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Preface

 

Magnetic Resonance (MR) imaging produces images of the human tissues in a
noninvasive manner, revealing the structure, metabolism, and function of tissues
and organs. The impact of this image technique in diagnostic radiology is impres-
sive, due to its versatility and flexibility in joining high-quality anatomical images
with functional information. 

Signal and image processing play a decisive role in the exploitation of MR
imaging features, allowing for the extraction of diagnostic and metabolic informa-
tion from images.This book attempts to cover all updated aspects of MR image
processing, ranging from new acquisition techniques to state-of-art imaging tech-
niques. Because the textbook provides the tools necessary to understand the physical
and chemical principles, and the basic signal and image processing concepts and
applications, it is a valuable reference book for scientists, and an essential source
for upper-level undergraduate and graduate students in these disciplines.

The book’s 18 chapters are divided into five sections. The first section focuses
on MR signal and image generation and reconstruction, the basics of MR imaging,
advanced reconstruction algorithms, and the parallel MRI field. In the second
section, the state-of-art techniques for MR images filtering are described. In par-
ticular, the second section covers the signal and noise estimation, the inhomoge-
neities correction and the more advanced image filtering techniques, taking into
account the peculiar features of the noise in MR images. Quantitative analysis is
a key issue in MR diagnostic imaging. The third section’s topics range from image
registration to integration of EEG and MEG techniques with MR imaging. Two
chapters cover the cardiac image quantitative analysis issue. In the fourth section,
MR spectroscopy is described, from both the signal generation and the data
analysis point of view. Diffusion tensor MR imaging and MR elastography are
also examined. Finally, in the last section, the functional MR image processing is
described in detail. Fundamentals and advanced data analysis (as exploratory
approach), bayesian inference, and nonlinear analysis are also depicted.

Experts from all fields of MRI have cooperated in preparing this book. We would
like to thank all authors for their excellent and up-to-date chapters. Some overlap was
unavoidable, due to the multiple connections in MR image processing fields.

The outline of this book was born at the MR Laboratory at the CNR Institute of
Clinical Physiology in Pisa, Italy. The MR Laboratory is a multidisciplinary arena
for biomedical engineers, physicists, computer scientists, radiologists, cardiologists,
and neuroscientists, and it shares experts from CNR and university departments.
For this textbook, we are sincerely grateful to professor Luigi Donato, the chief
of the CNR Institute of Clinical Physiology, and the pioneer of the multidisci-
plinary approach to biomedicine.  
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1.1 INTRODUCTION

 

The nuclear magnetic resonance (NMR or MR) phenomenon in bulk matter was
first demonstrated by Bloch and associates [1] and Purcell and associates [2] in
1946. Since then, MR has developed into a sophisticated technique with applications
in a wide variety of disciplines that now include physics, chemistry, biology, and
medicine. Over the years, MR has proved to be an invaluable tool for molecular
structure determination and investigation of molecular dynamics in solids and
liquids. In its latest development, application of MR to studies of living systems
has attracted considerable attention from biochemists and clinicians alike. These
studies have progressed along two parallel and perhaps complementary paths. First,
MR is used as a spectroscopic method to provide chemical information from
selected regions within an object (magnetic resonance spectroscopy [MRS]). Such
information from a localized area in living tissue provides valuable metabolic data
that are directly related to the state of health of the tissue and, in principle, can be
used to monitor tissue response to therapy. In the second area of application, MR
is used as an imaging tool to provide anatomic and pathologic information.

The rapid progress of MR to diverse fields of study can be attributed to the
development of pulse Fourier transform techniques in the late 1960s [3]. Additional
impetus was provided by the development of fast Fourier transform algorithms,
advances in computer technology, and the advent of high-field superconducting
magnets. Then, the introduction of new experimental concepts such as two-dimen-
sional MR has further broadened its applications [4] to the magnetic resonance
imaging (MRI) technique.

MRI is a tomographic imaging technique that produces images of internal phys-
ical and chemical characteristics of an object from externally measured MR signals.
Tomography is an important area in the ever-growing field of imaging science.
The Greek term 

 

tomos

 

 (

 

τοµοσ

 

) means “cut,” but tomography is concerned with
creating images of the internal (anatomical or functional) organization of an object
without physically cutting it open.

Image formation using MR signals is made possible by the spatial information
encoding principles, originally named 

 

zeugmatography

 

 [4,5]. As it will be briefly
described in this chapter, these principles enable one to uniquely encode spatial
information into the activated MR signals detected outside an object.

As with any other tomographic imaging device, an MRI scanner outputs a
multidimensional data array (or image) representing the spatial distribution of
some measured physical quantity. But unlike many of them, MRI can generate
two-dimensional sectional images at any orientation, three-dimensional volumetric
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images, or even four-dimensional images representing spatial–spectral or spatial–
temporal (i.e., in cardiac imaging) distributions. In addition, no mechanical adjust-
ments to the imaging machinery are involved in generating these images.

Another peculiarity of the MRI technique is that MR signals used for image
formation come directly from the object itself. In this sense, MRI is a form of
emission tomography similar to position emission tomography (PET) and single-
photon computed tomography (SPECT). But unlike PET or SPECT, no injection
of radioactive isotopes into the object is needed for signal generation in MRI.
There are other forms of tomography in use, including transmission tomography
and diffraction tomography. X-ray computer-assisted tomography (CT) belongs
to the first category, while most acoustic tomography is of the diffraction type.
In both cases, an external signal source is used to “probe” the object being imaged.

MRI operates in the radio frequency (RF) range, as shown in Figure 1.1. There-
fore, the imaging process does not involve the use of ionizing radiation and does
not have the associated potential harmful effects. However, because of the unique
imaging scheme used, the resulting spatial resolution of MRI is not limited by the
probing (or working) frequency range as in other remote-sensing technologies.

 

FIGURE 1.1

 

Electromagnetic wave range for MR and MRI.
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Images are extremely rich in information content. The image pixel value is
in general dependent on a lot of intrinsic parameters, including the nuclear spin
density (

 

ρ

 

)

 

, the spin-lattice relaxation time (T1), the spin-spin relaxation time
(T 2), molecular motions (such as diffusion and perfusion), susceptibility effects,
and chemical shift differences. The imaging effects of these parameters can be
suppressed or enhanced in a specific experiment by another set of operator-
selectable parameters, such as repetition time (TR), echo time (TE), and flip angle
(

 

α

 

). Therefore, an MR image obtained from the same anatomical site can look
drastically different with different data acquisition protocols.

In the present chapter, the basic physical principles of MRI are presented.
The objective is to allow readers to understand and interpret the MR signal and
image generation in order to introduce them to processing analysis: why and how
signal processing theories and methods, described in the following chapters of
the book, can be applied on MR signals and images.

For a deeper study of MRI physical principles, extensive literature exists
[6–13], which the reader is encouraged to consult; part of the material of this
chapter has been extracted from these texts.

 

1.2 NUCLEAR SPIN

 

The basis of NMR lies in a property possessed by certain nuclei, called the 

 

spin
angular momentum

 

 (

 

p

 

). The spin angular momentum of the nucleus can be con-
sidered as an outcome of the rotational or spinning motion of the nucleus about
its own axis. For this reason, nuclei having spin angular momentum are often
referred to as nuclear spins. The spin angular momentum of a nucleus is defined
by the nuclear 

 

spin quantum number

 

 I, and is given by the relationship

(1.1)

where –h

 

=

 

 h/2

 

π

 

 and h is the Planck’s constant. The value of spin quantum number
depends on the structure of the nucleus — the number of protons and neutrons —

of some selected nuclei is given. Hydrogen (

 

1

 

H, with I 

 

=

 

 1/2), the most abundant
element in nature and in the body, is most receptive to NMR experiments. On
the other hand, the most common isotopes of carbon (

 

12

 

C) and oxygen (

 

16

 

O) have
nuclei with I 

 

=

 

 0 and hence cannot be observed by magnetic resonance experi-
ments.

Because the nucleus is a charged particle, spin angular momentum is accom-
panied by a 

 

magnetic moment

 

 (

 

µ

 

) given by

 

µ

 

 

 

=

 

 

 

γ

 

p

 

(1.2)

where 

 

γ 

 

is called the 

 

gyromagnetic ratio

 

.
Note that both 

 

µ

 

 and 

 

p

 

 are vector quantities having magnitude and direction.
The gyromagnetic ratio is characteristic of a particular nucleus (see Table 1.1),
and it is proportional to the charge-to-mass ratio of the nucleus.

| | [ ]p h I I 1= ⋅ +−− ( )
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1.3 NUCLEI IN A MAGNETIC FIELD

 

In MR experiments we are concerned with the behavior of nuclei placed in an
external magnetic field. According to the 

 

classical model

 

, the presence of a
magnetic moment means that the nucleus behaves like a tiny bar magnet, with a
north and a south pole, and it will therefore interact with a magnetic field.

In the case of a bar magnet, application of an external magnetic field would
cause the magnet simply to align with or against the direction of the field. However,
a nucleus has angular momentum and, consequently, precesses about the direction
of the applied field, just as a spinning top precesses in the Earth’s gravitational
field. The interaction between the magnetic moment 

 

µ

 

 and the field 

 

B

 

0

 

 tries to
align the two, according to the formula:

 

L 

 

=

 

 µ

 

 

 

×

 

 

 

B

 

0

 

(1.3)

where 

 

L

 

 is the torque or turning force.

magnetic moment vector 

 

µ

 

 about the direction of the external magnetic field 

 

B

 

0

 

in addition to the nuclear spin about its own axis.
The torque force causes the nucleus to precess about 

 

B

 

0

 

, altering the angular
momentum 

 

p

 

; in fact,

d

 

p

 

/dt 

 

=

 

 

 

L

 

 

 

=

 

 

 

µ

 

 

 

×

 

 

 

γ

 

B

 

0

 

(1.4)

But 

 

p

 

 

 

=

 

 

 

µ

 

/

 

γ

 

, so that

d

 

µ

 

/dt 

 

=

 

 

 

µ

 

 

 

×

 

 

 

γ

 

B

 

0

 

 

 

=

 

 ωωωω

 

0

 

 

 

×

 

 

 

µ

 

(1.5)

where ωωωω

 

0

 

 

 

=

 

 

 

−γ

 

 

 

B

 

0

 

is the 

 

frequency of precession

 

, i.e., the rate at which 

 

µ

 

 rotates about 

 

B

 

0

 

, and is
called the 

 

Larmor frequency

 

; the minus sign describes the rotation direction.
As said before, this result can be deduced from the laws of classical physics.

However, in order to obtain a complete description of the behavior of nuclei in
a magnetic field, quantum mechanical theory must be considered.

 

TABLE 1.1
NMR Properties of Some Selected Nuclei

 

Nucleus
Nuclear 

Spin
Gyromagnetic 
Ratio (MHz/T)

Natural 
Abundance (%)

Relative 
Sensitivity*

 

1H 1/2 42.58  99.98 1
13C 1/2 10.71  1.11 0.016
19F 1/2 40.05          100 0.870
31P 1/2 17.23          100 0.066

23Na 3/2 11.26          100 0.093

* calculated at constant field for an equal number of nuclei
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This precessional motion is schematized in Figure 1.2 as a rotation of the



 

8

 

Advanced Image Processing in Magnetic Resonance Imaging

 

According to the 

 

quantum mechanical model

 

, the orientation of the spin
angular momentum vector, and hence the magnetic moment, of the nucleus with
respect to the direction of 

 

B

 

0

 

 cannot be arbitrary and it is subjected to certain
restrictions. In fact, the nuclear magnetic moment can only have 2I + 1 orientations
in a magnetic field, corresponding to 2I 

 

+

 

 1 allowed energy levels, so that the
proton (

 

1

 

H) nucleus can either align with or against the applied field. These two
orientations are similar to the two directions in which a bar magnet may orient in
a magnetic field and are consequently called the parallel (spin-up) and the anti-
parallel (spin-down) orientations. These orientations correspond to low and high

The difference in energy, 

 

∆

 

E

 

, between the two states is proportional to the
strength of the magnetic field 

 

B

 

0

 

, and it is given by

 

∆

 

E

 

 

 

=

 

 

 

γ

 

B

 

0

 

(1.6)

 

FIGURE 1.2
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energy states respectively, as schematically shown in Figure 1.3.
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So far, the behavior of a single isolated nucleus has been considered. However,
in practice, the mean result due to a large number of similar nuclei is observed.
When an ensemble of nuclei is subjected to an external magnetic field, nuclei
distribute themselves in the allowed orientations. At equilibrium, the population of
nuclei in the parallel orientation (lower energy state) exceeds that in the antiparallel
orientation (higher energy state) by a small amount, according to Boltzman statis-
tics. The excess population in the lower energy state, 

 

∆

 

N

 

, is dependent on the
energy difference between the spin states and the absolute temperature, T:

(1.7)

where 

 

N

 

0

 

 is the total number of nuclei in the sample, and 

 

k

 

 is the Boltzman
constant. The fractional excess of population (

 

∆

 

N

 

/

 

N

 

0

 

) in the lower energy state
is extremely small; for example, for hydrogen nuclei at body temperature (310 K)
in a magnetic field B

 

0

 

 

 

=

 

 1 T, 

 

∆
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0
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×
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We have seen that the precession frequency of 

 

µ experiencing a B0 field is given
by ωωωω0 = −γ B0 and, considering the modulus:

ω0 = γB0 (1.8)

This relation, commonly called the Larmor equation, is important because the
Larmor frequency is the natural resonance frequency of a spin system.
Equation 1.8 shows that the resonance frequency of a spin system is linearly
dependent on both the strength of the external magnetic field B0 and the value
of the gyromagnetic ratio γ. This relationship describes the physical basis for

1

FIGURE 1.3 Energy level diagram for I = 1/2.
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achieving nucleus specificity. In fact, as shown in Table 1.1, the nuclei of H and
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31P in an object resonate at 42.58 MHz and 11.26 MHz, respectively, when the
object is placed in a magnetic field B0 = 1 T; this difference in resonance frequency
enables us to selectively image one of them without interacting with the other.

Actually, a specific spin system (i.e., hydrogen protons) may have a range of
resonance frequencies. In this case, each group of nuclear spins that share the
same resonance frequency is called an isochromat.

There are two main reasons for a magnetized spin system to have multiple
isochromats: (1) the presence of inhomogeneities in the B0 field and (2) the
chemical shift effect, which is exploited for chemical components studies.

When B0 is not homogeneous, spin with the same γ value will have different
Larmor frequencies at different spatial locations. Such a condition can be usefully
exploited, as we will see in MR image generation, when the inhomogeneity of
B0 is known. However, if B0 inhomogeneities are not known, they are considered
as bringing a negative effect, that is artifacts.

The chemical shift effect is due to the fact that nuclei in a spin system are part
of different molecules in a chemically heterogeneous environment. Because each
nucleus of a molecule is surrounded by orbiting electrons, these orbiting electrons
produce their own weak magnetic fields, which “shield” the nucleus to varying
degrees depending on the position of the nucleus in the molecule. As a result, the
effective magnetic field that a nucleus “sees” is

(1.9)

where δ is a shielding constant taking on either positive or negative values. Based
on the Larmor relationship, the resonance frequency for the nucleus is

(1.10)

Equation 1.10 shows that spins in different chemical environments will have
relative shifts in their resonance frequency even when B0 is homogeneous. The
frequency shift ∆ω depends on both the strength of the magnetic field B0 and
the shielding constant δ. Usually, the value of δ is very small, on the order of
a few parts per million (ppm), and it depends on the local chemical environment
in which the nucleus is embedded. Knowledge of these chemical shift frequencies
and the corresponding spin densities is of great importance for determining the
chemical structures of an object, which is the subject of MR spectroscopy.

1.3.2 BULK MAGNETIZATION

To describe the collective behavior of a spin system, we introduce a macroscopic
magnetization vector M, which is the vector sum of all the microscopic magnetic
moments in the object:

(1.11)

ˆ ( )B B0 0 1= − δ

ˆ ( )ω ω ω ω δ0 0 0 1= − = −∆

M i

i

Ns

=
=

∑ µ
1
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where µi is the magnetic moment of the i-th nuclear spin, and Ns is the total
number of spins.

Although there is a microscopic transverse component for each magnetic
moment vector, the transverse component of M is zero at equilibrium because
the precessing magnetic moments have random phases. The macroscopic effect
of an external magnetic field B0 on an ensemble of nuclei with nonzero spins is
the generation of an observable bulk magnetization vector M pointing along the
direction of B0.

The magnitude of the equilibrium magnetization M is equal to that of the spin
excess predicted by the quantum model. M itself behaves like a large magnetic
dipole moment, and if perturbed from its equilibrium state, it will precess at ω0

about B0. By analogy with Equation 1.5, we can write:

dM/dt = ωωωω0 × M = γ M × B0 (1.12)

1.4 RF EXCITATION FOR THE RESONANCE 
PHENOMENON GENERATION

It is the precessing bulk magnetization that we detect in an MR experiment. In
order to detect it, we must somehow perturb the system from its equilibrium state,
and get M to precess about B0. This is done by applying a second magnetic field
B1, perpendicular to B0, rotating about B0 at ωωωω0 in synchronism with the precessing
nuclear magnetic moments.

The B1 field causes M to tilt away from B0 and to execute a spiral path, as

1

ω0/2π is normally between 1MHz and 500 MHz, corresponding to radio waves.
The field is usually turned on for a few microseconds or milliseconds. Also, in
contrast to the static magnetic field B0, the B1 field is much weaker (i.e., B1 =
50 mT while B0 = 1.5 T).

A typical B1 field takes the following form:

(1.13)

where B1(t) is the envelope function, ω0 is the excitation carrier frequency, and
ϕ is the initial phase angle.

Equation 1.13 describes a circularly polarized RF pulse, perpendicular to the
z axis, and hence to the B0 field. The initial phase angle ϕ, if it is a constant, has
no significant effect on the excitation result so that we assume it is equal to zero.
The excitation frequency ω0 can be considered as a constant for almost all RF
pulses, and it is determined by the resonance conditions. The envelope function
B1(t) is the heart of an RF pulse. It uniquely specifies the shape and duration of
an RF pulse and thus its excitation property. In fact, many RF pulses are named

B B B B1 1 1 1
0( ) ( ) ( ) ( ), ,

( )t t i t t ex y
i t= + = − +ω ϕ
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schematically described in Figure 1.4.
The term RF pulse is a synonym of the B  field generation, so called because
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based on the characteristics of this function. For example, the envelope function

(1.14)

where τ is the pulse time width. Another frequently used RF pulse is the following
sinc pulse (see Figure 1.5b):

(1.15)

When B1 is switched off, M continues to precess, describing a cone at some
angle α to B0 as shown in Figure 1.4. This is called the flip angle (FA); it depends
on the strength of the B1 field and how long it is applied.

We can adjust the value of the FA by changing the duration τ or the amplitude
of the envelope function B1(t). If we turn off the transmitter RF after M has
precessed down into the transverse plane, this is called a π/2 (or 90°) pulse. A
π/2 pulse is commonly used as an excitation pulse, because it elicits the maxi-
mum signal from a sample that is in equilibrium. An RF pulse twice as long, a

FIGURE 1.4 Trajectory of M after an RF pulse.
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of the widely used rectangular RF pulse (see Figure 1.5a) is given by:
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π (or 180°) pulse, will place M along the negative z axis. This is often called
an inversion pulse. In general, for a constant B1 amplitude, an α pulse causes
the magnetization vector M to precess through the flip angle:

α = γ B1τ (1.16)

FIGURE 1.5 Typical RF pulse shapes: (a) rectangular pulse, (b) sinc pulse.
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More generally, if we allow the amplitude of the applied RF to vary with
time, the FA α is given by:

(1.17)

1.5 MR SIGNAL GENERATION AND ACQUISITION

Once displaced from the z axis by the RF pulse, the net magnetization M is
no longer at equilibrium. We denote this nonequilibrium magnetization vector
by M, and the magnitudes of its components along the x, y, and z axes will
be denoted by Mx, My, and Mz, respectively. The magnitude of the component
of M in the transverse xy plane (i.e., the resultant of Mx and My) will be
denoted as Mxy. The equilibrium magnetization M0 represents the situation in
which M is aligned along the z axis corresponding to the case of Mz = M0 and
Mxy = 0.

During the period following the pulse, M experiences a torque due to the B0

field and thus precesses about the B0 field at the Larmor frequency. The effect of
the precessing magnetization is similar to that of a rotating bar magnet and hence
is equivalent to producing a periodically changing magnetic field in the transverse
plane. If the sample investigated is surrounded by a suitable oriented coil of wire,
an alternating voltage will be induced in the coil according to Faraday’s law of
induction. The coil used to receive the signal can be the same as or different from
that used to produce the B1 field so that precession of M corresponds to reorien-
tation of Mxy in the xy plane at a rate equal to the Larmor frequency (i.e., Mx

and My are oscillatory with time at a frequency equal to the Larmor frequency)
while Mz is unchanged.

It can be shown that the amplitude of the alternating voltage induced in the
receiver coil is proportional to the transverse magnetization component Mxy.
Hence, a maximum amplitude voltage signal is obtained following a π/2 pulse
because such a pulse creates a maximum Mxy component equal to M0. In general,
for RF pulse of flip angle α, the amplitude of the alternating voltage is propor-
tional to M0 sin(α).

As a result of relaxation (such phenomena will be described later), Mxy (i.e.,
the amplitudes of oscillation of Mx and My) decays to zero exponentially; thus,
the voltage signal observed in practice corresponds to an oscillating signal at the
Larmor frequency, with exponentially decaying signal amplitude. This type of
decaying signal, obtained in the absence of B1, is called a free induction signal
or free induction decay (FID).

1.5.1 FREE INDUCTION DECAY AND THE FOURIER TRANSFORM

The FID induced in the receiver coil is extremely weak and has a frequency in
the RF range: very-high-frequency signal information cannot easily be stored in

α γ
τ

= ∫ B t dt1
0

( )
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a computer, and direct amplification without introducing distortion is a difficult
task. Therefore, low-level amplitude of the MR signal at the Larmor frequency
is converted to a low-frequency signal by subtracting a frequency component
equal to the frequency of a chosen reference signal (RF detection). The latter
usually is chosen to be equal to that of B1 (i.e., ω0); the resulting low-frequency
signal has a frequency of ∆ω in the Hz to KHz range. This signal is amplified
again to the required level. The low-frequency signal (we will call it base-band
FID) contains all the information, previously present in the RF signal, which is
required to generate the MR spectrum.

In order to store the base-band FID in a computer, the analog signal is sampled
at specific times (analog-to-digital conversion) and an array of numbers repre-
senting the sampled voltages is stored in the computer memory. The process of
analog signal sampling must be performed in accordance with the Nyquist sam-
pling theorem to ensure that the analog signal is correctly represented in digital
form; the time duration in which the FID is sampled is referred to as the acqui-
sition or readout time.

When a single group of equivalent nuclei (i.e., 1H in a water sample) is
considered, the FID represents a simple decay oscillation at a particular fre-
quency, as described before. This frequency can be determined simply by mea-
suring the period of the oscillation, tosc, and calculating the value of 1/tosc.
However, if the sample being examined contains different chemical shift fre-
quencies, the observed FID represents the composite of several individual FID
signals, with slightly different frequencies. The individual frequency components
of any FID are most conveniently identified by subjecting the FID to Fourier
transformation. The Fourier relationship between the FID and the MR spectrum
is shown in Figure 1.6. All the characteristics of the FID are represented in the
spectrum, but in a different format: the frequency of oscillation of the FID is
indicated by the horizontal scale of the spectrum, the rate of decay of the FID
is inversely related to the width of the spectral line at its half maximum, and
the height (maximum amplitude) of the spectral line is directly proportional to

FIGURE 1.6 Fourier transform relationship between FID in the time domain and fre-
quency domain.
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the initial amplitude of the FID or, more exactly, it is equal to the area under
the FID envelope.

1.6 MR SIGNAL CHARACTERISTICS

1.6.1 RELAXATION

Following the perturbation by the RF pulse, the spin system returns to the
equilibrium population distribution between the energy levels by releasing excess
energy into the surroundings. In the classical vector model, this corresponds to
the return of the magnetization M to the equilibrium position along the z axis.
Thus, during the relaxation period, any transverse magnetization component Mxy

created by the RF pulse decays to zero, and, at the same time, the longitudinal
magnetization component Mz returns to the equilibrium value of M0. The decay
of Mxy and the recovery of Mz are two distinct processes, and they are referred
to as spin-spin and spin-lattice relaxation, respectively.

1.6.1.1 The Decay of Transverse Magnetization: T2

The decay of transverse magnetization following an α-degree pulse, due to spin-
spin relaxation can be described with the equation:

(1.18)

where the parameter T 2 is called the transverse relaxation time or spin-spin
relaxation time; it represents the time interval required for the transverse mag-
netization to decay to 36.7% of its initial value M0.

1.6.1.2 The Recovery of Longitudinal Magnetization: T1

After the application of an α-degree RF pulse, the longitudinal magnetization Mz

recovers back to equilibrium at a rate that is linearly proportional to the difference
between its current value and the equilibrium value; this rate is also characteristic
of the sample. It can be derived that:

(1.19)

where the parameter T1 is called the longitudinal relaxation time or spin-
lattice relaxation time, and it represents the time interval needed for the
longitudinal magnetization to recover to a value of 63.2% of the equilibrium
value M0.

M t M e exy
i t t T( ) sin ( ) /= + −

0
20α ω ϕ

M t M ez
t T( ) ( ( cos ) )/= − − −

0
11 1 α
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This process of recovery of longitudinal magnetization is very important when
calculating the contrast between tissues with different T1 values and determining
the imaging method that obtains the greatest signal-to-noise ratio (SNR).

The relaxation times T1 and T 2 are determined by the molecular environment
and thus are dependent on the sample. If the sample contains chemically shifted
resonances, the nuclei in different chemical environments exhibit T1 and T 2
values characteristic of the particular environment. Knowledge of T1 and T2
values is obtained experimentally by perturbing the equilibrium magnetization in
appropriated multiple RF pulses. For pure liquids T1 = T2 and for biological
samples T2 < T1. Molecules in a mobile liquid environment have T1 and T 2
values in the range of tens of hundreds of milliseconds. For tissues in the body,
the relaxation times are in the ranges 250 msec < T1 < 2500 msec and 25 msec
< T 2 < 250 msec and, usually, 5T 2 < = T1 < = 10T 2.

1.6.1.3 Pseudo-Relaxation: T2*

In practice, variations in the value of the magnetic field throughout the sample
also cause dephasing of the magnetic moments, mimicking the decay of transverse
magnetization caused by relaxation. It is convenient to define another relaxation
time, T2*, describing the “observed” rate of decay of the FID:

(1.20)

where T2′ describes the decay in signal due to the magnetic field inhomogeneity:

(1.21)

where ∆B0 is the extent of variation of the applied magnetic field strength over
the region occupied by the sample. This causes the nuclei in different regions of
the sample to experience slightly different magnetic fields and hence to precess
at different Larmor frequencies. The FID obtained in such a field is seen to decay
faster than that determined by T 2 (T 2* < T 2).

1.6.2 PROTON DENSITY

Most of the hydrogen atoms in the tissues are within water molecules; it is these
protons that we detect in an MR experiment. The term proton density (PD) simply
refers to the number of protons per unit volume and is effectively proportional
to the density of water in the tissue. Thus, for example, bone has very low proton
density, and liver has high proton density, while blood has a very high proton
density.

It is easy to see that we can identify the proton density with M0, the equilib-
rium magnetization.

1
2

1
2

1
2T T T*

= +
′

1
2 0T ′

= γ∆B
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1.6.3 THE BLOCH EQUATIONS

From the preceding description of the observed behavior of M(t) the following
equation can be postulated for the complete description of this motion:

(1.22)

where B(t) is composed of the static field and the RF field i.e., B(t) = B0 + B1(t)
and R is the relaxation matrix:

(1.23)

and the vector M0 = [0, 0, M0].
This is the set of equations used when constructing models of MRI. For most

applications, these equations are transformed into the rotating frame of reference.

1.6.3.1 Rotating Frame of Reference

Usually, MR experiments involve the application of a sequence of RF pulses.
Viewed from fixed coordinates (stationary frame), a description of the motion of
the magnetization results can be complicated and difficult to visualize, especially
when two or more RF pulses are applied. Hence, we consider the motion of the
magnetization from the point of view of an observer rotating about an axis parallel
with B0, in synchronism with the precessing nuclear magnetic moments: this is
the so-called rotating frame of reference.

A rotating frame is a coordinate system whose transverse plane is rotating
clockwise at an angular frequency ω. To distinguish it from the conventional sta-
tionary frame, we use x′, y′, and z′ to denote the three orthogonal axes of this frame,
and correspondingly, i′, j′, and k′ as their unit directional vectors. Mathematically,
this frame is related to the stationary frame by the following transformations:

(1.24)

1.7 MULTIPLE RF PULSES

Up to now, we have described single-RF-pulse effects and subsequent detection
of FID (one-pulse experiments). Now we consider the effects of multiple pulses
on the magnetization.
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Interrogation of the nuclear spin system with multiple pulses provides infor-
mation that is not accessible via one-pulse experiment. In fact, multipulse experi-
ments, such as multiple gradient-echo, inversion-recovery, and spin-echo sequences,
enable experimental determination of proton density, T1, and T 2, respectively.

1.7.1 GRADIENT ECHO

Gradient-echo pulse (GE) includes an α-degree RF pulse (usually a low flip angle
is defined for fast imaging) followed by a time-varying gradient magnetic field
in order to generate (and then acquire) an echo signal instead of a decaying FID.

concept underlying GE formation is that a gradient field can dephase and rephase
a signal in a controlled fashion so that one or multiple echo signals can be created.
After the application of an α-degree RF pulse, a negative gradient (for example,
along x axis) is switched on; as a result, spins in different x positions will acquire
different phases, which can be expressed as:

(1.25)

so that the loss of spin phase coherence becomes progressively worse as time
elapses after the excitation pulse. When the signal decays to zero, a positive
gradient of the same strength is applied; the transverse magnetization components
will gradually rephase, resulting in a regrowth of the signal. The spin phase angle
is now given by:

(1.26)

The phase dispersal introduced by the negative gradient is gradually reduced over
time after positive gradient is switched on at t = t′. After a time t′, the spin phase
ϕ is zero for any x value, which means that all the spins have rephased, and
therefore an echo signal is formed. Time t′ is called echo time, TE.

1.7.2 INVERSION RECOVERY

In the inversion-recovery (IR) pulse, the equilibrium magnetization M0 is ini-
tially perturbed by a 180° pulse. Following a short time period TI (time of
inversion), a second perturbation is introduced in the form of a 90° pulse. This
can be written as a 180°-TI-90°-FID sequence. In order to examine the effects
of this pulse sequence, assume that the RF pulses are applied along the x′ axis
of the rotating frame and are on-resonance. Prior to the 180° pulse the magne-

to rotate by 180° about the x′ axis, and at the end of the pulse it will be oriented
along the negative z axis (Figure 1.7b). Because, in this case, the 180° pulse

ϕ γ τ γ( , )x t xG d xG tx x

t

= − = −∫0

ϕ γ γ τ( , )x t xG t xG dx x
t

t

= − ′ + −
′∫
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tization is at equilibrium (Figure 1.7a). The 180° pulse causes the magnetization

For physical concepts of magnetic field gradients, see Section 1.8. The key
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inverts the magnetization from positive z axis to negative z axis, it is sometimes
referred to as an inversion pulse. During the period TI, magnetization relaxes
exponentially to the equilibrium position at a rate determined by T1; the mag-
nitude of magnetization along the z axis (Mz) at a time T I after the 180° pulse
is given by

(1.27)

Hence, the magnetization present at the end of the period TI is dependent
on the ratio TI/T1. The magnetization following relatively short and long TI
periods is shown in Figure 1.7c and Figure 1.7e, respectively. During the period
TI, the magnetization, though not at equilibrium, is completely oriented along
the z axis (i.e., Mx = My = 0); hence, an MR signal cannot be observed during
this delay.

Application of a 90° pulse causes the magnetization present at that time to
rotate by 90° about the x axis. Thus, at the end of the 90° pulse, the magnetization
will be directed along the negative y′ axis or the positive y′ axis, depending on
the value of TI chosen (Figure 1.7d and Figure 1.7f, respectively). In the subse-
quent time period, the transverse magnetization generated by the 90° pulse allows
a FID to be observed. The initial amplitude of the FID will be proportional to

z

the z component of magnetization changes as a function of the parameter TI for
different T1 values.

1.7.3 SPIN ECHO

The spin-echo (SE) pulse sequence consists of an initial 90° pulse followed by
a 180° pulse after a period TE/2 (time of echo), that is a 90°-TE/2-180°-echo
sequence. The rotating frame view of an on-resonance magnetization subjected

FIGURE 1.7 Rotating frame view of a magnetization subjected to an IR sequence.
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M , remaining at the end of the delay period TI. In Figure 1.8 it is shown how
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rium magnetization M0 by 90° about the x′ axis, creating transverse magnetization
oriented along the y′ axis (Figure 1.9a and Figure 1.9b). During the following

ation and the inhomogeneity of the B0 magnetic field.
As previously said, inhomogeneity of the field causes the nuclei in different

regions of the sample to have different Larmor frequencies; this means that the
isochromats are off-resonance from the B1 field to different extents and hence
will precess in the xy plane at slightly different frequencies. Therefore, individual
isochromats will be seen to dephase in the xy plane following the 90° pulse.
The position of a few isochromats at a time TE/2 after the pulse is shown in
Figure 1.9c; the isochromats are displayed spread out on both sides of the y′
axis, because the Larmor frequency of some isochromats will be greater than
the nominal value (∆ω > 0) whereas that of others will be lower (∆ω < 0).
Consequently, isochromats with ∆ω greater and less than zero will be seen to
precess in opposite directions in the rotating frame. At sufficiently long TE/2
values, isochromats will be completely dephased in the xy plane and Mxy will
be reduced to zero. In addition to spin-spin relaxation, inhomogeneity of the
field contributes to the gradual reduction of the net magnetization in the xy
plane. However, the additional decay of the magnetization due to field inhomo-
geneity can be reversed, applying a 180° pulse. Application of a 180° pulse at
time TE/2 following the initial 90° pulse causes all the isochromats to rotate by
180° about the x′ axis; this brings the isochromats to their mirror-image position
(Figure 1.9d). Following the 180° pulse, the frequency and direction of preces-
sion of isochromats in the xy plane remain same as prior to the 180° pulse as
the Larmor frequency of each isochromat is unchanged. Hence, immediately

FIGURE 1.8 Plot of Mz vs. time in the IR pulse sequence.
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to this sequence is shown in Figure 1.9. The initial 90° pulse rotates the equilib-

period, τ = TE/2, this transverse magnetization decays because of spin-spin relax-
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after the 180° pulse, the isochromats precessing faster are seen to lag behind
the slower ones. Precession of isochromats for a period TE/2 after the 180° pulse
allows the faster isochromats to rephase with the slower ones, and at this instant
all isochromats will be refocused along the negative y′ axis (Figure 1.9e). Further
precession of isochromats following refocusing causes them to dephase in the
xy plane (see Figure 1.9f). Therefore: following the 180° pulse, the net magne-
tization along the y′ axis (My′) increases, until a maximum is reached at time
TE; after reaching the maximum, the magnetization decreases in a similar
manner to the decay following the initial 90° pulse.

The net magnetization My′ at this time is determined by the decay due to
spin-spin relaxation only and is given by:

(1.28)

The maximum amplitude of the echo is proportional to My, given by Equation 1.28.

FIGURE 1.9 Rotating frame view of a magnetization subjected to an SE sequence.
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Equation 1.28 is applicable when the effect of molecular diffusion is negli-
gible. For complete refocusing of isochromats, each nucleus must experience the
same field during period TE. Movement of nuclei in an inhomogeneous field
because of diffusion causes the echo amplitude to be reduced.

1.8 MAGNETIC FIELD GRADIENTS

Magnetic field gradients allow spatial information to be obtained from analysis
of the MR signal. A field gradient is an additional magnetic field in the same
direction as B0, whose amplitude varies linearly with position along a chosen
axis. The application of a field gradient Gx in the x direction, for example, causes
the magnetic field strength to vary according to:

Bz(x) = B0 + xGx (1.29)

Magnetic field gradients are produced by combining the magnetic fields from
two sources: the main homogeneous B0 field, plus a smaller magnetic field
directed primarily along the z axis; such a secondary magnetic field is produced
by current-carrying coils (gradient coils). The design of a gradient coil is such
that the strength of the magnetic field produced by it varies linearly along a certain
direction. When such a field is superimposed on the homogeneous field B0, it
either reinforces or opposes B0 to a different degree, depending on the spatial
coordinate. This results in a field that is centered on B0.

0

the total magnetic field that varies linearly along the x axis.
It is important to note that the total magnetic field is always along the B0 axis

(for convention, z axis), while the gradient can be along any axis, x, y, or z:

Gx = dBz /dx

Gy = dBz /dy (1.30)

Gz = dBz/dz

The units of magnetic field gradient are Tesla per meter (Tm−1).
To understand how magnetic field gradients are utilized in MRI, consider

a large sample of water placed in such a field. If the sample is subjected to a
Gx gradient, 1H nuclei at different x coordinates possess different Larmor
frequencies:

ω(x) = γ(B0 + xGx) (1.31)

Hence, in the presence of Gx, planes of constant field strength also become
planes of constant resonance frequency. Equation 1.31 describes that a relation-
ship between the position and the resonance frequency can be established by
application of a magnetic field gradient. It follows that the 1H spectrum obtained
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In Figure 1.10, the gradient field is added to the uniform B  field, obtaining
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from the water sample subjected to a gradient magnetic field will show a distri-
bution of resonance frequencies.

The spectral amplitude at a particular frequency is proportional to the number
of nuclei in the given constant-frequency plane. It can be seen that the MR
spectrum of an object placed in linear magnetic field gradient corresponds to the

1.9 SPATIAL LOCALIZATION OF MR SIGNALS

There are three main methods of spatial discrimination, all of which use field

are called slice selection, frequency encoding, and phase encoding.

1.9.1 SLICE SELECTION

Slice selection is the method by which the RF excitation, and therefore the signal,
is limited to a chosen slice within the sample. It is achieved by applying the
excitation pulse simultaneously with a gradient perpendicular to the desired slice.
So, if we want to image a slice in the xy plane, the selection gradient will be
applied orthogonal to this plane, i.e., in the z direction. The effect of the gradient

FIGURE 1.10 Magnetic field gradient along x axis. Up: uniform magnetic field B0; down:
the gradient field; right: the total magnetic field.
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projection of the object onto the gradient direction (Figure 1.11).

gradients, and that are combined in the imaging pulse sequence. The techniques
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is to make the resonance frequency a function of position along the z direction:

ω (z) = γ Bz(z) = γ (B0 + zGz) (1.32)

As seen before, the RF pulse is not just an on - off pulse of radio waves, but
it is shaped (i.e., amplitude modulated) so that it contains a narrow spread of
frequencies close to the fundamental resonance frequency of the magnet ω0.

Then, the width of the slice, ∆z, is given by:

∆z = ∆ω/γ Gz (1.33)

within the selective RF pulse.

FIGURE 1.11 Relationship between the spatial extent of the sample of water and the MR
spectrum, in the presence of a linear gradient: the MR spectrum corresponds to the projec-
tion of the object in the gradient direction.
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as shown in Figure 1.12, where ∆ω is the bandwidth of frequencies contained
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∆ω is related to the shape and the duration of the pulse; if we consider a
Gaussian-shaped pulse, ∆ω = 2π/∆t, where ∆ω is the full width at half maximum
(FWHM) of the pulse’s frequency spectrum, and ∆t is the relevant FWHM of the
pulse envelope in seconds. From Equation 1.33, the slice can be made thinner by
decreasing the spectral bandwidth of the pulse (i.e., by making the pulse longer
in time) or by increasing the strength of the slice selection gradient Gz.

The slice profile is determined by the spectral contents of the selective pulse,
and it is approximately given by the Fourier transform of the RF pulse envelope.
Thus, a Gaussian-shaped 90° pulse gives a roughly Gaussian slice profile.

The slice selection pulse sequence can be represented by a pulse timing

as a function of time. The selection gradient is followed by a negative gradient
pulse in order to bring the spins back into phase across the slice.

After a signal has been activated by a selective or nonselective pulse, spatial
information can be encoded into the signal during the free precession period. We
have essentially two ways to encode spatial information: frequency encoding and
phase encoding.

1.9.2 FREQUENCY ENCODING

Frequency encoding makes the oscillation frequency of an MR signal linearly
dependent on its spatial origin. Let us consider an idealized one-dimensional
object with spin distribution ρ(x). If the magnetic field that the object experiences

FIGURE 1.12 Selective excitation of a thin slice of the sample.
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diagram, as shown in Figure 1.13, showing the RF pulse and selection gradient
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after an excitation is the homogeneous B0 field plus another linear gradient field
(xGx), the Larmor frequency at position x is

ω (x) = ω0 + γ xGx (1.34)

Correspondingly, the FID signal ds(x,t), generated locally from spins in an
infinitesimal interval dx at point x without considering the transverse relaxation
effect, is

(1.35)

where the constant of proportionality c is dependent on the flip angle, the main
field strength, and so on. The signal in Equation 1.35 is said to be frequency
encoded because its oscillation frequency is linearly related to the spatial location;
consequently, Gx is called a frequency-encoding gradient. The signal received
from the entire sample in the presence of this gradient is:

(1.36)

In the general case, the received frequency-encoded FID signal after demod-
ulation (i.e., after removal of the carrier signal exp(−iω0t)), is given by

(1.37)

where Gfreq is the frequency-encoding gradient defined by Gfreq = (Gx, Gy, Gz).

FIGURE 1.13 Example of a pulse timing diagram relevant to the slice selection operation.
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1.9.3 PHASE ENCODING

Considering the one-dimensional case after a RF pulse, if we turn on a gradient
Gy for a short interval ty and then we turn it off, the local signal under the influence
of this gradient is:

(1.38)

where ρ(y) is the spin distribution along y. From Equation 1.38, during the interval
0 ≤ t ≤ ty the local signal is frequency encoded; as a result of this frequency
encoding, signals from different y positions accumulate different phase angles
after a time interval ty. Therefore, the signal collected after ty will bear an initial
phase angle

(1.39)

Because ϕ (y) is linearly related to the signal location y, the signal is said to
be phase encoded, the gradient Gy is called phase-encoding gradient, and ty is
the phase-encoding interval.

Phase encoding along an arbitrary direction can be also done for a multi-
dimensional object by turning on Gx, Gy, and Gz simultaneously during the
phase-encoding period Gphas = (Gx, Gy, Gz) for 0 ≤ t ≤ ty; the initial angle is
ϕ (r) = −γ rGphasty. Similar to frequency encoding, the received signal is the sum
of all the local phase-encoded signals and is given by:

(1.40)

where the carrier signal exp(−iω0t) is removed after signal demodulation.

1.9.4 PHASE HISTORY OF MAGNETIZATION VECTORS 
DURING PHASE ENCODING

Let us consider the evolution of the phase angle of magnetization vectors in
the transverse plane as a function of a different phase-encoding gradient ampli-
tude G′y = mGy by varying m; we call this a phase-encoding step. Referring to

value of m, that is, a different amplitude of the phase-encoding gradient. We
can write the sequence of phase shifts added to a magnetization vector at the
location y0 as ϕm(y0) = −γ y0mGyty. Therefore, the expression for a set of different
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the scheme of Figure 1.14, each phase-encoding step corresponds to a different
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phase-encoding gradient amplitudes can be written:

(1.41)

A Fourier transform applied to the sequence sm(t) for different m values, can
be used to compute the position of the object in the y direction. If the signal is
from a collection of point objects in a column with different y offsets, the Fourier
transform of the resulting signal will yield a spectrum that is proportional to a
profile of the column.

1.9.5 TIMING DIAGRAM OF AN IMAGING SEQUENCE

Image sequence timing diagrams, also called sequence diagrams, are commonly
used to describe the implementation of a particular MR sequence, and show the
magnitude and duration of the three orthogonal magnetic field gradients and the
RF pulses. An example of pulse sequence diagram is shown in Figure 1.14. In
particular it shows the two-dimensional Fourier transform image formation method,
as described in Reference 14, that is a development of the earlier technique of
Fourier zeugmatography [5]. It could be considered the basic imaging sequence
from which all the hundreds of image sequences existing nowadays are derived.

FIGURE 1.14 Schematic representation of a sequence timing diagram.
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Generally, a sequence diagram can be split into three distinct sections, namely,
slice selection, phase encoding, and readout, according to the previous descrip-

but, especially in more recently developed sequences, some of them overlap.
The first event to occur in the imaging sequence represented in Figure 1.14

is to turn on the slice selection gradient, together with the RF pulse. As previously
described, the slice selective RF pulse should be a shaped pulse. Once the RF
pulse is complete, the slice selection gradient is turned off, and a phase-encoding
gradient is turned on. In order to obtain an MR echo signal, a negative read
gradient is switched on. Once the phase-encoding gradient has been turned off,
a positive frequency-encoding gradient is turned on and an echo signal is recorded.

This sequence of pulses is usually repeated m times, and each time the
sequence is repeated, the magnitude of the phase-encoding gradient is changed
according to Equation 1.41. The time between the repetitions of the sequence
is called the repetition time, TR.

1.10 ACQUIRING MR SIGNALS IN THE K-SPACE

According to Equation 1.36 and Equation 1.41 we can describe the signals result-
ing from a two-dimensional Fourier transform sequence as a function of both the
phase-encoding step and the time during the readout period. When M frequency-
encoded FIDs are obtained, each one experiences a different value of the phase-
encoding gradient amplitude; usually both positive and negative amplitudes are
applied:

(1.42)

In order to obtain digital MR signals, data acquired during frequency gradient
activation are sampled. So that, k-space data are sampled data, memorized in a
matrix of N × M points, if N is the number of samples along reading gradient
and M the number of times the phase gradient is activated.

Then, if each FID is sampled and ∆t is the sampling time interval, and we
consider the demodulated signal, from Equation 1.42 we obtain:

(1.43)

The formula in Equation 1.43 is usually referred to as the imaging equation.
So that, if M = 256 and the FID sampling points N are 256, then a 256 × 256
data matrix of complex numbers is the result.
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tions. In Figure 1.14 such sections are separated in time (three time intervals)
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Considering the following substitution:

(1.44)

the formula in Equation 1.43 can be rewritten as:

(1.45)

This shows that the data matrix s(kx, ky) is a sampling of the Fourier coefficients
of the function ρ(x, y). Therefore, by applying a two-dimensional inverse Fourier
transform to the data s(n, m), the result will be an estimate of the function ρ(x, y).

Several parameters of interest in the k-space can be defined in terms of
parameters described in the pulse sequence. The sample spacing and width of
the k-space are:

(1.46)

FIGURE 1.15 Sampling parameters of k-space.
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∆kx and ∆ky are the frequency interval step sizes in the x and y directions,
respectively,

Wkx and Wky are the maximum frequencies that contain the object infor-
mation

x

duration
∆y is the phase-encoding gradient step size
Gy,max is the phase gradient maximum amplitude

Creating an MR image requires sampling the two-dimensional k-space with
sufficient density (∆kx, ∆ky) over a specified extent (Wkx, Wky). The Nyquist
sampling theorem dictates the sampling spacing necessary to prevent spatial alias-
ing of the reconstructed object (parts of the object can alias to different locations).
The unaliased region is known as the field of view (FOV). The extent of the
acquisition in Fourier space dictates the high-spatial frequency content and, hence,
the spatial resolution.

For data acquired on a two-dimensional rectilinear grid in k-space and recon-
structed with a two-dimensional Fast Fourier transform (FFT), the spatial reso-
lution and FOV relationships are:

(1.47)

Up to now, we have described the MR signal equations for MRI for a particular
pulse sequence (two-dimensional Fourier) and a homogeneous sample. In general,
the value of the MR parameters, (T1, T 2, and T 2*) vary with position; this
generates the contrast between tissues. So, a more general form of Equation 1.45 is:

(1.48)

where ζ(r, p) is a function of position r, and p is a parameters vector p = (ρ(r),
T1(r), T 2(r), … , TR, TE, α, …) that describes the dependence on the tissue
parameters (ρ, T1, T 2, etc.) and the scanner parameters (i.e., TR, TE, etc.). For
example, in the two-dimensional Fourier sequence, if there are no effects from
magnetic field inhomogeneities (i.e., T 2 = T 2*):

(1.49)

k(t), described in Equation 1.48, is the spatial frequency vector as a function of
time; the Fourier coefficients of the image s(k(t)) can be sampled along the pathway
defined by k(t).

FOV FOVx x y y

kx ky

k k

x W y W

= =
= =

1 1

1 1

/ /

/ /

∆ ∆
∆ ∆

s t e d

t

i t( ( )) ( , )

( ) (

( )k r p r

k G

k r=

=

∫ − ⋅ζ

γ τ

π

sample

2

))d
t

τ
0∫

ζ ρ( , ) ( ) ( )/ ( ) / ( )r p r r= −− −e eTE T TR T2 11r

DK2411_C001.fm  Page 32  Thursday, August 4, 2005  11:04 AM

© 2005 by Taylor & Francis Group, LLC

where (see also Figure 1.15):

∆t is the readout sampling time interval and T  is the readout gradient time
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1.10.1 K-SPACE TRAJECTORIES

By applying Equation 1.42 to a field gradient sequence, a path in k-space can be

paths in the k-space generated by the three time intervals as shown in Figure 1.14.
Figure 1.16 shows the path(s) in k-space corresponding to intervals II and III.

Each different phase encode takes us to a new starting point on the left during
interval II; during interval III, only the readout gradient is applied, ensuring that k
travels horizontally from left to right at constant speed. Such trajectory is due to
the x-gradient (readout gradient), shape, which has a negative compensation lobe
before the sampling period that allows the k-space to be sampled symmetrically
with the readout gradient; i.e., during the readout period, k goes from −kmax to kmax.

The important parts of the paths are where the MR signal is being sampled
for processing into an image. In a straightforward FT imaging procedure, the whole
track in k-space should be a rectilinear scan, preferably with a square aspect ratio,
because this implies equal spatial resolution along both axes.

1.11 IMAGING METHODS

There are numerous variations on the basic MRI sequences described earlier. Other
than the RF pulse shapes and repetitions (gradient echo, spin echo, inversion recovery,
etc.), there are many aspects that distinguish them from one another; for example, data
acquisition and image reconstruction velocity. There exist a number of rapid imaging
techniques that could be grouped under echo-planar imaging (EPI), spiral imaging,
and, more recently, parallel imaging. Another important aspect that characterizes

FIGURE 1.16 k-space path for 2-D Fourier transform.
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traced out. Consider again the sequence diagram of Figure 1.14; let us trace the
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groups of imaging sequences is the k-space sampling method: it can be homogeneous
or not, it can include the partial k-space filling instead of full k-space filling, etc.

In the present section, only a quick description is given: the most recent and
efficient methods and their applications will be described in more detail in the rest of
the book.

One feature that distinguishes different image acquisition methods is how
quickly one can acquire data for an image and how easily the methods can be
extended to generate higher spatial resolution. The two-dimensional Fourier trans-
form method described in the preceding text is excellent for generating high-
quality, high-spatial resolution images, but it is rather slow because only one line
in k-space is acquired for each TR. The EPI method is well known as a very fast
method that generally has limited spatial resolution. The EPI pulse sequence is
uniquely characterized by a zigzag-like pathway that goes back and forth rapidly
in the frequency direction (kx) and moves in small steps in the phase direction
(ky), as schematically shown in Figure 1.17.

As in the two-dimensional Fourier transform method, we apply the Fourier
transform in both frequency and phase directions obtaining the two-dimensional
spatial map of MRI data, which is an MR image. As it can be seen, a single RF

FIGURE 1.17 (a) Timing diagram of EPI sequence and (b) relevant k-space path.
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pulse is all that is needed to produce sufficient data for an image. This is called
a single-shot imaging method, which is very popular in functional MRI (fMRI).
There are limits on how fast the gradient fields can be changed and, thus, there
are limits on the spatial resolution that can be achieved with this method.

Another common rapid imaging method is spiral imaging. It exploits the math-
ematics of how k-space trajectories are related to gradient waveforms (Equation
1.48) and that allows nearly any continuous trajectory to be acquired. In particular,
in spiral imaging, gradients are designed to produce a spiral trajectory in k-space
and samples are placed along that pathway (as schematically shown in Figure 1.18).

FIGURE 1.18 Timing diagram of (a) spiral sequence and (b) relevant k-space path.
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Then, taking the two-dimensional Fourier transform of data in this plane will
produce an image. Similar to EPI, spiral imaging can produce is suitable for use
in rapid imaging such as fMRI and cardiac imaging.

Parallel MRI techniques are characterized by multiple RF receiver coils and
associated RF receiver electronics. The proposed methods, such as SMASH [15],
SENSE [16], and SPACE RIP [17] offer improved temporal and/or spatial reso-
lution, so that they are good candidates for clinical imaging applications that
require both high speed and resolution, such as cardiac imaging. Each parallel
MRI method uses a unique reconstruction scheme that exploits the independence
of the spatial sensitivity profiles of the RF coils. Most recently, they have been
successfully combined with other fast acquisition methods, offering further
improvements; for example, the UNFOLD method for increasing temporal res-
olution was recently applied to parallel coil acquisition [18], and non-Cartesian
SENSE [19] renders the use of the SENSE reconstruction technique compatible
with complicated k-space trajectories, such as spiral imaging.

ACRONYMS

EPI Echo-planar imaging
FA Flip angle
FFT Fast Fourier transform
FID Free induction decay
fMRI functional magnetic resonance imaging
FOV Field of view
GE Gradient echo
IR Inversion recovery
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
NMR Nuclear magnetic resonance
PD Proton density
RF Radio frequency
SE Spin echo
SNR Signal-to-noise ratio
TE Echo time
TI Inversion time
TR Repetition time
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This chapter provides a tutorial overview of advanced image reconstruction methods
used in MRI. The term “advanced” is used loosely to refer to the class of non-
Fourier reconstruction methods developed for handling the inverse problem with
limited Fourier samples. We will consider two specific cases: (a) the superresolution
reconstruction problem (associated with limited Fourier samples collected at the
Nyquist rate) and (b) the parallel imaging problem (arising when Fourier samples
are collected at sub-Nyquist rates, using multiple nonuniform receiver channels).

For notational convenience, we will consider only the one-dimensional case.
The following is a summary of notations used in this chapter.
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Reconstructed image
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2.1 INTRODUCTION

 

This chapter is focused on Fourier transform MRI, in which the imaging equation
can be written, in general, as
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encodings acquired. In multichannel Fourier imaging (often known as parallel
imaging), an array of receiver channels (or coils) with sensitivity functions is
used to acquire simultaneously for 
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and In other words, the 

 

k

 

-space signal is measured at a sub-
Nyquist rate in each receiver channel. Before we discuss advanced techniques to
handle the image reconstruction problem associated with these two data acquisition
schemes, a brief review of the popular Fourier reconstruction method is in order.
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the Fourier series, that is,

(2.2)

�
ρ ρ( )x
ˆ
�
ρ ˆ( )ρ x�
ρr

��
d

s x�( )

∆k̂

Ŵ Ŵ
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For finite sampling, there are not sufficient data to define this series. The
conventional Fourier reconstruction method treats the unknown coefficients as
zero and, as a result, we have

(2.3)

which can be evaluated efficiently using the fast Fourier transform (FFT) algo-
rithm. Some basic properties of the Fourier reconstruction method are summa-
rized in the following remarks:
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which is often called a feasible reconstruction of ρ(x).
Remark 2: The Fourier reconstruction, , given in Equation 2.3 is the
minimum-norm feasible solution because
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Remark 3: The Fourier reconstruction, , is related to the true image
ρ(x) by
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where h(x), known as the point spread function (PSF), is given by
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Note that h(x) is a periodic function, and within each period it is similar to
a sinc function. The width of its main lobe, as measured by the interval between
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42 Advanced Image Processing in Magnetic Resonance Imaging

taken to be the width of an approximating rectangular pulse with height h(0) and
the same area. It is easy to show that

(2.8)

which is exactly half the width of the main lobe of h(x).
The right-hand side of Equation 2.8 is known as the Fourier pixel size, in

contrast to the usual image pixel size ∆x. Note that ∆x can be made arbitrarily
small using any signal interpolation schemes, but image resolution is fundamen-
tally limited to 1/(N∆k). Another implication of Equation 2.8 is that Wh and N
cannot be reduced simultaneously; in other words, improving image resolution
and reducing the number of measured data points cannot be achieved simulta-
neously.

In addition to a loss of resolution in , the convolution operation in
Equation 2.6 also results in the well-known Gibbs ringing artifact in . This
artifact manifests itself as spurious ringing around sharp edges, as illustrated in
Figure 2.1. The maximum undershoot or overshoot of the spurious ringing is
about 9% of the intensity discontinuity and is independent of the number of data
points used in the reconstruction. The frequency of oscillation, however, increases
as more data points are used. For this reason, when a large number of data points
is used in practice, the spurious ringing does not cover an appreciable distance
in the reconstructed image and thus becomes invisible.

FIGURE 2.1 Gibbs ringing artifacts.
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2.3 CONSTRAINED IMAGE RECONSTRUCTION

For years, the belief existed that information beyond the measurement cutoff frequency
was not recoverable, thus the Rayleigh resolution limit [1]. Although the information
is not apparent in the measured data, we now have learned how to look elsewhere for
the additional information required to restore those frequency contents [2,3]. Con-
strained methods are the mathematical tools developed to accomplish this objective
by using a priori information to compensate for the lack of high-frequency experi-
mental data in the reconstruction process. Although constrained data processing meth-
ods have been used extensively for decades in other fields, application of the con-
strained reconstruction concept to MRI is very recent. The first successful effort was
perhaps due to Smith [4] and, since then, research interest in this area has continued
to grow for at least two reasons: first, the rapid development of computing technology
has made it possible to use computation-intensive algorithms for practical applications
and, second, the advantages of modern constrained reconstruction methods have made
them worthwhile. In particular, the ability to reduce data truncation artifacts and
improve image resolution is very desirable and can produce effects unmatched by the
traditional unconstrained Fourier methods. Nonparametric constraints permit the use
of the conventional Fourier series model for image function, and reconstruction meth-
ods of this type usually involve explicit data extrapolation to recover some of the
unmeasured (presumably lost) high-spatial-frequency data so as to reduce truncation
artifact. Parametric modeling methods, on the other hand, represent the image function
in terms of a set of parameterized basis functions, rather than the nonparameterized
harmonic sinusoidal functions used in the Fourier series. These methods can, in
principle, generate images of infinite resolution from the model without explicitly
extrapolating the data to the infinite frequency range. In this sense, parametric model
constraints are often more powerful than nonparametric constraints, although some-
times they may not be as robust. Explicit data extrapolation is also possible and often
used with parametric methods by using the model to generate the unmeasured data.

2.3.1 NONPARAMETRIC METHODS

A popular mathematical algorithm used in many nonparametric reconstruction
methods is alternate projection, or projection onto convex sets (POCS). The
principle of POCS has been discussed in great detail in the signal processing
literature. We review here only the central ideas and give a couple of examples
of its use in MRI.

Definition: A subset Ω in the Hilbert space H is said to be convex if
together with any x1 and x2, it also contains µx1 + (1 − µ)x2 for all µ, 0 ≤
µ ≤ 1.
Definition: For any x ∈ H, the projection PΩx of x onto Ω is the element
in Ω closes to x. If Ω is closed and convex, PΩ exists and is uniquely
determined by x and Ω from the following minimality criterion

|| || min || ||x P x x y
y

− = − .
∈Ω Ω
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44 Advanced Image Processing in Magnetic Resonance Imaging

Briefly, the method of POCS is simply an iterative algorithm that finds a
solution subject to a number of convex-type constraints by alternate projection.
The following theorem is central to this technique, which assures the convergence
of such an iterative process.

Theorem: Given m closed convex sets Ωi, i = 1, 2,…,m, in H and their
corresponding projection operators Pi, if is nonempty, the sequence
generated by

converges (weakly) to an element f ∈ Ω0 for any initial value f0 ∈ H.
For problems with m pieces of a priori constraints of which each restricts the

solution to a convex set, POCS is an ideal method for finding a solution. Various
type of convex-type constraints exist for the reconstruction problem addressed. For
example, the following constraints are of convex type:

1. Data-consistency constraint:

2. Limited-support constraint:

3. Bounded-magnitude constraint:

4. Phase constraint:

5. Bounded-noise variance constraint:

Although POCS has played an important role in nonparametric image recon-
struction, it is not without limitations. Three of the most serious limitations are:
First, it can handle only convex-type constraints, which prevents some effective
but nonconvex-type constraints from being used. Secondly, POCS can be com-
putationally expensive, because convex set projection operators are nonlinear in
nature and sometimes involve constrained nonlinear optimization: for example,
PΩ5 for the convex set Ω5 defined above requires a quadratic programming step.
Thirdly, POCS may converge very slowly and not necessarily to a unique solution
when the projection operators are not contractive mapping; therefore, POCS can
also converge to a “bad” solution.

Ω Ω0 1
=

= ii

m
∩

f P P P f lm m� �… …+ −= =1 1 1 0 1, , , , ,
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2.3.2 PARAMETRIC METHODS

Parametric image models often take the following form:

(2.9)

where ϕn(x) are the basis functions used to absorb any a priori information and
cn are the series coefficients chosen to match the measured data.

Selecting a set of “good” basis functions is essential for the model in Equation 2.9.
A particular set of basis functions is given in the form of weighted complex
sinusoids [5,6]:

(2.10)

where C(x) is a nonnegative function incorporating a priori information. With
this set of basis functions, the model, known as the generalized series (GS) model
[5,6], becomes

(2.11)

This model has several useful properties. Specifically, when no nontrivial a priori
information is available, namely, C(x) = 1, Equation 2.11 automatically reduces to
the conventional Fourier series model. This is desirable because the Fourier series
model is indeed optimal in this case. On the other hand, if C(x) = ρ(x), the multi-
plicative Fourier series factor will be forced to unity by the data-consistency
constraint, and a perfect reconstruction will result. In general, if C(x) is properly
chosen, the new basis functions given in Equation 2.10 enable the GS model to
converge faster than the Fourier series model. Therefore, within a certain error
bound, fewer terms can be used to represent an image function than are required
by the Fourier series method, leading to a reduction of the truncation artifact.
The optimality of the GS model in Equation 2.11 can also be justified from the
minimum cross entropy principle [7].

Selection of the weighting function C(x) is application dependent. For the
limited data reconstruction problem, it was suggested [8] that C(x) be chosen to
be a summation of boxcar functions as

(2.12)

where M represents the number of boxcar functions in the model, and βm and am

are the edge locations and amplitude of the mth boxcar, respectively. This function
is particularly suitable for image functions containing sharp edges because they
are explicitly built into the basis functions.
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46 Advanced Image Processing in Magnetic Resonance Imaging

The weighting function C(x) can also be determined experimentally. A typical
example is time-sequential imaging, which involves the acquisition of a time
series of images, ρ1(x), ρ2(x),…, ρL(x), from the same anatomical site. For many
of this type of imaging experiments, the underlying high-resolution morphology
in the desired image sequence does not change from one image to another. As a
result, it is not necessary to acquire each of these images independently. Specif-
ically, with the GS model, we first acquire one high-resolution (reference) data
set with N encodings, followed by a sequence of reduced data set with M encod-
ings. In the image reconstruction step, the high-resolution reference image ρref(x)
is used as the weighting function for the GS basis functions. That is, we set

C(x) = |ρref(x) | (2.13)

for the GS model when it is used for image reconstruction from the reduced data
sets. After C(x) is known, the series coefficients cn are determined by solving a
set of linear equations from the data-consistency constraints. That is,

(2.14)

where Dc(n∆k) = F{C(x)}(n∆k).

2.3.3 APPLICATION EXAMPLES

Constrained image reconstruction has been successfully used in several practical
applications. This section discusses two specific examples: partial Fourier imag-
ing and dynamic imaging. 

Example 2.1: Partial Fourier Reconstruction

In partial Fourier imaging, k-space is sampled asymmetrically, say, D(n∆k) is
measured for n ∈ Ndata = {−n0, −n0 + 1,…, N − 1}. Such a sampling scheme arises
in MRI when a short echo time is used to avoid spin dephasing due to short caused
by local susceptibility changes or uncompensated motion effects. It is sometimes
also used in the phase-encoding direction when an asymmetric set of phase-encoding
measurements is acquired to reduce data acquisition time. Usually, n0 is much
smaller than N, typically, n0 = 16 or 32 with n being on the order of 128. The central
k-space data are used first to obtain an phase estimate , which is then used as
a constraint to get the final reconstruction. The phase-constrained reconstruction
problem lends itself nicely to the POCS algorithm. Specifically, let

(2.15)

and

(2.16)
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Clearly, Ω1 contains all the images satisfying the predetermined phase con-
straint, whereas Ω2 contains all the images consistent with the measured data.
The desired image ρ(x) lies in the intersection of Ω1 and Ω2. That is,

(2.17)

which can be found by alternating projections of an initial estimate onto these
two sets. More specifically,

(2.18)

where

(2.19)

and

(2.20)

in which R is a data replacement operator defined as

(2.21)

It is apparent that projects any image function ρ(x) onto Ω1, whereas
projects it onto Ω2. The initial condition ρ0(x) for Equation 2.18 is usually

chosen to be the zero-filled Fourier reconstruction.

Example 2.2: Data-Sharing Dynamic Imaging

Constrained image reconstruction finds wide application in dynamic imaging. The
keyhole and reduced encoding by generalized series reconstruction (RIGR) tech-
niques [6,9,10] are two typical examples. A common feature of these two methods
is that a high-resolution reference image and a sequence of reduced dynamic data
sets (usually in central k-space) are collected. Assuming that N encodings are
collected for the reference data set and M encodings for each of the dynamic data
sets, a factor of improvement N/M in temporal resolution (or imaging efficiency)
is gained with this data acquisition scheme as compared to the conventional full-
scan imaging method. In image reconstruction, the reference data is used to
compensate for the loss of high-frequency data in the dynamic data sets. In keyhole,
this is done in a straightforward fashion; that is, the unmeasured encodings of each
dynamic data set are replaced directly by the corresponding reference data to create
a “full-size” data set. A weakness of this data-sharing method is that any data
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48 Advanced Image Processing in Magnetic Resonance Imaging

inconsistency between the dynamic and reference data sets will result in data trun-
cation artifact and, as a result, dynamic image features are produced only at low
resolution. With RIGR, image reconstruction is done using the GS model described
in Section 2.2, in which the basis functions are determined by the reference data
and the coefficients are determined by the dynamic data. This reconstruction algo-
rithm can overcome the limited resolution problem with the keyhole method. It has
been shown that with multiple references, RIGR can reconstruct dynamic features
in a resolution close to that of the reference image [11].

2.4 REGULARIZED IMAGE RECONSTRUCTION
IN PARALLEL MRI

2.4.1 BASIC RECONSTRUCTION METHODS

The Fourier image of the th channel (ignoring the data truncation effects) is
given by

(2.22)

for and . Assuming that R ≤ L, we can solve
for ρ(x) pixel by pixel from the earlier equations. More specifically, rewriting
Equation 2.22 in matrix form

(2.23)

where

Equation 2.23 is known as the sensitivity encoding (SENSE) reconstruction formula
[12], which can be derived from Papoulis’ generalized sampling theorem [13].
Clearly, perfect reconstruction of ρ(x) requires: (a) precise knowledge of  to
form, (b) to be nonsingular for , and (c) to be noiseless
and not corrupted by the data truncation artifact.
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In practice, Equation 2.23 is often solved in the least-squares (LS) sense or
minimum-variance (MV) sense. The LS solution is given by

(2.24)

and the MV solution is given by [12]

(2.25)

where Ψ is the data noise covariance matrix. Some basic properties of the LS
and MV solutions are summarized in the following remarks.

Remark 4: When S and Ψ are accurate, the variance of the reconstruction
error due to data noise is given by

(2.26)

for the LS solution, and

(2.27)

for the MV solution, where the subscript x denotes the index of the matrix
corresponding to location x.

Remark 5: The LS and the MV solutions are the same if the acceleration
factor equals the number of coils or noise is uncorrelated between coils,
in which case there is no need to measure the noise covariance matrix.

Remark 6: The SNR of the MV solution is always greater or equal to that
of the LS solution. The MV solution minimizes the variance of the recon-
struction error vector over all possible esti-
mators when the noise is Gaussian and over all linear unbiased estimators
for non-Gaussian noise. Therefore, the mean-squared error of the MV
solution is less than that of the LS solution.

The earlier results are based on the assumption that both S and Ψ are accurate.
In practice, S and Ψ are estimated from experimental data, and any error in S
(denoted as ∆ S) and/or in Ψ errors (denoted as ∆Ψ) will contribute to  Suppose
that

(2.28)
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where σmin(⋅) denotes the minimum singular value of the matrix. It can be shown
for the MV solution that [14]

(2.29)

where the subscript Ψ denotes a matrix or vector premultiplied by Ψ−1/2, with
Ψ−1/2 being defined as assuming that Ψ = VΛ IH. The earlier
result can be easily extended to the LS solution by setting Ψ = I in Equation 2.29.

2.4.2 REGULARIZED RECONSTRUCTION METHODS

The SENSE reconstruction (either or ) is sensitive to , ∆S, and ∆Ψ,
especially when S is ill-conditioned. To desensitize the solution to data noise and
model errors, regularization methods are often used. Tikhonov regularization is
perhaps the most common regularization scheme, in which we form a weighted
sum of the data misfit term and a regularization term
using a weighting factor λ2, and find the solution that minimizes this sum, i.e.,

(2.30)

where λ is often referred to as the regularization parameter and is a regular-
ization image. A closed-form solution for exists for L2-norm and is given by

(2.31)

Selecting “good” values for λ and is essential for this regularized recon-
struction scheme. Although this is still a research problem, several algorithms have
been proposed, which find useful practical applications. We will briefly review
some of them to illustrate the concept.

2.4.2.1 Construction of

There are basically three schemes to construct : (a) setting (b) recycling
an initial SENSE reconstruction to create and (c) collecting additional data to
generate

Scheme (a) corresponds to, perhaps, the simplest version of the Tikhonov
regularization scheme. It was used in Reference 15 with some success. In
scheme (b), the conventional SENSE algorithm is used to obtain an initial
reconstruction, which is then filtered by a median filter to suppress any residual
aliasing artifacts [16]. However, if the matrix S is highly ill-conditioned within
a large region, the filtering step may not be effective in suppressing the aliasing
artifacts. Scheme (c) acquires additional k-space center lines at the Nyquist
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rate, known as the autocalibration scan [17,18,19] and uses these data to
reconstruct a low-resolution regularization image [20]. A high-resolution reg-
ularization image can also be created from these data using the GS model.
Details of the algorithm can be found in Reference 21.

Figure 2.2 shows a set of regularized reconstructions with different regular-
ization images from real experimental data acquired with four receiver coils and
R = 4. As can be seen, different regularization images can affect the final recon-
struction.

2.4.2.2 Selection of λλλλ

A straightforward way to select the regularization parameter is to set λ heuristically
as a constant over the entire image. This method is not effective because the
condition of S varies at different locations. A more elaborate way is to select λ
adaptively using traditional regularization methods such as the L-curve or the
generalized cross-validation (GCV) methods [22]. The L-curve method was used
in parallel imaging with some success [20]. The GCV method works well in general
but sometimes gives biased results if the noise is highly correlated [22].

FIGURE 2.2 SENSE reconstructions from a real data set acquired with 4 coils and R = 4.
(a) Median-filtered SENSE and (d) corresponding regularized reconstructions; (b) low-
resolution reconstruction from autocalibration and (e) corresponding regularized reconstruc-
tion; and (c) GS reconstruction and (f ) corresponding regularized reconstruction.

(a) (b) (c)

(d) (e) (f)

∆
�
d
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A significant weakness of both the conventional L-curve and the GCV meth-
ods lies in the fact that they choose λ(x) independently for different spatial
locations. This problem was addressed in Reference 21 with an algorithm to select
λ(x) jointly. Specifically, the algorithm first sets λ(x) to be within [λmin, λmax], and
then forms λ(x) as a linear function of the local condition number of S, i.e.,

(2.32)

for . This scheme is based on the consideration that the larger
the κ (S), the heavier the regularization is needed for Equation 2.31. To determine
α and β, Equation 2.32 is rewritten as

(2.33)

where κmax and κmin are the maximum and the minimum condition numbers of
all S, and λmin and λmax are determined by

(2.34)

and

(2.35)

where σi is the ith singular value of S, and K and ε are user-specified constants.
Details of the algorithm can be found in [21].

regularization parameters from real experimental data acquired with four receiver
coils and an acceleration factor of four. The importance of regularization param-
eters can be appreciated by comparing the results in (a) to (d).

2.4.2.3 Sensitivity Analysis

An upper bound for the sensitivity of the regularized solution to data noise and
model error is given by

(2.36)

where σmax denotes the largest singular value of matrix S and
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Figure 2.3 shows a set of exemplary regularized reconstructions with different
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As expected, the result in Equation 2.29 is a special case of Equation 2.36
when λ = 0. Comparing Equation 2.36 and Equation 2.29 yields

(2.38)

which can be regarded as the effective condition number of the regularized recon-
struction. Clearly, k(Sλ) is reduced by increasing λ.

2.4.3 APPLICATION EXAMPLE

coils in a dynamic contrast-enhanced MRI experiment. In addition to the usual
SENSE data, eight encodings were collected at the Nyquist rate in central k-space

FIGURE 2.3 Regularized SENSE reconstructions with 4 coils, R = 4,  = GS reconstruc-
tion, and λ (a) being a constant, (b) using GCV, (c) using L-curve, and (d) using the method
proposed in Reference 21.

(a) (b)

(c) (d)
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An example is shown in Figure 2.4, where the data were collected using three



54 Advanced Image Processing in Magnetic Resonance Imaging

for each data frame, from which was derived using the GS model. As can be
seen, the regularized SENSE reconstruction (Figure 2.4b) is significantly better
than that from the standard SENSE algorithm (Figure 2.4a).

2.5 CONCLUSION

Image reconstruction from limited Fourier data is a classical problem in tomo-
graphic imaging. Although a general solution to this problem is not available, a
number of practical techniques have emerged, which can provide optimal (or
close-to-optimal) solutions to a particular application problem, leading to signif-
icant improvements in image quality. This chapter provided a tutorial discussion
of some representative techniques, including parametric and nonparametric meth-
ods for superresolution image reconstruction from limited Fourier data and reg-
ularization methods for image reconstruction from multichannel undersampled
Fourier data. The chapter is also intended to provide some basic background
knowledge of the area for the reader to apply these techniques to particular
problems or to further improve them.

FIGURE 2.4 Dynamic images of a chest tumor at two time points after injection of a
contrast agent: (a) SENSE reconstruction (R = 3, L = 3), and (b) improved SENSE recon-
struction by the proposed method.

(b)

(a)

�
ρr
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3.1 INTRODUCTION

 

Throughout history, human nature’s fascination with speed has constituted the main
driver for technological advancement. From the wheel to the space shuttle, the
pursuit of speed has been a defining attribute of our civilization, as the realization
of mortality pushes us to find faster ways to experience, understand, and interact
with our reality. Short of being an essay on the philosophy of speed, this chapter
pertains to increasing the speed of image acquisition in the medical imaging
modality of magnetic resonance imaging (MRI).

 

DK2411_C003.fm  Page 57  Thursday, June 16, 2005  4:54 PM

© 2005 by Taylor & Francis Group, LLC



 

58

 

Advanced Image Processing in Magnetic Resonance Imaging

 

In the field of MRI, the goal is to observe a medically significant projection of
the state of the human body in a reasonable amount of time. With dynamic structures
and processes, such as the beating heart and blood flow, the observed state is in
constant change. Being able to resolve yet finer projections of that state onto the
time axis has been a constant drive for diagnostic medicine. The ability to follow
changes in time would provide a better understanding of the underlying biology and
a better ability to detect anomalies and disease. When observing static structures,
such as joints, fast imaging can help minimize the amount of time a patient has to
lie in the scanner. This is a main consideration for patient comfort and has the
economical advantage of allowing more patients access to the scanner. Other con-
siderations such as the inability to maintain long breath holds, as well as claustro-
phobia, have contributed to making reduced image acquisition time a priority in
MRI research and development.

The simultaneous use of multiple detectors in order to increase the speed of
imaging has previously been employed in computer-aided tomography (CAT). This
chapter describes the techniques that use multiple sensors in parallel in order to increase
the speed of imaging in MRI. It is divided into three parts. The first part describes the
history of parallel MRI in chronological order. In the second part, each of the techniques
is described and analyzed in detail. The third part of this chapter describes results of
reconstructions using all the techniques, and shows their comparison.

In MRI, spins are placed in a static magnetic field and manipulated by both
radio frequency (RF) electromagnetic fields and a superposition of gradient mag-
netic fields, in order to detect their spatial distribution and local spatial interac-
tions. Manipulation of the spin relaxation parameters (often referred to as T1 and
T 2) is used in order to provide fine levels of image contrast by the precise design
of imaging pulse sequences. The MRI signals are received in RF coils placed
around the object of interest and contain information relating the spin content to
the T1 and T 2 contrast parameters. The data acquisition domain, containing the
spatial frequency information in the image, is often referred to as k-space and is
related to the image domain by Fourier transformation. The signals received in
the RF coils are used to populate 

 

k

 

-space whereby their location is related to their
spatial frequencies. These frequencies are lowest at the center of k-space and
increase as we move away from it.

 

3.2 HISTORY OF PARALLEL MRI

 

Within a decade of its advent (1), MRI was gaining recognition as a leading diagnostic
imaging modality. Exquisite soft tissue contrast coupled with minimal invasiveness
has placed it at the forefront of clinical use. Although many advances have occurred
in MRI, there is still a need for further increases in the speed of image acquisition.
Speed of image acquisition has constituted a major limitation and goal of technical
development. Over a decade was spent on the development of sequential acquisition
methods, involving pulse sequence design and fast gradient-switching technology.
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These advances have led to ultrafast multiecho pulse sequences that go by names
such as RARE, EPI, and BURST but have not been able to address the speed
requirements in certain applications. Dynamic imaging applications such as cardiac
and interventional imaging would still be greatly served if an order of magnitude
reduction in scan time were achieved without sacrificing spatial resolution and signal-
to-noise ratio (SNR). During the 1990s, the answer to the imaging speed needs was
starting to take shape in the parallel acquisition paradigm. The idea that multiple RF
receivers could be used in parallel to speed up the image acquisition, as is the case
in computer-aided tomography (CAT), was gaining momentum. Moreover, this new
field of parallel imaging can be combined with the previous ultrafast multiecho
methods to further increase imaging speed.

The theoretical feasibility of fast data acquisitions using multiple detectors
in MRI was first described by Hutchinson and Raff in 1988 (2), and subsequently
by Kwiat et al. in 1991 (3). Both groups investigated methods to solve the inverse
source problem on MR signals received in multiple RF receiver coils, requiring
the use of a number of closely packed RF coils, equal to the number of pixels in
the image, as well as greatly increased receiver coil sensitivities, in order to
eliminate the requirement of phase encoding by gradient switching. These require-
ments are quite impractical in conventional MR imaging and have prevented these
techniques from being applied in practice.

In 1993, Carlson and Minemura (4) described the use of a two-coil array, using
one coil with homogeneous sensitivity over the field of view (FOV) and the other
having a linear gradient in sensitivity. Partial data sets were acquired in each coil,
and the missing lines in k-space were generated using a series expansion in terms
of other phase-encoded lines. This approach yielded twofold image acceleration and
was the first technique that produced accelerated images using coil-sensitivity infor-
mation; however, it remained impractical due to design conditions required of the
sensitivity of the coils.

Later that same year, Ra and Rim (6) introduced the first feasible parallel imaging
method, which used coil sensitivity as a way to remove the aliasing in regularly
undersampled images acquired with multiple coils. Although this technique later
constituted the basis for the sensitivity encoding (SENSE) method, which is currently
enjoying wide commercial use, Ra and Rim’s original paper presented only phantom
reconstructions. However, during the time when the technique came out, more
research emphasis was being given to sequential fast imaging methods, and little
effort was made to develop it.

In 1997, Sodickson et al. introduced the simultaneous acquisition of spatial
harmonics (SMASH) method (7), which used the sensitivity profile of receiver
coils as a complementary encoding function. In its initial embodiment, SMASH
tried to fit these profiles to sinusoidal harmonics in order to emulate the effect
of phase encoding. It was the first parallel acquisition method that produced

 

in vivo

 

 imaging and launched the field of parallel imaging using sensitivity encod-
ing. SMASH has since undergone a large number of changes and adaptations, as
a number of practical limitations prevented it from reaching commercial reliability.
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Today SMASH remains an elegant theoretical development, although without real
widespread applicability.

The SENSE method proposed by Pruessmann et al. (8) was introduced in 1999
and is another parallel imaging technique that relies on the use of 2-D or 3-D
sensitivity profile information in order to reduce image acquisition times in MRI.
Similar to SMASH, the Cartesian version of SENSE requires the acquisition of
equally spaced k-space lines in order to reconstruct sensitivity-weighted, aliased
versions of the image. The aliasing is removed with the use of the sensitivity
profile information at each pixel. This is done by solving in the space domain the
linear system of equations defined by the subsampling pattern. This technique is
very similar to the approach described by Ra and Rim in 1993 (6), and only differs
in the sensitivity profile estimation, as well as in its use of numerical system
regularization strategies.

The general version of SENSE allows for data to be sampled along arbitrary
k-space trajectories, and has a number of advantages over the Cartesian version,
including the ability to minimize artifact, and maximize the SNR, effectively
achieving higher acceleration factors with acceptable quality. A very high com-
putational cost, however, accompanies the arbitrary k-space sampling in gener-
alized SENSE.

In 2000, the SPACE RIP (9) technique was introduced whereby flexibility is
allowed in the choice of the k-space lines acquired, given that the frequency-
encoded direction is kept unchanged. This allows one to maintain the advantages
of SNR and minimized artifacts of generalized SENSE, while having a consid-
erably smaller computational load. Similar to SENSE, SPACE RIP uses 2-D or
3-D sensitivity profile information in order to solve a linear system of equations.
In addition, it allows for total flexibility in the positioning of the coil array around
the object of interest.

Another technique, partially parallel imaging with localized sensitivities
(termed PILS), was described in 2000 (10), which requires the use of coils having
localized sensitivities and circumvents the need to estimate the sensitivity profiles.
PILS is simple in principle, but the condition that it imposes on the coil sensi-
tivities is impractical for a large number of applications.

Since 2001, the effort shifted toward optimizing the existing techniques
and a number of works have surfaced that describe better ways to estimate
the coil-sensitivity profiles, as well as to condition the reconstruction in the
various techniques. Generalized autocalibrating partially parallel acquisitions
(GRAPPA) (11), published in 2002, introduced a generalized autocalibrating
approach that can result in more robust SMASH-like reconstructions with
computational complexity far below more general SMASH approaches (12).
Currently, the trend has shifted toward finding a generalized formalism that
encompasses all the preceding techniques, as they all strive to solve the same
system of equations. In addition, more effort is spent on the design of coil
arrays that are optimized for use in parallel imaging. In the following section,
we describe the general problem of parallel MRI, and present the basics of
each of the techniques.
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3.3 FORMULATION OF THE PROBLEM

 

The starting point of all parallel imaging techniques in MRI is the equation
describing the received signal. When using an array of N coils, the general
equation of the signal received in a coil “k” can be written as:

(3.1)

where 
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z) represents the image that we seek to identify; W
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represents the 3-D sensitivity profile of coil “k”; P

 

L

 

(x, y, z) represents the RF
selective excitation profile during the 
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-th excitation; represent the
values of the gradients applied, respectively, in the x,

 

 

 

y, and z directions during
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-th acquisition, assuming x as the frequency-encoded direction; and 
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 represent the duration of the phase-encoding gradients in the y and z directions,
respectively. This equation lumps the T1, T 2, and spin-density dependencies
into the element designating the image I(x,
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z). In addition, it takes into account
the possibility of acquiring multiple echoes (index “i”) for each excitation profile
(index “L”), and allows for the total flexibility in the design of the excitation
profile P

 

L
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z). In Fourier imaging, P
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z) is kept constant for all values
of “m,” 
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, unless otherwise specified, and is kept constant for all
values of “i.”

Equation 3.1 is a linear equation relating the time signal of an acquired echo
to the image, through the parameters of the imaging pulse sequence. The time
signal is sampled, and each time sample provides one linear equation of the image
I(x,

 

 

 

y,

 

 

 

z). If I(x,

 

 

 

y,

 

 

 

z) is an M 

 

×

 

 N 

 

×

 

 P matrix, then we need M 

 

×

 

 N 

 

×

 

 P independent
equations to resolve it. For the sake of simplicity, we will describe 2-D imaging
in the following text; the same analysis can be extended to the 3-D case by adding
the 

 

z

 

 dimension.
In 2-D imaging, RF excitation is used to select a slice in the volume. This is

equivalent to setting the profile P

 

L

 

(x,

 

 

 

y,

 

 

 

z) to a value of 1 for the desired slice,
and 0, otherwise. For the sake of the discussion, let us assume that the slice
selection is performed along the z direction, for a position z

 

0

 

. This means that
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 0 for all other values of z. Equation 3.1
would become:
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Where m,

 

 

 

n, and T take discrete values, and the number of time points sampled is
equal to the resolution along the frequency-encoded direction M. If N phase-encoding
steps are used, Equation 3.3 can be written in matrix form as:

(3.4)

where the left-hand-side vector [s

 

k

 

] contains the time signals received in the 

 

k

 

-th
coil for all the phase-encoding steps performed (1 to N), and the right-hand-
side vector [I(m,

 

 

 

n)] contains the elements of the image to be reconstructed.
The size of the system of the reconstruction matrix is (M

 

 

 

⋅ 
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×

 

 M

 

 

 

⋅ 

 

N ). A slow
way of computing the image I(m,

 

 

 

n) is by inverting the system of equations;
this is never used in practice due to computational inefficiency. In the case
where the sensitivity profile information is unknown, Equation 3.4 can also be
written such that the sensitivity profile information, W

 

k

 

(m,

 

 

 

n), is included in
the right-hand-side vector. If K coils are used simultaneously, the system can
be augmented to (K
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 vectors are included.
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In the widely used Fourier imaging, the 2DFT relationship between I(m,

 

 

 

n) and
is exploited in order to perform computationally efficient image

reconstructions. Once 

 

N

 

 different phase-encoding steps are acquired, at the
Nyquist rate of the spatial resolution in the 
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 direction, the linear system of
equations can be solved very efficiently by applying a 2-D Fourier transform
to the acquired matrix yielding the image. When using multiple coils, the
resulting images in all the coils {W

 

1

 

 I,

 

 

 

W

 

2

 

 I,…,W

 

n

 

 

 

I} are combined in the least-
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composite image in the least-squares sense. This was found to be the optimal
combination strategy by Roemer et al., in Reference 13.
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The time signal 

 

s

 

k

 

(

 

t

 

) described in Equation 3.1 is related by a Fourier transform
to the projection of the image onto the frequency-encoded direction. This can be
seen by taking the Fourier transform of Equation 3.2 along the 

 

x

 

 direction:

(3.5)

In order to fully represent the time signal acquired, the sampling rate needs to
be at least equal to the Nyquist rate for one period of the signal. From a linear
algebraic standpoint, the samples acquired at the Nyquist rate provide an independent
and complete set of equations for the specified resolution. Sampling below the
Nyquist rate yields an underdetermined linear system, whereas sampling at a higher
rate will result in overdetermination for the chosen maximum resolution. Once the
FOV and the number of image pixels M along the frequency-encoded direction are
determined, image resolution in that direction is set. In practice, the sampling rate
of the signal is constant. The effect of varying the sampling rate is obtained by
varying the magnitude of the magnetic field gradient in the frequency-encoded

 

FIGURE 3.1
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direction Gx. This results in M samples acquired at the Nyquist rate of the specified
resolution along the x direction. Acquiring more samples than M, however, at the
same sampling rate, amounts to adding more dependent equations to the linear
system, resulting in increasing the resolution of the image in the x direction, if that
resolution is set, and comes at a higher computational cost without real benefit. In
practice, the user specifies the size of the FOV as well as the number of pixels in
all directions. The gradient magnitude Gx is then automatically computed by the
scanner to provide M samples on the time axis. Each acquired signal can therefore
be considered as providing M independent equations in the linear system that we
seek to solve. In order to get M × N × P independent equations, the values of Gy

and Gz need to be varied N and P times respectively. Hence, N × P phase-encoding
steps should be performed in order to solve for the image I(m, n, p).

3.3.3 PARALLEL IMAGING METHODS

In parallel imaging, the sensitivity profiles of the receiver coils {Wk} are used as
complementary encoding functions to phase encoding, a role that is not played
in Fourier imaging. Each sensitivity profile, Wk, provides an additional indepen-
dent view of the image, and hence knowledge of these profiles is necessary in
order to resolve the system of equations.

3.3.3.1 Coil-Sensitivity Estimation

A preliminary requirement for almost all parallel imaging techniques is the knowl-
edge of the coil-sensitivity profiles, Wk. A number of approaches have been adopted
in order to estimate these profiles, based on solving Equation 3.2 for Wk(x, y).

3.3.3.1.1 Static Estimate
The static estimate assumes that the coil-sensitivity profile is constant during the
imaging procedure and is most accurate when the imaging coils are fixed. A
calibration scan is done prior to the initiation of parallel imaging whereby a full
k-space data set is acquired with all the coils, and the images are reconstructed.
The resulting images are weighted by the coil-sensitivity profiles Wk(x, y) ⋅ I(x, y).
An extra scan is performed using the body coil of the scanner where it is assumed
that the sensitivity profile is Wk(x, y) = 1. The resulting image is I(x, y). Taking

k

four-element array example. Full k-space images are shown.
For the case when coils are arranged around the FOV, it is common to assume

that the combined sensitivity profile is homogeneous. This means that adding the
images in all the coils results in I(x, y). If this assumption is valid, there is no
need to acquire an additional image using the body coil.

3.3.3.1.2 Dynamic Self-Calibrated Estimate
The dynamic self-calibrated sensitivity profile estimates consider that the coil
sensitivity varies during the dynamic scans, and seeks to compute it dynami-
cally from a small number of k-space lines acquired during parallel imaging.
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the ratio of the two images yields W (x, y) for all the coils. Figure 3.1 shows a
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Coil-sensitivity profiles are smoothly varying functions, and can therefore be
assumed to contain only low spatial frequencies. A set of contiguous, low-
frequency k-space lines is acquired with every acquisition in a dynamic
sequence and is used to reconstruct a low-frequency image from each coil (W1ILF,
W2ILF, W3ILF, W4ILF). The images are then added together to form: (W1 + W2 + W3 +
W4) ⋅ ILF ≈ ILF. The resulting sensitivity profiles are computed by taking the ratio
of the single-coil low-frequency images, to the sum of the low-frequency coil
images. This approach is shown in Figure 3.2. The low-frequency images
shown on the left are reconstructed using the eight center lines of k-space.

3.3.3.2 Parallel MR Image Reconstruction Techniques

In this section, we describe how each of the parallel imaging techniques solves
the linear system shown in Equation 3.2, assuming that the sensitivity profile
information is known.

Two main approaches to solving the linear system of equations shown in
Equation 3.2 have been adopted. The k-space approaches, such as SMASH and
GRAPPA, seek to use partial data acquired in parallel in all the coils, in order to
synthesize a representation of the full k-space of the image. Once this is done,
image reconstruction is performed by usual Fourier reconstruction. Image domain
approaches such as regular SENSE and SPACE RIP solve the linear system of
equations in the image domain.

3.3.3.3 K-Space Approaches

3.3.3.3.1 SMASH
SMASH (7) is dubbed a k-space technique, in the sense that it seeks to estimate a
composite k-space of the image from partial data acquired in different coils. Image
reconstruction is performed by Fourier transformation of the composite k-space.
SMASH operates by using linear combinations of simultaneously acquired signals
from multiple surface coils with different spatial sensitivities.

FIGURE 3.2 Sensitivity profile estimation using the center-lines of k-space.

Dynamic low-frequency
images using center 8 lines of

k-space in 4 coils

Sum of all
low-frequency images

Resulting dynamically
acquired, self-referenced
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First, the sensitivity profiles Wk(x, y) are linearly combined to approximate
composite spatial harmonics in the phase-encoded direction as follows:

(3.6)

where ky = 2/FOV, A is a complex constant, and K is the total number of coils
used. This approximation tries to fit the 2-D coil-sensitivity profiles to a 1-D
function in the y direction, rendering the fit challenging and error prone. Once
the weights are computed, the signals can be combined to form shifted lines
of the image k-space as follows:

(3.7)

Combining Equation 3.6 and Equation 3.7 results in:

(3.8)

This shows that shifted k-space lines can be synthesized using a linear com-
bination of the same phase-encoded signals acquired in all the coils in the array.
Figure 3.3 shows schematically how the coil sensitivities from eight coils can be

FIGURE 3.3 Combining coil sensitivities in SMASH imaging. On the left, acomposite view
of all 8 coil estimates is shown. On the right, the real and imaginary components from each
coil, for the column marked with the dotted line in the left image. The bold line illustrates
the estimated harmonic function formed through a linear combination of the coil components.
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combined to yield spatial harmonics in the y direction. Note that the harmonic
fit is approximately, but not exactly, sinusoidal—leading to the problems in
reconstruction illustrated in the Examples section. 

Figure 3.4 shows the signal flow for the SMASH algorithm.  Here each coil
is used to collect regularly subsampled k-space sets with a skip factor of two.
Reconstructing these sets yields aliased images, weighted by the coil sensitivity
profiles. The acquired signals are combined linearly to form the harmonics as
described in Equation 3.8.  Reconstruction of each harmonic set separately also
yields aliased images, where the coil weighting has been removed. Finally, the
harmonic sets are combined into a k-space representation, filling odd lines from
one harmonic and even lines from the other. Note that the chosen acceleration
factor in SMASH imaging determines the number of harmonic fits needed to
generate the composite k-space data.

3.3.3.3.1.1 Better Harmonic Fitting in SMASH
The quality of SMASH imaging is a function of the accuracy of the fits computed
in Equation 3.6; variations on the design of this fit have been proposed in order
to maximize its accuracy. Better fits covering the full FOV of the image can be
found when Equation 3.6 is expanded to include the x direction.

(3.9)

where each location along the frequency-encoded axis x would have a set of
parameters associated with it. If N is the resolution along the frequency-

encoded direction, then N different SMASH reconstructions can be performed

FIGURE 3.4 Data flow and reconstruction in SMASH imaging.
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with the different sets computed, whereby in each reconstruction, one
column location along the x axis is optimal. The N optimal columns are
combined in order to get the final image. This procedure increases the compu-
tational load by a factor of N, and can be reduced by assuming that multiple
locations along the frequency-encoded direction can have the same fitting
parameters.

3.3.3.3.2 AUTO-SMASH
One of the significant difficulties with implementing SMASH clinically is that
the reconstruction quality is greatly dependent on the coil configuration used.
Compounding this difficulty is the fact that coil sensitivities are only approxi-
mately known. Thus, more recent k-space methods have focused on bypassing
the need to estimate coil-sensitivity maps.

The first such approach was AUTO-SMASH (14), in which one additional
line of k-space is acquired in the low-frequency region. The harmonic fit coeffi-
cients are then determined by fitting the acquired lines of k-space to this auto-
calibration line. Specifically, the k-space extrapolation coefficients, are deter-
mined via solution of a linear system of equations:

(3.10)

This expression can be written in matrix form as

(3.11)

where and represent vectors from the acquired
k-space data set. The reconstructed image is formed using these coefficients in the
same fashion as the original SMASH reconstruction equations. A schematic

This approach can be extended to variable density strategies as well through
the use of additional autocalibration lines, VD-AUTO-SMASH (15).

3.3.3.3.3 GRAPPA
In MR, there is significant concern in maximizing SNR in the received signal.
This is due to the fact that the ratio of spins contributing to the recorded signal
is on the order of 10−3. Accelerating the acquisition by reducing the amount of
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describing the data flow in AUTO-SMASH is shown in Figure 3.5.
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data acquired necessarily reduces SNR. In considering these issues, the creators
of GRAPPA (11) proposed a combination of VD-AUTO-SMASH and coil-by-
coil SMASH reconstructions (16) in which a full FOV data set for each coil is
produced, and then the final image is constructed by combining the separate coil
data using optimal SNR approaches.

The strategy in GRAPPA is to use multiple k-space lines from multiple coils
to reconstruct a single k-space estimate in each coil. The reconstruction param-
eters are again determined by solving a linear system of equations

(3.12)

which can be solved by rewriting in matrix form, as in the AUTO-SMASH
case. Here, A represents the acceleration factor, and the coefficients are
indexed over both the number of coils and the number of k-space lines used to

3.3.3.4.3.4 k-Space Methods Summary
Estimation of missing k-space lines has proved to be a successful strategy in
parallel MR image reconstruction. However, we must emphasize that these
methods are approximations to solving the signal equation. They do not provide
an optimal, in the least-squares sense, solution to the signal equation; rather,
they attempt to simulate the acquisition of the missing k-space lines through
extrapolation.

FIGURE 3.5 Data flow diagram for the AUTO-SMASH algorithm.
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Figure 3.6.
construct the linear system. A diagram of the data processing flow is given in
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3.3.3.4 Image Domain Approaches

3.3.3.4.1 SENSE
As originally presented, the Cartesian form of SENSE (8) is founded upon a uniform
downsampling pattern. Based on the subsequent aliasing pattern that results from
this subsampling choice, one can construct a small system for each spatial-domain
pixel in the acquired data reference frame. Solving this small system gives unaliased
spatial-domain pixels. This process is then repeated for each pixel in the FOV.

For example, consider a multiple coil acquisition employing a “uniform
downsampling by 2” phase-encode k-space acquisition pattern. In the spatial
domain, this sampling pattern will alias a pixel Ι( j, x) with a pixel from the
alternate half of the FOV, Ι( j + N/2, x), as shown in Figure 3.7.

To reconstruct the image, SENSE seeks to identify these two pixel values,
[I( j, x), I( j + N/2, x)]T, for each pixel location in the acquired subsampled—and,

FIGURE 3.6 Data flow diagram for the GRAPPA algorithm.

FIGURE 3.7 Diagram of uniform down sampling by 2 and associated aliasing pattern.
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thus, spatially aliased—image. The reconstruction equation is formed using esti-
mates of the coil sensitivity at the location of these aliased pixels.

(3.13)

where vl(r′) is the spatial-domain representation of acquired data for coil l. Note
that the coordinate frame r′ is the aliased version of r. Ideally, each coil “sees”
a different portion of the FOV, as in Figure 3.8.

Collecting together the expressions for each coil yields the SENSE linear
system of equations

(3.14)

which is repeated for each pixel location in the acquired spatial-domain coordinate
system. Using an identical framework, this approach has also been used for variable
density subsampling patterns (17).

3.3.3.4.2 SPACE RIP
From the signal equation, SPACE RIP (9) takes the Fourier transform of Equation 3.2
along the x direction, when a phase-encoding gradient is applied yields:

 (3.15)

FIGURE 3.8 Local FOV coil-sensitivity encoding is used to untangle separate pixels in
aliased acquisitions.
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which is the phase-modulated projection of the sensitivity-weighted image onto
the x axis. Equation 3.15 can be discretized along y and written as follows:

(3.16)

This expression can be converted to matrix form for each position x along
the horizontal direction of the image, as follows:

(3.17)

where F is the number of phase encodes used in the experiment, [W1,…,Wk] represent
the sensitivity profiles of the coils, I(x,y) represents the image, and [S1, …,Sk]
represent the discrete Fourier transform of the signals received in all the coils.
Equation 3.17 is a matrix equation where the term on the left side is a K × F element
vector containing the F phase-encoded values for all K coils. The term on the far
right is an n-element vector representing the “image” for one column. The middle
term in Equation 3.17 is a matrix with K × F rows and N columns; it is constructed
based on the sensitivity profiles and phase encodes used. Solving Equation 3.17
for each position along the x axis yields a column-by-column reconstruction of the
image. Increasing F results in an increase of the rank of the matrices, yielding
system matrices that are better conditioned. SPACE RIP allows for the arbitrary
choice of phase encodes, making it well suited to getting real-time sensitivity profile
estimations by fully sampling the center of k-space. These estimates are more
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accurate than estimates computed prior to the beginning of the dynamic acquisition,
leading to a minimization of artifacts. The inclusion of these center lines in the
reconstruction further contributes to a higher SNR in the image, due to the high
level of energy present at the center of k-space. Reconstructing the full image
amounts to a column-by-column reconstruction whereby each location along the
frequency-encoded direction can be computed independently; a schematic descrip-
tion of the full image reconstruction is shown in Figure 3.9.

Note that one can convert the given SPACE RIP linear system of equations to
the Generalized SMASH linear system of equations with an inverse- and forward-
unitary Fourier transform matrix between the system matrix in Equation 3.17 and
the reconstruction vector (12). This effectively converts the objective from a spatial
domain reconstruction to a k-space domain reconstruction, while maintaining the
basic structure if the linear system.

3.3.3.4.4.2.1 Conditioning of the Reconstruction Matrix
The reconstruction scheme outlined in the SPACE RIP technique is based on
matrix inversion. In order to ensure stable and robust reconstruction, the condition
number of the inverted matrices (defined as the ratio of the largest eigenvalue to
the lowest eigenvalue) should be minimized. Equation 3.17 shows that the con-
dition number is a function of the choice of the phase encodes F acquired per
coil; it is also a function of the sensitivity profile estimations of the receiver coil
array. Because the sensitivity profiles are coil dependent and generally fixed
during a dynamic acquisition, conditioning the reconstruction of the SPACE RIP
technique is practically performed by careful selection of the acquired k-space
lines as well as minimizing the noise in the sensitivity estimates. The SNR in the
resulting images is also a function of the condition number of the reconstruction
matrix shown in Equation 3.17. To avoid errors due to numerical propagation,
the pseudoinverse of each reconstruction matrix is restricted to those singular
values that are greater than a given threshold. This effectively removes any noise
amplification due to poor conditioning.

FIGURE 3.9 A full image reconstruction representation. Equation 3.17 is solved inde-
pendently for each column in the image.
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3.3.3.4.4.2.2 Choice of the Phase Modulations
To appropriately cover the k-space distribution of the image I(x, y), the choice
of the phase modulations used in the inversion matrix should be influenced by
the frequency content of the sensitivity profile. In the spatial domain, the image
received in a coil having a sensitivity profile Wc(x, y) can be written as Ic(x, y) =
I(x, y) Wc(x, y). Therefore, the k-space profile of Ic(x, y) is the convolution of the
k-space profile I(kx, ky) of the image I(x, y), with the k-space profile Wc(kx, ky) of
the sensitivity profile Wc(x, y). This convolution amounts to a blurring of the k-space
data I(kx, ky) in an image. Because a different convolution is performed for each
coil, a different blurring of I(kx, ky) occurs for each coil. Subsampling the convolved
k-space data received in different coils, therefore, results in different coverage of the
k-space of the image I(x, y). Hence, in order to get the best k-space coverage of
I(x, y), it is necessary to optimally sample the k-space data from all the coils. In
contrast to SMASH and SENSE, which require the use of equally spaced k-space
lines, SPACE RIP is completely flexible in this regard. In the following section, we
show how a carefully chosen irregular sampling pattern (whereby the center of k-space
is sampled more densely than the periphery) coupled with appropriate matrix condi-
tioning, would better capture the spatial energy distribution, yielding reconstructions
with higher SNR and fewer artifacts than in other parallel imaging techniques.

3.4 EXAMPLES

The following examples demonstrate each of the preceding algorithms and illus-
trate their effectiveness in removing aliasing artifacts from subsampled parallel
MR acquisitions. The ACR quality phantom data shown here were acquired using
an eight-channel head coil on a GE Signa Lx 1.5-T MR scanner. This phantom
slice provides both a large uniform area to easily identify residual aliasing artifacts
and a set of boxes with varying resolution through which one can measure blur.
For these examples, the full 256 by 256 k-space set was obtained once, then each
of the various subsampling patterns were simulated by excluding those k-space
lines from the reconstruction. To more accurately reflect the current common
practice in parallel MR imaging, the sensitivity maps were estimated using self-
referenced data. In this case, between 8 and 20 lines closest to the lowest fre-
quency in k-space were used to estimate the coil-sensitivity maps. A Gaussian
envelope was applied to this data to filter the high-spatial-frequency components
along the readout direction and to limit ringing along the phase-encode direction,

3.4.1 EXAMPLE 1: UNIFORM SUBSAMPLING

shows the resulting uncorrected image reconstruction using the subsampled data.
The twofold aliasing pattern that parallel MR reconstruction algorithms aim to
suppress is clearly evident.
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estimates are shown in Figure 3.10.
and the estimates were then normalized. An example of these coil-sensitivity

Figure 3.11(a) shows a 2x-acceleration uniform subsampling pattern. Figure 3.11(b)
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2x-accelerated data.  Figure 3.12(a) shows a reconstruction following the SMASH
approach described in the preceding text. As mentioned earlier, the SMASH
reconstruction approach is very sensitive to the coil-sensitivity map estimates. As
this example shows, SMASH reconstruction is not well suited for self-calibrated
sensitivity estimation. A better approach is to use the AUTO-SMASH reconstruc-
tion, shown in Figure 3.12(b). This k-space domain method does not require
estimation of the coil-sensitivity maps and produces a much cleaner image recon-
struction with significant suppression of the aliasing artifacts. As noted earlier,
however, the SMASH and AUTO-SMASH approaches present only an approxi-
mate solution to the parallel MR signal equation. The generalization of these
approaches in GRAPPA provides enough flexibility in reconstruction parameter
selection to effectively suppress the artifacts visible in the other two k-space
methods, as the reconstruction with 8 ACS lines in 3.12(c) illustrates. This
reconstruction is comparable to the SENSE approach, which does minimize the
least-squared error between the acquired data and the signal acquisition model

FIGURE 3.10 Self-calibrated 8-channel head coil-sensitivity maps.

FIGURE 3.11 Uniform 2x sampling pattern and spatial-domain aliasing result.
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Figure 3.12 shows the reconstructions from four separate algorithms on the
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for the particular case of uniform phase-encode subsampling. As seen in the
SENSE reconstruction of Figure 3.12(d), this approach successfully suppresses
almost all of the aliasing artifacts at 2x acceleration.

3.4.2 EXAMPLE 2: VARIABLE SUBSAMPLING

As the previous example shows, successful reconstruction techniques for uniform
downsampling approaches have been developed. However, it was noted early on
that artifact suppression could be improved through nonuniform downsampling.

3x-‘‘hat” acceleration sampling pattern, and it is significantly different from the
uniform-2x aliasing pattern. Here, the hat sampling pattern follows a top-hat

FIGURE 3.12 Reconstructions of uniform 2x-acceleration data using (a) SMASH, (b)
AUTO-SMASH, and (c) GRAPPA, and (d) SENSH.

(a) SMASH (b) AUTO−SMASH

(d) SENSE(c) GRAPPA
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Figure 3.13 shows an example of the aliasing pattern that results from using a
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profile — densely sampled (1x-acceleration) close to the center of k-space (zero
frequency), less-densely sampled (2x-acceleration) farther away from the center
of k-space, and sparsely sampled (4x-acceleration) at the edges of k-space. The
ratio of the total number of selected lines to the number of lines in the FOV
determines the final acquisition acceleration.

Note that changing from a uniform to an irregular sampling pattern compli-
cates the spatial-domain aliasing pattern. Consequently, the SENSE equations no
longer solve the parallel MR signal equation in the least-squares sense. This led
to the development of reconstruction algorithms, e.g., SPACE RIP, Generalized
SMASH, and GRAPPA that do consider irregular subsampling patterns.

Figure 3.14 presents both a GRAPPA and SPACE RIP reconstruction of
3x-hat accelerated data. As seen in the figure, the aliasing artifacts visible in
Figure 3.14(b) are visibly suppressed. For comparison, a 3x-uniform accelerated
SENSE reconstruction is shown in Figure 3.14(c) with significant artifacts in
the reconstruction.

While both GRAPPA and SPACE RIP provide accurate reconstructions, there
are significant differences between them. On the sub-sampling side, SPACE RIP

FIGURE 3.13 Non-uniform 3x-“hat” sampling pattern and spatial-domain aliasing result.

FIGURE 3.14 Reconstructions of 3x-“hat”-accelerated acquisition data using (a)
GRAPPA and (b) SPACERIP. For comparison, a SENSE reconstruction of uniform-3x-
acceleration data is shown in (c).
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(and closely related techniques like Generalized SMASH) provides greater flexi-
bility in sub-sampling selection than GRAPPA.  One can choose a variety of sub-
sampling patterns, including the exponentially-weighted sampling distribution—
densely sampled in the center of k-space (1x), sparsely sampled at the edges of
k-space (12x), with the change in step size following an exponential decay. —
shown in Figure 3.15. This sub-sampling flexibility allows one to potentially tailor
the sub-sampling choice to particular applications.

On the reconstruction side, SPACE RIP and Generalized SMASH provide a
minimum least-squares error estimate of the image in the same manner as SENSE,
where as GRAPPA provides only at approximate solution in the same manner as
SMASH.  The effect of this difference becomes more apparent at high acceleration
factors. For example, Figure 3.16 shows a 4x-acceleration reconstruction for
GRAPPA and SPACE RIP.  The GRAPPA reconstruction, in Figure 3.16(a), shows
higher spatial noise throughout the field of view and a significant loss of resolution
in the boxes to the right. In contrast, although the SPACE RIP reconstruction
from identical phase encodes lines in Fig. 3.16(b) shows stronger residual artifacts

FIGURE 3.15 Non-uniform 4x-“exponential” sampling pattern and spatial-domain alias-
ing result.

FIGURE 3.16 Reconstructions of 4x-exponential-acceleration data using (a) GRAPPA
and (b) SPACE-RIP.
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than the GRAPPA reconstruction, the resolution of the boxes on the right is
maintained. Furthermore, the inherent ability within SPACE RIP to modify the
phase encode selection allows one to choose different phase encode lines that
distribute the residual artifact more evenly over the field of view while maintaining

The cost of this flexibility in sub-sampling is computational complexity.
SPACE RIP reconstructions typically take six to ten times longer to compute than
GRAPPA. This is because for each image, SPACE RIP must solve a system of
equations for each column, with each system of size LP-by-N, where L is the
number of coils, P is the number of phase encodes acquired, and N is the size
of the FOV in the phase-encode direction. In contrast, GRAPPA needs to solve
a system of equations for each missing line of k-space: L coils × M-P lines (size
of FOV–number of phase encodes). For each of these systems the matrix equation
that solves the GRAPPA parameter fit equation is of size p-by-N, where p is the
number of parameters to determine and N is the size of the FOV along the readout
direction. With a smaller system matrix size, GRAPPA requires significantly less
computational resources to compute.

The ability to provide reconstruction of irregularly sampled data with minimal
computational resources has led to rapid adoption of GRAPPA in clinical settings.
However, with rapidly improving computational resources, it is anticipated that
SPACE RIP will become more prevalent, given its greater flexibility in tailoring
sub-sampling strategies for both artifact suppression and resolution improvement. 

3.4.3 EXAMPLE 3: IN VIVO APPLICATIONS

Parallel imaging has found wide applicability in clinical imaging, because it can
be used to improve both spatial and temporal resolution. Our final examples
illustrate two applications in which parallel MR imaging has found strong
popularity and a promising future. In cardiac imaging, shown in Figure 3.17,
the standard clinical examination currently requires a patient breath hold of

FIGURE 3.17 Axial cardiac image.
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the required resolution. This is illustrated in Figure 3.16(c), using the 4x-expo-
nentially-weighted sub-sampling distribution given in Figure 3.15.
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approximately 20 sec. This breath hold is certainly possible with a healthy
volunteer, but very taxing on patients with cardiac disease. Using parallel imag-
ing to increase the acquisition rate decreases the breath-hold time by the accel-
eration factor. Thus, with 2x- and 4x-acceleration, the breath-hold time reduces
to approximately 11 sec and 6 sec, respectively.

If used to improve spatial resolution, parallel imaging provides an improve-
ment proportional to the acceleration factor. Figure 3.18 shows a demonstration
of this with an axial image of the brain. The image was acquired using four coils
at 4x-acceleration. The acquired data were subsampled using a set of k-space
lines whose density mirrors the Fourier signal energy distribution. This distribu-
tion is shown in Figure 3.18(a), with the corresponding sampling pattern is shown
Figure 3.18(b). The resulting image reconstructed using SPACE RIP is shown in
Figure 3.18(c).

3.5 SUMMARY

This chapter presented a basic overview of the current state of the art in parallel
MR image reconstruction techniques.  Starting from the signal acquisition model,
we reviewed the reconstruction approach given by SMASH, its subsequent improve-
ments leading to GRAPPA, SENSE, and SPACE RIP.  A number of reconstruction
examples were given to illustrate the effectiveness of each method and a few of the
differences between them.
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4.1 INTRODUCTION

 

Magnetic resonance imaging (MRI) is a magnificent imaging technique in bio-
medicine that is able to produce high-quality images containing an abundance of
physiological, anatomical, and functional information. Such information is often
not extracted by visual interpretation of the images alone; digital data from the
scanners are generally processed and analyzed in a quantitative way using
advanced digital-data-processing tools.
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Most of the current image processing applications applied to MR image data
can be formulated as a parameter estimation problem. For example, in the case of
noise filtering the parameter to be estimated is given by the true signal component
underlying the noise-corrupted data, whereas in the construction of 

 

T

 

1

 

 and 

 

T

 

2

 

 maps
the parameters to be estimated are given by the relaxation time constants [1–9].

Nowadays, there exist several estimation procedures, each of which seems to be
slightly different from the other. So which one should we use? Which one is optimal
with respect to a specified error criterion? Throughout this chapter, we hope to give
the reader answers to these questions by analyzing commonly used signal and noise
estimation methods as well as the maximum likelihood (ML) method. Each method
is described in detail and evaluated in terms of precision and accuracy.

This chapter is organized as follows: Because optimal quantitative analysis
requires exploitation of the knowledge of the underlying data statistics, Section 4.2
describes various probability density functions (PDFs) that appear when dealing with
MR data. Section 4.3 reviews some results from statistical parameter estimation
theory, which are used in the remainder of the chapter. Different performance mea-
sures for estimators as well as the so-called Cramér–Rao lower bound (CRLB) and
the ML estimator are discussed. In Section 4.4 and Section 4.5 we explain how the
various PDFs can be exploited to estimate parameters from MR data. In particular,
in Section 4.4 we will focus on the estimation of (noiseless) signal components,
whereas in Section 4.5 we will consider the estimation of the image noise variance.

 

4.2 PDFs IN MRI

 

Whenever quantitative information needs to be extracted from MRI data, knowl-
edge of the PDF of the data is of vital importance. Indeed, if an incorrect PDF
is assumed 

 

a priori

 

, systematic errors (bias) may be introduced when estimating
parameters from these data. Therefore, this section starts with an overview of the
various PDFs that would appear when dealing with (processed) MR data [10].

 

4.2.1 G
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 PDF

 

The raw MR data acquired in K-space during an MR acquisition scheme are
known to be complex valued. The complex data are composed of noiseless signal
components and noise contributions that are assumed to be additive and indepen-
dent and are characterized by a zero-mean Gaussian PDF [11–13]. An MR
reconstruction is then obtained by means of an inverse Fourier transform (FT).
Because of the linearity and orthogonality of the FT, the complex data resulting
from the transformation are still independent and Gaussian distributed* [14–16].
Hence, the PDF of a raw, complex data point is given by

, (4.1)

 

* It is assumed that the MR signals are sampled on a uniform grid in K-space. Furthermore, the
variance of the noise is assumed to be equal for each raw data point.
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where 

 

σ

 

2

 

 denotes the noise variance, and (
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r

 

, 

 

ω

 

i

 

) are the real and imaginary
variables, respectively, corresponding to the complex observation with
underlying true amplitude and phase value, 

 

A

 

 and 

 

ϕ

 

, respectively. In Equation 4.1
and in what follows, stochastic (i.e., random) variables are underlined [10]. In
general, a Gaussian PDF is described by

, (4.2)

with 

 

µ

 

 and 

 

σ

 

 denoting the mean and standard deviation of the PDF, respectively.

 

4.2.1.1 Moments of the Gaussian PDF

 

Analytical expressions for the moments of a Gaussian PDF are given by

(4.3)

where is the expectation operator and [17]. For the first four moments
we have, explicitly

(4.4)

(4.5)

, (4.6)

(4.7)

 

4.2.1.2 Central Moments

 

For the central moments, we have

(4.8)
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During MR data processing, it is a common practice to work with magnitude data
instead of real and imaginary data, because magnitude data have the advantage of
being immune to the effects of incidental phase variations due to radio-frequency
(RF) angle inhomogeneity, system delay, noncentered sampling windows, etc. In
this section, the PDF of the magnitude data is discussed.
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To construct a magnitude image from the complex data, the magnitude is
computed on a pixel-by-pixel basis

(4.9)

where 

 

m

 

 is the magnitude variable corresponding to the magnitude observation As
root extraction is a nonlinear transformation, the PDF of the magnitude data is
no longer expected to be Gaussian [18,19].

The PDF of the magnitude data is found by transforming the joint PDF of
the real and imaginary data, given in Equation 4.1, into polar coordinates:

(4.10)

where 

 

φ

 

 denotes the phase variable corresponding to the phase observation  The last

  

4.10 over a full cycle of leads us to the PDF that characterizes magnitude data:

(4.11)

with 

 

I

 

0

 

 denoting the zeroth-order modified Bessel function of the first kind. The
unit step Heaviside function 

 

ε

 

(.) is used to indicate that the expression for the
PDF of is valid for nonnegative values of only. The preceding distribution
is called the 

 

Rician distribution

 

, after S. O. Rice, who derived it in the context
of communication theory in 1944 [18]. Note that the shape of the Rician PDF
depends on the signal-to-noise ratio (SNR), which is here defined as the ratio

    

for various values of the SNR.

 

4.2.2.1 Asymptotic Approximation of the Rician 
Distribution

 

This subsection describes the behavior of the Rician distribution for very low and
very high SNR:

• For low SNR, the modified Bessel function is given by

(4.12)

Hence, the Rician PDF then leads to a Rayleigh distribution:

(4.13)

The Rayleigh PDF characterizes the random intensity distribution of nonsig-
nal background areas such as air.
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A/σ. Figure 4.1 shows the Rician PDF as a function of the magnitude variable

factor, m, is the Jacobian of the transformation (see Appendix). Integration of Equation



 

90
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At high SNR, the asymptotic approximation of the modified Bessel function
is given by

(4.14)

Then, given that for SNR 

 

→

 

 

 

∞

 

, we find for the Rician PDF:

(4.15)

Hence, for high SNR, the Rician PDF approaches a Gaussian PDF, with a
mean 

 

A

 

 and a variance 

 

σ

 

2

 

. The transition between the two limits of the Rician
PDF can visually be appreciated in Figure 4.1.

 

4.2.2.2 Moments of the Rician PDF

 

The moments of the Rician PDF can be analytically expressed as a function of
the confluent hypergeometric function of the first kind  

(4.16)

with 

 

Γ

 

 representing the Gamma function [20]. The even moments of the Rician
distribution (i.e., when 

 

ν

 

 is even) are simple polynomials. The expressions for the

 

FIGURE 4.1

 

The Rician PDF as a function of the magnitude variable M, drawn for various
values of the SNR where M

 

=
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 0, the distribution equals a Rayleigh PDF,
whereas at high SNR (SNR 

 

>

 

 3), the Rician PDF approaches a Gaussian PDF.
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odd moments are much more complex. However, the confluent hypergeometric
function can be expressed in terms of modified Bessel functions, from which an
analytic expression of the odd moments can be derived. Hence, we have explicitly:

, (4.17)

   , (4.18)

      , (4.19)

        (4.20)

with 

 

I

 

1

 

 denoting the first-order modified Bessel function of the first kind.

 

4.2.2.3 Moments of the Rayleigh PDF

 

For completeness, we also mention the general expression for the moments of
the Rayleigh PDF, to which the Rician PDF tends at low SNR. For the Rayleigh
PDF, we have

(4.21)

Explicitly, the first four moments are

, (4.22)

, (4.23)

, (4.24)

(4.25)

 

4.2.2.4 Generalized Rician PDF
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coils [21], and in phase-contrast MR (PCMR) images [22,23]. In general, a
(random) PCMR pixel variable denoted by can be written as

(4.26)

with K denoting twice the number of orthogonal Cartesian directions in which
flow is encoded. The set contains independent Gaussian-distributed variables
with mean {ak} and variance σ 2. The deterministic signal component of the
PCMR pixel variable is given by

(4.27)

The PDF of such a PCMR variable is given by

(4.28)

When A → 0 the PDF of the magnitude PCMR variable turns into a gener-
alized Rayleigh PDF:

(4.29)

for K = 2, 4, and 6 and σ = 1.

4.2.2.5 Moments of the Generalized Rician PDF

The general expression for the moments is written as

(4.30)

Again, the even moments turn out to be simple polynomials:

(4.31)

(4.32)

For A = 0, we obtain the moments of the generalized Rayleigh PDF:
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Figure 4.2 shows the generalized Rician PDF for SNR = 0 and SNR = 3 and
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4.2.2.6 PDF of Squared Magnitude Data

Consider a set of N real and imaginary observations with n = 1,…, N,
where all observations are assumed to be statistically independent and Gaussian
distributed with standard deviation σ and arbitrary means and respec-
tively. Next, consider the sum of N squared magnitude variables constructed from

FIGURE 4.2 Plots of the generalized Rician PDF as a function of the magnitude variable
m for K = 2, 4, and 6 and with σ =1.
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these N complex data points:

(4.34)

Then, it can be shown that the PDF of y is given by

(4.35)

where [22]. Note that Equation 4.35 is the PDF of the sum
of 2N Gaussian-distributed variables. Also, note the following:

• If the variance of the Gaussian-distributed components equals one, the
PDF given in Equation 4.35 turns into a noncentral chi-squared distri-
bution. The mean is given by N + µ2. The variance is given by
2(2µ2 + N ).

• If, in addition, the mean of the components equals zero, it turns into
the chi-squared distribution with 2N degrees freedom and with mean
and variance equal to N and 2N, respectively.

4.2.3 PDF OF PHASE DATA

Phase data, which are commonly obtained during flow imaging, are constructed
from the real and imaginary observations by calculating the arctan-
gent of their ratio for each complex data point:

(4.36)

The PDF of the phase deviation from the true phase value is given by [24]

(4.37)

Note that the distribution can be expressed solely in terms of the SNR, defined
as A/σ. A graphical representation of the phase difference PDF as a function of

bution of is complicated, the two limits of the SNR turn out to yield simple
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the SNR is shown in Figure 4.3. Although the general expression for the distri-
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• In regions where there is only noise, (i.e., where the SNR is zero),
Equation 4.37 reduces to a uniform PDF:

(4.38)

FIGURE 4.3 Plot of the phase error PDF as a function of the SNR. (From Sijbers, J., Van
der Linden, A. (2003). Encyclopedia of Optical Engineering, chap. Magnetic resonance
imaging, pp. 1237–1258. Marcel Dekker, ISBN: 0-8247-4258-3.)
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Stated in another way, complex data that only consist of noise “point in all
directions” with the same probability.

• For high SNR, it is easy to see that the probability of observing large
values for the phase deviation will be small. In that case, Equation 4.37
reduces to

(4.39)

Thus, the phase noise is governed by a Gaussian distribution when
SNR → ∞.

The standard deviations of the phase noise can in general be calculated from
Equation 4.37. However, for the SNR limits given in Equation 4.38 and Equation
4.39, it is given by

(4.40)

4.3 PARAMETER ESTIMATION

4.3.1 PERFORMANCE MEASURES OF ESTIMATORS

In the remainder of this chapter, several estimators will be considered. In order
to compare the performance of these estimators, we require appropriate perfor-
mance measures. In this subsection, we will introduce two of the most commonly
used and widely accepted ones, namely precision and accuracy. Furthermore, the
mean squared error (MSE), a measure incorporating both precision and accuracy,
will be introduced.

In what follows, represents an estimator of the K × 1 param-
eter vector � = (�1,…,�K)T.

4.3.2 PRECISION

The precision of an estimator concerns the spread of the estimates when the
experiment is repeated under the same conditions. It is represented by the variance
of the estimator or, equivalently, by the standard deviation of the estimator, which
is the square root of the variance. The variance is thus a measure of the nonsys-
tematic error. If the estimator is vector valued, it has a covariance matrix asso-
ciated with it, which is defined as

(4.41)
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The diagonal elements of represent the variances of the elements of
whereas the nondiagonal elements represent the covariances between the elements
of the estimator.

4.3.3 ACCURACY

The accuracy of an estimator can be described in terms of its bias. The bias of
an estimator is defined as the deviation of the expectation value of the parameter
(vector) from the true value:

(4.42)

Hence, the bias represents the systematic error. If the expectation of the esti-
mator equals the true value of the parameter, the estimator is said to be unbiased.
Otherwise, it is biased.

4.3.4 MSE

A potential measure of the quality of an estimator, taking account of both accuracy
and precision, is given by the MSE. The MSE of the kth element of the estima-
tor is defined as

(4.43)

Note that the MSE can also be written as the sum of the variance of the
estimator and its bias squared:

(4.44)

The MSE of the vector estimator is given by the scalar value:

(4.45)

(4.46)

4.3.5 CRLB

The same parameter can be estimated using different estimators. Generally, dif-
ferent estimators have different precisions. Then, one might ask what precision
might be achieved, or, in other words, is there a lower bound on the attainable
variance? The answer is that such a lower bound exists. It can be computed from
the joint PDF of the observations (i.e., data points) as follows [25].
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Suppose that the joint PDF of a set of observations is
determined by the parameter vector In addition, define the
matrix by

(4.47)

In this expression, is the K × K Hessian matrix of ln
px(x; �) defined by its (q, r)th element The matrix I is called
the Fisher information matrix. Next, let be any unbiased esti-
mator of the vector function that is, Then,
under a number of conditions that are not too restrictive, the Cramér–Rao
inequality states that [26]:

(4.48)

In this expression, ∂τ/∂θ is the L × K Jacobian matrix of the vector τ with
respect to θ, and is the L × L covariance matrix of the estimator
Therefore, the diagonal elements of are the variances of
respectively.

The inequality in Equation 4.48 expresses that the difference between
the positive semidefinite left-hand and right-hand members is positive
semidefinite. The right-hand member defines the minimum variance bound
or the CRLB on the covariance of any unbiased estimator of τ (θ ). A property
of positive semidefinite matrices is that their diagonal elements cannot be nega-
tive. Therefore, the diagonal elements of that is, the variances of
the elements of the estimator cannot be smaller than the corresponding ele-
ments of the CRLB. Consequently, the diagonal elements of the CRLB are a
lower bound on the variances of the elements of the estimator The CRLB thus
defines the highest attainable precision. Notice that if the
CRLB simplifies to I −1.

Finally, it is known that if there exists an unbiased estimator having the CRLB
as a covariance matrix, it is the ML estimator [25]. In the next subsection, the
ML estimator will be discussed.

4.3.6 ML ESTIMATION

Consider a set of N observations with joint PDF given by

(4.49)
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where Notice that for statistically independent observations, the
joint PDF is given by the product of the marginal PDFs of the observations:

(4.50)

with is the PDF of
To construct the ML estimator, we first substitute the available observations

x1,…, xN for the corresponding independent variables in Equation 4.38. Because
these observations are numbers, the resulting expression depends only on the ele-
ments of the parameter vector �. In a second step, we regard the fixed true param-
eters � as variables. The resulting function L(� | x1,…, xN) is called the likelihood
function of the sample. The ML estimate of the parameters � is defined as the
value of � that, within the admissible range of θ, maximizes the likelihood function
[27,28]:

(4.51)

The most important properties of the ML estimators are the following [25]:

Consistency: Under very general conditions, ML estimators are consistent,
i.e.,

(4.52)

with denoting the set of positive real numbers.
Asymptotic efficiency: Under not too restrictive conditions, the covariance

matrix of an ML estimator equals the CRLB asymptotically.
Asymptotic normality: If the number of data points increases, the proba-

bility density function of an ML estimator tends to a normal distribution.
Invariance property: If is the ML estimator of the K × 1 parameter

vector �, then is the ML estimator of the L × 1 vector �(�) =
(�1(�),…,�L(�))T of functions of �.

4.4 SIGNAL AMPLITUDE ESTIMATION

4.4.1 INTRODUCTION

In this section, the problem of signal amplitude estimation from MR data is
addressed. In particular, we focus on the estimation of the magnitude magneti-
zation values from data acquired during an MR imaging procedure.
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Raw MR data, directly obtained from an MR scanner, represent the FT of a
magnetization distribution of a volume at a certain point in time. Such data are
generally complex valued and corrupted by zero-mean Gaussian-distributed noise
[29]. An inverse FT, which yields the complex magnetization distribution of the
object under study, does not change the type of data PDF because of the linearity
and orthogonality of the FT. Hence, these data are corrupted by zero-mean Gaus-
sian-distributed noise as well. The complex data, however, are generally not
retained but transformed into magnitude and phase data. This is because the
amplitudes and phase values of the magnetizations are of greater interest than the
real and imaginary components of the complex data values. Transformation to a
magnitude or phase MR image, however, is nonlinear. As a consequence of this
transformation, the PDF of the data changes. As discussed in the preceding text,
magnitude data are then governed by a Rician PDF.

Nevertheless, conventional estimation techniques usually assume the data to be
Gaussian distributed. Whenever other PDFs come into play (such as a Rician dis-
tribution), one still tends to use parameter estimation techniques that are based on
Gaussian-distributed data [30–32]. The justification for this is that when the SNR is

In addition, Gaussian PDFs have attractive computational properties.
However, the Rician PDF deviates significantly from a Gaussian PDF when

the SNR is low, leading to significantly biased results. To reduce this bias,
parameter estimation methods were proposed that exploit the properties of the
Rician PDF [24,33–35]. Although these estimators reduce the bias, they are not
optimal. In this section, it is shown where the bias appears in the conventional
estimation. In addition, the ML estimator for Rician-distributed data is constructed
and its performance is compared that of conventional estimators [36].

Furthermore, consider a data-processing application (e.g., noise filtering) that
requires estimation of the underlying signal amplitude from a number of noise-
corrupted, complex-valued data points. Thereby, for each complex data point
belonging to the data set, the underlying signal amplitude is assumed to be the same.
This amplitude can be estimated either by first transforming the complex data points
into a set of magnitude data points and then estimating the signal amplitude from
the so-obtained data set, or by directly estimating the signal amplitude from the
original complex-valued data points. Indeed, both data sets contain the signal ampli-
tude to be estimated.

In general, if N complex points are available, the data set consists of 2N
observations (N real and N imaginary data points) and N + 2 unknowns (N true
phase values, 1 true signal amplitude, and the noise variance). On the other hand,
if the N complex data points are transformed into a set of N magnitude data
points, such a data set has only two unknown parameters (the true signal amplitude
and the noise variance). Hence, questions such as “Should we use the complex
data set or the magnitude data set when estimating the unknown signal ampli-
tude?” and “Does it matter whether or not the true phase values of the complex
data points, from which the signal amplitude is estimated, are the same?” may
arise. In this section, these questions are addressed. In order to simplify the
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high, the actual data PDF is very similar to a Gaussian PDF (cf. Subsection 4.2.1).
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discussion, we will elaborate on the estimation of the underlying signal amplitude
from a set of data points of which this signal amplitude is assumed to be the
same (i.e., a constant model). It is, however, clear that similar reasoning is valid
for any other underlying (parametric) model of the data points.

For both data sets (complex and magnitude), the ML estimators of the signal
amplitude will be derived. The use of the ML estimator is justified by the fact that
the ML estimator has a number of favorable statistical properties, as discussed in
Section 4.3.6 [25]. First, it is asymptotically precise, i.e., it achieves the so-called
CRLB for an infinite number of observations. The CRLB defines a lower bound
on the variance of any unbiased estimator of a parameter. Second, the ML estimator
is consistent, which means that it converges to the true parameter in a statistically
well-defined way if the number of observations (i.e., data points) increases. Third,
the ML estimator is asymptotically normally (i.e., Gaussian) distributed, with a
mean equal to the true value of the parameter(s) and a (co)variance (matrix) equal
to the CRLB. Whether these asymptotic properties also apply when the number of
observations is finite depends on the particular estimation problem under concern.
In the present case, this can be found out analytically (for complex data points) or
by means of simulations (for magnitude data points). It is known that if there exists
an estimator that attains the CRLB, it is given by the ML estimator [25]. For both
data sets, the performance of the corresponding ML estimators of the signal ampli-
tude will be evaluated in terms of the MSE, a measure of both accuracy (bias) and
precision (variance). Moreover, for both complex and magnitude data, the variance
of the ML estimator will be compared with the CRLB, which can be computed
analytically. In addition, for both types of data sets, the ML estimators of the
variance of the noise will be derived, after which their performance will be evaluated
in terms of both accuracy and precision [37].

4.4.2 SIGNAL AMPLITUDE ESTIMATION FROM COMPLEX DATA

We start by considering complex, Gaussian-distributed data. The CRLB for unbi-
ased estimation of the underlying amplitude signal as well as the ML estimator
of this signal will be derived. This will be done for data with identical underlying
phase values, as well as for data with different underlying phase values.

4.4.2.1 Region of Constant Amplitude and Phase

Consider a set of N independent, Gaussian-distributed, complex data points
with underlying true amplitude and phase values A and ϕ, respec-

tively. This means that Acosϕ and Asinϕ represent the true real and imaginary
values, respectively. As the real and imaginary data are independent, the joint
PDF of the complex data, is simply the product of the marginal PDFs of the
Gaussian-distributed real and imaginary data points:

(4.53)
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where σ denotes the standard deviation of the noise, and are the real
and imaginary variables corresponding with the complex data

4.4.2.1.1 CRLB
It follows from Subsection 4.3.5 that the CRLB for unbiased estimation of (A, ϕ)
can be computed from the Fisher information matrix I [25]:

(4.54)

with the joint PDF  given by Equation 4.42. Applying the inverse operator
yields for the CRLB:

(4.55)

4.4.2.1.2 ML Estimation
Following the procedure described in Subsection 4.3.6, the likelihood function L is
obtained by substituting the available observations  for  in
the joint PDF (4.53):

(4.56)

Then, the ML estimates of (A, ϕ) are found by maximizing this function with
respect to A and ϕ. Taking the logarithm yields:

(4.57)

At the maximum, the first derivative of ln L with respect to A and ϕ should
be zero:

, (4.58)
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Setting Equation 4.48 and Equation 4.59 to zero yields the ML estimators of
A and ϕ:

(4.60)

(4.61)

Notice that the estimator is obtained by taking the square root of the
quadratic sum of two Gaussian-distributed variables. Hence, is Rician dis-
tributed [18].

4.4.2.1.3 MSE
As is Rician distributed, we find for its MSE, which is the sum of the bias
(b) squared and the estimator’s variance (cf. Equation 4.44):

(4.62)

(4.63)

(4.64)

where the first moment of its PDF can be deduced from Equation 4.17:

(4.65)

4.4.2.2 Region of Constant Amplitude and Different Phases

Now assume that the complex data have an underlying signal
amplitude A and arbitrary phase values ϕ1,…,ϕN. Then, the joint PDF of the
complex data, is given by

(4.66)
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4.4.2.2.1 CRLB

The Fisher information matrix of the data with respect to the parameter vector 
(A, ϕ1, …, ϕN) is given by

 (4.67)

and the CRLB for unbiased estimation of (A, ϕ1,… , ϕN) is given by

(4.68)

4.4.2.2.2 ML Estimation
The likelihood function for N statistically independent, Gaussian-distributed com-
plex observations with underlying noiseless signal amplitude A
and arbitrary phase values ϕ1,… , ϕN is given by

(4.69)

Taking the logarithm yields

(4.70)

The first derivative of ln L with respect to A and ϕn are given by

(4.70)
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Setting these equations to zero yields the ML estimators of A and ϕn:

(4.72)

(4.73)

4.4.2.2.3 MSE
The ML estimator of the signal amplitude, given by Equation 4.73, is distributed
as the average of N independent, Rician-distributed variables. Therefore, its mean
value is simply given by the average of the mean values of the individual Rician-
distributed variables, whereas its variance is given by the sum of their variances
divided by N2. Hence, we have for the MSE:

(4.75)

(4.76)

where is now given by Equation 4.14 or equivalently:

(4.77)

Note that Equation 4.77 does not depend on N. Furthermore, Equation 4.77
is identical to Equation 4.65 if N = 1.

4.4.3 SIGNAL AMPLITUDE ESTIMATION FROM MAGNITUDE DATA

Though raw MR data are complex valued and Gaussian distributed, it is common
practice to transform them into magnitude MR data, because physiological and
anatomical information are more closely related to the magnitude of the magne-
tization vectors. However, as we have seen earlier, computing the magnitude
results in a change of the underlying data PDF, which has to be accounted for
when extracting quantitative information [38].

As earlier, we try to estimate the underlying, noiseless amplitude signal A
from a region of interest (ROI), where A is assumed to be constant. The ROI now
consists of N independent, Rician-distributed data points

Unlike that from complex data, estimation of the signal amplitude from
magnitude data requires either prior knowledge of the noise variance or simul-
taneous estimation of signal amplitude and noise variance:

• The noise variance may be estimated separately if a background region
is available, i.e., a region in which the underlying signal is zero (see
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which is often the case, many more data points are available for the
estimation of the noise variance than for the estimation of the signal
amplitude. Then, the noise variance can be estimated with much higher
precision. Hence, it might be a valid assumption to regard the noise
variance as known (i.e., to regard the estimated noise variance as the
true noise variance).

• If the noise variance cannot be estimated separately (with sufficient
precision), it acts as a nuisance parameter that needs to be estimated
simultaneously with the signal amplitude.

Both cases are discussed in the following subsections.

4.4.3.1 Region of Constant Amplitude and Known 
Noise Variance

4.4.3.1.1 CRLB
The Fisher information matrix of the data with respect to the parameter A is given by

(4.78)

with

(4.79)

and a Rician-distributed random variable with true parameters (A, σ) [5]. The
expectation value in Equation 4.79 can be evaluated numerically. Note that I is
in fact a scalar, from which the CRLB can easily be obtained by applying the
inverse operator:

(4.80)

4.4.3.1.2 Conventional Estimation
Usually, Equation 4.18 is exploited for the estimation of the underlying signal A.
Thereby, is estimated from a simple spatial average of the squared pixel
values of the ROI [35–39]:
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Subsection 4.5.3). Moreover, if large background areas are available,
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Note that this estimator is unbiased because If the
noise variance σ 2 is assumed to be known, an unbiased estimator of A2 is given by

(4.82)

Taking the square root of Equation 4.64 gives the conventional estimator of
A [39,40,34,35]:

(4.83)

4.4.3.1.3 Discussion
The parameter to be estimated is the signal A. Obviously, A is known a priori to
be real valued and nonnegative. However, this a priori knowledge has not been
incorporated into the conventional estimation procedure. Consequently, the con-
ventional estimator given in Equation 4.83, may reveal estimates that violate
the a priori knowledge and are therefore physically meaningless. This is the case
when becomes negative. Therefore, cannot be considered a useful estima-
tor of A if the probability that is negative differs from zero significantly. To
determine this probability, the PDF of is required. It can be derived from

(4.84)

where is given by the sum of N real and N imaginary, independent, squared,
Gaussian-distributed variables (as discussed in Subsection 4.2.4) i.e.,

(4.85)

The deterministic signal component of is given by From Equation 4.81

(4.86)

the PDF of becomes explicitly
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, and with (cf. Appendix)and Equation 4.82, we have that A y= /N − 2σ
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Because
of

      (4.88)

(4.89)

The expectation value of is thus defined by

(4.90)

In Figure 4.4, the probability that is negative, , is plotted as a
function of SNR for several values of N. From the figure one can conclude that

FIGURE 4.4 The probability Pr[ <0] as a function of the SNR for various N. (From
Sijbers, J., den Dekker, A.J., Scheunders, P., Van Dyck, D (1998). Maximum likelihood
estimation of Rician distribution parameters. IEEE Trans. Med. Imaging 17(3): 357–361.)
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x p (x) (cf. Appendix), it is now easy to derive the PDF
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for low SNR, cannot be a valid estimator of A unless a large number of data
points are used for the estimation. Therefore, in practice, will only be a useful
estimator if the SNR is high.

However, even if the condition of high SNR is met, the use of as an
estimator of A should still not be recommended, because the results obtained are
biased because of the square root operation in Equation 4.65. For high SNR, the
expectation value of

(4.91)

Equation 4.91 is valid for high SNR. The bias appears in the second term of
Equation 4.72. Note that it decreases with increasing SNR and increasing number
of data points N. Furthermore, as , the variance of can be easily
found from Equation 4.91. It is given by

(4.92)

(4.93)

Then, it follows that the MSE is given by

(4.94)

4.4.3.1.4 ML Estimation
In what follows, we will consider the ML estimator of A from a set N Rician-
distributed magnitude data points .

The joint PDF is given by

(4.95)

where are the magnitude variables corresponding to the magnitude obser-
vations . The ML estimate of A is constructed by substituting the available
observations in the expression for the joint PDF (Equation 4.75) and max-
imizing the resulting function L(A), or equivalently ln L(A), with respect to A.
Hence, it follows that

(4.96)
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is approximately given by (see Appendix)
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or as a function of only A

(4.97)

The ML estimate is then found from the global maximum of ln L:

(4.98)

Note that Equation 4.98 cannot be solved analytically. Finding the maximum
of the (log-)likelihood is therefore a numerical optimization problem.

4.4.3.1.5 Discussion
It is not possible to find the maximum of the ln L function directly because the
parameter A enters that function in a nonlinear way. Therefore, finding the max-
imum of the ln L function will, in general, be an iterative numerical process.

In order to get some insight into the properties of the ML estimator, the structure
of the ln L function is now studied. This structure is established by the number and
nature of the stationary points of the function. Stationary points are defined as points
where the gradient vanishes, i.e., where

(4.99)

Substituting Equation 4.97 into Equation 4.99, we obtain

(4.100)

Given that

(4.101)

or explicitly that the derivative of I0(z), with respect to z, equals I1(z), it follows that

(4.102)
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Hence, the condition for the stationary points becomes

(4.103)

It follows from Equation 4.103 that A = 0 is a stationary point of ln L, independent
of the particular data set. The nature of a stationary point is determined by the sign
of the second-order derivative of the function in that point. From this derivative, it
follows whether a stationary point is a minimum or a maximum and whether or not
it is degenerate. From Equation 4.97, the second-order derivative of the ln L function
can be computed to yield

(4.104)

From the knowledge that [20]

(4.105)

it is easy to verify that A = 0 is a minimum of ln L whenever

(4.106)

If this condition is met, the ln L function will have two further stationary points
being maxima. This can be seen by studying the possible structures of the ln L
function using catastrophe theory. Catastrophe theory is concerned with the struc-
tural change of a parametric function under influence of its parameters [41]. It
tells us that a structural change of the function is always preceded by a degeneracy
of one of its stationary points. In order to analyze such a structural change, the
parametric function can be replaced by a Taylor expansion of the essential variables
about the latter stationary point. The essential variables correspond to the directions
in which degeneracy may occur. According to the catastrophe theory, the global
structure of a parametric function, with only one essential variable, is completely
set by its Taylor expansion with terms up to the degree to which the coefficient
cannot vanish under the influence of its parameters. The function studied here is
ln L as a function of A. Its parameters are the observations. Thus, the structural
change of the ln L function under the influence of the observations has to be studied.
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112 Advanced Image Processing in Magnetic Resonance Imaging

The only essential variable is the signal parameter A. The stationary point that may
become degenerate is the point A = 0 (degeneracy occurs whenever Equation 4.104
becomes equal to zero). If the ln L function is Taylor expanded about the stationary
point A = 0, we yield

(4.107)

with

(4.108)

(4.109)

(4.110)

and the order symbol of Landau. Notice that because the ln L function is
symmetric about A = 0, the odd terms are absent in Equation 4.107. In order
to investigate if the expansion up to the quartic term in Equation 4.107 is
sufficient, it has to be determined whether the coefficients may change sign
under influence of the observations. It is clear from Equation 4.109 that the
coefficient b may change sign. The coefficient , however, will always be
negative, independent of the particular set of observations. This means that the
expansion (Equation 4.107) is sufficient to describe the possible structures of
the ln L function. Consequently, the study of the ln L as a function of the
observations can be replaced by a study of the following quartic Taylor poly-
nomial in the essential variable A:

(4.111)

where the term has been omitted because it does not influence the structure.
The polynomial in Equation 4.111 is always stationary at A = 0. This will be a
minimum, a degenerate maximum, or a maximum when is positive, equal to
zero, or negative, respectively. It follows directly from Equation 4.111 that ln L
has two additional stationary points (being maxima) if is positive, that is, if
Equation 4.106 is met. Note that the condition in (Equation 4.106) is always met
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for noise-free data. However, in practice, the data will be corrupted by noise, and
for particular realizations of the noise, the condition in Equation 4.106 may not
be met. Then A = 0 will be a maximum. Moreover, if the condition in
Equation 4.106 is not met, b in Equation 4.111 is negative and thus ln L is
convex, which means that A = 0 will be the only and, therefore, global maximum
of the ln L function. This implies that under the influence of noise, the two
maxima and one minimum will merge into one single maximum at A = 0. This
maximum then corresponds to the ML estimate. Note that because the condition
in Equation 4.106 is identical to (and therefore can be replaced by) the condi-
tion , the probability that the ML estimate is found at A = 0 is equal to
the probability that . This probability can be computed from the PDF given
in Equation 4.87.

It follows from these considerations that when the conventional estimator
becomes invalid, the ML estimator will still yield physically relevant results.

4.4.3.2 Region of Constant Amplitude and Unknown
Noise Variance

If the noise variance is unknown, the signal amplitude and the noise variance have
to be estimated simultaneously (i.e., the noise variance is a nuisance parameter).

4.4.3.2.1 CRLB
The Fisher information matrix of the data with respect to the parameters (A, σ 2)
is given by

(4.112)

After some calculations, it can be shown that

(4.113)

(4.114)

(4.115)

where I(i, j) denotes the (i, j)th element of the matrix I, and Z is given by
Equation 4.79. Finally, the CRLB for unbiased estimation of (A, σ 2) is obtained
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by simple inversion of the 2 × 2 matrix given in Equation 4.90:

(4.116)

4.4.3.2.2 Geometric Average
In subsection 4.4.3.1, it was shown that a simple modified root-mean-square
(RMS) estimator can be used to estimate the signal amplitude. However, this
estimator requires the knowledge of the noise variance. An estimator that does
not require this knowledge is given by the geometric average defined as [42]

(4.117)

4.4.3.2.3 Discussion
The bias of this estimator is given by

(4.118)

and the variance is given by

(4.119)

4.4.3.2.4 ML Estimation
If a background region is not available for noise variance estimation, the signal
A and variance σ 2 have to be estimated simultaneously from the N available data
points by maximizing the log-likelihood function with respect to A and σ 2:

(4.120)

where ln L is given by Equation 4.96. Although optimization of a two-dimensional
function is more difficult, computational requirements were observed to be limited
because the likelihood function was observed to yield only one maximum.

4.4.4 DISCUSSION

In this subsection, the CRLB for unbiased estimation of the signal amplitude and
the performance of the ML signal amplitude estimators, elaborated in previous
subsections, are discussed.
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4.4.4.1 CRLB

We will first discuss the expressions for the CRLB for unbiased estimation of
the signal amplitude from complex and magnitude data separately.

Complex data: Analytical expressions for the CRLBs for unbiased esti-
mation of from complex data with identical and different phase values
were derived in Subsection 4.4.2. They are given by Equation 4.55 and
Equation 4.68, respectively. Note that both CRLBs do not depend on
the phase values.

Magnitude data: In contrast to the CRLBs for complex data, no analytical
expressions for the CRLB for unbiased estimation of the signal ampli-
tude from magnitude MR data with known and unknown noise variance
can be derived. However, the lower bounds given by Equation 4.80
and Equation 4.116 in Subsection 4.4.3 can be evaluated numerically.
Thereby, the expectation values can be evaluated from Monte Carlo
simulations.

Note also that all lower bounds are inversely proportional to the number of
data points. Figure 4.5 shows the CRLBs as a function of the SNR, for unbiased
estimation of the signal amplitude from complex as well as from magnitude data

FIGURE 4.5 CRLB for unbiased estimation of A from complex and magnitude data, with
known and unknown noise variance. (From Sijbers, J., den Dekker, A.J. (2004). Maximum
likelihood estimation of signal amplitude and noise variance from MR data. Magn. Reson.
Med. 51(3): 586–594.)
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for known and for unknown noise variance. From the figure, one can see that the
following:

• For low SNR, the CRLB for unbiased estimation of A
• From complex data is significantly smaller than for estimation from

magnitude data.
• From magnitude data with known noise variance is significantly

larger than for estimation from magnitude data with unknown noise
variance (i.e., in which the noise variance is a nuisance parameter).

• Recall that knowledge of the noise variance is not required when
estimating the signal amplitude from complex data.

• For increasing SNR, the CRLBs for unbiased estimation from magni-
tude data tend to the CRLB for unbiased estimation from complex
data, in which the CRLB equals σ2/N. 

4.4.4.2 MSE

The bias, variance, and MSE of the ML estimators of A were computed, where the
number of data points was set to N = 25 and the true variance was set to σ 2 = 1. For
complex data with identical and different phase values, the bias, variance, and MSE
of were computed from Equation 4.64 and Equation 4.65, and Equation 4.76
and Equation 4.77, respectively. On the other hand, for magnitude data with known
and unknown noise variance, the bias, variance, and MSE of were obtained from
a Monte Carlo simulation experiment with a sample size of 105. Thereby, was
obtained by maximizing the log-likelihood function (Equation 4.96) with respect to
A and {A, σ 2} using Equation 4.98 and Equation 4.120, respectively.

The bias of
has been plotted as a function of the SNR. Both

figures show the results obtained for complex data with identical and different
phase values as well as for magnitude data with known and unknown noise
variance. From these figures, one can observe that in terms of the MSE:

• for complex data with identical phase values performs best, inde-
pendent of the SNR.

• for magnitude data with known noise variance is significantly
better compared with for magnitude data with unknown noise
variance and for complex data with different phase values.

Also, for increasing SNR, the performance difference in terms of the MSE
between the ML estimators of based on complex and magnitude data tend to
zero. As, in practice, the assumption of identical phases for complex data is
generally invalid, it may be concluded that the signal amplitude is preferentially
estimated from magnitude MR data for which the noise variance is known. The
latter requisite is not too restrictive as often, in practice, the noise variance can
be estimated with a much higher precision than the signal amplitude.
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A

DK2411_C004.fm  Page 116  Thursday, June 16, 2005  6:58 PM

© 2005 by Taylor & Francis Group, LLC

has been plotted as a function of the SNR in Figure 4.6. In
Figure 4.7, the MSE of
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FIGURE 4.6 Bias of the ML estimator of A for complex data with identical and different
phases and for magnitude data with unknown and known noise variance. (From Sijbers, J.,
den Dekker, A.J. (2004). Maximum likelihood estimation of signal amplitude and noise
variance from MR data. Magn. Reson. Med. 51(3): 586–594.)

FIGURE 4.7 MSE of the ML estimator of A for complex data with identical and different
phases and for magnitude data with unknown and known noise variance. (From Sijbers, J.,
den Dekker, A.J. (2004). Maximum likelihood estimation of signal amplitude and noise
variance from MR data. Magn. Reson. Med. 51(3): 586–594.)

0

−0.5

0 1 2 3 4 5

0.5

SNR (A/σ)

complex data, identical phases
complex data, different phases
magnitude data, unknown σ2

magnitude data, known σ2

1
Bias of ÂML (σ = 1, N = 25)

Bi
as

 o
f Â

M
L

0.1

00 1 2 3 4 5

0.7

0.9

0.8

0.6

0.5

0.4

0.3

0.2

SNR (A/σ)

complex data, identical phases
complex data, different phases
magnitude data, unknown σ2

magnitude data, known σ2

1
MSE of ÂML (σ = 1, N = 25)

BS
E 

of
 Â

M
L

DK2411_C004.fm  Page 117  Thursday, June 16, 2005  6:58 PM

© 2005 by Taylor & Francis Group, LLC



118 Advanced Image Processing in Magnetic Resonance Imaging

In addition, the dependence of both the bias and the variance of on the
number of data points has been investigated, yielding the following results:

• The bias of for complex data with identical phases as well as for
magnitude data with known and unknown noise variance generally
decreases with the number of data points used for the estimation. On
the other hand, it turns out that for complex data with different phases,
the bias of does not decrease with the number of data points.

• The variance, as may be expected, turns out to be inversely proportional
to the number of data points for all estimators.

4.4.5 SIGNAL AMPLITUDE ESTIMATION FROM PCMR DATA

From Subsection 4.2.2.4 we learned that PCMR data are derived from the square
root of the sum of the squares of a number of Gaussian-distributed variables,
which is again a nonlinear transformation. It has been shown that results are
biased when PCMR data are being used in quantitative analysis as an estimate
of the underlying flow-related signal component magnitude [22]. The bias is due
to the contributions from inherent random noise, which is not Gaussian distrib-
uted. Because the bias is not merely an additive component, it cannot be simply
subtracted out. To remove the bias, knowledge of the actual shape of the data
PDF becomes essential. In this section, the full knowledge of the PDF of the
PCMR data is exploited for optimal estimation of the underlying signal.

Although this section focuses on complex difference processed images, the
estimation techniques derived in this section can, under certain conditions, also
be applied to images obtained by phase difference processing. This is because for
both methods one has to estimate the underlying signal component from magnitude
images for which the pixel variable can be described by Equation 4.26. The
only difference is that for phase difference processing, the dimension, or number
of degrees of freedom K, directly equals the number of orthogonal Cartesian
directions in which flow is encoded, whereas for complex difference processing,
the dimension K is twice this physical dimension [22].

4.4.5.1 Region of Constant Amplitude and Known
Noise Variance

In the following discussion, it is assumed that an unknown deterministic signal
component A is to be estimated from N PCMR pixel values of a region Ω where
the signal component is assumed to be constant. Thereby, the noise variance is
assumed to be known.

4.4.5.1.1 CRLB
The Fisher information matrix of the data with respect to the parameter A is given by

(4.121)

MLÂ

MLÂ
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where is given by Equation 4.128. The expectation value in Equation 4.121
can be evaluated numerically. The CRLB can easily be obtained by applying the
inverse operator.

4.4.5.1.2 Mean Estimator
The most intuitive way of estimating the unknown signal component is through
a simple averaging of pixel values in the region Ω. Without a priori knowledge
of the proper data PDF, this action would be justified as it is the optimal (i.e.,
ML) estimation procedure if the data is corrupted by Gaussian-distributed noise.
This average or “mean estimator” is given by 

(4.122)

The variance of this mean estimator is given by

(4.123)

However, as PCMR data are not Gaussian distributed, it is clear that a huge
bias would be introduced if the signal is estimated by averaging pixel values. The
bias, relative to the true signal component A, is in general defined by

(4.124)

In the definition, the absolute value was taken as to make the relative bias
logarithmically plottable. For the mean estimator Equation 4.22, the expectation
value is given by , because the average operator is an unbiased esti-
mator of the expectation value. Hence, the relative bias of can be computed
from the expression for the moments of the generalized Rician PDF as given in
Equation 4.30 with v = 1. Note that it follows from Equation 4.30 and
Equation 4.124 that the relative bias can be written solely in terms of the SNR and

relative bias of as a function of the SNR for various values of K. From the
figure, it is clear that the bias increases rapidly with decreasing SNR. Also, the bias
increases with increasing number of flow-encoding directions.

4.4.5.1.3 Modified RMS Estimator
An easy way to reduce the bias is by exploiting the second moment of the
generalized Rician distribution, as was given in Equation 4.31. Indeed, an
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is independent of the number of averaged pixel values N. Figure 4.8 shows the
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unbiased estimator of A2 is given by

(4.125)

The PDF of can be computed to yield

(4.126)

From the unbiased estimator of A2, given in Equation 4.125, a modified RMS
estimator of A would be given by

(4.127)

However, root extraction is a nonlinear operation that makes the estimator
biased. Also, the modified RMS estimator is appropriate only when the

argument of the square root operator is nonnegative. A possible, at first sight

FIGURE 4.8 Relative bias of a simple spatial average estimator for K = 2, 4, and 6. The
relative bias is independent of the number of averaged pixels N.
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quite arbitrary, solution to this problem is to artificially put the estimator to
zero whenever is negative:

(4.128)

The PDF of is then given by

(4.129)

where denotes the Dirac delta function. Notice that the first term of Equation 4.129
vanishes for high SNR. The bias of the modified estimator Equation 4.128 can be
computed from

(4.130)

Figure 4.9 shows the bias for various values of K and N. In general, the bias
of the modified estimator is significantly smaller compared to the bias of the

FIGURE 4.9 Relative bias of the RMS estimator of A for K = 2, 4, and 6 and N = 4, 8,
and 16. The true value is A = 100.
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mean estimator. It should be noticed that the bias of the mean estimator turns out
to be positively valued, whereas the bias of the modified RMS estimator has a

because of the absolute value operator in Equation 4.124. For both estimators,
the bias increases with increasing number of flow-encoding directions. However,
in contrast to the mean estimator Equation 4.122, the bias of the modified esti-
mator Equation 4.128 decreases with increasing N.

4.4.5.1.4 ML Estimator
In this subsection, the ML approach is clarified for the estimation of the unknown
signal parameter A from a set of N independent magnitude PCMR data
points . The proposed technique consists of maximizing the like-
lihood function of N generalized Rician-distributed data points with respect to A.
The likelihood function of N independent magnitude data points {mn} is given by

(4.131)

where is given by Equation 4.28. Then the ML estimate A of the PCMR
signal is the global maximum of L, or equivalently the maximum of ln L, with
respect to A:

(4.132)

Leaving in only the terms that depend on the variable A, we have explicitly

(4.133)

It can be shown that ln L has only one maximum for positive values of A.
Hence, the computational requirements are very low. It can also be shown that
the ML estimator yields the value zero whenever , given by Equation 4.125,
is negative. This observation makes the modification of , as described by
Equation 4.128, less arbitrary.

4.4.5.2 Experiments and Discussion

It is already clear from Figure 4.8 and Figure 4.9 that the accuracy of the modified
RMS estimator, described earlier, is an order of magnitude better than that of
the mean estimator Equation 4.122, although a significant bias still remains. To
compare the modified RMS estimator with the ML estimator described in Sub-
section 4.4.5, a simulation experiment was set up. Thereby, K data points with
deterministic signal component ak were polluted with zero-mean Gaussian-
distributed noise with equal variance, after which a magnitude data point m was
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negative sign. That, however, cannot be observed from Figure 4.9 or Figure 4.8
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computed according to Equation 4.26. The same procedure was repeated N times
to obtain N generalized Rician-distributed magnitude data points. The determin-
istic signal component A of , given in Equation 4.27, was then estimated, once
using the modified RMS estimator and once using the ML estimator. The data
generation process and posterior signal estimation was repeated 105 times as a
function of the SNR, after which the average value and the 95% confidence
interval was computed. Figure 4.10 shows the signal estimation results for K =
6 and N = 8 as a function of the SNR. When the percentage for obtaining
negative values was larger than 5%, the modified RMS estimator was
regarded inappropriate. The SNR levels for this to occur were observed to be
smaller than 1.5. For this reason, the modified RMS estimator was compared to
the ML estimator only for SNR values higher than 1.5.

From Figure 4.10 it is clear that the ML estimator is slightly but significantly
more accurate than the modified RMS estimator. A similar behavior of the per-
formance of the estimators was observed for all combinations of K = 2, 4, and
6 and N = 4, 8, and 16. The results also show that the precision, i.e., the standard
deviation, of both estimators is approximately equal. It can also be seen that at
high SNR, the ML estimator cannot be distinguished from an unbiased estimator.

4.5 NOISE VARIANCE ESTIMATION

4.5.1 INTRODUCTION

Many image processing methods require the knowledge of the image noise
variance. In general, these methods assume the data to be Gaussian or Poisson

FIGURE 4.10 Comparison of the modified RMS estimator of A with the ML estimator
of A for K = 6 and N = 8. Each time, the average value of 105 signal estimates is given
along with the 95% confidence interval. The true value is A = 100. The expectation value
of the ML estimator of A according to Equation 4.130 has also been shown.
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distributed [43–48]. As magnitude MR data are Rician distributed, these images
require noise estimation methods that exploit this knowledge. In this subsection,
several methods will be discussed, which can be classified as follows:

Single-acquisition methods: In MRI, the image noise variance is commonly
estimated from a large uniform-signal region or nonsignal regions within
a single-magnitude MR image [19,39]. In this section, we consider ML
estimation of the noise variance from complex (Subsection 4.5.2) and
magnitude MR data (Subsection 4.5.3) from a region in which the
underlying signal amplitude is nonzero but constant, as well as from a
background region, i.e., a region in which the underlying signal ampli-
tude is zero[49].

Double-acquisition methods: Furthermore, methods were developed based
on two acquisitions of the same image: the so-called double-acquisition
methods [40,50,51]. At the end of Subsection 4.5.3.3, we will briefly
describe a robust method based on a double-acquisition scheme[1,24].

4.5.2 NOISE VARIANCE ESTIMATION FROM COMPLEX DATA

Suppose the noise variance σ 2 needs to be estimated from N complex-valued
observations . We will consider the case of identical underlying
phase values as well as the case of different underlying phase values.

4.5.2.1 Region of Constant Amplitude and Phase

Let us first consider a region with a constant, nonzero underlying signal amplitude
and identical underlying phase values.

4.5.2.1.1 CRLB
The Fisher information matrix of (A, ϕ, σ 2) is given by

(4.134)
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Hence, the CRLB for unbiased estimation of (A, ϕ, σ 2) is given by

(4.135)

4.5.2.1.2 ML Estimation
For identical true phase values, the ML estimator of σ 2 can be shown to be given by

(4.136)

with and given by Equation 4.60 and Equation 4.61, respectively.
Notice that for N = 1, the estimator will be equal to zero.

4.5.2.1.3 MSE
It can be shown that for large N the quantity is approximately distrib-
uted as (i.e., chi-square distributed with 2N − 2 degrees of freedom).
Because the mean and variance of a chi-squared variable with λ degrees of
freedom are given by λ and 2λ, respectively, we find for the bias and variance
of that

(4.137)

and

(4.138)

respectively. Then, the MSE of is given by

(4.139)

4.5.2.2 Region of Constant Amplitude and Different Phases

Next, consider a region with a constant nonzero underlying signal amplitude and
different underlying phase values.
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4.5.2.2.1 CRLB
It can easily be shown that the Fisher information matrix of the data with respect
to the parameters (A, ϕ1,…,ϕN, σ 2) is given by

(4.140)

and the CRLB for unbiased estimation of (A, ϕ1,… , ϕN, σ 2) is given by

(4.141)

4.5.2.2.2 ML Estimation
In case of different phase values, we have

(4.142)

with and given by Equation 4.73 and Equation 4.74, respectively.
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4.5.2.2.3 MSE
It can be shown that, for large , the quantity is approximately dis-
tributed as [52]. This means that

(4.143)

and

(4.144)

Hence, the MSE of is given by

(4.145)

4.5.2.3 Background Region

Next, consider the case in which the noise variance is estimated from a back-
ground region (i.e., a region where A is known to be zero).

4.5.2.3.1 CRLB
It can easily be shown that the CRLB for unbiased estimation of σ 2 is given by

(4.146)

independent of the underlying phase values.

4.5.2.3.2 ML Estimation
The ML estimator is given by

(4.147)

independent of the underlying phase values.

4.5.2.3.3 MSE
It can easily be shown that the ML estimator Equation 4.147 is unbiased and that
its variance equals the CRLB. Therefore, its MSE is simply given by

(4.148)
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4.5.3 NOISE VARIANCE ESTIMATION FROM MAGNITUDE DATA

We will now describe the ML estimation of noise variance (and standard deviation)
from magnitude MR data. First, we will consider ML estimation of the noise
variance from a so-called background region, that is, a region in which the under-
lying signal is zero. The CRLB for unbiased estimation of both noise variance
and standard deviation will be computed, and the ML estimators will be derived.
Next, we will consider the ML estimation of noise parameters from a so-called
constant region, that is, a region in which the (nonzero) signal amplitude is assumed
to be constant. In this case, the noise parameters have to be estimated simulta-
neously with the signal amplitude.

It will be assumed that the available data is governed by a generalized Rician
distribution. The methods described in the following subsections can also be
applied to conventional Rician-distributed magnitude MR data, which would be
the case when K = 2.

4.5.3.1 Background Region

Suppose that a set of N statistically independent magnitude data points
is available from a region where the true signal value A is zero for each data
point (background region). Hence, these data points are governed by a Rayleigh
distribution and their joint PDF is given by (cf. Equation 4.29)

(4.149)

where are the magnitude variables corresponding with the magnitude obser-
vations .

4.5.3.1.1 CRLB (Variance)
The Fisher information matrix I with respect to σ 2 is simply given by

(4.150)

from which the CRLB for unbiased estimation of σ 2 is easily found [6] as

(4.151)

4.5.3.1.2 CRLB (Standard Deviation)
From the knowledge of the CRLB for unbiased estimation of σ 2, the CRLB for
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where τ ≡ τ(σ 2) = σ, and I−1 is given by Equation 4.151 

(4.152)

(4.153)

4.5.3.1.3 ML Estimation
We will now describe the ML method for the estimation of the noise standard
deviation or the noise variance from background magnitude MR data. Thereby,
it will be assumed that the available data is governed by a generalized Rician
distribution. The methods described in the following text can also be applied to
conventional Rician-distributed data, which would be the case when K = 2.

The likelihood function is obtained by substituting the available background
data points {mn} for the variables in Equation 4.125. Then the log-likelihood
function, only as a function of σ 2, is given by:

(4.154)

Maximizing with respect to σ 2 yields the ML estimator of σ 2 as

(4.155)

It can be shown that Equation 4.155 is an unbiased estimator, that is, its mean
is equal to σ 2. Furthermore, the variance of the ML estimator Equation 4.155 is
equal to 2σ 4/NK, which equals the CRLB given by Equation 4.151 for all values
of N.

One might be interested in the value of the standard deviation σ, e.g., to
estimate the SNR A/σ. Simply taking the square root of the ML estimator of σ2

in Equation 4.155 yields an estimator of σ as

(4.156)

This estimator is identical to the ML estimator of σ because the square root
operation has a single-valued inverse (cf. Invariance property of ML estimators

(4.157)
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[53]). Its variance is approximately equal to
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which equals the CRLB (cf. Equation 4.153). The estimator (Equation 4.156) is,
however, biased because of the square root operation. Its expectation value is
approximately equal to

(4.158)

This means that it is possible to apply a bias correction. This, however, would
increase the variance of the estimator.

4.5.3.1.4 Conventional Estimation
Another commonly used estimator of σ can be found from the first moment of
the Rayleigh PDF. Because the mean value of the generalized Rayleigh PDF is
given by

(4.159)

an unbiased estimator of σ is easily seen to be

(4.160)

The variance of this estimator is given by

(4.161)

which is always larger than the CRLB. Next, we can compare both estimators of σ,
described in the preceding text by Equation 4.160 and Equation 4.156, in terms
of the MSE. The MSE ratio, defined as

(4.162)

and 6. For large N, the MSE of the common estimator (Equation 4.160) is
significantly larger than that of the ML estimator (Equation 4.156). The perfor-
mance of the conventional estimator, compared with the ML estimator, is not
good for conventional magnitude MR images where K = 2.
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is shown in Figure 4.11 as a function of the number of data points for K = 2, 4,
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4.5.3.2 Region of Constant Amplitude

Suppose that a set of magnitude data points is available from a region where
the true signal value A is the same for each data point. Then, the CRLB for
unbiased estimation of σ 2 from magnitude data of a constant region is given by
Equation 4.116, in which the elements are defined by Equation 4.113 to
Equation 4.115.

Furthermore, the value of σ 2 can be estimated using the ML method as
follows (cf. Equation 4.120):

(4.163)

Note that it requires the optimization of a two-dimensional function, which
cannot be solved analytically.

4.5.3.3 Double-Acquisition Method

Estimation of the noise variance from a single-magnitude image requires homo-
geneous regions in the image. However, large homogeneous regions are often
hard to find, and therefore only a small number of data points are available for
estimation. Also, background data points sometimes suffer from systematic inten-
sity variations. To overcome these disadvantages, methods were developed based

FIGURE 4.11 Performance comparison between the conventional and the ML estimator
of the noise standard deviation: MSE ratio as a function of the number of data points N
for K = 2, 4, and 6.
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on two acquisitions of the same image: the so-called double-acquisition methods.
Thereby, the noise variance is, for example, computed by subtracting two acqui-
sitions of the same object and calculating the standard deviation of the resulting
image pixels [40,50,51]. Alternatively, the image noise variance can be computed
from two magnitude MR images as follows.

When two conventional MR images (K = 2) are acquired under identical
imaging conditions, one can solve σ 2 from two equations and two unknowns
using the averaged (averaging is done in K-space) and single images because

(4.164)

(4.165)

where denotes the spatial average of the whole image. The subscripts s and a
refer to the single and averaged images, respectively. From Equation 4.165 and
Equation 4.164, an unbiased estimator of the noise variance is derived as

(4.166)

This approach has the following advantages:

• It does not require any user interaction, as no background pixels need
to be selected.

• It is insensitive to systematic errors such as ghosting, ringing, and
direct current (DC) artifacts as long as these appear in both images. It
is clear that if this type of error appears in only one of the two images,
none of the double-acquisition methods will yield the correct result.

• The precision of the noise variance estimator (Equation 4.140) is dras-
tically increased compared to the precision of the estimator given in
Equation 4.130, as all the data points (not only those from the back-
ground region) are involved in the estimation.

• It is valid for any SNR of the image.

An obvious disadvantage is the double acquisition itself. However, in MR acqui-
sition schemes, it is common practice to acquire two or more images for averaging.
Hence, those images may be used for the proposed noise estimation procedure,
without additional acquisition time. In addition, the images require proper geomet-
rical registration, i.e., no movement of the object during acquisition is allowed.
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4.5.4 DISCUSSION

4.5.4.1 CRLB

The CRLB for unbiased estimation of the noise variance from complex data with
identical and different phase values is given by Equation 4.135 and Equation 4.141,
respectively. In both cases, independent of the signal amplitude of the data points,
the CRLB is equal to σ 4/N.

Furthermore, the CRLB for unbiased estimation of the noise variance from
magnitude data has been computed for a background region as well as for a

• If the noise variance is estimated from N magnitude data points of a
background region, the CRLB is equal to σ 4/N (cf. Equation 4.151).
Then the CRLB is the same as that for estimation from N complex data
points of a background region. This might be surprising, as estimation
from N complex data points actually exploits 2N real-valued (N real
and N imaginary) observations, whereas estimation from N magnitude
data points only exploits N real-valued observations. However, this is
compensated by the fact that the Rayleigh PDF has a smaller standard
deviation.

• If the noise variance is estimated from N magnitude data points of a
constant region, the CRLB is given by Equation 4.116. It can be shown
numerically that for magnitude data this CRLB tends to 2σ 4/N when
the SNR increases, which is a factor 2 larger compared to estimation

Rician PDF tends to a Gaussian PDF for high SNR, with the same
variance as the PDF of the real or imaginary data. Hence for high SNR,
the difference in CRLB between magnitude and complex data can
simply be explained by the number of observations available for the
estimation of the noise variance.

4.5.4.2 MSE

For complex data from a region with constant amplitude with identical and
different phase values, expressions for the bias, variance, and MSE of the ML
estimator of σ2 were derived. The bias of is given by Equation 4.137
and Equation 4.143 for the two cases, respectively. From these expressions, it is
clear that:

• Both noise variance estimators are biased. Also, the bias of is inde-
pendent of the true signal amplitude.

• For identical phases, the bias of is inversely proportional to the
number of observations ( ). In contrast, the bias of for different
phases does not decrease with increasing N; for large , it converges
to σ 2/2.
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constant region. In Figure 4.14, the CRLB is shown as a function of the SNR.

from complex data (cf. Figure 4.12). This is not surprising because the
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 The variance of  for complex data from a region with constant amplitude
for identical and different phase values is given by Equation 4.138 and Equation 4.144,
respectively. Only for complex data with identical phases, the variance of
asymptotically attains the CRLB. This is because for estimation from complex
data with different phases the number of unknown parameters to be estimated
simultaneously with  is proportional to N.

The MSE of for complex data from a region with constant amplitude for
identical and different phase values is given by Equation 4.139 and Equation 4.145,

of
The MSE of

can be found numerically from Equation 4.163. The results for this estimator as
a function of the SNR are also shown in Figure 4.14.

Finally, the MSE of from background MR data is given by σ 4/N, for
magnitude and for complex data, and is independent of the phases. From this,
it is clear that the noise variance should be estimated from background data points
whenever possible. If a background region is not available, a similar reasoning
for the estimation of σ 2 as that for the estimation of A holds. That is, estimation
of σ 2 from complex data with identical phases is then preferred to estimation
from magnitude data, which, in turn, is preferred to estimation from complex
data with different phases.

FIGURE 4.12 CRLB for unbiased estimation of the noise variance for complex data and
magnitude background data (dotted line) and for magnitude data from a constant region,
that is, where A is estimated simultaneously (full line). (From Sijbers, J., den Dekker, A.J.
(2004). Maximum likelihood estimation of signal amplitude and noise variance from MR
data. Magn. Reson. Med. 51(3): 586–594.)
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respectively. Both are shown as a function of N in Figure 4.13. Moreover, the MSE
as a function of the SNR is shown in Figure 4.14.

for magnitude data from a region with constant amplitude
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FIGURE 4.13 MSE for unbiased estimation of the noise variance from a region of con-
stant amplitude for complex data with identical and different phases. (From Sijbers, J.,
den Dekker, A.J. (2004). Maximum likelihood estimation of signal amplitude and noise
variance from MR data. Magn. Reson. Med. 51(3): 586–594.)

FIGURE 4.14 MSE for unbiased estimation of the noise variance from a region of con-
stant amplitude for complex data with identical and different phases and for magnitude
data. (From Sijbers, J., den Dekker, A.J. (2004). Maximum likelihood estimation of signal
amplitude and noise variance from MR data. Magn. Reson. Med. 51(3): 586–594.)
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4.6 CONCLUSIONS

In this chapter, the problem of signal and noise estimation from MR data was
addressed. It was noted that original data coming from the scanner are complex
and Gaussian distributed. However, because of multiple digital-data-processing
steps, the PDF of the resulting data may change. In this chapter, most of the PDFs
one may be confronted with when processing MRI data were discussed along
with their moments and asymptotic behavior.

Furthermore, it was shown how to deal with various PDFs to optimally
estimate signal and noise parameters. Conventional and ML techniques to esti-
mate such parameters were compared. It was shown that methods based on ML
estimation outperform conventional estimators. The ML signal estimator yields
physically relevant solutions for the whole range of SNRs. Also, it was shown
that the ML estimator, unlike conventional signal estimators, cannot be distin-
guished from an unbiased estimator at high SNR.

Finally, the question was addressed as to whether complex or magnitude data
should be used to estimate signal or noise parameters from low SNR data when
using the ML method. In summary, the following conclusions can be drawn:

• The image noise variance should preferentially be estimated from back-
ground data (i.e., from a region of interest in which the true magnitude
values are zero). Thereby, it does not matter whether the noise variance
is estimated from magnitude or complex data.

• On the other hand, whether or not the signal amplitude should be
estimated from magnitude or complex data depends on the underlying
phase values:
• If the true phase values are known to be constant, the signal ampli-

tude should be estimated from complex-valued data.
• If the true phase values are unknown or if the true phase model

deviates from a constant model, it is generally better, with respect
to the MSE, to estimate the signal amplitude from magnitude data.

4.7 APPENDIX

4.7.1 TRANSFORMATIONS OF PDFS

In image processing, data are often transformed through various arithmetic manipu-
lations. Here, we describe how a PDF changes as a result of such a transformation [54].

4.7.1.1 Theorem

Suppose we wish to determine the PDF, , of , which is given by

(4.167)

p yy ( ) y

y g x= ( ),
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where is a known random variable of which the PDF is known. Then to
find , it suffices to solve the equation y = g(x). Indeed, if the real roots of
Equation 4.167 are denoted by such that

(4.168)

Then is given by

(4.169)

where g′(x) is the derivative of g(x).

4.7.1.2 Example

Let
As an example, suppose the PDF of is known. Then, the PDF of ,

given by

(4.170)

is

(4.171)

for y ≥ 0.

4.7.2 GENERAL THEOREM

Given a random vector

(4.172)

whose components are random variables and given k functions

(4.173)

we form a new set of random variables:

(4.174)

Assume k = n. To find the PDF py(y1,…,yn) of the random vector = (y1,…,yn)T

for a specific set of numbers y1,…,yn, we solve the system

(4.175)

x p xx ( )
p yy ( )

x xr1, , , ,… …

y g x g xr= = = =( ) ( ) ,1 � �

p yy ( )

p y
p x

g x

p x

g xy
x x n

r

( )
( )

( )

( )

( )
,=

| ′ |
+ +

| ′ |
+1

1

� �

y x=
p xx ( ) x y

y x= ,

p y yp yy x( ) ( ),= 2 2

x x xn
T= ,...,( ) ,1

ix

g gk1( ) ( ),x ,..., x

1 1y g y gk k= ,..., =( ) ( ).x x

y

g y g yn n1 1( ) ( ) ,x = ,..., =x
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If this system has no solutions, then . If it has a single solu-
tion , then

(4.176)

where

(4.177)

is the Jacobian of the transformation in Equation 4.175. If it has several solutions,
then we add the corresponding terms as in Equation 4.169.

4.7.3 APPROXIMATION OF THE MEAN OF A RANDOM VARIABLE

4.7.3.1 Theorem

The mean of a function of a random variable is given by

(4.178)

If is concentrated near its mean , the mean of can be approximated
by a Taylor expansion about :

(4.179)

Taking the expectation value of both sides yields

(4.180)

4.7.3.2 Example

As an example, consider the estimator of the signal amplitude given in Equation 4.65
as . To find the mean value of , an expansion about the mean
of the argument of the square root is employed. If we write ,
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then . Furthermore, from Equation 4.18 and Equation 4.20, we know
that . Hence, from Equation 4.180 we then have for high
SNR

(4.181)

(4.182)

ABBREVIATIONS

CRLB Cramér-Rao lower bound
DC direct current
FT Fourier transform
ML maximum likelihood
MRI magnetic resonance imaging
MSE mean squared error
PDF probability density function
RF radio frequent
SNR signal-to-noise ratio

SYMBOLS

A signal amplitude
Â estimate of the signal amplitude
Â estimator of the signal amplitude
b bias
c set of complex observations (stochastic variables)
C covariance matrix
δ(.) delta Dirac function
ε(.) unit step Heaviside function
E[.] expectation operator

1F1(.) confluent hypergeometric function of the first kind
Γ(.) gamma function
I0(.) zeroth-order modified Bessel function of the first kind
I1(.) first-order modified Bessel function of the first kind
I Fisher information matrix
K number of parameters
L(.) likelihood function
m magnitude observation (number)
m magnitude observation (stochastic variable)
… magnitude variable corresponding to the observation m
µ mean value of the Gaussian distribution
N number of observations

E[ ]y A= 2

Var( ) ( )y A N= + /4 2 2 2σ σ

E[ ] ( )
cA A A

N
A� � + −
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1
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p(.) probability density function
ϕ phase value

estimator of the phase
φ phase variable corresponding to ϕ
σ noise standard deviation
σ2 noise variance

estimate of the noise variance
estimator of the noise variance

θθθθ parameter vector
estimate of θθθθ
estimator of θθθθ

τ vector function of θθθθ
estimator of ττττ

ωi,n imaginary variable corresponding to the observation ωi,n

ωi,n imaginary observation (number)
ωi,n imaginary observation (stochastic variable)
ωr,n real variable corresponding to the observation ωr,n

ωr,n real observation (number)
ωr,n real observation (stochastic variable)
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5.1 INTRODUCTION

 

Image intensity inhomogeneity, also called intensity nonuniformity (INU), in
magnetic resonance imaging (MRI) is an adverse effect that affects qualitative
and quantitative analysis of the images. The inhomogeneities are characterized
by slowly varying intensity values of the same tissue over the image domain. The
variability of the tissue intensity values with respect to image location can severely
affect visual evaluation as well as the result of image processing algorithms based
on absolute intensity values. The effect of the intensity inhomogeneities on the
subsequent segmentation has been observed and discussed already in early appli-

issue in quantitative morphometry, which is either based on volumetric measure-
ments from segmentation or residual image differences after registration. There are
numerous sources for the emergence of MRI intensity inhomogeneity. Some of
them can be overcome by regular calibration, whereas many of them are different
from scan to scan, for example, when inhomogeneities are due to geometry and
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electrical properties of the subject. Here is a list of the most common sources of
MRI intensity inhomogeneity:

1. Static magnetic field 

 

B

 

0

 

 inhomogeneities are created by the technical
difficulties to create a perfectly uniform field, as well as by ferromag-
netic objects in the imaged object. This leads to both intensity inhomo-
geneities as well as spatial distortions.

 

 B

 

0

 

 inhomogeneities can be

 

FIGURE 5.1

 

(a) Top row: Severe intensity distortions in breast MR mammography (from
data provided by M. Brady, University of Oxford) are due to the RF surface coil and
strongly hamper visual assessment. The corrected image (right) can clearly be better
assessed. (b) Bottom row: The correction of subtle intensity distortions is visualized on a
head MR slice from a multiple sclerosis patient (from data provided by the BIOMORPH
consortium [EU BIOMED 2]). The original image and the corrected image shown in the
first column are visually similar. An optimal threshold-based segmentation of the gray
matter (second column) is greatly improved after correction. The clear inhomogeneity of
the intensity values along a reference line that lies fully within the same tissue type (white
matter) has also been removed by the correction (third column). The reference line is
indicated as a yellow line in the corrected MR image.

original MR image

(a)

original MR image

x

390
400
410
420
430
440
Intensity before correction

corrected MR image

x

365
370
375
380
385
390
395
400
Intensity after correction

(b)

corrected MR image
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corrected prospectively using phantoms with known reference intensities
and reference points. Retrospectively, intensity inhomogeneities can be
corrected with the methods presented in this chapter. It is, though, very
difficult if not impossible to correct the spatial distortions retrospectively.

2. Imperfections in the gradient coils and abnormal currents through the
gradient coils often lead to effects similar to those created by 

 

B

 

0

 

inhomogeneities and thus need to be corrected similarly.
3. Radio frequency (RF) coil-related effects are caused by coil imperfec-

tions, by nonuniform sensitivity of the coil (e.g., in surface coils) or by
ferromagnetic objects in the imaged object (e.g., amalgam dental fillings,
orthopedic implants). The main effect is a variation of the intensity values
across the MR image. This type of inhomogeneity is often scan-specific
and cannot be corrected prospectively using phantoms, but rather needs
to be corrected retrospectively.

4. Poor RF penetration due to absorption of the RF signal leads to darker
inner regions of the imaged objects compared to the outer regions. This
effect can only be corrected retrospectively.

5. Minor intensity inhomogeneities of the same tissue might also be a
true observation of the subject’s anatomy. In general, none of the human
organs or tissue types are fully homogeneous. Retrospective corrections
of these subject-specific inhomogeneities can be beneficial and desired
in order to enhance homogeneity within the tissue. On the other hand,
the separation of inhomogeneity effects from true tissue contrast can
be difficult at the border of two tissues and can lead to a subsequent
incorrect segmentation[6].

6. Any of the sources listed in the preceding text can cause slowly varying
intra- and interslice intensity inhomogeneities. Especially early magnetic
resonance (MR) acquisition protocols, but also contemporary
MR–angiography (MRA) sequences, often produce additional interslice
intensity inhomogeneities that do not vary slowly, but rather in step-like
fashion (“venetian blind artifact”). It is noteworthy that only a small set
of “modern” methods can deal with this artifact (e.g., [7–10]).

7. Intensity variations in images of the same subject taken at different
time points, as well as variations in images of different subjects, can
be regarded as a special case of intensity inhomogeneity. Some of the
methods presented in this chapter can correct both intrasubject as well
as intersubject intensity inhomogeneity between images.

Severe intensity distortions due mainly to RF coil effects can lead to misleading

visible are commonly less relevant for visual interpretation, but can still severely
corrupt segmentation and registration methods (see Figure 5.1b). The task of
retrospectively correcting both severe and subtle intensity inhomogeneities in
MR scans has been extensively researched and discussed in the medical imaging
research over the past 15 yr. This chapter gives an overview of the most
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important correction methods. In the next sections, we first discuss early
attempts of retrospective correction, and then we present the two main classes
of methods routinely used nowadays in many image processing studies.

 

5.2 EARLY SOLUTIONS

 

Starting in the mid-1980s, MRI researchers began to develop methods for the
correction of intensity inhomogeneity. The need for correction was most imminent
in images acquired using surface coil images with strong inhomogeneity caused
by the falloff of coil sensitivity with distance from the coil center. In 1986,

smoothing in order to reduce the inhomogeneity. They proposed that each MR
slice is divided by its spatially smoothed copy. This reduces the low-frequency
inhomogeneity effects of the surface coil. In order to correct for step-like interslice
intensity inhomogeneities, they linearly normalized each slice to have the same
average intensity values for a selected set of manually identified tissue classes
visible in all slices. Smoothing was also proposed by Lim and Pfefferbaum [4]
in 1989 to correct for inhomogeneities in brain MRI scans. After the manual
extraction of the head, the intensity values were extended radially toward the
image boundaries and smoothed with a Gaussian filter of large kernel size. They
assumed that the resulting blurred image represents one homogeneous region that
is only distorted by the scanner inhomogeneities. The images were corrected with
this approximation of the inhomogeneity characteristics.

Many more researchers proposed different methods using smoothing filters
or homomorphic unsharp masking (e.g., [12]). These early filtering methods
undesirably reduce the contrast between tissues, and they often generate new
artifacts in the corrected images. Homomorphic filtering also falls into the same
class of correction methods [13,14]. Like smoothing methods, homomorphic
filtering assumes a separation of the low-frequency inhomogeneity field from the
higher frequencies of the image structures. The assumption is often valid in
microscope images of small particles but often fails for the structured MR images.
A scene, such as a head structure, contains a considerable amount of low-
frequency components. Homomorphic filtering assumes further that the local
intensity statistics are constant across the whole image. This assumption is not
true for most of the inhomogeneity effects observed in MR.

In 1988, Vannier et al. [2] were one of the first to model the intensity inhomo-
geneity as a parametric inhomogeneity field. They used a simple linear ramp in the
transverse anatomic plane as the parametric field model. This model was fitted to
the linewise average intensity values of the image. Later the same year, they
proposed an improved model that fitted a fourth-order polynomial to the line-by-
line histogram [15]. In both approaches, only vertical distortions were taken into
account. The fitted inhomogeneity field was then subtracted from the original image.

Several researchers proposed the estimation of the correction from a prior
segmentation. Dawant et al. [8] proposed that users select typical samples of each
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tissue class in the MR image as an input to the estimation of the parametric
inhomogeneity field. Tincher et al. [16] and Meyer et al. [17] present automatic
techniques that fit polynomial functions to presegmented regional patches in the
image. The individual fits are then combined to find an estimate for a global
inhomogeneity field.

Some of the early methods assumed an additive inhomogeneity effect (e.g.,
[15]) whereas other methods proposed a multiplicative inhomogeneity effect (e.g.,
[11,16]). Nowadays, researchers agree that inhomogeneity effects in MRI are
better modeled as a multiplicative effect. While a smooth multiplicative inhomo-
geneity effect is consistent with most characteristics of the underlying acquisition
principles, it is noteworthy that minor sources of intensity inhomogeneity cannot
be fully incorporated by this model [18]. Additive inhomogeneity effects are
rarely observed in MRI, but can be seen in images acquired with other imaging
means, such as confocal microscopy.

 

5.3 COMBINED SEGMENTATION AND 
INHOMOGENEITY CORRECTION METHODS

 

Whereas inhomogeneity correction methods are often needed to obtain good
segmentations, the early approaches of Dawant, Tincher, and Meyer indicate
that a good segmentation in turn facilitates inhomogeneity estimation. Observ-
ing this dependency between segmentation and inhomogeneity correction, the
idea emerged to solve both problems simultaneously using an iterative approach
in which increasingly accurate inhomogeneity corrections yield increasingly
accurate segmentations and vice versa. Although other techniques exist [19,20],
a landmark paper in this respect was published by Wells et al. [7], described
in the following text.

Assuming a multiplicative inhomogeneity field model, Wells et al. logarithmi-
cally transformed the MR intensity data in order to make the inhomogeneity an
additive artifact. Let 

 

y

 

i

 

 

 

= 

 

ln (

 

z

 

i

 

) denote the log-transformed intensity at voxel 

 

i

 

,where

 

z

 

i

 

 is the voxel’s measured MRI signal intensity.* Assuming that there are 

 

K

 

different tissue types present in the image, and that the log-transformed intensity
distribution of each of these tissues can be modeled by a normal distribution after
taking the inhomogeneity field model into account, we have

(5.1)

where 

 

l

 

i

 

 

 

∈

 

 {1, 2,

 

…

 

, 

 

K

 

} and 

 

β

 

i

 

 denote the tissue type and the inhomogeneity field
at the 

 

i

 

th voxel, respectively, 

 

µ

 

k

 

 denotes the mean intensity of tissue type 

 

k

 

,

 

* For the sake of simplicity, only a single intensity value per voxel is assumed, although the technique
readily applies to multispectral MRI data.
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denotes the variance around that mean for tissue 

 

k

 

, and

is a zero-mean Gaussian distribution with variance 

 

σ

 

2

 

. It is further assumed that
the prior (before the image data is seen) probability for a certain tissue type 

 

k

 

 in
the 

 

i

 

th voxel is identical for all voxels

(5.2)

where is assumed to be known a priori. Finally, knowledge about the spatial
smoothness of MR inhomogeneities is incorporated by modeling the entire inho-
mogeneity field, denoted as where 

 

N

 

 is the number of voxels
in the image, by a 

 

N

 

-dimensional zero-mean Gaussian prior probability density

(5.3)

where

Using Bayes’ rule, the posterior probability of the inhomogeneity field in a
given log-transformed intensity image is given by the distri-
bution

(5.4)

where 
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) depends on the parameter 
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 through Equation 5.3, and where

with

(5.5)

depends on the parameters 
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k

 

, 

 

σ

 

k

 

, and 

 

π

 

k

 

 through Equation 5.1 and Equation 5.2.
Before Equation 5.4 can be used to assess the inhomogeneity field, appropriate
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values must be chosen for each of these parameters. Wells et al. determined the
tissue-specific means 

 

µ

 

k

 

 and variances  by manually selecting representative
voxels of each of the tissue types considered in a prototypical image and calcu-
lating sample means and variances. Once this training phase was performed, the
same model parameters were used to analyze thousands of images acquired with
the same MRI acquisition protocol. For the prior probabilities 

 

π

 

k

 

, both uniform
and nonuniform distributions were used. The exact choice of the 

 

N

 

 

 

×

 

 

 

N

 

 covariance
matrix 

 

Σ

 

β

 

 is a difficult issue and will be discussed later.
Having obtained the posterior probability on the inhomogeneity field, Wells

et al. used the maximum a posteriori (MAP) principle to formulate an estimate
of the inhomogeneity field as the value of 

 

β

 

 having the largest posterior probability

which is equivalent to

By requiring the gradient of with respect to 

 

β

 

i

 

 to be zero for all
voxels, Wells et al. derived the following equations for the inhomogeneity field
estimation:

(5.6)

with
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(5.7)
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estimate of the inhomogeneity field, a statistical classification of the image

  

ik

 

(Figure 5.2b). From this classification and the Gaussian distribution parame-
ters, a prediction of the MR intensities without the inhomogeneity field is
reconstructed (Figure 5.2c). A residue image 

 

r

 

 is obtained by subtracting this
predicted signal from the original image, giving a local estimate of the inho-
mogeneity field in each voxel (Figure 5.2d), along with a weight image 

 

w

 

 that
reflects confidence of these local estimates (Figure 5.2e). Finally, the inhomo-
geneity field 

 

β

 

 is estimated by applying the linear operator 

 

H

 

, which, as will
be shown below, results in smoothing the residue image 

 

r

 

 while taking the
weights 

 

w

 

 into account (Figure 5.2f ).
Recall that the exact choice of the covariance matrix 

 

Σ

 

β

 

, governing the prior
distribution of the inhomogeneity field, has not been specified so far. In general,
this matrix is impracticably large, making the evaluation of Equation 5.6 com-
putationally intractable. In the case of equal covariances  for all tissue types,
the confidence weights 

 

w

 

i

 

 are constant across the image, and Wells et al. showed
that 

 

Σ

 

β

 

 can be chosen so that the linear operator in Equation 5.6 simplifies to
a shift-invariant linear low-pass filter. In general, however, this is not the case,
and the authors heuristically use a computationally efficient approximation by
low-pass-filtering the voxelwise product of the weights and the residues, and
dividing the result by the low-pass-filtered version of the weights:

with 

 

F

 

 a low-pass filter.
It should be noted that the inhomogeneity field estimation involves knowledge

of the tissue classification (Equation 5.6), but that this tissue classification in turn
requires knowledge of the inhomogeneity field (Equation 5.7). Intuitively, both
equations can be solved simultaneously by iteratively alternating between these two
steps. Indeed, it can be shown that such an iterative approach is an instance of the
so-called expectation-maximization (EM) algorithm [21], often used in estimation
problems where some of the data is “missing.” In this case, the missing data is the
tissue type of each voxel; if these were known, estimation of the inhomogeneity
field would be straightforward. In effect, the algorithm of Wells et al. iteratively
fills in the missing tissue types based on the current inhomogeneity field estima-
tion during the E step (Equation 5.7) and updates the inhomogeneity field accord-

guarantees increasingly better estimates of the inhomogeneity field with respect
to Equation 5.4 at each iteration [22], although there is no guarantee of finding the
global optimum. The iterative EM process is typically started on the E step, using
a flat initial inhomogeneity field, although Wells et al. also reported results by
starting on the M step using equal tissue-class probabilities. The authors reported
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These equations can be interpreted as follows (see Figure 5.2). Given an

voxels is performed by calculating the posterior tissue-class probabilities p

ingly during the M step (Equation 5.6); cf. Figure 5.3. Such an EM scheme
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FIGURE 5.2

 

Illustration of the inhomogeneity field estimation component of the algo-
rithm of Wells et al. [7]: (a) original image, (b) intermediate classification, (c) reconstructed
image, (d) residue image, (e) weights, and (f ) estimated inhomogeneity field. Although
the calculations are performed on logarithmically transformed intensities, the reconstructed
image, the residue image, and the inhomogeneity field are displayed in the original intensity
domain for visualization purposes.

(a)

(b)

(c)

(e)

(d)

(f)
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that the estimates typically stabilize in five to ten iterations, after which the
algorithm is stopped. Upon convergence, an inhomogeneity field corrected image
can be obtained by subtracting the estimated inhomogeneity field from the log-
transformed intensities 

 

y

 

 and transforming the result back into the original MR
intensity domain using the exponential transformation. 

Although Wells et al. showed excellent results on MR images of the brain,
a number of shortcomings were quickly identified, spawning a considerable
amount of papers aiming at improving upon the original method. One line of
research has concentrated on improving the segmentation results produced by the
algorithm, in particular, by employing so-called Markov random field (MRF)
models to minimize the effects of noise in the resulting segmentations [23–29].
While a detailed treatise of these methods is outside the scope of this text, suffice
it here to say that they encourage neighboring voxels to be classified to the same
tissue type, at the expense of making the E step computationally intractable,
necessitating approximative solutions. Another area of improvement upon the
original Wells algorithm involves the manual selection of a number of represen-
tative points for each of the tissues considered in order to estimate appropriate
values of the Gaussian distribution parameters 

 

µ

 

k

 

 and Although it is straight-
forward to estimate these parameters for large well-defined regions such as white
and gray matter in brain MRI, other regions consist of several different types of
tissue, some of which are easily overlooked during training. Guillemaud and

 

FIGURE 5.3

 

In the EM approach of Wells et al., inhomogeneity field estimation is
repeatedly interleaved with tissue classification, yielding improved results at each iteration.

update inhomogeneity

classify

σ k
2.
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Brady [30] noted that tissue types for which the algorithm was not properly
trained cause severe errors in the residue image and, therefore, corrupt the inho-
mogeneity field estimation. They proposed to account for this by replacing the
collection of Gaussian distribution models for such “difficult” tissue types by one
single “other” probability distribution that is uniform over the set of intensities
of voxels in the image. In particular, Equation 5.5 is replaced by

(5.8)

where 

 

λ

 

 is a small constant and 

 

p

 

(

 

li = other) is the a priori probability for tissue
type “other.” This new class can be seen as a rejection class, gathering all the pixels
with intensities far from the Gaussian distributions of well-defined tissue classes
for which the model parameters can be easily estimated during the manual training
phase. Deriving the EM equations for this new model yields an iterative algorithm
that is identical to the original Wells algorithm, except that the inhomogeneity field
is only estimated with respect to the Gaussian classes: voxels classified to the
uniform rejection class have zero weight wi in the inhomogeneity field estimation.
In other words, the inhomogeneity field is estimated from regions with Gaussian
tissue types and diffused through to regions of class “other.”

While the approach of Guillemaud and Brady reduces the risk of mistraining
the classifier by concentrating on a small number of tissue classes that are well-
defined, it does not address the inherent limitations associated with such a manual
training phase. Indeed, the selection of appropriate training samples is somewhat
subjective, precluding full reproducibility of the results. Furthermore, the cum-
bersome process of training the classifier needs to be repeated for each new set
of similar scans to be processed. To solve these issues, Van Leemput et al. [9]
proposed to have the classifier automatically train itself on each individual scan.
Rather than assuming that the Gaussian distribution parameters are known in
advance, as Wells et al. do, they formulated the inhomogeneity field estimation
problem as a joint inhomogeneity field and Gaussian distribution parameter
estimation problem. In their approach, the smoothness of MR inhomogeneity
fields is incorporated by explicitly modeling the inhomogeneity field as a linear
combination of P smooth basis functions where xi denotes
the spatial position of the th voxel*

where are the (unknown) inhomogeneity field coefficients. Let-
ting denote the total set of parameters

* Van Leemput et al. used polynomial basis functions, but the theory is valid for any kind of smooth
basis functions such as splines.
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in the model, Van Leemput et al. aimed at finding the MAP model parameters

In the absence of prior knowledge about the parameters Φ, a uniform prior
distribution p(Φ)was assumed, reducing the MAP principle to a maximum-
likelihood (ML) approach

Using a zero-gradient condition on the logarithm of p(y | Φ), Van Leemput
et al. derived an EM algorithm that iteratively repeats three consecutive steps.
In the E step, the image voxels are classified based on the current inhomogeneity
field and Gaussian distribution estimates, using Equation 5.7. The M step
involves two separate steps, in which first the inhomogeneity field is updated
according to the current classification and Gaussian distribution parameters,
followed by an update of the Gaussian distributions. The inhomogeneity field
estimation is given by

where the weight matrix W and the residue image r are the same as in the Wells
algorithm. In other words, the inhomogeneity field is estimated as a weighed

(Figure 5.2e).* The Gaussian distribution parameters are updated according to

and

* Note that by modeling the inhomogeneity field as a linear combination of smooth basis functions,
rather than by the Gaussian prior proposed by Wells et al., no approximations are required to compute
the inhomogeneity estimation.
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least-squares fit to the residue r (Figure 5.2d), using the confidence weights w
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which simply states that the updated mean and variance estimations for class are
given by the sample mean and sample variance of the inhomogeneity-corrected
intensities of voxels classified as tissue type k.

To summarize, the algorithm of Van Leemput et al. iteratively alternates
between tissue classification, inhomogeneity field estimation, and retraining of the
classifier (see Figure 5.4). The iterative scheme is initialized by setting the inho-
mogeneity field coefficients to zero (no inhomogeneity) and providing a first rough
estimate of the tissue-class probabilities pik, allowing start of the iterative EM
scheme with the Gaussian distribution parameter estimation step. The initial class
probability estimates are given by prealigning the image under study with a so-
called atlas that contains information about the expected location of the tissue types
of interest in a normal population. The alignment is performed fully automatically
by maximizing the mutual information [31,32] between the image under study and
an anatomical template associated with the atlas, which works irrespective of the
tissue characteristics in the images. Because the classifier is additionally trained
automatically, images acquired with a previously unseen MR sequence can readily
be analyzed without requiring user intervention. Van Leemput et al. originally
applied their method to brain MRI,* but Lorenzo-Valdés et al. recently extended
the technique to analyze 4-D cardiac MR images [33]. A similar algorithm for brain
MRI was developed independently by Ashburner et al.** working on the original
MR intensities rather than on log-transformed intensities, and using a linear

FIGURE 5.4 Rather than using a manually trained classifier, as Wells et al., do, Van
Leemput et al., automatically train the classifier during the iterative EM procedure. The
resulting three-step algorithm adapts to each individual scan to be analyzed, allowing to
process images obtained with a variety of acquisition protocols without user intervention.

* The software of Van Leemput et al. is freely available under the name EMS (expectation-maximization

classify

update inhomogeneity

update Gaussian distributions

k
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segmentation) at http://www.medicalimagecomputing.com/EMS
** Freely available as part of the SPM99 package at http://www.fil.ion.ucl.ac.uk/spm/spm99.html.

http://www.medicalimagecomputing.com
http://www.fil.ion.ucl.ac.uk
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combination of low-frequency discrete cosine transformation (DCT) basis functions
as the inhomogeneity field model [34].

In parallel with EM-based approaches, a number of methods based on exten-
sions of the K-means algorithm [35,36] were developed that also iteratively
alternate between segmentation and inhomogeneity field correction. In order to
explain the original K-means algorithm, let us ignore the inhomogeneity field
artifact for now, and model MR images as consisting of K tissue types, each
governed by a Gaussian intensity distribution with mean µk and a variance that
is assumed equal for all tissue types. Both the tissue labels and
the tissue means can be estimated simultaneously from an
image y using the MAP principle

Assuming a uniform prior for the tissue means and for the configuration of the
tissue labels in the image, this is equivalent to minimizing the objective function

(5.9)

where

Equation 5.9 can be optimized by iteratively performing a crisp classification
that assigns each voxel exclusively to the tissue type that best explains its intensity

(5.10)

and updating the tissue means accordingly

(5.11)

A well-known generalization of the K-means algorithm is the fuzzy C-means
algorithm [37,38], which aims at minimizing*

(5.12)

* Unequal tissue-specific covariances can also be taken into account.
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For m = 1, the fuzzy C-means algorithm devolves to the K-means algorithm.
For m > 1, the fuzzy C-means algorithm alternates between a fuzzy segmentation

(5.13)

and an update of the tissue means

(5.14)

Whereas the classification step in the K-means algorithm uniquely assigns
each voxel to one single tissue type, the fuzzy C-means algorithm calculates for
each voxel fuzzy membership values in each of the tissue types. The parameter
m is a weighting exponent that regulates how fuzzy those membership values
are; typically, m = 2 is used.

In [39], Pappas extended the K-means algorithm to account for local intensity
variations by letting the tissue means gradually vary over the image area.* Rather
than using one single mean intensity µk for every tissue type throughout the image,
a different mean is used in every voxel i, which is calculated by performing
the averaging operation in Equations 5.11 over a sliding window rather than over
the whole image area:

with Wi, a window centered at voxel i. This approach, and variations upon it, was
applied to MR images of the brain by a number of authors [40 –44]. Variations
include describing the spatially varying mean intensities by B-splines [41], using
the fuzzy C-means algorithm instead of the K-means algorithm [42], calculating
spatially varying tissue covariances as well [43], and replacing the crisp tissue
classification by a partial volume estimation [44]. One notable aspect of these
approaches is that the mean intensities of the tissue types are allowed to vary
independently of one another, i.e., no continuity of the inhomogeneity field over
the tissue boundaries is assumed. As a result, in places where the number of
voxels assigned to class k is small, the mean µk cannot be reliably estimated, and
appropriate precautions must be taken.

* Pappas also took an MRF model into account, but that is outside the scope of this text.
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More recently, a number of authors have also used a single inhomogeneity field
model that is continuous over tissue boundaries within the K-means/fuzzy C-means
framework. Assuming that tissue-specific means and covariances are determined
in advance, Rajapakse and Kruggel iteratively alternated between a crisp classifi-
cation and an inhomogeneity field estimation step, the latter being performed by
averaging local inhomogeneity field estimates with a sliding window [45]. Pham
and Prince extended the fuzzy C-means algorithm with an explicit inhomogeneity
field model, by optimizing the objective function

(5.15)

where β is the inhomogeneity field and Q(β ) is a regularization term that ensures
that the inhomogeneity field is spatially smooth and slowly varying [46].
Optimizing Equation 5.15 with respect to the membership values u, tissue
means µ and inhomogeneity field β yields a 3-step algorithm that iteratively
alternates between a fuzzy tissue classification, estimation of the mean inten-
sities, and inhomogeneity field estimation. Whereas the mathematical aspects
differ significantly from the EM-based method proposed by Van Leemput et al.,
described earlier, both techniques are conceptually very similar. A similar 3-
step approach, based on an extension of the fuzzy C-means algorithm that takes
interactions between neighboring voxels into account, was described by Ahmed
et al. [47].

5.4 CORRECTION BASED ON EVALUATION 
OF THE HISTOGRAM

In contrast to the methods discussed in the previous section, the methods dis-
cussed in this section do not perform a segmentation of the image but rather base
their computations mainly on the histogram of the image. All of these methods
formulate the intensity inhomogeneity correction as an optimization problem

5.4.1 PARAMETRIC BIAS CORRECTION

We first discuss the parametric bias correction (PABIC) method [10,48] because this
method can be regarded as a hybrid between the combined segmentation/correction
methods and the other histogram-based methods.* While no explicit segmentation
is computed, a prior parametric model for all tissue classes in the image is a necessary
parameter of the histogram metric.

* PABIC is part of the National Library of Medicine Insight Segmentation and Registration Toolkit
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(see Figure 5.5).
based on a metric computed directly from the histogram of the corrected image

(ITK), an open-source software system available at http://www.itk.org.

http://www.itk.org
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PABIC assumes that images are composed of regions with piecewise con-
stant intensities of mean values µk and standard deviation σk. Each voxel of
the idealized signal corrupted by noise must take values close to one of these
class means. These assumptions are violated by effects like partial voluming
and the natural inhomogeneity of biological tissue. To account for these vio-
lations, PABIC incorporates a robust M-estimator [49] function fk (16) into the
histogram metric etot (17) (see Figure 5.6). Thanks to the robust estimator,

FIGURE 5.5 Schematic illustration of histogram-based inhomogeneity correction meth-
ods. In an optimization process (red arrows), the shape of the inhomogeneity field is
adapted such that the chosen metric computed from the histogram of the corrected image
is minimal. For the case of the PABIC method, an additional prior tissue-class model is
needed for the computation of the histogram metric (dashed arrow).

FIGURE 5.6 (a) Robust estimator function (Equation 5.16) for µ = 0 and σ = 2. (b) Three-
class energy function e (Equation 5.17) for σ1 = σ2 = σ3 = 0.03, 0.1, 0.3 and 1.0, from
top to bottom respectively. (c) Example energy function e from a head MRI correction.
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most violations of the class model do not result in incorrect solutions. Failure
of the class model was only observed in very low resolution MR datasets,
where as much as 30% of partial volume voxels can be present. In this case,
an additional preprocessing step identifies partial voluming voxels using a
dilated edge filter. The identified partial volume voxels are then excluded from
further computations.

(5.16)

(5.17)

Both additive and multiplicative inhomogeneity fields are modeled as a para-
metric inhomogeneity field using Legendre polynomials ψL as basis functions in
x, y, and z. In case of a multiplicative inhomogeneity field, all computations are
performed in log-space. For Legendre polynomials up to the degree l, the size m
of the parameter vector cijk is given by For instance, Legendre
polynomials up to the third degree would therefore require 20 coefficients. The
choice of the maximal degree of Legendre polynomials largely depends on prior
knowledge of the coil and the expected type and smoothness of the inhomogeneity
field. The inhomogeneity field estimate βi is determined as follows:

(5.18)

with ψL,i(.) denoting a Legendre polynomial of degree i.
Finding the parameter vector cijk with minimum energy etot is a nonlinear

optimization problem, independent of the type of inhomogeneity field and energy
function. In principle, any nonlinear optimization method could be applied.
PABIC uses an adapted version of the (1 + 1)-evolution strategy (ES), which

This method adjusts locally the search direction and step size, and provides a
mechanism to step out of nonoptimal minima. Furthermore, the method is fast
enough to cope with the large data sets and overcomes the problem of parameters
with different scaling.

The optimal polynomial parameters correct the original MR image so that the
intensity statistics of the corrected image fit the given class model optimally. This
property of PABIC can also be employed for normalizing the intensity statistics for
different images. A slice-by-slice intensity normalization is necessary when vene-

intensity normalization is necessary when analyzing the absolute intensities of MRI
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tian blind artifacts are present in the image (see Section 5.1). A volume-by-volume

belongs to the family of evolutionary algorithms (for an introduction see [50]).
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time series of the same subject. For example, PABIC was used as a required
preprocessing step for a method developed at ETH Zürich to segment and charac-
terize multiple sclerosis lesions based on dynamic changes over time [51].

PABIC cannot only be applied to MR images but to any kind of image data satisfying
the initial assumptions of piecewise constant intensity regions. The algorithm was
tested successfully on different kinds of microscopy images and biological scenes
measured by a video camera.

5.4.2 INFORMATION MINIMIZATION AND N3

The methods discussed in this section do not require any explicit model of the
intensities or the spatial distributions of the different classes present in an MR
image. This property stabilizes the correction method against pathological inten-
sity distributions in MR data that might violate the class model. Known intensity
pathologies, such as multiple sclerosis lesions in brain MR images, are handled
without adaptions.

Paul Viola [52] was the first to propose in his Ph.D. thesis the use of a criterion
based on information theory. He proposed to minimize the information content
of the histogram. Other image processing applications such as image restoration
and classification have successfully employed information minimization. The
information I of an image z can be quantitatively computed using the Shannon
entropy H(z) as

(5.19)

with p(n) denoting the probability that an element of image z has intensity i. The
value of H(z) is positive and H(z) is maximal when all intensities have the same
probability. Thus, the main assumption of the information minimization approach
is that the histogram shows thin “spiky” unimodal intensity distributions. If this
assumption is satisfied, then the information of a perfect MR image is minimal.
Intensity inhomogeneities in the MR image result in spreading the class distri-
butions, leading to a more uniform histogram with higher information content.

The information minimization idea was then picked up by several researchers
such as Mangin [18], Likar et al. [53], and many more.* Mangin models a multi-
plicative inhomogeneity field using B-splines, whereas Likar’s method incorporates
both a multiplicative and an additive inhomogeneity field using orthonormal poly-
nomial basis functions. Likar’s method is currently probably the most versatile
histogram-based method.

Based on similar assumptions, John Sled [54,55] proposed another histogram-
sharpening approach called nonparametric, nonuniform intensity normalization

implementation of intensity inhomogeneity correction via information minimization.

I z H z p i p i
i
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Figure 5.1 shows the results of a MR inhomogeneity correction using PABIC.

* The SPM2 package freely available at http://www.fil.ion.ucl.ac.uk/spm/spm2.html contains an

http://www.fil.ion.ucl.ac.uk
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(N3).* This signal processing motivated approach takes advantage of the usually
simple form of the tissue-class distributions. It searches for a smooth inhomoge-
neity field that maximizes the frequency content of the image intensity distribu-
tion. In order to achieve this, the method iteratively deconvolves narrow Gaussian
distributions from the image intensity distribution.

The properties of both information minimization and N3 are quite similar,
whereas their implementations vary quite a bit. Both methods have a minimal set
of parameters and are sometimes also called “nonparametric.” The remaining
parameters mainly control the smoothness of the parametric inhomogeneity field
and the histogram computation. The most relevant parameter of histogram-based
methods is the size of the histogram bins (in the discrete case for information
minimization), or the variance of the kernel (in the continuous case for N3).
Choosing this parameter too low will result in a flat inhomogeneity field estima-
tion, whereas choosing it too high will basically low-pass-filter the image to
produce an inhomogeneity field estimation.

Both information minimization methods and N3 perform well on standard
MR images, and have proven to be very useful in small and large MR studies.
However, N3 is reported to be less suited than information minimization for
images with large-scale structures [53,55].

5.5 DISCUSSION AND CONCLUSION

In this chapter, we reviewed the large body of literature concerning the retrospective
evaluation and correction of intensity inhomogeneities in MRI. The proposed
approaches range from early solutions, through combined segmentation and inho-
mogeneity correction methods, to histogram-based techniques. Whereas the early
methods were instrumental in advancing the state of the art in the field, they are now
largely abandoned because they typically need a high degree of user interaction (e.g.,
for masking or tissue labeling), and are often based on inadequate assumptions (e.g.,
additive inhomogeneity models or single homogeneous region assumptions after large
kernel size smoothing). In contrast, both histogram-based techniques and combined
segmentation and inhomogeneity correction methods are currently being used as
part of everyday image processing pipelines in institutions around the world.

Whether the histogram-based approach is to be preferred over the combined
segmentation and inhomogeneity correction approach or vice versa remains the
subject of continuous debate. On the one hand, approaches that explicitly segment
images while estimating the inhomogeneity field have the distinct advantage that
inhomogeneities are estimated using extensive domain information, rather than using
voxel intensities alone. Furthermore, the goal of inhomogeneity correction in image
processing pipelines is typically to obtain accurate image segmentations, anyway,
in which case solving the segmentation and the inhomogeneity estimation problem
simultaneously makes perfect sense. However, combined segmentation and inhomo-

*
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* N3 is freely available at http://www.bic.mni.mcgill.ca/software/distribution.

geneity correction approaches rely heavily on the availability of accurate image
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models, which restricts their applicability to the specific image processing scenarios
they were designed for. For instance, the number of tissue types present in the images
must be specified in advance, and appropriate intensity models have to be provided
for each of the tissues considered. Histogram-based techniques, on the other hand,
do not depend on such models, and can therefore be more generally applied, for
instance, to correct images of different anatomical areas or images of pathological
cases that might otherwise violate the model assumptions. It should be noted, how-
ever, that histogram-based techniques typically require the removal of undesired
structures, such as air and nonbrain tissues in MR images of the head, prior to the
inhomogeneity estimation. As the employed tissue removal steps are often tailored
to specific body regions and acquisition protocols, applying histogram-based meth-
ods to different types of images does require some adaptation in practice. Further-
more, it remains to be seen how robust histogram-based techniques are with respect
to intensity variations due to pathology such as brain lesions, whose intensities vary
across the range of nonpathological tissue intensities. Whereas combined segmen-
tation and inhomogeneity estimation methods can explicitly take such pathological
tissues into account, either by incorporating them in their model or by detecting
them as model outliers [24], histogram-based approaches treat all voxels alike, which
may lead to erroneous inhomogeneity field estimations in such cases.

As a final remark, the methods presented in this chapter can be mainly applied
to structural MR imaging and MR angiography. Images acquired with the more
recently introduced diffusion tensor imaging (DTI) sequences remain currently
uncorrected, and no methods have been proposed thus far.

ACKNOWLEDGMENTS

Both authors Koen Van Leemput and Martin Styner contributed equally to this
chapter. The authors would like to thank many colleagues and friends in the medical
image processing community for the great discussions and collaborations in regard
to intensity inhomogeneity correction. Especially they would like to mention Guido
Gerig, Christian Brechbühler, Gábor Székely, Mike Brady, Frederik Maes, Dirk
Vandermeulen, Alan Colchester, and Nicholas Ayache.

REFERENCES

1. Jungke, M., von Seelen, W., Bielke, G., Meindl, S. et al. (1987). A system for the
diagnostic use of tissue characterizing parameters in NMR-tomography. in Proceed-
ings of Information Processing in Medical Imaging, IPMI’87, Vol. 39, pp. 471–481.

2. Vannier, M.W., Speidel, Ch.M., Rickman, D.L., Schertz, L.D. et al. (November
1988). Validation of magnetic resonance imaging (MRI) multispectral tissue clas-
sification. in Proceedings of 9th International Conference on Pattern Recognition,
ICPR’88, pp. 1182–1186.

3. Merickel, M.B., Carman, C.S., Watterson, W.K., Brookeman, J.R., and Ayers, C.R.
(November 1988). Multispectral pattern recognition of MR imagery for the non-
invasive analysis of atherosclerosis. in Proceedings of 9th International Confer-
ence on Pattern Recognition, ICPR’88. pp. 1192–1197.

DK2411_C005.fm  Page 165  Thursday, June 16, 2005  5:38 PM

© 2005 by Taylor & Francis Group, LLC



166 Advanced Image Processing in Magnetic Resonance Imaging

4. Lim, K.O. and Pfefferbaum, A.J. (1989). Segmentation of MR brain images into
cerebrospinal fluid spaces, white and gray matter. J. Comput. Assist. Tomogr. 13:
588–593.

5. Kohn, M.I., Tanna, N.K., Herman, G.T., Resnick, S.M., Mozley, P.D., Gur, R.E.,
Alavi, A., Zimmerman, R.A., and Gur, R.C. (January 1991). Analysis of brain and
cerebrospinal fluid volumes with MR imaging. Part I. methods, reliability, and
validation. Radiology. 178: 115–122.

6. Studholme, C., Cardenas, V., Song, E., Ezekiel, F., Maudsley, A., and Weiner, M.
(2004). Accurate template-based correction of brain MRI intensity distortion with
application to dementia and aging. IEEE Trans. Med. Imaging. 23(1): 99–110.

7. Wells, W.M., III, Grimson, W.E.L., Kikinis, R., and Jolesz, F.A. (August 1996).
Adaptive segmentation of MRI data. IEEE Trans. Med. Imaging. 15(4): 429–442.

8. Dawant, B.M., Zjidenbos, A.P., and Margolin, R.A. (1993). Correction of intensity
variations in MR images for computer-aided tissue classification. IEEE Trans.
Med. Imaging. 12(4): 770–781.

9. Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P. (October 1999).
Automated model-based bias field correction of MR images of the brain. IEEE
Transactions on Medical Imaging, 18(10): 885–896.

10. Styner, M., Brechbuhler, C., Szekely, G., and Gerig, G. (2000). Parametric estimate
of intensity inhomogeneities applied to MRI. IEEE Trans. Med. Imaging. 19(3):
153–165.

11. Haselgrove, J. and Prammer, M. (1986). An algorithm for compensation of surface-
coil images for sensitivity of the surface coil. Magn. Reson. Imaging. 4: 469–472.

12. Axel, L., Constantini, J., and Listerud, J. (1987). Intensity correction in surface
coil MR imaging. Am. J. Roentgenol, 148: 418–420. 25.

13. Gonzalez, R.C. and Woods, R.E. (1992). Digital Image Processing. Reading, MA:
Addison-Wesley.

14. Johnston, B., Atkins, M.S., Mackiewich, B., and Anderson, M. (1996). Segmen-
tation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE
Trans. Med. Imaging. 15: 154–169.

15. Vannier, M.W., Speidel, Ch.M., and Rickman, D.L. (August 1988). Magnetic
resonance imaging multispectral tissue classification. NIPS, 3: 148–154.

16. Tincher, M., Meyer, C.R., Gupta, R., and Williams, D.M. (1993). Polynomial
modeling and reduction of RF body coil spatial inhomogeneity in MRI. IEEE
Trans. Med. Imaging. 12(2): 361–365.

17. Meyer, C.R., Bland, P.H., and Pipe. James (March 1995). Retrospective correction
of intensity inhomogenities in MRI. IEEE Trans. Med. Imaging, 14(1): 36–41.

18. Mangin, J.F. (2000). Entropy minimization for automatic correction of intensity
nonuniformity. in Mathematical Methods in Biomedical Image Analysis, pp. 162–169.

19. Gilles, S., Brady, M., Declerck, J., Thirion, J.-P., and Ayache, N. (1996). Bias
field correction of breast MR images. in Proceedings of Visualization in Bio-
medical Computing VBC’96, Vol. 1131 of Lecture Notes in Computer Science,
pp. 153–158.

20. Madabhushi, A., Udupa, J.K., and Souza, A. (May 2004). Generalized scale:
theory, algorithms, and application to image inhomogeneity correction. in J.M.
Fitzpatrick and M. Sonka, Eds. Medical Imaging 2004: Image Processing,
Vol. 5370 of Proceedings of SPIE, pp. 765–776.

21. Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. J. R. Stat. Soc. 39: 1–38.

DK2411_C005.fm  Page 166  Thursday, June 16, 2005  5:38 PM

© 2005 by Taylor & Francis Group, LLC



Retrospective Evaluation and Correction of Intensity Inhomogeneity 167

22. Wu, C.F.J. (1983). On the convergence properties of the EM algorithm. Ann. Stat.
11(1): 95–103.

23. Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P. (October 1999).
Automated model-based tissue classification of MR images of the brain. IEEE
Trans. Med. Imaging. 18(10): 897–908.

24. Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., and Suetens, P.
(August 2001). Automated segmentation of multiple sclerosis lesions by model
outlier detection. IEEE Trans. Med. Imaging. 20(8): 677–688.

25. Kapur, T., Grimson, W.E.L., Kikinis, R., and Wells, W.M. (1998). Enhanced
spatial priors for segmentation of magnetic resonance imaging. In Proceedings
of Medical Image Computing and Computer-Assisted Intervention — MICCAI’98,
Vol. 1496 of Lecture Notes in Computer Science, pp. 457–468. Springer-Verlag,
New York.

26. Held, K., Kops, E.R., Krause, B.J., Wells, W.M., III, Kikinis, R., and Müller-
Gärtner, H.W. (December 1997). Markov random field segmentation of brain MR
images. IEEE Trans. Med. Imaging. 16(6): 878–886.

27. Marroquin, J.L., Vemuri, B.C., Botello, S., Calderon, F., and Fernandez-Bouzas,
A. (August 2002). An accurate and efficient Bayesian method for automatic
segmentation of brain MRI. IEEE Trans. Med. Imaging. 21(8): 934–945.

28. Zhang, Y., Brady, M., and Smith, S. (January 2001). Segmentation of brain MR
images through a hidden Markov random field model and the expectation-
maximization algorithm. IEEE Trans. Med. Imaging. 20(1): 45–57.

29. Xiao, G., Brady, M., Noble, J.A., and Zhang, Y. (January 2002). Segmentation of
ultrasound B-mode images with intensity inhomogeneity correction. IEEE Trans.
Med. Imaging. 21(1): 48–57.

30. Guillemaud, R. and Brady, M. (June 1997). Estimating the bias field of MR
images. IEEE Trans. Med. Imaging. 16(3): 238–251.

31. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and Suetens, P. (April
1997). Multi-modality image registration by maximization of mutual information.
IEEE Trans. Med. Imaging. 16(2): 187–198.

32. Wells, W.M., Viola, P., Atsumi, H., Nakajima, S., and Kikinis, R. (March 1996).
Multi-modal volume registration by maximization of mutual information. Med.
Image Anal. 1(1): 35–51.

33. Lorenzo-Valdés, M., Sanchez-Ortiz, G.I., Mohiaddin, R., and Rueckert, D. (2003).
Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM
algorithm. in R.E. Ellis and T.M. Peters, Eds. Proceedings of MICCAI 2003, Vol. 2878
of Lecture Notes in Computer Science, pp. 440–450.

34. Ashburner, J.T. (July 2000). Computational Neuroanatomy. Ph.D. thesis, Univer-
sity of London.

35. Tou, J.T. and Gonzalez, R.C. (1974). Pattern Recognition Principles. Reading,
MA: Addison-Wesley.

36. Gray, R.M. and Linde, Y. (February 1982). Vector quantizers and predictive quan-
tizers for gauss-markov sources. IEEE Trans. Commn. COM-30(2): 381–389.

37. Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in
detecting compact well-separated clusters. J. Cybern. 3: 32–57.

38. Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algo-
rithms. Plenum Press, New York.

39. Pappas, T.N. (April 1992). An adaptive clustering algorithm for image segmenta-
tion. IEEE Transactions on Signal Processing, 40: 901–914.

DK2411_C005.fm  Page 167  Thursday, June 16, 2005  5:38 PM

© 2005 by Taylor & Francis Group, LLC



168 Advanced Image Processing in Magnetic Resonance Imaging

40. Yan, M.X.H. and Karp, J.S. (1995). Segmentation of 3D brain MR using an
adaptive k-means clustering algorithm. in Proceedings of the 1994 Nuclear Sci-
ence Symposium and Medical Imaging Conference, pp. 1529–1533.

41. Yan, M.X.H. and Karp, J.S. (1995). An adaptive bayesian approach to three-
dimensional MR brain segmentation. in Bizais, Y., Barillot, C., DiPaol, R., Eds.
Proceedings of Information Processing in Medical Imaging, pp. 201–213.

42. Lee, S.K. and Vannier, M.W. (August 1996). Post-acquisition correction of MR
inhomogeneities. Magn. Reson. Med. 36(2): 275–286.

43. Rajapakse, J.C., Giedd, J.N., and Rapoport, J.L., (April 1997). Statistical approach
to segmentation of single-channel cerebral MR images. IEEE Trans. Med. Imag-
ing. 16(2): 176–186.

44. Nocera, L. and Gee, J.C. (February 1997). Robust partial volume tissue classifi-
cation of cerebral MRI scans. in Hanson, K.M. Ed. Medical Imaging 1997: Image
Processing. SPIE.

45. Rajapakse, J.C. and Kruggel, F. (1998). Segmentation of MR images with intensity
inhomogeneities. Image and Vision Computing, 16:165–180.

46. Pham, D.L. and Prince, J.L. (September 1999). Adaptive fuzzy segmentation of
magnetic resonance images. IEEE Trans. Med. Images. 18(9): 737–752.

47. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., and Moriarty, T. (March
2002). A modified fuzzy c-means algorithm for bias field estimation and segmen-
tation of MRI data. IEEE Trans. Med. Imaging. 21(3): 193–199.

48. Brechbühler, C., Gerig, G., and Székely, G. (September 1996). Compensation of
spatial inhomogeneity in MRI based on a multi-valued image model and a para-
metric bias estimate. in Visualization in Biomedical Computing (VBC) ’96,
pp. 141–146.

49. Huber, P. 1981. Robust Statistics. John Wiley & Sons, New York.
50. Schwefel, H.-P. 1995. Evolution and Optimum Seeking. John Wiley & Sons, New

York.
51. Gerig, G., Welti, D., Guttmann, C., Colchester, A., and Székely. G. (1998). Explor-

ing the discriminating power of the time domain for segmentation and character-
ization of lesions in serial MR data. in Proceedings of Medical Image Computing
and Computer-Assisted Intervention (MICCAI 98). pp. 469–480.

52. Viola, P. (1995). Alignment by Maximization of Mutual Information. Ph.D. thesis,
Massachusetts Institute of Technology.

53. Likar, B., Viergever, M. and Pernus, F. (2001). Retrospective correction of MR
intensity inhomogeneity by information minimization. IEEE Trans. Med. Imaging.
20(12): 1398–1410.

54. Sled, J.G., Zijdenbos, P., and Evans, A.C. (1997). A comparison of retrospective
intensity nonuniformity correction methods for MRI. in Information Processing
in Medical Imaging, Vol. 1230, pp. 459–464. Proceedings 15th Int. Conf. IMPI’97.

55. Sled, J.G., Zijdenbos P., and Evans, A.C. (February 1998). A nonparametric
method for automatic correction of intensity nonuniformity in MRI data. IEEE
Trans. Med. Imaging. 17: 87–97.

DK2411_C005.fm  Page 168  Thursday, June 16, 2005  5:38 PM

© 2005 by Taylor & Francis Group, LLC



 

169

 

6

 

Noise Filtering Methods 
in MRI

 

L. Landini, M. Lombardi, and A. Benassi

 

CONTENTS

 

6.1 Introduction..............................................................................................169
6.2 The MR Image Model.............................................................................171
6.3 Wavelet-Based Filtering ..........................................................................172
6.4 Adaptive Template Filtering....................................................................174
6.5 Anisotropic Diffusion Filtering...............................................................177
6.6 Application of Anisotropic Diffusion Filtering ......................................179
References .........................................................................................................183

 

6.1 INTRODUCTION

 

It is well known that magnetic resonance imaging (MRI) methods are increasing
diagnostic efficacy due to the recent progress in real-time image acquisition
technology. Such advanced imaging techniques provide access to important
anatomical and functional information through high-speed acquisition and high
spatial resolution.

In MRI applications, there is an intrinsic trade-off between signal-to-noise ratio
(SNR), contrast-to-noise ratio (CNR), and resolution. Depending on specific diag-
nostic tasks, high spatial resolution and high contrast may be required, whereas for
image processing applications, a high SNR is usually necessary because most of
the algorithms are very sensitive to noise. In fact, magnetic resonance (MR) images
often require application of noise filtering techniques before visual inspection or
application of noise-sensitive postprocessing methods such as segmentation algo-
rithms [1]. As a rule, such filtering is desired to significantly decrease image noise
and, simultaneously, to preserve fine image details.

Many efforts were devoted to SNR improvement, including time and spatial
averaging during acquisition. Time averaging has the major advantage that the
SNR increases while the spatial resolution is preserved, provided the imaging
process is stationary; the disadvantage is the time required to perform the exam-
ination. Achieving a high SNR at an elevated spatial resolution may necessitate
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additional time averages (higher number of excitations [NEX]) and, consequently,
a longer acquisition time. But a long acquisition time is undesirable because of
constraints such as patient comfort, system throughput, and physical limitations
arising in dynamic applications such as cardiac imaging and functional MRI. In
such cases, time averaging is replaced by spatial averaging.

Spatial filtering of MR image data should ideally be fulfilled by removing
the noise without loss of resolution, improving the image contrast, to obtain
piecewise constant or slowly varying signals in homogeneous tissue regions,
minimizing information loss by preserving detailed structures inside objects and
object boundaries. Spatial filtering techniques are applied under two important
assumptions: (a) the image is supposed to consist of many regions in which the
signal is stationary and ergodic in the mean and variance [2] and (b) the image
noise is assumed to be zero mean and Gaussian distributed. The main problem
is to find these stationary regions.

The problem of finding the proper stationary area for local signal estimation is
partly solved by choosing filters that are able to distinguish homogeneous regions
from those with edge regions. In the literature, many approaches to improve SNR,
CNR and edge blurring effects have been proposed, such as adaptive filters [3–5],
wavelet filters [6–11], and anisotropic diffusion filters [12–17].

In particular, anisotropic diffusion [12] is an accepted filtering technique that
is well suited for practical use because of its computational speed and algorithmic
simplicity. The filter assumes image noise to be Gaussian distributed. The aniso-
tropic diffusion filter has proved to be particularly effective in prefiltering of MR
images before the automatic image segmentation procedure [16,18] and before
MRI inhomogeneity correction [19]. Subsequently, the standard anisotropic dif-
fusion method was extended by Yang [20] using both a local intensity orientation
and an anisotropic measure of level contours, instead of utilizing local gradients
to control the anisotropism of the filters.

When processing magnitude MR data, a Gaussian assumption for image noise
is not acceptable as it can be shown to be Rice distributed, especially in regions
with low SNR [3,21–23].

Not incorporating this knowledge leads inevitably to biased results, in par-
ticular, when applying such filters in regions with low SNR. In order to reduce
this bias, Sijbers et al. [24] proposed a modified version of the anisotropic filter
suggested by Yang

 

 

 

[20], in which the Rician nature of the data is exploited.
Wavelet-based methods that explicitly account for the Rician nature of the data
are described in [25–27].

How noise is spatially distributed is another issue concerning MR image noise
that should be considered before applying noise filters. Examples include images
multiplicatively corrected for intensity inhomogeneity [19,28], and particularly,
images obtained with partially parallel imaging techniques [29–35]. Retrospective
denoising with a nonlinear technique such as anisotropic diffusion filtering has
been demonstrated to be an attractive option for improving the SNR of partially
parallel images [36]. Topics dealing with noise in parallel MRI will be discussed
in this book in another chapter.
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In this chapter, we will review some of the recent methods to improve SNR
and CNR in MR images, also accounting for the statistical nature of the process.
Emphasis will be given to an application dealing with edge enhancement in
myocardium image segmentation.

 

6.2 THE MR IMAGE MODEL

 

Usually, noise in MR images is defined simply as a deviation from the true value
considered representative of a tissue category; noise is expressed by the standard
deviation, whereas the true value is evaluated by the mean value of a set of pixels
expected to belong to the same tissue category. It has been shown [23,37] that
due to nonlinearity of the magnitude reconstruction process introduced to obtain
real images, such assumptions about the image model are too weak. In fact, the
first step in reconstructing MR images is to compute the inverse discrete Fourier
transform of raw frequency-domain (k-space) measurements. Let y(m, n) denote
a complex image with additive noise as follows:

(6.1)

where r(m, n) and i(m, n) are real and imaginary parts of the noiseless image,
with n

 

r

 

(m, n) and n

 

i

 

(m, n) representing the Gaussian noise in the real and imag-
inary images, respectively, with standard deviations 

 

σ

 

n

 

.
By considering the magnitude reconstruction process of MR images, the

magnitude of y(m, n) is given by:

(6.2)

We recall that in MR images, the signal magnitude is simply the square root
of the sum of two independent Gaussian random variables, and the magnitude image
data are described by a Rician distribution.

If the image intensity is much larger than the noise standard deviation,
Equation 6.2 may be approximated as [3]:

(6.3)
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The term x(m, n)

 

 

 

is the noiseless magnitude image and n

 

z

 

(m, n)

 

 

 

represents
the noise in the magnitude image.

From Equation 6.3, the noise in the magnitude image can be given in terms
of the standard deviation as follows:

(6.4)

Thus, the standard deviation of the noise in the magnitude image is identical
to those of the real or imaginary parts and independent of the relative intensities
of r(m, n) and i(m, n), assuming that x(m, n) is much larger than the noise.

Furthermore, because the noise in the magnitude image is a linear combina-
tion of the noise in the real and imaginary parts, the distribution function of the
noise in the magnitude image is also Gaussian. It means that separation of signal
and noise is fairly straightforward with proper filtering, so the filtered signal can
be assumed representative of the physical properties of a tissue category.

In low-SNR regions, the Rician distribution equals the Rayleigh distribution.
This means that the magnitude image does not equal the underlying noise-free
image. Hence filtering methods yield biased results, which increase with decreas-
ing SNR. This bias in the MR magnitude image can significantly reduce image
contrast.

The noise standard deviation in the background region 

 

σ

 

b

 

, where the image
intensity is zero, is related to 

 

σ

 

n

 

 by the following relationship [38]:

(6.5)

It gives a practical way to estimate 

 

σ

 

n

 

.
As a rule of thumb, it was found that below 5 (15 dB), the Rician distribution

equals the Rayleigh distribution, whereas for SNR 

 

>

 

 5, it approximates a Gaussian
distribution. Although clinical images have overall SNR values exceeding 5:1,
some important image features, particularly edge information, may have local
SNRs 

 

<

 

 5.

 

6.3 WAVELET-BASED FILTERING

 

This section considers both standard wavelet-domain filtering methods and wave-
let-domain methods that account for the Rician nature of the data.

In the wavelet-domain approach, the discrete wavelet transform (DWT) tends
to concentrate the energy of the desired signal into a small number of coefficients.
So, the DWT of the noisy image consists of a small number of coefficients with
high SNR (which should be kept), and a large number of coefficients with low
SNR (which can be discarded). After discarding the noisy coefficients, the

σ σ σ σy
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noiseless image can be reconstructed using the inverse DWT. As a result, noise
is removed or filtered from the observations. Therefore, the key to effective noise
removal in the wavelet domain is to determine which wavelet coefficients do not
have significant signal energy and, hence, can be discarded without detrimental
signal loss. Of course, a similar procedure could be carried out using Fourier-
domain filtering. But the Fourier method is a spatially global operation that cannot
be adjusted to local spatial variations, thus leading to uncontrolled smoothing in
regions with high-frequency content, such as the edges. On the other hand, the
wavelet basis functions enable DWT-based filtering procedures to adapt to such
spatial variations. Only a brief algorithm outline will be given here; details can
be found in [7–9].

There are three fundamental concepts in the wavelet algorithm: wavelet packet
transformation, best-basis selection, and coefficient thresholding.

In wavelet packet transformation, the original 2-D images are split in terms
of shifts and dilations of the low-pass scaling function and band-pass wavelet to
obtain the relevant 2-D coefficients. For special choices of these functions, the
shifts and dilations form an orthonormal basis. The wavelet decomposition can
be implemented iteratively by successive filtering and downsampling (by a factor
of 2 at each iteration) operations, using the so-called quadrature mirrors filters.
At each step four 2-D images of coefficients are obtained (one low-pass subimage
and three subimages corresponding to wavelet orientations that are horizontal,
vertical, and diagonal).

Wavelet bases are bases of nested function spaces, which can be used to
analyze signals at multiple scales. Best-basis selection consists of finding the
mathematical function that not only completely represents the original signal,
but that also concentrates the maximum amount of structured signal into the
minimum number of coefficients. However, in many applications such as MRI,
the key signal features are not well known and the optimal basis functions
cannot be specified in advance. In such cases, a basis with general properties
is preferable.

The thresholding operation in the wavelet domain is the operation that deter-
mines which wavelet coefficients do not have significant signal energy and hence
can be discarded without detrimental signal loss. Ideally, the wavelet-domain
filtering procedure should be adapted to the local SNR in each wavelet coefficient,
so that wavelet coefficients with very low SNR can be suppressed. Methods for
making this determination are called wavelet-domain filters.

When designing a filter in the wavelet domain, we have to account for the nature
of the noise process. For example, if the SNR in a pixel is greater than 15 dB, the
Rician distribution is assumed to become approximately Gaussian. If the SNR is
below 15 dB, then the Rician distribution deviates from the Gaussian.

The goal of wavelet-domain filtering is to obtain a better estimate of the
noise-free image wavelet coefficients by filtering the observed coefficients
at any level 

 

j

 

, spatial position 

 

k

 

 and wavelet orientation o. In fact, the wavelet
filter should adapt to the local SNR in each wavelet coefficient in order to suppress
wavelet coefficients with very low SNR.

d j
o ( )k
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Several wavelet-domain filtering methods to reduce the noise power from
images are reported in the literature [6–11,25–27].

In particular, Nowak [25] described a method that explicitly accounts for the
Rician nature of the data. He demonstrated that the filter weight that minimizes
the mean squared error of each coefficient is given by

(6.6)

where (

 

+

 

) means that (x)

 

+

 

 

 

=

 

 x if x 

 

≥

 

 0 and (x)

 

+

 

 

 

=

 

 0 if x 

 

<

 

 0, and  is the
variance of the observed coefficients. It means that the filter sets small wavelet
coefficients with squared magnitude less than three times the estimated variance
to zero and leaves larger coefficients approximately unaltered.

In the presence of additive white Gaussian noise with variance (high SNR),
the filter weight  given by Equation 6.6 can be evaluated with  

 

σ

 

n

 

(assuming that each wavelet coefficient has equal variance at any spatial
position 

 

k

 

).
A simple procedure for estimating 

 

σ

 

n

 

 is reported in Reference 25, and it
consists of evaluating one half of the mean of the squared pixel values in the
region outside the patient within the scanner.

In low-SNR situations, the mean of the magnitude image is not equal to the
noise-free image (as in the Gaussian approximation) and, hence, the magnitude
image is biased. Nowak demonstrated that when operating on the squared mag-
nitude image rather than the magnitude, the wavelet coefficients are approxi-
mately Gaussian distributed. In such situations, the filter weight 

 

α

 

 can still be
used. He also suggested a method for estimation and compensation. The
advantage of such an algorithm is that it can be used in both high- and low-SNR
imaging situations [25–27]. An advantage of the algorithm in Equation 6.6 in
the high-SNR case is that its complexity is slightly lower than that in the low-
SNR case.

 

6.4 ADAPTIVE TEMPLATE FILTERING

 

An interesting approach to MRI image filtering is the adaptive template filtering
technique proposed by C.B. Ahn et al. [3]. Ahn proposed a local shape-adaptive
template filtering for the enhancement of the SNR without resolution loss. Unlike
conventional filtering, in which the template shape and coefficients are predefined
and the filtered output is given as the weighted sum of the image gray levels
surrounding the current pixel, in adaptive template filtering, multiple templates
are defined. It prevents the edge blurring usually observed when using fixed-
coefficient

 

 

 

filters that employ spatial averaging

 

 

 

to obtain SNR enhancement in
almost constant regions. Using the proposed process, edge blurring is minimized
and SNR maximized by selecting the optimally matched template.
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The proposed method can be applied without any a priori evaluation of SNR.
It is assumed that image gray levels are composed of 2-D locally constant or
slowly varying regions separated by discontinuities called edges. In locally con-
stant regions, local variations are mainly due to random noise, and the values of
the standard deviations are relatively small. Across edges, the local standard devi-
ations are relatively large because of the large intensity differences across image
structures.

The adaptive filter should be able to distinguish between locally constant
regions and edge regions: the edge regions should be excluded from the filtering
process in order to prevent resolution degradation.

The algorithm proposed in [3] defines multiple templates, each template being
composed of free cells and active cells, i.e., cells made available for the filter
coefficients. The number NT of multiple templates is given according to the
following relationship

(6.7)

where N is the template dimension minus the current pixel (for a 3 

 

×

 

 3 template,
N 

 

=

 

 8), k the number of free cells in the template, and (N 

 

−

 

 k) the number of active
cells. The number of active cells defines the filter size. Equation 6.7 defines the
number of templates for any filter size, i.e., the possible combinations of (N

 

 −  

 

k)
active cells in a template.

In Figure 6.1, an example is reported for a 3 

 

×

 

 3 template (N 

 

=

 

 8): when k 

 

=

 

 0
we have NT 

 

=

 

 1 possible combinations, whereas for k 

 

=

 

 4, the number of templates
is NT 

 

=

 

 70. In the figure, “1” denotes active cells, “0” corresponds to free cells,
and the reference cell is drawn in black.

 

FIGURE 6.1

 

Example of the number of template configurations for a 3 

 

×

 

 3 template.
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In order to select the best template configuration for each pixel, a quality
measure must be defined. Ahn [3] proposed the use of the local standard deviation
of the pixel values on the templates. For each template T

 

j

 

, the local standard
deviation 

 

σ

 

j

 

(m, n) of the pixel values is given by:

(6.8)

and x(m, n) is the input pixel value at the (m, n) coordinates.
For an implementation of the adaptive filtering procedure, first, local standard

deviations for each pixel in the image and for each template must be evaluated.
Next, templates are classified into two categories based on standard deviation
value: templates with local standard deviation less than the threshold value (cor-
responding to the random noise standard deviation) and templates with local
standard deviation larger than the threshold value. When more elements reflect
the former condition, then the optimal template is the one having the maximum
filter size. As far as the latter condition is concerned, the optimal template is the
one having the minimum standard deviation

(6.9)

where y(m, n) is the filtered output, the local variance evaluated at the (m, n)
pixel, and the noise variance. Local variance close to the noise variance implies
almost constant regions. The relevant filtered output is a smoothed version of the
input image on the template. Otherwise, i.e., in edge regions, the filtering con-
tribution is negligible.

A key issue in the optimization of the adaptive filtering algorithm based on
templates is the choice of the threshold value. A popular method is to define the
threshold as

(6.10)

where 

 

σ

 

n

 

 is the estimated noise standard deviation on the image and 

 

a

 

 is a scale
factor. Values from 1.2

 

σ

 

n

 

 to 1.6

 

σ

 

n

 

 may be chosen to optimize filter performance
[3]. Estimation of 

 

σ

 

n

 

 from MR images can be done by multiplying the standard
deviation of the image background 

 

σ

 

b

 

 by the scale factor 1.526 as in Equation 6.5.
The computational complexity of the algorithm for a brute-force search of

templates is M

 

2

 

NT, where M is the image dimension and NT the number of
possible templates. In order to reduce the algorithm complexity, templates can
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be arranged according to their size and the evaluation of the standard deviation
can be started from larger templates. Then, the first template having a standard
deviation less than the threshold may be the optimal template. If no template is
found having a standard deviation less than the threshold, the template having
the minimum standard deviation is selected as the optimal template. Through this
procedure, the computational time spent searching for the optimal template is
substantially reduced compared to searching for the templates in arbitrary order.

The filtering algorithm can be applied iteratively so that more noise reduction
can be achieved.

 

6.5 ANISOTROPIC DIFFUSION FILTERING

 

Perona and Malik [12] first proposed a nonlinear anisotropic smoothing filter for
removal of background noise in images. It uses local gradients to control the
anisotropy of the filter. A comprehensive review of anisotropic filter theory can
be found in [17].

The smoothing operation is assumed to be a diffusive process that is suppressed
or stopped at boundaries by selecting appropriate spatial diffusion strengths. In
particular, depending on the values assumed by diffusion strength, the filter is able
to realize intraregion smoothing in preference to smoothing across boundaries. In
other words, the nonlinear anisotropic diffusion equation is:

(6.11)

The diffusion strength is controlled by c(

 

x

 

, t). The vector 

 

x

 

 represents the spatial
coordinate, and the variable t in our discrete implementation corresponds to iteration
step n. The function I(

 

x

 

, t) is the image intensity. The diffusion function c(

 

x

 

, t)
assumes a constant value for linear isotropic diffusion. In that case, the diffused
image is derived from isotropic application of the Laplacian operator to the image.
But the price of eliminating the noise with linear diffusion is blurring of the edges.
This results in their detection and localization being difficult.

In order to preserve the edges, the diffusion must be reduced or even blocked
when close to a discontinuity. The diffusion function c(

 

x

 

, t) can be chosen to be
a function of gradient magnitude evaluated on image intensity I(

 

x

 

, t):

(6.12)

  

increasing gradient 

 

∇

 

I. A more effective view of the relationship between parameter
K and image gradient 

 

∇

 

I is obtained by defining the flow function 

 

φ

 

(

 

∇

 

I) as the
product c

 

⋅∇

 

I.
The parameter K is the diffusion constant, and it is chosen in order to preserve

edge strength at the object boundary and to reduce the noise contribution. The
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Figure 6.2 shows the monotonic decrease of the diffusion coefficient c(x, t) with
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maximum flow is produced at the image location when 

 

∇

 

I 

 

=

 

 K. When 

 

∇

 

I is below
K, the flow function reduces to zero because in almost homogeneous regions, the
flow is minimal. For 

 

∇

 

I larger than K, the flow function again decreases to zero,
halting diffusion at locations of high gradients. A proper setting of the K parameter
in the diffusion function not only preserves, but also enhances object edges. This
property will be exploited in the next section in an application dealing with
contour enhancement for myocardial image segmentation.

The performance of the anisotropic filter is also related to the choice of the
diffusion function. An alternative choice of the diffusion function is:

(6.13)

or [14]:

(6.14)

Anisotropic diffusion, in its original form, is a well-accepted filtering tech-
nique because of its computational speed and algorithmic simplicity. It was
applied to 2-D and 3-D MRI data by Gerig [13]. Such a filter has shown maximum
performance in local filtering applications such as automatic MR cardiac image
segmentation [18].

 

FIGURE 6.2

 

Monotonic decrease of the diffusion coefficient c(x, t) and flow function
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I) as a function of gradient 
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Subsequently, the standard anisotropic diffusion method was extended by
Yang [20], who, instead of using local gradients to control the filter anisotropy,
introduced a filter whose shape is pointwise adapted to the local structure of the
image within a neighborhood, using both a local intensity orientation and an
anisotropic measure of level contours. Yang demonstrated that the noise filtering
efficacy of the algorithm is good both in simulated and real images, although the
computational efficiency needs improvement.

These anisotropic filters applied to magnitude MR data introduce a bias in the
image, because they do not account for the Rician nature of the data, which is more
effective in low SNR. In order to reduce this bias, Sijbers [24] proposed a modified
version of the Yang filter that introduces the Rice distribution into the maximum
likelihood estimation of the filter parameters. Results obtained with simulated
images and experimental magnitude MR data confirm that the differences between
Gaussian- and Rician-based filters are visible in regions with low SNR.

6.6 APPLICATION OF ANISOTROPIC
DIFFUSION FILTERING

The filter proposed by Perona et al. [12] is able to produce object edge enhance-
ment if the proper choice of the diffusion constant K is made. In this section, we
exploit this property to improve myocardial contours of cardiac images for a
subsequent automatic segmentation operation.

In MR images of myocardium, gradient strength at the endocardium is usually
different from that at the epicardium. Moreover, MRI of the myocardium is
strongly influenced by gray-scale inhomogeneities that are responsible for local
changes in tissue mean and variance. To account for such drawbacks, the proper
diffusion parameter was determined by a simulation procedure.

We first exploited the relation between the K parameter and image gradient
∇I, using a 1-D simulation study. The error function, sampled with 16 data
points, was used as an ideal model of a blurred step edge to simulate a gray-
level discontinuity in the image. The sampling frequency was determined by
considering that a typical MR image of 256 × 256 data points requires approx-
imately 16 pixels to realize a gray-level transition at the myocardium interfaces.
On the gradient profile, the slope measured at the inflection point multiplied
by a constant term was used for simulation purposes. The relationship between
the slope increment ∆S and K was computed as a function of the iteration step

band-pass behavior.
Starting from the K value where ∆S is maximum, the relationship between

K and ∇I was derived by simulation. In the simulation, ∇I ranged from 0 to 30
to include gray-level excursion at the endocardium and epicardium interfaces
(typically ranging from 10 to 25). A linear relationship between K and ∇I was

∆S at any ∇I in the image, the K value should be adapted according to the data
of Figure 6.4. In our implementation, we assessed the best compromise value for
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N (Figure 6.3). It demonstrates that the slope is a function of K and exhibits

found (Figure 6.4), where ∇I = 2.85K. It means that to obtain a maximum slope
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K in order to maintain ∆S at a reasonable high value (see Figure 6.3), by exploiting

of ∆S − K curves corresponding to typical myocardium interface gradient value
suggests that the choice of a single K value could be a reasonable compromise
to enhance endocardium and epicardium edges simultaneously.

FIGURE 6.3 Relationship between slope increment ∆S and K as a function of iteration
step N.

FIGURE 6.4 Relationship between K and ∇I.
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the band-pass shape of the ∆S − K curves (Figure 6.5). In fact, partial overlapping
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The performance of anisotropic filtering in reducing noise while preserving
image structure was compared to results obtained at different NEX values.
Two sets of images were derived: one set obtained from a two-cylinder phantom
(a 60-mm-diameter cylinder filled with olive oil and immersed in a 100-mm-diameter
water-filled cylinder), and one set of images derived from a normal human heart.
Cardiac images were obtained from a group of five normal volunteers.

The series of MR images was acquired with a 1.5T GE Signa CV/i scanner
with a fast spoiled gradient echo (fast SPGR) sequence, using cardiovascular phase
array coils. A number of 10-sections were acquired with a slice thickness of 8 mm.
Three acquisitions (TR = 9.2 and TE = 1.9) were performed at 1, 2, and 4 NEX.

In Figure 6.6, phantom images at 1 NEX before (Figure 6.6a) and after
(Figure 6.6c) filtering are reported, together with the 4 NEX image (Figure 6.6b).

FIGURE 6.5 Plot of the slope increment (∆S) as a function of K for ∆I1 = 10, ∆I2 = 20,
and ∆I3 = 30.

FIGURE 6.6 Phantom images: (a) 1 NEX image, (b) 4 NEX image, and (c) anisotropic-
filtered 1 NEX image.
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(bold line).

FIGURE 6.8 Left-ventricle image profile before (thin line) and after (bold line) anisotro-
pic filtering.
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FIGURE 6.7 Phantom image profile relevant to Figure 6.6a (thin line) and to Figure 6.6c
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Typical line profiles extracted from the phantom image before filtering (thin line) and

edges while removing noise.
In cardiac images, anisotropic filtering still preserves contrast at the myo-

cardium interfaces: it clearly appears in 1 NEX image aquisition as shown in

filtering (bold line) are shown.
Such results are important for the later segmentation operation by an auto-

matic procedure.
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7.1 INTRODUCTION

 

Magnetic resonance imaging (MRI) provides information about the size, shape,
and spatial relationships among anatomical structures, together with functional
information with or without the use of contrast media. Combining the information
provided by MRI with that provided by other acquisition modalities is an important
issue in MRI-based diagnostic. For instance, computer-assisted tomography (CT)
images of bony structures and ultrasound (US) views of soft tissues can improve
the anatomical information provided by MRI. Positron emission tomography (PET)
and single-photon computed tomography (SPECT) imaging provide quantitative
information on blood flow and metabolic processes that can be combined with MRI.
Other important fields of application of multimodal registration are image-guided
therapy, neurosurgery, and orthopedic surgery [1]. Registration is also used in
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treatment planning [2], and brain atlases and mapping [2]. Developing applications
include multimedia patient records, postgenomic registration to characterize gene
function, registration of intra- and preoperative images in surgical interventions,
and treatment monitoring.

In the MRI field, registration along MR images acquired from the same subject
is also extensively used. Some examples are treatment verification by comparison
of pre- and postintervention images and growth monitoring. Another important
application is the spatial image realignment of each slice to its neighbors in volu-
metric image data and of each temporal frame in respect to the other acquired frames.
In fact, acquisitions requiring multiple breath-hold and gated imaging studies can
be expected to exhibit slice-to-slice and frame-by-frame misalignments due to patient
motion. Last, in functional magnetic resonance imaging (fMRI) [3,4] registration is
used both to correct image misalignment due to patient movement and to map the
functional images on anatomical images to localize activation regions.

To join the information provided by different images, the images must be
appropriately combined or fused. Before images can be fused, they must first be
geometrically and temporally aligned. This alignment process is known as 

 

regis-
tration

 

. The medical image registration field showed an impressive growth over the
past decades. In the PubMed database, the number of publications about image
registration increased from 10 in 1990 to about 140 in 2002 [5]. Among the different
image modalities, MRI holds the first place with about 25% of all records. In the
last decade, interest in registration in MRI is rather constant, while there is a growing
interest in functional MRI.

Many criteria can be used to classify registration methods [6]. If the regis-
tration procedure involves image coming from different modalities it is defined
as 

 

multimodal registration

 

. When the registration involves images produced by
the same modality, the registration is called 

 

unimodal

 

.
Criteria can be also related to the dimensionality of the images (2-D, 3-D, or

dynamic 3-D images), the nature of registration basis, the nature of the transfor-
mation (rigid, affine, projective, or curved), the interaction (manual, semiautomatic,
and automatic methods), the modalities involved, and the subject (intrasubject,
intersubject, or atlas).

Regarding the

 

 

 

nature of registration basis, image-based registration can be
divided into two main classes:

1. Extrinsic, i.e., based on foreign objects introduced into the imaged
space designed to be well visible in the pertinent modalities. The main
disadvantage of extrinsic methods is that they are invasive in nature.

2. Intrinsic methods, based only on the image data. Intrinsic methods can
be based on a limited set of salient points (landmarks), on alignment
of segmented structures (segmentation of features based), or on mea-
sures computed from the image gray values (voxel based). Landmarks
can be manually selected by the user (anatomical landmarks) or auto-
matically extracted (geometrical landmarks). Geometrical landmarks
correspond to the optimum of some geometrical proprieties, as corners

 

DK2411_C007.fm  Page 190  Thursday, June 16, 2005  5:52 PM

© 2005 by Taylor & Francis Group, LLC



 

Image Registration Methods in MRI

 

191

 

and local curvature extrema. In the segmentation-based methods, two
lines or surfaces sets (i.e., image features) are extracted from both
images and used as input for the alignment procedure. The voxel-based
methods operate directly on the image gray values. In principal axes
and moment-based methods, the image content is reduced to a repre-
sentative set of vectors, and the registration is performed using the
extracted vector set. The methods using the full image content attempt
to perform the registration maximizing the cross-correlation, the mutual
information of some other relationship between images. Voxel-based
registration does not generally require extensive preprocessing, such as
segmentation or feature extraction.

About the interaction, the registration methods can be divided into:

1. Automatic, when the user only supplies the algorithm with the image
data

2. Semiautomatic, when the user has to initialize the algorithm perform-
ing the segmentation or have to accept or reject suggested registrations

3. Interactive, when the user does the registration himself, helped by the
software

In automatic or semiautomatic registration algorithms, there are generally
three main aspects:

1. The search space is the class of potential transformations, such as rigid,
affine, and elastic, used to align the images. Three-dimensional (3-D)
rigid-body registration has six degrees of freedom: x, y, and z transla-
tion and rotation about x, y, and z axes. Affine transformations add
shearing and scaling. The most general class of transformation, elastic,
or nonlinear registration, has in theory infinite degrees of freedom.

2. The similarity metric is an indicator of how well the features or intensity
values of two images match. The sum of squared intensity difference [7],
generalized correlation coefficient [8], ratio image uniformity, and infor-
mation theoretic measures [2,3,9] are commonly used similarity measures.

3. The search strategy optimizes the similarity metric. Examples include
local or global searches, multiresolution approaches, and other optimi-
zation techniques.

In this chapter, we will first formulate the registration problem, focusing on
rigid 3-D registration. Although nonlinear registration is more realistic in principle
because tissues are deformable in some manner, rigid registration is often used in
unimodal registrations, which is a field of particular interest in MRI. Moreover,
when a large set of data is involved, as usually happens in MRI (e.g., fMRI, cardiac
imaging), nonlinear registration requires excessive computational power. In the
following text, similarity metrics are discussed with a focus on the mutual infor-
mation measure, which is most often used in the MRI registration field. We will
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also discuss some optimization techniques, from the classical ones (i.e., simplex
and Powell methods) to the more advanced (i.e., genetic algorithms). Because
registration of image sequences is often needed in the MRI field, we cover exten-
sion of the standard registration procedures. Finally, we describe two examples of
the application of registration procedures to MRI data (fMRI images and cardiac
perfusion MRI images).

 

7.2 THE REGISTRATION PROBLEM

 

In the following, we assume that an image can have two or three dimensions.
Let 

 

T

 

 denote the spatial transformation that maps coordinates (spatial locations)
from one image or coordinate space to another image or coordinate space. Let

 

p

 

A

 

 and 

 

p

 

B

 

 denote coordinate points (pixel locations) in images A and B, respec-
tively. The image registration problem is to determine 

 

T

 

 so that the mapping

(7.1)

results in the best alignment of A and B. The domain where 

 

T

 

 is defined is named
the 

 

search space

 

 of the registration problem. The function that defines the quality
factor for the alignment is named the 

 

similarity metric

 

 or 

 

registration metric

 

. The
algorithm used for the search of the function 

 

T

 

 that maximizes the chosen metric
is named the 

 

search strategy

 

.
In the most general case, two medical images may differ from another by any

amount of rotation about an axis, by any amount of translation in any direction,
may differ in scale, and nonrigid transformation can be present. Moreover, these
features may vary locally throughout the volumetric extent of the images. The nature
of the 

 

T

 

 transformation characterizes the search space of the registration problem,
ranging from nonlinear transformation, with virtually infinite degrees of freedom,
to rigid registration with six degrees (for 3-D volumes) of freedom. Intermediate
cases are affine transformations, in which the images can be scaled and sheared.

It is important to note that MRI are codified in digital image format, typically
the Digital Imaging and Communications in Medicine (DICOM). The DICOM format
includes some information that can be useful for image registration, as the position
and the orientation of the image in respect to the acquisition device and in respect
to the patient (as well as the voxel size) so that a preliminary registration can be
performed using this geometrical data, reducing the image misalignment. In the
unimodal registration of MRI images, the absence of image scaling can be ensured
by the use of the same acquisition device with the same acquisition parameters.
Moreover, because the pixel dimension in both images is known from the acqui-
sition parameters, the scaling factor can be easily computed and image scaling
can be easily applied. The main sources of nonrigid distortions in MRI are due
to the subject’s breathing during acquisition. These kinds of distortions affect
cardiovascular and abdominal MRI, whereas they are negligible in brain imaging.
Moreover, because heart movement is not rigid in nature, some deformation of

T p p T p p: ( )A B A B→ ⇔ =
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the heart shape can occur due to poor EEG synchronization in cardiac MRI. In
practice, we can often suppose that the images to be registered will differ only
for a rigid transformation.

For 3-D rigid-body registration, the mapping of coordinates
into can be formulated as a matrix multiplication in homogeneous
coordinates:

(7.2)

where [

 

t

 

x

 

, 

 

t

 

y

 

, 

 

t

 

z

 

] are the translation vectors and [

 

α

 

, 

 

β

 

, 

 

γ

 

] are the rotation values
around the three axes.

Because digital images are sampled on a discrete grid, but 

 

T

 

 generally maps
to continuous values, interpolation of intensities is required. The interpolation
process can affect the effectiveness of the registration, so that the choice of an
appropriate interpolation algorithm plays an important role in the development of
the registration procedure. This topic will be extensively covered in the following

First, we define a reference image and a floating image, which is the image
to be registered in respect to the reference one. The similarity function between
the reference image and the floating one is evaluated. An optimization algorithm
is used in order to estimate the best transformation function (

 

T

 

) that maximizes
the similarity function; the estimate function is used to transform the floating
image. An interpolation operation is also required. If the result is satisfactory, the
procedure ends; if not, a new transformation function is evaluated, and a new
loop is executed. The key issues in the registration algorithm are the choice of
the similarity metric and the choice of the optimization algorithm. These issues
will be described in the following subsections.

Sometimes, the images involved in registration can be preprocessed in order
to improve the effectiveness of the registration algorithm. The most common pre-
processing step is defining a region of interests in images to exclude structures that
may negatively affect the registration process. Other preprocessing techniques con-
sist of image filtering to remove noise, correction for intensity inhomogeneities,
and image resampling to achieve the same spatial resolution in both images.

 

7.3 SIMILARITY METRICS

 

The similarity metric for image registration should satisfy some constraints. First,
similarity metrics must be robust; that is, they should converge to a global
maximum at the correct registration. The best registration can be in some cases
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a local (not global) optimum. However, this problem can be overcome by selecting
an initial orientation close to the correct registration, as we have seen in the
previous paragraph. We will assume in the following text that the global optimum
is obtained at the correct registration transformation. Another important quality
of the similarity metric is the computational complexity that affects the time
required to perform the registration.

Generally, three types of similarity metrics have been proposed in image
registration [10]. They are based on corresponding points, corresponding surfaces,
and corresponding image intensities. We can group the first two methods in one
and summarize the two main approaches to registration as follows:

1. Similarity measure by extraction of some geometrical features from
the two images: The extracted features are compared, and a similarity

 

FIGURE 7.1

 

Flowchart of the general registration problem between two images.
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index is extracted. The main advantage of this approach is about the
dramatic reduction of required processing time. In fact, the dimension
of extracted features is usually at least a magnitude order below the
dimension of images (i.e., lines vs. 2-D images, surfaces vs. 3-D
images). The main disadvantages are the arbitrary choice of the feature
to extract and the drawbacks in the correct extraction of the features.

2. Similarity measure by direct comparison of images to be registered:
The main disadvantage of this approach is the required processing time.
In fact, all image data are involved in the analysis. The main advantage
is the independence from any user input. This kind of method is also
known as voxel-based (3-D) or pixel-based (2-D) methods.

Both approaches were extensively used for medical image registration. An
example of the first approach is the registration procedure for two MRI cardiac
images. We have to extract the same geometrical feature from both reference and
floating images. In the case of cardiac MR image registration, the left ventricle
contour is a natural choice and can be extracted from both images with an
automatic algorithm such as the one described in Reference 11. If the left ventricle
contours were correctly extracted from both images, the similarity between two
images can be defined as the difference between the two extracted contours,
introducing a definition of the distance between two closed curves. An optimi-
zation process can be used to minimize the previously defined distance in per-
forming the image registration. An example of the previously described procedure
is the iterative closest point (ICP) algorithm introduced by Besl and McKay [12];
it is a general-purpose method for the registration of two generic point sets
representations, including line segments sets, implicit curves, parametric curves,
and generic surfaces. At the end of the optimization process, we have the rotation
matrix and the translation vector that register the two curves with each other. The
convergence theorem guarantees the achievement of a local minimum. The roto-
translation matrix can be now applied to the floating image to perform the
registration. The example shows both the advantages and the disadvantages of
the feature-based approach: the registration operation involves 1-D data (i.e., the
extracted contour) and consequently is very fast and accurate. On the other hand,
the feature extraction (i.e., the localization of left ventricle contours) can be
difficult and error prone. In conclusion, the use of feature-based algorithms is
suggested only when fast and effective segmentation algorithms are available on
the images to be registered.

The term 

 

voxel-based methods

 

 implies the comparison of gray levels of the
images to be registered.

The simplest metric involves the use of difference or absolute difference
between images (mean square difference):

(7.3)MQ a bi j

i j S

( ) ( )
,

A, B = −
∈

∑ 2
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where (

 

i,

 

 

 

j

 

) denotes the couple of corresponding voxels in the two images, and 

 

S

 

is the domain where both images are defined. The introduction of the 

 

S

 

 domain
means that the metric must be computed only in the geometrical region where both
images are defined. This approach holds in all voxel-based metrics. This simple
metrics can be effectively used when the images to be registered are sufficiently
similar.

 

7.3.1 M

 

UTUAL

 

 I

 

NFORMATION

 

Much of the current work on biomedical image registration utilizes information
theoretic voxel similarity measures, in particular, mutual information (MI) based
on the Shannon definition of entropy[13,14]. The MI concept comes from infor-
mation theory, measuring the dependence between two variables or, in other
words, the amount of information that one variable contains about the other. The
MI concept measures the relationship between two random variables, i.e., inten-
sity values in two images: if the two variables are independent, 

 

MI

 

 is equal to
zero. If one variable provides some information about the second one, the 

 

MI

 

becomes greater than zero. 

 

MI

 

 is related to the image entropy by:

(7.4)

where X and Y are the two images and 

 

H

 

(.) is the entropy of a random variable,
and is defined as:

(7.5)

The joint entropy of two images X and Y is:

(7.6)

All entropies must be evaluated on the domain where both images are defined,
usually as overlapping areas. Normalized mutual information (NMI), given as

(7.7)

is less sensitive to the size of the overlap [15] and can be used instead of MI.
The probability distribution for the evaluation of 

 

MI

 

 and 

 

NMI

 

 can be estimated
with Parzen windows, histograms, or other probability density estimators. The
most common method uses images histograms. Let Q and K be images with 

 

M

MI H H H( ) ( ) ( ) ( )X; Y X Y X, Y= + −

H P x P xi i

xi X
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pixels each assuming 

 

N

 

 gray levels 

 

g

 

1

 

, 

 

g

 

2

 

,

 

…

 

,

 

g

 

N

 

. The mutual information 

 

MI

 

between Q and K can be defined as:

(7.8)

where 

 

H

 

(.) is the entropy of an image. 

 

H

 

(Q) can be written as:

(7.9)

 

P

 

(Q = 

 

g

 

i

 

) means the probability that a pixel in 

 

Q

 

 image will assume the
value 

 

g

 

i

 

.
So, the image entropy can be written in terms of the image histogram :

(7.10)

Also, the joint entropy of two images Q and K with the same number of
pixels 

 

M

 

 and the same gray-level range 

 

N

 

 can be written in terms of joint image
histogram :

(7.11)

is equal to the number of simultaneous occurrences of Q = 

 

i

 

 and
K = 

 

j

 

.
The MI registration criterion states that the MI of the image intensity values

of corresponding voxel pairs is maximal if the images are geometrically aligned.
Because no assumption is made about the nature of the relation between the
image intensities, this criterion is very general and powerful. MI has been shown
to be robust for both multimodal and unimodal registration, and does not depend
on the specific dynamic range or intensity scaling of the images. The MI as
previously defined is not a negative number. Because many optimization algo-
rithms are formulated as minimization algorithms, the negative of 

 

MI

 

 (

 

MI

 

) is
often used as a similarity metric.

 

7.3.2 P

 

HANTOM

 

 E

 

XPERIMENTS

 

In order to explain the differences among similarity metrics, an experiment was
performed using synthetic images. A 3-D phantom was realized, constituted by
two coaxial elliptical cylinders. Three regions were defined with three different
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The phantom was rotated from –5

 

°

 

 to +5

 

°

 

 in 40 steps, and the normalized values
of square root metric (MQ) and MI between all the rotated images and the original
image (corresponding to 20th frame) were plotted (Figure 7.2B).

From the plot, the two metrics converge to the correct alignment in a con-
tinuous manner; the MQ metric shows a “smooth” convergence around the correct
alignment value, whereas MI presents a clear maximum corresponding to the
20th frame.

The same image sequence was modified including a signal value change along
frames (Figure 7.3A), simulating the presence of an MR contrast medium that
diffuses in blood and in muscular tissues. In this case, the shape of the MI metrics
remains continuous and without local maxima, while the MQ metric shows the
presence of a local maxima at the –3° location (Figure 7.3B). The proposed example
shows that, in the presence of signal changes that do not modify the pattern
distribution in images to be registered, metrics related to the image histogram are

FIGURE 7.2 (A) Synthetic phantom and (B) MQ and MI metrics values for rotation
angles from –5° to + 5°.

FIGURE 7.3 (A) Synthetic phantom with signal change during time and (B) the related
MQ and MI metrics values for rotation angles from –5° to + 5°.
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more robust in respect to those directly related to voxel values. In MR image
processing, signal changes in the image of the same anatomical district can often
occur, so the use of information-based metrics can be useful. Signal changes can
be related to the use of a contrast agent (i.e., first-pass cardiac and brain perfusion)
and to different acquisition device settings (i.e., images of the same patient
acquired in different times).

7.4 THE INTERPOLATION EFFECT
IN THE REGISTRATION PROBLEM

When subvoxel translation or image rotation is involved, image interpolation (also
defined as resampling) is also required to obtain the roto-translated image. In the
interpolation operation, the coordinate grid is defined by the voxel locations in the
reference image. The voxel values of the roto-translated floating image must be
recomputed in the coordinate grid. Several methods have been proposed for inter-
polation of medical images; an extended review can be found in [16,17]. The main
interpolation methods are truncated and windowed sinc, nearest neighbor, linear,
quadratic, cubic B-spline, and Lagrange and Gaussian interpolations. Because the
interpolation operation has to be repeated for each computation of the similarity
function, both interpolation accuracy and computational complexity are important
in the choice of the interpolation method. In the MRI field, some interpolation
algorithm optimized for MR images [18] have been proposed. These algorithms
use sinc-based interpolation, taking into account the bandwidth of the MR signal
to find the best sinc shape. These methodologies, although more effective in respect
to traditional methods, are usually too slow to be adopted in the solution of the
registration problem. Instead, the interpolation required to obtain the final, registered
image is performed only once, and the choice of an accurate interpolation method
is appropriate.

The main trouble with interpolation operation is that it can modify the gray-level
values, affecting the evaluation of the similarity function. This effect can lead to
incorrect registration results if a histogram-based metric such as MI or NMI is used.
Often, the image dynamic is reduced to avoid this effect.

The simplest interpolation algorithm is the nearest neighbor interpolation, in
which the new voxel values are recomputed as the value of the closest neighboring
voxel. This algorithm preserves the gray values of the original voxels but makes the
registration metric insensitive to intravoxel misalignment because image movements
less than half of the pixel size do not modify the interpolated images.

A more effective interpolation algorithm is trilinear interpolation (bilinear in
2-D images), in which the values of recomputed voxels are evaluated as the
weighted sum of the neighboring voxels. This technique introduces new gray
values in the interpolated image.

When the similarity function is based on joint histogram computation as in
MI, it is preferable to use an interpolation technique that preserves the gray-level
distribution. This technique, called trilinear partial volume distribution (PV)
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interpolation, updates the joint histogram for each voxel pair in the two images.
Instead of interpolating new intensity values, the contribution of the image inten-
sity of each voxel to the joint histogram is distributed over all the intensity values
of the neighboring voxels, using the same weights as for trilinear interpolation.

Figure 7.4 shows the previously described interpolation algorithms. Nearest
neighbor interpolation and trilinear (bilinear, in the present 2-D example) inter-
polation find the reference image intensity value at position p and update the
corresponding joint histogram entry at p, whereas PV interpolation distributes
the contribution of this sample over multiple histogram entries defined by its NN
intensities, using the same weights as for bilinear interpolation.

To explain the differences among the three methods, we propose an experiment
on a synthetic data set. A metric related to image voxel values (i.e., the mean square
difference [MSD]) and a metric related to voxel statistic distribution, such as MI,
were tested. Two different interpolation techniques were adopted, trilinear interpo-
lation (TRI) and trilinear partial volume distribution (PV). The method of the exper-
iment has been tested on a simulated data set that reproduces a real heart shape.

FIGURE 7.4 Three types of interpolation for the evaluation of the joint histogram.
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The pixel resolution was 1.2 mm with a 5-mm slice thickness. Random 3-D roto-
translation was imposed on the data set and the efficiency of the registration
procedure was evaluated for the MSD metric with trilinear interpolation (MSD-
TRI), MI metric with trilinear interpolation (MI-TRI), and MI metric with trilinear
PV distribution interpolation (MI-PV) approaches. MI-PV performs the registra-
tion of data set best, followed by MSD and MI-TRI.

As an example, in Figure 7.5 the normalized values of MSD, MI-TRI, and MI-
PV are shown vs. the translation along the z axis (i.e., the heart’s longitudinal axis).
The two data volumes to be registered were shifted by 1 mm along the z axis. The
three approaches lead to comparable results, but MI-TRI and MSD present local
maxima that can trap the optimization algorithm, leading to incorrect results.

7.5 OPTIMIZATION TECHNIQUES IN IMAGE 
REGISTRATION

Determination of the parameters set that maximizes a multivariable function is
called the optimization problem. In the rigid registration problem, the optimization
algorithm should find the rotation and translation parameters that will maximize
the similarity function. If the registration is elastic, the number of parameters is
virtually infinite and should be reduced by introducing appropriate hypotheses. A
commonly used approach is to perform a rigid registration extended to the whole
image, followed by a local elastic registration. The elastic registration is constrained
to some mathematical model to limit the needed number of parameters.

To reduce the required processing time, a multiscale approach is often
used [19,20] in which the registration is an iterative process. In the first step,

FIGURE 7.5 Registration with MSD, MI-TRI, and MI-PV approaches on simulated data.
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low-resolution images are registered. The result of this step is used as initial estimate
for the next registration that involves images at higher resolution. The process is
iterated until the best available resolution is reached. The main problem encountered
in the registration process is the presence of local maxima of the similarity metric.
Many similarity metrics, such as MI, are irregular and rough and are often trapped
in local optima. In particular, this problem affects the multiresolution approach,
because the global optimum may not be present in lower resolutions.

In conclusion, the choice of the appropriate optimization technique is a com-
promise between the effectiveness of the method (i.e., the ability to find the global
optimum) and the processing time required for the optimization process. Local
methods, such as the Powell method [21], conjugate gradient [22], and the Leven-
berg–Marquard or simplex algorithms [23] provide good performance but do not
guarantee that the global optimum of the similarity function will be reached. On
the other hand, global optimization methods such as simulated annealing [24],
genetic algorithms [25], tabu search [26], and particle swarm optimization [27] are
generally more expensive in terms of processing time although they ensure the
convergence to a global optimum under some conditions. An extensive description
of the optimization is beyond the scope of this chapter. In the following text, we
describe two representative methods of the two classes, the Nelder–Mead simplex
algorithm and the genetic algorithm approach.

7.5.1 NELDER–MEAD SIMPLEX ALGORITHM

The Nelder–Mead algorithm is one of the most well-known optimization algo-
rithms, also known as AMOEBA from the name of its implementation in the
book Numerical Recipes [28]. It is often able to find reasonably good solutions
quickly with only a few function evaluations per iteration. The convergence
properties are less than satisfactory, so a number of variants have been proposed
in the literature that attempt to address such issues [29].

The amoeba algorithm maintains at each iteration a nondegenerate simplex,
a geometric figure in n dimensions (the number of dimensions is equal to the
number of optimization parameters), that is, the convex hull of n + 1 vertices,
x0, x1, …, xn in the search space, and their respective function values. In the
solution of the registration problem, the function is the similarity metric. In
each iteration, new points are computed, along with their function values, to
form a new simplex. The algorithm terminates when the function values at the
vertices of the simplex satisfy a predetermined condition. In the case of 2-D
rigid registration (N = 3), one iteration of the amoeba algorithm consists of the
following steps:

Order: Order and relabel the four vertices as x0, x1, x2, and x3, such that
f(x0)  f(x1)  f(x2)  f(x3); x0 is defined the best vertex, while x3 is the
worst point, and x2 is the next-worst point. The algorithm computes x
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as the centroid of the three best points in the simplex (i.e., all vertices
except x3).

Reflect: Compute the reflection point xr ,

Evaluate f(xr). If f(x0)  f(xr) > f(x4), accept the reflected point xr and termi-
nate the iteration.

Expand: If f(xr) > f(x0), compute the expansion point xe,

If f(xe) > f (xr), accept xe and terminate the iteration; otherwise, accept xr

and terminate the iteration.
Contract: If f(xr) < f(x3 −1), perform a contraction between and xn:

If f(xe) f(xn) accept xe and terminate the iteration.
Shrink simplex: Evaluate f() at the three new vertices:

The suggested values for the parameters are: α = 1, β = 1, ζ = 0.5, and η = 0.5.
The simplex algorithm is often used in the solution of the registration problem

due to its small computational complexity. This allows work on large data sets to
be completed in a reasonable time. Another application of the simplex algorithm
is to perform a preliminary registration followed by a more effective registration
executed with a more complex search strategy. In the last paragraph, an application
of the Nelder–Mead algorithm, together with the Powell algorithm, will be
described.

7.5.2 GENETIC ALGORITHMS

Genetic algorithms are inspired by Darwin’s theory of evolution, and use an
evolutionary process to find the best solution of an optimization problem. Algo-
rithms begin with a set of individuals (represented by chromosomes) called a
population. Each set of chromosomes represents a possible set of parameters of
the function to be optimized. The value of the function (i.e., the similarity function
in the registration problem) for a certain chromosome set is called fitness of the
corresponding individual. Selecting the individuals with the best fitness, a new

x x x xr = + −α( )3

x x x xe r r= + −β( )

x

x x x xe = + −ζ ( )3

≥

x x x xi i= + −0 0η( )
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population is formed. This is motivated by the hope that the new population will
be better than the old one. The process is repeated until some condition (for
example a certain population or improvement of the best solution) is satisfied.

The technique can be summarized thus: (1) a population of individuals
encoded as chromosomes propagates (2) copies of these individuals based on
external fitness criteria, creating (3) a generation of new individuals by mutating
chromosomes and recombining members of the population. Genetic algorithms
for the solution of a registration problem are typically implemented as follows:

1. A similarity function is chosen that describes the fitness of any potential
solution. The similarity function will be selected from a number of
parameters, depending on the registration algorithm.

2. A population of candidate solution is initialized. Typically, each solu-
tion is described by a vector x, called a chromosome, with elements
called genes. In the case of a 3-D rigid registration, the chromosome
is a six-element vector.

3. Each chromosome is used to evaluate the fitness function (i.e., to
perform a roto-translation of the floating image). The value of the
fitness function (e.g., the mutual information value between the refer-
ence image and the roto-translated one) is used as a fitness score.

4. We assign to each chromosome a probability of reproduction, depend-
ing on the fitness score. The reproduction probability will be propor-
tional to the fitness of the chromosome in respect to the fitness of the
others in the population.

5. A new population of chromosomes is generated by taking into account
the reproduction probability defined in the previous task. The new
population is generated recombining the chromosomes of the existing
population.

6. A random mutation of the chromosomes is introduced.
7. The process is halted if a suitable solution has been found. Otherwise,

the process returns to step 3.

The key issues in the implementation of the genetic algorithm are the rules
for producing the new generation and the amount of random mutation to be
introduced. Regarding the latter, the mutation probability should be very small
(104 is a typical value) to avoid damaging the good solutions that evolve during
the iterative process. The role of the random mutation is to explore new search
regions by avoiding premature convergence of the algorithm to suboptimal solu-
tions.

Several rules for creation of the new generation have been proposed in literature.
Usually, a percentage of old individuals (i.e., the ones with the best fitness) are
saved and included in the new generation. New individuals are then created to build
a population with the same size. A probability of reproduction is assigned to each
individual, depending on the fitness of the individual in respect to the fitness of the
others in the population. New individuals are created combining the chromosomes
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of two or more parents extracted from the population. “Roulette wheel” selection
is often used to perform this task. Figure 7.6A shows how roulette wheel selection
works in the case of six individuals with fitness f0,…, f5. A circle (the wheel) is
divided into six sectors with a width proportional to the normalized fitness ( ftot
means the sum of f0,…, f5). A angle is randomly extracted (the arrow in the figure),
and the individual corresponding to the sector indicated by the arrow is selected
for reproduction. In this way, all the individuals have a probability to reproduce,
and the probability is proportional to the chromosome fitness. The process is
repeated twice for each new individual to be produced in order to select the two
parents involved in the reproduction process. The chromosomes of the two parents
are usually combined using the random selection of a crossover point (Figure 7.6B).
Genetic algorithms are generally more robust in respect to the presence of subop-
timal maxima in the fitness function. The main disadvantage is the great computa-
tional complexity; in fact, the fitness function has to be evaluated for each individual
in each iteration. However, genetic algorithms are inherently parallelizable, and the
time required for optimization is independent of the number of parameters of the
fitness function. Therefore, they can be effectively applied to registration problems
involving complex transformations such as the elastic ones, and in global registra-
tion of multiple data sets.

7.6 REGISTRATION OF MULTIPLE DATA SETS

MRI data sets are often composed of a large number of parallel slices that cover
a 3-D region inside the body. Slices can be acquired in different times, so patient
movement, breath, or poor EEG synchronization in cardiac imaging can lead to
image misalignment along the slices. Reconstruction of such data sets into 3-D
volumes, via the registrations of 2-D sections, is often needed in order to perform
correct 3-D visualization and morphometric analysis (e.g., surface and volume
representation) of the structures of interest. Consecutive slices may differ signif-
icantly owing to the fact that they represent different anatomical locations, and
the difference along slices is more pronounced when the distance between images

FIGURE 7.6 (A) Roulette wheel selection for genetic algorithms and (B) crossover.
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involved in the registration is large. The purpose of the registration is to realign the
slices in order to reconstruct the correct shape of the organ under examination. A
typical example is in cardiovascular imaging, in which the shape of the heart or of
valves should be reconstructed from parallel sections, correcting artifacts due to
patient breath. In the present problem, the registration method must be robust to
missing data or outliers. Registering the slices sequentially (the second with respect
to the first, the third with respect to the second, etc.) sometimes leads to misregis-
tration. In fact, if an error occurs in the registration of a slice with respect to the
preceding slice, this error will propagate through the entire volume so that a global
offset of the volume may be observed due to error accumulation. If all the slices are
registered in respect to the one taken as reference, differences between slices can be
too large to allow correct registration.

Krinidis et al. proposed a solution introducing the use of a global energy
function having as variables the rigid transformation parameters of each slice
[30]. The global energy function is minimized with the ICP algorithm, which is
able to register multiple views of a 3-D structure. The implemented global energy
function is associated with a pixel similarity metric based on the Euclidean
distance transform.

Consider a set of N slices (I1, … , IN). A pixel in a slice is represented by
p = (x, y). The alignment of all images in the sequence can be achieved by
maximizing an energy function E(⋅), which expresses the similarity between the
2-D images:

(7.12)

where f(⋅)is a similarity metric, denotes a rigid transformation matrix. The
chosen metric energy function accumulates the similarity between each trans-
formed image and all of the other already-transformed images. Assuming that
the similarity function is symmetric leads to the following global maximization
problem, where Wij’s are appropriate weights for the similarity between each
slice pair:

(7.13)

Without any additional constraints, the optimization problem has an infinite
number of solutions. If the transformation applied to an arbitrary chosen image
is constrained to be the identity transformation, we have 3(N−1) parameters to
estimate in the case of 2-D rigid transformation. If the transformation is nonrigid,
the number of parameters to estimate becomes virtually infinite. In this case,
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some constraints have to be introduced about the nature of nonrigid transforma-
tion in order to reduce the number of unknown parameters involved in the
registration operation.

To simplify the optimization problem, we can suppose that Wij = 0 for some
(i, j) couples. In particular, we can state that Wij = 0 if |i-j | >R. This means that the
similarity function is computed only for near slices that present greater similarity.
The optimization algorithm described is based on random selection of a slice Ii in
the sequence followed by local registration in respect to Ii of all other slices in the
neighborhood of i. The process is iterated until all slices have been processed.

The local registration is performed by extracting contours for involved images
and minimizing the distance between extracted contours by an iterated conditional
models (ICM) optimization algorithm. Note that image contours have to be
extracted just one time at the beginning of the registration process. The described
methodology clearly shows how the solution of the global registration problem
will require the introduction of some hypothesis to simplify the problem, and the
use of similarity metrics that can be computed in a very short time.

A 3-D data set can be also acquired several times following the evolution
of a phenomenon under investigation, as happens in monitoring the perfusion
of a contrast medium in tissues (e.g., the brain on cardiac perfusion) with an
endogen signal change (e.g., fMRI). These data sets are usually defined as
dynamic 3-D or 4-D acquisitions. In these cases, misalignment in time acquisi-
tion will result in artifacts in signal monitoring. Registration of a 4-D data set
is often reduced to a number of registrations of image pairs in order to reduce
the required computation time and to exploit the available registration algo-
rithms. However, global registration of multiple data sets can lead in general to
better results.

In theory, it is possible to extend the concept of similarity metrics to more than
two images. As an example, in square root metric, the similarity S along N images
can be defined as the squared root of the sum of quadratic distances of each
corresponding point in the definition field Ω, where the distance along the N
corresponding points is a suitable distance metric defined in an N-dimensional
space. In this approach, the similarity metric depends on all the registration param-
eters (e.g., 6N parameters in 3-D rigid registration) and can be optimized as pre-
viously described. Following information theory, a higher dimensional MI metric
can also be defined.

In the case of three images MI becomes:

MI(A:B:C) = H(A) + H(B) + H(C)  H(A,B)  H(A,C)  H(B,C) + H(A, B,C)
(7.14)

The MI defined in this manner may not necessarily be nonnegative, so it is
not a true metric. An alternate definition is often used in medical image registra-
tion [31]:

MI(A:B:C) = H(A) + H(B) + H(C)  H(A,B,C) (7.15)
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This definition is nonnegative, but is not a natural extension of the MI between
two variables and requires estimation of a high-dimensional probability mass
function, which is computationally very expensive when the number of involved
images increases. A different approach is suggested by Zhang and Rangarajan [32].
They define a different pseudometric that for two images is:

R(X,Y) = H(X|Y) + H(Y|X) (7.16)

This metric is related to MI by the relationship:

R(X,Y) = H(X,Y)  MI(Y,X) (7.17)

The main advantage of this metric is the possibility of a straightforward
extension to the multidimensional case. For three images the metric becomes:

R(X,Y,Z) = H(X|Y,Z) + H(Y |X,Z) + H(Z |X,Y) (7.18)

And for N images:

(7.19)

To reduce the computational complexity of the metric, an upper bound of R,
which is also a metric, can be used that does not require the computation of high-
order joint probability. In the case of three images we have:

(7.20)

so that the metric K can be minimized instead of R:

(7.21)

Note that the computation of K does not require the computation of multidi-
mensional joint histograms. The definition of upper bound can be extended to
more than three images.
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The use of multidimensional registration metrics is usually limited to the simul-
taneous registration of only three images. A common example is the contemporary
registration of PD, T2, and T1 images of the same anatomical district. The two
main points that discourage this technique are the difficulty in defining a suitable
metric with more than two images and the high computational complexity of the
related optimization process. In fact, the computational load required by optimiza-
tion algorithms dramatically increases with the number of used parameters, whereas
the algorithm effectiveness decreases in the same manner. Moreover, registration
of only two images is a well-known problem, and many effective algorithms to
solve this issue are available. Global registration methods are usually based on a
series of image pair registrations.

We can define a global similarity score along a sequence of N images I1,…,
IN as:

(7.22)

The global similarity index is defined as the weighted sum of the similarity
of all the possible couples of images. We suppose in this formulation, as usually
happens, that the similarity between two images is a symmetric function, so
S(Ii, Ij) = S(Ij, Ii). Note that the computation of the global similarity function
requires N(N −1)/2 evaluations of the metric and depends on NK parameters,
where K is the parameter related to each image (3 in 2-D rigid registration, 6 in
3-D rigid registration, etc.). Because the direct research of the SG maximum by
means of an optimization algorithm is too computationally expensive, some
alternative methods can be used.

In the first approach, an image in the sequence is chosen as a reference image
(r), and only the weights that include the r index are different from zero. Equation
7.22 becomes:

 (7.23)

and SG can be maximized by maximizing the sum terms. This is equivalent to
perform the registration of all images in the sequence respect to the referenced
image.
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Equation 22 becomes:

(7.24)

This is equivalent to performing the registration of each image in the sequence
in respect to the previous one. Both the methods are extensively used in image
sequence registration. Regarding the second approach, it is important to note that
two consecutive images in the sequence are often almost similar, so the registra-
tion algorithm can better correct the misalignment. On the other hand, an error
in the registration of one image pair will affect the alignment of the temporal
sequence.

A third approach often used in literature is to create a virtual reference image
as the mean of all images in the sequence and to perform the registration in
respect to the virtual image:

(7.25)

All these simplified methods go far to guarantee a global optimum in the
registration. It has been empirically showed that the combination of these methods
can increase registration quality [33].

In some cases, the image sequence can be divided in groups of aligned images
with the presence of a misalignment along groups. As an example, in cardiac
perfusion MRI a subject was asked to hold his breath during examination, so that
we might have an initial image group with good alignment. When the contrast
medium is injected, a first subject movement will likely happen, starting a new
image group. A third group will start if the subject breaks the breath-hold state.
A second example is f MRI acquisitions, in which major subject movement is
related to paradigm changes.

In these cases, it may be preferable to perform a registration along qua-
sialigned groups followed by a registration along different groups (hierarchical
registration).

the value of the similarity between all image pairs is calculated, then a hierarchical
tree, grouping images pairs with a high value of the similarity function. In the
example, four groups (G1, …, G4) are identified at the low level of the hierarchy.
The algorithm performs the registration of all images inside each group. Groups
G1 and G2 are aligned, using a representative image extracted from each group
or two virtual images obtained averaging all images in each group. The resulting
group G5 is registered with the G3 group, and the obtained G6 group is registered
with the G4 group.
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Figure 7.7 shows the main steps of the hierarchical registration algorithm:



Image Registration Methods in MRI 211

The main advantage of this approach is to perform a large number of
registrations between image pairs that are yet almost aligned (i.e., the ones at
the low hierarchical level). This reduces the processing time and increases the
registration effectiveness. The small number of registrations between groups at
high levels in the hierarchy can be eventually performed by sophisticated
registration algorithms.

7.7 BRAIN IMAGES REGISTRATION

Image registration plays an important role in MR brain imaging, in particular, in
functional image analysis. In functional magnetic resonance imaging (f MRI), in
fact, the signal changes due to the hemodynamic response is small compared to
signal changes produced by subject movement, heartbeat, and respiration. It
should be noted that subject movement of just 100 µm can generate a change in
the signal larger than the one caused by activation. Respiration causes bulk
movements as well as changes in blood oxygenation that affect the BOLD signal.
Subject motion and respiration in MRI scanners cannot be completely eliminated,
so the functional images’ alignment must be performed in the postprocessing
phase. This operation usually involves rigid 3-D registration.

In a single fMRI study, the activation map obtained from a subject by
processing functional images is usually superimposed on a high-resolution struc-
tural MR image (typically, a T1-weighted MRI). The registration between the
two images requires a rigid registration, but in this case the gray-level distribution
along the two data sets can differ due to the different acquisition techniques.

FIGURE 7.7 A hierarchical algorithm for multiple image alignment.
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Moreover, the spatial resolution of the two sets differs as well. A local elastic
transformation can also be applied to correct the geometrical distortions intro-
duced by fMRI.

A third important application of image registration in fMRI studies is the
warping of images from a number of subjects into a common standard space in
order to compare the data coming from different experiments on different subjects.
The most known standard data space is the Talairach atlas [34]. The warping of
the images into an atlas requires some elastic transformation.

7.7.1 FMRI IMAGES REGISTRATION

Most current algorithms for motion correction in fMRI consider the head as a rigid
object, so that six parameters are needed to define the head as a rigid-body
transformation. The involved data sets are often anisotropic, and therefore an
appropriate transformation should be defined as previously described. Because
the fMRI signal is low, differences between images are small, and the sum of
squared differences between the image to be registered and the reference image
can be effectively used as a registration metric. This approach is used in SPM
and AFNI, the most well-known realignment packages for fMRI. However, the
use of more sophisticated metrics such as MI can avoid some artifacts produced
by the standard approach. Freire et al. [35] compared seven different motion
estimation procedures based on different choices of registration metric: two
different implementations of the difference of squares measure (SPM [36] and
AIR [37]); the Geman-McClure (GM) robust estimator [38], which takes into
account the existence of potential outliers; the ratio image uniformity function;
two symmetrical implementations of the correlation ratio (CR) [39], and MI.
Results suggested that GM, CR, and MI are robust in respect to the difference
of squares measure. Robust metrics such as GM or MI may be the best choices,
although in many applications the computational cost of these advanced metrics
may be too high in respect to the more simple algorithms required.

To improve registration quality, the registration operation is often followed
by a second registration in which all images are registered in respect to the mean
of all images realigned in the previous step. A variance image can be computed
together with the mean difference in order to provide a better weighting for
registration. In particular, the image voxels are weighted proportionally to the
inverse of the variance, so that voxels with a lower variance will have more weight
in the computation of the registration metric. As described in Section 7.6, more
sophisticated approaches can be applied to the registration of multiple data sets,
as happens in fMRI.

An important issue in fMRI experiments is the fact that subject motion is
often correlated with the experimental design. As an example, if the experimental
paradigm requires speech or hand motion, it is likely that head movement will
be highly correlated with the paradigm. In this case, it is extremely difficult to
separate the activation signals from correlated motion artifacts. In fact, methods
that use some measure of correlation between signal and paradigm to remove
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these artifacts [40] are also likely to remove some of the true fMRI signal.
Moreover, in fMRI registration some residual artifacts also can remain after an
“exact” image realignment [41], due to the latency of excited tissues when they
return to their original state. Both of these problems are yet unsolved.

7.7.2 MAPPING OF FMRI ON ANATOMICAL IMAGES

AND BRAIN ATLAS

As previously described, the spatial normalization (i.e., the registration of the
subject brain image into a standard coordinate space) is a common task in fMRI
imaging. The use of this procedure can be also extended to other applications,
such as those in which data coming from different subjects needs to be compared.

In the case of spatial normalization, the registration problem implies the use
of an elastic transformation, whereas the registration metric can be based on a
feature extraction (also known as label based) or a voxel-based (nonlabel based)
approach. In the feature extraction approach, some anatomical features are
extracted from the atlas. These have to be extracted from the subject image, and
the registration is performed finding the best transformation that superimposes
the two feature sets. Landmark points can be manually defined, but the process
is error prone and time consuming, and requires the presence of an expert operator.
Surfaces can be better identified in brain and can be automatically or semiauto-
matically extracted. Voxel-based methods use the similarity measures previously
described: the sum of squared differences, correlation, and MI.

To reduce the computational complexity of the elastic registration algorithms,
a multiresolution approach is often adopted in spatial normalization [42]. In this
approach, only a few parameters are determined at a certain resolution. As
example, the entire data volume is used to describe global frequency deformation.
The volume is then split in some subvolumes and the local frequency deformations
are calculated for each subvolume. The process is iterated until the needed
precision is achieved. Another approach involves the reduction of the registration
parameters to a small number (e.g., 9 to 12 parameters). This loss of precision
in registration accuracy allows the registration procedure to be performed in a
reasonable time. Moreover, in f MRI studies, different subjects can present dif-
ferent patterns of the brain anatomy, so high-resolution spatial normalization
appears to be unnecessary in many applications. The main problem in elastic
registration is the choice of constraints or priors that must drive the registration
process. Priors are usually incorporated by means of some Bayesian approach,
using estimators such as Maximum A Posteriori (MAP) or minimum variance
estimate (MVE).

7.7.3 FMRI REGISTRATION EXPERIMENT

To show the importance of the registration operation in fMRI, the previously described
procedure is applied to a data set of fMRI images acquired during a finger–thumb
tapping experiment in which the subject is asked to touch the index finger of the right
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hand with the thumb. In this experiment, the motor area of the cervical cortex is
activated in a well-known way. The fMRI data set is composed of 60 temporal
acquisitions (acquired every 3 sec), 128 ∞ 128 ∞ 24 images each, with a pixel size
of 2.2 ∞ 2.2 mm and a slice thickness of 7 mm. A standard multislice EPI sequence
was used. Functional images are mapped on a structural data set, composed of 8
slices, 256 ∞ 256 pixels each, with a pixel size of 1.1 ∞ 1.1 mm and a slice thickness
of 7 mm. The registration operation was performed using the AFNI software, based
on the AIR approach for the implementation of the registration.

Figure 7.8 shows the activation maps related to not-registered (left) and reg-
istered (right) data. It is clear from the figure that the registration is not able to
correct all the activation artifacts, because of the strong correlation between subject
movement and the imposed paradigm. However, registered images show a reduc-
tion of the artifacts in brain borders as well as an improved delineation of the

used to perform the registration along the image sequence. The detected move-
ments are in general very small (less than 2 mm). Continuous movements during
the examination are effectively revealed, while subcutaneous movements generated
by paradigm changes are often missed.

FIGURE 7.8 fMRI activation maps related to (left) not-registered and (right) registered
data.
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7.8 CARDIAC IMAGES REGISTRATION

The use of contrast medium (CM) to enhance the information provided by cardiac
magnetic resonance is growing. In fact, the use of contrast-enhanced images
allows joining the high-resolution anatomical information provided by MRI with
functional information obtained by means of the diffusion of contrast medium
(typically Gadolinium) in tissues. Contrast-enhanced MR images are widely used
in the study of the brain (i.e., brain perfusion imaging) as well as in medical
examination of other districts, such as extremities (knees, ankles, wrists, and
elbows). In this section, we refer in particular to myocardial perfusion imaging
that allows assessing the extent and type of coronary artery disease (CAD).

In myocardial perfusion imaging, several slices in short-axis view are
acquired over time, starting from the injection of contrast medium (Figure 7.10)
in order to follow its perfusion in myocardial tissues. To avoid image misalign-
ment, the patient under examination was asked to hold his breath during the
examination. The image size is about 256 ×  256 pixel with a planar resolution

FIGURE 7.9 Values of the six roto-translation parameters used to perform the fMRI
registration along image sequence.

FIGURE 7.10 Example of cardiac perfusion images.
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of about 1.2 mm. In each individual heartbeat (i.e., RR interval), a maximum of
three to four slices can be acquired during the 300 msec interval positioned in
diastole. The 3-D acquisition is repeated from 40 to 80 times, in order to follow
the diffusion of the contrast agent.

Consequently, the time needed for a complete acquisition can reach 40 to
80 sec or more (40 to 80 RR intervals); in many cases the entire examination
cannot be done in breath-hold state.

The quality of the myocardial perfusion can be assessed by qualitative eval-
uation of the signal intensity in the myocardium after the CM injection. In order
to perform a quantitative analysis of the myocardial perfusion, the signal intensity
changes in the acquired images must be evaluated. Therefore, intensity/time (I/T)
curves are extracted by measuring the intensity value in the region of interest in
the myocardium during oves time. Quantitative evaluation of the signal intensity
during time provides a useful clinical index. In cardiac perfusion imaging, the
maximum slope value of the I/T curve extracted from the myocardium is related
to the vitality of the cardiac tissue.

Because the acquisition protocol is made to obtain spatial alignment of all
frames, each pixel in an image frame should correspond to the pixels in the
other frames with the same geometrical coordinates. In this case, the area of
interest selection could be done on only one image in the temporal sequence,
enhancing both the reliability and the performance of the analysis. Unfortu-
nately, obtaining spatially aligned images is a difficult task in cardiac image
acquisition, in which image misalignment due to patient breathing and poor
ECG synchronization are commonly observed. Therefore, image registration is
often needed in the postprocessing phase.

The registration methods proposed in the literature cover many of the
approaches described in the present chapter: as manual registration using
anatomical markers defined by an expert operator along all images in the
temporal sequence [43,44] and as extractions of some geometrical features
(i.e., left ventricle cavity) from each frame and image registration by regis-
tering the extracted geometrical features [45,46]. Delzescaux et al. [47] pro-
posed a method based on the manual delineation of myocardium with right
and left ventricle on one frame in the sequence. An algorithm based on
template matching then performs the sequence registration. Bidaut et al. [48]
proposed a method based on the minimization of intrinsic differences between
each image and a reference image coupled to a 2-D (i.e., three parameters)
rigid-body correction. Voxel-based methods that operate directly on the image
gray values using MI as similarity metric are effective in the present problem.
In fact, the pixel values can change in dependence from the transit of the
contrast medium. Instead of pixel-value changes the statistics of gray-levels
distribution along the images remain almost the same, leading to an MI-based
registration effective in respect to other methods.

As previously described, the number of slices that can be acquired for each
volume is strongly limited by the acquisition time. Typically, only three to four
slices can be acquired during an RR interval. Acquiring more slices means
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increasing the acquisition time, making almost impossible the execution of the
examination in the breath-holding state. The availability of a small number of
slices implies that data are anisotropic, in the sense that the distance between two
slices acquired in the z direction is large in respect to the in-plane resolution on
the slice. In the 3-D registration approach, this implies that when an interpolation
operation is performed to calculate the transformed volume, the interpolation in
the z direction leads to large errors. For this reason, the registration problem is
often reduced to the alignment of N 2-D images using a rigid transformation.
In this case, the number of parameters to estimate reduces to 3(N −1).

In Section 7.5, the problem of global optimization of the registration
function was described in detail. In this example, we first performed perfusion
image registration by maximizing MI along time sequence frames in respect
to a reference image for each temporal sequence. The registration is performed
using the simplex optimization method. After the first step, a more accurate
registration of each frame with the previous one using the Powell method was
made. The user has to roughly identify the left ventricle, surrounding it with
a circular mask. Without the mask, the registration algorithm may try to register
structures that do not belong to the heart region. The method is consequently
semiautomatic.

The method has been tested on two kinds of image data set. The first set was
acquired from collaborative volunteers able to hold their breath and to reduce
movements during the entire examination. The second data set was acquired from
patients with suspected CAD disease scheduled for MRI examination. For each
examination, a total of 120 images was acquired, consisting of 3 short-axis slices,
each with 40 temporal frames acquired in diastolic phase. A total of five exam-
inations on volunteers and five examinations on patients were used for algorithm
effectiveness evaluation. Therefore, a total number of 30 temporal image
sequences was used.

In order to assess the effectiveness of the automatic registration procedure,
an expert user was asked to use the program with and without the use of the
automatic registration algorithm. For each spatial slice, the endocardial and epi-
cardial contours have been manually drawn. The contours were replicated along
all frames, and the user was asked to manually correct the endocardial and
epicardial borders. We used the overlapping area (OA) index as index for the
needed correction degree. The overlapping area is the common area between the
region selected in the developing image and the reference image, normalized by
the reference area.

without registration, on patient images. The value of OA index on patient images
is reduced by the registration procedure and becomes comparable with the index
measured on volunteer images.

From the presented example, we can infer that the use of an automatic
registration procedure based on maximization of the mutual information seems
to be effective in order to address the requirement of fast and automatic tools for
quantitative analysis of CM-enhanced MR images.
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The quantitative OA index was introduced in order to measure algorithm
effectiveness in a quantitative way. The results show that misalignments and
artifacts introduced by patient movement during the examination are greatly
reduced.
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OVERVIEW

 

This chapter provides a comprehensive survey of the motivations, assumptions and
pitfalls associated with combining signals such as functional magnetic resonance
imaging (fMRI) with electroencephalography (EEG) or magnetoencephalography
(MEG). Our initial focus in the chapter concerns mathematical approaches for
solving the localization problem in EEG and MEG. Next, we document the most
recent and promising ways in which these signals can be combined with fMRI.
Specifically, we look at correlative analysis, decomposition techniques, equivalent
dipole fitting, distributed sources modeling, beamforming, and Bayesian methods.
Due to difficulties in assessing the ground truth of a combined signal in any realistic
experiment — a difficulty further confounded by lack of accurate biophysical mod-
els of BOLD signal — we are cautious about being optimistic in regard to multi-
modal integration. Nonetheless, as we highlight and explore the technical and
methodological difficulties of fusing heterogeneous signals, it seems likely that
correct fusion of multimodal data will allow previously inaccessible spatiotemporal
structures to be visualized and formalized and, thus, multimodal integration will
eventually become a useful tool in brain-imaging research.

 

8.1 INTRODUCTION

 

Noninvasive functional brain imaging has become an important tool used by neu-
rophysiologists, cognitive psychologists, cognitive scientists, and other researchers
interested in brain function. In the last five decades, the technology of noninvasive
functional imaging has flowered, and researchers today can choose from EEG,
MEG, positron emission tomography (PET), single-photon computed tomography
(SPECT), magnetic resonance imaging (MRI), and fMRI. Each method has its own
strengths and weaknesses, and no single method is best suited for all experimental
or clinical conditions. Because of the inadequacies of individual techniques, there
is increased interest in finding ways to combine existing techniques in order to
synthesize the strengths inherent in each. In this chapter, we will (a) examine
specific noninvasive imaging techniques (EEG, MEG, MRI, and fMRI), (b) com-
pare approaches used to analyze the data obtained from these techniques, and (c)
discuss the potential for successfully combining methodologies and analyses.

Localizing neuronal activity in the brain, both in time and in space, is a central
challenge to progress in understanding brain function. Localizing neural activity
from EEG or MEG data is called electromagnetic source imaging (EMSI). EEG and
MEG each provide data with high temporal resolution (measured in milliseconds)
but limited spatial resolution. In contrast, fMRI provides good spatial but relatively
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poor temporal resolution. For some clinical purposes or general localization, simple
techniques can be used for source imaging. However, more specific localization of
the neural activity requires more sophisticated analyses; for these, researchers
turned to other disciplines that face similarly difficult localization problems (seis-
mology, remote sensing, noninvasive signal processing, and radar and sonar signal
detection) for inspiration and algorithms. Because the source localization techniques
used in EMSI serve as a starting point for subsequent multimodal analysis, we will
discuss these methods first. We will review canonical problems of source localiza-
tion and how they have been attacked by various researchers.

Following this section we discuss problems inherent in multimodal experi-
ments and then explore how MR modalities, which have high spatial resolution,
can be combined with existing EMSI techniques in order to increase localization

Demonstrated localization accuracy remains a distant goal confounded by the
lack of ground truth in any realistic experimental multimodal protocol and the
lack of a complete model of the BOLD signal. Some progress on some very
simple experiments in which there is a small number of isolated focal sources of
activity that are consistently present in all relevant modalities gives us hope that
this should be possible. We conclude that a convincing demonstration of increased
accuracy for a complex protocol would constitute a major success in the field.

Throughout this chapter we provide a consistent and complete set of mathe-
matical formulations that are stand alone; we also provide appropriate context

throughout this chapter). Our conclusions and suggestions for future work make
up the final section.

 

8.2 SOURCE LOCALIZATION IN EEG AND MEG

 

EEG and MEG have been widely used in research and clinical studies since the
mid-20th century. Although Richard Caton (1842 to 1926) is believed to have
been the first to record the spontaneous electrical activity of the brain, the term
EEG first appeared in 1929 when Hans Berger, a psychiatrist working in Jena,
Germany, announced to the world that “it was possible to record the feeble electric
currents generated on the brain, without opening the skull, and to depict them
graphically onto a strip of paper.” The first SQUID-based MEG experiment with
a human subject was conducted at MIT by Cohen [5] after his successful appli-
cation of Zimmerman’s SQUID sensors to acquire a magneto-cardiogram in 1969.
EEG and MEG are closely related due to electromagnetic coupling, and we will
use E/MEG to refer generically to either EEG, MEG, or both altogether. High
temporal resolution (measured in milliseconds) is provided by E/MEG, but it has
a major limitation: the location of neuronal activity can be hard to determine with
confidence. In the following subsection we lay out the specifics of each of the
E/MEG signals, the premises for conjoint E/MEG analysis, and the EMSI tech-
niques that have been adopted for use in multimodal analysis with fMRI data.
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for this notation in the existing literature (Table 8.1 presents the notation used

precision (for other reviews see George et al. [1], Nunez and Silberstein [2],
Salek-Haddadi et al. [3], and George et al. [4]).
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8.2.1 A

 

SSUMPTIONS

 

 U

 

NDERLYING

 

 I

 

NTEGRATION

 

 

 

OF

 

 EEG 

 

AND

 

 MEG

 

The theory of electromagnetism and Maxwell’s equations, under the assumption
of quasi stationarity,* theoretically defines the relationship between observed
magnetic and electric fields that are induced by the ionic currents generated inside

for more information about the biophysics of E/MEG signals).

 

TABLE 8.1
Notation Used throughout This Chapter

 

Symbol                                                    Meaning 

 

K 

 

Number of simultaneously active voxels 

 

N 

 

Number of voxels, i.e.,

 

 

 

spatial resolution of high spatial resolution 
modality (fMRI) 

 

M 

 

Number of EEG/MEG sensors, i.e.,

 

 

 

spatial resolution of low spatial 
resolution modality 

 

T 

 

Number of time points of high temporal resolution modality (EEG, MEG) 

 

U 

 

Number of time points of low temporal resolution modality (fMRI) 

 

L 

 

Number of orthogonal axes for dipole moment components, 

 

L

 

 Å_{1, 2, 3} 

 

I

 

n

 

Identity matrix (

 

n

 

 

 

×

 

 

 

n

 

)
0 Zero matrix of appropriate dimensionality

 

X 

 

General E/MEG data matrix; can contain EEG or MEG data or both (

 

M

 

 

 

×

 

T

 

) 

 

B

 

BOLD fMRI data matrix (

 

N

 

 

 

×

 

 

 

U

 

)

 

Q

 

Dipole sources matrix

 

G 

 

General E/MEG lead function, incorporating information for EEG or MEG or both 

 

G

 

General E/MEG lead matrix

 

F

 

i

 

Spatial filter matrix for the 

 

i

 

th dipole (

 

M

 

 

 

×

 

 

 

L

 

) 

 

ν

 

Variance

 

C 

 

Covariance matrix 

 

K 

 

Matrix of correlation coefficients

 

M

 

_

 

 

 

Matrix transpose 

 

M

 

+

 

 

 

Generalized matrix inverse (pseudo-inverse) 
null 

 

M

 

 The 

 

null space 

 

of 

 

M

 

, the set of vectors {

 

x

 

 | 

 

M

 

x

 

 

 

=

 

 0} 
diag 

 

M

 

The diagonal matrix with the same diagonal elements as 

 

M

 

Note:

 

We chose our notation to match the most popular conventions in the field, and at the same
time minimize confusion. Regrettably, it is likely to differ from the notation used by each particular
paper we reference. Following the usual conventions, we use bold uppercase symbols for matrices,
bold lowercase for vectors, and nonbold symbols for scalars.

 

*  A signal is quasistatic if it does not change its parameters in time. The nonstationary term present
in the E/MEG physical model is relatively small and can be considered zero in the range of signal
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the brain (see Malmivuo and Plonsey [7], Okada et al. [8], Murakami et al. [9],

frequencies that are captured by E/MEG. See [6] for a more detailed description.
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The similar nature of the EEG and MEG signals means that many methods of
data analysis are applicable to both E/MEG modalities. Although the SNR of E/MEG
signals have improved with technological advances, and some basic analysis has
been performed by experts on raw E/MEG data via visual inspection of spatial signal
patterns outside of the brain, more advanced methods are required to use data
efficiently. During the last two decades, many E/MEG signal analysis techniques
[10] have been developed to provide insights on different levels of perceptual and
cognitive processing of the human brain: event-related potential (ERP) in EEG and
event-related field (ERF) in MEG, components analysis (PCA, ICA, etc.), frequency
domain analysis, pattern analysis, single-trial analysis [11–13], etc. Source localiza-
tion techniques were first developed for MEG because the head model required for
forward modeling of the magnetic field is relatively simple. Source localization using
an EEG signal has been difficult to perform because the forward propagation of the
electric potentials is more complicated. However, recent advances in automatic MRI
segmentation methods, together with advances in forward and inverse EEG model-
ing, have made EEG source localization plausible.

The theory of electromagnetism also explains why EEG and MEG signals can
be considered complementary, in that they provide different views of the same
physiological phenomenon [6,14,15]. On the one hand, an often-accented difference
is that MEG is not capable of registering the magnetic field generated by the sources
that are oriented radially to the skull surface in the case of spherical conductor
geometry. On the other hand, MEG has the advantage over EEG in that the local
variations in conductivity of different brain matter (e.g., white matter, gray matter)
do not attenuate the MEG signal much, whereas the EEG signal is strongly influ-
enced by the skull and different types of brain matter [8]. The orientation selectivity,
combined with the higher depth precision due to homogeneity, makes MEG optimal
for detecting activity in sulci (brain fissures) rather than in gyri (brain ridges). In
contrast, a registered EEG signal is dominated by the gyral sources close to the
skull and therefore is more radial to its surface. Yet another crucial difference is
dictated by basic physics. The orthogonality of magnetic and electrical fields leads
to orthogonal maps of the magnetic field and electrical potential on the scalp surface.
This orthogonality means that an orthogonal localization direction is the best
localization direction for both modalities [15,16]. These complementary features
of the EEG and MEG signals are what make them good candidates for integration
[17,18]. The conjoint E/MEG analysis has improved the fidelity of EMSI localiza-
tion, but has not entirely solved the problem of source localization ambiguity. It is
in the reduction of this remaining ambiguity that information from other brain
imaging modalities may play a valuable role.

It is worth noting another purely technical advantage of MEG over EEG: MEG
provides a reference-free recording of the actual magnetic field. Whenever EEG
sensors capture scalp potentials, a reference electrode must be used as a ground to
derive the signal of interest. A reference signal chosen in such a way can be arbitrarily
biased relative to the EEG signal observed, even when no neuronal sources are active.
The unknown in an MEG signal obtained using SQUID sensors is just a constant
in time offset—the DC baseline. This baseline depends on the nearest flux quantum
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for which the flux-locked loop acquired a lock [19, p. 265]. Although the choice of
a reference value in EEG and the DC line in MEG do not influence the analysis of
potential/field topographic maps, they do impact inverse solution algorithms that
assume zero net source in the head, i.e., zero baseline. In general, the simple average
reference across the electrodes is used, and it has been shown to be a good approx-
imation to the true reference signal (Reference 10, Subsection 8.2.2).

Even if the reference value (baseline) is chosen correctly, both conventional
EEG and MEG face obstacles in measuring the slowly changing DC component
of the signal in the low-frequency range (

 

f 

 

<

 

 [0.1]Hz). In the case of EEG, the
problem is due to the often-used coupling of the electrodes via capacitors, so
that any DC component (slowly changing bias) of the EEG signal is filtered out.
That leaves the researcher with nonzero frequency components of the signal,
which often correspond to the most informative part of the signal as in the case
of conventional ERP or frequency domain analysis. The DC-EEG component
can be registered by using sensors with direct coupling and special scalp elec-
trodes that are gel-filled to eliminate changes of electrical impedance at the
electrode–skin interface that can cause low-frequency noise in the EEG signal.
Although the MEG system does not require direct contact between sensors and
skin, it is nevertheless subject to 1/

 

f

 

 sensor noise, which interferes with the
measurement of the neuronal DC fields. In the last decade, DC-MEG has been
methodically refined by employing controlled brain-to-sensor modulation allow-
ing the monitoring of low-frequency magnetic fields. Formalized DC-E/MEG
techniques make it possible to perform E/MEG studies, which rely on the shift
of DC and low-frequency components of the signal, components that occur, for
example, during epileptic seizures, hyperventilation, changes in vigilance states,
and cognitive or motor tasks.

 

8.2.2 F

 

ORWARD

 

 M

 

ODELING

 

The analysis of E/MEG signals often relies on the solution of two related prob-
lems. The forward problem concerns the calculation of scalp potentials (EEG)
or magnetic fields near the scalp (MEG), given the neuronal currents in the brain,
whereas the inverse problem involves estimating neuronal currents from the
observed E/MEG data. The difficulty of solving the forward problem is reflected

overview and unified analysis of different methods).
The basic question posed by both the inverse and forward problems is how

to model any neuronal activation so that the source of the electromagnetic field
can be mapped onto the observed E/MEG signal. Assuming that localized and
synchronized primary currents are the generators of the observed E/MEG sig-
nals, the most successful approach is to model the 

 

i

 

th source with a simple
equivalent current dipole (ECD) 

 

q

 

i

 

 [21], uniquely defined by three factors: loca-
tion represented by the vector 

 

r

 

i

 

, strength 

 

q

 

i

 

, and orientation coefficients 

 

θ

 

i

 

. The
orientation coefficient is defined by projections of the vector 

 

q

 

i

 

 into 

 

L

 

 orthogonal
Cartesian axes: 

 

θ

 

i

 

 

 

=

 

 

 

q

 

i

 

/

 

q

 

i

 

. However, the orientation coefficient may be expressed
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in the diversity of approaches that have been tried (see Mosher et al. [20] for an
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by projections in two axes in the case of an MEG spherical model, in which the
silent radial to the skull component has been removed, or even just in a single
axis if normality to the cortical surface is assumed. The ECD model made it
possible to derive a tractable physical model linking neuronal activation and
observed E/MEG signals. In case of 

 

K

 

 simultaneously active sources at time 

 

t

 

,
the observed E/MEG signal at the sensor 

 

x

 

j

 

 positioned at 

 

p

 

j

 

 can be modeled as

(8.1)

where 

 

G

 

 is a lead-field function that relates the 

 

i

 

th dipole and the potential (EEG)
or magnetic field (MEG) observed at the 

 

j

 

th sensor, and 

 

ε

 

 is the sensor noise. In
the given formulation, function returns a vector, where each element
corresponds to the lead coefficient at the location 

 

p

 

j

 

 generated by a unit-strength
dipole at position 

 

r

 

i

 

(

 

t

 

) with the same orientation as the corresponding projection
axis of 

 

θ

 

i

 

. The inner product between the returned vector and dipole strength
projections on the same coordinate axes yields a 

 

j

 

-th sensor the measurement
generated by the 

 

i

 

th dipole.
The forward model (Equation 8.1) can be solved at substantial computational

expense using available numerical methods [22] in combination with realistic

computational cost is acceptable when the forward model has to be computed once
per subject and for a fixed number of dipole locations, but it can be prohibitive
for dipole fitting, which requires a recomputation of the forward model for each
step of nonlinear optimization. For this reason, rough approximations of the head
geometry and structure are often used, e.g., the best-fit single-sphere model, which
has a direct analytical solution [23], or the multiple-spheres model to accommodate
the difference in conductivity parameters across different tissues. Recently pro-
posed MEG forward modeling methods for realistic isotropic volume conductors
[24,25] seem to be more accurate and faster than BEM, and hence may be useful
substitutes for both crude analytical methods and computationally intensive finite-
element numeric approximations. Generally, the solution of the forward problem
is crucial for performing source localization using E/MEG, which is the main topic
of the following subsection.

 

8.2.3 T
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 I

 

NVERSE

 

 P

 

ROBLEM

 

8.2.3.1 Equivalent Current Dipole Models

   

the forward problem, which can be computationally expensive, especially in the
case of realistic head modeling. Second, the lead-field function 

 

G

 

 from
Equation 8.1 is nonlinear in 

 

r

 

i

 

, so that the forward model depends nonlinearly on
the locations of activations. It is because of this nonlinearity that the inverse

j i i

i

K

i j it G t tˆ ( ) ( ( ) ) ( )x r q r p q, , = , ⋅ +∑ ε

G ti j( ( ) )r p,
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structural information obtained from the MRI data (see Section 8.1). This high

The E/MEG inverse problem is very challenging (see Hämäläinen et al. [6] and
Baillet et al. [26] for an overview of methods.) First, it relies on the solution of
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problem is generally treated by nonlinear optimization methods, which can lead
to solutions being trapped in local minima. In the case of Gaussian sensor noise,
the best estimator for the reconstruction quality of the signal is the squared error
between the obtained and modeled E/MEG data:

(8.2)

where 

 

f

 

(

 

r

 

, 

 

q

 

) 

 

>

 

 0 is often introduced to regularize the solution, i.e., to obtain the
desired features of the estimated signal (e.g., smoothness in time or in space, and
lowest energy or dispersion), and 

 

λ

 

 

 

>

 

 0 is used to vary the trade-off between the
goodness of fit and the regularization term.

This least-squares model can be applied to the individual time points (

 

t

 

1

 

 

 

=

 

 

 

t

 

2

 

)
(“moving dipole” model) or to a block (

 

t

 

1

 

 

 

<

 

 

 

t

 

2

 

) of data points. If the sources are
assumed not to change during the block (

 

t

 

1

 

, 

 

t

 

2

 

), then the solution with time
constant qi(t) = qi is the target.

Other features derived from the data besides pure E/MEG signals as the
argument of Equation 8.1 and Equation 8.2 are often used, e.g., ERP/ERF wave-
forms that represent averaged E/MEG signals across multiple trials, mean map in
the case of stable potential or field topography during some period of time, or
signal frequency components to localize the sources of the oscillations of interest.

Depending on the treatment of Equation 8.2, the inverse problem can be pre-
sented in a couple of different ways. The brute-force minimization of Equation 8.2
in respect to both parameters and and the consideration of different K neuronal
sources is generally called ECD fitting. Because of nonlinear optimization, this
approach works only for cases in which there is a relatively small number of sources
K, and therefore the inverse problem formulation is overdetermined, i.e.,
Equation 8.1 cannot be solved exactly ( ). If fixed time locations of the
target dipoles can be assumed, the search space of nonlinear optimization is reduced,
and the optimization can be split into two steps: (a) nonlinear optimization to find
locations of the dipoles and then (b) analysis to determine the strength of the dipoles.
This assumption constitutes the so-called spatiotemporal ECD model.

Two other frameworks have been suggested as means of avoiding the pitfalls
associated with nonlinear optimization: distributed ECD (DECD) and beamform-
ing. We discuss these two approaches in detail in the following subsections.

8.2.3.2 Linear Inverse Methods: Distributed ECD

In the case of multiple simultaneously active sources, an alternative to solving
the inverse problem by ECD fitting is a distributed source model. We will use
the label DECD to refer to this type of model. The DECD is based on a spatial
sampling of the brain volume and distribution of the dipoles across all plausible
and spatially small areas that could be a source of neuronal activation. In such
cases, fixed locations ( ) are available for each source or dipole, removing the

E t t
i

K

t t

t

j

M
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necessity for nonlinear optimization as in the case of the ECD fitting. The forward
model (Equation 8.1) can be presented for a noiseless case in the matrix form

(8.3)

where , lead-field matrix, is assumed to be static in time. The j, i(th)
entry of describes how much a sensor is influenced by a dipole , where
varies over all sensors while varies over every possible source, or to be more
specific, every axis-aligned component of every possible source: .
The vector contains indices of such projections, i.e.,
when , and when the dipole has a fixed known orientation. Using this
notation, corresponds to the lead matrix for a single dipole . The
matrix holds the E/MEG data, while the matrix (note that )
corresponds to the projections of the ECD’s moment onto  orthogonal axes.

The solution of Equation 8.3 relies on finding an inverse of the matrix
to express the estimate in terms of

(8.4)

and will produce a linear map . Other than being computationally conve-
nient, there is not much reason to take this approach. The task is to minimize the
error function (Equation 8.2), which can be generalized by weighting the data to
account for the sensor noise and its covariance structure:

(8.5)

where is a weighting matrix in sensor space.
A zero-mean Gaussian signal can be characterized by the single covariance

matrix . In the case of a nonsingular we can use the simplest weighting
scheme to account for nonuniform and possibly correlated sensor noise.

Such a brute-force approach solves some problems of ECD modeling, specif-
ically the requirement for a nonlinear optimization, but, unfortunately, it introduces
another problem: the linear system (Equation 8.3) is ill-posed and underdeter-
mined, because the number of sampled possible source locations is much higher
than the dimensionality of the input data space (which cannot exceed the number
of sensors), i.e., Thus, there is an infinite number of solutions for the
linear system because any combination of terms from the null space of  will
satisfy Equation 8.4 and fit the sensor noise perfectly. In other words, many
different arrangements of the sources of neural activation within the brain can
produce any given MEG or EEG map. To overcome this ambiguity, a regulariza-
tion term is introduced into the error measure

(8.6)

where controls the trade-off between the goodness of fit and the regular-
ization term .
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Equation 8.6 can have different interpretations depending on the approach
used to derive it and the meaning given to the regularization term . All of
the following methods provide the same result under specific conditions [26,27]:
Bayesian methodology to maximize the posterior assuming Gaussian
prior on [28], Wiener estimator with proper and , Tikhonov regulariza-
tion to trade off the goodness of fit (Equation 8.5), and the regularization
term , which attempts to find the solution with weighted
by minimal second norm. All the frameworks lead to the solution of the next
general form

(8.7)

If and only if and are positive definite [29] Equation 8.7 is equivalent to

(8.8)

In the case when viable prior information about the source distribution is
available , it is easy to account for it by minimizing the deviation of the
solution, not from (which constitutes the minimal second norm solution ),
but from the prior , i.e., Then Equation 8.6
will be minimized at

(8.9)

For the noiseless case, with a weighted -norm regularizer, the Moore–Penrose
pseudo-inverse gives the inverse by avoiding the null space projections
of in the solution, thus providing a unique solution with a minimal second
norm .

Taking and constitutes the simplest regularized
minimum norm solution (Tikhonov regularization). Classically, is found using
cross-validation [30] or L-curve [31] techniques, to decide how much of the noise
power should be brought into the solution. Phillips et al. [32] suggested the iterative
method ReML, in which the conditional expectation of the source distribution and
the regularization parameters are estimated jointly. Additional constraints can be
applied for greater regularization, for instance, temporal smoothness [33].

As presented in Equation 8.8, can account for different features of the
source or data space by incorporating them correspondingly into and .
Next, data-driven features are commonly used in EMSI:

• accounts for any possible noise covariance structure or,
if is diagonal, it will scale the error terms according to the noise
level of each sensor.

• accounts for prior knowledge of the source’s covari-
ance structure.
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can also account for different spatial features:

• normalizes the columns of the matrix  to
account for deep sources by penalizing voxels too close to the sensors
[34,35].

• , where the ith diagonal element incorporates the gray matter
content in the area of the ith dipole [36], i.e., the probability of having
a large population of neurons capable of creating the detected E/MEG
signal.

• , where rows of represent averaging coefficients
for each source [37]. So far only geometrical [38] or biophysical
averaging matrices [29] have been suggested.

• incorporates the first-order spatial derivative of the image [39] or
Laplacian form [40].

Features defined by the diagonal matrices (e.g., and ) can be com-
bined through the simple matrix product. An alternative approach is to present

in terms of a linear basis set of the individual  factors, i.e., WQ = µ1Wn

+ µ2Wgm + , with later optimization of via the EM algorithm [36].
To better condition the underdetermined linear inverse problem (Equation 8.4),

Philips et al. [36] suggested to perform the inverse operation (Equation 8.4) can
be performed in the space of the largest eigenvectors of the . Such preprocessing
can also be done in the temporal domain, when a similar subspace selection is
performed using prior temporal covariance matrix, thus effectively selecting the
frequency power spectrum of the estimated sources.

Careful selection of the described features of data and source spaces helps
to improve the fidelity of the DECD solution. Nevertheless, the inherent ambiguity
of the inverse solution precludes achieving a high degree of localization precision.
It is for this reason that additional spatial information about the source space,
readily available from other functional modalities such as f MRI and PET, can
help to condition the DECD solution (Section 8.4).

8.2.3.3 Beamforming

Beamforming (sometimes called a spatial filter or a virtual sensor) is another way
to solve the inverse problem, which actually does not directly minimize Equation 8.2.
A beamformer attempts to find a linear combination of the input data ,
which represents the neuronal activity of each dipole in the best possible way
one at a given time. As in DECD methods, the search space is sampled, but, in
contrast to the DECD approach, the beamformer does not try to fit all the observed
data at once.

The linearly constrained minimum variance (LCMV) beamformer [41] looks
for a spatial filter defined as of size minimizing the output energy

under the constraint that only is active at that time, i.e., that there
is no attenuation of the signal of interest: , where the Kronecker
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delta only if and otherwise. Because the beamforming filter for
the ith dipole is defined independently of the other possible dipoles, index i will
be dropped from the derived results for clarity of presentation.

The constrained minimization, solved using Lagrange multipliers, yields

(8.10)

This solution is equivalent to Equation 8.7, when applied to a single dipole with
the regularization term omitted. Source localization is performed using Equation 8.10
to compute the variance of every dipole , which, in the case of uncorrelated dipole
moments, is

(8.11)

The noise sensitivity of Equation 8.11 can be reduced by using the noise
variance of each dipole as normalizing factor This pro-
duces the so-called neural activity index

(8.12)

An alternative beamformer, synthetic aperture magnetometry or SAM [42],
is similar to the LCMV if the orientation of the dipole is defined, but it is quite
different in the case of a dipole with an arbitrary orientation. We define a vector
of lead coefficients as a function of the dipole orientation. This returns a
single vector for the orientation of the ith dipole, as opposed to the earlier
formulation in which the columns of played a similar role. With this new
formulation, we construct the spatial filter

(8.13)

which, under standard assumptions, is an optimal linear estimator of the time
course of the ith dipole. The variance of the dipole, accordingly, is also a function
of , specifically To compute the neuronal activity
index, the original SAM formulation uses a slightly different normalization factor

which yields a different result if the noise variance in  is
not equal across the sensors.

The unknown value of is found via a nonlinear optimization of the neuronal
activity index for the dipole:

Despite the pitfalls of nonlinear optimization, SAM filtering provides a higher
SNR to LCMV by bringing less than half of the noise power into the solution.
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In addition, SAM filtering results in sharper peaks of the distribution of neuronal
activity index over the volume [43].

Having computed and using SAM or LCMV for the two experimental
conditions, passive ( ) and active ( ), it is possible to compute a pseudo-t value

for each location across the two conditions

(8.14)

Such an approach provides the possibility of considering experimental design
in the analysis of E/MEG localization.

Unlike ECD, beamforming does not require prior knowledge of the number
of sources, nor does it search for a solution in an underdetermined linear system
as does DECD. For these reasons, beamforming remains the favorite method of
many researchers in EMSI and has been suggested for use in the integrative
analysis of E/MEG and fMRI, which we cover in Section 8.5.

8.3 MULTIMODAL EXPERIMENTS

Obtaining noncorrupted simultaneous recordings of EEG and fMRI is a difficult
task due to interference between the strong MR field and the EEG acquisition
system. Because of this limitation, a concurrent EEG/fMRI experiment requires
specialized design and preprocessing techniques to prepare the data for the analysis.
The instrumental approaches described in this section are specific to collecting
concurrent EEG and fMRI data. For obvious reasons MEG and fMRI data must
be acquired separately in two sessions. However, even when MR and MEG are
used sequentially, there is the possibility of contamination from the magnetization
of a subject’s metallic implants, which can potentially disturb MEG acquisition
if it is performed shortly after the MR experiment.

8.3.1 MEASURING EEG DURING MRI: CHALLENGES

AND APPROACHES

Developing methods for the integrative analysis of EEG and fMRI data is difficult
for several reasons, not the least of which is that the concurrent acquisition of
EEG and fMRI itself has proved challenging. The nature of the problem is
expressed by Faraday’s law of induction: a time-varying magnetic field in a wire
loop induces an electromotive force (EMF) proportional in strength to the area of
the wire loop and to the rate of change of the magnetic field component orthogonal
to the area. When EEG electrodes are placed in a strong ambient magnetic field
resulting in the EMF effect, several undesirable complications arise:

• Rapidly changing MR gradient fields and RF pulses may induce
voltages in the EEG leads placed inside the MR scanner. Introduced
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potentials may greatly obscure the EEG signal [44]. This kind of
artifact is a real concern for concurrent EEG/MRI acquisition. Due to
the deterministic nature of MR interference, hardware and algorithmic
solutions may be able to unmask the EEG signal from MR disturbances.
For example, Allen et al. [45] suggested an average waveform subtrac-
tion method to remove MR artifacts that seems to be effective [46].
However, it is important to note that time variations of the MR artifact
waveform can reduce the success of this method [47,48]. The problem
can be resolved through hardware modification that increases the pre-
cision of the synchronization of MR and EEG systems [49] or during
postprocessing by using precise timings of the MR pulses during EEG
waveform averaging [47]. Other techniques that have been proposed
to reduce MR and ballistocardiographic artifacts include spectral domain
filtering, spatial Laplacian filtering, PCA (see Figure 8.1), and ICA (see

• Even a slight motion of the EEG electrodes within the strong static
field of the magnet can induce significant EMF [54,55]. For instance,
native pulsatile motion related to a heartbeat yields a ballistocardio-
graphic artifact in the EEG that can be roughly the same magnitude
as the EEG signals themselves [44–56]. Usually such artifacts are
removed by the same average waveform subtraction method, in which
the waveform is an averaged response to each heartbeat.

• Induced electric currents can heat up the electrode leads to painful or even
potentially dangerous levels, such as to the point of burning the subject
[57]. Current-limiting electric components (resistors, JFET transistors,

FIGURE 8.1 EEG MR artifact removal using PCA. EEG taken inside the magnet (top);
EEG after PCA-based artifact removal but with ballistocardiographic artifacts present
(center); and EEG with all artifacts removed (bottom). After artifact removal, it can be seen
that the subject closed his eyes at time 75.9 sec. (Courtesy of M. Negishi and colleagues,
Yale University School of Medicine.)
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etc.) are usually necessary to prevent the development of nuisance currents
that can have direct contact with subject’s scalp. Simulations show the
safe power range that should be used for some coil, power, or sensor
configurations to comply with FDA guidelines [58].

Another concern is the impact of EEG electrodes on the quality of MR
images. The introduction of EEG equipment into the scanner can potentially
disturb the homogeneity of the magnetic field and distort the resulting MR
images [44,59]. Recent investigations show that such artifacts can be effectively
avoided [60] by using specially designed EEG equipment [56], specialized
geometries, and new “MR-safe” materials (carbon fiber, plastic) for the leads.
To test the influence of a given EEG system on fMRI data, a comparison of the
data collected with versus without the EEG system being present, should be
conducted. Analysis of such data usually demonstrates the same activation pat-
terns in two conditions [59], although a general decrease in fMRI SNR is
observed when EEG is present in the magnet. A correction to the brain matter
conductivities (which are used for forward E/MEG modeling) for the Hall effect
finds the following first-order correction to be negligible: for

[61].

8.3.2 EXPERIMENTAL DESIGN LIMITATIONS

There are two ways of avoiding the difficulties associated with collecting EEG
data in the magnet: (1) collect EEG and MRI data separately or (2) use an
experimental paradigm that can work around the potential contamination between
the two modalities. The decision between these two alternatives will depend on
the constraints associated with research goals and methodology. For example, if
an experiment can be repeated more than once with a high degree of reliability
of the data, separate E/MEG and fMRI acquisition may be appropriate [62–65].
In cases when simultaneous measurements are essential for the experimental
objective (e.g., cognitive experiments in which a subject’s state might influence
the results, as in monitoring of spontaneous activity or sleep-state changes), one
of the following protocols can be chosen:

• Triggered fMRI: Detected EEG activity of interest (epileptic discharge,
etc.) triggers MRI acquisition [66–69]. Due to the slowness of the HR,
relevant changes in the BOLD signal can be registered 4 to 8 sec after
the event. The EEG signal can settle quickly after the end of the
previous MRI block [56], so it is acquired without artifacts caused by
RF pulses or gradient fields that are present only during the MRI
acquisition block. Note that ballistocardiographic and motion-caused
artifacts still can be present and will require postprocessing in order
to be eliminated. Although this is an elegant solution and has been
used with some success in the localization of epileptic seizures, this

σ σH = . × −4 1 10 8

B T= .[ ]1 5
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protocol does have drawbacks. Specifically, it imposes a limitation on
the amount of subsequent EEG activity that can be monitored if the EEG
high-pass filters do not settle down soon after the MR sequence is
terminated [70]. In this case, EEG hardware that does not have a long
relaxation period must be used. Another drawback with this approach is
that it requires online EEG signal monitoring to trigger the fMRI acqui-
sition in case of spontaneous activity. Often, experiments of this kind
are called EEG-correlated fMRI due to the fact that offline fMRI data
time analysis implicitly uses EEG triggers as the event onsets [46].

• Interleaved EEG/f MRI: The experiment protocol consists of time
blocks and only a single modality is acquired during each time block
[61–71]. This means that every stimulus has to be presented at least
once per modality. To analyze ERP and fMRI activations, the triggered
fMRI protocol can be used with every stimulus presentation so that
EEG and MR are sequentially acquired in order to capture a clean
E/MEG signal followed by the delayed HR [72].

• Simultaneous f MRI/EEG: Preprocessing of the EEG signal mentioned
in Section 8.1 is used to remove the MR-caused artifacts and to obtain
an estimate of the true EEG signal. However, neither of the existing
artifact-removing methods has been proved to be general enough to
work for every type of EEG experiment and analysis. It is especially
difficult to use such an acquisition scheme for cognitive experiments
in which the EEG-evoked responses of interest can be of small ampli-
tude and be completely overwhelmed by the MR noise [73].

8.4 MULTIMODAL ANALYSIS

There is an increasing number of reported E/MEG/fMRI conjoint studies that
attempt to gain the advantages of a multimodal analysis for experiments involving
perceptual and cognitive processes: visual perception [59,72,74,75] and motor
activation [59], somatosensory mapping [65,76], fMRI correlates of EEG rhythms
[41,71,77–79), auditory oddball tasks [63], passive frequency oddball [80], illu-
sory figures in visual oddball tasks [81], target detection [62,82], face perception
[64], sleep [70], language tasks [74,83], and epilepsy [66,67,69,84–87].

This section begins with an explanation of the role of anatomical MRI in
multimodal experiments followed by a description of multimodal analysis meth-
ods used in the above-mentioned studies or test-driven on the simulated data.

8.4.1 USING ANATOMICAL MRI

The difference in captured MRI contrasts (proton densities [PD] or T1, T2 relax-
ation times) for different types of organic tissue makes possible the noninvasive
collection of information about the structural organization of the brain. In addi-
tion, a regular gradient or spin-echo EPI sequence is capable of detecting transient
or subtle changes of the magnetic field in cortical tissue caused by neuronal
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activation [88,89]. However, direct application of MRI to capture functional
activity remains limited due to a low signal-to-noise ratio (SNR), which is why
MRI is often labeled anatomical. The next subsection briefly describes the anal-
ysis of acquired high-resolution 3-D images of the brain and how obtained
structural information can be used to analyze data collected from other modalities.

8.4.1.1 Registration of EEG and MEG to MRI

If an EEG experiment is performed inside the magnet, it is possible to “mark”
[90] the location of the EEG sensors to make them distinguishable on the ana-
tomical MRI. Coordinates for these locations can then be found either manually
or automatically [91] and will lie in the MRI coordinate system. In the case when
MR and E/MEG data are acquired in separate sessions, spatial registration
between E/MEG and MRI coordinate systems must be performed before any
anatomical information can be introduced into the analysis of E/MEG data. There
are two general possible ways of performing registration between MRI and
E/MEG data: (a) registering a limited set of fiducial points or (b) aligning scalp
surfaces obtained during MRI with a digitization of the scalp during E/MEG.
Methods based on the alignment of the scalp surfaces (or point clouds) considered
to perform better than those using fiducial points [92–95], but are more computa-
tionally demanding and rely on iterative optimization. In addition, it can be time
consuming to obtain the dense digitization of the subject’s head using a single-
point 3-D digitizer. For these reasons the fiducial points approach remains the
preferred E/MEG/MRI registration method (for instance, 90,96). The fiducial points
method involves the alignment of a limited set of points, which have a strict known
correspondence between the two spaces, so that each fiducial point in E/MEG space
with coordinates ( ) has a corresponding known point ( ) in MRI space. Such
coupling removes the possibility of being trapped in the local minima of the iterative
surface-aligning methods and makes registration simple and fast. The precision of
the derived transformation can be increased by adding more pairs of corresponding
E/MEG and MRI points. A more detailed description of the registration method
using fiducial points follows.

Locations of the fiducial points (e.g., anatomical points: nasion, inion,
preauricular points or tragus of the left and right earlobes, vertex; MRI-visible
capsules or even bite-bar points [97,98]) are captured together with the loca-
tions of E/MEG sensors using a 3-D digitizer and then matched to the locations
of corresponding fiducial points obtained from the analysis of the MRI for
the same subject. A 3-D rigid transformation of the points from the E/MEG
( ) to the MRI coordinate system ( ) can be defined by the rotation
matrix and translation vector , so that . Commonly, the
quadratic misregistration error measure is the subject to minimization ε(R,v) =

 where is the number of the points. Solutions can be found
with simplified geometrical formulations [99] or iterative search optimization
using Powell’s algorithm [97]. Such simplifications or complications are not
necessary because the analytical form solutions have been derived in other fields
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[100,101], and they are often used in the surface-matching methods discussed
earlier. For instance, quaternions (vectors in ) can be natively used to describe
a rotation in 3-D space leading to a straightforward solution of the registration
problem [100]. This method is simple to implement. Its precision rapidly increases
with the number of fiducial points, reaching the performance of surface-matching
algorithms cheaply and efficiently.*

8.4.1.2 Segmentation and Tessellation

PD or T1/T2 3-D MR images can be used to segment different brain tissues
(white matter, gray matter, cerebrospinal fluid [CSF], skull, scalp) as well as
abnormal formations (tumors) [17,102]. Different kinds of MR contrasts are
optimal for the segmentation of the different kinds of head and brain structures.
For instance, PD-weighted MRI yields superior segmentation of the inner and
outer skull surfaces, because bones have much smaller water content than brain
tissue, making the skull easily distinguishable on PD images. On the other hand,
exploiting T1 and T2 relaxation time differences between various sorts of brain
tissue leads to higher quality segmentation of structures within the brain.

Using triangulation (tessellation) and interpolation it is possible to create fine-
grained smooth mesh representations or tetrahedral assemblies of the segmented
tissues [103–105]. Obtained 3-D meshes of the cortical surface alone brings
valuable information to the analysis of E/MEG signals [106]: the physiology of
the neuronal generators can be considered, allowing one to limit the search space
for activated sources to the gray matter regions and oriented orthogonally or
nearly so to the cortical surface [17,107].

Monte Carlo studies [108] tested the influence of the orientation constraint in
the case of the DECD model and showed that it leads to much better conditioning

* To find the minimum of the error function ε(R, v), we need merely to calculate a principal eigenvector

(8.15)

where

The eigenvector r can be assumed to be normalized (unit length). Regarded as a quaternion, r =
[r0, r1, r2, r3]T uniquely defines the rotation. This can be converted into a conventional rotation matrix 
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of the inverse problem while still being robust to the error of the assumed cortical
surface: random deviation of the orientation in range leads to just a slight
increase of distortion, thus not significantly affecting the accuracy of the localization
procedure. Anatomical constraints improve the localization and contrast of beam-
forming imaging methods as well, but the use of anatomical constraints is found
to be advantageous only in the case of good MRI/E/MEG coregistration [109].

8.4.1.3 Forward Modeling of EEG and MEG

Volumetric structures derived from the tessellation procedure are used to create
a realistic geometry of the head, which is crucial for the forward modeling of
E/MEG fields. Previously, rough approximations based on best-fit single or mul-
tiple sphere models were developed to overcome the burden of creating realistic
head geometry, but they became less favorable as the increased availability of
powerful computational resources made more realistic modeling possible. Spatial
information is especially important for EEG forward modeling due to the fact
that it is more strongly affected by the conductivities of the skull and the scalp
than the MEG forward model. Such inhomogeneities might not affect the mag-
netic field at all in the case of a spherical head model, when only the inner skull
surface is of the main concern for the forward modeling.

There are four numerical methods available to solve the E/MEG modeling
problem, and the boundary elements method (BEM) [110] is the most commonly
used when isotropy (direction independence) of the matter is assumed, so that only
boundary meshes obtained by the tessellation process are required. It was shown,
however, that anisotropy of the skull [111] and white matter [112] can bias EEG
and MEG forward models. To solve the forward problem in the case of an aniso-
tropic medium, the head volume is presented by a large assembly of small homo-
geneous tetrahedrons, and a finite elements method (FEM) [113] is used to approx-
imate the solution. Another possible way is to use the finite difference method

software that can help performs forward E/MEG modeling. Forward modeling of
E/MEG signals rely on the knowledge of matter conductivities. Common values
of conductivities for different tissues can be found in the literature [115], or can be
estimated on a per-subject basis using electrical impedance tomography (EIT) [116]
or diffusion tensor (DT) [117] MRI.

8.4.2 FORWARD MODELING OF BOLD SIGNAL

The successful analysis of the results of a multimodal experiment remains prob-
lematic. The main problem of multimodal analysis is the absence of a general
unifying account of the BOLD fMRI signal in terms of the characteristics of a
neuronal response. Various models have been suggested. On the one hand, they
include naive modeling of BOLD signal in the context of a linear time invariant
system (LTIS). On the other hand, there are general models of the BOLD signal
in terms of detailed biophysical processes (Balloon [118] or Vein and Capillary
[119] models). The naive models are not general enough to explain the variability

30

DK2411_C008.fm  Page 241  Thursday, June 16, 2005  6:59 PM

© 2005 by Taylor & Francis Group, LLC

(FDM) on a regular computational mesh [14]. Table 8.2 lists some publicly available



TABLE 8.2
Free Software Germane to Multinational Analysis of EEG/MEG/fMRI Data

Forward EEG/MEG
MRI Environment

EEG MEG Inverse
Brain

Segmentation
Skull

Segmentation
Scalp

Segmentation
E/MEG

Registration
Mac
OS X

MS
WindowsPackage Spherical BEM FEM Spherical BEM FEM ECD DECD Beamforming Tessellation  FMRI Matlab POSIX ‡ Notes

Brainstorm
(168)

√ √ √ √                 √ √ ¨ √ √ MAP-
MUSIC

NeuroFEM √ √ √ √ √ √ √ √ ¨ √ √ 

(169)/Pebbles

BioPSE                    √ √ √ √ √ ¨ √ √ √
(170)/SCIRun

(171)

Brainvisa/Anatomist √ √ √ √ √ √ √ 

(103)

FreeSurfer √ √ √ √ √ √
(172)

Sure—t √ √ √ √ √
(173)

Brainsuite √ √ √ √ √
(105)

EEG/MEG/MRI √ √ √ ¨ ¨ ¨ ¨ ¨ √ √ 

tlbx—

(174)

MEG √ √ √ √ √ √ √ √ √ √
tlbx*

(175)

EEGLAB/FMRILAB √ √ √ 

(176)

Note: —stands for input/output facility for a feature.

 An extensive MR segmentation bibliography is available online [102].
‡POSIX includes all versions of Unix and GNU/Linux. Most POSIX packages listed use X Windows for their graphical output.
*Matlab Toolbox.
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of the BOLD signal, whereas complex parametric models that rely heavily on a
prior knowledge of nuisance parameters (due to biophysical details), almost never
do not have a reliable and straightforward means of estimation. This fact makes
it unlikely that such comprehensive models will be used as reliable generative
models of the BOLD signal. In the following subsections we describe modeling
issues in greater detail to further underline the limited applicability of many of
the multimodal analysis methods covered in Section 8.4.

8.4.2.1 Convolutional Model of BOLD Signal

Various experimenters had originally focused on simple contrast designs such as
block design paradigms in order to exploit the presumed linearity between their
design parameters and the HR. This assumption depends critically on the ability
of the block design to amplify the SNR, and the implicit belief that the HR
possesses more temporal resolution than indicated by the TR.

In order to account for the present autocorrelation of the HR caused by its
temporal dispersive nature, Friston et al. [120] suggested to model HR with a
LTIS. To describe the output of such a system, a convolution of an input (joint
intrinsic and evoked neuronal activity ) with a hemodynamic response func-
tion (HRF) is used to model the HR

(8.16)

Localized neuronal activity itself is not readily available via means of non-
invasive imaging, and therefore it is more appropriate to verify LTIS modeling
on real data as a function of parameters of the presented stimuli (i.e., duration,
contrast).

The convolutional model was used on real data to demonstrate linearity
between the BOLD response and the parameters of presented stimuli [121, 122].
In fact, many experimenters have shown apparent agreement between LTIS mod-
eling and real data. Specifically, it has been possible to model responses to longer
stimuli durations by constructing them using the responses to shorter-duration
stimuli, which is consistent with LTIS modeling. Because of the predictive suc-
cess, its relative simplicity of application, and the resulting ignorance of biophys-
ical details, this modeling approach became widely accepted. Unfortunately, LTIS
as a modeling constraint is very weak, therefore allowing an arbitrary choice of
parametric HRF based only on preference and familiarity.

Over the years, multiple models for the HRF have been suggested. The most
popular and widely used up until now is a single probability density function
(PDF) of gamma distribution by [123]. It was elaborated by [124] to perform the
deconvolution of the HR signal, and the nuisance parameters ( ) of
the next HRF were estimated for motor and auditory areas

(8.17)
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which can be described as the sum of two unscaled PDFs of the gamma distribu-
tion. The first term captures the positive BOLD HR, and the second term is to
capture the overshoot often observed in the BOLD signal. Many other simple, as
well as more sophisticated, models of HRF were suggested: Poisson PDF [120],
Gaussians [125], Bayesian derivations [126–128], and others. The particular choice
of any of them was primarily dictated by some motivation other than biophysics:
easy Fourier transformation, presence of postresponse dip, or best-fit properties.

Since the suggestion of the convolutional model describing the BOLD
response, different aspects of HR linearity became an actively debated question.
If HR is linear, then with what features of the stimulus (e.g., duration, intensity)
or neuronal activation (e.g., firing frequency, field potentials, frequency power)
does it vary linearly? As a first approximation, it is important to define the ranges
of the above-mentioned parameters in which HR was found to behave linearly.
For example, early linearity tests [124] showed the difficulty in predicting long-
duration stimuli based on an estimated HR from shorter-duration stimuli. Soltysik
et al. [129] reviewed existing papers describing different aspects of nonlinearity
in BOLD HR and attempted to determine the ranges of linearity in respect to
stimuli duration in three cortical areas: motor, visual, and auditory complex. The
results of these analyses have shown that although there is a strong nonlinearity
observed on small stimuli durations, long stimuli durations show a higher degree
of linearity.

It appears that a simple convolutional model generally is not capable of
describing the BOLD responses in terms of the experimental design parameters
if these vary over a wide range during the experiment. Nevertheless, LTIS might
be more appropriate to model the BOLD response in terms of neuronal activation
if most of the nonlinearity in the experimental design can be explained by the
nonlinearity of the neuronal activation itself.

8.4.2.2 Neurophysiologic Constraints

In the previous subsection we explored the subject of linearity between the
experimental design parameters and the observed BOLD signal. For the purpose
of this chapter it may be more interesting to explore the relation between neuronal
activity and HR.

It is a well-known fact that E/MEG signals are produced by the large-scale
synchrony of neuronal activity, whereas the nature of the BOLD signal is not
clearly understood. The BOLD signal does not even seem to correspond to the
most energy-consuming neural activity [130], as early researchers believed. Fur-
thermore, the transformation between the electrophysiological indicators of neu-
ronal activity and BOLD signal cannot be linear for a whole dynamic range of
signals, under all experimental conditions, and across all the brain areas. Gener-
ally, a transformation function cannot be linear as the BOLD signal is driven by
a number of nuisance physiologic processes such as cerebral metabolic oxygen
consumption (CMRO2), cerebral blood flow (CBF), and cerebral blood volume
(CBV), as suggested by the Balloon model [118], which are not generally linear.
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Due to the indirect nature of the BOLD signal as a tool to measure neuronal
activity, in many multimodal experiments a preliminary comparative study is
done first in order to assess the localization disagreement across different modal-
ities. Spatial displacement is often found to be very consistent across multiple

differences can potentially be caused by the variability in the cell types and
neuronal activities producing each particular signal of interest [2]. That is why
it is important first to discover the types of neuronal activations that are primary
sources of the BOLD signal. Some progress on this issue has been made. A series
of papers generated by a project to cast light on the relationship between the
BOLD signal and neurophysiology has argued that local field potentials (LFP)
serve a primary role in predicting the BOLD signal ([131], and References 27,
29, 54, 55, and 81 therein). This work countered the common belief that spiking
activity was the source of the BOLD signal (for example, [132]) by demonstrating
a closer relation of the observed visually evoked HR to the local field potentials
(LFP) of neurons than to the spiking activity. This result places most of the
reported nonlinearity between experimental design and observed HR into the
nonlinearity of the neural response, which would benefit a multimodal analysis.

Note that the extracellular recordings experiments described above were
carried out over small ROIs, and therefore they inherit the parameters of under-
lying hemodynamic processes for the given limited area. Thus, even if LFP is
taken as the primary electrophysiological indicator of the neuronal activity caus-
ing the BOLD signal, the relationship between the neuronal activity and the
hemodynamic processes on a larger scale remains an open question.

Because near-infrared optical imaging (NIOI) is capable of capturing the
individual characteristics of cerebral hemodynamics such as total, oxy-, and
deoxyhemoglobin content, some researchers tried to use NIOI to reveal the nature
of the BOLD signal. Rat studies using 2-D optical imaging [133] showed the
nonlinear mapping between the neuronal activity and evoked hemodynamic pro-
cesses. This result should be a red flag for those who try to define the general
relation between neuronal activation and the BOLD signal as mostly linear. The
conjoint analysis of BOLD and NIOI signals revealed the silent BOLD signal
during present neural activation registered by E/MEG modalities [119]. This
mismatch between E/MEG and fMRI results is known as the sensory motor
paradox [134]. To explain this effect, the vein and capillary model was used to
describe the BOLD signal in terms of hemodynamic parameters [119]. The
suggested model permits the existence of silent and negative BOLD responses
during positive neuronal activation. This fact, together with an increasing number
of studies [135] confirming that sustained negative BOLD HR is a primary
indicator of decreased neuronal activation, provide yet more evidence that the
BOLD HR generally is not a simple linear function of neuronal activation but
at best is a monotone function that has close-to-linear behavior in a wide range
of nuisance neurophysiologic parameters. We conclude this subsection by noting
that the absence of a generative model of the BOLD response prevents the
development of universal methods of multimodal analysis. Nevertheless, as
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discussed in this subsection and shown by the results presented in the next
subsection, there are specific ranges of applications in which the linearity between
BOLD and neuronal activation can be assumed.

8.4.3 ANALYSIS METHODS

Whenever applicable, a simple comparative analysis of the results obtained from
conventional unimodal analyses, together with findings reported elsewhere, can be
considered as the first confirmatory level of a multimodal analysis. This type of
analysis is very flexible, as long as the researcher knows how to interpret the results
and to draw useful conclusions, especially whenever the results of comparison
reveal commonalities and differences between the two [83]. On the other hand, by
default, a unimodal analysis makes limited use of the data from the modalities and
encourages researchers to look for analysis methods that would incorporate the
advantages of each single modality. Nevertheless, simple inspection is helpful for
drawing preliminary conclusions regarding the plausibility of performing a conjoint
analysis using one of the methods described in this subsection, including correlative
analysis, which might be considered an initial approach to try.

8.4.3.1 Correlative Analysis of EEG and MEG with fMRI

In some experiments, the E/MEG signal can serve as the detector of spontaneous
neuronal activity (e.g., epileptic discharges) or changes in the processing states (e.g.,
vigilance states). The time onsets derived from E/MEG are alone valuable for further
fMRI analysis, in which the BOLD signal often cannot provide such timing infor-
mation. For instance, such use of EEG data is characteristic of the experiments
performed via a triggered fMRI acquisition scheme (Subsection 8.3.2).

Correlative E/MEG/fMRI analysis becomes more intriguing if there is a
stronger belief in the linear dependency between the BOLD response and features
of E/MEG signal (e.g., amplitudes of ERP peaks, powers of frequency compo-
nents) than between the hemodynamics of the brain and the corresponding param-
eter of the design (e.g., frequency of stimulus presentation or level of stimulus
degradation). Then E/MEG/fMRI analysis effectively reduces the inherent bias
present in the conventional fMRI analysis methods by removing the possible
nonlinearity between the design parameter and the evoked neuronal response.

The correlative analysis relies on the preprocessing of E/MEG data to extract
the features of interest to be compared with the fMRI time course. The obtained
E/MEG features first get convolved with a hypothetical HRF (Subsection 8.4.2.1)
to accommodate HR sloppiness and are then subsampled to fit the temporal
resolution of fMRI. The analysis of fMRI signal correlation with amplitudes of
selected peaks of ERPs revealed sets of voxels that have a close-to-linear depen-
dency between the BOLD response and amplitude of the selected ERP peak (N170
in Horovitz et al. [64], P300 in Horovitz et al. [63], and amplitude of mismatch
negativity (MMN) [80]), thus providing a strong correlation (  [64]). A
parametric experimental design with different noise levels introduced for the

P < .001
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stimulus degradation [64,80] or different levels of sound frequency deviant [80]
helped to extend the range of detected ERP and fMRI activations, thus effectively
increasing the significance of the results found. To support the suggested connec-
tion between the specific ERP peak and fMRI-activated area, the correlation of
the same BOLD signal with the other ERP peaks must be lower, if there is any
at all [64]. As a consequence, such analysis cannot prove that any specific peak
of EEG is produced by the neurons located in the fMRI-detected areas alone, but
it definitely shows that they are connected in the specific paradigm.

The search for the covariates between the BOLD signal and widespread neu-
ronal signals, such as the alpha rhythm, remains a more difficult problem due to
the ambiguity of the underlying process, as there are many possible generators of
alpha rhythms corresponding to various functions [136]. As an example, Goldman
et al. [77] and Laufs et al. [79] were looking for the dependency between fMRI
signal and EEG alpha rhythm power during interleaved and simultaneous
EEG/fMRI acquisition, correspondingly. They report similar (negative correlation
in parietal and frontal cortical activity), as well as contradictory (positive correla-
tion) findings, which can be explained by the variations in the experimental setup
[137] or by the heterogeneous coupling between the alpha rhythm and the BOLD
response [79]. Despite the obvious simplification of the correlative methods, they
may still have a role to play in constraining and revealing the definitive forward
model in multimodal applications.

8.4.3.2 Decomposition Techniques

The common drawback of the presented correlative analyses techniques is that
they are based on the selection of the specific feature of the E/MEG signal to be
correlated with the fMRI time trends, which are not so perfectly conditioned to
be characterized primarily by the feature of interest. The variance of the back-
ground processes, which are present in the fMRI data and are possibly explained
by the discarded information from the E/MEG data, can reduce the significance
of the obtained correlation. That is why it was suggested [138] that the entire
E/MEG signal be used, without focusing on its specific frequency band, to derive
the E/MEG and fMRI signal components that have the strongest correlation among
them. The introduction of decomposition techniques (such as basis pursuit, PCA,
ICA, etc.) into the multimodal analysis makes this work particularly interesting.

To perform the decomposition [138], partial least-squares (PLS) regression
was generalized into the tri-PLS2 model, which represents the E/MEG spectrum
as a linear composition of trilinear components. Each component is the product
of spatial (among E/MEG sensors), spectral and temporal factors, in which the
temporal factors have to be maximally correlated with the corresponding temporal
component of the similar fMRI signal decomposition into bilinear components:
products of the spatial and temporal factors. Analysis using tri-PLS2 modeling on
the data from Goldman et al. [77] found a decomposition into three components
corresponding to alpha, theta, and gamma bands of the EEG signal. The fMRI
components found had a strong correlation only in the alpha band component
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(Pearson correlation ( )), although the theta component also showed a
linear correlation of ( ). It is interesting to note that spectral profiles
of the trilinear EEG atoms received with and without fMRI influence were almost
identical, which can be explained either by the noninfluential role of fMRI in tri-
PLS2 decomposition of EEG or just by a good agreement between the two. On
the other hand, EEG definitely guided fMRI decomposition, so that the alpha
rhythm spatial fMRI component agreed very well with the previous findings [77].

8.4.3.3 Equivalent Current Dipole Models

ECD is the most elaborated and widely used technique for source localization in
EMSI. It can easily account for activation areas obtained from the fMRI analysis,
thus giving the necessary fine time-space resolution by minimizing the search
space of nonlinear optimization to the thresholded fMRI activation map. Although
very attractive, such a method has most of the problems of the ECD method
mentioned in Subsection 8.2.3, and introduces another possible bias due to the
belief in the strong coupling between hemodynamic and electrophysiological
activities. For this reason, it needs to be approached with caution in order to
carefully select the fMRI regions to be used in the ECD/fMRI combined analysis.

Although good correspondence between ECD and fMRI results is often found
[139], some studies reported a significant (1 to 5 cm) displacement between
locations obtained from fMRI analysis and ECD modeling [76,87,140,141]. It is
interesting to note that such displacement can be very consistent across the
experiments of different researchers using the same paradigm (for instance, motor
activations [65,76,142]). As was already mentioned, in the first step, a simple
comparison of detected activations across the two modalities can be done to
increase the reliability of dipole localization alone. Further, additional weighting
by the distance from the ECD to the corresponding fMRI activation foci can
guide ECD optimization [143] and silent in fMRI activations can be accommo-
dated by introducing free dipoles without the constraint on dipole location.

Auxiliary fMRI results can help to resolve the ambiguity of the inverse
E/MEG problem if ECD lies in the neighborhood of multiple fMRI activations.
Placing multiple ECDs inside the fMRI foci with successive optimization of
ECDs orientations and magnitudes may produce more meaningful results, espe-
cially if the suggested multiple ECDs model better describes the E/MEG signal.

Due to the large number of consistent published fMRI results, it seems viable
to perform a pure E/MEG experiment with consequent ECD analysis using known
relevant fMRI activation areas found by the other researchers performing the
same kind of experiment [144], thus providing the missing temporal explanation
to the known fMRI activations.

8.4.3.4 Linear Inverse Methods

Dale and Sereno [17] formulated a simple but powerful linear framework for the
integration of different imaging modalities into the inverse solution of DECD, in

.83 p = .005

.56 p = .070
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which the solution was presented as unregularized (just minimum norm;
Equation 8.8) with and . The simplest way to account for
fMRI data is to use a thresholded fMRI activation map as the inverse solution
space, but this was rejected [1] due to its incapability to account for fMRI-silent
sources, which is why the idea to incorporate variance information from fMRI
into was further elaborated [108] by the introduction of relative weighting for
fMRI-activated voxels via constructing a diagonal matrix ,
where for fMRI-activated voxels and for voxels which are
not revealed by fMRI analysis. A Monte Carlo simulation showed that
(which corresponds to the relative fMRI weighting) leads to a good compro-
mise with the ability to find activation in the areas which are not found active by
fMRI analysis and to detect active fMRI spots (even superficial) in the DECD
inverse solution. An alternative formulation of the relative fMRI weighting in the
DECD solution can be given using a subspace regularization (SSR) technique [145],
in which an E/MEG source estimate is chosen from all possible solutions describing
the E/MEG signal, and is such that it minimizes the distance to a subspace defined
by the fMRI data (Figure 8.2). Such a formulation aids an understanding of the
mechanism of fMRI influence on the inverse E/MEG solution: SSR biases under-
determined the E/MEG source locations toward the fMRI foci.

FIGURE 8.2 Geometrical interpretation of subspace regularization in the MEG/EEG source
space. (A) The cerebral cortex is divided into source elements q1, q2,…,qK, each represent-
ing an ECD with a Fixed orientation. All source distributions compose a vector q in K-
dimensional space. (B) The source distribution q is divided into two components qa ∈ Sa ≡
range(GT), determined by the sensitivity of MEG sensors and q0 ∈ null G, which does not
produce an MEG signal. (C) The f MRI activations define another subspace Sf MRI. (D) The
subspace-regularized f MRI-guided solution qSSR ∈ M is closest to Sf MRI, minimizing the
distance ||PqSSR||, where P (an N × N diagonal matrix with Pii = 1/0 when the ith f MRI
voxel is active/inactive) is the projection matrix into the orthogonal complement of Sf MRI.
(Adapted from Figure 1 of Ahlfors, S.P. and Simpson, G.V. (2004). Geometrical inter-
pretation of fMRI-guided MEG/EEG inverse estimates. NeuroImage. 22(1): 323–332. With
permission.)
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The relative fMRI weighting was tested [146] in an MEG experiment and
conjoint fMRI/MEG analysis results were obtained similar to those reported
in previous fMRI, PET, MEG, and intracranial EEG studies. F. Babiloni et al.
[147] followed Dale et al. [146] in a high-resolution EEG and fMRI study to
incorporate nonthresholded fMRI activation maps with other factors. First of
all, Wf MRI was reformulated to (Wf MRI′)ii = v0 + (1 − v0)i/max, where i corre-
sponds to the relative change of the fMRI signal in the ith voxel, and max is
the maximal detected change. This way the relative E/MEMEG/fMRI scheme
is preserved and locations of stronger fMRI activations have higher prior
variance. Finally, the three available weighting factors were combined: fMRI
relative weighting, correlation structure obtained from fMRI described by the
matrix of correlation coefficients KS, and the gain normalization weighting
matrix Wn (Section 8.2.3.2): . Although Wf MRI′ alone
had improved EMSI localization, the incorporation of the KS led to finer local-
ization of neuronal activation associated with finger movement.

Although most of the previously discussed DECD methods are involved in
finding minimal norm solution, the fMRI-conditioned solution with minimal -
norm (regularization term in Equation 8.6, ) is shown to provide a sparser
activation map [148] with activity focalized to the seeded hotspot locations [143].

An fMRI-conditioned linear inverse is an appealing method due to its simplicity,
and the rich background of DECD linear inverse methods derived for the analysis
of E/MEG signals. Nonetheless, one should approach these methods with extreme
caution in a domain in which nonlinear coupling between BOLD and neural activity
is likely to overwhelm any linear approximation [141].

8.4.3.5 Beamforming

Lahaye et al. [149] suggest an iterative algorithm for conjoint analysis of EEG and
fMRI data acquired simultaneously during an event-related experiment. Their method
relies on iterated source localization by the LCMV beamformer (Equation 8.10),
which makes use of both EEG and fMRI data. The covariance  used by the
beamformer is calculated anew each time step, using the previously estimated
sources. Although the original formulation is cumbersome, this method appears
promising as (a) it makes use of both spatial and temporal information available
from both modalities, and (b) it can account for silent BOLD sources using an
electrometabolic coupling constant that is estimated for each dipole.

8.4.3.6 Bayesian Inference

During the last decade, Bayesian methods became dominant in probabilistic
signal analysis. The idea behind them is to use Bayes’ rule to derive a posterior
probability of a given hypothesis having observed data D, which serves as evi-
dence to support the hypothesis

(8.18)
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where and are prior probabilities of the hypothesis and evidence,
correspondingly, and the conditional probability is known as a likeli-
hood function. Thus, Equation 8.19 can be viewed as a method of combining the
results of conventional likelihood analyses for multiple hypotheses into the pos-
terior probability of the hypotheses or some function of it, after being
exposed to the data. The derived posterior probability can be used to select the
most probable hypothesis, i.e., the one with the highest probability

(8.19)

leading to the maximum a posteriori (MAP) estimate, where the prior data
probability (often called a partition function) is omitted because the data
does not depend on the choice of the hypothesis, and it does not influence the
maximization over H.

For the class of problems related to signal processing, hypothesis H generally
consists of a model M characterized by a set of nuisance parameters .
The primary goal usually is to find a MAP estimate of some quantity of interest or,
more generally, its posterior probability distribution . can be an
arbitrary function of the hypothesis or its components or often just a
specific nuisance parameter of the model . To obtain the posterior probability
of the nuisance parameter, its marginal probability has to be computed by integration
over the rest of the parameters of the model

(8.20)

Due to the integration operation involved in determination of any marginal prob-
ability, Bayesian analysis becomes very computationally intensive if an analytical
integral solution does not exist. Therefore, sampling techniques (e.g., MCMC, Gibbs
sampler) are often used to estimate full posterior probability ,

or some statistics such as an expected value
of the quantity of interest.

The Bayesian approach sounds very appealing for the development of multimodal
methods. It is inherently able to incorporate all available evidence, which is, in our
case, obtained from the fMRI and E/MEG data ( ) to support the hypothesis
on the location of neuronal activations, which in the case of DECD model
is However, detailed analysis of Equation 8.18 leads to necessary sim-
plifications and assumptions of the prior probabilities in order to derive a computa-
tionally tractable formulation. Therefore, it often loses its generality. Thus, to derive
a MAP estimator for , Trujilli-Barreto et al. [150] had to condition the com-
putation by a set of smplifying model assumptions such as: noise is formally distrib-
uted, no same parameters of forward models have inverse Gamma prior distributions,
and neuronal activation is described by a linear function of hemodynamic response.
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The results on simulated and experimental data from a somatosensory MEG/fMRI
experiment confirmed the applicability of Bayesian formalism to the multimodal
imaging even under the set of simplifying assumptions mentioned above.

Usually, model M is not explicitly mentioned in Bayesian formulations (such
as Equation 8.20) because only a single model is considered. For instance, Baye-
sian formulation of LORETA E/MEG inverse corresponds to a DECD model,
where is constrained to be smooth (in space), and to cover a whole cortex
surface. In the case of Bayesian model averaging (BMA), the analysis is carried
out for different models Mi, which might have different nuisance parameters, e.g.,
E/MEG and BOLD signals forward models, possible spatial locations of the
activations, constraints to regularize E/MEG inverse solutions. In BMA analysis,
we combine results obtained using all considered models to compute the posterior
distribution of the quantity of interest

(8.21)

where the posterior probability of any given model Mi is computed via
Bayes’ rule using prior probabilities , and the likelihood of the data
given each model

(8.22)

Initially, BMA was introduced into E/MEG imaging [151], in which Baye-
sian interpretation of Equation 8.8 was formulated to obtain for the
case of Gaussian uncorrelated noise ( ). In order to create a model,
we partition the brain volume into a limited set of spatially distinct functional
compartments, which are arbitrarily combined to define a Mi search space for the
E/MEG inverse problem.

At the end, different models are sampled from the posterior probability
to get the estimate of the expected activity distribution of ECDs over

all considered source models
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In the original BMA framework for E/MEG [151] , i.e., the models
had a flat prior PDF because no additional functional information was available
at that point. Melie-García et al. [152] suggested to use the significance values
of fMRI statistical t-maps to derive p(Mi) as the mean of all such significance
probabilities across the present in Mi compartments. This strategy causes the
models consisting of the compartments with significantly activated voxels to get
higher prior probabilities in BMA. The introduction of fMRI information prior
to BMA analysis reduced the ambiguity of the inverse solution, thus leading to
better localization performance. Although further analysis is necessary to define
the applicability range of the BMA in E/MEG/fMRI fusion, it already looks
promising because of the use of fMRI information as an additional evidence
factor in E/MEG localization, rather than as a hard constraint.

Due to the flexibility of Bayesian formalism, various Bayesian methods for
solving the E/MEG inverse problem already can be easily extended to partially
accommodate evidence obtained from the analysis of fMRI data. For instance,
correlation among different areas obtained from fMRI data analysis can be used
as a prior in the Bayesian reconstruction of correlated sources [153]. The devel-
opment of a neurophysiologic generative model of BOLD signal would allow
many Bayesian inference methods (such as Schmidt et al. [154]) to introduce
complete temporal and spatial fMRI information into the analysis of E/MEG data.

8.5 CONSIDERATIONS AND FUTURE DIRECTIONS

Although the BOLD signal is inherently nonlinear as a function of neuronal acti-
vation, there have been multiple reports of linear dependency between the observed
BOLD response and the selected set of the E/MEG signal features. In general, such
results are not inconsistent with the nonlinearity of BOLD, because, of course, a
nonlinear function can be well approximated in the context of a specific experi-
mental design, regions of interest, or dynamic ranges of the selected features of
E/MEG signals. Besides the LFP/BOLD linearity reported by Logothetis and con-
firmed in the specific frequency bands of an EEG signal during a flashing check-
erboard experiment [155], there have been reports of a strong correlation between
the BOLD signal amplitude and other features of E/MEG responses.

In the past, DC-E/MEG signals have not been given any attention in multi-
modal integration, despite recent experiments showing the strong correlation
between the changes of the observed DC-EEG signal and hemodynamic changes
in the human brain [156]. In fact, such DC-E/MEG/BOLD coupling suggests that
the integration of fMRI and DC-E/MEG might be a particularly useful way to
study the nature of the time variations in the HR signal, which are usually
observed during fMRI experiments but are not explicitly explained by the exper-
imental design or the physics of the MR acquisition process.

Many EMSI methods can be naturally extended to account for fMRI data if
a generative forward model of BOLD signal is available. For instance, direct
universal-approximator inverse methods [157,158] have been found to be very
effective (fast, robust to noise, and to complex forward models) for the E/MEG

α i i= ∀1
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dipole localization problem and could be augmented to accept fMRI data if the
generative model were augmented to produce it.

FMRI-conditioned E/MEG DECD methods have been shown to be a rela-
tively simple and mathematically grounded for source imaging when there is
good spatial agreement between E/MEG and fMRI signals. Due to the advantages
of such methods, it might be valuable to consider other advanced E/MEG DECD
methods such as FOCUSS [159], which is known to bring improvement of
estimation of focal sources over simple linear inverse methods [160].

ICA as a signal decomposition technique has been found effective in removing
artifacts in E/MEG without degrading neuronal signals [161–164], and moreover is
known to be superior to PCA in the component analysis of E/MEG signals [165].
Initial research using ICA of fMRI in the spatial domain [166] was controversial;
however, consecutive experiments and generalization of ICA to fMRI in the temporal

The development of ICA methods for the analysis of multimodal data provides a
logical extension of the decomposition techniques covered earlier in the chapter.

Because most of the multimodal methods presented in this chapter rely upon
the linear dependence between signals, it is important to analyze, expand, and
formalize the knowledge about the “linear” case. The formulation of a general
BOLD signal model capable of describing the desired nonlinear dependency in
terms of neuronal activation and nuisance physiological parameters would con-
stitute a major step toward the development of multimodal methods with a wider
range of application than in the current linear domain. Without such a model and
without valid estimates of the underlying physiological parameters involved in
the model, any multimodal analysis can not be considered progress.

In sum, it seems clear that fMRI should serve as a complementary evidence
factor, rather than a hard constraint, in E/MEG source localization methods.
The preprocessing of both fMRI and E/MEG signals should be done in order to
select features of interest which had been previously reported to have good
agreement between the two modalities. Any multimodal experiment should be
based on the comparative study of unimodal experiments and analyses that show
good agreement before performing conjoint data analysis.
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ABSTRACT

 

Three-dimensional (3-D) imaging of the heart is a rapidly developing area of
research in medical imaging. Advances in hardware and methods for fast spa-
tiotemporal cardiac imaging are extending the frontiers of clinical diagnosis and
research on cardiovascular diseases.
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In the last few years, many approaches have been proposed to analyze images
and extract parameters of cardiac shape and function from a variety of cardiac-
imaging modalities. In particular, techniques based on spatiotemporal geometric
models have received considerable attention. This chapter surveys the literature
of two decades of research on cardiac modeling. The purpose of the chapter is
threefold: (1) to serve as a tutorial on the subject for both clinicians and technol-
ogists, (2) to provide an extensive account of modeling techniques in a compre-
hensive and systematic manner, and (3) to critically review these approaches in
terms of their performance and value in clinical evaluation with respect to the
final goal of cardiac functional analysis. From this review it is concluded that
whereas 3-D model-based approaches have the capability to improve the diag-
nostic value of cardiac images, issues such as robustness, 3-D interaction, com-
putational complexity, and clinical validation still require significant attention.

 

9.1 INTRODUCTION

 

Cardiovascular disease (CVD) has been the leading cause of death in the U.S.
since 1900 in every year but one (1918). Nearly 2600 Americans die each day
of CVD, an average of one death every 34 sec [1]. CVD claims more lives each
year than the next five leading causes of death combined, which are cancer,
chronic lower respiratory diseases, accidents, diabetes mellitus, and influenza and
pneumonia. According to the most recent computations of the Centers for Disease
Control and Prevention of the National Center for Health Statistics (CDC/NCHS),
if all forms of major CVD were eliminated, life expectancy would rise by almost
7 yr. If all forms of cancer were eliminated, the gain would be only 3 yr. According
to the same study, the probability at birth of eventually dying from a major CVD
is 47%, whereas the chance of dying from cancer is 22% [1].

 

*

 

Nowadays, there is a multitude of techniques available for cardiac imaging
that provide qualitative and quantitative information about the morphology and

can help in guiding clinical diagnosis, treatment, and follow-up of cardiac dis-
eases. Spatiotemporal imaging is a valuable research tool to understand cardiac
motion and perfusion, and their relationship with different stages of disease.

Technological advances in cardiac-imaging techniques continue to provide
3-D information with increasing spatial and temporal resolution. Therefore, a
single cardiac examination can result in a large amount of data (particularly in
multiphase 3-D studies). These advances have led to an increasing need for
efficient algorithms to plan 3-D acquisitions, automate the extraction of clinically
relevant parameters, and to provide the tools for their visualization.

Segmentation of cardiac chambers is an invariable prerequisite for quantitative
functional analysis. Although many clinical studies still rely on manual delineation
of chamber boundaries, this procedure is time consuming and prone to intra- and

 

* 

 

The most recent European survey of CVDs is the one published by the European Society of
Cardiology [2].
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function of the heart and great vessels (Figure 9.1). Use of these technologies
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interobserver variability. Therefore, many researchers have addressed the problem
of automatic left (LV) and right (RV) ventricle segmentation. Because the shape of
the cardiac ventricles is approximately known, it seems natural to incorporate this
knowledge into the segmentation process. Such model-driven techniques have
received ample attention in medical image analysis in the last decade [3,4]. Some
of the advantages over model-free approaches are: (1) the model itself can constrain
the segmentation process that is ill posed in nature owing to noise and image
artifacts, (2) segmentation, image analysis, and shape modeling are simultaneously

on the desired degree of abstraction, and (4) in some approaches, most of the
chamber’s shape can be explained with a few comprehensible parameters that can

Use of geometric models is not completely new to the analysis of cardiac
images. As a matter of fact, traditional methods of obtaining parameters such as
left-ventricular volume (LVV) and mass (LVM) from echo- and angiocardio-
graphy were based on (simple) geometrical models [10–13]. However, their use
was mainly motivated by the need to extract 3-D parameters from 2-D images,
and their accuracy was therefore limited [14].

The literature on model-driven segmentation of cardiac images has grown
rapidly in the last few years, and this trend is likely to continue.

 

*

 

 This chapter

 

FIGURE 9.1

 

The heart is a complex system whose aim is to pump blood to irrigate the
whole body. Assessment of cardiac performance is crucial in diagnosis and treatment of
cardiovascular diseases.

 

* 
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See, for instance, a recently published special issue on 3-D cardiac image analysis [15].

subsequently be used as cardiac indices (cf. References [5–9] among others).

addressed in a common framework, (3) models can be coarse or detailed depending
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presents a comprehensive and critical review of the state of the art in geometric
modeling of the cardiac chambers, notably the LV, and their potential for
functional analysis. It is an updated version of our previous review [16]. In
order to set reasonable bounds to the extent of this survey, we have confined
ourselves to peer-reviewed archival publications

 

*

 

 proposing methods for LV (or
RV) segmentation, shape representation, and functional and motion analysis that
fulfill the following selection criteria:

• The technique is model based.
• The reconstructed model is 3-D.

 

**

 

• Illustration on cardiac images is provided.

  This review is organized as follows: Section 9.2 gives a brief overview of the
different acquisition modalities that have been used in imaging the heart. Section
9.3 summarizes and defines the most relevant clinical parameters that provide
information on cardiac function. Section 9.4 presents a systematic classification of
cardiac models by type of geometrical representation and parameterization; atten-
tion is also given to the different types of input data and features for model recovery.

approaches with respect to the functional parameters they provide and the degree

the clinical target of obtaining functional information of the heart (Section 9.3) to the
various technical approaches presented in Section 9.4. Finally, Section 9.6 closes the
survey with conclusions and suggestions for future research.

 

9.2 IMAGING TECHNIQUES 
FOR CARDIAC EXAMINATION

 

The physical properties on the basis of which the imaging device reconstructs an
image (e.g., radioactive emissions of an isotope) are intimately related to some
specific functional aspects of the heart (e.g., its perfusion properties). Each imag-
ing modality has advantages and limitations that influence the achievable mod-
eling accuracy. This section briefly reviews the techniques most frequently used
for 3-D clinical investigation of the heart. More extensive reviews and comple-
mentary reading can be found in References 17–24.

 

9.2.1 A

 

NGIOCARDIOGRAPHY

 

Angiocardiography is the x-ray imaging of the heart following the injection of a
radio-opaque contrast medium. Although 2-D, in principle, this technique can
provide projections from two angles using a biplane system. Selective enhancement

 

* 

 

A few exceptions were made when the approaches were considered relevant and journal versions
were not available.

 

** 

 

Even if the imaging technique is not 3-D, for instance, in the reconstruction of 3-D, models from
multiple nonparallel slices or from multiple 2-D, projections.
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This section is summarized in Table 9.1. Section 9.5 discusses cardiac modeling

of evaluation possible with these methods. This section leads to Table 9.2 that links
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TABLE 9.1
Overview of Cardiac Modeling Methods

 

Reference                 Model Potential  Reported  Type of Input    Type of Feature

 

Surface Models

 

Continuous Yettram [107], [108] Stacked curves BA BA M2DP Manual contours
Young [69], [109] Bicubic Hermite patches BA BA PS Coronary bifurcation points
Spinale [110]

 

RV

 

  Stacked hemiellipses BA BA M2DP Manual contours
Pentland [111] FE and modal analysis NS X M2DP Optic flow
Cauvin [112] Truncated bullet NS SPECT 3DV Thresholding + Morphological

skeleton  
Czegledy [113]

 

RV

 

Stack of crescentic outlines NS CT 3DV Linear measurements
Gustavsson [114] Cubic B-spline curves’ 

mesh
US US MO2DS Manual contours

Sacks [115]

 

RV

 

Biquadric surface patches NS MR 3DV Manual contours
Chen [116] Superquadrics + spherical 

harmonics
NS BA PS Coronary bifurcation points

Denslow [117]

 

RV

 

Ellipsoidal shell NS MR 3DV Linear measurements
Maehle [31] Bicubic spline surface 

patches
NS US MO2DS Edge detection 

 

+

 

manual correction
Chen [118] Voxel repres./superquadric NS DSR 3DV Shape and gray-level properties
Coppini [29] Spherical elastic surface NS US MO2DS NN edge detector

Goshtasby [119] Rational Gaussian surface NS MR 3DV Zero-crossings Laplacian
Matheny [120] 3-D/4-D harmonic surfaces NS DSR/BA PS Iso-surface, coronary 

bifurcation points
Staib [121] Bayesian Fourier surface NS MR/DSR 3DV Gaussian gradient
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Park [6] Superquadrics+ parameter 
functions

MR

 

tag

 

MR

 

tag

 

 PS MR tagging-derived
midwall motion field [77]

Bardinet [9], [122] Superquadrics + FFD NS DSR/SPECT PS Iso-surfaces
Declerck [123] Planispheric transformation NS SPECT 3DV Normalized radial gradient
Sato [124] B-spline surface BA BA M2DP Apparent/occluding contours
Sanchez-Ortiz [125] B-spline surface + motion 

model
3DUS 3DUS 3DV multiscale fuzzy clustering

Swingen [126], [127] B-spline surface MR MR M2DP Manual point placing
Horkaew [128] Hierarchical piecewise 

bilinear maps
CT, MR, US,  MR 3DV Image gradient

Discrete Geiser [129], [130] 12-sided stacked polygons US US MO2DS Manual contours
Faber [131] 4-D discrete template NS MR/SPECT 3DV Normalized radial gradient
Gopal [27] Polyhedral mesh NS US MO2DS Manual contours
Friboulet [132] Triangulated mesh NS MR PS Manual contours
Huang [133] Adaptive-size mesh NS DSR PS Data-to-node distance 

 

+

 

data curvature
Faber [134] 3-D discrete template SPECT SPECT 3DV Radioactive distrib. profile
Germano [135], 
[136]

Ellipsoid + local refinement SPECT SPECT 3DV radioactive distrib. profile

McInerney [137] FE deformable balloon NS DSR 3DV Gauss/Monga-Deriche grad.  
Ranganath [138] 2-D snakes + propagation MR MR 3DV Intensity profile matching
Tu [139] Spherical template NS DSR 3DV Spatiotemporal gradient
Nastar [140] Mass-spring mesh NS DSR 3DV Edge distance map
Rueckert [141] Geometrically deformable 

template
NS MR 3DV Zero-crossings Laplacian

Shi [142], [143]  Delaunay triangulation NS MR/DSR PS Bending energy

 

(

 

continued

 

)
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TABLE 9.1 (Continued)
Overview of Cardiac Modeling Methods

 

Reference                 Model Potential  Reported  Type of Input    Type of Feature

 

Surface Models

 

Legget [28] Piecewise subdivision 
surface

NS US MO2DS Manual contours

Montagnat [144] Simplex meshes US US MO2DS Edges in cylindrical coord.
Biedenstein [145] Bullet-like elastic mesh SPECT SPECT 3DV Radioactive distrib. profile
Gerard [146] Simplex mesh + motion 

model
NS MR, CT, 

 US
3DV Iimage gradient

Song [147] Bayesian model of shape 
and features

3DUS 3DUS 3DV Multifeature appearance model

Mäkelä [148] Triangulated thorax model NS MR 
(+ MCG,
+ PET)

3DV Deformable model [149] and 
image registration

Fan [150] Superquadrics + spherical 
harmonics

NS DSR PS Manual contours

Lorenzo-Valdes 
[151]

Atlas-based segmentation MR, CT, US MR 3DV MRF model

van Assen [152], 
[153]

Fuzzy active shape model NS MR      3DV fuzzy 
      inference 
     system

Kaus [154] Statistically constrained 
deformable model

NS MR 3DV Spatially varying features

Wierzbicki [155] Nonrigid template 
registration

MR, CT, MR 3DV       Several 
      registration 
      metrics

Implicit Yezzi [156], [157] Implicit snakes NS MR 3DV Gaussian gradient
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Tseng [158] Cont. Dist. Tranf. NN NS US MO2DS Manual contours
Niessen [159] Implicit snakes NS MR/DSR 3DV 

      Gaussian 
      gradient

Lelieveldt [160] Fuzzy implicit surfaces CT/MR MR MO2DS Air-tissue transitions

 Volume Models  

Continuous Creswell [161], 
[162]  

Approximating NURBS MR MR PS manual contours

Park [5], [163] Superellipsoids + par 
Functions

MR

 

tag

 

  MR

 

tag

 

  TAG tag line intersections +
boundary points

Haber [164]–[166]  Physics-based FE MR

 

tag

 

MR

 

tag

 

TAG  Tag line intersections + 
boundary points

Shi [167] Biomechanical tetrahedral 
FE model

MR MR PS + 3DV Bending energy + MR velocity 
image

Hu [168] Statistical physics-based FE MR

 

tag

 

 MR

 

tag

 

TAG SPAMM Features + composite 
model

Discrete Kuwahara [169] Voxel representation MR MR MO2DS Manual contours
O’Donnell [7], [8] Hybrid volumetric 

ventriculoid
MR

 

tag

 

MR

 

tag

 

TAG Tag line intersections + 
boundary points

Mitchell [170] 3D AAM MR, CT, US MR 3DV Texture with shape constraints
Sermesant [171] Deformable biomechanical 

model
NS MR, 

SPECT
3DV Intensity profiles

Stegmann [172], 
[173]

Bitemporal AAM  MR, CT, US MR 3DVS Texture with shape constraints

 

(

 

continued

 

)
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TABLE 9.1 (Continued)
Overview of Cardiac Modeling Methods 

 

Reference                 Model Potential  Reported  Type of Input    Type of Feature

 

Deformation Models

 

Continuous Amini [95] Local quadric patches NS DSR/MR PS Minimal conformal motion
Amini [174], [175]  B-spline tag surfaces MR

 

tag

 

 MR

 

tag

 

TAG special SPAMM protocol
Young [77] Bicubic Hermite FE  MR

 

tag

 

 MR

 

tag

 

TAG Tag line intersections

Bartels [176] Multidimensional splines NS Syn 3DV Intensity conservation
O’Dell [177] Affine + prolate spheroidal MR

 

tag

 

MR

 

tag

 

TAG tag lines
Young [81] Bicubic Hermite FE MR

 

tag

 

MR

 

tag

 

TAG tag lines
Moulton [178] Higher-order polynomial 

interpolation
MR

 

tag

 

MR

 

tag

 

TAG Tag surface intersections

Radeva [179] Trivariate cubic B-spline MR

 

tag

 

MR

 

tag

 

TAG Short-axis tag lines
Kerwin [83] Thin-plate splines MR

 

tag

 

MR

 

tag

 

TAG Tag line intersections
Huang [181] Quadrivariate cubic B-

spline
MR

 

tag

 

MR

 

tag

 

TAG Tag surfaces

Young [180] “Model tags” MR

 

tag

 

MR

 

tag

 

TAG Tag lines
Chen [182] 4-D B-spline solid MR

 

tag

 

MR

 

tag

 

TAG Oriented filters
Klein [183] 4-D elastic deformable 

model
PET PET 3DV Optic flow

Masood [184] Virtual tags MR MR 3DV Myocardial velocity 
measurements

Chandrashekara 
[185]–[187]  

FFD in cylindrical 
coordinates

MR

 

tag

 

MR

 

tag

 

3DV Mutual information

Perperidis [188], 
[189]

Spatiotemporal FFD MR

 

tag

 

MR

 

tag

 

3DV Mutual information
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Discrete Moore [78] Discrete mesh MR

 

tag

 

MR

 

tag

 

TAG Tag line intersections
Denney [82] Discrete grid MR

 

tag

 

 MR

 

tag

 

TAG tag line intersections
Benayoun [99] Adaptive-size meshes NS DSR 3DV gradient
Papademetris [190], 
[191]

Delaunay triangulation NS MR/US PS Internal deformation energy

Shi [192] Stochastic biomechanical 
model

NS MR PS Displacement fields from PC 
MR  

Lötjönen [193] Statistical deformation 
model

MR, CT MR 3DV Normalized mutual 
information

 

Note:

 

 

 

RV 

 

Right ventricle

Modality:

 

 

 

BA = biplane angiocardiography; US = ultrasound; MR = magnetic resonance; DSR = dynamic spatial reconstructor; CT = computed tomography; X =
transmission x-ray; SPECT = single-photon emission computed tomography; PET = positron emission tomography; MCG = magnetocardiography; Syn = synthetic
images; NS = nonspecific.

Recovered from:

 

 

 

M2DP = multiple 2-D projections; MO2DS = multiple oriented 2-D slices; 3DV = 3-D volumetric images and feature maps; 3DVS = 3-D volumetric
sequences; PS = point sets; TAG = MR tag intersections, lines, or surfaces.
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TABLE 9.2
Overview of Cardiac Modeling Methods: Reported Classical Functional Parameters and Their Validation

 

Parameters
Validation/

 

Illustration

Evaluation Reference Modality Global Motion
Flexibility 

Complexity Preprocessing Automation

 

Ad hoc

 

Type No.
Std. 

of Ref.

 

Amini [95] DSR, MR —

 

MF

 

L M + + a 1

 

NA

 

Amini [174], 
[175]  

MR

 

tag

 

—

 

MF

 

, 

 

SA

 

L M — + V 1

 

NA

 

Bartels [176], 
[229]

NS —

 

MF

 

L N + + m 1 GT

Benayoun 
[99]

DSR —

 

MF

 

L A + — a 1

 

NA

 

Cauvin 
[112]

SPECT

 

LVV

 

— C A + — P

 

NA NA

 

Chen 
[116]

BA

 

LVV SA

 

H M — — V 1

 

NA

 

Chen 
[118]

DSR

 

LVV

 

— C N + — V 1

 

NA

 

Chen [182] MR

 

tag

 

—

 

SA

 

C N + — V 5

 

NA

 

Fan [150] DSR —

 

MF

 

, 

 

SA

 

H M + — V 1

 

NA

 

Gustavsson 
[114]

US

 

LVV

 

— H M = + V 1

 

NA

 

Qualitative or Huang 
[133]

DSR

 

LVV MF

 

L M + + a 1

 

NA

 

no evaluation Hu [168] MR

 

tag

 

—

 

MP

 

, 

 

SA

 

L M + + V/P 1/1

 

NA

 

Kerwin 
[83]

MR

 

tag

 

—

 

SA

 

L A + — V 1

 

NA

 

Matheny 
[120]

DSR

 

LVV

 

— G M + — a 1

 

NA

 

Mäkelä 
[148]

MR(+PET, 
+MCG)

— — L N + — p 10

 

NA
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Maehle [31] US

 

LVV WT

 

L M — — V/P

 

NA NA

 

McInerney
[137]

DSR

 

LVV MF

 

L I — — V 1

 

NA

 

Niessen 
[159]

MR/DSR

 

LVV WT

 

L I + + a 1/1

 

NA

 

O’Donnell
[7], [8]

MR

 

tag

 

LVV WT

 

, 

 

SA

 

H M + + V 1

 

NA

 

Papademetris 
[191]

US —

 

SA

 

L A + — a 4

 

NA

 

Papademetris
[190]

MR —

 

SA

 

L A + — v 1

 

NA

 

Park [163] MR

 

tag

 

LVV

 

MF

 

, 

 

SA

 

C M + + V 1

 

NA

 

Pentland
[111]

X

 

LVV MF

 

G I + + V 1

 

NA

 

Radeva [179] MR

 

tag

 

LVV MF

 

, 

 

SA

 

L M — + V 1

 

NA

 

Rueckert [141] MR

 

LVV MF

 

L I + + V 1

 

NA

 

Staib [121] DSR/MR

 

LVV

 

— G I + + a 1/1

 

NA

 

Yezzi [156], [157] MR

 

LVV WT

 

L I + + V 1

 

NA

 

Young [69], [109] BA —

 

SA

 

L M + + a 1

 

NA

 

Young [180] MR

 

tag

 

—

 

SA

 

L I — + V 1

 

NA

 

Amini [174] MR

 

tag

 

LVV MF, SA L M + + m 1 GT

Bardinet [122] DSR LVV MF H M + — a/m 1 OB/AS

Czegledy [113]RV CT RVV — C M = — p 10 AT

Denney [82], [240] MR L A + m/a 1/1 GT/NA

Denslow [117]RV MRtag RVV — C M = — p 13 AT

Gerard [146] US LVV — L N + — p 1 GT

Germano [35], 
[135], [136], [204]

SPECT LVV, 
EF

— H A + — p 1 GT

Gopal [27] US LVV — L M + — p 17 AT

(continued)
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TABLE 9.2 (Continued)
Overview of Cardiac Modeling Methods: Reported Classical Functional Parameters and Their Validation 

Parameters
Validation/
Illustration

Evaluation Reference Modality Global Motion
Flexibility 

Complexity Preprocessing Automation Ad hoc Type No.
Std. 

of Ref.

Kerwin [83] MRtag SA_ L A

Quantitative:synt
hetic, phantom

Haber 
[164]–[166]RV

MRtag — MF, SA L M + + m 1 GT

and animal 
models

Huang [181] MRtag — MF, SA L A + — m/a −/1 GT/NA

Legget [28], [241], 
[242]  

US LVV, 
LVM

— L M = — p/a 
6/21
+5

GT/AT

Masood [184] MR — SA L I + — p — GT

Moore [78] MRtag — SA L A + — m — AS

Moulton [178] MRtag SA L M m/a −/7 NS/NS

O’Dell [177] MRtag — SA H M + — m — AS

Papademetris [190], 
[243]  

MR — SA L A + — a/a 4/8 AT

Sacks [115]RV MR — WT L M = + p/a 6/1 GT/NA

Sato [124] BA LVV — L M — + m/p 1/1 GT/AT

Spinale [110]RV BA RVV, 
SV

WT L M = + p/a 22/24 AT/AT

Shi [142] MR/DSR — WT, MF L A + + a 12 AT

Shi [167]    MR — MF, SA L A + — a 1 CL

Shi [192] MR — MP, SA L A + — m/a 1 AT

Swingen [126] MR LVV — C N + — p 2 GT

Tu [139] DSR LVV — G M + + a 2 OB

Wierzbicki [155] CT, MR LVV MF H I + + a/V 2/2 GT/OB
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Yettram [107],

[108]
BA LVV — L M = — p 8 AT

Quantitative: 
clinical

Young [77] MRtag — SA L M + — m — AS

case studies 
without standard 
of reference

Declerck [123] SPECT — MF G A + + V/P 3/1 NA

Gerard [146] US LVV — L N + — V 9 NA

Kuwahara [169], 
[244]  

BA LVV, 
EF, SV

— L M = — P 13 NA

Legget [28], [242]  US LVV — L M — — V/P 6/2 NA

Moore [78] MRtag — SA L A + — V 1 NA

O’Dell [177] MRtag _ SA_ H M + — V 10 NA

Park [5] MRtag LVV,EF MF C M + + V/P 1/1 NA

Park [6] MRtag LVV MF, SA C M + + V/P 1/1 NA

Perperidis [188], 
[189]

MR LVV — L I + + V 7 NA

Sermesant [171] SPECT, MR LVV SA L I + -  V 3 NA

Young [69],
[109]

BA — SA L M + + V 1 NA

Young [77] MRtag — SA L M + — V 1 NA

Bardinet [122] SPECT LVV WT, MF H M + — V 1 OB

Biedenstein
[145]

SPECT LVV — L I + — P 42 OB

Quantitative: 
clinical case 
studies without 
standard of 
reference

Chandrashekara
[185], [186],
[245]  

MRtag — MF L I + — V 6 OB

Coppini [29] US LVV, 
EF

— L N + — V 3 OB

Faber [131] SPECT/MR LVV WT L I + + V/P 22/16 OB

Faber [134] SPECT LVV — L I + + P 10 OB(m)

Germano [35],
[135], [136],
[246]

SPECT LVV, 
EF

WT H A + _ P 144
/65

OB(m)/
AT

(continued )
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TABLE 9.2 (Continued)
Overview of Cardiac Modeling Methods: Reported Classical Functional Parameters and Their Validation 

Parameters
Validation/
Illustration

Evaluation Reference Modality Global Motion
Flexibility 

Complexity Preprocessing Automation Ad hoc Type No.
Std. 

of Ref.

Geiser [129], [130] US LVV,EF,
SV,CO

WT L M = _ P 4 AT

Goshtasby [119] MR LVV _ L I + + V 5 OB

Horkaew [128] MR LVV — C I + + V 160 OB

Kaus [154] MR LVV, 
RVV, 
BPE

— C N + + P 121 OB

Legget [28], [241]  US LVV, 
SV

— L M — — V 5 AT

Lelieveldt [227] MR SP — L M — — V 5 AT

Lorenzo-Valdes 
[151], [232], [247]

MR RVV, 
LVV

— L N — — V/P 14/10 OB

Lötjönen [193] MR LVV,RVV,
BPE

— C N + + V 25 OB

Mitchell [170] MR LVV, 
LVM, 
BPE

— C N + — V/P 38/18 OB

Ranganath [138] MR LVV, 
LVM, 
EF

— G I + + V 7 OB

Sanchez-Ortiz[125] US LVV, EF — L N + — V 9 AT

Stegmann [172], 
[173]

MR LVV, EF — C N + — V 12 OB

Song [147] US LVV — L N + + V 25 OB

Swingen [126], 
[127]

MR LVV, EF, 
WT

— C N + — V/P 4/1
8

OB
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Tseng [224] US LVV WT G I = — V 1 OB

van Assen [152], 
[153]

MR LVV — C I + — V 9 OB

Notes: NA = not available or not reported

Parameters: bold = quantitative results reported; italic = computable from the model (but quantitative results not reported). Motion parameters were classified in six categories: BPE = border-
positioning error; WT = wall-thickening analysis; MF = wall/tissue motion field (not including strain analysis); MP = material parameters; SA = strain analysis; SP = scan plan.

Flexibility: C = compact model with small or medium number of degrees of freedom (DOF), G = flexible model with global-support basis function and large number of DOF, L =
flexible model with local-support basis functions and large number of DOF, H = hierarchical models.

Preprocessing to initialize the model: N = none; M = manual segmentation of contours and landmarks; A = (semi) automatic delineation of contours and landmarks; I = approximated
model initialization or landmark placement. Precomputation of feature images (gradient, Laplacian, etc.) was not considered as preprocessing.

Automation after preprocessing and selection of ad hoc parameters: (+) full, (–) interactive guidance may be required to correct or assist intermediate steps, (=) relying on substantial
human guidance.

Ad hoc parameters: (–) none, or robustness demonstrated through sensitivity analysis; (+) yes, but no sensitivity analysis was performed.

Validation/illustration information: Type of evaluation/illustration set: m = mathematical models, p = physical phantoms (mostly balloons or heart casts), a = animal model, V = human
volunteers and P = patients. Standard of reference: AS = analytic solution, AT = alternative technique, CL = comparison to literature, GT = ground truth, NS = numerical solution,
OB(m) = human observer (involving multiple modalities). Papers with several evaluation studies have multiple entries. Note that only the accuracy in determining tag intersections
was computed. No quantitative analysis reported on deformation field or strain analysis. Monte Carlo analysis of sensitivity for this factor is reported.

Actually, it is the conjunction of model parameterization and the recovery strategy that determines the computational load of an approach. It would have been very interesting if the
computation time had been reported with each technique. Unfortunately, variability in hardware architecture over time and the variations in techniques renders any quantitative comparison
unrealistic.
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of the lesion to be demonstrated can be accomplished by positioning an intravascular
catheter through which the contrast medium is guided and injected. Angiocardio-
graphy is usually good for anatomic delineation of lesions but is much less satis-
factory for the determination of their severity and the degree of hemodynamic
disturbance they have produced. This technique has been used for a long time to
assess ejection fraction (EF) and ejection volumes (EV) [10] based on simplified
geometric models [11–13] of the LV, but most radiologists use visual assessment
based on experience [17].

9.2.2 CARDIAC ULTRASOUND

Two-dimensional ultrasonic (US) imaging of the heart, or echocardiography
[18,24], allows the anatomy and movements of intracardiac structures to be
studied noninvasively. The application of pulsed- and continuous-wave Doppler
principles to 2-D echocardiography (2DE) permits blood flow direction and
magnitude to be derived and mapped onto a small region of interest of the 2DE
image. In color-flow Doppler mapping (CFM), the pulsed-wave signal with
respect to blood velocity and direction of flow throughout the imaging plane is
color-coded and produces a color map over the 2DE image. One of the limiting
factors of 2DE is the ultrasound window (presence of attenuating tissues in the
interface between the US transducer and the organ of interest). To overcome this
problem, transesophageal echocardiography can be used, which can provide
high-quality color-flow images at the expense of being invasive.

Three-dimensional echocardiography (3DE)[19] is a relatively new develop-
ment in the U.S. that allows 3-D quantitation of organ geometry because the
complete organ structure can be imaged. This technique has been used to compute
LVV and LVM [25–30] and to perform wall motion analysis [31].

9.2.3 ISOTOPE IMAGING

Isotopes have been used to study left-ventricular function and myocardial perfusion.
Radionuclide techniques for monitoring global and regional ventricular function fall
into two major categories: (a) first-pass studies, in which an injected bolus dose is
monitored during its first passage through the heart and great vessels, and (b) gated
equilibrium studies, in which the tracer mixes with the blood pool before data collec-
tion. First-pass acquisitions are typically 2-D, whereas gated equilibrium studies can
be 2-D or 3-D (single-photon emission computed tomography — SPECT). Isotope
imaging can be used to assess parameters like EF [32] and regional wall motion analysis
[32–34]. It is also used to study myocardial perfusion [35] in cases of ischemia or
myocardial infarction, and to assess myocardial viability. The overwhelming majority
of radionuclide studies performed for perfusion assessment employ SPECT.

9.2.4 CARDIAC COMPUTED TOMOGRAPHY

Computed tomography (CT) is rapidly gaining ground as a routine cardiovascular
modality. Electron beam computed tomography (EBCT)[36] was the first type of
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clinically applied cardiovascular CT providing 3-D data over the full cardiac cycle.
Using prospective gating, a stack of slices can be acquired with a high temporal
resolution (50 msec between frames) and a slice thickness of about 3–4 mm. EBCT
has been mainly applied clinically for detecting coronary calcium deposits. Limita-
tions of this system are that the spatial resolution in the transaxial direction is much
less than the in-plane resolution, there is a high noise level in the images, and the
geometry of the scanner is fixed, which does not allow acquisition of short-axis views.

Multislice CT (MSCT)[37,38] is less expensive and more widely available than
EBCT. MSCT is characterized by a higher spatial resolution in all directions and
can provide near-isotropic data sets within one breath hold, albeit at a lower temporal
resolution than can EBCT (150 msec between frames). Hence, with the recent advent
of multirow detectors, a faster imaging time is combined with higher resolution and
lower noise levels. MSCT effectively became feasible with 4-row detectors, enabling
spiral scanning of four slices at a time; nowadays 12- and 16-row detectors are
commonly available, and 64-row detector gantries are under development. It is
expected that the increasing number of detectors in combination with improved
reconstruction algorithms will enable reduced acquisition times, and that image
quality and temporal and spatial resolution will further improve in the near future.
The near-isotropic resolution has two additional advantages: the data can be refor-
matted into any desired spatial orientation (such as the short-axis view) without
interpolation, and it gives an excellent definition of the coronary vessels [39,40].
Currently, MSCT is clinically used for examining coronary anatomy, for visual
coronary stenosis detection, and for assessing the amount of calcium in the coronar-
ies. Recent studies [41,42] indicate that already a 12-row CT enables detection of
coronary artery disease with 95% sensitivity and 93% specificity. However, as
almost on other modality, MSCT enables the combined assessment of left-ventric-
ular global and regional function and coronary function. It is therefore increasingly
used to detect coronary artery disease in combination with left-ventricular function,
and to screen asymptomatic patients with cardiovascular risk factors.

9.2.5 MAGNETIC RESONANCE IMAGING

Cardiac magnetic resonance imaging [23] (MRI) is now an established, although
still rapidly advancing, technique providing information on the morphology and
function of the cardiovascular system [43]. Advantages of cardiac MRI include
a wide topographical field of view with visualization of the heart and its internal
morphology and the surrounding mediastinal structures, multiple imaging planes,
and a high soft-tissue contrast discrimination between the flowing blood and
myocardium without the need for contrast media or invasive techniques. Long-
and short-axis views of the heart, as used in echocardiography, can be obtained
routinely because arbitrary imaging planes can be selected.

In fact, cardiac MRI can be regarded as a collection of “MR modalities,”
each dedicated to different aspects of cardiac function. Multislice multiphase
short-axis scanning enables a detailed study of cardiac anatomy and global and
regional function, both at rest and under stress. Several researchers have used
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MRI to assess right- and left-ventricular parameters as represented by stroke
volume (SV), EF, LVM [44–49], wall thickening (WT) [50], myocardial motion [51],
and circumferential shortening of myocardial fibers [52]. Data from MRI are
more accurate than those derived from left-ventricular angiocardiography, where
the calculation is based on the assumption that the LV is ellipsoidal in shape.
Volume measurements by MRI are independent of cavity shape, with the area
from contiguous slices integrated over the chamber of interest.

Multislice multiphase imaging enables assessment of regional function in terms
of the local-wall-geometry changes over the cardiac cycle. However, the complex
twisting motion during cardiac contraction cannot be imaged with ordinary multislice
multiphase acquisitions, and therefore the gold standard for accurate regional con-
tractility analysis is cardiac MR tagging [53,54]. By locally changing the magnetiza-
tion of the tissues, a stripe grid can be applied to the myocardium, defining a material
coordinate frame. As the tagging stripes are deformed during cardiac contraction, the
material coordinates inside the myocardium can be tracked over the cardiac cycle.
Myocardial deformation can thus be tracked, allowing for stress and strain measure-
ments, which are assumed to be early indicators of myocardial dysfunction. Typically,
such measures are derived using an intermediary finite element (FE) continuum
model, which is coupled to the tagging intersection locations. From the deformations
of the continuum model, estimates for stress and strain are computed.

Apart from global function and regional myocardial contractility and motion,
the perfusion of the myocardium provides important diagnostic information on
coronary function [55]. The primary means to image perfusion with MR is first-
pass perfusion imaging. These images monitor the arrival and subsequent distribu-
tion within the myocardium of a contrast bolus. The rate and extent of perfusion
can be quantified by following the intensity profile of myocardial pixels over time.
Following first-pass perfusion, delayed enhancement images are commonly
acquired 15–20 min after contrast medium injection. Delayed enhancement imaging
[56,57] exploits the fact that the contrast medium tends to accumulate in necrotic
tissue, greatly enhancing the signal from infarcted regions, with an image resolution
much higher than that seen in common nuclear scans. Quantification can be per-
formed by measuring enhanced signal intensity within the myocardium and com-
paring it to nonenhanced myocardium, enabling an assessment of the extent and
location of necrotic tissue. In addition, an indicator for myocardial viability can be
derived from this analysis: infarct transmurality. As myocardial infarctions tend to
originate from the endocardial surface, the penetration of the infarction in the myo-
cardium toward the epicardial wall is regarded as a measure of infarct severity.
Myocardial viability can be inferred from this infarct transmurality, where a higher
transmurality typically signifies a decreased viability and, thus, a reduced chance of
myocardial recovery after intervention.

Alternatively, global and regional function can also be quantified from phase-
contrast MRI. These images depict the velocity of a material point in the scanner,
where the gray values represent the velocity. By acquiring phase-contrast images
perpendicular to the aorta slightly distal to the aortic root (aortic-flow images),
global parameters such as SV and cardiac output (CO) can be quantified with
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relatively little effort. Phase-contrast imaging has also been applied to investigate
regional myocardial function, in a similar way as MR tagging. By acquiring multiple
short-axis images with different orthogonal phase-encoding directions, three veloc-
ity components of a material point inside the myocardium can be computed, pro-
viding a dense displacement field for the myocardium with a higher resolution than
tagging data. Analogous to tagging analysis, the displacement field can serve as
input to a continuum model, yielding estimates for myocardial stress and strain.

Compared to MSCT, cardiac MRI provides similar data, the additional advan-
tages being the nonionizing nature of the modality, its versatility, and superiority
in flow and perfusion imaging. MSCT, on the other hand, enables a significantly
faster acquisition (±20 sec), and thus enables a higher patient throughput and the
simultaneous study of coronary and ventricular function.

9.3 CLASSICAL DESCRIPTORS OF CARDIAC 
FUNCTION

Development of models of the cardiac chambers has emerged from different dis-
ciplines and with various goals. Cardiac models have been used for deriving func-
tional information, for visualization and animation, for simulation and planning of
surgical interventions, and for mesh generation for FE analysis.

This survey will be confined to the application of modeling techniques for obtain-
ing classical functional analysis. Classical functional analysis can be divided into global
functional analysis (Subsection 9.3.1) and motion and deformation analysis (Subsec-
tion 9.3.2), from which the most clinically relevant parameters can be obtained.*

Model-based methods also allow one to derive new descriptors of cardiac shape
and motion. Such advanced descriptors have been mainly presented in the technical
literature and their clinical relevance is yet to be assessed. Without pretending to be

descriptors that demonstrate the extra possibilities provided by some of the advanced
methods.

9.3.1 GLOBAL FUNCTIONAL ANALYSIS

Weber and Hawthorne [58] proposed a classification of cardiac indices according
to their intrinsic dimensionality: linear, surface, or volumetric descriptors. Linear
parameters have been used intensively in the past because they can easily be derived
from 2-D imaging techniques such as 2DE and x-ray angiocardiography.* However,
these techniques assume an “idealized” geometry of the LV and strongly depend
on external or internal reference and coordinate systems. Besides total ventricular
wall area, other surface indices based on curvature and derived parameters have
been investigated from 2-D studies [59–62]. More recently, many image processing

* Such parameters are, for instance, left-ventricular internal dimension (LVID), relative wall thickness
(RWT), and estimates of fractional shortening of the cardiac fibers (%∆D) and their velocity (Vcf).
For a detailed analysis of these parameters refer to Vuille and Weyman [14].
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approaches to left-ventricular modeling have suggested true 3-D global and local
shape indices based on surface properties.

In practice, assessment of cardiac function still relies on simple global vol-
umetric measures such as LVV and LVM, and EF. These and other basic param-
eters will be presented in the following text:

Left Ventricular Volume (LVV): This is a basic parameter required to derive
other LV indices such as, e.g., EF. Angiocardiography and echocardio-
graphy have been traditionally used to assess this quantity. In the latter
case, three approaches have been applied to represent the LVV: (a) as
the volume of a single shape (e.g., truncated ellipse); (b) as the sum of
multiple smaller volumes of similar configuration (e.g., Simpson’s
method), and (c) as a combination of different figures [14]. The achieved
accuracy in the assessment of LVV with echocardiography varies
widely with the model used to represent the LV. The best results have
been obtained using Simpson’s rule in which in vitro studies have
revealed a relative error ranging from 5.9% to 26.6% depending on the
particular implementation and the number of short-axis slices used in
the computation [14]. It has been shown that echocardiography consis-
tently underestimates ventricular cavity, whereas angiocardiography
consistently overestimates the volumes [14]. In a recent study by Lorenz
et al. [48] with a canine model and autopsy validation, it has been
shown that cine MRI is a suitable and accurate method to estimate RVV
and LVV. In this study, MR-based and autopsy volumes agreed to within
6 ml, yielding no statistically significant differences.

Left Ventricular Mass (LVM): Left-ventricular hypertrophy, as defined by
echocardiography, is a predictor of cardiovascular risk and higher mortality
[14]. Anatomically, LV hypertrophy is characterized by an increase in
muscle mass or weight.

LVM is mainly determined by two factors: chamber volume and wall
thickness. There are two main assumptions in the computation of
LVM: (a) the interventricular septum is assumed to be part of the LV
and (b) the volume, Vm, of the myocardium is equal to the total volume
contained within the epicardial borders of the ventricle, Vt(epi), minus
the chamber volume, Vc(endo); LVM is obtained by multiplying Vm

by the density of the muscle tissue (1.05 g/cm3)

(9.1)

(9.2)

LVM is usually normalized to the total body surface area or weight in order
to facilitate interpatient comparisons. The normal values of LVM nor-
malized to body weight are 2.4 ± 0.3 g/kg [48].

v v epi v endom t c= −( ) ( )

LVM Vm= ×1 05.
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Stroke volume (SV). This is defined as the volume ejected between the end
of diastole and the end of systole.

(9.3)

Alternatively, SV can be computed from velocity-encoded MR images of
the aortic arch by integrating the flow over a complete cardiac cycle
[63]. Similarly to LVM and LVV, SV can be normalized to total body
surface. This corrected SV is known as stroke volume index (SVI).
Healthy subjects have a normal SVI of 45 ± 8 ml/m2 [48].

Ejection fraction (EF): This is a global index of left-ventricular fiber short-
ening and is generally considered as one of the most meaningful mea-
sures of the left-ventricular pump function. It is defined as the ratio of
SV to the EDV.

(9.4)

Lorenz et al. measured normal values of EF with MRI [48]. They found
values of 67 ± 5% (57–78%) for the LV and 61 ± 7% (47–76%) for the
RV. Similar values were obtained with ultrafast CT, echocardiography,
and x-ray angiocardiography [48,14].

Cardiac output (CO): The role of the heart is to deliver an adequate quantity
of oxygenated blood to the body. This blood flow is known as the CO and
is expressed in liters per minute. Because the magnitude of the CO is
proportional to body surface, one person may be compared to another by
means of the cardiac index (CI), that is, the CO adjusted for body surface
area. Lorenz et al. [48] reported normal CI values of 2.9 ± 0.6 l/min/m2

and a range of 1.74–4.03 l/min/m2.
The CO was originally assessed using Fick’s method or the indicator dilu-

tion technique [64]. It is also possible to estimate this parameter as the
product of the volume of blood ejected with each heartbeat (the SV) and
the heart rate (HR).

(9.5)

In patients with mitral or aortic regurgitation, a portion of the blood ejected
from the LV regurgitates into the left atrium or ventricle and does not enter the
systemic circulation. In these patients, the CO computed with angiocardiography
exceeds the forward output. In patients with extensive wall motion abnormalities
or misshapen ventricles, the determination of SV from angiocardiographic views
can be erroneous. Three-dimensional imaging techniques provide a potential
solution to this problem because they allow accurate estimation of the irregular
left-ventricular shape.

SV = end-diastolic volume(EDV)–end–systolic voolume(ESV)

EF
SV

EDV
EDV ESV

EDV
= × = − ×100 100% %

CO SV HR= ×
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9.3.2 MOTION AND DEFORMATION ANALYSIS

9.3.2.1 Motion Analysis

A number of techniques have been used in order to describe and quantify the
motion of the heart. They can be divided into three main categories according to
the method used [65]: (i) detecting endocardial motion by observing image
intensity changes, (ii) determining the boundary wall of the ventricle and subse-
quently tracking it, and (iii) attempting to track anatomical [66–69], implanted
[70–76], or induced [53,54,77–83] myocardial landmarks. There are a few prob-
lems with each of these techniques. Assumptions must be made about the motion
(motion model) in the first two groups in order to obtain a unique pointwise
correspondence between frames. To this end, optic flow methods [84–89]* and
phase-contrast MR [91–94] have been applied for (i), and curvature-based match-
ing [95–99] has been used to find point correspondences in (ii). Landmark-based
methods [53,54,66–83] provide information on material point correspondences.
However, this information is mostly sparse and, again, assumptions on the type
of motion have to be made in order to regularize the problem of finding a dense
displacement field. The use of implanted markers adds the extra complication of
being invasive, which precludes routine use of this technique in humans. Although
implanted markers are usually regarded as the gold standard, there are some
concerns in the literature about their influence on image quality and about their
modification of the motion patterns.

9.3.2.2 Wall Thickening

Azhari et al. [100] have compared wall thickening (WT) and wall motion in the
detection of dysfunctional myocardium. From their study, it was concluded that
WT is a more sensitive indicator of dysfunctional contraction [100]. This finding
has prompted several researchers to define methods to quantify wall thickness.
Azhari et al. [100], and Taratorin and Sideman [101] carried out a regional
analysis of wall thickness by dividing the myocardium into small cuboid ele-
ments. The local wall thickness is then defined as the ratio between the volume
of the particular element and the average area of its endocardial and epicardial
surfaces [50].

The most widely employed method for WT computation, however, is the cen-
terline method [102] and several improvements thereof [47,103–105]. Starting with
the endo- and epicardial contours at each slice, the centerline method, in its original
formulation, measures WT in chords drawn perpendicular to a line that is equidistant
to both contours (the centerline). Although more accurate than methods relying on
a fixed coordinate system, this method still assumes that the contours are perpen-

*  At this point it is worth mentioning an excellent online bibliographic database maintained by the Special
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Interest Group on Cardiac Motion Analysis (SigCMA) that can be accessed at http://www.creatis.insa-
lyon.fr/sigcma. It also provides general bibliographic information on model-based cardiac image analysis.

dicular to the long axis of the LV. If this is not the case, the myocardial wall thickness

http://www.creatis.insa-lyon.fr
http://www.creatis.insa-lyon.fr
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is overestimated, which invariably occurs, for instance, in slices that are close to
the apex. Buller and coworkers [103,47] introduced an improvement on this method
by estimating at each location the angle between the wall and the imaging plane.
Later, Bolson and Sheehan [104,105] introduced the Center Surface method (a true
3-D extension of the centerline method), which makes use of a reference medial
surface to compute the chords and subsequently wall thickness.

9.3.2.3 Strain Analysis

Strain analysis (SA) is a method to describe the internal deformation of a con-
tinuum body. It is a promising tool to study and quantify myocardial deformation.
Here, we shall briefly introduce some of the concepts related to strain analysis.
A comprehensive exposition of this theory can be found in Fung [106].

To describe the deformation of a body, the position of any point in the body
needs to be known with respect to an initial configuration; this is called the reference
state. Moreover, to describe the position a reference frame is needed. In the fol-
lowing description, a Cartesian reference frame will be assumed. It is also common
to use curvilinear coordinates because some of the expressions simplify.

A myocardial point, Mr , has coordinates {yi} and a neighboring point, M′r

has coordinates {yi + dyi}. Let Mr be moved to the coordinates {xi} and its
neighbor to {xi + dxi}. The deformation of the body is known completely if we
know the relationship

(9.6)

or its inverse,

(9.7)

For every point in the body, we can write

(9.8)

where ui is called the displacement of the particle Mr . In order to characterize
the deformation of a neighborhood, the first partial derivatives of Equation 6–
Equation 8 are computed. These derivatives can be arranged in matrix form to
define the deformation gradient tensor: F = [∂xi/∂yi], (i, j = 1, 2, 3). The defor-
mation gradient tensor enables estimation of the change in length between the
neighboring points{yi} and {yi + dyi}, when they are deformed into {xi} and
{xi +dxi}. Let d�r and d� be these lengths before and after deformation. Then

(9.9)

x x y y yi i= ( , , )1 2 3 i =1,2,3

y y x x xi i= ( , , )1 2 3 i =1,2,3
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where E = [Eij] is the Green strain tensor [106]

(9.10)

where δij is the Kronecker tensor. From the strain tensor it is possible to decom-
pose the strains into two groups: axial and shear strains. The former correspond
to the diagonal elements and represent changes in length aligned with the axes
of the reference frame and the latter correspond to off-diagonal terms or defor-
mations where the two axes are coupled.

9.4 OVERVIEW OF MODELING TECHNIQUES

Great effort has been devoted to the analysis and segmentation of cardiac images
by methods guided by prior geometric knowledge. When focusing on the way
models are geometrically represented, three main categories can be distinguished:
surface models, volumetric models, and deformation models. In all cases both
discrete and continuous models have been proposed, as well as implicitly defined
surface models (Figure 9.2).

Alternatively, one may classify model-based approaches by considering the
information that is used as input for model recovery. This categorization is highly
influenced by the imaging modality for which the method has been developed.

FIGURE 9.2 Proposed taxonomy of cardiac modeling approaches.
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There are a variety of inputs for model recovery: (1) multiple 2-D projection images,
(2) multiple oriented 2-D slices, (3) fully 3-D gray-level images, (4) 3-D point sets,
(5) phase-contrast velocity fields, and (6) MR tagging information.

In this survey we will compare the different methods with respect to the type
of model representation and the types of input data and features that the model is

to the type of model representation, summarizes this section.

9.4.1 SURFACE MODELS

Many approaches to cardiac modeling focus on the endocardial (or epicardial)
wall. Three subcategories are proposed: (a) continuous models with either global,
local, or hierarchical parameterizations, (b) discrete models, and (c) implicitly
defined deformable models.

9.4.1.1 Continuous Models

In the early studies of cardiac images by 2DE and angiocardiography, cardiolo-
gists used simplified models of the LV in order to compute functional parameters
such as ventricular volume and mass from 2-D images. Most of the time, simple

accuracy). In the last decades, however, approaches have appeared that make use
of 3-D acquisitions to reconstruct models varying from global parameterizations
of the LV surface [5,29,112,119–121,123,194], to hierarchically parameterized
models [9,114,116,136,150,160].

9.4.1.1.1 Global Approaches
In this category, we will discuss surface representations that are based on simple
geometric models. In general they can provide, with a limited number of global
parameters, a rough shape approximation. We also include in this category surface
representations obtained as series of basis functions with global support.

Cauvin et al. [112] model the LV as a truncated bullet, a combination of an
ellipsoid and a cylinder, that is fitted to the morphological skeleton of the LV.
Metaxas and Terzopoulos [195] have proposed superquadrics [196] to model
simple objects with a small number of parameters. Since the introduction of
superquadrics, several extensions have appeared in the literature. Chen et al. [118]
apply superquadrics with tapering and bending deformations to model the LV in
an integrated approach for image segmentation and shape analysis. The method
iterates between a region-based clusterization step [197], using statistics of image
intensity and gradient, and a shape-based step that checks the consistency between
the current segmentation and a superquadric model. Park, Metaxas, Young, and
Axel [6] have extended the flexibility of superquadrics by introducing parameter
functions: radial and longitudinal contraction, twisting, and long-axis deforma-
tion. These allow for a more detailed representation of the LV while retaining
the intrinsic geometrical meaning of the superquadric parameters. LV midwall
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ellipsoidal models were considered (see, e.g., Vuille and Weyman [14] and Dulce
et al. [46] for a comprehensive review of such models and a comparison of their
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motion is recovered using preprocessed MR tagging data obtained by sampling
the LV midwall surface from the 3-D FE model of Young and Axel [77].

Staib and Duncan [121] use sinusoidal basis functions to decompose the
endocardial surface of the LV. The overall smoothness of the surface is controlled
by decreasing the number of harmonics in the Fourier expansion. Model recovery
is cast into a Bayesian framework in which prior statistics of the Fourier coeffi-
cients are used to further limit the flexibility of the model. Matheny and Goldgof
[120] compare different 3-D and 4-D surface harmonic descriptions for shape
recovery. Time can be incorporated in two ways in the model: (a) as hyperspher-
ical harmonics, where an event in space–time is converted from Cartesian coor-
dinates to hyperspherical coordinates, and (b) as “time-normal” coordinates,
which are formed by including a temporal dependency in each spatial coordinate.
Experiments carried out with a 3-D CT data set of a canine heart have indicated
that hyperspherical harmonics can represent the beating LV with higher accuracy
than direct normal extensions of spherical, prolate spheroidal, and oblate sphe-
roidal harmonics. Coppini et al. [29] reconstruct a 3-D model of the LV based
on apical views in US images. LV boundaries are obtained by grouping edges
with a feedforward neural network (NN) integrating information about several
edge features (position, orientation, strength, length, and acquisition angle). This
allows the discarding of many edge points that are not plausible LV boundary
points. The 3-D LV geometry is modeled as a spherical elastic surface under the
action of radial springs (attracting the model to the edge points); a Hopfield [198]
NN is used to solve the minimization problem involved in the reconstruction of
this surface. Declerck, Feldmar, and Ayache [123] have introduced a spatiotem-
poral model to segment the LV and to analyze motion from gated SPECT
sequences. The model relies on a planispheric transformation that maps endocar-
dial points in one time frame to the corresponding material points in any other
frame. First, endocardial edge points are detected in all frames using a
Canny–Deriche edge detector [199] in spherical coordinates [200]. Selected
points in subsequent frames are matched to the current frame using a modification
of the iterative closest point (ICP) algorithm [200–202]. Based on corresponding
point pairs, the parameters of a planispheric transformation are retrieved by least-
squares approximation. This transformation allows the description of motion with
just a few parameters that can be related to a canonical decomposition (radial
motion, twisting motion around the apicobasal axis, and long-axis shortening).

9.4.1.1.2 Hierarchical Approaches
Some authors have addressed the problem of building hierarchical representations
in which a model described with few parameters is complemented with extra
deformations that capture finer details. Gustavsson et al. [114], for instance, employ
a truncated ellipsoid to obtain a coarse positioning of the left-ventricular cavity
from contours drawn in two short-axis and three apical echocardiographic views.
Further model refinement is achieved using cubic B-spline curves approximating
manually segmented contours in multiple views. Chen et al. [116], Bardinet et al.
[9], and Fan et al. [150] use superquadrics [196] to coarsely describe the LV. Their
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approaches fundamentally differ in the representation of the additional deformation
field. Chen et al. and Fan et al. use spherical harmonics in order to approximate
the residual error between the superquadric estimate of the endocardial LV wall
and the true wall location. Spherical harmonics have the advantage that fine-tuning
can be improved ad infinitum with increasing number of harmonics. However,
adding a new coefficient influences the shape of the model everywhere (nonlocal
basis functions). Bardinet et al. [9] extend the basic superquadric deformations
(tapering and bending) through the use of free-form deformations (FFD), a tech-
nique introduced in computer graphics by Sederberg and Parry [203]. The super-
quadric is attached to a flexible, boxlike frame, inducing a nonrigid deformation
on the superquadric. Bardinet et al. use trivariate B-splines to parameterize this
deformation field. In a later work, Bardinet et al. [122] apply their method to estimate
left-ventricular wall motion. This is accomplished by deforming the full model
(superquadric plus FFD) in the first frame, and modifying only the FFD in the
subsequent frames. By tracking points with the same parametric coordinates along
the cardiac cycle, a number of dynamic parameters such as wall thickening and
twisting motion are computed. Germano et al. [135,136] have developed a system
for automatic quantification of left-ventricular function from gated perfusion
SPECT images. An iterative algorithm fits an ellipsoidal model to a semiautomat-
ically obtained segmentation. This iterative algorithm incrementally adapts the
ellipsoid’s parameters and center of mass so that accurate registration of the model
is obtained even in the presence of large perfusion defects. The ellipsoid defines a
coordinate system that is used to refine the model. A Gaussian model of the count
profiles is used to compute radial offsets corresponding to the endocardial and
epicardial walls. Although simple in its formulation, this method has proved very
useful in determining most of the classical cardiac functional parameters [35] from
SPECT images and has been extensively validated in humans [135,136,204].

9.4.1.1.3 Local Approaches
A number of methods have been reported to provide surface reconstruction using
piecewise polynomial surfaces, e.g., B-splines or bicubic Hermite surface patches.
These techniques have appeared mainly in the context of surface reconstruction
from multiple cross sections [31,126,169] or projections [107–110,124]. Given
the ill-posed nature of this problem, most of these techniques require extensive
user interaction. Usually, a set of landmarks or fiducial points are determined
from each cross section or projection and, using high-level knowledge about the
viewpoint and the geometry of the LV, a local surface approximation using surface
patches is performed. One relevant example is the work by Sanchez-Ortiz et al.
[125], in which a tensor B-spline surface model is fitted to multiple planes of a
rotating US probe to recover the 3-D shape of the LV using multiscale fuzzy
clustering features. A very interesting approach is the one of Horkaew and Yang
[128], which uses tensor B-splines to represent a surface model of a full heart.
The technique allows modeling of both the mean shape and the variability around
it using landmarks obtained by optimizing a minimum description length (MDL)
principle and piecewise bilinear maps (PBM).
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A rather different approach is the one by Pentland and Horowitz [111], who
applied modal analysis and FE to reconstruct a 3-D model of the LV from x-ray
transmission data. Modal analysis offers a principled physically based strategy
for reducing the number of degrees of freedom (DOF) of the model and to obtain
an overconstrained problem for shape recovery. Optic flow is used to derive the
deformation of the 3-D model from the 2-D views, and a Kalman filter is used
for tracking the structures over time.

Instead of working with multiple cross sections or projection images, Gosh-
tasby and Turner [119] segment left- and right-ventricular endocardial surfaces
from 3-D flow-enhanced MR images. In this case, the endocardial surface is
modeled as a deformable cylinder using rational Gaussian surfaces [205]. The
model is deformed to fit the zero-crossings of the image Laplacian. To avoid
attraction by spurious edges, prior to fitting, the feature map is masked by a rough
LV region of interest obtained by intensity thresholding.

Some efforts have also been directed toward geometric modeling of the RV.
This chamber has a more complex shape than the LV. Spinale et al. [110] fit
semiellipses to model the crescentic shape of the RV from biplane ventriculo-
grams. Czegledy and Katz [113] model the RV using a crescentic cross-sectional
model composed of two intersecting circles of different radii. This 3-D model is
parameterized by only a few linear dimensions that can be measured directly
from CT, MR, or US images. From these dimensions, the RV volume is approx-
imated using analytical expressions. Denslow [117] models the RV as the differ-
ence of two ellipsoids (an ellipsoidal shell model). The parameters from this shell
are estimated from MR images (a long-axis and a four-chamber view) and from
those, volume estimates can be derived. Sacks et al. [115] model the endocardial
and epicardial walls of the RV by biquadric surface patches (contours were
manually traced from MR images), and have studied surface curvature and wall
thickness changes during the cardiac cycle using this representation.

9.4.1.2 Discrete Models

An alternative to continuous surface representations is the use of discrete surface
models. Several methods have been reported in the literature, and they can be
grouped as shown in the following subsection.

9.4.1.2.1 Physics-Based Models
Physics-based modeling has attracted the attention of many computer vision
researchers. In this framework, surface recovery is cast into the deformation of
a virtual body (the geometric model together with its material properties) under
virtual external forces derived from image or point features, or user-defined
constraints. In the final (deformed) state, this virtual body reaches an equilibrium
between the external forces and internal (regularization) constraints. A good
overview of the theory of physics-based deformable models and its applications
can be found in the book by Metaxas [206] and in the survey by McInerney and
Terzopoulos [3].
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McInerney and Terzopoulos [137] have applied this theory to the segmentation
and tracking of the LV in dynamic special reconstructor (DSR) image sequences.
An FE balloon [207] deformable model is discretized using triangular elements,
and deformed according to a first-order approximation of the Lagrange equations
of motion. User-defined point constraints can be interactively inserted to guide the
deformation of the model and to avoid local minima of the potential energy in
which the model is embedded. In the Lagrangian formulation, 3-D image sequences
can easily be handled by making the potential energy a function of time. Montagnat,
Delingette, and Malandain [144] apply simplex meshes [208] to reconstruct the LV
from multiple views of a rotating US probe. Images are acquired in cylindrical
coordinates coaxial with the apicobasal axis. Accordingly, images are filtered in
cylindrical coordinates. Boundary points are detected based on a combination
of image gradient and intensity profiles normal to the surface. Finally, detected
edge points are cast into point attraction forces deforming the model according
to Newton’s law of motion. Ranganath [138] reconstructs 3-D models of the LV
from MRI images using multiple 2-D snakes [209] and by devising efficient
mechanisms for interslice and interframe contour propagation. Biedenstein et
al. [145] have recently published an elastic surface model and applied it to
SPECT studies. The elastic surface is deformed according to a second-order
partial differential equation. The external (image) forces are derived from the
radioactive distribution function and push the elastic surface toward the center
surface of the LV wall. Wall thickness can be then computed as the distance
between the elastic surface and the mass points of the radioactivity distribution
gradient. Huang and Goldgof [133] have presented an adaptive-size mesh model
within a physics-based framework for shape recovery and motion tracking. The
optimum mesh size is inferred from image data, growing new nodes as the
surface undergoes stretching or bending, or destroying old nodes as the surface
contracts or becomes less curved. The method is employed to analyze LV motion
from a DSR data set. To establish point correspondences, an adaptive-size mesh
is generated for the first frame to be analyzed; subsequent frames further deform
this mesh while keeping its configuration fixed. Mäkelä et al. [148] propose a
template-based approach for recovering a surface thorax model from MR images.
To this end, the template, constructed from a normal volunteer, is adapted to fit
the salient edges of the image to be segmented by optimizing the parameters of
a FFD field in which the template is embedded. This technique has been suc-
cessfully applied to extract a geometrical model of the torso from MR that is
subsequently used to fuse 3-D functional information from position emission
tomography (PET) and magnetocardiography(MCG) data.

Physics-based modeling frequently makes an assumption that can be problem-
atic: internal constraints are usually represented in the form of controlled-continuity
stabilizers [210]. It is known that, in the absence of image forces, deformable models
tend to shrink. To avoid this, Rueckert and Burger [141] simultaneously model the
two cardiac chambers (RV and LV) using a geometrically deformable template
(GDT). The standard stabilizers on the deformed model are replaced by a stabilizer
on the deformation field between a rest model and a deformed model. A GDT
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consists of three parts: (a) a set of vertices that defines the rest state (the template),
(b) a set of vertices that defines a deformed state (an instance of the template), and
(c) a penalty function that measures the amount of deformation of the template
with respect to its equilibrium shape (the stabilizer). Another solution to the pre-
ceding problem was proposed by Nastar and Ayache [140], who modeled a surface
as a quadrilateral or triangular mesh of virtual masses. Each mass is attached to its
neighbors by perfect identical springs with predefined stiffness and natural length.
The system deforms under the laws of dynamics. In addition to elastic and image
forces, an “equilibrium force” determines the configuration of the mesh in the
absence of external forces.

9.4.1.2.2 Spatiotemporal Models
Several researchers have developed models that explicitly incorporate both spatial
and temporal variations of LV shape. Faber et al. [131] use a discrete 4-D model
to segment the LV from SPECT and MR images through a relaxation labeling
scheme [211]. Endo- and epicardial surfaces are modeled as a discrete template
defined in a mixed spherical/cylindrical coordinate system coaxial with the LV
long-axis. Each point in the template represents a radius connected to this axis.
The model is spatiotemporal because the compatibility functions computed in
the relaxation labeling scheme involve neighboring points both in space and time.
In this way, surface smoothness and temporal coherence of motion are taken into
account. Tu et al. [139] have proposed a 4-D model-based LV boundary detector
for 3-D CT cardiac sequences. The method first applies a spatiotemporal gradient
operator in spherical coordinates with a manually selected origin close to the
center of the LV. This operator is only sensitive to moving edges and less sensitive
to noise compared to a static edge detector. An iterative model-based algorithm
refines the boundaries by discarding edge points that are far away from the global
model. The model is parameterized by spherical harmonics, including higher-
order terms, as the refinement proceeds. An interesting approach to spatiotemporal
3-D segmentation is the work by Gerard et al. [146], which is based on the concept
of active objects (AO). AOs are described by means of simplex meshes [208] and
embedded in a physics-based framework. Based on this approach, the authors
tackle the problem of segmentation of 3-D US image sequences using a statistical
motion model of heart dynamics.

9.4.1.2.3 Polygonal Models
LV polygonal representations have been applied by several authors [27,28,129,
132,134,142–144,] in the literature. The approaches differ either in the type of
polygonal primitive (e.g., triangular or quadrilateral meshes) or the details of the
shape recovery algorithm (imaging modality, input data, or recovery features).
Shi et al. [142,143] use a Delaunay triangulation [212] to build a surface descrip-
tion from a stack of 2-D contours obtained with a combined gradient- and region-
based algorithm [213]. This representation is subsequently used for motion anal-
ysis based on point correspondences. Bending energy under a local thin-plate
model is used as a measure of match between models of consecutive frames.

DK2411_C009.fm  Page 298  Thursday, June 16, 2005  7:01 PM

© 2005 by Taylor & Francis Group, LLC



A Survey of Three-Dimensional Modeling Techniques 299

Friboulet, Magnin, and Revel [132] have developed a polygonal model to analyze
the motion of the LV from 3-D MR image sequences. LV contours are manually
outlined using a trackball. After applying morphological and linear filtering to
diminish quantization noise, the contours are radially resampled with constant
angular step. Finally, the stack of resampled contours is fed into a triangulation
procedure [214] that generates a polygonal surface with approximately equal-
sized triangles. Faber et al. [134] use a combination of cylindrical and spherical
coordinate systems to build a discrete model of the LV in SPECT perfusion
images. A radius function defined in a discrete (orientation) space of longitudinal
and circumferential coordinates describes the LV. For each orientation, the radius
is determined by finding the position of maximal perfusion (which is said to occur
in the center of the myocardium). After low-pass filtering to remove outlier radii,
the radius function is mapped back to Cartesian space where the surface is
represented using triangular or quadrilateral meshes. This approach shares some
features of the work described in Faber et al. [131], but is purely static. Legget
et al. [28,215] use piecewise smooth subdivision surfaces [216] to reconstruct
the LV geometry from manually traced contours in 3-D US images. Some ele-
ments of the mesh can be labeled so that they allow for sharp edges (e.g., at the
mitral annulus and apex) and to define regional surface descriptors. Also from 3-D
US images, Gopal et al. [27] apply triangulated surfaces to reconstruct the geom-
etry of latex balloon phantoms mimicking the LV. Three-dimensional reconstruc-
tion is directly obtained by triangulating the points of manually delineated con-
tours from a stack of quasi-parallel slices. Song et al. [147] use a triangular
surface model to represent the heart. In contrast to several other techniques, a
given heart is approximated by a convex combination of shapes from a model
catalog. The authors cast the surface model optimization problem in a Bayesian
framework, such that the inference made about a surface model is based on the
integration of both the low-level image evidence and the high-level prior shape
knowledge through a pixel class prediction mechanism.

9.4.1.2.4 Statistical Shape and Appearance Models
These models capture the mean shape and shape variations from a training
population. In 3-D cardiac modeling, these models have been developed for shape
analysis and for gaining insight into commonly occurring anatomical variations.
Apart from shape analysis, the learned eigenvariations can be applied to image
segmentation and motion tracking by restricting the search space of an image-
matching mechanism to statistically plausible directions.

In statistical shape models, a shape is expressed as a set of corresponding
landmarks, which are parameterized as a coordinate vector concatenating the
landmark components. These vectors are aligned using Procrustes’ algorithm with
respect to position, scale, and orientation, thus minimizing the sum of squared
distances between the landmarks. The residual sample point distributions after
alignment represent the pure shape-related differences in the population, and are
modeled by computing the shape average and applying a principal component
analysis (PCA) on the coordinate covariance matrix. The principal components
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describe the main modes of variation in the training set and the eigenvalues the
amount of variance explained by each mode. A critical issue in such landmark-
based models is the requirement of point correspondence: each landmark should
correspond to the same anatomical location in all the training samples.

For 3-D cardiac modeling applied to MR image analysis, three classes of
landmark-based approaches have been described.

Point distribution models (PDMs) represent the shape model described earlier,
without image matching. Frangi et al. [217] build a PDM using nonrigid registra-
tion, where both the LV and RV are included in the model. Point correspondences
are defined by nonrigidly registering the training samples (represented as labeled
volumes) to a shape average computed through rigid registration. By defining a
point sampling for the shape average, and inverting the nonrigid deformation,
this sampling can be propagated to each individual shape. Subsequent computa-
tion of an average shape and PCA eigenvariations is identical to 2-D PDMs.
Recently this technique has been applied by Ordas et al. [218] to a large database
of dynamic shapes using grid computing techniques. As yet, this model has not
been applied to segmentation. McLeish et al. [219] use a 3-D point distribution
model to study the motion and deformation of the heart as a result of breathing.
Models are constructed for a single subject, where different shape samples rep-
resent the heart shape in different inspiration levels for the same subject. Because
this method tracks the heart using nonrigid registration, point correspondence is
achieved by propagating a set of landmarks, similar to Frangi’s approach. This
yields eigenmodes per subject that characterize the motion and deformation of
the heart during breathing.

Active Shape Models (ASMs) consist of a PDM, extended with a matching
scheme driven by information from the target image data, enabling statistically
constrained image segmentation. ASMs use a gray-level model of scan lines
perpendicular to the model contour or surface to estimate new update positions
for each landmark point. Alternatively, update points can be generated by an edge
detector or a pixel classification approach. The differences between the cloud of
candidate sample points and the model points are used for model alignment and
deformation in each iteration. The model deformation is restricted to the modes
of variation of the PDM. Van Assen et al. [152,153] describe an ASM built using
an application-specific point correspondence based on resampling the contours
of the LV to a fixed number of slices and radially spaced in-plane landmarks.
The matching mechanism generates update positions using a dynamic, unsuper-
vised tissue classification based on fuzzy clustering. Intensities are sampled for
each scan line and pooled. Subsequently, the clustering distinguishes different
tissues as blood, myocardium, and air, and update points are inferred on the class
transitions. Model training was performed on 53 data sets, whereas the model
was tested on 9 data sets. Alternatively, Kaus et al. [220,154] describe an ASM-
based approach, in which the matching mechanism is embedded in the internal
energy term of an elastically deformable model. Training samples are manual
segmentations expressed as binary volumes, and point correspondence is achieved
by fitting a template mesh with a fixed-point topology to each binary training
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sample. Contrary to van Assen et al. [152,153], they separately model the endo-
and epicardial shape. However, a coupling is realized by integrating connecting
vertices between both surfaces and adding a connection term to the internal
energy. In addition, they adopt a spatially varying feature model for each land-
mark. Training and testing were performed on end-diastolic (ED) and end-systolic
(ES) image data from 121 subjects in a leave-one-out manner, and they report
an average border-positioning error of the order of 1–2 voxels. This approach has
the advantage that statistical shape constraints are imposed on the allowed elastic
mesh deformation, while allowing for some flexibility to deviate from the trained
shapes to accommodate for untrained shape variability.

The third type of landmark-based model is the Active Appearance Model
(AAM). AAMs are an extension of ASMs with a statistical intensity model of
a complete image volume, as opposed to merely scan lines in the ASM match-
ing. An AAM is constructed by warping the voxel volume inside the training
samples to the shape average. After intensity normalization to zero mean and
unit variance, the intensity average and principal components are computed. A
subsequent combined PCA on the shape and intensity model parameters yields
a set of components that simultaneously capture shape and texture variability.
AAM matching is based on minimizing a criterion expressing the difference
between model intensities and the target image. This enables a rapid search for
the correct model location during the matching stage of AAMs, while utilizing
precalculated derivative images for the optimizable parameters. The sum of the
squares of the difference between the model-generated patch and the underlying
image serves as a criterion for model convergence. Mitchell et al. [170] devel-
oped a 3-D endo- and epicardial AAM and applied it to segmentation of cardiac
MR studies. They applied an application-specific point correspondence identical
to Van Assen et al. [152,153]. The model was trained and tested on 55 subjects,
and border position errors from 2–3 mm were reported. Stegmann [172] further
expanded the AAM to three dimensions and time; an AAM is described, in
which 3-D LV models in ED and ES are coupled, enabling simultaneous
detection in both frames. He also reports additional improvements: the integra-
tion of “whiskers” — surface scan lines pointing outward, where the intensity
is included in the intensity model, greatly extending the lock-in range of the
AAM. In addition, they have developed an automated correction for respiration-
induced slice shifts, which corrupt the deformation statistics. This method is
also 2-D AAM based. Correction for these slice shifts during training and
matching yielded considerable improvements. Using a training and testing set
of 12 subjects, they report on highly accurate estimates of ventricular volume
and EF in a leave-one-out validation.

9.4.1.3 Implicitly Defined Deformable Models

Either in continuous or discrete form, the two preceding models were character-
ized by having an explicit surface parameterization. A surface model can also be
defined by means of an implicit function. For instance, in the level-set approach,
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a model is obtained as the zero level set of a higher-dimensional embedding
function. This technique, sometimes referred as geodesic deformable models, has
been introduced independently by Caselles et al. [221] and Malladi et al. [222]
based on the work by Osher and Sethian [223]. Geodesic deformable models
have been applied by Yezzi et al. [156,157] to the segmentation of MR cardiac
images. Later, Niessen et al. [159] extended the method to treat multiple objects
and applied it to the segmentation of 3-D cardiac CT and MR images. Although
geodesic models have the ability to handle changes in topology, unwanted and
uncontrollable topological changes can occur in images with low-contrast edges
or with boundary gaps because this is a purely data-driven approach.

There are other types of implicit models not related to level sets. Tseng, Hwang,
and Sheehan [224], for instance, use an NN to define a continuous distance trans-
form (CDT) to the LV boundary. A feedforward NN is trained to learn the distance
function to the endocardial and epicardial contours using a few hand-segmented
image slices. The surface of the LV is then represented as the zeroes of the distance
function. The NN can generalize the boundaries of the LV in the slices not included
in the training set, thus serving as an aid to segment a 3-D image for which the
user has to provide the segmentation of a few slices only. Under an affine defor-
mation model, the distance transform is used to match different temporal frames
and to derive motion parameters. Wall thickness is computed by the centerline
method [102] using two CDT NNs for describing the endo- and epicardial surfaces.

A third approach to implicit modeling is the use of surface primitives that
are defined in implicit form. Lelieveldt et al. [160] segment thoracic 3-D MR
images using hierarchical blending of hyperquadrics [225] and concepts of con-
structive solid geometry (CSG)[226]. The method provides an automatic, coarse
segmentation of a multiple-object scene with little sensitivity to its initial place-
ment. The most representative organs in the torso (lungs, heart, liver, spleen,   and
cardiac ventricles) are incorporated in the model, which can be hierarchically
registered to the scanner coordinate system using only a few coronal, sagittal,
and transversal survey slices. Owing to the contextual information present in the
model, this sparse information has successfully been used to estimate the orien-
tation of the long axis of the LV. This allows observer-independent planning of
3-D, long-axis acquisitions in patients [227]. This technique was not designed to
estimate accurate cardiac functional parameters but can be used to generate a first
initialization for more accurate algorithms.

9.4.2 VOLUMETRIC MODELS

As opposed to the plethora of surface representations, the use of volumetric
models in the analysis and segmentation of cardiac images received little attention
in the early years. However, several techniques have appeared in the literature in
the last few years that specifically model the myocardium.

O’Donnell et al. [7,8] were the first to suggest a volumetric model to recover
myocardial motion from MR tagging. The model, termed hybrid volumetric ventric-
uloid, can be decomposed into three parts: (a) a thick-walled superquadric, (b) a
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local offset either in nonparametric [7] or parametric [8] form, and (c) a local
deformation in the form of a polyhedrization. The thick-walled superquadric repre-
sents a high-level abstraction model of the myocardium that is further refined by the
local offsets. Altogether, these two parts constitute the rest model of the myocardium
that is rigidly scaled to the dimensions of a new data set. The local deformation field
is responsible for capturing the detailed shape variability of different data sets. Park
et al. [5] have extended their LV surface model [6] to a superellipsoid model with
parameter functions. The model is fitted to tagged MR images, providing a compact
and comprehensive description of motion. Radial and longitudinal contraction, twist-
ing, long-axis deformation, and global translation and rotation are readily available
from the parameter functions. Alternatively, standard strain analysis can be carried
out. It is also possible to estimate other volumetric parameters such as SV, CO, LVV,
and LVM. In order to fit the model, a set of boundary points is manually delineated
and a set of tags semiautomatically tracked along the cardiac cycle using the algo-
rithm of Young et al. [81]. Therefore, the accuracy of all volumetric measurements
depends on the manual outlining.

Haber, Metaxas, and Axel [164] have developed a model of biventricular
geometry using FEs in a physics-based modeling context. The 3-D motion of the
RV is analyzed by defining external forces derived from spatial modeling of
magnetization (SPAMM) MR tagging data [165,166]. Recently, Hu, Metaxas,
and Axel [168] have developed a biomechanically based image analysis frame-
work for the estimation of the in vivo material properties and the stress and strain
distributions in both ventricles. A similar aim has motivated Shi et al. [192] to
develop a stochastic FE framework for the simultaneous estimation of kinematic
and material parameters from the heart in vivo. Creswell et al. [161] and Pirolo
et al. [162] describe a mathematical (biventricular) model of the heart built from
3-D MR scans of a canine specimen. Manual contour delineation of the epicardial,
and LV and RV endocardial boundaries provides a set of points that is approxi-
mated with cubic nonuniform rational B-splines (NURBS) [228]. From this
representation, a hexahedral FE model is built in order to generate a realistic
geometric model for biomechanical analysis.

Shi et al. [167] have introduced an integrated framework for volumetric
motion analysis. This work extends the surface model of Shi et al. [142] by
combining surface motion extracted from MR magnitude images, and motion
cues derived from MR phase-contrast (velocity) images. The latter provide
motion information inside the myocardial wall but are known to be less accurate
at the boundaries [94]. The two sources of motion evidence (boundary and
midwall motion) are fused by solving the discretized material constitutive law
of the myocardium, assuming a linear isotropic elastic material. In this frame-
work, the measured boundary and midwall motion estimates at two consecutive
frames are used as the boundary and the initial conditions of an FE element
formulation. An advantage of this method with respect to physically based
techniques is that material properties can be set based on experimental knowl-
edge about myocardial mechanical properties, and not on a virtual mechanical
analog, which usually leads to ad hoc parameter settings.
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9.4.3 DEFORMATION MODELS

Hitherto, we have focused on representing either the endocardial (or epicardial)
surface or the volume of the myocardial muscle. Tissue deformation, however,
can be modeled without necessarily modeling the ventricular boundaries. To
this end, material point correspondences in different temporal frames are
required. These correspondences can be obtained by matching certain geometric
properties over time (general techniques). If images are acquired using MR
tagging technology, several other approaches can be applied that exploit the
explicit correspondences inferable from tag displacements (MR tagging-based
techniques).

9.4.3.1 General Techniques

Several techniques have been proposed in the literature for deformation recovery
based on shape properties only. These methods are attractive because of their
generality. On the other hand, one must be sure of the validity of the underlying
assumptions or motion models before they are applied to analyze image sequences
corresponding to normal and pathological myocardial motion patterns.

9.4.3.1.1 Continuous Models
Amini and Duncan [95] have developed a surface model based on the assumption
of conformal motion, in which the angles between curves are preserved but not the
distances between points. The LV surface is divided into locally quadric patches
from which differential properties can be computed. Interframe patch correspon-
dences are obtained using a metric that is minimal for conformal motion. An
assumption made in this model is that the subdivision into surface patches and the
number of neighboring patches visited during the matching process are sufficient
to accommodate the largest stretching that can occur between frames. Bartels et al.
[176,229] model material deformations with multidimensional splines. The method
shares the properties of optical flow techniques to estimate motion fields. However,
these approaches do not return an explicit model of the deformations (only dis-
placements at discrete positions are provided). The main assumption of this tech-
nique is that, for a given material point, luminance is a conserved quantity. As in
optic flow techniques, with only this assumption the solution remains undercon-
strained and, therefore, a regularization term must be added. Illustrations of the
method applied to 2-D cardiac x-ray sequences are provided and the formulation
is readily extended to 3-D sequences. However, it is questionable whether lumi-
nance conservation can provide a reliable cue for deformation recovery in regions
with homogeneous intensity or in the presence of imaging artifacts and noise. For
MR tagging, in particular, the approach must be adapted because luminance is not
conserved owing to the physics of the imaging process [84].

Rueckert et al. [230] originally proposed the statistical deformation models
(SDMs) with application to brain modeling, and they have since been applied to
3-D cardiac modeling as well. A model is constructed by registering several
training sets using multilevel free-form deformations. Because registration is
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based on normalized mutual information, no expert segmentations in the form of
labeled volumes, as in Frangi [217], are required. These free-form deformations
are parameterized using a control point grid, and statistical analysis using PCA
is performed on the control point sets, yielding an average deformation and
principal components. Lötjönen et al. [193,231] constructed a four-chamber
model of the heart using SDMs. To more accurately represent the basal and apical
level, they generated training samples by nonrigidly registering a triangulated
surface template to short- and long-axis image volumes in an alternating manner.
Prior to training, the long- and short-axis data are corrected for patient motion
by sequentially shifting each slice while maximizing the normalized mutual
information between the data. Subsequently the models from the different subjects
are registered, and an SDM is computed from the registration control points. In
addition, an average intensity model is generated. This enables application to
segmentation by nonrigid registration of the intensity template to the image data,
while constraining the deformations to statistically trained limits. Model training
and segmentation tests were performed on MR data from 25 subjects in a leave-
one-out manner. In the same paper, two other types of models are compared on
segmentation performance: a landmark probability distribution model and a prob-
abilistic surface atlas. These models are applied to segmentation by adding a
model term to the normalized mutual information measure, and performing non-
rigid registration by maximizing the combined measure. This comparison indi-
cates that the probability-based models work better than the SDMs, mainly
because of overconstraining of the statistical models with a limited training set.

Lorenzo-Valdes et al. [151,232] present a probabilistic approach to cardiac
modeling. A probabilistic cardiac atlas of the left and right ventricle is con-
structed from a set of manual segmentations as follows: First, the cardiac cycle
is phase-normalized to a fixed number of frames. Subsequently, the manual
segmentations are rigidly registered to one reference subject. Probabilistic maps
are generated by blurring the segmented structure for each image and averaging
over all subjects. The model is applied to segmentation using expectation max-
imization. They evaluated the model on 14 normal subjects and 10 patients with
LV hypertrophy, and demonstrated that by blurring the normal-trained model, it
can be generalized to accommodate for the pathological shape variations in
patients with LV hypertrophy.

Perperidis et al. [188,189] proposed a registration-based approach to recover
cardiac deformation. They use a 4-D FFD, which couples space and time. In this
way, they are able to correct for differences in heart rate between a reference
subject and the subject under analysis, or for differences in acquisition parameters.

9.4.3.1.2 Discrete Models
Benayoun and Ayache [99] propose an adaptive mesh model to estimate nonrigid
motion in 3-D image sequences. The size of the mesh is locally adapted to the
magnitude of the gradient where the most relevant information is supposed to appear
(e.g., cardiac walls). Mesh adaptation is carried out at the first frame only; subse-
quent frames only deform the mesh to recover motion. The underlying hypothesis
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is that the deformation is small. Meshes at two time instants are registered through
an energy-minimizing approach matching differential image properties (curvature
and gradient). Papademetris et al. [190,191] have proposed a deformation model
inspired by continuum mechanics. The method recovers a dense deformation field
using point correspondences obtained with the point-tracking algorithm of Shi et
al. [142]. Regularization is accomplished by measuring the internal energy of the
myocardial tissue assuming a linear elastic body model. This is equivalent to a
regularization term on the strain tensor space and not on the displacement
field.*Anisotropy of the fibrous structure of the LV is accounted for in the internal
energy by making the model stiffer in the fiber direction [233].

Recently, Sermesant et al. [171] presented a technique for the integration of
information from multiple modalities into a biomechanical model of the heart.
Their representation is based on a tetrahedral mesh for the myocardium of both
left and RVs. The method registers the model to multimodal image data by using
a hierarchical registration technique based on a modification of the ICP algorithm
to intensity and gradient features. The model incorporates both anatomical and
functional information that is inherited from the imaging sources: fiber orienta-
tion from diffusion tensor imaging and anatomical labels from the visible human
project. This model has been applied for the segmentation of SPECT and MR
image sequences. More recently the authors incorporated electrical information
into the template to generate an electromechanically coupled model [234].

Finally, Klein and Huesman [183] developed a 4-D deformable model for
motion compensation in dynamic cardiac PET images. The technique uses
temporal continuity and a consistency constraint to ensure that the motion
between two distant frames is consistent with that of two consecutive frames.
The method also uses a nonuniform elastic material model to obtain better
motion estimates.

9.4.3.2 MR Tagging-Based Techniques

The introduction of MR tagging has stimulated researchers to develop models of
cardiac tissue deformation. Compared to motion recovery based on point corre-
spondences or optic flow, MR tagging has the advantage that, in principle, material
point correspondences can be estimated from tag information. In this subsection,
different approaches for modeling the deformation fields are reviewed. Accurate
tag localization is a prerequisite for subsequent deformation recovery and, there-

9.4.3.2.1 Continuous Models
Several approaches have been proposed in which the parameterization of the
deformation field is a continuous function. The availability of continuous defor-
mation maps allows computation of local strains. Young et al., for instance,

* 
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techniques is given in Appendix B.
fore, it is closely related to deformation models. A brief overview of tag-tracking
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Figure 18.7. (Horizontal axis: temporal frame index; vertical axis: fMRI data intensity).
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developed a model-based approach for tracking tag intersections [77] and tag
stripes [81]* that has been validated using silicone gel phantoms [237]. A defor-
mation field that maps the first (undeformed) frame to a subsequent (deformed)
frame is modeled through a piecewise polynomial function. Two fitting steps are
involved in this method. First, the material points (tag intersections or stripes) in
each deformed frame, t > 0, are reconstructed in the coordinate system of the
undeformed state, t = 0 (reconstruction fit). In the latter frame, tag surfaces are
arranged in true planes because no motion has occurred as yet. In the second step,
the material points for t > 0, expressed in the reference frame (t = 0), are used to
reconstruct a displacement field relative to t = 0 (deformation fit).**

A similar approach is followed by O’Dell et al. [177]. One-dimensional
displacements are obtained by three independent sets of tag lines: one in the
cardiac long axis and two orthogonal sets in the short-axis view. Reconstruction
of the deformation field is performed in two interpolation steps. The first step
assumes a global affine transformation between two time frames. This is done to
eliminate global bulk motion, and linear stretches and shear. In the second step,
the residual deformation is interpolated using a prolate spheroidal decomposition
to describe the curvilinear deformations expected in the heart.

Both Young et al. [77,81] and O’Dell et al. [177] assume that the reference frame
to which the strain analysis is related is the undeformed state. This is normally the
first frame in the sequence (planar tag surfaces). Although this simplifies the problem
by allowing decoupling of the motion component normal to the tagging plane, these
methods cannot be used to compute strains between two arbitrary frames. The latter
can be useful in order to retrospectively select the reference frame to coincide
precisely with the diastole or systole, or to compute strains over a subset of the
cardiac cycle. To circumvent this limitation, Moulton et al. [178] have proposed a
Lagrangian approach that explicitly computes the intersection of the tag surfaces in
two arbitrary frames. Tag surfaces are obtained by interpolating the tag curves that
are stacked in different imaging planes. Surface intersections define a set of material
lines for each time frame. These points were used to perform strain calculations
employing a p-version of FE basis functions.

Radeva, Amini, and Huang [179] use two coupled volumetric models: a tissue
deformation field and a model describing the LV geometry. The first model is
represented by a cubic trivariate B-spline (termed B-solid by the authors); the
second model is represented by two coupled surfaces (endocardium and epicardium)
fitted to boundary points. It is assumed that the boundaries are either manually
delineated or (semi)automatically detected from the tagged images. The B-solid
is deformed under thin-plate internal constraints and under two external forces.

* Related regularization schemes are the global and body-smoothing terms described in Young and
Axel [77] that act on the deformation gradient tensor. However, they are not directly interpretable as
an internal deformation energy.
** Amini et al. [235] have compared landmark-based (tag intersections) with curved-based tag (stripes)
tracking based on the simulator of Waks et al. [236]. They concluded that as the number of stripes
or landmarks increases, the two methods give similar performances. Under large deformations, the
degradation of the curve-based techniques is more graceful compared to landmark-based methods.

DK2411_C009.fm  Page 307  Thursday, June 16, 2005  7:01 PM

© 2005 by Taylor & Francis Group, LLC



308 Advanced Image Processing in Magnetic Resonance Imaging

The first corresponds to tagging information: the isoparametric curves of the
model are deformed to align with the tag strips. Simultaneously, the B-solid is
attracted toward the LV boundaries by integrating a distance function to edge
points on the epicardial and endocardial surfaces. Therefore, in this method,
boundary and tag information are incorporated in a unified approach. Because this
method has been applied in combination with short-axis tagged images only, it
yields in-plane 2-D displacements. Later, Huang et al. [181] extended the method
to analyze true 3-D deformations using a spatiotemporal model. The method differs
from the one of Radeva et al. in that no boundary information is now incorporated.
On the other hand, a spatiotemporal B-solid is constructed through a 4-D tensor
product spline (three dimensions and time). The fitting process to SPAMM data
is governed by a normal constraint that ensures that attraction produced by each
tag plane is in its normal direction. Because multiple orthogonal tag planes are
available, this allows a full 3-D reconstruction of the deformation field. A related
work is that of Amini et al. [174], in which the same parametric B-splines are
used to reconstruct the tag planes and track myocardial beads in three dimensions.
More recently, Chen and Amini [182] have proposed a maximum a posteriori
framework for tag line detection using oriented filters, which is used to recover
the parameters of 3-D and 3-D + t deformable solids.

Kerwin and Prince [83] have developed an alternative projection technique
to accurately estimate the 3-D, location of the intersection points of the tag grid.
The deformation field between two frames is recovered using thin-plate spline
interpolation. Myocardial points are distinguished from those in static tissues by
checking whether they pass across the imaging plane over time. For points that
do not fulfill the preceding criterion, a test is performed to check their inclusion
within the outlined myocardial borders prior to rejection from the analysis. Such
a rejection scheme is important for proper visualization and analysis of myocar-
dial motion.

Young [180] introduced the concept of model tags, which represent the
material surfaces within the heart tissue that are tagged with magnetic saturation.
Model tags are “attached” to the heart and deform with it. They are embedded
within a 3-D FE model describing the geometry of the LV; this model is linear
in the transmural direction and employs bicubic Hermite interpolation in the
circumferential and longitudinal directions. Instead of finding the 3-D location
of the tag plane intersections, this approach finds the intersections of the model
tags with the imaging planes (model tag intersections or MTIs). The FE model
is subsequently deformed so that the MTIs match the tag stripes in each image
plane. Matching is carried out by a local search algorithm guided by an orientation
filter. Additional mechanisms are incorporated to allow efficient user interaction
and to correct for erroneous MTI matches.

Wierzbicki et al. [155] evaluated the application of nonrigid registration for
tracking cardiac structures over the cardiac cycle. A manual segmentation of the
epicardium, LV and RV, and atria in the end-diastotic (ED) frame is nonrigidly
registered to the remainder of the sequence, and several registration similarity mea-
sures are evaluated in animal experiments and healthy volunteers. The mean-square
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difference similarity measure showed the best performance in conventional 4-D data
sets, enabling a tracking error of about 1 mm.

Rao et al. [187] describe the construction of an average atlas for cardiac motion
using SDMs. Motion fields are modeled from tagged MR data as follows: The ED
phase is selected as a reference frame for each subject, and each subsequent time
frame is registered to this patient-specific reference frame. Subsequently, the
anatomical short-axis acquisitions are used to nonrigidly register each ED refer-
ence frame. Using these intersubject registrations, the temporal deformation fields
for a patient can all be transformed in the same reference frame, effectively
normalizing motion for patient-specific geometry. The model is based on data
from nine healthy subjects. Chandrashekara et al. [186] further extended this
model by applying a PCA on the deformation fields computing two models: one
model sequence with separate models for each cardiac phase; this requires a phase
normalization for the cardiac cycle. The second model pools all deformation
fields from all phases. They apply the cardiac deformation model to tracking the
myocardium in a tagged MR sequence using nonrigid registration, while con-
straining the deformations to the statistically trained deformations. Both model
types performed comparably in a limited validation: training on nine healthy and
testing on eight normal subjects.

A work related to MR tagging is the virtual tagging technique of Masood et al.
[184]. Actually, this technique does not rely on tagged MR images but on
phase-contrast velocity maps. However, the authors propose a technique by
which they overlay artificial grids, whose control points are then deformed
such that the difference between the induced deformation velocity and that of
the actually measured MR data is minimum. Therefore, this technique allows
for a regularized quantification of phase-contrast images using arbitrary virtual
tag patterns.

9.4.3.2.2 Discrete Models
Moore et al. [78] use MR tagging to reconstruct the location of material points
through the cardiac cycle by interpolating the positions of the tags from short-
and long-axis image planes using an iterative point-tracking algorithm. Discrete
tag locations are arranged in cuboid volume elements that are identified in the
deformed and reference frames. For each element, a 3-D strain tensor is calculated
using the generalized inverse method [238]. Because the strain analysis is per-
formed on a coarse discrete grid, only average strains can be retrieved. The tag-
tracking procedure of this method compensates for through-plane motion. An
important conclusion from this work is that strain analysis can be largely influ-
enced by through-plane motion if it is not corrected for.

Denney and Prince [82] employ a multidimensional stochastic approach to
obtain a dense discrete model of the displacement field from a sparse set of noisy
measurements (tag displacements). The displacement field is constrained to be
smooth and incompressible (isochoric deformation). This formulation leads to a
partial stochastic model of the deformation field that can be solved using Fisher’s
estimation framework [239].
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9.5 DISCUSSION

Comparison of the performance of different techniques is a difficult task due to
the diversity of approaches, the different or complementary information obtained
from them, the varying imaging modalities and image acquisition protocols, and,
last but not least, the lack of a standard way to report performance. In order to
draw some comparative conclusions, we have classified the existing methodolo-
gies according to the degree of their validation (Subsection 9.5.1). At the same
time, we have introduced a number of performance criteria (Subsection 9.5.2).
In this comparison we have focused on techniques leading to traditional cardiac
indices, viz, global (Subsection 9.3.1) and motion parameters (Subsection 9.3.2).

9.5.1 VALIDATION

Three main groups of papers can be distinguished: (1) those with no evaluation
or only qualitative illustrations, (2) those with quantitative evaluation on nonhu-
man data sets, and (3) those with quantitative evaluation on human data sets. This
classification has been used in constructing Table 9.2.

Although there are always exceptions confirming the rule, Table 9.2 indicates
several trends. Most papers in the first category correspond to articles presenting
technical or methodological aspects of advanced modeling techniques. The results
sections in these papers are restricted to either technical aspects or proof-of-
concept illustration on realistic images, indicating the potential of the technique.
Only a few of them have had follow-up articles confirming those hypotheses in
large studies. Further evaluation of these techniques is required in order to deter-
mine their usefulness in clinical tasks.

Approaches in the second category are numerous. Methodologies in this
category have been evaluated on simulated images or in phantom experiments.
These have the advantage of providing the ground truth to assess the accuracy
and reproducibility of the techniques. Owing to the use of idealized geometries
and measurement conditions, extrapolation of the results to in vivo human studies
remains to be demonstrated. Some papers in this second category have evaluated
their techniques on ex vivo or in vivo animal models. Several researchers have
reported experiments with dogs [99,110,115,117,120–122,137,140,142,159,162],
swine [110,117,121,178], or calfs [113,241,242].* Only a few studies have com-
pared measurements, obtained from ex vivo [241,242] or in vivo [110,142,243,
248] animal studies, with other standard-of-reference techniques.

* Both fitting steps handle sparse data and, therefore, regularization is needed. Regularization, however,
is known to introduce artifactual strains. The effect of three regularization terms has been studied in
[77]: (i) a thin-plate spline stabilizer, (ii) a global smoothing regularizer minimizing the deformation
gradient tensor, F, and (iii) a local body regularizer minimizing the deformation gradient tensor expressed
in some natural local coordinate system (e.g., aligned in circumferential, longitudinal, and radial direc-
tions). Based on simulations of an axis-symmetric deformation of a thick-walled incompressible cylinder,
it was shown that all three constraints yield similar results in the strain analysis.
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MR tagging techniques for reconstruction of myocardial motion or tissue
deformation deserve separate attention. Most in vivo animal and human studies
have reported on the Monte Carlo analysis of sensitivity to errors in tag local-
ization and tracking, and on the ability to recover the location of tags in different
frames [78,83,177,178,240].* Several models have been used in the literature to
benchmark the accuracy of motion and deformation recovery. These evaluations
were based, for instance, on spherical and cylindrical models of cardiac motion
[69,78,82,177] FE solutions with realistic geometries [178], artificially generated
motion trajectories [122], or synthetic images using the cardiac motion simulator
[83,181,250] developed by Waks, Prince, and Douglas [236] that builds upon the
kinematic model of Arts et al. [251]. A study was carried out by Declerck et al.
[252] that thoroughly compared four techniques [82,177,253,254] for motion
tracking from tagged MR. This paper provides results on normal and pathological
subjects. Although the general trends of motion were captured correctly by all
methods, this study shows that there are noticeable differences in the displacement
and strain computations provided by each technique.

Finally, the third category includes studies that reported application on human
volunteers and patients, including studies that provided quantitative results in terms
of cardiac functional parameters. The size of the populations in most of these studies
was small: with only three exceptions, all studies were conducted on less than a
dozen volunteers or patients.

9.5.2 PERFORMANCE CRITERIA

In the following subsections we elaborate on the criteria that we have used to
compare the different methods.

9.5.2.1 Model Complexity or Flexibility

The complexity or flexibility of a technique has been categorized in four groups
according to the number of DoF or parameters involved.** The four categories
are: (1) Compact models with only a few parameters (on the order of a dozen)
of which prototypical examples are superquadrics, (2) flexible models with large
number of DOFs and parameterized with global-support basis functions, of which
representative examples are harmonic parameterizations of several types, (3)
flexible models with large number of DOFs and parameterized with local-support
basis functions, members of which family are B-spline and polyhedral models,

* Remarkably, a large number of evaluations involving canine models have been acquired with the
dynamic spatial reconstructor. However, the reduced clinical availability of this technique and its
specific image properties make it difficult to extrapolate the results of the evaluation to other clinical
imaging techniques.
** Validation MR tagging itself for describing tissue deformation has been addressed by Young et
al. [249] using a silicone gel phantom. Strains derived from MR tagging were compared to the
analytic equilibrium strains under a Mooney-Rivlin material law.
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and (4) flexible hierarchical models encompassing a reduced set of DOFs coarsely
describing shape, plus an extended set of DOFs giving extra flexibility to the
model. Representative of this family are superquadrics with free-form deforma-
tions. Complexity is, to some extent, related to the computational demands of an
algorithm. Highly flexible algorithms are usually related to higher computation
time for deforming them to a given image data set.* On the other hand, it is also
a measure of the ability of a modeling technique to accommodate for fine shape
details.

Although idealized models of ventricular geometry (mainly ellipsoids or
ellipsoidal shells) are appealing for their parsimony and for historical reasons,

in computing simple measurements such as LVV and EF. Compact models have
developed in two different directions. On the one hand, in particular for the
RV, some researchers have evaluated combinations of simple models that
roughly derive RVV from a small number of linear measurements [113,117].
The models, however, remain highly constrained and have been tested on ex
vivo casts experiments only. A second direction has been to trade off the
compactness of the superquadric models and their flexibility without the need
of hierarchical decompositions [5,6]. In this manner, flexibility is added in an
elegant way by which each parameter function has an interpretation in terms
of local and global shape changes. Park et al. [163] have demonstrated the
application of this technique with a cascade of SPAMM sequences that allow
for motion analysis in the whole cardiac sequence, overcoming some of the
limitations of tag fading in MR.

Most approaches that reached the stage of quantitative evaluation are based
on flexible or hierarchical representations. Both present challenges and advan-
tages. Flexible representations (e.g., polyhedral meshes or harmonic decomposi-
tions) are highly versatile and can accommodate detailed shape variations. Most
of the quantitative evaluation studies have been reported on local flexible models,
most of which are able to cope even with complex topologies. On the other hand,
restricting the space of possible shapes is usually difficult or requires substantial
manual intervention or guidance [107,108,110,169]. Hierarchical or top-down
approaches aim at a reduction in computational time and at improving robustness
by incrementally unconstraining the space of allowed shape variation [7–9,35,
114,116]. One weak point of hierarchical approaches is the need for ad hoc
scheduling mechanisms to determine when one level in the representation hier-
archy should be fixed and a new level added, and up to which level the model
should be refined. Furthermore, optimization procedures involved in the recovery
of hierarchical models have to be designed with particular care. It is unclear how
it can be ensured that a succession of optimizations at different modeling levels
actually leads to optimum global deformation. Also, the questions arise regarding
how to link different levels of model detail with the resolution of the underlying

* Here we disregard the obvious rigid transformation parameters to instantiate the model in world
coordinates. 
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image data, and how to interact with the models if, after all, manual editing is
required. Still, hierarchical model representation is an active and challenging field
in 3-D medical image segmentation research in which several investigators have
presented encouraging results in cardiac [7–9,116,122,135,136] and thorax mod-
eling [148,149,160,231].

9.5.2.2 Robustness and Effective Automation

Processing prior to model recovery, automation of the recovery algorithm itself,
and the presence of ad hoc parameters are factors that determine the robustness
of a technique and its effective automation. By effective automation we refer to
the automation of the overall approach, from raw images until the presentation
of the functional parameters.

Before a given model can be fitted or deformed to a data set, almost every
technique requires some type of preprocessing to convert the raw gray-level
images into a representation suitable for shape recovery. Section 9.4 has suggested

indicates the degree of manual involvement required to obtain the corresponding
input data. Four categories were considered: no preprocessing required (N),
manual initialization of landmarks or models (I), (semi) automated initialization
of landmarks and models integrated into the technique (A), and fully manual
segmentation of landmarks and contours (M). Although variability inherent to
the preprocessing can have a marked effect on the overall performance of a
technique, this factor is usually disregarded in the evaluation of algorithms. A
remarkable exception is the evaluation of MR tag-tracking algorithms using
Monte Carlo analysis to assess the influence of erroneous tag localization in the
recovery of tissue deformation [78,83,177,178,240]. Model initialization is also
related to the issue of preprocessing. Although a few techniques make explicit

require expert guidance.
Another factor undermining the robustness and reliability of a technique is the

presence of ad hoc parameters that have to be set by the user. This can be particularly
problematic when such parameters are highly dependent on a given data set. This
is a known problem, for instance, of many physics-based deformable models for
which several weights must be tuned to balance the smoothing constraints to the
external energy terms. However, in the literature, analysis of sensitivity of the result

different techniques into two categories according to the presence of user-defined
ad hoc parameters: no parameters or parameters with corresponding analysis of
sensitivity (−) and parameters for which no sensitivity analysis was performed
(+). The fact that several methods do not present ad hoc parameters (−) should
not be confounded with overall robustness. Even within the approaches with
quantitative evaluation, many papers in the (−) category either require substantial
preprocessing [9,27,28,77,177,178,190] or human guidance [113,107,108,117,
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to the weighting parameters is mostly missing. In Table 9.1, we have classified the

mention of the procedure required to initialize the model (cf., e.g., [5,6,81,145,
159,160]), model initialization in a 3-D environment can be nontrivial or may
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129,130,224]. Both factors influence the robustness and reproducibility of the
derived functional information.

the fitting procedures for any given input data (preprocessing) and set of ad hoc
parameters. Three degrees of automation were used to classify the approaches:
relying on substantial human guidance (=), manual interaction can be necessary
for guiding or correcting the deformation (−), and fully automated (+). In general
terms, the larger the need for human intervention during the fitting procedure,
the less robust a technique, and the more prone it is to inter- and intraobserver
variability of the final results.

9.6 CONCLUSIONS AND SUGGESTIONS
FOR FUTURE RESEARCH

In this chapter we have reviewed the techniques for 3-D geometric modeling and
analysis of cardiac images. In particular, we have focused on those techniques
leading to traditional indices of cardiac function. We have proposed a systematic
classification of the approaches based on the type of representation of the geo-

Furthermore, we have given a critical assessment of these approaches according
to the type of functional parameters that they provide, their degree of evaluation,
and the performance achieved in terms of modeling flexibility, complexity, and
effective automation (Table 9.2).

From the surveyed literature, four main lines of future efforts can be distin-
guished:

1. Research on modeling and model deformation techniques: The last two
decades have witnessed an enormous amount of work on 3-D models of
the LV and RV. This holds true for all imaging modalities (cf. Table 9.2).
In spite of the large number of attempts, no approach has simulta-
neously achieved robustness, automation, model flexibility, and com-
putational speed. Manual outlining and analysis of cardiac images is
still the most popular technique in clinical environments.
Several issues will require more attention in order to integrate the
advances of modeling techniques into clinical practice. Accurate 3-D
modeling techniques are, in general, computationally intensive. Explora-
tion of flexible modeling techniques that make efficient use of their DOF
will be worthy of further research. So far the main flow of efforts has
been focused on adopting generic geometrical representations to build
cardiac shape models (e.g., superquadrics, B-splines, polyhedral meshes,
Fourier descriptors, etc.). As a consequence, in generating a realistic LV
shape, the representations are either too restrictive or require a consider-
able number of parameters. The question arises as to how to infer a
compact representation giving rise to realistic shapes, possibly learned
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metric model, and the type of input data required for model recovery (Table 9.1).
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from examples. In this area, several recent efforts have shown promising
results [146,152,153,172, 185,186,193,217,231] and new techniques are
likely to continue to appear in the near future. These modeling approaches
go from shape examples to a specific shape representation; they can
reduce computational demands and improve robustness. A small number
of efficiently selected model parameters reduces the dimensionality of
the model recovery problem, and naturally constrains its results owing
to model specificity.
Further investigation of suitable image features will be needed to
improve shape recovery. In particular, incorporation of domain knowl-
edge about the type of image modality (and acquisition protocols) can
play an important role in increasing the accuracy of shape recovery
techniques. In this area the use of image registration techniques is
assuming increasing importance in cardiac image analysis [255], given
that it facilitates the fusion of information from multiple modalities
into a single model reference frame [171].
Most of the initial modeling techniques presented in this review were
either purely geometric or inspired by a virtual physical analog (phys-
ics-based approaches). More recently, several papers have introduced
the known biomechanical properties of the heart in the formulation
of models that analyze cardiac images [167,171,190,191,243]. Fur-
ther development of such approaches, and their application to seg-
mentation tasks, can be a natural way of extending the ideas of
physics-based methods and of relating some of the ad hoc parameters
with the experimental evidence provided by biomechanics. Combi-
nation of other physical phenomena such as electromechanical cou-
pling into image-based analysis has also been explored by some
authors [234].

2.
the idea that model-based cardiac segmentation has not reached the
status of being effectively automated because current techniques either
require substantial expert guidance, ad hoc parameter fine-tuning, or
nontrivial preprocessing. Although full automation is a desirable end
goal, its difficulty has been acknowledged many times in the literature.
There is a growing consensus that user interaction is, to some extent,
unavoidable, and that it has to be considered as an integral part of the
segmentation procedure. Therefore, development of efficient tools for
3-D interaction will play an important role in the near future. Being
efficient entails the operator keeping control over the segmentation
process to correct it or overrule its results where it has failed, with
minimal and intuitive user interaction, and guiding the algorithm in
abnormal situations (e.g., in dealing with a pathological case). Of
course, the issue of reproducibility in cases of human intervention
needs attention. Where well-defined repetitive tasks are recognized, or
where a local user interaction can be extrapolated to a broader area,

DK2411_C009.fm  Page 315  Thursday, June 16, 2005  7:01 PM

© 2005 by Taylor & Francis Group, LLC

Research on interactive model-based segmentation: Table 9.2 supports



316 Advanced Image Processing in Magnetic Resonance Imaging

the process should be automated, thus improving segmentation
throughput and repeatability. How to devise such efficient and intuitive
mechanisms for 3-D manipulation of models and volumetric data, and
how to integrate them into the deformation of the models, remain topics
for future research.

3. Research on functional cardiac descriptors: There are many shape and

Unfortunately, although these new indices seem to provide either richer
information or a more detailed analysis of cardiac function, their clin-
ical evaluation has been very limited. As a consequence, it is difficult
to determine their clinical relevance and the extra information provided
with respect to traditional indices such as LVV, EF, etc. The lack of
clinical evaluations may be related to the fact that advanced 3-D mod-
eling techniques, from which these parameters can be derived, are
computationally expensive and require considerable user intervention.
The need of considerable pre- and postprocessing procedures, ad hoc
parameter settings, and technical understanding of the modeling tech-
nique itself may explain why most of the described approaches are not
available as stand-alone prototypes on which clinical studies can be
carried out routinely.
There is certainly room for development of novel shape and motion
descriptors. However, there is an even larger need for evaluation of
already-existing indices on reference data sets and large-scale clinical
studies. It is remarkable that this lack of large-scale evaluation studies
is present even in the case of many techniques aiming at the extraction

It is unrealistic to expect that every new technique proposed in the future
will go through the process of a thorough clinical evaluation study.
Unfortunately, many research institutes working on geometric modeling
and shape analysis are not located in a clinical environment. Access to
state-of-the-art image material and derived parameters for testing and
benchmarking purposes is, therefore, difficult. In this respect, a public,
common database of a representative set of images from different modal-
ities would be highly beneficial. This database should establish a few
standard data sets (both synthetic and clinical study cases) with as many
independent measurements as possible of mass, SV, etc. Given the cur-
rent speed of development in imaging modalities, such a database should
be updated regularly to be representative of the state-of-the-art imaging
technology.

4. Research into image-based in silico cardiac modeling and simulation:
In recent years there has been a growing interest in research bridging
the gap across different structural and functional levels in computa-
tional modeling and simulation of the cardiac system [256–260].
This field requires integration of research findings from traditional
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physical and medical sciences together with the development in novel
imaging systems, experimental and computational techniques, image
and data analysis methods, and visualization tools that have emerged
or matured more recently [261–264]. In our opinion, although some
attempts have been made in this area, we will see in the near future
more and more efforts directed toward integrating structural and
functional information across scales and imaging modalities [265].
We believe that image-based cardiac modeling can play a fundamen-
tal role in this arena by providing the anatomical and functional
information that is essential in personalized computational models
for in vivo applications.

5. Multidisciplinary approaches: When imaging and modeling techniques
get more complex, the interaction of clinicians, medical physicists, and
technologists in a common environment becomes increasingly impor-
tant. Several issues have to be addressed in a cooperative fashion: the
interrelationship between image acquisition and cardiac modeling, the
development of effective visualization techniques of 4-D data sets,
realization of intuitive interfaces to interact with geometric models at
the various stages of initialization, deformation, and eventual correc-
tion of results, and the concise transfer of clinical information from
images and models to cardiologists.
It is to be expected that approval by clinicians of a model-based
technique that provides functional parameters will depend on close
collaboration between the technicians involved in image acquisi-
tion, the computer scientists devoted to the development of efficient
modeling and model recovery techniques, and the cardiologists
providing feedback about the desired information and display meth-
ods, the validity of the assumptions, and the design of evaluation
studies.

NOMENCLATURE

n-D n-dimensional, n ∈ {2, 3, 4}.
nDE n-dimensional echocardiography
BA Biplane angiography
c Curvedness
CDT Continuous distance transform
CFM Color-flow (Doppler) mapping
CI Cardiac index
CO Cardiac output
CSG Constructive solid geometry
CT Computed tomography
CVD Cardiovascular disease
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DOF Degrees of freedom
DSR Dynamic spatial reconstructor
E Green’s strain tensor
EBCT Electron beam computed tomography
EDV End-diastolic volume
EF Ejection fraction
ESV End-systolic volume
F Deformation gradient tensor
FE Finite element
FFD Free-form deformation
γ (h, t) Shape spectrum.
GCG Geometric cardiogram
GDT Geometrically deformable template
H Mean curvature
HARP Harmonic phase
HR Heart rate
ICP Iterative closest point (algorithm)
K Gaussian curvature
ki, k2 Principal curvatures
KLT Karhunen-Loeve transform.
LV Left ventricle
LVM Left-ventricular mass
LVV Left-ventricular volume
MF Wall/tissue motion field
MRI Magnetic resonance imaging
MSCT Multi-slice computed tomography
MTI Model tag intersections
NN Neural network
NURBS Non uniform rational B-spline
PBM Piecewise bilinear maps
RV Right ventricle
RVV Right-ventricular volume
s Shape index
SA Strain analysis
SPAMM Spatial modulation of magnetization
SPECT Single-photon emission computed tomography
SSPs Similar shape patches
SV Stroke volume
SVI Stroke volume index
τ Local stretching factor
US Ultrasound (imaging)
WT Wall thickening
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APPENDIX A

NONTRADITIONAL SHAPE AND MOTION DESCRIPTORS

Three-dimensional model-based analysis of left-ventricular shape and motion has
the potential of providing rich morphological and functional information. Current
clinical assessment of cardiac function is based mainly on global parameters such
as LVV and EF. However, several researchers have demonstrated in the past the
importance of local functional indices such as WT and segmental motion analysis
[102,266–268], and local curvature and shape [59–62] as potential cardiac indices.
Unfortunately, most of these studies were based on 2-D imaging techniques.
Although they can indicate major trends about cardiac shape, a 3-D analysis
would be able to better account for the true cardiac geometry. In this section, we
briefly summarize several new indices proposed in the literature for the descrip-
tion of shape and motion. Some of them have been presented as a by-product of
a specific modeling technique, whereas others are easily computable from any
model representation. Therefore, this distinction seems a natural classification.

GENERIC DESCRIPTORS

Mean and Gaussian Curvature

The principal curvatures (k1 and k2, respectively) measure the maximum and
minimum bending of a regular surface. Rather than using principal curvatures, it
is more common to use two derived quantities known as Gaussian (K = k1k2) and
mean (H = (k1 + k2)/2) curvatures. By analyzing the signs of the pair (K, H ), it
is possible to locally distinguish between eight surface types [269].

Friboulet et al. [97] have studied the distribution of the Gaussian curvature in
the LV at different phases of the cardiac cycle. From this study it was concluded
that this distribution remains structurally stable over time. Whereas the LV free
wall provides rich and dense curvature information, the curvature at the septal wall
is less suitable for establishing point correspondences. Similar findings were made
by Sacks et al. [115] with respect to the RV free wall: the RV free wall has a
relatively uniform distribution of principal curvatures, and the surface geometry of
the RV free wall does not change significantly from end diastole to end systole.

Shape Index and Shape Spectrum

Although mean and Gaussian curvatures are related to the concept of curvedness,
there still remains scale information in these shape descriptors. To overcome this
problem, Clarysse et al. [270] have used the shape index (s) and curvedness (c), two
parameters that were introduced by Koenderink and van Doorn [271] and are defined
as follows:

 (9.11)s
k k

k k
=

+
−

−2 1 2 1

2 1π
tan
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(9.12)

whereas c is inversely proportional to the object size, s defines a continuous
distribution of surface types ranging from cuplike umbilic (s = −1) to peaklike
umbilic (s  = 1) points. It can be shown that whereas the shape index is invariant
by homothecy, the curvedness is not. In this way, shape information and size can
be easily decoupled.

The shape spectrum [272], γ  (h, t), is a global shape index defined as the
fractional area of the LV with shape index value h at time t

(9.13)

where A = ∫∫s dS is the total area of the surface S, dS is a small region around the
point x, and δ(⋅) is the 1-D Dirac delta function. Cardiac deformation can be
analyzed by tracking the shape index and curvedness of similar shape patches
(SSPs) over time. SSPs are connected surface patches whose points have similar
shape indices, i.e., the shape index falls within a given range s ± ∆s. Clarysse
et al. have shown the potential applicability of these indices by analyzing phan-
toms of normal and diseased LVs. An LV model of dilated cardiomyopathy, and
a model of an ischemic LV (both akinetic and hypokinetic in the left anterior
coronary territory) were generated using 4-D spherical harmonics. The curvedness
spectrum was significantly altered by both pathologies, even when they were
localized (as in the ischemic models). Reduction of the global function in the
dilated myocardium had no significant repercussion on the shape index spectra.
This could be an indicator that this pathology mostly affects the magnitude of
motion only. An alternative to global analysis is to track the curvature parameters
in predetermined regions. Clarysse et al. tracked three reference points over time:
the apex, a point in the anterior wall, and a point in the cup of the pillar anchor.
Using the local temporal variation of the curvedness and shape index, it was possible
to distinguish between the normal and the diseased model. A potential problem
with this technique is the reliable tracking of SSPs. If local deformations are too
large, the trace of points might be lost.

LOCAL STRETCHING

Mishra et al. [96] have presented a computational scheme to derive local epicar-
dial stretching under conformal motion. In conformal motion, it is assumed that
motion can be described by a spatially variant but locally isotropic strething
factor. In particular, for any two corresponding patches before and after motion,
P and the local stretching factor, τ, can be computed from the change in

c
k k

=
+





1
2

2
2

2

1
2

γ δ( , ) ( ( ) )h t
A

s h ds
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= −∫∫1
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Gaussian curvature and a polynomial stretching model by means of the relation-
ship

(9.14)

where f(⋅) is the polynomial stretching model (linear or quadratic) [96], E, F, and
G are the coefficients of the first fundamental form [273], and (u, v) are coordi-
nates of a local parameterization of the surface patch. Mishra et al. [96] present
a method to solve for τ in Equation 14 and show that the local epicardial stretching
factors computed over the cardiac cycle follow a similar evolution to the temporal
variation of the principal strains obtained by Young et al. [109] using strain
analysis techniques.

MODEL-SPECIFIC SHAPE DESCRIPTORS

Geometrical Cardiogram (GCG)

Azhari et al. [274] describe a method for classification of normal and abnormal
LV geometries by defining a geometrical cardiogram (GCG), a helical sampling
of the LV geometry from apex to base [275]. The GCG at end systole and at end
diastole are subsequently analyzed via a Karhunen–Loeve transform (KLT) to
compress their information. A truncated set of the KLT basis vectors is used to
project the GCG of individual patients into a lower-dimensional space, and the
mean-square error between the projected and the original GCG is used to dis-
criminate between a normal and an abnormal LV [276]. From this vectorial
representation, LVV, EF [275], and WT [100] can also be computed.

Deformable Superquadric and Related Models

One of the first 3-D primitives used to model the LV was the superquadric. It is
a natural extension of the simplified geometric models originally used in 2DE
[14] and angiocardiography [10–13]. Along with three main axes indicating
principal dimensions, the superquadric models can be provided with additional
parametric deformations such as linear tapering and bending [9,118], free-form
deformations [122], displacement fields [7,8], or parametric functions providing
information about radial and longitudinal contraction, twisting motion, and defor-
mation of the LV long axis [5,6] and wall thickness [6]. In particular, Park et al.
[5,6] suggest resolution of deformation and motion into a few parametric func-
tions that can be presented to the clinician in the form of simple plots. All these
functions are either independent of the total LV volume (e.g., twisting) or can be
normalized with respect to the dimensions of the LV (e.g., radial and longitudinal
contraction). This allows interpatient comparisons of contraction and shape
change.

K
K E F G u v uu vv= +

τ
τ τ τ τ τ

τ2 2

( , , , , , , , )
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Global Motion Analysis Based On Departure from an Affine 
Model

Friboulet et al. [132] modeled the LV using a polyhedral mesh at each frame of
the cardiac cycle. The state of the LV was characterized by the center of gravity
and the moments of inertia of the polyhedral mesh. The deformation between
two frames was hypothesized to follow an affine model. By defining a metric to
compare two different polyhedral representations, the authors were able to quan-
tify the difference between the actual interframe deformation and the correspond-
ing deformation derived from an affine motion model. Several parameters of
global motion are then derived: the temporal variation of the longitudinal and
transversal moments of inertia, and the proportion of total motion explained by
the affine model. By means of case studies, it was demonstrated that these global
indices are able to discriminate between normal (EF = 0.71) and highly diseased
(EF = 0.1) LVs. On the other hand, the global nature of these indices precludes
the quantification of localized, inhomogeneous dysfunction of the LV.

Motion Decomposition through Planispheric Transformation

Declerck et al. [123] have proposed a canonical decomposition of cardiac motion
into three components: radial motion, twisting motion around the apicobasal axis,
and long-axis shortening. This decomposition is achieved through a transforma-
tion of the Cartesian coordinates of the LV wall to a planispheric space. In this
space, a 4-D transformation is defined that regularly and smoothly parameterizes
the spatiotemporal variation of the LV wall. Because the canonical decomposition
of motion can be directly obtained in the planispheric space, these descriptors
also vary smoothly along the cardiac cycle. Finally, by tracking the position of
material points over time in the planispheric space and subsequently mapping to
Cartesian coordinates, it is possible to reconstruct their 3-D trajectories.

Modal Analysis: Deformation Spectrum

Nastar and Ayache have introduced the concept of the deformation spectrum
[140], which can be applied within the framework of modal analysis [194]. The
deformation spectrum is the graph representing the value of the modal amplitudes
as a function of mode index. The deformation spectrum corresponding to the
deformation between two image frames describes which modes are excited in
order to deform one object into another. It also gives an indication of the strain
energy [140] of the deformation. As a consequence, a pure rigid deformation has
zero strain energy. Two deformations are said to be similar when the correspond-
ing deformation fields are equivalent up to a rigid transformation. In order to
measure the dissimilarity of two deformation fields, the lower-order modes related
to rigid transformation are discarded. The difference of the deformation spectra
so computed can be used to define a metric between shapes (e.g., the LV in two
phases of the cardiac cycle) that can be applied to classify them into specific
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categories (e.g., normal or abnormal motion patterns). Finally, the amplitude of
the different modes can be tracked over time. Using Fourier spectral analysis,
Nastar and Ayache have shown that these modes are concentrated in a few low-
frequency coefficients.

APPENDIX B

MR TAG LOCALIZATION TECHNIQUES

Early attempts to model myocardial tissue deformation tracked tag grid intersec-
tions manually over time [77]. Other researchers [78, 82, 83, 165, 177, 240] have
used semiautomatic tools [277–279], based on snakes, to locate and track tag
intersections and to define myocardial contours. Although they still require user
interaction, these tools can speed up the manual procedure while reducing inter-
observer variability [280].

Young et al. [81] propose an interactive scheme for tag tracking. The 2-D tag
grid is modeled as a whole (active carpet). Separate manual segmentation of the
LV boundaries is required to compute myocardial strains only. Tag tracking is
performed using a modified snake [209] algorithm. Because tags show up in these
images as dark lines (intensity valleys), the image intensity is used as external
energy. Additionally interactive guidance is supported by introducing user-defined
constraints. Only points in the myocardium mask are tracked in each frame,
whereas carpet points outside the myocardium (inactive points) provide a weak
form of continuity. Kraitchman et al. [237] have introduced an interactive method
for tracking tag intersections. The method shares some of the features of the
active carpet model of Young et al. [81]. The carpet of tag intersections is modeled
as a mass-spring mesh of triangles. Tag intersections are tracked by means of
correlation-based external energy and, eventually, by adding interactive con-
straints. Finally, this technique allows computation of average strains on the
triangular patches. Another method for automatic tracking of the SPAMM grid
has been presented by Kumar and Goldgof [79]. In the first frame, template
matching is applied to provide an initial position for the tag grid. In this frame,
the tag grid has a high contrast and a regular arrangement. In the subsequent
frames, each line of the tag grid is independently tracked using a discrete thick
snake with a width of two pixels (the typical tag width). The product of the image
intensity in the two pixels is used as external energy to attract the snakes to the
tag lines. Although these methods for extracting tag intersections can be useful
for 3-D deformation analysis, in the original formulations, the methods proposed
by Kumar and Goldgof [79], Young et al. [81], and Kraitchman et al. [237] have
all been applied to 2-D strain analysis.

There are other approaches not based on snakes. Zhang et al. [281] decouple
horizontal and vertical tag tracking via Fourier decomposition and spectral
masking. In order to compensate for spectral cross-modulation from perpen-
dicular lines, local histogram equalization is needed prior to spectral analysis.
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Detection of tag lines is simplified in the preprocessed images, and a simple
local search can then be used to track local intensity minima (tag lines) over
time. Kerwin and Prince [250] have developed a method to simultaneously
detect and track tag surfaces without the need for prior 2-D tag tracking. Tag
surfaces are modeled using a kriging update model [282,283]. This model
parameterizes tag surfaces and a global quadratic surface plus a local stochastic
displacement. A recursive spatiotemporal scheme is developed that updates the
kriging model. Measurements to update the model are obtained through a local
search for tag lines. In this search a matched filter is employed, modeling the
intensity profile across a tag line. Osman et al. [284,285] have introduced and
evaluated a method for cardiac-motion tracking based on the concept of har-
monic phase (HARP). The method uses isolated spectral peaks in the Fourier
domain of MR tagged images as a cue for tag tracking. The inverse Fourier
transform of a spectral peak is a complex image whose computed angle is called
harmonic phase image. Osman et al. [286,284] show how this angle can be
treated as a material property that can be related to myocardial strain. This
technique has the advantage that it is fast, fully automatic, and provides dense
material properties. So far the method has been applied to 2-D images and,
thus, only provides information about “apparent motion.” Osman and Prince
[287] present several visualization techniques that can be used to display the
information provided by HARP images.
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10.1 INTRODUCTION

 

Impaired cardiac function in a region of the heart is associated with abnormal
local cardiac wall motion and deformation [1]. A quantitative description of
regional heart wall motion is required for the assessment of cardiac performance,
both in the diagnosis of disease and the evaluation of treatment effect. In addition,
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information on myocardial tissue kinematics is required to evaluate mathematical
models of cardiac mechanics, which can be used to gain an understanding of
how tissue properties such as myocyte contraction, electrical activation, and
extracellular coupling combine to effect whole-organ function [2,3].

In order to measure tissue motion and strain, researchers have used implanted
radiopaque beads [4], ultrasonic markers [5], or natural landmarks such as the
coronary arteries [6]. These provide useful information, but are too invasive or
too sparse for clinical use. Recently, there has been a lot of clinical interest in
echocardiographic tissue Doppler imaging (TDI), which allows measurement of
tissue velocity along the direction of the ultrasound beam [7]. Spatial derivatives
of the velocity field give rise to strain rates, which can then be integrated through
time to give myocardial strain [8]. Although limited in signal-to-noise ratio (SNR),
regions that can be imaged, and components of the deformation available, this
technique is proving useful in the clinical evaluation of tissue function.

MRI also provides quantitative information on motion and deformation in the
heart, and offers the potential of precise, noninvasive assessment of all components
of deformation, in all regions of the heart, throughout the cardiac cycle, at acceptable
spatial and temporal resolution. Many of these techniques have been available for
over a decade for research purposes, but the translation into the clinical domain has
been hindered by the complex and time-consuming nature of the image postpro-
cessing. Recently, however, there have been rapid developments in the field, includ-
ing harmonic phase (HARP) and displacement encoding with stimulated echoes
(DENSE) acquisition techniques. These have the potential for higher spatial and
temporal resolution, and faster evaluation procedures. This chapter will review the
current state of the art, with a view to demonstrating the common aspects of the
different techniques. This approach will highlight a convergence of techniques for
magnetic resonance imaging (MRI) assessment of cardiac tissue kinematics. An
overview of image analysis and methods for reconstruction of 2-D and 3-D motion
and strain is also given, with some discussion on how these methods can be applied
to the different imaging procedures. For a more comprehensive review of MRI

 

10.2 TAGGING

10.2.1 S

 

ELECTIVE

 

 T

 

AGGING

 

Selective saturation pulses have been employed for many years to label tissue
and blood [10] and thereby obtain measures of motion and blood flow [11,12].
The basic spin preparation pulse sequence involves a selective (soft) radio fre-
quency (RF) 90

 

°

 

 pulse combined with a slice-select gradient (typically oriented
orthogonal to the imaging plane), followed by a spoiler gradient designed to
dephase the transverse magnetization in the tag plane. This gives rise to a signal
void in the tagged slice, which can be subsequently tracked or used to label
blood flow by imaging the remaining longitudinal magnetization. Although this
technique can place magnetic tag planes at any position and orientation in the
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tagging pulse.

 

10.2.2 S

 

PATIAL

 

 M

 

ODULATION

 

 

 

OF

 

 M

 

AGNETIZATION

 

In 1989, Axel and Dougherty developed an efficient nonselective magnetization
preparation pulse sequence called spatial modulation of magnetization (SPAMM)
[13], which produces a cosine modulation of the longitudinal magnetization. The
basic pulse sequence is shown in Figure 10.1.

The first 90

 

°

 

 pulse rotates the longitudinal magnetization into the transverse
plane. In the standard reference coordinate system (rotating at the Lamor fre-
quency), the transverse magnetization profile along the x direction at time point
a is shown in Figure 10.2a. The gradient 

 

g

 

 wraps the phase of the magnetization
along the gradient direction (the x direction in Figure 10.2b) by an amount 

 

φ

 

 =

 

γδ

 

g

 

⋅

 

X

 

, where 

 

X

 

 is spatial position, 

 

γ

 

 is the gyromagnetic ratio and 

 

δ

 

 is the pulse
duration (assuming an ideal gradient pulse). The second 90

 

°

 

 pulse rotates the
magnetization back to the longitudinal (z) direction as in Figure 10.2c. After a
period of time in which the transverse component has been removed, due to T2
relaxation or a crusher gradient, the longitudinal magnetization profile (ignoring
T1 relaxation) is shown in Figure 10.2d.

This simple tag sequence is known as a 1-1 sequence, referring to the relative
magnitudes of the two RF pulses. The sequence is typically applied on detection
of the R-wave ECG trigger at end-diastole (ED) and is followed by an imaging
sequence to acquire cine images regularly spaced through the cardiac cycle.
Variations on the imaging sequence include fast low-angle shot (FLASH), blipped
echo-planar imaging (EPI), and steady-state free precession (SSFP). The tag stripe
contrast fades with tissue T1 (about 800 msec for myocardium), and is also
influenced by the imaging procedure (e.g., EPI offers greater tag persistence than
FLASH due to reduced RF excitation).

 

FIGURE 10.1

 

The 1-1 SPAMM spin preparation sequence. Labels a, b, c, and d refer to

90
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a b c d
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various time points, shown in Figure 10.2.

object, the number of tag planes is limited by the time required for each selective
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as labeled in Figure 10.1.
FIGURE 10.2 Magnetization profiles at various times in the spin preparation sequence
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The MR signal is usually acquired in k-space (spatial frequency space), with
the spatial image given by a 2-D Fourier transform (F T) of the k-space signal.
It is useful to examine the effect of tagging on the k-space data. The amplitude
modulation of the spatial image with a cosine is equivalent to a convolution of
the k-space data with the frequency space representation of a cosine, which
consists of two peaks at either side of the origin (Figure 10.3).

Multiple RF pulses separated by gradients were then designed [14] to make
the saturation profile thinner and more square (as in the delays alternating with
nutations for tailored excitation [DANTE] sequence [15]). This results in a graphic
visualization of tagged-spin motion as dark stripes in the image (Figure 10.4).

 

10.2.3 C

 

OMPLEMENTARY

 

 SPAMM

 

An interesting variant of the SPAMM sequence was introduced by Fischer et al.
[16], in which two spin preparation pulses and resulting images are acquired in
series. The first acquires the 1-1 SPAMM image and the second acquires an inverted
1-1 SPAMM image, by changing the sign of the last 90

 

°

 

 nonselective RF pulse

These two images can then be subtracted to enhance the tagged signal, and
eliminate the signal due to T1 relaxation. Initially proposed to improve tag contrast,

 

(a) (b) (c) (d)

 

FIGURE 10.3

 

(a) Untagged image (multiplied by a windowing function to avoid edge
effects). (b) FT of untagged image. (c) Image modulated by cosine function. (d) FT of
the modulated image, showing two peaks.

 

FIGURE 10.4

 

Five-pulse SPAMM-tagging sequence. (a) ED, (b) end-systole, and (c) late
diastole.
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(a)

(b)

(c)
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FIGURE 10.5

 

CSPAMM pulse sequences (a, b) and the complementary tag modulations
that result (c, d).
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this complementary SPAMM (CSPAMM) technique has subsequently proved use-
ful in eliminating artifacts due to T1 relaxation in the HARP and DENSE tech-
niques, as described in the following sections.

 

10.3 SPAMM IMAGE ANALYSIS

10.3.1 S

 

TRIPE

 

 T

 

RACKING

 

The image stripes visualized in SPAMM images can be tracked in the image plane
and used to calculate 2-D motion and deformation (ignoring for the moment the
effects of through-plane motion). Kraitchman et al. [17] described a semiautomatic,
interactive procedure for tracking tag intersection points. A template matching
procedure was used to filter the tagged images to estimate an image intersection
likelihood function. Adapting the active contour (“snakes”) formulation of Kass
et al. [18], a 2-D active contour mesh model comprising interconnected tag inter-
section points was then used to optimally find the best location of the stripe
intersections, subject to constraints on the relative displacement between neighbor-
ing tag intersection points. This method was extended to track the entire stripe
(including points between stripe intersections) using a 2-D active “carpet” model
of interconnected snakes [19]. Each stripe was modeled as a thin, flexible beam
with resistance to stretching and bending. Stripes were connected at the intersection
points (in the case of grid-tagged images), and the entire mesh deformed to max-
imize the image-derived feature values (Figure 10.6). Similar stripe tracking pro-
cedures have been developed by Guttman et al. [20] and others [9]. User interaction
is essential to these tracking processes in order to correct errors due to image
contamination and resolve correspondence between frames in cases where the
tissue motion was greater than stripe spacing. Image contamination arises due to
respiration and gating artifacts, stripe T1 relaxation, spin dephasing due to sus-
ceptibility, and poor image SNR. It is, therefore, imperative that the user inter-
action is efficient, intuitive, and minimal.

 

FIGURE 10.6

 

Grid-tagged image stripes tracked with an active carpet model. (a) end-
diastole, (b) end-systole, and (c) late diastole. Note tracking error (arrow) due to spin
dephasing at myocardium/fat boundary in late diastole.

(b)(a) (c)
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10.3.2 H

 

OMOGENEOUS

 

 S

 

TRAIN

 

Given tracked landmarks in the form of grid tag intersection points, 2-D motion and
strain can be calculated from a triangulation of points within the heart wall [21].
Assuming a homogeneous strain state within the marker triangle, vectors denoting
line segments between the triangle vertices (

 

dX

 

 in the undeformed state and 

 

dx

 

 in
the deformed state) are related by the deformation gradient tensor 

 

F

 

 [22]:

 

dx

 

 

 

=

 

 

 

F

 

 

 

dX

 

(10.1)

The undeformed state has typically been ED (coinciding with the tag gener-
ation pulse or the first image, thereafter), the deformed any subsequent frame, in
particular end-systole (ES). Given two or more noncollinear line segments
arranged in matrices A 

 

=

 

 [

 

dX

 

1

 

 

 

dX

 

2

 

 

 

…

 

] and B 

 

=

 

 [

 

dx

 

1

 

 

 

dx

 

2

 

 

 

…

 

], 

 

F

 

 can be estimated
by linear least squares as

 

F

 

 

 

=

 

 BA

 

T

 

(AA

 

T

 

)

 

−

 

1

 

(10.2)

By polar decomposition, the deformation gradient tensor may be separated
into an orthogonal unitary rotation tensor 

 

R

 

 (which describes rotation about the
triangle centroid) and a positive symmetric stretch tensor 

 

U

 

 (which describes
strain):

 

F

 

 

 

=

 

 

 

R U

 

(10.3)

The Lagrangian (or Green’s) strain tensor 

 

E

 

 can be calculated as [23]

 

E

 

 

 

=

 

 0.5 (

 

U

 

2

 

 

 

−

 

 

 

I

 

) 

 

=

 

 0.5 (

 

F

 

T

 

F

 

 – 

 

I

 

) (10.4)

This strain tensor is related to the change in length of small line segments that
are initially aligned with the material coordinate system axes in the undeformed
state. These homogeneous strain methods extend naturally to three dimensions [24],
in which case four or more points are needed to estimate the homogeneous approx-
imation of 

 

F

 

 (more points gain more robustness against noise, at the expense of a
larger region in which the strain is assumed homogeneous).

 

10.3.3 N

 

ONHOMOGENEOUS

 

 S

 

TRAIN

 

The assumption of homogeneous strain within a region can lead to errors in strain
calculation if the region is too large. Typically, strain in the heart varies rapidly
in the transmural direction (from outer to inner wall surfaces), and variation also
occurs in the circumferential and longitudinal directions (although less rapidly
in the normal heart) [21,25]. Also, errors in tracking material landmarks are
amplified in the strain calculation (strain can be viewed as the derivative of
displacement and as such suffers from the ill-posed nature of numerical differ-
entiation). In order to reduce these errors, a continuous displacement field may
be fitted to the tracked points [19]. The displacement field can be modeled using
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high-order finite elements, with C

 

1

 

 (value and slope) continuity in displacement
between elements, giving C

 

0

 

 (value) continuity in strain between elements [19].
The finite element method can then be used to estimate kinematics, stress, and
activation within the heart wall [2].

With regard to kinematics, the displacement field 

 

u

 

 within each finite element
is given by

(10.5)

where 

 

u

 

 is the displacement of the model at element coordinate, 

 

u

 

n

 

 are element
parameters, and 

 

Ψ

 

n

 

 are associated basis functions. Thus, the interpolated field
within each element is a weighted average of the nodal values 

 

u

 

n

 

, with the weights
given by the basis functions 

 

Ψ

 

n

 

 evaluated at the element coordinates. The dis-
placement field can be fitted to displacements of the tracked points by linear least
squares, minimizing the following objective function with respect to the nodal
values 

 

u

 

n

 

(10.6)

where 

 

d

 

i

 

 is the displacement of the 

 

i

 

th tracked point and 

 

u

 

(

 

i

 

) is the corresponding
model displacement. S(

 

u

 

) is a smoothing term included to regularize the problem
in regions not adequately constrained by the data [19].

Given an undeformed position 

 

X

 

 and deformed position 

 

x

 

 such that 

 

x

 

i

 

 

 

=

 

 

 

X

 

i

 

 

 

+

 

 u

 

i

 

,
the nonhomogeneous deformation gradient tensor can be calculated at any point
in the model as

(10.7)

The 

 

R

 

, 

 

U

 

, and 

 

E

 

 tensors are then calculated as earlier. In the following, it is
useful to consider the mapping between undeformed (reference or material)
position and deformed position 

 

x

 

(

 

X

 

), as well as the reverse mapping 

 

X

 

(

 

x

 

).

 

10.3.4 R

 

ECONSTRUCTION

 

 

 

OF

 

 3-D K

 

INEMATICS

 

Given a set of tagged image slices (typically in standard short- and long-axis
orientations), in which at least three linearly independent tag gradient directions
have been employed, the 3-D displacement field can be reconstructed using a
field fitting approach. The main problem in the reconstruction of 3-D motion and
deformation from tagged MR images is the fact that image stripe points tracked
through time do not represent tracked 3-D material points. Those material points
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imaged at ED (shortly after tag creation) move off the imaging plane at subsequent
times due to through-plane components of heart motion, so their displacements
are not imaged. However, material points imaged at ES (or any other time after
ED) are located on the same tag saturation plane as their corresponding tracked
image stripe points at ED.

Assuming the ED tag planes (shortly after tag creation) are approximately
flat and orthogonal to the image plane, the component of displacement normal
to the tag plane can be calculated as the distance from the material point position
at ES to its projection on the original tag plane:

(10.8)

where n is the normal to the original tag plane (i.e., a unit vector in the direction
of the tagging gradient g) and xES and xED are the positions of the tracked stripe
point at ES and ED respectively. All three components of the displacement field
from ES to ED can, therefore, be recovered by fitting displacement components
from all images simultaneously, minimizing

(10.9)

where ui is the 3-D displacement of the tracked stripe point (xES − xED) and u(ξξξξ i)
is the corresponding model 3-D displacement.

The previous procedure can be used to reconstruct the 3-D displacements of
all image stripe points in all desired frames. In order to calculate Lagrangian
strain in each frame referred to the ED state, a single ED model must be deformed
to each subsequent frame. This can be done using a least-squares fit of the ED
model to each subsequent frame, minimizing the objective function defined in
Equation 6. Strain can then be calculated at each frame using Equation 7 and
Equation 4.

Validation experiments with a deformable MR phantom were performed to
determine the magnitude of errors in motion and strain reconstruction using this
method [19]. A silicone gel in the shape of a cylindrical annulus was deformed
by rotating the inner cylinder with respect to the outer cylinder. This resulted in
a well-controlled nonhomogeneous deformation field which could be calculated
analytically using a universal solution of the finite elasticity equations. The dis-
placement field for this problem is independent of the material stiffness of the gel.
The model reconstructed the displacement field to less than 0.5 mm. The average
root-mean-square (RMS) errors in strain were 6% in shear and 16% in the radial
axial strain.

Subsequently, this method was extended to interactively reconstruct the 3-D
motion and strain directly from the images, without the need for stripe tracking
[26]. A set of “model tags” was embedded into a finite element model of the left
ventricular geometry at ED. This geometry can be interactively determined in 3-D

d ES ED⊥ = ⋅ −n x x( )

ε = + ⋅ −∑S i i i

i

( ) ( ( ( ) ))u n u uξξ 2
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using guide-point modeling [27]. The intersections of the model tags could then
be superimposed on the images (giving a set of “model stripes”), allowing direct
comparison between image stripes and model stripes. Image-derived forces were
then calculated to pull the model stripes toward the image stripes. A Leven-
burg–Marquardt nonlinear least-squares algorithm was used to minimize Equation
9, updating the material (element) positions of the image stripe points at each
iteration. By interactively modeling the deformation in all slices simultaneously,
without the need to stripe tracking on each image, the time required for image
analysis was decreased by a factor of 10.

10.3.5 SLICE FOLLOWING

CSPAMM can also be used in conjunction with slice following [28] to give tagged
images in which the effects of through-plane motion are eliminated. By making
the first RF pulse slice selective, only a thin slice of tissue is excited and tagged
by the SPAMM sequence. A thick slice encompassing the tagged slice (and the
range of possible through-plane motions) is then imaged by the subsequent imaging
pulse sequence. Subtraction of the complementary tagged images cancels the signal
in the thick slice which is not tagged, leaving an image of the tagged myocardium
only. This simplifies the motion tracking and strain analysis procedure, in that
material points imaged at ED are also imaged in each subsequent frame. Note that
slice following is not necessary for the evaluation of 2-D or 3-D motion and strain,
but does allow a simplified 3-D analysis.

10.4 HARP

10.4.1 THEORY

In 1998, Osman et al. [29] introduced a fast analysis for MR tagged images using
harmonic phase, or HARP. Noting that the tagged image is spatially modulated by
a cosine (in the case of a 1-1 tag pulse sequence; a sum of cosines for a DANTE

the magnetization is

(10.10)

e

the initial position of the material point at the time point c. The Euler equations
give the exponential form:

(10.11)

This expresses the cosine modulation as the sum of two complex phasors

M Mz e( ) ( ) cos( )X X k X= ⋅0

M
M

j jz e e( )
( )

(exp( ) exp( ))X
X

k X k X= ⋅ + − ⋅0
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type tag pulse sequence), at point c in Figure 10.1 the longitudinal component of

where k  is given by the strength and duration of the tagging gradient and X is

rotating in opposite directions, as in Figure 10.7.



354 Advanced Image Processing in Magnetic Resonance Imaging

At some later time t, the material point initially at X has moved to x, where
x = X + u. Let X(x) denote a reference map giving the material point position
X as a function of deformed position x. Ignoring T1 effects, the longitudinal
magnetization at time t is

(10.12)

Thus, the phase of each of the complex phasors encodes the original position X.
The HARP technique applies a bandpass filter centered on one of the harmonic peaks
in k-space created by the cosine modulation (Figure 10.8). The filter is designed to
pass frequency and phase components associated with the harmonic peak, and remove
all signal from the other harmonics. The FT of this filtered signal is called the harmonic
image. The phase of this complex image, expressed as an angle in the range [−π,π),
is called the harmonic phase. This phase can be thought of as being fixed with respect
to material coordinates; as the heart deforms, the harmonic phase of a material point
is constant.

FIGURE 10.7 A cosine can be expressed as the sum of two complex phasors rotating in
opposite directions.

FIGURE 10.8 (a) SPAMM-tagged image at ES. (b) F T showing k-space peaks. (c) Filter
to isolate one peak in k-space. (d) Phase of the HARP image, masked to the LV.
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Note that we can shift the filtered k-space harmonic peak back to the origin
of k-space using a shift operator (i.e., a convolution in k-space with δ(f − ke): a
delta function at ke). This has the effect of multiplying the harmonic image by
exp( jke ⋅x), giving

(10.13)

This is an image whose phase is proportional to displacement u wrapped into
the range [−π, π).

The spatial resolution of the harmonic phase is determined by the size of the filter
used to isolate the spectral peak. If only 32 × 32 pixels are included in the k-space
filter, then the resolution of the harmonic image is approximately 32 × 32 [30].

10.4.2 KINEMATICS

For small motions (less than π/ke), the component of displacement u in the tag
encoding direction at a spatial point x can be calculated as the difference in
harmonic phase at x between the deformed and undeformed time points. For
larger displacements, aliasing occurs, and a phase unwrapping procedure must
be employed.

Because the harmonic phase is linearly related to material coordinate X, the
spatial derivative of the harmonic phase is simply related to the inverse of the
deformation gradient tensor F:

(10.14)

The Eulerian (or Almansi’s) strain tensor e is given by

(10.15)

where F−T is (F−1)T. This strain tensor is related to the change in length of line
segments that are currently aligned with the spatial coordinate system axes at the
deformed time t. Its relationship to the Lagrangian strain tensor E is given by

(10.16)

A 3-D analysis can be performed using the procedure outlined in Subsection
10.2.5, where n is a unit vector in the direction of the tagging gradient g and the
displacements u are directly obtained from the (unwrapped) HARP phase offset
(Equation 13).
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10.4.3 CSPAMM HARP

An improvement to the original HARP technique was proposed by Kuijer et al.
[31], who noted that the HARP angle is corrupted by a signal from other spectral
peaks, particularly the signal arising from T1 relaxation. The effect of T1 relax-
ation is to modify Equation 12 to

(10.17)

This gives rise to a peak at the center of k-space, which grows with time, as
the harmonic peaks decrease with time. To avoid corruption of the HARP image
by this signal, the k-space filter is typically kept small (e.g., 32 × 32 pixels),
resulting in a low-resolution displacement map. By employing a 1 −1 CSPAMM
tagging procedure, subtraction of the complementary signals cancels the central
peak and only two peaks remain, either of which can be used to construct the
HARP image. The size of the filter used to extract the peak can then be enlarged,
resulting in a higher resolution displacement map.

10.5 PHASE-CONTRAST VELOCITY

Although only magnitude images have been considered in the preceding section,
the phase of the MR image is also typically available, because the MR signal
acquisition is usually done in quadrature. This phase can be made sensitive to
motion using velocity-encoding gradients. In the classical pulsed gradient spin
echo experiment [32], two velocity-encoding gradients are used for this purpose
(Figure 10.9).

Spins that do not move during the time interval ∆ refocus with no phase offset.
For spins that coherently move an amount u during ∆, the phase shift is φ = γδg. u
(assuming an ideal gradient profile). If the time interval ∆ is kept small, there is
little time for T2 decay, and the displacement over ∆ can be used as an estimate
of velocity.

Here a bipolar gradient allows encoding of displacement over shorter time
intervals, at the cost of T2* decay. In practice, two scans must be acquired with

FIGURE 10.9 Pulse gradient spin echo pulse sequence in which displacement between
the two gradients is encoded in the phase of the MR signal.
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The gradient echo version of this sequence is shown in Figure 10.10.
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different velocity-encoding gradient strengths, to allow subtraction of phase off-
sets arising from sources other than motion (e.g., eddy currents). The velocity is
typically calculated from the phase difference as

v = (venc/π) ∆φ (10.18)

where venc is the velocity that produces a phase shift of π radians. Note that the act
of encoding the velocity as a phase angle implies that velocities outside a certain
range are aliased into a 2π range, so velocities greater than or equal to venc or less
than –venc are wrapped to the range [−venc, venc). Separate acquisitions with velocity-
encoding gradients in the x, y, and z directions allow the calculation of all compo-
nents of the velocity vector.

An advantage of velocity-encoded images (compared with the displacement
encoding of tagging techniques such as SPAMM) is improved spatial resolution,
because the velocity is measured at every pixel in the image (~1 mm, compared
with a typical stripe spacing of 5–8 mm). Also, velocity images allow the simple
calculation of instantaneous strain rate. The Cartesian rate of deformation tensor
V is derived from the spatial derivative of velocity:

(10.19)

The rate of deformation tensor is related to the material derivative of E by
[23, p. 446]

(10.20)

A disadvantage of velocity encoding is that motion through the cardiac cycle
must be reconstructed by the integration of myocardial velocities over time. A
nonrigid motion tracking procedure is described by Zhu et al. [33]. Due to
through-plane motion, material points are not imaged through time, leading to
difficulties in the calculation of 3-D displacement.

A stimulated echo variant of the velocity-encoding pulse sequence was pro-
posed by Wedeen et al. [34] to give velocity-encoded images in which the effects
of through-plane motion are eliminated. Unlike the slice following CSPAMM

FIGURE 10.10 Gradient echo version of the velocity-encoding sequence.
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technique (Subsection 10.3.5), which applied an encoding sequence at a fixed point
in time and imaged at multiple subsequent times, this novel technique encoded
velocity at multiple points in time but imaged at a single fixed time. This results in
a series of functional images of a single plane of myocardium which describe veloc-
ities and strain rates throughout the cardiac cycle, referenced to the imaged frame.

10.6 DENSE

10.6.1 THEORY

In order to avoid the tracking errors arising from integrating velocity measure-
ments over time, displacement information over long time periods (potentially
up to the period of the cardiac cycle) can be encoded in the phase of the MR
signal using stimulated echoes [32,35]. The 180° pulse of the pulse gradient spin

a time interval which is typically substantially longer than T2 but shorter than
T1 (Figure 10.11). The velocity-encoding gradients of the PGSE now encode
displacement over the longer “mixing time.” Thus, the phase of the image is
proportional to the displacement occurring over ∆; however, the signal-to-noise
ratio is halved [32,35].

Due to the longer mixing time, the displacement-encoded signal fades over time,
and a nonencoded signal gains in strength due to T1 relaxation. The relaxed, non-
encoded signal corrupts the displacement map. Traditionally, the size of the encode
and decode gradients in the slice direction were set to a large value in order to crush
the relaxed component signal. The decode gradient was thus used to both refocus
the encoded signal and defocus the relaxed component. However, a common problem
with stimulated echo imaging techniques in the heart is that myocardial strain or
rotation leads to nonhomogeneous displacement over a voxel. In this case, the phase
of the transverse magnetization within the voxel will not completely refocus, leading
to signal loss. The size of the signal loss depends on the magnitude of the decode
gradient and the amount of strain or rotation occurring in the myocardium. Fischer
et al. [35] examined this problem and concluded that stimulated echo techniques
had limited application in the heart if the displacement decode gradient is also used
as a crusher gradient to destroy signals arising due to T1 relaxation.

FIGURE 10.11 Stimulated echo version of the pulsed gradient spin echo. Displacement
during the interval ∆ is encoded in the phase of the signal measured at time point f.
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echo (PGSE) experiment (Figure 10.9) is split into two 90° pulses separated by
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Aletras et al. [36] used this method to measure myocardial displacement, and
coined the term: displacement encoding with stimulated echoes (DENSE).
Although displacement could be encoded at each pixel in the image, displacement
over a period of only ~100 msec was able to be imaged, due to the use of crusher
gradients in the slice-select direction to destroy the relaxed component. Later
[37], an inversion recovery sequence was employed to ameliorate signal due to
T1 relaxation. However, due to the specific TI (inversion time), displacement to
only one time in the cardiac cycle could be encoded for each imaging sequence.

10.6.2 CSPAMM DENSE (CINE-DENSE)

Kim et al. [38] exploited the similarity between DENSE and SPAMM to develop
an imaging sequence which acquires displacement over all frames in the cardiac
cycle (cine-DENSE). They noted that the initial displacement-encoding pulse
sequence is the same as the tagging pulse sequence applied in 1-1 SPAMM.

includes a displacement-decoding gradient of the same magnitude as the encod-
ing gradient. A complementary tag pattern can be created by inverting the second

images to eliminate the signal due to T1 relaxation.
As in CSPAMM HARP, by time d in Figure 10.11, the signal consists of a

tag-modulated component together with a component due to longitudinal (T1)
relaxation (Equation 17). Between d and f the longitudinal magnetization is
transferred into the transverse plane, and a decoding pulse of the same duration
as the encoding pulse is applied. This adds a phase to the signal proportional to
the current position x:

(10.21)

According to the shift theorem of the FT, the effect of the decoding gradient is
to shift the spectral peaks by ke in k-space. Employing the complex exponential
form for the cosine and rearranging terms, the signal can be seen to arise from
three components:

(10.22)

The first component is the desired DENSE echo, whose phase is directly
proportional to the tissue displacement u. The second term arises out of the T1
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This is followed (at time d in Figure 10.11) by an imaging sequence, which

90° RF (as in Figure 10.5), allowing subtraction of the two complementary
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relaxation and has a phase modulated by the spatial position x. The third com-
ponent has a phase modulated by x + X, i.e., a complex sinusoid that varies
approximately twice as fast as the initial tag frequency. These three signal com-
ponents give rise to spectral peaks in k-space at 0, ke and 2ke, respectively.

As in previous DENSE implementations [36,37], the tag gradient ke can be
chosen high enough (greater than 0.25 cycles per pixel) so that the third spectral

the spatial frequencies above twice the sampling frequency are removed with an
analog low-pass filter before the signal is sampled, so that the higher spatial
frequencies will not be aliased into the digitized signal.)

The second term, arising due to T1 relaxation, has a phase modulated by ke⋅x.
This term cannot be pushed out of the readout window because large values of ke

result in unacceptable signal loss due to myocardial strain. Instead, the CSPAMM
technique can be used to subtract out the relaxed component. As in CSPAMM
HARP, two data sets are acquired, in which the second RF pulse in the 1-1 SPAMM
encoding is + 90 in the first set and − 90 in the second set. Subtraction of these two
images reinforces the first term and cancels out the second term [38].

10.6.3 KINEMATICS

Analysis of DENSE images can be performed in the same way as for HARP
(Subsection 10.4.2). Spatial derivatives of phase can be used to calculate the
Eulerian strain at each time frame. For reconstruction of displacements greater
than π/ke pixels, a phase unwrapping procedure must be used. A 3-D analysis
can be performed using the procedure outlined in Subsection 10.2.5, in which n
is a unit vector in the direction of the encode gradient g and the displacements
u are directly obtained from the (unwrapped) DENSE phase.

10.7 DIFFUSION

The MRI signal can also be made sensitive to diffusion, primarily due to the
incoherent motion of water within the tissue [39]. In the heart, diffusion tensor
imaging can be used to determine the direction of maximum diffusivity, which
corresponds to the eigenvector of the maximum eigenvalue of the diffusion tensor
[40]. This is typically aligned in the direction of the muscle cells [41]. The second
and third eigenvectors can give information on the layered structure of the myo-
cytes [42]. It is interesting to note that the pulse sequence for diffusion-weighted

any incoherent motion between the two gradients results in a diminished echo
magnitude (due to partial dephasing within a voxel that is not refocused by the

sequence has been used to measure diffusion in the beating heart [42]. Thus,
DENSE imaging is intrinsically diffusion weighted. As shown in the preceding
text, DENSE is also strain weighted, because any strain within the tissue will
also cause loss in signal. This was exploited by Osman et al. [43], who used the
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peak is shifted above the maximum frequency sampled (Figure 10.12). (Note that

imaging is the same as shown in Figure 10.9. In the case of diffusion imaging,

decode gradient). The stimulated echo version is shown in Figure 10.11. This
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(a)

(b)

(c)

(d)

FIGURE 10.12 (a) Longitudinal magnetization after the 1-1 SPAMM preparation. (b)
Representation as the sum of two complex phasors. (c) Transverse magnetization after
application of the decoding gradient. (d) Sampled signal after application of the analog
low-pass filter to remove the signal oscillating at ~2ke.
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signal difference between two acquisitions with different through-plane tag-
encoding gradients to estimate strain in the direction normal to the slice. Relative
through-plane displacement was determined from the phase of the DENSE image.
However, the effects of motion parallel to the image plane (e.g., shears) were
ignored. In theory, strain-weighted imaging could be used to estimate all com-
ponents of the strain tensor, using at least six different displacement- encoding
directions, in a manner similar to MR diffusion tensor imaging.

10.8 FUTURE DIRECTIONS

The field of MRI cardiac motion estimation is developing rapidly. True fast imaging
with steady-state precision (FISP) imaging sequences allow faster image acquisition
of tagged images [44]. With phase-sensitive quadrature acquisitions, the phase of
both peaks in a 1-1 SPAMM-encoded image can be combined to reduce artifacts
due to field inhomogeneity, susceptibility, etc. [45]. Parallel imaging techniques using
8 or more element cardiac coils allow 3-D cardiac acquisitions in a single breath
hold, or in real time [46]. Eulerian HARP or DENSE strain analysis can also be
performed in real time, allowing interactive display as the images are acquired.

An alternative technique for removing the relaxed component of SPAMM-
tagged images, proposed by Aletras et al. [47], involves inversion RF pulses
regularly spaced in the imaging sequence (alternating inversion recovery [AIR]
SPAMM). This effectively keeps the relaxed component alternating about zero,
while the tagged component alternates in sign at each inversion.

Another method for removing the complex conjugate signal (the third term
at ~2ke in Equation 22) was recently proposed by Epstein and Gilson [48]. Instead
of increasing the size of ke so that the peak at 2 ke is pushed out of the readout
window, two additional CSPAMM acquisitions are performed with sin(ke⋅X) and
−sin(ke ⋅X) encoding. These can be combined with the standard cos(ke⋅X) and −
cos(ke⋅X) acquisitions in order to cancel both the second and third terms in
Equation 22, leaving just the displacement-encoded signal. This technique can
be used to reduce the size of ke (reducing the amount of SNR loss due to strain)
or to encode displacement perpendicular to the slice.

This issue of which type of strain should be reported requires further study.
Lagrangian strains have traditionally been quoted for SPAMM-tagged studies
[25] and studies using radiopaque markers [24]. However, Eulerian strains are
easier to calculate in HARP, DENSE and tissue Doppler ultrasound studies.
Statistical procedures to compare one patient group with another need to be
devised. Preliminary work in this area, using a principal component analysis of

10.9 CONCLUSIONS

It can be seen that the field is in a stage of rapid development, and any review
of current techniques is almost immediately outdated. The techniques of SPAMM,
HARP, and DENSE are closely related and can be thought of as variants on the
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finite element models, is reported in Reference 9, Chapter 3.
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same technique. Both HARP and DENSE are methods designed to select one
spectral peak of the SPAMM-tagged signal. In HARP, the peak is selected using
a software filter and can be shifted to the center of k-space to give an image
whose phase is proportional to displacement. In DENSE, the spectral peak is
selected using hardware filters (i.e., by manipulating the signal acquired by the
scanner) and is shifted to the center of k-space using the decoding gradient.
Because a k-space filter is not required for DENSE, the resolution of the dis-
placement map is greater. This increased spatial resolution comes at the cost of
reduced SNR and intravoxel dephasing at high strains or rotations.
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11.1 INTRODUCTION

 

Most of the clinical magnetic resonance (MR) scanners being used mainly for
MR imaging allow additionally the acquisition of MR spectra. In MR spectros-
copy, information about the distribution of chemical compounds in a chosen
volume of interest can be obtained, and signals from various nuclei present in
the compounds can be observed. Feasible nuclei for 

 

in vivo

 

 measurements on
patients are hydrogen-1, phosphorus-31, carbon-13, and fluorine-19. The most
frequently used nucleus for 

 

in vivo

 

 MR spectroscopy is hydrogen-1. This nucleus
consists only of one proton, and this measurement technique is therefore often
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termed 

 

proton spectroscopy

 

 (H-MRS). If a spectroscopic examination is per-
formed under ideal conditions with 

 

in vitro

 

 samples of human tissue, a great variety
of signals can be observed in H-MRS. Under the limitations of 

 

in vivo

 

 examinations,
signals from only a few metabolites can be clearly identified in the spectrum. The
metabolites with the signals that are easiest to evaluate are creatine, choline, and 

 

N

 

-
acetyl aspartate (NAA), which is a neurotransmitter observed predominantly in exam-
inations of brain and spinal cord. Signals from other metabolites such as glutamate,
glutamine, or citrate can be studied, if advanced measurement and evaluation tech-
niques are applied, but many other molecules remain invisible in spectroscopic exam-
inations due to their low concentration within the tissue, or due to short relaxation
times or strong coupling effects. The challenge of 

 

in vivo

 

 spectroscopy is, therefore,
the interpretation of signals of those few molecules that can be identified within the
spectrum and that might give important additional diagnostic information.

In the case of H-MRS, no additional hardware is necessary to perform
spectroscopic measurements at an MR scanner. The available field gradients are
used for volume selection, and the radio frequency (RF) coils developed for MR
imaging can be used to apply RF pulses and to acquire the spectra. Only special
measurement sequences and evaluation procedures are necessary. In this chapter,
the most common measurement techniques are described, whereas appropriate
evaluation techniques are the topic of the following chapter. Because H-RMS
is the most frequently used type of MR spectroscopy in a clinical environment,
it is the chief topic of this chapter. Two possible measurement techniques for
H-RMS are described in two sections: single-voxel spectroscopy (SVS), which
can be used to obtain spectroscopic information from one specific selected voxel,
and chemical shift imaging (CSI), in which spectroscopic information is acquired
for several different locations with a single measurement.

 

11.2 SVS

 

Spectroscopic measurements were the first type of measurement to use the mag-
netic resonance principle in the 1950s, and they were performed to obtain infor-
mation about the compounds of a chemical specimen in a probe within a test
tube. In these measurements, the spatial origin of the measured signals was
defined by the sensitivity of the used RF coil. In clinical patient examinations,
such a rough localization is insufficient. Spectroscopic measurements should
provide additional information about specific tissues within the brain that are
identified in conventional MR imaging. Therefore, a spatial selectivity with an
accuracy of at least 1  cm is necessary for a spectroscopic measurement.

In SVS, this selectivity is realized by a combination of slice-selective excitations.
Each of these excitations works as in MR imaging: an RF pulse with a specific
frequency bandwidth is applied while a field gradient is switched on. Thus, the
excitation of nuclei is restricted to a selected slice. By modifying the strength of the
field gradient and the center of the RF band, the thickness of the slice and the distance
of the center of the slice from that of the magnet can be modified. The orientation
of the selected slice can also be chosen freely by an appropriate weighted combination

 

DK2411_C011.fm  Page 370  Friday, June 17, 2005  12:24 PM

© 2005 by Taylor & Francis Group, LLC



 

Principles of MR Spectroscopy and Chemical Shift Imaging

 

371

 

of the three available field gradients within the magnet. To select a volume instead
of a slice, three slice selections with different orientations are necessary. The selected
volume (volume of interest) is then built by those spatial points that are part of all
three selected slices, i.e., the intersection of the three selected slices.

The combination of different slice selections can be realized within a single
measurement sequence in such a way that only signals from the selected volume
of interest are obtained (single-shot measurement). Two types of sequences use
this principle: the PRESS sequence (point-resolved spectroscopy (1), with a 90

 

°

 

excitation and 2 180

 

°

 

 refocusing pulses and the STEAM sequence (stimulated
echo acquisition mode (2), in which 3 90

 

°

 

 pulses are used. These single-shot
sequences are mostly used in H-MRS, but they require a certain time difference
between the first excitation and the beginning of the data acquisition (echo time).
For measurements with other nuclei, e.g., phosphorus, it might be necessary to
realize short echo times. This is possible if three measurements with different
magnetization preparations are performed, and the obtained signals are combined
in an appropriate way. This measurement technique is called ISIS (3), and is
described at the end of this chapter.

 

11.2.1 PRESS 

 

AND

 

 STEAM

 

The scheme of the PRESS sequence is shown in Figure 11.1. In the upper line,
the three RF pulses can be seen. Each of them is applied simultaneously with a

 

FIGURE 11.1

 

PRESS sequence with three RF pulses applied simultaneously with field
gradients along the main axes of the magnet. Only the first part of the data acquisition
time is shown.
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different field gradient. After the excitation by the first 90

 

°

 

 pulse, transversal
magnetization is produced within a slice perpendicular to the z axis in this case.
This magnetization starts to dephase and, after a time TE1/2, the magnetization
of a part of the slice is refocused by the first 180

 

°

 

 pulse in the same way as in
conventional spin-echo sequences. The spin echo occurring at the time TE1 is not
evaluated, the magnetization dephases again, and the second 180

 

°

 

 pulse is applied
at the time TE1 

 

+

 

 TE2/2 to give an echo at the time TE1 

 

+

 

 TE2, where the data
acquisition time starts. In contrast to imaging sequences, in which the spin echo
occurs usually in the center of the data acquisition time, the acquisition of data in
spectroscopy sequences usually starts at the center of the spin echo and lasts for
several 100 msec. This is necessary to be able to analyze small frequency differ-
ences of a few hertz in the chemical shift of the observed molecules.

The use of the double spin echo is necessary for the realization of the desired
spatial selectivity. The steps of volume excitation are depicted in Figure 11.2.
After selective excitation of a slice in a xy plane by the first 90

 

°

 

 pulse, the
refocusing effect of the first 180

 

°

 

 pulse is restricted to a slice in a xz plane.
Therefore, the first spin echo occurs only for spins within a bar that includes
those spatial positions that are part of both these slices. At all other parts of the
first excited slice, the magnetization at the echo time TE1 is dephased due to the
missing refocusing effect of the 180

 

°

 

 pulse. The second 180

 

°

 

 pulse again affects
a different slice, which is in a yz plane in the example of Figure 11.2. Only those
spins that are located in the crossing volume of the previously selected bar and

 

FIGURE 11.2

 

Selection of a cube with a PRESS sequence. The three RF pulses within
the sequence are marked, and the selected regions after each pulse are shown for a cubic
object.
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the new slice are affected by this refocusing. This crossing volume builds a cube
with an edge length, which is the slice thickness of the three RF pulses. Only in
this cube does a magnetization excited by the 90

 

°

 

 pulse and fully rephased by
both 180

 

°

 

 pulses exist.
The restriction of the acquired signal to this selected volume of interest assumes,

however, that all signals from other parts of the examined subject are cancelled out.
Usually, the homogeneity of the magnetic field in an examined region of the body
is very high and, therefore, the dephasing due to field inhomogeneities of the static
field within the patient is not strong enough to destroy the visible magnetization of
the regions outside of the selected voxel of interest (VOI). To improve the suppres-
sion of signals from outside the VOI, additional field gradients (so-called spoiler

The effect of these spoiler gradients vanishes within the VOI due to the effect of
the refocusing 180

 

°

 

 pulses, but outside the VOI they intensify the dephasing effect
on the undesirably excited magnetization.

The shape and the orientation of the VOI shown in Figure 11.2 is only an
example of the possibilities. In clinical examinations, the slice thickness of all three
RF pulses can be chosen independently and, also, oblique slices, realized by com-
bining of two or three of the x, y and z gradients, can be selected, resulting in a
tilted cuboid VOI. In the given example, the three selected slices are perpendicular
to each other. This is the most usual situation, but it is also possible to use other
angles between the slices, resulting in a parallelepiped as the shape of the VOI.
Curved and concave surfaces cannot be realized with this measurement technique.
Several modifications of this conventional PRESS technique for special demands
are described in the literature. Some of them are described in Subsection 11.2.4.

The second frequently used sequence for volume-selective spectroscopy is
the STEAM sequence. This technique uses the effect of a stimulated echo occur-
ring after the application of three successive pulses. The most intense signal
strength of a stimulated echo can be obtained if all three pulses are 90

 

°

 

 pulses

sequence in Figure 11.2. The difference is the process of signal production. The
first 90

 

°

 

 pulse is used to produce transversal magnetization within a selected slice,

  

Although most of the spins are in phase immediately after the excitation, they
begin to dephase with time under the influence of local inhomogeneities of the
static magnetic field and applied field gradients (Figure 11.4c). After a time TE/2,
the second 90

 

°

 

 pulse rotates the dephased magnetization within the xy plane into

system that rotates with the resonance frequency around the z axis. Those com-
ponents of the magnetization vectors that remain in the transverse plane after the
effect of the second RF pulse will experience a dephasing due to inhomogeneities
and spoiler gradients and, after some time, these components will cancel each
other out (Figure 11.4f ). For the longitudinal magnetization, however, no dephas-
ing occurs and, therefore, the z components of the magnetization vectors are
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gradients) are applied within the PRESS sequence, which are shown in Figure 11.2.

(Figure 11.3).
The principle of volume selection is the same as with the double spin-echo

identical to the 90° pulse within the PRESS sequence (Figure 11.4a, Figure 11.4b).

the zy plane (Figure 11.4d). The axes x and y are here used within a coordinate
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The z components of the magnetization experience only T1 relaxation, which is
small in the usual time interval of a few milliseconds of the so-called TM interval.
After the last 90

 

°

 

 pulse, the remaining part of the magnetization is again flipped

 

FIGURE 11.3

 

Scheme for the STEAM sequence. The refocusing gradients have to be
positioned before the second and after the third RF pulse.

 

FIGURE 11.4

 

The orientation of the magnetization vectors of different parts within
a selected volume during a STEAM sequence at different times within the sequence.
In (e) – (i), the magnetization vectors with lower and larger resonance frequencies
than the adjusted frequency are shown in separate spheres. The last figure shows the
net magnetization in bold and the modified hypothetical length of the magnetization
vector for the assumed T2 decay only (thin line).
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almost unchanged at the time when the third 90° pulse is applied (Figure 11.4e).
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FIGURE 11.4

 

(Continued).
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FIGURE 11.4

 

(Continued).
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is zero because the direction of the magnetization vectors varies between the 

 

+

 

x
and the 

 

−

 

x direction and, therefore, the magnetization contributions are cancelled
out. After the third pulse, a rephasing occurs similar to conventional spin-echo

  

same phase (Figure 11.4i) and build a measurable net magnetization vector
(Figure 11.4j). Due to the missing influence of that magnetization, which has
been dephased within the TM interval between the second and third pulses, the
amplitude of the sum vector at the beginning of the data acquisition is only half
of the amplitude that can be obtained in a spin-echo sequence with the same echo
time (4). The main advantage of the STEAM sequence compared to PRESS is a
reduced minimal echo time. The time between the second and the third RF pulses
is part of the echo time in spin-echo sequences. In STEAM sequences, however,
the relevant part of the magnetization vectors have only longitudinal magnetiza-
tion in this time and experience only T1 relaxation, but no T2 relaxation. Because
in human tissue T1 is usually much longer than T2, the signal loss in the time
between the second and third pulses is much less in STEAM sequences. This
sequence is therefore used if very short echo times should be realized. Another
advantage of the STEAM sequence is the avoidance of 180

 

°

 

 pulses and, therefore,
the increased difficulties with the higher pulse amplitude in the center of the pulse
and with the nonideal slice profile can be avoided (5).

 

11.2.2 A

 

RTIFACTS

 

 

 

IN

 

 SVS

 

One of the most important quality parameters in SVS is the volume selectivity of
the signal. The measurement sequence must avoid any signal from the regions
outside the volume of interest. This can be realized by the careful spoiling of
unwanted signals. Unwanted signals can originate from all positions in which
transverse magnetization is produced during the measurement sequence. Transverse
magnetization is produced at first within the whole slice excited by the first 90

 

°

 

pulse, but only the small part of the slice within the volume of interest should
contribute to the measured signal. The two following pulses are again excitation
pulses in STEAM sequences, and they lead to transverse magnetization throughout
the excited slices. The entire volume with unwanted transverse magnetization in a

whereas the volume of interest (from which the signal should originate) is the
intersection of the three slices. In order to obtain good spatial selectivity for the
acquired MRS signal, any signal contribution from the unwanted transverse mag-
netization must be strongly reduced. This can be realized by appropriate spoiling,
which leads to strong dephasing of the magnetization. Spoiling can be achieved by
the application of strong field gradients without RF pulses. The effect of a spoiler
gradient is a large distribution of phase angles of the transverse magnetization within
even small structures. This phase distribution leads to a cancellation of the signal
contributions from these structures. In the volume of interest, which is also affected
by the applied spoiler gradients, this signal cancellation can be avoided

 

 

 

by the
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into the transverse plane (Figure 11.4g). The net magnetization after this pulse

sequences (Figure 11.4h) and, at the time TE + TM, all spins are again in the

STEAM measurement consists of three orthogonal slices and is shown in Figure 11.5,
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application of a second field gradient, which has the opposite dephasing effect.
The position of this second spoiler gradient within the sequence scheme has to be
chosen in such a way that only the desired transverse magnetization within the
region of interest is affected, but not the unwanted magnetization within other
parts of the examined subject. Strong spoiling is especially necessary if small
structures with relatively high signal intensities occur in the examination volume.
In H-MRS examinations of the brain, such a critical structure is the subcutaneous
fat along the skull. The fat layer is partly very thin, but gives a very strong signal
compared to the metabolite signals that should be examined. The adequacy of the
spoiling within a sequence for brain H-MRS can, therefore, be checked by the
strength of unwanted fat signals (6).

The production of unwanted transverse magnetization is not limited to the
excitation pulses of the STEAM sequence. This problem arises also in the PRESS
sequence, which uses refocusing 180

 

°

 

 pulses. The central parts of the slices
selected by these pulses, in which a 180

 

°

 

 flip angle is realized, do not experience
any additional magnetization. The transverse magnetization produced by the first
pulse remains, and in other parts of the examined subject, the 180

 

°

 

 pulse
produces only negative longitudinal magnetization, which does not lead to any
signal. Due to the unavoidable imperfect slice profile of the refocusing pulses,
however, there are zones of 90

 

°

 

 excitation at the borders of the slices, selected
by the 180

 

°

 

 pulses. The spins within these zones have transverse magnetization
after the occurrence of the 180

 

°

 

 pulse, and they make undesirable contributions
to the signal if sufficient spoiling is not applied. If this second gradient pulse is
applied prior to the third pulse, it compensates for the spoiling effects of the

 

FIGURE 11.5

 

Visualization of the volume excited by the three RF pulses within a
STEAM sequence (three orthogonal slices) in comparison to the selected cube of interest.
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outside this volume (Figure 11.6).
magnetization from the volume of interest, but not for the unwanted signals
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Because there are several crusher gradients in the sequences and various
unwanted coherences are dephased differently, the order of the slice selection
gradients has a pronounced effect on the overall performance of the sequence
and, hence, on the achieved spectral quality (7).

Another problem in volume-selective spectroscopy is the chemical shift dis-
placement. The origin of this artifact is the same as the chemical shift artifact in
MR imaging: The resonance frequency of protons in different molecular sur-
roundings varies and, therefore, the exact localization of the selected slice depends
on the resonance frequency of the protons. The spatial difference between exci-
tation profiles for protons with a difference 

 

∆ω

 

 in the resonance frequency is

 

∆

 

x 

 

=

 

 

 

∆

 

ω

 

/

 

γ

 

G

where 

 

γ

 

 is the gyromagnetic ratio and G the strength of the field gradient applied

with all three excitations of a PRESS or STEAM sequence and leads to a diagonal
shift of the voxel position that is dependent on the resonance frequency difference of
the protons (Figure 11.7c and Figure 11.7d). Because in H-MRS it is not the water
signal that is of interest but the signal of the metabolites, the resonance frequency of
the MR system is often adjusted to the resonance frequency of one of the major
metabolites (NAA in brain measurements). Nevertheless, it should be noted that the
exact localization of the selected region of interest is different for different metabolites

 

FIGURE 11.6

 

The different parts within the PRESS sequence. The combination of the
three RF pulses (denoted by bold lines) leads to the excitation of the selected voxel. The
unwanted signal contributions originating from the last pulse (denoted by dotted lines),
which excites the shown slice, can be strongly reduced by additional spoiler gradients
(denoted by dashed lines). The signal from the region of interest is not affected by the
spoiler gradients due to the effect of the refocusing 180

 

°

 

 pulse.
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simultaneously with the RF pulse (Figure 11.7a and Figure 11.7b). This effect occurs
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as well as for water and fat signals. Especially for the selected voxel in the proximity
of the skull, strong fat signals might occur if the voxel position for the resonance
frequency of fat is shifted toward the skull. The extent of the chemical shift displace-
ment can be reduced by the use of strong field gradients for the slice selection.

 

11.2.3 W

 

ATER

 

 S

 

UPPRESSION

 

As in MR imaging techniques, in H-MRS measurements, only signals from
hydrogen nuclei are acquired. In contrast to MRI, however, the signals of interest
in H-MRS do not originate from water, but from certain metabolites within the
body. The concentration of these metabolites is much lower than that of water
and, therefore, the intensity of the signal contributions of metabolites is much
lower than that of water. The metabolite signals are separable from the water

 

FIGURE 11.7

 

The effect of two different resonance frequencies (denoted by bold and
dashed lines) on the position of the excited volume for one — (a) and (b) — and three RF
pulses — (c) and (d) — of a PRESS sequence.
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signals because the chemical shift of these signals are specific and different from
that of water. This separation can fail, however, if contributions of the water signal
get superimposed on the signals from metabolites. Although water has a specific
chemical shift value, a typical water signal from an 

 

in vivo

 

 measurement has a
certain range. The ‘‘foot” of the signal especially can have a considerable width
and can, therefore, get superimposed on the signals of metabolites. The width of
the water signal is usually described by the width of the peak at the half of the
maximum (usually referred to as full width at half maximum, FWHM) and
depends on the range of frequencies within the selected volume element, which
can be strongly reduced by shimming. However, the difference in the signal
intensities between water and the metabolites is in the range of 1000:1 and,
therefore, even with a very good shim, a superposition of signals from the foot
of the water signal on the metabolite signals will occur. This effect can be reduced
if a water suppression technique is used. The simplest technique is the application
of a frequency selective RF pulse prior to the first excitation of the volume
selection part within a sequence (Figure 11.8). This technique was first used for

 

FIGURE 11.8

 

The implementation of a water suppression pulse within a PRESS
sequence. The additional pulse (denoted by the bold line) is applied with a large pulse
duration and without a gradient prior to the volume selection part (denoted by the dashed
line) of the sequence.
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frequency selective imaging (8) and later applied to volume-selective spectros-
copy, e.g., by Sijens et. al (9). Usually, a pulse with a Gaussian shape is used for
water suppression. The success of water suppression is very sensitive to the flip
angle of the saturating pulse. Because the exact value of this flip angle varies
within the examination volume of a subject, the correct amplitude of the water
suppression pulse is often adjusted prior to each volume-selective measurement.
In a series of measurements with varying transmitter values, the one with an
optimal water saturation is selected (Figure 11.9a). Improved water suppression
can be obtained if a combination of pulses is used instead of only one pulse. The
result of a transmitter adjustment for a three-pulse combination is shown in
Figure 11.9b. In this case, the relation between transmitter values was 89:83:161
with a time delay of 60 msec between the pulses. This pulse combination was

 

FIGURE 11.9

 

Results of water suppression with (a) a single pulse and (b) with a com-
bination of three pulses for different amplitudes of the water saturation pulse.
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suggested by Ogg et al. (10) for an optimal water suppression if different B1 and
T1 values of the water signal occur in the examined object. A strong saturation
of the water peak is obtained in a larger range of transmitter values in this case,
and the extent of water suppression for the optimal transmitter value is larger with
the three-pulse combination than with the one-pulse saturation (Figure 11.10): The
reason for the incomplete saturation with one pulse is the composite nature of
the water signal. It consists of several compartments with different relaxation
times. The result of the optimal water suppression obtained with one pulse shows
a superposition of these compartments. In Figure 11.10a, a part with a shorter
T2-relaxation time and, therefore, a broader peak shape, shows a residual signal,
whereas a component with a longer T2-relaxation time and a narrower line shape

 

FIGURE 11.10

 

The effect of optimal water suppression (a) with a single pulse and (b)
with the three-pulse combination. The residual contribution of the water signal was sig-
nificantly lower in the measurement using the pulse combination.
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already has a negative longitudinal magnetization. Using the three-pulse combi-

The optimization of the homogeneity of the local magnetic field within the
volume of interest and the evaluation of the optimal RF pulse amplitudes for the
water suppression are the two adjustment procedures that are usually performed
prior to each single-voxel measurement. In the current generation of MR scanners,
these adjustments are performed automatically and take less time than manual
optimization. However, the time required for the adjustments has to be taken into
account, especially if localized spectroscopy measurements from several positions
should be performed.

 

11.2.4

 

C

 

OUPLING

 

 E

 

FFECTS

 

 

 

IN

 

 SVS

 

Most of the phenomena in MRI, including the principles of volume selection in
MRS, can be explained by the simple model of magnetization vectors that are
aligned to the direction of the static magnetic field in the fully relaxed state. These
vectors can be affected by the application of RF pulses and show a precession
within the transverse plane with a frequency that depends on the local magnetic
field. The length of the vectors changes owing to the influence of relaxation pro-
cesses. The amplitude and the shape of the signal peaks of some metabolites in H-
MRS, such as NAA, creatine, and choline, can be completely explained with this
simple model. Other metabolites, however, show a complex signal pattern, which
not only depends on the chemical shift of the examined metabolites, but also on
the interaction of the different protons within these metabolites. If more than one
proton in a larger molecule contributes to the signal and if these protons are not
magnetically equivalent, e.g., the two protons in water, then a coupling between
these protons occurs. The main effect of this is a splitting of the resonance peak.
Instead of only one signal, signals at two or more resonance frequencies are
obtained. The distance between these frequencies is described by the coupling
constant and, unlike the chemical shift, the coupling constant does not depend on
the strength of the static magnetic field but is characteristic for a given molecule.
The amplitude of the signals for each of the resonance frequencies, however, is
strongly dependent on the measurement sequence. The shape of the complex signal
patterns, obtained for molecules such as lactate, glutamate, glutamine, GABA, or
glutathione can be calculated using a product operator formalism based on quantum
mechanics principles (11) if the measurement parameters are exactly known. Most
important for the shape of the signal pattern of a given metabolite is the timing of
the used sequence (TE1 and TE2 in PRESS, and TE and TM in STEAM sequences)
and the used flip angles. For a given combination of measurement parameters, the
expected signal pattern can be calculated (12). In 

 

in vivo

 

 measurements, the
sequence timing is known, but the exact values of the applied flip angles are often
uncertain, as the actual flip angles of the RF pulses at a selected position are usually
not equal to, but only near the nominal values. Further, it is not possible in volume-
selective spectroscopy to apply pulses with an ideal slice profile. Although the real
flip angle might be nearly the nominal flip angle in the center of a selected voxel,
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nation, a more complete water saturation can be obtained (Figure 11.10b).
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all possible flip angle values between that in the center of the voxel and the zero
value occur between the center and the borders of the voxel. The signal pattern of
a coupled system might, therefore, be different at different positions of the voxel,
and only the mixture of all these signals can be obtained in SVS. The strong
dependence of the signal pattern on the echo time of the used sequence was
described in detail by Ernst and Hennig (13) and is shown in Figure 11.11 for a
sample with a glutamate solution. The sample was measured with a STEAM
sequence (TR 6 sec, TM 10 msec) using a whole body 3-T system (Siemens Trio)
and with TE values between 20 msec and 300 msec. Three different groups of
signals can be separated, and the frequencies of these groups are unchanged in
all measurements, but especially for the multiplet at 2.1 ppm, the amplitude
variations of the individual peaks lead to an almost complete cancellation of the
signal at echo times larger than 70 msec. In 

 

in vivo

 

 measurements, additional
superpositions with signals from other metabolites occur, which lead to an even
stronger cancellation of signals. The observation of signals from molecules with
coupled protons often requires, therefore, the use of short echo times in SVS but
the superposition of signals will continue to make difficult the separation of
signals from different metabolites. This problem can be partly overcome if editing
sequences are used or series of sequences with varying measurement parameters
are employed.

So-called homonuclear spectral editing techniques are characterized by addi-
tional frequency selective RF pulses within the sequence. These pulses can be
used as a filter for signals from coupled spins if additional signal subtraction
techniques are used (14). This technique can be combined with PRESS or
STEAM sequences. Another possibility of improved separation of different

 

FIGURE 11.11

 

In vitro

 

 spectra of glutamate, acquired at different TE values with a
STEAM sequence.
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metabolites is the two-dimensional (2-D)-spectroscopy. Here, the measurement
is repeated several times with continuous change of a selected parameter, e.g.,
the echo time in PRESS or STEAM sequences. Whereas uncoupled spin shows
the expected exponential signal decay with T2 as the time constant, the phase
and amplitude of signals of coupled spins oscillate with a monotonously increas-
ing echo time (15). With an additional Fourier transformation, the oscillating
frequency, which is related to the coupling constant, can be obtained, and the
peak of coupled spins occurs at different positions in a resulting 2-D spectrum
(16). This correlation spectroscopy technique (COSY) can also be combined
with conventional techniques of volume selection. A major disadvantage of this
technique is the long measurement time, which is necessary to acquire data not
only at one, but at many different echo times.

 

11.3

 

PRINCIPLES OF CSI

 

11.3.1

 

B

 

ASIC

 

 P

 

RINCIPLES

 

As described in the preceding section, SVS provides information about metabolite
composition in the selected volume of interest (voxel). However, in many cases
knowledge of metabolite distribution over a large area in the examined sample
is preferred. Typical examples are neurodegenerative diseases, in which lesions
often have a diffuse character. Spectroscopic imaging (SI), also called CSI, is a
method that encodes chemical shift and spatial distribution of metabolites simul-
taneously (17,18). Spectra from several voxels at different locations, instead of
one, are measured during a single measurement. In this respect, the method
combines features of both conventional MRI and SVS.

Because information about chemical shifts of individual metabolites present in
the signal of each voxel has to be preserved, the classical frequency encoding known
from conventional MR imaging cannot be applied. Instead, phase encoding is used
exclusively in CSI measurement sequences to obtain information on the spatial
distribution of signals.

Similar to MR imaging, depending on how many dimensions spectra are
spatially resolved in, 1-D, 2-D, or 3-D CSI can be distinguished. A scheme of

excitation pulse, a phase-encoding gradient G along the 

 

x

 

 axis is switched on for
the time 

 

τ

 

. During this time, the precession frequency 

 

ω

 

 of all spins along the
axis 

 

x

 

 is modified according to

(11.1)

giving rise to space-dependent phase shifts 

 

φ

 

(

 

x

 

) at the end of the phase encoding

(11.2)

where 

 

x

 

 is the position of the spins along the 

 

x

 

 axis, assuming the gradient
isocenter at x 

 

=

 

 0.

ω( )x xG= γ

φ γ τ( )x xG= −
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the simple 1-D spin-echo CSI sequence is shown in Figure 11.12. Following the
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After application of the refocusing pulse at time TE, data are sampled as a second
part of the spin echo.

The whole sequence is repeated N times with repetition time TR, while the
gradient strength G is changed in N equidistant steps ∆G from the value Gmin = −
∆GN/2 to Gmax = ∆G(N/21) as depicted in Figure 11.12.

Denoting Gl as the gradient strength of the l-th phase-encoding step and
introducing variable kl

(11.3)

the spatially dependent phase shift φl(x) corresponding to l-th phase-encoding
step equals φl(x) = –2πklx.

Because the overall measured signal S(t) is the sum of all elementary signals
s(t,x) distributed along x axis, taking the additional phase into account, we can
for a measured signal write S(t, kl) as a function of kl

(11.4)

The measured signal S(t, kl) is the continuous Fourier transform (FT) of
the signals s(t, x) from elementary volumes. The positions of N voxels along
the x axis can be reconstructed by the inverse discrete Fourier transform
(DTF−1).

(Figure 11.13b) variants. In 2-D and 3-D CSI, 2 and 3 orthogonal phase-encoding
gradients are applied, respectively. In reality, as shown in Figure 11.13, the
nonselective excitation pulse is often replaced by a frequency selective pulse

FIGURE 11.12 The scheme of the 1-D spin-echo CSI sequence.
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The 1-D sequence can be easily extended to 2-D (Figure 11.13a) or 3-D
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applied with the slice-selective gradient, resulting in exciting a slice (or slab in
case of 3-D CSI). The phase-encoding gradients are then applied in the plane
parallel to the slice in 2-D CSI, with the third gradient (called partition-encoding
gradient) pointing perpendicular to the slice in 3-D CSI.

After the spatial reconstruction, spectra from each element of a matrix, which
is called the spectroscopic grid, are available. In 2-D CSI, the size of the grid
corresponds to the field of view (FOV) of the CSI experiment. In 3-D CSI, several
grids with the same FOV, each corresponding to one partition of the excited slice
thickness, are available. The number of voxels in the spectroscopic grid (and also
the number of partitions) depends on the number of phase-encoding steps per-
formed in the sequence along corresponding directions.

To encode positions of the voxels, the sequence with all combinations of phase-
encoding increments in all directions has to be repeated. For 3-D CSI with Nx,
Ny, Nz steps (voxels) along corresponding direction, and with Nacq representing

FIGURE 11.13 The scheme of (a) the standard 2-D CSI and (b) the standard 3-D CSI
spin-echo sequence.
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the number of averages, the acquisition time Tacq becomes

 (11.5)

Due to signal-to-noise and quantification requirements of the measured spec-
tra, repetition time TR of the sequence has to be long enough (typically, TR =
1500 msec). For eight phase-encoding steps along each direction (which is the
minimum used number, as discussed later), TR = 1500 msec, Nacq = 1, and the
acquisition time Tacq = 12,8 min. Because in clinical measurements, more encod-
ing steps are used to achieve better resolution, Tacq becomes too long. Therefore,
CSI sequences are mostly used in 2-D mode.

Various fast CSI sequences, suitable for 3-D CSI, have been adopted (19),
such as sequences using multiple echoes for phase encoding (20,21), sequences
using time-varying gradients during the readout period (22–27), sequences
derived from the steady-state MR imaging sequences (28,29), or the recently
implemented parallel spectroscopic imaging techniques (30,31).

11.3.2 AVOIDING UNDESIRED EXCITATIONS

In many cases, examined tissue contains areas with spurious signals, such as areas
with poor magnetic field homogeneity, bones, air-containing structures (sinuses),
or fatty tissue. These signals are potential sources of the contamination of spectra
in other regions. A typical example is 1H CSI of the brain, in which strong lipid
signals from extracranial subcutaneous fat can contaminate spectra within the brain.
Therefore, methods eliminating signals from problematic regions are desirable. Two
most-often-used methods are volume preselection and outer-volume suppression.

The idea of volume preselected CSI sequences is to incorporate a volume
selection used in PRESS or STEAM SVS into a CSI sequence (32,33). In this
case, only the desired part of the sample, the VOI is excited using the PRESS or
STEAM sequence, while the position of the CSI voxels is coded by phase

Apart from elimination of spurious signals, this approach has another advantage.
As is known from MR imaging, to prevent aliasing artifacts, all regions of the
sample contributing to the measured signal have to be inside the FOV (because
only phase encoding is performed, frequency low-pass filters cannot be used).
This fact dictates the minimum FOV size and also the minimum voxel size
achievable per fixed time. Because by using volume preselected sequences only
a restricted area of the sample is excited, FOV can be reduced correspondingly,
resulting in smaller voxel size without the occurrence of aliasing artifact. How-
ever, due to imperfections of pulse profiles, areas outside the selected VOI are
also partially excited and contribute to the measured signal. Therefore, the FOV
should always extend beyond the VOI to encode positions of these signals (by
how much depends on used pulse profiles and the chemical shift artifact), and

T N N N N TRacq x y z acq=
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encoding (see Figure 11.14a, in which a 2-D PRESS CSI sequence is depicted).
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the VOI should be always positioned in the center of the spectroscopic grid. An
example of VOI positioning with respect to the spectroscopic grid is shown in
Figure 11.14b.

Spatial encoding of spectra is ensured by the additional phase shifts arising
from application of the phase-encoding gradients. The phase-encoding gradients
can be at different positions within the sequence. However, any signal present
during data sampling and not experiencing this phase shift will not be spatially
encoded and added to all points in k-space with the same phase. Because slice
profiles are never ideal, every 180° pulse produces, apart from the desired
refocusing effect, transverse magnetization also. This magnetization does not
encounter encoding gradients whenever they are applied before the 180° pulse.
In this case, the signal from this magnetization will not be encoded, and it will
contribute to the central voxel. Therefore, performing of encoding after the last
pulse in the sequence is preferred. Unfortunately, to achieve shorter echo times
and avoid eddy currents in the measured spectra, phase encoding is often not
realized after the last RF pulse of the sequence. Therefore, proper optimization

FIGURE 11.14 The scheme of (a) the volume preselected 2-D PRESS CSI sequence and
(b) the size and the position of the preselected volume (depicted as a black rectangle) with
respect to the spectroscopic grid (depicted as a white grid).
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of the sequence in terms of spoiling all unwanted transverse components of
180° pulses is necessary.

The disadvantage of volume preselection by PRESS or STEAM is the
rectangular shape of the VOI. This restricts the size of the excited area, espe-
cially in the brain. Alternatively, by using 2-D pulses for excitation, a more
general VOI shape can be selected (34). To avoid undesired signals, another
method, called outer-volume suppression (OVS) (33,35,36), can also be used.
In OVS, areas with spurious signals are saturated by slice selective pulses before
the CSI sequence starts. Several saturation slices are available to cover regions
to be suppressed, as shown in Figure 11.15a. After each saturation slice is
excited, the generated transverse magnetization is spoiled by the crusher gra-
dient as shown in Figure 11.15b. Because the profiles of the slices are never
exactly rectangular (which is especially relevant for large slice thicknesses),
saturation slices positioned too close to the area of interest can result in partial
suppression of the signals inside the area. In the case when a very large area
is to be suppressed, one thick slice can be replaced by two thinner adjoined
slices, with the better profile. Because saturation pulses are applied in the pulse
train, relaxation of saturated magnetizations during the time between the satu-
ration pulse and the first excitation pulse should be taken into account, espe-
cially when many slices are used. This can be solved by varying flip angles of
the saturation slices depending on their position in the saturation sequence.

FIGURE 11.15 Outer-volume suppression technique. (a) The signal from the subcutane-
ous fat is saturated using eight saturation slices depicted as white rectangles. The positions
and the thicknesses of the slices are adjusted before the measurement. (b) The scheme of
the OVS sequence. The OVS sequence precedes the CSI sequence.
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Also, because magnetization is always partially recovered at the time of appli-
cation of the following saturation pulses, multiple excitation in overlapping
regions may result in unwanted interactions and the refocusing of spoiled
magnetization. This leads to suboptimal signal suppression in the overlapping
areas. Therefore, to assure complete spoiling of undesired signals, the OVS
concept can be combined with volume preselection.

For removal of spurious lipid signals, additional methods can be used such
as lipid nulling by means of preparation pulses (37) or using spectral-spatial
selective pulses when both only the desired areas and the desired frequency
bandwidth are excited at a time (34,38,39). Lipid signals can also be removed
by postprocessing methods (40–42). The main disadvantage of lipid nulling is
the T1 weighting of all metabolite signals in the spectra. Concerning spectral-
spatial pulses, their length depends on the maximum achievable slew rate, result-
ing in rather long duration of the pulses, small excitation bandwidth, and also
limited minimum echo time of the sequence. Generally, suppression of unwanted
lipid resonances becomes less critical when long echo times are used, because
T2-relaxation time of lipids is much shorter than that of metabolites. However,
when quantitative analysis of signals from metabolites having short T2 is desired,
volume preselected CSI sequence and outer-volume suppression are the methods
of choice.

11.3.3 RECONSTRUCTION OF CSI DATA

In Subsection 11.3.1 the effect of 1-D phase encoding was demonstrated. In this
subsection the generalized reconstruction of 3-D CSI will be reviewed and the
concept of the point-spread function introduced.

Let us assume a 3-D CSI sequence with the phase-encoding gradients G =
(Gx, Gy, Gz) applied along the orthogonal coordinate system described by unit

x y z

directions are incremented in Nx, Ny, and Nz steps of sizes ∆Gx , ∆Gy, and  ∆Gz.
Introducing corresponding increment indexes l, m, and n, then Gl,m,n, representing
the discrete value of the resulting applied gradient, equals

Gl,m,n =  l ∆Gx ix + m ∆Gy iy+ n ∆Gz iz        
l = −Nx/2 …. (Nx/2) − 1; m, n correspondingly (11.6)

Each gradient combination can be associated with the discrete vector kl,m,n

(11.7)

The integral in Equation 11.7 assumes the general case of the time-dependent
gradient G. In this case, Equation 11.2 and Equation 11.3 have to be changed
correspondingly.

k G i i il,m,n l,m,n= = + +∫γ
τ

(t)dt l k m k n k
o

x x y z z∆ ∆ ∆y
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vectors i , i , and i . As shown in Figure 11.13b, gradient strengths along all three
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From Equation 11.1 to Equation 11.3, Equation 11.4 can be generalized for
3-D phase encoding

(11.8)

where the integration is performed over the sensitive area of the coil (denoted as
coil) and r represents the position vector relative to the gradient isocenter.

(11.9)

S(t, kl,m,n) represents the analogy of k-space in MR imaging, with the differ-
ence that not only is one k-space acquired, as in the case of MR imaging, but
one k-space for each time point t is sampled. Because gradient amplitudes are
incremented discretely, S(t, kl,m,n) is a discrete function of kl,m,n. The reconstructed
signal srec(t, r) is usually calculated by the discrete Fourier transform (DFT)

(11.10)

The truncation of the k-space (due to the finite number Nx, Ny, Nz of phase-
encoding steps) leads to r-space blurring, resulting in finite spatial resolutions
∆x, ∆y, ∆ z along ix, iy, and iz (43).

u = {x, y, z} (11.11)

The number of voxels equals the number of corresponding phase-encoding
steps. The second equality in Equation 11.11 gives the relation between the size
of the FOV and the step ∆k between k values as a consequence of discrete
k-space sampling (Nyquist criterion).

Following Equation 11.10 and Equation 11.11, signals from voxels at posi-
tions rl′,m′,n′

rl’,m’,n’ = l’ ∆x ix + m’ ∆yiy + n’ ∆z iz, 
l’ = −Nx/2 …. (Nx/2) −1; m’, n’ correspondingly (11.12)

can be reconstructed by

(11.13)

Equation 11.13 represents the basic formula for the reconstruction of the
voxel signals in the CSI experiment.

S t, s t e dl,m,n
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To see the relation between the true signal distribution s(t, r) and the signal srec(t, r),
the inverse DFT has to be computed. Substituting S(t, kl,m,n) using Equation 11.8 and
inverting the order of the integral and the summation, the reconstructed signal srec(t, r)
in Equation 11.13 can be expressed as a convolution of the true signal distribution
s(t, r) and the point-spread function (PSF)

(11.14)

where the PSF is defined as

(11.15)

The PSF describes the signal of a hypothetical infinite small point object in
the reconstructed image and characterizes the efficiency of the employed recon-
struction method.

In the case of equally spaced Cartesian sampling, 3-D PSF(r) can be separated
into three 1-D PSF, each describing the corresponding dimension

(11.16)

Depending on the number of phase-encoding steps (odd or even number) and
the implementation of the gradient incrementing in the measuring sequence, the
gradients (and, hence, the kl,m,n vector) can be sampled symmetrically or asym-
metrically with respect to the zero value. This symmetry influences the final shape
of psfx(x), psfy(y), and psfz(z). Direct computation of Equation 11.15 for psfx(x),
for example, yields the following results (44):

In the case of symmetric sampling about zero, when the index l ranges over
l = −(Nx −1)/2,…, 0,…, (Nx −1)/2 for an odd Nx or over l = −(Nx −1)/2, …, −1/2,
1/2,…, (Nx −1)/2 for an even Nx

(11.17)

In the case of asymmetric sampling with an even Nx, when the index l ranges
over l = –(Nx/2),… , (Nx/2) –1,

(11.18)
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From the preceding expressions, it follows that symmetric sampling leads to
a real PSF, and asymmetric sampling to a complex PSF. Both situations are
depicted in Figure 11.16. In the case of a complex PSF, both real and imaginary
parts of the FIDs are mixed, and CSI spectra show the phase difference with
respect to each other. This may cause phasing problems. On the other hand, the
PSF shape corresponding to asymmetric sampling has a slightly improved profile
in terms of the diminished extent and amplitude of the side lobes.

shape is demonstrated. Clearly, PSF shape improves with the increasing number

FIGURE 11.16 The shape of the 1-D point-spread function for (a) symmetrical and
(b) asymmetrical k-space sampling. In the case of asymmetrical sampling, the PSF is
a complex function. The real part is depicted by the solid and the imaginary part by
the dotted line.

PS
F 

(x
)

x (mm)

0.8

0.6

0.4

0.2

−0.2

0

806040200−20−40−60−80

PS
F 

(x
)

x (mm)

0.8

0.6

0.4

0.2

−0.2

0

806040200

(a)

(b)

−20−40−60−80

DK2411_C011.fm  Page 395  Friday, June 17, 2005  12:24 PM

© 2005 by Taylor & Francis Group, LLC

In Figure 11.17 the influence of the number of phase-encoding steps on PSF
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FIGURE 11.17 The dependence of 1-D point-spread functions on the number of sym-
metrically sampled k-space points. The field of view was assumed to have a fixed value
of 160 mm. The number of k-space points was (a) 8, (b) 16, and (c) 32.
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of phase-encoding steps. However, as shown in Equation 11.5, this improvement
is at the expense of acquisition time. The minimum accepted number of encoding
steps is usually considered to be eight (for the FFT algorithm, N must be a power
of two, unless zero filling is used).

Because the PSF shape is not rectangular and the PSF extends over many
voxels, Equation 11.14 implies that the signal measured at the given position
(the given voxel, in reality) is always contaminated by the signals from other
locations in the sample. This signal “bleeding” leads to the loss of localization
precision, and it is the determining factor for the resulting resolution of the
CSI experiment. In large samples with prevailing homogenous signal distri-
bution, the effects of the side lobes of PSF may, owing to the oscillatory
character of PSF, partially cancel each other out. However, because metabolites
are generally distributed in the sample nonuniformly, the existence of PSF
leads to the inaccurate determination of the signal distribution, and the recon-
structed signal srec (t, rl′,m′,n′) does not equal the true one, s (t, rl′,m′,n′). Only a
potential contamination can be predicted from the PSF shape, because the final
contamination depends on the exact metabolite distribution.

The elimination of PSF by the deconvolution of the measured concentrations
into the known PSF and the true metabolite signal is not possible, because all
spectra in the CSI grid are never available with the sufficient quality and decon-
volution methods are very prone to noise. Alternatively, a priori information from
an MRI image can be used for more sophisticated reconstructions to diminish
PSF effects to some extent (45,46).

The existence of PSF explains the need for the suppression of subcutaneous
lipids in the scalp and other areas with spurious signals. Even if the relative
contributions of distinct voxels are small, the contamination by lipid signal can be
severe due to big differences in metabolite and fat concentrations (1:103). Moreover,
because lipid resonances in distant areas are often shifted (owing to different
magnetic field strengths), signal bleeding usually results in the spoiling of the whole
spectral range.

11.3.4 K-SPACE WEIGHTING TECHNIQUES

For a fixed size of FOV, the profile of the PSF improves if the number of phase-

constraints and sensitivity reasons, a compromise in the number of encoding steps
is necessary.

Even if the number of phase-encoding steps is limited, other possibilities
of improving the PSF shape are available. Because the FT of the product of
two functions is the convolution of their FT, multiplying measured k-space
data S (t, kl,m,n) with a filter function will influence the resulting PSF. This
postacquisition k-space filtering, also called apodization, is realized by the
multiplication of the measured k-space data with symmetrical filters having
the maximal value in the center of the k-space and smoothly decreasing toward
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encoding steps is increased as depicted in Figure 11.17. However, due to time
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its edges. The operation is performed for all time points t. After the application
of the filter w, Equation 11.10 can be rewritten as:

(11.19)

where w(l, m, n) describes the value of the filter function for the l-th, m-th, and
n-th encoding steps.

From Equation 11.14 and Equation 11.15 the resulting PSF is given by

(11.20)

Therefore, by using a proper filter function w(l, m, n), the PSF profile can
be improved. Various filter functions can be used (47), such as the cosine filter

(11.21)

or the Hamming filter

(11.22)

where l ranges over Nx sampled values, and lmax stands for the maximal sampled
value of l. 3-D extensions are, in the case of Cartesian sampling, given by the
product of the corresponding 1-D expressions.

ally, apodization is always a compromise between PSF side lobe reduction and
the increase of the width of the main lobe and, hence, worsens resolution. In this
respect, the Hamming function is the optimal filter (47). Because the real reso-
lution of the CSI experiment is related to the width of the main lobe of the PSF,
apodization influence the final resolution. Therefore, the details of the applied
filter should be provided whenever k-space filtering is used.

Postacquisition filtering is not an efficient method of k-space apodization in
terms of signal-to-noise ratio (SNR) or time, because the sampled signal from
the edges of the k-space is eventually reduced. If more averages are needed,
k-space apodization can be performed directly during the measurement by varying
the number of averages Almn for each phase-encoding step (excitation) in propor-
tion to the desired filter function w(l, m, n):

; (11.23)
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The effect of filter functions on PSF shape is shown in Figure 11.18. Gener-
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where Nexc is the total number of excitations. Analogous to postacquisition filter-
ing, the value of Almn is maximal in the center of the k-space, where Almn equals
the number of averages Nacq of the sequence.

It is obvious that apodization during the measurement can only be properly
performed when the total number of excitations Nexc is sufficient to approximate
filter function w(l,m,n) by fractional weights Almn. Because in the case of 1H
CSI usually only a few averages are needed, an exclusive acquisition weighting
is used for nonhydrogen nuclei, which require more averages due to sensitivity
reasons. When the number of total excitations Nexc is small, multiplication of
k-space data by a correction smoothing filter, to prevent ringing from sharp digital
transitions in weighting, should be performed (48).

Apodization can be generally accomplished by any combination of acquisi-
tion k-space weighting and the postacquisition filtering. This is the case in reality,

FIGURE 11.18 The influence of (a) a cosine filter and (b) a Hamming filter on the point-
spread function shape (solid) in comparison to the original PSF (dashed) (FOVx = 160 mm,
Nx = 16, symmetrical sampling).
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because due to the integral number of averages Almn, the acquisition weighting
will not exactly match the required value of w(l, m, n) given by Equation 11.23.
However, it can be shown (49) that pure acquisition weighting, according to
Equation 11.23, represents an optimal method of producing the desired PSF shape
in terms of the highest SNR in a given measurement time. Alternative methods
of acquisition weighting have been proposed, such as weighting achieved by the
variable repetition time (50) or, for spiral-based k-space sampling, by variable
density of the sampled spiral in k-space (51).

The extreme case of weighted sampling is reduced k-space sampling, when
some parts of the k-space are not sampled at all. A typical example is circular
(spherical) sampling when only points of the k-space inside the circular (spher-
ical) region are sampled and the remaining points are zero-filled (52).This leads
to the reduction of the measurement time and also to the improvement of the
PSF profile. The side lobes of PSF are reduced in circular sampling compared
to rectangular sampling. This is, however, at the expense of a slight broadening
of the central PSF lobe. Also, circular sampling leads to an isotropic PSF in
comparison to rectangular sampling, in which PSF side lobes are propagated only
along the principal axis. This can be important when potential signal contamina-
tion from problematic areas could be reduced by the proper orientation of the
CSI grid. Variations of circular sampling to achieve further improvements have
been suggested (53,54).

Reduced sampling can be combined with both acquisition k-space weighting
and postacquisition filtering, resulting in various PSFs with different data collec-
tion efficiencies (48).

11.3.5 CSI PREPROCESSING

After spatial reconstruction of CSI data has been performed, spectra in all voxels of
the spectroscopic grid are available. Performing Nx, Ny, and Nz phase-encoding steps
along orthogonal directions results in Nx * Ny * Nz spatially resolved spectra along
corresponding axes. However, it is possible to increase the number of voxels artifi-
cially after the measurement. This operation, called zero filling, consists in appending
zeros to S(t, kl,m,n

either symmetrically or asymmetrically, the latter leading to a phase shift in spectra
among voxels. Zero filling represents an interpolation method and does not affect
the PSF. Therefore, even if the voxel size is decreased, the real resolution of the CSI
experiment is not improved.

Another unique feature of the FT reconstruction is the possibility of adjusting
the exact position of the grid after the measurement. This operation is based on
the shift theorem of FT

(11.24)

where xj represents generally the subvoxel size shift.

s(t, x x ) DFT S t, kl j l
i k x N1 j

′ ′
− −− = ′1 2{ ( )exp }/π
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) values prior to the FT (Figure 11.19). Zeros can be appended
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Equation 11.24 implies that a multiplication of all k-space values S (t, kl,) by
a proper phase factor before the DFT−1 results in shifting all positions of the
voxels (the whole spectroscopic grid). This is very useful because partial volume
effects play an important role due to the large voxel size, and by means of grid

11.3.6 DISPLAY OF THE CSI DATA

Spectroscopic imaging data usually contain substantial amounts of information.
To make use of this information efficiently, proper display and analysis of the
data are required.

There are several ways of presenting spectroscopic imaging data sets. Similar

This provides spectra in high resolution and enables their reliable inspection. To
view all spectra simultaneously, a grid of spectra overlaying the MR scout image

FIGURE 11.19 The effect of zero filling. Zero filling was performed from 16 to 32 data
points in both dimensions in k-space (k-space of the first time point shown). (a) Area in the
rectangle represents the original k-space, while zeros were added symmetrically, resulting
in the increase of the number of voxels from the original value (b) 16 × 16 to (c) 32 × 32.
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0

0

0

0
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shifting, the area of interest can be centered in the voxel (Figure 11.20).

to SVS, one or few selected spectra can be viewed as shown in Figure 11.21a.
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FIGURE 11.20 The shift of the spectroscopic grid. (a) In the original evaluation, a selected
region has no central voxel. (b) The shift was performed along one direction in order to
center the object of interest in one of the voxels and to reduce partial volume effects.

FIGURE 11.21 The display of acquired spectra. The spectrum from the desired voxel
can be viewed (a) separately or (b) the grid of spectra overlaying the MR scout image can
be drawn.
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size of the displayed spectra is often very small, preventing the operator from
resolving all the spectral details. To overcome this, only subsets of all spectra can
be displayed. The matrix of spectra provides an overview of spectral quality and
trends in signal distribution; however, spectra contain complex and often redundant
information. Some metabolites may be irrelevant or not well resolved for the study.
To summarize the metabolite distribution at a glance, metabolite images (called
also metabolite maps) can be computed. For each detectable metabolite in the
spectrum, a metabolite image can be computed when the intensity in the metabolite
image corresponds to the signal intensity of the selected metabolite in the given
voxel. The resulting image, usually in a color palette, is overlaid on the MR scout
image (Figure 11.22).

As pointed out earlier, due to sensitivity reasons, the voxel size is typically
of the order of 1 cm3. The image matrix of spectroscopic images is, therefore,
coarse. As previously mentioned, zero filling resulting in a finer matrix can be
performed. However, in this case, spectra from more voxels have to be pro-
cessed. To improve the appearance of the images, interpolation in the image
space (after the FT) can also be performed. For this purpose bilinear, cubic,
or other interpolation methods are used. Even if the apparent resolution of
images is improved and the images are better readable, similar to zero filling,
the image interpolation does not change the PSF and the true resolution of
images remains low.

Metabolite images are based on the results of spectra fitting and the assump-
tion that spectral quality is sufficient for the analysis. If the fitting routine is not
accurate or if spectra contain artifacts, the metabolic image may be misleading.
A typical example can be the incorrect computation of resonance areas due to
magnetic-field–inhomogeneity-induced frequency shifts of the spectra. If integration

FIGURE 11.22 The metabolite image of the sum of glutamine and glutamate signals.
The low signal values correspond to the blue color, whereas the high signal values
correspond to the red color.
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can be displayed (Figure 11.21b). Because the matrix contains many spectra, the
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is performed over the fixed frequency range, wrong resonance areas will be
computed. This can be overcome by using spectra-fitting algorithms that take
spectra shifts into account.

In any case, for reliable analysis of CSI data, an inspection of spectra in
considered areas is unavoidable.

11.3.7 COMPARISON OF SVS AND CSI TECHNIQUES

CSI offers the possibility of acquiring more spectra in the same time instead
of just one spectrum as with SVS, but does not bring about any improvement
in sensitivity. In terms of SNR per unit time and considering that the application
of phase encoding is equivalent to spectra averaging, the CSI and SVS tech-
niques are equally efficient (55,56). It should be pointed out that the equivalence
of both methods, in terms of sensitivity, assumes that SVS and CSI voxels have
the same size. As shown earlier, due to PSF effects, the area contributing to
the signal of the selected voxel extends the nominal voxel size. This fact leads
to the decreased sensitivity of the CSI experiment. This can be demonstrated
by the integration of PSF over the nominal voxel size (57), which in the case
of no filtering equals

(11.25)

The loss of the voxel signal compared to an ideal selective excitation method
is apparent. The signal is not actually lost, but distributed among other voxels
(signal bleeding). The overall signal measured in each voxel depends, therefore,
on the detailed distribution of the measured signal in the tissue. This fact limits
the equivalence of both methods.

The preference of one or the other method depends on the number of averages
required to acquire spectra of the desired quality. In 2-D CSI using 16 × 16
matrix, signals from 256 voxels are measured in the same time and with the same
SNR as opposed to one voxel in SVS using 256 averages. In this case, CSI
becomes more efficient in terms of acquired information per unit time. On the
other hand, if only few averages are needed, e.g., for a reference spectrum without
water suppression, SVS is preferable.

In practical situations there are also other effects influencing the quality of
acquired spectra. The need for shimming of the large volume in the case of CSI
often means worse magnetic field homogeneity, broader signals, and, hence,
lower SNR.

On the other hand, measurements with smaller voxel size are often performed
with CSI. This leads to better spatial resolution and to improved magnetic field
homogeneity within the voxel, resulting in the significant decrease of the widths
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when voxel sizes below 0.4 cm3 are measured (58). When an absolute quantifi-
cation of the signals should be performed, SVS sequences are preferred, because
the PSF effects in CSI sequences make the quantification difficult.

11.4 DIFFERENCES IN SEQUENCES FOR 
MEASUREMENTS WITH NONPROTON NUCLEI

The measurement techniques for volume selection in single-volume spectros-

Spectroscopy measurements can also be performed using other nuclei such as
phosphorus-31, carbon-13, sodium-23, and fluorine-19. Because the resonance
frequencies of these nuclei are different from those of protons, specific coils
for the application of RF pulses and for signal receiving are necessary. A simple
spatial selection of the acquired signal is possible by using small surface coils,
which acquire only signals from the volume near the coil. In combination with
a CSI measurement, good spatial resolution is obtainable (44), but difficulties
arise from the spatial inhomogeneous coil sensitivity. The measurement with
surface coils is, however, limited to volumes of interest in the proximity of the
surfaces of volunteers or patients. If small volumes within the body have to be
examined, a volume coil similar to the head coil has to be used and an image
data set is necessary for the selection of the appropriate voxel. Therefore, so-
called double-tuned coils are desirable, which allow measurements at the res-
onance frequencies of protons and the specific nucleus of interest. Although in
principle the same measurement techniques used in H-MRS can be used for
measurements with other nuclei (so-called heteronuclear spectroscopy), for
some applications other methods have to be used. In measurements of phos-
phorus nuclei, e.g., signal contributions from resonances with very low T2
values should be examined in many applications. This is not possible if echo
times longer than 20 msec are used as is usual for applications of PRESS and
STEAM. For such applications, the ISIS technique (3) can be used as an
alternative. In this measurement technique, up to three slice-selective inversion
pulses are used as preparation pulses prior to a nonselective excitation, which

between the excitation and the beginning of the data acquisition can be shorter
than 1 msec in this case. In such a measurement, signals from the whole volume
excited by the 90° pulse are acquired. The selection of signals from chosen
parts of this volume requires several measurements with different combinations
of preparation pulses. For a selection of a cuboid, eight measurements are
necessary, and the signal from the VOI can be calculated from a series of
successive subtractions. This procedure has the disadvantage that small changes
between the single measurement, e.g., patient movements, can lead to large
errors in the spectrum calculation. Therefore, the applications of the ISIS
technique are limited to those cases in which the use of single-shot techniques
such as STEAM and PRESS is not possible.
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is followed directly by the data acquisition (Figure 11.23). The delay time

copy sequences described in chapter 11.2 are widely used in in vivo H-MRS.
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12.1 INTRODUCTION

 

In the last 20 years, there has been an increasing interest in magnetic resonance
spectroscopy (MRS) in different fields ranging from analytical chemistry through
material sciences to biomedical applications. In particular, the well-known suc-
cess and the widespread application of MRS techniques in biomedical research
and medical practice have been supported by a number of inherent advantages
of this technique: MRS performs repetitive, nondestructive measurements of
metabolic processes 

 

in situ

 

 as they proceed in their own environment and it allows
the extraction of valuable 

 

in vivo

 

 information on the physiological and patholog-
ical state of human tissues in different organs [1].

It is known that the metabolic information contained in the magnetic
resonance (MR) signal (the free induction decay [FID] signal) is apparent in
its spectrum. In fact, in MRS spectra, the different compounds appear as
different resonance peaks: the position of resonance identifies the specific
compound, peak line width indicates the transverse relaxation time of the
nucleus (an index linked to the mobility of the molecule) and, finally, the total
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area of the resonance peak is proportional to the concentration of the detected
substance. The quantification of these parameters leads to metabolic tissues’
characterization [1,2].

Since MRS has been applied to humans, 

 

1

 

H-MRS has attracted much
attention. The reason is that a proton is the most sensitive and stable nucleus,
and hydrogenous atoms are largely diffused in living tissues [3]. Nowadays,
thanks to the recent technical advances in MR instrumentation, 

 

1

 

H-MRS is
routinely applied in clinical settings, especially in brain study, where it has
been documented to be effective in the diagnosis, prognosis, and treatment
selection of cerebral tumors [4,5], cerebral ischemia [6], epilepsy [7,8], and
multiple sclerosis [9,10]. Changes in the 

 

1

 

H-MRS resonance patterns were
observed between normal brain and cerebral tumors, with potential applica-
tions for the grading and classification of different tumor types [11,12]. The
metabolism of cerebral ischemia shows both acute and chronic changes, with
relevant implications from a pathophysiological and a therapeutic point of
view [16,17]. Finally, a few studies describe the possibility of investigating
the metabolic characteristics of multiple sclerosis (MS) lesions classified in
acute, subacute, and chronic cases, using MR spectroscopy [9,10,18]. In
addition to brain studies, other body tissues have been investigated using
MRS, including prostate, liver, and muscle. In particular, 

 

31

 

P-MRS has been
used in the diagnosis of muscular disease such as McArdle’s syndrome [19]
and Duchenne dystrophy [20].

Because of its clinical importance, the processing of 

 

in vivo

 

 MRS signals and
the extraction of the relevant information is not a trivial task. Major problems
that may limit the theoretical potentiality of the technique include the narrow
chemical shift range of 

 

1

 

H signals, which requires a precise shimming of the B

 

0

 

field, and the presence of unwanted water and lipids contributions, which over-
whelm the small metabolites of medical interest [3,13]. Also, the presence of
severe phase distortions [14] and consistent overlaps among spectral peaks [15]
make it difficult to quantify the parameters of interest, especially in a clinical
environment where short echo time and low-intensity magnetic fields are
employed. Finally, good shimming and correct suppression of water contribution
usually depend on the intervention of the experimenters, thus limiting the repeat-
ability of the study [3].

For these reasons, there is a need for robust and reliable signal processing
methods that make it possible to extract the relevant FID information. The meth-
ods should be fast, automatic, and operator independent.

In this chapter, we briefly introduce the basic principles of the methodology
available for advanced quantitative FID analysis and for the extraction of
metabolite parameters. It is not within the scope of this chapter to provide an
exhaustive description of the wide range of signal processing methods pro-
posed for MRS study. Rather, it presents some introductory concepts of signal
processing that may be fruitfully applied for FID analysis, focusing the reader’s
attention on the potentiality and the flexibility of these techniques in metabolite
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quantification. More details can be found in recent reviews on these topics
[21–23].

 

12.2 EXTRACTING INFORMATION 
FOR THE FID SIGNAL

 

The FID signal is usually approximated as a sum of 

 

K-

 

complex damped sinusoids
according to the following model [22]:

(12.1)

where 

 

a

 

k

 

 is the amplitude of the 

 

k

 

-th sinusoid, 

 

f

 

k

 

 its frequency, 

 

d

 

k

 

 the damping
factor, 

 

k

 

 the phase, and 

 

e

 

(

 

n

 

) is assumed to be circular complex white Gaussian
noise (i.e., the real and imaginary parts of the noise are not correlated and
have equal variance). In Equation 12.1, 

 

n
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 {1, 2,

 

…

 

,

 

N

 

} is the discrete-time
index and 

 

N

 

 the number of observed data points. Each sinusoid is described
by a set of parameters 
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], where the relative frequency 

 

f

 

k

 

 is used
to identify the biochemical species and 

 

a

 

k

 

 and 

 

d

 

k

 

 are the relevant parameters
for metabolite quantification and characterization. 

 

a

 

k

 

 is proportional to the
number of nuclei contributing to the spectral component at the frequency 

 

f

 

k

 

(number that depends on the metabolite concentration), and 

 

d

 

k

 

 may provide
information about the mobility and macromolecular environment of the
nucleus. When expressed in the frequency domain and ignoring the noise term,
Equation 12.1 becomes

(12.2)

It consists of a set of spectral peaks of Lorentzian shape. The real part of

      

part of Equation 12.2 and after correct phasing (

 

φ

 

k

 

 

 

=

 

 0), we obtain

(12.3)

It can be easily observed that

(12.4)

Thus, the quantification of the metabolite concentrations can be easily
obtained as the integral of spectral lines (Figure 12.1). Manually integrating the
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X(ω) is known as the absorption-mode spectrum (Figure 12.1). Taking the real
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area under the spectral peaks of interest is the oldest and simplest method used
to extract quantitative metabolite concentrations from the FID. In practice, this
approach is slightly inaccurate, and a bias is usually introduced by the operator
and baseline correction technique. As shown by Equation 12.3 and Equation 12.4,
the results rely on the correct phasing of the spectral components and depend on
the width of the integration area (ideally, from 

 

−∞ +∞

 

; in practice, around the
spectral peak). Defining the integration width cannot be a trivial task, especially
when spectral peaks are partially superimposed or when acquisition artifacts or
broadband resonances (i.e., water signal contribution in 

 

1

 

H-MRS) may distort the

also mask the contributions of low-amplitude metabolite components, whose

Therefore, in the last decade, a wide range of signal processing methods have
been proposed to obtain automatic, reliable quantification of metabolite concen-
trations from the recorded FID signals. Calculation of metabolite concentration
can be carried out in both time and frequency domain, requiring accurate esti-
mation of either the amplitude or the peak area.

This chapter will review the main signal processing methodologies used in
this field, and it will survey the successive processing steps that lead to the
calculation of molecular concentration of various metabolites contributing to the
recorded FID.

 

FIGURE 12.1

 

Quantification of 

 

N

 

-acetyl-aspartate (NAA) concentration by manual inte-
gration of the absorption-mode 

 

1

 

H MRS spectral profile. The presence of baseline wan-
dering makes it difficult to define the area of integration. Also, coline (Cho) and creatine
(Cr) peaks are partially overlapped; in this case it is difficult to correctly define the
integration range.
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spectrum baseline (Figure 12.2a). Acquisition noise and baseline waving may

concentration is nonquantifiable (Figure 12.3).
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FIGURE 12.2

 

Effects of different time-domain preprocessing on the absorption-mode
spectrum. (a) Original spectrum, (b) increased SNR by line broadening, (c) Lorentz–Gauss
transformation, and (d) removal of broadband components.

 

FIGURE 12.3

 

Simulated TE20 

 

1

 

H MRS spectrum (bold line). Decomposition obtained
by LPSVD method. The contributions of small metabolite (myo-Inosytol [mI], taurine
[Tau], or Glutamate

 

+

 

glutamine [Gln]), which were not clearly evident on the original
spectrum, were identified and separated by the LPSVD methods.
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12.3 TIME-DOMAIN PREPROCESSING

 

The acquired FID is noisy and not suitable for direct analysis. Due to several
acquisition problems, the resulting FID may be distorted from the ideal curve of
Equation 12.1. The causes of these distortions include, among others, field inho-
mogeneity, the truncation of the FID data before the signal has decayed below
the noise level, unavoidable delay between the RF pulse and the first FID sample,
as well as presence of unwanted broadband resonance. Therefore, acquired FID
is usually preprocessed before the parameters of interest can be estimated. A brief
description of common preprocessing methods applied to FID data is presented
in the following subsections.

 

12.3.1 Z

 

ERO

 

 F

 

ILLING

 

This is a common procedure in signal processing known as 

 

zero padding

 

. The
number 

 

N

 

 of sampled points is increased by adding (padding) zeros at the end
of data series. In general, the procedure is required to fit the fast Fourier transform
(FFT) criterion (number of data points must be a power of two for computational
efficiency); in MRS, zero filling is applied when the acquisition time has been
kept short because of some practical constraints (in this case, few data points
being available) or when signal terms have already decayed below the noise level
and further sampling would add only noise. Adding zeros has the effect of
interpolating extra points into the spectrum and improving its digital resolution
(i.e., the frequency interval between data points). Because adding zeros does not
add extra information to the data, the final result is merely an apparent improve-
ment of spectral resolution used for visualization purposes, which does not
increase the frequency resolution.

 

12.3.2 W

 

INDOWING

 

Prior to FFT, the FID signal is usually windowed by multiplying it by a given
function 

 

g

 

(

 

t

 

) with known characteristics. The aims of this procedure can be
different — including either the improvement of signal-to-noise ratio (SNR), or
a better spectral resolution, or the removal of truncation artifacts. In the following
text, it will be shown how the selection of 

 

g

 

(

 

n

 

) may produce different effects on
the absorption-mode spectra. Let us assume 

 

g

 

(

 

n

 

) to be an exponential function
. Multiplying the acquired FID by 

 

g

 

(

 

n

 

) and excluding the noise term,
we obtain

(12.5)

Thus, the resulting curve maintains the original lineshape, but the spectral
line width is increased by a factor 

 

d

 

0

 

 (line broadening). The effect is to increase

g n e d no( ) = −

x n g n a e ek
j d d j f n

k

K

k k k( ) ( ) ( ( ) )= − + +

=
∑ φ π0 2

1

 

DK2411_C012.fm  Page 416  Friday, June 17, 2005  12:25 PM

© 2005 by Taylor & Francis Group, LLC

the SNR as shown in Figure 12.2b: data points at the beginning of FID, including
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higher-amplitude signal terms, are least affected by 

 

g

 

(

 

n

 

), whereas later points, in
which signals are decayed below the noise level, are strongly attenuated. In this
case, improvement of SNR is made by broadening spectral lines, thus reducing
spectral resolution.

The windowing procedure can also be used for resolution improvement. In
fact, if 

 

d

 

0

 

 is chosen as negative, the decaying time of the FID is increased,
producing a narrowing of spectral lines. However, use of this technique needs
some care — if 

 

d

 

0

 

 is too negative, the latest point in the FID is highly amplified,
thus enhancing noise rather than signal and resulting in a prohibitively noisy
spectrum.

A compromise between enhancement of SNR and resolution is obtained by
combining the weighting function with negative 

 

d

 

0

 

 with another function decaying
to zero at the tail of the FID. The resulting weighting curve has a maximum
located in the early points of the FID. Usually, a combination of the exponential
and Gaussian function is used

(12.6)

In practice, 

 

d

 

0

 

 is chosen as close as possible to 

 

d

 

k

 

’s to generate delta spectral
lines in the presence of true resonance, which are then convolved by the Gaussian
curve of Equation 12.6. The resulting spectrum will be composed of a summation
of Gaussian lines. For this reason, the latter operation is known as 

 

Lorentz–Gauss
Transform.

 

 The advantage is that the Gaussian lineshape, with the same half-
height line width of the Lorentzian one, has a narrow base, thus reducing overlap
of peaks and increasing resolution. Results of the Lorentz–Gauss transformation

the FID can also be useful to smooth the truncation at the end of FID, if it has
not decayed to zero during acquisition (

 

apodization

 

).
Finally, windowing can be also used to reduce the influence of broad spectral

components. Here, the selected weighting function is where 

 

d

 

b

 

is much greater than the 

 

d

 

k

 

’s of the narrow signals of clinical interest. Because

 

d

 

b

 

 

 

>>

 

 

 

d

 

k

 

’s, the term enhances broadband metabolites. A fraction 

 

A

 

 of
these metabolite is then subtracted from the acquired FID data to remove them.
Results are shown in Figure 12.2d.

 

12.3.3 R

 

EMOVAL

 

 

 

OF

 

 U
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 R

 

ESONANCE

 

The acquired MRS signal contains several resonance frequencies due to the
complexity of living systems and metabolism. However, only few of them have
clinical and diagnostic relevance. It is, therefore, desirable to remove unwanted
peaks, thus improving the readability of the spectrum, accuracy in parameter
estimation, and reducing the computational burden. The most straightforward
example of undesired resonance is the water peak in proton MRS. In fact, water
is largely diffused in living tissues and provides the most relevant contribution
to the 

 

1

 

H-MRS FID.
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are shown in Figure 12.2c. A weighting function decaying to zero at the end of
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Depending on the characteristics of the undesired peaks, different signal
processing methods can be applied to suppress them. These techniques range
from time-domain filtering (in which unwanted peaks are separated in frequency
from the peak of interest), discharging or weighting the FID data points in
different ways (when nuisance peaks have larger line widths than the peak of
interest) to a more or less complicated modeling of the spectrum baseline.

Time-domain filtering has been proposed to suppress the water peak, which
is usually located at zero frequency. High-pass digital filters can be used in this
regard [24,25]. Marion [25] proposed a linear-phase low-pass filter to extract
purely

 

 

 

water signals and subtract the filter output from the data. The proposed
filter coefficients 

 

h

 

m

 

 were sine-bell-shaped

(12.7)

or Gaussian-shaped

(12.8)

with M being the filter order. Linear-phase filters are proposed to avoid phase
distortion in the unfiltered components, whereas high-order M (17 < M < 65)
values were suggested [25] to reduce the influence on the peak of interest. Because
the first and last (M1)/2 values cannot be calculated, they must be extrapolated
using linear predictions [25] or modeling [26]. Extrapolating the data may intro-
duce distortions, and a careful compromise between ideal filter response and the
number of extrapolated points has to be taken into account for filter design.

Another approach to water suppression is based on modeling of time-domain
water signals [27,28]. Because of partial water suppression performed using
special sequences, the water peak is far from the theoretical lineshape. Therefore,
several damped exponentials are usually used to fit it. In modeling the water peak,
user intervention is usually necessary to define the frequency region of the water
peak and the number of fitting exponentials.

12.4 FREQUENCY-DOMAIN METHODS

Accurate quantification of in vivo spectra parameters can be obtained by fitting
the observed MRS spectrum with known lineshapes. In the ideal case, the MRS
spectrum consists of a superimposition of pure complex Lorentzian lines [29,30].
In the real case, due to acquisition imperfections, the ideal lineshape is distorted,
and the model should usually include a mixture of Lorentzian (L) and Gaussian
(G) curves [21,31]. The following is a general model of an MRS spectrum:

(12.9)
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where βL and βG are the weighted factors used to create the mixture of L and G
curves and w( f ) is a white Gaussian noise. The values of βL and βG can be either
fixed a priori or included in the parameters to be estimated. Also, the term

is added to account for possible baseline distortions that may be derived
from underlying signals or unwanted resonances. A polynomial can be used to
model the baseline, p being the polynomial order and cp its coefficients.

The estimation of model parameters vk is obtained by solving a classical non-
linear least-square (NLLS) problem, by minimizing the following figure of merit

(12.10)

where is the difference between the actual and model values of
the spectrum. Both real and imaginary parts of X( f ) are considered in the fitting.
Using vector notation, J can be rewritten in a more compact form:

(12.11)

where || || represents the Euclidean norm, X = [X(0),X(∆f ),…,X((N − 1)∆f )]T,
and T indicates the matrix transpose.

Because Equation 12.11 is nonlinear in the parameter, the Levenberg–Marquardt
[32] algorithm is often used to solve the problem [15]. Several fitting algorithms
operating in the frequency domain have been developed in recent years [15].
Some of them [33,34] allow for the inclusion of a priori knowledge between
spectral components. In fact, known relationships sometimes do exist between
spectral lines, such as known amplitude and damping ratios, and frequency and
phase shifts. These relationships are translated into constraints among spectral
parameters, which may be included in Equation 12.11, thus reducing the number
of parameters to be fitted. This operation dramatically increases estimation accu-
racy and decreases computation time. Prior knowledge is particularly important
to resolve overlapping peaks or to impose common line widths in noise spectra
to improve accuracy of the other estimates.

12.5 TIME-DOMAIN METHODS

Quantitative evaluation of metabolite parameters may be obtained by processing
the time-domain FID signals. Two main categories of methods have been pro-
posed: black-box methods and interactive approaches [22]. The former are based
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on linear prediction (LP) methods and autoregressive (AR) modeling of the FID,
whereas the latter are based on NLLS optimization to directly fit the damped
sinusoid model on the data.

The first example of the black-box approach applied to the analysis of FID
data is the so-called linear prediction singular value decomposition (LPSVD)
method due to Barkhuijsen [35], who applied the well-known approach by
Kumaresan and Tufts (KT) [36]. The aim is to estimate the amplitude and
frequency of K-complex damped sinusoids embedded in noise when N data
samples of the process are observed. vk = [fk, ak, dk , φk] are unknown parameters.
The method is based on the observation that signal x(n) can be modeled by an
AR process according to the following backward equation system

(12.12)

where the bk’s are the backward prediction coefficients. When Equation 12.12 is
used to describe the process generated by Equation 12.1, an interesting relation
does exist between bk’s and signal frequencies:

(12.13)

Thus, the unknown frequencies in Equation 12.1 are easily obtained by
estimating the bk’s and by rooting the polynomial B(z). The identification of bk’s
is obtained by solving the following linear system derived from Equation 12.12
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and where K < L < N, L being the guessed order of prediction. From a theoretical
point of view, in the absence of noise, the matrix A should have rank K. This fact
is only “approximately” true when the signal is embedded in noise. Using this
fact, Kumaresan and Tufts [36] proposed to replace the matrix A in Equation
12.14 by its K-rank approximant obtained by singular value decomposition
(SVD). The approximant is built by retaining only the K dominant singular values
of A and setting the others to zero. Therefore, instead of solving Equation 12.14
directly, a modified version (in which matrix A is substituted by its approximant)
is used. In this case, the most significant contribution of the noise can be removed,
and it can be demonstrated that frequencies and damping factors are obtained in
a more robust way [35,36]. However, the amplitudes are still unknown. In the
LPSVD approach, the problem is solved by substituting the estimated frequencies
and damping factors in Equation 12.1 and writing this equation down for all N
data points. In this way, we obtain a set of linear equations in the unknown
parameters [35]. The latter can therefore be estimated by solving
another linear system analogous to Equation 12.14. An example of metabolite

noting that the method is able to detect and separate small metabolite contributions
that were not detectable in the absorption-mode spectra.

Several variants of the method cited in the preceding text have been applied
in the analysis of MRS data in an effort to reduce computation time and improve
accuracy in parameter estimation. Details can be found in various articles [22].
These methods try to overcome the limitations imposed by the fixed truncation
of SVD [37,38] or by polynomial rooting and root selection [39,40]. In Reference
41, frequency localization is improved by applying the KT approach in different
subband signals obtained by wavelet packet decomposition of the original FID.

With interactive methods, the estimation of model parameters vk is obtained
by solving a classical NLLS problem. A maximum likelihood (ML) estimate of
vk is achieved under the hypothesis of white Gaussian noise by minimizing the
following figure of merit (in analogy with the figure of merit introduced for
frequency-domain fitting in Equation 12.10 and Equation 12.11):

(12.16)

where is the so-called prediction error (i.e., the difference between
actual sample and model-predicted sample). Minimization of Equation 12.16 can
be obtained by using the classical Levenberg–Marquardt algorithm [32] or more
sophisticated NLLS methods [42,43]. In addition, the problem can be simplified
by using the variable projection method [44]. A visual inspection of Equation 12.1
reveals that the model can be split into linear and nonlinear parts, thus obtaining

(12.17)
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quantification using the LPSVD method is shown in Figure 12.3. It is worth
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where and Writing Equation 12.17 for each acquired
sample and using matrix notation, we obtain

(12.18)

where

(12.19)

If we assume that the nonlinear parameters (fk,dk, k = {1, 2,…,K}) are known
(or some initial guess about them is available), we can solve Equation 12.18 in
the LS sense, thus obtaining

(12.20)

where K† is the pseudoinverse of K. Having estimated the A parameters, we can
get rid of it in Equation 12.16 and solve a simpler problem

(12.21)

FIGURE 12.4 Example of application of AMARES for the analysis of in vivo citrate
signal. From bottom to top: the FT spectrum of the original signal, Lorentzians (FT of
fitted sinusoids), and the residual. (From Vanhamme, L., van den Boogaart, A. and van
Huffel, S. [1997]. Improved method for accurate and efficient quantification of MRS data
with use of prior knowledge. J. Magn. Reson. 129: 35–43.)
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Solving Equation 12.21 or Equation 12.16 will lead to the same results.
However, in Equation 12.21, a fewer number of variables are involved even if
the functional is more complicated.

Following the same idea, a priori biochemical knowledge (e.g., known ampli-
tudes and damping ratios, and frequency shifts and common phases) can be
included in the functional as well. In fact, when prior knowledge can be expressed
as a set of constraints among parameters, these constraints are substituted in the
functional (either Equation 12.21 or Equation 12.16), thus reducing the dimension
of the parameter space. In this way, regardless of the existence of constraints
among parameters, an unconstrained NLLS optimization problem is always solved.

Several modified versions of the original approach have been presented, which
differ for the selected minimization algorithm [42,45–48] or for the kind of prior
knowledge included into the procedure [42,48,49]. An example of application of

12.6 CONCLUSIONS

A general overview of the common signal processing methods for metabolite
quantification in MRS is presented. Fundamentals of both time-domain methods
and frequency-domain approaches have been introduced in order to provide some
theoretical basis that may help the reader to appreciate the power of these tech-
niques and their correct applicability to the processing of MRS data. It is worth
noting that an optimal approach does not exist. Conversely, due to the variety of
MRS spectra characteristics, it is a common experience that different signal
processing methods (and models) must be employed for analyzing data acquired
from various tissues (brain, muscle, or liver) or different nuclei (1H, 31P, etc.).
The accuracy of the results depends on the correct match between the selected
model and characteristics of the experimental signals. A few multicenter studies
and review articles [21,22,50] have deeply compared the various signal processing
approaches and widely exploited the advantages and shortcomings of each
method. It is not the aim of this chapter to describe them in detail, but we hope
that the presented concepts could give a general picture of the peculiarities of
each method, stressing those aspects that make them suitable and attractive for
quantitative analysis of MRS data.
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13.1 INTRODUCTION

 

Diffusion magnetic resonance imaging (MRI) measures the random molecular
motion (diffusion) of water in biological tissue. Tissues with an oriented structure,
such as the fibers of muscle or the axons of nervous tissue, produce measurable
diffusion anisotropy: a pattern is imposed on the diffusing molecules by the shape

white matter fiber tracts in a sagittal view of the human brain. Fiber tracts are
bundles of neurons whose membranes hinder water diffusion [5]. The orientation
of cells in neural tissue is thus reflected in MRI measurements of water diffusion,
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of the tissue. One such tissue is shown in Figure 13.1, an image of some major

which vary with direction. This is shown schematically in Figure 13.2.
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One mathematical representation of this three-dimensional (3-D) diffusion
pattern is the diffusion tensor, a 3 

 

×

 

 3 symmetric, positive definite matrix. In
diffusion tensor MRI (DT-MRI) imagery of the brain, the eigensystem of the
diffusion tensor gives a local coordinate system that approximates the local neural
structure. The major eigenvector gives the direction of greatest diffusion (the
most probable fiber direction). The eigenvalues of the diffusion tensor represent

shows the eigenvectors of a diffusion tensor in two dimensions, scaled by the

 

FIGURE 13.1

 

Selected fiber traces (tractography) from a DT-MRI data set, shown in a
sagittal view. Note the presence of both long and short paths, and varying degrees of
curvature. These factors complicate automated extraction of tracts from diffusion MRI data.
This image was created with the 3-D Slicer DT-MRI visualization tool. (From Talos, I.-F.,
O’Donnell, L., Westin, C.-F., Warfield, S.K., Wells, W.M., Yoo, S.-S., Panych, L.P., Golby,
A., Mamata, H., Maier, S.S., Ratiu, P., Guttmann, C.R., Black, P.M., Jolesz, F.A., and
Kikinis, R. (2003). Diffusion tensor and functional MRI fusion with anatomical MRI for
image guided neurosurgery. in 

 

Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI)

 

. pp. 407–415. Toronto, Canada.)

 

FIGURE 13.2

 

Idealized diagram showing the effect of axons on water diffusion, as
measured by diffusion MRI.
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corresponding eigenvalues, and surrounded by an ellipse describing the shape of
water diffusion.

The diffusion tensor model is reasonable but is limited when describing neu-
roanatomy. In the case where one voxel contains more complicated geometry than
a single tract, it is misleading to only consider the information in the major eigen-
vector. In addition, the diffusion tensor model cannot describe fiber tract crossings
or complicated patterns of tracts that may occur within a voxel. It is important to
take these limitations into account when developing a data analysis method.

In this chapter, we first present background information on diffusion and
diffusion tensor calculation. We continue with a description of diffusion tensor
shape analysis and visualization methods. Finally, we introduce two techniques
for extracting connectivity information from diffusion tensor data sets.

 

13.2 DIFFUSION AND DIFFUSION TENSOR 
CALCULATION

 

The process of diffusion is described by Fick’s first law, which relates a concen-
tration difference to a flux (a flow across a unit area). It states that the flux, 

 

j

 

, is
proportional to the gradient of the concentration, 

 

∇

 

u

 

. The proportionality constant

 

d

 

 is the diffusion coefficient.

(13.1)

For an anisotropic material, the flow field does not follow the concentration
gradient directly, because the material properties also affect diffusion. Conse-
quently, the diffusion tensor, 

 

D

 

, is introduced to model the material locally.

(13.2)

The standard model of diffusion says that over time, the concentration of the
solute will change as the divergence of the flux:

(13.3)

 

FIGURE 13.3

 

Idealized diagram showing the local coordinate system described by the
eigensystem of the diffusion tensor, in two dimensions. Note that where tracts cross in a
voxel, the major eigenvector is not likely to be parallel to either tract.

j d u= − ∇

j D u= − ∇

u D ut = ∇ ⋅ ∇ .( )
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This is due to conservation of mass. Intuitively, it implies that, for example,
fluid flow outward from a point (divergence) should decrease the concentration
at that point while increasing the concentration at neighboring points. In the
steady state, the concentration does not change; consequently the steady-state
flux vector field is divergence free.

In diffusion MRI, magnetic field gradients are employed to sensitize the image
to diffusion in a particular direction. In each resulting diffusion-weighted image,
signal is lost wherever molecules diffuse in the direction of interest during
imaging. By repeating the process of diffusion weighting in multiple directions,
at each voxel a 3-D diffusion pattern can be estimated, which will reflect the
shape of the underlying anatomy.

In DT-MRI, the diffusion tensor field is calculated from a set of diffusion-
weighted images by solving the Stejskal–Tanner equation (Equation 13.4) [1].
This equation describes how the signal intensity at each voxel decreases in the
presence of diffusion:

(13.4)

Here, 

 

S

 

0

 

 is the image intensity at the voxel (measured with no diffusion gradient),
and 

 

S

 

k

 

 is the intensity measured after the application of the 

 

k

 

th diffusion-sensitizing
gradient. is a unit vector representing the direction of this diffusion-sensitizing
magnetic field gradient. 

 

D

 

 is the diffusion tensor, and the product represents
the diffusion coefficient in direction . In addition, 

 

b

 

 is LeBihan’s factor describing
the pulse sequence, gradient strength, and physical constants. For rectangular gra-
dient pulses, the b-factor is defined by ,where 

 

γ

 

 is the proton
gyromagnetic ratio (42 MHz/Tesla), the strength of the diffusion-sensitizing
gradient pulses, 

 

δ

 

 the duration of the diffusion gradient pulses, and 

 

∆

 

 the time

 

13.3 ANISOTROPY AND MACROSTRUCTURAL 
MEASURES

 

The geometric nature of the measured diffusion tensor within a voxel is a mean-
ingful measure of fiber tract organization. Factors affecting the shape of the
apparent diffusion tensor (shape of the diffusion ellipsoid) in the white matter
include the density of fibers, the degree of myelination, the average fiber diameter,
and the directional similarity of the fibers in the voxel. In addition, because MRI
methods obtain a macroscopic measure of a microscopic quantity (which neces-
sarily entails intravoxel averaging), the voxel dimensions influence the measured
diffusion tensor at any given location in the brain.

The advent of robust diffusion tensor imaging techniques has prompted the
development of quantitative measures for describing diffusion anisotropy. However,
to relate the measure of diffusion anisotropy to the structural geometry of the tissue,

S Sk
bg Dgk

T
k= −

0e
ˆ ˆ
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calculation process, see for example Reference 24.
between diffusion gradient RF pulses [24]. For more information on the tensor
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a mathematical description of diffusion tensors and their quantification is necessary
[1]. Several different measures of anisotropy have been proposed in the literature.
Among the most popular are two that are based on the normalized variance of the
eigenvalues: relative anisotropy (RA) and fractional anisotropy (FA) [3]. An advan-
tage of these measures is that they can be calculated without first explicitly calcu-
lating any eigenvalues. Both anisotropy measures can be expressed in terms of the
norm and trace of the diffusion tensor. The norm is calculated as the square root
of the sum of the squared elements of the tensor, which equals the square root of
the sum of the squared eigenvalues; and the trace is calculated as the sum of the
diagonal elements, which equals the sum of the eigenvalues:

(13.5)

(13.6)

where 

 

I

 

 is the identity tensor. The constants are inserted to ensure that the measures
range from zero to one. In the next section, we will present alternatives to these
measures based on the geometric properties of the diffusion ellipsoid.

 

13.3.1 G

 

EOMETRICAL

 

 M

 

EASURES

 

 

 

OF

 

 D

 

IFFUSION

 

The diffusion tensor can be visualized using an ellipsoid in which the principal
axes correspond to the directions of the eigenvector system. Using the symmetry
properties of this ellipsoid, the diffusion tensor can be decomposed into basic
geometric measures [25], a concept that we will elaborate in this section.

Let 

 

λ

 

1

 

 

 

≥

 

 

 

λ

 

2

 

 

 

≥

 

 

 

λ

 

3

 

 

 

≥

 

 0 be the eigenvalues of the symmetric diffusion tensor ,
and let be the normalized eigenvector corresponding to 

 

λ

 

i

 

. The tensor can
then be described by

(13.7)

Diffusion can be divided into three basic cases depending on the rank of the
diffusion tensor:

Linear case ( ): diffusion is mainly in the direction corresponding
to the largest eigenvalue,

(13.8)

Planar case ( ): diffusion is restricted to a plane spanned by the
two eigenvectors corresponding to the two largest eigenvalues,

(13.9)
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Spherical case ( ): isotropic diffusion,

(13.10)

In general, the diffusion tensor 

 

D

 

 will be a combination of these cases.
Expanding the diffusion tensor using these cases as a basis gives

where (

 

λ

 

1

 

 

 

−
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2

 

), (
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2

 

 

 

−

 

 

 

λ

 

3

 

) and 

 

λ

 

3

 

 are the coordinates of in the tensor basis
{

 

D

 

i

 

, 

 

D

 

p

 

, 

 

D

 

s

 

}. A similar tensor shape analysis has been shown to be useful in a
number of computer vision applications [22,23].

The coordinates of the tensor in our new basis classify the diffusion tensor
and describe how close the tensor is to the generic cases of line, plane, and sphere,
and hence, can be used for classification of the diffusion tensor according to its
geometry. Because the coordinates are based on the eigenvalues of the tensor, they
are rotationally invariant, and the values do not depend on the chosen frame of
reference. To obtain quantitative measures of the anisotropy, the derived coordi-
nates have to be normalized, which, in turn, will lead to geometric shape measures.
As in the case of fractional and relative anisotropy, there are several (rotationally
invariant) choices of normalization. For example, the maximum diffusivity, 

 

λ

 

1

 

, the
trace of the tensor, 

 

λ

 

1

 

 

 

+

 

 

 

λ

 

2

 

 + 

 

λ

 

3

 

, or the norm of the tensor, , can be
used as normalization factors.

By using the largest eigenvalues of the tensor, the following quantitative shape
measures are obtained for the linear, planar, and spherical measures:

(13.11)

(13.12)

(13.13)

where all measures lie in the range from zero to one, and their sum is equal to one,

(13.14)
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Figure 13.4 contains coronal brain images depicting these geometrical mea-
sures. Alternatively, the coordinates can be normalized with the norm of the
tensor, giving:

(13.15)

(13.16)

(13.17)

To ensure that the measures remain in the range from 0 to 1, and the sum is 1,
the scaling factors 2 and 3 have been inserted for the planar and the spherical cases.
A geometrical anisotropy measure that has a behavior similar to the FA measure
(fractional anisotropy, Equation 13.6) describes the deviation from the spherical case

(13.18)

 

FIGURE 13.4

 

(a, b, and c) Coronal brain images showing the three geometrical measures.
Note that most of the major fiber tracts are visible despite the low resolution of the data
set (1.7 

 

×

 

 1.7 

 

×

 

 4 mm). (From Westin, C.-F., Maier, S., Mamata, H., Nabavi, A., Jolesz,
F., and Kikinis, R. (2002). Processing and visualization of diffusion tensor MRI. 
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which is the sum of the linear and planar measures. By normalizing with the
trace of the tensor instead of the norm, the measure will be more similar to the
RA measure (relative anisotropy, Equation 13.5).

The presented measures quantitatively describe the geometrical shape of the
diffusion tensor and, therefore, do not depend on the absolute level of the diffusion
present. However, in low-signal regions, where the noise level dominates these
shape measures, they make little sense. In practice, all shape measures should be
regularized by adding a constant in the denominator of size similar to that of the
noise level. For example, the 

 

λ

 

1

 

 normalized linear measure (Equation 13.11)
would be expressed as follows:

(13.19)

where a suitable value for 

 

σ

 

 would be the expected value of 

 

λ

 

1

 

 in a low-signal
region. This expression has similarities to classical Wiener filtering, where the
noise level 

 

σ

 

 has very little influence on signals larger than σ, but penalizes signals
that are smaller. When the normalization is done using the trace or norm, σ should
have the expected value of the trace or norm, respectively, in low-signal regions.

When applied to white matter, the linear measure, cl, reflects the uniformity
of tract direction within a voxel. In other words, it will be high only if the diffusion
is restricted in two orthogonal directions. The anisotropy measure, ca, indicates
the relative restriction of the diffusion in the most restricted direction and empha-
sizes white matter tracts, which, within a voxel, exhibit at least one direction of
relatively restricted diffusion.

13.3.2 MACROSTRUCTURAL TENSOR AND DIFFUSIVE MEASURES

In the previous section, we characterized the diffusion isotropy and anisotropy
within a voxel. Here, we will discuss methods for examining the pattern or
distribution of diffusion within a local image neighborhood. Basser and Pierpaoli
proposed a scalar measure for macrostructural diffusive similarity based on tensor
inner products between the center voxel tensor and its neighbors [3,16] (as in the
vector case, the inner product between two tensors measures their degree of
similarity). This intervoxel scalar measure is known as a lattice index and is
defined by*

(13.20)

* Corrected formula; personal communication from Pierpaoli, 1997.
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where ak is a spatial mask, for example, 3 × 3 voxels, with sum of coefficients
equal to 1, and is the anisotropic part of the diffusion tensor . The anisotropic
part of the tensor has trace zero and can be written as

(13.21)

(13.22)

(13.23)

where I is the identity tensor. By rewriting Equation 13.20, it becomes clear that
all the tensor inner products are individually normalized

(13.24)

Because the components in the sum are normalized, small and large diffusion
tensor components will have equal weight in determining the lattice index. Unfor-
tunately, the smaller tensors are more influenced by noise and, hence, affect the
index more than is desirable.

An alternative measure to the lattice index, which can be seen as an external
measure as it is based on the tensors in a neighborhood, is to use an internal
voxel-based measure  on a filtered version of the diffusion tensor field.
For example, local averaging of the tensor field with a spatial mask a (normalized
so that the coefficients sum to one):

(13.25)

describes the local average diffusion, where the rank of the average tensor Da

describes the complexity of the macroscopic diffusion structure. If the rank is
close to one, the structure is highly linear, which will be the case in regions of
bundles of fibers having the same direction. If the rank is 2, fibers are crossing
in a plane, or the underlying diffusivity is planar. Applying the geometrical linear
measure cl in Equation 13.11 to this tensor gives a measure that is high in regions
with coherent tensors.

same measures applied to identical tensor data averaged by a Gaussian mask
(bottom). Major white matter tracts such as the corpus callosum show high
linearity in the averaged data set, indicating high macrostructural organization.
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Figure 13.5 compares the three original geometrical measures (top) and the
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It should be noted that averaging a diffusion tensor field and then deriving a scalar
measure from the averaged field is not the same as averaging the scalar measure
derived from the original field.

The relatively simple approach of averaging is useful because the rank of the
tensors increases when lower-rank, noncollinear tensors are summed. This effect

freedom to change rank. Adding the two vectors (a) and (b) results in a new
vector (c), which is of the same order of complexity as the original vectors.
However, adding 2 rank-1 tensors (d) and (e), e.g., diffusion tensors from 2
differently oriented white matter tracts, results in a rank-2 tensor (f), i.e., the

FIGURE 13.5 Axial brain images showing the three geometrical measures and correspond-
ing macrostructural diffusion measures. Top: shows the geometrical measures derived from
the original data; bottom: shows the corresponding macrostructural diffusion measures. The
geometrical measures derived from the tensors were averaged with a 9 × 9 × 3 Gaussian
kernel. (From Westin, C.-F., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., and Kikinis, R.
(2002). Processing and visualization of diffusion tensor MRI. Med. Image Anal. 6(2):
93–108.)
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is illustrated in Figure 13.6 and compared to adding vectors that do not have the
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output has more degrees of freedom than the input tensors and describes the plane
in which diffusion is present. In this sense, averaging of tensors is different from
averaging a vector field. The average of a set of vectors gives the “mean event,”
whereas the average of a set of tensors gives the “mean event” and the “range of
the present events.”

of a diffusion tensor field. The filtered areas that contain inconsistent data give
a result of almost-round ellipses (upper right half of the image). Moreover,
Gaussian filtering results in more stable estimates of the field directionality in
the areas where there is a clear bias in one direction (lower left).

The macrostructural measure achieved (by averaging the tensor field using an
isotropic mask) is essentially a feature extraction method rather than a restoration
method; the latter aims at reducing the noise level in the data. Although our method
does remove noise, the incorporation of more advanced regularization methods
[14,18] should be explored, if noise reduction is the main target. Anisotropic filter
masks are preferable because they reduce the risk of blurring edges. However, using
an anisotropic mask for the macrostructural measure would limit its purpose, i.e.,
the description of the organization within an area. If the signal changes due to edges
inside the local area of interest, this should be reflected in the measure.

FIGURE 13.6 Vector and tensor summation. Two vectors, (a) and (b), and their sum
(c). Two diffusion tensors, (d) and (e), of rank close to 1 visualized as ellipsoids with
eigenvectors forming principal axes. The summation of the 2 tensors gives a rank-2
tensor (f ). (From Westin, C.-F., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., and
Kikinis, R. (2002). Processing and visualization of diffusion tensor MRI. Med. Image
Anal. 6(2): 93–108.)

(a) (b) (c)

(d) (e) (f )
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Figure 13.7 shows a 2-D example illustrating the effect of Gaussian filtering
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13.4 VISUALIZATION OF DIFFUSION TENSORS

Several methods have been proposed for visualizing the information contained
in DT-MRI data. Pierpaoli et al. [17] render ellipsoids to visualize diffusion data
in a slice. Peled et al. [15] used headless arrows to represent the in-plane com-
ponent of the principal eigenvector, along with a color-coded out-of-plane com-
ponent. Recently, Kindlmann and Weinstein [10] applied our geometric shape
indices [25] to opacity maps in volume rendering. They termed this method
barycentric opacity mapping. They compare volume renderings using opacity
maps based on the indices cl, cp, and ca (Equation 13.15–Equation 13.18).

shown (using the visualization method presented in Reference 15) and the filtered
tensor field (Figure 13.8b). Prior to visualization, the tensors were weighted with
their linear diffusion measures.

The filtered images show the result of applying the macrostructural measure
presented in Subsection 13.3.2. First a 5 × 5 × 3 Gaussian window, a, with
standard deviation 2 mm was applied to the data (Equation 13.25). Because the
out-of-plane resolution is slightly less than half the in-plane resolution, there is
almost no smoothing performed between the slices. The tensors resulting from
the Gaussian filtering Da (Equation 13.25) have been weighted with their linear
diffusion measures, cl (Equation 13.15), respectively. The result illustrates the
fact that the filtering increases the rank of the tensors in nonstructured areas
because the linear measures are decreased in those areas.

FIGURE 13.7 A 2-D diffusion tensor field (a) and the effect of relaxation using a Gaussian
filter (b). Note how the tensors in an inconsistent region become rounder, whereas in
consistent areas their orientation is stabilized. (From Westin, C.-F., Maier, S., Mamata,
H., Nabavi, A., Jolesz, F., and Kikinis, R. (2002). Processing and visualization of diffusion
tensor MRI. Med. Image Anal. 6(2): 93–108.)

(a) (b)
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In Figure 13.8a, a diffusion tensor field from an axial slice of the brain is
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As mentioned in the preceding text, in three dimensions, a diffusion tensor can
be visualized as using an ellipsoid in which the principal axes correspond to the
tensor’s eigenvector system. However, it is difficult to distinguish between an edge-
on, flat ellipsoid and an oblong one using the surface-shading information. Similar
ambiguity exists between a face-on, flat ellipsoid and a sphere. We propose a tech-
nique for the visualization of tensor fields that overcomes the problems with ellip-
soids. Figure 13.9 compares the ellipsoidal representation of a tensor (left) with a
composite shape of linear, planar, and spherical components (right). The components

FIGURE 13.8 (a) Diffusion tensors, weighted with their linear measure cl, from an axial slice
of a human brain. (b) Averaged diffusion tensors using a 5 × 5 × 3 Gaussian kernel weighted
with their linear measure cl, resulting in a macrostructural measure of fiber tract organization.
(From Westin, C.-F., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., and Kikinis, R. (2002).
Processing and visualization of diffusion tensor MRI. Med. Image Anal. 6(2): 93–108.)

FIGURE 13.9 Comparison of an ellipsoid and a composite shape depicting the same
tensor with eigenvalues λ1 = 1, λ2 = 0.7, and λ3 = 0.4 [24].

(a) (b)
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are here scaled according to the eigenvalues, but can alternatively be scaled according
to the shape measures cl, cp, and cs.

Additionally, coloring based on the shape measures cl, cp, and cs can be used
for visualization of shape. Figure 13.10 shows a coloring scheme in which the
color is interpolated between the blue linear case, the yellow planar case, and the
red spherical case.

13.5 CONNECTIVITY ANALYSIS

Determination of neural fiber architecture from diffusion tensors measured in the
brain is a complex problem with many potential applications in neurosurgery and
neuroscience. The phrase “white matter connectivity” refers to a measure of the
neural connection strength between points or regions in the brain. In animal
research, connectivity measurements can be made using injected tracers in com-
bination with histological analysis. These methods are not applicable to human
neuroanatomical study, but a wealth of information can be acquired noninvasively
through the analysis of diffusion MRI.

Initial work on DT-MRI connectivity focused on tractography [1,2,18], or the
interpolation of paths through the principal eigenvector field. An extension of this
method evolved a surface using a fast marching method, in which the speed
function was dependent on the principal eigenvector field [13]. Another approach
iteratively simulated diffusion in a 2-D tensor volume, and quantified connection
strengths based on a probabilistic interpretation of the arrival time of the diffusion
front [4]. A new level-set-based method evolved a surface in a field of vectors

FIGURE 13.10 (a) Visualization of diffusion tensors. The tensors are color-coded according
to the shape: the linear case is blue, planar case is yellow, and spherical case is red. The radius
of the sphere is the smallest eigenvalue of the diffusion tensor; the radius of the disk is the
second largest; and the length of the rod is twice the largest eigenvalue. (b) Simulated tensor
field of three crossing white matter tracts. Due to partial voluming effects, the tensors in the
area where the fibers are crossing have spherical shape. (From Westin, C.-F., Maier, S.,
Mamata, H., Nabavi, A., Jolesz, F., and Kikinis, R. (2002). Processing and visualization of
diffusion tensor MRI. Med. Image Anal. 6(2): 93–108.)

(a) (b)
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created perpendicular to the major eigenvector field, so that the surfaces will tend
to enclose the tracts [8]. The tractography approach has also been extended to
diffusion data with much higher angular resolution, and connectivity has been
estimated using the most probable path between points [21].

The standard tractographic interpolation approach has one main drawback,
which is that all decisions are made locally. Thus, errors can accumulate, and the
tracing can be confounded by regions of crossing fibers (with high planar or
spherical indices). This is demonstrated schematically in Figure 13.11. To avoid
this problem, several approaches have been proposed that do probabilistic tracking,
basically adding noise about the major eigenvector in an attempt to produce many
probable paths. These methods model the tract direction at each voxel using a
probability distribution whose mean is generally the direction of the major eigen-
vector. Instead of producing only one path, many paths are produced by sampling,
resulting in a collection of likely paths starting at a point of interest [6,7].

Here, we present two novel global approaches to connectivity estimation [12].
Both approaches use the information from the whole tensor, not just the major
eigenvector field, and can provide numerical measures of connectivity. Our first
approach finds a steady-state concentration or heat distribution using the 3-D tensor
field as diffusion or conductivity tensors. In this method, the steady-state flow along
any path reflects connectivity. Our second approach casts the problem in a Riemannian
framework, deriving from each tensor a local warping of space, and finding geodesic
paths in the space. In this method, path lengths are related to connectivity.

13.6 METHOD ONE: DIFFUSION-BASED 
CONNECTIVITY

In this method, we use the anisotropic diffusion equation and simulate sources
and sinks in the tensor field. We find a steady-state concentration or heat distri-
bution using the 3-D tensor field as diffusion or conductivity tensors. The steady-
state flow along any path reflects connectivity along that path. This method allows
us to investigate many paths from one region (the source) to another (the sink).

FIGURE 13.11 A simple diagram to demonstrate the difficulty of making only local
decisions when performing tractography through an ambiguous region. The ellipses rep-
resent tensors along two crossing tracts in two dimensions.
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Previous related work has employed an iterative technique to create time-
of-arrival maps of a heat diffusion front [4]. Instead, we solve directly for the
steady-state concentration, u, which can also be thought of as a heat distribution
in the tensor field:

(13.26)

We use this information to create the flux vector field, j = −∇u, which
describes the steady-state heat flow in the tensor volume (Equation 13.2). Paths
in this divergence-free vector field can be compared using a connection strength
metric that approximates the total flow along the path:

(13.27)

where j is the flux along the path, and t the unit tangent to the path. Normalization
for the length of the path may also be included in the metric. To obtain an overall
connection strength measure between two points, the value of the maximum flow
path can be taken.

Of great interest in this method are the boundary conditions, or the locations
of sources and sinks in the tensor field. One possibility is to set a region or regions
of interest as the source, and simulate a sink at infinity. Another useful possibility
is to choose one region of interest as the source, and another as the sink. In the
experiments discussed in this chapter, we have simulated a sink at one point of interest,
and a source at another, in order to estimate the flow between the regions.

13.6.1 EXPERIMENTS

Three experiments performed are described in the following text:
DT-MRI data acquisition: DT-MRI scans of normal subjects were acquired

using line scan diffusion imaging [9] on a 1.5-T GE Echospeed system. The
following scan parameters were used: rectangular 22-cm field of view (FOV;
256 × 128 image matrix, 0.86 mm by 1.72 mm in-plane pixel size); slice
thickness = 4 mm; interslice distance = 1 mm; receiver bandwidth = ±6 kHz;
echo time (TE) = 70 msec; repetition time (TR) = 80 msec (effective TR = 2500
msec); scan time (13.60 sec/section. Twenty axial slices were acquired, covering
the entire brain. This protocol provides diffusion data in six gradient directions
as well as on the corresponding T2-weighted image. All gradients and T2-
weighted images are acquired simultaneously, and thus do not need any rigid
registration prior to the tensor reconstruction process. Tensors are calculated as
described in Reference 24.

Tensor preprocessing: We are interested in measuring connectivity in the white
matter and, consequently, to de-emphasize other regions, we multiply the tensors
by a soft mask. This is necessary to decrease the effect of the ventricles, where
neural fiber tracts are nonexistent but water diffusion is relatively unrestricted and

∇ ⋅ ∇ =( )D u 0

P

Tj t ds∫ | |
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has large magnitude. We calculate the weights in the mask as the linear shape
measure at each voxel, which lies in the range of zero to one [24,25]

(13.28)

In addition, we remove negative eigenvalues to ensure that each tensor is a
positive definite matrix. We set a small positive lower bound for the eigenvalues
to guarantee that the tensors are invertible, which is necessary when utilizing
them as local metric descriptors as described later. Setting the negative eigenval-
ues to zero would give the closest positive semidefinite tensor in the least-squares
sense, but would not ensure invertibility.

Concentration or heat flow between regions: In this experiment, we solve for
the steady-state concentration or heat distribution in the tensor field, with bound-
ary conditions of one source and one sink. The maximal flow is found as expected
along the strong anatomical path between the source and sink, the corpus callo-
sum. Figure 13.12 displays the steady-state concentration and flow.

13.7 METHOD TWO: DISTANCE-BASED 
CONNECTIVITY

This method allows us to relate geodesic paths to connectivity, and investigate
paths from one point or region outward to the entire brain.

FIGURE 13.12 Results of solving Equation 13.26 for the steady-state heat distribution.
The temperature (labeled as concentration) and the steady-state flow magnitude demon-
strate the flow from the source to the sink. In the temperature image, the source is bright
and the sink is dark; in the flow image, dark means high flow magnitude. The grayscale
image on the left, a nondiffusion-weighted image, shows the corresponding anatomy.

cl = − .λ λ
λ

1 2

1
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A natural interpretation of the degree of connectivity between two points
is the distance between the points in some metric space. For our application,
the distance between two anatomical locations should depend on the alignment
of their connecting paths with the diffusion tensor field. The diffusion operator
(Equation 13.3) can naturally be associated with a Riemannian metric tensor
G via the relation G = D−1, allowing us to compute geometric quantities such
as geodesic paths and distances between points in the brain. Unlike tracto-
graphic methods based on following the flow of principal eigenvectors of D,
these geodesic paths are well defined even in regions where the tensor diffusion
is isotropic.

The inverse relation between the diffusion and metric tensors is intuitive: large
eigenvalues in the original tensor create short metric distances along the direction
of the corresponding eigenvector (see Figure 13.13). Or in general, the path length
is locally inversely proportional to the diffusion coefficient in the direction tangent
to the path. So, short paths are those that are aligned with the tensor field (not just
the major eigenvector field).

for a more rigorous and thorough treatment of the connection between diffusion
and Riemannian geometry. The Laplace–Beltrami operator is the generalization
of the Laplacian to manifolds. In matrix notation, the Laplace–Beltrami operator
can be written as

(13.29)

Here, we seek the relation between isotropic diffusion on a manifold
(Equation 13.29) and anisotropic diffusion in Euclidean space (Equation 13.3).
The following relation exists between the diffusion operator in Equation 13.3 and
a diffusion operator in the Riemannian space characterized by G:

(13.30)

FIGURE 13.13 Relation between, the diffusion tensor, and the metric tensor.
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We will limit ourselves here to a brief discussion of the theory; see Reference 11
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where the second-order term on the right-hand side represents simple Laplacian
smoothing in the tensor-warped space, i.e., isotropic diffusion associated with
the heat equation.

13.7.1 MEASURING DISTANCES IN THE TENSOR-WARPED SPACE

Once we have the metric tensor G, we are able to apply results from Riemannian
geometry to describe geometric objects such as geodesic paths and distances
between points in the brain. Unlike tractographic methods based on following
the flow of principal eigenvectors of D, these geodesic paths are well defined
even in regions where the tensor diffusion is isotropic.

We have approached the measurement of distances in this space in two ways.
First, we have implemented an Eikonal-type equation using level-set methods to
produce a distance transform that respects the metric G. This required the deri-
vation of a formula for the speed of an evolving front in the direction of its
Euclidean normal. Second, we have implemented Dijkstra’s algorithm using G
to determine distances between neighboring voxels, employing the for-
mula , in which w is the vector from a voxel to its neighbor. Though it
can suffer from discretization problems, Dijkstra’s algorithm is fast and allows
interactive display of return paths.

For our level-set [19] implementation, we seek a speed function F for use in
the evolution equation

(13.31)

This can be done using the following algorithm, which amounts to finding
the length of the projection of the unit normal in the tensor-warped space onto
the Euclidean normal:

1. Set , the Euclidean normal to the level set.
2. Find any two linearly independent vectors t1 and t2 perpendicular to n.

These are tangents that span the tangent space to the level set.
3. Set

4. Set  This is the unit normal with respect to G.

5. Set  This is the length of the projection of  onto n.

13.7.2 EXPERIMENTS

The data acquisition and preprocessing experiments were the same as described
in Subsection 13.6.1. Other experiments are described in the following text:

tance transform with respect to the metric derived from the DT-MRI
tensor field. The contours are isodistance contours.
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Tensor-warped distances: Figure 13.14 shows a slice through a 3-D dis-
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Connectivity measure: We would like to quantify path quality, but both

rank paths by Euclidean or metric length alone. We choose to use one
length to normalize the other, which is one way to address this issue.

By comparing the geodesic path length to the Euclidean length of the same
path, we produce a measure of the degree of connectivity between any two points.
We compute the ratio of Euclidean path length to geodesic path length for all

measure as calculated for the distance map shown in Figure 13.14.

13.8 CONCLUSION

In this chapter, we first gave background information on diffusion and diffusion
tensor MRI, then presented tensor shape measures that quantify anisotropy or the
lack thereof. Next, we described visualization techniques for diffusion tensor fields.

FIGURE 13.14 Tensor-warped distance map: this contour map shows metric distance
from an initial point located in the posterolateral part of the corpus callosum. The image
is a slice through a 3-D distance map, at the level of the initial point. The regions where
neighboring contours are widely separated indicate low metric distance, or high connec-
tivity. (From O’Donnell, L., Haker, S., and Westin, C.-F. (2002). New approaches to
estimation of white matter connectivity in diffusion tensor MRI: Elliptic PDEs and geo-
desics in a tensor-warped space. in Dohi, T. and Kikinis, R. (Eds.). Medical Image
Computing and Computer-Assisted Intervention (MICCAI). pp. 459–466, Tokyo, Japan.).
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long and short paths occur in the brain (see Figure 13.1). So we cannot

paths outward from the initial point. Figure 13.15 displays the connectivity
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Finally, we introduced two novel image processing methods for connectivity
estimation. In the first method, we solved for a steady-state heat distribution and
flow field that reflect connectivity. In the second method, the introduction of a
Riemannian metric allowed us to reformulate the connectivity/diffusion simula-
tion problem as a search for geodesic paths.

FIGURE 13.15 Degree of connectivity, measured as Euclidean path length over geodesic
path length. Very low connectivity is not shown. Purple denotes the highest connectivity.
Traditional tractography based on following the principal eigenvector direction, with seed
locations around the initial point, is displayed in red (right). Visual inspection confirms
that the trace lines agree well with the region of highest connectivity. (From O’Donnell,
L., Haker, S., and Westin, C.-F. (2002). New approaches to estimation of white matter
connectivity in diffusion tensor MRI: Elliptic PDEs and geodesics in a tensor-warped
space. in Dohi, T. and Kikinis, R. (Eds.). Medical Image Computing and Computer-
Assisted Intervention (MICCAI). pp. 459–466, Tokyo, Japan.)
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14.1 INTRODUCTION

 

For centuries, palpation has been used as an efficient detection tool by physicians,
based on the fact that many diseases cause changes in the mechanical properties
of tissues. Student physicians learn that the presence of a hard mass in the thyroid,
breast, or prostate is suspicious for malignancy. Indeed, even today many tumors
of these structures are first detected by touch. It is not uncommon for surgeons
at the time of laparotomy to palpate tumors that were undetected in preoperative
imaging by CT, MRI, or ultrasound. None of these modalities provides informa-
tion about the elastic properties of tissues elicited by palpation. The elastic moduli
of various human soft tissues are known to vary over a wide range. The Young’s
modulus of soft tissues can vary as much as four orders of magnitude [1,2] in
healthy and diseased tissues. The literature on mechanical properties of abnormal
tissues is limited, but it is known that the elastic modulus of the breast may differ
from surrounding tissues by a factor of 90 [3,4]. It is also known that the shear
modulus of many tissues can vary in response to changes in the physiologic state
[1,5]. The elasticity of muscle in the relaxed and contracted states can differ by
more than 100-fold [1]. In contrast, most of the other physical properties depicted
by conventional medical imaging modalities are distributed over a much smaller
numerical range. Over the last decade, the recognition of the potential diagnostic
value of characterizing mechanical properties has led a number of investigators
to seek methods for imaging tissue elasticity. For reviews of such work, see

Magnetic resonance elastography (MRE) is a technique that can directly
image and quantitatively measure displacements due to propagating acoustic
strain waves in tissue-like materials subjected to harmonic mechanical excita-
tion [8,9]. A phase-contrast MRI technique is used to spatially map and measure
the shear-wave displacement patterns. From this data, local quantitative values
of the shear modulus can be calculated and images (elastograms) that depict
tissue elasticity or stiffness can be generated. In this chapter, we describe the
principles of MRE, consider the equations of harmonic motion in soft tissue,
and describe approaches for reconstructing elastograms from MRE data and
the assumptions inherent in each, and present a summary of some 

 

ex vivo

 

 and

 

in vivo

 

 results.
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14.2 ELASTIC PROPERTIES OF SOFT TISSUE

 

In isotropic Hookean materials, the proportionality constant that describes the
amount of longitudinal deformation (expressed in terms of strain) that occurs in
a given material in response to an applied longitudinal force (expressed in terms
of stress) is known as the 

 

Young’s modulus

 

 (E) of elasticity. The 

 

shear modulus

 

(

 

µ

 

) relates transverse strain to transverse stress. The 

 

bulk modulus

 

 (K) of elasticity
describes the change in volume of a material due to external stress. Poisson’s
ratio (

 

v

 

) is the ratio of transverse contraction per unit breadth divided by longi-
tudinal extension per unit length. These parameters are interrelated so that knowl-
edge of any two allows calculation of the other two.

Most soft tissues have mechanical properties that are intermediate between
those of fluids and solids. The value of Poisson’s ratio for soft tissues, which can
be directly calculated from the ratio of longitudinal- to shear-wave speeds, is
typically 0.499999, very close to the value for liquids (

 

v

 

 

 

=

 

 0.500). In this case the
Young’s modulus and shear modulus differ only by a scaling factor (

 

E

 

 

 

=

 

 3

 

µ

 

).
Another characteristic that soft tissues share with liquids is that they are nearly
incompressible. In contrast to the many orders of magnitude over which the Young’s
and shear moduli are distributed, the bulk moduli of most soft tissues differ by less
than 15% from that of water [10]. Also the density of soft tissues differs little from
that of water [11]. These concepts represent a simplification of the mechanical
behavior of soft tissues, which in general can be anisotropic, non-Hookean, and
viscoelastic.

 

14.3 MR ELASTICITY IMAGING TECHNIQUES

 

Much of the pioneering work in elasticity imaging has been accomplished using
ultrasound and either a quasi-static stress model [12–15] or a dynamic stress
model [16–19]. Ultrasound elastography continues to be a very active area of
research [20–22] but will not be further discussed here.

Other investigators have proposed several approaches for delineating tissue
elasticity using MRI. Saturation-tagging methods have been used in applications
as diverse as evaluating the local motion of cardiac muscle [23,24] and observing
connective motion in vibrated granular material [25]. A grid of saturation tags
can be applied to the tissue before it is deformed by an applied static stress [26].
The pattern of deformation of the grid of saturation tags can then be analyzed to
provide a map of local strain. A mathematical model of stress distribution within
the object could also be used, in principle, to convert this map of local strain into
a quantitative depiction of the regional elastic modulus [27].

Another well-known MRI method for measuring local motion is motion-
encoded phase-contrast imaging. This has been used clinically in applications such
as assessing regional myocardial motion, CSF pulsation, and intravascular blood
flow [28–30]. Plewes et al. proposed a method for elastography involving use of a
phase-contrast imaging sequence to estimate the spatial strain distribution resulting
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from a small quasi-static longitudinal stress applied once each time the pulse
sequence is repeated [31]. Often in these methods, the strain alone is used as a
surrogate for stiffness, that is, low strain means high stiffness and high strain results
in softer or low-stiffness regions. The distribution of strain can also be related to
the predicted distribution of stress and the material parameters deduced through
elasticity equations [32]. Such calculations are usually global in nature (and thus
computationally intensive), and they require knowledge of boundary conditions.
Dynamic methods, as described in the following text, rely on the wave equation,
which in its differential form is local in character. Therefore, the distribution of
dynamic displacement (a 3-D vector) and its second-order partial derivatives in
time and space, due to a propagating shear wave in a small region of the tissue,
are enough to completely characterize the shear moduli of the tissue in that region.
Strictly speaking, quasi-static methods, mentioned in the preceding text, as well as
the dynamic or harmonic methods, described in the following text, can be termed
MRE; nevertheless this chapter will henceforth concentrate only on the latter.

 

14.4 MRE

 

Dynamic MRE uses propagating mechanical waves as a probe for the elastic prop-
erties of tissues. Shear waves of frequencies in the 50 to 1000 Hz range are suitable
as probes because they are much less attenuated than those of higher frequencies,
their wavelength in tissue-like materials is in the useful range of millimeters to tens
of millimeters, and the shear modulus varies so widely in body tissues. High-
frequency longitudinal acoustic waves (ultrasound) are not directly suitable for use
as probes because their propagation is governed by the bulk modulus, which varies
little in soft tissue. Longitudinal acoustic waves at lower frequencies are also not
suitable because they have long wavelengths (on the order of meters for waves of
frequency below 1 kHz) [10].

In MRE, a phase-contrast MRI technique is used to spatially map and measure
displacement patterns corresponding to harmonic shear waves with amplitudes in the
range of microns or less. A conventional MRI system is used with an additional
motion-sensitizing gradient imposed along a specific direction and switched in polar-

and amplifier unit that drives an electromechanical actuator coupled to the surface of
the object to be imaged. The actuator induces shear waves in the object at the same
frequency as the motion-sensitizing gradient. The harmonic motion of the spins at
the frequency of the motion-sensitizing gradients causes a measurable phase shift in
the received MR signal. From the measured phase shift, it is possible to calculate the
displacement at each voxel and directly image the acoustic waves within the object.

The phase shift caused by a propagating mechanical wave with a wave
vector within a medium at a given frequency (1/ T) in the presence of a cyclic
motion-encoding gradient at the same frequency is given by [8,9]

(14.1)
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This accumulated phase shift is proportional to the relative phase 

 

θ

 

 of the
mechanical and magnetic oscillations and the dot product of the displacement
amplitude vector and the motion-sensitizing magnetic gradient vector . Par-
ticles whose components of motion along the gradient vector are exactly in phase
or out of phase with the magnetic oscillation have maximum phase shifts of
opposing polarities. Particles whose components of motion along the gradient
vector is 90

 

°

 

 out of phase with the magnetic oscillation have no net phase shift.
Because the response is also proportional to the number of gradient cycles (N )
and the period of the gradient waveform (T ), high sensitivity to small-amplitude
synchronous motion can be achieved by accumulating phase shifts over multiple
cycles of mechanical excitation and the motion-sensitizing gradient waveform. The
quantity 

 

γ

 

 is the gyromagnetic ratio, and is the spin position vector.
Generally, two acquisitions are made for each repetition in an interleaved

fashion reversing the polarity of the motion-sensitizing gradients. This reduces
systematic phase errors and doubles sensitivity to small displacements. Typical
data-acquisition parameter ranges for 2-D sequences are: TR, 10 to 300 msec; TE,
10 to 60 msec; acquisition time, 20 to 120 sec; and flip angle, 10 to 60

 

°

 

. The number
of gradient pulses (N) varies from 2 to 30 cycles, and the frequency of mechanical
excitation ranges from 50 to 1000 Hz. Acquiring and processing 2-D slices captures
only two of the three components of the wave propagation vector and may yield
misleading results unless the shear wave is propagating in a plane, but in some
cases, time considerations or other factors mandate their use. 3-D MRE pulse

 

FIGURE 14.1

 

Schematic diagram of the MRE system. Conventional MRI gradients and
RF pulses that encode spatial positions are shown at the bottom left. The electromechanical
driver applies transverse acoustic waves to the object to be imaged via a surface plate
(right). The cyclic motion-sensitizing gradients and the acoustic drive are synchronized
using trigger pulses provided by the imager. The phase offset (

 

θ

 

) between the two can be
varied. As shown by the shaded regions, the motion-sensitizing gradients can be superim-
posed along any desired axis to detect cyclic motion.
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sequences are also in common use but require longer acquisition times (several
minutes to tens of minutes).

The phase images reflect the displacement of spins due to acoustic strain
wave propagation in the medium and are termed 

 

wave images

 

. Such an image of
propagating acoustic waves in a tissue-simulating agarose gel phantom is shown
in Figure 14.2a. The wave propagation depends on the elasticity of the material
at each location in the object, so inversion of the data can yield elastograms as
in Figure 14.2b. Experiments to assess the sensitivity of the shear-wave-imaging
method at low amplitudes of mechanical excitation demonstrated that shear waves
with displacements of less than 100 nm can be readily observed [8].

Mechanical excitation can be provided by a moving-coil driver with the
imager providing the static magnetic field. Trigger pulses are provided by the
sequencing computer of the MR imager and are fed to a function generator that
produces a waveform that is amplified and applied to the coil of the actuator.
Transverse stresses applied to a flat contact plate provide planar shear waves.
Piezoelectric drivers can also be used for generating shear waves. Mechanical
excitation can also be applied longitudinally, with mode conversion leading to
shear waves being generated inside the object [33,34]. Focused ultrasound also
can be used to generate shear waves that can be imaged with MRE [35]. The
ultrasound beam is temporally modulated to create cyclic variation in acoustic
radiation pressure at the focus of the ultrasound source, which can be located
deep within an object.

By adjusting the phase offset between the mechanical excitation and the

   

FIGURE 14.2

 

(a) Shear waves propagating in a phantom with an embedded 1.5-cm-
diameter cylinder of stiffer gel. Shear waves at 300 Hz were applied at the top margin
of the gel block, with transverse motion oriented orthogonal to the plane of the image.
(b) The elastogram based on LFE processing clearly depicts the object even though it is
significantly smaller than the wavelength in the stiff material.
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obtained at various phase offsets (typically 4 to 8) regularly spaced in a cycle,
which allows visualization of wave propagation as a cine loop. More importantly,
it allows extraction of the harmonic component at the frequency of interest, giving
the amplitude and the phase (relative to an arbitrary zero point) of the harmonic
displacement at each point in space [36]. This extraction also provides some
degree of noise reduction. The resulting complex displacement field is the input
to all the processing techniques described in the following text.

A single MRE acquisition is sensitized to motion in a single direction. How-
ever, the experiment can be repeated and the sensitization direction varied in
order to capture all three orthogonal components of displacement. Thus, MRE
can acquire full 3-D cyclic displacement information at MR pixel resolution
throughout a 3-D volume. In principle, this makes it feasible to estimate all
components of the strain tensor, making it possible to probe the anisotropic mechan-
ical properties of tissues [8,33,37]. This ability to capture full displacement infor-
mation and the freely oriented field of view unencumbered by any acoustic window
requirements represent the main advantages of MRE over ultrasound-based tech-
niques. Conversely, the much longer acquisition times required by MRE are its
single largest disadvantage.

MRE is highly sensitive only to motion that is precisely synchronized with
the sensitization gradients and is no more sensitive to physiologic motion than a
conventional gradient-echo sequence [38]. Sensitivity to nonsynchronous motion
can be further reduced by explicitly nulling the individual moments of the gradient
waveform. It is also possible to amplitude modulate the envelope of the motion-
encoding waveform to further increase its spectral selectivity [39].

In summary, MRE offers direct visualization and quantitative measurement of
tissue displacements, high sensitivity to very small motions, a field of view unen-
cumbered by acoustic window requirements, and the ability to obtain full 3-D
displacement information throughout a 3-D volume. As shown in the following
text, under some assumptions this allows direct local inversion of the data to recover
the elastic properties, with no need for boundary conditions or the estimation of a
stress field.

 

14.5 DATA PROCESSING

 

A variety of approaches can be used to invert the displacement data to recover
mechanical properties. These are characterized in the following text by the
assumptions or simplifications made in their derivations. Unlike many biomedical
inversions for which data are available only along a boundary, data in MRE are
available everywhere in a 3-D volume. In favorable situations, it is possible to
deduce quantitatively accurate values of properties such as the shear modulus. In
general, however, despite the richness of the data set and the variety of processing
techniques, it remains a challenge to extract accurate results from the intrinsically
noisy data in complex, heterogeneous objects.
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14.5.1 E

 

QUATIONS

 

 

 

OF

 

 M

 

OTION

 

The mechanical quantities we wish to characterize are those that relate strain to
stress, and because the displacements in MRE are very small (microns to tens of
microns), a linear relationship can be assumed between these. In the general case,
stress and strain are related by a rank 4 tensor, with up to 21 independent quantities
[40]. If one assumes that the material is isotropic, this reduces to two independent
quantities, the Lame constants 

 

λ

 

 and 

 

µ

 

, related to longitudinal and shear defor-
mation, respectively. The isotropic relation between stress and strain is given by

(14.2)

where e

 

ij

 

 is one component of the stress tensor, 

 

δ

 

ij

 

 is the Kronecker delta, and
summation over repeated indices is assumed. The strain tensor e

 

ij

 

 is defined in
terms of the displacement tensor u

 

ij

 

 as

(14.3)

where indices after a comma indicate differentiation. Substituting these into the
equation of motion, we obtain the general equation for harmonic motion in an
isotropic, linearly elastic medium [41]:

(14.4)

with 

 

ρ

 

 being the density of the material and 

 

ω

 

 the angular frequency of the
mechanical oscillation. The Lame constants can be considered to be complex
quantities, with the imaginary parts representing attenuation for a viscoelastic
medium. Solving this equation requires knowledge of the full 3-D displacement
because the equations for the individual components are coupled. MRE phase
difference measurements in all three spatial orientations are thus required.

Additional assumptions can be made to further simplify the equation. If one
assumes local homogeneity, 

 

λ

 

 and 

 

µ

 

 become single unknowns instead of functions
of position, and Equation 14.4 becomes an algebraic matrix equation that can be
solved locally by direct inversion, as described by the following equation (terms
in boldface are column vectors):

(14.5)

In soft tissues, 

 

λ

 

 >> 

 

µ

 

 (typically by 10

 

4

 

 or more). This makes it difficult to
estimate both parameters simultaneously, and the longitudinal wavelength is so
long in tissues (tens of meters) that accurate estimation of 

 

λ

 

 is very challenging
in any case. It is possible to partially filter out the effects of the longitudinal wave
because its contributions are at very low (near zero) spatial frequency. To remove

σ µ λδij ij ij nne e= +2

e u uij i j j i= +( )/, , 2

[ ] [ ( )], , , , ,λ µ ρωu u u uj j i i j j i j i+ + = − 2

µ λ µ ρω∇ + + ∇ ∇ ⋅ = −2 2u u u( ) ( )
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λ

 

 from consideration, the assumption can be made that displacements due to the
longitudinal wave vary slowly and are thus negligible (this corresponds to assum-
ing that 

 

λ

 

(

 

∇ ⋅

 

u

 

) 

 

=

 

 0). The large difference between longitudinal and shear waves
in tissue make this a reasonable assumption. The equation then simplifies to a
single vector equation in 

 

µ

 

, but all three components of motion are still required:

(14.6)

Alternatively, one can assume incompressibility (

 

∇⋅

 

u

 

 

 

=

 

 0), and the equation
then simplifies to the Helmholtz equation:

(14.7)

The terms involving components in the different orthogonal directions are
now decoupled, and each component satisfies the equation separately. Thus,
measurements in only one sensitization direction (and an estimate of the Laplacian
of that component) suffice to determine 

 

µ

 

. Experiments with tissue-simulating
phantom data sets have shown little difference among inversion results that use
Equation 14.5, Equation 14.6, and Equation 14.7, suggesting that the incompress-
ibility assumption is valid in practice [42,43].

Filtering approaches can also be designed based on the fact that the displacement
field corresponding to the longitudinal wave is curl free, whereas that corresponding
to the shear wave is divergence free [43]. Taking the curl of Equation 14.5 leads
directly to the Helmholtz equation (with the curl of the displacement replacing the
displacement itself) but with no need for the incompressibility assumption. This
technique can remove artifacts present in the standard inversion in certain situations,
but it is also more susceptible to noise because it involves additional derivative
operations [43].

 

14.5.2 S

 

HEAR

 

 M

 

ODULUS

 

 

 

AND

 

 M

 

ECHANICAL

 

 F

 

REQUENCY

 

In the earlier treatment, the Lame constants were complex quantities, with the
imaginary parts representing attenuation for a viscoelastic medium. Because the
damping term involves the time derivative of the strain, for harmonic motion this
can be denoted as 

 

µ

 

 

 

=

 

 

 

µ

 

r

 

 

 

+

 

 i

 

µ

 

i

 

 

 

=

 

 c 

 

+

 

 i

 

ωη

 

 [40]. The simplest case is an isotropic,
homogeneous, and incompressible medium (Equation 14.7). With no attenuation,
a simple shear wave propagates with a specific wavelength or spatial frequency f

 

sp

 

.
The shear modulus is , where 

 

f

 

mech

 

 is the mechanical driving
frequency and v

 

s

 

 is the wave speed (or phase velocity). We will henceforth assume
that 

 

ρ

 

~1.0 for all soft tissues [11]. If there is attenuation, the wave speed and
attenuation are functions of frequency and are given by

and (14.8, 14.9)

[ ( ) ] [ ]∇ ∇ ⋅ ∇ = −u u u2 2µ ρω
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where 

 

α

 

 denotes attenuation by the factor

 

 

 

e

 

k

 

 in the direction of propagation k.
The attenuation can also be expressed as the attenuation per wavelength, which
is the acoustic quality factor Q 

 

=

 

 c/

 

ωη

 

 [36].
The “true” shear modulus is the real part 

 

µ

 

r

 

 or c, which describes the behavior
of a static object in equilibrium. However, some processing techniques described
in the following text calculate only the local wavelength and do not consider
attenuation. These techniques essentially estimate the wave speed, and we can
speak of an “effective” shear modulus or “shear stiffness” that is defined as the
square of the wave speed by analogy to the lossless case. The results are usually
presented in terms of this shear stiffness at a given frequency. Other techniques
calculate both 

 

µ

 

r

 

 and 

 

µ

 

I

 

 (or c and 

 

η

 

) directly, which can be converted to wave
speed and attenuation using Equation 14.8 and Equation 14.9. This determination
of 

 

µ

 

i

 

 or 

 

α

 

 tends to be very sensitive to noise. A more stable way to determine the
c and 

 

η

 

 parameters is to calculate the shear stiffness at several different frequencies
and fit the result to expressions derived from Equation 14.8 and Equation 14.9.

Spatial wavelength and attenuation decrease and increase, respectively, as the
mechanical frequency increases. This has two competing effects on stiffness
determination: (1) higher resolution because the wavelength is smaller, and (2)
lower displacement and hence lower signal. The best frequency for a particular
application depends on trade-off between these two effects.

 

14.5.3 P

 

HASE

 

 G

 

RADIENT

 

After extracting the harmonic component at the driving frequency, the amplitude
and phase (relative to an arbitrary zero point) that characterize the harmonic
oscillation at each pixel in the image are obtained.

 

 

 

If the motion is a simple
propagating shear wave, the gradient of this phase directly yields the change in
phase per pixel, easily convertible to a local frequency and thus to shear stiffness.
This analysis can have very high resolution, but is very sensitive to noise, and
data smoothing is usually necessary. This technique yields inaccurate results when
two or more waves are superimposed (e.g., reflected waves) or when the motion
is complex because the phase values then do not represent a single propagating
wave [44]. However, it is useful in specialized situations in which simple plane-
wave propagation is a good approximation. The other approaches, described in
the following text, do not suffer from this drawback; they correctly handle reflec-
tions and other complex interactions because they are based on the underlying
equations of motion.

 

14.5.4 L

 

OCAL

 

 F

 

REQUENCY

 

 E

 

STIMATION

 

 (LFE)

 

The local spatial frequency of the shear-wave propagation pattern can be calcu-
lated using an algorithm that combines local estimates of instantaneous frequency
over several scales [45]. These estimates are derived from filters that are a product
of radial and directional components and can be considered to be oriented log-
normal quadrature wavelets. The shear stiffness is then given by ,µ = fmech

2 / fspatial
2
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with the assumption that ρ ~ 1.0 for all soft tissues. It can be shown that this
approach involves solving the Helmholtz equation obtained under the assumptions
of local homogeneity, incompressibility, and no attenuation [43]. LFE allows
estimation of µ from a single image, i.e., using displacement values for a single
sensitization direction and a single phase offset. It is equally applicable to the
complex harmonic displacement extracted from multiple phase offsets.

The LFE algorithm has proven to be a robust technique because of the
multiscale data averaging in the estimation. It yields accurate and isotropic local
frequency estimates and is relatively insensitive to noise [46]. One disadvantage
is the limited resolution; at sharp boundaries the LFE estimate is blurred, and the
correct estimate is obtained at approximately half a wavelength into a given
region. If one considers a stiff object of size equal to an eighth of a spatial
wavelength embedded in a less-stiff background material, the LFE estimate of µ
for the object will never be the correct value. However, the object will be detect-
able; that is, the existence of a stiff object is evident even if the quantitative
determination of its stiffness is inaccurate.

14.5.5 DIRECT INVERSION

Assuming local homogeneity, Equation 14.5 to Equation 14.7 can be solved
separately at each pixel, using only data from a local neighborhood to estimate
local derivatives [38,39]. Inversion of Equation 14.5 estimates both Lame con-
stants for an isotropic material and requires all the components of motion. If we
rewrite Equation 14.5 as

where (14.10)

then the solution is given by

(14.11)

where A* is the conjugate transpose of the matrix A. Assuming an incompressible
material, Equation 14.7 gives

(14.12)
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which allows estimation of the shear modulus from a single polarization of
motion. A separate assumption path can be used for 2-D imaging by assuming
that all derivatives in the out-of-plane direction are negligible. The shear mode
then decouples and can also be solved by 2-D Helmholtz inversion [42].

In practice, such direct inversion techniques require data smoothing and the
calculation of accurate second derivatives from the noisy data. The resolution is
essentially limited only by the noise level in the data. In a stiffer material, the
shear wave has a longer wavelength, making the derivatives smaller and the effects
of noise more serious. The relative performance of different filtering approaches
for smoothing was studied in detail by Oliphant [43].

These techniques do not depend on planar shear-wave propagation but simply
on the presence of motion (that satisfies the assumed physical model) in the region
of interest. In particular, complex interference patterns from reflection, diffraction,
etc., do not pose difficulties except that these patterns may contain areas of low
amplitude and, hence, low signal-to-noise ratio (SNR). This is also true for the
LFE algorithm, which, despite its origin as an image processing method, actually
involves inverting the Helmholtz equation (with the additional assumption of no
attenuation) and correctly handles superimposed waves.

14.5.6 VARIATIONAL METHOD

Romano et al. [47,48] have suggested using the weak (variational) integral form
of Equation 14.4 and test functions to estimate the Lame constants. The test
functions are chosen such that they and their first derivatives vanish at the local
window boundaries, removing all effects of surface forces. Integration by parts
is used to shift the derivative operations from the noisy data to the analytic
derivatives of the smooth test functions and integrating these over local windows
in product with the data. In practice, this is similar to calculating derivatives by
filtering with the derivative of a smooth function. Their assumption of constant
µ/ρ also is essentially equivalent to the local homogeneity assumption. In the
incompressible case, this is equivalent to direct inversion with the specific con-
ditions described earlier imposed on the smoothing filter.

14.5.7 MATCHED FILTER

The matched-filter algorithm uses an adaptive smoothed matched filter (i.e., a
smoothed version of the data itself) and its Laplacian to perform the same division
as direct inversion. It is motivated by theoretical considerations to minimize the
uncertainty in the estimate of µ in the face of random noise [43,49]. The processing
is computationally more intensive than direct inversion because a different filter
is calculated and applied at each voxel.

14.5.8 REMOVING THE LOCAL HOMOGENEITY ASSUMPTION

The assumption of local homogeneity is used in all these techniques to simplify the
equation of motion to an algebraic equation that can be solved locally (Equation 14.5).
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This necessarily implies inaccurate results at or near the boundaries between regions
and a limit of resolution on the order of the local window size. However, the local
window can be as small as desired, subject only to increased noise in derivative
estimates, and in practice, inversions “fail gracefully” (with a gradual transition) across
regional boundaries. The resolution of MRE inversion is limited by the accuracy of
the spatial derivative estimation and thus ultimately by the SNR (with noisy data,
averaging over larger spatial windows may be required). Stiffer objects are more
difficult to estimate accurately because their spatial derivatives of displacement change
more slowly.

A different possibility is to not make this assumption and solve Equation 14.4
allowing the mechanical properties to vary in the physical model. This method
has two confounding effects: (1) the equation remains a differential equation and
not an algebraic one, and (2) the assumption of incompressibility does not decou-
ple the equations of motion for shear modulus, and so all components of motion
are once again necessary. This approach is computationally more challenging but
in principle models more accurately the physics of motion for arbitrary materials.

14.5.9 FINITE ELEMENT ANALYSIS

Van Houten et al. [50,51] have described a finite-element-based subzone tech-
nique for solving Equation 14.4. In their approach, a solution is iteratively refined
on small overlapping subzones of the overall domain by updating the solution
based on differences between forward calculations of the displacement from the
current solution and measured values. After an update is performed on one
subzone, the subzone with the greatest residual error is determined and updated.
Local homogeneity is not assumed. The approach is elegant, and good results
have been demonstrated on synthetic and actual data sets. It is computationally
very intensive, and it seems to be very sensitive to the data being acquired in a
true steady state, i.e., with enough motion cycles before acquisition so that the
wave field reaches equilibrium. Although this is technically a requirement on all
harmonic inversion techniques, analysis and practice have shown that violation
of these conditions — i.e., excitation with only a few cycles before acquisition
such that the wave field has not reached equilibrium — has only minor effects
on the other inversions [43]. No direct comparisons have been made between
finite element inversions and the other methods mentioned earlier, but the results
appear to be comparable in quality.

Finite element methods are also widely used for forward simulations of MRE
experiments. Another approach termed coupled harmonic oscillator simulation
has also been used to simulate and, to a limited extent, interpret and analyze
MRE data [52,53].

14.5.10 ANISOTROPIC INVERSIONS

Certain tissues are far from being isotropic; for example, muscle tissue is highly
anisotropic, and it is known that shear waves propagate preferentially along
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muscle fibers [22,37]. The analysis algorithms presented earlier all assumed
tissues to be isotropic in order to reduce the large number of unknown parameters
to be estimated. Similar algorithms can be developed without this assumption or
by replacing it with a less-restrictive symmetry (e.g., transverse isotropy is prob-
ably the appropriate model for muscle fibers). Solving for the larger number of
unknowns may require larger data sets, probably from a wider variety of exper-
iments that excite different motions, and may be quite difficult. Sinkus et al. [33]
have proposed a technique that attempts to solve, in a limited way, for anisotropic
characteristics of tissue. They have applied this technique to the breast and suggest
that this can help differentiate between benign tissue, which appears isotropic,
and carcinoma, which appears to exhibit an increased degree of anisotropy.

14.5.11 HYPERELASTIC PARAMETER DETERMINATION

Tissues in general show nonlinear behavior, and the stress–strain curve for large
displacements can deviate considerably from a straight line. In MRE, the displace-
ments are usually small enough so behavior is linear, and the stiffness is represented
by the slope of the stress–strain curve at particular experimental conditions. How-
ever, the amount of compression applied to the tissue (by the mechanical driver to
couple it to the tissue or by other aspects of the experiment) can determine where
the stress–strain curve is being probed, and different experiments on the same tissue
can report different stiffness values. Samani et al. [54] modeled this behavior with
hyperelastic parameters and have proposed an inversion scheme that attempts to
recover these and use the entire stress–strain curve for material characterization.

14.5.12 SIGNAL-TO-NOISE CONSIDERATIONS

It is important to understand whether there is sufficient signal in a given region
to yield an accurate stiffness estimate and what the uncertainty is in that estimate.
In MRE, “signal” means not only MR signal but, more importantly, that the
region is undergoing sufficient motion so that the induced phase shifts can be
detected and well quantified. A simple model of how noise in the MR acquisition
translates to noise in the phase difference or “wave” images can be derived. The
noise level in the standard MR magnitude image reconstructed from the MRE
acquisition can be determined from the background (after correction for the
effect of rectification). In areas of significant magnitude, this noise can be
considered to be Gaussian in both the real and imaginary components. Thus, it
forms a Gaussian cloud about the true magnitude and phase, and the uncertainty
in phase for a given noise level and magnitude can be calculated. In the wave
images, this uncertainty in phase is the noise, and the signal is the accumulated
phase shift due to motion. Local SNR in the wave images can thus be determined.
Higher SNR is obtained by (1) a larger underlying MR magnitude signal and
(2) a larger displacement amplitude, leading to a larger accumulated phase shift.
The effect of a given SNR in the wave images on the uncertainty of shear
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modulus estimations depends on the actual shear modulus and on the processing
algorithm used.

14.5.13 PHASE UNWRAPPING

Because shear waves attenuate quickly in certain tissues, large amplitudes near
the surface may be required to achieve sufficient amplitude in a deep region of
interest. Too much amplitude can cause phase wrap, i.e., large enough displace-
ments can cause accumulated phase shifts outside the range ±π, which are ambig-
uous. This sets an upper limit for the amplitude at which the tissue should be
driven. However, standard phase unwrapping algorithms [55] can be applied to
MRE data with good success, because the wrapped regions are usually fairly well
localized. The upper limit on amplitude can then be increased as long as the
phases can be reliably unwrapped. Alternatively, the increased amplitude can be
traded off for higher resolution by operation at a higher mechanical frequency.

14.5.14 DIRECTIONAL FILTERING

Most of the inversion algorithms described in the preceding text are derived from
the fundamental equations of motion and, in principle, correctly handle complex
wave fields with interference patterns due to reflection and refraction. However,
they tend to be sensitive to areas of low displacement amplitude (and hence low
SNR) that result from such situations. A spatiotemporal directional filter has been
described that can be applied as a preprocessing step to separate complex wave
fields into components propagating in different directions, each of which can be

waves or cancellation between interfering waves are minimized, and weighted
combinations of inversions from such directionally separated data sets signifi-
cantly improve reconstructions of shear moduli and attenuation.

14.6 RESULTS

To illustrate the different noise sensitivities, resolutions, and accuracies of the
various processing techniques, we present results on physical phantoms having
known parameters and ex vivo and in vivo results on both human and animal
tissues. Quantitative measurements of shear moduli with MRE have shown high
correlation with measurements using biomechanical testing devices [8,57,58].

14.6.1 PHANTOM OBJECT

stiff cylindrical inclusions (ranging from 5 to 25 mm in diameter) perpendicular
to the slice, acquired with mechanical vibrations of 100 Hz. The figure depicts
the out-of-plane displacement component, with the largest displacement being
approximately 10 µm. The acoustic shear waves are introduced from the top of
the image and propagate downward, but they reflect off the cylinders and the
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analyzed separately [56] (see Subsection 6.1). Areas of low motion due to standing
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boundaries of the phantom, giving rise to interference patterns. The effect of
selecting waves propagating in the top-down and bottom-up directions using the
direction-filtering approach described earlier is shown in the center and right
panels. The simplification of the wave field is further evidenced by the amplitude
maps in Figure 14.4, which show the amplitude of the harmonic motion at the
driving frequency at each voxel (from the first positive temporal frequency plane,
extracted by the Fourier transform of the phase offsets, as described earlier). The
amplitude map for the nondirectionally filtered data (left) contains many nodes,
i.e., areas of low motion due to cancellation between the main top-down wave
and reflections from the inclusions and the bottom wall. Again, the top-down
filtered data is far smoother, and the nodes evident in the original wave field are
greatly reduced (right). The result of the four inversion algorithms described in

with differing levels of artifacts in the lower regions of the phantom. The reference

FIGURE 14.3 Left: Original band-pass-filtered wave image (for one of eight phase
offsets). Center: Data after top-down directional filtering. Right: Data after bottom-up
directional filtering (contrast increased by 5X).

FIGURE 14.4 The amplitude of the harmonic motion at the driving frequency for the
band-pass-filtered (left) and the top-down direction-filtered (right) data sets.
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are shown in Figure 14.6. All four algorithms clearly show the four inclusions,
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values are 2.9 kPa for the background gel and 6.4 kPa for the inclusions. All the
algorithms reconstruct the background value correctly, and all but LFE reach
approximately correct values for the two larger inclusions. The stiffness of the
smaller inclusions, which are less than a wavelength in size, is underestimated
by all four algorithms.

14.6.2 ANIMAL TISSUES

A variety of ex vivo experiments have demonstrated that MRE can quantitatively
assess the viscoelastic properties of real tissues and detect changes in stiffness

FIGURE 14.5 The PG, LFE, DI, and MF reconstructions of shear modulus from the top-
down directionally filtered data.

FIGURE 14.6 Profiles through the inclusions for the results in Figure 14.5 for the PG,
LFE, DI, and MF reconstructions, respectively. The reference values are 2.9 kPa for the
background gel and 6.4 kPa for the inclusions. All the algorithms reconstruct the back-
ground value correctly, and all but LFE reach approximately correct values for the two
larger inclusions. The stiffness of the smaller inclusions is underestimated by all the
algorithms.
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with frequency and temperature [37,59]. For example, Figure 14.7 shows an
example of the calculated shear stiffness of porcine liver tissue at different
mechanical frequencies. The data are well fit by a viscoelastic model
(Equation 14.8 and Equation 14.9). Because of the lack of metabolic activity,
homeostasis, and in situ preloading in specimens, the observed mechanical prop-
erties are likely to be different from those that would be measured in vivo.

14.6.3 BREAST

Various groups have reported MRE results on in vivo human breasts
[31,33,34,54,60,61]. Clear distinction has been found between fat and glandular
tissues [34,61], in rough agreement with earlier results on excised tissue, and

differentiation between adipose and glandular tissue in the elastogram of a normal
volunteer. Recent work [60] has included in vivo imaging of six normal volunteers
and six patients with cancer. In patients with tumors, the stiffest regions in the
elastogram corresponded to the known tumor locations and were 5 to 20 times

found in the normal volunteers. The stiffness values found for the tumors are
expected to be an underestimate in all cases because of the limitations of the
processing technique and the scans being 2-D instead of 3-D. Sinkus et al. [33]

FIGURE 14.7 Shear-wave velocity in specimens of porcine liver tissue obtained from 5
different animals, measured at frequencies of 75 to 300 Hz. The velocity increases sys-
tematically with frequency. The curve represents a best-fit line that accounts for viscoelastic
behavior. (From Kruse, S.A., Smith, J.A., Lawrence, A.J., Dresner, M.A., Manduca, A.,
Greenleaf, J.F., Ehman, R.L. (2000). Tissue characterization using magnetic resonance
elastography: preliminary results. Phys. Med. Biol. 45: 1579–1590.)
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between normal breast tissue and carcinoma [60,61]. Figure 14.8 illustrates the

stiffer than normal tissue (Figure 14.9). No regions of such high stiffness were
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have reported an anisotropic analysis of 3-D MRE data of the breast and have
suggested that this can help differentiate between benign tissue, which appears
isotropic, and carcinoma, which appears to exhibit an increased degree of
anisotropy.

FIGURE 14.8 (a) Axial T1-weighted spin-echo image of the breast of a normal volunteer.
(b) MR elastogram obtained for this volunteer with shear waves at 100 Hz applied to the
anterior part of the breast. The elastogram depicts clear differentiation between soft adipose
tissue and stiffer fibroglandular tissue.

FIGURE 14.9 T1-weighted image (left) and LFE, DI, and MF elastograms respectively
of the breast of a patient with 4-cm diameter biopsy-proven breast cancer. The image was
obtained with shear waves of 100 Hz applied to the skin of the medial and lateral aspects
of the breast. The field of view is approximately 16 cm and the section thickness is 5 mm.
The elastograms all indicate that the shear stiffness of the tumor in the posterolateral aspect
of the breast (arrowhead) is substantially higher than that of normal fibroglandular and
adipose tissues in the breast.
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14.6.4 BRAIN

Although there is no clinical precedent for “brain palpation,” it is possible that
measurements of elastic properties might be useful for characterizing brain disease.
In addition, such measurements are necessary prerequisites for finite element anal-
ysis studies of brain trauma and surgical simulation. However, the estimates of the
shear modulus of brain tissue available in the literature are inconsistent and do not
even agree on the relative stiffness of gray and white matter [62]. These estimates
were obtained ex vivo from specimens without blood pressure and metabolic activ-
ity. This may explain why they span several orders of magnitude and disagree on
whether gray matter is softer or harder than white matter. Cerebral elastography
studies have been performed to date in 19 normal volunteers [62]. Waves are clearly
observed to propagate throughout the brain, and the elastograms (Figure 14.10)
demonstrate that the in vivo shear stiffness at this frequency of white matter (average
value 14.2 kPa) is higher than that of gray matter (average value 5.3 kPa). The
difference is statistically significant. No discernible relationship between age and
shear modulus has been found.

14.6.5 MUSCLE

MRE has been applied to skeletal muscle to quantify the change in stiffness with
muscle loading [63]. Five volunteers supported varying loads during MRE exam-
inations to assess the biceps brachii muscle during active force generation. The

FIGURE 14.10 An elastogram of the brain of a normal volunteer overlaid on the MR
magnitude image.
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wavelength of the shear wave clearly increased with load for each volunteer, as
shown in Figure 14.11, and in each case the shear stiffness of the muscle increased
approximately linearly with force. The slope of the stiffness–force relation
varied among the volunteers and was proportional to the inverse of the muscle
size. The muscle is strongly anisotropic, and these results were based on a
simple 1-D analysis along the muscle fiber, using a damped sinusoid fit to line
profiles in the direction of wave propagation. Simulation studies of the char-
acteristic chevron-shaped wave patterns observed in muscles have been per-
formed by Sack et al. [53].

14.6.6 ULTRASOUND WAVE FIELD VISUALIZATION

Walker et al. [64] have used specially constructed apparatus to image with
MRE, the ultrasound wave fields in a tissue-equivalent agar gel medium.
Nanometer motions at ultrasonic frequencies were clearly detected and visual-
ized, and direct measurements of absolute pressure, intensity, and speed of
sound were obtained. Although the magnetic field gradients required are an
order of magnitude greater than the recommended limits for human imaging,
this technique allows a detailed study of ultrasound propagation and scattering
in heterogeneous ex vivo tissue samples. No other technique can directly and
noninvasively visualize the nanometer-scale displacements due to ultrasound
in tissue or tissue-equivalent materials.

FIGURE 14.11 Wave images obtained in a coronal plane passing through the biceps
brachii muscle of a volunteer under the loading conditions indicated. The superior end of
the muscle is at the top of the image. Shear waves of 150 Hz were generated in the muscle
by an electromechanical driver applied to the skin over the distal biceps tendon (outside
the field of view). The section thickness was 7 mm, and the field of view of the image
was approximately 16 cm. The shear-wave image, sensitized for wave motion orthogonal
to the plane of section, demonstrates propagating waves, which have a characteristic
chevron-like pattern. The displacement amplitudes are on the order of 30 µm. The shear
wavelength clearly increases with load.
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14.6.7 CHARACTERIZATION OF THERMALLY ABLATED TISSUE

MR-guided focused ultrasound (FUS) tissue ablation is a procedure in which
FUS is used to treat tumors by heating the tumor tissue and coagulating it, while
sparing the surrounding normal tissue as much as possible. Existing methods for
assessing the spatial extent of tissue coagulation obtained with FUS have limi-
tations because it is difficult to assess the exact location actually being heated
and the extent to which the heating has coagulated the tissue during the procedure.
Studies have demonstrated that MRE delineates thermally coagulated tissues as
areas of increased shear stiffness (see Figure 14.12) [35,65]. Further work in
which elastography was performed at multiple times during heating and cooling
of bovine tissue revealed a gradual softening of tissue as the temperature was
raised from 20°C to 60°C and then a large, irreversible increase in tissue shear
stiffness upon further heating that appears to correspond to tissue coagulation

MRE may be well suited to assess the results of tissue ablation procedures. In
addition, because the shear waves required by MRE can be generated by FUS
radiation pressure at the focal spot (as described earlier), it may be possible to
use MRE for guiding tissue ablation procedures in real time, using FUS for both

FIGURE 14.12 Bovine muscle specimen with three areas of thermal coagulation, per-
ceptible in the T2 image. MRE (superimposed on a T1-w image) indicates zones of
coagulation as areas of high shear stiffness (red).

T2 MRE
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the ablation and for shear-wave generation, and assessing tissue stiffness and
coagulation as the tissue is being heated during the procedure itself.

14.7 CONCLUSION

MRE shows great potential for noninvasive in vivo determination of mechanical
properties of a variety of tissues. The detection of propagating acoustic waves
has been demonstrated in vivo in the breast, brain, and muscle and ex vivo in
numerous animal and human tissues. Reconstruction algorithms have been tested
and characterized, and although far from perfect, they yield quantitative measures
of elasticity that clearly demarcate differences between tissue types and identify
tumors as areas of higher stiffness. Challenges remain in pulse sequence design,
delivering sufficient signal to all areas of the body, and improving processing
algorithms to generate more accurate, higher-resolution elasticity and attenuation
maps. We speculate that MRE may prove to be useful in tumor detection, diseased
tissue characterization, and the evaluation of rehabilitation.
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FIGURE 14.13 MRE of thermally treated bovine muscle tissue demonstrates a major,
irreversible change in shear stiffness as the tissue is heated above 60°C.
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15.1 INTRODUCTION

 

Since its invention in the early 1990s [1–3], functional magnetic resonance imaging
(fMRI) has rapidly assumed a leading role among the techniques used to localize
brain activity. The spatial and temporal resolution provided by state-of-the-art MR
technology and its noninvasive character, which allows multiple studies of the same
subject, are some of the main advantages of fMRI over the other functional neuroim-
aging modalities that are based on changes in blood flow and cortical metabolism [4].

In a typical fMRI study, a measurement session includes (1) the acquisition
of one or multiple time series of “functional” volumes while a subject performs
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in a predefined sensory, motor, or cognitive stimulation paradigm and (2) the
acquisition of an “anatomical” volume covering a certain region of interest (pos-
sibly the whole brain). Functional time series are acquired using fast or ultrafast
MR sequences sensitive to blood oxygenation level dependent (BOLD) contrast
(conventionally, T2/T2*-weighted echo planar imaging [EPI] sequences). Ana-
tomical volumes, conversely, are acquired using slow MR sequences in which
the contrast between gray and white matter is enhanced (conventionally, high-
spatial-resolution three-dimensional [3-D] T1-weighted sequences) and serve as
a structural reference for the visualization of the functional information obtained
through the analysis of the functional time series.

The aim of this chapter is to provide a basic overview of the data analysis
pipeline that is typically employed in fMRI.

Given the small amplitude (1–5%) of the stimulus-related MR signal changes
and the presence of many confounding effects, the localization and characteriza-
tion of the brain regions that respond to the various conditions of the stimulation
protocol is a nontrivial process that involves several processing steps. Figure 15.1
shows a flowchart of these steps. Some of the steps aim to reduce the influence
of the artifactual signal fluctuations and enhance the functional contrast-to-noise

to detect localized task-dependent signal changes and to visualize them by means

the transformation of anatomical and functional data in conventional reference

 

FIGURE 15.1

 

Schematic flowcharts of the data analysis steps involved in an fMRI
study. Input data are the four-dimensional (4-D, space [3-D] 

 

×

 

 time [1-D]) functional
time series (left) and the 3-D anatomical reference volumes (right). See text for a detailed
description of each block.
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spaces, and is essential to compare the results between different subjects or
different groups of subjects and to facilitate communication among laboratories

of single-subject data. Additional steps can thus be included to display the relation
between functional information and individual brain anatomy with more efficacy

 

15.2 PREPROCESSING OF FUNCTIONAL
TIME SERIES

15.2.1 S

 

LICE

 

 T

 

IMING

 

 C

 

ORRECTION

 

With 2-D EPI sequences conventionally used to collect the functional time series,
volumes are formed by collecting one slice at a time. This implies that different
parts of the brain are measured at slightly different moments in time, and that a
functional volume cannot be considered an “instantaneous” temporal sample
during which the brain activity is observed simultaneously (Figure 15.2). In
Figure 15.2, for example, slice 5 is collected 400 msec after slice 1 (assuming
an interval between the acquisitions of 2 subsequent slices of 100 msec). This
systematic temporal “bias” in sampling the brain activity may induce fitting errors
and misinterpretation of the results, especially in fMRI studies in which event-
related designs are employed, in fMRI mental chronometry studies [5], and in
the investigation of directed interactions [6]. In order to correct for this, data can
be adjusted by appropriately shifting backward or forward each voxel’s time
series. This operation is referred to as 

 

slice timing correction

 

 and is achieved

 

FIGURE 15.2

 

Slice timing correction. In fMRI different parts of the brain are sampled
at different moments in time. The temporal offset between the acquisitions of two generic
slices within the same volume depends on the time required to collect one slice (acqui-
sition time, TA), and on the number of slices and the order in which the slices are
collected. The error introduced by the presence of this small offset can be corrected by
means of temporal interpolation of the time courses. Note that in order to apply this
type of correction it is necessary to know the exact order in which the slices are collected.
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compared to the conventional serial 2-D slice representation (see Reference 7).
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with 1-D (sinc) interpolation in the temporal domain or by Fourier transforming
the time series into a 1-D frequency representation, applying a phase shift to this
data, and then recovering the corrected data by applying a reverse 1-D Fourier
transform [7].

 

15.2.2 M

 

OTION

 

 C

 

ORRECTION

 

The subject’s motion poses a severe problem for the analysis of functional data.
Despite the use of physical constraints, head movements cannot be completely
eliminated during functional scanning. Head movements can be identified by
viewing successive volumes of the functional time series as a “movie.” Functional
time series with gross motion of the head (greater than the voxel size) can be
severely corrupted and, because they cannot be easily corrected with postprocess-
ing algorithms, they should be discarded from further analysis. Small head move-
ments (less than the voxel size) also produce effects that can mask the relatively
small BOLD signal changes and should be corrected using realignment algorithms.
In the following text, we describe the basic steps of these algorithms [8–15].

Let us consider 
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i
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) and 

 

I

 

k
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) as two images (2-D or 3-D) collected at times

 

i

 

 and 

 

k

 

 within a series of 

 

T

 

 repeated functional measurements. Let us suppose
that 

 

I

 

i
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) and 
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) are related by a geometric transformation 
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], so that
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≈
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). (15.1)

Realignment algorithms deal with the problem of finding the transformation

 

T

 

 that minimizes the differences between the two images due to the subject’s
motion.

The most commonly adopted algorithms are based on iterative computation
of the rotation-translation parameters that reduce the mismatch between a reference
image (e.g., the T/2 scan of the time series) and the other images of the time series
[8–11]. These realignment procedures are based on the following steps:

• Measurement of the spatial discrepancy between the transformed image
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k
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]) and the reference image 

 

I

 

T/2

 

(
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)
• Evaluation of the parameters that define 

 

T

 

• Evaluation of the new values of 

 

I

 

k

 

 after 

 

T

 

 has been determined (inter-
polation method)

A robust method, commonly adopted in fMRI data analysis, considers 

 

T

 

[

 

x

 

]
to be a rotation-translation transformation based on the rigid-motion hypothesis
[8]. With this hypothesis, the transformation 

 

T

 

[

 

x

 

] is defined by three parameters
in the case of realignment of 2-D images (two translation offsets and one rotation
angle) and, by six parameters in the case of 3-D images (three translation offsets
and three rotation angles).

Defining
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as the voxel-by-voxel ratio between the two images, the algorithm then estimates
the degree of misregistration between them by considering the mean m

 

r

 

 and the
standard deviation 

 

σ

 

r

 

 of 

 

r

 

(x) over all the voxels for which {
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>

 

 

 

=

 

 0.215
max(
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)} (i.e., over all the intrabrain voxels)
The ratio
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(3)

is then used to measure the degree of misregistration between the template and
the target image. When 

 

I

 

K

 

(

 

T

 

[

 

x

 

]) is realigned to 

 

I
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 (

 

x

 

), then 

 

r

 

(x) is constant and,
consequently, the ratio 

 

E

 

 is small; conversely, when 
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k
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]) is not realigned to
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T/2

 

 (
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), then the ratio 

 

E

 

 is large and new iterations are computed.
In the original version of the algorithm, Newton’s method [15] was used

separately for each parameter of 

 

T

 

 to minimize the ratio 

 

E

 

, and trilinear interpo-
lation was used to calculate the new values of 

 

I

 

k

 

 on the grid defined at each
iteration. Other implementations of Wood’s algorithm use more complex multi-
dimensional minimization schemes and different interpolation methods (e.g., sinc
interpolation).

The algorithm in [9], for example, differs from the Wood’s algorithm in that
it utilizes the Euclidean norm in L

 

2

 

 as the mismatch function:

(15.4)

and the Levenberg–Marquardt algorithm [15] for the optimization of the rotation-
translation parameters.

Other realignment algorithms emphasize the importance of removing the
additional effects of the subject’s movements on the magnetic spin excitation
history (e.g., by correcting with an autoregression moving average (ARMA)
model [11]), and other residual effects remaining after image realignment [14].

 

15.2.3 S
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 T

 

EMPORAL

 

 F

 

ILTERING

 

Spatial and temporal filtering of fMRI time series aims to reduce the effects of
the confounding factors that arise from instrumentation and spontaneous physi-
ological activity on the detection of brain activation.

The high-spatial-frequency noise, mainly from the scanner devices, can be
attenuated by spatially “smoothing” the fMRI time series with low-pass filters
(Gaussian, Hamming, and Fermi filters) [16].

Let us express the acquired data as
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where 
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 is the 3-D spatial-frequency span, 
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) the spatial-frequency domain
representation of a functional volume at scan 
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, and 
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) the noise contribution
(physiological and electronic). The underlying assumption of spatial smoothing
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is that Si(k) is a monotonically decreasing function of k and, thus, there exists
some frequency kc such that

Si(k) << Ei(k) for k > kc (15.6)

Thus, a function H(k) such that

1 for k < kc

H(k) ≈ 0 for k > kc (15.7)

would be an ideal filter. Indeed, multiplying H(k) by Ii((k) would result in noise
suppression with minimal effect on the signal Si(k). However, the presence of
regionally specific activation implies that high-spatial-frequency components of
the signal are present in Si(k) as well and, thus, besides reducing the noise
contribution, spatial smoothing will also decrease the effective spatial resolution
of the functional analysis.

These two contrasting effects influence the detection of activation regions
and have to be balanced. Intuitively, when the activated brain regions extend over
clusters of several voxels, spatial smoothing will strengthen the signal relative to

activated, they might no longer be discernible after spatial smoothing. Further-
more, according to the matched filter theorem, the signal is best detected by
smoothing with a filter whose width matches that of the signal. In practical cases,
however, because both focal and broad activation regions may be present in the
same data set and their real extent cannot be known, the width and type of spatial
filter are chosen on the basis of a trade-off between the desired spatial resolution
and the expected enhancement of the functional contrast-to-noise ratio [14]. High
effective spatial resolution is especially important in individual studies and, thus,
little or no spatial smoothing is suggested. In multisubject studies, on the other
hand, a high degree of spatial smoothing is necessary even after normalization
to a standard stereotaxic space [17] in order to reduce the anatomical differences
between subjects and to allow the correct use of statistical tools [10].

Thermal noise and high-temporal-frequency fluctuations arising from spon-
taneous activity can be attenuated by temporal smoothing of each voxel’s time
series [7]. In the case of temporal smoothing, the choice of the bandwidth of the
filter is driven by a trade-off between the expected enhancement of functional

unavoidably caused by the filtering. Indeed, despite the fMRI response being
governed by slow hemodynamics, neural information on the order of a few
hundreds of milliseconds may be present in BOLD signals collected using event-
related protocols, and may be washed out by the temporal smoothing. Further, it
should be noted that temporal smoothing introduces a high degree of dependency
between subsequent samples of the time courses (temporal autocorrelation). This
temporal autocorrelation has to be appropriately taken into account when per-
forming the statistical analysis (see the following section), in order not to artifi-
cially inflate the significance levels of the tests.
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contrast-to-noise ratio and the loss of temporal resolution (see Figure 15.4)
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MR signal drifts and physiological fluctuations at low temporal frequencies
are always present in fMRI time series and have to be corrected by linear

[18–21]. If the temporal sampling rate used for functional scanning (volume
repetition time) is sufficiently short, systematic physiological noise linked to the
cardiac and respiratory cycles can be eliminated using band-reject [20] or least-
mean-square (LMS) adaptive filters [21].

FIGURE 15.3 Spatial smoothing. Top row: Functional time series before (left) and after
(right) spatial filtering with a 3-D Gaussian smoothing kernel (FWHM = 3 voxels). Middle
row: Schematic representation of the effects of spatial smoothing on brain activation. For
simplicity, space is represented on a 1-D axis. Note that “activated” regions with a small
spatial extension may disappear after spatial smoothing. Lower row: Activation map
before (left) and after (right) spatial smoothing with a 3-D Gaussian smoothing kernel
(FWHM = 3 voxels).
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15.3 STATISTICAL LOCALIZATION 
OF BRAIN ACTIVATION

The most important step in the analysis of the functional time series is the
detection of task-related BOLD activation and the creation of activation maps.

In the first fMRI studies, a simple method based on image subtraction was
used to create descriptive images of the task-dependent brain areas [1–3]. Accord-
ing to the “pure insertion” hypothesis, voxels with a high gray level in the “dif-
ference” image, formed by subtracting the “control” from the “task” condition
images, reflect the areas with a task-induced differential activation. With this
method, the value of the intensity threshold between activated and nonactivated
voxels is arbitrarily chosen. Furthermore, image subtraction is very sensitive to
movement-related effects and to other unexpected signal changes. More reliable

FIGURE 15.4 Temporal filtering. (a) Unfiltered time course from a region in the visual
cortex during an event-related fMRI study. (b), (c), and (d) show filtered versions of the
same time course obtained after (b) high-pass filtering (HPF, filter cutoff = 5 cycles/run),
(c) HPF and moderate low-pass filtering (LPF1, filter cutoff = 75 cycles/run), and (d)
HPF and heavy low-pass filtering (LPF2, filter cutoff = 25 cycles/run).
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activation maps are produced by using univariate parametric or nonparametric
statistical methods. The commonly used parametrical z- or t-test maps are formed
by computing on a voxel-by-voxel basis the value of statistical significance for
the difference of the means between two conditions. Voxels with a significance
value below a given threshold (e.g., P < 0.001) are considered activated by the

with the value of the linear cross-correlation coefficient (r) between the time course
of the voxel intensity and a reference function [19]. Separation of activated and
nonactivated voxels is achieved by imposing a threshold value for r. Correlation
maps measure the similarity between the shape of the gray-level time course of a
voxel and the expected hemodynamic response; thus, the sensitivity and specificity
of this method strongly depends on the resemblance between the reference function
and the “real” shape of the BOLD response. A simple on–off response [19], and
the convolution of this ideal function with the impulse response of a linear model
of the hemodynamics [18,23], are commonly used.

It can be shown that the t-test, correlation, and most other parametric tests
can be regarded as special cases of the general linear model (GLM). The GLM
is a standard statistical tool, which was introduced to imaging data analysis by
Friston and coworkers [18,24]. The method allows the analysis of factorial designs
that are expressed in a “design matrix” containing the description of all factors
of interest as well as confounders (e.g., a linear trend) of an experiment
[18,24–26]. The GLM is the most commonly used method for the voxel-by-voxel
statistical analysis of the functional time series and is thus reviewed in more detail
in the following subsection.

15.3.1 THE GLM

The GLM “explains” or “predicts” the variation of the observed time courses in
terms of a linear combination of several regressor variables (or predictors) plus
an error term

yt = Xt1 β1 + + Xtl βl + + XtL βL + et. (15.8)

In Equation 15.8, yt (t = 1,…,T; T = number of measurements) is the observed
signal time course at a given voxel, Xtl(l = 1,…,L; L < T ) are a set of L
“explanatory” variables or “predictors” (functions of measurements), βl’s are the
unknown weights (or regressor values)—one for each predictor, and the et’s
denote error terms that are assumed to be independent and identically normally
distributed with zero mean and variance σ2.

Writing Equation 15.8 for each observation t gives the equation system:

y1 = X11 β1 + + X1l βl + + X1LβL + e1

……………………………………………..
yt = Xt1 β1 + + Xtl βl + + XtLβL + et

……………………………………………..
yT = XT1 β1 + + XTl βl + + XTLβL + eT

� �

� �

� �

� �
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task (see e.g., Reference 22). In so-called correlation maps, each voxel is associated
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or in matrix notation:

y = X� + e. (15.9)

Here, y is the T × 1 column vector of the observations, X is the T × L matrix
of the predictors (one row per observation, one column per model parameter), � =
[β1,… ,βl,… ,βL]T is the L × 1 column vector of parameters, and e is the T × 1
column vector of error terms. The matrix X is conventionally referred to as the
design matrix of the experiment. Most of the fMRI studies (with a single subject
or multiple subjects) that contain a baseline condition as well as several repetitions
of one or more experimental conditions may be easily expressed as a multiple
regression problem by defining an appropriate form for X (Figure 15.5). For
instance, for an experimental design with a baseline condition and five different
stimulation conditions, the design matrix X has five columns and one row for
each measurement time point. Each predictor is obtained by convolution of the
ideal box-car (on–off) response with a realistic model of the hemodynamic

Effects other than the expected task-related BOLD changes may also be modeled
in the design matrix. Normally, X includes a column consisting of 1’s for all
measurements to account for the mean value of the voxel time course. Similarly,
X may include a column with linearly increasing values to account for linear
trends in the voxels’ time courses.

Once the design matrix has been defined, the next step in the GLM analysis
consists of the estimation of the regression weights � such that the predicted
values y’ are as close as possible to the measured values y at each time point.
Let us denote with y’ the estimate of the time course Y for the regression values �’

y’ = X�’ (15.10)

FIGURE 15.5 Schematic illustration of a general linear model of an fMRI experiment.
Each voxel’s time course is modeled as the linear combination of condition-specific
predictors obtained by convolution of the ideal on–off response with a realistic model of
the hemodynamic response (see text).
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response (hemodynamic response function; see, e.g., Reference 18 and Reference 21).
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and with

e = [e1,… , ej,… , eN]T = y – y’ = y – X�’ (15.11)

the residuals errors. The least-squares estimates �’ of the regression values are
the ones that minimize the residual sum of squares:

eTe = (y − Xββββ)T (y − Xββββ) −             >min

This criterion leads to the normal equations:

(XT X)ββββ’ = XTy (15.12)

If (XT X) is invertible, i.e., if the design matrix is of full rank, then the least-
squares estimates are given by

ββββ’ = (XT X)−1 XTy (15.13)

If the model is correct and the errors are normally distributed, the least-squares
estimates are also the maximum likelihood estimates and the best linear unbiased
estimates. The mean value and the variance of ββββ’ are respectively:

E{ββββ′} = ββββ    and    Var{ββββ′} = σ2(STS)−1 (15.14)

The estimation of the regressor values allows testing multiple linear hypoth-
eses and creating different types of statistical maps. These maps are used to
assess the effects of the various conditions included in the stimulation protocol
and to draw inferences regarding the differential responses of different locations
of the brain.

15.3.1.1 Overall Effects (R2 Maps, F Maps)

A first type of map that can be obtained within the GLM framework is a map of
the overall fit of the model to the data. This map is obtained by computing at
each voxel the squared multiple regression coefficient (R2):

(15.15)

R2 represents the portion of variance in the measured signal y (as measured
about its mean) that is accounted for by variations in the estimated signal y’. In
voxels with R2 ≈ 1, the variance of the observed signal is well explained by the
estimated model. Conversely, in voxels with R2 ≈ 0, most of the observed variance
remains unexplained after fitting the model.

R
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More generally, within the GLM framework it is possible to create maps
reflecting the locations of significant effects of interest after the other modeled
effects have been taken into account. Let us consider an experiment whose design
matrix can be partitioned into two subsets

X = [Xa | Xb] (15.16)

with corresponding partition of the regression values

ββββ = [ββββa
T | ββββb

T]. (15.17)

where Xa(ββββa) indicates the predictors (regression values) corresponding to the
confounds (e.g., mean level, low-frequency fluctuations) and Xb(ββββb) indicates the
effects of interest. Detecting the locations of the brain in which there is a signif-
icant effect of interest corresponds to testing voxel-by-voxel the hypothesis
{Hb : ββββb = 0} and selecting those voxels in which this hypothesis can be safely
rejected. The extra sum of squares principle provides a means to perform these
tests [27]. Under Hb, the model in Equation 15.7 reduces to:

y = Xa ββββa + e. (15.18)

The extra sum of squares due to ββββb after ββββa is defined as:

Xr(ββββa | ββββb) = Xr(ββββa) –Xr(ββββ). (15.19)

where Xr(ββββ) and Xr(ββββa) denote respectively the residual sum of squares for the
full model and for the reduced model. Under Hb, Xr(ββββa | ββββb) ~ σ2χ2 independently
of Xr(ββββ), with Lb = rank(X) − rank(Xa) degrees of freedom. Therefore, under Hb,
the ratio

 (15.20)

has a central F distribution with n1 = Lb and n2 = T − Lb degrees of freedom [27].
The desired map can thus be computed using the following steps:

1. Calculate the statistic F of Equation 15.20 for each voxel.
2. For a fixed value of false alarm p determined by

(15.21)
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compare F with F0 (fF(u) is an F distribution with n1 and n2 degrees
of freedom.

3. Color-code the voxels where F > F0.

It is important to remark that if there is significant temporal autocorrelation
in the data, the degrees of freedom n2 are to be “corrected” to take appropriately
into account the serial dependency between the adjacent samples of each voxel’s
time course. Without this correction, the resulting value may be overestimated

statistical tests on the time courses after they have been “prewhitened” (i.e., after

possible prewhitening methods).
Note that if Xb = X, there is a one-to-one correspondence between F in

Equation 15.20 and R2 in Equation 15.15 and it is given by

(15.22)

15.3.1.2 Relative Contribution (RC) Maps

Statistical maps generated as described in the preceding text only provide infor-
mation about the effects of all the predictors in Xb. The contribution of specific
predictors (or subsets of predictors) within Xb to explaining the variance of the

given by

RC = (bsi – bs2)/(bsi + bs2) (15.23)

In Equation 15.23 bsi is the sum of the estimates of the standardized regression
coefficients of all conditions in subset si (we assume, for simplicity, that Xb only
includes two subsets of conditions). For voxels with F greater than a given
threshold, RC is color-coded using a double-color scale (e.g., red–green color
scale). An RC value of 1 (green) indicates that a voxel time course is solely
explained with predictor set b1, whereas an RC value of –1 (red) indicates that a
voxel time course is explained solely with predictor set b2. An RC value of 0
indicates that a voxel time course is explained with equal contribution of both
predictor sets.

15.3.1.3 Specific Effects, Contrasts (t Maps)

In fMRI studies, researchers are often interested in testing the effects of a specific
condition or in comparing statistically the effects of two or more experimental
conditions. Within the GLM framework, this comparison is done by using contrast
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(see Reference 18 and Reference 25). An alternative solution is to perform the

the autocorrelation has been removed; see Reference 28 and Reference 29] for

observed time course can be highlighted in RC maps (see e.g., Reference 30 and
Reference 31). These maps are obtained by calculating at each voxel the index
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vectors c = [c1 c2 …cL] and computing contrast (t) maps. It can be shown that for
any contrast c the ratio

(15.24)

follows a Student’s t distribution with T − L degrees of freedom [24].
Thus, a map that highlights brain locations in which there is a significantly

greater activity in the first condition as compared to the second can be easily
obtained in the following way:

1. Define a contrast vector c = [1 −1 0 0 …0].
2. Calculate the statistic t of Equation 15.24 for each voxel.
3. Color-code the voxels with a value t > t0, with t0 being the value that

corresponds to a prefixed significance value p0.

15.4 SELECTION OF SIGNIFICANCE THRESHOLDS 
IN FMRI STATISTICAL MAPS

A common problem of the methods based on the voxel-by-voxel statistical anal-
ysis is in the selection of a correct threshold value for segment activated and
nonactivated voxels. This value may be chosen with reference to the “uncorrected”
single pixel significance derived by comparing the statistical values obtained at
each voxel with the values of an assumed [18] or empirically derived [32] null-
hypothesis distribution. The optimum selection of this threshold, however, is not
straightforward. High (conservative) threshold values lower the probability of
incorrect detection of activation (false positives), but they also increase the prob-
ability of failing to detect “true-but-noisy” activated regions (false negatives).
Low threshold values, on the other hand, result in maps in which regions unrelated
to the task may appear as activated. Further, the uncorrected value of significance
is the result of statistical tests performed separately for a large number of time
courses. Thus, this value has to be “corrected” for multiple comparisons. Given
the very large amount of sampled voxels, the simple statistical approach of
preventing false positives by adjusting the significance level p using Bonferroni
correction (p’ = p/N ) is too conservative and leads to a substantial loss of
statistical power [33].

One of the causes for such loss of power is that in the application of the
Bonferroni correction, it is assumed that each voxel is an independent comparison,
whereas voxels may be spatially correlated and, thus, the number of effectively
independent comparisons is less than the total number of voxels in the data set.
Another cause is the failure of this approach to exploit the spatial extent of
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activations. “Real” cortical activation is expected to cover clusters of adjacent
pixels; conversely, there is a low probability that a given number of pixels
exceeding a threshold will be contiguous simply by chance. This distinction
between signal (which tends to cluster) and noise (which does not tend to cluster)
may be exploited to reduce the false positive probability without decreasing the
statistical power [33–37]. A natural way to do this is to use the detection criteria
that rely on the use of a cluster-size threshold in conjunction with the intensity
threshold, i.e., voxels are considered as activated by the stimulus if the uncorrected
false positive rate is below the fixed threshold and the same condition is verified
for a minimum number of adjacent voxels.

When this is the case, to quantify the statistical significance of an activated
region, it becomes necessary to determine the probability with which clusters of
various sizes occur by chance and to determine the likelihood of detecting such
clusters when activation is really present [33]. Several authors approached this
problem assuming that the fMR images can be approximated by a continuous
random field, where the voxel values are considered to be the realizations of a
random field sampled on an equally spaced grid. With this approach, the signif-
icance of activated clusters is determined on the basis of explicit expressions for
the probability of excursion sets of random fields derived from the theory of
Gaussian fields [34–36]. Although elegant and quantitative, this approach has the
drawback of requiring fMR images to be smoothed with spatial Gaussian filters
with broad full widths at half maximum (FWHM, FWHM/pixel size > 2). As
discussed earlier, this inevitably reduces the effective spatial resolution of images
and is especially undesirable for single-subject studies. Alternative approaches
are based on the generation of null-hypothesis probability distributions through
Monte Carlo simulations [33] or randomization tests [37]. Forman et al. [33]
provided probability distributions of cluster sizes as a function of the uncorrected
false positive rate and for different values of the Gaussian spatial smoothing filter.
These distributions, obtained with Monte Carlo simulations and verified with
fMRI studies, provide approximated values for false positive rates that are asso-
ciated with combinations of the uncorrected false positive rates and a minimum
cluster-size threshold. These methods require fewer assumptions but are more
time consuming.

A solution that mitigates the problem of multiple comparisons in fMRI is to
limit the number of statistical tests to those voxel time courses that are indexed
by a reconstructed cortical sheet (gray matter voxels) and to use surface-based
2-D cluster-size thresholds [38].

Recently, a new approach has been proposed by Genovese et al. [39] to deal
with the problem of the multiple comparisons in fMRI. The approach is based
on the control of the false discovery rate (FDR), i.e., of the proportion of false
positives (incorrect rejections of the null hypothesis) among those tests for which
the null hypothesis is rejected. One advantage of this approach is that it offers
an objective way to automatically select “adaptive” thresholds across subjects
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(for details see Reference 39).
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15.5 DATA-DRIVEN ANALYSIS OF FUNCTIONAL 
TIME SERIES

Data analysis with the aforementioned voxel-based methods is limited to the
detection of cortical activity with a strictly task-related temporal behavior. With
other processing strategies, such as principal component analysis (PCA) [40] and
independent component analysis (ICA) [41, 42], information contained in time
courses is extracted without strong a priori hypotheses about the time profile or

based on the decomposition of the intrinsic spatiotemporal structure of the fMRI
time series in orthogonal spatial patterns or eigenimages (PCA), and in indepen-
dent component maps (ICA) with different time courses. The drawback of PCA
and ICA consists in the difficulty of giving a physiological interpretation to the
great number of different components [41, 42].

15.6 COMBINING BRAIN FUNCTION
AND ANATOMY

15.6.1 COREGISTRATION OF FUNCTIONAL AND ANATOMICAL 
DATA SETS

As mentioned in the introduction, a typical fMRI measurement session includes,
before or after the collection of the functional time series, the collection of
anatomical images covering a region of interest or the whole brain. These images
are used for the spatial normalization of the data in a standard space and also for
a better visualization of the statistical maps. Anatomical images may be collected
using 2-D T1-weighted sequences (2-D anatomical reference) with the same
spatial parameters (position, field of view, thickness) as the functional volumes.
In this case, assuming that there is no significant subject motion in the interval
between the functional and anatomical acquisition, coregistration between func-
tional and anatomical volumes can be obtained simply by superimposing, for
each volume of the time series, the stack of functional slices on the stack of
coplanar anatomical slices. Functional maps can thus be overlaid either onto the
anatomical stack of slices or functional stack of slices.

However, if more sophisticated visualizations of functional maps are to be
obtained (e.g., using folded or morphed reconstructions of the subject’s cortex; see

typically collected using 3-D (e.g., with three encoding gradients) T1-weighted
sequences. These sequences provide very good spatial resolution (1 mm × 1 mm ×
1 mm) and high contrast between gray and white matter in a relatively short acqui-
sition time (8–20 min for whole brain imaging). When these 3-D anatomical images
are collected, coregistration of functional and anatomical data sets is obtained using
information on the MR-scanner slice position parameters of the T2*-weighted mea-
surements (number of slices, slice thickness, interslice gap, in-plane resolution, field
of view, angles and offsets in the readout, phase and z directions) and on analogous
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the spatial extension of the cortical areas (see Chapter 18). These methods are

Subsection 15.6.3), anatomical reference images of the subject’s whole brain are
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parameters of the T1-weighted 3-D measurement. Again, the underlying assumption
is that subjects do not move between the functional and anatomical scans. However,
because small head movements cannot be excluded, the accuracy of the coregistra-
tion obtained in this way by means of various landmark-based, edge-matching or
other automatic registration algorithms. These algorithms produce a spatial transfor-
mation that ensures an accurate coregistration between anatomical and functional
data. By applying this spatial transformation to each volume of the functional time
series, it is possible to generate a new 4-D representation of the functional data in
which the functional time courses are directly linked to the anatomical reference
volume. This 4-D representation also makes possible (after spatial normalization

a group analysis, e.g., within the GLM framework.

15.6.2 SPATIAL NORMALIZATION

The comparison of spatial locations of functional activation among subjects is
commonly made in both fMRI and PET studies by normalizing the individual
brains in a standard space. The most widely used standard anatomical reference
is the stereotaxic space, which was defined in the Talairach and Tournoux atlas
[17]. In our approach, the transformation in Talairach space is performed semi-
automatically using the 3-D anatomical volume of each subject and following
the procedure defined in the atlas:

1. In the first step, the 3-D anatomical data set of each subject is rotated
in order to align it with the stereotaxic axes. For this step, the location
of the anterior commissure (AC) and the posterior commissure (PC)
and the two rotation parameters for midsagittal alignment have to be
specified manually in the 3-D data set.

2. In the second step, the extreme points of the cerebrum (anterior, pos-
terior, superior, inferior, left and right) are specified. Planes encapsu-
lating these points together with the vertical frontal plane (VAC, the
plane established along the AC and bisecting the AC–PC line orthog-
onally) and the vertical posterior plane (VPC, the plane established
along the PC and bisecting the AC–PC line orthogonally) divide the
brain into 12 subvolumes.

3. The 3-D data sets are scaled into the dimensions defined in the Talairach
and Tournoux [17] atlas by applying separately to each of the 12
subvolumes a piecewise affine and continuous transformation.

Note that normalization in the volumetric Talairach space only ensures a
coarse spatial correspondence between brains of different subjects. More
advanced algorithms, based on the realignment of the subjects’ cortices (see the
following section), have been recently developed to address the problem of
defining a spatial correspondence between different brains, which is the basis of
all intersubject comparisons and group analyses in functional neuroimaging.
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[see Subsection 15.6.2]) the concatenation of the time series of multiple subjects for
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15.7 SEGMENTATION, SURFACE 
RECONSTRUCTION, AND MORPHING

Projection of the functional data onto a standardized or an individual anatomical
3-D volume not only has certain advantages (ease of use and widespread accep-
tance) but also several drawbacks. For example, on a 3-D volume, the distance
between two activated regions on the cortical surface is in most of the cases
substantially underestimated compared to the true distance along the cortical
sheet. This is due to the intrinsic topology of the cerebral cortex, a bidimensional
sheet with a highly folded and curved geometry. Furthermore, some of the features
and organizational principles that distinguish cortical areas (e.g., retinotopy, tono-
topy, somatotopy) are better analyzed with a 2-D surface-based representation.
Finally, individual cortical surfaces can be used as anatomical constraints for
hypothesis- [38, 43] and data-driven [44] statistical analysis of the functional
time series. Therefore, representation of functional maps on the folded and mor-
phed surface reconstruction of individual brains often reveals topographical infor-
mation that may remain hidden in the conventional slices or 3-D volumetric
visualization. In the following text, the steps required to obtain these types of
representation are briefly described.

The first step in obtaining a reconstruction of a cortical surface is to derive, for
each hemisphere, the border between white and gray matter from the set of slices

one of the many existing segmentation algorithms that allow separating gray matter,
white matter, and the other structures of the brain [45]. In our approach, the
segmentation algorithm also ensures that the following tessellation will lead to a
topologically correct representation of the cortex (i.e., without “bridges” or “holes”;

partition of each hemisphere is transformed by triangularization of the outside voxel
faces to a vertex-based surface S0 = (V0, K), where V0 is the NVo × 3 matrix of vertex
coordinates, K is an NK × 3 matrix of vertex indices, and NVo and NK are the number
of vertices and faces. Because the surface S0 reflects the coarse voxel-based dis-
cretized approximation to the (real) underlying surface, which is assumed to be
spatially smooth (i.e., local curvature values are bound by some maximum value),
the coordinates described by V0 are spatially smoothed with respect to the local
vertex neighborhood (100–200 iterations). V0 is thus transformed to a smooth
representation of the white matter surface SW = (VW, K ). In the next step, a surface
lying within the gray matter sheet is identified by translating the vertices in VW

using an interactive morphing algorithm. This gives a representation of the under-
lying gray matter surface SG = (VG, K) that may be used as the reference mesh for
the visualization of functional data (Figure 15.6).

The iterative morphing algorithm may be further used to compute an

I I

representation of the cortical surface aims to provide a representation of the
cortical hemisphere that retains much of the shape and metric properties of the
original surface, but allows the visualization of functional activity occurring

DK2411_C015.fm  Page 498  Friday, June 17, 2005  3:23 PM

© 2005 by Taylor & Francis Group, LLC

of a 3-D anatomical volume (Figure 15.6). In general, this can be done by using

“inflated” surface S  = (V , K ) of each hemisphere (Figure 15.7). The inflated

see Reference 46 for details). After segmentation, the high-resolution, voxel-based
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within sulci [47, 48]. Cortex inflation uses two forces, the corrective smoothing
and the distortion reduction force, which are iteratively computed and applied to
each vertex of the surface mesh. The “smoothing force” acts on the surface so
that points that lie in concave regions move outward over time, whereas points
in convex regions move inward. The “distortion reduction force” constrains the
evolving surface to retain as many of the original metric properties as possible.
It is possible to control the relative strength of the two forces by means of two
coefficients, λs for the smoothing force and λ d for the distortion reduction force,
respectively. During the first 200 – 500 iterations, λ s takes on values much larger
than λ d (0.4–0.8 vs 0.01–0.05), and gradually decreases over time as the surface
successfully inflates. Minimum geometric distortions are obtained by “linking”
the morphing surface to a folded reference representation (SW or SG), and using
a distortion reduction force that keeps the area of each triangle of the inflated
hemisphere as close as possible to the value of the reference mesh. In this way,
the inflated hemisphere also possesses a link to the functional data, as these are
coregistered with the 3-D data set and the folded surface. A functional map may
be, therefore, shown at the correct position of the inflated representation. The
display of functional maps on an inflated hemisphere allows the topographic

FIGURE 15.6 Advanced visualization of the functional data. Top row: (left) Sagittal and
coronal cuts showing sections of the border between gray matter and white matter as
defined by the segmentation; (right) reconstruction of the subject’s head and cortex
obtained from the 3-D anatomical images. Lower row: functional activation in hMT + /V5
during a visual motion experiment represented on the mesh reconstruction of the subject’s
cortex.
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representation of the 3-D pattern of cortical activation without loss of the lobular

representations can be further processed to obtain flattened representations of the
cortex, which are used in the study of retinotopy [49–52] and tonotopy [53], or
to obtain “spherical” representations of the cortex, which are used in advanced
approaches of cortex-based normalization and realignment of the brains of dif-
ferent subjects [54–56] (Figure 15.7).
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16.1 INTRODUCTION

 

The study of brain function with magnetic resonance imaging (MRI), which is
sensitive to changes in blood flow and oxygenation [1,2], is a widely used tech-
nique, and its applications are growing rapidly—from the early attempts with
simple block-designed paradigms to the study of more complex cognitive functions
until the study of emotions and behavior [3,4]. Moreover, functional MRI (f MRI)
is becoming increasingly important in clinical applications, for example, in neu-
rology and in planning surgical intervention of the brain. The utility of an explor-
atory data analysis approach is important in order to improve knowledge about the
brain function as more complex processes are studied and because it allows the
detection and characterization of unexpected phenomena that are not modeled or
cannot be modeled 

 

a priori

 

. Several components may affect signal generation and
the experimenter’s model, such as subject movement, physiological changes such
as heartbeat and respiration, and noise due to the instrumentation. All these com-
ponents will bias the results of a model-driven approach that relies on as good a
model as possible of the signal as good as possible [5–7]. The knowledge obtained
by an explorative approach can be used in confirmatory data analysis (CDA)
methods that rely on a precise model of the expected activations. In this framework,
exploratory data analysis methods can be seen as hypotheses-generating tools.
Moreover, in clinical applications these methods are thought to play an increasingly
important role because in these kinds of applications the brain responses typically
cannot be modeled in advance. Even if the BOLD signal has been demonstrated
to be correlated with the underlying neural activity, several aspects remain to be
understood, and exploratory analysis may play a vital role in this. The strength of
these exploratory data analysis methods is that information is extracted from the
data [8] using only general assumptions, and there is no need of specifying in
advance the shape and the extent of a phenomenon. These can be achieved by
taking advantage of the multivariate nature of the fMRI data set [9] and the fact
that both physiological phenomena of interest, due to the principles of localization
and integration of the neural processes [10], and artifacts, may concern measure-
ments in different brain regions. In this chapter we will introduce some methods
applied in exploratory data analysis of f MRI data, such as clustering techniques
[11–26], principal-component analysis (PCA) [27–32], and independent compo-
nent analysis (ICA) [33–46]. We will show that even if these methods are powerful
tools, in order to improve the knowledge about the brain function the experimenter
is required to make some fundamental choices during their applications that can
heavily influence the final results.

 

16.2 MULTIVARIATE APPROACHES

 

fMRI data are composed by a time sequence of 

 

p

 

 images or volumes, made
of 

 

n

 

 volume elements (voxels) each. The data set can be arranged in matrix
form, where, for example, in a 

 

n

 

 

 

×

 

 

 

p

 

 matrix 

 

X

 

 whose rows are the voxels time
series, the 

 

j

 

th column, the 

 

j

 

th image in the time sequence, is written as a vector
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(see Figure 16.1). In data clustering, each voxel time series is seen as an individual
element to be classified, so these methods can be seen as 

 

individual-directed
methods

 

. The 

 

i

 

th voxel’s time course can be written as 

 

x

 

i

 

(

 

t

 

) with 

 

t

 

 

 

=

 

 1, 2,

 

…

 

,

 

p

 

and can be seen as a 

 

p

 

-dimensional vector belonging to 

 

R

 

p

 

, 

 

x

 

i

 

 

 

=

 

 

 

x

 

i

 

(1),

  

i

     

i

   

three observations. The entire data set, consisting of 

 

n

 

 time series corresponding
to 

 

n

 

 brain voxels, can be seen as a collection of 

 

n

 

 vectors in 

 

p

 

-dimensional space.
In other multivariate analysis methods, such as PCA or ICA, each voxel time
series can be seen as a set of time-domain observations of a variable. These
methods are called 

 

variable-directed methods

 

 because they try to find the rela-
tionships among variables. These approaches can be applied to fMRI data both
in the temporal and spatial domains: in the temporal domain the variables are the
voxels time series as described earlier, and in the spatial domain the variables
are the time points and the observations are the voxels values at each time point.
Within this framework the time series extracted from the 

 

i

 

th brain voxel can be
seen as a variable 

 

x

 

i

 

 with 

 

p

 

 time observations: the entire data set can be seen as 

 

n

 

observed variables that can be written as a random 

 

n

 

-dimensional vector 

 

x

 

 

 

=

 

 {

 

x

 

1

 

,

 

x

 

2

 

, …, 

 

x

 

n

 

}. The dual approach considers the time points as variables and the rows
of 

 

X

 

, the voxels values, as observations. Common preprocessing strategies involve
the operation of slice timing correction and registration of images in order to

 

FIGURE 16.1

 

Schematic representation of the data matrix. Each image is vectorized and
assigned to a column of the data matrix X.
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contrast-to-noise ratio (CNR) or temporal filtering in order to remove low-
frequency fluctuations can be used: low-frequency drifts due to slow subject
movements or instrumentation changes can be removed by means of linear regres-
sion detrending. In general linear model (GLM) approaches [6,7], spatial filtering
is usually performed by means of an isotropic spatial filter that ignores the
anatomical structure of the brain. This operation can be required in order to satisfy
the hypothesis of spatial smoothness of the activated regions as in Gaussian
random field theory [47] and are used in the successive inferential steps. In the
case of exploratory methods this is not required and different approaches can be
used in order to preserve anatomical information, such as nonlinear filtering, for
example, the SUSAN filter [48], or spatiotemporal approaches, for example, those
in Reference 49.

 

16.3 DATA CLUSTERING APPROACHES

 

Clustering methods try to group data set elements following a similarity criterion:
the elements belonging to a cluster should be similar. The clustering procedure
results in a classification of the data set in order to distinguish between different
signal sources, both physiological, such as task-related activations, and artifactual,
such as movement-related effects. Clustering techniques are suitable for fMRI
data analysis because interesting phenomena, such as task-related activation, will
involve several voxels, which can be grouped together without any 

 

a priori

 

 knowl-
edge about the shape or the extension of the activations. Experimenters who want
to use clustering techniques have to be aware that there are many possible choices
for the algorithm and the preprocessing steps. Because the clustering techniques

 

FIGURE 16.2

 

A 3-point-long time series, depicted as a vector in 

 

R

 

3

 

. The same procedure
can be extended to 

 

n

 

-dimensional time series.

Xi (t) = {Xi(1), Xi (2), Xi(3)}

Xi (2)

Xi (3)

Xi (1)
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try to group similar objects together, the results will depend on the definition of
this similarity. Moreover, some clustering approaches such as partitioning
approaches require the experimenter to decide in advance the number of expected
clusters. In the context of fMRI data analysis, the elements to be classified are
the time series extracted from volume elements of the brain: an 

 

n

 

-step-long time
series, describing the signal changes in a voxel, can be seen as an 

 

n

 

-dimensional
vector, i.e., a point in 

 

n

 

-dimensional space.

 

16.3.1 S

 

IMILARITY

 

The definition of similarity is a crucial concept, and different possible choices
can be made that can lead to different results. A simple definition of similarity
is the Euclidean distance in an 

 

n

 

-dimensional space between two points (

 

x

 

, 

 

y

 

)
given by

(16.1)

where 

 

x

 

(

 

i

 

) is the 

 

i

 

th element of vector 

 

x

 

. The Mahalanobis distance is a gener-
alization of the Euclidean distance and can be written as

(16.2)

where (

 

⋅

 

)

 

T

 

 is the transpose operator. If 

 

B

 

 is chosen to be the identity matrix, then
the Euclidean distance is obtained. It is possible to choose 

 

B

 

 as a diagonal matrix
with the elements in the diagonal as the variances of each coordinate; multiplying
by the inverse of 

 

B

 

 is equivalent to weighting each coordinate by the inverse of
its variance, resulting in a normalization process. It is then possible to choose

(16.3)

In such a case the Mahalanobis distance is equivalent to the Euclidean after
the data have been transformed by 

 

T

 

. This method was used in Reference 11, in
which the transformation 

 

T

 

 was used to find the correlation coefficient with the
stimulus reference function. This operation can be seen as focusing on the sim-
ilarity with the expected activation. In this work, interesting connections with
principal-component analysis preprocessing are outlined. Other metrics can be
defined such as the ones proposed for fMRI data in Reference 12, in which
decreasing functions of the Pearson’s correlation coefficient are used. This metric
can be written as

 

 

 

(16.4)

d i i
i

n

( , ) || || ( ( ) ( ))x y x y x y= − = −
=

∑ 2

1

d T( , ) ( ) ( )x y x y B x y= − −−1
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where 

 

cc

 

(

 

x

 

, 

 

y

 

) is the 

 

Pearson’s correlation coefficient

 

 given by

(16.5)

with 

 

µ

 

x

 

 and 

 

µ

 

y

 

 the mean values of 

 

x

 

 and 

 

y

 

 and 

 

S

 

x

 

 and 

 

S

 

y

 

 their standard deviations.

 

16.3.2 C

 

LUSTERING

 

 T

 

ECHNIQUES

 

The clustering procedure consists in finding 

 

k

 

 clusters and assigning each element
of the data set to a cluster. Each cluster may be individuated by a cluster centroid
that is a time course representative of the cluster. The goal is to find homogeneous
clusters, i.e., minimizing within-group variability, and at the same time separable
clusters, i.e., maximizing between-group dissimilarities. If we define a within-class
inertia as

(16.6)

and the between-class inertia as

(16.7)

where is the center of gravity of the cluster centers 

 

c

 

k

 

, this goal can be seen as
minimizing within-class inertia while maximizing between-class inertia. Several
clustering techniques have been applied in the analysis of functional data sets such
as hierarchical clustering [11,13–15], 

 

k

 

-means [11], fuzzy clustering [16–21], and
self-organizing maps [22,23]. A comparison can be found in Reference 24.

These clustering techniques can be first divided into hierarchical methods
and partitioning methods, because the former do not need to specify in advance
the number of clusters whereas the latter need this preliminary information.

 

16.3.2.1 Hierarchical Methods

 

These can be classified into agglomerative methods, which start with N clusters
of N objects and end with one cluster of N objects, and divisive methods, which
use the inverse process. Both these iterative procedures result in a treelike struc-
ture called the 

 

dendrogram

 

. In an agglomerative approach, all the N different
elements (N voxels time series) are first classified into N different groups or
clusters. The distance or dissimilarity matrix between the N elements is computed,

cc
x y

S S

i x i y
i

n

x y

( , )
( )( )

x y =
− −

=∑ µ µ
1

I
N

dW j k

j Ck

K

k

=
∈=

∑∑1 2

1

( , )x c

I
N

C dB k k

k

K

=
=

∑1 2

1

| | ( , )c c

c

DK2411_C016.fm  Page 510  Friday, June 17, 2005  4:32 PM

© 2005 by Taylor & Francis Group, LLC



Exploratory Data Analysis Methods in Functional MRI 511

resulting in an N × N array. After this operation, the two nearest clusters are
merged together, and a new distance matrix is computed. This operation ends
when there is only one cluster remaining (see Figure 16.3) Different clusters can
be identified by this method depending upon the level of the dendrogram chosen:
in order to decide at which level to stop and how many clusters to consider, it is
possible to find a good compromise between between-class inertia minimization
and the number of classes. Hierarchical clustering methods differ in the way the
cluster distance is computed: in single-linkage methods, the distance between
two clusters is computed as the minimum of all the distances of any element of
the first cluster to any element of the second. in complete-linkage methods, the
distance is measured as the maximum distance of all the distances of any element
of one cluster to any element of the other. The complete-linkage method finds
compact tightly bound clusters, whereas the single-linkage method finds clusters
that are elongated and suffers a chaining effect. Dimitriadou et al. [24] found that
the complete-linkage method outperformed the single-linkage method. The reason
is the large number of clusters that do not show any activation and cause a bias
in the clusters. In Reference 15 the problem of spatial separation of overlapping
clusters in single-linkage methods was addressed, and a sharpening procedure of
the dendrogram was proposed. Another criterion is the Ward method [50], which
consists in merging every possible cluster pair and choosing the one that mini-
mizes information loss. In order to estimate this quantity, the error sum of squares,
defined as

(16.8)

FIGURE 16.3 A dendrogram obtained starting from 20 elements or clusters.
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where mi is the mean of cluster Ci and x are the data points, is used. The distance
between two clusters is then given by

(16.9)

The Ward method merges two groups such that their heterogeneity does not
change too much. Several applications of hierarchical clustering to fMRI data
analysis can be found [11,13–15]. As an interesting application in Reference 13,
a hierarchical clustering approach was proposed on resting-state data, by means
of a single-link method on time series. As a distance measure between two voxels,
the correlation coefficient between the corresponding time series was used, using
only frequencies below 0.1 Hz. This frequency range was found to contribute to
resting-state connectivity [51]; this method requires a high sampling rate in order
to isolate the signal contributions related to heart and respiratory activities.

16.3.2.2 Hard Partitioning Methods

Partitioning methods result in a single partition instead of a treelike structure: the
main difference is that the number of clusters must be specified in advance, and
each element of the data set will be evaluated individually and assigned to a
cluster in order to minimize a cost criterion that can be evaluated locally or
globally. This is accomplished through an iterative process; starting from an initial
guess for cluster centers, the clusters can be modified until a stable solution is
found. The iterative process can be started from a random cluster initialization
and may depend on this first step. Several solutions with different random ini-
tializations can be performed, or a first hierarchical clustering step can be applied.
Partitioning methods are more efficient than hierarchical ones, which are com-
putationally demanding for large data sets. One of the most used partitioning
algorithms is the k-means method [52], which iteratively minimizes the within-
class inertia. The algorithm starts with an initial guess for the k centers chosen
randomly from the data set. In the second step, each element in the data set is
assigned to the nearest center using the definition of a distance metric. The centers
are then recomputed as the average of the elements in the cluster. The algorithm
repeats these last two steps until the partition does not significantly change. In

grouped in three clusters are shown. Although this method is fast and results in
homogeneous clusters, its main drawback is that the number of clusters must be
specified in advance. The algorithm can be modified to overcome this problem:
this method was applied in the ISODATA algorithm [53] and consists of splitting
a cluster when its variance is above a threshold and merging two clusters when
the distance between their centers’ is smaller than a threshold. In the context of
fMRI data analysis, a comparison between a hierarchical algorithm and the k-means
can be found in Reference 11. The two approaches are seen as complementary: the
k-means is powerful and results in homogeneous clusters but requires that the
number of clusters be chosen a priori, whereas the hierarchical approach allows

d C C ESS C C ESS C ESS CWard ( , ) ( ) ( ) ( )1 2 1 2 1 2= ∪ − −
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the number of clusters to be chosen based on the evolution of within-class inertia.
In Reference 14 the two approaches are combined in a hierarchical k-means
approach: in this chapter, the combined approach is used to find the number of
clusters and the initial guess of their centers is used in a final k-means algorithm.
The procedure consists of iteratively splitting clusters that are found to have some
structure left into two groups by means of a k-means algorithm. The crucial point
here concerns the identification of the clusters to split, because it is not straight-
forward to define a threshold for a cluster to have some structure. In this paper,
it was proposed to use visual inspection, eigenvalues decomposition of the data
set belonging to each cluster, within-cluster sum of squares, and statistical tests
such as nonparametric Kolmogorov–Smirnov. When the splitting part is finished,
a merging step is performed by comparing the distances between all the centers:
if two clusters show a smaller distance with respect to the other pairs, then they
are merged together. The final centers, as stated before, are the initial guesses of
the final k-means algorithm. The reason is that because of low CNR or SNR,
some objects could have been wrongly assigned to a cluster.

16.3.2.3 Fuzzy Clustering

Besides hard partitioning algorithms, one of the most used approaches for clus-
tering fMRI data is the fuzzy clustering approach [54], which introduces the
concept of fuzziness [55]: each member of the data set may belong to several
clusters, and the degree of belonging is described by a membership index. This
approach differs from hard clustering, which allows each element to belong to
one and only one group. If we define a membership value uji that describes the

FIGURE 16.4 Two-dimensional objects grouped in three clusters by the k-means algo-
rithm. The cluster centers are the bold circles.
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membership degree of the element i to the cluster j, hard clustering corresponds
to setting uji equal to 0 or 1, whereas in a fuzzy context it can vary from 0 to 1
depending on the growing membership degree. For each data element, we have

(16.10)

where K is the cluster number. The partition can be found using the fuzzy c-means
algorithm [56,57], which consists of minimizing the objective function

(16.11)

where dji is the distance of the ith element to the jth center and m is the mem-
bership degree, which is related to the fuzziness of the algorithm. This function
shows a minimum if

(16.12)

and

(16.13)

where vj is the center of the jth cluster. The algorithm starts from an initial set
of membership values for the data set elements, named fuzzy partition, collected
in a matrix form and given by

 (16.14)

with U = [1/K] and V a matrix of randomly chosen centers. In the second step,
the new fuzzy centers are computed using Equation 16.13, and then the new
membership values are computed using Equation 16.12. These two steps are
repeated until

(16.15)
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When the parameter m equals 1, we get hard partitioning, and the algorithm
is similar to k-means. When m tends to plus infinity, the membership values tend
to 1/K. The values usually used in fMRI data analysis range from 1.3, as in
Reference 25, to 2, as in Reference 21. However, there are no precise indications
in the literature for this choice. Another issue is the fact that in fMRI the activated
voxels are a small fraction of the entire population [21], so the clusters found can
be biased by voxels containing artifacts such as movement-related artifacts or
large-vein contributions. This can be resolved by focusing on a region of interest
(ROI) determined with a priori anatomical or functional knowledge or by selecting
the voxels of interest using a first processing stage with statistical tools. In the
study in Reference 19, the fuzzy cluster analysis (FCA) was repeated in a region
of interest, found in a first step, whose centroid showed a correlation with the task.
This second clustering step identified two clusters in the one detected previously:
one contained few voxels with large signal changes and was thought to have
originated from medium-to-large veins running perpendicular to the acquisition
plane and the other contained more voxels with less signal change and was thought
to be related to cortical activation. The problem of orientation of large vessels with
respect to the acquisition plane was pointed out. Another issue is the noise present
in the time series that can affect, as stated before, clustering techniques in general.
Both Toft [26] and Goutte [11], by means of hierarchical and k-means clustering,
tried to overcome this problem by the introduction of a distance based on a function
of the correlation coefficient with a stimulus function, rather than the raw time
series. This approach limited the use of the explorative method to a more selective
exploration and was used also in the study in Reference 12, in which the signifi-
cance of the membership values and the problem of the threshold were addressed.
These values, in fact, do not represent absolute statistical information about the
probability of a time series being correlated to a cluster, but they represent a relative
measure taking into account also the relationship with the other clusters. In the
same work, results were shown with the membership values thresholded at 0.8.
The same value was indicated in Reference 19 as a result of a comparison with a
correlation analysis. Fuzzy clustering for fMRI data has been extensively applied
[12,16–21]. Preprocessing steps can heavily affect the results. Some of the nec-
essary steps have been already mentioned in Section 16.2 and are common pre-
processing techniques. The removal of the baseline level from each time series is
usually applied in order not to allow the clustering algorithm to classify the voxels
based on the underlying anatomical structure. Other preprocessing strategies
involve subtracting the mean value and then dividing by it in order to achieve
a percentage signal change, or the normalization obtained by subtracting the mean
and dividing by the standard deviation. A comparison of different preprocessing
strategies can be found in Reference 12.

16.3.2.4 Artificial Neural Networks

Artificial neural networks have been extensively used for clustering and classifi-
cation purposes. In particular, competitive neural networks are useful because
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similar patterns in the input space are grouped together and associated with a single
neuron. We will briefly review the use of self-organizing maps (SOM) [58]. These
are single-layered networks constituted by a two-dimensional lattice of nodes: each
node is a pattern in the input space. At the beginning of the training process of the
network, the nodes are initialized randomly, and then the centers are updated
through an iterative process consisting of randomly selecting an element of the
input space and finding the winner node, i.e., the node whose distance from the
input data element is smaller, and updating all the centers of the lattice. The rule
is that the centers that are modified heavily are those of the winner node and its
neighbors. The update function for all the cluster centers ci is

(16.16)

where x is the input data element, and h(t, ci) is the neighborhood function that
takes into account the centers’ distance in the lattice and allows the selection and
the modification of the neighboring centers. The neighborhood function has to
decrease as much as the learning process evolves in order to achieve convergence.
The SOM algorithm results in a topology-preserving algorithm, facilitating the
merging operation of neighboring nodes to create super clusters from smaller
clusters whose distances are small [22]. This operation allows the separation of
both small and large clusters from the same data set, overcoming some limitations
of other algorithms such as for example the k-means, which result in homogeneous
clusters. Moreover, this reduces the importance of the initial choice regarding the
number of expected clusters. In Reference 23 the algorithm was modified in order
to take into account spatial proximity among the voxels in the original image.

16.4 PCA

This is a multivariate technique that decomposes the data into a set of linearly
independent components ordered according to explained data variance. This
method is related to the Karhunen–Loève transform or the Hotelling transform
[59], and was first proposed by Pearson [60]. PCA has found applications in data
compression, image and statistical data analysis, and has been used in fMRI data
analysis in order to explore and decompose the correlations in spatial or temporal
domains present in the data set [27]. This analysis results in eigenimages and
associated time vectors. The images can be seen as maps of functional connec-
tivity [28,61,62] because they share the same temporal pattern. PCA in functional
neuroimaging studies was first applied to PET data in Reference 62: the temporal
resolution of PET allowed the acquisition of 12 images, alternating between a letter
repetition task and a word generation task. The analysis of regional cerebral blood
flow (rCBF) by means of PCA resulted in an eigenimage, or spatial distribution
of voxel values, with positive loadings in regions involved in verbal fluency. The
associated time pattern can be seen as a modulating function of the loadings and
showed high levels during the verbal fluency task and low levels during the letter

c t c t h ti i( ) ( ) ( , )( )+ = + −1 c x ci i
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repetition task, confirming the hypothesis of correlations among the regions
individuated by the eigenimage and the verbal fluency task. Another eigenimage,
with positive loadings in anterior cingulate, showed a monotonic decreasing
temporal pattern and was thought to be related to some attentional or perceptual
change. It is important to stress that this component could not be easily detected
by a model-driven approach, which could have been used for detecting task-
related changes, because it may not be expected in advance.

16.4.1 SPATIAL AND TEMPORAL PCA

As stated earlier, the duality inherent in fMRI data sets can be found in the multi-
variate approaches: fMRI data are arranged in a matrix where each image or volume
of the sequence is transformed in a row or in a column, depending on whether they
are considered as a time sequence of images or volumes or as a spatial distribution
of time courses. In multivariate methods, the data matrix X can be seen as a
collection of measurements of some observed variables xi. These can be the time
points or the voxels values. PCA aims to find a smaller set of variables, as a
linear combination of the original ones, that accounts for the variance in the data
set. The first principal component (PC) is the one that has the greatest variance
of all the possible linear combinations of the original variables, with the constraint
that the combination weights form a unit vector. The second PC has the largest
variance of all the possible linear combinations under the constraint of being
orthogonal to the previous one. This procedure can be repeated up to the maxi-
mum number of variables r  min(n, p), where r is the data matrix rank. In data
reduction methods, a fewer number of variables that explain the largest portion
of variance in the data set can be chosen. This reduction operation can be
performed also in the field of fMRI data analysis even if the local variability or
low-intensity signal changes may be not represented [29]. In fact, low-percentage
signal variations may be discarded in the reduction process because their influence
on the overall signal variance is small. In the same way, the influence of small
activation regions may result in percentages that are small with respect to other
sources of variance, both physiological or artifactual, distributed across brain
voxels. These issues will be addressed further later. If we consider the voxels as
variables, the first principal component can be written as

(16.17)

where is a unity vector of the weights, and xi’s are the original
variables. The weights, or loadings, of vector u1 can be found as the eigenvector
of the covariance matrix of the data

(16.18)
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associated with the largest eigenvalue s1, where E{·} is the expectation opera-
tor, is the variables’ random vector, and µµµµx     is the mean vector
of x. Instead of using the expectation, we can estimate the covariance matrix as
a sample covariance matrix

(16.19)

where the sample mean has been removed from each variable, and p is the number
of observations. The remaining PCs are found by means of the eigenvectors of
the covariance matrix ordered such that their associated eigenvalues are in decreas-
ing order. The eigenvalues equal the variance explained by the corresponding PC
and the sum of the eigenvalues equals the variance in the original observations.
So, we can write where is the variance of the ith variable. In
Figure 16.5, a bidimensional distribution of data points is shown, along with the
directions of the eigenvectors of the data matrix. In the same figure, the eigenvalues
associated with each PC are shown. If we consider the voxels as random variables,
then the matrix accounts for the spatial covariance structure in the data set, i.e.,
the covariances among the voxels. The n-dimensional eigenvectors ui are eigen-
images and span the columns’ space of the data matrix. On the other hand, if we
consider the time points as variables, the covariance matrix

(16.20)

FIGURE 16.5 Bidimensional distribution of data points is shown along with the principal
components and the associated eigenvalues.
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accounts for the temporal covariance in the data set, i.e., covariances among the
time points. The associated eigenvectors vi span the row space of the data. It is
important to note that if we want to study the covariances among the time points,
the mean value has to be subtracted from each image; otherwise, we study the
correlation matrix. The two approaches, the study of the spatial covariance matrix
or temporal covariance matrix, are called, respectively, temporal and spatial prin-
cipal-component analysis [30]. Depending on which features we are more interested
in, we can choose between the two approaches. In the case of fMRI data analysis,
these were not proved to exhibit great difference. In Reference 31 these approaches
are referred to as R and Q analysis, respectively, whereas subtracting the mean both
from time series and images is referred to as M analysis. It can often be found that
instead of normalization by the number of observations, the matrices XXT or XTX
are used. If the mean from each row (time series) is subtracted, then we have the
matrix XXT proportional to the sample covariance matrix for the voxels

(16.21)

If the mean from each column (images) is subtracted, the matrix XTX is
proportional to the sample covariance matrix for the time points

(16.22)

The results in terms of eigenvectors are the same, whereas the eigenvalues
differ by a scaling term. PCA can be achieved by means of singular value
decomposition (SVD)[63] of the data matrix

(16.23)

where U is an orthogonal matrix of n × r dimension whose columns are the
vectors ui, S is an r × r diagonal matrix with elements and V is an orthogonal
matrix whose columns are the vectors vi. Reorganizing Equation 16.23 it is
possible to see that

(16.24)

confirming that the columns ui are eigenvectors of XXT and

(16.25)

so that the columns of V are eigenvectors of the matrix XTX. Equation 16.23 can
be written as

(16.26)
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with si being the eigenvalues. PC scores for the time points, which represent the
contribution of eigenimages to each time point, are given by XTU. These scores
can be interpreted as the original data in the space of ui. From Equation 16.26 it
is possible to see that these are the loadings, apart from a scaling factor given by
the eigenvalues, of the eigenvectors vi. The same can be done for the PC scores
for the voxels that are given by XV. These can be interpreted as the contribution
of each eigenvector in each voxel. It is easy to show that the loadings of the
eigenvectors ui equal the scores, apart from a scaling factor, of the eigenimages.
Although these approaches, temporal and spatial covariance based, seem equiv-
alent, they differ largely in fMRI data analysis applications in the maximum
number of computations needed to get the eigenimages starting from the matrix
XXT. In fact, in fMRI data, the number of voxels is far larger than the number of
scans. However, when applied in the temporal domain, i.e., looking at the time
series in each voxel as observations, the analysis is performed on a subset of all
brain voxels. In Reference 62 this method was applied to a subset of voxels that
showed significant differences across the alternating conditions. This allowed a
reduction in the computational costs, justified by the fact that voxels that do not
contribute to the measured variance cannot contribute to the covariance. In
Reference 28, PCA by means of SVD was applied to an fMRI data set. In this
work, the analysis was applied to activated voxels found by the regression method.
PCA was applied considering the time points as variables and the voxels as
observations. This resulted in eigenvectors whose loadings were the time evolu-
tion of the component, and a set of scores for each PC in each voxel.

16.4.1.1 Preprocessing of fMRI Data before PCA

Besides the usual preprocessing step mentioned in Section 16.2, several other
preprocessing steps can be performed: we have already mentioned that it is
possible to center the time series or the images, or both. Another preprocessing
step that can be performed is the normalization of the time series, i.e., subtracting
the mean and dividing by the standard deviation, in order to reduce the effect in
the overall variance of spatially varying random signal fluctuations. Linear regres-
sion can be used to remove low-frequency fluctuations or signal drifts as in
Reference 31, whereas in Reference 28, in order to reduce the effect of the noise
present in the data, PCA was applied to a set of fitted time series using six
sinusoidal regression parameters, a drift term, and a constant term.

16.4.2 INTERPRETATION OF THE PCA DECOMPOSITION

Once a decomposition is found, the experimenter has to decide which components
are interesting: this can be done using information about the experimental design,
for example, the correlations between the paradigm and the time course of a PC
or using a hypothesis about the activation regions. Results from PCA can be
reported as loadings of the eigenimages on anatomical images or as scores on
the PC of interest, depending upon the approach chosen. Another method makes
use of PC plots: these plots are used to identify each individual, which in this
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context means each observation, by means of the appropriate score on the PC of
interest. Usually, these are bidimensional plots with the first two PCs as orthog-
onal axes, but if other components are relevant, more plots may be needed. The
relevance of PCs is usually quantified by the percentage of variance explained
by the components, determined using the eigenvalues spectrum. A plot of

(16.27)

shows the percentage of total variance explained by the first k principal components.
Usually, the first PCs account for most of the variance, and the noise level can be
evaluated by examining the flattening of the plot. However, it is important to keep
in mind that a classification based on variance may be of no interest. In fact,
although some components may be related to interesting physiological phenom-
ena, others may have originated from movement effects or other physiological
sources [64]. Moreover, movement-related components can cause large signal
changes in the data set, contributing heavily to the overall variance, whereas
activation-related signal changes may explain a smaller percentage of the overall
variance. Usually, out-of-brain voxels are masked in order not to influence the PC
transform and hide some interesting activations. In order to enhance the extraction
of an activation that may be located in a specific region, it is possible to select
an ROI. In Reference 29, a finger-tapping study is reported: a PCA of all brain
voxels resulted in a second PC highly correlated with the task. The percentage of
the variance explained by the component was expressed as where s2 is the
eigenvalue associated with the second PC, and s1 is the eigenvalue of the PC
explaining the larger variance fraction and was found to be 0.01. The selection
of a smaller ROI centered around the activation yielded a fractional value of
0.038. In order to find the relevant number of PCs, information theoretic criteria
such as Akaike’s information criteria (AIC) [65], minimum description length
(MDL) [66], and Bayesian model selection [67] can be used. These methods can
also be used in combination with PCA before applying ICA to fMRI data in order
to perform dimensionality reduction. However, the PC found could not be rep-
resentative of real physical quantities [32]: because the decomposition is based
on variance partitioning, this general assumption cannot be used to interpret the
final results. Some attempts can be made to identify the sources of interest, such
as applying rotations to the components found by the PCA approach [68]. The
eigenvectors, or equivalently, the eigenimages can be regarded as a new coordinate
system for the data set. Along the directions of the first eigenvector (or the first
eigenimage) the measurements show larger variability; the second direction is
the orthogonal direction, along which the remaining variability is maximally
explained, and so on. The rotation operation can be mathematically described by
a transformation matrix T, so that the rotated components are

(16.28)
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or, dually, VT = VT. The transformation matrix can be an orthogonal transforma-
tion, such that the rotated components are still linearly independent or oblique.
This operation is a search among the linear combinations of the PCs and can be
seen as a projection pursuit task. The interesting projections of the data can be
found manually or by using some graphical description of the data, by means of
information theoretic criteria or by using some a priori information about the
expected results. In Reference 32 the rotation matrix was applied to eigenimages
and was estimated from the data set after a first processing step using PCA. This
step was useful to obtain information about the images of interest, called factor
images. In Reference 31 the rotation was applied to PC found by the analysis of
fMRI data from a primate during the pharmacological stimulation of the dopam-
inergic nigrostriatal system. The first two PCs were associated with an effect due
to pharmacological stimulation but also contained abrupt changes, probably due
to movement. An oblique rotation was performed manually to separate the motion-
related component, obtaining a smooth drug-response profile and a component with
only the abrupt changes. The optimal rotation was also found by inspecting the
associated maps: expected brain regions that respond to drug stimulation for the
first component, and regions with rapid spatial changes in mean signal values for
movement.

16.5 ICA

This [69] is one of the exploratory methods that has given rise to greater interest.
The reason lies in the assumption of statistical independence of the components,
and this guiding principle has proved to be useful in several applications ranging
from telecommunications to image feature extraction, from financial time series
analysis to artifacts separation in brain-imaging applications [70]. Similar to PCA,
the ICA model is generative and models the data as a linear combination of
components. The main difference with PCA is that the components are thought
to be statistically independent of each other instead of linearly independent. The
extraction of the independent components is based on an information theoretic
criterion and not on the maximization of variance explained by the orthogonal
components. As we have seen in Subsection 16.3.2, a problem with the application
of PCA to fMRI data is that the components related to brain activity of interest
may contribute very little to the overall variance. Moreover, a method based only
on second-order statistics may not reveal more complex patterns of activation;
these can be detected by methods such as ICA, which takes into account higher-
order statistics also, to assess the hypothesis of statistical independence [71]. ICA
was first used to solve the blind source separation (BSS) problem [72,73], in
which a set of sources is mixed linearly to form the observations. Both the sources
and the mixing process are unknown. If we denote the unknown sources by
a vector s ={s1(t),… , sn(t)}, the mixing matrix by A, and the data by x ={x1(t),… ,
xn(t)}, the model can be written as

(16.29)x As=
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The problem is to find an unmixing matrix W, which can be thought of as
the inverse of the unknown matrix A (here we assume we can invert the system)
such that

(16.30)

are an approximation of the sources s. In this model, each time series si(t) is
assumed to be the set of observations of a random variable si and the vectors s
and x are random vectors. The assumption of statistical independence means that
the knowledge about the value of a signal at a certain time cannot give us
information about the other sources’ values. Hence, the joint probability density
of s factorizes, and we have

(16.31)

Note that this method does not require any a priori assumptions about the
shape or extent of the activations. Instead, it does require the underlying sources
be statistically independent. In the following sections we will see when this may
happen with fMRI data set. Another restriction is that the unmixing matrix is
square: This means that the number of unknown sources equals the number of
observed variables. Working with fMRI data, this restriction would lead to wrong
modeling, and the dimensionality reduction of the data has to be performed.

16.5.1 SPATIAL AND TEMPORAL ICA

As with PCA, ICA of fMRI data can be carried out in temporal or spatial domains
[33]. The data set can be decomposed into a set of spatial patterns of activations
associated with their own time courses, assuming statistical independence among
the spatial patterns or among the time courses. In spatial ICA the data matrix X
is p × n, where p is the number of time points and n is the voxels number. The
generative model of the data in (Equation 16.29) shows that the independent
components are a set of statistically independent images or spatial patterns of
activation, mixed linearly by the matrix A whose columns are the time courses
associated with each independent component. In temporal ICA, the data matrix is
n × p and its rows are the signal time courses in each voxel of the acquired volume.
The independent components are temporally independent time courses, and the
columns of the matrix A represent the spatial distribution of the temporal compo-
nents. In the first application of ICA to fMRI data, McKeown [34] suggests that
the spatial distribution of voxels whose activation is related to a task of interest
should be unrelated to the spatial distribution of artifacts that affect the signal,
such as physiological pulsations, subject-movement-related effects, and scanner
noise. Several other assumptions are made: the model (Equation 16.29) assumes
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that the spatial distribution of the independent components does not change with
time and that they are linearly mixed [35]. Temporal ICA assumes that there are
statistically independent temporal processes [36]. These two approaches seem to
give similar results in the case of one expected task-related component [37]. In
Reference 38 it was shown that they give similar results in decomposing data with
two components that are both spatially and temporally independent. In general,
the two methods give divergent results depending on the agreement with the
hypothesis of spatial or temporal independence. In this study [38], different spa-
tiotemporal patterns of activation were simulated, and it was shown that the two
methods produce similar results if the two components are both spatially and
temporally uncorrelated. If the components are correlated in time, time-domain
ICA will not give good correct results; similarly, spatial ICA will not give correct
results in the case of spatially dependent patterns of activation. From these con-
siderations, it emerges that the ICA model must be applied carefully, and the
experimenters have to know that it can lead to incorrect results. Even if a paradigm
is supposed to give temporally independent activations, there may be some inter-
esting components temporally correlated to each other that are not supposed in
advance. One way to proceed is to perform both spatial and temporal ICA and
then use consensus methods [74] to find regions that are activated independently
of the chosen model. Stone [39] introduced a spatiotemporal approach that max-
imizes simultaneously the independence in spatial and temporal domains. Spatial
ICA has been the most used approach mainly because of fewer computational
demands owing to the fact that in fMRI data sets the spatial dimension is much
larger than the temporal one. In fact, in spatial ICA the variables are represented
by the time points, whereas the observations are the voxels values; hence, the
computational benefit of the spatial ICA approach is clear.

16.5.2 METHODS FOR ICA

16.5.2.1 Historical Background

One of the first solutions to the BSS problem was given by Cardoso [71],
who used higher-order moments. The work on higher-order cumulant tensors
led to the development of the JADE algorithm [75]. The work by Pham, using
a maximum likelihood criterion [76], was further developed by Cardoso and
led to the EASI method [77]. A great improvement to ICA was due to the
algorithm developed by Bell and Sejnowski based on the InfoMax approach
[78]. This algorithm was then modified by Amari, using the natural gradient
[79]. It has been shown that this method has connections with the maximum
likelihood approach and with the earlier work of Cichocki et al. [80]. A very
popular algorithm, widely used for its computational efficiency, is the fastICA
algorithm based on a fixed-point iteration scheme [81]. A good review of
these algorithms and their relations can be found in Reference 82. Now, we
will briefly review some of the principles used to extract the independent
component from a data set.
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16.5.2.2 Nonlinear Decorrelation

The data matrix X of dimension N × M is a set of M observations of N variables
such that it is possible to write where ν represents a time
index if we have N time series, or a spatial index if we have N images. The
independent components that we have to find can be written as
Each observed variable xi can be considered as a linear combination of the
unknown statistically independent sources si, so that we can write

(16.32)

or, in matrix notation

(16.33)

The goal is to find an unmixing matrix, such that

(16.34)

are an estimate of the original sources. A first general assumption is that both the
original sources and the observed variables have zero mean. Because we are
interested in signal changes, the mean value does not carry any information, and
hence we can remove it by means of a centering stage so that x becomes x − E{x}.
In compact notation

(16.35)

where E{·} is the expectation operator. One principle that can be used to find the
independent components is nonlinear decorrelation. We can consider two statis-
tical variables x and y to be nonlinearly uncorrelated if

 (16.36)

where at least one function between g(·) and h(·) is a nonlinear one. The problem
is how to choose these functions such that this condition implies statistical
independence between x and y. It can be demonstrated that if two random variables
x and y are statistically independent, then we have, for any absolutely integrable
function of x and y, g(·) and h(·),

(16.37)

x = { ( ), , ( )},x x1 Nν ν…

s = { ( ),..., ( )}.s s1 Nν ν
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The problem was faced by Herault and Jutten [72] and then by Cichocki and
Unbenhaven [83]. Herault and Jutten proposed using smooth functions that can
be expanded in a Taylor series around zero, i.e.,

(16.38)

The expectation operator applied to the Taylor expansion of these func-
tions introduces higher-order moments of the random variables E{xi},
with A sufficient condition for Equation 16.36 to hold and for the
variables to be nonlinearly uncorrelated is that x and y be independent so that
Equation 16.37 is valid and either or is zero for each i. For this
property to be satisfied, either g(x) or h(y) must be an odd function with zero
mean. With these assumptions, looking for a matrix W such that the estimated
sources si and sj as well as g(si) and h(sj) are uncorrelated for any i ≠ j may
lead to finding independent components. Herault and Jutten proposed the use
of g(x) = x3 and h(y) = arctan(y). However, this algorithm showed some con-
vergence problems and cannot be used to separate many sources. Cichocki
and Unbenhaven proposed an extension of this algorithm that makes use of a
feedforward network. The criterion used is that of nonlinear decorrelation,
and it is the same as that used in the Amari natural gradient algorithm [79].

16.5.2.2.1 Whitening as a Preprocessing Step
It is noteworthy that nonlinear decorrelation is stronger than a linear decorrela-
tion. In fact, uncorrelation is derived from Equation 16.37, where g(x) and h(y)
are linear functions. For example, even if x = sin(t) and y = cos(t) are uncorre-
lated, it can be easily shown that x2 and y2 are correlated; in fact x2 + y2 = 1.
Although independence implies uncorrelation, the converse does not hold, and
a (linear) decorrelation method will not give independent components. However,
a decorrelation step is often used as a preprocessing stage in ICA. In order to
simplify successive algorithmic steps, a whitening operation is often performed:
whitening means that the zero mean observed variables xi are transformed into
a new set of variables that are uncorrelated and have unit variance. After this
operation, E{xixj} = δij holds and the variables are said to be whitened or sphered.
After the data have been sphered, the search for the independent components is
simplified because the new mixing

(16.39)

where WS is the whitening or sphering matrix, becomes orthogonal and so an
estimate of N(N − 1)/2 elements is needed to solve the ICA problem, as against
an estimate of N2 elements of the matrix A. The whitening matrix can be computed
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Â W AS=

DK2411_C016.fm  Page 526  Friday, June 17, 2005  4:32 PM

© 2005 by Taylor & Francis Group, LLC



Exploratory Data Analysis Methods in Functional MRI 527

as the inverse square root of the covariance matrix Cx = E{xx T}, which is written
as Given the eigenvalue decomposition of the covariance matrix

(16.40)

with E the eigenvectors matrix and D the diagonal matrix of the eigenvectors,
the whitening matrix can be written as

(16.41)

This whitening step is often performed in conjunction with the dimensionality
reduction operation by means of PCA, as we shall see later.

16.5.2.3 Information Maximization and Maximum 
Likelihood Approaches

Another approach to find the independent components from observed mixtures is
the information maximization approach, named InfoMax, which consists in max-
imizing the joint output entropy of a neural network whose inputs are the observed
variables. The entropy of a variable can be seen as a measure of the information
that its observation gives: the more random the variable, the more information we
have from its observation, and so the higher its entropy. The outputs of the neural
network can be written as . Maximizing the joint entropy of the out-
puts of this neural network is found to be equivalent to minimizing the mutual
information among the estimated components . The mutual information
between a set of variables is an information theoretic criterion, which shows the
amount of information that the knowledge about a variable carries about the other.
The mutual information of a set of random variables yi can be written as

(16.42)

where H(·) is the entropy. The first term is related to the amount of information
we get from the observation of the variables separately, whereas the second term
is related to the amount of information we get from the observation of all the
variables together. If the variables are statistically independent, we do not have
any additional information about any variable from the observation of any other,
and the entropy of the complete variable vector is the sum of the entropies of
the individual variables. In this case the mutual information equals zero. If there
is some redundancy in the variable set, it means that we can get some information
about some variable from the observation of the others, and the entropy of the
complete vector is lower than the sum of the individual entropies. This results
in a mutual information greater than zero: minimizing the mutual information
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among a set of variables is equivalent to maximizing their statistical indepen-
dence. It is possible to show that the mutual information of the estimated
components is

(16.43)

where pi(si) is the probability density function of the independent component si. It is
important to choose the proper shape of the nonlinearities gi such that
This means that it is necessary to have some prior knowledge about the statistical
distribution of the independent components, for example, if they have a super-
Gaussian distribution, such as images with small activation foci in a large number
of voxels, or sub-Gaussian, such as the distribution of time-domain components
that may be strongly related to a block-designed task. The reason why it is not
possible to estimate Gaussian-distributed components will be shown using intu-
itive reasoning afterward. This method was extended to allow the separation of
both super- and sub-Gaussian-distributed components [84]. The weights are esti-
mated using a stochastic gradient descent algorithm [78] such that at each step
the weights are updated following the relations

(16.44)

and fi = (log(pi))′. It can be shown that this algorithm is equivalent to the maximum
likelihood approach for the estimation of components with known distribution
densities. A simplification and optimization of this method was given by Amari
[79], using the natural gradient method, which can be obtained by multiplication
of Equation 16.44 by WWT resulting in

(16.45)

The algorithm stabilizes when

(16.46)

The minus sign is given by the functions fi. Typical functions are f  (s) = −2
tanh(s) for super-Gaussian components and f (s) = tanh(s) − s for sub-Gaussian
components. The relation in Equation 16.46 shows that this method can be viewed
as nonlinear decorrelation, and it is interesting to note that if we perform a Taylor
expansion of the nonlinear functions, we get higher-order correlations of the
variables. These are the measures we have to take into account if we want to
estimate statistical independence.
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16.5.2.4 Non-Gaussianity and Negentropy

Another approach is related to the non-Gaussianity of the components and can
be understood if we introduce the central limit theorem. This theorem states
that the linear combination of random variables approaches a Gaussian distri-
bution as more variables are added. From this theorem, we can state that because
the data set is supposed to be a linear mixing of statistically independent random
variables, their linear mixing is supposed to be more Gaussian than the original
ones. When we look for original independent components, we look for a linear
combination of the mixtures . The new variable is maximally non-
Gaussian when it equals one of the independent components. It is now clear
that it is not possible to estimate statistically independent components that are
Gaussian distributed; moreover, higher-order moments of Gaussian-distributed
variables equal zero, so they cannot be estimated by nonlinear decorrelation
methods. In order to estimate the degree of non-Gaussianity of a random
variable, it is possible to use different measures such as kurtosis. However,
negentropy has proven to be more robust, even if computationally expensive
to estimate. Negentropy is defined as J(y) = H(ygauss) − H(y) where H(y) is the
entropy of the y variable and ygauss is a Gaussian variable with the same
covariance matrix as y. Because Gaussian variables have the largest entropy
among all variables with equal variance, negentropy is always greater than or
equal to zero. It can be shown that if the estimated independent components
are constrained to have unit variance, estimating the weights W such that the new
variables have maximum non-Gaussianity is the same as minimizing their mutual
information. The fastICA algorithm can be used to estimate the independent
components by using of this principle. It is appealing because instead of using
a gradient descent approach to find the solution, it employs a fast fixed-point
iteration scheme. Moreover, the independent components can be found using
a deflationary scheme, which means estimating the independent components
one by one. This operation is simplified if we are working on whitened data
because in the whitened space the directions wi that maximize the non-Gaus-
sianity of are orthogonal. In fact, because the independent components
are uncorrelated it follows that

(16.47)

as for whitened data we have E{xxT} = I. The first independent component can be
estimated by calculating the direction w1 that maximizes the non-Gaussianity of

. The successive independent components are found as the directions that
maximize the non-Gaussianity of with the constraint that wi lie in the subspace
orthogonal to the one individuated by the directions found in the previous steps.
Another approach consists in estimating the independent component in a single
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step: this symmetric approach has the advantage of reducing the propagation of
estimation error from the first components to the last and requires a symmetric
orthogonalization of the matrix W = (w1, w2,…,wn)T.

16.5.2.5 Ambiguities in the ICA Model

The model (Equation 16.33) implies the existence of some ambiguities. In fact,
because both the mixing matrix and the sources are unknown, it is not possible
to determine the energies and the sign of the independent components. It is then
possible to overcome this ambiguity by constraining the independent components
to have unit variance, while the sign remains ambiguous. It can be shown that
introducing the constraint of unit variance of the estimated independent compo-
nents, along with the whitening operation, results in constraining wi to lie in the
unit sphere, so that the algorithms are modified accordingly. After a new estima-
tion step of the directions of wi, a normalization step has to be performed. Another
ambiguity concerns the order of the independent components, which cannot be
determined a priori: for this reason, we are not able to inter the significance of
a component just looking at its extraction order; that is ambiguous.

16.5.3 PREPROCESSING

Because spatial-filtering as well as temporal-filtering operations do not affect the
validity of the ICA model [85], some filtering stages such as spatial smoothing
or temporal filtering can be applied. High-pass temporal filtering can be used to
remove low-frequency signal changes or drift. Spatial smoothing is usually per-
formed in order to enhance signal-to-noise ratio and reduce movement-related
effects. The filtering procedure may have a strong influence on the results because
some information in the data set may be lost: low-pass filtering in the time domain
may lead to loss of independence of the components, whereas high-pass filtering
may enhance independence because it allows the removal of low-frequency fluc-
tuations or drifts in the signal that may bias the independence of the components.
Low-pass filtering in the spatial domain is usually performed in order to enhance
signal-to-noise ratio and reduce motion-related effects. Centering of the variables,
i.e., the time points if we are applying spatial ICA or voxels in a temporal IC
model, is also carried out. The centering operation does not alter the mixing
matrix A, so that the mean can be added back to the independent components s
by means of this operation: where x here refers to the observed
data before mean removal. A data reduction stage is usually included; in fact, the
basic ICA model assumes that the number of the sources that generate the data
equals the number of the observed variables, which means that applying spatial
ICA decomposition to a data set consisting of 100 time acquisitions of a volume
will result in the extraction of 100 components. This may not be true in general,
and the number of underlying sources is often supposed to be less than the number
of observed mixtures. In this case, the mixing matrix would be rectangular, and
so the basic ICA model would not hold. Moreover, trying to estimate more sources

s s A E x← + −1 { },
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than the actual number may cause overlearning. This phenomenon is related to
the use of too many parameters in the model with respect to the amount of data
available. Data reduction is usually achieved by applying PCA to the observed
data and retaining the PCs that account for most of the variance in the data, i.e.,
more than 90% of the overall variance. The discarded components may be related
to noise only. As this may be not true in general, the PCA reduction process is
very critical. This operation allows simultaneous whitening of the observed data.
Given the data covariance matrix Cx = E{xx}T, the matrix of its eigenvectors
U = (u1, u2, un) and the diagonal matrix of the eigenvalues the whit-
ening transform can be written as

(16.48)

The data reduction operation can be performed by retaining m of the n
eigenvectors, usually the first ones that take into account most of the data variance.
The first m whitened PCs are given by

(16.49)

where is formed by the first m columns of U, and the matrix Dm is the
diagonal matrix with the first m eigenvalues of Cx. This initial preprocessing
step is a very important and critical stage because using fewer dimensions than
the actual number or underestimating the model order may cause information
loss, whereas overestimating the model order may cause overlearning and
generate spurious components. If we try to extract more independent compo-
nents than the real number, we may find components with a single spike or
sparsle distributed. These solutions can be seen as extreme cases of non-
Gaussianity. The dimension reduction process requires caution, because though
reduction may be preferable from the point of view of computational demands,
information loss may result. As stated before, it is possible to use the number
of components depending on the percentage of the overall variance explained.
If the noise is supposed to contaminate all the observed mixtures in the same
way, it may be supposed that the eigenvalues will be affected by it. It will be
possible to detect a threshold above which all the eigenvalues will be statistically
equal: this threshold can be determined by visual inspection of a scree plot for
a change in the steepness of the plot. Other methods to determine the dimension
are information theoretic criteria such as AIC [65,86] and MDL [66] and Baye-
sian approaches [87,88]. In Reference 43 a clustering approach based on the k-
means algorithm was proposed for spatial ICA. The dimensionality reduction
consists of applying the clustering operation to the observed variables and using
the mean of each cluster as reduced data. This latter approach does not take
advantage of second-order statistics and has proved to be superior to PCA for
higher values of CNR, whereas for lower CNR, PCA was found to outperform
clustering. In Reference 40 ICA was applied to voxels belonging to the cortex.
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This method, defined as cortex-based ICA, was proposed to remove from the
analysis the signal dynamics due to the voxels belonging to white matter,
cerebrospinal fluid, ventricles, and other uninteresting structures. The method
may enhance the localization power of ICA decomposition because it can work
on reduced voxel numbers with the same number of independent components.
Moreover, it speeds up the computation operation.

16.5.4 MODEL VALIDATION

In Reference 35 the validity of the ICA model in the spatial domain was investi-
gated. The validity of the hypotheses of linear mixing of the components, and the
effect of dimension reduction by means of PCA were studied. In each voxel νi,
the minus log-likelihood of the data given in the model was calculated, resulting
in a value u(νi ). A spatial-smoothing operation was performed to achieve a map
of the goodness of fit of the model in the different brain regions. Once the unmixing
matrix W is found as well as the estimate of the original sources, and if we consider
the unmixing matrix invertible, it is possible to reconstruct the data from the
components by means of

(16.50)

where S are the estimated independent components. The likelihood of observing
the data under the model specified by W-1 and S can be written as P( Xi | W ) =
det(W)P(Si) where Xi is the ith column or the ith voxel’s time series and Si is the
ith column of the S matrix. Using the statistical independence among the com-
ponents contained in the rows of S, it is possible to write P(Xi | W) = det(W)P(Si)
= det(W ) .The quantity is the probability of the ith point in the
kth component maps and is derived from an estimation of the probability density
functions of the kth component. In Reference 35 a smoothed version of the
histogram of each component was used. The minus log-likelihood function can
be written as The loga-
rithm is usually used because of the exponential form of several probability
density functions. In the work of McKeown it is verified that the ICA model fits
better for white matter than for gray matter in real data sets. This is supposed to
be related to the difference in the number of spatially independent components
for the different regions or to a nonlinear mixing of the sources in the gray matter.
Moreover, the validity of the model in simulated and real data sets against different
degrees of dimensionality reduction by means of PCA was investigated. The
simulated data sets were created using 50 eigenimages and mixed randomly.
Gaussian random noise was then added. The method showed different behavior
in real and simulated data sets: in the simulated data set the u(νi) function
decreases steeply if more components than the actual number are chosen, and in
the real data set this function decreases slowly showing that the smallest variance
components are unlikely to have a Gaussian structure.
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16.5.5 INTERPRETATION OF THE RESULTS

16.5.5.1 Thresholding the Maps

The thresholding operation of each map is usually performed by scaling the
intensity values to the z score. Within each component map, the voxels that
contribute significantly to the map are those having a z score whose absolute value
is greater than a threshold. Voxels whose time series are modulated opposite to
the time course of the component show a negative z score. It is important to stress
that the z score has no statistical significance, but it is used only for descriptive
purposes. In order to make statistical inferences about these maps, some hypothesis
about the distribution of the noise or the signal is needed. In Reference 41 a
probabilistic ICA model that takes noise into account is introduced. The use of a
z score for inferential purposes is not recommended here because of the non-
Gaussian distribution of the intensity values in each map. A different z score
normalization is proposed, using the estimate of the voxel-wise noise standard
deviation, evaluated as residuals of the IC model. Each resulting map is then is
fitted with a Gaussian mixture model (GMM) by means of an expectation maxi-
mization algorithm. The Gaussian that identifies the background noise is typically
thought to coincide with the dominant mode of the histogram, and the probability
density function of the background noise can be evaluated, as well as the
probability that any voxel belongs to the background noise. The Gaussian
mixtures that do not belong to background noise can be used to estimate the
probability of the hypothesis of activation related to the relevant time course.

16.5.5.2 Task-Related Activations

McKeown [34] was the first to apply ICA to fMRI data. In this early applica-
tion, ICA was applied in the spatial domain. In the application of spatial ICA
to fMRI data, McKeown grouped the components found in different classes
based on the shapes of the associated time courses. Block-designed experi-
ments were analyzed in which two conditions, task and control, alternate in
time. Even if no information about the shape of the activation or its location
is used in the decomposition process, it can be used after the independent
components are estimated for classification purposes. Usually in order to detect
task-related components, the correlation coefficient between the time courses
of each component (in spatial ICA the columns of the mixing matrix A) and
a reference function depicting the task is evaluated [42]. The components
whose associated time courses highly correlate with the paradigm are consid-
ered task-related components or consistently task related (CTR), whereas
components whose activation is related only partly to the paradigm are called
transiently task related (TTR). These components were thought to be related
to a complex spatiotemporal structure of the activation. In fact, they may be
the decomposition results of different neural processes with overlapping areas
or related to transient neural processes such as arousal, habituation, or learning.
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These components can be considered super-Gaussian distributed in the spatial
domain because they are focused activations in small clusters compared with
the whole volume. In Reference 34 and Reference 35 the ICA decomposition
was applied without PCA reduction and usually one component for each trial
was found to highly correlate with the task (r > 0.6). Some components that
showed abrupt changes in the associated time courses or ring-like spatial
distributions were thought to be related to movement effects. Other components
may have been diffuse and noisy. Quasi-periodic components, probably due to
the physiological pulsations, heartbeat, and respiratory effects, were found. Because
sampling times are often less than a second, aliasing often cannot be avoided, and
these quasi-periodic effects can also be derived from spin excitation history
effects. Several TTR components were also found, showing a correlation with
the task only for one or two repetitions of the task blocks. Although the
advantages of exploratory analysis performed with ICA were stressed because
these TTR maps could not be detected by correlation analysis that computes
the average over all the cycles, the question was if these components could
be modified by the requirement of spatial independence of the CTR maps. In
order to perform this test, ICA was performed again on the data with the CTR
removed, showing that even if some TTR components were unaffected by the
CTR removal, others changed sensibly, suggesting a spatial dependence among
these components. The component removal can be performed by multiplying
the components matrix, found by ICA, by a copy of the mixing matrix whose
columns corresponding to the components to be removed are zeroed. If W is
the unmixing matrix and is its inverse with the columns zeroed, then the
reconstructed data matrix can be written as . In Reference 41 it
is suggested that the presence of TTR activations may originate from interest-
ing physiological processes but may originate also from an overfitting problem
and the lack of a significance test for the components. In this work a proba-
bilistic PCA model order reduction was used, which, starting from the cova-
riance matrix of the data, estimated the posterior distribution of the model
order. In Reference 40 the problem of identification and characterization of
the maps was outlined. In this work the maps obtained after spatial ICA were
classified according to three descriptive measures: the kurtosis of the map
values, the degree of spatial clustering of each map, and the one-lag autocor-
relation of each map time series. The kurtosis takes into account the distribu-
tion properties of each map intensity. The degree of spatial clustering of each
map, after a thresholding operation by means of a z score, was chosen because
activation maps usually have a defined spatial structure. The one-lag autocor-
relation of each map time series was chosen in order to detect a temporal
structure in the maps. This procedure was applied to voxels belonging to the
cortex individuated by means of the segmentation of a high-resolution T1
anatomical image coregistered with the functional images. The method showed
that the simultaneous inspection of these values could reveal potentially mean-
ingful phenomena because in different tasks the interesting components show
similar combinations of these parameters.

Wa
−1

X W WXa a= −1
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16.5.6 SIMULATION AND ALGORITHM COMPARISON

The analysis of fMRI data by means of independent components is a complex
process, and the final result may depend not only on the processing strategies but
also on the algorithm that has been chosen. Because the real sources are unknown,
it is important to perform some tests on simulated data sets: these may be simple
data sets such as time series with varying degrees of Gaussian noise and with
superimposed simulated activations. The noise can be extracted from real data sets,
as in Reference 44, and may be white or correlated. It is then possible to use images
such as phantoms to simulate the spatial properties of the activation maps such as
the spatial correlation of the sources due to the vascular point-spread function. A
model with a simplified distribution of baseline voxel values was used, with artifi-
cially added movement in Reference 45 to test the behavior of spatial ICA. In order
to have realistic noise models, it is possible to use resting-state data (null data) and
superimpose the activations using self-generated masks or masks obtained from real
activation thresholded maps. These maps can be used as masks in order to modulate
the null data set with simulated activation. In Reference 44 the InfoMax and the
fastICA algorithms were compared along with some preprocessing strategies. The
Kullback—Leibler divergence between the estimated and real source distributions
was found. The results reported in this article show some preference for the PCA
reduction stage at higher noise levels in a completely simulated data set, and always
with hybrid data sets obtained by adding simulated sources to a real fMRI data set.
In this work, it was found that InfoMax seems to outperform the fastICA algorithm
because it does not constrain the sources to be orthogonal to each other. In Reference
46 receiver operating characteristics (ROC) are used to test for the detection of spatial
accuracy of the InfoMax and fastICA algorithms. A likelihood analysis was used to
test the reliability of the model. The filtering effect of each algorithm was tested
using a Gaussian mixture model to fit each map because from this fit it is possible
to estimate the variance or the residual noise. The spatial structure of the maps was
estimated by means of a cluster-sizing function. The test was performed on a sim-
ulated data set, obtained by adding the activated regions to resting-state data, and
on real data. In the latter case, the results of a linear correlation test were used as a
benchmark for the ICA analysis. The results from the simulated data set were aligned
with those from real data sets and it was confirmed that although fastICA exhibited
better overlap with linear correlation results, the likelihood analysis and noise results
showed the better performance of InfoMax, confirming its superiority in global
model estimation and filtering capabilities. This was thought to be due to the adaptive
nature of the InfoMax algorithm.
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17.1 INTRODUCTION

 

A general issue in the analysis of functional magnetic resonance imaging (fMRI)
data is the relationship between the neurobiological hypothesis one posits and
the statistical models adopted to test that hypothesis. One key distinction is
between functional specialization and integration. Briefly, fMRI was originally
used to provide functional maps showing which regions are specialized for spe-
cific functions, a classic example being the study by Zeki et al. (1) who identified
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V4 and V5 as being specialized for the processing of color and motion, respec-
tively. More recently, these analyses have been augmented by functional inte-
gration studies, which describe how functionally specialized areas interact and
how these interactions depend on changes of context. A recent example is the
study by Buchel et al. (2) who found that the success with which a subject
learned an object-location association task was correlated with the coupling
between regions in the dorsal and ventral visual streams (3). In this chapter,
we will address the design and analysis of neuroimaging studies from these
two distinct perspectives but note that they have to be combined for a full
understanding of brain mapping results.

In practice, the general linear model (GLM) is used to identify functionally
specialized brain responses and is the most prevalent approach to characterizing
functional anatomy and disease-related changes. GLMs are fitted to fMRI time
series at each voxel resulting in a set of voxel-specific parameters. These param-
eters are then used to form statistical parametric maps (SPMs) or posterior
probability maps (PPMs) that characterize regionally specific responses to exper-

and SPMs highlighting regions that are sensitive to visual motion stimuli).
Analyses of functional integration are implemented using multivariate

approaches that examine the changes in multiple brain areas induced by experimen-
tal manipulation. Although there are a number of methods for doing this, we focus
on a recent approach called dynamic causal modeling (DCM).

In order to assign an observed response to a particular brain structure or
cortical area, the data must conform to a known anatomical space. Before con-
sidering statistical modeling, this chapter, therefore, deals briefly with how a time
series of images (from single or multiple subjects) are realigned and mapped into
some standard anatomical space (e.g., a stereotactic space).

A central issue in this chapter is the distinction between classical and Bayesian
estimation and inference. Historically, the most popular and successful method
for the analysis of fMRI is SPM. This is based on voxelwise GLM and Gaussian
random field (GRF) theory. More recently, a number of Bayesian estimation and
inference procedures have appeared in the literature. A key reason behind this is
that as our models become more realistic (and, therefore, complex) they need to
be constrained in some way. A simple and principled way of doing this is to use
priors in a Bayesian context. In this chapter we will see Bayesian methods being

(Section 17.5) and DCM (Section 17.6). One should not lose sight, however, of
the simplicity of the original SPM procedures (Section 17.4) as they remain
attractive, both from an interpretive and computational perspective.

The analysis of functional neuroimaging data involves many steps that can
be broadly divided into: (1) spatial processing, (2) estimating the parameters
of a statistical model, and (3) making inferences about those parameter esti-

 

DK2411_C017.fm  Page 542  Friday, June 17, 2005  5:54 PM

© 2005 by Taylor & Francis Group, LLC

imental manipulation. (Figure 17.4 and Figure 17.5, for example, show PPMs

Figure 17.1.
mates with appropriate statistics. This data processing stream is shown in

used in spatial normalization (Subsection 17.2.3), posterior probability mapping



 

Classical and Bayesian Inference in fMRI

 

543

 

17.2 SPATIAL TRANSFORMATIONS

 

The analysis of neuroimaging data generally starts with a series of spatial trans-
formations. These transformations aim to reduce unwanted variance components
in the voxel time series that are induced by movement or shape differences among
a series of scans. Subsequent analyses assume that the data from a particular
voxel all derive from the same part of the brain. Violations of this assumption
will introduce artifactual changes in the voxel values that may obscure changes
or differences of interest. Even single-subject analyses proceed in a standard
anatomical space, simply to enable reporting of regionally specific effects in a
frame of reference that can be related to other studies.

The first step is to realign the data to “undo” the effects of subject movement
during the scanning session. After realignment, the data are then transformed
using linear or nonlinear warps into a standard anatomical space. Finally, the data
are usually smoothed spatially prior to analysis with a GLM.

 

FIGURE 17.1

 

This schematic depicts the transformations that start with an imaging
data sequence and end with a statistical parametric map (SPM) or posterior probability
map (PPM). SPMs can be thought of as “x-rays” of the significance of an effect,
whereas PPMs reflect our confidence that the effect is larger than a certain specified
size. Voxel-based analyses require the data to be in the same anatomical space: This
is effected by realigning the data (and removing movement-related signal components
that persist after realignment). After realignment, the images are subject to nonlinear
warping so that they match a template that already conforms to a standard anatomical
space. After smoothing, the general linear model is employed to (1) estimate the
parameters of the model and (2) derive the appropriate univariate test statistic at every
voxel.

Image time-series Kernel Design matrix
Data analysis stream

Statistical parametric map (SPM)
or

Posterior probability map (PPM)

Realignment Smoothing

Normalization

Template

Parameter estimates

General linear model
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17.2.1 R

 

EALIGNMENT

 

Changes in signal intensity over time, from any one voxel, can arise from head
motion and this represents a serious confound for fMRI studies. Despite
physical restraints on head movement, subjects can still show displacements
of upto several millimeters. Realignment involves estimating the six parame-
ters of an affine “rigid-body” transformation that minimize the (sum of
squared) differences between each successive scan and a reference scan (usu-
ally the first or the average of all scans in the time series), and applying the
transformation by resampling the data using trilinear, sinc, or spline interpo-
lation. Estimation of the affine transformation is usually effected with a first-
order approximation of the Taylor expansion of the effect of movement on
signal intensity using the spatial derivatives of the images (see the following
subsection). This allows for a simple iterative least square solution that cor-
responds to a Gauss–Newton search (4). Even if this realignment were perfect,
other movement-related signals (see the following text) could still persist. This
calls for a further step in which the data are adjusted for residual movement-
related effects.
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In extreme cases, as much as 90% of the variance in fMRI time series can be
accounted for by the effects of movement even after realignment (5). Causes
of these movement-related components are due to movement effects that cannot
be modeled using a linear affine model. These nonlinear effects include: (1)
subject movement between slice acquisition, (2) interpolation artifacts (6), (3)
nonlinear distortion due to magnetic field inhomogeneities (7), and (4) spin-
excitation history effects (5). The latter can be pronounced if the repetition time
(TR) approaches T

 

1

 

, making the current signal a function of movement history.
These multiple effects render the movement-related signal (
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) a nonlinear
function of displacement (
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) in the 
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th and previous scans 

 

y

 

n

 

 

 

=

 

 

 

f

 

(

 

x

 

n

 

, 

 

x

 

n

 

−

 

1

 

,

 

…

 

).
By assuming a sensible form for this function, its parameters can be estimated
using the observed time series and the estimated movement parameters 

 

x

 

 from
the realignment procedure. The estimated movement-related signal is then
simply subtracted from the original data. This adjustment can be carried out as
a preprocessing step or embodied in model estimation during the GLM analysis.
The form for ƒ(

 

x

 

), proposed in (5), was a nonlinear autoregression model that
used polynomial expansions to second order. This model was motivated by the
spin-excitation history effects and allowed displacement in previous scans to
explain the current movement-related signal. However, it is also a reasonable
model for many other sources of movement-related confounds. Generally, for
TRs of several seconds, interpolation artifacts predominate (6) and first-order
terms, comprising an expansion of the current displacement in terms of periodic
basis functions, are sufficient.
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17.2.3 N

 

ORMALIZATION

 

After realigning the data, a mean image of the series or other coregistered (e.g.,
a T

 

1

 

-weighted) image, is used to estimate some warping parameters that map it
onto a template that already conforms to some standard anatomical space (8). This
estimation can use a variety of models for the mapping, including: (1) a 12-
parameter affine transformation, where the parameters constitute a spatial trans-
formation matrix, (2) low-frequency spatial basis functions (usually a discrete
cosine set or polynomials), where the parameters are the coefficients of the basis
functions employed and, (3) a vector field specifying the mapping for each control
point (e.g., voxel). In the latter case, the parameters are vast in number and
constitute a vector field that is bigger than the image itself. Estimation of the
parameters of all these models can be accommodated in a simple Bayesian frame-
work, in which one is trying to find the deformation parameters 

 

θ

 

 that have the
maximum posterior probability 

 

p
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) given the data 
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Put simply, one wants to find the deformation that is most likely, given the data.
This deformation can be found by maximizing the probability of getting the data
(assuming the current estimate of the deformation is true) times the probability of
that estimate being true. In practice, the deformation is updated iteratively using
a Gauss–Newton scheme to maximize 

 

p
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|
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). This involves jointly minimizing
the likelihood and prior potentials 
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likelihood potential is generally taken to be the sum of squared differences between
the template and deformed image and reflects the probability of actually getting
that image if the transformation was correct. The prior potential can be used to
incorporate prior information about the likelihood of a given warp. Priors can be
determined empirically or motivated by constraints on the mappings. Priors play
a more essential role as the number of parameters specifying the mapping increases
and are central to high-dimensional warping schemes (9).

In practice, most people use an affine or spatial basis function warps and
iterative least squares to minimize the posterior potential. A nice extension of this
approach is that the likelihood potential can be refined and taken as the difference
between the index image and the best (linear) combination of templates (e.g.,
depicting gray, white, CSF, and skull tissue partitions). This models intensity
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It is sometimes useful to coregister functional and anatomical images. However,
with echo-planar imaging, geometric distortions of T

 

2

 

* images, relative to ana-
tomical T

 

1

 

-weighted data, are a particularly serious problem because of the very
low frequency per point in the phase-encoding direction. Typically, for echo-
planar fMRI magnetic field inhomogeneity, sufficient to cause dephasing of 2
through the slice, corresponds to an in-plane distortion of a voxel. “Unwarping”

 

DK2411_C017.fm  Page 545  Friday, June 17, 2005  5:54 PM

© 2005 by Taylor & Francis Group, LLC

modalities to be coregistered (see Figure 17.2).
differences that are unrelated to registration differences and allows different



 

546

 

Advanced Image Processing in Magnetic Resonance Imaging

 

schemes have been proposed to correct for the distortion effects (10). However,
this distortion is not an issue if one spatially normalizes the functional data.

 

17.2.5 S

 

PATIAL

 

 S

 

MOOTHING

 

The motivations for smoothing the data are fourfold:

1. By the matched filter theorem, the optimum smoothing kernel corre-
sponds to the size of the effect that one anticipates. The spatial scale
of hemodynamic responses is, according to high-resolution optical
imaging experiments, about 2 to 5 mm. Despite the potentially high
resolution afforded by fMRI an equivalent smoothing is suggested for
most applications.

2. By the central limit theorem, smoothing the data will render the errors
more normal in their distribution and ensure the validity of inferences
based on parametric tests.

3. When making inferences about regional effects using GRF theory (see
the following subsection), the assumption is that the error terms are a

 

FIGURE 17.2

 

Schematic illustrating a Gauss–Newton scheme for maximizing the pos-
terior probability 

 

p
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θ

 

|

 

y

 

) of the parameters required to spatially normalize an image. This
scheme is iterative. At each step the conditional estimate of the parameters is obtained by
jointly minimizing the likelihood and prior potentials. The former is the difference between
a resampled (i.e., warped) version 

 

y

 

 of the image 

 

f

 

 and the best linear combination of
some templates 

 

g

 

. These parameters are used to mix the templates and resample the image
to progressively reduce both the spatial and intensity differences. After convergence the
resampled image can be considered normalized.
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reasonable lattice representation of an underlying and smooth Gaussian
field. This necessitates smoothness to be substantially greater than
voxel size. If the voxels are large, then they can be reduced by sub-
sampling the data and smoothing (with the original point spread func-
tion) with little loss of intrinsic resolution.

4. In the context of intersubject averaging it is often necessary to smooth
more (e.g., 8 to 12 mm) to project the data onto a spatial scale where
homologies in functional anatomy are expressed among subjects.

 

17.3 GENERAL LINEAR MODEL

 

Statistical analysis of fMRI data entails (1) modeling the data to partition observed
neurophysiological responses into components of interest, confounds, and error,
and (2) making inferences about the interesting effects in relation to the error
variance. This can be regarded as a direct comparison of the variance attributable
to an interesting experimental manipulation to the variance attributable to the
error. These comparisons can be made with T or F statistics.

A brief review of the literature may give the impression that there are numerous
ways to analyze fMRI time series with a diversity of statistical and conceptual
approaches. This is, however, not the case. With few exceptions, every analysis is a
variant of the general linear model (GLM). This includes: (1) simple T tests on scans
assigned to one condition or another, (2) correlation coefficients between observed
responses and boxcar stimulus functions in fMRI, (3) inferences made using multiple
linear regression, (4) evoked responses estimated using linear time invariant models,
and (5) selective averaging to estimate event-related responses. Mathematically, they
are formally identical and can be implemented with the same equations and algo-
rithms. The only thing that distinguishes among them is the design matrix encoding
the experimental design. The use of the correlation coefficient deserves special
mention because of its popularity in fMRI (11). The significance of a correlation is
identical to the significance of the equivalent T statistic testing for a regression of
the data on the stimulus function. The correlation coefficient approach is useful but
the inference is effectively based on a limiting case of multiple linear regression that
obtains when there is only one regressor. In fMRI, many regressors usually enter
into a statistical model. Therefore, the T statistic provides a more versatile and generic
way of assessing the significance of regional effects.
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The GLM is an equation 
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 that expresses the observed response variable

 

Y

 

 in terms of a linear combination of explanatory variables 

 

X

 

 plus a well-behaved
error term. The GLM is variously known as “analysis of covariance” or “multiple
regression analysis” and subsumes simpler variants like the “T test” for a differ-
ence in means to more elaborate linear convolution models such as finite impulse
response (FIR) models. The matrix 

 

X

 

 that contains the explanatory variables (e.g.,
designed effects or confounds) is called the 

 

design matrix

 

. Each column of the
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design matrix corresponds to some effect built into the experiment or that may
confound the results. These are referred to as explanatory variables, covariates,
or regressors.

The design matrix can contain both covariates and indicator variables. Each
column of 

 

X

 

 has an associated unknown parameter. Some of these parameters
will be of interest (e.g., the effect of a particular sensorimotor or cognitive
condition, or the regression coefficient of hemodynamic responses on reaction
time). The remaining parameters will be of no interest and pertain to confounding
effects (e.g., the effect of being a particular subject or the regression slope of
voxel activity on global activity).

under four conditions. The effects on the response variable are modeled in terms
of functions of the presence of these conditions (i.e., boxcars smoothed with a
hemodynamic response function) and constitute the first four columns of the
design matrix. There then follows a series of terms that are designed to remove
or model low-frequency variations in signal due to artifacts such as aliased
biorhythms and other drift terms. The final column is whole brain activity. The
relative contribution of each of these columns is assessed using standard least
squares or Bayesian estimation. Classical inferences about these contributions
are made using T or F statistics, depending upon whether one is looking at a
particular linear combination (e.g., a subtraction), or all of them together. Baye-
sian inferences are based on the posterior or conditional probability that the
contribution exceeded some threshold, usually zero.

Due primarily to the presence of aliased biorhythms and unmodeled neuronal
activity, the errors in the GLM will be temporally autocorrelated. To accommodate
this, the GLM has been extended (12) to incorporate intrinsic nonsphericity, or
correlations among the error terms. This generalization brings with it the notion
of 

 

effective degrees of freedom

 

, which are less than the conventional degrees of

temporal correlations reduce the effective number of independent observations.
More recently, a restricted maximum likelihood (ReML) algorithm for estimation
of the autocorrelation, variance components, and regression parameters has been
proposed (13).

 

17.3.2 C

 

ONTRASTS

 

To assess effects of interest that are spanned by one or more columns in the
design matrix one uses a contrast (i.e., a linear combination of parameter esti-
mates). An example of a contrast weight vector would be [

 

−

 

1 1 0 0 

 

…

 

] to compare
the difference in responses evoked by two conditions, modeled by the first two
condition-specific regressors in the design matrix. Sometimes several contrasts
of parameter estimates are jointly interesting. For example, when using polyno-

mental factor. In these instances, a 

 

matrix

 

 of contrast weights is used that can be
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The example in Figure 17.1 relates to a fMRI study of visual stimulation

freedom under i.i.d. assumptions (see footnote). They are smaller because the

mial (14) or basis function expansions (see Subsection 17.3.1) of some experi-
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thought of as a collection of effects that one wants to test together. Such a contrast
may look like,

which would test for the significance of the first or second parameter estimates.
The fact that the first weight is –1 as opposed to 1 has no effect on the test because
F statistics are based on sums of squares.

 

17.3.3 T

 

EMPORAL
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 F
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Functional MRI using blood oxygen level dependent (BOLD) contrast provides
an index of neuronal activity indirectly via changes in blood oxygenation levels.
For a given impulse of neuronal activity, the fMRI signal peaks some 4–6 sec
later, then after 10 sec or so drops below zero and returns to baseline after 20 to
30 sec. This response varies from subject to subject and from voxel to voxel and
this variation can be captured using temporal basis functions.

In Reference 15, the form of the hemodynamic impulse response function
(HRF) was estimated using a least squares deconvolution and a time invariant
model, where evoked neuronal responses are convolved with the HRF to give the
measured hemodynamic response (16). This simple linear framework is the cor-
nerstone for making statistical inferences about activations in fMRI with the
GLM. An impulse response function is the response to a single impulse, measured
at a series of times after the input. It characterizes the input–output behavior of
the system (i.e., voxel) and places important constraints on the sorts of inputs
that will excite a response. The HRFs, estimated in (15) resembled a Poisson or
gamma function, peaking at about 5 sec.

Knowing the forms that the HRF can take is important for several reasons,
not the least of which is because it allows for better statistical models of the
data. The HRF may vary from voxel to voxel, and this has to be accommodated
in the GLM. To allow for different HRFs in different brain regions, the notion
of temporal basis functions to model evoked responses in fMRI was introduced
(17) and applied to event-related responses in (18,19). The basic idea behind
temporal basis functions is that the hemodynamic response induced by any
given trial type can be expressed as the linear combination of several (basis)
functions of peristimulus time. The convolution model for fMRI responses takes
a stimulus function encoding the supposed neuronal responses and convolves
it with an HRF to give a regressor that enters into the design matrix. When
using basis functions, the stimulus function is convolved with all the basis
functions to give a series of regressors. The associated parameter estimates are
the coefficients or weights that determine the mixture of basis functions that
best models the HRF for the trial type and voxel in question. We find the
most useful basis set to be a canonical HRF and its derivatives with respect
to the key parameters that determine its form (e.g., latency and dispersion).

−









1 0 0 0

0 1 0 0

…
…
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The advantage of this approach is that it can partition differences among evoked
responses into differences in magnitude, latency, or dispersion, which can be
tested for using specific contrasts (20).

Temporal basis functions are important because they enable a graceful tran-
sition between conventional multilinear regression models with one stimulus
function per condition and FIR models with a parameter for each time point
following the onset of a condition or trial type. Figure 17.3 illustrates this
graphically (see figure legend). In summary, temporal basis functions offer useful
constraints on the form of the estimated response that retain the flexibility of
FIR models and the efficiency of single regressor models. The advantage of
using several temporal basis functions (as opposed to an assumed form for the
HRF) is that one can model voxel-specific forms for hemodynamic responses
and formal differences (e.g., onset latencies) among responses to different sorts
of events. The advantages of using basis functions over FIR models are that the

 

FIGURE 17.3

 

Temporal basis functions offer useful constraints on the form of the esti-
mated response that retain the flexibility of FIR models and the efficiency of single regressor
models. The specification of these models involves setting up stimulus functions 

 

x

 

(

 

t

 

) that
model expected neuronal changes (e.g., boxcars of epoch-related responses or spikes [delta
functions] at the onset of specific events or trials). These stimulus functions are then
convolved with a set of basis functions 

 

f

 

i

 

(

 

u

 

) of peristimulus time 

 

u that model the HRF in
some linear combination. The ensuing regressors are assembled into the design matrix. The
basis functions can be as simple as a single canonical HRF (middle), through to a series
of delayed delta functions (bottom). The latter case corresponds to a FIR model and the
coefficients constitute estimates of the impulse response function at a finite number of
discrete sampling times. Selective averaging in event-related fMRI is mathematically equiv-
alent to this limiting case.
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parameters are estimated more efficiently and stimuli can be presented at any
point in the interstimulus interval. The latter is important because time locking
stimulus presentation and data acquisition gives a biased sampling over peris-
timulus time and can lead to differential sensitivities in multislice acquisition
over the brain.

17.4 STATISTICAL PARAMETRIC MAPPING

Statistical parametric mapping (SPM) entails the construction of spatially
extended statistical processes to test hypotheses about regionally specific effects
(21). SPMs are image processes with voxel values that are, under the null hypoth-
esis, distributed according to a known probability density function, usually the
Student’s t- or f- distributions. These are known colloquially as t- or f-maps. The
success of statistical parametric mapping is due largely to the simplicity of the idea.
One analyzes each and every voxel using any standard (univariate) statistical test.
The resulting statistical parameters are assembled into an image — the SPM.
SPMs are interpreted as spatially extended statistical processes by referring to
the probabilistic behavior of Gaussian fields (22–25). GRF model both the univari-
ate probabilistic characteristics of a SPM and any nonstationary spatial covariance
structure. “Unlikely” excursions of the SPM are interpreted as regionally specific
effects, attributable to the sensorimotor or cognitive process that has been manip-
ulated experimentally.

Over the years, statistical parametric mapping has come to refer to the con-
joint use of GLM and GRF theory to analyze and make classical inferences about
spatially extended data through SPMs. The GLM is used to estimate some param-
eters that could explain the spatially continuous data in exactly the same way as
in conventional analysis of discrete data. GRF theory is used to resolve the
multiple comparison problem that ensues when making inferences over a volume
of the brain. GRF theory provides a method for correcting p values for the search
volume of an SPM and plays the same role for continuous data (i.e., images) as
the Bonferroni correction for the number of discontinuous or discrete statistical
tests. The approach was called SPM for three reasons: (1) to acknowledge “sig-
nificance probability mapping”, the use of interpolated pseudomaps of p values
used to summarize the analysis of multichannel ERP studies; (2) for consistency
with the nomenclature of parametric maps of physiological or physical parameters
(e.g., regional cerebral blood flow rCBF or volume rCBV parametric maps); and
(3) In reference to the parametric statistics that comprise the maps. Despite its
simplicity, there are some fairly subtle motivations for the approach that deserve
mention. Usually, given a response or dependent variable comprising many thou-
sands of voxels, one would use multivariate analyses as opposed to the mass-
univariate approach that SPM represents. The problems with multivariate
approaches are they do not support inferences about regionally specific effects,
they require more observations than the dimension of the response variable (i.e.,
number of voxels) and even in the context of dimension reduction, they are less
sensitive to focal effects than mass-univariate approaches. A heuristic argument
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for their relative lack of power is that multivariate approaches (in their most
general form) estimate the model’s error covariances using a number of param-
eters (e.g., the covariance between the errors at all pairs of voxels). In general,
the more parameters an estimation procedure has to deal with, the more variable
the estimate of any one parameter becomes. This renders any single estimate less
efficient.

Multivariate approaches consider voxels as different levels of an experimental
or treatment factor and use classical analysis of variance, not at each voxel (c.f.
SPM), but by considering the data sequences from all voxels together, as repli-
cations over voxels. The problem here is that regional changes in error variance,
and spatial correlations in the data, induce profound nonsphericity* in the error
terms. This nonsphericity would require large numbers of parameters to be esti-
mated for each voxel using conventional techniques. In SPM, the nonsphericity
is parameterized in a very parsimonious way with just two parameters for each
voxel. These are the error variance and smoothness estimators. This minimal
parameterization lends SPM a sensitivity that surpasses multivariate approaches.
SPM can do this because GRF theory implicitly imposes constraints on the
nonsphericity implied by the continuous and (spatially) extended nature of the
data. This is something that conventional multivariate and equivalent univariate
approaches do not accommodate, to their cost.

 Some analyses use statistical maps based on nonparametric tests that eschew
distributional assumptions about the data e.g., nonparametric approaches (26).
These approaches are generally less powerful (i.e., less sensitive) than parametric
approaches (27). However, they have an important role in evaluating the assump-
tions behind parametric approaches and may supersede in terms of sensitivity
when these assumptions are violated (e.g., when degrees of freedom are very
small and voxel sizes are large in relation to smoothness).

17.4.1 RANDOM FIELD THEORY

Classical inferences using SPMs can be of two sorts depending on whether one
knows where to look in advance. With an anatomically constrained hypothesis
about effects in a particular brain region, the uncorrected p value associated with
the height or extent of that region in the SPM can be used to test the hypothesis.
With an anatomically open hypothesis (i.e., a null hypothesis that there is no
effect anywhere in a specified volume of the brain), a correction for multiple
dependent comparisons is necessary. The theory of random fields provides a way
of adjusting the p value that takes into account the fact that neighboring voxels

*  Sphericity refers to the assumption of identically and independently distributed error terms (i.i.d.).
Under i.i.d., the probability density function of the errors, from all observations, has spherical
isocontours, hence, sphericity. Deviations from either of the i.i.d. criteria constitute nonsphericity. If
the error terms are not identically distributed then different observations have different error variances.
Correlations among error terms reflect dependencies among the error terms (e.g., serial correlation
in fMRI time series) and constitute the second component of nonsphericity. In fMRI both spatial and
temporal nonsphericity can be quite profound issues.
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are not independent by virtue of continuity in the original data. Provided the data
are sufficiently smooth, the GRF correction is less severe (i.e., is more sensitive)
than a Bonferroni correction for the number of voxels. As noted in the preceding
text, the GRF theory deals with the multiple comparisons problem in the context
of continuous, spatially extended statistical fields, in a way that is analogous to
the Bonferroni procedure for families of discrete statistical tests. There are many
ways to appreciate the difference between GRF and Bonferroni corrections.
Perhaps the most intuitive is to consider the fundamental difference between an
SPM and a collection of discrete T values. When declaring a connected volume
or region of the SPM to be significant, we refer collectively to all the voxels that
comprise that volume. The false positive rate is expressed in terms of connected
(excursion) sets of voxels above some threshold, under the null hypothesis of no
activation. This is not the expected number of false positive voxels. One false
positive region may contain hundreds of voxels, if the SPM is very smooth. A
Bonferroni correction would control the expected number of false positive voxels,
whereas GRF theory controls the expected number of false positive regions.
Because a false positive region can contain many voxels, the corrected threshold
under a GRF correction is much lower, rendering it much more sensitive. In fact
the number of voxels in a region is somewhat irrelevant because the correction
is a function of smoothness. The GRF correction discounts voxel size by express-
ing the search volume in terms of smoothness or resolution elements (resels).
This intuitive perspective is expressed formally in terms of differential topology
using the Euler characteristic (23). At high thresholds the Euler characteristic
corresponds to the number of regions exceeding the threshold.

There are only two assumptions underlying the use of the GRF correction:
(1) The error fields (but not necessarily the data) are a reasonable lattice approx-
imation to an underlying random field with a multivariate Gaussian distribution
and (2) these fields are continuous, with a differentiable and invertible autocor-
relation function. A common misconception is that the autocorrelation function
has to be Gaussian. It does not. The only way in which these assumptions can
be violated is if the data are not smoothed (with or without subsampling to
preserve resolution), violating the reasonable lattice assumption or the statistical
model is misspecified so that the errors are not normally distributed. Early for-
mulations of the GRF correction were based on the assumption that the spatial
correlation structure was wide-sense stationary. This assumption can now be
relaxed due to a revision of the way in which the smoothness estimator enters
the correction procedure (28). In other words, the corrections retain their validity,
even if the smoothness varies from voxel to voxel.

17.5 POSTERIOR PROBABILITY MAPPING

Despite its success, SPM has a number of fundamental limitations. In SPM, the
p value, ascribed to a particular effect, does not reflect the likelihood that the effect
is present but simply the probability of getting the observed data in the effect’s
absence. If sufficiently small, this p value can be used to reject the null hypothesis
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that the effect is negligible. There are several shortcomings in this classical
approach. Firstly, one can never reject the alternate hypothesis (i.e., say that an
activation has not occurred) because the probability that an effect is exactly zero
is itself zero. This is problematic, for example, in trying to establish double
dissociations or indeed functional segregation; one can never say one area responds
to color but not motion and another responds to motion but not color. Secondly,
because the probability of an effect being zero is vanishingly small, given enough
scans or subjects one can always demonstrate a significant effect at every voxel.
This fallacy of classical inference is becoming relevant practically, with the thou-
sands of scans entering into some fixed-effect analyzes of fMRI data. The issue
here is that a trivially small activation can be declared significant if there are
sufficient degrees of freedom to render the variability of the activation’s estimate
small enough. A third problem that is specific to SPM is the correction or adjust-
ment applied to the p values to resolve the multiple comparison problem. This has
the somewhat nonsensical effect of changing the inference about one part of the
brain in a way that is contingent on whether another part is examined. Put simply,
the threshold increases with search volume, rendering the inference very sensitive
to what it encompasses. Clearly, the probability that any voxel has activated does
not change with the search volume and yet the classical p value does.

All these problems would be eschewed by using the probability that a voxel
had been activated or indeed, that its activation was greater than some threshold.
This sort of inference is precluded by classical approaches, which simply give
the likelihood of getting the data, given no activation. What one would really like
is the probability distribution of the activation, given the data. This is the posterior
probability used in Bayesian inference. The posterior distribution requires both
the likelihood, afforded by assumptions about the distribution of errors, and the
prior probability of activation. These priors can enter as known values or can be
estimated from the data, provided we have observed multiple instances of the
effect we are interested in. The latter is referred to as empirical Bayes. A key
point here is that we do assess repeatedly the same effect over different voxels,
and we are, therefore, in a position to adopt an empirical Bayesian approach (29).

17.5.1 EMPIRICAL EXAMPLE

In this subsection, we compare and contrast Bayesian and classical inference
using PPMs and SPMs based on real data. The data set comprised data from a
study of attention to visual motion (30). The data used here came from the first
subject studied. This subject was scanned at 2-T to give a time series of 360
images comprising 10-block epochs of different visual motion conditions. These
conditions included a fixation condition, visual presentation of static dots, visual
presentation of radially moving dots under attention, and no-attention conditions.
In the attention, condition subjects were asked to attend to changes in speed
(which did not actually occur). This attentional manipulation was validated post-
hoc using psychophysics and the motion after-effect. Further details of the data
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using a conventional SPM procedure and the empirical Bayesian approach
described in the previous section. The ensuing SPMs and PPMs are presented in

motion above and beyond that due to photic stimulation with stationary dots.
The difference between the PPM and SPM is immediately apparent on inspec-

tion of Figure 17.4 and Figure 17.5. Here, the threshold for the PPM was 0.7%
(equivalent to percentage whole brain mean signal). Only voxels that exceed 95%
confidence are shown. These are restricted to visual and extrastriate cortex
involved in motion processing. The critical thing to note is that the corresponding
SPM identifies a smaller number of voxels than the PPM. Indeed, the SPM appears
to have missed a critical and bilaterally represented part of the V5 complex

FIGURE 17.4 PPM for the fMRI study of attention to visual motion. The display format
in the lower panel uses an axial slice through extrastriate regions, but the thresholds are
the same as employed in maximum intensity projections (upper panels). The activation
threshold for the PPM was 0.7. As can be imputed from the design matrix, the statistical
model of evoked responses comprised of boxcar regressors convolved with a canonical
hemodynamic response function.
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(circled cluster on the PPM in the lower panel of Figure 17.4). The SPM is more
conservative because the correction for multiple comparisons in these data is very
severe, rendering classical inference relatively insensitive. It is interesting to note
that dynamic motion in the visual field has such widespread (though small) effects
at a hemodynamic level.

17.6 DYNAMIC CAUSAL MODELING

Dynamic causal modeling (DCM) (31) is used to make inferences about func-
tional integration from fMRI time series. The term “causal” in DCM arises
because the brain is treated as a deterministic dynamical system in which external
inputs cause changes in neuronal activity, which in turn cause changes in the
resulting BOLD signal that is measured with fMRI. This is to be contrasted with
a conventional GLM where there is no explicit representation of neuronal activity.
The second main difference to the GLM is that DCM allows for interactions
between regions. Of course, it is this interaction which is central to the study of
functional integration.

using a corrected threshold at p = 0.05.

contrast

100

200

300

1 2
Design matrix

z = 3 mm

Height threshold  T = 4.86
Extent threshold k = 0 voxels 3 4

SPM (T)
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FIGURE 17.5 Same as for Figure 17.4, but this time showing the corresponding SPM



Classical and Bayesian Inference in fMRI 557

Current DCMs for fMRI comprise a bilinear model for the neurodynamics
and an extended balloon model for the hemodynamics. These are shown in

differential equation shown in Figure 17.6. This is known as a bilinear model
because the dependent variable, , is linearly dependent on the product of z and
u. That u and z combine in a multiplicative fashion endows the model with
“nonlinear” dynamics, which can be understood as a nonstationary linear system
that changes according to experimental manipulation u. Importantly, because u
is known, parameter estimation is relatively simple.

Connectivity in DCM is characterized by a set of “intrinsic connections,” A,
that specify which regions are connected and whether these connections are
unidirectional or bidirectional. We also define a set of input connections, C, that
specify which inputs are connected to which regions, and a set of modulatory or
bilinear connections, Bj, that specify which intrinsic connections can be changed
by which inputs. The overall specification of input, intrinsic, and modulatory
connectivity comprise our assumptions about model structure. This in turn rep-
resents a scientific hypothesis about the structure of the large-scale neuronal
network mediating the underlying sensorimotor or cognitive function.

In DCM, neuronal activity gives rise to hemodynamic activity by a dynamic
process described by an extended balloon model. This involves a set of hemody-
namic state variables, state equations and hemodynamic parameters shown in
Figure 17.7. Together, these equations describe a nonlinear hemodynamic process
that may be regarded as a biophysically informed generalization of the linear
convolution models used in the GLM. It is possible to describe the second-order
behavior of this process (i.e., how the response to one stimulus is changed by a
preceding stimulus) using Volterra kernels.

17.6.1 EMPIRICAL EXAMPLE

We now return to the visual motion study described in Subsection 17.5.1 so as

on maxima from conventional SPMs testing for the effects of photic stimulation,
motion, and attention. Regional time courses were taken as the first eigenvariate
of spherical volumes of interest centered on the maxima shown in Figure 17.8.
The inputs, in this example, comprise one sensory perturbation and two contextual
inputs. The sensory input was simply the presence of photic stimulation, and the
first contextual one was presence of motion in the visual field. The second
contextual input, encoding an attentional set, was unity during attention to speed
changes and zero otherwise. The outputs corresponded to the four regional eigen-
variates in (Figure 17.8b). The intrinsic connections were constrained to conform
to a hierarchical pattern in which each area was reciprocally connected to its
supraordinate area. Photic stimulation entered at, and only at, V1. The effect of
motion in the visual field was modeled as a bilinear modulation of the V1 to V5

�z
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Figure 17.6 and Figure 17.7. The neurodynamics are described by the multivariate

of the regions that entered the DCM (Figure 17.8b). These regions were based
to make inferences about functional integration. Figure 17.8b shows the location
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FIGURE 17.6 This schematic (upper panel) outlines the differential equations implied by
a bilinear model. The equations in each of the white areas describe the change in neuronal
activity zi in terms of linearly separable components that reflect the influence of other
regional state variables. Note particularly how the second contextual inputs enter these
equations. They effectively increase the intrinsic coupling parameters (aij) in proportion to
the bilinear coupling parameters (bk

ij) . In this diagram, the hemodynamic component of the
DCM illustrates how the neuronal states enter a region-specific hemodynamic model to
produce the outputs yi that are a function of the region’s biophysical states reflecting
deoxyhemoglobin content and venous volume (qi and vi). The lower panel reformulates the
differential equations in the upper panel into a matrix format. These equations can be
summarized more compactly in terms of coupling parameter matrices A, B j and C.
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FIGURE 17.7 This schematic shows the architecture of the hemodynamic model for a
single region (regional subscripts have been dropped for clarity). Neuronal activity induces
a vasodilatory and activity-dependent signal s that increases the flow f. Flow causes changes
in volume and deoxyhemoglobin (v and q). These two hemodynamic states enter an output
nonlinearity to give the observed BOLD response y. This transformation from neuronal
states zi to hemodynamic response yi is encoded graphically by the dark-gray boxes in the
previous figure and that inserted in this figure.  
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FIGURE 17.8 DCM for the fMRI study of attention to visual motion. The most interesting
aspects of this connectivity involve (a) the role of motion and attention in exerting bilinear
effects. Critically, the influence of motion is to enable connections from V1 to the motion-
sensitive area V5. The influence of attention is to enable backward connections from the
inferior frontal gyrus (IFG) to the superior parietal cortex (SPC). Furthermore, attention
increases the latent influence of SPC on V5. Dotted arrows connecting regions represent

(continued )
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connectivity and attention was allowed to modulate the backward connections
from IFG and SPC.

the modulatory effect of attention that is expressed in terms of the bilinear coupling
parameters for this third input. As hoped, we can be highly confident that attention
modulates the backward connections from IFG to SPC and from SPC to V5.
Indeed, the influences of IFG on SPC are negligible in the absence of attention
(dotted connection in Figure 17.8a). It is important to note that the only way that
attentional manipulation could affect brain responses was through this bilinear
effect. Attention-related responses are seen throughout the system (attention epochs
are marked with arrows in the plot of IFG responses in Figure 17.8b). This atten-
tional modulation is accounted for, sufficiently, by changing just two connections.
This change is, presumably, instantiated by the instructional set at the beginning of
each epoch. The second point this analysis illustrates is how the functional segre-
gation is modeled in DCM. Here one can regard V1 as a “segregating” motion from
other visual information and distributing it to the motion-sensitive area V5. This
segregation is modeled as a bilinear “enabling” of V1 to V5 connections when, and
only when, motion is present. Note that in the absence of motion the intrinsic V1
to V5 connection was trivially small (in fact, the MAP estimate was −0.04). The
key advantage of entering motion through a bilinear effect, as opposed to a direct

FIGURE 17.8 (continued) significant bilinear effects in the absence of a significant
intrinsic coupling. Number in brackets represent the posterior probability, expressed as a
percentage, that the effect size is larger than 0.17. This cutoff corresponds to a time constant
of 4 sec or less — in DCM stronger effects have faster time constants. (b) Fitted responses
based upon the conditional estimates and the adjusted data. The insert shows the location
of the regions centered on the primary visual cortex V1: 6, −84, −6 mm; motion-sensitive
area V5: 45, −81, 5 mm. SPC: 18, −57, 66 mm; IFG: 54, 18, 30 mm. The volumes from
which the first eigenvariates were calculated corresponded to 8 mm radius spheres centered
on these locations. Subjects were studied with fMRI under identical stimulus conditions
(visual motion subtended by radially moving dots) while manipulating the attentional
component of the task (detection of velocity changes). The data were acquired from normal
subjects at 2-T using a Magnetom VISION (Siemens, Erlangen) whole body MRI system,
equipped with a head volume coil. Here, we analyze data from the first subject. Contiguous
multislice T2*-weighted fMRI images were obtained with a gradient echo-planar sequence
(TE = 40 msec, TR = 3.22 sec, matrix size = 64 × 64 × 32, voxel size 3 × 3 × 3 mm).
Each subject had 4 consecutive 100-scan sessions comprising a series of 10-scan blocks
(D F A F N F A F N S) under 5 different conditions. The first condition (D) was a dummy
condition to allow for magnetic saturation effects. F (fixation) corresponds to a low-level
baseline where the subjects viewed a fixation point at the center of a screen. In condition
A (attention), subjects viewed 250 dots moving radially from the center at 4.7° per sec
and were asked to detect changes in radial velocity. In condition N (no attention), the
subjects were asked simply to view the moving dots. In condition S (stationary), subjects
viewed stationary dots. The order of A and N was swapped for the last two sessions. In
all conditions, subjects fixated the center of the screen. In a prescanning session, the
subjects were given five trials with five speed changes (reducing to 1%). During scanning
there were no speed changes. No overt response was required in any condition.
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effect on V5, is that we can finesse the inference that V5 shows motion-selective
responses with the assertion that these responses are mediated by afferents from V1.

The two bilinear effects given in the preceding text represent two important
aspects of functional integration that DCM was designed to characterize.

17.7 CONCLUSION

Due to the concise nature of this review, we have been unable to cover a number of
related topics. These include computational neuroanatomy, analysis of group data
(whether structural or functional) using either fixed- or random-effect analysis. In
the context of the GLM, we omitted discussion of event-related vs. block designs,
parametric and factorial designs, and the factors underlying an efficient experimen-
tal design. We refer interested readers to the recent volume entitled “human brain
function” (32) that builds upon the basic issues introduced here. These methods and
all of the procedures covered in this review have been implemented in a public domain
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18.1 INTRODUCTION

 

This chapter focuses on functional magnetic resonance imaging (fMRI) data analysis
and modeling using statistical learning techniques. fMRI is a powerful technique for
mapping brain function by using the blood oxygenation level dependent (BOLD)
effect (32); however, the small signal change due to the BOLD effect is very noisy
and susceptible to artifacts such as those caused by scanner drift, head motion, and
cardiorespiratory effects. Although a task or stimulus can be repeated over and over
again, there are limits due to time constraints, habituation effects, etc. Therefore,
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refined techniques from statistics, biosignal analysis, and image processing and
analysis is required for sensitive and robust detection and characterization of func-
tional activity.

This chapter is organized as follows: Section 18.2 provides some background
about fMRI and its data analysis. Section 18.3 gives the concepts and theory of the
statistical learning methods, support vector machines (SVMs) and support vector
regression (SVR). The proposed framework and its features are introduced and
described in detail in Section 18.4, with results on both simulated and real fMRI
data. Section 18.5 concludes the chapter with further discussions on this work.

 

18.2 BACKGROUND

18.2.1 N
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F

 

MRI

 

The BOLD signal is a complex function of neural activity, oxygen metabolism,
cerebral blood volume, cerebral blood flow (CBF), and other physiological param-
eters. The dynamics underlying neural activity and hemodynamic physiology are
believed to be nonlinear (3,12,16). The observed fMRI response to a stimulus
consists of two chain reactions: The stimulus first triggers a neural response,
which sequentially triggers a hemodynamic response that is recorded by BOLD
fMRI. The nonlinearity in fMRI could arise from either a nonlinearity in the
neural response or a nonlinearity in the hemodynamics, or both (4,30,41). The
spatial heterogeneity of the nonlinear characteristics of BOLD signals has also
been reported in the literature (3,21).

The cascade of neuronal and hemodynamic nonlinearities in the system would
make the determination of variations in neuronal activity difficult. For simplicity,
most existing fMRI data analyses assume a linear convolution model and primarily
rely on linear methods or general linear models (GLMs). However, as fMRI exper-
iments have grown more sophisticated, the role of nonlinearities is becoming more
important under certain situations. Some authors have investigated the physiological
mechanisms that reveal the relationship between synaptic activation and vascular
or metabolic controlling systems (22,27). Accordingly, initial attempts that model
the BOLD signal at macroscopic levels have been made by using differential
equations, linking the hemodynamical variations with physiological sense (7,16,34).
Although these theoretical models have high impact on fMRI analysis, solid valida-
tion from real data is still needed in order to justify their practical use. Because of
the complexity of the human brain, we propose to approach the whole brain through
a more flexible and general model, and filter the noisy fMRI signals using a nonlinear
statistical learning method, support vector regression (SVR). The restored signals
are considered nonlinear functions or responses of the stimulus reference function,
which agrees with recent findings about the presence of nonlinearities in fMRI.
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Two features peculiar to fMRI make its analysis more challenging. First, fMRI
data have intrinsic spatial and temporal correlations (42). Second, fMRI data tend
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to have clustered activations. Spatial and temporal correlations affecting fMRI
signal measurements are typically not considered simultaneously in statistical
methods dedicated to detecting brain activation. In order to improve the detection
of activated areas, common approaches usually smooth the data spatially with a
Gaussian kernel in a preprocessing step. Spatial smoothing enables effective detec-
tion of a certain size of clustered activation. However, smoothing may produce a
biased estimate by displacing activation peaks and underestimating their height.
To address this issue, spatial modeling has been proposed (11,20) to take the spatial
activation pattern into consideration. Recently, spatiotemporal linear regression
methods have also been applied to fMRI data analysis (2,23). These methods use
the time series of neighboring voxels together with their own, and thus take
simultaneously the spatial and temporal correlations into account, which is also
one of the benefits of the regression method to be introduced in this chapter.
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In general, techniques for analyzing fMRI data can be divided into model-driven,
e.g., standard general linear model (GLM) (14), and data-driven methods, e.g.,
principal component analysis (PCA) (1), independent component analysis (ICA)
(29), or fuzzy cluster analysis (FCA) (13). In model-driven methods, a model of
the expected response is generated and compared with the data. These methods
require prior knowledge of event timing, from which an anticipated hemodynamic
response can be modeled. However, for brain responses that are not directly
locked to the paradigm, model-driven analysis may not be adequate (8). Data-
driven methods, however, explore the fMRI data statistically without any assump-
tion about the paradigm or the hemodynamic response function. This flexibility
is desirable especially in cases in which it is difficult to generate a good model;
however, there are drawbacks. For example, the assumption implicit in PCA is
that different modes are Gaussian and uncorrelated, whereas ICA assumes that
different modes are non-Gaussian and independent. In addition, a significance
estimate for each component is usually not available. Given the advantages and
disadvantages, a new approach is discussed in this chapter to merge data-driven
methods with prior time course modeling by adjusting a model coefficient.

 

18.2.4 O

 

VERVIEW

 

Despite the progress in fMRI analysis, there is still a need for robust and unified
analysis methods because of the many limitations with existing techniques, as
described in the preceding text. In this chapter, we present a novel, general, and
reliable nonlinear approach for fMRI analysis based on statistical learning method,
i.e., spatiotemporal SVR (ST-SVR), so that existing difficulties resulting from
noise, low resolution, and inappropriate smoothing and modeling can be addressed.
In summary, SVR provides a comprehensive but parsimonious mapping from a
set of input vectors to a scalar output. Its ability to handle highly nonlinear
mappings, in an unconstrained way, makes it a natural candidate for the analysis
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of biological time series and in particular fMRI. Here, we show how this nonlinear
mapping can be used to “restore” data that can then be subject to conventional
statistical analysis. The basic idea is to treat the input vectors as explanatory
variables and the output as the observed BOLD response. This allows us to
characterize the mapping between the explanatory and response variables in a way
that is analogous to linear mapping between the design matrix and response used
in conventional analyses with the GLM. Critically, the mapping obtained with
SVR can be arbitrarily complicated and nonlinear. The predicted responses can
represent any systematic relationship between the input variables and observed
signal, and they can, therefore, be regarded as having been “restored” or “de-
noised.” In this work, we start with inputs that encode where and when a brain
response was measured. Using SVR, one can then estimate the response for any
brain position at any time. In practice, this involves using a local clique of neigh-
boring voxels over the entire time series. The inputs are then augmented to include
regressors of the sort used in conventional analyses of fMRI time series. The
predicted response is then used as a data surrogate that enters classical analyses.

 

18.3 STATISTICAL LEARNING THEORY

 

Statistical learning plays a key role in the fields of statistics, data mining, artificial
intelligence, engineering, and other disciplines. SVM, introduced by Vapnik
(37,38) and studied by others (9,36), is a new and powerful learning methodology
that can deal with nonlinear classification (support vector classification [SVC])
and regression (SVR). It is systematic and principled, and it has begun to be
widely applied in the machine learning community. The idea is to learn a function

 

f

 

 between the input vector and the output scalar y from 

 

M

 

 examples. When the
output 

 

y

 

 takes binary values, the problem is SVC; when 

 

y

 

 takes continuous real
values, it is SVR problem. The main feature of SVM is to map the input data to
a high-dimensional feature space through a nonlinear mapping 

 

Φ

 

. Then we learn
the function between the mapped data and the output 

 

y

 

. Typically, this
function is nonlinear in the input data space but linear in the feature space.
Classification or regression is performed in this feature space. An intuitive dia-
gram of this mapping and its advantage in the SVC mode is shown in Figure 18.1.

In order to model the continuous fMRI signal, we use SVR. Here we sketch
the ideas behind SVR; a more detailed description of SVR can be found in Smola
(36). Given 
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 input sample points , where , and 

 

M

 

 cor-
responding scalar output values 
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, the aim is to find an approxi-
mation or a regression function of the form

(18.1)

to learn this input–output mapping from the set of training examples with high
generalizability. Here 

 

K

 

 is the kernel function, which is going to be explained later.
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The SVR training process can be formulated as a problem of finding an optimal set
of Lagrange multipliers 

 

α

 

i

 

, by maximizing the SVR objective function

(18.2)

subject to

1. linear constraints,

 (18.3)

and

2. box constraint,

(18.4)

Here, 

 

α

 

i

 

 is the Lagrange multiplier associated with each training example ,
and 

 

ε

 

 in Equation 18.2 is the insensitivity value, meaning that training error below

 

ε

 

 is ignored. Figure 18.2 depicts the situation graphically for an 

 

ε

 

-insensitivity
loss function 

 

L

 

ε

 

 given by:

 

FIGURE 18.1

 

Diagram of nonlinear mapping in SVC. In order to classify the two classes
of points—black and white dots—in the original space, the red nonlinear classifier is
needed, as shown on the left. However, if we use the nonlinear mapping to map the
original data space to a high-dimensional feature space , that is mapping
to through , (for example, ), the points would be
able to be separated with a linear hyperplane, as shown on the right.
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Only the points outside the shaded region contribute to the cost, and the
deviations are penalized in a linear fashion. 

 

C

 

 in Equation 18.4 is the trade-off
constant between the smoothness of the SVR function and the total training error.
When the approximation function cannot be linearly regressed, the kernel function
maps training examples from the input space to a high-dimensional feature
space by , in such a way that the function 

 

f

 

 between the output
and the mapped input data points can now be linearly regressed in the feature
space. 

 

K

 

 describes the inner product in the feature space:

(18.5)

There are different types of kernel functions. A commonly used kernel func-
tion is the Gaussian radial basis function (RBF):

(18.6)

Maximizing the SVR objective function in Equation 18.2 by SVR training
provides us with an optimum set of Lagrange multipliers 

 

α

 

i

 

, . The
coefficient 

 

b

 

 of the estimated SVR function in Equation 18.1 can be computed
by adjusting the bias to pass through one of the given training examples with
nonzero 

 

α

 

i

 

.
With the nonlinear kernel mapping, the regression function in Equation 18.1

can be interpreted as a linear combination of the input data in the feature space.
Only those input elements with nonzero Lagrange multipliers contribute to the
determination of the function. In fact, most of the 

 

α

 

i

 

’s are zero. The training data
with nonzero 

 

α

 

i

 

 are called 

 

support vectors

 

, which are the data points not inside
the 

 

ε

 

-insensitivity region as shown in Figure 18.2. Support vectors form a sparse

 

FIGURE 18.2

 

Diagram of SVR, showing the 

 

ε

 

-insensitivity region (shaded area) and the
support vectors.
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subset of the training data. This type of representation is especially useful for
high-dimensional input spaces.

 

18.4 FMRI DATA ANALYSIS AND MODELING 
THROUGH SVR

 

SVR has recently been applied to system identification, nonlinear system predic-
tion, and face detection with good results (18,26,31). Comparisons of SVR with
several existing regression techniques, including polynomial approximation,
RBFs, and neural networks have been carried out (31). Initial attempts that directly
use SVM have also been achieved for modeling hemodynamic response (5) and
for comparing and classifying the patterns of fMRI activations (10,17,24). How-
ever, the application of SVR in the context of fMRI analysis has not yet been
exploited, which is now introduced and developed in this work (39,40).

 

18.4.1 D

 

ATA

 

 R

 

EPRESENTATION

 

We formulate fMRI data as spatially windowed continuous 4-dimentional (4-D)
functions. That is, the fMRI data is divided into many small windows, such as a
3 

 

×

 

 3 

 

×

 

 3 region within which the entire time series is included. Each input (the
training data) within a window is a 4-D vector equal to the row, column, slice,
and time indices of a voxel. The output is the corresponding intensity. We approx-
imate and recover all training data within the respective windows using SVR.
The detailed formulation follows.

Let 
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) be the fMRI signal of voxel [

 

u

 

, 

 

v

 

, 

 

w

 

]

 

T

 

 at a given time point
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, where 

 

u
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v

 

, and 

 

w

 

 are the respective row, column, and slice coordinates of the
data. If the 4-D fMRI data size is 

 

S

 

u

 

 × Sv × Sw × St, where St is the total number
of time points, the corresponding input vector is represented as

, . (18.7)

Within each spatiotemporal window of size , we have
M input samples , where , and the respective scalar output

. SVR is used to restore the training examples within the window.
Local intrinsic spatiotemporal correlations are accounted for during the regression
by controlling function smoothness and training error through the parameter C
(Equation 18.4). In order to compensate for the spatial correlation between neigh-
boring windows, spatially overlapped windows are used (in all three dimensions)
so that the recovered intensities over the overlapped voxels are averaged from the
corresponding windows.

18.4.2 TEMPORAL MODELING

Without loss of generality, we assume an on–off boxcar function as our model
variable corresponding to a simple block-design paradigm, which contains p zeros
or ones during each off or on period and c repetitions or cycles of these two
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periods. The total number of time points St, should be equal to c × 2p. The
resulting boxcar function m(t) is

(18.8)

where . That is,

An additional model entry, based on m(t) in Equation 18.8, is added to each
input data and makes our spatiotemporal SVR (ST-SVR) a 5-D regression
problem:

(18.9)

whereas the output is still the corresponding fMRI signal y(u, v, w, t).
The intuitive justification of our model-based formulation can be achieved

by analogy with the GLM as it is typically used in fMRI (14). GLM is given by

(18.10)

where Y is a fMRI data matrix, X is a “design matrix” specifying the time courses
of all factors hypothesized to be present in the observed data (e.g., the task
reference function, or a linear trend), β is a map of voxel values for each
hypothesized factor, and e is a matrix of noise or residual modeling errors. Given
this linear model and a design matrix X, the β maps can be found by least-squares
estimation. The simplest example of the design matrix consists of a boxcar
reference function (as in Equation 18.8) and a column vector with all entries
being the constant 1 representing the mean value, without any other hypothesized
factors (Figure 18.3). In this case, for each voxel, the time-series vector is
regressed through fitting the boxcar function and the mean value µ (Figure 18.3).
For this voxel, at a given time t, the fitting vector is the corresponding row of
the design matrix and can be represented as

(18.11)

i.e., either [0, 1]T or [1, 1]T. We extend this idea to SVR. SVMs have very good
learning and generalization abilities. As long as we construct the input vectors
with the essential features we would like the machine to learn, SVR can capture
the complicated relationships (nonlinear or linear) hidden in the training exam-
ples. Therefore, for fMRI data representation, in addition to using the indices of
the coordinates and time point as input vectors, we add extra model-fitting entries
to the input vectors. For the model-fitting vector in Equation 18.11, the second
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entry is a constant 1, which is the same for all the input vectors and can be
neglected in SVR learning.

With the input vector in Equation 18.9, temporal modeling is incorporated
into the regression. Although m(t) here is a simple boxcar function, a whole
family of m(t) could be used in the same way that the design matrix in the GLM
is used to encode multiple experimental factors or confounds.

In order to test with access to the ground truth, we generate a 2-D time series
(spatial size 52 × 63) of synthetic data that imitates a single fMRI brain slice in
which four regions are activated. Three different amplitudes of activations are added
to the gray matter to simulate weak, medium, and strong activations as in real fMRI
data (see Figure 18.4a). For simplicity and easier intuitive visualization, the acti-
vations are temporally in the form of a boxcar function, with six images during
each off or on period. Note that a more realistic and complicated reference function
formed by convolving this boxcar with a gamma function (6) can also be used. The
total number of time points is 72 (6 cycles). The generated data in Figure 18.4b is
then used as ground truth for comparisons. Simulated noisy data (see Figure 18.4c)
are obtained by adding Gaussian noise N(0, 322), to the ground truth data. The
recovered image by our SVR method (W-model = 1; Figure 18.4d) accurately
restores the ground truth (Figure 18.4b). The image obtained using Gaussian
smoothing of the original noisy data is shown in Figure 18.4e for comparison.
Obviously, the ST-SVR method significantly improves the quality of the noisy data.

18.4.3 MULTIRESOLUTION SIGNAL ANALYSIS

With the aforementioned formulation, in order to capture the underlying relation-
ship using ST-SVR for the windowed data and accommodate the differences in
scale and training set size, the corresponding entries in the input vector are
normalized over training examples within each window. After normalization, we

FIGURE 18.3 Diagram of GLM regression and boxcar function fitting.
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FIGURE 18.4
series (2-D + T data), visualized with 3 orthogonal slices (spatial axes: X, Y; time axis: T).
(a) Added activations on a 2-D brain slice; (b) Ground truth data; (c) Simulated noisy
data, with noise level N(0, 302); (d) Restored data by the ST-SVR (W-model = 1); (e)
Gaussian-smoothed data with Gaussian standard deviation 0.5 (s.t.d. = 0.5).
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multiply all ti by a coefficient W-scale and all m(ti) by a coefficient W-model. The
notion of scaling different components of the input vector is critical to an under-
standing of the potential utility of SVR. The scaling can balance the relative
explanatory power of the different components. Scaling has this effect because
of the projection of the input to a higher-dimensional space using nonlinear kernel
functions. It is this nonlinearity that renders the regression sensitive to scaling.
In linear models, the scaling is irrelevant because the different components of
the input vector do not interact. However, in SVR the scale of each explanatory
variable can have a profound effect on the interactions.

The effect of temporal scale can be adjusted by varying W-scale, the
coefficient for the time indices. Varying W-scale is equivalent to examining
the temporal data at different scales and, therefore, achieves multiresolution
signal analysis. A larger W-scale corresponds to a finer temporal resolution.
We can restore the time courses at multiple resolutions and extract different
frequency components by changing W-scale. Many voxel time series in fMRI
exhibit low-frequency trend components that may be due to aliased high-
frequency physiological components or drifts in the scanner. These trends can
be removed in a variety of ways. In addition to using a simple high-pass filter
in the temporal domain, a running-lines smoother has been proposed (28).
However, most existing methods only aim to handle linear trends. In the
spatiotemporal nonlinear SVR, with appropriate W-scale (usually relatively
small), low-frequency noise can be extracted and removed and thus achieve
nonlinear detrending.

The optimal W-scale for a specific frequency component is expected to be
related to the total number of time points, the period of the stimulation, and the
data noise level, whose value is currently determined empirically. A more rigorous
formulation of W-scale determination is one of our future directions, which might
be achieved in the frequency domain through spectrum analysis, etc.

For the data generated in Section 18.4.2 (shown in Figure 18.4), the ST-SVR
window size used is 3 × 3 × 3 × 72. Figure 18.5 demonstrates the effects of W-
scale by showing the recovered time courses for an activated pixel (Figure 18.5
left) and for a nonactivated pixel (Figure 18.5 right) of the simulated noisy data
(Figure 18.4c) without model fitting (W-model = 0, data driven). As W-scale
increases, higher-frequency temporal components are extracted. When W-scale =
5 (Figure 18.5a and Figure 18.5d), the restored signal captures the low-frequency
component, which can be interpreted as a nonlinear trend.

18.4.4 MERGING MODEL-DRIVEN WITH

DATA-DRIVEN METHODS

The coefficient associated with the model index, W-model, determines the degree of
influence of the temporal-model term and the degree to which the approach is model-
driven. A higher W-model (W-model = 1) is used when reliable temporal models are
available. Otherwise, a lower or zero W-model is used, and the approach becomes
more data driven. W-model can be interpreted as a model confidence or fitness
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measure, whose value could be empirically predetermined as a constant or estimated
from regression residual analysis (40), although extra computation is needed.

For simulations on the data generated in Section 18.4.2, Figure 18.6 demon-
strates the effects of varying W-model by showing the recovered time series when
W-scale = 0, which corresponds to zero frequency (DC component). For the acti-
vated pixel, as W-model increases, the temporal model has stronger and stronger
effects during the regression and data fitting (Figure 18.6 left). Note that because
these are simulated data and no real physiological or neuronal activities are involved,
the recovered time courses do not show any lag or undershoots in the activated
pixel. In fact, the recovered time course accurately restores the ground truth time
course (Figure 18.6c), i.e., the boxcar function. For the nonactivated pixel, as shown
in Figure 18.6 right, the model term barely affects the data regression.

18.4.5 GENERALIZATION TO MULTISESSION STUDIES

Although so far only single-session analyses are discussed, typically fMRI exper-
iments are run several times, either on the same subject (multirun) or with several

W-scale for an activated pixel and a nonactivated pixel in the ST-SVR approach (W-model = 0).

DK2411_C018.fm  Page 576  Tuesday, August 2, 2005  12:40 PM

© 2005 by Taylor & Francis Group, LLC

FIGURE 18.5 (See color insert following page 306). Effects on time course with varying



Modeling and Nonlinear Analysis in fMRI via Statistical Learning 577

different subjects (multisubject), or both. The additional data can increase the
sensitivity of the experiment and allow the generalization of any conclusion to
an entire population. A common technique for multisession analysis is to compute
activation maps for each session and then combine them into a composite through
ad hoc processing such as simple averaging. Limitations in this technique have
led to difficulties in the measurement of group differences, especially for more
subtle cognitive tasks. The ability of SVR to handle high-dimensional input data
makes it ideally suited for extensions to multirun and multisubject studies. The
ST-SVR formulation described in Subsection 18.4.1 and Subsection 18.4.2 allows
easy incorporation of data from multiple sessions by expanding the input vectors
and analyzing the data over multiple runs and multiple subjects together.

Similar to the spatial and temporal indices, now we have additional run and
subject indices, r and s. Suppose we would like to process fMRI data on S subjects
together and there are R runs for each subject, the input vector for data-driven
ST-SVR is then

(18.13)

W-model for an activated pixel and a nonactivated pixel in the ST-SVR approach (W-scale = 0).

� … … …x u v w t r r r r s s si R j S
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For model-driven ST-SVR, the corresponding input vector is

(18.14)

where

The output is still the corresponding fMRI signal intensity y(u, v, w, t).
After normalization, we multiply all r by a new coefficient W-run and all s

by a new coefficient W-subject. These two associated coefficients will have the
effect of emphasizing between-session (run and subject, respectively) differences
when a higher value is used; lower values could pool common information over
different sessions. This would have important applications on fMRI multisession
inference, especially for analyzing and comparing control and subject group data.
With the multiresolution effect of W-scale addressed in Subsection 18.4.3, the
ST-SVR is expected to be able to handle and capture the possible sudden drifts
between runs and subjects. Note that the multirun and multisubject group analysis
scheme proposed here would have the advantage of accounting for between-run
and between-subject variability, and could potentially increase statistical signif-
icance in regions in which temporal variations are shared by a group of runs and
subjects even though the activations in these regions may be too low to be detected
when conducting fMRI analysis over individual runs and individual subjects.

18.4.6 TESTING ON REAL FMRI DATA

The ST-SVR approach is validated by using the conventional t-test (25) on the
SVR-restored fMRI data for activation detection, without additional presmoothing
or postprocessing. Although the conditions of the t-test are not satisfied here (as is
often true in fMRI analysis), we believe it provides a straightforward method of
evaluation for the technique. The Gaussian RBF kernel function (Equation 18.6) is
used in our experiments with σ set empirically to 0.1. Other SVR parameters are
also set empirically C = 1200 and ε = 20 (Equation 18.2 and Equation 18.4).

The proposed approach is first applied to a block-design cognitive fMRI exper-
iment performed at Yale (35), examining social attribution to geometric animations.
T2*-weighted images were acquired using a single-shot echo-planar sequence. The
pulse sequence parameters were TR = 1500 msec, TE = 60 msec, flip angle = 60°,
and NEX = 1, providing an in-plane voxel size of 3.125 × 3.125 mm2. Fourteen
coronal slices were collected and were 10 mm thick (skip 1 mm). Corresponding
T1-weighted structural images of the same thickness were collected in the same
session (TR = 500, TE = 14, FOV = 200 mm, 256 × 192 mm matrix, 2NEX). The
first four volumes of fMRI time series were discarded to discount T1 saturation
effects. We have examined this dataset for a visuospatial task from one subject and
one run. The window size used is 3 × 3 × 1 × 160, where 160 is the total number
of time points. We did not use an isotropic window because the voxel shape is not cubic.
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The 3 × 3 × 1 window covers a brain region whose physical size is almost isotropic
(9.4 × 9.4 × 10 mm3). Visual comparisons in Figure 18.7 with results directly using t-
test on presmoothed data (with empirically chosen FWHM = 6.25 mm × 6.25 mm)
reveal that the SVR approach (W-model = 1) leads to greater spatial extent in the
intraparietal sulcus (IPS) with potentially better delineation and localization of the
underlying spatial activation, in agreement with the underlying anatomy. Note that at
the bottom of each slice in Figure 18.7 are the respective t values and p values for
threshold. When the same t threshold used for SVR (t > 7.8) is used for the t-test, no
activations are detected. For the t-test in Figure 18.7c, we intentionally further decreased
the t threshold to t > 2.3 and tried to detect more IPS activation regions, which, however,
lead to a more blurred spatial extent rather than localized spatial activation as in Figure
18.7a as well as some false activations outside of the cerebellum. The associated time
course for an activated voxel from the SVR method for this data is shown in Figure 18.8.

The multirun SVR algorithm is tested using a block-design fMRI motor
experiment on one subject (male). T2*-weighted images were acquired using

real fMRI data from a visuospatial task (color activation maps).

for the real fMRI data in Figure 18.7. (Horizontal axis: temporal frame index; vertical
axis: fMRI data intensity).

ST-SVR t-test t-test

(a) (b) (c)
t > 7.8, p < 10−11 t > 4.2, p < 10−4 t > 2.3, p < 0.012
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FIGURE 18.8 (See color insert following page 306). Time courses of an activated voxel
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a single-shot, gradient-echo, echo-planar sequence. The sequence parameters
were TR = 1500 msec, TE = 50 msec, flip angle = 80°, NEX = 1, providing
an in-plane voxel size of 3.125 × 3.125 mm2. Nine axial slices were collected
and were 4 mm thick (skip 0 mm). Corresponding T1-weighted structural
images of the same thickness were collected in the same session in the same
slice locations (TR = 500, TE = 11, FOV = 200 mm, 256 × 192 matrix, 2NEX).
Two experimental conditions were a finger-tapping task with left and right
hands, respectively. During each run, the control (motionless and relaxed) and
experimental conditions were alternated (11 scans active, 6 rest) and repeated
so that each experimental condition would occur 4 times for a total of 136
volumes (3.125 × 3.125 × 4 mm3). Four runs of data were collected in this
experiment. For this data set, in order to examine the activation detection in
the supplementary motor area (SMA), we focused on the task of right hand vs.
the rest condition, with results shown in Figure 18.9. The window size used is
3 × 3 × 3 × 136, covering a brain region whose physical size is almost isotropic
(9.4 × 9.4 × 12 mm3). Although activations in the primary motor area are
consistently detected by both the ST-SVR method and the traditional t-test (on
presmoothed data with empirically chosen FWHM = 3.68 mm × 3.68 mm ×
4.71 mm), ST-SVR on two-run data leads to activations in the SMA (Figure 18.9a),
which are not shown by t-test on the same two-run data (Figure 18.9b). For the
t-test on the two-run data in Figure 18.9b, if we intentionally further decrease
the t threshold and try to detect the activations in SMA, spurious activations
over regions other than the primary motor area and SMA, as well as false
activations outside of the cerebellum, would appear. However, if the t-test is per-
formed on four runs of data, the activations in SMA are able to show up as in

experiment of real fMRI data. Top: coronal slices; bottom: axial slices (color activation maps).

ST-SVR (2 Run)

Ri
gh

t

Le
ft

SMA

t-test (2 Run) t-test (4 Run)

(a) (b) (c)

 5.3 < t < 10.24
p < 10−6

3.0 < t < 7.17
p < 0.002

3.6 < t < 9.45
p < 0.001
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FIGURE 18.9 (See color insert following page 306). Multirun result comparison for a motor
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the need for sensitive and robust fMRI signal analysis.

18.5 CONCLUSIONS AND DISCUSSIONS

From a signal processing viewpoint, fMRI activation detection is a problem
of nonlinear spatiotemporal system identification. We have presented a novel
regression model involving spatiotemporal correlations using SVR, where
nonlinear signal analysis is achieved. The framework allows the merging of
model-driven with data-driven methods, as well as multiresolution signal anal-
ysis, by adjusting the associated model and scale parameters. Other advantages
of the approach are embedded removal of low-frequency noise components
and easy incorporation of multirun and multisubject studies into the frame-
work. Experimental results on both simulated and real fMRI data revealed its
effectiveness. Some comments on the particulars of the method are discussed
in the following text.

A simple way to understand SVR is to consider it as a device that converts
a highly nonlinear regression problem into a linear one by expanding the input
variables using a series of nonlinear functions. This is closely related to the use
of multiple basis functions of peristimulus time used in conventional analyses of
fMRI time series. Another ubiquitous example is the use of discreet cosine
functions of time that model low-frequency drift terms of smooth but arbitrary
form. SVR goes further than simply expanding each component of the input. It
also explicitly includes high-order interactions among the inputs. An analogy here
might be the use of Volterra series expansions that use the same device to estimate
high-order kernels (15) that model interactions among stimuli used in producing
fMRI responses. These examples are used to provide an intuition into how SVR
can model arbitrary and complicated nonlinear relationships between explanatory
and response variables.

The size of the spatial window within which the SVR is performed is set to
3 × 3 × 3 or 3 × 3 × 1. We choose this size to allow for some spatial continuity
while limiting the likelihood of heterogeneous activation within the same window.
In addition, the window is intended to cover a brain region whose physical size
is approximately isotropic. Alternatively, a Gaussian window can be applied to
achieve more continuous weighting.

Correction for head motion involves rigid-body transformation estimation
and resampling. In the multisubject case, the raw data need to be aligned through
nonrigid transformation and resampling. Correcting differences in slice timing of
2-D acquisitions also needs data resampling. Because of the thick image slices
typical of fMRI, intensity interpolation, required during the resampling process,
can introduce significant artifacts (19). With the proposed ST-SVR approach,
continuous variables are used for both the input vectors and output scalar. So,
given the estimated motion parameters, nonrigid transformation parameters, and
slice-timing differences, we could directly keep and use the floating-point con-
tinuous values for the spatial coordinates and time indices in the ST-SVR learning.
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Figure 18.9c. This experiment indicates that the ST-SVR method could meet
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The output of the ST-SVR is a continuous high-dimensional regressed function,
from which the discrete regressed fMRI data can be formed. Therefore, explicit
interpolations required in motion correction, subject normalization, and slice-
timing correction are embedded in the ST-SVR learning framework. The errors
introduced by these interpolations are avoided. This desirable feature is not
available for other methods.

The performance of the presented method is dependent on the validity of the
explicit models. Without other prior temporal information, the on–off boxcar
function in Equation 18.8 is used. Another way is to use a generic function, such
as a gamma or Gaussian function, to model the time course (6, 33). In order to
have reliable prior temporal models, we plan to learn the model functions (or
hemodynamic response functions for event-related fMRI data) from the ST-SVR-
restored data. Instead of relying on a generic parametric model (e.g., gamma,
Gaussian), we would estimate the temporal models through statistical shape
learning without assuming a specific shape of the hemodynamic response. The
learned hemodynamic model can be incorporated to improve the specificity and
sensitivity of fMRI signal detection.

Currently, the proposed ST-SVR method is validated by applying the conven-
tional t-test on the SVR-restored fMRI data for activation detection. We are also
interested in incorporating decision making (activation detection) into ST-SVR
regression, by reformulating the SVR optimization objective function so that sta-
tistical clustering criteria can be optimized as well during data regression. In fact,
validating the hemodynamic response estimation from ST-SVR-restored data is
another way of evaluating the method. In addition, it would be interesting to further
pursue the advantages of the nonlinear system analysis using this ST-SVR approach
in exploring neuronal and hemodynamic responses as well as their interactions.
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19.1 INTRODUCTION

 

In vivo

 

 noninvasive quantitative assessment of cerebral hemodynamics is of
crucial importance for understanding brain functions in both normal and patho-
logical states. Positron emission tomography (PET) offers a powerful tool, e.g.,
one can measure cerebral blood flow (CBF) and cerebral blood volume (CBV)
by interpreting [

 

15

 

O]H

 

2

 

O tracer activity images with suitable mathematical models
[1,2]. PET methods are the gold standard for CBF and CBV quantification, but
they have their own limitations, e.g., PET facilities are located only in specialized
clinical centers, radioactivity tracers are employed, and arterial sampling is
required. Recently, dynamic susceptibility contrast-enhanced magnetic resonance
imaging (DSC-MRI) has emerged as an alternative and clinically appealing tech-
nique in 

 

in vivo

 

 assessment of cerebral hemodynamics. Briefly, in DSC-MRI, an
intravascularly distributed paramagnetic contrast agent is rapidly injected into a
peripheral vein. Once the bolus of the contrast agent reaches the region of interest,
a short blood relaxation time because of the paramagnetic label leads to a decline
in the MRI signal intensity acquired either by a spin-echo or gradient-echo method.
Despite the inherent complexity of susceptibility contrast mechanisms, a theory to
model the DSC-MRI information and several techniques to implement this theory
correctly have been developed during the last 20 yrs in order to allow quantitative
measures of CBF, CBV, and mean transit time (MTT).

The aim of this chapter is to review the theoretical fundamentals of the
quantification of DSC-MRI signals and to discuss relevant issues in obtaining
reliable estimates of CBF, CBV, and MTT.

 

19.2 THEORY

 

The model used for quantification of DSC-MRI images is based on the principles of
tracer kinetics for nondiffusible tracers [3–5] and relies on the following assumptions:

1. The contrast agent is completely nondiffusible.
2. There is no recirculation of the contrast agent.
3. The contrast agent is confined to the intravascular space. In other

words, the blood–brain barrier (BBB) is assumed to be intact; other-
wise, tracer leakage can occur.

4. The system is in steady state during the experiment, i.e., the blood flow
is assumed to be constant. As a consequence, only a stationary flow can
be measured in a single experiment; however, flows that vary slowly
compared with the duration of the experiment are still quantifiable by a
series of consecutive experiments.

5. The contrast agent dose must not appreciably perturb the system.

 

19.2.1 T

 

RANSPORT

 

 F

 

UNCTION

 

Consider a bolus of amplitude q

 

0

 

 of a nondiffusible tracer at time t 

 

=

 

 0 in the
feeding vessel to the volume of interest (VOI) of tissue. The amount of
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nondiffusible tracer leaving the VOI at a time t is given by

(19.1)

where h(t) is the 

 

transport function

 

, i.e., the probability density function of the
tracer transit time through the VOI. The transport function, h(t), is a characteristic
of the system and has the dimensions of 1/time. In particular, h(t) is dependent
on the flow and vascular structure of the VOI. When integrated over the interval
0 to infinity, the area is unitary and dimensionless. Therefore,

(19.2)

 

19.2.2 R

 

ESIDUE

 

 F

 

UNCTION

 

Following the definition of h(t), the amount of tracer remaining in the VOI is
given by q

 

0

 

 minus the amount that left the VOI:

(19.3)

The function

(19.4)

is called 

 

residue function

 

 and describes the fraction of tracer still present in the
VOI after a time t following an ideal bolus injection. R(t) is a dimensionless,
positive, decreasing function of time for which

(19.5)

Once h(t) and, consequently, R(t) are known for a given VOI, the concentra-
tion curve of the tracer at the exit and of that retained in the VOI can be predicted
for any known input function to the VOI.

 

19.2.3 C

 

EREBRAL

 

 B

 

LOOD

 

 V

 

OLUME

 

In case of an intact BBB, the amount of blood in a given VOI measures the central
blood volume (CBV). From dynamic images acquired during bolus injection of
a contrast agent, CBV can be determined from the ratio of the areas under the
concentration time curve of the tracer within a given VOI, C

 

VOI

 

(t), and the
concentration time curve of the tracer in the feeding vessel to the VOI, C

 

AIF

 

(t)

q t q h d
t

out ( ) ( )= ∫0
0

τ τ

h t dt( ) =
∞

∫ 1
0

q t q q h d q h din

t t

( ) ( ) ( )= − = −








∫ ∫0 0

0
0

0
1τ τ τ τ

R t h d
t

( ) ( )= − ∫1
0

τ τ

R( )0 1=
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(where AIF stands for arterial input function), respectively [3,4,6,7]. Normalizing
CBV to the density 

 

ρ

 

 of brain tissue:

(19.6)

where k

 

H

 

 accounts for the difference in hematocrit (H) between large vessels
(LV) and small vessels (SV) because only the plasma volume is accessible to the
tracer, i.e., k

 

H

 

 

 

=

 

 (1 

 

−

 

 H

 

LV

 

)/(1 

 

−

 

 H

 

SV

 

). In fact, the CBV may be split into a cerebral
plasma volume (CPV) and cerebral red cell volume (CRCV) [8], i.e.,

(19.7)

However, because hematocrit is defined by the ratio

(19.8)

we have:

(19.9)

(19.10)

and, consequently,

(19.11)

CBV
k C d

C d

H
VOI

AIF

=

∞

∞
∫
∫ρ

τ τ

τ τ

( )

( )

0

0

CBV CPV CRCV= +

H
CRCV
CBV

= 100

CBV CPV H CBV= + ⋅

( )1 − =H CBV CPV

CBV
amount

area
= 1

ρ
of blood in a VOI

under thee blood input curve
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ρ

amount aa VOI
area under the plasma input1
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−
−

H

H

SV
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because the tracer is in the pla(× ssma only)
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∞
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The commonly used units for CBV are milliliters per 100 grams of tissue
(ml/100 g) and microliters per gram (

 

µ

 

ml/g).

 

19.2.4 M

 

EAN

 

 T

 

RANSIT

 

 T

 

IME

 

An additional parameter that characterizes the VOI is the mean transit time
(MTT). MTT is defined as the center of mass of the distribution h(t) or, in different
words, the average time required for any given particle of tracer to pass through
the VOI. The MTT is given by

(19.12)

and from Equation 19.2 and Equation 19.4, one has:

(19.13)

MTT can also be calculated by using the central volume theorem of the
indicator dilution theory [5–7]. According to this theory, MTT is the ratio of CBV
to CBF in the VOI:

(19.14)

MTT has dimension of time.

 

19.2.5 C

 

EREBRAL

 

 B

 

LOOD

 

 F

 

LOW

 

In case of an intact BBB, following the preceding definitions, CBF can be
obtained by the convolution of C

 

VOI

 

(t), R(t), and the AIF C

 

AIF

 

(t):

(19.15)

Equation 19.15 can be derived by starting from Equation 19.14:

(19.16)

MTT
t h d

h d
=

∞

∞
∫
∫

i ( )

( )

τ τ

τ τ
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∞ ∞
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0 0
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from which

(19.17)

where 

 

⊗

 

 denotes the convolution operator and, thus,

(19.18)

To obtain CBF, one needs to deconvolve (see following text) Equation 19.18
in order to calculate R

 

′

 

(t) 

 

=

 

 CBF

 

⋅

 

R(t) and, subsequently, the CBF from R

 

′

 

(t)
value at time t 

 

=

 

 0:

(19.19)

The commonly used units for CBF are milliliters per 100 grams of tissue per
minute (ml/100 g/min) and microliters per gram per second (

 

µ

 

ml/g/s).
In conclusion, the algorithmic steps to assess cerebral hemodynamics are sum-

marized in Table 19.1: first, CBF is obtained by deconvolution (Equation 19.18),
and CBV from Equation 19.11, then MTT from Equation 19.14. Sometimes C

 

AIF

 

is not measured. In this case, one can only measure a relative CBV, rCBV, from

(19.20)

but CBF and MTT cannot be estimated.

 

TABLE 19.1
CBF, CBV, and MTT from DSC-MRI Images 

 

Parameter Formula

 

CBF
Cerebral Blood Flow

CBV
Cerebral Blood Volume

MTT
Mean Transit Time

C d
k

CBF C d R dVOI
H

AIF( ) ( ) ( )τ τ ρ τ τ τ τ
0 0 0

∞ ∞ ∞

∫ ∫ ∫=

( ) ( )= ⊗
∞

∫ρ τ τ τ
k

CBF C R d
H

AIF
0

C t
k

CBF C t R t
k

CBF C RVOI
H

AIF
H

AIF( ) ( ) ( ) ( ) (= ⋅ ⊗ =ρ ρ τ tt d
t

−∫ τ τ)
0

CBF R= ′( )0

rCBF C dVOI=
∞

∫ ( )τ τ
0

C t
k

C R t d CBF RVOI
H

AIF

t

( ) ( ) ( ) ( )= ′ − ⇒ = ′∫ρ τ τ τ
0

0

CBV
H

H

C d

C d

LV

SV

VOI
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=
−
−

∞

∞

∫
∫

1 1

1

( )

( )

0

0

ρ

τ τ

τ τ

MTT
CBV
CBF
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19.3 PRACTICE

19.3.1 F

 

ROM

 

 DSC-MRI S

 

IGNAL

 

 

 

TO

 

 T

 

RACER

 

 C

 

ONCENTRATION

 

In DSC-MRI, the amount of contrast agent present within a voxel locally perturbs
the total magnetic field, thus decreasing relaxation time constants and influencing
the detected T2*-weighted signal, S(t), from the voxel, as follows:

(19.21)

where:
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 is the echo time, i.e., a time parameter specific to the particular
gradient-echo sequence adopted.

Within frequently used low-dosage ranges of contrast agents at common field
strengths 

 

B

 

0

 

, a linear relationship between the change in transverse relaxation
rate and tracer concentration C

 

VOI

 

(t) within the voxel can be reasonably assumed
[9–13] to be

(19.22)

in which 

 

κ

 

VOI

 

 is an unknown proportionality constant depending on the tissue,
the contrast agent, the field strength, and the pulse sequence. From Equation 19.21
and Equation 19.22, one can derive

(19.23)

which is the fundamental equation of DSC-MRI, relating the tracer concentration
profile within a voxel to the measured signal produced by the perturbed water
protons spin-
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 system. Equation 19.21 is used to convert both arterial as well as
tissue DSC-MRI-measured signals. Because of the complexity of the relaxation
mechanism underlying the DSC-MRI signal generation and the consequent dif-
ficulty in retrieving the correct 

 

κ

 

VOI

 

 value for each voxel, the same proportionality
constant (
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) is usually assumed for both tissue and arterial concentration.
However, this assumption can affect a correct quantification of CBF, CBV, and
MTT [14,15].
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The dilution theory assumes that no tracer recirculation occurs. However, the
measured C

 

VOI

 

(t) can include contributions from recirculation, which can be
recognized as a second, smaller concentration peak or an incomplete return to
baseline after the first pass (Figure 19.1). Therefore, the problem is to separate
the first-pass tracer concentration profile from the recirculation peak. To separate
this contribution of tracer recirculation, a gamma variate function is generally
used to fit the C

 

VOI

 

(t) data [13,16–18] (Figure 19.1).
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A correct measurement of the arterial DSC-MRI signal and, consequently, of the
arterial concentration time curve, CAIF(t), is one of the most delicate steps in the
quantification of DSC-MRI images. CAIF(t) is usually estimated from a large artery
(e.g., the middle cerebral artery or the internal carotid artery), with the assumption
that this represents the exact input to the VOI under examination [16,18,19].
However, several errors can effect this measurement and, consequently, introduce
a bias in CBF estimates. Thus, presence of partial-volume effect, delay and
dispersion, sequence type used, and wrong site of CAIF(t) measurement can concur,
together or alone, to generate inaccurate CBF maps.

Because of the relatively low spatial resolution of DSC-MRI images, it is
possible that the tissue surrounding the selected arterial vessel also contributes
to arterial measured signal. In particular, the partial-volume effect can be due
to vessel size, location, and orientation, and its presence introduces an overes-
timation of CBF. Recently proposed correction methods are based on the use of
an appropriate scaling factor [20] or the use of ad hoc correction methods such
as that developed in Reference 21. However, more work is needed to better

FIGURE 19.1 A typical concentration time course measured in a VOI (dot curve) in the
presence of a tracer recirculation and the resulting gamma variate fit (solid line).
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understand the effect of partial-volume presence in CAIF(t) in the quantification
of DSC-MRI images.

In addition to the presence of partial-volume effect, CAIF(t) may undergo
dispersion during its passage from the point of measurement to more peripheral
VOI, especially in pathology. If d(t) denotes the dispersion function, the decon-
volved residue function does not represent CBF multiplied by the true residue
function R(t), i.e., R′(t) = CBF ⋅R(t), but represents CBF multiplied by the con-
volution between the true residue function and the dispersion one, i.e.,

(19.24)

with , and . Thus, in presence of
dispersion, the actual residue function has a different shape and properties
(Figure 19.2) in comparison with the true one. The measured CAIF(t) may also be
affected by a delay. Delay and dispersion presence modifies the shape of the
deconvolved curve and, in this case, CBF is usually estimated from the maximum
of the deconvolved curve [13,22] instead of from the deconvolved curve at time
t = 0, which is zero in presence of delay and dispersion. In this way, an error in
quantification of CBF is introduced. In fact, recent studies have shown that delays
of 1 to 2 sec can introduce a 40% underestimation of CBF and a 60% overesti-
mation of MTT [23]. Of note is that these delays between the “measured” and
“true” AIF are common in cerebral regions affected by cerebrovascular disease.
Consequently, the quality of information provided by quantification of MRI
images is reduced in important pathologies such as cerebral ischemia and carotid
stenosis. As suggested in Reference 24 and Reference 25, CAIF(t) should be
measured as close as possible to the true feeding artery to the VOI in order to
minimize delay and dispersion effects on the CBF estimate. Although the use of

FIGURE 19.2 Residue function R(t) in the absence (solid) or presence (dashed line) of
arterial dispersion.
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a local CAIF(t) instead of that coming from an LV such as the carotid artery can
reduce delay and dispersion, it can increase the presence of partial-volume effect.
Thus, particular care is required in selecting the best place for CAIF(t) measure-
ment, by evaluating all technical limitations and physiopathological conditions.
In fact, of note is that the use of a local CAIF(t) could be important not only to
minimize delay and dispersion but also in studying patients with cerebral ischemia
or stenosis.

CAIF(t) is also dependent on the sequence type used. Usually both spin-echo
and gradient-echo imaging are used to measure DSC-MRI signals because, at the
moment, there is no clear evidence on which is the best method to reach accurate
absolute CBF quantification. In Reference 12, the authors demonstrated that spin-
echo functional images have great microvascular sensitivity resulting in images
of good quality. But, as noted in Reference 13 and Reference 16, in this case
CAIF(t) obtained with these sequences reflects more the situation of the SVs and,
consequently, could be an underestimation of the “true” CAIF(t). On the other
hand, gradient-echo sequence arises from both LVs and SVs, but CAIF(t) results
are more affected by errors due to partial-volume effects [26].

19.3.3 DECONVOLUTION

In order to derive CBF from Equation 19.18, the function CBF ·R(t) has to be
determined by deconvolution. In general, no analytical solution is available, but
several techniques allow one to compute an approximate numerical solution. These
deconvolution techniques can be classified into two main categories, model-dependent
and model-independent approaches.

In the model-dependent techniques, the function to be deconvolved is
described by a parametric function, so that deconvolution loses its ill-posedness
and ill-conditioning problems by having to solve a parameter estimation problem.
This approach implies formulating a priori assumptions on the shape of the
solution. Larson et al. [27] suggested an exponential residue model, which implies
that the microvasculature is like that of a single, well-mixed compartment. More
precisely, the following analytical expression was assumed for R(t) for t ≥ 0.

(19.25)

Note that R(t) given by Equation 19.25 satisfies the residue function proper-
ties, i.e., R(t) ≥ 0, R(0) = 1, and R(t) ∈ [0; 1]. Substituting Equation 19.25 in
Equation 19.18, one has

(19.26)
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and deconvolution reduces to a CBF and MTT parameter estimation problem.
However, this approach, by introducing strong assumptions on R(t) behavior, is
likely to introduce a bias in CBF estimates.

A more general model for R(t) was introduced by Ostergaard et al. [28], based
on a model of macrovascular transport and microvascular retention in the brain.
The model, originally introduced to describe tracer transport and retention in the
heart [29], describes the vasculature as a major feeding artery in series with 20 SVs
in parallel and allows to take into account delay and dispersion of the arterial input.
However, the vascular model was found sensitive to data noise level.

The model-independent approaches owe their name to the fact that they make
virtually no assumptions on the description of the unknown function to be decon-
volved. These methods are more powerful and less biased than the model-dependent
ones, but they have to deal with the ill posedness and ill conditioning of the
deconvolution problem. One of the simplest methods to solve the inverse problem
of Equation 19.18 is to use the convolution theorem of Fourier transform, which
states that the transform of two convolved functions equals the product of their
individual transforms:

 (19.27)

From Equation 19.28, one obtains

 (19.28)

where F−1 denotes the inverse of the Fourier transform F. The Fourier transform
approach has the attraction of being theoretically very easy to implement and
insensitive to delays between the AIF and the tissue. However, its use is not
without problems, and discordant results have been reported in the literature. For
instance, Ostergaard et al. [13] showed that the Fourier transform approach biases
CBF, in particular, underestimating it in case of high flow. They also showed that
Fourier transform approach has an inherent problem in arriving at the actual CBF
when the residue function has discontinuities. On the other hand, other researchers
found satisfactory estimates of CBF in comparison with other, more sophisticated
deconvolution techniques [30].

Another method to solve Equation 19.18 is to resort to a linear algebraic
approach. More precisely, assuming that tissue and arterial concentrations are
measured at equidistant time points, ti = ti−1 + ∆t, and choosing ∆t so that CBF·R(t)
is reasonably approximated by a staircase function, a discrete version of
Equation 19.18 can be written in matrix form

 (19.29)
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which is equivalent to

(19.30)

In compact form:

(19.31)

where , , , and ∆t is the length of the equally
spaced sampling times (∆t = ti − ti−1). Equation 19.32 is a standard matrix equation
that can be inverted to yield CBF·R if det(CAIF)  0:

(19.32)

This approach has been termed raw deconvolution in the literature [31]. Albeit
appealing in its simplicity, it is known to perform poorly being extremely sensitive
to noise. A widely used approach to solve Equation 19.18 that overcomes the
limitations of the raw deconvolution is singular value decomposition (SVD). This
was introduced as method to estimate R(t) by Ostergaard et al. [13,16]. The SVD
constructs matrices V, W, and UT so that the inverse of CAIF can be written as

(19.33)

where W is a diagonal matrix, and V and UT are orthogonal and transpose orthog-
onal matrices, respectively. Given this inverse matrix, CBF· R is found simply as

 (19.34)

SVD has been shown to be a reliable technique for deconvolution because it
reduces the effect of noise on R(t) estimation. This is achieved by setting to zero
the elements in the diagonal matrix W obtained by SVD when they are smaller
than a threshold value given beforehand.

SVD represents the most used approach to quantify bolus-tracking MRI
data. However, in the last years its limitations have been pointed out [32–37].
In particular, it has been shown that CBF values obtained by SVD largely
depend on the threshold value selected to eliminate diagonal elements in W
[32,33,35]. In addition, SVD introduces undesiderated oscillations and neg-
ative values in the reconstructed CBF · R(t), producing a nonphysiological
R(t). This is far from ideal because there are situations in which the actual
shape of the residue function, not just its maximum value, is of interest, i.e.,
when there is presence of bolus delay and dispersion and only an accurate
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determination of the shape of CBF · R(t) can allow an assessment and correc-
tion of this error. In such cases, the conventional SVD method is not suitable.
In order to overcome SVD limitations, several deconvolution methods have
been proposed during the last 10 yr. Thus, for instance, one of the disadvan-
tages of SVD applied to DSC-MRI data is a tendency to underestimate the
flow when the tissue tracer arrival is delayed relative to the AIF. This problem
has been circumvented by the so-called block-circulant SVD proposed by Wu
et al. [36]. This technique is made time-shift insensitive by the use of a block-
circulant matrix Wc for deconvolution. Block-circulant SVD looks promising
in providing tracer-arrival time-insensitive flow estimates and a more specific
indicator of ischemic injury, but more work is necessary to better define its
domain of validity. Andersen et al. [38] proposed the use of a Gaussian process
to approximate the convolution kernel, i.e., the residue function. The method
is termed Gaussian process deconvolution (GPD) and allows accounting for
the smoothness (but not for nonnegativity) of the residue function by incor-
porating this constrain as a priori information. More recently, Calamante
et al. [22] improved upon SVD by implementing the Tikhonov regularization
method in order to overcome the presence of unwanted oscillations in the
residue function. However, even if this new method was shown to provide an
improved characterization (as compared to SVD) of the shape of R(t), it does
not account for nonnegativity of R(t). Along this line, Zanderigo et al. [39]
proposed the application of a nonlinear stochastic regularization (NSR)
method, which is able to account for the smoothness of the residue function
and handle possible violations of the nonnegativity constraint of CBF · R(t).
NSR is a deconvolution method that exploits a model of the unknown residue
function, only allowing nonnegative values. NSR considers CBF · R(t) com-
posed by the exponential of a Brownian motion. This approach shows advan-
tages over SVD in detecting only positive and smoothed (i.e., physiological)
CBF · R(t) without fixing any threshold value and requiring only the knowledge
of AIF and tissue data.

19.3.4 ABSOLUTE QUANTIFICATION ISSUES

The fundamental steps for CBF, CBV, and MTT quantification are summarized
in Figure 19.3. The accuracy of CBF measures is strongly dependent on the values
of the density ρ of brain tissue, and of the hematocrit in capillaries and large
vessels, HSV and HLV, respectively. In particular, the frequently used values ρ =
1.04 g/ml, HLV = 0.45, and HSV = 0.25 [11] have been shown to generate in
normal subjects CBF values that are in agreement with the flow values obtained
with other techniques such as PET [11,40], but, on the contrary, for instance, in
healthy smoker subjects, the same values of ρ, HLV, and HSV have been unable to
provide reliable quantitative perfusion measurements [41]. In addition, nobody has
tested the validity of the use of these values in pathologic conditions. To overcome
these limitations, several other approaches have been proposed. In Reference 16,
the authors obtained absolute CBF values assuming the microvascular hematocrit

DK2411_C019.fm  Page 599  Friday, June 17, 2005  5:56 PM

© 2005 by Taylor & Francis Group, LLC



600 Advanced Image Processing in Magnetic Resonance Imaging

to be constant across the brain and by assigning the mean relative CBF value in
white matter to a standard value of 22 ml/100 ml/min. The relative CBF values
from each of the tissue gray regions were then multiplied by this individualized
scaling factor to yield absolute CBF. The rationale for using normal cerebral
white matter as an internal reference standard for generating absolute MRI CBF
values is based on PET measurements that showed that in normal adult volunteers,
white matter has a relatively uniform age-independent blood flow of 22 ml/100
ml/min. A different approach was introduced in Reference 42 and Reference 43
where in order to convert relative MRI CBF values to absolute ones, a conversion
factor derived by comparison studies between relative MRI and absolute PET
CBF measurements was proposed. A similar approach, with some dissimilarities,
has been proposed in Reference 44 where CBF values were converted to absolute
values by calculating the ratio of the CBF value measured by PET to the mean
relative CBF measured by DSC-MRI in three subcortical white matter regions
and multiplying by this scaling factor the relative CBF from each gray tissue to
yield absolute MRI CBF values. However, even if this approach can provide a
good qualitative index of CBF for patients with chronic carotid occlusion, these
absolute CBF values are not accurate [44]. In summary, there is no gold-standard
method to use in order to obtain accurate absolute CBF values in normal as well
as in pathological subjects, and additional studies are needed in order to address
the problem concerning the correct absolute quantification of CFB by DSC-MRI
[23,45], especially in presence of pathologies such as chronic carotid occlusive
diseases, tumors, and strokes.

FIGURE 19.3 The quantification process of DSC-MRI image: from signal acquisition
(left) to parametric mapping generation (right) of CBF, CBV, and MTT.
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19.3.5 CONCLUSION

DSC-MRI is becoming a fundamental tool for noninvasive quantitative assess-
ment of cerebral functions and is regarded as a potential alternative to PET, which
still is the gold standard for quantitative imaging. In fact, DSC-MRI, thanks to
its minimal invasiveness and good spatial and temporal resolution characteristics,
is increasingly being used to generate quantitative parametric maps of physio-
logical processes related to brain function. Different from PET, conversion of
MRI signals into measurement of physiological parameters is a less-developed
field and only in recent years increasing attention has been paid to develop a
methodology for correct quantification of DSC-MRI images. Numerous studies
have already shown that CBF, CBV, and MTT quantifications from DSC-MRI
images are possible, and the results obtained show DSC-MIR to be an extremely
promising quantitative technique. However, further work is necessary to ade-
quately address the problems highlighted in this chapter and to bring the robust-
ness required in clinical applications.
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