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Preface

This is the third book I have written on ultrasonic waves and their applications to
the nondestructive evaluation (NDE) of materials and structures. The first book
(Schmerr, L.W., Fundamentals of Ultrasonic Nondestructive Evaluation—A Mod-
eling Approach, Plenum Press, New York, N.Y., 1998) covered the behavior of
elastic waves (primarily bulk waves) in terms of their generation, propagation,
scattering, and reception in an NDE system and described the use of models in
applications such as flaw classification and sizing. The second book, with Prof.
Sung-Jin Song, (Schmerr, L.W. and S-J. Song, Ultrasonic Nondestructive Evalua-
tion Systems—Models and Measurements, Springer, New York, N.Y., 2007) was a
more complete systems-level effort to use a combination of models and measure-
ments to describe in detail all the elements that go into forming the signals that we
measure in an ultrasonic NDE test. In both of those books the primary focus was on
ultrasonic measurements with single element piezoelectric transducers. The present
book arose out of a realization that ultrasonic phased array systems, which are now
starting to see significant NDE applications in industry, have many unique charac-
teristics and issues that have not been adequately described except in journal papers
and conference proceedings.

In organizing the structure of this book and writing it I have had three purposes
in mind. First, while I did not want to generate a textbook I did want to introduce
some of the basic physics behind ultrasonic phased arrays in a simple context so that
the important aspects these systems could be readily accessible to students, engi-
neers, and technical workers. Thus, many of the initial discussions of phased array
topics such as beam steering, delay laws, apodization, etc. are in terms of 1-D array
elements radiating waves in two dimensions. Second, I wanted to follow the basic
philosophy of the previous books by showing how all the components of an ultra-
sonic phased array system can either be measured or modeled, using a combination
of reciprocity relations, linear systems theory, and wave propagation and scattering
theory. This approach allows one to develop ultrasonic measurement models for
NDE phased array systems in the same fashion as done previously for inspections
with single element transducers. These measurement models demonstrate explicitly
how signals are produced in ultrasonic phased array systems and in particular how
the responses of flaws are contained in those signals, so that those flaw responses
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can be extracted and used for quantitative flaw detection, sizing and characteriza-
tion purposes. Third, because of the importance of imaging applications with phased
arrays, | wanted to introduce a new, rational approach to how images are produced
and what they mean. Currently, phased array images are often formed with ad-hoc
delay-and-sum methods such as the synthetic aperture focusing technique (SAFT)
and the total focusing method (TFM). I have re-examined the image formation pro-
cess to understand why those delay-and-sum methods often work so well and to
place them in a more fundamental context based on the physics of the measurement
process. Specifically, I show that one can start with ultrasonic measurement models
and, with relatively few assumptions, based on a model of the waves that contribute
to an image, formally invert those measurement models to form flaw images that
are explicit functions of the surface geometry and reflectivity of the flaw. These
images are related to the measured signals and the wave propagation processes and
electro-acoustical components present in a phased array experiment in a form called
an imaging measurement model. Imaging measurement models are developed that
are generalizations of both SAFT and TFM. These models describe the images pro-
duced in physical terms and define those aspects of the imaging process that SAFT
and TFM ignore. For small flaws it is shown that the imaging measurement models
are also generalizations of the physical optics far field inverse scattering (POFFIS)
method originally developed by Bojarski and later modified by Bleistein. Thus, the
imaging measurement models described here provide for the first time a unified
framework for understanding some of the most commonly used NDE phased array
imaging methods.

To help make some of the phased array models described in the book more ac-
cessible to the reader, MATLAB® functions and scripts' are also provided. Most
of these MATLAB® resources describe simple 2-D and 3-D scalar problems that
one can use to conduct a variety of parametric studies. The intent here was not to
produce a comprehensive set of phased array software but to provide some software
tools for examining and understanding phased arrays. Listings of the MATLAB®
functions and scripts can be found in Appendix C and the m-files are also avail-
able by sending an e-mail with subject titled “Phased Array Codes” to the author at
Ischmerr@cnde.iastate.edu.

Finally, I would like to thank my longtime colleague and friend, Alex Sedov, for
his contributions and for reading and helping to edit the entire book. I also want to
acknowledge the research efforts of Dr. Ruiju Huang and Brady Engle which have
helped to make this work possible.

' MATLAB" is a registered trademark of the The MathWorks, Inc.
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Chapter 1
Introduction

1.1 An Overview

In the medical field, ultrasound is used for performing noninvasive examinations
of patients. Similarly, in industry ultrasound is used for conducting nondestructive
evaluation (NDE) inspections of materials and structures. Ultrasonic methods are
fast, safe, and relatively inexpensive—characteristics that have led ultrasound to
being one of the most frequently used techniques in both medical and industrial ap-
plications. Like many other diagnostic and inspection methods, however, ultrasonic
methods are indirect methods. The term “indirect” means that the measured outputs,
which are usually in the form of electrical voltage versus time signals, are the result
of complex transformations of the acoustic energy that is generated and received,
making it difficult to connect the characteristics of the measured signals directly
with the properties of the object being examined. To illustrate this difficulty, con-
sider the simple ultrasonic system outlined in Fig. 1.1, where a single element ultra-
sonic transducer is placed in a fluid.

The element of this transducer is typically made of a piezoelectric material that
converts electrical energy into mechanical motion of the element and vice-versa.
Thus, if the transducer is excited by an electrical pulse, as shown in Fig. 1.1a, a trav-
eling pulse of sound will be generated in the water in the form of an acoustic wave.
If this wave strikes an object such as a spherical reflector, as shown in Fig. 1.1b,
then waves will be scattered from the sphere in all directions and some of that scat-
tered acoustic energy will return to the transducer and will be converted back into
electrical energy, amplified, and output as a voltage versus time pulse. Knowing the
wave speed of the fluid and the time of arrival of this pulse we can easily determine
the distance to the sphere, but other quantitative information such as the size of the
sphere, its mechanical properties, etc. are not directly obvious from the measured
signal. If one mechanically moves this single element transducer and changes its
position and/or orientation, then a collection of measured signals can be obtained
and used to help better determine such quantitative information. In fact, with suf-
ficient information obtained from such mechanical motion of the transducer one can
even synthesize an ultrasonic image of the sphere. However, mechanical scanning
is slow and expensive to perform with a single element transducer setup. A more

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 1
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2 1,
© Springer International Publishing Switzerland 2015



Fig. 1.1 a A single element
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effective approach to conduct inspections and form images is to use an ultrasonic
phased array, where the sound beam can be manipulated electronically. Even with
phased arrays, however, one must overcome the indirect nature of the measurement
process. Thus, the primary purpose of this book is to describe in detail how the
signals and images are formed with ultrasonic phased array systems so that one can
extract quantitative information from those phased array measurements and images.

In a phased array setup (Fig. 1.2), the ultrasonic transducer is composed of an
array of small piezoelectric elements, where each element can be separately driven
and the response of each element independently received. If each of the elements
is driven in an identical fashion so that the driving electrical pulses travel in uni-
son and all arrive at the piezoelectric elements at the same time (no relative delay
between pulses) then each small element of the array acts effectively like a point
source and radiates a spherical wave (the dashed lines in Fig. 1.2 represent the
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spherical wave fronts), and these spherical waves combine to form a traveling wave
pulse, as shown in Fig. 1.2. Except in a region close to the array the sound beam
of the array is similar to the beam generated by a single element transducer of the
same size as that of the entire array. However, by varying the relative time delays,
At,, of the driving pulses (where the ensemble of delays is called a delay law), the
ultrasonic phased array is able to electronically steer the sound beam generated
in different directions, as shown in Fig. 1.3a without requiring any motion of the
transducer itself. With an appropriate non-linear delay law, the same array can also
generate a focused sound beam as shown in Fig. 1.3b. A more complex combination
of these delay laws can simultaneously perform both beam steering and focusing.
This flexibility of ultrasonic phased arrays to electronically control the properties of
the sound beam can make the collection and use of many ultrasonic measurements
rapid and cost-effective. This same flexibility also allows one to rapidly form ultra-
sonic images, a capability that has been used for many years in clinical applications
and is seeing a much broader use recently in industrial NDE inspections.

Relative time delays for each element can also be used for modifying the charac-
teristics of the signals received by an array. Fig. 1.4a shows the case where a plane
wave front arrives at an array. As this wave strikes each element of the array in
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Fig. 1.4 a Applying variable delays
time delays and a summation
on reception for receiving a
wave arriving at angle to the
array, and b applying variable
time delays and a summation
on reception for receiving a
curved wave front arriving at
the array

succession, a series of electrical pulses will be generated as shown. If relative time
delays, At,, are applied to these received signals so that all of the signals occur at the
same time, then they can be summed to generate a single, large output signal. Note
that this summed signal is similar to what would be measured by a single element
transducer whose face was at normal incidence to the incoming wave so that the
entire surface of the transducer was excited simultaneously by the incident wave.
Thus, this reception delay law effectively acts much the same as a single element
receiving transducer oriented to face the incoming wave. Similarly, in Fig. 1.4b,
where the incident wave front is curved, relative time delays can be applied on
reception to align all the signals from the elements so they also can be summed.
This delay law is then analogous to what would happen with a focused single ele-
ment transducer on reception.

Because an ultrasonic phased array can transmit/receive with each element of
the array independently of the other elements, it also is possible to apply individual
amplitude weights, C‘[., to the elements on either sound generation and reception (or
both) (see Fig. 1.5). The ensemble of such amplitude weights is called an apodiza-
tion law. In Chap. 3, we will describe the most common apodization laws that are
used to tailor the important acoustic radiation characteristics of a phased array.

The ability to use general delay laws and apodization laws on generation and
reception makes an ultrasonic phased array a very versatile and effective device
for conducting ultrasonic tests. It is important that engineers and scientists who use
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Fig. 1.5 An ultrasonic - weights
phased array where amplitude
weights are applied to the
driving pulses, corresponding
to an apodization law applied
to the sending elements

A

0 0 [
Tﬁ‘j + R

"y

iiig
piig

7

E [

this ultrasonic phased array technology understand the basic principles that govern
the behavior of phased arrays and the important parameters that control their per-
formance. It is also important to know how the characteristics of ultrasonic phased
array systems can be exploited to help overcome the indirect nature of measured
ultrasonic responses and better determine the properties of the object being exam-
ined, as discussed previously.

This book will describe in detail the fundamentals of ultrasonic phased array sys-
tems, using a combination of models and measurements to characterize the behavior
of the arrays that are typically used in NDE inspections of materials and struc-
tures. Two references to those fundamental concepts we will mention often are the
books listed as [1, 2] in the References at the end of this Chapter. Throughout this
book those two references will be listed simply as [Schmerr] and [Schmerr-Song],
respectively. Since our focus is on the use of phased arrays in NDE settings the
behavior of ultrasonic arrays when interacting with biological systems and medical
applications of arrays will not be discussed here but the reader can find a number
of other very good sources for those important topics [3, 4, 5]. Also, see [6] for an
overview of ultrasonic NDE applications.

1.2 Linear and 2-D Arrays

The shape of the piezoelectric elements in an array can be quite general but rectan-
gular elements are often used in practice because they are cost effective to manu-
facture. Figure 1.6 shows a set of identical rectangular elements where the length of
each element in the x-direction, /_, is much smaller than its length in the y-direction,
[,. This configuration is called a linear array. The gap length, g , between elements
in the x-direction is normally the same for all pairs of elements in such an array. This
gap length is also called the kerf of the array. Another important parameter is the
element-to-element spacing, s, as shown in Fig. 1.6. This parameter is called the
pitch of the array. Obviously, from the geometry the pitch is s, =/ + g,. Because
there are multiple elements in only one dimension in a linear array, time delay laws
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Fig. 1.6 The elements of a :
linear array %
X
1,

Fig. 1.7 An array-based
angle beam shear wave
inspection setup

applied to the elements of a linear array can only steer the beam in the x-z plane
and generate cylindrical focusing along lines parallel the y-axis that pass through
various points in the x-z plane. Even with this restriction a linear array can be a very
effective tool for conducting NDE inspections.

One common application of such linear arrays is to place the array on a low
speed wedge in contact with an adjacent solid, as shown in Fig. 1.7, to generate an
array-based angle beam vertical-shear (SV) wave inspection setup, where phasing
of the array allows the shear wave to be steered and focused at various angles, 6, in
the solid.

Figure 1.8 shows a two-dimensional array of small, identical rectangular ele-
ments of lengths / and [, respectively, in the x- and y-directions and where there
are uniform gap lengths g and g, between elements in each of the x- and y-
directions so that the pitches in each of these directions are given by s, =/ +g_,
s, =1,+g,. Since time delays that vary in both the x- and y-directions can be ap-
plied to the elements of a two-dimensional array, it is possible to steer and focus the
beam of a 2-D array in a very general manner.

Other array configurations (annular arrays, segmented circular arrays, etc.) can
also be considered but the linear and two-dimensional rectangular arrays shown in
Figs. 1.6 and 1.8 are the types most commonly used in NDE tests so they will be the
types of arrays we will consider in this book.
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Fig. 1.8 A two-dimensional
array of uniformly spaced, 4
identical rectangular elements
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1.3 Modeling Ultrasonic Phased Array Systems

This book will exam in detail all the components of an ultrasonic phased array flaw
measurement system (see Fig. 1.9) and describe the models and measurements nec-
essary for describing those components. We will develop a comprehensive system
model that will quantify the generation and reception of sound with the phased ar-
ray transducer(s) and instrumentation, the propagation of the beam of ultrasound in
the material being inspected, and the scattering of waves from any flaws that may
be present. The approach we will take is similar to the one we used previously in
describing ultrasonic systems that use large, single element transducers [Schmerr-
Song] and many of the concepts discussed here can be found in that reference.
However, there are unique modeling and measurement issues associated with arrays
and we will also outline some of those issues in this book.

In an ultrasonic phased array system, time-dependent (time domain) driving
electrical signals are used to produce time-dependent traveling waves. Time domain
wave signals are, in turn, converted back into time-dependent voltages. However,
it is convenient not to directly model these time domain signals but to work instead
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Fig. 1.10 a 1-D model of input
the generation of sound at voltage driving circuit
an array element, and b 1-D v g - ) nth element
model of the reception of (. wiring/cables 1 F'(f)
sound at at element and the - 1 Y
conversion to a received a
electrical signal received
voltage P -
yr ?f receiving circuit B mith element
mn \ . wiring/cables [ o
-— | — Fo (f)
b

in terms of their frequency components (frequency domain), which can be easily
obtained with the use of the Fast Fourier Transform (FFT) [Schmerr-Song]. Thus,
throughout this book we will characterize all the components of a phased array
system in the frequency domain where the system parameters will be functions of
the frequency, f, normally measured in millions of cycles per second (or megaHertz
(MHz)).

First, consider the electrical and electromechanical parts of the phased ar-
ray system, both on sound generation and reception (Fig. 1.10) when no delays
or apodization weights are present. During sound generation the driving circuits
produce a voltage pulse which travels down the wiring and cabling to the element
(usually a piezoelectric material) where the electrical signals (voltage, current) are
transformed into acoustic pulses (force, velocity). If we assume the driving circuits
are linear, then for the circuit driving the nth element in an array (Fig. 1.10a) we
can model the source of electrical energy in those driving circuits as a Thévenin
equivalent voltage source, V' ( f), [Schmerr-Song]. This equivalent voltage source
will produce a time dependent transmitted compressive force at the face of the nth
element whose frequency domain response is denoted in Fig. 1.10a as F'(f). We
can write this compressive force as

F() =W, () (L.1)

where ¢4(f) is called the sound generation transfer function. This transfer func-
tion is a function of the electrical impedance of the driving circuits, the electrical
properties of the wiring/cabling connecting the driving circuits to the piezoelectric
element, and the electrical impedance and sensitivity of the array element [Schmerr-
Song]. When the acoustic pulses generated by the nth element interact with scatter-
ing objects (such as surfaces of a component being inspected or flaws) and travel
back to the array they are received by the mth element of the array and converted to
a received voltage pulse. We can relate the frequency components of this received
voltage, V! (f), to the blocked force, F? (f) (Fig. 1.10b), generated by the inci-
dent waves for each pair of sending and receiving elements through a sound recep-
tion transfer function, ¢’ (f), i.e.
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V() =1,(NIF,,(f) (1.2)

This receiving transfer function is a function of the electrical impedance and gain
present in the receiving circuits, the wiring/cabling present, and the electrical imped-
ance and sensitivity of the mth piezoelectric element [Schmerr-Song]. The blocked
force appearing in Eq. (1.2) is defined as the force exerted on the face of the receiv-
ing element when the face of that element is held rigidly fixed. In [Schmerr-Song]
and in Chap. 9 it is shown how this blocked force arises naturally in describing the
sound reception process for an ultrasonic system.

From Eqgs. (1.1) and (1.2) we see that in an ultrasonic measurement process in-
volving a pair of elements, where the waves are generated by the nth element and
received by the mth element, the received voltages, V' , are given by

WD Ea D E) oy

RN AN (13)
AQHQURGTAT
= 5, ()05, (/)

Von ()

where the acoustic/elastic transfer functions, t¢ (f), are defined as t* = F? / F!
and the system functions, s, (f), are given by

S ()=t (OUECSWIS) (1.4)

If we apply time delays, (Atf At ) on sound generation and reception, respectively,
and also apodization weights (éf, C’; ), on sound generation and reception, respec-

tively, then in the frequency domain these effects can easily be incorporated into
Eq. (1.3) (see Chaps. 4 and 7) as

Vi (f)=CEC exp(2mif At )exp(2mif AL )s,,, (), (f). (1.5)

Equation (1.5) is a very general model for an ultrasonic phased array measurement
system as it describes the voltages received by all possible pairs of sending and
receiving elements. This equation also shows that all the electrical and electrome-
chanical parts of the system response can be characterized by the system functions,
s,,,(f) and all the wave propagation and scattering processes present can be char-
acterized by the acoustic/elastic transfer functions, ¢! (f).

In Chap. 10 it will be shown that the system functions can be obtained experi-
mentally by measuring the received voltage, V! (f), for various element pairs in a
reference configuration where the acoustic/elastic transfer functions, 77 (f) are
known. These acoustic/elastic transfer functions will also be derived in Chap. 10 for
a convenient calibration setup. Then from Eq. (1.3) we have formally

Vo ()

Smn(f): ta (f) .

(1.6)
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In practice, the direct division in Eq. (1.6) is replaced by a Wiener filter to desensi-
tize this deconvolution process to noise [Schmerr-Song]. If M = N so there are M
transmitting and receiving elements, then a total of M different system functions
are needed to characterize the behavior of the entire array. Even if one assumes that
the system functions and acoustic/elastic transfer functions are symmetric, one still
has a total of M (M +1)/2 different system functions that would have to be ob-
tained from Eq. (1.6). For a 16 element linear array, for example, this would corre-
spond to 136 different calibration experiments that would be needed to characterize
the entire array. Fortunately, however, phased arrays are normally made with nomi-
nally identical driving and receiving circuits, wiring, and piezoelectric elements, so
it is not surprising, as found in Chap. 10, that the measured system functions may
also be nominally identical, i.e. s, (f)=s(f). In this case only one calibration

experiment is needed to obtain this system function and Eq. (1.3) becomes
Vin () = (), () (1.7)

and the general model of a phased array system with time delay law and apodization
laws, Eq. (1.5) becomes

Vi (f)=CiClexp(2 if At )exp(2 if ALl )s(f)Ls, (). (1.8)

Equation (1.8) shows that if the system function is determined experimentally and
the time delays and apodization weights specified, knowledge of all the acoustic/
elastic transfer functions present is required to simulate the received voltage. These
transfer functions are functions of the waves generated by the driving elements and
propagating in the media present, the waves scattered by a reflector or flaw present,
and the waves propagated to the receiving elements. It is not possible to determine
these propagating and scattered waves experimentally so that it is necessary to have
explicit models of these wave processes and how they contribute to the acoustic/
elastic transfer functions.

In order to describe the ultrasonic wave fields generated by the driving elements
in the acoustic/elastic transfer function it is necessary to develop an appropriate
mathematical model of the array as a set of acoustical sources. In the frequency
domain these field quantities are all functions of the spatial variables (x,y,z)
and the frequency, /. For a large, single element transducer such as the one shown
in Fig. 1.11a a simple but effective frequency domain model that has been used
assumes that the transducer acts like a velocity source with the normal velocity,
v.(x,y,z =0, f), on the face of the transducer given by

v (f)onS

0 otherwise’

VZ(X,y,Z=O,f)={ (19)

where S is the active area of the transducer face (see Fig. 1.11a). This model as-
sumes that the entire face of the transducer acts in unison in a piston-like manner,
i.e. it is a piston transducer model. Piston behavior has been successfully used to
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Fig. 1.11 a A large, single
element rectangular trans-
ducer, and b its representation
as a piston velocity source
acting over the area S that is

embedded in an infinite, rigid .
baffle /1 :
f
L =)
S i al
| \ rigid (v, =)
baffle
a b
Fig. 1.12 a A linear phased
array and b a model of an .
individual element as a piston . ).- e
velocity source embedded in Y o
arigid baffle . -
/' - /
——» I, [
i \ v. =v,(f)
P rigid (v. = 0)
a b baffle "=~

model many large single element transducers [Schmerr], [Schmerr-Song]. In our
transducer array modeling we will also assume that each element of the array also
acts like a piston. Equation (1.9) shows that in this piston transducer model the
piston source is embedded in an infinite planar rigid baffle, as shown in Fig. 1.11b.
It is possible to replace the actual 3-D geometry of the transducer in Fig. 1.11a
by a piston source acting in a planar rigid baffle since for large single element
transducers the transducer crystal is supported along its edges by a relatively rigid
case. Also, as we will see, for example in Chaps. 3 and 6, for large, single element
transducers, which typically operate at MHz frequencies in NDE tests, the beam
of sound generated by the transducer is well-collimated, i.e. it is significant only
in a relatively small region directly ahead of the transducer. Thus, the fields on the
plane z=0 outside the region § are typically very small anyway, so that the rigid
baffle assumption does not affect the fields significantly. For phased arrays such
as the linear and 2-D arrays shown in Figs. 1.12a and 1.13a, however, the phased
array elements are separated by gaps filled with an epoxy-like material (which is
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Fig. 1.13 a A 2-D phased
array and b a model of an
individual element as a piston
velocity source embedded in
a rigid baffle
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not as rigid as the elements themselves) and at MHz frequencies each element of
the array does not generate a well-collimated beam of sound in all directions so one
should examine the validity of applying the rigid baffle model of Eq. (1.9) to each
element of the array. In modeling phased arrays in this book we will still assume
that each element is surrounded by a rigid baffle, as shown in Figs. 1.12b and 1.13b
but in Chap. 14 we will model the radiation of an element when it is surrounded by
a finite acoustic impedance baffle and discuss how to determine experimentally if
such effects are important. Other modeling issues associated with arrays will also
be discussed in Chap. 14.

The voltages, V! (f) (m=1,2,..M),(n=12,...N), are all the possible measure-
ments that can be made with a phased array system having M sending elements and
N receiving elements. If the data from the measurement of all these voltages sepa-
rately is available, the measurement is said to be one of full matrix capture (FMC).
Full matrix capture provides the largest amount of information that is available
from a phased array system and is shown in Fig. 1.14a as a fully filled information
matrix of senders and receivers. If only the same individual element is used as both
a sender and receiver, then the collection of these pulse-echo responses is shown in
the information matrix of Fig. 1.14b. In Chap. 13 we will develop imaging methods
based on both full-matrix capture as well as the pulse-echo responses. In develop-
ing the FMC case, we will also need to consider the case of a single sending ele-
ment and multiple receiving elements, as shown in Fig. 1.14c. This case is known
in the seismology literature as a common shot response. Of course, many other
combinations of the sending and receiving elements can be used for measurements
and imaging, but the FMC and pulse-echo cases are those most commonly found
in practice.

In an ultrasonic measurement, if the responses of all M sending elements and
N receiving elements are measured then we can simply sum all these responses to
obtain a single response, V" ( /), given by

V'(f)é]f CECexp (2mif At )exp (2mif AL )s,,, (f)eg, (f). (1.10)

n
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This measured voltage is then analogous to what would be measured by a single ele-
ment transducer of a size comparable to the whole array, but where the array trans-
ducer beam can be tailored by the steering, focusing and apodization terms. Com-
mercial phased array systems typically provide this summed signal as an output, as
well as standard images formed with the array signals such as B-scans, S-scans, etc.
However, with full matrix capture capabilities, a phased array system allows the
user to manipulate the array data and form images in ways that are not possible with
the output signal of Eq. (1.10).

1.4 Book Outline

This book is divided into essentially three sections. The first section, covering
Chaps. 2-5, idealizes arrays as 1-D elements radiating waves in two dimensions.
This assumption allows us to discuss many modeling issues and important concepts
such as beam steering, focusing, and the existence of grating lobes in a very simple
framework. This section also provides an ideal source of materials for introducing
students to phased arrays and describes some MATLAB® functions and scripts that
can be used to simulate the behavior of a phased array.

The second section of the book, in Chaps. 611, develops a complete model
of a phased array ultrasonic measurement system. Phased array beam models are
developed in detail in Chaps. 6 and 7 and the time delay laws that can be used
to control the behavior of an array are obtained in Chap. 8. A complete linear
systems model of an ultrasonic phased array measurement system is developed
in Chap. 9 where the system response is divided into a system function that de-
scribes the electrical and electro-mechanical parts of the system associated with
a sending and receiving pair of elements, and an acoustic/elastic transfer func-
tion that describes all the acoustic and elastic wave propagation and scattering
fields present between those sending and receiving elements, as discussed earlier
in this Chapter. Chapter 10 shows how the system function for each element can
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be measured experimentally in a calibration setup while Chap. 11 uses reciproc-
ity relations to obtain an expression for the acoustic/elastic transfer function for a
flaw measurement system in terms of the incident and scattered waves at the flaw
surface in a form similar to that originally developed by Auld [7]. The combina-
tion of the system function and the acoustic/elastic transfer function then gives an
explicit expression for the measured voltage from each pair of sending/receiving
elements. This expression is called an ultrasonic measurement model. 1t is also
shown in Chap. 11 how for small flaws this general measurement model can be
reduced to a Thompson-Gray type of form [8] where the flaw response is obtained
as an explicit and separate part of the overall expression for the received voltage.
Examples are given of how this reduced measurement model can be used to predict
the measured response of some simple reflectors.

Since ultrasonic phased array flaw measurement systems are commonly used to
generate images of the flaws present, the third section of the book, Chaps. 12 and 13,
are devoted to the fundamentals of imaging. In Chap. 12, two commonly used ad-
hoc imaging methods, the Synthetic Aperture Focusing Technique (SAFT) and the
Total Focusing Method (TFM) are first discussed. Then it is shown how, for simple
2-D problems, Thompson-Gray measurement models can be inverted to produce an
explicit image of the surface geometry and reflectivity of a flaw in a form called
an imaging measurement model. These imaging measurement models are shown
to be closely related to the Physical Optics Far Field Inverse Scattering (POFFIS)
method and also to SAFT and TFM imaging. The nature of the images generated
with imaging measurement models are also described in Chap. 12 through a number
of “exact” simulations. In Chap. 13 imaging measurement models are more fully
developed for both large and small flaws in 3-D, leading to a unified framework
of imaging that generalizes SAFT, TFM, and POFFIS imaging and rationally de-
scribes the terms inherently present in the imaging process. The implications that
these imaging measurement models have on quantitative flaw characterization are
also discussed.

Finally, in Chap. 14, some of the explicit assumptions used in the development of
the array beam models used in the previous Chapters are re-examined. Specifically,
as discussed previously in Sect. 1.3, the assumption that an array element acts as a
velocity source in a surrounding rigid baffle is relaxed and a more general model is
developed where the baffle is allowed to have finite acoustic impedance.

There are also three Appendices. Appendices A and B provide detailed deriva-
tions of several factors that appear in the development of imaging measurement
models. Appendix C gives complete Code Listings for the MATLAB® functions
and scripts described in the book.

References [1] and [2] will be referred to often in this book and are listed as
[Schmerr] and [Schmerr-Song], respectively, in this and later Chapters.
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Chapter 2
Acoustic Field of a 1-D Array Element

As discussed in Chap. 1, an ultrasonic phased array is composed of many small
acoustic sending and receiving elements, each of which acts as an individual send-
ing or receiving transducer. In this Chapter we will develop models of the acoustic
waves generated by a single element and describe how the nature of this wave
field depends on the size of the element and its motion. Models that simulate the
radiation of a single array element will be generated explicitly in MATLAB®. The
superposition of a number of these single element models with different driving
excitations will then give us a complete model of a multi-element phased array
transducer, as shown in Chap. 4. To keep the discussion as simple as possible in this
Chapter the single element will be treated as a 1-D source of sound radiating two-
dimensional waves into a fluid or through a planar interface between two fluids.
Although both linear and 2-D arrays are composed of 2-D elements which produce
sound waves traveling in three dimensions, the physics of wave propagation is simi-
lar for both 1-D and 2-D elements so that we can learn much of the fundamentals of
sound generation with these simplified models. In Chaps. 6 and 7 we will discuss
the corresponding three-dimensional models and wave fields of single elements and
phased arrays.

2.1 Single Element Transducer Models (2-D)

The basic setup we will use to describe a single element transducer is shown in
Fig. 2.1. We will treat the transducer as a velocity source located on the plane z=0
where a normal velocity, v, (x,¢), as a function of the location, x, and time, ¢, is
generated over a finite length [— b, b] in the x-direction and [ —eo,+cc ] in the y-di-
rection. The normal velocity is assumed to be zero over the remainder of the plane.
This type of model is called a rigid baffle model since the element is assumed to be
embedded in an otherwise motionless plane, as discussed in Chap. 1. The motion of
the element radiates a 2-D pressure wave field p(x,z,t) into an ideal compressible
fluid medium that occupies the region z > 0.

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 17
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2 2,
© Springer International Publishing Switzerland 2015
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Fig. 2.1 Model of'a 1-D X
element radiating into a fluid
with density and wave speed,
(p,c), respectively

As shown in many texts (see [Schmerr], for example) the application of New-
ton’s law (ZF = ma) to a small fluid element yields the equations of motion (for
no body forces) of the fluid given by:

o*u
_Vp:paT’ (21)

Where p is the density of the fluid, u(x,z,7) is the vector displacement, and the

2-D gradient operator V = ¢ i.,_e i, and (e_,e_) are unit vectors in the x- and
Yo F oz ;

z-directions, respectively. For an ideal compressible fluid the pressure in the fluid is
related to the fluid motion by the constitutive equation

p=-4,Vu, (2.2)

where A, is the bulk modulus of the fluid. The quantity V-u appearing in Eq. (2.2)
is called the dilatation. Physically, it represents the relative change of volume per
unit volume of a small fluid element and it is also called the volumetric strain of the
fluid element [Schmerr]. The minus sign is present in Eq. (2.2) because a positive
pressure causes a decrease in the volume of a compressible fluid.

If one takes the divergence (V-) of both sides of Eq. (2.1) and uses Eq. (2.2), it
follows that the pressure p(x,z,7) must satisfy the wave equation:

O p,op 10p_ ’ 2.3)

ox*  9z° ¢ o
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where the wave speed, c, in the fluid is given by
¢=\Zlp. (2.4)
In modeling waves in the fluid, we will assume that all the waves have a harmonic
time dependency exp(—iar) so that
p(x.2,0) = p(x,z, 0)exp(~ian). 2:5)

Placing this relationship into Eq. (2.3) shows that p(x,z, ®) must satisfy the Helm-
holtz equation

8213+8213+22 . (2.6)

Alternatively, we can view a solution p(x,z,®) of Eq. (2.6) as the Fourier trans-
form (frequency domain spectrum) of a time dependent wave field p(x,z,t), where

p(x,z,0) = f p(x,z,t)exp(+iwt)dt (2.7)

and

P20 =5 [ plx,z.0)exp(ian)do, @3
2r =,

since if we take the Fourier transform of the wave equation it follows that the trans-
formed pressure p(x,z, ) also must satisfy the Helmholtz equation.

We will solve our models of transducer behavior in this and later Chapters for
the fields p(x,z, ). Since we will be working almost exclusively with frequency
domain wave fields in this book, we will henceforth drop the tilde on our frequen-
cy domain variables and simply write fields such as the pressure or velocity as
p(x,z,w) or V(x,z,w), etc. with the understanding that an additional time depen-
dent term exp(—i@r) is also always present implicitly if we want to recover a time
domain solution (see Eq. (2.8)) or if we consider these fields as harmonic wave
fields.

To solve for the waves generated in the geometry of Fig. 2.1, we first note that
the Helmholtz equation has harmonic wave solutions given by

p = exp(ik x+ik_z), (2.9

where

2 2
L JE -k k2k 2.10)
ik -k k<k,
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and k = w/c is the wave number. For the real value of k_ given in Eq. (2.10), the
solution of Eq. (2.9) represents a plane wave traveling at an angle @ with respect to
the z-axis, where k, = ksin®, k. = kcos@ . The imaginary value of k_ corresponds
to an inhomogeneous wave traveling in the plus or minus x-direction (depending on
the sign of £_)and decaying exponentially in amplitude in the z-direction. Since the
waves given by Eq. (2.9) are solutions of the Helmholtz equation, we can also form
up a more general solution by simply a superposition of these waves traveling with
different values of &, i.e. we can let

p(x,z,0) = 2L | P(k,)exp(ik,x+ik.z)dk,. (2.11)
”—co

This type of solution is called an angular spectrum of plane waves, although as we
have seen it is really a combination of both plane waves and inhomogeneous waves.

We will use this type of solution to represent the waves generated by the element
model of Fig. 2.1. If we let v_(x,0,w) be the Fourier transform of v_(x,0,7) (on
the plane z=0) then

v, (x,0,0) = [ v.(x,0.0)exp(ion)dt (2.12)
and we see that
v, (x,0,0) —b<x<b
v (x,0,w) = ) , (2.13)
0 otherwise
where
v.(x,0,0) = J v, (x,0,7) exp(ior)dt. (2.14)
Note that from the equation of motion (Eq. (2.1)) we have
aP _ o .
T —pw U, = —10pv, (2.15)
so that
1
vz(x,O,a))=.—M (2.16)
i

wp Oz o

z

Thus, from Eq. (2.11) we find
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v.(x,0,0) = L | _ZLP(kX)exp(ikxx)dkx
2z L iap 2.17)
= Ziﬁi V(k,)exp(ik x)dk,,
where

ik_P(k 2.18

Equation (2.17) shows that v_(x,0,®) can be treated as a spatial inverse Fourier
transform of J/(k ) so that from the corresponding forward spatial transform we
have

Vik,)= T v.(x,0, ®)exp(—ik x)dx. (2.19)

Since the velocity on z=0 is known (Eq. (2.13)) the spatial Fourier transform (k)
is also known and we can write the pressure anywhere in the fluid from Eq. (2.11)
and Eq. (2.18) as

exp(ik, x +ik.z)dk,. (2.20)

_optVk)
p(x,2,0) = 2”_jm Z

k

Now, Eq. (2.20) is in the form of a spatial inverse Fourier transform of a product of
functions G(k, ,z,w) and H(k, o), i.e.

p(x,z,0) = ZL j G(k,,z, w)H (k,, w)exp(ik x)dk, 221
” —co
where
Gk, 2, 0) = %’]‘Zz), Hk,., )= apV (k). (2.22)

z

But by the convolution theorem [Schmerr] the inverse Fourier transform of a prod-
uct of transformed functions is the convolution of the functions themselves, so that
in this case the convolution theorem gives

pr.z,0)= [ ', 0)g(x—x,z,0)dx, (2.23)
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where

g(x,z,w) = L j iexp(ikxx +ik,z)dk, (2.24)
2w ° k

-1

and

h(x, @) = %TV(kx)exp(ikx )dk . (2.25)

First, examine Eq. (2.25). Since V' (k) is the spatial Fourier transform of v, (x,0, ),
it follows that

h(x,®) = pav.(x,0, ). (2.26)

Now, consider Eq. (2.24). This is the inverse Fourier transform of an explicit func-
tion and can be shown to be proportional to a Hankel function of zeroth order and
type one [1]. Specifically,

H (7 7)
g(‘x!z’ w) = f’

(2.27)

where again k = w/c is the wave number. Placing these results into Eq. (2.21) then
gives

p(x,0)= % j v.(x",0,)H" (kr)dx’, (2.28)

where = /(x—x")* +z* is the distance from a point (x’,0) on the plane z=0 to
a point X = (x,z) in the fluid (see Fig. 2.1). Since the velocity on the plane z=0 is
given by Eq. (2.13), we find

+b
p(x,m) = % j v.(x",0,0)H" (kr)dx’ (2.29)
-b

in terms of the velocity on the face of the element, which is assumed to be known.
Equation (2.29) gives the pressure anywhere in the fluid generated by the motion of
the face of the element so it is a complete ultrasonic model for the waves generated
by a single element radiating into a single fluid medium.

Physically, Eq. (2.29) represents the wave field of the transducer element in
terms of a weighted superposition of cylindrical waves arising from concentrated
sources acting over the length of the transducer. This can be seen more explicitly by
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Fig. 2.2 Geometry param- x
eters for defining the far field T
response

(x.0) o v

assuming the distance 7 to a point in the fluid is many wavelengths away from the
element so that k&>>1. Then, since the Hankel function has the asymptotic value

(2]
HO ) = (|2 explitu—17/4)] (2.30)
Tu
for u>>1, Eq. (2.30) becomes

. +b
p(x’ a)) =MJ‘VZ(‘X’9O’ a)) iexp(zkr)dx, (231)
2 2 Vﬂkr

in terms of a superposition of the cylindrical wave terms exp(ikr)Ar over the
length of the element.

2.2 Far Field Waves

From the law of cosines (see Fig. 2.2) we have

r= \/roz +(x)* =2x"r, sin 6. (2.32)

Continuing to keep the high frequency approximation kr>>1 the far field of the
element is defined as the region far enough from the element so that x7;, <<1 are
valid and we can expand Eq. (2.32) to only first order as

r=r,—x"siné. (2.33)
If we place this approximation into Eq. (2.30) we obtain

p<x,w>=%,/ ,frexp(—inM)exp(ikro) [ v.(x",0, @) exp(=ik sin 6x")dx’, (239
7T 0

—oo
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or equivalently, in terms of the spatial Fourier transform of the velocity field,

L exp(ikr;,) 235
p(X, @) 2m./?CV(kx) \/Z (2.35)

with k= ksin 6.

Equation (2.35) shows that in the far field region the element behaves like a con-
centrated source emitting a single cylindrical wave so we could call this region the
cylindrical wave region of the element.

In most cases we will model the motion on the face of an element as if it acted as
a piston source, i.e. as if the element had a spatially uniform velocity over the entire
length of the element:

w) —-b<x'<b
v.(v,0,0)= 0@ e (2.36)
0 otherwise
In this case the spatial Fourier transform is
+b
V (k)= [ v,(@)exp(-ik,x')dx’
b (2.37)
_ 2y (w)sin(k,b)  2v (w)sin(kbsin O)
- k, - ksin @
and the far field piston element response can be written as
sin(kb sin 6) exp(ikr,) (2.38)

2
p(x,0) = PCVo(w)\/%(kb) kbsin6  Jkn

Equation (2.38) shows that in the far field the piston element response has a direc-
tivity function, D, (8), where

sin(kb sin 6)
kbsin@

D,(6)= (2.39)

This directivity function is strongly controlled by the non-dimensional wave num-
ber, kb, as shown in Fig. 2.3. [Note: For brevity of notation in later expressions this
kb dependency will be omitted in the argument of D, but it should be implicitly un-
derstood that it is still present in this and in other directivities that will be discussed
in later Chapters.] For a value of kb=0.314 where the length, 2b, of the element is
one tenth of a wavelength,4, (Fig. 2.3a), the sound radiation of the element is nearly
uniform in all directions (=90° < #<90"). At kb=1.57 (element length=one half
a wavelength) there begins to be some significant changes in directivity with angle
(Fig. 2.3b) but the radiation pattern is still broad. At a value kb=3.14 (element
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Fig. 2.3 The directivity function for an element of a length 2b/4 = 0.1,b 2b/A=0.5,¢ 2b/A=1.0,
andd 26/ =3.0

Table 2.1 Directivities of Element size, 2b//.

. degrees
some elements of various 05 (degrees)

sizes 1.0 36.9
3.0 11.5
10.0 34

length=one wavelength) Fig. 2.3c shows that now most of the radiation is in an
angular region of 30" about the normal to the element and at kb=9.42 (element
length=three wavelengths) the sound is confined primarily to a highly directed
beam, with the appearance of small side lobes, as shown in Fig. 2.3d. Most NDE
phased array transducers operate at MHz frequencies and with element sizes that are
larger than one half a wave length so that directivity of the element plays an impor-
tant role in the sound field generated and appears as a part of the overall response
of an array of elements.

It is customary to define the size of the main “lobe” of the far field sound beam
generated by an element in terms of the angle at which the pressure first drops to
one half (—6 dB) of its value along the z-axis (8= 0). For the sinc function, sin x/x,
this one half value occurs at x=1.8955 so that from Eq. (2.39) we see the —6 dB
angle is given by



26 2 Acoustic Field of a 1-D Array Element

6.5 =sin”' [0-6%]» (2.40)

which always has a root as long as 25 > 0.64. Table 2.1 shows the results for cases
(c) and (d) of Fig. 2.3 which agree with the angular patterns shown in Fig. 2.3. Also
shown in Table 2.1 are the results for an element that is ten wave lengths long,
where it can be seen that the directivity becomes quite small. Large, single element
transducers used in NDE applications are normally tens of wavelengths in diameter
so that they are highly directional and generate sound beams that are well collimat-
ed, i.e. most of the sound propagates normal to the face of the transducer. However,
for the smaller elements present in phased array transducers the far field directivity
can vary considerably, depending on the size of the elements.

It is important to know when the far field approximation we have been using in
this section is valid. Recall, in Eq. (2.32) we expanded the radius 7 to only first order
Eq. (2.33) which led us to the explicit far field results. Let us go back to Eq. (2.32)
and examine when the remaining terms in the expansion are negligible. First, we
rewrite the radius 7 as

/2_2 ’ 3 0
r=r0\/l+(x) X'y sin ’ (2.41)

2
)

which is in a form that can be expanded to three terms since by the binomial expan-
sion of a square root

2
Ji+b z(1+§_%+...), 1B <1. (2.42)

In the case of Eq. (2.41) if we use Eq. (2.42) and keep only quadratic terms at most
in the expansion we find

(x")* cos® 6’. (2.43)

r=ry—x'sin @+
2,

Equation (2.43) shows that in order to keep only the first order term of
Eq. (2.33) in the phase term of Eq. (2.1.31) we must have the complex expo-
nential exp(ik(x’)* cos® 6/2r,) term near unity, which will only be possible if
k(x")* cos® 8/ 2r, << 1. This condition will certainly be satisfied if we replace x’

and cos® @ by their largest possible values of b and one, respectively, and require

2 2
kb~ _ 7b «l. (2.44)
2, Ax
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So the far field conditions should be well satisfied if

o (2.45)
7 >> .
A

For large single element transducers radiating waves in 3-D the far field occurs
when the transducer wave field is well approximated by a point source radiating a
single spherical wave. For a circular transducer of radius b the far field of the trans-
ducer is also given by Eq. (2.45) where the quantity N = 5% is called the near
field distance [Schmerr]. The quantity D = zh*/1 can be rewritten as D = kb2
which is called the Rayleigh distance [Schmerr-Song]. We see that the far field of a
1-D element also occurs for distances greater than the Rayleigh distance.

2.3 Numerical Piston Element Models

Although we can obtain explicit results for the wave field of an element in the far
field, for other points in the wave field it is not possible to analytically perform the
integrations present in either Eq. (2.29) or Eq. (2.31). However, it is relatively easy
to compute the pressure wave field numerically from Eq. (2.29) as long as z is not
too near the element face (z=0) where the Hankel function can become singular.
At or near the element face one needs to perform the integration more carefully, but
generally we are only interested in the radiated wave field at some finite distance
from the element face where such singular behavior is not present. For piston be-
havior we have:

+b
px.0) = LD [ g, (2.46)
)

where k = w/c is the wave number. First, we break up the face of the element into
N equal segments of length Ad=2b/N. The centroids of these segments will be lo-
cated at the positions

X =—b+ %+ (n-DAd (n=1,2,..N) (2.47)

or, in normalized form

X —x—’:——1+£(n—l) 2.48

If we assume that the segments are small enough that the Hankel function can be
taken as a constant over each segment, then Eq. (2.46) can be written as
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N
p(x, ) _ ﬁz Hél)(kbfn ), (2.49)
pcv, N &
where
7, =(x/b=%,)" +(z/b)’. (2.50)

We will call the beam model of Eq. (2.49) the Hankel function model.

Since for large kb values the Hankel function is a highly oscillatory function, to
treat it as a constant over each segment we will typically have to keep the segment
size, Ad, to about a tenth of a wavelength, 4, or less. If we take frequency, f, in MHz,
the wave speed, ¢, in m/sec, and dimensions of » and Ad in mm, then the criterion

Ad s% (2.51)

is equivalent to the requirement that N must satisfy

3
ceil(wj 2b> A/10 (2.52)

C

El

1 2b< A/10

where the MATLAB® function ceil() rounds the value of its argument towards in-
finity to the nearest integer. Note that Eq. (2.52) also guarantees that for element
lengths less than a tenth of a wavelength we must have at least one segment (N=1).
For b=6 mm, /=5 MHz, and ¢=1500 m/sec we obtain N=400. This example shows
that even in this 2-D problem when computing the integral of Eq. (2.46) for element
sizes comparable to large, single element NDE transducers one needs to compute a
relatively large number of terms. For the much smaller element sizes used in phased
arrays the number of terms needed is greatly reduced. The MATLAB® function
rs_2Dv given in Code Listing C.1 (see Appendix C) implements the Hankel func-
tion model. Its calling sequence is

>>p=rs_2Dv(b, f, c, ¢, x, z, Nopt);

This function uses Eq. (2.49) to calculate the normalized pressure field, p(x,z)/pcv,
at a point (x,z), measured in mm, for a piston element of length 26 mm radiating
waves into a fluid whose wave speed is ¢ (in m/sec) at a frequency, f, given in MHz.
In anticipation that this function will also be used to model a single element in an
array where the center of the element may not be located at x” =0, Eq. (2.50) has
been modified to be
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Fig. 2.4 The magnitude of the normalized pressure, p/pcv,, generated at 5 MHz, ¢=1500 m/sec,

for an element where a 2b=.03 mm (2b/A=0.1), b 2b=0.3 mm (26/A=1.0), ¢ 2b=2.0 mm
(2b/2 = 6.67), and d 2b=6.35 mm (2b/4 = 21.2)

7 =\(x/b=X,—e/b) +(z/b), (2.53)

where the offset of the element in the x-direction, e, (in mm) is also specified as an
input parameter of rs_2Dv. The parameter, Nopt, is an optional input argument for
this function. If Nopt is not specified, the number of segments used to calculate the
wave field is given by Eq. (2.52). Otherwise Nopt is used for the number of seg-
ments instead. This gives the user some flexibility in controlling the calculations
but, as we will show shortly, when choosing Nopt there are some limits to how large
the element segments can be.

Figure 2.4 shows the magnitude of the pressure wave field generated by elements of
different sizes. In all these cases the frequency was taken to be 5 MHz and the wave
speed (nominally that of water) was given as 1500 m/sec. The Nopt parameter was
not specified. Figure 2.4a shows the case for an element of total length 26=0.03 mm,
which corresponds to 25/4 = 0.1. For this case in the far field we saw the directivity
of the element was uniform in all directions and this behavior is also true for much of
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Fig. 2.5 The magnitude of the normalized on-axis pressure, p/pcv,, versus z generated at 5 MHz,
¢=1500 m/sec, for an element where a 2b=.03 mm (2b/4=0.1), b 26=0.3 mm (2b/1=1.0),

€2b=2.0mm (2b/A = 6.67), and d 2b=6.35 mm (2b/A = 21.2). Solid line-using Eq. (2.49). Cir-
cles—using the far field expression, Eq. (2.38), for = 0. Note the changing scales in these cases

the entire wave field of the element as seen in Fig. 2.4a. In Fig. 2.4b the length of the
element was 2b=0.3 mm (2b/4 =1.0) and one now sees a very broad beam but with
some directivity, in agreement with the far field behavior of Fig. 2.3c. Figure 2.4c
is for 2b=2.0 mm (2h/1 = 6.67) and now the element generates a highly directional
beam, as expected. In Fig. 2.4d, the element size is typical of many large, single ele-
ment transducers, 26=6.35 mm (2b/1 = 21.2), and the wave field remains highly
collimated, with much internal structure in the main “beam” of the element visible.
These results show that the nature of the waves generated by a small phased ar-
ray element will be quite different from that of a large, single element transducer.
The wave fields of small phased array elements will individually exhibit very broad
radiation patterns, while large elements are quite directional in their response. When
many small elements are combined in a multi-element phased array transducer,
these wave fields will be combined to give the overall array sound beam. As we will
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Fig. 2.6 The magnitude of the normalized pressure, p(r,,6)/p(r,,0), generated at 5 MHz,
¢=1500 m/sec, at a fixed distance, Ty for an element where a 7y=5 mm, 26=.03 mm (25 /4 = 0.1),
b r,=5 mm, 26=03 mm (2b/A=1.0), ¢ 7,=15 mm, 2b=2.0 mm (2b/1=6.67), and
d 7,=100 mm, 2b=6.35 mm (2b/4 =21.2). Solid line—using Eq. (2.49). Circles—using the far
field expression, Eq. (2.38), for g=0

see in Chap. 5, by appropriately delaying the broadly generated wave fields of such
small elements we can easily adjust their combined effect to both steer and focus
the overall sound beam of the array. However, such steering and focusing becomes
more difficult as the element size gets larger because we are then combining ele-
ments wave fields that are more highly directional themselves. Practical consider-
ations in the manufacture of commercial phased array elements may require that
the elements be large enough so that element directivity effects are present. This, in
turn, may affect the steering and focusing capability of commercial arrays.

It is also instructive to examine the behavior of the pressure wave field along
the central axis of an element and compare it to the far field values of Eq. (2.38)
(for #=0). The results are shown in Fig. 2.5 for the same four cases considered in
Fig. 2.4. It can be seen that for elements of lengths equal to one wavelength or less
the “exact” numerical values follow the far field values essentially throughout the
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Fig. 2.7 The magnitude of
the normalized pressure,
p/pev,, generated at S MHz
in water (¢=1480 m/sec)

for a 12 mm long element
where the element is divided
into segments whose length is
one tenth of a wavelength

mim

entire wave field. For the larger element sizes there is a near field oscillatory struc-
ture in the numerical results close to the element but at larger distances the numeri-
cal and far field results again agree.

Since the on-axis exact and far field results are identical for cases (a) and (b) in
Fig. 2.5 one would expect that off-axis results would agree also. This is the case,
as shown in Fig. 2.6 where the angular behavior of the normalized pressure wave

field for a fixed radius 7, =+/x* + 2z is plotted versus the angle = tan™'(x/z)
from both Eq. (2.49) and Eq. (2.38). For an element length of one tenth of a wave-
length (Fig. 2.6a) at a distance y, =5 mm the directivity is nearly uniform, while
there is more directivity at the same radius for an element length of one wavelength
(Fig. 2.6b). In both cases the exact results and the far field results agree closely and
show the same behavior of directivity that we have seen previously in the polar
plots of Fig. 2.3. For the larger elements of Fig. 2.6¢ and d, the exact and far field
results again agree as long as the radius 7, is in the cylindrically spreading region.
From the on-axis results of Fig. 2.5 we saw that for case (¢) the two curves merge at
approximately z=15 mm while they merge for approximately z=100 mm for case
(d). Thus, these distances were used for the 7, values in Fig. 2.6c and d. Although
the spacing of the discrete far field results shown in Fig. 2.6¢ and d is too large to
show the detailed behavior of the directivity for these cases, at the angular locations
evaluated here there was good agreement with the exact results.

Using Eq. (2.52) to determine the number of segments for an element is gener-
ally a conservative choice so that one can often obtain acceptable solutions with a
smaller number of segments. However, if the length of the segment exceeds a wave
length, fictitious side beams (called grating lobes) will appear in wave field. These
side lobes are simply the result of inadequate sampling of the element and can
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Fig. 2.8 The magnitude of the normalized pressure, p/pcv,, generated at 5 MHz in water
(c=1480 m/sec) for a 12 mm long element where the field calculations are performed with a thirty
five sub-element segments, each 1.14 wave lengths long, and b 50 sub-element segments, each
0.8 wave lengths long

also appear in the response of multi-element phased arrays, as discussed in some
detail in Chap. 4. We can easily see this behavior by making different choices of
the Nopt parameter. Consider, for example, a 12 mm long element radiating into
water (c=1480 m/sec) at 5 MHz. An image of the pressure wave field (magnitude)
is shown in Fig. 2.7 when Eq. (2.52) is used to guarantee that the segment size is
one tenth a wavelength. If, instead we evaluate this wave field with Nopt=35, the
size of a segment is 1.14 wavelengths and the field is shown in Fig. 2.8a. We see
that the main structure of the radiated beam in Fig. 2.8 is identical to that of Fig. 2.7
but outward radiating side beams (grating lobes) also appear as well. These grating
lobes can be eliminated by choosing Nopt=>50 so that the size of each segment is
0.8 wavelengths, as shown in Fig. 2.8b.

2.4 Line Source Models

Studies such as those described in the previous section show that as long as we are
at a distance of about 3 near field lengths or greater from an element the entire wave
field of an element is well described by the far field results of Eq. (2.38) given here as

kv,
p(x, @) =pcvo(w)\/%<kbwbw>% 2.54)

0
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Fig. 2.9 The geometrical -
parameters defining the nth ’ Ad
segment of length Ad for an L
element of total length 2b.
The distance x, is to the
centroid of the nth segment
and Ad =2b/N where Nis 2b x’ f__ X
the number of segments
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in terms of the element directivity, D, (). If we use this single term to represent
the waves generated by an array element we will call this model an array single
line source model. We should note that some authors discuss phased arrays by us-
ing single line source models for each array element where the directivity function
is equal to one. As we have seen, this is permissible only for element lengths one
tenth of a wavelength or less, which is much smaller than what is practical to make
in most commercial NDE phased arrays so that for NDE applications one needs to
include this directivity in the single line source model. When the fields are needed
for an element in a region where the far field values of Eq. (54) are not adequate one
can superimpose a number of such far field results over the length of the element.
This is equivalent to using the high frequency model of Eq. (2.31) for a piston ele-
ment given as

p(x, @) = PEXPE ’”/4)V°(w) j / — explikr)dy’ (2.55)

and then breaking the element length into N segments in exactly the same fashion
as done for our original Hankel function element model (see Eq. (2.49)) but where
now within each segment (see Fig. 2.9) we have from the law of cosines

r= \/rnz —2(x"—x,)r,sin@, +(x" —x,)’
=7, [1-(x"-x,)sin@, /r,].

(2.56)

Keeping only the leading term in Eq. (2.56) for the 1Ar term of Eq. (2.55) and both
terms in the exponential of that equation we obtain

+Ad/2
p(x,0) = kpeexp(= 171'/4)v0(w) Z } exp(zkr ) exp(—ikvsin 8,)dv, (2.57)

—Ad/2
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where v=x"—x,. But the integral in Eq. (2.57) is just equal to AdD,,,,,(6,)
where

sin [ k(Ad/2)sin 6, |

Dy,,(6,)= K(Ad/2)sin 0, (2.58)
(see Egs. (2.38) and (2.39)), so we find
px,0) = pevy (@) 2 Dy,(6, )eszr;kr”) (2.59)

which, comparing with Eq. (2.54), shows that the wave field of the element can be
calculated as the superposition of single line source terms for each segment. Equa-
tion (2.59) gives us an expression for evaluating the wave field of any element, large
or small, similar to the Hankel function model, as long as the segments are chosen to
be small enough. We will call this model the multiple line source model.

As with the Hankel function model we can write Eq. (2.59) in non-dimensional
form to give

p(x,0) 1 2kb & exp(ikbr, )
0, (2.60)
pev, (co) N z Dy (6)—"=" . /rn

where the normalized distance to the centroid of each segment, 7, , is again given
by Eq. (2.50).

The MATLAB® function Is_2Dv given in Code Listing C.2 uses Eq. (2.60) to
calculate the normalized pressure field, p(x,z)/pcv, for a piston element where
the center of the element can be offset a distance, e, in the x-direction so that the
distance 7, is again replaced by the modified expression of Eq. (2.53). The calling
sequence for this function is very similar to that of rs 2Dv:

>>p=Is_2Dv(b, f, c, e, x, z, Nopt);

The optional function argument, Nopt, gives the number of segments. For Nopt=1,
the function implements a single line source model for the element. If this argument
is not specified then the number of segments, V, is chosen so that a segment is never

larger than one wavelength:
3
ceil (M] 2b> A

B (2.61)

>

1 2b< A
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Fig. 2.10 Comparison of the magnitude of the on-axis normalized pressure, p/pcv,, versus on-
axis distance, z, where the Hankel function model (solid line) and multiple line source model (cir-
cles) were used to model the waves from an element for a 26=0.6 mm (2b/4 =2.0), b 2b=6 mm
(2b/A = 20)- Other parameters: /=5 MHz, ¢=1500 m/sec

which eliminates the possibility of grating lobes arising from choosing inadequate
segment size when representing an element (recall b here is in mm, f'is in MHz, ¢
is in m/sec). However, in Chap. 4 we will show that regardless of the smallness of
the segments used to represent an element, if the element size itself and gap size of
an array combine to give a value of the array pitch that is greater than only one half
a wavelength then similar grating lobes can appear in the wave field of the entire
array.

Figure 2.10 shows the magnitude of the on-axis pressure for both a small and
large piston element as calculated with either the Hankel function model or the mul-
tiple line source model (using Eq. (2.61) for determining N). It can be seen that the
multiple line source model accurately predicts the response even at small distances
from the element where near field effects are present. Similar agreement between
the two models can be shown to exist for all points in the wave field except in a very
small region directly adjacent to the face of the element for both large and small
elements, so that the multiple line source model is an accurate and versatile model
for both array elements and for large, single element transducers.

2.5 Radiation Through a Planar Interface

The behavior of a phased array element can be best described in the simple context
of radiation into a single medium, but in practice arrays are often used in setups
where an interface exists between the element and the point at which the fields are
being evaluated. Thus, in this section we will examine how to include a planar in-
terface in modeling the radiated wave field.

Consider the setup of Fig. 2.11 where a planar element located in a fluid medium
radiates sound into a second fluid medium through a plane interface. In [Schmerr]
this type of problem was analyzed using both an angular plane wave spectrum in-
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Fig. 2.11 Radiation of waves
from an element in 2-D 2h
through a planar interface
between two fluids
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Fig. 2.12 Geometry of a
bundle of rays that travels 2h
on a Snell’s law path from
a point on the element to a
point in the second medium
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tegral and a Kirchhoff approximation approach in conjunction with the method of
stationary phase. However, it was also shown that both of these methods, which in-
volve rather complex derivations, are equivalent to the use of simple high frequency
ray theory methods so we will directly apply those ray methods here.

According to ray theory, at high frequencies the pressure at point x due to a
cylindrical wave propagating from a point x” on the face of the element can be
calculated by following a bundle of rays as it propagates along a path from x’ to a
point x, on the interface and then to x, where the path must satisfy Snell’s law [3].
Such a bundle is shown as the dashed lines in Fig. 2.12. If we assume the element
acts as a piston velocity source, then at the interface point, x,, the incident pressure
in the first fluid for a cylindrical wave traveling from x” to a point x, for a small
segment dx” of that element, p,(x,), is just



38 2 Acoustic Field of a 1-D Array Element

k, exp(ikr)

2 (x,) = peyvy (), [—= py- f e S L (2.62)

(see Eq. (2.55) which is just an integral superposition of this type of term). The
pressure at point x, for the wave that is transmitted into the second medium, p,(x;),
is then

_ k exp(zkr) 263
P, (Xi) - p1clvo (O))T 271_1, \/, ( )

where 7, is the plane wave transmission coefficient (based on pressure ratios). As
shown in Fig. 2.12, a bundle of these transmitted waves appears to originate from a
virtual source point, x, located at a distance r, along the refracted ray. It is easy to
show, using Snell’s law that this distance is given by

2
- :C_lﬂrl (2.64)
¢, cos” 6,

(the proof follows identical lines to the proof of Eq. (B.40) given in Appendix B for
the virtual distance in the plane of incidence for rays traveling in 3-D). In propagat-
ing from x, to x along the refracted ray, the ratio of the magnitude of the pressures
at these two points is inversely proportional to the ratio of the square roots of the
distances from the virtual source [3] so that we have

p(x)

. 2.65)
= ——=exp(ik,n,). (
pz(xi) NI e
Placing Eq. (2.63) into Eq. (2.65) gives

kr + ik,

P = p (@, [ MU (2.66)
L& cos’ 6, p
c] cos’ 6, °

Summing all the small segments over the length of the array element, the total pres-
sure at X from the element, p(X), is

p(x)= plc.vo(w)./ IT XUkt k) g, (2.67)

L& cos’ 6,

2
c1 cos” 6,

Equation (2.67) is the foundation for generating a multiple line source model for
our two medium problem. This is in a very similar form to Eq. (2.55) for a single
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Fig. 2.13 a The geometry for
a pair of nearby rays traveling
from an element to a point in
the second medium, and b the
definition of parameters at
the radiating element

medium and reduces to that equation when both media are identical. Evaluating
Eq. (2.67), however, is more complex than Eq. (2.55) since the angles (,,6,) and
the distances (7,7,) are not known explicitly until the Snell’s law ray path from
any point X" to X is known. Such paths are determined once the locations of the
points X, on the interface are obtained. In Chap. 5, in discussing the development
of time delay laws for steering and focusing through a planar interface, the location
of the point x; is found by explicitly solving for the zero of a function g(x,) (see
Eqg. (5.18)). The same approach can be used here to obtain (6,,6,) and (1,r,) for
use in Eq. (2.67).

Consider now the case when the element is small enough so that the distances
(r,r,) areapproximately equal to (r,,,7,,) as measured along a Snell’s law ray path
from the center of the element, X, to point x in the second medium (Fig. 2.13a).
From the geometry of Fig. 2.13a we see that

n _ \/(rl()elo +X, — XT)'("ioelo +X, - XT)

G G

2
~ \/né +25,e, (X, —X;) +|x, = x| (2.68)

¢
= To e (X —Xp)

G
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and, similarl
’ ¥ r_z — \/(rzoezo _X1)'(rzoezo B X1)
& 6 (2.69)
2 2
_ \/rzo _zrzoezo'xl +|X1|
(&
~ T —€y'X,
- b
(&3

where (e, ,e,,) areunit vectors along the Snell’s law path from x_ to x in the first
medium and second medium, respectively. Combining Eq. (2.68) and Eq. (2.69)
gives

v r 7 7, e X et e, t
Ly 210,720 0 T+[ 0 _20 Jx,, (2.70)

G G G G G G )

where we have written x, = x,t, with t being a unit vector along the interface, as
shown in Fig. 2.13a. But the term in parentheses in Eq. (2.70) vanishes because it is
merely a statement of Snell’s law for the path from x_ to x, so that

K r. 14 z, €., X
G5 fe o So¥r (2.71)

G 6 G G G

If we use this approximation in the phase term of Eq. (2.67) and replace the ampli-
tude terms by their values along the ray from x_ to x, we find

¢, cos 010 )

o exp(ik,n, +ik
p(x) = plc]vo(a))/ \/ xp(ikiy +ikor) [ exp(-ik, sin ox')dx’, (2.72)

¢, cos’ 8,

where T, is the plane wave transmission coefficient along this ray and we have
written e X, = x"sin@ with @ being the angle that the unit vector e , makes with
respect to the normal to the element, as shown in Fig. 2.13b. The remaining integral,
however, is just the length of the element multiplied by the element far field direc-
tivity (see Eq. (2.39)) so that we find, finally

T . exp(ikr, +ik,r, i i
p(x) = peyv, (@), [— 2 i \/0 P 220)2bsm(klbsmg)
10

¢, cos’ kbsin @

r20

¢ cos” By, 2.73)

o €xp(ik,n, +ik,r,
= picv, (@) / L 20)2bDb(9),
\/ < cos’ cos” 6,

20
¢, cos’ 6,
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Fig. 2.14 Geometry for
implementing a multiple

line source model of a 1-D
element of an array radiating
waves through a planar inter-
face between two fluids

~
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which is just a single line source model of the pressure field of the element. Obvi-
ously, this model can also be used to describe the radiation of a segment of an ele-
ment in a multiple line source model in the form

(6) exp(ik,br; +ik,bry;)

2
— c, cos” @
\/rn 2 10 rn

10 2 20
¢, cos” 6y,

2kb 14T,
P(x)= pieyy, (@) 71.%2 & D, (6), 274
n=1

where 7/ =77 /b, oy = ryy/b. The MATLAB® function Is_2Dint (see Code Listing
C.3) implements Eq. (2.74) to calculate the normalized pressure, p/p,c,v,, for an
element whose centroid is offset a distance, e (in mm), from the center of the array
(Fig. 2.14). The calling sequence for this function is

>> p=Is_ 2Dint(b, f, mat, e, angt, Dt0, x, z, Nopt);

where 2b is the length of the element (in mm), fis the frequency (in MHz), mat is
a MATLAB® row vector containing the densities (p,,p,) (in gm/cm?®) and wave
speeds (c,,c,) (in m/sec) in the form [pl,cl, pz,cz], e is the offset of the center
of the element from the array center (in mm), angt is the angle @, of the array (in
degrees), Dt0 is the vertical distance (in mm) from the interface to the center point,
C, of the array, and P= (x,z)is the point (in mm) in the second material at which
the normalized pressure is calculated. Nopt is an optional input parameter. If Nopt
is not specified, the number of element segments is chosen (using Eq. (2.61) again)
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Fig. 2.15 Comparison of 1.4
the magnitude of the on-

axis normalized pressure, 1.3
plpev,, versus z where the 12
multiple line source model ’
for radiation through an 1.1
interface (solid line) and the P
Hankel function model for pevy| 1
a single medium (circles)

were used to model the 0.9
waves from an element:

2b=6 mm, f=5 MHz, 0.8
Dm:lmm,B[ZOQ, 0
pi=p, =10 gm/em’, 7070 20 30 40 50 60 70 80

¢, = ¢, =1500 m/s
Z, mm

so that they are never larger than one wavelength. Otherwise, the value of Nopt
given is used as the number of segments. This function uses the auxiliary function
pts_2Dintf (Code Listing C.4) to calculate the distance, x,, at which a ray (satisfy-
ing Snell’s law) intersects the interface when traveling from the centroid of an ele-
ment segment (see Fig. 2.14) to the point (x, z)in the second medium. The calling
sequence for this auxiliary function is

>> xi=pts_ 2Dintf (b, e, xn, angt, Dt0, c1,c2, x, z);

where xn is the distance, x , from the center of the element to the center of the
nth element segment (Fig. 2.14) and (c1,c2) are the wave speeds contained in mat.
The function pts_2Dint evaluates the distance, x,, by solving for the zero of a func-
tion g(x,)with Ferrari’s method which is coded in the MATLAB® function ferrari2
(Code Listing C.5) used in Chap. 5 to develop the time delay laws for steering and
focusing through a planar interface (see Eq. (5.18) and the following discussion in
Chap. 5). The function pts_2Dint also uses a function init_xi (Code Listing C.6) to
determine, based on the sizes of the vectors or matrices present in the (x,z) vari-
ables, the size of the corresponding vector or matrix needed to hold the x, calcula-
tions. The calling sequence for this function is

>> [xi, Vi1, VZ] =init_ xi(x, z);

where V1 and V2 are the number of rows and columns in the initial matrix, xi, of
zeros that will subsequently be used to hold the calculated xi values for each ele-
ment segment.

It is assumed that (x,z) can be (vector, scalar) or (scalar, vector) pairs or equal
sized vectors or arrays. Unless Nopt is specified, the frequency, f, must be a scalar.
Figure 2.15 shows the magnitude of the on-axis normalized pressure calculated with
Is_2Dint for a large element (b=3 mm) at /=5 MHz where both media have identi-
cal properties: p, = p, =1.0 gm/cm’ and ¢, = ¢, = 1500 m/s. The center of the ele-
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Fig. 2.16 Comparison of the 1.4
magnitude of the cross-axis

normalized pressure, p/pcv, 12
, versus x at z=15 mm where

the multiple line source 1
model for radiation through 0.8
an interface (solid line) _p v
and the Hankel function PV, 0.6
model for a single medium

(circles) were used to model 0.4
the waves from an ele-
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Fig. 2.17 The magnitude
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ment is located at a distance of D, = 1mm from the interface at an angle § =0". In
Fig. 2.15 the results are compared to the Hankel function model for a single medium
(see also Fig. 2.10b which considers this same case using multiple line source and
Hankel function models for a single medium). Figure 2.16 shows a comparisons of
cross-axis pressure values at a distance z=15 mm in the “second” medium for the
same case. As expected, there is close agreement between both models in these test
cases. Figure 2.17 shows an image of the magnitude of the normalized pressure
wave field for the same large element (=3 mm) located in water and radiating at
oblique incidence through a plane interface at /=5 MHz. Although the model used
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here is for an interface between two fluids, we have let the properties of the second
fluid to be that of steel so that we could consider a case similar to what might be
encountered at a water/steel interface. In Chap. 7 we will develop the array beam
model needed for such fluid/solid cases. The angle of the element was chosen here
tobe @ =10.217" which corresponds to a refracted angle of 45° in the “steel”. The
distance D, = 50.8 mm in this case. It can be seen in Fig. 2.17 that the main beam
in the “steel” does propagate in the 45° direction but there are also some smaller
refracted lobes as well.
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Chapter 3
Large, Single Element Transducer Models

The last Chapter showed that the superposition of multiple high frequency line
sources generated an effective model of the acoustic wave field of an element.
While that model can be used for any size element, there are a number of alternate
models available for large, single element transducers that are useful for under-
standing the overall behavior of an array of small elements. Thus, in this Chapter we
will consider such alternative models and demonstrate the principles behind beam
steering and focusing with those models. A similar approach was used by Ziomek
[1, 2] to describe sound beams in underwater acoustics. As in Chap. 2, we will treat
the element as a 1-D source of sound radiating waves in two dimensions.

3.1 The Paraxial Approximation and a Fresnel Integral
Model

Consider a single element transducer of length 25 (see Fig. 3.1) where the length
is very large in comparison to the wave length (2b/ A >>1). As seen in Chap. 2, a
large transducer will generate a highly directional (well-collimated) beam of sound
that travels in a direction normal to the face of the transducer. We will start from the
high frequency (kr >> 1) model of Eq. (2.31) which can be written as:

p(x, @)= pc,/—Tv( X p("” ) dx G.1)

The radius » = /(x—x")* +z° but since the sound beam is essentially traveling in
the z-direction, if we are not too close to the face of the transducer the beam will
primarily be in the region where (x — x”) / z << 1 and » can be expanded in that small
parameter. This approximation is called the paraxial approximation. In this approxi-
mation the radius is given by

r=24,1+wzz|:l+w:| (3.2)
z 2z
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Fig. 3.1 A large single ele- T xx

ment transducer radiating
into the region z>0
r
2b | X

SR

so Eq. (3.2) becomes

+b
B f k exp(ikz) [ _ ik(x—x")’ , 33
p(x,w) = pc gy —\/; _{ v (x’, w)exp |:—22 ] dx’. (3.3)

If we make the change of variables u = (x—x")Vk/ 7z and assume we have
piston behavior then

K (5=t
nz . 2
p(X,0) = — pev, (o) %exp (ikz) J exp 17r2u ) du, 3.4
i

L(ﬁrb)
7wz

which can be written as the difference of two Fresnel integrals as

p(x,z,w) = pcvo\/z.exp(ikz) lF(\/z(x+b))— F[\/z(x—b)ﬂ, (3.5)
2i iz nz

where the Fresnel integral, F'(x), is defined as

Fx)= jexp(i’”z“2 )du. (3.6)

0

The MATLAB® function fresnel int(x) defined in Code Listing C.8 evaluates the
Fresnel integral numerically. This function is used in the beam model fresnel 2D(b,
f, c, e, X, z), given in Code Listing C.7, which computes the normalized pressure
wave field of a large 1-D piston element transducer. The calling sequence for this
function is

>>p=Fresnel 2D(b, f, ¢, X, z);
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Fig. 3.2 Comparison of the multiple line source model with the Fresnel integral model for the
transducer parameters; b=6 mm, /=5 MHz, ¢=1500 m/s. a The on-axis normalized pressure ver-
sus distance z, and b the cross-axis normalized pressure at z=60 mm versus the distance, x. Solid
line—multiple line source model, Circles—Fresnel integral model

where 2b is the length of the element (in mm), f'is the frequency (in MHz), c is the
wave speed (in m/s), and (x, z) are the coordinates (in mm) in the fluid at which
the normalized pressure, p/ pcv,, is calculated. Figure 3.2 shows a comparison of
both on-axis and cross-axis pressure profiles for a 12 mm long element radiating at
5 MHz into water as computed with the Fresnel integral model and the multiple line
source model. It can be seen that the Fresnel integral model accurately predicts the
wave field in these plots. This is because the paraxial approximation is well satis-
fied for the highly directional beam emitted by an element that is large with respect
to the wavelength. For the small elements present in arrays, this approximation can
only be used in a much more limited sense. However, the Fresnel integral model
gives us a direct way to use a model of a large, single element transducer to study
the phasing effects used by arrays to steer and focus beams, as will be shown in the
next section.

3.2 Beam Steering and Focusing of a Large Element

As discussed in Chap. 1, an array of elements can be steered and/or focused by ap-
plying an appropriate set of delays, called a delay law, to the elements. A delay in a
time domain response, however, corresponds to multiplying the frequency domain
response (frequency spectrum of the time domain signal) by a phase term that is
linear in frequency and proportional to that delay. This is just the consequence of
the properties of the Fourier transform since if a time domain function, f(¢), has
a frequency spectrum (Fourier transform), F(w), then a delayed signal, f(r—Az,),
where Az, is the delay, has a spectrum exp (iwAt, ) F' (@) [Schmerr]. In an array ly-
ing on the x-axis, this delay can be expressed as a function of the discrete centroid
coordinate, x,, of each element. To study the effects of different delay laws, in this
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Fig. 3.3 Rotated coordinates x
for defining the wave field of
a linearly phased element

=
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section we will consider a large, single element transducer on the x-axis where we
imagine applying a continuous time delay, Az, (x”), on the face, —b < x” < b, of that
element. In practice, it is not possible to actually apply such continuous delays to a
single element but this idealized case mimics the effects of the discrete delays that
are applied to arrays and provides a means to study their effects on the generated
sound beam.

3.2.1 Beam Steering

We will again start with the high frequency expression for the sound field of an ele-
ment derived in the last Chapter, Eq. (2.31), which is in the form:

. +b
p(x, @) = Apeexp(=in/4) j v.(x",0, @), /i exp (ikr)dx’ (3.7
2 ot kr

and write the radius, 7, in terms of a rotated set of coordinates, (X,z), (see Fig. 3.3)
ie.

r= \/(E—x’sincl))2 +(X —x"cos @), (3.3

which can be expanded in the exact form

r=\7> —2x'Zsin®—2x" T cos D+ X* +(x)’. (3.9)

We are using rotated coordinates since in this section we will examine delay laws
that steer the beam produced by a large element to directions away from the z-axis.
In this case the beam will be best described in a rotated set of coordinates. If the
steered beam is well-collimated in the z-direction, then it makes sense to apply
the paraxial approximation to the radius 7 in that direction. In our expansion of the
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radius in Eq. (3.2), we used the expansion » = zv/1+ & = z(1+ €/2). If we write
Eq. (3.9) in a similar form as r» = z</1+ &€, where

_ () +X - 2x'Zsin® —2x" X cos P (3.10)

—2 ]
z

£

the appearance of z in the numerator of the £ term means that if we expand r for
x"/Z << 1and wish to keep all quantities to O(x”/ z)* we must also include the next
term in the expansion, namely

2

r27m52(1+§—%+~~]. (.11)

Using this expansion we obtain

"2 2 -2 — , .
rEE|:1+(x) cos <D+x__xx cos® x’sin® ] (3.12)

— — = =
2z 2z z z

which, when placed into Eq. (3.7) gives

P(x.0) = pe. | expit)
27z

+b (3.13)

’ _7\2
. J- v, (x’,0,w)exp {ik[@mZ# —x’sin <I>:|} dx’.
h z

Now, suppose the velocity on the face of the element has a constant amplitude,
v, (@), (piston behavior) but also with a phase term, i.e.

V. = v, (w)exp(ikx’ sin @), (3.14)

which corresponds to specifying a continuous, linearly varying time delay,
At,(x") = x"sin®/ ¢, over the face of the transducer element. Then we see that this
phase term just cancels the one appearing in Eq. (3.13) and if we write that equation
in terms of the variable w = x” cos @, it becomes

+b cos P
_ 7\
pxoy =L | * ey [ oexp lie[ L2 b, G15)
cos® \ 27iz —bcos @ 2z

The integral of Eq. (3.15) is of the same form as Eq. (3.3) so that we can follow the
same steps used with that equation to write the pressure in terms of Fresnel inte-
grals. The result, in the (¥,Z) coordinates, is explicitly:
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P(E.7,0) _PC—F exp (ik2)
cosd

[ (\/7(x +bcos®)) [%ﬂ (3.16)

If we compare Eq. (3.16) with Eq. (3.5) for the radiated field of a piston transducer,
we see that the linear time delay law Az, (x”) = x"sin® / ¢ produces a wave field of
a “virtual” rotated transducer (Fig. 3.4) of length 25 cos ®@ having a driving velocity
of v, / cos® on its face.
Thus, a spatially varying time delay on the face of the element that is linear (in
x") of the form
At,(x")=x"sin®/c (3.17)

steers the entire beam of the transducer along an axis that makes an angle, ®, with
respect to the z-axis. We should note that the “delay” law of Eq. (3.17) actually
involves both delays (for x” positive) and advances (for x” negative). It is not physi-
cally possible to generate time advances in a phased array but by simply adding a
positive, constant term to Eq. (3.17) one can generate a steering law consisting of
delays only.

3.2.2 Steering in the Far Field

In Chap. 2 we obtained explicit results for the wave field in the far field of the ele-
ment. We found the far field pressure was given by Eq. (2.35):

_ L exp (ikr,)
p(x,a))—Jzﬂlpcr/(kx)—\/Z : (3.18)
where
Vik)= [ 7.(x", @) exp(—ik,x") dx’ (3.19)

-b
and k_=ksin@. If we apply the velocity of Eq. (3.14) to the face of the element,
then the integral yields instead

sin|[(k, - ksin®)b]
(k, —ksin®)

V(k,)=2v,(o) (3.20)

which shows that the far field pressure is

sin[(k, — ksin®)b] exp (ikr, ) 321
p(x,0)= Pcvo(w)((kb) (k, —ksin®)b \/Fo o2
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Fig. 3.4 The rotated “vir-
tual” transducer that gener-
ates the same wave field as a
linearly phased element in the
paraxial approximation

and the directivity of the element is now

D.(6)= sin[kb(sin 6—sin )] (3.22)
T kb(sin@—sin®)

Since the directivity is governed by the sinc function, sinc x = sin x/ x, which has
its maximum at x=0, it is clear from Eq. (3.22) that that maximum (and hence the
entire directivity function) has been steered to the 8= @ direction by the linear
phasing of the element.

We can also relate these results with those of the last section by not-
ing that in the rotated (X,z) coordinates we have wave numbers (k_,k_) where
k,=k.sin®+k_cos®. But in the paraxial approximation k. = k> -k} =k so
that k= ksin® + k. cos @ and we can write Eq. (3.21) in the rotated coordinates as

in|k.bcos P ;
P(X,a))=pcM4/£(kbcosd>)sm[ =0 C0S ]eXP(”"”o), (3.23)
cos® \ i k.bcos® [kr,

where k. = ksin 8" and ¢ is measured from the z-axis (Fig. 3.4). Comparing Equa-
tion (3.23) with the far field expression of Eq. (2.38) for an element without steering
shows that in the paraxial approximation the far field response of the linear phased
element in the rotated coordinates is identical to the far field from a virtual trans-
ducer of length 25 cos @ which has a velocity v, / cos® acting on its face, which is
consistent with our results in the previous section.

3.2.3 Beam Focusing

For a large single element piston transducer, one way that focusing can be achieved
in two dimensions is to place a set of uniform normal velocity sources on a circular
aperture of radius R, instead of a straight aperture, as shown in Fig. 3.5. This is
the 2-D equivalent of the O'Neil model for a spherically focused transducer [3],
[Schmerr]. The same focusing effect, however, can also be simulated by applying
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Fig. 3.5 A focused piston X
transducer consisting of a set T
of uniform velocity sources

on a circular line of radius R,

Fig. 3.6 Geometry for

defining the phasing needed

to focus the waves from an ,
unfocused element to a point
on the z-axis

=

the uniform sources over the straight aperture (located at z=0) and changing the
time of arrival of the waves from different locations on the transducer face so that
they are all in phase on the circular aperture, just as they are in the configuration of
Fig. 3.5. First, consider a wave that has traveled from a point x” at z=0 to the loca-
tion of the geometrical focus on the z-axis (see Fig. 3.6). Then consider the same
wave traveling on the same path from the circular aperture to the focus. The time
difference between these two cases is simply

Ay = Y P& =Ry (3.24)

C

In the paraxial approximation (x”/ R, < 1) this time difference is approximately

R, |:J1+(x'/RO)2 —1]
C

At(x") =
B R0[1+(x'/R0)2/2+...—1] (3.25)
= C
B (xI)Z
2R,c’

corresponding to a propagation phase delay term given by
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. L ()
exp[iwAr] = exp [zk ; R, ] (3.26)

Thus, if on the planar aperture we specify a velocity field given by

L (X)) | —bsx'<b
v, (w)exp| —ik

v.(x, 0, w)= 3.27)

0 b

0 otherwise

we will produce the same cylindrical focusing effect of the circular aperture. Note
that the phase term in Eq. (3.27) has a negative sign since for all x” on the plane z=0
we need to advance the arrival time of the waves relative to the arrival at the focus
from the point x” = 0 to have them arrive in phase on the circular element. Thus,
our “delay” law is the negative of the time differences appearing in Eqgs. (3.25) and
(3.26), i.e.

At (x))= —%. (3.28)

Again, in this form we do not have a physically possible delay law but by simply
adding a constant delay term to Eq. (3.28) we can turn these advances into a law
with delays only.

Now, consider the wave field of a large element where the velocity on the ele-
ment face is given by Eq. (3.27). Then from Eq. (3.7) the pressure is given by

(X, ) = pcvo(a))\/i J exp |:—zk (r)° ] expi/(ikr) (3.29)

In the paraxial approximation (see Eq. (3.2)) then we have

(x,w) = pev, ( ) k_ex p(lkz) iki Tex {i[u (x) —2xx']}dx' 3.30
p pC' \/; p 22 A p 22 0 ’ ( . )
where

=(1-z/R,). (3.31)
But we can “complete the square” in the phase term appearing in the integrand of
Eq. (3.30) and rewrite that equation as
2
] ( al ] }dx’. (3.32)
Uy

PX,0) = povy (@), |~ “’g‘” (—zk

\'*—x‘L
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Now, consider first the case when uwu, is positive (z<R;). If we let
u=(x"—x/uy)\Jku, / 7z then Eq. (3.32) can be put in the form

P5,0) = gons() lexp(ikz)exp(_l_k 2 ) mf exp(%) du, (333)

2 Ju, 2u,R,

which can again be expressed as two Fresnel integrals:
pevy(@)explikz) [T
|u0| 2i

e o )

(3.34)

p(X,®) =

and we have let u, = |u0| to emphasize that it is positive.
If u, is negative (z > R,) then we can write u, = —|u0| in Eq. (3.32) and follow
the same steps that led to Eq. (3.34). In this case we find

. 2
P(x,0) = pev, (w)exp(ikz) L exp (—i X }
| 2i 2|uy| R,

o e e

The ()" here indicates the complex conjugate.
Now, consider the on-axis response of the element in the paraxial approximation.
This response can be obtained from Egs. (3.34) and (3.35) by setting x=0 to obtain

Je|uy| &7
Fl /49— z<R,
pevy (@) explikz) [2 7z

i 2 )
ol F*|i Kot ] z>R,

nz

Equation (3.36) is very similar in form to the unfocused on-axis response. To obtain
the comparable on-axis fields in the unfocused case we can set x=0 in Eq. (3.5) to

obtain
p(z, ) = pev,(w)exp (ikz)\/gF{1 /—kb ] (3.37)
i iz
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Fig. 3.7 The magnitude 2.
of the on-axis normalized
pressure of a 12 mm long, 5
100 mm focal length element
radiating at 5 MHz into water
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If we set R, = oo in Eq. (3.36) then u, =1 and Eq. (3.36) just reduces to the unfo-
cused case of Eq. (3.37).

The presence of the \/m term in both the Fresnel integral and its coefficient
for the focused case causes the pressure to increase near the geometrical focus at
z = R,. Although the \/m term in the denominator appears to make the pressure
singular at the geometric focus, the presence of the same term in the Fresnel integral
cancels this behavior and the pressure is well behaved and finite at the geometric
focus (z = R,), where

2 b .
P(Ry, @)= pev,, /HFRT exp (ikR, ). (3.38)

The MATLAB® function on_axis foc2D given in Code Listing C.9 uses Eq. (3.36)
to compute the normalized pressure, p/ pcv,, and uses the explicit value given by
Eq. (3.38) near the geometric focus. The calling sequence for this function is

>>p=on_axis_foc2D(b, R, f, ¢, z);

where 2b is the length of the element (in mm), R is the focal length (in mm), f'is the
frequency (in MHz), c is the wave speed (in m/s), and z is the on-axis distance (in
mm). Figure 3.7 plots the magnitude of the on-axis response for a 5 MHz, 12 mm
long transducer radiating into water as considered in Fig. 3.2 but where now the
transducer is cylindrically focused with a focal length of 100 mm. It can be seen
from that figure that the amplitude is indeed larger in a region about the geometrical
focus.

It is possible to examine the cross-axis behavior of the pressure field explicitly
at the geometric focus z = R. In that case, we start from Eq. (3.7) and express the
radius r as (see Fig. 3.8)

r=+yR*+(x')’ —2Rsin6x’. (3.39)
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We will expand Eq. (3.39), assuming x”"/ R <<1 (paraxial approximation) and also
assume the angle @ will be small in anticipation that the field near the focus will be
confined to a relatively small region about the z-axis. In this case, we can also let
R =z =R, and write

(x')? ving (3.40)

r=R;+
0

and place this approximation into Eq. (3.7) to obtain

p(x,0) = pe / eXp(ZkR)Jvz(x’,O,a))exp[ik (;I;)z]exp(ikx'sinﬁ)dx’.
b

0

(3.41)
However, if the velocity field is given by Eq. (3.27) then Eq. (3.41) reduces to

R,
p(x,0) = pev, /k eXp(’k )jexp(iloc'sine)dx'
b

. R
- pov, \/: (kb) sin (kb.sm 0) exp (ikR,) ,
TTi kbsin @ kR,

(3.42)

which is identical in form to the far-field behavior of the planar piston probe (see
Eq. (2.38)). We can use Eq. (3.42) and the results from Chap. 2 for the far field of
a planar transducer to estimate the width of the focused beam at the geometrical
focus since the magnitude of the pressure drops to one half its on-axis value at
kbsin@_g,, =1.8955 and, since siné (,, = x_,, /R (see Fig. 3.8) and R = R), we
have approximately

AR,

Yo =065, (3.43)

It is certainly not obvious how these explicit results on the plane of the geometric
focus are compatible with the Fresnel integral expressions (Egs. (3.34) and (3.35)),
which are valid for both z < R, and z > R, respectively. Since on the plane of the
geometric focus u, — 0, we need to examine that limit for the terms



3.2 Beam Steering and Focusing of a Large Element 57

:;exp(_ikx—zJ F k|u0| (i+b} - F k|u0| (i_bJ ,
\/m 2|MO|RO nz |u0| Tz |u0|

(3.44)
which appear in both of those expressions. When the argument of the Fresnel inte-
gral is large, that integral behaves asymptotically as [4]

.. .2 (3.45)
F(x)~li—Lexp(m-x J
2 Tx

so that the leading constant terms in Eq. (3.45) cancel in Eq. (3.44) and near z = R,
we have

1 R g
G~-i =0 exp| —ik
kR, x 2|u0|R0

exp iz Kfuo] x22+2bi+b2 —exp iz KJu )‘22—21)i+b2 :
2 7R, { Ju,| iy 2 7R, { Ju,| o

(3.46)

But the terms involving |u0 | b* vanish on the geometric focal plane and x / R, =siné
(see Fig. 3.8) so we can reduce and rewrite Eq. (3.46) as

G=—i /”;Ro Sirll B{CXp [ikb sin 6] — exp[—ikbsin 6]}

=2 ! - ! sin (kbsin 6),
kR, sin @

which is real so from either Eq. (3.34) or (3.35) we find the same result, namely

2 sin(kbsinf) | 1 .
—_— — kR), .
iz siné kR, exp (kR,) (3.48)

(3.47)

P (X, @) = pevy (@)

which is identical to the focal plane expression previously obtained in Eq. (3.42).

3.2.4 Beam Steering and Focusing

From the results of the previous sections it might appear that to both steer and focus
a large single element transducer then one needs only add the time delays for steer-
ing and focusing to obtain a delay law

_X'sin®  (x') (3.49)

At
¢ c 2R,c
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Fig. 3.9 Geometry for steer- X
ing and focusing a single % r
element transducer to a point
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but this result is incorrect! To see why, consider the single element transducer in
Fig. 3.9 where we want to focus the waves at a distance R, and at an angle ® as
shown. The propagation time delay for a wave going from a point on the transducer
face to the point x in the fluid is just

r=R, _ JR: +(x') —2x'R, sin® — R, (3.50)

c C

At =

where we have included a constant term to make the total propagation time delay
equal to zero at x” = 0. In the paraxial approximation x”/ R, <<1 so if we expand
the square root in Eq. (3.50) using three terms in the expansion (see Eq. (3.11))
again, we obtain
—sin® , (x")*cos’®
= x'+ .
c 2R, c

At (3.51)

To steer the transducer beam to an angle @ and focus at a distance R,, we must
cancel these propagation delays by applying the negative of these values at the
transducer face, giving the time delay law

_sin® e (x")* cos> @
c 2R,c

At, (3.52)

This result can be interpreted as follows. The first term in Eq. (3.52) steers the
beam of the transducer in the @ direction and produces the field of the virtual
transducer shown in Fig. 3.4. To focus this virtual transducer at a distance R, we
must then apply a quadratic time delay across the face of this virtual transducer, i.e.
along the x axis of Fig. 3.4, not along the original transducer face (the x” axis), as
Eq. (3.49) assumes. This simply corresponds to replacing x” distance in Eq. (3.49)
by X = x” cos D, to obtain the correct focusing term of Eq. (3.52).

If we use the time delays of Eq. (3.52) in the velocity field on the face of the
transducer, i.e. if we set

"2 2
, v, (w)exp ikx’sind)—ikw —-b<x'<b
v,(x",0,w) = )

(3.53)
0 otherwise
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and place this velocity in Eq. (3.7) and expand the radius 7 in rotated coordinates
(x,z) as done previously in Eq. (3.12), then we find

P(x,0) = pevy(@),|—— k e Ij/(’_kz ) (zk]]:exp{;i[uo(x’)zcoszd>—2xx’cosd>:|}dx’,
(3.54)
where

uy =1-2z/R,. (3.55)
But letting w = x" cos ® gives

P —2 "\ +bcos® .
p(x,0) = pevy(@) | k_ explikz) exp ikx—_ _[ exp i[ﬁowz —2fw] dw.
cos® N2z Z 22 ) oo 2z

(3.56)

Equation (3.56) is in the same form as Eq. (3.30) for the focused case. Taking the
same steps as in that case we find for both steering and focusing

_ pevy(@) explikz) |1
px.0)= cos® |go| 2i
- —T/ — —T/ _
.eXp(—ik f JF k|Lﬁ)|(é+bCOSQ)) -F M(é—bcos@)
2|u0|R0 nz |u0| nz |u0|

foru, 20 (z < R,), and

(=il sl T
’ cos® |170| 2i

—2 * —_
-exp(—ikf—] F k|u |
2|”0|R0

foriu, <0 (z>R,).

These results again are in the form of a virtual rotated transducer as discussed
previously. If we set X = 0, we obtain the pressure along the central (z) axis of the
steered and focused transducer, which has the much simpler form

|i k|ﬁo|b2 coszCD] _
Fly|——| zZ<R,
nz

el AE )

(3.58)

pev, exp (ikz)

p(zﬂa)): — L >
cos® |u0| ! *lt k|ﬁo|b2 cos’ @] _
ol Y il BN

(3.59)

V72




60 3 Large, Single Element Transducer Models

which (compare to Eq. (3.36)) is indeed just the on-axis wave field of a virtual ro-
tated piston element of length 26 cos @ having a velocity v, / cos® on its face and
focused at z = R

3.3 Amplitude Weighting

In phased arrays, in addition to delaying the individual elements of the array to
generate beam steering and focusing, one can weight each element differently by
providing different gains to the elements during either sound generation, reception,
or both. This weighting is called apodization. Here, we will examine the analogous
situation where we specify continuous amplitude profiles on the face of a large,
single element transducer.

For a single element transducer the far-field behavior was given by Eq. (3.18)
in terms of the Fourier transform of the velocity field on the face of the transducer,
V(k,), where recall

Vik)= [ v.(x".0,@)exp(-ik x")dx’ (3.60)

—oo

and k, = ksin6. Now, let the velocity field be defined in a separable form by an
amplitude term, v, (@), and a spatial distribution terms, C(x"), i.e.

v, (+,0,0) = v, (@)C(x"). (3.61)

Then

V(k,)=v(@)C(k,), (3.62)
where C(k,) is the corresponding spatial Fourier transform of é(x') given by

C(k,)= Té(x') exp(—ik x")dx’. (3.63)

Rewriting Eq. (3.18) in terms of this transform, the far-field pressure can be ex-
pressed as

p(X, ) = pev, (), /zim C(kx)%;kro), (3.64)

Jr

Consistent with how we defined the total directivity of the array (see Egs. (2.38)
and (2.39)) the far-field pressure can also be expressed in terms of the far-field
directivity, D, (6) of the single element transducer as

PUx.0) = pery ()5 2HD)D, (e)%]:‘"’). (3.65)
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Comparing Eq. (3.65) with Eq. (3.64) we see that

D,(6) = %C(kx). (3.60)

For a piston transducer of radius b, C (x”) = rect(x’,b), where

1 -b<x'<b

0 otherwise’ (3.67)

rect(x’,b) = {

the spatial Fourier transform, C(k_),then has the form (see Eq. (2.37) with v, =1)

sin(k,b) b sin(kb sin 6)

3.68
kb kbsin 6 (3.68)

C(k.)="2b

Figure 3.10 plots this directivity for a 12 mm long (=6 mm) piston transducer
radiating into water at 5 MHz. As is typically the case for a large single element
transducer or for an array, in the far field one will see a beam structure with a large
main lobe as well as smaller side lobes. It is possible to reduce the amplitude of the
side lobes appearing in Figure 3.10 relative to the main lobe by tailoring the spatial
amplitude behavior. This is generally the purpose behind amplitude weighting in a
phased array. For example, let the amplitude profile be given by

é(x’) = C, cos(zx”/ L)rect(x’,b), (3.69)

where C, and L are two arbitrary constants. This profile is called a cosine window.
We can write this cosine window in the alternate form

~ C
C(x)= 70 (exp (imx’ / L) +exp (=izx’/ L))rect (x,b), (3.70)
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so that the Fourier transform is given directly by

Ck,) = %{j exp[i(—%— kx)x']dx'+] exp[i(%— kx)x':|dx’}

(3.71)
Zbco{s1n(kxb+7rb/L)+ sm(kxb—zzb/L)}

(kb+mb/L)  (kb—zb/L)

Normally one chooses L=2b so that the amplitude is tapered to zero at x =2b. In
that case, since sin (k b+ 7/ 2) = £cos(k b) we find

(k) = bC, sin(k b+ 7/ 2) N sin(k b—1m/2)
’ (kb+m/2) (kb—m/2)
4bC, cos(k,b)  2C,L cos(k,L/2)
r [1-@kp/ny] 7© [1-(kL/7)]

(3.72)

If we let C, = /2 from Eq. (3.66) we see that we will generate a “normalized”
directivity associated with this case that will have a maximum amplitude of one
at k, =0, just as in the piston case. This normalized directivity is also plotted in
Fig. 3.10 so that it can be compared to the directivity of the uniform amplitude (pis-
ton) case plot in that figure. It can be seen that the cosine amplitude weighting does
indeed reduce the amplitude of the side lobes, but Fig. 3.10 also shows that with this
side lobe reduction comes some broadening of the main lobe. Thus, other types of
weighting functions (windows) may be considered that have different effectiveness
in balancing these two effects. For example, the continuous Hanning amplitude
window function (also known as the Hann window, the raised cosine window or the
cosine squared window) is given by

C(x") = C, cos’(mx’/ L)rect (x’, L/ 2)

C (3.73)
= 70[1 +cos(27zx’/ L)|rect (x’, L/ 2),
while the Hamming amplitude window is
C(x")=C,[0.54+0.46cos (27x" / L)]rect (x", L/ 2) (3.74)

and the Blackman amplitude window is
C(x")=C,[0.42+0.5cos (2zx"/ L) +0.08cos (47x" / L) Jrect (x", L/ 2). (3.75)

Figure 3.11 shows each of these window functions. We have written these three
windows in terms of a length, L. For the single element transducer case one general-
ly sets L = 2b. With this choice all of these windows (except the Hamming window)
tapers to zero at the ends of the element, as can be seen in Fig. 3.11. However, as
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Fig. 3.11 Plots of the cosine
window (solid line), Hanning
(cosine-squared) window
(dashed line), Hamming
window (dashed-dotted line),
and the Blackman window
(dotted line). In all cases the
constant C, =1

shown in the next Chapter, for an array which uses discrete versions of these ampli-
tude weights, the tapering to zero is normally done at the centroids of the first and
last elements, which leads to a different choice for L. The spatial Fourier transforms
of all these windows can be obtained in the same fashion as done for the cosine
window (by writing the cosine terms in the form of a sum of complex exponentials
which allows us to perform the Fourier transforms directly). We find:

Hanning window:

Lsin(k L/2 1
C(kx)=Co—sm(" ) = | (3.76)
2 (k,L/2) |1-(kL/2x)
Hamming window:
in(k,L/2)[1.08-0.16(k L /27x)’
C(kx)=C0£Sm(k" /2)[1.08—-0.16(k, /2 T) ’ (3.77)
2 (kL/2) 1-(k L/2m)

Blackman window:

C(kx) = Co

. 2 2
LsinkL/2)[ o, (kL/27) 2_0.16(ka/475)2 38)
2 (k.L/2) 1= (k,L/27) 1—(k,L/4m)

Another commonly discussed window is the triangular window (Fig. 3.12) where

’

C(x)=C,(1-2|x

/ L)rect(x’,L/2). (3.79)

To obtain the spatial Fourier transform of this window, it is convenient to use a
property of the Fourier transform involving differentiation, namely

C(kx) = Té(x,)exp(_l'kxx')dxr — 1 Td"C(x')

Gy | e SRk (3.80)
2 iy ) ar



64 3 Large, Single Element Transducer Models

Fig. 3.12 A triangular win- 1
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This is useful for the triangular window since two derivatives of that window gives
a form in terms of delta functions only:

d’C(x") _ 2C,
dx"? L

S(xX'+L/2)-28(x)+8(x'—L/2) (3.81)

whose spatial Fourier transform can be obtained directly to give

2
x

-2
Clk)=— i‘) [exp(ik L /2)—2+exp(—ik,L/2)]. (3.82)

But the term in brackets in Eq. (3.82) can be rewritten in terms of the square of dif-
ference of two terms, i.e.

2
Clk) == ‘i [exp(ik L / 4)— exp(—ik L/ )] , (3.83)

2
X

which then can be put in the even simpler form:

Cle )~ SoL [ sink L4 ’ (3.84)
2| kL4 |

To compare the performance of these various windows we have plotted in Fig. 3.13
their normalized directivities, D, , obtained by choosing the constant C, so that
the magnitude of the directivities were all equal to one at 8= 0 . Figure 3.13a com-
pares the rectangular (piston) window with the cosine and triangular windows,
while Fig. 3.13b compares the rectangular window with the Hanning, Hamming,
and Blackman windows. From the amplitude curves of Fig. 3.13 one can calculate
the —6 dB angular width of the main lobe of the far field response and also deter-
mine how small the amplitude of the first lobe is relative to the main lobe amplitude.
Table 3.1 summarizes these results.



3.4 Multi-Gaussian Beam Model 65

0.8

0.6

0.4

0.2

00 05 1 15 2 25 3 35 4 00 05 1 15 2 25 3 35 4
a Lsin@/ A b Lsin@/ A

Fig. 3.13 The normalized directivities for different amplitude weighting windows. a Comparison
of the rectangular window (solid line), cosine window (dashed line), and triangular window (dot-
ted line). b Comparison of the rectangular window (solid line), Hanning window (dashed line),
Hamming window (dash-dot line), and Blackman window (dotted line).

Table 3.1 The —6 dB angular width of the far field directivity main lobe and the amplitude of
the first side lobe relative to the amplitude of the main lobe for different choices of the window
function

Window function 0., width of main lobe First side lobe amplitude (dB)
Rectangular sin™'(0.6004 / L) -13.3
Cosine sin”' (0.8174/ L) —23.0
Triangular sin™'(0.8854/ L) —26.5
Hanning sin”'(0.9974/ L) —31.3
Hamming sin™(0.9054/ L) —44.0
Blackman sin”'(1.1494/ L) —58.1

Generally, Table 3.1 shows that a window that reduces the amplitude of the side
lobes also increases the width of the main lobe. The Hamming window, however, is
an exception to that rule as it has both a smaller main lobe width and first side lobe
amplitude in comparison to the Hanning window. The windows discussed in this
section are the “classical” functions often described in the literature. However, there
are alternative windows that may be better for a particular application [5].

3.4 Multi-Gaussian Beam Model

For large, single element transducers in addition to the Fresnel integral models one
can use a superposition of a small number of Gaussian beams to represent the radi-
ated field of a piston transducer. As will be shown here, multi-Gaussian beam mod-
els also can provide an effective tool for modeling both beam steering and focusing.

If we let the pressure p(x,z,®)= P(x,z,®)exp (ikz) in Helmholtz’s equation
(Eq. (2.6)) we find
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2 2
OP L IP P o, (3.85)
ax2 0z’ 0z

If the waves are all traveling in approximately the z-direction then we can make
the paraxial approximation, which is equivalent to the mathematical condition
[Schmerr-Song]

P oy OP P (3.86)
822 oz ox®’

and Eq. (3.85) becomes the 2-D paraxial wave equation for P given by:

o*P E)P_
ox* dz

0. (3.87)

One solution of Eq. (3.87) is in the form of a Gaussian given by

2
P(x,z) = P(z) exp(zk ) (3.88)
249(2)
Placing this solution into Eq. (3.87) we obtain the two equations
da_,
dz
p p (3.89)
zd—}D + Ll =0,
z 4
which can both be solved to find
q(z)=z+4q,

Bz = (3.90)

P,
Jaz)’

where (F,,q,) are constants. Thus, the pressure is given by a Gaussian beam of the
form

p(x,z,0) =

exp (ikz) exp(zkzz)) (3.91)

P,
V4(2)
Atz=0 we see the pressure is given in terms of the (£,,g,) constants as

2
p=—to (l’“ ] (3.92)
\/% 24,
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which can be expressed in terms of constants (4, B) as

= Aexp(-Bx’/ b*). (3.93)

PV,

Comparing Egs. (3.92) and (3.93) gives the relations between these constants:

g = —ikb’
, =

2B (3.94)
By = pcv,A4q, .

Using Eq. (3.94) the propagating 2-D Gaussian beam of Eq. (3.91) can be written
in terms of (A4, B) as

p(x,z,w) = pcvy A f %o exp (ikz) exp (Lz) (3.95)
z+4q, 2(z+4,)

Another way to obtain this propagating Gaussian beam directly is to use Eq. (2.29)
for the pressure in terms of a Hankel function, i.e.

p(x,0)= % [ v.(,0.0)H" (ke (3.96)

If we replace the Hankel function by its high frequency asymptotic value to obtain

kpcexp(—iz/4) T

p(x,w) = 5 __[ovz(x',O, ) ”ikreXp (ikr)dx’ (3.97)

and assume that the normal velocity on the surface at z=0 is given by the Gaussian
velocity profile

V. = v,(@)Aexp (=B (x’)* / b*) (3.98)

then the pressure wave field is given by

kpev, () esz (—iz/4)A J‘ exp[—B (x,)z /bz] ”ikr exp (ikr) dx’, (3.99)

p(x,0) =

where_4., B, and b are constants, v,(@) is a velocity spectrum, and the radius

=\/(x—x")"+z° . Now assume x,x’ <<z in this radius expression. This is

equivalent to saying all the waves are propagating in the z-direction, i.e. we are
again using the paraxial approximation. Then we have, approximately,

p(X,CU) k ( ) ) (x_x/)z ,
—pcvo @ = ,{zm Aexp (lkz)j exp|: }exp[sz}dx. (3.100)
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When the second exponential in Eq. (3.100) is expanded out we obtain

2
rxo) _ [k, exp(ikz)exp[ikx_]
pev, () 27z 2z (3.101)

I exp |:l(2k—z+;—3;) (x')21|exp |:—ik x: ]dx’.

—oco

However, this integral can be evaluated exactly [Schmerr-Song]. After combining
terms and some algebra one finds

772 2
p.0) _ | ZOJ2B o ikeyexp |i— |, (3.102)
pev, (@) (z—ikb” /2B) 2(z—ikb” / 2B)

which is of exactly the same form as Eq. (3.95) in terms of the constants 4 and B.
This result shows that if we generate a Gaussian velocity profile on z=0 in the par-
axial approximation this Gaussian profile simply launches a Gaussian beam travel-
ing in the fluid for z > 0. In the paraxial approximation the pressure and velocity,
v_, satisfy the plane wave relationship p = pcv, [Schmerr-Song] so the velocity is
also in this same form:

72 2
V. (X, a)) — ikb 2/ 2B 4 exp (lkz) exp ik X . . (3 103)
v(@)  \(z—ikb® /2B) 2(z—ikb? | 2B)

In 1988 Wen and Breazeale [6] showed that one could model the wave field of a
circular piston transducer radiating waves in three dimensions by superimposing ten
Gaussian beams having different complex coefficients (4,,B,) .These coefficients
were obtained with a non-linear least squares optimization procedure to find the
(4,,B,) that best matched a constant piston profile on the transducer face given by

1 p/b<l

) 3.104
0 otherwise ( )

%= = cire(p? /5%) = {

Yo

where P was a radial coordinate and b was the radius of the transducer. In 1990,
Wen and Breazeale improved the accuracy of their model with a slightly larger set
of 15 Gaussian beams [7]. If we simply set © = x we can use this same set of coef-
ficients for our 2-D problem for a 1-D transducer of length 2b.

Using Eq. (3.102) and the 15 Wen and Breazeale coefficients the pressure wave
field in our 2-D problem can be written compactly as

2

(qO )n l]OC
2(z+(40),)

15
p(x,z,0)= Z Pev A, [——"—exp (ikz) exp[

n=1 Z+(q0)n J’ (3105)

where
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Fig. 3.14 Comparison of the 1.4
multi-Gaussian beam model
with the Fresnel integral
model for the transducer
parameters; b=6 mm,

/=5 MHz, ¢=1500 m/s.
Shown is the cross-axis nor-
malized pressure at z=60 mm
versus the distance, x. Solid
line—Fresnel integral model,
Circles—multi-Gaussian
beam model (see Fig. 3.2b
for a similar comparison)

_P |
PV,

X, mm

—ikb’
= ) 3.106
(490), 2B, ( )

The MATLAB® function Gauss 2D(b, f, ¢, x, z) in Code Listing C.10 uses
Eq. (3.106) and the 15 Wen and Breazeale coefficients obtained from the MAT-
LAB® function gauss_c15 (Code Listing C.11) to implement a 2-D multi-Gaussian
beam model for a piston transducer of length 2. The calling sequence for this
function is

>>p=Gauss_2D(b, f, ¢, X, z);

where 2b is the element length (in mm), f is the frequency (in MHz), ¢ is the wave
speed (in m/s), and (x, z) is a point in the fluid (in mm) at which the normalized
pressure, p/ pv,, is calculated. Figure 3.14 shows a comparison of a beam profile
calculated with the multi-Gaussian beam model and the Fresnel integral model.
Both beam models are based on the paraxial approximation but recall in Fig. 3.2b
a similar comparison was also made with a multiple line source model. From these
figures it can be seen that both paraxial models accurately predict the wave field of
the large (b=6 mm) element. Similar results can be found with beam models based
on the paraxial approximation for points about a diameter away from the face of the
element [Schmerr-Song].

Now, consider the case where a linear phase variation of the form exp(ikx”sin @)
is applied to a Gaussian velocity profile 4v,exp(—B(x’)’ /b*) on the surface of
a 1-D transducer. Then a Gaussian beam of exactly the same form as found in
Eq. (3.102) is generated traveling in the z-direction with amplitude 4v, / cos® and
where b — bcos®. This result can be obtained directly by using this velocity pro-
file in Eq. (3.97):

kpcv,(w)exp(—irx/4)A
2

p(x,m) =
(3.107)

J exp (ikx” sin @) exp |:—B(x’)2 /bz] ikrexp (ikr)dx’.
7

—oco



70 3 Large, Single Element Transducer Models

Placing the approximation for the radius r in the (¥,Z) coordinates obtained previ-
ously in Eq. (3.12) we then obtain

+oo "2 > _ 4 2
P, ) = / k Aexp(ikE)J exp __B(xz) exp ik—(x al C_OS(D) dx’,
pev, (@) 2miz s b 2z

(3.108)
and letting w = x’ cos ® again, we find
A oo B 2 > _ 2
p®) _ k_ exp(ikE)j exp —Lz exp| ik (x _W) dw,
pev, (@) 2miz cos® e (bcos D) 2z
(3.109)

which is similar to Eq. (3.100) so following the same steps taken following that
equation, we see this linearly phased Gaussian velocity profile at z” = 0 generates a
Gaussian beam traveling in the fluid given by

p(x, ) —ik()* /2B ~ . _ , x>
= / 2 Aexp (ik k _ . (3.110
pevy(@)  \(Z-ik(b)* /2B) exp (ikz) exp [l 2(7—ik(b)2/2B)] G110

where in terms of b =bcos®, A= A/cos® we have exactly the same form as
Eq. (3.102).

It is easy in a Gaussian beam model to include the effects of both steering and
focusing because in the paraxial approximation focusing can be introduced in addi-
tion to steering by adding a term on the transducer face with a quadratic phase varia-
tion —(x")* cos® ®/2R,c (see Eq. (3.52)). But this additional phase term changes
Eq. (3.109) to

+oo a7 2 2 v 2
P(.@) _ k_ 4 exp(ikE).[exp _iw —Lz exp| ik (x _W) dw.
pevy(w) 27z cos® . 2R, (bcos®) 2z

; (3.111)
so that if we define a B coefficient as
ikb?
2R,

B=B+ (3.112)

Equation (3.112) becomes

+oo D, 2 - _ 2
p(x,®) =, kA exp(ikf)jexp —Lz exp| ik (x _W) dw,
pev, (@) 2ziz cos® 2. (bcos®P) 2z
(3.113)

which is identical in form to Eq. (3.109) so that the steered and focused Gaussian
beam is in the same form as Eq. (3.110) with B simply replacing B to obtain

=2
X

p(x,0) _ | —ik(b)" /2B — } (3.114)
2(z-ik(b)’ / 2B)

pevy(@) \|(z-ik(b)* /2B

);1 exp(ikz) exp liik
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Using 15 modified Wenand Breazeale coefficients 4, = 4, / cos®, B, = B, +ikb” / 2R,,
we can then obtain the pressure wave field of a steered and focused 1-D piston trans-
ducer of length 2b as

N < (@), . ikx*
p(x,z,0) = nE:l Pev A, T+, exp(ikz) exp (—2 (E+ . )} (3.115)
where
Sy - Tik®)’ 3.116
(4), 2B (3.116)

3.5 Summary

In this chapter we have seen how applying a linear time delay law to the face of
a large single element piston transducer can steer the sound beam, while applying
a quadratic delay can produce focusing of the beam. Explicit expressions for the
steered and focused beams were found using both a Fresnel integral beam model
and a multi-Gaussian beam model. Both of those beam models showed that the
steered wave field was equivalent to the wave field of a rotated virtual transducer
(Fig. 3.4) with a driving velocity on its face increased by a factor of 1/cos® . This
amplitude increase occurs because the effective transducer size is reduced in width
as a result of steering.

We should note that the quadratic time delay law used here to demonstrate focus-
ing was only an approximate focusing delay law since it was obtained with the par-
axial approximation. This approximation was consistent with the Fresnel integral
model and the multi-Gaussian beam models used to discuss steering and focusing
since those models also relied on the paraxial approximation. However, when de-
veloping focusing laws or combined steering and focusing laws for a phased array
it is not necessary to use the paraxial approximation. In Chaps. 5 and 8 we will see
how the discrete delays applied to array elements can be obtained from more exact
delay laws.

Both the Fresnel integral beam model and the multi-Gaussian beam model are
very useful beam models for describing the wave fields of large, single element
transducers and the multi-Gaussian beam model in particular is a very powerful
model for simulating wave fields in very complex testing situations [Schmerr-
Song]. However, without modifications these are generally not suitable beam mod-
els for describing the wave fields of the small elements present in phased arrays.
This is because, as shown in Chap. 2, such small elements produce significant beam
spreading that is not consistent with the paraxial approximation. One way to over-
come this limitation is to use as the basis functions Gaussian beams together with
a linear phasing over an element, an approach that has been used successfully to
simulate linear arrays [8]. In the next Chapter we will examine a beam model that
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uses Gaussians without assuming the paraxial approximation. In Chap. 6 we will
discuss another modeling approach which replaces the spherical waves generated
by point sources with equivalent Gaussian beams.
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Chapter 4
Phased Array Beam Modeling (1-D Elements)

In Chap. 2 we developed beam models for a single element radiating waves in two
dimensions. By superimposing M of these solutions we can develop correspond-
ing M-element array models. In this chapter we will model the 2-D acoustic wave
field generated by an array of 1-D elements and examine how the properties of this
wave field are affected by choices of parameters such as element size and spacing.
We will also discuss how discrete time delays applied to the array elements can
implement beam steering and focusing and how discrete amplitude weights can af-
fect beam characteristics for arrays. These discrete time delay laws and apodization
windows will be sampled values of the continuous functions discussed in Chap. 3
for a large, single element transducer.

4.1 Phased Array Beam Models

Figure 4.1 shows an array of M elements where M is an even number and the center
of the array is assumed to lie on the z-axis. Let each element length be 25 and as-
sume the elements are all separated from each other by A, a constant spacing dis-
tance. The total length of the entire array will be taken as 2B. In this case, the cen-
troid of the first element is located at an x-distance of ¢, = —B+b and the distance
between centroids is A+2b so the x-location of the centroid of the mth element is

e, =—B+b+(A+2b)(m—1). 4.1

But the distance B is given by

B:M(Zb)+(%—1)A+é, (4.2)
2 2 2

where the first term on the right of Eq. (4.2) represents the contribution to B from
half of the total elements (A4/2). The second terms represents the contribution to B
from the number of full gaps present, A, and the last term represents the half gap

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 73
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2 4,
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Fig. 4.1 An array of M x
transducer elements, each of
length 25 and separated by a
distance, A, where M is an

even number and the z-axis

is located at the center of the
array. The total length of the

ti is 2B
entire array is 2B 31

Al2
m=M/2

m=1

Fig. 4.2 An array of M
transducer elements, each of
length 25 and separated by a
distance, A, where M is an
odd number and the z-axis is
located at the center of the
array. The total length of the
entire array is 2B

>
o
¥

length from the z-axis to the m =M/2 element (see Fig. 4.1). Combining Egs. (4.1)
and (4.2) then gives the x-location of the centroid of the mth element in the array as

e =(A+ zb)(w). 4.3)

If, instead, there are an odd number of elements in the array then with the z-axis
again located at the center of the array (see Fig. 4.2), the centroid of the first element
is again located at an x-distance of ¢, = —B+b and the distance between centroids
is still A+2b so Eq. (4.1) holds. In this case

5o (M=
2

(A+2b)+b, (4.4)

since there are (M —1)/2 elements and gaps on each side of the center element and
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Fig. 4.3 Geometry param-

eters for the mth element of

an array for use in multiple

and single line source array

beam models and for consid-

ering the far field response Xu

of the array. The distance e,

is measured from the origin

(taken as the center of the Cn
array) to the centroid of the

mth element while x, is the

distance measured from this z
element centroid to the center

of the nth segment of this

element

an additional distance b on each side from the center element (Fig. 4.2). Comparing
Egs. (4.2) and (4.4) we see they are identical. This is to be expected since for either
an even or odd number of elements we have M elements and (M—1) gaps so that
the total length of the array is

2B=M2b)+(M -1)A, 4.5)

which also is identical with Egs. (4.2) and (4.4). Thus it follows that the centroid
location expression of Eq. (4.3) is valid for arrays with either an odd or even num-
ber of elements. The distance s =2b+ A which appears in Eq. (4.3) is called the
pitch of the array. This particular distance, as we will see, plays an important role in
describing the properties of the wave field of the array. In terms of the pitch, s, the
centroid locations then are given simply by

e - (M) N (4.6)
2

With Eq. (4.2) and the beam models developed in Chap. 2 for a single element pis-
ton transducer it now is possible to develop models for a 2-D transducer array. Each
element in the array is typically driven by a separate circuit so that the driving volt-
ages and the corresponding velocities on the faces of the elements can be different,
i.e. v, (@) — v,, (@) for the mth element. Here, we will let v, (®) = v,(®)C, so
that the only differences between elements in the driving velocities will be apodiza-
tion values, C’m , which are discrete values of the continuous apodization windows
discussed in Chap. 3. Also, we will assume a different time delay, As , at each
element that will produce an additional complex exponential term exp(iwA¢,) for
the mth element in the array model. We can sample the continuous time delays of
Chap. 3 to generate discrete delay laws for beam steering and focusing of arrays or
use the more general time delay laws developed in the next chapter.

Consider using our multiple line source model (Eq. 2.59) to represent each ele-
ment of an array. Then for the wave field of the entire array we have (see Fig. 4.3)
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p(x,a)) exp(zkbr ) A.7)
pevy (@) ;C exp(iwAt,, )l nz:, D,y (6, \/kbi_

where there are M elements and the acoustic field of each element is calculated with

N segments over the element. The normalized distances, 7, , are given by

Tom =\/[(x—xn —e,)/b]’ +(z/b) (4.8)

and the angles @, are measured from the centroid of each segment of a given ele-
ment (Fig. 4.3), i.e.
X—x,—e
sin|f |[=—=2—" 4.9
10 1= "%

The model of Eq. (4.7) we will call the multiple line source array beam model. In
many cases we are interested in calculating the wave field of the array only at dis-
tances which are in the far field region of each element. In that case we can set N =1
in Eq. (4.7) and take x, =0 to obtain

M . J—
Z exp (iwAt,, ) lkb 25 exp (ikbr,,, )

9 — N ‘7
— , (6..,) Jo, ] (4.10)

pcv

where now the radii and angles are

7, = \(x/b—e, by +(z/b)
4.11)

X—e
Sln(eem) b - >
Tom

as measured from the centroid of each element (see Fig. 4.3).We will call the model
of Eq. (4.10) the single line source array beam model. This model will be used in the
next section as the basis for discussing the existence of grating lobes in the radiated
wave field of an array.

4.1.1 Far Field Behavior of an Array

If the point (x, z) in the fluid is in the far-field of the entire array, then a single line
source is adequate to represent every element of the array and in the single line
source array beam model we can set (see Fig. 4.3)
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r, =y R*+& —2Re, sin® (4.12)
=R-e, sin®
and
P (4.13)

em

so Eq. (4.10) becomes, approximately,

& _ [2 exp(ikR) L
x,w)= ) C exp(iwAt,)| pcv,,|—kb D,(0©)—F———exp(-ike, sin®) |
p( ) Z p( )|:p N 7 ,(©) \/E p( )

m=1

(4.14)

Now consider the case where there is no apodization or delay law imposed, i.e.
C,=1, At =0.Then we find

P(x, @) = pcvo\/%kb D, (@)i[exp(—ikem sin@)]%}jﬁm. (4.15)

But, using Eq. (4.6) for the distances to the centroid, e, , Eq. (4.15) reduces to

2 M +1
r(x,0)= pcvo\/:_kb D, (©)exp |:zks( i )sin G)}
(4.16)
exp (ikR)
exp (—iks sin©@m)
S e
In this case we can perform the sum since
M M

o od=a’) (4.17)

l-—a

m=1

Letting a = exp(—iks sin ®) we find

i [ exp (—ikssin©m) |

7 [1 —exp(—ikssin @M)]
[1-exp(—ikssin ©)] (4.18)

exp|:—iks(M * l)sin @] SiI}[(Mks §in 0)/2]
2 sin[(ks sin®)/ 2]

= exp(—iks sin @)
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Fig. 4.4 The magnitude of 1 r T
the directivity for a single R N,
element of a 5 MHz, 32 N / N\ .
element array radiating into 0.8 /s ~N
water versus angle (dashed- 7
dotted line). The magnitude 0.6 ol

of the directivity of the :
discrete sources of the array |D|
(solid line) compared to the 0.4}
directivity of a single element
transducer of the same over-
all size as the array (dashed 0.2
line). M =32, 2biA=0.5,
A2b=0.1, f=5MHz

:
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and Eq. (4.16) becomes

sin[(M kssin®)/ 2] exp(ikR)
M sin[(kssin®)/2] JkR

p(x,0) = pcvo\/%(kbM)Db (©) (4.19)

Equation (4.19) shows that in the far-field of the array the wave field acts like a
cylindrically spreading wave with a total angular directivity, D(®) = D, (0©)D,(©),
where

D,(©) = sin(kbsin ®)
b kbsin ©

D, (0)= sin[(Mks sin ©) /2] (4.20)
’ M sin[(kssin®) /2]

While the directivity function D, (®) represents the directivity of an individual
element the directivity D, (©) can be considered to be due to a discrete array of
“point” sources, each separated by the distance, s. One can see this since if b is very
small, each element reduces to a “point” and in this limit D, =1 so the total direc-
tivity of these very small “point” elements is just D(®) = D_(0). For arrays where
the element size and pitch are fractions of a wavelength the directivity function of
the element, D, (©), is slowly varying in angle while the directivity of the discrete
sources, D, (@), behaves similar to the directivity of a single element transducer
having the size of the entire array (2B). This can be seen in Fig. 4.4 which plots
these directivities as a function of the angle, © for the 5 MHz, 32 element array
with an element length which is one half a wavelength. Figure 4.4 also shows the
directivity of a single element transducer having the same overall size as the entire
array, i.e.

sin(kBsin ©)

D,(©)=
2(©) kBsin©®

(4.21)
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Fig. 4.5 The magnitude of
the directivity versus angle of
a single element of a 5 MHz,
32 element array radiating
into water (dashed-dotted
line) and the magnitude of
the directivity versus angle
of the discrete sources of the
array (solid line). M =32,
2biA=2.0, A/2b=0.1,
f=5MHz

-80 -60 -40 -20 0 20 40 60 80
angle, deg

where it can be seen that there is little difference between D, (©) and D (©). From
Fig. 4.4 it would appear that the overall far-field behavior of the array, which is
determined by the product of these directivity functions, will be very similar to
that of a single element transducer of the same size. However, this is only true be-
cause in the example considered the pitch was only about one half a wavelength.
If the element size was two wavelengths instead but all other parameters were left
unchanged, the corresponding directivity plots of D, (®©) and D, (©)would be as
shown in Fig. 4.5. In this case the directivity of an element is more concentrated
about @ =( since the element is larger and itself produces a more highly colli-
mated beam, but the striking difference is in the directivity of discrete array sources,
which now looks again like the overall directivity of a single element transducer
of the same size as the entire array but where this directivity is periodically re-
peated as a function of angle. Since the total directivity function of the array is
the product of these two directivities, additional “lobes” in the directivity function
D(©) = D,(©)D,(©) will appear in the far-field wave field as shown in Fig. 4.6.
These lobes are called array grating lobes. Similar lobes appeared in Chap. 2 when
modeling large, single element transducers if the element segments were too large.
Since the elements themselves in an array act as similar segments of the entire ar-
ray it is not surprising that array grating lobes appear also if the element size is too
large. The conditions for the existence of grating lobes can be found by noting that
the directivity function D, is a function of the variable ks sin® given by

m=1

. 1 o M+1)|& o (4.22)
D (kssin®) = Mcxp iks sin © 5 2 exp(—iks sin Om). :

Equation (4.22) shows that the magnitude of this directivity function is a periodic
function since

|D, (ks sin®)| = |D, (ks sin © + 2nm)|. (4.23)
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Fig. 4.6 The magnitude of 1
the total directivity versus
angle of an array radiating

. 0.8
into water versus angle of

a 5 MHz, 32 element array

radiating into water. M =32, 0.6
2biA=2.0, A2b=0.1, |D|
f=5MHz 0.4

0.2
WY Wi

-80 -60 -40 20 0 20 40 60 80
angle, deg

Thus, the same maximum value of the directivity function which occurs at © =0
where kssin® = 0 will also occur at angles @, where kssin®, =+2nt (n=1, 2,
...) provided that we can find a real solution or solutions of

0, =sin™ (i%) n=12,..). (4.24)

Equation (4.24) shows that as long as s < A there are no solutions except © = 0.
For s> A, other solutions (lobes of the response) can exist. A similar situation was
found in Chap. 2 when breaking an element up into segments. There it was found
that the segment size had to be less than one wavelength to prevent extraneous lobes
from appearing. Here, we need to keep the pitch of the array less than a wavelength
instead. In the next section we will show that if we use a delay law to steer the beam
of an array the conditions needed to prevent grating lobes will be even more restric-
tive (the pitch will have to be less than one half a wavelength). Manufacturing and
economic constraints present when producing commercial NDE phased arrays may
dictate that the array pitch be more than a wavelength, so that in practice one may
have to deal with an array where grating lobes are inherently present and can affect
the test results.

4.2 Array Beam Steering

Since the individual elements of an array transducer are driven independently, it
is possible to excite each element with a different time delay. These delays can be
used to electronically steer and focus the ultrasound. In this section we will exam-
ine beam steering by examining the far-field behavior of an array, first using the
single line source model of Eq. (4.10) with the amplitude coefficients, C‘m , taken to
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be unity. If we use the continuous beam steering law of Eq. (3.17) and sample that
function at the centroid locations of the array elements given by Eq. (4.6) we find
the discrete delays, A¢, , given by

JURSELL L [(m—l)—M—_l] (4.25)
c 2

If these delays are placed into the far field values of the single line source model
Eq. (4.14) with C~’m =1 we obtain

exp(ikR)

2
p(x,a))zpcv ,{—.(kbM)D,(G)—
i : VAR (4.26)
1 oo . M+1|& o .
7 oxP 1ks(sm®—sm<b)T Y exp[ —iks (sin® —sin @) m |,
m=1

which shows that we have a point source directivity, D (0, ®), given by

1 o . M+1|E o .
D (0,DP)= ﬁexp iks(sin © —sin CD)T E exp[—iks(sin © —sin ®)m].
" (4.27)

Again, we can sum this series using Eq. (4.17) to obtain

sin [Mks(sin O —sind)/ 2]

D.(0,d) = .
/(0.9) M sin[ks(sin© —sin @) / 2]

(4.28)

This directivity of the steered array is very similar in form to that of the array with-
out steering (see Eq. (4.20)) so this new directivity function has the same type of
lobe structure as seen previously for the case with no delays but we see that the main
lobe at ® =0 in the non-delayed case now occurs when © = @ so that the beam
of the array has been shifted (steered) and @ is just the steering angle as shown
schematically in Fig. 4.7. The directivity is plotted in Fig. 4.8 for the same case
considered in Fig. 4.4, but where now the steering angle ® = 30". Since the pitch is
only slightly greater than one half a wave length in this case, no significant grating
lobes appear in Fig. 4.8.

Now, consider the grating lobe structure of the array when it is steered. We can take
the steering angle as positive since, as Eq. (4.28) shows, D (-0,-®) = D, (0,D)
so that the behavior of the directivity function for negative steering angles can be
easily obtained from that for positive steering angles. Equation (4.28) shows that
the maximum magnitude of D, occurs at @ = @ where ks(sin © —sin ®) = 0, but
additional maxima can also occur when

ks(sin® —sin®) =+2nn  (n=1,2,...), (4.29)



82 4 Phased Array Beam Modeling (1-D Elements)

Fig. 4.7 A linear distribu-
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Fig. 4.8 The magnitude of
the directivity of the discrete
sources of an array for a
steering angle ® =30,
M=32, 2b/A=2.0,
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directivity can be compared
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with no steering
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corresponding to the angles

©, =sin" (sincpiﬂ) (n=12,...). (4.30)
S

In this case, one can see that if s < A/2 then there will be no real values of Eq. (4.30)
for steering angles 0" < ® <90  (and similarly for —90" < ® <0"). Note that this
condition is more restrictive than the case s < A found when no beam steering was
present so that we must keep the pitch less than half a wavelength to prevent grating
lobes from existing, regardless of the angle to which we steer the array beam. The
point source array directivity is plotted in Fig. 4.9 for the same case considered in
Fig. 4.5 where grating lobes are present, but with a steering angle ® = 30". It can
be seen that the main lobe is shifted, as expected, but there are also shifted grating
lobes off the main steering direction as well.
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Fig. 4.9 The magnitude of 1
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Although we have only examined the case where all the array elements are
weighted equally (C‘m =1), for other weighting factors the magnitude of the array
directivity without any time delays is given by

M
D, (kssin®)| = %2 C, exp(—ikssin @m)‘, (4.31)

m=1

whereas, with steering time delays, we have

M
|D, (ks(sin © —sin ®))| = ‘%2 C, exp|—iks(sin® —sin®)m]  (4.32)
m=1

so that the array far-field wave field is steered in exactly the same manner for an
array driven with any set of C‘m amplitude factors.

In implementing beam steering in an array we cannot use the time delay law of
Eq. (4.25) since it contains advances as well as delays. However, we note that if
® >0 the largest negative term occurs for m = 1. Thus, if we add a constant (posi-
tive) term of ssin®(M —1)/2¢ to this law we obtain a proper steering delay law
for @ >0 given by

At = ssin® (m—1) (4.33)

These discrete delays are the ones shown schematically on the elements of the array
in Fig. 4.7. If ® <0 then the largest negative terms in Eq. (4.25) occur for m = M
and we must subtract a constant (negative) term of ssin®(M —1)/2c¢ to give the
proper delay law

m

R @
C
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Fig. 4.10 Time delays for steering a 16 element array with pitch s =0.5 mm in water for (a) a
steering angle of 30°, and (b) a steering angle of —20°

Combining these terms we arrive at a complete and realizable beam steering law

ssin @

(m-1) ®20
c
At = 4.35
" s|sind>| (4.35)
P M -m) ®<0 .
c

Note that adding or subtracting constant terms in the original delay law of Eq. (4.25)
only generates additional constant phase terms in the point source directivity so that
they have no effect on the criterion for grating lobes discussed previously.

In the next chapter we will discuss beam steering in a much more general context
where we can have both steering and focusing occurring simultaneously. The MAT-
LAB® function delay laws2D given in Code Listing C.12 generates the delays laws
for an array that is both steered and focused in a single medium radiating waves in
two dimensions. The calling sequence for this function is

>>td=delay_laws2D(M, s, Phi, F,c);

This function generates the time delays (in microseconds) for an array with M ele-
ments that has a pitch s (mm) and is steered to a focal point F (mm) through the
angle Phi (degrees) for a single medium with wave speed ¢ (m/s) (see the discussion
in Chap. 5). If the focal length F in this function is specified as F = inf (infinity) then
the steering only law is that of Eq. (4.35). Figure 4.10a shows the time delays gener-
ated by this function for a 16 element array steered in water to an angle of 30° where
the function inputs are M=16, s =0.5 mm, Phi=30°, F =inf, and ¢ =1480 m/s. Fig-
ure 4.10b shows the delays for the same array steered in the —20° direction.
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Fig. 4.11 Time delays for focusing a 16 element array with pitch s =0.5 mm in water (without
steering) at a focal length of 15 mm using (a) the paraxial law of Eq. (4.39), and (b) an exact focus-
ing law as implemented in the MATLAB function delay laws2D

4.3 Array Beam Focusing

For an array, focusing can be achieved by evaluating the continuous time “delay”
focusing law we obtained in Chap. 3 (using the paraxial approximation) at the cen-
troids, e, , of each element given by Eq. (4.6). That continuous delay law was

"2
At,(x") = —ﬂ. (4.36)
2R c
Thus, we obtain the discrete delays
. 5? M-17
At = At =- -)—.
. =At(e,) 2Re [(m ) 3 ] (4.37)

However, again these “delays” are really time advances that cannot be implemented
electronically in practice so that adding a constant delay term, 7', to each element
of the array, where

s> [M-1T
Tzch 2 | (4.38)
0

we obtain a realizable set of time delays, A7, = A7, +T given by

S (4.39)
At ZROC(m D(M —m).

Figure 4.11a shows a set of proper discrete focusing delays for a 16 element ar-
ray obtained by using Eq. (4.39) for an array with a pitch s =0.5 mm focused into
water (¢ =1480 m/s) at a focal length of R, =15 mm . Equation (4.39) is, however,
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only an approximate expression since it was developed using the paraxial approxi-
mation. The MATLAB® function delay laws2D discussed in the previous section
implements focusing (and combined beam steering and focusing) without such par-
axial approximations. Fig. 4.11b shows the delays generated with this function for
the same parameters as used in Fig. 4.11a (M =16, s =0.5 mm, Phi =0°, F =15 mm,
¢ = 1480 m/s). Differences between these two delay laws, while present, are small
enough to not be readily visible for the scale of Fig. 4.11.

To see the effect of the focusing law on the sound beam generated by the array,
consider the single line source array beam model of Eq. (4.10) which we rewrite
here as

M = N ~ . 3 w
pevy(w) - mZZ: Co exp (l(l)Atm )lkb\/;Dli (6.,) \/E ], (4.40)

where (see Eq. (4.12))

For = \/Rz +e’ —2Re, sin®
(4.41)

Since the entire array will generate a well collimated beam we can use the paraxial
approximation on both », and 0, (see Fig. 4.3). In this approximation we will as-
sume that e /R is small so that 8, =® and expand the square root in Eq. (4.41)
to second order as

7

em

N

(4.42)

e’ —2Re sin® ¢ sin’ O
R14 & =28 SN0 &S D, .
2R 2R

But, because the angle O itself is assumed to be small, in the paraxial approxima-
tion we can drop the last term in Eq. (4.42), giving

2

r,,=R-e, Sin @+ (4.43)
2R

Placing this result into Eq. (4.40) we have

P(X,0) &~ . e 2 o exp(ikR)
————= ) C exp(iwAt, )exp| ik—= || kb,|— |- exp(—ike sin®)D, (O)———.
v (@)~ 2 Cn PUAA,) p( o || K\ | (e, sin@)D, @)=

(4.44)
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However, if we use the paraxial focusing delay law (Eq. (4.37)) and let R = R, we
see that the phase terms involving e’ cancel and the pressure at the focal distance
is just

p= i pevy(w)C, [kb\/%]exp(—ikem sin®)D, (@)%. (4.45)

iR,

Comparing Eq. (4.45) with Eq. (4.14) we see that the pressure field at the focal
distance is now just the same as the far field pressure of the entire array with no
delays applied to the elements. This is consistent with what we found in Chap. 3
(Sect. 3.2) when examining focusing behavior in the paraxial approximation with a
large, single element transducer.

m=1

4.4 Array Amplitude Weighting

The continuous amplitude weights discussed in Chap. 3 can be sampled to gener-
ate the discrete weights, C~‘m , needed for arrays. The cosine, Hanning, Hamming,
and Blackman windows all contain the functions cos(nzx’/L)(n=1,2,4). If
we let x”=¢, , the centroid location of the mth element in an array, and choose
L =2(B-b) so that all the windows (except the Hanning window) taper to zero at
the centroids of the first and last element in the array, then from Eq. (4.4) we have
L =s(M —1) and it follows that

Cos(nn'x’) . COS{nﬁs{m—l—(M —1)/2}] _ Cos[m(m—l) _nx
L s(M —1) M-1 2

], (4.46)

so that

ﬂx') .| #(m=1)
cos —sin| ————=
L M -1

cos ﬂ) — —cos [M] (4.47)
L M-1

47rx') |:47r(m —1)]
cos| — — cos| ———

M -1

and the discrete forms of these windows become:
Cosine Window

& —c sin[”(’" - l)}, (4.48)
M -1
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Fig. 4.12 The normalized 1 L B
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Blackman Window

¢ =, {0.42—O.SCOS[M]+O.OSCOS[M]}. (4.51)
M1 M1

For the triangular window the same choices of x"=¢ and L =s(M —1) gives

¢ =c, {1 —‘2(’” - —1‘}. (4.52)
M

The MATLAB® function discrete windows given in Code Listing C.13 generates
normalized discrete weights (i.e. with C, =1). The calling sequence for this func-
tion is

>>amp=discrete_windows(M, type);

The function outputs the non-dimensional amplitudes amp = C‘m /C, for M ele-
ments and windows of type ‘cos’ (cosine), ‘Han’ (Hanning), ‘Ham’ (Hamming),
‘Blk’ (Blackman), ‘tri’ (triangle) and ‘rect’ (rectangular). The case ‘rect’ is where all
elements have equal weights of one, i.e. there is no apodization. Figure 4.12 shows
an example of the discrete weights generated with this function using the Blackman
window for a 16 element array.
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Fig. 4.13 A 32 element

array radiating into water at 5
5 MHz. Element size is one
half a wavelength with a gap 10

size equal to one tenth of an -
element length
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4.5 Array Beam Modeling Examples

The multiple line source model of Eq. (4.7) can be combined with appropriate de-
lay laws and apodization laws to generate a complete beam model for an array.
The MATLAB® script mls_array modeling given in Code Listing C.14 uses such
a combination to produce images of the array wave field. The calling sequence of
the script is simply

>>mls_array_modeling

The script uses the multiple line source beam model for each element contained
in the function Is_2Dv and obtains the time delay law and apodization law from
the functions delay laws2D and discrete windows discussed previously. The script
also contains the MATLAB® function elements (Code Listing C.15) which has the
calling sequence

>>[D, d, g,e]=elements(f, c, dl, gd, M);

where f'is the frequency (in MHz), ¢ is the wave speed (in m/s), dl =2b/ A is
the length of the element, d =2b, divided by the wavelength, A. The parameter
gd = A/2b is the gap size, A, divided by the element length, and M is the total
number of elements in the array. This function returns the total length of the array
aperture D=2B (in mm), the length of each element d =25 (in mm), the gap size,
g=A, (in mm), and a [1 x M] vector e whose mth term is the location of the cen-
troid of the mth element, ¢_, (in mm) given by Eq. (4.6).

To apply this script, let us first consider a 32 element array radiating into water
(¢ =1480 m/s) with an element size of one half a wavelength and with no delay laws
or apodization laws. Figure 4.13 show an image of the magnitude of the pressure
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generated by this array. It can be seen that there are no grating lobes visible and the
array generates a near field beam structure similar to that of a single element trans-
ducer. However, if one changes the element length to be two wavelengths, with all
other parameters staying the same, then we see definite grating lobes in addition to
the main beam (Fig. 4.14). If we apply a steering law only to the array considered in
Fig. 4.13 the wave field in Fig. 4.15 looks as if it was coming from a rotated trans-
ducer as discussed in Chap. 3. Figure 4.16 shows the 32 element array considered
in Fig. 4.13 when a focusing delay law is used to focus the beam at a distance of
20 mm. It can be seen that the beam does develop a beam “waist” near the speci-
fied focal point. As a final example, consider the array example of Fig. 4.13 again
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Fig. 4.16 A 32 element array
radiating into water at 5 MHz
with a delay law to produce
focusing and no steering 10
(Phi=0, F=20 mm). Element |
size is one half a wave length
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Fig. 4.17 A 32 clement
array radiating into water at
5 MHz. Element size is one
half a wave length with a gap
size equal to one tenth of an
element length. A Blackman
apodization law is applied to
the elements

Z ,mm

=25 2200 -15 10 -5

but where we apply Blackman apodization weights to the array. As can be seen in
Fig. 4.17, this apodization produces a beam with a much smoother profile and with-
out the visible side lobes of Fig. 4.13.

4.6 Use of Gaussians for Modeling Phased Array Beam
Fields

In Chap. 3 we showed that a multi-Gaussian beam model is an effective model for
large single element transducers. Because of the use of the paraxial approxima-
tion in the multi-Gaussian beam model, which assumed that the entire beam of the
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element was contained in a narrow region centered around the z-axis (normal to
the element), that model cannot accurately predict the fields at large angles from
the z-axis of small elements, as is required in phased arrays when significant beam
steering is present. However, it is still possible to use the Gaussian basis functions
developed by Wen and Breazeale in conjunction with a high frequency line source
model to model properly the wave field at large angles of small elements by using a
non-paraxial expansion [6]. To see this, we start from the high frequency line source
model with a Gaussian velocity profile on the surface at z=0 (see Eq. (3.99)), which
we rewrite as

p(x, )= pcvo(a))A/ j exp[ -B(x')’ /bz]e"‘\’g‘r i, (453)

where x=(x,z) and r=./(x—x")’ +z*>. However, instead of expanding the ra-
dius, 7, about the z-axis, as is done with the paraxial approximation, we let

r= \/xz +27 = 2xx" +(x)’

ey (3

N (x)* = 2xx’

0 p >
%

where 7, = \Jx? +z* and assume that x’/ 7, <<1 (which is valid for a small ele-
ment if we are not too close to the element). This same expansion was discussed in
Chap. 2 when looking at the validity of the far field approximation (see Egs. (2.39),
(2.40), and (2.41)) and we found that to keep at least quadratic terms in the expan-
sion we had to use three terms in the binomial expansion to find
’ "2 2
rE}"O—K+(x) COS 9’ (455)
7, 2r,

where cos@=z/r, and @ is the angle that the radius 7, makes with respect to the
z-axis. Note that the original derivation [6] of this approach kept only two terms in
the expansion which had the effect of making the replacement cos”* @ — 1. Placing
the correct second order approximation of Eq. (4.55) into Eq. (4.53) then gives

p(X,w)= Pcvo(a))\/i exp(zkr) Jexp{ ik (x )Z(C(;SRH ];Ijz ]]exp[—tl;cx ]dx'
(4.56)

But the integral in Eq. (4.56) can be done [Schmerr-Song], leading to the explicit
expression
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a b

Fig. 4.18 A 32 element array radiating into water at 5 MHz with a delay law to produce a steering
angle of 20° and no focusing (Phi =20, F'=inf). Element size is one half a wave length with a gap
size equal to one tenth of an element length. This is the same case considered in Fig. 4.15 where
the wave field was calculated with a multiple line source model. Here, the wave field is calculated
with (a) a non-paraxial Gaussian model and (b) with a Hankel function model.

. )
P(x.0) = pev, (@) Aexp(ikr,) ox |: ikx

T ] (4.57)
JJcos® 6+iBr, I D 21, (cos* @+iBr, | D)

where D = kb’ /2 is the Rayleigh distance [Schmerr-Song]. Here we will use the
10 rather than the 15 Wen and Breazeale coefficients for piston behavior [7] in order
to keep the calculation times to a minimum. We then have a complete beam model
for an element in the form

px,@)=Y

pevy(@) 4, explikn) [ —ikr? } (4.58)
| \/cosz 0+iB,r, | D

27, (cos® @+iB,r, | D)

The MATLAB® function NPGauss 2D (Code Listing C.16) which has the calling
sequence

>>p=NPGauss_2D(b, f, c, ¢, X, z);

implements Eq. (4.58) for an element whose center is offset a distance, e, in the x-

direction, so that 7, =+/(x —e)* + z°. It uses the ten Wen and Breazeale coefficients
which are contained in the MATLAB® function gauss_c10 (Code Listing C.17). One
can replace the multiple line source beam model Is 2Dv in the MATLAB® script
mls_array _model with NPGauss 2D to generate comparable results for phased ar-
rays. Figure 4.18a shows the same setup considered in Fig. 4.15 (a 32 element array
radiating into water at 5 MHz with a delay law to produce a steering angle of 20°
and no focusing. The element size was one half a wave length with a gap size equal
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to one tenth of an element length) but with the use of the non-paraxial Gaussian
model in the MATLAB® script mls_array _model in place of Is_2Dv. Figure 4.18b
shows again the same results but with the Hankel function beam model (contained
in the MATLAB® function rs_2Dv) used in place of Is 2Dv in the same script. It
can be seen from Figs. 4.15 and 4.18 that the Hankel function model and multiple
line source model results appear identical and the non-paraxial Gaussian model also
agrees quite well with the other two models but with some differences appearing in
the very near field region adjacent to the face of the array where the expansion of
Eq. (4.55) cannot be expected to be accurate. However, the non-paraxial Gaussian
model took 13 times longer to evaluate than the multiple line source model and the
Hankel function model took 8.3 times longer than the multiple line source model so
the multiple line source model appears to be the best overall choice for simulating
phased arrays in 2-D problems. This is not surprising since the multiple line source
model uses only a single line source term for the small element size considered
here (element length less than a wavelength) whereas the other models use multiple
element segments or basis functions in their calculations. Even for larger array ele-
ments the multiple line source model remains efficient, losing its advantage only
when the element length is tens of wavelengths, as found in large, single element
transducers. In contrast, for large, single element circular transducers a paraxial
multi-Gaussian beam model only needs ten or fifteen Gaussians to produce accurate
wave field calculations [Schmerr-Song] so it is typically the fastest beam model
available for those cases, particularly when calculating the fields through interfaces.

4.7 Beam Steering and Focusing through a Planar
Interface

In Chap. 2 we also described modeling the radiation of an element through a planar
interface. We can use that model and combine it with the beam steering and focus-
ing laws developed in Chap. 5 for this case and the discrete apodization laws of
Sect. 4.4 to simulate array wave fields with an interface present. All these elements
are combined in the MATLAB® script mls_array int (Code Listing C.18) which is
very similar in structure to the mls_array modeling script for a single medium used
in Sect. 4.5. The calling sequence for this script is simply

>>mls_array_int

The script uses the beam modeling MATLAB® function Is_2Dint discussed in
Chap. 2 as well as the MATLAB® discrete windows function for the apodiza-
tion laws. The time delay laws are generated in the MATLAB® function delay
laws 2D int (Code Listing C.19) developed in Chap. 5. The calling sequence for
this delay law function is

td=delay_laws2D_int(M, s, angt, ang20, DTO0, DF, cl, c2, n)
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where td holds the delay times (in microseconds), M is the number of elements in
the array, s is the array pitch (in mm), angt= ¢, is the angle the array makes with
the interface (in degrees), ang20= @,, is the specified steering angle (in degrees) as
measured in the second medium, DTO= D, is the distance of the center of the array
from the interface (in mm), DF= D, is the specified focal depth in the second me-
dium (in mm). If DF=inf is specified then steering without focusing is present. The
variables (c1, c2) are the wave speeds in the first and second media, respectively, in
m/s. The final input string parameter ("y’ or 'n’) specifies if a plot of the rays corre-
sponding to the delay law parameters is wanted. Figure 4.19 illustrates these various
parameters and Chap. 5 gives more details of this function.

To illustrate the use of this script, consider the case of a 32 element array in
water located 25.4 mm from a water-steel interface and oriented parallel to the in-
terface (g, = 0°). Figure 4.20 shows results for the case where the element length is
0.25 mm, the gap length is 0.05 mm, the frequency is 5 MHz, and no apodization or
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Fig. 4.21 Normalized pres-
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delay law is specified for the array. The near field structure of this array wave field
in the steel can be clearly seen in Fig. 4.20. Figure 4.21 shows the same setup as in
Fig. 4.20 but where now a delay law is chosen to steer the array, without focusing,
at an angle 6,, = 30° in the steel. Figure 4.22 is for the case where a steering angle
6,, = 30° is again specified, along with a focal depth D, =8 mm. Steering and fo-
cusing effects consistent with these choices of the delay law are clearly evident.
Figure 4.23 shows the wave field of a 16 element array where the element length is
0.325 mm and the gap length is 0.05 mm but where D,; =50.8 mm the array is now
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Fig. 4.23 Normalized pres-
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in water at a distance of

D, =50.8 mm from a water-
steel interface, 6, =10.217°.
Other setup parameters are

w

d =2b=0.325 mm, E 10
A =0.05mm, f=5MHz, :
6,,=30°, D, =inf, no 2
apodization =
5 15
S
20
25 '
0 5 10 15 20 25

x-distance, mm

atan angle 6 =10.217° from the interface. By Snell’s law this will generate a re-
fracted beam at 45° in the steel. In this case the time delay law parameters were cho-
sen to be 8,, = 45°, D, = inf, so that there is no steering or focusing. The size of this
array is the same as the large single element transducer example shown in Fig. 2.17
so it is not surprising that without steering or focusing the wave field images are
very similar. Figure 4.24 shows the same array of Fig. 4.23 but with beam steering
specified as 6,, = 30°. It can be seen that the wave field has indeed been shifted to
the new specified refracted angle. The 2-D modeling studies of this chapter are in
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the spirit of those done by Wooh et al [1-3]. See also [4-5] for some similar model-
ing simulations and discussions of efficiency.
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Chapter 5
Time Delay Laws (2-D)

In Chap. 3 we introduced continuous time delay laws for beam steering and focus-
ing of large, single element transducers and we obtained discrete versions of those
laws in Chap. 4 for phased arrays. The explicit focusing delay laws discussed in
both previous chapters used the paraxial approximation. This approximation gave
us a simple delay law to implement and it was consistent with the paraxial ap-
proximation used in the beam models in Chap. 3. However, there is no requirement
to introduce such approximations in the delay laws designed for phased arrays. In
this chapter we will derive exact delay laws for combined steering and focusing in
a single medium and describe the case where the steered/focused beam must pass
through a planar interface. In all cases, we will limit our discussion in this chapter to
1-D arrays radiating waves in two-dimensions. The corresponding delays laws for
2-D arrays radiating into three dimensions will be discussed in Chap. 8.

5.1 Delay Laws for a Single Medium

In designing a delay law for steering and focusing a 1-D array in two dimensions,
one can parameterize the delay law in several ways. One way is to specify the steer-
ing angle, @, as measured along the central axis of the entire array, and the focal
distance, F, as measured along this axis (see Fig. 5.1a and b). For both cases shown
in Fig. 5.1 the distance from the center of the array to the center of the first element
is B—b= (M —1)s/2, where 2B is the total length of the array, 2b is the length of
an element, and s is the pitch of the array (see Eq. (4.5)). The quantity (M —1)/2

will appear frequently in our delay law expressions so we will abbreviate that quan-
tity as M :

g=M=D (5.1)
2

The distance to the centroid of the mth element, e . in terms of A is then

e, =[(m—1)—M]ls. (5.2)

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 99
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mth X,z m=M
element |

Fig. 5.1 a Geometrical parameters for steering and focusing an array when @ >0, and b when
D <0

Consider first the case when ® > 0 (Fig. 5.1a). To obtain the delay law to steer and
focus the beam to the point (x,z) we first calculate the times it takes to propagate
from the centroid of the mth element to (x,z), Az, =7, /c, where c is the wave
speed. If we apply the negative of these times (representing time advances) to all
the elements then all of the waves from the elements will arrive at (x,z) at the same
time. To turn this result into a proper delay law we must also add a positive, constant
term so that all of these time values are time delays, not advances. It is obvious from
Fig. 5.1a that the distance from the first element to (x,z), 7, is the largest distance
for the entire array, so that a proper delay law is simply

At,=nlc—r,/c (5.3)

From the geometry of Fig. 5.1a and the law of cosines, we then have

r= \/FZ +(#s)" +2FMssin®
(5.4)

r, = \/F2 +(em)2 —2Fe, sin®

m

and the delay law becomes

1 — —
8, =~ F? + (M5 + 2FMssin® —[F* + (e, )* = 2Fe, sin@ | (59)
C

In comparison, for ® < 0, if we use the geometry of Fig. 5.1b we find instead

At,=r,lc-r,/c

_ ENFZ +(¥s)] +2F¥ssin|o| —[F* + (e, | +2Fe, sin|d)|]. 5:6)
C
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It should be noted that although Fig. 5.1 shows a geometry for an array with an odd
number of elements, there is nothing in the expressions used in the derivation that
restricts our results to that case and so these delay laws are valid for arrays with
either an even or odd number of elements. Azar et. al. [1] used a similar approach
to develop these delay laws, which are also applicable to linear arrays operating in
a 3-D setting since such arrays can only be steered and focused in a plane with the
2-D delay laws given here.

We can compare these exact laws with our previous results which used the par-
axial approximation. If we are focusing the beam to a point well removed from the
face of the array then we can expand Eqgs. (5.5) and (5.6) for F large and obtain to
second order (keeping three terms in the expansion as shown in Eq. (2.42)) For
@ >0 we find

At, =

F (Ms)* +2FMssin ® (e,)’ —2Fe, sin®
— | 4/1+ > =41+ 5
c F F

_ F{H (Ms)? +2FMssin® 1 4(Ms)* sin’ @

c 2F? 8 F?
2 _ 3 2 2.2
__le) j}ffm sin® +%4(em )Filn cI>:|’ 57)
whereas for ® <0 we have
At = r \]1+ (Ms)* +2FMs sin|CI>| —\/1+ (e,) +2Fe, sin|<1>|
d 2 2
c F F
_F|,, (Ms)* + 2FMssin|®| 1 4(Ms)’ sin® @

T 2F? 8 F?

(e,)’ +2Fe, sin|®| 14(e,) sin’ ®
-1- +e - (5.8)

2F? 8 F?

Using the definition of A and e, from Egs. (5.1) and (5.2) and collecting terms
and simplifying we obtain, for ® >0

_ _ 2 2
Aty = L ZDM —m)s cos D gy cina |, (5.9)
c 2F
and, for ® <0
_1{ (m=1)(M —m)s’ cos’ ® .
Atd :;[ oF +(M—m)ssm|<l)| , (510)
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which are a combination of the steering laws and focusing laws developed previously
in the paraxial approximation (see Egs. (4.35) and (4.39) and let sin|®|=|sin®|
and F'=R)).

If we want to use the combined steering and focusing laws of Eqgs. (5.5) and
(5.6) for steering only, we have to let /' — oo . It can be seen from Egs. (5.9) and
(5.10) that we do recover the proper limit but only because of canceling infinities in
Egs. (5.7) and (5.8), a procedure which is difficult to implement in software. Thus,
it is best to treat steering only as a special case.

Parameterization of the delay laws by specifying (F,®) is a logical choice
but another convenient way to design the delay law is to specify the point
(x,z) in the medium to which we want to steer and focus the beam. Since
F=+x*+z%,sin® = x/F, we could specify that point and then use these rela-
tions in the delay laws Egs. (5.5) and (5.6). However, we could also simply write

the time delay as
r v
At, = max " ——
c c

:max{\/(x—em)2 +2° }_\/(x—em)2 +2°

c c

, (5.11)

which will also give a proper delay law.

The function td=delay laws2D(M, s, Phi, F, ¢) discussed in the last Chapter
(Code Listing C.12) implements Egs. (5.5) and (5.6) to generate the delays, td, in
microseconds needed to produce steering to a focal point at an angle @ (Phi) (in
degrees) and focusing at a distance F (in mm) for an array of M elements with a
pitch, s, (in mm) and for a medium of wave speed ¢ (in m/s). If F is specified as
infinity (F=inf) the steering only delay law of Eq. (4.35) is used instead.

5.2 Steering and Focusing Through a Planar Interface

As seen in the last section, in a single medium it is relatively simple to set up the
general time delay law based on the angle of beam steering (from the center of
the transducer) and the desired focal point. In radiation through a plane interface,
however, the relationship becomes more complex, particularly when focusing is
involved.

We will begin by considering the case of beam steering only for the configura-
tion shown in Fig. 5.2 where an array radiates at an angle through a plane interface.
This type of setup can be used to model an immersion test where the array is placed
in a water bath and radiates into a solid component or in an angle beam inspection
where the array sits on a plastic wedge and radiates into the solid. In either of those
cases the wave speed of second medium is larger, i.e. ¢, > ¢, which is a condition
we will assume here. We will let the angle of the face of the array relative to the
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" m=M
C ”

Fig. 5.2 A phased array radiating at oblique incidence to a planar interface, showing a reference
ray that is normal to the face of the array and a ray which makes a specified angle, 6,, relative to
the normal of the interface

plane interface be g as shown in Fig. 5.2. At high frequencies, each element of
the array will radiate a wave field through the interface that will satisfy Snell’s law
[Schmerr]. Figure 5.2 shows a ray path of a wave that travels from the center point
C of the array along a direction normal to the face of the array in the first medium
and is refracted into the second medium at an angle §. Just as we used the z-axis
as the reference axis for no steering in a single medium we will use this central ray
axis to define the case of no steering in this configuration. From Snell’s law, then
the refracted angle, @, for the no steering case must satisfy

sin. _ sin6, (5.12)

G ¢

where ¢, and ¢, are the wave speeds in the first and second media, respectively.
Now, suppose we want to steer the beam so that the refracted angle is specified as
0,, instead. In this case from Snell’s law the incident angle in the first medium must
satisfy

sin g, _ sin 8, , (5.13)

G G

which can always be solved for a real angle 6, as long as ¢, > ¢, . At the array, this
corresponds to steering the array in medium one at an angle §,,— 6, relative to the
reference ray in medium one. Thus, we can steer the array with the single medium
delay law (see Eq. (4.2.12)):

in(6,, —6
ssin(©0=6) , _y, (6,,-6,)20
cl

Atm = . s 514
s|s1n(610 —Gt)| ©.14)
-2 M-m) (8,-6,)<0

G

t

with g, given in terms of 6,, by Eq. (5.13). Thus, with the use of Eq. (5.13)
we can consider this a steering delay law parameterized in terms of (0,,6,,) and
the wave speeds of the two media. Note, however, that the specified angle 6, is
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Fig. 5.3 Geometry parameters for steering and focusing a beam through a plane interface at a
refracted angle, @, , and to a depth, Df

relative to a refracted ray which is different from the reference ray chosen for no
steering (see Fig. 5.2).

Now consider the case of both steering and focusing (Fig. 5.3). Again we will
assume the array makes an angle, 6 , relative to the interface and we will let D,, be
the vertical distance of the center point C of the array above the interface. Our beam
steering and focusing law will be based on parameters (D,,,D,,0,,) that describe
a ray path from C to a point /, on the interface and then from /, to point /' at a
refracted angle, 6,,, and to a depth, D/, in the second medium. Although there are
an infinite number of paths that one could take going from C to /, and then from
1, to F, at high frequencies the waves travel along the straight line paths that satisfy
Snell’s law, so that Eq. (5.13) is satisfied. In this case the specific path from C to F
is completely specified since the angle g, is given by Eq. (5.13) which then also
determines the location of the point /, on the interface as well as the horizontal
distance, D_, to the point F, i.e. we have

X, =D, tanB, (5.15)
D, =x,+D, tan,,,
where x,, is the horizontal distance to the point 7, on the interface from C (see
Fig. 5.3). Note that as in the steering only case this Snell’s law path is not in general
normal to the transducer in medium 1, so that 6,, # 6, and there will be steering
present unless one specifically chooses 0, = sin™' (¢, sin8,,/c, ).

In this discussion we can give the location of the point F' (relative to point C) to
which we want the beam to be steered and focused by specifying the three param-
eters (D,y,D,,0,,). Specifying the angle 6, is analogous to specifying the beam
steering angle, @, in a single medium, and specifying the distances (D,, D, ) is
analogous to specifying the distance, F, to the focal point in a single medium. We
could, however, also parameterize the beam steering and focusing with three other
parameters such as (D,,,D,,D,,), for example, but here we will develop our time
delays only with the set (D,y, D, ,0,,).

Once we have located the point F in this manner then we must determine the cor-
responding Snell’s law path from the centroid of an element located at point P on
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Fig. 5.4 Snell’s law path from the centroid, P, of the mth element in an array to the point F at
which we want to steer and focus the array

the transducer surface to the point 7' where we want to focus the array (see Fig. 5.4).
Since point P is located a distance e, from C, the vertical distance from P to the
interface is D,, and the horizontal distance from P to F'is D, where

D, =D, +e, sing,
D, =D,—e,cos0,. (5.16)

xm

Both of these distances are known if the parameters (D,y, D, ,0,),e,,,6,) are given.
Here the angles (8, ,6,, ) are unknown, as well as the dlstance x,, to the point
I, where a Snell’s law path from the mth element intersects the plane interface
(Fig. 5.4). However, Snell’s law can be written in a form where satisfying it is
equivalent to determining a value x, that is the location of the zero of a func-

tion, f(x, ), since from the geometry of Fig. 5.4

sin®,, sin6,,
flx,)=—™——™m
G G
_ 1 (Dxm _xim) 1 xim
T 2 2 2 2
02 \/Df +(Dxm _xim) cl \/xinz +Dtm (517)
=0

An equivalent form of Eq. (5.17) normalized by the distance D_ is

(Dx)n_xim)\lxizf'rr+Dt2m _(CZ/Cl)xim \)(Dxm_x ) +D2 0

xm

g(x,,)= (5.18)

There are several methods available to solve for x, from Eq. (5.18) in MATLAB®.
The function g goes from a positive value of g =D, at x,, =0 to a negative value
g=-(c,/¢)D;at x, =D, and there is a zero Value in the interval [0 D, ] Thus,
one method is to use the MATLAB® function fzero to determine the locatlon X,
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of this zero of g(x,,) iteratively with Newton’s method. A second approach is to
eliminate the square roots in either Eq. (5.17) or Eq. (5.18) by squaring to generate
a quartic equation in x, ~of the form

4 3 2
a,x, +a,x, +a,x +a, =0, (5.19)

im

+ax

im
where

a, =|:1—(cz/c1)2]
a, = 2|:(c2 /¢,) —1] D,

a2 = Dfm + Dtit - (CZ /cl )2 (D,fm + Di)
al = _ZDmetEn
a,= DD, (520

The MATLAB® function roots can then be used to find the four roots of this quartic
or one can use Ferrari’s method [2, 3], to obtain the four roots directly. Two extrane-
ous roots will be complex while one extraneous real root will lie outside the interval
[O, Dxm] so that one needs only to identify the one real root in that interval to obtain
the proper value for x,, . The built in MATLAB® functions fzero and roots are both
viable methods, but the use of Ferrari’s method with the function ferrari2 defined in
Code Listing C.5 is more direct and will be the one implemented here. The calling
sequence for this function is

>>xi = ferrari2(cr,DF,DT,DX);

where xi is the distance x, , cr is the ratio of the wave speeds in the two me-
dia, (¢, = ¢,/ ¢,), DF is the distance D,, DT is the distance D, , and DX is the
distance D_  (see Fig. 5.4).The function ferrari2 is faster than the use of either
fzero or roots. For example, in evaluating the ray paths to a set of 200 x 200 values
of D, and D, (which would be necessary when determining the delays needed
for forming an image at these points—see Chaps. 12 and 13) the use of Ferrari’s
method is approximately 1.9 times faster than the use of roots, and 15.1 times faster
than the use of fzero.

Once x,, is found, then the angles (6,,,0,,,) are given by

Im>

X,
9, =tan | ==
D['ﬂ

D_ —x
ezm — tan—l xm xlm
D, (5.21)
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and the propagation time in going from Pto F, ¢, is
' 2 2 2 2
X; +D D +(Dxm _xim)
t’};F — im m + / ) (522)
G G

If we subtract these propagation times from every path going from P to F, then the
waves for all these paths (and all the elements) will arrive at point F' at the same
time, i.e. we will have steered the array at an angle 8,, and focused it at point F.
However, this would correspond to applying time advances A¢, = —t" . As in the
single medium case we can simply add a constant value to these delays that makes
all the Az, values positive and we do have a realizable beam steering/focal law
time delay, Az, given by

A=) = (5.23)

m m

The MATLAB® function delay laws2D _int given in Code Listing C.19 implements
the delay law for steering, Eq. (5.14) and for steering and focusing, Eq. (5.23),
through a plane interface. The calling sequence for this function is:

>>td=delay laws2D int(M, s, angt, ang20, DTO, DF, cl, c2, plt);

where td is the delay times for the elements (in pus), M is the number of elements,
s is the pitch of the array (in mm), angt is the angle g (in degrees), ang20 is the
specified refracted angle, 6,,, for the central ray (in degrees), DTO is the height
of the center of the array above the interface, D,, (in mm), DF is the depth to
the focal point in the second medium, D/, (in mm) and (cl, c2) are the wave
speeds of the incident and refracted media, (c,,c,), (in m/s). The final argument,
plt, is a string used to optionally plot ray paths for the parameters chosen, where
plt="y’ or ‘n’ for plot generation or not, respectively. Both DT0 and DF must be
specified as positive numbers while angt and ang20 can individually be positive
or negative. Figure 5.5a~d show the array parameters for various choices of ¢

and @, . For both § and 6, positive angles are measured in a counterclockwise
sense. Also note that when ¢ is positive the first element of the array (m=1) is
nearest element to the interface, but it is the farthest element when g is nega-
tive. If one does not want this change to happen, then one can simply re-order the
time delays. Figure 5.6a, b show the ray paths and time delays, respectively, for a
16 element array with § =5°, 6,) =60°, D,; =D, =10 mm, and ¢, =1480 m/s,
¢, = 5900 m/s. In contrast, Fig. 5.7a, b changes (6,,6,,) to (=5, —60) degrees,
respectively, with all other parameters remaining the same. It can be seen that the
delay law in Fig. 5.7 is “flipped” from that of Fig. 5.6 because of the ordering of
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m=M

d

Fig. 5.5 The array parameters for the cases where: a the angles (), ,,) are both positive, b the
angle @ is positive but @, is negative, ¢ the angles (6 ,6,,) are both negative, and d the angle
6, is negative but @, is positive
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Fig. 5.6 a The ray paths for an array with M=16 elements, s=0.5 mm, angt=5°, ang20=60°,
DTO=10 mm, Df=10 mm, c1=1480 m/s, c2=5900 m/s, b the corresponding time delays, mea-

sured in ps
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Fig. 5.7 a The ray paths for an array with M=16 elements, s=0.5 mm, angt=—5°, ang20=-60°,
DTO=10 mm, Df=10 mm, c1=1480 m/s, c2=5900 m/s, b the corresponding time delays, mea-
sured in ps
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Fig. 5.8 a The ray paths for an array with M=16 elements, s=0.5 mm, angt=—>5°, ang20=—60°,
DTO=10 mm, DF=10 mm, c1=1480 m/s, c2=5900 m/s, b the corresponding time delays, mea-
sured in ps. The order of the elements has been changed so that the first element is nearest to the
interface, giving the same delay law as seen in Fig. 5.6

the elements. This ordering can be easily changed in MATLAB®™ with the built-in
function fliplr:

>>tdf="fliplr(td);

which results in the time delay law of Fig. 5.8, which is now identical with that of
Fig. 5.6.
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Fig. 5.9 a The ray paths for pure steering of an array with M=16 elements, s=0.5 mm, angt=>5°,
ang20=60°, DTO=10 mm, DF=inf, c1=1480 m/s, c2=5900 m/s, b the corresponding time
delays, measured in pus
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Fig. 5.10 a The ray paths for pure focusing of an array with M= 16 elements, s=0.5 mm, angt=0°,
ang20=0°, DTO=10 mm, DF=10 mm, c1=1480 m/s, c2=5900 m/s, b the corresponding time
delays, measured in ps

Figures 5.9 and 5.10 show the rays and delays for several other cases. Figure 5.9
considers the case of pure steering for a 16 element array with g =5°, 8,, =60°,
D,,=10mm, D, =inf, and ¢, =1480 m/s, ¢, = 5900 m/s. Figure 5.10 shows a
pure focusing case where the 16 element array is at normal incidence, i.e. § =0°,

6,, =0°,and where D, =10 mm, D, =10 mm, and ¢, = 1480 m/s, ¢, = 5900 m/s.
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Chapter 6
Acoustic Field of a 2-D Array Element

In previous chapters we considered 1-D elements radiating two dimensional waves
into a fluid as this simple configuration can explain many of the fundamental is-
sues associated with arrays such as grating lobes, steering and focusing, etc. In this
chapter we will develop models that describe the radiation of a 2-D array element in
three dimensions. This is a more practical configuration that can be used to directly
model the radiation characteristics of the linear and 2-D matrix arrays often used in
practice. We will employ many of the same methods and models used in Chap. 2,
where now they will be implemented for fully 3-D problems. As done earlier, we
will describe radiation in both a single medium and through a planar interface.

6.1 Single Element Transducer Models (3-D)

The basic setup we will use to describe a single element of an array is shown in
Fig. 6.1. As done in Chap. 2, we will treat the element as a velocity source located
on the plane z=0 where now a normal velocity, v, (x,y,t), is generated over finite
area, S, of the plane and the velocity over the remainder of the plane is assumed
to be zero (rigid baffle model). The element will radiate waves into a fluid which
occupies the half space z=0. Following the same steps used in Chap. 2, from
the equations of motion and constitutive equation one can show that the pressure,
p(x,y,z,t), in the fluid will satisfy the 3-D wave equation [Schmerr]
2 2 2 2

Op Op 9dp 10p_, 6.1)

o’ 9yt 97 or

where the wave speed is given by Eq. (2.4). We will again typically model wave
propagation for these three dimensional problems in the frequency domain. Taking
the Fourier transform on time of Eq. (6.1) gives the three dimensional Helmholtz
equation
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Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2 6,
© Springer International Publishing Switzerland 2015
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Fig. 6.1 Model of an ele-
ment as a velocity source in
an infinite, motionless rigid
baffle radiating into a fluid
occupying the region Z = 0, ‘
where the specific velocity
distribution shown is spatially , ‘:/

uniform over the face of the

element (piston model) v.=v (@)

L,/',\ rigid (v. :0)

baffle

¥p Fp Ip o .
PRI ©2

for p(x,y,z, @), where consistent with Chap. 2 we define the forward and inverse
Fourier transforms on time here as:

px.y.z,0) = [ pr.y.z.nexplionds
17

PO y.zn =2~ [ B(x.y.z. ) exp(-iwt)do. (6.3)
n.—oq

Once again, since our 3-D models will primarily be described in the frequency
domain we will drop the tilde on the Fourier transformed pressure (and the Fourier
transform of other variables such as the velocity) and simply express that transform
as p(x,y,z, @).

The 3-D Helmbholtz equation has wave solutions given as

p = exp(ik x +ik y+ik_z), (6.4)

with

-k -k K+ <k
k. = L (6.5)

i /k_f+k_f,—k2 k} +k; >k

and k = @/ c. For k! +k. <k Eq. (6.4) represents harmonic plane waves travel-
ing with a positive z-component, k_ = kcos 8, and with components (k,,k,) coor-
dinates k, = kcos¢@sin@, k, = ksin ¢sin 8 (in spherical coordinates—see Fig. 6.2).
For k> + kf > k* Eq. (6.4) represents an inhomogeneous wave which decays expo-
nentially in the z-direction. To form a more general solution of Helmholtz’s equa-
tion we can consider a superposition of these plane and inhomogeneous waves in
the form
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Fig. 6.2 Description of the
wave number vector, K, in
spherical coordinates

p(x,0) = ( Jz TTP(k &, yexp[i(k,x+k,y+k.z) |dk,dk,. (6.6)

with X = (X, y,z). Equation (6.6) is a 3-D angular plane wave spectrum representa-
tion analogous to Eq. (2.10). It can be seen from Eq. (6.6) that the amplitude term
P(k,,k,) is a two dimensional spatial Fourier transform of the pressure on the
plane z =0 since we have the transform pair:

2 4oo 4oo

p(x,,0,0)= ( ) | j P(k, k,)exp(ik x+ik, y)dk,dk,

Plk,.k,) = | [ p(x.7,0,@)exp(~ik x — ik, y)dxdy. (6.7)

—c0 —oo

To obtain the z-component of the velocity on the plane z =0 (see Eq. 2.15), since

1 dp(x,y,z, ®)
iwp 0z

v, (x,,0, ) = — (6.8)

B
z=0

we have

v (x z=0w)=(i)zTTMex [iCkx+k,y)|dk dk,  (6.9)
z 9y9 > 2” JJ wp p X yy X y N

and if we let
k Pk, k)
ol

(6.10)
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we have

2 oo 4oo

v, (x,y,z=0,w) = ( ) J jV(k k,)exp z(k x+k y)]dk dk,.  (6.11)

We recognize V(k,,k,) as the two dimensional spatial Fourier transform of the
velocity, v_, on the plane z=0, i.e.

Vikok)= [ [v.(x.9.0, @)exp(=ik x — ik, y)dxdy. (6.12)

—oc0 —o0

Since we wish to write the pressure in the fluid in terms of this velocity, from
Egs. (6.6) and (6.10) we have

p(x,) = ( )ZTT/M)V( 2Ly exp[i(kxx+kyy+ikzz)]dkxdky. (6.13)

We can now use the convolution theorem [Schmerr] for two dimensional Fourier
transforms to turn Eq. (6.13) into a more explicit relationship between the pressure
and the velocity on the plane z=0. The convolution theorem states that if a func-

tion f(x,y) can be expressed as the inverse 2-D Fourier transform of a product of
transforms, H(k,,k,) and G(k k), i.e.

f(x,y)= ( ) TTH(JQ,ky)G(kx,ky)exp[z(k x+k,y)|dkdk,, (6.14)

then f(x,y) is also equal to the 2-D convolution of the functions #4(x,y) and
g(x,y) given as:

+oo +o0

Sy = [ [hey)gle=x,y=y)dvdy, (6.15)

—oc0 —o0

where A(x, y) is the inverse Fourier transform of H(k k) and g(x,y) is the in-
verse Fourier transform of G(k,,k,). We can use this theorem directly for Eq. (6.13)
if we let

Hk,,k,) = —iapV (k,,k,)
expik_z]

Glk, k) =—

(6.16)
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Since V(k,,k,) is the Fourier transform of v_(x, y,0, @) it follows that here
h(an) = _iwpvz(xsysos (0) (617)

The transform G(k,,k,) canbe identified as the transform of a spherical wave from
the Weyl representation [1]

exp(ik X+ +zt )

Jiiyiez (2”)2 TT[eXp k.2 }exp(ikxxﬂky v)dk,dk,
X +y +z e e

(6.18)
so that the convolution theorem gives the pressure in the fluid as
+oo oo T
p(x, w)——Jjw )e"p(’ ) av'dy, (6.19)
where
r= \/(x—x')2 +(y=y)+2. (6.20)

Equation (6.19) is a Rayleigh-Sommerfeld integral representation of the pressure
wave field of an element in terms of an integral superposition of spherical waves
over the plane z=0 [Schmerr]. When the velocity field is a spatial constant, v, (@),
over the surface, S, of an element, then we find the Rayleigh-Sommerfeld form for
a piston transducer:

6.21)

X, @) =
p(X, ) Y=

6.2 Far Field Waves

When the distance from the element to the point in the fluid where the pressure is
being calculated is sufficiently large, the distance, r, can be approximated to first
order as (see Fig. 6.3):

r= \/”02 +x'x"=2x"7,u (6.22)

- ’
=r-x"u,
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Fig. 6.3 Geometry for
obtaining the far field behav-
ior of an element

where x”=(x’,y”,0) and u is a unit vector from the centroid of the element to the
point (x, y,z) in the fluid. If we keep only the first term in Eq. (6.22) for the 1/7
amplitude part in Eq. (6.19) and both terms in the phase k7, we obtain

) kl” +oo oo
—iap exp(iky) [ [y y.0, @)exp(=ik,x’ — ik, y")dx'dy",

p(x, 0) = S
2 n Ll (6.23)

where k, =ku , k, =ku, . Butfrom Eq. (6.12) we recognize the integral as just
the 2-D Fourier transform of the normal velocity on the plane z=0, so the far field

pressure is given by

exp(ikr; )

px, &)= —Ly(k k) (6.24)
27 ’

N

For a rectangular piston element of length / in the x-direction and length /, in the
y-direction

+1,/2+1,/2
V(k,k,)=v,(@) j j exp(—ik,x’ — ik, y")dx'dy’
=1,12-1,12
. . 6.25)
2)sin(k,/ /2 (
-~ sin(k 1_/2) sin(k [, /2)
Yokl /2 ki, /2
so the far field pressure is
i in(k [l /2 i
pxw)=L 0(60)( 1) sin(k,/, /2) sin(k,[, /2) exp(ikry) (6.26)

k112 (k172 7

In terms of spherical coordinates (6, ¢) we have k =ku, =kcosgsin,
k, = ku, = ksin ¢sin 6. In those coordinates we can write Eq. (6.26) as

(=iki 1,)D, (6, ¢) L0 exp(ikry) (6.27)

%

p(x, )= X0 (@D 0( @)
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Fig. 6.4 Parameters for eval- xx
uating the Rayleigh—Som-
merfeld model of an element
radiating into a fluid

LA

which represents a spherically spreading wave from the element with a directivity,
D, (6, 9), given by

sin(kl_ cos ¢sin 6/ 2) sin(kl sin ¢sin 6/ 2)
K cosgsin/2 Kkl singsing/2 (6.28)

Dl(a ¢):

6.3 Numerical Point Source Piston Model

To evaluate the Rayleigh-Sommerfeld model of Eq. (6.21) numerically we can
break a rectangular element of length / in the x-direction and length /, in the
y-direction into P equal length segments along the x-axis and Q equal length seg-
ments along the y-axis (see Fig. 6.4). The lengths of these segments, therefore, will
be Ad =I /P in the x-direction and Ad =1[ /Q in the y-direction. In this
case, the coordinates of the centroid (x;, y;) of the pgth rectangular segment can
be defined as

c lx 1
xl’:_3+ Adx(p_z) (p:L)P)
l 1 (6.29)
y;:—é-‘r Ad}(q—z) (q=2aaQ)

A unit vector, u”, is defined to be along the axis from this centroid X, = (x; 2 Vs 0)
to a point x=(x,y,z) in the fluid (Fig. 6.4). If we let an arbitrary point in this
rectangular segment be x” = (x”,y”,0) then the distance, r, from x” to x is given by

_ - P4N (v _x’ rq
r—\/(qu x'+r,u )(qu x'+r,u )

¢
Pq

x' —x

_ 2 e Pq
—\/rpq+2(qu x')yr, u’ +

- "\ P4
:rpq-i—(qu x)u

(6.30)
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since we will also assume the segment dimensions Ad, and Ad are small relative
to the distance, 7, at which we will want to evaluate the pressure wave field. In
this approximation Eq. (6.21) can then be written as a sum given by

p(x,0) = m)pvo(a)) ii exp(lkr ) J' eXp[ik(qu —X')'upq]dS, (6.31)

=1 g=

q Spq

where the integral is over the area of the segment, S, . Ifwelet x"—x, =s,y" -y, =t
then Eq. (6.31) becomes

+Ad,/2+Ad, /2
px,0) = la)pvo(a)) i i expUikT,,) j J exp(—iksuf" )exp (—iktuf")dsdt.
1

p=1g= pq —Ad /2-Ad,/2

(6.32)

But, integrals of similar form have been done before (see Eq. 6.25 for example) so
we obtain

sin(ku? Ad _ /2) sin(ku;’Ad | 2) exp(ikr,, )
ku?Ad_/2 ku'Ad /2 r

p=1 g=1 x x y Pq
(6.33)
If we compare this result with Eq. (6.26) we see the product of the sinc function
terms in Eq. (6.33) is just the far field directivity for each segment of the element.
These directivities multiply a spherically spreading wave from the centroid of each
segment. A similar form for 2-D problems (see Eq. (2.59)) involved a directivity
and a cylindrically spreading wave. We called that model a multiple line source
model. Since the spherical wave term in Eq. (6.33) represents waves from a point
source, the 3-D model obtained in Eq. (6.33) will be similarly called a multiple point
source model. In this model the centroid terms (X, y;) are given by Eq. (6.29), the

distance, r,,, is simply

P(x, ) = p%ﬁ“’)ii (=ikAd Ad,)

Tha = \/(x‘xf:)z +(r-y )2 +2° (6.34)

u? = , ut?= . (6.35)

As in our discussion of the multiple line source model, there is a minimum number
of segments needed to avoid grating lobes and aliasing. In the 3-D case for a rect-
angular element we must keep Ad, <A, Ad <A, where j is the wavelength. We
can do this by choosing
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P ceil(loofﬂxJ € > /D’
1 ()
6.36
Ceil(looo ﬂy) 0 >4 (6.36)
Q = b
1 (,<2

where f'is in MHz, (/,,/,) in mm, and ¢ is in m/s.

Equation (6.33) has been implemented in the 3-D point source MATLAB® func-
tion ps_3Dv (Code Listing C.20) where the centroid of the element is assumed to
have offsets (e,,e,) inthe (x,y) directions, respectively. The calling sequence for
this function is

p=ps_3Dv(Ix, ly, f, c, ex, ey, X, y, z, Popt, Qopt);

where (Ix, ly) are the lengths of the elements in the x- and y-directions (in mm), f is
the frequency (in MHz), c is the wave speed (in m/s), (ex, ey) are the offsets of the
center of the element from the center of the array (in mm), (X, y, z) are the coordi-
nates of the point at which the normalized pressure, p/ pcv,, is to be calculated.
P and Q are optional input parameters discussed below.
The form of Eq. (6.33) used in this function is still the same, but in this case
Eqgs. (6.34) and (6.35) are changed to include the offsets:

Ty = \/(x—x; -e) +(r-y, —ey)2 +z°

e e (6.37)
b XX, —e I e
ufl =————, u=————
r[’q qu

In implementing the criteria of Eq. (6.36) for determining the number of element
segments in the function ps_3Dv the frequency, f, is assumed to be a scalar so that
to synthesize the spectrum of a pulse with this function one must call the function
for each frequency component in the spectrum. At high frequencies, these P and
O values may be prohibitively large so one must be careful to evaluate the fields
only over the bandwidth of the transducer when implementing the function in this
manner. The function, however, also has a pair of optional arguments, Popt’ Qopt’
that allows the user to specify the number of segments directly regardless of the fre-
quency. When calling the function with these optional arguments, the frequency, f,
can be vector. The choice P =10,=1 is the simple case of a single point source
model, where the pressure is given by Eq. (6.27).

To show a fairly stringent test of the use of ps 3Dv, consider the case of a
large single element where / =6 mm, /, =12mm, f=5MHz, c¢=1480m/s,
e.=e, =0, x=y=0, z=linspace(5, 100 500), and P QOpt are not specified.

Flgure 6.5 compares a plot of this case with the case Where e = 203, O, =406
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Fig. 6.5 The on-axis pres- 16
sure variation for a 6 x 12 mm

rectangular element radiating 15
into water (¢=1480 m/s) 14
at 5 MHz. Solid line—one

segment per wavelength (Popt 13

and Q__ are not specified), p |12
dashea;’line—P0 =203, pc_v
0,,=406 (ten segments per ol
wavelength in both direc- 1
tions). There is no discernible
difference between the two 0.9
cases 0.8
0.7 - - - -
0 10 20 30 40 50 60 70 80 90 100
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Fig. 6.6 Model of an array X 4
element in contact with an ,/’ X
elastic solid as a uniform L :
pressure distribution on an - i
otherwise stress-free surface o !
1 :
B
; i
Y ' L
i < p=py (@)
i -
i free
v

which corresponds to choosing ten segments per wavelength in both dimensions to
represent this element. It can be seen that there is no visible difference between the
two cases even in the near field of the element.

6.4 Contact Transducer Element Modeling

If an array is used in contact testing, the array element is in direct contact with a
solid, with a thin layer of fluid couplant between the element and the solid. In this
case, a more appropriate model for the boundary conditions is to assume that the
element exerts a pressure distribution (usually assumed to be uniform) over the
face of the element on an otherwise stress-free surface (Fig. 6.6). This pressure
distribution generates a number of waves, including bulk P-waves and S-waves,
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Fig. 6.7 Parameters for the
modeling a contact element
radiating into a solid

Head waves, and Rayleigh surface waves [Schmerr]. At high frequencies the bulk
P-waves, which are generally the waves used most often in contact inspections, can
also be modeled in the form of a Rayleigh-Sommerfeld type of integral [Schmerr]
where the velocity, v(x, @), in a solid due to a uniform pressure, p,(@) over a sur-
face area, S, is given by

—ik 0] ik
vx @) = PO [ g SPELID 4 (6.38)
2rpc, " ’ r

pl
where K ,(0”) is a directivity function given by

cos @’k *(x*/ 2 —sin* 8)
2G(sin 6”)

K,(6)= (6.39)

Here @ is an angle measured from the element normal, as shown in Fig. 6.7 and

G(x)= (x> =k /2 + x> 1 - x> K = x°, (6.40)

where k=c, /c, is the ratio of the compressional and shear wave speeds in the
solid. The unit vector d’, is the polarization vector along a ray from an arbitrary
point X" on the element face to a point X in the solid.

In the far field of the element one can approximate the integrand in exactly the
same manner as done for the fluid case so we will omit the intermediate steps and
simply write the result for a rectangular element as:

—ik  p,(®) exp(ik ,n)
LK’] (6)L.1,D,(6,¢)d, —

lcp] 0

v(X, 0) = (6.41)
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Fig. 6.8 Geometry for the

radiation of waves from

an array element through a
plane, liquid-solid interface

where the angle @, the polarization d ,, and the distance 7, are all measured rela-
tive to a ray from the centroid of the element to the point x, as shown in Fig. 6.7.
The directivity function D, (6, ¢) is given by Eq. (6.28). Aside from the extra direc-
tivity function, K,(6), and the polarization vector, d,, Eq. (6.41) is of very similar
form to Eq. (6.27) for the fluid case. Equation (6.41) gives us a single point source
model for a contact element radiating P-waves into a solid.

6.5 Radiation Through a Planar Interface

Many NDE applications of phased arrays involve either immersion testing or angle
beam testing where the array sits on a solid wedge in contact with the material to
be examined. In both these cases the waves must travel through an interface. In
this section we will develop beam models for an array radiating through a planar
interface. These models will be 3-D models equivalent to the 2-D cases considered
in Chap. 2.

Consider first the case of an immersion setup where an element in a fluid radiates
waves across a planar interface into an elastic solid, as shown in Fig. 6.8. In Chap. 2
we showed that for 2-D waves we could use ray theory to develop a beam model
for the transmitted waves. In this section we will follow the same approach for the
3-D case. [For a very complete description of ray theory for both scalar and elastic
wave problems, see the book by Cerveny [2] on seismic ray theory.] If we model the
pressure waves incident on the interface through the Rayleigh-Sommerfeld equa-
tion for a piston source, a small segment of the element of area dx’dy” will act as a
point source and produce an incident pressure, p,(x,, @), at the interface given by
(see Eq. 6.21):
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—i wp,v, (@) exp(ik 1) &
2r n

P(x;, 0) = ‘dy”. (6.42)

The velocity in this incident wave, from the equation of motion of the fluid, is given
as

Vp,, (6.43)

but at high frequencies the gradient of the pressure is primarily due to the derivative
of the complex exponential phase term in Eq. (6.42) so that we have

=ik v, (@) exp(ik ;)

v, (x;, ®) = Vrdx'dy’ (6.44)

2r n
or, equivalently,

_ikprO (@) exp(ikplri ) d
2r n

vi(x,, 0) = adx'dy’, (6.45)

since the polarization vector of these pressure waves is just d , = V7. This incident
wave at high frequencies will produce transmitted waves at the interface of type
B(B= p,s) whose velocity, v, (x,, ), is

_ikplvo (@) eXp(ikplrl )
2r r

1

v, (X, W) = T/7d 5,dx’dy’, (6.46)

where T_ff;" is the plane wave transmission coefficient (based on velocity ratios)
for a transmitted wave of type S due the incident P-wave for a plane fluid-solid
interface and d g, is a unit vector describing the polarization of a wave of type B
traveling in the solid.

According to ray theory, the pressure at x from a small “point” source at x’
can be determined by following a bundle of rays on a Snell’s law path from x” to
X. However, this bundle spreads differently in the plane of incidence (POI) and
outside that plane, as shown in Fig. 6.9a and b, respectively. In the POI a bundle of
waves appear to originate from a virtual point source located at a distance pf from
point x, along the refracted ray. Outside the POI the bundle appears to originate at
a distance pV’; instead. Following the same steps shown in Appendix B it is easy
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a

Fig. 6.9 a Spreading of a bundle of rays in the plane of incidence (POI), and b spreading of a
bundle of rays outside the POI

to calculate these distances from the geometry and Snell’s law, so we will just state
the result here, namely

2
e ¢, cos” by,
vi 2 0 I’i
Cyy COS™ O,
6.47
o (647)
vo rl
Cpa

In propagating from x; to x, the velocity at x according to ray theory is just

PP

v, (X, @) = v, (x;, ) exp(ik 1) (6.48)
JL Dol + 1P
So, from Egs. (6.46) and (6.47),
—ik v, (@) exp(ik r +ik ,r)
R A PGk, 73+ ik 1) o

2r 2
Cc, COS™ 6 c
(,,l+ﬁzzp'rzﬂ)[,,l+ﬁ2rzﬂ}
¢, cos” Oy C,

(6.49)
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Summing up these velocities over the entire element face we then find the total
velocity in the solid, v(x, @), is

—ikpl"o(w)'[ exp(ik 7, +ikﬁ2rzﬂ) TArd  dv'dy’
i T ’

2z ¢y, cos’ 6 c '
S\/{VI 422 Vzﬁj[ﬁ +/}2rf}
¢, cos” Oy C, 6.50)

As in the 2-D case, here the distances (7,%”) and angles (6,,,0;) need to be
determined by finding the Snell’s law path from X’ to X . Again, this path is deter-
mined once the point on the interface, X;, along the ray is found. In Chap. 8, as part
of the process of determining the time delay laws for steering and focusing an array
through as plane interface, this interface location is determined from Snell’s law
following the same approach used previously in 2-D models. We will discuss more
explicitly how x; is found later in this section.

The plane wave transmission coefficients (based on velocity ratios) for a fluid-
solid interface used in Eq. (6.50) are [Schmerr-Song]

B 2cos 8, [1 —2(sinb,, )2]

TP
# PaCpr
cos@ , + cosd A
P2 c P11
pl pl (6 5 1)
 —4cos  cosb ,sinb, ’
T;,p = P p S ,
PaCpr
cos@ , + cosd A
2 c P15
pl pl

where

2
A = 4[C;2J sin 6, cos 6, sin 6, cos 6, +1—4(sin 6, cos §,,)* | (6.52)
c

and the angles (6,,,6,,,0,,) are all related through Snell’s law, i.e.

sin le B sin sz _ sin 9:2 ' (6.53)
C

c c

pl p2 52

In the case of angle beam testing with an array placed on a solid wedge, we can de-
velop a very similar model for the transmitted waves since the array generates pri-
marily P-waves in the wedge and the geometry is as shown in Fig. 6.10. For a small
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Fig. 6.10 Geometry for

the radiation of waves in an
angle beam setup where an
array element sits on a solid
wedge in smooth contact with
an adjacent solid

segment area dx’dy’ of the element in contact with the wedge then the incident
velocity field in the wedge at point x, on the interface is given by (see Eq. 6.38)

—ik w exp(ik .,
zp—lp()( Lk, (0, S gy (654
7p,c I

1€p1 1

Vi (Xi ,0) =
and the velocity field of the transmitted wave in the adjacent solid at the interface
point x, is

_ikplpo(a))
27p,c

v, (X, ) = K,(6"d,, T/rdx’dy’, (6.55)

pl 1

where T”7 is the plane wave transmission coefficient (based on velocity ratios)
for two elastic solids in smooth contact [Schmerr-Song], which is appropriate since
in angle beam testing a thin fluid couplant layer exists between the wedge and the
underlying solid.

The same ray expressions used in the fluid-solid case to obtain the total field
from the element apply here also, so the velocity at point X generated from the
velocity field of Eq. (6.55) at the interface is

_ikplp()(w) exp(ikplrl + ikﬁzrzﬂ)
27p,c 2
Pl s cy COS™ 6 c
e | IR
¢, cos” b, c

Here, the plane wave transmission coefficients are given by

v(X,) = K, (0)TF7d 5dx"dy".

(6.56)
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Fig. 6.11 Geometry for cal- x'
culating the phase term in the
far field of an element

_ 2cos6,, [1-2(sin@,,)" |[1-2(sin®,)’ ]

T[’U’
i cosf A, + Palypa cos6,A,
P (6.57)
— —4cos@, cosf ,sinb,, [1 —2(sin Ql)z] ,
. cosé,,A, + Pzzpz cosf, A
1€ p1

where A, is again given by Eq. (6.52) and

2
A, = 4[ Ca J sin 6, cos 6, sin 6, cos 6, +1—4(sin 6, cos 0, | (6.58)

Cpa

Snell’s law is again satisfied for all the angles appearing in Eq. (6.57), i.e.

sin 61,1 _ sin (9sl _ sin 91,2 _ sin ﬁsz

Cc

(6.59)

c C c

pl s1 p2 52
It is easy to see that these transmission coefficients reduce to those of the fluid-solid
interface by setting sin 8, =0 in Eq. (6.57).

When we are in the far field of an element we can approximate the phase term

k, 1, +kgry to first order about a ray that travels to x from the centroid C of the
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element and approximate all other amplitude terms to zeroth order about that central
ray. From the geometry of Fig. 6.11 we have

kplri + kﬁzrzﬁ = kpl\/(’”melo +x, =X)(Rpe,, +X, —X')
+kﬂ2 \/(rz’gezo —X; )'(rzgezo - XI)
~ 2 ’ 2
= k20, (X, —X') + k()7 —2e,°x,

= kplrlo + kﬂzrzﬂo - kpl(el().x,) + [kpl (e t)— kpZ (ezo't)]x1 s

(6.60)

where we have written X, = x,t with t being a unit vector in the plane of the inter-
face. But the term in the square brackets in Eq. (6.60) vanishes because it is just a
statement of Snell’s law, so we have

ki + kgl = kyrig + kgyr — k(€ X0). (6.61)

Placing this approximation in the immersion case, Eq. (6.50), we find

—ik v,(@w exp(ik 1, +ik 1’ S
V(x, ) = pl o (@) p( pl_l() p2120 T/f;pdﬂz
2z ¢p €086, 4 Cn s
Rot———== "o || et = T
¢, cos” 6y, C,
J exp [—ikplem- x’]dx’dy'. (6.62)
N

Similarly, the contact case, Eq. (6.56) becomes

_' . . ﬁ
V(X, a)) = M[( (E)fﬁ,pa exp(lkplri() + lkﬁzrzo
27p,c 4 s Up =
PiCp1 Cpp €OS™ 0, 5 s
Tot—— 32 Mo ||t T
€,y €OS™ O C,
Jexo[ik, e x) Jax'dy, (6.63)

S

where the bar over the various parameters indicates that they are calculated along
the central ray from the centroid of the element to point x.
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We have calculated the integrals in Egs. (6.62) and (6.63) before (see Eq. 6.23)
where we obtained the directivity function of the element, so using those results
here we find

B —ikplvo (a))lxly Frg Sin(kplux,lx /2) Sin(kpluy,ly /2)
VoL @) =—", ST ka2
T plux' x pluy' y
exp(ikplrlo + ikﬂzrzﬁ) (6.64)

=
c,, COS™ 6 c
B2 rl B B2 B
riO + 2 5 rZO riO + r20
¢, cos” b, €

for the immersion case, and

—ik w)l ! S
v(x,0)= %“K,,wmf;”dm

1~ pl

sin(k,ul./2)sin(k,u,l, /2)
kul, /2 ku,l, /2

X"y

exp(ik,,r, + ikﬂzrfo)
=
cy, COS™ 6 c
B2 pl B B2 p
Hot 29 o || ot Iy
¢, cos’ 6, C,

for the contact case, where €, =u = (u,,u ,u_).

We can use these results to also develop a numerical point source model for an
element radiating through a planar fluid-solid interface by breaking the element up
into R segments along the x” -axis and O segments along the y’ -axis. Then for the
immersion case we have

(6.65)

—ik vy (@)Ad Ad, & L sin(k,u'Ad, /2)

v(x,0) = —2 S Thr @y, —2

(%) 2 z;qz: 5 (67 kutAd, 12
sin(k,u/!Ad | /2) exp(ik,, " +iky,r{" ) (6.66)

>

k u”/IAd /2 2 prq
1%y y . Cg cOS” O, : c »
ri'q +£ 2_1 rzﬁv"i rqu +£rzﬁx"l
¢, cos 6" c
pl 2

pl
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a

Fig. 6.12 a Geometry for the calculation of the fields from the segment of an array element as
determined from a Snell’s law ray path traveling across a planar interface, and b a side view of
the setup

and for the contact case

ik, p (@A Ad, & & —  _ __ sin(k,uAd, /2)
N 10 LR MU R v
ﬂplcpl r=1 g=1 plux’ X
sin(k,u/!Ad, /2) exp ik, " + ik,

>

k uiAd /2 2 prq
1ty 2%y Cpz CcOS™ 6O, ' c '
(,,qu + P 1 rﬁ,qu(rqu + P rzﬁ.rq]

Z_rq 2
¢, Cos 0, )1

(6.67)

where now the bar over the various parameters indicates that they are calculated
along a ray from the centroid of a segment to point x.

To implement these beam models using the geometry of Fig. 6.12, we need to
first calculate the distance between points R and Q, D, given by

D= \/ [x—(e, +x)cos6, | +[y—(e, + v (6.68)
and the distance, D_, where

D, =D, +(e, +x"")sin 6,. (6.69)
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[Note that x’" is in reality a function of 7 only and ¥/ is a function of ¢ only, but

we have used both superscripts in these parameters to emphasize they are calculated
for all the segments present in the element. Both D and D, are also functions of
both r and ¢ but for economy of notation we will not exphcltly indicate those de-
pendencies. ]

From these distances and knowledge of the point of intersection of the ray with
the interface in terms of the distance X, we can then calculate the incident and
refracted angles, i.e.

7 — D—x"
8" = tan~ [x—) 6 =tan1[ il J (6.70)
D

z

K

which are always well-behaved since we must have D, >0 to make sure the array
segment is always above the interface and we will only evaluate rays in the second
medium at points where z > 0. Finding the distance % is similar to the 2-D case

discussed in Chaps. 2 and 5. We can also evaluate the ray path lengths:

" =Dl 6.71)
= J(D-x) 42

and the segment lengths are simply Ad, =/ /R,Ad, =1/0. To get the compo-
nents of u along the (x’,y”,z") axes, we can first locate the interface point, x,, in
terms of the points X, and X, as

~rq

X, :?(XQ_XR)_FXR. (672)
Butin (x,y,z) coordinates we have
X, = (e, +x/")cos Gi+ (e, + /)] (6.73)

X, = xi+yj,

where (i, j,k) are unit vectors along the (x, y,z) axes, respectively so that we have

=rq ~rq ~rq ~rq
X, = [xDx (1 —%J(e +x’"’)cos QT]i +[ny (1 —%)(e +y ):|] (6.74)
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Then, since u = (x, —x,)/#", where
x, = (e, +x/")cos Gi+(e, +y.")j— (6.75)

we find

[x (e, +x")cos 0, ]1+[)q [y (e, +y(”’):|J+D° . (6.76)

u=
D

To get the components in the (x’, y’,z") system we first write unit vectors (i’,j’,k”)
along these axes as

’

i’ =cosf,i—sinf k
i =i 6.77)
Kk’ =sing,i+cosdk,

giving
%! cos 6, D sin6,
u, =u'i’—x—[x (e, +x/"")cos 6, ]——,
D 1
X
u,=uij =— —(e., + {rq s
yEui= g [y-(e,+37")] 6.7%)
6, D [
u, =u-k'—&[x (e, +x"")cos 6, ]+&.
Dr” r

Note that it is possible that a ray travels through the interface at normal incidence.
In that case D=0, ¥ =0, D, =r", and

u,=-siné,
u, =0 (6.79)
u,, =cos @,.

To find the polarization vectors (di‘;,d;qz) we first must have the P-wave polar-
ization compatible with the direction assumed when calculating the transmission
coefficient, (T «'7 or T."?). This polarization is normally taken in the direction of

propagation, as shown in Fig. 6.12, so we have d’q (x—x,)/r? with

X = xi+ yj+zk, (6.80)

and the P-wave polarization is
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d),=d,i+d, j+d k= .

1
(1_
rq
2

+r1q[1 i;)[y (e, +37")]i

2

X
5 ][x—(ex, +xc'”’)cost9T]i

' (6.81)

The shear wave polarization, which is also compatible with the direction assumed
in calculating the plane wave transmission coefficient (7;” or 7.;""), for this wave
(see Fig. 6.12), is

— d, xi . d,d,
drq _ d;q _ d2 +d2 _ px py . k,
52 |d’q Xl ry \/dZ +d2 \/dZ +d2 (682)

Py

which is always well-behaved since we will always assume the fields are calcu-
lated for z>0 and hence d,. is never zero. For contact problems we also need to

calculate the transducer directivity K, (6'"). But we have u, =cos 0" so we can
calculate the additional angle needed for this directivity from

0" =cos ™ (u,.). (6.83)

The MATLAB® function ps_3Dint (Code Listing C.23) uses these relations to eval-
uate the normalized velocity wave field of an array element radiating through a
fluid/solid interface. The calling sequence for this function is

[vx, vy, vz]=ps_3Dint(Ix, ly, f, mat, ex, ey, angt, Dt0, x, y, z, Ropt, Qopt);

where (vx, vy, vz) are the velocity components in the second medium divided by
the driving velocity on the face of the element, as measured in the (x, y, z) axes
of Fig. 6.12. The parameters (Ix, ly) are the lengths (in mm), of the rectangular
element in the x’ - and y’ -directions, respectively, and f'is the frequency (in MHz).
The frequency must be a scalar so if one wants to simulate a pulse one must make
multiple calls to the function at different frequencies. The input parameter mat is a
MATLAB® row vector given as mat=[d1, cpl, d2, cp2, cs2, type] where d1 is the
density of the first (fluid) medium in arbitrary units and cpl is its compressional
wave speed (in m/s). Similarly, d2, cp2, cs2, are the density, compressional wave
speed (in m/s), and shear wave speed (in m/s), respectively for the second medium,
and type is a string that specifies the type of refracted wave we are considering,
where type can be ‘p’ or ‘s’ for a P-wave or an S-wave, respectively. The distanc-
es ex and ey are the distances of the element in the x’- and )’ -directions from
the center of the array, (e, e, ) , measured in mm. The variable angt is the angle of
the transducer, 6, , (in degrees) and Dt0 is the vertical distance, D, ,of the center of
the entire array from the interface (in mm). The parameters (x, y,z) are the coordi-
nate locations (in mm) at which the normalized velocity fields are to be evaluated in
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Fig. 6.13 A Snell’s law ray X,
path as seen in the plane of
incidence (see Fig. 6.12) D e
s 0"
n
R - : O
X,
X
< »
b |

the second medium. These variables can be scalars, vectors or 2-D matrices, so that
with one call to ps_3Dint one can produce 2-D data in the x—z, y—z, or x—y planes.
Similarly, with one call to the function one can produce data along the x-, y-, or
z-axes or along a general line in 3-D. To produce fully 3-D data one must evaluate
the velocity fields one plane at a time with multiple calls to the function to cover
the third dimension. The distance, z, must always have a non-zero positive value or
values. The parameters Ropt and Qopt are optional inputs that specify the number
of segments used in the x” and y’ directions, respectively. If one or both of these
parameters are not specified then the number of segments in the direction where
the number of segments is not specified is calculated so that the segment size is no
larger than one wavelength.

The function ps_3Dint uses the function T fluid solid (Code Listing C.29) to
calculate the plane wave transmission coefficients for the waves that propagate
across a plane fluid-solid interface. The calling sequence for this function is

>> [tpp, tps]=T fluid solid(d1, cpl, d2, cp2, cs2, thetal);

where thetal is the angle (in degrees) of the incident waves at the interface and (tpp,
tps) are the transmission coefficients (based on velocity ratios—see Eq. 6.51) for
the P-to-P and P-to-SV wave transmission, respectively.

The function ps_3Dint also uses the function pts 3Dint (Code Listing C.24) to

calculate the distances, 7, at which the rays intersect the interface. The calling
sequence for this function is

> xi=pts_3Dint(ex, ey, xc, yc, angt, Dt0, c1, ¢2, x, y, z);

where xi is the distance X’ (Fig. 6.13), xc is the distance X."’ to the center of
the rqth segment in the x’ direction and yc is the corresponding distance Y. in
the y” direction. Parameters (cl,c2) are the wave speeds for the waves traveling
in the first and second medium, respectively. The remaining parameters are the
same as described for the function ps_3Dint. The function pts_3Dint uses a func-
tion init xi3D (Code Listing C.25) to determine, based on the sizes of the vectors
or matrices present in the (x, y,z) variables, the size of the corresponding vector or
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Fig. 6.14 The magnitude

of the total P-wave veloc-

ity in steel as seen in the x—z
plane for a 6 x 12 mm element
radiating waves at 5 MHz
through a planar water-steel
interface. The parameters
chosen were: ¢, = 1480 m/s, Z, mm
¢,, =5900m/s, ¢, = 3200 m/s,
p,=1.0 gm/cm’,

p, =179 gm/em’, 6, =10.217’,
D,=508mm, e =e =0

Fig. 6.15 The magnitude of

the total S-wave velocity in

steel as seen in the x—z plane

for a 6 x 12 mm element

radiating waves at 5 MHz

through a planar water-steel

interface. The other param-

eters here are the same as in Z, mm
Fig. 6.14

0 5 10 15 20 25 30
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matrix needed to hold the corresponding x/? calculations for each element segment.
The calling sequence for this function is

> [xi, V1, V2]=init_xi3D(x,y, z);

where xi here is a matrix of zeros having V1 rows and V2 columns. The function
pts_3Dint then fills in this matrix of zeros with 7 values by following the same
approach used in Chaps. 5 and 8. Briefly, this approach writes Snell’s law for a ray
in terms of the parameters seen in the plane of incidence (Fig. 6.13) as (see Eq. 8.18)

(D—%")W(E") + D? —(fz/cl)il.""/(ﬁ—)"c[’"’)2+zz o, (684)
D

g(@)=
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Solving for the value X/* at the zero of this g(X/) function then is done with the
MATLAB® function ferrari2 (Code Listing C.5) which was used in Chaps. 5 and 8
to develop the time delay laws for steering and focusing through a planar interface
(for more details see Eq. (5.18) and the following discussion in Chap. 5).

As an example of the use of ps_3Dint, Fig. 6.14 shows an image in the x—z plane
of the magnitude of the velocity at a frequency of 5 MHz in steel for a transmit-
ted P-wave when the center of a 6 X 12 mm rectangular element in water is located
50.8 mm above a planar water/steel interface and the element is oriented at an angle

6, =10.217". According to Snell’s law this element angle will produce a transmit-
ted P-wave at a refracted angle of 45°, which is indeed the angle along which the
transmitted beam seen in Fig. 6.14 propagates. Figure 6.15 shows the corresponding
magnitude of velocity for the refracted shear wave in the steel instead, which ac-
cording to Snell’s law should travel at a refracted angle of 22.5°. It can be seen from
Fig. 6.15 that the main beam does travel in that direction but relatively strong side
lobes are also transmitted into the steel.

6.6 Gaussian Beam Equivalent Point Source Modeling

Point source beam models have been frequently used to describe ultrasonic phased
arrays. As shown in the previous sections, a relatively simple point source beam
model can be developed for radiation through planar interfaces by combining a
Rayleigh/Sommerfeld integral approach with high frequency approximations such
as ray theory. A similar ray theory approach can be used in more complex problems
such as the radiation through curved interfaces by explicitly modeling the behavior
of the waves in the neighborhood of a ray (called pencils) with the paraxial approxi-
mation [3]. Unfortunately, for curved interfaces the interface itself can produce fo-
cusing of the waves, resulting in singularities in the pencil expressions for the wave
amplitudes at points or along lines. One can use more exact uniform high frequency
expansions to eliminate such singularities but this approach results in a much more
complex beam model. Gaussian beam expressions are always non-singular even
when radiating through curved interfaces. This property, plus the fact that a multi-
Gaussian beam model is numerically very efficient makes it the ideal beam model
for modeling large, single element transducers, as discussed in Chap. 3, even where
point source models in conjunction with high frequency ray theory fails. However,
as seen in Chap. 4, multi-Gaussian beam models rely on the paraxial approximation,
an approximation that hinders their use as an effective beam model for modeling
the wide radiation patterns of small elements in an array. The non-paraxial multi-
Gaussian beam model discussed Chap. 4 can remove this restriction but as seen in
that Chapter a non-paraxial multi-Gaussian beam model is less efficient than a point
source beam model for single medium problems. Furthermore, non-paraxial multi-
Gaussian beam models are not readily extendable to radiation through interfaces.
There is an alternate approach that can use Gaussian beams while avoiding the
limitations of the paraxial approximation. The basic idea is to replace a beam model
that uses point sources and ray theory with one that uses Gaussian beams and ray
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Fig. 6.16 Radiation of
pressure waves by an array
element through a spherical
interface between two fluid
media

plane of
incidence

theory. In this section we will show that such a replacement is possible, resulting in
a Gaussian beam equivalent point source (GBEPS) model [4].

To see the basis of the GBEPS model, consider a harmonic spherical wave radi-
ating from a point source in a fluid, where the pressure, p, is given by

p = SXPUk) (6.85)

7

If we take the z-axis to be along a particular direction and let » =/ o° +2z° , where
p is the perpendicular distance from the z-axis, then in the paraxial approximation
near that axis we have, approximately

pP= exp(ikz) exp(ikp2 ) (6.86)
2z

z

Alternatively, if we consider a Gaussian beam propagating along the z-axis, then
[Schmerr-Song]

_ A(=ik / 2B)

. ik o
(z ik 128) PP [—] (6.87)

2z—ik/2B)

where the constants 4 and B define the specific characteristics of the Gaussian
beam. Comparing Egs. (6.86) and (6.87), we see they will be essentially identical if

‘ k
2B
Under these conditions, we see that the propagation characteristics of the spheri-
cal wave and the Gaussian beam are indistinguishable. In the GBEPS model, the
wave field of an array element is first modeled as a superposition of spherical wave
(point source) responses. The spherical waves are then replaced by their Gauss-

ian beam equivalents, satisfying Eq. (6.88), and the well-behaved propagation and
transmission/reflection laws for Gaussian beams are used to model the transducer

<<z, A(-ik/2B)=1. (6.88)
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wave field after interactions with complex geometries. To see how this replace-
ment works, consider the propagation of waves from an element radiating through
a fluid-fluid interface. In order to keep the expressions involved from being too
algebraically complex, we will also assume in this example that the interface is
spherical so that the plane of incidence is always aligned with a principal axis of
the curved spherical interface (Fig. 6.16). In this case, the velocity, v, in the second
medium can be represented by a point source model and high frequency ray theory
(see Eq. (6.49) for the comparable planar interface fluid-solid model) as [Schmerr]

v —ikv, J‘T]zd exp(ik,z, +ik,z,)

ds, 6.89
T Jedes 59

2r

where

=z +

2
¢, cos” 6 z,z, [ ¢, cos @
2 1z +- 2[—2 L—cos 6,

2 2
¢ cos” 6, R ¢

6.90)
o (

G G

Here, v, is the velocity on the surface, S, of the element, k= w/c, (m=1,2) are
the wave numbers for waves traveling in the first and second media, respectively,
with ¢ = the corresponding wave speeds, z, (m=1,2) are the distances traveled
along a Snell’s law ray path from a point on the transducer surface to a point in the
solid where the velocity is to be evaluated, 7, is an ordinary plane wave transmis-
sion coefficient (based on a velocity ratio) along this ray path, and R is the radius of
curvature of the spherical interface. The vector d is the polarization of the compres-
sional wave in the second medium (Fig. 6.16). The problem with this point source
model is readily evident from Eq. (6.90). The terms ¢, or ¢, can become zero
for the case of a focusing spherical interface which occurs if R >0 and ¢, > ¢, or
R <0 and ¢, > ¢, [Schmerr], so that the velocity expressions will become singular
at those points. However, if we replace the spherical waves in the first medium by
an equivalent Gaussian beam, i.e. one that satisfies Eq. (6.88), and use the laws of
propagation and transmission of that Gaussian beam through the spherical interface
[Schmerr-Song], in place of Eq. (6.89) we find

v —ik,v, J‘ledexp(iklz1 +ik,z,) ds
27 5 wiw, 6.91)

where

=(z,—ik/2B)+ z,+
vi=( ) ¢ cos’ 9, ’ R

. 92
(z, —zkk/zza)z2 (cz L 92J (6.92)

c,c08 6 (z,—ik/2B)z, (cz cosg 92J

G

v, :(zl—ik/zB)+c—zzz+
C

1 cl
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Fig. 6.17 The definition of parameters that define the far field directivity of a a rectangular seg-
ment, and b a triangular segment

and now the velocity is always well-behaved everywhere in the second medium.

As done previously with a point source model we can use Eq. (6.91) and break
S up into M segments, AS, and perform the phase integration to first order over
the elements exactly for small polygonal elements (rectangles, triangles). We have
shown this previously for a small rectangular element radiating through a planar
interface, (see Eq. (6.62), for example) and the curvature of the interface in the
present case does not change those first order results [Schmerr]. Thus, in the far
field approximation for a segment the surface integration of Eq. (6.91) in terms of
M segments yields

.k m k m
ve void'"Tlg”D;’ exp(l 2, Tik,z, )

~ \/V\/V (6.93)

in terms of a directivity function, D} (m=1,...,M). For a rectangular segment this
directivity is given as [Schmerr]

L _ ZkAdAd, sin[ & sin @, (e 'L,)/ 2] sin[ & sin 6, (e] 'L,) /2] 6.99)
o ksin@, (e/"L,)/2 ksin@, (e''L,)/2

where, L,,L, are vectors L, =Ad e ,L,=Ad e ,and Ad ,Ad, are the lengths
of the segment in the x- and y-directions, respectively, and e, ,e, are unit vectors
along those same directions. The unit vector e is along the projection of a unit
vector, e”, along a ray path in the first medium onto the x—y plane as shown in
Fig. 6.17a, and @, is the angle of this ray path from the element unit normal, n.
Note that this directivity is slightly different from those defined previously as it
also contains a coefficient (the first term on the right side of Eq. (6.94)) as well as
the sinc functions that appeared in previously defined directivities. Similarly, for a

triangular segment (see Fig. 6.17b) the directivity is [Schmerr]

sin[ &, sin @), (e L) /2]
[ksing, e -L2)/2]

51 (nxe")L”

a2
i 27 sin” @

Dy = exp| —ik, sin 6, (¢]' D) | (6.95)
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where D” is the vector distance from the centroid of the mth segment to the center
of the nth side and L” are vectors along the segment sides. The triangular element
case is also shown here since it is an important building block for modeling seg-
ments of large, single element non-rectangular transducers and could also be used
to model segments of non-rectangular array elements as well.

This example was for a very specific case but Gaussian beams can be used to
model much more general problems. For example, Gaussian beams can be propagat-
ed, transmitted and reflected through multiple media and explicit expressions writ-
ten for the Gaussian beam wave field after these complex interactions. For example,
after beam interactions with P curved interfaces the velocity along the central ray in
the (P+1)th medium, v,,,, of a Gaussian beam can be written as [Schmerr-Song]

pu = AV, Pl ‘ o
v i det[M,,, (0)] |»=r /det[Mp(O)] 3

p=1 cp

where one can write down explicit expressions for the 2x2 M, matrices and the
3x3 T, matrices contain the appropriate plane wave transmission/reflection coeffi-
cients for the given ray path and d, is the polarization in the first medium (at the ar-
ray element). The distances z, are the propagation distances in each medium along
a ray path. The velocity amplitude of the Gaussian beam on the element face is v, .

If we use Eq. (6.96) in our GBEPS modeling approach, then the general form
of the GBEPS model for the velocity v generated by an element with M segments
(with 4=2iB/k) is:

(6.96)

m=M
v=y, 2 ADy

o= det[ M7, (0] [r= " ‘W iwy, -

p=l1 Cp

det[ M, (z7.,)] ﬁT’”d det[ M7 (21)] exp{ p:Pz;’]_

(6.97)

The success of the GBEPS model relies on having constants 4 and B that accurately
simulate the behavior of a spherical wave. To obtain such best-fit A, B values it is
convenient to use Prony’s method [5, 6] because it is a fast and direct method. In
this approach, a Gaussian beam is matched with the spherical wave in the neighbor-
hood of a particular axis, which we will take as the z-axis. Thus, we want to satisfy

exp(ik p2+22) 1
p= =Ad—
(7 +2° 1+2iBz/ k

exp(ikz) exp |:2(Zikl—]'€02/23):| , (6.98)
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where p is the perpendicular distance from the z-axis. We sample these functions
at a known fixed z value and for M values of p, p, , given by p, =m’&, where €
is a constant that controls the spacing of points. Then, Eq. (6.98) at these sampled
values gives

exp(ikdpfn +z° ) 1
= =A € kz)e
P e T+ 2i82 & PR Xp[

which we write as the M sampled values in the form

%} (6.99)
2(z—ik/2B)

p,, = Cexp(mD) (6.100)

with

1
C=d—1 explike),
15208 &SPk

_ ike
2(z—ik/2B)’

(6.101)

Expressing sampled values of a variable in terms of a single best fit complex ex-
ponential with C and D parameters is a special case of the more general fitting of
the samples to multiple complex exponentials with N values of C and D. These
parameters are easily obtained with Prony’s method by solving for the roots of a
polynomial and a system of linear equations [5, 6]. For example, let the frequency
f =5MHz, the distance z=200 mm, and the wave speed (of water) c=1480 m/s
and consider M =4 sampled values of the pressure for p values from 0 to 6.5 mm
(using €=0.637). This range of p values is well within the paraxial region where
the Gaussian beam solution is valid. The values obtained from Prony’s method for
these choices were

A=10.51+9.11i; B=96.67—111.50i, (6.102)

which do satisfy 4 =2iB/ k. At other frequencies it is not necessary to recalculate
these 4 and B values since one can simply use the B obtained here and scale the 4
value appropriately. Note that to satisfy the inequality z >> |k / 2B| , our choice of
parameters gives z >>(0.07mm, approximately, so that this single Gaussian beam
should accurately represent the spherical wave for z-distances of, say, 1 mm or
greater. This can be shown to indeed be the case by simply plotting the exact mag-
nitude of the pressure in a spherical wave versus the radial (z-distance) and compar-
ing it to that of the single Gaussian beam. Thus, except in a very small region near
the origin of the spherical wave, this single Gaussian beam and a spherical wave
for all practical purposes are indistinguishable. The size of the region where the
inequality is violated will of course grow as the frequency increases but generally
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Fig. 6.18 Steering angles for
a an array radiating directly
into a fluid, and b for the case x
where the array is on a solid axis
Lucite wedge radiating into . __4=7 1 ...
steel
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Lucite
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Fig. 6.19 Magnitude of 0.25
the on-axis pressure for a

5 MHz, 8 x4 array radiating
into a fluid where the array is
phased to steer the beam in
the ® =-90",® =20 direc- 0.15
tion and focused at 150 mm. A
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this is not a problem as the frequency content in most ultrasonic NDE signals is
roughly of the order of the 5 MHz value used here to obtain these 4 and B values.
If one wishes to use arrays with significantly higher frequencies (much greater than
20 MHz, for example) one can simply re-compute a new set of 4 and B values suit-
able for those higher frequencies.

The GBEPS model has been examined for a wide variety of problems with ex-
cellent results. Here, we will show some selected examples of the performance of
this method similar to those given in [4]. First, consider a phased array radiating di-
rectly into water (see Fig. 6.18a), where phasing will be used to both focus the beam
and steer it in the (©,®) directions. We modeled a 5 MHz, 8 x4 rectangular array
where the elements were 0.8 x 2.4 mm rectangles with a gap size between elements
of 0.2 mm in both directions. A delay law was applied to this array to steer it in the
©=-90",® =20 direction and focus it at a distance of 150 mm along the steering
direction. The magnitude of the normalized pressure along the steered axis is shown
in Fig. 6.19 for both the GBEPS model and an result obtained by a very detailed
integration of a point source model, which was used as The “gold standard”. It can
be seen from that figure that the GBEPS model gave very good results in spite of
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Fig. 6.20 Magnitude of 0.12
the on-axis velocity for a

5 MHz, 16 x 16 array placed 0.1
on a Lucite wedge and

radiating into steel, plotted 0.08
versus the distance along |‘_. Iy |

the steered beam axis. The .06
array was phased to focus

at a depth of 50 mm in the 0.04]2
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line—point source model
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Fig. 6.21 Simulated pulse 0.6
at a distance of 6.25 mm in
steel for a 5 MHz, 8 x 8 array 0.4
placed on a Lucite wedge.
Solid line—point source 0.2
beam model “exact” results. v (" )
Dashed line—GBEPS model p. O
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the fact that it used only one segment per array element, where the array elements
were rather large (approximately 2.7 x 8 wavelengths). Even the small differences
in the near-field could be improved by simply using more segments in the larger
element dimension. Figure 6.18b shows a more complex modeling setup where an
array is placed on a Lucite wedge and radiates into steel. In this angle beam setup,
the wedge angle was chosen to generate a 45° P-wave in the wedge without any
phasing (a shear wave also was generated, but the results shown will only be for
the P-wave beam). In this example a 5 MHz square 16 x 16 array was placed on
the wedge with elements having dimensions of 1.6 % 1.6 mm and there was a gap
size of 0.2 mm between elements in both directions. The distance from the center
of the array to the interface (along a direction normal to the array) was 24.86 mm.
Figure 6.20 shows a plot of the magnitude of the normalized velocity (normalized
by the velocity on the face of the transducer) along the steered beam axis where the
time delay law was chosen to focus the beam at a depth of 50 mm and steered to the
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angles (@, =30, 8,, =30"). Both the GBEPS results and that for the point source
standard are plotted in Fig. 6.20, showing that again the GBEPS model gave excel-
lent agreement even though only one segment per array element was used and each
side of the array element was about 3.7 wavelengths in length.

If the GBEPS model is used to simulate a time domain pulse, the performance
and accuracy of the model are also very good. Consider the same angle beam setup
described previously where without steering present a 45° P-wave is radiated into
steel. The transducer on the wedge in this case was a square 8 x § array with square
elements having side lengths of 3.2 mm and the gap between elements was 0.2 mm
in both directions. In this case the response at a fixed point (z=6.25 mm) along
the steered axis was calculated at a single frequency and multiplied by a Gaussian
window having a center frequency of 5 MHz and a —6 dB bandwidth of 60% to
generate a response spectrum. This spectrum was then inverted into time to simulate
a pulsed response. In this case the focus was placed at 50 mm and the beam was
steered in the (¢, =0, 6,, = 60") direction. The “gold standard” model was again
a point source model where each array element was divided into 40 x40 segments,
giving each segment a length of about a fifth of a wavelength. As Fig. 6.21 shows,
the GBEPS model very closely models that of the point source model.

The examples discussed above were chosen to illustrate the ability of the GBEPS
model to accurately simulate beam steering and focusing of some typical arrays.
All the cases examined were for single medium or planar interface problems where
point source models are well-behaved so that we could compare GBEPS models
with a well-known “standard”. Since a GBEPS model, however, is not restricted to
those geometries and can in fact also be applied to much more complicated cases
such as anisotropic or inhomogeneous media, curved interfaces, etc. the GBEPS
beam model approach can be considered to be the extension of the point source
beam models presented in this book to more complex NDE bulk wave inspection
problems.
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Chapter 7
Phased Array Beam Modeling (2-D Elements)

The models developed in Chap. 6 for a single element will be used in this Chapter
to develop a model of a complete 2-D or linear array. As done in Chap. 4 for 2-D
problems, we will discuss steering and focusing in 3-D for these arrays.

7.1 Phased Array Beam Models—Single Medium

Consider first a 2-D array of identical rectangular elements radiating directly into a
single fluid medium. We will assume that the array has n = (1,2,...,L,) elements in
the x-direction and /=(1,2,...,L,) elements in the y-direction. The lengths of the
element are (/,,/,) in the x- and y-directions, respectively and the corresponding
gap widths in those directions are (g,,g,) . The geometry for one of those elements
is shown in Fig. 7.1. We can use the multiple point source model developed in
Chap. 6 (see Eq. (6.33)) to represent each element. The pressure wave field of the
entire array can then be written as

L L

p(x,w) = pev, (a))z z C,C exp(imwAt,)p.(x,y,z, w,e,,, e, (7.1)

n=1 [=1

where (C‘n ,C ,) are the apodization constants in the x- and y-directions, respectively,
and Az, are the time delays and where p, (x,y,z, @e,,,e,) is the normalized pres-
sure, p/ pev,, of a single element in the multiple point source model of Eq. (6.33)
as implemented in the MATLAB® function ps_3Dv (Code Listing C.20), that is,

sz“i( lkAd Ad )Sin(ku:IPqux /2) Sin(kuﬁlqudy /2) eXp(ifcr"IPq)
2w aa ’ (ku;lqudx /2) (ku;’lqudy /2) T
(7.2)

The various parameters appearing in Eq. (7.2) are:
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Fig. 7.1 a Geometry param-
eters for an element of a 2-D
array radiating into a fluid,
and b details of the element
segment parameters within
each element

¥ =—ll+Ad (q_l) (7.3)

( -1-

2
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2 5

where Ad, =1 /P,Ad, =1 /Q are the lengths of the element segments in the x-
and y-directions, respectlvely, and s, =/ +g,,s,=1 +g, are the array pitches in
the x- and y-directions.

The model for a contact array radiating P-waves into an elastic solid is very
similar to the fluid case. If we compare the original Rayleigh-Sommerfeld model of
Eq. (6.21) with the corresponding contact model of Eq. (6.38) or, equivalently, the
far field models of Eqgs. (6.26) and (6.41) we see that we can get the contact case
from the fluid case by making the replacement pic,v, = p,/ pc,, to go from a
model of a pressure field to one for a velocity field, and including an extra term

K ,d , to account for the additional directivity and polarization terms present in the
velocity field for the contact case. However, since the segments are typically very
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small we can approximate this additional term by its value at the centroid of each
segment, in which case K ,(¢')= K, (uf’”) and d —( RERTIER u”’”q) where

u = —— (7.4)

nlpg

and (see Egs. (6.39) and (6.40))

ul™i? (/c 121+ (u ”ZW) )

) 26 (1.5)
2 2

G:(l_(u:1p4)2 _i /2) +(1_(un1pq )2) u:[pq ,K.z —1+(u:1”q)2’

z

and, recall, k¥ =c, /c, is the ratio of the compressional and shear wave speeds in
the solid. Making these changes to Eq. (7.2), our model for the contact array gives
the velocity field in the solid as

v(x,0 iic C, exp(icAt,, ) {ii(—ikAdxAdy)d”’”"Kp (u2)

2”101 pl n=1I=1 p=1 g=1

| sin(ku!" Ad, / 2) sin(ku" Ad, / 2) exp(iffrnlpq) (7.6)
(kuAd,/2)  (kuad,12) ™
with
a4 = (unlpq u" unlpq) (7.7)
x 2%y 0%z ) '

Generally, we would expect that both K, and d"" will also vary very slowly over
the element, so if we approximate those parameters by their values at the centroid C
of the element (see Fig. 7.1), we can write Eq. (7.6) instead as

L L [
v(x,0)= EAC) 3> C,Coexplimnr, )d K, (u! ){iZ( ikAd Ad,, )
2”,01 pl n=1 I=1 =1 g1
s1n(ku””’"Ad /2) sm(ku”l’”"Ad /2 exp kr’”"‘? (7.8)

(ki Ad, /2) (k™ Ad,/2) 7™
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nl nl nl nl
where d" = (Mx Uy, U ) and

unl _ x_emc unl _ y_ely unl _ Z
= s = S = —
X rnl y an z rnl (79)

" =\/(x—em)2 +(y—e,y)2 +2°,

which then can also be simply rewritten in terms of the normalized pressure as

L L
v(x,w) = 22 C,C, exp(iwAt, )d"’Kp (u:’ )pe (x,y,z,,e,.,€,). (7.10)

If the element itself is less than a wavelength in length in both the x- and y-direc-
tions then we expect that we can use a single point source model for each element.
In this case, the single point source model for the array gives

p(x,w) = pc%ia))i i C,C, exp (iwAt,, )(—iklxly)
n=1 I=1
sin(ku'1, / 2) sin (ku'l, / 2) exp(ikr")
(k') (k' 2) o

(7.11)

for the immersion case, and

v(x,0)= £ (©) iié C, exp(iwAt, )d" K (u”l)(—ikll )
’ zﬂ-plcpl o e : " P n

sin(ku,'1, / 2) sin (ku'l, / 2) exp(ikr") (7.12)
(ki) (k' 2)

for the contact case. These are simply special cases of Egs. (7.2) and (7.10), respec-
tively, for these small element sizes. For the immersion case, Eq. (7.11) is imple-
mented automatically by the MATLAB® function ps3Dv when both element lengths
are less than a wavelength, as discussed in Chap. 6. One could also use a single
point source model for larger elements by specifying P, , = 0, =1 when evaluating
the normalized pressure with ps_3Dv but this must be done with care since a single
point source model will lose accuracy as the element size increases unless one is
computing fields sufficiently far from the element so that one is in the far field of

the element.



7.1 Phased Array Beam Models—Single Medium 151

Fig. 7.2 Parameters for 4 X
defining the behavior of an
array element in the far field

7.1.1 Far Field Behavior of an Array

We can certainly use the single point source models to examine the wave field of
the array when we are in the far field of the entire array. In this case, we can ap-
proximate 7" as (see Fig. 7.2)

r”lz\/(x—e Y +(y—e,) +2°
=R-e,U —¢U, (7.13)
(') )= U,,U,.0.),

where

. ’ . (7.14)
U==U==,U =—
R R R
If we consider the immersion case, Eq. (7.11), we then have
L,
px)= P @s Zé G, exp(ianr, )(~iki 1)
2 o o
KR (7.15)
exp(i )
D, (kU1 kU 1, ) =P . exp| -ik(e, U, +¢,U, )],
where D, is the element directivity, given by
kUL /2 smkUl /2
D(kUL kU 1) =S ) sin( ) (7.16)

e (kUL 12) (kUL /2)
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Placing the expressions for the centroid locations (see Eq. (7.2)) into Eq. (7.15)
gives

ikR
p(x,0)= pcvo—(w)(—iklxly )De %exp |:ik(L12+ l]stx}exp[ik(Lz; 1)syij|

2w

L L
> C,C exp(iwAt, )exp [—iknstx]exp[—iklsva].
Pl ’ (7.17)

If we set the amplitude weights and time delays equal to zero, then as shown in
Chap. 4 we can sum the remaining series to find

p(x, )

>

_PN@) D sin[(Lks,U,) /2] sin (L,ks,U,) /2] exp(ikR)
. P Lsin|(ks,UL) 2] L sin[(ksyUy)/z] R

(7.18)

which shows that, as in the 2-D case, in the far field of the entire array we see both
the element directivity, D,, and directivity, D,, associated with an array of point
sources [ 1], where the point source directivity is

sin[(Lks,U,) /2] sin[ (Lks,U,)/2]

D (ks .U, ks U )=—: ’
(ks U, ks, U,) L sin[(ks,U,)/2] Lzsin[(kSyUy)/z]

(7.19)

Figure 7.3 shows the element directivity of a square element where the pitch is
either one wavelength or two wavelengths. We see, as in the 2-D case, a very broad
radiation pattern at the one wavelength case and that this radiation becomes more
concentrated for the two wavelengths pitch. In the case of a linear array element,
one dimension will typically have a length of several wavelengths or less while the
other length will be many wavelengths. Figure 7.4 shows a contour plot of the far
field directivity (looking down the z-axis) for an element where the length is two
wavelengths in the x-direction and 15 wavelengths in the y-direction. As can be seen
from that figure, the beam radiation is tightly confined in the y-direction but much
broader in the x-direction, as expected.

7.1.2 Beam Steering in 3-D

In Chaps. 3-5, we showed for 2-D problems that beam steering could be generated
by applying a spatially linear time delay to the face of a transducer or an array. In
the next chapter, the corresponding steering time delays for 2-D arrays radiating a
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Fig. 7.3 The far field directivity of a square element when a the length of the element is one
wavelength, and b when the length of the element is two wavelengths

3-D wave field are obtained, where it is shown that to steer a 2-D array (with pitch
s, and L, elements in the x-direction and pitch s, and L, elements in the y-direc-
tion) in a single medium in a direction defined by the spherical coordinates (O, d)
(see Fig. 7.5) requires the time delays, At,,, given by

s
At, = 1% 5in © cos @ + 1 - sin O sin d
c c
L+1 L +1s
S GnO@cosd — 2 —2sin@®sin P,
2 ¢ 2 ¢

(7.20)
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Fig. 7.4 Contour plot of the 1
far field directivity of a linear
array element, in a plane
perpendicular to the z-axis, 04
where the length of the ele- ' D—
ment is two wavelengths in U
the x-direction and 15 wave- ] L < —— =) I —_—
lengths in the y-direction. e
The x- and y-coordinates of 0.4 ol
the plot are the unit vector
components (U_,U )

-1

-1 0.4 0 0.4 1
U,

Fig. 7.5 The spherical coor- X

dinate steering angles, (0, ®),
that define the unit vector,
U’, in the steering direction

where c is the wave speed. This delay law can be put in the more compact form

s ‘ N ;

Aty =n=U.+1->U;

¢ ¢ (7.21)
—LIHS—*U;'—LzHiU",

2 ¢ 2 ¢ 7

where

U} =sin®cosd (7.22)
U, =sin®sin®

are components of a unit vector, U, in the steering direction (Fig. 7.5). Placing this
steering law into the far field pressure field of the array (Eq. (7.17) for a single point
source) with no apodization terms gives
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_pevy (@) exp (ikR)
p(x.0)= P2 ikl 1) D, =

-exp|:ik(L12+1JSx (u.-u: )]exp[ik(L22+l)Sy (v, —Ui)}- (7.23)

2

i iexp [—ikns, (U, -U)|exp| -iis, (U, - U3 )]

=
i
I

Again, the series can be summed directly, as shown in Chap. 4, to find

PV (w)
2r (

sin[ Liks, (U, ~U:) /2] sin[ Lks, (U, -U;)/2] exp(ikr) 729
Lysin[ks, (U, ~U2)/2] Lysin[ks, (U, -U3) /2] R

p(x,0)= —ikLlL,1,)D,

Comparing Eq. (7.24) with the case of no steering (Eq. (7.18)) we can see that the
time delays have caused a shifting of the point source directivity, i.e.

D, (ks U, ks,U,) = D, (ks, (U, - U ks, (U, ~U}))

X7 x?

so that this directivity will have its largest amplitude occur in the steering direc-
tion instead of along the z-axis. The magnitude of the point source directivity for a
steered 2-D array is periodic since

‘DS (ksx (U, -U:).s, (U, —U;))
(n = 1,2,...) (m = 1,2,...)

D, (ks, (U, ~U} )+ 207, ks, (U, ~U; )+ 2m7§)‘
’ (7.25)

so that maxima other than in the steering direction can occur when

A )
U =U+"2 U, =0 +2 (n=1,2,..),(m=12,..), (7.26)
S S

x y

where A is the wavelength. Any solutions of Eq. (7.26) will indicate the presence of
grating lobes, similar to what was found in the 2-D case. But, since |U x| <L|U]|=1
and |U,|<1,|U;|<1, we see that will be no values of (U,,U)) that can satisfy
Eq. (7.26) if s, < A/2,s, < A/2. In the case of no steering, Eq. (7.26) shows that
for no grating lobes we must have s, < 4,s, < A instead. Thus, the conditions
for the absence of grating lobes follows the same criteria found earlier for 2-D
problems. Figure 7.6a, b shows contour plots of the point source directivity of a
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Fig. 7.6 Contour plots, in | ——
a plane perpendicular to the
z-axis, of the point source
directivity of a 11 x 11 square
array with pitches equal to
one half wavelength for a no
steering, and b steering in the
direction © = 45°,® = 45°.
The x- and y-coordinates of
the plot are the unit vector
components (U,,U )

square array when the pitches in both the x- and y-directions are equal to one half
wavelength. It can be seen that the directivity with no steering in Fig. 7.6a is just
shifted to the steering direction with no grating lobes when a steering law is applied,
as shown in Fig. 7.6b. However, for the a 11 % 11 square array with pitches in both
directions equal to 0.8 wavelength, while the point source directivity with no steer-
ing (Fig. 7.7a) is again shifted to the steering direction (Fig. 7.7b), grating lobes in
other directions also appear, as predicted, and this can be clearly seen in Fig. 7.7b
to be simply a consequence of the periodicity of the point source directivity of the
array. Figure 7.8 shows the directivity for the 11 x 11 square array when the pitches
in both directions are one and a half wavelengths. In this case, since the pitches are
greater than a wavelength even with no steering the periodicity of the directivity
will cause grating lobes to appear, as can be seen in Fig. 7.8.

7.2 Radiation Through a Planar Interface

From our results in Sect. 7.1 and following the same steps outlined Chap. 6, we
can obtain multiple point source and single point source beam models for radiation
through a planar interface. Consider first the immersion case. Using the superposi-
tion of multiple far field point sources of Eq. (6.64), we can generate a multiple
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Fig. 7.7 Contour plots, in

a plane perpendicular to the
z-axis, of the point source
directivity of a 11 x 11 square
array with pitches equal

to 0.8 wavelength for a no
steering, and b steering in the
direction © = 45°,® = 45°.
The x- and y-coordinates of
the plot are the unit vector
components (U,,U )

Fig. 7.8 Contour plots, in

a plane perpendicular to the
z-axis, of the point source
directivity of a 11 x 11 square
array with pitches equal to
1.5 wavelengths and no steer-
ing. The x- and y-coordinates
of the plot are the unit vector
components (U,,U,)
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point source model for the velocity generated in the solid in a form very similar to
the single medium case (see Fig. 7.9):

V(x,a))zM 3

n=1 [=1

sin (k" Ad, /2) sin(k, " Ad,, /2) expik,, R} )

s=1 g=1

L L o s 0 _
> > C,C expliont,) {2 Y (—ik, Ad Ad )T di

(7.27)

(k™ Ad, 12)

(k™ Ad, 12)

El

nlsq
Dﬁ



158 7 Phased Array Beam Modeling (2-D Elements)

Fig. 7.9 a Geometry param-
eters for an element of a 2-D
array radiating through a
planar interface, and b details
of the segment parameters
within each element

nlsq

where ]_“fj_];’ and H,ﬂ are sampled values of the fluid—solid transmission coeffi-

cient, ]_"ff;” ; and polarization, d s » (in medium 2) for a wave of type f in the solid
traveling from the centroid of the sqth segment of the nith element to point x in the
solid, respectively, and where the distances and angles in the definitions

. nlsq __ - nlsq . Binlsq
ik, Ry =ik, ny" +ikg,r,

2 pnlsq
Dnlxq _ nlsq cﬂz Ccos Hﬁl Binlsq nlsq Cﬂz Binlsq
= 14 +———r 14 +—r
B 10 2 pnlsg 20 10 20
¢, cos” 0 c

J (7.28)

rl

are also measured from the segment centroid.
If we use a single point source for each element then Eq. (7.27) reduces to

L L
v(x,w)= Voz(;;)) Z 12' C,C exp (ia)Atnl)(—ikpllxly )Tg’ﬁ&;g
n=1 [=1

(7.29)

P

ot 12)  (kutl, /2 Dy}
P ply )

sin (k' /2) sin (k' 12) exp(ik, R}
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Fig. 7.10 Geometry param-
eters for an element of a 2-D
array radiating through a
planar interface using a single
point source model for each
element

with

ikle zkplrm +iky S

¢y, cos’ 0 Ch . (7.30)
N e

nl "20
¢, €os” Oy .

where now all the terms are measured instead relative to a ray path from the centroid
of the nith element to point x in the solid (Fig. 7.10).

For the contact case, we have very similar results. For the multiple point source
model

v(x,w)=

g;i_: la)At {ii(—ikplAdxAd )TS:l}jqdnlqu ( nz\q)

s=1 g=

27rp1

sin k1" Ad, / 2) sin (k,.u Ad, / 2) exp ik, R;™ )
(kuad, 12)  (kut™Ad, 12) Dy

(7.31)
while the single point source model becomes
Po(®) 5%
v(x,w) =20 22 C, exp(iaAt, )(=ik, LI )T, d5 K, (u!")
2ﬂ-p1 pl n=1I=1
(7.32)

' sin k, "1, / 2) sin k, "1, /2) exp(ik,,

R})
(k1 12) (ki1 /2) Dy
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Z,mm
12
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Fig. 7.11 The magnitude of the normalized pressure wave field of a 11 x 11 2-D array radiating
into water with steering in the ®=0,0=20" direction and no focusing (FI = inf).
The other parameters are: /, =/, =0.15mm, g =g =0.05mm, f=5MHz, c¢=1480m/s,

z = linspace (1,20,200), x = linspace (~15,15,300), y=0 A rectangular window is used (no
apodization)

7.3 Array Beam Modeling Examples

In this section, we will show some examples of the wave fields generated by arrays.
First, consider the single medium case with the array radiating directly into a fluid
medium (see Eq. 7.1). The MATLAB® script mps_array _modeling (Code Listing
C.21) uses the multiple point source beam model, ps 3Dy, the delay laws contained
in delay laws3D (Code Listing C.22—see the next Chapter for more details), and
the apodization laws of discrete_ windows (Code Listing C.13) to simulate the nor-
malized pressure wave field of an array. Figure 7.11 shows the pressure field in the
x—z plane for a 11 x 11 2-D array where the element pitch is about one half a wave-
length (/ = l =0.15mm, g =g =0.05 mm) so that there are at most weak grating
lobes generated when the beam is steered in the ® = 0", ©® =20 direction (with no
focusing). In Fig. 7.12a, one can see the 2-D steering of this beam in the x—y plane
atz =8 mm. Figure 7.12b also shows the beam in this same plane when the steering
law is changed to ® =90°, © = 20, while Fig. 7.12c shows the case for ® = —90’,
© =20, and Fig. 7.12d considers ®=0", @ =-20".

Figure 7.13 shows the effects of steering and focusing of the same array con-
sidered in Fig. 7.11, where Fig. 7.13a shows the case of steering but no focusing
(same configuration as in Fig. 7.11) but shown for a smaller range of depths), while
Fig. 7.13b uses F1=3 mm. Comparing Fig. 7.13a and b shows clearly the focusing
effect. Note that the array in this example is very small so that near field of the array,
where focusing is effective, is also quite small. Thus, the focal length specified here
was chosen to demonstrate the effects of focusing but was not meant to illustrate a
practical inspection case.
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Fig. 7.12 The magnitude of the normalized pressure wave field of a 11x11 2-D array radiat-
ing into water with steering no focusing (F1 = inf). The other parameters are /, =/ = 0.15 mm,
g, =g, =0.05mm, /=5 MHz, ¢ =1480 m/s, z =8 mm, x=linspace (-15, 15, 300), y=linspace
(=15, 15, 300). A rectangular window is used (no apodization). The steering in the four cases
shownare:a @ =0, ©=20,b ®=90", ©=20"¢ ®=-90, ©=20,andd & =0, ©=-20

The same small 11 x 11 array considered for a single medium was also used to
describe cases where the array radiated waves through a plane water/steel interface.
The MATLAB® script mps_array_model_int (Code Listing C.26) used the multiple
point source beam model in ps_3Dint (Code Listing C.23) with the time delay laws
of delay laws3D int (Code Listing C.27— see the next Chapter for more details)
and apodization laws of discrete windows (Code Listing C.13). The parameters
used in these interface cases were / =/ =0.15 mm, g =g =0.05 mm, /=5 MHz,
p =lgm/em’, ¢ =1480 m/s, p, —79gm/cm [ ,=5900 m/s, ¢,=3200 m/s.
Figure 7.14a shows an image of the magnitude of the velocity of the wave field
in the x—z plane where the array was at normal incidence (ang,=0) at a dis-
tance 0Dt0:50.08 mm from the interface and no steering or focusing was present
(®=0,0=0). The black arrow in this and some subsequent figures shows the
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Fig. 7.13 The magnitude of the normalized pressure wave field of a 11x11 2-D array radiat-
ing into water with steering (®=0",© =20"). The other parameters are [, =1[,=0.15mm,
g, =g,=005mm,f=5MHz, c= 1480 m/s, x=linspace (— 15, 15, 300), z= hnspace (1, 10, 300),
y=0. A rectangular window is used (no apodization). In case a FI=inf, while in case b F1=3 mm

direction in which the beam is being steered in the steel. Figure 7.14b shows the
wave field of this array in the x—z plane when it is steered (®=0",© =30") but not
focused. Figure .14c and d shows the wave field in the x—y plane at z=4 mm for this
array when (c) the beam is steered in the x—z plane (® =0, ® = 20"), and (d) steered
in the x—y plane (® =90, © = 20°). All of these cases show that the beam is steered
properly through the interface with the time delay laws. Figure 7.15 shows results
for a 11 x 11 array, again at normal incidence to the interface, where the size of the
element was increased to be one wavelength (lx:ly:0.3 mm, g = gy:0.0S mm)
and the array was moved closer to the interface (D,,=2 mm) so that the near field
extends into the steel. Figure 7.15a shows the field in the x—z plane when the ar-
ray simply radiates into the steel without steering, focusing, or apodization. Fig-
ure 7.15b shows the comparable beam when a Hamming window is applied to the
elements in both the x- and y-directions. Comparing Fig. 7.15a and b, one can see
that the apodization reduces the side lobes, as expected. Figure 7.15¢ shows the
same array when it is focused (without steering or apodization) at D=2 mm into
the steel, thus concentrating the beam closer to the interface. The cases shown in
Fig. 7.16 are again for the 11 x 11 array considered in Fig. 7.14 (pitch equal to one
half wavelength), where the center of the array is located at D, =50.8 mm again,
but where the angle of array to the interface, 6, =10.217", was chosen to generate a
45-degree P-wave in the steel (without steering). Figure 7.16a shows the wave field
in the x—z plane where there is no steering, focusing or apodization so the beam does
propagate at the 45° angle. The behavior of the same wave field as seen in the y—z
plane at a distance x=15 mm is shown in Fig. 7.16b. In Fig. 7.16¢, the beam of the
array is steered to an angle of 20° (® =0, 0 =20"), showing the corresponding
change of the direction of the wave field in the x—z plane. Finally, in Fig. 7.16d, the
angle of the array is changed to an angle 6, = —10.217, so that with no steering or
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Fig. 7.14 The magnitude of the normalized velocity in steel for a 11 x 11 2-D array (element size
approximately one half wavelength) normal to the interface at a distance D, =50.8 mm, radiating a
P-wave through a planar water/steel interface, for a the wave field in the x—z plane with no steering
or focusing, b the wave field in the x—z plane with steering (® =0",® =30") but no focusing, ¢
the wave field in the x—y plane at z=4 mm with steering (® =0, ©=20") but no focusing, and
d the wave field in the x—y plane with steering (® =90, ©=20") but no focusing. A rectangular
window is used (no apodization) for all cases

focusing the beam propagates in the —45° direction instead. Note that as found in
the 2-D case (see Chap. 5) the location of the first element relative to the interface
is changed because the angle is negative. Figure 7.17 again considers the same
array as in Fig. 7.16 but where now the angle of the array to the interface is taken
as § =19.09" to generate a shear wave traveling at an angle of 45° in the steel.
Figure 7.17a shows the magnitude of the S-wave velocity field in the x—z plane
when no steering, focusing or apodization laws are applied, while Fig. 7.17b shows
the case when the S-wave is steered to 30° in the steel with no apodization. It can be

seen that in addition to the main refracted beam there is also a relatively strong side
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Fig. 7.15 The magnitude of the normalized velocity in steel for a 11 x 11 2-D array (element size
one wavelength) normal to the interface at a distance D,, = 2 mm, radiating a P-wave through a
planar water/steel interface, for the wave field in the x—z plane with no steering or focusing or
apodization, b the wave field in the x—z plane with no steering or focusing but with a Hamming
window applied in the x- and y-directions, and ¢ the wave field in the x—z plane with no steering or
apodization but with focusing to a depth of 2 mm in the steel

lobe as well. Figure 7.17c shows beam with the same steering law as in Fig. 7.17b,
but with a Blackman window applied in the x- and y-directions to the array, reduc-
ing somewhat the side lobe but also obviously broadening the main beam.

All of the cases examined so far in this section were chosen with small ele-
ment sizes so that the array can effectively steer and focus the sound beam without
grating lobes in the manner proscribed by the delay laws. Commercially available
arrays, however, may use considerably larger element sizes which will limit their
behavior and also introduce significant grating lobes. We will examine such effects
with the use again of the script mps_array modeling. Consider, for example, an
8 x 8 array of square elements radiating into water at 5 MHz, for example, where the
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Fig. 7.16 The magnitude of the normalized velocity in steel for a 11 x 11 2-D array (element size
one half wavelength) oriented at an angle of § =10.217" to the interface with the array center at a
distance D, =50.8 mm, radiating a P-wave through a planar water/steel interface, for a the wave
field in the x—z plane with no steering or focusing, b the wave field as seen in the y—z plane at a
distance x=15 mm, ¢ the wave field in the x— plane when the beam of the array is steered to an
angle of 20° (@ =0",0=20"), and d the wave field in the x—z plane when § = -10.217", with
no steering or focusing

length of the element is 0.9 mm and the gap length in both dimensions is 0.1 mm.
Since the pitch of the array is about three wavelengths, there are multiple (but weak)
grating lobes present (Fig. 7.18a). The directions of these grating lobes and the
overall behavior of the sound beam can be understood by plotting the total far field
directivity, D,, of this array where D, = D, D, is the product of the element directiv-
ity and the point source directivity. The magnitude of this total directivity is plotted
in Fig. 7.19a, where one can see three relatively weak grating lobes on both sides of
the main beam that are difficult to see in Fig. 7.18a. If a delay law is applied to this
array to try to steer it in the 45° direction, the wave field is as shown in Fig. 7.18b,
and the corresponding total directivity is plotted in Fig. 7.19b. It can be seen that in
this case the largest response occurs only at a small angle (less than 10°) and very
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Fig. 7.17 The magnitude of the normalized velocity in steel for a 11 x 11 2-D array (element size
one half wavelength) oriented at an angle of 8 =19.09" to the interface with the array center at a
distance D= 50.8 mm, radiating an S-wave through a planar water/steel interface, for the wave
field in the x—z plane with no steering or focusing, b the wave field in the x—z plane when the array
is steered to 30° (@ =0, © = 30") with no focusing or apodization, and ¢ the wave field in the x—=
plane when the array is again steered to 30° without focusing but where a Blackman apodization
law is applied in the x- and y-directions

little amplitude is near the steering direction. If the array is changed to be a 16 x 16
array of elements where the element length is reduced by a factor of two to a value
of 0.45 mm and the gap length is held fixed at 0.1 mm, the radiated wave field is
shown in Fig. 7.18c and the corresponding total directivity in Fig. 7.19c. It can be
seen that the steering capability of the array is still very severely limited. If one goes
to a 32 x32 element array with an element length reduced by a factor of two again
to a value of 0.225 mm with the gap length remaining at 0.1 mm, the resulting wave
field and total directivity are shown in Figs. 7.18d and 7.19d, respectively. Now the
element pitch is slightly larger than one wavelength and a relatively strong beam is
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Fig. 7.18 An array radiating into water at 5 MHz for a 8x8 elements, / =/ =0.9 mm,
g,=g,=0.1 mm, no steering, b 8x8 clements, / =/ =09 mm, g =g =0.1 mm, steered to
45° (<I> 0,0=45), ¢ 16x16 elements, l—l —O 45 mm, g =g = Ol mm, steered to 45°
(®=0,0=45 ), and d 32x32 clements, /, —l —O 225 mm, g =g =0.1 mm, steered to 45°
(®P=0,0=45).No focusing or apodlzatlon in all cases

steered closely to the proper angle of 45°. There is however, still a single remain-
ing grating lobe that is in fact stronger than the main steered beam as seen in both
Figs. 7.18d and 7.19d. These examples show that for arrays where the pitch is larger
than a wavelength it is important to simulate the wave fields in this manner and
examine the total directivity to understand the behavior of the array, which may be
far from the “ideal” behavior seen for arrays with very small elements.
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Fig. 7.19 The total far field directivities of the arrays considered in Fig. 7.18a—d
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Chapter 8
Time Delay Laws (3-D)

8.1 Beam Steering in 3-D

Consider an element of a 2-D array as shown in Fig. 8.1 where we want to steer the
ultrasonic beam of the array in the direction of the unit vector, u. We can express u
in spherical coordinates (©, ®) as u = sin © cos @e_ +sin Osin Pe , +cos Oe_. Steer-
ing of the beam in this direction can be accomplished by applying a linearly varying
time shift, Ar=u-x/c, over the face of the array and evaluating that phase at the

centroids of the individual elements. This results in the shifts, A¢,, given by
At,, = (e, sin@cosP+e, sinOsinP)/c. (8.1)
The centroid locations are given by
e.\’ﬂ? = [(m - 1) - M] SX
(8.2)

e, = [(n—l)—ﬁ]sy,

where (s,,s,) are the pitches of the elements in the x- and y-directions, respectively,
and M and N are the number of elements in the x- and y-directions, and where

o (M=)
2

8.3

5 =(N_1). (8.3)
2

Since the delays in Eq. (8.1) contain both positive and negative values, we can sim-
ply add a constant delay equal to the magnitude of largest negative value to obtain
a proper time delay law, A/ , given by

AL, (8:4)

At:n = |{Atmn }min

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 169
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2 8,
© Springer International Publishing Switzerland 2015
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Fig. 8.1 Parameters for X
steering a beam of a 2-D t
array in the direction of the
unit vector, u

Fig. 8.2 Parameters for
steering and focusing a 2-D
array at a point, P, as defined
by the focal distance, F, and
the angles (©,®)

8.2 Beam Steering and Focusing in 3-D

We can also consider steering and focusing of the array wave field to a point, P, in
the surrounding medium specified by the focal distance, F, and the steering angles
(©,®) as shown in Fig. 8.2. In this case, the distance, r, , from an element to P is
given from the geometry as

I = \(Fsin@cos®—e,, ) +(Fsin@sin®—e, ) + Fcos’©.  (8.5)

A proper delay law, A? . can then be obtained from

m

Al =max{r, /c}-r, /c, (8.6)

mn mn

where c is the wave speed.

The MATLAB® function delay laws3D (Code Listing C.22) implements the
beam steering delay law of Eq. (8.4) and the steering/focusing law of Eq. (8.6) for
a 2-D array. The function call is:

>>td=delay laws3D (M, N, sx, sy, theta, phi, F, c);
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Fig. 8.4 Time delays, 7,

(in ps) for steering the beam
of a 2-D array parallel to 1.4 4
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where td is the matrix of delay times (in ps) for an array with M elements in the
x-direction and N elements in the y-direction. The pitches of the array are sx =,
and sy=s, in the x- and y-directions, respectively (in mm), the steering angles
theta = ©, and phi = ® (in degrees), the focal distance is F (in mm), and the wave
speed of the medium is ¢ (in m/s). Figures 8.3—8.5 show some samples of delay
laws for an array radiating into water (c¢=1480 m/s) with M=8, N=16 elements,
s,=58,= O.SDmm. F igoure 8.3 shows the case of steering only parallel to th? y-axi§
with © =30,® =90, F =inf, while Fig. 8.4 is for steering angles ® =30, =0
so that the steering is parallel to the x-axis. As seen in these figures in both these cas-
es the time delays are purely the linear functions contained in Eq. (8.1). Figure 8.5
instead considers the case of focusing only of this same array where 8= ¢=0’,
F =10 mm. In this case, there are approximately quadratic variations in the time
delays in both the x- and y-directions.
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Fig. 8.5 Time delays, ¢,,

(in ps) for focusing the
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Fig. 8.6 a Geometry for
beam steering, through a pla-
nar interface in three dimen-
sions. b A side view, looking
down the (y, y") axes

8.3 Beam Steering Through a Planar Interface

When a 2-D array is used in immersion testing or placed on the face of a solid
wedge, the time delays needed to steer the beam in the adjacent solid are more
complex than in the single medium case. Figure 8.6 shows an array whose face
makes an angle g, with respect to the interface and whose center x, is located at a
distance D,,, above the interface. In this configuration, we will specify the direction
we want the beam to be steered in the second medium by giving the angles (¢,,6,,),
as shown in Fig. 8.6. If we can determine the unit vector, u, in terms of these angles
and the angle 6, in the (x’,)’,z") coordinates, then as in the single medium case
the corresponding time shifts are

At = (ux,ex,m tuge,, ) /¢, 8.7)
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y,n) are again given by
Eq. (8.2) and ¢, is the wave speed in the medium adjacent to the array. From Snell’s
law we have

where the location of the centroids of the elements (ex,m,e

g, =sin” [M} (8.8)

G

where ¢, is the wave speed of the transmitted wave in the second medium. From
the geometry of Fig. 8.6 it is easy to show that in the (x,y,z) coordinates on the
interface we have

u=sinf, cosg,e, +sinf,singe, +cosb e, (8.9)

with (e ,e e ) being unit vectors along the (x,y,z) coordinates, respectively.
These unit vectors can be written in terms of the unit vectors (e,..e..e_. | along
the (x,y,z) axes:

e =cosbe. +sinb e,
e, =—sinf,e_ +cosb.e (8.10)
e,

ey,

so one finds
u= (sin 6,, cos ¢, cos &, —cos 6, sin G, )ex,
+(sin g, sin g e, (8.11)

+ (cos 6,, cos 8, +sin g, cos @, sin G, ) e

and the time shifts are then

At = [(sin 6, cos @, cos 8. —cos 6, sin 6, ) e+ (sin 6, sin g, ) €, ]/cl, (8.12)
with the proper time delays, A/, given in terms of these time shifts again by
Eq. (8.4):

At = |{Atm I | +AL,. (8.13)

mn

8.4 Beam Steering and Focusing Through
a Planar Interface

The presence of an interface makes the time delays laws for steering and focusing
much more complex than in the single medium case but one can use a very similar
approach to the 2-D case discussed in Chap. 5. To begin with, we need to specify the
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Fig. 8.7 The geometry ¥
parameters for steering and
focusing an array through a
planar interface

parameters we will use to define the steering and focusing. We will use the same an-
gles (¢,,0,,) defined in the last section for a ray propagating from the center of the
array as well as the distances (D;,, D, ) to focus the beam at the point x = (x, y, D, )
as shown in Fig. 8.7. From that figure we can see that the distance, D, from the
origin of the (x,»,z) coordinates to the point Q= (x,»,0) is

D, = Dy, tan6,, + D, tan 6, (8.14)

and the coordinates of O are
x =D, cosg,
y=D,sing,.

(8.15)

If one then follows a ray path from the centroid of an element to x = (x, y,D;), as
shown in Fig. 8.8, the distance, D~mn, from point R (directly below the element cen-
troid) to the point Q is given by

ﬁmn = |RQ| = \/(x—ex,m cosoS’T)2 +(y—ey,n )2 (8.16)

and the vertical distance from the centroid of an element to the interface, D, , is
given by (see Fig. 8.8b)

D, =D, +e,, sin6,. (8.17)

Thus, in the plane of incidence containing the points (X, X,,X) as well as points R
and O we see the ray path appears as shown in Fig. 8.9. This is just the same con-
figuration we encountered for 2-D problems in Chap. 5 (see Fig. 5.4) so that it can
be solved in exactly the same fashion. Specifically, we can show that Snell’s law for
the ray path from X, to x yields:
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Fig. 8.8 a The 3-D geometry ¥
for a wave propagating from

an element to a point, x,

through a planar interface and

b a side view, looking down

the (y,)”) axes ¥

a

Fig. 8.9 Snell’s law ray path X,
from the centroid of an ele-
ment in an array to the point D
x at which we want to steer " &
and focus the array n

) ~nn i 9—1;”” i

X! : D,
X
< N
e Dy =EWE"Y + DL, = (e, e)F"(D,, %" +D;

g(@") = % =0, (8.18)

mn

which is identical in form to Eq. (5.18) so it can be solved in the same manner for
the distance, x;"", using a root solver or more directly with Ferrari’s method. In 3-D
problems involving 2-D arrays, one may need to calculate a very large number of
rays so it is especially important to use computationally efficient methods such as
Ferrari’s method, which also is amenable to hardware acceleration [1].

With that solution then we find the angles

elmn — tan_l [xi )
D, (8.19)
D _—zm

egm — tan_l mn xl

S
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Fig. 8.10 Ray paths that 15+
define the time delay laws for
a 4 x4 array radiating through 104

a water—steel interface
(¢, =1480 m/s, ¢, = 5900 m/s)
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Fig. 8.11 Ray paths that
define the time delay laws
for a 4 x4 array radiat-

ing through a water-steel
interface (¢, = 1480 m/s,

¢, = 5900 m/s), where
s,=s,=05mm, §, =20,
#,=30",86, =45,

Dy, =10 mm, D, =10 mm

and the time of propagation from x, to x is then

~ 2 N =~ 2
§7 4D, D +(D,, X"
b

At =
G )

which can be used to form the proper delay law

Atin = (Atmn )max - Atmn :

(8.20)

(8.21)

The MATLAB® function delay laws3Dint (Code Listing C.27) implements
Eq. (8.13) for steering through a planar interface and Eq. (8.21) for steering and
focusing the beam through the interface. The calling sequence for this function is

>>td=delay_laws3Dint(Mx, My, sx, sy, thetat, phi, theta2, DTO, DF, c1, c2, plt);

where td is the matrix of delay times (in ps) for an array with Mx elements in the
x-direction and My elements in the y-direction. The pitches of the array are sx = s,
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and sy = s, in the x- and y-directions, respectively (in mm). The angle of the array
from the interface is thetat = 6, (in degrees) and the steering angles are phi = ¢,
and theta2 = 6,, (both in degrees). The height of the center of the array above the
interface is DTO = D,,, (in mm), and the depth to the focal point is DF =D, (in
mm). See Figs. 8.7 and 8.8 for a description of these parameters. The arguments
(¢,,c,) are the wave speeds in the first and second media, respectively (in m/s). The
final argument, plt, is a string used to optionally plot ray paths for the parameters
chosen, where plt="y’ or ‘n’ for plot generation or not, respectively. Unlike the
corresponding 2-D delay law function delay laws2Dint, the plot option here is not
implemented for the steering only case.

Figure 8.10 shows the ray paths for a 4 x4 array radiating at oblique incidence
through a planar interface between water and steel when the beam is steered and
focused to ¢, =0, 6,, =45 atadepth D, =10mm. The scales are unequal so the
actual geometry is shown somewhat distorted in that figure. Figure 8.11 shows the
rays where all the parameters are the same as in Fig. 8.10 except now ¢, = 30"
Again, note the presence of unequal scales in Fig. 8.11.

Reference
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Chapter 9
Linear System Modeling of Phased Arrays

A phased array ultrasonic measurement system is a particularly complex collec-
tion of electrical, electromechanical, and acoustic/elastic processes because of the
number of sending and receiving circuits and transducer elements present. In this
chapter, we will use linear system theory concepts of two-port systems and single
input—single output linear time shift invariant (LTI) systems to describe phased ar-
ray measurement systems at different levels of detail, following an approach similar
to that described in [Schmerr-Song] and [1, 2] for single element transducer sys-
tems. Our goal is to develop a model of a phased array flaw measurement system
that can be used to predict quantitatively the signals that are produced in a given
experiment in terms of parameters of the measurement system instrumentation and
probes and the characteristics of the unknown flaw being examined.

In this chapter, we will develop a linear systems modeling framework that will
allow us to ultimately describe a phased array system in terms of two types of terms:

» System functions that describe the electrical and electromechanical properties
of the individual sending and receiving circuits and elements in the array being
used. In Chap. 10, we will show how these system functions can be directly
measured for a phased array in a calibration setup.

* Acoustic/elastic transfer functions that describe all the acoustic and elastic scat-
tering processes present, including the sound beams generated and received by
each element of the array(s) involved and the waves scattered from flaws that are
present. In Chap. 11, expressions for these acoustic/elastic transfer functions will
be obtained in terms of wave fields that can be described with the use of wave
propagation and scattering models.

By combining measured system functions with these modeled acoustic/elastic
transfer functions, we will have a complete and explicit model of an ultrasonic
phased array measurement in a form that we will call an ultrasonic measurement
model [Schmerr-Song]. As will be shown in Chap. 11 and later chapters, having a
measurement model will be the key to quantitatively relating ultrasonic measure-
ments to the properties of the flaw being examined and to give explicit meaning to
the images of flaws that are obtained with arrays.

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 179
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2 9,
© Springer International Publishing Switzerland 2015
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9.1 Linear System Modeling and Sound Generation

In a phased array system, the individual elements of the array(s) involved normally
are assumed to act independently as drivers and receivers, so to analyze the system
we can first consider only a single pair of sending and receiving elements. Figure 9.1
shows an immersion setup involving such a pair of elements, while Fig. 9.2 shows
a corresponding contact testing setup. While both immersion and contact testing
setups involve many of the same components, the physics of the sound generation
and reception processes must be treated somewhat differently when modeling these
setups, as we will see.

First consider the driving circuits in Figs. 9.1 and 9.2. If we assume that these
driving circuits can be represented by a linear active network, then Thévenin’s theo-
rem says that in the frequency domain we can replace these driving circuits by an
equivalent voltage source, V,(w), and electrical impedance, Z(w), as shown in
Fig. 9.3 [Schmerr-Song]. These equivalent circuit elements will generate the same
output voltage, V,(w), and current, [ (@), as the original driving circuit. Note that
these equivalent parameters are affected by the choice of the phased array instru-
ment settings that control the driving circuits.
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The driving circuits are connected to the sending element through the cabling
present in the sound generation process. The voltage and current (¥,,7,) of the
driving circuits at the input side of the cable produce corresponding voltage and
current, (V,,7,) at the output side. At the typical MHz frequencies present in an
ultrasonic experiment, the electrical characteristics of the cabling can be important
if the cabling lengths are on the order of a meter or more in length since in these
cases the cable does not just pass the inputs unchanged to the outputs. It is reason-
able to assume the cable is a simple passive linear, and reciprocal device that can
be treated as a two-port system [Schmerr-Song] where the inputs and outputs can
be related through a 2 x 2 transfer matrix, T, as shown in Fig. 9.4. More explicitly

we can write
L] |L T,])LL

where the elements of the transfer matrix are frequency dependent. Since the cable
is assumed to be reciprocal, the determinant of the transfer matrix must be unity
[Schmerr-Song], i.e.

det[ T |= 17 ~ 15T =1. (9.2)

The array driving element is normally made of a piezoelectric material and is at-
tached to both backing and facing materials. Its function is to transform the electrical
inputs of the cable attached to the element, (V,,/,), into mechanical outputs at its
face. The face is in contact with either a fluid (for the immersion case) or a solid
(for the contact case). In the contact case a thin fluid layer between the face of
the driving array and the underlying solid is normally present to ensure good cou-
pling of sound into the solid. For both the immersion and contact cases the acoustic
output properties of the element can be characterized by two “lumped” acoustic
parameters—a compressive force, F,(w), and velocity, v,(®), both acting on the
adjacent material. However, the detailed physics of the acoustic fields on the face
of the element is modeled differently in the immersion and contact cases. In the
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Fig. 9.5 A two-port model 1, v
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immersion case, it is generally assumed that the face of the array at the element
moves with the uniform velocity, v, (@), normal to the face of the transducer and
generates a spatially varying pressure distribution, p(x, ), over its face. The force,
F, is then just the integral of this pressure distribution over the active area, S, of
the driving element, i.e.

F(@) = | p(x.0)dS(x). 9.3)

In contrast, in the contact case, since the face of the array is in contact with a stiff
solid material through a thin fluid couplant, it is more reasonable to assume that
piezoelectric element generates a constant pressure, p(w), at its face and the total
force is just F,(w) = p(@)S,, while the velocity field normal to the face has the
distribution v(x, ). In this case the “lumped” parameter, v,(®), can be taken to be
the average velocity at the face:

(@)= [ Vx5 x) ©.4)

48,

Thus, in either the immersion or contact testing setups, if we assume that the driv-
ing array element A acts as a linear reciprocal system that transforms the electrical
inputs (V,,1,) to the mechanical outputs (F),v,) we can model this element also as
a two-port system as shown in Fig. 9.5.

Explicitly, we then have
v, ' TIF
REE W o9
I, I, T,][v
Since the array element is assumed to satisfy reciprocity, we also have
det(T") =TT Ty = 1. (9.6)

At the acoustic output port of an array element the compressive force and velocity
are not independent, reflecting the fact that if either the velocity on the face of the
element or the pressure on the face of the element is specified then the other cor-
responding output parameter is also determined. This relationship is expressed as

F ()= Z"(o)W,(0), 0.7
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Fig. 9.6 a The sound generation process components, and b their replacement for an immersion
inspection by a single input, single output linear time shift invariant system characterized by the
transfer function, #;(®), and ¢ their replacement for a contact inspection by the transfer function
AQ)

where Z*“(w) is the acoustic radiation impedance of the element. For ultrasonic
immersion measurement systems that use large, single element transducers of circu-
lar cross section one can derive an explicit expression for this radiation impedance

as [3])
z'/ pc,,S, =1-[J,(2ka) ~iS,(2ka)]/ ka, (9.8)

where J, is a Bessel function of order one and S, is a Struve function. Here (p,,¢,,)
are the density and compressional wave speed of the fluid, @ is the radius of the
transducer, k = @/ ¢, is the wave number, and S, = 7 a’. For most single element
transducers ka can be a value of 100 or larger and Eq. (9.8) gives approximately
Zr = P, S, which is just the acoustic impedance of a plane wave. While this
same plane wave limit is also true for rectangular elements that are many wave-
lengths long in both dimensions, the rectangular elements often used in linear and
2-D arrays have at least one dimension which is not many wavelengths in size so that
the acoustic radiation impedance will inherently be a complex function of frequency.

Since the output force and velocity on the face of an element are related through
the acoustic radiation impedance, we can model the driving circuits, cabling, and
sending element as a series of two-port systems terminated at both ports, as shown
in Fig. 9.6a, and we can replace this series of systems by a single input, single out-
put linear time-shift invariant (LTI) system whose input is the Thevenin equivalent
voltage, V,(w), of the driving circuits. On the output side, we can take either the
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Fig. 9.7 Decomposition of the received waves at a receiving element in an immersion test into
two cases. In case a, the incident waves are present and the face of the transducer is held rigidly
fixed, and in case b, the incident waves are absent but the face of the transducer has the velocity
present on the face of the element in the original problem

velocity, v,(w), or the compressive force on the face of the array element, F,(w),
as the quantity to describe the acoustic fields. When modeling large, single ele-
ment immersion transducers, it has been customary to use the force as the output
[Schmerr-Song] where, as discussed above, the acoustic radiation impedance sim-
ply is a constant, i.e. F(@)= p,c,S,v,(®). For array elements in immersion tests
we will continue to take the output as pc,,S,v, (@), as shown in Fig. 9.6b but one
should realize that this is really just an output proportional to the velocity having the
dimensions of a force and not the actual compressive force on the face of the array
element, F,, which is given as F (w)= Z*“(w)v,(®). We have made this choice
because, as we will see, we can then develop complete models of ultrasonic phased
arrays inspections without having to explicitly evaluate the radiation impedances
of the elements. For array elements this evaluation must typically be done numeri-
cally, although it is not a difficult calculation for simple element shapes such as
rectangles [4]. The transfer function for an immersion setup that describes the LTI
system of Fig. 9.6b is denoted as ¢, (w). For a contact setup, since the pressure is
modeled as given at the transducer face, we will instead take the output of our LTI
model to be the actual force, F,(w), given by Eq. (9.3) and let #/. (@) be the transfer
function in the contact case, as shown in Fig. 9.6c. Note that these transfer functions
are explicit functions of all the system components shown in Fig. 9.6a but we will
not need to write those explicit relationships here since #, and ¢/, will not need to
be independently known in a complete description of the ultrasonic system, as will
be discussed in Sect. 9.4.

9.2 Linear System Modeling and Sound Reception

The LTI models developed in the previous section can be used on sound generation
for either immersion or contact phased array systems. In developing similar models
for the sound reception processes it will be necessary to treat the immersion and
contact cases separately. Consider first an immersion setup. Figure 9.7 shows the
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Fig. 9.8 A model of the receiving element in an immersion test as a two-port system driven by a
force source of strength equal to the blocked force, £, on the face of the element in series with
the acoustic radiation impedance, Z”*, of the receiving transducer
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incident and scattered waves acting on an array element. These waves generate a
compressive force, F(w), and a normal velocity, V(@), on the face of the element.
This problem can be decomposed into the superposition of the two cases (a) and
(b) shown in Fig. 9.7. In case (a), the incident waves are present and the face of the
element is held rigidly fixed. The force exerted on the element in this case is called
the blocked force, F,(w). In case (b), the incident waves are absent and the motion
of the face of the element is assumed to be the total velocity, v(®), of the original
problem. In case (b), the waves generated are due solely to the motion of the face
of the element so this case is just a radiation problem of the type considered for the
transmitting array element where the force, F, (®), and velocity, v(w), are related

through the acoustic radiation impedance, Z*“ (), of the receiving element, i.c.
F(0)=-Z (o). 9.9)

The minus sign is present in Eq. (9.9) since the normal velocity here is assumed to
act into the face of the element, as shown in Fig. 9.7. Since the total force, F(®), in
the original problem is just the sum of the forces in cases (a) and (b), we have

F(@) = F,(w) - Z"* (0)v(). (9.10)

The meaning of Eq. (9.10) from a modeling standpoint can be seen more clearly
by considering Fig. 9.8 where a receiving array element B is modeled as a two-port
system with the 2x2 transfer matrix T” that transforms the acoustic input force
and velocity (F,v) into the voltage and current outputs (V;,/;). It can be seen from
Fig. 9.8 that the relationship of Eq. (9.10) is satisfied if we assume the acoustic
fields incident on the receiving element are modeled as a driving compressive force
source, F,, in series with an acoustic impedance, Z“.

For the contact case shown in Fig. 9.9 the interaction of the incident and scat-
tered waves are with an element sitting on an otherwise stress-free surface. The
incident and scattered waves produce a force and average velocity given by (F,v),
respectively. Again we can decompose this problem into two cases. In case (a), the
incident waves are assumed to excite the element when the contact surface is com-
pletely stress-free so that /' = 0. The average free surface velocity on the face of the
element is v, (@). In case (b), the incident waves are absent and the waves generated
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Fig. 9.9 Decomposition of the received waves in a contact measurement into two cases. In case
a, the incident waves are present and the contact surface is assumed to be stress-free. The veloc-
ity at this free surface is v,;. In case b, the incident waves are absent and all the waves generated
are due to the motion of the face of the element
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Fig. 9.10 A model of the receiving element in a contact test as a two-port system driven by a
force source of strength equal to the acoustic impedance multiplied by the free-surface velocity
on the face of the element, Z*“v «» in series with the acoustic radiation impedance, Z B of the
receiving element

are solely due to the velocity v,. Since again this case is identical to the radiation
problem of a transmitting element we have v, = —F / Z*“, where F is the total force
on the element in the original problem. Since the velocities in these cases must add
up to the total velocity v(w) in the original problem, we find

v(w)zvﬁ(a))—% (9.11)
or, equivalently,
F(w)=Z (o), (0) - Z (0)v(®). (9.12)

Comparing Eq. (9.12) with Eq. (9.10) we see that in the contact case the waves
interacting with the receiving element can be replaced by a force source Z*“v 51N
series with an acoustic radiation impedance, Z”“, (see Fig. 9.10). Note that the
mechanical sources and impedances appearing in Figs. 9.8 and 9.10 represent the
mechanical analog to a Thévenin equivalent electrical circuit. We could also use
a mechanical analog of a Norton equivalent current source and impedance. For
example, we could represent the relations of either Eq. (9.11) or (9.12) in terms of
a velocity source of strength v, (@) in parallel with an acoustic radiation imped-
ance, Z”“(w), as shown in Fig. 9.11. This Norton-like equivalent system is the
more “natural” model to use for the contact case since the acoustic source, v (@),
that appears in the Norton model is a function only of the incident acoustic waves
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Fig. 9.11 A model of the receiving element in a contact test as a two-port system driven by a
velocity source of strength v, in parallel with the acoustic radiation impedance, Z B of the
receiving element
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driving the receiving element, as is the blocked force, Fj(w), in the immersion
case. In fact, if we assume that we can represent the interaction of the incident
waves with the element surfaces in these cases as plane wave interactions, then the
blocked force (the force at a plane rigid, immobile surface) is just twice the force,
F, (@), generated on the face of the array element by the incident waves only (i.e.
when the element receiving surface is absent) and the free-surface velocity (the
velocity at a plane stress-free surface) is twice the velocity generated by only the
incident waves, v, (@), so that in both the immersion and the contact cases the
acoustic equivalent sources shown in Figs. 9.8 and 9.11 become (see [Schmerr-
Song] for an explicit proof in the immersion case; the contact case follows in a
similar manner):

Fy (@) =2F,, (o) (9.13)

The voltage and current outputs (/;, I;) of the receiving array element in either the
immersion or contact cases are the inputs that drive the cabling present between the
clement and the receiving circuits. If we let (V,,17,) be the voltage and current at the
inputs to the receiving circuits then in the sound reception process we can represent
the cabling as a 2 x 2 transfer matrix, T where

L] |n Tl

and, since the receiving cable is assumed to satisfy reciprocity,
TiT, —T5Ty =1, (9.15)

The receiving components in a phased array system generally serve two functions:
(1) they amplify the received low amplitude electrical signals, and (2) they can fil-
ter the low or high frequency content of the signals. Here, we will only model the
amplification function since in many quantitative NDE measurements one does not
normally want to further limit information present in the received signal beyond
what is already inherently present in the measurement processes due to sources such
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Fig. 9.13 Complete models of the reception process for an array element in a an immersion testing
setup, and b in a contact testing setup

as material attenuation, for example. Any filtering of the signal by the receiving
circuits, however, can always be introduced separately by modifying the ampli-
fied voltage, V,(w), received from an array element appropriately. Since we assume
the receiving circuits act only as a linear electrical amplification network, we can
characterize the receiving circuits as a receiving impedance, Z; (@), and a voltage
amplification function, K(w), as shown in Fig. 9.12, where

Vi(w) = Z; (o)1 (0)

(9.16)
V.(0) = K(o)V,(0).

For both the immersion and contact cases, we can combine our acoustic source and
array element models, cabling models, and receiving circuit models into a complete
series of models that represent the sound reception process, as shown in Fig. 9.13a, b.

It then follows that we can replace the detailed models of Fig. 9.13 with the single
input-single output LTI systems shown in Fig. 9.14 for the immersion and contact
cases. The transfer function, #, (@), of the immersion case relates the blocked force
input, F, (@), to the output voltage, V,(w). For the contact case we have chosen to
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let the transfer function, ¢;(w), relate a similar “force” input pc,S,v, (@) to an
output voltage, V,(w), where v is the free-surface velocity, (p,c,) are the density
and compressional wave speed in the solid adjacent to the receiving transducer, and
S, is the area of the receiving transducer. Note that similar to the sound genera-
tion model, this “force”, pc,S,v, (@), is not the actual force source term, which is
A 4> as shown in Fig. 9.10. By defining the input in this fashion, we see that the
transfer functions in both the immersion and contact cases have the same dimen-
sions and the acoustic radiation impedance does not appear. We can write down
explicit expressions for the reception transfer functions in terms of the detailed
system components shown in Fig. 9.13 but as done in our description of the sound
generation process we will not give those expressions here as these transfer func-
tions need not be obtained explicitly in a complete description of the measurement
process, as will be discussed in Sect. 9.4.

9.3 The Reception Process and Grating Lobes

In Chap. 4, we considered in detail the sound field generated by arrays. We saw
that for sufficiently large elements grating lobes were generated which travel in
directions other than that of the main beam. Grating lobes can also appear in the
reception process. We can demonstrate this fact in the simple reception problem
outlined in Fig. 9.15 where a plane wave is incident on an element of a 1-D array in
a fluid. In this case the incident pressure is given as

pinc = Pexp(iku'x)

9.17)
= Pexp[ik(—xsin® — zcos ©)].
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On the mth element of the array we have (x,z) = (e, +x,0), where x” is measured
from the center of the element which is located at x, = (e, ,0). Thus, the compres-
sive force/unit length, exerted on this element by the incident wave is

b
finc (Xm > a)) = J‘ pinc dx,
- \ (9.18)
= Pexp(—iksin®e,) I exp(—iksin®x")dx’
-b

and we will take the blocked force/unit length, f;(x,,,®), as just twice this incident
force so that performing the integration in Eq. (9.18) we find

sin(kb sin ®)
kbsin © (9.19)
= 2Plexp(—iksin©e, )D, (O)

Jf3(x,,,0)=2Plexp(—iksinBe,)

in terms of the far field directivity of the element, D, (©), (see Eq. (2.39)) when it is
acting as a transmitter. If the transfer function, ¢, (), is the same for each element
in the array then the received voltage from the mth element, V, =V (x,, @), is

V(Xm > w) = tR (w)fB (Xm ’ a)) (920)
and the received voltage from the entire array of M elements, V, (w), is given by

V(@)= 2PID, (©)1, (@)Y exp(-iksin©e, ). ©.21)

m=1

Placing the expression for the centroid locations (Eq. (4.3)) into Eq. (9.21) then al-
lows us to sum the resulting power series again and we have
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G M| I
Ve (@) =2PIt, () D, (O©)exp| ikssin © 2 Zexp (—iks sin© m)

m=1

sin[ Mkssin®/ 2] (9.22)
sin[kssin® /2]
=2PIM t, (@)D, (©)D, (kssin©),

=2Plt, (w) D, (©)

where the “point” source directivity, D, is the same directivity that appeared in the
sound generation process (Eq. (4.22)). If on reception we steer the beam at an angle,
@, with respect to the z-axis, then we need to include in Eq. (9.21) the steering delay
law of Eq. (4.25). Again, as shown in Chap. 4, we can sum the series and find the
total received voltage is instead

Ve (@) =2PIM t, (0) D, (©)D, [ ks(sin® —sin®)]. (9.23)

Because of the periodicity of D_, as discussed in Chap. 4, Eq. (9.23) shows that if
the array is steered in the incoming wave direction, there will be a large response,
but for arrays with a pitch larger than one half a wavelength grating lobes can also
appear that will produce enhanced responses in other directions as well. As in the
sound generation case, apodization laws can be applied to the element responses in
reception to help reduce these grating lobe contributions.

9.4 Linear System Model of the Complete Ultrasonic
Measurement Process

Having obtained LTI models of both the sound generation and reception processes,
to model the entire ultrasonic measurement process for a pair of sending/receiving
elements requires that we relate the scaled output velocity or force of the sending
element to the blocked force or input scaled free surface velocity of the receiving el-
ement in the immersion and contact cases, respectively. Thus, we need to model the
complex acoustic/elastic propagation and scattering processes occurring between
the sending and receiving elements by an appropriate acoustic/elastic transfer func-
tion. These transfer functions are shown in Fig. 9.16, where in the immersion case
the acoustic/elastic transfer function, ¢, (@), is defined as

(@) = Iy (@)

=, (9.24)
plcpISAvt(a))

and in the contact case the transfer function, ¢/ (@), is defined as
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While the Thevenin equivalent driving voltage, V,(w), and the sound generation
and transfer functions can be measured with detailed electrical measurements
[Schmerr-Song], [1, 2] the acoustic/elastic transfer functions are described by
wave fields whose values are normally not measurable. Thus, accurate models of
ultrasound propagation and scattering are needed to describe these functions. In
Chap. 11, we will show explicitly what field values must be known in order to
model these acoustic/elastic transfer functions in a flaw measurement experiment.

Figure 9.17 shows a complete model of either immersion or contact measurement
systems as a series of the transfer functions discussed in this chapter. However, we
can simplify these models even further by lumping the sound generation and recep-
tion transfer functions and the driving voltage into single system functions, defined
as s, (w) for immersion testing and s, (@) for contact testing, where

s (@) = 15 (@) (@) (0)

(9.26)
50(@) = 1, (@)t (O, ().
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Then the complete system models for either immersion or contact testing are given
by

V(o) =5, (o), (w) 9.27)
V() =s. (o) (o).

The complete ultrasonic system models in terms of the system functions are
shown in Fig. 9.18. This combination of all these terms into a single function is
important since, as shown in the next chapter, by making voltage measurements
of a phased array system in a calibration setup where the acoustic/elastic trans-
fer function can be modeled explicitly these system functions for each pair of
sending/receiving elements in the array(s) present can be measured directly. By
combining these measured system functions with models for the acoustic/elastic
transfer function in more complex flaw measurements, we then have a viable
approach to predict quantitatively the signals seen in many NDE phased array
experiments.
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Chapter 10
Phased Array System Functions

As seen in the last chapter, the system function of a pair of phased array sending and
receiving elements describes in a simple fashion all the electrical and electrome-
chanical characteristics of the sound generation and sound reception process present
in an ultrasonic measurement. In this chapter, we will show how system functions
can be measured experimentally in a calibration setup where the corresponding
acoustic/elastic functions are known.

10.1 Acoustic/Elastic Transfer Function Models

Since in phased arrays we can independently drive and receive with many differ-
ent combinations of sending and receiving elements, in a phased array system with
M sending elements and N receiving elements, we have M x N different system
functions, s, (@) and acoustic/elastic transfer functions, ¢;" (@) that generate the
received voltages, V™" (), where

V(o) =s,, (o) (o). (10.1)

Equation (10.1) can be used to obtain these system functions experimentally if we
measure the received voltages in a calibration setup and have explicit models for
the acoustic/elastic transfer functions in that setup. The calibration setups we will
use for immersion and contact tests are shown in Fig. 10.1, where a 2-D or linear
array is placed parallel to a plane reflecting interface and the reflection of the waves
generated by driving a single element of the array is received by a single receiving
element. A more detailed description of the setup geometry is shown in Fig. 10.2 for
a pair of sending and receiving rectangular elements.

Consider first an immersion setup. Our starting point in this case is the Rayleigh-
Sommerfeld model for an element, Eq. (6.21), where the velocity is assumed to be
constant over the face of the driving element, i.e. we will use a piston model. The
pressure due to the waves generated by the driving element at a point (x,,y,,D) in
the fluid at the location of the reflecting interface is given as
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Fig. 10.1 Calibration setups AAN
for obtaining the system
functions a for an immersion
test, and b for a contact test
a

Fig. 10.2 A calibration setup
geometry involving two
rectangular array elements
and a parallel plane reflecting
interface

—iwpyv, (@) ¢ exp(ikr) . .. (10.2)
p(xlﬂylﬂD)w): 2pI . JS p( )dXdya
T t r

where S, is the area of the transmitting element, the distance from a point
(%,7,0) on the sending element to a point (x,,y,,D) on the reflecting interface

is r= \/(i—x,)z +(7-y)+D’, k=w/c, is the wave number for the fluid,
and p; is the density of the fluid. If we assume the reflector is far enough away
from the element so that x,%,y,7 <« D then we can approximate this distance as

r=D+ [(i -x)V+(G-y) ] /2D (paraxial approximation) and we find

p(x,y,D,0) =

—iwp,, (@) exp(ikD) [ | FE-x)+G=0)" | oqe (10.3)
27D 5 2D "
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If we assume we can treat the interactions of these incident waves with the reflect-
ing interface as a quasi-plane wave interaction at normal incidence, then pressure in
the reflected wave at the interface, p; (x,,y,,D), is

pchz - plcpl

pC +pC p('xhyl:D’a))? (104)
2% p2 17 pl

P (x,y,D,0)=R,p(x,,y,,D,0)=

where R, is the plane wave reflection coefficient at normal incidence (based on a
pressure ratio) and (p;,¢,,),(p,,¢,) are the density and compressional wave speed
for the fluid and reflecting solid, respectively. The normal velocity, v, at the inter-
face in the z_-direction (directed towards the receiving element, see Fig. 10.2) is
also given by the plane wave relationship

v, (X, 3, D,0) = R, p(x;, 3, D, @) pc,,. (10.5)

Using this velocity field as specified on the entire interface, we can again use the
Rayleigh-Sommerfeld integral to obtain the pressure, p,, of the reflected waves at
apoint (x_,y,,D) on the plane of the receiving element:

P, (x,,7,, D, ) = “)p‘j [ 72,30 )M (10.6)

Applying the paraxial approximation to the distance »’ then gives

—1kR,, exp (kD) -+ p+=
M—DL | px.3,.D.0)

L =x) (0 —)’
exp(lk L D L |dx,dy,.

Py (%, ¥, D, 0) =
(10.7)

If the driving and receiving elements are separated by the distances (d,,d,) in the

(x,y) directions, respectively, then

x,=d +x, y.=d +y, (10.8)

(see Fig. 10.2) and we can rewrite Eq. (10.7) as

—1kR,, exp (ikD) +e= e
M—Dj—oc J:x [p(xlﬂylaD, a))

10.9)
+d —x) +(y,+d, - y) (
exp(ik(xg —x) +(,+d, — ) H ey,
2D

P, (x,, ¥, D, 0) =
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If we assume the incident wave interactions with the receiving transducer can be
treated approximately as plane wave interactions, an assumption that is likely satis-
fied for the setup of Fig. 10.2, we can take the blocked force, F;,, at the receiving
element to be simply twice the force exerted on the element by the incident waves
[Schmerr-Song] and we have

Fy(@)=2[  p,(x,.5,.D.0)dx,dy,

—2ikR,, exp (ikD) oo reben
ZZTI&{L [ [pe.y.D.0) (10.10)
x.+d —x) '+, +d —y)
exp[lk( g ; l) 2D(yg - yl) )}dx[dy[}dxgdyga

where S is the receiving area. Placing Eq. (10.3) into this result then gives

ki ki k1p1o '~_12 ~_'2
F ()= -2i Rn;:g(zl D) —ikpc, v, (w)J ljij“ {exp(lk(x x)2+D(y V) ]

+d, —x) +(y,+d, - )
exp(ik(xg ) AWy td, ) J:|dfcd)7}dx1dy;}dxgdyg.

2D (10.11)

Since the acoustic/elastic transfer function, 7, , for the immersion case is defined as
1, (@) = Fy(@)/ pc, vy (®)S, , this transfer function is

=2k, [W] 5k [Jm [ [I |:exp(ik (X- xz)z;gﬁ -5 )

exp(ik (x,+d, —x) +(y,+d, )

m Hdﬁdj}]dxldy, dx, dy, .

(10.12)
Now, consider the integrals in Eq. (10.12) over the interface, i.e.

oo s F—x)+(F-y) +d —-x) +(y, +d, —y)
]:J._ J. exp(ik(‘x xl) 2+D(y yl) )exp(ik(Xg x xl) (yg Y yl) de[dy/

2D
+d)Y +(y, +d,) 45
= exp(ik (g *d) + 0 +d,) ]exp(ik—x 2+Dy )

2D

o ’ +d +
L exp(ik al ]exp( k—(x 5 D de,

5 -
+eo Y L td )y,
R e e o1
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Both integrals appearing in Eq. (10.13) can be performed exactly since we have
[Schmerr, Schmerr-Song]:

oo N _.Bz
exp (i4x?) exp (—iBx)dx = |2 exp| =
| exp(idx®)exp (-iBx) ,/A ey

where Im() indicates “imaginary part of”. In Eq. (10.13) the corresponding 4 terms
are purely real but if we add a small amount of “damping” by letting 4 = 4+ie and
then take the limit as £ — 0, the result is the same as using Eq. (10.14) directly on
the forms given in Eq. (10.13) and we find

i x,+d ) +(y,+d.) 2432
I:lﬁDexp ik( )+, +d,) exp i
k 2D 2D

X+x, +d.) p+y, +d))
exp[—ik—(x )i:D 2 ]exp(—ik—(y Ys*+d,) J

] Im(4) >0, (10.14)

(10.15)

4D

Placing Eq. (10.15) into Eq. (10.12) gives

1 (0)=2R,, —tkexp (21kD)j [I ( k (x + d) + O+ dy) ]exp(ik iz;;)j)z )

47DS, 2D
F+x,+d.) P+y, +d,)
exp| ik EF T AN R ) s ey
4D 4D s (10.16)

When the exponential terms in Eq. (10.16) are combined, this equation simplifies to

__ —ikexp(2ikD) [ (x, +d )T
1,(@)=2R, ————— 47DS, J. [j [ 4D J

=, +d )T
exp| ik————"— [dxdy |dx,dy, .
( 4D ] ] (10.17)

Since we are assuming that both the transmitting and receiving elements are of
lengths (/,/)) in the (x,y) directions, respectively, Eq. (10.17) can be rewritten
more explicitly as

{ () = 2R, K eXPikD) —ik exp(2ikD) l_[l 2 J-1/2 [ [X (x,+d 8l ]dxdfc]
4zDS, 112d-1./2 4D g

[.[11//22-[11//22 [ [y (}:fD dy)] )dygdj}] .

(10.18)
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Consider now the first double integral in Eq. (10.18) and make the change of vari-
able from x, to ¢, where

k
= X — 10.19
=\ gep [ ¥~ (5 )] (10.19)
Then we have
112 1 ~_ 2 wy [x+1 /2-d,] )
e g N
“1./2-1,/2 4D & kol 2
o ) plEh/2d.]
(10.20)
2 D+I‘/2 ZﬂD[Y+] /2-d,] . i D[v 1,/2—d,] i
= == I _[ exp(zzz)dt— J exp(ztz)d, %
k ~1,/2 0 2 0 2

But the interior integrals are in the form of Fresnel integrals, F(x), where

F(x)=-[0xexp(i?”t2)dt (10.21)

so that we have

J~//2J~1/2 L [X (x4;—d)] degd)?

1./2 1,12
,/Z”Dj”” Ktz 2-a|-Fl K pzr r2-a||aE.
1/2 27D * * 27D * *
(10.22)

Again, if we make a change of variables on each integrand in Eq. (10.22), namely,

w=,| k (x+1,/2-4d,)

2rnD

p (10.23)
=,/ x—1 /2-d
i Zﬂ'D(x * ")

then Eq. (10.22) is of the form
12 172 [ (x +d, )]2

J. J exp| ihk=—————— 1D dx, dx
=1./2-1./2
(10.24)
2 Vol 22p Vot
i F(w)dw—L F(q)dq

k
. -]
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For these integrals of the Fresnel function we can use integration by parts to obtain

the relationship

X i ) 5 Xy
j F (x) dx = l:xF (x) + ;exp (m'x / 2)]x (10.25)

1 1

so that we find

[¥—(x, +d )T

J~1/2J1/2 [ e ¥ }dxgdi

1,/2d-1.72 4D

27cD k
l/ (. d)F((l +d)) 3 DJ ,/ (l d)F( d) )

[k 2 ik
-2d, 22D (( ) )—;exp(ﬁ(dx) )
. . N " 2
+iexp(;—D(lx—dx) )+%exp(;—D(lX+dx) )]

Expanding the phase terms of the exponentials gives

(10.26)

2i ik i ik
— —(d —(. —-d.) |+— — (. +d,)’
{20 o {20 e Lo )
_ i x ikd? Ctex ikl? ox ikl d_ tex —ikl d
2P D P )| P\ "ap Pl™2p (10.27)
2i ikd’ Kl d. ikl?
=—exp cos| — exp| —=|-1
V4 4D 2D 4D

and placing this result back into Eq. (10.26) we find

1./2 1/2

2zxD k
=== { 5 D(z +d)F((l +d)\ D]+ /2 —(, d)F((l ~d)\5 D]
( [k ikd” kld. ik
-2d, (( ) J ( Hcos(—zD )exp(—4D)—1H.

J/ /2 f] 7! ( [x- (if; dX)]zjdxgd)?

(10.28)
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In exactly the same fashion we can express the second double integral in Eq. (10.18)
as

j e e

exp| ik
71L,/271'V[/2 4D

20| [k k k k
:%[ Z,,—D(lﬁdy)F((ly*dy) M—DJ+ M—D(’y—d}v)F((ly—dy) M—DJ

j jkd? kl d 178
-2d, LF (d) _k_ +£exp % Y cos| 2L exp sl
"N2zD "'N2zD | & 4D 2D 4D

and the acoustic/elastic transfer function of Eq. (10.18) becomes, finally, an explicit
expression in terms of Fresnel integrals and ordinary functions:

dy, dy

—27iDexp (2ikD)
kil

[ MLD(AMX)F((WX) m%)* 2”iDax—dX)F[ax—d> J
) 2l (|
{F (z+d)F[<z+d>r ]+ - dy)F((ly ]
R e e e (‘”J i

(10.30)

Using Eq. (10.30) we can also obtain the results for a number of important special
cases. For example, if we set d, =0 we can obtain the acoustic/elastic transfer
function for a pair of elements in a linear array (where typically 7, > [).

—2miDexp (2ikD)
kL1,

k k k k
[./M—D(lifdx)F((lﬁfdx) M—DJ+ M—Dax—dxw[(lx—dg M—DJ
-2d, /2 (( D) J ilexp(iﬁj;‘){cos(%)exp(lfg)—lﬂ
(ool oo 5 )1

2I)F| () +=={exp —1}|.

tA(a)) =R,

t}\inw(w) =R,

(10.31)
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Fig. 10.3 a An array element thin fluid Do (m)
in contact with an elastic couplant element
solid, and b a model of this layer \ l
contact element as a constant N YYVYVYY
pressure source l

a b n

For a single element both sending and receiving (pulse-echo) we canset d, =d =0
and Eq. (10.30) reduces even further to:

4 .
tgulse—echo (a)) — R12 Texp (21kD)

k2

g

27D

kly2 i 1 ikly2
———qexp| — |1} .
2D T /k[j /27D 4D

i
+_—
] ™ [k 122D

o[
X
Pl%p

H

(10.32)

To obtain the acoustic/elastic transfer function for the contact case we must first
treat the problem of an array element in contact with a solid surface (with a small
fluid couplant layer between the array and the solid) as shown in Fig. 10.3a. As dis-
cussed in Chap. 6, we can model the element as a constant pressure source, p,(®)
, as shown in Fig. 10.3b acting over a rectangular area on the surface. Unlike the
immersion case, this source generates a wide range of wave types in the solid, in-
cluding bulk P- and S-waves, Head waves, and Rayleigh waves. However, if the
distance to the reflecting surface (see Fig. 10.1b) is much larger than the separation
distance between any pair of elements, then the P-wave interactions with the reflect-
ing surface are the dominant waves and these waves travel at near normal incidence
to the element. In this case, a high frequency approximation to the P-waves gener-
ated by the transmitting element at the location (x,, y,, D) of the reflecting surface
can be expressed in the form of a Rayleigh/Sommerfeld integral (see Eq. 6.38)
given by [Schmerr]

_ikpo (w)

27[plcp1 S

exp (ikr)

7

v.(x,y,D,0)= dxdy, (10.33)

where k= w/c, isthe wavenumber, v, is the velocity in the solid in the direction

n normal to the face of the element, the distance » = \/()c—)c[)2 +(y —yl)2 + D?

(same as in the immersion case) and (p,,c,,) are the density and compressional
wave speed of the solid, respectively. We have set the directivity function K, (6) =1
in Eq. (6.38) in Eq. (10.33), because we are assuming all interactions of a send-
ing element with the interface and then back to a receiving element occur at small
angles relative to the normal, n. In the paraxial approximation Eq. (10.33) becomes
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v, (5,7, D, @) = —ikpo(a))exp(ikD)J- |: (x x)+GF-y)

dxdy.
21D 2D } I (1034)

Following exactly the same steps as in the immersion case we can find the incident
velocity, v, (x,,y,,D,®) component of the reflected waves (acting in the —n direc-
tion) on the face of a receiving element as

o ko’
vy (%, ¥, D, @) = j [ pGyD@ )e"p(1 Dacdy,  (1035)
2 pl prl
in terms of the reflected pressure
P (x,y,D,0) = R12plcp1vn (x;,,,D, 0) (10.36)

which gives, in the paraxial approximation,

—1kR,, exp(ikD) += -+
vg(xr’yr’D’w)=%()J‘—m .[_m [v"(xl’yl’D’w)
2 o\ (10.37)
exp(lk (-xr xl) 2-;)(yr yl) J:|dxldyl.

Equation (10.37) can be expressed, as in the immersion case, in the form

—1kR, exp (kD) ¢+ ¢+
vg(xg,yg,D,a))zlzzTJ._mJ._w[vn(x,,y,,D,a))
x,+d. —x) +(y, +d, —y,) (10.38)
exp(ik(g o) Oy +d, 7 ) de,dy,.
2D

Placing Eq. (10.34) into (10.38) and computing the average velocity over the re-
ceiving element face:

_ 1
V(@)= [ v, G0 D, 0)x, dy, (10.39)

we find

_  —ikR,exp(2ikD) —ikp,(®) 1 deo oo L (E-x)+(G-y)
Vg(w) - 27D zﬂ.plcp]D Sr '[Sr ljm Jlm {J.S‘ |:exp(1k °D ]

+d —x)+(y,+d, —y)
exp[ik(xg =) 2D(y e +d, =) Hdﬁdj}}dx,dy,}dxgdyg.

(10.40)
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We can take the free surface velocity, v, (@) , as just twice this average incident
velocity, and note that for the contact case the acoustic/elastic transfer function,
t; (w),is defined as t, (@) = p,c,;SyV, (@) / py(@)S, so that this transfer function is

L —ikexp kD) | 1 ¢| =+ L E=x)+(-p)
tA(a))—2R12[—2”D ] 5 5[ N {js [Cxp(lk " J

exp| ik (xg +d, _x1)2 +(yg +dy _y1)2
2D

) didy |dxdy, |dxdy, .
(10.41)

If we compare Eq. (10.41) with Eq. (10.12) for the immersion case we see that they
are identical forms so for this contact measurement configuration we can also use
the immersion acoustic/elastic transfer functions.

When these acoustic/elastic transfer functions are used to determine the system
function for a pair of elements from the measured voltage, V_(w), we have

V. (@) = s (), (W)

(10.42)

V(@) = sc(@)t; (@) = sc ()t (@)
for the immersion and contact cases, respectively. Thus, we see that the system
functions in both cases will have the same dimensions as V,(w), namely Volts/
MHz or Volts-us. However, it is important to realize that in other contact and im-
mersion setups ¢ (@) # ¢, (@) in general. Also, we should realize that in the setup
of Fig. 10.2 being considered here, although the acoustic/elastic transfer functions
are the same for both the immersion and contact case, when we measure the system
function of the same array in both contact and immersion setups there will differ-
ences in the measured voltage generated and we will find s.(®) # s, (@) since the
coupling of the sending and receiving elements to their adjacent media will be dif-
ferent in the two cases.

Note that the transfer functions derived here are for an “ideal” (loss-free) mate-
rial. In any real material there will be ultrasonic attenuation of the waves present
and if this attenuation is significant it must be included as part of the acoustic/
elastic transfer function. If the attenuation is not too high then it is generally found
that attenuation can be modeled as simply a multiplicative exponential term with a
frequency dependent attenuation coefficient. For our calibration setups the acoustic/
elastic transfer function with attenuation, ¢}, is then given in terms of the “ideal”
transfer function, 7", as

£ (w) = exp[-2a( @) D] (w), (10.43)

where o(w) is a measured frequency dependent attenuation coefficient, having
dimensions of Nepers/unit length [Schmerr].
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Table 10.1 Three linear arrays, each with N elements, a center frequency, f;, a pitch, s , between
elements and element lengths (/.,/))

Serial number  Transducer type N f. MHz) s (mm) [ (mm) l, (mm)
SL16-Al Contact 16 5 0.60 0.55 10
10L32-Al Contact 32 10 0.31 0.26 7
SL32E32-10 Immersion 32 5 1.0 0.8 10

10.2 Array Element System Functions

The calibration setups shown in Fig. 10.1 are simple to implement with immersion
and contact arrays, but the number of system function measurements needed to fully
characterize an array can be very large, since for every element pair (i, j) character-
izing the ith and jth elements we need to measure a voltage, V, (@), and relate it to a
system function, s, (@), and an acoustic/elastic transfer function, #,(®), i.e.

V(@) =s; (o), (o). (10.44)
Then the system function can be obtained by deconvolution, i.e.
v, (o)

5; (@)= "y (10.45)

However, convolution by direct division in this manner is severely contaminated by
noise present outside the bandwidth of the measurement system so that the decon-
volution is performed in practice with a Wiener filter, i.e.

5,(@) =V, (@) (@)/[|1,(@) F +€ max{|1,(@) 1], (10.46)

where € is a small noise constant, and the ( )* represents the complex conjugate.

Even if the system function for the various element pairs are assumed to be
symmetric (s, =s;) for N elements in an array there are still a total of N(N+1)/2
measurements needed to characterize all the possible element pairs. For a 32 ele-
ment array, for example, a total of 528 measurements would be needed. Fortunately,
a recent study of three commercial linear arrays [1] found little variation in these
system functions. The three linear arrays (two contact and one immersion) listed in
Table 10.1 were exhaustively tested to obtain all the system function pairs.

Representative data was shown in [1] for the first array listed in Table 10.1, as
measured in a contact test setup with the array reflecting off the back face of a large
aluminum block. To summarize the large number of results in an efficient manner,
an average system function, s,(@), was calculated over all element pairs with the
same separation distance, i.e.

N-P

1
5. () =—— (w) (P=0,1,2,..,N-1), (10.47)
SP( ) N—P P S11+P( ) ( )
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Fig. 10.4 The magnitude of 0.14
the average system function,
‘EP , measured in volts-us, 0.12
for two elements with P 0.1
elements (P =0, 1, ..., 15) ’ ~
bet\yeén the sending and |§ | 0.08 A
receiving element for the 16 P
element array of Table 10.1 0.06

0.04

0.02

0 Tt

0 2 4 6 8 10 12 14 16
frequency, MHz

where P is the number of elements between the transmitting and receiving elements.
Thus for the 16 element transducer of Table 10.1, the data was reduced to only 16
average system functions. Figure 10.4 shows these average system functions with
separation distances, in multiples of the pitch, s, between elements varying from
0-s, (P=0)to 15-5 (P =15), where -5, represents pulse-echo cases (same ele-
ment firing and receiving) and all the other separations are pitch-catch cases. It
can be seen from Fig. 10.4 that the average system functions of various pairs were
very similar to each other both in amplitude and shape, with generally less than
seven percent overall variation, making it difficult to see all the curves present in
Fig. 10.4. Similar consistency of all the system functions was found for the other
two arrays shown in Table 10.1. This suggests that it may be adequate to determine
just a single system function for the entire array that can be obtained with a single
calibration measurement. However, since making phased arrays is still somewhat of
an art, it is wise to conduct at least a partial characterization of all the system func-
tions with the approach outlined here to ensure that the variations of the measured
system functions are indeed small.

Going back to Eq. (10.1) and summing the received voltages for all sending/
receiving element pairs, the total received voltage, V, (w), is given by

m=M n=N
Ve(@)= S
1

m=1 n=

()" (w)exp(i@At, ) exp(i@AL, ), (10.48)

mn

where we have also included the possibility of implementing time delay laws
(At,,At)) on the sending and receiving elements in the calibration setups of

m?

Fig. 10.1. If all the system functions are nearly identical then we have
V(o) = s(0)ts (o), (10.49)

where



208 10 Phased Array System Functions

Fig. 10.5 The magnitude 0.14
of a single system func-

tion, measured in volts-ps, 0.12
obtained with a linear phased 0.1
array inspection system for

various number of active |,s,- ( f )l 0.08
elements—16 (solid line), 8
(dotted line), and 4 (dashed
line) 0.04

0.06

0.02

frequency. MHz

Fig. 10.6 A single system 0.14
function obtained for a linear
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t. (@)= iit:” (w)exp(iwAt, )exp(imAt,) (10.50)

m=1 n=1

and we can find this single system function by deconvolution with a Wiener filter,
ie.

s(@) = ZR(“?[’Z(“’)] . (10.51)
[tz (@) [ +& max{| 1, (@) ['}

Figure 10.5 shows a single system function obtained in this fashion for the 16 ele-
ment contact array of Table 10.1 placed on a two inch thick aluminum block. The
three curves shown in Fig. 10.5 correspond to setups where the system function was
obtained with all 16 elements firing/receiving, eight elements firing/receiving, and
four elements firing/receiving. Time delay laws were implemented on sending and
receiving to focus the array at the back surface of the aluminum block. It can be seen
that again there is considerable consistency between the single system functions
obtained in this manner.
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The magnitude of a single system function, if it is representative of all the ele-
ment pair system functions, should not depend on any time delay laws used in its
determination. Figure 10.6 shows the same contact setup with the 16 element ar-
ray of Table 10.1 where time delay laws were varied to attempt to focus the send/
receive signals at focal depths of 50.8, 40, 30, and 20 mm with all elements of the
array sending and receiving [note that all of these focal lengths except the 20 mm
case were greater than one near field distance where true focusing is not possible.
However, by including a focal law one can help reduce beam spread somewhat in
these cases and make the use of the paraxial approximation more appropriate]. It
can be seen from Fig. 10.6 that all the system functions were nearly identical except
for the 20 mm focusing case. The differences seen in the 20 mm focusing case are
likely due to errors in using the acoustic/elastic transfer functions derived here since
those functions were obtained under the paraxial approximation, which is violated
under such tight focusing conditions.
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1. R. Huang, L.W. Schmerr, Characterization of the system functions of ultrasonic linear phased
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Chapter 11
Measurement Models for Ultrasonic Arrays

In the previous two chapters we showed how the response of a pair of send-receive
array elements can be modeled in terms of two components: (1) a system function
that describes all the electrical and electromechanical parts of the elements and their
driving/receiving sub-systems, and (2) an acoustic/elastic transfer function that de-
scribes all the acoustic and elastic wave propagation and scattering fields present
between the sending/receiving elements. As seen in Chap. 10, the system functions
can be measured directly in a calibration experiment where the acoustic/elastic
transfer functions are known. If the same array elements and settings for the phased
array instrument that are used in the calibration experiment are present when the
array is used in an ultrasonic flaw measurement then the system functions remain
unchanged. This is also true if the elements are part of separate sending and receiv-
ing arrays. Thus, if the acoustic/elastic transfer functions in the flaw measurement
can also be expressed in terms of fields that can be modeled then one can determine
the voltage signals received from the flaw from every element pair in the array(s).

Using general reciprocity relations, an explicit expression will be obtained in
this chapter for the acoustic/elastic transfer function of a pair of sending and receiv-
ing elements in terms of the fields present in a flaw measurement. Multiplying this
transfer function by the appropriate system function gives the measured voltage, as
described in the previous chapters. This model of the received voltage is a complete
ultrasonic measurement model for an arbitrary pair of array elements in a form
similar to that developed by Auld [1]. Combing these measurement models for a
collection of sending and receiving elements in a flaw measurement then gives us
the corresponding measurement models for a complete phased array measurement
system.

We will also develop a reduced form of measurement model of the Thompson—
Gray type [2] where one assumes the flaw is small enough so that the incident
fields from the array elements do not vary significantly over the flaw surface. The
Thompson—Gray measurement model is less general than the Auld form of the mea-
surement model but because the flaw response is contained in a Thompson—Gray
measurement model explicitly in terms of the far field scattering amplitude of the
flaw it is particularly useful for flaw characterization and sizing, probability of de-
tection (POD) studies, and many other flaw-centered NDE applications.

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 211
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2 11,
© Springer International Publishing Switzerland 2015
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Ultrasonic phased arrays, because of their ability to manipulate their ultrasonic
wave fields, are inherently useful for generating images of flaws. Those images can
be formed based on ad hoc methods or on more quantitative methods that relate the
images directly to physical properties of the flaw being imaged. In this Chapter we
will also develop approximate forms for both an Auld type measurement model and
a Thompson—Gray model that are the bases for the generation of quantitative flaw
images, as will be discussed in the following Chapters.

Finally, we will describe measurement models of both the Auld type and the
Thompson—Gray type for 1-D arrays radiating into a fluid in two dimensions. These
1-D measurement models will, as done earlier for ultrasonic beam models, allow
us to discuss phased array measurement systems and imaging principles in a much
simpler context.

11.1 Reciprocity Relations

Reciprocity principles play a fundamental role in wave propagation studies [3, 4]
and in modeling ultrasonic measurement systems [Schmerr—Song]. For example,
these principles can be used when modeling how the electromagnetic fields in a
cable behave (see Fig. 11.1). The electrical and magnetic fields at both ends of a
cable can be shown to satisfy the reciprocity relationship

J(E® xHY —EQ xHO )-n, ds
5 (11.1)
= [(E xHY —E{” xH")-n, dS,

S

where (E;,H,) are the electrical and magnetic fields at one end of the cable and
(E,,H,) are the electrical and magnetic fields at the other end (Fig. 11.1). The unit
vectors (n,,n,) are the outward unit normals at the ends, as shown in Fig. 11.1,
and (S,,S,) are the cross-sectional areas of the cables at their ends over which the
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Fig. 11.2 A “lumped” parameter model of a coaxial cable showing the voltage and current at the
cable ends

field values in Eq. (11.1) are calculated. The superscripts (1) and (2) on these fields
denote two different driving/termination conditions under which these fields are
measured.

Instead of using the field values explicitly in a reciprocity relationship, one can
also use “lumped parameters.” For the cable, for example, we can express the volt-
ages and currents produced by these underlying fields in a similar reciprocity rela-
tionship given as (see Fig. 11.2)

Vl(l)]l(Z) _ Vl(Z)[l(l) — VZ(I)IEZ) _ VZ(Z)IS) , (11'2)

where (V,,1,) and (V,,1,) are the voltages and currents at the cable ends, and (1)
and (2) again denote two different “states” under which these lumped parameters
are measured.

Reciprocity relations can also be developed that mix lumped parameters and
field parameters. For example, in describing the inputs and outputs of a sending
array element in an immersion test one can use lumped parameters of voltage and
current (¥,I) on the electrical driving side of the element and acoustic pressure
and vector velocity fields (p(x, @), v(X, ®)) over the output face of the element to
express the reciprocal theorem for an array element in the form

yhp® _pero - —j( PP x oV’ (x, @) - p” (x, )V (x, ) ndS(x),

s (11.3)
where states (1) and (2) again are two different driving and termination condi-
tions for the array element and n is the unit outward normal to the element surface
(Fig. 11.3a). Alternatively, reciprocity for the element could be expressed complete-
ly in terms of lumped parameters. If we assume the element in this immersion test
acts a “piston”, for example, then v(x, @)-n=v(w) and Eq. (11.3) reduces to

yOre @0 - pOye _ peym (11.4)

where F(w) is the force produced by the integral of the pressure over the face of the
element and v(®) is the (uniform) normal velocity (Fig. 11.3b).

In considering the acoustic and elastic wave fields between the sending and re-
ceiving array elements in a flaw measurement (see Fig. 11.4), it is possible to also
derive a reciprocity relation that connects the fields on the flaw surface to the force
and velocity on the face of the receiving element. The details of how this reciprocity
relationship is obtained have been presented elsewhere [Schmerr—Song] so we will
only state the reciprocity relationship here. It is
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Fig. 11.3 a A “mixed”
model of an array element
with lumped parameters of
voltage and current defining
the inputs and pressure and
velocity fields at the output
face of the element, and b a
model of an array element
with voltage and currents at
the input and compressive
force and normal velocity at
the output

Fig. 11.4 a An immersion
flaw inspection with a pair of
sending and receiving array
elements, and b a correspond-
ing contact flaws inspection
with sending and receiving
elements
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(FIvy -Fov))= j (2 (x, 0 (x, 0) — 2 (x, 0" (x, ) ), (x)dS (x). (11.5)

Sy

Here states (1) and (2) are two specific states. State (1) is the actual flaw measure-
ment setup where the flaw is present while state (2) is where the receiving element
acts as a transmitter instead of a receiver, and the flaw is absent. The parameters

F{,v}) are the force and normal velocity on the receiving element produced by
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the waves scattered from the flaw in state (1) while (F*,v?) are the force and
normal velocity on the face of the receiving element when it acts as a transmitter
in state (2). The fields (7,(X,®),v,(X,®)) are the stresses and velocity compo-
nents on the surface, S 1 of the flaw, whose outward unit normal components are
n,(x) (see Fig. 11.4a, b). This reciprocity relationship can also be written in the
alternate form

(B = F2v) = [ (€7 @ v (x, )~ t? (x, @) v (x,0))dS(x), (11.6)

Sy

where " = 7"n, (m=1,2) are the components of the traction vector, t"), acting
on the surface of the flaw.

Although Egs. (11.5) and (11.6) were derived in [Schmerr—Song] explicitly for
the immersion case, both of these equations are applicable to either the immersion
or contact testing setups shown in Fig. 11.4. This can be seen by writing these reci-
procity relations entirely in terms of the underlying fields on the face of the receiv-
ing element. Equation (11.5), for example, then becomes

[(7/ % ov? (x,0) - p? (x, )V (x, ®)) ndS(x)
(11.7)

= j (70 (x. v (x, @) - 27 (x, 0V (x, @) ), (x)dS (x)

which is true for both the contact and immersion cases since in the immersion case
the stress fields at the acoustic port of the element are purely pressure fields and in the
contact case there is a fluid couplant between the element and the adjacent solid so
again there is only a pressure on the surface of the element. Here (p/ (x, ), v/ (x, w))
are the pressure and velocity fields on the receiving element due to waves scattered
from the flaw. But in the contact case, if we assume this pressure is uniform in
both states, i.e. p/ (x,w) = p’ (w) and p® (x,w) = p'” (w), then the forces on the
receiving element face are just F/ (w)= p/(w)S, and F\” (@)= p® (®)S.. Then,
if we define the average normal velocities on the face of the receiving element in
either state as

v () = S [ v/ (x.0)nds(x)
s
r3 (11.8)

VO (@) = Si [ v (x.0)-ndS(x).

rS,

Equation (11.7) again reduces to Eq. (11.5).
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11.2 An Ultrasonic Measurement Model for Immersion
Setups

Consider an immersion flaw measurement setup. In state (2) where the receiving
element B is acting as a transmitter, the force F\” and normal velocity v{’ are

related through the acoustic radiation impedance, Z”*, of the receiving element, i.e.

FP ()= Z (o) (w). (11.9)
Placing Eq. (11.9) into Eq. (11.5) then gives

(B =22 = (25 .o (x,0) - 27 (x, 0" (x, @) ) n, (x)dS (x).

5 (11.10)
But the quantity in parentheses on the left side of Eq. (11.10) is just the blocked
force, F,(w), generated on the receiving element by the flaw fields (see Eq. (9.10),

with v =—y/ since v in that equation is directed inward to the element face) so that

F,(w)= [ (2 xov? (x,0) - 77 (x, 0" (x, @) ), (0)dS(x). (11.11)

1
SIP

Dividing this result by pc,S (@), where (p;¢,) are the density and wave
speed at the sending element 4, which has an area, §,, and a uniform velocity,
v (@), over that area in state (1), we find an expression for the acoustic/elastic
transfer function (see Eq. (9.24)), namely

1
t,(0)= —— 7 (x, @) (x,0)
plcplSAvp(w)Vz(e)(w)sj,( (11.12)

-7 (x, )" (x, a)))nj (x)dS(x).

Since the received voltage, V' (x,,X,,®), for a sending element located at x and a
receiving element located at x (see Fig. 11.4) is just proportional to this transfer
function through the system function, s, (@), for the pair of sending and receiving
elements present, we have

1
picS vy (o (@) (11.13)
J (2 x. o (x. ) - 22 (x, V" (x, ) ) m, (0)dS ().

Sy

V(x,.x,,o)=s (o)

Equation (11.13) is an ultrasonic measurement model for an arbitrary pair of el-
ements in an immersion flaw inspection (Fig. 11.4a). It predicts the frequency
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spectrum of the measured voltage in terms of the system function, which can be
measured in a calibration setup as shown in Chap. 10, and the fields on the surface
of the flaw in states (1) and (2). These fields are normalized by driving velocities on
the faces of the sending and receiving elements in states (1) and (2) respectively, so
that one only needs to calculate the fields in Eq. (11.13) for cases where the driving
velocity is unity on the faces of these elements. If appropriate ultrasonic beam mod-
els and flaw scattering models are available, these normalized fields can be directly
calculated and one does not need to know the actual velocities on these element
faces for the models involved.

11.3 An Ultrasonic Measurement Model for Contact
Setups

One can again start with Eq. (11.10) since the force and average velocity lumped
parameters are again related through the acoustic radiation impedance (Eq. 11.9 for
state (2)). However, we can rewrite Eq. (11.10) as

f
[F R__yf JF,;2> = j(r;)(x, oy (x,0) - 77 (x, a))vf”(x,a)))nj(x)dS(x). (11.14)

B;a
ZV Sy

In the contact case, we can recognize the term in parentheses on the left side of
Eq. (11.14) as the free surface velocity (see Eq. (9.11) with v = —y/ again since v is
directed inward to the transducer face) so we have

v, FRI(Z)Sj(rj.?(x,w)v,FZ)(x,w)—f;f)(x,w)v;“(x,a)))nj(x)dS(x). (11.15)

In Chap. 10 we saw that a system function having the same dimensions as the mea-
sured voltage, could be obtained by using a non-dimensional transfer function in
the contact case defined as ; = pc,S,v, / F;" where F" is the compressive force
exerted on the face of the driving element in state (1) and (p,¢,) are the density and
compressional wave speed of the solid adjacent to the receiving element whose area
is §,. From Eq. (11.15) then we have

— [ (7 (x o (x.0) - 7 (x, o)V (x.0))n,(x)dS(x). (11.16)

Sy

and a complete measurement model for the received voltage for the contact case
(Fig. 11.4b) is
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pc,Sy

Fww(ﬁ@@W@@;ﬁm@W@@M®ﬁm.
T R S/;

V(x,,X,,0)=s.(®)

(11.17)

In Eq. (11.17) we see the fields on the surface of the flaw are normalized by the
forces on the faces of driving elements in states (1) and (2). Thus, as in the immer-
sion case, we do not need to know the actual driving forces (or underlying pres-
sures) in the contact case to model these wave fields.

Measurement models similar to those given by Eqgs. (11.13) and (11.17) were
originally obtained by Auld [1] using general electromechanical reciprocity condi-
tions. Because such measurement models are based primarily on assumptions of
linearity and reciprocity they are applicable to almost all NDE inspections. Since
Auld’s seminal paper there have been numerous applications where these measure-
ment models have been coupled with ultrasonic beam models and flaw scattering
models to simulate the signals seen in NDE inspections. Many of these applications
have been described in the Proceedings of the Review of Progress in Quantitative
NDE meetings [5]. To date, measurement models have been mostly used to simulate
inspections with large single element transducers but as we have seen here they are
also applicable to any arbitrary pair of sending and receiving elements. By simply
considering the ensemble of all pairs of sending/receiving element responses and by
incorporating the appropriate time delay laws and/or apodization laws these mea-
surement models are also applicable to virtually any ultrasonic inspection using one
Or more arrays.

11.4 A Reduced Measurement Model for Small Flaws

Although the measurement models of the Auld type discussed in the previous sec-
tions have the advantage of being very general, the flaw response is contained in
those models only through the fields on the flaw surface, making it difficult to con-
nect the measured voltage response with any specific flaw characteristic or flaw
parameter. Since the purpose of most ultrasonic NDE flaw inspections is to make
that connection and predict flaw properties from the measured signals, it would be
useful to be able to have a measurement model that contains the flaw response in a
more explicit fashion. Fortunately, this is possible with a relatively few additional
assumptions. The details have been given elsewhere, [Schmerr], [Schmerr-Song],
so here we will briefly outline the steps.

The basic assumptions we will make are (1) that the waves incident on the flaw
in states (1) and (2) can be treated as quasi-plane waves, and (2) that the flaw is
small enough so that the amplitude of these waves does not vary significantly over
the flaw surface, so we can take the amplitude of these waves as evaluated at a fixed
point, x, (see Fig. 11.5) which is usually taken to be the center of the flaw for simple
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flaw shapes. Consider first the case of immersion testing where the waves are gen-
erated in states (1) and (2) by elements having uniform velocities (v{" (w),v{" (w))
on their faces. The velocity components of the incident quasi-plane waves in states
(1) and (2) on the flaw can be written as

v @) = v (@ (x,. %, @)df) exp ke (x=x,)]
, , . , , (11.18)
v (x,0) = v (@)V P (x,,x,, w)d) exp [ikaze( )(x— xo)],

aj o

where (d%,d”)are the unit vector polarizations of the incident waves in states

1) and (2), which are traveling in the direction of the unit vectors (e)},e”)) and
g B o

kg, = @/ cyy, k,y = @/ c,, are the wave numbers of the incident waves, which can
be of type S (= p,s) forstate (1) and type & (o = p, ) for state (2) correspond-

ing to either P-waves or S-waves where (p,,c,,,c,,) are the density, compressional
wave speed, and shear wave speed, respectively, for the medium surrounding the
flaw. In Eq. (11.18) we will let (x/,x;,x;) be the coordinates of the position vector
x’ = x —x,, as measured with respect to the fixed point, x,, as shown in Fig. 11.5.
Note that the total velocity at the flaw in state (1) is given by the sum of the inci-
dent and scattered waves, i.e. v\ = v 4y (gee Fig. 11.5), so we need to
identify the waves in Eq. (11.18) as only those incident waves. In state (2) no flaw
is present so the total velocity fields are just the incident fields of Eq. (11.18). Also,
in state (2), the stresses, sz)’ can be calculated since

1 ov?
Ti(jZ) = Cijkl - k,
—i@ ox,
e,(;,z;) N (11.19)
= _Cijkl_vk >

a2
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where €, is the tensor of elastic constants [Schmerr]. Placing Egs. (11.18) and
(11.19) into the measurement model of Eq. (11.13) gives

P (x,.x,,0)

Vix,.x,,0)=s (o)
( ) 1 ,DlelsAv;l)(a))
(2)
: j (fjb(x, ©)d? (x, )+ Cpyy 2 d v (x, w)) (11.20)
TC

Sy a2

-n,(x)exp ik,,e; - x")dS(x’)

If we now normalize the stresses and velocity components in state (1) by the dis-
placement amplitude, v{"V'" / (—iw), of the incident wave in that state, we can de-
fine these normalized fields as

s D)
i yOpo
o (11.21)
J Wy o
Then Eq. (11.20) can be rewritten as
VO (x,x,,0)V? (x ,x,,0
V(xj,x,,a))=s1(a)) ( 2 0 ) ( 0 )
—iapc,S,
(11.22)

(2)
=a 2 € 2)—(
’ J‘ (T,;i)(X, w)dézi) (x, )+ Czjkl c d;(k)vi( )(Xs w))

Sy a2

-n;(X)exp [ikazeﬁf) : x'] ds(x’)

Equation (11.22) contains the flaw response in an explicit form. This can be seen by
considering the canonical problem of a flaw in an infinite medium acted upon by a
incident plane wave of type g (= P,S) traveling in the e(/? = e;fl, direction and
having a unit displacement amplitude, as shown in Fig. 11.6. In the far-field of the
flaw a scattered wave of type & (e = P, S) traveling in the e” = —e!? direction is

a spherically spreading wave of polarization d7 having the displacements

exp(ik ,7)
—

u(x, w) = A(e’ e’ , w)d”

inc ™ scat >

(11.23)

Here A(e” ,e”

inc >~ scat 2

whose components are given by

@)= A’ e

inc? Vscat >

w)d? is the vector far-field scattering amplitude
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Comparing this expression with the integral in Eq. (11.22), setting d* = -d?’ and

e’ =—e” we see that

scat

o2

(
j(?“(x @d$ (x, @)+ C, La_go50 a)))n (x)expl ik, e x" |dS(x")
Sy ¢

= drp,cl, [ Ael. e, ) (-d?) ] (11.25)

and Eq. (11.22) becomes

V (XS > X’ 2 a)) = SI (a))I}(l) (X: b Xo B a)) I}(Z) (Xr B XO b a)) A (eﬁc B e:tcat > a)) lﬂ} >

_lkazgcmSA
(11.26)
where A(ew, & .» @) is the scalar component of the vector scattering amplitude
given as

inc?

Alel e, o) =[A(e]. et o) (-d™)]. (11.27)
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The contact case follows similar steps. First, the incident waves are expressed as
quasi-plane waves of the form

sinc F(l)(a)) > . ’
VI (x, ) = pTc—SV(l) (x,,x,,0)d}) exp(zkﬁzeg) X )
1“p1°4
(11.28)
(2) Flgz)(w) >(2) (2) . 2) o7
v (x,0)=————V (xr,xo,a))dw. exp(zkazea X ),
y pCpSB ¥

where (p,c,) are the density and compressional wave speed, respectively, in the
solid adjacent to the receiving element and (p;,c,,) are the corresponding parame-
ters at the sending element. These densities and wave speeds are the same in contact
tests where the sending and receiving elements are in contact with the same medium
but for generality we have left them different. Similarly, (0,,¢,,) are denoted as
the possibly different density and wave speed (of the scattered wave) surrounding
the flaw.

Second, the stresses and velocities in state (1) are normalized so that the incident
plane wave in that state is of unit displacement amplitude:

70 _ —ipic,S, Tt(jl)
i Or
BV (11.29)
S0 _ —ia)plcp]SAvﬁ_l)
J FOp0

Then Eq. (11.17) reduces to

5 5 4
V(X'Mxrjw) = SC (w)V(l) (XS’XO’a)) V(Z) (Xrﬂxoaw)A(egcnefcataa))l ﬂ.pzcaZ ]

_ikaZIolelSA

(11.30)

which is of exactly the same form as Eq. (11.26) for the immersion case. Note that
in both cases the fields (V,V®) are non-dimensional.

A reduced measurement model in a form similar to Eqs. (11.26) and (11.30) was
first obtained by Thompson and Gray [2] for immersion setups that used single ele-
ment transducers. Because the received voltage is just proportional to the scatter-
ing amplitude A(ei[:c’eféa ., @), if one measures the recgiveq voltage and the system
function and models the incident fields present in (V" )®) one can obtain the
scattering amplitude by deconvolution [Schmerr-Song]. Numerous previous studies
have used the Thompson—Gray measurement model to experimentally determine
scattering amplitudes. Those scattering amplitudes then have been used as the basis
for flaw sizing and flaw characterization methods, inverse scattering problems, and
probability of detection (POD) studies [5]. We have shown here that the same type
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Fig. 11.7 Scattering of a gen-
eral shaped convex inclusion
where the specular response
at a stationary phase point is
measured

of measurement model is directly applicable to elements of arrays in both immer-
sion and contact testing.

To predict the voltage using a measurement model of this type, one needs a beam
model for evaluating the fields and a flaw scattering model to predict the scattering
amplitude A(e”,,e”,,, ®). The beam models discussed in Chap. 6 can be used effec-
tively to compute the (¥, /) terms, but flaw scattering processes are generally
very complex, even for simple shaped scatterers. However, one scattering case of
rather general complexity can be modeled explicitly, as shown in Fig. 11.7. Con-
sider a general shaped elastic inclusion with density and wave speeds (0;,¢,3,¢,3)
embedded in an adjacent elastic medium with density and wave speeds (p,,¢,,,¢,,)
and let a plane wave of type £ be incident on the flaw from a sending element of an
array. If there is a point on the surface of the inclusion, x_, called a specular point,
where the incident wave and scattered wave directions satisfy Snell’s law, i.e.

sing  siné
)

Cp c

(11.31)

then one can use the Kirchhoff approximation and the method of stationary phase
[Schmerr] to obtain an explicit expression for the specular point response of the
flaw. For many flaws, this specular point response is the most significant scattered
wave contribution to the entire flaw response. Specifically, one finds for the specu-
lar point response of a convex flaw

A(eﬂ o w)z(e:;a/n)Rzogﬂ RR,

inc >~ scat ®

(11.32)

|g“ﬂ.n| eXp[ikdng'Xs]’

where
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= _einc _escur (1133)

is a vector parallel to the outward unit normal n at the stationary phase point. The
R;‘;ﬂ term is the plane wave reflection coefficient (based on velocity ratios) for an
incident wave of type f and a reflected wave of type « for a wave incident in
medium 2 (surrounding the flaw) and where medium 3 is designated as the mate-
rial within the flaw. The lengths (R ,R,) are the principal radii of the convex flaw
surface at the specular point x . Another way to express this scattering amplitude is

a . ap |
A(eﬁ o )= (e“‘” T)f;; | RE, exp[—ikaz |ga’ﬂ|d:|, (11.34)
g n

where d =x_n (see Fig. 11.7). For simple convex shapes like a sphere there is
only one specular point on the flaw surface for a given pair of sending and receiving
elements. For more complex shapes there may be more than one specular point con-
tributions. Because the amplitude of the scattering amplitude of the specular point
response is independent of frequency, in a real band-limited system the specular
point pulse will act as a band-limited delta function in the time domain. Other flaw
scattered wave responses often have a frequency content that is more significant at
lower frequencies and so those responses may become very small in comparison to
the specular point response(s) when band-limited.

11.5 Measurement Models for Quantitative Imaging

In the previous section we showed how a measurement model of the Auld type
could be reduced to a more explicit Thompson—Gray type of form. In the reduced
Thompson—Gray model the flaw response is just the far field scattering amplitude
function of the flaw. We also showed how the specular point response from the flaw
surface contribution to that scattering amplitude could be obtained explicitly.

When we use phased arrays for imaging flaws, those flaws may not be small
enough to allow us to assume that the beam variations across the flaw surface are
negligible. However, as discussed in more detail in the next Chapter, the specular
point responses from points on the flaw surface are often still the primary signals
received by an array from the flaw so that in an image formation process these
specular responses waves play an important role. In this section we will use the
Kirchhoff approximation and the stationary phase approximation to develop ap-
proximate measurement models of both the Auld and Thompson—Gray type that
characterize the scattering of the flaw entirely in terms of these specular responses.
In Chaps. 12 and 13 we will invert these measurement models to form an image of
the surface reflectivity of the flaw.
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Fig. 11.8 A pair of sending AN AN AN AN
and receiving elements in X
either a an immersion testing
setup, or b a contact testing

setup. The densities and PrsCp1s€y

wave speeds at the sending
element, for the material \ \
surrounding the flaw, and N

at the receiving element are
(placp]acgl)s (pzacpzacsz)a and

(ps cp,cs), respectively, for P£3:€p3:Cs A2

an immersion setup where N X
¢, = ¢, = 0. Normally, the a ﬂa“‘-
density and wave speeds at surface

the sending and receiving ele-
ments may be the same, but
we have allowed them to be
different for generality

3

LIJ(_
Y/
b fl a\\"
surface

Consider a general pair of sending and receiving array elements, either in an im-
mersion test setup, as shown in Fig. 11.8a or the contact setup of Fig. 11.8b. The lo-
cation of the centroid of the sending element is x, and the centroid of the receiving
element is x . The response of this pair of elements from a point x on the surface
of a flaw is also shown. We will develop approximate measurement models that will
form the basis of imaging flaws for both cases. For the immersion case we found the
measurement model in the form (see Eq. (11.13)):

1
e P @@ (11.35)
(2 000 (x )~ 72 (5.0 . 0 n, (x)S 0,

Sy

while for the contact case we had (see Eq. (11.17))

pe,Sy

V(x,,x,,0)=s.(0) FOED

[ (7 x. o (x,0) - 2 (x, 0 (x. @) )n, (X)dS (x).

(11.36)
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If we normalize Eqs. (11.35) and (11.36) appropriately, we can write these expres-
sions in a common form. Specifically, we define a normalized voltage, V' (x ,x, , @),
as

I7(XS’XV’a)) = plcplSAV(XS’Xr’a))/S] (a)) (1137)
for the immersion case and
V(x,.x,,0)=V(x,,X,,0)/ pc,Sys (@) (11.38)

52T

for the contact case. Similarly, we define normalized (but not necessarily non-di-
mensional) stress and velocity terms as

=) _ ) ) S ) ()
g =1 v = vy (11.39)

22) _ 2) (2 52 _ 2) /,2)
Z';l. —1'; R S A
for the immersion case and

O — 0 g S0 0 O
T =1 [ E, v =y

(11.40)
22) _ 2 @ 52 _ 2 @)
=1, [ F7, v =y
for the contact case. Then in either the immersion or contact case we have
V(x,,x,,0)= j (250 =225 ) n,dS (x). (11.41)

Sy

Note that, as mentioned previously, since we have normalized the fields in both the
immersion and contact cases by the driving velocities or forces acting on the trans-
mitting element face, these normalized fields are those due to a transmitting element
with either a unit velocity or unit force acting on its face. Thus, one can evaluate
these normalized fields completely with models without having to know the actual
velocity or force on the driving element.

We will use Eq. (11.41) as the starting point for developing a measurement mod-
el that evaluates the voltage response from points on the flaw surface shown in
Fig. 11.8. At high frequencies the incident normalized displacement fields and their
derivatives in configurations (1) and (2) can be written as

@ =09 (x,,x, @) dY exp[iaT (x,,x)]

oi " ‘aT(xX,x)
axj S ox,

J

ik (x,.x. 0} exp[iaT (x,.x)]

(11.42)

0y (x..x. @)dy exp[iaT (x,.x)]
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(no sumon f)
and

i =0 (x,,x,0)d3 exp[iaT (x, )]

7(2) T ~
a;:j = ia;a gin) U2 (x,,x,0)d2 exp[iaT(x,,x)] (11.43)
= ik e2U (x,,x, @) d% exp [in(X“X)]’

(no sum on &)

where again we have dropped the designation “inc” for the incident waves in
configuration (2) since incident waves are the only types of waves present in that
state (the flaw is assumed absent). Note that these normalized displacements, """
and > are normalized in the same fashion as the normalized velocities given
in Egs. (11.39) and (11.40) for the immersion and contact cases, respectively. In
Egs. (11.42) and (11.43) the (7}”,(7,(12) terms denote the similarly normalized am-
plitudes of the incident waves, where (¢, ) can take on either of the values (p,sv)
to denote a P-wave or SV-wave mode, i.e. we have allowed for the transmitted and
received waves to be either of these different types in the solid. The polarizations
of these waves are the terms d;,lk’ ,d%) for states (1) and (2) respectively. The phase
terms T(x,,x), T(x,,x) represent the time delays associated with the travel to and
from center of the elements to the flaw in states (1) and (2), respectively, and at high
frequencies the derivatives of the fields are just proportional to the derivatives of
these phase terms, as seen in Eqs. (11.42) and (11.43). Furthermore, we have used
the relationships

JoT(x ,x
ia)—( - )=ikﬁe;,‘}
dx; (11.44)
oT(x,,x
ia)—( . ):ikaejj.),
ox, /

(no sum on a, )
where k, = w/c, (m= a, ) are wave numbers associated with the correspond-

: 1 2
ing wave speeds, c,, and (ej), el

;) are unit vectors in the incident wave directions
at the flaw for states (1) and (2), respectively.

To develop a more explicit measurement model we will assume the scattered
waves in state (1) can be obtained at high frequencies from the Kirchhoff approxi-
mation. In the Kirchhoff approximation, the scattered waves at any point, x, on that
portion of the surface of the flaw where the incident waves can directly strike the
surface (the so-called “lit” part of the surface, S,,) are assumed to be identical to the
reflected waves generated by a plane wave incident on a planar surface, where the

planar surface is taken to be tangent to the flaw surface at point X. These reflected
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waves satisfy Snell’s law and can be obtained from ordinary plane wave reflection
coefficients, Rjy” (based on displacement or velocity ratios), where m = (p,sv) de-
notes the mode of the reflected wave while = (p,sv) is the mode of the incident
wave in state (1). On the remainder of the surface the total fields are assumed to be
identically zero. Thus, the normalized displacements and their derivatives on the lit
surface for state (1) are given by

i = Ug) (x,.x,)exp [ia)T (xs,x)](dgk) + z Rzﬁ;ﬁd,:,k)
et (11.45)
i

ox .

J

=0y (Xy,x,a))exp[ia)T(xx,x)](ikﬂd;lk)e‘ﬂ‘}+ S ik, R d el |,

m=p,sv

where d’ are the components of the polarization unit vector of a reflected wave of
type m, and e, are the components of a unit vector in the direction of a reflected
wave of type m. The stress and velocity fields appearing in Eq. (11.41) are given in
terms of the displacements and displacement gradients by

Q)
~) ol
Tji - Cijkl a

X
S — sy
Vi = o, (11.46)

7(2)
7 =C a”_k

ji ijkl

ox,

7 = —iwa?,

where C,, is the fourth order tensor of elastic constants for the material surround-
ing the flaw [Schmerr]. Placing these results into Eq. (11.41) we then obtain

V(x,.x,,0)=d j Uy (x,.x, U (x,.,x, 0) exp[ia)¢(xs,xr,x)]l(x)dS(x),

Slil

(11.47)
where the integrand term, 7(x), is given by
M 7(2) ) M 7(2) ,2) m; "o m; ’
](X) = njCi/'k/ dﬂk da[ eﬂl _ dﬁ’ dak € + Z (RB ﬂdt(zf?)dmkeml _ R23 ﬁdz(zi)dmiez(zzl) J
‘ c/fz Caz m=p,sv sz caz
(11.48)

and the phase term ¢(x,x,,x) is

o(x,,x,,x)=T(x,,x)+T(x,,X). (11.49)



11.5 Measurement Models for Quantitative Imaging 229

To develop a measurement model form suitable for imaging, we will assume that
the primary voltage response of the surface will be due to a collection of specular
reflections from the surface, where Snell’s law is satisfied, similar to what was
discussed in the previous section for small flaws. This assumption corresponds to
replacing /(x) by its stationary phase value, /(x_,, ), a value that has been obtained
previously [Schmerr] for a homogenous, isotropic elastic solid, where it is shown
that the incident wave terms in Eq. (11.48) vanish at the stationary phase point and
the remaining terms reduce to simply

[(Xsmt) = _szcazRg;ﬂ(e;k nk )9 (1 1 50)

where p, is the density of the material surrounding the flaw [Note: the minus sign
in Eq. (11.50) is not present in [Schmerr] since the [(x) considered there was the
negative of the expression used here]. Although the algebra is lengthy for proving
Eq. (11.50) in general testing setups, in pulse-echo cases only the same mode is
present for both the incident and reflected waves (= ff) since the normal inci-
dence reflection coefficient is zero for mixed incident/reflected modes and we also
have ej'n, = -1, e}, n, =1. In this case we can directly evaluate /(x_,,) in general
for a homogeneous, anisotropic material. To see this, note that the equations of mo-
tion for the displacements of a homogeneous, anisotropic solid are [6]

du,

v —p,@’u;. (11.51)
i 1

For a plane wave of type 4 and polarization d traveling in the ¢, direction we
have

u, = Ad, explik(ex,)—icwr] (11.52)

and Eq. (11.51) reduces to

Cijkleieldﬂk = pzc/zizdﬁj' (11.53)

From Eq. (11.53) it follows that

Cueedsds = pzczz. (11.54)

Also, for a wave of type ¢ and polarization d,, traveling in the ¢ (or ¢ =—e)
direction we have

C,

€€ do = pzcizda/" (11.55)
From Egs. (11.53) and (11.55) and the symmetries of the C,, tensor
(Cyu = Cjiy = Cy = Cyyy) we have
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p2(c22 —ciz)d d =0, (11.56)

BiTaj
which shows that the polarizations of two different mode plane waves traveling in
the same (or opposite) directions are orthogonal to each other, i.e.

d,d, =0 (a#p). (11.57)

Biaj

We can now use these results in the evaluation of 7(x) at the stationary phase point.
In pulse-echo at this point we have (with o = ) e =e=e,n=-c,e, =—e,

and dg.) = d/(,f) =dj so that we find

i

I(x,,)=—C |:dﬂkdﬁieﬁ16ﬁ’.f _dgdgeqey
stat ) ijkl
Cp2 Cpa (11.58)
m;f} r m;f} r
_ Z Ry, dﬁidmkeﬂleﬁj +R23 dﬂkdmieﬁleﬂj
m=p,sv cmz cﬁZ

The first two terms in Eq. (11.58) just cancel and using the symmetries of the C,,
tensor and Eq. (11.53) we find

I(X,,)= Py >, REP(c,p+ep)dyd,,. (11.59)

m=p,sv

But the polarizations of the reflected and incident waves will be orthogonal unless
m = 3 because of Eq. (11.56) so that

[(Xstat) = szcﬂZRg’ﬂdZijdﬂ] (1 1 60)

We will take the polarization of the reflected wave opposite to that of the incident
wave (an arbitrary assumption, but one that is commonly used—the final result,
however, is independent of this choice since a change in sign of the assumed polar-
ization will also result in a change in the sign of the reflection coefficient, leaving
the product unchanged). Then dj.d, = -1 and we find, finally

1(x,,) = =2p,c, REP(0°), (11.61)

which is just Eq. (11.50) for the pulse-echo case. We have written the reflection
coefficient here as RZ#(0°) to emphasize that we are dealing with the reflection
coefficient at normal incidence to the flaw surface. Note, however, that while the
pulse-echo result, Eq. (11.61), is valid for a general homogeneous, anisotropic elas-
tic solid, the more general form of Eq. (11.50) was only obtained in [Schmerr] for a
homogenous, isotropic elastic solid.
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If we now place Eq. (11.50) into Eq. (11.47) we obtain

V(x,.X,,0)=-2pc, a)zj {Rz‘;‘ﬂ(e;cnk)ﬁfﬁl) (x,,x, @)UY (x,,x, 0)

Siie

-exp [ia)¢(x5 ,X,, x)] dS(x)}

(11.62)

In the case of a pulse-echo setup (with the same mode on sending and receiving),
wehavee,n, =1, a=f3, U;.l) = U;z), X, =X, =X, (the common centroid location

of the sending/receiving element), ¢ = 2T(x_,x). In this special case Eq. (11.62)
becomes

V(x.0)=2pepa [{RE[TY (x..x.0)]
S (11.63)
-exp [Zia)T (x., x)] dS(X)}.

Equations (11.62) and (11.63) are both approximate measurement models of the
voltage received from a flaw in forms that describe the received voltage for a pair
of sending and receiving elements in terms of the reflection coefficient and fields
on the flaw surface. In the following chapters we will see how these models can be
used to generate flaw images.

For the reduced case of a small flaw, the normalized displacements in the inte-
grand of Eq. (11.62) are evaluated at a fixed point x, so they can be removed from
the integral and the phase ¢(x_,x,,x,®) is given to first order in the neighborhood
of the fixed point as

#(x,.x,,x)= ¢(xx,xr,x0)+[VT(XS,X)+VT(xr,x)]-(x—xo)

:¢(X“’X”X0)+(eg)/C/;z+e(cf)/ca2)-(x—x0) (11.64)

so that we obtain

I;(XS,X” a)) = —2,02(:[12(02(72) (XS,XO, w)(?ff) (xy,xo, a))expl:im(xs,xr,xo)]
J {ng‘ﬁ(e;{n,{)exp [ikﬂg“ﬁ-(x -X, )] dS(x)},

Siit

(11.65)

where g® is defined as

g™f = 0 /cs +e? (11.66)

=C,0€p s

In the pulse-echo case with same sending and receiving modes (o = f3), Eq. (11.65)
reduces to
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V(x.,0)=-2p,cya’ [U/(;) (X, X, a)):l2 exp[ 2iaT (x,,x,)]
: J. {Rf;ﬂ exp [Zikﬁze“’ (x-x, )] dS(x)}.

St

(11.67)

As we will see in Chaps. 12 and 13, Egs. (11.65) and (11.67) are approximate mea-
surement models suitable for developing an image formation process for small
flaws.

Equation (11.65) is closely related to the specular point response obtained in
conjunction with the Thompson—Gray measurement model of the previous section.
To see this relationship, we will assume the flaw is a small convex flaw and evaluate
the surface integral by the method of stationary phase [Schmerr]. We find

I7(xs,xr,a)) = —a)ZUg)(xs,XO,a))exp[ia)T(xs,xO)]Ug)(xr,xo,w)exp[in(x,,x())]

anp.c, inJRR
~%R§§"’ (erume Jexp[ ik, 8 (X, = X,) . (11.68)

Comparing this equation with Eq. (11.32) we see we can write Eq. (11.68) in terms
of the far field scattering amplitude of the flaw as

V(x,.x,.0)=-@’Uy (x,.x,, 0)exp[ioT (x,,x,) U (x,.x,.0)exp| iaT (x,.x,) |

47p,c,,

— A(eﬂ e’ a))

inc? ™ scatt ?

(11.69)

o2

1 2
where, recall, e}, =ef, e’ =—e.

We will put Eq. (11.69) in a more explicit form so that we can compare it to the
Thompson—Gray form. Consider first the contact case where Eq. (11.30) is rewrit-
ten here again as

V (X‘\. ’ X,. ’ a)) = SC (w)l}(l) (Xs 2 XO s a)) I}(Z) (Xr ’ XO ) w) A (egc ) ef:ut 5 (()) l%] .
KR 1P 4
(11.70)

Similarly, we can rewrite Eq. (11.69) as

V(x,.X,.0) = -0"s. (@)U} (x,.x,,0)exp[ ioT (x,,x,) |UL (x,.%,.0)exp[ i (x,.x,) ]

« 4rp,c,,
'A(e:’ig,em,,,w)[_ﬁic 2 pcpSB], (11.71)
o2
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where, recall (p,c,) are the density and compressional wave speed at the contact
receiving element, whose area is S,. Equations (11.70) and (11.71) are equivalent
since the incident velocity and displacement fields for state (1) were written in the
two separate forms

(1);ine FT(I) 7 (1) ol : (0]
Vi x,0)=————V (xx,xo,a))dﬂj exp[zkﬂ2 (e x)]
PiCpS, (11.72)
u" (x,0) = F"U (x,,%,,0)dy) exp[ioT (x,,x,) |exp [ikﬁ,2 (e x)]

J

Similarly, for state (2)

2 _ FIQZ) 7(2) (2) : 2
v, (x,m) = oS, vV (xr,xo,(x))dw. exp[zka2 (e x)] (11.73)
u®? (x,0)= XU (x,,%,,0)d) exp[in(xr,xo)]exp[ikaz (e(2> x)]

(1);inc

. O 2 .2
But since v, = —la)uj. ine vg. ) = —la)ui. ) we have

7 XO,(J)) = —i(DPICmSAUé]) (Xx’xo’m)exp [le (XS’XO )] (1 1 74)
p@ (Xr X,, (D) _ —l'(DpcpSBUf) (Xr ,Xgs 00) exp [i(l)T (X, , X, )] .

Using the relations in Eq. (11.74) we see that Egs. (11.70) and (11.71) are identical.
Similarly, in the immersion case, from Eq. (11.26) we found

V(x,.%,.0)=s,(0V" (x,, @)V (x,, @) A(eL), €%, w)l%} (11.75)
K PICp1° 4

while from Eqs. (11.69) and (11.38) we obtain

V(x,.x,,0)=-os (@)U} (x,,%,,0) exp[ia)T(xx,xo)] U (x,.x,, 0)

. . 4rp,c,,
-eXp [ZwT(xr’XO )]A(eiﬁr’lc’escaﬂ’w){ﬁ}' (1176)
a2 1= p1l~4

In this case the velocity and displacement fields were expressed in state (1) as
v (x, ) = Yo (x,,%,,0)d}) exp [ik132 (e“) x)]
u;l);inc (x,0)= V;l)U;fl) (Xs , X5 co) dg/? exp [in (xS , X, )] exp [ikﬁ2 (eﬂ) . x)] .
(11.77)
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and in state (2) as
W 0,0) =P (3,30, 0) ) expl i (¢ )]
aj

u? (x,0) =v?T (x,,%,,0)d? exp[ ioT (x,,x,) |exp [ikaz (e<2> X)] (11.78)

(1);inc
J

(1);inc

so that with v =—iou;"™, vj.z) = —iwui.z) we have

yo (XS,XO,(,O) = —iwﬁg) (x:,xo,w)exp[imT (XS,XO )] (11.79)

ye (xr,xo,(x)) = —inff) (xr,xo,m) exp[i(;)T (xy,x0 )]

Using Eq. (11.79) we see that Eqgs. (11.75) and (11.76) are identical.

11.6 Measurement Models for 2-D Problems

In earlier chapters we have examined the responses of 1-D arrays radiating two-
dimensional waves in a fluid since much of the physics associated with phased array
can be discussed more clearly in those simpler problems. For imaging applications,
2-D problems have the added advantage of requiring much less computations. Thus,
in this section we will describe measurement models for such 2-D cases.

It is relatively easy to transform a measurement model of the Auld type for a 3-D
elastic wave problem to a corresponding 2-D problem of waves in fluid media. We
can start with Eq. (11.13) for the immersion case and note that if all the wave fields
are 2-D waves propagating in a fluid we have
™ (x,0)=-p" (X, w)d,, 77 (x,0) = -p?(X,0)d . (11.80)
where (p", p*) are the pressures in states (1) and (2), respectively, X = (x,,x, )
is a position vector in two dimensions, and &), is the Kronecker delta. Also, the
surface, S, of the flaw in 3-D problems becomes a counterclockwise line integral
over the line, C, of the flaw and the area of the sending element, S, becomes the
length of the element, /,. With these changes, Eq. (11.13) becomes

1
(1) (2)
pel vy (o) () (11.81)
J(P? X o) (X, ) - p (X, 0 (X, ) ds(X),

<

V(x,.x,,0)=s,(0)

where (v(",v*) are the (outward) normal components of the velocity in states (1)
and (2), ds(X) is an arc length along C,, and we have set ¢, = ¢, since we only
have compressional waves in a fluid. Since
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__L o (11.82)
" iwp, on
Equation (11.81) can be rewritten as
V(X“Xr’w):sl(w) . 1) ! (2)
iwp,cl v, (@)p,vy’ (@) (11.83)
op® op®
] (ﬁ”(x, o)~ (X.0) - p" (X o)~ (x,w))ds(X).
e, n on

Equations (11.81) and (11.83) are complete measurement models for a 2-D scalar
wave problem. To obtain a reduced measurement model, at high frequencies we can
write the incident pressure wave fields in states (1) and (2) at the flaw as

p(l);inc — P(l) (XS , X, w) exp [la)T (XA . X)]
p? = PP (X, X, 0)exp[ioT (X,,X)] (11.84)

= ik, (e® -n) PP (X, X, w)exp[ioT (X,,X)].

Placing these results into Eq. (11.83) gives the measured voltage received at the
centroid, X, of an element from a sending element whose centroid is at X :

1
PP(X,,X T (X,,X
LT

V(X,.X,,0)=s(0)

n

ap(l)
( (X, 0)—ik, (e” -n) p" (X, a))) ds(X).
0 (11.85)

Now, if we assume that the flaw is small so that at a fixed point, X, near the surface
of the flaw the incident fields behave like quasi-plane waves of constant amplitude
we have

PY(X,.X,0)exp[ial (X,.X)]= PV (X,,X,,0)exp[ il (X,.X,)]

PP (X, X, 0)exp[ial (X,.X)]= PP (X,,X,,0)exp[ioT (X,.X,)]
-exp [ikze(z) . (X -X, )]

so Eq. (11.85) becomes
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V(anxr,a)) =S (a))ﬁ(l) (XS,XO,(U) 13(2) (Xr,XO,a)) kll /)p_c
oty P&

7 ()
[ (ag—(x’,w)—ikz (¢® n) ﬁ‘”<X',w>Jexp[ikze“> X' Jds(X),
AN (11.87)

where X’ =X-X is the position vector to a point on C, as measured from X,
and
PY(X,,X,
#exp[iaﬁ(xs,xo )]

(z)pl GVr (11.88)
P7(X,X
Mexp [ia)T (Xano )]

(2)
PCVy

P (X, X,, )=

PP (X,,X,,0)=

are non-dimensional pressure amplitudes of the incident waves in states (1) and (2)
at point X, and

1)
0 = P (11.89)
PY(X,,X,,w)expiaT (X,,X,)

is the pressure in state (1) normalized by the incident pressure of a quasi-plane
wave at the flaw so that it is the pressure due to an incident wave of unit pressure
amplitude. Note that the density and wave speed at the sending element, (p,c) are
the values measured at the receiving element, and (p,,c,) are the density and wave
speed in the material surrounding the flaw, which we have allowed again to be dif-
ferent for generality.

In two-dimensional fluid (scalar) problems the scattered pressure in the far field
of aflaw, p . due to a planar pressure wave of unit amplitude is given by

exp(ikR)

Pyean = A(einc 5€car ) \/E (1 1 90)

where the far field scattering amplitude, 4, of the waves scattered in the e, direc-
tion is given by

Ale,.e.,)=— 87rk J‘ {ap ky (€, ~n)]_7} exp[—ik,e,,, - X']ds. (11.91)

Since e, , = —e'”, placing Eq. (11.91) into Eq. (11.87) gives
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V(X,,X,,0)=s,(@)P"(X,,X,,0)P?(X,,X,,®) (e W,ew)[%ppc —87rik2}.
—Iyty PGy

(11.92)

Equation (11.92) is a measurement model of the Thompson—Gray type for 2-D
problems.

We can also develop approximate measurement models suitable for imaging
both large and small flaws. Consider first the large flaw case where we return to
Eq. (11.85). In the Kirchhoff approximation on the lit face of the flaw we have

ph=po® (Xs X, a)) exp [ia)T (XS , X)] {1 +R,, }

" (11.93)

S =ik, P (X,, X, w)exp[ioT (X,,X)]{(e,. -n)+ Ry (e, -n)},
where R,, is the plane wave reflection coefficient (based on a pressure ratio) and
e isa unlt vector in the direction of the specular reflected wave. Placing these
results into Eq. (11.85) gives

1 O ey IP(Z) X . X o exp[sz X X)]

Lipevy’ Picyvy Cu

PV (X,,X,w)exp [in(XS,X)] ((em ‘n)+R, (e, -n)— (e<2) : n)(l + st)) ds(X).

V(X,.X,, 0)= s,(a))

(11.94)

But at a stationary phase point Snell’s law is satisfied and we have e, = —e®,
(e,,. -m) = —(e, -n) so that Eq. (11.94) becomes

ViX.,X = _ 2R -n)PY (X X ol (X , X
(X.X,.0) sl(w)lAplcv?) chzvfez)c'[, ale mPU(X, ,a))exp[za) (X, )]

PP(X,, X, 0)exp| 0T (X,,X)]ds(X).

(11.95)
Normalizing the pressure amplitude terms, i.e. defining
< PYX, X, m) - PP(X,, X, ®
PY(X,, X, 0)= % PO(X X, )= % (11.96)
WC\Vr CVi

and letting

#(X,, X, X)=T(X,,X)+T(X,,X) (11.97)
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we find
V(X..X,.0)=s, ()£
Lpsc,
| Ry, m) PV (X, X, 0) P? (X,. X, 0)exp[ iwp(X,.X,.X) |ds(X).

Cii

(11.98)

For pulse-echo responses, P = P, (e, m) =1, ¢ = 2T(X_,X), with X, = X =X_
and Eq. (11.98) becomes

2pc

V(X,.0)=s,(0) [ RA[PV (XX, 0)] exp[2iaT (X,.X)]ds(X).

422 ¢,
(11.99)

Equations (11.98) and (11.99) are approximate measurement models suitable for
the development of images of large flaws in 2-D problems. These equations are the
counterparts of Egs. (11.62) and (11.63), respectively.

For the small flaw case, we have (see Eq. (11.64))

#(X,.X,.X) = 6(X,.X,.X,)+[ VT (X,.X)+ VT (X,.X) |- (X-X,)

¢(X,.X XO)"‘(e(”+e(2))-(X—X0)/c2, (11.100)

so that Eq. (11.99) becomes

V(X,.X,.0)=s5,(@)P" (X, X, 0)exp|ioT (X,.X,)|P? (X,,X,, 0)exp[ioT (X,.X,) ]

2P J R, (e, -n)exp[ik2 (e“) + em)~ (x- XO)}ds(X).

Lipyc, ¢, (11.101)
which reduces in pulse-echo to
V(X,,0)=s(0) [13(” (X..X,, a))]2 exp [Zia)T(XC X, )]
11.102
2P | Ry exp| 2ik,e® (X -X,) ]ds(X). ( )
L4prc, Cun

Equations (11.101) and (11.102) are the approximate measurement models suitable
for generating images of small flaws for the 2-D scalar wave case being considered
in this section. Note that

PV (X,,X,, w)exp[ial (X,.X,)]= P (X,,X,,0)

PP (X,,X,,w)exp[iol (X,.X,)]=P?(X,.X,0) (11.103)
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(see Egs. (11.88) and (11.96) with X = X, ) so that Eq. (11.101) also can be written as

V(X,,X,,0)=s,(@P"(X,,X,,0)P?(X,,X,,0)

2pc 7 (o) 4 a® i
. R, (e -n)exp|ik, (e +e” ) (X=X, ) ds(X),
Lipse, & (e, n) [ ! ) ) (11.104)

which is in the same form as the Thompson—Gray type of measurement model of
Eq. (11.92). The integral in Eq. (11.104) is of the form

1= r(X)exp[ik,g- (X~ X, )]ds(X) (11.105)
C
which, when evaluated by the method of stationary phase for convex flaw, gives

I=f(X,,)exp|ikg (X, —X,)] - (11.106)

at the stationary phase point, X, with R, the curvature of the flaw at that point
and n is the outward unit normal to the flaw surface. The vector g is parallel to n
at the stationary phase point. Identifying

f=R(e -n),g=e"+e? =¢, —e (11.107)

»

Equation (11.104) becomes

lgn|
1 c -
[ “_Smkz]' (11.108)

—ik,l, pyc

. . R
V(X,,X,,0)=s,(@)P"(X,,X,,®)P? (Xr,XO,a)){ —LRy, (e, n)exp| ik,g-(X,, — xo)]}

Comparing Eq. (11.108) with the Thompson—Gray model of Eq. (11.92) we see that
the scattering amplitude is just

R
A (einc > escat ) = ﬁRZS (er ! n) eXp [lng : (Xﬂaz - XO )] (1 1 . 1 09)

with e = e, . This result is the specular point response of the flaw in 2-D, compa-
rable to the 3-D result obtained in Eq. (11.32).
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Chapter 12
Imaging with Phased Arrays—An Introduction

The capabilities of a phased array to electronically tailor the ultrasonic waves on
either transmission or reception (or both) also allow an array to have a rich set of
imaging capabilities. In this chapter we will first describe several ad-hoc types of
imaging methods that are widely used—the synthetic aperture focusing technique
(SAFT) and the total focusing method (TFM). In both of those methods images are
obtained by shifting and combining the measured time domain (A-scan) responses
of the array elements. They are examples of a class of imaging techniques that are
called delay and sum imaging. However, we will also examine the imaging process
in more detail in this chapter to better understand how a flaw response contributes
to an image. This perspective is important since in both this chapter and Chap. 13
we will use models to describe images of a flaw that can be explicitly related to
the scattering properties of a flaw. We will call these models imaging measurement
models (IMMs) since they will be based on inverting the measurement models of
the Auld and Thompson-Gray types discussed in Chap. 11. Imaging measurement
models will give us a clearer picture of why popular imaging methods such as SAFT
and TFM work so well and they will allow us to delineate the capabilities and limi-
tations of delay and sum imaging methods.

12.1 SAFT Imaging

The synthetic aperture focusing technique (SAFT) was originally developed as an
imaging technique for use with single element transducers where the transducer was
scanned along a line and, at a set of sampling points along that line, the pulse-echo
responses from a scatterer were collected and used to form an image [1]. This same
type of data collection procedure and imaging can obviously also be implemented
with a linear array of N elements as shown in Fig. 12.1 where at each element,
whose centroid is located at X, 7= (1,...N), the pulse-echo voltage response of
the scatterer, V' (X, ,?), as a function of the time, ¢, is measured and stored. To form
up a 2-D image one can set up a 2-D (x, z) grid of image points, such as the point
Y shown in Fig. 12.2 and calculate the travel time from the centroid X, of each

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 241
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2 12,
© Springer International Publishing Switzerland 2015
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element to those image points and back, 27(X,,Y), where 7(X_,,Y) is the one-
way travel time between these points. At each image point the stored voltage signals
are then each advanced by these two-way travel times and summed. The amplitude
of the summed signal at time ¢# =0 is then taken as the value of the image of the
scatterer, /- (Y), at that point, so that

I (Y) = i V(X1 +2T(X,,.Y)|_,. (12.1)

n=l1

This method can be understood in terms of our discussion of the time delay laws
in Chaps. 5 and 8. On sound generation, application of the one-way time advances
T(X,,,Y) would focus the waves from each element at point Y. Application of
these same time advances on reception would likewise focus the received signals
to appear as if they came from point Y. If a flaw scattering source exists at Y we
would expect to see a large value for the summed signals at # =0 and if a source
was not present at this point, we would expect to see a correspondingly small value.
Thus, it is reasonable to take the summed value of Eq. (12.1) as a value that de-
scribes the image of the flaw(s) present. Note that in this process we have not in-
voked the physics of the measurement process except for the travel times involved.
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Fig. 12.3 The SAFT image x
formation process for gen-
erating a 3-D image with a
2-D array

Thus, the SAFT image is an ad-hoc approach and it is somewhat misleading to call
the image formed an image of the flaw since the formed image also depends on
the element system functions of the phased array measurement system, the wave
propagation behavior to the flaw and back, and the interactions with the flaw, and
the SAFT method does not characterize or compensate for any of those parameters.
Even so, SAFT has proven to be a powerful imaging method that has been widely
used for many years [2—4].

A frequency domain version of SAFT can also be developed since if we express
the measured voltage signals in terms of their Fourier transforms, Eq. (12.1) be-
comes
N 1 too
Lo (Y) = ZE [V (X, 0)exp-io(t+2T(X

n=1

Y))dw

cn?

= (12.2)

N 1 oo
=2Re — | V(X,,,w)exp—2i0T(X,,,Y,)dw;,
2 cn cn P

n=1 0

where Re indicates “real part of”. If we discretize the frequency integration, we
have

M N
I (Y)=2Re {%Z Y VX, 0,)exp-2i0,T(X,, Y)} (12.3)

m=1 n=1

SAFT imaging can also be used with a 2-D array to generate a 3-D image of a flaw.
The image formation process is identical to the 2-D case we just discussed. In this
case, an image, /... (y) ,at an image point, y, in three dimensions (see Fig. 12.3)
for an array with L, elements in the x-direction and L, elements in the y-direction
is given by

L L,

Lo )= 2, 2 V(42T y)) (12.4)

n=1 [=1
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Fig. 12.4 Collection of the X,
responses of all sending/ —
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or, in the frequency domain,

L,

Iopr(Y)=2Re {ﬂz i

V(ng,wm)exp[—zime(xjf,y)]}_ (12.5)
27[ m=1 n=1 I=1

12.2 TFM Imaging

The SAFT method uses only the pulse-echo responses of the array so that it does not
take advantage of the much larger number of responses for various pairs of elements
that can be recorded with an array. The total focusing method (TFM) does utilize
all combinations of sending and receiving elements, also called fi«ll matrix capture,
to form an image [5].

Consider the formation of a TFM image with a linear array (Fig. 12.4) with N
clements. In this case we record all the voltage time domain signals V(X ,X,,,),
(n=1,...N), (I =1,..N) for a sending element whose centroid is located at X, and
a receiving element whose centroid is at X, as shown in Fig. 12.4. In the image
formation process we again set up a grid of image points Y as shown in Fig. 12.5,



12.2  TFM Imaging 245

Fig. 12.6 The total focus- x
ing method (TFM) imaging
process for generating a 3-D
image with a 2-D array

advance all these sending/receiving element pair responses by the travel times
T(X,,,Y)+T(X,,Y) and then calculate their sum at time ¢ =( to form an image,

Iy, (Y), giving

N N
Ly (V) =X D V(X X, t+T(X,, Y)+T(X,,,Y))

n=1 [=1

(12.6)

t=0

Transforming the measured time domain signals to the frequency domain and eval-
uating at M positive frequencies, as in the SAFT method, we find the alternate
frequency domain TFM form:

=1 n=1 I=1

A M N N
]TFM (Y) = 2Re {z_wzsz(Xsnﬂxrlﬁwm)exp [_lme(XvnsY) _lme(Xrle)]}
7[ m
(12.7)

If 3-D TFM imaging is done with a 2-D array having [, elements in the x-direction
and L, elements in the y-direction then the image formation process is shown in
Fig. 12.6 and the image, [,,,,(y), is

L L L
Ly (v) = ZZEZV@M LT ) ATy, (12.8)
n=1 I=1 p=1 q=1

and in the frequency domain

ML| L,

Ly (y) = 2Re{ ZZZZZV(XM x”l w, )exp[—ia)mT(xf",y) - ia)mT(xfl,y)]}.
(12.9)

But note that the large number of calculations involved makes these 2-D and 3-D
TFM formulations computationally much more expensive than their SAFT coun-
terparts.
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12.3 The Image Formation Process

While the images described in the previous sections of this Chapter can provide us
with some visual measurements of a flaw response, all of those images are produced
in ad-hoc fashion from the measured data and normally there is no significance
placed on the values present in the image. In this section we want to describe in
general terms some of the characteristics of the waves scattered from flaws and re-
ceived by arrays so the underlying physics associated with image formation process
can be better understood and used as the basis for more quantitative imaging.

When ultrasonic waves from an array (or in fact any type of transducer) interact
with flaws, scattered waves of many different types may be present. By “type” we
do not mean here just wave mode types such P-waves or S-waves but also different
types of interactions of the incident wave with the flaw, as shown in Fig. 12.7. These
interactions include waves directly reflected from the flaw surface, waves that trav-
el around the flaw (so-called creeping waves), waves that may involve one or more
internal interactions within the flaw itself (for inclusions), and others. However, the
waves directly reflected (and possibly mode-converted) from the flaw surface have
a special importance. Figure 12.8 shows a situation where a wave is generated by
one element of an array and then is directly reflected by a flaw surface to another
array element.

The unit vector e, describes the incident wave direction and a unit vector e,
describes the scattering direction back to another element. The unit normal to the
flaw where e, intersects the flaw surface is n . At high frequencies, there are points
on the flaw surface where these directly reflected waves have significant amplitudes
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Fig. 12.9 The case where !
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and these particular amplitudes are often larger than the amplitudes of any of the
other wave types present. These are called specular reflection points and they occur
when the vector q = e, / c; —e, /¢, is parallel to the unit normal, n, where ¢, is the
wave speed of the incident wave and ¢, is the wave speed of the scattered wave
[Schmerr]. The incident and scattered waves at these specular points satisfy Snell's
law since if

e/c,~e lc,=/n, (12.10)

then for any unit vector, t, that is tangent to the surface and lies in the plane of
incidence (the plane containing both e, and n), we must have

(e,t)/cy = (e, t)/c,, (12.11)

which is just a statement of Snell's law.

These specular point responses play particularly important roles since, as men-
tioned in the previous chapter, when all the elements of the array are being used
as transmitters and receivers the largest signals received by the array often come
from a collection of these specular points on the flaw surface. Likewise, when an
image is formed from the ultrasonic array data it is often predominantly an image
of this collection of specular points. Of course, there may be specular points on the
surface where the scattered direction for one or more elements that are transmit-
ting lies outside the boundary of the array as shown in Fig. 12.9. In this case we
expect the amplitude of the response seen in the image will be reduced and in the
extreme case where no specular points exists for any combination of transmitting
or receiving elements of the array, the contributions of these points to an image will
be absent. This does not mean that in this case there will be no image generated at
all because of the presence of responses from wave types other than these directly
reflected waves. Figure 12.10 shows an example of this situation where a flat crack
is oriented so that all the possible specular points on the crack will involve directly
reflected waves that are not received by the array. However, cracks also generate
waves that arise from the crack edges. Although these waves are typically smaller
in amplitude than the directly reflected waves they can travel in many directions so
that they can be received by the elements of the array (see Fig. 12.11) even when the
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Fig. 12.10 A crack being !

interrogated by an array ‘«—— edge of the array
where the specular point ;
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Fig. 12.11 The same '
configuration of Fig. 12.10 —
showing the generation and
reception of the edge waves
from the crack

specular point responses are absent. When processed, these edge waves can form up
an image of the crack edge.

Both specularly reflected waves and edge waves play an important role in the
development of the imaging measurement model (IMM) we will discuss in the next
section and the more general models considered in Chap. 13. These imaging mea-
surement models are based on the Kirchhoff approximation which can predict both
specularly reflected and edge wave contributions to an image. We have discussed
the Kirchhoff approximation in Chap. 11, where we showed that with this approxi-
mation we could extract explicitly the far field scattering amplitude specular re-
sponse of a small flaw and develop measurement models for the specular responses
of more general flaws. In Chap. 11 we saw that the Kirchhoff approximation is
based on a single scattering approximation. By this we mean that the Kirchhoff
approximation assumes that only waves that are directly reflected (scattered) from
the flaw surface are considered. It is this single scattering nature of the Kirchhoff
approximation that permits one to directly image explicit flaw properties from the
measured flaw response and we will see that this single scattering approximation
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includes both the specular point responses and the responses of corners or edges
of the flaws present. If other wave types are present they can also contribute to the
images generated with an IMM, but in the form of image reconstruction artifacts or
“noise”. Other wave types, such as the creeping waves of Fig. 12.7, for example,
are not directly scattered from the flaw surface or edge so that they will appear in
a flaw image as originating from some other location which may not coincide with
any part of the real flaw geometry.

Considering the specular reflections and edge waves as the main contributors to
the formation of ultrasonic images is only one view of how images are produced.
In the geophysics community, for example, another viewpoint is to treat the image
formation process as one where the scattering potential of the flaw is the funda-
mental quantity that is imaged instead [6]. In this view, one often uses the Born
approximation instead of the Kirchhoff approximation to model how flaw respons-
es and images are formed. Although the Born approximation is a low frequency,
weak-scattering approximation that assumes that the flaw and the surrounding host
material have nearly the same material properties, like the Kirchhoff approxima-
tion the Born approximation is a single scattering approximation where only direct
interactions of the incident waves with the flaw surface are considered.Thus, it is
not surprising that one can relate the scattering potential to the specular reflectivity
of the flaw surface present in the Kirchhoff approximation [6] and thus connect the
two viewpoints. However, the Born approximation viewpoint is somewhat mislead-
ing as it implies that for volumetric flaws in a band-limited and aperture-limited real
measurement one is viewing a proper (but “fuzzy”) image of the entire flaw (or, to
be more precise, a proper but “fuzzy” image of both the front and back surface of
the flaw). We will see in Sect. 12.5, that this is not true except in the weak scattering
limit. Like the Kirchhoff approximation, the Born approximation leads to a linear
relationship between the specular reflectivity (or scattering potential) and the mea-
sured flaw response. To account for other types of flaw responses properly, (such
as multiple internal reflections within a flaw, for example) one must resort to more
complex (and likely non-linear) image formation methods. In this book we will only
consider linear image formation methods as these linear methods form the basis of
some of the most successful ultrasonic imaging algorithms in general use and are
directly and simply related to the physics of the wave propagation and scattering
present in an ultrasonic measurement system.

12.4 Far Field Imaging Measurement Models (2-D)

In Chap. 13 we will use the general measurement models developed in Chap. 11
to describe explicitly the formation of images of the surface reflectivity of flaws
and of other surfaces present (such as the back surface of a part, for example) in an
ultrasonic measurement. However, we can gain significant insight into these imag-
ing methods by first considering the special cases considered in Chap. 11 where the
flaw is small enough so that the incident wave fields do not vary significantly over
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Fig. 12.12 A 1-D array x
radiating and receiving waves T
from a 2-D flaw in a fluid

f_{I

Y ny

the flaw surface. In this section we will examine this small flaw case for 2-D waves
in a fluid (see Fig. 12.12) since this is a simple case but one that illustrates most
of the central points in image formation in more complex problems. This approach
to imaging follows the same approach we used in earlier Chapters where we first
discussed sound beams, delay laws, etc. for 2-D fluid problems before considering
the more complex 3-D cases.

We will assume that an element whose centroid is located on the x-axis at
X, =(x,,0) (Fig. 12.12) receives a scattered wave signal from a small flaw which
is excited by an element whose centroid is also located on the x-axis at X = (x_,0)
. From Egs. (11.102) and (11.104) the voltage received from the specular responses
of the flaw surface for this pair of elements can be written as

ViX,,X,,0)=s,(0)P"(X,,X,,0)P? (X,,X,,0)

_2pe R, (e, m)expik, (e +e?)(X - X, )ds(X).
Lpsc, Cu
(12.12)

We will first specialize this equation to where we receive only pulse-echo re-
sponses in a single medium. Then p=p =p,,c=c =¢, X =X =X,
PO = p& ﬁ(XuXO’w)’ ande n=1,e" =e? =e, and we find

V(X,,0)=s,(0)P(X_,X,,0) 13 | Ry exp2ik,eX’ds(X'),  (12.13)

4Gy

where X" =X-X, is a 2-D position vector, X’ = (x",z") measured from a fixed
point, X, = (x,,z,), (usually taken as the “center” of the flaw). Here the pressure
term, f’(XC , X, ®), is just the normalized pressure of the incident wave generated at
point X, by an element whose centroid is located at point X , i.e. (see Eq. (11.88))

PX,,X,,0)

(1)
WC\Vr

P(X_,X,,0)= expiol(X,,X,). (12.14)
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Now, let the centroid of the element be allowed to vary continuously over all loca-
tions, X = (x,,0), along the line z=0, and let C be that part of the flaw surface from
which all the specular responses can be received from elements along this line. Then
we have

V(X,,0) =5, (0)P(X,.X,,0) %IRB expik-X'ds(X), (12.15)
4 C

where k = 2k,e. To put Eq. (12.15) in a more explicit form, we can define a singular
function of the lit surface, y,.(X"), which has the property that [7]

[ F(Xds(X) = [ 7(X) £ (X7)dAX). (12.16)

Using this singular function, Eq. (12.15) can be expressed as a 2-D Fourier trans-
form of the function R(X") = R,,7-(X"), which we will define as the reflectivity of
the flaw surface in this pulse-echo response case. Denoting the Fourier transform of
this function by R(k), we find

V(X,.0) =s,(w>ﬁ<x‘.,xo,w>213ﬁ(k>, (12.17)

A
where

R(K) = [ Ry, 7 (X)) expik- X dA(X"). (12.18)

Since Eq. (12.18) shows that the measured voltage data is just proportional to the
2-D Fourier transform of the reflectivity, we can in principle obtain an image of that
reflectivity, 7, (X"), by simply performing an inverse Fourier transform of that data
in the form

/ _[ ViX,,w)

L,(X) =R,y (X)) =4 p
#X) =Ry 7 (X)) 87”7 5,(w)P(X..X,, ®)

-exp—ik X'd’k, (12.19)

where it is assumed that X  can take on any continuous values in the range
—oo < X, < +oo and the frequency, , likewise canrange over all values —oo < @ < +oo0
so that k can take on any value in the entire k-plane. In this formal result we see
that we have deconvolved the measured voltage with the system function and the
incident wave fields. Deconvolution by straight division, however, is unstable in the
presence of noise. In ultrasonics, a common approach to remedy this problem is to
use a Wiener filter [Schmerr-Song], i.e. we make the replacement

V(X o)
s, (@)P(X,,X,,®)

7=V (X, X, ), (12.20)
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where

V(X.o)s,(@PX,.X,.00 ]
VW(XC’XO’ a)) =

s, (0)P(X,,X,,w)’ s,(@)P(X_, X,, 0)’

2 2
+ & max

)
(12.21)
and where ()" denotes the complex conjugate and ¢ is a noise constant. The effect
of this replacement is to avoid division by small terms that can amplify the noise
and instead drive the filtered response to zero whenever either the system function,

s, (w), or the pressure wave field term, P(X_,X,,®), goes to zero. In terms of this
replacement, Eq. (12.19) becomes

!
[,(X') = ﬁJVW (X_,X,, w)exp—ik-X'd’k. (12.22)

In this case, the Wiener filter will also modify the image generated so strictly speak-
ing we should indicate this by a change in left side expression of Eq. (12.22) but to
emphasize that we are still trying to image the reflectivity as defined in Eq. (12.19)
we will leave this expression unchanged here. Equation (12.22) is still in terms of a
2-D integration over the 2-D wave number plane, k = (k_, £, ), but we can transform
it to an integration over the frequency, @, and the angle, 8, (measured clockwise
from a line passing through X parallel to the z-axis—see Fig. 12.13) by a change
of variables to yield

lA
87

0k ,0k.)

1x(X) = 00,00,

[V (X..X,, @) exp- ik X’ dwdd,, (12.23)

where the Jacobian of the transformation is given by
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Ak, k)
A(,6.)

et ok, /dw Ok, /dw
“lok. /06 ok /26,

. —-2sin@, /¢ 2cosf. /c
| 20c0s6, /¢ —2wsing, /¢

—alolse. (1224)

Also, we can write the angle, 8, , in terms of the x, -coordinate along the line z=0,
since

dx
dé, =cos9€R—C, (12.25)

0

(Fig. 12.13) so placing Eqgs. (12.24) and (12.25) into Eq. (12.23) gives

l, J‘cosé

(X)=5 4

(12.26)

0°
co

Equation (12.26) is an imaging model for a setup where the deconvolved voltage
received by an element (whose centroid location is allowed to take on continuous
values along a line) is used to form an image of the specular surface response of
the flaw as defined in Eq. (12.19). In an array, of course, the element centroid loca-
tions only exist at N discrete locations, X, n=(1,2,...N) and if we consider only
M positive discrete frequencies, ®,, (m=1,2,...M), we can write Eq. (12.26) as a
finite sum and form a band-limited and aperture-limited image of the flaw reflectiv-
ity, 7;"(X’) at the points X’ as:

1 x) = 242 ope {22 sy (XM,XO,wm)exp[—ika’]},
R (12.27)

where Af" is the sampling spacing in the frequency domain and Ax, is the pitch of
the array.

Equation (12.27) is the discrete imaging measurement model counterpart of
Eq. (12.26). Note that here we are treating “inversion” and “imaging” as essentially
synonymous since we are using the inversion of a reduced measurement model to
form an image of an explicit physical reflectivity response of the flaw. In practice,
flaw images are often generated without placing a meaning on the amplitude values
in the image or without taking into account the band limited system properties or
wave processes that produced the image. B-scan, C-scan, S-scan, SAFT, and TFM
images are all examples of such image formation methods. In fact, the SAFT imag-
ing approach discussed in Sect. 12.1 is closely related to this imaging measurement
model, as we will now show.

Since SAFT ignores system function properties and wave propagation processes,
we can show how to reduce our imaging measurement model to SAFT by first set-
ting the € term in our Wiener filter (Eq. 12.21) equal to zero and use Eq. (12.14)
to write Eq. (12.27) as
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21, AfAx, u N (cosB), VX, ,)
(X = f A —<ORed Y Y £, 1
= By s () [ P, X, pevf!
exp[-2iw, T(X,,, X,) —2ik, e, X']}. (12.28)

But, recall because of our small flaw assumption we expanded the total time travel
function to first order so @7T'(X,,X)=wl'(X,,X,)+keX’ and if we simply ig-
nore all system and wave terms not associated with the directly measured voltage
response except the parameter Af = A@w/ 27z we can recover the SAFT algorithm
as discussed in Sect. 12.1:

Iy (X) = 2Re { ZZV(XU,,wm)exp[ 2za)nT(Xm,X)]}. (12.29)

mlnl

In both our imaging measurement model and the SAFT imaging approach, we are
only using the pulse-echo responses of the array elements to form an image. This
subset of all the possible sending and receiving pairs of elements we see is sufficient
to reconstruct the reflectivity of the flaw with our imaging measurement model and
arelated image quantity in the SAFT approach. If we use a full matrix capture of all
combinations of sending and receiving elements to form an image we expect to ob-
tain a “better” image in some sense since we are summing over many more element
pairs but how is such an image related to the reflectivity of the flaw? To answer this
question, consider first the case where we have a single sending element and receive
with all elements of the array. Going back to Eq. (12.12) we have for the voltage
response from the specular reflections of the flaw in a single medium:

V(X,.X,,0)=s (a))f’(”(X X,,0)P? (X ,X,,0)

j R,y (e, m)exp[ik,(e" +e® )X Js(X).  (12.30)

A Ciir

We introduce the singularity function of the surface again and now define the re-
flectivity as
R=R,(e,n)y.(X) (12.31)

and let the wave number vector k = k, (e +e'”). Then, following the same steps
as in the pulse-echo case, we find the measured voltage can be again expressed as a
Fourier transform of this reflectivity in the form

VX, X,,0)=s, (a))ﬁ’(”(Xs,Xo,a))ﬁ‘z)(Xr,Xo,a))lzﬁ(k), (12.32)

A

where now

R(K) = [ Ryy(e, M)y (X")exp[ik-X"]dA(X"). (12.33)
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Performing an inverse Fourier transform on Eq. (12.32) then gives
lA j V(Xs ) Xr B a))
si (@) PX,. X, 0)P(X,.X,. 0)]

exp—ik-X'd’k.
(12.34)

R23 (er '11)7c (X') = =

Changing the integration variables to the frequency, w, and the angle measured
from the z-axis to the receiving element, . (see Fig. 12.14) gives

Ry (e, m)y.(X)
ly VX, X,,m)

L (k)
87 s, (@) P(X,. X, ) P(X,., X, 0)

Jd(®,6.)

]exp[—ikX'] dwdb,.

(12.35)

In two-dimensions the Jacobian of the coordinate transformation becomes
a) e 4 e®
— det @

c de'” /06,

RN de'” xe
c? (" +e )[89 '

r

w W 4 a0, 0e?
—e | (e +e?)x—
e [( ) 06,

ak) |
Aw,0)|

(12.36)

El

where (e, ,e e ) are unit vectors along the (x, y, z) axes, respectively, and we have
used the distributional property of the triple product a-(bxc¢) to obtain the final
result shown in Eq. (12.36). Since e = —sinf.e_+cos@.e_ is a unit vector, it is
perpendicular to its derivative so we have

2e®
xe =-—cosfe +sinfe =—e?.
ae )/ roz roXx

r

(12.37)
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But the sign is immaterial because of the absolute value present in the Jacobian so
we have

d(k) D0 @Y. 0@
—— =" +e")-e 12.
3.6 > ( ) (12.38)
If we express the dot product of the two incident unit wave vectors as e - e = cos @,
where @ is the angle between them (Fig. 12.14) we find, finally
k) |_ (12.39)
(@,6,)

and Eq. (12.35) expresses the image I, = R,;(e,  n)y.(X’) as
! V(X,.X,,0)

I = (12 1+ cos® - - exp|—ik-X'|dwd6..
" 2”62( )s,(a))[P(XS,,XO,a))P(X,,,XO,a))] ol Jddt,

87
(12.40)

As in the pulse-echo case, we can write the angle 6, in terms of the x-coordinate of
the receiving element, x. on the x-axis since dx. = R, d0. / cos6, to obtain

V(X,,X,,0)
Ry s, (@) P(X,.X,.0)P(X,.X,.0)]

exp[—ik-X’]d wdx, .

I, 87[2j = (1+co @)‘

(12.41)

In Eq. (12.41) the sending element has been fixed and we have formed the image
by integrating over the receiving elements. In seismology, this is called a common
shot response [8]. Unlike the pulse-echo case the image now is a function also of
the angle of the incident wave direction, 6, , which is the angle between the e

unit vector and the unit normal of the flaw surface at X', i.e. I, = 1,(X’,6,.) since
R,;, (e,n) are both functions of g, . If we now allow the sending element location
to vary this incident angle will vary and we can define an angular independent im-
age function, 7z(X") as

In(X') = [ 1,(X",6,,)d6,

) )do,. (12.42)
However, at a fixed image point, X’, on the flaw the normal is also fixed, so we can
replace the integration over 6, = to one over the angle 6, measured from the z-axis
(Fig. 12.14). As with the receiving element this angle for the sending element can be
related to a position of the sending element on the x-axis, since dx, = R ,d6, / cos 6,
so that we can express our image function as

1e(X')=[1,d6, = [1,d6, = jcosef Idx, (12.43)
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and applying this result to Eq. (12.41) we have

cos @, cosb,
R

50

—(1+cos®)

[0
CZ
VX, X,,®)
s/ (@) PX,, X, 0 P(X,,X,,0) |

LX) = 817;2

r0

exp[—ik X' |dwdx,dx, ;. (12.44)

Equation (12.44) gives us an imaging measurement model for producing an image
of a flaw with full matrix capture, i.e. using all pitch-catch combinations of sending
and receiving elements along the x-axis. It shows that quantity being imaged in this
case is an integrated reflectivity of the surface, specifically

1,(X') = [ R,y (e, m)y.(X)d6, (12.45)

inc*

We can again replace the deconvolution present in Eq. (12.44) by a Wiener-filtered
version of the measured voltage given by

VW(XS’XMXO’G)) =
VX, X, 0){s, (@) P(X,,X,,0)P(X,,X,, 0)}

A~ A 2
5, (@P(X,, X, 0)P(X,. X, 0) +€ max{ s,

@P(X, X, 0PX, X0 |

(12.46)
to give
1.(X) =

N

Note that as in the pulse-echo case we can combine the phase terms oT'(X,X,),
ol (X, ,X,) present in the P(X X,, 0), P(X, , X, W), respectively, with the com-
plex exponential term present in Eq. (12.44) and simply ignore all the amplitude and
phase terms other than the measured voltage (and a factor of 1/ 27 which is kept for
convenience) to obtain an image via

6. o
cosf. cosb, v, (X, X’.,XO,a))exp[—ik'X']dwdxrdxs}

cos®)

r0 50

(12.47)

I(X)= le V(X,,X,,w)exp[-ioT(X,,X)—ioT(X,,X)|dodx dx,. (12.48)
T

In this case Eq. (12.48) is a continuous version of the total focusing method (TFM)
for full matrix capture [5]. In discrete form, similar to the pulse-echo SAFT result of
Eq. (12.29) with N elements and M positive frequencies, we have (again, ignoring
any additional terms except the frequency sampling interval, Aw) we recover the
TFM result of Sect. 12.2:
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ITFM (X)

ACO M N N
= 2Re{gzzzV(XSI,XM,a)m)exp[—ia)mT(XS,,X)—ia)mT(Xm,X)]}

m=1 n=1 [=1

(12.49)

As in the SAFT approach, with the TFM we cannot identify a quantitative reflectiv-
ity that is being imaged but we see from our imaging measurement model that the
focusing terms, which are crucial to the image formation process, are present in all
of these imaging methods.

Our imaging measurement model approach can also show how images of crack
tips can be formed. We will illustrate this for the pulse-echo case but a very similar
analysis holds for full matrix capture. We first need to modify Eq. (12.15) since we
will assume that there is no received specular response from the entire crack sur-
face. In that case, Eq. (12.15) becomes (see Eq. 11.94)

VX0 =5, (@ PX. X, 0] [ Rule, —emexp[ kXWX (12.50)

First, note that Stokes' theorem two dimensions has the form

fe,,'(nXVf)dS(X'F S (X)) = f(X5), (12.51)

C

where e, is a unit vector in the y-direction and (X;,X) are the beginning and end
points of the crack C. Since we assumed that there is no received specular response
from the surface of the crack, nxKk is never zero and we can let

_R,(e,—e)n exp|ik-X']

f . (12.52)
ie (nxKk)
At high frequencies, however, we find
e, (mxVf)= R, (e, —e)nexp[ikX’] (12.53)
so Eq. (12.50) can be formally expressed as
~ 1R —e) kX’
VX0 = s, (@[ PX, X, 0] {--Ral&—Onexp:
l, ie (nxk) | o
X'=X!
_Ry(e, —e)mexp ik-X’| (12.54)

ie,«(nxk) |x':x,;

Again, we can write this result as:
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ViX,,o)=

M R.(K), (12.55)
0]

~ 22 —
PX. . X,,0)| —
[Px. X0 -
where R (k) formally looks like a Fourier transform of the reflectivity of the crack
tips, R, , i.e.

R, (k) = [ R, exp[ik-X"] dA(X') (12.56)

and

_Ry(e, —e)n Ry (e, —e)n

X -X))

Ze,(nXxe) 2e,-(nxe) OX'-X;), (1257

e

where 6(X’ = X)) is a 2-D delta function located at X" = X' (p = e,b). Unlike the
specular surface response, the coefficients of these delta functions are functions
of e as well as (X’,X") so that R is also a function of these variables as well.
This means that Eq. (12.56) is not strictly speaking a Fourier transform. Also, we
should note that the delta function coefficients in Eq. (12.57) were obtained with
the Kirchhoff approximation so they are not the correct high frequency diffraction
coefficients associated with the crack tips. However, in forming an image of the
crack tips, the image will be defined primarily by the singular delta functions of
Eq. (12.57). Thus, we expect that treating their coefficients as purely constants so
that R, = R,(X’,X’) should still allow us to image these delta functions and hence
the crack tips. Making that assumption, Eq. (12.56) is then indeed in the form of a
Fourier transform and we can invert Eq. (12.55) to obtain

L(X)=R,(X, X)) = i J (iw/ f)V(Xc> w)
Sy (Cl)) [P(XC ) Xo’ 0))]

™ ~exp[—ik-X']d’k.  (12.58)
T

Equation (12.58) is very similar to the expression for the surface reflectivity given
by Eq. (12.19), which we rewrite here for comparison:
|
1,(X') = AJ‘

V(X,,w)
877 s () (X, X,.0)|

—exp|-ik-X']d’k. (12.59)

We see that in the crack tip case there is a frequency dependent factor, @/ ¢, present
in the numerator as well asa i = \/——1 factor, both of which are absent in the surface
reflectivity expression. If we simply ignore this additional frequency factor when
forming an image of the crack tips then we expect we will still see filtered crack tip
images, which suggest that we can image both the specular surface response and
the crack tips by using Eq. (12.59). Based on our results we would expect to see the
surface response in the real part of the image formed by Eq. (12.59) and the crack
tips in the imaginary part but since our results were based on a high frequency ap-
proximation we may not see that sort of strict separation in an image generated with
frequency-band-limited and aperture-limited real data.
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The pulse-echo imaging measurement model of Eq. (12.59) is also a relative of

a well known imaging method—the Physical Optics Far Field Inverse Scattering
(POFFIS) approach [7]. The POFFIS method was originally developed by Bojarski
[9]. In its original form, POFFIS was an expression for imaging a characteristic
function of the scatterer, which is a function that is one inside and zero outside the
scatterer [ 10]. However, trying to image a characteristic function in real band-limit-
ed and aperture-limited systems is a task fraught with difficulty because these limits
severely distort the characteristic function, making it unrecognizable. To overcome
this difficulty, Bleistein reformulated the POFFIS relationship in terms of the singu-
lar function of the surface [7, 11], leading to a form which is closely related to our
imaging measurement model. We can gain some additional insight into the meaning
of our imaging measurement model by examining that relationship more closely. To
compare with POFFIS, let us return to Eq. (12.17), i.e.
- 2 =

V(X0 =s, (@) P(X,.X,, w)] - R(K). (12.60)

In a POFFIS formulation the frequency bandwidth is assumed to be infinite and the
incident wave field is assumed to be from a concentrated “point” source [7]. In this
case §,(w) =1 and if we use the far-field values of a line source for the radiation
of an element (see Eqgs. 2.37 and 2.38) with the far field directivity of the element
D,(6.,w) =1, we find

P(X,,X,,0) = 1/ p X0 RC"), (12.61)

where b =1, /2 is one half the total element length. Equation (12.60) then becomes

2 2ik,R.,) =
VX, @)= p P, ) R(k), (12.62)
irc, R,

which is a 2-D version of the 3-D POFFIS identity obtained by Bleistein [7]. In
the traditional way that POFFIS is derived [7] the left hand side of Eq. (12.62) is
the scattered wave field, not the measured voltage but Eq. (12.62) shows that it is
possible to derive an equivalent POFFIS form in terms of the actual voltage mea-
surements.

If the system function and directivity of the element are retained, we have instead

o) WE@. (12.63)

0

ViX,,w)=

When inverted, this gives

RV (X,,w)
87£b ~iws,(0)[D, (6., 0)]

exp|—-2ik,R , — 2ik,e X'|d’k, (12.64)
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which is a more complete imaging measurement model form of POFFIS imaging.
This form shows that in the deconvolution process we are (1) compensating for the
frequency dependent system function effects on the measurements, (2) applying a
propagation (gain) factor (R ) to compensate for the 1/ \/Rilo amplitude decay
when the waves go from the sending element to the center of the flaw and a similar
factor when going back to the receiving element, and (3) compensating for the di-
rectivity of the waves on both transmission and reception. We see from Eq. (12.62)
that POFFIS includes a propagation gain factor but does not include a system func-
tion or directivity effects since the bandwidth was assumed infinite and the sending
and receiving elements were considered to be omnidirectional concentrated sourc-
es. Our imaging measurement model approach shows that propagation, directivity
and system functions are in general all important compensation factors that must be
included to obtain an image of the flaw reflectivity (as defined here) and that all of
these effects are contained more generally in the two terms

5 (@) PX,. X, 0] .5, (@PX,. X, 0)P(X,.X,.0)

for pulse-echo and full matrix capture imaging, respectively.

One can follow the approach of Bleistein [7] and test the consistency of this
imaging model by going back to Eq. (12.19) (or, equivalently, Eq. (12.59)) and
placing the explicit results found for the measured pulse-echo specularresponse of
a small cylindrical reflector of radius « in the Kirchhoff approximation for a single
medium (see Eq. (11.109) specialized for the pulse-echo case where R, = a, gn =2
,e,m=1and g(X_, —X,)=-2a when X, is at the center of the cylinder). In this
case Eq. (11.109) becomes

VX, m)= s,(a))[faﬂ)(xc,xo, a))]2 {\/%RB exp[—2ik2a]}

{ 1 &m}. (12.65)

=ik, pyc,

[Note: These results assume that the frequency is positive and in forming an im-
age we will need to integrate over both positive and negative frequencies. Thus,
formally we must be careful and express all our intermediate steps for both positive
and negative values. However, if we use Eq. (12.65) and all intermediate steps for @
positive only we will see the end result is clearly valid for all frequencies.]

To evaluate Eq. (12.19) we will introduce polar coordinates for both X” and k:

X’'=rsince, +rcosce.,

(12.66)
k= z—w[siné’ex +cos€ez].
c

Then we can express Eq. (12.19) as

L T T ViX,, o)

L(X)=—— -
2 ot s, (@) PX,. X, 0)]

—exp|—ik X' |odwdb;. (12.67)
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Placing Eq. (12.65) into this result then gives (with p,c, = pc)

W= 0=271

4 a 1
I,(X)=R —\/: — exp(—2ik,a)exp|—ik- X' |wdwd 6.
X » 2LL GL) o, P2k, p[ ]
(12.68)

Using the explicit values in the exponential term gives
R 4 a
L=t f
w(r0)=—3 = \2
o 21
{ [ ] /L exp(=2iaw/ ¢)exp|—(2iwr | ¢)cos(8— a)] wda)de}
e = | IO

(12.69)

and the @-integration can be performed, yielding

2R T f
IR(r,a)=C_223\/%.{J' CTC;exp(—2iaa)/c)J0(2a)r/c)da)}. (12.70)

But, consistent with the high frequency approximation for the specular response we
can take the asymptotic expansion for the Bessel function:

—ic exp(2ier | c)+iexp(-2iwr/c) (12.71)

J, Qawr/c)~
o(2aric) Tor 2

to obtain

I,Jr,a):%-{\/%i T {exp[2i(r—a)a)/c]+iexp[—2i(r+a)a)/c]}da)}.
(12.72)

W=—c0

We can recognize the two integrals as delta functions 6(2(r —a)/¢),5Q2(r +a)/ c)
which have sampling properties at » = g, » = —a , respectively, so we can replace
the square root term by its values at these locations, giving formally

1,(r,0) = %{i T [exp[2i(r —a)a/ ] —exp[2i(r+a)o/ c]}dw}

2R
==2{52(r-a)/c)-62(r+a)/c)}
c
=R, {6(r—a)-58(r+a)}. (12.73)
But for all @ and >0 &(r+a) is identically zero so we do recover the reflec-

tivity of the flaw surface. Of course, in practice one does not have data for all fre-
quencies and angles when performing these inversions. To examine the effects of
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limited bandwidth let the response be non-zero only in the finite bandwidth range
®_ < o< @,. Then the first term in Eq. (12.73) becomes

2R o
I,=—22Re {L J exp[Zi(r -a)w/ c]da)}
c 2

O=0_

=B fonlatr-apo,se]-snf20-w0. ). 1279

which shows the delta function is now replaced by a pair of sinc-like functions.
If the aperture of measurements is also limited, Bleistein [11] has shown with a
stationary phase analysis that one recovers a form similar to Eq. (12.74) over the
finite aperture.

12.5 Imaging Simulations

In this section we will describe a simulation setup which will give us that capabil-
ity to model the signals received from a flaw in a phased array inspection and use
those signals to form images with the 2-D far field imaging methods just discussed.
To simulate this problem we will first model the canonical problem of the pressure
received from a 2-D circular inclusion in a fluid, where the incident waves are
generated by an omni-directional line source, as shown in Fig. 12.15. This setup
will allow us to model the response of the inclusion from an array since, as seen
in earlier chapters, for very small array elements (whose size is on the order of a
tenth of a wavelength or less), a single omni-directional line source can represent
an individual element, while larger elements can be broken into segments which
can also be modeled as a superposition of such sources. In our model the scatter-
ing of the incident waves from the circular inclusion will be treated with the use
of the separation of variables method. Thus, in this simulation setup we will have
the ability to synthesize the signals received by an array without introducing any
high or low frequency approximations and without having to perform any detailed
numerical integrations.

Consider first the incident pressure, p, , generated by a 2-D line source in a fluid
whose density and wave speed are (p,,c,), respectively (Fig. 12.15). This pressure
can be written in terms of the Green function, G, for Helmholtz's equation, given
by G =iH" (k;))/ 4 [12]. This function in turn can expanded in an infinite series of
Bessel and Hankel functions in a polar coordinates with origin at the center of the
circular inclusion (see Fig. 12.15) as [13]:

oo

iH, (kr) i ZJ,, (k1’”o)H,(,l) (klr)exp[in(e—ﬁo)] >
P T = (12.75)
2 J, (kr) H" (klro)exp[in(e— 90)] r<r

n=—oo
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Fig. 12.15 Scattering of a source A X
cylindrical fluid inclusion in x
a fluid of the waves generated n X

by a line source

©=0,-0
£ 6 0

CI

Since the incident fields immediately outside the circular inclusion will always be
located at a radius r <7, we will take the second form in Eq. (12.75) and write the
incoming waves near the cylinder as

P = 3 9, ) i) explin(0-6,)) (12.76)

n=—oo

For the scattered waves we will take the scattered pressure, p,,. instead as a super-
position of outgoing waves of the form

pscan = i anHr(xl)(klro)eXp[ine]v (1277)

n=—oo

while inside the flaw, whose density and wave speed are (9:,¢,), we will let the
internal pressure, p,,, to be given as

Dine = i b,J,(k,r)exp[iné] (12.78)

n=—oo

in terms of the unknown coefficients (a,,b,). To determine these coefficients we
must satisfy the boundary conditions at the radius 7 = a of the inclusion, which are
that the pressure and the normal (radial) velocity must be continuous. Written in
terms of the pressures, these conditions are, at ¥ = a:

pinc + pscatt = pint
| P, R P _ ! P (12.79)
iwp, or iwp, Or iop, or

Placing Eqs. (12.76)—(12.78) into these boundary conditions, we find, in matrix
form
H}Sl) (kla) _Jn (kZa)
k, © -k A1 =el & 2
L H Y (ka)t —2{J, (ka) [bn:| "I (ka)
oo 2, 00) k)

1

Jn (kla)
. (12.80)
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where
¢, = %H}E”(klro)exp[—inﬁo]
and
© dHY (x) dJ, (x)
H(x)f =—2—"= J ,
{H o} == i , L) =
with x = k;r or x = k,r. Solving for (a,,b,), we find
(O R N}
A(n) A(n)

where

A (n)= s {H“>(k a)} J, (ka) ——2{J (k,a)} HY (ka),
A, (n) = zl{Jn (ka)} J,(ka) —p—z{Jn (ka)} J,(ka),

A, (n) = %[{Jﬂ (ka)} H (ka)~{H (ka)} J, (kla)].

Substituting Eq. (12.83) into Egs. (12.77) and (12.78) we obtain

o —i S ) H ) expin@-6)],

_ Z i E"; H“)(k 1), (k, r)exp[m(é’ 0, )]
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(12.81)

(12.82)

(12.83)

(12.84)

(12.85)

We can use the following relations to express the scattered pressure in a more con-

venient form for numerical calculations. Specifically,
. n n
{Zn (x)} =—Z ,(x)+ ;Zn x)=Z,,(x) —;Zn (%)

and

Z_,(x)=(=1D)"Z,(x),

(12.86)

(12.87)

where Z (x) can be either H"(x) or J (x). First, we use the first equality in

Eq. (12.86) to rewrite the A (n) (m=1,2,3) coefficients as
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Al(n):/’;[ T, () - J(ka)]H“(ka) p[H:,‘:I(k) H(“(ka)]J (k,a),

2 1

A, (n)=— ky [ J, . (ka) - J L (ky a):|J (ka)—%

2 1

[ J(ka) = J (K, a)}J (ka),

A;(n>=;1[ 0 ka)J, (ka)~J, (k) H (ka) ] (12.88)

Next, we will split the infinite sum for the scattered pressure into three parts as:

P = LR H b HL G-,
__’Az(o) 0
4 A(0) ) Hy (k)
2 i E"; H (ki) H (kr)explin(0-6,)).  (12.89)

But for the last semi-infinite sum of Eq. (12.89) if we replace n by —n we can re-
write it as

Then, using Eqs. (12.87) and (12.88) and the second equality relationship of
Eq. (12.86), it is easy to show that A, (-n)=A, (n) (m=1,2) so that Eq. (12.90)
becomes

Zi 8 H, (k) H, (k) exp[~in(6~6,)]. (12.51)

Placing Eq. (12.91) back into Eq. (12.89), we see we can combine the two semi-
infinite sums and write

—i A, (0)

p.Y(.'{ltt 4 A (O)

12.92
2 i E”)) H® (k1) H" (k) cos 1O, (12:92)

——H" (k1) H," (k,r)

which also can be put in the more compact form

—i EA()

A )Hm(kl r)H," (kr)cos[n@)], (12.93)

p scatt =
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where © = 6, — @ (see Fig. 12.15) and

1 n=0
g, = . (12.94)
2 otherwise
Equation (12.92) or, equivalently, Eq. (12.93) can be used to model the received
voltage response of a pair of elements in a phased array. To see this, note that from

Eqg. (2.28) we can write the incident wave pressure, p_, generated by a sending ele-
ment (acting as a piston source) in terms of the Green function as

b
p, =-2iwpy,(o)[ G ds, (12.95)
-b

where v, (@) is the uniform piston velocity on the face of the element, / = 2b is the
length of the element, and ds is a differential length along the element. Thus, the
pressure at a receiving element, p,, from Eq. (12.92) or (12.93) is, likewise,

b
p.= _2iwplvt(w)_[ pscattds (1296)

b

and, if we take the blocked force/unit length, f,(w), acting on the receiving ele-
ment as just twice this received pressure integrated over the face of the receiving
element, we find

b b
fo(@) = ~4iopy,(@)[ [ pdsds’ (12.97)

-b-b

where ds’ is a differential length along the receiving element. Recall, from Eq. (9.24)
for 3-D problems the acoustic/elastic transfer function, ¢, (@), was defined as

by (@)

_ @ (12.98)
peS v, (o)

t, (w)=

where F () is the blocked force and S was the area of the sending element. For our
2-D problem, this transfer function is analogously defined in terms of the blocked
force/unit length and the length of the element as

J5(@)

t,(w)= . (12.99)
plv, (o)
Thus, we see the acoustic/elastic transfer function is
_4 k b b
t(@)= %f [ redsds’ (12.100)

-b-b
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Fig. 12.16 Geometry for
modeling the measured
response of the circular
inclusion by a pair of array
elements

and the received voltage, V' (x,,X,,®), for a pair of sending and receiving elements
located at (x,,X, ), respectively, (see Fig. 12.16) is

_4ik b
V(x,,x,,0)= s,(w)T’klj [ P (7:.7,.0, @)dss”, (12.101)
~b-b

where s, (@) is the system function for this pair of elements and we have explicitly
indicated the dependency of the pressure on the distances (7,,7.) from the sending
and receiving elements to the center of the inclusion, respectively, and the angle,
0, as shown in Fig. 12.16. These distances are the same distances (#,,7) shown
in Fig. 12.15 and which are present in Egs. (12.92) and (12.93). If the elements
are small enough so that we can neglect the field variations over the elements in
Eq. (12.101), then we find simply

V(Xs’xr’m) = SI ((‘O)[_4ikllpscatt (rs’rr’@’ (l))] (12102)

and we see that our scattered pressure expressions of Eq. (12.92) or (12.93) give us
a model for the received voltage directly. For larger elements we can break the ele-
ments into segments and use Eq. (12.102) again, summing over those segments to
again get an essentially exact separation of variable model for the received voltage.
We can use this model to simulate the measured signals in NDE inspections and to
analyze various NDE imaging methods so it is an important tool for studying phased
array systems. A similar approach could also be used to simulate the response of
linear or 2-D arrays to a spherical inclusion since those configurations can also be
modeled with point sources and the method of separation of variables. However,
this simpler 2-D model is computationally more efficient than a 3-D model while
still describing much of the important physics of how array signals are generated,
so it will be the only one considered in this book.

We can also use this separation of variables model to examine the 2-D far field
imaging measurement models derived in the previous section. To do numerical
simulations of images obtained with those imaging models, it is convenient first to
write them in terms of the plane wave far field scattering amplitude, 4(e,,,e,.,, ®),

scat °
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Fig. 12.17 A plane wave x
incident on a circular
inclusion

of the flaw explicitly. This can be done since from Eq. (11.92) we found for the
small flaw case:

V(X,.X,,0)=s,(@)P"(X,,X,,0)P? (X, X, 0) e, e w)[ 1 p —8m‘k2}-
=ik, pyc

(12.103)

Placing this result into the full matrix capture imaging measurement model,
Eq. (12.44), for a single medium where p= p, = p, and ¢ = ¢, = ¢, and taking the
density and wave speed of the host material to be (p,,c,), respectively, to be com-
patible with the separation of variables solution just given, gives

1.(X) = J c0s6, cosd, |8z, “Ale,.;e. @)exp|—ik-X']|d wdsx,dx,
87’ —iw

r0 50

For the pulse-echo single medium case, from Eq. (12.26),

IR(X’)=Mlzczjcc;:exfg_’fc‘A( i, o)exp|—ik-X'||@|dwdx,.  (12.105)
1

co

We can easily turn our previous results for the scattered pressure field for a pair
of elements into the far field scattering amplitudes needed in Egs. (12.104) and
(12.105). However, the scattering amplitude here is the far field response of the flaw
to an incident plane wave so we need to replace our line source with a plane wave.
Consider, for example, a plane wave incident on the inclusion from the negative z-
axis as shown in Fig. 12.17. In this case the plane wave can be expanded in a series
of Bessel functions in the form [13]

exp(ik,z) = exp(ik,r cos 8) = z i"J  (kr)exp|in6). (12.100)

n=—oo

To obtain a comparable plane wave from our point source incident wave, Eq. (12.76),
we need to let §, = 7,7, — oo in that equation. For large arguments we have asymp-
totically
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H," (kry) ~ expi(kr, —nm/2—7/4)

170

(12.107)

= (=i)" | —— exp(ikn,)
ik

170

so Eq. (12.76) becomes

I ¢ .
Poc =7 2 Lo H, (k) explin(9- )]

n=

= i i GIA (k]r)Hil)(k]rO)exp[ine]

n=—co

= i exp(iklro)iz(i)”Jﬂ(klr)exp[inH]. (12.108)

ink,r, -

Comparing the third line of Eq. (12.108) with Eq. (12.106) we see that we need
to remove the factor multiplying the infinite sum in that line and retain the ()"
factor from the Hankel functions to obtain the plane wave result. From the second
line of Eq. (12.108) we see we can accomplish this by simply making the replace-
ment iH" (k,5,)/ 4 — (—i)" in the infinite sum. It follows that if we make that same
replacement in the expression for p_,., Eq. (12.93), we will obtain the scattered
pressure due to a plane wave, p2’  given by

w - o Ay (1)
Pl ==&, (=) —2=—H" (kr) cos[nB)]. (12.109)
n=0 Al (n)
In the far field we have
ik
P = Al e, @) 2 (12.110)
A

where A(e,, ;e ®) is the plane wave far field scattering amplitude, and we can
recover that scattering amplitude from Eq. (12.109) by using the asymptotic form
of the Hankel functions again, i.e.

2
H\ (kyr) ~ 1/%(—t’)” exp(ik,r), (12.111)
1

A(e,, 5, @) = —, f%i g,(=1)" iz—gnn))wS[n@]. (12.112)

1 n=0

to obtain
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Fig. 12.18 a The pulse-echo 3 fs
far field scattering amplitude front
as a function of time for a O surface
1 ius inclusi h (fs) back

mm rafilus inclusion, where 4 airface
the density of the inclusion _ (bs) bs
. . - - R S—
is 1.5 times that of the host 72
material (taken as water) and 0 Al
the wave speed is also 1.5 . creep (c) c
times that of the host, and -
b the paths followed by the 4
three major responses identi- 2 -5 -1 05 0 05 | 5
fiedin a Time (p 5)

: a b

The pulse-echo far field scattering amplitude, A(e,,,;—e

) ) then follows directly
by setting ® = 0 in Eq. (12.112) to find

inc ?

ine> €ine> @) = — _iisn(—n"iz—gn”;. (12.113)

Ae
ik, =

To see explicitly the nature of the waves scattered from the inclusion, we can invert
the scattering amplitudes of either Eq. (12.112) or (12.113) into the time domain
with an inverse FFT. For example, Fig. 12.18a shows a pulse-echo scattering ampli-
tude versus time for a | mm radius circular inclusion whose density is twice that of
the host material (taken here as water with ¢, = 1480 m/s ) and wave speed 1.5 times
that of the host. This time domain result was obtained by evaluating Eq. (12.113) for
frequencies from zero to twenty MHz and then applying a Hanning filter to taper
the response to zero between 10 and 20 MHz before inverting into the time domain
with an FFT. The predominate waves seen can be identified by their time of arrivals
as the front and back surface reflections and a creeping wave that originates from
where the incident wave has struck the front surface at a critical angle and then has
traveled around the circumference of the flaw at the wave speed of the flaw. These
wave paths are shown in Fig. 12.18b. Later arriving waves are also present but these
are much smaller responses involving multiply reflected waves, etc. that are not vis-
ible in the time window of Fig. 12.18a.

We can gain some additional understanding of the scattering amplitude response
of the inclusion by considering this scattering problem in the Born approxima-
tion. First, we write the scattered pressure as an integral over the area of the flaw
[Schmerr]:

a)2
pscatt =J‘(7/prVG_C_27/1pG]dA (12114)
0

in terms of the pressure and gradient of the pressure and Green's function, G, for
Helmbholtz's equation, and where

P, P A =4 12.115
" p, SR
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Fig. 12.19 Scattering geom-
etry for a circular inclusion,
showing the incident and
scattered wave directions

in terms of the densities (2;,0,) and bulk moduli (4,,4,) of the host and flaw,
respectively. In the far field of the flaw we have (see Fig. 12.19)

1/2
if 2 . . .
G~ Z(MJ exp(ik,R —im/ 4)exp(—ik.e, x),

VG ~ —ike G,

(12.116)

where e, =e_, is a unit vector in the scattering direction. In the Born approxima-
tion we assume the material properties of the flaw and host material are nearly the
same and we take the pressure wave field and its derivatives inside the flaw as just
those of the incident waves. For an incident plane wave of unit pressure amplitude
traveling in the €, = e, direction we have

p = explike; x) (12.117)
Vp =ike,p.

Placing Egs. (12.116) and (12.117) into Eq. (12.114) then gives the scattered pres-
sure in the far field form

exp(ik, R
pscatt :A(ei’esﬂw)%’ (12118)
where the scattering amplitude, A(e,;e,, ), is given as
Lo\2
Ale,e.0)=—k | ——| [7,-(e-e)7,|[exp[iki(e,—e)x]dd. (12.119)
i*Ys Sﬂ_kl i vVs/lp K

In pulse-echo e, = —e, and the scattering amplitude is

. 1/2
Ale,,—e,,0) =~k (jkl] [;fi + 7p]Jexp[2iklei x|dA. (12.120)
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However, we note that in the weak scattering limit

+
%:Rm (12.121)

where R, is the plane wave reflection coefficient at normal incidence, so
Eq. (12.120) becomes

1/2

”

A(ei,—ei,a))=—k,2[—]z) R, [exp[2ike, x]dA. (12.122)
7 1

Now, consider a circular inclusion of radius a. In this case, examine the integral:

I = [ exp(2ike, x)dA

r=a 0=27 (12'123)
= I J. exp(2ik,r cos @)rdrd 6.
r=0 6=0
The theta integration can be performed since
6=2rm
[ expaikrcos 6)d6 =21, 2k r), (12.124)
6=0
Where J is the Bessel function of order zero, so the integral becomes
[=2r | J,(2krydr. (12.125)
r=0
But the  integration can also be done, since
' 1
[ 7 (bx)xdx = =), (12.126)
0
so letting ;, — -/ 4
u=1
I=27a* [ J,Qhauyudu = %Jl (ka). (12.127)
u=0 1
Placing this result into Eq. (12.121) we find
1/2
27i
A(e,,—e,,w) = —kla[k—) R,J,(2ka). (12.128)
1

We can examine this result for large ka values. We have, asymptotically,
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Fig. 12.20 The time domain a4

pulse-echo response of a
circular inclusion of radius a ]

in the Born approximation ’\
[
2alc, 2al ('.N
2 cos(2kia—37/4)

J,(2ka)~ |- 22 (12.129)
T

\2ka

SO

Ale,,—e,,®) = —R,\2a {\i cos(2k,a—37/ 4)}
= —Rm\/% {~iexp(2ik,a) —exp(-2ika)}  (12.130)
=R, \/g{exp(—Zikla) +iexp(2ika)}.

There are two contributions to the scattering amplitude in the Born approximation.
These terms represent the front and back surface reflections in the weak scattering
limit. This can be seen more clearly by taking twice the real part of the inverse
Fourier transform of Eq. (12.130) (which is valid for positive frequencies), giving

a 1
Ae,—e.0)=R, .| 164 +2a/ )+ — L 12.131
(el el ) 12\/;{ ( a Cl) ﬂ([—za/cl)} ( )

Figure 12.20 shows these two contributions, where the front surface reflection is a
delta function and the back surface is the negative of the Hilbert transform of a delta
function. In fact the front surface response is identical to that predicted by the Kirch-
hoff approximation and used as the basis for our imaging measurement model. We
can see in Fig. 12.19 that the separation of variables solution gives band limited ver-
sions of both the front and back surface waveforms. In the Born approximation the
creeping waves and any later arrivals are missing. It can be seen from Eq. (12.130)
that the amplitude coefficients of both the front surface and back surface reflections
are identical in the Born approximation. However, for flaws that are not weak scat-
terers the strength of the back surface reflection can be much smaller than that of the
front surface, a property also found for 3-D inclusions [Schmerr-Song].

We can use the pulse-echo separation of variables solution, Eq. (12.113) to form
up an image with Eq. (12.105) which we write in discrete form for positive frequen-
cies as:
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Fig. 12.21 Image of a I mm 1.5
radius circular inclusion
obtained with the pulse-echo 1 — I
responses of a 32 element — N
array with a 1 mm pitch, 0.5F back / \\\
where the density of the z surface o \
inclusion is 1.5 times that of E 0
the host material (taken as ~ | /
water) and the wave speed is -0.5 \ 7
also 1.5 times that of the host r ﬁon.1 ~—
surface
-1.5
15 -1 <05 0 05 1 1.5

X (mm)
Fig. 12.22 Image of a | mm 1.5
radius circular inclusion
obtained with the pulse-echo L ~
responses of a 32 element ,,/"__ x\
array with a 1 mm pitch, 0.5 creep [/ A
where the density of the ) 7 \
inclusion is twice that of the E oOpback —S—p s
host material (taken as water) ~ surface \ /
and the wave speed is also -0.5 N /
2.0 times that of the host -

- front T~
: surface
SISO 05 0 05 1 15
X (mm)

. Ao, Ax S (cosb,), |8me , . . ,
IR(X)=ﬁ2Re{Z§_}me — A 0, )exp-ik,, X',

(12.132)

where e is a unit vector along a line from the center of the nth element to the
center of the inclusion and k,, = 2w, e} /c,.

Consider, for example, simulating the response of a 32 element array with a
1 mm pitch whose center is located a distance of one inch from the center of the cir-
cular inclusion. The resulting pulse-echo image is shown in Fig. 12.21 for the same
flaw properties considered in Fig. 12.18. A dotted outline of the flaw is also shown
on the image of Fig. 12.21 to help better identify the image features. As can be seen,
the front surface of the flaw is imaged properly over the available aperture while
both the back surface and creeping wave are misplaced artifacts in the image. This
is to be expected since imaging is done using the velocity of the host material, not
the flaw (the wave number of the host material, not the flaw, is contained ink ). All
delay and sum methods, including SAFT and TFM, form images using time delays
involving the host velocity so that similar artifacts will appear in images generated
with those methods as well. A striking example of this is shown in Fig. 12.22 where
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Fig. 12.23 Image of a ] mm 1.5
radius circular inclusion

obtained with full matrix 1 back e -
capture of the responses of a suface Y
32 element array with a 1 mm 0.5 / \
pitch, where the density of
the inclusion is 1.5 times that
of the host material (taken as
water) and the wave speed is
also 1.5 times that of the host

z (mm)
=

-1} front —
surface

-5 -1 -0.5 0 0.5 1 1.5
X (mm)

the same array is used to image a flaw whose wave speed is twice that of the host
material. In this case, when the waves from the back surface are imaged with the
host wave speed, the waves appear to have originated from the center of the flaw
so that the back surface appears as a point source located at the flaw center. Back
surface reflections, creeping waves, and other multiply reflected waves will appear
either inside the flaw or outside, depending on the wave speed of the flaw relative to
the surrounding material. Thus, only the specular front surface reflections (or edge
diffractions, in the case of cracks) are properly imaged with delay and sum methods.

One can also use Eq. (12.104) to form up a full matrix capture image. In this case
the discrete form of Eq. (12.104) is given by

, AwAx AX'V M N N 871'6‘1 (Coer)n (COSQS)p
I,(X)= -~ 2Re ZZZ o, (1+cos@ ) " (R
n P
A" s, w)exp[ ik, - X']}, (12.133)

where e” is a unit vector along a line from the center of the flaw to the center of
the pth array element and now k,,,, = @, (e;,. —el, )/ ¢, For the same array and the
same flaw imaged in pulse-echo in Fig. 12.21, Fig. 12.23 shows the corresponding
full matrix capture image. Comparing Fig. 12.21 and Fig. 12.23 one can see that
the creeping wave artifact has been essentially eliminated but that the back surface
artifact remains. This is to be expected since the creeping waves travel along dif-
ferent path lengths for the various pitch-catch responses present in the full matrix
imaging case and are averaged over the aperture, leading to a small response in the
resulting image.

Finally, Fig. 12.24 shows the image of a weak scattering inclusion (density and
wave speed 1.05 times that of the host material) generated with the simulated pulse-
echo responses of the 32 element array. In this case the back surface is also imaged
in essentially the correct location. There are also images of creep wave artifacts that
are generated but these occur at sufficiently late times so that they are outside the
displayed image window of Fig. 12.24.
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Fig. 12.24 Image of a | mm
radius circular inclusion
obtained with the pulse-echo
responses of a 32 element
array with a 1 mm pitch,
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inclusion is 1.05 times that
of the host material (taken as
water) and the wave speed

is also 1.05 times that of the
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Chapter 13
Imaging Measurement Models

In Chap. 12, we described the ways in which images can be formed with phased ar-
rays, including a two-dimensional (2-D) far field imaging measurement model. More
general imaging measurement models will be developed in this chapter for forming
images in 3-D with 2-D arrays and for forming images of 2-D scatterers with linear
arrays. As found in Chap. 12 for the 2-D case, these imaging measurement models
can be directly related to SAFT imaging and the total focusing method (TFM).

13.1 Pulse-Echo Imaging

In Chap. 11, we developed measurement models from general reciprocity relations
and then used the Kirchhoff approximation to express those measurement models
in terms of the specular response of the flaw surface (see Eqs. (11.62) and (11.63)).
Consider first the case where each element fires and we receive only the collection
of pulse echo responses as shown in Fig. 13.1. In Chap. 11, we found that we could
express the pulse-echo received voltage of a single element for both immersion and
contact testing cases in the form (Eq. (11.63)):

P (x..0) = 2,000 [{RE[0) (5, x.0)] exp[ 20T (x,.x)Jds)}. (13.1)

Siis

We will replace the normalized displacement amplitude term U},l) (x.,X, ) by the
corresponding normalized velocity amplitude Vﬂ(l)(xl,,x,a)) = —in;’(xc,x, ).
Then Eq. (13.1) becomes

I;'(xc,a))z2pzcﬂ2J‘{Rf;ﬁ|:I7;)(xc,x,a)] .exp| 20T (x, ]dS(x)} (13.2)

SIiI

As done in Chap. 12 for 2-D scalar problems (see Eq. 12.16), we can define a singular
function, ¥, (x), of the lit surface which in 3-D problems has sampling property [1]:

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 279
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2 13,
© Springer International Publishing Switzerland 2015
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Fig. 13.1 A pulse-echo
testing setup where an array
element acts as both a send-
ing and receiving element in
examining a flaw through an
interface

flaw

[r(0ds) = [ 7,0/ (x)av (x), (13.3)

and also define the reflectivity of the surface as R(x) = Rf;ﬂ ¥ (X) to turn the surface
integral in Eq. (13.3) into a volume integral of that reflectivity over all space, i.e.

V(x,0)= 2p2cﬂ2j{R(x)[;7ﬂm (x,.x, a,)f exp[Zia)T(xc,x)] dV(x)}. (13.4)

We will now show how we can invert Eq. (13.4) to obtain an image of the flaw prop-
erties without making the small flaw assumption, as done in Chap. 12, following a
similar approach to that of Bleistein et al. for scalar problems [2]. Specifically, we
will again define that image, /,(x), to simply be the reflectivity of the flaw surface:

I,(x) = R(x) = Ry, (x) (13.5)

and obtain an expression for the image in terms of the measured values, 14 (xc s a))

In a real ultrasonic array, the values of V' (XC, a)) are only measured at the discrete
locations of the array elements and at discretely sampled frequencies but in invert-
ing Eq. (13.4) we will find it convenient to consider (x_, @) as continuous variables.
We will also parameterize the array element locations, x_, assumed here to lie on
a planar surface, in terms of two auxiliary variables £ = (&£,,&,), i.e. X, =x_ (&)
. Since Eq. (13.4) is in a form similar to that of a 3-D Fourier transform, we will
seek to obtain the image of the flaw at a point ¥, /,(y), to be in the form of a similar
inverse Fourier-like transform given by

L) =[[K(y.x..0)V (x..0)exp[ -2iaT (x,.y)|d*Edo. (13.6)

To see if this representation of the flaw image is possible and to obtain the unknown
function K(y,x,_,®), we will place Eq. (13.4) into (13.6) to obtain

I,(y)= ijszcﬁzK(y, X,, a))[I;ﬁ(” (xc,x, a)):|2
-exp[2ia)T (x,,x)—2i@T (xc,y)]IR(x)dzﬁcda)dV(x).

(13.7)
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Since in Eq. (13.7) we are relating the flaw image to a volume integral over itself,
then in some sense we must have

Io(y) = [ 8(x =) (x)dV (x) (13.8)

or equivalently, in some sense

ox-y)= Jj 2p,c5K (v.x,, (0)[17;) (x..x, a)):r

(13.9)
-exp [Zia)T (x..x)-2il (x,, y)]dzfcdw,

where 0(x —y)is the Dirac delta function. At least asymptotically at high frequen-
cies Eq. (13.9) may be valid since at high frequencies the rapidly varying phase
terms in the integrand will cause the integrals to be small except near the critical
point X =y, where the phase term in Eq. (13.9) vanishes. Near this point, if we ex-
pand the phase term to first order and evaluate the amplitude at that point we have

T(xc,x)—T(xc,y)ngT (x,—y)=V,T-(x-y), (13.10)

i |x=y

so that
o(x—-y)= ijpzcﬂzK (y, X,, w)[Vﬁ(” (x..y, a))]2 exp [Zia)VyT (x— y)] d*édo.

(13.11)
If we now define a wave number vector, k, as

k=2wV T (13.12)
we can transform the integral in Eq. (13.11) into one over 3-D k-space, i.e.

a(w: S gcz)

300 exp[ik-(x—y)ld’k,

o(x-y)= J‘szzcﬂzK (Y» X.» a)) [V;) (Xc Y, w)]2

(13.13)

where the inverse of the Jacobian of the transformation for this pulse-echo case can
be written as

(k) .
N E EF N h 1°29c2° .
K@y £y e lbary) (13.14)
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with

2V 7
R (&1.8,,y) = det 2%(V},T) (13.15)

cl
) 0
| 9%

v.1)

which is called the Beylkin determinant [2]. If we take

L wz |hpe (é]’é-z’y)|

K(y,x.,0)= - ; (13.16)
87’ 2pycp, [V;) (x..y, a))]
then Eq. (13.13) becomes
5(X—y)=L”6Xp[ik~(x—y)]d3k, (13.17)
87

which is indeed just a k-space transform representation of the delta function. Thus,
if we place Eq. (13.16) into (13.6) we now have an explicit expression for the image
given by

1 @'V (x,. o)
: |he(§cl’§c2’y)|
~ 2 P
167 pcy ™~ [V (x,.y. )] (13.18)

exp[ -2i0T (x,,y)|d*Edw.

I (y)=

The evaluation of the Beylkin determinant can be made particularly easy by choos-
ing the £-parameters to be the spherical coordinates (6,,¢,) centered around a ref-
erence unit vector in the incident wave direction at point y. Then, as shown in
Appendix A, we have

8sin b,

ho o=

pe

—=. (13.19)
Cpa

In this case

o'V (x,, )

1
278 pcy, I (7" (x..y.0)]

1(y)= ~exp|-2iaT (x,,y)]sin6,d6.dg.dw, (13.20)

where sin6.d6.d¢ =dQ, is just a differential solid angle as measured in these
spherical coordinates. If we let dS, be a differential area element at the plane of the
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Fig. 13.2 a Geometry for
relating the solid angle coor-
dinates to Cartesian coordi-
nates on the face of the array,
and b a side view, showing
the angle of the array with the
face of the array

\\ i rdQ,

b e cosfi,

array we can transform the integration over the solid angle to an integration over the
array element coordinates to find

1 o'V (x,, ) dQ,
L (y) = - < exp| —2iT (x,,y cdSdw. (13.21)
! 27 ey, “‘[V;’ (xc,y,a))]2 [ (xv)] ds.

The ratio d€2_/dS, (see Fig. 13.2a, b) is easy to calculate for an array radiating
into a single medium. We find dQ_/dS, = cos B, / r?, where r.is the distance from
the point x_ on the plane of the array to an image point y and 3, is the angle that
the ray from y to x_ makes with respect to the normal to the plane of the array
(Figs. 13.1 and 13.2b). For other more complex situations, such as the radiation of
the array through a planar interface, as shown in Fig. 13.1, one can use ray tracing
to calculate d€2_/dS (see Appendix B for details).

Equation (13.21) is essentially an imaging measurement model for forming
an image of the reflectivity of a flaw from either immersion or contact pulse-
echo measurements of the voltages V' (x,,w) received from a flaw over all loca-
tions in the plane of the array and at all frequencies. In practice, of course, if one
only has the voltages measured at the discrete locations of the array elements
x! = (xfl,xiz)(n =1,..,L),(I=1,..,L,) and at a finite set of positive frequencies,
o, (m=1,..M), we can only obtain a band-limited and aperture-limited image,

I3 (y)> given by

Ax, Ax ,Aw

[BA —
R (y) 27[3‘)26'32

, . dQC \
m=1 n=1 I=1 [17[3(1) (le,y’wm )]2 exp[_zlme(xclaY)]d—Sc(Xcl,y) ,

(13.22)
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where (Ax,,Ax_,) is the spacing between elements in the (x,,x.,) directions, re-
spectively, and Aw is the spacing between sampled frequencies in rad/s. The term
2 Re indicates twice the “real part” and is present because we are only summing over
positive frequencies to generate the image of the flaw reflectivity. As discussed in
Chap. 12, the measured voltages here are being divided (deconvolved) with a system
function and an incident beam wave field term so that we must stabilize that decon-
volution process to make it well behaved. Consider, for example, the immersion case
where V(xc,a)) = plcplSAV(x(,,a))/s,(a)) (see Eq. (11.37) with x, =x, =x_). Then

M Axho ) s pe S (o)

RIS TS

278 picy, P )[V“)( v )]2

.exp[ —2iw T( ! ,y)]‘ig ( Z’,y)}.

In implementing Eq. (13.23) we can replace the deconvolution by division again
with a Wiener filter, i.e.

I"(y) =

(13.23)

V(x:f],a)m)
s (@) (3 vo,)]

where the filtered voltage is

-V, (x!.y,0,), (13.24)

V(xfl,w ){Sz (a)m)[ﬁpﬁ“ (xfl,y,a}m )]Z}*

Vi (XZ/’Y7 wm) =

s,(a)m)[@l)(x:l,y,wm )]2 2 +é max{ s,(a),,,)[l;/ﬁl)(le,y,a)m)]z 2}
(13.25)
so that in the immersion case we would find
Ax, Ax,, Mo &
W==5 sz {22 penS @y (xy,@,)
n 1=
1 dQI (13.26)
exp[—Zza)mT(xL ,y)] a’SC( f’,y)}.

This 3-D imaging measurement model can also be related to a corresponding SAFT
algorithm, as done in Chap. 12 for the simpler 2-D problems. If we set £=0 in the
Wiener filter and simply ignore all the terms in Eq. (13.26) except the constant
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Aw/?2 &, the measured voltages, and the phase terms involving the propagation
terms 77 we find the SAFT image (see Eq. (12.5)):

ML L
ISAFT(y)=2Re{§—:ZZZV(x o, )exp[—Zla) T(x! ,y)]}. (13.27)

m=1 n=1 I=1

The imaging measurement model of Eq. (13.21) is applicable to the imaging of
large or small surfaces. When the flaw is small enough so that the incident wave
fields do not vary significantly over the flaw surface we have

7 (x.y) =V (x..y,)

(13.28)
T(x.y)=T(x,.y,)+€y  (y-¥,)/cp
for a fixed image point y, near the flaw surface and Eq. (13.21) becomes
1 oV (x,, 0
W)= () ( ; : ’
PrCh [V/f (X.,yy, @)exp {za)T(xc,yo)}]
(13.29)

dQ
.exp[ —2ikyel - (y—yo)] dSC dScda)},

which is a POFFIS-style imaging expression, similar to the 2-D case considered in
Chap. 12. Computationally, Eq. (13.29) requires much less effort than Eq. (13.21)
to implement since one needs to calculate the incident wave field terms only for the
one fixed point y, for all image points y. However, in implementing Eq. (13.29)
one should only use images points near the flaw surface so that Eq. (13.28) is not
violated. Thus, with multiple flaws that are widely separated one should locally im-
age each flaw individually with Eq. (13.29).

As done in Chap. 12 for the 2-D scalar case, we can write Eq. (13.29) in terms of
the far field scattering amplitude of the flaw by using the Thompson-Gray measure-
ment model (Egs. (11.26) and (11.30)) for either an immersion or contact setup. In
the pulse-echo case we have pc,,S, = pc,S;, and 4= A(e? ;—e” ), so that we find
that for both the immersion and contact cases

1(y)_7r2 ”;k A€l ;—¢), )exp[ -2 -(y - yo)]‘;?c dS.do.  (13.30)

c

Equation (13.30) can be used to simulate POFFIS-style images generated by an
imaging measurement model for a flaw whose far field scattering amplitude can be
modeled by semi-analytical or numerical means. When discussing POFFIS imag-
ing, Bleistein [3] obtained this result for 3-D scalar wave problems (see Eq. 9.2.9
in [3]), a result which we see here is also directly applicable to imaging with elastic
waves.
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We can also develop an imaging measurement model for the pulse-echo edge
response of cracks following similar steps to those used in Chap. 12 for the scalar
2-D case. We will again assume that there is no specular response from the crack
surface (which will be assumed to be entirely lit by the incident waves) so that we
must start by modifying Eq. (13.2) to reflect that fact. In Chap. 11, we obtained this
form of an approximate measurement model by using the Kirchhoff approximation
to obtain (see Eq. (11.47), written here in terms of velocities)

P(x,0) =] {1(x)[17/;1> (x.x0)] exp[iw(/ﬁ(xc,x)]dS(x)}, (13.31)

where ¢(x_,x) = 2T(x_,X).The integrand term /(x) was evaluated at the stationary
phase points on the flaw surface to model the specular response of the surface. Here,
instead we keep the original integral term, Eq. (11.48), which for pulse-echo, same
mode responses reduces to

R"BID g o R™AID g7 o2
](X)ancykl[ z [ 23 Bi Y mkSml _ 23 Pk mi~pl . (1332)

Cn2 CﬂZ

m=p,sv
Now, let us define a vector field, F, as

_ 1 nxVg
i0| Vo[ ~(V¢-n)’

107 ] explioog], (13.33)

which is possible since if there are no specular points on the crack surface the de-
nominator in Eq. (13.33) never vanishes. At high frequencies the derivatives of this
field come from derivatives of the phase term so that we have, approximately

n-(VxF)=-10[ 7" ] explioog], (13.34)

where we have used the vector identity

mxVg)-(nxVg)=V¢-Vé—(n-V@)(n-Vg). (13.35)

Thus, using Stokes theorem
js n(VxF)dS = jc Ftds, (13.36)
where t is a unit tangent vector to the crack edge, C, we can rewrite Eq. (13.31) as

1 (nxVg)-t

VD=1 [V or -V ony

1[0 explioglds.  (13.37)
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If we introduce the singular function of the crack edge, y.(x), where for any func-

tion f(x)
[Lredse) = [ 7e )0V (x), (13.38)

Equation (13.37) can be rewritten in a form very similar to Eq. (13.4), namely

> 2:020/212 { (1) 2 . }
vV = RV, 2iwT dv .
(x.,0) P j g [ 5 (x..x, w)] exp[ 20T (x,,x)|dV (x)}  (13.39)
where the reflectivity of the crack edge, R, is defined here as

_ —(xVet I
© Vel ~(Ven) 2p,c;,

Ve (X). (13.40)

As discussed in Chap. 12 for the 2-D case, we cannot expect to image explicitly
this reflectivity at each point on the edge because of the dependence of the coef-
ficients of . (x) in Eq. (13.40) on the incident and scattering directions, but we can
ignore those dependencies and write R, = R (x) only in trying to image the crack
edge singularities. In that case Eqs. (13.39) and (13.4) are nearly identical. In fact,
we can make the forms identical by making the replacement V' — (ia)/ cﬂz)l; in
Eq. (13.4). Thus, making the same replacement in the imaging measurement model
of Eq. (13.21), we obtain for an image of the crack edge

(iw/cp) @V (x,, 0)

dQ
exp| —2iaT (x,,y cdS.dw, (13.41)
V(l) (me’w)T [ ( )] ds,

with 7,(y) = R, (y). As found in Chap. 12 for the 2-D scalar case, we see that a 3-D
crack image involves an additional i@/ c,, factor not present in the image of the
specular surface response. Although we have only considered the pulse-echo case
here, following the same steps for the full matrix imaging approach described in
the next section also leads to a crack edge image that is related to the specular flaw
response by making the replacement /' — (za)/ c, )

Ly)= 27[3%2 IJ

13.2  Full Matrix Imaging

The previous section showed that measuring all the pulse-echo responses from an
array of elements in a 2-D array was sufficient to generate a 3-D image of a flaw. If
instead, one captures all combinations of responses from element pairs (full-matrix
capture) then one can also form up an image. The element pairs can be on the same
array or on separate arrays, as shown in Fig. 13.3. As done in Chap. 12 for the scalar
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Fig. 13.3 A pitch-catch
setup where separate array
elements are used as senders
and receivers

problem, we will first consider the case where we have a single sending element and
receive with all elements of the receiving array. Again, we will consider the param-
eters (X,,X,, w)as continuous variables. From Eq. (11.62) we had

V(x,,X,,0)=-2p,c,0 j {R“ﬁ nk)(j[(,” (x,,x, @)UY (x,,x,0)

(13.42)
exp[zwgb X,,X, ,0 ]dS(x)}
which, in terms of the velocities V" = —iwU} V> = —iwU > becomes
V(x,.x,,0)= 2pzcazj {R;’?ﬂ (e;knk )Vﬂ“) (x,.x, @)V (x,,x,0)
§ (13.43)

-exp [za)l(/ﬁ(xb X, a))] dS(x)} .

Introducing the singular function of the surface again we can write Eq. (13.43) as

V(x,,x,,0)= 2p2cazj{R2’§;ﬂ(e;knk)}/S(x)V;) (x,,x, )V (x,,x,0)

exp[imp(x,,x,,x)]dV (0)}. (13.44)

We will parameterize the receiving array element locations, x , assumed here
to lie on a planar surface, in terms of two auxiliary Varlables ¢ = (‘frnéz)
ie. X, =X, (gg,) , and in this case define the flaw image as

1,(y) = R(y) = R (elyn ) 75 (¥), (13.45)
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which reduces to our previous definition, Eq. (13.5), for the pulse-echo case. Since

Eq. (13.44) is again a Fourier-like integral we will attempt to invert that equation
and form an image via the relation

J-J.Ky,x X, a)l7( X(f)a))

(13.46)
~exp[—ico¢(xY x, (&) )]d édw
Placing Eq. (13.44) into (13.46) gives formally
Ky, D) 2 1% 10 V() X, @
D= {15l ) apcat 7 (5l sox)
-exp[ia)¢(xs,xr,x)—ia)¢( x, (&), )]}dzfrda)dV(x)
As in the pulse-echo case Eq. (13.47) can be true if in some sense we have
ox—y)=||K(y,x,,x,,»){2 aﬁ(” X,,X,0 17052) X, ,X,®
-y =[[K(y {287 (x, x.0) V2 (x,.5,0) 1349

-exp [ia)¢(xs_,x,_,x) - ia)¢(xx,x, (& ),y)] dzfrda)}.

This is possible since at high frequencies again we expect the major contribution to
come from this highly oscillatory integrand around the critical point x = y. Evaluat-
ing the amplitude of the integrand of the integral at that critical point and expanding
the phase to first order, i.e.

¢(Xs’xr’x)‘¢(xwxr,y)zg—¢
X

i

(x, =)=V, o(x-y). (13.49)

X=y

Equation (13.48) becomes

S(x—y)= jJK (v.x,.x,, a)){2pzcazl7ﬂ“) (x,.v. @)V (x,.y, )

'eXp[iny¢’(X—y)]}dzfrda), (13.50)
Now, defining a wave vector, k, as
k=aV ¢, (13.51)
we transform the integral in Eq. (13.50) to one over 3-D k-space:
o(x—y)= ”K(y,xs,xr,w){2p2cazl7[§“ (x,,y, @)V (x,,y,0)
_‘a(wéé(:;,)giz) explik-(x— y)]} ik (13.52)
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where the inverse of the Jacobian of the transformation can be written as

(k)

NDELE) @’ h(x,,X,($,,6,).y) = @°h(&,.S,,.Y) (13.53)

in terms of the Beylkin determinant, (&, & ,,y). Thus, if one takes the function K as

@’ |n(&,.5,.y)]
16ﬂjp2Ca2 Vﬂ(l) (Xs Y a))l;oiZ) (Xr Y w)

K(y,x,,X,,0)= (13.54)

one obtains the k-space transform representation of the delta function again (see
Eq. (3.17)) and Eq. (13.46) becomes

~ 1 w2|h(§y1’é:r2’y)|l7(xx’xr (5’)’a))
I (y)= 67 poc., ” 70 (x,,y, o)V (x,(€).y.0)

exp| —iop(x,.x, (£ ).y)]d*¢ do.

(13.55)

If one chooses the parameters (£,,&.,) to be spherical coordinates (6.,9,) at the
image point y, as shown in Appendix A the magnitude of this Beylkin determinant
simply becomes

sin 6, (13.56)

|h(x,.x,(6,.8,),y)| = 1+jicos®

B2

a2

where @ is the angle at y between a ray path from the source to that point and a ray
path from the receiver to that point (see Fig. 13.3). Then Eq. (13.55) is

1 ” o'V (x,.x, (), )
167 psc; 7P (kv @)V (x.(8)v.@), (1357
-exp [—iwgf)(xs,xr (& ),y)] dQ dw

¢
1+ -2 cos®
Cp

I(y)=

where dQ = sin6.d6.d ¢, is a solid angle corresponding to different e'” directions
at 'y from the receivers. If we relate this solid angle to a corresponding area, dS,, on
the plane of the receiving elements then we have

W7 (%, (£).)
7 (5.7 (x, () v.0)

dQ (13.58)
'CXp[—iW(xs,xr (fr)sY)] dSr dS,da)

r

c
1+ -2 ¢cos®
Cpo

1
I (y) =m”

Equation (13.58) shows that we can form an image of the reflectivity of a flaw with
only one element firing but with many receiving elements. However, in practice one
uses an array with some or all elements both firing and receiving to have as high a
signal-to-noise ratio as possible. To simulate this case we can write the position of
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the sending element, X, in terms of parameters (£, &,,) and consider varying those
parameters. If we choose these auxiliary parameters to be spherical coordinates
(6.,9,), as similarly done with the receiving elements, then I, = I,(y,0.,¢,) and
we can define the integral of this image over a solid angle as measured to the send-
ing elements as

=[1,(y.6..0,)dQ, (13.59)
where dQ_ = sin6,d6,d¢,. Using that definition and Eq. (13.58) we find

@'V (x,(£)-x,(£).0)

]R(y)_16723p2 JJJ + Cos@ ;)(X (5) ’w)r;liz)(xr(fr),y’w)
00 do (13.60)
~exp[—ia)¢(xs (é),xr (&), )] i, dSA ds. dSdw

in terms of an integral over both the sending and receiving element surfaces. The
angle—area ratios dQ, /dS,, dQ_ /dS, can again be easily obtained with ray theory
for a single medium or radiation through a planar interface, as shown in Fig. 13.3.
The details are given in Appendix B where it is shown that the angles (8., 3,) be-
tween the normal to the arrays and the Snell’s law rays to the flaw (see Fig. 13.3)
appear.

Equation (13.60) shows that in a full matrix imaging approach the explicit image
generated in the continuous case is the flaw reflectivity integrated over the angular
directions associated with the sending elements. For a real array, this image will be-
come a band-limited and aperture-limited (on both the sending and receiving sides)
version, 7", of this integrated reflectivity. Implementing Eq. (13.60) is computa-
tionally challenging since it involves a total of five integrations. We can relate this
image to one obtained with the total focusing method, replacing the integrations
with finite sums over the element locations and positive frequencies, and ignoring
all the parameters except a Aw/ 2 & factor, the measured voltage, and phase term
in Eq. (13.60), to obtain the TFM image generated by an array with L, elements in
the x, -direction and L, elements in the x, -direction at M positive frequencies (see
Eq. 12.2.4):

M L L, L L
Ly (V) = 2Re{ I x ,)expl-io, o(x X" y)]}.

m=1n=1 1=1 p=1 g=1

(13.61)

If the flaw is small enough we can reduce the computational burden of computing
Eq. (13.60) somewhat by using a POFFIS-style imaging model for full matrix imag-
ing. In this case, we assume that the incident fields can be evaluated at a fixed image



292 13 Imaging Measurement Models

point, y , near the scatterer and the phase term in Eq. (13.60) expanded to first order,
so making the replacements

7 (x,.y,0) =V (x,,y,, @)
V2 (x,,y,0) =V (x,,y,, 0) (13.62)

¢(xs’xr’y)5 ( A’y0)+T( V’yo)
(1) (y Yo /Cﬂ2+e(112)'(y_YO)/ctz2

in Eq. (13.60) gives

@'V (x,,x,,0)

1 j—
= 167fpc ”JV“’ Yoo 0)explial (x,.y,) [V (x,.yo. @)exp[ioT (x,.y,) |
[ (o dQ dQ,
.1+cﬂ2 cos©® exp[ iws (y yo)] S, dS. ds.dS dw, (13.63)
where
s=ey /ey tey /ey, (13.64)

Equation (13.63) can also be written in terms of the far field scattering amplitude
since we found previously in Chap. 11 the measured voltage in the Thompson-Gray
measurement model written in our current notation is

V(x,.x,.0) =V (x,,y,, 0)exp[ial (x,,y,) [V} (x,.¥,, @)exp[ioT (x,.y,) ]

Ampyc,, @ (13.65)
—ik,, A( s> "Ca ’w)
so that Eq. (13.63) becomes
- 1
1 = ik e(”, e? w 1+ 52 c0s0
R(Y) 47T2Ca2 JJ-J(Z az) /3 €, ) cﬁz e
, dQ, dQ, (13.66)
-exp[ —iws-(y-y,) B0, > ds dS dw,

which can be compared to the pulse-echo case of Eq. (13.30). Equation (13.66) is
valid for both immersion and contact setups.
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Fig. 13.4 A sending and
receiving element of two
linear arrays interrogating a
2-D scatterer through a planar
interface, where the long axis
of the scatterer is parallel to
the long dimensions of the
elements. The polarizations
of P- and S-waves incident
on the scatterer in states (1)
and (2) are shown explicitly,
as well as other pertinent
geometric parameters

Fig. 13.5 An example

inspection setup of the type

shown in Fig. 13.4 where a

pair of linear arrays placed on

wedges are used in a pitch- \W‘//
catch calibration setup with a side drilled hole
side-drilled hole

13.3 2-D Imaging with a Linear Array

In Sect. 13.1, we showed how to form a 3-D image of a flaw from 3-D data con-
sisting of the pulse-echo responses as measured over the planar area of a 2-D array
and at all frequencies. This is the minimum amount of data needed for 3-D imag-
ing. For a linear array, we only have elements distributed in one dimension so that
it is not possible to develop a 3-D image without physically moving the array to
obtain additional data measured in a second spatial dimension. However, one can
use linear arrays without any motion to form 2-D images of 2-D scatterers such as
side-drilled holes, which are commonly used as reference scatterers in evaluating
imaging parameters. Figure 13.4 shows a pitch-catch setup where separate send-
ing and receiving elements of a linear array are interrogating a 2-D scatterer. The
centroids of the sending and receiving elements are located at the points (x,,X,)
respectively. It is assumed that both these centroids and the point x,, on the scat-
terer all lie in a common plane given as x, = x,, = x, = 0, which is also the com-
mon plane of incidence in this setup. An example inspection problem of this type
is shown in Fig. 13.5 where a pair of linear arrays are used in a calibration setup
with a side-drilled hole. We will find it convenient to use capital letters to distin-
guish quantities that only have 2-D coordinates in that common plane. Thus, since
the centroids (x,,X,) are also assumed to lie along the (x,,,x,,) axes, respectively,
we have x; = (X, x,, =0) where X =(x,,x,=0), and x, =(X,,x,, =0) where
X, =(x,,x,; = 0). Similarly, we can write x, = (X, x, = 0) where X = (x,,x,) and
a generic point x anywhere on the scatterer is x = (X, x, ).
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We begin with our previous result for full matrix imaging given by Eq. (13.43):
V(x,x,,0)=2p,c,, | {RZ (el,n )V (x,,x, @)V (x,,%,@
(xon0) =2 [ (R (can ) (0l (xom0)

-exXp [ia)¢(xs,x,,x)] dS(x)}.

and note that we can write it in terms of the incident velocities in states (1) and (2)
as (see Eqs. (11.42) and (11.43), which are for the corresponding displacements):

4 (xs X, w) = szcasz;;ﬂ (e;knk )[Vg);mc : dg) ] [Vg) ) d;z) ] ds(x), (13.68)

St

where

{,fgl);int’ = Vﬂ(l) (XS , X, a)) dfgl) CXP[iC‘)T (Xs > X)]

~ 13.69
v =p® (x,,x, a)) d"? exp [ia)T(xy,x)], ( )
For our linear arrays we will write these velocity fields instead as
0 = 0 (X, x, ) DY explioT(X,,X)], (13.70)

9 =72 (X,,x,0)D? explial(X,,X)],

where we have used the fact that the long length of the array elements produces
a wave field from an element polarized essentially in the plane of incidence (the
polarizations D, D’ (see Fig. 13.4) lie in those planes for the sending and re-
ceiving elements, respectively) and the major time delays are also primarily those
measured in that plane since there is little beam spreading in the x,-direction. Thus,
Eq. (13.68) becomes

V(X,.X,,0) = 2p,c,o | R (efn,)[757 DY ][72 DY ]ds(x) (13.71)
Slil

or, equivalently,
V(x,,x,,0)= 2/’2%2.[ R (ebum, )V (X, x,0) V2 (X, x, )
S (13.72)

exp[iwp(X,.X,,X)]dS(x)
with

o(X,, X, X,w)=T(X_,X)+T(X,,X). (13.73)

If we ignore the ends of the scatterer, the response of the linear array element from
the specular points is independent of the x,-coordinate and so that R%” (e, n, ) does
not depend on x, but the incident fields are still 3-D. This means that we can separate
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Eq. (13.73) into an integral of the wave fields over the length of the scatterer and a
counterclockwise integral over the “lit” circumference of the flaw, in the form

V(x,.%,.0) = 2p,c,, | RE (ehum )V (X,. X,. X, 0)
G (13.74)
exp[iwp(X,,X,.X)]ds(X),

where
VE(X,. X, X) = [ 70X, X0V (X, . X, x, )d, (13.75)
L

Introducing the singular function ¥, (X) of the lit circumference of the scatter then
transforms Eq. (13.74) into an integral over the entire (x,,x;) plane at x, =0 and
we have

V(X,,X,,0)=2p.c,, j R, (X5 (X,. X, . X, 0)exp| img(X,. X, X) ]d*X
(13.76)

in terms of the 2-D reflectivity
R, (X) =R (el )y.(X). (13.77)

Comparing Eq. (13.76) with (13.44) we see that Eq. (13.76) is the comparable start-
ing point for describing full matrix imaging of 2-D scatterers with linear arrays.
Thus, we can follow the same steps used for 3-D imaging suitably modified to ac-
count for the fact that we are now working strictly with 2-D terms in Eq. (13.76).
In this case we will define a 2-D image, 1,,(X), as 7,,(X)=R,,(X), and for a
fixed sending element and varying receiving elements attempt to obtain this image
through an integral of the form

Ly(Y)=[[K(X.X,(£,).Y.0)V (XX, 0)
exp| —iwp(X,. X, (£,).Y)|dwds,,

where the location of the centroid of the receiving element (assumed to be a continuous
variable here again) is parameterized by the variable &, i.e. X, (&,) = (x,,(£,),0). If
we place Eq. (13.76) into Eq. (13.78) we obtain formally

(13.78)

Ly(Y)=2p,c,, [ [ [ K(X,.X,.Y.0)V} (X,.X,.X,0)],,(X)

exp[iop(X,. X, X)-iop(X, X, Y)|dwdé,a’x, 7
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which suggests we must have

SX-Y)=[[2p,c,,K (X,.X,.Y,0) V55 (X, X,.X,0) -
-expiog(X,,X,.X)-iwp(X,,X,.Y)]|dwd&, (13.80)

Again, as in the 3-D imaging case we expect at high frequencies the major con-
tributions to the integrals in Eq. (13.80) to occur around the critical point X =Y.
Expanding the phase term about this point we have

9(X,.X,.X)=9(X,.X,,Y)+V,¢:(X-Y) (13.81)
and defining a 2-D k-vector, k,,, as

k,, = oV, ¢ (13.82)

we can rewrite Eq. (13.80) as approximately
8(X-Y)=[[2p,c,,K (X,.X,. Y, 0)V5(X,.X,. Y, )

(k)

(13.83)
exp[ik,, (X-Y)]d’k,,

As in the 3-D case, we can write the inverse of the Jacobian appearing in Eq. (13.83)
in terms of a Beylkin determinant, H(&,,,Y), where now

a(k,p)

=wH(,,Y) 13.84
ey e (13.54)
and V ¢
Y
H(&,,Y)=det| 0 (13.85)
r . V ¢
agrl ( ' )
which shows that if we take
H(E,,Y
K(X.X,Y,0)=— [0 (£, Y) (13.86)

47 2pye, Vs (X, X, Y, @)

we indeed have valid representation of a delta function, i.e.

1

SX=Y) =

[ [explik,, - (X-Y)ld’k,,. (13.87)

Placing Eq. (13.86) into Eq. (13.78) gives
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B |WH rl’ | -
w(Y)= 8,“02 ” (XX, Yw)V(X”X‘”w) (13.88)

~exp[—ia)¢ XS,XV,Y )]dwdé,.

As shown in Appendix A, if we take the parameter £, to be associated with the
incident angle, 6., of a wave in the plane of incidence coming from the receiving
element to the image point, Y, the Beylkin determinant can be easily evaluated (see
Eq. (A.34) and the image is given by

IZD(Y)—W —[ [+
2 a2 Cp

-exp[-iwp(X,.X,.Y)|dwd..

If through ray tracing, following the same procedures as done for the solid angle/
area ratios in Appendix B, we relate the angle parameter 6. to the location of the
receiving element in the x, -direction by evaluating d6. / dx,, then we have

V(X,,X,,0)
Vs (XX, Y, 0)

1
IzD(Y)=m”|a’| 1+
(13.90)

. de.
~exp[—la)¢(XX,Xr ,Y)] da)d dx,,

rl

Equation (13.90) shows that, similar to what was found in the 3-D imaging case,
with a linear array we can form a 2-D image with only one element firing and
receiving with many elements. To simulate the full matrix imaging case where
there are multiple sending elements firing, we can use Eq. (13.90) and parameterize
X, = X, (x,,) by an incident angle, 8, at the image point of a wave coming from the
sending element which also causes the image of Eq. (13.90) to be a function of that
angle, i.e. I,, = 1,,(Y,8,). If we integrate these images over that incident angle, we
obtain the 2-D image

Ly(Y) = [ 1,,(Y,6,)d8,, (13.91)
where
( )— J.J‘|w‘ azco @M
2D 2 a2 VL (anxr’Y»w)

46, do (13.92)
-exp| —iwp(X,,X,,Y) ]dw S

rl sl
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Equation (13.92) is an imaging measurement model for full matrix imaging. If one
replaces the integrals by sums over the array elements and positive frequencies only
and ignores all the terms except a A@w/2 & parameter, the measured voltage, and
the phase term, Eq. (13.92) becomes the 2-D image generated by the total focusing
method:

N

A M N
LA, (Y)=2Re{2—:ZZZV(Xm,Xs1,w Jexp| —iw, o ( XSI,XWY)]}, (13.93)

m=1 n=1 [=1

which can be compared with the total focusing result for 2-D scalar problems given
by Eq. (12.49).

A2-D image of a 2-D scatterer can also be generated with the pulse-echo responses
of a linear array. Many details follow closely that of the full matrix imaging approach
so we will only outline the highlights here. The pulse-echo case can be obtained from
our full matrix case by letting oz = £ and making the following replacements:

X, =X, —>X, =(x,,x;=0),

V(X,.X,,0) >V (X, 0),

7k - V(X X0)= [ [75(X,. Xox,0)] dv,, (13.94)

L, (X) =R, (X) > Rf?ﬁn (X),
¢(XS’X1"X) - ¢(XC’X) = 2T(XC’X)

Then the equation for the received voltage, Eq. (13.74), becomes

V(X,.0)=2p,cp [ Ry (X)V; (X, X, 0)exp| 2007 (X,.X)|d°X,  (13.95)

Ciir

where, recall, the integration is counterclockwise over the lit surface. This equation
can then be inverted, as before, to form the 2-D image as

]ZD (Y) =

1 |pre 'me)|
8ﬁ2p2c/,2'” VE(X, Ya))V(X“’w) (13.96)

.exp[—Zin o ]da)dfcl,

where the location of the centroid of the element has been parameterized in terms of
the variable £ ,i.e. x, = x,,(£,). As shown in Appendix A, the Beylkin determinant

cl?

for the pulse-echo case, H, (£,,Y), can be easily evaluated if we take &, =6,

where 6, is an angle defining the incident wave direction at the image point. Then
H, = 4/022 and we find

J~J-|a)|V(X

X Y. exp[ ~2ial (X,,Y)]dwds,. (13.97)

]ZD(Y)_ e Do
2 ﬂz
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Again, using ray tracing we can turn the integration over 6. into one over the cen-
troid location, x_,, of the element, to obtain the pulse-echo imaging measurement
model:

cl>

||V (X de,
]2D(Y)_27[ o “VL X Y exp[ —2ieT ( X,Y)]d dodx,.  (13.98)

cl

Two-dimensional SAFT imaging with a linear array is a highly simplified version of
this imaging model where only the measured voltage and phase terms are retained
and the integrations are replaced by sums over the discrete elements and at discrete
positive frequencies, giving

122 (Y)=2Re {A“’ZZV m,a)m)exp[—Zia)mT(Xw,Y)]} (13.99)

m=1 n=1

which is the same expression as developed for 2-D scalar problems in Eq. (12.29).

Finally, a 2-D POFFIS-style imaging model can again be obtained for both full
matrix and pulse-echo imaging with a linear array. Consider first the pulse-echo
case, Eq. (13.98), and assume the flaw is small enough so that the fields can be eval-
uated at a fixed point, Y|, at the flaw and the phase term expanded to first order. Then

i (XY, 0) 275 (XY, 0),
T(X,,Y)=T(X,Y,)+el-(Y-Y,)/c,, (13.100)

(see the corresponding 3-D case in Eq. (13.28)), to give

L (Y)= 1 ” o]V (X, 0)
» 28 pycyy 70V (XY, 0)exp| 2i0T (X, Y,) |

(13.101)

exp| “2ikyely (Y=Y, )] Zj° dadsx,,.

cl

To compare this result to that of the scalar 2-D problem in a single medium con-
sidered in Chap. 12, consider the immersion case version of Eq. (13.101), which is

1 J'J' plcplSA |a)|V(XC,a))
271'2,020;2 s, (a))I;ﬁL (XC,YO,a))exp [Zia)T (XC,Y0 )]

12D (Y)=

(13.102)

exp| 2ikgely (Y=Y, )] va dodx,,.

cl
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Letting p, = p, = p, ¢,, = ¢, = ¢, 2kgely’ =k, Y-Y, = X-X, = X’ and writing
the area S, =1,L, , where L, is a large characteristic length in the x,-direction, we
have

I L oV (X, o)

b0 s TR ol [ (3]

de 13.103
-exp[—ik- X’]d—cdwdxcl. ( )

cl

To compare the non-dimensional field terms in the two cases we need to make the
replacement

7HX, Y, @) exp[ 207 (X, Y,) | 5[ B(X Yy 0) | L, (13.104)

where the L, length appears because of the integration of the 3-D fields in VI,L that is
absent for the 2-D case of Chap. 12. Then Eq. (13.103) becomes

|o|V(X,,0)
s, (a))[ﬁ(Xc,Xo, a))]

Finally, transforming back to a k-space integration through (see Eq. (12.25))

L, (Y)= 2;302 ” ~exp[—ik - X'ld0,dw. (13.105)

2
C

df.dw=
4ol

d’K, (13.106)
we obtain

l, J.J‘ V(X )

T s/(@)[ P(X,. X,,0)]

sexp[—ik-X'1d°k, (13,107

which is just Eq. (12.19). A similar set of steps for the contact case can also trans-
form it into this equation.
In the full matrix imaging case we have

Vi (XX, Y, 0)=V,5(X,,X,,Y,,0)
#(X,.X,,Y)=T(X,,Y)+T(X,.Y,) (13.108)
+el) - (Y=Y,)/cp+el? (Y-Y,)/c,,
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and Eq. (13.92) becomes

LV = 8n2,1)2c§,2 J j J V5 (X, X,,Y,,0) etci)g/af;( (XXYZO))] exp[ial (X,.Y,)]
{14522 cos @l exp[ S (Y - Y, ) |de d9, db, dx, dx,, (13.109)
Cp X AXg
where, as in 3-D imaging,
S=ey /cy,+el) /c,, (13.110)

but now S is a 2-D vector in the plane perpendicular to the x,-axis of the scatterer.
Equation (13.109) is our POFFIS type of imaging measurement model for full ma-
trix imaging 2-D flaws with linear arrays.

We can use the Thompson-Gray measurement model for 2-D scatterers to write
the image in terms of the far field scattering amplitude of the flaw as done previ-
ously in the 2-D and 3-D cases. Recall, in the case of a 3-D scatterer in an elastic
solid, we found (see Eq. 11.69):

V(xs,xr,a))= V[gl)(xs,xo,a))exp[ia)T(xs,xo)]Vf) (xr,xo,a))exp[ia)T(xr,xo)]
.%A(eﬁ o (13.111)
—l.kaz inc? ~scatt 2

o)

in terms of the velocity fields Vﬂ(l) = —ia)U/(;’, V® = —i@U?. For a 2-D scatterer a
corresponding measurement model can be derived in our current notation as (see
[Schmerr-Song] for the assumptions that go into the derivation):

V(X,. X, 0)=V5(X,,Y,,0)exp[iol (X,,Y,)]exp[iaT (X,,Y,)]

dnpc,, A(el.e,,.0) (13.112)
—ik L )

a2

for the general pitch-catch case and
V(X,.0)=V; (XY, 0)exp[ 2ol (X,.Y,)]
Anpycy, Alel,.—e,, o) (13.113)

inc? inc?
—ik

B2 L
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for the pulse-echo-case, where L is the length of the 2-D scatterer and 4 is the 3-D
scattering amplitude. In the full matrix imaging case then, from Eq. (13.109) we
obtain

1

_ B ) 5w
1,(Y)= el ”Il sgn(a))A(einc,em”,a))
o 4o (13.114)
N1+ 522 cos@ exp [—ia)S (Y- YO)]da) L —dx dx,,.
CﬂZ xrl dx.vl
and for the pulse-echo case, from Eq. (13.101):
2 - Po_ob
I2D (Y) = e L jJ‘l Sgn(w)A (einc > _eim‘ > w)
L2 (13.115)

-exp [—Zikﬁzeg) (Y-Y, )J% dwdx,,.

cl

13.4 Discussion

This chapter has shown that SAFT, TFM, and POFFIS methods image different
ad-hoc or filtered versions of the reflectivity images that are described explicit-
ly in our imaging measurement model approach. All of these methods fall under
the category of delay and sum methods which have been some of the most suc-
cessful imaging techniques used to date. These methods are, however, ultimately
constrained by the fundamental fact, as discussed in Chap. 12, that they can only
reconstruct proper images of flaw properties that are directly or indirectly related
to the specular response of flaw surfaces and/or the response of flaw edges. It is
important to remember this limitation when trying to use these methods for flaw
characterization or sizing applications. For example, having a one-sided aperture-
limited image of only the front surface for volumetric flaws is generally inadequate
to deduce flaw size information, regardless of how detailed the image resolution
might be. If delay and sum methods are used with data obtained from both front
and back surface specular responses, however, then sizing volumetric flaws from
an image is certainly possible. In contrast, it is possible in principle to image a crack
edge with a one-sided aperture-limited setup and still obtain crack size information
from that image. A simple example where SAFT is used in this manner to calculate
crack lengths and compared to time-of-flight diffraction (TOFD) sizing is given
in [4]. For flaw characterization studies, the situation is similar. For example, in
POFFIS-style imaging the image is directly related to the inverse Fourier transform
of the far field scattering amplitude of the flaw. However, again this yields cor-
rect images only of the specular surface or edge diffracted parts of the scattering
amplitude. Other responses seen in the image are artifacts of the delay and sum
image formation process and not related to the flaw properties in a usable fashion.
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In Chap. 12, a striking example of this fact was demonstrated for a cylindrical in-
clusion having a wave speed twice that of the surrounding material. In that case,
the back surface response was imaged as a fictitious point scatterer located at the
center of the inclusion! These limitations of the delay and sum methods may not be
widely realized because of (1) their long history of successful use in medical and
seismology applications where scatterers may be large enough so that the specular
surface and edge responses inherently play key roles in directly interpreting the im-
ages generated and (2) a tradition of using the weak scattering Born approximation
to describe how the measured signals are formed. Within the Born approximation,
for example, it is possible to properly image both front and back surface reflections
since the wave speed of the flaw is assumed to differ little from that of the host ma-
terial. In that case, an image of the scattering potential may be reasonably connected
to a quantitative image of the entire flaw geometry. An example of this case was
shown in Chap. 12 where the image of a weak scattering inclusion was given. In
NDE applications, however, where flaws are typically not weak scatterers and they
may be small, irregular and with few other distinguishing characteristics, images
obtained with delay and sum methods may often be of more limited value. Thus, it
is important to examine other ways in which the underlying array data may be used.
The work of Wilcox and his colleagues [5—7], for example, are excellent examples
of advanced flaw characterization methods that attempt to find other patterns and
features that can be extracted from phased array inspections. The equivalent flaw
sizing approach of Engle et al. [8] is also a case where an array is used not to form
crack images but to act instead as a steerable single element transducer that can ef-
fectively collect crack scattering data in multiple directions that can then be used to
obtain crack size and orientation information.

Another limitation of delay and sum imaging methods that may not be frequently
understood is that the images they produce may be statistically unstable [9]. This
means that in a random or inhomogeneous material where the material properties
are not known explicitly, it is not sufficient to form images with some “equivalent”
model of the material properties since the images depend crucially on the particular
realization of those properties present in the actual material. The work by Borcea
and her colleagues have studied this issue in depth and offered some solutions that
might be useful in NDE inspections of welds and composites [10—12].

In this chapter, we have not discussed computational efficiency issues or concen-
trated on imaging methods that are optimized for speed of computation. There are
two reasons for this. First, in NDE applications speed is not nearly as critical as in
the medical world since most NDE measurements are done in a static environment.
Second, a focus on speed issues tends to neglect the basic elements of the imag-
ing process and instead concentrate on implementation details. As the title of this
book implies, we have chosen to describe in depth the fundamentals of how flaw
signals are generated with phased arrays and how one can use that knowledge of
the measurement process to produce quantitative flaw images. That being said, we
do recognize the importance that speed plays in making imaging with phased arrays
practical and cost-effective. This is especially true for 3-D imaging which is compu-
tationally challenging even with modern high speed computers. There are versions
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of pulse-echo and full matrix imaging, for example, that can take advantage of FFTs
in forming images [13—16]. See also Wilcox [17] for a discussion of other speed
issues. Also, in Chaps. 5 and 8, we noted that the solution of a large number of ray
paths when calculating either time delay laws or the fields produced through planar
interfaces does benefit greatly by the use of high speed methods.

The delay and sum methods we have discussed are only a small subset of the
world of possible imaging methods that we could have chosen to describe. There are
imaging methods based on time-reversal, singular value decomposition, and tomog-
raphy, as well as topological methods, statistical methods, and many more that are
available or are being developed [18-22]. The challenge for all of those methods,
in our view, is to demonstrate that they can provide practical improvements to the
delay and sum methods commonly in use today. Those improvements must come
not just in terms of resolution but also in terms of the flaw information they provide,
i.e. information that the NDE community can use for quantitative flaw detection,
sizing, and characterization studies. Thus, although we could have analyzed image
resolution by evaluating point response functions with our imaging measurement
models, we chose instead to concentrate on what flaw properties are being imaged.

The imaging measurement approach we used in this chapter gives us a very ef-
fective tool for understanding the images that are generated with common methods
such as SAFT, TFM, and POFFIS and our approach shows how those methods must
be modified to obtain images that are truly images of flaw properties and not the
entire measurement system. There are other analytical and semi-analytical methods
that are used in practice that can also help us to understand the imaging process
[23-27]. Some of these are based on the Born approximation rather than the Kirch-
hoff approximation. Here, we sought to concentrate on a fundamental approach that
is compatible with the frequencies and types of flaws and flaw images that can be
expected in NDE tests and is based on the physics of how the flaw signals are gener-
ated in ultrasonic NDE measurement systems.

13.5 Summary of Imaging Measurement Models

In the previous sections of this chapter, we have derived a number of imaging mod-
els. Those models contain a relatively large number of parameters which are defined
in this chapter and others. In this section, we will summarize all the results of this
chapter in a consistent fashion and reiterate the meaning of all the defining param-
eters in terms of quantities that can be measured or modeled. In all cases, we will
use forms that involve direct deconvolutions (without a Wiener filter) to simplify
the expressions.
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Consider, first the case of pulse echo imaging with a 2-D array. In this case, we
can use Eq. (13.22):

M L L 17 ’71, -
§A(y)—A;ﬂ3Ax szR 222 . (Xl w) .
PCin meln=t 1=l [Vﬁ ( Y0, )] (13.116)

.c;sszf (x',y)exp[ ~2iw, T (x! y)]}

Here, (Ax,,,Ax,,) are the spacing between the centroids of the array elements in
the (x,,x,) directions, respectively, so they are just the arrays pitches in those di-
rections. The quantity A is the spacing of frequency components (in rad/s) and
(py,¢4,) are the density and wave speed in the medium surrounding the flaw for
an incident wave of type 3. The points x" = (x/I,x3) are the discrete locations of
the element centroids, @, are the discrete sampled frequencies, and y is the image
point (which will also be sampled discretely in practice). The quantity dQ_/dS_ isa
solid angle—area ratio that is calculated from an element centroid to an image point,
as shown in Appendix B for various cases, while T(x",y) is the time it takes for a
wave to travel from the centroid of an element to the image point. The normalized
voltages, V(x’c’l ,a)m), are given in terms of the real measured voltages, V(xf,', w,),
for immersion cases, by

V(x',)=pec, SV (x,) s, (o,) (13.117)
and,for contact cases, by
Ve, =V (xo,)/pc,Sys (,). (13.118)

where (0,,¢,,) are the density and (compressional) wave speed at the transmitting
element and S, is the area of that element. Similarly, (p,c,) are the density and
(compressional) wave speed at the receiving element, and S, is the area of that
element. For the pulse-echo case considered here, p=p,,c, =c,, S, =S;. The
quantities (s, (@, ),s.(w, )) are the system functions for an element in immersion
or contact testing, respectlvely, at the discrete sampled frequencies. The normal-
ized veloc1ty terms, V()(liic ,Y,0,), are related to the actual incident velocity,

vy (x!',y,®,), generated by the transmitting elements at the image point, y, for
1mmer510n problems, by

g)mc( Z’,y,a)m) - v}”V(Xﬁl’y, a)m)d;? exp[ia)mT(xZ’,y)] (13.119)

and, for contact problems, by

v (xty.@,) = FO7 (X y,0,)d5 explio,T(xy)].  (13.120)
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where (v, F") are the velocity and force, respectively, on the face of the transmit-
ting elements and where d! is the polarization (unit vector). Note that these nor-
malized velocity terms can be calculated directly from Egs. (13.119) (13.120) using
the ultrasonic beam models discussed in previous chapters and are not dependent
on (1", F'"). Note also that Eq. (13.116) can be used to image the edge of a crack,
as previously discussed, (see Eq. 13.41) with the replacement ¥ — (iw, / cﬁz)I;.

In the case of a small flaw, this pulse-echo imaging measurement model reduces,
from Eq. (13.29) to a POFFIS-style discrete form:

M L L V nl
o0 b MERSLLL I R LR
PrCp m=1n=1 I= [V ( Y, @ ):I c (13.121)

.expI:—Zia)mT(x:”yo)]exp[ -2i@ e“)( fl,Yo)'(y_yO)/c/”]}’

where the point y, is a fixed point close to the flaw and y is the image point,. All
of the quantities in Eq. (13.121) have been described previously for Eq. (13.116)
except eg)(xc ,¥,) which is a unit vector in the direction of the incident wave for a
wave traveling from an element to the fixed point, y,,.

For the case of full matrix imaging with a 2-D array we have from Eq. (13.60)

I2(y) = 22 cos®

ﬁ'Z

nlpg

AxfleﬂAxrlerzszR {i L L L

67 pct. PR WA

m=1 n=1 I=1 p=l g=1

-exXp [—ia)mqﬁ(qu’ Xfl,)’)]%(x:l,y) ‘Z?s (xf",y) (13.122)

7(xx0,) )}_

V(l)( My, o )17( (x:",y,a)

Here (Ax,,,Ax,) are the pitches of the transmitting elements and (Ax,,,Ax, ,) are
the pitches of the receiving elements and Aw is again the frequency spacing. The
quantities (p,,¢g,,¢,, ) are the density, the wave speed of the incident wave (of type
), and the wave speed of the scattered wave (of type ) for the material surround-
ing the flaw, and @, again are the sampled frequencies. The discrete locations of
the transmitting elements are x*? = (x/7,x”7), the locations of the receiving ele-
ments are X2 = (x27,x”)), and y again is the image point. The terms d€2_/dS, and
dQ, /dS, are the solid angle-area ratios as calculated for the sending and receiving
elements, respectively, as calculated in Appendix B, and ©,,, are the angles between
the various discrete sending and receiving elements (see Fig. 13.3). The phase term
¢(qu X! ,y) (qu,y)+ T(xfl,y) is the total time it takes to travel from a send-
ing element to an image point and back to a receiving element. The normalized
voltages, V/ (xp X", ) are again related to the actual voltages, V' (x"*,x", ®,)), for
various element pairs by relations similar to Eqs. (13.117) (13.118), i.e.
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VX @,) = pe, SV (X o, ) s (@,) (13.123)

for the immersion case and

V(xx ) =(a,)V (x".x" o, /pcpSBsC(a)m) (13.124)

for the contact case where again (p,,c,,) are the density and (compressional) wave

speed at the transmitting element and S, is the area of that element. Similarly,

(p,c,)are the density and (compressmnal) wave speed at the receiving element

and S is the area of that element. The normalized velocity terms, V( '(xMy,@,)
, and V‘z)(xr ,Y,®,), are related to the velocity at the image point for the incident

wave (of type /) from the sending element, v, (x",y, ®, ), and the velocity at

the i 1mage point for an incident wave (of type o) from the receiving transducer,
v (x”,y,w, ), when it is acting as a transmitter as

V'(l;);inc (xf",y, a)n)—v(”V“) (qu’y’ )d(” exp[lw T(x”" y)] (13.125)
and

ﬁf)( "y, o, ) v(Rz)Vf)(xfl,y, )d(z) exp[za) T( . ,y)] (13.126)

for immersion problems where (v\,v"") are the driving velocities on the faces of
the sending and receiving elements, respectively, and (dy’,d(’) are the polarization
unit vectors. For the contact case, we have similarly,

(1) inc

v (xy,0, ) = FOT (x.y.0, )4y explio, T(x.y)]  (13.127)

and
(2)( "y, ) FPy® (xf’,y,a)m)d‘;) exp[ia)mT(x:”,y)] (13.128)

in terms of the forces (£", F{*) on the faces of the sending and receiving elements
respectively. Once again these normalized velocity terms can be calculated by beam
models. For this full matrix imaging case we can also use Eq. (13.122) for imaging
the edge of a crack with the replacement V' — (za)/ c, )

For POFFIS-style full matrix imaging we have from Eq. (13.63)

_ Ax, Ax,Ax Ax ,A® <A
I}?A(y)= sl 52 rl n r2 2R 22222 COS@anq
1677 p,ct, m=1 n=1 =1 p=1 g=1 Cp

-exp[—ia),,1¢(xf",xfl,y)]exp|: i@ s( & o ,yo) (y—yo)] (13.129)

er (Xn[ )dQ ( ) V(qu X"l , @, )
dSr r 7y0 dS s ’yO (1)(XS ’yo’w )V(z)(xy ’yo’ )
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where the point y,, is a fixed point close to the image point, y. All of the quantities
in Eq. ( 13 129) have been described previously for Eq. (13.122) except the vector
s(x*,x",y,) which is given by

s(x2, %y, ) =€) (x2,y,) /ey + el (x,¥0)/ oo (13.130)

where e}’ (x!?,y,) is a unit vector in the direction of the incident wave for a wave
travehng from an sending element to the fixed point, y,, and similarly e (x",y,)
is a unit vector in the direction of the incident wave for a wave travehng from an
receiving element to the fixed point.

For imaging 2-D flaws with a linear array most of the quantities previously de-
fined also appear in these cases so we will just outline the main differences here.
First, we summarize the three cases we considered. For the pulse-echo case we have
(see Eq. (13.98))

[fg(y) Ax A0 A7 9Re {ii“‘) |M

2 pyc;, = (XY, e,)
a0 (13.131)
- (X Y)expl:—2ia)mT(Xz,Y)]},
which reduces, for POFFIS-style pulse-echo imaging (Eq. (13.101)), to
Ax Aw T V(X,0,) 46,
I2(Y)=—2—-2Re 0, | =—————(XY,
T g, LZZ' |V5(Xf= @, ) dx, (%) (13.132)

-exp [—Zime(Xf,Yo )] exp[—2iwmeg) (XS,YO)-(Y —Yo)/cﬂ2 ]}
In the full matrix imaging case, from Eq. (13.102) we find
v(x. X ,)
(XL XY, 0,)

+-22c0s®
¢

nl

do. ., ,db . . (13.133)
o - (X! Y)dXS1 (x, Y)exp[—zwn,¢(xg,X,,Y)]}

and for POFFIS-style full matrix imaging (Eq. (13.109))

s Ax, Ax Aw M N N 3 V(XX o,)

by (Y) = 87°pycsy ZRG{;-‘;Z‘?'W +¢COS®”I (XX Y,,0,)
de’( ';,Yo)ﬂ(xg,Yo)exp[ ~io,$(X.. X, Y, )] (13.134)

'a’xr1 dx,,
exp[ i@, S(XL, XY, (Y=Y, ) ]}
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For these 2-D imaging cases the array centroid locations are all along the x, axis in
the (x;,x;) plane at the center of the linear array so X!, Xi ,and X" all are discrete
locations of the elements along the x,-axis. All the capitalized vectors also lie in the
(x;,x;) plane, including the image point, Y, and the fixed point, Y,. The unit vector
e (X!,Y,) and the vector S(X},X,Y,), given by

s

(XX, = (X3 e (60 e (12135

o

also lie in the (x;,x;) plane and the angle @ , is the angle between the incident and
scattered directions in the (x,,x;) plane (see Fig. 13.4). In this 2-D case, the solid
angle-area ratios are replaced by angle-length ratios such as d@, /dx,,, d, /dx,,
d@. /dx,, which can be calculated explicitly for the case of a single medium, as
shown in Chap. 12, or they can be calculated by the ray methods of Appendix B.

One major difference between these 2-D problems for a linear array and the 2-D
array cases considered previously is in the beam correction terms, which now are
integrated field values given by quantities such as 17/,5 and V;ﬂ . These quantities are
defined as

HXLY.@,)= [ [P0 (X0 Yoy, )] dy, (13.136)
L

and
VXX Y) = [ 70 (XY, 9, )72 (XY, p, ) dy, (13.137)
L

and they can be calculated again by a beam model for the 3-D incident fields which,
for the full matrix, immersion case are written as

v (XLy.0,) = WP (XL y.0,)DY exp[im, T(X,Y)]

v XLy o,) =7 (XL, y. ,)D exp|io, T(X,Y)] (13-138)
and for the full matrix, contact case
v (XLy.0,)= K70 (XL y,0,)DY explim, T (X, Y)] 13139

VO (XI,y,@,)= K72 (X,y, 0,) DY exp[ime(Xj,Y)]

at the 3-D point y = (Y, »,). The pulse-echo case follows similarly with the replace-
ments X! — X”, X! — X" and = f. Here the polarization vectors Di;’,D}’ lie in
the (x,, x;) plane and the integrations are along the x, -axis, which is parallel to the
long axis of the linear array and the 2-D scatterer (see Fig. 13.4). For POFFIS-style
imaging we must let Y =Y, in all these expressions.



310 13 Imaging Measurement Models
References

1. J.K. Cohen, N. Bleistein, The singular function of a surface and physical optics inverse
scattering. Wave Motion 1, 153-161 (1979)

2. N. Bleistein, J.K. Cohen, J.W. Stockwell Jr., Mathematics of Multidimensional Seismic
Imaging, Migration, and Inversion (Springer, New York, 2000)

3. N. Bleistein, Mathematical Methods for Wave Phenomena (Academic, New York, 1984)

4. J. Kitze, D. Brackrock, G. Brekow, J. Prager, M. Gaal, M. Kreutzbruck, D. Szado, K. Kuti,
G. Paczolay, SAFT and TOFD—compared in ultrasonic defect detection. http://www.ndt.
net/article/jrc-nde2010/papers/64.pdf. (8th Int’l Conference on NDE in relation to structural
integrity for nuclear and pressurized components, Oct. 29-Nov. 1, 2010, Berlin, Germany)

5. C. Holmes, B.W. Drinkwater, P.D. Wilcox, Advanced post-processing for scanned ultrasonic
arrays: application to defect detection and classification in non-destructive evaluation. Ultra-
sonics 48, 636—642 (2008)

6. P.D. Wilcox, C. Holmes, B.W. Drinkwater, Advanced reflector characterization with ultra-
sonic phased arrays in NDE applications. I[EEE Trans. Ultrason. Ferroelectr. Freq. Control
54, 1541-1550 (2007)

7. A. Velichko, P.D. Wilcox, An analytical comparison of ultrasonic array imaging algorithms.
J. Acoust. Soc. Am. 127, 2377-2384 (2010)

8. B.J. Engle, L.W. Schmerr, A. Sedov, in Equivalent Flaw Time-of-Flight Diffraction Sizing
with Ultrasonic Phased Arrays, ed. by D.O. Thompson, D.E. Chimenti. Review of Progress in
Quantitative Nondestructive Evaluation, vol. 32A (American Institute of Physics, Melville,
2013) pp. 895-901

9. L. Borcea, G. Papanicolaou, C. Tsogka, Theory and applications of time reversal and inter-
ferometric imaging. Inverse Probl. 19, S139-S164 (2003)

10. L. Borcea, G. Papanicolaou, C. Tsogka, Interferometric array imaging in clutter. Inverse
Probl. 21, 1419-1460 (2005)

11. L. Borcea, G. Papanicolaou, C. Tsogka, Optimal waveform design for array imaging. Inverse
Probl. 23, 1973-2020 (2007)

12. L.Borcea, T. Callaghan, J. Garnier, G. Papanicolaou, A universal filter for enhancing imaging
with small arrays. Inverse Probl. 26, 1-29 (2010)

13. P.T. Gough, D.W. Hawkins, Unified framework for modern synthetic aperture imaging
algorithms. Int. J. Imag. Syst. Technol. 8, 343-358 (1997)

14. K. Nagai, A new synthetic aperture focusing method for ultrasonic B-scan imaging by the
Fourier transform. IEEE Trans. Son. Ultrason. SU-32, 531-536 (1985)

15. K.J. Langenberg, R. Marklein, K. Mayer, in Ultrasonic Nondestructive Testing of Materi-
als—Theoretical Foundations (CRC Press, Boca Raton, 2012)

16. A.J. Hunter, B.W. Drinkwater, P.D. Wilcox, The wavenumber algorithm for full-matrix
imaging using an ultrasonic array. IEEE/Trans. Ultrason. Ferroelectr. Freq. Control 55,
2450-2462 (2008)

17. P.D. Wilcox, in Ultrasonic Arrays in NDE: Beyond the B-scan, ed. by D.O. Thompson, D.E.
Chimenti. Review of Progress in Quantitative Nondestructive Evaluation, vol. 32A (Ameri-
can Institute of Physics, Melville, 2013) pp. 33-50

18. F.K. Gruber, E.A. Marengo, A.J. Devaney, Time-reversal imaging with multiple signal classi-
fication considering multiple scattering between targets. J. Acoust. Soc. Am. 115, 3042-3047
(2004)

19. J.G. Berryman, L. Borcea, G. Papanicolaou, C. Tsongka, Statistically stable ultrasonic
imaging in random media. J. Acoust. Soc. Am. 112, 1509-1522 (2002)

20. F. Simonetti, L. Huang, From beamforming to diffraction tomography. J. Appl. Phys. 103,
103110-5-103110-7 (2008)

21. N.Dominguez, V. Gibiat, Non-destructive imaging using the time domain topological energy
method. Ultrasonics 50, 367-372 (2010)


http://www.ndt.net/article/jrc-nde2010/papers/64.pdf
http://www.ndt.net/article/jrc-nde2010/papers/64.pdf

References 311

22.
23.
24.
25.
26.

27.

F. Lingvall, T. Olofsson, On time-domain model-based ultrasonic array imaging. IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 54, 1623-1633 (2007)

R.H. Stolt, A.B. Weglein, Seismic Imaging and Inversion —Application of Linear Inverse
Theory (Cambridge University Press, Cambridge, 2012)

R.Y. Chiao, L.J. Thomas, Analytical evaluation of sampled aperture ultrasonic imaging tech-
niques for NDE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41, 484-493 (1994)

H.H. Barrett, K.J. Myers, Foundations of Image Science (Wiley, New York, 2004)

S.J. Norton, M. Linzer, Ultrasonic reflectivity imaging in three dimensions: exact solutions
for plane, cylindrical, and spherical apertures. IEEE Trans. Biomed. Eng. BME-28, 202—-220
(1981)

A.J. Devaney, Mathematical Foundations of Imaging, Tomography and Wavefield Inversion
(Cambridge University Press, Cambridge, 2012)



Chapter 14
Element Boundary Conditions and Other
Modeling Issues

As seen in previous chapters, single element beam models form the fundamental
building blocks for developing complete phased array transducer beam models. In
all the cases considered previously, an element was modeled either as a velocity dis-
tribution on a planar surface embedded in an infinite, rigid baffle (immersion cases)
or as a pressure distribution on an otherwise stress-free surface (contact cases). For
large, single element transducers, those models describe very well the transducer
wave fields. However, as discussed in Chap. 1, the construction characteristics of
phased arrays may bring the basic assumptions of those models into question. In
this chapter, we will examine the consequences of using more general models that
describe how array elements produce sound in the adjacent material.

14.1 Finite Impedance Baffle Model

In this section, we will use two-dimensional (2-D) beam models similar to those
discussed in Chap. 2 to illustrate in a simple context the effects of different model-
ing assumptions. In particular, we will again assume that a 1-D element is located
on the plane z=0 and radiates pressure waves into a fluid. Most single element
beam models assume that when the piezoelectric element is driven electrically, a
pressure distribution, p(x, y,), and a normal velocity, v_(x, y,t), are produced over
the face of the element and that over the remainder of the plane z=0 outside the
element either the velocity or pressure (or combinations of velocity and pressure)
are specified. If the surface outside the element is a pressure-free surface, then we
would have p(x, y,#) = 0 on that surface. If instead the element is imbedded in a rig-
id “baffle”, then we would have v_(x, y,#) = 0 on the baffle. Although both of these
types of conditions are commonly used in modeling large, single element transduc-
ers, neither of these extreme conditions may hold for an element in an array since
the array elements are often embedded in a surrounding matrix of material that has
a different acoustic impedance from the piezoelectric element or has facing layers
that have a different acoustic impedance from either the element or the surround-
ing fluid. Techniques such as finite elements can be used to model in detail these

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 313
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2 14,
© Springer International Publishing Switzerland 2015
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Fig. 14.1 A 1-D array ele- x
ment in a finite impedance T
baffle radiating into a fluid plz,+v.=0
/
(x.2)
.
) o f
(x".0)
2% a .
- plz,+v.=0
/

features of an array element but here we want to develop a much simpler model that
can examine the effects of the boundary conditions surrounding an element (see
Pesque and Fink [1] for a similar approach). Specifically, we will model the array
element as embedded in a baffle having a finite specific acoustic impedance, z,,
where on the baffle the condition

px,y,t)/ z, +v (x,y,1)=0 (14.1)

is satisfied (see Fig. 14.1). The case z, — c then corresponds to the rigid baffle
and the case z, — 0 models the pressure-free surface. Other finite values of the
baffle impedance can then be used to model conditions that are in between these
two extreme limits.

In the 2-D model discussed in this section, we will assume that the length of the
element is of length 2b over the interval [—b, b] in the x-direction. On the plane z=0,
we will specify the pressure and velocity fields as

p(x,z=0,t)

Zy

vo(x,t) —b<x<bh (14.2)

+vz(x,z=0,t)={ o
0 otherwise

which satisfies Eq. (14.1) on the surface outside the element and assumes that the
pressure and velocity fields on the face of the element combine to generate a net
non-zero driving term, v, (x,#), having the dimensions of a velocity, but which we
see from Eq. (14.2) is not the actual velocity on the face of the element. Taking the
Fourier transform of Eq. (14.2) gives

vo(x,@) —-b<x<b

0 otherwise

p(x,ZZO,W)+VZ(x’Z:O’w):{ (14.3)

Zy

To obtain solutions for the sound beam generated by this element, as done in
Chap. 2, we will express the pressure field p(x,z,®) in the form of an angular
spectrum of plane waves. Specifically, we will write:
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p(x,z,0) = if [P(k,)/ 2, +V (k)| G(k,)exp ik x+ik.z)dk,, (144)

where

[12 2 >
Kok k=2k (14.5)

iJk2 -k k<k,

k:

z

and k= w/c is the wave number for pressure waves in the fluid. Since the right
side of Eq. (14.4) is a superposition of plane waves and inhomogeneous waves, both
of which are exact solutions of the Helmholtz equation, the pressure p(x,z,®) in
Eq. (14.4) will also be an exact solution to that equation. The “amplitude” terms
P(k,), V(k,), G(k,) in Eq. (14.4) are at present undefined. The particular combi-
nation of these terms given in Eq. (14.4) was chosen simply to help satisfy the
boundary conditions of Eq. (14.3), as we will now show. First, we note that from
the equation of motion of the fluid in the z-direction, the pressure and the z-velocity
must satisfy the differential relationship [Schmerr]

_9p(x,z,1) :pavz(x,z,t) (14.6)
0z ot '

Taking the Fourier transform of both sides of this equation and solving for
v.(x,z,) we find
1 dp(x,z,m)

v.(x,z,0)=—— 5
4

i, (14.7)

where z, = pc is the specific impedance of the fluid.
Thus, using Egs. (14.4) and (14.7), we can write the left-hand side of Eq. (14.3)
as
177
P(x20)) 2+, (x,2.0) = [Pk z,+V (k)]
7[ —o0
(14.8)

1k
G(k,)| —+——|exp ik, x +ik_z)dk,
Nz, sz )

However, if we let

1
Gk)= 1k (14.9)

zZ, sz
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we see that on z=0, Eq. (14.8) is in the form of an inverse spatial Fourier transform,
ie.

p(x,z=0,0)/z, +v.(x,z=0, w)-—“P(k )/ z, +V (k,)|exp ik x)dk,,
(14.10)

so that from an inverse spatial Fourier transform we have

P(k,)/z, +V(k,)= j [p(x,z=0,)/ z, +v_(x,z = 0, )| exp (ik,x)dx.

—oo

(14.11)

Equation (14.11) shows that the boundary conditions of Eq. (14.3) will be satisfied
if we let

P(k)/ z,+V(k)=V,(k), (14.12)

where the term (k) is just the spatial Fourier transform of the right side of
Eq. (14.3), i.e.

+b
Vo(k,) = [ vy(x’, ) exp (=ik x") ', (14.13)

-b

and from Eq. (14.11) it can be seen that P(k ) and V' (k ) can be identified as the
spatial Fourier transforms of the fields p(x,z=0,w) and v_(x,z=0,®), respec-
tively, given by

P(k)= | p(x,z=0,m)exp(-ik,x)dx,
= (14.14)

V(kx) = J v, (X, z= 0, w) €xp (—ikxx)dx.

Collecting all these results we then can obtain the pressure wave field of Eq. (14.4)
explicitly as

exp (ik x+ik,z)dk,.  (14.15)

iz = [rik {m}

Equation (14.15) is an angular plane wave spectrum representation for the wave
field of a transducer element embedded in an infinite baffle of acoustic impedance,
z,. If we also assume that the driving velocity term, v, (x,z = 0, ), is spatially uni-
form over the face of the transducer, i.e.
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vo(@) —b<x<b

o, (14.16)
0 otherwise

v, (x,z=0,w) 2{

then the inverse Fourier transform of this velocity term can be performed analyti-
cally, giving

Vi) = 26w, (0) 22

x

= 2bv,(w)sinc(k b) (14.17)

in terms of the sinc function sinc (x)=sin(x)/x. This case is similar to a model of a
single element piston transducer in a rigid baffle where the normal velocity is as-
sumed to be uniform on the face of the transducer. Thus, we will also refer to our
model of a element in a finite impedance baffle that satisfies Eq. (14.16) as a piston
model.

Since on the face of the element we have

paz=0,0)/z,+v.(x.2=0,0) = v (o), (14.18)
if we integrate Eq. (14.18) over the element face we find

+b

1 +b 1
Zb(2b):[)p(x’ a))dx+%:[vz (x, w)dx = v,(w), (14.19)

which can be written in terms of the force/unit length, F (@), acting on the element
face and the average velocity in the z-direction, v_ (@), on the face as

Flo)  _
-, (2b) +v.(@) = v, (). (14.20)

If we define the acoustic radiation impedance/unit length, Z, (), as

Z(@) = F(@)/ 7V, (o) (14.21)
we then have
Z(w) |-
(MJF 1)vz () =v,(@). (14.22)

Equation (14.22) shows how the source term, v,(®), for a piston element in a finite
impedance baffle is related to the average velocity on the element face. Similarly,
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we could write a relationship between the average pressure in the z-direction, p(w),
and the source term v, (w) as

(1 +%} P(@)= 2,7, (o), (1423)

so that if we instead define a source term, p, (@) = z,v, (@) for our finite impedance
baffle model which has the dimensions of a pressure, Eq. (14.23) shows we can
relate that pressure source term to the average pressure through

[1+ ZZb ((2((1)7))) P(@) = p, (). (14.24)

14.2 Line Source Model of an Element in a Finite
Impedance Baffle

It is possible to perform the angular plane wave spectrum integral of Eq. (14.15)
numerically, leading to an “exact” solution for the wave field generated by the ele-
ment. However, we can instead obtain some approximate results that allow us to
describe the acoustic field more explicitly. First, we rewrite Eq. (14.15) in terms of
the source velocity, v, (x’,®) by using Eq. (14.13) to obtain

+b +oo
a)—— w—e ik (x—x")+ik.z |dk dx’.
p(x,z,0) _jb_jmvo(x >l - k/k]Xp[lx(x XY+ ik z | dk d
(14.25)

At high frequencies the integration over k_ can be performed approximately by
the method of stationary phase [Schmerr], Wthh for 1-D integrals states that the
integral, 7, is given by

1= [ f(k,) exp[ig(k,)]dk,
- (14.26)

= f(k})exp [z¢(k )] exp [iﬂ sgn(¢"(kj))/4]

"(kw [0k

where £ is the stationary phase point where ¢’(k;)=0 and ¢’,¢” are the first and
second derivatives of the function @(k.). The sgn() function is simply

+1 u>0

sgn(u) = {_1 u<0

(14.27)

In our case we have
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Zbe
Sk)=—r
z,+z,k [k (14.28)
ok)=k (x—x")+k.z
and it is easy to show that at the stationary phase point
Gt Ry (14.29)
r r

where (see Fig. 14.1)

:J(x—x')2+zz (1430)

is the distance from a point (x’,0) on the plane z=0 to a point x = (x,z) in the
fluid. We then also find

—-r

9" (x, )_m (14.31)

where cos(6) = z/r (see Fig. 14.1). Using all of these results the stationary phase
evaluation of Eq. (14.25) gives

z,z,co8(8) exp(ikr) ,,
p(x, @)= \2ir Jvo z +cos(8)z, ~r . (14.32)

Equation (14.32) represents the transducer wave field as a superposition of waves
arising from line sources acting on the z=0 plane over the region —b < x” < b, where
the remainder of the plane is a baffle of finite impedance. For a piston source we
have

k 't z,cos(@) explikr)
,0)=z v, (), |— dx’. 14.
pO6@)= 2w (@) ;[72/.+cos(6’)zb Nl (14.33)

Since the term exp (ikr)/ Jr in Eq. (14.33) represents a cylindrically spreading
wave we see that the amplitude of this cylindrical wave is modified by the angle-
dependent term,

z, cos(6)

_ 14.34
z,+z,cos(&) ’ ( )

Dbf @)=
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which we refer to as the directivity function for the finite impedance baftle. For
the case of the rigid baffle (z, / z, — o), we have simply D,, =1and Eq. (14.33)
reduces to the Rayleigh- Sommerfeld equation (also called the Rayleigh equation)
for a piston velocity source in a rigid baftle:

p(X,0) =z v (), /%j %ﬁkﬂdx’. (14.35)

Similarly, if we let v,(w) = p,(w)/z, and consider the case of the pressure-free
surface outside the element (z,/z, — 0), we obtain the Rayleigh-Sommerfeld
equation (also called the Sommerfeld equation) for a constant pressure source on a

stress-free surface:
) exp(ikr
p(x,m)= po(w),/ 0s(6") p( ) ix (14.36)

Our result, Eq. (14.33), thus is the generalization of these Rayleigh/Sommerfeld
equations to the more general case of the finite impedance baffle.

Since most testing will be done at distances from an element where the far field
approximation is valid, we can examine the effects of a finite impedance baffle
by considering that case. The details of obtaining the far field for the Rayleigh-
Sommerfeld equation have been given for a piston element in a rigid baffle so we
will summarize the same results here. In the far field, we can make the replacements
r—r,, 8 — 0 (see Fig. 14.1) in the amplitude parts of Eq. (14.32) and keep two
terms in the expansion of the phase to give

[
p(x,w)= * 7%, 005(0) exp(zkr)J~ v, (x’, @) exp (—ik sin 6x”)dx’.
2im z, +cos(0)z, fr,

(14.37)

And, for piston behavior, we find

z, cos(6) exp (ikr,)
z, +cos(6)z, +0) \/Fo ’ (14.38)

Px.®) = | v, (@)z, (kD)
17T

where D, (6) is the far field directivity of a piston element in a rigid baffle
(Eq. (2.39)). Comparing Eq. (14.38) with the equivalent result for a piston source in
a rigid baftle (Eq. (2.38)), we see that the finite impedance of the baffle introduces
an additional directivity term

z, cos@
D,(0)=——"—.
,(6) Z +2,c050 (14.39)
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Fig. 14.2 The far field 1 N
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[Note that the v, (@) source term here is not the same as the normal velocity term
denoted by the same symbol in Eq. (2.37) because of Eq. (14.22)].

Figure 14.2 plots this additional directivity term for a baffle of impedance
z, = 2.85MRayls (which is typical of the impedance of an epoxy-like filling around
an array element) adjacent to water with z, = 1.48MRayls. Also plotted in Fig. 14.2
is the far field directivity, D, , of a piston element in a rigid baffle for an element
length equal to one wavelength (25/ A =1). The product of these two directivities,
which is the total far field directivity, is plotted in Fig. 14.3. It can be seen that the
additional directivity term from the finite impedance baffle will produce an ampli-
tude change but very little angular changes in the total directivity of the element in
the far field. The same behavior will be true for element sizes larger than a wave
length where the directivity, D,, will be even more concentrated around & = 0. Thus,
for arrays radiating into water, it is only for element sizes significantly smaller
than a wavelength where we would expect to see any effects on the directivity
of the element and hence the radiated field of the entire array. Although we have
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Fig. 14.4 A 2-D array ele-
ment in a finite impedance
baffle

plz,+v, =0

only considered a 1-D element radiating in two dimensions, we can also examine a
2-D array element radiating into a fluid (immersion case). Since the analysis for a
2-D array element can be performed with an angular plane wave spectrum approach
in exactly the same fashion (see Chap. 6 for the piston element in a rigid baffle), we
simply write the end result here for the pressure in the fluid for a 2-D element in a
finite impedance baffle (see Fig. 14.4). We find

kT exp (tkr)

p(x,a))— j j v, (x’,",0,0)D,(6")———2dx"dy’. (14.40)

Because the same directivity D,(6”) appears in Eq. (14.40) as in Eq. (14.32), this
directivity will affect the total far field directivity of the 2-D element only when the
dimensions of the element are significantly less than a wavelength.

We can also examine the use of our finite impedance model for a 1-D element
radiating into a fluid to consider a case similar to that of a contact array element ra-
diating into a solid. Since a contact element on the free surface of a solid is normally
modeled as a constant pressure source on a stress-free surface, we can emulate that
case with our 1-D model with a finite impedance by setting v (@) = p,(®)/ z, in
Eq. (14.33) to obtain

cos(8¢)  exp(ikr) ,,
p(xw)—zfpo(w),/zl Z reos@)5, 7 dx (14.41)

In the far field, then we find

0s(6) exp (ikr,)

(e) b b( ) \/FO s

which shows that the finite impedance baffle model contains directivity, D, (),
given by

P(X,0) = Po(w)( ) (14.42)
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Fig. 14.5 The far field direc- 1 =
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Zy

D, (60)=———.
z,+z,c086

(14.43)

But for a constant pressure source acting on a free surface, a far field free surface
directivity, D (6) = cos 8 also exists because of the presence of the cos @ term in
Eq. (14.36) so that D, simply modifies that free surface directivity. Figure 14.5
plots these two directivities for a baffle impedance of an epoxy material again, but
where the fluid impedance is taken as that of a P-wave in aluminum. Except for a
small amplitude change, there is very little difference between these two directivi-
ties, which are frequency independent, so one would conclude that baffle imped-
ance effects are very small even for very small elements in contact testing setups.
Although this conclusion is based on a fluid model of a contact element, one can
also use an angular plane wave spectrum approach to model a contact 2-D element
as a constant source (having dimensions of a pressure) on a finite impedance surface
of an elastic solid, following the same approach in [Schmerr] for a constant pressure
source on an otherwise stress-free surface of a solid. Again, we will not present all
the details here, but just give the final result as:

—ik, py (@)

exp (ik
v(X,0) = MdS,
27p,c r

[y @)a, (14.44)

pl

where v(x,®) is the velocity in the solid due to P-waves generated by a constant
source, p,(w), acting on the surface of an elastic solid having a finite impedance.
The directivity, K7 (€'), is given as

cos@ K’ (x* /2 —sin’ &)
2G,, (sin@)

K" (&)= , (14.45)
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Fig. 14.6 The far field 1 =~
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where

G,(x)=(k"/2-x") + X’ VI-x* K’ —x*
+(k’z, /4zp)\/1—x2

(14.46)

and z, is the impedance of a P-wave traveling in the elastic solid and k¥ =c¢,, /¢,
is the ratio of compressional to shear wave speeds of the solid. One can com-
pare this result to the corresponding contact model presented in Chap. 6 (see
Egs. (6.38)—(6.40)) which is of identical form but where z, = 0. Like the fluid mod-
el case just discussed, we see that the finite impedance simply modifies a directivity
term, K, (€'), (see Eq. (6.39)) which is present for a contact model of a constant
pressure on a stress-free interface. Figure 14.6 compares the finite impedance baffle
far field directivity K (for a baffle having an impedance of epoxy) with K, when
the elastic solid is aluminum. As in the corresponding fluid model case the finite
impedance baffle only has a minor impact on the far field directivity.

Note that for 2-D arrays we can relate the source terms (v,, p,) to the average
velocity and pressure on the face of the element in similar forms to the ones found
for 1-D elements. We find (see Egs. 14.22 and 14.24):

(&?+ 1)\72 (@) =v,(w) (14.47)

Z

and

S
(1+ Zf”w)]ﬁ(w) = py(®), (14.48)
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Fig. 14.7 Measurement of 1.0 rigid baffle (theory)
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where Z, is the radiation impedance of the element and §' is the element area. To
obtain this impedance numerically for a rectangular piston element is not difficult,
as shown by Sha et al. [2].

From the above discussion, it is more likely that we will see far field directivity
effects in the case of an array used in immersion testing. Fortunately, in the immer-
sion case we can actually measure the total far field directivity of a single element
experimentally to see how well the assumption that the element acts as a piston
velocity source in a rigid baffle is satisfied. Figure 14.7 shows an example of such
measurements taken at a frequency of 5 MHz for a single element of a 16-element
linear array, where the pitch of the array was 0.6 mm, the length of the element
was 0.5 mm, and the element height was 10 mm. In this case, it is seen that piston
behavior and a rigid baffle assumption matches well the measured directivity of the
central lobe of the element.

14.3 Other Modeling Issues

Besides the impedance of the baffle surrounding a transducer element, there are
other modeling issues that one must be aware of when modeling arrays. In some
cases, when a single element of array is excited by a voltage pulse, nearby elements
may also exhibit some motion, as illustrated in Fig. 14.8 for a given element and
its adjacent neighbors. This coupling may be due to the exciting electrical fields
extending over more than one element, as shown in Fig. 14.8a, or it may be due to
acoustic waves generated by the excited element that travel across the filler and/
or facing materials to other elements, as shown in Fig. 14.8b. Needless to say, both
electrical and acoustic types of interactions between elements are very complicated
to describe. Baer and Kino [3] have given a relatively simple theory for acoustic
cross coupling and Assaad and Bruneel [4] have used finite element models to ana-
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T

Fig. 14.8 A single element being excited where there are adjacent element excitations through
a electrical interactions, and b through acoustic interactions

lyze such element-to-element couplings in detail. Although we will not examine
these couplings in this book, we can note that if a single element of the array is
excited and the far field directivity of the element is measured, any significant cou-
pling to adjacent elements should be evident in changes of this directivity. Thus,
as in the case of the baffle impedance, one could in principle take these couplings
effects into account, at least partially, by measurements of the total directivity of an
element in the far field, as discussed in the previous section, and use those measure-
ments to define an effective length of an element that would produce the measured
directivity. A similar approach has been used in large, single element transducers to
define similar effective parameters [Schmerr].
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Appendices

A The Beylkin Determinant

A.l1 The Beylkin Determinant for 3-D Imaging (Common
Source Case)

In forming an imaging measurement model for a fixed sending element and varying
receiving elements we defined a 3-D wave vector, k, as

k=owV ¢(x,x,.y,0), (A.])

where @ represents the total travel time from the centroid of a sending element lo-
cated at x_to an image point y and then back to the centroid of a receiving element
at x,, i.e.

o(x,.x, (£).y,0)=T(x,,¥)+T(x,(£).y). (A.2)

and where the variable receiving element centroid location is parameterized in terms
of the £ variables. The transformation from integrations over the ( -, a)) variables
to the k wave vector coordinates then involves the magnitude of the Jacobian, |J |,
of this transformation, i.e.

17| = ‘a(a”flragzr) (A3)
J(k)
and the inverse of this Jacobian can be written as
Tt ), (ad)
where the Beylkin determinant [1], /,is given by
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V.9
d
h(&.y)=det| —(V,4) |. (A.5)
¢,
d
_a§2r ( y¢)_
If we define slowness vectors (pS ,p,) as
p, =V, T(x.y).p, =V, T(x,.y) (A-6)
and their derivatives as
d 0
v =B =P (A7)
aglr a§2r
then the Beylkin determinant becomes
pS + pr
op,
h(&,.&,.y)= det 2 =(p, +p,) (v, xw,). (A.8)
1r
dp,
L ang B
At high frequencies these slowness vectors satisfy the eikonal equations
P, P _;P'P_ 1 (A.9)
s s C; (y) b r Cé (y) .
so that the slowness vectors are orthogonal to their derivatives. In particular
prlvr:pr.wrzo' (AIO)
Thus, the cross product in Eq. (A.8) must be parallel to p_and we have
v, xw, =xc,(y)p,|v, xw,|. (A.11)
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Fig. A.1 Parameters associ- 4 x
ated with the determination
of the Beylkin determinant

Since we are only interested in the absolute value of the Beylkin determinant (see
Eq. (A.3)), the plus or minus sign here is immaterial and will henceforth be dropped.
Thus, the determinant can be written

h(&,.&,¥)=c.(¥)(p, +p,) P, (A.12)

vV, XW,

If we let © be the angle between the two slowness vectors (see Fig. A.1), then

~—

1 c,(y
h 960, = COS
(&,..8..y) [1+ ) @}

V. XW
() - (A.13)
_ |:1+ ;8 cos@]p, (v, xw,).
We can write Eq. (A.13) for the determinant in our original notation as
h(E, &, .y)= l1+ Zg; cos @]h, (x,2%,,.¥)s (A.14)
where 4, (x,,,x,,,y)is defined as
V,T(x,.y) e,
6 =t S 9T )] |- | S| 19
PR
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and where e, = eg) is the unit vector along the incident wave direction at the image
point y coming from the receiving element (acting as a transmitter). This deter-
minant can be easily evaluated if we choose (&,,&,,)=(6,.4,) where (6,,4,) are

spherical coordinates at the image point y with the polar “z” axis taken along a fixed
reference p, direction. Then we have

e, =sinf cosg,e +sinb, singe +cosb.e. (A.16)

and

. sinf cos¢ ~ sinf sing  cos6. .
h, (g’.‘lr,fh,y) =—-det| cosf cosg, cosf sing, —sin6 |=—sinf, (A.17)

o

—sin@, sing, siné. cosg, 0 ”

so the complete Beylkin determinant is given by

C,B C

o

h(xs,x,(9,,¢r),y)=[1+c—"0089)i3sin9,- (A.18)

A.2 The Beylkin Determinant for 3-D Imaging (Pulse-Echo Case)

When an image is formed with the pulse-echo responses of the individual elements
of an array, a 3-D wave vector, K, is defined as

k=20V T(x,.y). (A.19)

Where T'(x_,y)is the one-way travel time from the centroid, x_, of the element
to an image point y. As in the general case we will assume this centroid location
is parameterized in terms of & =(&_,&,, ) variables and we will write the inverse
Jacobian as (see Eq. (A.4)):

9 (k) > (A.20)
T @ h s Caw s ’
a(w’éc’gzc) pe (510 52 )

where the Beylkin determinant is now
2V.T (x..y)
d
hpe (flc’§2c’Y) = det Zf[v},T(Xm)’)] M (AZI)
e
d
2 V T(x,y
| aéc [ y ( )]—
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Fig. A.2 Parameters for X,
defining the Beylkin deter-
minant for 2-D imaging with
linear arrays

We can evaluate the determinate in Eq. (A.21) by starting from Eq. (A.5) and letting
p, =p, =p,so that ®=0and set o= (same mode on sending and receiving).
We simply replace the parameters (é’lr,é’z,) in the general case by the parameters
(éc,é’h) and as before we let these parameters be spherical coordinates (06,¢C)
defined at the image point y. Then following all the same steps as before we find

X,

8sin @
h.(6.,6.,y)=—5—=. (A.22)
s

A.3 The Beylkin Determinant for 2-D Imaging

Linear arrays can be used to form 2-D images of 2-D scatterers such as side-drilled

holes, as shown in Chap. 13. In this case one defines a 2-D wave vector, k,, , as

k2D = a)VY¢(Xs5Xr)Y)) (A23)

where (XS X, , Y) are all 2-D vectors associated with the centroid of the sending el-
ement, the centroid of the receiving element, and the image point, respectively. For
a linear array the element centroids can be parameterized in terms of the variables
(&,.8,),ie X, = (Xl.v (). X, = 0),XV = (XI, (&)X, = 0) but the image point
Y= (YI,Y3) is a general point in a plane at the center of the array (see Fig. A.2). If
one fixes the sending element and lets the location of the receiving element vary
then in forming an imaging measurement model one needs to determine the inverse
of the Jacobian defined as

A(k,p) _ ol (£.Y), (A.24)

(w.g,)
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where
V,¢

H(&,,Y)=det (A.25)
aflr( Y¢)

Now, as in the 3-D case define the 2-D slowness vectors (ps .p, ) as
p, =V, T(X,.Y),p, =V,T(X,,Y). (A.26)

Then the determinant becomes

P, +P, ap
R I E e

o, 9, (A.27)

op,
= (Ps +Pr)'(g><e,,),

where we have used the distributional property of the triple product and e, is a unit
vector along the x, -axis (or y-axis, i.e. perpendicular to the imaging plane). These
2-D slowness vectors still satisfy the eikonal equations, Eq. (A.9), so the slowness
vectors are orthogonal to their derivatives and we have

pxe

H Y)=+% . - .
(ér’ ) ca(ps+pr) pr aér v

(A.28)

As before, we can ignore the sign indeterminancy here since we are only interested
in the absolute value of the determinant, and if we let © be the angle between the
two slowness vectors we have

1 Y -
H(g,.¥)=- " )[ (Y COSGHBE e,
= |14 (v) cosO |p, - y
cﬂ (¥ éﬁr (A.29)

b 851,

= A cos® |H, (&,.Y)

)
(Y)
oo {3
=V Ca Y)cos®]e 8pr
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where

V,T(X,(£,).Y)

H. (£.,Y)=det .
& Y)=det| 5 [V,7(x.(,)-Y)] (A.30)
G,
Equation (A.30) can be rewritten as
1 N
Hr(flr,Y):c—zdet ai , (A31)
“ Log,

where e, is a unit vector along the incident wave direction at the image point Y
coming from the receiving element location, X . Now, suppose we use as the pa-
rameter & the angle @ that this unit vector makes with respect to the x, -axis (see
Fig. A.2). Then

e, =—sinfe +cosbe,
(A.32)
e .
——=—cosfe —sinfe,
20, :
so that
—sinf. cos@
H (6,Y)=dee| S0 0 |1 (A.33)
o —cosfd. —sinf, cl
and, finally,
H(ﬁ,,Y)=L2(1+C—“cos®J. (A.34)
c, cg

For pulse-echo 2-D imaging with a linear array, the 2-D k-vector is instead given by
k,, =20V,7(X,.Y) (A.35)

and the inverse Jacobian becomes

s~ (A.36)
]~ (60,
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where

2V, T
H,(&.,Y)=det| 0 .
pe 3 2—(V,T
oz, V7

(A.37)

Equation (A.37) again can be expressed in terms of a unit vector and its derivatives
(see Eq. (A.31), and letting & = @, allows us to evaluate the determinant simply
and we find (with o = g for the pulse-echo case)

co
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B Angle-Area Ratios

In developing imaging measurement models, it was convenient to parameterize the
locations of the array elements by spherical coordinates at the image point, as this
choice made the evaluation of the Beylkin determinant very simple. However, to
express the final imaging models in terms of integrations over the element coor-
dinates it is necessary to determine the angle-area ratios, dQ/dS, where dQ is a
solid angle measured at the image point and dS is an area element on the plane of
the array [1, 2].

B.1 Ratios for Inspection in a Single Medium

For an array radiating into a single medium this ratio is simple to evaluate, as shown
explicitly in Chap. 12 for 2-D scalar problems. In three dimensions, we have (see
Fig. B.1)

dQ, cosf dQ, cosp, (B.39)
as, 2 ds, o’

where 7, is the distance from the image point to the centroid, x_, of a sending ele-
ment and f3 is the angle that the normal to the plane of the array at x_makes with
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a b

Fig. B.1 a Geometry for computing the angle-area ratio, d€Q /dS., at a sending element in a single
medium, and b detailed elements in the computation. Note that an entirely similar set of figures
also hold for computing dQ /dS, at a receiving element

respect to a ray along the propagating wave direction from the element to the image
point, y . Similarly, r. is the distance from the image point to the centroid, x, , of a
receiving element and /. is the angle that the normal to the plane of the array at x,
makes with respect to a ray along the propagating wave direction from the element
to the image point, y .The relations of Eq. (B.39) are easily derivable from the ge-
ometry of Fig. B.1b. If one considers a bundle of rays of solid angle dQ_ extending
from the image point y to the point x_, the cross-sectional area of this bundle is
dS = r?dQ, and the corresponding area of the bundle on the plane of the element
is dS, =dS/cos f,, which leads directly to Eq. (B.39) for the sending element. A
completely identical process yields the angle-area ratio at a receiving element.

B.2 Ratios for Inspection Through a Planar Interface

For immersion testing or testing with an array on wedge, the waves from the array
must pass through an interface for both the sending and receiving elements. The
angle-area ratios in this case are more complex than in the single medium case but
they still can be easily calculated with a ray theory approach that follows a bundle
of rays along the sound generation or reception propagation paths to the element of
the array. Figure B.2 shows the geometry for a two medium problem for relating
the solid angle dQ_ to the area dS, at a sending element across a planar interface,
where a compressional wave is traveling with a wave speed ¢, in medium one and
a wave of type f (,6’ = p,s) is propagating in medium two with wave speed ¢, .
To analyze this problem it is convenient to consider first a spherical bundle of rays
when it reaches the interface at point P, as shown in Fig. B.3. The cross-sectional

2
area of the bundle is just dS, = (Ff;) dQ and the projected area on the interface,
dA , as shown in Fig. B.3 is just d4 = dS, / cos8’,, where ¢/, is the angle that the

wave front area makes with respect to the interface (which is also the angle that the
ray along the propagation path makes with respect to the normal to the interface).
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Fig. B.2 Geometry for calcu-
lating the angle-area ratio for
a sending element in immer-
sion or angle beam inspection
problems

Fig. B.3 Geometry of a
spherical bundle of rays in
medium two

The bundle of rays in medium one has a wave front that is no longer spherical. At
point P on the interface, let the principal radii of curvature of the refracted wave
front be (,Off, pff,) , in the plane of incidence and perpendicular to that plane, respec-
tively. These radii are given by

e Cyy cos’ @ y
si 2 52
¢, cos &,

o= i rh
so 529
pl

(B.40)

where (Qﬂzﬁﬁ) are the angles that the wave fronts make with respect to the plane
of the interface in medium two and medium one, respectively. It is relatively easy
to prove these relations. Consider first rays propagating in the plane of incidence, as
shown in Fig. B.4. From the geometry for medium two we have

r5d@’, = dl, = dl cos 8’,. (B.41)

If we let pﬁ be the distance from the interface to the virtual source point V, which
the rays in medium one appear to originate from, we likewise have

PPde’ =dl, = dlcosd” (B.42)
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Fig. B.4 Rays propagating in
the plane of incidence

Fig. B.5 Rays propagating
out of the plane of incidence

so that

. cos 9 6}, (B.43)
T 2 cosd dE

But, from Snell’s law we have

sin@, _ siné, (B.44)
C, Cp ’
which implies that
o, _cp cosb) (B.45)
e’ C, cos &,

so that combining Eq. (B.45) and Eq. (B.43) we obtain the expression for pﬁ given
in Eq. (B.40).

Now, consider rays that are traveling out of the plane of incidence, as shown in
Fig. B.5. In this case we have



338 Appendices

Fig. B.6 The geometry of
the bundle of rays in medium
one

(B.46)

dS = ”:YngZO = ps’;d9107

where pi is the distance from the interface to the virtual source point V, from
which these rays appear to originate in medium two. However, for these rays and
small angles, Snell’s law is simply

a9, _‘n (B.47)
a9,

s
lo

Cpl

so that combining Eq. (B.47) with Eq. (B.46) we also obtain the relationship for pﬁ)
given in Eq. (B.40).

The cross-sectional area of the bundle of rays at point P on the interface is just
ds, = plpPd6’de,, (seeFig. B.6). The projection of this cross-sectional area onto
the plane of the interface is d4 = dS, / cos#”,. Similarly, at the sending element,

the cross-sectional area of the bundle is just dS; = (pﬁf +’”ff)(p§, +’”ff)d9£d‘9lo
and the projected area of this bundle onto the plane of the sending element is

dsS, =dS, / cos B,. With all these results we can then calculate the angle-area ratio
as

dQ, _dQ dS, dA ds, dS,
dS,  dS, dA dS, dS, dS,

s

b 1 pﬁpi (B48)
= (r’;)z cos 6, cost, (pf +17) (o +rf)cosﬁs_

K

Using Eq. (B.40) in this ratio, we find

2
0;5;: - [cﬁl cos ZZI cos B ! 2 (B.49)
N C Ccos 2 (r'f+cﬁ2rﬂJ[rﬁ+cﬂz COSs 95 rﬂ]

pl
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Fig. B.7 Geometry for
calculating the angle-area
ratio for a receiving element
in immersion or angle beam
inspection problems

or the equivalent form

dQ.  cosé 1
£ = HS; cos f3, - (B.50)
dS, cos@ 5. %1 s s, € cos &, 5
’/:VZ +7”}1 s2 VT 2 eﬂ s1
Cpr Cpy cOS™ O

At a receiving element, the geometry for the calculation of the angle-area ratio is
shown in Fig. B.7. In this case it is assumed that a wave of type 0{(0{= p,s) exist
in medium two. Since the calculations in this case follow exactly the same steps as
outlined for the sending element, we simply write the final results for the angle-area
ratio as

2
dQ c cos &7 1
r—| 22z —9;1 cosf. - (B.51)
dSr Cpl €os r2 o Caz o a Ca2 cos rl o
Tyt =T rl +7W’?2
1 ¢, cos” &
or, equivalently,
aQ, _ cos 6%, cos 3 1 s
4 r 2 pa : .
dSr cos erl a, S« a, Ep COS 6r2 a ( )
Lt R | IS s Rl
o
o2 Cor COS U,
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C MATLAB® Functions and Scripts

In this Appendix we will summarize the MATLAB® functions and scripts that ap-
pear throughout the book and give detailed listings of the codes. The MATLAB®
m-files are also available by sending an e-mail with subject titled “Phased Array
Codes” to the author at Ischmerr@cnde.iastate.edu.

C.1 Beam Models for Single Elements

rs_2Dv (Code Listing C.1) A function which calculates the normalized pressure
wave field of a 1-D element radiating waves in 2-D into a fluid as calculated by a
superposition of Hankel functions over the face of the element.

Is 2Dv (Code Listing C.2) A function which calculates the normalized pressure
wave field of a 1-D element radiating waves in 2-D into a fluid as calculated by a
superposition of high frequency line sources over the face of the element.

Is_2D_int (Code Listing C.3) A function which calculates the normalized pressure
wave field of a 1-D element radiating waves in 2-D across a plane interface between
two fluids as calculated by a superposition of high frequency line sources over the
face of the element and propagating the waves from those sources across the inter-
face with ray theory.

fresnel_2D (Code Listing C.7) A function which calculates the normalized pressure
wave field of a large 1-D element radiating waves in 2-D into a fluid as calculated
by Fresnel integrals in the paraxial approximation.

on_axis_foc2D (Code Listing C.9) A function which calculates the normalized
pressure wave field along the central axis of a large, focused 1-D element radiating
waves in 2-D into a fluid as calculated by Fresnel integrals in the paraxial approxi-
mation.

Gauss_2D (Code Listing C.10) A function which calculates the normalized pres-
sure wave field of a large 1-D element radiating waves in 2-D into a fluid as calcu-
lated by a superposition of Gaussian beams in the paraxial approximation.

NPGauss2D (Code Listing C.16) A function which calculates the normalized pres-
sure wave field of a 1-D element radiating waves in 2-D into a fluid as calculated
by a superposition of non-paraxial Gaussian beams.

ps_3Dv (Code Listing C.20) A function which calculates the normalized pressure
wave field of a 2-D rectangular element radiating waves in 3-D into a fluid as cal-
culated by a superposition of point sources over the face of the element.

ps_3Dint (Code Listing C.23) A function which calculates the normalized veloc-
ity components in an elastic solid for a 2-D rectangular element radiating waves
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in 3-D across a plane fluid/solid interface as calculated by a superposition of high
frequency point sources over the face of the element and propagating the waves
from those sources across the interface with ray theory.

C.2 Delay Laws and Apodization Laws

delay_laws2D (Code Listing C.12) A function which generates the time delay laws
for steering and focusing of an array of 1-D elements radiating waves in 2-D into
a single medium. The function can also be used to generate delay laws for a linear
array of 2-D elements.

discrete_windows (Code Listing C.13) A function which generates 1-D apodiza-
tion laws for an array using cosine, Hanning, Hamming, Blackman, triangular, or
rectangular weights.

delay_laws2D_int (Code Listing C.19) A function which generates the time delay
laws for steering and focusing of an array of 1-D elements radiating waves in 2-D
across a plane interface between two fluids. The function can also be used to gener-
ate delay laws for a linear array of 2-D elements.

delay_laws3D (Code Listing C.22) A function which generates the time delay laws
for steering and focusing of an array of rectangular 2-D elements radiating waves in
3-D into a single medium.

delay_laws3D_int (Code Listing C.27) A function which generates the time delay
laws for steering and focusing of an array of 2-D elements radiating waves in 3-D
across a plane interface between two media.

C.3 Beam Models for Arrays

mls_array_modeling (Code Listing C.14) A script which models the normalized
pressure wave field an array of 1-D elements radiating waves into a fluid, using
a superposition of multiple line sources for each element. Steering, focusing, and
apodization parameters for the array are specified.

mls_array_model_int (Code Listing C.18) A script which models the normalized
pressure wave field an array of 1-D elements radiating waves across a plane inter-
face between two fluids, using a superposition of multiple line sources for each
element. Steering, focusing, and apodization parameters for the array are specified.

mps_array_modeling (Code Listing C.21) A script which models the normalized
pressure wave field an array of 2-D rectangular elements radiating waves into a
fluid, using a superposition of multiple point sources for each element. Steering,
focusing, and apodization parameters for the array are specified.
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mps_array_model_int (Code Listing C.26) A script which models the normalized
velocity components in an elastic solid for an array of 2-D rectangular elements
radiating waves across a fluid solid/solid interface, using a superposition of multiple
point sources for each element. Steering, focusing, and apodization parameters for
the array are specified.

C.4 Miscellaneous Functions

pts_2Dintf (Code Listing C.4) A function which uses Snell’s law to determine the
intersection points of rays traveling in 2-D across a plane interface between two
media from the centroid of a 1-D element in an array to points (X, z) in the second
medium. This function uses the helping functions ferrari2 and init_xi.

ferrari2 (Code Listing C.5) A function which uses the input parameters of the func-
tions pts 2Dintf or pts 3Dint to express Snell’s law for a plane interface as the
problem of finding the appropriate root of a quartic equation. Ferrari’s method is
used to obtain the roots of the quartic and return the location of the single intersec-
tion point on the interface of a ray path that goes from the centroid of an array ele-
ment or element segment to a specified single point in the second medium.

init_xi (Code Listing C.6) A function which examines the sizes of the variables
describing the points (X, z) in the input parameters of pts_2Dintf and generates the
consistent size needed for the intersection points on the interface that define Snell’s
law ray paths and the number of calls needed to the function ferrari2, which can
only return a single intersection point at a time.

fresnel_int (Code Listing C.8) A function which evaluates the Fresnel integral nu-
merically.

gauss_c15 (Code Listing C.11) A function which returns fifteen Gaussian coef-
ficients developed by Wen and Breazeale, which can be used to describe the wave
field of an 1-D element with a multi-Gaussian beam model. See also gauss_c10.

elements (Code Listing C.15) A function which allows specification of array ele-
ment sizes and gap sizes in normalized form and returns the actual element sizes
and centroid locations. This function is used in the script mls_array _modeling to
perform parametric studies.

gauss_c10 (Code Listing C.17) A function which returns ten Gaussian coefficients
developed by Wen and Breazeale, which can be used to describe the wave field of
an 1-D element with a multi-Gaussian beam model.

pts_3Dint (Code Listing C.24) A function which uses Snell’s law to determine the
intersection points of rays traveling in 3-D across a plane interface between two
media from the centroid of a 2-D element in an array to points (X, y, z) in the second
medium. This function uses the helping functions ferrari2 and init_xi3D.
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init_xi3D (Code Listing C.25) A function which examines the sizes of the variables
describing the points (X, y, z) in the input parameters of pts_3Dint and generates the
consistent empty matrix needed to hold the intersection points on the interface that
define Snell’s law ray paths. The function also returns the dimensions of the matrix
holding the interface points, parameters which are used in calling the function ferrari2.

interface2 (Code Listing C.28) A function which expresses Snell’s law in terms of
the location of the point of intersection of a ray path with a planar interface. The val-
ue of the function is zero when Snell’s law is satisfied. This function is used in the
function ferrari2 as a back-up evaluation in the event Ferrari’s method does not give
a sufficiently accurate solution. In that case the intersection point on the interface
is calculated iteratively with the built-in MATLAB function fzero, using the call

>>xi={fzero(@interface2,[0,DX], [ ], cr, DF, DT, DX);

Note that this call to fzero can also be used as a direct replacement for the call to
ferrari2:

>>xi=ferrari2(cr, DF, DT, DX);
but the use of fzero in this manner is typically much less efficient.

T_fluid_solid (Code Listing C.29) A function which computes the P-P (compres-
sional wave to compressional wave) and P-S (compressional wave to vertical-shear
wave) transmission coefficients, based on velocity ratios, for the oblique incidence
of a plane wave on a fluid-solid interface.

C.5 Code Listings

Code Listing C.1. The function rs 2DV which calculates the normalized pressure
wave field of a 1-D element radiating waves in 2-D into a fluid as calculated by a
superposition of Hankel functions over the face of the element.

function p = rs 2Dv (b, £, ¢, e, X, z, varargin)
% p= rs_2Dbv(b, £, ¢, e, X, z, Nopt)computes the normalized
% pressure, p, at a location (x, z) (in mm)

oe

in a fluid for a 1-D element of length

2b (in mm) along the x-axis at a frequency, f, (in MHz).

and for a wave speed, c, (in m/sec) of the fluid. This
function can used to describe an element in an array by
specifying a non-zero value for e (in mm), which is the offset
of the center of the element along the x-axis.

The assumed harmonic time dependency is exp (-2i*pi*f*t)and
the 2-D version of the Rayleigh-Sommerfeld integral for a
piston source is used as the model.

Nopt gives the number of segments to use. If Nopt is not
given as an input argument the function use 10 segments

per wavelength, based on the input frequency, f, which must
be a scalar when Nopt is not given.

o0 AP A O O° A o° o° od° od° o

oe
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% compute wave number
kb = 2000*pi.*b.*f./c ;
% 1f number of segments is specified, use
if nargin ==

N = varargin{l};
else

% else choose number of segments so that the size of each segment
% 1s one-tenth a wavelength
N = round((20000)*f*b/c);
if N <=1
N =1;
end
end
% use normalized positions in the fluid
xb = x./b;
zb = z./b;
eb = e./b;

)

% compute normalized centroid locations for the segments
xc =zeros(l,N);
for jj=1:N
xc(3j) = -1 + 2*(33-0.5)/N;
end
% calculate normalized pressure as a sum over all the
% segments as an approximation of the Rayleigh-Sommerfeld
ype of integral

kk = 1:N
sgrt ( (xb-xc (kk)-eb) ."2 + zb."2);
= p + besselh(0, 1,kb.*rb);

[l
o
|

P = p.*(kb./N); % include external factor

Code Listing C.2. The function Is 2Dv which calculates the normalized pressure
wave field of a 1-D element radiating waves in 2-D into a fluid as calculated by a
superposition of high frequency line sources over the face of the element.

function p = 1s 2Dv (b, £, ¢, e, x, z, varargin)
% p= 1ls 2Dv(b, £, ¢, e, %, z, Nopt)computes the normalized
% pressure, p, at a location (x, z) (in mm) in a fluid

o

for a two-dimensional source of length

2b (in mm) along the x-axis at a frequency, £, (in MHz)

and for a wave speed, ¢, (in m/sec) of the fluid. This
function can used to describe an element in an array by
specifying a non-zero value for e (in mm), which is the offset
of the center of the element along the x-axis.

The assumed harmonic time dependency is exp (-2i*pi*f*t)and

the 2-D version of the Rayleigh-Sommerfeld integral for a
piston source is used as the model where the Hankel function

o0 o° d° o o o oo

oo
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oo

is approximated by its asymptotic cylindrical wave form for
large wave numbers.

Nopt gives the number of segments to use. If Nopt is not
given as an input argument the function uses 1 segment

per wavelength, based on the input frequency, f, which must
be a scalar in the case where Nopt is not given.

oe d° d° o

oe

o°

compute wave number
kb = 2000*pi*b*f/c ;

)

% 1f number of segments is specified, use

if nargin ==
N = varargin{l};
else
else choose number of terms so that the size of each segment
is a wavelength

N = round ((2000)*f*b/c);

o°

oo

if N <1
N=1;
end
end
% use normalized positions in the fluid
xb = x/b;
zb = z/b;
eb=e/b;

[

% compute normalized centroid locations for the segments
xc =zeros (1,N);
for j3j=1:N
xc(33) = -1 + 2*(33-0.5)/N;
end
% calculate normalized pressure as a sum over all the
segments as an approximation of the Rayleigh-Sommerfeld
% type of integral
O .

p=0;
for kk = 1:N
ang =atan ( (xb-xc (kk) =-eb)./zb);
ang = ang + eps.*( ang == 0);
dir =sin(kb.*sin(ang) /N) ./ (kb.*sin (ang) /N) ;
rb = sqgrt((xb-xc(kk)- eb).”2 + zb."2);

ph = exp(li*kb.*rb);
p= p + dir.*exp(i*kb.*rb)./sqgrt(rb);

end
P = p.*(sqrt(2*kb./(i*pi)))/N; % include external factor
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Code Listing C.3. The function Is_2Dint which calculates the normalized pressure
wave field of a 1-D element radiating waves in 2-D across a plane interface between
two fluids as calculated by a superposition of high frequency line sources over the
face of the element and propagating the waves from those sources across the inter-
face with ray theory.

function p = 1ls_2Dint (b, f, mat,e, angt, Dt0, x, z, varargin)

p= 1ls_2Dint (b, f, mat, e, angt, Dt0, x, z, Nopt)computes the normalized
pressure, p, for an element in a 1-D array radiating waves across

a plane fluid/fluid interface where p is calculated

o o

oe

% at a location (x, z) (in mm)in the second fluid for a

% source of length 2b (in mm) at a frequency, £, (in MHz).

% The vector mat = [dl, cl, d2, c2] where dl is the density in the first
% medium (in gm/cm”3), cl is the wave speed in the first medium

oo

(in m/sec)and similarly d2 is the density in the second medium (in
gm/cm”3)and c2 is the wave speed in the second medium (in m/sec).

The distance e (in mm) is the offset of the center of the element from
the center of the array. The parameter angt (in degrees)

specifies the angle of the array with respect to the x-axis

and Dt0 (in mm) is the distance of the center of the array from the
interface. The assumed harmonic time dependency is exp (-2i*pi*f*t).
The model used is a Rayleigh-Sommerfeld type of integral for a

piston source where ray theory has been used to propagate the cylindrical
waves generated by the element across the interface.

Nopt gives the number of segments to use. If Nopt is not

specified as an input argument the function uses one segment

per wavelength, based on the input frequency, £, which must

be a scalar when Nopt is not given.

% 00 o0 A° P o A° d° d° d° d° o

oe

[

% extract material parameters

dl =mat (1) ;
cl = mat (2);
d2 = mat(3) ;
c2 = mat(4);

[

% compute wave numbers
klb = 2000*pi*b*f/cl ;
k2b=2000*pi*b*f/c2;

[

% 1f number of segments is specified, use

if nargin ==

N = varargin{l};
lse
else choose number of segments so that the size of each segment
is a wavelength

N = round((2000)*f*b/cl);

if N <1

N=1;

end

end

a0

o°

% compute centroid locations for the segments
xc =zeros (1,N);
for jj=1:N
xc(Jj) = b* (-1 + 2*(j3-0.5)/N);
end

o

% calculate normalized pressure as a sum over all the segments
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p=0;

for nn= 1:N
% find the distance, xi, where the ray from the center of a segment

% to point(x,z)intersects the interface

xi = pts 2Dintf (e, xc(nn), angt, DtO, cl,c2, x, z);

% compute the distances and angles needed in the model

Dtn=Dt0+ (e+xc (nn)) .*sin (angt*pi/180) ;

Dxn = x-(e+xc(nn)) .*cos (angt*pi/180) ;

rl = sqrt(xi.”2.+ Dtn."2)./b;

r2 = sqrt((Dxn -xi).”"2 +z.72)./b;

angl = asin(xi./ (b*rl));

ang2 =asin((Dxn-xi) ./ (b*r2));

ang = angt*pi/180 -angl;

ang = ang + eps.*( ang == 0);

% form up the segment directivity

dir =sin(klb.*sin(ang)/N)./(klb.*sin(ang)/N);

% compute plane wave transmission coefficient (based on pressure ratio)

Tp = 2*d2*c2.*cos (angl)./(dl.*cl.*cos(ang2) +d2.*c2.*cos (angl));

% compute phase term and denominator

ph =exp (li*klb.*rl + 1i*k2b.*r2);

den =rl+(c2/cl).*r2.*((cos(angl)).”2)./(cos(ang2)) ."2;

% put terms together for pressure due to each segment

p= p + Tp.*dir.*ph./sqgrt (den);

end
P = p.*(sqrt(2*klb./(1li*pi)))/N; % include external factor

Code Listing C.4. The function pts_2Dintf which uses Snell’s law to determine the
intersection points of rays traveling in 2-D across a plane interface between two
media from the centroid of a 1-D element in an array to points (x, z) in the second
medium. This function uses the helping functions ferrari2 and init_xi.

function xi = pts 2Dintf( e, xn, angt, Dt0, cl,c2, x, z)

xi = pts 2Dintf (e, xn, angt, Dt0, cl, c2, x, z) calculates the
intersection of a ray from the center of a segment of an array element in
one fluid to a point (x, z) (in mm) in a second fluid across a plane
interface, where e is the offset of the element from the center of the
array and xn is the offset of the segment from the center of the element.
(both in mm). The parameter angt is the angle (in degrees) that the array
makes with respect to the x-axis (the interface) and DtO is the distance
of the center of the array above the interface (in mm). The parameters
cl, c2 are the wave speeds in the first and second medium, respectively,
(both in m/sec). This function uses the function init xi(x,z) to examine
the sizes of the (x,z) variables to decide on the corresponding number

of rows and columns needed to calculate the locations xi (in mm) at

which rays from the center of a segment to the points (x,z) intersect the
interface. The function ferrari2 is then used with the appropriate input
arguments to calculate the xi values (in mm) .

o0 00 o0 A° P o° o° AP d° d° d° o° d° o

oe

% calculate wave speed ratio
cr =cl/c2;

% based on sizes of (x, z), determine corresponding number of rows and
% columns (P,Q) needed for xi calculations and initialize xi as zeros.
[xi,P,Q]=init xi(x,z);
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% obtain sizes of (x,z) so appropriate arguments can be found in the calls
% to the function ferrari2 when making the xi calculations

[nrx, ncx] =size(x);

[nrz,nczl=size(z);

% calculate xi locations using Ferrari's method
for pp=1:P
for gg=1:Q
Dtn=Dt0+ (e+xn) *sin (angt*pi/180) ;
% if x is a point, and z is a row or column vector
if nrx ==1 && ncx ==
Dxn= x - (e+xn)*cos (angt*pi/180) ;
xi(pp,qq)=ferrari2(cr, z(pp,qq), Dtn,Dxn);
% if z is a point, and x is a row or column vector
elseif nrz ==1 && ncz ==
Dxn = x(pp,qq) - (e+xn)*cos (angt*pi/180);
x1i (pp,qq)=ferrari2(cr, z, Dtn,Dxn);
% 1f x and z are equal size PxQ matrices
else
Dxn = x(pp,qq) -(e+xn)*cos(angt*pi/180);
xi(pp,qq)=ferrari2(cr, z(pp,qq), Dtn,Dxn);
end
end
end

Code Listing C.5. The function ferrari2 which uses the input parameters of the func-
tions pts 2Dintf or pts 3Dint to express Snell’s law for a plane interface as the
problem of finding the appropriate root of a quartic equation. Ferrari’s method is
used to obtain the roots of the quartic and return the location of the single intersec-
tion point on the interface of a ray path that goes from the centroid of an array ele-
ment or element segment to specified single point in the second medium.

function xi= ferrari2 (cr, DF, DT, DX)

xi = ferrari2(cr, DF, DT, DX) solves for the intersection point, xi, on

a plane interface along a Snell’s law ray path from a point located a
distance DT (in mm) above the interface to a point located a

distance DF (in mm) below the interface.

Both DT and DF must be positive. DX (in mm)is the separation

distance between the points along the plane interface and can be positive
or negative. cr = cl/c2 is the ratio of the wave speed in medium 1 to
that of the wave speed in medium 2.

The intersection point, xi, is obtained by writing Snell’s law as a quartic
equation in xi and solving the quartic with Ferrari's method. Of the

four roots, two will be complex, one will be the wanted real solution

in the interval [0,DX] and one will be real but outside that interval.
reference: http://exampleproblems.com/wiki/index.php/Quartic_equation

If the root returned by Ferrari's method lies inside the permissible
interval, [0, DX], and is essentially real (set by a tolerance value

in line 76), the solution obtained by Ferrari's method is used.
Otherwise, the MATLAB function fzero is used instead to find the
intersection point.

o0 0 A A0 A0 O° O O O O d° d° d° o° o° P o

o°

e

if two media are identical, use explicit solution for the interface point
along a straight ray
if abs(cr-1) < 10" (-6)
xi = DX*DT/ (DF+DT) ;
% otherwise, use Ferrari's method
else

e
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cri=1/cr; % cri = c2/cl
define coefficients of quartic Ax"4 +Bx"3 +Cx"2 + Dx + E =0
= l-cri”2;
= (2*(cri)”2*DX -2*DX)/DT;
(DX~2 +DT"2 - (cri)”2* (DX"2 +DF"2))/(DT"2);
= -2*DX*DT"2/ (DT"3);
= DX"2*DT"2/ (DT 4) ;
% begin Ferrari's solution
alpha = -3*B"2/(8*A"2) + C/A;
beta = B"3/(8*A"3) - B*C/(2*A"2) + D/A;
gamma = -3*B"4/(256*A%4) + C*B"2/(l6*A"3) - B*D/(4*A"2) + E/A;

o

% if beta =0 the quartic is a bi-quadratic whose solution is easier
if (beta == 0)

B O QW
I

x (1) = -B/(4*A) + sqrt( (-alpha + sqrt(alpha”2-4*gamma))/2);
x(2) -B/ (4*A) + sqrt( (-alpha - sqrt(alpha”2-4*gamma))/2);
x(3) = -B/(4*A) - sqrt( (-alpha + sqgrt(alpha”2-4*gamma))/2);
x(4) = -B/(4*A) - sqgrt( (-alpha - sqgrt(alpha”2-4*gamma))/2);
% otherwise, proceed with Ferrari's method

else

P= -alpha”2/12 - gamma;
Q= -alpha”3/108 + alpha*gamma/3 - beta”2/8;

Rm= Q/2 - sqrt(Q"2/4 + P*3/27);

o
5

U=Rm" (1/3) ;
if(U == 0)
y=-5/6*alpha - U;
else
y=-5/6*alpha - U + P/ (3*U);
end

x (1) = -B/(4*A) + 0.5*( + W + sqgrt(-(3*alpha + 2*y + 2*beta/W )));
x(2) = -B/(4*A) + 0.5*( - W + sqgrt(-(3*alpha + 2*y - 2*beta/W )));
x(3) = -B/(4*A) + 0.5*( + W - sgrt(-(3*alpha + 2*y + 2*beta/W )));
x(4) = -B/(4*nA) + 0.5*( — W - sqgrt(-(3*alpha + 2*y - 2*beta/W )));
end

o

% end of bi-gquadratic solution or Ferrari’s method with four roots

o

% find root that is real, 1lies in the interval [0, DX]
flag =0;
for nn=1:4

xr=real (x(nn)) ;

axi= DT*abs (imag(x(nn)));

xt=xr*DT;

tol = 10" ( -6);
f is a function which should be zero if Snell's law
is satisfied and can also be used to check the
accuracy of Ferrari's solution. Currently not used.
f =(DX -xt)*sqrt (xt"2+DT"2)-cri*xt*sqrt ((DX -xt)"2+DF"2);

o0 o oo

oo
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if DX >=0 && (xt >=0 && xt<= DX) && axi < tol
x1 = xr*DT;
flag =1;

elseif DX <0 && (xt <=0 && xt >= DX) && axi < tol

xi = xr*DT;
flag =1;
end
end
if flag == 0
% if interface intersection value returned by Ferrari's
% method lies outside the permissible region or the
% tolerance on being real is not met, use fzero instead
xi=fzero(@interface2, [0,DX], [], cr, DF, DT, DX);
end
end
end

Code Listing C.6. The function init_xi which examines the sizes of the variables
describing the points (X, z) in the input parameters of pts_2Dintf and generates the
consistent size needed for the intersection points on the interface that define Snell’s
law ray paths and the number of calls needed to the function ferrari2, which can
only return a single intersection point at a time.

function [xi, P, Q] = init xi (x,z)

[xi,P,Q] =init xi(x,z) examines the points(x,z), where x can be a row

or column vector and z a scalar, or z a row or column vector and x a
scalar, or both x and z can be equal sized scalars, vectors or matrices.
The dimensions (P,Q) of xi are chosen accordingly so that calls to
functions of (x, z, xi) can be made transparently and consistently

if one is evaluating that function along an axis, a line, or over a 2-D
array of points. An empty xi matrix of dimensions PxQ is returned, along
with the dimensions P and Q.

o0 oo

0P oo oe

d° o

oo

get sizes of x and z variables
nrx, ncx] =size(x);
nrz, ncz] = size(z);

— — o°

oe

if x and z are equal sized matrices, vectors, or scalars, xi is of the
same size

oe

if nrx == nrz && ncx ==ncz

xi=zeros (nrx, ncx);

P=nrx;

Q=ncx;
% if x is a column vector and z a scalar, xi is the same size column vector
elseif nrx > 1 && ncx ==1 && nrz ==1 && ncz ==

xi=zeros (nrx,1l);

P=nrx;

0=1;
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% if z i1s a column vector and x a scalar, xi is the same size column vector

elseif nrz >1 && ncz == 1 && nrx ==1 && ncx ==

xi =zeros(nrz,1);

P=nrz;

0=1;
% if x is a row vector and z a scalar, xi is the same size row vector
elseif ncx > 1 && nrx ==1 && nrz ==1 && ncz ==

xi=zeros (1, ncx);

P=1;

Q=ncx;
% i1f z is a row vector and x a scalar, xi is the same size row vector
elseif ncz > 1 && nrz ==1 && nrx ==1 && ncx ==

xi=zeros (l,ncz);

P=1;

QO=ncz;

S

% other combinations are not supported
else error('(x,z) must be (vector,scalar) pairs or equal matrices')
end

Code Listing C.7. The function fresnel 2D which calculates the normalized pres-
sure wave field of a large 1-D element radiating waves in 2-D into a fluid as calcu-
lated by Fresnel integrals in the paraxial approximation.

function p = fresnel 2D(b, £, ¢, x, z)

p = fresnel 2D(b, f, ¢, x, z) calculates the normalized pressure
field at a point (x, z), (in mm), of a 1-D element of

length 2b(in mm), at a frequency, £, (in MHz)radiating

into a fluid with wave speed, ¢, (in m/sec). This function uses the
fresnel int function to calculate the Fresnel integral numerically.

o

o

o° o

o

% calculate wave number
kb =2000*pi*f*b/c;

% put (x, z) coordinates in normalized form
xb=x/b;

zb=z/b;

% calculate term in Fresnel integral argument
arg = sqgrt(kb./ (pi*zb));

% calculate normalized pressure
p:sqrt(l/(Z*i)).*exp(i*kb*zb).*(fresnel_int(arg.*(xb+l))...
-fresnel int(arg.*(xb -1)));

Code Listing C.8. The function fresnel int which evaluates the Fresnel integral nu-
merically.

function y=fresnel int (x)

y = fresnel int(x) computes the Fresnel integral defined as the integral
from t = 0 to t = x of the function exp(i*pi*t~2/2). Uses the approximate
expressions given by Abramowitz and Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, pp. 301-302.

o° o° o

oe

o°

separate arguments into positive and negative values, change sign
% of the negative values

xn =-x(x<0);

xp=x(x >=0);
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% compute cosine and sine integrals of the negative values, using the
% oddness property of the cosine and sign integrals

[cn,sn] =cs_int (xn);
cn= -cn;
sn = —-sny

o

% compute cosine and sine integrals of the positive values

[cp, spl=cs_int(xp);

o°

combine cosine and sine integrals for positive and negative
% values and return the complex Fresnel integral

ct =[cn cpl;

st =[sn spl;

y=ct+i*st;

o°

cs_int(xi) calculates approximations of the cosine and sine integrals

for positive values of xi only(see Abramowitz and Stegun reference above)

function [c, s]=cs_int(xi)

£ =(1+0.926.*%xi) ./ (2+1.792.*%x1 +3.104.*x1."2);

1./(2+4.142.*x1+3.492.*x1i.72+6.67.*x1.73);

c=0.5 +f.*sin(pi.*x1.72./2) -g.*cos(pi.*xi.%2./2);
= 0.5 -f.*cos(pi.*xi.%2./2)~-g.*sin(pi.*xi."2./2);

o

oe

f function (see ref.)
g function (see ref.)
cos integral approx.
sin integral approx.

oo e

oo

Code Listing C.9. The function on_axis_foc 2D which calculates the normalized pres-
sure wave field along the central axis of a large, focused 1-D element radiating waves
in 2-D into a fluid as calculated by Fresnel integrals in the paraxial approximation.

function p = on_axis foc2D(b, R, £, c, z)

p = on axis foc2D(b,R,f,c,z) computes the on-axis normalized

pressure for a 1-D focused piston element of length 2b

and focal length R (in mm) .

The frequency is f (in MHz), b is the transducer half-length

(in mm), c is the wave speed of the surrounding fluid

(in m/sec),and z is the on-axis distance (in mm). The

paraxial approximation is used to write the pressure field in terms
of a Fresnel integral. Note: the propagation term exp(ikz) is removed
from the wave field calculation.

o o° J° o° o° d° o° oo

o

o

ensure no division by zero at z =0
= z teps*(z == 0);

N

oe

define transducer wave number
kb = 2000*pi*f*b/c;

oe

define u and prevent division by zero

u =(1-z/R);

u=u+ eps*( u-==0);

% argument of the Fresnel integral and denominator in on-axis pressure
% equation

x = sqgrt((u.*kb.*b) ./ (pi.*z)).*( z <= R)+...

sgrt ((-u.*kb.*b)./(pi.*z)).*(z > R);
denom = sqgrt(u).*(z <= R) + sqgrt(-u).*( z > R);
Fr = fresnel int(x).*( z <= R) + conj(fresnel int(x)).*(z >R);

o°

compute normalized on-axis pressure (p/rho*c*v0) with

the propagation phase term exp(ikz) removed. Use analytical
values near the focus and the numerical Fresnel integral values
away from the focus

p=(sqgrt (2/1i) .*sqrt ((b/R) .*kb/pi)) .*( abs(u) <= .005) +

(sgrt(2/1i) .*Fr./denom) .* (abs (u) > .005);

oe oe

o
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Code Listing C.10. The function Gauss_2D which calculates the normalized pres-
sure wave field of a large 1-D element radiating waves in 2-D into a fluid as calcu-
lated by a superposition of Gaussian beams in the paraxial approximation.

function p=Gauss 2D(b, f, c, x, z)

p = Gauss_2D(b, f,c,x,z) calculates the normalized pressure at a
point (x, z) (in mm)in a fluid whose wave speed is c (in m/sec)

for a 1-D element of length 2b (in mm) radiating at a frequency, f,
(in MHz). The function uses a paraxial multi-Gaussian beam model and
15 Gaussian coefficients developed by Wen and Breazeale that are
contained in the MATLAB function gauss cl5.

0P oo de e o°

o

retrieve Wen and Breazeale coefficients
A, B] = gauss_cl5;

— o°

% calculate the wave number
kb = 2000*pi*f*b/c;
% normalize the (x,z) coordinates
xb = x/b;
zb = z/b;
initialize the pressure to zero and then superimpose 15
% Gaussian beams to calculate the pressure wave field
0

p=0;
for nn = 1:15
gqb=zb-1*1000*pi*f*b./ (B (nn) *c) ;
gb0 = -i*1000*pi*f*b./ (B (nn) *c);
p=p+sqgrt (gb0./gb) . *A(nn) . *exp (1*kb*xb."2./(2*gb) ) ;

end

Code Listing C.11. The function gauss c15 which returns fifteen Gaussian coef-
ficients developed by Wen and Breazeale, which can be used to describe the wave
field of an 1-D element with a multi-Gaussian beam model.

function [a, b] = gauss cl5

[a,b] = gauss cl5 returns the 15 "optimized" coefficients
obtained by Wen and Breazeale to simulate the wave field

of a circular planar piston transducer radiating into a fluid.
Reference:

Wen, J.J. and M. A. Breazeale," Computer optimization of the
Gaussian beam description of an ultrasonic field," Computational
Acoustics, Vol.2, D. Lee, A. Cakmak, R. Vichnevetsky, Eds.
Elsevier Science Publishers, Amsterdam, 1990, pp. 181-196.

0% o° o o d° d° oe

o

= zeros (15,1);

zeros (15,1);
= -2.9716 + 8.6187*i;
-3.4811 + 0.9687*i;
-1.3982 - 0.8128%*i;
0.0773 - 0.3303*i;
2.8798 + 1.6109*1i;
= 0.1259 - 0.0957*1i;
= -0.2641 - 0.6723*i;

DYoL YT
RGNS
I
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a(8) = 18.019 + 7.8291*i;
a(9) = 0.0518 + 0.0182*i;
a(l0) = -16.9438 - 9.9384*i;
a(ll) = 0.3708 + 5.4522*1i;
a(l2) = -6.6929 + 4.0722*i;
a(l3) = -9.3638 - 4.9998*i;
a(l4) = 1.5872 - 15.4212*i;
a(l5) = 19.0024 + 3.6850*i;
b(l) = 4.1869 - 5.1560*1i;
b(2) = 3.8398 - 10.8004*1;
b(3) = 3.4355 - 16.3582*1;
b(4) = 2.4618 - 27.7134*1;
b(5) = 5.4699 + 28.6319*1i;
b(6) = 1.9833 - 33.2885*1i;
b(7) = 2.9335 - 22.0151*1;
b(8) = 6.3036 + 36.7772*1;
b(9) = 1.3046 - 38.4650*1;
b(10) = 6.5889 + 37.0680*1i;
b(1l) = 5.5518 + 22.4255*i;
b(1l2) = 5.4013 + 16.7326%1;
b(13) = 5.1498 + 11.1249*1i;
b(14) = 4.9665 + 5.6855%1;
b(15) = 4.6296 + 0.3055*1;

Code Listing C.12. The function delay laws2D which generates the time delay laws
for steering and focusing of an array of 1-D elements radiating waves in 2-D into
a single medium. The function can also be used to generate delay laws for a linear
array of 2-D elements.

function td=delay laws2D(M, s, Phi, F, c)

% td = delay laws2D(M,s,Phi,F,c) generates the time delay

% td (in microsec) for an array with M elements, pitch s

% (in mm), where we want to steer the beam at the angle Phi

% (in degrees) and focus it at the distance F (in mm)

% in a single medium of wave speed ¢ (in m/sec). For steering
% at an angle Phi only the focal length, F, must be set equal
% to inf.

m=1:1:M ;
em =s*((m-1)-Mb); % location of centroids of elements
switch (F)

o)

% steering only case

case inf

if Phi > 0
td=1000*s*sind (Phi) * (m-1) /c;

else
td=1000*s*sind (abs (Phi)) * (M-m) /c;

end
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)

% steering and focusing case

otherwise,
rl=sqrt (F*"2 + (Mb*s) "2 + 2*F*Mb*s*sind(Phi));
rm = sqrt (F*"2+em.”2 - 2*F*em*sind(Phi));

rM=sqrt (F"2 + (Mb*s)"2 + 2*F*Mb*s*sind (abs (Phi)));
if Phi > O
td=1000* (rl-rm) /c;
else
td=1000* (rM-rm) /c;
end
end

Code Listing C.13. The function discrete windows which generates 1-D apodiza-
tion laws for an array using cosine, Hanning, Hamming, Blackman, triangular, or
rectangular weights.

function amp=discrete windows (M, type)

amp = discrete windows (M, type) returns the discrete apodization
amplitudes for M elements of type 'cos' (cosine), 'Han' (Hanning)
'Ham' (Hamming), 'Blk' (Blackman), 'tri' (triangle),

and 'rect' (a window with all ones, i.e. no apodization)

o° o o

oe

m=1:M;
switch type
case 'cos'
amp = sin(pi* (m-1)/(M-1));
case 'Han'
amp =(sin(pi* (m-1)/(M-1)))."2;
case 'Ham'
amp= 0.54 -0.46*cos (2*pi* (m-1)/(M-1));
case 'Blk'
amp=0.42 -0.5*cos (2*pi* (m-1)/(M-1)) +
0.08*cos (4*pi* (m-1)/ (M-1));
case 'tri'
amp =1 - abs(2* (m-1)/(M-1) -1);
case 'rect'
amp = ones (1,M);

otherwise
disp(' Wrong type. Choices are ''cos'', ''Han'', ''Ham'', ''Blk'',
"tri", "Trect!'! V)

end

Code Listing C.14. The script mls_array modeling which models the normalized
pressure wave field an array of 1-D elements radiating waves into a fluid, using
a superposition of multiple line sources for each element. Steering, focusing, and
apodization parameters for the array are specified.

% script mls array modeling
clear

% give input parameters
f=5; % frequency (MHz)
c=1480; % wave speed (m/sec)
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M =32; % number of elements

dl =0.5; % element length, d, divided by wave length
gd =0.1; % gap between elements, g, divided by d

Phi =20.; % steering angle, degrees

F = inf; % focal length (mm), F = inf for no focusing

o

type ='rect'; type of amplitude weighting function

oe

calculate size of array, A, element length, d, gap size, g,
% and location of element centroids, e.

[A, d, g, e] = elements(f, c, dl, gd, M);

b=d/2;

s=d+g;

% generate 2-D area for field calculations
z= linspace(l, 100*dl, 500);

x=linspace (-50*d1l,50*d1l,500) ;
[xx,zz]=meshgrid(x,z);

% generate time delays, put in exponential
% and calculate amplitude weights

td =delay laws2D(M,s,Phi,F,c);

delay = exp(li.*2.*pi.*f.*td);
Ct=discrete windows (M, type) ;

oe

generate normalized pressure wave field

1

@) = M
Ct(mm).*delay(mm).*ls_2Dv(b, f, ¢, e(mm), xx, zz);

et

0;
mm
+

O 'O +h'o

Q.0

n
% generate wave field image
imagesc(x, z, abs(p))
xlabel( ' x , mm'")

ylabel( ' z , mm')

Code Listing C.15. The function elements which allows specification of array ele-
ment sizes and gap sizes in normalized form and returns the actual element sizes
and centroid locations. Used in the script mls_array modeling to perform paramet-
ric studies.

function [ A, d, g, xcl=elements(f, c, dl, gd, N)
[A,d,g,xc]=elements (f,c,dl,gd,N) calculates the

total length of an array,A (in mm),the element size,d=2b,
(in mm), the gap size, g, (in mm) and the location of the
centroids of the array elements, xc, (in mm) for an array
with N elements. The inputs are the frequency, £, (in MHz)
the wave speed, c, (in m/sec), the element length divided
by the wavelength, dl, the gap size divided by the element
length,gd, and the number of elements, N.

o° o° d° d° P o° o

o
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% dl is the element diameter, d, divided by the

% wavelength,1l, i.e. dl =d/1.

d=dl.*c./(1000*f);

% gd is the gap size, g, between elements as a fraction of the
% element size, i.e. gd =g/d

g=gd.*d;

% A is the total aperture size of the array

A = N*d + (N-1)*g;

% x= xc 1s the location of the centroid of each element
% where x = 0 is at the center of the array

= (g+d)*((2*nn -1)/2 - N/2);

Code Listing C.16. The function NPGauss 2D which calculates the normalized
pressure wave field of a 1-D element radiating waves in 2-D into a fluid as calcu-
lated by a superposition of non-paraxial Gaussian beams.

function p = NPGauss 2D (b, f,c,e,x,z)

p = NPGauss_2D(b, f,c,e,x,z) calculates the normalized pressure

of an element of length 2b (in mm), at a frequency, £, (in MHz),in a
fluid whose wave speed is ¢ (in m/sec). The offset of the center of
the element in the x-direction is e (in mm) and the pressure is
calculated at a point (x,z) (in mm). The function uses a non-paraxial
expansion of a cylindrical wave and 10 Gaussians to model piston
behavior of the element.

o° o oP o o oP

o

% get the Gaussian coefficients of Wen and Breazeale
[A, B] = gauss_cl0;

% define non-dimensional quantities
xb=x/b;

zb=z/b;

eb=e/b;

Rb=sqgrt ( (xb-eb) ."2 +zb."2);

kb= 2000*pi*f*b/c;

Db = kb/2;

cosp=zb./Rb;

% calculate normalized pressure field from 10 Gaussians
p =0;
for nn= 1:10

arg =(cosp.”2 +1i*B(nn).*Rb./Db) ;

Dn = sqgrt(arg);

amp = A(nn).*exp(li.*kb.*Rb)./Dn;

p =p + amp.*exp(-1li.*kb.*(xb."2)./(2.*Rb.*arg));
end
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Code Listing C.17. The function gauss_c10 which returns ten Gaussian coefficients
developed by Wen and Breazeale, which can be used to describe the wave field of
an 1-D element with a multi-Gaussian beam model.

function [a, b] = gauss cl0
[a, b] = gauss _cl0 returns the ten Wen and Breazeale
coefficients for a multi-Gaussian beam model

o

oe

a = zeros (10,1);

b = zeros(10,1);

% enter Wen and Breazeale Coefficients
a(l) = 11.428 + 0.95175*1;
a(2) = 0.06002 - 0.08013*1;
a(3) = -4.2743 - 8.5562*1i;
a(4) = 1.6576 +2.7015*1;
a(b5) = -5.0418 + 3.2488%*1;
a(6) = 1.1227 - 0.68854*1;
a(7) = -1.0106 - 0.26955*1;
a(8) = -2.5974 + 3.2202*1;
a(9) = -0.14840 -0.31193*1;
a(l0) = -0.20850 - 0.23851*1;
b(l) = 4.0697 + 0.22726%*1;
b(2) = 1.1531 - 20.933*1;
b(3) = 4.4608 + 5.1268*1;
b(4) = 4.3521 +14.997*1;
b(5) = 4.5443 + 10.003*1;
b(6) = 3.8478 + 20.078*1;
b(7) = 2.5280 -10.310*1;
b(8) = 3.3197 - 4.8008*1;
b(9) = 1.9002 - 15.820%*1;
b(10) = 2.6340 + 25.009*1;

Code Listing C.18. The script mls_array _model int which models the normalized
pressure wave field an array of 1-D elements radiating waves across a plane inter-
face between two fluids, using a superposition of multiple line sources for each
element. Steering, focusing, and apodization parameters for the array are specified.

oo

script mls array model int

This script solves for the normalized pressure wave field of
an array of 1-D elements radiating waves through a fluid/fluid
interface using the MATLAB function ls 2D int. Both time delay
and apodization laws can be specified for the array to steer
it and focus it in the second medium.

o° o° o° o

o
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clear

& —mmm give input parameters --—-—-——----——-————-
frequency (MHz)

density gm/cm”3 of first medium

wave speed (m/sec) of first medium
density gm/cm”3 of second medium

wave speed (m/sec) of second medium
number of elements

element length (mm)

gap length (mm)

angle of array

steering angle, degrees in second medium
focal depth (mm) DF = inf for no focusing
distance of array from interface (mm). It must be >0
type of amplitude weighting function

oo Q0 Qb
3 N ==

Q It |
([N Il I

o = a1
[es) (SRS
Sl o+ -

o uwm o woo

W S~ O~ e~

S N

o
A0 A0 d° d° o° 0 AP A AP o of

DTO = 25.4 ;
type ='rect';

o

e

o°

generate 2-D area in second medium for field calculations or replace
with other specifications for x and z, where z is measured from the
interface into the second medium and must be >0.

= linspace (-5, 15, 200);

= linspace(1,20,200);
xx,zz]=meshgrid(x,z);

o

o

— N X

§ ——mm————————— end of input parameters -------------——--—---—-
= d/2; % element half length
s =d+ g; % pitch of the array

mat [ dl cl d2 c2]; % material properties
% calculate distances to element centers
for mm = 1:M

e(mm) = s*((2*mm-1)/2 -M/2);
end

% generate time delays, put in exponential
% and calculate amplitude weights

td =delay laws2D int(M,s,angt, ang20, DTO, DF, cl, c2, 'n');
delay = exp(li.*2.*pi.*f.*td);

Ct=discrete_windows (M, type) ;

% generate normalized pressure wave field

p = 0;

for mm = 1:M

p=p + Ct(mm).*delay(mm).*ls 2Dint (b, f, mat, e(mm), angt,DTO0,xx, zz, 1);
end

o

———————————— outputs -----—-———————-—--—-—

% generate wave field image from x,z specifications. This must be changed
% 1f (x,z) input specifications are changed.

imagesc(x, z, abs(p))

xlabel( ' x , mm')

ylabel( ' z , mm'")

Code Listing C.19. The function delay laws2D _int which generates the time delay
laws for steering and focusing of an array of 1-D elements radiating waves in 2-D
across a plane interface between two fluids. The function can also be used to gener-
ate delay laws for a linear array of 2-D elements.

function td=delay laws2D_int( M, s, angt,ang20,DT0,DF, cl, c2, plt)
td = delay_laws2D_int (M, s,angt, an20, DTO0, DF,cl,c2, plt) calculates
% the delay laws for steering and focusing an array of 1-D elements

oo
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oo

through a planar interface between two media in two dimensions. The
number of elements is M, the pitch is s (in mm), the angle that array
makes with the interface is angt(in degrees). The height of the
center of the array above the interface is DTO (in mm). Steering and
focusing to a point in the second medium are specified by giving the
refracted angle, ang20, (in degrees) and the depth in the second
medium, DF, (in mm). For steering only to the angle ang20, DF = inf.
The wave speeds of the first and second media

are (cl, c2), respectively (in m/sec). The plt argument is a string
('y' or 'n')that specifies if a plot of the rays from the centroids
of the elements to the point in the second medium is wanted ('y') or
not ('n')

A0 00 d° o o AP o d° o o

oe

Q

r = cl/c2; % wave speed ratio
Mb=(M-1)/2;
% compute location of element centroids, e

m
e =(m-1-Mb) *s;
% computed parameters:
% angl0, incident angle of central ray, deg
% DX0, distance along interface from center of array to focal point, mm
% DT, heights of elements above interface, mm
% DX, distances along interface from elements to focal point, mm
angl0 = asind((cl/c2).*sind(ang20));
DX0 = DF.*tand(ang20) + DTO.*tand(anglO);
DT = DTO + e.*sind(angt);
DX =DX0 - e.*cosd(angt);
switch (DF)
% steering only case, use linear law
case inf
if (angl0 -angt)>0
td = 1000* (m-1) *s*sind (anglO-angt) /cl;
else
td = 1000* (M-m) *s*abs (sind (angl0-angt)) /cl;
end
% plotting rays option
if strcmp(plt,'y')
for nn = 1:M

xp2 (1, nn) = e(nn)*cosd(angt);
yp2 (1, nn) = DT (nn);
xp2 (2, nn) = e(nn)*cosd(angl0 —-angt) /cosd (angl0) +DTO0*tand(anglO0) ;
dm=e (nn) *cosd (angl0 -angt) /cosd (angl0) ;
if ang20 >0
dM = e (M) *cosd (angl0 -angt) /cosd (anglO0) ;
else
dM =e (1) *cosd(anglO -angt) /cosd (angl0) ;
end

yp2(2, nn) = 0;
xp2 (3, nn) = xp2(2,nn) + (dM —-dm) *sind (ang20) *sind (ang20) ;
yp2 (3, nn) = - (dM -dm) *sind (ang20) *cosd (ang20) ;
end
plot (xp2, yp2, 'b')
end

% end plotting rays option

% steering and focusing case

otherwise,

solve for ray intersection locations on interface, xi, (in mm)

oe o

and path lengths in medium 1 and medium 2, rl, r2 (mm)
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xi=zeros (1,M);
rl=zeros (1,M);
r2=zeros (1,M);
for mm = 1:M
xi(mm) = ferrari2 (cr, DF, DT (mm) , DX (mm) ) ;
rl(mm) =sqgrt(xi(mm)"2 +(DTO0+e (mm)*sind (angt))”"2);

r2 (mm) =sqgrt( (xi(mm) +e (mm)*cosd(angt) -DX0) "2 +DF"2);
end

% solve for time advances (in microsec), turn into delays, and

% make the delays ,td, positive

t= 1000*rl/cl +1000*r2/c2;
td=max (t) -t;

% plotting rays option
if stremp(plt, 'y')

for nn = 1:M

xp(l, nn) = e(nn)*cos(angt*pi/180) ;
yp(l, nn) = DT (nn);
xp (2, nn) = e(nn)*cos (angt*pi/180) +xi (nn);
yp(2, nn) = 0;
xp (3, nn) = DXO0;
yp (3, nn) = - DF;
end
plot(xp, yp, 'b")

end

% end plotting rays option

end

end

Code Listing C.20. The function ps _3Dv which calculates the normalized pressure
wave field of a 2-D rectangular element radiating waves in 3-D into a fluid as cal-
culated by a superposition of point sources over the face of the element.

function p = ps 3Dv(lx,ly,f,c,ex,ey,X,y,z, varargin )

p =ps_3Dv(lx, ly, f, c, ex, ey, x,y,z,Popt,Qopt) computes the normalized
pressure, p, at a location (x,y,z) (in mm) in a fluid

for a rectangular element of lengths (lx, 1ly)

(in mm) along the x- and y-axes, respectively, at a frequency, f, (in MHz)
,and for a wave speed, ¢, (in m/sec) of the fluid. This

function can used to describe an element in an array by

specifying non-zero values for (ex,ey) (in mm), which are the offsets

of the center of the element along the x- and y-axes, respectively.

The assumed harmonic time dependency is exp (-2i*pi*f*t)and

the Rayleigh-Sommerfeld integral for a piston source is used

as the beam model.

Popt and Qopt are optional arguments. Popt specifies the number of
segments to use in the x-direction while Qopt specifies the number of
segments in the y-direction. If either Popt or Qopt are not

given as input arguments for a given direction the function uses

one segment per wavelength in that direction, based on the input
frequency, £, which must be a scalar when either Popt or

Qopt are not given.

P 0% o A° AP AP AP IO A° A° AP AP d° OO O° o° o
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% compute wave number
k=2000*pi*f/c;

% 1f number of x-segments is specified then use
if nargin > 9
P = varargin{l};

oe

else choose number of terms so each segment
length is at most a wave length

oe

else
P=ceil (1000*f*1x/c) ;
if P < 1
P=1;
end
end

% 1f number of y-segments is specified then use
if nargin >10
Q = varargin{2};

oe

else choose number of terms so that each segment
is a wave length or less

o°

else
Q=ceil (1000*f*1ly/c);
if o<1
Q=1;
end
end

o

% compute centroid locations of segments in x- and y-directions
xc=zeros (1,P);
yc=zeros (1,Q);

for pp=1:P

xc (pp) = -1x/2 +(1x/P)* (pp-0.5);
end
for gg=1:Q

ye(aq) = -1y/2 +(1y/Q)*(qq-0.5);
end

oe

calculate normalized pressure as a sum over all the
segments as an approximation of the Rayleigh-Sommerfeld
integral
p=0;
for pp = 1:P
for gg = 1:Q
rpg=sqrt ( (x-xc (pp) -ex).”"2 +(y-yc(qq)-ey)."2 +z.72);
ux= (x -xc(pp)-ex)./rpq;
uy = (y-yc(qq)-ey)./rpg;
ux =uxteps* (ux == 0);
uy =uy+eps* (uy == 0);
dirx = sin(k.*ux.*1x/(2*P))./(k.*ux.*1x/(2*P));
diry =sin(k.*uy.*1ly/ (2*Q)) ./ (k.*uy.*1y/(2*Q));
p=p + dirx.*diry.*exp(li*k.*rpq)./rpq;
end
end
p = p.*(-1li*k* (1x/P)* (1ly/Q))/(2*pi); % include external factor

oe

o
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Code Listing C.21. The script mps_array _modeling which models the normalized
pressure wave field an array of 2-D rectangular elements radiating waves into a
fluid, using a superposition of multiple point sources for each element. Steering,
focusing, and apodization parameters for the array are specified.

% script mps_array modeling

% This script solves for the normalized pressure wave field of a 2-D
% array of rectangular elements radiating waves in a fluid using the
% MATLAB function ps 3Dv. Both time delay and apodization laws can

% be specified for the array to steer it and focus it.

clear

% mmmmm——————-- give input parameters —------------——---————————-
1x = 0.15; % element length in x-direction (mm)

ly = 0.15; % element length in y-direction (mm)

gx=0.05; % gap length in x-direction (mm)

gy = 0.05; % gap length in y-direction (mm)

f= 5; % frequency (MHz)

c = 1480; % wave speed (m/sec)

L1l =11; % number of elements in x-direction

L2 =11; % number of elements in y-direction

theta =20; % steering angle in theta direction (deg)

phi =0; % steering angle in phi direction (deg)

Fl = 3; % focal distance (mm)

% weighting choices are 'rect','cos', 'Han', 'Ham', 'Blk', 'tri'
ampx type ='rect'; % weighting coeffcients in x-direction
ampy_type ='rect'; % weighting coefficients in y-direction

% field points (x,y,z)to evaluate

xs= linspace (-15,15, 300);

zs= linspace(1l, 10, 200);

y=0;

[x,z]=meshgrid(xs, zs);

% - end input parameters —--------—-——----—————-—

% calculate array pitches
x = lx+gx;

0]

sy = ly+gy;
% compute centroid locations for the elements
Nx = 1:L1;
Ny = 1:12;

ex =(2*Nx -1-L1)*(sx/2);
ey =(2*Ny -1 -L2)*(sy/2);

% generate time delays, put in exponential

% and calculate amplitude weights

td =delay laws3D(L1,L2,sx,sy,theta,phi,F1l,c);
delay = exp(li.*2.*pi.*f.*td);

Cx = discrete windows (L1, ampx type) ;

Cy = discrete windows (L2, ampy type);

for 11=1:L2
p = p + Cx(nn)*Cy(ll)*delay(nn,11)...
*ps_3Dv(lx,ly,f,c,ex(nn),ey(11l),x,y,2);
end
end

% —mmmmmm————————- outputs ---------------———---———-——

% plot results based on specification of (x,y,z) points
imagesc (xs, zs, abs (p))
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Code Listing C.22. The function delay laws3D which generates the time delay laws
for steering and focusing of an array of rectangular 2-D elements radiating waves in
3-D into a single medium.

function td= delay laws3D(M, N, sx, sy, theta, phi, F, c)

% td = delay_laws3D(M,N, sx,sy,theta, phi, F, c) generates the time delays

% td (in microseconds) for a 2-D array of MxN elements in a single medium

% with elements whose pitches are (sx,sy) in the x- and

% y-directions, respectively(in mm). The steering direction is

% specified by the spherical coordinate angles (theta, phi) (both in

% degrees) and the focusing distance is specified by F (in mm). For steering
% only, F = inf. The wave speed of medium is ¢ (in m/sec).

% calculate locations of element centroids in x- and y-directions

m=1:M;

n=1:N;

Mb =(M-1)/2;
Nb=(N-1) /2;

exm= (m-1-Mb) *sx;
eyn=(n-1-Nb) *sy;

o

% calculate delays (in microseconds)
switch (F)
% 1f steering only specified, use explicit steering law
case (inf)
for mm=1:M
for nn=1:N
dt (mm, nn)=1000* (exm (mm) *sind (theta) *cosd (phi) +
eyn (nn) *sind (theta) *sind (phi)) /c;
end
end
% make delays all positive
td = abs(min(min(dt))) + dt;
otherwise, i1f steering and focusing specified, use time delays to
% the specified point
otherwise,
for mm=1:M
for nn=1:N

oe

r(mm,nn) = sqgrt((F*sind(theta) *cosd (phi) -exm(mm)) "2
+ (F*sind(theta) *sind(phi) —eyn (nn) ) "2 +F"2* (cosd(theta)) "2);
end
end
td = max (max (1000*r/c)) -1000*r/c;
end
end

Code Listing C.23. The function ps_3Dint which calculates the normalized veloc-
ity components in an elastic solid for a 2-D rectangular element radiating waves in
3-D across a plane fluid/solid interface as calculated by a superposition of high fre-
quency point sources over the face of the element and propagating the waves from
those sources across the interface with ray theory.

function [vx,vy,vz] = ps 3Dint(lx,ly, f,mat,ex,ey,angt, Dt0O,x,y,z, varargin )
% [vx,vy,vz] = ps_3Dint (1x,ly, f,mat, ex,ey,angt, Dt0, x,y,z,Ropt, Qopt)
% calculates the normalized velocity components (vx,vy,vz) of a rectangular
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oe

array element radiating waves through a planar fluid/solid interface. The
parameters (lx, ly) are the lengths of the element in the x'- and y'-
directions, respectively (in mm), f is the frequency (in MHz), and mat is
a vector mat = [dl, cpl, d2, cp2, cs2, type] where (dl, cpl) are the
density (in gm/cm”3) and compressional wave speed (in m/sec) for the
fluid and (d2, cp2, cs2) are similarly the density, P-wave speed, and
S-wave speed for the solid, and type ='p' or 's' for a P-wave or
S-wave, respectively, in the solid. The distances (ex, ey) are the

x'- and y'- coordinates of the centroid of the element relative to the
center of the array (in mm). The parameters angt is the angle

(in degrees) the array makes with respect to the interface, and DtO

is the distance of the center of the array above the interface (in mm).
The parameters (x,y,z) specify the point(s) in the second medium at
which the fields are to be calculated (in mm), where x and y are
parallel to the interface and z is normal to the interface, pointing
into the second medium.

Ropt and Qopt are optional arguments. Ropt specifies the number of
segments to use in the x'-direction while Qopt specifies the number of
segments in the y'-direction. If either Ropt or Qopt are not

given as input arguments for a given direction then the function uses
one segment per wavelength in that direction, based on the input
frequency, f, which must be a scalar when either Ropt or Qopt

are not given.

AP o O A% O° o AP OO A A A° AP d° OO O° O A° o° d° d° o
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% extract material densities, wave speeds, and the type of wave in the
% second medium from mat vector

dl =mat(1l);

cpl=mat (2);

d2 =mat (3);

cp2=mat (4) ;

cs2 =mat (5);

type =mat (6);

% wave speed in the first medium (a fluid) is for compressional waves

1 =cpl;

% decide which wave speed to use in second medium for specified wave type
if strcmp(type, 'p')

Q

c2 =cp2;
elseif strcmp (type,'s')
c2=cs2;
else error (' type must be "'p'' or '"'s'' ")

end

% compute wave numbers for waves in first and second medium
k1=2000*pi*f/cl;
k2 =2000*pi*f/c2;

% if number of x-segments is specified then use
if nargin > 11
R = varargin{l};

% else choose number of terms so each segment
is a wave length or less

o

else
R=ceil (1000*f*1x/cl) ;
if R < 1
R=1;
end
end

% 1f number of y-segments is specified then use
if nargin >12
Q = varargin{2};
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% else choose number of terms so that each segment

oo

is a wave length or less
else
Q=ceil (1000*f*1ly/cl);
if 9 <1
0=1;
end
end

% compute centroid locations of segments in x'- and y'-directions
% relative to the element centroid

xc=zeros (1,R);
yc=zeros (1,Q);

for rr=1:R

xc(rr) = -1x/2 +(1x/R)*(rr-0.5);
end
for gg=1:Q

yc(aq) = -1ly/2 +(ly/Q)*(qq-0.5);
end

oo

o

calculate normalized velocity components as a sum over all the
segments as an approximation of the Rayleigh-Sommerfeld

% integral

vx=0;
vy=0;
vz=0;
for rr = 1:R
for gg = 1:Q

Appendices

% calculate distance xi along the interface for a ray from a

oo

segment to the specified point in the second medium

Db = sqgrt ((x-(ex+xc(rr)).*cosd(angt)).”2 +(y-(eytyc(gq)))."2);

Ds = Dt0 + (ex +xc(rr)).*sind(angt);
xi = pts 3Dint (ex,ey,xc(rr),yc(qq),angt,Dt0,cl,c2,x,y,z)

% calculate incident and refracted angles along the ray,

% including the special case when ray is at normal incidence

angl = atand(xi./Ds);
end
if angl == 0

ang2 =0;
else

ang2=atand ( (Db-xi)./z);

end
rl =sqrt(Ds.”2 +xi."2);
r2=sqgrt ((Db-x1i) .2 +z.72);
dx=1x/R;
dy =1y/Q;

% calculate ray path lengths in each medium

% calculate segment sizes in x'- and y'- directions

% calculate (x', y')components of unit vector along the ray in the

oe

first medium

if Db ==
uxt =-sind(angt);
uyt = 0;

else

uxt=xi.* (x-(ex+xc(rr)).*cosd(angt)) .*cosd(angt) ./ (Db.*rl)

-Ds.*sind(angt)./rl;

uyt = xi.*(y - (ey+yc(qq)))./(Db.*rl);

end
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calculate polarization components for P- and S-waves in the
second medium, including special case of normal incidence

if Db == 0
dpx =0;
dpy=0;
dpz=1;
dsx =1;
dsy =0;
dsz=0;
else
dpx = (l-xi./Db).* (x-(ex+xc(rr)).*cosd(angt))./r2;
dpy = (1 -xi./Db).*(y-(ey+yc(aq)))./r2;
dpz=z./r2;

dsx = sqrt(dpy.”"2 +dpz."2);
dsy= -dpx.*dpy./dsx;
dsz = -dpx.*dpz./dsx;

end

o°

% second medium
if strcmp (type, 'p' )
px=dpx;
py=dpy;
pz =dpz;
elseif strcmp (type,
px = dsx;
py = dsy;
pz =dsz;
else error ('wrong type')
end

s

choose polarization components to use based on wave

% calculate transmission coefficients (based on velocity ratios)

% for P- and S-waves and choose appropriate
% specified wave type
[tpp, tps]= T fluid solid(dl,cpl,d2,cp2,cs2,

if strcmp (type, 'p')

T=tpp;
elseif strcmp(type, 's')
T = tps;

end

% form up the directivity term

argx = kl.*uxt.*dx/2;

argx =argx teps.*(argx == 0);

argy = kl.*uyt.*dy/2;

argy = argy + eps.*( argy == 0);

dir = (sin(argx)./argx).* (sin(argy)./argy);

o

% form up the denominator term

coefficient for the

angl) ;

Dl = rl + r2.*(c2/cl).*(cosd(angl)./cosd(ang2))."2;

D2 = rl + r2.*(c2/cl);

% put transmission coefficient, polarization,
term and denominator together to calculate
vx = vx + T.*px.*dir.*exp(li.*kl.*rl +1i.*k2.
vy = vy + T.*py.*dir.*exp(li.*kl.*rl +1i.*k2.
vz = vz + T.*pz.*dir.*exp(1li.*k1l.*rl +1i.*k2.

end

clude external factor for these components
vx.* (-1li*kl*dx*dy)/ (2*pi);
vy.* (-1li*kl*dx*dy)/ (2*pi);
vz.* (-1li*kl*dx*dy)/ (2*pi) ;

directivity, phase
velocity components.
*r2)./sqrt (D1.*D2) ;
*r2)./sqrt (D1.*D2);
*r2)./sqrt (D1.*D2);

type in the

367
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Code Listing C.24. The function pts_3Dint which uses Snell’s law to determine the
intersection points of rays traveling in 3-D across a plane interface between two
media from the centroid of a 2-D element in an array to points (X, y, z) in the second
medium. This function uses the helping functions ferrari2 and init_xi3D.

function xi = pts_3Dint (ex, ey, xn, yn, angt, Dt0, cl, c2, x, y, z)

xi = pts3Dint(ex, ey, xn,yn,angt,Dt0, cl,c2,x,y,z) calculates the
distance, xi, (in mm) along the interface in the plane of incidence,

at which a ray from the center of an array element segment to a point

in the second medium intersects the interface. The parameters

(ex, ey) are the element offsets (in mm) from the center of the

entire array to the center of the element in the x'- and y'-directions,
respectively, and (xn,yn)are similarly the offsets as measured

to the center of the element segment from the center of the

element in the x'- and y'-directions (in mm). The parameter angt, is the
angle of the array (in degrees) from the interface, and Dt0O is the
distance (in mm) of the center of the array from the interface. (cl,c2)
are the wave speeds in the first and second medium (in m/sec) and
(x,y,2) are the coordinates of end point of the ray in the second medium
(all in mm) .

90 00 A O° O° of AP o AP of o° o o

o

% calculate wave speed ratio

cr=cl/c2;

% determine size of array needed for xi calculations based on the sizes of
% the (x,y,z) variables) and also determine those sizes

[

xi, P, Q ] = init_xi3D(x,y,z);
[nrx,ncx] =size(x);
[nry, ncy] =size(y);
[nrz,ncz] =size(z);

o

call ferrari2 function to compute xi with the arguments of that function
% determined by the sizes of the (x,y,z) variables.

De = DtO +(ex + xn)*sind(angt);

for pp=1:P

for gg = 1:Q

% x and y are points, z is a row or column vector
if nrx ==1 && ncx ==1 && nry ==1 && ncy ==
Db=sqgrt ( (x-(ex +xn)*cosd(angt)) .”2 +(y-(eyt+tyn))."2);
xi(pp,qq) =ferrari2(cr, z(pp,qq), De, Db);
% y and z are points, x is a row or column vector
elseif nry == 1 && ncy ==1 && nrz ==1 && ncz ==
Db=sqgrt ( (x(pp,qq) - (ex +xn)*cosd(angt)) ."2 +(y-(ey+tyn))."2) ;
xi (pp,qq) =ferrari2(cr, z, De, Db);
x and z are points, y is a row or column vector
elseif nrx ==1 && ncx ==1 && nrz ==1 && ncz ==
Db=sqrt ( (x- (ex +xn)*cosd(angt)).”2 +(y(pp,qq)-(ey+yn))."2);
xi(pp,qq) =ferrari2(cr, z, De, Db);
y 1s a point, x and z are equal size PxQ matrices

o

o

elseif nry ==1 && ncy ==1 && nrx == nrz && ncx == ncz
Db=sqrt ( (x (pp,qq) - (ex +xn) *cosd(angt)).”2 +(y-(eytyn))."2);
xi(pp,qq) = ferrari2(cr, z(pp,qq), De, Db);

% z is a point, x and y are equal size PxQ matrices
elseif nrz == 1 && ncz ==1 && nrx == nry && NCx == ncy
Db=sqgrt ((x(pp,qq) - (ex +xn)*cosd(angt)) .”2 +(y(pp,qq) -
(ey+yn)) ."2);

xi(pp,qq) = ferrari2(cr, z, De, Db);

% x 1s a point, y and z are equal size PxQ matrices

elseif nrx ==1 && ncx ==1 && nry == nrz && ncy == ncz
Db=sqgrt ( (x-(ex +xn)*cosd(angt)).”2 +(y(pp,qq) - (ey+tyn))."2);
xi(pp,qq) = ferrari2(cr, z(pp,qq), De, Db);

% %, y, z are all equal size row or column vectors

else

Db=sqgrt ((x (pp,qq)- (ex +xn)*cosd(angt)).”2 +(y(pp,qq)-
(eytyn)) ."2);
xi(pp,qq) = ferrari2(cr, z(pp,qq),De, Db);
end
end
end
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Code Listing C.25. The function init xi3D which examines the sizes of the vari-
ables describing the points (X, y, z) in the input parameters of pts_3Dint and gener-
ates the consistent size needed for the intersection points on the interface that define
Snell’s law ray paths and the number of calls needed to the function ferrari2, which
can only return a single intersection point at a time.

function [xi, P, Q] = init xi3D(x,y, z)

% [xi, P, Q] = init xi3D(x,y z) examines the sizes of the (x,y,z) variables
(which specify points in the second medium, across a plane interface,
to which a ray must travel from an array element or element segment)
and returns a PxQ array of zero values to hold the distances xi

at which the ray intersects an interface, as well as the values (P,Q).
Eleven different combinations of sizes for (x,y,z) are

allowed, which permits (x,y,z) to represent values in planes parallel
to the x-,y-,or z-axes (three cases), or values along lines parallel to
the x-, y-,or z-axes (six cases since the line could be represented

as row or column vectors),or values along an inclined line

in 3-D (two cases since the line could be represented as row or column
vectors) .

P d° o A° A° AP d° d° OO O o

oe

% get sizes of (x,vy,z)
[nrx,ncx ]= size(x);
[nry,ncyl=size(y);
[nrz,ncz] = size(z);

o

if x,z are equal size [nrx,ncx] matrices and y is single value, make
xi a [nrx, ncx] matrix

oe

if nrx == nrz && ncx == ncz && nry ==1 && ncy ==
xi = zeros(nrx,ncx);
P = nrx;
Q = ncx;

o

if x, y are equal size [nrx, ncx] matrices and z is a single value, make
xi a [ nrx, ncx] matrix

e

elseif nrx == nry && ncx == ncy && nrz ==1 && ncz ==
xi = zeros(nrx,ncx);
P = nrx;
Q = ncx;

o°

if y, z are equal size [nry,ncy] matrices and x is a single value, make
xi a [nry, ncy] matrix

oe

elseif nry ==nrz && ncy == ncz && nrx ==1 && ncx ==1
xi=zeros(nry, ncy);
P = nry;
Q = ncy;

o

if z is a [1l,ncz] vector and x and y are single values, make
% xi a [1l,ncz] vector

elseif nrz ==1 && ncz >1 && nrx ==1 && ncx ==1 && nry == 1 && ncy ==1
xi =zeros(l, ncz);
P=1;
Q = ncz;

% if z is a [nrz, 1] vector and x and y are single values, make
% xi a [nrz,l] vector

elseif ncz ==1 && nrz >1 && nrx ==1 && ncx == 1 && nry == 1 && ncy ==
xi =zeros(nrz,1);
P= nrz;
0 =1;

o°

if x is a [1l,ncx] vector and y and z are single values, make
xi a [1l,ncx] vector

e

elseif nrx ==1 && ncx >1 && nry ==1 && ncy == 1 && nrz == 1 && ncz ==
xi =zeros(l,ncx);
P=1;

Q = ncx;
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% if x is a [nrx, 1] vector and vy and z are single values, make
$ xi a [nrx, 1] vector

elseif ncx == 1 && nrx >1 && nry ==1 && ncy ==1 && nrz == 1 && ncz == 1
xi = zeros(nrx, 1);
P= nrx;
0 =1;

$ if y is a [1, ncy] vector and x and z are single values, make

% xi a [1, ncy] vector

elseif nry ==1 && ncy >1 && nrx ==1 && ncx == 1 && nrz == 1 && ncz == 1
xi=zeros(l, ncy);
P =1;
Q = ncy;

o

if y is a [nry, 1] vector and x and z are single values, make

xi a [nry,1l] vector

elseif nry >1 && ncy ==1 && nrx ==1 && ncx ==1 && nrz ==1 && ncz ==
xi=zeros(nry, 1);
P = nry;
Q =1;

if x, y, z are equal size [1l, ncx] vectors, make

% xi a [ 1,ncx] vector

elseif nrx ==nry && ncx == ncy && nrz == nrx && ncz == ncx && nrx ==
xi =zeros(l, ncx);
p= 1;
Q = ncx;

if x, y, z are equal size [nrx,1l] vectors, make

xi a [nrx,1] vector

oe

o

oe

oe

elseif nrx ==nry && ncx == ncy && nrz == nrx && ncz == nNcx && ncx ==
xi =zeros(nrx,1);
P = nrx;
0 =1;

else error(' (x,y,z) combination given is not supported')

end

Code Listing C.26. The script mps_array_model_int which models the normalized
velocity components in an elastic solid for an array of 2-D rectangular elements
radiating waves across a fluid solid/solid interface, using a superposition of multiple
point sources for each element. Steering, focusing, and apodization parameters for
the array are specified.

oe

script mps_array model int

This script solves for the normalized velocity wave field of
an array of 1-D elements radiating waves through a fluid/solid
interface using the MATLAB function ps_3Dint. Both time delay
and apodization laws can be specified for the array to steer
it and focus it in the solid.

df dP df oe

oe

clear

§ input parameters --------——--———--

tic % time the calculations

1x = 0.15; % element length in x-direction (mm)

ly = 0.15; % element length in y-direction (mm)

gx=0.05; % gap length in x-direction (mm)

gy = 0.05; % gap length in y-direction (mm)

f= 5; % frequency (MHz)

dl=1.0; % density, medium one (arbitrary units)

cpl = 1480; % compressional wave speed, medium one (m/sec)
dz2=7.9; % density, medium two (same arbitrary units)
cp2 =5900; % compressional wave speed, medium two (m/sec)
cs2=3200; % shear wave speed, medium two (m/sec)

o

type="p'; > wave type, medium two
mat=[dl,cpl,d2,cp2,cs2,type]l; % form material vector
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Ll =11; % number of elements in x-direction

L2 =11; % number of elements in y-direction

angt =10.217; % angle of the array (deg)

Dt0=50.8; % height of array center from interface (mm)
theta2 =0; % steering angle in theta direction (deg)

phi =0; % steering angle in phi direction (deg)

DF = inf; % focal distance (mm)

% weighting choices are 'rect', 'cos', 'Han', 'Ham', 'Blk', 'tri'
ampx_type ='rect'; % weighting coeffcients in x-direction
ampy type ='rect'; % weighting coefficients in y-direction

o

% field points to evaluate
xs= linspace(-5,20, 100);
zs= linspace(l, 20, 100);
y=0;

[%,z]=meshgrid(xs, zs);

& ———— end input parameters ---------—-————————-————
cl=cpl;
if strcmp (type, 'p')
c2=cp2;
elseif strcmp(type, 's')
c2=cs2;
else

error ('type incorrect')
end

o

calculate array pitches
sx = lx+gx;
sy = lytgy;

% compute centroid locations for the elements
Nx = 1:L1;

Ny = 1:1L2;

ex =(2*Nx -1-L1)*(sx/2);

ey =(2*Ny -1 -L2)*(sy/2);

% generate time delays, put in exponential
% and calculate amplitude weights

td =delay laws3Dint(L1l,L2,sx,sy,angt,phi, theta2,Dt0,DF,cl,c2,'n");

delay = exp(li.*2.*pi.*f.*td);
Cx = discrete windows (L1, ampx type);
Cy = discrete windows (L2, ampy type);

% calculate normalized velocities
vx=0;
vy=0;
vz=0;
for nn=1:1L1
for 11=1:L2
[vxe,vye,vze]= ps_3Dint

vx = vx + Cx(nn)*Cy(ll)*delay(nn,1ll)*vxe;

vy = vy + Cx(nn)*Cy(ll)*delay(nn,1l)*vye;
vz = vz + Cx(nn)*Cy(ll)*delay(nn,1ll)*vze;
end
end
% —mmmmmmomm—————- outputs ---------------------—-——-—

o

% plot results

vmag=sqrt (abs (vx) .2 +abs(vy) ."2 +abs(vz)."2);
imagesc (xs, zs, vmag)

toc % end of time calculations

371
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Code Listing C.27. The function delay laws3Dint which generates the time delay
laws for steering and focusing of an array of 2-D elements radiating waves in 3-D
across a plane interface between two media.

function td = delay_ laws3Dint (Mx,My, sx,sy,thetat, phi,

theta2,DT0, DF, cl,c2, plt)
td = delay laws3Dint (Mx,My, sx,sy,thetat,phi, theta2, DTO,DF,cl,c2,plt)
calculates the delay laws for steering and focusing a 2-D array
through a planar interface between two media in three dimensions.
(Mx, My)are the number of elements in the (x', y') directions, (sx, sy)
are the pitches (in mm), and thetat is the angle that array
makes with the interface(in degrees).Steering and focusing to a point in
the second medium is specified by giving the angles theta2 and
phi, (both in degrees). The height of the center of the array above
the interface is DTO (in mm) .The wave speeds of the first and second
media are (cl, c2), respectively (in m/sec). The plt argument is a string
('y' or 'n')that specifies if a plot of the rays from the centroids
of the elements to the point in the second medium is wanted ('y') or
not ('n'). Plotting is not done if steering only (DF = inf) is specified.

A° o d° P o d° d° o o d° o o

o

[

% compute wave speed ratio
cr=cl/c2;

% compute element centroid locations
Mbx= (Mx-1)/2;

Mby= (My-1) /2;

mx=1:1:Mx;

ex= (mx-1-Mbx) *sx;

my=1:1:My;

ey= (my-1-Mby) *sy;

% initialize variables to be used
t=zeros (Mx,My) ;
Db=zeros (Mx,My) ;
De=zeros (1,Mx) ;
xi=zeros (Mx,My) ;

angl =asind(cl*sind(theta2)/c2); % angle in first medium (in degrees)

switch (DF)

% steering only case, use linear steering law
case inf

ux= sind(angl) *cosd(phi) *cosd(thetat) -cosd(angl)*sind(thetat);
uy =sind(angl) *sind(phi) ;
for m =1:Mx
for n = 1:My
t(m,n)= 1000* (ux*ex (m) +uy*ey(n))/cl; S%time in microsec
end
end
td = abs(min(min(t))) +t; % make sure delay is positive

% steering and focusing case
otherwise
% determine distances De, Db needed in arguments of ferrari2
% function
DO=DTO0*tand (angl) +DF*tand (theta2) ;
x=DQ*cosd (phi) ;
y=DQ*sind (phi) ;
for m=1:Mx
for n = 1:My
Db (m,n) = sgrt((x-ex(m)*cosd(thetat))”"2 +(y-ey(n))"2);
end
end
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De = DTO0 +ex*sind(thetat);

oe

o

% in the plane of incidence
for m=1:Mx
for n = 1:My
xi(m,n) = ferrari2 (cr,DF,De(m),Db(m,n));
end

end
for m=1:Mx
for n=1:My

t(m,n) = 1000*sqgrt (xi(m,n)" 2 +De(m)"2)/cl +...
1000*sqgrt (DE"2+ (Db (m,n) -xi(m,n))"2)/c2;

end
end

% turn time advances into delays and make all delays

td =max (max(t)) -t;

% plotting rays option
if strcmp(plt, 'y')

for m=1:Mx

for n = 1:My
xp(l,1) = ex(m)*cosd(thetat);
zp(1,1)=DTO0 +ex(m)*sind(thetat);
yp(l,1) = ey(n);
xp(2,1) = ex(m)*cosd(thetat) + xi(m,n)* (x-
ex (m) *cosd (thetat)) /Db (m,n) ;
yp(2,1) = ey(n) + xi(m,n)*(y-ey(n))/Db(m,n);
zp(2,1) =0;
xp(3,1) = x;
yp(3, 1) = y;
zp(3,1) =-DF;
plot3(xp, yp,zp)
hold on
end
end
hold off
end

% end plotting rays option

end

use ferrari2 method to determine distance, xi,
element to the point (x, y, DF)intersects the interface

where a ray from

% use ray distances to calculate time advances (in microsec)
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Code Listing C.28. The function interface2 which expresses Snell’s law in terms
of the location of the point of intersection of a ray path with a planar interface. The
value of the function is zero when Snell’s law is satisfied. This function is used in
the function ferrari2 as a back-up evaluation method when Ferrari’s method does
not give an accurate solution. In that case the intersection point on the interface is

calculated iteratively with the built-in MATLAB function fzero, using the call

xi=fzero(@interface2,[0,DX], [ ], cr, DF, DT, DX);

function y =interface2(x, cr, df, dp, dpf)

oe

y = interface2(x, cr, df, dp, dpf) outputs the value of a function,

Y

% which is zero if the input argument,x,is the location along an interface
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oe

where Snell's law is satisfied. The input parameter cr =cl/c2, where cl
is the wave speed in medium one, and c2 is the wave speed in medium 2,
The other input parameters (df, dp, dpf) define a ray which goes from
a point in medium one to the interface and then to a point in medium
two, where df = DF is the depth of the point in medium two,

dp = DT is the height of the point in medium one, and dpf = DX is the
separation distance between the points in medium one and two

(see Fig 5.4 in the text). The function y used here is cl times the
function defined in Eq.(5.2.6) in the text.

dP o° o° o° o° P o

oe

oe

the function,y,

y =x./sqrt(x.”2+dp"2)-cr* (dpf-x)./sqrt ((dpf-x)."2 +df"2);

Code Listing C.29 The function T fluid solid which computes the plane wave
transmission coefficients at a plane fluid-solid interface, based on velocity ratios,
for both P-to-P waves and P-to-SV waves.

function [tpp,tps]= T_fluid solid(dl,cpl,d2,cp2,cs2, thetal)

T_fluid solid(dl,cpl,d2,cp2,cs2, thetal) computes the P-P (tpp)

and P-S (tps) transmission coefficients based on velocity ratios

for a plane fluid-solid interface. (dl,cpl) are the density and wave
speed of the fluid. (d2,cp2,cs2) are the density, compressional wave
speed and shear wave speed of the solid, and thetal is the incident angle
(in degrees)

d° o o° o° o°

oe

[

% put incident angle in radians

iang = (thetal.*pi)./180;

% calculate sin(theta) for refracted p- and s-waves
sinp = (cp2/cpl)*sin(iang) ;

sins =(cs2/cpl) *sin(iang);

oe

calculate cos(theta) for refracted p- and s-waves

for angles beyond critical, the value of the cosine is

% computed for positive frequencies only

cosp = li*sgrt(sinp.”2 - 1).*(sinp >= 1) + sgrt(l - sinp.”2).*(sinp < 1);
coss = li*sqgrt(sins.”2 - 1).*(sins >= 1) + sqgrt(l - sins.”2).*(sins < 1) ;

oe

% calculate transmission coefficients

denom = cosp + (d2/dl)* (cp2/cpl) *sqrt (1-

sin(iang) .”2).* (4.* ((cs2/cp2)"2).* (sins.*coss.*sinp.*cosp)
+ 1 - 4.%(sins.”2).*(coss."2));

tpp (2*sgrt (1 - sin(iang).”2).*(1 - 2*(sins.”2))) ./denom;

tps = - (4*cosp.*sins.*sqrt(l - sin(iang).”2))./denom;



Index

A
Acoustic cross-talk, 325
Acoustic/elastic transfer function
defined for contact testing, 191
defined for immersion testing, 191
model for contact testing, 193
model for immersion testing, 193
Acoustic radiation impedance, 183, 185, 186,
189, 216, 217
Amplitude weighing See Apodization laws, 4
Angle/area ratios, 297
Angular spectrum of plane waves (2-D), 20
Angular spectrum of plane waves (3-D), 314
Apodization laws
continuous, 75
discrete, 73, 94
Auld measurement model See Ultrasonic
measurement model, 14

B

Bessel function, 183, 262, 269

Beylkin determinant, 282, 290, 296-298

Blackman window, 88, 164

Blocked force, 8, 9, 185, 187, 191, 198, 216,
267

Born approximation, 249

far field scattering amplitude, inclusion

(2-D), 271

C

Convolution theorem, 116, 117

Crack tip diffraction See Edge waves, 258
Creeping waves, 246, 249

D

Deconvolution, 10, 206, 208, 222, 251, 257,
261,284,304

Delay and sum imaging methods, 241, 303

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays,

Delay laws:

paraxial, steering See Paraxial, 91

steering and focusing, single medium
(2-D), 84,99

steering and focusing, single medium
(3-D), 101, 170

steering and focusing through a planar
interface (3-D), 94, 95, 174

steering, single medium (2-D), 83, 86

steering, single medium (3-D), 99

steering through a plane interface (2-D),
172,173

steering through a plane interface (3-D),
107

E
Edge waves, 248, 249
Effective length of an element, 326
Electrical cross-talk, 8
Element directivity (1-D element), 165
Element directivity (2-D element)
rectangle, 141, 184
triangle, 141

F
Far field scattering amplitude
defined, 211, 232
for an inclusion (separation of variables),
263
specular point response, 224
Far field waves (2-D), 23
Far field waves (3-D), 117, 118
Ferrari method, 106, 175
Finite impedance baffle, 313, 314, 317, 320,
321,324
Fourier transform, 115, 118, 254, 259, 316
Free surface velocity, 185, 187, 191, 217
Fresnel integral, 202

Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2,
© Springer International Publishing Switzerland 2015

375



376

Full matrix capture (FMC), 12, 13, 244, 254,
257,261,269

G
Gaussian beam, 138, 139, 142, 143
Gaussian beam equivalent point source
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Ultrasonic measurement model, 14, 179, 211
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for imaging (3-D), 229
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immersion (3-D), 216, 217
reduced (3-D) (Thompson-Gray), 14, 222
reduced, scalar (2-D), 218, 235

w

Wave equation (2-D), 18
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