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Preface

In classical Newtonian mechanics, equations and formulas never change form.
However, the same thing cannot be said about the equations and formulas of elec-
tromagnetic theory, which often change form when converted from one system of
units to another. For this reason electromagnetic textbooks are almost always writ-
ten using a single system of units, and the technical professionals who read them
end up being comfortable in only that system. When they encounter a new and
important formula in unfamiliar units later on, they must either use a conversion
table to change the formula to their preferred system of units or try to become
familiar with the formula’s units. Although conversion tables usually give the cor-
rect answer, they turn their users into computers who must push around numbers
and variables without any true understanding of what is being done. It is probably
unwise to rely blindly on conversion tables if one must be absolutely sure the trans-
formed formula is correct. That leaves the second option: becoming familiar with
the formula’s units. The drawback here is that even if a textbook can be found that
uses the formula’s units, it has been written to teach the basic principles of electro-
magnetism rather than what the technical professional is looking for, i.e., a detailed
explanation of how to convert equations from one system of units to another. This
book provides exactly that, while at the same time assuming a good—but not nec-
essarily advanced—understanding of electricity and magnetism.

There are five widely recognized systems of electromagnetic units; four are
connected to the centimeter-gram-second (cgs) system of mechanical units and
one is connected to the meter-kilogram-second (mks) system of mechanical units.
The four connected to the cgs mechanical units are the cgs Gaussian system, the
Heaviside-Lorentz system, the cgs electrostatic system, and the cgs electromag-
netic system. The system connected to the mks mechanical units is the Système
International or rationalized mks system. The units of the Système International
or rationalized mks system are often called SI units. The cgs electrostatic and cgs
electromagnetic systems of units were developed first. These are the units in which
Maxwell’s equations—the foundation of classical electromagnetic theory—were
first proposed during the middle of the nineteenth century. The Heaviside-Lorentz
and cgs Gaussian systems were introduced at the end of the nineteenth century,
followed almost immediately at the beginning of the twentieth century by the ra-
tionalized mks system (SI units). The rationalized mks system is the most popular
electromagnetic system in use today; almost all introductory textbooks use SI units
to explain the principles of electricity and magnetism. This book explains all five
systems in depth, along with two systems of mostly historical interest; the nine-
teenth century system of “practical” units and the unrationalized mks system.

vii



viii PREFACE

One chronic problem found in many articles and books about systems of units
is that the customary language of physics and engineering can permit ambiguity
while sounding exact. Suppose, for example, we say

“The electric-current unit in the cgs electrostatic system is the statamp and the
electric-current unit in the cgs electromagnetic system is the abamp, with

1 abamp = c · statamp

where c is the speed of light in cgs units.”

This seems clear enough, but notice that c = 2.99792 · 1010cm/sec in cgs units.
In the above equation, should we take “c” to be “2.99792 · 1010” or “2.99792 ×
1010cm/sec?” A naive student might assume c was the pure number 2.99792 ·1010

because obviously all electric current is the same sort of thing and must have the
same type of unit; but later on, possibly in another book, that same student might
discover the cgs electrostatic unit of current is gm1/2 · cm3/2 · sec−2 and the cgs
electromagnetic unit of current is gm1/2 · cm1/2 · sec−1. At this point confusion
sets in, because this is not compatible with the equation 1 abamp = c · statamp, no
matter how it is interpreted.

To avoid this sort of ambiguity, we introduce here the idea of U and N operators,
with a U operator returning just the units associated with a physical quantity and
an N operator returning just the pure number, or numeric component, associated
with a physical quantity. In the cgs system, for example, we have

N
cgs

(c) = 2.99792 · 1010

and

U
cgs

(c) = cm/sec.

Authors who put the equation 1 abamp = c · statamp in their books and articles are
using it to say that N

cgs
(c) is the conversion factor between the numeric component

of the current I in cgs electrostatic units, N
esu

(I ), and the numeric component of the

current I in cgs electromagnetic units, N
emu

(I ).

N
esu

(I ) = N
cgs

(c) · N
emu

(I ).

The U operator can be used to emphasize that the unit of current in the electrostatic
system is not the same as the unit of current in the electromagnetic system.

gm1/2 · cm3/2

sec2
= U

esu
(I ) �= U

emu
(I ) = gm1/2 · cm1/2

sec
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The U and N operators make it easy to be precise about the mathematical relation-
ships between different systems of units.

The abbreviations of the SI units are, unfortunately, another possible source of
confusion when separating equations into numeric components and units. For ex-
ample, the standard abbreviation for the SI unit of charge, the coulomb, is C. The
capacitance of a circuit element is also traditionally represented as C, and we have
already seen that c is used to represent the speed of light. If all three quantities—
the coulomb, the speed of light, and the capacitance—have to be included in the
same equation, there will be problems. To avoid this source of confusion, we have
lengthened the standard abbreviations for the electromagnetic units, representing
coulomb by coul, ampere by amp, and so on. This makes the notation less con-
fusing, but the reader should note that the abbreviations used here, although easily
understandable, are not the official, internationally approved symbols for the SI
units. These international symbols are, in any case, of fairly recent vintage and can
be found in virtually all modern textbooks on electromagnetic theory.

One final point worth mentioning is how we treat rationalization of electro-
magnetic equations. During the middle of the twentieth century it became clear
that there were two different schools of thought concerning the rationalization of
electromagnetic equations: one that it was a rescaling of the electromagnetic units,
and the other that it was a rescaling of the electromagnetic quantities themselves.
Both views can be used to deduce the same systems of electromagnetic equations,
and both views allow engineers and scientists to transform electromagnetic mea-
surements from one system to another correctly. In the end, neither side convinced
the other of the correctness of its views and the controversy faded away. For the
purposes of this book, we take the position that rationalization is a rescaling of
electromagnetic physical quantities rather than a change of units, not only because
it is then easier to describe the units of the rationalized and unrationalized elec-
tromagnetic systems but also because it makes the transformation of equations to
and from rationalized electromagnetic systems a straightforward process. The op-
posite position, that rationalization just involves rescaled units, is not necessarily
incorrect—that is, after all, how the idea of rationalization was first proposed in the
nineteenth century—but it can easily become confusing in a book of this sort.



 



CHAPTER 1

OUTLINE OF NON-ELECTROMAGNETIC SYSTEMS
OF UNITS

The units describing the kinematics and dynamics of mechanical objects are
straightforward to learn and use. Different units of length are always the same
kind of unit, differing only in size; different energy units are always the same kind
of unit, differing only in how much energy is specified; and so on. One happy con-
sequence of this pattern is that all the equations of classical Newtonian physics
have the same form no matter what system of units is being used. Indeed, it seems
intuitively absurd that any other pattern could exist, that two different units for the
same physical quantity could be different in kind as well as size. Nevertheless,
an idea can be intuitively absurd without being mathematically absurd, and there
are times when it is not clear what kind of unit best describes a well-understood
physical quantity. This book will show that the equations and formulas of clas-
sical electromagnetic theory routinely change form when expressed in different
units exactly because the physical intuition of scientists has been different, leading
them to create units that are different in kind as well as size to measure the same
electromagnetic quantities.

The idea of many different “kinds” of units for the same physical quantity may
seem strange at first, but like most ideas involving units it is really rather simple
once the right perspective is adopted. Fortunately, there do exist procedures using
elementary mechanical units that are analogous to what goes on when we change
the kinds of units used in electromagnetic theory; we can use this analogy to in-
troduce the appropriate perspective for understanding electromagnetic units. This
chapter begins by presenting material with which the reader is probably already
familiar—what a unit is, what a dimension is, the rules for manipulating units in-
side equations—and then moves on to describe the procedures applied to standard
mechanical units in quantum mechanics and relativistic physics to simplify the
forms of complicated equations. It should be emphasized that all these equations
are presented as “given,” with no expectation that the reader will gain or have any
particular knowledge of how the equation is derived; we just show how to simplify
the equation by changing the units in which it is expressed. By the end of the chap-
ter the reader will have acquired the rules and terminology needed to describe how
and why the equations of classical electromagnetism change form when moving
from one system of units to another.

1



2 CHAPTER 1

1.1 THE BASIC IDEA OF A UNIT

Measurements create numbers, and units give meaning to numbers by connect-
ing them to measurements. For example, to call a length “8.5” is completely am-
biguous; but to call it “8.5 centimeters,” or “8.5 feet,” or “8.5 miles,” does have
meaning—and the meaning changes when the attached unit changes. In equations,
a physical quantity, such as a length L, is treated as if it were the product of a
numeric or pure number, like the 8.5 in “8.5 centimeters,” and a unit, like the cen-
timeters in “8.5 centimeters.” Length L is specified in centimeters (cm) using the
equation

L= 8.5 cm. (1.1)

The “8.5” behaves like any of the real numbers which have been exhaustively de-
fined and studied by mathematicians, but the cm unit is defined empirically by
pointing to the length of some physical object and stating, “This object is exactly
1 cm long and L is 8.5 times as long as this object.” For this reason units are re-
garded as having a quality called dimension that ordinary numbers do not have.∗
The unit cm is said to have the dimension length, and L also has that dimension
since it is a dimensionless number multiplied by a quantity—namely 1 cm—which
has the dimension length. Another way of saying that all physical quantities have
units attached to them is to say that all physical quantities have dimensions.

At this point we could begin worrying about exactly what sort of mathematical
object a unit such as cm is, but for the units encountered in physics and engineering
all we need is the assurance that units in formulas and equations are always treated
like ordinary real parameters.1,2 If, for example, we want to convert L to a new unit
of length, such as the inch, which is equal to 2.54 cm, we can go directly from

1 in = 2.54 cm (1.2a)

to

1 cm = (2.54
)−1

in. (1.2b)

Substituting Eq. (1.2b) into Eq. (1.1) gives

L= 8.5 ·
[(

2.54
)−1 in

]

=
[

8.5 · (2.54
)−1
]

· in = 3.35 in. (1.3)

When moving from Eq. (1.1) to Eq. (1.3) we just follow the standard rules
of algebra; and, no matter how complicated an algebraic expression is, this sort
of substitution can always be used to convert a formula from one set of units to

∗ This use of the word dimension should not be confused with the mathematical use of dimension,
where a line has one mathematical dimension, a geometric plane has two dimensions, etc.
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another. In fact, going from Eq. (1.1) to Eq. (1.3) is a specific instance of what
could be called Rule I for handling units.

RULE I

When unita and unitb have the same dimensions, and when the numeric parts
of a physical quantity q are the pure numbers q[unita] and q[unitb] with respect to
unita and unitb, so that

q = q[unita] · unita

and

q = q[unitb] · unitb,

it follows that the ratio of q[unita] to q[unitb] is α−1,

whenever the ratio of unita to unitb is the real number α such that unita = α ·unitb.

An easy generalization of Eq. (1.3) shows where Rule I comes from. We have

q = q[ unita] unita = q[unita]
(
α · unitb

)= (αq[ unita]
)
unitb. (1.4)

All that is required is to stop thinking of α as multiplying unitb and to start thinking
of it as multiplying q[unita]. Since it is also true that

q = q[unitb]unitb,

we end up with

αq[unita] = q[unitb];

or,

q[unita] = 1

α
q[unitb].

Equation (1.4) holds true not only for the units of simple physical quantities such as
the centimeter, a unit of length, but also for the units of more sophisticated physical
quantities such as velocity, energy, electric field, etc.
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1.2 FUNDAMENTAL AND DERIVED UNITS

It is customary to regard the dimensions of sophisticated physical quantities as
composed of the products and powers of a smaller number of fundamental di-
mensions. In many fields of engineering and physics, three different dimensions—
mass, length, and time—are regarded as fundamental. This choice is by no means
the only one possible. Older textbooks may use an English system of units based
on the pound-force, foot, and second, where the fundamental dimensions are force,
length, and time. Later on we will discuss exotic systems of units used by particle
physicists and relativistic cosmologists where mass and length, or even just length,
are taken to be the only fundamental dimensions. For now, though, we follow the
path taken by the vast majority of physics and engineering disciplines by treating
mass, length, and time as fundamental.

To see how more sophisticated physical quantities are reduced to their funda-
mental dimensions, consider an area. A unit of area is usually given as the square
of some unit of length, such as cm2, foot2, or meter2; and when it is given a name
of its own, such as acre or barn, these names are defined using the square of some
length unit:

1 acre = 43,560 feet2

1 barn = 1 × 10−28 meter2.

Equations (1.5) and (1.6) are the well-known formulas for the area AS of a square
whose side is length s, and the area AC of a circle whose radius is r :

AS = s2, (1.5)

AC = πr2. (1.6)

In the second formula, π = 3.14159 . . . is taken to be a dimensionless quantity or
pure number. We can choose any arbitrary unit of length, e.g., ulength, so that

s = s[ulength] · ulength

and

r = r[ulength] · ulength,

where s[ulength] and r[ulength] are numerics—that is, pure numbers—such that
s[ulength] and r[ulength] are the numeric parts of s and r measured in units of ulength.
Substituting these expressions into Eqs. (1.5) and (1.6) gives

AS = (s[ulength] · ulength
)2 = (

s2[ulength]
) · (ulength2)
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and

AC = π(r[ulength] · ulength
)2 = (πr2[ulength]

) · (ulength2).

Clearly, the units of both AS and AC are always the square of ulength. No matter
what formula is used to calculate an area, it always ends up having units that are
the product of two length units, so area is given the dimensions of length2.

To see how mass and time enter the picture, we need to look at some more
specialized equations. The average velocity of a physical object, for example, is
defined to be the vector distance �	s that the object travels during time �t :

	v = �	s
�t
. (1.7a)

That 	v and �	s are vectors does not matter from the viewpoint of dimensional
analysis; for now we can simply disregard their vector nature and write

v = �s
�t
. (1.7b)

Defining an arbitrary unit of time, utime, to go with the arbitrary unit of length
ulength, we have

�s = (
� s

)

[ulength] · ulength (1.8a)

and

�t = (�t)[utime] · utime, (1.8b)

where (�s)[ulength] and (�t)[utime] are numerics. Substitution of Eqs. (1.8a, b) into
Eq. (1.7b) gives

v = (�s)[ulength] · ulength

(�t)[utime] · utime
=
[
(�s)[ulength]
(�t)[utime]

]

·
(

ulength

utime

)

.

Units of velocity are always a unit of length divided by a unit of time,
ulength/utime, and so the dimension of velocity is length·time−1. The average ac-
celeration is defined to be the vector change in velocity�	v over some time �t , so

	a = �	v
�t

(1.9)

and, disregarding the vector nature of the equation,

a = (�v)[ulength/utime] · (ulength/utime)

(�t)[utime] · utime
=
[
(�v)[ulength/utime]
(�t)[utime]

]

·
(

ulength

utime2

)

.
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Units of acceleration are always ulength · utime−2, which makes the dimensions of
acceleration length · time−2.

Newton’s second law is

	F =m	a, (1.10)

where 	F is the force acting on an object of mass m undergoing an acceleration 	a.
Choosing some unit of mass, umass, we have, disregarding the vector nature of the
equation,

F =m[umass] · umass · a[ ulength/utime2] · ulength

utime2

=
[

m[umass]a[ulength/utime2]
]

·
(

umass · ulength

utime2

)

.

This is a good time to introduce Rule II, since we have been using it implicitly
when examining Eqs. (1.5) through (1.9).

RULE II

In any equation involving physical quantities, both the left-hand side of the
equation and the right-hand side of the equation must have the same dimensions.
If both the left-hand side and right-hand side are expressed in the same units, then
the numeric part of the left-hand side of the equation is equal to the numeric part
of the right-hand side of the equation.

We have just seen that the units of ma are always umass·ulength/utime2, which
means the dimensions of ma must be mass·length/time2. Rule II applied to New-
ton’s second law now assures us that the dimensions of force must be the same as
the dimensions of ma, namely mass·length/time2.

Although equations involving physical quantities are almost always broken
down into numeric components and units in such a way that both sides of the
equation are expressed using the same units, the equality can still exist even when
each side is in different units. We might, for example, encounter an equation

F[gm·cm/sec2] ·
(

gm · cm

sec2

)

=
(

m[ton]ton
)

·
(

a[inch/hour2]
inch

hour2

)

,

which is true even though, according to Rule II, we cannot then expect that

F[gm·cm/sec2]
?=
(

m[ton]
)

·
(

a[inch/hour2]
)

because the two sides of the equation have different units. The first equality is true
exactly because the units have been included in the equation, while the second
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equality is false because they have been left out. This convention allows us to
regard equations like (1.2a, b) as just another equality between physical quantities,
in this case the inch and centimeter. Just like the above equations, they are not
necessarily true when the units are left out because then we end up with

1
?= 2.54 or 1

?= (2.54
)−1
.

By now it should be pretty clear that in any product involving physical quan-
tities the dimensions mass, length, and time act exactly like the arbitrary units
umass, ulength, and utime. This observation gives us Rule III for handling units
and dimensions.

RULE III

To find the dimensions of any product containing physical quantities, replace all
numerics, pure numbers, and other dimensionless quantities by one and all physical
quantities by their dimensional formulas.

Using Rule III, the right-hand side of Eq. (1.6) becomes

1 · length2 = length2,

giving the dimensions of an area; and the right-hand side of Eq. (1.10) becomes

mass · (length · time−2)= mass · length · time−2,

giving the dimensions of a force.
We have not yet considered what happens when physical quantities are added

or subtracted. Rule IV for handling units and dimensions is the following:

RULE IV

When two physical quantities are added or subtracted they must have the same
dimensions. The dimensional formula for the sum or difference of physical quanti-
ties is identical to the dimensional formula of either term of the sum or difference.
When two physical quantities are expressed in the same units, the numeric part of
their sum or difference equals the sum or difference of their numeric parts.

This rule matches what we might expect if units behave like real parameters.
If, for example, L1 and L2 are two different lengths, with L1 measured in feet (ft)
and L2 measured in meters (m), then L1 +L2 becomes (using that 1 m = 3.281 ft),

(L1)[ft] ft + (L2)[m] m = (L1)[ft] · ft + (L2)[m] · 3.281 ft = [
(L1)[ft] + (L2)[ft]

] · ft,
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where in the last step Rule I is used to get (L2)[ft] = 3.281 · (L2)[m] and the com-
mon factor of “ft” has been moved outside the parentheses. We end up with the
sum of two pure numbers, (L1)[ft] + (L2)[ft], which can be added together to get a
third number, giving us a perfectly good expression for a new physical quantity—a
numeric times the unit ft. Note that we got this result by converting meters to feet,
and we can convert to a common unit only when both units have the same dimen-
sions. This explains why physical quantities must have the same dimensions before
they can be added or subtracted and why, when they have the same units, we add
the quantities by adding together their numeric parts. Rule IV, by the way, applies
even when the physical quantities involved are vectors or are complex valued. In
the vector sum 	a + 	b, both 	a and 	b must be the same type of physical quantity so
that their units can have the same dimensions; that is, both 	a and 	b must be vec-
tor velocities, or vector accelerations, etc. For example, if 	L1 and 	L2 are position
vectors, we can rewrite the above sum as
( 	L1

)

[ft]ft +
( 	L2

)

[m]m = ( 	L1
)

[ft] · ft + ( 	L2
)

[m] · 3.281 ft = [( 	L1
)

[ft] + ( 	L2
)

[ft]
] · ft,

where ( 	L1)[ft] and ( 	L2)[m] are vectors of pure numbers whose x, y, z components
are the numeric parts of the x, y, z components of vectors 	L1, 	L2 measured in feet
and meters, respectively. We see that units are still treated as scalar parameters that
can be brought outside the vector when all the x, y, z components have the same
units:

[
(L1x)[ft] · ft
(L1y)[ft] · ft
(L1z)[ft] · ft

]

=
[
(L1x)[ft]
(L1y)[ft]
(L1z)[ft]

]

· ft = ( 	L1)[ft] · ft,

[
(L2x)[m] · m
(L2y)[m] · m
(L2z)[m] · m

]

=
[
(L2x)[m]
(L2y)[m]
(L2z)[m]

]

· m = ( 	L2)[m] · m.

This is why we can disregard the vector nature of physical quantities when doing
dimensional analysis, analyzing the dimensions and units of vector cross products
and dot products the same way we would analyze the products of ordinary real
variables. Units are also treated as real scalar parameters in physical quantities
represented by complex entities such as Z = u + iv, with u and v the real and
imaginary parts of Z. If, for example, Z is an impedance measured in ohms, we
can write

Z = u[ohms] ·ohms+i ·v[ohms] ·ohms = (u[ohms]+i ·v[ohms]
)·ohms =Z[ohms] ·ohms,

where

Z[ohms] = u[ohms] + i · v[ohms].

The real and imaginary parts of complex entities always have the same dimensions
because i = √−1 is regarded as being dimensionless.
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1.3 ANALYSIS OF EQUATIONS AND FORMULAS

Rules III and IV make it easy to analyze more complicated physical equations. The
equation of motion for a mass m suspended from a spring is

m
d2y

dt2
+ γ dy

dt
+ ky = 0, (1.11)

where t is time, γ is the damping coefficient (from air resistance), k is the spring
constant, and y is the vertical displacement (that is, distance) of the mass from its
equilibrium height under the pull of gravity. The dimensions of the infinitesimal
quantities dy and dt are length and time, respectively, so the dimension of dy/dt
is length · time−1. An operator such as d/dt has the dimension of time−1 (think
of “d” by itself as dimensionless), which gives the operator d2/dt2 = (d/dt)2 the
dimension time−2 and d2y/dt2 the dimensions length· time−2. Therefore, the first
term in Eq. (1.11) has the dimensions of force because its dimensional formula
is (mass · length/time2). By Rule IV, the second term γ (dy/dt) then must also
have dimensions of mass · length/time2. Since dy/dt has dimensions of length ·
time−1, the damping coefficient γ must have dimensions of mass · time−1. The
same type of reasoning shows that the third term ky must have dimensions of
mass · length/time2, giving k the dimensions of mass · time−2. Clearly, Rules III
and IV act together to specify the dimensions of constants γ and k based on the
dimensions of m(d2y/dt2).

Another example of how Rules III and IV work comes from the formula for the
energy E or work W done when a force F acts through a distance s:

E =W =
s∫

0

F · dx. (1.12)

The integral in Eq. (1.12) can be regarded as the sum of a large number of infinites-
imal terms F · dx, as x varies from 0 to s; so by Rules III and IV the dimensional
formula for the integral is

force · length = (mass · length · time−2) · length = mass · length2 · time−2.

By Rule II the dimensions of energy or work are then mass · length2 · time−2.
Note that, as was pointed out in the discussion following Rule IV, treating F ·dx

in Eq. (1.12) as the dot product, 	F ·d 	x, of a vector force 	F and a vector displace-
ment d 	x cannot change the units of E because units interact as real scalar parame-
ters.

The equations of physics are self-consistent, which means the dimensions of a
physical quantity such as energy can be found from any equation containing that
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quantity. The equation for the kinetic energy of a particle of mass m moving with
velocity v is

E = 1

2
mv2. (1.13)

By Rules II and III this also specifies the dimensions of energy as mass · length2 ·
time−2, becausem has dimension mass and velocity has dimension length · time−1.

Another important point worth making explicit is that all formal mathematical
functions have arguments and values which are pure numerics.

RULE V

The arguments and values of all formal mathematical functions such as
sin, cos, tan, tan−1, ln, log10, etc., are always pure numbers—that is, they are al-
ways dimensionless. The exponents of numerics and physical quantities must also
be dimensionless pure numbers.

We note that when applied to the definition exp(ax) = eax , Rule V gives two
reasons why the product ax must be dimensionless—it is argument of the formal
mathematical function exp and the exponent of the numeric e.

To show how Rule V works we construct the solution to Eq. (1.11) using the
constraint or boundary condition that at time t = 0,

mass m has zero displacement and mass m has velocity V. (1.14)

(When physical quantities are set equal to zero the units are omitted, because 0
seconds is the same amount of time as 0 years; 0 centimeters is the same distance
as 0 miles, etc.) The solution to Eq. (1.11) is then

y = V
√

k

m
− γ 2

4m2

e−t (γ /2m) sin



t

√

k

m
− γ 2

4m2



 . (1.15)

From the first part of Rule V the quantity

t

√

k

m
− γ 2

4m2

should be dimensionless because it is the argument of the sin. Using Rules III and
IV and the dimensions of γ and k given in the discussion following Eq. (1.11), we
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see that

dimensions of t

√

k

m
− γ 2

4m2
= time ·

(
mass

time2
· 1

mass
− mass2

time2
· 1

mass2

)1/2

= time · (time−2)1/2 = 1,

which shows that

t

√

k

m
− γ 2

4m2

is indeed dimensionless. By the second part of Rule V the expression −tγ (2m)−1,
being the exponent of e, must be dimensionless. Using Rule III we have

dimensions of

(

− tγ

2m

)

= 1 · time · mass

time
· 1

mass
= 1,

which is again the expected result. The dimension and units of the displacement y
are set by the dimension and units of V in Eq. (1.15) because, using Rule III on
Eq. (1.15),

dimensions of y = dimension of V
[

mass

time2
· 1

mass
− mass2

time2 · mass2

]1/2 · 1 · 1

= time · (dimension of V ),

where Rule V has been used to recognize

e−t (γ /2m) and sin

(

t

√

k

m
− γ 2

4m2

)

as pure numbers. The dimension of velocity V is length · time−1, so y ends up with
the dimension length, which is what it should have. This, by the way, illustrates one
of the major uses of dimensional analysis, examining whether or not formulas are
correct by checking that their dimensions make sense.

1.4 DIMENSIONLESS PARAMETERS

In Eq. (1.15) the square root in the denominator and inside the sine suggests that
we expect

k

m
>
γ 2

4m2 ,
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which is indeed the case. A size relationship using “>”, “≥”, “<”, or “≤”, just like
an equality, must have the same dimensions on both sides. In fact, everything said
about equations involving physical quantities in Rule II also holds true for size
relationships involving physical quantities. We could state a Rule IIa as follows:

In any size relationship involving physical quantities, both the left-hand side of
the size relationship and the right-hand side of the size relationship must have the
same dimensions. If both sides are expressed in the same units, then the numeric
part of the left-hand side has the same size relationship to the numeric part of the
right-hand side, as does the left-hand side’s physical quantity to the right-hand
side’s physical quantity.

Here the size relationship makes sense because both k/m and γ 2/(4m2). have
dimensions of time−2.

These types of size relationships are often handled by constructing dimension-
less parameters. We could, for example, define

ξ = k/m

γ 2/(4m2)
= 4km

γ 2 (1.16)

and say that Eq. (1.15) is a well-defined solution to Eq. (1.11) when ξ > 1.
A dimensionless parameter that is important in the study of fluids is the

Reynolds number. The Reynolds number for a fluid of density ρ and of viscos-
ity µ is

R = VDρ
µ
, (1.17)

when the fluid flows through a pipe of diameter D at an average velocity V .
The density ρ has dimensions mass · length−3, the viscosity µ has dimensions
mass · time−1 · length−1, and we already know the dimensions of velocity V and
diameter D. By Rule III the dimension of the Reynolds number is

dimension of R = length · time−1 · length · mass · length−3

mass · length−1 · time−1
= 1, (1.18)

exactly as expected.
Suppose we create two different triplets of fundamental units—ulength, utime,

umass, and Ulength, Utime, Umass—and examine what happens to the Reynolds
number when going from one triplet of units to another. The physical quantities
V,D, ρ, and µ can be written using both sets of units:
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V = V[ulength·utime−1]
ulength

utime
= V[Ulength·Utime−1] · Ulength

Utime
,

D =D[ulength]ulength =D[Ulength]Ulength,

ρ = ρ[umass·ulength−3]
umass

ulength3 = ρ[Umass·Ulength−3]
Umass

Ulength3 ,

µ = µ[umass·utime−1·ulength−1]
umass

ulength · utime

= µ[Umass·Utime−1·Ulength−1]
Umass

Ulength · Utime
.

To save space, we define

Vu = V[ulength·utime−1], VU = V[Ulength·Utime−1],

Du =D[ulength], DU =D[Ulength],

ρu = ρ[umass·ulength−3], ρU = ρ[Umass·Ulength−3],

µu =µ[umass·utime−1·ulength−1], µU =µ[Umass·Utime−1·Ulength−1].

The Reynolds number calculated in the “u” system of units is

Ru =
Vu

ulength

utime
·Duulength · ρu umass

ulength3

µu
umass

ulength · utime

= VuDuρu
µu

, (1.19)

where all the units have cancelled—no surprise, since we know the Reynolds num-
ber is dimensionless. There must exist pure numbers a, b, c, such that

ulength = a · Ulength,

utime = b · Utime,

umass = c · Umass.

It follows that

Vu
ulength

utime
= Vua · Ulength

b · Utime
=
(
aVu

b

)
Ulength

Utime
,

Duulength = (aDu)Ulength,

ρu
umass

ulength3
=
(

ρu
c

a3

)
Umass

Ulength3
,

µu
umass

ulength · utime
=
(

µu
c

ab

)
Umass

Ulength · Utime
;
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so that, consistent with Rule I, we get

VU = aVu
b
, DU = aDu, ρU = ρu

(
c

a3

)

, and µU =
(
c

ab

)

µu. (1.20)

Having already calculated Ru, the Reynolds number in the u triplet of units, we
now use the definition of the Reynolds number [Eq. (1.17)] to calculate RU , the
Reynolds number in the U triplet of units:

RU =
VU

Ulength

Utime
·DUUlength · ρU Umass

Ulength3

µU
Umass

Ulength · Utime

= VUDUρU
µU

.

Substitution of Eq. (1.20) into this expression gives

RU =

(

Vu
a

b

)

(Dua)

(

ρu
c

a3

)

(

µu
c

ab

) = VuDuρu
µu

. (1.21)

Comparison of Eq. (1.21) to Eq. (1.19) shows that

RU =Ru, (1.22)

demonstrating that the Reynolds number is the same pure number in all systems of
units. A similar analysis of the dimensionless number ξ in Eq. (1.16) shows that

ξU = ξu. (1.23)

In fact, all dimensionless numbers are invariant with respect to the fundamental
units used to measure their components. This is convenient for scientists and engi-
neers, who can use dimensionless parameters to analyze the behavior of physical
systems without specifying the units of the physical quantities involved.

1.5 THE CGS AND MKS MECHANICAL SYSTEMS OF UNITS

Having settled on a set of fundamental dimensions, we can give each dimension
a fundamental unit and from those construct a set of derived units. Choosing 1
centimeter (cm) for the unit of length, 1 gram (gm) for the unit of mass, and 1
second (sec) for the unit of time, we create the centimeter-gram-second or cgs
system of units. Choosing 1 meter (m) for the unit of length, 1 kilogram (kg) for
the unit of mass, and 1 sec for the unit of time, we create the meter-kilogram-
second or mks system of units. In each system, some combinations of units occur
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Table 1.1 Mechanical units of the cgs system.

gm (gram)

cm (centimeter)

sec (second)

dyne = gm · cm/sec2

erg = dyne · cm = gm · cm2/sec2

poise = dyne · sec/cm2 = gm/(cm · sec)

barye = dyne/cm2 = gm/(cm · sec2)

stokes = cm2/sec

rhe = poise−1 = (cm · sec/gm)

Table 1.2 Mechanical units of the mks system.

kg (kilogram)

m (meter)

sec (second)

newton (newton), newton = kg · m/sec2

joule (joule), joule = newton · m = kg · m2/sec2

watt (watt), watt = joule/sec = kg · m2/sec3

poiseulle (poiseulle),

poiseulle = newton · sec/m2 = kg/(m · sec)

pascal (pascal), pascal = newton/m2 = kg/(m · sec2)

stere (stere), stere = m3

Table 1.3 Conversion between the cgs and mks mechanical systems of units. (The
unit of time, sec, is the same for both systems.)

kg = 103 · gm

m = 102 · cm

newton = 105 · dyne

joule = 107 · erg

poiseulle = 10 · poise

pascal = 10 · barye

so frequently that they are given their own names. These units are called derived
units. The derived units of force in the cgs and mks systems are called dyne and
newton, respectively, with

1 dyne = gm · cm

sec2 and 1 newton = kg · m

sec2 .
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The derived units of energy in the cgs and mks systems are called erg and joule,
respectively, with

1 erg = 1 dyne · cm = gm · cm2

sec2 and 1 joule = 1 newton · m = kg · m2

sec2 .

The unit of power in the mks system is

1 watt = joule

sec
= kg · m2

sec3
.

With derived units there is no need to reduce all physical quantities to their fun-
damental units. In the discussion after Eq. (1.11) the spring constant k is found
to have dimensions mass · time−2, so in the cgs system k has units of gm · sec−2.
These units can also be written as dyne/cm or erg/cm2:

1
dyne

cm
= 1

erg

cm2
= 1

gm

sec2
.

The numeric part of k is the same in all three cases:

k = k[dyne·cm−1]
dyne

cm
= k[erg·cm−2]

erg

cm2 = k[gm·sec−2]
gm

sec2 ,

so that

k[dyne·cm−1] = k[erg·cm−2] = k[gm·sec−2].

For this reason we could, if desired, just write kcgs for the numeric part of k in the
cgs system of units:

kcgs = k[dyne·cm−1] = k[erg·cm−2] = k[gm·sec−2].

From now on we will adopt the convention that a lowercase subscript attached to
the name of a physical quantity indicates the numeric part of that quantity in the
system of units specified by the subscript. As an example of how this works, for a
distance r , a force F , and an energy E, we can write

rcgs = r[cm],Fcgs = F[dyne], and Ecgs = E[erg].

In the mks system of units we can write

rmks = r[m], Fmks = F[newton], and Emks = E[joule].
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The derived units of the cgs and mks systems provide a useful flexibility. As an
example, consider the physical quantity torque used to describe the twist produced
by a force on a physical system.

	τ = 	r × 	F or
∣
∣	τ ∣∣= ∣∣	r∣∣ · ∣∣ 	F ∣∣ · sin θ, (1.24)

where vector 	F is the force applied to the system a distance 	r from the point about
which the torque is produced, and θ is the smaller angle between 	F and 	r . The
dimensions of torque are clearly length · (dimensions of force) or mass · length2 ·
time−2. In the mks system the fundamental units of torque are kg · m2 · sec−2, the
same as the fundamental units of energy. When working with torques an engineer
can write the torque in units of newton · m, to remind readers of Eq. (1.24) and
emphasize that it is a torque rather than some amount of energy. If, later on, energy
is to be specified, the engineer can use joules, which are the mks units of energy.
Although it is technically correct to measure torque in joules, because

1 joule = 1 newton · m = 1
kg · m2

sec2
,

it would almost always be confusing and very bad style. The derived units also let
us adjust numeric parts of physical quantities to a convenient size. Returning to the
example of torque, since

1 newton · m = 107 dyne · cm

it is quite possible to have physical situations where both τcgs and τmks are respec-
tively too large and too small for everyday use. By mixing together mks and cgs
derived units,

τcgsdyne · cm = (
τcgs10−5)newton · cm = (τcgs10−2)dyne · m,

we have more options for putting the decimal point in a convenient place. We shall
see in Chapter 2 that exactly this consideration—having conveniently sized units—
ended up driving the development of electromagnetic units during the second half
of the nineteenth century.

1.6 THE U AND N OPERATORS

When working with fundamental systems of units it is helpful to define both a U
and an N operator. When applied to a physical quantity, the U operator returns its
units in some specified system of fundamental units, and the N operator applied to
a physical quantity returns the numeric part in some system of fundamental units.
We say that U

cgs
, N

cgs
are the U and N operators for the cgs system of units; and U

mks
,
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N
mks

are the U and N operators for the mks system of units. To use U and N we need

to know the definitions of the physical quantities on which they operate. Because
we know from Eq. (1.1) that L is a length,

U
cgs
(L) = cm,

N
cgs
(L) = 8.5,

U
mks
(L) = m,

and

N
mks
(L)= 0.085.

If the numeric part of a length y is not known then we have

U
cgs
(y) = cm,

N
cgs
(y) = ycgs = y[cm],

U
mks
(y) = m,

and

N
mks
(y)= ymks = y[m].

When using this notation we know that the N operators always produce pure num-
bers, so ycgs and ymks are numerics; and, because y is a length, ycgs and ymks must
be the numeric parts of y when y is measured in centimeters and meters, respec-
tively.

The U and N operators can be applied to complicated as well as simple physical
quantities. Working with γ and k from Eq. (1.11), we get

U
cgs
(γ ) = gm

sec
,

N
cgs
(y) = γcgs = γ[gm·sec−1],

U
mks
(γ ) = kg

sec
,

N
mks
(γ ) = γmks = γ[kg·sec−1];
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and

U
cgs
(k)= gm

sec2
= dyne

cm
= erg

cm2
,

U
mks
(k)= kg

sec2
= newton

m
= joule

m2
,

N
cgs
(k)= kcgs = k[gm·sec−2] = k[dyne·cm−1] = k[erg·cm−2],

N
mks
(k)= kmks = k[kg·sec−2] = k[newton·m−1] = k[joule·m−2].

The U operators applied to k show that the answer can be given in terms of the
derived units belonging to some fundamental system of units instead of the fun-
damental units themselves. The N operators can also have their numeric answer
written with a more specific subscript than “cgs” or “mks”—the subscripts can use
square brackets to specify the actual units, either fundamental or derived, in which
the physical quantity is measured.

The U and N operators turn out to be some of the most flexible operators known
to mathematics—virtually any algebraic manipulation is allowed. When the U and
N operators are applied to the product of two physical quantities a and b,

U
cgs
(a · b)= U

cgs
(a) · U

cgs
(b),

U
mks
(a · b)= U

mks
(a) · U

mks
(b);

and

N
cgs
(a · b)= N

cgs
(a) · N

cgs
(b),

N
mks
(a · b)= N

mks
(a) · N

mks
(b).

To show that these properties apply to the U and N operators for any system of
units, not just the cgs and mks systems, we write the operator equalities without
any subscripts:

U(a · b)= U(a) · U(b), (1.25a)

N(a · b)= N(a) · N(b). (1.25b)

Equations (1.25a, b) also hold true when a is a scalar and 	b is a vector:

U(a	b)= U(a) · U(	b) and N(a	b)= N(a) · N(	b).
The U operator treats the vector cross product and vector dot product in the same
way:

U(	a · 	b)= U(	a× 	b)= U(|	a|)U(|	b|); (1.25c)



20 CHAPTER 1

and the N operator preserves the form of the vector dot and cross products:

N(	a · 	b)= N(	a) ·N(	b), (1.25d)

N(	a × 	b)= N(	a)× N(	b). (1.25e)

When U and N are applied to the sum of two physical quantities a and b we get

U(a + b)= U(a)= U(b) (1.26a)

and

N(a+ b)= N(a)+ N(b). (1.26b)

The U and N operators behave in a formally different manner in Eqs. (1.26a, b)
because we want the sum of like combinations of units to reduce to the unit combi-
nation itself, whereas the N operator must preserve the form of the original physical
equation (see Rule IV). When U and N are applied to a physical quantity b raised
to a pure number x, we get

U(bx)= [U(b)]x, (1.27a)

N(bx)= [N(b)]x. (1.27b)

The last two rules to be specified show what happens when the U and N operators
are applied to a pure number p:

U(p)= 1, (1.28a)

N(p)= p. (1.28b)

We can deduce one last general equality for the N operator from Eq. (1.28b). For
any formal function f , such as the sin, cos, tan−1, ln, etc.,

N[f (x, y, . . .)] = f (N(x),N(x), . . .). (1.28c)

In a way, Eq. (1.28b) and Rule V make Eq. (1.28c) trivially true, since Rule V
states that the value of any function f is always a pure number, as are its argu-
ments; therefore N(f )= f , N(x)= x, N(y)= y, and so on, from which it follows
that Eq. (1.28c) is exactly the same as saying f (x, y, . . .) = f (x, y, . . .). Never-
theless, Eq. (1.28c) is still worth writing down explicitly because it shows that N
operators jump inside functions and then act on the individual physical quantities
which combine to form the function’s dimensionless arguments.
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As an example of how to use these operators, we apply them to both sides of
Eq. (1.15). By Rule V and Eqs. (1.25a) and (1.28a), a U operator applied to both
sides of Eq. (1.15) gives

U(y) = U









V
√

k

m
+ γ 2

4m2









· U

[

e−t (γ /2m)
]

· U

[

sin

(

t

√

k

m
− γ 2

4m2

)]

= U









V
√

k

m
+ γ 2

4m2









.

By Eqs. (1.25a) and (1.27a) this becomes

U(y)= U(V ) ·
[

U

(

k

m
+ γ 2

4m2

)]−1/2

and by Eqs. (1.26a), (1.25a), and (1.27a),

U(y)= U(V )

√

U(m)

U(k)
.

To go any further with this example we need to specify the fundamental system of
units, either cgs or mks, of operator U. Since the dimensions of k are mass · time−2,
and V is a velocity and m is a mass by Eq. (1.14), we have

U
cgs
(y)= U

cgs
(V )

√
√
√
√
√

U
cgs
(m)

U
cgs
(k)

= cm

sec
·
[

gm

gm · sec−2

]1/2

= cm (1.29a)

and

U
mks
(y)= U

mks
(V )

√
√
√
√
√

U
mks
(m)

U
mks
(k)

= m

sec
·
[

kg

kg · sec−2

]1/2

= m. (1.29b)

The dimensions mass, length, and time behave exactly like units in algebraic ma-
nipulations of this sort, so we can define for any physical quantity b,

U
mlt
(b)= dimensional formula for b (1.29c)
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to create an operator obeying all the rules for U operators in Eqs. (1.25a) through
(1.28a). The U

mlt
operator can be used to analyze dimensions the way other U oper-

ators are used to analyzed units. Because the U
mlt

operator obeys the same rules as

other U operators, we get the same formula when it is applied to y:

U
mlt
(y)= U

mlt
(V )

√
√
√
√
√

U
mlt
(m)

U
mlt
(k)

= length

time
·
[

mass

mass · time−2

]1/2

= length.

By Eqs. (1.25b) and (1.28c), an N operator applied to both sides of Eq. (1.15)
gives

N(y)= N









V
√

k

m
− γ 2

4m2









eN[−t (γ /2m)] sin

[

N

(

t

√

k

m
− γ 2

4m2

)]

.

From Eqs. (1.25b) and (1.27b),

N(y)= N(V )
√
√
√
√N

(

k

m
− γ 2

4m2

)e
N(−1/2)N(γ )N(t)/(N(m)) sin



N(t) ·
√
√
√
√N

(

k

m
− γ 2

4m2

)

,

and from Eqs. (1.26b), (1.25b), and (1.28b)

N(y)= N(V )
√
√
√
√N

(

k

m

)

− 1

4
N

(

γ 2

m2

)e
(−1/2)N(γ )N(t)/(N(m)) sin



N(t) ·
√
√
√
√N

(

k

m

)

− 1

4
N

(

γ 2

m2

)

.

Using Eqs. (1.25b) and (1.27b), and the fundamental definition of operator N in
the cgs and mks systems of units, we get

N
cgs
(y)= Vcgs

√

kcgs

mcgs
− γ 2

cgs

4m2
cgs

e−(γcgstcgs/2mcgs)sin



tcgs

√
√
√
√ kcgs

mcgs
− γ 2

cgs

4m2
cgs





and

N
mks
(y)= Vmks

√

kmks

mmks
− γ 2

mks

4m2
mks

e−(γmkstmks/2mmks)sin

(

tmks

√

kmks

mmks
− γ 2

mks

4m2
mks

)

.
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It may seem that all the N operator does is add a cgs or mks subscript to the vari-
ables; but it will be useful later on, especially when we discuss different systems
of electromagnetic units, because it makes very clear what is and what is not a
pure number. Students who have spent significant amounts of time analyzing di-
mensional problems will find Eqs. (1.25a) through (1.28c) superfluous, because
for them the rules have become second nature. Novices, however, may find them
helpful—and the U, N operators themselves make it easier to specify how units
based on different sets of fundamental dimensions relate to each other.

1.7 TEMPERATURE UNITS

There are physical quantities which do not fit comfortably into any system based on
the three fundamental dimensions of mass, length, and time. One example of this is
temperature, which in equations and formulas containing other physical quantities
is almost always treated as a fourth fundamental dimension.

Temperature is typically given units of either degrees Kelvin (degK) or de-
grees Rankine (degR).∗ Historically these two temperature scales are modifications
of, respectively, the Celsius temperature scale (which used to be called the centi-
grade temperature scale) and the Fahrenheit temperature scale. When units based
on mass, length, and time were created, there was no question what a zero amount
of mass, a zero amount of length, zero amount of time, etc., was; but the Celsius
and Fahrenheit scales were created before it was known that there was such a thing
as an absolute zero of temperature—the coldest and lowest temperature that can
exist.† Consequently, no one knew how to avoid expressing very cold temperatures
in the Celsius and Fahrenheit scales as physical quantities with negative numeric
components, and both temperature scales ended up specifying a different physi-
cal temperature as zero. Since zero degrees Celsius is not the same temperature as
zero degrees Fahrenheit, we have to specify which temperature scale is being used
when specifying absolute zero temperature. Therefore the Kelvin temperature scale
is defined to be the Celsius scale with its zero point shifted to absolute zero, 273.15
degrees Celsius below zero degrees in the Celsius scale; and the Rankine tempera-
ture scale is defined to be the Fahrenheit scale with its zero point shifted to absolute
zero, 459.67 degrees Fahrenheit below zero degrees in the Fahrenheit scale. Con-
sequently, temperatures measured in either degK or degR are always positive (that
is, always have a positive numeric component). The physical temperature T can be
written in either degK or degR as

T = T[degK] · degK = T[degR] · degR.
∗ By international convention, the abbreviation for degrees Kelvin is K. In this book we use “degK”
rather than “K” to avoid confusion with “k”, the traditional letter used for Boltzmann’s constant,
and also to make degK stand out in equations as the name of a unit rather than a one-letter variable
representing a physical quantity.
† Even the name “absolute zero” hints at the surprise attending its discovery; from the viewpoint of
dimensional analysis it is just zero temperature, the same sort of thing as zero area, zero mass, zero
volume, etc.
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The conversion from one temperature scale to the other is given by

1 degK = 9

5
degR,

so that, by Rule I

T[degK] = 5

9
T[degR],

where T[degK] and T[degR] are the numeric parts of temperature T when T is mea-
sured in units of degK and degR, respectively. We note that

1 degK = 1 degree Celsius

and

1degR = 1 degree Fahrenheit

because the only difference between the Kelvin and Celsius—or between the Rank-
ine and Fahrenheit scales—is the physical temperature labeled as zero.

1.8 DIMENSIONLESS UNITS

The ideal gas law is

PV = nRT, (1.30)

where P is the pressure—the force per unit area—exerted by a gas on the walls
of a container of volume V,n is the number of moles of gas molecules, R is the
universal gas constant, and T is the gas temperature (in degK or degR). The P and
V on the left-hand side of Eq. (1.30) fit comfortably into the cgs and mks system
of units, with P measured in dyne/cm2 in the cgs system or

pascal = newton/m2

in the mks system, and V measured in cm3 in the cgs system or m3 in the mks
system. The right-hand side of Eq. (1.30), however, has two interesting variables,
n and R, which deserve further discussion.

Although it is the official position of the United States government that the unit
mole has dimensions,3 students of chemistry know that a mole can be treated like
a pure number:4

1 mole = 6.023 × 1023.
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When thought of this way, we see that 0.385 moles of gas molecules are the same
thing as

0.385 · 1 mole = 0.385 · 6.023 × 1023 ∼= 2.319 × 1023

gas molecules. In this sense, the mole is an example of a dimensionless unit. Moles
are used to put the decimal point in a convenient place; it is, after all, easier to say
that a container holds approximately 2 moles of O2 than to say it holds approxi-
mately 12 × 1023 oxygen molecules.

The universal gas constant R is a dimensional constant which, unlike the di-
mensional quantities previously encountered, cannot be changed—it is a law of
nature that R has the value it does. Chemistry textbooks often quote its value as

R = 0.0821
liter · atm

mole · degK
.

The numerator contains volume and pressure units that are popular in chemistry,

1 liter = 10−3 · m3 = 103 · cm3 (1.31a)

and

1 atm = 1.01325 × 105 newton

m2 . (1.31b)

The liter is a convenient unit of volume intermediate in size between m3 and cm3;
and the abbreviation atm stands for atmosphere, with 1atm being the standard pres-
sure of the earth’s atmosphere at sea level. The units of R have mole in the denom-
inator. This can be used as a mnemonic, alerting those using R that getting to a
final result usually involves multiplication by some number of moles, cancelling
the moles in the denominator. The mole in the denominator plays the same role as
the degK in the denominator, which as an ordinary dimensional unit suggests that
R is often multiplied by a temperature. In the right-hand side of the ideal gas law,

nRT = (n[mole] · mole
) ·
(

0.0821
liter · atm

mole · degK

)

· (T[degK] · degK
)

= (n[mole]T[degK]
) · (0.0821 liter · atm).

The mole cancellation can be regarded as shorthand for

nRT = (n[mole] · 6.023 × 1023
) ·
(

0.0821
liter · atm

6.023 × 1023 · degK

)

· (T[degK] · degK
)

= (n[mole]T[degK]
) · (0.0821 liter · atm).
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The final units of nRT , liter · atm, are easily converted to either the mks or cgs
system of units. We divide both sides of Eq. (1.31a) by liter to get

1 = 10−3m3

liter
,

and both sides of (1.31b) by atm to get

1 = 1.01325 × 105 newton

atm · m2
.

The quantity nRT has the same value if it is multiplied by one twice, so

nRT · 1 · 1 =
(

n[mole]T[degK]
)

· (0.0821 liter · atm) · 10−3m3

liter
· 1.01325 · 105 newton

atm · m2

∼= 8.32
(

n[mole]T[degK]
)

joules,

where in the last step we have cancelled the units liter, atm, and m2, recognizing
that newton · m = joule. The method used here to convert nRT to the mks system
is perhaps the most popular way of converting physical quantities from one set of
units to another. It clearly gives the same result as the method used in Eq. (1.3),
because substitution of Eqs. (1.31a, b) into the expression for nRT also gives

nRT = (n[mole]T[degK]) ·
[

0.0821
(
10−3m3

) ·
(

1.01325 × 105 newton

m2

)]

∼= 8.32
(
n[mole]T[degK]

)
joules. (1.31c)

No matter how we convert to the mks system of units, nRT ends up in units of
energy. Clearly the liter · atm unit has dimensions of energy and the gas constant
R has dimensions of energy per unit temperature interval when the moles unit is
regarded as being dimensionless.

The radian (rad) is another unit regarded as dimensionless. To get an angle’s
measure in radians we draw a circle centered on the angle’s vertex which, as shown
in Fig. 1.1, specifies an arc length s of the circle’s perimeter lying inside the angle.
The angle in radians, θ , is the ratio s/r , where r is the circle’s radius and s, r are
measured with the same units of length. This ratio is the same pure number no
matter what size radius the circle has:

θ = s
r
. (1.32)

The angle θ , being the ratio of two lengths, is clearly dimensionless; and θ is said
to be measured in radians, making radians a truly dimensionless unit. If γ = 0 in
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Figure 1.1 The angle θ in radians is the arc length s divided by the circle’s radius r.

Eq. (1.11), the solution given in Eq. (1.15) becomes

y = V
ω

sin(ωt), (1.33a)

where

ω=
√
k

m
. (1.33b)

We have already found the dimension of ω to be time−1. Often an oscillatory
function, such as sin(ωt) in Eq. (1.33a), is written as sin(2πf t), where f is a pure
frequency :

f = ω

2π
= 1

2π

√
k

m
.

Since 2π is dimensionless, the dimension of f is also time−1. To distinguish ω
and f , the units of ω are often given in the cgs and mks systems as rad/sec instead
of just sec−1. A pure frequency f is then given in hertz (Hz),∗ defined as sec−1 in
the sense of cycles per sec, where cycle is another dimensionless unit. Of course,
we could just as easily refer to ω by its proper name, the angular frequency, as
opposed to f , which is just a plain (or pure) frequency; but it reduces the chance
of confusion when we reiterate what ω and f are by giving ω units of rad/sec and
f units of Hz or cycles/sec.

The geometrical idea of an angle probably came from ancient astronomers,
who used it to measure the “distance” in the sky between objects such as stars or
planets. Here, distance refers not to the length separating the objects, but rather
to the change in direction when looking from one object to another. An observer,
∗ The hertz was named in honor of Heinrich Hertz (1857–1894).
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for example, might see a night-flying airplane cross in front of a star, so that the
“distance” in the sky between them is zero, whereas the star is so far away that
the physical length separating the airplane and the star is almost as large as the
physical length separating the observer and the star.

Just as an angle can be used to define a “distance” in the sky, so can a solid
angle be used to define an “area” in the sky. Solid angles are measured in terms
of another dimensionless unit, the steradian (sr). To get a solid angle’s measure in
steradians, we imagine a sphere centered on the vertex of the solid angle, as shown
in Fig. 1.2, and note that an area A of the sphere lies inside the solid angle. The
solid angle in steradians, 3, is then the ratio A/r2, where r is the sphere’s radius
and A and r are measured in the same system of units. This ratio is the same pure
number no matter what the radius of the sphere:

3= A

r2
. (1.34)

The steradian must be a dimensionless unit, because 3 is the ratio of two areas.
The area of a sphere of radius r is 4πr2, so the solid-angle 3 representing the
entire sky is (4πr2)/r2 = 4π steradians.

In optics and radiometry, steradians are included in the units of physical quan-
tities to show that the quantity is measured per unit solid angle. When dealing with
the radiant energy emitted by a surface, the radiant exitance of the surface is given
in units of joules/sec/m2 in the mks system. This shows it is the total radiant en-
ergy emitted each second per unit area of the luminous surface. The radiance of
that same surface, however, is given in units of joules/sec/m2/sr in the mks sys-
tem, showing that it is the radiant energy emitted each second into a unit solid angle
per unit area of the luminous surface. The difference between the quantities is im-
portant because the radiance is a good measure of what we subjectively experience
as “brightness” when looking at a luminous surface; whereas the exitance, because
it measures the optical energy per second leaving a surface in all directions, helps to
specify the rate at which the surface cools. The concept of solid angle is so basic to

Figure 1.2 The solid angle 3 in steradians is given by the area A divided by the
square of the radius r.
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optics and radiometry that when checking whether the units balance in radiometric
equations it is a good idea to treat the steradian like a dimensional unit—an un-
balanced unit of steradians in a radiometric formula is almost always an indication
that a mistake has been made.

1.9 REMOVAL OF THE UNIVERSAL GAS CONSTANT FROM THE

IDEAL GAS LAW

Dimensional constants can be removed from physical equations by using a system
of units in which they become dimensionless and take on the numerical value 1.
This maneuver has become quite common over the last 50 years in relativistic and
quantum physics, but is not usually encountered in other fields of mathematical
sciences and engineering. We go into it in some detail in the next several sections,
because it must be mastered in order to convert electromagnetic equations from
one system of units to another.

We choose as our first example the universal gas constant R, which, by the
way, is almost never made dimensionless and removed from the equations of chem-
istry and statistical mechanics. From the ideal gas law, Eq. (1.30), we know that
R has the dimensions of energy per unit temperature interval [see discussion after
Eq. (1.31c)]. Using Eqs. (1.31a, b) to convert R to units of joule/mole/degK gives

R = 0.0821
liter · atm

mole · degK
= 0.0821

10−3 m3 · (1.01325 × 105 newton/m2)

mole · degK

∼= 8.32
joules

mole · degK
,

since 1 joule = 1 newton · m. We define the mksK system of units to be the mks
system of units with all temperatures given a separate dimensionality and all tem-
peratures measured in units of degK. As long as physical equations and formulas
do not involve temperature, the mks and mksK systems are identical. Only when
physical quantities such as the ideal gas constant R enter the picture is there a dif-
ference between the mks and mksK systems of units; the expressions U

mks
(R) and

N
mks
(R) are undefined, whereas, because we are regarding moles as being dimen-

sionless,

U
mksK

(R)= joule

degK
(1.35a)

and

N
mksK

(R)=RmksK ∼= 8.32. (1.35b)
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The first step in turning R into 1 is to create a unit of temperature, which we call
degR1, in which the numeric part of R is 1. If we define

degR1 = (RmksK)
−1degK, (1.36)

then Rule I can be used to convert the temperature units of R to degR1:

R = RmksK
joule

degK
=RmksK

joule

RmksKdegR1
= 1

joule

degR1
. (1.37)

In Eq. (1.37) we have dropped the mole because we are treating it as dimensionless.
We define the mksR1 system of units to be the same as the mksK system of units,
but with temperature measured in degR1 instead of degK. The U

mksR1
and N

mksR1
operators applied to R give

N
mksR1

(R)= 1 (1.38a)

and

U
mksR1

(R)= joule

degR1
. (1.38b)

Applying the N
mksR1

operator to both sides of Eq. (1.30), the ideal gas law, we get

N
mksR1

(P )= N
mks
(P )= PmksR1 = Pmks, (1.39a)

N
mksR1

(V )= N
mks
(V )= VmksR1 = Vmks, (1.39b)

N
mksR1

(n)= n, (1.39c)

N
mksR1

(R)= 1, (1.39d)

N
mksR1

(T )= TmksR1, (1.39e)

so that

PmksVmks = nTmksR1. (1.39f)

In Eqs. (1.39a, b) the numeric parts of the mechanical quantities P and V ,
which do not involve temperature, are the same in the mksR1 and mks sys-
tems of units; and Eq. (1.39d) uses Eq. (1.37). Note that Eq. (1.38b) requires

U
mksR1

(R) = joule/degR1, so the gas constant R has not yet become the dimen-

sionless numeric 1.
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The second step in turning R into 1 is to make R dimensionless by giving
temperature the dimensions of energy. Can we get away with this? The number
of independent dimensions assigned to a given system of units can be arbitrarily
chosen to be anything we want, as long as the self-consistency of the equations and
formulas is not violated.5,6 It turns out, even though it is almost never done, that it
makes sense to measure temperature in units of energy. In chemistry and statisti-
cal physics, temperature is intimately associated with a quantity called entropy. In
classical thermodynamics, the infinitesimal change in the entropy dS of an isolated
system is defined to be

dS = dQ
T
, (1.40a)

where dQ is the amount of heat energy added to the system when it is at tem-
perature T . Conventionally, S is assigned dimensions of energy over temperature
(remember that the derivative operator “d” is dimensionless), so its units might
be, for example, joule/degK. If T has dimensions of energy, then S becomes a di-
mensionless quantity. In quantum statistical mechanics, the entropy from classical
thermodynamics is shown to be

S = k ln(5), (1.40b)

where k ∼= 1.38 × 10−23 joules/degK is Boltzmann’s constant and 5 is a dimen-
sionless quantity representing the number of different quantum states that the
closed system might be occupying. We can use the U and N operators to write

U
mksK

(k)= joule

degK
(1.41a)

and

N
mksK

(k)= kmksK ∼= 1.38 × 10−23. (1.41b)

By Rule V the quantity ln(5) is dimensionless, so S takes on the units of k. From
Eq. (1.41a) we see that when the temperature is measured in units of energy, k
becomes dimensionless, making the entropy dimensionless. This is consistent with
our conclusion based on Eq. (1.40a). As a final check on the validity of giving
temperature the dimension of energy, we consider one of the formal definitions of
temperature from classical statistical mechanics,

T =
(
∂S

∂E

)−1∣∣
∣
∣
constant volume

, (1.42)

where ∂S/∂E is the change in a constant-volume system’s entropy with respect to
its energy.7 Equation (1.42) can be thought of as a disguised form of Eq. (1.40a).
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We already know that entropy becomes dimensionless when temperature is given
dimensions of energy, so ∂S/∂E then has dimensions of energy−1 and Eq. (1.42)
is dimensionally balanced.

Now that temperature has lost its separate dimensionality, the degR1 unit of
temperature is just another unit of energy. To avoid confused thinking we call
this unit of energy EdegR1 and reserve degR1 for that temperature unit equal to
(RmksK)

−1degK and having the dimension of temperature. We say that

degR1 �= EdegR1 (1.43a)

because degR1 has dimensions of temperature and EdegR1 has dimensions of en-
ergy (otherwise we have to discard Rule II above). We can, however, define an
mksER1 system of units, which is the standard mks system of units with all the
temperatures measured in the units of energy EdegR1. Because the only difference
between the mksR1 and the mksER1 systems of units is that the temperature T has
lost its separate dimensionality, we expect

N
mksER1

(T )= N
mksR1

(T ), (1.43b)

so that

TmksER1 = TmksR1. (1.43c)

In fact, it makes sense to define N
mksER1

by saying that

N
mksER1

(b)= N
mksR1

(b), (1.43d)

for any physical quantity b. To enforce our decision to replace degR1 by EdegR1
in the units for all physical quantities b, we define

U
mksER1

(b)=
(

EdegR1

degR1

)v

U
mksR1

(b), (1.43e)

where

U
mksR1

(b)= (degR1)v(kg)x(m)y(sec)z (1.43f)

for real exponents x, y, z, and v. Definition (1.43e) forces degR1 to be replaced by
EdegR1 in any unit expression, since (EdegR1)v is multiplied into U

mksR1
(b) after

(degR1)v has been cancelled out. Because EdegR1 has units of energy, we know
that R is dimensionless; so from Eq. (1.28a)

U
mksER1

(R)= 1. (1.43g)
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From Eq. (1.43g)—and Eqs. (1.39d) and (1.43d), which make the numeric part of
R equal to 1—we conclude that in the mksER1 system of units

R = 1. (1.43h)

To find the units of EdegR1, we apply U
mksER1

to both sides of the ideal gas law

in Eq. (1.30) and use (1.43g) and (1.28a) to get

U
mksER1

(P ) · U
mksER1

(V )= 1 · 1 · U
mksER1

(T )

or

U
mksER1

(T )= newton

m2
· m3 = newton · m = joule. (1.44a)

The units of T must be joules for this equation to have balanced units in the
mksER1 system, so EdegR1 must be the same as joule:

1 EdegR1 = 1 joule. (1.44b)

Multiplying both sides of Eq. (1.39f) by joule or EdegR1—they are, after all, the
same unit of energy—we get, using TmksER1 = TmksR1 from Eq. (1.43c), that

PmksVmks joule = nTmksER1 joule,

or, using that 1 joule = newton · m,

(

Pmks
newton

m2

)
(
Vmksm

3)= n(TmksER1EdegR1).

The expressions inside the parentheses are all dimensional physical quantities, so
the ideal gas law in the mksER1 system of units must be

PV = nT . (1.45)

This is exactly the result we would expect from substituting R = 1 into PV =
nRT , the ideal gas law written in units where R �= 1.

Inequality [Eq. (1.43a)] prevents us from creating an equation relating the
EdegR1, or joule, to the degK; but nothing stops us from setting up an equation
between their numeric parts (because they are pure numbers). Using Rule I and
Eq. (1.36) we get

N
mksK

(T )= (RmksK)
−1 N

mksR1
(T ).
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This becomes, using Eqs. (1.35b) and (1.43b),

N
mksK

(T )= (RmksK)
−1 N

mksER1
(T )∼= 1

8.32
N

mksER1
(T ) (1.46a)

or

T[degK] = TmksK = 1
RmksKTmksER1

∼= 1
8.32

TmksER1. (1.46b)

Equations (1.46a, b) show why using a system of units where a prominent dimen-
sional constant has the dimensionless value of 1 simplifies calculations; the chain
of unit equalities breaks where the dimensionality changes, as in Eq. (1.43a), but
the chain of numeric equalities extends indefinitely. We could build all thermome-
ters scaled to measure temperature in degR1, call the unit EdegR1, and never have
to worry about the value of R again.

Equation (1.45), the ideal gas law with R = 1, is written using the physical
quantities P,V , and T . For this to be meaningful all three variables must behave
like physical quantities, making Eq. (1.45) true in any set of units where the temper-
ature is given dimensions of energy in such a way that R = 1. Only the temperature
unit has been modified, so the only physical quantity whose behavior needs to be
examined is T . Figure 1.3 shows that up to now we have followed the path A-B-C
to get a system of units where R = 1. We can repeat the process using the equally
good liter · atm energy unit, following path A-B′-C′ in Fig. 1.3 to get a system of
units where R = 1. We now show that the C, C′ systems of units, in both of which
R = 1, behave like true systems of units because we can use Rule I to go from the
temperature in the C system (which is, of course, the mksER1 system of units) to
the temperature in the C′ system.

If we had created the temperature unit for which R = 1 starting with the value
of R in (liter · atm)/degK/mole,

R = 0.0821
liter · atm

mole · degK
,

then instead of Eq. (1.36) the first step would have been to create a new temperature
unit degR1LA, making the numeric part of R equal to 1 when R is measured in
units of (liter · atm)/degR1LA/mole,

degR1LA = (0.0821)−1 degK.

The second step, deciding to measure temperature in energy units, would give in-
stead of Eq. (1.44b)

EdegR1LA = liter · atm.

In place of Eq. (1.46b) we would have gotten that
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Figure 1.3 The temperature units obey Rule I no matter which path is used to
make the ideal gas constant R dimensionless and equal to 1.

T[degK] = 1

0.0821
T[EdegR1LA]. (1.47)

This completes path A-B′-C′ in Fig. 1.3. We now check that this is consistent with
the results obtained using path A-B-C by using Rule I to go directly from C to C′
in Fig. 1.3. Equations (1.31a, b) and Rule I require the temperature in EdegR1 =
joule = newton · m to be, in liter · atm,

TmksER1newton · m = TmksER1

(
newton

m2

)

· (m3)

= TmksER1 · 10−2

1.01325
liter · atm

= T[liter·atm]liter · atm

with

T[liter·atm] = TmksER1 · 10−2

1.01325
. (1.48a)
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If T[liter·atm] is truly the numeric part of the same temperature in the C′ system, then
we must have

T[liter·atm]
?= T[EdegR1LA].

Substitution of Eq. (1.46b) into Eq. (1.48a) gives

T[liter·atm] = 10−2

1.01325
· (8.32T[degK]

)= 0.0821T[degK]. (1.48b)

Comparison of Eqs. (1.47) and (1.48b) shows that T[liter·atm] is indeed the same
number as T[EdegR1LA], so the temperature unit EdegR1LA is indeed the same as
the temperature unit we get using Rule I to go directly from C to C′ in Fig. 1.3.
We conclude that when the temperature unit is modified to make the universal gas
constant equal to 1, the temperature behaves like a physical quantity no matter what
energy units—joules, liter · atm, etc.—we use to measure it.

It is straightforward to return Eq. (1.45), PV = nT , to its original form. Sepa-
rated into units and numeric parts, Eq. (1.45) is

Pmks
newton

m2
· Vmks m3 = nTmksER1 joule = nTmksER1EdegR1, (1.49)

which is clearly balanced in its dimensions, since 1 joule = 1 newton ·m. Returning
to the temperature its separate dimensionality, we write

T = TmksR1degR1. (1.50)

From Eq. (1.43c) we know that TmksER1 = TmksR1, so we multiply and divide the
right-hand side of Eq. (1.49) by degR1 to get, using 1 joule = 1 EdegR1,

Pmks
newton

m2
· Vmks m3 = nTmksER1degR1 · EdegR1

degR1

= nTmksR1degR1 · joule

degR1
.

(1.51)

Rule I and Eq. (1.36) give

(

Pmks
newton

m2

)

· (Vmks m3
) = nTmksR1(RmksK)

−1degK · EdegR1

(RmksK)−1degK

= n[TmksR1 · (RmksK)
−1
]
degK ·

(

RmksK
joule

degK

)

= n(TmksKdegK) ·
(

RmksK
joule

degK

)

.

(1.52)
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Since

R =RmksK
joule

degK

and the expressions inside the parentheses are dimensional physical quantities, we
get

PV = nRT. (1.53)

This return to the original form of the ideal gas law follows naturally from giv-
ing back the temperature its separate dimension. Indeed, we can go directly from
Eq. (1.51) to Eq. (1.53) by pointing out that

P = Pmks
newton

m2
, V = Vmks m3,

and

T = TmksR1degR1, and 1
joule

degR1
=R

are all physical quantities, so Eq. (1.51) is the same as PV = nRT in the mksR1
system of units. This result is all we need to prove Eq. (1.53) true, because physical
quantities that are equal in mksR1 units must be equal in all systems of units where
temperature has a separate dimension.

1.10 REMOVAL OF THE SPEED OF LIGHT FROM RELATIVISTIC

EQUATIONS

The next example we look at is setting the speed of light equal to 1. According to
relativity theory, all observers, no matter how fast they are moving, measure the
same value for c, the speed of light; it is a universal constant appearing in a wide
variety of formulas. The most famous equation of twentieth-century physics,

E =mc2, (1.54a)

states that an object of mass m at rest with respect to an observer is equivalent to
an amount of energy mc2. What is perhaps less well known is that this is a special
case of the formula

E = mc2
√

1 − v
2

c2

, (1.54b)
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which gives the total energy—kinetic energy plus rest energy—of that same object
moving at velocity v with respect to an observer. [Equation (1.54b) reduces to
(1.54a) when v = 0.] The momentum of an object of mass m moving at velocity v
is

p = mv
√

1 − v
2

c2

, (1.54c)

and if a luminous object is emitting light at frequency f0 (in Hz = cycles/sec) then
an observer moving toward the object at velocity v measures the frequency of that
light as

f = f0 ·









√

1 − v
2

c2

1 − v
c









. (1.54d)

The expressions inside the square roots of Eqs. (1.54b–d) are never negative be-
cause one consequence of elementary relativity theory is that material objects never
travel faster than the speed of light.∗ Equations (1.54a–d) are typical formulas of
relativistic physics, and it is clear they would be greatly simplified if the speed of
light were made equal to 1. In fact, the same procedure used to remove the univer-
sal gas constant from the ideal gas law can be used to remove c from the formulas
of relativistic physics. So popular has this maneuver become among physicists that
the presence of the phrase “working in units where the velocity of light is equal
to 1” has become a sure sign that the student has begun an advanced, rather than
introductory, treatment of relativistic physics or cosmology.

The first step in removing the speed of light is to choose units of length and
time such that the numeric part of c is 1. In cgs units

c= ccgs · cm

sec
, (1.55a)

where

N
cgs
(c)= ccgs

∼= 2.99792 × 1010. (1.55b)

∗ Although it would be a digression to get into the details of special relativity, we can note that the
momentum in Eq. (1.54c) becomes infinitely large as the velocity gets ever closer to the speed of
light. One basic property of a force in physics is that it increases the momentum of moveable objects.
Hence (1.54c) suggests we can apply an arbitrarily large force an arbitrarily long time—increasing
the momentum to an arbitrarily large value—without ever accelerating an object up to the speed of
light.
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Choosing a new unit of time, which we call cmtime3, such that

1 cmtime3 = (ccgs)
−1 sec, (1.56a)

we note that in units of cm and cmtime3 the speed of light becomes

c= ccgs
cm

sec
= cm

cmtime3
= 1

cm

cmtime3
. (1.56b)

The subscript 3 of cmtime3 indicates that it belongs to a system of units where
mass, length, and time are three separate dimensions. We call the system of units
where mass is measured in gm, length is measured in cm, and time is measured in
cmtime3, the cgc system of units.

The second step, just as when we made R = 1 in the ideal gas law, is to re-
move the separate dimensionality that prevents c from becoming a dimensionless
constant. We give time the dimension of length, so that now cmtime is also a unit
of length. We call this new unit of length cmtime2 to show that it belongs to a sys-
tem of units where mass and length are the only two separate dimensions. We note
that

cmtime2 �= cmtime3 (1.57a)

and

cmtime2 = cm, (1.57b)

where Eq. (1.57a) follows from Rule II, which does not allow physical quantities
of different dimensionality to be equal, and Eq. (1.57b) comes from the desire to
have the units cancel in Eq. (1.56b) when cmtime3 → cmtime2. This creates a new
system of units, which we call the centimeter-gram or cg system of units. The
numeric parts of all physical quantities are identical in the cg and cgc systems of
units, so

N
cg
(b)= N

cgc
(b) (1.58a)

for any physical quantity b. The units of b, however, are different whenever b
contains some non-zero power of time as part of its dimensionality.

U
cg
(b) �= U

cgc
(b) (1.58b)

when

U
mlt
(b)= massx lengthy timez



40 CHAPTER 1

for real exponents x, y, z, with z �= 0. Since cmtime3 is replaced by cmtime2 = cm
in the cg system of units, we define U

cg
by the rule

U
cg
(b)=

(
cm

cmtime3

)z

U
cgc
(b). (1.58c)

A little thought shows that an equivalent definition of U
cg

is

U
cg
(b)=

(
cm

sec

)z

U
cgs
(b), (1.58d)

for any physical quantity b. Now we can formally show that from Eqs. (1.56b) and
(1.58a) we have N

cg
(c)= 1, and from Eq. (1.58c) or (1.58d) we get U

cg
(c)= 1; so in

the cg system of units

c= 1. (1.59)

Rule VI summarizes the two-step procedure used to make dimensional constants
such as c or R equal to 1.

RULE VI

The first step in setting a dimensional constant equal to 1 is to rescale, us-
ing Rule I, the units of one of its dimensions so that the numeric part of the
constant becomes equal to 1. We call this unit that has been rescaled unitA.
The second step is to treat unitA as formally equivalent to some other fun-
damental or derived unit, which we call unitB. UnitB may be multidimen-
sional and is chosen to make the dimensional constant dimensionless. The
unit that is treated as formally equivalent to unitB should be given a differ-
ent name, say unitA′, because Rule II forbids two physical quantities, for ex-
ample unitA and unitB, from being equal when they have different dimensions.

The method used to make the universal gas constant R equal to 1 and the
method used to make the speed of light equal to 1 both follow the procedure given
in Rule VI. The first step in making R = 1 is to convert from degK to degR1, mak-
ing its numeric part equal to 1. This conversion takes us from the mksK system of
units to the mksR1 system of units. We then treat the temperature unit degR1 as
formally equivalent to 1 joule, a unit of energy, giving it the new name EdegR1.
This takes us to the mksER1 system of units. The numeric parts of all physical
quantities in the mksER1 system of units are the same as in the mksR1 system of
units, but the temperature unit EdegR1 is now equal to 1 joule so temperature has
the dimensions of energy. Note that we are careful to say that degR1 �= EdegR1
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in Eq. (1.43a). The first step in making the velocity of light equal to 1 is to con-
vert from sec to cmtime3, making its numeric part equal to 1. This conversion
takes us from the cgs to the cgc system of units; for the second step we make
the cmtime unit formally equivalent to the cm by replacing the cmtime3 with the
cmtime2, going from the cgc to the cg system of units and making the velocity
of light dimensionless. Again, we are careful to say that cmtime3 �= cmtime2 [see
Eq. (1.57a)].

Giving length and time the same dimensions has consequences beyond allow-
ing us to set c = 1 in all the equations of relativistic physics. Breaking Eq. (1.54d)
up into numeric parts and units in the cgs system of units gives

fcgs sec−1 = (f0)cgssec−1









√

1 − (vcgs)
2

(ccgs)2

cm2/sec2

cm2/sec2

1 − vcgs

ccgs

cm/sec

cm/sec









= (f0)cgssec−1









√

1 − (vcgs)
2

(ccgs)2

1 − vcgs

ccgs









,

(1.60a)

where

N
cgs
(f )= f[Hz] = fcgs, U

cgs
(f )= sec−1,

N
cgs
(f0)= (f0)cgs, U

cgs
(f0)= sec−1,

N
cgs
(v)= vcgs, U

cgs
(c)= U

cgs
(v)= cm/sec.

Converting from cgs to cgc units, Eq. (1.60a) becomes

fcgs
1

ccgs
cmtime−1

3 = (f0)cgs ·
(

1

ccgs
cmtime−1

3

)

·









√

1 − (vcgs)
2

(ccgs)2

1 − vcgs

ccgs









,
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and converting from cgc to cg units gives

(
fcgs

ccgs

)

cm−1 = (f0)cgs

ccgs
· cm−1 ·









√

1 − (vcgs)
2

(ccgs)2

1 − vcgs

ccgs









. (1.60b)

In cg units all frequencies f have the dimension of length−1, so f and f0 have
units of cm−1. We see that

f = fcg cm−1 (1.61a)

and

f0 = (f0)cg cm−1, (1.61b)

because

fcg = fcgs/ccgs

and

(f0)cg = (f0)cgs/ccgs. (1.61c)

In cg units, all velocities, not just the velocity of light, are dimensionless. Starting
with cgs units and converting to cg units,

v = vcgs
cm

sec
= vcgs

ccgs

cm

cmtime3
;

we next give time the dimension of length to get, using Eq. (1.57b),

v = vcgs

ccgs

cm

cmtime2
= vcgs

ccgs
. (1.61d)

Substituting Eqs. (1.61a–d) into Eq. (1.60b) gives

f = f0 ·
(√

1 − v2

1 − v
)

. (1.62)

Although (1.62) is formally the same as Eq. (1.54d) with c = 1, it is important to
remember that now f and f0 have dimensions of length−1 and that all velocities
are dimensionless. In fact, if a physical quantity is defined to be a quantity with
dimensions, then the velocity cannot be a physical quantity in any system of units
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where c = 1. This, of course, explains why in Eq. (1.62) the quantities v and v2

can be subtracted from 1, a pure number.
Because velocity is dimensionless, the dimensions of mass, energy, and mo-

mentum are all the same in any system of units where c = 1. We first examine the
consequences of mass and energy having the same units and finish by looking at
what happens to momentum.

We use cgs units to break up Eq. (1.54a) into numeric and dimensional parts:

E[erg3]erg3 =m[gm]gm · c2
cgs

cm2

sec2
, (1.63a)

where

N
cgs
(m)=mcgs =m[gm], U

cgs
(m)= gm,

N
cgs
(E)=Ecgs = E[erg3], U

cgs
(E)= erg3.

The subscript “3” on ergs reminds us that erg3 is a unit of energy from a sys-
tem of units where mass, length, and time have separate dimensions. Converting
Eq. (1.63a) to the cgc system of units, we get, since 1 erg3 = 1 gm · cm2/sec2,

E[erg3]
c2

cgs

gm · cm2

cmtime2
3

=m[gm]gm · c2
cgs

cm2

c2
cgscmtime2

3

or

Ecgc
gm · cm2

cmtime2
3

= (m[gm]gm
) ·
(

1
cm2

cmtime2
3

)

, (1.63b)

where

N
cgc
(E)=Ecgc = E[erg3]

c2
cgs
. (1.63c)

Using Eqs. (1.57b) and (1.58a) to convert to the cg system of units, we get

Ecgcgm = Ecggm =m[gm]gm, (1.63d)

or, written as physical quantities,

E =m. (1.63e)

Equation (1.63e) is formally the same as Eq. (1.54a) with c = 1, which is no sur-
prise; and Eq. (1.63d) shows that in the cg system both energy and mass are mea-
sured in units of gm. This is a perfectly good result, but in relativistic physics—and
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particularly in relativistic particle physics—mass is often measured in units of en-
ergy instead of energy in units of mass. To represent both mass and energy in units
of energy we need to find the conversion equation between the units of mass and
energy when using units where c = 1.

We note that in the cgs system of units

1 erg3 = 1 gm · cm2

sec2 ,

which becomes in cgc units

1 erg3 = 1 gm · c−2
cgs

cm2

cmtime2
3

= c−2
cgs

(

gm · cm2

cmtime2
3

)

. (1.64a)

The cgc unit of energy is clearly U
cgc
(E)= gm · cm2 · cmtime−2

3 and, since this in-

volves a nonzero power of time, by Eq. (1.58b) the cgc unit of energy cannot equal
the cg unit of energy. From Eq. (1.64a) the cgs unit of energy, erg3, is proportional
to the cgc unit of energy 1gm · cm2 · cmtime−2

3 , so when taking the left-hand side
of Eq. (1.64a) from the cgc to the cg system of units the subscript of the right-hand
side has to change as well:

1 erg2 = 1 gm · c−2
cgs

cm2

cmtime2
2

= c−2
cgs gm, (1.64b)

where

1 erg3 �= 1 erg2. (1.64c)

It is easy to show that the erg subscript has to change. If we do not change the
subscript, we can write from Eqs. (1.64a) and (1.64b)

1 gm · c−2
cgs · cm2

cmtime2
3

= 1 erg3
?= 1 erg2 = c−2

cgs gm · cm2

cmtime2
2

or

cmtime3
?= cmtime2, (1.65)

which contradicts Eq. (1.57a). Clearly, any unit of energy changes its fundamental
nature when going from a system where mass, length, and time have separate di-
mensions to a system where only mass and length have separate dimensions. Equa-
tion (1.58b) above states that the units of any physical quantity in the cgc system
which have a nonzero power of time cannot equal the units of the same quantity in
the cg system. This statement, although true, is now seen to be too specific because
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it only applies to the transition from the cgc to the cg systems of units. We need a
more general statement.

RULE VII

When the abc system of units lacks one of the dimensions of the ABC sys-
tem of units, and b is any physical quantity which in the ABC system of units
has a nonzero power of this dimension, then U

abc
(b) �= U

ABC
(b) no matter what the

relationship of N
abc
(b) to N

ABC
(b).

The demonstration that erg2 cannot equal erg3 is an example of how Rule VII
works. Rule II forbids physical quantities with different dimensions from being
equal, so in the strictest sense Rule VII is just a special case of Rule II. There is
no harm, however, in using Rule VII to emphasize this particular consequence of
Rule II when we change the dimensionality of a set of units.

Equation (1.64b) is what we have been looking for—the conversion equation
between erg2 and gm, an energy unit and a mass unit in units where c = 1. Hence
this is all we need to find the numeric parts of Eq. (1.63e) when both mass and
energy are measured in units of erg2. Starting with (1.63d), which is just (1.63e)
broken down into numeric parts and units when both mass and energy are measured
in units of gm in the cg system, we have

Ecgcgm =m[gm]gm.

Using Ecgc = E[erg3]/c2
cgs from Eq. (1.63c) and 1 gm = c2

cgserg2 from Eq. (1.64b)
gives

E[erg3]
c2

cgs
· c2

cgserg2 =m[gm]c2
cgserg2

or

m[erg2] · erg2 =E[erg3] · erg2 (1.66a)

with

m[erg2] =m[gm] · c2
cgs. (1.66b)

Equation (1.66b) is a specific instance of the general rule of thumb for relativistic
physics: to find the mass in energy units when c = 1, multiply by the square of the
speed of light. Equation (1.66a) is just E =m with both energy and mass written in
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energy units rather than mass units. For this interpretation to make sense we must
have

E[erg3] =E[erg2]. (1.66c)

A little thought shows that the numeric part of a quantity of energy measured in
erg2 must indeed equal the numeric part of that same quantity of energy measured
in erg3. When comparing an unknown quantity of energy in the laboratory to an-
other quantity of energy that we know to be 1 erg, it does not matter whether that
1 erg is 1 erg2 or 1 erg3—the laboratory procedure will be the same, the numeri-
cal result of the measurement will be the same, and so the numeric part assigned
to the quantity of energy will be the same. The subscript given to erg is relevant
only to the type of algebraic manipulations we have decided to permit in the unit
equations. If erg belongs to the cgs system of units, so that

1 erg �= c−2
cgs gm,

then erg = erg3; and if we are working in units where c = 1 so that

1 erg = c−2
cgs gm,

then erg = erg2. This is why physicists customarily neglect the difference between
erg3 and erg2, calling both units 1 erg of energy and relying on context to distin-
guish between the two types of unit.

In particle physics, the mass and energy of elementary particles are often mea-
sured in eV standing for electron-volt,MeV standing for mega (or 106) electron-
volt, and GeV standing for giga (or 109) electron-volt. The electron-volt is a unit
of energy, and in a system of units where time has a separate dimension so that
c �= 1,

1 eV3 = e[coul]joule3
∼= 1.60218 × 10−19 joule3. (1.67a)

The subscript 3 again shows that mass, length, and time are recognized as separate
dimensions, and e[coul] is the numeric part of an electron or proton electric charge
measured in coulombs (coul).∗ This is, of course, just a pure number

e[coul] = 1.60218 × 10−19; (1.67b)

and, since 1 erg3 = 10−7 joule3,

1 eV3 = 107 · e[coul] · erg3. (1.67c)

∗ The coulomb unit of charge is explained in Chapter 2.
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Using 1 cmtime3 = c−1
cgs sec from Eq. (1.56a), we can write, going from the cgs to

the cgc system,

1 eV3 = 107 · e[coul] · gm · cm2

sec2

= 107 · e[coul] · c−2
cgs · gm · cm2

cmtime2
3

.

(1.68a)

Changing over to the cg system gives

1 eV2 = 107e[coul]
c2

cgs
· gm. (1.68b)

Thus a mass m in gm,

m=m[gm] gm,

becomes, working in the cg system of units and using Eq. (1.68b),

m =m[gm] · c2
cgs

107e[coul]
eV2

=m[eV2]eV2,

(1.69a)

where

m[eV2] = c
2
cgsm[gm]

107e[coul]
. (1.69b)

The mass of the electron in grams,9.11 × 10−28 gm, transforms using
Eq. (1.69b) to

[

(9.11 × 10−28)(2.99792 × 1010)2

1.60218 × 10−12

]

eV2
∼= 5.11 × 105 eV2 = 0.511 MeV2;

and the mass of the proton, 1.6727 × 10−24gm, transforms to a mass in eV2 of

[

(1.6727 × 10−24)(2.99792 × 1010)2

1.60218 × 10−12

]

eV2
∼= 9.383 × 108 eV2 = 938.3 MeV2.

As with ergs, it is customary to neglect the difference between eV3 and eV2, relying
on context to show which type of energy units are being used.
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In classical—that is, nonrelativistic—physics, the momentum p of an object is
the product of its mass and velocity:

p =mv.

The relativistic formula for the momentum given in Eq. (1.54c) is

p = mv
√

1 − v
2

c2

.

In the mks system, the classical formula assigns the momentum units of

U
mks
(p)= kg · m/sec. (1.70)

We can break the relativistic formula for momentum into numeric parts and units
to get

pmks

(
kg · m

sec

)

=
mmkskg

(

vmks
m

sec

)

√

1 − v
2
mks

c2
mks

, (1.71a)

where

N
mks
(p)= p[kg·m·sec−1] = pmks,

N
mks
(p)=m[kg] =mmks,

N
mks
(v)= v[m·sec−1] = vmks,

(1.71b)

and

N
mks
(c)= cmks = 10−2 · ccgs. (1.71c)

We see that in mks units the relativistic momentum is still measured in kg · m/sec.
Using 1 sec = ccgscmtime3 from Eq. (1.56a) to convert sec to cmtime3 gives

1 kg · m/sec = 1
kg · m

ccgscmtime3
= 105gm · cm

ccgscmtime3
, (1.72)
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where the last step uses 1 kg = 103gm and 1 m = 102 cm. Equation (1.72) equates
the mks and cgc units of momentum, so by Rule I

N
cgc
(p)= 105c−1

cgs N
mks
(p), (1.73a)

or, using Eq. (1.58a),

N
cg
(p)= 105c−1

cgs N
mks
(p). (1.73b)

We know that in the cg system of units c= 1 and v is dimensionless,

U
cg
(v)= 1, (1.74)

so Eq. (1.54c) becomes

p = mv√
1 − v2

(1.75)

to give, applying U
cg

to both sides,

U
cg
(p)= U

cg
(m)= gm. (1.76a)

This reminds us of Eq. (1.63d), where both energy and mass end up being measured
in gm in the cg system of units; since energy, mass, and momentum have the same
dimensions in any system of units with c = 1, it is no surprise to now find that
momentum is also measured in gm. This is again a perfectly good result—but
particle physicists often prefer to use energy-based units rather than gm to measure
momentum. From Eq. (1.68b) we get

U
cg
(p)= 10−7c2

cgs

e[coul]
eV2 (1.76b)

so that, using Rule I, the numeric part of a momentum p measured in eV2 units is

p[eV2] = 10−7c2
cgs

e[coul]
N
cg
(p)

or

p[eV2] = 10−2ccgs

e[coul]
N

mks
(p)= 10−2ccgs

e[coul]
pmks, (1.76c)

where Eqs. (1.73b) and (1.71b) are used to write the right-hand side in terms of the
numeric part of the momentum in mks units. Because it is important to distinguish
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momentum from mass and energy in relativistic particle physics, the eV2 unit of
momentum is often written as eV/c. The c in the denominator is a dimensionally
meaningless label to show that eV energy units are being used to measure mo-
mentum. When eV/c is too small to put the decimal point in a convenient place,
units of MeV/c= 106 eV/c or GeV/c= 109 eV/c are used. With this convention,
Eq. (1.76c) becomes

p[Mev/c] = 10−8ccgs

e[coul]
pmks (1.76d)

or

p[Gev/c] = 10−11ccgs

e[coul]
pmks. (1.76e)

1.11 INVARIANT UNITS, CONNECTING UNITS, AND ADDITION OF

EXTRA DIMENSIONS

Based on the work done so far, it makes sense to divide units into connecting
units and invariant units when adding or removing dimensions from a physical
equation. We say that a connecting unit is any fundamental or derived unit that
gains or loses a dimension in this transition, and an invariant unit is a fundamental
or derived unit that does not. In the discussion on how to make the universal gas
constant R equal to 1, the units of temperature (degree Kelvin, degree Rankine,
etc.), and any other derived units containing some nonzero power of temperature
in their dimensional formulas, are all connecting units. The other fundamental and
derived cgs and mks units—such as gm, m, newton, sec, joule, erg, etc.—are
invariant units because their dimensional formulas do not contain nonzero powers
of temperature. When making the velocity of light c equal to 1, any fundamental
or derived unit containing a nonzero power of time in its dimensional formula is a
connecting unit, and any fundamental or derived unit that does not is an invariant
unit. So erg, cmtime,newton, eV, etc., are all connecting units, and gm,kg, cm,
etc., are invariant units. We note that this definition makes the sec a connecting unit,
and indeed we could give an ordinary sec the label sec3 and the reduced-dimension
sec the label sec2, with

1 sec2 = ccgscmtime2 = ccgscm �= sec3,

although, as we have seen, the cmtime unit is a more useful concept. That the
sec3 does not equal sec2 points out another aspect of connecting units which dis-
tinguishes them from invariant units. A connecting unit is always really a pair of
units whereas an invariant unit is not. When going from the cgc to the cg system
of units, the invariant unit gm is always a gm and the invariant unit cm is always a
cm, but the connecting unit cmtime is really the pair of units (cmtime3, cmtime2);
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and we see that the other connecting units (erg3, erg2), (eV3, eV2), and so on, are
also really pairs of units. Similarly, when transforming the ideal gas law to make
R equal to 1, the connecting-unit pair (degR1,EdegR1) takes us from the mksR1
to the mksER1 system of units, while the invariant units kg,m,newton, sec, joule,
etc., do not change.

The concepts of connecting and invariant units reflect how we have decided to
add and remove dimensions rather than the fundamental nature of physical reality.
For example, when setting c = 1 we stop recognizing the separate dimension of
time and instead give it the dimension of length, making the sec a connecting unit
and the cm an invariant unit. We could, however, re-do this conversion by no longer
recognizing the separate dimension of space, instead giving it the same dimension
as time. The conversion formulas would end up the same, as would the physical
equations, but now the sec (and other units of time) would be invariant units, and
the cm (and other units of length) would be connecting units.

A relativistic physicist might object to calling either the cm or the sec an invari-
ant unit, saying that what is really going on is that time and space are treated as the
same physical quantity. From this physicist’s perspective it is better to say that all
units of time are given the combined dimension spacetime, and all units of length
are also given the combined dimension spacetime. This is a perfectly valid point of
view, and by pointing out that both space and time have been given a new combined
dimension it reminds us that calling time a length or length a time does not make
lengths and times identical—there is a difference between the two.∗ However, that
same physicist, when shown the procedure used to make R = 1 in the ideal gas law,
might say that giving temperature a separate dimension is a historical accident and
that the true dimension of temperature really is energy. To point out the similarity
between setting c = 1 and setting R = 1, we will always talk about adding and
removing dimensions from the connecting units rather than combining dimensions
or discovering a physical quantity’s true dimension.

Adding back discarded dimensions is not difficult as long as Rule VIII is taken
into account.

RULE VIII

The first step in adding a dimension to a physical equation or formula is to use
the meaning of the extra dimension to specify how the connecting units attach to
already existing variables. The second step is to rearrange the equation or formula
so that it obeys Rules II, IV, and V in both the invariant and connecting units. Each
fundamental unit for which an extra dimension is recognized must separately obey
Rules II, IV, and V. The final step is to recognize the extra dimensions.

∗ This same point has been attributed to Abraham Lincoln when he said that calling a dog’s tail a
leg doesn’t make it a leg.
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To see how this works, we start with a very simple example,

E =m,

in units where c = 1. If both E and m are measured in the energy units erg2, as in
Eq. (1.66a), we have

E[erg2] · erg2 =m[erg2] · erg2, (1.77a)

where E[erg3] =E[erg2] from Eq. (1.66c) has been used to replace E[erg3] by E[erg2].
We note (step 1 of Rule VIII) that recognizing the separate dimension of time
requires that energy and mass be measured in separate units. Since recognizing
the separate dimension of time means that energy has dimensions mass · length2 ·
time−2, a mass unit should equal energy · length−2 · time2, and the right-hand side
of Eq. (1.77a) should be written as

E[erg2]erg2 =m[erg2]erg2

(
cmtime2

cm

)2

. (1.77b)

We can do this to Eq. (1.77a) because cm = cmtime2 in the cg system of units,
so the right-hand side of the equation has just been multiplied by 1 squared. We
note (step 2 of Rule VIII) that Eq. (1.77b) obeys Rule II in the cg system of units,
where length and time have the same dimension; but it does not obey Rule II when
the cm and cmtime2 are analyzed separately, because its right-hand side has the
ratio cmtime2/cm, which the left-hand side does not. Another way of looking at
this is to realize that if the time dimension were recognized now (the final step of
Rule VIII) by replacing all the subscript 2s with subscript 3s, Eq. (1.77b) would
not obey Rule II. Therefore, we multiply the right-hand side of Eq. (1.77b) by

(
cm

cmtime2

)2

= 12 = 1,

still working in units where cm = cmtime2, to get

E[erg2]erg2 =m[erg2]erg2

(
cmtime2

cm

)2( cm

cmtime2

)2

. (1.77c)

The units which make up erg2 are balanced, since erg2 appears on both sides of the
equation; so Eq. (1.77c) obeys Rule II in all the fundamental units that acquire a
separate dimension. Therefore, we can complete the process outlined in Rule VIII
by recognizing the separate dimension of time:

E[erg2]erg3 =m[erg2]erg3

(
cmtime3

cm

)2( cm

cmtime3

)2

. (1.77d)
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Substitution of Eqs. (1.56a) and (1.66b) gives

E[erg2]erg3 = (
m[gm]c2

cgs

) · erg3 ·
(
c−2

cgssec2

cm2

)

·
(

cm2

c−2
cgssec2

)

=m[gm]

(

erg3 · sec2

cm2

)

·
(

c2
cgs

cm2

sec2

)

=m[gm]gm ·
(

ccgs
cm

sec

)2

,

(1.77e)

where the last step uses 1 gm = erg3 · sec2 · cm−2. The physical quantities are now
properly set up to give

E =mc2,

which is the same as Eq. (1.54a), the original relativistic equality between mass
and energy. This shows that the extra dimension of time has been correctly added
to the formula.

We can get the same result starting with Eq. (1.63d). Because we are heading
back to recognizing time as a separate dimension, we write Eq. (1.63d) as

Ecgcgm =m[gm]gm.

The first step of Rule VIII leads us to multiply the left-hand side by

1 =
(

cm

cmtime2

)2

,

so that when the separate dimension of time is recognized energy has the correct
mass · length2 · time−2 units:

Ecgcgm

(
cm

cmtime2

)2

=m[gm]gm.

The second step of Rule VIII now requires us to multiply the left-hand side by

1 =
(

cmtime2

cm

)2

,

so that Rule II is obeyed when the fundamental units that acquire a new dimension
are analyzed separately:

Ecgcgm

(
cm

cmtime2

)2(cmtime2

cm

)2

=m[gm]gm.
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Now we perform the final step of Rule VIII, recognizing the separate dimension of
time to get

Ecgcgm

(
cm

cmtime3

)2(cmtime3

cm

)2

=m[gm]gm.

Equation (1.56a) states that cmtime3 = c−1
cgs sec, allowing us to write

Ecgcgm

(
cm

c−1
cgssec

)2(c−1
cgssec

cm

)2

=m[gm]gm.

Substitution of (1.63c) gives

E[erg3]c
−2
cgs

(

gm
cm2

sec2

)

·
(

sec

cm

)2

=m[gm]gm,

or, using 1 erg3 = gm · cm2 · sec−2,

E[erg3]erg3 ·





1

ccgs
cm

sec






2

=m[gm]gm.

Written with physical quantities, this becomes

E

c2
=m or E =mc2,

which is again the desired result.
More complicated formulas require us to watch Rule IV when using Rule VIII.

Equation (1.62) has both a dimensionless velocity v as well as frequencies f and
f0 in units of cm−1:

f = f0 ·
(√

1 − v2

1 − v
)

.

When time is a separate dimension, the frequencies have the dimension time−1

and the velocities have dimensions of length · time−1. The first step of Rule VIII
suggests we write this equation as

fcgcmtime−1
2 = (f0)cgcmtime−1

2 ·









√

1 −
(

vcg
cm

cmtime2

)2

1 − vcg
cm

cmtime2









. (1.78a)
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In Eq. (1.78a) we are working with the cg system of units, so the dimensionless
velocities can be written as vcgcm/cmtime2 because

1 = cm

cmtime2
.

Applying the second step of Rule VIII, we see that Rule IV is not obeyed separately
by the fundamental units that acquire a new dimension. Therefore, we multiply the
velocity v by

1 = cmtime2

cm

to get

fcgcmtime−1
2 = (f0)cgcmtime−1

2 ·









√

1 −
(

vcg
cm

cmtime2
· cmtime2

cm

)2

(

1 − vcg
cm

cmtime2
· cmtime2

cm

)









,

Having satisfied the second step of Rule VIII, we perform the final step of
Rule VIII by recognizing the separate dimension of time to get

fcgccmtime−1
3 = (f0)cgccmtime−1

3 ·









√

1 −
(

vcgc
cm

cmtime3
· cmtime3

cm

)2

(

1 − vcgc
cm

cmtime3
· cmtime3

cm

)









,

(1.78b)

where we have used Eq. (1.58a) to replace the numeric parts of physical quanti-
ties in the cg system of units by the numeric parts of physical quantities in the
cgc system of units. The cmtime3 unit time equals c−1

cgs · sec [see Eq. (1.56a)] so
Eq. (1.78b) can be written as

[fcgcccgs]sec−1 =
[

(f0)cgcccgs

]

sec−1 ·






√
√
√
√
√
√1 −

(

vcgcccgs
cm

sec

)2





1

ccgs
cm

sec






2




1 −

(

vcgcccgs
cm

sec

)

·





1

ccgs
cm

sec
















.

(1.78c)
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We know by Rule I that

fcgs = fcgcccgs, (f0)cgs = (f0)cgcccgs,

and

vcgs = vcgcccgs.

Therefore, Eq. (1.78c) can be written as

f = f0 ·









√

1 − v
2

c2

1 − v
c









, (1.78d)

which is the same as what we started out with, Eq. (1.54d). Note that we could have
gone directly from Eq. (1.78b) to (1.78d) by recognizing both that 1 cm/cmtime3
is a perfectly good representation of the velocity of light c as a physical quantity
in the cgc system of units, and that the velocity v as well as the frequencies f and
f0 are also correctly represented as physical quantities in the cgc system of units.
Since physical equations and formulas are valid in any system of units with the
same number and type of dimensions, Eq. (1.78d) follows at once.

1.12 SIMULTANEOUS REMOVAL OF h̄, c, AND k

Advanced textbooks in relativistic quantum mechanics do not stop with making
c = 1; they customarily choose units in which another dimensional constant h̄,
which is Planck’s constant h divided by 2π , is also equal to 1. A good equation for
showing how this can be useful is Planck’s law for black-body radiation,

nωT =
(

1

2π

)2(
ω 2

c2

)

·
[

exp

(
h̄ω

kT

)

− 1

]−1

, (1.79a)

where nωT · dω is the number of photons having an angular frequency (in rad/sec)
between ω and ω+ dω emitted per unit time and per unit area from a black-body
surface at temperature T into a vacuum. The physical quantity nωT ·dω has units of
number of photons, which is dimensionless, per unit area per unit time. Since dω
has units of radians, which is also dimensionless, per unit time, it follows that nωT
has the dimension of inverse area or length−2. Variable k is Boltzmann’s constant,
which has already been mentioned in Eqs. (1.41a, b) above; c is again the velocity
of light, and

h̄= h

2π
∼= 1.054 × 10−27erg · sec. (1.79b)

Equation (1.79a) obeys Rules II, IV, and V, as expected.
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We now go one step further than most textbooks of relativistic quantum me-
chanics by constructing a system of units where h̄= c = k = 1. We start by setting
up the cgsK system of units, which is just the cgs system of units with temperature
measured in degK and the other three dimensions of length,mass, and time mea-
sured in cm,gm, and sec, respectively. It is the same as the mksK system of units
used earlier in Section 1.8, only now the basic units for length and mass are cm
and gm instead of m and kg. Rule I can be used to write Eqs. (1.41a, b) in cgsK
units (remember that 1 erg = 10−7joule):

k = kmksK
joule

degK
= kcgsK

erg

degK
= kcgsK

gm · cm2

sec2 · degK
, (1.80a)

where

kcgsK = N
cgsK
(k)= 107 · kmksK

∼= 1.380 × 10−16. (1.80b)

Equations (1.55a) and (1.79b) have the same form in cgs and cgsK units because
their units do not contain a nonzero power of degK, so

c = ccgs
cm

sec
(1.81a)

and

h̄= h̄cgserg · sec = h̄cgs
gm · cm2

sec
, (1.81b)

where

h̄cgs = N
cgs
(h̄)= N

cgsK
(h̄)∼= 1.054 × 10−27. (1.81c)

The three constants h̄, c, and k are eliminated from our equations by reducing the
cgsK system of units to the single dimension length measured in cm. The first step
is to rescale the units of mass, time, and temperature using the unspecified numeric
constants α,β , and γ :

1 gm = α · umass4, (1.82a)

1 sec = β · utime4, (1.82b)

1 degK = γ · utemp4. (1.82c)

The subscript “4” shows that the four separate dimensions of length, mass, time,
and temperature are still recognized when using the umass4,utime4, and utemp4
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units. We call the system of units based on the cm,umass4,utime4, and utemp4
units for length, mass, time, and temperature the cmαβγ system of units. In the

cmαβγ system of units c, h̄, and k become

c =
(
ccgs

β

)
cm

utime4
, (1.83a)

h̄=
(

h̄cgs
α

β

)

· umass4 · cm2

utime4
, (1.83b)

k =
(

kcgsK
α

β 2γ

)

· umass4 · cm2

utime2
4 · utemp4

. (1.83c)

To complete the first step of Rule VI, we choose α,β, γ such that

ccgs

β
= 1, (1.84a)

α

β
h̄cgs = 1, (1.84b)

α kcgsK

γ β 2
= 1. (1.84c)

From Eq. (1.84a) we get

β = ccgs, (1.85)

which makes Eq. (1.82b)

1 sec = ccgs · utime4. (1.86a)

This is the same as Eq. (1.56a) and shows that we can regard

utime4 = cmtime3 (1.86b)

as the same unit of time. Substitution of Eq. (1.85) into Eq. (1.84b) gives

α = β

h̄cgs
= ccgs

h̄cgs
, (1.87a)

so that, from Eq. (1.82a)

1 gm = ccgs

h̄cgs
· umass4. (1.87b)

Substitution of Eqs. (1.85) and (1.87a) into Eq. (1.84c) gives

γ = αkcgsK

β 2
= ccgs

h̄cgs
· 1

c2
cgs

· kcgsK = kcgsK

ccgsh̄cgs
, (1.88a)
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which makes Eq. (1.82c)

1 degK = kcgsK

ccgsh̄cgs
· utemp4. (1.88b)

Now we use Rule I and Eqs. (1.86a) and (1.88b) to write Eq. (1.79a) in terms of
the cmαβγ system of units:

N
cmαβγ

(nω T ) · cm−2 =
(

1

2π

)2










(ωcmαβγ )
2utime−2

4
(

1 · cm

utime4

)2










×






exp









(

1 · umass4 · cm2

utime4

)

·
(

ωcmαβγ utime−1
4

)

(

1 · umass4 · cm2

utime2
4 · utemp4

)

·
(

Tcmαβγ utemp4

)









− 1






−1

,

(1.89a)

where

ωcmαβγ = N
cmαβγ

(ω)= c−1
cgs N

cgsK
(ω)= c−1

cgs N
cgs
(ω), (1.89b)

Tcmαβγ = N
cmαβγ

(T )= kcgsK

ccgsh̄cgs
N

cgsK
(T )= kcgsK

ccgsh̄cgs
· T[degK], (1.89c)

1 · cm

utime4
= c, (1.89d)

1 · umass4 · cm2

utime4
= h̄, (1.89e)

and

1 · umass4 · cm2

utime2
4 · utemp4

= k. (1.89f)

The argument of exp is so complicated that it is a relief to perform the second
step of Rule VI and stop recognizing the separate dimensions of mass, time, and
temperature. We replace the subscript 4s by subscript 1s to show that only length
has a dimension:

1 umass1 = 1 cm−1, (1.90a)
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1 utime1 = 1 cm, (1.90b)

1 utemp1 = 1 cm−1. (1.90c)

Equations (1.86a), (1.87b), and (1.88b) can now be written as

1 sec1 = ccgs · cm, (1.90d)

1 gm1 = ccgs

h̄cgs
· cm−1, (1.90e)

and

1 degK1 = kcgsK

ccgsh̄cgs
· cm−1. (1.90f)

This system of units is called the cm1 system of units, and for any physical quan-
tity b

N
cm1
(b)= N

cmαβγ
(b). (1.91a)

This requires all physical quantities to have the same numeric parts in the cm1 and
the cmαβγ system of units. If the dimensional formula for b is

massx lengthy timeztemperatureu

for real exponents x, y, z, and u, then the U operator for the cm1 system of units is

U
cm1
(b) =

(
cm−1

umass4

)x( cm−1

utemp4

)u( cm

utime4

)z

U
cmαβγ

(b)

=
(

cm−1

gm

)x(cm−1

degK

)u( cm

sec

)z

U
cgsK
(b).

(1.91b)

Equation (1.89a) becomes

N
cm1
(nω T ) ·cm−2 =

(
1

2π

)2(

ωcm1cm−1
)2

·
[

exp

(
ωcm1cm−1

Tcm1cm−1

)

− 1

]−1

, (1.92a)

where

ωcm1 = ωcmαβγ = N
cm1
(ω)= N

cmαβγ
(ω) (1.92b)

and

Tcm1 = Tcmαβγ = N
cm1
(T )= N

cmαβγ
(T ). (1.92c)
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Because ω = ωcm1cm−1 and T = Tcm1cm−1 are both physical quantities,
Eq. (1.92a) can be written as

nωT =
(
ω

2π

)2

· 1

eω/T − 1
. (1.93)

This is, as expected, Eq. (1.79a) with h̄, c, k replaced by 1.
Using Rule VIII to return to a system of units where mass, length, time, and

temperature have separate dimensions is less of a challenge than it looks. The first
point worth noting is that the only invariant unit is the cm; every other non-length
unit is a connecting unit. Working with the ω/T exponent of e, from the first step
of Rule VIII we have in the cm1 system of units

ω

T
= ωcm1utime−1

1

Tcm1utemp1
. (1.94)

By Rule V and the second step of Rule VIII, the right-hand side of Eq. (1.94)
should be dimensionless in both utime and utemp, so we multiply it by

utemp1

utime−1
1

= 1

to get

ω

T
= ωcm1

Tcm1
· utime−1

1

utemp1
· utemp1

utime−1
1

. (1.95a)

Recognizing the separate dimensions of mass, time, and temperature transforms
the right-hand side of (1.95a) to

ω cm1

Tcm1
· utime−1

4

utemp4
· utemp4

utime−1
4

=
(

ωcmαβγ

Tcmαβγ
· utime−1

4

utemp4

)

·
(

1 · utemp4

utime−1
4

)

, (1.95b)

where Eqs. (1.92b, c) have been used to replace ωcm1 and Tcm1 by their equivalent
numerics in the cmαβγ system of units. The dimensional constant

: = 1 · utemp4

utime−1
4

(1.96)

does not look familiar, but it becomes recognizable if we convert it to the cgsK
system of units. Equations (1.82a–c) give

: = 1 · utemp4

utime−1
4

= (γ−1β−1) · degK · sec.
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From Eqs. (1.85) and (1.88a)

ccgsh̄cgs

kcgsK
· 1

ccgs
= h̄cgs

kcgsK
.

With this clue and the definitions of h̄ and k, we easily see that

: =
(
h̄cgs

kcgsK

)

· degK · sec =








h̄cgs
gm · cm2

sec

kcgsK
gm · cm2

sec2 · degK








= h̄
k
. (1.97)

Equation (1.97) relates the physical quantities :, h̄, and k in any system of
units recognizing mass, length, time, and temperature as its four fundamental di-
mensions. Therefore, : = h̄/k in the cmαβγ system of units, and we can use
Eqs. (1.96) and (1.95b) to write

ωcm1

Tcm1
· utime−1

4

utemp4
· utemp4

utime−1
4

=
(
ωcmαβγ

Tcmαβγ
· utime−1

4

utemp4

)

·: =
(
ω

T

)

· h̄
k
, (1.98a)

where

ω= ωcmαβγ utime−1
4 (1.98b)

and

T = Tcmαβγ utemp4 (1.98c)

are recognized as the physical quantities they are, showing that Rule VIII has been
successfully applied to the ω/T exponent of e.

Now we apply Rule VIII to the nωT and ω2 of Eq. (1.93). The nωT on the left-
hand side of Eq. (1.93) starts with dimensions of inverse area in the cgsK system
of units; and since cm is an invariant unit when going from the cgsK to the cmαβγ
to the cm1 system of units, we know that nωT has units of cm−2 in Eq. (1.93).
Applying U

cm1
to both sides of Eq. (1.93) gives

U
cm1
(nωT ) = U

cm1
(ω2) · U

cm1

[
(2π)−2

] · U
cm1

[
(eω/T − 1)−1

]

= U
cm1
(ω2) · 1 · 1 = U

cm1
(ω2).

(1.99)

In cm1 units both nωT and ω2 have units of cm−2, balancing this equation in the
cm1 system of units; but the first step of Rule VIII requires the units of ω2 to be
written as utime−2

1 = cm−2 because ω is an angular frequency:

ω2 = (ωcm1utime−1
1

)2
. (1.100)
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The second step of Rule VIII requires that nωT and ω2 be separately balanced in
both the cm and utime1 units, so we multiply the right-hand side of Eq. (1.100) by
utime2

1/cm2, which equals 1 in cm1 units, to get

ω2 =
(

ωcm1utime−1
1 · utime1

cm

)2

. (1.101)

Now we are ready to apply Rule VIII to all of Eq. (1.93). Substituting
Eqs. (1.95a) and (1.101) into Eq. (1.93) gives

nωT =
(

1

2π

)2(

ωcm1utime−1
1 · utime1

cm

)2

×
[

exp

(
ωcm1

Tcm1
· utime−1

1

utemp1
· utemp1

utime−1
1

)

− 1

]−1

.

(1.102a)

The nωT has units of cm−2, so this formula is separately balanced in the
cm,utime1, and utemp1 units as required by the second step of Rule VIII. Per-
forming the final step of Rule VIII, we recognize the separate dimensions of mass,
time, and temperature:

nωT =
(

1

2π

)2(

ωcm1utime−1
4 · utime4

cm

)2[

exp

(

ωcm1

Tcm1
· utime−1

4

utemp4
· utemp4

utime−1
4

)

− 1

]−1

.

Equations (1.92b) and (1.98a) are used to get

nωT =
(

1

2π

)2(

ωcmαβγ utime−1
4

)2
(

1 · utime4

cm

)2[

exp

(
h̄ω

kT

)

− 1

]−1

. (1.102b)

The left-hand side of (1.102b) does not change because it has units of cm−2 and
the cm is an invariant unit when going from the cm1 to the cmαβγ system of units.
From Eq. (1.89d) we see that

1 · utime4

cm
= 1

c
,

and from Eq. (1.98b)
(
ωcmαβγ utime−1

4

)2 = ω2

because these are true physical quantities in any system of units based on the four
fundamental dimensions mass, length, time, and temperature. Equation (1.102b)
now becomes

nωT =
(
ω

2πc

)2

·
[

exp

(
h̄ω

kT

)

− 1

]−1

. (1.102c)

This last step returns us to Eq. (1.79a), the original formula for nωT .
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CHAPTER 2

UNITS ASSOCIATED WITH NINETEENTH-CENTURY
ELECTROMAGNETIC THEORY

At the beginning of the nineteenth century, the study of electricity and magnetism
were two separate disciplines with separate sets of units. Both sets of units recog-
nized only mass, length, and time as fundamental physical dimensions, because the
recent eighteenth-century triumphs of Newtonian physics had predisposed scien-
tists to assume that these three dimensions were the only ones needed to describe
nature. The conceptual neatness of separate units disappeared, however, during the
first half of the nineteenth century, due to the discovery of ever more profound con-
nections between electrical and magnetic phenomena, a process culminating with
Maxwell’s identification of light as electromagnetic radiation. Units for the new
combined discipline of electromagnetism could be created either by extending the
electrical units to cover magnetism, creating a new system called electrostatic units
(esu), or by extending the magnetic units to cover electricity, creating a new system
called electromagnetic units (emu). We shall see that both procedures gained wide-
spread acceptance, requiring scientists to become familiar with both systems. To
make the situation even more confusing, the two systems gave units that depended
in different ways on mass, length, and time to the same electromagnetic physical
quantities. Consequently, esu and emu units, unlike the units of Newtonian physics,
are different in kind as well as size; this inevitably became a source of discontent to
those who felt that the same kind of physical quantity should always be measured
by the same kind of physical unit.

During the second half of the nineteenth century, the situation began to sort
itself out with the growth and adoption of “practical” units based on a rescaled
system of emu units. Although these units did not long survive the nineteenth cen-
tury, historically speaking they paved the way for the most widespread electro-
magnetic system in use today, the rationalized mks system. In this chapter we not
only present the system of practical units but also discuss the growing realization
that electromagnetic units could be based on four, rather than three, fundamental
dimensions— mass, length, and time, and something electromagnetic (for exam-
ple, charge). The easiest way to show how this all fits together is to sketch in a
very old-fashioned, nineteenth-century version of electromagnetic theory, showing
how nineteenth-century formalism influenced the development of the first electro-
magnetic units. Every attempt is made to point out where modern practice differs
from what is being presented; however, none of the facts or equations given here
are in any sense wrong—they are just old-fashioned, occasionally looking strange

65
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to the eye of the modern engineer or physicist.∗ The text assumes a good but not
necessarily advanced knowledge of electromagnetism, only presenting as much in-
formation as is required to understand the system of units being discussed; and, the
emphasis is always on how to transform from one set of units to another, showing
how the equations and formulas change when this occurs.

2.1 ELECTRIC FIELDS, MAGNETIC FIELDS, AND COULOMB’S LAW

Modern introductions to electromagnetic theory almost always begin with
Coulomb’s law for the force F between two point charges Q1 and Q2. Written
in nineteenth-century notation it is

F = Q1Q2

ε0r2
, (2.1a)

or in vector form

�F12 = Q1Q2

ε0r2
r̂12, (2.1b)

where r is the distance between the point charges, �F12 is the vector force of charge
1 on charge 2, and ε0 is a constant that came to be called the permittivity of free
space. The symbol r̂12 represents a dimensionless vector pointing from charge 1 to
charge 2, whose length is the numeric value 1; vectors of this sort are written with
a caret and called dimensionless unit vectors.

Perhaps the most basic nineteenth-century construct that has disappeared
from today’s formulations of electromagnetic theory is the point magnetic pole;
nineteenth-century introductions to electromagnetic theory give as much promi-
nence to Coulomb’s law for the force between two point magnetic poles as they do
to Coulomb’s law for the force between two point charges. Coulomb’s law for the
force F between two point magnetic poles having pole strengths (pH )1 and (pH )2
is, written in nineteenth-century notation,

F = (pH )1(pH )2

µ0r2
, (2.2a)

or in vector form

�F12 = (pH )1(pH )2

µ0r2 r̂12, (2.2b)

∗ Fortunately we can leave out altogether the idea of the luminiferous ether, the hypothetical
nineteenth-century medium through which electromagnetic radiation propagated, because it played
no significant role in the development of nineteenth-century units.
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where r is the distance between the point poles, �F12 is the vector force of pole 1 on
pole 2, r̂12 is the dimensionless unit vector pointing from pole 1 to pole 2, and µ0 is
a constant that came to be called the magnetic permeability of free space. When a
specified point charge interacts with other point charges, the Coulomb forces from
the other charges add together like vectors to give the total force on the specified
charge. The same is true for the Coulomb forces of multiple magnetic poles; when
a specified pole interacts with other magnetic poles, the forces from the other poles
add together like vectors to give the total force on the specified pole.

Permanent magnets have two poles that are equal in magnitude and opposite
in sign. Figure 2.1 shows that when a typical bar magnet or compass needle is
suspended and allowed to swing freely in a plane parallel to the earth’s surface,
one pole is always pulled north and the other pole south. The north-seeking pole
of the magnet, or north pole for short, is assigned a positive pole strength; and
the south-seeking or south pole is assigned a negative pole strength. Nineteenth-
century texts are always quick to point out that, unlike electric charge, a magnetic
pole cannot be isolated. If a bar magnet or compass needle is cut in half we get two
smaller magnets or needles, each with equal and opposite north and south magnetic
poles (see Fig. 2.2 ). Indeed, to this day there have been no confirmed observations
of isolated magnetic poles (called magnetic monopoles), although experiments are
still occasionally performed to see whether they exist. For this reason, Eqs. (2.2a, b)
are interpreted as describing the attractive or repulsive force between the poles of
two long, thin magnets whose opposite poles are so distant that their influence can

Figure 2.1 When a bar magnet or compass needle is allowed to swing freely, the
positive pole of the magnet is pulled toward the earth’s north pole and the negative
pole of the magnet is pulled toward the earth’s south pole. The positive pole is
called the magnet’s north (short for north-seeking) pole and the negative pole is
called the magnet’s south (short for south-seeking) pole.
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Figure 2.2 The poles of a permanent magnet cannot be isolated by breaking it
into pieces.

be neglected. Figure 2.3 is a diagram of the sort of torsion balance Coulomb used to
verify Eqs. (2.2a, b) for the poles of permanent magnets. Indeed, it is much easier
to demonstrate the truth of Coulomb’s law for magnetic poles [Eqs. (2.2a, b)] than
it is to demonstrate the truth of Coulomb’s law for point charges [Eqs. (2.1a, b)]
because the pole of a permanent magnet, unlike the electric charge on a small
object, is not affected by accidental grounding or humidity in the air.

From Coulomb’s law it is a short step to electric and magnetic fields. The elec-
tric field of an isolated point charge Q is, in nineteenth-century notation,

�E = Q

ε0r2
r̂; (2.3a)

and the magnetic field of a magnetic pole of pole strength pH is

�H = pH

µ0r2
r̂ . (2.3b)

In Eqs. (2.3a, b) the �E or �H field is defined for all points in space surrounding the
point charge or magnetic pole. When the electric or magnetic field is evaluated at a
particular point, called a field point, the variable r in Eqs. (2.3a, b) is the distance
from the position of the point charge or magnetic pole to the field point, and r̂ is
the dimensionless unit vector pointing from the point charge or magnetic pole to
the field point.

The interaction of point charges can be analyzed in terms of fields. Equa-
tion (2.3a) is used to assign an electric field �Ei to the i’th charge of a collection of
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Figure 2.3 This is a diagram of the sort of torsion balance used to verify Coulomb’s
law for the poles of a permanent magnet.

point charges. We then add together at any desired field point the individual elec-
tric fields of all the electric charges to get the total electric field �E =∑

i
�Ei for the

entire collection of charges. If a test chargeQ is placed at that field point, and if Q
is small enough not to disturb the positions of the other charges, the force on that
test charge can be written as

�F =Q �E. (2.4)

Equation (2.4) follows directly from (2.1b), Coulomb’s law for electric charges;
these equations are just different ways of stating the same mathematical idea. No-
tice, however, how much more comfortable this way of looking at electrical phe-
nomena is to the nineteenth-century experimental scientist. In his laboratory he can
assemble a collection of batteries, wires, and charged metal objects—but locating
all the charge is a tedious and ultimately ambiguous task. However, he can easily
create a small test charge and move it around to measure the electric field; and
every time the same collection of batteries, wires, etc., is assembled he finds the
same electric fields at the same field points. It is quite natural for him to end up
attributing as much reality to the electric field as to the charges creating it.
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The interaction of magnets can also be analyzed in terms of fields. We use
Eq. (2.3b) to assign a magnetic field �Hi to the i’th pole of a collection of poles
and then add together all the poles’ individual fields to get the total magnetic field
�H =∑

i
�Hi for the entire collection of poles. Because isolated magnetic poles do

not exist, the least-complicated magnetic field that can be constructed this way
is �HLEAST = �H1 + �H2, with �H1 the field of a north magnetic pole and �H2 the
field of the corresponding south magnetic pole. Any physically realistic field �H =
∑

i
�Hi constructed from individual poles must also be the sum of �HLEAST fields

corresponding to the north-south poles of individual magnets. Although the force
�F on an isolated pole of strength pH would, in fact, be

�F = pH �H, (2.5)

we also know the experimenter cannot create or find such an isolated test pole.
Coulomb’s strategy of using long, thin magnets to lessen the influence of the un-
wanted opposite pole may not work well when investigating an unknown magnetic
field, because the field can influence both poles simultaneously. In practice what
was done instead was to place a small magnetic needle at the field point and allow
it to oscillate about its equilibrium position, with �H being inversely proportional to
the square of the period of oscillation (see Appendix 2.A). Although a nineteenth-
century experimental scientist could easily locate the poles of all nearby permanent
magnets, he too finds the field concept useful when examining the effect of the
earth’s magnetic poles; not having access to earth’s interior, all he knows for sure
is the value of the earth’s magnetic field inside his laboratory. It is again natural for
him to end up attributing as much reality to the magnetic field as to the magnetic
poles that create it.

2.2 COMBINED SYSTEMS OF ELECTRIC AND MAGNETIC UNITS

When in 1820 it was discovered that an electric current produces a magnetic field,
the need for a combined system of electric and magnetic units became clear. In
nineteenth-century notation the magnetic field near a long, thin wire carrying a
constant current I is

�H = 2I

r
ê, (2.6)

where, as shown in Fig. 2.4, r is the distance from the wire carrying the current
to the field point and the dimensionless unit vector ê equals ν̂ × r̂ , with r̂ the
dimensionless unit vector pointing from the wire to the field point and ν̂ the di-
mensionless unit vector pointing in the direction of the current. An electric current
is always defined to be

I = dQ

dt
, (2.7)
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Figure 2.4 Unit-length vectors ê, r̂ , and ν̂ are used to specify the magnetic field
generated by current I .

the amount of charge dQ moving through the cross-section of the wire during an
amount of time dt .

Do we have enough information in Eqs. (2.1a) through (2.7) to set up a system
of electromagnetic units? Suppose we keep mass, length, and time as our funda-
mental dimensions and formally apply the U

mlt
operator described in Chapter 1 [see

Eq. (1.29c)] to Eqs. (2.1a) to (2.7). Either Eq. (2.1a) or Eq. (2.1b) gives

U
mlt
(F )= mass · length

time2 =
[

U
mlt
(Q)

]2

U
mlt
(ε0) · length2

or

U
mlt
(Q)=

[

U
mlt
(ε0)

]1/2 mass1/2 · length3/2

time
. (2.8a)

From Eq. (2.2a) or Eq. (2.2b) we similarly get

U
mlt
(pH )=

[

U
mlt
(µ0)

]1/2 mass1/2 · length3/2

time
, (2.8b)

and from Eq. (2.3b) comes

U
mlt
(H)=

U
mlt
(pH )

U
mlt
(µ0) · length2

= mass1/2

[
U
mlt
(µ0)

]1/2 · length1/2 · time
, (2.8c)

where in the last step we have substituted for U
mlt
(pH ) from Eq. (2.8b). From

Eq. (2.7) we have

U
mlt
(I )=

U
mlt
(Q)

time
=
[

U
mlt
(ε0)

]1/2 mass1/2 · length3/2

time2 , (2.8d)
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where in the last step U
mlt
(Q) is replaced by the right-hand side of Eq. (2.8a). Ap-

plying U
mlt

to Eq. (2.6) gives

U
mlt
(H)=

U
mlt
(I )

length
, (2.8e)

and substitution of Eqs. (2.8c, d) into Eq. (2.8e) leads to

mass1/2

[
U
mlt
(µ0)

]1/2 · length1/2 · time
=
[

U
mlt
(ε0)

]1/2 mass1/2 · length1/2

time2

or

[

U
mlt
(µ0)

]

·
[

U
mlt
(ε0)

]

=
(

time

length

)2

. (2.8f)

No matter how the equations of nineteenth-century electromagnetic theory are
pushed around—even when we include all of Maxwell’s equations—this is the
result that shows up. We always find that the product ε0µ0 has the dimensions of
a squared inverse velocity, length−2· time2, but we cannot pin down the dimen-
sions of either ε0 or µ0 as separate physical quantities. Quite naturally this was
often taken to mean that more research was needed; some new law of nature yet
to be discovered was expected to reveal the true dimensions of both ε0 and µ0.
Table 2.1 shows what happens when this outlook is adopted wholeheartedly and
the dimensions of all the common electrical quantities are evaluated in terms of
mass, length, and time and the yet-to-be-discovered true dimensions of ε0 and µ0.
We use

eps = U
mlt
(ε0) (2.9a)

and

mu = U
mlt
(µ0) (2.9b)

to label the unknown true dimensions of ε0 and µ0. In the second column of Ta-
ble 2.1, Eq. (2.8f) is used to eliminate µ0 from all the dimensional formulas; and in
the third column of Table 2.1, Eq. (2.8f) is used to eliminate ε0 from all the dimen-
sional formulas. Unfortunately for this point of view, no one has (so far) been able
to find that one extra law of nature revealing the “true” dimensions of ε0 and µ0.
In a way, all physics and engineering students confused by the multiple systems of
electromagnetic units in use today are still paying for this nondiscovery, because it



UNITS ASSOCIATED WITH NINETEENTH-CENTURY ELECTROMAGNETIC THEORY 73

Ta
b

le
2.

1
D

im
en

si
on

s
of

el
ec

tr
om

ag
ne

tic
ph

ys
ic

al
qu

an
tit

ie
s

w
rit

te
n

in
te

rm
s

of
m

as
s,

le
ng

th
,t

im
e,

an
d

th
e

un
kn

ow
n

di
m

en
si

on
s

of
ep

s
=

U m
lt(
ε

0)
an

d
m

u
=

U m
lt(
µ

0
).

P
hy

si
ca

lq
ua

nt
it

y
D

im
en

si
on

s
us

in
g

ep
s

D
im

en
si

on
s

us
in

g
m

u

A
(m

ag
ne

ti
c

ve
ct

or
po

te
nt

ia
l)

ep
s−

1/
2 m

as
s1/

2 l
en

gt
h−

1/
2

m
u1/

2
m

as
s1/

2 l
en

gt
h1/

2
ti

m
e−

1

B
(m

ag
ne

ti
c

in
du

ct
io

n)
ep

s−
1/

2 m
as

s1/
2 l

en
gt

h−
3/

2
m

u1/
2
m

as
s1/

2 l
en

gt
h−

1/
2
ti

m
e−

1

C
(c

ap
ac

it
an

ce
)

ep
s
·le

ng
th

m
u−

1
le

ng
th

−1
ti

m
e2

D
(e

le
ct

ri
c

di
sp

la
ce

m
en

t)
ep

s1/
2 m

as
s1/

2 l
en

gt
h−

1/
2 t

im
e−

1
m

u−
1/

2
m

as
s1/

2 l
en

gt
h−

3/
2

E
(e

le
ct

ri
c

fi
el

d)
ep

s−
1/

2 m
as

s1/
2 l

en
gt

h−
1/

2 t
im

e−
1

m
u1/

2
m

as
s1/

2 l
en

gt
h1/

2
ti

m
e−

2

ε
(d

ie
le

ct
ri

c
co

ns
ta

nt
)

ep
s

m
u−

1
le

ng
th

−2
ti

m
e2

ε
0

(p
er

m
itt

iv
ity

of
fr

ee
sp

ac
e)

ep
s

m
u−

1
le

ng
th

−2
ti

m
e2

F
(m

ag
ne

to
m

ot
iv

e
fo

rc
e)

ep
s1/

2 m
as

s1/
2 l

en
gt

h3/
2 t

im
e−

2
m

u−
1/

2
m

as
s1/

2 l
en

gt
h1/

2
ti

m
e−

1

�
B

(m
ag

ne
ti

c
fl

ux
)

ep
s−

1/
2 m

as
s1/

2 le
ng

th
1/

2
m

u1/
2
m

as
s1/

2 le
ng

th
3/

2
ti

m
e−

1

G
(c

on
du

ct
an

ce
)

ep
s
·le

ng
th

·ti
m

e−
1

m
u−

1
·le

ng
th

−1
·ti

m
e

H
(m

ag
ne

ti
c

fi
el

d)
ep

s1/
2 m

as
s1/

2 le
ng

th
1/

2 ti
m

e−
2

m
u−

1/
2
m

as
s1/

2 le
ng

th
−1
/
2 tim

e−
1

I
(c

ur
re

nt
)

ep
s1/

2 m
as

s1/
2 l

en
gt

h3/
2 t

im
e−

2
m

u−
1/

2
m

as
s1/

2 l
en

gt
h1/

2
ti

m
e−

1

J
(v

ol
um

e
cu

rr
en

td
en

si
ty

)
ep

s1/
2 m

as
s1/

2 l
en

gt
h−

1/
2 t

im
e−

2
m

u−
1/

2
m

as
s1/

2 l
en

gt
h−

3/
2 t

im
e−

1

J S
(s

ur
fa

ce
cu

rr
en

td
en

si
ty

)
ep

s1/
2 m

as
s1/

2 le
ng

th
1/

2 ti
m

e−
2

m
u−

1/
2
m

as
s1/

2 le
ng

th
−1
/
2 tim

e−
1

L
(i

nd
uc

ta
nc

e)
ep

s−
1

·le
ng

th
−1

·ti
m

e2
m

u
·le

ng
th

m
H

(p
er

m
an

en
t-

m
ag

ne
t

di
po

le
m

om
en

t)
ep

s−
1/

2 m
as

s1/
2 l

en
gt

h3/
2

m
u1/

2
m

as
s1/

2 l
en

gt
h5/

2
ti

m
e−

1

m
I

(c
ur

re
nt

-l
oo

p
m

ag
ne

ti
c

ep
s1/

2 m
as

s1/
2 l

en
gt

h7/
2 t

im
e−

2
m

u−
1/

2
m

as
s1/

2 l
en

gt
h5/

2
ti

m
e−

1

di
po

le
m

om
en

t)

M
H

(p
er

m
an

en
t-

m
ag

ne
td

ip
ol

e
ep

s−
1/

2 m
as

s1/
2 le

ng
th

−3
/
2

m
u1/

2
m

as
s1/

2 le
ng

th
−1
/
2
ti

m
e−

1

de
ns

it
y)



74 CHAPTER 2

Ta
b

le
2.

1
(C

on
tin

ue
d)

.

P
hy

si
ca

lq
ua

nt
it

y
D

im
en

si
on

s
us

in
g

ep
s

D
im

en
si

on
s

us
in

g
m

u

M
I

(c
ur

re
nt

-l
oo

p
m

ag
ne

ti
c

ep
s1/

2 m
as

s1/
2
le

ng
th

1/
2 t

im
e−

2
m

u1/
2 m

as
s1/

2 l
en

gt
h−

1/
2 t

im
e−

1

di
po

le
de

ns
it

y)

µ
(m

ag
ne

ti
c

pe
rm

ea
bi

li
ty

)
ep

s−
1
le

ng
th

−2
ti

m
e2

m
u

µ
0

(m
ag

ne
ti

c
pe

rm
ea

bi
li

ty
of

ep
s−

1
le

ng
th

−2
ti

m
e2

m
u

fr
ee

sp
ac

e)

p
H

(m
ag

ne
ti

c
po

le
st

re
ng

th
)

ep
s−

1/
2 m

as
s1/

2 l
en

gt
h1/

2
m

u1/
2 m

as
s1/

2 l
en

gt
h3/

2 t
im

e−
1

p
(e

le
ct

ri
c

di
po

le
m

om
en

t)
ep

s1/
2 m

as
s1/

2
le

ng
th

5/
2 t

im
e−

1
m

u−
1/

2 m
as

s1/
2
le

ng
th

3/
2

P
(e

le
ct

ri
c

di
po

le
de

ns
it

y)
ep

s1/
2 m

as
s1/

2
le

ng
th

−1
/
2 t

im
e−

1
m

u−
1/

2 m
as

s1/
2
le

ng
th

−3
/
2

P
(p

er
m

ea
nc

e)
ep

s−
1
le

ng
th

−1
ti

m
e2

m
u

·le
ng

th

Q
(c

ha
rg

e)
ep

s1/
2 m

as
s1/

2
le

ng
th

3/
2 t

im
e−

1
m

u−
1/

2 m
as

s1/
2
le

ng
th

1/
2

R
(r

es
is

ta
nc

e)
ep

s−
1
le

ng
th

−1
ti

m
e

m
u

·le
ng

th
·ti

m
e−

1

R
(r

el
uc

ta
nc

e)
ep

s
·le

ng
th

·ti
m

e−
2

m
u−

1
·le

ng
th

−1

ρ
Q

(v
ol

um
e

ch
ar

ge
de

ns
it

y)
ep

s1/
2 m

as
s1/

2
le

ng
th

−3
/
2 ti

m
e−

1
m

u−
1/

2 m
as

s1/
2
le

ng
th

−5
/
2

ρ
R

(r
es

is
tiv

ity
)

ep
s−

1
ti

m
e

m
u

·le
ng

th
2

·ti
m

e−
1

S
(e

la
st

an
ce

)
ep

s−
1

·le
ng

th
−1

m
u

·le
ng

th
·ti

m
e−

2

S
Q

(s
ur

fa
ce

ch
ar

ge
de

ns
it

y)
ep

s1/
2 m

as
s1/

2
le

ng
th

−1
/
2 ti

m
e−

1
m

u−
1/

2 m
as

s1/
2
le

ng
th

−3
/
2

σ
(c

on
du

ct
iv

it
y)

ep
s
·ti

m
e−

1
m

u−
1

·le
ng

th
−2

·ti
m

e

V
(e

le
ct

ri
c

po
te

nt
ia

l)
ep

s−
1/

2 m
as

s1/
2 le

ng
th

1/
2 ti

m
e−

1
m

u1/
2 m

as
s1/

2 le
ng

th
3/

2 tim
e−

2

$
H

(m
ag

ne
ti

c
sc

al
ar

po
te

nt
ia

l)
ep

s1/
2 m

as
s1/

2
le

ng
th

3/
2 t

im
e−

2
m

u−
1/

2 m
as

s1/
2
le

ng
th

1/
2 t

im
e−

1



UNITS ASSOCIATED WITH NINETEENTH-CENTURY ELECTROMAGNETIC THEORY 75

is still not compellingly obvious how electromagnetic units should be related to the
three mechanical dimensions of mass, length, and time. The problem is an irritat-
ing one, because not knowing the true dimensions of ε0 and µ0 has experimental
implications. Mathematical procedures used to get Eq. (2.8f) can be repeated with
careful measurements of all the physical quantities involved. Just as no equation
like

U
mlt
(ε0)=

{

mechanical dimensions not including U
mlt
(µ0)

}

or

U
mlt
(µ0)=

{

mechanical dimensions not including U
mlt
(ε0)

}

,

can be found, so we can never get an experimental result of the form

ε0 = {
mechanical quantities not including µ0

}

or

µ0 = {
mechanical quantities not including ε0

}
.

We literally cannot measure ε0 and µ0 as separate quantities; the best that can be
done is to measure their product, which turns out to be one over the speed of light
squared:

ε0µ0 = 1

c2
. (2.10)

This is no accident, of course. Maxwell’s equations show that time-varying electric
and magnetic fields can propagate as waves travelling at a speed

v = (ε0µ0)
−1/2,

so if light is electromagnetic radiation—and it is—then Eq. (2.10) is exactly what
we expect to find.

2.3 THE ESU AND EMU SYSTEMS OF UNITS

Since nature does not assign unique values to both ε0 and µ0, nineteenth-century
scientists had to do the job. Two choices were made, one leading to the cgs electro-
static system of units and one leading to the cgs electromagnetic system of units.
Both systems of units use cm, gm, sec as their fundamental units of length, mass,
and time. In the cgs electrostatic system of units, called esu units, we choose

ε0 = 1, (2.11a)
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so that, to satisfy Eq. (2.10),

µ0 = 1

c2 . (2.11b)

In the cgs electromagnetic system of units, called emu units, we choose

µ0 = 1, (2.12a)

so that, to satisfy Eq. (2.10),

ε0 = 1

c2 . (2.12b)

In esu units, ε0 is dimensionless and equal to 1, disappearing from all of the elec-
tromagnetic formulas. These are convenient units for analyzing electrostatic phe-
nomena. In emu units, µ0, dimensionless and equal to 1, disappears from all the
electromagnetic formulas; these are convenient units for analyzing magnetostatic
phenomena.

As was explained in Chapter 1, we can—for any system of units—define U and
N operators for examining the units and numeric parts of physical quantities. We
say that U

esu
and N

esu
are the U and N operators for the cgs esu system of units and

that U
emu

and N
emu

are the U and N operators for the cgs emu system of units. We

require

U
esu
(bMECH)= U

cgs
(bMECH), (2.13a)

N
esu
(bMECH)= N

cgs
(bMECH), (2.13b)

U
emu
(bMECH)= U

cgs
(bMECH), (2.13c)

N
emu
(bMECH)= N

cgs
(bMECH) (2.13d)

for any physical quantity bMECH , which is purely mechanical in nature. Physical
quantities such as mass m, length L, time t , force F , velocity v, acceleration a,
etc., are purely mechanical physical quantities because they can be understood and
measured without worrying about charge, magnetic pole strength, electric current,
electric and magnetic fields, or any of the other electromagnetic physical quantities
described later in this chapter. We use a lowercase esu or emu subscript to indicate
the numeric component of any electromagnetic or physical quantity b in the esu or
emu system of units:

N
esu
(b)= besu, (2.13e)

N
emu
(b)= bemu. (2.13f)
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This just continues the convention used in Chapter 1 where a lowercase subscript
(such as cgs or mks) indicated the numeric component of a physical quantity in the
system of units specified by the subscript. From Eqs. (2.13b) and (2.13d) we see
that for mechanical physical quantities bMECH

N
esu
(bMECH)= (bMECH)esu = N

cgs
(bMECH)= (bMECH)cgs

and

N
emu
(bMECH)= (bMECH)emu = N

cgs
(bMECH)= (bMECH)cgs.

All U and N operators have to obey the rules described in Section 1.6. We now
apply U

esu
, N

esu
and U

emu
, N

emu
to Eqs. (2.1a) through (2.7) to find out what they mean

when operating on electromagnetic physical quantities such as Q,pH ,E,H , etc.
Starting with Eqs. (2.1a) and (2.13a), we apply U

esu
to both sides to get

U
esu
(F )= U

cgs
(F )= dynes = gm · cm

sec2 =
U
esu
(Q)2

U
esu
(ε0) · cm2 .

Equation (2.11a) shows that U
esu
(ε0)= 1, which gives

U
esu
(Q)= gm1/2 · cm3/2

sec
. (2.14a)

This is an odd-looking result; but in principle nothing prevents us from using frac-
tional powers of fundamental units, so we continue. From Eqs. (2.12b) and (2.13c),

U
emu
(ε0)= U

cgs

(
c−2)= sec2

cm2
,

so applying U
emu

to both sides of Eq. (2.1a) gives

gm · cm

sec2
=

U
emu
(Q)2

sec2

or

U
emu
(Q)= gm1/2 · cm1/2. (2.14b)

This takes care of finding U
esu
(Q) and U

emu
(Q) for any charge Q.
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To find N
esu
(Q) and N

emu
(Q) for any charge Q, we compare two point charges

QA and QB to a third unchanging point charge QC , adjusting QA and QB until
they both experience the same Coulomb force at the same distance fromQC . Then,
we know that QA =QB =Q′, and Eq. (2.1a) shows the repulsive force between
QA and QB to be, when separated by a distance r ,

F = Q′2

ε0r2
. (2.14c)

Applying N
esu

to Eq. (2.14e) gives

Fesu = Fcgs =
N
esu
(Q′)2

N
esu
(ε0) · r2

cgs
,

or, since ε0 = 1 in esu units,

N
esu
(Q′)=Q′

esu = rcgs
√
Fcgs. (2.14d)

This result specifies N
esu
(Q′) in terms of the already known numerics rcgs and Fcgs.

The numerical component N
esu
(QD) of any other point chargeQD can now be found

from the Coulomb force between QD and Q′. We say that the Coulomb force
between QD and Q′ when they are a distance R apart is

f = QDQ
′

R2
,

and applying N
esu

to both sides of this gives

fcgs =
N
esu
(QD)Q

′
esu

(Rcgs)2

or

N
esu
(QD)=

fcgsR
2
cgs

Q′
esu

. (2.14e)

The equations of electromagnetism are self-consistent, so applying N
esu

to any other

formula containing the point charge QD , permittivity ε0, and other mechanical
quantities must give the same numbers for N

esu
(QD), the numeric component of the

point charge in esu units. Because all charge can be analyzed as a collection of
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one or more point charges, we can now regard N
esu

as a well-defined quantity when

operating on charge.
To find N

emu
(Q), we again compare two point charges QA and QB to a third

unchanging point chargeQC , adjustingQA andQB until they both experience the
same force at the same distance from QC . Once more, QA =QB =Q′, and we
can apply N

emu
to Eq. (2.14c) to get

Femu = Fcgs =
N

emu
(Q′)2

N
emu
(ε0) · r2

cgs
,

or, since ε0 = c−2 in emu units,

N
emu
(Q′)=Q′

emu = rcgs

ccgs

√
Fcgs. (2.14f)

This specifies N
emu
(Q′) in terms of the already known numerics rcgs,Fcgs, and ccgs.

Just as in esu units, the Coulomb force f between Q′ and any other charge QD

when Q′ and QD are separated by a distance R is

f = QDQ
′

ε0R
2
.

Applying N
emu

to both sides of the formula gives

N
emu
(QD)=

N
emu
(ε0)fcgsR

2
cgs

Q′
emu

,

or, since N
emu
(ε0)= c−2

cgs,

N
emu
(QD)=

fcgsR
2
cgs

Q′
emuc

2
cgs
. (2.14g)

This specifies N
emu
(QD) in terms of already-known numeric components. Again we

note that any other formula for the charge in terms of ε0 and mechanical quanti-
ties must give the same number for N

emu
(QD), because the electromagnetic equa-

tions are self-consistent. Since all charge can be analyzed as a collection of point
charges, N

emu
is now a well-defined quantity when operating on charge.

Comparing Eqs. (2.14d) and (2.14f) shows that we can write

N
esu
(Q′)= ccgs · N

emu
(Q′). (2.14h)
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This means that Q′
esu = ccgsQ

′
emu. Comparison of Eqs. (2.14e) and (2.14g) gives

N
emu
(QD)=

fcgsR
2
cgs

(c−1
cgsQ

′
esu)c

2
cgs

= 1

ccgs
N
esu
(QD), (2.14i)

which shows that Eq. (2.14h) still holds true when QD replaces Q′; clearly
Eq. (2.14h) must be true for the numerical component of any point charge. Be-
cause all charge can be regarded as a collection of point charges, we conclude that
Eq. (2.14h) holds true for the numerical components of any type of electric charge.

Applying U
esu

to Eq. (2.2a) for magnetic poles gives

U
esu
(pH )

2 = gm · cm3

sec2 U
esu
(µ0).

From Eq. (2.11b) we get

U
esu
(µ0)= sec2

cm2
,

so for magnetic poles

U
esu
(pH )= gm1/2 · cm1/2. (2.15a)

From Eq. (2.12a) we know that U
emu
(µ0) must be 1, so applying U

emu
to both sides of

Eq. (2.2a) gives

gm · cm3

sec2
= U

emu
(pH )

2

or

U
emu
(pH )= gm1/2 · cm3/2

sec
. (2.15b)

Creating two equal-strength magnetic poles to the accuracy required by
nineteenth-century scientists is simple: just break a long, thin bar magnet in half,
as shown in Fig. 2.2. This produces two long, thin bar magnets, with both magnets
having the same-strength north poles and same-strength south poles. (To confirm
this, compare the pole strengths of the new magnets to that of a third.) Coulomb’s
torsion balance in Fig. 2.3 can then be used to measure the force

F = (pH )
2

µ0r
2

(2.15c)
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between two identical poles of strength pH a distance r apart. Applying N
esu

to Eq.

(2.15c) gives

N
esu
(pH )

2 = Fcgs · r2
cgs · N

esu
(µ0)

or, since N
esu
(µ0)= N

esu
(c−2)= c−2

cgs,

N
esu
(pH )= rcgs

ccgs

√
Fcgs. (2.15d)

This specifies N
esu
(pH )= (pH )esu in terms of the already-known numerics rcgs,Fcgs,

and ccgs. The numeric part of the pole strength for any third magnet, N
esu
(p′
H ), can

be found by using the torsion balance to measure the force f between it and one
of the two magnets of known pole strength (pH )esu. When the poles are separated
by a distance R, which is short compared to the lengths of both magnets,

f = (pH )(p
′
H )

µ0R
2

,

so that, applying N
esu

to this formula, we get

N
esu

(
p′
H

)=
N
esu
(µ0)fcgsR

2
cgs

(pH )esu
= fcgsR

2
cgs

(pH )esuc2
cgs
. (2.15e)

Equations (2.15d, e) show how to find the numeric component of the pole strength
in the esu system of units for any pole p′

H . Therefore, N
esu

is a well-defined quantity

when operating on pole strengths. Repeating the process in the emu system of units,
we apply N

emu
to both sides of Eq. (2.15c) and use N

emu
(µ0)= 1 to get

Fcgs =
N
emu
(pH )

2

r2
cgs

or

N
emu
(pH )= rcgs

√
Fcgs. (2.15f)

The numeric part of the pole strength for any third magnet in emu units, N
emu
(p′
H ),

is specified by comparing it to the known value of

N
emu
(pH )= (pH )emu.
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We apply N
emu

to the formula for the Coulomb force f between pH and p′
H when

separated by a distanceR much smaller than the magnets’ lengths to get [remember
N

emu
(µ0)= 1]

N
emu

(
p′
H

)= fcgsR
2
cgs

(pH )emu
. (2.15g)

The self-consistency of electromagnetic theory ensures that any other formula for
the pole strength in terms of µ0 and mechanical quantities must give the same
numbers for its numeric component as Eqs. (2.15d–g). This makes N

emu
a well-

defined quantity when operating on pole strengths. Comparison of Eq. (2.15d) to
Eq. (2.15f) shows that

N
emu
(pH )= ccgs · N

esu
(pH ) or (pH )emu = ccgs · (pH )esu;

and comparison of Eq. (2.15g) to Eq. (2.15e) shows that

N
emu

(
p′
H

)= fcgsR
2
cgs

(pH )emu
= fcgsR

2
cgs

ccgs(pH )esu
= ccgs · N

esu

(
p′
H

)
.

Since the numeric component of the pole strength in emu is ccgs times the numeric
component of the pole stength in esu both for the original pole pH and for any
other pole p′

H , we conclude that for any size magnetic pole p′′
H

N
emu

(
p′′
H

)= ccgs · N
esu

(
p′′
H

)
. (2.15h)

Moving on to electric field, Eq. (2.4) shows that

U
esu
(F )= U

esu
(Q) · U

esu
(E)

or, using Eq. (2.14a) and dyne = gm · cm · sec−2,

U
esu
(E)= dynes · sec

gm1/2 · cm3/2
= gm1/2

cm1/2 · sec
. (2.16a)

Applying N
esu

to Eq. (2.4) gives

N
esu
(E)=

N
esu
(F )

N
esu
(Q)

= Fcgs

Qesu
. (2.16b)
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The U
emu

operator can be applied to Eq. (2.4) to get, using Eq. (2.14b),

U
emu
(E)= gm1/2 · cm1/2

sec2
; (2.16c)

and the N
emu

operator can be applied to Eq. (2.4) to get

N
emu
(E)=

N
emu
(F )

N
emu
(Q)

= Fcgs

Qemu
. (2.16d)

These equations give the esu and emu units of the E field and specify

N
esu
(E)=Eesu and N

emu
(E)= Eemu

in terms of the already-known numerics Qesu,Qemu, and Fcgs. Hence, U
esu

, U
emu

, N
esu

and N
emu

are well defined when applied to an electric field E.

Examining the magnetic field, we get from Eqs. (2.5), (2.15a), and (2.15b) that

U
esu
(H)= gm1/2 · cm1/2

sec2
(2.17a)

and

U
emu
(H)= gm1/2

cm1/2 · sec
. (2.17b)

We cannot apply N
esu

and N
emu

to Eq. (2.5) directly because we cannot create an iso-

lated magnetic pole. Instead, we create a small magnetic needle of length l, mea-
sure the strength pH of its north and south poles, and find the distance L between
them to get, from Eq. (2.A.5b) of Appendix 2.A,

N
esu
(H)=Hesu = π2

3
· Mcgsl

2
cgs

(pH )esuLcgsT
2
cgs

(2.17c)

and

N
emu
(H)=Hemu = π2

3
· Mcgsl

2
cgs

(pH )emuLcgsT
2

cgs
, (2.17d)

where Mcgs is the numeric part of the needle’s mass in cgs units (i.e., in gm), and
Tcgs is the numeric part of the needle’s period of oscillation in cgs units (i.e., in
sec), when it is suspended at the field point. Equations (2.17c, d) specify Hesu and
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Hemu in terms of the already-known numericsMcgs,Lcgs, lcgs, Tcgs, and (pH )esu or
(pH )emu. We see that now U

esu
, U

emu
, N

esu
, and N

emu
are well defined when applied to

any magnetic field H .
When comparing Eqs. (2.14a) and (2.15b), we notice that

U
esu
(Q)= U

emu
(pH ), (2.18a)

and from Eqs. (2.14b) and (2.15a) we see that

U
esu
(pH )= U

emu
(Q). (2.18b)

Similarly, Eqs. (2.16a), (2.17b), (2.16c), and (2.17a) show that

U
esu
(E)= U

emu
(H) (2.18c)

and

U
esu
(H)= U

emu
(E). (2.18d)

In these equations, the esu units for an electrical quantity (such as charge or elec-
tric field) are the same as the emu units for the corresponding magnetic quantity
(such as magnetic pole strength or magnetic field), and the esu units for magnetic
quantities are the same as the emu units for the corresponding electrical quantities.
This symmetry comes from the basic similarity of the formulas used to elaborate
nineteenth-century electromagnetic theory—Coulomb’s laws for electric charges
and magnetic poles, Eqs. (2.4) and (2.5) defining the electric and magnetic fields,
and Eqs. (2.11a) through (2.12b) for ε0 and µ0 in the esu and emu systems. Ta-
ble 2.2 lists the major electrical and magnetic physical quantities having the sym-
metry specified in Eqs. (2.18a–d); we see that this pattern does not end with the
few basic electromagnetic physical quantities that have been defined so far.

We also see from this preliminary analysis that the numbers given by the opera-
tion of N

esu
and N

emu
on electromagnetic physical quantities can always be calculated

from the values given by N
esu

and N
emu

operating on previously defined terms. In

Eqs. (2.1a, b), Q is specified in terms of r,F , and ε0, and in Eqs. (2.14f–i) this
is used to define N

esu
(Q) and N

emu
(Q). In Eqs. (2.2a, b), pH is specified in terms of

r,F , and µ0; and in Eqs. (2.15d–g) this is used to define N
esu
(pH ) and N

emu
(pH ). In

Eq. (2.4), E is specified in terms of F and Q; and in Eqs. (2.16b, d) this is used to
define N

esu
(E) and N

emu
(E). Even when the equation introducing a new electromag-

netic quantity bnew cannot be used to define the operation of N
esu

and N
emu

on bnew, the

self-consistency of electromagnetic theory eventually produces a way to calculate
N
esu
(bnew) and N

emu
(bnew) from already known physical quantities. For example, the
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Table 2.2 Symmetry in esu and emu systems for selected electric
and magnetic physical quantities.

U
esu
(ε0)= U

emu
(µ0)= 1 U

esu
(µ0)= U

emu
(ε0)= sec2

cm2

U
esu
(E)= U

emu
(H)= gm1/2

cm1/2 · sec
U

esu
(H)= U

emu
(E)= gm1/2 · cm1/2

sec2

U
esu
(D)= U

emu
(B)= gm1/2

cm1/2 · sec
U

esu
(B)= U

emu
(D)= gm1/2

cm3/2

U
esu
(Q)= U

emu
(pH )= gm1/2 · cm3/2

sec
U

esu
(pH )= U

emu
(Q)= gm1/2 · cm1/2

U
esu
(p)= U

emu
(mH )= gm1/2 · cm5/2

sec
U

esu
(mH )= U

emu
(p)= gm1/2 · cm3/2

U
esu
(P )= U

emu
(MH )= gm1/2

cm1/2 · sec
U

esu
(MH)= U

emu
(P )= gm1/2

cm3/2

U
esu
(V )= U

emu
($H )= gm1/2 · cm1/2

sec
U

esu
($H )= U

emu
(V )= gm1/2 · cm3/2

sec2

magnetic field in Eq. (2.5) is calculated using Eqs. (2.17c, d) from Appendix 2.A.
Because there must always be some way of measuring any newly introduced phys-
ical quantity bnew, we can always determine N

esu
(bnew) and N

emu
(bnew) from the op-

eration of N
esu

and N
emu

on previously measured physical quantities. In this sense,

there is no real need to examine any further the behavior of the N
esu

and N
emu

operators

when they are applied to electromagnetic physical quantites, because they automat-
ically define themselves as we elaborate electromagnetic theory using esu and emu
units. The same thing, of course, could be said about the action of the U

esu
and U

emu
operators—that they automatically define themselves as we elaborate electromag-
netic theory using esu or emu units. Our goal, however, is to learn how to transform
an equation in esu units to the corresponding equation in emu units, or to transform
an equation in emu units to the corresponding equation in esu units. Given an equa-
tion, we can always assume that all electromagnetic physical quantities have some
sort of numeric components given by N

esu
and N

emu
, but we need to write down the

exact form of the units to transform equations from one system to the other. Con-
sequently, it makes sense to continue analyzing the esu and emu units of electro-
magnetic physical quantities. From this point on, we assume the existence of well-
defined N

esu
and N

emu
operators as we use nineteenth-century ideas—and the U

esu
and

U
emu

operators—to find the units of standard electromagnetic physical quantities.
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2.4 THE D AND B FIELDS

Nineteenth-century electromagnetic theory used two auxiliary fields, the D field
and the B field, to describe the interaction of the electric and magnetic fields with
bulk matter. To understand these fields we have to introduce the concepts of electric
and magnetic dipole moments and dipole moment densities.

A bar magnet is defined to have a permanent-magnet dipole moment

�mH = (|pH | ·L)ê, (2.19a)

where |pH | is the magnitude of the north and south poles’ magnetic pole strength,
L is the distance between the poles, and ê is a dimensionless unit vector pointing
from the negative pole to the positive pole. We insist on the somewhat awkward
phrase “permanent-magnet dipole moment” because during the first half of the
twentieth century another definition of magnetic dipole moment almost completely
replaced the nineteenth-century one given in Eq. (2.19a). The definition of dipole
moment in Eq. (2.19a) is a mathematical concept; it is defined for any pair of
poles that are equal in magnitude, opposite in sign, and separated by a distance L.
The next step is to shrink L while increasing |pH | in such a way that the product
|pH | · L remains constant. This leads to the definition of the permanent-magnet
dipole moment at a point,

�mH = lim
|pH |→∞
L→0

[(|pH | ·L)ê]. (2.19b)

The concept of a permanent-magnet dipole moment at a point can be used to define
a density of permanent-magnet dipole moments. We say that the total permanent-
magnet dipole moment inside an infinitesimal volume dV at any field point is

�mH = dV · �MH, (2.19c)

where �MH is the permanent-magnet dipole density field at that field point. In empty
space, of course, �mH and �MH are always zero. The esu and emu units for �mH and
�MH come directly from their definitions and are given in Table 2.2.

The dipole density field is a useful concept because permanent magnets can be
modeled as a volume of space where �MH is not zero. Inside a magnet the positive
poles of the point dipole moments lie next to the negative poles of neighboring
point dipoles [see Figs. 2.5(a) and 2.5(b)], which means their individual fields tend
to cancel when �MH is approximately constant. Only at the boundaries of a region
of nonzero �MH are the positive or negative poles of the point dipole moments un-
cancelled by the corresponding negative or positive poles of adjacent point dipoles,
creating a strong positive or negative polarity. A bar magnet, for example, can be
approximated as having a constant interior �MH field always pointing along the axis
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Figure 2.5a The permanent-magnet dipole moment at a point is defined to be
�mH = [lim |pH |→∞

L→0
(|pH | ·L)]ê.

Figure 2.5b A bar magnet can be approximated as a bar-shaped volume of con-
stant permanent-magnet dipole density.

of the bar [see Fig. 2.5(b)]. This not only accounts for the north and south poles
at the ends of the bar, but it also explains why when a bar magnet is broken, both
pieces always have north and south poles rather than just one isolated pole. The
action of magnetic fields on unmagnetized iron or steel objects can be explained
in terms of the magnetic field inducing (i.e., creating) a temporary dipole density
field �MH in the unmagnetized iron or steel. When dealing with complicated sys-
tems of permanent and induced �MH fields, nineteenth-century physicists found it
convenient to define a new type of magnetic field �B called the magnetic induction
:

�B =µ0 �H + 4π �MH. (2.19d)
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Note that in emu units µ0 is 1, so that Eq. (2.19d) specializes to

�B = �H + 4π �MH, (2.19e)

and using emu units in empty space gives �B = �H because �MH = 0.
One of the major attractions of �B is that its divergence is always zero, no matter

what the distribution of permanent and induced �MH fields happens to be. Readers
familiar with advanced electromagnetic theory know that zero-divergence fields
can be very useful when solving complicated electromagnetic problems. From a
historical perspective, it is worth noting that in the nineteenth century the �H field
and its associated magnetic poles were regarded as the basic theoretical ideas, while
the �B field was treated as more of a useful auxiliary construct. As we shall see, in
the twentieth century the �H and �B fields switched roles, with the �B field taken to
be fundamental and the �H field treated as a useful auxiliary construct. Their math-
ematical definitions remained the same, however, which is why in empty space the
�H field is now defined, using Eq. (2.19d) with �MH equal to 0, as

�H = 1

µ0

�B = �B divided by a constant, (2.19f)

instead of the more straightforward definition

�H = �B multiplied by a constant.

Both electric dipole moments and magnetic dipole moments rely on the same
basic mathematical idea; hence, we can define an electric dipole moment to be

�p = (|Q| ·L)ê, (2.20a)

where |Q| is the magnitude of equal positive and negative point charges separated
by a distance L, and ê is a dimensionless unit vector pointing from the negative
charge to the positive charge. By shrinking L while increasing |Q| in such a way
as to keep the |Q| · L product constant, we define the electric dipole moment at a
point to be

�p = lim
|Q|→∞
L→0

[(|Q| ·L)ê]. (2.20b)

Again following the pattern of the magnetic-dipole discussion, we define a den-
sity field of point electric dipoles such that the electric dipole moment inside an
infinitesimal volume dV at any field point is

�p = dV · �P , (2.20c)



UNITS ASSOCIATED WITH NINETEENTH-CENTURY ELECTROMAGNETIC THEORY 89

where �P is the electric dipole density field at that field point. Both �p and �P are
zero in empty space. The esu and emu units for �p and �P are given in Table 2.2.

The �P field, like the �MH field, is used to describe the interaction of matter with
electric fields. There do exist substances called electrets whose interiors can have
self-maintaining nonzero �P fields analogous to the self-maintaining �MH fields of
permanent magnets. The interiors of most substances, however, can only have �P
fields when under the influence of outside �E fields. We say these �P fields are
induced by the �E fields.

When dealing with complicated systems of �P and �E fields, it is often useful
to divide the charge in the system into bound charge and unbound charge. The
unbound charge can be moved from one object to another using either mechani-
cal forces or �E fields, but the bound charge only changes its position by micro-
scopic amounts under the influence of mechanical forces or �E fields. Nineteenth-
century electrical scientists were primarily interested in the behavior of the un-
bound charge, so they found it convenient to define an auxiliary field called the
electric displacement:

�D = ε0 �E + 4π �P , (2.20d)

which has the useful property that its divergence at any field point is proportional to
the density of unbound charge at that field point. In esu units ε0 is 1, so Eq. (2.20d)
becomes

�D = �E + 4π �P ; (2.20e)

and in empty space where �P is zero we have, using esu units, �D = �E. During the
twentieth century, as physicists learned more about the electronic structure of mat-
ter, the distinction between bound and unbound charge became less useful, making
the �D field seem less real—helpful in some types of problems, no doubt, but basi-
cally just a mathematical construct. Although the �B field has gained status since the
nineteenth century while the �D field has—if anything—lost status, Table 2.2 shows
their units in the esu and emu systems still have the same nineteenth-century sym-
metry as the electromagnetic quantities Q,pH and �E, �H :

U
esu
(D)= U

emu
(B),

U
esu
(B)= U

emu
(D).

2.5 THE ELECTRIC AND MAGNETIC POTENTIALS

Although electromagnetic theory deals primarily with point charges, dipoles, mag-
netic and electric fields, in the laboratory even the simplest experiments depend
heavily on batteries, circuits, electric-current meters, etc. This was also the case in
the nineteenth century, and as engineers and scientists became more familiar with
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electric circuits they settled on two physical quantities as being of fundamental im-
portance for everyday work. One, the electric current I , has already been discussed
in Eqs. (2.6) and (2.7), but we have not yet talked about the other—the electrical
potential, or voltage, V . When charge travels around a circuit, it loses potential
energy. The potential energy difference per unit charge between points a and a′ in
the circuit is defined to be

Vaa′ = −
a′
∫

a

�E ·d�s. (2.21a)

where the line integral between a and a′ is taken along the circuit connecting the
two points. In general we can define for any static �E field—one that does not
change with time—a potential field V throughout the laboratory using the differ-
ential relation

�E = −�∇V. (2.21b)

Equation (2.21b) only defines the potential field up to an arbitrary additive constant,
of course (see Appendix 2.B for a quick review of the properties of the vector
differential operator �∇). Applying U

emu
and U

esu
to Eqs. (2.21a, b), we find that, using

Table 2.2,

U
esu
(V )= cm · U

esu

( �E)= gm1/2 · cm1/2

sec
(2.22a)

and

U
emu
(V )= cm · U

emu

( �E)= gm1/2 · cm3/2

sec2
. (2.22b)

A magnetic-potential field $H can be defined so that for many types of static mag-
netic fields over large regions of space,

�H = −�∇$H . (2.23)

As a general rule, $H is not as useful a concept as V because there are static
magnetic fields, such as the circular fields around long, straight wires carrying
constant currents (see Fig. 2.4) that cannot be described at every point around the
wire by the same $H field. The magnetic fields of point magnetic dipoles and of
permanent magnets outside the magnets’ interiors can, however, be described quite
adequately in terms of a magnetic potential $H . Table 2.2 shows that V and $H
have the expected symmetry in esu and emu units, with

U
esu
(V )= U

emu
($H)
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and

U
esu
($H )= U

emu
(V ).

2.6 THE SYSTEM OF PRACTICAL UNITS

Because today’s textbooks almost always begin with electrostatics, they leave the
impression that it must be more natural to use electrostatic units; but, in fact, elec-
tromagnetic units were more popular during the nineteenth century. Not only were
electric currents measured with instruments based on the interaction of current-
carrying coils of wire with small permanent magnets, but also nineteenth-century
cartography and navigation demanded an ever more exact knowledge of the earth’s
magnetic field. When, however, emu units for electric current and potential were
used in typical nineteenth-century circuits, it quickly became clear that they have
inconvenient sizes—something that is definitely more than a minor drawback when
all calculations must be done by hand. Therefore, toward the end of the nineteenth
century a new system of units was proposed, called the practical system of units,
which was based on the emu units and designed for use with electric circuits.

The ampere was the name given to the practical unit of I , the electric current.∗
It was defined to be one tenth the size of the emu unit of current.
We have, according to Eq. (2.7)

1 amp = 1/10 (1 emu unit of current)= (1/10) U
emu
(dQ)/ U

emu
(dt)

= (1/10) U
emu
(Q)/ U

emu
(t)= (1/10)(gm1/2 · cm1/2)/sec. (2.24a)

The volt was the name given to the practical unit of electric potential.† It was
defined to be 108 times larger than the emu unit of potential:

1 volt = 108 (1 emu unit of potential)= 108 gm1/2 · cm3/2

sec2
. (2.24b)

The terms “1 emu unit of current” or “1 emu unit of potential” are, by the way, en-
tirely conventional—it is always acceptable to specify electromagnetic quantities
by the system of units used to measure them. This turn of phrase can be applied
to any electromagnetic system, not just the esu or emu systems; it is, in fact, most
likely to be encountered when reading articles about uncommon systems of electro-
magnetic units where there are no widely accepted names for the individual units
of current, potential, etc.

When talking about practical units, we descend from the complete theory of
electromagnetism to the more restricted domain of circuit theory. The equations of
∗ This unit was named in honor of Andre Marie Ampere (1775–1836).
† This unit was named in honor of Alessandro Giuseppe Antonio Anastasio Volta (1745–1827).
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circuit theory have the same form no matter what units are used. The equations of
elementary circuit theory assume that all circuits are composed of separate circuit
elements. Each circuit element has two terminals and its behavior is characterized
by both the electric potential between the terminals and the current flowing through
the circuit element (see Fig. 2.6 for an example of how this works). To discuss the
practical system of units, we create U and N operators called U

prac
and N

prac
that can

be used only with circuit-theory equations. Having already defined the practical
units for current I and potential V in Eqs. (2.24a, b), we must have

U
prac
(I )= amp, (2.24c)

U
prac
(V )= volt; (2.24d)

and from Rule I,

N
prac
(I )= 10 · N

emu
(I )= I[amp], (2.24e)

N
prac
(V )= 10−8 · N

emu
(V )= V[volt]. (2.24f)

If we also define for any time t that

U
prac
(t)= sec and N

prac
(t)= t[sec], (2.24g)

then we have all that is needed to set up the complete practical system of elec-
tromagnetic units. Any physical quantity bCIRCUIT defined in circuit theory must,
from the self-consistency of the theory, be measurable in some way using volt, amp,
and sec. We define operator N

prac
by saying that the number coming from the mea-

surement of bCIRCUIT must be N
prac
(bCIRCUIT ). As for operator U

prac
, the equations

of circuit theory are themselves straightforward, making the units of the practical
system easy to define.

Like most textbooks on elementary circuit theory, we start with Ohm’s law,

V = IR. (2.25a)

In this equation, V is the electric potential across a circuit element, with I the
electric current flowing through the circuit element, and R its resistance. There are
specialized circuit elements called resistors designed to provide a specified value
of R across their terminals. The practical unit called the ohm is used to measure
resistance:∗

U
prac
(R)= ohm.

∗ This unit was named in honor of Georg Simon Ohm (1787–1854).
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Figure 2.6 Wires are used to connect the terminals of circuit elements, forming
circuit networks.

Applying U
prac

to both sides of Eq. (2.25a) gives

U
prac
(V )= U

prac
(I ) · U

prac
(R)

so that, using Eqs. (2.24c, d),

volt = amp · ohm

or

ohm = volt

amp
. (2.25b)

Equation (2.25b) can be used as the definition of ohm. When Eq. (2.25a) is written
as

I = V

R
=GV,
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the conductanceG=R−1 has units of ohm−1, often called the mho:

1 mho = ohm−1. (2.25c)

We have already seen in Eq. (2.7) that the current is dQ/dt , the time rate of change
of the electric charge. Applying U

prac
to both sides of Eq. (2.7) gives

U
prac
(I )=

U
prac
(dQ)

U
prac
(dt)

=
U

prac
(Q)

U
prac
(t)

. (2.26a)

We have from Eq. (2.24g) that

U
prac
(t)= sec, (2.26b)

which means that the unit of charge, called the coulomb, in the practical system of
units must be∗

U
prac
(Q)= U

prac
(I ) · sec = amp · sec.

Using coul for the abbreviation of coulomb, we define

1 coul = 1 amp · sec. (2.26c)

Charge can be stored on circuit elements called capacitors. Indeed, calculating the
capacitance of metallic objects with simple geometric shapes is a standard textbook
exercise, and nonideal circuit elements of all types may have measurable amounts
of capacitance. A capacitor with an electric potential V across its terminals stores
an amount of charge

Q=CV, (2.27a)

where C is the constant capacitance of the capacitor. Applying U
prac

to Eq. (2.27a)

we find that

U
prac
(C)=

U
prac
(Q)

U
prac
(V )

= coul

volt
.

∗ This unit is named in honor of Charles Augustine Coulomb (1736–1806). He also gave his name
to Coulomb’s law for electric charges and magnetic poles.
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We now define U
prac
(C)= farad to be the practical unit of capacitance.∗

1 farad = coul

volt
. (2.27b)

When Eq. (2.27a) is written as

V = C−1Q= SQ,

the elastance S = C−1 is measured in units of farad−1. Another name for farad−1,
following the pattern of ohm−1 = mho, was daraf; but this usage had fallen out of
favor by the second half of the twentieth century. The last type of circuit element
given a separate practical unit is the inductor. When the current through an inductor
has a time rate of change dI/dt , the potential across the inductor is

V =L
dI

dt
, (2.28a)

where L is the inductor’s coefficient of induction, or just its induction for short. We
see that

U
prac
(V )= U

prac
(L) ·

U
prac
(I )

U
prac
(t)
,

or

U
prac
(L)= volt · sec

amp
. (2.28b)

Equation (2.28b) defines the henry, the practical unit of induction:†

1 henry = volt · sec

amp
. (2.28c)

A later addition to the system of practical units is the weber, useful in measuring
magnetic quantities:‡

1 weber = volt · sec. (2.29)
∗ This unit is named in honor of Michael Faraday (1791–1867). The practical unit of current was
sometimes called the farad before an international commission gave it the name ampere in 1881.
† This unit is named in honor of Joseph Henry (1797–1878).
‡ This unit is named in honor of Wilhelm Eduard Weber (1795–1878). The practical units of current
and charge were sometimes called the weber before an international commission gave them the names
ampere and coulomb in 1881.
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2.7 THE “AB-” AND “STAT-” PREFIXES

The practical units became so popular that by the beginning of the twentieth cen-
tury their names were borrowed to describe the units of the esu and emu systems.
This practice never really caught on in Europe but became nearly universal in the
United States. Units in the esu system were given the same name as the corre-
sponding practical unit preceeded by the prefix “stat”, for electro-stat-ic system of
units. The unit of charge in esu units became the statcoulomb, which we abbreviate
as statcoul,

1 statcoul = gm1/2 · cm3/2

sec
; (2.30a)

the unit of current in the esu system became the statampere (the statamp for short),

1 statamp = gm1/2 · cm3/2

sec2
; (2.30b)

the unit of potential in the esu system became the statvolt,

1 statvolt = gm1/2 · cm1/2

sec
; (2.30c)

and so on. The emu system of units was called the absolute system, and emu units
were given the same name as the practical unit preceeded by the prefix “ab” for
ab-solute. In the absolute system of units—that is, in the emu system—the unit of
charge became the abcoulomb (which we abbreviate as abcoul)

1 abcoul = gm1/2 · cm1/2, (2.31a)

the unit of current became the abampere (which we abbreviate as abamp)

1 abamp = gm1/2 · cm1/2

sec2
; (2.31b)

the unit of electric potential became the abvolt:

1 abvolt = gm1/2 · cm3/2

sec2
; (2.31c)

and so on. Table 2.3 gives the definitions of the esu and emu units correspond-
ing to the practical units, and Tables 2.4 and 2.5 give the unit names of common
electromagnetic physical quantities following this convention.∗ In Table 2.5 for
∗ The third columns of Tables 2.4 and 2.5 will become clear when we discuss the esuq and emuq
systems of units.
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Table 2.3 Names of esu and emu units using “stat”
and “ab” prefixes.

esu units emu units

1 statcoul = gm1/2 · cm3/2

sec
1 abcoul = gm1/2 · cm1/2

1 statamp = gm1/2 · cm3/2

sec2
1 abamp = gm1/2 · cm1/2

sec

1 statvolt = gm1/2 · cm1/2

sec
1 abvolt = gm1/2 · cm3/2

sec2

1 statfarad = cm 1 abfarad = sec2

cm

1 stathenry = sec2

cm
1 abhenry = cm

1 statohm = sec

cm
1 abohm = cm

sec

1 statweber = gm1/2 · cm1/2 1 abweber = gm1/2 · cm3/2

sec

the emu units, several of the magnetic quantities (for example B,F,�B , and H )
have names that do not follow the ab-prefix convention (their unit names are gauss,
gilbert, maxwell, and oersted, respectively∗). These magnetic quantities were more
often referred to by their non-ab names; the ab prefix versions, however, have been
listed because they are helpful when converting equations to other systems of units.

Textbooks using the ab and stat notation for emu and esu units almost always
have equations like

1 statvolt
?= 3 × 1010 abvolt (2.32a)

or

1 statcoul
?= 1

3 × 1010
abcoul, (2.32b)

to describe the conversion of physical quantities from one system of units to the
other. There are usually footnotes stating that all factors of 3 × 1010 are just an
approximation for 2.998 × 1010, the numeric part of the speed of light in cm/sec.
A quick glance at Eqs. (2.30a) and (2.31a) or Eqs. (2.30c) and (2.31c) shows what
is wrong with this convention from our point of view; if, for example, we accept

∗ These units were named in honor of Karl Friedrich Gauss (1777–1855), William Gilbert (1544–
1603), James Clerk Maxwell (1831–1879), and Hans Christian Oersted (1777–1851).
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Table 2.4 Electromagnetic physical quantities in esu and esuq units.

Physical quantity esu units esuq units

A (magnetic vector U
esu
(A)= gm1/2

cm1/2
= statweber

cm
U

esuq
(A)= statweberq

cm
potential)

B (magnetic induction) U
esu
(B)= gm1/2

cm3/2
= statweber

cm2 U
esuq

(B)= statweberq

cm2

C (capacitance) U
esu
(C)= cm = statfarad U

esuq
(C)= statfaradq

D (electric displacement)
U
esu
(D) = gm1/2

cm1/2 · sec

= statcoul

cm2

U
esuq

(D)= statcoulq

cm2

E (electric field)
U
esu
(E) = gm1/2

cm1/2 · sec

= statvolt

cm

U
esuq

(E)= statvoltq

cm

ε (dielectric constant) U
esu
(ε)= 1 = statfarad

cm
U

esuq
(ε)= statfaradq

cm

ε0 (permittivity of free U
esu
(ε0)= 1 = statfarad

cm
U

esuq
(ε0)= statfaradq

cm
space)

F (magnetomotive force)
U
esu
(F) = gm1/2 · cm3/2

sec2

= statamp

U
esuq

(F)= statampq

�B (magnetic flux)
U
esu
(�B) = gm1/2 · cm1/2

= statweber
U

esuq
(�B)= statweberq

G (conductance) U
esu
(G)= cm

sec
= statohm−1 U

esuq
(G)= statohmq−1

H (magnetic field)
U
esu
(H) = gm1/2 · cm1/2

sec2

= statamp

cm

U
esuq

(H)= statampq

cm

I (current)
U
esu
(I ) = gm1/2 · cm3/2

sec2

= statamp

U
esuq

(I )= statampq

J (volume current density)
U
esu
(J ) = gm1/2

cm1/2 · sec2

= statcoul

cm2 · sec

U
esuq

(J )= statcoulq

cm2 · sec
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Table 2.4 (Continued).

Physical quantity esu units esuq units

JS (surface current density)
U
esu
(JS) = gm1/2 · cm1/2

sec2

= statcoul

cm · sec

U
esuq

(JS)= statcoulq

cm · sec

L (inductance) U
esu
(L)= sec2

cm
= stathenry U

esuq
(L)= stathenryq

mH (permanent-magnet
U
esu
(mH ) = gm1/2 · cm3/2

= statweber · cm
U

esuq
(mH )= statweberq · cm

dipole moment)

mI (current-loop magnetic
U
esu
(mI ) = gm1/2 · cm7/2

sec2

= statamp · cm2
U

esuq
(mI )= statampq · cm2

dipole moment)

MH (permanent-magnet U
esu
(MH )= gm1/2

cm3/2
= statweber

cm2 U
esuq

(MH)= statweberq

cm2
dipole density)

MI (current-loop magnetic
U
esu
(MI ) = gm1/2 · cm1/2

sec2

= statamp

cm

U
esuq

(MI )= statampq

cm
dipole density)

µ(magnetic permeability) U
esu
(µ)= sec2

cm2
= stathenry

cm
U

esuq
(µ)= stathenryq

cm

µ0 (magnetic permeability of U
esu
(µ0)= sec2

cm2
= stathenry

cm
U

esuq
(µ0)= stathenryq

cm
free space)

pH (magnetic pole strength)
U
esu
(pH ) = gm1/2 · cm1/2

= statweber
U

esuq
(pH )= statweberq

p (electric dipole moment)
U
esu
(p) = gm1/2 · cm5/2

sec

= statcoul · cm

U
esuq

(p)= statcoulq · cm

P (electric dipole density) U
esu
(P )= gm1/2

cm1/2 · sec
= statcoul

cm2 U
esuq

(P )= statcoulq

cm2

P (permeance) U
esu
(P)= sec2

cm
= statweber

statamp
U

esuq
(P)= statweberq

statampq

Q (charge)
U
esu
(Q) = gm1/2 · cm3/2

sec

= statcoul

U
esuq

(Q)= statcoulq

R (resistance) U
esu
(R)= sec

cm
= statohm U

esuq
(R)= statohmq
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Table 2.4 (Continued).

Physical quantity esu units esuq units

R (reluctance) U
esu
(R)= cm

sec2
= statamp

statweber
U

esuq
(R)= statampq

statweberq

ρQ (volume charge density)
U
esu
(ρQ) = gm1/2

cm3/2 · sec

= statcoul

cm3

U
esuq

(ρQ)= statcoulq

cm3

ρR (resistivity) U
esu
(ρR)= sec = statohm · cm U

esuq
(ρR)= statohmq · cm

S (elastance) U
esu
(S)= cm−1 = statfarad−1 U

esuq
(S)= statfaradq−1

SQ (surface charge density)
U
esu
(SQ) = gm1/2

cm1/2 · sec

= statcoul

cm2

U
esuq

(SQ)= statcoulq

cm2

σ (conductivity) U
esu
(σ )= sec−1 = statohm−1

cm
U

esuq
(σ )= statohmq−1

cm

V (electric potential)
U
esu
(V ) = gm1/2 · cm1/2

sec

= statvolt

U
esuq

(V )= statvoltq

$H (magnetic scalar potential)
U
esu
($H ) = gm1/2 · cm3/2

sec2

= statamp

U
esuq

($H )= statampq

Eqs. (2.30c), (2.31c), and (2.32a) as all true, it follows that

gm1/2 · cm1/2 ?= (3 × 1010)
gm1/2 · cm3/2

sec

or

1 sec
?= 3 × 1010 cm. (2.32c)

A statement like this is only true when time and space have the same dimension and
the speed of light is equal to 1 (see Section 1.10).∗ It is safe to say, however, that
the idea of giving time and space the same dimension was foreign to these textbook
writers; they are just injudiciously applying Rule I while ignoring Rule II. What

∗ In fact, we can predict that esu and emu units will become identical when working in a system of
units where the speed of light has the dimensionless value 1. Equations (2.11a, b) and (2.12a, b) show
that ε0 =µ0 = 1 automatically when c= 1, which means that esu and emu units will be the same.
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Table 2.5 Electromagnetic physical quantities in emu and emuq units.

Physical quantity emu units emuq units

A (magnetic vector potential)
U

emu
(A) = gm1/2 · cm1/2

sec

= abweber

cm

U
emuq

(A)= abweberq

cm

B (magnetic induction)
U

emu
(B) = gm1/2

sec · cm1/2

= gauss = abweber

cm2

U
emuq

(B)= abweberq

cm2

C (capacitance) U
emu

(C)= sec2

cm
= abfarad U

emuq
(C)= abfaradq

D (electric displacement) U
emu

(D)= gm1/2

cm3/2
= abcoul

cm2 U
emuq

(D)= abcoulq

cm2

E (electric field)
U

emu
(E) = gm1/2 · cm1/2

sec2

= abvolt

cm

U
emuq

(E)= abvoltq

cm

ε (dielectric constant) U
emu

(ε)= sec2

cm2
= abfarad

cm
U

emuq
(ε)= abfaradq

cm

ε0 (permittivity of free space) U
emu

(ε0)= sec2

cm2
= abfarad

cm
U

emuq
(ε0)= abfaradq

cm

F (magnetomotive force)
U

emu
(F) = gm1/2 · cm1/2

sec

= abamp = gilbert

U
emuq

(F)= abampq

�B (magnetic flux)
U

emu
(�B) = gm1/2 · cm3/2

sec

= maxwell = abweber

U
emuq

(�B)= abweberq

G (conductance) U
emu

(G)= sec

cm
= abohm−1 U

emuq
(G)= abohmq−1

H (magnetic field)
U

emu
(H) = gm1/2

cm1/2 · sec

= oersted = abamp

cm

U
emuq

(H)= statweberq

I (current) U
emu

(I )= gm1/2 · cm1/2

sec
= abamp U

emuq
(I )= abweberq

J (volume current density) U
emu

(J )= gm1/2

cm3/2 · sec
= abcoul

cm2 · sec
U

emuq
(J )= abcoulq

cm2 · sec

JS (surface current density) U
emu

(JS)= gm1/2

cm1/2 · sec
= abcoul

cm · sec
U

emuq
(JS)= abcoulq

cm · sec



102 CHAPTER 2

Table 2.5 (Continued).

Physical quantity emu units emuq units

L (inductance) U
emu

(L)= cm = abhenry U
emuq

(L)= abhenryq

mH (permanent-magnet dipole
U

emu
(mH ) = gm1/2 · cm5/2

sec

= abweber · cm

U
emuq

(mH )= abweberq · cm
moment)

mI (current-loop magnetic
U

emu
(mI ) = gm1/2 · cm5/2

sec

= abamp · cm2
U

emuq
(mI )= abampq · cm2

dipole moment)

MH (permanent-magnet dipole
U

emu
(MH ) = gm1/2

sec · cm1/2

= abweber

cm2

U
emuq

(MH )= abweberq

cm2
density)

MI (current-loop magnetic
U

emu
(MI ) = gm1/2

sec · cm1/2

= abamp

cm

U
emuq

(MI )= abampq

cm
dipole density)

µ (magnetic permeability) U
emu

(µ)= 1 = abhenry

cm
U

emuq
(µ)= abhenryq

cm

µ0 (magnetic permeability of U
emu

(µ0)= 1 = abhenry

cm
U

emuq
(µ0)= abhenryq

cm
free space)

pH (magnetic pole strength)
U

emu
(pH ) = gm1/2 · cm3/2

sec

= maxwell = abweber

U
emuq

(pH )= abweberq

p (electric dipole moment)
U

emu
(p) = gm1/2 · cm3/2

= abcoul · cm
U

emuq
(p)= abcoulq · cm

P (electric dipole density) U
emu

(P )= gm1/2

cm3/2
= abcoul

cm2 U
emuq

(P )= abcoulq

cm2

P (permeance)
U

emu
(P) = cm = maxwell

gilbert

= abweber

abamp

U
emuq

(P)= abweberq

abampq

Q (charge)
U

emu
(Q) = gm1/2 · cm1/2

= abcoul
U

emuq
(Q)= abcoulq

R (resistance) U
emu

(R)= cm

sec
= abohm U

emuq
(R)= abohmq
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Table 2.5 (Continued).

Physical quantity emu units emuq units

R (reluctance)
U

emu
(R) = cm−1

= gilbert

maxwell
= abamp

abweber

U
emuq

(R)= abampq

abweberq

ρQ (volume charge density) U
emu

(ρQ)= gm1/2

cm5/2
= abcoul

cm3 U
emuq

(ρQ)= abcoulq

cm3

ρR (resistivity) U
emu

(ρR)= cm2

sec
= abohm · cm U

emuq
(ρR)= abohmq · cm

S (elastance) U
emu

(S)= cm

sec2
= abfarad−1 U

emuq
(S)= abfaradq−1

SQ (surface charge density) U
emu

(SQ)= gm1/2

cm3/2
= abcoul

cm2 U
emuq

(SQ)= abcoulq

cm2

σ (conductivity) U
emu

(σ )= sec

cm2
= abohm−1

cm
U

emuq
(σ )= abohmq−1

cm

V (electric potential) U
emu

(V )= gm1/2 · cm3/2

sec2
= abvolt U

emuq
(V )= abvoltq

$H (magnetic scalar potential)
U

emu
($H ) = gm1/2 · cm1/2

sec

= oersted · cm = abamp

U
esuq

($H )= abampq

they mean to say is that for any potential V ,

N
esu
(V )= c−1

cgs N
emu
(V )∼=

N
emu
(V )

3 × 1010
; (2.33a)

for any charge Q,

N
esu
(Q)= ccgs N

emu
(Q)∼= 3 × 1010 N

emu
(Q); (2.33b)

and so on, for the conversion of any other electromagnetic physical quantity.
Equations (2.33a, b) cannot violate any of the rules of Chapter 1 because they
only involve numeric quantities such as N

esu
(Q), N

emu
(Q), N

esu
(V ), N

emu
(V ), and ccgs =

c[cm/sec], the numeric part of the speed of light in cgs units.
There is another sense, however, in which these textbooks anticipate an idea

that became widespread—even predominant—during the twentieth century: at-
tributing a new dimension to electromagnetic physical quantities. From this point
of view, Eq. (2.32a) just recognizes that an electric potential is always an electric
potential whether measured in volts, statvolts, or abvolts; and these three physical
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quantities must therefore have the same dimensions. This implies that, contrary to
Table 2.3, one statvolt is not the same thing as 1 gm1/2 · cm1/2/sec, one abvolt
is not the same thing as gm1/2 · cm3/2/sec2, and one volt is not the same thing
as 108gm1/2 · cm3/2/sec2. Similarly, in Eq. (2.32b) electric charge is always elec-
tric charge, whether measured in coulombs, statcoulombs, or abcoulombs; and so
on for all the other esu, emu, and practical electromagnetic units. This attitude
matches the way electromagnetic quantities are used in the laboratory, where there
is never really any need to break units down to fractional powers of grams and cen-
timeters. There are many ways to give electromagnetic physical quantities an extra
dimension, constructing a set of units based on four fundamental dimensions—
mass, length, time, and something electrical. For teaching purposes it makes sense
to choose electric charge,Q, as our fourth fundamental dimension since it appears
in Coulomb’s law for point charges, the basic rule of electricity.∗

2.8 THE ESUQ AND EMUQ SYSTEMS OF UNITS

We now introduce the esuq and emuq systems of units. The N operators for the
esuq and emuq systems are defined by

N
esuq
(b)= N

esu
(b) (2.34a)

and

N
emuq

(b)= N
emu
(b), (2.34b)

for any mechanical or electromagnetic physical quantity b. Equations (2.34a) and
(2.34b) make the esuq and emuq systems identical to the esu and emu systems
except that, unlike the esu and emu systems, they recognize the existence of a new
fundamental dimension—electric charge. For any physical quantity bMECH , which
is purely mechanical, we have

U
esuq
(bMECH)= U

esu
(bMECH) (2.34c)

and

U
emuq

(bMECH)= U
emu
(bMECH); (2.34d)

but for any electromagnetic physical quantity bELMAG, we expect

U
esuq
(bELMAG) �= U

esu
(bELMAG) (2.34e)

∗ From the viewpoint of experimental scientists, electric charge is a relatively poor choice of funda-
mental dimension, because any fundamental unit of charge will be difficult to measure and reproduce
accurately.
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and

U
emuq

(bELMAG) �= U
emu
(bELMAG). (2.34f)

Because the cgs system is identical in all respects to the esu and emu systems for
mechanical physical quantities bMECH , Eqs. (2.34a–d) can be rewritten as

N
esuq
(bMECH)= N

esu
(bMECH)= N

cgs
(bMECH), (2.34g)

N
emuq

(bMECH)= N
emu
(bMECH)= N

cgs
(bMECH), (2.34h)

U
esuq
(bMECH)= U

esu
(bMECH)= U

cgs
(bMECH), (2.34i)

U
emuq

(bMECH)= U
emu
(bMECH)= U

cgs
(bMECH). (2.34j)

We define the fundamental unit of charge in the esuq system to be statcoulq;
i.e.,

U
esuq
(Q)= statcoulq (2.35a)

and examine what happens to Coulomb’s law, Eqs. (2.1a, b), when U
esuq

is applied to

both sides:

U
esuq
(F )=

U
esuq
(Q1) · U

esuq
(Q2)

U
esuq
(ε0) · U

esuq
(r)2

= statcoulq2

U
esuq
(ε0) · U

esuq
(r)2

. (2.35b)

From Eq. (2.34i), the units of the two mechanical quantities must be

U
esuq
(F )= dynes (2.36a)

and

U
esuq

(r)= cm (2.36b)

Therefore, Eq. (2.35b) becomes

U
esuq
(ε0)= statcoulq2

dyne · cm2 , (2.37a)

so that ε0 now has dimensions, making it an unarguable electromagnetic physical
quantity. Equations (2.34a) and (2.11a) then require that

N
esuq
(ε0)= N

esu
(ε0)= 1 (2.37b)
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so that in the esuq system

ε0 = 1
statcoulq2

dyne · cm2
= 1

statcoulq2 · sec2

gm · cm3
. (2.38)

In the last step of Eq. (2.38) we use 1 dyne = gm · cm · sec−2.
Applying U

esuq
to both sides of Eq. (2.3a) gives

U
esuq
(E) =

U
esuq
(Q)

U
esuq
(ε0) · U

esuq
(r)2

= statcoulq
(

statcoulq2

dyne · cm2

)

· cm2

= dyne · cm

statcoulq · cm
=
(

erg

statcoulq

)

· 1

cm
,

(2.39a)

where Eqs. (2.38), (2.35a), (2.36b), and erg = dyne · cm are used to get the final
result. We now define

1 statvoltq = erg

statcoulq
(2.39b)

to get

U
esuq
(E)= statvoltq

cm
. (2.39c)

Applying U
esuq

to both sides of Eq. (2.21a) gives [the discussion after Eq. (1.12)

shows how to analyze the integral in Eq. (2.21a)]

U
esuq
(V )= U

esuq
(E) · U

esuq
(ds)= statvoltq

cm
· cm = statvoltq. (2.39d)

This shows that statvoltq is the unit of electric potential in the esuq system of units.
Moving on to the units of the electric dipole in Eqs. (2.20a, b), we apply U

esuq
to

get

U
esuq
(p)= U

esuq
(Q) · cm = statcoulq · cm (2.40a)

so that the electric dipole density P in Eq. (2.20c) has units

U
esuq
(P )=

U
esuq
(p)

U
esuq
(dV )

= statcoulq · cm

cm3
= statcoulq

cm2
. (2.40b)
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Now, applying U
esuq

to Eq. (2.20d) gives

U
esuq

(D)= statcoulq

cm2
, (2.40c)

which we can get either from analyzing the “4πP ” term using Eq. (2.40b) or from
analyzing the “ε0E” term using Eqs. (2.37a), (2.39a), and erg = dyne · cm.

Suppose that back at Eq. (2.35a), we had decided to work with the emuq system
of units, defining the fundamental unit of charge to be the abcoulq instead of the
statcoulq:

U
emuq

(Q)= abcoulq. (2.41a)

Working through Coulomb’s law using U
emuq

instead of U
esuq

gives

U
emuq

(ε0)= abcoulq2

dyne · cm2 . (2.41b)

This is the same as Eq. (2.37a) with statcoulq replaced by abcoulq. The next step
is different, because from Eqs. (2.12b) and (2.34b)

N
emuq

(ε0)= N
emu
(ε0)= c−2

cgs. (2.41c)

which leads to

ε0 = c−2
cgs

abcoulq2

dyne · cm2
(2.41d)

in the emuq system of units. After this deviation, however, the development follows
the same path as before, with abcoulq replacing statcoulq everywhere. Applying
U

emuq
to both sides of Eq. (2.3a) gives

U
emuq

(E)=
(

erg

abcoulq

)

· 1

cm
= abvoltq

cm
, (2.42a)

where we define

1 abvoltq = 1
erg

abcoulq
. (2.42b)

This corresponds exactly to Eqs. (2.39a–c). Applying U
emuq

to both sides of

Eq. (2.21a) gives

U
emuq

(V )= abvoltq, (2.42c)
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which corresponds to Eq. (2.39d) and shows that abvoltq is the emuq unit of electric
potential. Going through the same development used to get Eqs. (2.40a–c) with
U

emuq
instead of U

esuq
gives

U
emuq

(p)= abcoulq · cm, (2.43a)

U
emuq

(P )= abcoulq

cm2
, (2.43b)

and

U
emuq

(D)= abcoulq

cm2 . (2.43c)

Readers familiar with the rationalized mks system (used by almost all of to-
day’s introductory textbooks for electricity and magnetism) may by now be feeling
a strong sense of déjà vu, because there is an obvious correspondence between the
units used in the esuq, emuq, and mks systems. The mks potential has units of
volts, the charge has units of coul, and the definition of a volt is joule/coul. Simi-
larly, the esuq and emuq potential has units of statvoltq and abvoltq, the esuq and
emuq charge has units of statcoulq and abcoulq, and the esuq and emuq definitions
of statvoltq and abvoltq are erg/statcoulq and erg/abcoulq. The mks unit for the
electric field E is volt/m and the unit for the displacement field D is coul/m2.
The esuq and emuq units for E are statvoltq/cm and abvoltq/cm, and the esuq and
emuq units forD are statcoulq/cm2 and abcoulq/cm2. It looks as if we can get the
esuq units for any electric quantity simply by taking the mks units, adding a “stat”
prefix and a “q” suffix, and changing all mechanical units to their cgs counterparts
(m becomes cm, joule becomes erg, etc.). The emuq units seem to follow the same
recipe, except that we add an “ab” instead of a “stat” prefix. This rule of thumb is,
in fact, true—and very helpful when it is not immediately clear what the correct
esuq or emuq units should be. Historically speaking, this is no accident, because
the mks system was first proposed at the very beginning of the twentieth century,
soon after the introduction of the practical units discussed above. The logic be-
hind these mks units—that of introducing a fourth fundamental electromagnetic
dimension—was the same as that behind the esuq and emuq systems of units, and
we use the stat and ab conventions to take advantage of this correspondence. Un-
fortunately, the mks system of units became popular in its rationalized form, and
we are not yet ready to talk about the U and N operators of rationalized systems—a
topic that will be postponed until Chapter 3. For now, it is enough to realize that
the similarity of the esuq, emuq, and mks units exists and that it follows directly
from the recognition of a fourth electromagnetic dimension. It is also worth noting
that the mks units, because they do presume the existence of a fourth electromag-
netic dimension, are definitely not the same as the old practical units, even though
they were given the same names, and physical quantities measured with them have
the same numeric components. The old practical units volt, coul, etc., discussed
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in Section 2.6 above are all multiples of the corresponding emu units; whereas,
the mks volt, coul, etc. cannot be set equal to any of the corresponding emu units
because they have a fourth electromagnetic dimension (see Section 3.6 for more
discussion of this point).

Equation (2.10) is the starting point for constructing the magnetic units of the
esuq and emuq systems. Applying U

esuq
to Eq. (2.10) gives, using Eqs. (2.37a) and

(2.34i),

U
esuq
(µ0) = 1

U
esuq

(ε0) · U
esuq
(c)2

= dyne · cm2

statcoulq2 · sec2

cm2

=
(

erg

statcoulq

)

· sec2

cm
· 1

statcoulq

= statvoltq · sec2

cm · statcoulq
,

(2.44)

where erg = dyne · cm and statvoltq = erg/statcoulq are used to get the final result.
We can put this into a more compact form by defining two new esuq units, the
statampq and the stathenryq:

1 statampq = statcoulq

sec
, (2.45a)

1 stathenryq = statvoltq · sec

statampq
. (2.45b)

Applying these definitions to Eq. (2.44) gives

U
esuq
(µ0)= statvoltq · sec

statampq · cm
= stathenryq

cm
. (2.45c)

To find out the meaning of the new statampq unit, we apply U
esuq

to both sides of

Eq. (2.7) to get

U
esuq
(I )=

U
esuq
(dQ)

U
esuq
(dt)

= statcoulq

sec
= statampq, (2.45d)

showing that statampq is the esuq unit of current. To find the meaning of the stat-
henryq unit, we apply U

esuq
to both sides of Eq. (2.28a) to get

U
esuq
(L)=

U
esuq
(V ) · U

esuq
(dt)

U
esuq
(dI )

= statvoltq · sec

statampq
= stathenryq, (2.45e)
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showing stathenryq to be the esuq unit of induction. To find the numeric component
of µ0 in esuq units we consult Eqs. (2.11b) and (2.34g) to get

N
esuq
(µ0)= c−2

cgs. (2.45f)

We can go through the same procedure using U
emuq

instead of U
esuq

in Eqs. (2.44)

through (2.45e) to get

U
emuq

(µ0)= abvoltq · sec2

cm · abcoulq
, (2.46a)

which simplifies to

U
emuq

(µ0)= abvoltq · sec

abampq · cm
= abhenryq

cm
, (2.46b)

where

1 abampq = abcoulq

sec
(2.46c)

and

1 abhenryq = abvoltq · sec

abampq
(2.46d)

are the emuq units of current and induction, respectively. Equations (2.12a) and
(1.28b) give the numeric component of µ0 in emuq units:

N
emuq

(µ0)= 1. (2.46e)

Readers familiar with mks units recognize that Eqs. (2.45c) and (2.46b) follow
the mks rule of thumb explained in the discussion following Eq. (2.43c) above,
since the esuq and emuq units for µ0 are stathenryq/cm and abhenryq/cm, respec-
tively, and the mks units for µ0 are henry/m. To simplify the units of ε0 and to
show how they also match this rule of thumb, we define

1 statfaradq = statcoulq

statvoltq
(2.47a)

and

1 abfaradq = abcoulq

abvoltq
. (2.47b)
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Applying U
esuq

and U
emuq

to Eq. (2.27a) then gives

U
esuq
(C)=

U
esuq

(Q)

U
esuq
(V )

= statcoulq

statvoltq
= statfaradq (2.47c)

and

U
emuq

(C)=
U

emuq
(Q)

U
emuq

(V )
= abcoulq

abvoltq
= abfaradq, (2.47d)

showing that statfaradq and abfaradq are the esuq and emuq units of capacitance.
Now, using erg = dyne · cm, Eq. (2.37a) can be written as

U
esuq
(ε0)= statcoulq2

erg · cm
= statcoulq

statvoltq · cm
= statfaradq

cm
, (2.48a)

where we use definitions (2.39b) and (2.47a) to get the final result. Equa-
tion (2.41b) can be treated similarly to get, using definitions (2.42b) and (2.47b),

U
emuq

(ε0)= abcoulq2

erg · cm
= abcoulq

abvoltq · cm
= abfaradq

cm
. (2.48b)

Because the units of ε0 in the mks system are often given as farad/m, it is clear
that Eqs. (2.48a,b) follow the mks rule of thumb.

Once the units of µ0 are known, we have easy access to the units of all the
magnetic physical quantities. Applying U

esuq
to Eqs. (2.2a, b) gives

dynes =
U

esuq
(pH )

2

U
esuq
(µ0) · cm2

or

U
esuq
(pH )

2 = dyne · cm2 · U
esuq
(µ0)=

(
dyne · cm

statcoulq

)

· statvoltq · sec2,

using Eq. (2.44) to eliminate U
esuq
(µ0). Since

dyne · cm

statcoulq
= erg

statcoulq
= statvoltq,
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the square of U
esuq

(pH ) must equal statvoltq2 · sec2. Therefore, if we define

statweberq = statvoltq · sec, (2.49)

we get that the magnetic pole strength in the esuq system is

U
esuq
(pH )= statweberq (2.50)

We now repeat this procedure, applying U
emuq

to Eqs. (2.2a, b) and using Eq. (2.46a)

to get

U
emuq

(pH )= abweberq, (2.51a)

where we define

abweberq = abvoltq · sec. (2.51b)

The unit of magnetic pole strength in the emuq system is the abweberq.
Applying U

esuq
to Eq. (2.5) gives

U
esuq
(H)= dynes

U
esuq

(pH )
= dynes

statweberq
. (2.52a)

From erg = dyne ·cm, statvoltq = erg/statcoulq, and statweberq = statvoltq ·sec =
(erg · sec)/statcoulq, we have that

dynes

statweberq
=
(

erg

cm

)

· statcoulq

erg · sec
= statampq

cm
,

where in the last step we use statampq = statcoulq/sec. Therefore, the esuq units
of H can be written as

U
esuq
(H)= statampq

cm
. (2.52b)

This result can also be gotten directly from applying U
esuq

to both sides of Eq. (2.6).

Following the same procedure with U
emuq

, applying it to both sides of Eqs. (2.5) or

(2.6), gives

U
emuq

(H)= dynes

abweberq
(2.52c)
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or

U
emuq

(H)= abampq

cm
. (2.52d)

The units of a permanent-magnet dipole moment mH come from applying U
esuq

and

U
emuq

to Eqs. (2.19a,b):

U
esuq

(mH)= statweberq · cm, (2.53a)

U
emuq

(mH)= abweberq · cm. (2.53b)

Applying U
esuq

and U
emuq

to the definition of the permanent-magnetic dipole density

field in Eq. (2.19c) gives

U
esuq
(MH)= statweberq

cm2
(2.54a)

and

U
emuq

(MH)= abweberq

cm2
. (2.54b)

Turning to the definition of the magnetic induction B in Eq. (2.19d), we confirm
that MH and µ0H have the same units—as they must—by applying U

esuq
and U

emuq
to µ0H . Equations (2.44) and (2.52b) show that

U
esuq

(µ0H) = U
esuq
(µ0) · U

esuq
(H)= statvoltq · sec2

cm · statcoulq
· statampq

cm

= statweberq

cm2
,

(2.54c)

where the last step uses the definitions statampq = statcoulq/sec and statweberq =
statvoltq · sec. Equations (2.46a) and (2.52d), and the definitions of abampq and
abweberq, show that

U
emuq

(µ0H)= abvoltq · sec2

cm · abcoulq
· abampq

cm
= abweberq

cm2
. (2.54d)

Comparison of Eqs. (2.54a, b) to (2.54c, d) shows that µ0H andMH have the same
units, so applying U

esuq
and U

emuq
to Eq. (2.19d) gives

U
esuq
(B)= statweberq

cm2
(2.55a)
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and

U
emuq

(B)= abweberq

cm2 . (2.55b)

Once again, readers familiar with the mks system of units can see how it paral-
lels the esuq and emuq units. The mks units of H are amp/m, as compared to
the esuq and emuq units for H in Eqs. (2.52b, d), which are statampq/cm and
abampq/cm, respectively. Similarly, the mks units for B are teslas, defined to be
weber/m2, as compared to the esuq and emuq units for B in Eqs. (2.55a, b), which
are statweberq/cm2 and abweberq/cm2, respectively.

The esuq units are completed by applying U
esuq

to Eq. (2.25a) to get

statvoltq = U
esuq
(R) · statampq

or

U
esuq

(R)= statohmq, (2.56a)

where we define

statohmq = statvoltq

statampq
. (2.56b)

The emuq units are completed by applying U
emuq

to the same equation to get

U
emuq

(R)= abohmq, (2.56c)

where we define

abohmq = abvoltq

abampq
. (2.56d)

Clearly the units of resistance in the esuq and emuq systems are statohmq and
abohmq, respectively.

Although, as already discussed after Eqs. (2.32a, c), it does not make sense to
write

1 abcoul
?= 3 × 1010 statcoul,

because, according to Eqs. (2.30a) and (2.31a), they have different dimensions; it
does make sense to write

1 abcoulq ∼= 3 × 1010 statcoulq,
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because both statcoulq and abcoulq are units of a newly recognized fourth fun-
damental dimension—electric charge. Consequently, we can write an equation re-
lating statcoulq to abcoulq without violating any of the rules in Chapter 1. From
Eq. (2.14i) and Eqs. (2.34a, b) we see that

N
esuq
(Q)= ccgs · N

emuq
(Q). (2.57a)

So, from Rule I, it follows that

1 abcoulq = ccgs · statcoulq. (2.57b)

Tracing back the origin of this important result, we see that it stems from the
fundamental choices made in Eqs. (2.11a, b) and (2.12a, b) to set up the esu and
emu systems of units. In this sense, Eq. (2.57b) is entirely manmade and not the
consequence of some natural symmetry. The choices made in Eqs. (2.11a, b) and
Eqs. (2.12a, b) are not necessarily bad choices, but they are also not compellingly
obvious. Any choice of ε0 and µ0 giving an ε0µ0 product equal to c−2, as specified
by Eq. (2.10), can be used to set up a system of units—we might consider, for ex-
ample, choosing ε0 = µ0 = c−1. This choice is symmetric, making it perhaps more
appealing to today’s theoreticians; but historically speaking it was never pursued.

Equation (2.57b) is all that we need to relate every esuq unit to its dimensionally
identical emuq counterpart. From Eqs. (2.57b), (2.42b), and (2.39b) we get

1 abvoltq = erg

abcoulq
= erg

ccgs · statcoulq
= c−1

cgs · statvoltq. (2.58a)

From Eqs. (2.46c) and (2.45a) we get

1 abampq = abcoulq

sec
= ccgs · statcoulq

sec
= ccgs · statampq; (2.58b)

and from Eqs. (2.46d), (2.58a), (2.58b), and (2.45b),

1 abhenryq = abvoltq · sec

abampq
= c−1

cgs · statvoltq · sec

ccgs · statampq
= c−2

cgs · stathenryq. (2.58c)

Equations (2.47b), (2.57b), (2.58a), and (2.47a) give

1 abfaradq = abcoulq

abvoltq
= ccgs · statcoulq

c−1
cgs · statvoltq

= c2
cgs · statfaradq; (2.58d)

and Eqs. (2.51b), (2.58a), and (2.49) give

1 abweberq = abvoltq · sec = c−1
cgs · statvoltq · sec = c−1

cgs · statweberq. (2.58e)
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Table 2.6 Relationships between the esuq and emuq
units.

1 abampq = ccgs · statampq

1 abcoulq = ccgs · statcoulq

1 abweberq = c−1
cgs · statweberq

1 abvoltq = c−1
cgs · statvoltq

1 abfaradq = c2
cgs · statfaradq

1 abhenryq = c−2
cgs · stathenryq

1 abohmq = c−2
cgs · statohmq

Equations (2.56d), (2.58a), (2.58b), and (2.56b) show that

1 abohmq = abvoltq

abampq
= c−1

cgs · statvoltq

ccgs · statampq
= c−2

cgs · statohmq. (2.58f)

Equations (2.57b) and (2.58a–f) are summarized in Table 2.6.

2.9 THE ESUQ AND EMUQ CONNECTION WITH THE ESU AND EMU

SYSTEMS OF UNITS

The esuq and emuq units are a bridge between the esu and emu systems of units.
Figure 2.7 shows the procedure for converting equations and formulas from esu to
emu units. Following the solid line, we go from esu to esuq by recognizing charge
as a fourth fundamental dimension, then convert to emuq units, and then drop down
to the emu units by no longer recognizing charge as a separate dimension. The
process is reversed when following the dotted line to convert equations from emu
to esu units.

We have set up the four different systems of units to make these transformations
simple, but it is important to realize that when dropping from the esuq, emuq upper
level to the esu and emu lower level we are referring to two different ways of no
longer recognizing charge as a separate dimension. To show how this works, we
create an operator U

mltq
that recognizes the four fundamental dimensions of mass,

length, time, and charge in any physical quantity b:

U
mltq

(b)= dimensional formula of b in
mass, length, time, and charge. (2.59)
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Figure 2.7 The solid arrows show the three-step transformation from esu units
to emu units and the dotted arrows show the three-step transformation from emu
units to esu units.

Operator U
mltq

is exactly the same as U
mlt

when b = bMECH is a strictly mechanical

quantity [see discussion following Eq. (1.29c)]. When b = bELMAG is an electro-
magnetic quantity, however, U

mltq
recognizes the fundamental dimension of charge

exactly the way it is recognized in the esuq and emuq systems of units. Applying
U

mltq
to Eqs. (2.1a, b), Coulomb’s law for two point charges, gives

U
mltq

(F )=
U

mltq
(Q1) · U

mltq
(Q1)

U
mltq
(ε0) · U

mltq
(r)2

or

U
mltq
(ε0)= charge2

mass · length3 · time−2
. (2.60a)

Applying U
mltq

to Eq. (2.10), ε0µ0 = c−2, then gives

U
mltq
(µ0)= time2

length2
· 1

U
mltq
(ε0)

= mass · length

charge2
, (2.60b)

where Eq. (2.60a) is used in the last step of Eq. (2.60b). When dropping down
to the esu system in Fig. 2.7, ε0 must become a dimensionless quantity; so
from Eq. (2.60a), charge loses its separate dimension by becoming equivalent
to mass1/2 · length3/2 · time−1. This is by no means the same as dropping down
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to the emu system. In the emu system, µ0 must become dimensionless; so
from Eq. (2.60b), charge loses its separate dimension by becoming equivalent to
mass1/2 · length1/2. These are clearly two distinct ways of no longer recognizing
charge as a fundamental dimension. Using the terminology developed in Chap-
ter 1, we see that the (statcoul, statcoulq) pair is a connecting unit between the
upper level of Fig. 2.7 and the esu system of units, and the (abcoul, abcoulq) pair
is a connecting unit between the upper level of Fig. 2.7 and the emu system of
units. The third columns of Tables 2.4 and 2.5 give the esuq and emuq units of
common electromagnetic physical quantities. In Table 2.4 we can pick out the con-
necting pairs between the esu system and the upper level of Fig. 2.7 by comparing
unit expressions for the same physical quantity in the second and third columns.
For example, the electric field E has units of statvolt/cm in the esu system and
statvoltq/cm in the esuq system, so (statvolt/cm, statvoltq/cm) is a connecting
pair between the esu and esuq systems. Similarly, the second and third columns of
Table 2.5 show the connecting pairs between the emu system and the upper level of
Fig. 2.7; the units of the permanent-magnet magnetic dipole moment mH reveal,
for example, that (abweber · cm, abweberq · cm) is a connecting pair between the
emu and emuq systems.

Tables 2.6 and 2.7 provide the basic information needed to convert physical
quantities and equations from esu units to emu units or from emu units to esu
units. Following the convention used in Section 2.3, all variables with subscript
“esu” are the numeric parts of physical quantities in the esu system of units, and all
variables with the subscript “emu” are the numeric parts of physical quantities in
the emu system of units. Variables with an “esuq” subscript are the numeric parts
of physical quantities in the esuq system, and variables with an “emuq” subscript
are the numeric parts of physical quantities in the emuq system. Equation (2.34a)
shows that all physical variables in the esu and esuq systems automatically have
the same numeric parts. Starting from the top of Table 2.7, we can write

Aesu =Aesuq

Besu = Besuq

etc.

Equation (2.34b) shows that the same holds true for all the physical variables in
the emu, emuq systems.

Aemu =Aemuq

Bemu = Bemuq

etc.

Purely mechanical quantities, such as the speed of light, have the same numeric
components in the esu, esuq, emu, emuq, and cgs systems of units, as indicated
by Eqs. (2.34g, h). To keep it simple, when there is a choice of subscripts we
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choose the most well-known system of units. This means the numeric components
of mechanical quantities get the cgs subscript when they are part of the esu, esuq,
emu, or emuq systems; the numeric components of electromagnetic quantities get
esu subscripts when they are part of the esu or esuq systems; and the numeric
components of electromagnetic quantities get emu subscripts when they are part of
the emu or emuq systems.

To show how to use Table 2.7, we convert the definition of the D field in esu
units [see Eq. (2.20e) in Section 2.4],

�D = �E + 4π �P ,

to emu units. Split up into numeric components and the fundamental gm, cm, sec

Table 2.7 Numeric components of physical quantities in esu and emu units.

(magnetic vector potential) (volume current density) (permeance)

Aemu =Aesu · ccgs Jemu = Jesu · c−1
cgs Pemu = Pesu · c2

cgs

(magnetic induction) (surface current density) (charge)

Bemu =Besu · ccgs (JS)emu = (JS)esu · c−1
cgs Qemu =Qesu · c−1

cgs

(capacitance) (inductance) (resistance)

Cemu = Cesu · c−2
cgs Lemu =Lesu · c2

cgs Remu = Resu · c2
cgs

(electric displacement) (permanent-magnet dipole moment) (reluctance)

Demu =Desu · c−1
cgs (mH )emu = (mH )esu · ccgs Remu = Resu · c−2

cgs

(electric field) (current-loop magnetic dipole moment) (volume charge density)

Eemu =Eesu · ccgs (mI )emu = (mI )esu · c−1
cgs (ρQ)emu = (ρQ)esu · c−1

cgs

(dielectric constant) (permanent-magnet dipole density) (resistivity)

εemu = εr · c−2
cgs, εesu = εr (MH )emu = (MH )esu · ccgs (ρR)emu = (ρR)esu · c2

cgs

(permittivity of free space) (current-loop magnetic dipole density) (elastance)

(ε0)emu = c−2
cgs, (ε0)esu = 1 (MI )emu = (MI )esu · c−1

cgs Semu = Sesu · c2
cgs

(magnetomotive force) (magnetic permeability) (surface charge density)

Femu = Fesu · c−1
cgs µemu = µr , µesu =µr · c−2

cgs (SQ)emu = (SQ)esu · c2
cgs

(magnetic flux) (magnetic permeability of free space) (conductivity)

(�B)emu = (�B)esu · ccgs (µ0)emu = 1, (µ0)esu = c−2
cgs σemu = σesu · c−2

cgs

(conductance) (magnetic pole strength) (electric potential)

Gemu =Gesu · c−2
cgs (pH )emu = (pH )esu · ccgs Vemu = Vesu · ccgs

(magnetic field) (electric dipole moment) (magnetic scalar potential)

Hemu =Hesu · c−1
cgs pemu = pesu · c−1

cgs ($H )emu = ($H )esu · c−1
cgs

(current) (electric dipole density)

Iemu = Iesu · c−1
cgs Pemu = Pesu · c−1

cgs
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units of the esu system, this equation becomes (see Table 2.4)

�Desu ·
(

1

sec
· gm1/2

cm1/2

)

= �Eesu ·
(

1

sec
· gm1/2

cm1/2

)

+4π �Pesu ·
(

1

sec
· gm1/2

cm1/2

)

. (2.61a)

To go from the esu to esuq units in Fig. 2.7, we recognize charge as a fourth fun-
damental dimension. According to Rule VIII, the first step in doing this is to use
the meaning of the new charge dimension to rewrite Eq. (2.61a) so that it is bal-
anced in both the invariant and connecting units. As it stands now, Eq. (2.61a) is
only balanced in the invariant units gm, cm, and sec. From the electric displace-
ment row, the electric field row, and the electric dipole density row of Table 2.4 we
see that the connecting units of D,E, and P in the esu system are statcoul/cm2,
statvolt/cm, and statcoul/cm2, respectively. Equation (2.61a) becomes

�Desu ·
(

statcoul

cm2

)

= �Eesu ·
(

statvolt

cm

)

+ 4π �Pesu ·
(

statcoul

cm2

)

. (2.61b)

At first glance, Eq. (2.61b) looks like its units do not match, but as long as we stay
in the esu system we know that

statvolt

cm
= 1

sec
· gm1/2

cm1/2
= statcoul

cm2
,

so that Eq. (2.61b) has balanced units. Rule VIII, however, requires that Eq. (2.61b)
obey Rules II, IV, and V—that is, it must have balanced units—in both its invariant
and connecting units. For this to be true, we must multiply �Eesu by (statcoul ·
statvolt−1 · cm−1) to get

�Desu ·
(

statcoul

cm2

)

= �Eesu ·
(

statvolt

cm

)

·
(

statcoul

statvolt · cm

)

+4π �Pesu ·
(

statcoul

cm2

)

.

(2.61c)

We can do this because in the esu system [see Table 2.4 or Eqs. (2.30a, c)]

statcoul

statvolt · cm
=
(

gm1/2 · cm3/2

sec

)

· 1

cm
·
(

sec

gm1/2 · cm1/2

)

= 1,

so all we have done is to multiply �Eesu by 1. Equation (2.61c), unlike Eq. (2.61b),
is balanced in both the connecting and invariant units, so we can recognize charge
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as a fourth fundamental dimension and write

�Desu ·
(

statcoulq

cm2

)

= �Eesu ·
(

statvoltq

cm

)

·
(

statcoulq

statvoltq · cm

)

+4π �Pesu ·
(

statcoulq

cm2

)

= �Eesu ·
(

statvoltq

cm

)

·
(

statcoulq2

erg · cm

)

+4π �Pesu ·
(

statcoulq

cm2

)

,

(2.61d)

where the last step of Eq. (2.61d) uses statvoltq = erg/statcoulq. Note that our
systems of units have been constructed so that recognizing charge as a fundamental
dimension just means adding a “q” suffix to the unit names. Since 1 erg = gm ·cm2 ·
sec−2, Eq. (2.61d) can be written as

�Desu ·
(

statcoulq

cm2

)

= �Eesu ·
(

statvoltq

cm

)

·
(

statcoulq2 · sec2

gm · cm3

)

+4π �Pesu ·
(

statcoulq

cm2

)

.

(2.61e)

From Eq. (2.38),

1
statcoulq2 · sec2

gm · cm3
= (ε0)esuq

statcoulq2 · sec2

gm · cm3

= (ε0)esu
statcoulq2 · sec2

gm · cm3

(2.61f)

where we specify that the numeric components of physical quantities in the esu and
esuq systems must be the same [and, of course, that (ε0)esuq and (ε0)esu are just
different names for the number 1]. Equation (2.61f) is used to write Eq. (2.61e) as

�Desu ·
(

statcoulq

cm2

)

= �Eesu ·
(

statvoltq

cm

)

·
[

(ε0)esu · statcoulq2 · sec2

gm · cm3

]

+4π �Pesu ·
(

statcoulq

cm2

)

.

(2.61g)
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Now Table 2.6 is used to make the second step from esuq to emuq units. Substitut-
ing abvoltq and abcoulq units for the statvoltq and statcoulq units gives

�Desu ·
(

c−1
cgs · abcoulq

cm2

)

=
(

�Eesu · ccgs · abvoltq

cm

)

·
[

(ε0)esu · c−2
cgs · abcoulq2 · sec2

gm · cm3

]

+4π

(

�Pesu · c−1
cgs · abcoulq

cm2

)

.

(2.61h)

Table 2.7 is next used to substitute emu-subscripted variables for the esu-
subscripted variables.

(

�Demu · abcoulq

cm2

)

=
(

�Eemu · abvoltq

cm

)

·
[

(ε0)emu · abcoulq2 · sec2

gm · cm3

]

+4π

(

�Pemu · abcoulq

cm2

)

.

(2.61i)

We stop recognizing charge as a fundamental dimension, dropping to the emu sys-
tem by removing the “q” suffix to get

(

�Demu · abcoul

cm2

)

=
(

�Eemu · abvolt

cm

)

·
[

(ε0)emu · sec2

cm2

]

+ 4π

(

�Pemu · abcoul

cm2

)

,

(2.61j)

where we have used Eq. (2.31a) to make the substitution

abcoul2 · sec2

gm · cm3
= sec2

cm2
.

Returning at last to variables representing physical quantities, Eq. (2.61j) can be
written as

�D = ε0 �E + 4π �P (2.61k)

or, using Eq. (2.12b) to replace ε0 by c2,

�D = 1

c2
�E + 4π �P . (2.61l)
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The procedure in Fig. 2.7 gives the correct answer even when 1 statcoulq/
(statvoltq · cm) is not recognized as ε0 in the esuq system of units. Suppose we
cancel the statvoltq units in the first step of Eq. (2.61d) to get

�Desu · statcoulq

cm2
= �Eesu · statcoulq

cm2
+ 4π �Pesu · statcoulq

cm2
. (2.62a)

The expressions in Table 2.7 for the emu-subscripted numerics and the equality
1 abcoulq = ccgs · statcoulq from Table 2.6 give

ccgs �Demu · statcoulq

cm2 = c−1
cgs

�Eemu · statcoulq

cm2 + 4πccgs �Pemu · statcoulq

cm2

or

�Demu · abcoulq

cm2
= c−2

cgs
�Eemu · abcoulq

cm2
+ 4π �Pemu · abcoulq

cm2
(2.62b)

Dropping down to the emu system in Fig. 2.7 by removing the “q” suffix gives

�Demu · abcoul

cm2
= c−2

cgs
�Eemu · abcoul

cm2
+ 4π �Pemu · abcoul

cm2

or, using Table 2.3,

�Demu · gm1/2

cm3/2 = c−2
cgs

�Eemu · gm1/2

cm3/2 + 4π �Pemu · gm1/2

cm3/2 . (2.62c)

From Table 2.5 we note that gm1/2/cm3/2 are the correct emu units for D and
P but not for E, which must have units of gm1/2 · cm1/2/sec2. Therefore we are
forced to multiply the Eemu term by

sec2

cm2
· cm2

sec2
= 1

to get

�Demu · gm1/2

cm3/2
=
(

c−2
cgs · sec2

cm2

)

· �Eemu · gm1/2 · cm1/2

sec2
+ 4π �Pemu · gm1/2

cm3/2

or

�D = 1

c2
�E + 4π �P (2.62d)

using the physical quantities c,D,E, and P . Equation (2.62d) is the same as
Eq. (2.61l), which shows that we do not need to recognize 1statcoulq/(statvoltq ·
cm) as ε0 to get the right answer.
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Figure 2.8 The two plates of this parallel-plate capacitor have the same shape
and are placed one above the other, separated by a distance d.

The formula for the capacitance C of the parallel-plate capacitor in Fig. 2.8 is,
in the emu system of units,

C = A

4π dc2
, (2.63a)

where A is the area of each capacitor plate, d is the distance separating the plates,
and c is the speed of light. Breaking this up into numeric parts and units gives,
using Table 2.5,

Cemu · sec2

cm
= Acgs · cm2

4π(dcgs · cm)

(

ccgs · cm

sec

)2 . (2.63b)

Consulting Rule VIII, we see that the first step is to use the physical meaning
of capacitance to write C in terms of the connecting unit abfarad:

Cemu · abfarad = Acgs · cm2

4π(dcgs · cm)c2
cgs

· sec2

cm2
. (2.63c)

Equation (2.63c) is balanced in the emu system, where 1 abfarad = sec2/cm, but
does not yet obey the second part of Rule VIII, since it is not balanced in both the
invariant units cm and sec and the connecting units (abfarad and abfaradq) to the
upper level of Fig. 2.7. Multiplying the right-hand side by abfarad ·cm/sec2, which
is 1 in the emu system, gives

Cemu · abfarad = Acgs · cm2

4π(dcgs · cm)
·
(

1

c2
cgs

sec2

cm2

)

·
(

abfarad · cm

sec2

)

. (2.63d)

This is clearly balanced in both the invariant and connecting units, so we can add
the “q” suffix to transfer to the emuq system, recognizing charge as a fundamental
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dimension:

Cemu · abfaradq = Acgs · cm2

4π(dcgs · cm)
·
(

1

c2
cgs

sec2

cm2

)

·
(

abfaradq · cm

sec2

)

. (2.63e)

From Table 2.6 we have 1 abfaradq = c2
cgs · statfaradq, which gives

Cemu · c2
cgs · statfaradq = Acgs · cm2

4π(dcgs · cm)
·
(

statfaradq

cm

)

. (2.63f)

Consulting Table 2.7, we note that Cemuc
2
cgs =Cesu, so

Cesu · statfaradq = Acgs · cm2

4π(dcgs · cm)
· statfaradq

cm
(2.63g)

or

Cesu · statfarad = Acgs · cm2

4π(dcgs · cm)
· statfarad

cm
, (2.63h)

where in the last step we transfer from the esuq to the esu system in Fig. 2.7, no
longer recognizing charge as a fundamental dimension by removing the “q” suffix.
Table 2.4 shows that 1 statfarad = cm, so Eq. (2.63h) becomes

Cesu · statfarad = Acgs · cm2

4π(dcgs · cm)

or

C = A

4π d
, (2.63i)

when writing the formula in terms of the physical quantities C,A, and d .

2.10 DIRECT CONVERSION BETWEEN THE ESU AND EMU SYSTEMS

OF UNITS

Using esuq and emuq units to transform equations and formulas from the esu to
emu system, or from the emu to esu system, is a straightforward process; but the job
can also be done directly by combining Table 2.7 with the information in Table 2.8.
The information in Table 2.8 comes from comparing the two columns of Table 2.3
and noticing that 1 statamp multiplied by sec/cm is the same as 1 abamp, 1 statvolt
multiplied by cm/sec is the same as 1 abvolt, and so on.
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Table 2.8 Unit relationships between the esu and
emu systems.

abamp = sec

cm
· statamp

abcoul = sec

cm
· statcoul

abweber = cm

sec
· statweber

abvolt = cm

sec
· statvolt

abfarad = sec2

cm2
· statfarad

abhenry = cm2

sec2
· stathenry

abohm = cm2

sec2
· statohm

As an example of how to use Tables 2.7 and 2.8 to switch from emu to esu
units, we consider the formula for B , Eq. (2.19e), in emu units. Broken up into
numeric parts and units, this equation becomes

�Bemu
1

sec

gm1/2

cm1/2
= �Hemu

1

sec

gm1/2

cm1/2
+ 4π

( �MH

)

emu

1

sec

gm1/2

cm1/2
. (2.64a)

Consulting Table 2.5 for the ab-prefixed forms of emu units for B,H , andMH , we
write

�Bemu
abweber

cm2
= �Hemu

abamp

cm
+ 4π

( �MH

)

emu

abweber

cm2
. (2.64b)

Using Table 2.7 to replace the emu-subscripted quantities by esu-subscripted quan-
tities gives

�Besuccgs
abweber

cm2
= �Hesuc

−1
cgs

abamp

cm
+ 4π

( �MH

)

esuccgs
abweber

cm2
. (2.64c)

Multiplying all these terms by

cm

sec
· sec

cm
= 1,
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we have

�Besuccgs · cm

sec
· sec

cm
· abweber

cm2

= �Hesuc
−1
cgs · sec

cm
· cm

sec
· abamp

cm
+ 4π

( �MH

)

esuccgs · cm

sec
· sec

cm
· abweber

cm2 ,

or, consulting Table 2.8 to find that 1 statweber = (sec/cm) · abweber and
1 statamp = (cm/sec) · abamp, we get

(

�Besu
statweber

cm2

)

·
(

ccgs
cm

sec

)

=
(

�Hesu
statamp

cm

)
1

(

ccgs
cm

sec

)

+4π

[
( �MH

)

esu

statweber

cm2

]

·
(

ccgs
cm

sec

)

.

(2.64d)

Writing this in terms of the physical quantities c,B,H , and MH then gives

c �B = �H
c

+ 4πc �MH or �B = �H
c2

+ 4π �MH (2.64e)

in esu units. Since µ0 = c−2 in the esu system, Eq. (2.64e) is the same as
Eq. (2.19d), which is the expected result.

To show how this method can be used to go from the esu units to emu units, we
take Eq. (2.63i) back into the emu system. Breaking both sides of the formula into
numeric parts and units gives

Cesustatfarad = Acgscm2

4πdcgscm
, (2.65a)

which becomes, using Tables 2.7 and 2.8,

Cemuc
2
cgs

cm2

sec2
abfarad = Acgscm2

4πdcgscm
. (2.65b)

Written in terms of c,A,d , and the capacitance C in emu units, this becomes

C = A

4πdc2
. (2.65c)

Equation (2.65c) is identical to Eq. (2.63a), as it should be.
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2.11 THE B AND H FIELDS AT THE START OF THE TWENTIETH

CENTURY

At the beginning of the twentieth century, physicists began to re-evaluate the roles
of the B and H fields, with the magnetic induction B taken to be the fundamental
magnetic field and theH field regarded as a sometimes-helpful auxiliary field. This
was a natural change of opinion as it became more and more clear that isolated
magnetic poles did not exist, that the behavior of permanent magnets could be
explained in terms of microscopic current loops, and that moving electric charges
interact directly with the B rather than the H field. A contributing factor was the
just-proposed theory of special relativity, describing how a stationary charge’s E
field transforms into a combination of E and B fields when viewed by observers in
motion with respect to the charge. We can easily show, in fact, that moving charges
interact directly with the B field rather than the H field of a permanent magnet.

Figure 2.9 shows the south pole of a long, thin permanent magnet placed near
an infinitely long wire carrying a constant current I . The pole strength of the south
pole is (−pH ) and the north pole is so far from the wire that its influence can be
neglected. We model the current in the wire as a sequence of point charges moving
at an average velocity v with an average linear density of λQ. The linear density
λQ is constant along the wire and measured in terms of the charge per unit length,
so

dQ

dt
= I = λQv. (2.66a)

From Eqs. (2.5), (2.6), and (2.66a), we know that the total force on the magnet’s
south pole is

FSP = pHHWIRE = 2pHI

r
= 2λQvpH

r
, (2.66b)

where HWIRE is the magnetic field created by the current in the wire, �FSP points
into the page, and r is the distance of the pole from the wire. We have not special-
ized these equations to one set of units, which means Eqs. (2.66a,b) are good in
any of the four systems of units so far discussed. By the middle of the nineteenth
century it was well established that a short wire segment of length d0 carrying a
constant current I experiences a force proportional to

(Id0)H sinφ

in a magnetic field H making an angle φ with respect to the wire (see Fig. 2.9).
Taking the constant of proportionality to be α, we have for the force dFWIRE on the
wire segment of length d0

dFWIRE = α(Id0)H sinφ. (2.66c)
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Figure 2.9 The south pole of a permanent magnet interacts with the constant
current I in a long, straight wire. The pole strength of the south pole is (−pH ).

From Eq. (2.3b) and Fig. 2.9 we know that

dFWIRE = α(Id0)
pH

µ0
· sinφ

r2 + 02
=
(
αλQvpH

µ0

)

· rd0

(r2 + 02)3/2
, (2.66d)

where in the last step we have used Eq. (2.66a) and the definition of sinφ to elimi-
nate the current and the angle from the formula for dFWIRE. The total force on the
wire is

FWIRE = αλQvpH r

µ0

∫∞
−∞

d0

(r2 + 02)3/2
=
(
αλQvpH r

µ0

)

·
[

0

r2
√
02 + r2

]∞

−∞

= 2αλQvpH
µ0r

.

(2.66e)
By Newton’s third law we know that

FWIRE = FSP; (2.66f)

that is, the magnitude of the current’s total force on the pole must equal the magni-
tude of the pole’s total force on the current. From Eqs. (2.66b), (2.66e), and (2.66f),
we see that

2λQvpH
r

= 2αλQvpH
µ0r

or

α =µ0.
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Hence, using Eq. (2.66c) and the definition of B in empty space [see Eq. (2.19d)],
it follows that

dFWIRE = (Id0 sinφ)(µ0H)= (Id0 sinφ)B.

Using Eq. (2.66a), this can be written as

dFWIRE = (λQd0)vB sinφ.

Since λQd0 is the amount of moving charge dQ in a length d0 of the wire, we end
up with

dFWIRE = dQvB sinφ

or

d �FWIRE = dQ · (�v × �B), (2.66g)

where the definition of the vector cross product is used to write the formula for
the vector force d �FWIRE in terms of the vector velocity �v, the moving charge
dQ = λQd0, and the �B field. This shows what we wanted to prove, that moving
charge interacts directly with the �B field rather than the �H field. Hence, if isolated
magnetic poles do not exist and all magnetic fields are created by currents—either
macroscopic or microscopic—it is only natural to regard the magnetic induction �B
as the fundamental magnetic field. The magnetic induction is then defined by the
force it exerts on an isolated point charge Q moving with a vector velocity �v:

�F =Q �E +Q
(�v × �B). (2.66h)

Equation (2.66h) is called the Lorentz force law, for the force �F experienced by
a point charge Q moving with a velocity �v at a field point where the electric field
is �E and the magnetic induction is �B . Because neither ε0,µ0, nor c are part of
the Lorentz force law, we expect it to have the same form in the esu, emu, esuq,
and emuq systems of units—which is in fact the case. Equation (2.66h) is a more
convincing fundamental equation than Eq. (2.2b), Coulomb’s law for magnetic
poles, because isolated charges, unlike isolated magnetic poles, are known to exist
in the form of elementary particles such as the electron, proton, etc.

In Table 2.7 the vector potential �A, the current-loop magnetic dipole density
�MI , and the current-loop magnetic dipole moment �mI all reflect the interchanged

roles of the B and H magnetic fields.
The B field in Eq. (2.19d) is constructed to be a zero-divergence field; as the

primary magnetic field it makes sense to represent it by the curl of another vector
field �A, called the vector potential:

�B = curl �A= �∇ × �A, (2.67a)
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because the divergence of the curl of any vector field is always zero;

div
(
curl �A)= �∇ · ( �∇ × �A)= 0 = �∇ · �B. (2.67b)

Equations (2.67a, b) have the same form in the esu, emu, esuq, and emuq systems
of units. Many of the equations of quantum mechanics take on a simpler form when
written in terms of the vector potential �A instead of the magnetic induction �B .

Since �H is now the auxiliary field, Eq. (2.19d) defines �H rather than �B and
should be written as

�H = 1

µ0
· �B − 4π

( �MH

µ0

)

. (2.68a)

Written this way, it is natural to define a new quantity

�MI = 1

µ0
· �MH (2.68b)

called the current-loop magnetic dipole density field, with

�mI = 1

µ0
· �mH (2.68c)

defined to be the current-loop magnetic dipole moment. Now Eq. (2.68a) can be
written as

�H = 1

µ0
· �B − 4π �MI. (2.68d)

In general, the distinctions drawn betweenmI ,mH and MI,MH in Eqs. (2.68b, c)
are irrelevant in emu units—in fact, they are irrelevant in any system where µ0 is
the dimensionless numeric 1 (such as the Gaussian and Heaviside-Lorentz systems
discussed in Chapter 3). From this point on, when we convert equations containing
the magnetic dipole moment or magnetic dipole density from systems where µ0 =
1 to other systems where µ0 �= 1, we must first decide whether the magnetic dipole
moment is mI or mH and whether the magnetic dipole density is MI or MH . This
sounds like more of a problem than it really is; all we are really deciding is whether
we want the corresponding formula in the other systems where µ0 �= 1 to be in
terms of mI ,MI or mH ,MH . It is good practice to make the choice immediately
by attaching I or H subscripts to m and Mbefore starting the conversion, because
then there is never any doubt about which units and table entries to use. For this
reason we will continue to label the magnetic dipole moment and magnetic dipole
density with subscripts I and H , even when working in systems of units where
µ0 = 1; this way it is always clear what these variables are intended to be when
µ0 �= 1.
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The �mI magnetic dipole moment of any current loop in a plane is

�mI = (I ·A)n̂, (2.68e)

where I is the constant current in the loop of area A, and n̂ is the dimensionless
unit vector perpendicular to the planar surface inside the loop (we note that the cur-
rent must circulate counterclockwise around the base of n̂ (as shown in Fig. 2.10).
Equation (2.68e) has the same form in the esu, emu, esuq, and emuq systems of
units.

Because many textbooks talk about the magnetic dipole moment �m without
clearly specifying its exact nature, even when working in systems where µ0 �= 1,
it is important to determine whether mI or mH is being referred to. One helpful
indication is whether the torque �T on an isolated magnetic dipole �m is written as

�T = �m× �H or �T = �m× �B.
The first formula reveals �m to be �mH , so

�T = �mH × �H, (2.69a)

and the second formula reveals �m to be �mI ,

�T = �mI × �B. (2.69b)

Many times these relationships are presented as a potential energy of orientation
of the dipole in an external magnetic field. If the potential energy U for a magnetic
dipole �m is written as

U = − �m · �H,
then we know that �m= �mH and it is more precise to write this equation as

U = − �mH · �H. (2.69c)

If the potential energy is written as

U = − �m · �B,

Figure 2.10 The current-loop magnetic dipole moment is �mI = IAn̂.
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then we know that �m= �mI and it is more precise to write this equation as

U = − �mI · �B. (2.69d)

2.12 ELECTROMAGNETIC CONCEPTS USED TO ANALYZE BULK

MATTER

Most of the yet-to-be-specified quantities in Table 2.7 are straightforward exten-
sions of concepts which have already been discussed. For example, the resistance
of a wire, RWIRE, is directly proportional to its length LWIRE and inversely propor-
tional to its cross-sectional area AWIRE; therefore, the material of the wire can be
assigned a constant resistivity

ρR = RWIRE ·AWIRE

LWIRE
. (2.70a)

The conductivity of the wire material is

σ = 1

ρR
. (2.70b)

Tables 2.4 and 2.5 give the units of resistivity and conductivity in the esu, esuq,
emu, and emuq systems of units. We cannot give their practical units because the
practical system of units described in Section 2.6 does not have an official unit of
length.

The behavior of electric fields and charges inside matter can often be analyzed
by treating the substance as a region of space characterized by a permittivity that
is proportional to the permittivity of free space:

ε = εrε0, (2.70c)

where εr is a dimensionless numeric. The physical quantity ε is often called the
dielectric constant and εr is often called the relative dielectric constant. There is a
similar equation for analyzing magnetic fields inside matter:

µ=µrµ0, (2.70d)

with µ called the magnetic permeability of the substance and µr a dimensionless
numeric that is sometimes called the relative magnetic permeability. Different ma-
terials have different values of εr and µr , although for most nonmetallic substances
µr ∼= 1. For any given material the values of ε and µ, unlike the values of ε0 and
µ0 in empty space, depend on the frequency of the electromagnetic phenomena
being analyzed. Equations (2.70c, d) show that ε and µ have the same units as ε0
and µ0 in all systems of electromagnetic units.
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The electric and magnetic susceptibilities, χe and χm respectively, are dimen-
sionless scalars defined by the equations

�P = χeε0 �E (2.70e)

and

�MH = χmµ0 �H, (2.70f)

when the material is such that �P is parallel to �E and �MH is parallel to �H . We
note that when �P is not parallel to �E, electric phenomena cannot be analyzed by
treating the material as a region of space with a scalar permittivity of ε instead of
ε0; and when �MH is not parallel to �H , magnetic phenomena cannot be analyzed
by treating the material as a region of space with a scalar permeability µ instead of
µ0. It should be pointed out that neither rationalization nor a change of units affects
the values of εr and µr , which is perhaps no surprise since they are dimensionless;
but the values of χe and χm, although they are also dimensionless and unaffected
by a change of units, are indeed changed by rationalization (see Tables 3.6 and 3.14
in Chapter 3).

The volume charge density field ρQ is just the amount of charge per unit volume
at any field point. This means the amount of charge dQ inside an infinitesimal
volume dV at that field point is

dQ= ρQ · dV. (2.71a)

We can also define a surface charge density SQ such that the amount of charge
inside an infinitesimal area dA of a surface is

dQ= SQ · dA. (2.71b)

The volume current density �J describes the flow of charge. It points in the
direction the charge is flowing and has a magnitude such that the infinitesimal
electric current dI crossing an infinitesimal area dA at any field point is

dI = ( �J · n̂)dA= (| �J | cosθ
)
dA. (2.71c)

Here n̂ is the dimensionless unit vector which is normal to dA and pointing in the
direction for which dI is defined to be positive. The angle between �J and n̂ is θ .
We can use the �J field inside a wire such as the one shown in Fig. 2.11(a) to write
the wire’s total current I as

I =
∫

over S
dI =

∫

overS

( �J · n̂)dA, (2.71d)
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where S is the wire’s cross-sectional surface. The surface current density JS is a
vector pointing in the direction of a current flowing on a surface and can be used
to write the current dI flowing across a line element d �0 on that surface as

dI = �JS ·d �0. (2.71e)

In Fig. 2.11(b), we show that the total surface-current I flowing across a curve L
can be written as

I =
∫

overL
dI =

∫

overL

�JS ·d �0. (2.71f)

Tables 2.4 and 2.5 give the units of ρQ,SQ, �J , and �JS in the esu, esuq, emu, and
emuq systems of units. Note that ρQ and �J can describe the distribution and flow
of charge even when no wires are present—for example when unbound electrons
and protons interact in a plasma.

The remaining physical quantities in Table 2.7—the permeance, reluctance,
magnetic flux, and magnetomotive force—are useful when analyzing the design of
electromagnets and transformers, topics not usually covered in introductory text-
books of electricity and magnetism. It can be shown that an ideal electromagnet
of the type sketched in Fig. 2.12 can be modelled as a magnetic circuit, with the
�B field playing the role of the �J field in an ordinary electric circuit and the coil

Figure 2.11a The current inside a wire can be represented by a volume current
density �J specified over a cross-sectional surface S.

Figure 2.11b The current flowing along a surface can be represented by a surface
current density JS specified along a curve L.
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Figure 2.12 The current I generates a magnetic B field inside the iron or steel
horseshoe.

of wire creating a magnetomotive force analogous to the total electric potential or
voltage V of an electric circuit. The magnetomotive force is proportional to the
electric current I in the coil of wire and always has the same electromagnetic units
as an electric current. The iron or steel “horseshoe” around which the wire is coiled
has a small gap. The B field is almost entirely zero outside the horseshoe except in
the gap, where it tends to keep the approximately constant value it has inside the
horseshoe. Since �B is analogous to �J , the magnetic flux

�B =
∫

cross-section
of horseshoe

( �B · n̂)dA (2.72a)

is analogous to electric current; and for magnetic circuits we can write an equation
analogous to Ohm’s law [see Eq. (2.25a) above]:

R ·�B =F . (2.72b)

In Eq. (2.72b), F is the magnetomotive force and R is the reluctance. The perme-
ance P of the magnetic circuit is 1/R, so it is analogous to the conductance of an
electric circuit. If the gap in Fig. 2.12 is small, then B is approximately constant in
the gap and zero outside, so

�B ∼= B ·AGAP, (2.72c)

where AGAP is the cross-sectional area of the gap. Given the reluctance (or perme-
ance) and magnetomotive force of the electromagnet, Eqs. (2.72b, c) can be used
to find the magnetic induction B inside the gap.

APPENDIX 2.A: MAGNETIC-FIELD MEASUREMENT IN THE EARLY

NINETEENTH CENTURY

A small, thin compass needle suspended from its center of mass and allowed to
swing freely will settle down to an equilibrium position parallel to the local mag-
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netic field �H . Figure 2.A.1 shows that in this equilibrium position a vector drawn
from the needle’s south pole of pole strength (−pH ) < 0 to its north pole of
pole strength pH > 0 points in the direction of �H . We say that the needle has a
permanent-magnet dipole moment

mH = pH ·L, (2.A.1)

where L is the distance between the needle’s north and south poles. A thin bar with
constant mass density and constant cross-sectional area has a moment of inertia

ι= M02

12
, (2.A.2)

where 0 is the total length of the bar and M is the total mass of the bar. In general,
0, the length of a thin bar magnet, is slightly larger than L, the distance between
the effective positions of the north and south magnetic poles.

When the needle in Fig. 2.A.1 is slightly disturbed, it undergoes small-angle
oscillations about its equilibrium position. Because the needle is suspended from
its center of mass, gravity cannot act to restore the needle to its equilibrium posi-
tion, because for every mass element that experiences a drop in height there is a
corresponding mass element that experiences a gain in height, leaving the overall
gravitational potential energy constant. There is, however, a change in potential en-
ergy from the interaction of the needle with the local magnetic field �H , as shown
in Fig. 2.A.2. For small-angle oscillations about equilibrium we define two angles,

Figure 2.A.1 The small needle suspended in a constant magnetic field �H is a
permanent magnet with a north pole of pole strength pH and a south pole of pole
strength (−pH ). It oscillates with a period which is inversely proportional to the
square root of | �H |.
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θx and θy , describing the swing of the needle’s pole tip from its equilibrium angle
(see Fig. 2.A.1). The equations of motion of the swinging needle are

ι
d2θx

dt2
= −mHHθx (2.A.3a)

and

ι
d2θy

dt2
= −mHHθy, (2.A.3b)

whereH = | �H | is the magnitude of the magnetic field at the position of the needle.
These two simple-harmonic-oscillator equations have the general solution

θx(t)=Ax sin

(
2πt

T

)

+Bx cos

(
2πt

T

)

(2.A.4a)

and

θy(t)=Ay sin

(
2πt

T

)

+By cos

(
2πt

T

)

, (2.A.4b)

where

T = 2π
√

ι

mHH
(2.A.4c)

is the period of the needle’s oscillation, and Ax,Bx,Ay , and By are arbitrary real
constants determined by the type of initial disturbance experienced by the needle.

Figure 2.A.2 The poles of a long, thin bar magnet of length 0 are separated by a
distance L. For bar magnets L is slightly less than 0.
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No matter what the values of Ax,Bx,Ay , and By are—that is, no matter what type
of (small) disturbance starts the needle oscillating—we see that

θx(t + T )= θx(t)

and

θy(t + T )= θy(t).

This makes the period T of a small, swinging needle an easy way to measure the
size of an unknown magnetic field �H . Consequently, the equilibrium orientation of
the needle gives the direction of the �H field, as in Fig. 2.A.1, and the magnitude of
the �H field is given by

H = 4π2ι

mHT 2
. (2.A.5a)

From Eqs. (2.A.1), (2.A.2), and (2.A.5a) we have

H =
4π2

(
M02

12

)

(pHL)T
2 = π2

3
· M02

pHLT
2 . (2.A.5b)

Both ι andmH are intrinsic properties of the needle in Eq. (2.A.5a). Therefore, we
can create a known magnetic field HK , measure the period of a suspended needle
TK in field HK , move the needle to an unknown magnetic field HU , measure the
period TU of the same needle in HU , and calculate HU from the known quantities
HK,TK , and TU :

HU =HK

(
TK

TU

)2

. (2.A.6)

APPENDIX 2.B: DIMENSIONLESS VECTOR DERIVATIVES

There are three basic types of product defined for vectors: the product of a vector
and a scalar, the dot product of two vectors, and the cross product of two vectors.
Each vector product can be defined by specifying the behavior of the dimensionless
unit vectors of a Cartesian coordinate system.

Figure 2.B gives the x, y, z scalar components of a vector physical quantity �b
in a three-dimensional Cartesian coordinate system. The three components of �b
are called bx, by , and bz, respectively, and all three scalars have the same physical
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Figure 2.B The x̂, ŷ, ẑ components of vector �b are bx, by, bz respectively.

dimensions and customarily are measured in the same units. The x̂, ŷ, ẑ dimen-
sionless unit vectors can be used to write �b as

�b= bxx̂ + byŷ + bzẑ. (2.B.1a)

Equation (2.B.1a) is equivalent to the standard definition of a three-dimensional
Cartesian vector. For example, in column-vector notation

x̂ =
(1

0
0

)

, ŷ =
(0

1
0

)

, ẑ=
(0

0
1

)

,

so that

bxx̂ =
(
bx
0
0

)

, byŷ =
( 0
by
0

)

, bzẑ=
( 0

0
bz

)

, (2.B.1b)

and

�b= bxx̂ + byŷ + bzẑ=
(
bx
0
0

)

+
( 0
by
0

)

+
( 0

0
bz

)

=
(
bx
by
bz

)

. (2.B.1c)

If we use row-vector notation

x̂ = (1 0 0), ŷ = (0 1 0), ẑ= (0 0 1),

we end up with

�b= (bx by bz).



UNITS ASSOCIATED WITH NINETEENTH-CENTURY ELECTROMAGNETIC THEORY 141

We note that Eqs. (2.B.1a–c) assume some understanding of what happens
when a scalar multiplies a vector, since bx, by, bz are scalars and x̂, ŷ, ẑ are vec-
tors. Strictly speaking, however, Eqs. (2.B.1a–c) only specify what happens when
scalars multiply dimensionless unit vectors. To define multiplication of any vector
�bby a real or complex scalar α we note that

α�b= α
(
bxx̂ + byŷ + bzẑ

)= (αbx)x̂ + (αby)ŷ + (αbz)ẑ, (2.B.2a)

which shows that the components bx, by , and bz become αbx,αby , and αbz when
α multiplies �b. This matches our intuitive understanding of what happens when α
multiplies �b. To see why this is so, note that the length of α�b is α times the length
of �b:

∣
∣α�b∣∣=

√

α2b2
x + α2b2

y + α2b2
z = α

√

b2
x + b2

y + b2
z = α

∣
∣�b∣∣;

while the direction of α�b remains the same as the direction of �b because the ratios
of the x, y, z components do not change:

αbx

αby
= bx

by
,

αbx

αbz
= bx

bz
,

αby

αbz
= by

bz
.

The product of a scalar and a vector is another vector, but the dot product of
two vectors is a scalar. We define

x̂ · x̂ = 1, x̂ · ŷ = x̂ · ẑ= 0, (2.B.3a)

ŷ · ŷ = 1, ŷ · x̂ = ŷ · ẑ= 0, (2.B.3b)

ẑ · ẑ= 1, ẑ · x̂ = ẑ · ŷ = 0. (2.B.3c)

For any three vectors �a, �b, and �c and any three real or complex scalars α,β , and γ ,
we require the dot product to distribute over vector addition:

(
α�a) · (β �b+ γ �c) = (

β �b+ γ �c) · (α�a)= (αβ)
(�b · �a)+ (αγ )

(�a · �c)

= (αβ)
(�a · �b)+ (αγ )

(�c · �a).
(2.B.3d)

The first and third step in Eq. (2.B.3d) show that the dot product commutes: �a · �b=
�b · �a for any two vectors �a and �b. Now we know enough to find the scalar value
corresponding to the dot product of any two vectors

�a = axx̂ + ayŷ + azẑ and �b= bxx̂ + byŷ + bzẑ.
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We have, from Eqs. (2.B.3a–d), that

�a · �b = (
axx̂ + ayŷ + azẑ

) · (bxx̂ + byŷ + bzẑ
)

= ax
(
bxx̂ · x̂ + byx̂ · ŷ + bzx̂ · ẑ)

+ay
(
bxŷ · x̂ + byŷ · ŷ + bzŷ · ẑ)

+az
(
bxẑ · x̂ + byẑ · ŷ + bzẑ · ẑ)= axax + ayay + azaz.

(2.B.3e)

This is, of course, the standard formula for the dot product of two vectors in x, y, z
Cartesian coordinates. The dot product can also be used to specify the x, y, z com-
ponents of any vector �a. From Eqs. (2.B.3a–c), we get

�a · x̂ = x̂ · �a = ax, (2.B.3f)

�a · ŷ = ŷ · �a = ay, (2.B.3g)

�a · ẑ= ẑ · �a = az. (2.B.3h)

The cross product of two vectors is another vector. We define

x̂ × x̂ = ŷ × ŷ = ẑ× ẑ= 0, (2.B.4a)

x̂ × ŷ = ẑ= −(ŷ × x̂
)
, (2.B.4b)

ẑ× x̂ = ŷ = −(x̂ × ẑ
)
, (2.B.4c)

ŷ × ẑ= x̂ = −(ẑ× ŷ
)
. (2.B.4d)

Interchanging the order of the cross product of any two vectors �a and �b gives

�a × �b= −(�b× �a). (2.B.4e)

We note that the cross products of the dimensionless unit vectors in Eqs. (2.B.4a–d)
obey this rule. For any three vectors �a, �b, and �c, and any three real or complex
scalars α,β , and γ , we require the vector cross product to distribute over addition:

(
α�a)× (

β �b+ γ �c)= (αβ)
(�a × �b)+ (αγ )

(�a × �c). (2.B.4f)
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Now we know enough to find the cross product of any two vectors �a and �b. Equa-
tions (2.B.4a–f) give

�a× �b = (
axx̂ + ayŷ + azẑ

)× (
bxx̂ + byŷ + bzẑ

)

= ax
(
bxx̂ × x̂ + byx̂ × ŷ + bzx̂ × ẑ

)

+ay
(
bxŷ × x̂ + byŷ × ŷ + bzŷ × ẑ

)

+az
(
bxẑ× x̂ + byẑ× ŷ + bzẑ× ẑ

)

= (aybz − azby)x̂ + (azbx − axbz)ŷ + (axby − aybx)ẑ.

(2.B.4g)

Equation (2.B.4g) is the standard formula for the cross product of two vectors in
x, y, z Cartesian coordinates.

There is a strong tradition in mathematical physics of defining a vector differ-
ential operator �∇ , called the del operator, by

�∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, (2.B.5a)

and using it to examine the change of vector and scalar fields with respect to
changes in the location, or field point, at which the fields are evaluated. Although
Eq. (2.B.5a) is the customary way of writing �∇ , it is equally correct to write

�∇ = ∂

∂x
x̂ + ∂

∂y
ŷ + ∂

∂z
ẑ (2.B.5b)

because the location and size of the x̂, ŷ, ẑ dimensionless unit vectors do not
change when the location of the field point changes. In effect, vectors x̂, ŷ, ẑ are
three constant vector fields whose derivatives in the x, y, z directions are always
zero. (Note that the same cannot be said for vectors such as r̂ , the dimensionless
unit vector pointing from the origin of the coordinate system to the field point.)

There are three standard derivatives using �∇ , with each standard derivative cor-
responding to one of the three types of vector product discussed above. A scalar
field φ is defined to be a scalar function of position φ = φ(x, y, z). The gradient
of a scalar field φ corresponds to multiplying a vector (i.e., operator �∇) by a scalar
(i.e., the field φ):

�∇φ =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)

φ = x̂
∂φ

∂x
+ ŷ

∂φ

∂y
+ ẑ

∂φ

∂z
. (2.B.6a)

Unless φ is a constant field, we expect �∇φ to be a vector, making �∇φ a vector
field. When φ is a physical quantity it must have units, which can be called uphi.
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Measuring φ in units of uphi and the x, y, z coordinates in units of length called
ulength gives, using the notation of Chapter 1,

�∇φ = x̂
uphi

ulength

∂φ[uphi]
∂x[ulength]

+ ŷ
uphi

ulength

∂φ[uphi]
∂y[ulength]

+ ẑ uphi

ulength

∂φ[uphi]
∂z[ulength]

= uphi

ulength

(

x̂
∂φ[uphi]
∂x[ulength]

+ ŷ
∂φ[uphi]
∂y[ulength]

+ ẑ
∂φ[uphi]
∂z[ulength]

)

=
(

1

ulength
�∇[ulength]

)
(
uphi · φ[uphi]

)= 1

ulength
�∇[ulength]φ,

(2.B.6b)

where

�∇[ulength] = x̂
∂

∂x[ulength]
+ ŷ

∂

∂y[ulength]
+ ẑ

∂

∂z[ulength]

= ∂

∂x[ulength]
x̂ + ∂

∂y[ulength]
ŷ + ∂

∂z[ulength]
ẑ.

(2.B.6c)

The divergence of a vector field �b corresponds to the dot product of �∇ and �b.
Equations (2.B.3f) through (2.B.3h) give

�∇ · �b =
(
∂

∂x
x̂ + ∂

∂y
ŷ + ∂

∂z
ẑ

)

· �b

=
[
∂

∂x

(
x̂ · �b)+ ∂

∂y

(
ŷ · �b)+ ∂

∂z

(
ẑ · �b)

]

= ∂bx

∂x
+ ∂by

∂x
+ ∂bz

∂x
.

(2.B.6d)

This is the standard formula for the divergence of a vector field in x, y, z Carte-
sian coordinates. Measuring �b in units of ub and the x, y, z coordinates in units of
ulength gives

�∇ · �b = ub

ulength

(
∂(bx)[ub]
∂x[ulength]

+ ∂(by)[ub]
∂x[ulength]

+ ∂(bz)[ub]
∂x[ulength]

)

= 1

ulength
�∇[ulength] · (ub�b[ub]

)= 1

ulength
�∇[ulength] · �b.

(2.B.6e)
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The curl of a vector field �b corresponds to the cross product of �∇ and �b. Using
Eqs. (2.B.6a–d) we get

�∇ × �b =
(
∂

∂x
x̂ + ∂

∂y
ŷ + ∂

∂z
ẑ

)

×
(

x̂bx + ŷby + ẑbz

)

=
(

ẑ
∂by

∂x
− ŷ

∂bz

∂x

)

+
(

− ẑ
∂bx

∂y
+ x̂

∂bz

∂y

)

+
(

ŷ
∂bx

∂z
− x̂

∂by

∂z

)

= x̂

(
∂bz

∂y
− ∂by

∂z

)

+ ŷ

(
∂ bx

∂z
− ∂bz

∂x

)

+ ẑ

(
∂by

∂x
− ∂bx

∂y

)

.

(2.B.6f)

This is the standard formula for the curl of a vector field in an x, y, z coordinate
system. Measuring the x, y, z coordinates in units of ulength and �b in units of ub
gives

�∇ × �b = ub

ulength
x̂

(
∂(bz)[ub]
∂y[ulength]

− ∂(by)[ub]
∂z[ulength]

)

+ ub

ulength
ŷ

(
∂(bx)[ub]
∂z[ulength]

− ∂(bz)[ub]
∂x[ulength]

)

+ ub

ulength
ẑ

(
∂(by)[ub]
∂x[ulength]

− ∂(bx)[ub]
∂y[ulength]

)

= 1

ulength
�∇[ulength] × (

ub�b[ub]
)= 1

ulength
�∇[ulength] × �b.

(2.B.6g)

The units and dimensions of �∇ are clear for these three different types of vector
derivative. In Eqs. (2.B.6b), (2.B.6e), and (2.B.6g), �∇ always has units of ulength−1

and has a “numeric part” given by Eq. (2.B.6c). Hence when we analyze equations
containing �∇φ, �∇ · �b, or �∇ × �b, we can always replace �∇ by ulength−1 �∇[ulength].
For the cgs systems of electromagnetic units we define, as a matter of notational
convenience, the operator �∇cgs by the equalities

cm−1 �∇cgs = cm−1
(

x̂
∂

∂xcgs
+ ŷ

∂

∂ycgs
+ ẑ

∂

∂zcgs

)

= �∇ = cm−1 �∇[cm] = cm−1
(

x̂
∂

∂x[cm]
+ ŷ

∂

∂y[cm]
+ ẑ

∂

∂z[cm]

)

,

(2.B.7a)

and for the mks systems of electromagnetic units we define

m−1 �∇cgs =m−1
(

x̂
∂

∂xmks
+ ŷ

∂

∂ymks
+ ẑ

∂

∂zmks

)

= �∇ =m−1 �∇[m] =m−1
(

x̂
∂

∂x[m]
+ ŷ

∂

∂y[m]
+ ẑ

∂

∂z[m]

)

.

(2.B.7b)
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When ulength is the unit of length in any system of units having U and N
operators which for the sake of specificity we call U

vvv
and N

vvv
, then

U
vvv

( �∇φ)= ulength−1 U
vvv
(φ), (2.B.8a)

U
vvv

( �∇ · �b)= ulength−1 U
vvv

(�b), (2.B.8b)

U
vvv

( �∇ × �b)= ulength−1 U
vvv

(�b), (2.B.8c)

and

N
vvv

( �∇φ)= �∇[ulength]
(

N
vvv
(φ)
)
, (2.B.9a)

N
vvv

( �∇ · �b)= �∇[ulength] ·
(

N
vvv

(�b)
)

, (2.B.9b)

N
vvv

( �∇ × �b)= �∇[ulength] ×
(

N
vvv

(�b)
)

. (2.B.9c)

In particular, if we work with a set of electromagnetic dimensions based on the
three fundamental dimensions of mass, length, and time, not recognizing charge as
a new fundamental dimension, then

U
mlt

( �∇φ)= length−1 U
mlt
(φ), (2.B.10a)

U
mlt

( �∇ · �b)= length−1 U
mlt

(�b), (2.B.10b)

and

U
mlt

( �∇ × �b)= length−1 U
mlt

(�b). (2.B.10c)

If we recognize charge as a new fundamental dimension, then

U
mltq

( �∇φ)= length−1 U
mltq
(φ), (2.B.11a)

U
mltq

( �∇ · �b)= length−1 U
mltq

(�b), (2.B.11b)

and

U
mltq

( �∇ × �b)= length−1 U
mltq

(�b). (2.B.11c)

We have defined three standard derivatives—the gradient, the divergence and
the curl—using the symbol �∇ . We often use the gradient, divergence and curl to
specify an additional two types of derivative by defining, for any scalar field φ,
that

∇2φ = �∇ · ( �∇φ) (2.B.12a)



UNITS ASSOCIATED WITH NINETEENTH-CENTURY ELECTROMAGNETIC THEORY 147

and, for any vector field �b, that

∇2 �b= �∇( �∇ · �b)− �∇ × ( �∇ × �b). (2.B.12b)

The symbol ∇2 is sometimes called the Laplacian. Note that operating on a scalar
field with the Laplacian returns another scalar field, and operating on a vector field
with the Laplacian returns another vector field. In a Cartesian coordinate system
there is no great difficulty in showing that

∇2φ = ∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 , (2.B.12c)

and with somewhat more effort we find that

∇2 �b = x̂

(
∂2bx

∂x2
+ ∂2bx

∂y2
+ ∂2bx

∂z2

)

+ ŷ

(
∂2by

∂x2
+ ∂2by

∂y2
+ ∂2by

∂z2

)

+ ẑ
(
∂2bz

∂x2
+ ∂2bz

∂y2
+ ∂2bz

∂z2

)

= x̂∇2bx + ŷ∇2by + ẑ∇2bz.

(2.B.12d)

The right-hand sides of Eqs. (2.B.12c) and (2.B.12d) show us how to get the
units and dimensions of ∇2φ and ∇2�b. When analyzing equations containing
∇2φ or ∇2 �b, we can always, when ulength is the unit of length, replace ∇2 by
ulength−2∇2[ulength]. We can use the �∇[ulength] operator described above to define

∇2[ulength]φ = �∇[ulength] · ( �∇[ulength]φ
)

for scalar fields φ and

∇2[ulength] �b= �∇[ulength]
( �∇[ulength] · �b)− �∇[ulength] × ( �∇[ulength] × �b)

for vector fields �b. In a Cartesian coordinate system this becomes

∇2[ulength]φ = ∂2φ

∂x2[ulength]
+ ∂2φ

∂y2[ulength]
+ ∂2φ

∂z2[ulength]

and

∇2[ulength] �b= x̂∇2[ulength]bx + ŷ∇2[ulength]by + ẑ∇2[ulength]bz,

respectively. When ulength is the unit of length in any system of units having U
and N operators called U

vvv
and N

vvv
, then

U
vvv

(∇2φ
)= ulength−2 U

vvv
(φ), (2.B.12e)



148 CHAPTER 2

U
vvv

(∇2 �b)= ulength−2 U
vvv

(�b), (2.B.12f)

and

N
vvv

(∇2[ulength]φ
)= ∇2[ulength]

(

N
vvv
(φ)
)

, (2.B.12g)

N
vvv

(∇2[ulength] �b
)= ∇2[ulength]

(

N
vvv

(�b)
)

.



CHAPTER 3

UNITS ASSOCIATED WITH TWENTIETH-CENTURY
ELECTROMAGNETIC THEORY

By the beginning of the twentieth century it had become customary to base elec-
tromagnetic theory on Maxwell’s equations and the Lorentz force law. In princi-
ple, any classical electromagnetic formula can be derived from these equations; so,
whenever a system of units changes the form of Maxwell’s equations or the Lorentz
force law, we can expect corresponding changes in the equations and formulas of
classical electromagnetism.

Perhaps the first set of units to become popular in the twentieth century was
the Gaussian system of units. Physicists, always interested in reducing theoretical
clutter, liked these units because they removed both ε0 and µ0 from electromag-
netic equations and formulas. The price paid for this advantage—extra factors of
the speed of light in Maxwell’s equations and the Lorentz force law—was thought
to be well worth the resulting conceptual simplification of electromagnetic theory.
The Gaussian system of units, like the esu and emu systems, only recognizes the
three fundamental dimensions of mass, length, and time.

Although twentieth-century physicists liked Gaussian units, electrical engi-
neers, after a few decades of indecision, chose the rationalized mks system of elec-
tromagnetic equations. This system, like the esuq and emuq systems discussed in
Chapter 2, recognizes the existence of a fourth fundamental electromagnetic di-
mension in addition to the three traditional dimensions of mass, length, and time.
Like the esuq and emuq systems, both ε0 and µ0 are kept as explicit constants;
unlike the esuq and emuq systems, a process called “rationalization” is used to
eliminate all factors of 4π from Maxwell’s equations.

We start the discussion of twentieth-century electromagnetic units by combin-
ing the esu and emu units to create the Gaussian system and then move on to
describe a rationalized cousin to the Gaussian units, called the Heaviside-Lorentz
system, which has recently become popular with elementary particle physicists.1

We show how to go from the Gaussian or Heaviside-Lorentz systems to the un-
rationalized and the rationalized mks systems. The unrationalized mks system, al-
though not in use today and never very popular, is a helpful traditional system when
converting equations to and from the rationalized mks system. Just as in Chapter 2,
emphasis is placed on how to convert electromagnetic equations and formulas from
one system of units to another, explaining as we go the diagrams and tables needed
to make the change.

149



150 CHAPTER 3

3.1 MAXWELL’S EQUATIONS

Much of today’s electromagnetic theory can be derived from Maxwell’s equations,
a set of equations given their present form by James Clerk Maxwell in 1865. Al-
though the relationships in Eqs. (3.1a), (3.1b), and (3.1c) had been used earlier in
the nineteenth century, Maxwell was the first to introduce the term ∂ �D/∂t , called
the displacement current, into Eq. (3.1d):

�∇ · �D = 4πρQ, (3.1a)

�∇ · �B = 0, (3.1b)

�∇ × �E + ∂ �B
∂t

= 0, (3.1c)

�∇ × �H = 4π �J + ∂ �D
∂t
, (3.1d)

where

�D = ε0 �E + 4π �P (3.1e)

and

�B =µ0 �H + 4π �MH. (3.1f)

In Eqs. (3.1a–f), �E is the electric field, �H is the magnetic field, ρQ is the density of
unbound charge, �J is the volume current density, �P is the electric dipole density,
�MH is the permanent-magnet dipole density, µ0 is the permeability of free space,

and ε0 is the permittivity of free space. The �∇ operator used in these equations is
defined in Appendix 2.B. As has already been discussed in Section 2.11, during
the twentieth century Eq. (3.1f) came to be written as

�H = �B
µ0

− 4π �MI, (3.1g)

where

�MI = �MH
µ0
. (3.1h)

Here we implicitly make H the auxiliary field defined in terms of the fundamental
B and MI fields rather than, as in Eqs. (3.1e, f), implicitly making B the auxil-
iary field defined in terms of the fundamental H and MH fields. After Maxwell
introduced the ∂ �D/∂t term into Eq. (3.1d), he pointed out that Eqs. (3.1a) through
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(3.1f) now permitted the existence of electromagnetic radiation travelling through
empty space with the velocity

c= 1√
ε0µ0

(3.2)

[see Eq. (2.10)]. By the middle of the nineteenth century, physicists already knew
the value of c from direct measurements of the velocity of light. Measuring the
ε0µ0 product indirectly with electrical circuits and mechanical balances there-
fore verified Eq. (3.2), simultaneously confirming that the ∂ �D/∂t term belongs
in Eq. (3.1d) and that light is indeed electromagnetic radiation.

3.2 THE GAUSSIAN SYSTEM OF UNITS

Equations (3.1a–d) have the same form in both the esu and emu systems of units;
and Eqs. (3.1e, f) can be put into either system by choosing the values given to ε0
andµ0. If ε0 = 1 andµ0 = c−2 are chosen, we put Eqs. (3.1a–f) into the esu system
of units; and if ε0 = c−2 and µ0 = 1 are chosen, we put Eqs. (3.1a–f) into the
emu system of units. A natural procedure to follow when deriving electromagnetic
formulas is to start with Eqs. (3.1a–d), holding off on a formal choice of esu or
emu units until it becomes clear from Eqs. (3.1e, f) which of the constants, ε0
or µ0, figures more prominently in the final results. As soon as this is known,
esu or emu units are specified to make either ε0 = 1 or µ0 = 1, eliminating the
more troublesome constant from the problem. Sooner or later it becomes clear that
this recipe amounts to measuring electrical quantities in esu units and magnetic
quantities in emu units. The next obvious step is to start all the derivations this way,
writing Maxwell’s equations with esu units for the electric quantities �D, �E, �J , �P ,
and ρQ and emu units for the magnetic quantities �B, �H, �MI , and �MH . This idea
for combining the esu and emu units into a single system came to be called the
Gaussian cgs system of units. We can put Eqs. (3.1a, e), which contain only electric
quantities, into the Gaussian system by thinking of them as having esu units; and
we can put Eqs. (3.1b, f, g, h), which contain only magnetic quantities, into the
Gaussian system by thinking of them as having emu units. This is simple enough,
and one benefit of Gaussian units is already clear—because Eq. (3.1e) is in esu
units while (3.1f, g, h) are in emu units, we have the best of both systems with ε0 =
µ0 = 1. All that remains is to see what happens to the two equations containing
mixed electric and magnetic quantities—Eqs. (3.1c, d)—when they are converted
to Gaussian units.

The �∇ operator has dimensions of length−1, and Eq. (2.B.7a) from Appen-
dix 2.B of Chapter 2 lets us write Eq. (3.1c) in esu units as (see also Table 2.4 in
Chapter 2)

(
cm−1 �∇cgs

)×
(

�Eesu
1

sec

gm1/2

cm1/2

)

= −
(

sec−1 ∂

∂tcgs

)(

�Besu
gm1/2

cm3/2

)

.
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Table 2.7 is used to replace �Besu with �Bemu, giving

(
cm−1 �∇cgs

)×
(

�Eesu
1

sec

gm1/2

cm1/2

)

= −
(

sec−1 ∂

∂tcgs

)(

c−1
cgs

�Bemu
gm1/2

cm3/2

)

.

Multiplying the right-hand side by
sec

cm
· cm

sec
= 1, we get

(
cm−1 �∇cgs

)×
(

�Eesu
statvolt

cm

)

= −
(

sec−1 ∂

∂tcgs

)(

ccgs
cm

sec

)−1(

�Bemu
gm1/2

cm1/2sec

)

= −
(

sec−1 ∂

∂tcgs

)(

ccgs
cm

sec

)−1( �Bemugauss
)
,

(3.3a)

where Tables 2.4 and 2.5 are used to replace sec−1 · gm1/2 · cm−1/2 by statvolt ·
cm−1 for E, and sec−1 · gm1/2 · cm−1/2 by gauss = abweber · cm−2 for B . Now
the electric quantity is in esu units and the magnetic quantity is in emu units, so
Eq. (3.3a), using physical quantities, is

�∇ × �E = −1

c

∂ �B
∂t
. (3.3b)

Applying the same procedure to Eq. (3.1d), we start off this time in emu units to
get

�∇ × �H = 4π

(

�Jemu
abcoul

cm2sec

)

+
(

sec−1 ∂

∂tcgs

)(

�Demu
abcoul

cm2

)

. (3.4a)

Nothing is going to happen to the left-hand side of Eq. (3.4a), because it is a mag-
netic quantity expressed in emu units, but the right-hand side is all electric quanti-
ties and has to be converted to esu units. From Table 2.7 we get

�∇ × �H = 4π

(

c−1
cgs

�Jesu
abcoul

cm2sec

)

+
(

sec−1 ∂

∂tcgs

)(

c−1
cgs

�Desu
abcoul

cm2

)

.
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Multiplying the right-hand side by
sec

cm
· cm

sec
= 1 gives

�∇ × �H = 4π

(

ccgs
cm

sec

)−1







�Jesu

(
cm

sec
abcoul

)

cm2sec







+
(

ccgs
cm

sec

)−1(

sec−1 ∂

∂tcgs

)







�Desu

(
cm

sec
abcoul

)

cm2







= 4π

(

ccgs
cm

sec

)−1(

�Jesu
statcoul

cm2sec

)

+
(

ccgs
cm

sec

)−1(

sec−1 ∂

∂tcgs

)(

�Desu
statcoul

cm2

)

,

(3.4b)

where in the last step Table 2.8 is used to replace

(
cm

sec

)

· abcoul by statcoul.

Equation (3.4b) is now in the correct mixed esu and emu units to belong to the
Gaussian system, so we can write it using physical quantities:

�∇ × �H = 4π

c
�J + 1

c

∂ �D
∂t
. (3.4c)

We conclude that Maxwell’s equations in Gaussian cgs units are

�∇ · �D = 4πρQ, (3.5a)

�∇ · �B = 0, (3.5b)

�∇ × �E + 1

c

∂ �B
∂t

= 0, (3.5c)

�∇ × �H = 4π

c
�J + 1

c

∂ �D
∂t
, (3.5d)

where

�D = �E + 4π �P (3.5e)

and

�H = �B − 4π �MH = �B − 4π �MI. (3.5f)

We note that �MH = �MI automatically in the Gaussian system because µ0 = 1 [see
discussion following Eq. (2.68d)].
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Table 3.1 shows which of the common electromagnetic physical quantities the
Gaussian system treats as electric quantities and which it treats as magnetic quanti-
ties. Once an electromagnetic physical quantity bELMAG is classified as either elec-
tric or magnetic, we can say that the U operator for the Gaussian system is defined
to be

U
gs
(bELMAG)=






U
esu
(bELMAG) if bELMAG is electric

U
emu
(bELMAG) if bELMAG is magnetic.

(3.6a)

For mechanical physical quantities bMECH we have, as in the esu and emu systems,

U
gs
(bMECH)= U

cgs
(bMECH). (3.6b)

The N operators for the Gaussian system are

N
gs
(bELMAG)=






N
esu
(bELMAG) if bELMAG is electric

N
emu
(bELMAG) if bELMAG is magnetic,

(3.6c)

with

N
gs
(bMECH)= N

cgs
(bMECH). (3.6d)

The numeric parts of electromagnetic quantities in the Gaussian system are given
the subscript “gs,” so for electric quantities we have

N
gs
(E)=Egs = Eesu,

N
gs
(Q)=Qgs =Qesu,

etc.

and for magnetic quantities we have

N
gs
(B)= Bgs = Bemu,

N
gs
(MI )= (MI )gs = (MI )emu,

etc.

Table 3.1 gives the preferred names for the Gaussian units in boldface type;
the “stat” and “ab” prefixed units, although strictly speaking just as correct as in
the esu and emu systems, are often not the preferred usage (especially not for the
magnetic quantities). Many physicists call the unit of charge in Gaussian units the
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Table 3.1 Quantities measured in esu units in Gaussian system. (Preferred unit
names are given in boldface.)

(capacitance) (electric dipole moment)

U
gs
(C)= U

esu
(C)= statfarad = cm

U
gs
(p)= U

esu
(p) = statcoul · cm

= gm1/2 · cm5/2

sec

(electric displacement) (electric dipole density)

U
gs
(D)= U

esu
(D)= statcoul

cm2
= gm1/2

cm1/2 · sec
U
gs
(P )= U

esu
(P )= statcoul

cm2
= gm1/2

cm1/2 · sec

(electric field) (charge)

U
gs
(E)= U

esu
(E)= statvolt

cm
= gm1/2

cm1/2 · sec
U
gs
(Q)= U

esu
(Q)= statcoul = gm1/2 · cm3/2

sec

(dielectric constant) (resistance)

U
gs
(ε)= U

esu
(ε)= 1 U

gs
(R)= U

esu
(R)= statohm = sec

cm

(permittivity of free space) (volume charge density)

U
gs
(ε0)= U

esu
(ε0)= 1 U

gs
(ρQ)= U

esu
(ρQ)= statcoul

cm3
= gm1/2

cm3/2 · sec

(conductance) (resistivity)

U
gs
(G)= U

esu
(G)= statohm−1 = cm

sec
U
gs
(ρR)= U

esu
(ρR)= statohm · cm = sec

(current) (elastance)

U
gs
(I ) = U

esu
(I )= statamp = statcoul

sec

= gm1/2 · cm3/2

sec2

U
gs
(S)= U

esu
(S)= statfarad−1 = cm−1

(volume current density) (surface charge density)

U
gs
(J )= U

esu
(J )= statcoul

cm2 · sec
= gm1/2

cm1/2 · sec2 U
gs
(SQ)= U

esu
(SQ)= statcoul

cm2
= gm1/2

cm1/2 · sec

(surface current density) (conductivity)

U
gs
(JS)= U

esu
(JS)= statcoul

cm · sec
= gm1/2 · cm1/2

sec2 U
gs
(σ )= U

esu
(σ )= (statohm · cm)−1 = sec−1

(inductance) (electric potential)

U
gs
(L)= U

esu
(L)= stathenry = sec2

cm
U
gs
(V )= U

esu
(V )= statvolt = gm1/2 · cm1/2

sec

esu instead of the statcoul; from our point of view these are just two different names
for the same unit, so 1 esu = 1 statcoul. The reader should be careful not to confuse
“esu,” the Gaussian unit of charge, with “esu,” the cgs electrostatic system of units.

When Gaussian units are broken down to gm, cm, and sec, we see that the same
combination of powers is given different names depending on the physical quantity
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Table 3.1 (Continued). Quantities measured in emu units in Gaussian system.
(Preferred unit names are given in boldface.)

(magnetic vector potential) (current-loop magnetic dipole density)

U
gs
(A)= U

emu
(A) = abweber

cm
= gauss · cm

= gm1/2 · cm1/2

sec

U
gs
(MI ) = U

emu
(MI )= abamp · cm−1

= maxwell · cm−2 = gm1/2

cm1/2 · sec

(magnetic induction) (magnetic permeability)

U
gs
(B)= U

emu
(B)= abweber

cm2
= gauss

= gm1/2

cm1/2 · sec

U
gs
(µ)= U

emu
(µ)= 1

(magnetomotive force) (magnetic permeability of free space)

U
gs
(F)= U

emu
(F)= abamp = gilbert

= gm1/2 · cm1/2

sec

U
gs
(µ0)= U

emu
(µ0)= 1

(magnetic flux) (magnetic pole strength)

U
gs
( B)= U

emu
( B)= abweber = gauss · cm2

= gm1/2 · cm3/2

sec

U
gs
(pH ) = U

emu
(pH )= abweber

= maxwell = gm1/2 · cm3/2

sec

(magnetic field) (permeance)

U
gs
(H)= U

emu
(H)= abamp

cm
= oersted

= gm1/2

cm1/2 · sec

U
gs
(P)= U

emu
(P)= cm = abweber

abamp

= maxwell
gilbert

(permanent-magnet dipole moment) (reluctance)

U
gs
(mH ) = U

emu
(mH )= abweber · cm

= maxwell · cm = gm1/2 · cm5/2

sec

U
gs
(R)= U

emu
(R)= cm−1 = abamp

abweber

= gilbert
maxwell

(current-loop magnetic dipole moment) (magnetic scalar potential)

U
gs
(mI ) = U

emu
(mI )= abamp · cm2

= maxwell · cm = gm1/2 · cm5/2

sec

U
gs
("H ) = U

emu
("H )= abamp

= oersted · cm = gm1/2 · cm1/2

sec

(permanent-magnet dipole density)

U
gs
(MH) = U

emu
(MH )= abweber · cm−2

= maxwell · cm−2 = gm1/2

cm1/2 · sec
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it is used with. For example, statcoul/cm2, the unit of electric displacement D,
gauss, the unit of magnetic induction B , and oersted, the unit of the magnetic field
strength H , are all gm1/2/cm1/2/sec. Both the maxwell, the unit of the magnetic
pole strength pH , and the statcoul, the unit of electric charge, are gm1/2 ·cm3/2/sec.
Some of the duplications listed in Table 3.1 are already present in the esu and emu
systems. In the esu system ε0 = 1, so from Eq. (3.1e) D,E, and P must have the
same units; and in the emu system µ0 = 1, so from Eqs. (3.1f, g, h) B,H,MH ,
and MI must have the same units. The Gaussian system has both ε0 and µ0 equal
to 1, so all these esu and emu unit duplications are kept. Going back to the unit
symmetries listed in the first column of Table 2.2, we can write the symmetries
listed there as

U
esu
(bEL)= U

emu
(bMAG), (3.7a)

where bEL and bMAG are any pair of electric and magnetic physical quantities used
in the same box of Table 2.2. Equation (3.6a) shows that, in the Gaussian system,
Eq. (3.7a) becomes

U
gs
(bEL)= U

gs
(bMAG) (3.7b)

for all the bEL, bMAG pairs in the first column of Table 2.2. Therefore, ac-
cording to Table 2.2 and Eqs. (3.1e–h), the electromagnetic physical quantities
D,E,P,B,H,MH , andMI must all have the same units in the Gaussian system.
It is easy to see why so many of the Gaussian units end up as different names for
the same combinations of gm, cm, and sec.

We now convert Eq. (2.6), the equation for the magnetic field of a long, thin
wire carrying a current I ,

H = 2I

r
,

into the Gaussian system of units. Equation (2.6) has the same form in both the esu
and emu systems of units. Taking it to be esu units, we write

(

Hesu
statamp

cm

)

= 2(Iesustatamp)

(rcgscm)
. (3.8a)

Table 3.2 lists the information needed to go between the Gaussian and esu systems.
Since Hgs = c−1

cgsHesu and Igs = Iesu, Eq. (3.8a) can be written as

ccgsHgs
statamp

cm
= 2Igsstatamp

rcgscm
. (3.8b)

Table 3.1 shows that the Gaussian system, not surprisingly, lists H as a mag-
netic quantity, so Hgs = Hemu, and H must be measured in units of oersted =
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abamp/cm. From Table 3.3 (which has the same information as Table 2.8),
1 statamp = (cm/sec) · abamp, so Eq. (3.8b) becomes

(

ccgs
cm

sec

)(

Hgs
abamp

cm

)

= 2Igsstatamp

rcgscm

or

H = 2I

rc
(3.8c)

written in terms of the physical quantities H,I, r , and c.
Equation (2.66h), the Lorentz force law, also gains a c in the denominator when

converted to Gaussian units. Equation (2.66h), like Eq. (2.6), has the same form in
both the esu and emu systems. This time we use the emu system (see Table 2.5) to
break the equation up into its units and numeric components:

�Fcgsdynes = (Qemuabcoul)

(

�Eemu
abvolt

cm

)

+ (Qemuabcoul)

(

�vcgs
cm

sec

)

× ( �Bemugauss
)
.

(3.9a)

From Table 3.1 we note that �B is already in its correct form for the Gaussian
system, because it is a magnetic quantity in emu units. The �F and �v mechanical
quantities are in cgs units, which are common to the esu, emu, and Gaussian sys-
tems, so they do not have to be changed either. Using Tables 3.3 and 3.4 to convert
the Q, �E electric quantities to the Gaussian system gives

�F = (
c−1

cgsQgs
)
(

sec

cm
statcoul

)
( �Egsccgs

)
(

cm

sec

statvolt

cm

)

+ (c−1
cgsQgs

)
(

sec

cm
statcoul

)

�v × �B,
(3.9b)

where �F, �v, and �B are left as physical quantities because we know their units do
not change. Since

ccgs
cm

sec
· c−1

cgs
sec

cm
= 1 and c−1

cgs
sec

cm
= c−1,

Eq. (3.9b) can be written as

�F = (Qgsstatcoul)

(

�Egs
statvolt

cm

)

+ (Qgsstatcoul)
�v × �B
c

=Q �E + Q

c
(�v × �B),

(3.9c)
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Table 3.3 Unit relationships for the esu, emu, and
Gaussian systems.

abamp = sec

cm
· statamp

abcoul = sec

cm
· statcoul

abweber = cm

sec
· statweber

abvolt = cm

sec
· statvolt

abfarad = sec2

cm2
· statfarad

abhenry = cm2

sec2
· stathenry

abohm = cm2

sec2
· statohm

where we have recognized statcoul and statvolt/cm as the correct Gaussian units
for the charge and electric field, respectively. If we had started off writing the
Lorentz force law in esu units, then Q, �E, �F , and �v would already have been
in the correct units for the Gaussian system, giving us from Table 2.4

�F =Q �E +Q�v ×
(

�Besu
statweber

cm2

)

.

From Tables 3.2 and 3.3

�Besu
statweber

cm2
= c−1

cgs
�Bemu

sec

cm

abweber

cm2

= c−1
(

�Bemu
abweber

cm2

)

= c−1( �Bgsgauss)= �B
c
,

which once again gives Eq. (3.9c). This form of the Lorentz force law can be re-
membered by noting that in the Gaussian system, �B in gauss and �E in statvolt/cm
really have the same basic unit gm1/2/cm1/2/sec. Therefore, the velocity �v must
have its units cancelled by another velocity if Rule IV is to be satisfied. The only
velocity “fundamental enough” to play this role (and the only velocity that keeps
appearing in the Gaussian system of units) is the velocity of light—so it is no sur-
prise to find �v divided by c, giving us Eq. (3.9c).
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Equation (2.68e) can be written in Gaussian units as (choosing the magnetic
dipole to be �mI rather than �mH )

�mI =
(
IA

c

)

n̂, (3.10a)

where �mI , I,A, n̂ have the same meaning as in Eq. (2.68e) and c is the speed
of light. We now convert Eq. (3.10a) back to esu and emu units to show how it is
done. When changing Eq. (3.10a) to the emu system, we note that �mI is a magnetic
quantity in the Gaussian system and so does not have to be changed. Breaking the
right-hand side of Eq. (3.10a) into numeric components and units gives

�mI =







(Igsstatamp)(Acgscm2)
(

ccgs
cm

sec

)






n̂. (3.10b)

Tables 3.3 and 3.4 show that

�mI =







(

ccgsIemu
cm

sec
abamp

)

(Acgscm2)

(

ccgs
cm

sec

)






n̂

or

�mI = IAn̂. (3.10c)

This is, as expected, the same form as Eq. (2.68e). When converting Eq. (3.10a) to
the esu system, we know that I is an electric quantity in the Gaussian system and
so only the left-hand side of the equation has to be changed. Breaking the left-hand
side up into numeric components and units gives, using Table 3.5,

( �mI )gsmaxwell · cm = IA

c
n̂.

From Table 3.5 we see that maxwell · cm = abamp · cm2, so Tables 3.2 and 3.3
show that

( �mI
)

esuc
−1
cgsabamp · cm2 = IA

c
n̂

or

( �mI
)

esuc
−1
cgs

(
sec

cm
statamp

)

· cm2 = IA

c
n̂. (3.10d)
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Table 3.5 Gaussian units for physical quantities with and without Heaviside-
Lorentz rationalization.

Physical quantity Gaussian units

(magnetic vector potential) U
gs
(hA)= U

gs
(A)= gm1/2 · cm1/2

sec
= abweber

cm
= gauss · cm

hA, A

(magnetic induction) U
gs
(hB)= U

gs
(B)= gm1/2

sec · cm1/2
= abweber

cm2
= gauss

hB, B

(capacitance) U
gs
(hC)= U

gs
(C)= cm = statfarad

hC, C

(electric displacement) U
gs
(hD)= U

gs
(D)= gm1/2

cm1/2 · sec
= statcoul

cm2

hD, D

(electric field) U
gs
(hE)= U

gs
(E)= gm1/2

cm1/2 · sec
= statvolt

cm

hE, E

(dielectric constant) U
gs
(ε)= 1

ε

(permittivity of free space) U
gs
(ε0)= 1

ε0

(magnetomotive force) U
gs
(hF)= U

gs
(F)= gm1/2 · cm1/2

sec
= abamp = gilbert

hF , F

(magnetic flux) U
gs
(h B)= U

gs
( B)= gm1/2 · cm3/2

sec
= abweber = gauss · cm2

h B ,  B

(conductance) U
gs
(hG)= U

gs
(G)= cm

sec
= statohm−1

hG, G

(magnetic field) U
gs
(hH)= U

gs
(H)= gm1/2

cm1/2 · sec
= oersted = abamp

cm

hH , H

(current) U
gs
(hI )= U

gs
(I )= gm1/2 · cm3/2

sec2
= statcoul

sec
= statamp

hI , I

(volume current density) U
gs
(hJ )= U

gs
(J )= gm1/2

cm1/2 · sec2
= statcoul

cm2 · sec

hJ , J
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Table 3.5 (Continued).

Physical quantity Gaussian units

(surface current density) U
gs
(hJS)= U

gs
(JS)= gm1/2 · cm1/2

sec2
= statcoul

cm · sec

hJS , JS

(inductance) U
gs
(hL)= U

gs
(L)= sec2

cm
= stathenry

hL, L

(permanent-magnet dipole moment)
U
gs
(hmH ) = U

gs
(mH )= gm1/2 · cm5/2

sec

= abweber · cm = maxwell · cm
hmH ,mH

(current-loop magnetic dipole moment)
U
gs
(hmI ) = U

gs
(mI )= gm1/2 · cm5/2

sec

= abamp · cm2 = maxwell · cm
hmI , mI

(permanent-magnet dipole density)
U
gs
(hMH ) = U

gs
(MH )= gm1/2

sec · cm1/2

= abweber

cm2
= maxwell

cm2hMH ,MH

(current-loop magnetic dipole density)
U
gs
(hMI ) = U

gs
(MI )= gm1/2

sec · cm1/2

= abamp

cm
= maxwell

cm2hMI ,MI

(magnetic permeability) U
gs
(µ)= 1

µ

(magnetic permeability of free space) U
gs
(µ0)= 1

µ0

(magnetic pole strength)
U
gs
(hpH ) = U

gs
(pH )= gm1/2 · cm3/2

sec

= abweber = maxwell
hpH , pH

(electric dipole moment) U
gs
(hp)= U

gs
(p)= gm1/2 · cm5/2

sec
= statcoul · cm

hp, p

(electric dipole density) U
gs
(hP )= U

gs
(P )= gm1/2

cm1/2 · sec
= statcoul

cm2

hP , P

(permeance) U
gs
(P)= cm = abweber

abamp
= maxwell

gilbert

P
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Table 3.5 (Continued).

Physical quantity Gaussian units

(charge) U
gs
(hQ)= U

gs
(Q)= gm1/2 · cm3/2

sec
= statcoul

hQ, Q

(resistance) U
gs
(hR)= U

gs
(R)= sec

cm
= statohm

hR, R

(reluctance) U
gs
(R)= cm−1 = abamp

abweber
= gilbert

maxwell

R

(volume charge density) U
gs
(hρQ)= U

gs
(ρQ)= gm1/2

cm3/2 · sec
= statcoul

cm3

hρQ, ρQ

(resistivity) U
gs
(hρR)= U

gs
(ρR)= sec = statohm · cm

hρR , ρR

(elastance) U
gs
(hS)= U

gs
(S)= cm−1 = statfarad−1

hS, S

(surface charge density) U
gs
(hSQ)= U

gs
(SQ)= gm1/2

cm1/2 · sec
= statcoul

cm2

hSQ, SQ

(conductivity) U
gs
(hσ )= U

gs
(σ )= sec−1 = statohm−1

cm

hσ , σ

(electric potential) U
gs
(hV )= U

gs
(V )= gm1/2 · cm1/2

sec
= statvolt

hV , V

(magnetic scalar potential) U
gs
(h"H )= U

gs
("H )= gm1/2 · cm1/2

sec
= abamp = oersted · cm

h"H ,"H

Table 2.4 shows that the correct esu units for �mI are statamp · cm2, so Eq. (3.10d)
written in esu units is

�mI
c

= IA

c
n̂,

which again reduces to Eq. (3.10c),

�mI = IAn̂.
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We see that it is as easy to return to esu or emu units from Gaussian units as it is to
convert to Gaussian units in the first place.

The Gaussian system of units, unlike the esu and emu systems of units, is in
widespread use today, especially in theoretical electromagnetic analysis. From the
physicist’s point of view there are many advantages to the Gaussian system. The
annoying constants ε0 and µ0 have been eliminated from electromagnetic theory,
so from Eqs. (3.5e, f)

�D = �E and �B = �H,

when

�P = �MH = �MI = 0.

Therefore, in empty space the �D field becomes the same as the �E field and the �H
field becomes the same as the �B field. This is a significant conceptual simplification
for today’s physicists, who often do their electromagnetic analysis in vacuum—
either on a microscopic scale between and inside atoms or on a macroscopic scale
in the space surrounding localized electromagnetic disturbances. When doing rela-
tivistic calculations, physicists can even switch to a system of units where the speed
of light is 1 (see Section 1.10), thereby eliminating all three constants ε0,µ0, and
c from Maxwell’s equations. In this sense, the Gaussian system combines the best
aspects of both the esu and emu systems of units. On the other hand, the electrical
engineer, who rarely needs to use relativity theory, might remark after examin-
ing the Gaussian system that we pay for eliminating ε0 and µ0 by introducing
the speed of light c into many formulas—such as Eqs. (3.5c), (3.8c), (3.9c), and
(3.10a)—where it previously did not exist. Engineers analyzing electric fields in
matter notice that they have not even really eliminated the permittivity and perme-
ability in return for all the extra factors of c. The constants ε = εrε0 and µ=µrµ0
used to describe the interaction of electric and magnetic fields with bulk matter are,
since ε0 =µ0 = 1, replaced by just εr and µr in the Gaussian system. Variables εr
and µr are dimensionless, but they are all too often not equal to 1. Formulas that
previously contained ε and µ still contain εr and µr , and it is just as much trouble
to keep track of εr and µr as it is to keep track of ε and µ. From this point of view,
introducing all these factors of c has just complicated practical electromagnetic
calculations, so it is not surprising that electrical engineers have never really had
much use for Gaussian units.

3.3 RATIONALIZATION AND THE HEAVISIDE-LORENTZ SYSTEM

One concept that did eventually catch on with electrical engineers—although not
in the form first proposed—is the rationalization of electromagnetic equations. The
idea of rationalizing the electromagnetic equations was first suggested by Oliver
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Heaviside in 1882. He objected to an “eruption of 4π ’s” in equations having no
obvious connection with spherical or circular geometry.2 Equation (2.63i) in Chap-
ter 2 is an example of what Heaviside was objecting to; this equation for the ca-
pacitance C of the parallel-plate capacitor shown in Fig. 2.8 is (in esu or Gaussian
units)

C = A

4πd
, (3.11a)

even though there is nothing circular or spherical about the capacitor’s geometry.
Oliver Heaviside suggested rescaling the units used to measure electrical quantities
by powers of 4π to eliminate these constants from formulas such as Eq. (3.11a). If
we take Eq. (3.11a) to be in reality an equation between purely numeric quantities,
which in our notation would be (using esu or Gaussian units)

Cgs =C[statfarad] = Acgs

4π dcgs
= A[cm2]

4πd[cm]
, (3.11b)

then by Rule I we could decide to measure C in units of statfarad/(4π) rather than
statfarad to get

C[statfarad/(4π)] = 4πC[statfarad]. (3.11c)

From Eqs. (3.11b) and (3.11c) we then have the desired result

C[statfarad/(4π)] = A[cm2]
d[cm]

. (3.11d)

Note that all the variables in Eqs. (3.11b) through (3.11d), unlike the variables in
Eq. (3.11a), are dimensionless numerics; and, in fact, during the nineteenth and
early twentieth century there was often no hard and fast distinction drawn between
these two types of variable. From our point of view, however, Eq. (3.11a) involves
physical quantities C,A, and d , while Eqs. (3.11b) through (3.11d) involve the
numerical components of physical quantities C[statfarad],A[cm2], and d[cm]. If we
start with Eq. (3.11a) split up into units and numeric components to get, using the
equality statfarad = cm,

C[statfarad]statfarad =C[statfarad]cm = A[cm2]cm2

4πd[cm]cm
, (3.12a)

and then decide to measure C in the new unit

1 newfarad = statfarad/(4π), (3.12b)
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we end up with

(4πC[statfarad])newfarad = A[cm2]cm2

4πd[cm]cm
.

But, from Eq. (3.11c) this becomes

C[statfarad/(4π)]newfarad = A[cm2]cm2

4πd[cm]cm
, (3.12c)

or, again using variables representing physical quantities,

C = A

4πd
.

Equation (3.12c) is clearly no different from Eq. (3.11a); the dimensionless factor
of 4π refuses to disappear. As long as variables like C,A, and d are thought of
as a numeric multiplied by a unit, equations like Eq. (3.11a) will keep their form
no matter how we stretch or shrink the units that are used to measure its variables.
Although Oliver Heaviside could, back in the nineteenth century, regard his sug-
gestion as a proposal to measure electromagnetic quantities in a new set of units,
we cannot agree with him.

From our point of view, the new set of electromagnetic equations first pro-
posed by Oliver Heaviside and later popularized, at the beginning of the twentieth
century, by H. A. Lorentz, is in reality a system of rescaled physical quantities,
which we call the Heaviside-Lorentz system of electromagnetic quantities. Many
people have realized that, according to today’s understanding of what is meant by
a change of units, Oliver Heaviside and H. A. Lorentz were proposing a rescaled
set of electromagnetic quantities rather than a change of units;3 however, reference
to a change of units is thoroughly entrenched in the literature. In fact, all systems
of electromagnetic equations that have been rescaled to eliminate factors of 4π ,
and not just the Heaviside-Lorentz system of rescaled equations, are often referred
to as electromagnetic equations in rationalized units, or electromagnetic equations
written using a system of rationalized units. To avoid breaking sharply with this
tradition we prefer to describe these new electromagnetic formulas as belonging
to a rationalized system, such as the Heaviside-Lorentz rationalized system, while
leaving the nature of the system unspecified.

Table 3.6 contains all the information needed to convert electromagnetic for-
mulas to the Heaviside Lorentz system. We give the rationalized electromagnetic
quantities the prefix “h;” the Table 3.6 shows that only ε0,µ0, εr ,µr,P , and R are
not changed in this system of rationalization. We see from the table that hC = 4πC,
so now Eq. (3.11a) becomes

hC = A

d
, (3.13)
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Table 3.6 Heaviside-Lorentz rationalization for electromagnetic physical
quantities.

(magnetic vector potential, rationalized) (magnetic permeability, unchanged) µ

hA=A/√4π

(magnetic induction, rationalized) (relative magnetic permeability,

hB = B/√4π unchanged) µr

(capacitance, rationalized) hC = 4πC (magnetic permeability of free space,

unchanged) µ0

(electric displacement, rationalized) (magnetic pole strength, rationalized)

hD =D/√4π hpH = pH · √4π

(electric field, rationalized) hE =E/√4π (electric dipole moment, rationalized)

hp= p · √4π

(dielectric constant, unchanged) ε (electric dipole density, rationalized)

hP = P · √4π

(relative dielectric constant, unchanged) εr (permeance, unchanged) P
(permittivity of free space, unchanged) ε0 (charge, rationalized) hQ=Q · √4π

(magnetomotive force, rationalized) (resistance, rationalized) hR = R/(4π)
hF = F/

√
4π

(magnetic flux, rationalized) h B = B/
√

4π (reluctance, unchanged) R
(conductance, rationalized) hG= 4πG (volume charge density, rationalized)

hρQ = ρQ · √4π

(magnetic field, rationalized) hH =H/√4π (resistivity, rationalized) hρR = ρR/(4π)
(current, rationalized) hI = I · √4π (elastance, rationalized) hS = S/(4π)
(volume current density, rationalized) (surface charge density, rationalized)

hJ = J · √4π hSQ = SQ · √4π

(surface current density, rationalized) (conductivity, rationalized) hσ = 4πσ

hJS = JS · √4π

(inductance, rationalized) hL= L/(4π) (electric potential, rationalized)

hV = V/√4π

(permanent-magnet dipole moment, rationalized) (magnetic scalar potential, rationalized)

hmH =mH · √4π h"H ="H/
√

4π

(current-loop magnetic dipole moment, rationalized) (electric susceptibility, rationalized)

hmI =mI · √4π hχe = 4πχe

(permanent-magnet dipole density, rationalized) (magnetic susceptibility, rationalized)

hMH =MH · √4π hχm = 4πχm

(current-loop magnetic dipole density, rationalized)

hMI =MI · √4π
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eliminating the inconvenient factor of 4π . The reader is warned that in the literature
there is usually no prefix, subscript, or superscript of any sort used to distinguish
the rescaled from the nonrescaled variables in rationalized systems of electromag-
netic quantities.

Because the equalities in Table 3.6 are between physical quantities, the U and
N operators for any system of units can be applied to them. Looking, for example,
at the electric field, we have

h
�E = 1√

4π
�E. (3.14a)

From Eqs. (1.25a, b) and (1.28a, b) of Chapter 1 it follows that for any pair of U
and N operators

U
(

h
�E)= U

( �E) (3.14b)

and

N
(

h
�E)= 1√

4π
N
( �E). (3.14c)

Equation (3.14b) explicitly shows that Heaviside-Lorentz rationalization can be
used with any system of electromagnetic units, because only the numeric parts of
electromagnetic physical quantities are changed. In emuq units,

U
emuq

(

h
�E)= U

emuq

( �E)= abvoltq

cm
;

in Gaussian or esu units,

U
gs

(

h
�E)= U

esu

(

h
�E)= U

gs

( �E)= U
esu

( �E)= statvolt

cm
= gm1/2

cm1/2 · sec
;

and so on. When textbooks refer to the Heaviside-Lorentz system, however, they
are applying Heaviside-Lorentz rationalization to the Gaussian system of units.
This means that the U and N operators for the Heaviside-Lorentz system are just
the U and N operators for the Gaussian system.

U
Heaviside
Lorentz

= U
gs
, (3.15a)

N
Heaviside
Lorentz

= N
gs
. (3.15b)

Instead of defining a new pair of U and N operators for the Heaviside-Lorentz sys-
tem, we just use U

gs
and N

gs
to describe the behavior of the rescaled electromagnetic

physical quantities.
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Converting Gaussian electromagnetic equations to the Heaviside-Lorentz sys-
tem is an exercise in algebraic substitution; there is no need to split equations into
units and numeric components. To see how this works, we convert Coulomb’s
law for electric charges and magnetic poles to the Heaviside-Lorentz system.
Coulomb’s law for electric charges involves only electric quantities and is the same
in the esu and Gaussian systems of units. Writing Eq. (2.1b) in Chapter 2 with
ε0 = 1, we have

�F12 = Q1Q2

r2
r̂12.

Substituting the rescaled values hQ1 =Q1
√

4π and hQ2 =Q2
√

4π gives

�F12 = (hQ1)(hQ2)

4πr2
r̂12. (3.16a)

Coulomb’s law for magnetic poles involves only magnetic quantities and is the
same in emu and Gaussian units. Substituting (hpH )1 = (pH )1

√
4π and (hpH )2 =

(pH )2
√

4π into Eq. (2.2b) in Chapter 2 with µ0 = 1 takes us from the emu or
Gaussian system to the Heaviside-Lorentz system:

�F12 = (hpH )1(hpH )2

4π r2
r̂12. (3.16b)

Clearly the factors of 4π that have been removed from one set of electromag-
netic formulas re-appear in other sets of electromagnetic formulas. Oliver Heav-
iside and H. A. Lorentz knew this, of course; what they intended was to put the
factors of 4π into little-used formulas while removing them from frequently used
formulas. Thus, we can infer that by the end of the nineteenth century formulas like
Eq. (3.11a) had become much more useful than Coulomb’s law for electric charges
or magnetic poles. We note that Eqs. (3.5a–f), Maxwell’s equations in Gaussian
units, become

�∇ · h �D = hρQ, (3.17a)

�∇ · h �B = 0, (3.17b)

�∇ × h
�E + 1

c

∂h �B
∂t

= 0, (3.17c)

�∇ × h
�H = 1

c
h

�J + 1

c

∂h �D
∂t
, (3.17d)

with

h
�D = h

�E + h
�P (3.17e)
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and

h
�H = h

�B − h
�MI, (3.17f)

when Table 3.6 is used to replace ρQ, �E, �D, �B, �H, �J , �P , andMI by hρQ, h �E, h �D,

h
�B,h �H,h �J , h �P , and hMI . By the end of the nineteenth century Maxwell’s equa-

tions, rather than Coulomb’s laws, were the basis of electromagnetic field theory,
and Eqs. (3.17a–f) are obviously simpler than Eqs. (3.1a–f) or Eqs. (3.5a–f). In-
deed, all a relativistic physicist has to do is move to a set of units where the speed
of light is equal to 1 to get the ultimate “user-friendly” set of equations:

�∇ · h �D = hρQ, (3.18a)

�∇ · h �B = 0, (3.18b)

�∇ × h
�E + ∂h �B

∂t
= 0, (3.18c)

�∇ × h
�H = h

�J + ∂h �D
∂t
, (3.18d)

where

h
�D = h

�E + h
�P (3.18e)

and

h
�H = h

�B − h
�MI . (3.18f)

In this case there are no extraneous constants whatsoever to clutter up the algebra.
In empty space with h �P = 0 and h �M = 0 the �D and �H fields become identical to
the �E and �B fields, and Eqs. (3.18a–f) reduce to

�∇ · h �E = hρQ, (3.19a)

�∇ · h �B = 0, (3.19b)

�∇ × h
�E + ∂h �B

∂t
= 0, (3.19c)

�∇ × h
�B = h

�J + ∂h �E
∂t
, (3.19d)

with hρQ and h
�J usually taken to represent the density and flow of small point

charges in a vacuum. From a mathematical point of view, Eqs. (3.19a–d) are an
attractively simple set of field equations, and today there are large communities of
physicists who routinely use the Heaviside-Lorentz system when doing relativistic
analysis of elementary particles and electromagnetic fields.
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Figure 3.1 Here are six electromagnetic systems which do not recognize charge
as a fundamental dimension.

3.4 GAUSSIAN AND HEAVISIDE-LORENTZ SYSTEMS WITH c = 1 AND

h̄= c = 1

Since the Gaussian and Heaviside-Lorentz systems are often used with units where
c = 1, it is worth taking time to examine exactly what this means. Remembering
that the full name for Gaussian units is the Gaussian cgs system of units, we return
to the cgc set of units constructed in Section 1.10 and consider the transforma-
tion from Gaussian cgs units to Gaussian cgc units. Looking at Table 3.5, we can
pick any standard electromagnetic quantity, such as the magnetic induction �B , and
write

�B = �Bgsgauss = �Bgs
gm1/2

cm1/2sec
. (3.20a)

From Eq. (1.56a) this becomes in cgc units

�Bgs
gm1/2

cm1/2sec
= �Bgsc

−1
cgs

gm1/2

cm1/2cmtime3
. (3.20b)
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We know that the gs subscript in �Bgs stands for the numeric part of �B in cgs
Gaussian units

�Bgs = N
gs

( �B).

Equation (1.56a) shows the unit of magnetic induction in Gaussian cgc units must
be larger than the gauss by a factor of ccgs:

1 gauss = 1

(
gm1/2

cm1/2sec

)

= c−1
cgs

gm1/2

cm1/2cmtime3
,

so from Rule I the numeric component of �B in Gaussian cgc units must be

Bgscgc = c−1
cgsBgs. (3.20c)

Now, Eqs. (3.20a, b) become

�B = �Bgscgc
gm1/2

cm1/2cmtime3
. (3.20d)

Still following the procedure of Section 1.10, we stop recognizing the separate
dimension of time to get

cmtime3 → cmtime2 = cm.

This takes us from the Gaussian cgc system to the Gaussian cg system. Equa-
tion (3.20d) then becomes, representing the Gaussian cg system by the subscript
“gscg”:

�B = �Bgscg
gm1/2

cm3/2
, (3.20e)

where, following the precedent of Eq. (1.58a), we require the numeric components
of all physical quantities in the Gaussian cg system to have the same value as in
the Gaussian cgc system:

�Bgscg = �Bgscgc. (3.20f)

Generalizing the rules given in equations of Section 1.10, we recognize that the U
and N operators for the Gaussian cg system are basically the same as the U

cg
and N

cg
operators defined in Eqs. (1.58a, d). For any physical quantity b, with

U
gs
(b)= gmαcmβsecγ (3.21a)
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for real exponents α,β , and γ , we define

N
gscg
(b)= cγcgsN

gs
(b) (3.21b)

and

U
gscg
(b)=

(
cm

sec

)γ

U
gs
(b)= gmαcmβ+γ . (3.21c)

Table 3.7 comes from applying Eqs. (3.21a–c) to our standard list of electromag-
netic physical quantities.

Returning to the �B field specified in Eq. (3.20a), we can transform to the
Heaviside-Lorentz system with c = 1 by consulting Table 3.6 to get

h
�B = 1√

4π
�B. (3.22a)

This equation is between physical quantities, so Eq. (3.20e) can be used to write

h
�B =

( �Bgscg√
4π

)
gm1/2

cm3/2
=
( �Bgs

ccgs
√

4π

)
gm1/2

cm3/2
, (3.22b)

where the last step comes from Eqs. (3.20c, f). Repeating this conversion for all
the Heaviside-Lorentz field quantities in (3.18a–f) and (3.19a–d) gives

h
�E =

( �Egs

ccgs
√

4π

)
gm1/2

cm3/2
, (3.23a)

h
�D =

( �Dgs

ccgs
√

4π

)
gm1/2

cm3/2
, (3.23b)

hρQ =
[
(ρQ)gs

√
4π

ccgs

]
gm1/2

cm5/2
, (3.23c)

h
�H =

( �Hgs

ccgs
√

4π

)
gm1/2

cm3/2
, (3.23d)

h
�J =

( �Jgs
√

4π

c2
cgs

)
gm1/2

cm5/2
, (3.23e)

h
�P =

( �Pgs
√

4π

ccgs

)
gm1/2

cm3/2
, (3.23f)

and

h
�MI =

[
( �MI)gs

√
4π

ccgs

]
gm1/2

cm3/2
, (3.23g)
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Table 3.7 The Gaussian cg system (with c= 1) where time is no longer recognized
as a fundamental dimension. Space, time both have units of cm and mass, energy
both have units of gm.

Physical quantity Gaussian cg units (gscg system) Conversion of numeric components

from gs to gscg systems

(magnetic vector potential)

A U
gscg
(A)= gm1/2

cm1/2
Agscg =Ags · c−1

cgs

(magnetic induction)

B U
gscg
(B)= gm1/2

cm3/2
Bgscg = Bgs · c−1

cgs

(capacitance)

C U
gscg
(C)= cm Cgscg = Cgs

(electric displacement)

D U
gscg
(D)= gm1/2

cm3/2
Dgscg =Dgs · c−1

cgs

(electric field)

E U
gscg
(E)= gm1/2

cm3/2
Egscg =Egs · c−1

cgs

(permittivity of free space)

ε0 U
gscg
(ε0)= 1 (ε0)gscg = (ε0)gs = 1

(magnetomotive force)

F U
gscg
(F)= gm1/2

cm1/2
Fgscg = Fgs · c−1

cgs

(magnetic flux)

 B U
gscg
( B)= gm1/2 · cm1/2 ( B)gscg = ( B)gs · c−1

cgs

(conductance)

G U
gscg
(G)= 1 Ggscg =Ggs · c−1

cgs

(magnetic field)

H U
gscg
(H)= gm1/2

cm3/2
Hgscg =Hgs · c−1

cgs

(current)

I U
gscg
(I )= gm1/2

cm1/2
Igscg = Igs · c−2

cgs

(volume current density)

J U
gscg
(J )= gm1/2

cm5/2
Jgscg = Jgs · c−2

cgs

(surface current density)

JS U
gscg
(JS)= gm1/2

cm3/2
(JS)gscg = (JS)gs · c−2

cgs
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Table 3.7 (Continued).

Physical quantity Gaussian cg units (gscg system) Conversion of numeric components

from gs to gscg systems

(inductance)

L U
gscg
(L)= cm Lgscg = Lgs · c2cgs

(permanent-magnet dipole
moment) mH

U
gscg
(mH )= gm1/2 · cm3/2 (mH )gscg = (mH )gs · c−1

cgs

(current-loop magnetic
dipole moment) mI

U
gscg
(mI )= gm1/2 · cm3/2 (mI )gscg = (mI )gs · c−1

cgs

(permanent-magnet dipole
density)MH

U
gscg
(MH )= gm1/2

cm3/2
(MH )gscg = (MH )gs · c−1

cgs

(current-loop magnetic
dipole density)MI

U
gscg
(MI )= gm1/2

cm3/2
(MI )gscg = (MI )gs · c−1

cgs

(magnetic permeability of
free space) µ0

U
gscg
(µ0)= 1 (µ0)gscg = (µ0)gs = 1

(magnetic pole strength)

pH U
gscg
(pH )= gm1/2 · cm1/2 (pH )gscg = (pH )gs · c−1

cgs

(electric dipole moment)

p U
gscg
(p)= gm1/2 · cm3/2 pgscg = pgs · c−1

cgs

(electric dipole density)

P U
gscg
(P )= gm1/2

cm3/2
Pgscg = Pgs · c−1

cgs

(permeance)

P U
gscg
(P)= cm Pgscg = Pgs

(charge)

Q U
gscg
(Q)= gm1/2 · cm1/2 Qgscg =Qgs · c−1

cgs

(resistance)

R U
gscg
(R)= 1 Rgscg =Rgs · ccgs

(reluctance)

R U
gscg
(R)= cm−1 Rgscg = Rgs
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Table 3.7 (Continued).

Physical quantity Gaussian cg units (gscg system) Conversion of numeric components

from gs to gscg systems

(volume charge density)

ρQ U
gscg
(ρQ)= gm1/2

cm5/2
(ρQ)gscg = (ρQ)gs · c−1

cgs

(resistivity)

ρR U
gscg
(ρR)= cm (ρR)gscg = (ρR)gs · ccgs

(elastance)

S U
gscg
(S)= cm−1 Sgscg = Sgs

(surface charge density)

SQ U
gscg
(SQ)= gm1/2

cm3/2
(SQ)gscg = (SQ)gs · c−1

cgs

(conductivity)

σ U
gscg
(σ )= cm−1 σgscg = σgs · c−1

cgs

(electric potential)

V U
gscg
(V )= gm1/2

cm1/2
Vgscg = Vgs · c−1

cgs

(magnetic scalar potential)

"H U
gscg
("H )= gm1/2

cm1/2
("H )gscg = ("H )gs · c−1

cgs

in units where the speed of light is equal to 1, space and time are measured in cm,
and mass and energy are measured in gm.

If we want to measure mass-energy in MeV, Eq. (1.68b) is used to replace
gm by MeV2 = 106 eV2. As an example of how to proceed, we choose a physical
quantity from Table 3.7, for example the electric field �E, and write

�E = �Egscg
gm1/2

cm3/2
=
( �Egs

ccgs

)(
c2

cgsMeV2

1013e[coul]

)1/2

cm−3/2

=
( �Egs
√

1013e[coul]

)
(MeV2)

1/2

cm3/2
.

(3.24a)

In the Heaviside-Lorentz system Table 3.6 and Eq. (3.24a) give

h
�E = 1√

4π
�E =

[ �Egs
√
(4π · 1013)e[coul]

]
(MeV2)

1/2

cm3/2 . (3.24b)
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The straightforward substitution of MeV2 for gm shown in Eq. (3.24a) can be used
to convert any electromagnetic physical quantity in Table 3.7 to units where mass
and energy are measured in MeV2, and Table 3.6 then specifies how to convert
physical quantities to the Heaviside-Lorentz system.

If we want units where h̄= c= 1, Eq. (1.90e) states that

1 gm1 =
(
ccgs

h̄cgs

)

cm−1, (3.25a)

where the subscript “1” on gm reminds us that mass and energy are no longer
being recognized as a separate dimension from space and time. Although this result
comes from a system of units set up to make Boltzmann’s constant as well as
h̄ and c equal to 1, the value of Boltzmann’s constant comes from the unit of
temperature, which is irrelevant here. The scaling and dimension chosen for the
units for mass, length, and time that make h̄= c = 1 in Chapter 1 have the same
effect now, allowing us to use Eq. (3.25a) with confidence.

Table 3.7 shows how to separate the �E field into numeric parts and units in the
Gaussian cg system given �Egs, the numeric value of �E in the Gaussian cgs system.

�E =
�Egs

ccgs

gm1/2

cm3/2 .

We stop recognizing the separate dimension of mass-energy by replacing gm with
gm1, which gives

�E =
( �Egs

ccgs

)
(gm1)

1/2

cm3/2 =
( �Egs

ccgs

)(
ccgs

h̄cgs
cm−1

)1/2

cm−3/2

=
( �Egs

c
1/2
cgs h̄

1/2
cgs

)

cm−2.

(3.25b)

In the Heaviside-Lorentz system this becomes

h
�E =

( �Egs

c
1/2
cgs h̄

1/2
cgs

√
4π

)

cm−2. (3.25c)

We can check these results by noting from Eq. (3.25a) that mass has the dimen-
sion of length−1 in units where h̄ = c = 1. Table 3.7 then shows that charge is
dimensionless, so Eq. (2.3a) of Chapter 2—with ε0 = 1 since we are in Gaussian
units—shows the �E field must have dimensions of length−2, matching the right-
hand side of Eq. (3.25c). Following this same procedure for the other field quanti-
ties in Eqs. (3.23b–g) gives

h
�D =

( �Dgs

c
1/2
cgs h̄

1/2
cgs

√
4π

)

cm−2, (3.25d)
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h
�B =

( �Bgs

c
1/2
cgs h̄

1/2
cgs

√
4π

)

cm−2, (3.25e)

h
�H =

( �Hgs

c
1/2
cgs h̄

1/2
cgs

√
4π

)

cm−2, (3.25f)

hρQ =
[
(ρQ)gs

√
4π

c
1/2
cgs h̄

1/2
cgs

]

cm−3, (3.25g)

h
�J =

( �Jgs
√

4π

c
3/2
cgs h̄

1/2
cgs

)

cm−3, (3.25h)

h
�P =

( �Pgs
√

4π

c
1/2
cgs h̄

1/2
cgs

)

cm−2, (3.25i)

and

h
�MI =

[
( �MI)gs

√
4π

c
1/2
cgs h̄

1/2
cgs

]

cm−2. (3.25j)

Not only do the �E, �D, �B , and �H fields now all have the same units, keeping life
simple; but a quick check of Table 3.7 also confirms what Eqs. (3.25c–j) suggest is
true, that all the standard electromagnetic physical quantities end up with integer
powers of the length unit when we start with the Gaussian cgs system and make
h̄= c = 1.

3.5 EQUIVALENCE OF THE ESU, EMU, AND GAUSSIAN SYSTEMS

WHEN c = 1

Maxwell’s equations and the Lorentz force law provide a complete description of
classical electromagnetic phenomena.4 From the work done in Section 1.10 we
know that physical equations can be transformed to units where c = 1 simply
by replacing c with 1 everywhere it appears. Equations (3.1a–d) are Maxwell’s
equations in either the esu or emu system depending on whether we choose
ε0 = 1,µ0 = c−2 or µ0 = 1, ε0 = c−2. When c = 1, both choices are equiva-
lent; and the resulting equations become identical to Maxwell’s equations in the
Gaussian system, Eqs. (3.5a–f), with c = 1. Equation (2.66h), the Lorentz force
law, has the same form in esu or emu units; and Eq. (3.9c), the Lorentz force
law in the Gaussian system, becomes the same as Eq. (2.66h) when c = 1. Since
Maxwell’s equations and the Lorentz force law are the foundation for all electro-
magnetic theory, we expect all electromagnetic equations written using physical
quantities to have the same identical form when converted from the esu, emu, or
Gaussian systems to corresponding systems of units where c = 1. We can convert
to such a system by using Rule I to replace sec by cmtime3, which then becomes
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cmtime2 = cm when time is no longer recognized as having a separate dimen-
sion. This replaces sec by cm in the units of all physical quantities. Comparing
Tables 2.4, 2.5, and 3.5, we see that the esu, emu, and Gaussian cgs units of the
electromagnetic physical quantities become identical to the units of the electro-
magnetic physical quantities in Table 3.7, the Gaussian cg system, when sec is re-
placed by cm. Hence, when the esu, emu, and Gaussian cgs systems are converted
in this way to units where c = 1, not only do all the electromagnetic formulas and
equations become identical but also all the electromagnetic units become identical.
Therefore, the numerical components of all the electromagnetic physical quantities
become identical as well, and we end up with the same system of units—there is no
longer any difference between the esu, emu, and Gaussian systems. The Gaussian
cg (gscg) system of units can thus be labeled as just the centimeter-gram (cg) sys-
tem of units, because it is the unique system of units we end up with when convert-
ing from the three sets of electromagnetic cgs units where charge is not recognized
as having a separate dimension to the corresponding cg units where c = 1.

As a check on our reasoning, we pick some physical quantity, such as the cur-
rent I , and use Table 2.5 to break it up into a numeric component and units in the
emu system:

I = Iemu
gm1/2cm1/2

sec
. (3.26a)

Following the procedure of Section 1.10 of Chapter 1, we measure time in units of
cmtime3 = c−1

cgssec to get

I =
(
Iemu

ccgs

)
gm1/2cm1/2

cmtime3
. (3.26b)

When time is no longer recognized as a separate dimension, cmtime3 →
cmtime2 = cm and the current becomes

I =
(
Iemu

ccgs

)
gm1/2

cm1/2 . (3.26c)

This is the formula for I in the emu system converted to the cg system. Now, let
us see what happens when we convert to the cg system from the esu or Gaussian
systems. Since I is an electric quantity, it has the same units in both the esu and
Gaussian systems. Keeping in mind that for this reason Igs = Iesu, we use either
Table 2.4 or 3.5 to write

I = Igs
gm1/2cm3/2

sec2 . (3.27a)
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Converting this expression to units of cmtime3 gives

I =
(
Igs

c2
cgs

)
gm1/2cm3/2

(cmtime3)
2 , (3.27b)

which becomes

I =
(
Igs

c2
cgs

)
gm1/2

cm1/2
(3.27c)

when time is no longer recognized as a separate dimension. Comparing Eqs. (3.26c)
and (3.27c), we note that for the two formulas to represent the same system of units,
I must have the same numeric component:

Iemu

ccgs
= Igs

c2
cgs
,

which, since Iesu = Igs, can be written as

Iemu = Igsc
−1
cgs = Iesuc

−1
cgs. (3.28)

This is exactly what Tables 2.7 and 3.4 show to be the case. As a second check,
we pick a magnetic quantity, i.e., the magnetic pole strength pH . This is the same
in emu and Gaussian units, so (pH )emu = (pH )gs and from Tables 2.5 or 3.5 we
have

pH = (pH )gs
gm1/2cm3/2

sec
. (3.29a)

Converting to cg units the same way as before, we get

pH =
[
(pH )gs

ccgs

]

gm1/2cm1/2. (3.29b)

We repeat this conversion starting from the esu system. Table 2.4 shows that

pH = (pH )esugm1/2cm1/2. (3.29c)

We need do nothing at all to convert this to cg units because there are no powers
of sec in Eq. (3.29c). For pH to be represented by the same system of units in
Eqs. (3.29b, c), pH must have the same numeric component. Recognizing that
(pH )emu = (pH )gs, we write

(pH )esu = (pH )gs

ccgs
= (pH )emu

ccgs
. (3.29d)
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Tables 2.7 and 3.2 show that in fact Eq. (3.29d) is true, once again demonstrating
that the esu, emu, and Gaussian systems become the same system of units when
we make the speed of light c = 1 without recognizing charge as a fundamental
dimension. We conclude that there can only be one centimeter-gram system of
units for all mechanical and electromagnetic physical quantities, which means the
U
cg

and N
cg

operators of the cg system presented in Chapter 1 can be identified with

the U
gscg

and N
gscg

operators of the gscg system defined above in Eq. (3.21b, c):

U
cg

= U
gscg
, (3.30a)

N
cg

= N
gscg
. (3.30b)

3.6 RATIONALIZED AND UNRATIONALIZED MKS SYSTEMS

The most widespread system of electromagnetic units in use today is the mks sys-
tem of units; when used with its rationalized system of electromagnetic quantities
it is often referred to as SI, for Systeme International, units. Although Giovanni
Giorgi introduced it in 1901 using its rationalized form, it was clear from the be-
ginning that both the rationalized and unrationalized mks systems were in many
ways an improvement over cgs esu and cgs emu units. From the start the rational-
ized system was more popular; and although in 1938 the International Electrical
Congress recognized the existence of both the unrationalized and rationalized sys-
tems, in 1950 the International Electrical Congress officially adopted the rational-
ized system of mks units for communication of scientific and engineering data. In
its rationalized form the mks system has become practically universal in all fields
of electrical engineering, and almost all introductory courses of electromagnetic
theory use these units.

For purposes of exposition, it is easier to talk first about the unrationalized mks
system, because it follows easily and immediately from what has gone before sim-
ply by deciding, as with the esuq and emuq units of Chapter 2, to recognize the
independent dimension of electric charge. In fact, both the esuq and emuq units,
with the ε0 and µ0 constants explicitly present, have equations that are always
identical in form to equations using the unrationalized mks system. When we com-
pare the esuq, emuq, and unrationalized mks systems, we return to the world of
classical mechanics, where the form of the equations does not change when the
system of units changes—only now there are four fundmental dimensions mass,
length, time and charge, rather than just the three fundamental dimensions mass,
length, and time.

The great appeal of either the unrationalized or rationalized mks systems comes
from their connection to the practical units coul, volt, amp, ohm, weber, henry, and
farad discussed in Chapter 2. Since we regard rationalization as a redefinition of the
physical quantities rather than as a change of units—and because there are no other
mks electromagnetic units in use today—we can without confusion call the U and
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N operators for both the rationalized and unrationalized mks systems U
mks

and N
mks

.

In the both the rationalized and unrationalized mks systems, the numerical parts
of the physical quantities used in circuit theory—such as charge, electric potential,
electric current, resistance, inductance, and capacitance —would be the same as
when measured in nineteenth-century practical units.∗ If N

prac
is the N operator for

the practical system of units introduced in Section 2.6 and bCIRCUIT is any physical
quantity used in circuit theory, we have

N
mks
(bCIRCUIT )= N

prac
(bCIRCUIT ). (3.31a)

For example, applying N
mks

to any circuit-theory potential V gives

N
mks
(V )= N

prac
(V )= same dimensionless number of “volts;”

applying N
mks

to any circuit-theory current I gives

N
mks
(I )= N

prac
(I )= same dimensionless number of “amperes;”

applying N
mks

to any circuit-theory chargeQ gives

N
mks
(Q)= N

prac
(Q)= same dimensionless number of “coulombs;”

and so on. The change comes in what “volt,” “ampere,” “coulomb,” etc., mean in
the mks system. In Eq. (2.24a), the practical unit ampere is defined as one tenth
the emu current unit—that is, it is one tenth of an abamp—and as such must have
dimensions

mass1/2 · length1/2

time

since the units of an abamp are gm1/2 · cm1/2/sec. Similarly, in Eq. (2.26c) a prac-
tical coul is defined to be one amp · sec or one tenth the emu charge unit. Thus, its
dimensions must be

mass1/2 · length1/2,

because the units of abcoul, the emu charge unit, are gm1/2 · cm1/2. In the mks sys-
tem, however, we recognize the separate dimension of charge; therefore “coulomb”
∗ The alert reader will notice that for this statement to be true the rationalization used in the SI system
must be fundamentally different from Heaviside-Lorentz rationalization; see Section 3.8 below to
discover how the mks type of rationalization works.
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as an mks unit must have dimensions of charge; “ampere” as an mks unit must
have dimensions of charge/time; and so on. Recognizing the separate dimension of
charge gives all the mks circuit units different dimensions from the practical units,
so

U
mks
(bCIRCUIT ) �= U

prac
(bCIRCUIT ), (3.31b)

even though the mks circuit-theory units (coulomb, volt, amp, ohm, weber, henry,
and farad) have the same names as the practical circuit-theory units. Comparing the
entries of Table 3.8 to the definitions of the practical units given in Chapter 2 [see
Eqs. (2.25b) through (2.29)], we note that the unit equalities between the mks units
are identical to the unit equalities of the practical units. Because neither the names
of the units nor their inter-relationships change, it is easy to overlook the change in
what they mean. Strictly speaking, we should give the mks and practical units dif-
ferent names, just as we gave all the units of the esuq and emuq systems the suffix
“q” to distinguish them from the units of the esu and emu systems. In practice there
is no confusion because there is no longer any reason to refer to the system of prac-
tical units. From now on we assume that coulomb, volt, amp, ohm, weber, henry,
and farad refer to mks units recognizing the fourth fundamental dimension charge.

Table 3.9 gives the standard units for electromagnetic physical quantities in the
mks system. Quantities labeled with an “f ” prefix are part of the rationalized mks
system which will be discussed later. Comparison with the esuq and emuq columns
of Tables 2.4 and 2.5 of Chapter 2 shows the close correspondence between the
esuq, emuq, and mks units; to go from esuq or emuq in Tables 2.4 or 2.5 to mks
in Table 3.9 all that need be done is to remove the “stat” or “ab” prefix, drop the
“q” suffix, and replace cm by m. In fact, we can formally define the U

mks
and N

mks
operators in terms of either the U

esuq
, N

esuq
or U

emuq
, N

emuq
operators of Chapter 2.

The first step in setting up these definitions is to use the definitions of the com-
posite esuq or emuq units such as statvoltq and abvoltq; statampq and abampq;
stathenryq and abhenryq; statfaradq and abfaradq; etc., presented in Section 2.8 to
write all the esuq and emuq units as powers of the fundamental units gm, cm, sec,

Table 3.8 Units of the rationalized and unrational-
ized mks systems.

1 amp = coul/sec

1 volt = joule/coul

1 weber = volt · sec = joule · sec/coul

1 ohm = volt/amp = joule · sec/coul2

1 henry = weber/amp = volt · sec/amp = joule · sec2/coul2

1 farad = coul/volt = coul2/joule

1 siemens = mho = ohm−1
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Table 3.9 mks units for physical quantities with and without Fessenden
rationalization.

Physical quantity mks units

A (magnetic vector potential) U
mks
(A)= weber

m

B (magnetic induction) U
mks
(B)= weber

m2
= tesla

C (capacitance) U
mks
(C)= farad

f D,D (electric displacement) U
mks
(D)= coul

m2

E (electric field) U
mks
(E)= volt

m

f ε, ε (dielectric constant) U
mks
(f ε)= U

mks
(ε)= farad

m

f ε0, ε0 (permittivity of free space) U
mks
(f ε0)= U

mks
(ε0)= farad

m

fF,F (magnetomotive force) U
mks
(fF)= U

mks
(F)= amp

 B (magnetic flux) U
mks
( B)= weber

G (conductance) U
mks
(G)= ohm−1 = mho = siemens

f H,H (magnetic field) U
mks
(f H)= U

mks
(H)= amp

m

I (current) U
mks
(I )= amp

J (volume current density) U
mks
(J )= coul

m2 · sec

JS (surface current density) U
mks
(JS)= coul

m · sec

L (inductance) U
mks
(L)= henry

f mH ,mH (permanent-magnet dipole moment) U
mks
(f mH )= U

mks
(mH )= weber · m

mI (current-loop magnetic dipole moment) U
mks
(mI )= amp · m2

fMH ,MH (permanent-magnet dipole density) U
mks
(f MH )= U

mks
(MH )= weber

m2
= tesla
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Table 3.9 (Continued).

Physical quantity mks units

MI (current-loop magnetic dipole density) U
mks
(MI )= amp

m

f µ,µ (magnetic permeability) U
mks
(f µ)= U

mks
(µ)= henry

m

f µ0,µ0 (magnetic permeability of free space) U
mks
(f µ)= U

mks
(µ)= henry

m

f pH ,pH (magnetic pole strength) U
mks
(f pH )= U

mks
(pH )= weber

p (electric dipole moment) U
mks
(p)= coul · m

P (electric dipole density) U
mks
(P )= coul

m2

fP,P (permeance) U
mks
(fP)= U

mks
(P)= weber

amp

Q (charge) U
mks
(Q)= coul

R (resistance) U
mks
(R)= ohm

fR,R (reluctance) U
mks
(fR)= U

mks
(R)= amp

weber

ρQ (volume charge density) U
mks
(ρQ)= coul

m3

ρR (resistivity) U
mks
(ρR)= ohm · m

S (elastance) U
mks
(S)= farad−1

SQ (surface charge density) U
mks
(SQ)= coul

m2

σ (conductivity) U
mks
(σ )= ohm−1

m

V (electric potential) U
mks
(V )= volt

f "H ,"H (magnetic scalar potential) U
mks
(f "H )= U

mks
("H )= amp
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and charge (either statcoulq or abcoulq). For example, we can write the esuq unit
of electric potential as

1 statvoltq = 1
erg

statcoulq
= gm · cm2 · sec−2 · statcoulq−1;

we can write the emuq unit of capacitance as

1 abfaradq = abcoulq

abvoltq
= abcoulq2

erg
= gm−1 · cm−2 · sec2 · abcoulq2;

and so on. If any electromagnetic physical quantity b has a mechanical component,
we can use the techniques of Chapter 1 to convert that into powers of gm, cm, sec
in the cgs system to get, as a final result,

U
esuq
(b)= gmαcmβsecγ statcoulqδ (3.32a)

or

U
emuq

(b)= gmαcmβsecγ abcoulqδ, (3.32b)

where the numbers α,β, γ , and δ come from breaking down the mechanical and
electromagnetic units of b into powers of gm, cm, sec, and the unit of charge. We
can also get α,β, γ , and δ from dimensional analysis of b; and in fact, the U

mltq
operator introduced in Chapter 2 [see Eqs. (2.59) through (2.60b)] can be used to
find them:

U
mltq
(b)= massαlengthβ timeγ chargeδ. (3.32c)

This is, by the way, as good a time as any to point out that α,β, γ , and δ always turn
out to be integers when charge is recognized as a fourth fundamental dimension and
b is one of the electromagnetic physical quantities listed in Tables 3.1 to 3.9.

Having found integers α,β, γ , and δ, we are ready for the second step; now
operator U

mks
can be defined by

U
mks
(b)=

(
kg

gm

)α( m

cm

)β( coul

statcoulq

)δ

U
esuq
(b) (3.33a)

or by

U
mks
(b)=

(
kg

gm

)α( m

cm

)β( coul

abcoulq

)δ

U
emuq

(b). (3.33b)
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Equations (3.33a, b) have the same meaning, and either one can chosen as the
definition of U

mks
. Tables 3.10 and 3.11 state the equalities between mks units and

the esuq, emuq units; all we need from them now is that in the mks system

Table 3.10 Relationships between the mks and
esuq units.

1 coul = ccgs

10
· statcoulq

1 amp = ccgs

10
· statampq

1 weber = 108

ccgs
· statweberq

1 volt = 108

ccgs
· statvoltq

1 farad = c2cgs

109
· statfaradq

1 henry = 109

c2cgs
· stathenryq

1 ohm = 109

c2cgs
· statohmq

Table 3.11 Relationships between the mks and
emuq units.

1 coul = 10−1 · abcoulq

1 amp = 10−1 · abampq

1 weber = 108 · abweberq

1 volt = 108 · abvoltq

1 farad = 10−9 · abfaradq

1 henry = 109 · abhenryq

1 ohm = 109 · statohmq
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1 coul = 10−1abcoulq =
(
ccgs

10

)

statcoulq. (3.34a)

We also need to know that

1 kg = 103 gm (3.34b)

and

1 m = 102 cm. (3.34c)

Equations (3.34a–c) and Rule I can be used to write N
mks

for any physical quantity

b as

N
mks
(b)= (

10−3)α(10−2)β(10)δ N
emuq

(b) (3.34d)

or

N
mks
(b)= (

10−3)α(10−2)β
(

10

ccgs

)δ

N
esuq
(b). (3.34e)

Both of these have the same meaning and either one can be used to define N
mks

. We

also now say that for any electromagnetic or mechanical physical quantity b,

N
mks
(b)= bmks. (3.34f)

3.7 CONVERSION OF EQUATIONS TO AND FROM THE UNRATIONALIZED

MKS SYSTEM

To convert equations from esu or emu units to the unrationalized mks system, we
need only convert them to esuq or emuq units, respectively, following the procedure
developed in Chapter 2 and being careful to recognize the ε0,µ0 constants when
they appear. Although the conversion from esu to esuq and from emu to emuq was
thoroughly discussed in Chapter 2, there is no harm in giving a few more examples.

In esu units the attractive force φ per unit length between two long, parallel
wires separated by a distance r and each carrying an electric current I flowing in
the same direction is

φ = 2I2

rc2 . (3.35a)
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Splitting Eq. (3.35a) into numeric components and units gives

φcgs

(
dynes

cm

)

= 2[Iesustatamp]2

(rcgscm)

(

ccgs
cm

sec

)2
. (3.35b)

Because 1 dyne = gm · cm · sec−2 and, from Table 2.3, 1 statamp = gm1/2 · cm3/2 ·
sec−2, Eq. (3.35b) is balanced as written. We can confirm this by operating on both
sides with U

esu
to get

gm

sec2 = gm · cm3/sec4

cm3/sec2 or
gm

sec2 = gm

sec2 .

Before charge can be recognized as a new fundamental dimension, taking us
from the esu to the esuq system of units, we must, according to Rule VIII, make
Eq. (3.35b) balanced in both the invariant and connecting units. The connecting
unit of Eq. (3.35b) is the (statamp, statampq) pair, so we multiply the right-hand
side by

dyne

statamp2
· cm2

sec2
= (gm · cm · sec−2) · cm2

gm · cm3 · sec−4 · sec2
= 1.

There is nothing subtle about how this combination is picked; we just use the ratio
of units needed to make both sides balance without breaking up the connecting unit
statamp. This gives

φcgs

(
dyne

cm

)

= 2(Iesustatamp)2

(rcgscm)

(

ccgs
cm

sec

)2 ·
(

dyne · cm2

statamp2 · sec2

)

. (3.35c)

Equation (3.35c) satisfies Rule VIII, so we now recognize charge as a new funda-
mental dimension and write

φcgs

(
dyne

cm

)

= 2(Iesustatampq)2

(rcgscm)

(

ccgs
cm

sec

)2 ·
(

dyne · cm2

statampq2 · sec2

)

. (3.35d)

Typically, in systems of units recognizing charge as a new fundamental dimension,
the extra clump of units that is not connected in an obvious way to a physical
quantity turns into ε0,µ0, or some combination of the two. From Eq. (2.37a) and
the definition statampq = statcoulq/sec, we have

U
esuq
(ε0)= statcoulq2

dyne · cm2
= statampq2 · sec2

dyne · cm2
.
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Since N
esuq
(ε0)= 1 from Eq. (2.37b) and all physical quantities have the same nu-

meric parts in the esu and esuq systems [see Eq. (2.34a)], Eq. (3.35d) now becomes

φ = 2I2

rc2 · 1

ε0
(3.35e)

or, using ε0µ0 = c−2 from Eq. (2.10),

φ = 2I 2µ0

r
. (3.35f)

Equation (3.35f) has the correct form for the esuq system of units, and since all
variables in the equation represent physical quantities we know that this is also the
correct form for the unrationalized mks system. We could have gone directly to
Eq. (3.35f) by recognizing from Eq. (2.45c) that

U
esuq
(µ0)= stathenryq

cm
= (erg/statcoulq) · sec

statampq · cm
= dyne

statampq2 ,

where we have used the equalities

stathenryq = statvoltq · sec

statampq
, statvoltq = erg

statcoulq
, and erg = dyne · cm.

Since N
esuq
(µ0)= c−2

cgs [see Eq. (2.45f)], the extra clump of units

(

ccgs
cm

sec

)−2

· dyne · cm2

statampq2 · sec2

becomes

N
esuq
(µ0) · dyne

statampq2 =µ0,

turning Eq. (3.35d) directly into Eq. (3.35f).
Even though we know from first principles that all equations in the esuq, emuq,

and unrationalized mks systems have the same form, there is no harm in demon-
strating how this works for this particular example.

Writing Eq. (3.35f) in esuq numeric components and units gives

(

φcgs
dyne

cm

)

= 2(Iesustatampq)2

(rcgscm)

[

(µ0)esu
stathenryq

cm

]

, (3.36a)
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where we use Eq. (2.34a) from Chapter 2 to write Iesu = Iesuq and (µ0)esu =
(µ0)esuq, and the units of µ0 in the esuq system are written as stathenryq/cm.
Substituting from Table 3.10 gives

(

φcgs
10−5newton

10−2m

)

= 2(Iesu10 · c−1
cgs · amp)2

(rcgs10−2m)

[

(µ0)esu
10−9c2

cgshenry

10−2m

]

, (3.36b)

where we have used Table 1.3 to convert from the cgs mechanical units dyne and
cm to the mks mechanical units newton and m. From Rule I we know that

φcgs
10−5

10−2
= φcgs10−3 = φmks, rmks = 10−2rcgs,

and from Table 3.12 we have

Imks = 10c−1
cgsIesu, (µ0)mks = (µ0)esu10−7c2

cgs;

so Eq. (3.36b) becomes

(

φmks
newton

m

)

= 2(Imksamp)2

(rmksm)

[

(µ0)mks
henry

m

]

(3.36c)

or

φ = 2I 2µ0

r
,

the same as Eq. (3.35f). One point worth mentioning, perhaps, is that the equality

(µ0)mks = (µ0)esu10−7c2
cgs

gives us, since

(µ0)esu = N
esu
(µ0)= c−2

cgs,

that

(µ0)mks = 10−7 (3.36d)

or

µ0 = 10−7henry/m (3.36e)

exactly in the unrationalized mks system. This result has some historical impor-
tance, because, after much discussion over the first half of the twentieth century,
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it was decided that the unrationalized mks system is uniquely specified by the re-
quirement that µ0 = 10−7henry/m; or, what amounts to the same thing, that

N
mks
(µ0)= 10−7.

It is just as easy to convert equations to the unrationalized mks system from
emu units as it is from esu units. The formula for the Poynting vector describing
the energy flux of an electromagnetic radiation field in a vacuum can be written
as

�S = 1

4π
�E × �B (3.37a)

in emu units. Splitting this up into units and numeric components gives

�Scgs
ergs

cm2sec
= 1

4π

(

�Eemu
abvolt

cm

)

×
(

�Bemu
abweber

cm2

)

, (3.37b)

where we represent the emu unit of magnetic induction as abweber · cm−2 rather
than the more customary gauss (see Table 2.5). From Table 2.3 we note that

abvolt

cm
· abweber

cm2
= gm1/2 · cm1/2

sec2
· gm1/2

cm1/2 · sec
= gm · cm2 · sec−2

cm2 · sec
= erg

cm2 · sec
,

showing that Eq. (3.37b) has balanced units in the emu system. It cannot, however,
satisfy Rule VIII until it is balanced in both the invariant units—erg, cm, sec—and
the two connecting unit pairs—(abvolt, abvoltq) and (abwever, abweberq)—for the
transition to the emuq system. Multiplying the right-hand side of Eq. (3.37b) by

erg · cm

sec
· 1

abvolt
· 1

abweber

=
(

gm · cm2

sec2

)(
cm

sec

)(
sec2

gm1/2 · cm3/2

)(
sec

gm1/2 · cm3/2

)

= 1,

which is just 1 in emu units, gives

�Scgs
ergs

cm2sec

= 1
4π

(

�Eemu
abvolt

cm

)

×
(

�Bemu
abweber

cm2

)

·
(

erg · cm

sec
· 1

abvolt
· 1

abweber

)

.

(3.37c)

Equation (3.37c) is simultaneously balanced in both the invariant and connecting
units, so we can now recognize charge as a new fundamental dimension to get
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Table 3.12 Numeric components of physical quantities in the esu and unrational-
ized mks systems.

(magnetic vector potential) (current-loop magnetic dipole density)

Amks =Aesu · ccgs · 10−6 (MI )mks = (MI )esu · 103 · c−1
cgs

(magnetic induction) (magnetic permeability)

Bmks = Besu · ccgs · 10−4 µmks = c2cgs · 10−7 ·µesu

(capacitance) (magnetic permeability of free space)

Cmks = Cesu · c−2
cgs · 109 (µ0)mks = c2cgs · 10−7 · (µ0)esu

= 1 · 10−7

(electric displacement) (magnetic pole strength)

Dmks =Desu · 105 · c−1
cgs (pH )mks = ccgs · 10−8 · (pH )esu

(electric field) (electric dipole moment)

Emks =Eesu · ccgs · 10−6 pmks = pesu · 10−1 · c−1
cgs

(dielectric constant) (electric dipole density)

εmks = εesu · c−2
cgs · 1011 Pmks = Pesu · 105 · c−1

cgs

(permittivity of free space) (permeance)
(ε0)mks = (ε0)esu · c−2

cgs · 1011

= c−2
cgs · 1011

Pmks = Pesu · 10−9 · c2cgs

(magnetomotive force) (charge)

Fmks =Fesu · 10 · c−1
cgs Qmks =Qesu · 10 · c−1

cgs

(magnetic flux) (resistance)

( B)mks = ( B)esu · ccgs · 10−8 Rmks =Resu · 10−9 · c2cgs

(conductance) (reluctance)

Gmks =Gesu · 109 · c−2
cgs Rmks = c−2

cgs · 109 ·Resu

(magnetic field) (volume charge density)

Hmks =Hesu · 103 · c−1
cgs (ρQ)mks = (ρQ)esu · 107 · c−1

cgs

(current) (resistivity)

Imks = Iesu · 10 · c−1
cgs (ρR)mks = (ρR)esu · 10−11 · c2cgs

(volume current density) (elastance)

Jmks = Jesu · 105 · c−1
cgs Smks = Sesu · 10−9 · c2cgs

(surface current density) (surface charge density)

(JS)mks = (JS)esu · 103 · c−1
cgs (SQ)mks = (SQ)esu · 105 · c−1

cgs

(inductance) (conductivity)

Lmks = Lesu · 10−9 · c2cgs σmks = σesu · 1011 · c−2
cgs

(permanent-magnet dipole moment) (electric potential)

(mH )mks = ccgs · 10−10 · (mH )esu Vmks = Vesu · 10−8 · ccgs

(current-loop magnetic dipole moment) (magnetic scalar potential)

(mI )mks = (mI )esu · 10−3 · c−1
cgs ("H )mks = ("H )esu · 10 · c−1

cgs

(permanent-magnet dipole density)

(MH )mks = ccgs · 10−4 · (MH )esu
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�Scgs
ergs

cm2sec

= 1

4π

(

�Eemuq
abvoltq

cm

)

×
(

�Bemuq
abweberq

cm2

)

·
(

erg · cm

sec
· 1

abvoltq
· 1

abweberq

)

,

(3.37d)

where we have used Eq. (2.34b) to replace �Eemu, �Bemu by �Eemuq, �Bemuq. Again we
expect the block of units on the extreme right to turn out to be either ε0,µ0, or
some combination of ε0 and µ0. They are in fact equal to

erg · cm

sec
· 1

abvoltq
· 1

abweberq
= cm

sec
· abcoulq

abvoltq · sec

= cm

sec
· abampq

abvoltq
= cm

abhenryq
,

(3.37e)

where the unit equalities abvoltq = erg/abcoulq, abweberq = abvoltq · sec, and
abhenryq = abvoltq · sec/abampq from Section 2.8 are used to simplify the units
in Eq. (3.37e). From Eq. (2.46b) we recognize cm/abhenryq as the emuq units
of µ−1

0 , and from Eq. (2.46e) we note that N
emuq

(µ0) = (µ0)emuq = 1. Therefore,

Eq. (3.37d) can be written as

�Scgs
ergs

cm2sec

= 1

4π

(

�Eemuq
abvoltq

cm

)

×
(

�Bemuq
abweberq

cm2

)

·
(

1

(µ0)emuqabhenryq/cm

)

.

(3.37f)

Since the esuq, emuq, and unrationalized mks systems always have the same form
of electromagnetic equations, we can go directly to the final result from Eq. (3.37f),
which has clearly been converted to the emuq system. Thus, in the unrationalized
mks system the formula for the Poynting vector in empty space must be

�S = 1
4πµ0

�E × �B = 1
4π

�E × �H, (3.37g)

where we have used in the last step that �H =µ−1
0

�B in a vacuum. When Table 3.11
is used to check this result by converting the units of Eq. (3.37f) to the unrational-
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ized mks system, we find that

�Scgs
10−7joule

10−4m2sec

= 1

4π

(

�Eemuq
10−8volt

10−2m

)

×
(

�Bemuq
10−8weber

10−4m2

)

·
(

1

(µ0)emuq10−9henry/10−2m

)

.

Remembering that �Eemuq, �Bemuq, and (µ0)emuq represent the same collection of
pure numbers as �Eemu, �Bemu, and (µ0)emu, we consult Table 3.13 to get

�Smks
joule

m2sec
= 1

4π

(

�Emks
volt

m

)

×
(

�Bmks
weber

m2

)(
1

(µ0)mkshenry/m

)

, (3.37h)

where Rule I is used to write �Smks = 10−3 �Scgs. As before, we find that (µ0)mks =
10−7(µ0)emu = 10−7 for the unrationalized mks system. Clearly, Eq. (3.37h) is
the same as Eq. (3.37g) when written in terms of the physical quantities �S, �E, �B ,
and µ0.

Going from the unrationalized mks system back to esu or emu units is really
quite simple. We know the esuq, emuq, and unrationalized mks systems always
have the same form of equation; so given any formula in unrationalized mks, we
just start thinking of it as having esuq units if we want to go the esu system and as
having emuq units if we want to go to the emu system. Changing from esuq to esu
or from emuq to emu is discussed in Section 2.9. All we are really doing is ceasing
to recognize charge as a fundamental dimension, and doing it in such a way as to
make ε0 = 1,µ0 = c−2 for esu units and ε0 = c−2,µ0 = 1 for emu units. When we
no longer recognized time as a fundamental dimension in Section 1.10 it was done
to make c = 1, and any equation could be converted to these new units simply by
replacing c by 1 in that equation. If c was not explicitly present in the equation,
the form of the equation did not change. A similar pattern occurs when going from
esuq to esu or from emuq to emu. When going from esuq to esu we replace ε0 by
1 whenever it is explicitly mentioned; and, if desired, µ0 can be replaced by c−2

whenever it is explicitly mentioned. If ε0 is not present, the form of the equation
does not change. So, for example, the Maxwell equation in unrationalized mks
for �D,

�∇ · �D = 4πρ,

does not change form when written in esu; but if we assume �P = 0 so that we can
make the substitution �D = ε0 �E in unrationalized mks and write that

�∇ · �E = 4π

ε0
ρ,



198 CHAPTER 3

Table 3.13 Numeric components of physical quantities in the emu and unrational-
ized mks systems.

(magnetic vector potential) (volume current density) (permeance)

Amks =Aemu · 10−6 Jmks = Jemu · 105 Pmks = Pemu · 10−9

(magnetic induction) (surface current density) (charge)

Bmks = Bemu · 10−4 (JS)mks = (JS)emu · 103 Qmks =Qemu · 10

(capacitance) (inductance) (resistance)

Cmks = Cemu · 109 Lmks = Lemu · 10−9 Rmks =Remu · 10−9

(electric displacement) (permanent-magnet dipole moment) (reluctance)

Dmks =Demu · 105 (mH )mks = 10−10 · (mH )emu Rmks = 109 ·Remu

(electric field) (current-loop magnetic dipole moment) (volume charge density)

Emks =Eemu · 10−6 (mI )mks = (mI )emu · 10−3 (ρQ)mks = (ρQ)emu · 107

(dielectric constant) (permanent-magnet dipole density) (resistivity)

εmks = εemu · 1011 (MH )mks = 10−4 · (MH )emu (ρR)mks = (ρR)emu · 10−11

(permittivity of free space) (current-loop magnetic dipole density) (elastance)

(ε0)mks = (ε0)emu · 1011

= c−2
cgs · 1011

(MI )mks = (MI )emu · 103 Smks = Semu · 10−9

(magnetomotive force) (magnetic permeability) (surface charge density)

Fmks = Femu · 10 µmks = 10−7 ·µemu (SQ)mks = (SQ)emu · 105

(magnetic flux) (magnetic permeability of free space) (conductivity)

( B)mks = ( B)emu · 10−8 (µ0)mks = 10−7 · (µ0)emu

= 10−7
σmks = σemu · 1011

(conductance) (magnetic pole strength) (electric potential)

Gmks =Gemu · 109 (pH )mks = 10−8 · (pH )emu Vmks = Vemu · 10−8

(magnetic field) (electric dipole moment) (magnetic scalar potential)

Hmks =Hemu · 103 pmks = pemu · 10−1 ("H )mks = ("H )emu · 10

(current) (electric dipole density)

Imks = Iemu · 10 Pmks = Pemu · 105

then this becomes

�∇ · �E = 4πρ

in the esu system. The substitution itself, �D = ε0 �E in unrationalized mks, becomes
�D = �E in esu units. When going from emuq to emu, we replace µ0 by 1 when-

ever it is explicitly present and, if desired, ε0 can be replaced by c−2. If µ0 is not
present, the form of the equation does not change. Following this rule, the Maxwell
equation

�∇ × �H = 4π �J + ∂ �D
∂t
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in unrationalized mks, emuq, or esuq systems does not change when going to emu
or esu units. If, however, we make the substitutions �H = µ−1

0
�B and �D = ε0 �E

appropriate for media where �P = 0 and �MI = 0, this equation becomes

�∇ × �B = 4πµ0 �J +µ0ε0
∂ �E
∂t

in the unrationalized mks, esuq, or emuq systems. Then, in the emu system we
have

�∇ × �B = 4π �J + ε0
∂ �E
∂t

or �∇ × �B = 4π �J + 1

c2

∂ �E
∂t
,

and in the esu system we have

�∇ × �B = 4πµ0 �J +µ0
∂ �E
∂t

or �∇ × �B = 4π

c2
�J + 1

c2

∂ �E
∂t
,

where the substitution equations for �H and �D become �H = �B, �D = ε0 �E = c−2 �E
in emu units and �H =µ−1

0
�B = c2 �B, �D = �E in esu units.

Figure 3.2 shows the connections between Gaussian cgs units, esu units, emu
units, and the unrationalized mks system. Conversion from the Gaussian system to
the esu and emu systems has already been discussed, as has the conversion from
esu or emu to unrationalized mks. To show the whole chain at once, we convert
the formula for E , the energy density of electromagnetic fields in a vacuum, from
Gaussian units to the unrationalized mks system. In Gaussian units we have

E = 1

8π

(

E2 +B2
)

(3.38a)

or, broken up into units and numeric components,

Ecgs
erg

cm3 = 1

8π

[(

Egs
statvolt

cm

)2

+
(

Bgsgauss

)2
]

. (3.38b)

From Table 3.5 and 1 erg = gm · cm2 · sec−2 we get

statvolt2

cm2
= gm

cm · sec2
= gm · cm2 · sec−2

cm3
= erg

cm3

and

gauss2 = gm

cm · sec2 = erg

cm3 ,
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so clearly Eq. (3.38b) has balanced units in the Gaussian cgs system. Since
1 gauss = abweber/cm2, we can write Eq. (3.38b) as

Ecgs
erg

cm3
= 1

8π

[(

Eesu
statvolt

cm

)2

+
(

Bemu
abweber

cm2

)2
]

(3.38c)

where we use Table 3.1 to recognize E as an electric quantity in the Gaussian
system measured in esu units, with Egs =Eesu, and B as a magnetic quantity mea-
sured in emu units with Bgs = Bemu. Converting B to esu units, we use Table 2.8
to write

Bemu
abweber

cm2
= Bemu

(
cm

sec

)
statweber

cm2
,

and Table 2.7 to get

Bemu

(
cm

sec

)
statweber

cm2 = Besuccgs

(
cm

sec

)
statweber

cm2

=
(

Besu
statweber

cm2

)(

ccgs
cm

sec

)

.

Figure 3.2 These are the recommended conversion paths between each of the
five major electromagnetic systems.
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Hence, Eq. (3.38c) becomes

Ecgs
erg

cm3

= 1

8π

[(

Eesu
statvolt

cm

)2

+
(

Besu
statweber

cm2

)2(

ccgs
cm

sec

)2
]

.

(3.38d)

We have now taken the formula for E from Gaussian to esu units, moving up one
level in Fig. 3.2. To climb one more level to the esuq system, we must recognize
charge as a separate dimension. Rule VIII states that both the E2

esu and B2
esu terms

have to match E in both the invariant and connecting units before the new fun-
damental dimension of charge can be recognized. We multiply the E2

esu term by
cm−1 · erg/statvolt2. To show that this is 1 in esu units, we consult Table 2.3 and
use 1 erg = gm · cm2 · sec−2 to get

1

cm
· erg

statvolt2
= erg

cm
· sec2

gm · cm
= gm · cm

sec2
· sec2

gm · cm
= 1.

The B2
esu term is multiplied by (erg/cm) · sec2 · statweber−2 which is also 1 in esu

units. From Table 2.3 we have

erg

cm
· sec2 · 1

statweber2 =
(

gm · cm

sec2

)

· sec2 · 1

gm · cm
= 1.

Equation (3.38d) now becomes

Ecgs
erg

cm3
= 1

8π

(

Eesu
statvolt

cm

)2[ erg

cm · statvolt2

]

+ 1

8π

(

Besu
statweber

cm2

)2(

ccgs
cm

sec

)2[erg · sec2

cm
· 1

statweber2

]

,

(3.38e)

which is balanced in both the three invariant units erg, cm, sec and the two connect-
ing units (statvolt, statvoltq) and (statweber, statweberq). Now we can transfer to
the esuq system of units by recognizing charge as a fourth fundamental dimension,
writing

Ecgs
erg

cm3
= 1

8π

(

Eesu
statvoltq

cm

)2[ erg

cm · statvoltq2

]

+ 1

8π

(

Besu
statweberq

cm2

)2[

c2
cgs

erg · cm

statweberq2

]

.

(3.38f)
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We note that, using 1 statvoltq = erg/statcoulq and 1 erg = dyne ·cm [see Table 1.1
and Eq. (2.39b)],

erg

cm · statvoltq2 = erg · statcoulq2

cm · erg2 = statcoulq2

cm2 · dyne
.

From Eq. (2.37a) we recognize this as the units of ε0 in the esuq system, and from
Eq. (2.37b) we know that N

esuq
(ε0)= 1, giving

erg

cm · statvoltq2
= (ε0)esuq

statcoulq2

cm2 · dyne
. (3.38g)

Similarly we note, using the definitions in Section 2.8 [see Eqs. (2.39b), (2.45a, b),
and (2.49)], that

statweberq = statvoltq · sec = erg · sec/statcoulq = erg/statampq

and

stathenryq = statvoltq · sec/statampq = statweberq/statampq,

which makes

c2
cgs

erg · cm

statweberq2
= c2

cgs
erg · cm

statweberq
· statampq

erg
= c2

cgs
cm

stathenryq
. (3.38h)

From Eq. (2.45c) we recognize cm/stathenryq as the units of µ−1
0 in the esuq

system, and from Eq. (2.45f) we see that N
esuq
(µ0) = (µ0)esuq = c−2

cgs. Hence,

Eq. (3.38f) becomes, using Eqs. (3.38g, h),

Ecgs
erg

cm3
= 1

8π

(

Eesu
statvoltq

cm

)2[

(ε0)esuq
statcoulq2

cm2 · dyne

]

+ 1

8π

(

Besu
statweberq

cm2

)2[ 1

(µ0)esuqstathenry/cm

]

.

(3.38i)

Written as physical quantities in the esuq system, the formula for E becomes (re-
member that Eesuq = Eesu and Besuq = Besu)

E = 1

8π

(

ε0E
2 + 1

µ0
B2
)

(3.38j)

or

E = 1

8π

( �E · �D + �B · �H ), (3.38k)
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where in Eq. (3.38k) we make the substitutions �D = ε0 �E and �H = µ−1
0

�B for the
�D and �H fields in empty space. Equations (3.38j, k) are what we set out to find,

since electromagnetic equations written in physical variables must have the same
form in both the esuq and unrationalized mks system. Tables 1.3, 3.10, and 3.12
show how to convert Eq. (3.38i) to unrationalized mks.

Ecgs
10−7joule

10−6m3
= 1

8π

(

Eesu
ccgs

108
· volt

10−2m

)2

×
[

(ε0)esuq
102

c2
cgs

· coul2

10−4m2 · 10−5newton

]

+ 1

8π

(

Besu
ccgs

108 · weber

10−4m2

)2[

(µ0)esuqc
2
cgs10−9 henry

10−2m

]−1

= 1

8π

(

Emks
volt

m

)2[

(ε0)esuq
1011

c2
cgs

· coul2

m2 · newton

]

+ 1

8π

(

Bmks
weber

m2

)2[

(µ0)esuqc
2
cgs10−7 henry

m

]−1

.

We know that (ε0)esuq = (ε0)esu = 1, so by Rule I this last step gives the numeric
component of ε0 in the unrationalized mks system,

N
mks
(ε0)= (ε0)mks = (ε0)esuq

1011

c2
cgs

= 1011

c2
cgs
, (3.39a)

and also confirms the already-known value for the numeric component of µ0 in the
unrationalized mks system,

N
mks
(µ0)= (µ0)mks = (µ0)esuq · c2

cgs10−7 = c−2
cgs · c2

cgs10−7 = 10−7. (3.39b)

Rule I also shows that Emks = Ecgs · 10−1, so we end up with

Emks
joule

m3
= 1

8π

(

Emks
volt

m

)2[

(ε0)mks
farad

m

]

+ 1

8π

(

Bmks
weber

m2

)2[

(µ0)mks
henry

m

]−1

,

(3.39c)

where we have used the definition of the mks farad in Table 3.8 and newton · m =
joule to get

coul2

newton · m2
= coul2

joule · m
= farad

m
,
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a more conventional way of writing the units of ε0. As expected, Eq. (3.39c) when
written using the physical quantities E,E,B, ε0, and µ0 takes on the same form as
(3.38j), the formula for E in the esuq system:

E = 1

8π

(

ε0E
2 + 1

µ0
B2
)

.

3.8 CONVERSION OF EQUATIONS TO AND FROM THE RATIONALIZED

MKS SYSTEM

Having discussed the unrationalized mks system, we now move on to the predom-
inant system of units in use today, the rationalized mks system (often called SI
units). Table 3.14 shows the rationalization scheme used to rescale the electromag-
netic physical quantities in the rationalized mks system. The physical quantities
labeled with a prefix “f ” are rescaled from their historic definitions established
during the nineteenth century; those not labeled with an “f ” prefix retain their his-
torical meaning.∗,2 Unlike the Heaviside-Lorentz rationalization scheme shown in
Table 3.6, which can be applied to any electromagnetic system of equations, Fes-
senden rationalization can only be applied to electromagnetic equations that explic-
itly use both the ε0 and µ0 constants required by the esuq, emuq, and mks systems
of electromagnetic units. We note in passing that any system of units recognizing
charge as a fourth fundamental dimension must contain the physical quantities ε0
and µ0 in its system of electromagnetic equations. As has already been mentioned
above, from our point of view Fessenden rationalization, like Heaviside-Lorentz ra-
tionalization, is something that is done to the physical quantities themselves rather
than their units.† This is why we are careful to relabel the rescaled physical quan-
tities with an “f .” Unfortunately, textbooks often refer to “rationalized mks units,”
implying that the units rather than the physical quantities themselves have been
changed; and it is very unusual to see the rescaled physical quantities labeled as
such, with an “f ” or anything else.

Comparing Table 3.14 to Table 3.6, we note that Fessenden rationalization
rescales very few physical quantities compared to Heaviside-Lorentz rationaliza-
tion, and in particular it does not change the physical quantities used in circuit
theory. This explains its appeal to electrical engineers, who do not have to re-
calibrate their voltmeters, ammeters, etc., or relabel the resistances and voltages
of their circuits and batteries, in order to use Fessenden rationalization. This is
in sharp contrast to Heaviside-Lorentz rationalization, which would force them
to recalibrate and relabel almost every instrument and circuit in their laborato-
ries.

The Fessenden rationalization scheme is designed to affect common electro-
magnetic formulas the same way Heaviside-Lorentz rationalization affects them.

∗ The “f ” is for R. A. Fessenden who first proposed this rationalization method in 1900.
† See discussion at beginning of Section 3.3 above.
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Table 3.14 Fessenden rationalization for electromagnetic physical quantities.

(magnetic vector potential, unchanged) A (magnetic permeability, rationalized)

f µ= 4πµ

(magnetic induction, unchanged) B (relative magnetic permeability,

unchanged) µr

(capacitance, unchanged) C (magnetic permeability of free space,

rationalized) f µ0 = 4πµ0

(electric displacement, rationalized) f D =D/(4π) (magnetic pole strength, rationalized)

f pH = 4πpH

(electric field, unchanged) E (electric dipole moment, unchanged) p

(dielectric constant, rationalized) f ε= ε/(4π) (electric dipole density, unchanged) P

(relative dielectric constant, unchanged) εr (permeance, rationalized) fP = 4πP
(permittivity of free space, rationalized) (charge, unchanged) Q

f ε0 = ε0/(4π)
(magnetomotive force, rationalized) fF = F/(4π) (resistance, unchanged) R

(magnetic flux, unchanged)  B (reluctance, rationalized) fR = R/(4π)
(conductance, unchanged) G (volume charge density, unchanged) ρQ

(magnetic field, rationalized) fH =H/(4π) (resistivity, unchanged) ρR

(current, unchanged) I (elastance, unchanged) S

(volume current density, unchanged) J (surface charge density, unchanged) SQ

(surface current density, unchanged) JS (conductivity, unchanged) σ

(inductance, unchanged) L (electric potential, unchanged) V

(permanent-magnet dipole moment, rationalized) (magnetic scalar potential, rationalized)

f mH = 4πmH f"H ="H/(4π)
(current-loop magnetic dipole moment, unchanged) (electric susceptibility, rationalized)

mI f χe = 4πχe

(permanent-magnet dipole density, rationalized) (magnetic susceptibility, rationalized)

fMH = 4πMH f χm = 4πχm

(current-loop magnetic dipole density, unchanged)

MI

Equation (3.11a), the formula for the capacitance of a parallel-plate capacitor,
looks like

Cesustatfarad = Acgscm2

4π dcgscm
(3.40a)

in the esu or—since it involves only electric quantities—the Gaussian system of
units. Table 2.3 shows that 1 statfarad = cm, so (3.40a) has balanced units; this
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formula becomes, using the Heaviside-Lorentz rationalization shown in Table 3.6,

(hC)esustatfarad = Acgscm2

dcgscm
. (3.40b)

This is the same equation, split up into units and numeric components, given above
in Eq. (3.13). Following the path shown in Fig. 3.2, we take Eq. (3.40a) into the ra-
tionalized mks system by way of the unrationalized mks system. Equation (3.40a),
although balanced in esu units, has to be balanced in both the connecting unit (stat-
faraf, statfaradq) as well as the invariant unit cm before we can recognize charge
as a new fundamental dimension. Multiplying the right-hand side by statfarad/cm,
which is clearly just 1 in the esu system because a statfarad is the same thing as a
cm, gives

Cesustatfarad = Acgscm2

4πdcgscm
· statfarad

cm
.

Recognizing charge as a new fundamental dimension, we move to esuq units to get

Cesuqstatfaradq = Acgscm2

4πdcgscm
· statfaradq

cm
, (3.40c)

where we know Cesuq = Cesu because by definition all physical quantities have
the same numeric components in the esu and esuq systems. From Table 1.1 and
Eqs. (2.39b) and (2.47a),

statfaradq = statcoulq

statvoltq
= statcoulq2

erg
= statcoulq2

dyne · cm
,

so

statfaradq

cm
= statcoulq2

dyne · cm2
.

Hence, from Eq. (2.38) we have

1
statfaradq

cm
= ε0;

and Eq. (3.40c) written in terms of the physical quantities C,A,d , and ε0 is

C = Aε0

4πd
(3.40d)

in the esuq system. Equation (3.40d) is the same in the unrationalized mks system
because it is written using variables representing physical quantities. Table 3.14
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takes us from the unrationalized to the rationalized mks system in Fig. 3.2; making
the substitution

f ε0 = ε0

4π

gives

C = A · (f ε0)

d
. (3.40e)

Both Eq. (3.40e) in the rationalized mks system and Eqs. (3.13) and (3.40b) in the
Heaviside-Lorentz system have lost their 4π ’s from the same place in the formulas,
showing how Fessenden rationalization has the same effect as Heaviside-Lorentz
rationalization. The appearance of the extra factor f ε0 may make Eq. (3.40e) look
less appealing as a formula than Eqs. (3.13) and (3.40b), but in fact most parallel-
plate capacitors are built with a dielectric substance rather than empty space be-
tween the plates. This means engineers would in practice almost always be calcu-
lating parallel-plate capacitances using the dimensionless relative dielectric con-
stant εr in the Heaviside-Lorentz system ∗

hC = Aεr

d
,

with different dielectrics having different values of εr . In the rationalized mks sys-
tem the same capacitor has the capacitance

C = A · (f ε)
d

,

with f ε = εr · f ε0. To use one formula the engineer looks up the dimensionless
relative dielectric constant from a table of relative dielectric constants; and to use
the other formula the engineer looks up the dimensional dielectric constant f ε from
a table of dimensional dielectric constants. From this engineer’s point of view, the
two systems look identical, except for the special case of empty space between
the plates. Greater complexity for this little-encountered special case is a small
price to pay compared to the greater price of relabeling all capacitors as having
capacitances hC instead of C when switching to the Heaviside-Lorentz system.

We see the same congruence between Fessenden and Heaviside-Lorentz ratio-
nalization in Coulomb’s law for electric charge and magnetic poles. From the work
done in Chapter 2 [see Eqs. (2.1a, b) and (2.35b)], we know that Coulomb’s law in
esuq units is

F = Q1Q2

ε0r
2 .

∗ The meaning of εr is discussed in Section 2.12.
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All of the variables in this formula are physical quantities, so it has the same form
in unrationalized mks; and Table 3.14 shows that only ε0 = 4πf ε0 is changed by
Fessenden rationalization when switching to the rationalized mks system:

F = Q1Q2

4πf ε0r2 . (3.41a)

We see that the rationalized mks system puts a 4π into the denominator of
Coulombs law for electric charge, the same place it appears in the Heaviside-
Lorentz version of Coulomb’s law [Eq. (3.16a)]. Coulomb’s law for magnetic
poles undergoes a similar change. From (2.2a, b) and the discussion following
Eq. (2.48b), we know that Coulomb’s law for magnetic poles in the esuq system—
and so also for the unrationalized mks system—has the form

F = (pH )1(pH )2

µ0r2
.

Making the substitutions (pH )1 = (f pH )1/(4π), (pH )2 = (f pH )2/(4π), and
µ0 = f µ0/(4π) required by Table 3.14 gives

F = (f pH )1(f pH )2

4πfµ0r2
, (3.41b)

putting another 4π into the denominator, the same place it appears in Coulomb’s
law for magnetic poles in the Heaviside-Lorentz system [Eq. (3.16b)].

Equation (3.41b) requires the pole strength pH to be replaced by the rescaled
quantity f pH , so if scientists and engineers have instruments to measure magnetic
pole strength, they have to recalibrate them when switching to the rationalized mks
system. Fortunately for Fessenden rationalization, the idea of a magnetic pole as
a “real” physical quantity was rapidly falling out of favor with most physicists
by the beginning of the twentieth century, along with the idea of H rather than
B as the fundamental magnetic field. So, not only was there no strong objection
to redefining pH as f pH/(4π), there was also no strong objection to redefining
the auxiliary field H as fH = 4πH . Although both H and pH are rescaled, their
product stays constant:

pHH =
(
f pH

4π

)

(4πfH)= (f pH )(fH).

This ensures that the force between already-characterized permanent magnets stays
the same, keeping the interface with the mechanical systems of units unchanged.
In fact, both the Heaviside-Lorentz and Fessenden rationalization schemes make
a point of preserving the interface with mechanical units by maintaining the val-
ues of all products or ratios—such as pHH,QE,µ0ε0, I

2R,QV , etc.—that pro-
duce physical quantities having only mechanical dimensions (see Tables 3.6 and
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3.14). Table 3.14 shows that Fessenden rationalization rescales the D field to
fD = D/(4π); this was not as objectionable at the beginning of the twentieth
century as it might have been earlier, since D was being treated ever more often
as a helpful mathematical construct rather than as a “real” physical field. James
Maxwell himself, when setting down his famous equations, defined his electric
displacement as fD rather thanD; and although none of his other electromagnetic
physical quantities were rationalized and many subsequent authors did not follow
his lead, it could still be argued that there was a strong precedent for using fD

rather than D to represent the electric displacement.
A close look at Table 3.14 shows that the only group of technologists whose

laboratories were seriously disturbed by adopting Fessenden rationalization were
magnetic specialists. The magnetomotive force F , magnetic field intensity H ,
permanent-magnet dipole moment and dipole densitymH andMH , permeability of
free spaceµ0, magnetic pole strength pH , permeance P , reluctance R, scalar mag-
netic potential"H , and magnetic susceptibilty χm are all rescaled using Fessenden
rationalization. Inevitably, magnetic specialists were faced with recalibrating and
relabeling more than a few of their favorite instruments and magnets, making them
less than enthusiastic about the rationalized mks system. To this day, magnetic
fields are often measured using gauss, the Gaussian cgs unit of the B field, rather
than using the mks unit tesla = weber/m2.∗ By contrast, electric specialists are
treated quite gently; only D—using Maxwell’s preference as a precedent—ε0 and
the electric susceptibility χe are rescaled. Table 3.14 shows that the capacitance
C, electric field E, conductance G, electric current and volume current density I
and J , inductance L, electric dipole moment and dipole density p and P , electric
charge and charge densityQ and ρQ, resistance and resistivity R and ρR , elastance
S, conductivity σ , and electric potential V are all unchanged. Everything important
to circuit theory and electrical engineers is left untouched; even the magnetic quan-
tities that escape rescaling—B, B,mI , and MI—are arguably those of greatest
importance to electrical engineers. Fessenden rationalization offered the vast ma-
jority of practicing electromagnetic scientists and engineers the attractive choice
of simplifying their most commonly used formulas without having to recalibrate
equipment or relabel circuitry; this contributed greatly to its eventual acceptance.

Table 3.14 can be used to put all of the formulas that we converted to the unra-
tionalized mks system into the rationalized mks system. In the first one, Eq. (3.35f)
for the attractive force per unit length between two wires each carrying current I ,
we can substitute µ0 = (4π)−1

f µ0 to get

φ = I 2
f µ0

2πr
(3.42a)

in the rationalized mks system. Note that this is another example of an equation
that, like Coulomb’s law, becomes more rather than less complicated in rationalized
mks. An advocate for rationalization can justify this by pointing to the inherent
cylindrical symmetry of the two wires, saying that we ought to expect a factor of

∗ The tesla was named in honor of Nikola Tesla (1856–1943).
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2π and that the unrationalized equations mislead us by leaving it out. The second
formula, Eq. (3.37g) for the Poynting vector, becomes

�S = 1

f µ0

�E × �B = �E × f
�H (3.42b)

when converted to the rationalized mks system using f µ0 = 4πµ0 and f
�H =

(4π)−1 �H . The third equation converted to unrationalized mks, the formula for the
energy density of electromagnetic fields in a vacuum, is specified by Eqs. (3.38j, k).
In the rationalized mks system, Eq. (3.38j) becomes, using f µ0 = 4πµ0 and
f ε0 = ε0/(4π),

E = 1

2

[

(f ε0)E
2 +

(
1

f µ 0

)

B2
]

; (3.42c)

and Eq. (3.38k) becomes, using f �D = (4π)−1 �D and f �H = (4π)−1 �H ,

E = 1

2

( �E · f �D+ �B · f �H ). (3.42d)

We now decide to find Maxwell’s equations in the rationalized mks system by
transforming Eqs. (3.5a–f) from Gaussian cgs units. From Fig. 3.2 they must be
put into the form of the esuq, emuq, or unrationalized mks systems before they can
be converted to rationalized mks.

Looking at Eq. (3.5a), we see from Table 3.1 that its physical quantities �D and
ρQ are electric; here, esu and Gaussian units are identical and Table 2.4 can be
used to write

(
cm−1 �∇cgs

) ·
[

�Desu
statcoul

cm2

]

= 4π

[

(ρQ)esu
statcoul

cm3

]

.

This is already balanced in both the invariant unit cm and the connecting unit (stat-
coul, statcoulq), so by Rule VIII we can promote this to esuq units at once by
recognizing charge as a fundamental dimension:

(
cm−1 �∇cgs

) ·
[

�Desuq
statcoulq

cm2

]

= 4π

[

(ρQ)esuq
statcoulq

cm3

]

. (3.43a)

We have also used our knowledge of how the esuq system is defined in Section 2.8
[see Eq. (2.34a)] to replace �Desu and (ρQ)esu with �Desuq and (ρQ)esuq, respectively.
Equation (3.43a) is in esuq units—so when written using only physical quantities,
it must have the same form as in the unrationalized mks system.

�∇ · �D = 4πρQ.
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This is clearly one equation which does not change form going from Gaussian units
to the unrationalized mks system. To go to the rationalized mks system we consult
Table 3.14, replacing �D by 4πf �D to get

�∇ · f �D = ρQ. (3.43b)

Equation (3.5b) is even easier to convert. It only contains magnetic quantities,
so we can immediately interpret it as being in the emu system. We can take the
right-hand side to have any units we please because it is zero, automatically mak-
ing the equation balanced in both the invariant and connecting units. Therefore,
we can at once recognize charge as a fundamental dimension, putting it into the
emuq system. Relationships between physical quantities in the emuq system have
the same form as in the unrationalized mks system, so Eq. (3.5b) can now be inter-
preted as unrationalized mks. The final step is to consult Table 3.14 and note that
Fessenden rationalization does not change �B . We conclude that Eq. (3.5b) has the
same form in Gaussian, emu, emuq, unrationalized mks, and, finally, rationalized
mks:

�∇ · �B = 0. (3.43c)

This is altogether a most obliging equation.
Equation (3.5c) contains mixed magnetic and electric quantities; i.e., �B and �E,

respectively. Splitting it up into units and numeric components gives

(
cm−1 �∇cgs

)×
(

�Egs
statvolt

cm

)

= −1
(

ccgs
cm

sec

)

(

sec−1 ∂

∂tcgs

)
( �Bgsgauss

)
. (3.44a)

Following Fig. 3.2, we must convert to either esu or emu units. Choosing emu units,
we see from Tables 3.1 and 3.4 that �B is already in emu units with �Bgs = �Bemu;
but the electric field �E is in esu units with �Egs = �Eesu and needs to be changed.
Converting (3.44a) to emu gives, using 1 gauss = abweber/cm2 and Tables 2.7 and
2.8,

(
cm−1 �∇cgs

)×
(

c−1
cgs

�Eemu

(
sec

cm

)
abvolt

cm

)

= −1
(

ccgs
cm

sec

)

(

sec−1 ∂

∂tcgs

)(

�Bemu
abweber

cm2

)

or

(
cm−1 �∇cgs

)×
(

�Eemu
abvolt

cm

)

+
(

sec−1 ∂

∂tcgs

)(

�Bemu
abweber

cm2

)

= 0.
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Because 1 abvolt = gm1/2 · cm3/2/sec2 and 1 abweber = gm1/2 · cm3/2/sec (see
Table 2.3), this equation is balanced in emu units but does not yet look as if it
satisfies Rule VIII by being separately balanced in both the invariant units of cm,
sec and the connecting units of (abvolt, abvoltq) and (abweber, abweberq). We
note, however, that 1 abweber = abvolt · sec which gives us

(
cm−1 �∇cgs

)×
(

�Eemu
abvolt

cm

)

= −
(

sec−1 ∂

∂tcgs

)(

�Bemu
abvolt · sec

cm2

)

.

(3.44b)

This is balanced in both the invariant and connecting units, allowing us to recognize
charge as a fundamental dimension. Because �Eemu = �Eemuq and �Bemu = �Bemuq [see
Eq. (2.34b)], we can write this as

(
cm−1 �∇cgs

)×
(

�Eemuq
abvoltq

cm

)

= −
(

sec−1 ∂

∂tcgs

)(

�Bemuq
abvoltq · sec

cm2

) (3.44c)

or, using physical variables,

�∇ × �E + ∂ �B
∂t

= 0. (3.44d)

We know this formula must have the same form in unrationalized mks, so all that is
left is to apply Fessenden rationalization, transforming the equation to the rational-
ized mks system. Table 3.14 shows that neither �E nor �B are rescaled, so Eq. (3.44d)
does not change form going from unrationalized to rationalized mks.

Equation (3.5d) also contains mixed magnetic and electric quantities. Because
only �H is magnetic, measured in emu units in the Gaussian system, and both �J and
�D are electric, measured in esu units in the Gaussian system, it is easier to follow

the esu branch of Fig. 3.2 when going from Gaussian to rationalized mks. Breaking
Eq. (3.5d) into units and numeric components gives

(
cm−1 �∇cgs

)×
(

�Hgs
abamp

cm

)

= 4π
(

ccgs
cm

sec

)

(

�Jgs
statamp

cm2

)

+ 1
(

ccgs
cm

sec

)

(

sec−1 ∂

∂tcgs

)(

�Dgs
statcoul

cm2

)

.

(3.45a)
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Consulting Tables 3.2 and 3.3, we note that �Jgs = �Jesu, �Dgs = �Desu, �Hgs =
c−1

cgs
�Hesu, and 1 abamp = (sec/cm) · statamp. Substitution of this into Eq. (3.45a)

gives

(
cm−1 �∇cgs

)×
(

�Hesu
statamp

cm

)

= 4π

(

�Jesu
statamp

cm2

)

+
(

sec−1 ∂

∂tcgs

)(

�Desu
statcoul

cm2

)

.

(3.45b)

Because 1 statcoul = gm1/2 · cm3/2/sec and 1 statamp = gm1/2 · cm3/2/sec2 (see
Table 2.3), we can use statamp = statcoul/sec to write

(
cm−1 �∇cgs

)×
(

�Hesu
statcoul

cm · sec

)

= 4π

(

�Jesu
statcoul

sec · cm2

)

+
(

sec−1 ∂

∂tcgs

)(

�Desu
statcoul

cm2

)

.

(3.45c)

Equation (3.45c) is balanced in both the invariant units, cm and sec, and the con-
necting unit, (statcoul, statcoulq). Recognizing charge as a fundamental dimension
puts Eq. (3.45c) into esuq units,

(
cm−1 �∇cgs

)×
(

�Hesuq
statcoulq

cm · sec

)

= 4π

(

�Jesuq
statcoulq

sec · cm2

)

+
(

sec−1 ∂

∂tcgs

)(

�Desuq
statcoulq

cm2

)

,

(3.45d)

where again the defining characteristic of the esuq system is used to replace
�Hesu, �Jesu, and �Desu by �Hesuq, �Jesuq, and �Desuq [see Eq. (2.34a)]. Equation (3.45d)

is in esuq units and can be written using physical quantities as

�∇ × �H = 4π �J + ∂ �D
∂t
. (3.45e)

We know Eq. (3.45e) must have the same form in unrationalized mks as in the esuq
system, so now we only need to apply Fessenden rationalization from Table 3.14
to get

�∇ × (

f
�H )= �J + ∂(f �D)

∂t
, (3.45f)

the fourth Maxwell equation in the rationalized mks system.
Equation (3.5e) has only electrical quantities �D, �E, and �P , so by the rules of

the Gaussian system everything in this equation can immediately be interpreted as
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having esu units:

�Desu
statcoul

cm2
= �Eesu

statvolt

cm
+ 4π

(

�Pesu
statcoul

cm2

)

. (3.46a)

Because statcoul = gm1/2 · cm3/2/sec and statvolt = gm1/2 · cm1/2/sec [see Ta-
ble 2.3], Eq. (3.46a) is balanced in the esu system but cannot yet be transferred to
the esuq system because it is not balanced in both the invariant unit cm and the two
connecting units (statcoul, statcoulq) and (statvolt, statvoltq). Multiplying �Eesu by

statcoul

statvolt · cm
= gm1/2 · cm3/2

sec
· sec

gm1/2 · cm1/2
· 1

cm
= 1

gives

�Desu
statcoul

cm2 = �Eesu
statvolt

cm

(
statcoul

statvolt · cm

)

+ 4π

(

�Pesu
statcoul

cm2

)

.

(3.46b)

This equation is balanced in both the invariant and connecting units, letting us
transfer to the esuq system by replacing �Desu, �Eesu, �Pesu with �Desuq, �Eesuq, �Pesuq
[see Eq. (2.34a)] and recognizing charge as a fundamental dimension.

�Desuq
statcoulq

cm2
= �Eesuq

statvoltq

cm

(
statcoulq

statvoltq · cm

)

+ 4π

(

�Pesuq
statcoulq

cm2

)

.

(3.46c)

Since statvoltq = erg/statcoulq = dyne · cm/statcoulq, we can write

statcoulq

statvoltq · cm
= statcoulq2

dyne · cm2
= ε0

from Eq. (2.38). Hence, Eq. (3.46c) can be written in the esuq system, using phys-
ical quantities, as

�D = ε0 �E + 4π �P. (3.46d)

This equation must have the same form in unrationalized mks, so we can apply
Fessenden rationalization from Table 3.14 to get

f
�D = (f ε0) �E + �P , (3.46e)
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the definition of the rationalized electric displacement f �D in the rationalized mks
system.

The auxiliary field �H is defined two different (but equivalent) ways in
Eq. (3.5f). Both definitions involve only magnetic quantities �H, �B, �MH , and �MI ,
so by the rules of the Gaussian system they can be immediately interpreted as being
in emu units. Writing the �B unit as gauss = abweber/cm2 gives

�Hemu
abamp

cm
= �Bemu

abweber

cm2
− 4π

[
( �MH

)

emu

abweber

cm2

]

(3.47a)

and

�Hemu
abamp

cm
= �Bemu

abweber

cm2
− 4π

[
( �MI

)

emu

abamp

cm

]

. (3.47b)

Since abweber = gm1/2 · cm3/2/sec and abamp = gm1/2 · cm1/2/sec (see Ta-
ble 2.3), we know abweber/cm = abamp so that both Eqs. (3.47a, b) are balanced
in emu units. We might just replace abweber/cm by abamp everywhere, getting

�Hemu
abamp

cm
= �Bemu

abamp

cm
− 4π

[
( �MH

)

emu

abamp

cm

]

and

�Hemu
abamp

cm
= �Bemu

abamp

cm
− 4π

[
( �MI

)

emu

abamp

cm

]

.

These two equations are indeed balanced in both the invariant unit cm and the con-
necting unit (abamp, abampq), but they fail another requirement of Rule VIII—
giving the magnetic induction �B the same units as �H violates the physical mean-
ing of a �B field in the emuq system. In fact, neither �B nor �MH can have units of
abamp/cm in the emuq system. So, before charge can be recognized as a funda-
mental dimension, both the �B and �MH fields must have units of abweber/cm2; we
want only the �H and �MI fields to have units of abamp/cm. Hence, we multiply the
�Bemu and ( �MH)emu terms in Eqs. (3.47a, b) by abamp · cm/abweber = 1 to get

�Hemu
abamp

cm

=
{

�Bemu
abweber

cm2
− 4π

[
( �MH

)

emu

abweber

cm2

]}(
abamp · cm

abweber

) (3.47c)

and

�Hemu
abamp

cm

=
(

�Bemu
abweber

cm2

)(
abamp · cm

abweber

)

− 4π

[
( �MI

)

emu

abamp

cm

]

.

(3.47d)
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Now these equations match all the requirements of Rule VIII and can be
put into emuq units by recognizing charge as a fundamental dimension and
replacing �Hemu, �Bemu, ( �MH)emu, ( �MI)emu by �Hemuq, �Bemuq, ( �MH)emuq, ( �MI)emuq
respectively [see Eq. (2.34b)]:

�Hemuq
abampq

cm

=
{

�Bemuq
abweberq

cm2
− 4π

[
( �MH

)

emuq

abweberq

cm2

]}(
abampq · cm

abweberq

) (3.47e)

�Hemuq
abampq

cm

=
(

�Bemuq
abweberq

cm2

)(
abampq · cm

abweberq

)

− 4π

[
( �MI

)

emuq

abampq

cm

]

.

(3.47f)

We note from Eqs. (2.46b, e) that

1
abampq · cm

abweberq
= 1

abampq · cm

abvoltq · sec
= 1

cm

abhenryq
= (µ0)

−1,

so Eqs. (3.47e, f) can be written as

�H = 1

µ0

( �B − 4π �MH
)

(3.47g)

and

�H = �B
µ0

− 4π �MI, (3.47h)

using physical quantities in the emuq system. Since all equations using only physi-
cal quantities have the same form in unrationalized mks as they do in emuq, we can
now apply Fessenden rationalization (see Table 3.14) to convert Eqs. (3.47g, h) to
the rationalized mks system. This gives

f
�H = 1

f µ0

( �B − f
�MH
)

(3.47i)

and

f
�H = �B

fµ0
− �MI (3.47j)

for the two equivalent definitions of f �H . Almost all textbooks written during the
last half of the twentieth century have preferred Eq. (3.47j) to Eq. (3.47i) as the
definition of f �H in Maxwell’s equations.
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Gathering together Eqs. (3.43b), (3.43c), (3.44d), (3.45f), (3.46e), and (3.47i, j)
gives Maxwell’s equations written in the rationalized mks system:

�∇ · f �D = ρQ, (3.48a)

�∇ · �B = 0, (3.48b)

�∇ × �E + ∂ �B
∂t

= 0, (3.48c)

�∇ × (f �H)= �J + ∂(f �D)
∂t

, (3.48d)

where

f
�D = (f ε0) �E + �P (3.48e)

and

f
�H = 1

f µ0

( �B − f
�MH
)= �B

fµ0
− �MI. (3.48f)

In empty space where f �MH = 0, �MI = 0, �P = 0, these equations reduce to

�∇ · �E = (f ε0)
−1ρQ, (3.49a)

�∇ · �B = 0, (3.49b)

�∇ × �E + ∂ �B
∂t

= 0, (3.49c)

�∇ × �B = (f µ0) �J + (f ε0)(f µ0)
∂ �E
∂t
. (3.49d)

From Table 3.14 and Eq. (3.2), we note that

(f ε0)(f µ0)= ε0µ0 = c−2, (3.49e)

which means Eq. (3.49d) can also be written as

�∇ × �B = (f µ0) �J + 1

c2

∂ �E
∂t
. (3.49f)

Not one of the physical fields in Eqs. (3.49a–f) has undergone Fessenden rational-
ization; unlike f �H and f �D, the �E, �B, �J , and ρQ physical quantities still have the
same physical meaning as they did in Maxwell’s day.

Tables 3.15 through 3.17 can be helpful in converting equations from the ra-
tionalized mks system to the Gaussian system. The equation for the magnetic field
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Table 3.15 Numeric components of physical quantities in the esu system and the
Systeme International or rationalized mks system. Physical quantities without the
“f ” prefix are left unchanged by Fessenden rationalization and have the same
numeric components in both the rationalized and unrationalized mks systems.

(magnetic vector potential) (current-loop magnetic dipole density)

Amks =Aesu · ccgs · 10−6 (MI )mks = (MI )esu · 103 · c−1
cgs

(magnetic induction) (magnetic permeability)

Bmks = Besu · ccgs · 10−4
f µmks = 4πc2cgs · 10−7 ·µesu

(capacitance) (magnetic permeability of free space)

Cmks = Cesu · c−2
cgs · 109 (f µ0)mks = 4πc2

cgs · 10−7 · (µ0)esu

= 4π · 10−7

(electric displacement) (magnetic pole strength)

f Dmks =Desu · 105 · (4πccgs)
−1 (f pH )mks = 4πccgs · 10−8 · (pH )esu

(electric field) (electric dipole moment)

Emks =Eesu · ccgs · 10−6 pmks = pesu · 10−1 · c−1
cgs

(dielectric constant) (electric dipole density)

f εmks = εesu · (4πc2cgs)
−1 · 1011 Pmks = Pesu · 105 · c−1

cgs

(permittivity of free space) (permeance)

(f ε0)mks = (ε0)esu · (4πc2cgs)
−1 · 1011

=
(

4π c2cgs

)−1 · 1011 fPmks = Pesu · 10−9 · 4πc2cgs

(magnetomotive force) (charge)

fFmks = Fesu · 10 · (4πccgs)
−1 Qmks =Qesu · 10 · c−1

cgs

(magnetic flux) (resistance)

( B)mks = ( B)esu · ccgs · 10−8 Rmks = Resu · 10−9 · c2cgs

(conductance) (reluctance)

Gmks =Gesu · 109 · c−2
cgs fRmks = (4πc2cgs)

−1 · 109 ·Resu

(magnetic field) (volume charge density)

f Hmks =Hesu · 103 · (4πccgs)
−1 (ρQ)mks = (ρQ)esu · 107 · c−1

cgs

(current) (resistivity)

Imks = Iesu · 10 · c−1
cgs (ρR)mks = (ρR)esu · 10−11 · c2cgs

(volume current density) (elastance)

Jmks = Jesu · 105 · c−1
cgs Smks = Sesu · 10−9 · c2cgs

(surface current density) (surface charge density)

(JS)mks = (JS)esu · 103 · c−1
cgs (SQ)mks = (SQ)esu · 105 · c−1

cgs

(inductance) (conductivity)

Lmks = Lesu · 10−9 · c2cgs σmks = σesu · 1011 · c−2
cgs
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Table 3.15 (Continued).

(permanent-magnet dipole moment) (electric potential)

(f mH )mks = 4πccgs · 10−10 · (mH )esu Vmks = Vesu · 10−8 · ccgs

(current-loop magnetic dipole moment) (magnetic scalar potential)

(mI )mks = (mI )esu · 10−3 · c−1
cgs (f "H )mks = ("H )esu · 10 · (4πccgs)

−1

(permanent-magnet dipole density)

(fMH )mks = 4πccgs · 10−4 · (MH )esu

f
�H in a vacuum at a time t for a field point which is a distance r from an oscillating

electric dipole �p is, in the rationalized mks system,

f
�H ∣∣

at time t
= −1

4πcr

[

êr × d2

dt2
( �p)

] ∣
∣
∣
∣ at time
t ′=t−(r/c)

, (3.50a)

where êr = r̂/r is the dimensionless unit vector pointing from the dipole to the
field point and the physical quantity on the right-hand side is evaluated at an earlier
time t ′ = t − r/c, giving the electromagnetic radiation time to reach the field point.
Writing Eq. (3.50a) in terms of units and numeric components gives

[

(f �H)mks
amp

m

]∣
∣
∣
∣

at time t

= −1

4π

(

cmks
m

sec

)

(rmksm)

[

êr × sec−2 d2

dt2[sec]
( �pmks coul · m

)
]∣
∣
∣
∣ at time
t ′=t−(r/c)

.

(3.50b)
From Tables 3.17 and 3.10 we get

[(
103

4π
�Hgs

)
10−1ccgs · statampq

102cm

]∣
∣
∣
∣

at time t

= −1

4π

(

ccgs
cm

sec

)

(rcgscm)

·
[

êr × 1

sec2

d2

dt2[sec]

(
10−1

ccgs
�pgs
ccgs

10
statcoulq · 102cm

)]∣
∣
∣
∣ at time
t ′=t−(r/c)

or, cancelling out the 4π and factors of 10,
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Table 3.16 Numeric components of physical quantities in the emu system and
the Systeme International or rationalized mks system. Physical quantities without
the “f ” prefix are left unchanged by Fessenden rationalization and have the same
numeric components in both the rationalized and unrationalized mks systems.

(magnetic vector potential) (current-loop magnetic dipole density)

Amks =Aemu · 10−6 (MI )mks = (MI )emu · 103

(magnetic induction) (magnetic permeability)

Bmks = Bemu · 10−4
f µmks = 4π · 10−7 ·µemu

(capacitance) (magnetic permeability of free space)

Cmks = Cemu · 109 (f µ0)mks = 4π · 10−7 · (µ0)emu

= 4π · 10−7

(electric displacement) (magnetic pole strength)

f Dmks =Demu · 105 · (4π)−1 (f pH )mks = 4π · 10−8 · (pH )emu

(electric field) (electric dipole moment)

Emks =Eemu · 10−6 pmks = pemu · 10−1

(dielectric constant) (electric dipole density)

f εmks = εemu · (4π)−1 · 1011 Pmks = Pemu · 105

(permittivity of free space) (permeance)

(f ε0)mks = (ε0)emu · (4π)−1 · 1011

= (4πc2cgs)
−1 · 1011 fPmks = Pemu · 10−9 · 4π

(magnetomotive force) (charge)

fFmks = Femu · 10 · (4π)−1 Qmks =Qemu · 10

(magnetic flux) (resistance)

( B)mks = ( B)emu · 10−8 Rmks =Remu · 10−9

(conductance) (reluctance)

Gmks =Gemu · 109
fRmks = (4π)−1 · 109 ·Remu

(magnetic field) (volume charge density)

f Hmks =Hemu · 103 · (4π)−1 (ρQ)mks = (ρQ)emu · 107

(current) (resistivity)

Imks = Iemu · 10 (ρR)mks = (ρR)emu · 10−11

(volume current density) (elastance)

Jmks = Jgs · 105 · c−1
cgs Smks = Semu · 10−9

(surface current density) (surface charge density)

(JS)mks = (JS)gs · 103 · c−1
cgs (SQ)mks = (SQ)emu · 105

(inductance) (conductivity)

Lmks = Lgs · 10−9 · c2cgs σmks = σemu · 1011
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Table 3.16 (Continued).

(permanent-magnet dipole moment) (electric potential)

(f mH )mks = 4π · 10−10 · (mH )gs Vmks = Vemu · 10−8

(current-loop magnetic dipole moment) (magnetic scalar potential)

(mI )mks = (mI )gs · 10−3 (f "H )mks = ("H )emu · 10 · (4π)−1

(permanent-magnet dipole density)

(f MH )mks = 4π · 10−4 · (MH )emu

[

( �Hgs)ccgs
statampq

cm

]∣
∣
∣
∣

at time t

=







−1
(

ccgs
cm

sec

)

(rcgscm)







·
[

êr × 1

sec2

d2

dt2[sec]

(

�pgsstatcoulq · cm

)]∣
∣
∣
∣ at time
t ′=t−(r/c)

.

Since statampq = statcoulq/sec [see Eq. (2.45a)], we have
[

( �Hgs)ccgs
statcoulq

cm · sec

]∣
∣
∣
∣

at time t

= −1
(

ccgs
cm

sec

)(

rcgscm

)

[

êr × 1

sec2

d2

dt2[sec]

(

�pgsstatcoulq · cm

)]∣
∣
∣
∣ at time
t ′=t−(r/c)

.

This is balanced in the invariant units cm, sec and the connecting unit (statcoul,
statcoulq), so we can stop recognizing charge as a fundamental dimension by drop-
ping the q suffix:

[

( �Hgs)ccgs
statcoul

cm · sec

]∣
∣
∣
∣

at time t

= −1
(

ccgs
cm

sec

)(

rcgscm

)

[

êr × 1

sec2

d2

dt2[sec]

(

�pgsstatcoul · cm

)]∣
∣
∣
∣ at time
t ′=t−(r/c)

.

(3.50c)
The only problem with Eq. (3.50c) is that in the Gaussian system, �H is a magnetic
quantity (see Table 3.1) and should have units of

abcoul/sec/cm = abamp/cm

instead of

statcoul/sec/cm = statamp/cm.
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Table 3.17 Num eric components of physical quantities in the Gaussian system
and the Systeme International or rationalized mks system. Physical quantities
without the “f ” prefix are left unchanged by Fessenden rationalization and have
the same numeric components in both the rationalized and unrationalized mks
systems.

(magnetic vector potential) (current-loop magnetic dipole density)

Amks =Ags · 10−6 (MI )mks = (MI )gs · 103

(magnetic induction) (magnetic permeability)

Bmks = Bgs · 10−4 f µmks = 4π · 10−7 ·µgs

= 4π · 10−7 ·µr
(capacitance) (magnetic permeability of free space)

Cmks = Cgs · c−2
cgs · 109 (f µ0)mks = 4π · 10−7 · (µ0)gs

= 4π · 10−7

(electric displacement) (magnetic pole strength)

fDmks =Dgs · 105 · (4πccgs)
−1 (f pH )mks = 4π · 10−8 · (pH )gs

(electric field) (electric dipole moment)

Emks =Egs · ccgs · 10−6 pmks = pgs · 10−1 · c−1
cgs

(dielectric constant) (electric dipole density)

f εmks = εgs · (4πc2cgs)
−1 · 1011

= εr · (4πc2cgs)
−1 · 1011

Pmks = Pgs · 105 · c−1
cgs

(permittivity of free space) (permeance)

(f ε0)mks = (ε0)gs · (4πc2cgs)
−1 · 1011

= (4πc2cgs)
−1 · 1011 fPmks = Pgs · 10−9 · 4π

(magnetomotive force) (charge)

fFmks = Fgs · 10 · (4π)−1 Qmks =Qgs · 10 · c−1
cgs

(magnetic flux) (resistance)

( B)mks = ( B)gs · 10−8 Rmks = Rgs · 10−9 · c2cgs

(conductance) (reluctance)

Gmks =Ggs · 109 · c−2
cgs fRmks = (4π)−1 · 109 ·Rgs

(magnetic field) (volume charge density)

fHmks =Hgs · 103 · (4π)−1 (ρQ)mks = (ρQ)gs · 107 · c−1
cgs

(current) (resistivity)

Imks = Igs · 10 · c−1
cgs (ρR)mks = (ρR)gs · 10−11 · c2cgs

(volume current density) (elastance)

Jmks = Jgs · 105 · c−1
cgs Smks = Sgs · 10−9 · c2cgs

(surface current density) (surface charge density)

(JS)mks = (JS)gs · 103 · c−1
cgs (SQ)mks = (SQ)gs · 105 · c−1

cgs

(inductance) (conductivity)

Lmks = Lgs · 10−9 · c2cgs σmks = σgs · 1011 · c−2
cgs
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Table 3.17 (Continued).

(permanent-magnet dipole moment) (electric potential)

(f mH )mks = 4π · 10−10 · (mH )gs Vmks = Vgs · 10−8 · ccgs

(current-loop magnetic dipole moment) (magnetic scalar potential)

(mI )mks = (mI )gs · 10−3 (f "H )mks = ("H )gs · 10 · (4π)−1

(permanent-magnet dipole density)

(fMH )mks = 4π · 10−4 · (MH )gs

This equation is really in esu units rather than Gaussian units. According to Fig. 3.2
this is only to be expected, because the road from the rationalized mks system to
the Gaussian system must pass through either the esu or emu systems of units. We
therefore consult Table 3.3 to write (3.50c) as

[(

ccgs
cm

sec

)

�Hgs
abamp

cm

]∣
∣
∣
∣

at time t

= −1
(

ccgs
cm

sec

)(

rcgscm

)

[

êr × 1

sec2

d2

dt2[sec]
( �pgsstatcoul · cm)

]∣
∣
∣
∣ at time
t ′=t−(r/c)

.

(3.50d)
Now the magnetic quantity is in emu units and the electric quantity is in esu units,
so Eq. (3.50d) is in Gaussian units and can be written as

�H
∣
∣
∣
∣

at time t

= −1

rc2

[

êr × d2

dt2
( �p)

]∣
∣
∣
∣ at time
t ′=t−(r/c)

(3.50e)

or

�B
∣
∣
∣
∣

at time t

= −1

rc2

[

êr × d2

dt2

(

�p
)]∣
∣
∣
∣ at time
t ′=t−(r/c)

, (3.50f)

because in Gaussian units �B = �H for empty space.

3.9 EVALUATION OF THE RATIONALIZED MKS SYSTEM

Although the contest between the rationalized and unrationalized mks systems has
long since been decided by history—with overwhelming victory going to the ra-
tionalized mks system—it does no harm to revisit briefly the main point of con-
tention: which system leads to a simpler set of equations? The only good answer
seems to be that it all depends on which equations are more important. We note
that Eq. (3.50f) in the unrationalized Gaussian system is simpler than Eq. (3.50a),
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the rationalized equation we started with. In fact, we can remove the extra power of
c in the Gaussian system merely by converting Eq. (3.50a) to unrationalized mks,
making the substitution f �H = �H/(4π) to get

�H
∣
∣
∣
∣

at time t

= −1

cr

[

êr × d2

dt2

(

�p
)]∣
∣
∣
∣ at time
t ′=t−(r/c)

. (3.51)

All that rationalization of any sort accomplishes, as was pointed out in the dis-
cussion after Eq. (3.16b), is to redistribute the factors of 4π from one group of
equations to another. The price for removing the 4π ’s from Maxwell’s equations is
to have them reappear in Coulomb’s law and other equations involving spherical or
cylindrical symmetry, such as Eq. (3.42a) and Eq. (3.50a). At the beginning of the
twentieth century, when rectilinear geometries dominated the electrical engineer’s
laboratory, the inconvenient factors of 4π undoubtedly caused annoyance; but by
the middle of the twentieth century radio, radar, television, etc., had become impor-
tant fields of engineering built around the idea of outwardly propagating spherical
wavefronts. It is one of the small jokes of history that, had electrical engineers stuck
with unrationalized units, they would have been pleasantly surprised to find them-
selves working with equations like Eq. (3.51) rather than Eq. (3.50a). Today, with
the dominance of computers, the added complexity or simplicity of having or not
having to account for an extra factor of 4π seems trivial, given that most engineers
solve their problems by programming computers and manipulating spreadsheets. It
is hard to imagine how disheartening it must have been a hundred years ago to face,
once again, the prospect of multiplying or dividing by 4π to get the final answer.
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CHAPTER 4

TWO STANDARD SHORTCUTS USED TO TRANSFORM
ELECTROMAGNETIC EQUATIONS

The last several chapters have explained how the standard rules for changing units
apply to electromagnetic physical quantities. Having become familiar with these
rules, we are now sure that electromagnetic equations and formulas transform in
a way that makes sense when going from one system of units to another. We also
know, however, that following these rules can be algebraically cumbersome, forc-
ing us always to watch for the appearance or disappearance of constants ε0 and
µ0 as we recognize or refuse to recognize charge as a new dimension. Engineers
and physicists are no more eager than anyone else to do unnecessary work; conse-
quently, they have come up with both the free-parameter method and substitution
tables, two shortcuts that can greatly reduce the time required to convert electro-
magnetic equations and formulas from one system of units to another. Unfortu-
nately, neither shortcut is perfect: substitution tables can give ambiguous answers
in unusual situations, and to apply the free-parameter method we must first relate
our equation or formula to one or more of a predefined list of equations and formu-
las. Nevertheless, these shortcuts often provide a quick and easy way of transform-
ing electromagnetic expressions; and whenever there is any doubt about the result,
the transformation can be checked using the procedures explained in the previous
chapters.

4.1 THE FREE-PARAMETER METHOD

Table 4.1 lists Maxwell’s equations and the Lorentz force law for the six major
electromagnetic systems discussed in this book. As pointed out at the beginning of
Chapter 3, any classical electromagnetic formula can be derived from Maxwell’s
equations and the Lorentz force law. This means we can consult Table 4.1, select
the appropriate equations in the desired set of units, and from them derive the for-
mulas we need to know. Although this process gets the job done, it usually requires
a lot of work. To avoid the unpleasant prospect of deriving all of our formulas
and equations from Maxwell’s equations and the Lorentz force law, we construct
instead a long list of basic electromagnetic equations that contains everything (in-
cluding Maxwell’s equations and the Lorentz force law) likely to be useful. Instead
of providing six long lists—one for every electromagnetic system—we use the four
free parameters ε̃, µ̃, k0, and � shown in Table 4.2 to reduce the six lists to one.1
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As an example of how this works, consider what happens when we disregard
the “h” and “f ” prefixes and write Maxwell’s equations as

�∇ · �D =�ρQ, (4.1a)

�∇ · �B = 0, (4.1b)

�∇ × �H = k0

(

� �J + ∂ �D
∂t

)

, (4.1c)

�∇ × �E + k0
∂ �B
∂t

= 0, (4.1d)

where
�D = ε̃ �E +� �P (4.1e)

and
�H = 1

µ̃
�B − �

µ̃
�MH

= 1

µ̃
�B −� �MI.

(4.1f)

As always, �E and �D are the electric field and electric displacement, respectively;
�H and �B are the magnetic field and magnetic induction, respectively; ρQ is the

volume charge density; �J is the volume current density; �P is the electric dipole
density; �MH is the permanent-magnet dipole density; and �MI is the current-loop
magnetic dipole density. Clearly, Eqs. (4.1a–f) reduce to the correct set of equations
in Table 4.1 when ε̃, µ̃, k0, and� are given the appropriate values from Table 4.2.
The same thing can be done to the Lorentz force law; if it is written as

�F =Q �E + k0Q
(�v× �B), (4.2)

then it too reduces to the correct equation in Table 4.1 when k0 is given the appro-
priate value from Table 4.2.

As we have just seen, the free-parameter method works most easily and natu-
rally when we neglect the distinction between rationalized and unrationalized elec-
tromagnetic quantities—that is, neglect the “h” and “f ” prefixes —which so far we
have been careful to preserve. It should be emphasized that the distinction between
a change of units and a rescaling of an electromagnetic physical quantity is just as
important as before; the free-parameter method just makes it inconvenient to keep
track of this distinction using a single table. If we want to preserve the distinc-
tion between rationalized and unrationalized physical quantities, we can consult
Tables 4.3(a) or 4.3(b) after putting an equation or formula into the rationalized
mks∗ or Heaviside-Lorentz systems, respectively.
∗ As pointed out in Section 3.6 of Chapter 3, most textbooks written today using the rationalized
mks system say that they are using SI units.
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Table 4.1 Maxwell’s equations and the Lorentz force law in the rationalized mks
system (which is also called SI units), the unrationalized mks system, Gaussian
cgs units, the Heaviside-Lorentz cgs system, esu units, and emu units.

rationalized mks
system, also called
SI units

�∇ ·f �D = ρQ, �∇ · �B = 0, �∇ × �E + ∂ �B
∂t

= 0,

�∇ × f
�H = �J + ∂f �D

∂t
, f

�D = f ε0 �E + �P ,

f
�H = �B

fµ0
− �MI , �F =Q �E +Q(�v × �B)

unrationalized mks
system

�∇ · �D = 4πρQ, �∇ · �B = 0, �∇ × �E + ∂ �B
∂t

= 0,

�∇ × �H = 4π �J + ∂ �D
∂t
, �D = ε0 �E + 4π �P ,

�H = �B
µ0

− 4π �MI , �F =Q �E +Q(�v × �B)

Gaussian cgs units �∇ · �D = 4πρQ, �∇ · �B = 0, �∇ × �E + 1

c

∂ �B
∂t

= 0,

�∇ × �H = 4π

c
�J + 1

c

∂ �D
∂t
, �D = �E + 4π �P ,

�H = �B − 4π �MI , �F =Q �E + Q

c
(�v × �B)

Heaviside-Lorentz
cgs system

�∇ ·h �D = hρQ, �∇ ·h �B = 0, �∇ × h
�E + 1

c

∂h �B
∂t

= 0,

�∇ × h
�H = 1

c
h

�J + 1

c

∂h �D
∂t
, h

�D = h
�E + h

�P ,

h
�H = h

�B − h
�MI , �F = hQh �E + hQ

c
(�v × h

�B)

esu units �∇ · �D = 4πρQ, �∇ · �B = 0, �∇ × �E + ∂ �B
∂t

= 0,

�∇ × �H = 4π �J + ∂ �D
∂t
, �D = �E + 4π �P ,

�H = c2 �B − 4π �MI , �F =Q �E +Q(�v × �B)

emu units �∇ · �D = 4πρQ, �∇ · �B = 0, �∇ × �E + ∂ �B
∂t

= 0,

�∇ × �H = 4π �J + ∂ �D
∂t
, �D = 1

c2
�E + 4π �P ,

�H = �B − 4π �MI , �F =Q �E +Q(�v × �B)

To show how the free parameter method, with or without prefixes, works, we
apply the first row of Table 4.2 to Eq. (4.1e), reducing it to the rationalized mks
system:

�D =
(

1011

4πc2
cgs

farad

m

)

�E + �P . (4.3a)
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Table 4.3(a) Rationalized and unrationalized physical quantities in the rational-
ized mks system, which is also referred to as SI units.

magnetic vector potential volume current density permeance

Unrationalized, A Unrationalized, J Rationalized, fP
magnetic induction surface current density charge

Unrationalized, B Unrationalized, JS Unrationalized,Q

capacitance inductance resistance

Unrationalized, C Unrationalized, L Unrationalized, R

electric displacement permanent-magnet dipole moment reluctance reluctance

Rationalized, fD Rationalized, f mH Rationalized, fR
electric field current-loop magnetic dipole moment volume charge density

Unrationalized, E Unrationalized, mI Unrationalized, ρQ

dielectric constant permanent-magnet dipole density resistivity

Rationalized, f ε Rationalized, f MH Unrationalized, ρR

relative dielectric constant current-loop magnetic dipole density elastance

Unrationalized, εr Unrationalized,MI Unrationalized, S

permittivity of free space magnetic permeability surface charge density

Rationalized, f ε0 Rationalized, f µ Unrationalized, SQ

magnetomotive force relative magnetic permeability conductivity

Rationalized, fF Unrationalized, µr Unrationalized, σ

magnetic flux magnetic permeability of free space electric potential

Unrationalized, #B Rationalized, f µ0 Unrationalized, V

conductance magnetic pole strength magnetic scalar potential

Unrationalized, G Rationalized, f pH Rationalized, f 'H

magnetic field electric dipole moment

Rationalized, fH Unrationalized, p

current electric dipole density

Unrationalized, I Unrationalized, P

From the fifth entry of row one, we note that

ε̃→ 1011

4πc2
cgs

farad

m
= f ε0;

and from Table 4.3(a) we see that

�D→ f
�D,
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Table 4.3(b) Rationalized and unrationalized physical quantities in the Heaviside-
Lorentz cgs system.

magnetic vector potential volume current density permeance

Rationalized, hA Rationalized, hJ Unrationalized, P
magnetic induction surface current density charge

Rationalized, hB Rationalized, hJS Rationalized, hQ

capacitance inductance resistance

Rationalized, hC Rationalized, hL Rationalized, hR

electric displacement permanent-magnet dipole moment reluctance

Rationalized, hD Rationalized, hmH Unrationalized, R
electric field current-loop magnetic dipole moment volume charge density

Rationalized, hE Rationalized, hmI Rationalized, hρQ

relative dielectric constant permanent-magnet dipole density resistivity

Unrationalized, εr Rationalized, hMH Rationalized, hρR

magnetomotive force current-loop magnetic dipole density elastance

Rationalized, hF Rationalized, hMI Rationalized, hS

magnetic flux relative magnetic permeability surface charge density

Rationalized, h#B Unrationalized, µr Rationalized, hSQ

conductance magnetic pole strength conductivity

Rationalized, hG Rationalized, hpH Rationalized, hσ

magnetic field electric dipole moment electric potential

Rationalized, hH Rationalized, hp Rationalized, hV

current electric dipole density magnetic scalar potential

Rationalized, hI Rationalized, hP Rationalized, h'H

showing that Eq. (4.3a) should be written as

f
�D = f ε0 �E + �P (4.3b)

to match the notation of the previous three chapters of this book. Nothing stops us,
however, from following the notation of most modern textbooks by dropping the
prefix “f ” from ε0 and �D to write Eq. (4.3a) as

�D = ε0 �E + �P . (4.3c)

When putting Eq. (4.1e) into the other rationalized system, the Heaviside-
Lorentz system, we apply the fourth row of Table 4.2 to get

�D = �E + �P . (4.4a)



TWO STANDARD SHORTCUTS USED TO TRANSFORM ELECTROMAGNETIC EQUATIONS 231

This result, which lacks prefixes to show which electromagnetic quantities have
been rationalized, is already in the form used by most modern authors working
with the Heaviside-Lorentz system. Nothing stops us, however, from consulting
Table 4.3(b), which shows that all three quantities �D, �E, and �P are rationalized in
the Heaviside-Lorentz system. We can show this by following the convention of
the previous chapters and adding an “h” to get

h
�D = h

�E + h
�P . (4.4b)

The formula for the radiant electric field generated by an oscillating current-
loop magnetic dipole gives us a somewhat more complicated example of how to
use Tables 4.2 and 4.3(a)–(b). The free-parameter formula for the �E field at a field
point that is a distance r from an oscillating current-loop magnetic dipole �mI is

�E∣∣ evaluated
at time t

= k0µ̃�

4πcr

{

êr × d2 �mI
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

. (4.5)

Here, r is large enough to put the field point in the dipole’s far-field region, the

dimensionless unit vector pointing from the current-loop magnetic dipole to the
field point is êr , and c is the speed of light.

To put Eq. (4.5) into the rationalized mks system, we consult the first row of
Table 4.2 and write

�E∣∣ evaluated
at time t

=
(

4π · 10−7 henry

m

)

· 1

4πcr
·
{

êr × d2 �mI
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

. (4.6a)

The fifth entry of row one suggests that this result be written as

�E
∣
∣
∣
∣ evaluated

at time t

= f µ0

4πcr
·
{

êr × d2 �mI
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

, (4.6b)

but of course nothing stops us from dropping the “f ” prefix and writing this as

�E
∣
∣
∣
∣ evaluated

at time t

= µ0

4πcr
·
{

êr × d2 �mI
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

, (4.6c)
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if we want to follow the convention of most authors using the rationalized mks
system. Table 4.3(a) assures us that neither �mI nor �E are rationalized quantities,
which means that neither one needs to be written with an “f ” prefix to match the
convention of the previous chapters.

To put Eq. (4.5) into the unrationalized mks system, we consult the second row
of Table 4.2 to get

�→ 4π, µ̃→ 10−7henry/m = µ0, and k0 → 1.

This gives us

�E
∣
∣
∣
∣ evaluated

at time t

= µ0

cr
·
{

êr × d2 �mI
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

, (4.7)

When we write the free parameters ε̃ and µ̃ for the unrationalized mks system
using the symbols “ε0” and “µ0” respectively, we know from the discussion in
Section 3.6 that the equation must have the same form in the esuq and emuq sys-
tems. Consequently, Eq. (4.7) can also be regarded as being written in esuq or
emuq units. In fact, all we need to do to put any of the free-parameter expressions
in Sections 4.1 or 4.2 into esuq units is to set

�→ 4π, ε̃→ 1
statfaradq

cm
= ε0, µ̃→ c−2

cgs
stathenryq

cm
= µ0, k0 → 1;

and all we need to do to put any of the free-parameter expressions in Sections 4.1
or 4.2 into emuq units is to set

�→ 4π, ε̃→ c−2
cgs

abfaradq

cm
= ε0, µ̃→ 1

abhenryq

cm
=µ0, k0 → 1.

To put Eq. (4.5) into Gaussian cgs units, we consult row three of Table 4.2 to
get

�→ 4π, µ̃→ 1, and k0 → c−1,

which, when substituted into Eq. (4.5), leads to

�E
∣
∣
∣
∣ evaluated

at time t

= 1

c2r
·
{

êr × d2 �mI
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

. (4.8a)

Glancing back at the discussion following Eq. (2.68d), we remember that the dis-
tinction made between �mI , �mH and �MI , �MH is irrelevant in systems of units in
which the magnetic permeability of free space



TWO STANDARD SHORTCUTS USED TO TRANSFORM ELECTROMAGNETIC EQUATIONS 233

is 1. According to the third entry of row three, the permeability of free space
is 1 in the Gaussian cgs system, which means that in this set of units �mI = �mH ,
allowing us to drop the “I” subscript and write Eq. (4.8a) as

�E
∣
∣
∣
∣ evaluated

at time t

= 1

c2r
·
{

êr × d2 �m
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

. (4.8b)

In Gaussian cgs units, we are always allowed to drop the “I” and “H” subscripts
from the physical quantities �mI , �mH and �MI , �MH .

To write Eq. (4.5) in the Heaviside-Lorentz system, we see from row four of
Table 4.2 that

�→ 1, µ̃→ 1, and k0 → c−1.

Substitution of these values into Eq. (4.5) gives

�E
∣
∣
∣
∣ evaluated

at time t

= 1

4πc2r
·
{

êr × d2 �mI
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

. (4.9a)

Following the advice of the fifth entry of row four, we consult Table 4.3(b) and
note that both �E and �mI are rationalized under the Heaviside-Lorentz system, sug-
gesting that Eq. (4.9a) should be written as

h
�E
∣
∣
∣
∣ evaluated

at time t

= 1

4πc2r
·
{

êr × d2
h �mI
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

(4.9b)

to match the usage of the previous chapters. If we want to match the usage of most
scientists using the Heaviside-Lorentz system, we omit the “h” prefixes and—since
the Heaviside-Lorentz system also has the free parameter µ̃ for the permeability of
free space set to 1—drop the “I” subscript to get

�E
∣
∣
∣
∣ evaluated

at time t

= 1

4πc2r
·
{

êr × d2 �m
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

, (4.9c)

Just like in Gaussian cgs units, in the standard Heaviside-Lorentz system we are
always allowed to drop the “I” and “H” subscripts from the physical quantities �mI ,
�mH and �MI , �MH .

The fifth and sixth rows of Table 4.2 show us how to put Eq. (4.5) into the esu
and emu systems of units, respectively. To put the formula into esu units we specify

�→ 4π, µ̃→ c−2, and k0 → 1
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to get

�E
∣
∣
∣
∣ evaluated

at time t

= 1

c3r
·
{

êr × d2 �mI
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

; (4.10a)

and to put the formula into emu units we specify

�→ 4π, µ̃→ 1, and k0 → 1

to get

�E
∣
∣
∣
∣ evaluated

at time t

= 1

cr
·
{

êr × d2 �mI
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

. (4.10b)

Note that we can drop the “I” and “H” subscripts from the physical quantities
�mI , �mH and �MI , �MH when working in emu units where the free parameter µ̃
specifying the magnetic permeability of free space is 1, but we cannot do so when
working in esu units where it is not. Hence, Eq. (4.10b) can be written as

�E
∣
∣
∣
∣ evaluated

at time t

= 1
cr

·
{

êr × d2 �m
dt2

}∣
∣
∣
∣ evaluated at

the retarded
time t ′=t−r/c

.

Comparing this result to its counterparts in the other five electromagnetic
systems—Eqs. (4.6c), (4.7), (4.8b), (4.9c), and (4.10a)—we see that this one is
the simplest.

An equation using all four free parameters simultaneously is

∇2 �B − k2
0σ(µrµ̃)�

∂ �B
∂t

− k2
0(µr µ̃)(εr ε̃)

∂2 �B
∂t2

= 0. (4.11a)

This is the wave equation for a magnetic induction field �B propagating in a homo-
geneous medium characterized by a dielectric constant (εr ε̃), a magnetic perme-
ability (µrµ̃), and a conductivity σ . The Laplacian operator ∇2 is explained at the
end of Appendix 2B of Chapter 2. Consulting the first row of Table 4.2, we get

∇2 �B − σ(µrf µ0)
∂ �B
∂t

− (µrf µ0)(εr f ε0)
∂2 �B
∂t2

= 0 (4.11b)

in terms of the rationalized mks notation used in the previous chapters (accord-
ing to Table 4.3(a), only the permittivity and the magnetic permeability of free
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space are rationalized quantities). Again, we take c to be the speed of light and use
Eq. (3.49e) to write

f µ0f ε0 = c−2.

Now Eq. (4.11b) can be written as (dropping the “f ” prefix to follow the usage of
most modern textbooks)

∇2 �B −µrµ0σ
∂ �B
∂t

−
(
µrεr

c2

)
∂2 �B
∂t2

= 0. (4.11c)

Consulting the second row of Table 4.2, we see that in the unrationalized mks
system the wave equation for the �B field becomes

∇2 �B − 4πσµrµ0
∂ �B
∂t

− (
µrµ0

)(
εrε0

)∂2 �B
∂t2

= 0.

According to Eq. (3.49e), the product of µ0 and ε0 as well as the product of f µ0
and f ε0 is equal to c−2, which means this equation can be written as

∇2 �B − 4πµrµ0σ
∂ �B
∂t

−
(
µrεr

c2

)
∂2 �B
∂t2

= 0. (4.11d)

The form of the wave equation for �B in Gaussian cgs units comes from the third
row of Table 4.2,

∇2 �B −
(

4πσµr
c2

)
∂ �B
∂t

−
(
µrεr

c2

)
∂2 �B
∂t2

= 0. (4.11e)

The fourth row of Table 4.2, combined with Table 4.3(b), shows that in the standard
Heaviside-Lorentz system, the wave equation for the �B field is

∇2
h

�B −
(
hσµr

c2

)
∂h �B
∂t

−
(
µrεr

c2

)
∂2
h

�B
∂t2

= 0. (4.11f)

We can always drop the “h” prefixes to put it into the form preferred by most
scientists working in the Heaviside-Lorentz system,

∇2 �B −
(
σµr

c2

)
∂ �B
∂t

−
(
µrεr

c2

)
∂2 �B
∂t2

= 0. (4.11g)

The fifth and sixth rows of Table 4.2 show how to put this wave equation into esu
and emu units, respectively. The wave equation for the �B field in esu units is

∇2 �B −
(

4πσµr
c2

)
∂ �B
∂t

−
(
µrεr

c2

)
∂2 �B
∂t2

= 0, (4.11h)
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and the wave equation for the �B field in emu units is

∇2 �B − 4πσµr
∂ �B
∂t

−
(
µrεr

c2

)
∂2 �B
∂t2

= 0. (4.11i)

When σ = 0 and we neglect the “h” and “f ” prefixes, all of the different versions
of the wave equation reduce to the same formula:

∇2 �B −
(
µrεr

c2

)
∂2 �B
∂t2

= 0. (4.11j)

When σ �= 0 it is hard to say, looking at all the different coefficients of ∂ �B/∂t ,
which system of electromagnetic physical quantities of units gives the simplest
equation. Depending on whether (µrµ0σ), (µrσ/c2), or (4πµrσ ) seems most
simple, we can work with Eqs. (4.11c), (4.11g), or (4.11i), respectively.

One final point worth making is that the free parameters in Table 4.2 can be ei-
ther dimensionless numbers or dimensional physical quantities. The free parameter
k0, for example, is the dimensional physical quantity c−1 in the Heaviside-Lorentz
system and the dimensionless numeric 1 in the rationalized mks system. Conse-
quently, we cannot use the techniques explained in Chapters 1 through 3 to do a
dimensional analysis of equations like Eqs. (4.1c–f), (4.2), (4.5), or (4.11a) because
they contain free parameters ε̃, µ̃, and k0 which, depending on the electromagnetic
system, are dimensionless numerics or dimensional physical quantities. We can, of
course, do dimensional analysis on equations and formulas like Eq. (4.1a) that only
contain the free parameter� because� is a dimensionless numeric on all six rows
of Table 4.2.

4.2 BASIC EQUATIONS USING THE FREE PARAMETERS k0, µ̃, ε̃,
AND �

Although we could begin this list with Maxwell’s equations and the Lorentz force
law, using them to derive all the other basic formulas, such a procedure would
take up space and bury the most useful results in unnecessary detail. We start in-
stead with the simplest equations, the ones learned first in introductory courses,
and then move on—using the absolute minimum number of words and diagrams—
to more sophisticated formulations of electromagnetic theory. Consequently, the
reader should expect to find elementary equations near the beginning of the list,
advanced equations near the end, and intermediate equations somewhere in the
middle. Electromagnetic physical quantities and formulas that are separate in some
electromagnetic systems can merge into the same physical quantity or formula in
other electromagnetic systems, and we try to note when this occurs. We have in-
cluded in the list even those basic equations and formulas that do not contain any
of the free parameters ε̃, µ̃, k0, and �, because it may be important to know that
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an algebraic expression has the same form in all the electromagnetic systems of
Table 4.2.

4.2.1 COULOMB’S LAW FOR ELECTRIC CHARGE

The force �F12 exerted by point charge Q1 on point charge Q2, with both charges
located in a vacuum and no other material objects nearby, is

�F12 = �Q1Q2

4πε̃r2 r̂12,

where r is the distance between the two charges and r̂12 is the dimensionless unit
vector pointing from Q1 to Q2. The values of � and ε̃ come from Table 4.2.
Table 4.3(a) shows that in the rationalized mks system ε̃ = ε0 should be given
the prefix “f ” to match the rationalized mks notation used in previous chapters,
and Table 4.3(b) shows that in the Heaviside-Lorentz system Q1 and Q2 should
be given the prefix “h” to match the Heaviside-Lorentz notation used in previous
chapters.

4.2.2 COULOMB’S LAW FOR MAGNETIC POLES

The force �F12 exerted by point magnetic pole (pH )1 on point magnetic pole (pH )2,
with both poles located in a vacuum and no other material objects nearby, is

�F12 = �(pH )1(pH )2

4πµ̃r2
r̂12,

where r is the distance between the two poles and r̂12 is the dimensionless unit
vector pointing from (pH )1 to (pH )2. The values of� and µ̃ come from Table 4.2.
Table 4.3(a) shows that in the rationalized mks system, (pH )1,2 and µ̃=µ0 should
be given the prefix “f ” to match the rationalized mks notation used in the previous
chapters; and Table 4.3(b) shows that in the Heaviside-Lorentz system (pH )1,2
should be given the prefix “h” to match the Heaviside-Lorentz notation used in the
previous chapters. Magnetic poles always occur in pairs as described in Section 2.1.
In Section 2.1 most of the electromagnetic systems listed in Table 4.2 had not yet
been introduced, which means that we were always implicitly working in either
esu or emu units, depending on the values chosen for ε0 and µ0.

4.2.3 THE ELECTRIC FIELD OF A POINT CHARGE

The electric field �E of a point charge Q located in a vacuum is

�E = �Q

4πε̃r2 êr ,
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where r is the distance between the point charge Q and the field point where the
electric field is being measured, and êr is the dimensionless unit vector pointing
fromQ to the field point where the electric field is being measured. The values of�
and ε̃ come from Table 4.2. Table 4.3(a) shows that in the rationalized mks system,
ε̃ = ε0 should be given the prefix “f ” to match the rationalized mks notation used
in previous chapters; and Table 4.3(b) shows that in the Heaviside-Lorentz system,
�E and Q should be given the prefix “h” to match the Heaviside-Lorentz notation
used in previous chapters.

4.2.4 THE MAGNETIC FIELD OF A POINT MAGNETIC POLE

The magnetic field �H of a point magnetic pole pH located in a vacuum is

�H = �pH

4πµ̃r2
êr ,

where r is the distance between the point magnetic pole pH and the field point
where the magnetic field is being measured, and êr is the dimensionless unit vector
pointing from pH to the field point where the magnetic field is being measured.
The values of � and µ̃ come from Table 4.2. Table 4.3(a) shows that in the ratio-
nalized mks system, �H , pH , and µ̃= µ0 should be given the prefix “f ” to match
the rationalized mks notation used in previous chapters; and Table 4.3(b) shows
that in the Heaviside-Lorentz system, �H and pH should be given the prefix “h” to
match the Heaviside-Lorentz notation used in previous chapters. Magnetic poles
always occur in pairs as described in Section 2.1. In Section 2.1, most of the elec-
tromagnetic systems listed in Table 4.2 had not yet been introduced, which means
that we were always implicitly working in either esu or emu units, depending on
the values chosen for ε0 and µ0.

4.2.5 THE ELECTRIC POTENTIAL OF A POINT CHARGE

The electric potential V of a point charge Q located in a vacuum is

V = �Q

4πε̃r
,

where r is the distance between the point charge Q and the field point where the
electric potential is being measured. The potential is taken to be zero at field points
infinitely distant from Q, and the values of � and ε̃ come from Table 4.2. Ta-
ble 4.3(a) shows that in the rationalized mks system, ε̃ = ε0 should be given the
prefix “f ” to match the rationalized mks notation used in previous chapters; and
Table 4.3(b) shows that in the Heaviside-Lorentz system,Q and V should be given
the prefix “h” to match the Heaviside-Lorentz notation used in previous chapters.
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4.2.6 THE MAGNETIC POTENTIAL OF A POINT MAGNETIC POLE

The magnetic potential 'H of a point magnetic pole pH located in a vacuum is

'H = �pH

4πµ̃r
,

where r is the distance between pH and the field point where the magnetic potential
'H is being measured. The potential is taken to be zero at field points infinitely
distant from pH , and the values of � and µ̃ come from Table 4.2. Table 4.3(a)
shows that in the rationalized mks system, 'H , pH , and µ̃= µ0 should be given
the prefix “f ” to match the rationalized mks notation used in previous chapters;
and Table 4.3(b) shows that in the Heaviside-Lorentz system, 'H and pH should
be given the prefix “h” to match the Heaviside-Lorentz notation used in previous
chapters. Magnetic poles always occur in pairs as described in Section 2.1. In Sec-
tion 2.1, most of the electromagnetic systems listed in Table 4.2 had not yet been
introduced, which means that we were always implicitly working in either esu or
emu units, depending on the values chosen for ε0 and µ0.

4.2.7 THE FORCE ON A CHARGE IN AN ELECTRIC FIELD

An electric field �E exerts a force �F on a chargeQ, which is given by the formula

�F =Q �E.

Note that this formula does not contain any of the free parameters ε̃, µ̃, k0, or
�, so it has the same form for all the electromagnetic systems listed in Table 4.2.
Table 4.3(b) shows that in the Heaviside-Lorentz system,Q and �E should be given
the prefix “h” to match the Heaviside-Lorentz notation used in previous chapters;
and Table 4.3(a) shows that no prefixes are to be expected in the rationalized mks
system.

4.2.8 THE FORCE ON A MAGNETIC POLE IN A MAGNETIC FIELD

A magnetic field �H exerts a force �F on a magnetic pole pH , which is given by the
formula

�F = pH �H.

When using this formula it should be remembered that, as pointed out in the discus-
sion following Eq. (2.5), isolated magnetic poles do not exist. Because the formula
does not contain any of the free parameters ε̃, µ̃, k0, or�, it has the same form for
all the electromagnetic systems listed in Table 4.2. Table 4.3(a) shows that in the
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rationalized mks system, pH and �H should be given the prefix “f ” to match the
rationalized mks notation used in previous chapters; and Table 4.3(b) shows that in
the Heaviside-Lorentz system, pH and �H should be given the prefix “h” to match
the Heaviside-Lorentz notation used in previous chapters.

4.2.9 THE POTENTIAL ENERGY OF A CHARGE IN AN ELECTRIC POTENTIAL

FIELD

At a point where there is an electric potential V , a point charge Q has associated
with the electric potential a potential energy U , given by the formula

U =QV.

This formula does not contain any of the free parameters ε̃, µ̃, k0, or �, so it has
the same form in all the electromagnetic systems listed in Table 4.2. Table 4.3(b)
shows that in the Heaviside-Lorentz system, both Q and V should be given the
prefix “h” to match the Heaviside-Lorentz notation used in previous chapters; and
Table 4.3(a) shows that no prefixes are to be expected in the rationalized mks sys-
tem.

4.2.10 THE POTENTIAL ENERGY OF A MAGNETIC POLE

IN A MAGNETIC POTENTIAL FIELD

At a point where there is an magnetic potential 'H , a point magnetic pole pH has
associated with the magnetic potential a potential energy U , given by the formula

U = pH'H .

When using this formula it should be remembered that, as pointed out in the dis-
cussion following Eq. (2.5), isolated magnetic poles do not exist. The formula does
not contain any of the free parameters ε̃, µ̃, k0, or �, so it has the same form in
all the electromagnetic systems listed in Table 4.2. Table 4.3(a) shows that in the
rationalized mks system, both pH and'H should be given the prefix “f ” to match
the rationalized mks notation used in previous chapters; and Table‘4.3(b) shows
that in the Heaviside-Lorentz system, both pH and 'H should be given the prefix
“h” to match the Heaviside-Lorentz notation used in previous chapters.

4.2.11 THE FORMULA FOR AN ELECTRIC DIPOLE

The formula for an electric dipole �p is

�p = |Q|Lê,



TWO STANDARD SHORTCUTS USED TO TRANSFORM ELECTROMAGNETIC EQUATIONS 241

where L is a small distance separating two point charges that have charges of
equal and opposite magnitude, +|Q| and −|Q|, and ê is a dimensionless unit vec-
tor pointing from the −|Q| point charge to the +|Q| point charge. We can con-
struct a point electric dipole by taking the limit as |Q| → ∞ and L→ 0 in such
a way as to keep the (|Q| · L) product constant. This formula does not contain
any of the free parameters ε̃, µ̃, k0, or �, which means it has the same form in
all the electromagnetic systems listed in Table 4.2. Table 4.3(b) shows that in the
Heaviside-Lorentz system both �p and Q should be given the prefix “h” to match
the Heaviside-Lorentz notation used in previous chapters; and Table 4.3(a) shows
that no prefixes are to be expected in the rationalized mks system.

4.2.12 THE FORMULA FOR A PERMANENT-MAGNET DIPOLE

The formula for a permanent-magnet dipole �mH is

�mH = |pH |Lê,

where L is a small distance separating two point magnetic poles that have pole
strengths of equal and opposite magnitude, +|pH | and −|pH |, and ê is a dimen-
sionless unit vector pointing from the −|pH | point magnetic pole to the +|pH |
point magnetic pole. We can construct a point permanent-magnet dipole by taking
the limit as |pH | → ∞ and L→ 0 in such a way as to keep the (|pH | ·L) product
constant. The formula for �mH does not contain any of the free parameters ε̃, µ̃,
k0, or �, so it has the same form in all of the electromagnetic systems listed in
Table 4.2. Table 4.3(a) shows that in the rationalized mks system, both �mH and
pH should be given the prefix “f ” to match the rationalized mks notation used in
previous chapters; and Table 4.3(b) shows that in the Heaviside-Lorentz system,
�mH and pH should be given the prefix “h” to match the Heaviside-Lorentz nota-
tion used in previous chapters. The formula for the current-loop magnetic dipole
given in Section 4.2.13 below shows that for those electromagnetic systems in Ta-
ble 4.2 where µ̃= 1, a permanent-magnet dipole is the same thing as a current-loop
magnetic dipole.

4.2.13 THE RELATIONSHIP BETWEEN THE CURRENT-LOOP MAGNETIC

DIPOLE MOMENT AND THE PERMANENT-MAGNET DIPOLE MOMENT

The current-loop magnetic dipole moment �mI and the permanent-magnet dipole
moment �mH of the same system are always proportional to each other, with

�mI = �mH/µ̃ or �mH = µ̃ �mI .

The value of µ̃ comes from Table 4.2. Note that for the electromagnetic systems of
Table 4.2 where µ̃= 1, a current-loop magnetic dipole moment is the same thing
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as a permanent-magnet dipole moment. Table 4.3(a) shows that in the rationalized
mks system, both �mH and µ̃ = µ0 should be given the prefix “f ” to match the
rationalized mks notation used in previous chapters; and Table 4.3(b) shows that in
the Heaviside-Lorentz system, �mI and �mH should be given the prefix “h” to match
the Heaviside-Lorentz notation used in previous chapters.

4.2.14 THE RELATIONSHIP BETWEEN THE ELECTRIC-DIPOLE DENSITY

AND THE ELECTRIC DIPOLE MOMENT

The electric dipole moment �p at a point in space where there is an electric dipole
density �P is

�p = �P · dV,

where dV is an infinitesimal volume surrounding the position of the electric dipole
moment. The electric dipole moment can be thought of as a point electric dipole �p
at the position of the infinitesimal volume dV . This formula does not contain any of
the free parameters ε̃, µ̃, k0, or�, so it has the same form in all the electromagnetic
systems listed in Table 4.2. Table 4.3(b) shows that in the Heaviside-Lorentz sys-
tem, both �p and �P should be given the prefix “h” to match the Heaviside-Lorentz
notation used in previous chapters; and Table 4.3(a) shows that no prefixes are to
be expected in the rationalized mks system.

4.2.15 THE RELATIONSHIP BETWEEN THE PERMANENT-MAGNET DIPOLE

DENSITY AND THE PERMANENT-MAGNET DIPOLE MOMENT

The permanent-magnet dipole moment �mH at a point in space where there is a
permanent-magnet dipole density �MH is

�mH = �MH · dV,

where dV is an infinitesimal volume surrounding the position of the permanent-
magnet dipole moment. The permanent-magnet dipole moment can be thought of
as a point permanent-magnet dipole �mH at the position of the infinitesimal vol-
ume dV . This formula does not contain any of the free parameters ε̃, µ̃, k0, or �,
which means it has the same form in all of the electromagnetic systems listed in
Table 4.2. The formulas given in Sections 4.2.13 and 4.2.17 show that for those
electromagnetic systems in Table 4.2 where µ̃= 1 , there is no difference between
a permanent-magnet and current-loop magnetic dipole and no difference between
a permanent-magnet and current-loop magnetic dipole density. Table 4.3(a) shows
that in the rationalized mks system, both �mH and �MH should be given an “f ”
prefix to match the rationalized mks notation used in previous chapters; and Ta-
ble 4.3(b) shows that in the Heaviside-Lorentz system, �mH and �MH should be
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given an “h” prefix to match the Heaviside-Lorentz notation used in previous chap-
ters.

4.2.16 THE RELATIONSHIP BETWEEN THE CURRENT-LOOP MAGNETIC

DIPOLE DENSITY AND THE CURRENT-LOOP MAGNETIC DIPOLE

MOMENT

The current-loop magnetic dipole moment �mI at a point in space where there is a
current-loop magnetic dipole density �MI is

�mI = �MI · dV,
where dV is an infinitesimal volume surrounding the position of the current-
loop magnetic dipole moment. The current-loop magnetic dipole moment can be
thought of as a point current-loop magnetic dipole �mI at the position of the infin-
itesimal volume dV . This formula does not contain any of the free parameters ε̃,
µ̃, k0, or �, so it has the same form in all of the electromagnetic systems listed
in Table 4.2. Table 4.3(b) shows that in the Heaviside-Lorentz system, �mI and �MI
should be given an “h” prefix to match the Heaviside-Lorentz notation used in the
previous chapters; and Table 4.3(a) shows that no prefixes are to be expected in the
rationalized mks system.

4.2.17 THE RELATIONSHIP BETWEEN THE CURRENT-LOOP MAGNETIC

DIPOLE DENSITY AND THE PERMANENT-MAGNET DIPOLE DENSITY

At every point in space, the current-loop magnetic dipole density �MI and the
permanent-magnet dipole density �MH are proportional to each other, obeying the
relationship

�MI = �MH/µ̃ or �MH = µ̃ �MI.
Note that for all of the electromagnetic systems of Table 4.2 where µ̃ = 1, the
two types of magnetic dipole density are the same. Table 4.3(a) shows that in the
rationalized mks system, both �MH and µ̃= µ0 should be given an “f ” prefix to
match the rationalized mks notation used in previous chapters; and Table 4.3(b)
shows that in the Heaviside-Lorentz system both �MI and �MH should be given an
“h” prefix to match the Heaviside-Lorentz notation used in previous chapters.

4.2.18 THE TORQUE ON AN ELECTRIC DIPOLE IN AN ELECTRIC FIELD

The torque �T experienced by a small electric dipole �p located at a point where
there is an external electric field �E is

�T = �p× �E.
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This formula does not contain the free parameters ε̃, µ̃, k0, or �, so it has the
same form in all the electromagnetic systems of Table 4.2. When this formula
is used in the Heaviside-Lorentz system, Table 4.3(b) shows that both �p and �E
should be given the prefix “h” to match the Heaviside-Lorentz notation used in
previous chapters; and Table 4.3(a) shows that no prefixes are to be expected in the
rationalized mks system.

4.2.19 THE TORQUE ON A MAGNETIC DIPOLE IN A MAGNETIC FIELD

The torque �T experienced by a small current-loop magnetic dipole �mI located at a
point where there is an external magnetic field �H is

�T = (µ̃ �mI )× �H.
The torque �T experienced by a small permanent-magnet dipole �mH located at a
point where there is an external magnetic field �H is

�T = �mH × �H.
The value of µ̃ in the first formula comes from Table 4.2; and since the second
formula contains none of the free parameters ε̃, µ̃, k0, or�, it has the same form in
all of the electromagnetic systems of Table 4.2. The two formulas become identi-
cal in electromagnetic systems where µ̃= 1 because, according to Section 4.2.13,
�mI = �mH when µ̃ = 1. When these formulas are used in the rationalized mks
system, Table 4.3(a) shows that �H, �mH , and µ̃= µ0 should all be given the prefix
“f ” to match the rationalized mks notation used in the previous chapters; and when
these formulas are used in the Heaviside-Lorentz system, Table 4.3(b) shows that
�H, �mI , and �mH should all be given the prefix “h” to match the Heaviside-Lorentz

notation used in the previous chapters.

4.2.20 THE POTENTIAL ENERGY OF AN ELECTRIC DIPOLE IN AN ELECTRIC

FIELD

The potential energy U associated with the orientation of a small electric dipole �p
located at a point where there is an external electric field �E is

U = − �p · �E.
This formula does not contain any of the free parameters ε̃, µ̃, k0, or �, which
means it has the same form in all the electromagnetic systems listed in Table 4.2.
Table 4.3(b) shows that in the Heaviside-Lorentz system, �p and �E should be given
an “h” prefix to match the Heaviside-Lorentz notation used in the previous chap-
ters; and Table 4.3(a) shows that no prefixes are to be expected in the rationalized
mks system.
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4.2.21 THE POTENTIAL ENERGY OF A MAGNETIC DIPOLE IN A MAGNETIC

FIELD

The potential energyU associated with the orientation of a small current-loop mag-
netic dipole �mI located at a point where there is an external magnetic field �H is

U = −(µ̃ �mI ) · �H.

The potential energy associated with the orientation of a small permanent-magnet
dipole �mH located at a point where there is an external magnetic field �H is

U = − �mH · �H.

The value of µ̃ in the first formula comes from Table 4.2; and the second formula
has the same form in all the electromagnetic systems of Table 4.2 because it con-
tains none of the free parameters ε̃, µ̃, k0, or�. The two formulas become identical
in electromagnetic systems where µ̃= 1, because �mI = �mH when µ̃= 1 according
to Section 4.2.13. When the formulas are used in the rationalized mks system, Ta-
ble 4.3(a) shows that �H, �mH , and µ̃=µ0 should be given the prefix “f ” to match
the rationalized mks notation used in the previous chapters; and when the formulas
are used in the Heaviside-Lorentz system, Table 4.3(b) shows that �H, �mI , and �mH
should be given the prefix “h” to match the Heaviside-Lorentz notation used in the
previous chapters.

4.2.22 THE ELECTRIC POTENTIAL FIELD OF AN ELECTRIC DIPOLE

The electric potential V generated by a small electric dipole �p located in a vacuum
is

V =
(
�

4πε̃

)

·
( �p · êr
r2

)

,

where r is the distance between the electric dipole and the field point at which V is
being measured, and êr is the dimensionless unit vector pointing from the dipole to
the field point. The values of � and ε̃ come from Table 4.2. When this formula is
used in the rationalized mks system, Table 4.3(a) shows that ε̃ = ε0 should be given
the prefix “f ” to match the rationalized mks notation used in previous chapters; and
when it is used in the Heaviside-Lorentz system, Table 4.3(b) shows that �p and V
should be given the prefix “h” to match the Heaviside-Lorentz notation used in the
previous chapters.
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4.2.23 THE MAGNETIC POTENTIAL FIELD OF A MAGNETIC DIPOLE

The magnetic potential 'H generated by a small current-loop magnetic dipole �mI
located in a vacuum is

'H =
(
�

4π

)

·
( �mI · êr

r2

)

,

where r is the distance between the dipole and the field point at which'H is being
evaluated, and êr is the dimensionless unit vector pointing from the dipole to the
field point. The magnetic potential generated by a small permanent-magnet dipole
�mH located in a vacuum is

'H =
(
�

4πµ̃

)

·
( �mH · êr

r2

)

,

where again r is the distance between the dipole and the field point, and êr is the
dimensionless unit vector pointing from the dipole to the field point. The values
of � and µ̃ come from Table 4.2. These two formulas become identical for those
electromagnetic systems with µ̃= 1, because �mH = �mI when µ̃= 1 according to
Section 4.2.13. When these two formulas are used in the rationalized mks system,
Table 4.3(a) shows that �mH,'H , and µ̃ = µ0 should be given the prefix “f ” to
match the rationalized mks notation used in previous chapters; and when they are
used in the Heaviside-Lorentz system, Table 4.3(b) shows that �mI , �mH , and 'H
should be given the prefix “h” to match the Heaviside-Lorentz notation used in
previous chapters.

4.2.24 THE ELECTRIC FIELD OF AN ELECTRIC DIPOLE

The electric field �E generated by a small electric dipole �p located in a vacuum is

�E =
(

�

4πε̃r3

)

· [3êr
(
êr · �p)− �p],

where r is the distance between the electric dipole and the position of the field
point at which the electric field is measured, and êr is the dimensionless unit vector
pointing from the dipole to the field point. The values of � and ε̃ come from
Table 4.2. When this equation is used in the rationalized mks system, Table 4.3(a)
shows that ε̃ = ε0 should have a prefix “f ” to match the rationalized mks notation
used in previous chapters; and when the equation is used in the Heaviside-Lorentz
system, Table 4.3(b) shows that �p and �E should have a prefix “h” to match the
Heaviside-Lorentz notation used in previous chapters.
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4.2.25 THE MAGNETIC FIELD OF A MAGNETIC DIPOLE

The magnetic field �H generated by a small current-loop magnetic dipole �mI lo-
cated in a vacuum is

�H =
(
�

4πr3

)

· [3êr
(
êr · �mI

)− �mI
]
,

where r is the distance between the dipole and the position of the field point at
which the magnetic field is evaluated, and êr is the dimensionless unit vector point-
ing from the dipole to the field point. The magnetic field �H generated by a small
permanent-magnet dipole �mH is

�H =
(

�

4πµ̃r3

)

· [3êr
(
êr · �mH

)− �mH
]
,

where again r is the distance between the dipole and the position of the field point
and êr is the dimensionless unit vector pointing from the dipole to the field point.
The values of � and µ̃ come from Table 4.2. The two formulas are identical in
those electromagnetic systems where µ̃= 1 because, according to Section 4.2.13,
�mH = �mI when µ̃ = 1. When these equations are used in the rationalized mks
system, Table 4.3(a) shows that �mH, �H , and µ̃ = µ0 should be given the prefix
“f ” to match the rationalized mks notation used in the previous chapters; and when
they are used in the Heaviside-Lorentz system, Table 4.3(b) shows that �mI , �mH ,
and �H should be given the prefix “h” to match the Heaviside-Lorentz notation used
in the previous chapters.

4.2.26 THE RELATIONSHIP BETWEEN THE ELECTRIC DISPLACEMENT,
ELECTRIC FIELD, AND THE ELECTRIC DIPOLE DENSITY

The electric displacement field �D is

�D = ε̃ �E +� �P ,

where �E is the electric field and �P is the electric dipole density. The values of ε̃ and
� come from Table 4.2. Note that when �P = 0, such as in a vacuum, the electric
displacement �D and the electric field �E are the same field in those electromagnetic
systems where ε̃ = 1. When this formula is used in the rationalized mks system,
Table 4.3(a) shows that �D and ε̃ = ε0 should be given the prefix “f ” to match
the rationalized mks notation used in previous chapters; and when it is used in the
Heaviside-Lorentz system, Table 4.3(b) shows that �E, �P , and �D should be given
the prefix “h” to match the Heaviside-Lorentz notation used in previous chapters.
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4.2.27 THE RELATIONSHIP BETWEEN THE MAGNETIC INDUCTION,
MAGNETIC FIELD, AND PERMANENT-MAGNET DIPOLE DENSITY

The magnetic induction field �B satisfies the relationship

�B = µ̃ �H +� �MH or �H = 1

µ̃

( �B −� �MH
)
,

where �H is the magnetic field and �MH is the permanent-magnet dipole density.
The values of� and µ̃ come from Table 4.2. When these equations are used in the
rationalized mks system, Table 4.3(a) shows that �H, �MH , and µ̃=µ0 should have
a prefix “f ” to match the rationalized mks notation used in the previous chapters;
and when these equations are used in the Heaviside-Lorentz system, Table 4.3(b)
shows that �B, �MH , and �H should have a prefix “h” to match the Heaviside-Lorentz
notation used in the previous chapters. Note that when �MH = 0, such as in a vac-
uum, the �B and �H fields are identical in those electromagnetic systems that have
µ̃= 1. We also note that �MH and �MI become equal in Section 4.2.17 when µ̃ is 1,
which means the equations in Sections 4.2.27 and 4.2.28 become the same in the
electromagnetic systems of Table 4.2 where µ̃= 1.

4.2.28 THE RELATIONSHIP BETWEEN THE MAGNETIC INDUCTION,
MAGNETIC FIELD, AND THE CURRENT-LOOP MAGNETIC DIPOLE

DENSITY

The magnetic induction field �B satisfies the relationship

�B = µ̃( �H +� �MI) or �H = 1

µ̃
�B −� �MI,

where �H is the magnetic field and �MI is the current-loop magnetic dipole density.
The values of � and µ̃ come from Table 4.2. When these equations are used in
the rationalized mks system, Table 4.3(a) shows that �H , and µ̃= µ0 should have
a prefix “f ” to match the rationalized mks notation used in the previous chapters;
and when these equations are used in the Heaviside-Lorentz system, Table 4.3(b)
shows that �H, �MI , and �B should have a prefix “h” to match the Heaviside-Lorentz
notation used in the previous chapters. Note that when �MI = 0, such as in a vac-
uum, the �B and �H fields are identical in those electromagnetic systems where
µ̃= 1. We also note that �MH and �MI become equal in Section 4.2.17 when µ̃ is 1,
which means the equations in Sections 4.2.27 and 4.2.28 become the same in the
electromagnetic systems of Table 4.2 where µ̃= 1.
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4.2.29 THE LORENTZ FORCE LAW

The force �F experienced by a point charge Q moving at a velocity �v at a location
where there is an electric field �E and a magnetic induction field �B is

�F =Q �E + k0Q
(�v × �B).

The value of k0 comes from Table 4.2. When this equation is written in the
Heaviside-Lorentz system, Table 4.3(b) shows that Q, �E, and �B should be given
the prefix “h” to match the Heaviside-Lorentz notation used in the previous chap-
ters; and Table 4.3(a) shows that no prefixes are to be expected when the equation
is written in the rationalized mks system.

4.2.30 THE SURFACE CONDITIONS ON THE ELECTRIC FIELD AND THE

ELECTRIC DISPLACEMENT ACROSS A BOUNDARY

Figure 4.1 shows an electric field �E and an electric displacement field �D crossing a
boundary between medium 1 and medium 2. The dimensionless unit normal vector
n̂ of the boundary surface points from medium 2 to medium 1. The electric field
and electric displacement field in medium 1 are called �E1 and �D1, respectively; and
the electric field and electric displacement field in medium 2 are called �E2 and �D2,
respectively. The tangential component of the electric field is always continuous
across the boundary:

( �E2 − �E1)× n̂
∣
∣
∣
∣ at any point

on the boundary

= 0;

and if there is a surface charge density SQ at the boundary, then the normal com-
ponent of the electric displacement field is discontinuous across the boundary;

( �D1 − �D2) · n̂
∣
∣
∣
∣ at any point

on the boundary

=�SQ.

Figure 4.1 The tangential component of the E field is always continuous across
the surface between medium 1 and medium 2 and the normal component of the D
field may be discontinuous.
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The value of � in the second equation comes from Table 4.2; and since the first
equation contains none of the free parameters ε̃, µ̃, k0, or �, it has the same form
in all the electromagnetic systems of Table 4.2. When the first equation is written
in the rationalized mks system, there is no reason to expect a prefix “f,” but when
the second equation is written in rationalized mks, Table 4.3(a) shows that �D1 and
�D2 should be given the prefix “f ” to match the rationalized mks notation used

in previous chapters. When either the first or second equations are written in the
Heaviside-Lorentz system, Table 4.3(b) shows that �E1, �E2, �D1, �D2, and SQ should
be given a prefix “h” to match the Heaviside-Lorentz notation used in the previous
chapters.

4.2.31 THE SURFACE CONDITIONS ON THE MAGNETIC FIELD AND THE

MAGNETIC INDUCTION ACROSS A BOUNDARY

Figure 4.2 shows a magnetic field �H and a magnetic induction field �B crossing a
boundary between medium 1 and medium 2. The dimensionless unit normal vector
n̂ of the boundary surface points from medium 2 to medium 1. The magnetic field
and magnetic induction field in medium 1 are called �H1 and �B1, respectively; and
the magnetic field and magnetic induction field in medium 2 are called �H2 and �B2,
respectively. The tangential component of the magnetic field across the boundary
is discontinuous if there is a surface current density �JS :

( �H2 − �H1)× n̂
∣
∣
∣
∣ at any point

on the boundary

= k0� �JS;

and the normal component of the magnetic induction is always continuous across
the boundary:

( �B1 − �B2) · n̂
∣
∣
∣
∣ at any point

on the boundary

= 0.

The surface current density �JS points out of the page in Fig. 4.2. The values of
k0 and � in the first equation come from Table 4.2; and since the second equation
contains none of the free parameters ε̃, µ̃, k0, or �, it has the same form in all
the electromagnetic systems of Table 4.2. When the first equation is written in the
rationalized mks system, Table 4.3(a) shows that �H should be given the prefix “f ”
to match the rationalized mks notation used in the previous chapters; but when the
second equation is written in rationalized mks, there is no reason to expect prefixes.
When the first and second equations are written in the Heaviside-Lorentz system,
Table 4.3(b) shows that �H1, �H2, �B1, �B2, and �JS should be given the prefix “h” to
match the Heaviside-Lorentz notation used in the previous chapters.
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Figure 4.2 The normal component of the B field is always continuous across the
surface between medium 1 and medium 2 and the tangential component of the H
field may be discontinuous. The surface current �JS points out of the page.

4.2.32 THE TORQUE ON A MAGNETIC DIPOLE IN A MAGNETIC INDUCTION

FIELD

The torque �T experienced by a small current-loop magnetic dipole �mI located at a
point where there is an external magnetic induction field �B is

�T = �mI × �B,

and the torque experienced by a small permanent-magnet dipole �mH located at a
point where there is an external magnetic induction field �B is

�T =
(

1

µ̃
�mH
)

× �B.

The value of µ̃ in the second formula comes from Table 4.2; the first formula does
not contain any of the free parameters ε̃, µ̃, k0, or �, which means it has the same
form in all of the electromagnetic systems listed in Table 4.2. These two equations
become identical when written in the electromagnetic systems of Table 4.2 for
which µ̃= 1, because in these systems �mH = �mI (see Section 4.2.13 above). When
these equations are written in the Heaviside-Lorentz system, Table 4.3(b) shows
that �mI, �mH , and �B should be given the prefix “h” to match the Heaviside-Lorentz
notation used in the previous chapters. When the second equation is written in the
rationalized mks system, Table 4.3(a) shows that �mH and µ̃= µ0 should both be
given the prefix “f ” to match the rationalized mks notation used in the previous
chapters. [Table 4.3(a) also shows that no prefixes are to be expected when the first
equation is put into rationalized mks.]

4.2.33 THE POTENTIAL ENERGY OF A MAGNETIC DIPOLE IN A MAGNETIC

INDUCTION FIELD

The potential energyU associated with the orientation of a small current-loop mag-
netic dipole �mI located at a point where there is an external magnetic induction
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field �B is

U = − �mI · �B,

and the potential energy U associated with the orientation of a small permanent-
magnet dipole �mH located at a point where there is an external magnetic induction
field �B is

U = −
(

1

µ̃
�mH
)

· �B.

The value of µ̃ in the second formula comes from Table 4.2; the first formula does
not contain any of the free parameters ε̃, µ̃, k0, or �, so it has the same form in all
the electromagnetic systems listed in Table 4.2. The two equations become identi-
cal in the electromagnetic systems of Table 4.2 for which µ̃= 1, because in these
systems �mH = �mI (see Section 4.2.13 above). When these equations are put into
the Heaviside-Lorentz system, Table 4.3(b) shows that �mI, �mH , and �B should be
given the prefix “h” to match the Heaviside-Lorentz notation used in the previ-
ous chapters. When the second equation is put into the rationalized mks system,
Table 4.3(a) shows that �mH and µ̃ = µ0 should both be given the prefix “f ” to
match the rationalized mks notation used in the previous chapters. [Table 4.3(a)
also shows that no prefixes are to be expected when the first equation is put into
rationalized mks.]

4.2.34 THE MAGNETIC INDUCTION FIELD OF A MAGNETIC DIPOLE

The magnetic induction field �B generated by a small current-loop magnetic dipole
located in a vacuum is

�B =
(
�µ̃

4πr3

)

· [3êr
(
êr · �mI

)− �mI
]
,

and the magnetic induction field �B generated by a small permanent-magnet dipole
located in a vacuum is

�B =
(
�

4πr3

)

· [3êr
(
êr · �mH

)− �mH
]
.

In both equations, r is the distance between the dipole and the field point where
�B is evaluated, and êr is the dimensionless unit vector pointing from the dipole to
the field point. The values of µ̃ and � come from Table 4.2. These two equations
become identical when written in the electromagnetic systems of Table 4.2 which
have µ̃= 1, because in these systems �mH = �mI (see Section 4.2.13 above). When
these two equations are written in the rationalized mks system, Table 4.3(a) shows
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that �mH and µ̃= µ0 should be given the prefix “f ” to match the rationalized mks
notation used in the previous chapters. When they are written in the Heaviside-
Lorentz system, Table 4.3(b) shows that �mI , �mH , and �B should be given the prefix
“h” to match the Heaviside-Lorentz notation used in the previous chapters.

4.2.35 THE RELATIONSHIP BETWEEN THE MAGNETIC INDUCTION AND THE

MAGNETIC VECTOR POTENTIAL

The magnetic induction �B can always be written as

�B = �∇ × �A

for a vector field �A called the magnetic vector potential. This formula does not
contain any of the free parameters ε̃, µ̃, k0, or �, which means it has the same
form in all the electromagnetic systems listed in Table 4.2. When this formula is
used in the rationalized mks system, Table 4.3(a) shows that no prefixes are to
be expected; and when it is used in the Heaviside-Lorentz system, Table 4.3(b)
shows that �A and �B should be given the prefix “h” to match the Heaviside-Lorentz
notation used in previous chapters.

4.2.36 THE RELATIONSHIP BETWEEN THE ELECTRIC FIELD, ELECTRIC

POTENTIAL, AND THE MAGNETIC VECTOR POTENTIAL

The electric field �E can always be written as

�E = −�∇V − k0
∂ �A
∂t
,

where V is the electric potential and �A is the magnetic vector potential. The value
of k0 comes from Table 4.2. When this formula is used in the rationalized mks
system, Table 4.3(a) shows that no prefixes are to be expected; and when it is
used in the Heaviside-Lorentz system, Table 4.3(b) shows that �A,V , and �E should
be given the prefix “h” to match the Heaviside-Lorentz notation used in previous
chapters.

4.2.37 THE MAGNETIC VECTOR POTENTIAL OF A MAGNETIC DIPOLE

The magnetic vector potential �A of a current-loop magnetic dipole �mI located in a
vacuum is

�A=
(
�µ̃

4πr3

)

· [ �mI × (rêr )
]
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and the magnetic vector potential �A of a permanent-magnet dipole �mH located in
a vacuum is

�A=
(
�

4πr3

)

· [ �mH × (rêr)
]
.

In both formulas, r is the distance between the permanent-magnet dipole and the
field point where �A is evaluated, and êr is the dimensionless unit vector pointing
from the dipole to the field point. The values of µ̃ and � come from Table 4.2.
These two formulas become identical when written in the electromagnetic sys-
tems of Table 4.2 that have µ̃= 1, because in these systems, �mH = �mI (see Sec-
tion 4.2.13). When the two formulas are used in the rationalized mks system, Ta-
ble 4.3(a) shows that �mH and µ̃ = µ0 should be given the prefix “f ” to match
the rationalized mks notation used in the previous chapters. When they are used in
the Heaviside-Lorentz system, Table 4.3(b) shows that �mI, �mH , and �A should be
given the prefix “h” to match the Heaviside-Lorentz notation used in the previous
chapters.

4.2.38 THE ELECTRIC-CIRCUIT EQUATIONS

Ideal capacitors in electric circuits obey the equation

Q=C · V,
whereQ is the charge on the capacitor, V is the capacitor’s electric potential differ-
ence (often called the voltage across the capacitor), and C is its capacitance. This
equation can also be written as

V = S ·Q,
where S, which is clearly equal to C−1, is called the elastance of the capacitor.
Resistors in electric circuits obey the equation

V = I ·R,
where V is the electric potential or voltage across the resistor, I is the current
through the resistor, and the resistance of the resistor is R. This equation is also
written as

I =G · V,
where G, which is clearly equal to R−1, is called the conductance of the resistor.
The relationship between chargeQ and current I in a circuit is

I = dQ

dt
,
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with dQ/dt being the derivative of charge Q with respect to time t , showing the
rate at which charge is moving through the circuit. Ideal inductors in electric cir-
cuits obey the equation

V =L · dI
dt
,

where V is the electric potential or voltage across the inductor, I is the current
through the inductor, dI/dt is the derivative of the current with respect to time,
showing the rate at which the current flowing through the inductor is changing,
and L is the inductance of the inductor. There are no free parameters ε̃, µ̃, k0, or�
in these electric-circuit equations, which means they have the same form in all the
electromagnetic systems of Table 4.2. Table 4.3(a) shows that when these equations
are written in the rationalized mks system, no prefixes are to be expected; and
Table 4.3(b) shows that when these equations are written in the Heaviside-Lorentz
system,Q,C,S,V, I,R,G, and L should all be given the prefix “h” to match the
Heaviside-Lorentz notation used in the previous chapters.

4.2.39 THE MAGNETIC-CIRCUIT EQUATIONS

For a magnetic circuit like the one shown in Fig. 4.3, the magnetomotive force F
obeys the equation

R ·#B =F .

Here R is the reluctance of the magnetic circuit and #B is the magnetic flux
through the cross-sectional surface aB in Fig. 4.3. The formula for #B is

#B =
∫

aB

( �B · n̂)da,

Figure 4.3 Curve LH is used to define the magnetomotive force F .
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where n̂ is a dimensionless unit vector normal to surface aB in Fig. 4.3 and �B is
the magnetic induction field over the surface. Figure 4.3 also specifies the closed
curve LH , which is used to define the magnetomotive force F as a line integral
over the magnetic field �H :

F =
∫

LH

�H ·d�l.

Curve LH must go through all of the current-carrying loops around the metal core.
The relationship between F and #B can also be written as

#B =P ·F,

where P , which clearly equals R−1, is called the permeance. There are no free
parameters ε̃, µ̃, k0, or � in these magnetic-circuit equations, which means they
have the same form in all of the electromagnetic systems of Table 4.2. When these
magnetic-circuit equations are written in the rationalized mks system, Table 4.3(a)
shows that F,R,P , and �H should be given the prefix “f ” to match the ratio-
nalized mks notation used in the previous chapters; and when they are written in
the Heaviside-Lorentz system, Table 4.3(b) shows that #B,F, �H , and �B should
be given the prefix “h” to match the Heaviside-Lorentz notation used in previous
chapters.

4.2.40 THE RELATIONSHIP BETWEEN MAGNETOMOTIVE FORCE AND

CURRENT

The magnetic circuit shown in Fig. 4.3 has a magnetomotive force F , which is
given by

F = (k0�)NI,

where I is the current flowing in the circuit and N is the total number of turns of
wire about the metal core. The values of k0 and � come from Table 4.2. When
this equation is written in the rationalized mks system, Table 4.3(a) shows that
F should be given the prefix “f ” to match the rationalized mks notation used
in previous chapters; and when this equation is written in the Heaviside-Lorentz
system, Table 4.3(b) shows that I and F should be given the prefix “h” to match
the Heaviside-Lorentz notation used in previous chapters.
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4.2.41 CONDUCTIVITY, RESISTIVITY, VOLUME CURRENT DENSITY, AND

THE ELECTRIC FIELD

The conductivity σ is the proportionality constant between the electric field �E and
the volume current density �J :

�J = σ · �E.

Of course in empty charge-free space, σ = 0 for all electromagnetic systems and
units. The equation for the conservation of charge is

∂ρQ

∂t
+ �∇ · �J = 0,

where ρQ is the volume charge density. The resistivity ρR is

ρR = 1

σ
.

The resistivity of a homogeneous wire whose resistance is R and that has a length
1 and cross-sectional area a is

ρR = aR

1
.

The current I in the wire can be written as

I =
∫

a

( �J · n̂)da,

where n̂ is the dimensionless unit normal vector of the wire’s cross-sectional sur-
face a and �J is the volume current density inside the wire. There are no free pa-
rameters ε̃, µ̃, k0, or � in these five equations, which means they have the same
form in all the electromagnetic systems of Table 4.2. Table 4.3(a) shows there is
no prefix expected on any of the variables of these equations when they are written
in the rationalized mks system. Table 4.3(b) shows that when these equations are
written in the Heaviside-Lorentz system, �E,σ, �J ,ρQ,ρR,R, and I should all be
given the prefix “h” to match the Heaviside-Lorentz notation used in the previous
chapters.
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4.2.42 THE DEFINING EQUATIONS FOR THE ELECTRIC SUSCEPTIBILITY

AND THE RELATIVE DIELECTRIC CONSTANT

Inside a substance or medium where the electric dipole density �P is parallel to the
electric field �E,

�P = χe · ε̃ · �E,

where χe is called the electric susceptibility of the substance or medium. The rela-
tive dielectric constant εr of the substance or medium is

εr = 1 +�χe,

and the electric displacement �D inside the substance or medium is

�D = εr · ε̃ · �E.

In electromagnetic systems where ε̃ �= 1, this last formula is often written as

�D = ε · �E, with ε = εr · ε̃

called the dielectric constant of the substance or medium. The values ε̃ and �
come from Table 4.2. When these equations are used in the rationalized mks sys-
tem, Table 4.3(a) shows that �D,χe, ε, and ε̃ = ε0 should be given the prefix “f ” to
match the rationalized mks notation of previous chapters; and when they are used in
the Heaviside-Lorentz system, Table 4.3(b) shows that χe, �E, �P , and �D should be
given the prefix “h” to match the Heaviside-Lorentz notation use in previous chap-
ters. Of course, in empty space χe = 0 and εr = 1 for all electromagnetic systems
and units. Consequently in empty space the �E and �D fields are always the same in
those electromagnetic systems where ε̃ = 1. (Note that this matches the analysis of
the �E and �D fields in Section 4.2.26.) In electromagnetic systems where ε̃ = 1, the
relative dielectric constant εr is sometimes called just the dielectric constant and
the “r” subscript is dropped, giving �D = εr �E = ε �E.

4.2.43 THE DEFINING EQUATIONS FOR THE MAGNETIC SUSCEPTIBILITY

AND THE RELATIVE MAGNETIC PERMEABILITY

Inside a substance or medium where the current-loop magnetic dipole density �MI
and the permanent-magnet dipole density �MH are parallel to the magnetic field �H ,
the magnetic susceptibility χm satisfies the equations

�MH = χm · µ̃ · �H and �MI = χm · �H.
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The relative magnetic permeability of the substance or medium is

µr = 1 +�χm,

and the magnetic induction field �B inside the substance or medium satisfies the
equation

�B =µr · µ̃ · �H or �H = (µrµ̃)−1 · �B.

In electromagnetic systems where µ̃ �= 1, these last two formulas are often written
as

�B = µ · �H and �H = µ−1 · �B, with µ=µr · µ̃

called the magnetic permeability of the substance or medium. The values of µ̃ and
� come from Table 4.2. When these equations are used in the rationalized mks
system, Table 4.3(a) shows that �H, �MH,χm,µ, and µ̃ = µ0 should be given the
prefix “f ” to match the rationalized mks notation used in the previous chapters;
and when the equations are used in the Heaviside-Lorentz system, Table 4.3(b)
shows that �H, �MH, �MI, �B , and χm should be given the prefix “h” to match the
Heaviside-Lorentz notation used in the previous chapters. In empty space χm = 0
and µr = 1 for all electromagnetic systems and units. The above formulas then
require the �B and �H fields to be the same in empty space in those electromagnetic
systems where µ̃ = 1. Note that this matches what was said about the �B and �H
fields in Sections 4.2.27 and 4.2.28. Note also that, according to Section 4.2.17, �MI
and �MH become the same when µ̃= 1. Consequently, the first two equations given
here—the formulas for �MI and �MH in terms of the magnetic field—become the
same equation when µ̃= 1. In electromagnetic systems where µ̃= 1, the relative
magnetic permeability µr is sometimes called just the magnetic permeability and
the “r” subscript is dropped, giving

�B =µr · �H =µ · �H and �H =µ−1
r · �B = µ−1 · �B.

4.2.44 THE CAPACITANCE OF A PARALLEL-PLATE CAPACITOR

The capacitance C of a parallel-plate capacitor is

C = εr ε̃a

�s
,

where εr is the relative dielectric constance of the substance between the plates, a
is the area of either one of the two equal-sized plates, and s is the distance between
the plates. (Of course εr = 1 in all electromagnetic systems and units when the two
capacitor plates are separated by empty space.) The values of ε̃ and � come from
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Table 4.2. When this formula is used in the rationalized mks system, Table 4.3(a)
shows that ε̃ = ε0 should be given the prefix “f ” to match the rationalized mks
notation used in previous chapters; and when it is used in the Heaviside-Lorentz
system, Table 4.3(b) shows that C should be given the prefix “h” to match the
Heaviside-Lorentz notation used in previous chapters.

4.2.45 THE INDUCTANCE OF A SOLENOIDAL INDUCTOR

The self-inductance L of a solenoidal inductor is

L=�k2
0

(
N2

s

)

µrµ̃
(
πr2),

where the inductor is N coils of wire around the walls of a tube which has a length
s and a radius r . The material filling the tube has a relative magnetic permeability
µr . (Of course, µr = 1 in all electromagnetic systems and units when the tube con-
tains just empty space.) The values of �,k0, and µ̃ come from Table 4.2. When
this formula is used in the rationalized mks system, Table 4.3(a) shows that µ̃=µ0
should be given the prefix “f ” to match the rationalized mks notation used in pre-
vious chapters; and when it is used in the Heaviside-Lorentz system, Table 4.3(b)
shows that L should be given the prefix “h” to match the Heaviside-Lorentz nota-
tion used in previous chapters.

4.2.46 THE FORCE PER UNIT LENGTH BETWEEN TWO PARALLEL,
CURRENT-CARRYING WIRES

The force per unit length of wire, φ, between two long parallel wires inside a
substance or medium of relative magnetic permeability µr and carrying currents
I1 and I2 is

φ =
(
µrµ̃�k

2
0

2π

)

·
(
I1I2

s

)

,

where s is the distance between the two wires, as shown in Fig. 4.4. (Of course, in
empty space µr = 1 in all electromagnetic systems and units.) The values of µ̃,�,
and k0 come from Table 4.2. When this equation is used in the rationalized mks
system, Table 4.3(a) shows that µ̃ = µ0 should be given the prefix “f ” to match
the rationalized mks notation used in previous chapters; and when it is used in the
Heaviside-Lorentz system, Table 4.3(b) shows that I1 and I2 should be given the
prefix “h” to match the Heaviside-Lorentz notation used in previous chapters. The
two wires attract each other when the two currents are flowing in the same direction
and repel each other when the two currents are flowing in opposite directions.
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Figure 4.4 The two wires separated by a distance s attract each other when their
currents I1 and I2 flow in the same direction and repel each other when their cur-
rents I1 and I2 flow in opposite directions.

4.2.47 THE MAGNETIC FIELD AND MAGNETIC INDUCTION

OF A LONG, CURRENT-CARRYING WIRE

The magnetic induction field �B generated by a long straight wire inside a substance
or medium of relative magnetic permeability µr and carrying a current I is

�B =
(
�µrµ̃k0

2π

)

·
(
I

s

)

ê,

and the magnetic field �H generated by the wire is

�H =
(
�k0

2π

)

·
(
I

s

)

ê.

In these two formulas, s is the distance between the wire and the field point at
which �B or �H is evaluated, and ê is the dimensionless unit vector specifying the
direction of the �B and �H fields (see Fig. 4.5). The dimensionless unit vector ê is
perpendicular both to the wire and to the line segment of length s joining the field
point and the wire. When the current I is flowing directly at an observer looking
along the wire, the observer sees vector ê pointing in a counterclockwise direction
about the wire. The values of µ̃, k0, and � come from Table 4.2. When these two
equations are written in the rationalized mks system, Table 4.3(a) shows that �H and
µ̃=µ0 should be given the prefix “f ” to match the rationalized mks notation used
in the previous chapters; and when the two equations are written in the Heaviside-
Lorentz system, Table 4.3(b) shows that I, �B , and �H should be given the prefix “h”
to match the Heaviside-Lorentz notation used in the previous chapters. In empty
space, µr = 1 in all electromagnetic systems and units, which means that these
two formulas become identical in electromagnetic systems where µ̃ = 1. This is
just another example of how the �H and �B fields become identical in empty space
when µ̃= 1 (see Sections 4.2.27 and 4.2.28).
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Figure 4.5 The current I flowing in a long, straight wire generates B and H fields
pointing in the direction specified by unit vector ê at field points a distance s from
the wire.

4.2.48 INTEGRAL FORMULA FOR THE FORCE BETWEEN TWO CURRENT

LOOPS

The infinitesimal component of force d2 �F12 on length element d �11 of circuit loop
L1 in Fig. 4.6 from length element d �12 of circuit loop L2 in Fig. 4.6 is

d2 �F12 =
(
�k2

0

4π

)

µrµ̃I1I2

[
d �11 × (d �12 × �r12)

|�r12|3
]

,

where I1 is the current in the direction of d �11 in loop L1, I2 is the current in the
direction of d �12 in loop L2, �r12 is the distance vector pointing from d �12 to d �11,
and µr is the relative magnetic permeability of the substance or medium in which
the two loops reside. (Of course, in empty space µr = 1 for all electromagnetic
systems and units.) Although, according to this formula, the force on one current
element is not necessarily equal and opposite to the force on the other current
element, which is in disagreement with Newton’s third law, this can be fixed by
integrating over both current loops in Fig. 4.6 to find that �F12, the force on current
loop L1 by current loop L2, is

�F12 =
(
�k2

0

4π

)

µrµ̃I1I2

∫

L1

∫

L2

d �11 × (d �12 × �r12)

|�r12|3

= −
(
�k2

0

4π

)

µrµ̃I1I2

∫

L1

∫

L2

(d �11 ·d �12)�r12

|�r12|3 .

Here the second double integral is explicitly symmetrical over all the pairs of length
elements d �11 and d �12 (remember that for every vector �r12 inside the double in-
tegrals over L1 and L2 there is a corresponding �r21 vector).2 We can therefore
conclude that, even though Newton’s third law is not obeyed for the physically
unrealistic formula for the force between two “pieces” of a circuit, it is obeyed
for the physically realistic formula for the force between two complete circuits.
The values of µ̃, k0, and � come from Table 4.2. When these equations are writ-
ten in the rationalized mks system, Table 4.3(a) shows that µ̃=µ0 should be given
the prefix “f ” to match the rationalized mks notation used in the previous chapters;
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Figure 4.6 Current I1 flows around loop L1 in the direction specified by d �11 and
current I2 flows around loop L2 in the direction specified by d �12.

and when these equations are written in the Heaviside-Lorentz system, Table 4.3(b)
shows that I1 and I2 should be given the prefix “h” to match the Heaviside-Lorentz
notation used in the previous chapters.

4.2.49 THE MAGNETIC FIELD AND MAGNETIC INDUCTION OF A CURRENT

LOOP (BIOT-SAVART LAW)

The Biot-Savart law states that when the length element d �1 carries a current I
travelling in the direction in which d �1 is pointing, there is an infinitesimal magnetic
induction field d �B given by

d �B =
(
�k0µrµ̃I

4π

)
d �1× �r
|�r|3

and an infinitesimal magnetic field d �H given by

d �H =
(
�k0I

4π

)
d �1× �r
|�r|3 .

Here, µr is the relative permeability of the substance or medium in which d �1 and
the field point are embedded, and �r is the distance vector pointing from the current
element to the field point. Of course, in empty space µr is 1 for all electromagnetic
systems and units, which means that in empty space the right-hand sides of these
two formulas become the same when working in electromagnetic systems that have
µ̃= 1. This is another example of how in empty space the �H and �B fields become
identical in electromagnetic systems where µ̃= 1 (see Sections 4.2.27 and 4.2.28).
Integration over all the length elements d �1 that make up a single current loop LI
carrying a current I shows that the magnetic induction �B at the field point must be

�B =
(
�k0µrµ̃I

4π

)∫

LI

d �1× �r
|�r|3
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and the magnetic field �H at the field point must be

�H =
(
�k0I

4π

)∫

LI

d �1× �r
|�r|3 .

The values of µ̃, k0, and � come from Table 4.2. When these four equations are
written in the rationalized mks system, Table 4.3(a) shows that d �H, �H , and µ̃=µ0
should be given the prefix “f ” to match the rationalized mks notation used in
the previous chapters; and when the four equations are written in the Heaviside-
Lorentz system, Table 4.3(b) shows that d �H, �H,I , and �B should be given the
prefix “h” to match the Heaviside-Lorentz notation used in the previous chapters.

4.2.50 INTEGRAL FORMULA FOR THE ELECTRIC FIELD AN ELECTRIC

DISPLACEMENT OF A STATIC CHARGE-DENSITY DISTRIBUTION

A static∗ volume charge density ρQ is located inside a substance or material with a
constant relative permittivity εr , which fills all space. The value of ρQ is a function
of a position vector �r ′ and, at a field point whose position vector is �r , generates an
electric field �E such that

�E
∣
∣
∣
∣
at �r

= �

4πεr ε̃

∫ [ρQ(�r ′)](�r − �r ′)
|�r − �r ′|3 d3r ′.

The corresponding electric displacement �D at that field point is

�D
∣
∣
∣
∣
at �r

= �

4π

∫ [ρQ(�r ′)](�r − �r ′)
|�r − �r ′|3 d3r ′.

In both formulas, d3r ′ is an infinitesimal volume element used in an integration
over the entire volume of space for which ρQ(�r ′), the volume charge density at po-
sition �r ′, is not zero. For this integration to make sense, the charge density should
occupy only a finite volume of space. In empty space, εr = 1 for all electromag-
netic systems and units, which means that in empty space the right-hand sides of
these two formulas become identical when working in electromagnetic systems
where ε̃ = 1. This is another example of how in empty space the �E and �D fields
become identical when ε̃ = 1 (see Section 4.2.26 above). The values of ε̃ and �
in these two formulas come from Table 4.2. When the two formulas are written
in the rationalized mks system, Table 4.3(a) shows that �D and ε̃ = ε0 should be
given the prefix “f ” to match the rationalized mks notation used in the previous
chapters; and when the formulas are written in the Heaviside-Lorentz system, Ta-
ble 4.3(b) shows that ρQ, �E, and �D should be given the prefix “h” to match the
Heaviside-Lorentz notation used in the previous chapters.
∗ Here “static” means that the volume charge density ρQ does not change with time.
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4.2.51 INTEGRAL FORMULA FOR THE MAGNETIC FIELD AND MAGNETIC

INDUCTION OF A STATIC CURRENT-DENSITY DISTRIBUTION

A static∗ volume current density �J is located inside a substance or medium with
a relative permeability µr , which fills all space. The value of �J is a function of
a position vector �r ′and, at a field point whose position vector is �r , generates a
magnetic induction �B such that

�B
∣
∣
∣
∣
at �r

= �k0µrµ̃

4π

∫ [ �J (�r ′)] × (�r − �r ′)
|�r − �r ′|3 d3r ′.

The corresponding magnetic field �H at that field point is

�H
∣
∣
∣
∣
at �r

= �k0

4π

∫ [ �J (�r ′)] × (�r − �r ′)
|�r − �r ′|3 d3r ′.

In both formulas d3r ′ is an infinitesimal volume element used in an integration over
the entire volume of space for which �J (�r ′), the volume current density at position
�r ′, is not zero. For this integration to make sense, the charge density should oc-
cupy only a finite volume of space. In empty space, µr = 1 for all electromagnetic
systems and units, which means that in empty space the right-hand sides of these
two equations become identical when working in electromagnetic systems where
µ̃= 1. This is another example of how in empty space the �B and �H fields become
identical when µ̃= 1 (see Sections 4.2.27 and 4.2.28 above). The values of µ̃, k0,
and � in these equations come from Table 4.2. When the equations are written
in the rationalized mks system, Table 4.3(a) shows that �H and µ̃= µ0 should be
given the prefix “f ” to match the rationalized mks notation used in the previous
chapters; and when the equations are written in the Heaviside-Lorentz system, Ta-
ble 4.3(b) shows that �J , �B , and �H should be given the prefix “h” to match the
Heaviside-Lorentz notation used in previous chapters.

4.2.52 THE INTEGRAL OF THE MAGNETIC INDUCTION OVER A CLOSED

SURFACE

The integral of a magnetic induction field �B over a closed surface Sc is

∫

Sc
( �B · n̂)da = 0.

Here, n̂ is the dimensionless unit vector that is normal to the area da of an infini-
tesimal patch of surface Sc and points outwards from the volume enclosed by Sc.
∗ Here “static” means that the volume current density J does not change with time.
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This formula contains none of the free parameters ε̃, µ̃, k0, or�, so it has the same
form for all the electromagnetic systems listed in Table 4.2. When this formula
is written in the Heaviside-Lorentz system, Table 4.3(b) shows that �B should be
given the prefix “h” to match the Heaviside-Lorentz notation used in the previous
chapters. Table 4.3(a) shows that there is no reason to expect a prefix when the
formula is written in the rationalized mks system.

4.2.53 THE INTEGRAL OF THE ELECTRIC FIELD AND THE ELECTRIC

DISPLACEMENT OVER A CLOSED SURFACE

The integral of an electric displacement field �D over a closed surface Sc is

∫

Sc
( �D · n̂)da =�Q,

whereQ is the total charge contained inside surface Sc, and n̂ is the dimensionless
unit vector that is normal to the area da of an infinitesimal patch of surface Sc
and points outwards from the volume enclosed by Sc. If the surface is located in
a substance or medium that has a constant relative dielectric constant εr , then the
integral of the electric field �E over Sc is

∫

Sc
( �E · n̂)da = �

εr ε̃
Q,

with n̂,Q, and da having the same meaning as before. In empty space, εr = 1 for
all electromagetic systems and units, which means that in empty space the right-
hand sides of these two equations become the same when working in electromag-
netic systems where ε̃ = 1. This is another example of how in empty space the �E
and �D fields become identical when ε̃ = 1 (see Section 4.2.26 above). The values
of ε̃ and � in these two equations come from Table 4.2. When the two equations
are written in the rationalized mks system, Table 4.3(a) shows that �D and ε̃ = ε0
should be given the prefix “f ” to match the rationalized mks notation used in pre-
vious chapters; and when the two equations are written in the Heaviside-Lorentz
system, Table 4.3(b) shows that �D, �E, and Q should be given the prefix “h” to
match the Heaviside-Lorentz notation used in previous chapters.

4.2.54 THE INTEGRAL OF THE MAGNETIC FIELD AND THE MAGNETIC

INDUCTION OVER A CLOSED LOOP

The line integral of a magnetic field �H around a closed loop Lc is

∫

Lc

�H ·d �1= (k0�)I,
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where I is the total current flowing through loop Lc and d �1 is a length element
of loop Lc. From the point of view of an observer toward whom the current I is
flowing, length element d �1 points counterclockwise around the loop (see Fig. 4.7).
The magnetic field is one of a static collection of electromagnetic fields—that is,
the electromagnetic fields are not changing with time. If the loop is located in a
substance or medium having a constant magnetic permeability µr , then the line
integral around Lc of the magnetic induction �B , which is also part of a static col-
lection of electromagnetic fields, is

∫

Lc

�B ·d �1= (k0�µrµ̃)I,

with I and d �1 having the same meaning as before. In empty space, µr = 1 in all
electromagnetic systems and units, which means that in empty space the right-hand
sides of these equations become identical in those electromagnetic systems where
µ̃ = 1. This is another example of how the �B and �H fields become identical in
empty space when µ̃ = 1 (see Sections 4.2.27 and 4.2.28 above). The values of
µ̃, k0, and� in these two equations come from Table 4.2. When the two equations
are written in the rationalized mks system, Table 4.3(a) shows that �H and µ̃= µ0
should be given the prefix “f ” to match the rationalized mks notation used in the
previous chapters; and when the equations are written in the Heaviside-Lorentz
system, Table 4.3(b) shows that �H, �B , and I should be given the prefix “h” to
match the Heaviside-Lorentz notation used in the previous chapters.

4.2.55 THE RELATIONSHIP BETWEEN THE ELECTRIC POTENTIAL OR

VOLTAGE AROUND A CLOSED CIRCUIT OR LOOP AND THE

MAGNETIC FLUX THROUGH THE CLOSED CIRCUIT OR LOOP

The line integral of the electric field �E around a closed circuit or loop Lc is called
the voltage V around the closed circuit or loop,

V =
∫

Lc

�E ·d �1.

Figure 4.7 Loop Lc encloses current I. The line integral of the H or B field around
the loop in the direction shown by vector d �1 is proportional to I.
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If SB is a surface (not a closed surface) whose edges are curve Lc, as shown in
Fig. 4.8, then the magnetic flux#B of the magnetic induction field �B through loop
Lc is defined to be

#B =
∫

SB
( �B · n̂)da,

where da is the area of an infinitesimal patch of surface SB , and n̂ is the dimen-
sionless unit vector normal to the infinitesimal patch. Figure 4.8 specifies the rela-
tionship between the infinitesimal length elements d �1of curve Lc and the dimen-
sionless normal vectors n̂ of surface SB . If an observer looking down on loop Lc
sees d �1 pointing counterclockwise around the loop, then the n̂ normal vectors of
surface SB must point generally toward the observer rather than away from the
observer. The formula relating the line integral to the magnetic flux can now be
written as

V = −k0
d#B

dt
,

with the value of the free parameter k0 coming from Table 4.2. Note that the def-
initions of #B and V do not contain of the free parameters ε̃, µ̃, k0, or �, which
means they have the same form in all of the electromagnetic systems listed in Ta-
ble 4.2. When these three equations are written in the Heaviside-Lorentz system,
Table 4.3(b) shows that �E,V, �B , and #B should be given the prefix “h” to match
the Heaviside-Lorentz notation used in previous chapters; and when the three equa-
tions are written in the rationalized mks system, Table 4.3(a) shows that no prefixes
are to be expected.

Figure 4.8 Loop Lc is the edge of (unclosed) surface SB .
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4.2.56 MAXWELL’S EQUATIONS

The electric field �E, electric displacement field �D, magnetic field �H , and magnetic
induction field �B always obey the equations

�∇ · �D =�ρQ, �∇ · �B = 0,

�∇ × �H = k0

(

� �J + ∂ �D
∂t

)

, �∇ × �E + k0
∂ �B
∂t

= 0.

Here t is the time coordinate, ρQ is the volume charge density, �J is the volume
current density, and the �∇ operator has the same meaning as in Appendix 2.B of
Chapter 2. These four equations need to be combined with the formulas in Sec-
tions 4.2.26, 4.2.27, 4.2.28, 4.2.42, and 4.2.43 to specify the connections between
the �E, �D, �H , and �B fields. When Maxwell’s equations are applied to a collection
of fields inside a substance or material with a constant relative dielectric constant
εr and a constant relative magnetic permeability µr , they can be written as

∇ · �E = �

εr ε̃
ρQ,

�∇ · �B = 0,

�∇ × �B = (k0�µrµ̃) �J + (k0µrµ̃εr ε̃)
∂ �E
∂t
,

�∇ × �E + k0
∂ �B
∂t

= 0;

or as

�∇ · �D =�ρQ,
�∇ · �H = 0,

�∇ × �H = k0

(

� �J + ∂ �D
∂t

)

,

�∇ × �D + (k0µrµ̃εr ε̃)
∂ �H
∂t

= 0.

The values of ε̃, µ̃, k0, and � in these 12 equations come from Table 4.2. When
Maxwell’s equations are written in the rationalized mks system, Table 4.3(a) shows
that �D, �H, µ̃=µ0, and ε̃ = ε0 should be given the prefix “f ” to match the rational-
ized mks notation used in the previous chapters; and when Maxwell’s equations are
written in the Heaviside-Lorentz system, Table 4.3(b) shows that �E, �D, �B, �H, �J ,
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and ρQ should be given the prefix “h” to match the Heaviside-Lorentz notation
used in the previous chapters. In Sections 4.2.26, 4.2.27, and 4.2.28, we read that
in empty space, where µr = εr = 1, both the �E, �D fields and the �B, �H fields be-
come identical when working in electromagnetic systems where µ̃ = ε̃ = 1. The
above three sets of Maxwell’s equations obey this rule by requiring the �E and �D
fields and the �B and �H fields to solve the same equations in terms of �J and ρQ
when µr = εr = µ̃= ε̃ = 1.

4.2.57 THE WAVE EQUATIONS FOR THE ELECTRIC AND MAGNETIC

INDUCTION FIELDS

The electric field �E and magnetic induction field �B satisfy the wave equations

∇2 �E −�k2
0(µrµ̃)σ

∂ �E
∂t

− k2
0(µrµ̃)(εr ε̃)

∂2 �E
∂t2

= 0

and

∇2 �B −�k2
0(µrµ̃)σ

∂ �B
∂t

− k2
0(µrµ̃)(εr ε̃)

∂2 �B
∂t2

= 0,

when travelling through a substance or material characterized by a constant con-
ductivity σ , a constant relative magnetic permeability µr , and a constant relative
dielectric constant εr . Here, t is the time coordinate, and the Laplacian operator
∇2 is explained at the end of Appendix 2.B of Chapter 2. When the wave equa-
tions are written in the rationalized mks system, Table 4.3(a) shows that ε̃ = ε0 and
µ̃=µ0 should be given the prefix “f ” to match the rationalized mks notation used
in the previous chapters; and when the wave equations are written in the Heaviside-
Lorentz system, Table 4.3(b) shows that �E, �B , and σ should be given the prefix “h”
to match the Heaviside-Lorentz notation used in the previous chapters.

4.2.58 THE POYNTING VECTOR AND ENERGY DENSITY OF AN

ELECTROMAGNETIC FIELD

The formula for the energy density U , in units of energy per unit volume, of an
electromagnetic field at any field point is

U = 1

2�

( �E · �D + �B · �H ),

where �E, �D, �H, �B are, respectively, the electric field, the electric displacement
field, the magnetic field, and the magnetic induction field at the field point. The
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formula for U in empty space can be written as

U = 1

2�

(
ε̃| �E|2 + µ̃−1| �B|2).

The formula for the Poynting vector �S at the field point is

�S = 1

�k0

( �E × �H ),

and in empty space this can be written as

�S = 1

�µ̃k0

( �E × �B).

Vector �S points in the direction of the energy flow carried by the electromagnetic
field at the field point, and the magnitude of �S is the energy per unit time per unit
area carried by the electromagnetic field at the field point. When no other sources
or sinks of energy are present, the equation for conservation of electromagnetic
energy is

∂U
∂t

+ �∇ · �S = 0.

The values of ε̃, µ̃, k0, and � in the first four equations come from Table 4.2. The
fifth equation has none of these free parameters, so it has the same form in all the
electromagnetic systems of Table 4.2. When the first four equations are written in
the rationalized mks system, Table 4.3(a) shows that �D, �H, ε̃ = ε0, and µ̃ = µ0
should be given the prefix “f ” to match the rationalized mks notation used in
the previous chapters; and when they are written in the Heaviside-Lorentz system,
Table 4.3(b) shows that �E, �D, �H , and �B should be given the prefix “h” to match the
Heaviside-Lorentz notation used in the previous chapters. The fifth equation never
needs an “f ” or an “h” prefix because it only involves the nonelectromagnetic
quantities U and �S .

4.2.59 ELECTRIC DIPOLE RADIATING IN A VACUUM

When an electric dipole �p changes its magnitude or direction over time t , it emits
electromagnetic radiation. The field point at which the electromagnetic radiation is
evaluated is a distance r from dipole �p. This distance is much larger than the wave-
length λ of the emitted radiation, and λ is itself much larger than the characteristic
length of the dipole. The formula for the electric field �E of the radiation coming
from the dipole is

�E∣∣
at time t

= �k2
0µ̃

4πr

{

êr ×
(

êr × d2 �p
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
,
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where êr is the dimensionless unit vector pointing from the dipole to the field point
and c is the speed of light. The magnetic field �H of the radiation coming from the
dipole is, at that same field point,

�H ∣∣
at time t

= − �k0

4πcr

{

êr × d2 �p
dt2

}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
,

and the magnetic induction field �B of the radiation coming from the dipole is, at
that field point,

�B∣∣
at time t

= −�k0µ̃

4πcr

{

êr × d2 �p
dt2

}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
.

The right-hand sides of the formulas for the �H and �B fields become the same when
working in electromagnetic systems where µ̃ = 1. This is just another example
of how, when µ̃ = 1, the �H and �B fields become identical in empty space (see
Sections 4.2.27 and 4.2.28). If �p, whose characteristic length is much smaller than
λ, is thought of as being at the center of a large sphere of radius r , which is much
larger than λ, then the instantaneous electromagnetic energy flux W leaving the
sphere at any point on the sphere is

W
∣
∣

at time t
= �k2

0µ̃

16π2r2c

{∣
∣
∣
∣êr × d2 �p

dt2

∣
∣
∣
∣

2}∣∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
.

In this formula, W has units of energy per unit time per unit area of the sphere,
and êr is the dimensionless unit vector pointing from the center of the sphere to
the point on the sphere where W is being evaluated. For a sinusoidally oscillating
dipole,

�p(t)= �p0 sin(ωt),

with vector �p0 the amplitude of the oscillation and ω its angular frequency in ra-
dians per unit time, the time-averaged energy flux Wav leaving the sphere at any
point on the sphere is

Wav = �k2
0ω

4µ̃

32π2r2c
|êr × �p0|2.

Again, êr is the dimensionless unit vector pointing from the center of the sphere
to the point on the sphere where the energy flux is being evaluated. An integration
over the surface of the sphere shows thatW(tot)

av , the total and time-averaged radiant
energy per unit time emitted by a sinusoidally oscillating dipole, is

W(tot)
av = �k2

0ω
4µ̃

12πc
| �p0|2.
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The values of µ̃, k0, and � come from Table 4.2. When these equations are writ-
ten in the rationalized mks system, Table 4.3(a) shows that �H and µ̃= µ0 should
be given the prefix “f ” to match the rationalized mks notation used in the pre-
vious chapters; and when they are written in the Heaviside-Lorentz system, Ta-
ble 4.3(b) shows that �p, �p0, �E, �B , and �H should be given the prefix “h” to match
the Heaviside-Lorentz notation used in the previous chapters.

4.2.60 CURRENT-LOOP MAGNETIC DIPOLE RADIATING IN A VACUUM

When a current-loop magnetic dipole �mI changes its magnitude or direction over
time t , it emits electromagnetic radiation. The electromagnetic radiation is evalu-
ated at a field point that is a distance r from �mI . Distance r is much larger than the
wavelength λ of the emitted radiation, and λ is itself much larger than the dipole’s
characteristic length. The electric field �E of the radiation coming from the dipole
is given by

�E∣∣
at time t

= �k0µ̃

4πcr

{

êr × d2 �mI
dt2

}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
,

where c is the speed of light and êr is the dimensionless unit vector pointing from
the dipole to the field point. At that same field point, the magnetic field �H of the
radiation coming from the dipole is

�H ∣∣
at time t

= �

4πc2r

{

êr ×
(

êr × d2 �mI
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
,

and the magnetic induction field �B is, at that field point,

�B∣∣
at time t

= �µ̃

4πc2r

{

êr ×
(

êr × d2 �mI
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
.

These two formulas for the �H and �B fields have the same right-hand sides in elec-
tromagnetic systems where µ̃= 1. This just shows how, when µ̃= 1, the �H and
�B fields become identical in empty space (see Sections 4.2.27 and 4.2.28). If the
dipole, with a characteristic length that is much smaller than λ, is regarded as being
at the center of a large sphere of radius r , where r is much larger than λ, then the
electromagnetic energy fluxW leaving the sphere at any point on the sphere and at
any time t is

W
∣
∣

at time t
= �µ̃

16π2r2c3

{∣
∣
∣
∣êr × d2 �mI

dt2

∣
∣
∣
∣

2}∣∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
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Here, W has units of energy per unit time per unit area of the sphere, and êr is
the dimensionless unit vector pointing from the center of the sphere to the point on
the sphere whereW is being evaluated. We can represent a sinusoidally oscillating
dipole by

�mI(t)= �m0 sin(ωt),

with vector �m0 the amplitude of the oscillation and ω its angular frequency in
radians per unit time. Now, at any point on the sphere, the time-averaged energy
fluxWav leaving the sphere is

Wav = �ω4µ̃

32π2r2c3
|êr × �m0|2.

In this formula, êr is again the dimensionless unit vector pointing from the center
of the sphere to the point on the sphere where the energy flux is being evaluated.
Integrating over the surface of the sphere, we find that W(tot)

av , the total and time-
averaged radiant energy per unit time emitted by a sinusoidally oscillating dipole,
is

W(tot)
av = �ω4µ̃

12πc3 | �m0|2.

The free-parameter values µ̃, k0, and� come from Table 4.2. When we write these
equations in the rationalized mks system, Table 4.3(a) shows that �H and µ̃ = µ0
should be given the prefix “f ” to match the rationalized mks notation used in
the previous chapters; and when we write them in the Heaviside-Lorentz system,
Table 4.3(b) shows that �mI , �m0, �E, �B , and �H should be given the prefix “h” to
match the Heaviside-Lorentz notation used in the previous chapters.

4.3 UNDERSTANDING THE SUBSTITUTION TABLES

Before using the free-parameter method to transform an expression from one elec-
tromagnetic system to another, we must locate the expression in the previous sec-
tion’s list of equations and formulas—and if we cannot locate it, we must derive
it from others that we can. Always there is a location step, perhaps even a deriva-
tion step, before the electromagnetic expression is transformed. Substitution ta-
bles avoid this inefficiency by working directly with the electromagnetic variables
themselves. When using a substitution table, we only need to identify what phys-
ical quantity each variable represents—for example, this is the electric field, this
is the charge, this is the magnetomotive force, etc.—rather than match the electro-
magnetic expression as a whole to a predetermined list of equations and formulas.

There is nothing particularly subtle about the way substitution tables work. We
know from the work done in previous chapters that the transformation of physical
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quantities from one electromagnetic system to another can always, even when ra-
tionalization is involved, be represented by a multiplicative constant. As a reminder
of how this works, we consider the transformation of a magnetic field H from the
rationalized mks system to unrationalized Gaussian units. Following the notation
of Section 3.8, we can write in rationalized mks that

magnetic field in rationalized mks = f Hmks
amp

m
, (4.12a)

where fHmks is the numeric part of the magnetic field in rationalized mks, and
amp/m are the units of the magnetic field in rationalized mks. Similarly, according
to Section 3.2, we can write in Gaussian units that

magnetic field in Gaussian units =Hgs
abamp

cm
, (4.12b)

with Hgs the numeric part of the magnetic field in Gaussian units and abamp/cm =
oersted the corresponding magnetic-field units (see Table 3.1). The numeric parts
fHmks and Hgs of the magnetic field are numbers representing the magnetic field
measurements coming from instruments calibrated in the rationalized mks and
Gaussian systems respectively. If the strength of the magnetic field doubles, fHmks
and Hgs must both double; if the strength of the magnetic field triples, fHmks and
Hgs must both triple; and so on. This means the ratio of these two numbers must
be another number which always has the same value,

fHmks

Hgs
= constant.

The units amp, abamp,m, and cm are unchanging physical quantities, which makes
any product or ratio involving them also an unchanging physical quantity. Conse-
quently, the ratio

magnetic field in rationalized mks

magnetic field in Gaussian units
=
(

fHmks
amp

m

)/(

Hgs
abamp

cm

)

is an unchanging physical quantity. We call this ratio TH and write
(

fHmks
amp

m

)/(

Hgs
abamp

cm

)

= TH
or

Hgs
abamp

cm
· TH = fHmks

amp

m
. (4.13a)

Using the methods of Chapters 2 and 3 to solve for TH , we get

TH =
(
fHmks

Hgs

)

·
(

cm

m

)

·
(

amp

abamp

)

.
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From Table 3.17, we see that

fHmks

Hgs
= 103

4π
;

and from Table 2.3 and Table 3.8, we get

(
cm

m

)

·
(

amp

abamp

)

=
(

cm

m

)

·
(

coul

sec

)

·
(

sec

gm1/2cm1/2

)

= coul · cm1/2

gm1/2 · m
.

Hence, we can write

TH =
√

106

(4π)2

(
coul2 · cm

gm · m2

)

=
√

106

(4π)2

(
coul2 · 10−2m

10−3kg · m2

)

=
√

107

(4π)2
coul2

kg · m
.

Since (kg · m)/coul2 = henry/m, we see that, according to Eq. (3.36e),

TH =
√

1

(4π)2µ0
.

This can also be written as (see Table 3.14)

TH =
√

1

4πfµ 0
. (4.13b)

We note that, as expected, TH is not a dimensionless number but instead a dimen-
sional physical quantity having the units

√
m/henry.

The reasoning applied to find TH can always be used to construct a constant for
the transformation of a physical quantity from one electromagnetic system to an-
other. The transformation constant, for example, which takes electric charge from
Gaussian units to the rationalized mks system, satisfies the equation (see Tables 3.1
and 3.9)

(Qgsstatcoul)TQ =Qmkscoul (4.14a)

or

TQ =
(
Qmks

Qgs

)

·
(

coul

statcoul

)

.

According to Table 2.3 and Table 3.17, this can be written as

TQ = 10

ccgs
·
(

coul · sec

gm1/2cm3/2

)

=
√

102

c2
cgs

·
(

coul2

10−3kg · 10−2m

)

·
(

sec2

cm2

)

.
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Since ccgs · (cm/sec)= c, the speed of light, this becomes

TQ =
√

107

c2
·
(

coul2

kg · m

)

= 1

c

√

4π

fµ0
, (4.14b)

where in the last step we have again used (kg · m)/coul2 = henry/m, Eq. (3.36e)
and Table 3.14 to simplify the left-hand side of the formula. Equation (3.49e) shows
that TQ can also be written as

TQ =√
4πf ε0. (4.14c)

Since TQ in Eqs. (4.14b,c) is not the same transformation constant as TH in
Eq. (4.13b), this second example shows that we can expect to find different trans-
formation constants for different electromagnetic physical quantities.

Having found TQ for taking the electric charge from Gaussian units to the ra-
tionalized mks system, we can now, whenever we see Q in a rationalized mks
equation, replace Q by (TQ ·Q) and start regarding Q as being in Gaussian units.
The reason this works is easy to see: the charge Q in the original formula stands
for

Qmkscoul,

and having replaced this by (TQ ·Q), with the new Q in Gaussian units standing
for

Qgsstatcoul,

we know from the way TQ behaves in Eq. (4.14a) that

TQ ·Q= TQ · (Qgsstatcoul)=Qmkscoul.

Consequently, each “slot” for the electric charge in the original formula still con-
tains

Qmkscoul,

which means the equation must still hold true. If there is also a slot in the origi-
nal formula for the magnetic field, we can, using the rationalized mks notation of
Section 3.8, replace fH everywhere by (TH ·H), with H taken to be the magnetic
field in Gaussian units. According to Eq. (4.13a), all the magnetic-field slots still
hold

fHmks
amp

m
,

which means the equation again remains true.
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We can clearly extend this reasoning to all of the electromagnetic physical
quantities in the rationalized mks formula. For each electromagnetic physical quan-
tity Y , we find the transformation constant TY taking Y from the Gaussian units
to rationalized mks system. We then replace every Y in the original formula by
(TY · Y ), with Y now being thought of as the same physical quantity in Gaussian
units. Just as was the case for the magnetic field and electric charge, each Y -slot
still contains the appropriate rationalized mks quantity, which means the equation
remains true even though each Y variable is now regarded as being in Gaussian
units. Since both the original equation and the transformed equation state a rela-
tionship between the same groups of physical variables—that is, the transformation
does not change an electric field into a magnetic field, or a resistance into an in-
ductance, etc.—the transformed equation ought to be the Gaussian counterpart,
possibly in disguised form, of the rationalized mks equation. This same logic ob-
viously applies to any equation or formula for which we know all the TY values. In
fact, it applies to any transformation of physical quantities Y from one electromag-
netic system to another that can be represented by a multiplicative constant TY ;
that is, it applies to all the electromagnetic transformations discussed in this book.
Consequently, extending the list of Y and TY to the entire set of physical quanti-
ties and electromagnetic systems discussed in the previous chapters prepares us to
transform an enormous range of equations and formulas from one electromagnetic
system to another. In practice, what we have done, as shown in the Appendix to
this chapter, is to list substitution tables of (TY · Y ) versus Y for going back and
forth between all six electromagnetic systems listed in Table 4.2.

4.4 USING THE SUBSTITUTION TABLES

Substitution Tables 4.4(a)–(b) through 4.18(a)–(b) follow the same prefix conven-
tions used in the previous chapters for the rationalized mks and Heaviside-Lorentz
systems. These “f ” and “h” prefixes, however, do not play a crucial role in the
procedures described below. If, following the notation of almost all other authors,
we omit the “f ” and “h” prefixes, the substitution tables can still be used without
any problems. In other words, the reader can mentally block out all the “f ” and
“h” prefixes, ignoring their presence both in the equations being transformed and
in the substitution tables, and still get the right answers.

For the first example of how to use substitution tables, we convert the Lorentz
force law in the rationalized mks system,

�F =Q �E +Q(�v × �B), (4.15a)

into Gaussian units. Here, �E is the electric field experienced by a point charge Q
moving at a velocity �v in a magnetic induction field �B . From Table 4.4(a), we see
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that

Q→ Q

c

√

4π

fµ0
,

�E→ �E · c
√
f µ0

4π
,

and

�B → �B ·
√
f µ0

4π
.

Putting the specified replacements into Eq. (4.15a) gives

�F =
(
Q

c

√

4π

fµ0

)(

�E · c
√
f µ0

4π

)

+
(
Q

c

√

4π

fµ0

)[

�v ×
(

�B
√
f µ0

4π

)]

or

�F =Q �E + 1

c
Q
(�v × �B). (4.15b)

Checking back to Section 4.2.29, we see that this is the correct answer. There is of-
ten, as seen here, a large amount of “cancelling out” after making the replacements
specified by the substitution tables.

The substitution tables can be applied to any electromagnetic equation, not just
the formulas of classical electromagnetism that can be derived from Maxwell’s
equations and the Lorentz force law. From quantum field theory we have the for-
mula for the dimensionless fine-structure constant in Gaussian units,

α = e2

h̄c
, (4.16a)

where e is the charge on an electron in statcoul, h̄ is Planck’s constant divided by
2π , and c is the speed of light. Table 4.4(b) in the Appendix shows that charge
transforms as

Q→Q · c
√
f µ 0

4π
,

when going from Gaussian units to the rationalized mks system, so in rationalized
mks

α =

(

e · c
√
f µ0

4π

)2

h̄ c
= e2cf µ0

4πh̄
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or, using the formula f ε0f µ0 = c−2 [see Eq. (3.49e)] to replace f µ0 by f ε0,

α = e2

4πf ε0h̄c
. (4.16b)

In this rationalized mks formula, e is now the electron charge in coul.
Although we said at the beginning of this section that the substitution tables

in the Appendix give the correct answer even when their “f ” and “h” prefixes
are ignored, this is true only as long as we do not examine what happens when
transforming the same formula into different electromagnetic systems. Suppose,
for example, Table 4.12(a) in the Appendix is now used to transform Eq. (4.16a)
into the unrationalized mks system. We get

α = (ec
√
µ0)

2

h̄c
= e2cµ0

h̄
.

In unrationalized mks µ0ε0 = c−2 [see Eq. (3.49e)], so the formula for the fine-
structure constant can also be written as

α = e2

ε0h̄ c
. (4.16c)

Again, e is the electron charge in coul. When Eq. (4.16b) is compared to
Eq. (4.16c), we see that ignoring the prefix “f ” on ε0 invites us to write

e2

4πε0h̄c
= e2

ε0h̄c
.

On both sides of this “equation,” e is the electron charge in coul. Consequently,
if we are so unwise as to forget that ε0 on the left-hand side is the permittivity of
free space in the rationalized mks system whereas ε0 on the right-hand side is the
permittivity of free space in the unrationalized mks system, we might cancel out ε0
on both sides to get

1

4π
?= 1.

Paying attention to the prefix “f ” protects us from this obviously incorrect result;
now when we write

e2

4πf ε0h̄ c
= e2

ε0h̄ c

we end up with the correct formula,

f ε0 = ε0

4π
,
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which relates the two values of the permittivity of free space in the rationalized and
unrationalized mks systems.

Another example of how the prefixes in the substitution tables can be helpful
occurs when Table 4.9(a) in the Appendix is used to convert formula (4.16a) to the
Heaviside-Lorentz system. For the charge conversion we have

Q→ hQ√
4π
,

which suggests that Eq. (4.16a) in the Heaviside-Lorentz system should be written
as

α =
(

he√
4π

)2

· 1

h̄c
= (he)

2

4πh̄c
.

Here, the prefix “h” reminds us that he is now the electron charge in the Heaviside-
Lorentz system, which is larger by a factor of

√
4π than the electron charge

in Gaussian units because charge is a physical quantity that is rescaled by a
factor of

√
4π when going from the Gaussian to the Heaviside-Lorentz system

(see Section 3.3). Ignoring the “h” prefix leads us to write

α = e2

4πh̄ c

as the formula for the fine-structure constant in the Heaviside-Lorentz system. This
formula is, of course, correct; but without the “h” prefix it invites us to overlook
that “e” is now the electron charge in the Heaviside-Lorentz system of rescaled
electromagnetic physical quantities rather than the electron charge in Gaussian
units. In both the Gaussian and Heaviside-Lorentz systems, the electron charge
has the same units, making it easy to forget that the numeric part of the electron
charge is not the same.

The formula for the strength H of a magnetic field at a distance r from a long
wire carrying a current I is

H = 2I

r
(4.17a)

in esu units [see Eq. (2.6) or Section 4.2.47). Using Table 4.16(a) in the Appendix
to convert to emu units gives

(cH)= 2(cI )

r
or H = 2I

r
. (4.17b)

Here the formula remains unchanged because the transformation constants cancel
out. Using Table 4.17(a) to go from esu units to the unrationalized mks system
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gives

(
H · c√µ0

)= 2(I · c√µ0)

r

or H = 2I

r
again. (4.17c)

We see that twice now a complicated set of transformation constants have cancelled
out, leaving the formula unchanged. In this particular case, the equation changes
form when Table 4.10(b) is used to transform Eq. (4.17a) to Gaussian units, giving

(cH)= 2I

r
which can be written as H = 2I

rc
; (4.17d)

or when Table 4.13(b) is used to transform to the Heaviside-Lorentz system, giving

(

hHc
√

4π
)= 2(hI/

√
4π)

r
,

which can be written as

hH = hI

2πrc
; (4.17e)

or when Table 4.6(b) is used to transform to rationalized mks, giving

fH
(
c
√

4πfµ0
)=

2

(

I · c
√
f µ0

4π

)

r
,

which can be written as

fH = I

2πr
. (4.17f)

It is easy to show that the substitution tables handle Maxwell’s equations cor-
rectly. Starting off with the Heaviside-Lorentz version of these equations in empty
space, with h

�E the electric field, h �B the magnetic induction, hρQ the volume
charge density, h �J the volume current density, and c the speed of light, we have

�∇ · h �E = hρQ, (4.18a)

�∇ · h �B = 0, (4.18b)

�∇ × h
�E + 1

c

∂h �B
∂t

= 0, (4.18c)
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�∇ × h
�B = 1

c
h

�J + 1

c

∂h �E
∂t
. (4.18d)

Table 4.5(b) can be used to convert to the rationalized mks system, giving

�∇ ·
( �E
c
√
f µ0

)

= ρQ · (c√f µ0),

which simplifies to

�∇ · �E = (c2
f µ0)ρQ; (4.19a)

�∇ ·
( �B√

f µ0

)

= 0,

which simplifies to

�∇ · �B = 0; (4.19b)

�∇ ×
( �E
c
√
f µ0

)

+ 1

c

∂

∂t

( �B√
f µ0

)

= 0,

which simplifies to

�∇ × �E + ∂ �B
∂t

= 0; (4.19c)

and

�∇ ×
( �B√

f µ0

)

= 1

c
�J · (c√f µ0)+ 1

c

∂

∂t

( �E
c
√
f µ0

)

,

which simplifies to

�∇ × �B = f µ0 �J + 1

c2

∂ �E
∂t
. (4.19d)

The relationship f µ0f ε0 = c−2 from Eq. (3.49e) can be used to put Eqs. (4.19a)
and (4.19d) into the form

�∇ · �E = f ε
−1
0 ρQ (4.19e)
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and

�∇ × �B = f µ0 �J + f µ0f ε0
∂ �E
∂t
, (4.19f)

which is perhaps the more conventional way to write these equations in the ratio-
nalized mks system. Note that the Eqs. (4.19a) and (4.19d) coming directly from
the substitution table are not wrong; they are just written in an unconventional
manner.

Table 4.9b shows how to put Eqs. (4.18a–d) into Gaussian units,

�∇ ·
( �E√

4π

)

= (ρQ
√

4π),

which simplifies to

�∇ · �E = 4πρQ; (4.20a)

�∇ ·
( �B√

4π

)

= 0,

which simplifies to

�∇ · �B = 0; (4.20b)

�∇ ×
( �E√

4π

)

+ 1

c

∂

∂t

( �B√
4π

)

= 0,

which simplifies to

�∇ × �E + 1

c

∂ �B
∂t

= 0; (4.20c)

and

�∇ ×
( �B√

4π

)

= 1

c
�J · (√4π)+ 1

c

∂

∂t

( �E√
4π

)

,

which simplifies to

�∇ × �B = 4π

c
�J + 1

c

∂ �E
∂t
. (4.20d)
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To put Eqs. (4.18a–d) into esu units, we consult Table 4.13(a) to get

�∇ ·
( �E√

4π

)

= ρQ · √4π,

which simplifies to

�∇ · �E = 4πρQ; (4.21a)

�∇ ·
[

�B ·
(

c√
4π

)]

= 0,

which simplifies to

�∇ · �B = 0; (4.21b)

�∇ ×
( �E√

4π

)

+ 1

c

∂

∂t

[

�B ·
(

c√
4π

)]

= 0,

which simplifies to

�∇ × �E + ∂ �B
∂t

= 0; (4.21c)

and

�∇ ×
[

�B ·
(

c√
4π

)]

= 1

c
�J · (√4π)+ 1

c

∂

∂t

( �E√
4π

)

,

which simplifies to

�∇ × �B = 1

c2

(

4π �J + ∂ �E
∂t

)

. (4.21d)

The free-parameter formulas in Section 4.2.56 above show that Eqs. (4.20a–d)
and (4.21a–d) are the correct version of Maxwell’s equations for empty space in
Gaussian and esu units.

Table 4.14(a) shows how to convert Eqs. (4.18a–d) to emu units, giving

�∇ ·
( �E
c
√

4π

)

= ρQ(c
√

4π),
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which simplifies to

�∇ · �E = 4πc2ρQ; (4.22a)

�∇ ·
( �B√

4π

)

= 0,

which simplifies to

�∇ · �B = 0; (4.22b)

�∇ ×
( �E
c
√

4π

)

+ 1

c

∂

∂t

( �B√
4π

)

= 0,

which simplifies to

�∇ × �E + ∂ �B
∂t

= 0; (4.22c)

and

�∇ ×
( �B√

4π

)

= 1

c

( �J · c√4π
)+ 1

c

∂

∂t

( �E
c
√

4π

)

,

which simplifies to

�∇ × �B = 4π �J + 1

c2

∂ �E
∂t
. (4.22d)

Equation (2.12b) states that the permittivity of free space is ε0 = c−2 in emu units,
which means that Eqs. (4.22a) and (4.22d) can also be written as

�∇ · �E = 4πρQ
ε 0

(4.22e)

and

�∇ × �B = 4π �J + ε0
∂ �E
∂t
. (4.22f)

To get Maxwell’s equations for empty space in the unrationalized mks system, we
apply Table 4.15(a) in the Appendix to Eqs. (4.18a–d) to get

�∇ ·
( �E
c
√

4πµ0

)

= ρQ(c
√

4πµ0),
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which simplifies to

�∇ · �E = 4πµ0c
2ρQ; (4.23a)

�∇ ·
( �B√

4πµ0

)

= 0,

which simplifies to

�∇ · �B = 0; (4.23b)

�∇ ×
( �E
c
√

4πµ0

)

+ 1

c

∂

∂t

( �B√
4πµ0

)

= 0,

which simplifies to

�∇ × �E + ∂ �B
∂t

= 0; (4.23c)

and

�∇ ×
( �B√

4πµ0

)

= 1

c

( �J · c√4πµ0
)+ 1

c

∂

∂t

( �E
c
√

4πµ0

)

,

which simplifies to

�∇ × �B = 4πµ0 �J + 1

c2

∂ �E
∂t

(4.23d)

Again we can put the first and last equations, (4.23a) and (4.23d), into a more
conventional form, this time using µ0ε0 = c−2 from Eq. (3.49e), to get

�∇ · �E = 4π ρ Q
ε 0

(4.23e)

and

�∇ × �B = 4πµ0 �J +µ0ε0
∂ �E
∂t
. (4.23f)

All electromagnetic equations have the same form in the esuq and emuq units
introduced in Chapter 2 as they do in the unrationalized mks system, so Eqs.
(4.23a–f) can also be thought of as Maxwell’s equations for empty space in the
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esuq and emuq systems of units. Any substitution table in the Appendix that is la-
beled as transforming equations to or from the unrationalized mks system can also
be regarded as transforming equations to or from the esuq and emuq systems of
units.

Substitution tables require an intelligent understanding of the physical quanti-
ties involved, especially when working with magnetic fields or magnetic dipoles.
The formula for the magnetic induction field �B radiated by a magnetic dipole in
empty space is, for example, in Gaussian units,

�B∣∣
at time t

= 1

c2r

{

êr ×
(

êr × d2 �mI
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
. (4.24a)

Here, r is the distance from the current-loop magnetic dipole �mI to the field point,
êr is the dimensionless unit vector pointing from the magnetic dipole to the field
point, and c is the speed of light. Now, as explained in Section 4.2.13, a current-
loop magnetic dipole is the same thing as a permanent-magnet dipole when work-
ing in Gaussian units; and, as explained in Section 4.2.27 or 4.2.28, the magnetic
field and magnetic-induction field are the same in empty space when working in
Gaussian units. Hence, when the reader comes across Eq. (4.24a) in some textbook
using Gaussian units, it is likely to be written as either

�B∣∣
at time t

= 1

c2r

{

êr ×
(

êr × d2 �m
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)

or

�H ∣∣
at time t

= 1

c2r

{

êr ×
(

êr × d2 �m
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
,

with no distinction being made between �B and �H in empty space. Before this sort
of equation can be converted to an electromagnetic system that makes these dis-
tinctions, such as the rationalized mks system, we must decide whether �m should
be thought of as a current-loop magnetic dipole �mI or as a permanent-magnet di-
pole �mH , and whether the field in empty space should be thought of as a �B field
or an �H field. As is pointed out in the discussion following Eq. (2.68d), all we are
really deciding is whether to represent the relationship between the physical quan-
tities �B, �H, �mI , �mH in terms of �B and �mI, �H and �mI , �B and �mH , or �H and �mH in
the new electromagnetic system.

The choice between �mI and �mH is relatively easy; almost all textbooks written
in the last 50 years use �mI exclusively to represent their magnetic dipoles, so that is
the choice made now. It is also conventional to choose �H to represent the magnetic
component of a radiating electromagnetic field, because it makes the end result
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slightly simpler; so that is also the choice made now. Hence, instead of Eq. (4.24a),
we write

�H ∣∣
at time t

= 1

c2r

{

êr ×
(

êr × d2 �mI
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
(4.24b)

in Gaussian units. Table 4.4(b) shows how to convert this to the rationalized mks
system to get

f
�H√4πfµ0

∣
∣

at time t
= 1

c2r

{

êr ×
[

êr × d2

dt2

(

�mI
√
f µ0

4π

)]}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)

or

f
�H ∣∣

at time t
= 1

4πc2r

{

êr ×
(

êr × d2 �mI
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
. (4.24c)

Table 4.10(a) shows how to convert this to esu units, another electromagnetic sys-
tem which always preserves the distinction between �mI, �mH and between �B, �H :

(
1

c
�H
)∣
∣
∣
∣

at time t

= 1

c2r

{

êr ×
[

êr × d2

dt2

(
1

c
�mI
)]}∣

∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)

or

�H ∣∣
at time t

= 1

c2r

{

êr ×
(

êr × d2 �mI
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
. (4.24d)

This is the same form as Eq. (4.24b). The final system represented in these tables
that always preserves the distinction between �mI , �mH and between �B, �H is the
unrationalized mks system. Table 4.12(a) shows that in this system, Eq. (4.24b)
becomes

( �H√
µ0
)∣
∣

at time t
= 1

c2r

{

êr ×
[

êr × d2

dt2

(

�mI√µ0

)]}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)

or

�H ∣∣
at time t

= 1

c2r

{

êr ×
(

êr × d2 �mI
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
. (4.24e)

This also ends up having the same form as Eq. (4.24b).
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If we choose to work with Eq. (4.24a) instead of replacing �B with �H to get
Eq. (4.24b), then Tables 4.4(b), 4.10(a), and 4.12(a) would give us

�B∣∣
at time t

= f µ0

4πc2r

{

êr ×
(

êr × d2 �mI
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
(4.25a)

for its rationalized mks counterpart,

�B∣∣
at time t

= 1

c4r

{

êr ×
(

êr × d2 �mI
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
(4.25b)

for its esu counterpart, and

�B∣∣
at time t

= µ0

c2r

{

êr ×
(

êr × d2 �mI
dt2

)}∣
∣
∣
∣ evaluated at the retarded

time t ′=t−(r/c)
(4.25c)

for its unrationalized mks counterpart. In the rationalized mks system

f
�H = �B/f µ0,

in esu units∗

�H = c2 �B,

and in the unrationalized mks system

�H = �B/µ0.

These three formulas can be plugged into Eqs. (4.24c, d, e) to get Eqs. (4.25a, b, c)
directly, showing that we can change back and forth between B and H without
consulting the substitution tables.

One last point worth making is that when we convert from esu units to the unra-
tionalized mks system in Table 4.17(a), the parameterµ0 in esu units has a different
meaning from the parameter µ0 in the unrationalized mks system. In esu units, µ0
is really just another name for c−2, as explained in Eq. (2.11b). Consequently, we
can write the relationship between H and B in esu units as

�H = �B
µ0

− 4π �MI
∗ The esu relationship between �H and �B can also be written as �H = �B/µ0 in empty space because
µ0 = c−2 in esu units—see Eq. (2.11b).
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instead of as

�H = c2 �B − 4π �MI.

Applying Table 4.17(a) to either of these equations now gives

�H · (c√µ0
)= c2

( �B
c
√
µ0

)

− 4π �MI · (c√µ0
)
,

which reduces to the same relationship betweenH and B in the unrationalized mks
system, namely

�H = �B
µ0

− 4π �MI.

The instruction in Table 4.17(a) to replace µ0 by c−2 should not be applied to this
final result; we are only allowed to substitute once for µ0 when converting from
esu units to the unrationalized mks system. After we have substituted once for all
the µ0’s in the original equation, the µ0’s in the final unrationalized mks equation
should be left alone because they stand for 10−7henry/m, not c−2.

4.5 PROBLEMS WITH THE FREE-PARAMETER METHOD AND

SUBSTITUTION TABLES

Free-parameter methods and substitution tables work best when used by people
who understand what it means to recognize—or not recognize—charge as a sepa-
rate dimension. Consider, for example, the electromagnetic equation

f µ0f ε0 = 1

c2

in the rationalized mks system. In rationalized mks, both f ε0 and f µ0 are physical
quantities with units of farad/m and henry/m, respectively, but nowhere in Section
4.2 is there a free-parameter equation or formula resembling it. Deciding next to
try the substitution tables, we use Table 4.4(a) in the Appendix to convert it to
Gaussian units, getting

f µ0 · (f µ0c
2)−1 = 1

c2 or
1

c2 = 1

c2 .

The same thing happens when Table 4.5(a) is used to convert to the Heaviside-
Lorentz system, or when Tables 4.6(a) and 4.7(a) are used to convert to esu and emu
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units, respectively. Only when the equation is transformed to the unrationalized
mks system is it preserved; Table 4.8(a) shows that it then becomes

(4πµ0) ·
(
ε0

4π

)

= 1

c2
or µ0ε0 = 1

c2
.

The reason things go wrong in the Gaussian, Heaviside-Lorentz, esu, and emu
systems is that in these systems, charge is not recognized as a separate dimension—
therefore no counterpart equation exists. The unrationalized mks system, on the
other hand, imitates the rationalized mks system in recognizing charge as a separate
dimension; consequently, in the unrationalized mks system there is a counterpart
formula.

The only practical way to avoid conundrums of this sort is to understand the ma-
terial in Chapters 1 through 3 well enough to see why not all electromagnetic equa-
tions have counterparts in every electromagnetic system discussed in this book.
Equations that do not have counterparts in all the electromagnetic systems are very
difficult to set up as sensible free-parameter expressions; and when transformed us-
ing substitution tables, they tend to end up as nonsense expressions like c−2 = c−2.
Naive users should approach free-parameter lists and substitution tables cautiously
until they become familiar with the basic rules for transforming electromagnetic
equations and formulas.

APPENDIX. SUBSTITUTION TABLES FOR THE RATIONALIZED MKS

SYSTEM (ALSO CALLED SI UNITS), GAUSSIAN CGS UNITS, THE

HEAVISIDE-LORENTZ CGS SYSTEM, ESU UNITS, EMU UNITS, AND

THE UNRATIONALIZED MKS SYSTEM

This Appendix contains 30 substitution tables, which can be used to transform
electromagnetic equations into any of the electromagnetic systems described in this
book. If a table whose name ends in “a” gives the transformation from the “X” elec-
tromagnetic system to the “Y” electromagnetic system, then the table immediately
following it whose name ends in “b” gives the reverse transformation, describing
how to transform from the “Y” electromagnetic system to the “X” electromag-
netic system. For example, since Table 4.9(a) transforms equations from Gaussian
cgs units to the Heaviside-Lorentz cgs system, Table 4.9(b) must transform equa-
tions from the Heaviside-Lorentz cgs system to Gaussian cgs units. Similarly, since
Table 4.18(b) transforms equations from the unrationalized mks system to emu
units, Table 4.18(a) must transform equations from emu units to the unrationalized
mks system. The substitution information for the rationalized mks system (or SI
units) comes first, covered in Tables 4.4(a)–(b) to 4.8(a)–(b). Tables 4.9(a)–(b) to
4.12(a)–(b) for the Gaussian transformations come next. Since the transformation
between Gaussian cgs units and the rationalized mks system has already been de-
scribed in the first set of tables, there are two fewer tables than before. Next are
Tables 4.13(a)–(b) to 4.15(a)–(b) for Heaviside-Lorentz transformations, followed
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by Tables 4.16(a)–(b) to 4.18(a)–(b) for the remaining esu, emu, and unrationalized
mks transformations. According to the discussion at the beginning of Section 3.6,
all electromagnetic equations have the same form in the esuq and emuq units of
Chapter 2 as they do in the unrationalized mks system. This means that all tables in
this appendix showing how to transform equations to and from the unrationalized
mks system also show how to transform equations to and from the esuq and emuq
systems of units.
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1. E. S. Shire, Classical Electricity and Magnetism, Cambridge University Press,
New York, 1960.

2. J. D. Jackson, Classical Electrodynamics, 3rd edition, pp. 177–178, John Wi-
ley & Sons, New York, 1999 for a discussion of how to convert the first double
integral into the second double integral.
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Table 4.4(a) To go from the rationalized mks system (also called SI units) to
Gaussian cgs units.

magnetic vector potential A magnetic permeability f µ

Replace A by A
√

f µ0/(4π) Replace f µ by µr · f µ0

magnetic induction B relative magnetic permeability µr

Replace B by B
√

f µ0/(4π) Leave µr alone

capacitance C magnetic permeability of free space f µ0

Replace C by (4πC)/(f µ0c
2) Leave f µ0 alone

electric displacement f D magnetic pole strength f pH

Replace f D by D/(c
√

4πf µ0) Replace f pH by pH
√

4πf µ0

electric field E electric dipole moment p

Replace E by cE
√

f µ0/(4π) Replace p by pc−1√(4π)/f µ0

dielectric constant f ε electric dipole density P

Replace f ε by εr /(f µ0c
2) Replace P by Pc−1√(4π)/f µ0

relative dielectric constant εr permeance fP
Leave εr alone Replace fP by P · f µ0

permittivity of free space f ε0 charge Q

Replace f ε0 by (f µ0c
2)−1 Replace Q byQc−1√(4π)/f µ0

magnetomotive force fF resistance R

Replace fF by F/
√

4πf µ0 Replace R by (f µ0c
2R)/(4π)

magnetic flux #B reluctance fR

Replace #B by #B
√

f µ0/(4π) Replace fR by R/f µ0

conductance G volume charge density ρQ

Replace G by (4πG)/(f µ0c
2) Replace ρQ by ρQc−1√(4π)/f µ0

magnetic field f H resistivity ρR

Replace f H by H/
√

4πf µ0 Replace ρR by (f µ0c
2ρR)/(4π)

current I elastance S

Replace I by Ic−1√(4π)/f µ0 Replace S by (f µ0c
2S)/(4π)

volume current density J surface charge density SQ

Replace J by Jc−1√(4π)/f µ0 Replace SQ by SQc−1√(4π)/f µ0

surface current density JS conductivity σ

Replace JS by JSc−1√(4π)/f µ0 Replace σ by (4πσ)/(f µ0c
2)

inductance L electric potential V

Replace L by (f µ0c
2L)/(4π) Replace V by cV

√

f µ0/(4π)

permanent-magnet dipole moment f mH magnetic scalar potential f 'H

Replace f mH by mH
√

4πf µ0 Replace f 'H by 'H/
√

4πf µ0

current-loop magnetic dipole moment mI electric susceptibility f χe

Replace mI by mI
√
(4π)/f µ0 Replace f χe by 4πχe

permanent-magnet dipole density f MH magnetic susceptibility f χm

Replace f MH by MH
√

4πf µ0 Replace f χm by 4πχm

current-loop magnetic dipole density MI

Replace MI by MI
√
(4π)/f µ0
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Table 4.4(b) To go from Gaussian cgs units to the rationalized mks system (also
called SI units).

magnetic vector potential A relative magnetic permeability µr

Replace A by A
√
(4π)/f µ0 Leave µr alone

magnetic induction B magnetic pole strength pH

Replace B by B
√
(4π)/f µ0 Replace pH by f pH /

√
4πf µ0

capacitance C electric dipole moment p

Replace C by (f µ0c
2C)/(4π) Replace p by pc

√

f µ0/(4π)

electric displacement D electric dipole density P

Replace D by fD · (c√4πf µ0) Replace P by Pc
√

f µ0/(4π)

electric field E permeance P
Replace E by Ec−1√(4π)/f µ0 Replace P by fP/f µ0

relative dielectric constant εr chargeQ

Leave εr alone ReplaceQ by Qc
√

f µ0/(4π)

magnetomotive force F resistance R

Replace F by fF
√

4πf µ0 Replace R by (4πR)/(f µ0c
2)

magnetic flux #B reluctance R
Replace #B by #B

√
(4π)/f µ0 Replace R by fR · f µ0

conductance G volume charge density ρQ

Replace G by (f µ0c
2G)/(4π) Replace ρQ by ρQc

√

f µ0/(4π)

magnetic field H resistivity ρR

Replace H by fH
√

4πf µ0 Replace ρR by (4πρR)/(f µ0c
2)

current I elastance S

Replace I by Ic
√

f µ0/(4π) Replace S by (4πS)/(f µ0c
2)

volume current density J surface charge density SQ

Replace J by Jc
√

f µ0/(4π) Replace SQ by SQc
√

f µ0/(4π)

surface current density JS conductivity σ

Replace JS by JSc
√

f µ0/(4π) Replace σ by (f µ0c
2σ)/(4π)

inductance L electric potential V

Replace L by (4πL)/(f µ0c
2) Replace V by V c−1√(4π)/f µ0

permanent-magnet dipole moment mH magnetic scalar potential 'H

Replace mH by f mH /
√

4πf µ0 Replace 'H by f'H
√

4πf µ0

current-loop magnetic dipole moment mI electric susceptibility χe

Replace mI by mI
√

f µ0/(4π) Replace χe by f χe/(4π)

permanent-magnet dipole densityMH magnetic susceptibility χm

Replace MH by fMH/
√

4πf µ0 Replace χm by f χm/(4π)

current-loop magnetic dipole density MI

Replace MI byMI
√

f µ0/(4π)
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Table 4.5(a) To go from the rationalized mks system (also called SI units) to the
Heaviside-Lorentz cgs system.

magnetic vector potential A magnetic permeability f µ

Replace A by hA
√
f µ0 Replace f µ by µr · f µ0

magnetic induction B relative magnetic permeability µr

Replace B by hB
√
f µ0 Leave µr alone

capacitance C magnetic permeability of free space f µ0

Replace C by hC/(f µ0c
2) Leave f µ0 alone

electric displacement f D magnetic pole strength f pH

Replace f D by hD/(c
√
f µ0) Replace f pH by hpH

√
f µ0

electric field E electric dipole moment p

Replace E by hEc
√
f µ0 Replace p by hp(c

√
f µ0)

−1

dielectric constant f ε electric dipole density P

Replace f ε by εr /(f µ0c
2) Replace P by hP (c

√
f µ0)

−1

relative dielectric constant εr permeance fP
Leave εr alone Replace fP by P · f µ0

permittivity of free space f ε0 charge Q

Replace f ε0 by (f µ0c
2)−1 Replace Q by hQ(c

√
f µ0)

−1

magnetomotive force fF resistance R

Replace fF by hF/
√
f µ0 Replace R by hR · (f µ0c

2)

magnetic flux #B reluctance fR

Replace #B by h#B
√
f µ0 Replace fR by R/f µ0

conductance G volume charge density ρQ

Replace G by hG/(f µ0c
2) Replace ρQ by hρQ(c

√
f µ0)

−1

magnetic field f H resistivity ρR

Replace f H by hH/
√
f µ0 Replace ρR by hρR · (f µ0c

2)

current I elastance S

Replace I by hI (c
√
f µ0)

−1 Replace S by hS · (f µ0c
2)

volume current density J surface charge density SQ

Replace J by hJ(c
√
f µ0)

−1 Replace SQ by hSQ(c
√
f µ0)

−1

surface current density JS conductivity σ

Replace JS by hJS(c√f µ0)
−1 Replace σ by hσ/(f µ0c

2)

inductance L electric potential V

Replace L by hL · (f µ0c
2) Replace V by hV c

√
f µ0

permanent-magnet dipole moment f mH magnetic scalar potential f 'H

Replace f mH by hmH
√
f µ0 Replace f 'H by h'H /

√
f µ0

current-loop magnetic dipole moment mI electric susceptibility f χe

Replace mI by hmI /
√
f µ0 Replace f χe by hχe

permanent-magnet dipole density f MH magnetic susceptibility f χm

Replace f MH by hMH
√
f µ0 Replace f χm by hχm

current-loop magnetic dipole density MI

Replace MI by hMI /
√
f µ0
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Table 4.5(b) To go from the Heaviside-Lorentz cgs system to the rationalized mks
system (also called SI units).

magnetic vector potential hA relative magnetic permeability µr

Replace hA by A/√f µ0 Leave µr alone

magnetic induction hB magnetic pole strength hpH

Replace hB by B/√f µ0 Replace hpH by f pH /
√
f µ0

capacitance hC electric dipole moment hp

Replace hC by C · (f µ0c
2) Replace hp by p · (c√f µ0)

electric displacement hD electric dipole density hP

Replace hD by f D · (c√f µ0) Replace hP by P · (c√f µ0)

electric field hE permeance P
Replace hE by E/(c√f µ0) Replace P by fP/f µ0

relative dielectric constant εr charge hQ

Leave εr alone Replace hQ by Q · (c√f µ0)

magnetomotive force hF resistance hR

Replace hF by fF · √f µ0 Replace hR by R/(f µ0c
2)

magnetic flux h#B reluctance R
Replace h#B by #B/

√
f µ0 Replace R by fR · f µ0

conductance hG volume charge density hρQ

Replace hG by G · (f µ0c
2) Replace hρQ by ρQ · (c√f µ0)

magnetic field hH resistivity hρR

Replace hH by f H · √f µ0 Replace hρR by ρR/(f µ0c
2)

current hI elastance hS

Replace hI by I · (c√f µ0) Replace hS by S/(f µ0c
2)

volume current density hJ surface charge density hSQ

Replace hJ by J · (c√f µ0) Replace hSQ by SQ · (c√f µ0)

surface current density hJS conductivity hσ

Replace hJS by JS · (c√f µ0) Replace hσ by σ · (f µ0c
2)

inductance hL electric potential hV

Replace hL by L/(f µ0c
2) Replace hV by V/(c√f µ0)

permanent-magnet dipole moment hmH magnetic scalar potential h'H

Replace hmH by f mH/
√
f µ0 Replace h'H by f'H · √f µ0

current-loop magnetic dipole moment hmI electric susceptibility hχe

Replace hmI by mI · √f µ0 Replace hχe by f χe

permanent-magnet dipole density hMH magnetic susceptibility hχm

Replace hMH by f MH/
√
f µ0 Replace hχm by f χm

current-loop magnetic dipole density hMI

Replace hMI byMI · √f µ0
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Table 4.6(a) To go from the rationalized mks system (also called SI units) to esu
units.

magnetic vector potential A magnetic permeability f µ

Replace A by A · (c√f µ0/(4π)) Replace f µ by µr · f µ0

magnetic induction B relative magnetic permeability µr

Replace B by B · (c√f µ0/(4π)) Leave µr alone

capacitance C magnetic permeability of free space f µ0

Replace C by (4πC)/(f µ0c
2) Leave f µ0 alone

electric displacement f D magnetic pole strength f pH

Replace f D by D/(c
√

4πf µ0) Replace f pH by pH (c
√

4πf µ0)

electric field E electric dipole moment p

Replace E by cE
√

f µ0/(4π) Replace p by pc−1√(4π)/f µ0

dielectric constant f ε electric dipole density P

Replace f ε by εr /(f µ0c
2) Replace P by Pc−1√(4π)/f µ0

relative dielectric constant εr permeance fP
Leave εr alone Replace fP by P · (f µ0c

2)

permittivity of free space f ε0 charge Q

Replace f ε0 by (f µ0c
2)−1 Replace Q byQc−1√(4π)/f µ0

magnetomotive force fF resistance R

Replace fF by F/(c
√

4πf µ0) Replace R by (f µ0c
2R)/(4π)

magnetic flux #B reluctance fR

Replace #B by #B(c
√

f µ0/(4π)) Replace fR by R/(f µ0c
2)

conductance G volume charge density ρQ

Replace G by (4πG)/(f µ0c
2) Replace ρQ by ρQc−1√(4π)/f µ0

magnetic field f H resistivity ρR

Replace f H by H/(c
√

4πf µ0) Replace ρR by (f µ0c
2ρR)/(4π)

current I elastance S

Replace I by Ic−1√(4π)/f µ0 Replace S by (f µ0c
2S)/(4π)

volume current density J surface charge density SQ

Replace J by Jc−1√(4π)/f µ0 Replace SQ by SQc−1√(4π)/f µ0

surface current density JS conductivity σ

Replace JS by JSc−1√(4π)/f µ0 Replace σ by (4πσ)/(f µ0c
2)

inductance L electric potential V

Replace L by (f µ0c
2L)/(4π) Replace V by cV

√

f µ0/(4π)

permanent-magnet dipole moment f mH magnetic scalar potential f 'H

Replace f mH by mH (c
√

4πf µ0) Replace f 'H by 'H/(c
√

4πf µ0)

current-loop magnetic dipole moment mI electric susceptibility f χe

Replace mI by mI c−1√(4π)/f µ0 Replace f χe by 4πχe

permanent-magnet dipole density f MH magnetic susceptibility f χm

Replace fMH byMH(c
√

4πf µ0) Replace f χm by 4πχm

current-loop magnetic dipole density MI

Replace MI byMIc−1√(4π)/f µ0
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Table 4.6(b) To go from esu units to the rationalized mks system (also called SI
units).

magnetic vector potential A relative magnetic permeability µr

Replace A by Ac−1√(4π)/f µ0 Leave µr alone

magnetic induction B magnetic permeability of free space µ0

Replace B by Bc−1√(4π)/f µ0 Replace µ0 by c−2

capacitance C magnetic pole strength pH

Replace C by (f µ0c
2C)/(4π) Replace pH by f pH /(c

√
4πf µ0)

electric displacement D electric dipole moment p

Replace D by f D · (c√4πf µ0) Replace p by pc
√

f µ0/(4π)

electric field E electric dipole density P

Replace E by Ec−1√(4π)/f µ0 Replace P by Pc
√

f µ0/(4π)

relative dielectric constant εr permeance P
Leave εr alone Replace P by fP/(f µ0c

2)

magnetomotive force F charge Q

Replace F by fF · c√4πf µ0 Replace Q byQ · c√f µ0/(4π)

magnetic flux #B resistance R

Replace #B by #Bc−1√(4π)/f µ0 Replace R by (4πR)/(f µ0c
2)

conductance G reluctance R
Replace G by (f µ0c

2G)/(4π) Replace R by fR · (f µ0c
2)

magnetic field H volume charge density ρQ

Replace H by f H · c√4πf µ0 Replace ρQ by ρQc
√

f µ0/(4π)

current I resistivity ρR

Replace I by Ic
√

f µ0/(4π) Replace ρR by (4πρR)/(f µ0c
2)

volume current density J elastance S

Replace J by Jc
√

f µ0/(4π) Replace S by (4πS)/(f µ0c
2)

surface current density JS surface charge density SQ

Replace JS by JSc
√

f µ0/(4π) Replace SQ by SQc
√

f µ0/(4π)

inductance L conductivity σ

Replace L by (4πL)/(f µ0c
2) Replace σ by (f µ0c

2σ)/(4π)

permanent-magnet dipole moment mH electric potential V

Replace mH by f mH /(c
√

4πf µ0) Replace V by V c−1√(4π)/f µ0

current-loop magnetic dipole moment mI magnetic scalar potential 'H

Replace mI by mI · c√f µ0/(4π) Replace 'H by f 'H · c√4πf µ0

permanent-magnet dipole density MH electric susceptibility χe

Replace MH by f MH /(c
√

4πf µ0) Replace χe by f χe/(4π)

current-loop magnetic dipole density MI magnetic susceptibility χm

Replace MI byMI · c√f µ0/(4π) Replace χm by f χm/(4π)

magnetic permeability µ

Replace µ by µrc−2
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Table 4.7(a) To go from the rationalized mks system (also called SI units) to emu
units.

magnetic vector potential A magnetic permeability f µ

Replace A by A
√

f µ0/(4π) Replace f µ by µr · f µ0

magnetic induction B relative magnetic permeability µr

Replace B by B
√

f µ0/(4π) Leave µr alone

capacitance C magnetic permeability of free space f µ0

Replace C by (4πC)/f µ0 Leave f µ0 alone

electric displacement f D magnetic pole strength f pH

Replace f D by D/
√

4πf µ0 Replace f pH by pH
√

4πf µ0

electric field E electric dipole moment p

Replace E by E
√

f µ0/(4π) Replace p by p
√
(4π)/f µ0

dielectric constant f ε electric dipole density P

Replace f ε by εr /(f µ0c
2) Replace P by P

√
(4π)/f µ0

relative dielectric constant εr permeance fP
Leave εr alone Replace fP by P · f µ0

permittivity of free space f ε0 charge Q

Replace f ε0 by (f µ0c
2)−1 Replace Q byQ

√
(4π)/f µ0

magnetomotive force fF resistance R

Replace fF by F/
√

4πf µ0 Replace R by (f µ0R)/(4π)

magnetic flux #B reluctance fR

Replace #B by #B
√

f µ0/(4π) Replace fR by R/f µ0

conductance G volume charge density ρQ

Replace G by (4πG)/f µ0 Replace ρQ by ρQ
√
(4π)/f µ0

magnetic field f H resistivity ρR

Replace f H by H/
√

4πf µ0 Replace ρR by (f µ0ρR)/(4π)

current I elastance S

Replace I by I
√
(4π)/f µ0 Replace S by (f µ0S)/(4π)

volume current density J surface charge density SQ

Replace J by J
√
(4π)/f µ0 Replace SQ by SQ

√
(4π)/f µ0

surface current density JS conductivity σ

Replace JS by JS
√
(4π)/f µ0 Replace σ by (4πσ)/f µ0

inductance L electric potential V

Replace L by (f µ0L)/(4π) Replace V by V
√

f µ0/(4π)

permanent-magnet dipole moment f mH magnetic scalar potential f 'H

Replace f mH by mH
√

4πf µ0 Replace f 'H by 'H/
√

4πf µ0

current-loop magnetic dipole moment mI electric susceptibility f χe

Replace mI by mI
√
(4π)/f µ0 Replace f χe by 4πχe

permanent-magnet dipole density f MH magnetic susceptibility f χm

Replace fMH byMH
√

4πf µ0 Replace f χm by 4πχm

current-loop magnetic dipole density MI

Replace MI byMI
√
(4π)/f µ0
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Table 4.7(b) To go from emu units to the rationalized mks system (also called SI
units).

magnetic vector potential A current-loop magnetic dipole density MI

Replace A by A
√
(4π)/f µ0 Replace MI byMI

√

f µ0/(4π)

magnetic induction B relative magnetic permeability µr

Replace B by B
√
(4π)/f µ0 Leave µr alone

capacitance C magnetic pole strength pH

Replace C by (f µ0C)/(4π) Replace pH by f pH /
√

4πf µ0

electric displacement D electric dipole moment p

Replace D by f D
√

4πf µ0 Replace p by p
√

f µ0/(4π)

electric field E electric dipole density P

Replace E by E
√
(4π)/f µ0 Replace P by P

√

f µ0/(4π)

dielectric constant ε permeance P
Replace ε by εr c−2 Replace P by fP/f µ0

relative dielectric constant εr charge Q

Leave εr alone Replace Q byQ
√

f µ0/(4π)

permittivity of free space ε0 resistance R

Replace ε0 by c−2 Replace R by (4πR)/f µ0

magnetomotive force F reluctance R
Replace F by fF

√
4πf µ0 Replace R by fR · f µ0

magnetic flux #B volume charge density ρQ

Replace #B by #B
√
(4π)/f µ0 Replace ρQ by ρQ

√

f µ0/(4π)

conductance G resistivity ρR

Replace G by (f µ0G)/(4π) Replace ρR by (4πρR)/f µ0

magnetic field H elastance S

Replace H by f H
√

4πf µ0 Replace S by (4πS)/f µ0

current I surface charge density SQ

Replace I by I
√

f µ0/(4π) Replace SQ by SQ
√

f µ0/(4π)

volume current density J conductivity σ

Replace J by J
√

f µ0/(4π) Replace σ by (f µ0σ)/(4π)

surface current density JS electric potential V

Replace JS by JS
√

f µ0/(4π) Replace V by V
√
(4π)/f µ0

inductance L magnetic scalar potential 'H

Replace L by (4πL)/f µ0 Replace 'H by f 'H
√

4πf µ0

permanent-magnet dipole moment mH electric susceptibility χe

Replace mH by f mH /
√

4πf µ0 Replace χe by f χe/(4π)

current-loop magnetic dipole moment mI magnetic susceptibility χm

Replace mI by mI
√

f µ0/(4π) Replace χm by f χm/(4π)

permanent-magnet dipole density MH

Replace MH by f MH/
√

4πf µ0



302 CHAPTER 4

Table 4.8(a) To go from the rationalized mks system, also called SI units, to the
unrationalized mks system. (This table also takes us from the rationalized mks
system to the esuq and emuq units explained in Chapter 2.)

magnetic vector potential A magnetic permeability f µ

Leave A alone Replace f µ by 4πµ

magnetic induction B relative magnetic permeability µr

Leave B alone Leave µr alone

capacitance C magnetic permeability of free space f µ0

Leave C alone Replace f µ0 by 4πµ0

electric displacement f D magnetic pole strength f pH

Replace f D by D/(4π) Replace f pH by 4πpH

electric field E electric dipole moment p

Leave E alone Leave p alone

dielectric constant f ε electric dipole density P

Replace f ε by ε/(4π) Leave P alone

relative dielectric constant εr permeance fP
Leave εr alone Replace fP by 4πP

permittivity of free space f ε0 charge Q

Replace f ε0 by ε0/(4π) Leave Q alone

magnetomotive force fF resistance R

Replace fF by F/(4π) Leave R alone

magnetic flux #B reluctance fR
Leave #B alone Replace fR by R/(4π)

conductance G volume charge density ρQ

Leave G alone Leave ρQ alone

magnetic field f H resistivity ρR

Replace f H by H/(4π) Leave ρR alone

current I elastance S

Leave I alone Leave S alone

volume current density J surface charge density SQ

Leave J alone Leave SQ alone

surface current density JS conductivity σ

Leave JS alone Leave σ alone

inductance L electric potential V

Leave L alone Leave V alone

permanent-magnet dipole moment f mH magnetic scalar potential f 'H

Replace f mH by 4πmH Replace f 'H by 'H/(4π)

current-loop magnetic dipole moment mI electric susceptibility f χe

Leave mI alone Replace f χe by 4πχe

permanent-magnet dipole density f MH magnetic susceptibility f χm

Replace fMH by 4πMH Replace f χm by 4πχm

current-loop magnetic dipole density MI

Leave MI alone
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Table 4.8(b) To go from the unrationalized mks system to the rationalized mks
system (also called SI units). (This table also takes us from the esuq and emuq
units explained in Chapter 2 to the rationalized mks system.)

magnetic vector potential A magnetic permeability µ

Leave A alone Replace µ by f µ/(4π)

magnetic induction B relative magnetic permeability µr

Leave B alone Leave µr alone

capacitance C magnetic permeability of free space µ0

Leave C alone Replace µ0 by f µ0/(4π)

electric displacement D magnetic pole strength pH

Replace D by 4π · f D Replace pH by f pH /(4π)

electric field E electric dipole moment p

Leave E alone Leave p alone

dielectric constant ε electric dipole density P

Replace ε by 4π · f ε Leave P alone

relative dielectric constant εr permeance P
Leave εr alone Replace P by fP/(4π)

permittivity of free space ε0 charge Q

Replace ε0 by 4π · f ε0 Leave Q alone

magnetomotive force F resistance R

Replace F by 4π · fF Leave R alone

magnetic flux #B reluctance R
Leave #B alone Replace R by 4π · fR
conductance G volume charge density ρQ

Leave G alone Leave ρQ alone

magnetic field H resistivity ρR

Replace H by 4π · f H Leave ρR alone

current I elastance S

Leave I alone Leave S alone

volume current density J surface charge density SQ

Leave J alone Leave SQ alone

surface current density JS conductivity σ

Leave JS alone Leave σ alone

inductance L electric potential V

Leave L alone Leave V alone

permanent-magnet dipole moment mH magnetic scalar potential 'H

Replace mH by f mH /(4π) Replace 'H by 4π · f 'H
current-loop magnetic dipole moment mI electric susceptibility χe

Leave mI alone Replace χe by f χe/(4π)

permanent-magnet dipole density MH magnetic susceptibility χm

Replace MH by f MH /(4π) Replace χm by f χm/(4π)

current-loop magnetic dipole density MI

Leave MI alone
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Table 4.9(a) To go from Gaussian cgs units to the Heaviside-Lorentz cgs system.

magnetic vector potential A relative magnetic permeability µr

Replace A by hA
√

4π Leave µr alone

magnetic induction B magnetic pole strength pH

Replace B by hB
√

4π Replace pH by hpH /
√

4π

capacitance C electric dipole moment p

Replace C by hC/(4π) Replace p by hp/
√

4π

electric displacement D electric dipole density P

Replace D by hD
√

4π Replace P by hP/
√

4π

electric field E permeance P
Replace E by hE

√
4π Leave P alone

relative dielectric constant εr charge Q

Leave εr alone Replace Q by hQ/
√

4π

magnetomotive force F resistanceh R

Replace F by hF
√

4π Replace R by 4π · hR
magnetic flux #B reluctance R
Replace #B by h#B

√
4π Leave R alone

conductance G volume charge density ρQ

Replace G by hG/(4π) Replace ρQ by hρQ/
√

4π

magnetic field H resistivity ρR

Replace H by hH
√

4π Replace ρR by 4π · hρR
current I elastance S

Replace I by hI/
√

4π Replace S by 4π · hS
volume current density J surface charge density SQ

Replace J by hJ/
√

4π Replace SQ by hSQ/
√

4π

surface current density JS conductivity σ

Replace JS by JS/
√

4π Replace σby hσ/(4π)

inductance L electric potential V

Replace L by 4π · hL Replace V by hV
√

4π

permanent-magnet dipole moment mH magnetic scalar potential 'H

Replace mH by hmH /
√

4π Replace 'H by h'H
√

4π

current-loop magnetic dipole moment mI electric susceptibility χe

Replace mI by hmI /
√

4π Replace χe by hχe/(4π)

permanent-magnet dipole density MH magnetic susceptibility χm

ReplaceMH by hMH/
√

4π Replace χm by hχm/(4π)

current-loop magnetic dipole densityMI

ReplaceMI by hMI /
√

4π
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Table 4.9(b) To go from the Heaviside-Lorentz cgs system to Gaussian cgs units.

magnetic vector potential hA relative magnetic permeability µr

Replace hA by A/
√

4π Leave µr alone

magnetic induction hB magnetic pole strength hpH

Replace hB by B/
√

4π Replace hpH by pH
√

4π

capacitance hC electric dipole moment hp

Replace hC by 4πC Replace hp by p
√

4π

electric displacement hD electric dipole density hP

Replace hD by D/
√

4π Replace hP by P
√

4π

electric field hE permanence P
Replace hE by E/

√
4π Leave P alone

relative dielectric constant εr charge hQ

Leave εr alone Replace hQ by Q
√

4π

magnetomotive force hF resistance hR

Replace hF by F/
√

4π Replace hR by R/(4π)

magnetic flux h#B reluctance R
Replace h#B by #B/

√
4π Leave R alone

conductance hG volume charge density hρQ

Replace hG by 4πG Replace hρQ by ρQ
√

4π

magnetic field hH resistivity hρR

Replace hH by H/
√

4π Replace hρR by ρR/(4π)

current hI elastance hS

Replace hI by I
√

4π Replace hS by S/(4π)

volume current density hJ surface charge density hSQ

Replace hJ by J
√

4π Replace hSQ by SQ
√

4π

surface current density hJS conductivity hσ

Replace hJS by JS
√

4π Replace hσ by 4πσ

inductance hL electric potential hV

Replace hL by L/(4π) Replace hV by V/
√

4π

permanent-magnet dipole moment hmH magnetic scalar potential h'H

Replace hmH by mH
√

4π Replace h'H by 'H/
√

4π

current-loop magnetic dipole moment hmI electric susceptibility hχe

Replace hmI by mI
√

4π Replace hχe by 4πχe

permanent-magnet dipole density hMH magnetic susceptibility hχm

Replace hMH by MH
√

4π Replace hχm by 4πχm

current-loop magnetic dipole density hMI

Replace hMI byMI
√

4π
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Table 4.10(a) To go from Gaussian cgs units to esu units.

magnetic vector potential A relative magnetic permeability µr

Replace A by c ·A Leave µr alone

magnetic induction B magnetic pole strength pH

Replace B by c ·B Replace pH by c · pH
capacitance C electric dipole moment p

Leave C alone Leave p alone

electric displacement D electric dipole density P

Leave D alone Leave P alone

electric field E permeance P
Leave E alone Replace P by c2P
relative dielectric constant εr chargeQ

Leave εr alone LeaveQ alone

magnetomotive force F resistance R

Replace F by F/c Leave R alone

magnetic flux #B reluctance R
Replace #B by c ·#B Replace R by R/c2

conductance G volume charge density ρQ

Leave G alone Leave ρQ alone

magnetic field H resistivity ρR

Replace H by H/c Leave ρR alone

current I elastance S

Leave I alone Leave S alone

volume current density J surface charge density SQ

Leave J alone Leave SQ alone

surface current density JS conductivity σ

Leave JS alone Leave σalone

inductance L electric potential V

Leave L alone Leave V alone

permanent-magnet dipole moment mH magnetic scalar potential 'H

Replace mH by c ·mH Replace 'H by 'H/c

current-loop magnetic dipole moment mI electric susceptibility χe

Replace mI by mI /c Leave χe alone

permanent-magnet dipole density MH magnetic susceptibility χm

Replace MH by c ·MH Leave χm alone

current-loop magnetic dipole density MI

Replace MI byMI/c
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Table 4.10(b) To go from esu units to Gaussian cgs units.

magnetic vector potential A relative magnetic permeability µr

Replace A by A/c Leave µr alone

magnetic induction B magnetic permeability of free space µ0

Replace B by B/c Replace µ0 by c−2

capacitance C magnetic pole strength pH

Leave C alone Replace pH by pH /c

electric displacement D electric dipole moment p

Leave D alone Leave p alone

electric field E electric dipole density P

Leave E alone Leave P alone

relative dielectric constant εr permeance P
Leave εr alone Replace P by P/c2

magnetomotive force F chargeQ

Replace F by F · c LeaveQ alone

magnetic flux #B resistance R

Replace #B by #B/c Leave R alone

conductance G reluctance R
Leave G alone Replace R by R · c2
magnetic field H volume charge density ρQ

Replace H by H · c Leave ρQ alone

current I resistivity ρR

Leave I alone Leave ρR alone

volume current density J elastance S

Leave J alone Leave S alone

surface current density JS surface charge density SQ

Leave JS alone Leave SQ alone

inductance L conductivity σ

Leave L alone Leave σ alone

permanent-magnet dipole moment mH electric potential V

Replace mH by mH /c Leave V alone

current-loop magnetic dipole moment mI magnetic scalar potential 'H

Replace mI by mI · c Replace 'H by 'H · c
permanent-magnet dipole densityMH electric susceptibility χe

Replace MH by MH/c Leave χe alone

current-loop magnetic dipole density MI magnetic susceptibility χm

Replace MI byMI · c Leave χm alone

magnetic permeability µ

Replace µ by µrc−2
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Table 4.11(a) To go from Gaussian cgs units to emu units.

magnetic vector potential A relative magnetic permeability µr

Leave A alone Leave µr alone

magnetic induction B magnetic pole strength pH

Leave B alone Leave pH alone

capacitance C electric dipole moment p

Replace C by c2C Replace p by c · p
electric displacement D electric dipole density P

Replace D by c ·D Replace P by c · P
electric field E permeance P
Replace E by E/c Leave P alone

relative dielectric constant εr chargeQ

Leave εr alone ReplaceQ by c ·Q
magnetomotive force F resistance R

Leave F alone Replace R by R/c2

magnetic flux #B reluctance R
Leave #B alone Leave R alone

conductance G volume charge density ρQ

Replace G by c2G Replace ρQ by c · ρQ
magnetic field H resistivity ρR

Leave H alone Replace ρR by ρR/c2

current I elastance S

Replace I by c · I Replace S by S/c2

volume current density J surface charge density SQ

Replace J by c · J Replace SQ by c · SQ
surface current density JS conductivity σ

Replace JS by c ·JS Replace σ by c2σ

inductance L electric potential V

Replace L by L/c2 Replace V by V/c

permanent-magnet dipole moment mH magnetic scalar potential 'H

Leave mH alone Leave 'H alone

current-loop magnetic dipole moment mI electric susceptibility χe

Leave mI alone Leave χe alone

permanent-magnet dipole density MH magnetic susceptibility χm

LeaveMH alone Leave χm alone

current-loop magnetic dipole density MI

LeaveMI alone
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Table 4.11(b) To go from emu units to Gaussian cgs units.

magnetic vector potential A current-loop magnetic dipole densityMI

Leave A alone LeaveMI alone

magnetic induction B relative magnetic permeability µr

Leave B alone Leave µr alone

capacitance C magnetic pole strength pH

Replace C by C/c2 Leave pH alone

electric displacement D electric dipole moment p

Replace D by D/c Replace p by p/c

electric field E electric dipole density P

Replace E by E · c Replace P by P/c

dielectric constant ε permeance P
Replace ε by εr/c2 Leave P alone

relative dielectric constant εr chargeQ

Leave εr alone ReplaceQ byQ/c

permittivity of free space ε0 resistance R

Replace ε0 by c−2 Replace R by c2/R

magnetomotive force F reluctance R
Leave F alone Leave R alone

magnetic flux #B volume charge density ρQ

Leave #B alone Replace ρQ by ρQ/c

conductance G resistivity ρR

Replace G by G/c2 Replace ρR by c2ρR

magnetic field H elastance S

Leave H alone Replace S by c2/S

current I surface charge density SQ

Replace I by I/c Replace SQ by SQ/c

volume current density J conductivity σ

Replace J by J/c Replace σ by σ/c2

surface current density JS electric potential V

Replace JS by JS/c Replace V by V · c
inductance L magnetic scalar potential 'H

Replace L by L · c2 Leave 'H alone

permanent-magnet dipole moment mH electric susceptibility χe

Leave mH alone Leave χe alone

current-loop magnetic dipole moment mI magnetic susceptibility χm

Leave mI alone Leave χm alone

permanent-magnet dipole densityMH

LeaveMH alone
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Table 4.12(a) To go from Gaussian cgs units to the unrationalized mks system.
(This table also takes us from Gaussian cgs units to the esuq and emuq units
explained in Chapter 2.)

magnetic vector potential A relative magnetic permeability µr

Replace A by A/
√
µ0 Leave µr alone

magnetic induction B magnetic pole strength pH

Replace B by B/
√
µ0 Replace pH by pH/

√
µ0

capacitance C electric dipole moment p

Replace C by (µ0c
2) ·C Replace p by p · (c√µ0)

electric displacement D electric dipole density P

Replace D by D · (c√µ0) Replace P by P · (c√µ0)

electric field E permeance P
Replace E by E/(c

√
µ0) Replace P by P/µ0

relative dielectric constant εr chargeQ

Leave εr alone ReplaceQ by Q · (c√µ0)

magnetomotive force F resistance R

Replace F by F√
µ0 Replace R by R/(µ0c

2)

magnetic flux #B reluctance R
Replace #B by #B/

√
µ0 Replace R by R ·µ0

conductance G volume charge density ρQ

Replace G by (µ0c
2) ·G Replace ρQ by ρQ · (c√µ0)

magnetic field H resistivity ρR

Replace H by H
√
µ0 Replace ρR by ρR/(µ0c

2)

current I elastance S

Replace I by I · (c√µ0) Replace S by S/(µ0c
2)

volume current density J surface charge density SQ

Replace J by J · (c√µ0) Replace SQ by SQ · (c√µ0)

surface current density JS conductivity σ

Replace JS by JS · (c√µ0) Replace σ by (µ0c
2) · σ

inductance L electric potential V

Replace L by L/(µ0c
2) Replace V by V/(c

√
µ0)

permanent-magnet dipole moment mH magnetic scalar potential 'H

Replace mH by mH/
√
µ0 Replace 'H by 'H

√
µ0

current-loop magnetic dipole moment mI electric susceptibility χe

Replace mI by mI
√
µ0 Leave χe alone

permanent-magnet dipole densityMH magnetic susceptibility χm

Replace MH byMH/
√
µ0 Leave χm alone

current-loop magnetic dipole density MI

Replace MI byMI
√
µ0
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Table 4.12(b) To go from the unrationalized mks system to Gaussian cgs units.
(This table also takes us from the esuq and emuq units explained in Chapter 2 to
Gaussian cgs units.)

magnetic vector potential A magnetic permeability µ

Replace A by A
√
µ0 Replace µ by µr ·µ0

magnetic induction B relative magnetic permeability µr

Replace B by B
√
µ0 Leave µr alone

capacitance C magnetic permeability of free space µ0

Replace C by C/(µ0c
2) Leave µ0 alone

electric displacement D magnetic pole strength pH

Replace D by D/(c
√
µ0) Replace pH by pH · √µ0

electric field E electric dipole moment p

Replace E by E · (c√µ0) Replace p by p/(c
√
µ0)

dielectric constant ε electric dipole density P

Replace ε by εr /(µ0c
2) Replace P by P/(c

√
µ0)

relative dielectric constant εr permeance P
Leave εr alone Replace P by µ0 ·P
permittivity of free space ε0 charge Q

Replace ε0 by (µ0c
2)−1 Replace Q byQ/(c

√
µ0)

magnetomotive force F resistance R

Replace F by F/√µ0 Replace R by R · (µ0c
2)

magnetic flux #B reluctance R
Replace #B by #B · √µ0 Replace R by R/µ0

conductance G volume charge density ρQ

Replace G by G/(µ0c
2) Replace ρQ by ρQ/(c

√
µ0)

magnetic field H resistivity ρR

Replace H by H/
√
µ0 Replace ρR by ρR · (µ0c

2)

current I elastance S

Replace I by I/(c
√
µ0) Replace S by S · (µ0c

2)

volume current density J surface charge density SQ

Replace J by J/(c
√
µ0) Replace SQ by SQ/(c

√
µ0)

surface current density JS conductivity σ

Replace JS by JS/(c
√
µ0) Replace σ by σ/(µ0c

2)

inductance L electric potential V

Replace L by L · (µ0c
2) Replace V by V · (c√µ0)

permanent-magnet dipole moment mH magnetic scalar potential 'H

Replace mH by mH
√
µ0 Replace 'H by 'H/

√
µ0

current-loop magnetic dipole moment mI electric susceptibility χe

Replace mI by mI /
√
µ0 Leave χe alone

permanent-magnet dipole density MH magnetic susceptibility χm

Replace MH by MH
√
µ0 Leave χm alone

current-loop magnetic dipole density MI

Replace MI by MI/
√
µ0
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Table 4.13(a) To go from the Heaviside-Lorentz cgs system to esu units.

magnetic vector potential hA relative magnetic permeability µr

Replace hA by A · (c/√4π) Leave µr alone

magnetic induction hB magnetic pole strength hpH

Replace hB by B · (c/√4π) Replace hpH by pH · (c√4π)

capacitance hC electric dipole moment hp

Replace hC by 4πC Replace hp by p
√

4π

electric displacement hD electric dipole density hP

Replace hD by D/
√

4π Replace hP by P
√

4π

electric field hE permeance P
Replace hE by E/

√
4π Replace P by c2 ·P

relative dielectric constant εr charge hQ

Leave εr alone Replace hQ by Q
√

4π

magnetomotive force hF resistance hR

Replace hF by F/(c
√

4π) Replace hR by R/(4π)

magnetic flux h#B reluctance R
Replace h#B by #B · (c/√4π) Replace R by R/c2

conductance hG volume charge density hρQ

Replace hG by 4πG Replace hρQ by ρQ
√

4π

magnetic field hH resistivity hρR

Replace hH by H/(c
√

4π) Replace hρR by ρR/(4π)

current hI elastance hS

Replace hI by I
√

4π Replace hS by S/(4π)

volume current density hJ surface charge density hSQ

Replace hJ by J
√

4π Replace hSQ by SQ
√

4π

surface current density hJS conductivity hσ

Replace hJS by JS
√

4π Replace hσ by 4πσ

inductance hL electric potential hV

Replace hL by L/(4π) Replace hV by V/
√

4π

permanent-magnet dipole moment hmH magnetic scalar potential h'H

Replace hmH by mH · (c√4π) Replace h'H by 'H/(c
√

4π)

current-loop magnetic dipole moment hmI electric susceptibility hχe

Replace hmI by mI · (√4π/c) Replace hχe by 4πχe

permanent-magnet dipole density hMH magnetic susceptibility hχm

Replace hMH byMH · (c√4π) Replace hχm by 4πχm

current-loop magnetic dipole density hMI

Replace hMI byMI · (√4π/c)
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Table 4.13(b) To go from esu units to the Heaviside-Lorentz cgs system.

magnetic vector potential A relative magnetic permeability µr

Replace A by hA · (√4π/c) Leave µr alone

magnetic induction B magnetic permeability of free space µ0

Replace B by hB · (√4π/c) Replace µ0 by c−2

capacitance C magnetic pole strength pH

Replace C by hC/(4π) Replace pH by hpH/(c
√

4π)

electric displacement D electric dipole moment p

Replace D by hD
√

4π Replace p by hp/
√

4π

electric field E electric dipole density P

Replace E by hE
√

4π Replace P by hP/
√

4π

relative dielectric constant εr permeance P
Leave εr alone Replace P by P/c2

magnetomotive force F chargeQ

Replace F by hF · (c√4π) ReplaceQ by hQ/
√

4π

magnetic flux #B resistance R

Replace #B by h#B · (√4π/c) Replace R by 4π · hR
conductance G reluctance R
Replace G by hG/(4π) Replace R by R · c2
magnetic field H volume charge density ρQ

Replace H by hH · (c√4π) Replace ρQ by hρQ/
√

4π

current I resistivity ρR

Replace I by hI/
√

4π Replace ρR by 4π · hρR
volume current density J elastance S

Replace J by hJ/
√

4π Replace S by 4π · hS
surface current density JS surface charge density SQ

Replace JS by hJS/
√

4π Replace SQ by hSQ/
√

4π

inductance L conductivity σ

Replace L by 4π · hL Replace σ by hσ/(4π)

permanent-magnet dipole moment mH electric potential V

Replace mH by hmH /(c
√

4π) Replace V by hV
√

4π

current-loop magnetic dipole moment mI magnetic scalar potential 'H

Replace mI by hmI · (c/√4π) Replace 'H by h'H · (c√4π)

permanent-magnet dipole density MH electric susceptibility χe

ReplaceMH by hMH/(c
√

4π) Replace χe by hχe/(4π)

current-loop magnetic dipole densityMI magnetic susceptibility χm

ReplaceMI by hMI · (c/√4π) Replace χm by hχm/(4π)

magnetic permeability µ

Replace µ by µr · c−2
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Table 4.14(a) To go from the Heaviside-Lorentz cgs system to emu units.

magnetic vector potential hA relative magnetic permeability µr

Replace hA by A/
√

4π Leave µr alone

magnetic induction hB magnetic pole strength hpH

Replace hB by B/
√

4π Replace hpH by pH · √4π

capacitance hC electric dipole moment hp

Replace hC by (4πc2) ·C Replace hp by p · (c√4π)

electric displacement hD electric dipole density hP

Replace hD by D · (c/√4π) Replace hP by P · (c√4π)

electric field hE permeance P
Replace hE by E/(c

√
4π) Leave P alone

relative dielectric constant εr charge hQ

Leave εr alone Replace hQ by Q · (c√4π)

magnetomotive force hF resistance hR

Replace hF by F/
√

4π Replace hR by R/(4πc2)

magnetic flux h#B reluctance R
Replace h#B by #B/

√
4π Leave R alone

conductance hG volume charge density hρQ

Replace hG by (4πc2) ·G Replace hρQ by ρQ · (c√4π)

magnetic field hH resistivity hρR

Replace hH by H/
√

4π Replace hρR by ρR/(4πc2)

current hI elastance hS

Replace hI by I · (c√4π) Replace hS by S/(4πc2)

volume current density hJ surface charge density hSQ

Replace hJ by J · (c√4π) Replace hSQ by SQ · (c√4π)

surface current density hJS conductivity hσ

Replace hJS by JS · (c√4π) Replace hσ by (4πc2) · σ
inductance hL electric potential hV

Replace hL by L/(4πc2) Replace hV by V/(c
√

4π)

permanent-magnet dipole moment hmH magnetic scalar potential h'H

Replace hmH by mH · √4π Replace h'H by 'H/
√

4π

current-loop magnetic dipole moment hmI electric susceptibility hχe

Replace hmI by mI · √4π Replace hχe by 4πχe

permanent-magnet dipole density hMH magnetic susceptibility hχm

Replace hMH byMH · √4π Replace hχm by 4πχm

current-loop magnetic dipole density hMI

Replace hMI byMI · √4π
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Table 4.14(b) To go from emu units to the Heaviside-Lorentz cgs system.

magnetic vector potential A current-loop magnetic dipole densityMI

Replace A by hA · √4π ReplaceMI by hMI /
√

4π

magnetic induction B relative magnetic permeability µr

Replace B by hB · √4π Leave µr alone

capacitance C magnetic pole strength pH

Replace C by hC/(4πc2) Replace pH by hpH/
√

4π

electric displacement D electric dipole moment p

Replace D by hD · (√4π/c) Replace p by hp/(c
√

4π)

electric field E electric dipole density P

Replace E by hE · (c√4π) Replace P by hP/(c
√

4π)

dielectric constant ε permeance P
Replace ε by εrc−2 Leave P alone

relative dielectric constant εr chargeQ

Leave εr alone ReplaceQ by hQ/(c
√

4π)

permittivity of free space ε0 resistance R

Replace ε0 by c−2 Replace R by (4πc2) · hR
magnetomotive force F reluctance R
Replace F by hF · √4π Leave R alone

magnetic flux #B volume charge density ρQ

Replace #B by h#B · √4π Replace ρQ by hρQ/(c
√

4π)

conductance G resistivity ρR

Replace G by hG/(4πc2) Replace ρR by (4πc2) · hρR
magnetic field H elastance S

Replace H by hH · √4π Replace S by (4πc2) · hS
current I surface charge density SQ

Replace I by hI/(c
√

4π) Replace SQ by hSQ/(c
√

4π)

volume current density J conductivity σ

Replace J by hJ/(c
√

4π) Replace σ by hσ/(4πc2)

surface current density JS electric potential V

Replace JS by hJS/(c
√

4π) Replace V by hV · (c√4π)

inductance L magnetic scalar potential 'H

Replace L by (4πc2) · hL Replace 'H by h'H · √4π

permanent-magnet dipole moment mH electric susceptibility χe

Replace mH by hmH /
√

4π Replace χe by hχe/(4π)

current-loop magnetic dipole moment mI magnetic susceptibility χm

Replace mI by hmI /
√

4π Replace χm by hχm/(4π)

permanent-magnet dipole densityMH

ReplaceMH by hMH/
√

4π
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Table 4.15(a) To go from the Heaviside-Lorentz cgs system to the unrationalized
mks system. (This table also takes us from the Heaviside-Lorentz cgs system to
the esuq and emuq units explained in Chapter 2.)

magnetic vector potential hA relative magnetic permeability µr

Replace hA by A/
√

4πµ0 Leave µr alone

magnetic induction hB magnetic pole strength hpH

Replace hB by B/
√

4πµ0 Replace hpH by pH · √4π/µ0

capacitance hC electric dipole moment hp

Replace hC by (4πµ0c
2) ·C Replace hp by p · (c√4πµ0)

electric displacement hD electric dipole density hP

Replace hD by D · c√µ0/(4π) Replace hP by P · (c√4πµ0)

electric field hE permeance P
Replace hE by E/(c

√
4πµ0) Replace P by P/µ0

relative dielectric constant εr charge hQ

Leave εr alone Replace hQ byQ · (c√4πµ0)

magnetomotive force hF resistance hR

Replace hF by F ·√µ0/(4π) Replace hR by R/(4πµ0c
2)

magnetic flux h#B reluctance R
Replace h#B

√
f µ0 by #B/

√
4πµ0 Replace R by µ0 ·R

conductance hG volume charge density hρQ

Replace hG by (4πµ0c
2) ·G Replace hρQ by ρQ · (c√4πµ0)

magnetic field hH resistivity hρR

Replace hH by H ·√µ0/(4π) Replace hρR by ρR/(4πµ0c
2)

current hI elastance hS

Replace hI by I · (c√4πµ0) Replace hS by S/(4πµ0c
2)

volume current density hJ surface charge density hSQ

Replace hJ by J · (c√4πµ0) Replace hSQ by SQ · (c√4πµ0)

surface current density hJS conductivity hσ

Replace hJS by JS · (c√4πµ0) Replace hσ by (4πµ0c
2) · σ

inductance hL electric potential hV

Replace hL by L/(4πµ0c
2) Replace hV by V/(c

√
4πµ0)

permanent-magnet dipole moment hmH magnetic scalar potential h'H

Replace hmH by mH · √4π/µ0 Replace h'H by 'H ·√µ0/(4π)

current-loop magnetic dipole moment hmI electric susceptibility hχe

Replace hmI by mI · √4πµ0 Replace hχe by 4πχe

permanent-magnet dipole density hMH magnetic susceptibility hχm

Replace hMH byMH · √4π/µ0 Replace hχm by 4πχm

current-loop magnetic dipole density hMI

Replace hMI byMI · √4πµ0
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Table 4.15(b) To go from the unrationalized mks system to the Heaviside-Lorentz
cgs system. (This table also takes us from the esuq and emuq units explained in
Chapter 2 to the Heaviside-Lorentz cgs system.)

magnetic vector potential A magnetic permeability µ

Replace A by hA
√

4πµ0 Replace µ by µr ·µ0

magnetic induction B relative magnetic permeability µr

Replace B by hB
√

4πµ0 Leave µr alone

capacitance C magnetic permeability of free space µ0

Replace C by hC/(4πµ0c
2) Leave µ0 alone

electric displacement D magnetic pole strength pH

Replace D by hDc−1
√

4π/µ0 Replace pH by hpH
√
µ0/(4π)

electric field E electric dipole moment p

Replace E by hEc
√

4πµ0 Replace p by hp(c
√

4πµ0)
−1

dielectric constant ε electric dipole density P

Replace ε by εr /(µ0c
2) Replace P by hP (c

√
4πµ0)

−1

relative dielectric constant εr permeance P
Leave εr alone Replace P by P ·µ0

permittivity of free space ε0 charge Q

Replace ε0 by (µ0c
2)−1 Replace Q by hQ(c

√
4πµ0)

−1

magnetomotive force F resistance R

Replace F by hF
√

4π/µ0 Replace R by hR · (4πµ0c
2)

magnetic flux #B reluctance R
Replace #B by h#B

√
4πµ0 Replace R by R/µ0

conductance G volume charge density ρQ

Replace G by hG/(4πµ0c
2) Replace ρQ by hρQ(c

√
4πµ0)

−1

magnetic field H resistivity ρR

Replace H by hH
√

4π/µ 0 Replace ρR by hρR · (4πµ0c
2)

current I elastance S

Replace I by hI (c
√

4πµ0)
−1 Replace S by hS · (4πµ0c

2)

volume current density J surface charge density SQ

Replace J by hJ(c
√

4πµ0)
−1 Replace SQ by hSQ(c

√
4πµ0)

−1

surface current density JS conductivity σ

Replace JS by hJS(c
√

4πµ0)
−1 Replace σ by hσ/(4πµ0c

2)

inductance L electric potential V

Replace L by hL · (4πµ0c
2) Replace V by hV c

√
4πµ0

permanent-magnet dipole moment mH magnetic scalar potential 'H

Replace mH by hmH
√
µ0/(4π) Replace 'H by h'H

√
4π/µ0

current-loop magnetic dipole moment mI electric susceptibility χe

Replace mI by hmI /
√

4πµ0 Replace χe by hχe/(4π)

permanent-magnet dipole density MH magnetic susceptibility χm

Replace MH by hMH
√
µ0/(4π) Replace χm by hχm/(4π)

current-loop magnetic dipole density MI

Replace MI by hMI /
√

4πµ0
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Table 4.16(a) To go from esu units to emu units.

magnetic vector potential A relative magnetic permeability µr

Replace A by A/c Leave µr alone

magnetic induction B magnetic permeability of free space µ0

Replace B by B/c Replace µ0 by c−2

capacitance C magnetic pole strength pH

Replace C by c2C Replace pH by pH /c

electric displacement D electric dipole moment p

Replace D by cD Replace p by c · p
electric field E electric dipole density P

Replace E by E/c Replace P by c · P
relative dielectric constant εr permeance P
Leave εr alone Replace P by P/c2

magnetomotive force F chargeQ

Replace F by F · c ReplaceQ by c ·Q
magnetic flux #B resistance R

Replace #B by #B/c Replace R by R/c2

conductance G reluctance R
Replace G by c2G Replace R by R · c2
magnetic field H volume charge density ρQ

Replace H by H · c Replace ρQ by c · ρQ
current I resistivity ρR

Replace I by c · I Replace ρR by ρR/c2

volume current density J elastance S

Replace J by c · J Replace S by S/c2

surface current density JS surface charge density SQ

Replace JS by c ·JS Replace SQ by c · SQ
inductance L conductivity σ

Replace L by L/c2 Replace σ by c2σ

permanent-magnet dipole moment mH electric potential V

Replace mH by mH/c Replace V by V/c

current-loop magnetic dipole moment mI magnetic scalar potential 'H

Replace mI by mI · c Replace 'H by 'H · c
permanent-magnet dipole densityMH electric susceptibility χe

Replace MH byMH/c Leave χe alone

current-loop magnetic dipole density MI magnetic susceptibility χm

Replace MI byMI · c Leave χm alone

magnetic permeability µ

Replace µ by µrc−2
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Table 4.16(b) To go from emu units to esu units.

magnetic vector potential A current-loop magnetic dipole densityMI

Replace A by c ·A ReplaceMI by MI/c

magnetic induction B relative magnetic permeability µr

Replace B by c ·B Leave µr alone

capacitance C magnetic pole strength pH

Replace C by C/c2 Replace pH by pH · c
electric displacement D electric dipole moment p

Replace D by D/c Replace p by p/c

electric field E electric dipole density P

Replace E by E · c Replace P by P/c

dielectric constant ε permeance P
Replace ε by εr/c2 Replace P by c2P
relative dielectric constant εr chargeQ

Leave εr alone ReplaceQ byQ/c

permittivity of free space ε0 resistance R

Replace ε0 by c−2 Replace R by c2R

magnetomotive force F reluctance R
Replace F by F/c Replace R by R/c2

magnetic flux #B volume charge density ρQ

Replace #B by #B · c Replace ρQ by ρQ/c

conductance G resistivity ρR

Replace G by G/c2 Replace ρR by c2ρR

magnetic field H elastance S

Replace H by H/c Replace S by c2S

current I surface charge density SQ

Replace I by I/c Replace SQ by SQ/c

volume current density J conductivity σ

Replace J by J/c Replace σ by σ/c2

surface current density JS electric potential V

Replace JS by JS/c Replace V by V · c
inductance L magnetic scalar potential 'H

Replace L by L · c2 Replace 'H by 'H/c

permanent-magnet dipole moment mH electric susceptibility χe

Replace mH by mH · c Leave χe alone

current-loop magnetic dipole moment mI magnetic susceptibility χm

Replace mI by mI /c Leave χm alone

permanent-magnet dipole density MH

Replace MH by MH · c
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Table 4.17(a) To go from esu units to the unrationalized mks system. (This table
also takes us from esu units to the esuq and emuq units explained in Chapter 2.)

magnetic vector potential A relative magnetic permeability µr

Replace A by A/(c
√
µ0) Leave µr alone

magnetic induction B magnetic permeability of free space µ0

Replace B by B/(c
√
µ0) Replace µ0 by c−2

capacitance C magnetic pole strength pH

Replace C by µ0c
2C Replace pH by pH /(c

√
µ0)

electric displacement D electric dipole moment p

Replace D by (c
√
µ0)D Replace p by (c

√
µ0) · p

electric field E electric dipole density P

Replace E by E/(c
√
µ0) Replace P by (c

√
µ0) ·P

relative dielectric constant εr permeance P
Leave εr alone Replace P by P/(µ0c

2)

magnetomotive force F charge Q

Replace F by F · (c√µ0) Replace Q by (c
√
µ0) ·Q

magnetic flux #B resistance R

Replace #B by #B/(c
√
µ0) Replace R by R/(µ0c

2)

conductance G reluctance R
Replace G by µ0c

2G Replace R by R · (µ0c
2)

magnetic field H volume charge density ρQ

Replace H by H · (c√µ0) Replace ρQ by (c
√
µ0) · ρQ

current I resistivity ρR

Replace I by (c
√
µ0) · I Replace ρR by ρR/(µ0c

2)

volume current density J elastance S

Replace J by (c
√
µ0) · J Replace S by S/(µ0c

2)

surface current density JS surface charge density SQ

Replace JS by (c
√
µ0) ·JS Replace SQ by (c

√
µ0) · SQ

inductance L conductivity σ

Replace L by L/(µ0c
2) Replace σ by µ0c

2σ

permanent-magnet dipole moment mH electric potential V

Replace mH by mH/(c
√
µ0) Replace V by V/(c

√
µ0)

current-loop magnetic dipole moment mI magnetic scalar potential 'H

Replace mI by mI · (c√µ0) Replace 'H by 'H · (c√µ0)

permanent-magnet dipole density MH electric susceptibility χe

Replace MH byMH/(c
√
µ0) Leave χe alone

current-loop magnetic dipole density MI magnetic susceptibility χm

Replace MI byMI · (c√µ0) Leave χm alone

magnetic permeability µ

Replace µ by µrc−2
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Table 4.17(b) To go from the unrationalized mks system to esu units. (This table
also takes us from the esuq and emuq units explained in Chapter 2 to esu units.)

magnetic vector potential A magnetic permeability µ

Replace A by A · (c√µ0) Replace µ by µr ·µ0

magnetic induction B relative magnetic permeability µr

Replace B by B · (c√µ0) Leave µr alone

capacitance C magnetic permeability of free space µ0

Replace C by C/(µ0c
2) Leave µ0 alone

electric displacement D magnetic pole strength pH

Replace D by D/(c
√
µ0) Replace pH by pH · (c√µ0)

electric field E electric dipole moment p

Replace E by E · (c√µ0) Replace p by p/(c
√
µ0)

dielectric constant ε electric dipole density P

Replace ε by εr /(µ0c
2) Replace P by P/(c

√
µ0)

relative dielectric constant εr permeance P
Leave εr alone Replace P by (µ0c

2) ·P
permittivity of free space ε0 charge Q

Replace ε0 by (µ0c
2)−1 Replace Q byQ/(c

√
µ0)

magnetomotive force F resistance R

Replace F by F/(c√µ0) Replace R by R · (µ0c
2)

magnetic flux #B reluctance R

Replace #B by #B · (c√µ0) Replace R by R/(µ0c
2)

conductance G volume charge density ρQ

Replace G by G/(µ0c
2) Replace ρQ by ρQ/(c

√
µ0)

magnetic field H resistivity ρR

Replace H by H/(c
√
µ0) Replace ρR by ρR · (µ0c

2)

current I elastance S

Replace I by I/(c
√
µ0) Replace S by S · (µ0c

2)

volume current density J surface charge density SQ

Replace J by J/(c
√
µ0) Replace SQ by SQ/(c

√
µ0)

surface current density JS conductivity σ

Replace JS by JS/(c
√
µ0) Replace σ by σ/(µ0c

2)

inductance L electric potential V

Replace L by L · (µ0c
2) Replace V by V · (c√µ0)

permanent-magnet dipole moment mH magnetic scalar potential 'H

Replace mH by mH · (c√µ0) Replace 'H by 'H/(c
√
µ0)

current-loop magnetic dipole moment mI electric susceptibility χe

Replace mI by mI/(c
√
µ0) Leave χe alone

permanent-magnet dipole density MH magnetic susceptibility χm

Replace MH byMH · (c√µ0) Leave χm alone

current-loop magnetic dipole density MI

Replace MI byMI/(c
√
µ0)
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Table 4.18(a) To go from emu units to the unrationalized mks system. (This table
also takes us from emu units to the esuq and emuq units explained in Chapter 2.)

magnetic vector potential A current-loop magnetic dipole density MI

Replace A by A/
√
µ0 Replace MI byMI · √µ0

magnetic induction B relative magnetic permeability µr

Replace B by B/
√
µ0 Leave µr alone

capacitance C magnetic pole strength pH

Replace C by µ0 ·C Replace pH by pH /
√
µ0

electric displacement D electric dipole moment p

Replace D by D · √µ0 Replace p by p · √µ0

electric field E electric dipole density P

Replace E by E/
√
µ0 Replace P by P · √µ0

dielectric constant ε permeance P
Replace ε by εr /c2 Replace P by P/µ0

relative dielectric constant εr charge Q

Leave εr alone Replace Q byQ · √µ0

permittivity of free space ε0 resistance R

Replace ε0 by c−2 Replace R by R/µ0

magnetomotive force F reluctance R
Replace F by F · √µ0 Replace R by R ·µ0

magnetic flux #B volume charge density ρQ

Replace #B by #B/
√
µ0 Replace ρQ by ρQ · √µ0

conductance G resistivity ρR

Replace G by G ·µ0 Replace ρR by ρR/µ0

magnetic field H elastance S

Replace H by H · √µ0 Replace S by S/µ0

current I surface charge density SQ

Replace I by I · √µ0 Replace SQ by SQ · √µ0

volume current density J conductivity σ

Replace J by J · √µ0 Replace σ by µ0 · σ
surface current density JS electric potential V

Replace JS by JS · √µ0 Replace V by V/
√
µ0

inductance L magnetic scalar potential 'H

Replace L by L/µ0 Replace 'H by 'H · √µ0

permanent-magnet dipole moment mH electric susceptibility χe

Replace mH by mH/
√
µ0 Leave χe alone

current-loop magnetic dipole moment mI magnetic susceptibility χm

Replace mI by mI · √µ0 Leave χm alone

permanent-magnet dipole density MH

Replace MH byMH/
√
µ0
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Table 4.18(b) To go from the unrationalized mks system to emu units. (This table
also takes us from the esuq and emuq units explained in Chapter 2 to emu units.)

magnetic vector potential A magnetic permeability µ

Replace A by A
√
µ0 Replace µ by µr ·µ0

magnetic induction B relative magnetic permeability µr

Replace B by B
√
µ0 Leave µr alone

capacitance C magnetic permeability of free space µ0

Replace C by C/µ0 Leave µ0 alone

electric displacement D magnetic pole strength pH

Replace D by D/
√
µ0 Replace pH by pH · √µ0

electric field E electric dipole moment p

Replace E by E
√
µ0 Replace p by p/

√
µ0

dielectric constant ε electric dipole density P

Replace ε by εr /(µ0c
2) Replace P by P/

√
µ0

relative dielectric constant εr permeance P
Leave εr alone Replace P by µ0 ·P
permittivity of free space ε0 charge Q

Replace ε0 by (µ0c
2)−1 Replace Q byQ/

√
µ0

magnetomotive force F resistance R

Replace F by F/√µ0 Replace R by R ·µ0

magnetic flux #B reluctance R

Replace #B by #B · √µ0 Replace R by R/µ0

conductance G volume charge density ρQ

Replace G by G/µ0 Replace ρQ by ρQ/
√
µ0

magnetic field H resistivity ρR

Replace H by H/
√
µ0 Replace ρR by ρR ·µ0

current I elastance S

Replace I by I/
√
µ0 Replace S by S ·µ0

volume current density J surface charge density SQ

Replace J by J/
√
µ0 Replace SQ by SQ/

√
µ0

surface current density JS conductivity σ

Replace JS by JS/
√
µ0 Replace σ by σ/µ0

inductance L electric potential V

Replace L by L ·µ0 Replace V by V
√
µ0

permanent-magnet dipole moment mH magnetic scalar potential 'H

Replace mH by mH
√
µ0 Replace 'H by 'H/

√
µ0

current-loop magnetic dipole moment mI electric susceptibility χe

Replace mI by mI/
√
µ0 Leave χe alone

permanent-magnet dipole density MH magnetic susceptibility χm

Replace MH byMH
√
µ0 Leave χm alone

current-loop magnetic dipole density MI

Replace MI byMI/
√
µ0
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ab, 96–97, 108, 154
abamp, 96
abampere, 96
abampq, 110
abcoul, 96
abcoulomb, 96, 103
abcoulq, 107–108, 115
abfaradq, 110–111
abhenryq, 110
abohmq, 114
absolute system of units, 96
absolute zero, 23
abvolt, 96, 103
abvoltq, 107–108
abweberq, 112
acceleration, 5–6
acre, 4
amp, 183, 185
ampere, 91, 184
Ampere, Andre Marie, 91
angle, 26–27
angular frequency, 27, 56
arc length, 26
area, 4
atm, 25

B field, 86, 128, 130, 136, 209�B field, 88–89, 130, 235–236
bar magnet, 67, 86–87
barn, 4
barye, 15
batteries, 69, 89
Biot-Savart law, 263
black-body radiation, 56
black-body surface, 56
Boltzmann’s constant, 31, 56, 179
bound charge, 89

capacitance, 94, 111, 124, 184, 209, 259
capacitor, 94, 124
Cartesian coordinate system, 139
Celsius temperature scale, 23
center of mass, 136–137
centigrade temperature scale, 23
centimeter (cm), 2, 14, 15, 39, 41, 50–51, 57–58
centimeter-gram, 39
centimeter-gram-second, 14
cg, 39, 42, 45, 47, 181–182

cg system of units, 39, 41, 43–44, 47, 49–50, 55
cgc, 14, 39, 41, 43–44, 47, 49, 76–77, 83, 103,

105, 118, 145, 173, 188
cgc system of units, 39, 41, 43, 55–56
cgs electromagnetic system of units, 75–76
cgs electrostatic system, 75
cgs emu, 183
cgs esu, 183
cgs system of units, 46, 57
cgsK, 62
cgsK system of units, 57, 61–62
charge, 65, 84, 184
charge density, 209
chemistry, 29
circuit elements, 92–93
circuit networks, 93
circuit theory, 91, 204, 209
circuits, 89
cm2, 4
cm1, 60
cm1 system of units, 60–62
cmtime, 39, 41, 50
cmtime2, 39, 41, 174, 181
cmtime3, 39, 41, 174, 181
cmαβγ , 62
cmαβγ system of units, 58–61, 63
column-vector, 140
compass needle, 67
conductance, 94, 136, 209
conductivity, 133, 209, 234, 257
connecting unit, 50, 118, 120, 124, 191, 194, 201,

206, 210, 212, 215
cosmology, 38
coul, 94, 108, 183
coulomb, 46, 94, 103, 184–185
Coulomb, Charles Augustine, 94
Coulomb force, 78–79
Coulomb’s law, 66, 84, 104–105, 107, 117, 130,

171–172, 207–208, 224
Coulomb’s law for electric charge, 69, 171, 237
Coulomb’s law for magnetic poles, 68, 171, 237
Coulomb’s law for point charges, 68
Coulomb’s torsion balance, 80
cross product, 139, 142, 145
curl, 145–146
current, 92, 109, 130, 135, 181
current loop, 132, 262–263
current-loop dipole moment, 243
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current-loop magnetic dipole, 273
current-loop magnetic dipole density, 130, 226,

243, 248
current-loop magnetic dipole moment, 130–131,

241

D field, 86�D field, 89
daraf, 95
degK, 23, 40, 57
degR, 23
degR1, 30, 40, 51
degR1LA, 34
degrees Kelvin, 23
degrees Rankine, 23
del operator, 143
density, 12
derived unit, 15, 50
dielectric constant, 133, 234
dimension, 2, 50–51
dimensional analysis, 8, 188
dimensionless, 10
dimensionless parameters, 11
dimensionless unit vector, 66, 68, 140–142
dimensionless velocity, 54–55
dipole density, 209
dipole moment, 86
displacement current, 150
divergence, 144, 146
dot product, 139, 141, 144
dyne, 15, 82

E field, 90, 179�E field, 89
EdegR1, 32–33, 40, 51
EdegR1LA, 36
elastance, 95, 209
electrets, 89
electric charge, 68–69, 103–104, 207, 209
electric circuit, 90, 135–136, 254
electric current, 70, 90–92, 136, 184, 190, 209
electric dipole, 240
electric dipole density, 106, 120, 150, 226, 242,

247
electric dipole density field, 89
electric dipole moment, 86, 88, 209, 242
electric dipole radiating, 271
electric displacement, 89, 120, 157, 226, 247
electric field, 68–69, 82–84, 89, 120, 130, 133,

150, 178, 209, 226, 231, 247
electric field of a point charge, 237
electric potential, 90–92, 103, 106, 136, 184,

209, 238
electric quantities, 151, 158
electric susceptibility, 134, 209, 258
electromagnet, 135–136

electromagnetic physical quantity, 76, 84–85, 96,
103–105, 118, 188, 205, 225

electromagnetic quantities, 168
electromagnetic radiation, 65, 75, 151, 194, 219
electromagnetic units (emu), 65, 91
electron, 47, 130, 135
electron-volt, 46
electrostatic units (esu), 65, 91
emu, 76, 81–86, 88–91, 96, 104–105, 115–116,

118, 122–125, 127, 130–131, 133, 135,
149, 151, 154, 166, 171, 181–184, 190,
194, 197–198, 211, 223

emu system, 220
emu units, 76, 199–200, 227–228, 292
emuq, 104, 107–108, 110–112, 114, 116, 118,

122, 124–125, 130, 133, 135, 149, 183,
190, 192, 196–199, 211, 216, 232, 287

energy, 9, 10
energy density, 270
erg, 15–16, 44, 46, 50
esu, 76, 78–79, 81–86, 89–90, 96–97, 104–105,

115–116, 118, 120, 125, 127, 130, 133,
135, 149, 151, 154–155, 166, 171, 181,
183, 190, 197–198, 200, 210, 223, 233

esu system, 218
esu units, 75, 155, 199–200, 223, 227–228, 292
esuq, 104–106, 108–109, 111–112, 114, 116,

118, 122–123, 125, 130, 133, 135, 149,
183, 190, 192, 196–197, 199, 201, 203,
207, 210, 213, 232, 287

eV/c, 50
eV2, 47, 49
eV3, 47
erg2, 44–46
erg3, 43–46
eV, 46, 50
exitance, 28
extra dimension, 51

f prefix, 185, 204, 218, 220, 222, 226, 235, 280
Fahrenheit temperature scale, 23
farad, 95, 183, 185, 203
Faraday, Michael, 95
feet, 2
Fessenden, R. A., 204
Fessenden rationalization, 204–205, 207–209,

211–212, 214, 216, 218, 220, 222
field, 68
field point, 68, 86, 89, 130, 219
fine-structure constant, 279
foot2, 4
force, 4, 6
fourth electromagnetic dimension, 108
fourth fundamental dimension, 115, 120–121
free-parameter method, 225
frequencies, 54
fundamental dimensions, 4, 65
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gauss, 97, 152, 156–157, 174, 194, 209
Gauss, Karl Friedrich, 97
Gaussian, 131, 149, 171
Gaussian cg system, 174, 176, 179, 181
Gaussian cgc system, 174
Gaussian cgc units, 173–174
Gaussian cgs system, 151, 179, 181, 200
Gaussian cgs unit, 153, 173, 181, 199, 209–210,

227–228, 292
Gaussian system, 149, 151, 155, 158, 166, 180,

183, 205, 212, 222–223
Gaussian units, 149, 151, 166, 171, 182, 223
GeV, 46
GeV/c, 50
gilbert, 97, 156
Gilbert, William, 97
gm (gram), 14–15, 39, 45, 50, 57, 83
gradient, 143, 146
gs, 154, 174
gscg, 174, 181

h prefix, 168, 226, 235, 281
H field, 128�H field, 88, 130
heat, 31
Heaviside, Oliver, 167–168, 171
Heaviside-Lorentz, 131
Heaviside-Lorentz cgs system, 227–228, 230,

292
Heaviside-Lorentz rationalization, 170, 184, 204,

206–207
Heaviside-Lorentz system, 149, 166, 168, 170–

173, 175, 178–179, 207–208
henry, 95, 183, 185
Henry, Joseph, 95
hertz, 27
Hertz, Heinrich, 27
horseshoe, 136
Hz, 27

ideal gas law, 24, 29, 33–34, 38
inch, 2
inductance, 184, 209, 260
induction, 95, 110
inductor, 95
invariant unit, 50, 120, 124, 191, 194, 201, 206,

210, 212, 215
isolated magnetic pole, 67, 70, 83, 128, 130

joule, 15–17, 33, 36, 40, 50

kg (kilogram), 14–15, 50
kinetic energy, 10, 38

Laplacian, 147, 234
length, 4, 14
length2, 5

liter, 25
liter · atm, 34, 36
Lorentz, H. A., 168, 171
Lorentz force law, 130, 149, 158, 160, 180, 225–

227, 249, 278
luminiferous ether, 66

�MH field, 89
m (meter), 15, 50
macroscopic scale, 166
magnetic circuit, 135, 136, 255
magnetic dipole, 132, 162
magnetic dipole density, 131
magnetic dipole moment, 86, 88, 131
magnetic field, 68, 70, 83–85, 87, 90, 128, 130,

132–133, 137–138, 150, 157, 217, 226,
239, 248

magnetic field of a point magnetic pole, 238
magnetic flux, 135–136, 267
magnetic induction, 87, 113, 128, 130, 136, 157,

173–174, 194, 226, 234, 248
magnetic monopoles, 67
magnetic permeability, 133, 234
magnetic permeability of free space, 67, 234
magnetic pole, 67–68, 70, 80, 207–208, 239
magnetic pole strength, 84, 86, 112, 157, 208
magnetic potential, 90, 239
magnetic quantities, 151
magnetic susceptibility, 258
magnetic vector potential, 253
magnetomotive force, 135–136
mass, 4, 14
maxwell, 97, 156–157
Maxwell, James Clerk, 97, 150, 209
Maxwell equation, 72, 75, 149–151, 153, 166,

171–172, 180, 197, 210, 216, 224–227,
269, 282

mechanical physical quantities, 76, 105, 158
meter2, 4
meter-kilogram-second, 14
MeV, 46, 178
MeV/c, 50
mho, 94
microscopic current loops, 128
microscopic scale, 166
miles, 2
mks, 14, 17, 49, 77, 108, 145, 183–185
mks system, 184
mksER1 system of units, 32–33, 40, 51
mksR1, 51
mksR1 system of units, 30, 40
mksK system of units, 29, 40, 57
mole, 24
moment of inertia, 137
momentum, 38, 48

N operator, 17, 19
N

cmαβγ
, 59
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N
cm1

, 60

N
cg

, 39, 183

N
cgs

, 17

N
emu

, 76

N
emuq

, 104, 185

N
esu

, 76

N
esuq

, 104, 185

N
gs

, 154

N
gscg

, 175, 183

N
Heaviside
Lorentz

, 170

N
mks

, 18, 184–185, 190

N
mksER1

, 32

N
mksK

, 29

N
mksR1

, 30, 32

newfarad, 167
newton, 15, 50
Newtonian physics, 65
north pole, 67, 128, 137
north-seeking pole, 67
numerics, 4

oersted, 97, 156–157
Oersted, Hans Christian, 97
ohm, 92–93, 183, 185
Ohm, Georg Simon, 92
Ohm’s law, 92, 136
optics, 28
oscillating current-loop magnetic dipole, 231

�P field, 89
parallel-plate capacitor, 124, 205, 259
particle physics, 46
pascal, 15
period, 138–139
period of oscillation, 70
permanent magnet, 67–68, 86, 89–90, 128
permanent-magnet dipole, 241
permanent-magnet dipole density, 113, 150, 226,

242–243, 248
permanent-magnet dipole density field, 86
permanent-magnet dipole moment, 86–87, 113,

137, 241, 242
permeability, 166
permeability of free space, 150, 233
permeance, 135–136
permittivity, 78, 133, 166, 234
permittivity of free space, 66, 133, 150
photons, 56

physical quantities, 2
physical reality, 51
Planck’s constant, 56, 279
plasma, 135
point charge, 66, 68, 78, 104
point magnetic dipoles, 90
point magnetic pole, 66
poise, 15
poiseulle, 15
pole strength, 67–68, 81–82, 128, 137
potential, 92
potential energy, 90, 132
pound-force, 4
power, 16
Poynting vector, 194, 196, 270
practical electromagnetic units, 104
practical system of units, 91, 133
practical units, 65, 91, 108, 133, 184
pressure, 24
proton, 47, 130, 135
pure frequency, 27

q suffix, 108, 121–125, 185
quantum mechanics, 131
quantum statistical mechanics, 31

rad, 26
radian, 26
radiance, 28
radiometry, 28
radius, 26
rationalization, 134, 149, 166, 168, 183–184, 204
rationalized electromagnetic quantities, 168
rationalized mks system, 65, 108, 149, 185, 204,

207–211, 217–220, 222–223, 227–229, 292
rationalized mks units, 204
rationalized units, 168
relative dielectric constant, 133, 258
relative magnetic permeability, 133, 258
relativistic momentum, 48
relativistic physics, 38, 44–45
relativistic quantum mechanics, 56, 57
relativity theory, 37, 38
reluctance, 135–136
resistance, 92, 114, 133, 184, 209
resistivity, 133, 209, 257
rest energy, 38
Reynolds number, 12–13
row-vector, 140
Rule I, 3, 174
Rule II, 6
Rule IIa, 12
Rule III, 7
Rule IV, 7
Rule VI, 40
Rule VII, 45
Rule VIII, 51
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scalar, 139
sec (second), 14–15, 50–51, 57
sec2, 50
sec3, 50
SI, 183–184
SI units, 204, 227–229, 292
simple-harmonic-oscillator, 138
size relationship, 12
solenoidal inductor, 260
solid angle, 28
south pole, 67, 128, 137
south-seeking, 67
spacetime, 51
speed of light, 37, 97, 100, 103, 118, 124, 166,

183, 235, 279
stat, 96–97, 108, 154
statamp, 96
statampere, 96
statampq, 109
statcoul, 96
statcoulomb, 96, 103
statcoulq, 105, 107–108, 115
statfaradq, 110–111
stathenryq, 109–110
statistical mechanics, 29
statistical physics, 31
statohmq, 114
statvolt, 96, 103
statvoltq, 106, 108
statweberq, 112
steradian (sr), 28
stere, 15
stoke, 15
substitution tables, 225, 278
surface charge density, 134
surface current density, 135
system of electromagnetic units, 71
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