Infinite Impulse Response (IIR) filters.

Chapter 9 is devoted to FIR filter design consideration. A simple approach
of designing filter coefficients has been described including FIR low pass,
high pass, band pass, and band stop filters using window methods have been
analyzed in detail for all type of filters non-causal and causal results of filter
coefficient calculation using Matlab has also been included.

Chapter 10 is developed for IIR Filter design consideration of analog filters;
step by step method of designing the digital IIR filter employing Butterworth
and Chebyshev approximation. Bilinear transformation, Impulse invariance,
and Pole placement methods for calculation of coefficients has been described
using the help of MATLAB.

Chapter 11 is finite word length effects in digital filters, which we think
should be inducted at undergraduate level, covering fixed point and floating
point numbers, quantization noise, etc. Although this chapter is not included
in the course at undergraduate level, it has been included here to provide basic
knowledge regarding this chapter.

Chapter 12 provides a 245 review questions and 85 multiple choice questions
to test the knowledge of students.
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Chapter 13 includes sample test papers for practicing by the students; these
questions can be given to students as assignment work.

Audience
This textbook is for a first course on DSP. It can be used in both computer
science and electrical engineering departments. In terms of programming
languages, the book assumes only that the student may have basic experience
with MATLAB or C language. Although this book is more precise and
analytical than many other introductory DSP texts, it uses mathematical
concepts that are taught in higher secondary school. We have made a deliberate
effort to avoid using most advanced calculus, probability, or stochastic process
concepts (although we’ve included some basic and homework problems for
students with this advanced background). The book is, therefore, appropriate
for undergraduate courses. It should also be useful to practitioners in the
telecommunications industry.

Unique about This Textbook
The subject of DSP is enormously complex, involving many concepts, proba-
bilities, and signal processing that are woven together in an intricate manner.
To cope with this scope and complexity, many DSP texts are often organized
around the “numerical examples” of a communication system. With such
organization, students can see through the complexity of DSP they learn about
the distinct concepts and protocols in one part of the communication system
while seeing the big picture of how all parts fit together. From a pedagogical
perspective, our personal experience has been that such approach indeed
works well.

Special Features for Students and Instructors
MATLAB includes several Signal Processing features and is an important tool
for illustrating many of the field’s applications. The use of MATLAB has been
linked to some aspects of this book to assist students in their understanding
and to give them confidence in the subject.

MATLAB is not a pre-requisite for this book. Its working is described
in sections where it is utilized. For further specifics the help documentation
is available online from Mathworks (http://www.mathworks.com), which is
easy to use and contains many examples. Our experience has shown that
signal processing students completely unfamiliar with MATLAB are able to
use MATLAB within a week or two of exposure to tutorial exercises.
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Every attempt has been made to ensure the accuracy of all material of the
book. Readers are highly welcomed for a positive criticism and comments.
Any suggestions or error reporting can be sent to dr.nasirkhan@ucp.edu.pk

One Final Note: We’d Love to Hear from You
We encourage students and instructors to e-mail us with any comments they
might have about our book. It’s been wonderful for us to hear from so many
instructors and students from around the world about our first international
edition. We also encourage instructors to send us new homework problems
(and solutions) that would complement the current homework problems. We
also encourage instructors and students to create new MATLAB programs
that illustrate the concepts in this book. If you have any topic that you think
would be appropriate for this text, please submit it to us. So, as the saying
goes, “Keep those cards and letters coming!” Seriously, please do continue to
send us interesting URLs, point out typos, disagree with any of our claims,
and tell us what works and what doesn’t work. Tell us what you think should
or shouldn’t be included in the next edition.
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1
Introduction

This chapter covers fundamental concepts of analog signal processing and
digital signal processing, history of digital signal processing, basic definition,
advantages of the signal processing in basic systems, basic blocks, key
operation, and classification of signals along with applications of digital signal
processing.

1.1 Concept of Signal Processing

Signal Processing is basically the analysis, interpretation, and manipulation of
signals. It is the manipulation of the basic nature of a signal to get the desired
shaping of the signal at the output. It is concerned with the representation,
transformation, and manipulation of signals and the information they contain.
Signal processing can be grouped into two classes:

• Analog Signal Processing
• Digital Signal Processing

1.1.1 Analog Signal Processing

It is the analysis of analog signals through analog means. In analog signal
processing, continuous time signals are processed. Different types of analog
signals are processed through low-pass filters, high-pass filters, band pass
filters, and band stop filters to get the desired shaping of the input signal.

1.1.2 Digital Signal Processing

Digital signal processing is the numerical processing of signals on a digital
computer or some other data processing machine. Digital signal processors
(DSPs) take real-world signals like voice, audio, video, temperature, pressure,
or position that have been digitized and then mathematically manipulate

1
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them. For example, a digital system such as a digital computer takes a signal
in discrete-time sequence form and converts it into a discrete time output
sequence.

The environment is full of signals that we sense; examples including the
sound, temperature and light.

In case of sound we use our ears to convert into electrical signal in to our
brain. We then analyze properties such as frequency, amplitude, and phase
to categorize the sound and determine its direction. We may recognize it as
music, speech or noise of a machine.

In case of temperature our nerves are exposed through skin will send
signals to the brain. The example includes in this case is witch on of a heating
or opening a window.

In case of light, our eyes focus the image into the retina, which converts it
into electrical signal to send to the brain. Our brain analyses the color, shape,
intensity, etc.

The processing which apply to the signals is carried out by the digital
computer and is thus called digital signal processing (DSP).

Digital signal processing involves the extraction of information from
signals which in turn, depends upon the type of signal and the nature of
information it carries. In the case of a calculator, the application of different
operators on a set of values comes under DSP.

It covers the mathematics, the algorithms, and the techniques used to
influence and control signals after they have been converted into digital form.
Visual images, recognition and generation of speech, compression of data for
storage and transmission are some of its applications.

1.2 Roots of DSP

Owing to the high level of research conducted, the subject of DSP has
developed very rapidly over the last few decades. This rapid development
has been a result of significant advances in digital computer technology and
IC fabrication techniques.

Since the advent of computers in the 1960s, time and money have been
invested in incorporating DSP in all the sections of engineering. The efforts
were first made in four key areas, namely

1. Radar and Sonar (where national security was at risk)
2. Oil Exploration (where large amounts of money could be made)
3. Space Exploration (where the data are irreplaceable)
4. Medical Imaging (where lives could be saved)
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Figure 1.1 Fuzzy and overlapping boundaries of DSP.

Digital Signal Processing has ties to many other areas of science and
engineering as shown in Figure 1.1. Hence, for a thorough knowledge of the
subject, it is vital to have some level of exposure to these other fields.

1.3 Advantages of DSP

What is it about DSP that makes it so popular? The answer to it is not short
and clear. There are many advantages in using digital technique for general
purpose signal processing.

1. Digital programmable systems allow flexibility. DSP programs can be
configured by simply making alterations in our program. Reconfiguration
of an analog system usually implies a redesign of the hardware.

2. Digital signal processing systems exhibit high accuracy.
3. DSP programs can be stored on magnetic media (disk) without any loss

in signal. As a consequence, the signals become portable and can be
processed off-line in a remote laboratory.

4. Processing in DSP reduces the cost by time-sharing of the processor
among a number of signals.

5. Digital circuits are less sensitive to tolerance of a component value.
6. The implementation of highly sophisticated signal processing algorithms

is made possible with DSP. It is very difficult to perform precise
mathematical operations on signals in the analog form.

1.4 Basic Blocks of Signal Processing System

Most signals are analog in nature. For us to apply DSP on these signals, it is
vital to efficiently bring these signals to the digital realm. Thus, there is a need
for an interface between the analog and the digital signal processor as shown
in Figure 1.2.
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Figure 1.2 Digital system.

The interface that performs this operation is called the analog-to-digital
(A/D) converter. The digital output is inputted to a digital processor as per our
requirements.

1.5 DSP Key Operations

There are five main principles in DSP operations that need to be studied to
familiarize with the field of DSP, which are as under:

• Convolution,
• Correlation,
• Filtering,
• Transformation, and
• Modulation.

1.6 Classification of Signals

The characteristic attributes of a specific signal determine which methods to
employ in processing a signal or analyzing the response of a system to a signal.
There are techniques that apply only to specific families of signals.

1.6.1 Continuous-Time versus Discrete-Time Signals

Continuous-time (or analog) signals exist for the continuous interval (a, b)
where a can be –∞ and b can be ∞. Discrete-time signals exist only for
certain specific instances of time. These time instants may not be equidistant,
but in practice, they are usually taken at equally spaced intervals for ease of
calculations and mathematical tractability.

1.6.2 Continuous-Valued versus Discrete-Valued Signals

Continuous-time or discrete-time signals may give values that are continuous
or discrete. If a signal takes on all possible values on a finite or an infinite range,
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it is said to be a continuous-valued signal. A discrete-time signal having a set
of discrete values is called a digital signal.

1.6.3 Deterministic versus Random Signals

A deterministic signal is one that can be uniquely described by an explicit
mathematical expression, a table of data, or a well-defined rule. Signals that
cannot be described to any reasonable degree of accuracy by explicit math-
ematical formulas are of little practical use. Some examples of deterministic
signals are:

x(t) = bt. (1.1)

The above equation represents a ramp signal whose amplitude increases
linearly with time and the slope is b.

x(n) = A sin ωn. (1.2)

In the above case, the amplitude varies sinusoidally with time and has
maximum amplitude of A. For such signals, it can be seen that the amplitude
can be predicted in advance for any time instant. Hence, the signals represented
above are deterministic signals.

A non-deterministic signal, on the other hand, is one whose occurrence is
always random in nature. The absence of a relationship in these signals implies
that they evolve over time in an unpredictable manner; such signals are also
called random signals.

A typical example of non-deterministic signals is thermal noise generated
in an electric circuit. Such a signal has probabilistic behavior.

1.6.4 Multi-Channel and Multi-Dimensional Signals

A signal is expressed by a function of one or more independent variables.
In the case of electrocardiograms, 3 lead and 12 lead ECG are often used.
This results in 3 channel and 12 channel signals. If the signal is a function
of a single independent variable, the signal is called a one-dimensional
signal.

One example of a two-dimensional signal is a picture, since the intensity or
the brightness I (x, y) at each point is a function of two-independent variables.
Furthermore, since the brightness is a function of time, it may be represented as
I (x, y, t). Hence, the TV picture may be treated as a three-dimensional signal.
The color TV picture may be described by three intensity function I (x, y, t),
I (x, y, t), and I (x, y, t) corresponding to the brightness of the three principle
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colors (red, green, and blue) as a function of time. The color TV picture is,
thus, a three channel, three-dimensional signal, which can be represented by
the vector.

I(x, y, t) =

⎡
⎣

Ir(x, y, t)
Ig(x, y, t)
Ib(x, y, t)

⎤
⎦

1.7 Application of DSP

High-resolution spectral analysis has created various application areas in
DSP. It requires a high-speed processor to implement the Fast Fourier Trans-
form (FFT).

New applications are being added to DSP all the time. The sound pro-
duction in home theatre systems employs DSP. Digital Computers are used
to process the images of Mars sent back to Earth by the Mars pathfinder at
the National Aeronautics and Space Administration (NASA). Any area where
information is handled in digital form or controlled by a digital processor is
working on the principles of DSP.

Even the special effects in movies such as Pan’s Labyrinth, Harry Potter,
and the Lord of the rings are created using special purpose digital computers
and softwares. The generation of the cartoon characters and the lighting and
shading effects in computer animation movies such as Shrek and Wall-E have
all been carried out digitally.

Signaling tone generation and detection, frequency band shifting, filter-
ing to remove power line hum etc., are all implemented by DSP. Further
application areas are discussed below.

1.7.1 Telecommunications

Let us consider the three examples of multiplexing, compression, and echo
control present in the telephone network.

1.7.1.1 Multiplexing
Here, audio signals are converted into a stream of serial digital data by the
process of DSP. The property of bits to be easily intertwined and later separated
allows telephone conversations to be transmitted on a single channel.

The financial advantage of transmitting digitally is enormous. Digital logic
gates are far cheaper than wires and analog switches.
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1.7.1.2 Compression
A voice signal is digitized at 8000 samples/s. Much of this digital information
is superfluous. For this reason, several DSP algorithms have been developed
to convert digitized voice signals into data streams that require fewer bits
per second. These are called data compression algorithms. Matching of un-
compressed algorithms is used to restore the signal to its original form.

1.7.1.3 Echo control
Echoes are a common problem faced in long distance telephone connections.
With increasing distances, the echo becomes even more noticeable and
irritating. It is particularly objectionable for intercontinental communication,
where the delay can be several hundred milliseconds.

Digital signal process tackles this problem by measuring the returned
signal and generating an appropriate anti-signal to cancel the offending echo.
This technique allows speakerphone users to hear and speak at the same time
without fighting audio feedback (squealing). In this way, environmental noise
can also be reduced by cancelling it with digitally generated anti-noise signal.

1.7.2 Audio Signal Processing

The area of Speech Signal Processing has been revolutionized by the
introduction of DSP.

1.7.2.1 Speech generation
Speech generation and recognition are used for the communication between
humans and machines. Generated speech systems provide digital recording
and vocal tract simulation.

1.7.2.2 Speech recognition
Digital signal processing approaches the problem of voice recognition in two
steps: Feature extraction followed by feature matching.

1.7.3 Echo Location

Acommon method of obtaining information about a remote object is to bounce
a wave of it. For example, radar operates by transmitting pulses of radio waves
and examining the received signal for echoes from aircraft.

In sonar applications, submarines, and other submerged objects are
detected by transmitting sound waves through the water. Geophysicists have
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long probed the earth by setting off explosions and listening for the echoes
from deeply buried layers of rock. While these applications have a common
thread, each has its own specific problems and needs. DSP has produced
revolutionary changes in all three areas.

1.7.3.1 Radar (RAdio Detection And Ranging)
For a few microseconds, a radio transmitter produces a pulse of radio frequency
energy. This pulse is inputted to a highly directional antenna, where the
resulting radio wave propagates away at the speed of light. The aircraft in
the path of this wave will reflect a small portion of the energy back toward
a receiving antenna, situated near the transmission site. The elapsed time
between the transmitted pulse and the received echo are used in the distance
calculation. The direction to the object is known, as we know which direction
the directional antenna was facing when the echo was received.

Digital signal processing has revolutionized radar in three areas, all of
which relate to this basic problem. First, pulse compression can be carried
out by DSP after it is received, providing better distance determination
without reducing the operating range. Second, DSP can filter the received
signal to decrease the noise. This increases the range, without degrading the
distance determination. Third, DSP enables the rapid selection and generation
of different pulse shapes and lengths. Among other things, this allows the
pulse to be optimized for a particular detection problem. Much of this is
done at a sampling rate comparable to the radio frequency used, as high as
several hundred megahertz. When it comes to the radar, DSP is as much about
high-speed hardware design as it is about algorithms.

1.7.3.2 Sonar (SOund Navigation And Ranging)
In active sonar, sound pulses transmitted into the water are between 2 and
40 kHz, and the resulting echoes are detected and analyzed. Some uses of active
sonar are: the detection and localization of undersea bodies, for navigation,
communication, and mapping the sea floor, with a maximum operating range
of 10–100 km.

Passive sonar covers listening to underwater sounds, such as: natural
turbulence, marine life, and mechanical sounds from submarines and surface
vessels.

No energy is emitted in passive sonar and is, therefore, ideal for covert
operations. You want to detect the enemy, without him detecting you.

The most significant application of passive sonar is in military surveillance
systems that detect and track submarines. The frequencies utilized by passive
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sonar are typically lower than those of active sonar because less absorption
occurs as they propagate through water. Detection ranges can be thousands of
kilometers.

Rather than just a single channel, sonar systems usually employ extensive
arrays of transmitting and receiving elements. The sonar system can steer the
emitted pulse to the desired location by properly controlling and mixing the
signals in these elements, and determine the direction the echoes are received
from. To handle these multiple channels, sonar systems require the same
massive DSP computing power as those employed in radars.

1.7.3.3 Reflection seismology
Today, the primary method for locating petroleum and mineral deposits is the
reflection seismic method. Ideally, a sound pulse sent into the ground produces
a single echo for each boundary layer the pulse passes through.

Each echo returning to the surface must pass through all the other boundary
layers above from where it is originated. This can result in the echo bouncing
between layers, giving rise to echoes that is being detected at the surface.
These secondary echoes can make the detected signal very complicated and
difficult to interpret.

Since the 1960s, DSP has been widely used to isolate the primary
echoes from the secondary echoes in reflection seismograms. DSP allows
oil exploration at difficult locations, such as under the ocean.

1.7.4 Image Processing

Images are signals with special characteristics. While most signals are a
measure of a parameter over time, images are a measure of a parameter over
space (distance). They contain a great deal of information. More than 10 MB
can be required to store one second of television video. This is more than a
thousand times greater than for a similar length voice signal. The final judge of
quality is often a subjective human evaluation, rather than being an objective
criterion. These special characteristics have made image processing a distinct
subgroup within DSP.

1.7.4.1 Medical
Since 19th century, medical X-ray imaging was limited by four problems. First,
overlapping structures in the body hide behind each other creating problems
with visibility. For example, portions of the heart might not be visible behind
the ribs. Second, it would not always be possible to distinguish between similar
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tissues. For example, it may be possible to discern bone from soft tissue, but
distinguishing a tumor from the liver would not be as straightforward. Third,
X-ray images show anatomy, the body’s structure, and not physiology, the
body’s operation. The X-ray image of a living person would look exactly like
the X-ray image of a dead person. Finally, X-ray exposure can also cause
cancer, requiring it to be used sparingly and only with proper justification.

The last three X-ray problems have been solved by the use of penetrating
energy other than X-rays, such as radio and sound waves. Magnetic resonance
imaging (MRI) uses magnetic fields in conjunction with radio waves to probe
the interior of the human body. This resonance results in the emission of
a secondary radio wave, detected with an antenna placed near the body.
Information about the localized region in resonance can be obtained from
the strength and other characteristics of this detected signal.

With the adjustment of the magnetic field, the resonance region can scan
throughout the body, mapping the internal structure. Just as in computed
tomography, this information is usually presented as images. Besides provid-
ing excellent discrimination between different types of soft tissue, MRI can
provide information about physiology, such as blood flow through arteries. It
relies totally on DSP techniques and could not be implemented without them.

1.7.4.2 Space
With images taken from unmanned satellites and space exploration vehicles,
the feed received is frequently of the lowest quality. DSP can improve the
quality of images taken under extremely unfavorable conditions in several
ways: brightness and contrast adjustment, edge detection, noise reduction,
focus adjustment, motion blur reduction, etc. It is due to these merits that DSP
proves ideal in this application as well.



2
Signals and Systems

(Continuous and Discrete)

This chapter presents the basic foundation of signal and systems in discrete-
time (DT). We introduced important types of signals with their properties
and operations. Major topics of signals and systems have been introduced
in this chapter. This chapter covers: Different continuous-time (CT) signals,
concepts of frequency in CT signals, processing of analog-to-digital (A/D)
and digital-to-analog (D/A) conversion, sampling theorem, quantization error,
DT signals, concepts of frequency in DT signals, simple manipulation of DT
signals, classification of DT signals, energy and power signals, DT systems,
block diagram representation of DT systems, classification of DT systems,
and Problems and solutions.

2.1 Introduction

In this modern age of microelectronics, signals, and systems play vital
roles. A function of one or more independent variables which contains some
information is called a signal. In other words, a signal can be defined as a
varying phenomenon, which can be measured. Signals could be varied with
respect to time or space. More suitable examples of signals include sounds,
temperature, a voltage, and an image of video camera. Signals can be thought
as either CT or DT. Signals normally occurring in nature (e.g., speech) are
continuous in time as well as amplitude. Such signals are called CT signals.
DT signals have values defined only at discrete instants of time. These time
instants need not be equidistant, but in practice, they are usually taken at
equally spaced intervals for computational convenience and mathematical
tractability. If amplitude of DT signal is also made discrete through process
of quantization or rounding off, then this becomes a Digital Signal. Digital
signal processing (DSP) is concerned with digital processing of signals.

11
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2.2 CT Signals

An analog signal has infinite variety of values with the varying time and
continuous changes (e.g., smoothly) over time. CT signals are often denoted
by x(t). Such a signal is often called an analog signal, but a better term is
continuous signal. The following are few CT signals for positive values of
time (i.e., t ≥ 0). The values of these signals are given below for t ≥ 0 for a
causal input

x1(t) = 1 (2.1)

x2(t) = t (2.2)

x3(t) = t2 (2.3)

x4(t) = e−t (2.4)

x5(t) = cos(ωt + θ). (2.5)

2.2.1 Unit Impulse Function

The first specific signal we discuss is the unit impulse as is given in
Equation (2.1). The unit impulse is a building block signal used for creating
more complex signals as well as an effective signal for determining the time
and frequency domain characteristics of certain classes of systems. The unit
impulse has a magnitude of∞, pulse width or time duration of 0 and area of

1. Following are the simple examples of such signals:

δ(t) =

{∞, t = 0

0, t �= 0
, (2.6)

and Equation (2.6) is also constrained to satisfy the identity as

+∞∫

−∞
δ(t)dt = 1 (2.7)

2.2.2 Step Function

The step function is commonly used to test the response time of a system. The
unit step response is desirable because the signal varies from zero magnitude
value to a finite value theoretically at zero time. The most often used unit step
function is described as a function having magnitude of 1 occurring at time
equal to and greater than zero.
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u(t) =

{
0, t < 0

1, t ≥ 0
. (2.8)

2.2.2.1 Properties of unit step function
Properties describe the continuous as well as sampled impulse and step
function. Following are the important properties of the Unit step function

1. u(t)δ (t− a) = δ(t− a)
2. du(t)

dt = δ(t) and then, u(t) =
∫∞
t=−∞ δ(t)dt

3. The step and impulse response are related by derivatives; the imp-
ulse represents the instantaneous rate of change of the step function
and accordingly the step function is equal to the integral of impulse
function.

2.2.3 Ramp Function

The ramp function is uniformly increasing time domain signal of a constant
slopek.The ramp function is commonly used as a test signal after step function.
The signal is designate as r(t). The ramp function is described as a function
having a magnitude of t at t ≥ 0.

r(t) =

{
0, t < 0

t, t ≥ 0
. (2.9)

2.2.4 Parabolic Function

The parabolic function is not uniformly increasing with respect to time and
having a slope k. The signal is designated as t2.

t2 =

{
0, t < 0

t2, t ≥ 0
. (2.10)

2.2.5 Exponential Function

The exponential function is increasing or decreasing exponentially. Because
of stability issue, we use most frequently the decreasing exponential function.
The signal is designate as e−t. The unit exponential function is described as
having a magnitude of 1 at zero time and exponentially decaying or rising for
time greater than zero.
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e−t =

{
1, t < 0

e−t, t > 0
. (2.11)

2.2.6 Sinusoidal Function

The sinusoidal function is time domain signal. The signal is designated
as sin ωt. This signal is used to find out the steady-state response of a
system.

2.3 Concept of Frequency: Continuous Time Signals

A simple harmonic oscillation is given by

x(t) = A cos (ωt + θ) for −∞ < t <∞, (2.12)

Where x(t) is a CT analog signal, A is the amplitude, ω is the frequency in
radian per second, and θ is the phase.

2.3.1 Periodic and Aperiodic Signals

A periodic signal is that type of signal which has a finite pattern and repeat
with a repetition period of T. In other words, a CT signal is called periodic if
it exhibits. The smallest value of period T , which satisfies Equation (2.12) is
called fundamental period and is denoted by To.

The CT sinusoids are characterized by the following properties:

(1) Periodic functions are assumed to exist for all time. In Equation (2.12),
we can eliminate the limit of t.

(2) Aperiodic function can be written with period nT , where n is an integer.
Hence for a periodic function, x(t) = x (t + T ) = x(t + nT ) with n be
any integer.

(3) We define the fundamental period To as the minimum value of the period
T > 0 that satisfies x(t) = x (t + T ).

Example 2.1
Determine the fundamental period and periodicity of the following sinusoids.

(a) x(t) = sin π t
(b) x(t) = sin

√
2 π t.
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Solution
(a) The fundamental period T is given as T = 2 π

ω = 2 π
π = 2, x(t) = sinπt

is a periodic signal.

x(t + T ) = sinπ(t + T ) = sinπ( t + 2 )

= sinπt cos 2π + cos π t sin 2π = sinπt.

(b) The fundamental period T is given as T = 2π
Ω = 2π

π
√

2
= 2√

2
=
√

2 =

1.414 , x(t) = sinπ
√

2t is a periodic signal

x(t + T ) = sin
√

2πt = sin
√

2π( t +
√

2 )

= sin
√

2πt cos 2π + cos
√

2πt sin 2 π = sin
√

2πt.

Example 2.2
Assume x1(t) and x2(t) are periodic signals with period T1 and T2, respec-
tively. Under what conditions the sum x(t) = x1(t)+x2(t) is periodic. What
will be period of x(t), if it is periodic?

Solution
Given that x1(t) and x2(t) are periodic signals with period T1 and T2,
respectively.

Thus x1(t) and x2(t) may be written as
x1(t) = x1 (t + T1) = x1 (t + mT1) , where m is an integer;
x2(t) = x2 (t + T2) = x2 (t + nT2) , where m is an integer.
Now, if T1 and T2 are such that mT1 = nT2 = T . Then,
x (t + T ) = x1 (t + T1) + x2 (t + T2);
x (t + T ) = x1(t) + x2(t), i.e., x(t) is periodic in this case.
Therefore, condition of x(t) to be periodic is T1

T2
= n

m is a rational number.

Example 2.3
The sinusoidal signal x(t) = 10 cos(200t + π/2) is passed through a square-
law device defined by the input–output relation. Using the trigonometric
identity cos2 θ = 1

2(cos 2θ + 1).

(a) Specify the DC component.
(b) Specify the amplitude and fundamental frequency of the sinusoidal

component in the output y(t).
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Solution
y(t) = x2(t) =

[
10 cos

(
200t + π

2

)]2 ⇒ y(t) = 100
2 [1 + cos (400t + π)]⇒

(a) The DC component is 50.
(b) The amplitude is 50 and fundamental frequency is 200

π .

Example 2.4
Consider the following analog sinusoidal signal x(t) = 5 sin(100)Πt) = 5.
Sketch the signal xa(t) for 0 ≤ t ≤ 60 ms

Solution

t (ms)0       20               40         60      
-5 

5 

x(t)

2.4 DT Signals

To emphasize DT nature, a DT signal is denoted as x[n], instead of x[n]. A
DT signal x[n] is a function of an independent variable n, which is an integer.
A DT signal is not defined at instants between two successive samples. DT
signals are defined only at discrete values of time. The values of the signals
are given below for n ≥ 0 for a causal input:

x1 [n] = 1, (2.13)

x2 [n] = n, (2.14)

x3 [n] = n2, (2.15)

x4 [n] = an, and (2.16)

x5 [n] = cos ωn. (2.17)
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2.4.1 CT versus DT Signals

The values of a CT or DT signal may be continuous or discrete. If a signal
takes on all possible values on a finite or infinite range, it is said to be a
continuous valued signal.

If the signal takes on values from finite set of possible values it is said
to be a discrete-valued signal. A DT signal having a set of discrete values is
called a digital signal.

2.4.2 Unit Impulse

The first specific signal we discuss is the unit impulse. The unit impulse is a
building block signal used for creating more complex signals as well as an
effective signal for determining the time and frequency domain characteristics
of certain classes of systems. The unit impulse has a magnitude of∞, pulse
width or time duration of zero and area 1.

δ [n] =

{
∞, n = 0

0, n �= 0
. (2.18)

2.4.3 Unit Step Function

The unit step function, designated as u(n). The unit step function is com-
monly used to test the response time of a system. The unit step response
is desirable because the signal goes from zero magnitude value to a finite
value theoretically zero time. The unit step function is described as a signal
having magnitude of 1 and occurring at time equal to and greater than
zero.

u [n] =

{
0, n < 0

1, n ≥ 0
. (2.19)

2.4.4 Ramp Function

The ramp function is u uniformly increasing time to domain signal of a constant
slope k. The ramp function is commonly used as a test signal after step function.
The signal is designate as r[n].

r[n] =

{
0, n < 0

n, n ≥ 0
. (2.20)
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2.4.5 Parabolic Function

The parabolic function is not uniformly increasing time to domain signal of a
slope k. The signal is designate as n2.

n2 =
{

0, n < 0
n2, n ≥ 0 . (2.21)

2.4.6 Exponential Function

The exponential function used may be increasing exponential or decreasing
exponential. Here because of stability we use most of the time the decreasing
exponential. Here the signal is designate as e−n. The unit exponential function
is described as has a magnitude of 1 and occurring at time zero.

e−n =
{

1, n < 0
e−n, n > 0 . (2.20)

2.4.7 Sinusoidal Function

The sinusoidal function is time domain signal. The signal is designate as
cos (ωn) or sin ωn. This signal is used to find out the steady-state response.

2.4.8 Concept of Frequency: DT Signals

A DT sinusoidal signal may be expressed as:

x [n] = Acos [ωn + θ] , + < n <∞, (2.21)

where x[n] is a DT analog signal, A is the amplitude, ω is the frequency in
radian per second and θ is the phase.

The DT sinusoids are characterized by the following properties:

(a) A DT sinusoid is periodic only if its frequency f is a rational number.
By definition, DT signal x [n] is periodic with period N(N > 0) if and
only if x [n + N ] = x [n] for all n. The smallest value of N is called the
fundamental period.

x [n + N ] = x[n] or cos [2πf (n + N) + θ] = cos[2πfn + θ]. (2.22)

The relationship in Equation (2.22) is true if and only if there exists an integer
k such that 2πfN = 2kπ or f = k

N . A DT signal is periodic only if its
frequency f can be expressed as the ratio of two integer (i.e., f is rational).
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(b) Discrete-time sinusoids whose frequencies are separated by an integer
multiple of 2π are identical.

cos [(ω + 2π) n + θ] = cos [ωn + 2πn + θ] = cos [ωn + θ].
(2.23)

As a result all sequences

xk [n] = A cos [ωkn + θ] ; k = 0, 1, 2, . . . (2.24)

where ωk = ω + 2kπ; −π < ω < π are identical.

(c) The highest rate of oscillation in a DT sinusoid is attained when

ω = π (or ω = −π) or equivalent f = 0.5 or f = −0.5, x [n] = cos ωn,

where the frequency varies from 0 to π. To simplify the argument, we take the
value of ω = 0, π/8, π/4, π/2, π corresponding to f = 0, 1/16, 1/8, 1/4, 1/2
which results in periodic sequence having period N =∞, 16, 8, 4, 2. It is to
be noted that period of sinusoidal decreases as the frequency increasing. The
rate of oscillation increases as the frequency increases.

Frequency range of a DT sinusoids is finite with duration 2π. Usually the
range of 0 ≤ ω ≤ 2π or −π ≤ ω ≤ π or −1/2 ≤ f ≤ 1/2 is chosen which
is also called the fundamental range.

Example 2.5
Determine a relationship between the sampling interval and signal period that
ensures periodicity in a sampled sinusoid.

Solution
We determine that the digital frequency

ω = 2π
f

Fs
or

f

Fs
=

ω

2π
.

Example 2.6
A sinusoidal signal x(n) having an amplitude 4 V and a frequency of 1000 Hz,
is sampled at 125 μs, and begins at sample n = 3. Express x(n) mathematically
x(t) = A (sin Ω0t + ϕ) using digital frequency notation.

Solution
If the sampling period is 125 μs = 125 × 10−3, then the sampling frequency
is: 1

Ts
= 1

125×10−6 = 8000 Hz.
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Remembering that

ω = 2π f
Fs

ω = 2π 1000
8000 radians = 0.784 radians.

The sinusoid part of our wave form can be expressed as sin(0.784n) and
scaled by 4, the delayed unit step function u(n – 3) can be used to activates
the sinusoid at n = 3 (or three times 125 or 375 μs ). The expression for x(n)
becomes x(n) = 4n(n – 3)sin(0.784n).

Example 2.7
Compute the fundamental period (Np) and determine the periodicity of the
signal. (a) cos 0.01πn; (b) cos

(
π 30 n

105

)
.

Solution
(a) f = 0.01π

2π = 1
200 ⇒ periodic with Np = 200

cos 0.01 π(n + 200) = cos 0.01 πn · cos 2 π − sin 0.01 πn · sin 2 π =
cos 2 π. It is a periodic signal.

(b) f = 30π
105

( 1
2π

)
= 1

7 ⇒ periodic with Np = 7
cos
(
π 30n

105

)
= cos

(
π 30

105(n + 7)
)

= cos
(
π 30 n

105 + π 210
105

)
cos
(
π 30 n

105 + 2π
)

= cos
(
π 30n

105

)
cos 2π − sin

(
π 30n

105

)
sin 2π =

cos
(
π 30 n

105

)
.

2.5 Time-Domain and Frequency-Domain

The signals introduced so far were all function of time; we measured the
signal’s amplitude at different time instants, thus monitoring the signal with
the passage of time. A graph representation of these results is known as time
domain representation of the signal.

The time-domain representation is very useful for many applications such
as measuring the average value of a signal or determining when the amplitude
of the signal exceeds certain limits.

There are certain applications for which other representation is more
useful, i.e., the frequency-domain representation. Sine waves occur commonly
in nature and are the building blocks of many other waveforms.

The frequency-domain representation tells us the amplitudes, and frequen-
cies, of the constituent sinusoidal waves present in the signal being measured.
This representation is also known as the spectrum of the signal.
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2.6 A/D and D/A Conversion

Most signals of practical interest, such as speech, biological signals, seismic
signals, radar signals, sonar signals, and various communication signals such
as audio and video signals, are analog. To process analog signals by digital
means, it is first necessary to convert them into digital form, i.e., to convert
them to a sequence of numbers having finite precision. This procedure is called
A/D conversion, and the corresponding devices are called analog-to-digital
converters (ADCs).

2.6.1 Processing Steps for A/D Conversion

2.6.1.1 Sample and hold
This is the conversion of a CT signal into a DT signal obtained by taking
samples of the CT signal at DT instants. Thus, if Xa(t) is the input to the
sample, the output is Xa [nT ] = X[n], where T is called the sampling interval.
For the ease of convenience T is suppressed. In sample and hold operation the
previous value is held, using a zero-order hold, till the next value comes. It
is most frequently used in data converters. The process of obtaining signal
values from a continuous signal at regular time interval is basically known
as sampling. The result is being represented by a sequence of numbers and
the sample and hold circuit is one of the basics circuits used in the sampling
procedure. After getting sampled, we get the DT signal rather than digital
signal. A lot of details about the sampling and the sampling theorem can be
found in DSP books. We are skipping that much detail from this book.

2.6.1.2 Quantization
After getting sampled of a continuous signal, we get sequence of numbers,
which can still get any values on a continuous range of values. This is
the conversion of DT continuous-valued signal into a DT, discrete-valued
(digital) signal. The value of each signal sample is represented by a value
selected from a finite set of possible values. After the discretizing of time
variable, we now have to discretize the amplitude variable as well. This
discretizing of amplitude variable is called quantization. We can assume a
range of sequence for the quantization. Then we start doing the quantization
of the discrete valued signal. The difference between the un-quantized sample
x[n] and the quantized output xq [n] is called the quantization error.

Mathematically, we can view the error signal as random signal with a
uniform probability density function (pdf). For this reason, the quantization
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A/D Converter 

Sampler Coder Quantizer 
xa(t) x(n) 01011  xq(n) 

Analog
Signal

Discrete-Time 
Signal

Quantized
Signal

Digital 
Signal

Figure 2.1 Basic blocks of an A/D converter.

error is often also referred to as the quantization noise. A more rigorous math-
ematical justification for the treatment of the quantization error as uniformly
distributed white noise is provided by Window’s Quantization Theorem but
we are not to discuss that here any further.

2.6.1.3 Coding
In the coding process, each discrete value xq [n] is presented by a b-bit binary
sequence. An A/D converter is modeled as a sampler, quantizer followed by
a coder as shown in Figure 2.1.

In practice, the A/D conversion is performed by a single device that takes
xq [n] and produces a binary coded number. The operation of sampling and
quantization can be performed in either order, in practice; sampling is always
performed before quantization.

In many cases, it is desirable to have a signal in analog form such as in
speech signal processing because sequence of samples cannot be understood.
So the conversion is required from D/A. All D/A converters connect the dots
to make an analog signal by performing some kind of interpolation such as
linear interpolation and quadratic interpolation. The process of interpolation
can be found in other books.

2.6.2 Sampling of Analog Signals

There are many ways to sample an analog signal. Discussion is limited here to
periodic or uniform sampling, which is the type of sampling used most often
in practice. The relation is given below:

x [n] = xa (nT ) ; ; ussn <∞, (2.25)

where x [n] is the DT signal obtained by taking samples of the analog signal
xa (nT ) every T seconds. This procedure is explained in Figure 2.2. The time
interval T between successive samples is called the sampling period or sample
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Sampler
 

x(n) = xa(nT) xa(t) Discrete-time 
Signal

Analog 
Signal

 

 

Fs=1/T 

(a)

xa(t)

      x(n) = xa(nT) 

t0 

xa(t) 

0    1  2   3   4    5    6    7  8   9           n 

    T  2T …. 5T …….. 9T … t = nT 

x(t)

(b)

Figure 2.2 (a) Sampler and (b) Periodic sampling of an analog signal.

interval and its reciprocal 1
T = Fs is called the sampling rate (samples per

second) or the sampling frequency (in hertz).
Periodic sampling establishes a relationship between the time variables t

and n of CT and DT signals, respectively. Indeed, these variables are linearly
related through the sampling period T or, equivalently, through the sampling
rate Fs = 1

T or t = nT = n
Fs

.
There exists a relationship between the frequency variable F (or Ω) for

analog signals and the frequency variable f (or ω) for DT signals. To establish
this relationship, consider an analog sinusoidal signal of the form

xa(t) = Acos(2πFt + θ) (2.26)

when sampled periodically at a rate Fs = 1
T samples per second, yields:

xa (nT ) = Acos(2πnFt + θ)

xa(n) = Acos
(

2πnF

Fs
+ θ

)
. (2.27)
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Comparing the Equations (2.26) and (2.27), we note that the frequency
variables F and f are linearly related as

f =
F

Fs
=

T

Tp
or ω = ΩT (2.28)

where f is named as the normalized frequency, it can be used to determine
the frequency F in hertz only if the sampling frequency Fs is known.

Example 2.8
The DT sequence

x(n) = cos
(π

2

)
n −∞ < n <∞

was obtained by sampling analog signal

xa(t) = cos(Ωt) −∞ < t <∞
at a sampling rate of 1000 samples/s. What are two possible values of Ω that
could have resulted in the sequence x(n)?

Solution
The DT sequence is given as x(n) = cos

(
π
2

)
n.

results by sampling the CT signal xa(t) = cos(Ωt)

ω =
Ω
F

or Ω = ωFs or Ω =
(π

2

)
1000 = 500π

or possibly Ω =
(
2π + π

2

)
1000 = 2500π

Example 2.9
The implications of frequency conversion can be considered by the analog
sinusoidal signal. Consider a signal x(t) = cos(4000π)t, which is sampled at
a rate Fs = 4000 Hz and Fs = 2000 Hz. Show that recovery of the signal is
possible when the analog signal is sampled at correct frequency.

Solution
The corresponding DT signal at Fs = 4000 Hz is

x(n) = cos 2π

(
2000
4000

)
n = cos 2π(1/2)n
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x(n) = cos 2π(1/2)n.

Using Equation (2.27) it follows that digital frequency f = 1/2. Since
only the frequency component at 4000 Hz is present in the sampled signal,
the analog signal we can recover is ya(t) = cos 4000πt.

The corresponding DT signal at Fs = 2000 Hz is

x(n) = cos 2π

(
2000
2000

)
n = cos 2π(1)n

x(n) = cos2π(1)n.

From Equation (2.27) it follows that the digital frequency f = 1 cycle/
sample. Since only the frequency component at 2000 Hz is present in the
sampled signal, the analog signal we can recover is ya(t) = x(Fst) =
cos 2000πt. This example shows that by taking a wrong selection of the
sampling frequency, the original signal cannot be recovered.

2.7 The Sampling Theorem

The sampling theorem indicates that a continuous signal can be properly
sampled, only if it does not contain frequency components above one-half
of the sampling rate.

Figures given below indicate several sinusoids before and after digiti-
zation. The continuous line represents the analog signal entering the ADC,
while the square markers are the digital signal leaving the ADC. The analog
signal is a constant DC value as shown in Figure 2.3(a), a cosine wave of zero
frequency. Since the analog signal is a series of straight lines between each of
the samples, all of the information needed to reconstruct the analog signal is
contained in the digital data. According to definition, this is proper sampling.

The sine wave shown in Figure 2.3(b), a 90 cycle/second sine wave being
sampled at 1000 samples/s, it has a frequency of 0.09 of the sampling rate.
Expressed in another way, this results in only 11.1 samples per sine wave
cycle.

This situation is more complicated than the previous case, because the ana-
log signal cannot be reconstructed by simply drawing straight lines between
the data points. Do these samples properly represent the analog signal? The
answer is yes, because no other sinusoid, or combination of sinusoids, will
produce this pattern of samples. These samples correspond to only one analog
signal, and, therefore, the analog signal can be exactly reconstructed. Again,
it is an instance of proper sampling.
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Figure 2.3 Time (or sample) number: (a) Analog Frequency = 0.0 (i.e., DC). (b) Analog
frequency = 0.09 of sample rate. (c) Analog Frequency = 0.31 of sampling rate. (d) Analog
Frequency = 0.95 of sampling rate.
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In Figure 2.3(c), a 310 cycle/second sine wave being sampled at 1000 sam-
ples/second, the situation is made more difficult by increasing the sine wave’s
frequency to 0.31 of the sampling rate, this result in only 3.2 samples per sine
wave cycle.

Here the samples are so sparse that they don’t even appear to follow the
general trend of the analog signal. Do these samples properly represent the
analog waveform? Again, the answer is yes, and for exactly the same reason.
The samples are a unique representation of the analog signal.

All of the information needed to reconstruct the continuous waveform is
contained in the digital data. Obviously, it must be more sophisticated than
just drawing straight lines between the data points. As strange as it seems, this
is the proper sampling according to our definition.

In Figure 2.3(d), a 950 cycle/second sine wave being sampled at 1000 sam-
ples/s, the analog frequency is pushed even higher to 0.95 of the sampling rate,
with a mere 1.05 samples per sine wave cycle. Do these samples properly
represent the data? No, they do not. The samples represent a different sine
wave from the one contained in the analog signal. In particular, the original
sine wave of 0.95 frequencies misrepresents itself as a sine wave of 0.05
frequencies in the digital signal.

This phenomenon of sinusoids changing frequency during sampling is
called aliasing. Just as a criminal might take on an assumed name or identity
(an alias), the sinusoid assumes another frequency that is not its own. Since
the digital data is no longer uniquely related to a particular analog signal, an
unambiguous reconstruction is impossible. There is nothing in the sampled
data to suggest that the original analog signal had a frequency of 0.95 rather
than 0.05.

The sine wave has hidden its true identity completely; the perfect crime has
been committed! According to our definition, this is an example of improper
sampling.

This line of reasoning leads to a milestone in DSP, the sampling theorem.
This is called the Shannon sampling theorem, or the Nyquist sampling
theorem.

For instance, a sampling rate of 2,000 samples/s requires the analog signal
to be composed of frequencies below 1000 cycles/s. If frequencies above this
limit are present in the signal, they will be aliased to frequencies between 0
and 1000 cycles/s, combining with whatever information that was legitimately
there.

Two terms are widely used when discussing the sampling theorem: the
Nyquist frequency and the Nyquist rate. Unfortunately, their meaning is not
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standardized. There are different terms used in analog to digital conversions
and has been given here as Nyquistrate (FN < Fs

2 ), Shannon Theorem
(Fmax < Fs

2 ), and Folding Frequency (F fold < Fs
2 ).

To understand these, consider an analog signal composed of frequen-
cies between DC and 3 kHz. To properly digitize this signal it must be
sampled at 6,000 samples/s (6 kHz) or higher. Suppose if we choose to
sample at 8,000 samples/s (8 kHz), the allowing frequencies between DC
and 4 kHz to be properly represented. In this situation there are four important
frequencies:

(1) The highest frequency in the signal, 3 kHz;
(2) Twice of this frequency, 6 kHz;
(3) The sampling rate should be 8 kHz; and
(4) One-half the sampling rate, 4 kHz.

Example 2.10
Right or wrong frequency conversion can be considered by the analog
sinusoidal signal. The two signals of different frequencies x1(t) = cos(2π10)t
and x2(t) = cos(2π50)t are sampled at a rate Fs = 40 Hz. Show that one
signal which has not been sampled correctly is alias of the other signal, which
has been sampled properly.

Solution
The corresponding DT signal at Fs = 40 Hz is

x1(n) = cos 2π

(
10
40

)
n = cos

(π

2

)
n and

x2(n) = cos 2π

(
50
40

)
n = cos

(
5π

2

)
n

cos
(

5π

2

)
n = cos

(
2πn +

(π

2

)
n
)

= cos
(π

2

)
n.

Hence x1(n) = x2(n), thus the sinusoidal signals are identical and conse-
quently indistinguishable. If we are given the sampled value generated by
cos
(

π
2

)
n, there is an ambiguity as to whether these sampled values correspond

to x1(t) or x2(t), when the two are sampled at a rate Fs = 40 Hz. We say that
the frequency F2 = 50 Hz is an alias of frequency F1 of 10 Hz at the sampling
rate of 40 samples/s. It is important to note that F2 is not the only alias of F1.
In fact at the sampling rate of 40 samples/second, the frequency F3 = 90 Hz
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is an alias of F1, so the frequency F4 = 130 Hz and so on. All the sinusoids
cos2π(F1 + 40k)t, k = 1, 2, 3 . . . sampled at 40 samples/s yield identical
values, consequently they are all alias of F1 = 10 Hz.

2.8 Quantization Error

It is already discussed that the process of converting a DT continuous-
amplitude signal into a digital signal by expressing each sample value as a
finite (instead of infinite) number of digits, is called quantization.Accuracy of
the signal representation is directly proportional to how many discrete levels
are allowed to represent the magnitude of the signal.

The error introduced in representing the continuous-valued signal by a
finite set of discrete value levels is called quantization error or quantization
noise. Quantization error is the difference between the actual value and the
quantized value.

Generally number of bits determines the resolution and the degree of
quantization error or noise. It is common practice in signal processing to
describe the ratio of the largest undistorted signal to the smallest undistorted
signal that system can process. The ratio is called the dynamic range.

The noise voltage and the maximum signal-to-noise ratio (SNR) are both
important measures of quantization error. They are related with the following
expression.

Vnoise (rms) =
Vfull scale (0.289)

2n
(2.29)

γdB = 6.02n + 1.76, (2.30)

where γ is the SNR in dBs and n is the number of bits.
It is possible to reduce level by increasing the number of bits. However,

a large number of bits dictate higher cost, more storage space, and also
longer processing time. Also, high resolution ADCs are slower. Thus there
is a compromise.

The quantization process is illustrated with an example. Let us consider
the DT signal,

x(n) =
{

0.9n, n ≥ 0
0, n<0 . (2.31)

The signal in Equation (2.31) was obtained by sampling the analog exponential
signal xa(t) = 0.9t, t ≥ 0 with a sampling frequency Fs = 1 Hz (as
shown in Figure 2.4(a)), the quantization is done by rounding, although it
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Figure 2.4 (a) Sampling with frequency of 1 Hz.
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Figure 2.4 (b) Illustration of quantization by rounding off.

is easy to treat truncation. The rounding process is graphically illustrated in
Figure 2.4(b).

It is to be noted that if xmin and xmax represent the minimum and maximum
value of x(n) and L is the number of quantization level, then

Δ =
xmax − xmin

L− 1
=

range
L− 1

, (2.32)

where xmax − xmin is called the range of the signal, where L is the quantiza-
tion level.

Example 2.11
Determine the root mean square noise (rms) quantization noise voltage for 8
and 12 bit systems when the signal to noise ratio is from 0 to 5 V. Find also
the maximum signal to noise ratio for a 12-bit DSP system.
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Solution
Applying Equation (2.32)

Δ =
xmax − xmin

L− 1
=

range
L− 1

Vnoise (rms) =
(5 V) (0.289)

28 = 5.64 mv and Vnoise (rms) =
(5 V) (0.289)

212 = 353 μv.

Applying Equation (2.30)

γ (dB) = 6.02 n + 1.76

γ = 6.02 (12) + 1.76 = 74 dB

2.9 Further about DT Signals

A DT signal is not defined at instants between two successive samples. DT
signals are defined only at discrete values of time. There are few DT signals
which are much used in DSP, the way they are represented and types of them
are mentioned below

2.9.1 Representing DT Signal

A DT signal x(n) is a function of an independent variable, i.e., an integer.
A DT signal is not defined at instants between two successive samples. The
following methods are in use to illustrate the digital signals

x(n) =
{

. . . , 2, 1, −2, −2, 3, 2
↑
, 2, −2, 1, . . .

}

2.9.1.1 Graphical representation (Figure 2.5)

Figure 2.5 Graphical representation of signal.
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2.9.1.2 Functional representation

x(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3 for n = 0
1 for n = −3, 4
2 for n = 1, 2 − 4
−2 n = −1, −2, 3
0 elsewhere.

2.9.1.3 Sequence representation
x(n) = {. . . , 2, 1,−2, −2, 3

↑
, 2, 2, −2, 1, . . .}

2.9.1.4 Tabular representation
n
x(n)

∣∣∣∣
−4 −3 −2 − 1 0 1 2 3 4 . . .

2 1 −2 −2 3 2 2 −2 1

2.10 Simple Manipulations

There are few operations which are required to be handled at different stages
in digital signal processing. Any signal y(n) on which operation has to be
performed can be easily understood and calculated by substituting the different
values of n in the original signal and getting the new values of y(n). The
following examples are given to elaborate this point.

2.10.1 Reflection/Folding/Flipping

The modification of time base is to replace the independent variable n by –n.
The result of this of operation is a folding or a reflection of the signal about
origin.

If x(n) = {−1, 1, 2, 2, 1, 1}, to find x(−n), replacing y(n) = x(−n), and
substituting the value of n such as {1, 1, 2, 2, 1,−1}, because these are the
values of n for which the original signal x(n) exists (Figure 2.6).

2.10.2 Shifting (Advance and Delayed)

A signal x(n) may be shifted in time by replacing independent variable n by
n − k, where k is an integer. If k is a positive integer, the time shift results
in a delay of the signal by k units of time. It means the new signal shifts to
the right by k amount. If k is a negative integer, the time shift results in an
advance of the signal by |k| units in time. It means the new signal shifts to the
left by k amount (Figure 2.7).
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Figure 2.6 (a) Signal x(n) and (b) Reflected signal x(−n).

Figure 2.7 Original signal x(n), delayed by 3 units and advanced by 1 unit.

2.10.3 Scaling (Time and Magnitude)

(i) Time scaling or down sampling:

In this case n is replaced by cn where c is an integer,

(ii) Magnitude Scaling:

Magnitude scaling is to multiply numbers with the every value of signals.

y(n) = Ax(n); −∞ < n <∞.

Example 2.12
Consider signal x(n) = {. . . 0, 2, 1, 2,−2,−2, 1, 0 . . .}

Find (a) x(2n)
(b) 4x(n)



34 Signals and Systems

Solution
(a) Let y(n) = x(2n)

y(0) = x(0) = 0; y(1) = x(2) = 1; y(2) = x(4) = −2;

y(3) = x(6) = 1;

y(−1) = x(−2) = 0;

y(−2) = x(−4) = 0

y(n) = x(2n) = {. . . 0, 1,−2, 1 . . .}.
The value of y gives the location and the value of x(2n) gives its magnitude.
(b) y(n) = 4x(n) = {. . . 0, 8, 4, 8,−8,−8, 4, 0 . . .}.

2.10.4 Addition and Multiplication

The sum of two signals x1(n) and x2(n) is a signal y(n), whose value at any
instant is equal to sum of values of these signals at that instant,

y(n) = x1(n) + x2(n);−∞ < n <∞.

The product of two signals is similarly defined on a sample-to-sample
basis as

y(n) = x1(n)x2(n);−∞ < n <∞.

Example 2.13
Consider the length – 7 sequences defined for −3 ≤ n ≤ 3:

x(n) = {3,−2, 0, 1, 4, 5, 2}
y(n) = {0, 7, 1,−3, 4, 9,−2}
w(n) = {−5, 4, 3, 6,−5, 0, 1}

Generate the following sequence:

(a) u(n) = x(n) + y(n)
(b) v(n) = x(n) · w(n)
(c) s(n) = y(n)− w(n)
(d) r(n) = 4.5y(n)
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Solution
(a) u(n) = x(n) + y(n) = {3, 5, 1,−2, 8, 14, 0}
(b) v(n) = x(n) · w(n) = {−15,−8, 0, 6,−20, 0, 2}
(c) s(n) = y(n)− w(n) = {5, 3,−2,−9, 9, 9,−3}
(d) r(n) = 4.5y(n) = {0, 31.5, 4.5,−13.5, 19, 40.5,−9}.

Example 2.14
A DT signal x[n] is shown in Figure. Sketch and label carefully each of the
following signals.

(i) x[n− 1]δ[n− 3]
(ii) 1

2x[n] + 1
2(−1)nx[n]

(iii) x[n2]

1 

…… 

x[n] 

-2-1 01 2 34 5           n 

2
1

Solution



36 Signals and Systems

Example 2.15
Let x[n] and y[n] be given in Figures, respectively.

Carefully sketch the following signals.

(a) y[2− 2n]
(b) x[n− 2] + y[n + 2]
(c) x[2n] + y[n− 4]
(d) x[n + 2]y[n− 2]

Solution
(a) y[2− 2n]

y[2− 2n] =

⎧⎨
⎩

1, n = 0,−1
−1, n = 2, 3
3, n = 1

(b) x[n− 2] + y[n + 2]

x[n− 2] =

⎧⎪⎪⎨
⎪⎪⎩

1, n = 1, 3
2, n = 0, 4
3, n = −1, 2, 5
0, n = rest



2.10 Simple Manipulations 37

y[n + 2] =

⎧⎨
⎩

1, n = −1, 0, 1, 2
−1, n = −3,−4,−5,−6
3, n = −2

(c) x[2n] + y[n− 4]

x[2n] =
{

2, n = ±1
0, n = 3

y[n− 4] =

⎧⎨
⎩

1, n = 5, 6, 7, 8
−1, n = 0, 1, 2, 3
3, n = 4

(d) x[n + 2]y[n− 2]

x[n + 2] =

⎧
⎨
⎩

1, n = −3, −1
2, n = −4, 0
3, n = −5, −2, 1

y[n− 2] =

⎧⎨
⎩

1, n = 3, 4, 5, 6
−1, n = 1, 0,−1,−2
3, n = 2
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2.10.5 Even and Odd Signals

An even signal is that type of signal which exhibits symmetry in time domain.
This type of signal is identical about the origin. Mathematically a signal x(n)
is called to be an even (symmetric) if x(n) = x(−n) and odd (anti-symmetric)
if x(n) = −x(−n) (Figure 2.8).

n → 

1  

2  

x(n) 

n → 

x(n) 

Figure 2.8 (a) Odd signal; (b) Even signal.

If a signal is neither even nor odd it can be decomposed into its odd
xo(n) and even xe(n) components. The following important relationship is
used to find the odd and even components. Using this x(n) = xe(n) + xo(n)
relationship the same original signal can be recovered.

xe(n) =
1
2

[x(n) + x(−n)] (2.33)

xo(n) =
1
2

[x(n)− x(−n)] . (2.34)

Example 2.16
A DT signal x(n) is shown in Figure. Sketch and label carefully each of the
following signals.
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(a) Even part of x(n)
(b) Odd part of x(n)

Solution
x(n) = {. . . 0, 1, 1

↑
, 1, 1, 1

2 , 1
2 , 0 . . . }

(a)

xe(n) =
x(n) + x(−n)

2
, x (−n)

=
{

. . . 0,
1
2
,

1
2
, 1, 1, 1

↑
, 1, 0, 0, 0, . . .

}

=
{

. . . 0,
1
4
,

1
4
,

1
2
, 1, 1

↑
, 1,

1
2
,

1
4
,

1
4
, 0, . . .

}

(b)

xo(n) =
x(n) + x(−n)

2
,

=
{

. . . 0, −1
4
, −1

4
, −1

2
, 0, 0

↑
, 0,

1
2
,

1
4
,

1
4
, 0, . . .

}
,

2.11 Energy and Power Signals

Signals may be classified as energy and power signals. Since we often think
of a signal as a function of varying amplitude through time, it seems to reason
that a good measurement of the strength of a signal would be area under the
curve. However, this area may have negative part. The negative part does
not have less strength than a positive signal of the same size. This suggests
squaring the signal or taking it absolute value, then finding the area under
the curve. It turns out that what we call the energy of a signal is the area
under squared signal. The energy signal is one which has finite energy and
zero average power. However, there are some signals which can neither be
classified as neither energy signals nor power signals.
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Table 2.1 A comparison of energy and power signal
Energy Signal Power Signal

1 Total normalized energy is
finite and non-zero

Total normalized average power is finite
and non-zero

2 The energy is obtained by

E =
∞∑

n=−∞
|x(n)|2

The average power is obtained by

P = lim
N→∞

1
N

N/2∑

n=−N/2
|x(n)|2

3 Non-periodic signals are
energy signals

Practically periodic signals are power
signals

4 These signals are time
limited

These signals can exist over infinite time

5 Power of energy signal is
zero

Energy of power signal is infinite

The energy signal is one which has finite energy and zero average power.
Hence x(n) is an energy signal, if 0 < E <∞ and P = 0. Where E is the energy
and P is the power of the signal x(n).

The power signal is one which has finite average power and infinite energy.
Hence x(n) is an power signal, if 0 < P <∞ and E =∞.

The signal power P is equal to the mean square value of x(n). Table 2.1
shows a comparison of energy and power signal.

However if the signal does not satisfy any of the above conditions, then it
is neither energy nor power signal. For DT signals the area under the squared
signal makes no sense, so we have to us another energy definition. We define
energy as the sum of the squared magnitude of the samples.

For DT signals, we define energy as the sum of the squared magnitude of
the samples.

E =
∞∑

n=−∞
|x(n)|2 (2.35)

In DT x(n) is an energy signal, if 0 < E <∞ and P = 0. Where E is the energy
and P is the power of the signal x(n).

Squared values of x(n) can be applied to both complex-values signal and
real signals. Energy of signal may be finite or infinite. If E is finite then x(n)
is an energy signal.

The power in a DT signal x(n) is given as:

P = lim
N→∞

1
N

N/2∑
n=−N/2

|x(n)|2 (2.36)
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Example 2.17
Compute the energy of the length-N sequence

x(n) = cos
(

2 πkn

N

)
0 ≤ n ≤ N − 1

Solution 2.17
x(n) = cos

(
2 πkn

N

)
0 ≤ n ≤ N−1 cos 2θ = 2 cos2 θ−1⇒ cos2 θ =

1 + cos 2θ

2

E =
N−1∑
n=0

|x(n)|2 =
N−1∑
n=0

cos2(2 π k n/N) =
1
2

N−1∑
n=0

(1 + cos(4πkn/N))

=
N

2
+

1
2

N−1∑
n=0

cos(4πkn/N)

N−1∑
n=0

an = 1−aN

1−a (1) and ejθ = cos θ + j sin θ
N−1∑
n=0

ej4 π k n/N = ej4 π k−1
ej4 π k /N −1 = 0 it

follows that E = N
2 .

Example 2.18
The angular frequency ω of the sinusoidal signal x[n] = A cos(ωn + ϕ)
satisfies the condition for x[n] to be periodic. Determine the average power of
x[n].

Solution 2.18
Average power, P = 1

N

∑N−1
n=0 x2(n), here N = 2π

ω

Then, P = ω
2π

∑( 2π
ω

−1)
n=0 A2{cos(ωn + ϕ) + 1}2

P = A2ω
4π {1 + cos 2ϕ + 1 + cos[2(2π − ω) + ϕ]}

P = A2ω
4π {2 + cos 2ϕ + cos(2ϕ− 2ω)}

2.12 Systems

A system may be defined as a set of elements or functional block which are
connected together and produce an output in response to the input signal. The
response or output of the system depends upon transfer function of the system.
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Figure 2.9 Representation of a discrete time system.

Mathematical functional relationship between and output may be written as
y(t) = f (x,t).

2.12.1 DT Systems

A DT system is a device that operates on DT signals (input), according to
some rules, to produce another DT signal-(output or response) of the systems
(Figure 2.9).

2.13 System’s Representation

Discrete time system can be representation by two ways:
(a) Difference Equations
(b) Block diagram

2.13.1 Symbol used for DT Systems

The operation of a DT system may be described simply by drawing a block
schematic. We use different building block to form a complete schematic.

(a) Adder
(b) Constant Multiplier
(c) Signal Multiplier
(d) Unit delay
(e) Unit advance
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2.13.2 An Adder

Addition operation is memory-less (Figure 2.10(a)).

Figure 2.10 (a) Graphical representation of adder.

2.13.3 A Constant Multiplier

Simply represent by applying a scale factor on input. It is also memory-less
(Figure 2.10(b)).

Figure 2.10 (b) Graphical representation of a constant multiplier.

2.13.4 A Signalmultiplier

Figure 2.10 (c) Graphical representation of a multiplier.

2.13.5 Unit Delay Element

It is the system that simply delays the signal passing through it by one sample.
If input signal is x(n) , the output is x(n − 1). The sample x(n − 1) is stored
in memory at DT n− 1 and can be recalled at time n to form y(n) = x(n− 1)
(Figure 10(d)).
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The symbol of unit delay = z−1

Figure 2.10 (d) Unit delay element.

2.13.6 Unit Advanced Element

A unit advance moves the input x(n) ahead by one sample in time to yield
x(n + 1). This advancement is denoted by z (Figure 10(e)).

Figure 2.10 (e) Unit delay element.

Example 2.19
Sketch the block diagram

y(n) = 1/2 y (n – 1) + 1/4 x(n) + 1/4 x(n – 1) where x(n) is the input y(n) is
the output.

Solution
y(n) = 0.25 x(n) + 0.25 x(n− 1) + 0.5 y(n− 1)
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or

Example 2.20
ADT system is realized by the structure shown in Figure. Determine a realized
for its inverse system, that is, the system which produces x(n) as an output
when y(n) is used as an input.

Solution
The inverse system is characterized by the difference equation

x(n) = −1.5x(n− 1) + 1
2y(n)− 0.4y(n− 1)

-1.5 -0.4 

0.5 
x(n) 

y(n) 

z-1 
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2.14 System’s Classification

In designing the systems, the general characteristic of the systems have to be
considered. A number of properties or categories that can be used to develop
general characteristics of the system are explained here.

2.14.1 Static versus Dynamic Systems

A DT system is called static or memory-less if its output at any instant n
depends at most on the input sample at the same time, but not on past or future
samples of the input. In any other case, the system is said to be dynamic or to
have memory.

If the output of a system at time n is completely determined by the input
samples in the interval from n – N to n (N ≥ 0), the system is said to have
memory of duration N. If N = 0, the system is static. If 0 < N < ∞, the
system is said to have finite memory, whereas if N =∞, the system is said to
have infinite memory.

The systems described by the following input–output equations

y(n) = ax(n) (2.37)

y(n) = nx(n) + bx3(n) (2.38)

are both static or memory-less. Note that there is no need to have stored any
of the past inputs or outputs in order to compute the present output. On the
other hand, the systems described by the following input–output relations are
dynamic systems or systems with memory.

y(n) = x(n) + 3x(n− 1) (2.39)

y(n) =
n∑

k=0

x(n− k) (2.40)

y(n) =
∞∑

k=0

x(n− k). (2.41)

The systems described by Equations (2.39) and (2.40) have finite memory,
whereas the system described by Equation (2.41) has infinite memory.

2.14.2 Time-Invariant versus Time-Variant System

The system is said to be time invariant if its input–output characteristics do
not change with time.
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2.14.2.1 Method to workout for time-invariant and time-variant
system

Consider the following system

y(n) = H[x(n)]. (2.42)

If the input signal is delayed by k unit in the function only and again
delayed by k unit to overall system irrespective that it is a function or not. If
y(n, k) = y(n – k) it means that the characteristics of system do not change
with time, and the system is time invariant.

(2.43)

y(n, k) means the delay is to be given in function only, while y(n – k) means that
where ever n is existing it has to be replaced by n – k unit. If y(n, k) = y(n – k)
then system is called time invariant.

Example 2.21
Determine if the shown in Figure 2.11 are time invariant or time variant

Figure 2.11 Time-invariant (a) and some time-variant systems (b)–(d).

Solution
(a) This system is described by the input–output equations

y(n) = H[x(n)] = x(n)− x(n− 1). (1)
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Now if the input is delayed by k units in time and applied to the system,
it is clear from the block diagram that the output will be

y(n, k) = x(n− k)− x(n− k − 1) (2)

On the other hand, from Equation (1) we note that if we delay y(n) by k
units in time, we obtain

y(n− k) = x(n− k)− x(n− k− 1) (3)

Since the right-hand sides of Equations (2) and (3) are identical, it follows
that y(n, k) = y(n – k). Therefore, the system is time invariant.

(b) The input–out equation for this system is

y(n) = H[x(n)] = nx(n). (4)

The response of this system to x(n− k) is

y(n, k) = nx(n− k). (5)

Now if we delay y(n) in Equation (4) by k units in time, we obtain

y(n− k) = (n− k)x(n− k) = nx(n− k)− kx(n− k). (6)

This system is time variant, since y(n, k) �= y(n – k).
(c) This system is described by the input–output relation

y(n) = H[x(n)] = x(−n) (7)

The response of this system to

x(n – k) is y(n, k) = H[x(n – k)]
= x(−n− k) (8)

Now, if we delay the output y(n), as given by Equation (7), by k units in
time, the result will be

y(n− k) = x(−n + k) (9)

Since y(n, k) �= y(n – k), the system is time variant.
(d) The input–output equation for this system is

y(n) = x(n) cos ω0n (10)

The response of this system to x(n − k) is y(n, k) = x(n− k) cos ω0n
(11)

If the expression in Equation (10) is delayed by k units and the result is
compared to Equation (11), it is evident that the system is time variant.
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Example 2.22
Check the DT system for time-invariance which is described by the following
difference equation.

y(n) = 4nx(n)

Solution 2.22
The response to a delayed input is

y(n, k) = 4nx(n− k).

The delayed response will be

y(n− k) = 4(n− k)x(n− k)

it is clear that both responses are not equal, i.e.,

y(n, k) �= y(n− k)

Therefore, the given DT system y(n) = 4nx(n) is not time invariant. It is time
varying system.

Example 2.23
Check the DT system for time-invariance which is described by the following
difference equation.

y(n) = ax(n− 1) + bx(n− 2)

Solution 2.23
The response to a delayed input is

y(n, k) = ax(n− k− 1) + bx(n− k− 2).

The delayed response will be

y(n− k) = ax((n− k)− 1) + bx((n− k)− 2).

It is clear that both responses are not equal, i.e.,

y(n, k) = y(n− k)

Therefore, the given DT system y(n) = ax(n – 1) + bx(n – 2) is time invariant.



50 Signals and Systems

2.14.3 Linear versus Non-linear System

2.14.3.1 Linear system
A linear system is that which satisfies the properties of superposition
theorem. The response of system to a weighted sum of signal is equal to
the corresponding weighted sum of the response of each individual input
signals.

H[a1x1(n) + a2x2(n)] = a1H[x1(n)] + a2H[x2(n)] (2.23)

2.14.3.2 Non-linear system
If a system produces a nonzero output with a zero input, the system may
be either non-relaxed or non-linear. If a relaxed system does not satisfy the
superposition principle it is non-linear (Figure 2.12).

Figure 2.12 Graphical representation of the superposition principle, H is linear if and only
if y(n) = y′(n).

Example 2.24
Determine if the systems described by the following input–output equations
are linear or non-linear.

(a) y(n) = nx(n) (b) y(n) = x(n2) (c) y(n) = x2(n)
(d) y(n) = Ax(n) + B (e) y(n) = ex(n)
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Solution 2.24
(a) For two input sequences x1(n) and x2(n), the corresponding outputs are

y1(n) = nx1(n) (1)

y2(n) = nx2(n)

A linear combination of the two input sequence results in the output

y3(n) = H[a1x1(n) + a2x2(n)] = n[a1x1(n) + a2x2(n)] (2)

= a1nx1(n) + a2nx2(n)

On the other hand, a linear combination of the two outputs in Equation
(2) results in the output

a1y1(n) + a2y2(n) = a1nx1(n) + a2nx2(n) (3)

Since the right-hand sides of Equations (2) and (3) are identical, the
system is linear.

(b) As in part (a), we find the response of the system to two separate input
signals x1(n) and x2(n). The result is

y1(n) = x1(n2) (4)

y2(n) = x2(n2)

The output of the system to a linear combination of x1(n) and x2(n) is

y3(n) = H[a1x1(n) + a2x2(n)] = a1x1(n2) + a2x2(n2) (5)

Finally, a linear combination of the two outputs in (2.21) yields

a1y1(n) + a2y2(n) = a1x1(n2) + a2x2(n2) (6)

By comparing Equation (5) with Equation (6), we conclude that the
system is linear.

(c) The output of the system is the square of the input. (Electronic devices
that have such an input–output characteristic and are called square-law
devices) From our previous discussion it is clear that such a system is
memory-less.
To illustrate that this system is nonlinear, the responses of the system to
two separate input signals are

y1(n) = x2
1(n); y2(n) = x2

2(n) (7)
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The response of the system to a linear combination of these two input
signals is

y3(n) = H [a1x1(n) + a2x2(n)]

= [a1x1(n) + a2x2(n)]2

= a2
1x

2
1(n) + 2 a1 a2 x1(n) x2(n) + a2

2x
2
2(n).

(8)

On the other hand, if the system is linear, it would produce a linear
combination of the two outputs in Equation (7), namely,

a1y1(n) + a2y2(n) = a1x
2
1(n) + a2x

2
2(n) (9)

Since the actual output of the system, as given by Equation (8), is not
equal to Equation (9), the system is non-linear.

(d) Assuming that the system is excited by x1(n) and x2(n) separately, we
obtain the corresponding outputs

y1(n) = Ax1(n) + B (10)

y2(n) = Ax2(n) + B

A linear combination of x1(n) and x2(n) produces the output

y3(n) = H[a1x1(n) + a2x2(n)] (11)

= A[a1x1(n) + a2x2(n)] + B

= Aa1x1(n) + a2Ax2(n) + B.

On the other hand, if the system were linear, its output to the linear
combination of x1(n) and x2(n) would be a linear combination of y1(n)
and y2(n), that is,

a1y1(n) + a2y2(n) = a1Ax1(n) + a1B + a2Ax2(n) + a2B. (12)

Clearly, Equations (11) and (12) are different and hence the system fails
to satisfy the linearity test.
The reason that this system fails to satisfy the linearity test is not that the
system is nonlinear (in fact, the system is described by a linear equation)
but it is the presence of the constant B. Consequently, the output depends
on both the input excitation and on the parameter B �= 0, Hence, for B �= 0,
the system is not relaxed. If we set B = 0, the system is now relaxed and
the linearity test is satisfied.
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(e) Note that the system described by the input–output equation

y(n) = ex(n)

is relaxed. If x(n) = 0, we find that y(n) = 1. This is an indication that the
system is non-linear. This, in fact, is the conclusion reached when the
linearity test, as described above, is applied.

Example 2.25
Determine if the system described by the following input–output equations is
linear or non-linear.

y(n) = x2(n)− x(n − 1)x(n + 1)

Solution 2.25
For two input sequences x1(n) and x2(n), the corresponding outputs are y1(n)
and y2(n)

y1(n) = x2
1(n)− x1(n− 1)x1(n + 1)

y2(n) = x2
2(n)− x2(n− 1)x2(n + 1) (1)

a1y1(n) + a2y2(n) = [a1x
2
1(n)− x1(n− 1)a1x1(n + 1)]

+ [a2x
2
2(n)− x2(n− 1)a2x2(n + 1)].

A linear combination of the two input sequence result in the output

y3(n) = H[a1x1(n) + a2x2(n)]

= [(a1x1(n) + a2x2(n)]2 − [(a1x1(n− 1)
a2x2(n− 1)] + [(a1x1(n + 1)a2x2(n + 1)] (2)

= a2
1[(x

2
1(n) + x1(n− 1)x1(n + 1)] + a2

2[x
2
2(n)

− x2(n− 1)x2(n + 1)] + a1a2[2x1(n)x2(n)
− x1(n− 1)x2(n + 1)− x1(n + 1)x2(n− 1)].

Since the right-hand sides of Equations (1) and (2) are not identical, the system
is non-linear.

Example 2.26
A DT system is represented by following difference equation in which x(n)
is input y(n) is output. Determine if the system described by the input–output
equations is linear or non-linear.

y(n) = 5 y2(n− 1)− nx(n) + 4x(n− 1)− 2x(n + 1)
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Solution 2.26
The given expression is y(n) = 5 y2 (n−1)−nx(n)+4x(n−1)−2x(n+1)

It may be noted that real condition for linearity is H [ax(n)] = aH [x(n)]

H[ax(n)] = ay(n) = 5a2y2(n− 1)− anx(n) + 4ax(n− 1)− 2ax(n + 1)

aH[x(n)] = a[y(n)] = 5ay2(n− 1)− an x(n) + 4ax(n− 1)− 2ax(n + 1)

from above it is clear that H[ax(n)] �= aH[x(n)]. System is non-linear.

2.14.4 Causal versus Non-Causal System

A system is said to be causal if the output of the system at any time n depends
only on present and past inputs [i.e., x(n), x(n – 1), x(n – 2). . . ], but does not
depends on future inputs [x(n + 1), x(n + 2). . . ].

y(n) = F[x(n), x(n− 1), x(n− 2) . . . ]. (2.24)

If a system does not satisfy this definition, it is called non-causal.

Example 2.27
Determine if the systems described by the following input–output equations
are causal or non-causal.

(a) y(n) = x(n) – x(n – 1)
(b) y(n) =

∑n
k=−∞ x(k)

(c) y(n) = ax(n)
(d) y(n) = x(n) + 3x(n + 10)
(e) y(n) = x(n2)
(f) y(n) = x(2n)
(g) y(n) = x(–n)

Solution 2.27
The systems described in parts (a), (b), and (c) are clearly causal, since the
output depends only on the present and past inputs. On the other hand, the
systems in parts (d), (e), and (f) are clearly non-casual, since the output depends
on future values of the input.

The system in (g) is also non-causal, as we note by selecting, for example,
n = –1, which yields y(1) = x(1). Thus, the output at n = –1 depends on the
input at n = 1, which is two units of time into the future.
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Example 2.28
A DT system is represented by following difference equation in which x(i) is
input y(n) is output. Determine if the system described by the input–output
equations is causal or non-causal.

y(n) = 10y2(n− 1)− nx(n) + 4x(n− 1)− 5x(n + 1).

Solution 2.28
It may be noted that the required condition for causality is that the output of
a causal system must be dependent only on the present and past values of the
input. From the given equation, it is obvious that output y(n) is dependent on
future sample value x(n + 1).

2.14.5 Stable versus Un-Stable System

An arbitrary relaxed system is said to be bounded input-bounded output
(BIBO) stable if and only if every bounded input produces a bounded output.

By definition, a signal x(n) is bounded if there exists a member M such
that

jx(n)j ≤ M for all n. (2.25)

Hence a system is BIBO stable if, for a number R

jy(n)j ≤ R for all x(n) (2.26)

If for some bounded input sequence x(n), the output is unbounded (infinite),
the system is unstable. A system is stable if the output remains bounded for
any bounded input.

Example 2.29
Check whether the system y(n) = ax2(n) is BIBO stable or not.

Solution 2.29
(a) The given expression is y(n) = ax2(n)

If x(n) = δ(n), then y(n) = h(n). Thus the impulse response is given by
h(n) = aδ2(n) when n = 0, h(0) = aδ2(0) = a and when n = 1, h(1) = δ2(1) = 0.

In general we have h(n) = a when n = 0, h(n) = 0 when n �= 0 we know
the necessary and sufficient condition for BIBO stability is expressed as
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∞∑
n=0

|h(k)| <∞. Here we have
∞∑

n=0

| h(k)| = | h(0)|+ | h(1)|+ | h(2)|

+ . . . | h(k)|+ . . . = |a| .
Therefore, we conclude that the given system is BIBO stable only if α<∞.

2.15 Problems and Solutions

Problem 2.1

Determine which of the following sinusoids are periodic and compute their
fundamental period.

(a) cos 3πn; (b) sin 3n; and (c) sin
(

π
62n

8

)

Solution 2.1
(a) f=3π

2π=3
2 ⇒ periodic with Np = 2

cos3π(n + N) = cos3π(n + 2)
= cos 3πn cos2π −sin3πn sin2π = cos3πn

(b) f= 3
2π ⇒ non-periodic

(c) f=62π
8

( 1
2π

)
=31

8 ⇒ periodic with Np= 8
sin

(
π 62n

8

)
= sin

(
π 62

8 (n+8)
)
= sin

(
π 62n

8

)
⇒ periodic with Np= 8.

Problem 2.2

Determine whether or not each of the following signals are non-periodic. In
case a signal is periodic, specify its fundamental period.

(a) xa(t) = 3 cos(5t + π/4)
(b) x(n) = 3 cos(5n + π/4)
(c) x(n) = 2 exp[j(n/5− π)]
(d) x(n) = cos(n/8) cos(πn/8)
(e) x(n) = cos(πn/3)− sin(πn/4) + 3 cos(πn/4 + π/3)

Solution 2.2

(a) Periodic with period Tp = 2π/5
(b) f = 5/2π ⇒ non-periodic
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(c) f = 1/10π ⇒ non-periodic
(d) cos(n/8) is non-periodic; cos(πn/8) in periodic. Their product is no-

periodic
(e) cos(πn/3) is periodic with period Np = 6

sin (πn/4) is periodic with period Np = 8

cos
(πn

4
+

π

3

)
is periodic with period Np = 8.

Therefore, x(n) is periodic with period Np = 96 (96 = least common
multiple of 6, 8, 8).

Problem 2.3

Consider the following analog sinusoidal signal xa(t) = 3sin(100πt)

(a) Sketch the signal xa(t) for 0 ≤ to ≤30 ms.
(b) The signal xa(t) is sampled with a sampling rate Fs = 300 samples.

Determine the frequency of the DT signal x(n) = xa(nT), T = 1/Fs, and
show that it is periodic.

(c) Compute the sample values in one period of x(n). Sketch x(n) on the same
diagram with xa(t). What is the period of the DT signal in milli-seconds?

(d) Can you find a sampling rate Fs such that the signal x(n) reaches its peak
value of 3? What is the minimum Fs suitable for this task?

Solution 2.3

(a)

(b)

x(n) = xa(nT ) = xa(n/Fs) = 3 sin
(π

3
n
)
⇒ f =

1
2π

(π

3

)
=

1
6
, Np = 6
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(c)

x(n) =

{
0,

3
√

3
2

,
3
√

3
2

, 0− 3
√

3
2

,−3
√

3
2

}
, Np = 6

(d)

Yes. x(1) = 3 = 3sin
(

100π

Fs

)
⇒ Fs= 200 samples/s.

Problem 2.4

A CT sinusoid xa(t) with fundamental period Tp = 1/Fs is sampled at a rate
Fs = 1/T to produce a DT sinusoid x(n) = xa(nT).

(a) Show that x(n) is periodic if T/Tp = k/N (i.e., T/Tp is a rational number).
(b) If x(n) is periodic, what is the fundamental period Tp in seconds?
(c) Explain the statement: x(n) is periodic if its fundamental period Tp in

seconds, is equal to an integer number of periods of xa(t).

Solution 2.4

(a) x(n) = Acos(2πFon/Fs + θ) = Acos[2π(T/Tp)n + θ]
But T/Tp = f ⇒ x(n) is periodic if f is rational

(b) If x(n) is periodic, then f = k/N where N is the period.

Then, Tdiscrete =
(

k
f T
)

= k
(

Tp
T

)
T = kTp. Thus, it takes k periods

(kTp) of the analog signal to make1 period (Td) of the discrete signal.
(c) Td = kTp ⇒ NT = kTp ⇒ f = k/N = T/Tp ⇒ f is rational ⇒ x(n) is

periodic.

Problem 2.5

An analog signal contains frequency up to 10 kHz.

oa
si

s-
eb

l|R
sa

lle
s|

14
96

10
14

37
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(a) What range of sampling frequencies will allow exact reconstruction of
this signal from its sample?

(b) Suppose that we sample this signal with a sampling frequency Fs =
8 kHz. Examine what will happen to the frequency F1 = 5 kHz

(c) Repeat part (b) for a frequency F2 = 9 kHz.

Solution 2.5

(a) Fmax = 10 kHz⇒ Fs = 2Fmax = 20 kHz
(b) For Fs = 8 kHz, Ffold = Fs/2 = 4 kHz⇒ 5 kHz will alias to 3 kHz.
(c) F = 9 kHz will alias to 1 kHz.

Problem 2.6

An analog electrocardiogram (ECG) signal contains useful frequencies up to
100 Hz.

(a) What is the Nyquist rate for this signal?
(b) Suppose that we sample this signal at a rate of 250 samples/s. What is

the highest frequency that can be represented uniquely at this sampling
rate?

Solution 2.6

(a) Fmax = 100 Hz, Fs = 2Fmax = 200 Hz
(b) Ffold = Fs

2 = 125 Hz.

Problem 2.7

An analog signal xa(t) = sin(480πt) + 3 sin(720πt) is sampled 600 times
per second.

(a) Determine the Nyquist sampling rate for xa(t).
(b) Determine the folding frequency.
(c) What are the frequencies, in radians, in the resulting DT signal x(n)?
(d) If x(n) is passed through an ideal D/Aconverter, what is the reconstructed

signal ya(t)?

Solution 2.7
(a) Fmax = 360 Hz, FN = 2Fmax = 720 Hz
(b) Ffold = Fs

2 = 300 Hz .
(c) x(n) = xa(nT) = xa(n/Fs) = sin(480πn/600) + 3 sin(720πn/600)
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x(n) = sin(4πn/5)− 3 sin(4πn/5) = −2 sin(4πn/5). Therefore,
ω = 4π/5.

(d) ya(t) = x(Fst) = −2 sin(480πt).

Problem 2.8
A digital communication link caries binary-coded word representing samples
of an input signal xa(t) = 3 cos 600πt + 2 cos 1800πt. The link is operated at
10,000 bits/s and each input sample is quantized into 1024 different voltage
levels.

(a) What is the sampling frequency and the folding frequency?
(b) What is the Nyquist rate for the signal xa(t)?
(c) What are the frequencies in the resulting DT signal x(n)?
(d) What is the resolution Δ?

Solution 2.8
(a) Number of bits/sample = log21024 = 10

Fs = [10,000 bits/s]/[10 bits/sample]
= 1000 sample/s. ; Ffold = 500 Hz

(b) Fmax = 1800π/2π = 900 Hz; FN = 2Fmax = 1800 Hz
(c) f1 = 600π

2π

(
1
Fs

)
= 0.3; f2 = 1800π

2π

(
1
Fs

)
= 0.9

But f2 = 0.9 > 0.5⇒ f2 = 0.1
Hence, x(n) = 3 cos[(2π)(0.3)n] + 2 cos[(2π)(0.1)n]

(d) Δ = xmax−xmin
L−1 = 5−(−5)

1023 = 10
1023 .

Problem 2.9
Consider the simple signal processing shown Figure P 2.9. The sampling
periods of the A/D and D/A converters are T = 5 ms and T ′ = 1 ms,
respectively. Determine the output ya(t) of the system, if the input is

xa(t) = 3 cos 100πt + 2 sin 250πt (t in seconds)

The post-filter removes any frequency component above Fs/2.
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Solution 2.9
x(n) = xa(nT ) = 3 cos

(100πn
200

)
+ 2 sin

(250πn
200

)
= cos(πn/2) − 2 sin(3πn/4)

T−1 =
1

1000
ya(t) = x

( 1
T

)
= 3 cos

(
π
2 1000t

)− 2 sin
(3π

4 1000t
)

ya(t) = 3 cos (500πt)− 2 sin (750πt)

Problem 2.10
Consider the analog signal xa(t) = 3 cos 2000πt + 5 sin 6000πt + 10 cos
12, 000πt

(a) Assume now that the sampling rate Fs = 12000 samples/s. What is the
DT signal obtained after sampling?

(b) What is the analog signal ya(t) we can reconstruct from the samples if
we use ideal interpolation?

Solution 2.10
(a) The frequencies existing in the analog signal are

F1 = 1 kHz, F2 = 3 kHz, and F3 = 6 kHz,

Thus Fmax = 6 kHz , and according to the sampling theorem,

Fs ≥ 2Fmax = 12 kHz (sampled correctly)

The Nyquist rate is FN = 12 kHz.
Since we have chosen Fs = 12 kHz, the folding frequency is Fs

2 = 6 kHz
and this is the maximum frequency that can be represented uniquely by the
sampled signal.

The three frequencies F1, F2, and F3 are below or equal to the folding
frequency and they will not be changed by the aliasing effect.

From (2.7) it follows that three digital frequencies f1 = 1
12 , f2 = 3

12 , and
f3 = 6

12 .
Again using (2.7) we obtain

x(n) = xa(nT ) = xa

(
n
Fs

)

x(n) = 3 cos 2π
( 1

12

)
n + 5 sin 2π

( 3
12

)
n + 10 cos 2π

( 6
12

)
n

which are in agreement with the result obtained by (2.7) above.
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The frequency F1, F2, and F3 ≤ Fs/2 and thus it is not affected by aliasing.

(b) Since all the frequency components at 1 kHz, 3 kHz, and 6 kHz are present
in the sampled signal, the analog signal we can recover is

xa(t) = x(Fst) = 3 cos 2000πt + 5 sin 6000πt + 10 cos 12, 000πt

which is obviously not different from the original signal xa(t).

Problem 2.11
The DT signal x(n) = 6.35 cos(π/10)n is quantized with a resolution

(a) Δ = 0.1
(b) Δ = 0.02.

How many bits are required in the A/D converter in eachcase?

Solution 2.11
(a) Range = xmax − xmin = 12.7

L = 1 + range
Δ = 127 + 1 = 128⇒ log2128 = 7 bits

(b) L = 1 + 12.7
0.02 = 636⇒ log2636⇒ 10 bit A/D.

Problem 2.12
How many bits are required for the storage of a seismic signal if the sampling
rate is F s = 20 samples/s and we use an 8-bit A/D converter? What is the
maximum frequency that can be present in the resulting digital seismic signal?

Solution 2.12
R = (20 sample/s)× (8 bits/sample) = 160 bits/s.
Ffold = Fs

2 = 10 Hz.

Problem 2.13
A DT signal x(n) is defined as

x(n) =

⎧
⎨
⎩

1 + n
3 − 3 ≤ n ≤ −1

1, 0 ≤ n ≤ 3
0, elsewhere

(a) Determine its values and sketch the signal x(n).
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(b) Sketch the signals that result if we:

(1) First fold x(n) and then delay the resulting signal by four sample.
(2) First delay x(n) by four samples and then fold the resulting signal.

(c) Sketch the signal x(−n + 4).
(d) Compare the results in parts (b) and (c) and derive a rule for obtaining

the signal x(−n + k) from x(n).

Solution 2.13
(a) x(n) = {. . . 0, 1

3 , 2
3 , 1

↑
, 1, 1, 1, 0 . . .}

(b) After folding x(n) we have

x(−n) = {. . . 0, 1, 1, 1, 1
↑
, 2

3 , 1
3 , 0 . . . }

After delaying the folded signal by four samples, we have
x(−n + 4) = {. . . 0

↑
, 1, 1, 1, 1, 2

3 , 1
3 , 0 . . . } on the other hand, if we delay

x(n) by 4 samples we have x(n − 4) = {. . . 0, 0
↑
, 0, 1

3 , 2
3 , 1, 1, 1, 1, . . . }

now, if we fold x(n – 4) we have
x(−n− 4) = {. . . , 0, 1

↑
, 1, 1, 1, 2

3 , 1
3 , 0, 0, . . . }

(c) x(−n + 4) = {. . . 0
↑
, 1, 1, 1, 1, 2

3 , 1
3 , 0 . . . }

(d) To obtain x(−n + k), first we fold x(n), this yields x(−n); then, we shift
x(−n) by k samples to the right if k > 0, or k samples to the left if k < 0.

Problem 2.14
A DT signal x(n) is shown in Figure.

Sketch and label carefully each of the following signals.
(a) x(n – 2), (b) x(4 – n), (c) x(n + 2), (d) x(n)u(2 – n), (e) x(n – 1)δ(n – 3),

(f) x(n2), (g) even part of x(n), (h) odd part of x(n)
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 1 1 1 1 

 -2   -1   0   1    2   3   4                            n 

2
1

2
1

Solution 2.14
x(n) = {. . . 0, 1, 1

↑
, 1, 1, 1

2 , 1
2 , 0 . . . }

(a) x(n− 2) = {. . . 0, 0
↑
, 1, 1, 1, 1, 1

2 , 1
2 , 0 . . . }

(b) x(4− n) = {. . . 0, 1
2
↑
, 1

2 , 1, 1, 1, 1, 0, . . . }

(c) x(n + 2) = {. . . 0, 1, 1, 1, 1
↑
, 1

2 , 1
2 , 0 . . . }

(d) x(n)u(2− n) = {. . . 0, 1, 1
↑
, 1, 1, 0, 0, . . . }

(e) x(n− 1)δ(n− 3) = {. . . 0, 0
↑
, 0, 0, 1, 0, . . . }

(f) x(n2) = {. . . 0, x(4), x(1), x(0), x(1), x(4), 0, . . . }
x(n2) = {. . . 0, 1

2 , 1, 1
↑
, 1, 1

2 , 0 . . . }
(g) xe(n) = x(n)+x(−n)

2 , x(−n) = {. . . 0, 1
2 , 1

2 , 1, 1, 1
↑
, 1, 0, 0, 0, . . . }

xe(n) = {. . . 0, 1
4 , 1

4 , 1
2 , 1, 1

↑
, 1, 1

2 , 1
4 , 1

4 , 0, . . . }
(h) x0(n) = x(n)−x(−n)

2 ,
xo(n) = {. . . 0,−1

4 ,−1
4 ,−1

2 , 0, 0
↑
, 0, 1

2 , 1
4 , 1

4 , 0, . . . }

Problem 2.15
Show that
(a) δ(n) = u(n)− u(n− 1)
(b) u(n) =

∑∞
k=0 δ(k) =

∑n
k=−∞ δ(n− k)

Solution 2.15
(a)

u(n)− u(n− 1) =

⎧⎨
⎩

0, n > 0
1, n = 0
0, n < 0

= δ(n)
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(b)

n∑
k=−∞

δ(k) =
{

0, n < 0
1, n ≥ 0 = u(n) ;

∞∑
k=0

δ(n− k) =
{

0, n < 0
1, n ≥ 0

Problem 2.16
Show that any signal can be decomposed into an even and an odd component.
Is the decomposition unique? Illustrate your arguments using the signal

x(n) = {2, 3, 4
↑
, 5, 6}

Solution 2.16
Let xe(n) = 1

2 [x(n) + x(−n)], x0(n) = 1
2 [x(n) − x(−n)]. Since

xe(−n) = xe(n) and x0(−n) = −x0(n), it follow that x(n) = xe(n) + x0(n)
The decomposition is unique.
For x(n) = {2, 3, 4

↑
, 5, 6}, we have

xe(n) = {4, 4, 4
↑
, 4, 4} and x0(n) = {−2,−1, 0

↑
, 1, 2}.

Problem 2.17
Determine the energy of the following sequence:

x(n) =
(1

2

)n for n ≥ 0
x(n) = 0 for n ≤ 0

Solution 2.17
We know that for a DT signal, the energy is expressed as

E =
∞∑

n=−∞
|x(n)|2

E =
∞∑

n=−∞

(1
2

)2
. Therefore summing the infinite series E = 2.

Problem 2.18
Show that the energy (power) of a real-valued energy (power) signal is equal
to the sum of the energies (powers) of its even and odd components.
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Solution 2.18 ∞∑
n=−∞

xe(n) x0(n) = 0

∞∑
n=−∞

xe(n) x0(n) =
∞∑

m=−∞
xe(−m) x0(−m) =

∞∑
m=−∞

xe(m) x0(m)

= −
∞∑

n=−∞
xe(n) x0(n)⇒

∞∑
n=−∞

xe(n) x0(n) = 0

Then,
∞∑

n=−∞
x2(n) =

∞∑
n=−∞

[xe(n) + x0(n)]2

=
∞∑

n=−∞
x2

e(n) +
∞∑

n=−∞
x2

0(n) + 2
∞∑

n=−∞
xe(n) x0(n)

= Ee + E0

Problem 2.19
Consider the system

y(n) = H[x(n)] = x(n2)

(a) Determine if the system is time invariant.
(b) To clarify the result in part (a) assume that the signal

x(n) =
{

1, 0 ≤ n ≤ 3
0, elsewhere

is applied into the system.

(1) Sketch the signal x(n).
(2) Determine and sketch the signal y(n) = H [x(n)].
(3) Sketch the signal y2(n) = y(n – 2).
(4) Determine and sketch the signal x2(n) = x(n – 2).
(5) Determine and sketch the signal y2(n) = H [x2(n)].
(6) Compare the signal y2(n) and y(n – 2). What is your conclusion?

(c) Repeat part (b) for the system y(n) = x(n) – x(n – 1).

Can you use this result to make any statement about the time invariance of
this system? Why?
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Solution 2.19
(a) Yes, the system is time invariant.

Proof: If y(n, k) = x(n− k)2

y(n− k) = x[(n− k)2]
y(n− k) = x[(n2 + k2 − 2nk) = y(n, k)

(b) (1) x(n) = {0, 1
↑
, 1, 1, 1, 0, . . . }

(2) y(n) = x(n2){. . . 0, 1, 1
↑
, 1, 0, . . . }

(3) y(n− 2) = {...0, 0
↑
, 1, 1, 1, 0, . . . }

(4) x(n− 2) = {... 0
↑
, 0, 1, 1, 1, 1, . . . }

(5) y2(n) = H[x(n− 2)] = {. . . 0, 1, 0, 0
↑
, 0, 1, 0, . . . }

(6) y2(n) �= y(n – 2)⇒ system is time variant
(c) (1) x(n) = {1

↑
, 1, 1, 1}

(2) y(n) = {1
↑
0, 0, 0,−1, 0}

(3) y(n− 2) = {0
↑
, 0, 1, 0, 0, 0,−1, 0}

(4) x(n− 2) = {... 0
↑
, 0, 1, 1, 1, 1, 0 . . . }

(5) y2(n) = {... 0
↑
, 0, 1, 0, 0, 0,−1, . . . }

(6) y2(n) = y(n− 2)⇒ The system is time invariant but this example
does not constitute a proof.

Problem 2.20
A DT system can be

(1) Static or dynamic
(2) Linear or non-linear
(3) Time invariant or time varying
(4) Causal or no causal
(5) Stable or unstable

Examine the following systems with respect to the properties above.

(a) y(n) = cos[x(n)]
(b) y(n) =

∑n+1
k=−∞ x(k)

(c) y(n) = x(n)cos(ωon)
(d) y(n) = x(−n + 2)
(e) y(n) = |x(n)|
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(f) y(n) = x(n)u(n)
(g) y(n) = x(n) + nx(n + 1)
(h) y(n) = x(2n)

(i) y(n) =
{

x(n), if x(n) ≥ 0
0, if x(n) < 0

(j) y(n) = x(−n)

Solution 2.20
(a) Static, non-linear, time invariant, causal, and stable.
(b) Dynamic, linear, time invariant, non-causal, and unstable. The latter is

easily proved.
For the bounded input x(k) = u(k), the output becomes

y(n) =
n+1∑

k=−∞
u(k) =

{
0, n < 1
n + 2, n ≥ −1

since y(n)→∞ as n→∞, the system is unstable.
(c) Static, linear, time variant, causal, and stable.
(d) Dynamic, linear, time invariant,non-causal, and stable.
(e) Same answers as in (e).
(f) Static, linear, time invariant, causal, and stable.
(g) Dynamic, linear, time variant, non-causal, and unstable.

Note that the bounded input x(n) = u(n) produces an unbounded output.
(h) Dynamic, linear, time variant, non-causal, and stable.
(i) Static, nonlinear, time invariant, causal, and stable.
(j) Same answer as in (d).

Problem 2.21
Two DT systems H1 and H2 are connected in cascade to form a new system
H as shown in Figure. Prove or disprove the following statements.

(a) If H1 and H2 are linear, then H is linear (i.e., the cascade connection of
two linear systems is linear).

(b) If H1 and H2 are time invariant, then H is time invariant.
(c) If H1 and H2 are causal, then H is causal.
(d) If H1 and H2 are linear and time invariant, the same holds for H.
(e) If H1 and H2 are linear and time invariant, then interchanging their order

does not change the system H.
(f) As in part (e) except that H1, H2 are now time varying. (Hint: Use an

example.)
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(g) If H1 and H2 are non-linear, then H is non-linear.
(h) If H1 and H2 are stable, then H is stable.
(i) Show by an example that the inverse of parts (c) and (h) do not hold in

general.

 

H = H1H2 

y(n) x(n) 
H1 H2 

Solution 2.21
(a) True.

If v1(n) = H1[x1(n)] and v2(n) = H1[x2(n)], then a1x1(n)+ a2x2(n)
yields
a1v1(n) + a2v2(n) by the linearity property of H.
Similarly, if y1(n) = H2[v1(n)] and y2(n) = H2[v2(n)],
Then b1v1(n) + b2v2(n) → y(n) = b1y1(n) + b2y2(n) by the linearity
property of H2.
Since v1(n) = H1[x1(n)] and v2(n) = H2[x2(n)], it follows that
A1x1(n)+A2x2(n) yields the output A1H[x1(n)]+A2H[x1(n)], where
H = H1H2. Hence H is linear.

(b) True
For H1, if x(n)→ v(n) and x(n− k)→ v(n− k) for H2, if v(n)→ y(n),
Then v(n−k)→ y(n−k) Hence, for H1H2, x(n)→ y(n) and x(n−k)→
y(n− k)
Therefore H = H1H2 is time invariant.

(c) True
H1 is causal⇒ v(n) depends only on x(k) for k ≤ n
H2 is causal⇒ y(n) depends only on v(k) for k ≤ n
Therefore, y(n) depends only on x(k) for k = n. Hence, H is causal.

(d) True Combine (a) and (b)
(e) True This follows from h1(n) ∗ h2(n) = h2(n) ∗ h1(n)
(f) False

For example, consider H1: y(n) = n x(n) and H2: y(n) = nx(n + 1). Then,
H2[H1[δ(n)]] = H2(0) = 0
H1[H2[δ(n)]] = H1[δ(n + 1)] = − δ(n + 1) �= 0
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(g) False
For example, consider H1: y(n) = x(n) + b and H2: y(n) = x(n) – b,
where b �= 0. Then,
H [x(n)] = H2 [H1(x(n)]] = H2[x(n) + b] = x(n). Hence H is linear.

(h) True
H1 is stable⇒ v(n) is bounded if x(n) is bounded H2 is stable⇒ y(n)
is bounded Hence, y(n) is bounded if x(n) is bounded⇒ H = H1H2 is
stable.

(i) Inverse of (c)
H1 and for H2 are non-causal⇒ H is non-causal
For example: H1: y(n) = x(n + 1), H2: y(n) = x(n − 2) ⇒ H : y(n) =
x(n− 1), which is causal. Hence, the inverse of (c) is False.
Inverse of (h)
H1 and for H2 is unstable, implies H is unstable.
For example, H1: y(n) = ex(n), stable and H2: y(n) = ln [x(n)], which is
unstable.
But H : y(n) = x(n), which is stable. Hence, the inverse of (h) is false.

Problem 2.22
Show that the necessary and sufficient condition for a relaxed LTI system to
be BIBO stable is ∞∑

n=−∞
|h(n)| ≤Mh <∞

for some constant Mh.

Solution 2.22
A system is BIBO stable if and only if a bounded input producer a bounded
output.

y(n) =
∑

k

h(k)x(n− k)

|y(n)| =
∑

k

|h(k)||x(n− k)| ≤Mx

∑
k

|h(k)|,

where |x(n – k)| = M x. Therefore, |y(n)| <∞

for all n, if and only if
∑

k

|h(k)| <∞.
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Problem 2.23
Show that:

(a) A relaxed linear system is causal if and only if for any input x(n) such
that

x(n) = 0 for n < no ⇒ y(n) = 0, for n < no

(b) A relaxed LTI system is causal if and only if h(n) = 0, for n < 0

Solution 2.23
(a) A system is causal⇔ the output becomes nonzero after the input become

non-zero. Hence, x(n) = 0 for n < n0 ⇒ y(n) = 0 for n < no.
(b)

y(n) =
n∑

k=−∞
h(k)x(n− k), where x(n) = 0 for n < 0.

If h(k) = 0 for k < 0, Then y(n) =
n∑

k=0

h(k)x(n− k)

and hence, y(n) = 0 for n < 0. On the other hand, if y(n) = 0 for n < 0,
then

n∑
k=−∞

h(k)x(n− k)⇒ h(k) = 0, k < 0

Problem 2.24
The DT system

y(n) = ny(n− 1) + x(n), n ≥ 0 is at rest [i.e., y(−1) = 0].

Check if the system is linear, time invariant, and BIBO stable.

Solution 2.24
If H[a1y1(n) + a2y2(n)] = a1H[y1(n)] + a2H[y2(n)], the system is linear

H[a1y1(n) + a2y2(n)] = ny1(n− 1) + x1(n) + ny2(n− 1) + x2(n)
And a1H[y1(n)] + a2H[y2(n)], produces ny1(n− 1) + x1(n) + ny2
(n− 1) + x2(n).
Hence, the system is linear.
y(n, k) = (n)y(n− k − 1) + x(n− k)
y(n− k) = (n− k)y(n− k − 1) + x(n− k)
y(n, k) �= y(n− k).
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Hence, the system is time variant.
If x(n) = u(n) [a initial step function] then |x(n)| = 1. But for this bounded

input, the output is
y(0)=1, y(1)=1+1=2, y(2)=2×2+1=5, . . . which is unbounded.
Hence the system is unstable.

Problem 2.25
Determine whether the following signals derived from x(n) are periodic. If
they are periodic, find the fundamental period.

-11 -5 -1 1 4     8 11 

Discrete time signal x(n) 

x[n]   

n 

(a) x[n] = (−1)n

(b) x[n] = (−1)n2

(c) x[n] depicted in Figure
(d) x[n] = cos(2n)
(e) x[n] = cos(2πn)

Solution 2.25
(a) x[n] = (−1)n

For a discrete signal to be periodic,
x[n] = x[n + N ]
For all integers N, n, where N is a positive integer.
Here, N = 2 (fundamental period)

(b) x[n] = (−1)n2

x[n] periodic signal and fundamental period is 1.
(c) For x[n] to be periodic,

x[n] = x(n + 10) The fundamental period is N = 10.
(d) Here x[n] = cos(2n) �= x[n + N ] = x[2(n + N)] for any positive

integer N and, thus x[n] is non-periodic
(e) x[n] = cos(2πn)

x[n] = x[n + 1] for any n and the fundamental period is N = 1
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Problem 2.26
Consider the analog signal xa(t) = 3 cos 100πt

(a) Determine the minimum required sampling rate to avoid aliasing.
(b) Suppose that the signal is sampled at the rate Fs = 200 Hz. What is the

DT signal obtained after sampling?
(c) Suppose that the signal is sampled at the rate Fs = 75 Hz. What is the

DT signal obtained after sampling?
(d) What is the frequency F < Fs/2 of a sinusoid that yields samples

identical to those obtained in part (c)?

Solution 2.26
(a) The frequency of the analog signal is F = 50 Hz. Hence the minimum

sampling rate required to avoid aliasing is Fs = 100 Hz.
(b) The signal is sampled at Fs = 200 Hz, the DT signal is

x(n) = 3 cos
100π

200
n = 3 cos

π

2
n

(c) If the signal is sampled Fs = 75 Hz , the DT signals is

x(n) = 3 cos 100π
75 n = 3 cos 4π

3 n
x(n) = 3 cos

(
2π − 2π

3

)
n = 3 cos 2π

3 n

(d) For the sampling rate of F s = 75 Hz , we have

F = fFs = 75f

The frequency of the sinusoid in part (c) is f = 1
3 . Hence F = 25 Hz.

Clearly, the sinusoidal signal ya(t) = x(Fst) = 3 cos 2πFt = 3 cos 50πt
sampled at Fs = 75 samples/s yields identical samples. Hence F = 50 Hz is
an alias of F = 25 Hz for the sampling rate Fs = 75 Hz.

Problem 2.27
Consider the analog signal xa(t) = 3 cos 2000πt + 5 sin 6000πt + 10 cos
12, 000πt

(a) What is the Nyquist rate for this signal?
(b) Assume the sampling rate Fs = 5000 samples/s. What is the DT signal

obtained after sampling?
(c) What is the analog signal ya(t) we can reconstruct from the samples if

we use ideal interpolation?
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Solution 2.27
(a) The frequencies existing in the analog signal are

F1 = 1 kHz, F2 = 3 kHz, and F3 = 6 kHz,

Thus Fmax = 6 kHz, and according to the sampling theorem,

Fs ≥ 2Fmax = 12 kHz

The Nyquist rate is
FN = 12 kHz

(b) Since we have chosen Fs = 5 kHz, the folding frequency is

Fs

2
= 2.5 kHz

and this is the maximum frequency that can be represented uniquely by
the sampled signal.
From Fk = F0 + kFs, we have F0 = Fk − kFs. F1 = 1 kHz, the other
two frequencies F2 and F3 are above the folding frequency and they will
be changed by the aliasing effect.
Indeed, F ′

2 = F2 − Fs = −2 kHz and F
′
3 = F3 − Fs = 1 kHz

From (2.7) it follows that three digital frequencies f1 = 1
5 , f2 = −2

5 ,
and f3 = 1

5 .
Again using (2.7) we obtain

xn = xa(nT ) = xa

(
n

Fs

)

= 3cos2π

(
1
5

)
n + 5sin2π

(
3
5

)
n + 10cos2π

(
6
5

)
n

= 3cos2π

(
1
5

)
n + 5sin2π

(
1− 1

5

)
n

+ 10 cos 2π

(
1 +

1
5

)
n

= 3cos2π

(
1
5

)
n + 5sin2π

(
−2

5

)
n + 10cos2π

(
1
5

)
n

Finally, we obtain

x(n) = 13 cos 2π(1
5)n− 5 sin 2π(2

5)n
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which are in agreement with the result obtained by (2.7)
Thus F0 can be obtained by subtracting from Fk an integer multiple of
Fs such that Fs/2 ≤ F0 ≤ Fs/2.
The frequency F1 is less than Fs/2 and thus it is not affected by aliasing.

(c) Since only the frequency components at 1 and 2 kHz are present in the
sampled signal, the analog signal we can recover is

ya(t) = y(Fst) = 13 cos 2000πt− 5 sin 4000πt

which is obviously different from the original signal xa(t). This distortion
of the original analog signal was caused by the aliasing effect, due to the
low sampling rate used.

Problem 2.28
Categorize the following signals as an energy or power signal, and find the
energy and power of the signal.

(a) x[n] =

⎧⎨
⎩

n, 0 ≤ n ≤ 5
10− n, 5 ≤ n ≤ 10
0, otherwise

(b) x[n] =
{

cos πn − 4 ≤ n ≤ 4
0, otherwise

Solution 2.28
(a) E =

∑�
n=−� x2[n] =

∑5
n=0 n2 +

∑10
n=5(10− n)2 = 110

Since 0 < E <∞, x[n] is an energy signal

P =
1
N

N−1∑
n=0

x2[n] = 0

(b) E =
∑4

n=−4 cos2(πn) =
∑4

n=−4
(1+cos 2πn

2

)
= 4

Since 0 < E <∞, x[n] is an energy signal

P =
1
N

N−1∑
n=0

x2[n],

where N is the fundamental period here, N = 2

p =
1
2

1∑
n=0

cos2(π n) =
cos2 π

2
= 0

x(n) cannot be a power signal.





3
Convolution and Correlation

This chapter covers: Introduction to convolution, Impulse Response, Convo-
lution sum and its general formula, Properties of convolution, Applications of
convolution, Convolution description and the various methods of calculating
convolution, Introduction to correlation and its general formula, Properties
of correlation, Applications of correlation, Analysis of cross-correlation,
Cross-correlation coefficients, Auto correlation, Correlation description, and
methods of finding correlation, Problems and solutions.

3.1 Introduction

The response of a filter to an impulse is called the impulse response of a filter.
In other words, when the input to a filter is a unit impulse function, the output
of the filter is the unit impulse response. The difference equation for a digital
filter can be used to calculate the impulse response for the filter, and is normally
designated by h(n). In digital convolution, this response is used to calculate the
output for a general input. Convolution is an essential tool for understanding
DSP and will be analyzed here. For one, it provides an alternative to the
difference equation used in filter implementation. In addition, it accounts for
the creation of spectral copies by sampling and by aliasing errors that sampling
can introduce.

Multiplication of the signal x(n) by a unit impulse at some delay k, [i.e.,
δ(n – k)], in essence picks out the single value x(k) of the signal x(n) at the
delay where the unit impulse is non-zero.

If multiplication of x(k) over all possible delays is repeated over the range
−∞< k <∞, and all the product sequences are summed, it will be a sequence
that is equal to the sequence x(n).

x(n) =
∞∑

k=−∞
x(k)δ(n− k). (3.1)

77
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The right side of Equation (3.1) is the summation of an infinite number
of unit sample sequences δ(n – k) and has an amplitude value x(k). Thus, the
right hand side of Equation (3.1) gives the resolution or decomposition of
input signal x(n) sample sequences.

Example 3.1
Consider the special case of a finite duration sequence given as

x(n) =
{
−2, 4

↑
, 0, 3

}
Resolve the sequence x(n) into a sum of weighted

impulse response

Solution 3.1
Since the sequence x(n) is non-zero for the time instants n = –1, 0, 1, 2, we
need impulses at delay k = –1, 0, 1, 2

x(n) =
∞∑

k=−∞
x(k)δ(n− k).

Using the above equation, we get
x(n) = 2δ(n + 1) + 4δ(n) + 0δ(n − 1) + 3δ(n − 2).

3.2 The Convolution Sum

If the response of linear-time invariance (LTI) system to the unit sample
sequence δ(n) is denoted as h(n) (Figure 3.1).

Figure 3.1 A LTI system with and without delay.

Consider a system h(n) = H [δ(n)]. If a delay is applied, then by the time-
invariance property, the response of the system to the delayed unit sample
sequence δ(n – k) is

h(n – k) = H [δ(n – k)]
For each impulse function [δ(n – k)] that forms part of the input

x(n) =
∞∑

k=−∞
x(k) δ (n− k) (3.2)
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for a digital filter, the output is an impulse response h(n – k), i.e., every δ(n – k)
in Equation (3.2) becomes h(n – k) as it passes through the filter. The sample
x(k) provides the weighting of each impulse function. For example, an input
sample x(5) = 4, corresponds to a system input 4δ(n – 5) and gives a filter
output 4h(n – 5). Thus the total output y(n) due to input x(n) is the sum of all
of the weighted impulse response or

y(n) = x(n)⊗ h(n) =
∞∑

k=−∞
x(k) h(n− k). (3.3)

The response y(n) of the LTI system as a function of the input signal x(n)
and the unit sample (impulse) response h(n) is called a Convolution sum. The
input x(n) is convolved with the impulse response h(n) to yield the output.

If the two samples to be convoluted are of finite sequences which is often
the case the above equation becomes

y(n) =
N−1∑
k=0

x(k) h(n− k). (3.4)

Example 3.2
Consider the discrete-time signals depicted in the Figures 3.2 below. Evaluate
the convolution sums indicated below.

Figure 3.2 Discrete time signals for convolution.
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Solution 3.2
y[n] = x[n]⊗ h[n] or y[n] =

∞∑
k =−∞

x[k] δ[n− k]

y(n) = . . . + x[−2] δ[n + 2] + x[−1] δ[n + 1] + x[0] δ[n]
+ x[1] δ[n− 1] + x[2] δ[n− 2] + . . . = 3

3.3 Properties of Convolution

3.3.1 Commutative Law

x(n)⊗ h(n) = h(n)⊗ x(n), (3.5)

Where ⊗ is used as convolution sign.
Convolution satisfies the commutative law (Figure 3.3).

Figure 3.3 Commutative law.

3.3.2 Associative Law

[x(n)⊗ h1(n)]⊗ h2(n) = x(n)⊗ [h1(n)⊗ h2(n)] (3.6)

Convolution operation also fulfils the associative law (Figure 3.4).

Figure 3.4 Associative law.

3.3.3 Distributive Law

The third property satisfied by the convolution operation is the distributive
law (Figure 3.5).

x(n)⊗ [h1(n) + h2(n)] = x(n)⊗ h1(n) + x(n)⊗ h2(n) (3.7)

Figure 3.5 Distributive law.
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Example 3.3
Determine the expression for the impulse response of the LTI system shown
in the figure.

Solution 3.3
y(n) = x(n)⊗ [h1(n)⊗ h2(n)] + x(n)⊗ [h1(n)⊗ h2(n)⊗ h4(n)]

y(n) = [{h1(n)⊗ h2(n)}+ {h1(n)⊗ h2(n)⊗ h4(n)}]x(n)

h(n) = {h1(n)⊗ h2(n)}+ {h1(n)⊗ h2(n)⊗ h4(n)}

3.4 Application of Convolution

3.4.1

Convolution and related operations are found in many applications of
engineering and mathematics.

(1) In electrical engineering, the convolution of one function (the input
signal) with a second function (the impulse response) gives the output of
a LTI system. At any given moment, the output is an accumulated effect
of all the prior values of the input function, with the most recent values
typically having the most influence (expressed as a multiplicative factor).
The impulse response function provides that factor as a function of the
elapsed time since each input value occurred.

(2) In DSP and image processing applications, the entire input function is
often available for computing every sample of the output function. In
that case, the constraint that each output is the effect of only prior inputs
can be relaxed.

(3) Convolution amplifies or attenuates each frequency component of the
input independently of the other components.

(4) In statistics, as noted above, a weighted moving average is a convolution.
(5) In probability theory, the probability distribution of the sum of two

independent random variables is the convolution of their individual
distributions.
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(6) In optics, many kinds of “blur” are described by convolutions. A shadow
(e.g., the shadow on the table when you hold your hand between the table
and a light source) is the convolution of the shape of the light source that
is casting the shadow and the object whose shadow is being cast. An
out-of-focus photograph is the convolution of the sharp image with the
shape of the iris diaphragm. The photographic term for this is Bokeh.

(7) Similarly, in digital image processing, convolutional filtering plays an
important role in many important algorithms in edge detection and related
processes.

(8) In linear acoustics, an echo is the convolution of the original sound with
a function representing the various objects that are reflecting it.

(9) In artificial reverberation (DSP and pro audio), convolution is used to
map the impulse response of a real room on a digital audio signal (see
previous and next point for additional information).

(10) In time-resolved fluorescence spectroscopy, the excitation signal can be
treated as a chain of delta pulses, and the measured fluorescence is a sum
of exponential decays from each delta pulse.

(11) In radiotherapy treatment planning systems, most part of all modern codes
of calculation applies a convolution-superposition algorithm.

(12) In physics, wherever there is a linear system with a “superposition
principle”, a convolution operation makes an appearance.

(13) In geographic information systems, the result of a kernel estimate of
the intensity function of the point pattern is the convolution of the
isotropic Gaussian kernel of a standard deviation with point masses at
each of the data points. (Diggle 1995) cited by documentation of the
“Kernel Smoothed Intensity of Point Pattern” of the SDA4PP QGIS
plugin.

(14) In computational fluid dynamics, the large eddy simulation (LES) turbu-
lence model uses the convolution operation to lower the range of length
scales necessary in computation thereby reducing computational cost.

3.4.2

One of the most widely used applications of convolution in DSP is that of
digital filtering. A digital filter is similar to a digital signal in that it is also a
sequence of numbers. Filtering can be used to remove high-frequency noise
(rapid fluctuations) from a signal and thus can be used to smooth a signal.
Figures given below show how a contaminated signal can been recovered?
A simple way to do this is by the process of averaging which has been
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Figure 3.6 (a, b) Sample of a sine wave and sample of a sine wave with noise added to it,
and (c, d) Coefficients used for averaging the noisy sine-wave signal and result of convolution
between the coefficients and the noisy sine wave.

simulated in Matlab and shown here for understanding one of its applications
(Figure 3.6).

3.5 Methods of Calculating Convolution

Before we enter into the rule of convolution it is advisable to learn the
technique of convolution here, which is very helpful in some of the example
and problems given in this chapter.

3.5.1 Convolution of Delta Function with Delta Function

It is easy to evaluate convolution of δ(n) and δ(n) is equal to δ(n), because both
signal existing at n = 0. Convolution of δ(n) and δ(n – 1) is equal to δ(n – 1).
Convolution of δ(n) and δ(n – 4) is equal to δ(n – 4). But the convolution of
δ(n – 1) and δ(n – 4) is equal to δ(n – 5). The convolution of δ(n + 1) and
δ(n – 4) is equal to δ(n – 3). Similarly the convolution of δ(n – 1) and δ(n + 5)
is equal to δ(n + 4).

It means the inner values of the integer are added up such as δ(n) with
δ(n) its value is equal to δ(n)[0 + 0 = 0], and δ(n – 4) with δ(n + 1) is equal to
δ(n – 3)[1 + –3], therefore, the convolution of δ(n + 4) and δ(n – 1) is equal
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to δ(n + 3)[4 + –1]. Likewise we can generate the rule of thumb for delta
function convolved with delta function, that is δ(n± j) with δ(n± k) is equal
to δ(n ± j ± k).

3.5.2 Convolution of Delta Function with Step Function

All these methods have been verified using Z-transform method. The convo-
lution of δ(n) and u(n) is equal to u(n). The convolution of δ(n) and u(n – 1)
is equal to u(n – 1). The convolution of δ(n) and u(n – 5) is equal to u(n – 5).
Similarly, now we convolute of δ(n – 2) and u(n – 5) is equal to u(n – 7). The
convolution of δ(n – 1) and u(n – 2) is equal to u(n – 3). The convolution of
δ(n – 4) and u(n – 1) is equal to u(n – 5).

It means the final answer comes in u(n) format, inner values of the integer
are added up such as δ(n) with u(n) its value is equal to u(n), δ(n + 1) with
u(n + 1) is equal to u(n + 2), and δ(n – 4) with δ(n + 1) is equal to u(n – 3),
therefore, the convolution of δ(n + 4) and u(n – 1) is equal to u(n + 3). Like
this we can generate the rule of thumb for delta function convolved with step
function, that is δ(n ± j) with u(n ± k) is equal to u(n ± j ± k).

3.5.3 Convolution of Step Function with Step Function

There could be no rule established in case of convolution of u(n) with
u(n). Now the convolution of u(n) and u(n) is equal to (n + 1)u(n). The
convolution of u(n) and u(n – 1) is equal to nu(n). The convolution of u(n) and
u(n – 2) is equal to (n – 1)u(n) + δ(n). The convolution of u(n) and u(n + 1)
is equal to u(n)(n + 2). Similarly the convolution of u(n) and u(n – 2) is equal
to (n – 1)u(n) + δ(n). The convolution of u(n – 2) and u(n – 1) is equal to
nu(n) + 2u(n) + 2δ(n).

The rule of thumb could not be made for convolution of step function
with step function. Students are advised to solve such problem accordingly.
The proof of all these convolutions is easier to calculate by using Z-transform
approach.

Example 3.4
Consider the interconnection of LTI system as shown in the figure.

1. Express the overall impulse response in terms of h1(n), h2(n), h3(n),
and h4(n).

2. Determine y(n) when x(n) = u(n – 1), first find out h(n).
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h1(n) = δ(n − 1)
h2(n) = δ(n − 2)
h3(n) = δ(n − 3)
h4(n) = δ(n + 4)

Solution 3.4
h(n) = h1(n)⊗ [h2(n) + { h3 ⊗ (n) h4(n)}]
h3(n)⊗ h4(n) = δ(n − 3) δ(n) = δ(n − 3)
h2(n) + [ h3(n)⊗ h4(n)] = [δ(n − 2)]+[δ(n + 1)]
h(n) = δ(n − 1)⊗ [δ(n − 2)]+[δ(n + 1)]
h(n) = δ(n − 1)⊗ δ(n − 2) + δ(n − 1)⊗ δ(n + 1)

= δ(n − 3) + δ(n − 3) = 2δ(n− 3)
y(n) = h(n)⊗ x(n) = h(n)⊗ u(n − 1) = 2δ(n − 3)⊗ u(n − 1)

= 2u(n− 4).
It is worth noting at this stage that convolution in the time domain is not
the multiplication of two signals, but is in fact the process where the four
operations of flipping, shifting, multiplication, and addition are required. There
are two formats the question may be presented in this section. In the first
case the input x(n) and the impulse response h(n) is described in terms of
the function format and the second case in which both input x(n) and impulse
response h(n) are provided as a sequence format. Here, both methods of
calculation are covered, i.e., function and the sequence format.

A table for summing the finite and infinite series is given here for
the students to apply in calculating the function format in closed form in
Table 3.1.

3.5.4 Linear Convolution: Function Format

When the functions for input x(n) and impulse h(n) are given the analytical
formula of convolution is employed.

y(n) =
∞∑

k=−∞
x(k)h(n− k).
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Table 3.1 Closed form expression for some commonly used series in convolution
Finite Series Infinite Series
N−1∑

n=0
an = 1 − aN

1 − a

∞∑

n=0
an = 1

1 − a
|a| < 1

N−1∑

n=0
n = 1

2N(N − 1)
∞∑

n=0
n.an = a

(1 − a)2 |a| < 1

N−1∑

n=0
nan = (N − 1)aN+1−NaN +a

(1 − a)2

∞∑

n=0
n2 = 1

6N(N −1)(2N −1)

The steps for calculating are summarised below:

(i) The given x(n) or the input function is written in terms of x(k).
(ii) The given h(n) or the impulse response function is written in terms

of h(k).
(iii) The convolution formula indicates that either sequence can be reversed.
(iv) It is advisable that the simpler looking function be reversed.
(v) The limits of the summation is changed accordingly after seeing the

function and x(k), h(n – k) or h(k), x(n – k) sign is dropped.
(vi) Once we obtain both functions after combining them through the given

tabular series, it is written in closed form.

Example 3.5
Derive a closed-form expression for the convolution of x(n) and h(n) where

x(n) =
(

1
2

)n

u(n)

h(n) =
(

1
4

)n

u(n)

Solution 3.5
The generalized formula for convolution is

y(n) =
∞∑

k=−∞
x(k)h(n− k)

Because both sequences are infinite in length,
x(n) is changed into x(k)

x(k) =
(

1
4

)k

u(k)
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h(n) is changed into h(n – k)

h(n− k) =
(

1
2

)n

u(n− k).

Substituting x(k) and h(n – k) into the convolution sum, we have

y(n) =
∞∑

k=−∞

(
1
4

)k

u(k)
(

1
2

)n−k

u(n− k)

Due to the step u(k) in the first function, the lower limit on the sum may be
changed to k = 0, and the upper limit may be changed to k = n. Thus, for n≥ 0
the convolution sum becomes

y(n) =
n∑

k=0

(
1
4

)k(1
2

)n−k

=
(

1
2

)n n∑
k=0

(
2
4

)k

=
(

1
2

)n n∑
k=0

(
1
2

)k

n ≥ 0.

Using the geometric series to evaluate the sum, we have

y(n) =
(1

2

)n 1−( 1
2)

n+1

1− 1
2

y(n) = 2
(1

2

)n[1− 1
2

(1
2

)n] = 2
(1

2

)n − (1
4

)n
n ≥ 0

OR
The generalized formula for convolution is

y(n) =
∞∑

k=−∞
h(k)x(n− k).

Because both sequences are finite in length,
h(n) is changed into h(n – k)

h(n− k) =
(

1
4

)n−k

u(n− k)

x(n) is changed into x(k)

x(k) =
(

1
2

)k

u(k).
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Substituting x(k) and h(n – k) into the convolution sum, we have

y(n) =
∞∑

k=−∞

(
1
4

)n−k

u(n− k)
(

1
2

)k

u(k).

Due to the step u(k) in the first function, the lower limit on the sum may be
changed to k = 0, and the upper limit may be changed to k = n. Thus, for n≥ 0
the convolution sum becomes

y(n) =
n∑

k=0

(
1
2

)k(1
4

)n−k

=
(

1
4

)n n∑
k=0

(
4
2

)k

=
(

1
2

)n n∑
k=0

(2)k n ≥ 0.

Using the geometric series to evaluate the sum, we have

y(n) =
(1

4

)n 1−2n+1

1−2

y(n) =
(1

4

)n[(2)n+1 − 1
]

=
(1

4

)n[2((2)n − 1] = 2
(1

2

)n − (1
4

)n
n ≥ 0.

Example 3.6
Derive a closed-form expression for the convolution of x(n) and h(n) where

x(n) =
(

1
4

)n−2

u(n) h(n) =
(

1
3

)n

u(n− 3)

Solution 3.6
The generalized formula for convolution is

y(n) =
∞∑

k=−∞
x(k)h(n− k).

Because both sequences are infinite in length,
x(n) is changed into x(k)

x(k) =
(

1
4

)k−2

u(k)

h(n) is changed into h(n – k)

h(n− k) =
(

1
3

)n

u(n− k − 3).
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Substituting x(k) and h(n – k) into the convolution sum, we have

y(n) =
∞∑

k=−∞

(
1
4

)k−2

u(k)
(

1
3

)n−k

u(n− k − 3).

Due to the step u(k) in the first function, the lower limit on the sum may be
changed to k = 0, and the upper limit may be changed to k = n – 3. Thus, for
n ≥ 3 the convolution sum becomes

y(n) =
n−3∑
k=0

(
1
4

)k−2(1
3

)n−k

= 42
(

1
3

)n n−3∑
k=0

(
3
4

)k

n ≥ 3.

Using the geometric series to evaluate the sum, we have

Example 3.7
Convolve x(n) = (0.5)nu(n) with a ramp h(n) = nu(n)

Solution 3.7
The convolution of x(n) with h(n) is y(n) = x(n)⊗ h(n)

=
∞∑

k=−∞
x(k)h(n− k).

Because both sequences are infinite in length
x(n) is changed into x(k), x(k) = (0.5)ku(k)
h(n) is changed into h(n – k), h(n− k) = (n− k)u(n− k)

=
∞∑

k=−∞
[(0.5)ku(k)][(n− k)u(n− k)].

Due to the step u(k) in the first function, the lower limit on the sum may be
changed to k = 0, and the upper limit may be changed to k = n, n > 0. Thus
the convolution sum becomes:

y(n) =
n∑

k=0

(n−k)(0.5)k n ≥ 0 or y(n) = n

n∑
k=0

(0.5)k−
n∑

k=0

k(0.5)k n ≥ 0.

Using the series given in Table 3.1, we have
N−1∑
n=0

nan = (N−1)aN+1−NaN+a
(1−a)2 .

y(n) = n
1− (0.5)n+1

1− 0.5
− n(0.5)n+2 − (n + 1)(0.5)n+1 + 0.5

(1− 0.5)2
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y(n) = n
1− (0.5)n+1

0.5
−n(0.5)n+2 − (n + 1)(0.5)n+1 + 0.5

0.25
= 2 n[1− (0.5)n+1]− 4 [n (0.5)n+2 − (n + 1)(0.5)n+1 + 0.5] n ≥ 0

y(n) = 2 n[1−0.5(0.5)n]−4 [0.25 n (0.5)n−(n+1){0.5(0.5)n+0.5] n ≥ 0

y(n) = 2 n−n(0.5)n−4[0.25 n (0.5)n−0.5n(0.5)n−0.5(0.5)n+0.5] n ≥ 0

y(n) = 2 n− n(0.5)n − n (0.5)n + 2n(0.5)n + 2(0.5)n − 2 n ≥ 0

which may be simplified to

y(n) = [2n− 2 + 2(0.5)n] n ≥ 0.

3.5.5 Linear Convolution: Sequence Format

There are several methods of evaluating convolution of a sequence format;
ultimately the different methods lead to the same solution. The methods can
be classified as follows:

(a) Graphical
(b) Analytical
(c) Matrix
(d) Overlap and Add

3.5.5.1 Linear convolution by graphical method
When presented in sequence, the first operation is done only once, the rest
three are done repeatedly till the overlapping of the signals exists either to the
left or to the right. If the overlapping occurs in both directions the shifting
has to be done in sequence in both directions, i.e., for all possible time shifts
−∞ < n <∞.

The graphical method is included here to give a complete understanding
of how the convolution in the time domain is not only the multiplication of
two signals, but is a complete process consisting of four operations.

These four steps are listed below:

(i) Folding: Fold h(k) about k = 0 to obtain h(–k)
(ii) Shifting: Shift h(–k) by n0 to the right (left) if n is positive (negative), to

obtain h(n0 – k).
(iii) Multiplication: Multiply x(k) by h(n0 – k) to obtain the product sequence

yo(k)x(k) h(n0 − k).
(iv) Summation: Sum all the values of the product sequence yn0(k) to obtain

the values of the output at time n = n0.
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Example given next is included here to help make an understanding on how
the graphical convolution process is carried out.

Example 3.8
Find the convolution y(n) of the system given in Figure.

x(n) and h(n) represntstion for convolution.

Solution 3.8
The function is not given but its impulse response is h(n). The convolution of
the two sequences h(n) and x(n) is represented as y(n) = h(n) × x(n).

We now proceed to applying the four steps of convolution. We begin by
selecting the simpler sequence from the two and then fold it. In this example,
we have selected h(k).

Fold h(k)

Shifting of the folded signal is the second step, but in this step first time
instant (no shifting) gives us a value so step 3 is carried out (n0 = 0).
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Multiplication and summation of the two signals h(–k) and x(n) for the
corresponding discrete-time is done according accordingly as below,

y(0) = x(0) h(0) = (1)(3) = 3.

Now returning to the second step of convolution, the signal h(–k) is shifted to
the right by 1 unit of discrete time (n0 = 1).

Multiplication and summation of the two signals h(1 – k) and x(n) for the
corresponding discrete-time values is done accordingly as below,

y(1) = x(0)h(0) + x(1)h(1) = (1)(2) + (2)(3) = 8.

Now returning to the second step of convolution, the signal h(–k) is shifted to
the right by 2 units of discrete-time (n0 = 2).

Multiplication and summation of the two signals h(1 – k) and x(n) for the
corresponding discrete-time values is done according to the formula given
below

y(2) = x(0)h(0) + x(1)h(1) + x(2)h(2)
y(2) = (1)(1) + (2)(2) + (2)(3) = 11.

Now returning to the second step of convolution, the signal h(–k) is shifted to
the right by 3 units of discrete-time (n0 = 3).
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Multiplication and summation of the two signals h(1 – k) and x(n) for the
corresponding discrete time values is done according to the formula given
below,

y(3) = x(1)h(1) + x(2)h(2) + x(3)h(3)
y(3) = 2x1 + 2x2 + 3x1 = 9.

Now returning to the second step of convolution, the signal h(–k) is shifted to
the right by 4 units of discrete-time (n0 = 4).

Multiplication and summation of the two signals h(1 – k) and x(n) for the
corresponding discrete-time values is done according to the formula given
below,

y(4) = x(2)h(2) + x(3)h(3) + x(4)h(4)
y(4) = 2 × 1 + 2 × 2 + 1 × 3 = 9.

Now returning to the second step of convolution, the signal h(–k) is shifted to
the right by 5 units of discrete-time (n0 = 5).
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Multiplication and summation

y(5) = x(3)h(3) + x(4)h(4)
y(5) = 1× 1 + 1× 2 = 3.

Now returning to the second step of convolution, the signal h(–k) is shifted to
the right by 6 Units of discrete-time (n0 = 6).

Multiplication and summation of the two signals h(1 – k) and x(n) for the
corresponding discrete-time values is done according to the formula given
below,

y(6) = x(4) h(4)
y(6) = x(4)h(4) = (1)(1) = 1.

The entire response of the system for –∞ < n <∞ is shown in the sequence
form and plotted in the figure below

y(n) = { 3, 8
↑
, 11, 9, 7, 3, 1}

3.5.5.2 Linear convolution by analytical method
The analytical method is adopted when calculating the convolution of two
signals in the sequence form in the time domain. We will see how adjustments
are made to the limits of the value y(n). This direct formula method is given
in Equations (3.2) and (3.3).
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y(n) =
∞∑

k=−∞
x(k)h(n− k); y(n) =

N−1∑
k=0

x(k)h(n− k).

Example 3.9
The example previously solved by the graphical method is solved here using
the analytical method. Find the convolution of the two sequences given below.

x(n) = {1
↑
, 2, 2, 1, 1}; h(n) = {3

↑
, 2, 1}.

Solution 3.9
In the given sequence, both the values of x(n) and h(n) start from x(0) and
h(0). Hence, the lower limit will start from k = 0. The final sequence value of
x(n) is four and that of h(n) is two, therefore, the upper limit of the summation
formula will be the summation of 4 + 2 = 6.

y(n) =
6∑

k=0

x(k)h(n− k) OR y(0) =
6∑

k=0

x(k) h(0− k).

y(0) = x(0) h(0) + x(1) h(−1) + x(2) h(−2) + x(3)h(−3)
+ x(4)h(−4) + x(5) h(−5) + x(6) h(−6).

The values of h(–1) to h(–6) are not written because the sequence values for
these bits are not given (i.e., are zeros). Therefore, the expression for y(0)
reduces to

y(0) = x(0) h(0) = (1)(3) = 3

y(1) =
6∑

k=0

x(k) h(1− k).

y(1) = x(0) h(1) + x(1) h(0) + x(2) h(−1) + x(3) h(−2)
+ x(4) h(−3) + x(5) h(−4) + x(6) h(−5)

The values of h(–1) to h(–5) are not written because the sequence values for
these bits are not given (i.e., are zeros). Therefore the expression for y(1)
reduces to

y(1) = x(0)h(1) + x(1)h(0) = (1)(2) + (2)(3) = 8

y(2) =
6∑

k=0

x(k) h(2− k)
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y(2) = x(0) h(2) + x(1) h(1) + x(2) h(0) + x(3) h(−1)
+ x(4) h(−2) + x(5) h(−3) + x(6) h(−4).

The values of h(–1) to h(–4), and x(5) to x(6) are not written because the
sequence values for these bits are not given (i.e., are zeros). Therefore the
expression for y(2) reduces to

y(2) = x(0)h(2) + x(1)h(1) + x(2)h(0)

= (1)(1) + (2)(2) + (2)(3) = 11

y(3) =
6∑

k=0

x(k) h(3− k)

y(3) = x(0)h(3) + x(1)h(2) + x(2)h(1) + x(3)h(0)

+x(4)h(−1) + x(5)h(−2) + x(6)h(−3)

The values of h(–1) to h(–3), h(3), and from x(5) to x(6) are not written because
the sequence values for these bits are not given (i.e., are zeros). Therefore, the
expression for y(3) reduces to

y(3) = x(1)h(2) + x(2) h(1) + x(3)h(0)
= (2)(1) + (2)(2) + (1)(3) = 9

y(4) =
6∑

k=0

x(k) h(4− k)

y(4) = x(0) h(4) + x(1) h(3) + x(2) h(2) + x(3) h(1)

+x(4)h(0) + x(5) h(−1) + x(6) h(−2)

The values of h(–1) to h(–2), h(3) to h(4) and from x(5) to x(6) are not written
because the sequence values for these bits are not given (i.e., are zeros).
Therefore, the expression for y(4) reduces to

y(4) = x(2)h(2) + x(3)h(1) + x(4)h(0) = (2)(1) + (1)(2) + (1)(3) = 7

y(5) =
6∑

k=0
x(k) h(5− k)

y(5)= x(0) h(5) + x(1) h(4) + x(2) h(3) + x(3) h(2)
+ x(4)h(1) + x(5) h(0) + x(6) h(−1)
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The values of h(–1), h(3) to h(6) and from x(5) to x(6) are not written because
the sequence values for these bits are not given (i.e., are zeros). Therefore, the
expression for y(5) reduces to

y(5) = x(0)h(5) + x(1)h(4) + x(2)h(3) + x(3)h(2) + x(4)h(1)
+ x(5)h(0)

= x(3)h(2) + x(4)h(1) = (1) (1) + (1)(2) = 3

y(6) =
6∑

k=0

x(k) h(6− k)

y(6) = x(0) h(6) + x(1) h(5) + x(2) h(4) + x(3) h(3) + x(4) h(2)
+ x(5) h(1) + x(6)h(0).

The value of h(3) to h(6) and from x(5) to x(6) are not written because the
sequence values for these bits are not given (i.e., are zeros). Therefore, the
expression for y(6) reduces to

y(6) = x(4)h(2) = (1)(1) = 1.

So the entire response of the system for −∞ < n <∞ is

y(n) =
{

3, 8, 11
↑

, 9, 7, 3, 1
}

.

3.5.5.3 Linear convolution by matrix method
The matrix method is a quick way of numerically calculating the convolution
of two signals as opposed to the earlier two methods discussed. How the limits
of the final result y(n) is adjusted is evident from the examples.

Example 3.10
Find the linear convolution of the two sequences given below, using matrix
method

x(n) = {1
↑
, 2, 2, 1, 1} h(n) = {3

↑
, 2, 1}

Solution 3.10
Maximum size of the bit in this example is 5, i.e., called N, N – 1 zeros
padding has to be done in either bit for linear convolution. In this example,
N – 1 = 5 – 1 = 4 zeros padding is required. To keep the size of the matrix
small, zeros have been added to h(n).
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(n)
3 0 0 0 0 1 2
2 3 0 0 0 0 1
1 2 3 0 0 0 0
0 1 2 3 0 0 0
0 0 1 2 3 0 0
0 0 0 1 2 3 0
0 0 0 0 1 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(n)
1
2
2
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(n)
3
8

11
9
7
3
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(n) = {3
↑
, 8, 11, 9, 7, 3, 1}.

Example 3.11
Find the linear convolution of the two sequences given below, using the matrix
method

x(n) = {1
↑
, 2, 1} h(n) = {1

↑
, 1}

Solution 3.11
Maximum size of the bit in this example is 3, i.e., called N, N – 1 zeros
padding has to be done in either bit for linear convolution. In this example,
N – 1 = 3 – 1 = 2 zeros padding is required. To keep the size of the matrix
small, zeros have been added to h(n).

⎡
⎢⎢⎢⎢⎣

h(n)
1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x(n)
1
2
1
0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

y(n)
1
3
3
1

⎤
⎥⎥⎥⎥⎦

y(n) = {1
↑
, 3, 3, 1}.

3.5.5.4 Linear convolution by overlap and add method
The overlap and add method is the fastest and simplest method to calculating
the results of convolution. How the limits of the final result y(n) is adjusted
can be seen in the following examples. The method of calculation is as given
here. Write any sequence on top and the second one the left of it. The sequence
which has been placed on left must be written in column format. Multiplying
by each number the top sequence line, draw a slant line and then add up the
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magnitude values, gives us the final value of convolution. It can be easily very
well understood from the following examples.

Example 3.12
Perform the linear convolution of the two sequences below in the time domain
using the Overlap and Add method.

x(n) = {1
↑
, 2, 2, 1, 1} h(n) = {3

↑
, 2, 1}

Solution 3.12
In the given sequences both the values of x(n) and h(n) start at x(0) and h(0).
Hence, the lower limit will start from k = 0. The final sequence value of x(n)
is four and that of h(n) is two, therefore, the upper limit of the summation
formula will be the summation of 4 + 2 = 6.

y(n) = x(n)× h(n) y(0) = 3
y(1) = 8, y(2) = 11
y(3) = 9, y(4) = 7
y(5) = 3, y(6) = 1

One sequence x(n) = {1, 2, 2, 1, 1} is written here on the top of the table,
while the other sequence h(n) = {3, 2, 1} is placed on the left hand side of
the table in column format, each h(n) value is multiplied with the x(n) values
and written in the table. Then finally it is added as in the above example. The
correctness of the linear convolution can be checked and verified by using
the formula which indicates that the multiplication of summation of both
sequences is equal to the summation of the output y(n).
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y(n) =
∑

h(k) x(n− k)

∑
y(n) =

∑∑
h(k)x(n− k) =

∑
h(k)

+∞∑
n=−∞

x(n− k)

=
(∑

h(k)
)(∑

x(k)
)

∑
y(n) = 42,

∑
h(k) = 6

∑
x(k) = 7.

The four different methods for calculation of linear convolution ultimately
lead to the same solution as described above.

Example 3.13
Perform the linear convolution of the two sequences below in the time domain
using the Overlap and Add method.

x(n) = {1
↑
, 2, 1} h(n) = {1

↑
, 1}

Solution 3.13
In the given sequences, both the values of x(n) and h(n) start at x(0) and
h(0). Hence, the lower limit will start from k = 0. The final sequence value
of x(n) is 3 and that of h(n) is 2, therefore, the final answer of the will be
3 + 2 – 1 = 4.

y(n) = x(n)× h(n) y(0) = 1
y(1) = 3,
y(2) = 3,
y(3) = 1

y(n) = {1,
↑

3, 3, 1}

∑
y(n) =

∑∑
h(k)x(n− k) =

∑
h(k)

+∞∑
n=−∞

x(n− k)

=
(∑

h(k)
)(∑

x(k)
)

∑
y(n) = 8,

∑
h(k) = 2

∑
x(k) = 4.
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3.5.6 Circular Convolution

The easiest method of evaluating circular convolution is the matrix method,
in which no additional zero padding is required as it was in the case of linear
convolution and the sizes of resultant sequence bits is the same as larger
sequence.

Example 3.14
Find the circular convolution of the two sequences given below, using the
matrix method

x(n) = {1
↑
, 2, 2, 1, 1} h(n) = {3

↑
, 2, 1}

Solution 3.14
Here maximum size of the sample in this example is 5, therefore, only two
zeros are required to be padded up in h(n) make a square matrix, not in x(n)
as it was the case of linear convolution.

⎡
⎢⎢⎢⎢⎢⎢⎣

x(n)
1 1 1 2 2
2 1 1 1 2
2 2 1 1 1
1 2 2 1 1
1 1 2 2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

h(n)
3
2
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

y(n)
6
9

11
9
7

⎤
⎥⎥⎥⎥⎥⎥⎦

y(n) = {6
↑
, 9, 11, 9, 7}.

Example 3.15
Find the circular convolution of the two sequences given below, using the
matrix method

x(n) = {1
↑
, 2, 1} h(n) = {1

↑
, 1}
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Solution 3.15
Maximum size of the bit in this example is 3, therefore, only one zero is
required to be padded up in h(n) to make a square matrix

⎡
⎢⎢⎣

h(n)
1 0 1
1 1 0
0 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(n)
1
2
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y(n)
2
3
3

⎤
⎥⎥⎦y(n) = {2

↑
, 3, 3}

Because convolution is a commutative process we prove in this example.
⎡
⎢⎢⎣

x(n)
1 1 2
2 1 1
1 2 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

h(n)
1
1
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y(n)
2
3
3

⎤
⎥⎥⎦y(n) = {2

↑
, 3, 3}

3.6 Correlation

Correlation is a relationship that exists between objects, phenomena, or signals
and occurs in such a way that it cannot be by chance alone. Unconsciously
correlation is being used every day without its realization. How does one
recognize his parents, his friends, his car, or his house? Mental images of
each of these are already present. When one’s eyes look at another person, car
or house, his brain attempts to match the incoming image with hundreds (or
thousands) of images that are already stored in their memory.

Recognition occurs when the incoming images bears a strong correlation
with an image in memory that “best” corresponds to fit or is most similar to
it. This process also helps one to distinguish between say, a dog and a cat, a
rose and sunflower, or a train and an airplane.

A similar process is used in DSP to measure the similarity between two
signals. This process is known as autocorrelation, if the two signals are exactly
the same and as cross-correlation, if the two signals are different.

Since correlation measures the similarity between two signals, it is quite
useful in identifying a signal by comparing it with a set of known reference
signals. For example, the signal from an unknown aircraft can be correlated
with a number of reference signals that have been pre-recorded from different
types of aircrafts whose identity was known. The reference signal that results
in the lowest value of the correlation with the unknown signals is most likely
the identity of the unknown aircraft.
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Correlation combines the following three operations,
1. Shifting.
2. Multiplication.
3. Addition (also known as accumulation)

3.7 Properties of Correlation

The properties of correlation listed here are critical for the understanding and
calculation of cross- and auto-correlation.

(a) The auto-correlation is always an even sequence, i.e.,

rxx(j) = rxx(−j) (3.8)

(b) The cross-correlation satisfies the following relationship.

rxy(j) = ryx(−j) (3.9)

(c) Correlation can be performed by using the convolution property shown
below

rxy(j) = x(n)⊗ y(−n) and ryx(j) = y(n)⊗ x(−n) (3.10)

The third property of correlation can be easily verified using over lap and
method.

3.8 Application of Correlation

Correlation of signals is often encountered in radar, sonar, digital commu-
nications, geology, and other areas of science and engineering. To be very
specific, let us suppose that we have two sequences x(n) and y(n) that we wish
to compare.

In radar and sonar applications x(n) may represent the sampled version
of the transmitted signal and y(n) may represent the sampled version of the
received signal at the output of the analog-to-digital (A/D) converter. If the
target in space is being searched by the radar or sonar, the received signal
y(n) consists of a delayed version of the transmitted signal, reflected from the
target, and corrupted by the additive noise.

We may represent the received signal sequence as y(n) = αx(n – D) + w(n),
where α is some attenuation factor representing the signal loss involved in the
round trip transmission of the signal x(n), D is the round trip delay, which is
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assumed to be an integer multiple of the sampling interval, and w(n) is the
additive noise which has been picked up by the antenna and the noise generated
by the electronics components and amplifiers contained in the front end of the
receiver. On the other hand, if there is no target in the space searched by the
radar and sonar, the received signal y(n) consists of noise alone.

Further application areas include the following:

• Image processing for robotic vision.
• Remote sensing by satellite in which data from different images is

compared.
• Radar and sonar systems for range and position finding in which

transmitted and reflected waveforms are compared.
• Detection and identification of signals in noise, and control engineering

for observing the effect of inputs on outputs.
• Identification of binary code words in pulse code modulation systems

using correlation detectors, as an integral part of the ordinary least squares
estimation technique.
• Computation of the average power in waveforms, and in many other

fields, such as, for example, climatology. Correlation is also an integral
part of the process of convolution. The convolution process is essentially
the correlation of two data sequences in which one of the sequences has
been reversed. Same algorithms may be used to compute correlations and
convolutions simply by reversing one of the sequences. The process of
convolution gives the output from a system, which filters the input. The
spectrum of a recorded signal consists of the convolution of the spectrum
of the signal with the spectrum of its window function.

Figure 3.8 A sine wave and its auto-correlation. The auto-correlation of a sine wave is a sinc
function.
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Figure 3.9 Random noise and its auto-correlation: the auto-correlation of random noise is
an impulse.

Figure 3.10 Sine wave buried in noise and its auto-correlation. The autocorrelation clearly
shows the presence of noise and a periodic signal.

The use of cross-correlation is to detect and estimate periodic signals in
noise. Signal buried in noise can be estimated by cross-correlating it with
an adjustable template signal. The template is adjusted by trial and error,
guided by any foreknowledge, until the cross-correlation function has been
maximized. This template is then the estimate of the signal.

The following are the few graphs which show clearly the recovery of actual
signal mixed with random noise (Figures 3.8–3.10).

3.9 Types of Correlation

3.9.1 Cross-Correlation

The cross-correlation function (CCF) is a measure of the similarities or shared
properties between two signals. Application of CCF’s include cross spectral
density, detection/recovery of signals buried in noise, the detection of radar
return signals, pattern, and delay measurement.
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The general formula for cross-correlation rxy(n) between two data
sequences x(n) and y(n) each containing N data might therefore be written as

rxy =
N−1∑
n=0

x(n) y(n). (3.11)

If the two waveforms varied similarly point to point, then a measure of
their correlation might be obtained by taking the sum of the products of the
corresponding pair of points. This proposal becomes more convincing when
the case of two independent and random data sequences is considered.

In this case the sum of the products will tend toward a vanishingly small
random number as the number of pairs of points is increased. This is because all
numbers, positive and negative, are equally likely to occur so that the product
pairs tend to be self-cancelling on summation. By contrast, the existence of a
finite sum will indicate a degree of correlation.

A negative sum will indicate negative correlation, i.e. an increase in one
variable is associated with a decrease in the other variable.

This definition of cross-correlation, however, produces a result, which
depends on the number of sampling points taken. This is corrected for by
normalizing the result to the number of points by dividing by N. Alternatively
this may be regarded as averaging the sum of products.

Thus, an improved definition presented in which j has been designated as
lag between two signals

rxy(j) =
1
N

N−1∑
n=0

x(n) y(n) (3.12)

3.9.2 Auto-Correlation

The auto-correlation function (ACF) involves only one signal and provides
information about the structure of the signal or its behaviour in the time
domain. It is a special form of CCF and is used in similar applications. It
is particularly useful in identifying hidden properties.

rxx =
N−1∑
n=0

x(n) x(n) (3.13)
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Figure 3.11 Auto-correlation function of a random waveform.

The auto-correlation function has one very useful property that is

r11(j) =
1
N

N−1∑
n=0

x2(n) = S. (3.14)

Here j has been designated as lag between two signals, if there is no lag j is
equal to zero, where S is the normalized energy of the waveform. This provides
a method for calculating the energy of a signal. If the waveform is completely
random, for example corresponding to that of white, Gaussian noise in an
electrical system, then the auto-correlation will have its peak value at zero lag
and will reduce to random fluctuation of small magnitude about zero for lags
greater than about unity (Figure 3.11). This also constitutes a test for random
waveforms.

r11(0) ≥ r11(j).

Example 3.16
The calculation of r12 is illustrated using Equation (3.12) in the following
example, in which the point numbers in the data sequences are n and the
sequences are x1 and x2.

n 0 1 2 3 4 5 6 7 8
x1 4 2 –1 3 –2 –6 –5 4 5
x2 –4 1 3 7 4 –2 –8 –2 –1

Solution 3.16
r12 = 4× (−4) + 2× 1 + (−1)× 3 + 3× 7 + (−2)× 4 + (−6)× (−2)

+ (−5)× (−8) + 4× (−2) + 5× (−1)
r12 = 34.92
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3.10 Further Analysis of Cross-Correlation

The definition of correlation needs modification to be used in a better
way. The waveforms are clearly highly correlated, even if they are out of phase.
The phase difference could, for example, occur because x1 is the reference
signal while x2 is the delayed output from a circuit. To overcome such phase
differences it is necessary to shift, or lag, one of the waveforms with respect
to the other.

r12(j) =
1
N

N−1∑
n=0

x1(n) x2(n + J) (3.15)

r12(−j) =
1
N

N−1∑
n=0

x1(n) x2(n− J). (3.16)

Typically x2 is shifted to the left to align the waveforms prior to correlation.

Figure 3.12 Waveform x2 = x1 + j shifted j lags to the left of waveform x1.

As illustrated in Figure 3.12 this is equivalent to changing x1(n) to x2(n + j),
where j represents the amount of lag which is the number of sampling points by
which x2 has been shifted to the left. An alternative, but equivalent, procedure
is to shift x1 to the right.

Example 3.17
Find the cross-correlation r12(3) of the two sequence.

n 0 1 2 3 4 5 6 7 8
x1 4 2 –1 3 –2 –6 –5 4 5
x2 –4 1 3 7 4 –2 –8 –2 –1

Solution 3.17
The second sequence has to be shifted to the left by 3 units
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n 0 1 2 3 4 5 6 7 8
x1 4 2 –1 3 –2 –6 –5 4 5
x2 7 4 –2 –8 –2 –1

r12(3) = 1/9 (4× 7 + 2× 4 + (−1)× (−2) + 3× (−8) + (−2)
×(−2) + (−6)× (−1))

r12(3) = 2.667

There is another difficulty associated with cross-correlating finite lengths of
data. This can be seen in the above example in which r12(3) = 2.667 was
determined. As x2 is shifted to the left by 3 units the waveforms no longer
overlap and data at the ends of the sequences no longer form pair products.
This is known as the end effect.

In the example the number of pairs has dropped from 9 to 6 for a lag of
3. This results in a linear decrease of r12( j) because of increasing j, which
leads to debatable values of r12( j). There are two possible solutions available
to cater end effect.

One possible solution is to make one of the sequences twice as long as the
required length for correlation. This should be achieved by recording more
data, or, if one of the sequences were periodic, by repeating the sequence.

Example 3.18
The data values of one pair of waveforms x1(n), x2(n) are shown in the tabular
form below. Calculate r12(0) and r12(1).

n 0 1 2 3 4 5 6 7 8
x1(n) 0 3 5 5 5 2 0.5 0.25 1
X2(n) 1 2 3 4 1 2 3 4 1

Solution 3.18
For calculating the value of r12(1), it is assumed that the signal is periodic.

r12(0) = 1/9 (0× 1 + 3× 2 + 5× 3 + 5× 4 + 5× 1 + 2× 2 + 0.5× 3
+ 0.25× 4 + 1× 1)

r12(0) = 5.944

n 0 1 2 3 4 5 6 7 8
x1(n) 0 3 5 5 5 2 0.5 0.25 1
x2(n) 2 3 4 1 2 3 4 1 1
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r12(1) = 1/9 (0× 2 + 3× 3 + 5× 4 + 5× 1 + 5× 2 + 2× 3 + 0.5× 4
+ 0.25× 1 + 1× 1)

r12(1) = 6.0278

Example 3.19
The calculation of r12 is illustrated using improved definition in the following
example, in which the point numbers in the data sequences are the n, and the
sequences are x1 and x2.

n 0 1 2 3 4 5 6 7 8
x1 4 2 –1 3 –2 –6 –5 4 5
x2 –4 1 3 7 4 –2 –8 –2 –1

Solution 3.19
x(n) = δ(n + 2) + 3δ(n− 1)− 4δ(n− 3)

r12 = 1/9 (4× (−4) + 2× 1 + (−1)× 3 + 3× 7 + (−2)× 4 + (−6)
× (−2) + (−5)× (−8) + 4× (−2) + 5× (−1))

r12 = 3.88.

Example 3.20
Find the auto-correlation coefficient ρ11(0) of the signal given in tabular form

n 0 1 2 3 4 5 6 7 8 9
x(n) 4 3 3 3 2 0 1 2 3 4

Solution 3.20
Cross-correlations ρ11(0) is found as

r11(0) = 7.7

1
N

{
N−1∑
n=0

x2
1(n)

}
=

1
10
{(77)} = 7.7

ρ11(0) =
r11(0)
7.7

=
7.7
7.7

= 1.0.

Now ρ11(0) demonstrates that auto-correlation of the sample sequence is equal
to 1, it means it is highly correlated.

Another possible solution is to add a correction to all computed values.
Figure 3.13 shows how r12( j) decreases with j as a result of the end effect.
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Figure 3.13 The effect of the end-effect on the cross-correlation r12( j).

At j = 0, r12( j) = r12(0), which can be computed. At j = N, r12(N ) = 0,
because the waveforms no longer overlap. In between, at some lag j, the true
value of r12( j) is r12( j) true while the actual value caused by the end effect
is r12( j). Then, from the triangle of Figure 3.13, we developed the following
equation.

r12(j)true − r12(j)
j

=
r12(0)

N
(3.17)

r12(j)true = r12(j) +
j

N
r12(0). (3.18)

Computed values of the cross-correlation are therefore easily corrected
to get r12(j)true to cater end effects by adding j r12(0)/N to the values
of r12( j).

Example 3.21
The data values of one pair of waveforms x1(n), x2(n) are shown in the tabular
form below. Calculate r12(0)true and r12(1)true.

n 0 1 2 3 4 5 6 7 8
x1(n) 0 3 5 5 5 2 0.5 0.25 1
x2(n) 1 2 3 4 1 2 3 4 1

Solution 3.21

n 0 1 2 3 4 5 6 7 8
x1(n) 0 3 5 5 5 2 0.5 0.25 1
x2 (n) 1 2 3 4 1 2 3 4 1
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r12(0) = 1/9 (0× 1 + 3× 2 + 5× 3 + 5× 4 + 5× 1 + 2× 2 + 0.5× 3
+ 0.25× 4 + 1× 1)

r12(0) = 5.944

For the value of r12(1), now it is assumed that the signal is non-periodic.

n 0 1 2 3 4 5 6 7 8
x1(n) 0 3 5 5 5 2 0.5 0.25 1
x2(n) 2 3 4 1 2 3 4 1 0

r12(1) = 1/9 (0× 2 + 3× 3 + 5× 4 + 5× 1 + 5× 2 + 2× 3 + 0.5× 4
+ 0.25× 1 + 1× 0)

r12(1) = 5.8055

r12(j)true = r12(j) + j
N r12(0)

r12(1)true = 5.8055 + j
N r12(0)

r12(1)true = 5.8055 + 1
9(5.944) = 6.4659.

3.11 Cross-Correlation Coefficient

The cross-correlation coefficients value shows how much the two signal are in
correlation with each other. The values are computed according to the above
formulae depending on the values of the data. It is often necessary to measure
cross-correlations according to the fixed scale between –1 and +1, which is
named as cross-correlation coefficients.

This situation can be rectified by normalizing the cross-correlation r12( j)
by the factor given in Equation (3.19)

1
N

{
N−1∑
n=0

x2
1(n)×

N−1∑
n=0

x2
2(n)

}1/2

=
1
N

{
N−1∑
n=0

x2
1(n)

N−1∑
n=0

x2
2(n)

}1/2

.

(3.19)
The normalized expression for r12( j) then becomes ρ12( j)

ρ12(j) =
r12(j)true

1
N

[
N−1∑
n=0

x2
1(n)

N−1∑
n=0

x2
2(n)

]1/2 (3.20)

Its values always lie between –1 and +1. +1 means 100% correlation in the
same sense, –1 means 100% correlation in the opposing sense, for example,
signals in anti-phase.
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A value of 0 signifies zero correlation. This means the signals are com-
pletely independent. This would be the case, for example, if one of the
waveforms were completely random.

Small value of ρ12( j) indicates very low correlation between two signals.
This can be achieved by normalizing the values by an amount depending
on the energy content of the data. Consider the two pairs of waveforms
x1(n), x2(n), and x3(n), x4(n). The data values are given in the tabular form
below.

n 0 1 2 3 4 5 6 7 8
x1(n) 0 3 5 5 5 2 0.5 0.25 0
x2(n) 1 1 1 1 1 1 0 0 0
x3(n) 0 9 15 15 15 6 1.5 0.75 0
x4(n) 2 2 2 2 2 2 0 0 0

As may be seen from Figure 3.14, if the data points are plotted, waveforms
x1(n) and x3(n) are alike, differing only in magnitude. The same is true of the
pair x2(n) and x4(n).

The correlation between x1(n) and x2(n) is therefore the same as that
between x3(n) and x4(n), which is proved in the example given below.

Figure 3.14 Pairs of waveforms {x1(n), x2(n), x3(n), x4(n)} of different magnitudes but
equal cross-correlations.
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Example 3.22
The data values of two pairs of waveforms x1(n), x2(n), and x3(n), x4(n) are
shown in the table below.

n 0 1 2 3 4 5 6 7 8
x1(n) 0 3 5 5 2 0.5 0.25 0
x2(n) 1 1 1 1 1 1 0 0 0
x3(n) 0 9 15 15 15 6 1.5 0.75 0
x4(n) 2 2 2 2 2 2 0 0 0

Find the correlation between coefficients ρ12(1) and ρ34(1) between x1(n)
and x2(n) and x3(n) and x4(n).

Solution 3.22
The cross-correlations ρ12(1) and ρ34(1) is calculated as follows

r12(0) = 1/9 (0× 1 + 3× 1 + 5× 1 + 5× 1 + 5× 1 + 2× 1 + 0.5
× 0 + 0.25× 0 + 0× 0)

r12(0) = 2.22

r34(0) = 1/9 (0× 2 + 9× 2 + 15× 2 + 15× 2 + 15× 2 + 6× 2 + 1.5
× 0 + 0.75× 0 + 0× 0)

r34(0) = 13.33

r12(1) = 1/9 (0× 1 + 3× 1 + 5× 1 + 5× 1 + 5× 1 + 2× 0 + 0.5
× 0 + 0.25× 0 + 0× 0)

r12(1) = 2

r34(1) = 1/9 (0× 2 + 9× 2 + 15× 2 + 15× 2 + 15× 2 + 6× 0 + 1.5
× 0 + 0.75× 0 + 0× 0)

r34(1) = 12

r12(1)true = r12(1) +
1
9
r12(0) r12(1)true = 2 +

2.22
9

= 2.246

r34(1)true = r34(1) +
1
9
r34(0) r34(1)true = 12 +

13.33
9

= 13.48.

The normalizing factor for r12( j) in the above illustration is introduced below

1
N

{
N−1∑
n=0

x2
1(n)×

N−1∑
n=0

x2
2(n)

}1/2

=
1
9
{(88.31)× (6)}1/2 = 2.5577
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and for r34(j) it is

1
N

{
N−1∑
n=0

x2
3(n)×

N−1∑
n=0

x2
4(n)

}1/2

=
1
9
{794.8)× (24)}1/2 = 15.346.

Therefore

ρ12(1) =
r12(1)
2.5577

=
2.246
2.5577

= 0.8785 and

ρ34(1) =
r34(1)

15.346577
=

13.486
15.346

= 0.8785.

Now ρ12(1) = ρ34(1) which demonstrates that this normalization process
indeed allows a comparison of cross-correlations independently of the absolute
data values.

Example 3.23
Find the auto correlation coefficient ρ11(2) of the signal given in tabular form

n 0 1 2 3 4 5 6 7 8 9
x1(n) 4 3 3 3 2 0 1 2 3 4

Solution 3.23

n 0 1 2 3 4 5 6 7 8 9
x1(n) 4 3 3 3 2 0 1 2 3 4
x2(n) 3 3 2 0 1 2 3 4 0 0

Cross-correlations ρ11(2) is found as

r12(2)true = r12(2) +
2
10

r12(0) r12(2)true = 4 +
2(7.7)

10
= 5.54.

The normalizing factor for r12(0) in the above illustration is calculated as
below

1
N

{
N−1∑
n=0

x2
1(n)×

N−1∑
n=0

x2
2(n)

}1/2

=
1
10
{(77)× (77)}1/2 = 7.7.

Therefore

ρ11(2) =
r11true(2)

7.7
=

5.54
7.7

= 0.7914

ρ11(2) demonstrate that auto-correlation of the sample sequence is decreased
and is not equal to 1, although even by using the true value of r12.
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3.12 Correlation Methods

There are several methods of evaluating cross- and auto-correlation; ultimately
the different methods lead to the same solution. Here, these methods can be
classified as

(a) Graphical
(b) Analytical
(c) Tabular Shifting
(d) Convolution Property using Overlap and Add

This definition of cross-correlation is further elaborated here which produces
results, which is largely used and very similar to Equation (3.15) but this time
the value of the cross correlation is not being divided by (number of sample
points) N.

The two digital signal sequences x(n) and y(n) each of which has a finite
energy. The general formula for the cross-correlation Equation (3.15) thus
becomes

rxy(j) =
∞∑

n=−∞
x(n)y(n− j) j = 0, ±1, ±2, . . . (3.21)

rxy(j) =
∞∑

n=−∞
x(n + j)y(n) j = 0, ±1, ±2, . . . (3.22)

The index j is the (time) shift (or lag) parameter and the subscripts xy on the
cross correlation sequence rxy( j) indicate the sequence being correlated. The
order of the subscripts, with x preceding y, indicates the direction in which
one sequence is shifted, relative to other.

To elaborate in Equation (3.21), the sequence x(i) is left unshifted and
y(n) is shifted by j units of time, to the right for j positive and to the left for j
negative.

Equivalently, in Equation (3.22), the sequence y(n) is left unshifted, and
sequence x(n) is shifted by j units of time, to the left for j positive and to the
right for j negative. But shifting x(n) to the left by j units relative to y(n) is
equivalent to shifting y(n) to the right by j units relative to x(n).

In the reverse the role of x(n) and y(n) in Equations (3.23) and (3.24)
and hence reverse the order of the indices xy, we obtain the cross-correlation
sequence.

ryx(j) =
∞∑

n=−∞
x(n)y(n− j) j = 0, ±1, ±2, . . . (3.23)
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ryx(j) =
∞∑

n=−∞
y(n + j)x(n) j = 0, ±1, ±2, . . . (3.24)

By comparing Equation (3.22) with Equations (3.25) or (3.23) with Equation
(3.24), we conclude that

rxy(j) = ryx(−j), (3.25)

Therefore, ryx( j) is the folded version of rxy( j), where the folding is done
with respect to j = 0. Hence ryx( j) provides exactly the same information as
rxy( j) about the similarity of x(n) to y(n).

In dealing with finite duration sequences, it is customary to express the
auto correlation and cross correlation in terms of finite limits on summation. In
particular if x(n) and y(n) are causal sequences of length N [i.e., x(n) = y(n) = 0
for n < 0 and n ≥ N ], the cross correlation and auto correlation sequences
may be expressed as

rxy(j) =
N−|K|−1∑

n=i

x(n) y(n− j) j = 0, ±1, ±2, . . . (3.26)

rxx(j) =
N−|K|−1∑

n=i

x(n) x(n− j) j = 0, ±1, ±2, . . . (3.27)

where N is the maximum length of the either sequence and i = j, k = 0 for
j ≥ 0, and i = 0, k = j for j < 0.

3.12.1 Correlation by Graphical Method

Example 3.24
Find the correlation ryx( j) of the samples of sequences given in Figure.

Discrete representation for cross-correlation of x(n) and y(n)
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Solution 3.24

rxy(j) =
∞∑

n=−∞
x(n) y(n− j) j = 0,±1,±2, . . .

Here index j is the time shift (or lag) parameter and the subscripts xy on the
cross-correlation sequence rxy( j) indicate the sequence being correlated.

To elaborate the above equation, the sequence x(n) is left unshifted and
y(n) is shifted by j units of time, to the right for j positive and to the left for j
negative.



3.12 Correlation Methods 119

rxy =
{

1, 3, 6, 10, 15, 15
↑

, 14, 12
↑

, 9, 5
}

3.12.2 Correlation by Analytical Method

Analytical method uses the formula directly. The following examples have
been included to explain the procedure.

Example 3.25
Find the cross-correlation of the signal given in tabular form

n 0 1 2 3
x(n) 4 3 1 6
y(n) 5 2 3

Solution 3.25
Here in this example the sequence x(n) and y(n) are causal,

rxy(j) =
∞∑

n=−∞
x(n) y(n− j) j = 0,±1,±2, . . .

Here the sequence lengths are 4 and 3 and the number of lags necessary is
4 + 3 –1 = 6 (that is sample size after correlation)

rxy(j) =
5∑

n=0

x(n)y(n− j) j = 0,±1,±2, . . .

rxy(j) = x(0) y(0− j) + x(1) y(1− j) + x(2) y(2− j) + x(3) y(3− j)
+ x(4) y(4− j) + x(5) y(5− j)

because the value of x(4) and x(5) is given zero in the problem, so deleting
the two additional terms.

rxy(j) = x(0) y(0− j)+x(1) y(1− j)+x(2) y(2− j)+x(3) y(3− j)
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now substituting the value of 0, ±1, ±2, . . . in the above expression

rxy(0) = x(0)y(0) + x(1)y(1) + x(2)y(2) + x(3)y(3)
= (4)(5) + (3)(2) + (1)(3) = 29

rxy(1) = x(0) y(−1) + x(1) y(0) + x(2) y(1) + x(3) y(2)
= (3)(5) + (1)(2) + (6)(3) = 35

rxy(−1) = x(0) y(1) + x(1) y(2) + x(2) y(3) + x(3) y(4)
= (4)(2) + (3)(3) = 17

rxy(−2) = x(0) y(2) + x(1) y(3) + x(2) y(4) + x(3) y(5) = (4)(3) = 12
rxy(3) = x(0) y(−3) + x(1) y(−2) + x(2) y(−1) + x(3) y(0)

= (6)(5) = 30
rxy(2) = x(0) y(−2) + x(1) y(−1) + x(2) y(0) + x(3) y(1)

= (1)(5) + (6)(2) = 17

rxy(j) = {12, 17, 29, 35, 17, 30}.
The above example can be solved also using the formula shown below, which
is not solved here and left for students.

rxy(j) =
N−|K|−1∑

n=i

X(n) Y(n− j) j = 0, ±1, ±2, . . .

where N is the maximum length of the either sequence and i = j, k = 0 for
j ≥ 0, and i = 0, k = j for j < 0.

3.12.3 Correlation by Tabular Shifting Method

For calculating the linear correlation using tabular form zero padding is
selected, if the sequence lengths are N 1 and N 2 and the number of lags
necessary is N 1 + N 2 – 1 is required. This reveals the general rule for obtaining
the linear cross-correlation two periodic sequences of lengths N 1 and N 2: add
augmenting zeros to each sequence to make the lengths of each sequence
N 1 + N 2 – 1.

This may be expressed as adding N 2 – 1 zeros to the sequence of
length N 1 and adding N 1 – 1 zeros to the sequence of length N 2. The
following example shows the procedure for length of correlated sequence,
zeros padding, repetition of the sequence but does not show the location of zero
sequence.

Example 3.26
What will be the cross-correlation length of the signal after zero padding?
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n 0 1 2 3
x(n) 4 3 1 6
y(n) 5 2 3 0

Solution 3.26
Here the sequence lengths are 4 and 3 and the number of lags (size of the
correlated sample) necessary is 4 + 3 – 1 = 6. Therefore 2 zeros padding is
required in the larger sample.

n 0 1 2 3 4 5
x(n) 4 3 1 6 0 0
y(n) 5 2 3 0 0 0

If j < 0, negative, left shifting is carried out.
If j > 0, positive, right shifting is carried out.

This is now demonstrated for the given sequences x and y.

Sequence Lag rxy( j)
4 3 1 6 0 0 j
5 2 3 0 0 0 0 0 no shifting 29
2 3 0 0 0 5 –1 I unit left shifting 17
3 0 0 0 5 2 –2 2 units left shifting 12
0 0 0 5 2 3 3 3 units right shifting 30
0 0 5 2 3 0 2 2 units right shifting 17
0 5 2 3 0 0 1 1 unit right shifting 35
5 2 3 0 0 0 Repetition starts 29

Thus, the required linear cross-correlation of x and y is

rxy(j) = {12, 17, 29, 35, 17
↑

, 30}.

3.12.4 Correlation by Convolution Property Method

The convolution property method is easiest method to find the linear
auto and cross correlation. It uses the properties that rxy( j) = ryx(–j);
r12( j) = x1(n) ⊗ x2(–n) and r21( j) = x2(n) ⊗ x1(–n). It is evident from
examples

Example 3.27
Prove that the auto-correlation of the signal given in tabular form is an even
sequence.
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n 0 1 2 3
x(n) 1 2 1 1
y(n) 1 2 1 1

Solution 3.27
rxx(j) = x(n)⊗ x(−n)

x(n) =
{

1
↑

2 1 1
}

x(−n) =
{

1 1 2 1
↑

}

y(−3) = 1, y(−2) = 3
y(−1) = 5, y(0) = 7

y(1) = 5, y(2) = 3, y(3) = 1

ryx(j) =
{

1, 3, 5, 7
↑
, 5, 3, 1

}

Example 3.28
Find the cross-correlation ryx of the signal given in tabular form using
convolution property.

n 0 1 2 3
x(n) 4 3 1 6
y(n) 5 2 3 0
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Solution 3.28
For ryx(j) = x(−n)⊗ y(n)

x(n) =
{

4
↑

3 1 6
}

y(n) =
{

5
↑

2 3
}

x(−n) =
{

6 1 3 4
↑

}
y(n) =

{
5
↑

2 3
}

y(−3) = 30, y(−2) = 17
y(−1) = 35, y(0) = 29

y(1) = 17, y(2) = 12

ryx(j) =
{

30, 17, 35, 29
↑

, 17, 12
}

3.13 Cyclic Correlation

Care has to be exercised when cyclic cross-correlating two unequal length
sequences when they are periodic. This is because the result of the correlation
will be cyclic with the period of the shorter sequence. This result does not
represent the full periodicity of the longer sequence and is, therefore, incorrect.

Example 3.29
Compute cyclic correlation of two sequences a = {4, 3, 1, 6} and b = {5, 2, 3}
to obtain rab( j).
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Solution 3.29
The sequence b is placed below sequence a, and b is shifted left, this may be
demonstrated by cyclic cross-correlating the sequences a = {4, 3, 1, 6} and
b = {5, 2, 3} to obtain rab( j). The sequence b is placed below sequence a, and
b is shifted left by one lag on each of the subsequent rows, with the value of
the cross-correlation appearing in the final column on the right.

Sequence Lag rab( j)
4 3 1 6
5 2 3 5 1 59
2 3 5 2 2 34
3 5 2 3 3 47
5 2 3 5 4 59 rab( j) repeats

The result shows that rab( j) is cyclic, repeating every third lag, that is
rab( j) has the same period as that of the shorter sequence, b.

Thus, the required circular-correlation of a and b is rab( j) = {59, 34, 47}.
This procedure is known as cyclic correlation. To obtain the correct value

in which each value in a is multiplied by each value in b, all the elements in
b have to be shifted in turn below each value.

Example 3.30
Compute cyclic correlation of two sequences a = {1, 2, 3, 4} and b = {4, 3, 2, 1}
to obtain rab( j).

Solution 3.30
The sequence b is placed below sequence a, and b is shifted left. This may be
demonstrated by cyclic cross-correlating the sequences a = {1, 2, 3, 4} and
b = {4, 3, 2, 1} to obtain rab( j). The sequence b is placed below sequence a,
and b is shifted left by one lag on each of the subsequent rows, with the value
of the cross-correlation appearing in the final column on the right.

Sequence Lag rab( j)
1 2 3 4
4 3 2 1 0 20
3 2 1 4 1 11
2 1 4 3 2 26
1 4 3 2 3 25
4 3 2 1 4 20 rab( j) repeats
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The result shows that rab( j) is cyclic, repeating every third lag, that is
rab( j) has the same period as that of the shorter sequence, b.

Thus, the required circular-correlation of a and b is rab( j) = {20, 11,
26, 25}.

3.14 Further Applications of Correlation

It can be shown that �[r11(τ )] = GE(f ), where GE(f ) is the energy spectral
density of the waveform, that is the energy spectral density and the auto-
correlation function constitute a Fourier Transform pair.

The distribution of energy in the signal is called as spectral density of the
waveform. It can further be shown that r11(0) = E; where E is the total energy
of the waveform.

Example 3.31
Obtain a relationship between the zero-lag correlation functions of two
different waveforms and their total energy content.

Solution 3.31
Let the waveforms be υ1(n) and υ2(n), and let their summation be

V (n) = u1(n) + u2(n).

The zero-lag autocorrelation function of V(n) is

rυυ(0) = EV =
1
N

N−1∑
n=0

V 2(n) =
1
N

N−1∑
n=0

[υ1(n) + υ2(n)]2

where EV is the energy of the waveform V(n).

3.15 Problems and Solutions

Problem 3.1
Consider the interconnection of LTI system as shown in the figure.

(a) Express the overall impulse response in terms of h1(n), h2(n), h3(n),
and h4(n).

(b) Determine h(n) when

h1(n) = {1
2 , 1

4 , 1
2}

h2(n) = h3(n) = (n + 1)u(n)
h4(n) = δ(n − 2)
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(c) Determine the response of the system in part (b) if

x(n) = δ(n + 2) + 3δ(n − 1) − 4δ(n − 3)

Solution 3.1
(a) h(n) = h1(n)⊗ [h2(n) − {h3(n)⊗ h4(n)}]

h3(n)⊗ h4(n) = (n + 1)u(n)⊗ δ(n − 2)
= δ(n) + (n − 1)u(n)

h2(n) − [ h3(n)⊗ h4(n)] =[(n + 1)u(n)]−[δ(n) + (n − 1)
u(n)] = 2 u(n) − δ(n)

(b) h1(n) = 1
2δ(n) + 1

4δ(n − 1) + 1
2δ(n − 2)

h(n) = h1(n) [h2(n) − {h3(n) h4(n)}]
1
2δ(n) + 1

4δ(n − 1) + 1
2δ(n − 2)] [2u(n) − δ(n)]

Hence, h(n) = 1
2δ(n) + 5

4δ(n − 1) + 2δ(n − 2) + 5
2u(n − 3)

(c) x(n) = {1, 0, 0
↑
, 3, 0,−4}

h(n) = {1
2 , 5

4 , 2, 5
2}

y(n) = {1
2 , 5

4 , 2
↑
, 4, 15

4 , 4, 5
2 ,−8,−10}
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Problem 3.2
(a) If y(n) = x(n) ⊗ h(n), show that,

∑
y =

∑
x
∑

h
Here ⊗ is taken as convolution
(b) Compute the convolution y(n) = x(n) ⊗ h(n) of the following signals

and check the correctness of the results by using the test in (a).

(i) x(n) = {1, 2, 4}, h(n) = {1, 1, 1, 1, 1}
(ii) x(n) = {1, 2, − 1}, h(n) = x(n)
(iii) x(n) = {1, 2, 3, 4, 5}, h(n) = {1}

Solution 3.2
(a) y(n) =

∑
h(k) x(n− k)

∑
y(n) =

∑∑
h(k) x(n− k) =

∑
h(k)

∞∑
n=−∞

x(n− k)

= (
∑

h(k))(
∑

x(n))

(b) Using Overlap and add method for easy solution

y(n) = x(n)⊗ h(n)
(i) x(n) = {1, 2, 4}, h(n) = {1, 1, 1, 1, 1}
x(n) =

{
1
↑

2 4
}

x(−n) = {1
↑

1 1 1 1}

1 y(0) = 1, y(1) = 3
y(2) = 7, y(3) = 7
y(4) = 7, y(6) = 6, y(7) = 4

ryx(j) =
{

1
↑
, 3, 7, 7, 7, 6, 4

}

∑
y(k) =

(∑
k

h(k)
)(∑

n
x(n)

)

∑
y(n) = 35

∑
x(n) = 7

∑
k

h(k) = 5
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∑
y(k) = (

∑
h(k))(

∑
x(n))∑

y(n) = 4
∑

x(n) = 2
∑

h(k) = 2

(i) x(n) = {1, 2, 3, 4, 5}, h(n) = {1}
y(0) = 1, y(1) = 2
y(2) = 3, y(3) = 4
y(4) = 5

ryx( j) = {1
↑
, 2, 3, 4, 5}
∑

y(k) = (
∑

h(k))(
∑

x(n))∑
y(n) = 15

∑
x(n) = 15

∑
h(n) = 1

Problem 3.3
Compute the convolution y(n) = x(n)⊗ h(n) of the following signals and check
the correctness of the results.

x(n) =
(

1
2

)n

u(n) h(n) =
(

1
5

)n

u(n)
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Solution 3.3
The convolution of function of x(n) with h(n) is

y(n) = x(n)⊗ h(n) =
∞∑

k=−∞
x(k)h(n− k)

Because both sequences are finite in length,
x(n) is changed into x(k) x(k) =

(1
2

)k
u(k)

h(n) is changed into h(k) x(k) =
(1

5

)n−k
u(n− k)

=
∞∑

k=−∞

(
1
2

)k

u(k)
(

1
5

)n−k

u(n− k)

Due to the step u(k) in the first function, the lower limit on the sum may be
changed to k = 0, and the upper limit may be changed to k = n. n > 0 Thus
the convolution sum becomes as follows:

y(n) =
(

1
5

)n n∑
k=0

(
1
2

)k(1
5

)−k

n ≥ 0; y(n) =
(

1
5

)n n∑
k=0

(
5
2

)k

n ≥ 0

Using the series given in Table 3.1, we have

y(n) =
(

1
5

)n
{

1− (5
2)n+1

1− 5
2

}
=
(

1
5

)n
{

1− 5
2

(5
2

)n
3
2

}

y(n) =
[(1

5

)n[2
3

(
1− 5

2
(5

2

)n)]]
u(n)

Problem 3.4
Compute the convolutions x(n)⊗ h(n) for the pairs of signals shown in Figure.
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Solution 3.4
x(n) = {1

↑
, 1, 1, 1} h(n) = {6

↑
, 5, 4, 3, 2, 1}

y(n) =
n∑

k=0
x(k)h(n− k)

y(0) = x(0) h(0) = 6
y(1) = x(0) h(1) + x(1) h(0) = 11
y(2) = x(0) h(2) + x(1) h(1) + x(2) h(0) = 15
y(3) = x(0) h(3) + x(1) h(2) + x(2) h(1) + x(3) h(0) = 18
y(4) = x(0) h(4) + x(1) h(3) + x(2) h(2) + x(3) h(1) = 14
y(5) = x(0) h(5) + x(1) h(4) + x(2) h(3) + x(3) h(2) = 10
y(6) = x(1) h(5) + x(2) h(4) + x(3) h(2) = 6
y(7) = x(2) h(5) + x(3) h(4) = 3
y(8) = x(3) h(5) = 1

y(−2) = 0, y(−1) = 1/3
y(0) = 1, y(1) = 2
y(2) = 1
y(n) = {0, 1/3, 1, 2, 5/3, 1}

y(n) = {6
↑
, 11, 15, 18, 14, 10, 6, 3, 1}

Problem 3.5
Determine and sketch the convolution y(n) of the signals by overlap and add
method

x(n) =
{ 1

3n, 0 ≤ n ≤ 3
0, elsewhere

h(n) =
{

1, −2 ≤ n ≤ 0
0, elsewhere

Solution 3.5
(a) x(n) = {0

↑
, 1

3 , 2
3 , 1}

h(n) = {1, 1, 1
↑
}

y(n) = x(n) ∗ h(n) = {0, 1
3 , 1

↑
, 2, 5

3 , 1}

y(−2) = 0, y(−1) = 1/3
y(0) = 1, y(1) = 2
y(2) = 1

y(n) =
{

0, 1/3, 1, 2
↑
, 5/3, 1

}



3.15 Problems and Solutions 131

∑
y(k) =

(∑
k

h(k)
)(∑

n
x(n)

)

∑
y(n) = 6

∑
x(n) = 2

∑
h(n) = 3

Problem 3.6
Compute the convolution y(n) of the signals

x(n) =
{

αn, −3 ≤ n ≤ 5
0, elsewhere

h(n) =
{

1, 0 ≤ n ≤ 4
0, elsewhere

Solution 3.6
The limits are from –3 to 5 for x(n)

x(n) = {α−3, α−2, α−1, 1
↑
, α, . . . . α5}.

The output limits are from 0 to 4 for x(n)

y(n) =
4∑

k=0
h(k)x(n− k)

h(n) = {1
↑
, 1, 1, 1, 1}

y(n) =
4∑

k=0
x(n− k), −3 ≤ n ≤ 9

= 0, otherwise

Therefore
y(−3) = α−3, y(−2) = x(−3) + x(−2) = α−3 + α−2

y(−1) = α−3 + α−2 + α−1, y(0) = α−3 + α−2 + α−1 + 1
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y(1) = α−3 + α−2 + α−1, y(2) = α−2 + α−1 + 1 + α + α2

y(3) = α−1 + 1 + α + α−2 + α3, y(4) = 1 + α + α2 + α3 + α4

y(5) = α + α2 + α3 + α4 + α5, y(6) = α2 + α3 + α4 + α5

y(7) = α3 + α4 + α5, y(8) = α4 + α5, y(9) = α5

Problem 3.7
Consider the following three operations.

1. Multiply the integer numbers: 131 and 122.
2. Compute the convolution of signals: {1, 3, 1} ⊗ {1, 2, 2}.
3. Multiply the polynomials: 1 + 3z + z2 and 1 + 2z + 2z2.
4. Repeat part (a) for the numbers 1.31 and 12.2.
5. Comment on your results.

Solution 3.7
(a) 131 × 122 = 15982
(b) {1

↑
, 3, 1} × {1

↑
, 2, 2} = {1, 5, 9, 8, 2}

(c)
(
1 + 3z + z2

)(
1 + 2z + 2z2

)
= 1 + 5z + 9 z2 + 8z3 + 2z4

(d) 1.31 x 12.2 = 15.982
These are different ways to perform convolution

Problem 3.8
Compute the convolution y(n) = x(n)⊗ h(n) of the following pairs of signals.

(a) x(n) = anu(n), h(n) = bnu(n) when a �= b and when a = b

(b) x(n) =

⎧⎨
⎩

1, n = −2, 1, 0
2, n = −1
0, elsewhere

h(n) = δ(n) − δ(n − 1) + δ(n − 4) + δ(n − 5)

(c) x(n) = u(n + 1) − u(n − 4) − d(n − 5)
h(n) = [u(n + 2) − u(n − 3)] (3 − |n|)

(d) x(n) = u(n) − u(n − 5)
h(n) = u(n− 2)− u(n− 8) + u(n− 11)− u(n− 17)

Solution 3.8
(a) y(n) =

n∑
k=0

aku(k)bn−ku(n− k) = bn
n∑

k=0
(ab−1)k
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y(n) =
{

bn+1−an+1

b−a u(n), a �= b

bn(n + 1)u(n), a = b

(b) x(n) = {1, 2, 1
↑
, 1}, h(n) = {1

↑
,−1, 0, 0, 1, 1},

y(n) = {1, 1,−1
↑
, 0, 0, 3, 3, 2, 1}

(c) x(n) = {1, 1
↑
, 1, 1, 1, 0,−1}, h(n) = {1, 2, 3

↑
, 2, 1}

y(n) = {1, 3, 6, 8
↑
, 9, 8, 5, 1,−2,−2,−1}

(d) x(n) = {1
↑
, 1, 1, 1, 1}, h(n) = {0

↑
, 0, 1, 1, 1, 1, 1, 1}

h(n) = h′′(n) + h′(n− 9)
y(n) = y′(n) + y′(n− 9)

where, y1(n) = {0
↑
, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1}

Problem 3.9
The first non-zero value of a finite-length sequence x(n) occurs at index n = –6
and has a value x(–6) = 3, and the last non-zero value occurs at index n = 24
and has a value x(24) = –4. What is the index of the first nonzero value in the
convolution? What is its value?

y(n) = x(n)⊗ x(n)

What about the last non-zero value?

Solution 3.9
Because we are convolving two finite-length sequences, the index of the first
non-zero value in the convolution is equal to the sum of the indices of the first
non-zero values of the two sequences that are being convolved. In the case,
the index is n = –12, and the value is

y(−12) = x2(−6) = 9.

Similarly, the index of the last non-zero value is at n = 48 and the value is

y(48) = x2(24) = 16

Problem 3.10
The convolution of two finite-length sequences will be finite in length. Is it
true that the convolution of a finite-length sequence with an infinite-length
sequence will be infinite in length?
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Solution 3.10
It is not necessarily true that the convolution of an infinite-length sequence
with a finite-length sequence will be infinite in length. It may be either. Clearly,
if x(n) = δ(n) and h(n) = (0.5)nu(n), the convolution will be an infinite-length
sequence. However, it is possible for the finite-length sequence to remove the
infinite-length tail of an infinite-length sequence. For example, note that

(0.5)nu(n)− (0.5)nu(n− 1) = δ(n).

Therefore, the convolution of x(n) = δ(n)− 1
2δ(n−1) with h(n) = (0.5)nu(n)

will be finite in length:
[
δ(n)− 1

2
δ(n− 1)

]
⊗(0.5)nu(n) = (0.5)nu(n)−1

2
(0.5)n−1u(n−1) = δ(n)

Problem 3.11
Find the convolution of the two finite-length sequences:

x(n) = 0.5n[u(n)− u(n− 6)]

h(n) = 2 sin
(nπ

2

)
[u(n + 3)− u(n− 4)]

Solution 3.11

Because h(n) is equal to zero outside the interval [–3, 3], and x(n) is zero
outside the interval [1, 5], the convolution y(n) = x(n) × h(n) is zero outside
the interval [–2, 8].

Converting the given function expression in sequence form

x(k) = [ 0, 0.5, 1, 1.5, 2, 2.5] h(k) = [ 2, 0,−2, 0, 2, 0, −2]

y(n) = [0, 1, 2, 2, 2, 3, −2, −3, 2, 2, −4, −5]



3.15 Problems and Solutions 135

Problem 3.12
A linear shift-invariant system has a unit sample response

h(n) = u(−n− 1)

Find the output if the input is

x(n) = −n3nu(−n)

Shown in figures are the sequences x(n) and h(n).

Solution 3.12
Because x(n) is zero for n > –1, and h(n) is equal to zero for n > –1, the
convolution will be equal to zero for n > 2. Evaluating the convolution sum
directly, converting h(n) into x(n) into x(k) and h(n) into h(n – k)

x(n) = −n3nu(−n), x(k) = −k3ku(−k) and

h(n) = u(−n− 1), h(n− k) = u(−(n− k)− 1).

Substituting in the formula the value of x(k) and h(n – k)

y(n) =
∞∑

k=−∞
x(k)h(n−k) y(n) =

∞∑
k=−∞

−k3ku(−k)u(−(n−k)−1)

y(n) =
∞∑

k=−∞
x(k)h(n− k) y(n) =

∞∑
k=−∞

−k3ku(−k)u(−n + k − 1)

Because u(–k) = 0 for k > 0 and u(–n + k – 1) = 0 for k < n + 1, the convolution
sum becomes

y(n) =
∞∑

k=−∞
−k3ku(−k)u(−n + k − 1).

Once the expression of x(k) and h(k) is substituted the limits are changed from
–∞ to +∞

y(n) =
n+1∑
k=0

−k3k n ≤ −2 y(n) =
n+1∑
k=0

m(3)−m y(n) =
−n−1∑
m=0

m

(
1
3

)
3m.
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With the change of variables m = –k, and using the series formulas from
Table 3.1, we have

y(n) =
−n−1∑
m=0

m

(
1
3

)m

=
(−n− 1)

(1
3

)−n+1 + n
(1

3

)−n + 1
3(

1− 1
3

)2

y(n) =
−n−1∑
m=0

m

(
1
3

)m

=
9
4

{
(−n− 1)

(
1
3

)−n+1

+ n

(
1
3

)−n

+
1
3

}

y(n) =
9
4

{
(−n− 1)

(
1
3

)−n+1

+ n

(
1
3

)−n

+
1
3

}

y(n) =
9
4

{
.

(
1
3

)
.

(
1
3

)−n

(−n− 1) + n

(
1
3

)−n

+
1
3

}

y(n) =
9
4

{
−
(

1
3

)(
1
3

)−n

. n−
(

1
3

)(
1
3

)−n

+ n

(
1
3

)−n

+
1
3

}

y(n) =

{
−
(

3
4

)(
1
3

)−n

. n−
(

3
4

) (
1
3

)−n
}
−
(

9
4

)
n

(
1
3

)−n

+
3
4

y(n) =
3
4
− 3n

(
1
3

)−n

− 3
4

(
1
3

)−n

.

Let us check this answer for a few values of n using graphical convolution.
Time-reversing x(k), we see that h(k) and x(–k) do not overlap for any k and,
thus, y(0) = 0. In fact, it is not until we shift x(–k) to the left by two that there is
any overlap. With x(–2 – k) and h(k) overlapping at one point, and the product
being equal to 1

3 , it follows that y(−2) = 1
3 .

Evaluating the expression above for y(n) above at index n = –2, we obtain
the same result. For n = –3, the sequences x(–3 – k) and h(k) overlap at two
points, and the sum of the products gives y(−3) = 1

3 + 2
9 = 5

9 , which, again,
is the same as the expression above.

Problem 3.13
Prove the commutative property of convolution

x(n)⊗ h(n) = h(n)⊗ x(n)
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Solution 3.13
Proving the commutative property is straightforward and only involves a
simple manipulation of the convolution sum. With the convolution of x(n)
with h(n) given by

x(n)⊗ h(n) =
∞∑

k=−∞
x(k)h(n− k)

with the substitution l = n – k, we have k = n – l, we have

x(n)⊗ h(n) =
∞∑

l=−∞
x(n− l)h(l) = h(n)⊗ x(n)

and the commutative property is established.

Problem 3.14
Prove the distributive property of convolution

h(n)⊗ [x1(n) + x2(n)] = h(n)⊗ x1(n) + h(n)⊗ x2(n)

Solution 3.14
To prove the distributive property, we have

x(n)⊗ [x1(n) + x2(n)] =
∞∑

k=−∞
h(k)[x1(n− k) + x2(n− k)]

Therefore,

h(n)⊗ [x1(n) + x2(n)] =
∞∑

k=−∞
h(k)x1(n− k) +

∞∑
k=−∞

h(k)x2(n− k)

= h(n)⊗ x1(n) + h(n)⊗ x2(n)
the property is established.

Problem 3.15
Let

h(n) = 3
(

1
2

)n

u(n)− 2
(

1
3

)n−1

u(n)

be the unit sample response of a linear shift-invariant system. If the input to
this system is a unit step,

x(n) =
{

1 n ≥ 0
0 else

Find limn→∞ y(n) where y(n) = h(n)⊗ x(n)
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Solution 3.15
Converting h(n) into x(n) into x(k) and h(n) into h(n – k)

x(n) = u(n), x(k) = u(k) and

h(n) =3
(

1
2

)n

u(n)− 2
(

1
3

)n−1

u(n), h(n− k) = 3
(

1
2

)n−k

u(n− k)− 2
(

1
3

)n−k−1

u(n− k) h(n− k) = u(−(n− k)− 1)

Substituting in the formula the value of x(k) and h(n – k)

y(n) = h(n)⊗ x(n) =
∞∑

k=−∞
h(k)x(n− k)

y(n) =
∞∑

k=−∞
x(k)h(n− k)

y(n) =
∞∑

k=−∞
3
(

1
2

)n−k

u(n− k)− 2
(

1
3

)n−k−1

u(n− k)u(k)

Because u(–k) = 0 for k < 0, the convolution sum becomes and evaluating
the sum, we have

y(n) = 3
∞∑

k=0

(
1
2

)n

− 2
∞∑

k=0

(
1
3

)n−1

= 3
∞∑

k=0

(
1
2

)n

− 2
∞∑

k=0

(
1
3

)n−1

3
∞∑

k=0

(
1
2

)n

− 2
(

1
3

)−1 ∞∑
k=0

(
1
3

)n

= 3
∞∑

k=0

(
1
2

)n

− 6
∞∑

k=0

(
1
3

)n

= 3
1

1− 1
2
− 6.

1
1− 1

3
=

3
1− 1/2

− 6
1− 1/3

= 3(2− 3) = −3

Problem 3.16
Perform the convolution

y(n) = x(n)⊗ h(n)

where

h(n) =
(

1
2

)n

u(n)

and x(n) =
(1

3

)n[u(n)− u(n− 101)]
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Solution 3.16
With y(n) = x(n)⊗ h(n) =

∞∑
k=−∞

x(k)h(n− k)

We begin by substituting x(n) and h(n) into the convolution sum

x(n) =
(

1
3

)n

[u(n)− u(n− 101)]

y(n) =
∞∑

k=−∞

(
1
3

)k

[u(k)− u(k − 101)]
(

1
2

)n−k

u(n− k)

or y(n) =
100∑
k=0

(1
3

)k(1
2

)n−k
u(n− k)

To evaluate this sum, which depends on n, we consider three cases. First,
for n < 0, the sum is equal to zero because u(n – k) = 0 for 0 ≤ k ≤ 100.
Therefore,

y(n) = 0 n < 0

Second, note that for 0 ≤ n ≤ 100, the step u(n – k) is only equal to 1 for
k ≤ n. Therefore,

y(n) =
n∑

k=0

(
1
3

)k(1
2

)n−k

=
(

1
2

)n n∑
k=0

(
2
3

)k

=
(

1
2

)n 1− (2
3

)n+1

1− 2
3

= 3
(

1
2

)n
[
1−

(
2
3

)n+1
]

Finally, for n ≥ 100, note that u(n – k) is equal to 1 for all k in the range
0 ≤ k ≤ 100. Therefore,

y(n) =
100∑
k=0

(
1
3

)k(1
2

)n−k

=
(

1
2

)n 100∑
k=0

(
2
3

)k

=
(

1
2

)n 1− (2
3

)101

1− 2
3

= 3
(

1
2

)n
[
1−

(
2
3

)101
]

In summary, we have

y(n) =

⎧
⎪⎪⎨
⎪⎪⎩

0 n < 0
3
(1

2

)n[1− (2
3

)n+1
]

0 ≤ n ≤ 100

3
(1

2

)n[1− (2
3

)101
]

n ≥ 100
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Problem 3.17
Let h(n) be a truncated exponential

h(n) =
{

αn 0 ≤ n ≤ 10
0 else

and x(n) a discrete pulse of the form

x(n) =
{

1 0 ≤ n ≤ 5
0 else .

Find the convolution y(n) = h(n)⊗ x(n).

Solution 3.17
Convert impulse response from h(n) to h(k)

h(k) =
{

αk 0 ≤ k ≤ 10
0 else

x(n− k) =
{

1 0 ≤ n ≤ 5
0 else .

To find the convolution of these two finite-length sequence, we need to
evaluate the sum

y(n) = h(n)× x(n) =
∞∑

k=−∞
h(k)x(n− k).

To evaluate this sum, it will be useful to make a plot of h(k) and x(n – k) as a
function of k as shown in the figure.
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Note that the amount of overlap between h(k) and x(n – k) depends on the
value of n. For example, if n < 0, there is no overlap, whereas for 0 ≤ n ≤ 5,
the two sequences overlap for 0 ≤ k ≤ n. Therefore, in the following, we
consider five separate cases.
Case 1: n < 0. When n < 0, there is no overlap between h(k) and x(n – k).
Therefore, the product h(k) x(n – k) = 0 for all k, and y(n) = 0.
Case 2: 0≤ n≤ 5. For this case, the product h(k) x(n – k) is non-zero only for
k in the range 0 ≤ k ≤ n. Therefore using summation Table of 3.1, we have

y(n) =
n∑

k=0

αk =
1− αn+1

1− α

Case 3: 6≤ n≤ 10. For 6≤ n≤ 10, all of the non-zero values of x(n – k) are
within the limits of the sum, and

y(n) =
n∑

k=n−5

αk =
5∑

k=0

αk+(n−5)

y(n) = αn−5
5∑

k=0

αk = αn−5 1− α6

1− α

Case 4: 11 ≤ n ≤ 15. When n is in the range 11 ≤ n ≤ 15, the sequences h(k)
and x(n – k) overlap for n – 5 ≤ k ≤ 10. Therefore,

y(n) =
10∑

k=n−5

αk =
15−n∑
k=0

αk+(n−5)

y(n) = αn−5
15−n∑
k=0

αk = αn−5 1− α16−n

1− α
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Case 5: n > 5. Finally, for n > 15, there is again no overlap between h(k) and
x(n – k), and the product h(k) x(n – k) is equal to zero for all k. Therefore,
y(n) = 0 for n > 15. In summary, for the convolution we have

y(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 n < 0
1−αn+1

1−α 0 ≤ n ≤ 5
αn−5 1−α6

1−α 6 ≤ n ≤ 10
αn−5 1−α16−n

1−α 11 ≤ n ≤ 15
0 n > 15

Problem 3.18
If the response of a linear shift-invariant system of a unit step is given in the
problem (i.e., the step response) is

s(n) = n

(
1
2

)n

u(n)

find the unit sample response, h(n).

Solution 3.18
In this problem, we begin by noting that

δ(n) = u(n)− u(n− 1)

Therefore, the unit sample response, h(n) is related to the step response, s(n),
as follows:

h(n) = s(n)− s(n− 1)

Thus, given s(n), we have
h(n) = s(n)− s(n− 1)

h(n) = n

(
1
2

)n

u(n)− (n− 1)
(

1
2

)n−1

u(n− 1)

h(n) =
[
n

(
1
2

)n

− 2(n− 1)
(

1
2

)n]
u(n− 1)

h(n) =
[
n

(
1
2

)n

− 2(n− 1)
(

1
2

)n]
u(n− 1) =

[
n

(
1
2

)n

− 2n

(
1
2

)n

+ 2
(

1
2

)n]
u(n− 1) h(n) = (2− n)

(
1
2

)n

u(n− 1)
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Problem 3.19
Consider a system with impulse response

h(n) =
{

(1
2)n, 0 ≤ n ≤ 4

0, elsewhere .

Determine the input x(n) for 0≤ n≤ 8 that will generate the output sequence

y(n) = {1
↑
, 2, 2.5, 3, 3, 3, 2, 1, 0, . . . }

Solution 3.19
h(n) = {1

↑
, 1

2 , 1
4 , 1

8 , 1
16}

y(n) = {1
↑
, 2, 2.5, 3, 3, 3, 2, 1, 0}

x(0) h(0) = y(0)⇒ x(0) = 1
1
2x(0) + x(1) = y(1)⇒ x(1) = 3

2
1
4x(0) + 1

2x(1) + x(2) = y(2)⇒ x(2) = 3
2

By continuing this process, we obtain

x(n) = {1, 3
2 , 3

2 , 7
4 , 3

2 , . . . }

Problem 3.20
x(n) = {1

↑
, 2, 4} h(n) = {1

↑
, 1, 1, 1, 1}

Find the convolution of the two sequences given above, using analytical
method

Solution 3.20

y(n) =
6∑

k=0
x(k)h(n− k) or y(0) =

6∑
k=0

x(k) h(0− k)

y(0) = x(0) h(−0) + x(1) h(−1) + x(2) h(−2) + x(3) h(−3)

+ x(4) h(−4) + x(5) h(−5) + x(6) h(−6)

the value of h(–1) to h(–6) are not written because the sequence values
for these bits are not given (are zeros). Therefore, the expression for y(0)
reduces to

y(0) = x(0) h(0) = (1) (1) = 1
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y(1) =
6∑

k=0

x(k) h(1− k)

y(1) = x(0) h(1) + x(1) h(0) + x(2) h(−1) + x(3) h(−2)

+ x(4) h(−3) + x(5) h(−4) + x(6) h(−5)

the value of h(–1) to h(–5) are not written because the sequence values
for these bits are not given (are zeros). Therefore, the expression for y(1)
reduces to

y(1) = x(0) h(1) + x(1) x(0) = (1) (1) + (2) (1) = 3

y(2) =
6∑

k=0

x(k) h(2− k)

y(2) = x(0) h(2) + x(1) h(1) + x(2) h(0) + x(3) h(−1)

+ x(4) h(−2) + x(5) h(−3) + x(6) h(−4)

the value of h(–1) to h(–4) are not written because the sequence values
for these bits are not given (are zeros). Therefore, the expression for y(2)
reduces to

y(2) = x(0) h(2) + x(1) h(1) + x(2) h(0)

= (1) (1) + (2) (1) + (4) = 7

y(3) =
6∑

k=0

x(k) h(3− k)

y(3) = x(0) h(3) + x(1) h(2) + x(2) h(1) + x(3) h(0)

+ x(4) h(−1) + x(5) h(−2) + x(6) h(−3)

the value of h(–1) to h(–3) and from x(3) to x(6) are not written because
the sequence values for these bits are not given (are zeros). Therefore the
expression for y(3) reduces to

y(3) = x(0) h(3) + x(1) h(2) + x(2) h(1) + x(3) h(0)

= (1) (1) + (2) (1) + (4) (1) = 7

y(4) =
6∑

k=0

x(k) h(4− k)
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y(4) = x(0) h(4) + x(1) h(3) + x(2) h(2) + x(3) h(1)

+ x(4) h(0) + x(5) h(−1) + x(6) h(−2)

the value of h(–1) to h(–2) and from x(3) to x(6) are not written because
the sequence values for these bits are not given (are zeros). Therefore the
expression for y(4) reduces to

y(4) = x(0) h(4) + x(1) h(3) + x(2) h(2)

= (1) (1) + (2) (1) + (4) (1) = 7

y(5) =
6∑

k=0

x(k) h(5− k)

y(5) = x(0) h(5) + x(1) h(4) + x(2) h(3) + x(3) h(2)

+ x(4) h(1) + x(5) h(0) + x(6) h(−1)

The value of h(–1), h(5) to h(6) and from x(3) to x(6) are not written because
the sequence values for these bits are not given (are zeros). Therefore the
expression for y(5) reduces to

y(5) = x(0) h(5) + x(1) h(4) + x(2) h(3)

= (2) (1) + (4) (1) = 6

y(6) =
6∑

k=0

x(k) h(6− k)

y(6) = x(0) h(6) + x(1) h(5) + x(2) h(4) + x(3) h(3)

+ x(4) h(2) + x(5) h(1) + x(6) h(0)

the value of h(5) to h(6) and from x(3) to x(6) are not written because
the sequence values for these bits are not given (are zeros). Therefore the
expression for y(6) reduces to y(6) = x(2)h(4) = (4)(1) = 4

Verification
The correctness of the convolution can be checked and verified by using the
formula. ∑

y(n) =

(∑
h(k)

)(∑
x(n)

)

∑
y(n) = 35

∑
h(k) = 5

∑
x(k) = 7
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Problem 3.21
Find the linear convolution of the two sequences given below, using matrix
method

x(n) = {1
↑
, 2, 4} h(n) = {1

↑
, 1, 1, 1, 1}

Solution 3.21
Max size of the bit in this example is 5, i.e., called N, N – 1 zeros padding has
to be done in either bit for linear convolution. In this example N – 1 = 5 – 1 = 4
zero padding is required.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(n)
1 0 0 0 0 4 2
2 1 0 0 0 0 4
4 2 1 0 0 0 0
0 4 2 1 0 0 0
0 0 4 2 1 0 0
0 0 0 4 2 1 0
0 0 0 0 4 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(n)
1
1
1
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(n)
1
3
7
7
7
6
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Problem 3.22
Find the circular convolution of the two sequences given below, using matrix
method

x(n) = {1
↑
, 2, 4} h(n) = {1

↑
, 1, 1, 1, 1}

Solution 3.22
Max size of the bit in this problem is 5, therefore only two zeros are required
to be padded up in x(n).

⎡
⎢⎢⎢⎢⎢⎢⎣

x(n)
1 0 0 4 2
2 1 0 0 4
4 2 1 0 0
0 4 2 1 0
0 0 4 2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

h(n)
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

y(n)
7
7
7
7
7

⎤
⎥⎥⎥⎥⎥⎥⎦

Problem 3.23
Determine the overall impulse response of the system of the Figure, where

h1(n) = 2δ(n − 2) − 3δ(n + 1)
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h2(n) = δ(n − 1) + 2δ(n + 2)
h3(n) = 5δ(n − 5) + 7δ(n − 3) + 2δ(n − 1) − δ(n)

+ 3δ(n + 1)

Solution 3.23
h(n) = [h1(n) ⊗ h2(n)] + h3(n)
now [h1(n) ⊗ h2(n)] = [2δ(n – 2) – 3δ (n + 1)] ⊗ [δ(n – 1) + 2δ(n + 2)]
[h1(n) ⊗ h2(n)] = 2δ(n – 2) ⊗ δ(n – 1)] – 3δ(n + 1) ⊗ δ(n – 1)

+ 2δ(n – 2) ⊗ 2δ(n + 2) – 3δ (n + 1) ⊗ 2δ(n + 2)
[h1(n) ⊗ h2(n)] = 2δ(n – 3) – 3δ(n) +4δ(n) – 6δ(n + 3)
[h1(n) ⊗ h2(n)] = 2δ(n – 3) + δ(n) – 6δ(n + 3)
h(n) = [2δ (n – 3) + δ(n) – 6δ(n + 3)] + [5δ(n – 5) + 7δ(n – 3) + 2δ(n – 1)

– δ(n) + 3δ(n + 1)]
h(n) = 5δ (n – 5) + 9δ(n – 3) + 2δ(n – 1) + 3δ(n + 1) – 6δ(n + 3)

Problem 3.24
Prove that the convolution operation is commutative and distributive.

Solution 3.24

y(n) = x(n)⊗ h(n) =
∞∑

k=−∞
x(n− k) h(k)

Substituting k by n−m in the above expression we get

y(n) =
∞∑

m=−∞
x(m) h(n−m) = h(n)⊗ x(n)

Hence the convolution operation is commutative.

y(n) = x(n)⊗ [h1(n) + h2(n)] =
∞∑

k=−∞
x(n− k) [h1(k) + h2(k)]
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=
∞∑

k=−∞
x(n−k) h1(k)+

∞∑
k=−∞

x(n−k) h1(k) = x1(n)h(n)+x(n)⊗h2(n)

Hence the convolution operation is distributive.

Problem 3.25
Find the cross-correlation coefficients ρ12(0), ρ34(0) and ρ12(2), ρ34(2) of the
signal given in tabular form.

n 0 1 2 3 4 5 6
x1(n) 0 –4 3 3 3 2 0
x2(n) 1 1 1 1 1 –1 0
x3(n) 0 –8 6 6 6 4 0
x4(n) 4 4 4 4 4 –4 0

Solution 3.25
Cross-correlations ρ12(0) and ρ34(0) which is found as follows

r12(0) = 1/7 (0× 1 + (−4)× 1 + 3× 1 + 3× 1 + 3× 1 + 2
× (−1) + 0× 0)

r12(0) = 0.4286
r34(0) = 1/7 (0× 4 + (−8)× 4 + 6× 4 + 6× 4 + 6× 4 + 4

× (−4) + 0× 0)
r34(0) = 3.4286

ρ12(j) =
r12(j)true

1
N

[
N−1∑
n=0

x2
1(n)

N−1∑
n=0

x2
2(n)

]1/2

The normalizing factor for r12( j) in the above illustration is calculated as
below

1
N

[
N−1∑
n=0

x2
1(n)

N−1∑
n=0

x2
2(n)

]1/2

=
1
7
(47× 6)1/2 = 2.399

and for r34( j) it is

1
N

[
N−1∑
n=0

x2
3(n)

N−1∑
n=0

x2
4(n)

]1/2

=
1
7
(188× 96)1/2 = 19.1918
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Therefore

ρ12(0) =
r12(0)

2.3999
=

0.4286
2.3999

= 0.1786

ρ34(0) =
ρ34(0)

19.1918
=

3.4286
19.1918

= 0.1786

Cross-correlations ρ12(2) and ρ34(2) which is found as

r12(2) = 1/7 (0× 1 + (−4)× 1 + 3× 1 + 3× (−1) + 3× 0 + 2× 0)
r12(2) = −0.5714

r34(2) = 1/7 (0× 4 + (−8)× 4 + 6× 4 + 6× (−4) + 6× 0 + 4× 0)
r34(0) = −4.5714

r12(2)true = r12(2) +
2
7
r12(0)

r12(2)true = −0.5714 +
2(0.4286)

7
= −0.4489

r34(2)true = r34(2) +
2
7
r34(0)

r12(2)true = −4.5714 +
2(3.4286)

7
= −3.5918

Therefore

ρ12(2) =
r12(2)true

2.399
=
−0.4489
2.399

= −0.187

ρ34(2) =
r34(2)true

19.1918
=
−3.5918
19.1918

= −0.187

Now ρ12(2) = ρ34(2) which again demonstrates that this normalization process
indeed allows a comparison of cross-correlations independently of the absolute
data values.

Problem 3.26
Find the correlation ryx( j) of the samples of sequences using convolution
property ryx( j) = x(–n) ⊗ y(n) given in Figure.
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Solution 3.26
ryx( j) = x(–n) ⊗ y(n)
y(–5) = 5
y(–4) = 9, y(–3) = 12
y(–2) = 14, y(–1) = 15
y(0) = 15, y(1) = 10
y(2) = 6, y(3) = 3
y(4) = 1
ryx = {5, 9, 12, 14, 15, 15

↑
, 10, 6, 3, 1}

Problem 3.27
Compute the sketch the convolution y(n) and correlation rxy( j), ryx( j)
sequences for the following pair of signals.

x1(n) = {1
↑
, 2, 3}; x2(n) = {4

↑
, 5, 6}.
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Solution 3.27
Convolution: Overlap and Add Method
y(n) = x1(n) ⊗ x2(n)
y(0) = 4, y(1) = 13
y(2) = 28, y(3) = 27
y(4) = 18
y(n) = {4

↑
, 13, 28, 27, 18}

Correlation: Using Convolution Property Method
r12( j) = x1(n) ⊗ x2(–n)
y(–2) = 6

y(–1) = 17
y(0) = 32
y(1) = 23
y(2) = 12

r12(j) = {6, 17, 32
↑

, 23, 12}
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Correlation: Using Convolution Property Method
r21(j) = x1(–n) ⊗ x2(n)
r21(j) = {12, 23, 32

↑
, 17, 6}

The cross-correlation satisfies the r12( j) = r21(–j) relationship.

Correlation r12( j ): Using Tabular Method

n 0 1 2
x1(n) 1 2 3
x2(n) 4 5 6

r12(j) =
∞∑

n=−∞
x1(n) x2(n− j) j = 0,±1,±2, . . .

Cross correlation using tabular form is carried out here, here the sequence
lengths are 3 and 3 and the number of lags necessary is 3 + 3 – 1 = 5.
(x1 is left un-shifted, for x2 if j < 0, i.e., negative, left shift is required; j > 0,
i.e., positive, right shift is required)

This is now demonstrated for the given sequences x1 and x2 to be
correlated.

Sequence Lag r12( j)
1 2 3 0 0 j
4 5 6 0 0 0 0 no shifting 32
5 6 0 0 4 –1 I unit left shifting 17
6 0 0 4 5 –2 2 units left shifting 6
0 0 4 5 6 2 2 units right shifting 12
0 4 5 6 0 1 1 unit right shifting 23
4 5 6 0 0 6 repetition starts 32
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Thus, the required linear cross-correlation of x and y is
r12( j) = {6, 17, 32

↑
, 23, 12}

Correlation ryx( j ): Using Tabular Method
Cross correlation using tabular form is carried out here, here the sequence
lengths are 3 and 3 and the number of lags necessary is 3 + 3 – 1 = 5.

n 0 1 2
x1(n) 1 2 3
x2(n) 4 5 6

r21(j) =
∞∑

n=−∞
x1(n− j) x2(n) j = 0,±1,±2, . . .

(x2 is left unshifted, for x1 j < 0, negative, left shift; for j > 0, positive, right
shift)

This is now demonstrated for the given sequences x1 and x2.

Sequence Lag r12( j)
4 5 6 0 0 j
1 2 3 0 0 0 0 no shifting 32
2 3 0 0 1 –1 I unit left shifting 23
3 0 0 1 2 –2 2 units left shifting 12
0 0 1 2 3 2 2 units right shifting 6
0 1 2 3 0 1 1 unit right shifting 17
1 2 3 0 0 Repetition starts 32

Thus, the required linear cross-correlation of x1 and x2 is
r21( j) = {12, 23, 32, 17, 6

↑
} r21(–j) = {6, 17, 32, 23, 12

↑
}

It proves the correlation property that r12( j) = r21(–j)

Correlation r12( j ): Analytical Method

n 0 1 2
x1(n) 1 2 3
x2(n) 4 5 6

r12(j) =
∞∑

n=−∞
x1(n) x2(n− j) j = 0,±1,±2, . . .
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r12(j) =
2∑

n=−2

x1(n) x2(n− j) j = 0,±1,±2, . . .

r12(j) = x1(−2) x2(−2− j) + x1(−1) x2(−1− j) + x1(0) x2(0− j)
+ x1(1) x2(1− j) + x1(2) x2(2− j)

Note: Here the range of n has been selected as n = –2 to n = 2.
Here the sequence lengths are 3 and 3 and the number of lags necessary

is 3 + 3 – 1 = 5 (that is sample size after correlation)
x1(–2) and x1(–1) values are not given in the problem, therefore it reduces

to following
r12(j) = x1(0) x2(0− j) + x1(1) x2(1− j) + x1(2) x2(2− j)

Now substituting the value of j as 0, –1, +1, –2, +2 in the above expression

r12(0) = x1(0) x2(0) + x1(1) x2(1) + x1(2) x2(2)
= (1)(4) + (2)(5) + (3)(6) = 32

r12(1) = x1(0) x2(−1) + x1(1) x2(0) + x1(2) x2(1)
= (1)(0) + (2)(4) + (3)(5) = 23

r12(2) = x1(0) x2(−2) + x1(1) x2(−1) + x1(2) x2(0)
= (1)(0) + (2)(0) + (3)(4) = 12

r12(−2) = x1(0) x2(2) + x1(1) x2(3) + x1(2) x2(4)
= (1)(6) + (2)(0) + (3)(0) = 6

r12(−1) = x1(0) x2(1) + x1(1) x2(2) + x1(2) x2(3)
= (1)(5) + (2)(6) + (3)(0) = 17

r12(j) =
{

6, 17, 32, 23
↑

, 12
}
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Z-Transform

This chapter covers: Introduction to Z-transforms, different methods of finding
the inverse z transforms, properties of Z-transform, different methods of
solution of difference equations, and Problems and Solutions.

4.1 Introduction

Laplace and Fourier transforms are used in signal processing applications.
These transformations are defined in continuous- and discrete-time domain.
In signal processing applications, we use the discrete version of Fourier and
Laplace transformation. These are called the discrete-time Fourier transfor-
mation, discrete Fourier transformation and discrete Laplace transformation
which is more popularly called the Z-transformation.

Z-transform is a representation of discrete-time signals in the frequency
domain or the conversion between discrete-time and frequency domain. The
spectrum of a signal is obtained by decomposing it into its constituent
frequency components using a discrete transform. Conversion between time
and frequency domains is necessary in many DSP applications. For example,
it allows for a more efficient implementation of DSP algorithms, such as those
for digital filtering, convolution, and correlation.

4.2 Z-Transform

The Z-transform of a number sequence x(nT) or x(n) is defined as the power
series in z−n with coefficient equal to the values x(n), where z is a complex
variable and z = σ + jω.

The Z-transform of a discrete time signal for a non-causal signal x(n) may
be expressed as

155
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Z[{x(n)}] = X(z) =
∞∑

n=−∞
x(n)z−n. (4.1)

The above expression is generally known as two sided Z-transform. The
sequence {x(n)} is generated from a time function x(t) by sampling every T
seconds, x(n) is understood to be x(nT); that is, T is dropped for convenience.

If the discrete time signal is causal signal x(n) = 0 for n < 0, then the
Z-transform is called as one sided Z-transform and is expressed as

Z[{x(n)}] = X(z) =
∞∑

n=0

x(n)z−n. (4.2)

Infact, generally we assume that x(n) is a causal discrete-time signal unless
it is stated. This means that generally we analyze causal signal. On the other
hand, if x(n) is a non-causal discrete-time signal only, i.e., x(n) = 0 for n ≥ 0,
otherwise x(n) exists then its z-transform is expressed as

Z[{x(n)}] = X(z) =
−1∑

n=−∞
x(n)z−n. (4.3)

The Z-transform of a sequence x(n) is defined as

X(z) =
∞∑

n=−∞
x(n)z−n. (4.4)

Let us express the complex variable z in polar form as z = rejω

X(z)|z=rejω =
∞∑

n=−∞
[x(n)r−n]e−jωn. (4.5)

From the relationship in Equation (4.5) we note that X (z) can be interpreted
as the discrete-time Fourier transform of the signal sequence x(n)r−n. Now if
r = 1 then |z| = 1, then Equation (4.5) reduces to discrete transform. Hence the
expression in Equation (4.5) will converge if [x(n)r−n] is absolutely sumable.

Mathematically,
∞∑

n=−∞

∣∣x(n)r−n
∣∣ ≤ ∞. (4.6)

Hence for x(n) to be finite, the magnitude of z-transform, X (z) must also be
finite.
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The region of convergence (ROC) of X (z) is the set of all values of z for
which X (z) attains a finite value. Thus any time we cite a z-transform we
should also indicate its ROC. Concepts of ROC are illustrated by some simple
examples.

Example 4.1
Determine the z-transform of the following finite-duration signals.

(a) x1(n) = {1, 2, 5, 7, 0, 1}
(b) x2(n) = {1, 2, 5, 7, 0, 1

↑
}

(c) x3(n) = {0, 0, 1, 2, 5, 7, 0, 1}
(d) x4(n) = {2, 4, 5, 7, 0, 1

↑
}

(e) x5(n) = δ(n)
(f) x6(n) = δ(n− k), k > 0
(g) x7(n) = δ(n + k), k > 0.

Solution 4.1

(a) X1(z) = 1 + 2z−1 + 5z−2 + 7z−3 + z−5,

ROC: entire z-plane except z = 0

(b) X2(z) = z2 + 2z + 5 + 7z−1 + z−3,

ROC: entire z-plane except z = 0 and z =∞
(c) X3(z) = z−2 + 2z−3 + 5z−4 + 7z−5 + z−7,

ROC: entire z-plane except z = 0

(d) X4(z) = 2z2 + 4z + 5 + 7z−1 + z−3,

ROC: entire z-plane except z = 0 and z =∞
(e) X5(z) = 1[i.e., δ(n) z←→ 1], ROC: entire z-plane

(f) X6(z) = z−k[i.e., δ(n− k) z←→ z−k], k > 0,

ROC: entire z-plane except z = 0

(g) X7(z) = zk[i.e., δ(n + k) z←→ zk], k > 0,

ROC: entire z-plane except z =∞
From these examples it is easily seen that the ROC of a finite-duration signal
is the entire z-plane, except possibly the points z = 0 and or z =∞.
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Example 4.2
Find the z-transform of the discrete time unit impulse δ(n).

Solution 4.2
We know that the Z-transform is expressed as

Z[{x(n)}] = X(z) =
∞∑

n=0

x(n)z−n.

We know that the unit impulse sequence δ(n) is a causal. The signal x(n)
consists of a number at n = 0, otherwise it is zero. The z-transform of x(n) is
the infinite power series

X(z) = 1+(0)z−1+(0)z−2+. . . (0)nz−n+. . .. Therefore the transform
Z[δ(n)] = 1.

Example 4.3
Find the z-transform of the discrete time unit step signal u(n).

Solution 4.3
We know that the Z-transform is expressed as

Z[{x(n)}] = X(z) =
∞∑

n=0

x(n)z−n.

We know that the unit step sequence u(n) is a causal. The z-transform of x(n)
is the infinite power series

X(z) = 1 + (1)z−1 + (1)z−2 + . . . (1)nz−n + . . .

This is an infinite geometric series. We recall that to sum an infinite series we
use the following relation of Geometric series.

1 + A + A2 + A3 + A4 + A5 + A6 =
1

1−A
if |A| < 1

Therefore

X(z) =
1

1− z−1 ROC |z| > 1

Example 4.4
Determine the z-transform of the signal

x(n) = (1
2)nu(n)
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Solution 4.4
The z-transform of x(n) is the infinite power series

X(z) = 1 + 1
2z−1 +

(1
2

)2
z−2 + . . .

(1
2

)n
z−n + . . .

=
∞∑

n=0

(1
2

)n
z−n =

∞∑
n=0

(1
2z−1)n.

Consequently, for |12z−1| < 1, or equivalently, for |z| > 1
2 , X (z) converges to

X(z) =
1

1− 1
2z−1

ROC |z| > 1
2
.

We see that in this case, the z-transform provides a compact alternative
representation of the signal x(n).

Example 4.5
Determine the Z-transform of the signal

x(n) = αnu(n) =

{
αn, n ≥ 0
0, n < 0

Solution 4.5
From the definition (4.1) we have

X(z) =
∞∑

n=0

α n z−n =
∞∑

n=0

(α z−1)n

If |αz−1| < 1 or equivalently, |z| > |α|, this power series converges to 1/
(1− αz−1). Thus, we have the z-transform pair

x(n) = αnu(n) z←→ X(z) =
1

1− αz−1 , ROC: |z| > |α|. (1)

The ROC is the exterior of a circle having radius |α|. Figure shows a graph of
the signal x(n) and its corresponding ROC. If we set α = 1 in Equation (4.1),
we obtain the z-transform of the unit step signal.
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Figure 4.1 (a) The exponential signal x(n) = αnu(n) and (b) the ROC of its z-transform.

Example 4.6
An expression of discrete time x(n) = e−anT is given, find X (z)

Solution 4.6

X(z) = z[eanT ] =
∞∑

n=0

x(n)z−n

= 1 + e−aT z−1 + e−2aT z−2 + e−3aT z−3 + . . .

= 1 +
(
e−aT z−1) +

(
e−aT z−1)2 + . . .

X(z) =
1

1− e−aT z−1 =
z

z − e−aT

Example 4.7
Find the z-transform of the function x(n), where x(nT) = nT

Solution 4.7

z[{x(nT )}] =
∞∑

n=0

x(nT )z−n z[{x(nT )}] =
∞∑

n=0

nTz−n

X(z) = 0 + Tz−1 + 2Tz−2 + 3Tz−3 + . . .

X(z) = T [z−1 + 2z−2 + 3z−3 + . . . .]

= T
z

(z − 1)2

Table 4.1 of z-transform is given here for ready reference for the students.
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Table 4.1 Z-transform

S. No. Signal x(n) Z-transformation X (z) ROC

1 δ(n) 1 All z

2 u(n) 1
1−z−1 |z| > 1

3 nu(n) z−1

(1−z−1)2 |z| > 1

4 anu(n) 1
1−az−1 |z| > |a|

5 −anu(−n − 1) 1
1−az−1 |z| < |a|

6 −nanu(−n − 1) az−1

(1−az−1)2 |z| < |a|
7 (cos ω0n)u(n) 1−z−1 cos ω0

1−2z−1 cos ω0+z−2 |z| > |1|
8 (sin ω0n)u(n) z−1 sin ω0

1−2z−1 cos ω0+z−2 |z| > |1|
9 (an sin ω0n)u(n) az−1 sin ω0

1−2az−1 cos ω0+a2z−2 |z| > |a|
10 (an cos ω0n)u(n) 1−az−1 cos ω0

1−2az−1 cos ω0+a2z−2 |z| > |a|

Before proceeding to Z-transform properties it is better to have knowledge
of inverse Z-transform.

4.3 Inverse Z-Transform

When a z-transfer function is known we often require finding out its inverse
in the discrete-time form. There are different methods of finding inverse Z-
transform; we discuss here the most commonly method used in finding z-
transform.

4.3.1 Using the Property of Z-Transform

Example 4.8
Find the inverse z-transform of the function X (z) = log(1 + az−1), where a is
a scalar quantity.

Solution 4.8
Given function is

X(z) = log(1 + az−1) (1)

Differentiating both sides of (1)

dX(z)
dz

=
−az2

1 + az−1 (2)
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Multiplying both sides by –z to make right hand side the derivative formula

−z
dX(z)

dz
=

az−1

1 + az−1 . (3)

We know that inverse z-transform of left hand side is nx(n), and inverse
z-transform of right-hand side is

Z−1
(
−z

dX(z)
dz

)
= nx(n) (4)

Z−1
(

az−1

1 + az−1

)
= a(−a)n−1u(n− 1). (5)

Equating inverse z-transform of Equations (4) and (5)

n x(n) = a(−a)n−1u(n− 1).

Therefore

x(n) =
1
n

(−1)(−a)(−a)n−1u(n− 1) =
1
n

(−1)(−a)nu(n− 1)

=
1
n

(−1)n+1(a)nu(n− 1) =
1
n

(−1)n+1(a)n n ≥ 1

4.3.2 Using the Long Division

Problem 4.9
Find the inverse Z-transform of each given X (z) by long method

X(z) =
z(z + 1)

(z − 1)(z − 0.8)
=

z2 + z

z2 − 1.8z + 0.8

Solution 4.9

z2 − 1.8z + 0.8)
1 + 2.8z−1 + 4.24z−2 + 5.39z−3

z2 + z
z2 − 1.8z + 0.8

2.8z − 0.8
2.8z − 5.04 + 2.24z−1

4.24− 2.24z−1

4.24

x(0) = 1, x(1) = 2.8, x(2) = 4.24, x(3) = 5.392



4.3 Inverse Z-Transform 163

4.3.3 Using Residue Method

The partial fraction is done by any known method but one of the residue
method is widely in use of finding inverse z transform x(n), by summing the
residues at all pole.

Residue =
1

(m− 1)| lim
z→α

[
dm−1

dzm−1 {(z − α)mX(z)}
]

(4.7)

The function X (z) may be expanded into partial fractions in the same manner
as used with the Laplace transforms. The Z-transform tables may be used to
find the inverse z-transform.
Note: We generally expand the function X (z)/Z into partial fractions, and then
multiply z to obtain the expansion in the proper form.

Problem 4.10
Find the inverse Z-transform of each given X (z) by partial expansion.

X(z) =
z(z + 1)

(z − 1)(z − 0.8)
=

z2 + z

z2 − 1.8z + 0.8

Solution 4.10
X(z)

z
=

z + 1
(z − 1)(z − 0.8)

⇒ 10
z − 1

+
−9

z − 0.8

Z−1{X(z)} = 10Z−1
{

z
z−1

}
− 9Z−1

{
z

z−0.8

}

X(k) = 10− 9(0.8)k

4.3.3.1 When the poles are real and non-repeated
The inverse transform for functions that have real and non-repeated poles have
been considered here. Residue method is applied here.

Example 4.11
X (z) is given by the following transfer function, find x(n)

X(z) =
4z2 − 7

4z + 1
4

z2 − 3
4z + 1

8

Solution 4.11
Because the given transfer function is not rational that is its numerator value
is bigger than the denominator value, so first making the given non-rational
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transfer function into rational transfer function by dividing its numerator with
denominator. We obtain.

X(z) =
4z2 − 7

4z + 1
4

z2 − 3
4z + 1

8
=

4z2 − 7
4z + 1

4(
z − 1

2

)(
z − 1

4

) = 2 +
z
(
2z − 1

4

)
(
z − 1

2

)(
z − 1

4

)

We expand X1(z)
z into partial fractions, with the result,

X(z) = 2 +
z
(
2z − 1

4

)
(
z − 1

2

)(
z − 1

4

)

X1(z) =
z
(
2z − 1

4

)
(
z − 1

2

)(
z − 1

4

) X1(z)
z

=

(
2z − 1

4

)
(
z − 1

2

)(
z − 1

4

) =
X1(z)

z

=
A(

z − 1
2

) +
B(

z − 1
4

)

A =
(

z − 1
2

) (
2z − 1

4

)
(
z − 1

2

)(
z − 1

4

) z = 1/2 = 3

B =
(

z − 1
4

) (
2z − 1

4

)
(
z − 1

2

)(
z − 1

4

) z = 1/4 = −1

X1(z)
z

=
3(

z − 1
2

) +
−1(

z − 1
4

)

X1(z) =
3z(

z − 1
2

) +
−z(

z − 1
4

) X(z) = 2 + X1(z)

X(z) = 2 +
z
(
2z − 1

4

)
(
z − 1

2

)(
z − 1

4

) x(n) = 2δ(n) + 3
(

1
2

)n

−
(

1
4

)n

n ≥ 0

4.3.3.2 When the poles are real and repeated
The inverse transform for functions that have real and repeated poles have
been considered here, in which case residue method is used.

Example 4.12
X (z) is given by the following transfer function, find x(n)

X(z) =
1

z2 − 1.8z + 0.8
Solution 4.12

X(z) =
1

z − 1.8z + 0.8
X(z)

z
=

1
z(z − 1)(z − 0.8)
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X(z)
z

=
A

z
+

B

z − 1
+

C

z − 0.8

A = z 1
z(z−1)(z−0.8)/z = 0 = 1.25

X(z) =
1.25
z

+
5

z − 1
+
−7.813
z − 0.8

x(n) = z−1{X(z)} =
1.25
z

+ 5
z

z − 1
− 7.813

z

z − 0.8
x(n) = Z−1{X(Z)} = 1.25δ(n) + 5 u(n) − 7.813 (0.8)nu(n).

4.3.3.3 When the poles are complex
So far the inverse transform only for functions that have real poles have been
considered. The same partial-fraction procedure applies for complex poles;
however, the resulting inverse transform contains complex functions

y[n] = Aeσn cos(ω n + θ) =
Ae

σn

2
[ejσn

ejθ + e−jσn
e−jθ]

=
A

2
[e(σ+jω)nejθ + e(σ+jω)ne−jθ], (4.8)

where Σ and Ω are real. The z-transform of this function is given by,

Y (z) =
A

2

[
ejθz

z − eσ+jω
+

e−jθz

z − eσ−jω

]
(4.9)

Y (z) =
[
(A ejθ/2)z
z − eσ+jω

+
(Ae−jθ/2)z
z − eσ−jω

]
=

k1

z − p1
+

k∗
1

z − p∗
1
, (4.10)

where the asterisk indicates the complex conjugate.

p1 = eσ ejω = eσ ∠ω, σ = ln |p1|, ω = arg p1 (4.11)

k1 =
Aejθ

2
=

A

2
∠θ ⇒ A = 2|k1|; θ = arg k1. (4.12)

Hence, we calculate σ and ω from the poles, and A and θ from the partial-
fraction expansion. We can then express the inverse transform as the sinusoid
of Equation (4.10).

y[n] = Aeωn cos(ωn + θ). (4.13)
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Example 4.13
Find the inverse z-transform of the following transfer function

Y (z) =
−3.894z

z2 + 0.6065

Solution 4.13

Y (z) =
−3.894z

z2 + 0.6065
=

−3.894z

(z − j0.7788)(z + j0.7788)
=

k1z

z − j0.7788

+
k∗

1z

z + j0.7788
.

Dividing both sides by z, we calculate k1:

k1 = (z − j0.7788)
[ −3.894
(z − j0.7788)(z + j0.7788)

]

z=j0.7788

=
−3.894

z + j0.7788

∣∣∣∣
z=j0.7788

=
−3.894

2(j0.7788)
= 2.5∠90◦

k1 = 2.5∠90◦

and

p1 = j0.7788

p1 = eσejω = eσ∠ω

σ = ln|p1| ω = arg p1,

σ = ln|p1| = ln(0.7788) = −0.250; ω = arg p1 = π/2
A = 2|k1| = 2(2.5) = 5; θ = arg k1 = 90◦

Hence,

y[n] = Aeσn cos(ωn + θ) = 5e−0.25n cos
(π

2
n + 90◦

)

4.4 Theorems and Properties of Z-Transform

Following Table 4.2 describe the important properties of z-transform
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Table 4.2 Properties of Z-transform
Property Sequence Z-transform
Multiplication a x (n) a X (z)
Linearity a x (n) + b y(n) a X (z) + b Y (z)
Time shifting x(n − k) z−kX(z)
Scaling anu(n) X(a−1z)
Time reversal x(−n) X(z−1)
Differentiation nx(n) −z. dX(z)

dz

Convolution x(n) × y(n) X(z)Y (z)
Correlation rxy = x(n) and y(n) X(z)Y (z−1)

4.4.1 Multiplication Property

The z-transform of a number sequence multiplied by constant is equal to the
constant multiplied by the z-transform of the number sequence; that is.

z[a{x(n)}] = az[{x(n)}] = aX(z) (4.14)

Z[a{x(n)}] =
∞∑

n=0

ax(n)z−n = a

∞∑
n=0

x(n)z−n = aX(z)

Example 4.14
Determine the z-transform and the ROC of the signal

x(n) = 10(2n)u(n)

Solution 4.14
If we define the signals

x1(n) = 2nu(n)

then x(n) can be written as after its z-transform

X(z) = 10X1(z).

We recall that

αnu(n) z←→ 1
1− αz−1 ROC: |z| > |α| (1)

By setting α = 2 in (1), we obtain

x1(n) = 2nu(n) z←→ X1(z) =
1

1− 2z−1 ROC: |z| > 2
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The ROC of X (z) is |z| > 2. Thus the transform X (z) is

x(z) =
10

1− 2z−1 ROC: |z| > 2

Example 4.15
Determine the z-transform and the ROC of the signal

x(n) = 10
(

1
2

)n

u(n)

Solution 4.15
If we define the signals

x1(n) =
(

1
2

)n

u(n)

then x(n) can be written as after its z-transform

x1(n) =
(

1
2

)n

u(n) z←→ X1(z) =
1

1− 1
2z−1

ROC: |z| > 2

Thus the transform X (z) is

x(z) =
10

1− 1
2z−1

ROC: |z| > 1
2

4.4.2 Linearity Property

The z-transform of the sum of number sequences is equal to the sum of the
z-transform of the number sequence; that is

Z[{x1(n) + x2(n)}] = X1(z) + X2(z)

Z[a{x1(n) + x2(n)}] = a

∞∑
n=0

[x1(n) + x2(n)]z−n

X(z) =
∞∑

n=0

x1(n)z−n +
∞∑

n=0

x2(n)z−n = X1(z) + X2(z). (4.15)

Example 4.16
Determine the z-transform and the ROC of the signal

x(n) = [3(2n)− 4(3n)]u(n)
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Solution 4.16
If we define the signals

x1(n) = 2nu(n), x2(n) = 3nu(n)

then x(n) can be written as

x(n) = 3x1(n)− 4x2(n)

Its z-transform is
X(z) = 3X1(z)− 4X2(z)

We recall that

αnu(n) z←→ 1
1− αz−1 ROC: |z| > |α|.

By setting α = 2 and α = 3, we obtain

x1(n) = 2nu(n) z←→ X1(z) =
1

1− 2z−1 ROC: |z| > 2

x2(n) = 3nu(n) z←→ X2(z) =
1

1− 3z−1 ROC: |z| > 3.

The intersection of the ROC of X 1(z) and X 2(z) is |z|> 3. Thus the transform
X (z) is

x(z) =
3

1− 2z−1 −
4

1− 3z−1 ROC: |z| > 3

4.4.3 Time Shifting Property

This property states that

If x(n) Z−→ X(z) then

x(n− n0)
Z−→ z−n0X(z) (4.16)

Example 4.17
Determine the z-transform of

(a) x1(n) = δ(n) (d) x4(n) = u(n)
(b) x2(n) = δ(n− k) (e) x5(n) = u(n− k)
(c) x3(n) = δ(n + k) (f) x6(n) = u(n + k)
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Solution 4.17

(a) x1(n) = δ(n) (d) x4(n) = u(n)

X1(z) = 1 x4(z) =
1

1− z−1 =
z

z − 1
(b) x2(n) = δ(n− k) (e) x5(n) = u(n− k)

X2(z) = z−k (1) X5(z) = z−k 1
1− z−1

X2(z) = z−k X5(z) = z−k

(
z

z − 1

)

(c) x3(n) = δ(n + k) (f) x6(n) = u(n + k)

X3(z) = z+k (1) X6(z) = zk 1
1− z−1

X3(z) = zk X6(z) = zk

(
z

z − 1

)

Example 4.18
A discrete time signal is expressed as x(n) = δ(n + 1)+2δ(n)+5δ(n− 3)−
2δ(n− 4). Determine its z-transform.

Solution 4.18
According to linear property X(z) = a1X1(z) + a2X2(z) + a3X3(z) +
a4X4(z)

or X(z) = a1Z{x1(n) ] + a2Z{x2(n)}+ a3Z{x3(n)}+ a4Z{x4(n)}

X(z) = Z{d(n + 1)}+ 2Z{d(n)} + 5 Z{d(n− 3)} − 2 Z{d(n− 4)}.

X(z) = z + 2(1) + 5
(
z−3
) − 2

(
z−4
)

X(z) = z + 2 + 5 z−3 − 2 z−4

4.4.4 Scaling Property

x(n) Z−→ X(z) an x(n) = X(a−1z) (4.17)



4.4 Theorems and Properties of Z-Transform 171

Example 4.19
Determine Z-transform of

x(n) = (−1)nu(n)

Solution 4.19
In the given problem

x(n) = (−1)nu(n), here we take x(n) = u(n) and

X(z) = 1
1−z−1

For scaling the function by we place z = a−1z
X(z) = 1

1− 1
a−1z

. Now place a = −1X(z) = 1
1− 1

(−1)−1z

Z(−1)n u(n) = X(z) =
1

1 + z−1 .

Example 4.20
A discrete time signal is expressed as x(n) = 2nu(n – 2). Determine its
Z-transform

Solution 4.20
In the given problem

x(n) = 2nu(n− 2),

Now Z{u (n)} = 1
1−z−1 .

Therefore, using time shifting property we have

Z{u(n− 2)} = z−2 1
1− z−1 .

Now to find Z{2nu(n − 2)} we shall use the scaling property, which states
that

x(n) Z−→ X(z) an x(n) = X(a−1z)

Z{u(n− 2)} = z−2 1
1− z−1 , then

Z{2 nu(n− 2)} =
(2−1 z)−2

1− (2−1 z)−1 =
(2 z−1)2

1− 2 z−1 =
4 z−2

1− 2 z−1
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4.4.5 Time Reversal Property

x(n) Z−→ X(z) and x(−n) Z−→ X(z−1) (4.18)

Example 4.21
Determine Z-Transform of x(n) =

(1
2

)n
u(−n)

Solution 4.21

x(−n) Z−→ X(z−1)

we take x(n) =
(

1
2

)n

u(n) or X(z) =
1

1− (1
2

)
z−1

x(n) =
(

1
2

)n

u(−n) or X(z) =
1

1− ((1
2

)
z−1
)−1 =

1
1− 2z

Example 4.22
Determine Z-transform of x1(n) = u(−n)

Solution 4.22

x1(n) = u(−n)

we take x(n) = u(n) or X(z) =
1

1− z−1

x(n) = u(−n) or X(z) =
1

1− z

4.4.6 Differentiation Property

x(n) Z−→ X(z)

nx(n) Z−→ −z
d[X(z)]

dz
(4.19)

Example 4.23
Determine Z-transform of x(n) = nu(n)

Solution 4.23

x(n) = nu(n), using the property of derivative
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nx(n) = −z
d[X(z)]

dz
u(n) here x(n) = u(n)

X(z) =
1

1− z−1 ==
z

z − 1

Substituting X (z) and taking z-transform, using the property of derivative, we
have

X(z) = −z
d
dz

[Z{u(n)}].
Again using the differentiation property for the factor in bracket, we get.

X(z) = −z
d
dz

(
z

(z − 1)

)
= −z

(z − 1)(1)− z · 1
(z − 1)2

= −z
(−1)

(z − 1)2
.

Z[nu(n)] =
z

(z − 1)2

4.4.7 Convolution Property

If x1(n) Z−→ X1(z) and x2(n) Z−→ X2(z)
Then

x(n) = x1(n) × x2(n) Z−→ X(z) = X1(z)X2(z) (4.20)

Example 4.24
Compute the convolution of two signals.

x1(n) = {1, − 2, 1}

x2(n) =
{
1, 0 ≤ n ≤ 5
0, elsewhere

Solution 4.24

x1(n) = {1
↑
,−2, 1}

x2(n) = {1
↑
1, 1, 1, 1, 1}

X1(z) = 1− 2z−1 + z−2; X2(z) = 1 + z−1 + z−2 + z−3 + z−4 + z−5.
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Using the property of convolution in z domain, we carry out the multiplication.

X(z) = X1(z)X2(z)

X(z) = (1− 2z−1 + z−2)(1 + z−1 + z−2 + z−3 + z−4 + z−5)

X(z) = 1− z−1 − z−6 + z−7

Hence
x(n) = {1

↑
, −1, 0, 0, 0, 0, −1, 1}.

Example 4.25
A discrete time signals are given by the expression

x(n) =
(

1
2

)n

u(n) h(n) =
(

1
4

)n

u(n)

Using the Z-transform, find the convolution y(n).

Solution 4.25

y(n) = x(n)⊗ h(n)

x(n) =
(

1
2

)n

u(n)

Z{u(n)} =
z

z − (1
2

)

h(n) =
(

1
4

)n

u(n)

Z{h(n)} =
z

z − (1
4

)

We know that convolution in time domain is equal to multiplication in
frequency domain

y(n) =
(

1
2

)n

u(n)⊗
(

1
4

)n

u(n)

Z[y(n)] = Z

[(
1
2

)n

u(n)
]

Z

[(
1
4

)n

u(n)
]

y(z) =
z(

z − 1
2

) z(
z − 1

4

) Y (z)
z

=
z(

z − 1
2

)(
z − 1

4

)
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Y (z)
z

=
A(

z − 1
2

) +
B(

z − 1
4

)

A =
(

z − 1
2

)
z(

z − 1
2

)(
z − 1

4

) z = 1/2 =
1
2
1
4

= 2

B =
(

z − 1
4

)
z(

z − 1
2

)(
z − 1

4

) z = 1/4 =
1
4

−1
4

= −1

Y (z)
z

=
2(

z − 1
2

) +
−1(

z − 1
4

) =
2z(

z − 1
2

) +
−z(

z − 1
4

)

y(n) =
{

2
(

1
2

)n

−
(

1
4

)n}
u(n).

Example 4.26
Compute the convolution of two signals y(n) using Z-transform approach.

x(n) = αnu(n)
h(n) = δ(n)− αδ(n− 1)

Solution 4.26

x(n) = αnu(n) X(z) =
1

1− αz−1

h(n) = δ(n)− αδ(n− 1) H(z) = 1− αz−1

Y (z) = X(z)H(z) =
1

1− αz−1 (1− αz−1) = 1, which is due to

pole zero cancellation.

Taking inverse Z-transform of Y (z), y(n) = δ(n).

4.4.8 Correlation Property

Correlation property states that

If x1(n)↔ X1(z)
and x2(n)↔ X2(z) (4.21)

rx1 x2 (n) = X1(z) X2(z−1)
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Example 4.27
Compute the cross-correlation sequence rx1 x2 (j) of the sequences

X1(n) = {1, 2, 3, 4}
X2(n) = {4, 3, 2, 1}.

Solution 4.27
The cross-correlation sequence can be obtained using its correlation property
of the Z-transform.

Therefore, for the given x1(n) and x2(n), we have

X1(z) = 1 + 2z−1 + 3z−2 + 4z−3;

X2(z) = 4 + 3z−1 + 2z−2 + z−3

Thus X2(z−1) = 4 + 3z + 2z2 + z3.

Using the property of convolution in z domain, we carry out the multiplication.

Rx1 x2(z) = X1(z)X2(z−1)

= (1 + 2z−1 + 3z−2 + 4z−3)(4 + 3z + 2z2 + z3)

Rx1 x2(z) = X1(z)X2(z−1)

= (z3 + 4z2 + 10z + 20 + 22z−1 + 24z−2 + 12z−3).

4.4.9 Initial Value Theorem

Initial value theorem states that if x(n) is causal discrete time signal with Z-
transform X (z), then initial value may be determined by using the following
expression.

x(0) = Lim
n→0

x(n) = Lim
|z|→∞

X(z). (4.22)

4.4.10 Final Value Theorem

Final value theorem states that for a discrete time signal x(n), if X (z) and the
poles of X (z) are all inside the unit circle, then the final value of discrete time
signal, x(∞) may be determined using the following expression.

x(∞) = Lim
n→∞ x(n) = Lim

|z|→1
[(1− z−1)X(z)] (4.23)
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Example 4.28

Given the Z-transform of any signal X(z) = 2+3z−1 +4z−2, determine the
initial and final values of the corresponding discrete time signals.

Solution 4.28
The given expression is X(z) = 2 + 3z−1 + 4z−2.

We know that the initial value is given as x(0) = Lim
n→∞ x(n) =

Lim
|z|→∞

X(z)

x(0) = Lim
n→∞ x(n) = Lim

|z|→∞
(2 + 3z−1 + 4z−2) = 2 + 0 + 0 = 2

Also the final value is given as x(∞) = Lim
n→∞ x(n) = Lim

|z|→1
[(1− z−1)X(z)]

x(∞) = Lim
n→∞ x(n) = Lim

|z|→1
[(1− z−1)(2 + 3z−1 + 4z−2)]

x(∞) = Lim
|z|→1

[(2 + z−1 + z−2 − 4z−3)] = 2 + 1 + 1− 4 = 0

4.4.11 Time Delay Property (One-Sided z -Transform)

This property states that

If x(n) Z−→ X(z) then

x(n− k) Z−→ z−k

[
X(z) +

k∑
n=1

x(−n)z−n

]

k>0

(4.24)

4.4.12 Time Advance Property

This property states that

If x(n) Z−→ X(z) then

x(n + k) Z−→ zk

[
X(z)−

k−1∑
n=0

x(n)z−n

]
(4.25)

Example 4.29
Determine the response of the following system:
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x(n + 2)−3x(n + 1) + 2x(n) = u(n). Assume all the initial conditions
are zero.

Solution 4.29
Given system is x(n + 2)− 3x(n + 1) + 2x(n) = u(n). Taking Z-transform
of both the sides of the above equation, we obtain

X(z) [z2 − 3z + 2] =
z

z − 1
·X(z) =

z

z − 1
.

1
(z − 1)(z − 2)

=
Z

(z − 1)2(z − 2)
X(z)

z
=

A12

(z − 1)2
+

A11

(z − 1)
+

B

(z − 2)

A12 = (z − 1)2
1

(z − 1)2(z − 2)
A12 =

1
z − 2

∣∣∣∣
z=1

= −1

A11 =
1
1!

d

dz

1
z − 2

∣∣∣∣
z=1

= − 1
(z − 2)2

∣∣∣∣
z=1

= −1

B = (z − 2)
1

(z − 1)2(z − 2)

∣∣∣∣
z=2

=
1

(z − 1)2

∣∣∣∣
z=2

= 1

X(z)
z

=
A12

(z − 1)2
+

A11

(z − 1)
+

B

(z − 2)
=

−1
(z − 1)2

+
−1

(z − 1)
+

1
(z − 2)

X(z) =
−z

(z − 1)2
+
−z

(z − 1)
+

z

(z − 2)
x(n) = −nu(n)− u(n) + (2)nu(n)

4.5 Problems and Solutions

Problem 4.1
Determine the Z-transform for the pair x1(n) and x2(n) expressions.

x1(n) = (1
4)nu(n− 1); x2(n) = [1 + (1

2)n]u(n)

Solution 4.1
Z-transform of the two signals

x1(n) = (1
4)nu(n− 1)

= (1
4)n−1+1u(n− 1)
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= 1
4(1

4)n−1u(n− 1)

= u(n) + (1
2)nu(n)

x2(n) = [1 + (1
2)n]u(n)

Using the scaling and time shifting property using the scaling property

X1(z) = 1
4

(
z−1

1−( 1
4 )z−1

)
X2(z) = 1

1−z−1 + 1
1−( 1

2 )z−1

X1(z) = 1
4

( 1
z

1− 1
4z

)
X2(z) = z

z−1 + 2z
2z−1

X1(z) = 1
4

( 1
z

4z−1
4z

)
X2(z) = (2z−1)z+(z−1)(2z)

(z−1)(2z−1)

X1(z) = 1
4

(
4

4z−1

)
X2(z) = 2z2−z+2z2−2z

(z−1)(2z−1)

X1(z) = 1
4z−1 X2(z) = 4z2−3z

(z−1)(2z−1)

Problem 4.2
Determine for the Impulse response for the causal system using z-transform
approach.

y(n)− 3
4y(n−1)+ 1

8y(n−2) = x(n), where x(n) is the impulse response.

Solution 4.2

y(n)− 3
4
y(n− 1) +

1
8
y(n− 2) = x(n)

Y (z)− 3
4
Y (z)z−1 +

1
8
Y (z)z−2 = X(z) or Y (z)

(
1− 3

4
z−1 +

1
8
z−2
)

= X(z), where X(z) = 1
Y (z)
X(z)

=
1

1− 3
4z−1 + 1

8z−2
or H(z) =

1
1− 3

4z−1 + 1
8z−2

H(z) =
z2

z2 − 3
4z + 1

8
H(z) =

z2
(
z − 1

2

)(
z − 1

4

)

H(z)
z

=
z(

z − 1
2

)(
z − 1

4

) H(z)
z

=
A

z − 1
2

+
B

z − 1
4

A =
(
z − 1

2

)
(

z(
z − 1

2

)(
z − 1

4

)
)

z=1
2

A =
1
z

1
2 − 1

4
=

1
2
× 4

1
= 2
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B =
(
z − 1

4

)[ z

(z − 1
2)(z − 1

4)

]

z=1
4

B =
1
4

1
4 − 1

2
= −1

H(z)
z

=
2

z − 1
2
− 1

z − 1
4

H(z) =
2 z

z − 1
2
− 1 z

z − 1
4

H(z) = 2
1

1− (1
2)z−1

− 1
1− (1

4)z−1

h(n) = 2
(

1
2

)n
u(n)−

(
1
4

)n
u(n)

Problem 4.3
Determine for the step response for the causal system using z-transform
approach.

y(n)− 3
4y(n− 1) + 1

8y(n− 2) = x(n), where the input x(n) = u(n)

Solution 4.3

X(z) =
1

1− z−1

Y (z) = H(z) X(z)

Y (z) =
1

1− 3
4z−1 + 1

8z−2
× 1

1− z−1 =
1

(1− 3
4z−1 + 1

8z−2)(1− z−1)

Y (z) =
z3

(z2 − 3
4z + 1

8)× (z − 1)

Y (z)
z

=
z2

(z − 1
2)(z − 1

4)(z − 1)
=

−2
(z − 1

2)
+

1
3

(z − 1
4)

+
8
3

(z − 1)

Y (z) =
−2z

z − 1
2

+
1
3(z)
z − 1

4
+

8
3(z)

(z − 1)

= −2

[
1

1− (1
2)z−1

]
+

1
3

[
1

1− (1
4)z−1

]
+

8
3

(
1

1− z−1

)

y(n) = −2
(

1
2

)n
u(n) +

1
3

(
1
4

)n
u(n) +

8
3
u(n)
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y(n) =
[
−2
(

1
2

)n

+
1
3

(
1
4

)n

+
8
3

]
u(n)

Problem 4.4
Find the inverse z-transform of the following transfer function of the following
function Y (z), using residue theorem.

Y (z) =
1 + z−1

1− z−1 + 0.5z−2

Solution 4.4

Y (z) =
z2 + z

z2 − z + 0.5
=

z(z + 1)
z2 − z + 0.5

Dividing both sides by z

y(z)
z

=
z + 1

z2 − z + 0.5
y(z)
z

=
z + 1

(z − 1
2 + j 1

2)(z − 1
2 − j 1

2)
=

k1

z − 1
2 + j 1

2
+

k∗
1

z − 1
2 − j 1

2

p1 = p∗
2 =

1√
2
ejπ/4 k1 =

√
2e−j45

σ = ln|p1| = ln (1
2 + j 1

2); ω = arg p1 = π/4

A = 2|k1| =
√

2e−j45 θ = arg k1 = 45◦.

Hence y[n] = Aeσn cos(ωn + θ) = 1.414e
( 1√

2
)n

cos
(

π
4 + 45◦)

Problem 4.5
Find the inverse z-transform of the following transfer function Y (z).

Y (z) =
1

(1 + z−1)(1− z−1)2

Solution 4.5

Y (z) =
1
4

1
1 + z−1′ +

3
4

1
1− z−1 +

1
2

z−1

(1− z−1)2

y[n] =
1
4
(−1)nu(n) +

3
4

u(n) +
1
2
n u(n)
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y[n] =
(

1
4
(−1)n +

3
4

+
1
2
n

)
u(n)

Problem 4.6
A discrete time signal is expressed as x(n) = cos ωn for n ≥ 0. Determine
its z-transform.

Solution 4.6
cos ωn =

1
2
[ejωn + e−jωn]

The z-transform is expressed as

Z[{x(n)}] = X(z) =
∞∑

n=0

x(n)z−n

Z[ejω n] ==
1

1− ejω z−1 for |z| > 1 [ejω = 1]

In the same way for n ≥ 0

Z[e−jωn] ==
1

1− e−jωz−1 for |z| > 1 [e−jω = 1]

X(z) = Z

[
1
2
{ejωn + e−jωn}

]

X(z) =
1
2
Z{ejωn}+

1
2
Z{e−jωn}

X(z) =
1
2

[
1

1− ejωz−1

]
+

1
2

[
1

1− e−jωz−1

]

X(z) =
1
2

[
2− (ejω + e−jω)z−1

(1− ejωz−1)(1− e−jωz−1)

]

X(z) =
1− cos ω z−1

1− 2z−1 cos ω + z−2 =
z2 − z cos ω

z2 − 2z cos ω + 1
for |z| > 1

Problem 4.7
A discrete time signal is expressed as x(n) = sinωn for n ≥ 0. Determine
its z-transform.

Solution 4.7
sin ωn =

1
2j

[ejωn − e−jωn]
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The z-transform is expressed as Z [{x(n)}] = X(z) =
∑∞

n=0 x(n)z−n

Z[ejωn] ==
1

1− ejωz−1 for |z| > ejωn

or Z[ejωn] ==
1

1− ejωz−1 for |z| > 1[ejω = 1].

In the same way for n ≥ 0

Z[e−jω n] =
1

1− e−jω z−1 for |z| > e−jω n

or

Z [e−jωn] ==
1

1− e−jωz−1 for |z| > 1 [e−jω = 1]

X(z) = Z

[
1
2j
{ejω n − e−jω n}

]
X(z) =

1
2j

Z{ejω n} − 1
2j

Z{e−jω n}

X(z) =
1
2j

{
1

1− ejω z−1

}
− 1

2j

{
1

1− e−jω z−1

}

X(z) =
z−1(ejω + e−jω )/2j

(1− ejω z−1)(1− e−jω z−1)

X(z) =
z−1 sin ω

1− 2z−1 cos ω + z−2 =
z sin ω

z2 − 2z cos ω + 1
for |z| > 1

Problem 4.8
By applying the time shifting property, determine the x(n) of the signal.

X(z) =
z−1

1− 3z−1

Solution 4.8

X(z) =
z−1

1− 3z−1 = z−1X1(z) X1(z) =
1

1− 3z−1 x1(n) = (3)n u(n)

Because there is delay z−1, therefore delaying x1(n) by one unit.

x(n) = (3)n−1 u(n− 1)
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Problem 4.9
The Z-transform of a particular discrete time signal x(n) is expressed

X(z) =
1 + 1

2z−1

1− 1
2z−1

Determine x(n) using time shifting property.

Solution 4.9
Splitting the expression in two fractions for convenience

X(z) =
1 + 1

2z−1

1− 1
2z−1

=
1

1− 1
2z−1

+
1
2z−1

1− 1
2z−1

x(n) = Z−1

[
1

1− 1
2z−1

+
1
2z−1

1− 1
2z−1

]

x(n) = Z−1{X(z)} =

[
1

1− 1
2z−1

+
1
2z−1

1− 1
2z−1

]

x(n) = Z−1{X1(z) + X2(z)}

X1(z) =
1

1− 1
2z−1

; X2(z) =
1
2z−1

1− 1
2z−1

X1(z) =
1

1− 1
2z−1

= Z

[(
1
2

)n

u(n)
]

X2(z) =
1
2z−1

1− 1
2z−1

=
1
2
Z−1[X1(z)]

Now using time shift property

If x(n) Z−→ X(z) then

x(n− n0)
Z−→ z−n0X(z)

X2(z) =
1
2
Z−1[X1(z)]

X2(z) =
1
2
Z

[(
1
2

)n−1

u(n− 1)

]
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Substituting the value of X 1(z) and X 2(z)

x(n) =
(

1
2

)n

u(n) +
1
2

(
1
2

)n−1

[u(n− 1)]

x(n) =
(

1
2

)n

{u(n) + u(n− 1)}

or x(n) =
(

1
2

)n

{δ(n) + 2u(n− 1)}

Problem 4.10
Given the Z-transform of x(n) as

X(z) =
z

z − 4
.

Use Z-transform properties to determine y(n) = x(n− 2),

Solution 4.10

X(z) =
z

z − 4
. Using time shifting property

Y (z) = Z[x(n− 2)] = z−2
(

z

z − 4

)
=
(

z−1

z − 4

)
=

1
z(z − 4)

We expand Y (z)
z into partial fractions to get y(n)

Y (z)
z

=
1

z2(z − 4)
=
(

A12

z2

)
+
(

A11

z

)
+

B

(z − 4)

A12 = z2 z = 0 z2 1
z2(z − 4)

= −1
4

A11 = z = 0
d
dz

(
1

(z − 4)

)
=
(
− 1

(z − 4)2

)
= − 1

16

B = z = 4 (z − 4)
1

z2(z − 4)
=

1
z2 =

1
16

Y (z)
z

= − 1
4

1
z2 −

1
16

(
1
z

)
+

1
16

1
(z − 4)
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Y (z) = − 1
4

1
z
− 1

16
+

1
16

z

(z − 4)
y(n) = −1

4
δ(n− 1) +

1
16

δ(n)− 1
16

4n n ≥ 0

Problem 4.11
Using scaling property, determine z-transform of an cos ωn for n ≥ 0.

Solution 4.11

Z{cos ωn} =
1− cos ωz−1

1− 2z−1 cos ω + z−2 =
z2 − z cos ω

z2 − 2z cos ω + 1
Using scaling property

Z{an cos ωn} =
1− a z−1 cos ω

1− 2a z−1 cos ω + a2z−2 =
z2 − az cos ω

z2 − 2az cos ω + a2

Problem 4.12
Determine Z-transform of x(n) =

(1
2

)n
u(−n)

Solution 4.12

X(z) =
∞∑

n=0

(
1
2

)
n u(−n) z−n

X(z) =
∞∑

n=0

(
1
2

)
=n zn =

∞∑
n=0

(2z) n

If 2Z < 1, the sum converges and X(z) = 1
1−2z

2Z < 1 or |z | < 1
2 .

Problem 4.13
Determine the Z-transform of the signal

x(n) = −αnu(−n− 1) =
{

0, n ≥ 0
−αn, n ≤ −1
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Figure 4.2 (a) Anticausal signal x(n) = −αnu(−n − 1), (b) ROC of its z-transform

Solution 4.13

X(z) =
−1∑

n=−∞
(−αn)z−n = −

∞∑
L=1

(α−1z)L

where L = –n. Using the formula

A + A2 + A3 + . . . = A
(
1 + A + A2 + . . .

)
=

A

1−A

When |A| < 1 gives

X(z) = − α−1z

1− α−1z
=

1
1− α z−1

Provided that |α−1z| < 1 or equivalently, |z| < |α|. Thus

x(n) = −αnu(−n− 1) z←→ X(z) =
1

1− α(z)−1 , ROC : |z| < |α|

The ROC is now the interior of a circle having radius |α|.

Problem 4.14
Given the Z-Transform of x(n) as

X(z) =
z

z2 + 4
.

Use Z-transform properties to determine Y (z), i.e., y(n) = x(–n),
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Solution 4.14
x(−n) Z−→ X(z−1)

Using time reversal property

Y (z) =
(

z−1

z−2 + 4

)
=
(

z

1 + 4z2

)

Problem 4.15
Adiscrete time signal is expressed as x(n) = n2u(n). Determine its Z-transform.

Solution 4.15
Given that

x(n) = n2u(n)

nx(n) = −zX(z) = Z{x(n)} = Z{n2 u(n)} = Z[n{nu(n)}].
Using the property of derivative, we have

X(z) = −z
d
dz

[Z{nu(n)}].

Again using the differentiation property for the factor in bracket, we get.

X(z) = −z
d
dz

z

(z − 1)2

X(z) = −z
d
dz

z

(z − 1)2
= −z

(z − 1)2 − 2z2 + 2z

(z − 1)4

= −z
(z2 − 2z + 1)− 2z2 + 2z

(z − 1)4

X(z) = −z
(−z2 + 1)
(z − 1)4

= z
(z2 − 1)
(z − 1)4

Problem 4.16
Given the Z-transform of a signal x(n) is given as

X(z) =
z

z2 + 4
.

Use Z-transform properties to determine Y (z).
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Solution 4.16

x(n) Z−→ X(z) =
z

z2 + 4
nx(n) Z−→ −z

d[X(z)]
dz

Using differentiation property

Y (z) = −z
d
dz

[
z

z2 + 4

]
= −z

(
z2 + 4− z(2z)

(z2 + 4)2

)

Y (z) = −z

( −z2 + 4
(z2 + 4)2

)
= z

( −z2 + 4
(z2 + 4)2

)

Problem 4.17
Determine the Z-transform of the signal

y(n) = n[
(

1
2

)n

u(n)⊗
(

1
2

)n

u(n)]

Solution 4.17

Let x(n) =
[(

1
2

)n

u(n)⊗
(

1
2

)n

u(n)
]

Z{x(n)} =
z2

[
z − (1

2

)]2 y(n) = nx(n)

Y (z) = −z
d
dz

z2

[
z − 1

2

]2 = −z
d
dz

z2

[
z − 1

2

]2

= −z

[(
z − 1

2

)
2z − z2

(
2
(
z − 1

2

))
(
z − 1

2

)4
]

=
8z2(2z − 1)
(2z − 1)4

Problem 4.18
A discrete time signal is given by the expression

x(n) = n

(
−1

2

)n

u(n)⊗
(

1
4

)−n

u(−n)

Find the Z-transform.
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Solution 4.18

x(n) = x1(n)⊗ x2(n)

x1(n) = n

(
−1

2

)n

u(n)

Z{u(n)} =
1

1− z−1

Using the scaling property we have

Z

[(
−1

2

)n

u(n)
]

=
z

z + 1
2

ROC |z| >
1
2

Now using Z-domain differentiation property

Z

[(
n− 1

2

)n

u(n)
]

= −z
d
dz

[
z

z + 1
2

]
=

−1
2z(

z + 1
2

)2

x2(n) =
(

1
4

)−n

u(−n) Z{u(n)} =
1

1− z−1

Using the scaling property

Z

[(
1
4

)−n

u(n)

]
= Z[(4)n u(n)]

=
1

[1− (4)z−1]
=

z

z − 4
ROC |z| >

1
4

Using time reversal property

Z

[(
1
4

−n
)

u(−n)
]

=
z−1

z−1 − 4
ROC

∣∣∣∣
1
z

∣∣∣∣ >
1
4

Z

[(
1
4

−n
)

u(−n)
]

=
1

1− 4z
ROC |z| < 1

4
.

We know that convolution in time domain is equal to multiplication in
frequency domain

x(n) = n

(
−1

2

)n

u(n)⊗
(

1
4

)−n

u(−n) Z[x(n)] = Z[n
(
−1

2

)n
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u(n)] Z[
(

1
4

)−n

u(−n)]

X(z) =
−1

2z(
z + 1

2

)2
1
4(

z − 1
4

) = −
1
8z(

z + 1
2

)2(
z − 1

4

) ROC
1
2

< |z| < 1
4

Problem 4.19
Compute the Y (z) using convolution y(n) = x(n) ⊗ h(n) of the following
signals:

x(n) =
(

1
2

)n

u(n), h(n) =
(

1
2

)n

u(n)

Solution 4.19
y(n) = [(1

2)n u(n)⊗ (1
2)n u(n)]

Z{y(n)} = Y (z) =
1

(1− (1
2)z−1)2

.

Problem 4.20
Determine the Z-Transform of the following signal.

Solution 4.20

X(z) =
∞∑

n=−∞

(
1
2

)n

[u(n)− u(n− 10)]z−n

X(z) =
∞∑

n=−∞

(
1
2z

)n

−
∞∑

n=−10

(
1
2z

)n

=
9∑

n=0

(
1
2z

)n

X(z) =
1− ( 1

2z

)10

1− ( 1
2z

) =
(2z)10 − 1

2z − 1
1

(2z)9

X(z) =
1− ( 1

2z

)10

1− ( 1
2z

) =
z10 − [1

2

]10

z − [1
2

] 1
(z)9

Problem 4.21
Solve the following difference equation for x(k) using the Z-transform method
for k ≤ 4.

x(k)− 4x(k − 1) + 3x(k − 2) = e(k)
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where e(k) =
{

2, k = 0, 1
0, k ≥ 2 x(−2) = x(−1) = 0.

Solution 4.21
Taking transform of the difference equation

[
1− 4z−1 + 3z−2] X(z) = E(z) = 2

(
1 + z−1)

X(z) =
2(1 + z−1)

1− 4z−1 + 3z−2 =
2z(z + 1)

z2 − 4z + 3
X(z)

z
=

2(z + 1)
(z − 1)(z − 3)

=
−2

z − 1
+

4
z − 3

X(z) = − 2z

z − 1
+

4z

z − 3
x(k) = [−2 + 4(3)k] u(k).

Problem 4.22
Given the difference equation:

y(k + 2)− 0.75y(k + 1) + 0.125y(k) = e(k),

where e(k) = 1, k ≥ 0, and y(0) = y(1) = 0.

Solution 4.22
y(k + 2)−0.75y(k + 1)+0.125y(k) = e(k), converting the given difference
equation into Z transform.

Y (z)
{
z2 − 0.75z + 0.125

}
= E(z) where E(z) =

z

z − 1
(given)

Y (z) = E(z)
(z−0.25)(z−0.5) . Substituting the value of E(z)

y(z) =
z

(z − 1)(z − 1
4)(z − 1/2)

y(z)
z

=
1

(z − 1)(z − 1/4)(z − 1/2)
=

8/3
z − 1

+
16/3

z − 1/4
+
−8

z − 1/2

y(k) = 8/3 + 16
3 (1

4)k − 8(1/2)k
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Problem 4.23
Find the inverse Z-transform of each given E(z) by two methods and compare
the value of e(k) for k = 0, 1, 2, and 3 obtained by two method.

E(z) =
z

(z − 1)(z − 0.8)

Solution 4.23
E(z) =

z

(z − 1)(z − 0.8)
(i)

z2 − 1.8z + 0.8)
z−1 + 1.8z−2 + 2.44z−3

z
z − 1.8 + 0.8z−1

1.8− 0.8z−1

1.8...

e(0) = 0, e(1) = 1, e(2) = 1.8, e(3) = 2.44
(ii)

E(z)
z

=
1

(z − 1)(z − 0.8)
=

5
z − 1

+
−5

z − 0.8

E(z) =
5z

z − 1
− 5z

z − 0.8

z−1{E(z)} = 5z−1
{

z
z−1

}
− 5z−1

[
z

z−0.8

]

e(k) = 5− 5(0.8)k, e(k) = 5
[
1− (0.8)k

]

k = 0, e(0) = 5
[
1 − (0.8)0

]
= 0

k = 1, e(1) = 5
[
1 − (0.8)1

]
= 1

k = 2, e(2) = 5
[
1 − (0.8)2

]
= 1.8

k = 3, e(3) = 5
[
1 − (0.8)3

]
= 2.44

Problem 4.24
Find the inverse Z-transform of each given E(z) by two methods and compare
the value of e(k) for k = 0, 1, 2, and 3 obtained by two method.

E(z) =
1

(z − 1)(z − 0.8)
=

1
z2 − 1.8z + 0.8
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Solution 4.24
(i)

z2 − 1.8z + 0.8)
z−2 + 1.8z−3 + 2.44z−4

1
1− 1.8z−1 + 0.8z−2

1.8z−1 − 0.8z−2

1.8z−1 − 3.24z−2 + 1.44z3

2.44z−2 − 1.44z−3

e(0) = 0, e(1) = 0, e(2) = 1, e(3) = 1.8, e(4) = 2.44.

(ii)
E(z)

z
=

1
z(z − 1)(z − 0.8)

=
A

z
+

B

z − 1
+

C

z − 0.8

A = lim
z→0

z
1

z(z − 1)(z − 0.8)
=

1
(−1)(−0.8)

= 1.25

B = lim
z→1

(z − 1)
1

z(z − 1)(z − 0.8)
=

1
1(0.2)

= 5

C = lim
z→0.8

(z − 0.8)
1

z(z − 1)(z − 0.8)
=

1
(0.8)

= −6.25

E(z)
z

=
1.25
z

+
5

z − 1
− 6.25

z − 0.8

E(z) = 1.25 + 5
z

z − 1
− 6.25

z

z − 0.8

e(k) = 1.255d(k) + 5 u(k) − 6.25 (0.8)ku(k)
k = 0, e(0) = 1.25 + 5 − 6.25 = 0
k = 1, e(1) = 0 + 5 − 6.25 (0.8) = 0
k = 2, e(2) = 0 + 5 − 6.25(0.8)2 = 1.00

Problem 4.25
Find the inverse Z-transform x(n) of given X (z).

X(z) =
3

z − 2
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Solution 4.25
X (z) may be written as X(z) = 3z−1 z

z−2
Z{2nu(n)} = z

z−2 , using time shifting property

Z{2n−1u(n− 1)} = z−1
[

z

z − 2

]
=

1
z − 2

Thus, we conclude that x(n) = 3{2n−1u(n− 1)}.

Problem 4.26
Find the inverse z-transform of the following transfer function

X(z) =
z

z2 + 1 z + 0.5
Solution 4.26

X(z) =
z

z2 + 1 z + 0.25 + 0.25
=

z

(z + 0.5)2 + (0.5)2

=
k1z

z + 0.5− j0.5
+

k∗
1z

z + 0.5 + j0.5
Dividing both sides by z, we calculate k1:

k1 = (z + 0.5− j0.5)
[

1
(z + 0.5− j0.5)(z + 0.5 + j0.5 )

]

z=−0.5+j0.5

=
1

z + 0.5 + j0.5

∣∣∣∣
z=−0.5+j0.5

=
1

2(j0.5)
= 1∠−90◦

with p1 = −0.5 + j0.5,
Σ = ln|p1| = ln(0.707) = −0.34; Ω = arg p1 = 3p/4
A = 2|k1| = 2(1) = 2;
θ = arg k1 = −90◦

Hence,
y[n] = AeΣn cos(Ωn + θ) = 2e−0.34n cos

(3π
4 − 90◦)

Problem 4.27
Determine the convolution of two signals for the convolution of x(n) and h(n)
where

x(n) =
(

1
4

)n−2

u(n) h(n) =
(

1
3

)n

u(n− 3)
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Solution 4.27

x(n) =
(

1
4

)n−2

u(n) x(n) =
(

1
4

)−2(1
4

)n

u(n) x(n) = (16)
(

1
4

)n

u(n)

X(z) = (16)Z
(

1
4

)n

u(n) = 16
z

z − 1
4

h(n) =
(

1
3

)n

u(n−3) =
(

1
3

)3 (1
3

)n−3

u(n−3) =
(

1
27

)
z−3Z

(
1
3

)n

u(n)

H(z) =
(

1
27

)
z−3 z

z − 1
3

=
(

1
27

)
z−2

z − 1
3

Y (z) = 16
z

z − 1
4

(
1
27

)
z−2

z − 1
3

=
(

16
27

)
z−1

(
z − 1

3

)(
z − 1

4

)

Y (z) = 16
z

z − 1
4

(
1
27

)
z−2

z − 1
3

=
(

16
27

)
z−1

(
z − 1

3

)(
z − 1

4

)

=
(

16
27

)
1

z
(
z − 1

3

)(
z − 1

4

)

Y (z)
z

=
16
27

1
z
(
z − 1

3

)(
z − 1

4

) =
A12

z2 +
A11

z
+

B

z − 1
3

+
C

z − 1
4

A12 = lim
z→0

z2 1
z2
(
z − 1

3

)(
z − 1

4

) =
1(−1

3

)(−1
4

) = 12

A11 = lim
z→0

d
dz

(
z2 1

z2
(
z − 1

3

)(
z − 1

4

)
)

= − d
dz

1(
z2 − 7

12z + 1
12

) = −84

B = lim
z→ 1

3

(
z − 1

3

)
1

z2
(
z − 1

3

)(
z − 1

4

) =
1(1

3

)2(1
3 − 1

4

)

=
1

1
9

( 1
12

) = 108

C = lim
z→ 1

4

(
z − 1

4

)
1

z2
(
z − 1

3

)(
z − 1

4

) =
1

1
16

(1
4 − 1

3

)
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=
1

1
16

(− 1
12

) = −192

Y (z)
z

=
16
27

(
12
z2 −

84
z

+
108

z − 1
3
− 192

z − 1
4

)

=

(
64/9
z2 +

1344/27
z

+
64

z − 1
3
− 1024/9

z − 1
4

)

Y (z) = 64/9z−1 + 1344/27 + 64
z

z − 1
3
− 1024

/
9

z

z − 1
4

y(n) = 64
(

1
3

)n

− 1024
9

(
1
4

)n

= 64
(

1
3

)n[
1− 16

9

(
3
4

)n]
for n ≥ 3.

Problem 4.28
Determine the convolution of two signals for the convolution of x(n) and h(n)
where

Using Z-transform

x(n) =
(

1
2

)n

u(n) h(n) = n u(n)

Solution 4.28

X(z) =
z

z − 1
2

H(z) =
z

(z − 1)2

Y (z) =
z

z − 1
2

z

(z − 1)2
Y (z)

z
=

z

(z − 1)2
(
z − 1

2

)

Y (z)
z

=
1

(z − 1)2
(
z − 1

2

) =
A12

(z − 1)2
+

A11

z − 1
+

B

z − 1
2

A12 = lim
z→1

(z − 1)2
1

(z − 1)2
(
z − 1

2

) =
1(

1− 1
2

) = 2

A11 = lim
z→1

d
dz

(
(z − 1)2

1
(z − 1)2

(
z − 1

2

)
)

=
d
dz

1(
z − 1

2

)

= − 1(
z − 1

2

)2 = − 1(
z − 1

2

)2 = − 1(1
2

)2 = −4
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B = lim
z→ 1

2

(
z − 1

2

)
1

(z − 1)2
(
z − 1

2

) =
1(1

2 − 1
)2 =

1(1
4

) = 4

Y (z)
z

=

(
2

1
(z − 1)2

− 4
(z − 1)

+
4

z − 1
2

)

Y (z) =

(
2

z

(z − 1)2
− 4

z

(z − 1)
+ 4

z

z − 1
2

)

y(n) = 2 nu(n)− 4u(n) + 4
(

1
2

)n

u(n)



5
Solution of Difference Equation

This chapter covers: Constant Coefficient Difference Equation, Different
methods of solution of difference equations, Problems and solutions.

5.1 Constant-Coefficient Difference Equation

It should be noted the difference equation describes the discrete time sys-
tems performance, while differential equation describes the performance of
continuous time system. Infinite duration impulse response (IIR) requires an
infinite number of memory locations, multiplication, and additions. So it is
impossible to implement IIR system by applying convolution. IIR systems are
more conveniently described by difference equations.

A recursive system is described with an input–output equation

y(n) = λy(n− 1) + x(n), (5.1)

where λ is constant and can have any value.
The system described by the first-order difference equation in

Equation (5.1) is the simplest possible recursive system in the general class
of recursive systems described by linear constant coefficient difference
equations. The general formula for such equation is

y(n) = −
N∑

k=1

aky(n− k) +
M∑

k=0

bkx(n− k) (5.2)

or equivalently

N∑
k=0

ak y(n− k) =
M∑

k=0

bk x(n− k), a0 = 1 (5.3)

199



200 Solution of Difference Equation

the integer N is called the order of the difference equation or the order of
the system. The negative sign on the right-hand side of the Equation (5.2) is
introduced as a matter of convenience to allow us to express the difference
equation in Equation (5.3) without any negative sign.

Given a linear constant-coefficient difference equation as the input–output
relationship describing the linear time invariant system, the object is to
determine the explicit expression for the output y(n).

Our goal is to determine the output y(n), n ≥ 0, of the system for the
specific input x(n), n ≥ 0, and a set of initial conditions.

5.2 Solution of Difference Equation

Three techniques are used for solving linear time-invariant difference
equations.

(i) Sequential procedure: This technique is used in the digital computer
solution of difference equations.

(ii) Using Z-transform.
(iii) Classical technique: It consists of finding the complementary and the

particular solution as in the case of solution of differential equation.

5.2.1 Using Sequential Procedure

Example 5.1
We solve for m(k) for the equation y(k) = x(k)− x(k − 1)− y(k − 1),
k ≥ 0.

Where = x(k) =
{

1, k even
0, k odd.

and both x(–1) and y(–1) are zero.

Solution 5.1
k = 0, y(0) = x(0) − x(−1)− x(−1) = 1
k = 1, y(1) = x(1) − x(0)− y(0) = 0− 1− 1 = −2
k = 2, y(2) = x(2) − x(1)− y(1) = 1− 0− (−2) = 3
k = 3, y(3) = x(3) − x(2)− y(2) = 0− 1− 3 = −4
k = 4, y(4) = x(4) − x(3)− y(3) = 1− 0− (−4) = 5.

It is not necessary that all the results can be summed up in closed form.
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Example 5.2
Solve the difference equation y(k) − 4y(k − 1) + 3y(k − 2) = x(k), using
the sequential technique. Find x(k) for k ≤ 5.

where x(k) =
{

2, k = 0, 1
0, k ≥ 2 x(−2) = x(−1) = 0.

Solution 5.2
y(k)− y(k − 1)− y(k − 2) = x(k)

k = 0, y(0) = 0− 0 + 2 = 2
k = 1, y(1) = 4× 2 − 0 + 2 = 10
k = 2, y(2) = 4× 10− 6 + 0 = 34
k = 3, y(3) = 4× 34− 30 + 0 = 106 .

Generally it is written as y(k) = −2 + 4(3)k.

5.2.2 Using Z -Transform

The second technique for solving the difference equation is that of using
Z-transform. Consider the nth order difference equation, where it is assumed
that the input sequence {x(k)} is known.

y(k) + b1y(k − 1) + . . . + bny(k − n) = a0x(k) + a1x(k − 1) + . . .

+ anx(k − n).

Using the real translation theorem, one can find z-transform of this equation.

Y(z) + b1z
−1Y(z) + . . . + bnz−nY(z) = a0X(z) + a1z

−1X(z) + . . .

+ anz−nX(z)

Y(z) =
a0 + a1z

−1 + . . . + anz−n

1 + b1z−1 + ... + bnz−n
X(z)

For a given X(z), we find y(k) by taking the inverse Z-transform of the above
equation.

5.2.3 Classical Technique of Difference Equation

The classical technique for difference equation solution is also called the direct
solution method assumes that the total solution is the sum of two parts, yh(n)
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is the homogeneous or complementary solution and yp(n) is the particular
solution y(n) = yh(n) + yp(n). There are different cases for complementary
function and particular solution.

5.2.4 The Homogeneous Solution

For finding the homogeneous solution, the input, i.e., the forcing function x(n)
is assumed to be zero. It is also called zero input response. Mathematician call it
complementary solution, engineers cal it transient solution or natural response.

The procedure for solving a linear constant coefficient difference equation
directly is very similar to the procedure for solving a linear constant coefficient
differential equation. Basically we assume that the solution is in the form of
an exponential, that is,

yh(n) = λn (5.4)

We form up the auxiliary equation and substituting instead of y the values
yh(n) = λn, in the auxiliary equation where the subscript h on y(n) is used
to denote the solution to the homogeneous difference equation.

This auxiliary polynomial equation is called the characteristic polynomial
of the system. In general it has N roots, which is denoted as λ1, λ2, . . . λN .The
roots may be real non- repeated and repeated or complex valued.

5.2.4.1 When the auxiliary polynomial roots are real and distinct
For the moment, let us assume that the roots are distinct; that is, there are
no multiple roots. The most general solution to the homogeneous difference
equation is, therefore,

yh(n) = c1λ
n
1 + . . . + cNλn

N , (5.5)

where c1, c2, . . ., cN are weighting coefficients. These coefficients are deter-
mined from the initial conditions specified for the system. Since the input
x(n) = 0, Equation (5.5) may be used to obtain the zero input response of the
system. The following example illustrates the procedure when the auxiliary
equation has the real and distinct roots.

Example 5.32
Determine the zero-input response of the system described by the homoge-
neous second-order difference equation, with initial condition y(–1) = 5 and
y(–2) = 0.
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y(n)− 3y(n− 1)− 4y(n− 2) = 0.

Solution 5.32
First determine the solution to the homogeneous equation. We assume the
solution to be exponential. The assumed solution is obtained by setting x(n) = 0
is yh(n) = λn.

When we substitute this solution in (1), we obtain [with x(n) = 0]

λn − 3λn−1 − 4λn−2 = 0.

Dividing both sides by λn−2

λ2 − 3λ− 4 = 0.

Therefore, the two distinct roots are λ = –1, 4 and we write the general form
of the solution as

yh(n) = C1λ
n
1 + C2λ

n
2 Substituting the value of two λ.

yh(n) = C1(−1)n + C2(4)n.

Because the initial conditions for this problem are known we can find the value
of c1 and c2.

yh(−1) = C1(−1)−1 + C2(4)−1 = 5 or −C1 + C2(
1
4
) = 5

yh(−2) = C1(−1)−2 + C2(4) −2 = 0 or = C1 + C2(
1
16

) = 0

Solving the simultaneous equation to find the value of c1 and c2

C2 =
1
16

, C1 = −1 yh(n) = −(−1)n + 16(4)n = (−1)n+1 + (4)n+2

5.2.4.2 When the characteristics polynomial roots
are real and repeated

For the moment, let us assume that the roots are repeated; that is, there are
multiple roots. The most general solution to the homogeneous difference
equation is

yh (n) = C1λ
n
1 + C2nλn

2 + . . . (5.6)

where C1,C2, . . ., CN are weighting coefficients. These coefficients are deter-
mined from the initial conditions specified for the system. The following
example illustrates the procedure when the characteristic polynomial have the
repeated roots.
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Example 5.33
Find the homogeneous solution of the second-order difference equation

y(n) − 1.8y(n− 1) + 0.81y(n− 2) = 0, n ≥ 0.

Solution 5.33
With y(n) = λn substituted into the homogeneous counterpart, the following
is obtained

λ2 − 1.8λ + 0.81 = 0,

which results in the repeated roots. It means that while writing the repeated
root expression, it should be multiplied by a factor n.

λ1 = λ2 = 0.9.

Thus, as in the case of differential equations, we consider the complementary
solution to be

yc(n) = c1(0.9)n + c2 n(0.9)n,

where c1 and c2 can be evaluated if two initial conditions are specified.

5.2.5 The Particular Solution of Difference Equation

We assume for selecting the yp(n) a form that depends on the form of the input
x(n). The following examples illustrate the procedure and show also the rule
for choosing the particular solution.

5.2.6 Rules for Choosing Particular Solutions

As is the case with the solution of differential equations, there are a set of rules,
one must use to form appropriate particular solutions while solving difference
equations, as summarized in Table 5.1.

5.2.6.1 When the forcing function is having term different
from the value of the roots of the auxiliary equation

For the moment, let us assume that the roots are distinct; that is, there are
no multiple roots. The most general solution to the homogeneous difference
equation is

yh(n) = C1λ
n
1 + C2λ

n
2 + . . . . . . + CNλn

N , (5.7)
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Table 5.1 Rules for choosing particular solutions
Terms in Forcing Function Choice of Particular Solution
1. Constant Select c as constant name it other than it is if used in

auxiliary equation.
2. 1 + 3−n If a term is present in the homogeneous solution then

modify the particular solution by multiplying it by n.

3.
b3 cos (nωn)
b4 sin (nωn)

}

b3 and b4 are constants

c1 sin(nω) + c2 cos(nω)

If a term in any of the particular solutions in this column is a part of the complementary
solution, it is necessary to modify the corresponding choice by multiplying it by n before
using it. If such a term appears r times in the complementary solution, the corresponding
choice must be multiplied by nr .

where C1, C2, . . ., CN are weighting coefficients. These coefficients are
determined from the initial conditions specified for the system. The com-
plementary function is calculated in same manner as discussed earlier in case
of homogenous equation. In the following case the value of λ is different than
the forcing function.

Example 5.34
Find the general solution of the second-order difference equation

y(n) − 5
6
y(n− 1) +

1
6

y(n− 2) = 5−n, n ≥ 0 (1)

with initial conditions y(–2) = 25 and y(–1) = 6.

Solution 5.34
The general (or closed-form) solution y(n) of (1) is obtained in three steps that
are similar to those used for solving second-order differential equations. They
are as follows:

The complementary solution yc(n) in terms of two arbitrary constants c1
and c2.

Obtain the particular solution yp(n), and write

y(n) = yc(n) + yp(n). (2)

Steps are elaborated as follows:
We assume that the complementary solution yc(n) has the form
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yc(n) = c1λ
n
1 + c2λ

n
2 (3)

where the λ1 and λ2 are real constants.
Next substitute y(n) = λn in the homogeneous equation to get

λn − 5
6
λn−1 +

1
6

λn − 2 = 0. (4)

Dividing both sides of (4) by λn−2, we obtain or
(
λ − 1

2

)(
λ− 1

3

)
= 0

which yields the characteristic roots

λ1 =
1
2

andλ2 =
1
3
.

Thus, the complementary solution is

yc(n) = c12−n + c23−n,

where c1 and c2 are arbitrary constants.
In this case the forcing function is different than the roots of the auxiliary

equation. Then particular solution yp(n) is assumed to be

yp(n) = c35−n

since the forcing function is 5−n; substitution of yp(n) = c35−n in (1)
leads to

c3[5−n −
(

5
6

)
5−(n−1) +

(
1
6

)
5−(n−2)] = 5−n.

Dividing both sides of this equation by 5−n, we obtain

c3[1−
(

5
6

)
5 +

(
1
6

)
52] = 1

which implies that c3 = 1. Thus

y(n) = yc(n) + yp(n)
= c12−n + c23−n + 5−n.

(5)

Since the initial conditions are

y(−2) = 25 and y(−1) = 6.
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Using the above given initial conditions (5) yields the simultaneous
equations

4c1 + 9c2 = 0
and 2c1 + 3c2 = 1 (6)

Solving (6) for c1 and c2, we obtain

c1 =
3
2

and c2 = − 2
3
. (7)

Thus the desired general solution is given by

y(n) =
3
2
(2−n) − 2

3
(3−n) + 5−n, n ≥ 0 (8)

y(n) can be interpreted as the output of a DT system when it is subjected to
the exponential input (forcing function) 5−n, which is the right-hand side of
the given difference equation in (1).

5.2.6.2 When the forcing function is having same term
as in the roots of the auxiliary equation

Example 5.35
Solve the second-order difference equation

y(n) − 3
2
y(n − 1) +

1
2

y(n− 2) = 1 + 3−n, n ≥ 0 (1)

with the initial conditions y(–2) = 0 and y(–1) = 2.

Solution 5.35
The solution consists of three steps.

Assume the complementary solution as yc(n) = c1λ1
n + c2λ2

n. Substituting
y(n) = λn in the homogeneous counterpart of (1)we obtain the characteristic
equation

λ2 − 3
2
λ +

1
2

= 0

the roots of which are λ1 = 1
2 and λ2 = 1.

Thus
yc(n) = c12−n + c21n = c12−n + c2. (2)

To choose an appropriate particular solution, we refer to Table 5.1. From the
given forcing function and lines 1 and 3 of Table 5.1, it follows that a choice
for the particular solution is c3 + c43−n.
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However, we observe that this choice for the particular solution and yc(n)
in (2) have common terms, each of which is a constant; that is, c3 and c2,
respectively. Thus in accordance with the footnote of Table 5.1, we modify
the choice c3 + c43−n to obtain.

yp(n) = c3n + c43−n. (3)

Next, substitution of yp(n) in (3) into (1) leads to

c3n + c43−n − 3
2
c3n +

3
2
c3 − 9

2
c43−n +

1
2
c3n

−c3 +
9
2
c43−n = 3−n + 1 (4)

equating the coefficient of 3−n and constant, from (4) it follows that

1
2c3 = 1

and c4
[
1− 9

2 + 9
2

]
3−n = 3−n

which results in
c3 = 2; c4 = 1.

Thus, combining (2) and (3), we get

y(n) = c12−n + c2 + 2n + 3−n. (5)

To evaluate c1 and c2 in (5), the given initial conditions are used; that is,
y(–2) = 0 and y(–1) = 2. This leads to the simultaneous equations.

4c1 + c2 = −5
2c1 + c2 = 1

Solving, we obtain c1 = –3 and c2 = 7, which yields the desired solution as

y(n) = (−3)2−n + 7 + 2n + 3−n, n ≥ 0

Example 5.36
Find the general solution of the first-order difference equation.

y(n)− 0.9y(n− 1) = 0.5 + (0.9)n−1, n ≥ 0 (1)

with y(−1) = 5.
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Solution 5.36
Substituting y(n) = λn in the homogeneous equation

y(n)− 0.9 y(n− 1) = 0
we obtain yc(n) = c1(0.9)n (2)

since it is a first-order difference equation.
From the forcing function in (1), the complementary solution in (2), and

lines 1 and 3 of Table 5.1, it follows that

yp(n) = c2n(0.9)n + c3

Substitution of y(n) = yp(n) in (1) results in

c3 + c2n(0.9)n − 0.9c2(n − 1) (0.9)n−1 − 0.9c3 = 0.5 + (0.9)n−1

equating the coefficient of constant 0.5 and (0.9)n−1 leads to

0.1c3 = 0.5

and (0.9)nc2 = (0.9)n−1.
Thus we have

c3 = 5 and c2 =
10
9

which implies that

yp(n) =
10
9

n (0.9)n + 5. (3)

Combining (2) and (3), the following equation is obtained

y(n) = c1(0.9)n +
10
9

n (0.9)n + 5 (4)

From (4) and the initial condition y(–1) = 5, it follows that c1 = 10
9 . Hence

the desired solution can be written as

y(n) = (n + 1)(0.9)n−1 + 5, n ≥ 0.

Example 5.37
Find the general solution of the second-order difference equation

y(n)− 1.8y(n− 1) + 0.81y(n− 2) = (0.9)n, n ≥ 0. (1)
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Leave the answer in terms of unknown constants, which one can evaluate if
the initial conditions are given.

Solution 5.37
The complementary solution is given by

yc(n) = c1(0.9)n + c2n(0.9)n (2)

Since the forcing function is (0.9)n, line 3 of Table 5.1 implies that a choice
for the particular solution is c3(0.9)n.

However, since this choice and the preceding yc(n) have a term in common,
we must modify our choice according to the footnote of Table 5.1 to obtain
c3n(0.9)n.

But this choice again has a term in common with yc(n).
Thus we refer to the footnote of Table 5.1 once again to obtain.

yp(n) = c3n
2(0.9)n (3)

which has no more terms in common with yc(n).
Hence yp(n) in (3) is the appropriate choice for the particular solution for

the difference equation in (1) when the forcing function is (0.9)n.

5.2.6.3 When the forcing function is having sinusoidal
forcing function

When the forcing function is having a term of sinusoidal forcing function then
in selection of the particular solution we do as following.

yp(n) = c1 sin
(nπ

2

)
+ c2 cos

(nπ

2

)

Example 5.38
Find the particular solution for the first-order difference equation.

y(n) − 0.5y(n− 1) = sin
(nπ

2

)
, n ≥ 0 (1)

Solution 5.38
Since the forcing function is sinusoidal; we refer to line 3 of Table 5.1 and
choose a particular solution of the form

yp(n) = c1 sin
(nπ

2

)
+ c2 cos

(nπ

2

)
(2)
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Substitution of y(n) = yp(n) in (1) leads to

c1 sin
(nπ

2

)
+ c2 cos

(nπ

2

)
− 0.5c1 sin

[
(n− 1)π

2

]

−0.5c2 cos
[
(n− 1)π

2

]
= sin

(nπ

2

)
(3)

using the following identities:

sin
[
(n− 1)π

2

]
= sin

(nπ

2
− π

2

)
= −cos

(nπ

2

)
(4)

cos
[
(n− 1)π

2

]
= cos

(nπ

2
− π

2

)
= sin

(nπ

2

)

Substituting (2) in (1), we obtain

(c1 − 0.5c2) sin
(nπ

2

)
+ (0.5c1 + c2) cos

(nπ

2

)
= sin

(nπ

2

)

which yields the simultaneous equations.

c1 − 0.5c2 = 1
0.5c1 + c2 = 0.

(5)

The solution of (5) yields c1 = 4
5 and c2 = –2

5 . Hence the desired result is given
by (2) to be

yp(n) =
4
5

sin
(nπ

2

)
− 2

5
cos
(nπ

2

)
n ≥ 0.

5.3 Problems and Solutions

K and n has been used in the difference equation representation.

Problem 5.1
Solve the following difference equation for x(k) using the Z-transform method
for k ≤ 5.

y(k)− 4y(k − 1) + 3y(k − 2) = x(k)

where x(k) =
{

2, k = 0, 1
0, k ≥ 2 y(−2) = y(−1) = 0.
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Solution 5.1
Taking transform of the above difference equation[

1− 4z−1 + 3z−2
]

Y(z) = X(z). Where X(z) = 2
(
1 + z−1

)
from

the given problem

Y(z) = 2(1 + z−1)
1 − 4z−1 + 3z−2 .

Multiply numerator and denominator by z2 Y(z) = 2z(z + 1)
z2 − 4z + 3

Y(z)
z

=
2(z + 1)

(z − 1)(z − 3)
=
−2

z − 1
+

4
z − 3

Y(z) = − 2z

z − 1
+

4z

z − 3

y(n) = [−2 + 4(3)n] u(n).

Problem 5.2

Given the difference equation:
y(n + 2) − 0.75y(n + 1) + 0.125y(n) = x(n)
Where x(n) = 1, n ≥ 0, and y(0) = y(1) = 0.

Solution 5.2
y(n + 2) − 0.75y(n + 1) + 0.125y(n) = x(n), converting the given
difference equation into Z transform.

Y(z)
{
z2 − 0.75z + 0.125

}
= E(z) where X(z) =

z

z − 1
(given)

Y(z) = X(z)
(z − 0.25)(z − 0.5) Substituting the value of X(z)

y(z) =
z

(z − 1)(z − 1
4)(z − 1/2)

y(z)
z

=
1

(z − 1)(z − 1/4)(z − 1/2)
=

8/3
z − 1

+
16/3

z − 1/4
+
−8

z − 1/2

y(n) =
[
8
3

+
16
3

(
1
4

)n

− 8
(

1
2

)n]
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Problem 5.3
Find the inverse Z-transform of each given E(z) by two methods and compare
the value of e(k) for k = 0, 1, 2, and 3 obtained by two method.

E(z) =
z

(z − 1)(z − 0.8)

Solution 5.3
E(z) =

z

(z − 1)(z − 0.8)

(i)
z−1 + 1.8z−2 + 2.44z−3

z2 − 1.8z + 0.8 z
z − 1.8 + 0.8z−1

1.8− 0.8z−1

1.8

e(0) = 0, e(1) = 1, e(2) = 1.8, and e(3) = 2.44

(ii) E(z)
z = 1

(z−1)(z−0.8) = 5
z−1 + −5

z−0.8

E(z) = 5z
z−1 − 5z

z−0.8 ,

z−1{E(z)} = 5z−1
{

z
z−1

}
− 5z−1

[
z

z−0.8

]

e(k) = 5− 5(0.8)k, e(k) = 5
[
1− (0.8)k

]

k = 0, e(0) = 5
[
1 − (0.8)0

]
= 0

k = 1, e(1) = 5
[
1 − (0.8)1

]
= 1

k = 2, e(2) = 5
[
1 − (0.8)2

]
= 1.8

k = 3, e(3) = 5
[
1 − (0.8)3

]
= 2.44.

Problem 5.4
Find the inverse Z-transform of each given E(z) by two methods and compare
the value of e(k) for k = 0, 1, 2, and 3 obtained by two method.

E(z) =
1

(z − 1)(z − 0.8)
=

1
z2 − 1.8z + 0.8
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Solution 5.4

(i)
z−2 + 1.8z−3 + 2.44z−4

z2−1.8z + 0.8 1
1− 1.8z−1 + 0.8z−2

1.8z−1 − 0.8z−2

1.8z−1 − 3.24z−2 + 1.44z3

2.44z−2 − 1.44z−3

e(0) = 0, e(1) = 1, e(2) = 1.8, and e(3) = 2.45

(ii) E(z)
z = 1

z(z−1)(z−0.8) = A
z + B

z−1 + C
z−0.8

A = lim
z → 0 z 1

z(z−1)(z−0.8) = 1
(−1)(−0.8) = 1.25

B = lim
z → 1 (z − 1) 1

z(z−1)(z−0.8) = 1
1(0.2) = 5

C = lim
z → 0.8 (z − 0.8) 1

z(z−1)(z−0.8) = 1
(0.8) = −6.25

E(z)
z = 1.25

z + 5
z−1 − 6.25

z−0.8

E(z) = 1.25 + 5 z
z−1 − 6.25 z

z−0.8

e(k) = 1.255δ(k) + 5u(k) − 6.25 (0.8)ku(k)
k = 0, e(0) = 1.25 + 5 − 6.25 = 0
k = 1, e(1) = 0 + 5 − 6.25 (0.8) = 0
k = 2, e(2) = 0 + 5 − 6.25(0.8)2 = 1.00

Problem 5.5
Find the inverse Z-transform x(n) of given X(z).

X(z) =
3

z − 2

Solution 5.5
X(z) may be written as X(z) = 3z−1 z

z−2
Z{2nu(n)} = z

z−2 , using time shifting property

Z{2n−1u(n− 1)} = z−1[
z

z − 2
] =

1
z − 2

Thus we conclude that x(n) = 3{2n−1u(n− 1)}.
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Problem 5.6
Find the inverse z-transform of the following transfer function

X(z) =
z

z2 + 1 z + 0.5

Solution 5.6
X(z) =

z

z2 + 1 z + 0.25 + 0.25
=

z

(z + 0.5)2 + (0.5)2

=
k1z

z + 0.5− j0.5
+

k∗
1z

z + 0.5 + j0.5
Dividing both sides by z, we calculate k1:

k1 = (z + 0.5− j0.5 )
[

1
(z + 0.5− j0.5 )(z + 0.5 + j0.5 )

]

z=−0.5 + j0.5

=
1

z + 0.5 + j0.5

∣∣∣∣
z=−0.5+j0.5

=
1

2(j0.5)
= 1∠−90o

with p1 = −0.5 + j0.5,

∑
= ln|p1| = ln(0.707) = −0.34; Ω = arg p1 = 3p/4

A = 2|k1| = 2(1) = 2; θ = arg k1 = −90◦

Hence,

y[n] = AeΣn cos(Ωn + θ) = 2e−0.34n cos
(

3π

4
− 90◦

)

Problem 5.7
Determine the convolution of two signals for the convolution of x(n) and h(n)
where

x(n) =
(

1
4

)n−2

u(n) h(n) =
(

1
3

)n

u(n− 3)

Solution 5.7

x(n) =
(

1
4

)n−2

u(n) x(n) =
(

1
4

)−2(1
4

)n

u(n)

x(n) = (16)
(

1
4

)n

u(n)
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X(z) = (16)Z
(

1
4

)n

u(n) = 16
z

z − 1
4

h(n) =
(

1
3

)n

u(n− 3) =
(

1
3

)3(1
3

)n−3

u(n− 3)

=
(

1
27

)
z−3Z

(
1
3

)n

u(n)

H(z) =
(

1
27

)
z−3 z

z − 1
3

=
(

1
27

)
z−2

z − 1
3

Y(z) = 16
z

z − 1
4

(
1
27

)
z−2

z − 1
3

=
(

16
27

)
z−1

(
z − 1

3

)(
z − 1

4

)

Y(z) = 16
z

z − 1
4

(
1
27

)
z−2

z − 1
3

=
(

16
27

)
z−1

(
z − 1

3

)(
z − 1

4

)

=
(

16
27

)
1

z
(
z − 1

3

)(
z − 1

4

)

Y(z)
z

=
16
27

1
z
(
z − 1

3

)(
z − 1

4

) =
A12

z2 +
A11

z
+

B

z − 1
3

+
C

z − 1
4

A12 = lim
z → 0 z2 1

z2
(
z − 1

3

)(
z − 1

4

) =
1(−1

3

)(−1
4

) = 12

A11 = lim
z → 0

d
dz

(
z2 1

z2
(
z − 1

3

)(
z − 1

4

)
)

= − d
dz

1(
z2 − 7

12z + 1
12

) = −84

B =
lim

z → 1
3

(
z − 1

3

)
1

z2
(
z − 1

3

)(
z − 1

4

)

=
1(1

3

)2(1
3 − 1

4

) =
1

1
9

( 1
12

) = 108

C =
Lim

z → 1
4

(z − 1
4
).

1
z2(z − 1

3)(z − 1
4)

=
1

1
16(1

4 − 1
3)

=
1

1
16(− 1

12)
= −192
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Y(z)
z

=
16
27

(
12
z2 −

84
z

+
108

z − 1
3
− 192

z − 1
4

)

=

(
64/9
z2 +

1344/27
z

+
64

z − 1
3
− 1024/9

z − 1
4

)

Y(z) = 64/9z−1 + 1344/27 + 64 z
z− 1

3
− 1024

/
9 z

z− 1
4

y(n) = 64
(

1
3

)n

− 1024
9

(
1
4

)n

= 64
(

1
3

)n[
1− 16

9

(
3
4

)n]
for n ≥ 3

Problem 5.8
Determine the convolution of two signals for the convolution of x(n) and h(n)
where

Using Z-transform

x(n) =
(

1
2

)n

u(n) h(n) = n u(n)

Solution 5.8
X(z) =

z

z − 1
2
; H(z) =

z

(z − 1)2

Y(z) =
z

z − 1
2

z

(z − 1)2
Y(z)

z
=

z

(z − 1)2(z − 1
2)

.

Y(z)
z

=
1

(z − 1)2(z − 1
2)

=
A12

(z − 1)2
+

A11

z − 1
+

B

z − 1
2

A12 = lim
z → 1 (z − 1)2

1
(z − 1)2

(
z − 1

2

) =
1(

1− 1
2

) = 2

A11 = lim
z → 1

d
dz

(
(z − 1)2

1
(z − 1)2

(
z − 1

2

)
)

=
d
dz

1
z − 1

2

= − 1(
z − 1

2

)2 = − 1(
1− 1

2

)2 = − 1(1
2

)2 = −4
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B =
Lim

z → 1
2

(z − 1
2
).

1
(z − 1)2(z − 1

2)
=

1
(1
2 − 1)2

=
1

(1
4)

= 4

Y(z)
z

=

(
2

1
(z − 1)2

− 4
(z − 1)

+
4

z − 1
2

)

Y(z) =

(
2

z

(z − 1)2
− 4

z

(z − 1)
+ 4

z

z − 1
2

)

y(n) = 2 nu(n)− 4u(n) + 4
(

1
2

)n

u(n)

Example 5.9
Determine the impulse response of the system described by the difference
equation

y(n) − 0.6y(n− 1) + 0.08y(n− 2) = x(n), the initial condition are
y(0) = 1.

Solution 5.9
y(n) − 0.6y(n− 1) + 0.08y(n− 2) = x(n), where x(n) = δ(n)

Homogenous Solution:
Keeping the forcing function x(n) = 0 for finding the zero input response.
The characteristic equation is λ2 − 0.6λ + 0.08 = 0; λ = 0.2, 0.4
Hence, yh(n) = c1(1

5)n + c2(2
5)n with x(n) = δ(n),

Particular Solution:
Because the initial conditions of this problem is not given we find the

initial condition from given problem and the input x(n).

y(n) − 0.6y(n− 1) + 0.08y(n− 2) = δ(n), substituting the
value of n = 1

y(1) − 0.6y(0) = 0, y(1) = 0.6

yh(n) = c1(1
5)n + c2(2

5)nn = 0, y(0) = 1 = c11 + c21 n = 1,

y(1) = 0.6 = c1(1
5) + c2(2

5)⇒ c1 = −1, c2 = 2

Therefore,

h(n) = [−(1
5)n + 2(2

5)n]u(n)
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Problem 5.10
Solve the following second-order linear difference equations with constant
coefficients.

2y(n − 2) − 3y(n − 1) + y(n) = 3, n ≥ 0, with y(−2) = −3
and y(−1) = −2.

Hint: yc(n) = c1 + c2n, and yp(n) = c3n
2 (why?).

Solution 5.10
Homogeneous Solution:

Let the assumed yh(n) = λn by substitution into original equation, we get

2λn−2 − 3λn−1 + λn = 0 dividing whole equation λn−2

2 − 3λ + λ2 = 0, rearranging in descending format
λ2 − 3λ + 2 = 0 λ = 2, 1
yh(n) = c1(2)n + c2(1)n

yh(n) = c12n + c2

(1)

Particular Solution:
The assumed yp = c3, but because in the selection of forcing function the

constant C2 is also present in the homogeneous solution therefore the selection
of forcing function is to be modified form yp = nc3. Substituting yp in the main
Equation (1)

[2c3(n – 2)] – 3[c3(n – 1)] + nc3 = 3
2c3n – 4c3 – 3c3n + 3c3 + nc3 = 3
Equating the coefficients of the constant we get c3 = –3.
The complete solution

y(n) = yp(n) + yc(n)

y(n) = c1 2n + c2 − 3n (2)

Now for finding c1, c2 has to be calculated using condition y(–2) = –3,
y(–1) = –2

c1 + 4 c2 = −44/3,
c1 + 2 c2 = −14/3,
c1 = 16/3, c2 = −5 Substituting in (2)

y(n) = −13 + 16 2n − 3n
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Problem 5.11
Solve the following second-order linear difference equations with constant
coefficients.

y(n− 2)− 2y(n− 1) + y(n) = 1, n ≥ 0, with y(−1) = −0.5
and y(−2) = 0.

Hint: yc(n) = c1 + c2n, and yp(n) = c3n
2

Solution 5.11
Homogeneous Solution:

Let

yh(n) = λn by substituting into original equation
λn−2 − 2λn−1 + λn = 0
λ2 − 2λ + 1 = 0
(λ− 1)2 = 0
λ = 1, 1.

Since roots turned out to be same. It falls in the case two when the roots of
the auxiliary equation are real and repeated. So

yc(n) = c11n + nc21n yc(n) = c1 + nc2

Particular Solution:
The assumed yp = c3, but because in the selection of forcing function the

constant c2 is also present in the homogeneous solution therefore the selection
of forcing function is to be modified form yp = n2c3. Substituting yp in the
main Equation (1)

yp = n2c3 (3)

y(n − 2) − 2 y(n − 1) + y(n) = 1

Put (3) in original equation.
[
c3(n− 2)2

]
− 2

[
c3(n− 1)2

]
+ c3n

2 = 1, c3 = 1/2

The complete solution
y(n) = c1 + nc2 + n2

2

using initial conditions y(–1) = –0.5 and y(–2) = 0
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c1 − c2 = − 1,
c1 − 2c2 = − 2
c1 = 0, c2 = 1
y(n) = n + 0.5

(
n2
)

Problem 5.12
Solve the following second-order linear difference equations with constant
coefficients

y(n) − 0.8y(n − 1) = (0.8)n, n ≥ 0, with y(0) = 6.

The answer may be left in terms of two arbitrary constants

yp(n) = c3n
2 + c4n + c5.

Solution 5.12
y(n)− 0.8y(n− 1) = 0.8n, n ≥ 0 y(0) = 6
the yc part can be assumed as y = ln

by substitution λn − 0.8an−1 = 0
λ = 0.8
yc = c10.8n

for yp part (0.8n) is same so assumed solution is yp = nc20.8n

c2 = 8
y(n) = yc + yp
but y(n) = c10.8n + (n0.8nx8)

= c10.8n + 8n0.8n

Using y(0) = 6c1 = 6

y(n) = 6(0.8)n + 8n(0.8)n

Problem 5.13
Solve the following second-order linear difference equations with constant
coefficients

y(n) − y(n − 1) = 1 + (0.5)n, n ≥ 0, with y(0) = 1.

The answer may be left in terms of two arbitrary constants

yp(n) = c3n
2 + c4n + c5.
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Solution 5.13
y(n)− y(n− 1) = 1 + 0.5n for yc part we have equation

λn − λn−1 = 0
λ− 1 = 0; λ = 1
yc = c1(1)n = c1

for yp = n c2 + c3(0.5)n, we use the modified form of for selection yp.
by substitution it into original equation

(nc2 + c3(0.5)n)−
(
c2(n− 1) + c3(0.5)n−1

)
= 1 + 0.5nc3 = −1

and c2 = 1 (by comparing coefficients)

Total solution y(n) = c1 + nc2 + c30.5n

y = c1 + n − 0.5n

using y(0) = 1
c1 = 2 and y(n) = 2 + n − 0.5n

Problem 5.14
Solve the following second-order linear difference equations with constant
coefficients

5y(n− 2) + 5y(n) = 1, n ≥ 0, with y(−2) = 2 and y(−1) = 1.

The answer may be left in terms of two arbitrary constants

yp(n) = c3n
2 + c4n + c5.

Solution 5.14
−5y(n− 2) + 5y(n) = 1 n ≥ 0 y(−2) = 2 y(−1) = 1

for yc = −5y(n− 2) + 5y(n) = 0 put y(n) = an

−5λn−2 + 5λn = 0

5λ2 − 5 = 0 a = ±1

yc(n) = c1(1)n + c2(−1)n = c1 + c2(−1)n

let yp = nc3 (to distinguish from c1) by substitution in main equation

−5((n− 2)c3) + 5(nc3) = 1 c3 = 1/10 = 0.1
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y(n) = yp + yc

= c1 + c2(−1)n + 0.1n

using y(−2) = 2

y(−1) = 1

we get
c1 + c2 = 2.2
c1 − c2 = 1.1
c1 = 1.65, c2 = 0.55
y(n) = 1.65 + 0.55(−1)n + n(0.1)

Problem 5.15
Find the general solution of the second-order difference equation

y(n)− 1.8y(n− 1) + 0.81y(n− 2) = 2−n, n ≥ 0. (1)

Leave the answer in terms of unknown constants, which one can evaluate if
the initial conditions are given.

Solution 5.15
With y(n) = λn substituted into the homogeneous counterpart, the follow-
ing is obtained

λ2 − 1.8 λ + 0.81 = 0

which results in the repeated roots

λ1 = λ2 = 0.9.

Thus, as in the case of differential equations, we consider the complementary
solution to be

yc(n) = c1(0.9)n + c2 n(0.9)n. (2)

From the given forcing function in (1), yc(n) in (2), and line 3 of Table 5.1,
it is clear that

yp(n) = c32−n (3)

Substitution of (3) in (1) leads to

c3[1 − (1.8)(2) + (0.81)(4) ]2−n = 2−n

which yields c3 = 1
0.64 = 1.5625.
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Thus the desired solution is given by (2) and (3) to be

y(n) = c1(0.9)n + c2n(0.9)n + (1.5625) 2−n

where c1 and c2 can be evaluated if two initial conditions are specified.

Problem 5.16
Determine the zero-input response of the system described by the second-order
difference equation

3y(n− 1)− 4y(n− 2) = x(n)

Solution 5.16
We have y(n− 1) + 4

3y(n− 2) = 0 with x(n) = 0,
y(−1) = − 4

3y(−2)

y(0) =
(−4

3

)2
y(−2)

y(1) =
(−4

3

)3
y(−2)

y(k) =
(−4

3

)k+2
y(−2)← Zero-input response

Problem 5.17
Determine the particular solution of the difference equation

y(n) − y(n − 1) + y(n − 2) = x(n), n ≥ 0

when the forcing function is x(n) = 2n

Solution 5.17
Homogenous Solution:
Consider the homogeneous equation:

y(n) − 5
6
y(n− 1) +

1
6
y(n− 2) = 0

The characteristic equation is
λ2 − 5

6λ + 1
6 = 0, λ = 1/2, 1/3.

Hence yh(n) = C1(1
2)n + C2(1

3)n

The particular solution to x(n) = 2nu(n). YP (n) = C32nu(n), Substitute
this into the difference equation.
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Then, we obtain C3(2n)− C3
5
6

(
2n−1

)
u(n− 1) + C3

1
62n−2u(n− 2)

= 2nu(n)
For n = 2, 4C3 − 5

3C3 + C3
6 = 4⇒ C3 = 8

5
Therefore, the total solution is
y(n) = yp(n) + yh(n) = 8

5(2)nu(n) + c1(1
2)nu(n) + c2(1

3)nu(n)
To determine c1 and c2, assume that y(−2) = y(−1) = 0.
Then, y(0) = 1 and y(1) = 5

6y(0) + 2 = 17/6
Then, 8

5 + c1 + c2 = 1⇒ c1 + c2 = − 3
5

16
5 + 1

2c1 + 1
3c2 = 17

6 ⇒ 3 c1 + 2c2 = − 11
5

and, therefore, c1 = −1, c2 = 2
5

The total solution is

y(n) =
[8

5(2)n − (1
2)n + 2

5(1
3)n
]

u(n)

Problem 5.18
Determine the response y(n), n ≥ 0, of the system described by the second-
order difference equation

y(n)− 3y(n− 1)− 4y(n− 2) = x(n) to the input x(n) = 4nu(n).

Solution 5.18
Homogenous Solution:

The characteristic equation is λ2 − 3λ− 4 = 0
Hence, λ = 4, –1, and yh(n) = c14n + c2(−1)n

Particular Solution: We assume a particular solution of the modified form
yp(n) = c3n4nu(n).
Then

c3n 4nu(n) − 3c3(n− 1) 4n−1u(n− 1) − 4c3(n− 2) 4n−2u(n− 2)
= 4nu(n) + 2(4)n−1u(n− 1)
For n = 2, c3(32 − 12) = 42 + 8 = 24⇒ c3 = 6

5
The total solution is y(n) = yp(n) + yh(n)
=
[6

5n4n + c14n + c2(−1)n]u(n)

Problem 5.19
Determine the response y(n), n ≥ 0, of the system described by the second-
order difference equation

y(n)− 3y(n− 1) − 4y(n− 2) = x(n) + 2x(n− 1) to the input

x(n) = 4nu(n).
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Solution 5.19
The characteristic equation is λ2 − 3λ− 4 = 0

Hence, λ = 4, –1, and yh(n) = c14n + c2(−1)n

we assume a particular solution of the form yp(n) = kn4nu(n). Then

kn 4nu(n) − 3k(n− 1) 4n−1u(n− 1) − 4k(n− 2) 4n−2u(n− 2)
= 4nu(n) + 2(4)n−1u(n− 1)
For n = 2, k(32 − 12) = 42 + 8 = 24⇒ k = 6

5
The total solution is
y(n) = yp(n) + yh(n) = [65n4n + c14n + c2(−1)n]u(n)

To solve for c1 and c2, we assume that y(–1) = y(–2) = 0.
Then, y(0) = 1 and y(1) = 3y(0) + 4 + 2 = 9
Hence, c1 + c2 = 1 and 24

5 + 4c1 – c2 = 9

4c1 − c2 =
21
5

Therefore, c1 = 26
25 and c2 = – 1

25
The total solution is

y(n) = [65n 4n + 26
254n − 1

25(−1)n]u(n)

Problem 5.20
Determine the impulse response of the following causal system:

y(n)− 3y(n− 1)− 4y(n− 2) = x(n) + 2x(n − 1)

Solution 5.20
Homogenous Solution:

Auxiliary equation is λ2 − 3λ− 4 = 0
The characteristic values are λ = 4, –1.

Hence
yλ(n) = c14n + c2(−1)n

When x(n) = δ(n), we find that y(0) = 1 and

y(1)− 3y(0) = 2 or y(1) = 5.

Hence
c1 + c2 = 1 and 4c1 − c2 = 5

This yields, c1 = 6/5 and c2 = –1/5

Therefore, h(n) = [654n − 1
5(−1)n]u(n)
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Problem 5.21
Determine the impulse response and the unit step response of the systems
described by the difference equation

y(n) = 0.6y(n − 1) − 0.08y(n − 2) + x(n)

Solution 5.21
Homogenous Solution:

y(n) − 0.6y(n− 1) + 0.08y(n− 2) = x(n)

The characteristic equation is λ2 − 0.6λ + 0.08 = 0;

λ = 0.2, 0.5.

Hence, yλ(n) = c1(1
5)n + c2(2

5)n with x(n) = δ(n), the initial condition
are y(0) = 1,

y(1) − 0.6y(0) = 0⇒ y(1) = 0.6

Hence,

c1 + c2 = 1 and
1
5
c1 +

2
5
c2 = 0.6⇒ c1 = −1, c2 = 2

Therefore, h(n) = [−(1
5)n + 2(2

5)n]u(n)
The step response is

s(n) =
n∑

k=0

h(n− k), n ≥ 0

=
n∑

k=0

[2(2
5)n−k − (1

5)n−k]

= 2(
2
5
)n[(5

2)n+1 − 1] u(n)− (
1
5
)n[(5)n+1 − 1] u(n)

Problem 5.22
Determine the impulse response and the unit step response of the systems
described by the difference equation

y(n) = 0.7y(n − 1) − 0.1y(n − 2) + 2x(n) − x(n − 2)
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Solution 5.22
y(n) − 0.7y(n− 1) + 0.1y(n− 2) = 2x(n) − x(n− 2)

The characteristic equation is

λ2 − 0.7λ + 0.1 = 0; λ =
1
2
,
1
5

Hence, y
λ
(n) = c1(1

2)n + c2(1
5)n with x(n) = δ(n), we have y(0) = 2,

y(1) − 0.7y(0) = 0⇒ y(1) = 1.4

Hence, c1+ c2 = 2 and 1
2 c1 + 1

5 c2 = 1.4 = 7
5 ⇒ c1 + 2

5 c2 = 14
5

These equations yield c1 = 10/3, c2 = –4/3

s(n) =
n∑

k=0

h(n− k) = 10
3

n∑
k=0

(1
2)n−k − 4

3

n∑
h=0

(1
5)n−h

= 10
3 (1

2)n
n∑

k=0

2h − 4
3(1

5)n
n∑

k=0

5k

= 10
3 (1

2)n(2n+1 − 1)u(n)− 1
3(1

5)n(5n+1 − 1)u(n).

Problem 5.23
Consider the system in Figure with h(n) = anu(n), –1 < a < 1. Determine the
response y(n) of the system to the excitation x(n) = u(n + 5) – u(n – 10)

Solution 5.23
First, we determine s(n) = u(n) ⊗ h(n)

s(n) =
∞∑

k=0

u(k)h(n− k) =
n∑

k=0

h(n− k) =
∞∑

k=0

an−k =
an+1 − 1

a− 1
, n ≥ 0.
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For x(n) = u(n + 5) – u(n – 10), we have the response

s(n + 5)− s(n− 10) =
an+6 − 1

a− 1
u(n + 5)− an−9 − 1

a− 1
u(n− 10)

From figure, y(n) = x(n) ⊗ h(n) + x(n) ⊗ h(n – 2)

y(n) =
an+6 − 1

a− 1
u(n + 5)− an−9 − 1

a− 1
u(n− 10)− an+4 − 1

a− 1
u(n + 3)

+
an−11 − 1

a− 1
u(n− 12).

Problem 5.24
Determine the response of the system with impulse response

h(n) = anu(n)

to the input signal
x(n) = u(n)− u(n− 10)

(Hint: The solution can be obtained easily and quickly by applying the linearity
and time-invariance properties).

Solution 5.24
h(n) = anu(n). The response to u(n) is

y1(n) =
∞∑

k=0

u(k)h(n− k) =
n∑

k=0

an−k = an
n∑

k=0

a−k

=
1− an+1

1− a
y(n) (4)

Then, y(n) = y1(n) − y1(n − 10)

= 1
1−a [(1− an+1)u(n)− (1− an+9)u(n− 10)]

Problem 5.25
Determine the response of the (relaxed) system characterized by the impulse
response

h(n) = (
1
2
)nu(n)

to the input signal
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x(n) =
{

1, n ≤ n < 10
0, otherwise

Solution 5.25
With λ = 1

2 . Then,

y(n) = 2[1− (1
2)n+1]u(n)− 2[1− (1

2)n−9]u(n− 10)

Problem 5.26
Determine the response of the (relaxed) system characterized by the impulse
response

h(n) = (
1
2
)nu(n)

to the input signals

(a) x(n) = 2nu(n)
(b) x(n) = u(−n)

Solution 5.26

(a) y(n) =
∞∑

k=−∞
h(k)x(n− k) =

n∑
k=0

(1
2)k2n−k = 2n

n∑
k=0

(1
4)k

= 2n[1− (1
4)n+1](4

3) = 2
3 [2n+1 − (1

2)n+1]u(n)

(b) y(n) =
∞∑

h=−∞
h(k)x(n− k) =

∞∑
k=0

h(k) =
∞∑

k=0
(1
2)n = 2, n < 0

y(n) =
∑∞

h=n h(k) =
∑∞

k=n(1
2)h =

∑∞
k=0(

1
2)k −∑n−1

k=0(1
2)k

= 2− 1−( 1
2 )n

1/2 = 2(1
2)n, n ≥ 0

Problem 5.27
Three systems with impulse responses h1(n) = δ(n) – δ(n – 1), h2(n) = h(n),
and h3(n) = u(n), are connected in cascade.

(a) What is the impulse response, hc(n), of the overall system?
(b) Does the order of the interconnection affect the overall system?
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Solution 5.27
(a) hc(n) = h1(n) ⊗ h2(n) ⊗ h3(n)

= [δ(n) − δ(n− 1)] ⊗ u(n)⊗ h(n)
= [u(n) − u(n− 1)] ⊗ h(n) = δ(n) ⊗ h(n) = h(n)

(b) No.

Problem 5.28
Compute the zero-state response of the system described by the difference
equation

h(n) +
1
2
y(n − 1) = x(n) + 2x(n − 2)

to the input x(n) = {1, 2, 3, 4
↑
, 2, 1} by solving the difference equation

recursively.

Solution 5.28
y(n) = − 1

2y(n− 1) + x(n) + 2x(n− 2)

y(−2) = − 1
2y(−3) + x(−2) + 2x(−4) = 1

y(−1) = − 1
2y(−2) + x(−1) + 2x(−3) = 3

2

y(0) = − 1
2y(−1) + 2x(−2) + x(0) = 17

4

y(1) = − 1
2y(0) + x(1) + 2x(−1) = 47

8 , etc.

Problem 5.29
Consider the system described by the difference equation

y(n) = ay(n − 1) + bx(n)

(a) Determine b in terms of a so that

∞∑
n=−∞

h(n) = 1

(b) Compute the zero-state step response s(n) of the system and choose b so
that s(∞) = 1.

(c) Compare the values of b obtained in parts (a) and (b). What did you
notice?
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Solution 5. 29
(a) y(n) = ay(n− 1) + bx(n)⇒ h(n) = banu(n)

∞∑
n=0

h(n) =
b

1− a
= 1⇒ b = 1− a

(b) s(n) =
∞∑

n=0
h(n− k) = b

[
1−an+1

1−a

]
u(n)

s(∞) =
b

1− a
= 1⇒ b = 1− a

(c) b = 1 – a in both cases.

Problem 5.30
A discrete-time system is realized by the structure shown in Figure.

(a) Determine the impulse response.
(b) Determine a realized for its inverse system, that is, the system which

produces x(n) as an output when y(n) is used as an input.

Solution 5.30
(a) y(n) = 0.8 y(n− 1) + 2x(n) + 3x(n− 1)

y(n) − 0.8 y(n− 1) = 2x(n) + 3x(n− 1)

The characteristic equation is λ – 0.8 = 0, λ = 0.8

yλ(n) = c(0.8)n.

Let us first consider the response of the system y(n) − 0.8y(n− 1) = x(n)
To x(n) = δ(n). Since y(0) = 1, it follows that c = 1.
Then, the impulse response of the original system is

h(n) = 2(0.8)nu(n) + 3(0.8)n−1u(n− 1)
= 2δ(n) + 5.6 (0.8)n−1u(n− 1)
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(b) The inverse system is characterized by the difference equation

x(n) = − 1.5x(n− 1) +
1
2
y(n) − 0.4y(n− 1)

Problem 5.31
Consider the discrete-time system shown in Figure.

(a) Compute the first six values of the impulse response of the system.
(b) Compute the first six values of the zero-state step response of the system.
(c) Determine an analytical expression for the impulse response of the

system.

Solution 5.31
y(n) = 0.9y(n− 1) + x(n) + 2x(n− 1) + 3x(n− 2)

(a) for x(n) = d(n), we have y(0) = 1, y(1) = 2.9,
y(2) = 5.61, y(3) = 5.049, y(4) = 5.544, y(5) = 5.090, . . .
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(b) s(0) = y(0) = 1, s(1) = y(0) + y(1) = 3.91,
s(2) = y(1) + y(1) + y(2) = 9.51
s(3) = y(0) + y(1) + y(2) + y(3) = 15.56,

s(4) =
4∑
0

y(n) = 19.10

s(5) =
5∑
0

y(n) = 23.19

(c) h(n) = (0.9)nu(n) + 2(0.9)n−1u(n− 1) + 3(0.9)n−2u(n− 2)
= δ(n) + 2.9d(n− 1) + 5.61 (0.9)n−2u(n− 2)

Problem 5.32
Consider the systems shown in Figure. Determine and sketch their impulse
responses h1(n), h2(n), and h3(n).

(a) Is it possible to choose the coefficients of these systems in such a way
that h1(n) = h2(n) = h3(n)
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Solution 5.32
(a) h1(n) = coδ(n) + c1δ(n− 1) + c2δ(n− 2)

h2(n) = b2δ(n) + b1δ(n− 1) + b0δ(n− 2)
h3(n) = aoδ(n) + (a1 + ao a2)δ(n− 1) + a1a2δ(n− 2)

(b) The only question is whether h3(n) = h2(n) = h1(n)
Let a0 = co, a1 + a2co = c1, a2 a1 = c2. Hence,

c2

a2
+ a2c0 − c1 = 0⇒ c0a

2
2 − c1a2 + c2 = 0

For c0 	= 0, the quadratic has a real solution if and only if c2
1 – 4coc2 ≥ 0.

Problem 5.33
Consider the system shown in Figure.

1. Determine its impulse response h(n).
2. Show that h(n) is equal to the convolution of the following signals.

h1(n) = δ(n) + δ(n − 1)
h2(n) =

( 1
2

)n
u(n)

Solution 5.33
(a) y(n) = 1

2y(n− 1) + x(n) + x(n− 1)
For y(n)− y(n− 1) = δ(n), the solution is h1(n) = (1

2)nu(n)
Hence, h(n) = (1

2)nu(n) + (1
2)n−1u(n− 1)

(b) h1(n) ⊗ [δ(n) + δ(n− 1)] = (1
2)nu(n) + (1

2)n−1u(n− 1).
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Problem 5.34
The zero-state response on a causal LTI system to the input x(n)

x(n) = {1
↑
, 3, 3, 1, }

is y(n) = {1
↑
, 4, 6, 4, 1}.

Determine its impulse response.

Solution 5.34
Obviously, the length of h(n) is 2, i.e., h(n) = {h0, h1} h0 ⇒ h0 = 1, h1 = 1,
3h0 + h1 = 4

Problem 5.35
Determine the response y(n), n ≥ 0 of the system described by the second-
order difference equation

y(n)− 4y(n− 1) + 4y(n− 2) = x(n)− x(n− 1)

when the input is x(n) = (–1)nu(n) and the initial conditions are y(0) = 1;
y(1) = 2.

Solution 5.35
y(n)− 4y(n− 1) + 4y(n− 2) = x(n)− x(n− 1)

The characteristic equation is λ2− 4λ+ 4 = 0λ = 2, 2. (case of repeated
roots)

Hence,
yλ(n) = c12n + c2n2n

The particular solution is yp(n) = C3(−1)nu(n) substituting this solution
into the difference equation, we obtain

C3(−1)nu(n) − 4C3(−1)n−1u(n− 1) + 4C3(−1)n−2u(n− 2)

= (−1)nu(n) − (−1)n−1u(n− 1).

For n = 2, C3[1 + 4 + 4] = 2 ⇒ C3 = 2/9. The total solution is
y(n) = [c12n + c2n2n + 2

9(−1)n]u(n). From the initial conditions, in

y(0) = 1, y(1) = 2, we obtain, c1 +
2
9

= 1⇒ c1 = 7/9;
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2c1+ 2c2−2
9

= 2⇒ c2 = 1/3.

yλ(n) = c12n + c2n2n + 2/9(−1)nu(n)
yλ(n) = 7/92n + 1/3n2n + 2/9(−1)nu(n)

Practice Problem 5.36
Find the particular solution of the second-order difference equation

8y(n) − 6y(n − 1) + y(n − 2) = 5 sin
(nπ

2

)
, n ≥ 0
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Discrete-Time Fourier Transform

Discrete Fourier Transform

This chapter covers: Fourier synthesis, Discrete-Time Fourier transforms,
Discrete Fourier transforms, Comparison between DTFT and DFT. Inverse
Discrete Fourier Transforms, Fast Fourier transforms (Decimation in Time
and Decimation in Frequency algorithms), Problems and solutions.

6.1 Introduction

A transformation normally involves changes in coordinates and domain of
operations. Discrete Fourier transformation is a representation of discrete-
time signals in the frequency domain or the conversion between time and
frequency domain. The spectrum of a signal is obtained by decomposing
it into its constituent frequency components using a discrete transform.
Conversion between time and frequency domains is necessary in many
DSP applications. For example, it allows for a more efficient implementa-
tion of DSP algorithms, such as those for digital filtering, convolution and
correlation.

6.2 Periodic Function and Fourier Synthesis

Jean Baptiste Joseph Baron de Fourier (1768–1830), a French physicist,
discovered that any periodic waveform can be broken down into a combination
of sinusoidal waves. All the sinusoidal waves that can be combined together
to produce any periodic wave form are collectively called a basis and each
individual wave is an element of the basis.

The amplitudes of the sinusoids are called the Fourier coefficients. The
relationship between the frequencies of sinusoids is such that they are all
harmonics (integer multiples) of a fundamental frequency. The amplitude

239
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of the periodic signal as a function of time is its time-domain representa-
tion, where as the Fourier coefficients correspond to its frequency-domain
representation.

6.2.1 Constructing a Waveform with Sine Waves

In Figures 6.1(a)–(c) given below shows three basic sine waves 2, 4, and 6 Hz
with amplitude of 7, 2, and 4, respectively. They add together to form the wave
in Figure(d).

We can write the equation for the wave in Figure 6.1(d) as

s(t) = 7 sin(2π2t) + 2 sin(2π4t) + 4 sin(2π6t). (6.1)

In this case the fundamental frequency is 2 Hz, the frequency of the second
harmonic is 4 Hz, and the frequency of the third harmonic is 6 Hz.

If the fundamental frequency is denoted by f1, then Equation (6.1) can be
written as

s (t) = 7 sin(2π[f1]t) + 2 sin(2π[2f1]t) + 4 sin(2π[3f1]t). (6.2)

Figure 6.1 (a) Sine wave 1 with f = 2 Hz, amplitude = 7; (b) Sine wave 2 with f = 4 Hz,
amplitude = 2; (c) Sine wave 3 with f = 6 Hz, amplitude = 4 and (d) Addition of sine
waves 1, 2, 3.
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Therefore, s(t) is a combination of a fundamental and the second and the third
harmonics. Observe that the frequency of the more complicated periodic wave
s(t) is 2 Hz, which is the same as the frequency of the lowest frequency sine
wave (the fundamental).

6.2.2 Constructing a Waveform with Cosine Waves

In fact, this waveform Figure 6.2(a) has its maximum value at t = 0, so it
can be created using a combination of cosine wave. Once again the frequency
of the more complicated periodic wave, which is 2 Hz, which is the same as
frequency of the lowest frequency cosine wave (the fundamental).

Now look at the Figure 6.2(d). These waveform does not start at t = 0;
that the value is not equal to zero at t = 0. Since sine waves always have a
value of zero at t = 0, we cannot use combination of sine wave to produce
it. In fact, this wave form has its maximum value at t = 0, so it can be

Figure 6.2 (a) Cosine wave 1 with f = 2 Hz, amplitude = 7; (b) Cosine wave 2 with f = 4 Hz,
amplitude = 2; (c) Cosine wave 3 with f = 6 Hz, amplitude = 4 and (d) Addition of cosine
waves in (a), (b), and (c). The maximum value occurs at t = 0.
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created using combination of cosine waves. The equation for the wave form
of Figure 6.2(d) is

c (t) = 7 cos(2π2t) + 2 cos(2π4t) + 4 cos(2π6t). (6.3)

Therefore, s(t) is a combination of a fundamental and the second and the third
harmonics. In this case the fundamental frequency is 2 Hz, the frequency of
the of the second harmonic is 4 Hz, and the frequency of the third harmonic
is 6 Hz.

If the fundamental frequency is denoted by f1, then Equation (6.3) can be
written as

c(t) = 7 cos(2π[f1]t) + 2 cos(2π[2f1]t) + 4 cos(2π[3f1]t). (6.4)

Observe that the frequency of the more complicated periodic wave c(t) is 2 Hz,
which is the same as the frequency of the lowest frequency cosine wave (the
fundamental).

6.2.3 Constructing a Waveform with Cosine and Sine Waves

What would a wave form look like that is a combination of three sine waves
Figure 6.1(a)–(c) and three cosine wave in Figure 6.2(a)–(c)? It is shown in
Figure 6.1(d) and 6.2(d). Observe that the value at t = 0 is neither zero nor
maximum value of the wave. This brings us a very important point: by adding
sines and cosines of appropriate amplitude we construct a periodic wave form
starting with any value at t = 0. The equation for the wave form for Figure 6.3
is f (t) = cosine wave 1 + cosine wave 2 + cosine wave 3 + sine wave 1 + sine
wave 2 + sine wave 3.

Figure 6.3 Combination of sine waves from 6.1(a)–(c) and the cosine waves from 6.2(a)–(c).
The value at t = 0 is neither 0 nor maximum, but somewhere in between.
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f(t) = 7 cos(2π[f1]t) + 2 cos(2π[2f1]t) + 4 cos(2π[3f1]t)
+ 7 sin(2π[f1]t) + 2 sin(2π[2f1]t) + 4 sin(2π[3f1]t) (6.5)

We have kept these examples simple and are only using the fundamental
and the second and the third harmonics to produce periodic waves. Periodic
signals actually encountered in practice can be combinations of extremely
large number of harmonics. Therefore, equation for such harmonics waves
can be written as

f(t) = a1 cos(2π[f1]t) + a2 cos(2π[2f1]t) + . . . . . .an cos(2π[nf1]t)
+ b1 sin(2π[f1]t) + b2 sin(2π[2f1]t) + . . . . . .bn sin(2π[nf1]t),

(6.6)

where a1, a2, a3, are the amplitude of cosine wave
b1, b2, b3, are the amplitude of sine wave
f1, f2, f3, are the frequencies of the fundamental and harmonics

6.2.4 Constructing a Waveform with Sine, Cosine, and a DC

Finally, this wave form will like the same as of Figure 6.3, except it would
be shifted upwards due to addition of a DC value. This leads finally to
Equation (6.7)

f(t) = a0 + a1 cos(2π[f1]t) + a2 cos(2π[2f1]t) + . . . . . .an cos(2π[nf1]t)
+ b1 sin(2π[f1]t) + b2 sin(2π[2f1]t) + . . . . . .bn sin(2π[nf1]t).

(6.7)

Equation (6.7) is known as Fourier series. It consists of a series of frequencies
used to form any periodic function. The amplitude of sines and cosines
are given a special name- they are called the Fourier coefficients. Thus
a1, a2, . . . , an, b1, b2, . . . , bn are the Fourier coefficients.

The sines and cosines, those have a fundamental frequency f1, and all
those corresponding harmonics, are said to form the basis for all periodic wave
forms. Each of sine and cosine waveform is an element of basis. This means
that not only can sines and cosines be combined to construct any complicated
periodic wave form, but also any complicated periodic wave form can be
broken down into sum of sines and cosines.
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The Equation (6.7) can be written as

f(t) = a0 +
∞∑

n=1

(an cos nω0t + bn sinnω0t) (6.8)

ω0 =
2π

T
= 2πf0 a0 =

1
T

∫ T

o
f(t)dt (6.9)

an =
2
T

∫ T

o
f(t) cos nω0t dt bn =

2
T

∫ T

o
f(t) sinnω0t dt (6.10)

Even symmetry f (t) = f (–t)
Odd symmetry f (t) = –f (–t)
Half Wave symmetry f (t) = –f (t – T/2) = –f (t + T/2).

Following Table 6.1 shows that which of the coefficients for Fourier
series have to be calculated. It is always worthwhile spending few minutes
investigating the symmetry of a function for which a Fourier series for the
wave form is to be determined.

6.2.5 Gibbs’ Phenomenon

Fourier series can be used to construct any complicated periodic wave form.
In general the more the number of elements in Fourier series, the better is the
construction of corresponding wave form. However, there is limitation in that
if the periodic wave form has any discontinuity, that is the vertical edges, then
even an infinite number of elements in Fourier series cannot construct that
discontinuity exactly. Adding more and more harmonics to the sine waves,
one gets a better representation of a square wave. Keep on adding the higher
harmonics, the resulting wave looks more and more ideal square wave. By
including the higher odd harmonics, the following changes in the resulting
wave form as the number of harmonics is increased:

1. The number of oscillation increases, but the amplitudes of the oscillations
decrease.

2. The vertical edge gets steeper.
3. Overshoot exist at the vertical edges.
4. The approximation is worst at the vertical edges.

It is observed that the overshoots at the vertical edges do not really go away,
irrespective how many harmonics are added. Even if an infinite number of
harmonics are added, the overshoot remains and its size settles to about
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8.95% of the size of the vertical edge. This phenomenon is called the Gibbs
phenomenon in honour of Willard Gibbs who described it occurrence in the
late 19th century (Figure 6.4).

Figure 6.4 (a) Square wave with fundamental harmonic; (b) Square wave with fundamental
and third harmonic; (c) Square wave with fundamental, third, fifth harmonic; (d) Square wave
with fundamental, third, fifth and seventh harmonic and (e) Square wave with fundamental,
third, fifth, seventh and ninth harmonic.
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6.3 Introduction to Fourier Transforms

Transformations are used in signal processing systems mostly for converting
signals in time domain to signals in frequency domain. By signal in time
domain we mean a signal whose amplitude with respect to time. Similarly, by
term signal in frequency domain, we mean a signal whose amplitude varies
with respect to frequency.

Fourier and inverse Fourier are the mathematical tools that are used to
switch from time-domain to frequency-domain and vice versa, in order to
view a signal.

This conversion between time and frequency domains is very helpful in
enhancing the understanding of signals and systems. This is called Fourier
analysis.

There is an entire family of Fourier analysis techniques, where each
specific technique is applied to a particular type of signals – continuous or
discrete, and periodic or aperiodic in order to determine its frequency content.
These distinctions results in four categories of signals:

(i) Continuous-time (CT) and periodic
(ii) CT and aperiodic

(iii) Discrete-time (DT) and periodic
(iv) DT and aperiodic

For a CT periodic signal, the Fourier analysis technique is CT Fourier series.
For CT aperiodic signal, it is CT Fourier transform. In DSP, our main interest
lies in signals that are discrete in time. The transform techniques used in this
case are the DFS or DT Fourier series (DTFS) for DT periodic signals and
DT Fourier transform (DTFT) for DT aperiodic signals. The table lists the
transform that are used for different types of signals.

Periodic Continuous Discrete
CT Fourier series DTFSeries

Aperiodic CTFT DTFT

Continuous-time or analog systems are modeled by a set of differential
equations and the transform used in the analysis of LTI analog systems is the
Laplace transform, which is strongly related with CTFT. (Laplace Transform
becomes CTFT on imaginary axis in s-plane.) DT systems are modeled by a set
of difference equations and the transform used in the analysis of LTI discrete
systems is the Z-transform, which is strongly related with DTFT. (z-transform
becomes DTFT on unit circle in z-plane.)
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As most of the practical signals of interest are aperiodic signals, hence it
is DTFT that we are frequently coming across. DTFT is a continuous function
and consequently in computer, its discretized or sampled version is computed.
This sampled version of DTFT is called Discrete Fourier Transform (DFT).

The DFT is one of the most common and powerful algorithms of digital
signal processing. It is used in a wide variety of applications in many branches
of science and engineering. For example, it allows for more efficient imple-
mentation of DSP algorithms, such as those for digital filtering, convolution
and correlation. The plot of DTFT/DFT is called frequency spectrum, i.e.,
magnitude spectrum and phase spectrum.

6.4 DT Fourier Transform

In the DSP, we are concerned with the discrete version of Fourier transforma-
tion, which is defined as

X(ω) =
∞∑

n=−∞
x(n)e−jωnT (6.11)

Considering that T = 1

X(ω) =
∞∑

n=−∞
x(n)e−jωn. (6.12)

The DTFT general equation can also be developed from the expression of the
Z-transform, where x(n) is defined as

X(z) =
∞∑

n=−∞
x(n)z−n, (6.13)

Where r2 < |z| < r1 is the region of convergence of X (z). Let us express the
complex variable z in polar form as

z = rejw (6.14)

Where |z| = r and ∠z = ω. For the region of convergence of X (z), we may
substitute

z = rejω into Equation (6.13). This yield

X(z)|z=rejω =
∞∑

n=−∞
[x(n)r−n]e−jωn. (6.15)
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From the relationship in Equation (6.15) we note that X (z) can be interpreted
as the DTFT of the signal sequence x(n)r−n.

The weighting factor r−n is growing with n if r < 1 and decaying if r > 1.
Alternatively, if X (z) converges for |z| = 1, then Equation (6.15) for DTFT
becomes

X(z)|z=ejω =
∞∑

n=−∞
x(n)e−jωn. (6.16)

It means a DTFT) can be expressed as

or X(ω) =
∞∑

n=−∞
x(n)e−jωn (6.17)

or DTFT x(n) = X(ω) and inverse DT Fourier Transform (IDTFT) is
expressed as

or x(n) =
1
2π

∫ π

−π
X(ω) ejωn dω (6.18)

Equations (6.17) and (6.18) are called DTFT pairs.
Few points to note at this stage

(i) Like CT Fourier transform (CTFT), the frequency spectrum in DTFT is
also continuous.

(ii) There is a major difference between CTFT and DTFT. The frequency
spectrum is not periodic in CTFT where as in DTFT; the frequency
spectrum is periodic with period 2π.

We also define the IDTFT as

h(n) =
1
2π

∫ π

−π
H(ω) ejωn dω.

The angular frequency ω is not discretized. Consider the situation, where ω is
discretized by defining the relation

ω =
2πk

N
.

After substituting the value of ω, Equation (6.17) can be written as

X[k] =
N−1∑
n=0

x(n)e−j( 2π kn
N ).

This is called the DFT of the sequence x(n).
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Example 6.1

Obtain the impulse response of the system described by

H(ω) = 1 for |ω| ≤ ωC

H(ω) = 0 for ωC ≤ |ω| ≤ π

Solution 6.1

DTFT h(n) = H(ω) and IDTFT is expressed as

or h(n) =
1
2π

∫ π

−π
H(ω) ejωn dω =

1
2π

∫ ωC

−ωC

1ejωn dω

or h(n) =
1

2πjn
ejωn]ωC−ωC

=
ejωCn − e−jωCn

2πjn
=

sin ωCn

πn

It means the impulse response can be calculated at each discrete value of n
from the above expression. But when we want to calculate h(0) it becomes
infinite so the result is not valid.

In this case using L’ Hopital’s Rule

h(0) =
ωc cos ωC n

π

h(0) =
ωc cos 0

π
=

ωc

π
.

In Table 6.2 few properties of DTFT are given in tabular form.

6.5 Properties of the DTFT

The properties of DTFT is same as DFT but here they have been dealt here
separately
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Table 6.2 Properties of DTFT

Property Sequence DTFT

Periodicity x(n) = x(n + N) X(ω) = X[(ω + 2kπ)]

Linearity ax(n) + by(n) aX(ω) + bY (ω)

Time Shift x(n − n0) e−jωn0X(ω)

Time Reversal x(−n) X(e−jω)

Frequency Shift x(n) ejωn0x(n) ↔ X [(ω−ω0)]

Scaling y(n) = x(pn) Y (ω) = X( ω
P

)

Multiplication by n n x(n) j d[X(ω)]
dω

Convolution x(n) × y(n) X (ω).Y (ω)

Time Reversal x(−n) X[−ω]

Multiplication in time
domain

x(n).y(n) 1
2π

[X (ω) ⊗ Y (ω)]

Complex Conjugation x(n) and x∗(n) X (ω) and X (−ω)

6.5.1 Periodicity

The DT transform is always periodic in ω with period 2π

or X[(ω + 2kπ)] = X(ω) (6.19)

Example 6.2

Find the DTFT of the unit step sequence

x (n) = u (n)

Solution 6.2

X(ω) =
∞∑

n=−∞
x(n)e−jωn =

∞∑
n=−∞

1e−jωnX(ω) =
1

1− e−jω
.

The relation is not convergent for ω = 0. This is because of the fact x(n) is not
absolutely summable sequence. However X (ω) may be evaluated for other
values of ω.
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Rearranging

X(ω) =
1

e−jω/2.ejω/2 − e−jω/2.e−jω/2 =
1

e−jω/2[ejω/2 − e−jω/2]

using Euler’s identity we may write

X(ω) =
1

e−jω/2.2j sin ω
2

=
ejω/2

2j sin ω
2

, ω �= 0

6.5.2 Linearity

According to this property, if the DTFT is linear:

x1(n)↔ X1(ω)
x2(n)↔ X2(ω) (6.20)

then according to this property ax1(n) + bx2(n) = aX 1(ω) + bX 2(ω).

6.5.3 Time Shifting

This property states that if a DT signal is shifted in time domain by n samples,
its magnitude spectrum remains unchanged, however the phase spectrum is
changed by an amount −ωn0, mathematically

x(n)↔ X (ω)
x(n− n0)↔ e−jωn0X (ω) (6.21)

where n0 is an integer.

Example 6.3

Find the DTFT of

x(n) =
(

1
2

)n−1

u(n− 1)

Solution 6.3

X(ω) =
∞∑

n=−∞
x(n)e−jωn X(ω) =

∞∑
n=1

(
1
2

)n−1

u(n− 1)e−jωn

X(ω) = e−jw +
1
2
e−j2w + . . . . . . X(ω) =

e−jw

1− 1
2e−jw
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Example 6.4

Compute the DTFT of the following signal

x(n) = u(n)− u(n− 6)

Solution 6.4

Using

X(ω) =
∞∑

n=−∞
x(n) e−jωn ⇒ X(ω) =

∞∑
n=−∞

[u(n)− u(n− 6)] e−jwn

X(ω) =
1

1− e−jw
−
[

e−6jw

1− e−jw

]
X(ω) =

1− e−j6ω

1− e−jω
.

Using z-transform

X(z) =
1

1− z−1 −
z−6

1− z−1 X(z) =
1− z−6

1− z−1

Put z = ejw for X (w) X(ω) = 1−e−j6ω

1−e−jω

Example 6.5

Compute the DTFT of the following signal

x(n) =
(

1
4

)n
u(n + 4)

Solution 6.5

Using

X(ω) =
∞∑

n=−∞
x(n)e−jωn =

∞∑
n=−∞

(
1
4

)n
u(n + 4)e−jωn

X(ω) =
(

1
4

)=4 ∞∑
n=−∞

(
1
4

)n+4

u(n + 4)e−jωn

= (4)4
∞∑

n=−∞

(
1
4

)n+4

u(n + 4)e−jωn
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X(ω) =
256e4jω

1− 1
4e−jω

Using Z-transform

z[u(n + 4)] =
z4

1− z−1 .

Using scaling property of z-transform: anx(n) Z←→ x(a−1z)

X(z) =
[(1

4)−1z]4

1−
[(1

4

)−1
z
]−1 ==

256z4

1− 1
4z−1

X(ω) =
256e4jω

1− 1
4e−jω

6.5.4 Frequency Shifting

This property states that multiplication of a sequence x(n) by the spectrum
e−jω0n is equivalent to a frequency translation X(ω) by ω0. Since the spectrum
X(ω) is periodic, the shift ω0 applies to the spectrum of the signal in every
period.

Mathematically

x(n)↔ X(ω)
ejωn0x(n)↔ X[(ω − ω0)]

(6.22)

6.5.5 Scaling

Let the DT sequence can be scaled as y(n) = x(pn) for p integer. Mathematically

x(n)↔ X(ω)
y(n) = x(pn)↔ Y (ω) = X

(
ω
P

) (6.23)

6.5.6 Multiplication by n (Frequency Differentiation)

This property states that

x(n)↔ X(ω) nx(n)↔ j
d[X(ω)]

dω
(6.24)

6.5.7 Time Reversal

This property states that if a DT signal is folded about the origin in time,
its magnitude spectrum remains unchanged; however the phase spectrum
undergoes a change in sign.
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Mathematically
x(n)↔ X(ω)
x(−n)↔ X[−ω] (6.25)

Example 6.6

Find the DTFT of the following signal x(n) = 2nu(–n)

Solution 6.6

X(ω) =
∞∑

n=−∞
x(n) e−jωn =

∞∑
n=−∞

2nu(−n)e−jωn

X(ω) =
0∑

n=−∞

( 2
ejω

)n
. Inverting the limit of the summation sign

X(ω) =
∞∑

n=0

(
ejω

2

)n
=

1

1− ejω

2

=
2

2− ejω

Using Z-transform

z [u(−n)] =
1

1− z

Using Scaling property: anx(n) Z←→ X(a−1z)

X(z) =
1

1− 2−1z
X(z) =

2
2− z

Putting z = ejω for X (ω), X(ω) = 2
2−ejω

6.5.8 Convolution

This property states that if a DT signal is folded about the origin in time,
its magnitude spectrum remains unchanged; however the phase spectrum
undergoes a change in sign.

Mathematically

x(n)↔ X(ω)
Y(n)↔ y(ω)
x(n)⊗ y(n)↔ X(ω).Y (ω)

(6.26)
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Example 6.7

Consider the following frequency response

H(ω) =
1

jω + 3

And with applied input e−4tu(t). Determine the output spectrum Y (ω)

Solution 6.7

y(ω) = H(ω) X(ω)

X (ω) = 	{e−4tu(t)} =
1

jω + 4
H(ω) =

(
1

3 + jω

)

y(ω) =
(

1
4 + jω

)(
1

3 + jω

)

Which can be combined as:

y(ω) =
1

−ω2 + 7ω + 12

6.5.9 Multiplication in Time Domain

This property states that the multiplication of two time domain sequence is
equivalent to the convolution of their DTFT.

Mathematically

x(n)↔ X(ω) y(n)↔ Y (ω)

x(n) · y(n)↔ 1
2π

[X(ω)⊗ Y (ω)] (6.27)

6.5.10 Complex Conjugation and Conjugate Symmetry

Mathematically

x(n)↔ X(ω) x∗(n)↔ (−ω) (6.28)

6.5.11 Parseval’s Theorem

Parseval’s theorem states that the total energy of a DT signal x(n) may be
determined by the knowledge of its DTFT.
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Mathematically
If x(n) ↔ X(ω)

Then according to Parseval’s theorem, the energy E of a DT signal x(n) is
expressed as

E ==
1
2π

∫ π

−π
|X(ω)|2 dω. (6.29)

6.5.12 Energy Density Spectrum

The energy in a DT signal x(n) is given as:

E =
∞∑

n=−∞
|x(n)|2 . (6.30)

According to Parseval’s theorem, this energy may also be expressed in term
of DTFT as under:

E =
1
2π

∫ π

−π
|X(ω)|2 dω. (6.31)

Example 6.8

Calculate the DTFT of the signal x(n) = {1, –1, 1, –1} at the digital frequencies
of π and π/2.

Solution 6.8

X[ω] =
N−1∑
n=0

x(n)e−jωn =
3∑

n=0

x(n)e−jπn =
3∑

n=0

x(n)

{cos(πn)− j sin(πn)}

X[ω] =
3∑

n=0

x(n){cos(πn)} = (1)(1) + (1)(1) + (−1)(−1)

+ (1)(1) + (−1)(−1) = 4
For ω = π/2

X[ω] =
N−1∑
n=0

x(n)e−jωn =
3∑

n=0

x(n)e−jπn/2 =
3∑

n=0

x(n)

{
cos
(π

2
n
)
− j sin

(π

2
n
)}
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X[ω]=
3∑

n=0

x(n)
{
cos
(π

2
n
)

+ j sin
(π

2
n
)}

= (1)(1) + (−1)(j) + (1)(−1)

+ (−1)(−j) = 0

1. All practical calculations of the DTFT of a signal using

X[ω] =
∞∑

n=−∞
x(n)e−jωn =

N−1∑
n=0

x(n)e−jωn

ω = 2π fc

Fs
ω is the digital frequency, ω is the digital frequency, Fs is

sampling frequency. fc is the cutoff frequency, so units of ω is samples
per cycle.

2. The frequency resolution of a rectangular windowed signal is given by
equation
Δω = 4π

N , where N is the number of samples in the signal or alternatively,
the width of rectangular window.

3. To suppress the side lobes in the DTFT we must use a window function
that tapers the abrupt edges of the rectangular window. With the Hamming
window, the side lobes are attenuated by at least –40 dB relative to the
main lobes. Other widow function attenuates the side lobes in a side lobes
different degree.

4. The price paid for attenuation is a degradation of the frequency resolution.
In case of Hamming window the resolution is Δω = 4πr

N , where r is
approximately equal to 2. It turns out that all of window functions, the
rectangular window has the best resolution to some desired value using
tapering windows is to increase the signal length.

Example 6.9

How many samples in a sinusoidal signal are required to achieve DTFT
resolution of 0.01π rad if the signal is windowed with a Hamming window?

Solution 6.9

Δω =
4πr

N

N =
4πr

Δω
N =

4π(2)
0.01π

=
8

0.01
= 800 samples.
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Example 6.10

For the desired resolution namely, Δω = 0.02π, what would be equivalent
resolution in Hz if the signal signals were sampled at Fs = 1000 Hz?

Solution 6.10

Using the equation

ω = 2π
f

Fs

Δω = 2π
Δf

Fs
= 0.02π

Δf = 0.02
πFs

2π
=

(0.01)(1000)
2

= 5 Hz.

Example 6.11

How many samples in a sinusoidal signal are required to achieve DTFT
resolution of 0.02π rad if the signal is windowed with a Hamming window?

Solution 6.11

Δω =
4πr

N

N =
4πr

Δω
N =

4π(2)
0.02π

=
8

0.02
= 400 samples

Example 6.12

For the desired resolution namely, Δω = 0.01π, what would be equivalent
resolution in Hz if the signal signals were sampled at Fs = 2000 Hz?

Solution 6.12

Using the equation

ω = 2π
f

Fs
Δω = 2π

Δf

Fs
= 0.01π

Δf = 0.01
πFs

2π
=

(0.01)(2000)
2

= 10 Hz
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6.6 Why the DFT?

The FT of a DT signal x(n) is called DTFT and is denoted as X (ω). X (ω)
is a continuous function of frequency ω. Therefore this type representation
is not computationally convenient representation of DT signal x(n). Thus
taking one step further, we represent a sequence by samples of its continuous
spectrum. This type of frequency domain representation of signal is known
as DFT.

Let us pause for a moment and re-examine why DFT is the only possible
choice that we have when we want to determine the frequency content of a
signal using a digital computer. We cannot resort to the Fourier series or the
FT because they apply only to CT signals.

Digital computers work with signals that are discrete in time. One moment,
“Wait a minute”. What about the DTFT? It also applies to signals that are
discrete in time. A very good point indeed! The difficulty in using the DTFT is
that it is not practical because it applies to DT aperiodic signal which is made
up of an infinite number of sines and cosines. To calculate the amplitude of
each of the constituent of an aperiodic signal would thus take an incredibly
long time. The only practical option is the DFT.

The primary application of DFT is to approximate the FT of signals. The
other applications we consider – convolution, filtering, correlation, and energy
spectral density estimation – are all based on the DFT being an approximation
of the FT.

DFT is used as discrete-frequency approximation of the DTFT. The DFT
is also used to calculate approximations of the FTs of analog signals.

6.6.1 Window

It is important to note that each of the transform assumes that the signal exists
for infinite time in the past to infinite time in the future. Of course, we cannot
measure a signal for such long time.

In practice, the measurement is made for finite duration that could be
typically as small as few milliseconds to large as several hours. The duration
over which the signal is measured is known as window because it is as
you are looking signal through a small window that restricts your field
of vision. You can think of it as using a telescope to view the vastness
of the universe – even though you can see tiny part of the universe as
you peer through the telescope, it nevertheless extends to infinity in all
directions.
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6.6.2 Orthogonal Signals

The DFT determine the frequency content of the sampled digital signal by
correlating it with samples of sinusoids of different frequencies. Before we
delve into the DFT, it is important to emphasize that the sines and cosines that
are used by the DFT for correlation are orthogonal as shown in Figure 6.5.

Figure 6.5 (a) Sample of one cycle of a sine wave; (b) Sample of two cycles of a sine
wave; (c) Sample of one cycle of a sine wave; (d) Sample of three cycles of a sine wave and
(e) Inside DFT.
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What does that mean? You ask. When two signals are multiplied together
and the result is zero, they are said to be orthogonal.

The sines and cosines used by DFT for correlation have this property-
multiply any two of them, and the result will be zero.

6.6.3 Inside the DFT

If the sampled digital signal contains a frequency that exactly matches the
frequency of the sinusoids, the correlation value gives the amplitude of the
sinusoids. When there is no match, the correlation value is zero.

But how does the DFT select the frequencies of sinusoids with which
sample digital signal will correlate? The answer is quite simple and is as
follows:

(a) The correlation is done with sines and cosines of frequencies such that
an integer number of cycles fit within window. The lowest-frequency
sinusoid is that for which exactly one cycle fits with in window. This is
fundamental frequency-its period is exactly equal to the time duration of
the window.

(b) The other frequencies are those for which exactly 2, 3, 4,. . . , cycles fit
with in the window. These are harmonic frequencies.

Thus, correlation is done with sinusoids having the frequencies; f1 is the
fundamental frequency whose period is exactly equal to the time duration
of window. The other frequencies are harmonics of fundamental frequency.

The DFT algorithm used to determine the frequency content of the sampled
signal is as follows.

1. Correlate the samples with a sine wave having a frequency such that
exactly one cycle fits with in the window. The window fits for one 1-s
duration. So the frequency of the sine wave used for correlation is 1 Hz.
Interestingly the correlation value turns out to be zero (Figure 6.6).

Figure 6.6 Samples of the windowed sine wave and samples of one cycle of a sine wave
(f = 1 Hz) used for correlation.
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Figure 6.7 Samples of the windowed sine wave and samples of two cycles of a sine wave
(f = 2 Hz) used for correlation.

2. Correlate the samples with in a sine wave having a frequency such that
exactly two cycles fit with in the window. So the frequency of sine wave
used for correlation is 2 Hz, and it exactly matches the frequency of the
sampled windowed signal. This time the correlation value is not zero. Can
you see why? When the signal of interest contains a sine wave exactly
the same frequency sine wave that is used for the correlation, we get a
non-zero value (Figure 6.7).

3. Correlate the samples with a sine wave having a frequency, such that
exactly three cycles fit with in the window. This time the frequency of
the sine wave used for correlation is 3 Hz. The correlation value is again
equal to zero. In-fact , the correlation value for all other harmonics will
be zero because the positive and negative product will be exactly equal
in amplitude and so will cancel out (Figure 6.8).

4. Now correlate with samples of a cosine wave of frequencies 1, 2, 3,. . . .
All the correlation will be zero because our signal of interest does not
consists of any cosine waves (Figures 6.9–6.11).

Figure 6.8 Samples of the windowed sine wave and samples of three cycles of a sine wave
(f = 3 Hz) used for correlation.
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Figure 6.9 Samples of the windowed sine wave and samples of one cycle of a cosine wave
(f = 1 Hz) used for correlation.

Figure 6.10 Samples of the windowed sine wave and samples of two cycles of a cosine wave
(f = 2 Hz) used for correlation.

Figure 6.11 Samples of the windowed sine wave and samples of three cycles of a cosine
wave (f = 3 Hz) used for correlation.

6.6.4 DFT Frequencies and Frequency Resolution

The DFT correlates the input signal with sinusoids of different frequencies.
If a sine or cosine wave of these frequencies exists in the input signal, the
correlation values is nonzero and, with appropriate scaling, provides the
amplitudes of corresponding sine or cosines. On the other hand, if a sine or
cosine wave of that frequency does not exist in the input signal, the correlation
will be zero.

An easy mathematical formula that provides the frequency of the funda-
mental sine and cosine used by the DFT for correlation with fundamental
frequency is
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f1 =
fs

N
(6.32)

Where fs is sampling frequency and N is the number of samples of the time
domain input signal given to the DFT.

Δf = f1 =
fs

N
(6.33)

Δf is appropriately termed the frequency resolution. If the input time-domain
signal has two frequencies that are at least Δf apart, then the DFT is able to
separate these two frequencies. Since the frequencies of harmonics are chosen
that they are integer multiples of the fundamental (i.e., Δf ), the harmonic
frequencies are separated by Δf .

If the input time-domain signal contains two frequencies that are less than
Δf apart, then the DFT will be unable to distinguish them as separate fre-
quency components. Equation (6.33) indicates that better frequency resolution
(smaller Δf ) can be obtained by either of the following:

1. Reduce the sampling frequency but keeping N the same,
2. Increase N but keeping Fs the same.

If we have frequencies of 320 and 640 Hz, and the chosen sampling rate of
2560 Hz and the number of samples = 512, the frequency resolution (and also
the fundamental frequency used for correlation by DFT) is

Δf = f1 =
fs

N
=

2560
512

= 5 Hz.

The sine wave in the input signal, 320 and 640 Hz were exact inte-
ger multiples of Δf ; that is, they were exactly equal to the 64th
(64 × 5 = 320) and 128th (128 × 5 = 640) harmonics of the fundamental
frequency.

Thus DFT will show the two lines in the frequency spectrum corresponding
to the correlation of the 64th and 128th harmonics with the input signal, but
when using a signal that consists of a sine wave 322.5 Hz sine wave will not
perfectly match any of the frequency that the DFT uses for correlation.

6.6.4.1 Spectral leakage due to correlation
Signals that consist of a 322.5 Hz sine wave will not perfectly match any of
the frequency that the DFT uses for correlation, therefore, the input signal
of frequency 322.5 Hz looks as it is composed of many sine waves, when in
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fact all it had a single frequency? This phenomenon is called spectral leakage
because it is as if the energy in the single frequency of 322.5 Hz has leaked
out to all other frequencies.

Sine and cosine of different frequencies are orthogonal. That means that
if we correlate an integer number of cycles, we will get zero – no match. But
if one of the signals involved in the correlation has a non-integer number of
cycles, then the correlation value will be non-zero!

This is what happens in practice – you usually do not know the frequencies
present in the signal of interest. So you measure the signal over a certain
time interval and perhaps attain 1¼, 3½, or 6.1 cycles or any other non-
integer number of cycle. When DFT correlates the non-integer number of
cycles with its sines and cosines, the process of correlation return non-zero
numbers.

In practice it is very difficult to obtain an integer number of cycles for all
sinusoids in the signal of interest during the measurement interval, and hence
it will be quite rare to obtain exactly zero correlation values.

6.6.4.2 Spectral leakage due to discontinuities
Spectral leakage occurs because of non-zero correlation values between
signal being analyzed and the frequencies of DFT. There is another way to
explain spectral leakage. This explanation will prepare us for the topic of
windows.

The basic assumption behind the DFT is that the input time domain signal
is periodic. Suppose we measure the signal and sampled it for duration of I s.
these samples are given to DFT for calculating the frequency contents of the
signal.

When using the DFT, samples come from a signal that is periodic this
assumption results in the signal which is created by repeating the windowed
signal over and over again. The signal is not quite the same as the original time-
domain signal. These sudden changes require a large number of frequencies.
It is the discontinuities, or sudden changes, that result in large number of
frequencies.

These transition results in spreading of energy in the frequency domain
referred as spectral leakage. Most practical signals consist of many frequen-
cies, and there is no way in advance what these frequencies are. So we
cannot determine the window duration such that we will always obtain an
integer number of cycles of all constituent sinusoids. The best method of
attack is to reduce the abruptness of the transitions. This is what window
accomplishes.
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6.7 Discrete Fourier Transform

It may be noted that the DFT is itself a sequence rather than a function of
continuous variable and it corresponds to equally spaced frequency samples of
DTFT of a signal. Also Fourier series representation of the periodic sequence
corresponds to discrete Fourier transform of the finite length sequence. In
short, we can say that DFT is used for transforming DT sequence x(n) of finite
length into discrete frequency sequence X [k] of finite length. This means that
by using DFT, the DT sequence x(n) is transformed into corresponding discrete
frequency sequence X [k].

Assume that a wave form has been sampled at regular time intervals T to
produce the sample sequence{x(nT )} = x(0), x(T ), . . . . .x [(N − 1)T ] of N
sample values, where n is the sample number from n = 0 to n = N – 1.

The data values x(nT ) will be real only when representing the values of a
time series such as a voltage waveform. The DFT of x(nT ) is then defined as
the sequence of complex values {X[kω]} = X(0), X(�), . . . . .X[(N−1)ω]
in the frequency domain, where ω is the first harmonic frequency given by
ω = 2π/NT .

Thus the X[kω] have real and imaginary components in general so that
for the kth harmonic

X(k) = R(k) + jI(k) (6.34)

and
|X(k)| = [R2(k) + I2(k)

]1/2
(6.35)

and X (k) has the associated phase angle

ϕ(k) = tan−1 [I(k)/R(k)] , (6.36)

where X (k) is understood to represent X (kω). These equations are therefore
analogous to those for the FT.

Note that N real data values (in the time domain) transform to N complex
DFT values (in the frequency domain). The DFT values, X (k), are given by

X[k] = FD [x(nT )] =
N−1∑
n=0

x(nT )e−jkωnT , k = 0, 1, . . . . .N − 1, (6.37)

where ω = 2π/NT and FD denotes the discrete Fourier transformation.
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X[k] =
N−1∑
n=0

x(nT )e−jk2π nT/NT (6.38)

X[k] =
N−1∑
n=0

x(nT )e−jk2π n/N (6.39)

Example 6.13

Find DFT of the sequence x(n) = {1, 0, 0, 1}.

Solution 6.13

The DFT of the sequence {1, 0, 0, 1} is evaluated, [N = 4], it is required to
find the complex values X (k) for k = 0, k = 1, k = 2, and k = 3

X[k] =
N−1∑
n=0

x(nT )e−jk2πn/N

X[k] =
3∑

n=0

x(nT )e−jk2πn/4

X[k] = x(0) + x(1)e−jk2π1/4 + x(2)e−jk2π2/4 + x(3)e−jk2π3/4. (1)

With k = 0, Equation (1) becomes

X[0] = x(0) + x(1) + x(2) + x(3)

= 1 + 0 + 0 + 1 = 2

X [0] = 2 is entirely real, of magnitude 2 and phase angle φ(0) = 0.
With k = 1, Equation (1) becomes

X[1] = x(0) + x(1)e−jπ1/2 + x(2)e−jπ + x(3)e−jπ3/2

= 1 + 0 + 0 + 1e−jπ3/2 = 1 + e−j3π/2

= 1 + cos
(

3π

2

)
− j sin

(
3π

2

)
= 1 + j
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Thus X[1] = 1 + j and is complex with magnitude
√

2 and phase angle
ϕ(Ω) = tan−1 1 = 45.

For k = 2, (1) becomes

X[2] = x(0) + x(1)e−jπ + x(2)e−j2π + x(3)e−j3π

= 1 + 0 + 0 + 1e−jπ3 = 1− 1 = 0

Thus X [2] = 0, of magnitude zero and phase angle φ(2) = 0.
Finally, for k = 3, (1) becomes

X[k] = x(0) + x(1)e−j3π/2 + x(2)e−j3π + x(3)e−j9π/2

= 1 + 0 + 0 + e−j9π/2 = 1− j

Thus X [3] = 1 – j, of magnitude
√

2 and phase angle ϕ(3) = −45◦.
It has, therefore, been shown that the time series {1, 0, 0, 1} has the DFT,

given by the complex sequence {2, 1 + j, 0, 1− j} .
It is common practice to represent the DFT by the plots of |X(k)| versus

kω and of φ(k) versus kω. This may be done in terms of harmonics of ω, or
in terms of frequency if ω is known.

To find ω it is necessary to know the value of T, the sampling interval. If
it is assumed that the above data sequence had been sampled at 8 kHz then
T = 1/(8 × 103) = 125 μs.

Then ω = 2π/NT = 2π/(4x125x10−6) = 12.57K rad/s.
Hence 2ω = 25.14 and 3ω = 37.71K rad/s.
Figure 6.12(a) is a plot of x(nT) versus t.

Figure 6.12 (a) x(nT) versus t.

It is noteworthy that the ‘amplitude’ plot of Figure 6.12(b) is symmetrical
about the second harmonic component that is about harmonic number N/2
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Figure 6.12 (b) |X(k)| versus k.

and that in Figure 6.12(c) the phase angles are an odd function centered round
this component. These results are more generally true.

Figure 6.12 (c) φ(k).

An important property of the DFT may be deduced if the kth component
of the DFT, X [k], is compared with the (k + N )th component, X(k + N).

Thus

X[k] =
N−1∑
n=0

x(nT )e−jkωnT

=
N−1∑
n=0

x(nT )e−jk2πn/N

X[k + N ] =
N−1∑
n=0

x(nT )e−jk2πn/Ne−jN2πn/N

=
N−1∑
n=0

x(nT )e−jk2πn/Ne−j2πn
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=
N−1∑
n=0

x(nT )e−jk2πn/N = X[k]

Since n is integer, therefore e−j2πn = 1.
The fact that X[k+N ] = X[k] shows that the DFT is periodic with period

N. This is the cyclical property of the DFT. The values of the DFT components
are repetitive. If k = 0, then k + N = N and X[0] = X[N ].

In the above example X[0) = 2 and therefore X[4] = 2 also. This is
illustrated in Figure 6.12(b) where the fourth harmonic amplitude is drawn
at 50.28 kHz. The symmetry of the amplitude distribution about the second
harmonic is obvious.

Finally the values of the FT components, the data {1, 0, 0, 1} may be
obtained by multiplying the DFT components by T = 125 μs. Therefore

f [0] = 250 μVHz−1, f [12.57 kHz] = (125 + j125)μVHz−1,

f [25.14 kHz] = 0 VHz−1, f [37.71 kHz] = (125− j125)μVHz−1

6.7.1 Inverse Discrete Fourier Transform

It is also necessary to be able to carry out discrete transformation from the
frequency to the time domain. This may be achieved using the IDFT, defined
by the formula as in (6.40).

x(nT ) = F−1
D X[k] =

1
N

N−1∑
k=0

X[k]ejk ωT , n = 0, 1, . . . . .N − 1 (6.40)

x(n) =
1
N

N−1∑
k=0

X[k]ejk2π n/N (6.41)

Where F−1
D denotes the inverse discrete Fourier transformation.

Example 6.14

Find the inverse FT of the sequence [2, 1 + j, 0, 1− j].

Solution 6.14

It is useful to illustrate the IDFT by using it to derive the time series {1, 0, 0, 1}
from its DFT components [2, 1 + j, 0, 1− j]
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x(n) =
1
N

N−1∑
k=0

X[k]ejk2πn/N , x(n) =
1
4

3∑
k=0

X[k]e+jk2πn/4

x(n) =
1
4
[X[0] + X[1]e+jπn/2 + X[2]e+jnπ + X[3]e+j3nπ/2

With n = 0,

x(0) =
1
4
[X[0] + x[1] + x[2] + x[3]] =

1
4

[2 + (1 + j) + 0 + (1− j)] = 1

With n = 1

x(1) =
1
4
[X[0] + X[1]e+jπ/2 + X[2]e+jπ + X[3]e+j3π/2

=
1
4
[2 + (1 + j)ejπ/2 + 0 + (1− j)ej3π/2]

=
1
4

[2 + (1 + j)j + (1− j)(−j)]

x(1) =
1
4
(2 + j − 1− j − 1) = 0

With n = 2,

x(2) =
1
4
[X[0] + X[1]e+jπ + X[2]e2jπ + X[3]e+j3π

=
1
4
[
2 + (1 + j)ejπ + (1− j)ej3π

]
=

1
4

[2− (1 + j)− (1− j)] = 0

Finally, with n = 3,

x(3) =
1
4
[X[0] + X[1]e+j3π/2 + X[2]ej3π + X[3]e+j9π/2

=
1
4
[2 + (1 + j)ej3π/2 + (1− j)ej9π/2]

=
1
4

[2 + (1 + j)(−j) + (1− j)j] =
1
4
(2− j + 1 + j + 1) = 1

6.7.2 DFT: Matrix Method

The matrix method of evaluating DFT is the easiest method (for numerical
calculation with paper and pencil), where a matrix Wnk

N is generated called
the Twiddle factor matrix, which can be easily remembered.
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X[k] =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, 2, . . . .N − 1 X[k] = Wnk

N x(n) (6.42)

Wnk
N = e

−jk2nπ

N

WN =

⎡
⎢⎢⎢⎣

1 1 1 1
1 W 1

N W 2
N WN−1

N

1 W 2
N W 4

N W
2(N−1)
N

1 WN−1
N W

2(N−1)
N W

(N−1)(N−1)
N

⎤
⎥⎥⎥⎦

Example 6.15

Find DFT of the sequence x(n) = {1, 2, 0, 1} using matrix method.

X[k] = Wnk
N x(n)

Wnk
N =

⎡
⎢⎢⎢⎣

1 1 1 1
1 W 1

N W 2
N WN−1

N

1 W 2
N W 4

N W
2(N−1)
N

1 WN−1
N W

2(N−1)
N W

(N−1)(N−1)
N

⎤
⎥⎥⎥⎦

Solution 6.15

⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
1 W 1

4 W 2
4 W

(4−1)
4

1 W 2
4 W 4

4 W
2(4−1)
4

1 W
(4−1)
4 W

2(4−1)
4 W

(4−1)(4−1)
4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 W 1

4 W 2
4 W 3

4
1 W 2

4 W 4
4 W 6

4
1 W 3

4 W 6
4 W 9

4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2
0
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 + 2 + 1
1− 2j + j
1− 2− 1
1 + 2j − j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
1− j
−2

1 + j

⎤
⎥⎥⎦
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X[k] = {4, 1− j ,−2, 1 + j}

6.7.3 IDFT: Matrix Method

The matrix method of evaluating IDFT is the easiest method (for numerical
calculation with paper and pencil), where a matrix W−nk

N is generated called
the Inverse Twiddle factor matrix, which can be easily remembered. The
traditional formula is converted into matrix methods as below

x(n) =
1
N

N−1∑
k=0

X[k]ejk2πn/N x(n) =
1
N

W−1
N X[k] (6.43)

W−1
N =

⎡
⎢⎢⎢⎣

1 1 1 1
1 W−1

N W−2
N W

−(N−1)
N

1 W−2
N W−4

N W
−2(N−1)
N

1 W
−(N−1)
N W

−2(N−1)
N W

−(N−1)(N−1)
N

⎤
⎥⎥⎥⎦ (6.44)

Example 6.16

Find IDFT of the sequence X[k] = {4, 1−j, −2, 1+j} using matrix method.
IDFT can be calculated as

x(n) =
1
N

W−1
N X[k]

Solution 6.16

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ =

1
N

⎡
⎢⎢⎢⎣

1 1 1 1
1 W−1

4 W−2
4 W

−(4−1)
4

1 W−2
4 W−4

4 W
−2(4−1)
4

1 W
−(4−1)
4 W

−2(4−1)
4 W

−(4−1)(4−1)
4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

X(0)
X(1)
X(2)
X(3)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ =

1
4

⎡
⎢⎢⎣

1 1 1 1
1 W−1

4 W−2
4 W−3

4
1 W−2

4 W−4
4 W−6

4
1 W−3

4 W−6
4 W−9

4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4
1− j
−2

1 + j

⎤
⎥⎥⎦
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⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ =

1
N

⎡
⎢⎢⎣

1 1 1 1
1 W−1

4 W−2
4 W−3

4
1 W−2

4 W 0
4 W−2

4
1 W−3

4 W−2
4 W−1

4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4
1− j
−2

1 + j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ =

1
4

⎡
⎢⎢⎣

1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4
1− j
−2

1 + j

⎤
⎥⎥⎦

x(n) = {1, 2, 0, 1}

6.8 Properties of the DFT

The properties of DFT are quite useful in the practical techniques for process-
ing signals, which can be used to simplify problems or which lead to useful
applications. The data sequences x(nT ) are written as x(n). The properties
of DFT can be listed as under:

1. Periodicity
2. Linearity
3. Time reversal
4. Circular time shift
5. Circular frequency shift
6. Complex conjugate property
7. Circular convolution
8. Circular correlation
9. Multiplication of two sequences

10. Parseval’s theorem

6.8.1 Periodicity

This property states that if a DT signal is periodic then its DFT will also be
periodic. Also, if a signal or sequence repeats its wave form after N number
of samples then it is called a periodic signal or sequence and N is called the
period of the signal.

Mathematically

x(n + N) = x(n) for all values of n

x(k + N) = x(k) for all values of k (6.45)
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6.8.2 Linearity

According to this property, the DFT is linear.

x1(n)↔ X1(k)
x2(n)↔ X2(k) (6.46)

then according to this property ax1(n) + bx2(n) = aX1(k) + bX2(k)

6.8.3 Time Reversal

This property states that

If x(n) ↔ X(k)
x[(−n), (mod N)] = x(N − n)↔ [X(K), (mod N)] = X(N − k).

(6.47)

Thus when the N point sequence is time reversed, it is equivalent to reversing
the DFT values.

6.8.4 Circular Time Shift

This property states that

If x(n)↔ X(k)

x[(n− l), (mod N)]↔ X(K) e−j2kπl/N . (6.48)

This means the shifting of the sequence by l units in time domain is equivalent
to multiplication of e−jkπl/N in the frequency domain.

6.8.5 Circular Frequency Shift

This property states that

If x(n)↔ X (k)

x(n) e−j2kπl/N ↔ X((k − l), (mod N)) (6.49)

This means when the sequence x(n) is multiplied by the complex exponential
sequence e2jkπl/N , it is equivalent to circular shift of the DFT by l units in the
frequency domain.
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6.8.6 Circular Convolution

Circular convolution property states that

x(n)↔ X(k) y(n)↔ Y (k)
z(n) = x(n)⊗ y(n)↔ X(k).Y (k) (6.50)

where z(n) =
N−1∑
m=0

x(m)y(n−m), (mod N))

6.8.7 Circular Correlation

This property states that for complex valued sequences x(n) and y(n)

x(n)↔ X(k) y(n)↔ Y (k)
rXY (j) = RXY (k)↔ X(k)Y ∗(k) (6.51)

where rXY (j) =
N−1∑
n=0

x(n)y∗(n− j), (mod N))

6.8.8 Multiplication of Two Sequences

This property mathematically states

x(n)↔ X(k) y(n)↔ Y (k)
x(n).y(n)↔ 1

N [X(k).Y (k)] (6.52)

6.8.9 Even Functions

If x(n) is an even function xe(n), that is xe(n) = xe(−n) then

FD [xe(n)] = Xe(k) =
N−1∑
n=0

xe(n) cos(kωnT ) (6.53)

6.8.10 Odd Functions

If x(n) is an odd function x0(n), that is x0(n) = −x0(−n) then

FD [x0(n)] = X0(k) = −j

N−1∑
n=0

x0(n) sin(kωnT ) (6.54)
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6.8.11 Parseval’s Theorem

This theorem states that for complex valued sequence x(n) and y(n)

x(n)↔ X(k) y(n)↔ Y (k) x(n) · y(n)↔ 1
N

[X(k).Y (k)]

N−1∑
n=0

x(n)y∗(n) =
1
N

N−1∑
n=0

X(K)Y ∗(k) (6.55)

If y(n) = x(n), then the above equation reduces to

N−1∑
n=0

|x(n)|2 =
1
N

N−1∑
k=0

|X(k)|2 . (6.56)

This expression relates the energy in the finite duration sequence x(n) to power
in frequency component X (k).

6.9 Comparison between DTFT and DFT

We have seen that DFT is a sampled version of DTFT, where the frequency
term ω is also sampled. A physical feeling of the similarity and the difference
between the two can be obtained by considering an actual numerical example.

Example 6.17

Compute the values of DTFT and DFT, given
X (n) = {0, 1, 2, 3}

Solution 6.17

The DTFT of this is given by

X(ω) =
∞∑

n=−∞
x(n)e−jωn and X(ω) =

3∑
n=0

x(n)e−jωn

X(ω) = 0 + e−jω + 2 e−2jω + 3 e−3jω (1)

X(ω) = 0 + (cos ω − j sin ω) + 2(cos 2ω − j sin 2ω)
+ 3(cos 3ω − j sin 3ω) (2)



6.9 Comparison between DTFT and DFT 279

X(ω) may be separated into real and imaginary part as:

X(ω) = (cos ω + 2 cos 2ω + 3 cos 3ω)− j(sin ω + 2 sin 2ω + 3 sin 3ω)
(3)

X(ω) = a− jb = M∠θ (4)

First for our ease a and b are computed, the sum a – jb is calculated, the
complex summation yield the M∠θ. In the following table rows 1, 3, 6, 8,
and 11 are in bold faced letters against which the corresponding values of
DFT and DTFT exactly coincide with each other according to relation that
ω = 2πk

N .

DTFT DFT

Trial ω (rad/s) M ∠θ (deg.) Trial K X [k] Mod X [K] ∠θ (deg.)

1 0 6 0 1 0 6 6 0

2 1 4.48 136.63

3 πππ/2 2.82 135 2 1 –2 + j2 2.84 135

4 2 1.84 –51.4

5 3 1.99 156.5

6 πππ 2 180 3 2 –2 2 180

7 4 1.64 –13.7

8 3πππ/2 2.84 –135 4 3 –2 – j2 2.84 –135

9 5 3.68 –178.6

10 6 6.86 –37.87

11 2πππ 6 0 5 4 6 6 0

For example, we find that

X[k = 0] = X(ω = 0) (5)

X[k = 1] = X(ω = π/2) (6)

X[k = 2] = X(ω = π) (7)

X[k = 3] = X(ω = 3π/2) (8)

The result in Equations (5)–(8) are not surprising because DFT is a special
case of DTFT, where the frequency ω is sampled frequency of (2πk/N ),
where k = 0, 1, 2, 3, . . . , N − 1. Hence the DTFT and DFT must be exactly
the same at sampling intervals.

ω =
2π

N



280 Discrete-Time Fourier Transform

In the current example, we have N = 4, therefore, the sampling frequency
interval is

ω =
2π

4
=

π

2
this means that the values of DTFT and DFT must be exactly the same ω = π

2 ,
2π

2 , 3π
2 , and 4π

2 and so on. And by inspecting rows 1, 3, 6, 8, and 11 in the
above Table we find that this statement is complete true. The above example
tells us very important facts about DTFT and DFT:

• DFT is sampled version of DTFT, i.e., DFT is derived by sampling DTFT.
But, we know that DTFT is obtained by using the sampled from of
the input signal x(t) So, we find that DFT is obtained by the double
sampling of x(t) and it gives lesser number of frequency components
that DTFT.
• DFT gives only positive frequency values, whereas DTFT can give both

positive and negative frequency values. DTFT and DFT coincide at
intervals ω = 2πk

N , where k = 0, 1, . . . , N − 1.
• To get more accurate values of DFT, number of samples N must be very

high. Where N is very high, the required computation time will also be
very high.

Example 6.18

Compute the values of DTFT and DFT, given

X (n) = {1, 2, 4, 6}

Solution 6.18

The DTFT of this is given by

X(ω) =
∞∑

n=−∞
x(n)e−jωn (1)

X(ω) = 1 e−j0 + 2 e−jω + 4 e−2jω + 6 e−3jω

X(ω) = 1 + 2(cos ω − j sin ω) + 4(cos 2ω − j sin 2ω)
+ 6(cos 3ω − j sin 3ω) (2)

Equation (2) may be separated into real and imaginary part as:
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X(ω) = (1 + 2 cos ω + 4 cos 2ω + 6 cos 3ω)
− j(2 sin ω + 4 sin 2ω + 6 sin 3ω) (3)

X(ω) = a− jb (4)

After a and b are computed, the complex sum a – jb is calculated, the complex
summation yield the magnitude and phase angle θ. In the following table rows
1, 3, 6, 8, and 11 are in bold faced letters.

Now consider the DFT of the same sequence x(n), the value of X [k] is
compared for the rows 1, 3, 6, 8, and 11. We find that corresponding value of
DFT and DTFT exactly coincide with each other.

DTFT DFT

M ∠θ M ∠θ

Trial ω (rad/s) a – jb (deg.) Trial K X [k] X [k] (deg.)

1 0 13 13∠0◦ 1 0 13 13 0

2 1 –5 – j6.1 8.2∠–31.8◦

3 πππ/2 –3 + j4 5∠126◦ 2 1 –3 + j4 5 126.8

4 2 3.3 + j2.8 4.3∠0◦

5 3 –2.6 – j1.6 3.06∠–147.8◦

6 πππ –3 3∠–180◦ 3 2 –3 3 –180

7 4 4.1 + 0.7j 4.24∠10.5◦

8 3πππ/2 –3 – j4 5∠–126.8◦ 4 3 –3 – j4 5 –126.8

9 5 –6.3–j0.19 6.34∠178◦

10 6 10.2 + 7.2j 12.5∠36.1◦

11 2πππ 13 0 5 0 13 13 0

For example, we find that

X[k = 0] = X(ω = 0) (5)

X[k = 1] = X(ω = π/2) (6)

X[k = 2] = X(ω = π) (7)

X[k = 3] = X(ω = 3π/2) (8)

The result in Equations (5)–(8) are not surprising because DFT is a special case
of DTFT, where the frequency ω is sampled frequency of (2πk/N ), where
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k = 0, 1, 2, 3, . . . , N − 1. Hence the DTFT and DFT must be exactly the
same at sampling intervals.

ω =
2π

N

In the above example, we have N = 4, therefore, the sampling frequency
interval is

ω =
2π

4
=

π

2
this means that the values of DTFT and DFT must be exactly the same ω = π

2 ,
2π

2 , 3π
2 , 4π

2 and so on. And by inspecting rows 1, 3, 6, 8, and 11 in the above
table we find that this statement is complete true.

6.10 Fast Fourier Transform

We can define Fast Fourier Transform (FFT) as the DFT but its algorithm is
written in such a way that number of addition and multiplication becomes
very less and the operation becomes fast, therefore it is called FFT, it is a
preferred method of computing the frequency content of a signal. Any number
of samples, N, can be given to DFT algorithm; generally a power of 2 is chosen
such as 256(28), 512(29), for calculation. The fundamental principle behind
the FFT algorithms is to break down DFT of N samples into successfully
smaller DFTs.

The DFT is given by

X[k] =
∞∑

n=−∞
x(n)e−j 2πkn

N k = 0, 1, 2, . . . . . . , N − 1 (6.57)

When the exponential e−j 2πkn
N is replaced here with the twiddle factor W kn

N .
It is replaced due to mathematics easiness.

The discrete transform pair (FT & inverseFT) is given by
In twiddle factor form.

X[k] =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, 2, . . . . . . , N − 1

x(n) =
1
N

N−1∑
k=0

X[k]W−kn
N , (6.58)
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This section has been focused on an algorithm which is used to compute the
DFT more efficiently. The collections of efficient algorithms that are generally
used to compute the DFT is known as the FFT.

6.10.1 Decomposition-in-Time (DIT) FFT Algorithm

In butterfly diagram the left hand side is time and the right hand side is
frequency. In decimation in time, because the decomposition is being done in
time, the left hand side which is denoted for time is to be written as in even
and odd sequence, while right hand side is frequency, it is written in the same
sequence i.e. no order is changed. An efficient algorithm for computing the
DFT is developed for cases in which the number of samples to be computed is
a power of 2 (N = 2m). Where, m is called the stage of the butterfly diagram.

6.10.1.1 Two-point FFT
For drawing two point butterfly diagram a power of 2 (N = 2m). Where m
is called the stage of the butterfly diagram, it means in drawing two point
butterfly 21. Only one stage is required. We try to generalize the process. The
result of the effort is known as the DIT, radix-2 FFT.

X[k] =
N−1∑
n=0

x(n)Wnk
N (6.59)

For calculating a two-point DFT, it does not need to be decimated in its even
and odd components

X[k] =
1∑

n=0

x(n)Wnk
2 (6.60)

X[k] = x(0)W 0k
2 + x(1)W 1k

2

X[0] = x(0)W 0
2 + x(1)W (1)(0)

2

X[1] = x(0)W 0
2 + x(1)W 1

2

Because W 0k
2 = e−j0 = 1 and W 1k

2 = e−jπk = (−1)k

The following can be

X[0] = x(0) + x(1)
X[1] = x(0)− x(1) (6.61)
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Figure 6.13 Butterfly diagram for a 2-point DFT.

The signal flow graph of Figure 6.13 illustrates the process for computing
the two-point DFT. This signal flow graph is known as a butterfly diagram
because of its shape.

6.10.1.2 Four-point FFT
The four point DFT is carried out from the generalized formula as

X[k] =
N−1∑
n=0

x(n)Wnk
N (6.62)

It is decimated into N /2 point even and odd components, we use the concept
that DFT is periodic.

X[k] =
N/2−1∑
n=0

x(2n)W 2nk
N +

N/2−1∑
n=0

x(2n + 1)W (2n+1)k
N (6.63)

X[k] =
N/2−1∑
n=0

x(2n)Wnk
N/2 + W k

N

N/2−1∑
n=0

x(2n + 1)Wnk
N/2 (6.64)

X[k] = G(k) + W k
N H(k) (6.65)

Substituting the value of k = 0–3 in Equation (6.65)

X[0] = G[0] + W 0
4 H[0]

X[1] = G[1] + W 1
4 H[1]

X[2] = G[2] + W 2
4 H[2] = G[0] + W 2

4 H[0]

X[3] = G[3] + W 3
4 H[3] = G[1] + W 3

4 H[1]

The Equation (6.65) can be written for N/2 even components of four-point
DFT
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G[k] =
N/2−1∑
n=0

x(2n)Wnk
N/2 =

1∑
n=0

x(2n)Wnk
2 (6.66)

G[k] = x(0)W 0k
2 + x(2)W 1k

2

G[0] = x(0)W 0
2 + x(2)W 0

2

G[1] = x(0)W 0
2 + x(2)W 1

2

The Equation (6.67) can be written for N /2 odd components of four-point DFT

H[k] =
N/2−1∑
n=0

x(2n + 1)Wnk
N/2 =

1∑
n=0

x(2n + 1)Wnk
2 (6.67)

H[k] = x(1)W 0k
2 + x(3)W 1k

2

H[0] = x(1)W 0
2 + x(3)W 0

2

H[1] = x(1)W 0
2 + x(3)W 1

2

It is to be noted that four-point DFT can be computed by the generation of
two two-point DFTs followed by a re-composition of terms as shown in the
signal flow graph of Figure 6.14.

Figure 6.14 Signal flow graph for a four-point DFT.
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6.10.1.3 Eight-point FFT
Eight Point DFT needs 2, 2, 2, 2, 4, 4, 8 equations to be developed. The eight
point DFT is proceeded as

X[k] =
N−1∑
n=0

x(n)Wnk
N .

For calculating eight point DFT, it is decimated into N /2, i.e., two four-point
DFT, the main expression of the DFT is written in even and odd components.

X[k] =
N/2−1∑
n=0

x(2n)Wnk
N/2 + W k

N

N/2−1∑
n=0

x(2n + 1)Wnk
N/2 (6.68)

X[k] = G[k] + W k
N H[k] (6.69)

where G[k] =
N/2−1∑
n=0

x(2n)Wnk
N/2.

Even components can be further decimated into N/4, i.e., two two-point
DFT, To avoid any further confusion in derivation the variable name have
been changed, even in g and in odd in h.

N/2−1∑
n=0

x(2n)Wnk
N/2 =

N/4−1∑
m=0

g(2m)W 2mk
N/2 +

N/4−1∑
m=0

g(2m + 1)W (2m+1)k
N/2

N/2−1∑
n=0

x(2n)Wnk
N/2 =

N/4−1∑
m=0

g(2m)Wmk
N/4 + W k

N/2

N/4−1∑
m=0

g(2m + 1)Wmk
N/4

Even sequence is further decimated into N /4, i.e., two four-point DFT even
components.

G[k] = A[k] + W k
N/2 B[k] (6.70)

Equation (6.70) can be expressed as

G[k] = A(k) + W k
N/2 B(k)

G[0] = A(0) + W 0
4 B(0)

G[1] = A(1) + W 1
4 B(1) (6.71)

G[2] = A(2) + W 2
4 B(2)

G[3] = A(3) + W 3
4 B(3).
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Equation (6.71) gives the four equation of drawing the butterfly diagram,
where A[k] can be expressed as:

A[k] =
N/4−1∑
m=0

g(2m)Wmk
N/4

A[k] =
2−1∑

m=0

g[2m]Wmk
2 = g(0)W 0

2 + g(2)W k
2 (6.72)

A[0] = g(0) + g(2)

A[1] = g(0) + g(2)W 1
2 = g(0)− g(2).

Equation (6.71) gives the two equation of drawing the butterfly diagram, where
B[k] can be expressed as:

B[k] =
N/4−1∑
m=0

g(2m + 1)Wmk
N/4

B[k] =
2−1∑

m=0

g(2m + 1)Wmk
2 = g(1)W 0

2 + g(3)W k
2

B[0] = g(1) + g(3)

B[1] = g(1) + g(3)W 1
2 = g(0)− g(3). (6.73)

Odd components can be further decimated into N /4, i.e., two two-point DFT

H[k] =
N/4−1∑
m=0

h[2m]Wmk
N/4 + W k

N/2

N/4−1∑
M=0

h[2m + 1]Wmk
N/4

H[k] = C[k] + W k
N/2 D[k] (6.74)

H[k] = C(k) + W k
N/2 D(k) (6.75)

H[0] = C(0) + W 0
4 D(0) H[1] = C(1) + W 1

4 D(1)

H[2] = C(2) + W 2
4 D(2) H[3] = C(3) + W 3

4 D(3)

C[k] =
N/4−1∑
m=0

h(2m)Wmk
N/4 D[k] =

N/4−1∑
m=0

h(2m + 1)Wmk
N/4
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C[k] =
2−1∑

m=0

h(2m)Wmk
2 = h(0)W 0

2 + h(2)W k
2 (6.76)

C[0] = h(0) + h(2) C[1] = h(0) + h(2)W 1
2 = h(0)− h(2)

D[k] =
2−1∑

m=0

h(2m + 1)Wmk
2 = h(1)W 0

2 + h(3)W k
2

D[0] = h(1) + h(3) D[1] = h(1) + h(3)W 1
2 = h(1)− h(3) (6.77)

Equation (6.74) can be expressed as

H[k] =
N/2−1∑
n=0

x[2n + 1]Wnk
N/2 (6.78)

H[k] =
N/4−1∑
m=0

h[2m]Wmk
N/4 + W k

N/2

N/4−1∑
M=0

h[2m + 1]Wmk
N/4. (6.79)

It is worth wile to understand that only one value has to be calculated, rest
are the calculated from squaring or cubing the equation or by multiplying two
calculated values of twiddle factor. The weighting factors for the eight-point
DFT are

W 0
8 = 1, W 1

8 = e−j(π/4), W 2k
8 = e−j(π/4)2k = e−j(π/2)k = W 1k

4

W 3
8 = e−j(π/4)3 =

[
e−j(π/4)2

]
e−j(π/4) = W 1

8 W 1
4 W 4

8 = e−j(π/4)4

= e−jπ = W 2
4 ;W 6

8 = e−j(π/4)6 = W 3
4 W 5

8 = e−j(π/4)5

= e−j(π/4)4e−j(π/4) = W 1
8 W 2

4 ,

W 7
8 == W 1

8 W 3
4 = e−j(π/4)7 = e−j(π/4)e−j(π/4)6 = W 1

8 W 3
4 .

The factors in brackets as the four-point DFTs is recognized as g(n) and h(n)
respectively. Therefore, it is seen that the eight-point FFT is found by the
re-composition of two, four-point FFTs.

Figure 6.15 illustrates the procedure for computing the eight-point FFT.
In general, the N -point, radix-2 FFT is computed by the re-composition

of two (N /2)-point FFTs. The generalized procedure is illustrated in
Figure 6.15.

The reason for deriving the FFT algorithm is for computational efficiency
in calculating the DFT. Table 6.3 shows the computational cost of DFT and
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Figure 6.15 Decomposition-in-time fast Fourier transforms.

Table 6.3 Computational cost

Computational Cost of the DFT and FFT

N -point DFT N -point FFT

Algorithm Solution of N equations in N
unknown

N /2 butterflies/stage, For m
stages, total
butterflies = Nm/2

Multiplications per
step

N per equation 1 per butterfly

Addition per step N – 1 per equation 2 per butterfly

Total multiplications N2 Nm/2 = (N /2)log2N

Total addition N (N – 1) Nm = N log2N

FFT. Table 6.4 shows only the number of complex multiplications required
for both the DFT and the FFT for several values of N.

Table 6.4 DFT and FFT comparison (number of complex multiplications required)
N Standard DFT FFT
2 4 1
4 16 4
8 64 12
16 256 32
32 1024 80
64 4,096 192
128 16,384 448
N (a power of 2) N2 N

2 log2 N
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We see that the increased efficiency of the radix-2 FFT algorithm becomes
more significant as the number of points in the DFT becomes larger.

Example 6.19

The DIT method of the FFT will be used to compute the DFT of the discrete
sequence x(n) = [1, 2, 3, 4]

Solution 6.19

Referring to Figure 6.16 for the four point FFT, we find the following.

G[0] = x(0) + x(2) = 1 + 3 = 4
G[1] = x(0)− x(2) = 1− 3 = −2
H[0] = x(1) + x(3) = 2 + 4 = 6
H[1] = x(1)− x(3) = 2− 4 = −2

X[0] = G[0] + H[0] = 4 + 6 = 10 X[1] = G[1] + H[1]W 1
4

= −2 + (−j)(−2) = −2 + 2j

X[2] = G[0]−H[0] = −2 X[3] = G[1] + H[1]W 1
4 = −2− 2j

X [k] = {10, − 2 + 2j, − 2, − 2− 2j} .

6.11 Decomposition-in-Frequency (DIF) FFT Algorithm

In DIF FFT frequency component has to be decomposed into it even and odd
components. The idea behind the DIF FFT algorithm is similar to that of the
DIT FFT presented previously. The DIT FFT and the DIF FFT require the same
number of complex multiplications to compute. Consider dividing the output
sequence X [k] into smaller and smaller sub sequences.

6.11.1 Two-point DFT

To develop FFT algorithms, let us again restrict the discussion to N a power of
2 and consider computing separately the even numbered frequency samples
and odd number of frequency samples.

X [k] =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, 2, . . . . . . , N (6.80)
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For calculating a two-point DFT, it does not need to be decimated in its even
and odd components of frequencies.

X[k] =
1∑

n=0

x(n)Wnk
2 (6.81)

X[k] = x(0)W 0k
2 + x(1)W 1k

2

X[0] = x(0) + x(1) X[1] = x(0) + x(1)W 1
2

6.11.2 Four-point DFT

Since X [k] is and even numbered frequency samples are

X [2k] =
N−1∑
n=0

x(n)Wn(2k)
N k = 0, 1, . . . ,

(
N

2

)
− 1 (6.82)

which can be decomposed as

x[2k] =
N/2−1∑
n=0

x(n)W 2nk
N +

N−1∑
n=N/2

x(n)W 2nk
N (6.83)

With a substitution of variables in the second summation in (6.80), we obtain

X[2k] =
N/2−1∑
n=0

x(n)W 2nk
N +

N/2−1∑
n=0

x(n + N/2)W 2k(n+N/2)
N (6.84)

Finally, because of the periodicity of W 2kn
N

W
2k(n+N/2)
N = W 2kn

N W kN
N = W 2kN

N ; W kN
N = 1 (6.85)

Substituting above values in Equation (6.81)

X [2k] =
(N/2)−1∑

n=0
[x [n] + x[n + N/2]] W 2kn

N , k = 0, 1, 2, . . . ,
N

2
− 1

X [2k] =
(N/2)−1∑

n=0
[x [n] + x[n + N/2]] W kn

N/2, k = 0, 1, 2, . . . ,
N

2
− 1

(6.86)
Equation (6.88) is the N/2 point DFT of the (N /2)-point sequence obtained by
adding first half and the last half of the sequence.
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Substituting x(n) + x(n + N/2) = g(n)

X [2k] =
(N/2)−1∑

n=0

g(n) W kn
N/2, k = 0, 1, 2, . . . . . . ,

N

2
− 1 (6.87)

X [2k] = g(0)W 0k
2 + g(1)W 1k

2

X [0] = g(0)W 0k
2 + g(1) X [2] = g(0)W 0k

2 + g(1)W 1
2

We now consider obtaining the odd numbered frequency points given by

X [2k + 1] =
N−1∑
n=0

x [n] W
n(2k+1)
N k = 0, 1, . . . ,

(
N

2

)
− 1

X[2k + 1] =
N/2−1∑
n=0

x [n] W
n(2k+1)
N +

N−1∑
n=N/2

x [n] W
n(2k+1)
N (6.88)

Alternative form of the (6.88)

x[2k + 1] =
N/2−1∑
n=0

x(n) W
n(2k+1)
N +

N/2−1∑
n=0

x

(
n +

N

2

)
W

[n+(N/2)](2k+1)
N

(6.89)
Now we consider the weighting factors of the two sequences

W 2kn
N = W kn

N/2W
(2k+1)n
N = W kn

N/2W
n
N WNk

N = −1 (6.90)

substituting
x(n)− x(n + N/2) = h(n) (6.91)

x[2k + 1] =
(N/2)−1∑

n=0

[x(n)− x(n + N/2)]W
nk

N/2 Wn
N (6.92)

X[2k + 1] =
(N/2)−1∑

n=0

h(n) W k n
N/2 Wn

N k = 0, 1, 2, .....,
N

2
− 1

X [2k + 1] = h(0)W 0k
2 W 0

N + h(1)W 1k
2 W 1

N

X [1] = h(0)− h(1) W 1
4 X [3] = h(0)− h(1)W 1

4
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Equations (6.87), (6.88), (6.91) and (6.92) are used for drawing butterfly
diagram.

Figure 6.16 shows the butterfly diagram for the DIF FFT algorithm.
Figure 6.17 illustrates the DIF FFT process for a four-point DIF FFT.

Example 6.20

The DIF method of the FFT will be used to compute the DFT of the discrete
sequence.

x(n) = [1, 2, 3, 4]

Solution 6.20

Referring to Figure 6.17 for the four-point DIF FFT, we find the following:

g[0] = x(0) + x(2) = 1 + 3 = 4

Figure 6.16 A general decomposition-in-frequency FFT.

Figure 6.17 A 4-point Decomposition-in-frequency FFT.
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g[1] = x(1) + x(3) = 2 + 4 = 6

h[0] = W 0
4 [x(0)− x(2)] = 1− 3 = −2

h[1] = W 1
4 [x(1)− x(3)] = −j[2− 4] = j2

and

X[0] = g[0] + g[1] = 4 + 6 = 10
X[2] = g[0]− g[1] = 4− 6 = −2
X[1] = h[0] + h[1] = −2 + j2
X[3] = h[0]− h[1] = −2− j2.

6.12 Problems and Solutions

Problem 6.1

Compute the DTFT of the following signal

x(n) =

{
2− (1

2)n |n| ≤ 4
0 elsewhere

Solution 6.1

Using

X(ω) =
∞∑

n=−∞
x(n)e−jωn =

3∑
n=0

x(n)e−jωn =
3∑

n=0

(2− 1
2
n)e−jωn

X(w) = 2 + 1.5e−jw + e−2jw + 0.5−3jw

Using Z-transform:

x(n) = {2
↑
, 1.5, 1, 0.5} X (z) = 2 + 1.5z−1 + z−2 + 0.5z−3

Taking FT by substituting z = ejω

X(w) = 2 + 1.5e−jw + e−2jw + 0.5−3jw
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Problem 6.2

Compute the DTFT of the following signal

x(n) = {−2,−1, 0
↑
, 1, 2}

Solution 6.2

Using

X(ω) =
∞∑

n=−∞
x(n)e−jωn =

2∑
n=−2

x(n)e−jωn

= x(−2)e2jω + x(−1)ejω + x(0) + x(1)e−jω + x(2)e−2jω

X(w) = −2e−jw(−2) − 1e−jw(−1) + 1e−jw(1) + 2−jw(2)

X(w) = −2e2jw − ejw − e−jw + 2e−2jw

Using Z-transform:

X(z) = −2z2 − z − z−1 + 2z−2

X(w) = −2(ejw)2 − ejw − (ejw)−1
+ 2(ejw)−2

X(w) = −2e2jw − ejw − e−jw + 2−2jw

Problem 6.3

Compute the DTFT of the following signal

x(n) = (0.5)nu(n) + (2)−nu(−n− 1)

Solution 6.3

Using

X(ω) =
∞∑

n=−∞
(05)nu(n)e−jωn +

∞∑
n=−∞

(2)−n u(−n− 1)e−jωn

X(ω) =
∞∑

n=0

(0.5)ne−jωn +
−1∑

n=−∞
(2)−ne−jωn X(ω)

=
∞∑

n=0

(0.5e−jω)n
+

∞∑
n=1

(2−1e−jω)n



296 Discrete-Time Fourier Transform

X(ω) =
1

1− 0.5e−jω
+

0.5ejω

1− 0.5ejω
=

1− 0.5ejω + 0.5ejω − 0.25
1− 2 cos ω + 0.25

X(ω) =
0.75

1.25− 2 cos ω

Problem 6.4

Compute the DTFT of the following signal

x(n) = sin
(π n

2

)
u(n)

Solution 6.4

X(ω) = x(n)e−jωn =
∞∑

n=0

[
ejπn/2 − e−jπn/2

2j

]

e−jωn =
e−jω sin π

2
1 + e−j2ω

=
e−jω

1 + e−j2ω

Problem 6.5

Find the DTFT output y(n) of a causal DT LTI system which is characterized
by the difference equation

y(n)− 3
4
y(n−1)+

1
8
y(n−2) = 2 x(n) for the input x(n) =

[
1
4

]n

u(n)

Solution 6.5

DTFT
[
y(n)− 3

4
y(n− 1) +

1
8
y(n− 2)

]
= DTFT 2

[
1
4

]n

u(n)

DTFT [y(n)]− 3
4

DTFT [y(n− 1)] +
1
8

DTFT [y(n− 2)]

= DTFT 2
[
1
4

]n

u(n)

Y (ω)− 3
4
e−jωY (ω) +

1
8
e−j2ωY (ω) =

2
1− 1

4e−jω



6.12 Problems and Solutions 297

Y (ω) =
2

[1− 3
4e−jω + 1

8e−j2ω][1− 1
4e−jω]

=
2

[1− 1
2e−jw][1− 1

4e−jw]2

y(n) = 8
(

1
2

)n

u(n)− 4
(

1
4

)n

u(n)− 2(n + 1)
[
1
4

]n

u(n)

Problem 6.6

Compute the DTFT of the following signal

x(n) = (2)nu(n)

Solution 6.6

The sequence x(n) = (2)nu(n) is not absolutely summable. Therefore,
DTFT does not exist.

Problem 6.7

Find DFT of the sequence x(n) = {1, 2, 0, 4} using Matrix method.

Solution 6.7

X[k] =
N−1∑
n=0

x(n) W kn
N , k = 0, 1, 2, . . . . . . , N − 1, W 1

N = e−j2π/N

X (k) = WN x(n), where x(n) is the input vector of N DFT samples
WN = N × N DFT matrix
X (k) = the output vector composed of N DFT samples

WN =

⎡
⎢⎢⎢⎣

1 1 1 1
1 W 1

N W 2
N WN−1

N

1 W 2
N W 4

N W
2(N−1)
N

1 WN−1
N W

2(N−1)
N W

(N−1)(N−1)
N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
1 W 1

4 W 2
4 W

(4−1)
4

1 W 2
4 W 4

4 W
2(4−1)
4

1 W
(4−1)
4 W

2(4−1)
4 W

(4−1)(4−1)
4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦
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⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 W 1

4 W 2
4 W 3

4
1 W 2

4 W 4
4 W 6

4
1 W 3

4 W 6
4 W 9

4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2
0
4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2
0
4

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 + 2 + 4
1− 2j + 4j
1− 2− 4

1 + 2j − 4j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

7
1 + 2j
−5

1− 2j

⎤
⎥⎥⎦

X[k] = {7, 1 + 2j,−5, 1− 2j}

Problem 6.8

Find the inverse FT of the sequence {7, 1 + 2j, −5, 1 − 2 j}.

Solution 6.8

It is useful to illustrate the inverse DFT by using it to derive the time series
{1, 2, 0, 4} from its DFT components {7, 1 + 2j,−5, 1− 2j} .

x(n) = F−1
D [X(k)] =

1
N

N−1∑
k=0

X[k]ejkΩnT , n = 0, 1, . . . . . . . .N − 1

x(n) =
1
N

N−1∑
k=0

X[k]e+jk2πn/N x(nT ) = x(n) =
1
N

N−1∑
k=0

X[k]

With n = 0

x(0) =
1
4

[X[0] + X[1] + X[2] + X[3]]

=
1
4

[7 + (1 + 2j)− 5 + (1− 2j)] = 1

With n = 1

x(n) =
1
N

N−1∑
k=0

X[k]ejk2π/N =
1
4

N−1∑
k=0

X[k]ejkπ/2
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x(1) =
1
4
[7 + (1 + 2j)ejπ/2 − 5ejπ + (1− 2j)ej3π/2]

x(1) =
1
4
[7 + (1 + 2j)j − 5 (−1) + (1− 2j)(−j)]

=
1
4
(7 + j − 2 + 5− j − 2) = 2

With n = 2,

x(nT ) = x(n) =
1
N

N−1∑
k=0

X[k]ejkπ

x(2) =
1
4
[
7 + (1 + 2j)ejπ − 5 ej2π(1− j)ej3π

]

=
1
4

[7 + (1 + 2j)(−1)− 5 + (1− 2j)(−1)] = 0

Finally, with n = 3,

x(n) = x(3) =
1
N

N−1∑
k=0

X(k)ejk3π/2

x(3) =
1
4
[7 + (1 + 2j)ej3π/2 − 5 ej3π + (1− 2j)ej9π/2]

x(3) =
1
4

[7 + (1 + 2j)(−j)− 5(−1) + (1− 2j)j]

=
1
4
(7− j + 2 + 5 + j + 2) = 4

Problem 6.9

Find IDFT of the sequence X(k) = {7, 1 + 2j,−5, 1 − 2j} using matrix
method.

Solution 6.9

X[k] =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, 2, . . . . . . . . .N − 1 DFT
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x(n) =
1
N

N−1∑
k=0

X[k]W−kn
N , W 1

N = e−j2π/N IDFT

x(n) = W 1
N

X [k], where x(n) is the input vector of N DFT samples
WN = N × N DFT matrix
X [k] = the output vector composed of N DFT samples

IDFT can be calculated as

W−1
N =

⎡
⎢⎢⎢⎣

1 1 1 1
1 W−1

N W−2
N W

−(N−1)
N

1 W−2
N W−4

N W
−2(N−1)
N

1 W
−(N−1)
N W

−2(N−1)
N W

−(N−1)(N−1)
N

⎤
⎥⎥⎥⎦

[W−1
N ] =

⎡
⎢⎢⎢⎣

1 1 1 1
1 W−1

4 W−2
4 W

−(4−1)
4

1 W−2
4 W−4

4 W
−2(4−1)
4

1 W
−(4−1)
4 W

−2(4−1)
4 W

−(4−1)(4−1)
4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ =

1
N

⎡
⎢⎢⎢⎣

1 1 1 1
1 W−1

4 W−2
4 W

−(4−1)
4

1 W−2
4 W−4

4 W
−2(4−1)
4

1 W
−(4−1)
4 W

−2(4−1)
4 W

−(4−1)(4−1)
4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ =

1
4

⎡
⎢⎢⎣

1 1 1 1
1 W−1

4 W−2
4 W−3

4
1 W−2

4 W−4
4 W−6

4
1 W−3

4 W−6
4 W−9

4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

7
1 + 2j
−5

1− 2j

⎤
⎥⎥⎦

x(n) = {1, 2, 0, 4}

Problem 6.10

Find DFT of the sequence x(n) = {1, 2, 0, 1} using Matrix method.

Solution 6.10

X [k] = WN x(n)
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WN =

⎡
⎢⎢⎢⎣

1 1 1 1
1 W 1

N W 2
N WN−1

N

1 W 2
N W 4

N W
2(N−1)
N

1 WN−1
N W

2(N−1)
N W

(N−1)(N−1)
N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
1 W 1

4 W 2
4 W

(4−1)
4

1 W 2
4 W 4

4 W
2(4−1)
4

1 W
(4−1)
4 W

2(4−1)
4 W

(4−1)(4−1)
4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 W 1

4 W 2
4 W 3

4
1 W 2

4 W 4
4 W 6

4
1 W 3

4 W 6
4 W 9

4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2
0
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X[0]
X[1]
X[2]
X[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 + 2 + 1
1− 2j + j
1− 2− 1
1 + 2j − j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
1− j
−2

1 + j

⎤
⎥⎥⎦

X[k] = {4, 1− j,−2, 1 + j}

Problem 6.11

The DIT method of the FFT will be used to compute the DFT of the following
discrete sequence.

x(n) = [1, 2, 0, 4]

Solution 6.11

Referring to the four point FFT, we find the following.

G[0] = x(0) + x(2) = 1 + 0 = 1
G[1] = x(0)− x(2) = 1− 0 = 1
H[0] = x(1) + x(3) = 2 + 4 = 6
H[1] = x(1)− x(3) = 2− 4 = −2 and
X[0] = G[0] + H[0] = 1 + 6 = 7
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X[1] = G[1] + H[1]W 1
4 = 1 + (−j)(−2) = 1 + j2

X[2] = G[0]−H[0] = 1− 6 = −5X[3] = G[1]−H[1]W 1
4

= 1− (2)(j) = 1− 2j

which is in agreement with the previous results found.

Problem 6.12

Compute the values of DTFT and DFT, given

X(n) = {4, 3, 2, 1}

Solution 6.12

The DTFT of this is given by

X(ω) =
3∑
0

x(n)e−jωn

X(ω) = 4 + 3e−jω + 2 e−2jω + 1 e−3jω (1)

X(ω) = 4 + 3(cos ω − j sin ω) + 2(cos 2ω − j sin 2ω)
+ 1(cos 3ω − j sin 3ω) (2)

Equation (2) may be separated into real and imaginary part as:

X(ω) = (4 + 3 cos ω + 2 cos 2ω + cos 3ω)
− j(3 sin ω + 2 sin 2ω + sin 3ω) (3)

X(ω) = a− jb (4)

After a and b are computed separately, the complex sum a− jb is calculated,
the complex summation yield the magnitude and phase angle θ. In the
following table rows 1, 3, 6, 8, and 11 are in bold faced letters.

Now consider the DFT of the same sequence x(n), the value of X [k] is
compared for the rows 1, 3, 6, 8, and 11. We find that corresponding value of
DFT and DTFT exactly coincide with each other.
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DTFT DFT

∠θ M∠θ

Trial ω (rad/s) a – jb M (deg.) Trial K X [k] (deg.)

1 0 10 10 0 1 0 10 0

2 1 0.556 + j1.89 1.97 136.63

3 πππ/2 –2 + 2j 2.84 135 2 1 2.84 135

4 2 4.9 – j0.127 4.9 –51.4

5 3 7.979 + j0.273 7.98 1.96

6 πππ –2 2 180 3 2 2 –180

7 4 6.51 – j0.30 6.51 –2.63

8 3πππ/2 –2 – 2j 2.84 –135 4 3 2.84 –135

9 5 0.711 – j0.85 1.108 –50◦

10 6 3.46 – j1.567 3.8 –24.32

11 2πππ 10 10 0 5 4 10 0





7
Structure for FIR and IIR Filters

This chapter covers: Realization structure of the FIR and IIR filters filter
in different forms, i.e., direct form, Lattice, Frequency sampling and Fast
convolution for FIR in brief and Direct form-I and II, Cascade, Parallel, Lattice
and Lattice–Ladder network for IIR filters, Problems and solutions.

7.1 Introduction

Realization involves in converting a given transfer function H (z) into a
suitable filter structure. Block or flow diagrams are often used to depict filter
structures and they show the computational procedure for implementing the
digital filter. The structure used depends on whether the filter is an IIR or FIR
filter. The method of realization can be recursive or non recursive. Few of
the following methods have been discussed keeping in mind the level of the
students.

The following are the methods commonly used in realization structures
for FIR and IIR filters:

(a) Lattice (FIR)
(b) Frequency Sampling Realization (FIR)
(c) Fast convolution (FIR)
(d) Direct form I (IIR)
(e) Direct form II, Transversal (IIR & FIR)
(f) Cascade (IIR)
(g) Parallel (IIR)
(h) Lattice (All Pole Filters) (IIR)
(i) Lattice Ladder (IIR)

305
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7.2 Structure Form of FIR Filters

7.2.1 Direct Form (Transversal)

FIR filter are related by convolution sum

y(n) =
N−1∑
k=0

x(k)h(n− k) or Y(z) = H(z)X(z).

Sequence of FIR filter with system transfer functions H (z) coefficients
polynomial

H(z) = Am(z) m = 0, 1, 2, . . . M − 1, (7.1)

where by definition Am(z) is the polynomial.

Am(z) = 1 +
m∑

k=1

αm(k) z−k; m ≥ 1 (7.2)

and A0(z) = 1.
The subscript m on the polynomial Am(z) and y(n) is the output sequence,

we have

y(n) = x(n) +
m∑

k=1

αm(k) x(n− k) (7.3)

7.2.2 Lattice Structure

Lattice structure may be used to represent FIR as well as IIR filter. Lat-
tice structures are used extensively in digital speech processing and in the
implementation of adaptive filters.

Figure 7.1 The direct form of FIR filter.
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FIR filter structures are initially related with the topic of linear predictor
where

x̂(n) = −
m∑

k=1

αm(k)x(n− k), (7.4)

where y(n) = x(n)− x̂(n) represents the prediction error sequence

fm(n) =
m∑

k=0

αm(k)x(n− k)

fm(n) = αm(0)x(n) +
m∑

k=1

αm(k)x(n− k)

y(n) = x(n) +
m∑

k=1

αm(k)x(n− k). (7.5)

For m = 1, a single lattice filter. The output of such filter is

y(n) = x(n) + α1(1)x(n− 1) (7.6)

The input x(n) and the output f1(n) and g1(n) are related by

f1(n) = x(n) + k1x(n− 1)
g1(n) = k1x(n) + x(n− 1) (7.7)

Comparing Equations (7.6) and (7.7)
We get the value of α1(1) = k1. Here, k1 is called reflection coefficient

of lattice structure as shown in Figure 7.2
For m = 2, a two stage lattice filter. From Equation (7.5) output of such

filter is
y(n) = x(n) + α2(1) x(n− 1) + α2(2) x(n− 2) (7.8)

Figure 7.2 The lattice structure for FIR filter.
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The input x(n) and the output f2(n) and g2(n) are related by

f2(n) = f1(n) + k2g1(n− 1)
g2(n) = k2f1(n) + g1(n− 1) (7.9)

if we focus our attention on f2(n) and substitute for g1(n – 1) from
Equation (7.7) into Equation (7.9)

f2(n) = x(n) + k1x(n− 1) + k2[k1x(n− 1) + x(n− 2)]
f2(n) = x(n) + [k1 + k1k2]x(n− 1) + k2x(n− 2) (7.10)

By comparing Equations (7.8) and (7.10)

α2(1) = k1(1 + k2) and α2(2) = k2

k2 = α2(2) k1 =
α2(1)

1 + α2(2)
.

Now, in a two-stage lattice structure g2(n) can be expressed in the form

g2(n) = k2f1(n) + g1(n− 1)
g2(n) = k2[ x(n) + k1x(n− 1)] + k1x(n− 1) + x(n− 2)
g2(n) = k2x(n) + k1(1 + k2) x(n− 1)] + x(n− 2)
g2(n) = [α2(2)]x(n) + [α2(1)]x(n− 1) + x(n− 2)

(7.11)

The above Equations (7.10) and (7.11) reveals that the filter coefficients of
g2(n) are {α2(2), α2(1), 1}, where as the coefficients for the filter f2(n) are
{1, α2(1), α2(2)}. Again the two sets of filter coefficients are in reverse order.

The above comparison process for finding the reflection coefficients is not
a valid process for higher order filter, therefore one can easily demonstrate by
induction, the equivalence between an mth order direct form FIR filter and an
mth order m stage lattice structure.

The generalized equations for the lattice structure are described by the
following set of recursive equations.

f0(n) = g0(n) = x(n)

fm(n) = fm−1(n) + kmgm−1(n− 1) (7.12)

gm(n) = kmfm−1(n) + gm−1(n− 1).

As a consequence of the equivalence between an FIR filter and a Lattice
structure, the one output fm(n) of a m stage lattice structure.

fm(n) =
m∑

k=0

αm(k) x(n− k); αm(0) = 1 (7.13)
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Equation (7.13) is a convolution sum, it follows that the z-transform
relationship is

Fm(z) = Am(z)X(z)

Am(z) =
Fm(z)
X(z)

=
Fm(z)
F 0(z)

. (7.14)

For the further development it follows that the output gm(n) for an m-stage
lattice filter can be expressed by the convolution sum of the form

gm(n) =
m∑

k=0
βm(k) x(n− k)

where βm(k) = αm(m− k) k = 0, 1, 2. . . .m
(7.15)

Equation (7.15) can be written in Z-transform form

Gm(z) = Bm(z) X(z)
Bm(z) = Gm(z)

X(z)

Bm(z) =
m∑

k=0
βm(k) z−k βm(k) = αm(m− k)

Bm(z) =
m∑

k=0
αm(m− k) z−k

Bm(z) =
m∑

L=0
αm(L) zL−m = z−m Am(z−1)

Hence Bm(z) is called the reciprocal or reverse polynomial of Am(z)
Equation (7.12) can be written in Z-transform form

F0(z) = G0(z) = X(z)
Fm(z) = Fm−1(z) + km z−1 Gm−1(z) m = 0, 1, 2. . . ., M − 1

Gm(z) = km Fm−1(z) + z−1 Gm−1(z) m = 0, 1, 2. . . ., M−1 (7.16)

If we divide each equation by X(z), we obtain the desired result in the form

A0(z) = B0(z) = 1
Am(z) = Am−1(z) + km z−1 Bm−1(z) m = 0, 1, 2. . . ., M − 1

Bm(z) = km Am−1(z) + z−1 Bm−1(z) m = 0, 1, 2. . . ., M−1. (7.17)

The lattice stage is described in the z-domain by the matrix equation as follows
and shown in the Figure 7.3.

[
Am(z)
Bm(z)

]
=
[[

1 km

kM 1

]][
Am−1(z)
z−1Bm−1(z)

]
(7.18)
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Figure 7.3 An N -stage FIR lattice structure.

7.2.2.1 Direct form filter-to-lattice coefficients
From Equation (7.17)

A0(z) = B0(z) = 1
Am(z) = Am−1(z) + km z−1 Bm−1(z) m = 0, 1, 2. . . ., M − 1
Bm(z) = km Am−1(z) + z−1 Bm−1(z) m = 0, 1, 2. . . ., M − 1
Am(z) = Am−1(z) + km z−1 Bm−1(z) m = 0, 1, 2. . . ., M − 1
Am(z) = Am−1(z) + km [Bm(z)− km Am−1(z)]

Am−1(z) = Am(z)−km Bm(z)
1−k2

m
m = 0, 1, 2. . . ., M − 1

Example 7.1
Determine the lattice coefficients corresponding to the FIR filter with system
function

H(z) = A3(z) = 1 +
13
24

z−1 +
5
8

z−2 +
1
3

z−3

Solution 7.1
We note that k3 = α3(3) = 1/3

B3(z) =
1
3

+
5
8

z−1 +
13
24

z−2 + z−3

The step-down relationship with m = 3 yields

A2(z) =
A3(z)− k3 B3(z)

1− k2
3

A2(z) =

[
1 + 13

24 z−1 + 5
8 z−2 + 1

3 z−3]− 1
3 [13 + +5

8 z−1 + 13
24 z−2 + z−3

]

1− 1
9
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A2(z) =
9
8

[
1− 1

9
+
(

13
24
− 5

24

)
z−1 +

1
3

z−3
]

−
(

5
8
− 13

72

)
z−2 +

(
1
3
− 1

3

)
z−3

A2(z) = 1 +
3
8

z−1 +
1
2

z−2

k2 = α2(2) = 1/2

B2(z) =
1
2

+
3
8

z−1 + z−2.

By replacing the step-sown recursion, we obtain

A1(z) =
A2(z)− k2 B2(z)

1− k2
2

A1(z) =

[
1 + 3

8 z−1 + 1
2 z−2

]− 1
2

[1
2 + +3

8 z−1 + z−2
]

1− 1
4

A1(z) =
4
3

[(
1− 1

4

)
+
(

3
8
− 3

16

)
z−1 −

(
1
2
− 1

2

)
z−2
]

A2(z) = 1 +
1
4
z−1

k1 = α1(1) = 1/4.
In the above example, one method is given for calculating the reflection
coefficient, which in short is explained below.

From the step down recursive equation, it is easily easy to obtain a formula
for recursively computing km, beginning with m = M – 1 and stepping down
to m = 1, For m = M – 1, M – 2, . . . 1.

αm(m) = Km αm(0) = 1
αm−1(k) = αm(k)−km βm(k)

1−k2
m

and βm(k) = αm(m− k)

αm−1(k) = αm(k)−αm(m) αm(m−k)
1−α2

m(m) 1 ≤ k ≤ m− 1.

Example 7.2
Determine the lattice coefficients corresponding to the FIR filter with system
function

H(z) = A3(z) = 1 +
13
24

z−1 +
5
8

z−2 +
1
3

z−3
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Solution 7.2
m = 3, αm(m) = Km α3(3) = k3 = 1/3

αm−1(k) = αm(k)−km βm(k)
1−k2

m

α2(k) = α3(k)−α3(3) α3(m−k)
1−α2

3(3) 1 ≤ k ≤ 2.

It means value of k to be substituted in the above equation, i.e., k = 1 and k = 2
k = 1

α2(1) =
α3(1)− k3 α3(2)

1− (1
3)2

=
9
24

k = 2

α2(2) = α3(2)− k3 α3(1)
1−( 1

3 )2
= 1

2

α2(2) = k2 = 1
2

m = 2,

α1(k) =
α2(k)− k2α2(2− k)

1− k2
2

.

It means value of k to be substituted in the above equation
k = 1

α1(1) = α2(1)−k2 α2(1)
1−k2

2
= 1

4

7.2.2.2 Lattice-to-direct form coefficients
The direct form FIR filter coefficients {αm(k)} can be obtained from the lattice
coefficients {ki} by using the following relationship

A0(z) = B0(z) = 1 (7.19)

Am(z) = Am−1(z) + km z−1 Bm−1(z) m = 0, 1, 2. . . ., M − 1 (7.20)

Bm(z) = z−mAm(z−1) m = 0, 1, 2. . . ., M − 1. (7.21)

The solution is obtained recursively, beginning with m = 1.

Example 7.3
Given a three-stage Lattice filter with coefficients k1 = 1

4 , k2 = 1
2 , k3 = 1

3 .
Determine the FIR filter coefficients corresponding to the direct form structure.
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Solution 7.3
A0(z) = B0(z) = 1

Am(z) = Am−1(z) + km z−1 Bm−1(z) m = 0, 1, 2. . . ., M − 1

for m = 1

A1(z) = A0(z) + k1z
−1B0(z) = 1 +

1
4
z−1.

Hence, the coefficients of an FIR filter corresponding to a single stage
lattice are:

α1(0) = 1, α1(1) = 1/4 = k1

Since Bm(z) is the reverse polynomial of Am(z)

B1(z) =
1
4

+ z−1.

We add second stage m = 2

A2(z) = A1(z) + k2 z−1 B1(z)
= 1 + 1

4 z−1 + 1
2 z−1(1

4 + z−1)

A2(z) = 1 +
3
8

z−1 +
1
2

z−2

α2(0) = 1, α2(1) = 3/8, α2(2) = 1/2

Also

B2(z) =
1
2

+
3
8

z−1 + z−2

Finally, we add second stage m = 3

A3(z) = A2(z) + k3 z−1 B2(z)
= 1 + 3

8 z−1 + 1
2 z−2 + 1

3 z−1[12 + 3
8 z−1 + z−2]

A3(z) = 1 + 13
24 z−1 + 5

8 z−2 + 1
3 z−3

α3(0) = 1, α3(1) = 13/24, α3(2) = 5/8, andα3(3) = 1/3

A formula for determining the filter coefficients {αm(k)} recursively can be
easily derived from polynomial relationships (7.19) through (7.21). From the
relationship of (7.21) we have

Am(z) = Am−1(z) + km z−1 Bm−1(z)
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m∑
k=0

αm(k) z−k =
m−1∑
k=0

αm−1(k) z−k+km

m−1∑
k=0

αm−1(m−1−k) z−(k+1) (1)

By equating the coefficients of equal powers of z−1 and recalling that αm(0)
= 1 for m = 1, 2, . . ., M – 1, we obtain the desired recursive equation for the
FIR filter coefficients in the form

αm(m) = Km αm(0) = 1

αm(k) = αm−1(k) + km αm−1(m− k) (2)

αm(k) = αm−1(k) + αm(m) αm−1(m− k) 1 ≤ k ≤ m− 1

m = 1, 2, . . ., M − 1

Equation (2) is called as Levinson–Durbin recursive equation.

Example 7.4
Given a 3-stage Lattice filter with coefficients k1 = 1

4 , k2 = 1
2 , and k3 = 1

3 .
Determine the FIR filter coefficients corresponding to the direct form structure.

Solution 7.4
By equating the coefficients of equal powers of z−1 and recalling thatαm(0) = 1
for m = 1, 2, . . ., M – 1, we obtain the desired recursive equation for the FIR
filter coefficients in the form

αm(m) = Km αm−1(0) = 1

αm(k) = αm−1(k) + km αm−1(m− k)

αm(k) = αm−1(k) + αm(m)αm−1(m− k) 1 ≤ k ≤ m− 1

m = 1, 2, . . ., M − 1

α3(3) = K3 =
1
3

For m = 1

αm(k) = αm−1(k) + km αm−1(m− k)
α1(k) = α0(k) + α1(1) α0(1− k) 1 ≤ k ≤ m− 1 m = 1, 2, . . ., M − 1.

Hence the coefficients of an FIR filter corresponding to a single stage lat-
tice are

α1(0) = 1, α1(1) = 1/4 = k1
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αm(k) = αm−1(k) + km αm−1(m− k)
α1(k) = α0(k) + α1(1) α0(1− k) 1 ≤ k ≤ 0

The limit of k is not a valid limit, therefore, omitting this expression, we add
second stage m = 2, by seeing the limit of k, only k = 1 is considered.

αm(k) = αm−1(k) + km αm−1(m− k)
α2(k) = α1(k) + α2(2) α1(2− k) 1 ≤ k ≤ 1

α2(1) = α1(1) + α2(2) α1(1)
α2(1) = 1

4 +
(1

2

)(1
4

)
= 3

8 .

Finally, we add second stage m = 3, by seeing the limit of k, k = 1, and k = 2
is considered.

αm(k) = αm−1(k) + km αm−1(m− k)
α3(k) = α2(k) + α3(3) α2(3− k) 1 ≤ k ≤ 2
α3(1) = α2(1) + α3(3) α2(2)
α3(1) = 3

8 +
(1

3

)(1
2

)
= 13

24

α3(2) = α2(2) + α3(3) α2(1)
α3(2) = 1

2 +
(1

3

)(3
8

)
= 5

8

Therefore, α3(0) = 1, α3(1) = 13/24, α3(2) = 5/8, and α3(3) = 1/3.

7.2.3 Frequency Sampling Form

Figure 7.4 Realization structures for FIR filters: frequency sampling structure.
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7.2.4 Fast Convolution Form

Hi(k) 
h(n) 

Filter coefficients 

y(n) 

Hi(n) Xi(n) 

Xi(k) xi(n) Segment 
input 

Sequenc
e into 
blocks 

Obtain fast 
Fourier 

transform 
of each 
block 

Obtain fast 
Fourier 

transform 
of h(n) 

Obtain inverse 
FFT of the  

Products Xi(k) 
Hi(k) 

Form 
output 

Sequence 
from 

Inverse 
FFTs 

Figure 7.5 Realization structures for FIR filters: fast convolution.

7.3 Realization Form of IIR Filters

7.3.1 Direct Form I

A transfer function in z-transform form is given below

H(z) =
y(z)
x(z)

=
N(z)
D(z)

=
a0 + a1z

−1 + . . . + aNz−N

1 + b1z−1 + . . . + bMz−M
=

N∑
k=0

akz
−k

1 +
M∑

k=1
bkz−k

(7.22)
Therefore, the above equation can also be written as

Y(z) = H(z)X(z) (7.23)

We obtain by cross multiplying

Y(z)
[
1 + b1z

−1 + . . . + bkz
−k
]

=
[
a0 + a1z

−1 + . . . + akz
− k
]

X(z)
(7.24)

Use of the IZT in connection with Equation (7.24) leads to

y(n) + b1y(n− 1) + . . . + bky(n− k) = a0x(n) + a1x(n − 1)
+ . . . + akx(n− k), (7.25)

which can be written in a more compact form as

y(n) =
N∑

k=0

akx(n− k)−
M∑

k=1

bk y(n− k) (7.26)
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a0 

a1 

−ak−1 

ak 
x(n) 

y(n) 

−b1 

−b2 

−bk 

z−1 

(a)

z−1 z−1 z−1 z−1 z−1 

Figure 7.6 Direct form-I realization: k-th order H (z).

Equation (7.26) can be realized as shown in Figure 7.6
From Figure 7.6 it is apparent that 2k registers or memory locations are

required to store the x(n – i) and y(n – i), 1 ≤ i ≤ k.
It is worthwhile verifying that the direct form I realization does indeed

represent the fundamental relation Y(z) = H (z)X(z) by tracing through it. To
this end, we consider the direct form-I realization for the second-order case,
which is shown in Figure 7.7. Examining Figure 7.7 at the summing junction,
we obtain

a0X(z) + a1z
−1X(z) + a2z

−2X(z) + (−b1) z−1Y(z)
+ (−b2) z−2 Y(z) = Y(z) (7.27)

which yields

Y(z)
(
1 + b1z

−1 + b2z
−2) = X(z)

(
a0 + a1z

−1 + a2z
−2)

Y(z) =
[
a0 + a1z

−1 + a2z
−2

1 + b1z−1 + b2z−2

]
X(z),

a0 

a1 

a2 
x(n) 

y(n) 

−b1 

z − z−1 z−1 z−1 

−b2 

Figure 7.7 Direct form-I realization: second-order H (z).
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which is the desired result since the quantity in brackets is the transfer function
H (z) in Equation (7.22) for k = 2.

7.3.2 Direct Form II

From Equations (7.22) and (7.23) we have

Y(z) = N(z)
X(z)
D(z)

. (7.28)

Let us define

W (z) =
X(z)
D(z)

=
X(z)

1 + b1z−1 + . . . + bMz−M
. (7.29)

Again, Equation (7.29) yields

X(z) = W (z)
[
1 + b1z

−1 + b2z
−2 + . . . + bkz

−k
]
,

which leads to

x(n) = w(n) + b1w(n− 1) + b2w(n− 2) + . . . + bkw(n− k), n ≥ 0.
(7.30)

Then Equations (7.28) and (7.29) imply that

Y(z) = N(z)W (z) = (a0 + a1z
−1 + . . . + aNz−N )W (z). (7.31)

Next Equation (7.31) can be written as

Y(z) = W (z)
[
a0 + a1z

−1 + a2z
−2 + . . . + akz

−k
]

which yields

y(n) = a0w(n) + a1w(n− 1) + a2w(n− 2) + . . . + akw(n− k), n ≥ 0.
(7.32)

We now combine Equations (7.31) and (7.32) to obtain the direct form
realization shown in Figure 7.8(a) for the general case and Figure 7.8(b) for
the special case k = 2.

We observe that this realization requires k registers to realize the kth order
H (z) in Equation (7.28), as opposed to 2k registers required for the direct
form-I realization. Hence the direct form II realization is also referred to as a
canonical form.



7.3 Realization Form of IIR Filters 319

Figure 7.8 Direct form II realization: (a) kth-order H (z); (b) second-order H (z).

7.3.3 Cascade (Series) Form

Using straightforward polynomial factorization techniques, the numerator and
denominator polynomials of H (z) in Equation (7.22) can be factored into
first- and second-order polynomials. As such, H (z) in Equation (7.22) can be
expressed as

H(z) = a0H1(z) H2(z) . . . Hi(z) (7.33)

Where i is a positive integer, and each Hi(z) is a first- or second-order transfer
function; that is,

Figure 7.9 Cascade or series realization.
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Figure 7.10 Direct form I realization of fourth order IIR filter.

Hi(z) =
1 + ai1z

−1

1 + bi1z−1

Hi(z) =
1 + ai1z

−1 + ai2z
−2

1 + bi1z−1 + bi2z−2 . (7.34)

Substitution of Equation (7.33) in Equation (7.23) leads to a

Y(z) = a0[H1(z) H2(z) . . . Hl(z)] X(z)

which yields the cascade or series realization shown in Figure 7.8.

Figure 7.11 Cascade realization of a fourth order IIR filter.
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H(z) = C

2∏
k=1

1 + a1kz
−1 + b2kz

−2

1 + b1kz−1 + b2kz−2

w1(n) = Cx(n)− b11w1(n− 1)− b21w1(n− 2)
y1(n) = a01w1(n) + a11w1(n− 1) + a21w1(n− 2)
w2(n) = y1(n)− b12w2(n− 1)− b22w2(n− 2)
y(n) = a02w2(n) + a12w2(n− 1) + a22w2(n− 2)

7.3.4 Parallel Form

Here we express H (z) in Equation (7.33) as

H(z) = C + H1(z) + H2(z) + . . . + Hl(z) (7.35)

Where C is a constant, r is a positive integer, and Hi(z) is a first- or second-
order transfer function; that is,

Hi(z) =
ai0

1 + bi1z−1

Figure 7.12 Parallel realization of a fourth-order IIR filter.
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Hi(z) =
ai0 + ai1z

−1

1 + bi1z−1 + bi2z−2 (7.36)

A given H (z) can be expressed as indicated in Equation (7.35) by resorting to
a PFE of H (z)/z. The desired parallel realization is shown in Figure 7.11, and
follows directly from Equation (7.35)

w1(n) = x(n)− b11w1(n− 1)− b21w1(n− 2)
w2(n) = x(n)− b12w2(n− 1) + b22w2(n− 2)
y1(n) = a01w1(n) + a11w1(n− 1)
y2(n) = a02w2(n) + a12w2(n− 2)
y3(n) = Cx(n)

Example 7.5
Given the second-order transfer function

H(z) =
0.7(z2 − 0.36)

z2 + 0.1z − 0.72

Obtain the following realization.

(a) The direct form II (or canonical).
(b) Series form in terms of first-order sections.
(c) Parallel form in terms of first-order sections.

Solution 7.5
Direct Form II
(a) We rewrite H (z) as

H(z) =
0.7(1− 0.36z−2)

1 + 0.1z−1 − 0.72z−2 =
0.7(a0 + a1z

−1 + a2z
−2)

1 + b1z−1 + b2z−2 .

−0.36 

−0.1 

x(n) y(n) 0.7 

0.72 

z−1

z−1

(a) Director Form II
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From figure below, it is clear that the canonical form realization is as shown
in the following sketch.

Series Form
(b) To obtain the series form realization, we factor the numerator and
denominator polynomials of H (z) to obtain

H(z) =
0.7(1 + 0.6z−1)(1− 0.6z−1)
(1 + 0.9z−1)(1− 0.8z−1)

.

There is nothing unique about how one combines the first-order polynomials
above to obtain corresponding first-order transfer functions. For example, one
choice is as follows:

H1(z) =
1 + 0.6z−1

1− 0.8z−1

H2(z) =
1− 0.6z−1

1 + 0.9z−1 .

The above transfer functions in can be realized in terms of either of the two
direct forms (i.e., 1 or 2). To illustrate, we use the direct form 2 realization in
Figure given below with a2 = b2 = 0, since H 1(z) and H 2(z) are first-order
transfer functions. This results in the following series form realization.

H2(z) 

0.6 

H1(z) 

x(n) y(n) 0.7 

0.8 

z−1

−0.6 −0.9 

z−1

(b) Series Form

Parallel Form
(c) Next we seek a parallel form realization, and hence obtain a PFE of H (z)/z
is given as below,

H(z) =
H(z)

z
=

0.7(z + 0.6)(z − 0.6)
z(z + 0.9)(z − 0.8)

=
A

z
+

B

z + 0.9
+

C

z − 0.8
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where

A = Ĥ(z)
∣∣∣z = 0 = 0.35 B = (z + 0.9)Ĥ(z)

∣∣∣
z = −0.9

= 0.206

C = (z − 0.8)Ĥ(z)|z = 0.8 = 0.144

Thus H(z) = 0.35 + 0.206z
z + 0.9 + 0.144z

z − 0.8 H(z) = 0.35 + 0.206
1 + 0.9z−1 + 0.144

1 − 0.8z−1

= H1(z) + H2(z) + H3(z)

One way of realizing H 2(z) and H 3(z) is by using the direct form 2 as shown
in Figure with a2 = 0, b2 = 0, since H 2(z) and H 3(i) are first-order transfer
functions. This approach yields the following parallel realization.

(c) Parallel Form

7.3.5 Lattice Structure for IIR Filter

We begin with all pole system with transfer function, all pole transfer function
has no zeros polynomial.

H(z) =
Y(z)
X(z)

=
1

AN (z)
=

1

1 +
N∑

k=1
aN (k) z−k

(7.37)

Therefore the above equation can also be written as

Y(z) = H(z)X(z) (7.38)

We obtain by cross multiplying

Y(z)[1 + aN (1)z−1 + aN (2)z−2 + . . . + aN (N)z−N ] = X(z) (7.39)
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Y(z) = X(z)− [aN (1)z−1 + aN (2)z−2 + . . . + aN (N)z−N ] Y(z)

which yields

y(n) = x(n)−aN (1) y(n − 1)−aN (2) y(n− 2)− . . .−aN (N)y(n −k)
(7.40)

y(n) = x(n)−
N∑

k=1

aN (k) y(n− k) (7.41)

it is interesting to note that if we interchange the role of input and output
[i.e., interchange x(n) with y(n)], we obtain

x(n) = y(n)−
N∑

k=1

aN (k) x(n− k) (7.42)

or equivalently

y(n) = x(n) +
N∑

k=1

aN (k) x(n− k). (7.43)

We note that Equation (7.43) describes a FIR system having the system
function H (z) = AN (z), while the system is described by the difference equation
represents an IIR system with system function

H(z) =
1

AN (z)
. (7.44)

System can be obtained from the other simply by interchanging the role of the
input and output.

To demonstrate the set of equations, let us consider the case for N = 1.

f1(n) = x(n) and y(n) = f0(n) (7.45)

f0(n) = f1(n) − k1g0(n− 1)

y(n) = x(n)− k1y(n− 1)

g1(n) = k1f0(n) + g0(n− 1)
g1(n) = k1y(n) + y(n− 1)
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Figure 7.13 Single pole lattice filter structure.

fN (n) = x(n) (7.46)
fm−1(n) = fm(n) − kmgm−1(n− 1) m = N, N − 1, . . . . ., 1

gm(n) = kmfm−1(n) − gm−1(n− 1) m = N, N − 1, . . . . ., 1
y(n) = f0(n) = g0(n).

To demonstrate the set of equations, let us consider the case for N = 2

Figure 7.14 Two pole lattice filter structure.

y(n) = f0(n) = g0(n).

The equations corresponding to the structure are

f2(n) = x(n) (7.47)

f1(n) = f2(n) − k2g1(n− 1)
g2(n) = k2f1(n) + g1(n− 1)

From (7.45)
f0(n) = f1(n) − k1g0(n− 1)
g1(n) = k1f0(n) + g0(n− 1).
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After some simple substitution and manipulations

y(n) = f0(n) = f1(n) − k1g0(n− 1)
y(n) = [f2(n) − k2g1(n− 1)]− k1g0(n− 1)

Because g1(n – 1) = k1y(n – 1) + y(n – 2) and y(n) = g0(n)

y(n) = x(n)− k2{k1y(n− 1) + y(n− 2)} − k1y(n− 1)

y(n) = −k1(1 + k2) y(n− 1)] − k2y(n− 2) + x(n).
(7.48)

In a similar way

g2(n) = k2y(n) + k1(1 + k2) y(n− 1) + y(n− 2). (7.49)

The difference Equation (7.48) represents a two-pole IIR system, and the
relation in Equation (7.49) is the input-output equation for a two-zero FIR
system except that they occur in reverse order.

In general, the conclusion holds for any value of N. Indeed, with the
definition of Am(z)

Am(z) = Fm(z)
X(z) = F m(z)

F0(z) . . . . . . . . . . . . . . . . . . . . . FIR filter

Ha(z) = Y(z)
X(z) = F0(z)

F m(z) = 1
Am(z) . . . . . . . . . . .All pole IIR filter

It is interesting to note that all pole lattice structure has an all zero path
with input g0(n) and the output gN (n), which is identical to the counter part
all-zero path in the all-zero lattice structure.

The polynomial Bm(z), which represents the system function and all-
zero path common to both lattice structures, it is usually called the backward
system function, because it provides the backward path in the all pole lattice
structure.

To develop the appropriate ladder structure for denominator polynomial
of IIR filter, let us consider a system using Gray and Markel method using
recursive equation.

vq(k) = cq(k)−
q∑

j=k+1

vq(j)αj(j − k).

It is to be noted that the method used in calculation of FIR filter lattice
coefficients is valid for the all pole filter and for ladder net work we use
the recursive formula which is explained in next section.
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7.3.5.1 Gray–Markel method of IIR lattice structure
for ladder coefficients

The method of realizing an IIR filter transfer function which has been used in
Matlab is summarized as below. (The recursion formula for ladder coefficients
is included here).

H(z) =
Cm(z)
Am(z)

=
[c0 + c1 z−1 + c2 z−2 + c3 z−3 + . . . ]
[1 + α1 z−1 + α2 z−2 + α3 z−3 + . . . ]

.

Using recursion

vq(k) = cq(k)−
q∑

j=k+1
vq(j)αj(j − k)

Figure 7.15 Lattice ladder structure of a pole-zero system.

Example 7.6
Determine the lattice ladder structure for the system

H(z) =
[

1− 0.8 z−1 + 0.15z−2

1 + 0.1 z−1 − 0.72 z−2

]

Solution 7.6

H(z) = Cm(z)
Am(z) = [c0 + c1 z−1 + c2 z−2 + c3 z−3 + ... ]

[1 + α1 z−1 + α2 z−2 + α3 z−3 + ... ] . Considering the transfer
function for lattice–ladder network

H(z) =
[

1− 0.8 z−1 + 0.15z−2

1 + 0.1 z−1 − 0.72 z−2

]
.
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For all pole system, we have

H(z) =
1

A(z)

Comparing A(z) = 1 + 0.1z−1 − 0.72z−2

α2(1) = k1(1 + k2) = 0.1 and α2(2) = k2 = −0.72

k2 = α2(2) = −0.72 k1 =
α2(1)

1 + α2(2)
= 0.357.

We get the value of the coefficients for ladder network as shown in Figure 7.16

Figure 7.16 Lattice ladder structure of a pole-zero system.

H(z) =
Cm(z)
Am(z)

=
[c0 + c1 z−1 + c2 z−2 + c3 z−3 + . . . ]
[1 + α1 z−1 + α2 z−2 + α3 z−3 + . . . ]

.

H(z) =
[
1− 0.8 z−1 + 0.15 z−2

1 + 0.1 z−1 − 0.72 z−2

]

7.3.5.2 Calculation of ladder coefficients using
Gray–Markel method

Using recursion

vq(k) = cq(k)−∑q
j=k+1 vq(j)αj(j − k).
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Because the filter transfer function is of second order, therefore, q = 2, the
value of k will be taken in descending order, i.e., 2, 1, 0

v2(2) = c2(2)
v2(1) = c2(1)− v2(2) α2(1)
v2(0) = c2(0)− v2(2) α2(2)− v2(1) α1(1)

v2(2) = c2(2) = 0.15
v2(1) = c2(1)− v2(2) α2(1) = (−0.8)− (0.15)(0.1) = −0.815
v2(0) = c2(0)− v2(2) α2(2)− v2(1) α2(1) = 1− (0.15)(−0.72)

−(−0.815)(0.357) = 1.3989.

It is to be noted here that to calculate the value of ladder networks the method
given in Matlab is used here.

7.4 Implementation of Filters

Having calculated the filter coefficients, chosen a suitable structure, and
verified that the filter degradation, after quantizing the coefficients and filter
variables to the selected word-lengths, is acceptable, the difference equation
must be implemented as a software routine or in hardware.

Whatever the method of implementation, the output of the filter must
be computed, for each sample, in accordance with the difference equation
(assuming a time-domain implementation).

As the examination of any difference equation will show the computation
of y(n) (the filter output) involves only multiplications, additions/subtractions,
and delays.

Thus to implement a filter, we need the following basic building blocks:

(a) Memory (for example ROM) for storing filter coefficients
(b) Memory (such as RAM) for storing the present and past inputs and

outputs, that is {x(n), x(n – 1), . . . } and {y(n), y(n – 1), . . . }
(c) Hardware or software multiplier(s)
(d) Adder or arithmetic logic unit

Example 7.7
(a) Discuss the five main steps involved in the design of digital filters, using

the following design problem to illustrate your answer.
(b) A digital filter is required for real-time noise reduction. The filter should

meet the following amplitude response specification:
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Passband frequency 0–10 Hz
Stopband frequency 20–64 Hz
Sampling frequency 128 Hz
Maximum passband deviation <0.036 dB
Stopband attenuation >30 dB

Other important requirements are that

(i) minimal distortion of the harmonic relationships between the components
of the in-band signals is highly desirable,

(ii) the time available for filtering is limited, the filter being part of a larger
process, and

(iii) the filter will be implemented using the Texas Instruments TMS32010
DSP processor with the analogue input digitized to 12 bits.

Solution 7.7
This filter was designed and used in a certain biomedical signal processing
project. Given here only an is an outline discussion of the design, postponing
detailed discussion to Chapter 7 where FIR filter design methods are fully
covered.

(i) Requirement specification. As discussed previously, the designer must
give the exact role and performance requirements for the filter together
with any important constraints. These have already been given for the
example.

(ii) Calculation of suitable coefficients. The requirements of minimal distor-
tion and limited processing time are best achieved with a linear phase
FIR filter, with coefficients obtained using the optima method.

(iii) Selection of filter structure. The transversal structure will lead to the
most efficient implementation using the processor either floating or fixed
point.

(iv) Analysis of finite word-length effects. In the processor fixed point arith-
metic is used with each coefficient represented by 16 bits (after rounding)
for efficiency. FIR filter degradation may result from input signal
quantization, coefficient quantization, roundoff and overflow errors.

A check should be made to ensure that the world-lengths are sufficiently
long. Analysis of finite word-length effects for this case showed that the input
quantization noise and deviation in the frequency response due to coefficient
quantization are both insignificant.

The use of the processor having 32-bit accumulator to sum the coefficient
data products, rounding only the final sum, would reduce roundoff errors
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to negligible levels. To avoid overflow each coefficient should be divided
by
∑N−1

k=0 |h(k)|before quantizing to 16 bits.

(v) Implementation. Design and configure the processor is based hardware
(if it does not already exist) with the necessary input/output interfaces.
Then write a program for the processor to handle the I/O protocols and
calculate filter output,

(vi) y(n) =
∑N−1

k=0 h(k)x(n− k), for each new input, x(n)

7.5 Problems and Solutions

Problem 7.1
The transfer function for an FIR filter is given by

H(z) = 1 − 1.3435 z−1 + 0.9025 z−2

Draw the realization block diagram for each of the following cases:

(1) Transversal structure;
(2) Two-stage lattice structure.

Calculate the values of the coefficients for the lattice structure.

Solution 7.1
(1) From the transfer function, the diagram for the transversal structure is

given in Figure (a). The input and output of the transversal structure are
given by

y(n) = x(n) + h(1) x(n − 1) + h(2) x(n − 2) (1)

(2) A two-stage lattice structure for the filter is given in Figure (b). The
outputs of the structure are related to the input as

y2(n) = y1(n) + K2w1(n − 1)

y2(n) = x(n) + K1w1(1 + K2)x(n − 1) + K2x(n − 2) (2)
w2(n) = K2x(n) + K2(1 + K2)x(n − 1) + x(n − 2) (3)

Comparing Equations (1) and (2), and equating coefficients, we have

K1 =
h(1)

1 + h(2)
; K2 = h(2)

from which K2 = 0.9025 and K1 = –1.3435/(1 + 0.9025) = –0.7062.
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Notice that the coefficients of y2(n) and w2(n) in Equations (2) and (3)
are identical except that one is written in reverse order. This is a characteristic
feature of the FIR lattice structure.

Problem 7.2
Determine the parameter {km} of the lattice filter corresponding to the FIR
filter described by the system function

H(z) = A2(z) = 1 + 2 z−1 +
1
3

z−2

Solution 7.2
We note that k2 = α2(2) = 1/3

B2(z) =
1
3

+ 2 z−1 + z−2.

The step-down relationship with m = 3 yields

Am−1(z) =
Am(z)− km Bm(z)

1− k2
m
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A1(z) =
A2(z)− k2 B2(z)

1− k2
2

A1(z) =
[1 + 2 z−1 + 1

3 z−2]− 1
3 [13 + 2 z−1 + z−2]

1− 1
9

A1(z) = 1 +
3
2
z−1

k1 = α2(1) = 3/2

Problem 7.3
Determine the impulse response of an FIR lattice with parameter k1= 0.6,
k2 = 0.3, k3 = 0.5, and k4 = 0.9.

Solution 7.3
A0(z) = B0(z) = 1

Am(z) = Am−1(z) + km z−1 Bm−1(z) m = 0, 1, 2. . . ., M − 1

for m = 1

A1(z) = A0(z) + k1 z−1 B0(z) = 1 + 0.6 z−1

k1 = 0.6
since Bm(z) is the reverse polynomial of Am(z)

B1(z) = 0.6 + z−1

we add second stage m = 2

A2(z) = A1(z) + k2 z−1 B1(z)
A2(z) = 1 + 0.78 z−1 + 0.3 z−2

also
B2(z) = 0.3 + 0.78 z−1 + z−2

Finally, we add second stage m = 3

A3(z) = A2(z) + k3 z−1 B2(z)
A3(z) = 1 + 0.93 z−1 + 0.69 z−2 + 0.5 z−3

B3(z) = 0.5 + 0.69 z−1 + 0.93 z−2 + z−3

A4(z) = A3(z) + k4 z−1 B3(z)
A4(z) = 1 + 1.38 z−1 + 1.311 z−2 + 1.337 z−3 + 0.9 z−4

α4(0) = 1, α4(1) = 1.38, α4(2) = 1.311, α4(3) = 1.337, and α4(4) = 0.9
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Problem 7.4
Given the second-order transfer function

H(z) =
0.7(z2 − 0.36)

z2 + 0.1z − 0.72
.

Obtain the following realization.

(d) The direct form II (or canonical).
(e) Series form in terms of first-order sections.
(f) Parallel form in terms of first-order sections.

Solution 7.4
Direct Form II
(a) We rewrite H (z) as

H(z) =
0.7(1− 0.36z−2)

1 + 0.1z−1 − 0.72z−2 =
0.7(a0 + a1z

−1 + a2z
−2)

1 + b1z−1 + b2z−2 .

From figure below, it is clear that the canonical form realization is as shown
in the following sketch.

(a) Director Form

Series Form
(b) To obtain the series form realization, we factor the numerator and
denominator polynomials of H (z) to obtain

H(z) =
0.7(1 + 0.6z−1)(1− 0.6z−1)
(1 + 0.9z−1)(1− 0.8z−1)
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There is nothing unique about how one combines the first-order polynomials
above to obtain corresponding first-order transfer functions. For example, one
choice is as follows: H1(z) = 1 + 0.6z−1

1 − 0.8z−1

H2(z) =
1− 0.6z−1

1 + 0.9z−1

The above transfer functions in can be realized in terms of either of the two
direct forms (i.e., 1 or 2). To illustrate, we use the direct form 2 realization in
Figure given below with a2 = b2 = 0, since H 1(z) and H 2(z) are first-order
transfer functions. This results in the following series form realization.

(b) Series Form

Parallel Form
(c) Next we seek a parallel form realization, and hence obtain a PFE of H (z)/z
is given as below,

H(z) =
H(z)

z
=

0.7(z + 0.6)(z − 0.6)
z(z + 0.9)(z − 0.8)

=
A

z
+

B

z + 0.9
+

C

z − 0.8

where A = Ĥ(z)|z = 0 = 0.35; B = (z + 0.9)H (z)|z = −0.9 = 0.206, and
C = (z – 0.8)Ĥ(z)|z = 0.8 = 0.144.

Thus H(z) = 0.35+ 0.206z
z + 0.9 + 0.144z

z − 0.8 H(z) = 0.35+ 0.206
1 + 0.9z−1 + 0.144

1 − 0.8z−1

= H1(z) + H2(z) + H3(z).

One way of realizing H 2(z) and H 3(z) is by using the direct form 2 as shown
in Figure with a2 = 0, b2 = 0, since H 2(z) and H 3(z) are first-order transfer
functions. This approach yields the following parallel realization.
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(c) Parallel Form

Problem 7.5
Given the second-order transfer function

H(z) =
0.7(z2 − 0.36)

z2 + 0.1z − 0.72

Obtain the following realization.

(a) The direct form II (or canonical).
(b) Series form in terms of first-order sections.
(c) Parallel form in terms of first-order sections.

Solution 7.5
Direct Form II
(a) We rewrite H (z) as

H(z) =
0.7(1− 0.36z−2)

1 + 0.1z−1 − 0.72z−2 =
0.7(a0 + a1z

−1 + a2z
−2)

1 + b1z−1 + b2z−2

(a) Director Form II
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From figure below, it is clear that the canonical form realization is as shown
in the following sketch.

Series Form
(b) To obtain the series form realization, we factor the numerator and
denominator polynomials of H (z) to obtain

H(z) =
0.7(1 + 0.6z−1)(1− 0.6z−1)
(1 + 0.9z−1)(1− 0.8z−1)

There is nothing unique about how one combines the first-order polynomials
above to obtain corresponding first-order transfer functions. For example, one
choice is as follows:

H1(z) =
1 + 0.6z−1

1− 0.8z−1 H2(z) =
1− 0.6z−1

1 + 0.9z−1

The above transfer functions in can be realized in terms of either of the two
direct forms (i.e., 1 or 2). To illustrate, we use the direct form 2 realization in
Figure given below with a2 = b2 = 0, since H 1(z) and H 2(z) are first-order
transfer functions. This results in the following series form realization.

(b) Series Form

Parallel Form
(c) Next we seek a parallel form realization, and hence obtain a PFE of H (z)/z
is given as below,

H(z) =
H(z)

z
=

0.7(z + 0.6)(z − 0.6)
z(z + 0.9)(z − 0.8)

=
A

z
+

B

z + 0.9
+

C

z − 0.8
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where A = Ĥ(z)|z = 0 = 0.35 B = (z + 0.9)Ĥ(z)|z = −0.9 = 0.206
C = (z – 0.8)Ĥ(z)|z = 0.8 = 0.144

ThusH(z) = 0.35+ 0.206z
z + 0.9+ 0.144z

z − 0.8 H(z) = 0.35+ 0.206
1 + 0.9z−1 + 0.144

1 − 0.8z−1

= H1(z) + H2(z) + H3(z)

One way of realizing H 2(z) and H 3(z) is by using the direct form 2 as shown
in Figure with a2 = 0, b2 = 0, since H 2(z) and H 3(z) are first-order transfer
functions. This approach yields the following parallel realization.

(c) Parallel form

Problem 7.6
Consider a causal IIR filter with system function

H(z) =
1 + 2z−1 + 3z−2 + 2z−3

1 + 0.9z−1 − 0.8z−2 + 0.5z−3

Determine the equivalent lattice ladder structure for the system

Solution 7.6

H(z) =
1 + 2z−1 + 3z−2 + 2z−3

1 + 0.9z−1 − 0.8 z−2 + 0.5z−3 =
C3(z)
A3(z)

For all pole system, we have

H(z) =
1

A(z)
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Comparing A3(z) = 1 + 0.9 z−1 − 0.8 z−2 + 0.5 z−3

B3(z) = 0.5− 0.8 z−1 + 0.9 z−2 + z−3

From above equation, k3 = 0.5

Am−1(z) =
Am(z)− km Bm(z)

1− k2
m

m = 0, 1, 2. . . ., M − 1

The equations mentioned earlier and again given above are valid for all pole
system,

A2(z) =
A3(z)− k3 B3(z)

1− k2
3

A2(z) =
[1 + 0.9 z−1 − 0.8 z−2 + 0.5 z−3]

1− (0.5)2

−0.5[0.5− 0.8 z−1 + 0.9 z−2 + z−3]
1− (0.5)2

A2(z) = 1 + 1.73 z−1 − 1.67 z−2

B3(z) = −1.67 + 1.73z−1 + z−2

From above equation, k2 = –1.67

A1(z) =
A2(z)− k2 B2(z)

1− k2
2

A1(z) =
[1 + 1.73 z−1 − 1.67 z−2]− (−1.67)[−1.67 + 1.73 z−1 + z−2]

1− (−1.67)2

A1(z) = 1− 2.58 z−1

B1(z) = −2.58 + z−1

From above equation, k1 = –2.58
Solution for ladder coefficients using Gray-Markel Method

H(z) =
1 + 2 z−1 + 3z−2 + 2z−3

1 + 0.9 z−1 − 0.8 z−2 + 0.5z−3

H(z) =
Cm(z)
Am(z)

=
[c0 + c1 z−1 + c2 z−2 + c3 z−3 + . . . ]
[1 + α1 z−1 + α2 z−2 + α3 z−3 + . . . ]

.
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In the above solution k1, k2 and k3 has already been calculated as follows:

α1(1) = k1 = −2.58 α2(2) = k2 = −1.67 α3(3) = k3 = −0.5

It is to be noted here that to calculate the value of ladder networks the method
given in Matlab is used here.

Now using Gray–Markel method, calculation of ladder coefficients are as
follows Using recursion

vq(k) = cq(k)−
q∑

j=k+1

vq(j)αj(j − k)

Because the filter transfer function is of second order therefore q = 3, the value
of k will be taken in descending order i.e. 3, 2, 1, 0

v3(3) = c3(3) = 2
v3(2) = c3(2)− v3(3) α3(1) = 3− 2(0.9) = 1.2
v3(1) = c3(1)− v3(3) α3(2)− v3(2) α2(1) = 2− 2(−0.8)

− (1.2)(1.73) = 1.524
v3(0) = c3(0)− v3(3) α3(3)− v3(2) α2(2)− v3(1) α1(1)

= 1− 2(0.5)− 1.2(−1.67)− 1.524(−2.58) = 5.93592

It is to be noted that value of ladder networks are calculated using Gray and
Markel method. The values of the ladder coefficients by this method are same
as calculated using Matlab. We get the value of the coefficients for ladder
network as shown in Figure.
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Problem 7.7
Determine the direct form II realization for each of the following LTI system

(a) 2 y(n) + y(n − 1) − 4 y(n − 3) = x(n) + 3 x(n − 5)
(b) y(n) = x(n) − x(n − 1) + 2 x(n − 2) − 3 x(n − 4)

Solution 7.7
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Problem 7.8
A discrete time system is realized by the structure shown below. Determine
realization for its inverse system, that is, the system which produces x(n) as
an output when y(n) is used as an input.

Solution 7.8
The inverse system is characterized by the difference equation

x(n) = −1.5 x(n− 1) + y(n) − 0.4 y(n− 1)

Problem 7.9
Two signals s(n) and υ(n) are related through the following difference
equations

s(n) + a1s(n − 1) + . . . + aNs(n − N) = boυ(n)

Design the block diagram realization of:

(a) The system that generates s(n) when excited by υ(n).
(b) The system that generates υ(n) when excited by s(n).
(c) What is the impulse response of the cascade interconnection of systems

in parts (a) and (b)?
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Solution 7.9
(a) s(n) = −a1s(n− 1) − a2s(n− 2) − . . . − aNs(n−N) + b0v(n)
(b) v(n) = 1

b◦ [s(n) + a1s(n− 1) + . . . + aNs(n−N)]
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Problem 7.10
Determine and sketch the impulse response of the following systems for n = 0,
1, . . ., 9.

(a) Figures (a), (b), and (c)
(b) Classify the systems below as FIR or IIR.
(c) Find an explicit expression for the impulse response of the system in

part (c).

Solution 7.10
(a)
(i) y(n) = 1

3x(n) + 1
3x(n− 3) + y(n− 1)

for x(n) = δ(n), we have



346 Structure for FIR and IIR Filters

h(n) = {1
3 , 1

3 , 1
3 , 2

3 , 2
3 , 2

3 , 2
3 , . . . . .}

(ii) y(n) = 1
2y(n− 1) + 1

8y(n− 2) + 1
2x(n− 2)

with x(n) = δ(n), and y(−1) = y(−2) = 0

h(n) = {0, 0, 1
2 , 1

4 , 3
16 , 1

8 , 11
128 , 15

256 , 41
1024 , . . .}

(iii) y(n) = 1.4y(n− 1) − 0.48y(n− 2) + x(n)
For x(n) = δ(n), y(−1) = 0, y(−2) = 0, we obtain
h(n) = {1, 1.4, 1.48, 1.4, 1.2496, 1.0774, 0.9086, . . .}

(b) All three systems are IIR
(c) y(n) = 1.4y(n− 1) − 0.48y(n− 2) + x(n)

The characteristic equation is λ2 − 1.4λ + 0.48 = 0

Hence λ = 0.8, 0.6 and yh(n) = C1(0.8)n + C2(0.6)n

For x(n) = δ(n), we have C1 + C2 = 1 and 0.8 C1 + 0.6 C2 = 1.4

Therefore C1 = 4, C2 = –3, yields the final solution

yh(n) = [4 (0.8)n − 3 (0.6)n] u(n)

Problem 7.11
Obtain the direct form II for the following systems.

(a) y(n) = 3
4y(n− 1)− 1

8y(n− 2) + x(n) + 1
3x(n− 1)

(b) y(n) = −0.1 y(n− 1)+0.72 y(n− 2)+0.7 x(n)−0.252x(n− 2)
(c) y(n) = −0.1 y(n− 1) + 0.2 y(n− 2) + 3 x(n) + 3.6 x(n− 1)

+0.6 x(n− 2)

Solution 7.11
(a) Taking the Z-transform of both the sides of the given equation (a), we get:

Y(z) =
3
4
z−1Y(z)− 1

8
z−2Y(z) + X(z) +

1
3
z−1X(z)

Y(z)
X(z)

=
1 + 1

3z−1

1− 3
4z−1 + 1

8z−2

H(z) =
1 + 1

3z−1

1− 3
4z−1 + 1

8z−2
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Direct Form II

(b)
Y(z) = − 0.1 z−1Y(z) + 0.72 z−2Y(z) + 0.7 X(z)

−0.252 z−2X(z)

Y(z)
X(z)

=
0.7− 0.252z−2

1 + 0.1z−1 − 0.72z−2

H(z) =
0.7− 0.252z−2

1 + 0.1z−1 − 0.72z−2

Direct Form II
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(c)

Y(z) = − 0.1 z−1Y(z) + 0.2 z−2Y(z) + 3X(z) + 3.6z−1X(z)

+ 0.6 z−2X(z)

Y(z)
X(z)

=
3 + 3.6z−1 + 0.6z−2

1 + 0.1z−1 − 0.2z−2

H(z) =
3 + 3.6z−1 + 0.6z−2

1 + 0.1z−1 − 0.2z−2

Direct Form II

Problem 7.12
Obtain the direct form II for the following systems.

H(z) =
2(1− z−1)(1 +

√
2 z−1 + z−2)

(1− 0.9z−1 + 0.81z−2) + 0.5z−1(1− 0.9z−1 + 0.81z−2)

Solution 7.12

=
2 + 2

√
2 z−1 + 2z−2 − 2z−1 − 2

√
2 z−2 − 2z−3

1− 0.9z−1 + 0.81z−2 + 0.5z−1 − 0.45z−2 + 0.405z−3

H(z) =
2 + 0.828 z−1 − 0.828z−2 − 2z−3

1− 0.4z−1 + 0.36z−2 + 0.405z−3
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Direct Form II

Problem 7.13
Obtain the direct form II for the following systems

(a) y(n) = 1
2y(n− 1) + 1

4y(n− 2) + x(n) + x(n− 1)
(b) y(n) = y(n− 1) + 1

2y(n− 2) + x(n) + x(n− 2)− x(n− 1)

Solution 7.13
(a) Converting the difference equation into Z-transform form

Y(z) =
1
2
z−1Y(z) +

1
4
z−2Y(z) + X(z) + z−1X(z)

Y(z)
X(z)

=
1 + z−1

1− 1
2z−1 − 1

4z−2

H(z) =
1 + z−1

1− 1
2z−1 − 1

4z−2
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Direct Form II

(b) Converting the difference equation into Z-transform form, the drawing the
direct form II structure.

y(n) = y(n− 1) +
1
2
y(n− 2) + x(n)− x(n− 1) + x(n− 2)

Y(z) = z−1Y(z) +
1
2
z−2Y(z) + X(z)− z−1X(z) + z−2X(z)

H(z) =
Y(z)
X(z)

=
1− z−1 + z−2

1− z−1 − 1
2z−2

Direct Form II
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Problem 7.14
Develop different realizations of the third-order IIR transfer function:

H(z) =
0.44z2 + 0.362z + 0.02
z3 + 0.4z2 + 0.18z − 0.2

=
0.44z−1 + 0.362z−2 + 0.02z−3

1 + 0.4z−1 + 0.18z−2 − 0.2z−3

Solution 7.14
By factoring the numerator and the denominator polynomials of H (z) as given
in transfer function, we obtain

H(z) =
0.44z2 + 0.362z + 0.02

(z2 + 0.8z + 0.5)(z − 0.4)

=
(

0.44 + 0.362z−1 + 0.02z−2

1 + 0.8z−1 + 0.5z−2

) (
z−1

1− 0.4z−1

)

From the above, we arrive at a cascade realization of H (z), as shown in another
cascade realization is obtained by using a different pole-zero paring:

H(z) =
(

z−1

1 + 0.8z−1 + 0.5z−2

) (
0.44 + 0.362z−1 + 0.02−2

1− 0.4z−1

)

whose realization is left as an exercise. However, it should be noted that the
realization based on the above factored form will be non-canonic since it
would require four delays instead of three delays employed. The total number
of multipliers in both realizations remains the same.

Next, we make a partial-fraction expansion of H (z) of the form of equation,
resulting in

H(z) = −0.1 +
0.6

1− 0.4z−1 +
−0.5− 0.2z−1

1 + 0.8z−1 + 0.5z−2

which leads to the parallel form I realization indicated in Figure (a).
Finally, a direct partial-fraction expansion of H (z) expressed as a ratio of

polynomials in z is given by

H(z) =
0.24

z − 0.4
+

0.2z + 0.25
z2 + 0.8z + 0.5

=
0.24z−1

1− 0.4z−1

+
0.2z−1 + 0.25z−2

1 + 0.8z−1 + 0.5z−2

resulting in the parallel form II realization sketched in Figure (b).



352 Structure for FIR and IIR Filters

Practice Problem 7.15
Assume that the six methods of calculating filter coefficients given are all
available. State and justify which of the methods you should use in each of
the following applications:
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(a) Phase (delay) equalization for a digital communication system;
(b) Simulation of analogue systems;
(c) A high throughput noise reduction system requiring a sharp magnitude

frequency response filter;
(d) Image processing;
(e) High quality digital audio processing;
(f) Real-time biomedical signal processing with minimal distortion.

Practice Problem 7.16
The following transfer function represents two different filters meeting
identical amplitude frequency response specifications:

(1) H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2 ×
b3 + b4z

−1 + b5z
−2

1 + a3z−1 + a4z−2

a(0) = 3.13632 × 10 exp(−1)
a(1) = −5.45665 × 10 exp(−2)
a(2) = 4.635728 × 10 exp(−1)
a(3) = −5.45665 × 10 exp(−2)
a(4) = 3.136362 × 10 exp(−1)
b(1) = −8.118702× 10 exp(−1)
b(2) = −3.339228 × 10 exp(−1)
b(3) = −2.79457 × 10 exp(−1)
b(4) = −3.030631 × 10 exp(−1)

(2) H(z) =
22∑

k=0

hkz
−k

(a) State whether it is an FIR or IIR filter;
(b) Represent the filtering operation in a block diagram form and write down

the difference equation;
(c) Determine and comment on the computational and storage requirements.

Problem 7.17
An analogue filter has been converted into an equivalent digital filter that will
operate at a sampling frequency of 256 Hz. The converted digital filter has the
transfer function:
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H(z) =
0.1432 (1 + 3 z−1 + 3 z−2 + z−3)

1− 0.1801 z−1 + 0.3419 z−2 − 0.0165 z−3

(a) Assuming that the digital filter is to be realized using the cascade structure,
draw a suitable realization block diagram and develop the difference
equations.

(b) Repeat (a) for the parallel structure.

Solution 7.17
(a) For the cascade realization, H (z) is factorized using partial fractions

H(z) = 0.1432
1 + 2z−1 + z−2

1− 0.1307z−1 + 0.3355z−2 ×
1 + z−1

1− 0.0490z−1

The block diagram representation and the corresponding set of difference
equations are given in Figures (a) and (b) as follows:

w1(n) = 0.1432 x(n) + 0.1307 w1(n − 1) − 0.3355 w1(n − 2)
y1(n) = w1(n) + 2w1(n − 1) + w1(n − 2)
w2(n) = y1(n) + 0.049w2(n − 1)
y2(n) = w2(n) + w2(n − 1)

(b) For the parallel realization, H (z) is expressed using partial fractions as

H(z) =
1 + 2916− 0.08407z−1

1− 0.1317z−1 + 0.3355z−2 +
7.5268

1− 0.0490z−1 − 8.6753
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The parallel realization diagram and its corresponding set of difference
equations as given in Figure (a) and Figure (b) are as follows:

w1(n) = x(n) + 0.131 w1(n − 1) − 0.3355 w1(n − 2)
y1(n) = 1.2916 w1(n) − 0.08407 w1(n − 1)
w2(n) = x(n) + 0.049 w2(n − 1)
y2(n) = 7.5268 w2(n)
y3(n) = − 8.6753 x(n)
y(n) = y1(n) + y2(n) + y3(n)

Problem 7.18
The following transfer functions represent two different filters meeting
identical amplitude–frequency response specifications:

(a) H(z) =
a0 + a1z

−1 + a2z
−2

1 + b1z−1 + b2z−2 .

where
a0 = 0.4981819
a1 = 0.9274777
a2 = 0.4981819
b1 = −0.6744878
b2 = −0.3633482
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(b) H(z) =
11∑

k=0

h(k)z−k

where
h(0) = 0.54603280× 10−2 = h(11)
h(1) = −0.45068750× 10−1 = h(10)
h(2) = 0.69169420× 10−1 = h(9)
h(3) = −0.55384370× 10−1 = h(8)
h(4) = −0.63428410× 10−1 = h(7)
h(5) = 0.57892400× 10−0 = h(6)

For each filter,

(i) State whether it is an FIR or IIR filter,
(ii) Represent the filtering operation in a block diagram form and write down

the difference equation,
(iii) Determine and comment on the computational and storage requirements.

Solution 7.18
(i) Filters (a) and (b) are IIR and FIR as per given transfer respectively.

(ii) The block diagram for filter (1) is given in Figure 7.13(a). The corres-
ponding set of difference equations are

w(n) = x(n) − b1w(n − 1) − b2w(n − 2)
y(n) = a0w(n) + a1w(n − 1) + b2w(n − 2)

The block diagram for filter (2) is given in Figure (b). The corresponding
difference equation is

y(n) =
11∑

k=0

h(k)x(n− k)

(iii) From examination of the two difference equations the computational and
storage requirements for both filters are summarized below:

FIR IIR
Number of multiplications 12 5
Number of additions 11 4
Storage locations (coefficients and data) 24 8

It is evident that the IIR filter is more economical in both computational and
storage requirements than the FIR filter. However, we could have exploited the
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symmetry in the FIR coefficients to make the FIR filter more efficient, although
at the expense of its obvious implementation simplicity. A point worth making
is that, for the same amplitude response specifications, the number of FIR filter
coefficients (12 in this example) is typically six times the order (the highest
power of z in the denominator) of the IIR transfer function (2 in this case).

(a) Block diagram representation of the IIR filter.
(b) Block diagram representation of the FIR filter.





8
Introduction to Digital Filters

This chapter covers: Introduction to digital filters, Criteria for selection of
digital filters, Filter design steps, Advantage and disadvantages of FIR and
IIR filters, and Problems and solutions.

8.1 Introduction

The major emphasis in this chapter is on digital filter. However, some basic
information analog passive and active filters will be presented first. An under-
standing of their design and implementation will make it easier to appreciate
the advantages of digital filters. Let’s take a look at what filters accomplish.
Briefly, they separate frequencies. Common filtering objectives are to improve
the quality of a signal (for example, to remove or reduce noise), to extract
information from signals or to separate two or more signals previously
combined to make, for example, efficient use of an available communication
channel. A filter is essentially a system or network that selectively changes
the wave shape, amplitude-frequency and/or phase-frequency characteristics
of a signal in a desired manner. So, the input signal to a filter might consist of
four frequencies and the filter output might contain three, two, or only one of
those frequencies.

Filtering is a process by which the frequency spectrum of signal can be
modified, reshaped or manipulated to achieve some desired objectives.

8.1.1 Types of Filters

Basically, filters are of two types depending on what type of signal being
processed as under:

(i) Analog filters
(ii) Digital Filters

359
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8.1.2 Classification of Filters Development Wise

First before the existence of digital computer, analog filters were being used,
after the invention of the digital electronics digital filters came into existence.
There are three basic ways to build or realize a filter:

8.1.3 Analog Filters

Passive and Active filters comes under the category of analog filters.
Passive: Use resistors, inductors and capacitors (or at least two of three).
Active: Use resistors, capacitors and transistors, or operational amplifiers.

Analog filters may be defined as a system in which both the input and the
output are continuous time signals.

8.1.4 Types of Analog Filter

As a matter of fact, there are five kinds of analog filters which may be listed
as under:

(i) Low pass
(ii) High pass

(iii) Band pass
(iv) Band stop
(v) All pass

An ideal filter is often called a brick wall filter. The low-pass passes all the
lower frequencies, while high-pass passes all the high frequencies, passband
includes all those frequencies that go through the filter with no attenuation
(the amplitude is maximum). The stopband includes those frequencies that do
not get through the filter (the amplitude is zero and attenuation is infinite).
The attenuation from passband to stopband is immediate. Or, to say it another
way, the transition width is zero. It is not possible to realize ideal filters, but
digital filters can come very close.

8.2 Digital Filters

Digital: Use computers or dedicated processors. Digital filter may be defined
as a system in which both the input and the output are discrete time signals.

A digital filter is a mathematical algorithm implemented in hardware
and/or software that operate on a digital input signal to produce a digital
output signal for the purpose of achieving a filtering objective. The term
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digital filter refers to the specific hardware or software routine that performs
the filtering algorithm. Digital filters often operate on digitized analog signals
or just numbers, representing some variables stored in a computer memory.

8.3 Importance and Advantages

Digital filters play very important role in DSP. Compared with analog filters
they are preferred in a number of applications (for example data compression,
biomedical signal processing, speech processing, image processing, data
transmission, digital audio, and telephone echo cancellation) because of one
or more of the following advantages.

Digital filters can have characteristics that are not possible with analog
filters, such as a truly linear phase response. Unlike analog filters, the
performances of digital filters do not vary with environmental changes, for
example thermal variations. This eliminates the need to calibrate periodically.
The frequency response of a digital filter can be automatically adjusted if it
is implemented using a programmable processor, that is why they are widely
used in adaptive filters. Several input signals or channels can be filtered by
one digital filter without the need to replicate the hardware. Both filtered and
unfiltered data can be saved for further use.

Advantage can be readily taken of the tremendous advancements in VLSI
technology to fabricate digital filters and to make them small in size, to
consume low power, and to keep the cost down. In practice, the precision
achievable with analog filters is restricted; for example, typically a maximum
of only about 60–70 dB stop-band attenuation is possible with active filters
designed with off-the-shelf components. With digital filters the precision is
limited only by the word length used. The performance of digital filters is
repeatable from unit to unit. Digital filters can be used at very low frequencies,
found in many biomedical applications for example, where the use of analog
filters is impractical. Also, digital filters can be made to work over a wide
range of frequencies by a mere change to the sampling frequency.

8.4 Disadvantages

8.4.1 Speed Limitation

The maximum bandwidth of signals that digital filters can handle, in real
time, is much lower than for analog filters. In real-time situations, the analog–
digital–analog conversion processes introduce a speed constraint on the digital
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filter performance. The conversion time of the ADC and the settling time of
the DAC limit the highest frequency that can be processed.

Further, the speed of operation of a digital filter depends on the speed of
the digital processor used and on the number of arithmetic operations that
must be performed for the filtering algorithm, which increases as the filter
response is made tighter.

8.4.2 Finite Word-Length Effects

When the digital filters are implemented in hardware, there are some effects
of using finite register length to represent all relevant filter parameters.

Some of the effects are:

(a) A/D conversion noise
(b) Round off noise (Uncorrelated)
(c) Coefficient accuracy
(d) Correlated roundoff noise or limit cycles

There are three types of arithmetic used in filter algorithms.

(a) Fixed point
(b) Floating point
(c) Block floating point

All the binary number representations that we have studied use a finite number
of bits to represent numerical values. These numerical values could be filter
coefficients, data samples, or computational results. Depending on the binary
representation used confined to 16, 24, 32, and 64 bits. The finite length of the
number of bit results in errors known as finite word-length effects.

Digital filters are subject to ADC noise resulting from quantizing a
continuous signal, and to roundoff noise incurred during computation. With
higher order recursive filters, the accumulation of roundoff noise could lead
to instability.

8.4.3 Limit Cycles

When the input to a filter is constant, either zero or non-zero, it is expected
that the output of the filter should also be a constant. In some case this does not
happen, and the filter output tends to oscillate, even though the input signal
does not change. These undesired oscillations are known as limit cycles. Limit
cycles are a problem in audio applications when the oscillation frequency
occurs in the range of interest.
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Limit cycles occur due to either quantization or overflow. The quantization
error is due to the finite number of bits used to represent a binary number. Limit
cycles due to quantization errors are relatively small, but still undesirable.
Overflow occurs if the internal mathematical operations result in a number
too large to fit within the range of number representation. The limit cycle
oscillations due to overflow are generally larger in amplitude and more severe.

Several methods are employed to reduce the possibility of limit cycles.
These are:

(a) Use of larger word lengths (more bits) for intermediate calculations. This
helps to avoid overflow.

(b) The use of special filter structures that prevent the formation of limit
cycles.

(c) Prevention of overflow by saturating the result of calculation. Saturation
means that if the result of adding two positive numbers is greater than the
largest positive number that can be represented, the result is clamped or
fixed to the largest positive number. Similarly if the result of adding two
negative numbers is more negative than the largest negative number that
can be represented, the result is clamped to the largest negative number.

8.4.4 Long Design and Development Times

The design and development times for digital filters, especially hardware
development, can be much longer than for analog filters. However, once filter
is developed the hardware and/or software can be used for other filtering or
DSP tasks with little or no modifications.

Good computer-aided design (CAD) support can make the design of digital
filters an enjoyable task, but some expertise is required to make full and
effective use of such design aids.

8.5 Types of Digital Filters

8.5.1 FIR (Finite Impulse Response) Filters

Finite impulse response filter response decays to zero after the impulse passes
through the system. Its impulse response stays for a finite time. The input and
output signals for the filters are related by convolution sum, which is given in
the Equation (8.1) for FIR filter.

y(n) =
N−1∑
k=0

h(k) x(n − k) (8.1)
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8.5.2 IIR (Infinite Impulse Response) Filters

Infinite impulse response filter response never quite reaches zero because
the feedback makes the decay exponential. It impulse response stays for an
infinite time (time taken by its impulse response is much larger than finite
impulse response). A practical filter has to eventually settle to zero or it would
be useless, unless one needs an oscillator. IIR filters can oscillate if they
are improperly designed. All feedback systems have the potential to become
unstable and oscillate.

The input and output signals to the filter are related by convolution sum,
which is given in Equation (8.2) for IIR filter.

y(n) =
∞∑

k=0

h(k) x(n− k) (8.2)

All IIR filters can be implemented in digital form. IIR filter use feedback
to sharpen the filter response. There are two sets of filter coefficients. The
coefficients ‘a’ are called the feed-forward coefficients, the coefficient ‘b’ are
the feedback coefficients.

The IIR filter equation is expressed in a recursive form by Equations (8.3)
and (8.4)

y(n) =
∞∑

k=0

h(k)x(n− k) =
N∑

k=0

akx(n− k)−
M∑

k=1

bk y(n− k) (8.3)

H(z) =
a0 + a1z

−1 + . . . + aNz−N

1 + b1z−1 + . . . + bMz−M
=

N∑
k=0

akz
−k

1 +
M∑

k=1
bkz−k

(8.4)

8.6 Choosing between FIR and IIR Filters

Finite impulse response filters can have an exactly linear phase response. The
implication of this is that no phase distortion is introduced into the signal by the
filter. This is an important requirement in many applications, for example data
transmission, biomedicine, digital audio, and image processing. The phase
responses of IIR filters are nonlinear, especially at the band edges. FIR filters
realized non-recursively, that is by direct evaluation of difference equation are
always stable. The stability of IIR filters cannot always be guaranteed. The
effects of using a limited number of bits to implement filters such as roundoff
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Table 8.1 A comparison of the characteristics of FIR and IIR filters
Characteristics FIR IIR
Efficiency Low High
Speed Slow Fast
Overflow (Finite word-length
Effect)

Not likely Likely

Stability Guaranteed Design issue
Phase response Generally linear Generally nonlinear
Analog modeling Not directly Yes
Design and noise analysis Straight forward Complex
Arbitrary filters Straight forward Complex

noise and coefficient quantization errors are much less severe in FIR than
in IIR.

FIR requires more coefficients for sharp cut-off filters than IIR. Thus for a
given amplitude response specification, more processing time and storage will
be required for FIR implementation. Analog filters can be readily transformed
into equivalent IIR digital filters meeting similar specifications. This is not
possible with FIR filters as they have no analog counterpart. However, with
FIR it is easier to synthesize filters of arbitrary frequency responses. Table 8.1
shows a comparison of the characteristics of FIR and IIR Filters.

8.7 Tolerance Scheme of FIR and IIR Filters

8.7.1 FIR Filters

The amplitude–frequency response of an FIR filter is often specified in the
form of a tolerance scheme, Figure 8.1 depicts such a scheme for a low-pass
filter. The shaded horizontal lines indicate the tolerance limits. In the passband,
the magnitude response has a peak deviation of δp and, in the stopband; it has
a maximum deviation of δs.

The characteristics of digital filters are often specified in the frequency
domain. For frequency selective filters, such as low-pass and band-pass filters,
the specifications are often in the form of tolerance schemes for FIR filter is
shown in Figure 8.1.

Referring to the figure, the following parameters are of interest:
δP = Peak passband deviation (or ripples)
δs = Stopband deviation (or ripples)
fP = Passband edge frequency
fs = Stopband edge frequency
Fs = Sampling frequency
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Figure 8.1 Tolerance scheme for a low-pass FIR filter.

Passband and stopband deviations may be expressed as an ordinary number
or in decibels. Thus the passband ripple and minimum stop band attenuation,
respectively, for FIR filter is given by,

As (stopband attenuation) = –20log10δs (8.5)
AP (passband ripple) = 20log10(l + δp)

For FIR filters, the passband ripple is the difference between the ideal
response and the maximum (or minimum) deviation in the passband.

Example 8.1
The peak pass band ripple and the minimum stopband attenuation of a FIR
digital filter are, respectively, 0.1 and 35 dB. Determine the corresponding
peak passband ripple δPand δs stopband deviation (or ripples).

Solution 8.1
The pass band attenuation is given by

AP = 20log(1 + δP)
or 0.1 = 20log10(1 + δP) log10(1 + δP) = 1/20 = 0.005

1 + δP = 100.005 δP = 0.01157

The stopband attenuation is given by

As = −20logδs
or 35 = −20log10δs log10δs = −35/20 = −1.75 δs = 0.017782
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8.7.2 IIR Filters

The amplitude-frequency response of an IIR filter is often specified in the form
of a tolerance scheme, Figure 8.2 depicts such a scheme for a bandpass filter.

The shaded horizontal lines indicate the tolerance limits for an IIR filter.
The following parameters are normally used to specify the frequency response.
Referring to the figure, the following parameters are of interest:

ε2 Passband ripple parameters
δP Peak passband deviation (or ripples)
δs Stopband deviation (or ripples)
fP1 and fP2 Passband edge frequencies
fs1 and fs2 Stopband edge frequencies
Fs Sampling frequency
The band edge frequencies are sometimes given in normalized form, which

is a fraction of the sampling frequency (f /FS)

AP = 10log(1 + ε2) = −20log(1− δP) and As = −20log(δs). (8.6)

Thus, for IIR passband ripple is meant is the peak-to-peak passband ripple.

Example 8.2
The peak pass band ripple and the minimum stopband attenuation of a IIR
digital filter are, respectively, 0.1 and 35 dB. Determine the corresponding
peak passband ripple δP and δs stopband deviation (or ripples).

Figure 8.2 Tolerance scheme for an IIR band-pass filter.
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Solution 8.2
The pass band attenuation is given by

AP = −20log(1− δP)
or 0.1 = −20log10(1− δP) log10(1− δP) = 0.1/20 = −0.005

1− δP = 10−0.005 δP = 0.0114469

The stopband attenuation is given by

As = −20logδs
or 35 = −20log10δs log10δs = −35/20 = −1.75 δs = 10−0.005

δs = 0.988553

8.8 FIR and IIR Filter Design Stages

The design of a digital filter involves five steps. The five steps are not neces-
sarily independent; nor are they always performed in the order given.

8.8.1 Filter Specification

Requirement specifications include the following:

(a) This may include stating the type of filter, for example low-pass filter,
the desired amplitude and/or phase responses and the tolerances (if any)
we are prepared to accept, the sampling frequency, and the wordlength
of the input data.

(b) Signal characteristics (types of signal source and sink, I/O interface, data
rates and width, and highest frequency of interest).

(c) The characteristics of the filter, the desired amplitude and/or phase
responses and their tolerances (if any), the speed of operation and modes
of filtering (real time or batch).

(d) The manner of implementation (for example, as a high level language
routine in a computer or as a DSP processor-based system, choice of
signal processor), and other design constraints (for example, the cost of
the filter). The designer may not have enough information to specify the
filter completely at the outset, but as many of the filter requirements as
possible should be specified to simplify the design process.

8.8.2 Coefficient Calculation

At this step, we determine the coefficients of a transfer function, H (z), which
will satisfy the specifications given in Figures (8.1) and (8.2). Our choice of
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coefficient calculation method will be influenced by several factors, the most
important of which are the critical requirements as in step in Section 8.8.

8.8.3 Realization

This involves converting the transfer function obtained as in step given in
Section 8.8.2 into a suitable filter network or structure as discussed in previous
chapter.

8.8.4 Analysis of Finite Word-Length Effects

Here, we analyze the effect of quantizing the filter coefficients and the input
data as well as the effect of carrying out the filtering operation using fixed
word-lengths on the filter performance.

8.8.5 Implementation

This involves producing the software code and/or hardware and performing
the actual filtering. In fact techniques are now available that combine the
second and aspects of the third and fourth steps. However, the approach
discussed here gives a simple step-by-step guide that will ensure a successful
design.

To arrive at an efficient filter, it may be necessary to iterate a few times
between the steps, especially if the problem specification is not watertight, as
is often the case, or if the designer wants to explore other possible designs.

8.9 Filters Coefficient Calculation Methods

Selection of one of the approximation methods to calculate the values of
the coefficients, h(k), for FIR, or aK and bK for IIR, such that the filter
characteristics are satisfied.

The method used to calculate the filter coefficients depends on whether
the filter is IIR or FIR type. Calculations of IIR filter coefficients are tradition-
ally based on the transformation of known analog filter characteristics into
equivalent digital filters.

8.9.1 FIR Filters Coefficient Calculation Methods

There are several methods of calculating the coefficients of FIR filters. The
three methods are the window, optimal, and the frequency sampling.
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The window method offers a very simple and flexible way of computing
FIR filter coefficients, but it does not allow the designer adequate control over
the filter parameters.

With the availability of an efficient and easy-to-use program, the optimal
method is now widely used in industry and, for most applications, will yield
the desired FIR filters.

The main attraction of the frequency sampling method is that it allows a
recursive realization of FIR filters which can be computationally very efficient.
However, it lacks flexibility in specifying or controlling filter parameters.

Thus, for FIR filters, the optimal method should be the method of first
choice unless the particular application dictates otherwise or a CAD facility
is unavailable.

8.9.2 IIR Filters Coefficient Calculation Methods

The two basic methods used are the impulse invariant and the bilinear
transformation methods, which is widely used, the third method is the Pole
placement method which is used for lower order filter specially notch filter.

The pole–zero placement method offers an alternative approach to
calculate the coefficients of IIR filters. It is an easy way of calculating the
coefficients of very simple filters. However, for filters with good amplitude
response it is not recommended as it relies on trial and error, shuffling of the
pole and zero positions.

With the impulse invariant method, after digitizing the analog filter,
the impulse response of the original analog filter is preserved, but not its
magnitude–frequency response. Because of inherent aliasing, the method is
inappropriate for highpass or bandstop filters.

The bilinear transformation method, on the other hand, yields very
efficient filters and is well suited to the calculation of coefficients of frequency
selective filters. It allows the design of digital filters with known classical
characteristics such as Butter-worth, Chebyshev and Elliptic. Digital filters
resulting from the bilinear transform method will, in general, preserve the
magnitude response characteristics of the analog filter but not the time domain
properties. The impulse invariant method is good for simulating analog
systems, but the bilinear method is best for frequency selective IIR filters.

8.9.3 Summary of Filters Coefficient Calculation Methods

There are several methods of calculating filter coefficients of which the
following are the most widely used:
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1. Window (FIR)
2. Optimal (FIR)
3. Frequency sampling (FIR)
4. Pole-zero placement (IIR)
5. Impulse invariant (IIR)
6. Bilinear transformation (IIR)

The choice is influenced by several factors, the most important of which are
the critical requirements in the specifications. In general, the crucial choice
is really between FIR and IIR. In most cases, if the FIR properties are vital
then a good candidate is the optimal method, whereas, if IIR properties are
desirable, then the bilinear method will in most cases suffice.





9
Step-by-Step Design of Digital FIR Filters

This chapter covers the characteristic features of FIR filters, the types of
linear-phase FIR filters, linear-phase response and its implications, FIR filter
design for both non-causal and causal, methods of filter coefficient calculations
by the window method for low-pass, high-pass, band-pass, band-stop filters,
advantage and disadvantage of these methods, and Problems and Solutions.

9.1 Introduction

The purpose of filter design lies in constructing a transfer function of a filter that
meets the prescribed frequency response specifications. The Finite Impulse
Response (FIR) filters decay to zero after the impulse passes through the
system. In a non-recursive filter, the current output sample, y(n), is a function
only of past and present values of the input, x(n); so, the basic FIR filter is
characterized by the following equation:

y(n) =
N−1∑
k=0

h(k) x(n − k) (9.1)

where h(k) is a finite duration sequence defined over the interval 0 ≤ k ≤,
N – 1, where N is the length of the filter. It means that the order of the FIR
filter is always N – 1.

9.2 Why is it Called the Finite Impulse Response Filter?

A finite impulse response (FIR) filter is a type of a signal-processing filter
whose impulse response (or response to any finite length input) is of finite
duration, because it settles to zero in finite time. This is in contrast to infinite
impulse response (IIR) filters, which have internal feedback and may con-
tinue to respond indefinitely (usually decaying). The impulse response of an

373
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N th-order discrete-time FIR filter (i.e. with a Kronecker delta impulse input)
lasts for N + 1 sample, and then dies to zero.

FIR filters can be discrete-time or continuous-time, and digital or analog.

Let us further investigate the filter defined in Equation (9.1)

y(n) = h(0)x(n) + h(1)x(n− 1) + h(2)x(n− 2)
+ n . . . . . . . .(N − 1)x(n− (N − 1)) (9.2)

The Z-transform of Equation (9.2) is

Y (z) = h(0) X(z) + h(1)z−1X(z) + h(2)z−2X(z)

+ h(N − 1) z−(N−1)X(z) (9.3)

H(z) =
Y (z)
X(z)

= h(0) + h(1)z−1 + h(2)z−2 + h(N − 1) z−(N−1) (9.4)

Now to find its impulse response, we put x(n) = δ(n) and X (z) = Z{δ(n)} = 1

H(z) = Y (z) = h(0) + h(1)z−1 + h(2)z−2 + h(N − 1) z−(N−1) (9.5)

H(z) =
N−1∑
n=0

h(n) z−n (9.6)

Taking the impulse response of Equation (9.6), we get

h(n) = {h(0), h(1), h(2), h(3) . . . . .h(N − 1)} (9.7)

To implement the filter practically, the coefficients h(n) = {h(0), h(1) . . . . .
h(N−1)}must all be real numbers. Since the time factor (N − 1) contained in
the impulse response is of finite value, which means that the impulse response
is of finite duration. H (z) is the transfer function of the filter and N is the filter
length, which is the number of filter coefficients. H (z) provides a means of
analyzing the filter, for example, when evaluating the frequency response.

9.2.1 Features of FIR Filters

FIR filters can have an exactly linear-phase response. FIR filters are very
simple to implement. All DSP processors available have architectures that are
suited to FIR filtering. Non-recursive FIR filters suffer less from the effects
of finite word-length than IIR filters. Recursive FIR filters also exist and may
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offer significant computational advantages, but these areas of study extend
beyond the boundaries of this book.
The Fourier transform of h(n) is periodic with a period of 2π

H(ω) =
N−1∑
n=0

h(n) e−jωn H(ω) =
N−1∑
n=0

h(n) e−j (ω n+2πm)

m = 0, 1, 2, . . . (9.8)

In magnitude and phase

H(ω) = ±|H(ω)|ejθ(ω) (9.9)

|H(ω)| = |H(−ω)|, π < ω < π θ(ω) = θ(−ω) (9.10)

Equation (9.10) implies that the magnitude of the Fourier transform is a
symmetric function and the phase is anti-symmetric in nature.

Let us assume that the phase is linear, i.e. (ω) = –αω, –π < ω < π where
α is a constant phase delay in samples.

H(ω) =
N−1∑
n=0

h(n) e−jωn = ±|H(ω)| e−jαω (9.11)

Equating the real and imaginary parts of the components in Equation (9.11)
gives the following two equations:

±|H(ω)| cos(αω) =
N−1∑
n=0

h(n) cos(ωn) (9.12)

±|H(ω)| sin(αω) =
N−1∑
n=0

h(n) sin(ωn) (9.13)

Dividing Equation (9.13) by Equation (9.12), we get

sin(αω)
cos(αω)

= tan(αω) =

N−1∑
n=0

h(n) sin(ωn)

N−1∑
n=0

h(n) cos(ωn)
(9.14)

Hence, we have tan(αω) =

N−1∑
n=0

h(n) sin(ωn)

h(0) +
N−1∑
n=1

h(n) cos(ωn)
(9.15)
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There exist two possible solutions of Equations (9.14) and (9.15). The first
possibility is that α = 0, which is suggested in (9.15)

0 =

N−1∑
n=0

h(n) sin(ωn)

h(0) +
N−1∑
n=1

h(n) cos(ωn)
(9.16)

For which the only solution is that h(0) is arbitrary and h(n) = 0, n �= 0, i.e.
the impulse response of the filter is an impulse, which is not a useful result.

Hence, the other possible case is when α �= 0. This is shown in
Equation (9.17)

N−1∑
n=0

h(n) cos(ωn) sin(αω)−
N−1∑
n=0

h(n) sin(ωn) cos(αω) = 0 (9.17)

N−1∑
n=0

h(n) [cos(ωn) sin(αω)− sin(ωn) cos(αω)] = 0 (9.18)

N−1∑
n=0

h(n) sin[(α− n)ω] = 0 (9.19)

The one possible solution of Equation (9.19) is

α = (N − 1)/2 (9.20)

h(n) = h(N − n− 1), 0 ≤ n ≤ N − 1 (9.21)

Equations (9.20) and (9.21) represent the necessary and sufficient condition
for an FIR filter, i.e. its phase is linear.

Example 9.1
Given the following transfer function, calculate its complex frequency
response at 250 Hz if the system sampling frequency is 1000 Hz.

H(z) = 0.0935 + 0.3027z−1 + 0.40z−2 + 0.3027z−3 + 0.0935z−4

Solution 9.1
The frequency response in the z plane is that value of the transfer function,
which lies on the unit circle in the z plane at an angle of digital frequency ω.
Thus, ω = 2π f

Fs
= 2π 250

1000 = 0.7854
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The value of z on the unit circle at this angle is z = ejω = ej0.7854 = 0.7071
+ j 0.7071

Therefore, the complex frequency is

H(ω) = 0.0935 + 0.3027e−j0.7854 + 0.40e−j2(0.7854) + 0.3027e−j3(0.7854)

+ 0.0935e−j4(0.7854)

H(ω) = 0.0000− j0.8281 = 0.82815e−j1.5708

This result means that the magnitude frequency response at 250 Hz is 0.8282
and the phase response is –1.5708 rad.

9.2.2 Linear-Phase Implications

For the phase response, we need to determine whether positive symmetry or
negative symmetry is required (assuming linear phase). The ability to have an
exactly linear-phase response is one of the most important properties of FIR
filters.

When a signal passes through a filter, it is modified in amplitude and/or
phase. The nature and extent of the modification of the signal is dependent on
the amplitude and phase characteristics of the filter.

The phase delay or group delay of the filter provides a useful measure
of how the filter modifies the phase characteristics of the signal, considering
that the signal consists of several frequency components (such as a speech
waveform or a modulated signal).

9.2.2.1 Effect of phase distortion on signals
Because the frequency of a filter H(ω) is, in general, a complex number for a
specific value of ω, the filter changes both the amplitude and the phase angle
of an input sinusoid with a frequency of ω. As we will show, a phase angle
change is associated with a delay in the signal as it passes through a filter. A
potential problem exists when the delay is different for different frequencies
in the pass band of the filter. This delay alters the phase relationship among the
frequency components of a signal consisting of many frequencies, resulting
in the phenomenon of phase distortion.

9.2.2.2 Phase delay
The phase delay of the filter is the amount of time delay each frequency
component of the signal suffers in going through a filter. Mathematically, the
phase delay is the negative of the phase angle divided by the frequency.
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TP = −dθ(ω)/dω (9.22)

The requirement for no phase distortion is that the phase delay, TP , must be
constant for all frequencies. A filter with a nonlinear-phase characteristic will
cause a phase distortion in the signal that passes through it. This is because
the frequency components in the signal will each be delayed by an amount
not proportional to the frequency. Such distortion is undesirable in many
applications, such as music, data transmission, video, biomedicine, etc. It can
be avoided by using filters with linear-phase characteristics over the frequency
bands of interest.

Example 9.2
The linear-phase condition results in zero-phase distortion, but adds a phase
angle to each sinusoid that is proportional to the frequency of the sinusoids.
The signal also picks up a constant phase delay of 5 msec. Find out the phase
delay taken by signals.

Solution 9.2
TP = −0.005 = −dϑ

ω = −−kf
2πf = k

2π

k = −0.001π or
Tp = −0.01πf

The phase change in radians for the sinusoids of frequency f would be
TP = −0.01πf.

9.2.2.3 Group delay
A parameter used to test the phase change with respect to frequency is called
the group delay. It is the average time delay the composite signal suffers at each
frequency. Mathematically, the group delay is the negative of the derivative
of the phase with respect to frequency:

Tq = −dθ(ω)/dω (9.23)

If only the constant group delay is desired, a second type of linear-phase filter
is defined in which

H(ω) = |H(ω)| ej(β−α)ω (9.24)

The only possible solution of h(n), with α = (N − 1)/2 and β = ± π/2, is

h(n) = −h(N − n− 1), 0 ≤ n ≤ N − 1
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A filter is said to have a linear-phase response if its phase response satisfies
one of the following relationships:

θ(ω) = −αω (9.25)

θ(ω) = β − αω (9.26)

where α and β are constants.
If a filter satisfies the condition given in Equation (9.25), i.e. θ(ω) = –αω,

it will have both constant group and phase-delay responses. It can be shown
that for the condition θ(ω) = –αω to be satisfied, the impulse response of the
filter must have a positive symmetry.

The phase response in this case is simply a function of the filter length:

h(n) = h(N − 1− n),
n = 0, 1, . . . , (N − 1)/2 (N odd)
n = 0, 1, . . . , (N/2)− 1 (N even)

Example 9.3
Given the following transfer function, calculate its complex frequency
response at 1000 Hz if the system sampling frequency is 1000 Hz.

H(z) = 1 + z−1

Solution 9.3
The frequency response in the z plane is the value of the transfer function on
the unit circle in the z plane at an angle of digital frequency ω.

ω = 2π
f

Fs
= 2π

1000
1000

= 2π

The value of z on the unit circle at this angle is z = ejω = ej2π

Therefore, the complex frequency is

H(ω) = 1 + e−j2π

H(ω) = 1 + cos(2π)− j sin(2π) = 1 + 1− j(0) = 2

H(ω) = 2

This result means that the magnitude frequency response at 1000 Hz is 2.
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Example 9.4
Given the following transfer function, calculate its complex frequency
response at 125 Hz if the system sampling frequency is 1000 Hz.

H(z) = 0.0935 + 0.3027z−1 + 0.40z−2 + 0.3027z−3 + 0.0935z−4

Solution 9.4
The frequency response in the z plane is the value of the transfer function on
the unit circle in the z plane at an angle of digital frequency ω. Thus,

ω = 2π
f

Fs
= 2π

125
1000

=
π

4
= 0.7854

The value of z on the unit circle at this angle is z = ejω = ej0.7854

Therefore, the complex frequency is

H(ω) = 0.0935 + 0.0327e−j0.7854 + 0.40e−j2(0.7854) + 0.3027e−j3(0.7854)

+ 0.0935e−j4(0.7854)

H(ω) = 0.0935 + 0.0327{cos 0.7854− j sin 0.7854}+ 0.40{cos 1.5708
− j sin 1.5708}+ 0.3027{cos 2.3562− j sin 2.3562}+ 0.0935
{cos 3.1416− j sin 3.1416}

H(ω) = 0.0935 + 0.0327(.7071− j0.7071) + 0.40(−j) + 0.3027
(−0.7071− j0.7071) + 0.0935(1)

H(ω) = 0.0935 + 0.0231− j0.0231− 0.40j − 0.0231− j0.0231 + 0.0935

H(ω) = 0.187−j0.4462 = 0.4838−j1.1739

This result means that the magnitude frequency response at 125 Hz is 0.4838
and the phase response is –1.1739 rad.

Example 9.5
Given the following transfer function, calculate its complex frequency
response at 500 Hz if the system sampling frequency is 1000 Hz.

H(z) = 0.50z−1 + 0.40z−2 + 0.60z−3

Solution 9.5
The frequency response in the z plane is the value of the transfer function on
the unit circle in the z plane at an angle of digital frequency ω.

ω = 2π
f

Fs
= 2π

500
1000

= π
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The value of z on the unit circle at this angle is z = ejω = ejπ

Therefore, the complex frequency is

H(ω) = 0.5e−jπ + 0.40e−j2(π) + 0.3027e−j3(π)

H(ω) = 0.5(−1) + 0.40(1) + 0.6(−1) = −0.7

H(ω) = 0.7jπ

This result means that the magnitude frequency response at 500 Hz is 0.7 and
the phase response is π rad.

9.3 Type of FIR Filters

9.3.1 Type-1 FIR Filter (Length of the filter N is odd)

1. Symmetrical impulse response (order of filter N − 1 is even)
2. Its impulse response h(n) possesses the symmetry property of

h(n) = h(N − 1 − n) 0 ≤ n ≤ N − 1

For example, for an FIR Filter, which has N − 1 = 8,

H(z) =
8∑

n=0

h(n) z−n

H(z) = h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4 + h(5)z−5

+ h(6)z−6 + h(7)z−7 + h(8)z−8

h(n) = h(N − 1− n), 0 ≤ n ≤ N − 1, h(n) = h(8− n), 0 ≤ n ≤ 8

h(0) = h(8), h(1) = h(7), h(2) = h(6), h(3) = h(5), h(4) is left alone
without any equivalence.

H(z) = h(0)[1 + z−8] + h(1)[z−1 + z−7] + h(2)[z−2 + z−6]

+ h(3)[z−3 + z−5] + h(4)z−4

H(ω) = 2h(0)
[
1 + e−jω8

2

]
+ 2h(1)

[
e−jω + e−jω7

2

]

+ 2h(2)
[
e−j2ω + e−j6ω

2

]
+2h(3)

[
e−j3ω + e−j5ω

2

]
+h(4)e−4jω
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Figure 9.1 Type-I FIR filter: Length of the filter N is odd, positive symmetry.

H(ω) = e−4jω

{
h(4) + 2h(0)

[
ejω4 + e−jω4

2

]
+ 2h(1)

[
ej3ω + e−jω3

2

]

+ 2h(2)
[
e−j2ω + e−j2ω

2

]
+ 2h(3)

[
e−jω + e−jω

2

]}

Giving the above expression, a new format is obtained using the following
transformation relationship

a(0) = h

[
N − 1

2

]
; a(n) = 2h

[(
N − 1

2

)
− n

]
n = 1, 2, . . ., (N −1)/2

a(0) = h[4]; a(n) = 2h[4− n] n = 1, 2, . . ., (N − 1)/2

Similarly a(0) = h[4]; a(1) = 2h[3] a(2) = 2h[2] a(3) = 2h[1]
a(4) = 2h[0]
The following expression for Type-I filter is expressed as

H(ω) = e−4jωa(0) + e−4jωa(1) cos(ω) + e−4jωa(2) cos(2ω) + e−j4ωa(3)

cos(3ω) + e−j4ωa(4) cos(4ω)

H(ω) = e−4jω{a(0) + a(1) cos(ω) + a(2) cos(2ω) + a(3) cos(3ω)

+ a(4) cos(4ω)}

H(ω) = e−jω(4)
4∑

n=0

a(n) cos(ωn)

In generalized format, the above equation for type I FIR filter (Figure 9.1) is
expressed as

H(ω) = e−jω(N−1)/2
(N−1)/2∑

n=0

a(n) cos(ωn) (9.27)
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9.3.2 Type-II FIR Filter (Length of the filter N is even)

1. Symmetrical impulse response, order of the filter N − 1 is odd
2. Its impulse response h(n) possesses the symmetry property of

h(n) = h(N − 1 – n) 0 ≤ n ≤ (N /2) – 1, i.e. 0 ≤ n ≤ (8/2) – 1 0 ≤ n ≤ 3

For example, for an FIR Filter, which has N − 1 = 7,

H(z) =
N−1∑
n=0

h(n) z−n H(z) =
7∑

n=0

h(n) z−n

H(z) = h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4 + h(5)z−5

+ h(6)z−6 + h(7)z−7

The necessary and sufficient condition that an FIR filter should have linear-
phase response is h(n) = h(N − 1 − n), 0 ≤ n ≤ N − 1, h(n) = h(7 – n),
0 ≤ n ≤ (N /2) – 1, 0 ≤ n ≤ 3

h(0) = h(7), h(1) = h(6), h(2) = h(5), h(3) = h(4).

H(z) = h(0)[1 + z−7] + h(1)[z−1 + z−6] + h(2)[z−2 + z−5]

+ h(3)[z−3 + z−4]

H(ω) = 2h(0)
[
1 + e−jω7

2

]
+ 2h(1)

[
e−jω + e−jω6

2

]

+ 2h(2)
[
e−j2ω + e−j5ω

2

]
+ 2h(3)

[
e−j3ω + e−j4ω

2

]

H(ω) = e−7/2jω

{
2h(0)

[
ejω7/2 + e−jω7/2

2

]
+ 2h(1)

[
ejω5/2 + e−jω5/2

2

]

+ 2h(2)

[
e−j3/2ω + e−j3/2ω

2

]
+ 2h(3)

[
ejω/2 + e−jω/2

2

]}

b(n) = 2h

[
N

2
− n

]
n = 1, 2, . . ., N/2b(n) = 2h[4− n] n = 1, 2, 3

b(1) = 2h[4− n]; b(1) = 2h[4] b(2) = 2h[2] b(3) = 2h[1] b(4) = 2h[0]

Giving the above expression, a new format obtained using the following
transformation relationship is
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Figure 9.2 Type-II FIR filter: Length of the filter N is even, positive symmetry.

H(ω) = e−7/2jω

{
b(1)

[
ejω1/2 + e−jω1/2

2

]
+ b(3)

[
ejω3/2 + e−jω3/2

2

]

+ b(2)

[
ejω5/2 + e−jω5/2

2

]
+ b(4)

[
ejω7/2 + e−jω7/2

2

]}

The following expression for Type-I filter is expressed as

H(ω) = e−jω(7/2)
{

b(1) cos
(ω

2

)
+ b(2) cos

(
3
2
ω

)
+ b(3) cos

(
5
2
ω

)

+ b(4) cos
(

7
2
ω

)}

H(ω) = e−jω(7/2)
4∑

n=1

b(n) cos
[
ω

(
n− 1

2

)]

The following expression for Type-II filter (Figure 9.2) is expressed as

H(ω) = e−jω(N−1)/2
N/2∑
n=1

b(n) cos
[
ω

(
n− 1

2

)]
(9.28)

9.3.3 Type III-FIR Filter (Length of the filter N is odd)

1. Anti-symmetrical impulse response (order of the filter N − 1 is even)
2. Its impulse response h(n) possesses the symmetry property of h(n)

= –h(N − 1 – n) 0 ≤ n ≤ N − 1
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For example, for an FIR Filter, which has N − 1 = 8, say,

h(n) = −h(N − 1− n), 0 ≤ n ≤ N − 1, h(n) = −h(8− n), 0 ≤ n ≤ 8

The expression for Type-III filter (Figure 9.3) is as following:

H(z) =
N−1∑
n=0

h(n) z−nH(z) =
8∑

n=0

h(n) z−n

H(z) = h(0)+h(1)z−1 +h(2)z−2 +h(3)z−3 +h(4)z−4 +h(5)z−5

+ h(6)z−6 + h(7)z−7 + h(8)z−8

h(0) = −h(8), h(1) = −h(7), h(2) = −h(6), h(3) = −h(5). We also
find h( 4) = –h(4) and this is possible only if h(4) = 0.

H(z) = h(0)[1−z−8]+h(1)[z−1−z−7]+h(2)[z−2−z−6]+h(3)[z−3−z−5]

+ h(4)z−4

Converting z format into ω format, we obtain the following expression:

H(ω) = h(0)+h(1)e−jω+h(2)e−2jω+h(3)e−j3ω+h(4)e−j4ω+h(5)e−j5ω

+ h(6)e−j6ω + h(7)e−j7ω + h(8)e−j8ω

H(ω) = h(0)[1−e−j8ω] + h(1)[z−jω−z−j7ω] + h(2)[e−j2ω−e−j6ω]

+ h(3)[e−j3ω − e−j5ω] + h(4)e−j4ω

H(ω) = e−j4ω

{
h(0) 2j

[
ej4ω − e−j4ω

2j

]
+ h(1)2j

[
z3jω − z−j3ω

2j

]

+ h(2)2j

[
e−j2ω − e−j6ω

2j

]
+ h(3)2j

[
e−j3ω − e−j5ω

2j

]
+ h(4)

}

Giving the above expression, a new format using the following transformation
relationship is obtained:

a(0) = h

[
N − 1

2

]
; a(n) = 2h

[(
N − 1

2

)
− n

]
n = 1, 2, . . ., (N−1)/2

a(0) = h[4]; a(n) = 2h[4− n] n = 1, 2, . . . , (N − 1)/2

Similarly, a(0) = h[4]; a(1) = 2h[3] a(2) = 2h[2] a(3) = 2h[1]
a(4) = 2h[0]
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Figure 9.3 Type-III FIR filter: Length of the filter N is odd, negative symmetry.

H(ω) = e−j4ωejπ/2
{

h(4) + 2h(3)
[
ejω − e−jω

2j

]
+ 2h(2)

[
e−j2ω − e−j2ω

2j

]
+ 2h(1)

[
e−j3ω − e−j5ω

2j

]
+ 2h(0)

[
ej4ω − e−j4ω

2j

]}

H(ω) = e−j[ω(4)]ejπ/2{a(0) sin(ω.0) + a(1) sin(ω.1) + a(2) sin(ω.2)

+ a(3) sin(ω.3) + a(4) sin(ω.4)}

H(ω) = e−j[ω(4)]ejπ/2
4∑

n=0

a(n) sin(ωn)

H(ω) = e−j[ω(N−1)/2−π/2]
(N−1)/2∑

n=0

a(n) sin(ωn) (9.29)

9.3.4 Type-IV FIR Filter (Length of the filter N is even)

1. Anti-symmetrical impulse response (order of the filter N − 1 is odd)
2. Its impulse response h(n) possesses the symmetry property of h(n) =

– h(N − 1– n) 0 ≤ n ≤ N /2 – 1

For example, for an FIR Filter, which has N − 1 = 7, say,
The expression for Type-IV filter is given as follows:

H(z) =
N−1∑
n=0

h(n) z−nH(z) =
7∑

n=0

h(n) z−n
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H(z) = h(0)+h(1)z−1+h(2)z−2+h(3)z−3+h(4)z−4+h(5)z−5

+ h(6)z−6 + h(7)z−7

h(n) = −h(N − 1− n), 0 ≤ n ≤ N − 1, h(n) = −h(7− n), 0 ≤ n ≤ 7
h(0) = −h(7), h(1) = −h(6), h(2) = −h(5), h(3) = −h(4).

H(z) = h(0)[1−z−7]+h(1)[z−1−z−6]+h(2)[z−2−z−6]+h(3)[z−3−z−4]

H(ω) = h(0)[1− e−7jω] + h(1)[e−jω − e−j6ω] + h(2)[e−j2ω − e−j5ω]

+ h(3)[e−j3ω − e−j4ω]

H(ω) =e−jω(7/2)

{
2h(0)

[
e−7/2jω − e7/2jω

2j

]
+ 2h(1)

[
ej(5/2ω − e−j(5/2)ω

2j

]

+ h(2)

[
ej(3/2)ω − e−j(3/2)ω

2j

]
+ h(3)

[
ej(1/2)ω − e−j(1/20ω

2j

]}

Giving the above expression, a new format using the following transformation
relationship is derived,

b(n) = 2h

[
N

2
− n

]
n = 1, 2, . . ., N/2b(n) = 2h[4− n] n = 1, 2, 3, 4

b(1) = 2h[4− n]; b(1) = 2h[4] b(2) = 2h[2] b(3) = 2h[1]

b(4) = 2h[0]

H(ω) = e−7/2jω

{
b(4)

[
ejω7/2 − e−jω7/2

2j

]
+ b(3)

[
ejω5/2 − e−jω5/2

2j

]

+ b(2)

[
e−j3/2ω − e−j3/2ω

2j

]
+ b(1)

[
ejω/2 − e−jω/2

2j

]}

H(ω) = e−7/2jω

{
b(1)

[
ejω1/2 + e−jω1/2

2j

]
+ b(3)

[
ejω3/2 + e−jω3/2

2j

]

+ b(2)

[
ejω5/2 + e−jω5/2

2j

]
+ b(4)

[
ejω7/2 + e−jω7/2

2j

]}
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The following expression for Type-I filter is expressed as

H(ω) = e−jω(7/2)
{

b(1) sin
(ω

2

)
+ b(2) sin

(
3
2
ω

)
+ b(3) sin

(
5
2
ω

)

+ b(4) sin
(

7
2
ω

)}

H(ω) = e−jω(7/2).ej(π/2)
4∑

n=1

b(n) sin
[
ω

(
n− 1

2

)]

The expression for Type-IV filter (Figure 9.4) is given as follows:

H(ω) = e−j[ω(N−1)/2−π/2]
N/2∑
n=1

b(n) sin
[
ω

(
n− 1

2

)]
(9.30)

b(n) = 2h

[
N

2
− n

]
n = 1, 2, . . ., N/2

Figure 9.4 Type-IV FIR filter: Length of the filter N is even, negative symmetry.

Example 9.6
Which of the DSP systems given by the following transfer functions show
linear phase?

(a) H(z) = 1 + 4z−1 + 3z−2 + 4z−3 + z−4

(b) H(z) = −3 + 2z−1 + z−2 + 4z−3 + z−4 − 4z−5 + 3z−6

(c) H(z) = 1 + 3z−1 − z−2
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Solution 9.6
The impulse responses for the three systems mentioned above are:

(a) h(n) = {1, 4, 3, 4, 1}
(b) h(n) = {−3, 2, 1, 4, 1, −4, 3}
(c) h(n) = {1, 3, −1}
All three systems have odd number coefficients. Both (a) and (c) are symmet-
rical about the centre value 3, and hence, both have linear-phase responses.
(b) Lacks symmetry and, therefore, also lacks a centre value. (a) is the case of
positive symmetry, (b) is not symmetrical, while (c) falls under odd symmetry.

Example 9.7
Prove that the filter with the following response has a linear-phase response

h(n) = {4, 1, 1, 4}

Solution 9.7
The phase shift of the system function varies linearly. This is called the linear-
phase response. The condition for the linear-phase response is given by

h(n) = h(N – 1 – n), where N is the length of the impulse response
In this example,

h(n) = {4, 1, 1, 4}
We have h(n) = h(4− 1−n), h(n) = h(3−n), h(0) = h(3), h(1) = h(2),
hence this filter has a linear-phase response.

Example 9.8
A filter has the following impulse response

h(n) = {−4, 2, 1, −2, 4}
Is it a linear-phase filter?

Solution 9.8
The condition for linear-phase response is given by

h(n) = h(N – 1 – n), where N is the length of the impulse response
In this example, N = 5

h(n) = {−4 , 2, 1, −2, 4}
We have h(n) = h(5 − 1 − n), h(n) = h(4 − n), h(0) = h(4); h(1) =
h(3); h(2).
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Hence, this filter has a linear-phase response and its impulse response is odd
symmetric.

Example 9.9
(i) Discuss briefly the conditions necessary for a realizable digital filter to

have a linear-phase characteristic, and the advantages of filters with such
characteristics.

(ii) An FIR digital filter has an impulse response, h(n), defined over the
interval 0 ≤ n ≤ N – 1. Show that if N = 5 and h(n) satisfy the
symmetry condition h(n) = h(N – 1 – n), then the filter has a linear-phase
characteristic.

(iii) Repeat (ii) for N = 4.

Solution 9.9
(i) The necessary and sufficient condition for a filter to have linear-phase
response is that its impulse response must be symmetrical.

h(n) = h(N − 1 − n) or h(n) = −h(N − 1 − n)

For non-recursive FIR filters, the storage space for coefficients and the number
of arithmetic operations are reduced by a factor of approximately 2. For
recursive FIR filters, the coefficients can be made to be simple integers, leading
to an increased speed of processing. In linear-phase filters, all frequency
components experience the same amount of delay through the filter, which
has no phase distortion.
(ii) Using the symmetry condition, we find that for N − 1 = 4:

h(n) = h(N − 1 − n); h(0) = h(4); h(1) = h(3);

The frequency response, H (ω), for the filter is given by

H(ω) =
N−1∑
n=0

h(n) e−jωn

H(ω) =
4∑

n=0
h(n)e−j ω n

H(ω) = h(0) + h(1)e−jω + h(2)e−j2ω + h(3)e−j3ω + h(4)e−j4ω

H(ω) = e−j2ω[h(0)ej2ω + h(1)ejω + h(2) + h(3)e−jω + h(4)e−j2ω]

Using the symmetry and necessary and sufficient condition, h(0) = h(4);
h(1) = h(3); we can group terms whose coefficients are numerically equal.
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H(ω) = e−j2ω[h(0)(ej2ω + e−j2ω) + h(1)(ejω + e−jω) + h(2)]
= e−j2ω[2h(0) cos(2ω) + 2h(1) cos(ω) + h(2)]

a(0) = h

[
N − 1

2

]
; a(n) = 2h

[(
N − 1

2

)
− n

]
n = 1, 2, . . ., (N − 1)/2

a(0) = h(2); a(n) = 2h[2− n] n = 1, 2, . . . , (N − 1)/2
Similarly, a(0) = h[2]; a(1) = 2h[1] a(2) = 2h[0]
then H (ω) can be written in the following form:

H(ω) = e−j2ω[a(2)( ej2ω+e−j2ω

2 ) + a(1)( ejω+e−jω

2 ) + a(0)]
H(ω) = e−j2ω[a(0) + a(1) cos(ω) + a(2) cos(2ω)]

H(ω) = e−j2ω
2∑

n=0

a(n) cos(ωn) = ejθ(ω)|H(ω)|

where |H(ω)| =
2∑

n=0
a(n) cos(ωn); and θ(ω) = −2ω

Clearly, θ(ω) = −2ω and the phase response is linear.
(iii) In this case, using the symmetry condition, we find that for N = 4:

h(0) = h(3); h(1) = h(2);
The frequency response, H (ω), for the filter is given by

H(ω) =
N−1∑
n=0

h(n) e−jωn

H(ω) =
3∑

n=0
h(n)e−jωn

H(ω) = h(0) + h(1)e−jω + h(2)e−j2ω + h(3)e−j3ω

The necssary and sufficient condition that an FIR filter should have linear-
phase response: h(n) = h(N − 1 – n), 0 ≤ n ≤ N − 1, h(n) = h(3 – n),
0 ≤ n ≤ (N /2) – 1, 0 ≤ n ≤ 1

H(ω) = h(0)[1 + e−jω3] + h(1)[e−jω + e−jω2]

H(ω) = 2h(0)
[
1 + e−jω3

2

]
+ 2h(1)

[
e−jω + e−jω2

2

]



392 Step-by-Step Design of Digital FIR Filters

H(ω) = e−3/2jω

{
2h(0)

[
ejω3/2 + e−jω3/2

2

]
+ 2h(1)

[
ejω/2 + e−jω/2

2

]}

b(n) = 2h

[
N

2
− n

]
n = 1, 2, . . ., N/2

b(n) = 2h[2− n] n = 1, 2

b(n) = 2h[2− n]; b(1) = 2h[2] b(2) = 2h[0]

Giving the above expression, a new format obtained using the following
transformation relationship is

H(ω) = e−3/2jω

{
b(1)

[
ejω/2 + e−jω/2

2

]
+ b(2)

[
ejω3/2 + e−jω3/2

2

]}

The following expression for Type-I filter is expressed as

H(ω) = e−jω(3/2)
{

b(1) cos
(ω

2

)
+ b(2) cos

(
3
2
ω

)}

H(ω) = e−jω(3/2)
2∑

n=1

b(n) cos
[
ω

(
n− 1

2

)]

The expression for Type-II filter is given as following:

H(ω) = e−jω(N−1)/2
N/2∑
n=1

b(n) cos
[
ω

(
n− 1

2

)]
(9.31)

H(ω) = ±|H(ω)|ejθ(ω)
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|H(ω)| =
2∑

n=1

b(n) cos
{

ω

(
n− 1

2

)}
; θ(ω) = −(3/2)ω

Clearly, θ(ω) = −(3/2)ω and the phase response is linear.

Table 9.1 A summary of the key points of the four types of FIR filters
Impulse response Number of Type of
Symmetry Coefficients, N Frequency Response H (ω) Linear Phase

Positive symmetry, Odd e−jω(N−1)/2
(N−1)/2∑

n=0
a(n) 1

cos(ωn)

h(n) = h(N – 1 – n) Even e−jω(N−1)/2
N/2∑

n=1
b(n) 2

cos[ω(n − 1
2 )]

Negative symmetry, Odd e−j[ω(N−1)/2−π/2]
(N−1)/2∑

n=0
3

a(n) sin(ωn)

h(n) = –h(N – 1 – n) Even e−j[ω(N−1)/2−π/2]
N/2∑

n=1
b(n) 4

sin[ω(n − 1
2 )]

a(0) = h[N−1
2 ]; a(n) = 2h[N−1

2 − n] b(n) = 2h[N
2 − n]

Example 9.10
For a linear-phase filter, positive symmetry has a phase response of e−j3ω.
What is the order of the filter?

Solution 9.10
We know that the phase of a linear-phase filter is given by the phase function
for the positive symmetry

H(ω) = e−jω(N−1)/2
N−1/2∑

n=1
a(n) cos[ω(n)] or

H(ω) = e−jω(N−1)/2
N/2∑
n=1

b(n) cos[ω(n− 1
2)]

H(ω) = e−jω(N−1)/2
(N−1)/2∑

n=0

a(n) cos(ωn)

Comparing the given phase response e−j3ω with e−jω(N−1)/2, we obtain
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N − 1
2

= 3, N = 7

This is a seventh-order filter.

Example 9.11
The frequency response of a Type-I positive symmetry FIR filter is given by
the following expression:

H(ω) = e−j3ω{2 + 1.8 cos 3ω + 1.2 cos 2ω + 0.5 cos ω}
Determine the impulse response h(n) of the filter in the form of a sequence.

Solution 9.11
Comparing the phase factor e−jω(N−1)/2 with that of H (ω), we obtain

N−1
2 = 3, N = 7 (the length of the filter coefficients)

The frequency response of an FIR for a causal filter is given by the
following expression:

H(ω) =
6∑

n=0

h(n) e−jωn

H(ω) =
6∑

n=0

h(n)e−jωn

H(ω) = h(0) + h(1)e−jω + h(2)e−j2ω + h(3)e−j3ω + h(4)e−j4ω

+ h(5)e−j5ω + h(6)e−j6ω

The necessary and sufficient condition for a filter to be causal

h(n) = h(6− n)
h(0) = h(6); h(1) = h(5); h(2) = h(4);h(3) = h(3)

Replacing the above expression using the necessary and sufficient condition,
we obtain

H(ω) = h(0)+h(1)e−jω+h(2)e−j2ω+h(3)e−j3ω+h(2)e−j4ω+h(1)e−j5ω

+ h(0)e−j6ω

H(ω) = e−jω3
3∑

n=0

{h(0)e3jω + h(0)e−j3ω}+ {h(1)ej2ω + h(1)e−j2ω}

+ {h(2)ejω + h(2)e−jω + h(3)}
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Expanding the formula

H(ω) = e−jω(3)/

⎧⎨
⎩

N−1
2∑

n=0

a(n) cos[ω(n)]

⎫⎬
⎭

H(ω) = e−jω3{a(0) + a(1) cos[ω] + a(2) cos[2ω] + a(3) cos[3ω]}
H(ω) = e−j3ω{0.5 cos ω + 1.2 cos 2ω + 1.8 cos 3ω + 2}
H(ω) = e−j3ω{h(3) + 2h(0) cos 3ω + 2h(1) cos 2ω + 2h(2) cos ω}

Converting the equation into a coefficient form, we get

a(0) = h

[
N − 1

2

]
; a(n) = 2h

[
N − 1

2
− n

]
n = 1, 2, . . ., (N−1)/2

a(0) = h[3]; a(n) = 2h[3−n] n = 1, 2, . . ., (N−1)/2

a(1) = 2 h(2); a(2) = 2 h(1); h(3) = 2 h(0)

a(0) = 2 = h(3); a(1) = 0.5 = 2 h(2); a(2) = 1.2 = 2 h(1);
a(3) = 1.8 = 2 h(0)

Hence, the required impulse response will be

h(n) = {0.9, 0.6, 0.25, 2, 0.25, 0.6, 0.9}

Example 9.12
The frequency response of a Type-II positive symmetry FIR filter is given by
the following expression

H(ω) = e−j(3/2)ω{1.5 cos 2ω + 1.2 cos ω}
Determine the impulse response h(n) of the filter in the form of a sequence.

Solution 9.12
Comparing the phase factor e−jω(N−1)/2 with that of H (ω), we obtain
N−1

2 = 3
2 , N = 4 (the length of the filter).

The frequency response of an FIR for a causal filter is given by the
following expression:

H(ω) =
3∑

n=0
h(n)e−jωn

H(ω) = h(0) + h(1)e−jω + h(2)e−j2ω + h(3)e−j3ω
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Using the symmetry condition, we find that for N − 1 = 3:

h(n) = h(N − 1 − n) h(0) = h(3); h(1) = h(2);

H(ω) = e−jω3/2[h(0)(ej3ω/2 + e−j3ω/2) + h(1)(ejω/2 + e−jω/2)]

Converting the equation into b(n) coefficient form, let

b(n) = 2h

(
N

2
− n

)
n = 1, 2, . . ., N/2

e−jω(N−1)/2
N/2∑
n=1

b(n) cos[ω(n− 1
2)]

Expanding the term

H(ω) = e−jω3/2[b(1) cos(1ω/2) + b(2) cos(3ω/2)]

b(n) = 2h[2− n] b(1) = 2h(1) = 1.5) h(1) = 0.75;

b(2) = 2h(0) = 1.2 h(0) = 0.6

H(ω) = e−j(3/2)ω{1.5 cos 2ω + 1.2 cos ω} comparing
Hence, the required impulse response will be

h(n) = {0.6, 0.75, 0.75, 0.6}

9.4 Basic Principle of FIR Filter Design

FIR filters are designed by assuming that the magnitude of the transfer function
H (ω) is unity. In other words, we assume H (ω) = 1.

|Y (ω) |
|X(ω) | = |H (ω)|

X(ω) is the input and Y(ω) is the output in the frequency domain

|Y (ω) | = |X(ω)| (9.32)

Equation (9.32) tells us that the output in the frequency domain = the input in
the frequency domain.

From Equation (9.32), we arrive at a very important concept. An FIR filter
does not introduce any losses to signals that get transmitted through it. It must
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be noted here that all types of IIR filters are designed by choosing a suitable
and finite value of |H(ω) | which is less than 1. FIR filters, on the other hand,
are characterized by the following equations:

y(n) =
N−1∑
k=0

h(k) x(n − k);

H(z) =
N−1∑
n=0

h(n) z−n; H(ω) =
N−1∑
n=0

h(n) e−jωn

The sole objective of most FIR coefficient calculation (or approximation)
methods is to obtain values of h(n), so that the resulting filter meets the design
specifications, such as amplitude-frequency response as per requirements.

The Fourier series and the Fourier transform methods belong to the
category which are used to design FIR filters.

Several methods are available for obtaining h(n). The window, optimal,
and frequency sampling methods, however, are the most commonly used. All
three can lead to linear-phase FIR filters. The window method is discussed in
this chapter.

9.4.1 Windows Used in FIR Filters

The basic assumption behind the DFT is that the input domain signal is
periodic. The assumption results in the signal, which is created by repeating
the windowed signal, over and over again. This signal is not quite the same as
the original time domain signal. The sudden changes require a large number of
frequencies. To create a signal that closely approaches these discontinuities,
we require a very large number of sinusoids.

It is the discontinuities, or sudden changes, that result in a large number of
frequencies. These transitions result in the spreading of energy in the frequency
domain referred to earlier as spectral leakage. If we could somehow reduce
the abruptness of these transitions, we could reduce the spectral leakage. In
practice, it is very difficult to avoid these transitions.

Most practical signals consist of many frequencies, and there is no way to
know in advance what these frequencies will be. So we cannot determine the
window duration such that we will always obtain an integer number of cycles
of all the constituent sinusoids. It is not even possible to do with complex
signals such as music or speech. The best method of tackling this concern is
to reduce the abruptness of the transitions. This is what windows accomplish.
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9.4.1.1 Windowing a signal
FIR filters exhibit poor gain characteristics for ideal filters, which have a jump
between one and zero. If the number of coefficients is increased, the transition
region of the FIR filter decreases and the ripples in the pass band and stop
band are reduced. However, there is a limit to the reduction in the amplitude
of the ripple as the number of coefficients used is increased. This is called the
Gibbs effect. This effect is due to the jump between zero and one of the ideal
gain curves. In order to reduce this effect, the actual values of FIR coefficients
are reduced near where they start and end. This is called windowing.

It is important to note that each of the transform assumes that the signal
exists for infinite time in the past to infinite time in the future. Of course, we
cannot measure a signal for such a long time. In practice, the measurement is
made for finite duration that could typically be as small as a few milliseconds
to as large as several hours. The duration over which the signal is measured is
known as a window because it is as if you are looking at a very small signal
through a small window that restricts your field of vision.

9.4.1.2 Rectangular window
When a signal is measured for a finite duration, it is being windowed.
Windowing is equivalent to multiplying the signal of interest by another signal,
referred to as a window and denoted by w. If any of the windows are not
specified, the rectangular window is used which is also known as the uniform
window.

The rectangular window has a value of 1 for a certain time interval and a
value of zero elsewhere. If the windowed signal has N samples, the equation
for the corresponding rectangular window is

ω(n) = 1.0 (9.33)

where n ranges from 0 to N − 1.
What happens when you multiply a signal by a rectangular window? You

only get a part of the signal that exists when the values of the rectangular
window are nonzero.

9.4.1.3 Hanning window
Sudden transitions at the ends of the windowed signals result in spectral
leakage. Without any particular window, the rectangular window is used by
default. However, the rectangular window does not do anything to reduce the
amplitudes of the transitions at the beginning and end of the measurement
interval. There are other windows that smooth the transition and reduce
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spectral leakage. This is achieved by making the values of the signal almost
the same at the two ends of the measurement intervals. This value is usually
zero or close to zero. One such popular window is the Hanning window, which
is used for general purpose applications.

If you are not sure which window to use, you can start with the Hanning
window. The shape of the Hanning window is that of a cosine wave, but it
is given a dc offset so that it never goes negative. If the window signal has
N samples, the equation for the corresponding Hanning window is where n
ranges from 0 to N − 1 (Figures 9.5 and 9.6).

Figure 9.5 Hanning expression non-causal ω(n) = 0.5(1 + cos 2nπ/N − 1).

Figure 9.6 Hanning expression causal ω(n) = 0.5(1 − cos 2nπ/N − 1).
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ω[n] = 0.5− 0.5 cos
2πn

N − 1
0 ≤ n ≤ N − 1 (9.34)

Equation (9.34) has been taken as a standard window for designing a causal
filter.

ω[n] = 0.5 + 0.5 cos
2πn

N − 1
− N − 1

2
≤ n ≤ N − 1

2
(9.35)

Equation (9.35) has been taken as a standard window for designing a non-
causal filter.

Hanning Window

Coefficients
Value (n)

ω[n] = 0.5 + 0.5 cos 2πn
N−1(−N−1

2

) ≤ n ≤ (
N−1

2

)

N − 1 = 10
Coefficients
Value (n)

ω[n] = 0.5 − 0.5 cos 2πn
N−1

0 ≤ n ≤ (N − 1)
N − 1 = 10

–5 0.0000 0 0.0000
–4 0.0955 1 0.0955
–3 0.3455 2 0.3455
–2 0.6545 3 0.6545
–1 0.9045 4 0.9045

0 1.0000 5 1.0000
1 0.9045 6 0.9045
2 0.6545 7 0.6545
3 0.3455 8 0.3455
4 0.0955 9 0.0955
5 0.0000 10 0.0000

9.4.1.4 Hamming window
The amplitude of the windows towards the ends can be different from zero.
This window is also called the raised cosine window. The Hamming window
is one such example. It is widely used in processing speech signals for
applications such as spectral analysis and computer voice response systems
(Figures 9.7 and 9.8). Its equation is

ω[n] = 0.54− 0.46 cos
2πn

N − 1
0 ≤ n ≤ N − 1 (9.36)

Equation (9.36) has been taken as a standard window for designing a causal
filter.

ω[n] = 0.54 + 0.46 cos
2πn

N − 1
− N − 1

2
≤ n ≤ N − 1

2
(9.37)
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Figure 9.7 Hamming expression non-causal ω(n) = 0.54 + 0.46 cos 2πn/(N − 1).

Figure 9.8 Hamming expression causal ω(n) = 0.54 − 0.46 cos 2πn/(N − 1).

Equation (9.37) has been taken as a standard window for designing a non-
causal filter.

Equation (9.36) has taken a standard window of n = 0 to n = N − 1 for
the window to be causal for a low-pass filter as shown in Figure 9.9. It is
worthwhile to spend a few minutes here to decide which formula is going to
be fit for calculation of coefficients h(n) of FIR filters of different passes such
as high pass, band pass, and band stop.
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Hamming Window

Coefficient
Value (n)

ω[n] = 0.54 + 0.46 cos 2πn
N−1(−N−1

2

) ≤ n ≤ (
N−1

2

)

N − 1 = 10
Coefficient
Value (n)

ω[n] = 0.54 − 0.46 cos 2πn
N−1

0 ≤ n ≤ (N − 1)
N − 1 = 10

–5 0.0800 0 0.0800
–4 0.1679 1 0.1679
–3 0.3978 2 0.3978
–2 0.6821 3 0.6821
–1 0.9121 4 0.9121

0 1.0000 5 1.0000
1 0.9121 6 0.9121
2 0.6821 7 0.6821
3 0.3978 8 0.3978
4 0.1679 9 0.1679
5 0.0800 10 0.0800

9.5 Design of FIR Filter using the Window Method

The window method is one of the simplest methods of designing FIR digital
filters. It is well suited for designing filters with simple frequency response
shapes, such as ideal low-pass filters. Some typical filter shapes that can be
designed are shown in Figure 9.9.

In this method, the frequency response of a filter, HD(ω), and the
corresponding impulse response, hD(n), are related by the inverse Fourier
transform:

hD(n) =
1
2π

∫ 2π

0
HD(ω) ejωndω (9.38)

The subscript D is used to distinguish between the ideal and practical impulse
responses. The need for this distinction will soon become clear. If we know
HD(ω), hD(n) can be obtained by evaluating the inverse Fourier transform of
Equation (9.38).

As an illustration, suppose we wish to design a low-pass filter. We could
start with the ideal low-pass response shown in Figure 9.9 (a), where ωC is
the cutoff frequency and the frequency scale is normalized: G = 1. Letting
the response from −ωC to ωC, the impulse response is given by

hD(n) =
G

2π

∫ π

−π
1× ejωndω =

G

2π

∫ ωc

−ωc

ejωndω

hD(n) =
G

2π

∫ ωc

−ωc

ejωndω = G
ejωcn − e−jωcn

2jπ n
=

G

π n
sin ωcn, G = 1
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Figure 9.9 (a, b, c, d) Ideal frequency response of low-pass, high-pass, band-pass and
bandstop filters. (e) Impulse response of an ideal low-pass filter.
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low-pass filter hD(n) =
1

nπ
sin nωc, n = 0,±1,±2, . . . . . (9.39)

ωc
π = 2fC when n = 0 (using L’ Hopital’s rule)

Similarly, we find for the high-pass, band-pass, and band-stop filter of Figure
9.9 defined over –∞ n <∞

high-pass filter hD(n) = δ(n)− 1
nπ

sin nωc (9.40)

band-pass filter hD(n) =
sin nωc2 − sin nωc1

nπ
. (9.41)

band-stop filter hD(n) = δ(n)− {sin nωC2 − sin nωC1}
nπ

. (9.42)

Note that the same values of the cutoff frequencies ωC, ωC1, ωC2 low-
pass/high-pass and band-pass/band-stop filters are complementary, that is their
impulse responses add up to a unit impulse δ(n) and their frequency responses
add up to unity.

hLP(n) + hHP(n) = δ(n) ⇔ HLP(ω) + hHP(ω) = 1 (9.43)

hBP (n) + hBP (n) = δ(n) ⇔ HBP (ω) + hBS(ω) = 1

The impulse responses for the ideal high-pass, band-pass, and band-stop filters
obtained from the low-pass and high-pass cases of Equations (9.39) and (9.40)
are summarized in Table 9.2. The impulse response for the low-pass filter is
plotted in Figure 9.9 (e) from which we note that hD(n) is symmetrical about
n = 0. That is hD(n) = hD(–n), so that the filter will have a linear (in this case,
zero)-phase response. Several practical problems with this simple approach
are apparent.

Table 9.2 Summary of ideal responses for standard frequency selective filters
Impulse Response

Filter Type hD(n) hD(0)
Low-pass

High-pass

Band-pass

Band-stop

sin(nωc)
nπ

δ(n) − sin(nωc)
nπ

sin(nωc2)−sin(nωc1)
nπ

δ(n) − {sin(nωc2)−sin(nωc1)}
nπ

ωc
π

1 − ωc
π

ωc2−ωc1
π

1 − ωc2−ωc1
π
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The most important of these is that, although hD(n) decreases as we move
away from n = 0, it nevertheless carries on, theoretically, to n = ±∞.

ωc, ωc1,and ωc2 are the normalized pass-band or stop-band edge frequen-
cies; N is the length of the filter.

9.5.1 To Find the Filter Coefficients using Window

Once either in the case of non-causal or causal filter using different window has
to be designed, the respective coefficients have to be multiplied by respective
window coefficients. For example, if hD(n) has to be calculated by taking
inverse Fourier Transform, then it should be multiplied by the respective
window magnitude ω(n) obtained to find the final coefficient value of the
filter h(n); therefore, the final value becomes h(n) = hD(n). ω(n).

9.5.2 Filter Design Steps for Non-causal Filters

We start the filter design first by taking non-causal filters. A design procedure
for a digital filter is now described in the following way, which is nearly the
same as that of causal filters.

(a) Determine the normalized cut-off frequency.
(b) Determine the unit sample response hD(n) that will produce the desired

frequency response. In other words, find the value of hD(n) for the given
requirements.

(c) Determine the transfer function from the calculated impulse response
sequence.

Example 9.12
Design a low-pass, non-causal, positive symmetry FIR filter. Find the
coefficients according to their filter lengths for the following specifications.

Cut-off frequency = 500 Hz; Sampling Frequency = 2000 Hz
Order of the Filter = 4; Filter Length required = 5, G = 1

Solution 9.12
Normalized Cut-off frequency is

ωc = 2π
fc

FS
= 2π

500
2000

=
π

2

For determination of the filter coefficients, we substitute various values of n
and find the corresponding value of hD(n) using hD(n) = 1

nπ sin nωc.
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Figure 9.10 (a) Coefficients of a low-pass FIR filter, non-causal. (b) Magnitude response of
a low-pass FIR filter.

hD(1) = hD(−1) =
1
π

sin
1.π

2
= 3.183

hD(2) = hD(−2) =
1

2.π
sin

2.π

2
= 0

hD(0) can be calculated in a different way using the relationship obtained by

hD(0) =
1
π

ωc =
1
π

π

2
=

1
2

= 0.5

It means for the length of the filter, N is odd. The centre one value will be
the highest value. The filter coefficients can be verified using the FDA Tool
(Figure 9.10).

9.5.3 Filter Design Steps for Causal Filters

A design procedure for digital filters will now be discussed. The method is
similar to that of causal filters, except for Equations (9.39) to (9.42).

(a) Determine the normalized cut-off frequency, if it is unknown.
(b) Determine the unit sample response hD(n) that will produce the desired

frequency response.
(c) Determine the transfer function from the impulse response sequence.

The expression for finding the coefficients of a non-causal filter is defined as

hD(n) =
G

nπ
sin nωc



9.5 Design of FIR Filter using the Window Method 407

We modify the expression for the non-causal filter to causal filter by shifting
the coefficients to the right side. Normally, in all the cases discussed here, G
has been taken as 1.

hD(n) =
1(

N−1
2 − n

)
π

sin
(

N − 1
2
− n

)
ωc

Example 9.13
Design a low-pass, causal, positive symmetry FIR filter. Find the coefficients
according to their filter lengths for the following specifications.

Cut-off frequency = 500 Hz; Sampling Frequency = 2000 Hz
Order of the Filter = 4; Filter Length required (N ) = 5

Solution 9.13
Normalized Cut-off frequency

ωC = 2π
fC

FS
= 2π

500
2000

=
π

2
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For determination of the filter coefficients, we substitute various values of n
and determine the corresponding values of hD(n) using hD(n) = 1

nπ sin nωc.

hD(n) =
1(

N−1
2 − n

)
π

sin
(

N − 1
2
− n

)
ωc

hD(n) =
1

(2− n)π
sin(2− n)ωc

Because the filter is causal, it follows the relationship hD(n) = hD(N−1−n)

hD(n) =
1

(2− n)π
sin(2−n)ωc

n = 0 hD(0) = hD(4) = 1
2π sin 2.π

2 = 0.00
n = 1 hD(1) = hD(3) = 1

.π sin .π
2 = 0.3183

n = 2 hD(2) = 1
π .π

2 = 0.50

We stop the computation at h(2), since the required length of the filter is 5.
The filter coefficients can be verified using the FDA Tool.

Example 9.14
Design a low-pass, causal, positive symmetry FIR filter. Find the coefficients
according to their filter lengths for the following specifications.

Cut-off frequency = 500 Hz; Sampling Frequency = 2000 Hz
Order of the Filter = 5; Filter Length required (N ) = 6

Solution 9.14
Normalized Cut-off frequency

ωC = 2π
fc

FS
= 2π

500
2000

=
π

2

Determination of the filter coefficients, we substitute various values of n and
determine the corresponding values of hD(n) using hD(n) = 1

nπ sin nωc.

hD(n) =
1(

N−1
2 − n

)
π

sin
(

N − 1
2
− n

)
ωc

hD(n) =
1

(2.5− n)π
sin(2.5− n)ωc
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Because the filter is causal, it follows the relationship hD(n) = hD(N−1−n)

hD(n) =
1

(2.5− n)π
sin(2.5−n)ωc

n = 0; hD(0) = hD(5) = 1
2.5π sin 2.5π

2 = −0.9003
n = 1; hD(1) = hD(4) = 1

1.5.π sin 1.5π
2 = 0.1500

n = 2; hD(2) = hD(3) = 1
0.5π sin 0.5π

2 = 0.4502

We stop the computation at h(2), h(3) since the required length of the filter is
6. The filter coefficients can be verified using the FDA Tool.

9.5.4 Designing Other Types of FIR Filters

For FIR filters, there are individual procedures as discussed for a low-pass
filter. Now the other pass filters such as high-pass, band-pass, and band-stop
filters procedures appear to be different at first sight, on closer observation, and
we can see that they all follow more or less the same design steps; the major
difference in these procedures is the use of appropriate limits of integration in
each case for finding the impulse response.
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The impulse response for a low-pass filter is given by

low-pass filter hD(n) =
1

nπ
sin nωc, n = 0,±1,±2, . . . . . (9.44)

Similarly, for the high-pass, band-pass, and band-stop filter of Figure 9.9
defined over −π < n <π, we have

high-pass filter hD(n) = δ(n)− 1
nπ

sin nωc (9.45)

band-pass filter hD(n) =
sin nωC2 − sin nωC1

nπ
(9.46)

band-stop filter hD(n) = δ(n)− sin nωC2 − sin nωC1

nπ
(9.47)

Example 9.15
Develop an expression for a causal high-pass, positive symmetry Finite
Impulse Response (FIR) filter length with N = 5, fc = 500 Hz and fs = 2000 Hz

Solution 9.15
It should be kept in mind that the required filter is an FIR causal filter, so the
impulse response formula must first be modified as shown below.

hD(n) =
1

nπ
sin nωc

hD(n) = δ(n)− 1(
N−1

2 − n
)
π

sin
(

N − 1
2
− n

)
ωc

The FIR coefficients, therefore given by

hD(n) = − 1
(2− n)π

sin(2−n).
π

2

n = 0 hD(0) = hD(4) = − 1
2π sin 2.π

2 = −0.00
n = 1 hD(1) = hD(3) = 1

1π sin 1.π
2 = −0.3183

n = 2 hD(2) = 1− 1
π .π

2 = 0.5

The expression for an FIR filter can be expressed using the Hamming window

H(z) = −0.3183 z−1 + 0.50 z−2 − 0.3183 z−3



9.5 Design of FIR Filter using the Window Method 411

Example 9.16
Obtain the impulse response for a causal band-pass FIR filter for the
following specification, and write the expression in transfer function form
of h(z).
Cut-off frequency = 300 Hz and 600 Hz
Sampling frequency = 2000 Hz
Order of the filter = 5
Filter length required (N ) = 6

Solution 9.16
Using the design equation of a band-pass filter

band-pass filter hD(n) = sin nωC2−sin nωC1
nπ and modifying this expres-

sion for a causal filter.

band-pass filter hD(n) =
sin(N−1

2 − n)ωC2 − sin(N−1
2 − n)ωC1

(N−1
2 − n)π

.
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Normalize the cut-off frequencies

ωC1 = 2π
fC1

Fs
= 2π

300
2000

= 0.3π ωC2 = 2π
fC2

Fs
= 2π

600
2000

= 0.6π

band-pass filter hD(n) =
sin
(

N−1
2 − n

)
(0.6π)− sin

(
N−1

2 − n
)
(0.3π)(

N−1
2 − n

)
π

.

n = 0,5; hD(0) = sin(2.5)(0.6π)−sin (2.5)(0.3π)
(2.5)π = sin(1.5π)−sin(0.75π)

(2.5)π = −0.217

n = 1,4; hD(1) = sin(0.9π)−sin (0.45π)
(1.5)π = 0.3090−0.9876

1.5π = −0.6786
1.5π = −0.1440

n = 2,3; hD(2) = sin(0.5)(0.6π)−sin (0.5)(0.3π)
(0.5)π = 0.226

The expression for an FIR filter can be written as

H(z) = −0.217 −0.144 z−1+0.226z−2+0.226 z−3−0.144z−4−0.217 z−5

Example 9.17
Find the impulse response of a causal band-pass FIR filter for the following
specification:
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Cut-off frequency = 300 Hz and 600 Hz
Sampling frequency = 2000 Hz
Order of the filter = 6
Filter length required (N ) = 7

Solution 9.17
Using the design equation of a band-pass filter

band-pass filter hD(n) = sin nωC2−sin nωC1
nπ and modifying this expres-

sion for a causal filter.

band-pass filter hD(n) =
sin
(

N−1
2 − n

)
ωC2 − sin

(
N−1

2 − n
)
ωC1(

N−1
2 − n

)
π

Normalize the cut-off frequencies

ωC1 = 2π
fC1

Fs
= 2π

300
2000

= 0.3π

ωC2 = 2π
fC2

Fs
= 2π

600
2000

= 0.6π
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band-pass filter hD(n) =
sin
(

N−1
2 − n

)
(0.6π)− sin

(
N−1

2 − n
)
(0.3π)(

N−1
2 − n

)
π

n = 0,6; hD(0) = sin(3)(0.6π)−sin (3)(0.3π)
(3)π = sin(1.8π)−sin (0.9π)

(3)π = −0.0951

n = 1,5; hD(1) = sin(2)(0.6π)−sin (2)(0.3π)
(2)π = sin(1.2π)−sin (0.6π)

(2)π = −0.2249

n = 2,4; hD(2) = sin(1)(0.6π)−sin (1)(0.3π)
(1)π = sin(0.6π)−sin (0.3π)

(1)π = 0.0452

n = 3; hD(3) = (0.6π)−(0.3π)
π = 0.3

The expression for an FIR filter can be expressed as

H(z) = −0.0951 − 0.2249z−1 + 0.0451z−2 + 0.3z−3 + 0.04520z−4

− 0.2249z−5 − 0.0951z−5

Example 9.18
Find the impulse response of a causal band-stop FIR filter for the following
specification:
Cut-off frequency = 300 and 600 Hz
Sampling frequency = 2000 Hz
Order of the filter = 6
Filter length required (N ) = 7

Solution 9.18
Using the design equation of a band-pass filter

band-stop filter hD(n) = δ(n) − sin nωC2−sin nωC1
nπ and modifying this

expression for a causal filter.

band-stop filter hD(n) = δ(n)− sin
(

N−1
2 − n

)
ωC2 − sin

(
N−1

2 − n
)
ωC1(

N−1
2 − n

)
π

Normalize the cut-off frequencies

ωC1 = 2π
fC1

Fs
= 2π

300
2000

= 0.3π

ωC2 = 2π
fC2

Fs
= 2π

600
2000

= 0.6π

band-stop filter hD(n) =
sin
(

N−1
2 − n

)
(0.6π)− sin

(
N−1

2 − n
)
(0.3π)(

N−1
2 − n

)
π

.
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n = 0,6; hD(0) = − sin(3)(0.6π)−sin (3)(0.3π)
(3)π = − sin(1.8π)−sin (0.9π)

(3)π = 0.0951

n = 1,5; hD(1) = − sin(2)(0.6π)−sin (2)(0.3π)
(2)π = − sin(1.2π)−sin (0.6π)

(2)π = 0.2249

n = 2,4; hD(2) = − sin(1)(0.6π)−sin(1)(0.3π)
(1)π = − sin(0.6π)−sin(0.3π)

(1)π =−0.0452

n = 3; hD(3) = 1− (0.6π)−(0.3π)
π = 0.7

The expression for an FIR filter can be expressed as

H(z) = 0.0951 + 0.2249z−1 − 0.0451z−2 + 0.7z−3 − 0.04520z−4

+ 0.2249z−5 + 0.0951z−5

9.5.5 Smearing Effect

Because of the smearing effect of the window on the filter response, the
cutoff frequency of the resulting filter will be different from that given in
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the specifications for designing. To account for this, we use an f ′
c that is

centered on the transition band:
f ′

c = fc + Transition width/2 and
Δ f = Transition width/Sampling frequency.

In Table 9.3 different window function transfer function, transition width,
the pass-band and stop-band ripple are shown, which helps out in designing
of FIR filters.

In above table when α = 0, the Kaiser window corresponds to the
rectangular window, and the resulting window is very similar, though not
identical, to the Hamming window. The value of α is determined by the stop-
band attenuation requirements and may be estimated from one of the empirical
relationships stated above.

Example 9.19
Obtain the coefficients for non-causal low-pass positive symmetry FIR filter
to meet the specifications given below using the window method.

Pass-band edge frequency 1.5 kHz
Transition width 0.5 kHz
Stop-band attenuation >50 dB
Sampling frequency 8 kHz

Solution 9.19
From Table 9.2, we select hD(n) for a low-pass filter which is given by

hD(n) = sin(nωc)
nπ n �= 0

hD(n) = 1
πωc n = 0

Table 9.2 indicates that the Hamming, Blackman or Kaiser window will satisfy
the stop-band attenuation requirements. We will use the Hamming window
for simplicity

ω[n] = 0.54 + 0.46 cos
2πn

N − 1
− N − 1

2
≤ n ≤ N − 1

2

Now Δf = 0.5/8 = 0.0625. From Table 9.3, N = 3.3/Δf = 3.30/0.0625 = 52.8,
let N = 53 (Note: here N is the order of the filter)

The filter coefficients are obtained from

hD(n)w(n) − 26 ≤ n ≤ 26
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hD(n) = sin(nωc)
nπ n �= 0

hD(n) = ωc
π n = 0

ω(n) = 0.54 + 0.46 cos(2πn/52) − 26 ≤ n ≤ 26

Because of the smearing effect of the window on the filter response, the
cutoff frequency of the resulting filter will be different from that given in
the specifications. To account for this, we will use an fc that is centered on the
transition band:

f
′
C = fc + Transition width/2 = (1.5 + 0.25)kHz

f
′
C = 1.75 kHz ≡ 1.75/8 = 0.21875

Noting that h(n) is symmetrical; we need only compute values for h(0), h(1),
. . ., h(26) and then use the symmetry property to obtain the other coefficients
with n = 0;

hD(n) = 2 f ′
c = 2 x 0.21875 = 0.4375

ω(0) = 0.54 + 0.46 cos (0) = 1
h(0) = hD(0)ω(0) = 0.4375

with n = 1;

hD(1) =
2× 0.21875
2π × 0.21875

sin(2π × 0.21875)

=
sin(360× 0.21875)

π
= 0.31219

= ω(1) = 0.54 + 0.46 cos(2π/53) = 0.54 + 0.46 cos(360/53) = 0.98713
= h(1) = h(−1) = hD(1)ω(1) = 0.31119

with n = 2;

hD(2) =
2× 0.21875

2× 2π × 0.21875
sin(2× 2π × 0.21875)

=
sin(157.5◦)

2π
= 0.06091

ω(2) = 0.54 + 0.46 cos(2π × 2/52)
= 0.54 + 0.46 cos(720◦/52) = 0.98713

h(2) = h(−2) = hD(1)ω(2) = 0.06012

n = 26:

hD(26) =
2× 0.21875

26× 2π × 0.15
sin(26× 2π × 0.21875)

2π
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= 0.01131

ω(26) = 0.54 + 0.46 cos(2π × 26/53)
= 0.54 + 0.46 cos(720◦/53) = 0.08081

h(26) = h(−26) = hD(26)w(26) = 0.000913

We note that the indices of the filter coefficients run from –26 to 26. To make
the filter causal (necessary for implementation) we add 26 to each index so
that the indices start from zero.

9.5.6 Kaiser Window

To design a good window, it has become necessary to choose a time limited
function whose Fourier transform best approximates a band limited function
i.e. a time limited function that has the minimum energy outside some selected
interval. The solution for the case of continuous time functions is the set of
functions called “prolate spheroidal wave function”.

The relative simple approximation of the Kaiser window is given by the
weighting function

w[n] =
I0

[
β
√

1− [2n/(N − 1)]2
]

Io(β)
;−
(

N − 1
2

)
≤ n ≤

(
N − 1

2

)

(9.48)

w[n] =
I0(α)
Io(β)

α =
[
β

√
1− [2n/(N − 1)]2

]
(9.49)

where α is a constant that specifies a frequency response trade-off between
the peak height of the side lobe ripple and the width of the energy of the main
lobe and I0(β) is the modified zeroth-order Bessel function.

Io[β] = 1 +
L∑

k=1

[
(β/2)−k

k!

]2

(9.50)

Typically the value of L = 25
The number of filter coefficients, N, is given by

N ≥ A− 7.95
14.36 Δf

(9.51)

where Δf is the normalized transition width.
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No optimum window designed filter exists in spite of optimum windows,
since the actual filter response is being obtained by the “convolution” of the
windows with desired ideal response.

9.5.6.1 Procedure to FIR filter design using Kaiser windows
(i) Determine h(n) using the Fourier series approach assuming a idealized
frequency response.

H(ω) = 1 |ω| ≤ ωC

H(ω) = 0 (9.52)

where ωC =
1
2
(ωP + ωs)

and ωP is the pass-band frequency and ωS is the stop-band frequency in
radians/sec.
(ii) Choose δ after calculating δP and δS

Pass-band AttenuationAP= 20 log(1 + δP) (9.53)

Pass-band AttenuationAS = −20 log δs

A suitable value δ is calculated from the minimum value of δP or δS. δp is the
desired pass-band ripple and δs is the desired stop-band ripple

δ = min(δS , δP ) (9.54)

where δS = 10−0.05AS and δP = 10−0.05Ap − 1 (9.55)

(iii) Calculate As again using (9.52)
(iv) Choose the parameter β (ripple control factor) as follows:

b = 0 if AS ≤ 21 dB
b = 0.5842(AS − 21)0.4

+ 0.07886(AS − 21) if 21 dB < AS < 50 dB
b = 0.1102(AS − 9.7) if AS ≥ 50 dB

(9.56)

(v) Form ω(n) using equation

ω(n) =
I0(α)
I0(β)

for | n | ≤ N − 1
2

ω(n) = 0 otherwise (9.57)

Where α is the independent parameter and

α = β

√
1−

[
2n

N − 1

]2

(9.58)
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where I0(β) is the zero-order Bessel function of the first kind. This can be
evaluated to any desired degree of accuracy by using the rapidly converging
series.

Io[β] = 1 +
L∑

k=1

[
(β/2)k

k!

]2

(9.59)

(vi)

H(z) = z
−(N−1)

2 H1(z)

where
H(Z) = Z[ω(n)h(n)] (9.60)

9.5.7 Comparison of Window Methods

Rectangular If the window is not specified, the rectangular window is used which is also
known as uniform window.
The spectral side lobes are down only about 14 dB from the main lobe peak.

Hamming The amplitudes of the windows toward ends can be different from zero.
The Hamming window is one such example. It is widely used in processing
speech signals for applications such as spectral analysis and computer voice
response systems.
The main lobe of the frequency response of the Hamming windows is twice
that of a rectangular window.
For α = 0.54, 99.96% of the spectral energy is the main lobe and the peak
side lobe ripple is down about 40 dB from the main lobe peak.

Hanning One such popular window is the Hanning window, which is used for general
purpose applications. If you are not sure which window to use, you can start
with the Hanning window.

Kaiser Kaiser window is an optimum window in the sense that it is a finite duration
sequence that has the minimum spectral energy beyond some specified
frequency.

9.5.8 Analysis of Different FIR Filter Types

There are interesting results for the response of FIR filters, and students should
note that the filter in all four types cannot be bulid up. An analysis has been
carried out with different values of N ; positive and negative symmetry are
given below, which clearly shows that positive symmetry filters are widely
used for designing FIR filter.
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9.5.9 Conclusion for the Types of FIR Filter

It is evident from the analysis diagram done on Matlab that type I, positive
symmetry is the most versatile for designing all types of filters; type II are
designed only for odd order filters, and types III and IV are often used to
design differentiators.

Length of the Filter N is Odd Length of the Filter N is Even
(type I)
Low-Pass, High-Pass, Band-Pass,
and Band-Stop Filter

(type II)
Low-Pass and Band-Pass Filter

Positive Symmetry

(type III) No filter (type IV) High-Pass filter Negative Symmetry

9.5.10 Advantages/Disadvantages of the Window Method

(i) An important advantage of the window method is its simplicity: it is
simple to apply and understand. It involves a minimum amount of
computational effort, even for the more complicated Kaiser window.

(ii) The major disadvantage is its lack of flexibility. Both the peak pass-
band and stop-band ripples are approximately equal, so the designer may
end up with either too small pass-band ripple or too large a stop-band
attenuation.

(iii) Because of the effect of convolution on the spectrum of the window
function and the desired response, the pass-band and stop-band edge
frequencies cannot be precisely specified.

9.6 Problems and Solutions

Problem 9.1
Given the following transfer function, calculate its complex frequency
response at 100 Hz if the system sampling frequency is 500 Hz.

H(z) = 0.6 + 0.3z−1 + 0.9z−2

Solution 9.1
The frequency response in the z plane is the value of the transfer function,
which lies on the unit circle in the z plane at an angle of digital frequency ω.
Thus, ω = 2π f

Fs
= 2π 100

500 = 0.4π

The value of z on the unit circle at this angle is: z = ejω = ej0.4π
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Therefore, the complex frequency is:

H(ω) = 0.6 + 0.3e−j0.4π + 0.9e2(−j0.4π)

H(ω) = 0.6 + 0.3{cos 0.4π − j sin 0.4π}+ +0.9{cos 0.8π − j sin 0.8π}
H(ω) = 0.6 + 0.3(0.3090− j0.9510) + 0.9(−0.8090− j0.5877)

H(ω) = 0.6+0.0927− j0.2853− 0.7281− j0.5289

H(ω) = −0.0353 − j0.8142 = 0.8149−j1.6142

This result means that the magnitude frequency response at 100 Hz is 0.8149
and the phase response is –1.6142 rad.

Problem 9.2
The linear-phase condition results in zero phase distortion, but adds a phase
angle to each sinusoid that is proportional to the frequency of the sinusoids.
The signal also picks up a constant phase delay of 10 msec. Find out the phase
delay taken by signals.

Solution 9.2
TP = −0.010 = −dϑ

ω = −kf
2πf = k

2π

k = −.02π or
Tp = −0.02πf

The phase change in radians for the sinusoids of frequency f would be
TP = −0.02πf.

Problem 9.3
Given the following transfer function, calculate its complex frequency
response at 250 Hz if the system sampling frequency is 1000 Hz.

H(z) = 0.0935 + 0.3027z−1 + 0.40z−2 + 0.3027z−3 + 0.0935z−4

Solution 9.3
The frequency response in the z plane is the value of the transfer function on
the unit circle in the z plane at an angle of digital frequency ω. Thus,

ω = 2π
f

Fs
= 2π

250
1000

= 1.5707

The value of z on the unit circle at this angle is: z = ejω
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Therefore, the complex frequency is

H(ω) = 0.0935 + 0.0327e−j1.5707 + 0.40e−j2(1.5707) + 0.3027e−j3(1.5707)

+ 0.0935e−j4(1.5707)

H(ω) = 0.0.2135e−j3.14

This result means that the magnitude frequency response at 250 Hz is 0.2135
and the phase response is –3.14 rad.

Problem 9.4
A linear-phase filter has a phase response of e−j6ω. What is the order of the
filter?

Solution 9.4
We know that the phase of a linear-phase filter is given by the phase function
for positive symmetry

H(ω) = e−jω(N−1)/2
N/2∑
n=1

a(n) cos[ω(n)]

H(ω) = e−jω(N−1)/2
(N−1)/2∑

n=0

a(n) cos(ωn)

Comparing the given phase response e−j6ω with e−jω(N−1)/2

N − 1
2

= 6, N = 13

This is a 13th order filter.

Problem 9.5
The frequency response of a Type-I positive symmetry FIR filter is given by
the following expression:

H(ω) = e−j3ω{2 + 1.8 cos 3ω + 1.2 cos 2ω + 0.5 cos ω}
Determine the impulse response h(n) of the filter in the form of a sequence.
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Solution 9.5
Comparing the phase factor e−jω(N−1)/2 with that of H (ω), we obtain

N − 1
2

= 3, N = 7

The frequency response of an FIR for a causal filter is given by the following
expression:

H(ω) =
6∑

n=0

h(n) e−jωn

H(ω) =
6∑

n=0

h(n)e−jωn

H(ω) = h(0) + h(1)e−jω + h(2)e−j2ω + h(3)e−j3ω + h(4)e−j4ω

+ h(5)e−j5ω + h(6)e−j6ω

The necessary and sufficient condition for a filter to be causal

h(n) = h(6− n)
h(0) = h(6) ; h(1) = h(5); h(2) = h(4);h(3) = h(3)

Replacing the above expression using the necessary and sufficient condition

H(ω) = h(0) + h(1)e−jω + h(2)e−j2ω + h(3)e−j3ω + h(2)e−j4ω

+ h(1)e−j5ω + h(0)e−j6ω

H(ω) = e−jω3
3∑

n=0

{h(0)e3jω + h(0)e−j3ω} + {h(1)ej2ω + h(1)e−j2ω}

+ {h(2)ejω + h(2)e−jω}
Expanding the formula

H(ω) = e−jω(3)/

⎧
⎨
⎩

N−1
2∑

n=0

a(n) cos[ω(n)]

⎫
⎬
⎭

H(ω) = e−jω3{a(0) + a(1) cos[ω] + a(2) cos[2ω] + a(3) cos[3ω]}
H(ω) = e−j3ω{2 + 1.8 cos 3ω + 1.2 cos 2ω + 0.5 cos ω}
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H(ω) = e−j3ω{h(3) + 2h(0) cos 3ω + 2h(1) cos 2ω + 2h(2) cos ω}
Converting the equation into a coefficient form

a(0) = h[N−1
2 ]; a(n) = 2h[N−1

2 − n] n = 1, 2, . . ., (N − 1)/2

a(0) = h[3]; a(n) = 2h[3− n] n = 1, 2, . . ., (N − 1)/2

a(1) = 2 h(2); a(2) = 2 h(1); a(3) = 2 h(0)

a(0) = 2 = h(3); a(1) = 0.5 = 2 h(2) ; a(2) = 1.2 = 2 h(1);
a(3) = 1.8 = 2 h(0)

h(n) = h(6− n)
h(0) = h(6); h(1) = h(5); h(2) = h(4); h(3) = h(3)

Hence, the required impulse response will be

h(n) = {0.9, 0.6, 0.25, 2, 0.25, 0.6, 0.9}

Problem 9.6
The impulse response of a Type-I positive symmetry FIR filter is given by the
following expression:

h(n) = {0.6, 0.25, 2, 0.25, 0.6}
Determine the frequency response H (ω) of the filter in the form of a sequence.

Solution 9.6
The impulse response as given in the question is five, which means the length
of the FIR filter is N = 5. The frequency response of an FIR for a causal filter
is given by the following expression:

H(ω) =
N−1∑
n=0

h(n)e−jωn =
4∑

n=0
h(n)e−jωn

H(ω) = h(0) + h(1)e−jω + h(2)e−j2ω + h(3)e−j3ω + h(4)e−j4ω

The necessary and sufficient condition for a filter to be causal

h(n) = h(4− n)
h(0) = h(4); h(1) = h(3); h(2) = h(2)

Replacing the above expression using the necessary and sufficient condition
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H(ω) = h(0) + h(1)e−jω + h(2)e−j2ω + h(1)e−j3ω + h(0)e−j4ω

H(ω) = e−jω2[h(2)+
1∑

n=0

{h(0)e2jω +h(0)e−j2ω}+{h(1)ejω +h(1)e−jω}]

H(ω) = e−jω2[h(2) +
1∑

n=0

h(0){e2jω + e−j2ω} + h(1){ejω + e−jω}]

a(0) = h[N−1
2 ]; a(n) = 2h[N−1

2 − n] n = 1, 2, . . . , (N − 1)/2

a(0) = h[2]; a(n) = 2h[2−n] n = 1, 2, . . . , (N − 1)/2

a(0) = h(2) = 2; a(1) = 2 h(1) = 2(0.25) = 0.5;

a(2) = 2 h(0) = 2(0.6) = 1.2

H(ω) = e−jω2{a(0)+a(1) cos[ω]+a(2) cos[2ω]}
H(ω) = e−jω2{2+0.5 cos[ω]+1.2 cos[2ω]}

Problem 9.7
Derive the impulse responses of an ideal, zero-phase non-causal, low pass,
and positive symmetry digital filter.

Cut-off frequency = 250 Hz; Sampling Frequency = 2000 Hz
Order of the Filter = 20; Filter Length required = 21 [N = 21].

Solution 9.7
The value of ωc is calculated from the cut-off frequency and the sampling
frequency

ωc = 2π
fc

Fs
= 2π

250
2000

=
π

4
The finite numbers of terms are required to implement a low-pass digital filter
design. So, we calculate the expression for hD(n) at some reasonable value of
N = 21.

Using inverse Fourier transform hD(n) = G
nπ sin nωc, n = 0,±1,

± 2, . . . .
hD(0) can be calculated in a different way using the relationship obtained

by hD(0) = 1
πωc

The coefficient values have been calculated and tabulated using an even
function symmetric condition, h(n) = h(–n).
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Causal filter positive symmetric condition h(0); h(1) = h(–1); h(2) = h(–2);
h(3) = h(–3); h(4) = h(–4); h(5) = h(–5); h(6) = h(–6); h(7) = h(–7); h(8) = h(–8);
h(9) = h(–9); h(10) = h(–10).

hD(0) =
1
π

ωc =
1
π

π

4
= 0.25

hD(1) = hD(−1) =
1
π

sin
1.π

4
= 0.225

hD(2) = hD(−2) =
1

2.π
sin

2.π

4
= 0.159

hD(3) = hD(−3) =
1
π

sin
3.π

4
= 0.075

hD(4) = hD(−4) =
1
π

sin
4.π

4
= 0.0

hD(5) = hD(−5) =
1
π

sin
5.π

2
= −0.045

hD(6) = hD(−6) =
1
π

sin
6.π

2
= −0.053

hD(7) = hD(−7) =
1
π

sin
7.π

2
= −0.032

hD(8) = hD(−8) =
1
π

sin
8.π

2
= 0.0

hD(9) = hD(−9) =
1
π

sin
9.π

2
= 0.025

(a) Magnitude response of the low-pass filter (b) Coefficients values of the impulse response
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hD(10) = hD(−10) =
1
π

sin
10.π

2
= 0.032

The impulse and magnitude response have been generated using the FDA tool
in Matlab.

Problem 9.8
Find the impulse responses of an ideal, linear-phase, causal low-pass digital
filter with a cutoff frequency ωC = π/4 and G = 1. The length of the filter = 21.

Solution 9.8
We simply truncate the expression for hD(n) at some reasonable value of
(N − 1)/2.

A linear-phase low-pass filter means that the filter is causal. The nec-
essary and sufficient condition, i.e. h(n) = h(N − 1 – n), is used to
calculate the filter coefficients. The impulse response formula hD(n) =
1/([n]π) sin[n]ωC , n = 0, 1, 2, 3, . . . . .N − 1 is modified by shifting as
either subtracting n by (N − 1)/2 or subtracting n from (N − 1)/2, normally
we use the first case to avoid any minus sign in the impulse response formula.

hD(n) =
1[

N−1
2 − n

]
π

sin
[
N − 1

2
− n

]
ωC , n = 0, 1, 2, 3, . . . . .N − 1

hD(n) =
1[

n− N−1
2

]
π

sin
[
n− N − 1

2

]
ωC , n = 0, 1, 2, 3, . . . . .N − 1

The values of shifted coefficients are calculated and tabulated for ωC = π/4
and G = 1. The impulse response value table is generated below for 21 terms.
Using the formula

hD(n) =
1[

N−1
2 − n

]
π

sin
[
N − 1

2
− n

]
ωC , n = 0, 1, 2, 3, . . . . .N − 1

For N = 21, the above impulse response formula for no causal system
reduces to

hD(n) =
1

[10− n]π
sin[10− n] ωC , n = 0, 1 , 2, 3, . . . . .N − 1

For n = 0 or n = 20. hD(0) = 1
[10]π sin[10] ωC hD(0) = 1

[10]π sin[10] π
4

= 0.032
For n = 1 or n = 19. hD(1) = 1

[9]π sin[9] ωC hD(1) = 1
[9]π sin[9] π

4
= 0.025
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For n = 2 or n = 19. hD(2) = 1
[8]π sin[8] ωC hD(2) = 1

[8]π sin[8] π
4 = 0.0

For n = 3 or n = 17. hD(3) = 1
[7]π sin[7] ωC hD(3) = 1

[7]π sin[7] π
4

= −0.032
For n = 4 and n = 16. hD(4) = 1

[6]π sin[6] ωC hD(4) = 1
[6]π sin[6] π

4
= −0.053

For n = 5 and n = 15. hD(5) = 1
[5]π sin[5] ωC hD(5) = 1

[5]π sin[5] π
4

= −0.045
For n = 6 and n = 14. hD(6) = 1

[4]π sin[4] ωC hD(6) = 1
[4]π sin[4] π

4 = 0.0

For n = 7 and n = 13. hD(7) = 1
[3]π sin[3] ωC hD(7) = 1

[3]π sin[3] π
4

= 0.075
For n = 8 and n = 12. hD(8) = 1

[2]π sin[2] ωC hD(8) = 1
[8]π sin[8] π

4
= 0.159

For n = 9 and n = 11. hD(9) = 1
[1]π sin[1] ωC hD(9) = 1

[1]π sin[1] π
4

= 0.225
or n = 10, hD(10) = 1

π ωC hD(10) = 1
π

π
4 = 0.25

(a) Coefficients values of the FIR causal filter (b) Impulse response for N = 21 for a Causal
Low-pass

Problem 9.9
Find and sketch the impulse responses of an ideal, zero-phase, non-causal
low-pass, positive symmetry, digital filter which has filter length N = 17 with
cut-off frequencies (a) ω = π/5; (b) ω = π/2, where G = 1.

Solution 9.9
The coefficient values have been calculated and tabulated using even function
symmetric condition h(n) = h(–n). Causal filter positive symmetric condition
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h(0); h(1) = h(–1); h(2) = h(–2); h(3) = h(–3); h(4) = h(–4); h(5) = h(–5);
h(6) = h(–6); h(7) = h(–7); h(8) = h(–8).

(a) Using the equation, hD(n) = G
nπ sin nωc, n = 0,±1,±2, . . . . .

The coefficient h[0] cannot be calculated in the straight forward manner
carried out for the other coefficients, because the numerator and denominator
are both zero. Hence, here we will resort to L’Hopital’s rule

h[0] =
ωc

π
=

π/5
π

= 0.2

hD(1) = hD(−1) =
1
π

sin
1.π

5
= 0.18709

hD(2) = hD(−2) =
1

2.π
sin

2.π

5
= 0.15136

hD(3) = hD(−3) =
1
3π

sin
3.π

5
= 0.1009

hD(4) = hD(−4) =
1
3π

sin
4.π

5
= 0.0467

hD(5) = hD(−5) =
1
5π

sin
5.π

5
= 0.0

hD(6) = hD(−6) =
1
6π

sin
6.π

2
= −0.0312

hD(7) = hD(−7) =
1
7π

sin
7.π

2
= −0.0432

hD(8) = hD(−8) =
1
π

8 sin
8.π

2
= −0.0378
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(b) Using equation hD(n) = G
nπ sin nωc, n = 0,±1,±2, . . . . .

ωc =
π

2
h[n] =

1
nπ

sin
nπ

2

hD(0) =
1
π

ωc =
1
π

π

2
= 0.5

hD(1) = hD(−1) =
1
π

sin
1.π

2
= 0.3183

hD(2) = hD(−2) =
1

2.π
sin

2.π

2
= 0.159

hD(3) = hD(−3) =
1
3π

sin
3.π

2
= 0.0

hD(4) = hD(−4) =
1
4π

sin
4.π

2
= 0.0

hD(5) = hD(−5) =
1
5π

sin
5.π

2
= −0.1061

hD(6) = hD(−6) =
1
6π

sin
6.π

2
= 0.0

hD(7) = hD(−7) =
1
7π

sin
7.π

2
= −0.0454

hD(8) = hD(−8) =
1
8π

sin
8.π

2
= 0.0

The impulse response is drawn over the range –8 ≤ n ≤ 8 in Figure 9.12

(b) Ideal frequency response of a zero-phase low-pass filter
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Problem 9.10
Find and plot the impulse response sequence, positive symmetry Finite
Impulse Response (FIR) for a low-pass causal filter with 21 terms and a gain
of 1. A sampling frequency of 1000 Hz, and a cut-off frequency of 250 Hz
is to be used.

Solution 9.10
The value of ωc is calculated from the cut-off frequency and the sampling
frequency

ωc = 2π
fc

Fs
= 2π

250
1000

=
π

2
The finite number of terms are required to implement a low-pass digital filter
design for some reasonable value of N = 21.

For finding coefficient values of causal FIR filters, the formula of the
impulse response obtained from the inverse Fourier transform should be
modified. Below is the impulse response of a low-pass filter, which has been
modified to cater to the case of causal filters.

The necessary and sufficient condition of h(n) = h(N − 1− n) is used
to calculate the filter coefficients. The impulse response formula hD(n) =
(G/([n]π)) sin[n] ωC , n = 0, 1, 2, 3, . . . . . N − 1 is modified by shifting as
follows:

Either subtracting n by (N − 1)/2 or subtracting n from (N − 1)/2,
normally we use the first case to avoid any minus sign in the impulse response
formula.

hD(n) =
G[

N−1
2 − n

]
π

sin
[
N − 1

2
− n

]
ωC , n = 0, 1, 2, 3, . . . . . N − 1

hD(n) =
G[

n− N−1
2

]
π

sin
[
n− N − 1

2

]
ωC , n = 0, 1, 2, 3, . . . . . N − 1

The value of shifted coefficients are calculated and tabulated for ωC = π/4 and
G = 1. The impulse response value table is generated below for 21 terms for
the case of a causal filter. Using the formula

hD

(
N − 1

2
− n

)
=

G[
N−1

2 − n
]
π

sin
[
N − 1

2
− n

]
ωC ,

n = 0, 1, 2, 3, . . . . . N − 1
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For N = 21, the above impulse response formula for no causal system
reduces to

hD(10− n) =
1

[10− n]π
sin[10− n] ωC , n = 0, 1, 2, 3, . . . . . N − 1

For n = 0 or n = 20. hD(10) = 1
[10]π sin[10] ωC

hD(10) = 1
[10]π sin[10] π

2 = 0.0
For n = 1 or n = 19. hD(9) = 1

[9]π sin[9] ωC

hD(9) = 1
[9]π sin[9] π

2 = 0.025
For n = 2 or n = 19. hD(8) = 1

[8]π sin[8] ωC

hD(8) = 1
[8]π sin[8] π

2 = 0.0
For n = 3 or n = 17 hD(7) = 1

[7]π sin[7] ωC

hD(7) = 1
[7]π sin[7] π

2 = −0.032

(a) Coefficient value and Phase Response of a low-pass filter (b) Magnitude and Impulse
response of a Low-pass FIR filter
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For n = 4 and n = 16. hD(6) = 1
[6]π sin[6] ωC

hD(6) = 1
[6]π sin[6] π

2 = −0.053
For n = 5 and n = 15. hD(5) = 1

[5]π sin[5] ωC

hD(5) = 1
[5]π sin[5] π

2 = −0.045
For n = 6 and n = 14. hD(4) = 1

[4]π sin[4] ωC

hD(4) = 1
[4]π sin[4] π

2 = 0.0
For n = 7 and n = 13. hD(3) = 1

[3]π sin[3] ωC

hD(3) = 1
[3]π sin[3] π

2 = 0.075
For n = 8 and n = 12. hD(2) = 1

[2]π sin[2] ωC

hD(10) = 1
[8]π sin[8] π

2 = 0.159
For n = 9 and n = 11. hD(1) = 1

[1]π sin[1] ωC

hD(1) = 1
[1]π sin[1] π

2 = 0.383
For n = 10, hD(0) = 1

π ωC hD(10) = 1
π

π
2 = 0.5

Problem 9.11
Develop an expression for a causal low-pass Finite Impulse Response (FIR)
filter having a length of terms (N = 7) and a gain of 1. A sampling frequency
of 1000 Hz, and a cutoff frequency of 250 Hz is to be used in designing.

(a) Rectangular
(b) Hanning
(c) Hamming

Solution 9.11
The generalized expression of the FIR filter having filter length N = 7 is

H(z) =
N−1∑
n=0

h(n) z−n

H(z) = h(0)+h(1)z−1+h(2)z−2+h(3)z−3+h(2)z−4+h(1)z−5+h(0)z−6

Using the necessary and sufficient condition, h(n) = h(N − 1 – n), to convert
the above expression into another readymade formula for causal FIR, we get

For N = 7, h(n) = h(N − 1− n) means h(n) = h(6− n): the
calculated values are required as follows: h(0) = h(6);h(1) = h(5);h(2) =
h(4);h(3).
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It should be kept in mind that the required filter is an FIR causal filter, so
the impulse response formula must first be modified as shown below.

hD(n) =
1

nπ
sin nωc

The necessary and sufficient condition, i.e. h(n) = h(N − 1 – n), is used
to calculate the filter coefficients. The impulse response formula hD(n) =

G
[n]π sin[n] ωC , n = 0, 1, 2, 3, . . . . . N−1 is modified by shifting as follows:

either subtracting n by (N−1)/2or subtracting n from (N−1)/2, normally
we use the first case to avoid the minus sign in the impulse response formula.

hD(n) =
G[

N−1
2 − n

]
π

sin
[
N − 1

2
− n

]
ωC , n = 0, 1, 2, 3, . . . . . N − 1

or

hD(n) =
G[

n− N−1
2

]
π

sin
[
n− N − 1

2

]
ωC , n = 0, 1, 2, 3, . . . . . N − 1

The values of shifted coefficients are calculated and tabulated for ωC = π/2
and G = 1. The impulse response value table is generated below for 7 terms
for the case of causal filters. Using this formula,

hD(n) =
G[

N−1
2 − n

]
π

sin
[
N − 1

2
− n

]
ωC , n = 0, 1, 2, 3, . . . . . N − 1

For N = 7, the above impulse response formula for no causal system
reduces to

hD(n) =
1

[3− n]π
sin[3− n] ωC , n = 0, 1, 2, 3, . . . . . N − 1

ωC =
2πfc

Fs
=

2π250
1000

=
π

2
For n = 0 or n = 6,

hD(0) =
1

[3]π
sin [3] ωC hD(0) =

1
[3]π

sin [3]
π

2
= 0− .10610

For n = 1 or n = 5,

hD(1) =
1

[2]π
sin[2] ωC hD(1) =

1
[2]π

sin[2]
π

2
= 0.0
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For n = 2 or n = 4,

hD(2) =
1

[1]π
sin[1] ωC hD(2) =

1
[1]π

sin[1]
π

2
= 0.3183

For n = 3,

hD(3) =
1
π

ωC hD(3) =
1
π

π

2
= 0.5

N hD(n)
0 6 −0.10610
1 5 0.00000
2 4 0.31830

3 0.5

(a) For a rectangular window,
ω(n) = 1.0, it means hD(n) = h(n)

Similarly, the following chart shows that h(n) is the same as the impulse
response hD(n), because the magnitude of the rectangular window is 1.0 at
every instant.

n hD(n) ω(n) h(n) = hD(n).ω(n)
0 6 −0.10610 1.0 −0.10610
1 5 0.00000 1.0 0.00000
2 4 0.31830 1.0 0.31830

3 0.5 0.5

The expression for FIR filters can be given using rectangular windows as

H (z) = −0.10610+0.3183 z−2 +0.5 z−3 +0.3183 z−4 +−0.10610 z−6

(b) For a Hanning window,
ω[n] = 0.5− 0.5 cos 2πn

N−1 ; 0 = n = 6

ω[0] = ω[6] = 0.00ω[1] = ω[5] = 0.5− 0.5 cos
π

3
= 0.25

ω[2] = ω[4] = 0.5− 0.5 cos
2π

3
= 0.75

ω[3] = 0.5− 0.5 cos π = 1.0
The expression for FIR filter can be obtained using the Hanning window as

H(z) = 0.238725 z−2 + 0.5 z−3 + 0.238725 z−4
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n hD(n) ω(n) h(n) = hD(n)*ω(n)
0 6 −0.10610 0 0
1 5 0.00000 0.25 0.000
2 4 0.31830 0.75 0.238725

3 0.5 1.0 0.5

(c) For a Hamming window,

ω[n] = 0.54− 0.46 cos 2πn
6 ; 0 = n = 6

ω[0] = ω[6] = 0.08

ω[1] = ω[5] = 0.54− 0.46 cos
π

3
= 0.31

ω[2] = ω[4] = 0.54− 0.46 cos
2 π

3
= 0.77

ω[3] = 0.54− 0.46 cos π = 1

The FIR coefficients are given by

n hD(n) w(n) h(n) = hD(n)*w(n)
0 6 −0.10610 0.08 −0.008488
1 5 0.00000 0.31 0.00000
2 4 0.31830 0.77 0.24509

3 0.5 1.0 0.50000

The expression for FIR filters can be written using the Hamming window as

H(z) = −0.008488 + 0.24509z−2 + 0.31831z−3 + 0.24509z−4

−0.008488z−6

The frequency responses of the FIR low-pass filters for three windows are
shown below

Problem 9.12
Write the expression for a causal low-pass filter with a frequency response

H(ω) = 1 for |ω| ≤ ωC

H(w) = 0 for ωC < ω ≤ ωs/2

where ωs is the sampling frequency
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Solution 9.12
The frequency response for linear-phase, positive symmetry FIR filters is
given by

hD(n) =
1

ωS

∫ ωc

−ωπ
1× ejωndω =

1
nπ

sin ωcn

Hence,

H(z) = z
−(N−1)

2

(N−1
2 )∑

n=0

a(n)
2 (zn + z−n) where

a(0) = h

[
N − 1

2

]
a(n) = 2h

[
N − 1

2
− n

]

Problem 9.13
Alow-pass digital filter is required for physiological noise reduction. The filter
should meet the following specifications:

Pass-band edge frequency 10 Hz
Stop-band edge frequency < 20 Hz
Stop-band attenuation > 30 dB
Pass-band attenuation < 0.026 dB
Sampling frequency 256 Hz

Solution 9.13
Important requirements in this application are: (i) the filter should introduce
as little distortion as possible to the in-band signals and (ii) the length of the
filter should be as low as possible and should not exceed 37.

Problem 9.14
Find the coefficients of an ideal high-pass non-causal, positive symmetry,
filter that has a pass band for frequencies greater than 10 kHz, where the
system sampling frequency = 50 kHz. Let the pass band gain be unity for filter
length, N = 21.

Solution 9.14
The frequency response for positive symmetry FIR filters is given by

digtal cutoff frequency = fc
F s

= 10×(103)
50×(103) = 1

5
ωC = 2(π) fc = 2(π) (1/5) = 0.4π rad

hD(n) = δ(n)− G

nπ
sin nωc

hD(n) = δ(n) 1
nπ sin n(0.4π)

hD(0) = 1− 2(0.2) = 0.6
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The values of high-pass FIR coefficients are tabulated below for ωC = 0.4π
and G = 1.

(a) Coefficient value of the high-pass filter (b) Impulse response of the filter

Problem 9.15
Design a causal high-pass, positive symmetry, Finite Impulse Response (FIR)
filter with N = 7 and ωC = 2 rad/sec using following windows. Develop the
transfer function H (z) of the filters.

(a) Rectangular
(b) Hanning

Solution 9.15
For finding coefficient values of the causal FIR filter, the formula for the
impulse response obtained from inverse Fourier transform should be modified.
Below is the impulse response of a high-pass filter, which has been modified
to cater to the case of causal filters.

hD(n) = δ(n)− G

nπ
sin nωc

hD(n) = δ

(
N − 1

2
− n

)
− G[

N−1
2 − n

]
π

sin
[
N − 1

2
− n

]
ωc

hD(n) = δ(3− n)− G

[3− n]π
sin[3− n]ωc

G = 1.
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For n = 0 or n = 6.

hD(0) = δ(3)− 1
[3]π

sin[3] ωC hD(0) = 0− 1
[3]π

sin[3] 2 = 0.0296

For n = 1 or n = 5.

hD(1) = δ(2)− 1
[2]π

sin[2] ωC hD(1) = 0− 1
[2]π

sin[2] 2 = 0.1205

For n = 2 or n = 4.

hD(2) = δ(1)− 1
[1]π

sin[1] ωC hD(1) = 0− 1
[1]π

sin[1] 2 = −0.2894

For n = 3.

hD(3) = 1− 1
π

ωC hD(3) = 1− 1
π

2 = 0.3634

n hD(n)
0 6 0.0296
1 5 0.1205
2 4 −0.2894

3 0.3634

For calculating coefficient values of causal FIR filters, we look at the impulse
response of a high-pass filter, which has been modified using a rectangular
window.

(a) By using a rectangular window, the magnitude is the same as that of
the impulse response

n hD(n) ω(n) h(n) = hD(n)*ω(n)
0 6 0.0296 1.0 0.0296
1 5 0.1205 1.0 0.1205
2 4 −0.2894 1.0 −0.2894

3 0.3634 1.0 0.3634

The expression for an FIR filter can be given as

H(z) = 0.0296 + 0.1205 z−1 − 0.2894 z−2 + 0.3634 z−3 − 0.2894 z−4

+ 0.1205 z−5 + 0.0296 z−6

(b) Using a Hanning window, the filter coefficients are obtained. For
finding coefficient values of a causal FIR filter, we look at the impulse response
of a high-pass filter, which has been modified using a Hanning window.
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N hD(n) w(n) h(n) = hD(n)*w(n)
0 6 0.0296 0 0
1 5 0.1204 0.25 0.031
2 4 −0.2894 0.75 −0.2171

3 0.3634 1.0 0.3634

The expression for FIR filters can be expressed by a Hanning window as

H(z) = 0.031z−1 − 0.2171z−2 + 0.3634z−3 − 0.2171z−4

+ 0.031z−5

Problem 9.16
A 13-coefficient causal non-recursive high-pass, causal positive symmetry,
filter is to be designed using the Fourier series approach to approximate
the frequency response characteristics with ωC = π/2 rad/sec. Calculate the
coefficient values for the FIR.

Solution 9.16
A general expression for the unit sample response (filter coefficients) for the
causal high-pass filter can be written from the above expression as

(a) Coefficients of the FIR high-pass filter (b) Impulse response of FIR high-pass filter
(c) Phase response (d) Magnitude response
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hD(n) = δ

(
N − 1

2
− n

)
− (1)[

N−1
2 − n

]
π

sin
[
N − 1

2
− n

]
ωC

hD HP (0) = 1− ωC

π

Problem 9.17
A 7-coefficient causal high-pass filter is to be designed using the Fourier
series approach to approximate the frequency response characteristics shown
in the figure below.

(a) Find the transfer function of the filter.
(b) Find the transfer function of the filter if a Hamming window is used.

Frequency response of a high-pass filter

Solution 9.17
A general expression for the unit sample response (filter coefficients) for the
causal high-pass filter can be written from the above expression as

hD(n) = δ

(
N − 1

2
− n

)
− 1[

N−1
2 − n

]
π

sin
[
N − 1

2
− n

]
ωC

hD HP(0) = 1− 2 fc = 1− ωC

π
hD(n) = δ(3− n)− sin(3− n)ωC

π(3− n)

(a) The filter coefficients are obtained.

n hD(n)
0 6 0.1061
1 5 0
2 4 −0.3183

3 0.5
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H(z) =
6∑

n=0

h(n) z−n

H(z) = h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4

+ h(5)z−5 + h(6)z−6

H(z) = 0.1061 −0.3183z−2 + 0.5z−3− 0.3183z−4 + 0.1061z−6

(b) Using hamming windows, the filter coefficients are obtained.

ω[n] = 0.54− 0.46 cos
2πn

N − 1
0 ≤ n ≤ N − 1

n hD(n) ω(n) h(n) = hD(n)*ω(n)
0 6 0.1061 0.08 0.0085
1 5 0 0.31 0
2 4 –3.183 0.77 −0.2451

3 0.5 1.0 0.5

The expression for FIR filters can be written by the hanning window as

H(z) = 0.0085 − 0.2451 z−2 + 0.5 z−3 − 0.2451 z−4

+ 00.0085 z−6

The filter frequency response magnitude (dB) and phase (degree) plots are
shown in figures.

Frequency response of a FIR filter with N = 7 terms. (a) Uniform window
(b) Hamming window
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Problem 9.18
Design a band-pass non-causal FIR filter for the following specification:

Cut-off frequency = 250 Hz and 500 Hz
Sampling frequency = 2000 Hz
Order of the filter = 6
Filter length required = 7

Solution 9.18
Using the design equation of a band-pass filter,

band-pass filter hD(n) =
sin nωc2 − sin nωc1

nπ

Normalize the cut-off frequencies

ωC1 = 2π
fC1

Fs
= 2π

250
2000

= 0.25π ωC2 = 2π
fC2

Fs
= 2π

500
2000

= 0.5π

hD(0) =
(0.5π)− (0.25π)

π
= 0.25 hD(1) = hD(−1)

=
sin(0.5π)− sin (0.25π)

π
= 0.0932

hD(2) = hD(−2) =
sin 2(0.5π)− sin 2(0.25π)

2π
= −0.15915

hD(3) = hD(−3) =
sin 3(0.5π)− sin 3(0.25π)

3π
= −0.1811

The above equation is used to find out the filter coefficients. We then use the
appropriate window to obtain the desired impulse response and the modified
filter coefficients.

Problem 9.19
Design a band-pass non-causal FIR filter for the following specification:

Cut-off frequency = 600 Hz and 1200 Hz
Sampling frequency = 3000 Hz
Order of the filter = 6
Filter length required = 7

Solution 9.19
Using the design equation of a band-pass filter



448 Step-by-Step Design of Digital FIR Filters

band-pass filter hD(n) =
sin nωC2 − sin nωC1

nπ
.

Normalize the cut-off frequencies

ωC1 = 2π
fC1

Fs
= 2π

600
3000

=
2π

5
= 0.4π

ωC2 = 2π
fC2

Fs
= 2π

1200
3000

=
4π

5
= 0.8π

hD(0) =
(8π)− (0.4π)

π
= 0.4 hD(1) = hD(−1)

=
sin(0.8π)− sin(0.4π)

π
= −0.1156

hD(2) = hD(−2) =
sin 2(0.8π)− sin 2(0.4π)

2π
= −0.2449

hD(3) = hD(−3) =
sin 3(0.8π)− sin 3(0.4π)

3π
= −0.1632

The above equation is used to find out the filter coefficients. We then use the
appropriate window to obtain the desired impulse response and the modified
filter coefficients.

Problem 9.20
Design a band-pass causal FIR filter for the following specification:

Cut-off frequency = 400 Hz and 800 Hz
Sampling frequency = 2000 Hz
Order of the filter = 10
Filter length required = 11

Solution 9.20
Using the design equation of a band-pass filter

band-pass filter hD(n) = sin nωC2− sin nωC1
nπ and modifying this expres-

sion for a causal filter.

band-pass filter hD(n) =
sin(N−1

2 − n)ωC2 − sin(N−1
2 − n)ωC1

(N−1
2 − n)π

Normalize the cut-off frequencies

ωC1 = 2π
fC1

Fs
= 2π

400
2000

= 0.4π ωC2 = 2π
fC2

Fs
= 2π

800
2000

= 0.8π
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band-pass filter hD(n) =
sin
(

N−1
2 − n

)
(0.8π)− sin

(
N−1

2 − n
)
(0.4π)(

N−1
2 − n

)
π

.

n = 0,10

hD(0) =
sin(5)(0.8π)− sin (5)(0.4π)

(5)π
=

sin(4π)− sin (2π)
(5)π

= 0.00

n = 1,9

hD(1) =
sin(4)(0.8π)− sin (3)(0.4π)

(4)π
=
−0.58778 + 0.95

4π

=
−0.58778 + 0.95

4π
= 0.0289

n = 2,8

hD(2) =
sin(3)(0.8π)− sin (3)(0.4π)

(3)π
= 0.1632

n = 3,7

hD(3) =
sin(2)(0.8π)− sin (2)(0.4π)

(2)π
= −0.2449

n = 4,6

hD(4) =
sin(1)(0.8π)− sin (1)(0.4π)

(1)π
= −0.1156

(a) Magnitude and coefficients of a FIR band-pass filter (b) Impulse, magnitude and phase
response of a band-pass FIR filter
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n = 5

hD(5) =
0.8π − 0.4π

π
= 0.400

The above equation is used to find out the filter coefficients. We then use the
appropriate window to obtain the desired impulse response and the modified
filter coefficients. These operations follow the same procedures we have
adopted in the design of low-pass and high-pass filters. Hence, they are not
repeated here. However, the FDA tool has been used to generate coefficients
and different types of responses.

Problem 9.21
Design a band-stop non-causal FIR filter for the following specification:

Cut-off frequency = 400 Hz and 800 Hz
Sampling frequency = 2000 Hz
Order of the filter = 10
Filter length required = 11

Solution 9.21
Using the design equation of a band-stop filter

band-stop filter hD(n) = δ(n)− sin nωC2 − sin nωC1

nπ
.

Normalize the cut-off frequencies

ωC1 = 2π
fC1

Fs
= 2π

400
2000

= 0.4π ωC2 = 2π
fC2

Fs
= 2π

800
2000

= 0.8π

band-stop filter hD(n) = δ(n)− sin n(0.8π)− sin n(0.4π)
nπ

hD(0) = δ(0)− ωC2 − ωC1

π
= 1− 0.8π − 0.4π

π
= 1− 0.4π

π
= 0.60

hD(1) = hD(−1) = δ(1)− sin 0.8π − sin 0.4π

π
= 0.1156

hD(2) = hD(−2) = δ(2)− sin 2(0.8π)− sin 2(0.4π)
2π

= 0.2449

hD(3) = hD(−3) = δ(3)− sin 3(0.8π)− sin 3(0.4π)
3π

= −0.1632

hD(4) = hD(−4) = δ(4)− sin 4(0.8π)− sin 4(0.4π)
4π

= −0.0289
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hD(5) = hD(−5) = δ(5)− sin 5(0.8π)− sin 5(0.4π)
5π

= 0.0

The above equation is used to find out the filter coefficients. We then use the
appropriate window to obtain the desired impulse response and the modified
filter coefficients. These operations follow the same procedures we have
adopted in the design of low-pass, high-pass, and pass-band filters. Hence,
they are not repeated here.

Problem 9.22
Design a band-stop causal FIR filter for the following specification:

Cut-off frequency = 400 Hz and 800 Hz
Sampling frequency = 2000 Hz
Order of the filter = 10
Filter length required = 11

Solution 9.22
Using the design equation of a band-stop filter

band-stop filter hD(n) = δ

(
N − 1

2
− n

)

−sin
(

N−1
2 − n

)
ωc1 − sin

(
N−1

2 − n
)
ωc2

nπ
.

Normalize the cut-off frequencies

ωC1 = 2π
fc1

Fs
= 2π

400
2000

= 0.4π

ωC2 = 2π
fc2

Fs
= 2π

800
2000

= 0.8π

band-stop filter hD(n) = δ(5− n)− sin(5− n)ωC1 − sin(5− n)ωC2

nπ

n = 0,10

hD(5) = δ(5)− sin(5)0.8π − sin(5)0.4π

5π
= 0.0

n = 1,9

band-stop filter hD(4) = δ(4)− sin(4)0.8π − sin(4)0.4π

4π
= −0.0289
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n = 2,8

band-stop filter hD(3) = δ(3)− sin(3)0.8π − sin(3)0.4π

3π
= −0.1632

n = 3,7

band-stop filter hD(2) = δ(2)− sin(2)0.8π − sin(2)0.4π

2π
= 0.2449

n = 4,6

band-stop filter hD(1) = δ(1)− sin(1)0.8π − sin(1)0.4π

1π
= 0.1156

n = 5

hD(5) = δ(0)− ωC2 − ωC1

π
= 1− 0.8π − 0.4π

π
= 1− 0.4π

π
= 0.6

The above equation is used to find out the filter coefficients. We then use the
appropriate window to obtain the desired impulse response and the modified
filter coefficients. These operations follow the same procedures we have
adopted in the design of low-pass, high-pass, and pass- and stop-band filters.
Hence, they are not repeated here.

(a) Magnitude and coefficients of a FIR band-stop filter (b) Impulse, magnitude, and phase
response of a band-stop FIR filter

Problem 9.23
An FIR digital filter is to meet the following specifications:

Pass-band 150–250 Hz
Transition width 50 Hz
Pass-band attenuation 0.1 dB
Stop-band attenuation 60 dB
Sampling frequency 1000 Hz

Obtain the filter coefficients and spectrum using the window method.
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Solution 9.23
From the specifications, the pass-band and stop-band ripples are

20 log (1 + δp) = 0.1 dB, giving δp = 0.0115
−20 log (δS) = 60 dB, giving δs = 0.001

Thus,
δ = min (δp, δs) = 0.001

The attenuation requirements can only be met by the Kaiser or the Blackman
window. For the Kaiser window, the numbers of filter coefficients are:

N ≥=
A− 7.95
14.36ΔF

=
60− 7.95

14.36(50/1000)
= 72.49

Let N = 73. The ripple parameter is given by

β = 0.1102(60 − 9.7) = 5.65

With N = 73, β = 5.65, Matlab is used to compute the values of ω(n), the ideal
impulse response hD(n), and the filter coefficients.

To account for the smearing effects of the window functions in computing
the ideal impulse response, cutoff frequencies of fC1– Δf /2 and f C2 + Δf /2
were used, that is f C1 = 125 Hz and 275 Hz, respectively.

For the Blackman window, an estimate of the number of filter coefficients
is obtained as

Spectrum of the filter
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N = 5.5/Δ f = 5.5/(50/1000) ≈ 110
The filter coefficients for the Blackman window are not given here owing to
lack of space. It is evident that the Kaiser window is more efficient than the
Blackman window in terms of the number of coefficients required to meet the
same specifications. In general, the Kaiser window is more efficient compared
with the other windows in this respect.

Problem 9.24
Design a low-pass filter with Finite Impulse Response (FIR) using the Kaiser
window to satisfy the following specification.

Pass-band ripple: in the frequency range 0 to 1.5 rad/sec ≤ 0.1 dB
Minimum stop-band attenuation: range 2.5 to 5 rad/sec ≥40 dB

Sampling frequency: 10 rad/sec.
Obtain the filter coefficients and spectrum using the window method.

Solution 9.24
hD(n) =

1
nπ

sin nωc

ωC =
1
2
(1.5 + 2.5) = 2 rad/sec

δs = 10−0.05(40) = 0.01

δp = 100.05(0.1) − 1 = 0.0115

δ = min(δP , δS) = 0.0115

AS = –20 log δS = 39.76
Therefore N ≥ A−7.95

14.36ΔF = 38.786−7.95
14.36(50/1000) = 21.47 = 21

H(z) = z− N−1
2

(N−1
2 )∑

n=0

an

2
(zn + z−n)

Problem 9.25
Obtain the coefficients of a linear-phase FIR filter using the Kaiser window
to satisfy the following amplitude response specification:

Stop-band attenuation 40 dB
Pass-band ripple 0.01 dB
Transition width 500 Hz
Sampling frequency 10 kHz
Ideal cutoff frequency 1 kHz
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Solution 9.25
From the specification,

20 log (1 + δp) = 0.01 dB, giving δp = 0.00115
−20 log (δs) = 40 dB, giving δs = 0.01

Since both the pass-band and stop-band ripples are equal (as they cannot be
specified independently) in the window method, we use the smaller of the
ripples:

δ = min(δP , δS) = 0.0115

This means that the stop-band attenuation is required. In this case,

−20 log(0.00115) = 59.8 dB.

The number of filter coefficients required is

N =
A− 7.95
14.36ΔF

=
58.8− 7.95

14.36(500/10000)
≈ 71

If the required attenuation specification of 40 dB was used, N would have
been 45. Thus, the need for δp to be equal to δs in the window method has led
to a higher than necessary number of filter coefficients.

The ripple parameter is obtained as shown below

α = 0.5842(59.8 − 21)0.4 + 0.07886(59.8− 21) = 5.48

The FIR coefficients are obtained from h(n) = hD(n)w(n), where (from
Table 9.2)

hD(n) = 2fc
sin(nωc)

nωc
n �= 0

hD(n) = 2fc n = 0

As explained before, the cutoff frequency, fc, used in calculating h(n) is
different to that given in the specifications to account for the smearing effect
of the window function.

We select fc such that it is in the middle of the transition band:

f
′
c = 1200 + Δf/2 = 1450 Hz.

The following filter parameters are used with the computer program.
Cutoff frequency 1450 Hz
Ripple parameter, β 5.48
Number of filter coefficients 71 and
Sampling frequency 10 kHz

The resulting filter coefficients can be calculated.



456 Step-by-Step Design of Digital FIR Filters

Practice Problem 9.26
The frequency response, H (ω), of a type II, linear-phase FIR filter may be
expressed as

H(ω) = e−jω(N−1)/2
N/2∑
n=1

b(n) cos
[
ω

(
n− 1

2

)]

where b(n) is related to the filter coefficients. Explain why filters with the
response above are unsuitable as high-pass filters. Use a simple case (such as
N = 4) to illustrate your answer.

Practice Problem 9.27
An FIR filter has an impulse response, h(n), which is defined over the interval
0≤ n≤ N – 1. Show that if N is even and h(n) satisfies the positive symmetry
condition, that is h(n) = h(N – n – 1), the filter has a linear-phase response.
Obtain expressions for the amplitude and phase responses of the filter.

Practice Problem 9.28
Show that the impulse response for an ideal band-pass filter is given by

hD(n) = 2f2
sin nω2

nω2
− 2f1

sin nω1
nω1

n �= 0
= 2(f2 − f1) n = 0

where f1 is the lower pass-band frequency and f2 is the upper pass-band
frequency.

Practice Problem 9.29
Obtain the coefficients of an FIR low-pass digital filter to meet the following
specifications using the window method:

Stop-band attenuation 50 dB
Pass-band edge frequency 3.4 kHz
Transition width 0.6 kHz
Sampling frequency 8 kHz



10
Step-by-Step Design of IIR Filters

This chapter begins with general consideration of analog filters; it further
discusses the design stages of IIR Digital Filters, the calculation of IIR Filter
coefficient by Bilinear Z-transformation, Impulse Invariant and Pole-Zero
Placement methods, and Problems and Solutions.

10.1 Introduction

The filters magnitude response is represented with respect to frequency;
therefore, these filters are also named as frequency selective filters. The system
transfer functions for an analog filter are denoted by H(s), where s = σ+jΩ,
where Ω is continuous time angular frequency. The frequency transfer function
of an analog filter, denoted by H(jΩ), is obtained by evaluating the system
function H in the s-plane along the frequency axis, or H(jΩ) = H(s)s=jΩ.
The squared magnitude response |H(jΩ)|2 [power transfer characteristic] of
the filter is shown below.

10.2 Analog Prototype Filters

Prior to the widespread use of DSP, high-performance frequency selective
filters needed to de designed with analog electronics DSP allowed the devel-
opment of a new class of filter, the linear-phase FIR filter, for which there is
no analog electronics counterpart.

The digital version of analog filters can realize certain filter characteristics
with a lower order (fewer coefficients) than a comparable FIR filter. The digital
counterparts to classic analog filters are all IIR design.

457
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Figure 10.1 Sketches of frequency responses of some classical analog filters (a) Butterworth;
(b) Chebyshev type I; (c) Chebyshev type II; and (d) Elliptic.

Analog Filter
Type

Pass-Band
Ripple

Stop-Band
Ripple Transition Witn

Butterworth Monotonic Monotonic Wide
Chebyshev-I Equiripple Monotonic Narrow
Chebyshev-II Monotonic Equiripple Narrow
Elliptic Equiripple Equiripple Very Narrow

10.2.1 Preview of Butterworth Filter

The low-pass Butterworth filter is characterized by the following magnitude-
squared-frequency response, and it should be noted clearly that poles of
Butterworth filter lies on the circle.

|H(Ω)|2 =
1

1 +
(

Ω
Ωp

p

)2N
(10.1)

where N is the filter order and Ωp
p is the 3-dB cutoff frequency of the low-

pass filter (for the normalized prototype filter, Ωp
p is always equal to 1).

The magnitude-frequency response of a typical Butterworth low-pass filter
is depicted in Figure 10.1(a), and is seen to be monotonic in both the
pass-band and stop-band. The response is said to be maximally flat because
of its initial flatness (with a slope of zero at dc).
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The Butterworth polynomials can be determined from the following
formula, which has been derived for understanding.

(
Ω
Ωp

p

)2N

+ 1 = 0;
(

jΩ
j Ωp

p

)2N

= −1;
(

Ω
j Ωp

p

)2N

= −1

(s)2N = (−1)
(
j Ωp

p

)2N or (e−jπ) = −1
(
ejπ/2

)2N
=
(
ejπ/2

)
= j

As the value of a complex number is unchanged when multiplied by ej(2πm)

for an integer value of m, i.e. m = 1, 2, 4, . . . . . . . .,

(s)2N = (e−jπ)
(
ejπ/2

)
2N Ωp 2N

p ej(2πm)

(s)2N = (e−jπ)
(
ejπ/2

)
2N Ωp 2N

p ej(2πm)

(s)2N = Ωp 2N
p ej(2m+N−1)π

distinct location of the poles are found by

sm = Ωp
p ej( 2m+N−1

2 N )π)

The transfer function of the normalized analog Butterworth filter, H(s),
contains zeros at infinity and poles which are uniformly spaced on a circle
of radius Ωp

p = 1 in the s-plane at the following locations.

sm = ejπ(2m+N−1)/2N = cos
[
(2m + N − 1)π

2N

]

+ j sin
[
(2m + N − 1)π

2N

]
m = 1, 2, . . ., N (10.2)

The poles occur in complex conjugate pairs and lie on the left-hand side of
the s-plane.

Using Equation (10.2), the normalized Butterworth polynomial is derived
and is given in tabular form for different values of N. Students are advised to
verify themselves that how it has been derived.

Order of N Factors for the Butterworth denominator polynomial
1 s + 1
2 s2 + 1.414s + 1
3 (s + 1)(s2 + s + 1)
4 (s2 + 0.765s + 1)(s2 + 1.848s + 1)
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10.2.2 Preview of Chebyshev Filter

The Chebyshev characteristic provides an alternative way of obtaining a
suitable analog transfer function, H(s). There are two types of Chebyshev
filters, types I and II, (Figure 10.1(b) and (c)): with the following features and
again to be noted that poles of the Chebyshev filter lie on the ellipse

• Type I with equal ripple in the pass-band, monotonic in the stop-band;
• Type II, with equal ripple in the stop-band, monotonic in the pass-band.

Type I Chebyshev filters; for example, are characterized by the magnitude-
squared response

|H(Ω)|2 =
K

1 + ε2C2
N (Ω/Ωp)

(10.3)

where ε is a constant less than 1, CN (Ω/ΩP ) is a Chebyshev polynomial which
exhibits equal ripple in the pass band, N is the order of the polynomial as well as
that of the filter, and ε determines the pass-band attenuation, which in decibels
is given by pass-band attenuation ≤ 10 log10(1 + ε2) = −20 log10(1− δp).

A typical amplitude response of a type I Chebyshev characteristic is
shown in Figure 10.1. The transfer function, H(s), for the Chebyshev response
depends on the desired pass-band attenuation and the filter order, N.

The first method of finding polynomial of the normalized Chebyshev LPF,
which lies on an ellipse in the s-plane, can be found with the help of the
following coordinates:

sm = σm + jΩm

sm = − sinh(α) sin[2m−1
2N ]π + j cosh(α) cos[2m−1

2N ]π m = 1, 2, . . . . ., N
(10.4)

where

α =
1
N

sinh−1
(

1
ε

)
(10.5)

The second method of finding polynomial of the normalized Chebyshev LPF
is described by a relation that looks trigonometric in nature, where CN(x) is
actually a polynomial of degree N.

CN (x) = cos
[
N cos−1(x)

]
where ϕ =

[
cos−1(x)

]
(10.6)

where x = (Ω/Ωp)

C0(x) = cos [0] = 1 and C1(x) = cos
[
cos−1(x)

]
= x (10.7)

CN (x) = cos [Nϕ]
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Using trigonometric identities:

cos(α± β) = cos α cos β ± sin α sin β

cos[(N + 1)ϕ] + cos[(N − 1)ϕ] = 2 cos[Nϕ] cos[ϕ]

CN+1(x) = 2 cos[Nϕ] cos[ϕ]− CN−1(x) for n ≥ 1 (10.8)

The normalized Chebyshev polynomial up to order 4 has been calculated
using Equations (10.8) and (10.9) and placed below in the tabular form
without the ripple factor (ε) for different values of N. Students are advised
to verify themselves that how it has been derived.

Order of N CN(x) = ω/ωp

0 1
1 x
2 2x2 − 1
3 4x3 − 3x
4 8x4 − 8x2 + 1

|H(Ω)|2 =
K

1 + ε2C2
N (x)

(10.9)

Using Equation (10.9), the normalized Chebyshev polynomial, with the ripple
factor (ε), is derived and is given in the tabular form for different values of ε.
The formula for the pass-band ripple (AP ) and the ripple factor (ε) is given
in Equation (10.10).

AP (dB) = 10 log(1 + ε2) (10.10)

ε =
√

10AP − 1 (10.11)

Normalized Chebyshev Polynomial Pass-band 0.5 dB Ripple (ε = 0.3493)

Order of N Factors of Polynomial (s = jΩ)
1 s + 2.863
2 s2 + 1.426s + 1.5164
3 (s + 0.626)(s2 + 0.626s + 1.42453)
4 (s2 + 0.350s + 1.062881)(s2 + 0.846s + 0.35617)

Normalized Chebyshev Polynomial Pass-band 3.0 dB Ripple (ε = 0.9953)

Order of N Factors of Polynomial (s = jΩ)
1 s + 1.002
2 s2 + 0.2986s + 0.8395
3 (s + 0.299)(s2 + 0.2986s + 0.8395)
4 (s2 + 0.17s + 0.90214)(s2 + 0.412s + 0.1961)
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10.2.3 Preview of Elliptic filter

The elliptic filter exhibits equal ripple behavior in both the pass band and the
stop band; as shown in Figure 10.1(d), it is characterized by the following
magnitude-squared response:

|H(Ω′)|2 =
K

1 + ε2G2
N (Ω′)

where GN (Ω′) is a Chebyshev rational function. Unlike the Butterworth and
Chebyshev filters, there is no simple expression for the poles of the Elliptic
filter. A procedure is available for computing locations of the poles. The zeros
of the elliptic low-pass filter are entirely imaginary.

The elliptic characteristic provides the most efficient filters in terms of
amplitude response. It yields the smallest filter order for a given set of
specifications and should be the method of first choice in IIR filter design,
except where the phase response is of concern when the Butterworth response
may be preferred.

Tables of the polynomials of H(s) for the Butterworth, Chebyshev, and
Elliptic characteristics are available in most analog design books in normalized
form and can be used in the bilinear transformation. In practice, however, the
computation of H(z) from H(s) is done by the software.

10.3 Basic Structure of IIR Filters

IIR (Infinite Impulse Response) filter response never quite reaches zero
because the feedback makes the decay exponential. A practical filter has to
eventually settle to zero or it would be useless, unless one needs an oscillator.
IIR filters can oscillate if they are improperly designed. All feedback systems
have the potential to become unstable and oscillate.

The input and output signals to the filter are related by convolution sum,
which is given in Equation (10.12) for IIR filter.

y(n) =
∞∑

k=0

h(k) x(n − k) (10.12)

All IIR filters can be implemented in digital form. IIR filter uses feedback
to sharpen the filter response. There are two sets of filter coefficients. The
coefficient a is called the feed-forward coefficient, the coefficient b is the
feedback coefficient and x(n) and y(n) are the input and output to the filter.
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The IIR filter equation is expressed in a recursive form using Equations
(10.13) and (10.14)

y(n) =
∞∑

k=0

h(k) x(n − k) =
N∑

k=0

ak x(n− k)−
M∑

k=1

bky(n− k) (10.13)

H(z) =
a0 + a1z

−1 + · · ·+ aNz−N

1 + b1z−1 + · · ·+ bMz−M
=

N∑
k=0

akz
−k

1 +
M∑

k=1
bkz−k

(10.14)

The transfer function of the IIR filter, H(z), which is given in Equation (10.15)
can be factored as

H(z) =
K(z − z1)(z − z2) · · · (z − zN )
(z − p1)(z − p2) · · · (z − pM )

(10.15)

The following methods of calculating the coefficients of IIR filters are
discussed here.

(a) Bilinear Z transformation method
(b) Pole-zero placement method
(c) Impulse invariant method

10.4 Bilinear z-Transform (BZT) Method

One of the best digital IIR filter approximations to an analog filter is obtained
using the bilinear transform method (BZT). The formula obtained for this
method uses the fact that for a Laplace transform X(s) of a signal x(t), its
integral without initial conditions is given by X(s)/s, thus multiplying the
Laplace transform of a signal by 1/s is the same as integrating the signal in
the time domain.

However, the following difference equation also approximately integrates
the signal x(t) by using its sampled values x(nT ) = x(n). Remember that the
integral of a signal without initial condition is just the area under the signal.

y(n) = y(n− 1) +
x(n) + x(n− 1)

2
T (10.16)

Equation (10.16) just says that the area under a signal after a new input sample
x(n) is just the previously computed area y( n− 1) plus the average of the new
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input and the previous input multiplied by the time between samples. Now this
is just the previous area plus the average of new area. After Z-transformation
of (10.16) difference equation, we get the following equation, which is solved
for T(z) once we get transforms of the input x(z) and the output Y(z).

The most important method of obtaining IIR filter coefficients is the BZT
method, and the basic operation required to convert an analog filter H(s) into
an equivalent digital filter is to replace as follows:

Y(z) = z−1Y(z) + 0.5[X(z) + z−1X(z)]T

Y(z)(1− z−1) = 0.5 T X(z)[1 + z−1]

T (z) =
Y(z)
X(z)

=
T

2
1 + z−1

1− z−1 (10.17)

Equation (10.17) is a transfer function of a DSP system that approximates the
analog transfer function of a system that does integration. The two transforms
are equated in the following form and then solved for s after multiplying the
numerator and denominator by s.

T
2

z + 1
z − 1

≡ 1
s

The above transformation maps the analog transfer function, H(s), from the
s-plane into the discrete transfer function, H(z), in the z-plane as shown in
Figure 10.2(a).

Once converting the digital filter given digital frequency into analog
frequency, we prewarp one or more critical frequencies before applying to
the given analog transfer function and finally to BZT to avoid the warping
effect shown in Figure 10.2(b).

s = k
(z − 1)
(z + 1)

k = 1 or
2
T

We here describe the prewarping effect: the prewarping effect occurs when
the digital frequency is being converted into an analog frequency, and the
relationship is not linear; to minimize this effect, the formula has been derived
from the BZT transformation.

For example, we often prewarp the cutoff or band edge frequency as
follows:
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Figure 10.2 (a) An illustration of the s-plane (s = σ + jΩ) to z-plane mapping using the
bilinear Z-transformation (z = σ + jω). Note that +jΩ axis maps to the upper half and the
negative jΩ axis maps to the lower half unit circle in the z-plane and (b) Relationship between
analog and digital frequencies shows the warping effect. Notice that the equally spaced analog
pass bands are pushed together at the high frequency and, after transformation, in the digital
domain.

s = k
(z − 1)
(z + 1)

k = 1 or
2
T

Substituting in this expression z = ejω

jΩp =
2
T

(ejω − 1)
(ejω + 1)

= k
(ejω/2 − e−jω/2)
(ejω/2 + e−jω/2)

i.e. Ωp = k tan
(

ωpT

2

)
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where ωp = specified cutoff (pass-band edge) digital frequency
Ωp = prewarped cutoff analog frequency; k = 1 or 2

T and T = sampling
period.

10.5 Frequency Transformation

It is good to mention here that, once we start the designing of filter using the
BZT method, whatever be the type of IIR ever filter, which has to be designed
by the frequency transformation, we convert it into respective desired four
passes, i.e. from low pass to low pass, low pass to high pass, low pass to band
pass, and low pass to band stop. It is also assumed that if the transfer function
is given, it is of low-pass filter, or if the transfer function is not known, the
frequency transformation is done for a desired filter, then the order of the
prototype filter is calculated, and from the calculated transfer function using
transformation equation, it is converted again to the respective desired transfer
function.

(i) Digital pass-band or cutoff frequency calls this ωP which is given in
specification as the digital frequency of the filter should be converted
into analog frequency called Ωp using the prewarping relationship.

ΩP = k tan
(

ωpT

2

)
k = 1 or

2
T

(ii) Using the relationship of frequency transformation, the analog filter by
frequency scaling, using one of the following transformations, depends
on the type of filter.

s =
s

Ωp
Low-pass to low-pass (10.18)

s =
Ωp

s
Low-pass to high-pass (10.19)

s =
s2 + Ω2

0
Ws

Low-pass to band-pass (10.20)

s =
Ws

s2 + Ω2
0

Low-pass to band-stop (10.21)

where W = Ωp2 − Ωp1 and Ω2
0 = Ωp2 Ωp1 (10.22)
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(iii) Apply the bilinear transformation to obtain the desired digital filter
transfer function H(z) by replacing s = k (z−1)

(z+1) k = 1 or 2
T

It can be seen that factor k is cancelled out, and it would not have been a matter
whether k is substituted as 1 or 2/T.

10.6 Design of Filters for Known Transfer Function

In many practical cases, the analog transfer function H(s) is known, from
which H(z) is obtained. For standard frequency, selective digital filtering
tasks (i.e. involving low-pass, high-pass, band-pass, and band-stop filters),
H(s), can be derived from the classical filters with Butterworth, Chebyshev,
or Elliptic characteristics. Low-pass filters are considered, since other filter
types are normally derived from normalized low-pass filters.

Example 10.1 (Low-Pass filter)

Determine, using the BZT method, the transfer function and difference
equation for the digital equivalent of the resistance-capacitance (RC) low-pass
filter. Assume a sampling frequency of 150 Hz and a cutoff digital frequency
(pass-band edge frequency) of 30 Hz.

Solution 10.1
The normalized transfer function for the RC filter is

H(s) =
1

s + 1

The critical frequency for the digital filter is ωp = 2π x 30 = 60π rad/sec.
The analog frequency, after prewarping, is Ωp = tan(ωp T/2), with

T = 1/150 Hz, Ωp = tan(π/5) = 0.7265.

A circuit diagram and block diagram of the filter.
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Magnitude and phase response of filter.

Impulse response of an IIR filter.

The denormalized analog filter transfer function is obtained from H(s) as

H ′(s) = H(s)|s=0.7265 =
1

s/0.7265 + 1
=

0.7265
s + 0.7265

H(z) = H ′(s)|s=(z−1)/(z+1) =
0.7265(1 + z)

(1 + 0.7265)z + 0.7265− 1
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H(z) =
0.7265(1 + z)

1.7265z + 0.7265− 1
0.7265(1 + z)

1.7265z + 0.2735
=

0.7265
1.7265

(1 + z)
(z + 0.0.584)

H(z) = 0.4208
(1 + z−1)

1− 0.1584z−1

The difference equation is

y(n) = 0.1584 y(n− 1) + 0.4208[x(n) + x(n− 1)]

The block diagram representation, with its frequency response and impulse
responses shown in figures.

Example 10.2 (High Pass Filter)
Determine, using the BZT method, the transfer function for the digital
equivalent of the resistance-capacitance (RC) high-pass filter. Assume a
sampling frequency of 2000 Hz and a cutoff digital frequency (pass-band
edge frequency) of 8000 Hz.

Solution 10.2
The normalized transfer function for the RC filter is

H(s) =
1

s + 1
The critical frequency for the digital filter is ωp = 2π × 2000 rad/sec.

The analog frequency, after prewarping, is Ωp = tan(ωp T/2), Ωp =
tan(π/4) = 1

The denormalized analog filter transfer function is obtained from H(s),
Ωp = 1

H
′
(s) = H(s)|

s=
Ωp

s

=
1

1/s + 1
=

s
s + 1

H(z) = H
′
(s)|s=(z−1)/(z+1) =

(z− 1)/(z + 1)
(z− 1)/(z + 1) + 1

H(z) =
0.5(1− z−1)

1
H(z) = 0.5(1− z−1)

Example 10.3
Derive the transfer function for a Digital Butterworth approximation high-pass
filter from the following analog filter
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(i) A –3-dB cutoff frequency of 2000 Hz, and
(ii) A sampling frequency (Fs) of 8000 Hz.

Solution 10.3
The transfer function of the low-pass filter is given as:

H(s) =
1

s2 +
√

2s + 1

This transfer function is now denormalized using the transform given in
s→ Ωp/s, as follows, which converts a low-pass to a high-pass filter.

The prewarped value is

Ωp = tan
(

ωpT

2

)

G(s)|′
s=Ωp

s

=
1(

Ωp

s

)2
+
√

2
(

Ωp

s

)
+ 1

i.e. G(s) =
s2

s2 +
√

2Ωps + Ω2
p

The (Ωp) radian cutoff frequency of the digital filter is

ωp = 2π × 2000 = 4000π rad/sec. Fs = 8000 Hz

The prewarped value is

Ωp = tan
(

ωpT

2

)
Ωp =

[
tan
(

4000π × 1
2× 8000

)]

Ωp = 1 radians per second
Substituting this value in H(s) yields i.e. G(s) = s2

s2+
√

2s+1
For the bilinear z-transform, s is replaced with

s =
[
z − 1
z + 1

]

that is

H(z) =
(z−1)2

(z+1)2{
(z−1)2
(z+1)2 +

√
2 (z−1)

(z+1) + 1
}
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H(z) =
(z − 1)2

{z2 + 2z + 1 + 1.414z2 − 1.414 + z2 − 2z + 1)}

H(z) =
z2 − 2z + 1

3.414z2 + 0.586

H(z) =
1− 2z−1 + z−2

3.414(1 + 0.171z−2)

H(z) = 0.29289
1− 2z−1 + z−2

1 + 0.1715z−2

Example 10.4 (low-pass filter)
The transfer function of a filter is given by

H(s) =
5s + 1

s2 + 0.4s + 1

Design a corresponding discrete-time low-pass resonant filter that resonates
at 10 Hz when the sampling frequency is 60 Hz.

Solution 10.4
In this case, the critical frequency is 10 Hz (i.e., the resonant frequency).

Thus, ωP = 2π(10) radians/second.
With ωp = 2π(10)

Ωp = tan
{

ωpT

2

}
= tan

{
2π(10)
2(60)

}
= tan

π

6
=

1√
3

H
′
(s) = H(s)|s=√

3 s

=
5(
√

3)s + 1
3s2 + (

√
3)(0.4)s + 1

That is,

H
′
(s) =

8.6603s + 1
3s2 + 0.6928s + 1

=

(
8.6603

(
z−1
z+1

)
+ 1
)
(z + 1)2

3(z − 1)2 + 0.6928(z − 1)(z + 1) + (z + 1)2
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The transfer function of the resonant filter we seek is given by

H(z) = H
′
(s)|s=(z−1)/(z+1)

Evaluating H
′
(s), we get

H(z) =
9.6603 + 2.0z−1 − 7.6603z−2

4.6928− 4.0z−1 + 3.3072z−2

=
4.69(2.059 + 0.426z−1 − 1.633)z−2

4.69(1− 0.85z−1 + 0.705z−2)

H(z) =
2.09 + 0.4262 z−1 − 1.633z−2

1− 0.8524z−1 + 0.705z−2

= 2.09
1 + 0.2039z−1 − 0.7813z−2

1− 0.8524z−1 + 0.705z−2

From the preceding examples, it is apparent that the most tedious part of
the design process is that of evaluating H(z) from H(s) via the BZT using
s = (z – 1)/(z + 1).

By exploiting some interesting properties of the BZT, it has been shown
that the process of evaluating H(z) from H(s) can be carried out by means of
an efficient algorithm. For our purposes, it suffices to use a computer program
that implements this algorithm. This program accepts the coefficients of a
given H(s) and yields the corresponding H(z).

10.7 Design of Filters for Unknown Transfer Function

In cases where the prototype low-pass filter does not exist or the trans-
fer function of the analog filter is not known, the stages of the BZT
method are;

(i) Prewarp the band pass or critical frequencies, i.e. Ωp
p and Ωp

s of the
digital filter.

(ii) Find out the value of N from the given specification. Once N is known, the
corresponding filters transfer function is written. Find a suitable low-pass
prototype analog filter from the classical filter characteristics.

(iii) Using frequency transformation formulae, change the low-pass filter
transfer function to the desired filter transfer function. Then apply the
BZT to obtain the desired digital filter transfer function, H(z).

The basic concepts for each of the filter types (LP, HP, BP and BS) will be
considered here.
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10.7.1 Low-Pass Filter – Basic Concepts

The low pass-to-low pass transformation is given by Equation (10.18)

s =
s

Ωp
(10.23)

If we replace s by jΩ in the equation and denote frequencies for the prototype
filter by ωp and those for the low-pass filter to be designed by ωLP, to
distinguish between them, then the above equation becomes

jΩp = j
ΩLp

Ωp
, i.e.Ωp =

ΩLp

Ωp
(10.24)

Equation (10.24) defines the relationship between the frequencies in the
prototype filter response and those to the denormalized low-pass filter that
we wish to design.

Given the critical frequencies for a denormalized low-pass filter, we use
Equation (10.3) to determine the critical frequencies for the prototype filter
and hence its specifications.

The three key critical frequencies for the prototype filter are: 0, pass-
band edge frequency (Ωp

p). This is, in fact, always 1, and the stop-band edge
frequency (Ωp

s ):

(1) ΩLP = 0, Ωp = 0
(2) ΩLP = Ωp

Figure 10.3 Relationships between frequencies in the denormalized LP and prototype LP
filters.
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(i.e. the pass-band edge frequency), Ωp = ΩLp
Ωp

therefore Ωp
p = Ωp

Ωp
= 1

(3) ΩLP = Ωs = Ωs
Ωp

= Ωp
s

Thus, the critical frequencies for the prototype filter are:

0, 1,
Ωs

Ωp

The relationships between the frequencies of the denormalized low-pass filter
and those of the prototype filter are shown in Figure 10.3.

The order (N ) of the Butterworth filter.

10.7.2 The Order (N ) of the Butterworth Approximation

N ≥
log

(
10

As
10 −1

10
Ap

10 −1

)

2 log
(

Ωp
s

Ωp
p

) (10.25)

where Ap and As are pass-band and stop-band attenuations in dB, Ωp
s is

the prototype stop-band edge frequency, and Ωp
p is the prototype pass-band

edge frequency, i.e. cutoff frequency. The subscript is written for pass-band
end or stop-band edge frequency or the cutoff frequency in radians/sec; the
superscript represents the prototype filters.

Ωp
P and Ωp

s are calculated for the corresponding desired filters, such as low
pass to low pass, low pass to high pass, low pass to band stop, and low pass
to band stop.

Example 10.5
A low-pass digital filter with the following specifications is required; assume
a Butterworth characteristic for the filter. Determine the order (N ) of the
prototype high-pass filter.

Pass-band edge frequency: 500 Hz, Stop-band edge frequency: 800 Hz
Pass-band ripple: 3 dB Stop-band attenuation: 20 dB Sampling frequency:

2000 Hz.

Solution 10.5
From the specifications, the prewarped frequencies are

Ωp = tan
{

2π × 500
2× 1000

}
= 1.0 Ωs = tan

{
2π × 800
2× 2000

}
= 3.077
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ΩP
S =

Ωs

Ωp
=

3.077
1

= 3.077

Thus, the prewarped pass- and stop-band edge frequencies for HP filter are: 0, 1, and
3.077.

10As/10 − 1 = 1020/10 − 1 = 99; 10AP /10 − 1 = 103/10 − 1 = 0.9952;

log
(

99
0.9952

)
= 1.9976

For the prototype LPF

N ≥
log

(
10

As

10 −1

10
Ap

10 −1

)

2 log
(

Ωp
s

Ωp
p

)

ΩP
P = 1.0 ΩP

S = 3.077 2 log
(

ΩP
S

ΩP
P

)
= 0.967

N ≥ 1.9976
0.967

= 2.04 ∼= N = 2

The poles of the prototype filter are from Equation (9.2)

sP1 = cos
[
(2 + 2− 1)π

4

]
+ j sin

[
(2 + 2− 1)π

4

]
= −
√

2
2

+ j

√
2

2

sP2 = −
√

2
2
− j

√
2

2

The s-plane transfer function, H(s), is H(s) = 1
s2+

√
2 s+1

Example 10.6
A low-pass digital filter meeting the following specifications is required; assume a
Butterworth characteristic for the filter.

Pass-band frequency 500 Hz
Stop-band frequency 2000 Hz
Pass-band ripple 3 dB
Stop-band attenuation 20 dB
Sampling frequency 8 kHz

Determine the following:

(1) Pass- and stop-band edge frequencies for a suitable analog prototype low-pass
filter;

(2) The order (N ) of the prototype low-pass filter;
(3) Filter coefficients, and hence the transfer function, of the discrete-time filters

using the bilinear z-transformation.
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Solution 10.6
From the specifications, the prewarped frequencies are

Ωp = tan
{

2π × 500
2× 8000

}
= 0.198912 Ωs = tan

{
2π × 2000
2× 8000

}
= 1.0

ΩP
S =

Ωs

Ωp
=

1.0
0.1989

= 5.0273

Thus, the prewarped pass- and stop-band edge frequencies for the prototype LP filter
are: 0, 1, 5.0273.

Next, Equation (9.3) and the values of the parameters given above are used to
determine the order of the filter.

Now,

10As/10 − 1 = 1020/10 − 1 = 99; 10AP /10 − 1 = 103/10 − 1 = 0.9952
log
( 99

0.9952

)
= 1.9976

For the prototype LPF

N ≥
log

(
10

As

10 −1

10
Ap
10 −1

)

2 log
(

Ωp
s

Ωp
p

)

ΩP
P = 1.0 ΩP

S = 5.0273 2 log
(

ΩP
S

ΩP
P

)
= 1.4206

N ≥ 1.9976
1.4026

= 1.424 ∼= N = 2

The poles of the prototype filter are (from Equation (9.2))

sP1 = cos
[
(2 + 2− 1)π

4

]
+ j sin

[
(2 + 2− 1)π

4

]
= −
√

2
2

+ j

√
2

2

sP2 = −
√

2
2
− j

√
2

2

The s-plane transfer function, H(s), is

H(s) =
1

s2 +
√

2 s + 1

The frequency scaled s-plane transfer function is

H
′
(s) = H(s)

∣∣∣s= s
Ωp

=
1(

s
Ωp

)2
+
√

2
(

s
Ωp

)
+ 1
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H
′
(s) =

Ω2
p

s2 +
√

2 s Ωp + Ω2
p

Applying the BZT:

H(z) = H
′
(s)
∣∣∣s= z−1

z+1
=

Ω2
p(

z−1
z+1

)2
+ Ωp

√
2
(

z−1
z+1

)
+ Ω2

p

H(z) =
Ω2

p(z + 1)2

(z − 1)2 + Ωp

√
2 (z − 1)(z + 1) + Ω2

p(z + 1)2

After simplification and dividing top and bottom by z2, we have

H(z) =
Ω2

p

1 +
√

2 Ωp + Ω2
p

× 1 + 2 z−1 + z−2

1 + 2(Ω2
p−1) z−1

1+Ωp

√
2 +Ω2

p

+ (1−Ωp

√
2 +Ω2

p) z−2

1−Ωp

√
2 +Ω2

p

Using the values of the parameters

1 +
√

2 Ωp + Ω2
p = 1.3208; Ω2

p − 1 = −0.9604
1−√2 Ωp + Ω2

p = 0.7582; Ω2
p = 0.0395

and substituting in the equation above and simplifying, we have

H(z) = 0.02995
(1 + 2z−1 + z−2)

1− 1.4542z−1 + 0.57408z−2

Magnitude and phase responses of low-pass filter.
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10.7.3 High-Pass Filter – Basic Concepts

From the low pass-to-high pass transformation, s = Ωp/s, and denoting the
frequencies of the denormalized high-pass filter by ωhp and those of the prototype
LP filter by Ωp (as before), the following relationship between the frequencies of the
prototype LP filter and the desired high-pass filter is obtained:

s =
ΩP

s
; (10.26)

jΩp =
ΩP

jΩhp
, i.e. Ωp = − ΩP

Ωhp

Using Equation (10.19), we can now specify the critical frequencies of the prototype
LP filter in terms of those of the desired high-pass filter:

(1) ΩhP = 0, Ωp =∞
(2) ΩhP = ΩP (i.e. the pass-band edge frequency), ΩhP = −ΩP , Ωp

p = 1
(3) ΩhP = Ωs = −Ωp

Ωs
= Ωp

s

(4) ΩhP = −Ωp, Ωp
p = 1

(5) ΩhP = −Ωs = Ωp
Ωs

= Ωp
s

Thus, the three key critical frequencies for the prototype low-pass filter for designing
the high-pass filter are: 0, 1,

Ωp
Ωs

, The critical frequencies for the prototype LP filter
and their relationships with the frequencies of the denormalized high-pass filter are

Figure 10.4 Relationships between frequencies in the denormalized HP and prototype LP
Filters.
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depicted in Figure 10.4. We note that the low pass-to-high pass transformation maps
frequencies in the denormalized high-pass filter as follows: it maps zero frequency
to infinity, Ωp to unity, and infinity to zero.

Example 10.7
A high-pass digital filter with the following specifications is required; assume a
Butterworth characteristic for the filter. Determine the order (N) of the prototype
high-pass filter.

Stop-band frequency 800 Hz Pass-band frequency 3000 Hz Pass-band ripple 3 dB
Stop-band attenuation 20 dB Sampling frequency 10000 Hz

Solution 10.7
From the specifications, the prewarped frequencies are

Ωp = tan
{

2π × 3000
2× 10000

}
= 1.3768 Ωs = tan

{
2π × 800
2× 10000

}
= 0.25675

ΩP
S =

Ωp

Ωs
= 5.36

Thus, the prewarped pass- and stop-band edge frequencies for HP filter are: 0, 1, 5.36

10As/10 − 1 = 1020/10 − 1 = 99; 10AP /10 − 1 = 103/10 − 1 = 0.9952

log
(

99
0.9952

)
= 1.9976

For the prototype LPF,

N ≥
log

(
10

As

10 −1

10
Ap

10 −1

)

2 log
(

Ωp
s

Ωp
p

)

ΩP
P = 1.0 ΩP

S = 5.36 2 log
(

ΩP
S

ΩP
P

)
= 2 log(5.36) = 1.4584

N ≥ 1.9976
1.4584

= 1.37 ∼= N = 2

The poles of the prototype filter are (from (10.2))

sP1 = cos
[
(2 + 2− 1)π

4

]
+ j sin

[
(2 + 2− 1)π

4

]
= −
√

2
2

+ j

√
2

2

sP2 = −
√

2
2
− j
√

2
2

The s-plane transfer function H(s) is H(s) =
1

s2 +
√

2 s + 1
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Example 10.8
A high-pass digital filter meeting the following specifications is required:

Pass-band frequency 2000 Hz
Stop-band frequency 500 Hz
Pass-band ripple 3 dB
Stop-band attenuation 20 dB
Sampling frequency 8 kHz

Determine the following:

(1) Pass- and stop-band edge frequencies for a suitable analog prototype low-pass
filter;

(2) Order (N ) of the prototype low-pass filter;
(3) Filters coefficients, and hence the transfer function, of the discrete-time filter

using the bilinear z-transformation.

Assume a Butterworth characteristic for the filter.

Solution 10.8
(1) From the specifications, the prewarped frequencies are

Ωp = tan
{

2π×2000
2×8000

}
= 1.0 Ωs = tan

{
2π×500
2×8000

}
= 0.1989

ΩP
S = Ωp

Ωs
= 1.0

0.1989 = 5.0273

Thus, the pass- and stop-band edge frequencies for the prototype LP filter are:
0, 1, and 5.0273.

(2) Next, we use Equation (10.3) and the values of the parameters above to
determine the order of the filter.

Now

10As/10 − 1 = 1020/10 − 1 = 99; 10AP /10 − 1 = 103/10 − 1 = 0.9952
log
( 99

0.9952

)
= 1.9976

For the prototype LPF,

N ≥
log

(
10

As

10 −1

10
Ap

10 −1

)

2 log
(

ωp
s

ωp
p

)

ΩP
P = 1.0 ΩP

S = 5.0273 2 log
(

ΩP
S

ΩP
P

)
= 1.4206

N ≥ 1.9976
1.4026

= 1.424 ∼= N = 2
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The poles of the prototype filter are (from Equation (10.2))

sP1 = cos
[
(2 + 2− 1)π

4

]
+ j sin

[
(2 + 2− 1)π

4

]
= −
√

2
2

+ j

√
2

2

sP2 = −
√

2
2
− j

√
2

2
The s-plane transfer function, H(s), is

H(s) =
1

(s− sP1)(s− sP2)
=

1
s2 +

√
2 s + 1

The frequency scaled s-plane transfer function is

H
′
(s) = H(s)

∣∣∣
s=Ωp

s

=
1(

Ωp

s

)2
+
√

2
(

Ωp

s

)
+ 1

H
′
(s) =

s2

s2 +
√

2 s Ωp + Ω2
p

Applying the BZT:

H(z) = H
′
(s)
∣∣∣s= z−1

z+1
=

(
z−1
z+1

)2

(
z−1
z+1

)2
+ Ωp

√
2
(

z−1
z+1

)
+ Ω2

p

H(z) =
(z − 1)2

(z − 1)2 + Ωp

√
2 (z − 1)(z + 1) + Ω2

p(z + 1)2

H(z) =
z2 − 2z + 1

z2 − 2z + 1 + Ωp

√
2 (z2 − 1) + Ω2

p(z2 − 2z + 1)

H(z) =
z2 − 2z + 1

z2 − 2z + 1 + Ωp

√
2 z2 − Ωp

√
2 + Ω2

pz
2 − 2Ω2

pz + Ω2
p

H(z) =
z2 − 2z + 1

z2(1 + Ωp

√
2 + Ω2

p)− 2(Ω2
p − 1) z + 1− Ωp

√
2 + Ω2

p

H(z) =
z2 − 2z + 1

z2(1 + Ωp

√
2 + Ω2

p)− 2(Ω2
p − 1) z + 1− Ωp

√
2 + Ω2

p

After simplification and dividing top and bottom by z2, we have

H(z) =

1− 2 z−1 + z−2

1 +
√

2 Ωp + Ω2
p

1 +
2(Ω2

p − 1) z−1

1 + Ωp

√
2 + Ω2

p

+
(1− Ωp

√
2 + Ω2

p) z−2

(1 + Ωp

√
2 + Ω2

p
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Using the values of the parameters

1 +
√

2 Ωp + Ω2
p = 3.4142; Ω2

p − 1 = 0
1−√2 Ωp + Ω2

p = 0.5857; Ω2
p = 1

and substituting in the Equation above and simplifying, we have

H(z) =
1−2 z−1+z−2

3.1412

1 + 2(Ω2
p−1) z−1

0.5867 + 0.5867 z−2

3.1412

=
0.3183(1− 2 z−1 + z−2)

1 + 2(1−1) z−1

0.5867 + 0.1867 z−2

H(z) = 0.3183
(1− 2z−1 + z−2)
1 + 0.1867z−2

10.7.4 Band-Pass Filters – Basic Concepts

The low pass-to-band pass transformation is given by

s =
s2 + Ω2

o

Ws
(10.27)

From the low pass-to-band pass transformation, the frequencies of the band-pass filter
ωhp, and those of the prototype LPF, ωp, are related as

jΩp =
(jΩbp)

2 + Ω2
o

jWΩbp
(10.28)

Ωp =
Ω2

bp − Ω2
o

WΩbp
(10.29)

Now, a band-pass filter has four critical or band-edge frequencies and a centre
frequency:

Ωp1, Ωp2 = lower and upper pass-band edge frequencies
Ωs1, Ωs2 = lower and upper stop-band edge frequencies
Centre frequency Ω2

0 = Ωp1 Ωp2
The band edge frequencies for the prototype LP filter can be found in terms of

the band edge frequencies for the band-pass filter:

(1) Ωbp = Ωs1, Ωp = Ωp
s1 = Ω2

s1−Ω2
o

WΩs1

(2) Ωbp = Ωp1, Ωp1 = Ωp
p1 = Ω2

p1−Ω2
o

WΩp1
= Ω2

p1−Ωp1Ωp2

(Ωp2−Ωp1)Ωp1
= −1

(3) Ωbp = Ωp2, Ωp2 = Ωp
p2 = Ω2

p2−Ω2
o

WΩp2
= Ω2

p2−Ωp1Ωp2

(Ωp2−Ωp1)Ωp2
= 1

(4) Ωbp = Ωs2, Ωp = Ωp
s2 = Ω2

s2−Ω2
o

WΩs2

(5) Ωbp = Ω0, Ωp = Ω2
0−Ω2

o
WΩ2

0
= 0
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Figure 10.5 Mapping of the prototype LP to BPF.

(6) ΩP
s = min(|ΩP

s1|,
∣∣ΩP

s2

∣∣)
Ωp

p = 1

Ωp
s1 =

Ω2
s1 − Ω2

o

WΩs1
=

Ω2
s1 − Ω2

o

(Ωp2 − Ωp1)Ωs1

Ωp
s2 =

Ω2
s2 − Ω2

o

WΩs2
=

Ω2
s2 − Ω2

o

(Ωp2 − Ωp1)Ωs2

Thus, the critical frequencies of interest for the prototype LP filter are

0, 1, ΩP
s = min(|ΩP

s1|, |ΩP
s2|)

The mappings of the frequencies between the band-pass filter and the prototype LP
filter are depicted in Figure 10.5. We note, for example, that the centre frequency
of the band-pass filter is mapped to zero in the prototype filter, and the upper pass-
and and stop-band edge frequencies, Ωp2 and Ωs2, respectively, are mapped to the
positive pass-band and stop-band edge frequencies in the prototype filter.

On the other hand, the lower pass-band and stop-band edge frequencies,
Ωp1and Ωs1, respectively, are mapped to the negative pass-band and stop-band edge
frequencies in the prototype filter.

Example 10.9
A requirement exists for a band-pass digital filter, with a Butterworth magnitude-
frequency response, that satisfies the following specification:

Lower pass-band edge frequency 200 Hz
Upper pass-band edge frequency 300 Hz
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Lower stop-band edge frequency 50 Hz
Upper stop-band edge frequency 450 Hz
Pass-band ripple 3 dB
Stop-band attenuation 20 dB
Sampling frequency 1 kHz

Determine the following:

(1) Pass- and stop-band edge frequencies of a suitable prototype low-pass filter;
(2) Order, N, of the prototype low-pass filter;
(3) Filter coefficients, and hence the transfer function, of the discrete-time filter

using the BZT method.

Solution 10.9
The prewarped critical frequencies for the band-pass filter are

Ωp1 = tan
{

2π × 200
2× 1000

}
= 0.7265 Ωp2 = tan

{
2π × 300
2× 1000

}
= 1.3763

Ωs1 = tan
{

2π × 50
2× 1000

}
= 0.1584 Ωs2 = tan

{
2π × 450
2× 1000

}
= 6.3138

Ω0 =
√

Ωp2.Ωp1 =
√

(1.37638)(0.7265) = 1

W = Ωp2.− Ωp1 = 1.37638− 0.7265 = 0.6498

Thus, the band edge frequencies for the prototype LP filter are (using the relationships
above)

Ωp
s1 =

Ω2
s1 − Ω2

o

WΩs1
=

Ω2
s1 − Ω2

o

(Ωp2 − Ωp1)Ωs1

=
(0.1584)2 − 1

(1.3763− 0.7265)(0.1584)
=

−0.9749
(0.6498)(0.1584)

=
−0.9749
0.1029

= −9.4705

Ωp
s2 =

Ω2
s2 − Ω2

o

WΩs2
=

Ω2
s2 − Ω2

o

(Ωp2 − Ωp1)Ωs2

=
(6.3138)2−1

(1.3763−0.7265)(6.3138)
=

39.864− 1
(0.6498)(6.3138)

=
38.864
4.1027

= 9.4727

Ωp
p = 1, ΩP

s = min(|ΩP
s1|, |ΩP

s2|)
Ωp

s = 9.4705

Thus, we require a prototype LPF with Ωp
p = 1, Ωp

s = 9.4705, Ap = 3 dB; As =
20 dB. From Equation (10.3), the order of the prototype LPF is obtained as
Now

10As/10 − 1 = 1020/10 − 1 = 99;
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10AP /10 − 1 = 103/10 − 1 = 0.9952 log
(

99
0.9952

)
= 1.9976

For the prototype LPF

N ≥
log

(
10

As

10 −1

10
Ap

10 −1

)

2 log
(

Ωp
s

Ωp
p

)

ΩP
P = 1.0 ΩP

S = 9.4705 2 log
(

ΩP
S

ΩP
P

)
= 2 log (9.4705) = 1.9527

N ≥ 1.997697
1.95279

= 1.0229 ∼= N = 1

N must be an integer, and this time for simplicity we will use N = 1. The s-plane
transfer function for a first-order prototype LP filter is given by

H(s) =
1

s + 1

The frequency scaled s-plane transfer function is

H
′
(s) = H(s)

∣∣∣∣s= s2+Ω2
o

W Ω

=
1(

s2+Ω2
o

Ws

)
+ 1

=
Ws

s2 + Ws + Ω2
0

Applying the BZT:

H(z) = H
′
(s)
∣∣∣s= z−1

z+1
=

W
(

z−1
z+1

)

(
z−1
z+1

)2
+ W

(
z−1
z+1

)
+ Ω2

0

=
(z − 1)(z + 1)

(z − 1)2 + W (z − 1)(z + 1) + Ω2
0(z + 1)2

H(z) = H
′
(s)
∣∣∣s= z−1

z+1
=

W( z−1
z+1 )

( z−1
z+1 )2

+W( z−1
z+1 )+Ω2

0

H(z) = W (z−1)(z+1)
(z−1)2+W (z−1)(z+1)+Ω2

0(z+1)2

After simplification, and substituting the values for Ω2
0 and W,

H(z) =
0.6498(z − 1)(z + 1)

(z − 1)2 + 0.6498(z − 1)(z + 1) + 1(z + 1)2

H(z) =
0.6498(z2 − 1)

(z2 − 2z + 1) + 0.6498(z2 − 1) + (z2 + 2z + 1)



486 Step-by-Step Design of IIR Filters

H(z) =
0.6498(z2 − 1)

2.6498z2 + 1.3502
H(z) =

0.6498(z2 − 1)
2.6498(z2 + 0.5095)

H(z) = 0.2452
(z2 − 1)

(z2 + 0.5095)
H(z) =

0.2452(1− z−2)
1 + 0.5095 z−2

10.7.5 Band-Stop Filters – Basic Concepts

The low pass-to-band stop transformation is given by

s =
Ws

s2 + Ω2
o

(10.30)

The band-stop frequency, Ωbs, and those of the prototype LPF, Ωp, are related as

jΩp =
jWΩbs

(jΩbs)
2 + Ω2

o

(10.31)

Ωp =
WΩbs

Ω2
o − Ω2

bs

(10.32)

From the relationship, we can determine the band edge frequencies for the prototype
LP filter from those of the desired digital band-stop filter. We recall that a band-stop
filter has four band edge frequencies −ΩP1, ΩP2 (lower and upper pass-band edge
frequencies), Ωs1, Ωs2 (lower and upper stop-band edge frequencies), and a centre
frequency (Ω0)Ω2

0 = ΩP1.ΩP2

(1) Ωbs = Ωp1, Ωp = Ωp
p1 = WΩp1

(Ω2
0−Ω2

p1)
= (Ωp2−Ωp1)Ωp1

(Ωp2.Ωp1−Ω2
p1)

= 1

(2) Ωbs = Ωs1, Ωp = Ωp(1)
s = WΩs1

Ω2
o−Ω2

s1

(3) Ωbs = Ωs2, Ωp = Ωp(2)
s = WΩs2

Ω2
o−Ω2

s2

(4) Ωbs = Ωp2, Ωp = Ωp
p2 = WΩp2

Ω2
o−Ω2

p2
= (Ωp2−Ωp1)Ωp2

(Ωp1.Ωp2−Ω2
p2)

= −1

(5) Ωbp = Ω0, Ωp = WΩo
Ω2

0−Ω2
0

=∞
(6) Ωp

S = min (
∣∣∣Ωp(1)

s

∣∣∣,
∣∣∣Ωp(2)

s

∣∣∣)Ωp
p = 1

Ωp(1)
s =

WΩs1

Ω2
o − Ω2

s1
=

(Ωp2−Ωp1)Ωs1

Ω2
o − Ω2

s1
Ωp(2)

s =
WΩ

′
s2

Ω2
o − Ω2

s2
=

(Ω
′
p2−Ω

′
p1)Ω

′
s2

Ω2
o − Ω′2

s2

Thus, the stop-band edge frequency for the prototype LP filter, Ωp
S =

min (
∣∣∣Ωp(1)

s

∣∣∣,
∣∣∣Ωp(2)

s

∣∣∣), and its pass-band edger frequency is 1. The pass-band ripple

and stop-band attenuations are, respectively, Ap and As. The mapping between the
frequencies of the band-stop filter and those of the prototype low-pass filter is shown
in Figure 10.6. We see that the upper band-stop and band-pass edge frequencies in
the band-stop filter are mapped to the negative frequencies in the prototype filter,
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Figure 10.6 Relationship between the frequencies in the denormalized BS and prototype LP
filters.

whereas the lower pass-band and stop-band edge frequencies are mapped to the
positive frequencies in the prototype filter.

The critical frequencies of interest for the prototype LP filter are

0, 1, min (
∣∣∣Ωp(1)

s

∣∣∣,
∣∣∣Ωp(2)

s

∣∣∣)

From the specifications for the prototype LP filter, we can determine the order, N.

Example 10.10
A requirement exists for a band-stop digital IIR filter, with a Butterworth magnitude-
frequency response, that meets the following specifications:

Pass-band frequency 50–450 Hz
Stop-band frequency 200–300 Hz
Pass-band ripple 3 dB
Stop-band attenuation 20 dB
Sampling frequency 1 kHz

Determine the following:

(1) Pass- and stop-band edge frequencies of a suitable prototype low-pass filter;
(2) Order, N, of the prototype low-pass filter;
(3) Filter coefficients, and hence the transfer function, of the discrete-time filter

using the BZT method.
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Solution 10.10
The prewarped critical frequencies for the band-pass filter are

Ωp1 = tan
(

ωp1T
2

)
= tan

(
2 π 50

(2)(1000)

)
= 0.15838

Ωp2 = tan
(

ωp2T
2

)
= tan

(
2 π 450

(2)(1000)

)
= 6.3137

Ωs1 = tan
(

ωs1T
2

)
= tan

(
2 π 200

(2)(1000)

)
= 0.7265

Ωs2 = tan
(

ωs2T
2

)
= tan

(
2 π 300

(2)(1000)

)
= 1.37638

ω0 =
√

ω
′
P2Ω =

√
(6.3138)(0.1584) = 1

W = Ωp2 − Ωp1 = 6.3138− 0.1584 = 6.1554

ω
′p(1)
s =

Wω
′
s1

ω2
o − ω

′2
s1

=
(ω

′
p2−ω

′
p1)ω

′
s1

ω2
o − ω

′2
s1

=
(6.3137−0.15838)0.7265

(0.7265)2 − 1
=

(6.15532)(0.7265)
−0.47219

= −9.4709

ω
′p(2)
s =

Wω
′
s2

ω2
o − ω

′2
s2

=
(ω

′
p2−ω

′
p1)ω

′
s2

ω2
o − ω

′2
s2

=
(6.3137−0.15838)1.37638

(1.37638)2 − 1
=

(8.47205)
0.8944

= 9.47209

Ωp
s = min (

∣∣∣Ωp(1)
s

∣∣∣,
∣∣∣Ωp(2)

s

∣∣∣)
Thus, the band edge frequencies for the prototype LP filter are (using the relationships
above)

Ωp
p = 1; Ωp

s = 9.47

We require a prototype LPF with Ωp
p = 1; Ωp

s = 9.471, Ap = 3 dB; As = 20 dB.
From Equation (9.3), the order of the prototype LPF is obtained as 10As/10 − 1 =
1020/10−1 = 99; 10AP /10−1 = 103/10−1 = 0.9952 log

( 99
0.9952

)
= 1.9976.

For the prototype LPF

N ≥
log

(
10

As

10 −1

10
Ap

10 −1

)

2 log
(

Ωp
s

Ωp
p

)

ΩP
P = 1.0 ΩP

S = 9.4705 2 log
(

ΩP
S

ΩP
P

)
= 2 log (9.4705) = 1.9527
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N ≥ 1.997697
1.95279

= 1.0229 ∼= N = 1

N must be an integer, and for simplicity we will use N = 1. The s-plane transfer
function for a first-order prototype LP filter is given by

H(s) =
1

s + 1

Using the low pass-to-band stop transformation for the table, we obtain
The frequency scaled s-plane transfer function is

H
′
(s) = H(s)

∣∣∣∣s= Ws
s2+ω2

o

=
1(

Ws
s2+ω2

o

)
+ 1

H
′
(s) =

s2 + Ω2
0

s2 + Ws + Ω2
0

Applying the BZT:

H(z) = H
′
(s)
∣∣∣s= z−1

z+1
=

(
z−1
z+1

)2
+ Ω2

0
(

z−1
z+1

)2
+ W

(
z−1
z+1

)
+ Ω2

0

H(z) =
(z − 1)2 + Ω2

0(z + 1)2

(z − 1)2 + W (z − 1)(z + 1) + Ω2
0(z + 1)2

H(z) =
(z − 1)2 + (z + 1)2

(z − 1)2 + W (z − 1)(z + 1) + (z + 1)2

Magnitude and phase response of band-stop filter.
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H(z) =
(z2 − 2z + 1) + (z2 + 2z + 1)

(z − 1)2 + W (z − 1)(z + 1) + (z + 1)2

After simplification, and substituting the values for Ω2
0 and W, we have

H(z) =
2z2 + 2

(z2 − 2z + 1) + 6.1554(z2 − 1) + (z2 + 2z + 1)

H(z) =
2(z2 + 1)

8.1554(z2 − 0.5095)
=

0.2452 (z2 + 1)
(z2 − 0.5095)

= 0.2452
(1 + z−2)

1− 0.5095z−2

Example 10.11
Obtain the transfer function of a low-pass digital filter meeting the following
specifications and Butterworth characteristic:

Pass-band frequency 0–60 Hz
Stop-band frequency >85 Hz
Stop-band attenuation >20 dB
Sampling frequency 256 Hz

Solution 10.11
This example illustrates how two BZT process transformations can be combined into
one for computational efficiency, as suggested by Equation

s = cot
(

ωpT

2

)[
z − 1
z + 1

]

(1) The critical frequencies for the digital filter are

ω1T =
(

2 π f1
Fs

)
=
( 2 π 60

256

)
= 2 π(0.2344)

ω2T =
(

2 π f2
Fs

)
=
( 2 π 85

256

)
= 2 π(0.3320)

(2) The prewarped equivalent analog frequencies are

Ω1 = tan
(

ω1T
2

)
= 0.9063

Ω2 = tan
(

ω2T
2

)
= 1.7158

(3) Next, we need to obtain H(s) with Butterworth characteristics, a 3-dB cutoff
frequency of 0.9063, and a response at 85 Hz that is down by 15 dB. For an
attenuation of 15 dB and a pass-band ripple of 3 dB, from Equation (8.3),
N = 2.68. We use N = 3, since it must be an integer. A normalized third-order
filter is given by

H(s) =
1

(s + 1)(s2 + s + 1)
= H1(s)H2(s)
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cot
(

Ω1T

2

)
= cot

(
2 π 0.2344

2

)
= 1.1031

Performing the transformation in two stages, one for each of the factors of H(s)
above, we obtain

H2(z) = H2(s)
∣∣∣s=cot (ω1T

2 )[ z−1
z+1 ]

= 0.3012
1 + 2z−1 + z−2

1− 0.1307z−1 + 0.3355z−2

which we have arrived at after considerable manipulation. Similarly, we obtain
H1(z) as

H1(z) = H1(s)
∣∣∣s=cot (ω1T

2 )[ z−1
z+1 ]

H1(z) = 0.4754 (1+z−1)
1−0.049 z−1

H1(z) and H2(z) may then be combined to give that desired transfer function
H(z),

H(z) = H1(z)H2(z) = 0.1432
1 + 3z−1 + 3z−2 + z−3

1− 0.1801z−1 + 0.3419z−2 − 0.0165z−3

Magnitude and phase response of filter.

10.8 Pole-Zero Placement Method

When a zero is placed at a given point on the z-plane, the frequency response will
be zero at the corresponding point. A pole on the other hand produces a peak at the
corresponding frequency point. Poles that are close to the unit circle give rise to large
peaks, whereas zeros close to or on the circle produce a trough or minimum peak.
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An approximate relationship between r (distance of the pole location), for
r > 0.9, and bandwidth (bw) is given by:

r ≈ 1− (bw/Fs)π (10.33)

Example 10.12
A band-pass digital filter is required to meet the following specifications:

Complete signal rejection at dc (zero Hz) and 250 Hz;
Narrow pass-band centered at 125 Hz;
A 3-dB bandwidth of 10 Hz;
Sampling frequency of 500 Hz
Obtain the transfer function of the filter, by suitably placing z-plane poles and

zeros, and its difference equations.

Solution 10.12
Complete rejection is required at 0 and 250 Hz, which gives the information that
where to place the poles and zeros on the z-plane. These are at angles of 0◦ and
360◦ × 250/500 = 180◦ on the unit circle.

The pass band centered at 125 Hz gives the information to place poles at

±360◦ × 125/500 = ±90◦.

To ensure that the coefficients are real, it is necessary to have a complex conjugate
pole pair. The radius, r, of the poles is determined by the desired bandwidth. An
approximate relationship between r, for r > 0.9, and bandwidth (bw) is given by

r ≈ 1− (bw/Fs)π

[bw = 10 Hz and Fs = 500 Hz, giving r = 1 – (10/500)π = 0.937]
The pole-zero diagrams are shown below. From the pole-zero diagrams, the

transfer function can be written down by inspection:

H(z) =
(z − 1)(z + 1)

(z − rejπ/2)(z − re−jπ/2)

=
z2 − 1

z2 + 0.877969
=

1− z−2

1 + 0.877969z−2

The difference equation is

y(n) = −0.877969 y(n− 2) + x(n)− x(n− 2)

Comparing the transfer function, H(z), with the general IIR, the following coeffi-
cients have been found out.

a0 = 1 b1 = 0
a1 = 0, a2 = −1 b2 = 0.877969
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Block diagram representation of the filter.

(a) Pole zero diagram.

(b) Corresponding magnitude and phase frequency response of a band-pass filter.
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Example 10.13
Using the pole-zero placement method, calculate the coefficients of a notch filter.
Obtain transfer function and the difference equation of a simple digital notch filter
that meets the following specification:

Notch frequency 50 Hz
3-dB width of notch ±5 Hz
Sampling frequency 500 Hz

Solution 10.13
To reject the component at 50 Hz, we place a pair of complex zeros at points on the
unit circle corresponding to 50 Hz, that is at angles of 360◦ × 50/500 = ±36◦.

To achieve a sharp notch filter and improved amplitude response on either side of
the notch frequency, a pair of complex conjugate poles are placed at a radius r < 1.
The width of the notch is determined by the locations of the poles. The relationship
between the bandwidth and the radius of the poles is given by r ≈ 1 – (bw/Fs)π

[bw = 10 Hz and Fs = 500 Hz, giving r = (1 – 10/500) π = 0.937]
The pole-zero diagrams shown below. From the figure the transfer function of

the filter is given by

H(z) =
[z − e−j36◦

][z − ej36◦
]

[z − 0.937 e−j36◦)][z − 0.937 ej36◦ ]

=
z2 − 1.6180z + 1

z2 − 1.874z + 0.8779
=

1− 1.6180z−1 + z−2

1− 1.874z−1 + 0.8779z−2

The difference equation is

y(n) = x(n)− 1.6180 x(n− 1) + x(n− 2) + 1.874 y(n− 1)− 0.8779 y(n− 2)

Comparing H(z) with Equation (8.16) shows that the coefficients for the notch
filter are

(a) Pole zero diagram.
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(b) Corresponding magnitude and phase frequency response.

a0 = 1 b1 = −1.874
a1 = −1.6180 b2 = 0.8779
a2 = 1

10.9 Impulse Invariant Method

In this method, starting with a suitable analog transfer function, H(s), the impulse
response, h(t), is obtained using the Laplace transform. The h(t) so obtained is suitably
sampled to produce h(nT), and the desired transfer function H(z), is obtained by
Z-transforming h(nT), where T is the sampling interval.

To apply the impulse invariant method to a high-order, IIR filter with simple
poles, the transfer function, H(s), is first expanded using partial fractions as the sum
of single-pole filters:

H(s) =
C1

s− p1
+

C2

s− p2
+ . . . . +

CM

s− pM
(10.34)

=
M∑

K=1

CK

s− pK

High-order IIR filters are normally realized as cascades or parallel combinations of
standard second-order filter sections. Thus, the case when M = 2 is of particular
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interest. In this case, the transform of Equation (10.34) becomes

C1

s− p1
+

C2

s− p2
→ C1

1− ep1T z−1 +
C2

1− ep2T z−1 (10.35)

H(s) =
C1(1− ep2T z−1) + C2(1− C2e

p1T z−1)
1− (ep1T + ep2T )z−1 + e(p1+p2)T z−2

H(s) =
(C1 + C2)− (C1e

p2T + C2e
p1T )z−1

1− (ep1T + ep2T )z−1 + e(p1+p2)T z−2

If the poles, p1 and p2, are complex conjugates, then C∗1 and c∗
1 will also be complex

conjugates and Equation (10.35) reduces to

H(s) =
C1

1− ep1T z−1 +
C∗

1

1− ep∗
1T z−1 (10.36)

H(s) =
C1(1− ep1∗T z−1) + C∗

1 (1− ep1T z−1)
1− (ep1T + ep1∗T )z−1 + e(p1+p1∗)T z−2

where Cr and Ci are the real and imaginary parts of C1,
pr and pi are the real and imaginary parts of p1,
Note: here * symbolizes a complex conjugate.

C1 + C∗
1 = 2 Cr C1 = Cr + jCi C∗

1 = Cr − jCi

p1 + p∗
1 = 2 pr p1 = pr + jpi p∗

1 = pr − jpi

H(z) =
(C1 + C∗

1 ) + (C1e
p1∗T + C∗

1ep1T )z−1

1− 2 (ep1T +ep1∗T )
2 z−1 + e2prT z−2

H(z) =
2Cr − [(Cr + jCi){eprT e−jpiT }+ (Cr − jCi){eprT ejpiT }]z−1

1− 2 eprT (epiT +epi∗T )
2 z−1 + e2prT z−2

H(z) =
2Cr − Cre

prT [{ejpiT + e−jpiT } − jCie
prT {ejpiT − e−jpiT }]z−1

1− 2 eprT (epiT +epi∗T )
2 z−1 + e2prT z−2

H(z) =
2Cr − 2Cre

prT cos (piT ) + 2Cie
prT sin (piT )]z−1

1− 2eprT cos (piT )z−1 + e2prT z−2

H(z) =
2 Cr − 2 eprT [Cr cos (piT ) + Ci sin (piT )]z−1

1− 2eprT cos (piT )z−1 + e2prT z−2 (10.37)

Example 10.14
Applying the impulse invariant method to filter design, a digital filter to approximate
the following normalized analog transfer function is obtained:
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H(s) =
1

s2 + s
√

2 + 1

Using the impulse invariant method, obtain the transfer function, H(z), of the digital
filter assuming a 3-dB cutoff frequency of 150 Hz and a sampling frequency of
1280 Hz.

Solution 10.14
Before applying the impulse invariant method, frequency scaling of the normalized
transfer function is needed. This is achieved by replacing s by s/ωp, where ωp =
2π × 150 = 942.4778, to ensure that the resulting filter has the desired response.

Thus

H ′(s) = H(s)s=s/ΩP
=

Ω2
P

s2 +
√

2 ΩP s + Ω2
P

=
C1

s + p1
+

C2

s + p2

H ′(s) = H(s)s=s/ΩP
=

1
s2

Ω2
P

+ s
ΩP

√
2 + 1

H ′(s) = H(s)s=s/ωP
=

Ω2
P

s2 +
√

2 ΩP s + Ω2
P

=
C1

s + p1
+

C2

s + p2

p1,2 =
−ΩP

√
2±√2Ω2

P − 4Ω2
P )

2
=
−ΩP

√
2± jΩP

√
2

2
=
−ΩP

√
2(1∓ j)
2

where Ωp = 942.4778

p1 =
−√2ΩP ( 1− j)

2
= −666.4324(1− j); p2 = p∗

1

H
′
(s) =

C1

s + {−√
2ΩP (1−j)}

2

+
C∗

1

s + {−√
2ΩP (1+j)}

2

C1 = lim s =
{−√2ΩP (1− j)}

2
[s +

{−√2ΩP (1 + j)}
2

]

[
Ω2

P

[s + {−√
2ΩP (1+j)}

2 ][s + {−√
2ΩP (1−j)}

2 ]
]

C1 =
Ω2

P

{−√
2ΩP (1−j)+

√
2ΩP (1+j)}

2

C1 = − ΩP√
2j

= −ΩP√
2
j = −666.43j; C2 = C∗

1

Since the poles are complex conjugates, the transformation in Equation (10.35) to
Equation (10.36) are used to obtain the discrete-time transfer function, H(z).
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In this problem,
Cr = 0, Ci = −666.4324, piT = 0.5207, eprT = 0.5941, prT = −0.5207,
sin(piT ) = .4974, cos(piT ) = 0.8675,
Substituting these values into Equation (10.23), H(z) is obtained:

H(z) =
2Cr − (0.5941)[0− (−666.4324)(0.4974)]z−1

1− 2(0.5941)(0.8675)z−1

H(z) =
393.9264z−1

1− 1.0308z−1 + 0.3530z−2

Such a large gain is a characteristic of the impulse invariant filter. In general, the gain
of the transfer function obtained by this method is equal to the sampling frequency
that is 1/T, and results from sampling the impulse response. To keep the gain down
and to avoid overflows, when the filter is implemented, it is a common practice to
multiply H(z) by T (or equivalently to divide it by the sampling frequency). Thus,
for the problem, the transfer function becomes

H(z) =
393.9264z−1

[ 1
1.28 103

]
1− 1.0308z−1 + 0.3530z−2 H(z) =

0.3078z−1

1− 1.0308z−1 + 0.3530z−2

Thus, we have

a0 = 0 b1 = −1.0308 a1 = 0.3078 b2 = 0.3530

An alternative method of removing the effect of the sampling frequency on the filter
gain is to work with normalized frequencies. Thus, in the last example, we would use
T = 1 and ωp = 2π x 150/1.28 kHz = 0.7363.

Using these values in Equation (10.36) leads directly to the desired transfer
function which is given above. An important advantage of working with normalized

(a) Realization structure.
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(b) Corresponding magnitude and phase frequency response of a low-pass filter.

frequencies is that the numbers involved are much simpler. It also means that the
results can be generalized. The filter is represented in the form of a block diagram in
the figure.

10.9.1 Limitation of this Method

The spectrum of the impulse invariant filter corresponding to H(z) would be the same
as that of the original analog filter, H(s), but repeats at multiples of the sampling
frequency leading to aliasing.

However, if the roll-off of the original analog filter is sufficiently steep or if
the analog filter is band-limited before the impulse invariant method is applied, the
aliasing will be low. Low aliasing can also be achieved by making the sampling
frequency high.

This method may be used for very sharp cutoff low-pass filters with little aliasing,
provided that the sampling frequency is reasonably high, but it is unsuitable for
high-pass or band-stop filters unless an anti-aliasing filter is used.

10.9.2 Illustration: Impulse Invariant Method

The simple analog filter with the transfer function given below is digitized, using the
impulse variant method,

H(s) =
C

s− p
(10.38)
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The impulse response, h(t), is given by the inverse Laplace transform:

h(t) = L−1[H(s)] = L−1
(

C

s− p

)
= Cept

where L−1 symbolizes the inverse Laplace transform. According to the impulse
invariant method, the impulse response of the equivalent digital filter, h(nT), is equal
to h(t) at the discrete times t = nT, n = 0, 1, 2, . . ., i.e.

h(nT ) = h(t)|t=nT = CepnT

The transfer function of H(z) is obtained by z-transforming h(nT):

H(z) =
∞∑

n=0
h(nT )z−n =

∞∑
n=0

CepnT z−n

= C
1−epT z−1

Thus, from the result above, it can be written as

C

s− p
→ C

1− epT z−1 (10.39)

Example 10.15
Consider the first-order transfer function

H(s) =
1

s + a

Assuming that a = 1, find the filter transfer function and the difference equation for
realizing the structure.

Solution 10.15
H(s) =

1
s + a

→ h(t) = e−at H(z) =
1

1− e−az−1

H(z) =
1

1− 0.368 z−1 H(z) =
1

1− 0.368 z−1 =
Y (z)
X(z)

The filter transfer function is expressed in the form of a difference equation as
following:

y(n) = 0.368y(n− 1) + x(n)

10.10 Problems and Solutions

Problem 10.1 (Low-Pass filter)
It is required to design a low-pass digital filter to approximate the following analog
transfer function:

H(s) =
1

s2 + s
√

2 + 1
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Using the BZT method, obtain the transfer function, H(z), of the digital filter,
assuming a 3-dB cutoff frequency of 150 Hz and a sampling frequency of 1.28 kHz.

Solution 10.1
The critical frequency is ωp = 2π x 150, giving the prewarped analog frequency of

Ωp = tan(ωp T/2) = 0.3857

The prewarped analog filter is given by:

H ′(s) = H(s)|s=s/ΩP
=

1
(s/ΩP )2 +

√
2s/ΩP + 1

H ′(s) =
Ω2

P

s2 +
√

2ΩP s + Ω2
P

=
0.1488

s2 + 0.545 s + 0.1488

Applying the BZT gives

H(z) =
0.0878z2 + 0.1756z + 0.0878

z2 + 1.0048z + 0.3561

H(z) = 0.0878
1 + 2z−1 + z−2

1− 1.0048 z−1 + 0.3561 z−1

Problem 10.2 (Low Pass filter)

Design a unit bandwidth 3-dB digital Butterworth low-pass filter of order 1 having
digital frequency ωp = 1 radian/sec using the conventional bilinear transformation;
where in this problem k = 2/T, T = 1.

Solution 10.2
Prewarp the digital frequency ωp = 1 radian/sec. requirement to get

ΩP = 2 tan(ωp.T/2) = 2 tan(1/2), ΩP = 1.0926

Use N = 1 analog Butterworth filter as a prototype applying a low pass-to-low pass
transformation to get HP (s), i.e.

HP (s) =
1

s + 1

Substituting

H
′
(s) = H

′
P (s) |s= s

1.0926
=

1
s

1.0926 + 1
=

1
0.9152s + 1
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Go through the bilinear transformation

H(z) = H
′
(s)|s=(z−1)/(z+1)

s = k
1− z−1

1 + z−1 = 2
1− z−1

1 + z−1

H(z) =
1

0.9152438. [2(1− z−1)/(1 + z−1)] + 1

H(z) =
1 + z−1

2.8305− 0.83052z−1 = 0.3533
1 + z−1

1− 0.2934z−1

Problem 10.3 (Low Pass filter)

The transfer function of the simple RC low-pass filter is given by

H(s) =
V(s)
I(s)

=
1

s + 1

Use the BZT method to design a corresponding Discrete-Time low-pass filter whose
bandwidth is 20 Hz at a sampling frequency of 60 Hz. Plot the magnitude and phase
responses of H(z).

Solution 10.3
The critical frequency here is the filter bandwidth. Thus,

ωp = 2π(20) radians/second

Next, we follow the three design steps associated with the BZT method.

Ωp = tan
(

ωpT

2

)
Ωp = tan

(
2π(20)
2(60)

)

Since T = 1/60 sec, Ωp yields

Ωp = tan
π

3
=
√

3

H(s) is known to have a bandwidth of 1 radian/second. We thus use frequency scaling,
H

′
(s), which has a bandwidth of Ωp =

√
3; i.e.

H
′
(s) = H(s) |s=s/

√
3 =

√
3

s +
√

3
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Thus, the desired transfer functions are

H(z) =

[ √
3

s +
√

3

]

s=(z−1)/(z+1)

which yield

H(z) =
√

3z +
√

3
(1 +

√
3)z + (

√
3− 1)

=
√

3z +
√

3
2.7321z + 0.7321

Thus, it is

H(z) = 0.634
1 + z−1

1 + 0.268z−1

The magnitude and phase responses are computed using the MATLAB. The plots so
obtained are displayed in figure.

Magnitude and phase response of the filter.

Problem 10.4 (Low Pass Notch Filter)

The transfer function of the circuit is shown below

H(s) =
V(s)
I(s)

=
s2 + 1

s2 + s + 1

Design a discrete-time notch (low-pass) filter with the following specification
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1. Notch frequency = 60 Hz.
2. Sampling frequency = 960 Hz.

Plot the corresponding magnitude and phase responses.

Solution 10.4
The critical frequency is 60 Hz, which corresponds to ωp = 2π(60) radian/second.
Next, we proceed with the three design steps.

Ωp = tan
{

ωpT

2

}
= tan

{
2π × 60
2× 960

}
= 0.1989

We obtain the scaled transfer function

H
′
(s) = H(s)|s=s/Ωp

where H(s) and Ωp are given above. This computation leads to

H
′
(s) =

s2 + 0.0396
s2 + 0.1989s + 0.0396

Magnitude and phase responses of H(z).
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Using H(s), we evaluate

H(z) = H
′
(s)|s=(z−1)/(z+1)

to obtain

H(z) =
1.0396 + 1.9208z−1 + 1.0396z−2

1.2385− 1.9208z−1 + 0.8407z−2

whose magnitude and phase responses are plotted in the figure. It is evident that the
notch frequency does occur at 60 Hz, as specified.

Problem 10.5 (High Pass Filter)

The normalized transfer function of a sample analog low-pass resistance-capacitance
(RC) high-pass filter is given by

H(s) =
1

s + 1

Starting from the s plane equation, determine, using the BZT method, the transfer
function of an equivalent discrete-time high-pass filter. Assume a sampling frequency
of 150 Hz and a cutoff frequency of 30 Hz.

Solution 10.5
The normalized transfer function for the RC filter is H(s) = 1

s+1
The critical frequency for the digital filter is ωp = 2π x 30 rad/sec.
The analog frequency, after prewarping, is ΩP = tan(ωp T/2) = tan(π/5)

= 0.7265.
The denormalized analog filter transfer function is obtained from H(s) as

H ′(s) = H(s)|s=Ωp/s =
1

Ωp

s + 1
=

s

s + 0.7265

H(z)=H ′(s)|s=(z−1)/(z+1) =
(z − 1)/(z + 1)

(z − 1)/(z + 1) + 0.7265
= 0.5792

(1− z−1)
1− 0.1584z−1

The coefficients of the discrete-time filter are:

a0 = 0.5792, a1 = −0.5792 and b1 = −0.1584

The difference equation is: y(n) = 0.1584 y(n− 1) + 0.5792[x(n) + x(n− 1)]
The frequency response for a high-pass filter and its block diagram representation

are shown in the figure.
The block diagram representation is shown in the figure.
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Magnitude and phase response of filter.

A block diagram of the filter.

Problem 10.6 (Band-Pass Filter)

A discrete-time band-pass filter with Butterworth characteristics meeting the speci-
fication given below is required. Obtain the coefficients of the filter using the BZT
method.

Pass-band 200–300 Hz
Sampling frequency 2 kHz

Solution 10.6
A first-order, normalized analog low-pass filter is required

H(s) =
1

s + 1
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The prewarped critical frequencies are

ΩP1 =
(

ωp1T

2

)
= tan

(
2π × 200
2× 2000

)
= 0.3249

ΩP2 =
(

ωp2T

2

)
= tan

(
2π × 300
2× 2000

)
= 0.5095

Ω2
0 = ΩP1.ΩP2 = 0.1655 W = ΩP2 − ΩP1 = 0.1846

Using the low pass-to-band pass transformation, we have

H ′(s) = H(s)
∣∣∣∣s= s2+ω2

0
W s

=
1

s2+Ω2
0

Ws + 1

=
Ws

s2 + Ws + Ω2
0

Applying the BZT gives

H ′(s) = H(s)
∣∣∣s= z−1

z+1
=

1
s2+Ω2

0
Ws + 1

=
W
(

z−1
z+1

)

(
z−1
z+1

)2
+ W

(
z−1
z+1

)
+ Ω2

0

Substituting the values of Ω2
0 and W, and simplifying, we have

H(z) = 0.1367
1− z−2

1− 1.2362z−1 + 0.7265z−2

(a) 

Re -1 

s-plane   lm 

-0.3962j 

 0.3962j 

(b) 

Re 

s-plane    lm 

(c) 

Re 

s-plane    lm 

Pole-zero diagrams for (a) prototype low-pass filter and those of (b) intermediate analog
band-pass filter, and (c) discrete band-pass filters obtained by band transformation.
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Magnitude and phase response of filter.

The pole-zero diagrams of the normalized prototype low-pass filter (LPF), the
analog band-pass filter, and the discrete-time band-pass filter are depicted in the figure.
Note that the low pass-to-band pass transformation has introduced a single zero at
the origin of the s-plane and a pole at infinity. The BZT method then maps the zeros
to z = ±1. Its poles are at z = 0.6040± 0.6015j. The analog band-pass zeros are at
s = 0 and infinity (not shown) and the poles at s = −0.0923± 0.3962j.

Problem 10.7

Design a digital low-pass filter using the bilinear transformation method to satisfy
the following characteristics using N = 2 and Butterworth approximation with cutoff
frequency ΩP = 2 rad/sec.

Solution 10.7
The design procedure is that of using the bilinear transformation on an analog
prototype and consists of the following three steps:

Because a low pass filter has to be designed, frequency transformation
s→ s

Ωp
= s

2
Therefore, the required prewarped analog filter using the Butterworth, and the

low pass-to-low pass transformation is

Ha(s) =
1

s2 +
√

2s + 1
|s→s/2 =

4
s2 + 2

√
2s + 4
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Applying the bilinear transformation (T = 1) to Ha(s) will take the prewarped analog
filter to a digital filter with system function H(z) that will satisfy the given digital
requirements:

H(z) = Ha(s)|s→[(1−z−1)/(1+z−1)]

H(z) =
4[

2(1−z−1)
(1+z−1)

]2
+ 2
√

2
[

2(1−z−1)
(1+z−1)

]
+ 4

H(z) =
1 + 2z−1 + z−2

3.4142135 + 0.5857865 z−2

Magnitude and phase response of the filter.

Problem 10.8

Obtain the transfer function and difference equation of the digital low-pass filter.
Assuming a sampling frequency of 500 Hz and a cutoff frequency of 50 Hz, Draw
direct form-I for the calculated filter transfer function,

H(s) =
1

s + 1

Solution 10.8
ΩP = tan

[
ωp

T

2

]
= tan

[
(314.15)

[
2× 10−3

2

]]
= 0.3249
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Now,

H ′(s) =
1

s

0.3249
+ 1

=
0.3249

s + 0.3249

s =
z − 1
z + 1

H(z) =
0.3249

z − 1
z + 1

+ 0.3249

H(z) =
0.3249

(z − 1) + 0.3249(z + 1)
(z + 1)

=
0.3249(z + 1)

(z − 1) + 0.3249(z + 1)

H ′(s) =
0.3249(z + 1)

(z − 1) + 0.3249z + 0.3249

H ′(s) =
0.3249 (z + 1)

1.3249 z − 0.6751
Divide the numerator and denominator by 1.3249.

H ′(s) =
0.2452(1 + z−1)
1− 0.5059 z−1

The filter coefficients are as below:

a0 = 0.2452 b1 = −0.5059
a1 = 0.2452

The filter difference equation is described as follows:

y(n) = 0.2452 x(n) + 0.2452 x(n− 1) + 0.5059 y(n− 1)

0.2452 

0.2452 

x(n) y(n) 

0.5095 

z-1 Σ 

z-1 
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Problem 10.9

A low-pass digital filter meeting the following specifications is required; assume a
Butterworth characteristic for the filter.

Pass-band frequency 1000 Hz
Stop-band frequency 3000 Hz
Pass-band ripple 3 dB
Stop-band attenuation 20 dB
Sampling frequency 8 kHz

Determine the following:

(1) Pass- and stop-band edge frequencies for a suitable analog prototype low-pass
filter;

(2) The order, N, of the prototype low-pass filter;
(3) Filter coefficients, and hence the transfer function, of the discrete-time filters

using the bilinear z-transform.

Solution 10.9
From the specifications, the prewarped frequencies are

Ωp = tan
{

2π × 1000
2× 8000

}
= 0.4142 Ωs = tan

{
2π × 3000
2× 8000

}
= 2.4142

ΩP
S =

Ωs

Ωp
=

2.4142
0.4142

= 5.8284

Thus, the prewarped pass- and stop-band edge frequencies for the prototype LP filter
are: 0, 1, 5.8284.

Next, using Equation (10.3) and the values of the parameters given above, the
order of the filter is determined.

10As/10 − 1 = 1020/10 − 1 = 99; 10AP /10 − 1 = 103/10 − 1 = 0.9952
log
( 99

0.9952

)
= 1.9976

For the prototype LPF,

N ≥
log

(
10

As

10 −1

10
Ap

10 −1

)

2 log
(

Ωp
s

Ωp
p

)

ΩP
P = 1.0 ΩP

S = 5.8284 2 log
(

ΩP
S

ΩP
P

)
= 2 log

(
5.8284

1

)
= 1.5310
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N ≥ 1.9976
1.5310

= 1.3047 ∼= N = 2

The poles of the prototype filter are (from Equation (9.2))

sP1 = cos
[
(2 + 2− 1)π

4

]
+ j sin

[
(2 + 2− 1)π

4

]
= −
√

2
2

+ j

√
2

2

sP2 = −
√

2
2
− j

√
2

2
The s-plane transfer function, H(s), is

H(s) =
1

s2 +
√

2 s + 1

The frequency scaled s-plane transfer function is

H
′
(s) = H(s)

∣∣∣s= s
Ωp

=
1(

s
Ωp

)2
+
√

2
(

s
Ωp

)
+ 1

H
′
(s) =

Ω2
p

s2 +
√

2 s Ωp + Ω2
p

Applying the BZT method,

H(z) = H
′
(s)
∣∣∣s= z−1

z+1
=

Ω2
p(

z−1
z+1

)2
+ Ωp

√
2
(

z−1
z+1

)
+ Ω2

p

H(z) =
Ω2

p(z + 1)2

(z − 1)2 + Ωp

√
2 (z − 1)(z + 1) + Ω2

p(z + 1)2

After simplification and dividing top and bottom by z2, we have

H(z) =
Ω2

p

1 +
√

2 Ωp + Ω2
p

× 1 + 2 z−1 + z−2

1 + 2(Ω2
p−1) z−1

1+Ωp

√
2 +Ω2

p

+ (1−Ωp

√
2 +Ω2

p) z−2

1−Ωp

√
2 +Ω2

p

Using the values of the parameters and substituting in the equation above and
simplifying, we have

H(z) = 0.0976
(1 + 2z−1 + z−2)

1− 1.4714z−1 + 0.1380z−2
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Problem 10.10

A high-pass digital filter meeting the following specifications is required:
Pass-band frequency 3000 Hz
Stop-band frequency 1000 Hz
Pass-band ripple 3 dB
Stop-band attenuation 20 dB
Sampling frequency 8 kHz

Determine the following:

(1) Pass- and stop-band edge frequencies for a suitable analog prototype low-pass
filter;

(2) Order, N, of the prototype low-pass filter;
(3) Filters coefficients, and hence the transfer function, of the discrete-time filter

using the bilinear z-transform.

Assume a Butterworth characteristic for the filter.

Solution 10.10
From the specifications, the prewarped frequencies are

Ωp = tan
{

2π × 3000
2× 8000

}
= 2.4142 Ωs = tan

{
2π × 1000
2× 8000

}
= 0.4142

ΩP
S =

Ωp

Ωs
=

2.4142
0.4142

= 5.8284

Thus, the pass- and stop-band edge frequencies for the prototype LP filter are: 0, 1,
5.8284.

(2) Next, we use (10.3) and the values of the parameters above to determine the
order of the filter.

Now

10As/10 − 1 = 1020/10 − 1 = 99; 10AP /10 − 1 = 103/10 − 1 = 0.9952
log
( 99

0.9952

)
= 1.9976

For the prototype LPF,

N ≥
log

(
10

As

10 −1

10
Ap

10 −1

)

2 log
(

ωp
s

ωp
p

)

ΩP
P = 1.0 ΩP

S = 5.8284 2 log
(

ΩP
S

ΩP
P

)
= 2 log

(
ΩP

S

ΩP
P

)
= 1.4206

N ≥ 1.9976
1.5310

= 1.3047 ∼= N = 2
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The poles of the prototype filter are from Equation (10.2)

sP1 = cos
[
(2 + 2− 1)π

4

]
+ j sin

[
(2 + 2− 1)π

4

]
= −
√

2
2

+ j

√
2

2

sP2 = −
√

2
2
− j

√
2

2
The s-plane transfer function, H(s), is

H(s) =
1

(s− sP1)(s− sP2)
=

1
s2 +

√
2 s + 1

The frequency scaled s-plane transfer function is

H
′
(s) = H(s)

∣∣∣
s=Ωp

s

=
1(

Ωp

s

)2
+
√

2
(

Ωp

s

)
+ 1

H
′
(s) =

s2

s2 +
√

2 s Ωp + Ω2
p

Applying the BZT method,

H(z) = H
′
(s)
∣∣∣s= z−1

z+1
=

(
z−1
z+1

)2

(
z−1
z+1

)2
+ Ωp

√
2
(

z−1
z+1

)
+ Ω2

p

H(z) =
(z − 1)2

(z − 1)2 + Ωp

√
2 (z − 1)(z + 1) + Ω2

p(z + 1)2

After simplification and dividing top and bottom by z2, we have

H(z) =
1

1 +
√

2 Ωp + Ω2
p

× 1− 2 z−1 + z−2

1 + 2(Ω2
p−1) z−1

1+Ωp

√
2 +Ω2

p

+ (1−Ωp

√
2 +Ω2

p) z−2

(1+Ωp

√
2 +Ω2

p

Using the values of the parameters

1 +
√

2 Ωp + Ω2
p = 10.24263;

Ω2
p − 1 = 0 1−

√
2 Ωp + Ω2

p = −8.2426 Ω2
p = 5.8284

and substituting in the equation above and simplifying, we have

H(z) =
5.8284
10.2426

(1− 2z−1 + z−2)

1 + 2(4.8284)
10.2426 z−1 − (−8.2426)

10.2426 z−2

H(z) = 0.5690
(1− 2z−1 + z−2)

1 + 0.9428z−2 − 0.8047z−2
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Problem 10.11

A requirement exists for a band-pass digital filter, with a Butterworth magnitude-
frequency response, that satisfies the following specification:

Lower pass-band edge frequency 500 Hz
Upper pass-band edge frequency 800 Hz
Lower stop-band edge frequency 2000 Hz
Upper stop-band edge frequency 3000 Hz
Pass-band ripple 3 dB
Stop-band attenuation 20 dB
Sampling frequency 6000 Hz

Determine the following:

(1) Pass- and stop-band edge frequencies of a suitable prototype low-pass filter;
(2) Order, N, of the prototype low-pass filter;
(3) Filter coefficients, and hence the transfer function, of the discrete-time filter

using the BZT method.

Solution 10.11
The prewarped critical frequencies for the band-pass filter are

Ωp1 = tan
{

2π × 500
2× 6000

}
= 0.2679 Ωp2 = tan

{
2π × 800
2× 6000

}
= 0.4452

Ωs1 = tan
{

2π × 2000
2× 6000

}
= 1.732 Ωs2 = tan

{
2π × 450
2× 1000

}
= 6.3138

Ω0 =
√

Ωp2.Ωp1 =
√

(0.4452)(0.2679) = 0.3453

W = Ωp2.−Ωp1 = 0.4452− 0.2679 = 0.1773

Thus, the band edge frequencies for the prototype LP filter are (using the relationships
above)

Ωp
s1 =

Ω2
s1 − Ω2

o

WΩs1
=

Ω2
s1 − Ω2

o

(Ωp2 − Ωp1)Ωs1
=

(1.732)2−0.1193
(0.1773)(1.732)

=
2.8805

(0.3071)
= 9.4379

Ωp
s2 =

Ω2
s2 − Ω2

o

WΩs2
=

Ω2
s2 − Ω2

o

(Ωp2 − Ωp1)Ωs2
=

(0.1584)2−1
(1.3763−0.7265)(0.1584)

=
−0.9749

(0.6498)(0.1584)
=
−0.9749
0.1029

= −9.4705

Ωp
p = 1, ωP

s = min(
∣∣ωP

s1

∣∣, ∣∣ωP
s2

∣∣)
Ωp

s = 9.4705
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Thus, we require a prototype LPF with Ωp
p = 1, Ωp

s = 9.4705, Ap = 3 dB;
As = 20 dB. From Equation, (10.3) the order of the prototype LPF is obtained as

Now

10As/10 − 1 = 1020/10 − 1 = 99;

10AP /10 − 1 = 103/10 − 1 = 0.9952 log
(

99
0.9952

)
= 1.9976

For the prototype LPF,

N ≥
log

(
10

As

10 −1

10
Ap

10 −1

)

2 log
(

Ωp
s

Ωp
p

)

ΩP
P = 1.0 ΩP

S = 5.3792 2 log
(

ΩP
S

ΩP
P

)
= 2 log

(
ΩP

S

ΩP
P

)
= 1.9443

N ≥ 1.9976
1.9443

= 1.027 ∼= N = 1

N must be an integer, and this time for simplicity, we will use N = 1. The s-plane
transfer function for a first-order prototype LP filter is given by

H(s) =
1

s + 1

The frequency scaled s-plane transfer function is

H
′
(s) = H(s)

∣∣∣∣s= s2+Ω2
o

WΩ

=
1(

s2+Ω2
o

Ws

)
+ 1

=
Ws

s2 + Ws + Ω2
0

Applying the BZT method,

H(z) = H
′
(s)
∣∣∣s= z−1

z+1
=

W
(

z−1
z+1

)

(
z−1
z+1

)2
+ W

(
z−1
z+1

)
+ Ω2

0

=
(z − 1)(z + 1)

(z − 1)2 + W (z − 1)(z + 1) + Ω2
0(z + 1)2

After simplification, and substituting the values for Ω2
0 and W,

H(z) =
(z2 − 1)

z2 − 2z + 1 + 0.1773(z2 − 1) + 0.119(z2 + 2z + 1)
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H(z) =
0.1372(1− z−2)

z2 − 2z + 1 + 0.1773(z2 − 1) + 0.119(z2 + 2z + 1)

H(z) = 0.1372
(1− z−2)

1 + 1.3464 z−1 + 0.728 z−2

Problem 10.12

A requirement exists for a band-stop digital IIR filter, with a Butterworth magnitude-
frequency response, that meets the following specifications:

Pass-band frequency 50–500 Hz
Stop-band frequency 200–400 Hz
Pass-band ripple 3 dB
Stop-band attenuation 18 dB
Sampling frequency 1100 Hz

Determine the following:

(1) Pass- and stop-band edge frequencies of a suitable prototype low-pass filter;
(2) Order, N, of the prototype low-pass filter;

Solution 10.12
The prewarped critical frequencies for the band-pass filter are

Ωp1 = tan
(

ωp1T

2

)
= tan

(
2 π 50

(2)(1100)

)
= 0.1437

Ωp2 = tan
(

ωp2T

2

)
= tan

(
2 π 500

(2)(1100)

)
= 6.955

Ωs1 = tan
(

ωs1T

2

)
= tan

(
2 π 200

(2)(6000)

)
= 0.6426

Ωs2 = tan
(

ωs2T

2

)
= tan

(
2 π 400

(2)(1100)

)
= 2.189

Ω0 =
√

Ωp2.Ωp1 =
√

(6.955)(0.143) = 1

W = Ωp2 − Ωp1 = 6.955− 0.1437 = 6.811

Ωp(1)
s =

WΩs1

Ω2
o − Ω2

s1
=

(Ωp2−Ωp1)Ωs1

Ω2
o − Ω2

s1

=
(6.811)(0.6426)
(1)− (0.6426)2

=
(6.811)(0.6426)

1− 0.4129
=

4.3767
0.5871

= 7.4547



518 Step-by-Step Design of IIR Filters

Ωp(2)
s =

WΩs2

Ω2
o − Ω2

s2
=

(Ωp2−Ωp1)Ωs2

Ω2
o − Ω2

s2

=
(6.811)(2.189)
(1)2 − (2.189)2

=
14.90
−3.791

= −3.932

Ωp
s = min (

∣∣∣Ωp(1)
s

∣∣∣,
∣∣∣Ωp(2)

s

∣∣∣) Thus, the band edge frequencies for the prototype

LP filter are (using the relationships above)

Ωp
p = 1; Ωp

s = 3.932

We require a prototype LPF with Ωp
p = 1; Ωp

s = 3.932, Ap = 3 dB; As = 20 dB.
From Equation (10.3), the order of the prototype LPF is obtained as

10As/10 − 1 = 1020/10 − 1 = 99;

10AP /10 − 1 = 103/10 − 1 = 0.9952 log
(

99
0.9952

)
= 1.9976

For the prototype LPF,

N ≥
log

(
10

As

10 −1

10
Ap

10 −1

)

2 log
(

Ωp
s

Ωp
p

)

ΩP
P = 1.0 ΩP

S = 9.4705 2 log
(

ΩP
S

ΩP
P

)
= 2 log (3.932) = 1.189

N ≥ 1.997697
1.189

= 1.679 ∼= N = 2

N must be an integer, and for simplicity, we will use N = 2. The s-plane transfer
function for a first-order prototype LP filter is given by

H(s) =
1

s2 +
√

2 s + 1

Problem 10.13

A band-pass notch digital filter is required to meet the following specification:

(i) Complete signal rejection at 125 Hz.
(ii) A narrow pass band centered at 50 Hz.

(iii) A 3-dB bandwidth of 7.5 Hz.

Assuming a sampling frequency of 500 Hz, obtain the transfer function of the filter,
by suitably placing z-plane poles and zeros and its difference equation. The radius (r)
of the pole is determined using the following bandwidth relation r = 1 – (bw/Fs)π.
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Solution 10.13
Zeros

Using the signal rejection frequency, we find zeros.

Z1 = 360◦ × 125
500

= ±90◦,

Poles at the location
Using pass–band-centered frequency.

p1,2 = ± 360◦ × 50
500

= ± 36◦

Radius is to be calculated using r = 1− (bw/Fs)π.
To ensure that the coefficients are real, it is necessary to have a complex conjugate

pole pair. The radius, r, of the poles is determined by the desired bandwidth. An
approximate relationship between r, for r > 0.9, and bandwidth (bw), is given by

r = 1− (bw/Fs)π.

The radius (r) of the pole is determined by using the following bandwidth relation.

r = 1− (bw/Fs)π., r = 1− (7.5/500)p, r = 0.9528

Complete rejection is required at 125 Hz, which gives the information that where to
place the poles and zeros on the z-plane. These are at angles ±90◦ on the unit circle.
The pass-band centered at 50 Hz gives the information to place poles at ±36◦.

The pole-zero diagrams are given in the figure below. From the pole-zero
diagrams, the transfer function can be written down by inspection:

From the pole-zero diagram,

H(z) =
(z − ejπ/2)(z − e−jπ/2)

(z − rej36◦)(z − re−j36◦)

H(z) =
(z − j)(z + j)

(z2 − re−jπ/2 − zrejπ/2 + r2ejπ/2−jπ/2)

H(z) =
(z2 + 1)

(z2 − z r[e−j36 + ej36] + r2e◦)

H(z) =
(z2 + 1)

(z2 − 2z r[cos 36◦] + r2 H(z) =
(z2 + 1)

z2 − 1.618z + 0.9078

H(z) =
(1 + z−2)

1− 1.618z−1 + 0.9078z−2
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Problem 10.14

Using the pole-zero placement method, calculate coefficients of a notch filter. Obtain
transfer function and the difference equation of a simple digital notch filer that meets
the following specification:

Notch frequency 25 Hz
3-dB width of notch ±10 Hz
Sampling frequency 400 Hz

Solution 10.14
To reject the component at 25 Hz, we place a pair of complex zeros at points on the
unit circle corresponding to 25 Hz, that is at angles of 360◦ × 25/400 = ±22.5◦.

To achieve a sharp notch filter and improved amplitude response on either side
of the notch frequency, a pair of complex conjugate poles are placed at a radius
r < 1. The width of the notch is determined by the locations of the poles. The
relationship between the bandwidth and the radius of the poles is given by

r ≈ 1− (bw/Fs)π

[bw = 20 Hz and Fs = 400 Hz, giving r = (1 – 20/400)π = 0.8429]

H(z) =
[z − ej22.5◦

][z − e−j22.5◦
]

[z − 0.8429 ej22.5◦)][z − 0.8429 e−j22.5◦ ]

=
z2 − 2z cos 22.5◦ + 1
z2 − 1.6858z + 0.7104

=
1− 1.8477z−1 + z−2

1− 1.6858z−1 + 0.7104z−2

Problem 10.15

Calculate coefficients of a notch filter and the transfer function and the difference
equation of a simple digital notch filter that meets the following specifications:
1) Notch frequency 63 Hz.
2) 3-dB width of notch ±5 Hz.
3) Sampling frequency 500 Hz.

Solution 10.15
Zeros

Z1,2 = ±360◦ × 63
500

= ±45.03◦ ∼= 45◦

Poles
For finding the poles, we use a bandwidth with a noted frequency.

Z1,2 = ±360◦ × (63 + 5)
500

= ± 48.96◦ ∼= 49◦
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Complete rejection is required at 0 and 250 Hz, which gives the information that
where to place the poles and zeros on the z-plane. These are at angles of 0◦ and
360◦ × 250/500 = 180◦ on the unit circle.

The pass band centered at 125 Hz gives information about the placement the
poles at ±360◦ × 125/500 = ±90◦.

To ensure that the coefficients are real, it is necessary to have a complex conjugate
pole pair. The radius, r, of the poles is determined by the desired bandwidth. An
approximate relationship between r, for r > 0.9, and bandwidth, bw, is given by

r ≈ 1− (bw/Fs)π

bw = 5 Hz and Fs = 500 Hz, giving r = 1 – (5/500)π = 0.968 rad/sec.
The pole-zero diagrams are given in the figure. From the pole-zero diagrams, the

transfer function can be written down by inspection:

H(z) =
(z − e−jπ/4)(z + e+jπ/4)
(z − re−J49◦)(z − reJ49◦)

H(z) =
z2 − zejπ/4 − ze−jπ/4 + e−jπ/4+jπ/4

z2 − zrej49◦ − ze−j49◦ + r2e−j49◦+j49◦

H(z) =
z2 − z[cos π/4− i sin π/4 + cos π/4 + i sin π/4] + 1
z2 − z r[cos 49◦ − i sin 49◦ + cos 49◦ + i sin 49◦] + r2

H(z) =
z2 + 1.050 z + 1

z2 − z(0.968)(0.6011) + 0.9370

H(z) =
1 + 1.050 z−1 + z−2

1− 0.5818 z−1 + 0.9370 z−2

Comparing the transfer function, H(z), the following coefficients have been
found out.

a0 = 1 b1 = −0.5818
a1 = 1.05 b2 = 0.9370
a2 = 1

The filter difference equation is given by

y(n) = x(n) + 1.050 x(n− 1) + x(n− 2) + 0.5818 y(n− 1)− 0.9370 y(n− 2)

Problem 10.16

Digitize, using the impulse invariant method, the analog filter with the transfer
function.

H(s) =
α

s(s + α)
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Assuming a sampling frequency of 1 (normalized) and α = 0.5. Draw direct form-I
for the calculated filter transfer function.

Solution 10.16
H(s) =

α

s(s + α)
→ α

s2 + αs

H(s) =
C1

s− p1
+

C2

s− p2

H(s) =
C1

s− p1
+

C2

s− p2

There are two roots of the transfer function, we use, to residue theorem to find out
the residues values of C1 and C2

C1 = 1, C2 = −1;
ep1T = 1; ep2T = 0.6065
p1 = 0; p2 = −0.5; e(p1+p2)T = 0.6065

Put the values above in Equation (8.22) which are for non-conjugate values.

H(z) =
C1 + C2 − (C1e

p2T + C2e
p1T )z−1

1− (ep1T + ep2T )z−1 + e(p1+p2)T z−2

H(z) =
1− 1− [0.6065− 1]z−1

1− (1.6065)z−1 + 0.6065z−2

H(z) =
0.3935z−1

1− 1.6065z−1 + 0.6065z−2

The filter coefficients are as below:

a0 = 0 b1 = −1.6065
a1 = 0.3935 b2 = 0.6065
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The filter difference equation is described as follows:

Y(n) = 0.3935 x(n− 1) + 1.6065 y(n− 1)− 0.6065 y(n− 2)

Problem 10.17

Obtain the digital filter transfer function for given

H(s) =
1

(s + a)(s + b)

Assuming that a = 0.3 and b = 0.5, find the filter transfer function and the difference
equation for realizing the structure.

Solution 10.17
H(s) =

A

s + a
+

B

s + b

This can be written in partial fraction form, after the calculation of the residues A and
B as,

A =
1

b− a
B =

1
a− b

h(t) =
1

b− a
e−at − 1

b− a
e−bt

H(z) =
1

b−a

1− e−az−1 −
1

b−a

1− e−bz−1 =
1/0.2

1− e−0.3z−1 −
1/0.2

1− e−0.5z−1

H(z) =
5

1− 0.741z−1 −
5

1− 0.607z−1

H(z) =
5(1− 0.607z−1)−

1− 0.741z−1

5(1− 0.741z−1)
1− 0.607z−1 H(z) =

0.67z−1

1− 1.348z−1 + 0.45z−1

y(n)− 1.348 y(n− 1) + 0.45 y(n− 2) = 0.67 x(n− 1)

Rearranging to get y(n); y(n) = 1.348 y(n− 1)− 0.45 y(n− 2) + 0.67 x(n− 1)
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Problem 10.18

Obtain the digital filter transfer function for given

H(s) =
s + 0.5

(s + 0.5)2 + (s + 0.25)2

Convert this analog filter into a digital filter by making use of the impulse invariant
technique, by assuming T = 0.1 second.

Solution 10.18
The z-transform of the following transfer function is given by

H(s) =
s + a

(s + a)2 + b2

In z domain, it is given by

H(z) =
1− e−aT (cos bT ) z−1

1− 2e−aT (cos bT ) z−1 + e−2aT z−2

Here, a = 0.5 and b = 0.25,

H(z) =
1− e−(0.5)(0.1) cos[(0.25)(0.1)]z−1

1− 2e−(0.5)(0.1) cos[(0.25)(0.1)]z−1 + e−2(0.5)(0.1)z−2

H(z) =
1− (0.952)(0.1)]z−1

1− 2(0.951)(0.999))z−1 + 0.904z−2

H(z) =
1− (0.951)z−1

1− 1.902z−1 + 0.904z−2 =
Y(z)
X(z)

y(n)[1− 1.902 y(n− 1) + 0.904 y(n− 2) = x(n)− 0.951 x(n− 1)

y(n) = 1.902 y(n− 1)− 0.904 y(n− 2) + x(n)− 0.951 x(n− 1)

Problem 10.19

Applying the impulse invariant method to design a digital filter to approximate the
following normalized analog transfer function,

H(s) =
1

s2 +
√

2s + 1

Using the impulse invariant method, the transfer function, H(z), of the digital filter
assuming a 3-dB cutoff frequency of 1 kHz and a sampling frequency of 5 kHz is
obtained.
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Solution 10.19
The critical frequency is ωp = 2π x 1000 = 2000 π, giving the prewarped analog
frequency of Ωp = tan(ωp T/2)

Ωp = tan
(

ωpT

2

)
= tan

(
2 π 1000
(2)(5000)

)
= 0.7265

Now replace s by (s/Ωp). The prewarped analog filter is given by:

H ′(s) = H(s)|s=s/Ωp
=

1
(s/Ωp)2 +

√
2s/Ωp + 1

H ′(s) =
Ω2

p

s2 +
√

2Ωps + Ω2
p

=
(0.7265)2

s2 + 1.0267 s + 0.5271

H ′(s) =
0.5271

s2 + 1.0267 s + 0.5271
Applying the BZT method gives

s =
[
z − 1
z + 1

]

H(z) =
0.5271

(z − 1)2

(z + 1)2
+ 1.0267

(z − 1)
(z + 1)

+ 0.5271

H(z) =
0.5271 (z + 1)

(z − 1)2

(z + 1)2
+ 1.0267

(z − 1)
(z + 1)

+ 0.5271

H(z) =
0.5271(z + 2z + 1)

z2 − 2z + 1 + 1.0267z2 − 1.0267 + 0.5271 z2 + 1.054z + 0.5271

H(z) =
0.206 + 0.4127z−1 + 0.206z−2

1− 0.370z−1 + 0.1957z−2

The filter coefficients are as below:

a0 = 0.206 b1 = −0.370
a1 = 0.4127 b2 = 0.1957
a2 = 0.206

The filter difference equation is described as follows:

y(n) = 0.206 x(n) + 0.412 x(n− 1) + 0.206 x(n− 2)
+ 0.37 y(n− 1)− 0.1957 y(n− 2)
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(a) Realization structure.

(b) Frequency response of filter.

Problem 10.20
The system function of an analog filter is expressed as follows:

H(s) =
s + 0.2

(s + 0.2)2 + 9
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Convert this analog filter into a digital filter by making use of the impulse invariant
technique, by assuming T = 1 second.

Solution 10.20
H(s) =

s + a

(s + a)2 + b2

where we are given that a = 0.2 and b = 3, and we can obtain the system response of
the digital filter as follows:

H(z) =
1− e−aT (cos bT ) z−1

1− 2e−aT (cos bT ) z−1 + e−2aT z−2

Putting the value of a = 0.2 and b = 3, we obtain

H(z) =
1− e−0.2T (cos 3T ) z−1

1− 2e−aT (cos 3T ) z−1 + e−0.4T z−2

Taking T = 1 second

H(z) =
1− (0.8187)(−0.99) z−1

1− 2(0.8187)(−0.99) z−1 + 0.6703 z−2

H(z) =
1− 0.8105 z−1

1− 1.6210 z−1 + 0.6703 z−2





11
Finite Word-Length Effects in Digital Filters

This chapter begins with the introduction to finite word length effects in
digital filter, representation of binary numbers, floating-point number types of
representation of numbers, quantization error, coefficient quantization error,
effects in FIR digital filters, and problems and solutions.

11.1 Introduction

While the digital filters are implemented on digital hardware, there are some
effects of using finite lengths to represent all relevant filter parameters.
The algorithms for digital signal processing can be realized either with
special-purpose digital hardware or as programs for a general-purpose digital
computer. However, in both cases, the numbers and coefficients are stored in
finite-length registers. Therefore, coefficients and numbers must be quantized
by truncation of rounding before they can be stored. Before we proceed to
analyze the quantization noise, we here present the refresher for arithmetic
used in digital system.

11.2 Methods of Representation of Binary Numbers

We can represent a number either decimal or binary N (say) to any desired
accuracy by the following finite series:

N =
n2∑

i=n1

cir
i

where r is known as the radix. For decimal number, the radix = 10, and for
binary number, it is 2.

529
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Example 11.1
Represent the decimal number 20.275 into radix r = 10 format.

Solution 11.1
For decimal representation having numbers from 0 to 9; in decimal pre-
sentation, r = 10. The representation of the number can be represented as
follows:

20.275 =
1∑

i=−3

ci10i or 20.275 = 2× 101 + 0× 100 + 2× 10−1

+ 7× 10−2 + 5× 10−3

Example 11.2
Represent the binary number 10001.10000011 into radix r = 2 format.

Solution 11.2
The representation is called binary representation with two numbers 0 and 1;
in this case, r = 2. The representation of the binary number is as follows:

10001.10000011 =
4∑

i=−8

ci2i = 1× 24 + 0× 23 + 0× 22 + 0× 21

+ 1× 20 + 1× 2−1 + 0× 2−2 + 0× 2−3 + 0× 2−4

+ 0× 2−5 + 0× 2−6 + 1× 2−7 + 1× 2−8

To convert from decimal to binary, we divide the integer part of the number
(left to the decimal point) repeatedly by 2 and arrange the remainder in
reverse order. The fractional part (right to the decimal point) is repeatedly
multiplied by 2, each time removing the integer part, and writing in normal
order.

Example 11.3
This example gives a revision of conversion of decimal number into binary
number. Convert the given decimal number 15.375 to binary form.

Solution 11.3
We have the following procedure



11.3 Fixed-Point Arithmetic for Binary Number 531

Therefore, from above, we get

(15.375)10 = (1111.0110 . . .)2

Example 11.4
Convert the given decimal number 20.5 to binary form.

Solution 11.4
We have the following procedure

Therefore, from above, we get

(20.5)10 = (10100.10)2

10100.10 = 1× 24 +0× 23 +1× 22 +0× 21 +0× 20 +1× 2−1 +0× 2−2

11.3 Fixed-Point Arithmetic for Binary Number

Binary numbers are represented in digital systems using one of the two
formats: fixed or floating point.
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11.3.1 Representation of Fixed-Point Number

Let us assume that a word length of b bits is chosen to represent the
numbers in a digital filter. Therefore, with a bit words, 2b different numbers
may be represented. The position of binary point is fixed in the fixed-point
representation; the position of the binary point is fixed. The bit to the right
represents the fractional part of the number and that to the left represents the
integer part.

Example 11.5
Represent the binary number 11.10011 to decimal number.

Solution 11.5

10.1001101 =
1∑

i=−6

ci2i = 1× 21 + 0× 20 + 1× 2−1 + 0× 2−2

+ 0× 2−3 + 1× 2−4 + 0× 2−5 + 1× 2−6

There are different ways to represent a positive or negative number for fixed-
point arithmetic:

(a) Sign-magnitude form
(b) One’s complement
(c) Two’s complement form

11.3.1.1 Sign-magnitude form
There are certain advantages or disadvantages of each representation, but the
most likely used is two’s complement form.

In sign-magnitude representation, the most significant bit is set to 1 to
represent the negative sign.

In sign-magnitude form, the number 0 has two representations, i.e.,
00.000000 or 10.000000. The magnitude of the negative number is given
with b bits only as

(2b − 1) (11.1)

Example 11.6
Convert the decimal number – 2.25 into binary number using sign-magnitude
form.
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Solution 11.6
2.25 is represented as 10.01 and −1.75 is represented as 111.101

11.3.1.2 One’s complement form
In one’s complement form, the positive number is represented as in the
sign-magnitude notation. However, the negative number can be obtained by
complementing all the bits of the positive number.

In one’s complement form, the magnitude of the negative number is
given as

1−
b∑

i=1

ci2−i − 2−b (11.2)

Example 11.7
Convert 0.775 decimal number into binary and represent the decimal number
–0.775 using one’s complement.

Solution 11.7

(0.775)10 = (0.1100011)2

(−0.775)10 = (1.0011100)1
(0.775)10 = (0.1100011)2

↓↓ ↓↓↓↓↓
complementing

1.0011100 each bit
(−0.775)10 = (1.0011100)1

Note that this is same as subtracting the magnitude from 2 – 2−b, where b is
the number of bits (without sign bit)

2 − 2−b = 10.000000 − 0.0000001 = 1.1111111

Now, subtract
0.775 = (0.1100011)2

1.1111111
0.1100011
1.0011100
= (−0.775)10

in one’s complement form
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In one’s complement form, the magnitude of the negative number is
represented as

1−
b∑

i=1

ci2−i − 2−b (1)

∵ 1− (2−3 + 2−4 + 2−5)− 2−7 = 0.775

11.3.1.3 Two’s complement form
In two’s complements representation, positive numbers are represented as in
sign-magnitude form and one’s complement. However, the negative number
can be obtained by complementing all the bits of the positive number and
adding one to the least-significant bit.

Let the given number is A; then, 2’s complement of A is A′ = Ā+1 where
Ā is the complement of A.

The magnitude of the negative number is given as follows:

x = 1−
b∑

i=1

ci2−i (11.3)

Example 11.8
Convert (5)10 into binary form; then, using two’s complement, find the binary
equivalent of (−5)10.

Solution 11.8

A = (+5)10 = (0101)2
Then,
Ā = 1010
A′ = Ā + 1= 1011
which is two’s complement of A
and is used for representing nega-
tive number
(−5)10 = (1011)2

(5)10 = (0101)2
↓↓↓↓

complementing
1010 each bit
0001 add 1 to LSB

———–
(−5)10 = 1011———–

Example 11.9
Convert (0.975)10 into binary form; then, find two’s complement of
(−0.975)10.
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Solution 11.9

(+0.975)10 = (0.11111001100)2

(−0.875)10 = (1.00000110100)2

0.97510 = (0.11111001100)2
↓↓↓↓↓↓↓↓↓↓↓↓↓

complementing
1.00000110011 each bit

+0.00000000001Add 1 to
LSB

——————
(−0.975)10 = 1.00000110100

——————

Here,
A = (+0.975)10 = (0.11111001100)2

Then, Ā= 1.00000110011

A′ = Ā + 1 = 1.00000110100

Before proceeding further, the few operations such as addition and multipli-
cation of fixed-point number are explained in the following paragraph.

11.3.2 Addition

The addition of two fixed-point numbers is quite simple. In fact, the two
numbers are added bit by bit starting from right, with carry bit being added to
the next bit.

Example 11.10
Add (0.5)10 and (0.125)10

Solution 11.10
Assuming the total number of bits b + 1 = 4 (including sign bit)

Now, we obtain

(0.5)10 =
(0.125)10 =

0.1002

0.0012

0.1012 = (0.625)10
sign bit

When two numbers of b bits are added and the sum cannot be represented by
b bits, an overflow is said to occur.
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Example 11.11
Add (0.5)10 and (0.625)10

Solution 11.11
If b = 3, then the addition of the two numbers is as follows:

(0.5)10 =
(0.625)10 =

0.100
0.101
1.001 = (−0.125)10 in sign magnitude

sign bit

The addition of (0.5)10 and (0.625)10 obtained (1.125)10.
Overflow occurs in the above result because (1.125)10 cannot be repre-

sented by the three-bit number system. Hence, in general, the addition of
fixed-point numbers causes an overflow. The subtraction of two fixed-point
numbers can be performed easily using two’s complement representation.

Example 11.12
Subtract (i) 0.25 from 0.5 and (ii) 0.5 from 0.25

Solution 11.12

Decimal two’s complement
(i) 0.5 = 0.100

}

—— add
−0.25 = 1.110

10.010 = 0.25
neglect carry bit

Two’s complement
representation of –0.25
(0.25)10 = (0.010)2

↓ ↓ ↓↓ complementing
1.101 each bit

+0.001 Add 1 to LSB
= 1.110

i.e., (−0.25)10 = (1.110)2

Carry is generated after the addition. Therefore, the result is positive. Neglect
the carry bit to get the result in decimal.

i.e., (0.010)2 = (0.25)10
(ii) Decimal two’s complement

0.25 = 0.010
}

—— add
−0.5 = 1.100

1.110

Two’s complement
representation of –0.5
(0.5)10 = (0.100)2

↓ ↓ ↓↓ complementing
1.011 each bit

+0.001 add 1 to LSB
= 1.100

i.e., (−0.5)10 = (1.100)2
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Carry is not generated after the addition. Therefore, the result is negative. To
obtain the decimal output, find the two’s complement of 1.110

0.001
1
0.010 = (0.25)10

i.e., (−0.25)10

11.3.3 Multiplication

In the multiplication of two fixed-point numbers, we first separate the sign
and magnitude components. The magnitudes of the numbers are multiplied
first, and then, the sign of the product is determined and applied to the result.
When a b-bit number is multiplied with another b-bit number, the product may
contain 2b bits.

Example 11.13
Multiply

(11)2 × (11)2

Solution 11.13
(11)2 × (11)2 = (1001)2

If the b bits are organized into b = bi + bf , where bi represents integer part
and bf represents the fraction, then the product may contain 2bi + 2bf bits.
In fixed-point arithmetic, multiplication of two fractions results in a fraction.
Multiplication occurs in a very similar way as ordinary multiplication. Note
that for multiplication of fractions, overflow can never occur.

For example,

0.1001× 0.0011 = 0.00011011
(4 bits) (4 bits) (8 bits)

11.4 Floating-Point Number Representation

In floating-point representation, a positive number is represented as F = 2c.
M, where M, called mantissa, is a fraction such that 1/2 ≤ M ≤ 1 and c, the
exponent can be either positive or negative.

In decimal numbers, 4.5, 1.5, 6.5, and 0.625 have floating-point rep-
resentations as 23 × 0.5625, 21 × 0.75, 23 × 0.8125, and 20 × 0.625,
respectively.



538 Finite Word-Length Effects in Digital Filters

Equivalently, we have

23 × 0.5625 = 2011 × 0.1001
21 × 0.75 = 2001 × 0.1100
23 × 0.8125 = 2011 × 0.1101
20 × 0.625 = 2000 × 0.1010

∵(3)10 =
(0.5625)10 =
(1)10 =
(0.75)10 =
(0.8125)10 =
(0.625)10 =

(011)2
(0.1001)2
(001)2
(0.1100)2
(0.1101)2
(0.1010)2

Negative floating-point numbers are generally represented by considering
the mantissa as a fixed-point number. The sign of the floating-point num-
ber is obtained from the first bit of mantissa. In floating-point arithmetic,
multiplications are carried out as follows:

Let F1 = 2c1 ×M1 and
F2 = 2c2 ×M2

Then, the product F3 = F1 × F2 = (M1 ×M2)2c1+c2

This means that the mantissas are multiplied using fixed-point arithmetic and
exponents are added.

The product (M 1 × M 2) must be in the range of 0.25 to 1.0. To correct
this problem, the exponent (c1 + c2) must be altered.

Example 11.14
Multiply (1.5)10 and (1.25)10 number using block floating-point technique.

Solution 11.14
Consider the multiplication of two numbers

(1.5)10 and (1.25)10
(1.5)10 = 21 × 0.75 = 2001 × 0.1100

(1.25)10 = 21 × 0.625 = 2001 × 0.1010
Now,

(1.5)10 and (1.25)10
= (2001 × 0.1100) × (2001 × 0.1010)
= 2010 × 0.01111

(0.75)10 = (0.1100)2
(0.625)10 = (0.1010)2
0.1100 × 0.1010
0.0111100

It may be noted that the addition and subtraction of two floating-point numbers
are more difficult than the addition and subtraction of two fixed-point numbers.

To carry out addition, first adjust the exponent of the smaller number until
it matches the exponent of larger number. The mantissas are then added or
subtracted. Finally, the resulting representation is rescaled so that its mantissa
lies in the range 0.5−1.
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Suppose we are adding 3.0 and 0.125

3.0 = 2010 × 0.110000
0.125 = 2000 × 0.001000

Now, we adjust the exponent of smaller number so that the both exponents
are equal.

0.125 ; = 2010′0.0000100

Now, the sum is equal to 2010 × 0.110010

11.5 Comparison of Fixed- and Floating-Point Arithmetic

In this subsection, we are comparing the fixed-point arithmetic and floating-
point arithmetic as under Table 11.1.

11.6 Block Floating-Point Numbers

A compromise between fixed- and floating-point systems is known as the
block floating-point arithmetic. In this case, the set of signals to be handled
is divided into blocks. Each block has the same value for the exponent. The
arithmetic operations within the block use fixed-point arithmetic, and only
one exponent per block is stored, thus saving memory. This representation
of numbers is most suitable in certain FFT flow graphs and in digital audio
applications, which has not been discussed here.

11.7 The Quantization Noise

In digital signal processing, signal is to be converted into digital signal using
ADC. The process of converting an analog signal into a digital is shown in

Table 11.1 Comparison of fixed- and floating-point arithmetic
S. No Fixed-Point Arithmetic Floating-Point Arithmetic
1. Fast operation Slow operation
2. Relatively economical More expensive because of costlier

hardware
3. Small dynamic range Increased dynamic range
4. Roundoff errors occur only for

addition
Roundoff errors can occur with both
addition and multiplication

5. Overflow occur in addition Overflow does not arise
6. Used in small computers Used in larger, general-purpose computers
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Figure 11.1. At first, the signal x(t) is sampled at regular intervals t = nT
where n = 0, 1, 2, etc., to create a sequence x(n). This is done by a sampler.
The numeric equivalent of each sample x(n) is expressed by a finite number
of bits giving the sequence xq(n). The difference signal e(n) = xq(n) – x(n) is
known as the quantization noise or A/D conversion noise.

Let us assume a sinusoidal signal varying between +1 and –1 having a
dynamic range.

If the ADC used to convert the sinusoidal signal employs (b + 1) bits
including sign bit, the number of levels available for quantizing x(n) is 2b+1.
Therefore, the interval between successive levels will be

q =
2

2b+1 = 2−b (11.4)

where q is known as quantization step size. If b = 3 bits, then q = 2−3 = 0.125.
The common methods of quantization are as follows:

(i) Truncation
(ii) Rounding.

11.7.1 Quantization Error Due to Truncation and Rounding

The input to a digital filter is represented by a finite word length sequence, and
the result of processing generally leads to a filter variable that requires addi-
tional bits for accurate representation; otherwise, the noise occurs in the filter.

11.7.2 Truncation

Truncation is a process of discarding all bits less significant than least-
significant bit that is retained. Suppose, if we truncate the following binary
number from 8 bits to 4 bits, we obtain the following.

0.00110011 to 0.0011
8 bits 4 bits

1.01001001 to 1.0100
8 bits 4 bits

Figure 11.1 Block diagram of an A/D converter.
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When we truncate the number, the signal value is approximated by the
highest quantization level which is not greater than the signal. Or it is done by
discarding all bits less significant than the least-significant bit that is retained.

If the quantization method is that of truncation, then the number is
approximated by the nearest level that does not exceed it. In this case, the
error xT – x is negative or zero where xT is truncated value of x and assumed
|x|≤ 0. The error made by truncating a number to b bits following the binary
point satisfies the following inequality:

0 ≥ xT − x > −2−b (11.5)

Example 11.15
Consider the decimal number 0.12890625. Perform the truncation operation
to 4 bits.

Find also the truncation error.

Solution 11.15
Its binary equivalent is 0.00100001. If we truncate the binary number to 4
bits, we have xT = (0.0010)2 whose decimal value is 0.125.

Now, the error (xT – x) =−0.00390625, which is greater than−2−b = 2−4

=−0.0625 satisfying the inequality given in Equation (11.4), which holds for
two’s complements if x > 0. If x < 0, we have to find whether the Equation
(11.5) holds good for all types of representations.

11.7.2.1 Truncation using two’s complement representation
From Equation (11.4), in two’s complement representation, the magnitude of
the negative number is given as follows

x = 1−
b∑

i=1

ci2−i

If we truncate the number to N bits, then we have

xT = 1−
N∑

i=1

ci2−i

The change in magnitude due to quantization will be

xT − x =

(
1−

b∑
i=1

ci2−i

)
−
(

1−
N∑

i=1

ci2−i

)
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xT − x =

(
1−

b∑
i=1

ci2−i − 1 +
N∑

i=1

ci2−i

)
=

(
N∑

i=1

ci2−i −
b∑

i=1

ci2−i

)

(11.6)

xT − x =
b∑

i=N

ci2−i

or xT − x ≥ 0

From the Equation (11.6), it may be observed that the truncation increases the
magnitude, which implies that the error is negative and satisfies the following
inequality:

0 ≥ xT − x ≥ −2−b (11.7)

Using Equation (11.6), with two’s complement representation of mantissa,
we have

0 ≥MT −M > −2−b (11.8)

0 ≥ e > −2−b2c (11.9)

We define relative error as

ε =
xT − x

x
=

e

x
or e = εx (11.10)

Now, Equation (11.7) can be written as follows:

0 ≥ εx > −2−b.2c (11.11)

0 ≥ ε2cM > −2−b.2c

0 ≥ εM > −2−b (11.12)

If M = 1/2, the relative error is maximum.
Therefore, we have

0 ≥ ε > −2.2−b (11.13)

If M = −1/2, the relative error range will be

0 ≤ ε < 2.2−b (11.14)
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11.7.2.2 Truncation using one’s complement representation
The magnitude of negative number with b bits is given as in one’s complement
representation and is given below:

x = 1−
b∑

i=1

ci2−i − 2−b (11.15)

When the number is truncated to N bias, then we have

xT = 1−
N∑

i=1

ci2−i − 2−N (11.16)

The change in magnitude due to truncation will be

xT − x =
b∑

i=N

ci2−i − (2−N − 2−b)

xT − x < 0
(11.17)

Therefore, the magnitude decreases with truncation which implies that error
is positive and satisfies the following inequality

0 ≤ xT − x < 2−b (11.18)

In floating-point system, the effect of truncation is visible only in the mantissa.
Let the mantissa is truncated to N bits.

If x = 2c. M, then we have

Error xT = 2c. MT

e = xT − x = 2c(MT −M) (11.19)

In one’s complement representation, the error for truncation of positive values
of the mantissa is as follows

0 ≥MT −M > −2−b (11.20)

or 0 ≥ e > −2−b.2c (11.21)

with e = εx = ε2c.M (11.22)

and M = −½, we obtain the maximum range of the relative error for positive
M as

0 ≥ ε > −2.2−b (11.23)

For negative mantissa values, the error will be

0 ≤MT −M < 2−b (11.24)
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or 0 ≤ e < 2c2−b (11.25)

with M = −½. The maximum range of the relative error for negative M is

0 ≥ ε > −2.2−b (11.26)

which is the same as positive M (11.22).
The probability density function P(e) for truncation of fixed-point and

floating-point numbers is shown in Figure 11.2.
In fixed-point arithmetic, the error due to rounding a number to b bits

produce and error e = xT – x which satisfies the following inequality:

−2−b

2
≤ xT − x ≤ 2−b

2
(11.27)

This is because of the fact that with rounding if the value lies halfway between
two levels, it can be approximated to either nearest higher level or nearest
lower level. For fixed-point numbers, (11.27) satisfied regardless of whether
sign-magnitude one’s complement or two’s complement is used for negative
numbers.

and xT = MT 2c (11.28)

Then e = xT − x = (MT −M)2c. (11.29)

But for rounding, we write

−2−b

2
≤MT −M ≤ 2−b

2
(11.30)

Figure 11.2 Probability density functions P(e) for truncation for fixed point and floating
point.
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Using Equations (11.13) and (11.29), the Equation (11.30) can be written as

−2c 2−b

2
≤ xT − x ≤ 2c 2−b

2
(11.31)

or − 2c 2−b

2
≤ εx ≤ 2c 2−b

2
(11.32)

We have x = 2c.M (11.33)

and then− 2c.
2−b

2
≤ ε2c.M ≤ 2c.

2−b

2
(11.34)

which gives
−2−b

2
≤ ε.M ≤ 2−b

2
(11.35)

The mantissa satisfies 1/2 ≤M < 1
If M = 1/2, then we get the maximum range of relative error, i.e.,

−2−b ≤ ε < 2−b (11.36)

11.7.3 Rounding

Rounding of a number of b bits is accomplished by choosing the rounded
result as the b-bit number closest to the original number unrounded. When the
unrounded number lies midway between the adjacent b-bit numbers, a random
choice is made to which of these numbers to round to.

The probability density function for rounding is shown in Figure 11.3

Table 11.2 Quantization error ranges due to truncation and rounding

Type of
Quantization

Type of
Arithmetic

Fixed-Point
Number Range

Floating-Point Number
Relative
Error Range

Truncation Two’s
complement

−2−b < e ≤ 0 −2.2−b < ε≤ 0, M >0
0 ≤ ε < 2.2−b, M <0

Sign-
magnitude
Truncation

One’s
complement
Sign-magnitude

−2−b < e ≤ 0, x > 0
0 ≤ e < 2−b, x < 0

−2.2−b < ε ≤ 0

Rounding Sign-magnitude
One’s
complement
Two’s
complement

−2−b

2 ≤ e ≤ 2−b

2 −2−b ≤ ε ≤ 2−b
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Figure 11.3 Probability density functions P (ε) for rounding.

Example 11.16
Round the binary number 0.11010 rounded to three bits and binary number
0.110111111 to 8 bits.

Solution 11.16
When 0.11010 rounded to three bits is either 0.110 or 0.111 and the number
0.110111111 is rounded to 8 bits, then the result may be 0.11011111 or
0.11100000. Rounding up or down will have negligible effect on accuracy
of computation.

11.8 The Input Quantization Error

We have observed that the quantization error occurs whenever a continuous
signal is converted into a digital signal. Thus, the quantization error is given as

e(n) = xq(n)− x(n) (11.37)

here xq(n) = sampled quantized value of signal and
x(n) = sampled unquantized value of signal.

Depending on the manner in which x(n) is quantized, different distributions of
quantization noise can be obtained. If rounding of a number is used to obtain
xq(n), then the error signal satisfies the following relation.

−q

2
≤ e(n) ≤ q

2
(11.38)

Since the quantized signal may be greater or less than the actual signal.
As an example,

Let x(n) = (0.70)10 = 0.10110011. . . )2

add
After rounding x(n) to 3 bits, we get
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xq(n) = 0.101}

1 add
0.110

=(0.75)10

Now, the error will be

e(n) = xq(n)− x(n) = 0.05

which satisfies the inequality.
The probability density function P(e) for roundoff error and quantization

characteristics with round are shown in Figure 11.4 (a) and (b).
Note that the other type of quantization can be obtained by truncation. In

truncation, the signal is represented by the highest quantization level which
is not greater than the signal. Here, in two’s complement truncation, the error
e(n) is always negative and satisfies the following inequality.

−q ≤ e(n) < 0 (11.39)

The quantizer characteristics for truncation and probability density function
P(e) for two’s complement truncation are shown in Figure 11.5(a) and (b),
respectively.

From Figures 11.4 and 11.5, it is obvious that the quantization error mean
value is 0 for rounding and −q/2 for two’s complement truncation.

11.9 The Coefficient Quantization Error

As a matter of fact, in design of a digital filter, the coefficients are evaluated
with infinite precision. However, when they are quantized, the frequency

Figure 11.4 (a) Quantizer characteristics with rounding. (b) Probability density functions for
roundoff error.
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Figure 11.5 (a) Quantizer characteristics with two’s complement truncation. (b) Probability
density function of roundoff error.

response of the actual filter deviates from that which would have been obtained
with an infinite word length representation and the filter may actually fail to
meet the desired specifications. If the poles of the desired filter are closed
to the unit circle, then those of the filter with quantized coefficients may lie
outside the unit circle.

Example 11.17
Given a second-order IIR filter with transfer function

H(z) =
1.0

(1− 0.5z−1)(1− 0.45z−1)

Determine the effect on quantization on pole locations of the given system
function in direct form and in cascade form. Take b = 3 bits.

Solution 11.17
Direct Form I

We can write

H(z) =
1

1− 0.95z−1 + 0.225z−2

(0.95)10 = (0.1111001. . .)2 (−0.95)10 = (1.1111001. . .)2

After truncation, we have (1.111)2 = −0.875
Similarly, we have

(0.225)10 = (0.001110. . .)2
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After truncation, we have (0.001)2 = 0.125
Therefore, H(z) = 1

1−0.875z−1+0.125z−2 cascade form H(z) =
1

(1−0.5z−1)(1−0.45z−1)

(−0.5)10 = (1.100)2 (−0.45)10 = (1.01110. . .)2

After truncation, we have

(1.011)2 = (−0.375)10

Thus, H(z) = 1
(1−0.5z−1)(1−0.375z−1) .

11.10 Effects in FIR Digital Filters

In case of FIR filters, there are no limit cycle oscillations, if the filter is realized
in direct form or cascade form, because these structures have no feedback.
However, recursive realizations of FIR system such as the frequency sampling
structures are subject to the above problems such as limit cycle oscillation.

Let us consider a linear shift invariant system with unit-sample response
h(n), which is nonzero over the interval 0 ≤ n ≤ N − 1. The direct form
realization of such a system may be obtained using convolution sum as follows:

y(n) =
N−1∑
k=0

h(k) x(n− k) (11.40)

The direct form realizations of the system and the roundoff noise model are
shown in Figure 11.6, respectively. If rounding is used, the noise value at each
multiplier can be assumed to be uniformly distributed between ±2−b

2 with

zero mean value and variance of ±2−2b

12 .
Now, let us assume the following

(i) The sources ek(n) are white sources.
(ii) The errors are uniformly distributed.

(iii) The error samples are uncorrelated with the input and each other.

Since the noise sources are assumed independent, the variance of the output
noise will be

σ2
ε =

N2−2b

12
(11.41)

Because the noise power increases with N, N is also equal to the duration of
the FIR filter unit-sample response h(n). In fact, this is one of the reasons to
make the duration of h(n) as small as possible.
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Figure 11.6 Direct form realization of an FIR system (a) Ideal (b) Fixed-point roundoff noise
mode.

However, the main disadvantage of fixed-point arithmetic is its dynamic
range limitation which necessitates scaling of the input so that no overflow
occurs.

For an LTI system, we can find the least upper bound of the output sequence
y(n) as follows:

|y(n)| ≤ xmax

N−1∑
n=0

|h(n) (11.42)

where xmax is the maximum value of the input sequence. In order to avoid the
overflow, we have S0 |y(n) |< 1 and 0 for all n. This means that the scaling
factor must satisfy the following inequality.

S0 <
1

xmax
N−1∑
n=0
|h(n)|

(11.43)

This estimate is too conservative for a narrow band signal such as sine wave.
Hence, the input should be scaled in terms of the peak of the frequency response
of the system. This means that

S0 <
1.0

xmax. max
0≤ω≤π

[|H(ejω)|] (11.44)
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Figure 11.7 Cascade realization of an FIR system (a) Ideal (b) Fixed-point roundoff noise
mode.

Further, an FIR filter can also be realized as a cascade of second-order sections
as shown in Figure 11.7, where each second-order section Hk(z) is realized in
direct form. For our convenience, let N is odd so that M = N−1

2 . Because each
second-order section contains three independent white noise, the variance of

each source ei(n) at the output of each section will be equal to 3
(

2−2b

12

)
=

2−2b

4 .
In this case, noise source ek(n) is filtered by succeeding sections, so that

the output noise variance would be dependent upon the order of the second-
order sections in the chain. If we define gi(n) to be the unit-sample response
from noise source ei(n) to the output, we can have

σ2
ei

=
2−2b

4

[
N−2i∑
n=0

g2
i (n)

]
(11.45)

and the total output noise variance will be given by

σ2
ε =

M∑
i=1

σ2
ei or σ2

ε =
2−2b

4

[
M∑
i=1

N−2i∑
n=0

g2
i (n)

]
(11.46)

11.11 Problems and Solutions

Problem 11.1
Convert the given decimal number 12.25 to binary form.
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Solution 11.1
We have the following procedure

Therefore, from above, we get

(12.25)10 = (1100.01)2

1100.01 = 1× 23 + 1× 22 + 0× 21 + 0× 20 + 0× 2−1 + 1× 2−2

Problem 11.2
Convert the following numbers into decimal

(a) (1110.01)2
(b) (11011.1110)2

Solution 11.2

(a) (1110.01)2 = (23 × 1 + 22 × 1 + 21 × 1 + 20 × 0) · (0× 2−1 + 0× 2−2

= (8 + 4 + 2 + 0) · (0 + 0.25) = (14.25)10

(b) (11011.1110)2 = (24 × 1 + 23 × 1 + 22 × 0 + (21 × 1 + 20 × 1)

·(2−1 × 1 + 2−2 × 1 + 2−3 × 1 + 2−4 × 0)

= (16 + 8 + 1) · (0.5 + 0.25 + 0.125)
= (27.875)10

Problem 11.3
Convert the following decimal numbers into binary

(a) (20.675)10
(b) (120.75)10
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Solution 11.3
(a) (20.675)10

Thus, (20.675)10 = (10100.1010110. . .)2
(b)(120.75)10

Thus, we have

(120.75)10 = (1111000.11)2
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Problem 11.4
Multiply (2.5)10 and (3.25)10 number using block floating-point technique.

Solution 11.4
Consider the multiplication of two numbers

(2.5)10 and (3.25)10
(2.5)10 = 22 × 0.625 = 2010 × 0.1010
(7.25)10 = 23 × 0.90625 = 2011 × 0.111010
Now,
(2.5)10(7.25)10
= (2010 × 0.1010) × (2011 × 0.111010)
= 2101 × 0.10010001

(0.625)10 = (0.1010)2
(0.90625)10 = (0.111010)2

Problem 11.5
The input to the system

y(n) = 0.999y(n− 1) + x(n) is applied to an ADC.

What will be the power produced by the quantization noise at the output of
the filter if the input is quantized to (a) 8 bits (b) 16 bits.

Solution 11.5
It is given that

y(n) = 0.999y(n− 1) + x(n)

Taking z-transform on both sides in equation (i), we get

Y (z) = 0.999z−1 Y (z) + X(z)

Thus, H(z) = Y (z)
X(z) = 1

1−0.999z−1 .

Taking inverse z-transform, we get

h(n) = (0.999)nu(n)

The quantization noise power at the output of the digital filter is given by

σ2
ε = σ2

e

∞∑
k=0

h2(k)

or σ2
ε = σ2

e

∞∑
k=0

(0.999)2k or
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σ2
ε = σ2

e

1
1− (0.999)2

= σ2
e(500.25)

or σ2
ε =

2−2b

12
(500.25)

(a) Given that b + 1 = 8 bits (assuming including sign bit).
Then, σ2

ε = 2−14

12 (500.25) = 2.544× 10−3

(b) Given that b + 1 = 16 bits.
Then, σ2

ε = 2−30

12 (500.25) = 3.882× 10−8

Problem 11.6
The input to the system

y(n) = 0.888y(n− 1) + x(n) is applied to an ADC.

What will be the power produced by the quantization noise at the output of
the filter if the input is quantized to (a) 2 bits (b) 4 bits.

Solution 11.6
It is given that

y(n) = 0.888y(n− 1) + x(n)

Taking z-transform on both sides in equation (i), we get

Y (z) = 0.888z−1 Y (z) + X(z)

Thus,

H(z) =
Y (z)
X(z)

=
1

1− 0.888z−1

Taking inverse z-transform, we get

h(n) = (0.888)nu(n)

The quantization noise power at the output of the digital filter is given by

σ2
ε = σ2

e

∞∑
k=0

h2(k)
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or σ2
ε = σ2

e

∞∑
k=0

(0.888)2k or

σ2
ε = σ2

e

1
1− (0.888)2

= σ2
e(4.73)

or σ2
ε =

2−2b

12
(500.25)

(a) Given that b + 1 = 2 bits (assuming including sign bit).

Then, σ2
ε = 2−2

12 (4.73) = 95.94× 10−3

(b) Given that b + 1 = 4 bits.

Then, σ2
ε = 2−20

12 (4.73) = 6.5× 10−3

Problem 11.7
Consider the recursive filter shown in the figure. The input x(n) has the range
of values of ±100 V, represented by 8 bits. Calculate the variance of output
due to A/D conversion process.

Solution 11.7
Given the range ±100 V

The differential equation of the system is given by y(n) = 0.8y(n – 1) +
x(n), whose impulse response h(n) can be obtained as follows:

h(n) = (0.8)nu(n)

quantization step size = Range of the signal
Number of Qunatization Levels

= 200
28 = 0.78725

Variance of the error signal is given by

σ2
e =

q2

12
=

(0.78125)2

12
= 0.05086
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Variance of the output will be

σ2
ε = σ2

e

∞∑
k=0

h2(n) = (0.05086)
∞∑

n=0

(0.8)2n

or σ2
ε =

0.05086
1− (0.8)2

= 0.14128

Problem 11.8
Consider the recursive filter shown in the figure. The input x(n) has the range
of values of ±50 V, represented by 16 bits. Calculate the variance of output
due to A/D conversion process.

Solution 11.8
Given the range ±50 V

The differential equation of the system is given by y(n) = 0.16 y(n – 1) +
x(n), whose impulse response h(n) can be obtained as follows:

Y (z)[1− 0.16z−1] =X(z)
Y (z)
X(z)

=
1

[1− 0.16z−1]

H(z) =
1

[1− 0.16z−1]
h(n) = (0.16)nu(n)

quantization step size =
Range of the signal

Number of Qunatization Levels

=
100
216 = 1.52× 10−3

Variance of the error signal is given by

σ2
e =

q2

12
=

(1.52× 10−3)2

12
= 1.9253× 10−7
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Variance of the output will be

σ2
ε = σ2

e

∞∑
k=0

h2(n) = (1.9253× 10−7)
∞∑

n=0

(0.16)2n

or σ2
ε =

1.9253× 10−7

1− (0.16)2
= 1.976× 10−7

Problem 11.9
Find the effect of coefficient quantization on pole locations of the given
second-order IIR system, when it is realized in cascade form. Assume a word
length of 4 bits through truncation.

H(z) =
1

1− 0.9z−1 + 0.2z−2

Solution 11.9
Direct Form I

Let 4 bits include a sign bit, and then, we have

(0.9)10 = (0.111011 . . .)2
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After truncation, we obtain

(0.111)2 = (0.875)10

(0.2)10 = (0.00110 . . .)2
After truncation, we obtain

(0.001)2 = (0.125)10

The system function after coefficient quantization will be

H(z) =
1

(1− 0.875z−1 + 0.125z−2)

Now, the pole locations are given by

z1 = 0.695, z2 = 0.1798

Cascade form H(z) = 1
1−0.9z−1+0.2z−2 H(z) = 1

(1−0.5z−1)(1−0.4z−1)

(0.5)10 = (0.1000)2

After truncation, we obtain

(0.100)2 = (0.5)10

(0.4)10 = (0.01100 . . . . . .)2

After truncation, we obtain

(0.011)2 = (0.375)10
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The system function after coefficient quantization will be

H(z) =
1

(1− 0.5z−1)(1− 0.375z−1)

The pole locations are given by

z1 = 0.5
z2 = 0.375

Problem 11.10
Find the effect of coefficient quantization on pole locations of the given
second-order IIR system, when it is realized in direct form I. Assume a word
length of 4 bits through truncation.

H(z) =
1

1− 0.95z−1 + 0.2z−2

Solution 11.10
Direct Form I

Let 4 bits include a sign bit; then, we have

(0.95)10 = (0.11110. . .)2
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After truncation, we obtain

(0.111)2 = (0.875)10

(0.2)10 = (0.00110 . . .)2

After truncation, we obtain

(0.001)2 = (0.125)10

The system function after coefficient quantization will be

H(z) =
1

(1− 0.875z−1 + 0.125z−2)
.





12
Review Question with Answers
and Multiple Choice Questions

12.1 Review Questions with Answers

1. What do you mean by signal processing?
Any operation that changes the characteristic of a signal is called signal
processing.

2. Define a signal.
Any physical quantity that varies with time, space, or any other indepen-
dent variable is called a signal.

3. What do you mean by a system?
A physical device that performs an operation on a signal is defined as a
system.

4. Mention a few advantages of DSP.

(a) Good accuracy.
(b) Data storage becomes easier.
(c) Cheaper.
(d) Easy implementation of algorithms.

5. What are the limitations of DSP?

(a) Power consumption is more in DSP.
(b) Bandwidth is limited by sampling rate.

6. Mention some of the applications of DSP.

(a) Speech processing.
(b) Image processing.
(c) Telecommunication.
(d) Military applications.

7. Mention some of the Military applications of DSP

(a) Sonar Signal processing.
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(b) Radar signal processing.

8. How are signals classified?

(a) Continuous time signal.
(b) Discrete-time signal.

9. What do you mean by continuous-time signal?
A signal which varies continuously with time is called continuous time
signal.

10. What do you mean by discrete-time signal?
A signal which has values only at discrete instants of time is called a
discrete-time signal.

11. Sketch a continuous time signal.

nT 

x(t) 

 

12. Sketch a sample discrete-time signal.

0   T   2T 3T             nT 

x(nT) 

      

13. What are energy signals?
The energy of a signal is defined as

E =
∞∑

n=−∞
|x(n)|2

If E is finite, then x(n) is an energy signal.
14. What are power signals?

The average power of a signal (discrete-time) x(n) is

P = LtN→∞
1

2N + 1

N∑
n=−N

|x(n)|2
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If P is non-zero and finite, the signal is called a power signal.
15. Differentiate between DSPs and Microprocessors.

(a) Microprocessors are built for a range of general purpose functions,
and large blocks of software, such as operating systems like UNIX.

(b) Microprocessors are not called upon for real-time applications.
(c) DSPs are employed as attached processors, assisting a general-

purpose host microprocessor.

16. What do you mean by aliasing?
Aliasing is the result of sampling, which means that we cannot distinguish
between high and low frequencies.

17. What is Quantization error?
It results due to limited precision (word length) while converting
between analog and digital forms, when sorting data, or when performing
arithmetic.

18. What are the effects of the limitations of DSP?

(a) Aliasing.
(b) Quantization Error.

19. Define Sampling
It is a process of converting a continuous-time signal into a discrete-time
signal.

20. Sketch the block diagram of an A/D converter.

 

Xq(n) Xa(nT) Xa(t) 

sampler Quantizer Coder 

21. What are the different representations of a signal?

(a) Functional representation.
(b) Sequence representation.
(c) Tabular representation.
(d) Graphical representation.

Functional representation

x(n) = 1, for n = 0, 1, 2
= 0, for other n.

Sequence representation

x(n) = {0, 0, 0, 1, 1, 1, 0, 0, . . . .}
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Tabular representation

N 0 1 2 3 4
x(n) 1 1 1 0 0

Graphical representation

22. What are the different operations performed on a discrete-time signal?

(a) Delay.
(b) Advance.
(c) Folding.
(d) Time scaling.
(e) Amplitude scaling.
(f) Addition.
(g) Multiplication.

23. What is a stable system?
A system is said to be bounded-input bounded-output (BIBO) stable if
and only if every bounded input produces a bounded output.

|x(n)| ≤Mx <∞ and |y(n)| < My <∞ if those exists,

Mx and My.

24. What is linear/discrete convolution?
The output y(n) obtained by convolving the Impulse response h(n) with
the inputs signal x(n).

y(n) =
∞∑

k=−∞
x(k)h(n− k) =

∞∑
k=−∞

h(k)x(n− k)

25. What are the properties of convolution?

(a) Commutative
x(n)⊗ h(n) = h(n)⊗ x(n)

(b) Associative
[x(n)⊗ h1(n)]⊗ h2(n) = x(n)⊗ [h1(n)⊗ h2(n)]
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(c) Distributive
x(n)⊗ [h1(n) + h2(n)] = x(n)⊗ h1(n) + x(n)⊗ h2(n)

26. Evaluate

y(n) = x(n)⊗ h(n) where x(n) = h(n) = {1,
↑

2,−1}

By overlap and add method, we have y(n) = {1, 4, 2,−4, 1}

1 

-2 

4 -2 2 2 

-1 -1 

-1 2 

1 

1 

h(n)      

1 

x(n)      

 
-12

27. How do you find the step response if impulse response is known?

y(n) = x(n)⊗ h(n)

For x(n) = u(n), y(n) = u(n)⊗ h(n)

=
∞∑

k=−∞
u(n− k)h(k) =

∞∑
k=−∞

u(k) v(n− k) = 0, for k > n.

28. Define Fourier Transform of a sequence.
The F.T. of a discrete-time signal x(n) is

X(ω) =
∞∑

n=−∞
x(n)e−jωn

29. Write down the sufficient condition for the existence of Discrete-Time
Fourier Transform (DTFT)?
For a sequence x(n).

∞∑
n=−∞

|x(n)| <∞
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30. State Parseval’s is the theorem for discrete-time signals.

E =
∞∑

n=−∞
|x(n)|2 =

1
2π

∫ π

−π
|X(ω)|2dω

31. What is DTFT pair?
The F.T. pair of discrete-time signal is

x(n)| = 1
2π

∫

2π
|X(ω).ejωndω

X(ω) =
∞∑

n=−∞
x(n).e−jωn

32. State the properties of Fourier Transform of a discrete-time a periodic
sequence.

(a) The Fourier spectrum of an a periodic sequence is continuous.
(b) The Fourier spectrum is periodic with period 2π.

33. Find the discrete Fourier Transform of a sequence given by

x(n) = 1,−2 ≤ n ≤ 2
= 0, otherwise.

X(ω) =
∞∑

n=−∞
x(n)e−jωn =

2∑
n=−2

e−jωn

X(ω) = e2jω + ejω + 1 + e−jω + e−j2ω

X(w) = 1 + 2 cos ω + 2 cos 2ω

34. Find the Fourier Transform of

x(n) = (0.8)n, n = 0,± 1,± 2, . . . .

For negative values of n, x(n) is not absolutely summable. Therefore, the
Fourier Transform does not exist.

35. What is the frequency shifting property of Discrete-Time Fourier
Transform?
If DTFT[x(n)] = X(ejω)
Then DTFT[ejω0nx(n)] = X[ej(ω−ω0)]
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36. What is the time-shifting property of discrete-Time Fourier Transform?
If DTFT[x(n)] = X(ejω) then
Then DTFT[x(n− k)] = e−jωkX(ω)

37. What is the linear property of DTFT?
If DTFT[x1(n)] = X1(ω) and DTFT[x2(n)] = X2(ω)
Then DTFT[a1x1(n) + a2x2(n)] = a1X1(ω) + a2X2(ω)

38. Find the transfer function of the 3-sample average:

h(n) = 1
3 ,−1 ≤ n ≤ 1

= 0, otherwise

H(ω) =
∞∑

n=−∞
h(n)e−jωn =

1∑
n=−1

h(n)e−jωn =
1∑

n=−1

1
3
e−jωn

39. Write mathematical expression of the z-transform.
The z-Transform of a discrete-time signal x(n) is

X(z) =
∞∑

n=−∞
x(n)z−n

40. What do you mean by ROC?
ROC means Region of Convergence, i.e., the ROC of X(z) is the set of
all values of z for which X(z) attains a finite value.

41. Explain the linearity property of z-Transform.

If Z[x1(n)] = X1(z) and Z[x2(n)] = X2(z) then
Z[a1x1(n) + a2x2(n)] = a1X1(z) + a2X2(z).

42. State the time-shifting property of z-Transform.

If Z[x(n)] = X(z), then
Z[x(n− k)] = z−kX(z).

43. State the scaling property of z-Transform.

If Z[x(n)] = X(z), then
Z[anx(n)] = X(a−1z)

44. State the time reversal property of z-Transform.

If Z[x(n)] = X(z), then
Z[x(−n)] = X(z−1)
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45. State the convolution property of z-Transform.

If Z[x1(n)] = X1(z) and Z [x2(n)] = X2(z),
then Z [x1(n) ∗ x2(n)] = X1(z)X2(z)

46. State the multiplication property of z-Transform.

If Z[x1(n)] = X1(z), and Z[x2(n)] = X2(z) then

Z[x1(n)x2(n)] =
1

2πj

∮

C
X1(v)X2

(z

v

)
v−1dv

47. State the Parseval’s Theorem in z-Transform.
If x1(n) and x2(n) are complex-valued functions, then

∞∑
n=−∞

x1(n) ∗ x2(n) =
1

2πj

∮

C
X1(v)X2 ∗

(
1
v

)
v−1dv

48. State the initial value theorem of z-Transform.
If x(n) is causal, then

x(0) = Ltz→∞ X(z)

49. State the final value theorem of z-Transform.
If x(n) is causal, then

x(∞) = Ltz→1(z − 1)X(z)

50. Determine the z-Transform of a digital impulse.
Since x(n) magnitude is zero except for n = 0, where x(n) is 1 we have
X(z) = 1.

51. What are discrete-time signals?
Signals represented as

h(n), N1 ≤ n ≤ N2
h(nT ), N1 ≤ n ≤ N2

The first equation represents a non-uniformly spaced samples and the
second equation represents uniformly spaced samples.

52. Define a unit sample sequence.

u0(n) =
{

1, n = 0
0, n �= 0
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53. Define an impulse delayed by n0 samples.

u0(n− n0) =
{

1, n = n0
0, n �= n0

54. What is a unit step sequence?

u(n) =
{

1, n ≥ n0
0, n < 0

55. What is decaying exponential?

f(n) =
{

an, n ≥ 0
0, n < 0

56. Define a sinusoid.

x(n) = cos
(

2π n

n0

)
, for all n.

57. What is a linear time invariant system?
If x1(n) and x2(n) are inputs to a system with y1(n) and y2(n) as their
corresponding outputs, the system is said to be linear if the sequence
ax1(n) + bx2(n) applied at the input produces a sequence ay1(n) + ay2(n)
as the output.

In a time invariant system, if the input sequence x(n) produces an
output sequence y(n), then the input sequence x(n – n0) produces an
output sequence y(n – n0), for all n0.

58. When is an LTI system said to be causal?
An LTI system is said to be casual or realizable if the output at n = n0
is dependent only on the values of the input for n = n0. This means the
impulse response h(n) = 0, for n < 0.

59. When is an LTI system said to be stable?
An LTI system is said to be stable if every bounded input produces a
bounded output.

60. State the necessary and sufficient condition for stability of an LTI system.
For an LTI system with impulse response h(n), the condition for
stability is

∞∑
n=−∞

|h(n)| <∞
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61. Define DTFT (Discrete-Time Fourier Transform) of a signal.

The DTFT [x(n)] = X[w] X[ω] =
∞∑

n=0
x(n)e−jω n

where X [ω] is the frequency response of the system with impulse
response x(n).

62. Define IDTFT (Inverse Discrete-Time Fourier Transform) of a spectrum.

IDTFT [H(ω )] = h(n) =
1
2π

∫

2π
H(ω) ejwn dω

represents the IDTFT, where H (ω) is periodic with period 2π.
63. Write the DTFT of (a) x(n) (b) x∗(n) (c) x∗(-n)

(a) DTFT [x(n)] = X[w]
(b) DTFT [x ∗ (n)] = X ∗ [−w]
(c) DTFT [x ∗ (−n)] = X ∗ [w]

64. Write the time shift property of a discrete signal.

DTFT[x(n − k)] = e−jwkX[w]

65. State the time reversal property of discrete-time signal.

DTFT[x(− n)] = X[−w]

66. State the convolution property of discrete-time signals

DTFT [x1(n)⊗ x2(n)] = X1[w] X2[w]

Convolution of discrete-time signals in the time domain equals the
frequency-domain multiplication.

67. State the frequency-shifting property of discrete-time signals.

DTFT [ejw0nx(n)] = X[w − w0]

68. State the modulation theorem of discrete-time signals.

DTFT[x(n) cos ω0n] =
1
2
[X(ω + ω0) + X(ω − ω0)]

69. What is the DTFT of x1(n) x2(n)?

DTFT [x1(n) x2(n)] =
1
2π

∫ π

−π
X1(λ)X2(ω − λ)dλ



12.1 Review Questions with Answers 573

70. Define Discrete Fourier Transform (DFT).

DFT[x(n)] =
N−1∑
k=0

x(n)W kn
N

71. Define Inverse Discrete Fourier Transform (IDFT).

DFT[Xp(k)] = xp(nT ) =
1
N

N−1∑
k=0

Xp(k)W kn
N

72. For a given signal, x(n) = e jωn, −∞ < n < ∞ obtain the spectrum
H (ω).

y(n) =
∞∑

m=−0

h(m)ejω(n−m) = ejωm
∞∑

m=−0

h(m).e−jωn

y(n) = x(n)H(ω)

H(w) = y(n)
x(n)

73. For an LSI system impulse response h(n) = an u(n), |a| < 1, find the
frequency response.

H(ω) =
∞∑

n=0

ane−jωn =
∞∑

n=0

(ae−jω)n

H(ω) =
1

1− ae−jω

74. What do you mean by recursive realization?
Recursive realization is obtained by using the functional relationship
between input sequence {x(n)} and output sequence [y(n)] defined by

y(n) = F [y(n− 1), y(n− 2), . . . ., x(n), x(n− 1), . . .]

75. What do you mean by non-recursive realization?
Non-recursive realization is obtained by using the functional relationship
between input sequence {x(n)} and output sequence [y(n)] defined by
y(n) = F [x(n), x(n − 1), . . . .], i.e., current output sample y(n) is a
function only of past and present inputs.
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76. What are the different realization structures?

(a) Direct form-I
(b) Direct from-II
(c) cascade form
(d) parallel form
(e) Lattice form

77. Compare Direct Form-I and direct From-II realization structures.
The number of memory location necessary is more in the case of direct
form-I, then in direct form-II.

78. What is a discrete-time system?
A discrete-time system is a device that operates on a discrete-time input
signal x(n), to produce a discrete-time output signal y(n).

79. Sketch the direct form-I realization structure of a second-order system.

b2 

b1 

b0 

x(n) 

z-1 

z-1 

-a2 

-a1 

y(n) 

z-1 

z-1 

80. How are the discrete-time systems classified?

(a) Static and dynamic systems
(b) Time-variant and time-invariant systems.
(c) Linear and non-linear systems.
(d) Stable and unstable systems
(e) Causal and non-causal systems.

81. What do you mean by a time-invariant system?
If the input-output relation of a system does not vary with time, the system
is a time-invariant system.

82. What is causal system?
A system is said to be causal if the output of the system at any time is
dependent only on present and past inputs, but not on future inputs.



12.1 Review Questions with Answers 575

83. What is an LTI system?
An LTI system is one which possesses the linearity and time invariance.

84. Define impulse response of a system.
The response or output signal b(x), obtained from a discrete time system
when the input signal is a unit sample sequence (unit impulse), is known
as the unit sample response or impulse response.

85. State the causality condition for an LTI system.
Unit sample response h(n) = 0, for negative values of n. h(n) = 0, n < 0.

86. State the condition for system stability.

∞∑
k=−∞

|h(k)| <∞

87. What is the unit step response for the LTI system with impulse response
h(n) = an u(n), |a| < 1.

y(n) =
∞∑

k=−∞
h(k) =

n∑
k=0

ak =
1− an+1

1− a
.

88. Find the impulse response of the Low-pass filter defined by

H(ω) = 0, ω0 ≤ |ω| ≤ π
h(n) = 1

2π

∫ π
−π H(ω) ejωndω

h(n) =
1
2π

∫ ω0

−ω0

ejωndw =
1

2πjn
ejωn

∣∣∣∣
ω0
−ω0

h(n) =
1

π n(2j)
[
ejω0n − e−jω0n

]
=

sin ω0 n

π n
.

89. Define the frequency response of a discrete-time system.
Let x(n) = ejωn

Then y(n) =
∞∑

k=−∞
h(k)x(n− k) =

∞∑
k=0

h(k)ejω(n−k)

= ejωn
∞∑

k=0

h(k)e−jωk y(n) = ejωnH(ω)
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H (ω) is called the frequency response of the LTI system.

H(ω) =
∞∑

k=0
(ae−jω)n

H(ω) = 1
1−ae−jω

90. State the properties of frequency response H (ω) of an LTI system.
(a) H (ω) is a continuous function of w, and with period 2π.
(b) |H (ω)| is even symmetric w.r.t, ω = π.
(c) ∠H (ω) is anti-symmetric w.r.t, ω = π.

91. Find the transfer function of the system.
y(n) − 1

2y(n − 1) = x + 1
3x(n − 1). Transfer function is defined as

H(ω) = Y(ω)
X(ω) .

Fourier Transforming the given equation, we have

Y(ω)− 1
2
e−jωY(ω) = X(ω) +

1
3
e−jωX(ω) Y(ω)

[
1− 1

2
e−jω

]

= X(ω)
[
1 +

1
3
e−jω

]

H(ω) =
Y(ω)
X(ω)

=

(
1 + 1

3e−jω
)

(
1− 1

3e−jω
) .

92. Find the transfer function of a first-order recursive filter.

y(n) = a y(n− 1) + x(n).

Fourier Transforming the equation.

Y(ω) = ae−jω Y(ω) + X(ω)

Therefore, H(ω) = Y(ω)
X(ω) = 1

1−ae−jω

93. What are the types of discrete convolution?

(a) Circular convolution
(b) Linear convolution

94. What do you mean by circular convolution?

yp(n) =
N−1∑
l=0

xp(l)hp(n− l) is defined as the circular/periodic convolu-

tion of xp(n) and hp(n).
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95. Obtain the N-point DFT of the circular convolution between x(n) and
h(n).

yp(n) =
N−1∑
l=0

xp(l).hp(n− l)

Taking N-point DFT of the above equation, we have Yp(k) =
Hp(k).Xp(k)

96. Why is the circular convolution called so?
Circular convolution represents the convolution of two sequences defined
on a “circle”.

97. What is linear convolution?
Linear or a periodic convolution of x(n) and h(n) yields the sequence y(n)
given by

y(n) =
n∑

m=0

h(m)x(n−m)

98. Can you realize linear convolution using circular convolution?
Yes, we can realize linear convolution using circular convolution.

99. What are the two methods of sectioned convolution?

(a) Overlap and add method
(b) Overlap and save method.

100. Define DFT (Discrete Fourier Transform),
The DFT of a sequence xp(n) is defined as

Xp(K) =
N−1∑
n=0

xp(n)e−j(2π/N)nk

101. Define Inverse Discrete Fourier Transform (IDFT).

IDFT[Xp(K)] = xp(n) =
1
N

N−1∑
n=0

Xp(K)ej(2π/N)kn

102. State the linearity property of DFT.
If xp(n) and yP (n) are periodic sequence, both of period N samples, with
DFTs XP (k) and YP (k), then the DFT of xp(n) + yP (n) is XP (k) + YP (k).

103. State the shifting property of DFT.
If DFT[xp(n)] = xp(k), then

DFT[xp(n− n0] = Xp(K)e−j( 2π
N )n0k
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104. State the relationship between z-Transform and DFT.

X(z)|z = ej(2π/N)K = X
[
ej( 2π

N )k
]

=
N−1∑
n=0

x(n)e−j(2π/N)k

105. What are two types of FFT?

(a) Decimation in Time.
(b) Decimation in frequency.

106. How are filters classified as per frequency response?

(a) High-pass filter
(b) Low-pass filter
(c) Band-pass filter
(d) Band-elimination filter

107. How are filters classified based on impulse response?

(a) Infinite Impulse response filter
(b) Finite Impulse response filter

108. What are IIR filters?
IIR filters are those which have the present output samples depending on
the present input, past input sample, and output sample.

109. What are FIR filters?
Filters whose present output samples depend on the present and previous
input samples are called FIR filters.

110. Give the advantages of FIR filters.

(a) FIR filters are very stable
(b) Both recursive and non-recursive realization of FIR filters is

applicable
(c) Irrespective of the magnitude level, FIR filters can be realized.

111. State any low disadvantages of FIR filters.

(a) Memory space required for storage is large
(b) The order of filter realized for a given set of specifications is very

high compared with that of IIR filter.

112. What do you understand by the statement “FIR filters have linear phase”?
The output signal shape is not altered by the FIR filter for a linear-phase
filter and θ(ω) is directly proportional to ω.
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113. State the methods available to design FIR filters.

(a) Frequency sampling method
(b) Windows method
(c) Optimal design method.

114. State why FIR filter is always stable?
As all the poles of the FIR filter transfer function are at the origin, the
filter is stable.

115. State the condition for stability of a filter.

∞∑
n=∞

|h(n)| <∞

where h(n) is the impulse response of the filter.
116. State the condition for causality of a filter.

h(n) = 0, for n < 0. is the condition for causality of the filter, where
h(n) is the impulse response of the filter.

117. Compare and contrast FIR and IIR of a filter.
FIR filter IIR filter
1. Linear-phase filters 1. Non-linear-phase filters
2. Both recursive and

non-recursive realization is
present.

2. Only recursive realization
is possible.

118. State the conditions for IR filter where they act as linear filters

(a) symmetric condition h(n) = h(N − 1 − n)
(b) anti-symmetric condition h(n) = − h(N − 1− n)

119. What are the characteristics of a linear-phase filter?

(a) The filter should have constant group delay
(b) The filter has to have constant phase delay.

120. Define ‘group delay’ of a filter.
Group delay of a filter is defined as the derivative of the phase w.r.t
frequency.

121. Define ‘phase delay’ of a filter.
Phase delay is defined as the ratio of phase to frequency.

122. How do you represent the frequency response of linear-phase filters?
H(ω) = H1(ω)ej(β−α), where H 1(ω) is purely real and α and β are

given by α =
(

N−1
2

)
and β = ±π

2
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123. How will you design an FIR filter using the Fourier series method?
h(n) is obtained from

h(n) =
1
2π

∫ π

−π
H(ω)ejωdω

Truncate h(n) at n = ±(N−1
2

)
to obtain the finite duration sequence of

h(n).We then proceed to find H (z) using

H(z) = z−(N−1)/2

⎡
⎣h(0) +

N−1
2∑

n=1

h(n)(zn + z−n)

⎤
⎦

124. What are the difficulties in the representation as

H(ω) =
∞∑

n=−∞
h(n)e−jωn

(a) The impulse response h(n) is infinite in duration since the summa-
tion extends from −∞ to +∞.

(b) The filter is unrealizable as the impulse response begins at−∞, i.e.
no finite amount of delay can make the impulse response realizable.

125. Explain Gibbs phenomenon.
In order to obtain an FIR filter approximating H (w), we need to truncate
the infinite Fourier series at n = ±((N − 1)/2). This leads to oscillations
being produced in stop band as well as pass band. This is referred to as
the Gibbs Phenomenon.

126. State the disadvantages of the Fourier series method of designing FIR
filter.
Truncation of the Fourier series of the infinite impulse response at n =
±((N − 1)/2) leads to oscillations in the stop band and pass band, which
is a disadvantage.

127. State the procedure to design FIR filter using the windows method.
It is required to find the impulse response hd(n) using

hD(n) =
1
2π

∫ π

−π
HD(ω)ejωndω

The infinite impulse response is multiplied with a chosen window
sequence w(n) to get filter coefficients

h(n) = hD(n)ω(n), for |n| ≤ N−1
2

= 0, otherwise
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Next step is to find the transfer function of the filter

H(z) = z−(N−1)/2

⎡
⎣h(0) +

N−1
2∑

n=1

h(n)(zn + z−n)

⎤
⎦

128. How is the windowing technique better than the Fourier series method
of designing FIR filters?
Fourier series method leads to Gibbs oscillation, which is avoided using
the window technique.

129. How is the Blackman window defined?

ω(n) = 0.42 + 0.5 cos
(2πn

N

)
+ 0.08 cos

(4πn
N

)
for −(N−1)

2 ≤ n ≤ (N−1)
2

130. How is the rectangular window defined?
The weighting function of the rectangular window is

ωR(n) =
{

1 −(N−1
2

) ≤ n ≤ (N−1
2

)
0 otherwise

131. What are the major requirements of window characteristics?

(a) Small width of the main lobe of the frequency response of the
window containing as much of the total energy as possible.

(b) Side lobes of the frequency response that decrease in energy rapidly
as w tends to π.

132. How are the Hamming window and Hanning window defined?
The generalized weighting function of the window is

ωH(n) =
{
α− (1− α) cos

(2π n
N

)
, −(N−1

2

) ≤ n ≤ (N−1
2

)

Hamming window has a value of α = 0.54 and the Hanning window has
a value of α = 0.5 in the above-mentioned weighting function.

133. Compare a Hamming window with a rectangular window.

(a) The main lobe of the frequency response of the Hanning window
is twice that of the rectangular window.

(b) For α = 0.54, (Hamming window), 99.96% of the spectral energy
is in the main lobe and the peak side lobe ripple is down about
40 dB from the main lobe peak. In rectangular window, the spectral
side lobes are down by only about 14 dB from the main lobe peak.
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134. Write down the weighting function of the Kaiser window.

ω(n) =
I0[
√

1− [2n/(N − 1)]2]
I0[β]

,

(
N − 1

2

)
≤ n ≤

(
N − 1

2

)

where β is a constant that specifies a frequency response tradeoff between
the peak height of the side lobe ripples and the width or energy of the
main lobe and I0(x) is the modified width-order Bessel function.

135. Why is the Kaiser window an optimum window?
It is a finite duration sequence that has the minimum spectral energy
beyond some specified frequency.

136. Sketch the frequency response of a Hamming window.

ω 

WH(ω ) 

4
N
π− 4

N
π

137. What is the weighting function of a Bartlett window?

ω(n) = 1− 2|n|
N−1

−(N−1)
2 ≤ n ≤ (N−1)

2
= 0 otherwise

138. Sketch the frequency response of a rectangular window.

WR(ω) =
sin
(

ωN
2

)

sin
(

ω
2

)

-π 

W(ω) 

π 

139. State the advantage of the Kaiser window.
Designer is allowed to choose the side lobe level and N. The side lobe
level can be varied from the low value in the Blackman window to a high
value in the rectangular window.
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140. How is an FIR filter designed using the Frequency sampling method?
The desired magnitude response is sampled and a linear-phase response
is specified. The samples of the required frequency response are the DFT
coefficients. The filter coefficients are now determined by getting the
IDGT of the DFT coefficients.

141. What is an IIR filter?
When a filter produces a unit-sample response that has an infinite
duration, it is called IIR filter.

142. Sate the properties of the Butterworth filter.

(a) Magnitude response decreases monotonically as the frequency is
increased from 0 to 8.

(b) Magnitude response is normally that about ω = 0, in that all the
derivatives up to order N are equal to zero at ω = 0.

(c) The phase response curve approaches−N(π/2) for large ω, where
N is the number of poles on the Butterworth circle in the left-half
s-plane.

143. Sate the properties of Chebyshev filter.

(a) The magnitude response has a ripple in either the pass band or in
stop band

(b) The poles of the Chebyshev filter lie on an ellipse.

144. Sketch the Butterworth pole locations for N = 3.

120O 180O 
α 

jω 

N =3 

145. What is the power transfer function of the Butterworth filter?

|HB(ω)|2 =
1

1 +
[

ω
ωc

]2N

146. What is the power function of the Chebyshev filter?

|Hc(ω)|2 = [1 + μ2C2
N (ω/ωp)]−1

Where CN are Chebyshev’s polynomials.
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147. State the design parameters of the Chebyshev filter.

(a) Pass-band frequency
(b) Allowable deviation in pass band.

148. Write down Chebyshev’s polynomials CN (x) for N = 0, 1, 2

(a) For N = 0, CN (x) = 1
(b) For N = 1, CN (x) = x
(c) For N = 2, CN (x) = 2x2 − 1

149. How are Chebyshev’s polynomials defined?

CN+1(x) = 2x CN (x)− CN−1(x), for N ≥ 1

150. Why are the Chebyshev filters said to be optimum?
The Chebyshev filters are optimum in that for the given pass-band and
stop-band levels, it has the smallest transition region, (ws – wp), of any
filter that consists only of finite poles. Such “all pole” filters have all then
zero at s =∞.

151. State the important features of the Chebyshev filters.

(a) |CN (x)| ≤ 1, for |x| ≤ 1
(b) For |x| >> 1, |CN (x)| increases as the N-th power of x

152. How does a Butterworth filter differ from a Chebyshev filter?
The poles of the Butterworth filter lie on a circle, whereas those of the
Chebyshev filters lie on an ellipse.

153. Differentiate between a causal and stable IIR filter from that of an FIR.
FIR filter can have linear phase, whereas an IIR filter cannot follow linear
phase.

154. Define the major and minor axes of the ellipse of a Chebyshev filter.

Minor axis, radius r = wρ[ρ1/N−ρ−1/N ]
2

Minor axis, radius R = wρ[ρ1/N−ρ−1/N ]
2 ;

where ρ = μ−1 +
√

1 + μ−2

155. How will you obtain digital filters from analog filters?

(a) The given analog filter specifications are transformed into digital
filter specifications.

(b) Arrive at the analog transfer function from the analog prototype.
(c) Transform the transfer function of the analog properties into its

equivalent digital filter transfer function.
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156. What are the methods of obtaining digital filters from analog filters?

(a) Impulse invariant method
(b) Bilinear transform method

157. What is the pole mapping procedure in the Impulse invariant method?
A pole located at s = sp in the s-plane is transformed into a pole in the
z-plane located at z = esP TS.

158. What is the disadvantage of the Impulse invariant method?
The method is unsuccessful for implementing digital filters for which
|HA(jΩ)|does not approach zero for large values of Ω. Hence “aliasing”
occurs.

159. How is the disadvantage in Impulse invariant method overcome?
The Bilinear Transform method is used to prevent ‘aliasing’ which is
a disadvantage found with the impulse invariant method. The entire jΩ
axis, for −∞ < Ω <∞, maps uniformly onto a unit circle,

−π

Ts
<

ω

Ts
<

π

Ts
.

160. Give an example of a simple Bilinear transformation.

s =
2
Ts

[
z − 1
z + 1

]

161. Stage the relation between continuous-time and discrete-time
frequencies.

Ω = 2 arc tan [ω Ts/2]

ω

ω’

 

-π 

π 

162. What do you mean by “prewarping”?
By using the formula

Ω =
2
T

tan
(

ωT

2

)
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The compression in the magnitude response is compensated by using the
prewarping.

163. Stage the advantage of bilinear transformation.

(a) No aliasing effect.
(b) Provides one-to-one mapping procedure.

164. Stage the disadvantage of Bilinear transformation.

(a) Impulse response as well as phase response of the analog filter is
not preserved

(b) Provides highly non-linear frequency compression at high
frequencies.

165. What are the effects of using finite register lengths while implementing
digital filters in the digital hardware?

(a) A/D conversion noise
(b) Round-off noise (uncorrelated)
(c) Coefficient inaccuracy
(d) Round-off noise or limit cycles (correlated)

166. What are the types of arithmetic used in filter algorithms?

(a) Fixed point arithmetic
(b) Floating point arithmetic
(c) Block floating point arithmetic

167. What is meant by diced point arithmetic?
The position of the binary point is fixed. The bit to the right represents
the fractional part of the number and that to the left represents the integer
parts.

168. What are the types of fixed point arithmetic?

(a) Sign-magnitude representation
(b) 1’s – complement
(c) 2’s – complement

169. What is sign-magnitude representation?
The leading binary digit is used to represent the sign to correspond
to + and 1 corresponds to −. For a b bit word, (b – 1) bits are used
to represent the magnitude.

170. How many numbers are represented in sign-magnitude form for a b bit
word?
(2b – 1) numbers are represented exactly
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171. Covert (01.01100) into a base-10 number.
(01.0100)2 = [0× 21] + [1× 20] + [0× 2−1] + [1× 2−2]

+ [1× 2−3] + [0× 2−4] + [0× 2−5] = (1.375)10
172. What are the representations of 0 in sign-magnitude form?

(00.00000)2 and (10.00000)2

173. What do you mean by 2’s – complement representation?
To obtain the negative of a positive number, we complement all the bits
of the positive number and odd one unit in the position of the least
significant bit.

174. Obtain the negative of (01.01100)2 using 2’s complement notation

−(01.01100)2 = (10.10011)2 + (00.00001)2 = (10.10100)2

175. What do you mean by 1’s complement form?
The negative of a positive number is obtained by complementing all the
bits of the positive number which is the 1’s complement.

176. Obtain the negative of 01.01100 using 1’s complement notation
Negative of (01.01100)2 = −(01.01100)2 = (10.10011)

177. Represent 0 in 1’s complement form

(00.00000)2 and (11.11111)2

178. What do you mean by quantization?
Quantization is a technique by which the numerical equivalent of each
sample of s(n) is expressed by a finite number of the bits giving the
sequence sQ(n).

179. What do you mean by floating point arithmetic?
A number is represented as f = 2em, where m is called mantissa and f is
a fraction such that 0.5 ≤ m ≤ 1, and c is the exponent.

180. Compare fixed point and floating point arithmetic.
Fixed point Arithmetic Floating point Arithmetic

(a) Overflow occurs in the addition operation
(b) There is no overflow
(c) Roundoff error occurs in addition
(d) Roundoff error occurs in both addition and multiplication.

181. Mention the types of quantization.

(a) Truncation
(b) Rounding
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182. What do you mean by Truncation?
The process of discarding all bits less significant than the least significant
bit that is retained is called truncation.

183. Mention the different types of quantization errors, occurring due to finite
word length registers in digital filters.

(a) Coefficient quantization error
(b) Input quantization error
(c) Product quantization error

184. What do you mean by rounding?
Rounding of a number of ‘b’ bits is done by choosing the rounded result
as the b bit number closest to the original un-rounded quantity.

185. What is meant by coefficient in accuracy?
The coefficients of a digital filter are obtained by some theoretical design
procedure that essentially assumes infinite precision representation of
the filter coefficients. For practical realizations, the coefficients should
be quantized to a fixed number of bits. As a result of this, the frequency
response of the actual filter which is realized deviates from that which
has been obtained with an infinite word-length representation. This is
called coefficient inaccuracy.

186. State the two approaches to analyze/synthesize digital filters with finite
precision coefficients.

(a) Treat the coefficient quantization errors as statistical quantities
(b) Study each individual filter separately so as to optimize between

ideal and actual responses.

187. State the inequalities satisfied by truncation error where xT is a truncated
value of x.

(i) for x > 0, 0 ≥ xT − x > −2−b

(ii) for x < 0, 0 ≤ xT − x < −2−b

188. State the inequality satisfied by truncation error for a floating point word
x = 2e. m in 2’s complement representation of mantissa.
xT − x = (1+ ∈)x where xT = truncated value of x.
The inequality is 0 ≤ ∈ x ≤ −2−b.2c.

For x > 0, 2c−1 < x ≤ 2c.

Where by 0 ≥ ∈ > −2−b.2, x > 0 and 0 ≤ ∈ < 2−b.2, x < 0
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189. State the inequality satisfied by truncation error for a floating point word
x = 2e. m, in 1’s complement notation of mantissa.

0 < ∈ < −2. 2−b, for all x.

190. State the inequality satisfied by fixed-point arithmetic, the error being
made by rounding a number to ‘b’ bits following the binary point.

−2b−2

2
≤ xT − x ≤ 2−2

2
.

for all the three types of number systems (two’s complement, one’s
complement, and sign-magnitude)

191. State the inequality satisfied by floating arithmetic, the error being due
to rounding.

−2c.
2−b

2
≤ xT − x < −2c.

2−b

2
.

If xT − x = ∈ x, then − 2−b ≤∈≤ 2−b.

192. Sketch the probability density function for rounding

0 

P(e) 

2/2 b−− 2/2 b− 0 

P(ε) 

b−− 2 b−2

193. Sketch the probability density function Truncation with 2’s complement.

0 

P(e) 

b2 −−

b2

0 

P(ε) 

b2.2 −− b2.2 −

4
b /2−

194. Sketch the probability density function of Truncation with 2’s
complement/sign-magnitude.
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0 

P(e) 

b−− 2 b−2

2
b /2−

0 b2−− b2−

4
b /2−

Floating point arithmetic 

195. What are limit cycle oscillations?
In recursive systems, the non-linearities due to the finite precision
arithmetic operations cause periodic oscillations to occur in the output,
even when the input sequence is zero or some non-zero constant value.
Such oscillations are called “limit cycle oscillations”.

196. What is ‘dead band’?
The amplitudes of the output of recursive systems during a limit cycle
are confined to a range of values called ‘dead band’.

197. Stage the methods of avoiding overflow oscillations.

(a) Saturation arithmetic
(b) Scaling

198. What do you mean by saturation arithmetic?
Whenever an overflow is obtained, the sum of the adder is set equal to
the maximum value. This is known as saturation arithmetic, useful in
avoiding overflow oscillations.

199. What is the disadvantage of saturation arithmetic?
Saturation arithmetic causes undesirable signal distortion due to the non-
linearity of the clipper.

200. What do you mean by scaling in digital filters?
In order to prevent overflow, the signal level at some points in the digital
filters have to be scaled in order that no overflow occurs in the header.
This is meant by scaling in digital filters.

201. State the necessary and sufficient condition to prevent overflow by
scaling.

Ax <
1

∞∑
m=−∞

|hk(m)|

where the signal x(n) is upper bounded by Ax.
202. Which is preferred in digital filter implementation-rounding or trunca-

tion? Why?
Rounding is preferred to truncation, because
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(a) The variance of the rounding error signal is low.
(b) Mean of rounding error is zero.

203. Give an expression for steady-stage noise power due to quantization of
‘b’ bits of binary sequence.

Noise Power σ2
e =

2−2b

12
204. Write the different types of arithmetic in digital systems?

There are three types of arithmetic used in digital systems as follows:

(a) Fixed point arithmetic
(b) Floating point arithmetic
(c) Block floating arithmetic

205. What do you mean by a fixed-point number?
In fixed-point arithmetic, the position of the binary point is fixed. The bit
to the right represent the fractional part of the number and those to the
left represent the integer part. As an example, the binary number 01.1100
has the value 1.75 in decimal.

206. What are the different quantization methods?
The common methods of quantization are a under:

(a) Truncation
(b) Rounding

207. Write the different types in fixed-point number representation?
Depending on the way, negative numbers are represented, there are there
different forms of fixed point arithmetic, following

(a) sign-magnitude
(b) 1’s complement
(c) 2’s complement.

208. What do you mean by sign-magnitude representation?
For sign-magnitude representation, the leading binary digit is used to
represent the sign. If it is equal to 1, the number is negative, otherwise the
number is positive. For example, the decimal number –1.75 is represented
as 11.110000 and 1.75 is represented as 01.110000. In sign-magnitude
from, the number 0 has two representations, i.e., 00.000000 or 10.000000.
With b bits only, 2b – 1 numbers may be represented.

209. What is 1’s complement representation?
In one’s complement form, the positive number may be represented
as in the sign-magnitude system. To obtain the negative of a positive
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number, one simply complements all the bits of the positive number. As
an example, the negative of 01.110000 will be represented as under:

−(01.110000)2 = (10.001111)2

The number 0 has two representations, i.e., 00.00000 and 11.11111 in a
1’s complement representation.

210. What do you mean by 2’s complement representation?
In two’s complement representation, positive numbers are represented
as in sign-magnitude and one’s complement. The negative number can
be obtained by complementing all the bits of the positive number and
adding one to the least significant bit.

For example, we have

(0.5625)10 = (0.100100)2
(−0.5625)10 = 1.011011

0.000001
(1.011100)2

211. Write a short note on floating point arithmetic.
In floating point representation, a positive number is represented as
F = 2C . M, where M, called mantissa, is a fraction such that 1

2 ≤M < 1
and c, the exponent can be either positive or negative.

The decimal numbers 2.25 and 0.75 have floating point represe-
ntations as

2.25 = 22 × 0.5625 = 2010 × 0.1001

and 2.75 = 20 × 0.75 = 2000 × 0.1100 repetitively
Negative floating point numbers are generally represented by consid-

ering the mantissa as a fixed point number. The sign of the floating point
number is obtained from the first bit of mantissa.

212. What is do you mean by block floating point representation? What are
its advantages?
In block floating point arithmetic, the set of signals to be handled is
divided into blocks. Each block has the same value for the exponent. The
arithmetic operations with in the block use fixed-point arithmetic and
only one exponent per blocks. Each block uses fixed-point arithmetic
and only one exponent per block is stored hence saving memory. This
representation of numbers is most suitable in certain FFT flow graphs
and in digital applications.



12.1 Review Questions with Answers 593

213. Write the advantages of floating point arithmetic?

(a) Larger dynamic range.
(b) Overflow in floating point representation is unlikely.

214. Express the fractions 7
8 and −7

8 in sign magnitude, 2’s complement, and
1’s complement.
Fraction 7

8 = (0.111)2 in sign magnitude is complement and 2’s
complement.
Fraction

(7
8

)
= (1.111)2 in sign magnitude

= (1.000)2 in 1’s complement

= (1.001)2 in 2’s complement

215. Compare the fixed-point arithmetic and floating-point arithmetic.

S. No. Fixed-Point Arithmetic Floating-Point Arithmetic
1. Fast Operation Slow Operation
2. Relatively Economical More expensive due to

costlier hard-ware
3. Small dynamic range Increased dynamic range
4. Roundoff errors occur

only for addition
Roundoff errors can occur
with both addition and
multiplication

5. Overflow occurs in
addition

Overflow does not arise

6. Used in small computers Used in larger,
general-purpose computers

216. Write the three quantization errors due to finite word length registers in
digital filters?

(a) Input quantization error.
(b) Coefficient quantization error.
(c) Product quantization error.

217. How the multiplication and addition are carried out in floating point
arithmetic? In floating point arithmetic, multiplications are carried out as
under:

Let f1 = M1 × 2c1 and f2 = M2 × 2c2.

The f3 = f1 × f2 = (M1 ×M2)2(c1+c2)
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This means that the mantissas are multiplied using fixed-point arithmetic
and the exponents are added.

The sum of two floating-point numbers is carried out by shifting the
bits of the mantissa of the smaller number to the right until the exponents
of the two numbers are equal and then adding the mantissas.

218. Write a short note on coefficient inaccuracy? What is coefficients
quantization error? What is its effect?
The filter coefficients are computed to infinite precision in theory.
However, in digital computation, the filter coefficients are represented
in binary and are stored in registers. If a b bit register is used, then the
filter coefficients must be rounded or truncated to b bits, which produces
an error.

Because of quantization of coefficients, the frequency response of
the filter can differ appreciably from the desired response and some
times the filter may actually fail to meet the desired specifications. If
the poles of desired filter are close to the unit circle, then those of the
filter with quantized coefficients may be just outside the unit circle, and
hence leading to instability.

219. What do you mean by product quantization error (or) What is product
roundoff error in digital signal processing (DSP)?
Product quantization errors arise at the output of a multiplier. Multiplica-
tion of a b bit data with a b bit coefficient results in a product having 2b
bits. Since a b bit register is used, the multiplier output must be rounded
or truncated to b bits, which produces an error. This error is called product
quantization error.

220. What do you mean by input quantization error?
In digital signal processing (DSP), the continuous-time input signals
are converted into digital using a b bit ADC. The representation of
continuous signal amplitude by a fixed digit produce an error is called
input quantization error.

221. What do you mean by truncation? What is the error that arose due to
truncation in floating point numbers?
Truncation is a process of discarding all bits less significant than least
significant bit that is retained.

Suppose we truncate the following number from 7 bits to 4 bits, then
we obtain 0.0011001 to 0.0011 and 0.0100100 to 0.0100

For truncation in floating point systems, the effect is seen only in
mantissa. If the mantissa is truncated to b bits, then the error ε satisfies
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0 ≥ ε > −2.2−b for x > 0

and 0 ≤ ε < −2.2−b for x < 0
If the mantissa is represented by 1’s complement or sign magnitude,

then the error satisfies

−2.2−b < ε ≤ 0 for all x

Here, ε = xT −x
x

where xT is the truncated value of x.
222. What is the relationship between truncation error e and the bits b for

representing a decimal into binary?
For a 2’s-complement representation, the error due to truncation for both
positive and negative values of x is 0 ≥ xT − x > −2−b

where b is the number of bits and xT is the truncated value of x.
This equation holds good for both sign-magnitude and 1’s-

complement, the truncation error being satisfied.

0 ≤ xT − x < 2−b

223. What do you mean by rounding? Discuss its effect on all types of number
representations.
Rounding a number to b bits is accomplished by choosing the rounded
result as the b bit number closets to the original number unrounded.

For fixed-point arithmetic, the error made by rounding a number to b
bits satisfies the following inequality:

−2−b

2
≤ xT − x ≤ 2−b

2

for all three types of numbers system, i.e., two’s-complement, one’s-
complement, and sign-magnitude.

For floating point numbers, the error made by rounding a number to
b bits satisfies the following inequality:

−2−b ≤ ε ≤ 2−b where ε =
xT − x

x

224. What is meant by A/D conversion noise?
A digital signal processor contains a device, A/D converter, which
operates on the analog input x(t) to produce xq(n) that is a binary sequence
of 0’s and 1s.
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Firstly, the signal x(t) is sampled at regular intervals to produce a
sequence x(n) is of infinite precision. Each sample x(n) is expressed in
terms of a finite number of bits giving the sequence xq(n). The difference
signal e(n) = xq(n) – x(n) is known as A/D conversion noise.

 

ADC 

x(n) x(t) xq(n) 

 

Sampler Quantizer 

225. What is the effect of quantization on pole locations?
Quantization of coefficients in digital filters leads to slight changes in
their value. This change in value of filter coefficients modifies the pole-
zero locations. Sometimes, the pole locations would be changed in such
a manner that the system may be driven into instability conditions.

226. Which type of realization is less sensitive to the process of quantization?
Cascade form

227. What do you mean by quantization step size?
Let us assume a sinusoidal signal varying between +1 and −1 having
a dynamic range of 2. If the ADC used to convert the sinusoidal signal
employs b+1 bits including sign bit, then the number of levels available
for quantizing x(n) is 2b+1. Thus, the interval between successive levels
will be

q =
2

2b+1 = 2−b

where q is called the quantization step size.
228. Draw the following characteristics:

(a) Quantizer characteristic with rounding
(b) Quantizer characteristic with truncation.

x(n) 

xq(n) 

 

2q 

2
q

2
5

2
3

2
qqq

q

2q x(n) 

xq(n) 

 
2q 

q

q

(a) Quantizer characteristics with rounding. (b) Quantizer characteristics with truncation.
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229. Draw the probability density function (PDF) for rounding.
Figure illustrates the probability density functions (PDF) for rounding
for two cases:

-2-b/2 →→e 0 

P(e) 

 

-2-b/2 

2b/2 

P(ε) 

 

 -2-b        0       2-b→ e 

 (i) Fixed point (ii) Floating point 

230. What are the assumptions made connecting the statistical impedance of
various noise sources, which occur in realizing the filter?
Following are the assumptions:

(a) For any n, the error sequence e(n) is uniformly distributed over the
range −q

2 and q
2 . This implies that mean value of e(n) is zero and

its variance will be 2−b

12 .
(b) The error sequence e(n) is a stationary white noise source.
(c) The error sequence e(n) is uncorrelated with the signal sequence

x(n).

231. How will you relate the steady-state noise power due to quantization and
the b bits representing the binary sequence?
Steady-state noise power will be

σ2
e =

2−2b

12

where b is the number of bits excluding sign bit.

12.2 Multiple Choice Questions

1. Which of the following terms would be used to describe a signal that is
restricted to 256 voltage levels?

(a) Analog
(b) Linear
(c) Digital.
(d) None of the above.
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2. The resolution of a digital signal can be increased by

(a) Increasing the number of bits.
(b) Decreasing the number of bits.
(c) Sampling the signal less often
(d) Using a faster computer.

3. The process of converting from the continuous-time domain to the
discrete-time domain is called

(a) Sampling.
(b) Quantization.
(c) Fourier analysis.
(d) All of the above.

4. How would you convert an analog signal to a digital signal?

(a) Sampling only.
(b) Quantization only.
(c) Both a and b.
(d) None of the above.

5. The electrical signal from a microphone is best described as

(a) A quantized signal.
(b) A discrete signal.
(c) An aliased signal.
(d) An analog or continuous signal.

6. We have discussed transducers that produce electrical signals. Which of
the following transducers does the opposite-takes in an electrical signal
and converts it to some other type of signal?

(a) Loudspeaker
(b) Thermistor
(c) Thermocouple
(d) Strain gauge

7. Which of the following is an example of a bit?

(a) 1
(b) 5
(c) 63
(d) 101
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8. Match the following.

(a) Bit
(b) Byte
(c) Anti-aliasing filter
(d) Nyquist frequency

(i) fs/2
(ii) Low/pass

(iii) 0
(iv) 0011 1001

9. Match the waveforms in Figures 12.2 to 12.7 with the locations A.B.C.D.
and F in the DSP system shown in Figure 12.1

F E D C B A 

 

Sensor
 

 

Amplifier 

Anti-
aliasing 
filter

Sample 
and hold 

 

Quantizer
 

Digital 
signal 

processor  

Figure 12.1 A typical DSP system.

For your correct answer, write the sequence of figure number in the
answer sheet.

Figure 12.2 Two sine waves of frequencies 2 and 6 kHz, each of peak amplitude 1 V.

Figure 12.3 A waveform in one part of a typical DSP system.
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Figure 12.4 Two sine waves of frequencies 2 and 6 kHz, each of peak amplitude 0.5 V.

Figure 12.5 Samplers of a sine wave.

Figure 12.6 Sine wave of frequency 2 kHz.

Figure 12.7 Pressure wave with Alternate compressions and rarefactions.

10. Which of the following binary numbers is equal to the decimal number
65?

(a) 1100 1000
(b) 1000 0000
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(c) 0100 0001
(d) 0000 1110

11. What is the name given to the frequency that is exactly half of the
sampling frequency?

(a) Anti-aliasing frequency
(b) Nyquist frequency
(c) Shannon frequency
(d) Sample-and-hold frequency

12. When a sampled high-frequency signal produces the same discrete values
as a low-frequency signal, the problem is called

(a) Aliasing
(b) Quantization
(c) Component error
(d) Sample and hold

13. The anti-aliasing filter

(a) Is a low-pass analog filter.
(b) Is a low-pass digital filter.
(c) Was invented by Nyquist.
(d) Allow frequencies higher than the sampling frequency to pass

through.

14. What is the rms quantization noise voltage for a 10-bit system with a
signal range of 0 to 3 V?

Vnoise(rms) =
Vfull scale (0.289)

2n

(a) 0.847 mV.
(b) 1.19 mV.
(c) 3.76 mV.
(d) None of the above.

15. What is the maximum signal-to-noise ratio for the system in Question
14? Max signal to noise ratio (dB) = 6.02 n + 1.76

(a) 38 dB
(b) 44 dB
(c) 53 dB
(d) 62 dB
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16. A DSP system similar to the one shown in Figure 12.1 is used in a home
theater system that produces surround sound. The sampling frequency is
44,100 Hz. Which of the following statements is definitely false?

(a) The Nyquist frequency is 20 kHz.
(b) The anti-aliasing filter will not pass a signal with a frequency of

40 kHz.
(c) The sampling interval is 1/44100 s.
(d) The microprocessor processes the quantized samples.

17. A dB value of −40 dB corresponds to a voltage ratio of

(a) 100
(b) 1
(c) 0.1
(d) 0.01

18. Which of the following is the symbol for convolution?

(a) X
(b) *
(c) Θ
(d) .

19. Which of the following is not required for correlation?

(a) Accumulation
(b) Multiplication
(c) Flipping
(d) Shifting

20. Random noise

(a) Is a deterministic signal
(b) Can be either Normal or Uniform.
(c) Is always predictable.
(d) Has an autocorrelation function that is periodic.

21. Match the following:

(a) Impulse

(b) Step
(c) Random noise

(d) Decaying exponential

(i) Sample values are
unpredictable.

(ii) Has only one nonzero value.
(iii) Amplitude decreases as time

increase.
(iv) Has only two possible values.
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22. Which of the following is false?

(a) The autocorrelation of random noise is an impulse
(b) The autocorrelation of a pulse is a triangular wave.
(c) The autocorrelation of a periodic signal is also periodic.
(d) The autocorrelation of a triangular waveform is a square wave.

23. DSP commercial products came into market in the year

(a) 1920.
(b) 1960.
(c) 1980.
(d) 1990.

24. Sine waves, cosine waves, rectangular waves, and triangular waves are
all examples of

(a) Single-frequency functions.
(b) Multiple-frequency functions.
(c) Periodic functions.
(d) All of the above.

25. What name is given to the lowest frequency in a Fourier series?

(a) Fundamental.
(b) First harmonic.
(c) Both a and b.
(d) None of the above.

26. A signal is composed entirely of these frequencies: 60, 180, 300, 420,
540, and 660 Hz. The signal is made up of

(a) The fundamental and both even and odd harmonics.
(b) The fundamental and only even harmonics.
(c) The fundamental and only odd harmonics.
(d) None of the above.

27. What is the bandwidth of an ideal 1-kHz square wave?

(a) 1 kHz
(b) 10 kHz
(c) 1 MHz
(d) Infinite

28. Spectrum analyzers display signals in the

(a) Phasor domain
(b) Time domain
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(c) Frequency domain
(d) Propagation delay domain

29. A periodic signal displays on a spectrum analyzer as a single vertical line.
What would the signal look like on an oscilloscope?

(a) Square wave
(b) Sawtooth wave
(c) Pulse wave
(d) Sine wave

30. Fourier synthesis of periodic signals with discontinuities produces
aberrations due to

(a) Laplace’s phenomenon
(b) Blackman’s phenomenon
(c) Gibbs’ phenomenon
(d) Component tolerance

31. A sawtooth waveform drops instantaneously form some positive value
to zero. That falling edge represents a

(a) Discontinuity
(b) Fourier series
(c) Missing harmonic
(d) Limited bandwidth

32. The sum of a long Fourier series for a sawtooth function will show
distortion called

(a) Crossover
(b) Gibbs’ phenomenon
(c) Clipping.
(d) All of the above.

33. Conversion from the frequency domain to the time domain is accom-
plished by the

(a) Fourier transform
(b) Inverse Fourier transform
(c) Gibbs’ transform
(d) Logarithmic transform

34. The samples of a cosine wave at zero frequency are equivalent to
samples of

(a) A sine wave at a frequency of 10 Hz.
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(b) A dc signal.
(c) An aperiodic signal.
(d) An unknown signal.

35. FFT is

(a) Acronyms for fast Frequency transform.
(b) A transform for determining content of continuous-time a periodic

signal.
(c) An efficient algorithm for calculating the DFT when N is a power

of 2.
(d) An algorithm for calculating the length of the diagonal of a right-

angled triangle.

36. The fastest way to compute the frequency content of a signal is to

(a) Choose the number of samples as a power of 2, and use an FFT
algorithm.

(b) Choose any reasonable number of samples and use a generic DFT
algorithm

(c) Perform the calculations using pencil and paper.
(d) Look up the answer in a book.

37. The underlying principle behind the DFT is

(a) Convolution
(b) Correlation
(c) Aliasing
(d) Quantization

38. The sines and cosines chosen by the DFT for correlation are

(a) Orthogonal
(b) Aperiodic
(c) Random
(d) Rectangular

39. The length of one side of a right-angled triangle is 5, and the length
of the diagonal is 6. The length of the third side of the triangle is
thus

(a)
√

52 + 62

(b)
√

62 − 52

(c) 52 + 62

(d) 62 + 52
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40. The DC value of the signal having the following samples, 3.5, 3.5,−2.0,
−3.5, 2.0 −1.5, 3.0, 3.0, is

(a) 1.0
(b) 3.5
(c) 3.0
(d) 1.5

41. Approximately how much faster is the FFT compared with the DFT if
the number of samples is 4096?

(a) 0.003
(b) 256
(c) 341
(d) 396

42. To convert a frequency-domain representation to a time-domain repre-
sentation, one uses the

(a) Inverse FFT
(b) DFT
(c) FFT
(d) Decibel unit

43. When two sine waves of frequencies 50 and 30 Hz are multiplied together,
the resulting signal consists of the following frequencies (in Hertz):

(a) 50 and 30
(b) 80 and 20
(c) −50 and 30
(d) 100 and 60

44. If fs is the sampling frequency and N is the number of samples, the
formula for the frequency resolution Δf is given by

(a) N /fs
(b) fs/N
(c) kfs/N where k = (N − 1)/2
(d) 0.5 – 0.5 cos (2π n/N )

45. If a signal is sampled for 2 s at a sampling frequency of 10,000 Hz, what
is the frequency resolution of the FFT (in Hz)?

(a) 500
(b) 20.000
(c) 1.0
(d) 0.5
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46. The frequency resolution Δf can be increased by

(a) Keeping N fixed and reducing the sampling frequency.
(b) Keeping the sampling frequency fixed and increasing N.
(c) Both (a) and (b).
(d) Neither (a) and (b).

47. Which of the following windows is best suited for separating two
frequencies that are close to each other and have almost the same
amplitudes?

(a) Rectangular
(b) Hamming
(c) Hanning
(d) All of the above are equal for separating frequencies.

48. The equation for the causal Hamming window is

(a) ω[n] = 0.54− 0.46 cos (2πn/N − 1)
(b) ω[n] = 0.54 − 0.46 sin (2πn/N − 1)
(c) ω[n] = 0.5 − 0.5 cos (2πn/N − 1)
(d) ω[n] = 1.0

49. Spectral leakage occurs when

(a) Performing autocorrelation.
(b) A signal frequency is not an exact integer multiple of Δf.
(c) N is a power of 2.
(d) All of the above.

50. A signal consists of a pure tone of frequency 100 Hz. It is sampled at
fs = 1024 Hz for 0.5 s. The FFT of the sampled signal using a rectangular
window

(a) Will show a single peak a t 100 Hz.
(b) Will exhibit spectral leakage.
(c) Is not possible because the number of samples is not a power of 2.
(d) Will be twice as fast as a DFT on the same number of samples.

51. The window that has been widely used in speech-processing applications
is the

(a) Hanning window
(b) Flat-top window
(c) Hamming window
(d) Rectangular window
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52. Match the following

(a) Rectangular
(b) Hamming
(c) Hanning
(d) Flat-top

(i) Amplitude accuracy
(ii) Uniform

(iii) Speech-processing applications
(iv) Raised cosine

53. Another name for an ideal filter is

(a) Bessel
(b) Brick wall
(c) Linear
(d) Digital

54. Which of the following filter designs has ripple in the pass band?

(a) Bessel
(b) Tschebyscheff
(c) Inverse Tschebyscheff
(d) Butterworth

55. Suppose a filter has a linear-phase response and the delay at 1 kHz is
1 ms. What is the delay at 3 kHz?

(a) 1 ms
(b) 2 ms
(c) 3 ms
(d) None of the above

56. Which filter has the best pulse response?

(a) Butterworth
(b) Tschebyscheff
(c) Elliptic
(d) Bessel

57. The transition bandwidth of an ideal filter is

(a) 0 Hz.
(b) Half of the pass band.
(c) Half of the stop band.
(d) None of the above.

58. Suppose a low-pass moving-average filter uses the coefficients 0.25, 0.25,
0.25, and 0. 25. What will the output sequence be with an input signal at
a constant value of 2?
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(a) 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, and so on.
(b) 0.5, 1.0, 1.5, 2.0, 2.0, 2.0, and so on.
(c) 1.0, 2.0, 3.0, 4.0, 4.0, 4.0, and so on
(d) None of the above.

59. A high-pass moving-average filter uses the coefficients −0.25, −0.25,
1.0, −0.25, and −0.25. What will the output sequence be with an input
signal at a constant value of 2?

(a) −0.5, −1.0, 1.0, 0.5, 0, 0, 0, and so on
(b) −0.25, −1.25, 1.25, 1.75, 2.0, 2.0, 2.0, and so on
(c) 0.5, 1.5, 1.0, 0, −1.5, −1.5, −1.5, and so on
(d) None of the above.

60. What is the formal name given to the process of shift, multiply,
add . . . shift, multiply, add . . . that goes on inside all DSP processors?

(a) Quantization
(b) Low-pass filtering
(c) High-pass filtering
(d) Convolution

61. What kinds of systems can change their characteristic, on the fly, as
environmental factors change?

(a) Tschebyscheff systems
(b) RC systems
(c) Differential op-amp systems
(d) Adaptive systems

62. The horizontal axis for the frequency-response graph of a digital filter
ends at

(a) 2fs
(b) fs
(c) fs/2
(d) fs/4

63. The fact that sampling and amplitude modulation produces pairs of
sidebands supports the concept of

(a) Negative frequencies.
(b) Fourier square waves.
(c) Gibbs’ distortions.
(d) All of the above.
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64. The coefficients for FIR filters are almost always arranged to be
symmetrical to obtain

(a) A sharper transition.
(b) A linear phase response.
(c) Elimination of Gibbs’ distortion.
(d) All of the above.

65. Windows are used in FIR filter designs to

(a) Reduce the Gibbs’ phenomenon.
(b) Convert low-pass to high-pass.
(c) Convert low-pass to band-pass.
(d) All of the above.

66. Which of the following filters has an impulse response that is a sine wave
that decays exponentially?

(a) 11-tap FIR
(b) Sixth-order IIR.
(c) 49-tap FIR band-pass
(d) Windowed sine type.

67. When a signal passes through two FIR filters in cascade, the same effect
can be obtained by

(a) Adding the filter coefficients.
(b) Multiplying the filter coefficients.
(c) Dividing the filter coefficients.
(d) Convolving the filter coefficients.

68. The b coefficients are sometimes called the

(a) FIR coefficients
(b) Feedback coefficients
(c) Feed-forward coefficients
(d) Blackman coefficients

69. The filter structure having the minimum possible number of delay
elements is known as

(a) Direct form I
(b) Canonic form
(c) Second-order section
(d) Cascaded form
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70. The number of possible filter structures is

(a) 2
(b) 5
(c) 100
(d) Infinite

71. Figure is a

(a) First-order IIR filter
(b) First-order FIR filter
(c) Second-order IIR filter
(d) Second-order FIR filter

Figure 12.8 A filter with one delay, two adders, and three multipliers.

72. The filter structure in Figure 12.8 is

(a) A direct form I structure
(b) A higher-order filter.
(c) An FIR filter.
(d) A direct canonic form structure.

73. The choice of a filter structure depends on

(a) Software complexity.
(b) Hardware requirement
(c) Finite word length effects.
(d) All of the above.

74. Using finite-precision arithmetic, one needs to be careful about

(a) Coefficient quantization errors.
(b) Overflow and saturation.
(c) Limit cycles
(d) All of the above.
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75. Which of the following would represent a negative number in a DSP
system that uses two’s complement representation?

(a) 0101 0001 0100 0111
(b) 1001 1111 0001 0101
(c) 0001 1001 1111 1011
(d) 0010 0100 1001 1111

76. DSP chips that use the type of numbers shown in question 75 are called

(a) Fixed-point processors.
(b) Floating-point processors.
(c) Adaptive processors.
(d) None of the above.

77. DSP chips that store numbers as a 24-bit mantissa and an 8-bit exponent
are called

(a) Fixed-point processors.
(b) Floating-point processors.
(c) Adaptive processors.
(d) None of the above.

78. The binary number 1000 000 is in unsigned binary form. What is its
decimal equivalent?

(a) +129
(b) −127
(c) +127
(d) −129

79. The binary number 1000 0001 is in two’s complement signaled binary
form. What is its decimal equivalent?

(a) +129
(b) −127
(c) +127
(d) −129

80. The number 1011 corresponds to

(a) Decimal one thousand and eleven.
(b) Decimal eleven.
(c) Decimal negative five.
(d) It depends. We need to know if the number is in base 10 or base 2

notations. If base 2, then we need to know if it is unsigned integer
or signed two’s complement integer.
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81. A 16-bit number in two’s complement notation can represent decimal
numbers from

(a) 0 to 65536
(b) –32,768 to 32,767
(c) 0 to −65.536
(d) None of the above

82. What is the binary equivalent of the hex number 4A9E?

(a) 0100 1010 1000 1110
(b) 1000 1010 1001 1110
(c) 0100 1010 1001 1110
(d) 1110 1001 1010 0010

83. What is the hex equivalent of the binary number 1010 1010?

(a) AA
(b) AA0
(c) 55
(d) 550

84. Floating-point numbers are specified by

(a) A mantissa
(b) An exponent
(c) A sign bit
(d) All of the above

85. For an application where it is imperative that limit cycles should not
occur, the filter use is

(a) An FIR filter
(b) An IIR filter
(c) A filter with feedback
(d) A direct from 1 IIR filter
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Examination Question Papers

13.1 Practice Question Paper 1

QP # 1.1
(a) What is DSP? List the key operations of DSP. Discuss in brief any one of

them.
(b) (i) List the steps for the conversion of analog signal into digital signal.

(ii) Discuss in brief the quantization error. How we can reduce it?
(c) A discrete time signal x(n) is shown in the figure.

Sketch

• x
(
n2
)

• odd part of x(n)

QP # 1.2
(a) Define cross- and autocorrelation?
(b) Define cross-correlation coefficient and find ρx1x2(1) for

x1(n) = {4, 1,−2, 3, 0}
x2(n) = {−3, 2, 3, 5, 0} [Hint: at lag “1”]

(c) Determine convolution y(n) of the signals

x(n) =
{

n/2, 0 ≤ n ≤ 3
0, elsewhere.

615
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h(n) =
{

2, −1 ≤ n ≤ 2
0, elsewhere

QP # 1.3
(a) Determine the causal signal x(n) if its Z-transform is given as

(i) X(z) = z−6 + z−7

1 − z−1 (ii) X(z) = 0.1
z − 0.9

(b) Determine the zero input response of the system described by the block
diagram

QP # 1.4
(a) (i) A discrete signal is given by x(n) = {1

↑
, 0, 3, 4}

Determine numerically its DFT, X(k) over four points (N = 4)
(ii) Find the magnitude X(k) and phase Φ(k)

(b) Find IDFT of

X(K) = {2, 1 + j, 0, 1− j}
(c) Find Fourier transform using FFT approach when

x(n) = {1, 1, 1, 1}

QP # 1.5
(a) Realize the following transfer function into four forms

H(z) =
1 + z−1

1 + 3z−1

(i) Direct form II. (ii) Cascade. (iii) Parallel.
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(b) Sketch the cascade form of the following transfer function
H(z) = z + 1

z2−3z + 2

13.2 Practice Question Paper 2

QP # 2.1
(a) Give short and precise answers for the followings:

(i) Name the three steps involved in analog to digital conversion of a
signal.

(ii) Any physical quantity, which varies with time or with any other
independent variable, is called .

(iii) If sampling frequency is increased, number of quantization level .

(b) List the key operations of DSP.
(c) If x(n) = {1, 2

↑
, 3}, then find out y(n) while y(n) = x(n).

(d) Define the following signals with graphical representation of each:

(i) Unit impulse.
(ii) Unit ramp signal.

(iii) Exponential signal.
(iv) Unit step signal.

QP # 2.2
(a) Give brief and precise answers for the followings:

(i) Constant multiplier is a system memory. (With/Without)
(ii) Unit delay element is a system memory. (With/Without)

(iii) Discuss static and dynamic systems in comparison with each other.

(b) Confirm whether the followings are time variant or time invariant signals:

(i) y(n) = nx(n)
(ii) y(n) = x(n)cosωn

(c) Briefly discuss the followings:

(i) Casual and noncasual systems.
(ii) Stable and unstable systems.

(d) Define and differentiate linear and nonlinear systems.

QP # 2.3
(a) Short and smart answers are required for the followings:
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(i) Define correlation and convolution. Also differentiate both these termi-
nologies with respect to each other.

(ii) List down the four processes of convolution.

(b) For the following table, find out ρ12(1).

N 0 1 2 3 4 5 6 7 8
x1(n) 1 3 4 4 2 4 3 1 2
x2(n) 1 1 1 0 0 0 0 0 1

QP # 2.4
(a) Draw and specify the butterfly diagram of 4-point DFT, first finding the

equation for X(0), X(1), X(2), X(3).
(b) Find the DFT of signal x(n) and sketch the phase and magnitude plot if

the signal is sampled at 10 KHz frequency.

n 0 1 2 3
x(n) 3 0 1 5

QP # 2.5
(a) Find the complete solution of the equation given below:

y(n)−
(

5
6

)
y(n− 1) +

(
1
6

)
y(n− 2) = 5−n for n ≥ 0, where

y(−2) = 25, y(−1) = 6

(b) Find inverse z-transform for the following:

Y(z) =
0.2

(z − 0.3− j0.6)(z + 0.3 + j0.6)

QP # 2.6
(a) Consider an LTI system function defined by

H(z) =
9 + 4 Z−1

7 + 2 Z−1

Write down its difference equation and draw direct form I realization block
diagram.
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(b) Consider the following LTI system function:

H(z) =
1

1− 2
3Z−1

Find the difference equation and also draw its block diagram.

QP # 2.7
(a) Mention the 5 steps of digital FIR filter design with advantages/

disadvantages of using window method.
(b) Obtain coefficients of an FIR low-pass filter to meet the specifications

given on the next page using the window method.

Stop band attenuation >60 dbs
Sampling frequency = 12 KHz
Transition width = 0.8 KHz
Passband edge freq = 1.8 KHz

13.3 Practice Question Paper 3

QP # 3.1
(a) Determine and make a labeled sketch of the odd and even components of

signal shown in set. Verify that the addition of the components produces
the original signal. x(n) = {−1, 1,−1, 1

↑
, 1} and y(n) = {1, 2, 3

↑
}

(b) Define the followings:

(i) Linear and nonlinear
(ii) Time invariant and time variant

(iii) Static and dynamic
(iv) casual and noncasual

(c) Determine whether the system y(n) = n x(5n) given is

(i) Linear or nonlinear
(ii) Time invariant or time variant

(iii) Static or dynamic
(iv) Casual or noncasual

QP # 3.2
(a) (i) Write down major advantages and disadvantages of DSP?

(ii) List down the key operations of DSP and discuss briefly any two of
them
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(b) Write note on any two of the following

(i) Audio applications of DSP
(ii) Telecommunication application of DSP

(iii) Biomedical application of DSP

QP # 3.3
(a) What is correlation and list down the types of correlation?
(b) Find cross-correlation rXY by lag 3.

x(n) = {1
↑
, 3, 7,−5,−9,−2, 3, 7}

y(n) = {2
↑
, 5,−1, 3,−4, 0, 5, 6}

(c) Find the cross-correlation coefficient of data given below

x(n) = {3
↑
,−1, 5,−3,−1, 4, 7}

y(n) = {7
↑
, 9, 3,−1, 0, 2, 4}

QP # 3.4
(a) Find DFT of the following signal

x(n) = {3
↑
, 6, 9, 12, 15}

(b) Find FFT of the following signal

x(n) = {2
↑
, 4, 8, 10}

QP # 3.5
(a) Find the z-transform of the following signal

x(n) = {5, 7, 3, 2
↑
, 1, 8, 9, 4}

(b) Find the inverse z-transform of the following transfer function

Y(z) =
−25Z−1

1− 7Z−1 + 12Z−2

(c) Determine the zero input response of system

x(n) = 15y(n− 1) + 37y(n− 2)
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QP # 3.6
(a) Draw a structure by the help of the following transfer function

H(z) =
15 + 19 z−1 + 12 z−2

5 + 17 z−1 + 30 z−2

(i) Direct form I
(ii) Direct form II

(b) Draw a structure by the help of following transfer function

H(z) =
11 + 41 z−1 + 30 z−2

1 + 4 z−1 + 4 z−2

(i) Cascade form
(ii) Parallel form

QP # 3.7
(a) List down the main advantages and disadvantages of digital filters
(b) What are the types of digital filters and list down the difference between

them
(c) Write down the difference equation and filtering operation in block

diagram of the following IIR filters.

H(z) =
0.7 + 0.89 z−1 + 0.579 z−2

1− 0.35 z−1 − 0.89 z−2

QP # 3.8
(a) Obtain the coefficients h(0), h(1), h(2) of an FIR low-pass filter to meet

the specification given below using the window method

Passband edge frequency 4 kHz
Transition width 1 kHz
30 dB < As < 40 dB
Sampling frequency 10 kHz

(b) Satisfy the symmetry conditions of the following FIR digital filters.

h(n) = h(N − n− 1)
where N = 7

13.4 Practice Question Paper 4

QP # 4.1
(a) Given the graphical representation of x(n):
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Represent x(n) as:

(i) Function
(ii) Sequence

(iii) Table
(iv) Show whether the signal is symmetric or asymmetric

(b) Prove thatx(n) = xe (n)+xo(n)wherex(n) = {−1, 2, 1, 4
↑
, 3, −2, 1}.

(c) For the given x(n):

Find:

(i) x(2n)
(ii) x(n2)

(d) What are the main types of signals?

QP # 4.2
(a) Define DSP. Write down the four main areas of its application. Also list

down the key DSP operations.
(b) What are the main advantages of digital signal processing over analog

signal processing.
(c) Check the given signals for any three of these properties and state reasons:

• Static/dynamic
• Time variant/invariant
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• Linear/nonlinear
• Causal/noncausal
• Stable/unstable

(i) y(n) = x(n) + 7x(n− 1) + 2x(n− 2)
(ii) y(n) = nx(n) + x(2n)

QP # 4.3

(a) Convolve x(n) and h(n) using x(n)⊗ h(n) =
n∑

k=0
x(k).h(n− k)

where x(n) =
{

2n + 1 0 ≤ n ≤ 4
0 elsewhere ,

h(n) =
{

n + 2 −1 ≤ n ≤ 1
0 elsewhere ,

(b) Let

x1(n) = {1, 0, 1, 1, 1, 0, 1, 1, 0, 1}
x2(n) = {0, 2, 3, 0, 1, 2, 9, 0.75, 1, 2}

(i) Correlate to find the true value of r12(3).
(ii) Calculate the normalizing factor.

QP # 4.4
(a) Butterfly diagram, calculate FFT of x(n) = {6, 1, 5, 9}
(b) Apply DFT to find X(K) for the sequence in part a where

x(k) =
N−1∑
n=0

x(n)e−jKnΩT and Ω =
2π

NT

(c) What are the advantages of FFT over DFT?

QP # 4.5
(a) Solve the following difference equation given that y(–2) = 0 and y(–1) = 1

y(n− 2)− 3
2
y(n− 1) +

1
2
y(n) = 1 + 3−n

(b) Find Inverse Z Transform of the following:

(i) E(z) =
1

z3 − 1.9z2 + 0.98z − 0.08

(ii) E(z) =
−0.5995z

(z2 + 0.6160)(z − 0.6159)
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QP # 4.6
(a) Draw for the given transfer function:

H(z) =
1 + 1

2z−1

(1− z−1 + 1
4z−2)(1− z−1 + 1

2z−2)

(i) Cascade Realization
(ii) Parallel Realization

(b) Write the transfer function for the following signal flow diagram.

QP # 4.7
(a) A bandpass filter in the IF stage of Nav–Star receiver has the following

characteristics:

Passband 160–240 Hz
Transition width 55 Hz
Passband ripple 0.2 dB
Stop band attenuation 55 dB
Sampling frequency 1.5 KHz

Obtain the ripple parameters for this FIR filter using KAISER window.

(b) Obtain h(0), h(1), and h(2) for an FIR low-pass filter to meet the speci-
fication given below using Hamming window:

Passband edge frequency 1.9 KHz
Transition width 0.8 KHz
Stop band attenuation >50 dB
Sampling frequency 10 KHz
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(c) Using Hamming window, obtain filter coefficients for a filter with the
following specifications:

Passband edge frequency 1.5 KHz
Transition width 0.7 KHz
Stop band attenuation >30 dB
Sampling frequency 6 KHz

13.5 Practice Question Paper 5

QP # 5.1
(a) A discrete time signal x(n) is shown in the figure. Sketch the signals

Express the signal in functional representation.

(i) x(−n + 4).
(ii) First delay x(n) by 4 and then fold.

(iii) Even component of x(n).
(iv) x(n).u(2 − n).

(b) A discrete time signal can be

(i) Static or dynamic.
(ii) Linear or nonlinear.

(iii) Time invariant or time variant.
(iv) Causal or noncausal.
(v) Stable or unstable.

Examine the following system and apply any two properties on the systems
given

i) y(n) = |x(n)|
ii) y(n) = x(2n)
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QP # 5.2
(a) What is DSP? Write down its applications.
(b) Write down any five advantages and disadvantages of DSP.
(c) What are key operations of DSP? Explain any two.
(d) What are the advantages of DSP over analog signal processing?

QP # 5.3
(a) Determine the convolution y(n) of the signals

x(n) =
{

1/2n, 0 ≤ n ≤ 4
0, elsewhere

h(n) =
{

1, −2 ≤ n ≤ 2
0, elsewhere

(b) Discuss briefly auto and cross-correlation. Find cross-correlation rxy( j)
of the following sequence up to 1 lag

x(n) = {2, 1,−1,−2,−3}
y(n) = {−2, 2, 1, 5,−3}

Also find the cross-correlation coefficient rxy(1).

QP # 5.4
(a) A discrete time signal x(n) takes the following value

x(0) = 1, x(1) = 0, x(2) = 1, x(3) = 0

Determine numerically discrete Fourier transform x(k) over 4 points.

(b) Verify part (a) using FFT method.

QP # 5.5
(a) Determine the response y(n), n = 0 of the system described by the second-

order difference equation

y(n)− 3y(n− 1)− 4y(n− 1) = x(n) + 2x(n− 1)

when the input sequence is x(n) = 4nu(n).

(b) Determine the causal signal x(n) if its Z-transform X(z) is given by

X(z) =
z−1

1− 0.5z−1 − 0.25z−2
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QP # 5.6
(a) Determine the difference equation for the following figure.

(b) Given the transfer function

H(z) =
0.5(1 + 0.4z−1)(1− 0.2z−1)

(1 + 0.8z−1)(1− 0.6z−1)

Obtain the following realizations:

(i) Cascade form
(ii) Parallel form.

QP # 5.7
(a) Discuss briefly the advantages and disadvantages of digital filters.
(b) Summarize the key features of FIR and IIR filters.
(c) FIR digital filter has impulse response h(n), defined over the interval;

0 ≤ n ≤ N – 1
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Show that whether N = 9 and h(n) satisfy the symmetry condition
h(n) = h(N − n − 1), the filter has a linear phase characteristic.

QP # 5.8
(a) Obtain the coefficient hd(0), hd(1), and hd(2) of an FIR low-pass filter to

meet the specifications given below using window method:

Passband edge frequency = 1.5 KHz
Transition width = 0.6 KHz
Stop band attenuation >50 db
Sampling Frequency = 11 KH

(b) Using BZT method, design a digital filter to approximate the following
analog transfer function

H(s) =
1

s2 + 4s + 1
Assume cutoff frequency of 160 Hz and sampling frequency of 1.20 kHz.

H(s) =
2.6978

s2 + 6.57s + 2.6978

H(z) =
0.263(1 + 2z−1 + 2z−2)

10.2678(1 + 0.331z−1 − 0.2797z−2)

13.6 Practice Question Paper 6
QP # 6.1
(a) A discrete time signal x(n) is defined as

x(n) =

⎧⎨
⎩

2 + n/6 −4 ≤ n ≥ −1
3n 0 ≤ n ≥ 4
0 elsewhere

Determine its value and sketch the signal x(n).

(b) A discrete time signal x(n) is shown in figure

Sketch (i) x(2n) (ii) even component of x(n) (iii) odd component of x(n)
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QP # 6.2
(a) What are the advantages and disadvantages of DSP, compare with analog

signal processing design.
(b) List down the key operation of DSP.
(c) A discrete time signal can be

(i) Static or dynamic (ii) linear or nonlinear (iii) time invariant or variant
(ii) casual or noncasual (v) stable or unstable.

Examine the following system with respect to the properties above.
(i) y(n) = x(n) u(n)
(ii) y(n) = x(−n + 4)
(iii) y(n) = |x(n)|
(iv) y(n) = sin[x(n)]
(v) y(n) = x(n) + nx(n + 1)

Answer: (c)

(i) static, linear, time invariant, causal, stable.
(ii) static, linear, time invariant, causal, stable.

(iii) dynamic, linear, time invariant, noncausal, unstable.
(iv) static, nonlinear, time invariant, causal, stable.
(v) dynamic, nonlinear, time variant, linear, stable.

QP # 6.3
(a) Determine the convolution y(n) of the signal given below by the matrix

method.

x(n)
{

2n/3 0 ≤ n ≤ 6
0 elsewhere

h(n)
{

3 −2 ≤ n ≤ 2
0 elsewhere

(b) What is correlation and what are its types?
(c) The data values are as follows:

x 0 1 2 3 4 5 6 7 8
x1(n) 0 3 5 6 5 2 0.5 0.25 0
x2(n) 1 0 1 1 1 0 0 0 1
x3(n) 0 9 7 6 5 6 1.5 0.75 0
x4(n) 2 3 2 4 2 3 2 4 2

Determine the following:

(i) r12(1) (ii) r34(3) (iii) ρ12(1) (iv)ρ34(3)
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QP # 6.4
A discrete signal x(n) takes the following values:

x(n)
{

1 + 2n 0 ≤ n ≤ 3
0 elsewhere

(a) Determine numerically the discrete Fourier transform x(k) over 4 points
(N = 4)

(b) Verify part (a) using inverse discrete Fourier transform method.
(c) Verify part (a) using fast Fourier transform method.

QP # 6.5
(a) Determine the total solution y(n) to the difference equation.

y(n)− 3y(n− 1) + 2y(n− 2) = 6n with initial condition

y(−2) = 5 and y(−1) = 6

(b) Solve the difference equation using Z-transform approach.

f(n) + b2f(n− 2) = 0

where |b| < 1 and initial condition f (−1) = 0 and f (−2) = −1, show that
f(n) = bn+2 cos(nπ/2)

QP # 6.6
(a) What are the advantages and disadvantages of digital filters, as compared

with analog filters.
(b) The following transfer function represents two different filters:

(i) H(z) =
0.8(z2 − 0.28)

z2 + 0.7 z − 0.91
(ii) H(z) =

4∑
k=0

h(k)z−k

(i) State whether it is a FIR or IIR filter.
(ii) Represent the filtering operation in a block diagram form and write

down the difference equation.

QP # 6.7
(a) What is the difference between phase delay and group delay and what are

the conditions for an FIR filter to have linear phase response?
(b) Obtain h(6), h(7), h(8), h(9), and h(10). Coefficients of an FIR filter using

Hamming window method. The specifications are as follows:
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Pass edge frequency 2.5 KHz
Transition width 0.5 KHz
Stop band attenuation >50 dB
Sampling frequency 50 KHz

And also hD(n) for low-pass filter is given by

hD(n) =
2fc sin(nωc)

nωc
n �= 0

And window function, ω(n), |n| ≤ (N − 1)/2 = 0.5 + 0.5 cos(2πn/N)
Hamming window information:

Transition width (Hz) normalized = 3.1/N,
Stop band attenuation (db) = 44 dbmax
Passband ripple (db) = 0.0546
Main lobe relative to side lobe (db) = 31

QP # 6.8
(a) What are the methods used for the calculation of IIR filters coefficient?
(b) What are the design stages for digital IIR filters?
(c) The normalized transfer function for an IIR filter is H(s) = 1/(s + 1).

Using bilinear Z-transform method, determine the transfer function and
difference equation. Assume a sampling frequency of 250 Hz and cutoff
frequency 50 Hz.

Ans : (c) Ωp = tan
(

100π

250× 2

)
= tan

(π

5

)
= 0.726542

H ′(s) =
0.726542

s + 0.726542

H(z) =
0.42082(1 + z−1)
1− 0.15841z−1

y(n) = 0.15841 y(n − 1) + 0.42082 [x(n) + x(n − 1)]

13.7 Practice Question Paper 7

QP # 7.1
(a) Describe key operations of DSP and explain one of them.
(b) Write down the advantages and disadvantages of DSP.
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(c) Make labeled sketches of signals x(n) and y(n)(3 + 3 + 2 + 2)

(i) 0.5x(2n)− y(n)
(ii) x(n− 2) + y(n− 4)

(iii) Illustrate the following signals with labeled sketches:

x(n) = u(n)− u(n− 1)− 2u(n− 2)
y(n) = u(n)− 3u(n− 2) + 2u(n− 3)

QP # 7.2
(a) Define the following with example:

(i) Static and dynamic system
(ii) Linear versus nonlinear system

(iii) Time invariant versus time variant system.
(iv) Stable and unstable system.

(b) A system is given as

y(n) = x(n)− bx(n− 1)

Show that the system is

(i) Time invariant or not
(ii) Linear or nonlinear.

(iii) If y(n) = x(n) + 3x(n + 4), then this system is causal or not?

QP # 7.3
(a) Find cross-correlation of two sequences andx1(n) and x2(n) at lag j(2)

that is r12(2)

Also find ρ12(2) when sequences are

n 1 2 3 4 5 6
x1 4 −1 2 3 −2 4
x2 4 2 3 −5 1 1
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(b) (i) If two signals are

x(n) = {3, 1, 2}
h(n) = {1, 2, 3, 2}

What will be the result of convolution using matrix method?

(ii) If two signals are

x(n) = {1, 1, 1}
h(n) = {2, 1, 6}

What will be the result of convolution using analytical formula method?

QP # 7.4
(a) Find discrete Fourier transform of the sequence:

x(n) = cos
(

n2π

N

)

(b) Find fast Fourier transform of the sequence using radix four:

x(n) = {1, 0, 2, 1}
(c) Find inverse Fourier transform of the following sequence

X(k) = {2, 1 + j, 0, 1− j}

QP # 7.5
(a) Find z-transform of the sequence:

(i) x(n) = anun
(ii) x(n) = sin(nωt)

(b) Find inverse Z-transform.

H(z) =
z2

(z − 0.5− j0.5) (z − 0.5 + j0.5)

(c) Find total solution of the given homogenous equation:

y(n) − 0.5y(n− 1) = 0
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QP # 7.6
(a) Calculate h(0), h(1), and h(2) for FIR low-pass filter to meet the

specifications given below using the window method.

Passband edge frequency 2 kHz
Transition width 0.7 kHz
Stop band attenuation >45 db
Sampling frequency 11 kHz

(b) Determine the difference equation for the IIR filter using BZT (bilinear
z-transform) method while

Sampling frequency 300 Hz
Cutoff frequency 45 Hz
Normalized transfer function = 2/(s + 3)

(c) What is the advantage of Kaiser Window over Blackman Window?

13.8 Practice Question Paper 8

QP # 8.1
The signals in figure a, are zero except as shown.

(a) For the signal xa(n) of figure a, plot the following:

(i) xa(n) δ(n− 1) (ii) xa(n) + u(2− n)
(iii) −4xa(n− 3) (iv) 2 + 2xa(n− 3)
(v) 4xa(−n)− 2

(b) Find the even and odd parts of Xb(n) in figure b.
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(c) Give proofs of the following statements.

(i) The sum of two even functions is even.
(ii) The sum of two odd functions is odd.

(iii) The product of two odd functions is odd.
(iv) The product of two even functions is even.
(v) The product of an even and odd function is odd.

QP # 8.2
(a) Give the advantages of digital signal processing over analog signal

processing.
(b) Classify the following signals according to whether they are

• one or multidimensional.
• single or Multichannel.
• continuous time or discrete time.
• analog or digital (in amplitude).

1. Closing prices of utility stocks on the New York Stock Exchange.
2. A color movie.
3. Position of the steering wheel of a car in motion relative to car’s

reference frame.
4. Position of the steering wheel of a car in motion relative to ground

reference frame.
5. Weight and height measurements of a child taken every month.

(c) A discrete time system can be

• static or dynamic
• linear or nonlinear.
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• time invariant or time variant.
• casual or noncasual.
• stable or unstable

Examine the following system with respect to the properties above.

(i) y(n) = sin(x[n− 1])
(ii) y(n) = ln x(n)

QP # 8.3
(a) Compute the convolution y(n) of the signals analytically.

x(n) =
{

αn, −3 ≤ n ≤ 5
0, elsewhere

h(n) =
{

1, −2 ≤ n ≤ 2
0, elsewhere where, α =

1
3

(b) Determine the cross-correlation of the sequence rxy(l) of the sequences

x(n) = {. . ., 0, 0, 2, 3, 1, 5
↑
, 2,−1, 0, 0, . . .}

y(n) = {. . ., 0, 0, 1,−1, 2,−2, 4
↑
, 1,−2, 5, 0, 0, . . .}

Also find the value of rxy(−3) and ρxy(−3)

QP # 8.4
(a) Determine the DFT and IDFT of the following sample sequences:

x(n) = {1, 1
↑
, 1, 1}

y(n) = { 0
↑
, 1, 1, 0}

Also draw the corresponding amplitude and phase spectra.
(b) Verify the DFT calculated in part a using fast Fourier method.

QP # 8.5
(a) Determine the inverse Z-transform of the following transfer function

H(z) =
0.178 z3 + 0.342 z2

z3 − 1.702 z2 + 0.837 z − 0.135

h(k) = ? For –2≤ k ≤ 2
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(b) Using residue theorem, determine f (n) for the following:

F (z) =
z2 + 4z

(z − 0.735)3

(c) Solve the following difference equation:
y(n)− 3y(n− 1)− 4y(n− 2) = x(n) + 2x(n− 1) where x(n) = 4nu(n)

QP # 8.6
(a) Consider an FIR filter with system function

H(z) = 1 + 2.88z−1 + 3.40z−2

Sketch the direct form and lattice realization of the filter and determine in
detail the corresponding input–output equations.

(b) Obtain the direct form I, direct form II, and cascade and parallel structures
for the system given below.

y(n) = 0.1y(n− 1) + 0.2y(n− 2) + x(n) +
3
4
x(n− 1)

QP # 8.7
(a) Briefly describe the advantages of FIR filters over IIR filters.
(b) List down the various steps involved in designing a digital filter.
(c) An FIR digital filter has an impulse response, h(n), defined over the

interval

0 ≤ n ≤ N − 1.

Show that whether N = 6 and h(n)satisfy the symmetry condition h(n) =
h(N − n− 1)

The filter has linear phase characteristic.

QP # 8.8
(a) Using the pole–zero replacement method, calculate the coefficient of a

bandpass filter having the following specifications:

• Complete signal rejection at dc and 500 Hz.
• A narrow passband filter centered at 250 Hz.
• A 3 dB bandwidth of 10 Hz.
• Sampling frequency of 750 Hz.

Obtain transfer function and hence the difference equation.
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(b) Convert the analog filter with system function into a digital IIR filter
assuming a 3 dB cutoff frequency of 250 Hz and sampling frequency of
2.28 kHz. Also obtain a suitable realization.

H(s) =
1

s2 + 4s + 4

13.9 Practice Question Paper 9

QP # 9.1
(a) Define the following

(i) DSP
(ii) Signal

(iii) System
(iv) List the key operations of DSP

(b) Examine the following system with the given properties.
y(n) = x(n + 2)

(i) Static or dynamic
(ii) Linear or nonlinear

(iii) Casual or noncausal
(iv) Stable or unstable
(v) Time invariant or time variant

QP # 9.2
(a) (i) Represent the following signal in

x(n) =

⎧⎨
⎩

n + 1 −2 ≤ n ≤ 0
1 1 ≤ n ≤ 4
0 elsewhere

i. Graphical
ii. Sequential

iii. Tabular

(ii)

i. xe(n) = ?
ii. xo(n) = ?

iii. x(2n) = ?
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(b) Mathematically brief about the following:

(i) Unit impulse
(ii) Unit step

(iii) Unit ramp
(iv) Exponential

QP # 9.3
(a) (i) Write main difference between convolution and correlation.

(ii) List the four processes of convolution.
(iii) Find the ρ12(1) of the given data.

N 1 2 3 4 5 6 7 8 9
x1(n) 0 3 5 5 5 2 0.5 0.25 0
x2(n) 1 1 1 1 1 0 0 0 1

(b) Determine analytically the convolution of the signal and prove it by matrix
method.

x(n) = {1
↑
, 2, 4}

h(n) = {1
↑
, 1, 1, 1, 1}

QP # 9.4
(a) Draw and label the butterfly diagram of 4-point FFT (decimation in time).
(b) Find the DFT of the signal x(n) and sketch the phasor plot and the

magnitude plot, if the signal is sampled at 10 kHz.

QP # 9.5
(a) Solve the following difference equation using ZT approach

2f(n− 2)− 3f(n− 1) + f(n = 3n−2, where,
f(−2) = −4/9, f(−1) = −1/3
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(i) E(z) =
1

z(z − 1)(z − 0.8)

(ii) Y(z) =
−3.894z

z2 + 0.6065

QP # 9.6
(a) List the methods of finding FIR filter coefficients and describe the

advantages and disadvantages of window method.

(b) Cutoff frequency 3 kHz
Transmission width 1 kHz
Stop band attenuation >45 db
Sampling frequency 10 kHZ

Obtain the coefficients of FIR filter h(0), h(1), and h(2).

QP # 9.7
(a) Briefly explain the design stages of digital IIR filters
(b) Using BZT method, determine the difference equation and draw the block

diagram of RC filter whose transfer function is

H(s) =
8

2s + 1
Assume

sampling frequency = 300 HZ
cutoff frequency = 60 HZ

13.10 Practice Question Paper 10

QP # 10.1
(a) Determine h(n) the inverse Z-transform of the signal

H(z) =
1 + 1/2 z−1

1 + 2z−1 + z−2

(b) Determine the casual signal X(z) if x(n) is given by

x(n) = 5.25 u(n) + 3.5 n(1)n−1 + 0.75 (−1)n



13.10 Practice Question Paper 10 641

QP # 10.2
The difference equation of the second-order system is given by

y(n) + 0.2 y(n− 1)− 0.48 y(n− 2) = x(n)

Use one–sided Z-transform to find its impulse response when
(i) the initial conditions are zero

y(n) = 0.571 (− 0.8)n u(n) + 0.429 (0.6)n u(n)
(ii) the initial conditions are as follows:

y(−1) = −1.25
y(−2) = −0.52

y(n) = (−0.8)n u(n)

QP # 10.3
Determine the impulse response and the step response of the causal system
given as follows:

y(n) =
1
2

[x(n) + x(n− 1)] + y(n− 1) n ≥ 0

h(0) = 0.5 h(n) = 1 n ≥ 1 y(n) = (2n + 1), n ≥ 0 (n + 0.5) u(n)

QP # 10.4
(a) Determine the Fourier transform of the signal by evaluating its Z-

transform on the unit circle

x(n) = (cos ω0 n) u(n)

X(ω) =
1− e−jω cos ω0

1− 2 e−jω cos ω0 + e−2jω

(b) A linear time invariant system is described by the difference equation.

y(n) = a y(n− 1) + b x(n) 0 < a < 1

Determine (i) H (w) of the system b
1−ae−jw

The output of the system to the input signal

x(n) = 5 + 12 sin
π

2
n
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QP # 10.5
(a) For the general linear time invariant recursive system described by the

difference equation

y(n) = −
N∑

K =1

ak y(n− k) +
N∑

K =0

bk y(n− k)

Illustrate how you will obtain direct form II structure for.

(b) Find the direct form I and direct form II structure of the discrete time
system

H(z) =
8z3 − 4z2 + 11z + 2

(z − 1/4) (z2 − z + 1/2)

QP # 10.6
The transfer function of an analog, third-order, Butter worth low-pass filter
with a cutoff frequency of 1 rad/sec is

H(s) =
1

(s + 1) (s + 0.5 + j0.866) ( s + 0.5 − j0.866)

Design an impulse invariant digital equivalent based on a sampling interval
of 0.5 sec.

H(z) =
z

z − 0.65
+

z (0.8956− z)
z2 + 1.4142 + 6065

QP # 10.7
Determine the convolution of the following pairs of signals by means of the
Z-transform

x1(n) = (1/2)n u(n); x2(n) = cos πn u(n)
y(n) = [2/3 cos π/n + 1/3 (1/2)n] u(n)

Write a short note on biomedical signals and their analysis using digital signal
processing.

13.11 Practice Question Paper 11

QP # 11.1
(a) Determine the Z-transform of the signals.

(i) x(n) =
1
2
(
n2 + n

)(1
3

)n−1

u(n− 1)
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(ii) x(n) =
(

1
3

)n

u(n) −
(

1
2

)n

u(−n− 1)

(b) Determine the causal signal x(n) if its Z-transform X(z) is given by

x(z) =
1

(1− 2z−1) (1− z−1)2

X(z) =
A

1− 2z−1 +
B

1− z−1 +
C z−1

(1− z−1)2

A = 4 ;B = −3 ; C = −1

x(n) = [4(2n)− 3 − n] u(n)

QP # 11.2
(a) Determine the convolution of the following pair of signal by means of

Z-transform

x1(n) = n u(n), x2(n) = cos πn u(n)

(b) Determine the impulse response of the following causal system.

y(n) =
1
6

y(n− 1) − 1
6

y(n− 2) = x(n)

QP # 11.3
Use one-sided Z-transform to determine y(n), n > 0 with the case as indicated

1√
5

(
1
2

)n+1 [(
1 +
√

5
)n+1 −

(
1−
√

5
)n+1

]
u(n)

y(n) = y(n− 1) + y(n− 2) initial conditions are y(−2) = 0 y(−2) = 1

x(n)
1√
5

(
1
2

)n+1 [(
1 +
√

5
)n+1 −

(
1−
√

5
)n+1

]
u(n)

QP # 11.4
Consider the system described by the difference equation
Determine

(i) its frequency response
(ii) its response to the input

x(n) = 5 + 6 cos
(π

2
n +

π

4

)
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QP # 11.5
Obtain the direct form I and direct form II for the following systems.

y(n) = −0.1 y(n− 1) + 0.72 y(n− 2) + 0.7 x(n) − 0.25 x(n− 2)

QP # 11.6
The transfer function of an analog third-order Butter worth loss-pass filter is
given by

H(s) =
1

(s + 1) (s2 + s + 1)

Design impulse invariant digital filters based on a sampling interval of
(i) 50 m sec. (ii) 0.5 sec.

QP # 11.7
Design a low-pass filter using bilinear transformation with the following
specification:

α max = 2 dB
α min = 14 dB

ωp = 0.65 kHz
ωs = 2.75 kHz

Assume any necessary data if required.

13.12 Practice Question Paper 12

QP # 12.1
(a) Determine the causal signal x(n) if its z-transform X(z) is given by

X(z) =
6z3 + 2z2 − z

z3 − z2 − z + 1

x(n) = 5.25 u(n) + 3.5 n (1)n−1 + 0.75 (−1)n

(b) Determine the convolution of the signals by means of the Z-transform

x1(n) = n u(n), x2(n) = 2n u(n − 1)

y(n) = x1(n ) + x2(n) =
[−2 (n + 1) + 2n+1]u(n)



13.12 Practice Question Paper 12 645

QP # 12.2
Consider the causal system

y(n) = 0.48 y(n− 2) − 0.2 y(n− 1) + x(n)

Determine

(a) its impulse response when initial conditions are zero
(b) its impulse response when initial conditions are as follows

y(−1) = −1.25, y(−2) = −0.52

(c) The zero-state step response

Answer:

(a) y(n) = 0.571 (−0.8)n u(n) + 0.429 (06)n u(n)
(b) y(n) = (−0.8)n u(n)
(c) y(n) = −0.64(0.6)n u(n) + 0.25 (−0.8)n u(n) + 1.39 u(n)

QP # 12.3
(a) State with justification two major advantages and disadvantages of DSP

compared with analog signal processing design.
(b) What are the key operations of DSP? List them and discuss in brief any

one of them.

QP # 12.4
(a) A discrete time signal x(n) is defined as

x(n) =

⎧⎨
⎩

1 + n
3 −3 ≤ n ≤ −1

1, 0 ≤ n ≤ 3
0, elsewhere

Determine its values and sketch the signal x(n).
(b) A discrete time signal x(n) is shown in the figure.

Sketch (i) x(n2) (ii) even part of x(n)
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QP # 12.5
A discrete time system can be
(a) static or dynamic (b) linear or nonlinear (c) time invariant or time variant
(d) causal or noncausal (e) stable or unstable

Examine the following systems with respect to the properties above.
(a) (n) = |x(n)|
(b) y(n) y(n) = cos[x(n)]
(c) y(n) = x(−n + 2)
(d) y = x(2n)

QP # 12.6
Determine analytically the convolution y(n) of the signals

x(n) =
{ 1

3n, 0 ≤ n ≤ 6
0, elsewhere

h(n) =
{

1, −2 ≤ n ≤ 2
0, elsewhere

13.13 Practice Question Paper 13

QP # 13.1
(a) Using direct z-transform, determine the z-transform of the signal x(n)

= e−an and hence for the signal x(n) = e−an sin bn.

X(z) =
e−anz sin bn

z2 − 2e−anz cos bn + e−2an
; |z| > 1

Using z-transform properties.
(b) Determine the casual signal x(n) if its Z-transform X (z) is given by

X(z) = (z2 − 5)
(z − 1) (z− 2)2

x(n) = 5
4 δ(n) − [4 − 1

2 n (2)n−1 + 11
4 2n

]
u(n)

QP # 13.2
A causal LTI system has impulse response h|n|, for which the z-transform is

H(z) =
1 + z−1

(
1− 1

2z−1
) (

1 + 1
4z−1

)

(a) What is the region of convergence of H (z)? |z| > 1
2
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(c) Find the impulse response x(n) of the system

x(n) = 2
(

1
2

)n

u(n) −
(
−1

4

)n

u(n)

QP # 13.3
(a) Compute the zero-state response for the system and the input signal given

below.

y(z) =
10

1 + z−2 x(z)

y(n) = −y(n − 2) + 10 x(n)

y(z)
100

(1 + z−2)2

x(z) =
10

1 + z−2 x(n) = 10 (cos n π/2 ) u(n)

y(z)
50

1 + j z−1 +
50

1 − j z−1 +
−25 jz−1

(1 − j z−1)2
+

25 jz−1

(1 − j z−1)2

(b) A linear time invariant system is described by the following difference
equation.

y(n) = 0.9 y(n− 1) + x(n)
Determine the output of the system to the input signal cos πn

2 u(n)

x(n) = 5 + 12 sin n π/2 − 20 cos (πn + π/4)

QP # 13.4
(a) Find out the direct realizations (form I and form II) of the discrete time

system using summers, multipliers, and delay elements. Compare the
delay elements of both the realizations.

y(n) = − 0.1 y(n−1) + 0.2 y(n− 2) + 3x(n) + 3.6 x(n−1) + 0.6 x(n−2)

Y(z) =
3 + 3.6z−1 + 0.6z−2

1 + 0.1z−1 − 0.2z−2

(b) Compute the convolution y(n) ⊗ h(n) of the following signals

x(n) = (1/3) n 0 ≤ n ≤ 4
h(n) = (1, −2, −3, 4)

y(n) =
[
0,

1
3
, 0, −4

3
, −4

3
, −3, 0,

16
3

]
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QP # 13.5
Determine the sequence x3(n) corresponding to the circular convolution of
sequences

x3(n) =
{

1
↑
, 2, 2, 1

}

x2(n) =
{

2
↑
, 1, 1, 2

}
y(n) =

{
9
↑
, 10, 9, 8

}

QP # 13.6
Design using bilinear transformation a second-order low-pass digital Butter
worth filter without off frequency 1 kHz at a sampling rate of 104 sample per
seconds.
The analog low-pass filter specifications are

Passband cutoff = 4.828 rads/sec
Stop band cutoff = 2 rads/sec
Passband ripple = 3 dB
Stop band ripple = 15 dB

H(z) =
0.068

[
1 + 2z−1 + z−2

]
1 − 1.142−1 + 0.412z−2

Ωc = 0.65 × 104

13.14 Practice Question Paper 14

QP # 14.1
(a) Determine the z-transform of the signal

x(n) = (cos ω0 n) u(n)

[Hint] an (cos ω0 n) u(n) ↔ 1−a z−1 cos ω0
1−a z−1 cos ω0 + a2 z−2

(b) Determine the z-transform of the signal

x(n) = n2u(n)

QP # 14.2
(a) Determine the casual signal x(n), if its z-transform x(z) is given by
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X(z) = 1− 2 − 1.5 z−1

1.5 z−1 + 0.5 z−2

x(n) =
(

1
2

)n

u(n) + u(n)

x(n) = [2, 1.5, 1.25, 1.1 . . . .]

QP # 14.3
The difference equation of the second-order system is given by

y(n) = 1
4 y(n − 2) + x(n) y(−1 ) = 0

y(−2 ) = 1

Use one-sided Z-transform to find its

(i) impulse response

y(n) =
5
8

[(
1
2

)n

+
(
−1

2

)n]
u(n)

(ii) step response

y(n) =
[
4
3

(
1
2

)n

+
(
−1

2

)n]
u(n)

y(−1) = 1;

y(−2) = 0

H(z) =
2.48

1− 0.64z−1 +
1.51

1 + 0.39z−1

h(n) = 2.48 (0.64)n u(n) + 1.51 (− 0.39)n u(n)

y(n) =
[
4
3
− 3

8

(
1
2

)n

+
7
24

(
− 1

2

)n]
u(n)

QP # 14.4
(a) Compute the convolution y(n) = x(n) * h(n) of the following signals

x(n) = (1, 1, 0, 1, 1)
h(n) = (1,−2

↑
,−3, 4)

(b) Compute the convolution of the pair of signals using Z-transform.

x1(n) = u(n); x2(n) = δ(n) +
(

1
2

)n

u(n)
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QP # 14.5
A linear time invariant system is described by the difference equation

y(n) +
1
2

y(n − 1) + x(n) +
1
2

x(n− 1)

Determine
(i) magnitude H(ω) of the system
(ii) the output of the system to the input signal

QP # 14.6
(a) Examine the system shown below with respect to its linearity, time variant,

and causality.

y(n) = x(n) + n x(n + 1) linear, time variant, and noncausal.

(b) Find out the direct realizations (form I and form II) of the discrete time
system using summers, multipliers, and delay elements. Compare the
delay elements of both the realizations.

H(z) =
8z3 − 4z2 + 11z − 2(
z − 1

4

)(
z2 − z + 1

2

)

QP # 14.7
Find the transfer function of an analog low-pass filter given

H(s) =
s + 0.1

(s − 0.1)2 + 9

13.15 Practice Question Paper 15

QP # 15.1
(a) Determine the z-transform of the signal

x(n) = (−1)n(cos π/3 n)u(n)

(b) Determine the casual signal x(n) if its Z-transform X(z)is given by

X(z) =
6z3 + 2z2 − z

z3 − z2 − z + 1

QP # 15.2
The difference equation of the second-order system is given by
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y(n) + 0.2 y(n− 1) − 0.48 y(n− 2) = x(n)

and use one-sided Z-transform to find its impulse response when

QP # 15.3
Determine the impulse response and the step response of the causal system
given below:

y(n) =
1
2

[x(n) + x(n− 1)] + y(n− 1) n ≥ 0

QP # 15.4
(a) Determine the Fourier transform of the signal

x(n) = (cos ω0 n) u(n)

by evaluating its Z-transform on the unit circle
(b) A linear time invariant system is described by the difference equation.

y(n) = a y(n− 1) + b x(n), 0 < a < 1

Determine the output y(n) of the system to the input signal
x(n) = 5 + 12 sin π

2 n

QP # 15.5
(a) For the general linear time invariant recursive system described by the

difference equation

y(n) = −
N∑

K=1

ak y(n− k) +
N∑

K=0

bk y(n− k)

illustrate how you will obtain direct form II structure.

(b) Find the direct form I and direct form II structure of the discrete time
system

H(z) =
8z3 − 4z2 + 11z + 2

(z − 1/4) (z2 − z + 1/2)

QP # 15.6
The transfer function of an analog, third-order, Butter worth low-pass filter
with a cutoff frequency of 1 rads/sec is

H(s) =
1

(s + 1) (s + 0.5 + j0.866) ( s + 0.5 − j0.866)
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(a) Design an impulse invariant digital equivalent based on a sampling
interval of 0.5 sec.

H(z) =
z

z − 0.65
+

z (0.8956− z)
z2 + 1.414z + 6065

(b) Determine the poles and zeros of the filter function obtained in part (a)
Note: work the question for three decimal places only

QP # 15.7
(a) Determine the convolution of the following pairs of signals by means of

the z-transform

x1(n) = (1/2)n u(n) x2(n) = cos πn u(n)

(b) Write a short note on biomedical signals and their analysis using digital
signal processing.

13.16 Practice Question Paper 16

QP # 16.1
(a) Determine the inverse z-transform by partial fraction expansion method

X(z) =
1 − 1/2 z−1

1 + 3/4 z−1 + 1/8 z−2

(b) By long division method, find h(n).

H(z) =
z

3 z2 − 4z + 1

QP # 16.2
A causal LTI system has impulse response h(n), for which the z-transform is

H(z) =
1 + z−1

(1− 1/2 z−1) (1 + 1/4z−1)

(a) What is the region of convergence of H (z)?
(b) Find the z-transform Y (z) of the input y(n) shown below

y(n) = −1/3 (1/4)nu(n) − 4/3 (2)n u(n− 1)

(c) Find the impulse response H (z) of the system

2 (1/2)n u(n) − (−1/4)n u(n)
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QP # 16.3
The difference equation satisfied by the input and output of a system is

y(n) = a y(n− 1) + x(n)

Consider the input x(n) = k δ(n)
where k is an arbitrary number and the auxiliary condition y(–1) = c.

(a) Determine recursively
(i) the output for n ≥ 0
(ii) the output for n ≤ −1
(iii) the output for all n

(b) If it is known that a linear system requires that output be zero for all
time where the input is zero for all time, discuss about the linearity of the
system.

(c) State whether the system is time variant or time invariant and causal or
noncausal.

QP # 16.4
Find the step response y(n), using one-sided z-transform for the system where
x(n) is given below

y(n) = −y(n− 2) + 10 x(n)
x(n) = 10(cos n π/2) u(n)

QP # 16.5
(a) A linear time invariant system is described by the following difference

equation.

y(n) = 0.9 y(n− 1) + x(n)
Determine the following:

(i) The magnitude and phase of the frequency response H (ω) of the
system. Plot the responses.

(ii) The output of the system to the input signal

x(n) = 5 + 12 sin
(nπ

2

)
− 20 cos (πn + π/4)

(iii) The output of the system to the input signal

x(n) = 50 + 8.916 sin
(nπ

2
− 42o

)
− 10.7 cos (n π + π/4)

(b) Realize using direct form I and direct form II for the system

y(n) = −0.1y(n− 1) + 0.2 y(n− 2) + 3.6x(n− 1) + 0.6x(n− 2)
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The subject of Digital Signal Processing (DSP) is enormously complex, involving 

many concepts, probabilities, and signal processing that are woven together in an 

intricate manner. To cope with this scope and complexity, many DSP texts are often 

organized around the “numerical examples” of a communication system. With 

such organization, readers can see through the complexity of DSP, they learn about 

the distinct concepts and protocols in one part of the communication system while 

seeing the big picture of how all parts fit together. From a pedagogical perspective, 

our personal experience has been that such approach indeed works well.

Based on the authors’ extensive experience in teaching and research, Digital 

Signal Processing: a breadth-first approach is written with the reader in mind. 

The book is intended for a course on digital signal processing, for seniors and 

undergraduate students. The subject has high popularity in the field of electrical 

and computer engineering, and the authors consider all the needs and tools used 

in analysis and design of discrete time systems for signal processing.

Key features of the book include:

•	 The extensive use of MATLAB based examples to illustrate how to solve 

signal processing problems. The textbook includes a wealth of problems, 

with solutions

•	 Worked-out examples have been included to explain new and difficult 

concepts, which help to expose the reader to real-life signal processing 

problems

•	 The inclusion of FIR and IIR filter design further enrich the contents
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