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Preface

This is the third book I have written on ultrasonic waves and their applications to 
the nondestructive evaluation (NDE) of materials and structures. The first book 
(Schmerr, L.W., Fundamentals of Ultrasonic Nondestructive Evaluation—A Mod-
eling Approach, Plenum Press, New York, N.Y., 1998) covered the behavior of 
elastic waves (primarily bulk waves) in terms of their generation, propagation, 
scattering, and reception in an NDE system and described the use of models in 
applications such as flaw classification and sizing. The second book, with Prof. 
Sung-Jin Song, (Schmerr, L.W. and S-J. Song, Ultrasonic Nondestructive Evalua-
tion Systems—Models and Measurements, Springer, New York, N.Y., 2007) was a 
more complete systems-level effort to use a combination of models and measure-
ments to describe in detail all the elements that go into forming the signals that we 
measure in an ultrasonic NDE test. In both of those books the primary focus was on 
ultrasonic measurements with single element piezoelectric transducers. The present 
book arose out of a realization that ultrasonic phased array systems, which are now 
starting to see significant NDE applications in industry, have many unique charac-
teristics and issues that have not been adequately described except in journal papers 
and conference proceedings.

In organizing the structure of this book and writing it I have had three purposes 
in mind. First, while I did not want to generate a textbook I did want to introduce 
some of the basic physics behind ultrasonic phased arrays in a simple context so that 
the important aspects these systems could be readily accessible to students, engi-
neers, and technical workers. Thus, many of the initial discussions of phased array 
topics such as beam steering, delay laws, apodization, etc. are in terms of 1-D array 
elements radiating waves in two dimensions. Second, I wanted to follow the basic 
philosophy of the previous books by showing how all the components of an ultra-
sonic phased array system can either be measured or modeled, using a combination 
of reciprocity relations, linear systems theory, and wave propagation and scattering 
theory. This approach allows one to develop ultrasonic measurement models for 
NDE phased array systems in the same fashion as done previously for inspections 
with single element transducers. These measurement models demonstrate explicitly 
how signals are produced in ultrasonic phased array systems and in particular how 
the responses of flaws are contained in those signals, so that those flaw responses 
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can be extracted and used for quantitative flaw detection, sizing and characteriza-
tion purposes. Third, because of the importance of imaging applications with phased 
arrays, I wanted to introduce a new, rational approach to how images are produced 
and what they mean. Currently, phased array images are often formed with ad-hoc 
delay-and-sum methods such as the synthetic aperture focusing technique (SAFT) 
and the total focusing method (TFM). I have re-examined the image formation pro-
cess to understand why those delay-and-sum methods often work so well and to 
place them in a more fundamental context based on the physics of the measurement 
process. Specifically, I show that one can start with ultrasonic measurement models 
and, with relatively few assumptions, based on a model of the waves that contribute 
to an image, formally invert those measurement models to form flaw images that 
are explicit functions of the surface geometry and reflectivity of the flaw. These 
images are related to the measured signals and the wave propagation processes and 
electro-acoustical components present in a phased array experiment in a form called 
an imaging measurement model. Imaging measurement models are developed that 
are generalizations of both SAFT and TFM. These models describe the images pro-
duced in physical terms and define those aspects of the imaging process that SAFT 
and TFM ignore. For small flaws it is shown that the imaging measurement models 
are also generalizations of the physical optics far field inverse scattering (POFFIS) 
method originally developed by Bojarski and later modified by Bleistein. Thus, the 
imaging measurement models described here provide for the first time a unified 
framework for understanding some of the most commonly used NDE phased array 
imaging methods.

To help make some of the phased array models described in the book more ac-
cessible to the reader, MATLAB® functions and scripts1 are also provided. Most 
of these MATLAB® resources describe simple 2-D and 3-D scalar problems that 
one can use to conduct a variety of parametric studies. The intent here was not to 
produce a comprehensive set of phased array software but to provide some software 
tools for examining and understanding phased arrays. Listings of the MATLAB® 
functions and scripts can be found in Appendix C and the m-files are also avail-
able by sending an e-mail with subject titled “Phased Array Codes” to the author at 
lschmerr@cnde.iastate.edu.

Finally, I would like to thank my longtime colleague and friend, Alex Sedov, for 
his contributions and for reading and helping to edit the entire book. I also want to 
acknowledge the research efforts of Dr. Ruiju Huang and Brady Engle which have 
helped to make this work possible.

1 MATLAB® is a registered trademark of the The MathWorks, Inc. 
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Chapter 1
Introduction

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2_1, 
© Springer International Publishing Switzerland 2015

1.1 � An Overview

In the medical field, ultrasound is used for performing noninvasive examinations 
of patients. Similarly, in industry ultrasound is used for conducting nondestructive 
evaluation (NDE) inspections of materials and structures. Ultrasonic methods are 
fast, safe, and relatively inexpensive—characteristics that have led ultrasound to 
being one of the most frequently used techniques in both medical and industrial ap-
plications. Like many other diagnostic and inspection methods, however, ultrasonic 
methods are indirect methods. The term “indirect” means that the measured outputs, 
which are usually in the form of electrical voltage versus time signals, are the result 
of complex transformations of the acoustic energy that is generated and received, 
making it difficult to connect the characteristics of the measured signals directly 
with the properties of the object being examined. To illustrate this difficulty, con-
sider the simple ultrasonic system outlined in Fig. 1.1, where a single element ultra-
sonic transducer is placed in a fluid.

The element of this transducer is typically made of a piezoelectric material that 
converts electrical energy into mechanical motion of the element and vice-versa. 
Thus, if the transducer is excited by an electrical pulse, as shown in Fig. 1.1a, a trav-
eling pulse of sound will be generated in the water in the form of an acoustic wave. 
If this wave strikes an object such as a spherical reflector, as shown in Fig. 1.1b, 
then waves will be scattered from the sphere in all directions and some of that scat-
tered acoustic energy will return to the transducer and will be converted back into 
electrical energy, amplified, and output as a voltage versus time pulse. Knowing the 
wave speed of the fluid and the time of arrival of this pulse we can easily determine 
the distance to the sphere, but other quantitative information such as the size of the 
sphere, its mechanical properties, etc. are not directly obvious from the measured 
signal. If one mechanically moves this single element transducer and changes its 
position and/or orientation, then a collection of measured signals can be obtained 
and used to help better determine such quantitative information. In fact, with suf-
ficient information obtained from such mechanical motion of the transducer one can 
even synthesize an ultrasonic image of the sphere. However, mechanical scanning 
is slow and expensive to perform with a single element transducer setup. A more 
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effective approach to conduct inspections and form images is to use an ultrasonic 
phased array, where the sound beam can be manipulated electronically. Even with 
phased arrays, however, one must overcome the indirect nature of the measurement 
process. Thus, the primary purpose of this book is to describe in detail how the 
signals and images are formed with ultrasonic phased array systems so that one can 
extract quantitative information from those phased array measurements and images.

In a phased array setup (Fig. 1.2), the ultrasonic transducer is composed of an 
array of small piezoelectric elements, where each element can be separately driven 
and the response of each element independently received. If each of the elements 
is driven in an identical fashion so that the driving electrical pulses travel in uni-
son and all arrive at the piezoelectric elements at the same time (no relative delay 
between pulses) then each small element of the array acts effectively like a point 
source and radiates a spherical wave (the dashed lines in Fig.  1.2 represent the 

Fig. 1.1   a A single element 
ultrasonic transducer generat-
ing a traveling wave, and b 
the same transducer receiving 
the waves scattered from a 
spherical reflector

 

Fig. 1.2   An ultrasonic 
phased array, where the driv-
ing electrical pulses for each 
element arrive in unison, i.e. 
with no time delay relative to 
each other
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spherical wave fronts), and these spherical waves combine to form a traveling wave 
pulse, as shown in Fig. 1.2. Except in a region close to the array the sound beam 
of the array is similar to the beam generated by a single element transducer of the 
same size as that of the entire array. However, by varying the relative time delays, 
∆ti

, of the driving pulses (where the ensemble of delays is called a delay law), the 
ultrasonic phased array is able to electronically steer the sound beam generated 
in different directions, as shown in Fig. 1.3a without requiring any motion of the 
transducer itself. With an appropriate non-linear delay law, the same array can also 
generate a focused sound beam as shown in Fig. 1.3b. A more complex combination 
of these delay laws can simultaneously perform both beam steering and focusing. 
This flexibility of ultrasonic phased arrays to electronically control the properties of 
the sound beam can make the collection and use of many ultrasonic measurements 
rapid and cost-effective. This same flexibility also allows one to rapidly form ultra-
sonic images, a capability that has been used for many years in clinical applications 
and is seeing a much broader use recently in industrial NDE inspections.

Relative time delays for each element can also be used for modifying the charac-
teristics of the signals received by an array. Fig. 1.4a shows the case where a plane 
wave front arrives at an array. As this wave strikes each element of the array in 

Fig. 1.3   a An ultrasonic 
phased array where a set of 
delays are used to steer the 
sound beam of the array and, 
b the case where a set of 
delays produce a focusing of 
the sound beam
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succession, a series of electrical pulses will be generated as shown. If relative time 
delays, ∆ti

, are applied to these received signals so that all of the signals occur at the 
same time, then they can be summed to generate a single, large output signal. Note 
that this summed signal is similar to what would be measured by a single element 
transducer whose face was at normal incidence to the incoming wave so that the 
entire surface of the transducer was excited simultaneously by the incident wave. 
Thus, this reception delay law effectively acts much the same as a single element 
receiving transducer oriented to face the incoming wave. Similarly, in Fig. 1.4b, 
where the incident wave front is curved, relative time delays can be applied on 
reception to align all the signals from the elements so they also can be summed. 
This delay law is then analogous to what would happen with a focused single ele-
ment transducer on reception.

Because an ultrasonic phased array can transmit/receive with each element of 
the array independently of the other elements, it also is possible to apply individual 
amplitude weights, �Ci

, to the elements on either sound generation and reception (or 
both) (see Fig. 1.5). The ensemble of such amplitude weights is called an apodiza-
tion law. In Chap. 3, we will describe the most common apodization laws that are 
used to tailor the important acoustic radiation characteristics of a phased array.

The ability to use general delay laws and apodization laws on generation and 
reception makes an ultrasonic phased array a very versatile and effective device 
for conducting ultrasonic tests. It is important that engineers and scientists who use 

Fig. 1.4   a Applying variable 
time delays and a summation 
on reception for receiving a 
wave arriving at angle to the 
array, and b applying variable 
time delays and a summation 
on reception for receiving a 
curved wave front arriving at 
the array
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this ultrasonic phased array technology understand the basic principles that govern 
the behavior of phased arrays and the important parameters that control their per-
formance. It is also important to know how the characteristics of ultrasonic phased 
array systems can be exploited to help overcome the indirect nature of measured 
ultrasonic responses and better determine the properties of the object being exam-
ined, as discussed previously.

This book will describe in detail the fundamentals of ultrasonic phased array sys-
tems, using a combination of models and measurements to characterize the behavior 
of the arrays that are typically used in NDE inspections of materials and struc-
tures. Two references to those fundamental concepts we will mention often are the 
books listed as [1, 2] in the References at the end of this Chapter. Throughout this 
book those two references will be listed simply as [Schmerr] and [Schmerr-Song], 
respectively. Since our focus is on the use of phased arrays in NDE settings the 
behavior of ultrasonic arrays when interacting with biological systems and medical 
applications of arrays will not be discussed here but the reader can find a number 
of other very good sources for those important topics [3, 4, 5]. Also, see [6] for an 
overview of ultrasonic NDE applications.

1.2 � Linear and 2-D Arrays

The shape of the piezoelectric elements in an array can be quite general but rectan-
gular elements are often used in practice because they are cost effective to manu-
facture. Figure 1.6 shows a set of identical rectangular elements where the length of 
each element in the x-direction, lx

, is much smaller than its length in the y-direction, 
ly. This configuration is called a linear array. The gap length, gx

, between elements 
in the x-direction is normally the same for all pairs of elements in such an array. This 
gap length is also called the kerf of the array. Another important parameter is the 
element-to-element spacing, sx

, as shown in Fig. 1.6. This parameter is called the 
pitch of the array. Obviously, from the geometry the pitch is s l gx x x= + . Because 
there are multiple elements in only one dimension in a linear array, time delay laws 

Fig. 1.5   An ultrasonic 
phased array where amplitude 
weights are applied to the 
driving pulses, corresponding 
to an apodization law applied 
to the sending elements
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applied to the elements of a linear array can only steer the beam in the x-z plane 
and generate cylindrical focusing along lines parallel the y-axis that pass through 
various points in the x-z plane. Even with this restriction a linear array can be a very 
effective tool for conducting NDE inspections.

One common application of such linear arrays is to place the array on a low 
speed wedge in contact with an adjacent solid, as shown in Fig. 1.7, to generate an 
array-based angle beam vertical-shear (SV) wave inspection setup, where phasing 
of the array allows the shear wave to be steered and focused at various angles, θ, in 
the solid.

Figure 1.8 shows a two-dimensional array of small, identical rectangular ele-
ments of lengths lx

 and ly , respectively, in the x- and y-directions and where there 
are uniform gap lengths gx

 and gy  between elements in each of the x- and y-
directions so that the pitches in each of these directions are given by s l gx x x= + , 
s l gy y y= + . Since time delays that vary in both the x- and y-directions can be ap-
plied to the elements of a two-dimensional array, it is possible to steer and focus the 
beam of a 2-D array in a very general manner.

Other array configurations (annular arrays, segmented circular arrays, etc.) can 
also be considered but the linear and two-dimensional rectangular arrays shown in 
Figs. 1.6 and 1.8 are the types most commonly used in NDE tests so they will be the 
types of arrays we will consider in this book.

Fig. 1.7   An array-based 
angle beam shear wave 
inspection setup

 

Fig. 1.6   The elements of a 
linear array
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1.3 � Modeling Ultrasonic Phased Array Systems

This book will exam in detail all the components of an ultrasonic phased array flaw 
measurement system (see Fig. 1.9) and describe the models and measurements nec-
essary for describing those components. We will develop a comprehensive system 
model that will quantify the generation and reception of sound with the phased ar-
ray transducer(s) and instrumentation, the propagation of the beam of ultrasound in 
the material being inspected, and the scattering of waves from any flaws that may 
be present. The approach we will take is similar to the one we used previously in 
describing ultrasonic systems that use large, single element transducers [Schmerr-
Song] and many of the concepts discussed here can be found in that reference. 
However, there are unique modeling and measurement issues associated with arrays 
and we will also outline some of those issues in this book.

In an ultrasonic phased array system, time-dependent (time domain) driving 
electrical signals are used to produce time-dependent traveling waves. Time domain 
wave signals are, in turn, converted back into time-dependent voltages. However, 
it is convenient not to directly model these time domain signals but to work instead 

Fig. 1.8   A two-dimensional 
array of uniformly spaced, 
identical rectangular elements

 

Fig. 1.9   Components of 
an ultrasonic phased array 
measurement system
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in terms of their frequency components (frequency domain), which can be easily 
obtained with the use of the Fast Fourier Transform (FFT) [Schmerr-Song]. Thus, 
throughout this book we will characterize all the components of a phased array 
system in the frequency domain where the system parameters will be functions of 
the frequency, f, normally measured in millions of cycles per second (or megaHertz 
(MHz)).

First, consider the electrical and electromechanical parts of the phased ar-
ray system, both on sound generation and reception (Fig.  1.10) when no delays 
or apodization weights are present. During sound generation the driving circuits 
produce a voltage pulse which travels down the wiring and cabling to the element 
(usually a piezoelectric material) where the electrical signals (voltage, current) are 
transformed into acoustic pulses (force, velocity). If we assume the driving circuits 
are linear, then for the circuit driving the nth element in an array (Fig. 1.10a) we 
can model the source of electrical energy in those driving circuits as a Thévenin 
equivalent voltage source, V fn

i ( ), [Schmerr-Song]. This equivalent voltage source 
will produce a time dependent transmitted compressive force at the face of the nth 
element whose frequency domain response is denoted in Fig. 1.10a as F fn

t ( ). We 
can write this compressive force as

� (1.1)

where t fn
g ( )  is called the sound generation transfer function. This transfer func-

tion is a function of the electrical impedance of the driving circuits, the electrical 
properties of the wiring/cabling connecting the driving circuits to the piezoelectric 
element, and the electrical impedance and sensitivity of the array element [Schmerr-
Song]. When the acoustic pulses generated by the nth element interact with scatter-
ing objects (such as surfaces of a component being inspected or flaws) and travel 
back to the array they are received by the mth element of the array and converted to 
a received voltage pulse. We can relate the frequency components of this received 
voltage, V fmn

r ( ), to the blocked force, F fmn
B ( )  (Fig. 1.10b), generated by the inci-

dent waves for each pair of sending and receiving elements through a sound recep-
tion transfer function, t fm

r ( ), i.e.

F f t f V fn
t

n
g

n
i( ) ( ) ( ),=

Fig. 1.10   a 1-D model of 
the generation of sound at 
an array element, and b 1-D 
model of the reception of 
sound at at element and the 
conversion to a received 
electrical signal
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� (1.2)

This receiving transfer function is a function of the electrical impedance and gain 
present in the receiving circuits, the wiring/cabling present, and the electrical imped-
ance and sensitivity of the mth piezoelectric element [Schmerr-Song]. The blocked 
force appearing in Eq. (1.2) is defined as the force exerted on the face of the receiv-
ing element when the face of that element is held rigidly fixed. In [Schmerr-Song] 
and in Chap. 9 it is shown how this blocked force arises naturally in describing the 
sound reception process for an ultrasonic system.

From Eqs. (1.1) and (1.2) we see that in an ultrasonic measurement process in-
volving a pair of elements, where the waves are generated by the nth element and 
received by the mth element, the received voltages, Vmn

r , are given by

�

(1.3)

where the acoustic/elastic transfer functions, t fmn
a ( ), are defined as t F Fmn

a
mn
B

n
t≡ /  

and the system functions, s fmn ( ), are given by

� (1.4)

If we apply time delays, ( ),g r
n mt t∆ ∆ on sound generation and reception, respectively, 

and also apodization weights ( , )g r
n mC C� � , on sound generation and reception, respec-

tively, then in the frequency domain these effects can easily be incorporated into 
Eq. (1.3) (see Chaps. 4 and 7) as

�
(1.5)

Equation (1.5) is a very general model for an ultrasonic phased array measurement 
system as it describes the voltages received by all possible pairs of sending and 
receiving elements. This equation also shows that all the electrical and electrome-
chanical parts of the system response can be characterized by the system functions, 
s fmn ( )  and all the wave propagation and scattering processes present can be char-
acterized by the acoustic/elastic transfer functions, t fmn

a ( ).
In Chap. 10 it will be shown that the system functions can be obtained experi-

mentally by measuring the received voltage,V fmn
r ( ), for various element pairs in a 

reference configuration where the acoustic/elastic transfer functions, t fmn
a ( )  are 

known. These acoustic/elastic transfer functions will also be derived in Chap. 10 for 
a convenient calibration setup. Then from Eq. (1.3) we have formally

�
(1.6)

V f t f F fmn
r

m
r

mn
B( ) ( ) ( )=

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

r B t
r imn mn n

mn nB t i
mn n m

r g a i
m n mn n

a
mn mn

V f F f F f
V f V f

F f F f V f

t f t f t f V f

s f t f

=

=
=

s f t f t f V fmn m
r

n
g

n
i( ) ( ) ( ) ( )=

V f C C if t if t s f t fmn
r

n
g

m
r

n
g

m
r

mn mn
a( ) exp exp ( ) ( ).= ( ) ( )� � 2 2π π∆ ∆

s f
V f

t fmn
mn
r

mn
a

( )
( )
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In practice, the direct division in Eq. (1.6) is replaced by a Wiener filter to desensi-
tize this deconvolution process to noise [Schmerr-Song]. If M N=  so there are M 
transmitting and receiving elements, then a total of M 2  different system functions 
are needed to characterize the behavior of the entire array. Even if one assumes that 
the system functions and acoustic/elastic transfer functions are symmetric, one still 
has a total of M M( ) /+1 2  different system functions that would have to be ob-
tained from Eq. (1.6). For a 16 element linear array, for example, this would corre-
spond to 136 different calibration experiments that would be needed to characterize 
the entire array. Fortunately, however, phased arrays are normally made with nomi-
nally identical driving and receiving circuits, wiring, and piezoelectric elements, so 
it is not surprising, as found in Chap. 10, that the measured system functions may 
also be nominally identical, i.e. s f s fmn ( ) ( )≅ . In this case only one calibration 
experiment is needed to obtain this system function and Eq. (1.3) becomes

� (1.7)

and the general model of a phased array system with time delay law and apodization 
laws, Eq. (1.5) becomes

� (1.8)

Equation (1.8) shows that if the system function is determined experimentally and 
the time delays and apodization weights specified, knowledge of all the acoustic/
elastic transfer functions present is required to simulate the received voltage. These 
transfer functions are functions of the waves generated by the driving elements and 
propagating in the media present, the waves scattered by a reflector or flaw present, 
and the waves propagated to the receiving elements. It is not possible to determine 
these propagating and scattered waves experimentally so that it is necessary to have 
explicit models of these wave processes and how they contribute to the acoustic/
elastic transfer functions.

In order to describe the ultrasonic wave fields generated by the driving elements 
in the acoustic/elastic transfer function it is necessary to develop an appropriate 
mathematical model of the array as a set of acoustical sources. In the frequency 
domain these field quantities are all functions of the spatial variables ( , , )x y z  
and the frequency, f. For a large, single element transducer such as the one shown 
in Fig. 1.11a a simple but effective frequency domain model that has been used 
assumes that the transducer acts like a velocity source with the normal velocity, 
v x y z fz ( , , , )= 0 , on the face of the transducer given by

�
(1.9)

where S is the active area of the transducer face (see Fig. 1.11a). This model as-
sumes that the entire face of the transducer acts in unison in a piston-like manner, 
i.e. it is a piston transducer model. Piston behavior has been successfully used to 

V f s f t fmn
r

mn
a( ) ( ) ( )=

( ) ( )( ) exp 2 exp 2 ( ) ( ).r g r g r a
mn n m n m mnV f C C if t if t s f t f= ∆ ∆� � � �

0 ( )
( , , 0, ) ,

0z

v f on S
v x y z f

otherwise


= = 


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model many large single element transducers [Schmerr], [Schmerr-Song]. In our 
transducer array modeling we will also assume that each element of the array also 
acts like a piston. Equation (1.9) shows that in this piston transducer model the 
piston source is embedded in an infinite planar rigid baffle, as shown in Fig. 1.11b. 
It is possible to replace the actual 3-D geometry of the transducer in Fig.  1.11a 
by a piston source acting in a planar rigid baffle since for large single element 
transducers the transducer crystal is supported along its edges by a relatively rigid 
case. Also, as we will see, for example in Chaps. 3 and 6, for large, single element 
transducers, which typically operate at MHz frequencies in NDE tests, the beam 
of sound generated by the transducer is well-collimated, i.e. it is significant only 
in a relatively small region directly ahead of the transducer. Thus, the fields on the 
plane z = 0 outside the region S are typically very small anyway, so that the rigid 
baffle assumption does not affect the fields significantly. For phased arrays such 
as the linear and 2-D arrays shown in Figs. 1.12a and 1.13a, however, the phased 
array elements are separated by gaps filled with an epoxy-like material (which is 

Fig. 1.11   a A large, single 
element rectangular trans-
ducer, and b its representation 
as a piston velocity source 
acting over the area S that is 
embedded in an infinite, rigid 
baffle

 

Fig. 1.12   a A linear phased 
array and b a model of an 
individual element as a piston 
velocity source embedded in 
a rigid baffle
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not as rigid as the elements themselves) and at MHz frequencies each element of 
the array does not generate a well-collimated beam of sound in all directions so one 
should examine the validity of applying the rigid baffle model of Eq. (1.9) to each 
element of the array. In modeling phased arrays in this book we will still assume 
that each element is surrounded by a rigid baffle, as shown in Figs. 1.12b and 1.13b 
but in Chap. 14 we will model the radiation of an element when it is surrounded by 
a finite acoustic impedance baffle and discuss how to determine experimentally if 
such effects are important. Other modeling issues associated with arrays will also 
be discussed in Chap. 14.

The voltages, V f m M n Nmn
r ( ) ( , ,... ),( , ,... )= =1 2 1 2 , are all the possible measure-

ments that can be made with a phased array system having M sending elements and 
N receiving elements. If the data from the measurement of all these voltages sepa-
rately is available, the measurement is said to be one of full matrix capture (FMC). 
Full matrix capture provides the largest amount of information that is available 
from a phased array system and is shown in Fig. 1.14a as a fully filled information 
matrix of senders and receivers. If only the same individual element is used as both 
a sender and receiver, then the collection of these pulse-echo responses is shown in 
the information matrix of Fig. 1.14b. In Chap. 13 we will develop imaging methods 
based on both full-matrix capture as well as the pulse-echo responses. In develop-
ing the FMC case, we will also need to consider the case of a single sending ele-
ment and multiple receiving elements, as shown in Fig. 1.14c. This case is known 
in the seismology literature as a common shot response. Of course, many other 
combinations of the sending and receiving elements can be used for measurements 
and imaging, but the FMC and pulse-echo cases are those most commonly found 
in practice.

In an ultrasonic measurement, if the responses of all M sending elements and 
N receiving elements are measured then we can simply sum all these responses to 
obtain a single response, V fr ( ), given by

�
(1.10)V f C C if t if t s f tr

n
g

m
r

n
g
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Fig. 1.13   a A 2-D phased 
array and b a model of an 
individual element as a piston 
velocity source embedded in 
a rigid baffle
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This measured voltage is then analogous to what would be measured by a single ele-
ment transducer of a size comparable to the whole array, but where the array trans-
ducer beam can be tailored by the steering, focusing and apodization terms. Com-
mercial phased array systems typically provide this summed signal as an output, as 
well as standard images formed with the array signals such as B-scans, S-scans, etc. 
However, with full matrix capture capabilities, a phased array system allows the 
user to manipulate the array data and form images in ways that are not possible with 
the output signal of Eq. (1.10).

1.4 � Book Outline

This book is divided into essentially three sections. The first section, covering 
Chaps. 2–5, idealizes arrays as 1-D elements radiating waves in two dimensions. 
This assumption allows us to discuss many modeling issues and important concepts 
such as beam steering, focusing, and the existence of grating lobes in a very simple 
framework. This section also provides an ideal source of materials for introducing 
students to phased arrays and describes some MATLAB® functions and scripts that 
can be used to simulate the behavior of a phased array.

The second section of the book, in Chaps. 6–11, develops a complete model 
of a phased array ultrasonic measurement system. Phased array beam models are 
developed in detail in Chaps. 6 and 7 and the time delay laws that can be used 
to control the behavior of an array are obtained in Chap.  8. A complete linear 
systems model of an ultrasonic phased array measurement system is developed 
in Chap. 9 where the system response is divided into a system function that de-
scribes the electrical and electro-mechanical parts of the system associated with 
a sending and receiving pair of elements, and an acoustic/elastic transfer func-
tion that describes all the acoustic and elastic wave propagation and scattering 
fields present between those sending and receiving elements, as discussed earlier 
in this Chapter. Chapter 10 shows how the system function for each element can 

Fig. 1.14   Information 
matrices showing the data 
available with combinations 
of sending and receiving 
elements for a full matrix 
capture (all element pairs), b 
pulse-echo responses (same 
sending/receiving pairs), and 
c a single sending element 
used with all the receivers
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be measured experimentally in a calibration setup while Chap. 11 uses reciproc-
ity relations to obtain an expression for the acoustic/elastic transfer function for a 
flaw measurement system in terms of the incident and scattered waves at the flaw 
surface in a form similar to that originally developed by Auld [7]. The combina-
tion of the system function and the acoustic/elastic transfer function then gives an 
explicit expression for the measured voltage from each pair of sending/receiving 
elements. This expression is called an ultrasonic measurement model. It is also 
shown in Chap. 11 how for small flaws this general measurement model can be 
reduced to a Thompson-Gray type of form [8] where the flaw response is obtained 
as an explicit and separate part of the overall expression for the received voltage. 
Examples are given of how this reduced measurement model can be used to predict 
the measured response of some simple reflectors.

Since ultrasonic phased array flaw measurement systems are commonly used to 
generate images of the flaws present, the third section of the book, Chaps. 12 and 13, 
are devoted to the fundamentals of imaging. In Chap. 12, two commonly used ad-
hoc imaging methods, the Synthetic Aperture Focusing Technique (SAFT) and the 
Total Focusing Method (TFM) are first discussed. Then it is shown how, for simple 
2-D problems, Thompson-Gray measurement models can be inverted to produce an 
explicit image of the surface geometry and reflectivity of a flaw in a form called 
an imaging measurement model. These imaging measurement models are shown 
to be closely related to the Physical Optics Far Field Inverse Scattering (POFFIS) 
method and also to SAFT and TFM imaging. The nature of the images generated 
with imaging measurement models are also described in Chap. 12 through a number 
of “exact” simulations. In Chap. 13 imaging measurement models are more fully 
developed for both large and small flaws in 3-D, leading to a unified framework 
of imaging that generalizes SAFT, TFM, and POFFIS imaging and rationally de-
scribes the terms inherently present in the imaging process. The implications that 
these imaging measurement models have on quantitative flaw characterization are 
also discussed.

Finally, in Chap. 14, some of the explicit assumptions used in the development of 
the array beam models used in the previous Chapters are re-examined. Specifically, 
as discussed previously in Sect. 1.3, the assumption that an array element acts as a 
velocity source in a surrounding rigid baffle is relaxed and a more general model is 
developed where the baffle is allowed to have finite acoustic impedance.

There are also three Appendices. Appendices A and B provide detailed deriva-
tions of several factors that appear in the development of imaging measurement 
models. Appendix C gives complete Code Listings for the MATLAB® functions 
and scripts described in the book.

References [1] and [2] will be referred to often in this book and are listed as 
[Schmerr] and [Schmerr-Song], respectively, in this and later Chapters.
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As discussed in Chap. 1, an ultrasonic phased array is composed of many small 
acoustic sending and receiving elements, each of which acts as an individual send-
ing or receiving transducer. In this Chapter we will develop models of the acoustic 
waves generated by a single element and describe how the nature of this wave 
field depends on the size of the element and its motion. Models that simulate the 
radiation of a single array element will be generated explicitly in MATLAB®. The 
superposition of a number of these single element models with different driving 
excitations will then give us a complete model of a multi-element phased array 
transducer, as shown in Chap. 4. To keep the discussion as simple as possible in this 
Chapter the single element will be treated as a 1-D source of sound radiating two-
dimensional waves into a fluid or through a planar interface between two fluids. 
Although both linear and 2-D arrays are composed of 2-D elements which produce 
sound waves traveling in three dimensions, the physics of wave propagation is simi-
lar for both 1-D and 2-D elements so that we can learn much of the fundamentals of 
sound generation with these simplified models. In Chaps. 6 and 7 we will discuss 
the corresponding three-dimensional models and wave fields of single elements and 
phased arrays.

2.1  Single Element Transducer Models (2-D)

The basic setup we will use to describe a single element transducer is shown in 
Fig. 2.1. We will treat the transducer as a velocity source located on the plane z = 0 
where a normal velocity, v x tz ( , ) , as a function of the location, x, and time, t, is 
generated over a finite length [− b, b] in the x-direction and [ −∞ +∞, ] in the y-di-
rection. The normal velocity is assumed to be zero over the remainder of the plane. 
This type of model is called a rigid baffle model since the element is assumed to be 
embedded in an otherwise motionless plane, as discussed in Chap. 1. The motion of 
the element radiates a 2-D pressure wave field p x z t( , , )  into an ideal compressible 
fluid medium that occupies the region z ≥ 0.
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As shown in many texts (see [Schmerr], for example) the application of New-
ton’s law ( )m=∑F a  to a small fluid element yields the equations of motion (for 
no body forces) of the fluid given by:

� (2.1)

Where ρ  is the density of the fluid, u( , , )x z t  is the vector displacement, and the 

2-D gradient operator 
x zx z

∂ ∂
∇ = +

∂ ∂
e e , and ( , )e ex z

 are unit vectors in the x- and 

z-directions, respectively. For an ideal compressible fluid the pressure in the fluid is 
related to the fluid motion by the constitutive equation

� (2.2)

where 
Bλ  is the bulk modulus of the fluid. The quantity ·∇ u  appearing in Eq. (2.2) 

is called the dilatation. Physically, it represents the relative change of volume per 
unit volume of a small fluid element and it is also called the volumetric strain of the 
fluid element [Schmerr]. The minus sign is present in Eq. (2.2) because a positive 
pressure causes a decrease in the volume of a compressible fluid.

If one takes the divergence ( )·∇  of both sides of Eq. (2.1) and uses Eq. (2.2), it 
follows that the pressure p x z t( , , )  must satisfy the wave equation:

�
(2.3)
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Fig. 2.1   Model of a 1-D 
element radiating into a fluid 
with density and wave speed, 
( , )cρ , respectively
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where the wave speed, c, in the fluid is given by

� (2.4)

In modeling waves in the fluid, we will assume that all the waves have a harmonic 
time dependency exp( )i tω−  so that

� (2.5)

Placing this relationship into Eq. (2.3) shows that ( , , )p x z ω�  must satisfy the Helm-
holtz equation

� (2.6)

Alternatively, we can view a solution ( , , )p x z ω�  of Eq. (2.6) as the Fourier trans-
form (frequency domain spectrum) of a time dependent wave field p x z t( , , ), where

�
(2.7)

and

� (2.8)

since if we take the Fourier transform of the wave equation it follows that the trans-
formed pressure ( , , )p x z ω�  also must satisfy the Helmholtz equation.

We will solve our models of transducer behavior in this and later Chapters for 
the fields ( , , )p x z ω� . Since we will be working almost exclusively with frequency 
domain wave fields in this book, we will henceforth drop the tilde on our frequen-
cy domain variables and simply write fields such as the pressure or velocity as 

( , , )p x z ω  or ( , , )x z ωv , etc. with the understanding that an additional time depen-
dent term exp( )i tω−  is also always present implicitly if we want to recover a time 
domain solution (see Eq.  (2.8)) or if we consider these fields as harmonic wave 
fields.

To solve for the waves generated in the geometry of Fig. 2.1, we first note that 
the Helmholtz equation has harmonic wave solutions given by

� (2.9)

where

� (2.10)
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and /k cω=  is the wave number. For the real value of kz
 given in Eq. (2.10), the 

solution of Eq. (2.9) represents a plane wave traveling at an angle θ  with respect to 
the z-axis, where sinxk k θ= , coszk k θ= . The imaginary value of kz

 corresponds 
to an inhomogeneous wave traveling in the plus or minus x-direction (depending on 
the sign of kx

) and decaying exponentially in amplitude in the z-direction. Since the 
waves given by Eq. (2.9) are solutions of the Helmholtz equation, we can also form 
up a more general solution by simply a superposition of these waves traveling with 
different values of kx, i.e. we can let

�
(2.11)

This type of solution is called an angular spectrum of plane waves, although as we 
have seen it is really a combination of both plane waves and inhomogeneous waves.

We will use this type of solution to represent the waves generated by the element 
model of Fig. 2.1. If we let ( ,0, )zv x ω  be the Fourier transform of v x tz ( , , )0  (on 
the plane z = 0) then

�
(2.12)

and we see that

�
(2.13)

where

�
(2.14)

Note that from the equation of motion (Eq. (2.1)) we have

�
(2.15)

so that

�
(2.16)
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�

(2.17)

where

� (2.18)

Equation (2.17) shows that ( ,0, )zv x ω  can be treated as a spatial inverse Fourier 
transform of V kx( )  so that from the corresponding forward spatial transform we 
have

�
(2.19)

Since the velocity on z = 0 is known (Eq. (2.13)) the spatial Fourier transform V kx( )  
is also known and we can write the pressure anywhere in the fluid from Eq. (2.11) 
and Eq. (2.18) as

�
(2.20)

Now, Eq. (2.20) is in the form of a spatial inverse Fourier transform of a product of 
functions ( , , )xG k z ω  and ( , )xH k ω , i.e.

�
(2.21)

where

�
(2.22)

But by the convolution theorem [Schmerr] the inverse Fourier transform of a prod-
uct of transformed functions is the convolution of the functions themselves, so that 
in this case the convolution theorem gives

�
(2.23)
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where

�
(2.24)

and

�
(2.25)

First, examine Eq. (2.25). Since V kx( )  is the spatial Fourier transform of ( ,0, )zv x ω , 
it follows that

� (2.26)

Now, consider Eq. (2.24). This is the inverse Fourier transform of an explicit func-
tion and can be shown to be proportional to a Hankel function of zeroth order and 
type one [1]. Specifically,

� (2.27)

where again /k cω=  is the wave number. Placing these results into Eq. (2.21) then 
gives

� (2.28)

where r x x z= − ′ +( )2 2  is the distance from a point ( , )′x 0  on the plane z = 0 to 
a point x = ( , )x z  in the fluid (see Fig. 2.1). Since the velocity on the plane z = 0 is 
given by Eq. (2.13), we find

� (2.29)

in terms of the velocity on the face of the element, which is assumed to be known. 
Equation (2.29) gives the pressure anywhere in the fluid generated by the motion of 
the face of the element so it is a complete ultrasonic model for the waves generated 
by a single element radiating into a single fluid medium.

Physically, Eq.  (2.29) represents the wave field of the transducer element in 
terms of a weighted superposition of cylindrical waves arising from concentrated 
sources acting over the length of the transducer. This can be seen more explicitly by 
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assuming the distance r to a point in the fluid is many wavelengths away from the 
element so that kr > > 1. Then, since the Hankel function has the asymptotic value 
[2]

� (2.30)

for u >> 1, Eq. (2.30) becomes

�
(2.31)

in terms of a superposition of the cylindrical wave terms exp( )/ikr r  over the 
length of the element.

2.2  Far Field Waves

From the law of cosines (see Fig. 2.2) we have

� (2.32)

Continuing to keep the high frequency approximation kr >> 1 the far field of the 
element is defined as the region far enough from the element so that 0/ 1x r <<′  are 
valid and we can expand Eq. (2.32) to only first order as

� (2.33)

If we place this approximation into Eq. (2.30) we obtain

�
(2.34)
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Fig. 2.2   Geometry param-
eters for defining the far field 
response
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or equivalently, in terms of the spatial Fourier transform of the velocity field,

�
(2.35)

with sin .xk k θ=
Equation (2.35) shows that in the far field region the element behaves like a con-

centrated source emitting a single cylindrical wave so we could call this region the 
cylindrical wave region of the element.

In most cases we will model the motion on the face of an element as if it acted as 
a piston source, i.e. as if the element had a spatially uniform velocity over the entire 
length of the element:

�
(2.36)

In this case the spatial Fourier transform is

�

(2.37)

and the far field piston element response can be written as

�
(2.38)

Equation (2.38) shows that in the far field the piston element response has a direc-
tivity function, ( )bD θ , where

�
(2.39)

This directivity function is strongly controlled by the non-dimensional wave num-
ber, kb, as shown in Fig. 2.3. [Note: For brevity of notation in later expressions this 
kb dependency will be omitted in the argument of Db

 but it should be implicitly un-
derstood that it is still present in this and in other directivities that will be discussed 
in later Chapters.] For a value of kb = 0.314 where the length, 2b, of the element is 
one tenth of a wavelength,λ, (Fig. 2.3a), the sound radiation of the element is nearly 
uniform in all directions ( 90 90θ° °− ≤ ≤ ). At kb = 1.57 (element length = one half 
a wavelength) there begins to be some significant changes in directivity with angle 
(Fig.  2.3b) but the radiation pattern is still broad. At a value kb = 3.14 (element 
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length = one wavelength) Fig. 2.3c shows that now most of the radiation is in an 
angular region of ± °30  about the normal to the element and at kb = 9.42 (element 
length = three wavelengths) the sound is confined primarily to a highly directed 
beam, with the appearance of small side lobes, as shown in Fig. 2.3d. Most NDE 
phased array transducers operate at MHz frequencies and with element sizes that are 
larger than one half a wave length so that directivity of the element plays an impor-
tant role in the sound field generated and appears as a part of the overall response 
of an array of elements.

It is customary to define the size of the main “lobe” of the far field sound beam 
generated by an element in terms of the angle at which the pressure first drops to 
one half (− 6 dB) of its value along the z-axis ( 0)θ = . For the sinc function, sin /x x, 
this one half value occurs at x = 1.8955 so that from Eq. (2.39) we see the − 6 dB 
angle is given by

Fig. 2.3   The directivity function for an element of a length 2 / 0.1b λ = , b 2 / 0.5b λ = , c 2 / 1.0b λ = , 
and d 2 / 3.0b λ =

Element size, 2b/λ
6 dBθ−   (degrees)

1.0 36.9
3.0 11.5

10.0 3.4

Table 2.1   Directivities of 
some elements of various 
sizes
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�
(2.40)

which always has a root as long as 2 0.6b λ> . Table 2.1 shows the results for cases 
(c) and (d) of Fig. 2.3 which agree with the angular patterns shown in Fig. 2.3. Also 
shown in Table 2.1 are the results for an element that is ten wave lengths long, 
where it can be seen that the directivity becomes quite small. Large, single element 
transducers used in NDE applications are normally tens of wavelengths in diameter 
so that they are highly directional and generate sound beams that are well collimat-
ed, i.e. most of the sound propagates normal to the face of the transducer. However, 
for the smaller elements present in phased array transducers the far field directivity 
can vary considerably, depending on the size of the elements.

It is important to know when the far field approximation we have been using in 
this section is valid. Recall, in Eq. (2.32) we expanded the radius r to only first order 
Eq. (2.33) which led us to the explicit far field results. Let us go back to Eq. (2.32) 
and examine when the remaining terms in the expansion are negligible. First, we 
rewrite the radius r as

�
(2.41)

which is in a form that can be expanded to three terms since by the binomial expan-
sion of a square root

�
(2.42)

In the case of Eq. (2.41) if we use Eq. (2.42) and keep only quadratic terms at most 
in the expansion we find

�
(2.43)

Equation (2.43) shows that in order to keep only the first order term of 
Eq.  (2.33) in the phase term of Eq.  (2.1.31) we must have the complex expo-
nential 2 2

0exp( ( ) cos /2 )ik x rθ′  term near unity, which will only be possible if 
2 2

0( ) cos / 2 1k x rθ <<′ . This condition will certainly be satisfied if we replace ′x  
and 2cos θ  by their largest possible values of b and one, respectively, and require
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So the far field conditions should be well satisfied if

� (2.45)

For large single element transducers radiating waves in 3-D the far field occurs 
when the transducer wave field is well approximated by a point source radiating a 
single spherical wave. For a circular transducer of radius b the far field of the trans-
ducer is also given by Eq. (2.45) where the quantity 2/N b λ=  is called the near 
field distance [Schmerr]. The quantity 2/D bπ λ=  can be rewritten as 2/2D kb=  
which is called the Rayleigh distance [Schmerr-Song]. We see that the far field of a 
1-D element also occurs for distances greater than the Rayleigh distance.

2.3  Numerical Piston Element Models

Although we can obtain explicit results for the wave field of an element in the far 
field, for other points in the wave field it is not possible to analytically perform the 
integrations present in either Eq. (2.29) or Eq. (2.31). However, it is relatively easy 
to compute the pressure wave field numerically from Eq. (2.29) as long as z is not 
too near the element face ( z = 0) where the Hankel function can become singular. 
At or near the element face one needs to perform the integration more carefully, but 
generally we are only interested in the radiated wave field at some finite distance 
from the element face where such singular behavior is not present. For piston be-
havior we have:

�
(2.46)

where /k cω=  is the wave number. First, we break up the face of the element into 
N equal segments of length Δd = 2b/N. The centroids of these segments will be lo-
cated at the positions

�
(2.47)

or, in normalized form

�
(2.48)

If we assume that the segments are small enough that the Hankel function can be 
taken as a constant over each segment, then Eq. (2.46) can be written as
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�
(2.49)

where

� (2.50)

We will call the beam model of Eq. (2.49) the Hankel function model.
Since for large kb values the Hankel function is a highly oscillatory function, to 

treat it as a constant over each segment we will typically have to keep the segment 
size, Δd, to about a tenth of a wavelength, λ, or less. If we take frequency, f, in MHz, 
the wave speed, c, in m/sec, and dimensions of b and Δd in mm, then the criterion

�
(2.51)

is equivalent to the requirement that N must satisfy

�
(2.52)

where the MATLAB® function ceil() rounds the value of its argument towards in-
finity to the nearest integer. Note that Eq. (2.52) also guarantees that for element 
lengths less than a tenth of a wavelength we must have at least one segment ( N = 1). 
For b = 6 mm, f = 5 MHz, and c = 1500 m/sec we obtain N = 400. This example shows 
that even in this 2-D problem when computing the integral of Eq. (2.46) for element 
sizes comparable to large, single element NDE transducers one needs to compute a 
relatively large number of terms. For the much smaller element sizes used in phased 
arrays the number of terms needed is greatly reduced. The MATLAB® function 
rs_2Dv given in Code Listing C.1 (see Appendix C) implements the Hankel func-
tion model. Its calling sequence is

This function uses Eq. (2.49) to calculate the normalized pressure field, 0( , )/p x z cvρ  
at a point ( , )x z , measured in mm, for a piston element of length 2b mm radiating 
waves into a fluid whose wave speed is c (in m/sec) at a frequency, f, given in MHz. 
In anticipation that this function will also be used to model a single element in an 
array where the center of the element may not be located at ′ =x 0, Eq. (2.50) has 
been modified to be
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� (2.53)

where the offset of the element in the x-direction, e, (in mm) is also specified as an 
input parameter of rs_2Dv. The parameter, Nopt, is an optional input argument for 
this function. If Nopt is not specified, the number of segments used to calculate the 
wave field is given by Eq. (2.52). Otherwise Nopt is used for the number of seg-
ments instead. This gives the user some flexibility in controlling the calculations 
but, as we will show shortly, when choosing Nopt there are some limits to how large 
the element segments can be.
Figure 2.4 shows the magnitude of the pressure wave field generated by elements of 
different sizes. In all these cases the frequency was taken to be 5 MHz and the wave 
speed (nominally that of water) was given as 1500 m/sec. The Nopt parameter was 
not specified. Figure 2.4a shows the case for an element of total length 2b = 0.03 mm, 
which corresponds to 2 / 0.1b λ = . For this case in the far field we saw the directivity 
of the element was uniform in all directions and this behavior is also true for much of 

2 2( / / ) ( / ) ,n nr x b x e b z b= − − +

Fig. 2.4   The magnitude of the normalized pressure, 0/p cvρ , generated at 5 MHz, c = 1500 m/sec, 

for an element where a 2b = .03  mm (2 / 0.1)b λ = , b 2b = 0.3  mm (2 / 1.0)b λ = , c 2b = 2.0  mm 
(2 / 6.67)b λ = , and d 2b = 6.35 mm (2 / 21.2)b λ =
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the entire wave field of the element as seen in Fig. 2.4a. In Fig. 2.4b the length of the 
element was 2b = 0.3 mm (2 / 1.0b λ = ) and one now sees a very broad beam but with 
some directivity, in agreement with the far field behavior of Fig. 2.3c. Figure 2.4c 
is for 2b = 2.0 mm (2 / 6.67b λ = ) and now the element generates a highly directional 
beam, as expected. In Fig. 2.4d, the element size is typical of many large, single ele-
ment transducers, 2b = 6.35 mm (2 / 21.2b λ = ), and the wave field remains highly 
collimated, with much internal structure in the main “beam” of the element visible.

These results show that the nature of the waves generated by a small phased ar-
ray element will be quite different from that of a large, single element transducer. 
The wave fields of small phased array elements will individually exhibit very broad 
radiation patterns, while large elements are quite directional in their response. When 
many small elements are combined in a multi-element phased array transducer, 
these wave fields will be combined to give the overall array sound beam. As we will 

Fig. 2.5   The magnitude of the normalized on-axis pressure, 
0/p cvρ , versus z generated at 5 MHz, 

c = 1500 m/sec, for an element where a 2b = .03 mm (2 / 0.1)b λ = , b 2b = 0.3 mm (2 / 1.0)b λ = , 
c 2b = 2.0 mm (2 / 6.67)b λ = , and d 2b = 6.35 mm (2 / 21.2)b λ = . Solid line–using Eq. (2.49). Cir-
cles—using the far field expression, Eq. (2.38), for 0θ = . Note the changing scales in these cases
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see in Chap. 5, by appropriately delaying the broadly generated wave fields of such 
small elements we can easily adjust their combined effect to both steer and focus 
the overall sound beam of the array. However, such steering and focusing becomes 
more difficult as the element size gets larger because we are then combining ele-
ments wave fields that are more highly directional themselves. Practical consider-
ations in the manufacture of commercial phased array elements may require that 
the elements be large enough so that element directivity effects are present. This, in 
turn, may affect the steering and focusing capability of commercial arrays.

It is also instructive to examine the behavior of the pressure wave field along 
the central axis of an element and compare it to the far field values of Eq. (2.38) 
(for θ = 0). The results are shown in Fig. 2.5 for the same four cases considered in 
Fig. 2.4. It can be seen that for elements of lengths equal to one wavelength or less 
the “exact” numerical values follow the far field values essentially throughout the 

Fig. 2.6   The magnitude of the normalized pressure,
0 0( , ) / ( ,0)p r p rθ , generated at 5  MHz, 

c = 1500 m/sec, at a fixed distance, r0
, for an element where a r0 = 5 mm, 2b = .03 mm (2 / 0.1)b λ = ,  

b r0 = 5  mm, 2b = 0.3  mm (2 / 1.0)b λ = , c r0 = 15  mm, 2b = 2.0  mm (2 / 6.67)b λ = , and  
d r0 = 100 mm, 2b = 6.35 mm (2 / 21.2)b λ = . Solid line—using Eq. (2.49). Circles—using the far 
field expression, Eq. (2.38), for 0θ =
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entire wave field. For the larger element sizes there is a near field oscillatory struc-
ture in the numerical results close to the element but at larger distances the numeri-
cal and far field results again agree.

Since the on-axis exact and far field results are identical for cases (a) and (b) in 
Fig. 2.5 one would expect that off-axis results would agree also. This is the case, 
as shown in Fig. 2.6 where the angular behavior of the normalized pressure wave 
field for a fixed radius 2 2

0r x z= +  is plotted versus the angle 1tan ( / )x zθ −=  
from both Eq. (2.49) and Eq. (2.38). For an element length of one tenth of a wave-
length (Fig. 2.6a) at a distance r0 5=  mm the directivity is nearly uniform, while 
there is more directivity at the same radius for an element length of one wavelength 
(Fig. 2.6b). In both cases the exact results and the far field results agree closely and 
show the same behavior of directivity that we have seen previously in the polar 
plots of Fig. 2.3. For the larger elements of Fig. 2.6c and d, the exact and far field 
results again agree as long as the radius r0  is in the cylindrically spreading region. 
From the on-axis results of Fig. 2.5 we saw that for case (c) the two curves merge at 
approximately z = 15 mm while they merge for approximately z = 100 mm for case 
(d). Thus, these distances were used for the r0

 values in Fig. 2.6c and d. Although 
the spacing of the discrete far field results shown in Fig. 2.6c and d is too large to 
show the detailed behavior of the directivity for these cases, at the angular locations 
evaluated here there was good agreement with the exact results.

Using Eq. (2.52) to determine the number of segments for an element is gener-
ally a conservative choice so that one can often obtain acceptable solutions with a 
smaller number of segments. However, if the length of the segment exceeds a wave 
length, fictitious side beams (called grating lobes) will appear in wave field. These 
side lobes are simply the result of inadequate sampling of the element and can 

Fig. 2.7   The magnitude of 
the normalized pressure, 

0/p cvρ , generated at 5 MHz 
in water ( c = 1480  m/sec)  
for a 12 mm long element 
where the element is divided 
into segments whose length is 
one tenth of a wavelength
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also appear in the response of multi-element phased arrays, as discussed in some 
detail in Chap. 4. We can easily see this behavior by making different choices of 
the Nopt parameter. Consider, for example, a 12 mm long element radiating into 
water (c = 1480 m/sec) at 5 MHz. An image of the pressure wave field (magnitude) 
is shown in Fig. 2.7 when Eq. (2.52) is used to guarantee that the segment size is 
one tenth a wavelength. If, instead we evaluate this wave field with Nopt = 35, the 
size of a segment is 1.14 wavelengths and the field is shown in Fig. 2.8a. We see 
that the main structure of the radiated beam in Fig. 2.8 is identical to that of Fig. 2.7 
but outward radiating side beams (grating lobes) also appear as well. These grating 
lobes can be eliminated by choosing Nopt = 50 so that the size of each segment is 
0.8 wavelengths, as shown in Fig. 2.8b.

2.4  Line Source Models

Studies such as those described in the previous section show that as long as we are 
at a distance of about 3 near field lengths or greater from an element the entire wave 
field of an element is well described by the far field results of Eq. (2.38) given here as

�
(2.54)

0
0

0

exp( )2
( , ) ( ) ( ) ( )b

ikr
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ω ρ ω θ

π
=x

Fig. 2.8   The magnitude of the normalized pressure, 0/p cvρ , generated at 5  MHz in water 
( c = 1480 m/sec) for a 12 mm long element where the field calculations are performed with a thirty 
five sub-element segments, each 1.14 wave lengths long, and b 50 sub-element segments, each 
0.8 wave lengths long
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in terms of the element directivity, ( )bD θ . If we use this single term to represent 
the waves generated by an array element we will call this model an array single 
line source model. We should note that some authors discuss phased arrays by us-
ing single line source models for each array element where the directivity function 
is equal to one. As we have seen, this is permissible only for element lengths one 
tenth of a wavelength or less, which is much smaller than what is practical to make 
in most commercial NDE phased arrays so that for NDE applications one needs to 
include this directivity in the single line source model. When the fields are needed 
for an element in a region where the far field values of Eq. (54) are not adequate one 
can superimpose a number of such far field results over the length of the element. 
This is equivalent to using the high frequency model of Eq. (2.31) for a piston ele-
ment given as

�
(2.55)

and then breaking the element length into N segments in exactly the same fashion 
as done for our original Hankel function element model (see Eq. (2.49)) but where 
now within each segment (see Fig. 2.9) we have from the law of cosines

�
(2.56)

Keeping only the leading term in Eq. (2.56) for the 1/ r  term of Eq. (2.55) and both 
terms in the exponential of that equation we obtain

�
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Fig. 2.9   The geometrical 
parameters defining the nth 
segment of length Δd for an 
element of total length 2b. 
The distance xn

 is to the 
centroid of the nth segment 
and 2 /d b N∆ =   where N is 
the number of segments
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where v x xn= ′ − . But the integral in Eq.  (2.57) is just equal to 
/ 2 ( )k d nd D θ∆∆ ,  

where

� (2.58)

(see Eqs. (2.38) and (2.39)), so we find

�
(2.59)

which, comparing with Eq. (2.54), shows that the wave field of the element can be 
calculated as the superposition of single line source terms for each segment. Equa-
tion (2.59) gives us an expression for evaluating the wave field of any element, large 
or small, similar to the Hankel function model, as long as the segments are chosen to 
be small enough. We will call this model the multiple line source model.

As with the Hankel function model we can write Eq. (2.59) in non-dimensional 
form to give

�
(2.60)

where the normalized distance to the centroid of each segment, rn
, is again given 

by Eq. (2.50).
The MATLAB® function ls_2Dv given in Code Listing C.2 uses Eq. (2.60) to 

calculate the normalized pressure field, 0( , )/p x z cvρ  for a piston element where 
the center of the element can be offset a distance, e, in the x-direction so that the 
distance rn

 is again replaced by the modified expression of Eq. (2.53). The calling 
sequence for this function is very similar to that of rs_2Dv:

The optional function argument, Nopt, gives the number of segments. For Nopt = 1, 
the function implements a single line source model for the element. If this argument 
is not specified then the number of segments, N, is chosen so that a segment is never 
larger than one wavelength:
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which eliminates the possibility of grating lobes arising from choosing inadequate 
segment size when representing an element (recall b here is in mm, f is in MHz, c 
is in m/sec). However, in Chap. 4 we will show that regardless of the smallness of 
the segments used to represent an element, if the element size itself and gap size of 
an array combine to give a value of the array pitch that is greater than only one half 
a wavelength then similar grating lobes can appear in the wave field of the entire 
array.

Figure 2.10 shows the magnitude of the on-axis pressure for both a small and 
large piston element as calculated with either the Hankel function model or the mul-
tiple line source model (using Eq. (2.61) for determining N). It can be seen that the 
multiple line source model accurately predicts the response even at small distances 
from the element where near field effects are present. Similar agreement between 
the two models can be shown to exist for all points in the wave field except in a very 
small region directly adjacent to the face of the element for both large and small 
elements, so that the multiple line source model is an accurate and versatile model 
for both array elements and for large, single element transducers.

2.5  Radiation Through a Planar Interface

The behavior of a phased array element can be best described in the simple context 
of radiation into a single medium, but in practice arrays are often used in setups 
where an interface exists between the element and the point at which the fields are 
being evaluated. Thus, in this section we will examine how to include a planar in-
terface in modeling the radiated wave field.

Consider the setup of Fig. 2.11 where a planar element located in a fluid medium 
radiates sound into a second fluid medium through a plane interface. In [Schmerr] 
this type of problem was analyzed using both an angular plane wave spectrum in-

Fig. 2.10   Comparison of the magnitude of the on-axis normalized pressure, 
0/p cvρ , versus on-

axis distance, z, where the Hankel function model ( solid line) and multiple line source model ( cir-
cles) were used to model the waves from an element for a 2b = 0.6 mm (2 / 2.0)b λ = , b 2b = 6 mm 
(2 / 20)b λ = . Other parameters: f = 5 MHz, c = 1500 m/sec
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tegral and a Kirchhoff approximation approach in conjunction with the method of 
stationary phase. However, it was also shown that both of these methods, which in-
volve rather complex derivations, are equivalent to the use of simple high frequency 
ray theory methods so we will directly apply those ray methods here.

According to ray theory, at high frequencies the pressure at point x  due to a 
cylindrical wave propagating from a point ′x  on the face of the element can be 
calculated by following a bundle of rays as it propagates along a path from ′x  to a 
point xi  on the interface and then to x, where the path must satisfy Snell’s law [3]. 
Such a bundle is shown as the dashed lines in Fig. 2.12. If we assume the element 
acts as a piston velocity source, then at the interface point, xi, the incident pressure 
in the first fluid for a cylindrical wave traveling from ′x  to a point xi  for a small 
segment dx′  of that element, p i1( )x , is just

Fig. 2.11   Radiation of waves 
from an element in 2-D 
through a planar interface 
between two fluids

Fig. 2.12   Geometry of a 
bundle of rays that travels 
on a Snell’s law path from 
a point on the element to a 
point in the second medium
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� (2.62)

(see Eq.  (2.55) which is just an integral superposition of this type of term). The 
pressure at point xi  for the wave that is transmitted into the second medium, 2 ( ),ip x
is then

� (2.63)

where Tp  is the plane wave transmission coefficient (based on pressure ratios). As 
shown in Fig. 2.12, a bundle of these transmitted waves appears to originate from a 
virtual source point, xv , located at a distance rv

 along the refracted ray. It is easy to 
show, using Snell’s law that this distance is given by

� (2.64)

(the proof follows identical lines to the proof of Eq. (B.40) given in Appendix B for 
the virtual distance in the plane of incidence for rays traveling in 3-D). In propagat-
ing from xi  to x  along the refracted ray, the ratio of the magnitude of the pressures 
at these two points is inversely proportional to the ratio of the square roots of the 
distances from the virtual source [3] so that we have

�
(2.65)

Placing Eq. (2.63) into Eq. (2.65) gives

�
(2.66)

Summing all the small segments over the length of the array element, the total pres-
sure at x  from the element, p( )x , is

�
(2.67)

Equation (2.67) is the foundation for generating a multiple line source model for 
our two medium problem. This is in a very similar form to Eq. (2.55) for a single 
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medium and reduces to that equation when both media are identical. Evaluating 
Eq. (2.67), however, is more complex than Eq. (2.55) since the angles 

1 2( , )θ θ  and 
the distances ( , )r r1 2  are not known explicitly until the Snell’s law ray path from 
any point ′x  to x  is known. Such paths are determined once the locations of the 
points xi  on the interface are obtained. In Chap. 5, in discussing the development 
of time delay laws for steering and focusing through a planar interface, the location 
of the point xi  is found by explicitly solving for the zero of a function g i( )x  (see 
Eq. (5.18)). The same approach can be used here to obtain 

1 2( , )θ θ  and ( , )r r1 2
 for 

use in Eq. (2.67).
Consider now the case when the element is small enough so that the distances 

( , )r r1 2
 are approximately equal to ( , )r r10 20

 as measured along a Snell’s law ray path 
from the center of the element, xc, to point x  in the second medium (Fig. 2.13a). 
From the geometry of Fig. 2.13a we see that

�
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and, similarly,

� (2.69)

where ( , )e e10 20
 are unit vectors along the Snell’s law path from xc

 to x  in the first 
medium and second medium, respectively. Combining Eq.  (2.68) and Eq.  (2.69) 
gives

� (2.70)

where we have written x tI Ix= , with t  being a unit vector along the interface, as 
shown in Fig. 2.13a. But the term in parentheses in Eq. (2.70) vanishes because it is 
merely a statement of Snell’s law for the path from xc  to x, so that

� (2.71)

If we use this approximation in the phase term of Eq. (2.67) and replace the ampli-
tude terms by their values along the ray from xc  to x, we find

�
(2.72)

where Tp0 is the plane wave transmission coefficient along this ray and we have 
written 

10· sinT x θ= ′e x  with θ  being the angle that the unit vector e10
makes with 

respect to the normal to the element, as shown in Fig. 2.13b. The remaining integral, 
however, is just the length of the element multiplied by the element far field direc-
tivity (see Eq. (2.39)) so that we find, finally
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which is just a single line source model of the pressure field of the element. Obvi-
ously, this model can also be used to describe the radiation of a segment of an ele-
ment in a multiple line source model in the form

�
(2.74)

where 
10 10 /n nr r b= , 20 20 /n nr r b= . The MATLAB® function ls_2Dint (see Code Listing 

C.3) implements Eq.  (2.74) to calculate the normalized pressure,
1 1 0/p c vρ , for an 

element whose centroid is offset a distance, e (in mm), from the center of the array 
(Fig. 2.14). The calling sequence for this function is

where 2b is the length of the element (in mm), f is the frequency (in MHz), mat is 
a MATLAB® row vector containing the densities 

1 2( , )ρ ρ (in gm/cm3) and wave 
speeds ( , )c c1 2

(in m/sec) in the form [ ]1 1 2 2, , ,c cρ ρ , e is the offset of the center 
of the element from the array center (in mm), angt is the angle 

tθ of the array (in 
degrees), Dt0 is the vertical distance (in mm) from the interface to the center point, 
C, of the array, and P = ( , )x z is the point (in mm) in the second material at which 
the normalized pressure is calculated. Nopt is an optional input parameter. If Nopt 
is not specified, the number of element segments is chosen (using Eq. (2.61) again) 
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Fig. 2.14   Geometry for 
implementing a multiple 
line source model of a 1-D 
element of an array radiating 
waves through a planar inter-
face between two fluids
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so that they are never larger than one wavelength. Otherwise, the value of Nopt 
given is used as the number of segments. This function uses the auxiliary function 
pts_2Dintf (Code Listing C.4) to calculate the distance, xi, at which a ray (satisfy-
ing Snell’s law) intersects the interface when traveling from the centroid of an ele-
ment segment (see Fig. 2.14) to the point ( , )x z in the second medium. The calling 
sequence for this auxiliary function is

where xn is the distance, xcn
, from the center of the element to the center of the 

nth element segment (Fig. 2.14) and (c1,c2) are the wave speeds contained in mat. 
The function pts_2Dint evaluates the distance, xi

, by solving for the zero of a func-
tion g i( )x with Ferrari’s method which is coded in the MATLAB® function ferrari2 
(Code Listing C.5) used in Chap. 5 to develop the time delay laws for steering and 
focusing through a planar interface (see Eq. (5.18) and the following discussion in 
Chap. 5). The function pts_2Dint also uses a function init_xi (Code Listing C.6) to 
determine, based on the sizes of the vectors or matrices present in the ( , )x z vari-
ables, the size of the corresponding vector or matrix needed to hold the xi

calcula-
tions. The calling sequence for this function is

where V1 and V2 are the number of rows and columns in the initial matrix, xi, of 
zeros that will subsequently be used to hold the calculated xi values for each ele-
ment segment.

It is assumed that ( , )x z can be (vector, scalar) or (scalar, vector) pairs or equal 
sized vectors or arrays. Unless Nopt is specified, the frequency, f, must be a scalar. 
Figure 2.15 shows the magnitude of the on-axis normalized pressure calculated with 
ls_2Dint for a large element (b = 3 mm) at f = 5 MHz where both media have identi-
cal properties: 3

1 2 1.0 gm/cmρ ρ= =  and c c1 2 1500= = m/s . The center of the ele-

xi=pts_ 2Dintf (b, e, xn, angt, Dt0, c1,c2, x, z);>>  

[ ]xi, V1, V2 =init_ xi(x,   z);>>

Fig. 2.15   Comparison of 
the magnitude of the on-
axis normalized pressure, 

0/p cvρ , versus z where the 
multiple line source model 
for radiation through an 
interface ( solid line) and the 
Hankel function model for 
a single medium ( circles) 
were used to model the 
waves from an element: 
2b = 6 mm, f = 5 MHz, 

0 1 mmtD =  , 0 ,tθ °=  
3

1 2 1.0 gm/cmρ ρ= = , 
1 2 1500 m/sc c= =
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ment is located at a distance of Dt0 1= mm  from the interface at an angle 0tθ °= . In 
Fig. 2.15 the results are compared to the Hankel function model for a single medium 
(see also Fig. 2.10b which considers this same case using multiple line source and 
Hankel function models for a single medium). Figure 2.16 shows a comparisons of 
cross-axis pressure values at a distance z = 15 mm in the “second” medium for the 
same case. As expected, there is close agreement between both models in these test 
cases. Figure 2.17 shows an image of the magnitude of the normalized pressure 
wave field for the same large element (b = 3 mm) located in water and radiating at 
oblique incidence through a plane interface at f = 5 MHz. Although the model used 

Fig. 2.16   Comparison of the 
magnitude of the cross-axis 
normalized pressure, 0/p cvρ
, versus x at z = 15 mm where 
the multiple line source 
model for radiation through 
an interface ( solid line) 
and the Hankel function 
model for a single medium 
( circles) were used to model 
the waves from an ele-
ment: 2b = 6 mm, f = 5 MHz, 

0 1 mmtD =  , 0 ,tθ °=  
3

1 2 1.0 gm/cmρ ρ= = , 
1 2 1500 m/sc c= =  

Fig. 2.17   The magnitude 
of the normalized pres-
sure, 

0/p cvρ , in “steel” 
( 3

2 7.9 g ,m/cmρ =  
2 5900 m/sc = ) gener-

ated by an element in 
water ( 3

1 1.0 g ,m/cmρ  =  
1 1480 m/s)c =  with 

2b = 6 mm, f = 5 MHz, 
10.217tθ °= , 

0 50.8 mmtD =
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here is for an interface between two fluids, we have let the properties of the second 
fluid to be that of steel so that we could consider a case similar to what might be 
encountered at a water/steel interface. In Chap. 7 we will develop the array beam 
model needed for such fluid/solid cases. The angle of the element was chosen here 
to be 10.217tθ °=  which corresponds to a refracted angle of 45° in the “steel”. The 
distance 

0 50.8tD = mm in this case. It can be seen in Fig. 2.17 that the main beam 
in the “steel” does propagate in the 45° direction but there are also some smaller 
refracted lobes as well.
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Chapter 3
Large, Single Element Transducer Models

The last Chapter showed that the superposition of multiple high frequency line 
sources generated an effective model of the acoustic wave field of an element. 
While that model can be used for any size element, there are a number of alternate 
models available for large, single element transducers that are useful for under-
standing the overall behavior of an array of small elements. Thus, in this Chapter we 
will consider such alternative models and demonstrate the principles behind beam 
steering and focusing with those models. A similar approach was used by Ziomek 
[1, 2] to describe sound beams in underwater acoustics. As in Chap. 2, we will treat 
the element as a 1-D source of sound radiating waves in two dimensions.

3.1 � The Paraxial Approximation and a Fresnel Integral 
Model

Consider a single element transducer of length 2b (see Fig. 3.1) where the length 
is very large in comparison to the wave length (2 / 1)b λ >> . As seen in Chap. 2, a 
large transducer will generate a highly directional (well-collimated) beam of sound 
that travels in a direction normal to the face of the transducer. We will start from the 
high frequency ( )kr >> 1  model of Eq. (2.31) which can be written as:

� (3.1)

The radius r x x z= − ′ +( )2 2  but since the sound beam is essentially traveling in 
the z-direction, if we are not too close to the face of the transducer the beam will 
primarily be in the region where ( ) /x x z− ′ << 1 and r can be expanded in that small 
parameter. This approximation is called the paraxial approximation. In this approxi-
mation the radius is given by

�
(3.2)
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so Eq. (3.2) becomes

� (3.3)

If we make the change of variables ( ) /u x x k zπ= − ′  and assume we have 
piston behavior then

� (3.4)

which can be written as the difference of two Fresnel integrals as

� (3.5)

where the Fresnel integral, F x( ), is defined as

� (3.6)

The MATLAB® function fresnel_int(x) defined in Code Listing C.8 evaluates the 
Fresnel integral numerically. This function is used in the beam model fresnel_2D(b, 
f, c, e, x, z), given in Code Listing C.7, which computes the normalized pressure 
wave field of a large 1-D piston element transducer. The calling sequence for this 
function is

>> p = Fresnel_2D(b, f, c, x, z);
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Fig. 3.1   A large single ele-
ment transducer radiating 
into the region z > 0
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where 2b is the length of the element (in mm), f is the frequency (in MHz), c is the 
wave speed (in m/s), and (x, z) are the coordinates (in mm) in the fluid at which 
the normalized pressure, 0/p cvρ , is calculated. Figure 3.2 shows a comparison of 
both on-axis and cross-axis pressure profiles for a 12 mm long element radiating at 
5 MHz into water as computed with the Fresnel integral model and the multiple line 
source model. It can be seen that the Fresnel integral model accurately predicts the 
wave field in these plots. This is because the paraxial approximation is well satis-
fied for the highly directional beam emitted by an element that is large with respect 
to the wavelength. For the small elements present in arrays, this approximation can 
only be used in a much more limited sense. However, the Fresnel integral model 
gives us a direct way to use a model of a large, single element transducer to study 
the phasing effects used by arrays to steer and focus beams, as will be shown in the 
next section.

3.2 � Beam Steering and Focusing of a Large Element

As discussed in Chap. 1, an array of elements can be steered and/or focused by ap-
plying an appropriate set of delays, called a delay law, to the elements. A delay in a 
time domain response, however, corresponds to multiplying the frequency domain 
response (frequency spectrum of the time domain signal) by a phase term that is 
linear in frequency and proportional to that delay. This is just the consequence of 
the properties of the Fourier transform since if a time domain function, f t( ), has 
a frequency spectrum (Fourier transform), ( )F ω , then a delayed signal, f t td( )− ∆ , 
where ∆td  is the delay, has a spectrum exp ( ) ( )di t Fω ω∆  [Schmerr]. In an array ly-
ing on the x-axis, this delay can be expressed as a function of the discrete centroid 
coordinate, xn, of each element. To study the effects of different delay laws, in this 

Fig. 3.2   Comparison of the multiple line source model with the Fresnel integral model for the 
transducer parameters; b = 6 mm, f = 5 MHz, c = 1500 m/s. a The on-axis normalized pressure ver-
sus distance z, and b the cross-axis normalized pressure at z = 60 mm versus the distance, x. Solid 
line—multiple line source model, Circles—Fresnel integral model
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section we will consider a large, single element transducer on the x-axis where we 
imagine applying a continuous time delay, ∆t xd ( )′ , on the face, − ≤ ′ ≤b x b, of that 
element. In practice, it is not possible to actually apply such continuous delays to a 
single element but this idealized case mimics the effects of the discrete delays that 
are applied to arrays and provides a means to study their effects on the generated 
sound beam.

3.2.1 � Beam Steering

We will again start with the high frequency expression for the sound field of an ele-
ment derived in the last Chapter, Eq. (2.31), which is in the form:

� (3.7)

and write the radius, r, in terms of a rotated set of coordinates, ( , )x z , (see Fig. 3.3) 
i.e.

� (3.8)

which can be expanded in the exact form

� (3.9)

We are using rotated coordinates since in this section we will examine delay laws 
that steer the beam produced by a large element to directions away from the z-axis. 
In this case the beam will be best described in a rotated set of coordinates. If the 
steered beam is well-collimated in the z -direction, then it makes sense to apply 
the paraxial approximation to the radius r in that direction. In our expansion of the 
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Fig. 3.3   Rotated coordinates 
for defining the wave field of 
a linearly phased element
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radius in Eq.  (3.2), we used the expansion 1 (1 / 2)r z zε ε= + ≅ + . If we write 
Eq. (3.9) in a similar form as 1r z ε= + , where

�
(3.10)

the appearance of z  in the numerator of the ε  term means that if we expand r for 
′ <<x z/ 1 and wish to keep all quantities to O x z( / )′ 2 we must also include the next 

term in the expansion, namely

�
(3.11)

Using this expansion we obtain

� (3.12)

which, when placed into Eq. (3.7) gives

� (3.13)

Now, suppose the velocity on the face of the element has a constant amplitude, 
0 ( )v ω , (piston behavior) but also with a phase term, i.e.

� (3.14)

which corresponds to specifying a continuous, linearly varying time delay, 
∆ Φt x x cd ( ) sin /′ = ′ , over the face of the transducer element. Then we see that this 
phase term just cancels the one appearing in Eq. (3.13) and if we write that equation 
in terms of the variable w x= ′ cos Φ, it becomes

� (3.15)

The integral of Eq. (3.15) is of the same form as Eq. (3.3) so that we can follow the 
same steps used with that equation to write the pressure in terms of Fresnel inte-
grals. The result, in the ( , )x z  coordinates, is explicitly:
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�

(3.16)

If we compare Eq. (3.16) with Eq. (3.5) for the radiated field of a piston transducer, 
we see that the linear time delay law ∆ Φt x x cd ( ) sin /′ = ′  produces a wave field of 
a “virtual” rotated transducer (Fig. 3.4) of length 2bcos Φ having a driving velocity 
of v0 / cos Φ on its face.

Thus, a spatially varying time delay on the face of the element that is linear (in 
′x ) of the form

� (3.17)

steers the entire beam of the transducer along an axis that makes an angle, Φ, with 
respect to the z-axis. We should note that the “delay” law of Eq.  (3.17) actually 
involves both delays (for ′x  positive) and advances (for ′x  negative). It is not physi-
cally possible to generate time advances in a phased array but by simply adding a 
positive, constant term to Eq. (3.17) one can generate a steering law consisting of 
delays only.

3.2.2 � Steering in the Far Field

In Chap. 2 we obtained explicit results for the wave field in the far field of the ele-
ment. We found the far field pressure was given by Eq. (2.35):

� (3.18)

where

� (3.19)

and sinxk k θ= . If we apply the velocity of Eq. (3.14) to the face of the element, 
then the integral yields instead

� (3.20)

which shows that the far field pressure is

� (3.21)
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and the directivity of the element is now

� (3.22)

Since the directivity is governed by the sinc function, sinc x x x≡ sin / , which has 
its maximum at x = 0, it is clear from Eq. (3.22) that that maximum (and hence the 
entire directivity function) has been steered to the θ = Φ direction by the linear 
phasing of the element.

We can also relate these results with those of the last section by not-
ing that in the rotated ( , )x z  coordinates we have wave numbers ( , )k kx z  where 
k k kx z x= +sin cosΦ Φ. But in the paraxial approximation k k k kz x= − ≅2 2  so 
that k k kx x= +sin cosΦ Φ and we can write Eq. (3.21) in the rotated coordinates as

� (3.23)

where sinxk k θ= ′ and θ′  is measured from the z -axis (Fig. 3.4). Comparing Equa-
tion (3.23) with the far field expression of Eq. (2.38) for an element without steering 
shows that in the paraxial approximation the far field response of the linear phased 
element in the rotated coordinates is identical to the far field from a virtual trans-
ducer of length 2bcos Φ which has a velocity v0 / cos Φ acting on its face, which is 
consistent with our results in the previous section.

3.2.3 � Beam Focusing

For a large single element piston transducer, one way that focusing can be achieved 
in two dimensions is to place a set of uniform normal velocity sources on a circular 
aperture of radius R0  instead of a straight aperture, as shown in Fig. 3.5. This is 
the 2-D equivalent of the O'Neil model for a spherically focused transducer [3], 
[Schmerr]. The same focusing effect, however, can also be simulated by applying 
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Fig. 3.4   The rotated “vir-
tual” transducer that gener-
ates the same wave field as a 
linearly phased element in the 
paraxial approximation

 



52 3  Large, Single Element Transducer Models

the uniform sources over the straight aperture (located at z = 0) and changing the 
time of arrival of the waves from different locations on the transducer face so that 
they are all in phase on the circular aperture, just as they are in the configuration of 
Fig. 3.5. First, consider a wave that has traveled from a point ′x  at z = 0 to the loca-
tion of the geometrical focus on the z-axis (see Fig. 3.6). Then consider the same 
wave traveling on the same path from the circular aperture to the focus. The time 
difference between these two cases is simply

�
(3.24)

In the paraxial approximation 0( / 1)x R′ �  this time difference is approximately

�

(3.25)

corresponding to a propagation phase delay term given by
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Fig. 3.6   Geometry for 
defining the phasing needed 
to focus the waves from an 
unfocused element to a point 
on the z-axis

 

Fig. 3.5   A focused piston 
transducer consisting of a set 
of uniform velocity sources 
on a circular line of radius R0

 



533.2 � Beam Steering and Focusing of a Large Element�

�
(3.26)

Thus, if on the planar aperture we specify a velocity field given by

� (3.27)

we will produce the same cylindrical focusing effect of the circular aperture. Note 
that the phase term in Eq. (3.27) has a negative sign since for all ′x  on the plane z = 0 
we need to advance the arrival time of the waves relative to the arrival at the focus 
from the point ′ =x 0  to have them arrive in phase on the circular element. Thus, 
our “delay” law is the negative of the time differences appearing in Eqs. (3.25) and 
(3.26), i.e.

� (3.28)

Again, in this form we do not have a physically possible delay law but by simply 
adding a constant delay term to Eq. (3.28) we can turn these advances into a law 
with delays only.

Now, consider the wave field of a large element where the velocity on the ele-
ment face is given by Eq. (3.27). Then from Eq. (3.7) the pressure is given by

� (3.29)

In the paraxial approximation (see Eq. (3.2)) then we have

�
(3.30)

where

� (3.31)

But we can “complete the square” in the phase term appearing in the integrand of 
Eq. (3.30) and rewrite that equation as

� (3.32)
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Now, consider first the case when u0 is positive ( )z R< 0 . If we let 
0 0( / ) /u x x u ku zπ= −′  then Eq. (3.32) can be put in the form

� (3.33)

which can again be expressed as two Fresnel integrals:

� (3.34)

and we have let u u0 0=  to emphasize that it is positive.
If u0 is negative ( )z R> 0  then we can write u u0 0= −  in Eq. (3.32) and follow 

the same steps that led to Eq. (3.34). In this case we find

� (3.35)

The ( )* here indicates the complex conjugate.
Now, consider the on-axis response of the element in the paraxial approximation. 

This response can be obtained from Eqs. (3.34) and (3.35) by setting x = 0 to obtain

�
(3.36)

Equation (3.36) is very similar in form to the unfocused on-axis response. To obtain 
the comparable on-axis fields in the unfocused case we can set x = 0 in Eq. (3.5) to 
obtain

�
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If we set R0 = ∞ in Eq. (3.36) then u0 1=  and Eq. (3.36) just reduces to the unfo-
cused case of Eq. (3.37).

The presence of the u0  term in both the Fresnel integral and its coefficient 
for the focused case causes the pressure to increase near the geometrical focus at 
z R= 0. Although the u0  term in the denominator appears to make the pressure 
singular at the geometric focus, the presence of the same term in the Fresnel integral 
cancels this behavior and the pressure is well behaved and finite at the geometric 
focus ( )z R= 0 , where

� (3.38)

The MATLAB® function on_axis_foc2D given in Code Listing C.9 uses Eq. (3.36) 
to compute the normalized pressure, 0/p cvρ , and uses the explicit value given by 
Eq. (3.38) near the geometric focus. The calling sequence for this function is

>> p = on_axis_foc2D(b, R, f, c, z);

where 2b is the length of the element (in mm), R is the focal length (in mm), f is the 
frequency (in MHz), c is the wave speed (in m/s), and z is the on-axis distance (in 
mm). Figure 3.7 plots the magnitude of the on-axis response for a 5 MHz, 12 mm 
long transducer radiating into water as considered in Fig. 3.2 but where now the 
transducer is cylindrically focused with a focal length of 100 mm. It can be seen 
from that figure that the amplitude is indeed larger in a region about the geometrical 
focus.

It is possible to examine the cross-axis behavior of the pressure field explicitly 
at the geometric focus z R= 0. In that case, we start from Eq. (3.7) and express the 
radius r as (see Fig. 3.8)

� (3.39)
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Fig. 3.7   The magnitude 
of the on-axis normalized 
pressure of a 12 mm long, 
100 mm focal length element 
radiating at 5 MHz into water
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We will expand Eq. (3.39), assuming ′ <<x R/ 1  (paraxial approximation) and also 
assume the angle θ  will be small in anticipation that the field near the focus will be 
confined to a relatively small region about the z-axis. In this case, we can also let 

0R z R≅ =  and write

� (3.40)

and place this approximation into Eq. (3.7) to obtain

� (3.41)
However, if the velocity field is given by Eq. (3.27) then Eq. (3.41) reduces to

� (3.42)

which is identical in form to the far-field behavior of the planar piston probe (see 
Eq. (2.38)). We can use Eq. (3.42) and the results from Chap. 2 for the far field of 
a planar transducer to estimate the width of the focused beam at the geometrical 
focus since the magnitude of the pressure drops to one half its on-axis value at 

6sin 1.8955dBkb θ− =  and, since 6 6sin /dB dBx Rθ− −=  (see Fig. 3.8) and R R≅ 0, we 
have approximately

� (3.43)

It is certainly not obvious how these explicit results on the plane of the geometric 
focus are compatible with the Fresnel integral expressions (Eqs. (3.34) and (3.35)), 
which are valid for both z R< 0 and z R> 0, respectively. Since on the plane of the 
geometric focus u0 0→ , we need to examine that limit for the terms
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� (3.44)
which appear in both of those expressions. When the argument of the Fresnel inte-
gral is large, that integral behaves asymptotically as [4]

� (3.45)

so that the leading constant terms in Eq. (3.45) cancel in Eq. (3.44) and near z R= 0
 

we have

� (3.46)

But the terms involving u b0
2  vanish on the geometric focal plane and 

0/ sinx R θ=  
(see Fig. 3.8) so we can reduce and rewrite Eq. (3.46) as

� (3.47)

which is real so from either Eq. (3.34) or (3.35) we find the same result, namely

� (3.48)

which is identical to the focal plane expression previously obtained in Eq. (3.42).

3.2.4 � Beam Steering and Focusing

From the results of the previous sections it might appear that to both steer and focus 
a large single element transducer then one needs only add the time delays for steer-
ing and focusing to obtain a delay law

� (3.49)
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but this result is incorrect! To see why, consider the single element transducer in 
Fig. 3.9 where we want to focus the waves at a distance R0 and at an angle Φ as 
shown. The propagation time delay for a wave going from a point on the transducer 
face to the point x in the fluid is just

�
(3.50)

where we have included a constant term to make the total propagation time delay 
equal to zero at ′ =x 0. In the paraxial approximation ′ <<x R/ 0 1  so if we expand 
the square root in Eq.  (3.50) using three terms in the expansion (see Eq.  (3.11)) 
again, we obtain

� (3.51)

To steer the transducer beam to an angle Φ and focus at a distance R0, we must 
cancel these propagation delays by applying the negative of these values at the 
transducer face, giving the time delay law

�
(3.52)

This result can be interpreted as follows. The first term in Eq.  (3.52) steers the 
beam of the transducer in the Φ direction and produces the field of the virtual 
transducer shown in Fig. 3.4. To focus this virtual transducer at a distance R0, we 
must then apply a quadratic time delay across the face of this virtual transducer, i.e. 
along the x  axis of Fig. 3.4, not along the original transducer face (the ′x  axis), as 
Eq. (3.49) assumes. This simply corresponds to replacing ′x  distance in Eq. (3.49) 
by x x= ′ cos Φ, to obtain the correct focusing term of Eq. (3.52).

If we use the time delays of Eq. (3.52) in the velocity field on the face of the 
transducer, i.e. if we set

�
(3.53)
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and place this velocity in Eq. (3.7) and expand the radius r in rotated coordinates 
( , )x z  as done previously in Eq. (3.12), then we find

� (3.54)
where

� (3.55)

But letting w x= ′ cos Φ gives

� (3.56)

Equation (3.56) is in the same form as Eq. (3.30) for the focused case. Taking the 
same steps as in that case we find for both steering and focusing

� (3.57)
for u0 0≥  ( )z R≤ 0 , and

� (3.58)
for u0 0<  ( )z R> 0 .

These results again are in the form of a virtual rotated transducer as discussed 
previously. If we set x = 0, we obtain the pressure along the central (z ) axis of the 
steered and focused transducer, which has the much simpler form

� (3.59)
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which (compare to Eq. (3.36)) is indeed just the on-axis wave field of a virtual ro-
tated piston element of length 2bcos Φ having a velocity v0 / cos Φ on its face and 
focused at z R= 0.

3.3 � Amplitude Weighting

In phased arrays, in addition to delaying the individual elements of the array to 
generate beam steering and focusing, one can weight each element differently by 
providing different gains to the elements during either sound generation, reception, 
or both. This weighting is called apodization. Here, we will examine the analogous 
situation where we specify continuous amplitude profiles on the face of a large, 
single element transducer.

For a single element transducer the far-field behavior was given by Eq. (3.18) 
in terms of the Fourier transform of the velocity field on the face of the transducer, 
V kx( ), where recall

� (3.60)

and sinxk k θ= . Now, let the velocity field be defined in a separable form by an 
amplitude term, 0 ( )v ω , and a spatial distribution terms, ( )C x′� , i.e.

� (3.61)

Then

� (3.62)

where C kx( ) is the corresponding spatial Fourier transform of �C x( )′  given by

�
(3.63)

Rewriting Eq.  (3.18) in terms of this transform, the far-field pressure can be ex-
pressed as

� (3.64)

Consistent with how we defined the total directivity of the array (see Eqs. (2.38) 
and (2.39)) the far-field pressure can also be expressed in terms of the far-field 
directivity, ( )bD θ  of the single element transducer as

�
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Comparing Eq. (3.65) with Eq. (3.64) we see that

�
(3.66)

For a piston transducer of radius b, �C x x b( ) ,′ = ′rect( ), where

�
(3.67)

the spatial Fourier transform, C kx( ),then has the form (see Eq. (2.37) with v0 1= )

� (3.68)

Figure 3.10 plots this directivity for a 12 mm long ( b = 6 mm) piston transducer 
radiating into water at 5 MHz. As is typically the case for a large single element 
transducer or for an array, in the far field one will see a beam structure with a large 
main lobe as well as smaller side lobes. It is possible to reduce the amplitude of the 
side lobes appearing in Figure 3.10 relative to the main lobe by tailoring the spatial 
amplitude behavior. This is generally the purpose behind amplitude weighting in a 
phased array. For example, let the amplitude profile be given by

� (3.69)

where C0 and L are two arbitrary constants. This profile is called a cosine window. 
We can write this cosine window in the alternate form

�
(3.70)
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so that the Fourier transform is given directly by

� (3.71)

Normally one chooses L = 2b so that the amplitude is tapered to zero at x b= ± . In 
that case, since sin ( / 2) cos ( )x xk b k bπ± = ±  we find

� (3.72)

If we let 0 / 2C π=  from Eq. (3.66) we see that we will generate a “normalized” 
directivity associated with this case that will have a maximum amplitude of one 
at kx = 0 , just as in the piston case. This normalized directivity is also plotted in 
Fig. 3.10 so that it can be compared to the directivity of the uniform amplitude (pis-
ton) case plot in that figure. It can be seen that the cosine amplitude weighting does 
indeed reduce the amplitude of the side lobes, but Fig. 3.10 also shows that with this 
side lobe reduction comes some broadening of the main lobe. Thus, other types of 
weighting functions (windows) may be considered that have different effectiveness 
in balancing these two effects. For example, the continuous Hanning amplitude 
window function (also known as the Hann window, the raised cosine window or the 
cosine squared window) is given by

� (3.73)

while the Hamming amplitude window is

� (3.74)

and the Blackman amplitude window is

� (3.75)

Figure 3.11 shows each of these window functions. We have written these three 
windows in terms of a length, L. For the single element transducer case one general-
ly sets L b= 2 . With this choice all of these windows (except the Hamming window) 
tapers to zero at the ends of the element, as can be seen in Fig. 3.11. However, as 
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shown in the next Chapter, for an array which uses discrete versions of these ampli-
tude weights, the tapering to zero is normally done at the centroids of the first and 
last elements, which leads to a different choice for L. The spatial Fourier transforms 
of all these windows can be obtained in the same fashion as done for the cosine 
window (by writing the cosine terms in the form of a sum of complex exponentials 
which allows us to perform the Fourier transforms directly). We find:

Hanning window:

� (3.76)

Hamming window:

�
(3.77)

Blackman window:

�
(3.78)

Another commonly discussed window is the triangular window (Fig. 3.12) where

� (3.79)

To obtain the spatial Fourier transform of this window, it is convenient to use a 
property of the Fourier transform involving differentiation, namely
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This is useful for the triangular window since two derivatives of that window gives 
a form in terms of delta functions only:

�
(3.81)

whose spatial Fourier transform can be obtained directly to give

�
(3.82)

But the term in brackets in Eq. (3.82) can be rewritten in terms of the square of dif-
ference of two terms, i.e.

� (3.83)

which then can be put in the even simpler form:

� (3.84)

To compare the performance of these various windows we have plotted in Fig. 3.13 
their normalized directivities, DN

, obtained by choosing the constant C0
 so that 

the magnitude of the directivities were all equal to one at 0θ = . Figure 3.13a com-
pares the rectangular (piston) window with the cosine and triangular windows, 
while Fig. 3.13b compares the rectangular window with the Hanning, Hamming, 
and Blackman windows. From the amplitude curves of Fig. 3.13 one can calculate 
the − 6 dB angular width of the main lobe of the far field response and also deter-
mine how small the amplitude of the first lobe is relative to the main lobe amplitude. 
Table 3.1 summarizes these results.
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Generally, Table 3.1 shows that a window that reduces the amplitude of the side 
lobes also increases the width of the main lobe. The Hamming window, however, is 
an exception to that rule as it has both a smaller main lobe width and first side lobe 
amplitude in comparison to the Hanning window. The windows discussed in this 
section are the “classical” functions often described in the literature. However, there 
are alternative windows that may be better for a particular application [5].

3.4 � Multi-Gaussian Beam Model

For large, single element transducers in addition to the Fresnel integral models one 
can use a superposition of a small number of Gaussian beams to represent the radi-
ated field of a piston transducer. As will be shown here, multi-Gaussian beam mod-
els also can provide an effective tool for modeling both beam steering and focusing.

If we let the pressure ( , , ) ( , , ) exp ( )p x z P x z ikzω ω=  in Helmholtz’s equation 
(Eq. (2.6)) we find

Table 3.1   The − 6 dB angular width of the far field directivity main lobe and the amplitude of 
the first side lobe relative to the amplitude of the main lobe for different choices of the window 
function
Window function

6Bθ−  width of main lobe First side lobe amplitude (dB)

Rectangular 1sin (0.600 / )Lλ− − 13.3
Cosine 1sin (0.817 / )Lλ− − 23.0
Triangular 1sin (0.885 / )Lλ− − 26.5
Hanning 1sin (0.997 / )Lλ− − 31.5
Hamming 1sin (0.905 / )Lλ− − 44.0
Blackman 1sin (1.149 / )Lλ− − 58.1

Fig. 3.13   The normalized directivities for different amplitude weighting windows. a Comparison 
of the rectangular window ( solid line), cosine window ( dashed line), and triangular window ( dot-
ted line). b Comparison of the rectangular window ( solid line), Hanning window ( dashed line), 
Hamming window ( dash-dot line), and Blackman window ( dotted line).
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�
(3.85)

If the waves are all traveling in approximately the z-direction then we can make 
the paraxial approximation, which is equivalent to the mathematical condition 
[Schmerr-Song]

� (3.86)

and Eq. (3.85) becomes the 2-D paraxial wave equation for P given by:

�
(3.87)

One solution of Eq. (3.87) is in the form of a Gaussian given by

�
(3.88)

Placing this solution into Eq. (3.87) we obtain the two equations

� (3.89)

which can both be solved to find

� (3.90)

where ( , )P q0 0  are constants. Thus, the pressure is given by a Gaussian beam of the 
form

� (3.91)

At z = 0 we see the pressure is given in terms of the ( , )P q0 0
 constants as

� (3.92)
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which can be expressed in terms of constants ( A, B) as

�
(3.93)

Comparing Eqs. (3.92) and (3.93) gives the relations between these constants:

�

(3.94)

Using Eq. (3.94) the propagating 2-D Gaussian beam of Eq. (3.91) can be written 
in terms of ( A, B) as

�
(3.95)

Another way to obtain this propagating Gaussian beam directly is to use Eq. (2.29) 
for the pressure in terms of a Hankel function, i.e.

� (3.96)

If we replace the Hankel function by its high frequency asymptotic value to obtain

� (3.97)

and assume that the normal velocity on the surface at z = 0 is given by the Gaussian 
velocity profile

� (3.98)

then the pressure wave field is given by

� (3.99)

where A, B, and b are constants, 
0 ( )v ω  is a velocity spectrum, and the radius 

r x x z= − ′ +( )2 2 . Now assume x x z, ′ <<  in this radius expression. This is 
equivalent to saying all the waves are propagating in the z-direction, i.e. we are 
again using the paraxial approximation. Then we have, approximately,

� (3.100)
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When the second exponential in Eq. (3.100) is expanded out we obtain

� (3.101)

However, this integral can be evaluated exactly [Schmerr-Song]. After combining 
terms and some algebra one finds

� (3.102)

which is of exactly the same form as Eq. (3.95) in terms of the constants A and B. 
This result shows that if we generate a Gaussian velocity profile on z = 0 in the par-
axial approximation this Gaussian profile simply launches a Gaussian beam travel-
ing in the fluid for z > 0 . In the paraxial approximation the pressure and velocity, 
vz

, satisfy the plane wave relationship 
zp cvρ=  [Schmerr-Song] so the velocity is 

also in this same form:

�
(3.103)

In 1988 Wen and Breazeale [6] showed that one could model the wave field of a 
circular piston transducer radiating waves in three dimensions by superimposing ten 
Gaussian beams having different complex coefficients ( , )A Bn n

.These coefficients 
were obtained with a non-linear least squares optimization procedure to find the 
( , )A Bn n  that best matched a constant piston profile on the transducer face given by

� (3.104)

where ρ  was a radial coordinate and b was the radius of the transducer. In 1990, 
Wen and Breazeale improved the accuracy of their model with a slightly larger set 
of 15 Gaussian beams [7]. If we simply set xρ =  we can use this same set of coef-
ficients for our 2-D problem for a 1-D transducer of length 2b.

Using Eq. (3.102) and the 15 Wen and Breazeale coefficients the pressure wave 
field in our 2-D problem can be written compactly as

�
(3.105)
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� (3.106)

The MATLAB® function Gauss_2D(b, f, c, x, z) in Code Listing C.10 uses 
Eq.  (3.106) and the 15 Wen and Breazeale coefficients obtained from the MAT-
LAB® function gauss_c15 (Code Listing C.11) to implement a 2-D multi-Gaussian 
beam model for a piston transducer of length 2b. The calling sequence for this 
function is

>> p = Gauss_2D(b, f, c, x, z);

where 2b is the element length (in mm), f is the frequency (in MHz), c is the wave 
speed (in m/s), and (x, z) is a point in the fluid (in mm) at which the normalized 
pressure, 0/p vρ , is calculated. Figure 3.14 shows a comparison of a beam profile 
calculated with the multi-Gaussian beam model and the Fresnel integral model. 
Both beam models are based on the paraxial approximation but recall in Fig. 3.2b 
a similar comparison was also made with a multiple line source model. From these 
figures it can be seen that both paraxial models accurately predict the wave field of 
the large (b = 6 mm) element. Similar results can be found with beam models based 
on the paraxial approximation for points about a diameter away from the face of the 
element [Schmerr-Song].

Now, consider the case where a linear phase variation of the form exp( sin )ikx′ Φ  
is applied to a Gaussian velocity profile Av B x b0

2 2exp( ( ) / )− ′  on the surface of 
a 1-D transducer. Then a Gaussian beam of exactly the same form as found in 
Eq. (3.102) is generated traveling in the z -direction with amplitude Av0 / cos Φ and 
where b b→ cos Φ. This result can be obtained directly by using this velocity pro-
file in Eq. (3.97):

� (3.107)
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Fig. 3.14   Comparison of the 
multi-Gaussian beam model 
with the Fresnel integral 
model for the transducer 
parameters; b = 6 mm, 
f = 5 MHz, c = 1500 m/s. 
Shown is the cross-axis nor-
malized pressure at z = 60 mm 
versus the distance, x. Solid 
line—Fresnel integral model, 
Circles—multi-Gaussian 
beam model (see Fig. 3.2b 
for a similar comparison)
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Placing the approximation for the radius r in the ( , )x z  coordinates obtained previ-
ously in Eq. (3.12) we then obtain

� (3.108)
and letting w x= ′ cos Φ again, we find

�
(3.109)

which is similar to Eq.  (3.100) so following the same steps taken following that 
equation, we see this linearly phased Gaussian velocity profile at ′ =z 0 generates a 
Gaussian beam traveling in the fluid given by

� (3.110)

where in terms of b b= cos Φ, �A A= / cos Φ we have exactly the same form as 
Eq. (3.102).

It is easy in a Gaussian beam model to include the effects of both steering and 
focusing because in the paraxial approximation focusing can be introduced in addi-
tion to steering by adding a term on the transducer face with a quadratic phase varia-
tion − ′( ) cos /x R c2 2

02Φ  (see Eq. (3.52)). But this additional phase term changes 
Eq. (3.109) to

� (3.111)
so that if we define a �B  coefficient as

� (3.112)

Equation (3.112) becomes

� (3.113)
which is identical in form to Eq. (3.109) so that the steered and focused Gaussian 
beam is in the same form as Eq. (3.110) with �B  simply replacing B to obtain

� (3.114)

2 2

2
0

( , ) ( ) ( cos )
exp( ) exp exp ,

( ) 2 2

p k B x x x
A ikz ik dx

cv iz zb

ω
ρ ω π

+∞

−∞

   − Φ′ ′= − ′   
   

∫
x

2 2

2
0

( , ) ( )
exp( ) exp exp ,

( ) 2 cos 2( cos )

p k A Bw x w
ikz ik dw

cv iz zb

ω
ρ ω π

+∞

−∞

   −
= −   Φ Φ   

∫
x

( ) ( )
2 2

2 2
0

( , ) ( ) / 2
exp ( )exp ,

( ) ( ) / 2 2 ( ) / 2

p ik b B x
A ikz ik

cv z ik b B z ik b B

ω
ρ ω

 
 


−


=

− −
x �

2 2 2

2
0 0

( , ) ( )
exp( ) exp exp .

( ) 2 cos 2 ( cos ) 2

p k A ikw Bw x w
ikz ik dw

cv iz R b z

ω
ρ ω π

+∞

−∞

   −= − −   Φ Φ   
∫

x

�B B
ikb

R
= +

2

02

2 2

2
0

( , ) ( )
exp( ) exp exp ,

( ) 2 cos 2( cos )

p k A Bw x w
ikz ik dw

cv iz zb

ω
ρ ω π

+∞

−∞

   −
= −   Φ Φ   

∫
x �

( ) ( )
2 2

2 2
0

( , ) ( ) / 2
exp( )exp .

( ) ( ) / 2 2 ( ) / 2

p ik b B x
A ikz ik

cv z ik b B z ik b B

ω
ρ ω

 −  =
− −  

x �
�

� �



713.5 � Summary

Using 15 modified Wen and Breazeale coefficients / cos ,n nA A= Φ� 2
0/ 2n nB B ikb R= +� , 

we can then obtain the pressure wave field of a steered and focused 1-D piston trans-
ducer of length 2b as

� (3.115)

where

� (3.116)

3.5 � Summary

In this chapter we have seen how applying a linear time delay law to the face of 
a large single element piston transducer can steer the sound beam, while applying 
a quadratic delay can produce focusing of the beam. Explicit expressions for the 
steered and focused beams were found using both a Fresnel integral beam model 
and a multi-Gaussian beam model. Both of those beam models showed that the 
steered wave field was equivalent to the wave field of a rotated virtual transducer 
(Fig. 3.4) with a driving velocity on its face increased by a factor of 1/ cos Φ . This 
amplitude increase occurs because the effective transducer size is reduced in width 
as a result of steering.

We should note that the quadratic time delay law used here to demonstrate focus-
ing was only an approximate focusing delay law since it was obtained with the par-
axial approximation. This approximation was consistent with the Fresnel integral 
model and the multi-Gaussian beam models used to discuss steering and focusing 
since those models also relied on the paraxial approximation. However, when de-
veloping focusing laws or combined steering and focusing laws for a phased array 
it is not necessary to use the paraxial approximation. In Chaps. 5 and 8 we will see 
how the discrete delays applied to array elements can be obtained from more exact 
delay laws.

Both the Fresnel integral beam model and the multi-Gaussian beam model are 
very useful beam models for describing the wave fields of large, single element 
transducers and the multi-Gaussian beam model in particular is a very powerful 
model for simulating wave fields in very complex testing situations [Schmerr-
Song]. However, without modifications these are generally not suitable beam mod-
els for describing the wave fields of the small elements present in phased arrays. 
This is because, as shown in Chap. 2, such small elements produce significant beam 
spreading that is not consistent with the paraxial approximation. One way to over-
come this limitation is to use as the basis functions Gaussian beams together with 
a linear phasing over an element, an approach that has been used successfully to 
simulate linear arrays [8]. In the next Chapter we will examine a beam model that 
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uses Gaussians without assuming the paraxial approximation. In Chap. 6 we will 
discuss another modeling approach which replaces the spherical waves generated 
by point sources with equivalent Gaussian beams.
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Chapter 4
Phased Array Beam Modeling (1-D Elements)

In Chap. 2 we developed beam models for a single element radiating waves in two 
dimensions. By superimposing M of these solutions we can develop correspond-
ing M-element array models. In this chapter we will model the 2-D acoustic wave 
field generated by an array of 1-D elements and examine how the properties of this 
wave field are affected by choices of parameters such as element size and spacing. 
We will also discuss how discrete time delays applied to the array elements can 
implement beam steering and focusing and how discrete amplitude weights can af-
fect beam characteristics for arrays. These discrete time delay laws and apodization 
windows will be sampled values of the continuous functions discussed in Chap. 3 
for a large, single element transducer.

4.1 � Phased Array Beam Models

Figure 4.1 shows an array of M elements where M is an even number and the center 
of the array is assumed to lie on the z-axis. Let each element length be 2b and as-
sume the elements are all separated from each other by ∆ , a constant spacing dis-
tance. The total length of the entire array will be taken as 2B. In this case, the cen-
troid of the first element is located at an x-distance of e B b1 = − +  and the distance 
between centroids is ∆ + 2b  so the x-location of the centroid of the mth element is

� (4.1)

But the distance B is given by

�
(4.2)

where the first term on the right of Eq. (4.2) represents the contribution to B from 
half of the total elements ( M/2). The second terms represents the contribution to B 
from the number of full gaps present, ∆ , and the last term represents the half gap 
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length from the z-axis to the m  = M/2 element (see Fig. 4.1). Combining Eqs. (4.1) 
and (4.2) then gives the x-location of the centroid of the mth element in the array as

�
(4.3)

If, instead, there are an odd number of elements in the array then with the z-axis 
again located at the center of the array (see Fig. 4.2), the centroid of the first element 
is again located at an x-distance of e B b1 = − +  and the distance between centroids 
is still ∆ + 2b  so Eq. (4.1) holds. In this case

� (4.4)
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Fig. 4.2   An array of M 
transducer elements, each of 
length 2b and separated by a 
distance, ,∆  where M is an 
odd number and the z-axis is 
located at the center of the 
array. The total length of the 
entire array is 2B

 

Fig. 4.1   An array of M 
transducer elements, each of 
length 2b and separated by a 
distance, ,∆  where M is an 
even number and the z-axis 
is located at the center of the 
array. The total length of the 
entire array is 2B
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an additional distance b on each side from the center element (Fig. 4.2). Comparing 
Eqs. (4.2) and (4.4) we see they are identical. This is to be expected since for either 
an even or odd number of elements we have M elements and ( M − 1) gaps so that 
the total length of the array is

�
(4.5)

which also is identical with Eqs. (4.2) and (4.4). Thus it follows that the centroid 
location expression of Eq. (4.3) is valid for arrays with either an odd or even num-
ber of elements. The distance s b= +2 ∆  which appears in Eq. (4.3) is called the 
pitch of the array. This particular distance, as we will see, plays an important role in 
describing the properties of the wave field of the array. In terms of the pitch, s, the 
centroid locations then are given simply by

�
(4.6)

With Eq. (4.2) and the beam models developed in Chap. 2 for a single element pis-
ton transducer it now is possible to develop models for a 2-D transducer array. Each 
element in the array is typically driven by a separate circuit so that the driving volt-
ages and the corresponding velocities on the faces of the elements can be different, 
i.e. 0 0( ) ( )mv vω ω→  for the mth element. Here, we will let 0 0( ) ( )m mv v Cω = ω �  so 
that the only differences between elements in the driving velocities will be apodiza-
tion values, �Cm

, which are discrete values of the continuous apodization windows 
discussed in Chap. 3. Also, we will assume a different time delay, ∆tm

, at each 
element that will produce an additional complex exponential term exp( )mi tω∆  for 
the mth element in the array model. We can sample the continuous time delays of 
Chap. 3 to generate discrete delay laws for beam steering and focusing of arrays or 
use the more general time delay laws developed in the next chapter.

Consider using our multiple line source model (Eq. 2.59) to represent each ele-
ment of an array. Then for the wave field of the entire array we have (see Fig. 4.3)

2 2 1B M b M= + −( ) ( ) ,∆

e
m M

sm =
− −





2 1

2
.

Fig. 4.3   Geometry param-
eters for the mth element of 
an array for use in multiple 
and single line source array 
beam models and for consid-
ering the far field response 
of the array. The distance em

 
is measured from the origin 
(taken as the center of the 
array) to the centroid of the 
mth element while xn

 is the 
distance measured from this 
element centroid to the center 
of the nth segment of this 
element
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where there are M elements and the acoustic field of each element is calculated with 
N segments over the element. The normalized distances, rnm

, are given by

�
(4.8)

and the angles 
nmθ  are measured from the centroid of each segment of a given ele-

ment (Fig. 4.3), i.e.

� (4.9)

The model of Eq. (4.7) we will call the multiple line source array beam model. In 
many cases we are interested in calculating the wave field of the array only at dis-
tances which are in the far field region of each element. In that case we can set N  = 1 
in Eq. (4.7) and take xn = 0  to obtain
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(4.10)

where now the radii and angles are

�

(4.11)

as measured from the centroid of each element (see Fig. 4.3).We will call the model 
of Eq. (4.10) the single line source array beam model. This model will be used in the 
next section as the basis for discussing the existence of grating lobes in the radiated 
wave field of an array.

4.1.1 � Far Field Behavior of an Array

If the point ( x, z) in the fluid is in the far-field of the entire array, then a single line 
source is adequate to represent every element of the array and in the single line 
source array beam model we can set (see Fig. 4.3)
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�
(4.12)

and

� (4.13)

so Eq. (4.10) becomes, approximately,
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(4.14)

Now consider the case where there is no apodization or delay law imposed, i.e. 
�C tm m= =1 0, .∆  Then we find

�
(4.15)

But, using Eq. (4.6) for the distances to the centroid, em
, Eq. (4.15) reduces to

�
(4.16)

In this case we can perform the sum since

�
(4.17)

Letting a iks= −exp( sin )Θ we find
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and Eq. (4.16) becomes

�
(4.19)

Equation (4.19) shows that in the far-field of the array the wave field acts like a 
cylindrically spreading wave with a total angular directivity, ( ) ( ) ( ),b sD D DΘ = Θ Θ
where

�

(4.20)

While the directivity function Db ( )Θ  represents the directivity of an individual 
element the directivity Ds ( )Θ  can be considered to be due to a discrete array of 
“point” sources, each separated by the distance, s. One can see this since if b is very 
small, each element reduces to a “point” and in this limit Db ≅ 1  so the total direc-
tivity of these very small “point” elements is just ( ) ( ).sD DΘ ≅ Θ  For arrays where 
the element size and pitch are fractions of a wavelength the directivity function of 
the element, ( ),bD Θ  is slowly varying in angle while the directivity of the discrete 
sources, ( ),sD Θ  behaves similar to the directivity of a single element transducer 
having the size of the entire array (2B). This can be seen in Fig. 4.4 which plots 
these directivities as a function of the angle, Θ  for the 5 MHz, 32 element array 
with an element length which is one half a wavelength. Figure 4.4 also shows the 
directivity of a single element transducer having the same overall size as the entire 
array, i.e.

�
(4.21)
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Fig. 4.4   The magnitude of 
the directivity for a single 
element of a 5 MHz, 32 
element array radiating into 
water versus angle ( dashed-
dotted line). The magnitude 
of the directivity of the 
discrete sources of the array 
( solid line) compared to the 
directivity of a single element 
transducer of the same over-
all size as the array ( dashed 
line). M  = 32, 2 / 0.5,bλ =  

/2 0.1b∆ = ,  f  = 5 MHz
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where it can be seen that there is little difference between DB ( )Θ  and Ds ( ).Θ  From 
Fig. 4.4 it would appear that the overall far-field behavior of the array, which is 
determined by the product of these directivity functions, will be very similar to 
that of a single element transducer of the same size. However, this is only true be-
cause in the example considered the pitch was only about one half a wavelength. 
If the element size was two wavelengths instead but all other parameters were left 
unchanged, the corresponding directivity plots of Db ( )Θ  and Ds ( )Θ would be as 
shown in Fig. 4.5. In this case the directivity of an element is more concentrated 
about Θ = 0  since the element is larger and itself produces a more highly colli-
mated beam, but the striking difference is in the directivity of discrete array sources, 
which now looks again like the overall directivity of a single element transducer 
of the same size as the entire array but where this directivity is periodically re-
peated as a function of angle. Since the total directivity function of the array is 
the product of these two directivities, additional “lobes” in the directivity function 
D D Db s( ) ( ) ( )Θ Θ Θ=  will appear in the far-field wave field as shown in Fig. 4.6. 
These lobes are called array grating lobes. Similar lobes appeared in Chap. 2 when 
modeling large, single element transducers if the element segments were too large. 
Since the elements themselves in an array act as similar segments of the entire ar-
ray it is not surprising that array grating lobes appear also if the element size is too 
large. The conditions for the existence of grating lobes can be found by noting that 
the directivity function Ds

 is a function of the variable ks sin Θ given by
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1 1
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 +  Θ = Θ − Θ    
∑ � (4.22)

Equation (4.22) shows that the magnitude of this directivity function is a periodic 
function since

� (4.23)( sin ) ( sin 2 ) .s sD ks D ks nΘ = Θ ± π

Fig. 4.5   The magnitude of 
the directivity versus angle of 
a single element of a 5 MHz, 
32 element array radiating 
into water (dashed-dotted 
line) and the magnitude of 
the directivity versus angle 
of the discrete sources of the 
array ( solid line). M  = 32, 
2 / 2.0,b λ =   ∆/ . ,2 0 1b =   
f  = 5 MHz
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Thus, the same maximum value of the directivity function which occurs at Θ = 0  
where ks sin Θ = 0  will also occur at angles Θn

 where sin 2nks nΘ = ± π ( n  = 1, 2, 
…) provided that we can find a real solution or solutions of

�
(4.24)

Equation (4.24) shows that as long as s < λ  there are no solutions except 0.Θ =  
For s > λ, other solutions (lobes of the response) can exist. A similar situation was 
found in Chap. 2 when breaking an element up into segments. There it was found 
that the segment size had to be less than one wavelength to prevent extraneous lobes 
from appearing. Here, we need to keep the pitch of the array less than a wavelength 
instead. In the next section we will show that if we use a delay law to steer the beam 
of an array the conditions needed to prevent grating lobes will be even more restric-
tive (the pitch will have to be less than one half a wavelength). Manufacturing and 
economic constraints present when producing commercial NDE phased arrays may 
dictate that the array pitch be more than a wavelength, so that in practice one may 
have to deal with an array where grating lobes are inherently present and can affect 
the test results.

4.2 � Array Beam Steering

Since the individual elements of an array transducer are driven independently, it 
is possible to excite each element with a different time delay. These delays can be 
used to electronically steer and focus the ultrasound. In this section we will exam-
ine beam steering by examining the far-field behavior of an array, first using the 
single line source model of Eq. (4.10) with the amplitude coefficients, �Cm

, taken to 

1sin ( 1,2, ).n

n
n

s
− λ Θ = ± =  

…

Fig. 4.6   The magnitude of 
the total directivity versus 
angle of an array radiating 
into water versus angle of 
a 5 MHz, 32 element array 
radiating into water. M  = 32, 
2 / 2.0,bλ =   /2 0.1,b∆ =   
f  = 5 MHz
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be unity. If we use the continuous beam steering law of Eq. (3.17) and sample that 
function at the centroid locations of the array elements given by Eq. (4.6) we find 
the discrete delays, ,mt∆  given by

�
(4.25)

If these delays are placed into the far field values of the single line source model 
Eq. (4.14) with �Cm = 1  we obtain

�

(4.26)

which shows that we have a point source directivity, ( , ),sD Θ Φ  given by
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Again, we can sum this series using Eq. (4.17) to obtain

�
(4.28)

This directivity of the steered array is very similar in form to that of the array with-
out steering (see Eq. (4.20)) so this new directivity function has the same type of 
lobe structure as seen previously for the case with no delays but we see that the main 
lobe at Θ = 0  in the non-delayed case now occurs when Θ Φ=  so that the beam 
of the array has been shifted (steered) and Φ  is just the steering angle as shown 
schematically in Fig. 4.7. The directivity is plotted in Fig. 4.8 for the same case 
considered in Fig. 4.4, but where now the steering angle 0 .3 °Φ =  Since the pitch is 
only slightly greater than one half a wave length in this case, no significant grating 
lobes appear in Fig. 4.8.

Now, consider the grating lobe structure of the array when it is steered. We can take 
the steering angle as positive since, as Eq. (4.28) shows, D Ds s( , ) ( , )− − =Θ Φ Θ Φ  
so that the behavior of the directivity function for negative steering angles can be 
easily obtained from that for positive steering angles. Equation (4.28) shows that 
the maximum magnitude of Ds

 occurs at Θ Φ=  where (sin sin ) 0,ks Θ − Φ =  but 
additional maxima can also occur when
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corresponding to the angles

�
(4.30)

In this case, one can see that if / 2s λ<  then there will be no real values of Eq. (4.30) 
for steering angles 0 90° °≤ ≤Φ  (and similarly for − ≤ ≤° °90 0Φ ). Note that this 
condition is more restrictive than the case s λ<  found when no beam steering was 
present so that we must keep the pitch less than half a wavelength to prevent grating 
lobes from existing, regardless of the angle to which we steer the array beam. The 
point source array directivity is plotted in Fig. 4.9 for the same case considered in 
Fig. 4.5 where grating lobes are present, but with a steering angle 0 .3 °Φ =  It can 
be seen that the main lobe is shifted, as expected, but there are also shifted grating 
lobes off the main steering direction as well.

1sin sin ( 1,2, ).n

n
n

s

λ−  Θ = Φ ± =  
…

Fig. 4.8   The magnitude of 
the directivity of the discrete 
sources of an array for a 
steering angle 0 ,3 °Φ =
M  = 32, 2 / 2.0,b λ =

/2 0.1,b∆ =   f  = 5 MHz. This 
directivity can be compared 
to the same case (Fig. 4.4) 
with no steering

 

Fig. 4.7   A linear distribu-
tion of realizable time delays 
applied to an array that steer 
the beam to an angle 0Φ >  
in the far field
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Although we have only examined the case where all the array elements are 
weighted equally ( �Cm = 1 ), for other weighting factors the magnitude of the array 
directivity without any time delays is given by

�
(4.31)

whereas, with steering time delays, we have

�
(4.32)

so that the array far-field wave field is steered in exactly the same manner for an 
array driven with any set of �Cm

 amplitude factors.
In implementing beam steering in an array we cannot use the time delay law of 

Eq. (4.25) since it contains advances as well as delays. However, we note that if 
Φ ≥ 0  the largest negative term occurs for m = 1 . Thus, if we add a constant (posi-
tive) term of s M csin ( ) /Φ −1 2  to this law we obtain a proper steering delay law 
for Φ ≥ 0  given by

� (4.33)

These discrete delays are the ones shown schematically on the elements of the array 
in Fig. 4.7. If Φ < 0  then the largest negative terms in Eq. (4.25) occur for m M=  
and we must subtract a constant (negative) term of s M csin ( ) /Φ −1 2  to give the 
proper delay law

�
(4.34)
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Fig. 4.9   The magnitude of 
the directivity of the discrete 
sources of an array for a 
steering angle 

0,3 °Φ =  M  = 32, 2 / 2.0,b λ =  
/2 0.1b∆ = ,  f  = 5 MHz. This 

directivity can be compared 
to the same case (Fig. 4.5) 
with no steering
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Combining these terms we arrive at a complete and realizable beam steering law

�

.
(4.35)

Note that adding or subtracting constant terms in the original delay law of Eq. (4.25) 
only generates additional constant phase terms in the point source directivity so that 
they have no effect on the criterion for grating lobes discussed previously.

In the next chapter we will discuss beam steering in a much more general context 
where we can have both steering and focusing occurring simultaneously. The MAT-
LAB® function delay_laws2D given in Code Listing C.12 generates the delays laws 
for an array that is both steered and focused in a single medium radiating waves in 
two dimensions. The calling sequence for this function is

This function generates the time delays (in microseconds) for an array with M ele-
ments that has a pitch s (mm) and is steered to a focal point F (mm) through the 
angle Phi (degrees) for a single medium with wave speed c (m/s) (see the discussion 
in Chap. 5). If the focal length F in this function is specified as F  =  inf (infinity) then 
the steering only law is that of Eq. (4.35). Figure 4.10a shows the time delays gener-
ated by this function for a 16 element array steered in water to an angle of 30° where 
the function inputs are M = 16, s  = 0.5 mm, Phi = 30°, F  = inf, and c  = 1480 m/s. Fig-
ure 4.10b shows the delays for the same array steered in the − 20° direction.

sin
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c
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s
M m
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Φ − Φ ≥∆ =  Φ − Φ <

>>td=delay_laws2D(M, s, Phi, F,c);

Fig. 4.10   Time delays for steering a 16 element array with pitch s  = 0.5 mm in water for (a) a 
steering angle of 30°, and (b) a steering angle of − 20°

 



854.3 � Array Beam Focusing�

4.3 � Array Beam Focusing

For an array, focusing can be achieved by evaluating the continuous time “delay” 
focusing law we obtained in Chap. 3 (using the paraxial approximation) at the cen-
troids, em

, of each element given by Eq. (4.6). That continuous delay law was

�
(4.36)

Thus, we obtain the discrete delays

�
(4.37)

However, again these “delays” are really time advances that cannot be implemented 
electronically in practice so that adding a constant delay term, T , to each element 
of the array, where
�

(4.38)

we obtain a realizable set of time delays, ∆ ∆t t Tm m= +�  given by

�
(4.39)

Figure 4.11a shows a set of proper discrete focusing delays for a 16 element ar-
ray obtained by using Eq. (4.39) for an array with a pitch s  = 0.5 mm focused into 
water ( c  = 1480 m/s) at a focal length of R0 15= mm . Equation (4.39) is, however, 
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Fig. 4.11   Time delays for focusing a 16 element array with pitch s  = 0.5 mm in water (without 
steering) at a focal length of 15 mm using (a) the paraxial law of Eq. (4.39), and (b) an exact focus-
ing law as implemented in the MATLAB function delay_laws2D
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only an approximate expression since it was developed using the paraxial approxi-
mation. The MATLAB® function delay_laws2D discussed in the previous section 
implements focusing (and combined beam steering and focusing) without such par-
axial approximations. Fig. 4.11b shows the delays generated with this function for 
the same parameters as used in Fig. 4.11a ( M  = 16, s  = 0.5 mm, Phi  = 0°, F  = 15 mm, 
c  = 1480 m/s). Differences between these two delay laws, while present, are small 
enough to not be readily visible for the scale of Fig. 4.11.

To see the effect of the focusing law on the sound beam generated by the array, 
consider the single line source array beam model of Eq. (4.10) which we rewrite 
here as
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where (see Eq. (4.12))

�

(4.41)

Since the entire array will generate a well collimated beam we can use the paraxial 
approximation on both rem

 and 
emθ  (see Fig. 4.3). In this approximation we will as-

sume that e Rm /  is small so that 
emθ ≅ Θ  and expand the square root in Eq. (4.41) 

to second order as

�
(4.42)

But, because the angle Θ  itself is assumed to be small, in the paraxial approxima-
tion we can drop the last term in Eq. (4.42), giving

�
(4.43)

Placing this result into Eq. (4.40) we have
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However, if we use the paraxial focusing delay law (Eq. (4.37)) and let R R= 0
, we 

see that the phase terms involving em
2  cancel and the pressure at the focal distance 

is just

�
(4.45)

Comparing Eq.  (4.45) with Eq.  (4.14) we see that the pressure field at the focal 
distance is now just the same as the far field pressure of the entire array with no 
delays applied to the elements. This is consistent with what we found in Chap. 3 
(Sect. 3.2) when examining focusing behavior in the paraxial approximation with a 
large, single element transducer.

4.4 � Array Amplitude Weighting

The continuous amplitude weights discussed in Chap. 3 can be sampled to gener-
ate the discrete weights, �Cm

, needed for arrays. The cosine, Hanning, Hamming, 
and Blackman windows all contain the functions cos( / ) ( 1, 2, 4)n x L nπ =′ . If 
we let ′ =x em

, the centroid location of the mth element in an array, and choose 
L B b= −2( )  so that all the windows (except the Hanning window) taper to zero at 
the centroids of the first and last element in the array, then from Eq. (4.4) we have 
L s M= −( )1  and it follows that

�
(4.46)

so that

�

(4.47)

and the discrete forms of these windows become:
Cosine Window

� (4.48)
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Hanning Window

�
(4.49)

Hamming Window

�
(4.50)

Blackman Window

�
(4.51)

For the triangular window the same choices of ′ =x em
 and L s M= −( )1  gives

�
(4.52)

The MATLAB® function discrete_windows given in Code Listing C.13 generates 
normalized discrete weights (i.e. with C0 1= ). The calling sequence for this func-
tion is

The function outputs the non-dimensional amplitudes amp = �C Cm / 0
 for M ele-

ments and windows of type ‘cos’ (cosine), ‘Han’ (Hanning), ‘Ham’ (Hamming), 
‘Blk’ (Blackman), ‘tri’ (triangle) and ‘rect’ (rectangular). The case ‘rect’ is where all 
elements have equal weights of one, i.e. there is no apodization. Figure 4.12 shows 
an example of the discrete weights generated with this function using the Blackman 
window for a 16 element array.
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>>amp=discrete_windows(M, type);

Fig. 4.12   The normalized 
amplitude weights using the 
Blackman window
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4.5 � Array Beam Modeling Examples

The multiple line source model of Eq. (4.7) can be combined with appropriate de-
lay laws and apodization laws to generate a complete beam model for an array. 
The MATLAB® script mls_array_modeling given in Code Listing C.14 uses such 
a combination to produce images of the array wave field. The calling sequence of 
the script is simply

The script uses the multiple line source beam model for each element contained 
in the function ls_2Dv and obtains the time delay law and apodization law from 
the functions delay_laws2D and discrete_windows discussed previously. The script 
also contains the MATLAB® function elements (Code Listing C.15) which has the 
calling sequence

where f is the frequency (in MHz), c is the wave speed (in m/s), 2 /dl b λ=  is 
the length of the element, d b= 2 , divided by the wavelength, .λ The parameter 
gd b= ∆ / 2  is the gap size, ∆,    divided by the element length, and M is the total 
number of elements in the array. This function returns the total length of the array 
aperture D = 2B (in mm), the length of each element d  = 2b (in mm), the gap size, 
g = ∆ , (in mm), and a [1 × M] vector e whose mth term is the location of the cen-
troid of the mth element, em

, (in mm) given by Eq. (4.6).
To apply this script, let us first consider a 32 element array radiating into water 

( c  = 1480 m/s) with an element size of one half a wavelength and with no delay laws 
or apodization laws. Figure 4.13 show an image of the magnitude of the pressure 

>>mls_array_modeling

>>[D, d, g,e]=elements(f, c, dl, gd, M);

Fig. 4.13   A 32 element 
array radiating into water at 
5 MHz. Element size is one 
half a wavelength with a gap 
size equal to one tenth of an 
element length
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generated by this array. It can be seen that there are no grating lobes visible and the 
array generates a near field beam structure similar to that of a single element trans-
ducer. However, if one changes the element length to be two wavelengths, with all 
other parameters staying the same, then we see definite grating lobes in addition to 
the main beam (Fig. 4.14). If we apply a steering law only to the array considered in 
Fig. 4.13 the wave field in Fig. 4.15 looks as if it was coming from a rotated trans-
ducer as discussed in Chap. 3. Figure 4.16 shows the 32 element array considered 
in Fig. 4.13 when a focusing delay law is used to focus the beam at a distance of 
20 mm. It can be seen that the beam does develop a beam “waist” near the speci-
fied focal point. As a final example, consider the array example of Fig. 4.13 again 

Fig. 4.15   A 32 element array 
radiating into water at 5 MHz 
with a delay law to produce a 
steering angle of 20° and no 
focusing (Phi = 20, F  = inf). 
Element size is one half a 
wave length with a gap size 
equal to one tenth of an ele-
ment length

 

Fig. 4.14   A 32 element 
array radiating into water at 
5 MHz. Element size is two 
wave lengths with a gap size 
equal to one tenth of an ele-
ment length
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but where we apply Blackman apodization weights to the array. As can be seen in 
Fig. 4.17, this apodization produces a beam with a much smoother profile and with-
out the visible side lobes of Fig. 4.13.

4.6 � Use of Gaussians for Modeling Phased Array Beam 
Fields

In Chap. 3 we showed that a multi-Gaussian beam model is an effective model for 
large single element transducers. Because of the use of the paraxial approxima-
tion in the multi-Gaussian beam model, which assumed that the entire beam of the 

Fig. 4.16   A 32 element array 
radiating into water at 5 MHz 
with a delay law to produce 
focusing and no steering 
(Phi = 0, F = 20 mm). Element 
size is one half a wave length 
with a gap size equal to one 
tenth of an element length

 

Fig. 4.17   A 32 element 
array radiating into water at 
5 MHz. Element size is one 
half a wave length with a gap 
size equal to one tenth of an 
element length. A Blackman 
apodization law is applied to 
the elements
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element was contained in a narrow region centered around the z-axis (normal to 
the element), that model cannot accurately predict the fields at large angles from 
the z-axis of small elements, as is required in phased arrays when significant beam 
steering is present. However, it is still possible to use the Gaussian basis functions 
developed by Wen and Breazeale in conjunction with a high frequency line source 
model to model properly the wave field at large angles of small elements by using a 
non-paraxial expansion [6]. To see this, we start from the high frequency line source 
model with a Gaussian velocity profile on the surface at z = 0 (see Eq. (3.99)), which 
we rewrite as

�
(4.53)

where x = ( , )x z  and 2 2( ) .r x x z= − +′  However, instead of expanding the ra-
dius, r, about the z-axis, as is done with the paraxial approximation, we let

�

(4.54)

where r x z0
2 2= +  and assume that ′ <<x r/ 0 1  (which is valid for a small ele-

ment if we are not too close to the element). This same expansion was discussed in 
Chap. 2 when looking at the validity of the far field approximation (see Eqs. (2.39), 
(2.40), and (2.41)) and we found that to keep at least quadratic terms in the expan-
sion we had to use three terms in the binomial expansion to find

�
(4.55)

where 0cos /z rθ =  and θ  is the angle that the radius r0  makes with respect to the 
z-axis. Note that the original derivation [6] of this approach kept only two terms in 
the expansion which had the effect of making the replacement 2cos 1.θ →  Placing 
the correct second order approximation of Eq. (4.55) into Eq. (4.53) then gives
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But the integral in Eq. (4.56) can be done [Schmerr-Song], leading to the explicit 
expression
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�
(4.57)

where D kb= 2 2/  is the Rayleigh distance [Schmerr-Song]. Here we will use the 
10 rather than the 15 Wen and Breazeale coefficients for piston behavior [7] in order 
to keep the calculation times to a minimum. We then have a complete beam model 
for an element in the form

�
(4.58)

The MATLAB® function NPGauss_2D (Code Listing C.16) which has the calling 
sequence

implements Eq. (4.58) for an element whose center is offset a distance, e, in the x-
direction, so that r x e z0

2 2= − +( ) .  It uses the ten Wen and Breazeale coefficients 
which are contained in the MATLAB® function gauss_c10 (Code Listing C.17). One 
can replace the multiple line source beam model ls_2Dv in the MATLAB® script 
mls_array_model with NPGauss_2D to generate comparable results for phased ar-
rays. Figure 4.18a shows the same setup considered in Fig. 4.15 (a 32 element array 
radiating into water at 5 MHz with a delay law to produce a steering angle of 20° 
and no focusing. The element size was one half a wave length with a gap size equal 
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>>p=NPGauss_2D(b, f, c, e, x, z);

Fig. 4.18   A 32 element array radiating into water at 5 MHz with a delay law to produce a steering 
angle of 20° and no focusing (Phi  = 20, F = inf). Element size is one half a wave length with a gap 
size equal to one tenth of an element length. This is the same case considered in Fig. 4.15 where 
the wave field was calculated with a multiple line source model. Here, the wave field is calculated 
with (a) a non-paraxial Gaussian model and (b) with a Hankel function model.
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to one tenth of an element length) but with the use of the non-paraxial Gaussian 
model in the MATLAB® script mls_array_model in place of ls_2Dv. Figure 4.18b 
shows again the same results but with the Hankel function beam model (contained 
in the MATLAB® function rs_2Dv) used in place of ls_2Dv in the same script. It 
can be seen from Figs. 4.15 and 4.18 that the Hankel function model and multiple 
line source model results appear identical and the non-paraxial Gaussian model also 
agrees quite well with the other two models but with some differences appearing in 
the very near field region adjacent to the face of the array where the expansion of 
Eq. (4.55) cannot be expected to be accurate. However, the non-paraxial Gaussian 
model took 13 times longer to evaluate than the multiple line source model and the 
Hankel function model took 8.3 times longer than the multiple line source model so 
the multiple line source model appears to be the best overall choice for simulating 
phased arrays in 2-D problems. This is not surprising since the multiple line source 
model uses only a single line source term for the small element size considered 
here (element length less than a wavelength) whereas the other models use multiple 
element segments or basis functions in their calculations. Even for larger array ele-
ments the multiple line source model remains efficient, losing its advantage only 
when the element length is tens of wavelengths, as found in large, single element 
transducers. In contrast, for large, single element circular transducers a paraxial 
multi-Gaussian beam model only needs ten or fifteen Gaussians to produce accurate 
wave field calculations [Schmerr-Song] so it is typically the fastest beam model 
available for those cases, particularly when calculating the fields through interfaces.

4.7 � Beam Steering and Focusing through a Planar 
Interface

In Chap. 2 we also described modeling the radiation of an element through a planar 
interface. We can use that model and combine it with the beam steering and focus-
ing laws developed in Chap. 5 for this case and the discrete apodization laws of 
Sect. 4.4 to simulate array wave fields with an interface present. All these elements 
are combined in the MATLAB® script mls_array_int (Code Listing C.18) which is 
very similar in structure to the mls_array_modeling script for a single medium used 
in Sect. 4.5. The calling sequence for this script is simply

The script uses the beam modeling MATLAB® function ls_2Dint discussed in 
Chap.  2 as well as the MATLAB® discrete_windows function for the apodiza-
tion laws. The time delay laws are generated in the MATLAB® function delay_
laws_2D_int (Code Listing C.19) developed in Chap. 5. The calling sequence for 
this delay law function is

>>mls_array_int

td=delay_laws2D_int(M, s, angt, ang20, DT0, DF, c1, c2, n)
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where td holds the delay times (in microseconds), M is the number of elements in 
the array, s is the array pitch (in mm), angt = 

tθ  is the angle the array makes with 
the interface (in degrees), ang20 = 

20θ  is the specified steering angle (in degrees) as 
measured in the second medium, DTO = Dt0

 is the distance of the center of the array 
from the interface (in mm), DF = Df  is the specified focal depth in the second me-
dium (in mm). If DF = inf is specified then steering without focusing is present. The 
variables (c1, c2) are the wave speeds in the first and second media, respectively, in 
m/s. The final input string parameter (’y’ or ’n’) specifies if a plot of the rays corre-
sponding to the delay law parameters is wanted. Figure 4.19 illustrates these various 
parameters and Chap. 5 gives more details of this function.

To illustrate the use of this script, consider the case of a 32 element array in 
water located 25.4 mm from a water-steel interface and oriented parallel to the in-
terface ( 0tθ = ° ). Figure 4.20 shows results for the case where the element length is 
0.25 mm, the gap length is 0.05 mm, the frequency is 5 MHz, and no apodization or 

  Fig. 4.20   Normalized pres-
sure wave field in steel for 
a 32 element array located 
in water at a distance of 

0 25.4 mmtD =  from 
a water-steel interface. 
Other setup parameters 
are: 2 0.25 mm,d b= =  

0.05 mm,∆ =  0 ,tθ = �  
5MHzf = , no apodization or 

steering/focusing

 

Fig. 4.19   Geometry and 
material parameters for steer-
ing and focusing an array 
through a planar interface
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delay law is specified for the array. The near field structure of this array wave field 
in the steel can be clearly seen in Fig. 4.20. Figure 4.21 shows the same setup as in 
Fig. 4.20 but where now a delay law is chosen to steer the array, without focusing, 
at an angle 20 30θ = ° in the steel. Figure 4.22 is for the case where a steering angle 

20 30θ = ° is again specified, along with a focal depth 8 mmfD =  . Steering and fo-
cusing effects consistent with these choices of the delay law are clearly evident. 
Figure 4.23 shows the wave field of a 16 element array where the element length is 
0.325 mm and the gap length is 0.05 mm but where Dt0 50 8= . mm  the array is now 

Fig. 4.21   Normalized pres-
sure wave field in steel for 
a 32 element array located 
in water at a distance of 

0 25.4 mmtD =  from 
a water-steel interface. 
Other setup parameters 
are: 2 0.25 mm,d b= =

0.05 mm,∆ =  0 ,tθ = °   
5MHz,f =  

20 30 ,θ = °  
inf,fD =  no apodization

 

Fig. 4.22   Normalized pres-
sure wave field in steel for 
a 32 element array located 
in water at a distance of 

0 25.4 mmtD =  from 
a water-steel interface. 
Other setup parameters 
are: 2 0.25 mm,d b= =  

0.05 mm,∆ =  0 ,tθ = °  
5MHz,f =  20 30 ,θ = °
8 mm,fD =  no apodization
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at an angle 10.217tθ = °  from the interface. By Snell’s law this will generate a re-
fracted beam at 45° in the steel. In this case the time delay law parameters were cho-
sen to be 20 45θ = °, inf,fD =  so that there is no steering or focusing. The size of this 
array is the same as the large single element transducer example shown in Fig. 2.17 
so it is not surprising that without steering or focusing the wave field images are 
very similar. Figure 4.24 shows the same array of Fig. 4.23 but with beam steering 
specified as 20 30 .θ = °  It can be seen that the wave field has indeed been shifted to 
the new specified refracted angle. The 2-D modeling studies of this chapter are in 

Fig. 4.24   Normalized pres-
sure wave field in steel for 
a 16 element array located 
in water at a distance of 

0 50.8 mmtD =  from a water-
steel interface, 10.217 .tθ = °  
Other setup parameters are 

2 0.325 mm,d b= =  
0.05 mm,∆ =  5MHz,f =  

20 30 ,θ = °  inf,fD =  no 
apodization

 

Fig. 4.23   Normalized pres-
sure wave field in steel for 
a 16 element array located 
in water at a distance of 

0 50.8 mmtD =  from a water-
steel interface, 10.217 .tθ = °  
Other setup parameters 
are: 2 0.325 mm,d b= =  

0.05 mm∆ = , 5MHz,f =  
20 45θ = ° (no steering), 

inf,fD =  no apodization
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the spirit of those done by Wooh et al [1–3]. See also [4–5] for some similar model-
ing simulations and discussions of efficiency.
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Chapter 5
Time Delay Laws (2-D)

In Chap. 3 we introduced continuous time delay laws for beam steering and focus-
ing of large, single element transducers and we obtained discrete versions of those 
laws in Chap. 4 for phased arrays. The explicit focusing delay laws discussed in 
both previous chapters used the paraxial approximation. This approximation gave 
us a simple delay law to implement and it was consistent with the paraxial ap-
proximation used in the beam models in Chap. 3. However, there is no requirement 
to introduce such approximations in the delay laws designed for phased arrays. In 
this chapter we will derive exact delay laws for combined steering and focusing in 
a single medium and describe the case where the steered/focused beam must pass 
through a planar interface. In all cases, we will limit our discussion in this chapter to 
1-D arrays radiating waves in two-dimensions. The corresponding delays laws for 
2-D arrays radiating into three dimensions will be discussed in Chap. 8.

5.1 � Delay Laws for a Single Medium

In designing a delay law for steering and focusing a 1-D array in two dimensions, 
one can parameterize the delay law in several ways. One way is to specify the steer-
ing angle, Φ, as measured along the central axis of the entire array, and the focal 
distance, F, as measured along this axis (see Fig. 5.1a and b). For both cases shown 
in Fig. 5.1 the distance from the center of the array to the center of the first element 
is B b M s− = −( ) /1 2 , where 2B is the total length of the array, 2b is the length of 
an element, and s is the pitch of the array (see Eq. (4.5)). The quantity ( ) /M −1 2  
will appear frequently in our delay law expressions so we will abbreviate that quan-
tity as M :

� (5.1)

The distance to the centroid of the mth element, em , in terms of M  is then

� (5.2)

M
M

=
−( )

.
1

2

e m M sm = − −[( ) ] .1
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Consider first the case when Φ ≥ 0  (Fig. 5.1a). To obtain the delay law to steer and 
focus the beam to the point ( , )x z  we first calculate the times it takes to propagate 
from the centroid of the mth element to ( , )x z , ∆t r cm m= / , where c is the wave 
speed. If we apply the negative of these times (representing time advances) to all 
the elements then all of the waves from the elements will arrive at ( , )x z  at the same 
time. To turn this result into a proper delay law we must also add a positive, constant 
term so that all of these time values are time delays, not advances. It is obvious from 
Fig. 5.1a that the distance from the first element to ( , )x z , r1 , is the largest distance 
for the entire array, so that a proper delay law is simply

	 ∆t r c r cd m= −1 / / . � (5.3)

From the geometry of Fig. 5.1a and the law of cosines, we then have
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� (5.4)

and the delay law becomes

� (5.5)

In comparison, for Φ < 0, if we use the geometry of Fig. 5.1b we find instead
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Fig. 5.1   a Geometrical parameters for steering and focusing an array when Φ ≥ 0, and b when 
Φ < 0
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It should be noted that although Fig. 5.1 shows a geometry for an array with an odd 
number of elements, there is nothing in the expressions used in the derivation that 
restricts our results to that case and so these delay laws are valid for arrays with 
either an even or odd number of elements. Azar et. al. [1] used a similar approach 
to develop these delay laws, which are also applicable to linear arrays operating in 
a 3-D setting since such arrays can only be steered and focused in a plane with the 
2-D delay laws given here.

We can compare these exact laws with our previous results which used the par-
axial approximation. If we are focusing the beam to a point well removed from the 
face of the array then we can expand Eqs. (5.5) and (5.6) for F large and obtain to 
second order (keeping three terms in the expansion as shown in Eq.  (2.42)) For 
Φ ≥ 0 we find
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whereas for Φ < 0  we have
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Using the definition of M  and em  from Eqs. (5.1) and (5.2) and collecting terms 
and simplifying we obtain, for Φ ≥ 0

	
2 21 ( 1)( ) cos

( 1) sin ,
2d

m M m s
t m s

c F

 − − Φ
∆ ≅ + − Φ 

 
� (5.9)

and, for Φ < 0
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which are a combination of the steering laws and focusing laws developed previously 
in the paraxial approximation (see Eqs. (4.35) and (4.39) and let sin sinΦ Φ=  
and F R= 0 ).

If we want to use the combined steering and focusing laws of Eqs.  (5.5) and 
(5.6) for steering only, we have to let F → ∞ . It can be seen from Eqs. (5.9) and 
(5.10) that we do recover the proper limit but only because of canceling infinities in 
Eqs. (5.7) and (5.8), a procedure which is difficult to implement in software. Thus, 
it is best to treat steering only as a special case.

Parameterization of the delay laws by specifying ( , )F Φ  is a logical choice 
but another convenient way to design the delay law is to specify the point 
( , )x z  in the medium to which we want to steer and focus the beam. Since 
F x z x F= + =2 2 , sin /Φ , we could specify that point and then use these rela-
tions in the delay laws Eqs. (5.5) and (5.6). However, we could also simply write 
the time delay as

	
2 2 2 2

max

( ) ( )
max ,

m m
d

m m

r r
t

c c

x e z x e z

c c

 ∆ = − 
 

 − + − + = − 
  

� (5.11)

which will also give a proper delay law.
The function td = delay_laws2D(M, s, Phi, F, c) discussed in the last Chapter 

(Code Listing C.12) implements Eqs. (5.5) and (5.6) to generate the delays, td, in 
microseconds needed to produce steering to a focal point at an angle Φ  (Phi) (in 
degrees) and focusing at a distance F (in mm) for an array of M elements with a 
pitch, s, (in mm) and for a medium of wave speed c (in m/s). If F is specified as 
infinity (F = inf) the steering only delay law of Eq. (4.35) is used instead.

5.2 � Steering and Focusing Through a Planar Interface

As seen in the last section, in a single medium it is relatively simple to set up the 
general time delay law based on the angle of beam steering (from the center of 
the transducer) and the desired focal point. In radiation through a plane interface, 
however, the relationship becomes more complex, particularly when focusing is 
involved.

We will begin by considering the case of beam steering only for the configura-
tion shown in Fig. 5.2 where an array radiates at an angle through a plane interface. 
This type of setup can be used to model an immersion test where the array is placed 
in a water bath and radiates into a solid component or in an angle beam inspection 
where the array sits on a plastic wedge and radiates into the solid. In either of those 
cases the wave speed of second medium is larger, i.e. c c2 1> , which is a condition 
we will assume here. We will let the angle of the face of the array relative to the 
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plane interface be 
tθ  as shown in Fig. 5.2. At high frequencies, each element of 

the array will radiate a wave field through the interface that will satisfy Snell’s law 
[Schmerr]. Figure 5.2 shows a ray path of a wave that travels from the center point 
C of the array along a direction normal to the face of the array in the first medium 
and is refracted into the second medium at an angle 

tθ . Just as we used the z-axis 
as the reference axis for no steering in a single medium we will use this central ray 
axis to define the case of no steering in this configuration. From Snell’s law, then 
the refracted angle, 

rθ , for the no steering case must satisfy

	
2 1

sinsin tr

c c

θθ
= ,� (5.12)

where c1  and c2  are the wave speeds in the first and second media, respectively. 
Now, suppose we want to steer the beam so that the refracted angle is specified as 

20θ  instead. In this case from Snell’s law the incident angle in the first medium must 
satisfy

	 10 20
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sin sin

c c

θ θ
= ,� (5.13)

which can always be solved for a real angle 
10θ  as long as c c2 1> . At the array, this 

corresponds to steering the array in medium one at an angle 
10 tθ θ−  relative to the 

reference ray in medium one. Thus, we can steer the array with the single medium 
delay law (see Eq. (4.2.12)):
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with 
10θ  given in terms of 

20θ  by Eq. (5.13). Thus, with the use of Eq. (5.13) 
we can consider this a steering delay law parameterized in terms of 20( , )tθ θ  and 
the wave speeds of the two media. Note, however, that the specified angle 

20θ  is 

Fig. 5.2   A phased array radiating at oblique incidence to a planar interface, showing a reference 
ray that is normal to the face of the array and a ray which makes a specified angle, 

20θ , relative to 
the normal of the interface
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relative to a refracted ray which is different from the reference ray chosen for no 
steering (see Fig. 5.2).

Now consider the case of both steering and focusing (Fig. 5.3). Again we will 
assume the array makes an angle, tθ , relative to the interface and we will let Dt0  be 
the vertical distance of the center point C of the array above the interface. Our beam 
steering and focusing law will be based on parameters 0 20( , , )t fD D θ  that describe 
a ray path from C to a point I0  on the interface and then from I0  to point F at a 
refracted angle, 20θ , and to a depth, Df , in the second medium. Although there are 
an infinite number of paths that one could take going from C to I0

 and then from 
I0

 to F, at high frequencies the waves travel along the straight line paths that satisfy 
Snell’s law, so that Eq. (5.13) is satisfied. In this case the specific path from C to F 
is completely specified since the angle 

10θ  is given by Eq. (5.13) which then also 
determines the location of the point I0

 on the interface as well as the horizontal 
distance, Dx0

, to the point F, i.e. we have

	 0 0 10

0 0 20

tan

tan ,
i t

x i f

x D

D x D

= θ
= + θ

� (5.15)

where xi0
 is the horizontal distance to the point I0

 on the interface from C (see 
Fig. 5.3). Note that as in the steering only case this Snell’s law path is not in general 
normal to the transducer in medium 1, so that 

10 tθ ≠ θ  and there will be steering 
present unless one specifically chooses 1

1 20 2sin ( sin / )t c c−θ = θ .
In this discussion we can give the location of the point F (relative to point C) to 

which we want the beam to be steered and focused by specifying the three param-
eters 0 20( , , )t fD D θ . Specifying the angle 

20θ  is analogous to specifying the beam 
steering angle, Φ, in a single medium, and specifying the distances ( D Dt f0 , ) is 
analogous to specifying the distance, F, to the focal point in a single medium. We 
could, however, also parameterize the beam steering and focusing with three other 
parameters such as (D D Dt f x0 0, , ), for example, but here we will develop our time 
delays only with the set ( 0 20, ,t fD D θ ).

Once we have located the point F in this manner then we must determine the cor-
responding Snell’s law path from the centroid of an element located at point P on 

Fig. 5.3   Geometry parameters for steering and focusing a beam through a plane interface at a 
refracted angle, 

20θ , and to a depth, Df
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the transducer surface to the point F where we want to focus the array (see Fig. 5.4). 
Since point P is located a distance em

 from C, the vertical distance from P to the 
interface is Dtm

 and the horizontal distance from P to F is Dxm
, where
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Both of these distances are known if the parameters ( 0 20, , , ,t f m tD D eθ θ ) are given. 
Here the angles (

1 2,m mθ θ ) are unknown, as well as the distance xim  to the point 
Im  where a Snell’s law path from the mth element intersects the plane interface 
(Fig.  5.4). However, Snell’s law can be written in a form where satisfying it is 
equivalent to determining a value xim

 that is the location of the zero of a func-
tion, f xim( ) , since from the geometry of Fig. 5.4
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An equivalent form of Eq. (5.17) normalized by the distance Dxm
 is:
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There are several methods available to solve for xim
 from Eq. (5.18) in MATLAB®. 

The function g goes from a positive value of g Dtm=  at xim = 0 to a negative value 
g c c Df= −( / )2 1  at x Dim xm=  and there is a zero value in the interval 0, Dxm[ ]. Thus, 
one method is to use the MATLAB® function fzero to determine the location xim 

Fig. 5.4   Snell’s law path from the centroid, P, of the mth element in an array to the point F at 
which we want to steer and focus the array
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of this zero of g xim( )  iteratively with Newton’s method. A second approach is to 
eliminate the square roots in either Eq. (5.17) or Eq. (5.18) by squaring to generate 
a quartic equation in xim

 of the form

� (5.19)
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The MATLAB® function roots can then be used to find the four roots of this quartic 
or one can use Ferrari’s method [2, 3], to obtain the four roots directly. Two extrane-
ous roots will be complex while one extraneous real root will lie outside the interval 
0, Dxm[ ]  so that one needs only to identify the one real root in that interval to obtain 

the proper value for xim . The built in MATLAB® functions fzero and roots are both 
viable methods, but the use of Ferrari’s method with the function ferrari2 defined in 
Code Listing C.5 is more direct and will be the one implemented here. The calling 
sequence for this function is

>>xi = ferrari2(cr,DF,DT,DX);

where xi is the distance xim
, cr is the ratio of the wave speeds in the two me-

dia, ( / )c c cr = 1 2
, DF is the distance Df , DT is the distance Dtm

, and DX is the 
distance Dxm

 (see Fig.  5.4).The function ferrari2 is faster than the use of either 
fzero or roots. For example, in evaluating the ray paths to a set of 200 × 200 values 
of Dx0

 and Df  (which would be necessary when determining the delays needed 
for forming an image at these points—see Chaps. 12 and 13) the use of Ferrari’s 
method is approximately 1.9 times faster than the use of roots, and 15.1 times faster 
than the use of fzero.

Once xim  is found, then the angles (
1 2,m mθ θ ) are given by
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and the propagation time in going from P to F, tm
PF , is

	 t
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If we subtract these propagation times from every path going from P to F, then the 
waves for all these paths (and all the elements) will arrive at point F at the same 
time, i.e. we will have steered the array at an angle 

20θ  and focused it at point F. 
However, this would correspond to applying time advances ∆t tm m

PF= − . As in the 
single medium case we can simply add a constant value to these delays that makes 
all the ∆tm

 values positive and we do have a realizable beam steering/focal law 
time delay, ∆tm

d , given by

� (5.23)

The MATLAB® function delay_laws2D_int given in Code Listing C.19 implements 
the delay law for steering, Eq.  (5.14) and for steering and focusing, Eq.  (5.23), 
through a plane interface. The calling sequence for this function is:

>> td = delay_laws2D_int(M, s, angt, ang20, DT0, DF, c1, c2, plt);

where td is the delay times for the elements (in µs), M is the number of elements, 
s is the pitch of the array (in mm), angt is the angle 

tθ  (in degrees), ang20 is the 
specified refracted angle, 

20θ , for the central ray (in degrees), DT0 is the height 
of the center of the array above the interface, Dt0

, (in mm), DF is the depth to 
the focal point in the second medium, Df , (in mm) and (c1, c2) are the wave 
speeds of the incident and refracted media, ( , )c c1 2

, (in m/s). The final argument, 
plt, is a string used to optionally plot ray paths for the parameters chosen, where 
plt = ‘y’ or ‘n’ for plot generation or not, respectively. Both DT0 and DF must be 
specified as positive numbers while angt and ang20 can individually be positive 
or negative. Figure 5.5a–d show the array parameters for various choices of 

tθ  
and 

20θ . For both 
tθ  and 

20θ  positive angles are measured in a counterclockwise 
sense. Also note that when 

tθ  is positive the first element of the array ( m = 1) is 
nearest element to the interface, but it is the farthest element when 

tθ  is nega-
tive. If one does not want this change to happen, then one can simply re-order the 
time delays. Figure 5.6a, b show the ray paths and time delays, respectively, for a 
16 element array with 

tθ  = 5°, 
20θ  = 60°, D Dt f0 = = 10 mm, and c1 1480=  m/s, 

c2 = 5900 m/s. In contrast, Fig. 5.7a, b changes 
20( , )tθ θ  to (− 5, − 60) degrees, 

respectively, with all other parameters remaining the same. It can be seen that the 
delay law in Fig. 5.7 is “flipped” from that of Fig. 5.6 because of the ordering of 

∆t t tm
d

m
PF

m
PF= ( ) −

max
.
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Fig. 5.5   The array parameters for the cases where: a the angles 
20( , )tθ θ  are both positive, b the 

angle 
tθ  is positive but 

20θ  is negative, c the angles
20( , )tθ θ  are both negative, and d the angle 

tθ  is negative but 
20θ  is positive

 

Fig. 5.6   a The ray paths for an array with M = 16 elements, s = 0.5 mm, angt = 5°, ang20 = 60°, 
DTO = 10 mm, Df = 10 mm, c1 = 1480 m/s, c2 = 5900 m/s, b the corresponding time delays, mea-
sured in µs
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the elements. This ordering can be easily changed in MATLAB® with the built-in 
function fliplr:

>> tdf = fliplr(td);

which results in the time delay law of Fig. 5.8, which is now identical with that of 
Fig. 5.6.

Fig. 5.7   a The ray paths for an array with M = 16 elements, s = 0.5 mm, angt = − 5°, ang20 = − 60°, 
DTO = 10 mm, Df = 10 mm, c1 = 1480 m/s, c2 = 5900 m/s, b the corresponding time delays, mea-
sured in µs

 

Fig. 5.8   a The ray paths for an array with M = 16 elements, s = 0.5 mm, angt = − 5°, ang20 = − 60°, 
DTO = 10 mm, DF = 10 mm, c1 = 1480 m/s, c2 = 5900 m/s, b the corresponding time delays, mea-
sured in µs. The order of the elements has been changed so that the first element is nearest to the 
interface, giving the same delay law as seen in Fig. 5.6
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Figures 5.9 and 5.10 show the rays and delays for several other cases. Figure 5.9 
considers the case of pure steering for a 16 element array with 

tθ  = 5°, 
20θ  = 60°, 

Dt0 10= mm , Df = inf , and c1 1480=  m/s, c2 =  5900 m/s. Figure 5.10 shows a 
pure focusing case where the 16 element array is at normal incidence, i.e. 

tθ  = 0°, 
20θ  = 0°, and where Dt0 10= mm , Df = 10 mm , and c1 1480= m/s, c2 = 5900 m/s. 

Fig. 5.9   a The ray paths for pure steering of an array with M = 16 elements, s = 0.5 mm, angt = 5°, 
ang20 = 60°, DTO = 10  mm, DF = inf, c1 = 1480  m/s, c2 = 5900  m/s, b the corresponding time 
delays, measured in µs

 

Fig. 5.10   a The ray paths for pure focusing of an array with M = 16 elements, s = 0.5 mm, angt = 0°, 
ang20 = 0°, DTO = 10 mm, DF = 10 mm, c1 = 1480 m/s, c2 = 5900 m/s, b the corresponding time 
delays, measured in µs
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Chapter 6
Acoustic Field of a 2-D Array Element

In previous chapters we considered 1-D elements radiating two dimensional waves 
into a fluid as this simple configuration can explain many of the fundamental is-
sues associated with arrays such as grating lobes, steering and focusing, etc. In this 
chapter we will develop models that describe the radiation of a 2-D array element in 
three dimensions. This is a more practical configuration that can be used to directly 
model the radiation characteristics of the linear and 2-D matrix arrays often used in 
practice. We will employ many of the same methods and models used in Chap. 2, 
where now they will be implemented for fully 3-D problems. As done earlier, we 
will describe radiation in both a single medium and through a planar interface.

6.1 � Single Element Transducer Models (3-D)

The basic setup we will use to describe a single element of an array is shown in 
Fig. 6.1. As done in Chap. 2, we will treat the element as a velocity source located 
on the plane z = 0 where now a normal velocity, vz ( , , )x y t , is generated over finite 
area, S , of the plane and the velocity over the remainder of the plane is assumed 
to be zero (rigid baffle model). The element will radiate waves into a fluid which 
occupies the half space z 0≥ . Following the same steps used in Chap.  2, from 
the equations of motion and constitutive equation one can show that the pressure, 
p(x,y,z,t), in the fluid will satisfy the 3-D wave equation [Schmerr]

� (6.1)

where the wave speed is given by Eq. (2.4). We will again typically model wave 
propagation for these three dimensional problems in the frequency domain. Taking 
the Fourier transform on time of Eq. (6.1) gives the three dimensional Helmholtz 
equation
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� (6.2)

for ( , , , )p x y z ω� , where consistent with Chap. 2 we define the forward and inverse 
Fourier transforms on time here as:

�

(6.3)

Once again, since our 3-D models will primarily be described in the frequency 
domain we will drop the tilde on the Fourier transformed pressure (and the Fourier 
transform of other variables such as the velocity) and simply express that transform 
as ( , , , )p x y z ω .

The 3-D Helmholtz equation has wave solutions given as

�
(6.4)

with

�
(6.5)

and /k cω= . For k k kx y
2 2 2+ ≤  Eq. (6.4) represents harmonic plane waves travel-

ing with a positive z-component, coszk k θ= , and with components ( , )k kx y  coor-
dinates cos sinxk k φ θ= , sin sinyk k φ θ=  (in spherical coordinates—see Fig. 6.2). 
For k k kx y

2 2 2+ >  Eq. (6.4) represents an inhomogeneous wave which decays expo-
nentially in the z-direction. To form a more general solution of Helmholtz’s equa-
tion we can consider a superposition of these plane and inhomogeneous waves in 
the form
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Fig. 6.1   Model of an ele-
ment as a velocity source in 
an infinite, motionless rigid 
baffle radiating into a fluid 
occupying the region z 0≥ , 
where the specific velocity 
distribution shown is spatially 
uniform over the face of the 
element (piston model)

 



1156.1 � Single Element Transducer Models (3-D)�

�

(6.6)

with x = ( , , )x y z . Equation (6.6) is a 3-D angular plane wave spectrum representa-
tion analogous to Eq. (2.10). It can be seen from Eq. (6.6) that the amplitude term 
P k kx y( , )  is a two dimensional spatial Fourier transform of the pressure on the 
plane z = 0  since we have the transform pair:

�

(6.7)

To obtain the z-component of the velocity on the plane z = 0  (see Eq. 2.15), since

�

(6.8)

we have

�
(6.9)

and if we let

�
(6.10)
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Fig. 6.2   Description of the 
wave number vector, k , in 
spherical coordinates
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we have

�

(6.11)

We recognize V k kx y( , )  as the two dimensional spatial Fourier transform of the 
velocity, vz

, on the plane z = 0, i.e.

�

(6.12)

Since we wish to write the pressure in the fluid in terms of this velocity, from 
Eqs. (6.6) and (6.10) we have

�

(6.13)

We can now use the convolution theorem [Schmerr] for two dimensional Fourier 
transforms to turn Eq. (6.13) into a more explicit relationship between the pressure 
and the velocity on the plane z = 0. The convolution theorem states that if a func-
tion f x y( , )  can be expressed as the inverse 2-D Fourier transform of a product of 
transforms, H k kx y( , )  and G k kx y( , ) , i.e.

�

(6.14)

then f x y( , )  is also equal to the 2-D convolution of the functions h x y( , ) and 
g x y( , )  given as:

�
(6.15)

where h x y( , ) is the inverse Fourier transform of H k kx y( , )  and g x y( , ) is the in-
verse Fourier transform of G k kx y( , ). We can use this theorem directly for Eq. (6.13) 
if we let

�

(6.16)
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1176.2 � Far Field Waves�

Since V k kx y( , )  is the Fourier transform of ( , ,0, )zv x y ω  it follows that here

�
(6.17)

The transform G k kx y( , )  can be identified as the transform of a spherical wave from 
the Weyl representation [1]

�

(6.18)

so that the convolution theorem gives the pressure in the fluid as

�
(6.19)

where

� (6.20)

Equation (6.19) is a Rayleigh-Sommerfeld integral representation of the pressure 
wave field of an element in terms of an integral superposition of spherical waves 
over the plane z = 0 [Schmerr]. When the velocity field is a spatial constant, 

0 ( )v ω , 
over the surface, S , of an element, then we find the Rayleigh-Sommerfeld form for 
a piston transducer:

� (6.21)

6.2 � Far Field Waves

When the distance from the element to the point in the fluid where the pressure is 
being calculated is sufficiently large, the distance, r , can be approximated to first 
order as (see Fig. 6.3):

�
(6.22)
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where ′ = ′ ′x ( , , )x y 0  and u is a unit vector from the centroid of the element to the 
point ( , , )x y z  in the fluid. If we keep only the first term in Eq. (6.22) for the 1/ r  
amplitude part in Eq. (6.19) and both terms in the phase kr , we obtain

�

(6.23)

where k ku k kux x y y= =, . But from Eq.  (6.12) we recognize the integral as just 
the 2-D Fourier transform of the normal velocity on the plane z = 0, so the far field 
pressure is given by

�
(6.24)

For a rectangular piston element of length lx
 in the x-direction and length ly  in the 

y-direction

�

(6.25)

so the far field pressure is

�
(6.26)

In terms of spherical coordinates ( , )θ φ  we have cos sinx xk ku k φ θ= = , 
sin siny yk ku k φ θ= = . In those coordinates we can write Eq. (6.26) as

�

(6.27)
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Fig. 6.3   Geometry for 
obtaining the far field behav-
ior of an element

 



1196.3 � Numerical Point Source Piston Model�

which represents a spherically spreading wave from the element with a directivity, 
( , )lD θ φ , given by

�
(6.28)

6.3 � Numerical Point Source Piston Model

To evaluate the Rayleigh-Sommerfeld model of Eq.  (6.21) numerically we can 
break a rectangular element of length lx

 in the x-direction and length ly  in the 
y-direction into P equal length segments along the x-axis and Q equal length seg-
ments along the y-axis (see Fig. 6.4). The lengths of these segments, therefore, will 
be   ∆ d l Px x= /  in the x-direction and   ∆ d l Qy y= /  in the y-direction. In this 
case, the coordinates of the centroid x yp

c
q
c,( )  of the pqth  rectangular segment can 

be defined as

�

(6.29)

A unit vector, u pq, is defined to be along the axis from this centroid x pq
c

p
c

q
cx y= ( ), ,0  

to a point x = ( , , )x y z  in the fluid (Fig. 6.4). If we let an arbitrary point in this 
rectangular segment be ′ = ′ ′x ( , , )x y 0  then the distance, r, from ′x  to x is given by

�

(6.30)

sin( sin sin / 2)sin( cos sin / 2)
( , ) .

cos sin / 2 sin sin / 2
yx

l
x y

klkl
D

kl kl

φ θφ θθ φ
φ θ φ θ

=

x
l

d p p P

y
l

d q

p
c x

x

q
c y

y

= − + −





= …

= − + −





2

1

2
1

2

1

2

  

  

∆

∆

( , , )

(qq Q= …2, , ).

22

( )·( )

2( )·

( )·

c pq c pq
pq pq pq pq

c pq c
pq pq pq pq

c pq
pq pq

r r r

r r

r

= − + − +′ ′

= + − + −′ ′

≅ + − ′

x x u x x u

x x u x x

x x u

Fig. 6.4   Parameters for eval-
uating the Rayleigh–Som-
merfeld model of an element 
radiating into a fluid
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since we will also assume the segment dimensions ∆dx  and ∆dy  are small relative 
to the distance, rpq , at which we will want to evaluate the pressure wave field. In 
this approximation Eq. (6.21) can then be written as a sum given by

�

(6.31)

where the integral is over the area of the segment, S pq. If we let ′ − = ′ − =x x s y y tp
c

q
c,  

then Eq. (6.31) becomes

�

(6.32)

But, integrals of similar form have been done before (see Eq. 6.25 for example) so 
we obtain

�

(6.33)
If we compare this result with Eq. (6.26) we see the product of the sinc function 
terms in Eq. (6.33) is just the far field directivity for each segment of the element. 
These directivities multiply a spherically spreading wave from the centroid of each 
segment. A similar form for 2-D problems (see Eq. (2.59)) involved a directivity 
and a cylindrically spreading wave. We called that model a multiple line source 
model. Since the spherical wave term in Eq. (6.33) represents waves from a point 
source, the 3-D model obtained in Eq. (6.33) will be similarly called a multiple point 
source model. In this model the centroid terms x yp

c
q
c,( )  are given by Eq. (6.29), the 

distance, rpq, is simply

�
(6.34)

and the components of the unit vector, u pq, are

�
(6.35)

As in our discussion of the multiple line source model, there is a minimum number 
of segments needed to avoid grating lobes and aliasing. In the 3-D case for a rect-
angular element we must keep ,x yd dλ λ∆ < ∆ < , where λ  is the wavelength. We 
can do this by choosing

0

1 1

exp( )( )
( , ) exp ( )· d ,

2
pq

QP
pq pq

pq
p q pq S

ikri v
p ik S

r

ωρ ωω
π = =

 
−

= − ′ ∑∑ ∫x x x u

( ) ( )
/ 2/2

0

1 1 /2 /2

exp( )( )
( , ) exp exp d d .

2

yx

x y

ddQP
pq pq pq

x y
p q pq d d

ikri v
p iksu iktu s t

r

ωρ ωω
π

+ ∆+ ∆

= = −∆ −∆

−
= − −∑∑ ∫ ∫x

0

1 1

sin( / 2) exp( )( ) sin( / 2)
( , ) ( ) .

2 / 2 / 2

pqpqQP
y y pqx x

x y pq pq
p q pqx x y y

ku d ikrcv ku d
p ik d d

rku d ku d

ρ ωω
π = =

∆∆
= − ∆ ∆

∆ ∆∑∑x

r x x y y zpq p
c

q
c= −( ) + −( ) +

2 2 2

u
x x

r
u

y y

rx
pq p

c

pq
y
pq q

c

pq

=
−

=
−

, .



1216.3 � Numerical Point Source Piston Model

�

(6.36)

where f is in MHz, ( , )l lx y in mm, and c is in m/s.
Equation (6.33) has been implemented in the 3-D point source MATLAB® func-

tion ps_3Dv (Code Listing C.20) where the centroid of the element is assumed to 
have offsets ( , )e ex y  in the ( , )x y  directions, respectively. The calling sequence for 
this function is

p = ps_3Dv(lx, ly, f, c, ex, ey, x, y, z, Popt, Qopt);

where (lx, ly) are the lengths of the elements in the x- and y-directions (in mm), f is 
the frequency (in MHz), c is the wave speed (in m/s), (ex, ey) are the offsets of the 
center of the element from the center of the array (in mm), (x, y, z) are the coordi-
nates of the point at which the normalized pressure, 0/p cvρ , is to be calculated. 
Popt and Qopt are optional input parameters discussed below.

The form of Eq.  (6.33) used in this function is still the same, but in this case 
Eqs. (6.34) and (6.35) are changed to include the offsets:

�

(6.37)

In implementing the criteria of Eq. (6.36) for determining the number of element 
segments in the function ps_3Dv the frequency, f, is assumed to be a scalar so that 
to synthesize the spectrum of a pulse with this function one must call the function 
for each frequency component in the spectrum. At high frequencies, these P and 
Q values may be prohibitively large so one must be careful to evaluate the fields 
only over the bandwidth of the transducer when implementing the function in this 
manner. The function, however, also has a pair of optional arguments, Popt, Qopt, 
that allows the user to specify the number of segments directly regardless of the fre-
quency. When calling the function with these optional arguments, the frequency, f, 
can be vector. The choice Popt = 1, Qopt = 1 is the simple case of a single point source 
model, where the pressure is given by Eq. (6.27).

To show a fairly stringent test of the use of ps_3Dv, consider the case of a 
large single element where lx = 6 mm, ly = 12 mm , f = 5 MHz, c = 1480 m/s, 
e ex y= = 0, x y= = 0, (5,100,500)z linspace= , and Popt, Qopt are not specified. 
Figure 6.5 compares a plot of this case with the case where Popt = 203, Qopt = 406  
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which corresponds to choosing ten segments per wavelength in both dimensions to 
represent this element. It can be seen that there is no visible difference between the 
two cases even in the near field of the element.

6.4 � Contact Transducer Element Modeling

If an array is used in contact testing, the array element is in direct contact with a 
solid, with a thin layer of fluid couplant between the element and the solid. In this 
case, a more appropriate model for the boundary conditions is to assume that the 
element exerts a pressure distribution (usually assumed to be uniform) over the 
face of the element on an otherwise stress-free surface (Fig.  6.6). This pressure 
distribution generates a number of waves, including bulk P-waves and S-waves, 

Fig. 6.6   Model of an array 
element in contact with an 
elastic solid as a uniform 
pressure distribution on an 
otherwise stress-free surface

 

Fig. 6.5   The on-axis pres-
sure variation for a 6 × 12 mm 
rectangular element radiating 
into water ( c = 1480 m/s) 
at 5 MHz. Solid line—one 
segment per wavelength ( Popt 
and Qopt are not specified), 
dashed line—Popt = 203, 
Qopt = 406 (ten segments per 
wavelength in both direc-
tions). There is no discernible 
difference between the two 
cases
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Head waves, and Rayleigh surface waves [Schmerr]. At high frequencies the bulk 
P-waves, which are generally the waves used most often in contact inspections, can 
also be modeled in the form of a Rayleigh-Sommerfeld type of integral [Schmerr] 
where the velocity, ( , )ωv x , in a solid due to a uniform pressure, 0 ( )p ω  over a sur-
face area, S, is given by

�
(6.38)

where ( )pK θ ′  is a directivity function given by

�
(6.39)

Here θ′  is an angle measured from the element normal, as shown in Fig. 6.7 and

�
(6.40)

where 1 1/p sc cκ =  is the ratio of the compressional and shear wave speeds in the 
solid. The unit vector ′d p  is the polarization vector along a ray from an arbitrary 
point ′x  on the element face to a point x  in the solid.

In the far field of the element one can approximate the integrand in exactly the 
same manner as done for the fluid case so we will omit the intermediate steps and 
simply write the result for a rectangular element as:

�

(6.41)
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Fig. 6.7   Parameters for the 
modeling a contact element 
radiating into a solid
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where the angle θ , the polarization d p, and the distance r0, are all measured rela-
tive to a ray from the centroid of the element to the point x, as shown in Fig. 6.7. 
The directivity function ( , )lD θ φ  is given by Eq. (6.28). Aside from the extra direc-
tivity function, ( )pK θ , and the polarization vector, d p , Eq. (6.41) is of very similar 
form to Eq. (6.27) for the fluid case. Equation (6.41) gives us a single point source 
model for a contact element radiating P-waves into a solid.

6.5 � Radiation Through a Planar Interface

Many NDE applications of phased arrays involve either immersion testing or angle 
beam testing where the array sits on a solid wedge in contact with the material to 
be examined. In both these cases the waves must travel through an interface. In 
this section we will develop beam models for an array radiating through a planar 
interface. These models will be 3-D models equivalent to the 2-D cases considered 
in Chap. 2.

Consider first the case of an immersion setup where an element in a fluid radiates 
waves across a planar interface into an elastic solid, as shown in Fig. 6.8. In Chap. 2 
we showed that for 2-D waves we could use ray theory to develop a beam model 
for the transmitted waves. In this section we will follow the same approach for the 
3-D case. [For a very complete description of ray theory for both scalar and elastic 
wave problems, see the book by Červený [2] on seismic ray theory.] If we model the 
pressure waves incident on the interface through the Rayleigh-Sommerfeld equa-
tion for a piston source, a small segment of the element of area d d′ ′x y  will act as a 
point source and produce an incident pressure, 

1( , )ip ωx , at the interface given by 
(see Eq. 6.21):

Fig. 6.8   Geometry for the 
radiation of waves from 
an array element through a 
plane, liquid-solid interface

 



1256.5 � Radiation Through a Planar Interface�

�
(6.42)

The velocity in this incident wave, from the equation of motion of the fluid, is given 
as

�
(6.43)

but at high frequencies the gradient of the pressure is primarily due to the derivative 
of the complex exponential phase term in Eq. (6.42) so that we have

�

(6.44)

or, equivalently,

�

(6.45)

since the polarization vector of these pressure waves is just d p r1 1= ∇ . This incident 
wave at high frequencies will produce transmitted waves at the interface of type 

( , )p sβ β =  whose velocity, 
2 ( , )i ωv x , is

�

(6.46)

where ; p
fsT β  is the plane wave transmission coefficient (based on velocity ratios) 

for a transmitted wave of type β  due the incident P-wave for a plane fluid-solid 
interface and 2βd  is a unit vector describing the polarization of a wave of type β  
traveling in the solid.

According to ray theory, the pressure at x  from a small “point” source at ′x  
can be determined by following a bundle of rays on a Snell’s law path from ′x  to 
x. However, this bundle spreads differently in the plane of incidence (POI) and 
outside that plane, as shown in Fig. 6.9a and b, respectively. In the POI a bundle of 
waves appear to originate from a virtual point source located at a distance 

vi
βρ  from 

point xi
 along the refracted ray. Outside the POI the bundle appears to originate at 

a distance 
vo
βρ  instead. Following the same steps shown in Appendix B it is easy 

1 11 0
1

1

exp( )( )
( , ) d d .

2
p

i

ik ri v
p x y

r

ωρ ωω
π

−
= ′ ′x

1 1
1

1
,p

iωρ
= ∇v

1 0 1 1
1 1

1

( ) exp( )
( , ) d d

2
p p

i

ik v ik r
r x y

r

ω
ω

π
−

= ∇ ′ ′v x

1 0 1 1
1 1

1

( ) exp( )
( , ) d d ,

2
p p

i p

ik v ik r
x y

r

ω
ω

π
−

= ′ ′v x d

1 0 1 1 ;
2 2

1

( ) exp( )
( , ) d d ,

2
p p p

i fs

ik v ik r
T x y

r
β

β

ω
ω

π
−

= ′ ′v x d



126 6  Acoustic Field of a 2-D Array Element

to calculate these distances from the geometry and Snell’s law, so we will just state 
the result here, namely

�

(6.47)

In propagating from xi  to x , the velocity at x  according to ray theory is just

�

(6.48)

So, from Eqs. (6.46) and (6.47),

�

(6.49)
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Fig. 6.9   a Spreading of a bundle of rays in the plane of incidence (POI), and b spreading of a 
bundle of rays outside the POI
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Summing up these velocities over the entire element face we then find the total 
velocity in the solid, ( , )ωv x , is

�

(6.50)

As in the 2-D case, here the distances 1 2( , )r r β  and angles 1 2( , )p βθ θ  need to be 
determined by finding the Snell’s law path from ′x  to x . Again, this path is deter-
mined once the point on the interface, xi , along the ray is found. In Chap. 8, as part 
of the process of determining the time delay laws for steering and focusing an array 
through as plane interface, this interface location is determined from Snell’s law 
following the same approach used previously in 2-D models. We will discuss more 
explicitly how xi

 is found later in this section.
The plane wave transmission coefficients (based on velocity ratios) for a fluid-

solid interface used in Eq. (6.50) are [Schmerr-Song]

�

(6.51)

where

�
(6.52)

and the angles 1 2 2( , , )p p sθ θ θ  are all related through Snell’s law, i.e.

�
(6.53)

In the case of angle beam testing with an array placed on a solid wedge, we can de-
velop a very similar model for the transmitted waves since the array generates pri-
marily P-waves in the wedge and the geometry is as shown in Fig. 6.10. For a small 
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segment area d d′ ′x y  of the element in contact with the wedge then the incident 
velocity field in the wedge at point xi

 on the interface is given by (see Eq. 6.38)

�
(6.54)

and the velocity field of the transmitted wave in the adjacent solid at the interface 
point xi

 is

�
(6.55)

where ; p
ssT β  is the plane wave transmission coefficient (based on velocity ratios) 

for two elastic solids in smooth contact [Schmerr-Song], which is appropriate since 
in angle beam testing a thin fluid couplant layer exists between the wedge and the 
underlying solid.

The same ray expressions used in the fluid-solid case to obtain the total field 
from the element apply here also, so the velocity at point x  generated from the 
velocity field of Eq. (6.55) at the interface is
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(6.56)
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Fig. 6.10   Geometry for 
the radiation of waves in an 
angle beam setup where an 
array element sits on a solid 
wedge in smooth contact with 
an adjacent solid
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�

(6.57)

where ∆1  is again given by Eq. (6.52) and

�

(6.58)

Snell’s law is again satisfied for all the angles appearing in Eq. (6.57), i.e.

�

(6.59)

It is easy to see that these transmission coefficients reduce to those of the fluid-solid 
interface by setting 1sin 0sθ =  in Eq. (6.57).

When we are in the far field of an element we can approximate the phase term 
1 1 2 2p pk r k rβ β+  to first order about a ray that travels to x from the centroid C of the 
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Fig. 6.11   Geometry for cal-
culating the phase term in the 
far field of an element
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element and approximate all other amplitude terms to zeroth order about that central 
ray. From the geometry of Fig. 6.11 we have

�

(6.60)

where we have written x tI Ix=  with t  being a unit vector in the plane of the inter-
face. But the term in the square brackets in Eq. (6.60) vanishes because it is just a 
statement of Snell’s law, so we have

�
(6.61)

Placing this approximation in the immersion case, Eq. (6.50), we find
�

(6.62)

Similarly, the contact case, Eq. (6.56) becomes�

(6.63)

where the bar over the various parameters indicates that they are calculated along 
the central ray from the centroid of the element to point x.
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We have calculated the integrals in Eqs. (6.62) and (6.63) before (see Eq. 6.23) 
where we obtained the directivity function of the element, so using those results 
here we find

�

(6.64)

for the immersion case, and

�

(6.65)

for the contact case, where 10 ( , , )x y zu u u′ ′ ′= =e u .
We can use these results to also develop a numerical point source model for an 

element radiating through a planar fluid-solid interface by breaking the element up 
into R segments along the ′x -axis and Q segments along the ′y -axis. Then for the 
immersion case we have
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(6.66)

1 0 1 1;
2

1 1

1 10 2 20

2
2 1 2

10 20 10 202
1 12

( ) sin( / 2) sin( / 2)
( , )

2 / 2 / 2

exp( )
·

cos

cos

p x y p x x p y yp
fs

p x x p y y

p

p

p p

ik v l l k u l k u l
T

k u l k u l

ik r ik r

c c
r r r r

c c

β
β

β
β

β ββ β

β

ω
ω

π

θ
θ

′ ′

′ ′

−
=

+

   
+ +     

v x d

1 0 1 1;
2

1 1 1 1

1 10 2 20

2
2 1 2

10 20 10 202
1 12

( ) sin( / 2) sin( / 2)
( , ) ( )

2 / 2 / 2

exp( )
·

cos

cos

p x y p x x p y yp
p ss

p p x y p y y

p

p

p p

ik p l l k u l k u l
K T

c k u l k u l

ik r ik r

c c
r r r r

c c

β
β

β
β

β ββ β

β

ω
ω θ

πρ

θ
θ

′ ′

′ ′

−
=

+

   
+ +     

v x d

( )

1 0 1;
1 2

1 1 1

;
1 1 2 21

21 2 2; ;1
1 2 1 22

1 12

( ) sin( / 2)
( , ) ( )

2 / 2

expsin( / 2)
· ,

/ 2 cos

cos

rqQR
p x y p x xp rq rq

fs rq
r q p x x

rq rqrq
pp y y

rq
rqp y y

rq rq rq rq
rq

p p

ik v d d k u d
T

k u d

ik r ik rk u d

k u d c c
r r r r

c c

β
β

β
β

β ββ β

ω
ω θ

π

θ
θ

′

= = ′

′

′

− ∆ ∆ ∆
=

∆

+∆
∆    

+ +      

∑∑v x d



132 6  Acoustic Field of a 2-D Array Element

and for the contact case

�

(6.67)

where now the bar over the various parameters indicates that they are calculated 
along a ray from the centroid of a segment to point x.

To implement these beam models using the geometry of Fig. 6.12, we need to 
first calculate the distance between points R and Q, �D, given by

�

(6.68)

and the distance, Ds
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Fig. 6.12   a Geometry for the calculation of the fields from the segment of an array element as 
determined from a Snell’s law ray path traveling across a planar interface, and b a side view of 
the setup
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[Note that ′xc
rq  is in reality a function of r only and ′yc

rq  is a function of q only, but 
we have used both superscripts in these parameters to emphasize they are calculated 
for all the segments present in the element. Both �D  and Ds  are also functions of 
both r and q but for economy of notation we will not explicitly indicate those de-
pendencies.]

From these distances and knowledge of the point of intersection of the ray with 
the interface in terms of the distance �xi

rq we can then calculate the incident and 
refracted angles, i.e.

�

(6.70)

which are always well-behaved since we must have Ds > 0  to make sure the array 
segment is always above the interface and we will only evaluate rays in the second 
medium at points where z > 0 . Finding the distance �xi

rq  is similar to the 2-D case 
discussed in Chaps. 2 and 5. We can also evaluate the ray path lengths:

�

(6.71)

and the segment lengths are simply ∆ ∆d l R d l Qx x y y= =/ , / . To get the compo-
nents of urq  along the ( , , )′ ′ ′x y z  axes, we can first locate the interface point, xI , in 
terms of the points xQ  and xR  as
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(6.72)

But in ( , , )x y z  coordinates we have
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(6.73)

where ( , , )i j k  are unit vectors along the ( , , )x y z  axes, respectively so that we have�
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Then, since u x x= −( ) /I s
rqr1 , where

� (6.75)

we find

�
(6.76)

To get the components in the ( , , )′ ′ ′x y z  system we first write unit vectors ( , , )′ ′ ′i j k  
along these axes as

�

(6.77)

giving
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(6.78)

Note that it is possible that a ray travels through the interface at normal incidence. 
In that case � �D xi

rq= =0 0, , D rs
rq= 1

, and
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To find the polarization vectors ( , )d ds
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�

(6.81)

The shear wave polarization, which is also compatible with the direction assumed 
in calculating the plane wave transmission coefficient ( ); ;T Tfs

s p
ss
s por , for this wave 

(see Fig. 6.12), is

�

(6.82)

which is always well-behaved since we will always assume the fields are calcu-
lated for z > 0  and hence d pz  is never zero. For contact problems we also need to 
calculate the transducer directivity ( )rq

pK θ . But we have cos rq
zu θ′ =  so we can 

calculate the additional angle needed for this directivity from

� (6.83)

The MATLAB® function ps_3Dint (Code Listing C.23) uses these relations to eval-
uate the normalized velocity wave field of an array element radiating through a 
fluid/solid interface. The calling sequence for this function is

[vx, vy, vz] = ps_3Dint( lx, ly, f, mat, ex, ey, angt, Dt0, x, y, z, Ropt, Qopt);

where (vx, vy, vz) are the velocity components in the second medium divided by 
the driving velocity on the face of the element, as measured in the (x, y, z) axes 
of Fig.  6.12. The parameters (lx, ly) are the lengths (in mm), of the rectangular 
element in the ′x - and ′y -directions, respectively, and f is the frequency (in MHz). 
The frequency must be a scalar so if one wants to simulate a pulse one must make 
multiple calls to the function at different frequencies. The input parameter mat is a 
MATLAB® row vector given as mat = [d1, cp1, d2, cp2, cs2, type] where d1 is the 
density of the first (fluid) medium in arbitrary units and cp1 is its compressional 
wave speed (in m/s). Similarly, d2, cp2, cs2, are the density, compressional wave 
speed (in m/s), and shear wave speed (in m/s), respectively for the second medium, 
and type is a string that specifies the type of refracted wave we are considering, 
where type can be ‘p’ or ‘s’ for a P-wave or an S-wave, respectively. The distanc-
es ex and ey are the distances of the element in the ′x - and ′y -directions from  
the center of the array, ( , )e ex y′ ′ , measured in mm. The variable angt is the angle of 
the transducer, 

Tθ , (in degrees) and Dt0 is the vertical distance, Dt0
,of the center of 

the entire array from the interface (in mm). The parameters ( , , )x y z  are the coordi-
nate locations (in mm) at which the normalized velocity fields are to be evaluated in 
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the second medium. These variables can be scalars, vectors or 2-D matrices, so that 
with one call to ps_3Dint one can produce 2-D data in the x–z, y–z, or x–y planes. 
Similarly, with one call to the function one can produce data along the x-, y-, or 
z-axes or along a general line in 3-D. To produce fully 3-D data one must evaluate 
the velocity fields one plane at a time with multiple calls to the function to cover 
the third dimension. The distance, z, must always have a non-zero positive value or 
values. The parameters Ropt and Qopt are optional inputs that specify the number 
of segments used in the ′x  and ′y  directions, respectively. If one or both of these 
parameters are not specified then the number of segments in the direction where 
the number of segments is not specified is calculated so that the segment size is no 
larger than one wavelength.

The function ps_3Dint uses the function T_fluid_solid (Code Listing C.29) to 
calculate the plane wave transmission coefficients for the waves that propagate 
across a plane fluid-solid interface. The calling sequence for this function is

≫ [tpp, tps] = T_fluid_solid(d1, cp1, d2, cp2, cs2, theta1);

where theta1 is the angle (in degrees) of the incident waves at the interface and (tpp, 
tps) are the transmission coefficients (based on velocity ratios—see Eq. 6.51) for 
the P-to-P and P-to-SV wave transmission, respectively.

The function ps_3Dint also uses the function pts_3Dint (Code Listing C.24) to 
calculate the distances, �xi

rq , at which the rays intersect the interface. The calling 
sequence for this function is

≫ xi = pts_3Dint(ex, ey, xc, yc, angt, Dt0, c1, c2, x, y, z);

where xi is the distance �xi
rq  (Fig. 6.13), xc is the distance ′x rq

c  to the center of 
the rqth segment in the ′x  direction and yc is the corresponding distance ′y rq

c  in 
the ′y direction. Parameters ( , )c c1 2  are the wave speeds for the waves traveling 
in the first and second medium, respectively. The remaining parameters are the 
same as described for the function ps_3Dint. The function pts_3Dint uses a func-
tion init_xi3D (Code Listing C.25) to determine, based on the sizes of the vectors 
or matrices present in the ( , , )x y z  variables, the size of the corresponding vector or 

Fig. 6.13   A Snell’s law ray 
path as seen in the plane of 
incidence (see Fig. 6.12)
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matrix needed to hold the corresponding �xi
rq  calculations for each element segment. 

The calling sequence for this function is

≫ [xi, V1, V2] = init_xi3D(x, y, z);

where xi here is a matrix of zeros having V1 rows and V2 columns. The function 
pts_3Dint then fills in this matrix of zeros with �xi

rq  values by following the same 
approach used in Chaps. 5 and 8. Briefly, this approach writes Snell’s law for a ray 
in terms of the parameters seen in the plane of incidence (Fig. 6.13) as (see Eq. 8.18)

�

(6.84)g x
D x x D c c x D x z

i
rq i

rq
i
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s i
rq

i
rq
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( ) ( ) ( / ) ( )
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=
− + − − +2 2

2 1
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��D
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Fig. 6.14   The magnitude 
of the total P-wave veloc-
ity in steel as seen in the x–z 
plane for a 6 × 12 mm element 
radiating waves at 5 MHz 
through a planar water-steel 
interface. The parameters 
chosen were: 1 1480 m/s,pc =  
cp2 5900= m/s, cs2 3200= m/s, 

3
1 1.0 gm/cmρ = , 

3
2 7.9 gm/cmρ = , 10.217Tθ °= , 

Dto mm= 50 8. , e ex y= = 0

 

Fig. 6.15   The magnitude of 
the total S-wave velocity in 
steel as seen in the x–z plane 
for a 6 × 12 mm element 
radiating waves at 5 MHz 
through a planar water-steel 
interface. The other param-
eters here are the same as in 
Fig. 6.14
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Solving for the value �xi
rq  at the zero of this g i

rq( )�x  function then is done with the 
MATLAB® function ferrari2 (Code Listing C.5) which was used in Chaps. 5 and 8 
to develop the time delay laws for steering and focusing through a planar interface 
(for more details see Eq. (5.18) and the following discussion in Chap. 5).

As an example of the use of ps_3Dint, Fig. 6.14 shows an image in the x–z plane 
of the magnitude of the velocity at a frequency of 5 MHz in steel for a transmit-
ted P-wave when the center of a 6 × 12 mm rectangular element in water is located 
50.8 mm above a planar water/steel interface and the element is oriented at an angle 

10.217Tθ °= . According to Snell’s law this element angle will produce a transmit-
ted P-wave at a refracted angle of 45°, which is indeed the angle along which the 
transmitted beam seen in Fig. 6.14 propagates. Figure 6.15 shows the corresponding 
magnitude of velocity for the refracted shear wave in the steel instead, which ac-
cording to Snell’s law should travel at a refracted angle of 22.5°. It can be seen from 
Fig. 6.15 that the main beam does travel in that direction but relatively strong side 
lobes are also transmitted into the steel.

6.6 � Gaussian Beam Equivalent Point Source Modeling

Point source beam models have been frequently used to describe ultrasonic phased 
arrays. As shown in the previous sections, a relatively simple point source beam 
model can be developed for radiation through planar interfaces by combining a 
Rayleigh/Sommerfeld integral approach with high frequency approximations such 
as ray theory. A similar ray theory approach can be used in more complex problems 
such as the radiation through curved interfaces by explicitly modeling the behavior 
of the waves in the neighborhood of a ray (called pencils) with the paraxial approxi-
mation [3]. Unfortunately, for curved interfaces the interface itself can produce fo-
cusing of the waves, resulting in singularities in the pencil expressions for the wave 
amplitudes at points or along lines. One can use more exact uniform high frequency 
expansions to eliminate such singularities but this approach results in a much more 
complex beam model. Gaussian beam expressions are always non-singular even 
when radiating through curved interfaces. This property, plus the fact that a multi-
Gaussian beam model is numerically very efficient makes it the ideal beam model 
for modeling large, single element transducers, as discussed in Chap. 3, even where 
point source models in conjunction with high frequency ray theory fails. However, 
as seen in Chap. 4, multi-Gaussian beam models rely on the paraxial approximation, 
an approximation that hinders their use as an effective beam model for modeling 
the wide radiation patterns of small elements in an array. The non-paraxial multi-
Gaussian beam model discussed Chap. 4 can remove this restriction but as seen in 
that Chapter a non-paraxial multi-Gaussian beam model is less efficient than a point 
source beam model for single medium problems. Furthermore, non-paraxial multi-
Gaussian beam models are not readily extendable to radiation through interfaces. 
There is an alternate approach that can use Gaussian beams while avoiding the 
limitations of the paraxial approximation. The basic idea is to replace a beam model 
that uses point sources and ray theory with one that uses Gaussian beams and ray 
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theory. In this section we will show that such a replacement is possible, resulting in 
a Gaussian beam equivalent point source (GBEPS) model [4].

To see the basis of the GBEPS model, consider a harmonic spherical wave radi-
ating from a point source in a fluid, where the pressure, p, is given by

�
(6.85)

If we take the z-axis to be along a particular direction and let 2 2r zρ= + , where 
ρ  is the perpendicular distance from the z-axis, then in the paraxial approximation 

near that axis we have, approximately

�
(6.86)

Alternatively, if we consider a Gaussian beam propagating along the z-axis, then 
[Schmerr-Song]

�

(6.87)

where the constants A and B define the specific characteristics of the Gaussian 
beam. Comparing Eqs. (6.86) and (6.87), we see they will be essentially identical if

�
(6.88)

Under these conditions, we see that the propagation characteristics of the spheri-
cal wave and the Gaussian beam are indistinguishable. In the GBEPS model, the 
wave field of an array element is first modeled as a superposition of spherical wave 
(point source) responses. The spherical waves are then replaced by their Gauss-
ian beam equivalents, satisfying Eq. (6.88), and the well-behaved propagation and 
transmission/reflection laws for Gaussian beams are used to model the transducer 
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wave field after interactions with complex geometries. To see how this replace-
ment works, consider the propagation of waves from an element radiating through 
a fluid-fluid interface. In order to keep the expressions involved from being too 
algebraically complex, we will also assume in this example that the interface is 
spherical so that the plane of incidence is always aligned with a principal axis of 
the curved spherical interface (Fig. 6.16). In this case, the velocity, v, in the second 
medium can be represented by a point source model and high frequency ray theory 
(see Eq. (6.49) for the comparable planar interface fluid-solid model) as [Schmerr]

�

(6.89)

where

�

(6.90)

Here, v0
 is the velocity on the surface, S, of the element, / ( 1, 2)m mk c mω= =  are 

the wave numbers for waves traveling in the first and second media, respectively, 
with cm

 the corresponding wave speeds, z mm ( , )= 1 2  are the distances traveled 
along a Snell’s law ray path from a point on the transducer surface to a point in the 
solid where the velocity is to be evaluated, T12

 is an ordinary plane wave transmis-
sion coefficient (based on a velocity ratio) along this ray path, and R is the radius of 
curvature of the spherical interface. The vector d is the polarization of the compres-
sional wave in the second medium (Fig. 6.16). The problem with this point source 
model is readily evident from Eq.  (6.90). The terms 

1φ  or 
2φ  can become zero 

for the case of a focusing spherical interface which occurs if R > 0  and c c1 2>  or 
R < 0 and c c2 1>  [Schmerr], so that the velocity expressions will become singular 
at those points. However, if we replace the spherical waves in the first medium by 
an equivalent Gaussian beam, i.e. one that satisfies Eq. (6.88), and use the laws of 
propagation and transmission of that Gaussian beam through the spherical interface 
[Schmerr-Song], in place of Eq. (6.89) we find

�

(6.91)
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and now the velocity is always well-behaved everywhere in the second medium.
As done previously with a point source model we can use Eq. (6.91) and break 

S up into M segments, ∆S, and perform the phase integration to first order over 
the elements exactly for small polygonal elements (rectangles, triangles). We have 
shown this previously for a small rectangular element radiating through a planar 
interface, (see Eq.  (6.62), for example) and the curvature of the interface in the 
present case does not change those first order results [Schmerr]. Thus, in the far 
field approximation for a segment the surface integration of Eq. (6.91) in terms of 
M segments yields

�

(6.93)

in terms of a directivity function, DR
m  ( , , )m M= …1 . For a rectangular segment this 

directivity is given as [Schmerr]

�

(6.94)

where, L L1 2,  are vectors L e L e1 2= =∆ ∆d dx x y y, , and ∆ ∆d dx y,  are the lengths 
of the segment in the x- and y-directions, respectively, and e ex y,  are unit vectors 
along those same directions. The unit vector e�

m  is along the projection of a unit 
vector, em , along a ray path in the first medium onto the x–y plane as shown in 
Fig. 6.17a, and 

mθ  is the angle of this ray path from the element unit normal, n. 
Note that this directivity is slightly different from those defined previously as it 
also contains a coefficient (the first term on the right side of Eq. (6.94)) as well as 
the sinc functions that appeared in previously defined directivities. Similarly, for a 
triangular segment (see Fig. 6.17b) the directivity is [Schmerr]

�
(6.95)

( )1 1 2 2

0 12
1 1 2

exp m mM
m m m

R m m
m

ik z ik z
v T D

ψ ψ=

+
= ∑v d

1 1 1 21

1 1 1 2

sin sin ( · ) / 2 sin sin ( · ) / 2
,

2 sin ( · ) / 2 sin ( · ) / 2

m m
m mx ym

R m m
m m

k kik d d
D

k k

θ θ
π θ θ

   − ∆ ∆    =
e L e L

e L e L
� �

� �

3
1

12
1 1

sin sin ( · ) / 2( )·1
exp sin ( · ) ,

2 sin sin ( · ) / 2

m mm m
m nm m mn

R m n m m
n m m n

k
D ik

k

θ
θ

π θ θ=

 ×   = −    
∑

e Ln e L
e D

e L

�
�

�

Fig. 6.17   The definition of parameters that define the far field directivity of a a rectangular seg-
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where Dn
m  is the vector distance from the centroid of the mth segment to the center 

of the nth side and Ln
m  are vectors along the segment sides. The triangular element 

case is also shown here since it is an important building block for modeling seg-
ments of large, single element non-rectangular transducers and could also be used 
to model segments of non-rectangular array elements as well.

This example was for a very specific case but Gaussian beams can be used to 
model much more general problems. For example, Gaussian beams can be propagat-
ed, transmitted and reflected through multiple media and explicit expressions writ-
ten for the Gaussian beam wave field after these complex interactions. For example, 
after beam interactions with P curved interfaces the velocity along the central ray in 
the ( )P +1 th  medium, vP+1

, of a Gaussian beam can be written as [Schmerr-Song]

�

(6.96)

where one can write down explicit expressions for the 2 × 2 M p  matrices and the 
3 × 3 Tp  matrices contain the appropriate plane wave transmission/reflection coeffi-
cients for the given ray path and d1  is the polarization in the first medium (at the ar-
ray element). The distances zp  are the propagation distances in each medium along 
a ray path. The velocity amplitude of the Gaussian beam on the element face is v0 .

If we use Eq. (6.96) in our GBEPS modeling approach, then the general form 
of the GBEPS model for the velocity v generated by an element with M segments 
( / )with A iB k= 2  is:

�

(6.97)

The success of the GBEPS model relies on having constants A and B that accurately 
simulate the behavior of a spherical wave. To obtain such best-fit A, B values it is 
convenient to use Prony’s method [5, 6] because it is a fast and direct method. In 
this approach, a Gaussian beam is matched with the spherical wave in the neighbor-
hood of a particular axis, which we will take as the z-axis. Thus, we want to satisfy
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where ρ is the perpendicular distance from the z-axis. We sample these functions 
at a known fixed z value and for M values of ρ, mρ , given by 2 2

m mρ ε= , where ε  
is a constant that controls the spacing of points. Then, Eq. (6.98) at these sampled 
values gives

�

(6.99)

which we write as the M sampled values in the form

�
(6.100)

with

�

(6.101)

Expressing sampled values of a variable in terms of a single best fit complex ex-
ponential with C and D parameters is a special case of the more general fitting of 
the samples to multiple complex exponentials with N values of C and D. These 
parameters are easily obtained with Prony’s method by solving for the roots of a 
polynomial and a system of linear equations [5, 6]. For example, let the frequency 
f = 5MHz , the distance z = 200 mm, and the wave speed (of water) c = 1480 m/s 

and consider M  = 4 sampled values of the pressure for ρ values from 0 to 6.5 mm 
(using ε = 0.637). This range of ρ values is well within the paraxial region where 
the Gaussian beam solution is valid. The values obtained from Prony’s method for 
these choices were

� (6.102)

which do satisfy A iB k= 2 / . At other frequencies it is not necessary to recalculate 
these A and B values since one can simply use the B obtained here and scale the A 
value appropriately. Note that to satisfy the inequality z k B>> / 2 , our choice of 
parameters gives z >> 0 07. mm , approximately, so that this single Gaussian beam 
should accurately represent the spherical wave for z-distances of, say, 1  mm or 
greater. This can be shown to indeed be the case by simply plotting the exact mag-
nitude of the pressure in a spherical wave versus the radial ( z-distance) and compar-
ing it to that of the single Gaussian beam. Thus, except in a very small region near 
the origin of the spherical wave, this single Gaussian beam and a spherical wave 
for all practical purposes are indistinguishable. The size of the region where the 
inequality is violated will of course grow as the frequency increases but generally 

( )2 2

2 2

exp 1
exp( )exp ,

1 2 / 2( / 2 )

m

m

m

ik z ikm
p A ikz

iBz k z ik Bz

ρ ε
ρ

+  
= =  + − +

p C mDm = exp( )

1
exp( ),

1 2 /

.
2( / 2 )

C A ikz
iBz k

ik
D

z ik B

ε

=
+

=
−

A i B i= + = −10 51 9 11 96 67 111 50. . ; . . ,



144

this is not a problem as the frequency content in most ultrasonic NDE signals is 
roughly of the order of the 5 MHz value used here to obtain these A and B values. 
If one wishes to use arrays with significantly higher frequencies (much greater than 
20 MHz, for example) one can simply re-compute a new set of A and B values suit-
able for those higher frequencies.

The GBEPS model has been examined for a wide variety of problems with ex-
cellent results. Here, we will show some selected examples of the performance of 
this method similar to those given in [4]. First, consider a phased array radiating di-
rectly into water (see Fig. 6.18a), where phasing will be used to both focus the beam 
and steer it in the ( , )Θ Φ  directions. We modeled a 5 MHz, 8 × 4 rectangular array 
where the elements were 0.8 × 2.4 mm rectangles with a gap size between elements 
of 0.2 mm in both directions. A delay law was applied to this array to steer it in the 
Θ Φ= − =° °90 20,  direction and focus it at a distance of 150 mm along the steering 
direction. The magnitude of the normalized pressure along the steered axis is shown 
in Fig. 6.19 for both the GBEPS model and an result obtained by a very detailed 
integration of a point source model, which was used as The “gold standard”. It can 
be seen from that figure that the GBEPS model gave very good results in spite of 

Fig. 6.18   Steering angles for 
a an array radiating directly 
into a fluid, and b for the case 
where the array is on a solid 
Lucite wedge radiating into 
steel

 

Fig. 6.19   Magnitude of 
the on-axis pressure for a 
5 MHz, 8 × 4 array radiating 
into a fluid where the array is 
phased to steer the beam in 
the 90 , 20° °Φ = − Θ =  direc-
tion and focused at 150 mm. 
Solid line: point source model 
“exact” result, dashed line: 
GBEPS model results
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the fact that it used only one segment per array element, where the array elements 
were rather large (approximately 2.7 × 8 wavelengths). Even the small differences 
in the near-field could be improved by simply using more segments in the larger 
element dimension. Figure 6.18b shows a more complex modeling setup where an 
array is placed on a Lucite wedge and radiates into steel. In this angle beam setup, 
the wedge angle was chosen to generate a 45° P-wave in the wedge without any 
phasing (a shear wave also was generated, but the results shown will only be for 
the P-wave beam). In this example a 5 MHz square 16 × 16 array was placed on 
the wedge with elements having dimensions of 1.6 × 1.6 mm and there was a gap 
size of 0.2 mm between elements in both directions. The distance from the center 
of the array to the interface (along a direction normal to the array) was 24.86 mm. 
Figure 6.20 shows a plot of the magnitude of the normalized velocity (normalized 
by the velocity on the face of the transducer) along the steered beam axis where the 
time delay law was chosen to focus the beam at a depth of 50 mm and steered to the 

Fig. 6.21   Simulated pulse 
at a distance of 6.25 mm in 
steel for a 5 MHz, 8  × 8 array 
placed on a Lucite wedge. 
Solid line—point source 
beam model “exact” results. 
Dashed line—GBEPS model 
results

 

Fig. 6.20   Magnitude of 
the on-axis velocity for a 
5 MHz, 16 × 16 array placed 
on a Lucite wedge and 
radiating into steel, plotted 
versus the distance along 
the steered beam axis. The 
array was phased to focus 
at a depth of 50 mm in the 
steel and steered to the angles 

0 2030 , 30φ θ° °= = .  Solid 
line—point source model 
“exact” results; dashed line—
GBEPS model results
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angles 
0 20( 30 , 30 )φ θ° °= = . Both the GBEPS results and that for the point source 

standard are plotted in Fig. 6.20, showing that again the GBEPS model gave excel-
lent agreement even though only one segment per array element was used and each 
side of the array element was about 3.7 wavelengths in length.

If the GBEPS model is used to simulate a time domain pulse, the performance 
and accuracy of the model are also very good. Consider the same angle beam setup 
described previously where without steering present a 45° P-wave is radiated into 
steel. The transducer on the wedge in this case was a square 8 ×  8 array with square 
elements having side lengths of 3.2 mm and the gap between elements was 0.2 mm 
in both directions. In this case the response at a fixed point ( z = 6.25 mm) along 
the steered axis was calculated at a single frequency and multiplied by a Gaussian 
window having a center frequency of 5 MHz and a −6 dB bandwidth of 60 % to 
generate a response spectrum. This spectrum was then inverted into time to simulate 
a pulsed response. In this case the focus was placed at 50 mm and the beam was 
steered in the 0 20( 0 60, )φ θ° °= =  direction. The “gold standard” model was again 
a point source model where each array element was divided into 40 × 40 segments, 
giving each segment a length of about a fifth of a wavelength. As Fig. 6.21 shows, 
the GBEPS model very closely models that of the point source model.

The examples discussed above were chosen to illustrate the ability of the GBEPS 
model to accurately simulate beam steering and focusing of some typical arrays. 
All the cases examined were for single medium or planar interface problems where 
point source models are well-behaved so that we could compare GBEPS models 
with a well-known “standard”. Since a GBEPS model, however, is not restricted to 
those geometries and can in fact also be applied to much more complicated cases 
such as anisotropic or inhomogeneous media, curved interfaces, etc. the GBEPS 
beam model approach can be considered to be the extension of the point source 
beam models presented in this book to more complex NDE bulk wave inspection 
problems.
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Chapter 7
Phased Array Beam Modeling (2-D Elements)

The models developed in Chap. 6 for a single element will be used in this Chapter 
to develop a model of a complete 2-D or linear array. As done in Chap. 4 for 2-D 
problems, we will discuss steering and focusing in 3-D for these arrays.

7.1 � Phased Array Beam Models—Single Medium

Consider first a 2-D array of identical rectangular elements radiating directly into a 
single fluid medium. We will assume that the array has n L= …( , , , )1 2 1  elements in 
the x-direction and l L= …( , , , )1 2 2  elements in the y-direction. The lengths of the 
element are ( , )l lx y  in the x- and y-directions, respectively and the corresponding 
gap widths in those directions are ( , )g gx y . The geometry for one of those elements 
is shown in Fig.  7.1. We can use the multiple point source model developed in 
Chap. 6 (see Eq. (6.33)) to represent each element. The pressure wave field of the 
entire array can then be written as

�
(7.1)

where ( , )� �C Cn l  are the apodization constants in the x- and y-directions, respectively, 
and ∆tnl

 are the time delays and where e ( , , , , , )nx lyp x y z e eω  is the normalized pres-
sure, 0/p cvρ , of a single element in the multiple point source model of Eq. (6.33) 
as implemented in the MATLAB® function ps_3Dv (Code Listing C.20), that is,

�

(7.2)
The various parameters appearing in Eq. (7.2) are:
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�

(7.3)

where ∆ ∆d l P d l Qx x y y= =/ , /  are the lengths of the element segments in the x- 
and y-directions, respectively, and s l g s l gx x x y y y= + = +,  are the array pitches in 
the x- and y-directions.

The model for a contact array radiating P-waves into an elastic solid is very 
similar to the fluid case. If we compare the original Rayleigh-Sommerfeld model of 
Eq. (6.21) with the corresponding contact model of Eq. (6.38) or, equivalently, the 
far field models of Eqs. (6.26) and (6.41) we see that we can get the contact case 
from the fluid case by making the replacement 1 1 0 0 1 1/p pc v p cρ ρ→  to go from a 
model of a pressure field to one for a velocity field, and including an extra term 

p pK d  to account for the additional directivity and polarization terms present in the 
velocity field for the contact case. However, since the segments are typically very 
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Fig. 7.1   a Geometry param-
eters for an element of a 2-D 
array radiating into a fluid, 
and b details of the element 
segment parameters within 
each element
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small we can approximate this additional term by its value at the centroid of each 
segment, in which case ( )( ) nlpq

p p zK K uθ ≅′  and ( ), ,nlpq nlpq nlpq
p x y zu u u=d , where

�

(7.4)

and (see Eqs. (6.39) and (6.40))

�

(7.5)

and, recall, 1 1/p sc cκ =  is the ratio of the compressional and shear wave speeds in 
the solid. Making these changes to Eq. (7.2), our model for the contact array gives 
the velocity field in the solid as

�

(7.6)

with

� (7.7)

Generally, we would expect that both pK  and dnlpq will also vary very slowly over 
the element, so if we approximate those parameters by their values at the centroid C 
of the element (see Fig. 7.1), we can write Eq. (7.6) instead as
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(7.8)
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where dnl
x
nl

y
nl

z
nlu u u= ( ), ,  and

�

(7.9)

which then can also be simply rewritten in terms of the normalized pressure as

�

(7.10)

If the element itself is less than a wavelength in length in both the x- and y-direc-
tions then we expect that we can use a single point source model for each element. 
In this case, the single point source model for the array gives

�

(7.11)

for the immersion case, and

�

(7.12)

for the contact case. These are simply special cases of Eqs. (7.2) and (7.10), respec-
tively, for these small element sizes. For the immersion case, Eq. (7.11) is imple-
mented automatically by the MATLAB® function ps3Dv when both element lengths 
are less than a wavelength, as discussed in Chap. 6. One could also use a single 
point source model for larger elements by specifying P Qopt opt= = 1 when evaluating 
the normalized pressure with ps_3Dv but this must be done with care since a single 
point source model will lose accuracy as the element size increases unless one is 
computing fields sufficiently far from the element so that one is in the far field of 
the element.
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7.1.1 � Far Field Behavior of an Array

We can certainly use the single point source models to examine the wave field of 
the array when we are in the far field of the entire array. In this case, we can ap-
proximate rnl  as (see Fig. 7.2)

�

(7.13)

where

�

(7.14)

If we consider the immersion case, Eq. (7.11), we then have

�

(7.15)

where 
eD  is the element directivity, given by

�
(7.16)
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Fig. 7.2   Parameters for 
defining the behavior of an 
array element in the far field
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Placing the expressions for the centroid locations (see Eq.  (7.2)) into Eq.  (7.15) 
gives

�

(7.17)

If we set the amplitude weights and time delays equal to zero, then as shown in 
Chap. 4 we can sum the remaining series to find

�

(7.18)

which shows that, as in the 2-D case, in the far field of the entire array we see both 
the element directivity, 

eD , and directivity, 
sD , associated with an array of point 

sources [1], where the point source directivity is

�

(7.19)

Figure  7.3 shows the element directivity of a square element where the pitch is 
either one wavelength or two wavelengths. We see, as in the 2-D case, a very broad 
radiation pattern at the one wavelength case and that this radiation becomes more 
concentrated for the two wavelengths pitch. In the case of a linear array element, 
one dimension will typically have a length of several wavelengths or less while the 
other length will be many wavelengths. Figure 7.4 shows a contour plot of the far 
field directivity (looking down the z-axis) for an element where the length is two 
wavelengths in the x-direction and 15 wavelengths in the y-direction. As can be seen 
from that figure, the beam radiation is tightly confined in the y-direction but much 
broader in the x-direction, as expected.

7.1.2 � Beam Steering in 3-D

In Chaps. 3–5, we showed for 2-D problems that beam steering could be generated 
by applying a spatially linear time delay to the face of a transducer or an array. In 
the next chapter, the corresponding steering time delays for 2-D arrays radiating a 
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3-D wave field are obtained, where it is shown that to steer a 2-D array (with pitch 
sx  and L1  elements in the x-direction and pitch sy  and L2  elements in the y-direc-
tion) in a single medium in a direction defined by the spherical coordinates ( , )Θ Φ  
(see Fig. 7.5) requires the time delays, ∆tnl , given by

�

(7.20)
1 2

sin cos sin sin

1 1
sin cos sin sin ,

2 2

yx
nl

yx

ss
t n l

c c
ssL L

c c

∆ = Θ Φ + Θ Φ

+ +
− Θ Φ − Θ Φ

Fig. 7.3   The far field directivity of a square element when a the length of the element is one 
wavelength, and b when the length of the element is two wavelengths
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where c is the wave speed. This delay law can be put in the more compact form

�

(7.21)

where

�
(7.22)

are components of a unit vector, sU , in the steering direction (Fig. 7.5). Placing this 
steering law into the far field pressure field of the array (Eq. (7.17) for a single point 
source) with no apodization terms gives
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Fig. 7.5   The spherical coor-
dinate steering angles, ( , )Θ Φ , 
that define the unit vector,  
Us , in the steering direction

 

Fig. 7.4   Contour plot of the 
far field directivity of a linear 
array element, in a plane 
perpendicular to the z-axis, 
where the length of the ele-
ment is two wavelengths in 
the x-direction and 15 wave-
lengths in the y-direction. 
The x- and y-coordinates of 
the plot are the unit vector 
components ( , )U Ux y
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�

(7.23)

Again, the series can be summed directly, as shown in Chap. 4, to find

�

(7.24)

Comparing Eq. (7.24) with the case of no steering (Eq. (7.18)) we can see that the 
time delays have caused a shifting of the point source directivity, i.e. 

so that this directivity will have its largest amplitude occur in the steering direc-
tion instead of along the z-axis. The magnitude of the point source directivity for a 
steered 2-D array is periodic since

�

(7.25)

so that maxima other than in the steering direction can occur when

�

(7.26)

where λ  is the wavelength. Any solutions of Eq. (7.26) will indicate the presence of 
grating lobes, similar to what was found in the 2-D case. But, since U Ux x

s≤ ≤1 1,  
and U Uy y

s≤ ≤1 1, , we see that will be no values of ( , )U Ux y  that can satisfy 
Eq. (7.26) if / 2, / 2x ys sλ λ< < . In the case of no steering, Eq. (7.26) shows that 
for no grating lobes we must have ,x ys sλ λ< <  instead. Thus, the conditions 
for the absence of grating lobes follows the same criteria found earlier for 2-D 
problems. Figure 7.6a, b shows contour plots of the point source directivity of a 
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square array when the pitches in both the x- and y-directions are equal to one half 
wavelength. It can be seen that the directivity with no steering in Fig. 7.6a is just 
shifted to the steering direction with no grating lobes when a steering law is applied, 
as shown in Fig. 7.6b. However, for the a 11 × 11 square array with pitches in both 
directions equal to 0.8 wavelength, while the point source directivity with no steer-
ing (Fig. 7.7a) is again shifted to the steering direction (Fig. 7.7b), grating lobes in 
other directions also appear, as predicted, and this can be clearly seen in Fig. 7.7b 
to be simply a consequence of the periodicity of the point source directivity of the 
array. Figure 7.8 shows the directivity for the 11 × 11 square array when the pitches 
in both directions are one and a half wavelengths. In this case, since the pitches are 
greater than a wavelength even with no steering the periodicity of the directivity 
will cause grating lobes to appear, as can be seen in Fig. 7.8.

7.2 � Radiation Through a Planar Interface

From our results in Sect. 7.1 and following the same steps outlined Chap. 6, we 
can obtain multiple point source and single point source beam models for radiation 
through a planar interface. Consider first the immersion case. Using the superposi-
tion of multiple far field point sources of Eq.  (6.64), we can generate a multiple 

Fig. 7.6   Contour plots, in 
a plane perpendicular to the 
z-axis, of the point source 
directivity of a 11 × 11 square 
array with pitches equal to 
one half wavelength for a no 
steering, and b steering in the 
direction Θ Φ= =45 45o o, .  
The x- and y-coordinates of 
the plot are the unit vector 
components ( , )x yU U
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point source model for the velocity generated in the solid in a form very similar to 
the single medium case (see Fig. 7.9):

�
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Fig. 7.7   Contour plots, in 
a plane perpendicular to the 
z-axis, of the point source 
directivity of a 11 × 11 square 
array with pitches equal 
to 0.8 wavelength for a no 
steering, and b steering in the 
direction Θ Φ= =45 45o o, .  
The x- and y-coordinates of 
the plot are the unit vector 
components ( , )U Ux y

 

Fig. 7.8   Contour plots, in 
a plane perpendicular to the 
z-axis, of the point source 
directivity of a 11 × 11 square 
array with pitches equal to 
1.5 wavelengths and no steer-
ing. The x- and y-coordinates 
of the plot are the unit vector 
components ( , )U Ux y
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where ;
nlsq

fsT β  and 2
nlsq
βd  are sampled values of the fluid–solid transmission coeffi-

cient, ; p
fsT β ; and polarization, 2βd , (in medium 2) for a wave of type β  in the solid 

traveling from the centroid of the sqth segment of the nlth element to point x in the 
solid, respectively, and where the distances and angles in the definitions

�

(7.28)

are also measured from the segment centroid.
If we use a single point source for each element then Eq. (7.27) reduces to
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Fig. 7.9   a Geometry param-
eters for an element of a 2-D 
array radiating through a 
planar interface, and b details 
of the segment parameters 
within each element
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with

�

(7.30)

where now all the terms are measured instead relative to a ray path from the centroid 
of the nlth element to point x in the solid (Fig. 7.10).

For the contact case, we have very similar results. For the multiple point source 
model

�

(7.31)

while the single point source model becomes

�

(7.32)
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Fig. 7.10   Geometry param-
eters for an element of a 2-D 
array radiating through a 
planar interface using a single 
point source model for each 
element
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7.3 � Array Beam Modeling Examples

In this section, we will show some examples of the wave fields generated by arrays. 
First, consider the single medium case with the array radiating directly into a fluid 
medium (see Eq. 7.1). The MATLAB® script mps_array_modeling (Code Listing 
C.21) uses the multiple point source beam model, ps_3Dv, the delay laws contained 
in delay_laws3D (Code Listing C.22—see the next Chapter for more details), and 
the apodization laws of discrete_windows (Code Listing C.13) to simulate the nor-
malized pressure wave field of an array. Figure 7.11 shows the pressure field in the 
x–z plane for a 11 × 11 2-D array where the element pitch is about one half a wave-
length ( lx  =  ly  =  0.15 mm, gx  = gy  = 0.05 mm) so that there are at most weak grating 
lobes generated when the beam is steered in the Φ = °0 , Θ = °20  direction (with no 
focusing). In Fig. 7.12a, one can see the 2-D steering of this beam in the x–y plane 
at z  =  8 mm. Figure 7.12b also shows the beam in this same plane when the steering 
law is changed to Φ = °90 , Θ = °20 , while Fig. 7.12c shows the case for Φ = − °90 , 
Θ = °20 , and Fig. 7.12d considers Φ = °0 , Θ = − °20 .

Figure 7.13 shows the effects of steering and focusing of the same array con-
sidered in Fig. 7.11, where Fig. 7.13a shows the case of steering but no focusing 
(same configuration as in Fig. 7.11) but shown for a smaller range of depths), while 
Fig. 7.13b uses Fl = 3 mm. Comparing Fig. 7.13a and b shows clearly the focusing 
effect. Note that the array in this example is very small so that near field of the array, 
where focusing is effective, is also quite small. Thus, the focal length specified here 
was chosen to demonstrate the effects of focusing but was not meant to illustrate a 
practical inspection case.

Fig. 7.11   The magnitude of the normalized pressure wave field of a 11 × 11 2-D array radiating 
into water with steering in the 0 , 20° °Φ = Θ =  direction and no focusing (Fl = inf).  
The other parameters are: 0.15 mm, 0.05 mm,x y x yl l g g= = = =  5 MHz, 1480 m / s,f c= =  

linspace (1,20,200), linspace ( 15,15,300), 0z x y=  = − =
.
 A rectangular window is used (no 

apodization)
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The same small 11 × 11 array considered for a single medium was also used to 
describe cases where the array radiated waves through a plane water/steel interface. 
The MATLAB® script mps_array_model_int (Code Listing C.26) used the multiple 
point source beam model in ps_3Dint (Code Listing C.23) with the time delay laws 
of delay_laws3D_int (Code Listing C.27– see the next Chapter for more details) 
and apodization laws of discrete_windows (Code Listing C.13). The parameters 
used in these interface cases were lx = ly = 0.15 mm, gx = gy = 0.05 mm, f = 5 MHz, 

3
1 1gm/cmρ = , cp1 = 1480  m/s, 3

2 7.9gm/cmρ = , cp2 = 5900  m/s, cs2 = 3200  m/s. 
Figure 7.14a shows an image of the magnitude of the velocity of the wave field 
in the x–z plane where the array was at normal incidence (angt = 0) at a dis-
tance Dt0 = 50.8  mm from the interface and no steering or focusing was present 
( , )Φ Θ= =° °0 0 . The black arrow in this and some subsequent figures shows the 

Fig. 7.12   The magnitude of the normalized pressure wave field of a 11 × 11 2-D array radiat-
ing into water with steering no focusing (Fl = inf). The other parameters are l lx y= = 0 15. mm, 
g gx y= = 0 05. mm, f  =  5 MHz, c  = 1480 m/s, z  = 8 mm, x = linspace (− 15, 15, 300), y = linspace 
(− 15, 15, 300). A rectangular window is used (no apodization). The steering in the four cases 
shown are: a Φ = °0 , Θ = °20 , b Φ = °90 , Θ = °20 , c Φ = − °90 , Θ = °20 , and d Φ = °0 , Θ = − °20
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direction in which the beam is being steered in the steel. Figure 7.14b shows the 
wave field of this array in the x–z plane when it is steered ( , )Φ Θ= =° °0 30  but not 
focused. Figure .14c and d shows the wave field in the x–y plane at z = 4 mm for this 
array when (c) the beam is steered in the x–z plane ( , )Φ Θ= =° °0 20 , and (d) steered 
in the x–y plane ( , )Φ Θ= =° °90 20 . All of these cases show that the beam is steered 
properly through the interface with the time delay laws. Figure 7.15 shows results 
for a 11 × 11 array, again at normal incidence to the interface, where the size of the 
element was increased to be one wavelength ( lx = ly = 0.3  mm, gx = gy = 0.05  mm) 
and the array was moved closer to the interface ( Dt0 = 2 mm) so that the near field 
extends into the steel. Figure 7.15a shows the field in the x–z plane when the ar-
ray simply radiates into the steel without steering, focusing, or apodization. Fig-
ure 7.15b shows the comparable beam when a Hamming window is applied to the 
elements in both the x- and y-directions. Comparing Fig. 7.15a and b, one can see 
that the apodization reduces the side lobes, as expected. Figure 7.15c shows the 
same array when it is focused (without steering or apodization) at Df = 2 mm into 
the steel, thus concentrating the beam closer to the interface. The cases shown in 
Fig. 7.16 are again for the 11 × 11 array considered in Fig. 7.14 (pitch equal to one 
half wavelength), where the center of the array is located at Dt0 = 50.8 mm again, 
but where the angle of array to the interface, 10.217tθ °= , was chosen to generate a 
45-degree P-wave in the steel (without steering). Figure 7.16a shows the wave field 
in the x–z plane where there is no steering, focusing or apodization so the beam does 
propagate at the 45° angle. The behavior of the same wave field as seen in the y–z 
plane at a distance x = 15 mm is shown in Fig. 7.16b. In Fig. 7.16c, the beam of the 
array is steered to an angle of 20° ( , )Φ Θ= =° °0 20 , showing the corresponding 
change of the direction of the wave field in the x–z plane. Finally, in Fig. 7.16d, the 
angle of the array is changed to an angle 10.217tθ °= − , so that with no steering or 

Fig. 7.13   The magnitude of the normalized pressure wave field of a 11 × 11 2-D array radiat-
ing into water with steering ( , )Φ Θ= =° °0 20 . The other parameters are l lx y= = 0 15. mm, 
g gx y= = 0 05. mm , f = 5 MHz, c = 1480 m/s, x = linspace (− 15, 15, 300), z = linspace (1, 10, 300), 
y = 0. A rectangular window is used (no apodization). In case a Fl = inf, while in case b Fl = 3 mm
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focusing the beam propagates in the − 45° direction instead. Note that as found in 
the 2-D case (see Chap. 5) the location of the first element relative to the interface 
is changed because the angle is negative. Figure  7.17 again considers the same 
array as in Fig. 7.16 but where now the angle of the array to the interface is taken 
as 19.09tθ °=  to generate a shear wave traveling at an angle of 45° in the steel. 
Figure 7.17a shows the magnitude of the S-wave velocity field in the x–z plane 
when no steering, focusing or apodization laws are applied, while Fig. 7.17b shows 
the case when the S-wave is steered to 30° in the steel with no apodization. It can be 
seen that in addition to the main refracted beam there is also a relatively strong side 

Fig. 7.14   The magnitude of the normalized velocity in steel for a 11 × 11 2-D array (element size 
approximately one half wavelength) normal to the interface at a distance Dt0  = 50.8 mm, radiating a 
P-wave through a planar water/steel interface, for a the wave field in the x–z plane with no steering 
or focusing, b the wave field in the x–z plane with steering ( , )Φ Θ= =° °0 30  but no focusing, c 
the wave field in the x–y plane at z = 4 mm with steering ( , )Φ Θ= =° °0 20  but no focusing, and 
d the wave field in the x–y plane with steering ( , )Φ Θ= =° °90 20  but no focusing. A rectangular 
window is used (no apodization) for all cases
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lobe as well. Figure 7.17c shows beam with the same steering law as in Fig. 7.17b, 
but with a Blackman window applied in the x- and y-directions to the array, reduc-
ing somewhat the side lobe but also obviously broadening the main beam.

All of the cases examined so far in this section were chosen with small ele-
ment sizes so that the array can effectively steer and focus the sound beam without 
grating lobes in the manner proscribed by the delay laws. Commercially available 
arrays, however, may use considerably larger element sizes which will limit their 
behavior and also introduce significant grating lobes. We will examine such effects 
with the use again of the script mps_array_modeling. Consider, for example, an 
8 × 8 array of square elements radiating into water at 5 MHz, for example, where the 

Fig. 7.15   The magnitude of the normalized velocity in steel for a 11 × 11 2-D array (element size 
one wavelength) normal to the interface at a distance Dt0 = 2 mm, radiating a P-wave through a 
planar water/steel interface, for the wave field in the x–z plane with no steering or focusing or 
apodization, b the wave field in the x–z plane with no steering or focusing but with a Hamming 
window applied in the x- and y-directions, and c the wave field in the x–z plane with no steering or 
apodization but with focusing to a depth of 2 mm in the steel
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length of the element is 0.9 mm and the gap length in both dimensions is 0.1 mm. 
Since the pitch of the array is about three wavelengths, there are multiple (but weak) 
grating lobes present (Fig.  7.18a). The directions of these grating lobes and the 
overall behavior of the sound beam can be understood by plotting the total far field 
directivity, 

tD , of this array where 
t e sD D D=  is the product of the element directiv-

ity and the point source directivity. The magnitude of this total directivity is plotted 
in Fig. 7.19a, where one can see three relatively weak grating lobes on both sides of 
the main beam that are difficult to see in Fig. 7.18a. If a delay law is applied to this 
array to try to steer it in the 45° direction, the wave field is as shown in Fig. 7.18b, 
and the corresponding total directivity is plotted in Fig. 7.19b. It can be seen that in 
this case the largest response occurs only at a small angle (less than 10°) and very 

Fig. 7.16   The magnitude of the normalized velocity in steel for a 11 × 11 2-D array (element size 
one half wavelength) oriented at an angle of 10.217tθ °=  to the interface with the array center at a 
distance Dt0  = 50.8 mm, radiating a P-wave through a planar water/steel interface, for a the wave 
field in the x–z plane with no steering or focusing, b the wave field as seen in the y–z plane at a 
distance x = 15 mm, c the wave field in the x–z plane when the beam of the array is steered to an 
angle of 20° ( , )Φ Θ= =° °0 20 , and d the wave field in the x–z plane when 10.217tθ °= − , with 
no steering or focusing
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little amplitude is near the steering direction. If the array is changed to be a 16 × 16 
array of elements where the element length is reduced by a factor of two to a value 
of 0.45 mm and the gap length is held fixed at 0.1 mm, the radiated wave field is 
shown in Fig. 7.18c and the corresponding total directivity in Fig. 7.19c. It can be 
seen that the steering capability of the array is still very severely limited. If one goes 
to a 32 × 32 element array with an element length reduced by a factor of two again 
to a value of 0.225 mm with the gap length remaining at 0.1 mm, the resulting wave 
field and total directivity are shown in Figs. 7.18d and 7.19d, respectively. Now the 
element pitch is slightly larger than one wavelength and a relatively strong beam is 

Fig. 7.17   The magnitude of the normalized velocity in steel for a 11 × 11 2-D array (element size 
one half wavelength) oriented at an angle of 19.09tθ °=  to the interface with the array center at a 
distance Dt0 = 50.8 mm, radiating an S-wave through a planar water/steel interface, for  the wave 
field in the x–z plane with no steering or focusing, b the wave field in the x–z plane when the array 
is steered to 30° ( , )Φ Θ= =° °0 30 with no focusing or apodization, and c the wave field in the x–z 
plane when the array is again steered to 30° without focusing but where a Blackman apodization 
law is applied in the x- and y-directions
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Fig. 7.18   An array radiating into water at 5  MHz for a 8 × 8 elements, lx = ly  = 0.9  mm, 
gx = gy = 0.1  mm, no steering, b 8 × 8 elements, lx = ly = 0.9  mm, gx = gy = 0.1  mm, steered to 
45° ( , )Φ Θ= =° °0 45 , c 16 × 16 elements, lx = ly = 0.45  mm, gx = gy = 0.1  mm, steered to 45° 
( , )Φ Θ= =° °0 45 , and d 32 × 32 elements, lx = ly = 0.225  mm, gx = gy = 0.1  mm, steered to 45° 
( , )Φ Θ= =° °0 45 . No focusing or apodization in all cases

 

steered closely to the proper angle of 45°. There is however, still a single remain-
ing grating lobe that is in fact stronger than the main steered beam as seen in both 
Figs. 7.18d and 7.19d. These examples show that for arrays where the pitch is larger 
than a wavelength it is important to simulate the wave fields in this manner and 
examine the total directivity to understand the behavior of the array, which may be 
far from the “ideal” behavior seen for arrays with very small elements.

7.3 � Array Beam Modeling Examples�
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Fig. 7.19   The total far field directivities of the arrays considered in Fig. 7.18a–d
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Chapter 8
Time Delay Laws (3-D)

8.1 � Beam Steering in 3-D

Consider an element of a 2-D array as shown in Fig. 8.1 where we want to steer the 
ultrasonic beam of the array in the direction of the unit vector, u. We can express u 
in spherical coordinates ( , )Θ Φ  as u e e e= + +sin cos sin sin cosΘ Φ Θ Φ Θx y z. Steer-
ing of the beam in this direction can be accomplished by applying a linearly varying 
time shift, /t c∆ = ⋅u x , over the face of the array and evaluating that phase at the 
centroids of the individual elements. This results in the shifts, ∆tmn  given by

� (8.1)

The centroid locations are given by

� (8.2)

where ( , )s sx y  are the pitches of the elements in the x- and y-directions, respectively, 
and M and N are the number of elements in the x- and y-directions, and where

� (8.3)

Since the delays in Eq. (8.1) contain both positive and negative values, we can sim-
ply add a constant delay equal to the magnitude of largest negative value to obtain 
a proper time delay law, ∆tmn

d , given by

� (8.4)
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8.2 � Beam Steering and Focusing in 3-D

We can also consider steering and focusing of the array wave field to a point, P, in 
the surrounding medium specified by the focal distance, F, and the steering angles 
( , )Θ Φ  as shown in Fig. 8.2. In this case, the distance, rmn

, from an element to P is 
given from the geometry as

� (8.5)

A proper delay law, ∆tmn
d , can then be obtained from

� (8.6)

where c is the wave speed.
The MATLAB® function delay_laws3D (Code Listing C.22) implements the 

beam steering delay law of Eq. (8.4) and the steering/focusing law of Eq. (8.6) for 
a 2-D array. The function call is:

>> td = delay_laws3D (M, N, sx, sy, theta, phi, F, c);

r F e F e Fmn xm yn= − + − +( sin cos ) ( sin sin ) cos .Θ Φ Θ Φ Θ2 2 2 2

∆t r c r cmn
d

mn mn= { } −max / / ,

Fig. 8.2   Parameters for 
steering and focusing a 2-D 
array at a point, P, as defined 
by the focal distance, F, and 
the angles ( , )Θ Φ

 

Fig. 8.1   Parameters for 
steering a beam of a 2-D 
array in the direction of the 
unit vector, u
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where td is the matrix of delay times (in μs) for an array with M elements in the 
x-direction and N elements in the y-direction. The pitches of the array are sx = sx , 
and sy = sy  in the x- and y-directions, respectively (in mm), the steering angles 
theta = Θ, and phi = Φ  (in degrees), the focal distance is F (in mm), and the wave 
speed of the medium is c (in m/s). Figures 8.3–8.5 show some samples of delay 
laws for an array radiating into water ( c = 1480 m/s) with M = 8, N = 16 elements, 

0.5mmx ys s= = . Figure 8.3 shows the case of steering only parallel to the y-axis 
with Θ Φ= = =° °30 90, , infF , while Fig. 8.4 is for steering angles Θ Φ= =° °30 0,  
so that the steering is parallel to the x-axis. As seen in these figures in both these cas-
es the time delays are purely the linear functions contained in Eq. (8.1). Figure 8.5 
instead considers the case of focusing only of this same array where 0θ φ °= = , 
F = 10 mm. In this case, there are approximately quadratic variations in the time 
delays in both the x- and y-directions.

Fig. 8.4   Time delays, td
,  

(in μs) for steering the beam 
of a 2-D array parallel to 
the x-axis with M = 8, N = 16 
elements, 0.5 mm,x ys s= =  
Θ Φ= =° °30 0, , and inf,F =  
c = 1480 m / s

 

Fig. 8.3   Time delays, td,  
(in μs) for steering the beam 
of a 2-D array parallel to 
the y-axis with M = 8, N = 16 
elements, 0.5 mm,x ys s= =  
Θ Φ= =° °30 90, , and inf,F =  
c = 1480 m / s
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8.3 � Beam Steering Through a Planar Interface

When a 2-D array is used in immersion testing or placed on the face of a solid 
wedge, the time delays needed to steer the beam in the adjacent solid are more 
complex than in the single medium case. Figure 8.6 shows an array whose face 
makes an angle 

Tθ  with respect to the interface and whose center xc  is located at a 
distance DT 0  above the interface. In this configuration, we will specify the direction 
we want the beam to be steered in the second medium by giving the angles 0 20( , )φ θ , 
as shown in Fig. 8.6. If we can determine the unit vector, u, in terms of these angles 
and the angle Tθ  in the ′ ′ ′( )x y z, ,  coordinates, then as in the single medium case 
the corresponding time shifts are

� (8.7)∆t u e u e cmn x x m y y n= +( )′ ′ ′ ′ / ,1

Fig. 8.6    a Geometry for 
beam steering, through a pla-
nar interface in three dimen-
sions. b A side view, looking 
down the y y, ′( ) axes

 

Fig. 8.5   Time delays, td
,  

(in μs) for focusing the 
beam of a 2-D array along 
the z-axis with M = 8, N = 16 
elements, 0.5 mm,x ys s= =  

, ,0 0θ φ° °= =  and F = 10 mm, 
c = 1480 m / s

 



1738.4  Beam Steering and Focusing Through a Planar Interface

where the location of the centroids of the elements e ex m y n′ ′( ),  are again given by 
Eq. (8.2) and c1 is the wave speed in the medium adjacent to the array. From Snell’s 
law we have

� (8.8)

where c2
 is the wave speed of the transmitted wave in the second medium. From 

the geometry of Fig. 8.6 it is easy to show that in the ( , , )x y z  coordinates on the 
interface we have

� (8.9)

with ( , , )e e ex y z  being unit vectors along the ( , , )x y z  coordinates, respectively. 
These unit vectors can be written in terms of the unit vectors e e e′ ′ ′( )x y z, ,  along 
the x y z, ,( )  axes:

� (8.10)

so one finds
�

(8.11)

and the time shifts are then

� (8.12)

with the proper time delays, ∆tmn
d , given in terms of these time shifts again by 

Eq. (8.4):

� (8.13)

8.4 � Beam Steering and Focusing Through  
a Planar Interface

The presence of an interface makes the time delays laws for steering and focusing 
much more complex than in the single medium case but one can use a very similar 
approach to the 2-D case discussed in Chap. 5. To begin with, we need to specify the 
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parameters we will use to define the steering and focusing. We will use the same an-
gles 

0 20( , )φ θ  defined in the last section for a ray propagating from the center of the 
array as well as the distances ( , )D DT f0  to focus the beam at the point x = ( , , )x y Df

as shown in Fig. 8.7. From that figure we can see that the distance, DQ, from the 
origin of the ( , , )x y z  coordinates to the point Q = ( , , )x y 0  is

� (8.14)

and the coordinates of Q are

� (8.15)

If one then follows a ray path from the centroid of an element to x = ( , , )x y Df , as 
shown in Fig. 8.8, the distance, �Dmn

, from point R (directly below the element cen-
troid) to the point Q is given by

� (8.16)

and the vertical distance from the centroid of an element to the interface, Dem
, is 

given by (see Fig. 8.8b)

� (8.17)

Thus, in the plane of incidence containing the points ( , , )x x xc I  as well as points R 
and Q we see the ray path appears as shown in Fig. 8.9. This is just the same con-
figuration we encountered for 2-D problems in Chap. 5 (see Fig. 5.4) so that it can 
be solved in exactly the same fashion. Specifically, we can show that Snell’s law for 
the ray path from xe  to x  yields:

0 10 20tan tanQ T fD D Dθ θ= +
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cosmn x m T y nD x e y eθ′ ′= = − + −RQ�

0 sin .em T x m TD D e θ′= +

Fig. 8.7   The geometry 
parameters for steering and 
focusing an array through a 
planar interface
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� (8.18)

which is identical in form to Eq. (5.18) so it can be solved in the same manner for 
the distance, xi

mn, using a root solver or more directly with Ferrari’s method. In 3-D 
problems involving 2-D arrays, one may need to calculate a very large number of 
rays so it is especially important to use computationally efficient methods such as 
Ferrari’s method, which also is amenable to hardware acceleration [1].

With that solution then we find the angles

� (8.19)
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Fig. 8.9   Snell’s law ray path 
from the centroid of an ele-
ment in an array to the point 
x at which we want to steer 
and focus the array

 

Fig. 8.8   a The 3-D geometry 
for a wave propagating from 
an element to a point, x, 
through a planar interface and 
b a side view, looking down 
the y y, ′( ) axes
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and the time of propagation from xe  to x  is then

� (8.20)

which can be used to form the proper delay law

� (8.21)

The MATLAB® function delay_laws3Dint (Code Listing C.27) implements 
Eq.  (8.13) for steering through a planar interface and Eq.  (8.21) for steering and 
focusing the beam through the interface. The calling sequence for this function is

>> td = delay_laws3Dint(Mx, My, sx, sy, thetat, phi, theta2, DT0, DF, c1, c2, plt);

where td is the matrix of delay times (in μs) for an array with Mx elements in the 
x-direction and My elements in the y-direction. The pitches of the array are sx = sx

, 
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Fig. 8.11   Ray paths that 
define the time delay laws 
for a 4 × 4 array radiat-
ing through a water-steel 
interface 1( 1480 m/s,c =

2 5900 m/s)c = , where 
0.5 mm,x ys s= =  20 ,Tθ °=  

0 30φ °= , 
20 45θ °= , 

0 10 mm,TD =  Df = 10 mm

 

Fig. 8.10   Ray paths that 
define the time delay laws for 
a 4 × 4 array radiating through 
a water–steel interface 
( /s, /s)c c1 21480 5900= =m m  
where 0.5 mm,x ys s= =

20Tθ °= , 0 0φ °= , 20 45θ °= , 
DT 0 10= mm, Df = 10 mm
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and sy = sy in the x- and y-directions, respectively (in mm). The angle of the array 
from the interface is thetat Tθ=  (in degrees) and the steering angles are 0phi φ=  
and 

20theta2 θ=  (both in degrees). The height of the center of the array above the 
interface is DT0 0= DT

 (in mm), and the depth to the focal point is DF = Df  (in 
mm). See Figs. 8.7 and 8.8 for a description of these parameters. The arguments 
( , )c c1 2  are the wave speeds in the first and second media, respectively (in m/s). The 
final argument, plt, is a string used to optionally plot ray paths for the parameters 
chosen, where plt = ‘y’ or ‘n’ for plot generation or not, respectively. Unlike the 
corresponding 2-D delay law function delay_laws2Dint, the plot option here is not 
implemented for the steering only case.

Figure 8.10 shows the ray paths for a 4 × 4 array radiating at oblique incidence 
through a planar interface between water and steel when the beam is steered and 
focused to 

0 0φ °= , 
20 45θ °=  at a depth Df = 10mm. The scales are unequal so the 

actual geometry is shown somewhat distorted in that figure. Figure 8.11 shows the 
rays where all the parameters are the same as in Fig. 8.10 except now 0 30φ °= . 
Again, note the presence of unequal scales in Fig. 8.11.

Reference

1.	 J. Dziewierz, A. Gachagan, Computationally efficient solution of Snell’s law of refraction. 
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1256–1259 (2013)
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Chapter 9
Linear System Modeling of Phased Arrays

A phased array ultrasonic measurement system is a particularly complex collec-
tion of electrical, electromechanical, and acoustic/elastic processes because of the 
number of sending and receiving circuits and transducer elements present. In this 
chapter, we will use linear system theory concepts of two-port systems and single 
input–single output linear time shift invariant (LTI) systems to describe phased ar-
ray measurement systems at different levels of detail, following an approach similar 
to that described in [Schmerr-Song] and [1, 2] for single element transducer sys-
tems. Our goal is to develop a model of a phased array flaw measurement system 
that can be used to predict quantitatively the signals that are produced in a given 
experiment in terms of parameters of the measurement system instrumentation and 
probes and the characteristics of the unknown flaw being examined.

In this chapter, we will develop a linear systems modeling framework that will 
allow us to ultimately describe a phased array system in terms of two types of terms:

•	 System functions that describe the electrical and electromechanical properties 
of the individual sending and receiving circuits and elements in the array being 
used. In Chap.  10, we will show how these system functions can be directly 
measured for a phased array in a calibration setup.

•	 Acoustic/elastic transfer functions that describe all the acoustic and elastic scat-
tering processes present, including the sound beams generated and received by 
each element of the array(s) involved and the waves scattered from flaws that are 
present. In Chap. 11, expressions for these acoustic/elastic transfer functions will 
be obtained in terms of wave fields that can be described with the use of wave 
propagation and scattering models.

By combining measured system functions with these modeled acoustic/elastic 
transfer functions, we will have a complete and explicit model of an ultrasonic 
phased array measurement in a form that we will call an ultrasonic measurement 
model [Schmerr-Song]. As will be shown in Chap. 11 and later chapters, having a 
measurement model will be the key to quantitatively relating ultrasonic measure-
ments to the properties of the flaw being examined and to give explicit meaning to 
the images of flaws that are obtained with arrays.

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2_9, 
© Springer International Publishing Switzerland 2015
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9.1 � Linear System Modeling and Sound Generation

In a phased array system, the individual elements of the array(s) involved normally 
are assumed to act independently as drivers and receivers, so to analyze the system 
we can first consider only a single pair of sending and receiving elements. Figure 9.1 
shows an immersion setup involving such a pair of elements, while Fig. 9.2 shows 
a corresponding contact testing setup. While both immersion and contact testing 
setups involve many of the same components, the physics of the sound generation 
and reception processes must be treated somewhat differently when modeling these 
setups, as we will see.

First consider the driving circuits in Figs. 9.1 and 9.2. If we assume that these 
driving circuits can be represented by a linear active network, then Thévenin’s theo-
rem says that in the frequency domain we can replace these driving circuits by an 
equivalent voltage source, ( ),iV ω  and electrical impedance, ( ),e

iZ ω  as shown in 
Fig. 9.3 [Schmerr-Song]. These equivalent circuit elements will generate the same 
output voltage, 

1( ),V ω  and current, 
1( ),I ω  as the original driving circuit. Note that 

these equivalent parameters are affected by the choice of the phased array instru-
ment settings that control the driving circuits.

Fig. 9.2   The elements of a 
phased array contact testing 
system, where a pair of send-
ing elements is shown

 

Fig. 9.1   The elements of 
a phased array immersion 
system, where a pair of send-
ing and receiving elements 
are shown
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The driving circuits are connected to the sending element through the cabling 
present in the sound generation process. The voltage and current ( , )V I1 1

 of the 
driving circuits at the input side of the cable produce corresponding voltage and 
current, ( , )V I2 2

 at the output side. At the typical MHz frequencies present in an 
ultrasonic experiment, the electrical characteristics of the cabling can be important 
if the cabling lengths are on the order of a meter or more in length since in these 
cases the cable does not just pass the inputs unchanged to the outputs. It is reason-
able to assume the cable is a simple passive linear, and reciprocal device that can 
be treated as a two-port system [Schmerr-Song] where the inputs and outputs can 
be related through a 2 × 2 transfer matrix, TG, as shown in Fig. 9.4. More explicitly 
we can write

� (9.1)

where the elements of the transfer matrix are frequency dependent. Since the cable 
is assumed to be reciprocal, the determinant of the transfer matrix must be unity 
[Schmerr-Song], i.e.

� (9.2)

The array driving element is normally made of a piezoelectric material and is at-
tached to both backing and facing materials. Its function is to transform the electrical 
inputs of the cable attached to the element, ( , ),V I2 2  into mechanical outputs at its 
face. The face is in contact with either a fluid (for the immersion case) or a solid 
(for the contact case). In the contact case a thin fluid layer between the face of 
the driving array and the underlying solid is normally present to ensure good cou-
pling of sound into the solid. For both the immersion and contact cases the acoustic 
output properties of the element can be characterized by two “lumped” acoustic 
parameters—a compressive force, ( ),tF ω  and velocity, ( ),tv ω  both acting on the 
adjacent material. However, the detailed physics of the acoustic fields on the face 
of the element is modeled differently in the immersion and contact cases. In the 
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Fig. 9.4   A two-port repre-
sentation of a cable as a 2 × 2 
transfer matrix

 

Fig. 9.3   An equivalent 
voltage source and electrical 
impedance model of the driv-
ing circuits
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immersion case, it is generally assumed that the face of the array at the element 
moves with the uniform velocity, ( ),tv ω  normal to the face of the transducer and 
generates a spatially varying pressure distribution, ( , ),p ωx  over its face. The force, 
Ft , is then just the integral of this pressure distribution over the active area, SA , of 
the driving element, i.e.

� (9.3)

In contrast, in the contact case, since the face of the array is in contact with a stiff 
solid material through a thin fluid couplant, it is more reasonable to assume that 
piezoelectric element generates a constant pressure, ( ),p ω  at its face and the total 
force is just ( ) ( ) ,t AF p Sω ω=  while the velocity field normal to the face has the 
distribution ( , ).v ωx  In this case the “lumped” parameter, ( ),tv ω  can be taken to be 
the average velocity at the face:

� (9.4)

Thus, in either the immersion or contact testing setups, if we assume that the driv-
ing array element A acts as a linear reciprocal system that transforms the electrical 
inputs ( , )V I2 2  to the mechanical outputs ( , )F vt t  we can model this element also as 
a two-port system as shown in Fig. 9.5.

Explicitly, we then have

� (9.5)

Since the array element is assumed to satisfy reciprocity, we also have

� (9.6)

At the acoustic output port of an array element the compressive force and velocity 
are not independent, reflecting the fact that if either the velocity on the face of the 
element or the pressure on the face of the element is specified then the other cor-
responding output parameter is also determined. This relationship is expressed as

� (9.7)
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transfer matrix
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where ; ( )A a
rZ ω  is the acoustic radiation impedance of the element. For ultrasonic 

immersion measurement systems that use large, single element transducers of circu-
lar cross section one can derive an explicit expression for this radiation impedance 
as [3])

� (9.8)

where J1 is a Bessel function of order one and S1 is a Struve function. Here 1 1( , )pcρ  
are the density and compressional wave speed of the fluid, a is the radius of the 
transducer, 1/ pk cω=  is the wave number, and 2  AS aπ= . For most single element 
transducers ka  can be a value of 100 or larger and Eq. (9.8) gives approximately 

;
1 1 ,A a

r p AZ c Sρ=  which is just the acoustic impedance of a plane wave. While this 
same plane wave limit is also true for rectangular elements that are many wave-
lengths long in both dimensions, the rectangular elements often used in linear and 
2-D arrays have at least one dimension which is not many wavelengths in size so that 
the acoustic radiation impedance will inherently be a complex function of frequency.

Since the output force and velocity on the face of an element are related through 
the acoustic radiation impedance, we can model the driving circuits, cabling, and 
sending element as a series of two-port systems terminated at both ports, as shown 
in Fig. 9.6a, and we can replace this series of systems by a single input, single out-
put linear time-shift invariant (LTI) system whose input is the Thevenin equivalent 
voltage, ( ),iV ω  of the driving circuits. On the output side, we can take either the 

[ ];
1 1 1 1/ 1 (2 ) (2 ) / ,A a

r p AZ c S J ka iS ka kaρ = − −

Fig. 9.6   a The sound generation process components, and b their replacement for an immersion 
inspection by a single input, single output linear time shift invariant system characterized by the 
transfer function, ( ),Gt ω  and c their replacement for a contact inspection by the transfer function 

( )Gt ω′
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velocity, ( ),tv ω  or the compressive force on the face of the array element, ( ),tF ω  
as the quantity to describe the acoustic fields. When modeling large, single ele-
ment immersion transducers, it has been customary to use the force as the output 
[Schmerr-Song] where, as discussed above, the acoustic radiation impedance sim-
ply is a constant, i.e. 1 1( ) ( ).t p A tF c S vω ρ ω=  For array elements in immersion tests 
we will continue to take the output as 1 1 ( ),p A tc S vρ ω  as shown in Fig. 9.6b but one 
should realize that this is really just an output proportional to the velocity having the 
dimensions of a force and not the actual compressive force on the face of the array 
element, Ft , which is given as ;( ) ( ) ( ).A a

t r tF Z vω ω ω=  We have made this choice 
because, as we will see, we can then develop complete models of ultrasonic phased 
arrays inspections without having to explicitly evaluate the radiation impedances 
of the elements. For array elements this evaluation must typically be done numeri-
cally, although it is not a difficult calculation for simple element shapes such as 
rectangles [4]. The transfer function for an immersion setup that describes the LTI 
system of Fig. 9.6b is denoted as ( ).Gt ω  For a contact setup, since the pressure is 
modeled as given at the transducer face, we will instead take the output of our LTI 
model to be the actual force, ( ),tF ω  given by Eq. (9.3) and let ( )Gt ω′  be the transfer 
function in the contact case, as shown in Fig. 9.6c. Note that these transfer functions 
are explicit functions of all the system components shown in Fig. 9.6a but we will 
not need to write those explicit relationships here since tG  and ′tG  will not need to 
be independently known in a complete description of the ultrasonic system, as will 
be discussed in Sect. 9.4.

9.2 � Linear System Modeling and Sound Reception

The LTI models developed in the previous section can be used on sound generation 
for either immersion or contact phased array systems. In developing similar models 
for the sound reception processes it will be necessary to treat the immersion and 
contact cases separately. Consider first an immersion setup. Figure 9.7 shows the 

Fig. 9.7   Decomposition of the received waves at a receiving element in an immersion test into 
two cases. In case a, the incident waves are present and the face of the transducer is held rigidly 
fixed, and in case b, the incident waves are absent but the face of the transducer has the velocity 
present on the face of the element in the original problem
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incident and scattered waves acting on an array element. These waves generate a 
compressive force, ( ),F ω  and a normal velocity, ( ),ν ω  on the face of the element. 
This problem can be decomposed into the superposition of the two cases (a) and 
(b) shown in Fig. 9.7. In case (a), the incident waves are present and the face of the 
element is held rigidly fixed. The force exerted on the element in this case is called 
the blocked force, ( ).BF ω  In case (b), the incident waves are absent and the motion 
of the face of the element is assumed to be the total velocity, ( ),v ω  of the original 
problem. In case (b), the waves generated are due solely to the motion of the face 
of the element so this case is just a radiation problem of the type considered for the 
transmitting array element where the force, ( ),sF ω  and velocity, ( ),v ω  are related 
through the acoustic radiation impedance, ; ( ),B a

rZ ω  of the receiving element, i.e.

� (9.9)

The minus sign is present in Eq. (9.9) since the normal velocity here is assumed to 
act into the face of the element, as shown in Fig. 9.7. Since the total force, ( ),F ω  in 
the original problem is just the sum of the forces in cases (a) and (b), we have

� (9.10)

The meaning of Eq. (9.10) from a modeling standpoint can be seen more clearly 
by considering Fig. 9.8 where a receiving array element B is modeled as a two-port 
system with the 2 × 2 transfer matrix TB  that transforms the acoustic input force 
and velocity ( , )F v  into the voltage and current outputs ( , ).V I3 3  It can be seen from 
Fig. 9.8 that the relationship of Eq.  (9.10) is satisfied if we assume the acoustic 
fields incident on the receiving element are modeled as a driving compressive force 
source, FB , in series with an acoustic impedance, Zr

B a; .
For the contact case shown in Fig. 9.9 the interaction of the incident and scat-

tered waves are with an element sitting on an otherwise stress-free surface. The 
incident and scattered waves produce a force and average velocity given by ( , ),F v  
respectively. Again we can decompose this problem into two cases. In case (a), the 
incident waves are assumed to excite the element when the contact surface is com-
pletely stress-free so that F = 0. The average free surface velocity on the face of the 
element is ( ).fsv ω  In case (b), the incident waves are absent and the waves generated 

;( ) ( ) ( ).B a
s rF Z vω ω ω= −

;( ) ( ) ( ) ( ).B a
B rF F Z vω ω ω ω= −

Fig. 9.8   A model of the receiving element in an immersion test as a two-port system driven by a 
force source of strength equal to the blocked force, FB , on the face of the element in series with 
the acoustic radiation impedance, Zr

B a; , of the receiving transducer
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are solely due to the velocity vs . Since again this case is identical to the radiation 
problem of a transmitting element we have v F Zs r

B a= − / ,;  where F is the total force 
on the element in the original problem. Since the velocities in these cases must add 
up to the total velocity ( )v ω  in the original problem, we find

� (9.11)

or, equivalently,

� (9.12)

Comparing Eq. (9.12) with Eq. (9.10) we see that in the contact case the waves 
interacting with the receiving element can be replaced by a force source Z vr

B a
fs

;  in 
series with an acoustic radiation impedance, Zr

B a; ,  (see Fig. 9.10). Note that the 
mechanical sources and impedances appearing in Figs. 9.8 and 9.10 represent the 
mechanical analog to a Thévenin equivalent electrical circuit. We could also use 
a mechanical analog of a Norton equivalent current source and impedance. For 
example, we could represent the relations of either Eq. (9.11) or (9.12) in terms of 
a velocity source of strength ( )fsv ω  in parallel with an acoustic radiation imped-
ance, ; ( ),B a

rZ ω  as shown in Fig. 9.11. This Norton-like equivalent system is the 
more “natural” model to use for the contact case since the acoustic source, ( ),fsv ω  
that appears in the Norton model is a function only of the incident acoustic waves 

;

( )
( ) ( )

( )fs B a
r

F
v v

Z

ωω ω
ω

= −

; ;( ) ( ) ( ) ( ) ( ).B a B a
r fs rF Z v Z vω ω ω ω ω= −

Fig. 9.10   A model of the receiving element in a contact test as a two-port system driven by a 
force source of strength equal to the acoustic impedance multiplied by the free-surface velocity 
on the face of the element, Z vr

B a
fs

; , in series with the acoustic radiation impedance, Zr
B a; , of the 

receiving element

 

Fig. 9.9   Decomposition of the received waves in a contact measurement into two cases. In case 
a, the incident waves are present and the contact surface is assumed to be stress-free. The veloc-
ity at this free surface is v fs . In case b, the incident waves are absent and all the waves generated 
are due to the motion of the face of the element
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driving the receiving element, as is the blocked force, ( ),BF ω  in the immersion 
case. In fact, if we assume that we can represent the interaction of the incident 
waves with the element surfaces in these cases as plane wave interactions, then the 
blocked force (the force at a plane rigid, immobile surface) is just twice the force, 

( ),incF ω  generated on the face of the array element by the incident waves only (i.e. 
when the element receiving surface is absent) and the free-surface velocity (the 
velocity at a plane stress-free surface) is twice the velocity generated by only the 
incident waves, ( ),incv ω  so that in both the immersion and the contact cases the 
acoustic equivalent sources shown in Figs. 9.8 and 9.11 become (see [Schmerr-
Song] for an explicit proof in the immersion case; the contact case follows in a 
similar manner):

� (9.13)

The voltage and current outputs ( , )V I3 3  of the receiving array element in either the 
immersion or contact cases are the inputs that drive the cabling present between the 
element and the receiving circuits. If we let ( , )V I4 4

 be the voltage and current at the 
inputs to the receiving circuits then in the sound reception process we can represent 
the cabling as a 2 × 2 transfer matrix, TR, where

� (9.14)

and, since the receiving cable is assumed to satisfy reciprocity,

� (9.15)

The receiving components in a phased array system generally serve two functions: 
(1) they amplify the received low amplitude electrical signals, and (2) they can fil-
ter the low or high frequency content of the signals. Here, we will only model the 
amplification function since in many quantitative NDE measurements one does not 
normally want to further limit information present in the received signal beyond 
what is already inherently present in the measurement processes due to sources such 
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Fig. 9.11   A model of the receiving element in a contact test as a two-port system driven by a 
velocity source of strength v fs  in parallel with the acoustic radiation impedance, Zr

B a; , of the 
receiving element
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as material attenuation, for example. Any filtering of the signal by the receiving 
circuits, however, can always be introduced separately by modifying the ampli-
fied voltage, ( ),eV ω  received from an array element appropriately. Since we assume 
the receiving circuits act only as a linear electrical amplification network, we can 
characterize the receiving circuits as a receiving impedance, 0 ( ),eZ ω  and a voltage 
amplification function, ( ),K ω  as shown in Fig. 9.12, where

� (9.16)

For both the immersion and contact cases, we can combine our acoustic source and 
array element models, cabling models, and receiving circuit models into a complete 
series of models that represent the sound reception process, as shown in Fig. 9.13a, b.

It then follows that we can replace the detailed models of Fig. 9.13 with the single 
input–single output LTI systems shown in Fig. 9.14 for the immersion and contact 
cases. The transfer function, ( ),Rt ω  of the immersion case relates the blocked force 
input, ( ),BF ω  to the output voltage, ( ).eV ω  For the contact case we have chosen to 

4 0 4

4

( ) ( ) ( )

( ) ( ) ( ).

e

e

V Z I

V K V

ω ω ω
ω ω ω

=
=

Fig. 9.13   Complete models of the reception process for an array element in a an immersion testing 
setup, and b in a contact testing setup

 

Fig. 9.12   A model of the 
receiving circuit for an 
array element as an electri-
cal impedance, Z e

0 , and an 
amplification factor, ( )K ω
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let the transfer function, ( ),Rt ω′  relate a similar “force” input ( )p B fsc S vρ ω  to an 
output voltage, ( ),eV ω  where v fs  is the free-surface velocity, ( , )pcρ  are the density 
and compressional wave speed in the solid adjacent to the receiving transducer, and 
SB is the area of the receiving transducer. Note that similar to the sound genera-
tion model, this “force”, ( ),p B fsc S vρ ω  is not the actual force source term, which is 
Z vr

B a
fs

; , as shown in Fig. 9.10. By defining the input in this fashion, we see that the 
transfer functions in both the immersion and contact cases have the same dimen-
sions and the acoustic radiation impedance does not appear. We can write down 
explicit expressions for the reception transfer functions in terms of the detailed 
system components shown in Fig. 9.13 but as done in our description of the sound 
generation process we will not give those expressions here as these transfer func-
tions need not be obtained explicitly in a complete description of the measurement 
process, as will be discussed in Sect. 9.4.

9.3 � The Reception Process and Grating Lobes

In Chap. 4, we considered in detail the sound field generated by arrays. We saw 
that for sufficiently large elements grating lobes were generated which travel in 
directions other than that of the main beam. Grating lobes can also appear in the 
reception process. We can demonstrate this fact in the simple reception problem 
outlined in Fig. 9.15 where a plane wave is incident on an element of a 1-D array in 
a fluid. In this case the incident pressure is given as

� (9.17)
[ ]

exp( · )

exp ( sin cos ) .
incp P ik

P ik x z

=
= − Θ − Θ

u x

Fig. 9.14   LTI models of the 
reception process for a an 
immersion testing setup, and 
b a contact testing setup
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On the mth element of the array we have ( , ) ( , ),x z e xm= + ′ 0  where ′x  is measured 
from the center of the element which is located at xm me= ( , ).0  Thus, the compres-
sive force/unit length, exerted on this element by the incident wave is

�
(9.18)

and we will take the blocked force/unit length, ( , ),B mf ωx  as just twice this incident 
force so that performing the integration in Eq. (9.18) we find

� (9.19)

in terms of the far field directivity of the element, Db ( ),Θ  (see Eq. (2.39)) when it is 
acting as a transmitter. If the transfer function, ( ),Rt ω  is the same for each element 
in the array then the received voltage from the mth element, ( , ),e mV V ω= x  is

� (9.20)

and the received voltage from the entire array of M elements, ( ),RV ω  is given by

� (9.21)

Placing the expression for the centroid locations (Eq. (4.3)) into Eq. (9.21) then al-
lows us to sum the resulting power series again and we have
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Fig. 9.15   A plane wave 
incident on a receiving array 
element
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� (9.22)

where the “point” source directivity, Ds, is the same directivity that appeared in the 
sound generation process (Eq. (4.22)). If on reception we steer the beam at an angle, 
Φ, with respect to the z-axis, then we need to include in Eq. (9.21) the steering delay 
law of Eq. (4.25). Again, as shown in Chap. 4, we can sum the series and find the 
total received voltage is instead

� (9.23)

Because of the periodicity of Ds , as discussed in Chap. 4, Eq. (9.23) shows that if 
the array is steered in the incoming wave direction, there will be a large response, 
but for arrays with a pitch larger than one half a wavelength grating lobes can also 
appear that will produce enhanced responses in other directions as well. As in the 
sound generation case, apodization laws can be applied to the element responses in 
reception to help reduce these grating lobe contributions.

9.4 � Linear System Model of the Complete Ultrasonic 
Measurement Process

Having obtained LTI models of both the sound generation and reception processes, 
to model the entire ultrasonic measurement process for a pair of sending/receiving 
elements requires that we relate the scaled output velocity or force of the sending 
element to the blocked force or input scaled free surface velocity of the receiving el-
ement in the immersion and contact cases, respectively. Thus, we need to model the 
complex acoustic/elastic propagation and scattering processes occurring between 
the sending and receiving elements by an appropriate acoustic/elastic transfer func-
tion. These transfer functions are shown in Fig. 9.16, where in the immersion case 
the acoustic/elastic transfer function, ( ),At ω  is defined as

�
(9.24)

and in the contact case the transfer function, ( ),At ω′  is defined as
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� (9.25)

While the Thevenin equivalent driving voltage, ( ),iV ω  and the sound generation 
and transfer functions can be measured with detailed electrical measurements 
[Schmerr-Song], [1, 2] the acoustic/elastic transfer functions are described by 
wave fields whose values are normally not measurable. Thus, accurate models of 
ultrasound propagation and scattering are needed to describe these functions. In 
Chap.  11, we will show explicitly what field values must be known in order to 
model these acoustic/elastic transfer functions in a flaw measurement experiment.

Figure 9.17 shows a complete model of either immersion or contact measurement 
systems as a series of the transfer functions discussed in this chapter. However, we 
can simplify these models even further by lumping the sound generation and recep-
tion transfer functions and the driving voltage into single system functions, defined 
as ( )Is ω  for immersion testing and ( )Cs ω  for contact testing, where

� (9.26)
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A
t
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ω

ω
=′
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( ) ( ) ( ) ( ).
I G R i

C G R i

s t t V

s t t V

ω ω ω ω
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= ′
= ′

Fig. 9.17   Complete LTI 
models of a pair of elements 
for a an immersion measure-
ment system, and b a contact 
measurement system

 

Fig. 9.16   Acoustic/elastic 
transfer functions for a pair of 
elements in a immersion test-
ing setups, and b for contact 
testing setups
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Then the complete system models for either immersion or contact testing are given 
by

� (9.27)

The complete ultrasonic system models in terms of the system functions are 
shown in Fig. 9.18. This combination of all these terms into a single function is 
important since, as shown in the next chapter, by making voltage measurements 
of a phased array system in a calibration setup where the acoustic/elastic trans-
fer function can be modeled explicitly these system functions for each pair of 
sending/receiving elements in the array(s) present can be measured directly. By 
combining these measured system functions with models for the acoustic/elastic 
transfer function in more complex flaw measurements, we then have a viable 
approach to predict quantitatively the signals seen in many NDE phased array 
experiments.
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Chapter 10
Phased Array System Functions

As seen in the last chapter, the system function of a pair of phased array sending and 
receiving elements describes in a simple fashion all the electrical and electrome-
chanical characteristics of the sound generation and sound reception process present 
in an ultrasonic measurement. In this chapter, we will show how system functions 
can be measured experimentally in a calibration setup where the corresponding 
acoustic/elastic functions are known.

10.1 � Acoustic/Elastic Transfer Function Models

Since in phased arrays we can independently drive and receive with many differ-
ent combinations of sending and receiving elements, in a phased array system with 
M sending elements and N receiving elements, we have M N×  different system 
functions, ( )mns ω  and acoustic/elastic transfer functions, A ( )mnt ω  that generate the 
received voltages, 

e ( )mnV ω , where

� (10.1)

Equation (10.1) can be used to obtain these system functions experimentally if we 
measure the received voltages in a calibration setup and have explicit models for 
the acoustic/elastic transfer functions in that setup. The calibration setups we will 
use for immersion and contact tests are shown in Fig. 10.1, where a 2-D or linear 
array is placed parallel to a plane reflecting interface and the reflection of the waves 
generated by driving a single element of the array is received by a single receiving 
element. A more detailed description of the setup geometry is shown in Fig. 10.2 for 
a pair of sending and receiving rectangular elements.

Consider first an immersion setup. Our starting point in this case is the Rayleigh-
Sommerfeld model for an element, Eq. (6.21), where the velocity is assumed to be 
constant over the face of the driving element, i.e. we will use a piston model. The 
pressure due to the waves generated by the driving element at a point ( , , )x y Dl l  in 
the fluid at the location of the reflecting interface is given as

e A( ) ( ) ( ).mn mn
mnV s tω ω ω=
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� (10.2)

where St
 is the area of the transmitting element, the distance from a point 

( , , )� �x y 0  on the sending element to a point ( , , )x y Dl l
 on the reflecting interface 

is r x y Dx yl l= − + − +( ) ( )� �2 2 2 , 1/k cω=  is the wave number for the fluid, 
and 1ρ  is the density of the fluid. If we assume the reflector is far enough away 
from the element so that , , ,x x y y D� � �  then we can approximate this distance as 

2 2( ) ( ) / 2l lr D x x y y D ≅ + − + − � �  (paraxial approximation) and we find

� (10.3)
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Fig. 10.2   A calibration setup 
geometry involving two 
rectangular array elements 
and a parallel plane reflecting 
interface

 

Fig. 10.1   Calibration setups 
for obtaining the system 
functions a for an immersion 
test, and b for a contact test
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If we assume we can treat the interactions of these incident waves with the reflect-
ing interface as a quasi-plane wave interaction at normal incidence, then pressure in 
the reflected wave at the interface, p x y Dl lR ( , , ), is

� (10.4)

where R12
 is the plane wave reflection coefficient at normal incidence (based on a 

pressure ratio) and 1 1 2 2( , ), ( , )pc cρ ρ  are the density and compressional wave speed 
for the fluid and reflecting solid, respectively. The normal velocity, vr

, at the inter-
face in the zr

-direction (directed towards the receiving element, see Fig. 10.2) is 
also given by the plane wave relationship

� (10.5)

Using this velocity field as specified on the entire interface, we can again use the 
Rayleigh-Sommerfeld integral to obtain the pressure, pg , of the reflected waves at 
a point ( , , )x y Dr r

 on the plane of the receiving element:

� (10.6)

Applying the paraxial approximation to the distance ′r  then gives

� (10.7)

If the driving and receiving elements are separated by the distances ( , )d dx y in the 
( , )x y  directions, respectively, then

� (10.8)

(see Fig. 10.2) and we can rewrite Eq. (10.7) as

� (10.9)
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If we assume the incident wave interactions with the receiving transducer can be 
treated approximately as plane wave interactions, an assumption that is likely satis-
fied for the setup of Fig. 10.2, we can take the blocked force, FB

, at the receiving 
element to be simply twice the force exerted on the element by the incident waves 
[Schmerr-Song] and we have

� (10.10)

where Sr
 is the receiving area. Placing Eq. (10.3) into this result then gives

� (10.11)

Since the acoustic/elastic transfer function, tA
, for the immersion case is defined as 

A B 1 1 0 t( ) ( ) / ( )pt F c v Sω ω ρ ω= , this transfer function is

� (10.12)
Now, consider the integrals in Eq. (10.12) over the interface, i.e.

� (10.13)

[{
r

r

B g g g g g

12

2 2
g g

g g

( ) 2 ( , , , ) d d

2i exp (i )
( , , , )

2

( ) ( )
exp i d d d d ,

2

S

l lS

x l y l
l l

F p x y D x y

kR kD
p x y D

D

x d x y d y
k x y x y

D

ω ω

ω
π

+∞ +∞

−∞ −∞

=

−
=

 + − + + −   
    

∫

∫ ∫ ∫

r t

2 2
1 1 012

B

2 2
g g

g g

i ( )2i exp(2i ) ( ) ( )
( ) exp i

2 2 2

( ) ( )
exp i d d d d d d .

2

p l l

S S

x l y l
l l

k c vkR kD x x y y
F k

D D D

x d x y d y
k x y x y x y

D

ρ ω
ω

π π
+∞ +∞

−∞ −∞

  −  − − + −=        
 + − + + −
      

∫ ∫ ∫ ∫
� �

� �

r t

2 2 2

A 12
t

2 2
g g

g g

( ) ( )i exp (i ) 1
( ) 2 exp i

2 2

( ) ( )
exp i d d d d d d .

2

l l

S S

x l y l
l l

x x y yk kD
t R k

D S D

x d x y d y
k x y x y x y

D

ω
π

+∞ +∞

−∞ −∞

    − + −− =           
 + − + + −
      

∫ ∫ ∫ ∫
� �

� �

2 22 2
g g

2 2 2 2
g g

2
g

2

( ) ( )( ) ( )
exp i exp i d d

2 2

( ) ( )
exp i exp i

2 2

( )
exp i exp i d

exp i exp

x l y ll l
l l

x y

x ll
l

l

x d x y d yx x y y
I k k x y

D D

x d y d x y
k k

D D

x d x xx
k k x

D D

y
k

D

+∞ +∞

−∞ −∞

+∞

−∞

 + − + + − − + −=      

 + + +  +=      

+ +   
     

 
  

∫ ∫

∫

� �

� �

�

g( )
i d .y l

l

y d y y
k y

D

+∞

−∞

+ + 
  ∫

�



19910.1 � Acoustic/Elastic Transfer Function Models�

Both integrals appearing in Eq.  (10.13) can be performed exactly since we have 
[Schmerr, Schmerr-Song]:

� (10.14)

where Im() indicates “imaginary part of”. In Eq. (10.13) the corresponding A terms 
are purely real but if we add a small amount of “damping” by letting iA A ε= +  and 
then take the limit as 0ε → , the result is the same as using Eq. (10.14) directly on 
the forms given in Eq. (10.13) and we find

� (10.15)

Placing Eq. (10.15) into Eq. (10.12) gives

� (10.16)

When the exponential terms in Eq. (10.16) are combined, this equation simplifies to

� (10.17)

Since we are assuming that both the transmitting and receiving elements are of 
lengths ( , )l lx y  in the ( , )x y  directions, respectively, Eq. (10.17) can be rewritten 
more explicitly as

� (10.18)

2
2 i i

exp (i ) exp ( i )d exp Im ( ) 0,
4

B
Ax Bx x A

A A

π+∞

−∞

 −
− = >  ∫

2 2 2 2
g g

2 2
g g

( ) ( )i
exp i exp i

2 2

( ) ( )
exp i exp i .

4 4

x y

x y

x d y dD x y
I k k

k D D

x x d y y d
k k

D D

π  + + +  +
=      

   + + + +
− −   

   

� �

� �

r t

2 2 2 2
g g

A 12
t

2 2
g g

g g

( ) ( )i exp(2i )
( ) 2 exp i exp i

4 2 2

( ) ( )
exp i exp i d d d d .

4 4

x y

S S

x y

x d y dk kD x y
t R k k

DS D D

x x d y y d
k k x y x y

D D

ω
π

  + + +  − +=       
   + + + +

− −        

∫ ∫
� �

� �
� �

r t

2
g

A 12
t

2
g

g g

[ ( )]i exp (2i )
( ) 2 exp i

4 4

[ ( )]
exp i d d d d .

4

x

S S

y

x x dk kD
t R k

DS D

y y d
k x y x y

D

ω
π

  − +−
=   

 
 − +
 

  

∫ ∫
�

�
� �

2
/2 /2 g

A 12 g/2 /2
t

2
/2 /2 g

g/2 /2

[ ( )]i exp(2i )
( ) 2 exp i d d

4 4

[ ( )]
exp i d d .4

x x

x x

y y

y y

l l x

l l

l l y

l l

x x dk kD
t R k x x

DS D

y y d
k y y

D

ω
π − −

− −

  − +−
=   

   
  − +
  

   

∫ ∫

∫ ∫

�
�

�
�



200 10  Phased Array System Functions

Consider now the first double integral in Eq. (10.18) and make the change of vari-
able from xg  to t, where

�
(10.19)

Then we have

�

(10.20)

But the interior integrals are in the form of Fresnel integrals, F x( ), where

� (10.21)

so that we have

�

(10.22)
Again, if we make a change of variables on each integrand in Eq. (10.22), namely,

�
(10.23)

then Eq. (10.22) is of the form

� (10.24)
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For these integrals of the Fresnel function we can use integration by parts to obtain 
the relationship

� (10.25)

so that we find

� (10.26)

Expanding the phase terms of the exponentials gives

� (10.27)

and placing this result back into Eq. (10.26) we find

� (10.28)
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In exactly the same fashion we can express the second double integral in Eq. (10.18) 
as

� (10.29)

and the acoustic/elastic transfer function of Eq. (10.18) becomes, finally, an explicit 
expression in terms of Fresnel integrals and ordinary functions:
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Using Eq. (10.30) we can also obtain the results for a number of important special 
cases. For example, if we set dy = 0  we can obtain the acoustic/elastic transfer 
function for a pair of elements in a linear array (where typically y xl l� ).
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For a single element both sending and receiving (pulse-echo) we can set d dx y= = 0  
and Eq. (10.30) reduces even further to:

� (10.32)

To obtain the acoustic/elastic transfer function for the contact case we must first 
treat the problem of an array element in contact with a solid surface (with a small 
fluid couplant layer between the array and the solid) as shown in Fig. 10.3a. As dis-
cussed in Chap. 6, we can model the element as a constant pressure source, 0 ( )p ω
, as shown in Fig. 10.3b acting over a rectangular area on the surface. Unlike the 
immersion case, this source generates a wide range of wave types in the solid, in-
cluding bulk P- and S-waves, Head waves, and Rayleigh waves. However, if the 
distance to the reflecting surface (see Fig. 10.1b) is much larger than the separation 
distance between any pair of elements, then the P-wave interactions with the reflect-
ing surface are the dominant waves and these waves travel at near normal incidence 
to the element. In this case, a high frequency approximation to the P-waves gener-
ated by the transmitting element at the location ( , , )x y Dl l

of the reflecting surface 
can be expressed in the form of a Rayleigh/Sommerfeld integral (see Eq.  6.38) 
given by [Schmerr]

� (10.33)

where 1/ pk cω=  is the wavenumber, vn
 is the velocity in the solid in the direction 

n normal to the face of the element, the distance r x x y y Dl l= − + − +( ) ( )2 2 2  
(same as in the immersion case) and 1 1( , )pcρ  are the density and compressional 
wave speed of the solid, respectively. We have set the directivity function ( ) 1pK θ =  
in Eq.  (6.38) in Eq.  (10.33), because we are assuming all interactions of a send-
ing element with the interface and then back to a receiving element occur at small 
angles relative to the normal, n. In the paraxial approximation Eq. (10.33) becomes
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Fig. 10.3   a An array element 
in contact with an elastic 
solid, and b a model of this 
contact element as a constant 
pressure source
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� (10.34)

Following exactly the same steps as in the immersion case we can find the incident 
velocity, g r r( , , , )v x y D ω  component of the reflected waves (acting in the –n direc-
tion) on the face of a receiving element as

� (10.35)

in terms of the reflected pressure

� (10.36)

which gives, in the paraxial approximation,

� (10.37)

Equation (10.37) can be expressed, as in the immersion case, in the form

� (10.38)

Placing Eq. (10.34) into (10.38) and computing the average velocity over the re-
ceiving element face:
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we find
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We can take the free surface velocity, 
fs ( )v ω , as just twice this average incident 

velocity, and note that for the contact case the acoustic/elastic transfer function, 
A ( )t ω′ , is defined as A 1 1 B fs 0 t( ) ( ) / ( )pt c S v p Sω ρ ω ω=′  so that this transfer function is

� (10.41)

If we compare Eq. (10.41) with Eq. (10.12) for the immersion case we see that they 
are identical forms so for this contact measurement configuration we can also use 
the immersion acoustic/elastic transfer functions.

When these acoustic/elastic transfer functions are used to determine the system 
function for a pair of elements from the measured voltage, 

e ( )V ω , we have

� (10.42)

for the immersion and contact cases, respectively. Thus, we see that the system 
functions in both cases will have the same dimensions as 

e ( )V ω , namely Volts/
MHz or Volts-µs. However, it is important to realize that in other contact and im-
mersion setups 

A A( ) ( )t tω ω≠′  in general. Also, we should realize that in the setup 
of Fig. 10.2 being considered here, although the acoustic/elastic transfer functions 
are the same for both the immersion and contact case, when we measure the system 
function of the same array in both contact and immersion setups there will differ-
ences in the measured voltage generated and we will find C I( ) ( )s sω ω≠  since the 
coupling of the sending and receiving elements to their adjacent media will be dif-
ferent in the two cases.

Note that the transfer functions derived here are for an “ideal” (loss-free) mate-
rial. In any real material there will be ultrasonic attenuation of the waves present 
and if this attenuation is significant it must be included as part of the acoustic/
elastic transfer function. If the attenuation is not too high then it is generally found 
that attenuation can be modeled as simply a multiplicative exponential term with a 
frequency dependent attenuation coefficient. For our calibration setups the acoustic/
elastic transfer function with attenuation, tA

atten, is then given in terms of the “ideal” 
transfer function, tA

ideal, as

�
(10.43)

where ( )α ω  is a measured frequency dependent attenuation coefficient, having 
dimensions of Nepers/unit length [Schmerr].
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10.2 � Array Element System Functions

The calibration setups shown in Fig. 10.1 are simple to implement with immersion 
and contact arrays, but the number of system function measurements needed to fully 
characterize an array can be very large, since for every element pair ( , )i j  character-
izing the ith and jth elements we need to measure a voltage, ( )ijV ω , and relate it to a 
system function, ( )ijs ω , and an acoustic/elastic transfer function, ( )ijt ω , i.e.

� (10.44)

Then the system function can be obtained by deconvolution, i.e.

� (10.45)

However, convolution by direct division in this manner is severely contaminated by 
noise present outside the bandwidth of the measurement system so that the decon-
volution is performed in practice with a Wiener filter, i.e.

� (10.46)

where ε  is a small noise constant, and the ( )* represents the complex conjugate.
Even if the system function for the various element pairs are assumed to be 

symmetric ( )s sij ji=  for N elements in an array there are still a total of N( N + 1)/2 
measurements needed to characterize all the possible element pairs. For a 32 ele-
ment array, for example, a total of 528 measurements would be needed. Fortunately, 
a recent study of three commercial linear arrays [1] found little variation in these 
system functions. The three linear arrays (two contact and one immersion) listed in 
Table 10.1 were exhaustively tested to obtain all the system function pairs.

Representative data was shown in [1] for the first array listed in Table 10.1, as 
measured in a contact test setup with the array reflecting off the back face of a large 
aluminum block. To summarize the large number of results in an efficient manner, 
an average system function, ( )Ps ω , was calculated over all element pairs with the 
same separation distance, i.e.

� (10.47)
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Table 10.1   Three linear arrays, each with N elements, a center frequency, 
cf , a pitch, 

xs , between 
elements and element lengths ( , )x yl l

Serial number Transducer type N fc
 (MHz) sx

 (mm) lx
 (mm) ly  (mm)

5L16-A1 Contact 16 5 0.60 0.55 10
10L32-A1 Contact 32 10 0.31 0.26 7
5L32E32-10 Immersion 32 5 1.0 0.8 10
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where P is the number of elements between the transmitting and receiving elements. 
Thus for the 16 element transducer of Table 10.1, the data was reduced to only 16 
average system functions. Figure 10.4 shows these average system functions with 
separation distances, in multiples of the pitch, sx, between elements varying from 
0· xs  ( P  =  0) to 15· xs  ( P  =  15), where 0· xs  represents pulse-echo cases (same ele-
ment firing and receiving) and all the other separations are pitch-catch cases. It 
can be seen from Fig. 10.4 that the average system functions of various pairs were 
very similar to each other both in amplitude and shape, with generally less than 
seven percent overall variation, making it difficult to see all the curves present in 
Fig. 10.4. Similar consistency of all the system functions was found for the other 
two arrays shown in Table 10.1. This suggests that it may be adequate to determine 
just a single system function for the entire array that can be obtained with a single 
calibration measurement. However, since making phased arrays is still somewhat of 
an art, it is wise to conduct at least a partial characterization of all the system func-
tions with the approach outlined here to ensure that the variations of the measured 
system functions are indeed small.

Going back to Eq.  (10.1) and summing the received voltages for all sending/
receiving element pairs, the total received voltage, 

R ( )V ω , is given by

� (10.48)

where we have also included the possibility of implementing time delay laws 
( , )∆ ∆t tm n

 on the sending and receiving elements in the calibration setups of 
Fig. 10.1. If all the system functions are nearly identical then we have

� (10.49)

where
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Fig. 10.4   The magnitude of 
the average system function, 

Ps , measured in volts-µs, 
for two elements with P 
elements ( P  = 0, 1, …, 15) 
between the sending and 
receiving element for the 16 
element array of Table 10.1
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� (10.50)

and we can find this single system function by deconvolution with a Wiener filter, 
i.e.

� (10.51)

Figure  10.5 shows a single system function obtained in this fashion for the 16 ele-
ment contact array of Table 10.1 placed on a two inch thick aluminum block. The 
three curves shown in Fig. 10.5 correspond to setups where the system function was 
obtained with all 16 elements firing/receiving, eight elements firing/receiving, and 
four elements firing/receiving. Time delay laws were implemented on sending and 
receiving to focus the array at the back surface of the aluminum block. It can be seen 
that again there is considerable consistency between the single system functions 
obtained in this manner.
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Fig. 10.5   The magnitude 
of a single system func-
tion, measured in volts-µs, 
obtained with a linear phased 
array inspection system for 
various number of active 
elements—16 ( solid line), 8 
( dotted line), and 4 ( dashed 
line)

 

Fig. 10.6   A single system 
function obtained for a linear 
phased array inspection sys-
tem for various focal lengths: 
50.8 mm ( solid line), 40 mm 
( dotted line), 30 mm ( dashed 
line), and 20 mm ( dashed-
dotted line) (all 16 elements 
were used in these cases)
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The magnitude of a single system function, if it is representative of all the ele-
ment pair system functions, should not depend on any time delay laws used in its 
determination. Figure 10.6 shows the same contact setup with the 16 element ar-
ray of Table 10.1 where time delay laws were varied to attempt to focus the send/
receive signals at focal depths of 50.8, 40, 30, and 20 mm with all elements of the 
array sending and receiving [note that all of these focal lengths except the 20 mm 
case were greater than one near field distance where true focusing is not possible. 
However, by including a focal law one can help reduce beam spread somewhat in 
these cases and make the use of the paraxial approximation more appropriate]. It 
can be seen from Fig. 10.6 that all the system functions were nearly identical except 
for the 20 mm focusing case. The differences seen in the 20 mm focusing case are 
likely due to errors in using the acoustic/elastic transfer functions derived here since 
those functions were obtained under the paraxial approximation, which is violated 
under such tight focusing conditions.

Reference

1.	 R. Huang, L.W. Schmerr, Characterization of the system functions of ultrasonic linear phased 
array inspection systems. Ultrasonics 49, 219–225 (2009)
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Chapter 11
Measurement Models for Ultrasonic Arrays

In the previous two chapters we showed how the response of a pair of send-receive 
array elements can be modeled in terms of two components: (1) a system function 
that describes all the electrical and electromechanical parts of the elements and their 
driving/receiving sub-systems, and (2) an acoustic/elastic transfer function that de-
scribes all the acoustic and elastic wave propagation and scattering fields present 
between the sending/receiving elements. As seen in Chap. 10, the system functions 
can be measured directly in a calibration experiment where the acoustic/elastic 
transfer functions are known. If the same array elements and settings for the phased 
array instrument that are used in the calibration experiment are present when the 
array is used in an ultrasonic flaw measurement then the system functions remain 
unchanged. This is also true if the elements are part of separate sending and receiv-
ing arrays. Thus, if the acoustic/elastic transfer functions in the flaw measurement 
can also be expressed in terms of fields that can be modeled then one can determine 
the voltage signals received from the flaw from every element pair in the array(s).

Using general reciprocity relations, an explicit expression will be obtained in 
this chapter for the acoustic/elastic transfer function of a pair of sending and receiv-
ing elements in terms of the fields present in a flaw measurement. Multiplying this 
transfer function by the appropriate system function gives the measured voltage, as 
described in the previous chapters. This model of the received voltage is a complete 
ultrasonic measurement model for an arbitrary pair of array elements in a form 
similar to that developed by Auld [1]. Combing these measurement models for a 
collection of sending and receiving elements in a flaw measurement then gives us 
the corresponding measurement models for a complete phased array measurement 
system.

We will also develop a reduced form of measurement model of the Thompson–
Gray type [2] where one assumes the flaw is small enough so that the incident 
fields from the array elements do not vary significantly over the flaw surface. The 
Thompson–Gray measurement model is less general than the Auld form of the mea-
surement model but because the flaw response is contained in a Thompson–Gray 
measurement model explicitly in terms of the far field scattering amplitude of the 
flaw it is particularly useful for flaw characterization and sizing, probability of de-
tection (POD) studies, and many other flaw-centered NDE applications.

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2_11, 
© Springer International Publishing Switzerland 2015
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Ultrasonic phased arrays, because of their ability to manipulate their ultrasonic 
wave fields, are inherently useful for generating images of flaws. Those images can 
be formed based on ad hoc methods or on more quantitative methods that relate the 
images directly to physical properties of the flaw being imaged. In this Chapter we 
will also develop approximate forms for both an Auld type measurement model and 
a Thompson–Gray model that are the bases for the generation of quantitative flaw 
images, as will be discussed in the following Chapters.

Finally, we will describe measurement models of both the Auld type and the 
Thompson–Gray type for 1-D arrays radiating into a fluid in two dimensions. These 
1-D measurement models will, as done earlier for ultrasonic beam models, allow 
us to discuss phased array measurement systems and imaging principles in a much 
simpler context.

11.1 � Reciprocity Relations

Reciprocity principles play a fundamental role in wave propagation studies [3, 4] 
and in modeling ultrasonic measurement systems [Schmerr–Song]. For example, 
these principles can be used when modeling how the electromagnetic fields in a 
cable behave (see Fig. 11.1). The electrical and magnetic fields at both ends of a 
cable can be shown to satisfy the reciprocity relationship

� (11.1)

where ( , )E H1 1  are the electrical and magnetic fields at one end of the cable and 
( , )E H2 2

 are the electrical and magnetic fields at the other end (Fig. 11.1). The unit 
vectors ( , )n n1 2  are the outward unit normals at the ends, as shown in Fig. 11.1, 
and ( , )S S1 2

 are the cross-sectional areas of the cables at their ends over which the 
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Fig. 11.1   A “fields” param-
eter model of a coaxial cable 
showing the electrical and 
magnetic fields at the cable 
ends
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field values in Eq. (11.1) are calculated. The superscripts (1) and (2) on these fields 
denote two different driving/termination conditions under which these fields are 
measured.

Instead of using the field values explicitly in a reciprocity relationship, one can 
also use “lumped parameters.” For the cable, for example, we can express the volt-
ages and currents produced by these underlying fields in a similar reciprocity rela-
tionship given as (see Fig. 11.2)

� (11.2)

where ( , )V I1 1
 and ( , )V I2 2

 are the voltages and currents at the cable ends, and (1) 
and (2) again denote two different “states” under which these lumped parameters 
are measured.

Reciprocity relations can also be developed that mix lumped parameters and 
field parameters. For example, in describing the inputs and outputs of a sending 
array element in an immersion test one can use lumped parameters of voltage and 
current ( , )V I  on the electrical driving side of the element and acoustic pressure 
and vector velocity fields ( ( , ), ( , ))p vω ωx x  over the output face of the element to 
express the reciprocal theorem for an array element in the form

� (11.3)

where states (1) and (2) again are two different driving and termination condi-
tions for the array element and n  is the unit outward normal to the element surface 
(Fig. 11.3a). Alternatively, reciprocity for the element could be expressed complete-
ly in terms of lumped parameters. If we assume the element in this immersion test 
acts a “piston”, for example, then ( , )· ( )vω ω=v x n  and Eq. (11.3) reduces to

� (11.4)

where ( )F ω  is the force produced by the integral of the pressure over the face of the 
element and ( )v ω  is the (uniform) normal velocity (Fig. 11.3b).

In considering the acoustic and elastic wave fields between the sending and re-
ceiving array elements in a flaw measurement (see Fig. 11.4), it is possible to also 
derive a reciprocity relation that connects the fields on the flaw surface to the force 
and velocity on the face of the receiving element. The details of how this reciprocity 
relationship is obtained have been presented elsewhere [Schmerr–Song] so we will 
only state the reciprocity relationship here. It is

(1) (2) (2) (1) (1) (2) (2) (1)
1 1 1 1 2 2 2 2 ,V I V I V I V I− = −

( )(1) (2) (2) (1) (2) (1) (1) (2)( , ) ( , ) ( , ) ( , ) · ( ),
S

V I V I p p dSω ω ω ω− = − −∫ x v x x v x n x

(1) (2) (2) (1) (1) (2) (2) (1) ,V I V I F v F v− = −

Fig. 11.2   A “lumped” parameter model of a coaxial cable showing the voltage and current at the 
cable ends
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� (11.5)

Here states (1) and (2) are two specific states. State (1) is the actual flaw measure-
ment setup where the flaw is present while state (2) is where the receiving element 
acts as a transmitter instead of a receiver, and the flaw is absent. The parameters 
F vR

f
R
f,( )  are the force and normal velocity on the receiving element produced by 

( ) ( )(2) (2) (1) (2) (2) (1)( , ) ( , ) ( , ) ( , ) ( ) ( ).
f

f f
R R R R ji i ji i j

S

F v F v v v n dSτ ω ω τ ω ω− = −∫ x x x x x x

Fig. 11.4   a An immersion 
flaw inspection with a pair of 
sending and receiving array 
elements, and b a correspond-
ing contact flaws inspection 
with sending and receiving 
elements

 

Fig. 11.3   a A “mixed” 
model of an array element 
with lumped parameters of 
voltage and current defining 
the inputs and pressure and 
velocity fields at the output 
face of the element, and b a 
model of an array element 
with voltage and currents at 
the input and compressive 
force and normal velocity at 
the output
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the waves scattered from the flaw in state (1) while ( , )( ) ( )F vR R
2 2  are the force and 

normal velocity on the face of the receiving element when it acts as a transmitter 
in state (2). The fields ( ( , ), ( , ))ij jvτ ω ωx x  are the stresses and velocity compo-
nents on the surface, ,fS  of the flaw, whose outward unit normal components are 
nj ( )x  (see Fig. 11.4a, b). This reciprocity relationship can also be written in the 
alternate form

� (11.6)

where ( ) ( ) ( 1, 2)m m
i ji jt n mτ= =  are the components of the traction vector, ( ),mt  acting 

on the surface of the flaw.
Although Eqs. (11.5) and (11.6) were derived in [Schmerr–Song] explicitly for 

the immersion case, both of these equations are applicable to either the immersion 
or contact testing setups shown in Fig. 11.4. This can be seen by writing these reci-
procity relations entirely in terms of the underlying fields on the face of the receiv-
ing element. Equation (11.5), for example, then becomes

� (11.7)

which is true for both the contact and immersion cases since in the immersion case 
the stress fields at the acoustic port of the element are purely pressure fields and in the 
contact case there is a fluid couplant between the element and the adjacent solid so 
again there is only a pressure on the surface of the element. Here ( ( , ), ( , ))f fp ω ωx v x  
are the pressure and velocity fields on the receiving element due to waves scattered 
from the flaw. But in the contact case, if we assume this pressure is uniform in 
both states, i.e. ( , ) ( )f fp pω ω=x  and (2) (2)( , ) ( )p pω ω=x , then the forces on the 
receiving element face are just ( ) ( )f f

R rF p Sω ω=  and (2) (2)( ) .( )R rF p Sω ω=  Then, 
if we define the average normal velocities on the face of the receiving element in 
either state as

� (11.8)

Equation (11.7) again reduces to Eq. (11.5).
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11.2 � An Ultrasonic Measurement Model for Immersion 
Setups

Consider an immersion flaw measurement setup. In state (2) where the receiving 
element B is acting as a transmitter, the force FR

( )2  and normal velocity vR
( )2  are 

related through the acoustic radiation impedance, ; ,B a
rZ  of the receiving element, i.e.

� (11.9)

Placing Eq. (11.9) into Eq. (11.5) then gives

�
(11.10)

But the quantity in parentheses on the left side of Eq. (11.10) is just the blocked 
force, ( ),BF ω  generated on the receiving element by the flaw fields (see Eq. (9.10), 
with v vR

f= −  since v  in that equation is directed inward to the element face) so that

� (11.11)

Dividing this result by (1)
1 1 ( ),p A Tc S vρ ω  where 1 1( , )pcρ  are the density and wave 

speed at the sending element A, which has an area, SA
, and a uniform velocity, 

(1) ( )Tv ω , over that area in state (1), we find an expression for the acoustic/elastic 
transfer function (see Eq. (9.24)), namely

� (11.12)

Since the received voltage, ( , , )s rV ωx x , for a sending element located at xs
 and a 

receiving element located at xr
 (see Fig. 11.4) is just proportional to this transfer 

function through the system function, ( )Is ω , for the pair of sending and receiving 
elements present, we have

� (11.13)

Equation (11.13) is an ultrasonic measurement model for an arbitrary pair of el-
ements in an immersion flaw inspection (Fig.  11.4a). It predicts the frequency 
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spectrum of the measured voltage in terms of the system function, which can be 
measured in a calibration setup as shown in Chap. 10, and the fields on the surface 
of the flaw in states (1) and (2). These fields are normalized by driving velocities on 
the faces of the sending and receiving elements in states (1) and (2) respectively, so 
that one only needs to calculate the fields in Eq. (11.13) for cases where the driving 
velocity is unity on the faces of these elements. If appropriate ultrasonic beam mod-
els and flaw scattering models are available, these normalized fields can be directly 
calculated and one does not need to know the actual velocities on these element 
faces for the models involved.

11.3 � An Ultrasonic Measurement Model for Contact 
Setups

One can again start with Eq. (11.10) since the force and average velocity lumped 
parameters are again related through the acoustic radiation impedance (Eq. 11.9 for 
state (2)). However, we can rewrite Eq. (11.10) as

� (11.14)

In the contact case, we can recognize the term in parentheses on the left side of 
Eq. (11.14) as the free surface velocity (see Eq. (9.11) with v vR

f= −  again since v is 
directed inward to the transducer face) so we have

� (11.15)

In Chap. 10 we saw that a system function having the same dimensions as the mea-
sured voltage, could be obtained by using a non-dimensional transfer function in 
the contact case defined as (1)/A p B fs Tt c S v Fρ=′  where FT

( )1  is the compressive force 
exerted on the face of the driving element in state (1) and ( , )pcρ  are the density and 
compressional wave speed of the solid adjacent to the receiving element whose area 
is SB

. From Eq. (11.15) then we have

� (11.16)

and a complete measurement model for the received voltage for the contact case 
(Fig. 11.4b) is
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�
(11.17)

In Eq. (11.17) we see the fields on the surface of the flaw are normalized by the 
forces on the faces of driving elements in states (1) and (2). Thus, as in the immer-
sion case, we do not need to know the actual driving forces (or underlying pres-
sures) in the contact case to model these wave fields.

Measurement models similar to those given by Eqs.  (11.13) and (11.17) were 
originally obtained by Auld [1] using general electromechanical reciprocity condi-
tions. Because such measurement models are based primarily on assumptions of 
linearity and reciprocity they are applicable to almost all NDE inspections. Since 
Auld’s seminal paper there have been numerous applications where these measure-
ment models have been coupled with ultrasonic beam models and flaw scattering 
models to simulate the signals seen in NDE inspections. Many of these applications 
have been described in the Proceedings of the Review of Progress in Quantitative 
NDE meetings [5]. To date, measurement models have been mostly used to simulate 
inspections with large single element transducers but as we have seen here they are 
also applicable to any arbitrary pair of sending and receiving elements. By simply 
considering the ensemble of all pairs of sending/receiving element responses and by 
incorporating the appropriate time delay laws and/or apodization laws these mea-
surement models are also applicable to virtually any ultrasonic inspection using one 
or more arrays.

11.4 � A Reduced Measurement Model for Small Flaws

Although the measurement models of the Auld type discussed in the previous sec-
tions have the advantage of being very general, the flaw response is contained in 
those models only through the fields on the flaw surface, making it difficult to con-
nect the measured voltage response with any specific flaw characteristic or flaw 
parameter. Since the purpose of most ultrasonic NDE flaw inspections is to make 
that connection and predict flaw properties from the measured signals, it would be 
useful to be able to have a measurement model that contains the flaw response in a 
more explicit fashion. Fortunately, this is possible with a relatively few additional 
assumptions. The details have been given elsewhere, [Schmerr], [Schmerr-Song], 
so here we will briefly outline the steps.

The basic assumptions we will make are (1) that the waves incident on the flaw 
in states (1) and (2) can be treated as quasi-plane waves, and (2) that the flaw is 
small enough so that the amplitude of these waves does not vary significantly over 
the flaw surface, so we can take the amplitude of these waves as evaluated at a fixed 
point, x0

, (see Fig. 11.5) which is usually taken to be the center of the flaw for simple 
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flaw shapes. Consider first the case of immersion testing where the waves are gen-
erated in states (1) and (2) by elements having uniform velocities (1) (2)( ( ), ( ))T Rv vω ω  
on their faces. The velocity components of the incident quasi-plane waves in states 
(1) and (2) on the flaw can be written as

� (11.18)

where (1) (2)( , )β αd d are the unit vector polarizations of the incident waves in states 
(1) and (2), which are traveling in the direction of the unit vectors (1) (2)( , )β αe e  and 

2 2 2 2/ , /k c k cβ β α αω ω= =  are the wave numbers of the incident waves, which can 
be of type β  ( , )p sβ =  for state (1) and type α  ( , )p sα =  for state (2) correspond-
ing to either P-waves or S-waves where 2 2 2( , , )p sc cρ  are the density, compressional 
wave speed, and shear wave speed, respectively, for the medium surrounding the 
flaw. In Eq. (11.18) we will let 1 2 3( , , )x x x′ ′ ′  be the coordinates of the position vector 

′ = −x x x0
 as measured with respect to the fixed point, x0

, as shown in Fig. 11.5. 
Note that the total velocity at the flaw in state (1) is given by the sum of the inci-
dent and scattered waves, i.e. (1) (1); (1);inc scatt= +v v v  (see Fig. 11.5), so we need to 
identify the waves in Eq. (11.18) as only those incident waves. In state (2) no flaw 
is present so the total velocity fields are just the incident fields of Eq. (11.18). Also, 
in state (2), the stresses, (2)

ijτ , can be calculated since

� (11.19)
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where Cijkl  is the tensor of elastic constants [Schmerr]. Placing Eqs. (11.18) and 
(11.19) into the measurement model of Eq. (11.13) gives

� (11.20)

If we now normalize the stresses and velocity components in state (1) by the dis-
placement amplitude, (1) (1)ˆ / ( )Tv V iω− , of the incident wave in that state, we can de-
fine these normalized fields as

� (11.21)

Then Eq. (11.20) can be rewritten as

� (11.22)

Equation (11.22) contains the flaw response in an explicit form. This can be seen by 
considering the canonical problem of a flaw in an infinite medium acted upon by a 
incident plane wave of type β  ( , )P Sβ =  traveling in the (1)

inc
β

β ≡e e  direction and 
having a unit displacement amplitude, as shown in Fig. 11.6. In the far-field of the 
flaw a scattered wave of type α  ( , )P Sα =  traveling in the (2)

scat
α

α≡ −e e  direction is 
a spherically spreading wave of polarization 

s
αd  having the displacements

� (11.23)
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� (11.24)

Comparing this expression with the integral in Eq. (11.22), setting (2)
s
α

α= −d d  and 
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α= −e e  we see that

�
(11.25)

and Eq. (11.22) becomes

� (11.26)

where ( , , )inc scatA β α ωe e  is the scalar component of the vector scattering amplitude 
given as

� (11.27)
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The contact case follows similar steps. First, the incident waves are expressed as 
quasi-plane waves of the form

� (11.28)

where ( , )pcρ  are the density and compressional wave speed, respectively, in the 
solid adjacent to the receiving element and 1 1( , )pcρ  are the corresponding parame-
ters at the sending element. These densities and wave speeds are the same in contact 
tests where the sending and receiving elements are in contact with the same medium 
but for generality we have left them different. Similarly, 2 2( , )cαρ  are denoted as 
the possibly different density and wave speed (of the scattered wave) surrounding 
the flaw.

Second, the stresses and velocities in state (1) are normalized so that the incident 
plane wave in that state is of unit displacement amplitude:

� (11.29)

Then Eq. (11.17) reduces to

� (11.30)

which is of exactly the same form as Eq. (11.26) for the immersion case. Note that 
in both cases the fields (1) (2)ˆ ˆ( , )V V  are non-dimensional.

A reduced measurement model in a form similar to Eqs. (11.26) and (11.30) was 
first obtained by Thompson and Gray [2] for immersion setups that used single ele-
ment transducers. Because the received voltage is just proportional to the scatter-
ing amplitude ( , , )inc scatA β α ωe e , if one measures the received voltage and the system 
function and models the incident fields present in (1) (2)ˆ ˆ( , )V V  one can obtain the 
scattering amplitude by deconvolution [Schmerr-Song]. Numerous previous studies 
have used the Thompson–Gray measurement model to experimentally determine 
scattering amplitudes. Those scattering amplitudes then have been used as the basis 
for flaw sizing and flaw characterization methods, inverse scattering problems, and 
probability of detection (POD) studies [5]. We have shown here that the same type 
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of measurement model is directly applicable to elements of arrays in both immer-
sion and contact testing.

To predict the voltage using a measurement model of this type, one needs a beam 
model for evaluating the fields and a flaw scattering model to predict the scattering 
amplitude ( , , )inc scatA β α ωe e . The beam models discussed in Chap. 6 can be used effec-
tively to compute the (1) (2)ˆ ˆ( , )V V  terms, but flaw scattering processes are generally 
very complex, even for simple shaped scatterers. However, one scattering case of 
rather general complexity can be modeled explicitly, as shown in Fig. 11.7. Con-
sider a general shaped elastic inclusion with density and wave speeds 3 3 3( , , )p sc cρ  
embedded in an adjacent elastic medium with density and wave speeds 2 2 2( , , )p sc cρ  
and let a plane wave of type β  be incident on the flaw from a sending element of an 
array. If there is a point on the surface of the inclusion, 

sx , called a specular point, 
where the incident wave and scattered wave directions satisfy Snell’s law, i.e.

� (11.31)

then one can use the Kirchhoff approximation and the method of stationary phase 
[Schmerr] to obtain an explicit expression for the specular point response of the 
flaw. For many flaws, this specular point response is the most significant scattered 
wave contribution to the entire flaw response. Specifically, one finds for the specu-
lar point response of a convex flaw

� (11.32)
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Fig. 11.7   Scattering of a gen-
eral shaped convex inclusion 
where the specular response 
at a stationary phase point is 
measured
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� (11.33)

is a vector parallel to the outward unit normal n at the stationary phase point. The 
;

23Rα β term is the plane wave reflection coefficient (based on velocity ratios) for an 
incident wave of type β  and a reflected wave of type α  for a wave incident in 
medium 2 (surrounding the flaw) and where medium 3 is designated as the mate-
rial within the flaw. The lengths ( , )R R1 2

 are the principal radii of the convex flaw 
surface at the specular point xs

. Another way to express this scattering amplitude is

� (11.34)

where ·sd = x n  (see Fig. 11.7). For simple convex shapes like a sphere there is 
only one specular point on the flaw surface for a given pair of sending and receiving 
elements. For more complex shapes there may be more than one specular point con-
tributions. Because the amplitude of the scattering amplitude of the specular point 
response is independent of frequency, in a real band-limited system the specular 
point pulse will act as a band-limited delta function in the time domain. Other flaw 
scattered wave responses often have a frequency content that is more significant at 
lower frequencies and so those responses may become very small in comparison to 
the specular point response(s) when band-limited.

11.5 � Measurement Models for Quantitative Imaging

In the previous section we showed how a measurement model of the Auld type 
could be reduced to a more explicit Thompson–Gray type of form. In the reduced 
Thompson–Gray model the flaw response is just the far field scattering amplitude 
function of the flaw. We also showed how the specular point response from the flaw 
surface contribution to that scattering amplitude could be obtained explicitly.

When we use phased arrays for imaging flaws, those flaws may not be small 
enough to allow us to assume that the beam variations across the flaw surface are 
negligible. However, as discussed in more detail in the next Chapter, the specular 
point responses from points on the flaw surface are often still the primary signals 
received by an array from the flaw so that in an image formation process these 
specular responses waves play an important role. In this section we will use the 
Kirchhoff approximation and the stationary phase approximation to develop ap-
proximate measurement models of both the Auld and Thompson–Gray type that 
characterize the scattering of the flaw entirely in terms of these specular responses. 
In Chaps. 12 and 13 we will invert these measurement models to form an image of 
the surface reflectivity of the flaw.
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Consider a general pair of sending and receiving array elements, either in an im-
mersion test setup, as shown in Fig. 11.8a or the contact setup of Fig. 11.8b. The lo-
cation of the centroid of the sending element is xs  and the centroid of the receiving 
element is rx . The response of this pair of elements from a point x  on the surface 
of a flaw is also shown. We will develop approximate measurement models that will 
form the basis of imaging flaws for both cases. For the immersion case we found the 
measurement model in the form (see Eq. (11.13)):

� (11.35)

while for the contact case we had (see Eq. (11.17))

� (11.36)
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Fig. 11.8   A pair of sending 
and receiving elements in 
either a an immersion testing 
setup, or b a contact testing 
setup. The densities and 
wave speeds at the sending 
element, for the material 
surrounding the flaw, and 
at the receiving element are 

1 1 1( , , )p sc cρ , 2 2 2( , , )p sc cρ , and 
( , , )p sc cρ , respectively, for 
an immersion setup where 
c cs s1 0= = . Normally, the 
density and wave speeds at 
the sending and receiving ele-
ments may be the same, but 
we have allowed them to be 
different for generality
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If we normalize Eqs. (11.35) and (11.36) appropriately, we can write these expres-
sions in a common form. Specifically, we define a normalized voltage, ( ), , ,s rV ωx x

�

as

� (11.37)

for the immersion case and

� (11.38)

for the contact case. Similarly, we define normalized (but not necessarily non-di-
mensional) stress and velocity terms as

� (11.39)

for the immersion case and

� (11.40)

for the contact case. Then in either the immersion or contact case we have

� (11.41)

Note that, as mentioned previously, since we have normalized the fields in both the 
immersion and contact cases by the driving velocities or forces acting on the trans-
mitting element face, these normalized fields are those due to a transmitting element 
with either a unit velocity or unit force acting on its face. Thus, one can evaluate 
these normalized fields completely with models without having to know the actual 
velocity or force on the driving element.

We will use Eq. (11.41) as the starting point for developing a measurement mod-
el that evaluates the voltage response from points on the flaw surface shown in 
Fig. 11.8. At high frequencies the incident normalized displacement fields and their 
derivatives in configurations (1) and (2) can be written as
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(no sum on β )
and

� (11.43)

(no sum on α )
where again we have dropped the designation “inc” for the incident waves in 

configuration (2) since incident waves are the only types of waves present in that 
state (the flaw is assumed absent). Note that these normalized displacements, �uk

( );1 inc  
and �uk

( )2  are normalized in the same fashion as the normalized velocities given 
in Eqs.  (11.39) and (11.40) for the immersion and contact cases, respectively. In 
Eqs. (11.42) and (11.43) the (1) (2),U Uβ α

� �  terms denote the similarly normalized am-
plitudes of the incident waves, where ( , )α β  can take on either of the values ( , )p sv  
to denote a P-wave or SV-wave mode, i.e. we have allowed for the transmitted and 
received waves to be either of these different types in the solid. The polarizations 
of these waves are the terms (1) (2),k kd dβ α  for states (1) and (2) respectively. The phase 
terms T T( , ), ( , )x x x xs r

 represent the time delays associated with the travel to and 
from center of the elements to the flaw in states (1) and (2), respectively, and at high 
frequencies the derivatives of the fields are just proportional to the derivatives of 
these phase terms, as seen in Eqs. (11.42) and (11.43). Furthermore, we have used 
the relationships

� (11.44)

(no sum on ,α β )
where / ( , )m mk c mω α β= =  are wave numbers associated with the correspond-

ing wave speeds, 
mc , and (1) (2)( , )j je eβ α  are unit vectors in the incident wave directions 

at the flaw for states (1) and (2), respectively.
To develop a more explicit measurement model we will assume the scattered 

waves in state (1) can be obtained at high frequencies from the Kirchhoff approxi-
mation. In the Kirchhoff approximation, the scattered waves at any point, x, on that 
portion of the surface of the flaw where the incident waves can directly strike the 
surface (the so-called “lit” part of the surface, 

litS ) are assumed to be identical to the 
reflected waves generated by a plane wave incident on a planar surface, where the 
planar surface is taken to be tangent to the flaw surface at point x. These reflected 
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waves satisfy Snell’s law and can be obtained from ordinary plane wave reflection 
coefficients, ;

23
mR β  (based on displacement or velocity ratios), where m p sv= ( , )  de-

notes the mode of the reflected wave while ( , )p svβ =  is the mode of the incident 
wave in state (1). On the remainder of the surface the total fields are assumed to be 
identically zero. Thus, the normalized displacements and their derivatives on the lit 
surface for state (1) are given by

� (11.45)

where dmk
r  are the components of the polarization unit vector of a reflected wave of 

type m, and emj
r  are the components of a unit vector in the direction of a reflected 

wave of type m. The stress and velocity fields appearing in Eq. (11.41) are given in 
terms of the displacements and displacement gradients by

� (11.46)

where Cijkl  is the fourth order tensor of elastic constants for the material surround-
ing the flaw [Schmerr]. Placing these results into Eq. (11.41) we then obtain

� (11.47)

where the integrand term, I ( )x , is given by

� (11.48)
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To develop a measurement model form suitable for imaging, we will assume that 
the primary voltage response of the surface will be due to a collection of specular 
reflections from the surface, where Snell’s law is satisfied, similar to what was 
discussed in the previous section for small flaws. This assumption corresponds to 
replacing I ( )x  by its stationary phase value, I stat( )x , a value that has been obtained 
previously [Schmerr] for a homogenous, isotropic elastic solid, where it is shown 
that the incident wave terms in Eq. (11.48) vanish at the stationary phase point and 
the remaining terms reduce to simply

� (11.50)

where 
2ρ  is the density of the material surrounding the flaw [Note: the minus sign 

in Eq. (11.50) is not present in [Schmerr] since the ( )I x  considered there was the 
negative of the expression used here]. Although the algebra is lengthy for proving 
Eq.  (11.50) in general testing setups, in pulse-echo cases only the same mode is 
present for both the incident and reflected waves ( )α β=  since the normal inci-
dence reflection coefficient is zero for mixed incident/reflected modes and we also 
have (1) 1, 1r

k k ke n e nβ α= − = . In this case we can directly evaluate I stat( )x  in general 
for a homogeneous, anisotropic material. To see this, note that the equations of mo-
tion for the displacements of a homogeneous, anisotropic solid are [6]

� (11.51)

For a plane wave of type β  and polarization kdβ  traveling in the ei
 direction we 

have

� (11.52)

and Eq. (11.51) reduces to

� (11.53)

From Eq. (11.53) it follows that

� (11.54)

Also, for a wave of type α  and polarization 
kdα  traveling in the ei

 (or e ei
r

i= − ) 
direction we have

� (11.55)

From Eqs.  (11.53) and (11.55) and the symmetries of the Cijkl  tensor 
( )C C C Cijkl jikl ijlk klij= = =  we have

;
2 2 23( ) 2 ( ),r

stat k kI c R e nα β
α αρ= −x

2
2 .k

ijkl j
i l

u
C u

x x
ρ ω∂

= −
∂ ∂

[ ]exp ( )k k i iu Ad ik e x i tβ ω= −

2
2 2 .ijkl i l k jC e e d c dβ β βρ=

2
2 2 .ijkl i l k jC e e d d cβ β β= ρ

2
2 2 .ijkl i l k jC e e d c dα α αρ=
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� (11.56)

which shows that the polarizations of two different mode plane waves traveling in 
the same (or opposite) directions are orthogonal to each other, i.e.

� (11.57)

We can now use these results in the evaluation of I ( )x  at the stationary phase point. 
In pulse-echo at this point we have (with α β= ) (1) (2) , , r

i i i i i ml le e e n e e eβ α= = = − = − , 
and (1) (2)

i i id d dβ β β= =  so that we find

� (11.58)

The first two terms in Eq. (11.58) just cancel and using the symmetries of the Cijkl 
tensor and Eq. (11.53) we find

� (11.59)

But the polarizations of the reflected and incident waves will be orthogonal unless 
m β=  because of Eq. (11.56) so that

� (11.60)

We will take the polarization of the reflected wave opposite to that of the incident 
wave (an arbitrary assumption, but one that is commonly used—the final result, 
however, is independent of this choice since a change in sign of the assumed polar-
ization will also result in a change in the sign of the reflection coefficient, leaving 
the product unchanged). Then 1r

j jd dβ β = −  and we find, finally

� (11.61)

which is just Eq.  (11.50) for the pulse-echo case. We have written the reflection 
coefficient here as ;

23 (0 )Rβ β °  to emphasize that we are dealing with the reflection 
coefficient at normal incidence to the flaw surface. Note, however, that while the 
pulse-echo result, Eq. (11.61), is valid for a general homogeneous, anisotropic elas-
tic solid, the more general form of Eq. (11.50) was only obtained in [Schmerr] for a 
homogenous, isotropic elastic solid.
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If we now place Eq. (11.50) into Eq. (11.47) we obtain

� (11.62)

In the case of a pulse-echo setup (with the same mode on sending and receiving), 
we have 1r

k ke nα = , α β= , (1) (2)U Uβ α=� � , 
s r c= =x x x  (the common centroid location 

of the sending/receiving element), 2T( , )cφ = x x . In this special case Eq.  (11.62) 
becomes

� (11.63)

Equations  (11.62) and (11.63) are both approximate measurement models of the 
voltage received from a flaw in forms that describe the received voltage for a pair 
of sending and receiving elements in terms of the reflection coefficient and fields 
on the flaw surface. In the following chapters we will see how these models can be 
used to generate flaw images.

For the reduced case of a small flaw, the normalized displacements in the inte-
grand of Eq. (11.62) are evaluated at a fixed point 0x  so they can be removed from 
the integral and the phase ( , , , )s rφ ωx x x  is given to first order in the neighborhood 
of the fixed point as

� (11.64)

so that we obtain

� (11.65)
where ;α βg  is defined as

� (11.66)

In the pulse-echo case with same sending and receiving modes ( )α β= , Eq. (11.65) 
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� (11.67)

As we will see in Chaps. 12 and 13, Eqs. (11.65) and (11.67) are approximate mea-
surement models suitable for developing an image formation process for small 
flaws.

Equation (11.65) is closely related to the specular point response obtained in 
conjunction with the Thompson–Gray measurement model of the previous section. 
To see this relationship, we will assume the flaw is a small convex flaw and evaluate 
the surface integral by the method of stationary phase [Schmerr]. We find

�

(11.68)

Comparing this equation with Eq. (11.32) we see we can write Eq. (11.68) in terms 
of the far field scattering amplitude of the flaw as

�
(11.69)

where, recall, (1) (2), .inc scat
β α

β α≡ ≡ −e e e e
We will put Eq. (11.69) in a more explicit form so that we can compare it to the 

Thompson–Gray form. Consider first the contact case where Eq. (11.30) is rewrit-
ten here again as

� (11.70)

Similarly, we can rewrite Eq. (11.69) as

�
(11.71)
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where, recall ( , )Pcρ  are the density and compressional wave speed at the contact 
receiving element, whose area is SB

. Equations (11.70) and (11.71) are equivalent 
since the incident velocity and displacement fields for state (1) were written in the 
two separate forms

� (11.72)

Similarly, for state (2)

� (11.73)

But since (1); (1); (2) (2),inc inc
j j j jv i u v i uω ω= − = − , we have

� (11.74)

Using the relations in Eq. (11.74) we see that Eqs. (11.70) and (11.71) are identical.
Similarly, in the immersion case, from Eq. (11.26) we found

� (11.75)

while from Eqs. (11.69) and (11.38) we obtain

�

(11.76)

In this case the velocity and displacement fields were expressed in state (1) as

� (11.77)

( ) ( )
( ) ( ) ( )

(1)
(1); (1) (1) (1)

0 2
1 1

(1); (1) (1) (1) (1)
0 0 2

ˆ( , ) , , exp

( , ) , , exp , exp .

inc T
j s j

p A

inc
j T s j s

F
v V d ik

c S

u F U d i T ik

β β

β β β

 ω = ω ⋅ ρ

  ω = ω ω ⋅   

x x x e x

x x x x x e x�

( ) ( )
( ) ( ) ( )

(2)
(2) (2) (2) (2)

0 2

(2) (2) (2) (2) (2)
0 0 2

ˆ( , ) , , exp

( , ) , , exp , exp .

R
j r j

p B

j R r j r

F
v V d ik

c S

u F U d i T ik

α α

α α α

 ω = ω ⋅ ρ

  ω = ω ω ⋅   

x x x e x

x x x x x e x�

( ) ( ) ( )
( ) ( ) ( )

(1) (1)
0 1 1 0 0

(2) (2)
0 0 0

ˆ , , , , exp ,

ˆ , , , , exp , .

s p A s s

r p B r r

V i c S U i T

V i c S U i T

β

α

 ω = − ωρ ω ω 
 ω = − ωρ ω ω 

x x x x x x

x x x x x x

�

�

( ) ( ) ( ) ( )(1) (2) 2 2
0 0

2 1 1

4ˆ ˆ, , ( ) , , , , ,s r I inc scat
p A

c
V s V V A

ik c S
β α α

α

πρω ω ω ω ω
ρ

 
=  −  

x x x x e e

( ) ( ) ( ) ( )

( ) ( )

2 (1) (2)
0 0 0

2 2
0

2 1 1

, , ( ) , , exp , , ,

4
exp , , , .

s r I s s r

r inc scatt
p A

V s U i T U

c
i T A

ik c S

β α

αβ α

α

ω ω ω ω ω ω

πρ
ω ω

ρ

 = −  
 

 ⋅    −  

x x x x x x x x

x x e e

� �

( ) ( )
( ) ( ) ( )

(1); (1) (1) (1) (1)
0 2

(1); (1) (1) (1) (1)
0 0 2

ˆ( , ) , , exp

( , ) , , exp , exp .

inc
j T s j

inc
j T s j s

v v V d ik

u v U d i T ik

β

β β β

β
 ω = ω ⋅ 

  ω = ω ω ⋅   

x x x e x

x x x x x e x�

11.5 � Measurement Models for Quantitative Imaging�



234 11  Measurement Models for Ultrasonic Arrays

and in state (2) as

� (11.78)

so that with (1); (1); (2) (2),inc inc
j j j jv i u v i uω ω= − = −  we have

� (11.79)

Using Eq. (11.79) we see that Eqs. (11.75) and (11.76) are identical.

11.6 � Measurement Models for 2-D Problems

In earlier chapters we have examined the responses of 1-D arrays radiating two-
dimensional waves in a fluid since much of the physics associated with phased array 
can be discussed more clearly in those simpler problems. For imaging applications, 
2-D problems have the added advantage of requiring much less computations. Thus, 
in this section we will describe measurement models for such 2-D cases.

It is relatively easy to transform a measurement model of the Auld type for a 3-D 
elastic wave problem to a corresponding 2-D problem of waves in fluid media. We 
can start with Eq. (11.13) for the immersion case and note that if all the wave fields 
are 2-D waves propagating in a fluid we have

� (11.80)

where ( , )( ) ( )p p1 2  are the pressures in states (1) and (2), respectively, X = ( , )x x1 2
 

is a position vector in two dimensions, and jiδ  is the Kronecker delta. Also, the 
surface, S f , of the flaw in 3-D problems becomes a counterclockwise line integral 
over the line, C f , of the flaw and the area of the sending element, SA

, becomes the 
length of the element, lA

. With these changes, Eq. (11.13) becomes

� (11.81)

where ( , )( ) ( )v vn n
1 2  are the (outward) normal components of the velocity in states (1) 

and (2), ds( )X  is an arc length along C f , and we have set c cp1 1=  since we only 
have compressional waves in a fluid. Since
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� (11.82)

Equation (11.81) can be rewritten as

� (11.83)

Equations (11.81) and (11.83) are complete measurement models for a 2-D scalar 
wave problem. To obtain a reduced measurement model, at high frequencies we can 
write the incident pressure wave fields in states (1) and (2) at the flaw as

� (11.84)

Placing these results into Eq.  (11.83) gives the measured voltage received at the 
centroid, Xr

, of an element from a sending element whose centroid is at Xs
:

� (11.85)

Now, if we assume that the flaw is small so that at a fixed point, X0
, near the surface 

of the flaw the incident fields behave like quasi-plane waves of constant amplitude 
we have

� (11.86)

so Eq. (11.85) becomes
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� (11.87)

where ′ = −X X X0
 is the position vector to a point on C f  as measured from X0

 
and

� (11.88)

are non-dimensional pressure amplitudes of the incident waves in states (1) and (2) 
at point X0

, and

� (11.89)

is the pressure in state (1) normalized by the incident pressure of a quasi-plane 
wave at the flaw so that it is the pressure due to an incident wave of unit pressure 
amplitude. Note that the density and wave speed at the sending element, ( , )cρ  are 
the values measured at the receiving element, and 

2 2( , )cρ  are the density and wave 
speed in the material surrounding the flaw, which we have allowed again to be dif-
ferent for generality.

In two-dimensional fluid (scalar) problems the scattered pressure in the far field 
of a flaw, pscatt

, due to a planar pressure wave of unit amplitude is given by

� (11.90)

where the far field scattering amplitude, A, of the waves scattered in the scate  direc-
tion is given by

� (11.91)
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scat = −e e , placing Eq. (11.91) into Eq. (11.87) gives
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� (11.92)

Equation (11.92) is a measurement model of the Thompson–Gray type for 2-D 
problems.

We can also develop approximate measurement models suitable for imaging 
both large and small flaws. Consider first the large flaw case where we return to 
Eq. (11.85). In the Kirchhoff approximation on the lit face of the flaw we have

� (11.93)

where R23
 is the plane wave reflection coefficient (based on a pressure ratio) and 

er
 is a unit vector in the direction of the specular reflected wave. Placing these 

results into Eq. (11.85) gives

� (11.94)

But at a stationary phase point Snell’s law is satisfied and we have e er = − ( )2 , 
( ) ( )e n e ninc r⋅ = − ⋅  so that Eq. (11.94) becomes

� (11.95)

Normalizing the pressure amplitude terms, i.e. defining

� (11.96)

and letting

� (11.97)
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we find

� (11.98)

For pulse-echo responses, (1) (2), ( · ) 1, 2 ( , )r cP P Tφ= = =e n X X� � , with X X Xs r c= =  
and Eq. (11.98) becomes

� (11.99)

Equations (11.98) and (11.99) are approximate measurement models suitable for 
the development of images of large flaws in 2-D problems. These equations are the 
counterparts of Eqs. (11.62) and (11.63), respectively.

For the small flaw case, we have (see Eq. (11.64))

� (11.100)

so that Eq. (11.99) becomes

� (11.101)

which reduces in pulse-echo to

� (11.102)

Equations (11.101) and (11.102) are the approximate measurement models suitable 
for generating images of small flaws for the 2-D scalar wave case being considered 
in this section. Note that

� (11.103)
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(see Eqs. (11.88) and (11.96) with X X= 0
) so that Eq. (11.101) also can be written as

� (11.104)

which is in the same form as the Thompson–Gray type of measurement model of 
Eq. (11.92). The integral in Eq. (11.104) is of the form

� (11.105)

which, when evaluated by the method of stationary phase for convex flaw, gives

� (11.106)

at the stationary phase point, Xstat
, with Rp  the curvature of the flaw at that point 

and n  is the outward unit normal to the flaw surface. The vector g  is parallel to n  
at the stationary phase point. Identifying

� (11.107)

Equation (11.104) becomes

�
(11.108)

Comparing Eq. (11.108) with the Thompson–Gray model of Eq. (11.92) we see that 
the scattering amplitude is just

� (11.109)

with e escat r= . This result is the specular point response of the flaw in 2-D, compa-
rable to the 3-D result obtained in Eq. (11.32).
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Chapter 12
Imaging with Phased Arrays—An Introduction

The capabilities of a phased array to electronically tailor the ultrasonic waves on 
either transmission or reception (or both) also allow an array to have a rich set of 
imaging capabilities. In this chapter we will first describe several ad-hoc types of 
imaging methods that are widely used—the synthetic aperture focusing technique 
(SAFT) and the total focusing method (TFM). In both of those methods images are 
obtained by shifting and combining the measured time domain (A-scan) responses 
of the array elements. They are examples of a class of imaging techniques that are 
called delay and sum imaging. However, we will also examine the imaging process 
in more detail in this chapter to better understand how a flaw response contributes 
to an image. This perspective is important since in both this chapter and Chap. 13 
we will use models to describe images of a flaw that can be explicitly related to 
the scattering properties of a flaw. We will call these models imaging measurement 
models (IMMs) since they will be based on inverting the measurement models of 
the Auld and Thompson-Gray types discussed in Chap. 11. Imaging measurement 
models will give us a clearer picture of why popular imaging methods such as SAFT 
and TFM work so well and they will allow us to delineate the capabilities and limi-
tations of delay and sum imaging methods.

12.1 � SAFT Imaging

The synthetic aperture focusing technique (SAFT) was originally developed as an 
imaging technique for use with single element transducers where the transducer was 
scanned along a line and, at a set of sampling points along that line, the pulse-echo 
responses from a scatterer were collected and used to form an image [1]. This same 
type of data collection procedure and imaging can obviously also be implemented 
with a linear array of N elements as shown in Fig.  12.1 where at each element, 
whose centroid is located at Xcn  n N= ( ,... )1 , the pulse-echo voltage response of 
the scatterer, V tcn( , )X , as a function of the time, t, is measured and stored. To form 
up a 2-D image one can set up a 2-D ( , )x z  grid of image points, such as the point 
Y shown in Fig. 12.2 and calculate the travel time from the centroid Xcn of each 

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2_12, 
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element to those image points and back, 2T cn( , )X Y , where T cn( , )X Y  is the one-
way travel time between these points. At each image point the stored voltage signals 
are then each advanced by these two-way travel times and summed. The amplitude 
of the summed signal at time t = 0 is then taken as the value of the image of the 
scatterer, ISAFT ( )Y , at that point, so that

�
(12.1)

This method can be understood in terms of our discussion of the time delay laws 
in Chaps. 5 and 8. On sound generation, application of the one-way time advances 
T ( , )X Ycn  would focus the waves from each element at point Y. Application of 
these same time advances on reception would likewise focus the received signals 
to appear as if they came from point Y. If a flaw scattering source exists at Y  we 
would expect to see a large value for the summed signals at t = 0  and if a source 
was not present at this point, we would expect to see a correspondingly small value. 
Thus, it is reasonable to take the summed value of Eq. (12.1) as a value that de-
scribes the image of the flaw(s) present. Note that in this process we have not in-
voked the physics of the measurement process except for the travel times involved. 

I V t TSAFT cn cn t
n

N

( ) ( , ( , )) .Y X X Y= +
=

=
∑ 2

0
1

Fig. 12.2   The SAFT image 
formation process, where the 
two-way travel time from 
each element to an image 
point is calculated

 

Fig. 12.1   Collection of the 
pulse-echo responses of a 
flaw with a linear array
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Thus, the SAFT image is an ad-hoc approach and it is somewhat misleading to call 
the image formed an image of the flaw since the formed image also depends on 
the element system functions of the phased array measurement system, the wave 
propagation behavior to the flaw and back, and the interactions with the flaw, and 
the SAFT method does not characterize or compensate for any of those parameters. 
Even so, SAFT has proven to be a powerful imaging method that has been widely 
used for many years [2–4].

A frequency domain version of SAFT can also be developed since if we express 
the measured voltage signals in terms of their Fourier transforms, Eq.  (12.1) be-
comes

�

(12.2)

where Re  indicates “real part of”. If we discretize the frequency integration, we 
have

�
(12.3)

SAFT imaging can also be used with a 2-D array to generate a 3-D image of a flaw. 
The image formation process is identical to the 2-D case we just discussed. In this 
case, an image, ISAFT ( )y , at an image point, y , in three dimensions (see Fig. 12.3) 
for an array with L1  elements in the x-direction and L2  elements in the y-direction 
is given by

� (12.4)
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Fig. 12.3   The SAFT image 
formation process for gen-
erating a 3-D image with a 
2-D array
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or, in the frequency domain,

�

(12.5)

12.2 � TFM Imaging

The SAFT method uses only the pulse-echo responses of the array so that it does not 
take advantage of the much larger number of responses for various pairs of elements 
that can be recorded with an array. The total focusing method (TFM) does utilize 
all combinations of sending and receiving elements, also called full matrix capture, 
to form an image [5].

Consider the formation of a TFM image with a linear array (Fig. 12.4) with N 
elements. In this case we record all the voltage time domain signals V tsn rl( , , )X X , 
( ,... )n N= 1 , ( ,... )l N= 1  for a sending element whose centroid is located at snX  and 
a receiving element whose centroid is at Xrl  as shown in Fig. 12.4. In the image 
formation process we again set up a grid of image points Y  as shown in Fig. 12.5, 
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Fig. 12.5   The total focusing 
method (TFM) image forma-
tion process, where the travel 
times for various pairs of 
sending/receiving elements to 
an image point are calculated

 

Fig. 12.4   Collection of the 
responses of all sending/
receiving element pairs in an 
array (full matrix capture)
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advance all these sending/receiving element pair responses by the travel times 
T Tsn rl( , ) ( , )X Y X Y+  and then calculate their sum at time t = 0  to form an image, 
ITFM ( )Y , giving

�
(12.6)

Transforming the measured time domain signals to the frequency domain and eval-
uating at M positive frequencies, as in the SAFT method, we find the alternate 
frequency domain TFM form:

�

(12.7)

If 3-D TFM imaging is done with a 2-D array having L1
 elements in the x-direction 

and L2  elements in the y-direction then the image formation process is shown in 
Fig. 12.6 and the image, ITFM ( )y , is

�
(12.8)

and in the frequency domain

�

(12.9)

But note that the large number of calculations involved makes these 2-D and 3-D 
TFM formulations computationally much more expensive than their SAFT coun-
terparts.

I V t T TTFM sn rl sn rl
l

N

n

N

t

( ) ( , , ( , ) ( , )) .Y X X X Y X Y= + +
== =

∑∑
11 0

[ ]
1 1 1

( ) 2Re ( , , ) exp ( , ) ( , ) .
2

M N N

TFM sn rl m m sn m rl
m n l

I V i T i T
ω ω ω ω
π = = =

 ∆
= − − 

 
∑∑∑Y X X X Y X Y

I V t T TTFM s
pq

r
nl

s
pq

r
nl

t
q

L

p

L

l

( ) ( , , ( , ) ( , ))y x x x y x y= + +
=

==
∑∑ 0

11

21

===
∑∑

11

21 L

n

L

1 2 1 2

1 1 1 1 1

( ) 2Re ( , , )exp ( , ) ( , ) .
2

L L L LM
pq nl pq nl

TFM s r m m s m r
m n l p q

I V i T i T
ω ω ω ω
π = = = = =

 ∆  = − −    
∑∑∑∑∑y x x x y x y

Fig. 12.6   The total focus-
ing method (TFM) imaging 
process for generating a 3-D 
image with a 2-D array
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12.3 � The Image Formation Process

While the images described in the previous sections of this Chapter can provide us 
with some visual measurements of a flaw response, all of those images are produced 
in ad-hoc fashion from the measured data and normally there is no significance 
placed on the values present in the image. In this section we want to describe in 
general terms some of the characteristics of the waves scattered from flaws and re-
ceived by arrays so the underlying physics associated with image formation process 
can be better understood and used as the basis for more quantitative imaging.

When ultrasonic waves from an array (or in fact any type of transducer) interact 
with flaws, scattered waves of many different types may be present. By “type” we 
do not mean here just wave mode types such P-waves or S-waves but also different 
types of interactions of the incident wave with the flaw, as shown in Fig. 12.7. These 
interactions include waves directly reflected from the flaw surface, waves that trav-
el around the flaw (so-called creeping waves), waves that may involve one or more 
internal interactions within the flaw itself (for inclusions), and others. However, the 
waves directly reflected (and possibly mode-converted) from the flaw surface have 
a special importance. Figure 12.8 shows a situation where a wave is generated by 
one element of an array and then is directly reflected by a flaw surface to another 
array element.

The unit vector ei
 describes the incident wave direction and a unit vector es

 
describes the scattering direction back to another element. The unit normal to the 
flaw where ei  intersects the flaw surface is n . At high frequencies, there are points 
on the flaw surface where these directly reflected waves have significant amplitudes 

Fig. 12.8   Waves that travel 
from one element of an array 
to another via a direct reflec-
tion from the flaw surface

 

Fig. 12.7   Waves of different 
types scattered from a flaw, 
including waves directly 
reflected from the flaw sur-
face, waves that travel around 
the flaw surface, and waves 
that refract into the flaw and 
then re-emerge
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and these particular amplitudes are often larger than the amplitudes of any of the 
other wave types present. These are called specular reflection points and they occur 
when the vector / /i sc cβ α= −q e e  is parallel to the unit normal, n , where cβ  is the 
wave speed of the incident wave and cα  is the wave speed of the scattered wave 
[Schmerr]. The incident and scattered waves at these specular points satisfy Snell's 
law since if

� (12.10)

then for any unit vector, t , that is tangent to the surface and lies in the plane of 
incidence (the plane containing both ei  and n), we must have

� (12.11)

which is just a statement of Snell's law.
These specular point responses play particularly important roles since, as men-

tioned in the previous chapter, when all the elements of the array are being used 
as transmitters and receivers the largest signals received by the array often come 
from a collection of these specular points on the flaw surface. Likewise, when an 
image is formed from the ultrasonic array data it is often predominantly an image 
of this collection of specular points. Of course, there may be specular points on the 
surface where the scattered direction for one or more elements that are transmit-
ting lies outside the boundary of the array as shown in Fig. 12.9. In this case we 
expect the amplitude of the response seen in the image will be reduced and in the 
extreme case where no specular points exists for any combination of transmitting 
or receiving elements of the array, the contributions of these points to an image will 
be absent. This does not mean that in this case there will be no image generated at 
all because of the presence of responses from wave types other than these directly 
reflected waves. Figure 12.10 shows an example of this situation where a flat crack 
is oriented so that all the possible specular points on the crack will involve directly 
reflected waves that are not received by the array. However, cracks also generate 
waves that arise from the crack edges. Although these waves are typically smaller 
in amplitude than the directly reflected waves they can travel in many directions so 
that they can be received by the elements of the array (see Fig. 12.11) even when the 

/ / ,i sc cβ α λ− =e e n

( · ) / ( · ) / ,i sc cβ α=e t e t

Fig. 12.9   The case where 
the scattered response from 
a specular point on the flaw 
surface returns to a point 
beyond the edge of the array 
and thus is not received

 



248 12  Imaging with Phased Arrays—An Introduction

specular point responses are absent. When processed, these edge waves can form up 
an image of the crack edge.

Both specularly reflected waves and edge waves play an important role in the 
development of the imaging measurement model (IMM) we will discuss in the next 
section and the more general models considered in Chap. 13. These imaging mea-
surement models are based on the Kirchhoff approximation which can predict both 
specularly reflected and edge wave contributions to an image. We have discussed 
the Kirchhoff approximation in Chap. 11, where we showed that with this approxi-
mation we could extract explicitly the far field scattering amplitude specular re-
sponse of a small flaw and develop measurement models for the specular responses 
of more general flaws. In Chap.  11 we saw that the Kirchhoff approximation is 
based on a single scattering approximation. By this we mean that the Kirchhoff 
approximation assumes that only waves that are directly reflected (scattered) from 
the flaw surface are considered. It is this single scattering nature of the Kirchhoff 
approximation that permits one to directly image explicit flaw properties from the 
measured flaw response and we will see that this single scattering approximation 

Fig. 12.11   The same 
configuration of Fig. 12.10 
showing the generation and 
reception of the edge waves 
from the crack

 

Fig. 12.10   A crack being 
interrogated by an array 
where the specular point 
responses are absent. How-
ever, waves also are gener-
ated by diffraction from the 
crack edges, as shown, which 
can be used to form an image 
of the crack edge
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includes both the specular point responses and the responses of corners or edges 
of the flaws present. If other wave types are present they can also contribute to the 
images generated with an IMM, but in the form of image reconstruction artifacts or 
“noise”. Other wave types, such as the creeping waves of Fig. 12.7, for example, 
are not directly scattered from the flaw surface or edge so that they will appear in 
a flaw image as originating from some other location which may not coincide with 
any part of the real flaw geometry.

Considering the specular reflections and edge waves as the main contributors to 
the formation of ultrasonic images is only one view of how images are produced. 
In the geophysics community, for example, another viewpoint is to treat the image 
formation process as one where the scattering potential of the flaw is the funda-
mental quantity that is imaged instead [6]. In this view, one often uses the Born 
approximation instead of the Kirchhoff approximation to model how flaw respons-
es and images are formed. Although the Born approximation is a low frequency, 
weak-scattering approximation that assumes that the flaw and the surrounding host 
material have nearly the same material properties, like the Kirchhoff approxima-
tion the Born approximation is a single scattering approximation where only direct 
interactions of the incident waves with the flaw surface are considered.Thus, it is 
not surprising that one can relate the scattering potential to the specular reflectivity 
of the flaw surface present in the Kirchhoff approximation [6] and thus connect the 
two viewpoints. However, the Born approximation viewpoint is somewhat mislead-
ing as it implies that for volumetric flaws in a band-limited and aperture-limited real 
measurement one is viewing a proper (but “fuzzy”) image of the entire flaw (or, to 
be more precise, a proper but “fuzzy” image of both the front and back surface of 
the flaw). We will see in Sect. 12.5, that this is not true except in the weak scattering 
limit. Like the Kirchhoff approximation, the Born approximation leads to a linear 
relationship between the specular reflectivity (or scattering potential) and the mea-
sured flaw response. To account for other types of flaw responses properly, (such 
as multiple internal reflections within a flaw, for example) one must resort to more 
complex (and likely non-linear) image formation methods. In this book we will only 
consider linear image formation methods as these linear methods form the basis of 
some of the most successful ultrasonic imaging algorithms in general use and are 
directly and simply related to the physics of the wave propagation and scattering 
present in an ultrasonic measurement system.

12.4 � Far Field Imaging Measurement Models (2-D)

In Chap. 13 we will use the general measurement models developed in Chap. 11 
to describe explicitly the formation of images of the surface reflectivity of flaws 
and of other surfaces present (such as the back surface of a part, for example) in an 
ultrasonic measurement. However, we can gain significant insight into these imag-
ing methods by first considering the special cases considered in Chap. 11 where the 
flaw is small enough so that the incident wave fields do not vary significantly over 
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the flaw surface. In this section we will examine this small flaw case for 2-D waves 
in a fluid (see Fig. 12.12) since this is a simple case but one that illustrates most 
of the central points in image formation in more complex problems. This approach 
to imaging follows the same approach we used in earlier Chapters where we first 
discussed sound beams, delay laws, etc. for 2-D fluid problems before considering 
the more complex 3-D cases.

We will assume that an element whose centroid is located on the x-axis at 
Xr rx= ( , )0  (Fig. 12.12) receives a scattered wave signal from a small flaw which 
is excited by an element whose centroid is also located on the x-axis at Xs sx= ( , )0
. From Eqs. (11.102) and (11.104) the voltage received from the specular responses 
of the flaw surface for this pair of elements can be written as

�

(12.12)

We will first specialize this equation to where we receive only pulse-echo re-
sponses in a single medium. Then 

1 2 1 2,c c cρ ρ ρ= = = = , X X Xr s c= = , 
(1) (2)

0
ˆ ˆ ˆ ( , , )cP P P ω= = X X , and · 1r =e n , e e e( ) ( )1 2= = , and we find

�
(12.13)

where ′ = −X X X0
 is a 2-D position vector, ′ = ′ ′X ( , )x z  measured from a fixed 

point, X0 0 0= ( , )x z , (usually taken as the “center” of the flaw). Here the pressure 
term, 

0
ˆ ( , , )cP ωX X , is just the normalized pressure of the incident wave generated at 

point X0
 by an element whose centroid is located at point Xc

, i.e. (see Eq. (11.88))

�
(12.14)
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Fig. 12.12   A 1-D array 
radiating and receiving waves 
from a 2-D flaw in a fluid
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Now, let the centroid of the element be allowed to vary continuously over all loca-
tions, Xc cx= ( , )0 , along the line z = 0, and let C be that part of the flaw surface from 
which all the specular responses can be received from elements along this line. Then 
we have

� (12.15)

where k e= 2 2k . To put Eq. (12.15) in a more explicit form, we can define a singular 
function of the lit surface, ( )Cγ ′X , which has the property that [7]

�
(12.16)

Using this singular function, Eq. (12.15) can be expressed as a 2-D Fourier trans-
form of the function 23( ) ( )CR R γ≡′ ′X X , which we will define as the reflectivity of 
the flaw surface in this pulse-echo response case. Denoting the Fourier transform of 
this function by ( )R k , we find

�
(12.17)

where

� (12.18)

Since Eq. (12.18) shows that the measured voltage data is just proportional to the 
2-D Fourier transform of the reflectivity, we can in principle obtain an image of that 
reflectivity, ( )RI ′X , by simply performing an inverse Fourier transform of that data 
in the form

� (12.19)

where it is assumed that 
cX  can take on any continuous values in the range 

−∞ < < +∞xc  and the frequency, ω , likewise can range over all values ω−∞ < < +∞ 
so that k  can take on any value in the entire k-plane. In this formal result we see 
that we have deconvolved the measured voltage with the system function and the 
incident wave fields. Deconvolution by straight division, however, is unstable in the 
presence of noise. In ultrasonics, a common approach to remedy this problem is to 
use a Wiener filter [Schmerr-Song], i.e. we make the replacement

�
(12.20)
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where

�

(12.21)

and where ()* denotes the complex conjugate and ε  is a noise constant. The effect 
of this replacement is to avoid division by small terms that can amplify the noise 
and instead drive the filtered response to zero whenever either the system function, 

( )Is ω , or the pressure wave field term, 0
ˆ ( , , )cP ωX X , goes to zero. In terms of this 

replacement, Eq. (12.19) becomes

�
(12.22)

In this case, the Wiener filter will also modify the image generated so strictly speak-
ing we should indicate this by a change in left side expression of Eq. (12.22) but to 
emphasize that we are still trying to image the reflectivity as defined in Eq. (12.19) 
we will leave this expression unchanged here. Equation (12.22) is still in terms of a 
2-D integration over the 2-D wave number plane, k = ( , )k kx z , but we can transform 
it to an integration over the frequency, ω , and the angle, 

cθ , (measured clockwise 
from a line passing through X0

 parallel to the z-axis—see Fig. 12.13) by a change 
of variables to yield

�
(12.23)

where the Jacobian of the transformation is given by
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Fig. 12.13   Geometry 
parameters for the pulse-echo 
response of a typical array 
element
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�

(12.24)

Also, we can write the angle, 
cθ , in terms of the xc -coordinate along the line z = 0, 

since

� (12.25)

(Fig. 12.13) so placing Eqs. (12.24) and (12.25) into Eq. (12.23) gives

�
(12.26)

Equation (12.26) is an imaging model for a setup where the deconvolved voltage 
received by an element (whose centroid location is allowed to take on continuous 
values along a line) is used to form an image of the specular surface response of 
the flaw as defined in Eq. (12.19). In an array, of course, the element centroid loca-
tions only exist at N discrete locations, Xcn, n N= ( , ,... )1 2  and if we consider only 
M positive discrete frequencies, mω , ( , ,... )m M= 1 2 , we can write Eq. (12.26) as a 
finite sum and form a band-limited and aperture-limited image of the flaw reflectiv-
ity, IR

BA ( )′X  at the points ′X  as:

�

(12.27)

where ∆f  is the sampling spacing in the frequency domain and ∆xc
 is the pitch of 

the array.
Equation (12.27) is the discrete imaging measurement model counterpart of 

Eq. (12.26). Note that here we are treating “inversion” and “imaging” as essentially 
synonymous since we are using the inversion of a reduced measurement model to 
form an image of an explicit physical reflectivity response of the flaw. In practice, 
flaw images are often generated without placing a meaning on the amplitude values 
in the image or without taking into account the band limited system properties or 
wave processes that produced the image. B-scan, C-scan, S-scan, SAFT, and TFM 
images are all examples of such image formation methods. In fact, the SAFT imag-
ing approach discussed in Sect. 12.1 is closely related to this imaging measurement 
model, as we will now show.

Since SAFT ignores system function properties and wave propagation processes, 
we can show how to reduce our imaging measurement model to SAFT by first set-
ting the ε  term in our Wiener filter (Eq. 12.21) equal to zero and use Eq. (12.14) 
to write Eq. (12.27) as
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�

(12.28)

But, recall because of our small flaw assumption we expanded the total time travel 
function to first order so 0 2( , ) ( , ) ·c cT T kω ω= + ′X X X X e X  and if we simply ig-
nore all system and wave terms not associated with the directly measured voltage 
response except the parameter / 2f ω π∆ = ∆  we can recover the SAFT algorithm 
as discussed in Sect. 12.1:

�
(12.29)

In both our imaging measurement model and the SAFT imaging approach, we are 
only using the pulse-echo responses of the array elements to form an image. This 
subset of all the possible sending and receiving pairs of elements we see is sufficient 
to reconstruct the reflectivity of the flaw with our imaging measurement model and 
a related image quantity in the SAFT approach. If we use a full matrix capture of all 
combinations of sending and receiving elements to form an image we expect to ob-
tain a “better” image in some sense since we are summing over many more element 
pairs but how is such an image related to the reflectivity of the flaw? To answer this 
question, consider first the case where we have a single sending element and receive 
with all elements of the array. Going back to Eq. (12.12) we have for the voltage 
response from the specular reflections of the flaw in a single medium:

�

(12.30)

We introduce the singularity function of the surface again and now define the re-
flectivity as

� (12.31)

and let the wave number vector k e e= +k2
1 2( )( ) ( ) . Then, following the same steps 

as in the pulse-echo case, we find the measured voltage can be again expressed as a 
Fourier transform of this reflectivity in the form

� (12.32)

where now

� (12.33)
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Performing an inverse Fourier transform on Eq. (12.32) then gives

�

(12.34)

Changing the integration variables to the frequency, ω , and the angle measured 
from the z-axis to the receiving element, 

rθ  (see Fig. 12.14) gives

�

(12.35)

In two-dimensions the Jacobian of the coordinate transformation becomes

�

(12.36)

where ( , , )e e ex y z  are unit vectors along the ( x, y, z) axes, respectively, and we have 
used the distributional property of the triple product ·( )×a b c  to obtain the final 
result shown in Eq. (12.36). Since (2) sin cosr x r zθ θ= − +e e e  is a unit vector, it is 
perpendicular to its derivative so we have
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But the sign is immaterial because of the absolute value present in the Jacobian so 
we have

�
(12.38)

If we express the dot product of the two incident unit wave vectors as (1) (2)· cos ,= Θe e  
where Θ  is the angle between them (Fig. 12.14) we find, finally

�
(12.39)

and Eq. (12.35) expresses the image 23 ( · ) ( )R r CI R γ≡ ′e n X  as

�

(12.40)

As in the pulse-echo case, we can write the angle 
rθ  in terms of the x-coordinate of 

the receiving element, xr
 on the x-axis since 

0 / cosr r r rdx R dθ θ=  to obtain

�

(12.41)

In Eq. (12.41) the sending element has been fixed and we have formed the image 
by integrating over the receiving elements. In seismology, this is called a common 
shot response [8]. Unlike the pulse-echo case the image now is a function also of 
the angle of the incident wave direction, incθ , which is the angle between the e( )1  
unit vector and the unit normal of the flaw surface at ′X , i.e. ( , )R R incI I θ= ′X  since 

23 , ( · )rR e n  are both functions of 
incθ . If we now allow the sending element location 

to vary this incident angle will vary and we can define an angular independent im-
age function, I R

� ( )′X  as

� (12.42)

However, at a fixed image point, ′X , on the flaw the normal is also fixed, so we can 
replace the integration over 

incθ  to one over the angle 
sθ  measured from the z-axis 

(Fig. 12.14). As with the receiving element this angle for the sending element can be 
related to a position of the sending element on the x-axis, since 

0 / coss s s sdx R dθ θ=  
so that we can express our image function as
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and applying this result to Eq. (12.41) we have

�

(12.44)

Equation (12.44) gives us an imaging measurement model for producing an image 
of a flaw with full matrix capture, i.e. using all pitch-catch combinations of sending 
and receiving elements along the x-axis. It shows that quantity being imaged in this 
case is an integrated reflectivity of the surface, specifically

� (12.45)

We can again replace the deconvolution present in Eq. (12.44) by a Wiener-filtered 
version of the measured voltage given by

�

(12.46)
to give

�

(12.47)

Note that as in the pulse-echo case we can combine the phase terms 
0( , )sTω X X , 

0( , )rTω X X  present in the 0 0
ˆ ˆ( , , ), ( , , )s rP Pω ωX X X X , respectively, with the com-

plex exponential term present in Eq. (12.44) and simply ignore all the amplitude and 
phase terms other than the measured voltage (and a factor of 1/ 2π  which is kept for 
convenience) to obtain an image via

�
(12.48)

In this case Eq. (12.48) is a continuous version of the total focusing method (TFM) 
for full matrix capture [5]. In discrete form, similar to the pulse-echo SAFT result of 
Eq. (12.29) with N elements and M positive frequencies, we have (again, ignoring 
any additional terms except the frequency sampling interval, ω∆ ) we recover the 
TFM result of Sect. 12.2:

[ ]

2 2
0 0

0 0

coscos
( ) (1 cos )

8

( , , )
· exp ·

ˆ ˆ( ) ( , , ) ( , , )
.

R

sA r

r s

s r
r s

I s r

l
I

R Rc

V
i d dx dx

s P P

θθω
π

ω ω
ω ω ω


= + Θ′ 


− ′     

∫X

X X
k X

X X X X

�

23 inc( ) ( · ) ( ) .R r CI R dγ θ=′ ′∫X e n X�

{ }
{ }

0

*

0 0

2 2
2

0 0 0 0

( , , , )

ˆ ˆ( , , ) ( ) ( , , ) ( , , )

ˆ ˆ ˆ ˆ( ) ( , , ) ( , , ) max ( ) ( , , ) ( , , )

W s r

s r I s r

I s r I s r

V

V s P P

s P P s P P

ω

ω ω ω ω

ω ω ω ε ω ω ω

=

+

X X X

X X X X X X

X X X X X X X X

[ ]02 2
0 0

( )

coscos
(1 cos ) ( , , , ) exp · .

8

R

sA r
W s r r s

r s

I

l
V i d dx dx

R Rc

θθω ω ω
π

=′

 
+ Θ − ′ 

 
∫

X

X X X k X

�

[ ]1
( ) ( , , ) exp ( , ) ( , ) .

2 s r s r r sI V i T i T d dx dxω ω ω ω
π

= − −∫X X X X X X X



258 12  Imaging with Phased Arrays—An Introduction

�

(12.49)

As in the SAFT approach, with the TFM we cannot identify a quantitative reflectiv-
ity that is being imaged but we see from our imaging measurement model that the 
focusing terms, which are crucial to the image formation process, are present in all 
of these imaging methods.

Our imaging measurement model approach can also show how images of crack 
tips can be formed. We will illustrate this for the pulse-echo case but a very similar 
analysis holds for full matrix capture. We first need to modify Eq. (12.15) since we 
will assume that there is no received specular response from the entire crack sur-
face. In that case, Eq. (12.15) becomes (see Eq. 11.94)

�
(12.50)

First, note that Stokes' theorem two dimensions has the form

�
(12.51)

where e y  is a unit vector in the y-direction and ( , )′ ′X Xb e
 are the beginning and end 

points of the crack C. Since we assumed that there is no received specular response 
from the surface of the crack, n k×  is never zero and we can let

�
(12.52)

At high frequencies, however, we find

� (12.53)

so Eq. (12.50) can be formally expressed as

�

(12.54)

Again, we can write this result as:
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�
(12.55)

where ( )eR k  formally looks like a Fourier transform of the reflectivity of the crack 
tips, Re

, i.e.

� (12.56)

and

� (12.57)

where ( )pδ −′ ′X X  is a 2-D delta function located at ( , )p p e b= =′ ′X X . Unlike the 
specular surface response, the coefficients of these delta functions are functions 
of e  as well as ( , )′ ′X X p  so that Re

 is also a function of these variables as well. 
This means that Eq. (12.56) is not strictly speaking a Fourier transform. Also, we 
should note that the delta function coefficients in Eq. (12.57) were obtained with 
the Kirchhoff approximation so they are not the correct high frequency diffraction 
coefficients associated with the crack tips. However, in forming an image of the 
crack tips, the image will be defined primarily by the singular delta functions of 
Eq. (12.57). Thus, we expect that treating their coefficients as purely constants so 
that R Re e p= ′ ′( , )X X  should still allow us to image these delta functions and hence 
the crack tips. Making that assumption, Eq. (12.56) is then indeed in the form of a 
Fourier transform and we can invert Eq. (12.55) to obtain

� (12.58)

Equation (12.58) is very similar to the expression for the surface reflectivity given 
by Eq. (12.19), which we rewrite here for comparison:

� (12.59)

We see that in the crack tip case there is a frequency dependent factor, / cω , present 
in the numerator as well as a i = −1  factor, both of which are absent in the surface 
reflectivity expression. If we simply ignore this additional frequency factor when 
forming an image of the crack tips then we expect we will still see filtered crack tip 
images, which suggest that we can image both the specular surface response and 
the crack tips by using Eq. (12.59). Based on our results we would expect to see the 
surface response in the real part of the image formed by Eq. (12.59) and the crack 
tips in the imaginary part but since our results were based on a high frequency ap-
proximation we may not see that sort of strict separation in an image generated with 
frequency-band-limited and aperture-limited real data.
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The pulse-echo imaging measurement model of Eq. (12.59) is also a relative of 
a well known imaging method—the Physical Optics Far Field Inverse Scattering 
(POFFIS) approach [7]. The POFFIS method was originally developed by Bojarski 
[9]. In its original form, POFFIS was an expression for imaging a characteristic 
function of the scatterer, which is a function that is one inside and zero outside the 
scatterer [10]. However, trying to image a characteristic function in real band-limit-
ed and aperture-limited systems is a task fraught with difficulty because these limits 
severely distort the characteristic function, making it unrecognizable. To overcome 
this difficulty, Bleistein reformulated the POFFIS relationship in terms of the singu-
lar function of the surface [7, 11], leading to a form which is closely related to our 
imaging measurement model. We can gain some additional insight into the meaning 
of our imaging measurement model by examining that relationship more closely. To 
compare with POFFIS, let us return to Eq. (12.17), i.e.

�
(12.60)

In a POFFIS formulation the frequency bandwidth is assumed to be infinite and the 
incident wave field is assumed to be from a concentrated “point” source [7]. In this 
case ( ) 1Is ω =  and if we use the far-field values of a line source for the radiation 
of an element (see Eqs. 2.37 and 2.38) with the far field directivity of the element 

( , ) 1b cD θ ω = , we find

�
(12.61)

where / 2Ab l=  is one half the total element length. Equation (12.60) then becomes

�
(12.62)

which is a 2-D version of the 3-D POFFIS identity obtained by Bleistein [7]. In 
the traditional way that POFFIS is derived [7] the left hand side of Eq. (12.62) is 
the scattered wave field, not the measured voltage but Eq. (12.62) shows that it is 
possible to derive an equivalent POFFIS form in terms of the actual voltage mea-
surements.

If the system function and directivity of the element are retained, we have instead

�
(12.63)

When inverted, this gives

�
(12.64)
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which is a more complete imaging measurement model form of POFFIS imaging. 
This form shows that in the deconvolution process we are (1) compensating for the 
frequency dependent system function effects on the measurements, (2) applying a 
propagation (gain) factor ( )Rc0

 to compensate for the 1 0/ Rc  amplitude decay 
when the waves go from the sending element to the center of the flaw and a similar 
factor when going back to the receiving element, and (3) compensating for the di-
rectivity of the waves on both transmission and reception. We see from Eq. (12.62) 
that POFFIS includes a propagation gain factor but does not include a system func-
tion or directivity effects since the bandwidth was assumed infinite and the sending 
and receiving elements were considered to be omnidirectional concentrated sourc-
es. Our imaging measurement model approach shows that propagation, directivity 
and system functions are in general all important compensation factors that must be 
included to obtain an image of the flaw reflectivity (as defined here) and that all of 
these effects are contained more generally in the two terms

for pulse-echo and full matrix capture imaging, respectively.
One can follow the approach of Bleistein [7] and test the consistency of this 

imaging model by going back to Eq.  (12.19) (or, equivalently, Eq.  (12.59)) and 
placing the explicit results found for the measured pulse-echo specularresponse of 
a small cylindrical reflector of radius a in the Kirchhoff approximation for a single 
medium (see Eq. (11.109) specialized for the pulse-echo case where pR a= , · 2=g n
, · 1r =e n , and 

0·( ) 2stat a− = −g X X  when X0
 is at the center of the cylinder). In this 

case Eq. (11.109) becomes

�

(12.65)

[Note: These results assume that the frequency is positive and in forming an im-
age we will need to integrate over both positive and negative frequencies. Thus, 
formally we must be careful and express all our intermediate steps for both positive 
and negative values. However, if we use Eq. (12.65) and all intermediate steps for ω  
positive only we will see the end result is clearly valid for all frequencies.]

To evaluate Eq. (12.19) we will introduce polar coordinates for both ′X  and k:

�
(12.66)

Then we can express Eq. (12.19) as

�
(12.67)
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Placing Eq. (12.65) into this result then gives (with 
2 2c cρ ρ= )

�

(12.68)

Using the explicit values in the exponential term gives

�

(12.69)

and the θ -integration can be performed, yielding

�
(12.70)

But, consistent with the high frequency approximation for the specular response we 
can take the asymptotic expansion for the Bessel function:

�
(12.71)

to obtain

�

(12.72)

We can recognize the two integrals as delta functions (2( ) / ), (2( ) / )r a c r a cδ δ− +  
which have sampling properties at r a r a= = −, , respectively, so we can replace 
the square root term by its values at these locations, giving formally

�

(12.73)

But for all α  and r > 0  ( )r aδ +  is identically zero so we do recover the reflec-
tivity of the flaw surface. Of course, in practice one does not have data for all fre-
quencies and angles when performing these inversions. To examine the effects of 
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limited bandwidth let the response be non-zero only in the finite bandwidth range 
ω ω ω− +< < . Then the first term in Eq. (12.73) becomes

�

(12.74)

which shows the delta function is now replaced by a pair of sinc-like functions. 
If the aperture of measurements is also limited, Bleistein [11] has shown with a 
stationary phase analysis that one recovers a form similar to Eq. (12.74) over the 
finite aperture.

12.5 � Imaging Simulations

In this section we will describe a simulation setup which will give us that capabil-
ity to model the signals received from a flaw in a phased array inspection and use 
those signals to form images with the 2-D far field imaging methods just discussed. 
To simulate this problem we will first model the canonical problem of the pressure 
received from a 2-D circular inclusion in a fluid, where the incident waves are 
generated by an omni-directional line source, as shown in Fig. 12.15. This setup 
will allow us to model the response of the inclusion from an array since, as seen 
in earlier chapters, for very small array elements (whose size is on the order of a 
tenth of a wavelength or less), a single omni-directional line source can represent 
an individual element, while larger elements can be broken into segments which 
can also be modeled as a superposition of such sources. In our model the scatter-
ing of the incident waves from the circular inclusion will be treated with the use 
of the separation of variables method. Thus, in this simulation setup we will have 
the ability to synthesize the signals received by an array without introducing any 
high or low frequency approximations and without having to perform any detailed 
numerical integrations.

Consider first the incident pressure, pinc, generated by a 2-D line source in a fluid 
whose density and wave speed are 

1 1( , )cρ , respectively (Fig. 12.15). This pressure 
can be written in terms of the Green function, G, for Helmholtz's equation, given 
by (1)

0 1 1( ) / 4G iH k r=  [12]. This function in turn can expanded in an infinite series of 
Bessel and Hankel functions in a polar coordinates with origin at the center of the 
circular inclusion (see Fig. 12.15) as [13]:

�

(12.75)
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Since the incident fields immediately outside the circular inclusion will always be 
located at a radius r r< 0, we will take the second form in Eq. (12.75) and write the 
incoming waves near the cylinder as

�
(12.76)

For the scattered waves we will take the scattered pressure, pscatt, instead as a super-
position of outgoing waves of the form

�
(12.77)

while inside the flaw, whose density and wave speed are 2 2( , )cρ , we will let the 
internal pressure, pint, to be given as

�
(12.78)

in terms of the unknown coefficients ( , )a bn n . To determine these coefficients we 
must satisfy the boundary conditions at the radius r a=  of the inclusion, which are 
that the pressure and the normal (radial) velocity must be continuous. Written in 
terms of the pressures, these conditions are, at r a= :
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(12.79)

Placing Eqs.  (12.76)–(12.78) into these boundary conditions, we find, in matrix 
form
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Fig. 12.15   Scattering of a 
cylindrical fluid inclusion in 
a fluid of the waves generated 
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where

� (12.81)

and

� (12.82)

with x k r= 1  or x k r= 2 . Solving for ( , )a bn n , we find

�
(12.83)

where

�

(12.84)

Substituting Eq. (12.83) into Eqs. (12.77) and (12.78) we obtain

�

(12.85)

We can use the following relations to express the scattered pressure in a more con-
venient form for numerical calculations. Specifically,

�
(12.86)

and

� (12.87)

where Z xn ( )  can be either H xn
( ) ( )1  or J xn ( ) . First, we use the first equality in 

Eq. (12.86) to rewrite the ∆m n m( ) ( , , )= 1 2 3  coefficients as
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�

(12.88)

Next, we will split the infinite sum for the scattered pressure into three parts as:

�

(12.89)

But for the last semi-infinite sum of Eq. (12.89) if we replace n by − n we can re-
write it as

� (12.90)

Then, using Eqs.  (12.87) and (12.88) and the second equality relationship of 
Eq. (12.86), it is easy to show that ∆ ∆m mn n m( ) ( ) ( , )− = = 1 2  so that Eq. (12.90) 
becomes

� (12.91)

Placing Eq. (12.91) back into Eq. (12.89), we see we can combine the two semi-
infinite sums and write
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which also can be put in the more compact form
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where 
0θ θΘ = −  (see Fig. 12.15) and

�
(12.94)

Equation (12.92) or, equivalently, Eq. (12.93) can be used to model the received 
voltage response of a pair of elements in a phased array. To see this, note that from 
Eq. (2.28) we can write the incident wave pressure, ps

, generated by a sending ele-
ment (acting as a piston source) in terms of the Green function as

�
(12.95)

where ( )tv ω  is the uniform piston velocity on the face of the element, l b= 2  is the 
length of the element, and ds is a differential length along the element. Thus, the 
pressure at a receiving element, pr

, from Eq. (12.92) or (12.93) is, likewise,

�
(12.96)

and, if we take the blocked force/unit length, ( )Bf ω , acting on the receiving ele-
ment as just twice this received pressure integrated over the face of the receiving 
element, we find

�
(12.97)

where ds′ is a differential length along the receiving element. Recall, from Eq. (9.24) 
for 3-D problems the acoustic/elastic transfer function, ( )At ω , was defined as

�
(12.98)

where ( )BF ω  is the blocked force and S was the area of the sending element. For our 
2-D problem, this transfer function is analogously defined in terms of the blocked 
force/unit length and the length of the element as

�
(12.99)

Thus, we see the acoustic/elastic transfer function is

�
(12.100)
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and the received voltage, ( , , )s rV ωx x , for a pair of sending and receiving elements 
located at ( , )x xs r , respectively, (see Fig. 12.16) is

�
(12.101)

where ( )Is ω  is the system function for this pair of elements and we have explicitly 
indicated the dependency of the pressure on the distances ( , )r rs r  from the sending 
and receiving elements to the center of the inclusion, respectively, and the angle, 
Θ, as shown in Fig.  12.16. These distances are the same distances ( , )r r0  shown 
in Fig. 12.15 and which are present in Eqs.  (12.92) and (12.93). If the elements 
are small enough so that we can neglect the field variations over the elements in 
Eq. (12.101), then we find simply

� (12.102)

and we see that our scattered pressure expressions of Eq. (12.92) or (12.93) give us 
a model for the received voltage directly. For larger elements we can break the ele-
ments into segments and use Eq. (12.102) again, summing over those segments to 
again get an essentially exact separation of variable model for the received voltage. 
We can use this model to simulate the measured signals in NDE inspections and to 
analyze various NDE imaging methods so it is an important tool for studying phased 
array systems. A similar approach could also be used to simulate the response of 
linear or 2-D arrays to a spherical inclusion since those configurations can also be 
modeled with point sources and the method of separation of variables. However, 
this simpler 2-D model is computationally more efficient than a 3-D model while 
still describing much of the important physics of how array signals are generated, 
so it will be the only one considered in this book.

We can also use this separation of variables model to examine the 2-D far field 
imaging measurement models derived in the previous section. To do numerical 
simulations of images obtained with those imaging models, it is convenient first to 
write them in terms of the plane wave far field scattering amplitude, ( , , )inc scatA ωe e , 

1
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Fig. 12.16   Geometry for 
modeling the measured 
response of the circular 
inclusion by a pair of array 
elements
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of the flaw explicitly. This can be done since from Eq. (11.92) we found for the 
small flaw case:

�

(12.103)

Placing this result into the full matrix capture imaging measurement model, 
Eq. (12.44), for a single medium where 2 1ρ ρ ρ= =  and c c c= =2 1

 and taking the 
density and wave speed of the host material to be 1 1( , )cρ , respectively, to be com-
patible with the separation of variables solution just given, gives

�

(12.104)

For the pulse-echo single medium case, from Eq. (12.26),

�
(12.105)

We can easily turn our previous results for the scattered pressure field for a pair 
of elements into the far field scattering amplitudes needed in Eqs.  (12.104) and 
(12.105). However, the scattering amplitude here is the far field response of the flaw 
to an incident plane wave so we need to replace our line source with a plane wave. 
Consider, for example, a plane wave incident on the inclusion from the negative z-
axis as shown in Fig. 12.17. In this case the plane wave can be expanded in a series 
of Bessel functions in the form [13]

�
(12.106)

To obtain a comparable plane wave from our point source incident wave, Eq. (12.76), 
we need to let 

0 0, rθ π= → ∞ in that equation. For large arguments we have asymp-
totically
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incident on a circular 
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�

(12.107)

so Eq. (12.76) becomes

�

(12.108)

Comparing the third line of Eq.  (12.108) with Eq.  (12.106) we see that we need 
to remove the factor multiplying the infinite sum in that line and retain the ( )−i n  
factor from the Hankel functions to obtain the plane wave result. From the second 
line of Eq. (12.108) we see we can accomplish this by simply making the replace-
ment iH k r in

n( ) ( ) / ( )1
1 0 4 → −  in the infinite sum. It follows that if we make that same 

replacement in the expression for pscatt, Eq.  (12.93), we will obtain the scattered 
pressure due to a plane wave, pw

scattp , given by

�
(12.109)

In the far field we have

�
(12.110)

where ( ; , )inc scatA ωe e  is the plane wave far field scattering amplitude, and we can 
recover that scattering amplitude from Eq. (12.109) by using the asymptotic form 
of the Hankel functions again, i.e.

�
(12.111)

to obtain

�
(12.112)
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The pulse-echo far field scattering amplitude, inc inc( ; , )A ω−e e  then follows directly 
by setting Θ = 0 in Eq. (12.112) to find

�
(12.113)

To see explicitly the nature of the waves scattered from the inclusion, we can invert 
the scattering amplitudes of either Eq. (12.112) or (12.113) into the time domain 
with an inverse FFT. For example, Fig. 12.18a shows a pulse-echo scattering ampli-
tude versus time for a 1 mm radius circular inclusion whose density is twice that of 
the host material (taken here as water with c1 1480= m/s ) and wave speed 1.5 times 
that of the host. This time domain result was obtained by evaluating Eq. (12.113) for 
frequencies from zero to twenty MHz and then applying a Hanning filter to taper 
the response to zero between 10 and 20 MHz before inverting into the time domain 
with an FFT. The predominate waves seen can be identified by their time of arrivals 
as the front and back surface reflections and a creeping wave that originates from 
where the incident wave has struck the front surface at a critical angle and then has 
traveled around the circumference of the flaw at the wave speed of the flaw. These 
wave paths are shown in Fig. 12.18b. Later arriving waves are also present but these 
are much smaller responses involving multiply reflected waves, etc. that are not vis-
ible in the time window of Fig. 12.18a.

We can gain some additional understanding of the scattering amplitude response 
of the inclusion by considering this scattering problem in the Born approxima-
tion. First, we write the scattered pressure as an integral over the area of the flaw 
[Schmerr]:

�
(12.114)

in terms of the pressure and gradient of the pressure and Green's function, G, for 
Helmholtz's equation, and where

�
(12.115)
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Fig. 12.18   a The pulse-echo 
far field scattering amplitude 
as a function of time for a 
1 mm radius inclusion, where 
the density of the inclusion 
is 1.5 times that of the host 
material (taken as water) and 
the wave speed is also 1.5 
times that of the host, and 
b the paths followed by the 
three major responses identi-
fied in a.
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in terms of the densities 1 2( , )ρ ρ  and bulk moduli 
1 2( , )λ λ  of the host and flaw, 

respectively. In the far field of the flaw we have (see Fig. 12.19)

�

(12.116)

where e es ≡ scat
 is a unit vector in the scattering direction. In the Born approxima-

tion we assume the material properties of the flaw and host material are nearly the 
same and we take the pressure wave field and its derivatives inside the flaw as just 
those of the incident waves. For an incident plane wave of unit pressure amplitude 
traveling in the e ei inc≡  direction we have

�
(12.117)

Placing Eqs. (12.116) and (12.117) into Eq. (12.114) then gives the scattered pres-
sure in the far field form

�
(12.118)

where the scattering amplitude, ( ; , )i sA ωe e , is given as

�
(12.119)

In pulse-echo e es i= −  and the scattering amplitude is

�
(12.120)
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Fig. 12.19   Scattering geom-
etry for a circular inclusion, 
showing the incident and 
scattered wave directions
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However, we note that in the weak scattering limit

�
(12.121)

where R12
 is the plane wave reflection coefficient at normal incidence, so 

Eq. (12.120) becomes

�
(12.122)

Now, consider a circular inclusion of radius a. In this case, examine the integral:

�

(12.123)

The theta integration can be performed since

�
(12.124)

Where J0
 is the Bessel function of order zero, so the integral becomes

�
(12.125)

But the r integration can also be done, since

�
(12.126)

so letting u r a= /

�
(12.127)

Placing this result into Eq. (12.121) we find
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(12.128)
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�
(12.129)

so

�

(12.130)

There are two contributions to the scattering amplitude in the Born approximation. 
These terms represent the front and back surface reflections in the weak scattering 
limit. This can be seen more clearly by taking twice the real part of the inverse 
Fourier transform of Eq. (12.130) (which is valid for positive frequencies), giving

�
(12.131)

Figure 12.20 shows these two contributions, where the front surface reflection is a 
delta function and the back surface is the negative of the Hilbert transform of a delta 
function. In fact the front surface response is identical to that predicted by the Kirch-
hoff approximation and used as the basis for our imaging measurement model. We 
can see in Fig. 12.19 that the separation of variables solution gives band limited ver-
sions of both the front and back surface waveforms. In the Born approximation the 
creeping waves and any later arrivals are missing. It can be seen from Eq. (12.130) 
that the amplitude coefficients of both the front surface and back surface reflections 
are identical in the Born approximation. However, for flaws that are not weak scat-
terers the strength of the back surface reflection can be much smaller than that of the 
front surface, a property also found for 3-D inclusions [Schmerr-Song].

We can use the pulse-echo separation of variables solution, Eq. (12.113) to form 
up an image with Eq. (12.105) which we write in discrete form for positive frequen-
cies as:
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Fig. 12.20   The time domain 
pulse-echo response of a 
circular inclusion of radius a 
in the Born approximation
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�

(12.132)

where einc
n  is a unit vector along a line from the center of the nth element to the 

center of the inclusion and 
inc 12 /n

mn m cω=k e .
Consider, for example, simulating the response of a 32 element array with a 

1 mm pitch whose center is located a distance of one inch from the center of the cir-
cular inclusion. The resulting pulse-echo image is shown in Fig. 12.21 for the same 
flaw properties considered in Fig. 12.18. A dotted outline of the flaw is also shown 
on the image of Fig. 12.21 to help better identify the image features. As can be seen, 
the front surface of the flaw is imaged properly over the available aperture while 
both the back surface and creeping wave are misplaced artifacts in the image. This 
is to be expected since imaging is done using the velocity of the host material, not 
the flaw (the wave number of the host material, not the flaw, is contained in kmn

). All 
delay and sum methods, including SAFT and TFM, form images using time delays 
involving the host velocity so that similar artifacts will appear in images generated 
with those methods as well. A striking example of this is shown in Fig. 12.22 where 
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Fig. 12.21   Image of a 1 mm 
radius circular inclusion 
obtained with the pulse-echo 
responses of a 32 element 
array with a 1 mm pitch, 
where the density of the 
inclusion is 1.5 times that of 
the host material (taken as 
water) and the wave speed is 
also 1.5 times that of the host

 

Fig. 12.22   Image of a 1 mm 
radius circular inclusion 
obtained with the pulse-echo 
responses of a 32 element 
array with a 1 mm pitch, 
where the density of the 
inclusion is twice that of the 
host material (taken as water) 
and the wave speed is also 
2.0 times that of the host
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the same array is used to image a flaw whose wave speed is twice that of the host 
material. In this case, when the waves from the back surface are imaged with the 
host wave speed, the waves appear to have originated from the center of the flaw 
so that the back surface appears as a point source located at the flaw center. Back 
surface reflections, creeping waves, and other multiply reflected waves will appear 
either inside the flaw or outside, depending on the wave speed of the flaw relative to 
the surrounding material. Thus, only the specular front surface reflections (or edge 
diffractions, in the case of cracks) are properly imaged with delay and sum methods.

One can also use Eq. (12.104) to form up a full matrix capture image. In this case 
the discrete form of Eq. (12.104) is given by

�

(12.133)

where escat
p  is a unit vector along a line from the center of the flaw to the center of 

the pth array element and now inc scat 1( ) /n p
mnp m cω= −k e e . For the same array and the 

same flaw imaged in pulse-echo in Fig. 12.21, Fig. 12.23 shows the corresponding 
full matrix capture image. Comparing Fig. 12.21 and Fig. 12.23 one can see that 
the creeping wave artifact has been essentially eliminated but that the back surface 
artifact remains. This is to be expected since the creeping waves travel along dif-
ferent path lengths for the various pitch-catch responses present in the full matrix 
imaging case and are averaged over the aperture, leading to a small response in the 
resulting image.

Finally, Fig. 12.24 shows the image of a weak scattering inclusion (density and 
wave speed 1.05 times that of the host material) generated with the simulated pulse-
echo responses of the 32 element array. In this case the back surface is also imaged 
in essentially the correct location. There are also images of creep wave artifacts that 
are generated but these occur at sufficiently late times so that they are outside the 
displayed image window of Fig. 12.24.

( ) ( ) ( )
( )

( )
( )

( ) }

1
2 2

1 1 1 0 01

coscos8
2Re 1 cos

8

; , ex ,p
inc scat

M N N
sr pr s m n

R np
m n p m r sn p

n p
mnp

x x c
I

i R Rc

A i

θθω ωπ
ωπ

ω

= = =

∆ ∆ ∆ = + Θ′  −
 ⋅ − ⋅ ′ 

∑∑∑X

e e k X

�

Fig. 12.23   Image of a 1 mm 
radius circular inclusion 
obtained with full matrix 
capture of the responses of a 
32 element array with a 1 mm 
pitch, where the density of 
the inclusion is 1.5 times that 
of the host material (taken as 
water) and the wave speed is 
also 1.5 times that of the host
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radius circular inclusion 
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of the host material (taken as 
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host
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Chapter 13
Imaging Measurement Models

In Chap. 12, we described the ways in which images can be formed with phased ar-
rays, including a two-dimensional (2-D) far field imaging measurement model. More 
general imaging measurement models will be developed in this chapter for forming 
images in 3-D with 2-D arrays and for forming images of 2-D scatterers with linear 
arrays. As found in Chap. 12 for the 2-D case, these imaging measurement models 
can be directly related to SAFT imaging and the total focusing method (TFM).

13.1 � Pulse-Echo Imaging

In Chap. 11, we developed measurement models from general reciprocity relations 
and then used the Kirchhoff approximation to express those measurement models 
in terms of the specular response of the flaw surface (see Eqs. (11.62) and (11.63)). 
Consider first the case where each element fires and we receive only the collection 
of pulse echo responses as shown in Fig. 13.1. In Chap. 11, we found that we could 
express the pulse-echo received voltage of a single element for both immersion and 
contact testing cases in the form (Eq. (11.63)):

�
(13.1)

We will replace the normalized displacement amplitude term (1) ( , , )cUβ ωx x�  by the 
corresponding normalized velocity amplitude (1) (1)( , , ) ( , , )c cV i Uβ βω ω ω= −x x x x� � . 
Then Eq. (13.1) becomes

�
(13.2)

As done in Chap. 12 for 2-D scalar problems (see Eq. 12.16), we can define a singular 
function, ( )Sγ x , of the lit surface which in 3-D problems has sampling property [1]:

( ) ( ){ }22 ; (1)
2 2 23, 2 ( , , ) .exp 2 , ( ) .

lit

c c c

S

V c R U i T dSβ β
β βω ρ ω ω ω   = −   ∫x x x x x x

� �

( ) ( ) ( ){ }2; (1)
2 2 23, 2 , , .exp 2 , ( ) .
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c c c

S

V c R V i T dSβ β
β βω ρ ω ω   =   ∫x x x x x x

� �
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� (13.3)

and also define the reflectivity of the surface as ;
23( ) ( )SR Rβ βγ≡x x  to turn the surface 

integral in Eq. (13.3) into a volume integral of that reflectivity over all space, i.e.

�
(13.4)

We will now show how we can invert Eq. (13.4) to obtain an image of the flaw prop-
erties without making the small flaw assumption, as done in Chap. 12, following a 
similar approach to that of Bleistein et al. for scalar problems [2]. Specifically, we 
will again define that image, ( )RI x , to simply be the reflectivity of the flaw surface:

� (13.5)

and obtain an expression for the image in terms of the measured values, ( ),cV ωx
�

.
In a real ultrasonic array, the values of ( ),cV ωx

�
 are only measured at the discrete 

locations of the array elements and at discretely sampled frequencies but in invert-
ing Eq. (13.4) we will find it convenient to consider  ( , )c ωx  as continuous variables. 
We will also parameterize the array element locations, xc, assumed here to lie on 
a planar surface, in terms of two auxiliary variables 1 2( , )ξ ξ=c c cξ , i.e. ( )c c cξ=x x
. Since Eq. (13.4) is in a form similar to that of a 3-D Fourier transform, we will 
seek to obtain the image of the flaw at a point , ( )RIy y , to be in the form of a similar 
inverse Fourier-like transform given by

� (13.6)

To see if this representation of the flaw image is possible and to obtain the unknown 
function ( , , )cK ωy x , we will place Eq. (13.4) into (13.6) to obtain

�
(13.7)

( ) ( ) ( ) ( ) ( ),
S

Sf dS f dVγ=∫ ∫x x x x x

( ) ( ) ( ){ }2(1)
2 2, 2 ( ) , , exp 2 , ( ) .c c cV c R V i T dVβ βω ρ ω ω   =   ∫x x x x x x x

� �

;
23( ) ( ) ( )R SR RI β βγ≡ =x x x

( ) ( ) ( ) 2( ) , , , exp 2 , .R c c c cI K V i T d dω ω ω ω = − ∫ ∫y y x x x y
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Fig. 13.1   A pulse-echo 
testing setup where an array 
element acts as both a send-
ing and receiving element in 
examining a flaw through an 
interface
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Since in Eq. (13.7) we are relating the flaw image to a volume integral over itself, 
then in some sense we must have

� (13.8)

or equivalently, in some sense

�
(13.9)

where ( )δ −x y is the Dirac delta function. At least asymptotically at high frequen-
cies Eq.  (13.9) may be valid since at high frequencies the rapidly varying phase 
terms in the integrand will cause the integrals to be small except near the critical 
point =x y, where the phase term in Eq. (13.9) vanishes. Near this point, if we ex-
pand the phase term to first order and evaluate the amplitude at that point we have
�

(13.10)

so that

� (13.11)
If we now define a wave number vector, k , as

� (13.12)

we can transform the integral in Eq. (13.11) into one over 3-D k-space, i.e.

�

(13.13)

where the inverse of the Jacobian of the transformation for this pulse-echo case can 
be written as

� (13.14)
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with

�

(13.15)

which is called the Beylkin determinant [2]. If we take
�

(13.16)

then Eq. (13.13) becomes

�
(13.17)

which is indeed just a k-space transform representation of the delta function. Thus, 
if we place Eq. (13.16) into (13.6) we now have an explicit expression for the image 
given by

�
(13.18)

The evaluation of the Beylkin determinant can be made particularly easy by choos-
ing the ξ -parameters to be the spherical coordinates ( , )c cθ φ  centered around a ref-
erence unit vector in the incident wave direction at point y. Then, as shown in 
Appendix A, we have
�

(13.19)

In this case

�
(13.20)

where sin c c c cd d dθ θ φ = Ω  is just a differential solid angle as measured in these 
spherical coordinates. If we let cdS  be a differential area element at the plane of the 
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array we can transform the integration over the solid angle to an integration over the 
array element coordinates to find

�
(13.21)

The ratio d dSc cΩ /  (see Fig.  13.2a, b) is easy to calculate for an array radiating 
into a single medium. We find 2/ cos /c c c cd dS rβΩ = , where rc is the distance from 
the point xc on the plane of the array to an image point y and cβ  is the angle that 
the ray from y  to xc makes with respect to the normal to the plane of the array 
(Figs. 13.1 and 13.2b). For other more complex situations, such as the radiation of 
the array through a planar interface, as shown in Fig. 13.1, one can use ray tracing 
to calculate d dSc cΩ / (see Appendix B for details).

Equation (13.21) is essentially an imaging measurement model for forming 
an image of the reflectivity of a flaw from either immersion or contact pulse-
echo measurements of the voltages ( , )cV ωx  received from a flaw over all loca-
tions in the plane of the array and at all frequencies. In practice, of course, if one 
only has the voltages measured at the discrete locations of the array elements 
xc

nl
c
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c
lx x n L l L= ( ) =( ) =( )1 2 1 21 1, ,..., , ,...,  and at a finite set of positive frequencies, 
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Fig. 13.2    a Geometry  for 
relating the solid angle coor-
dinates to Cartesian coordi-
nates on the face of the array, 
and b a side view, showing 
the angle of the array with the 
face of the array
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where ( , )∆ ∆x xc c1 2  is the spacing between elements in the ( , )x xc c1 2  directions, re-
spectively, and ω∆  is the spacing between sampled frequencies in rad/s. The term 
2Re indicates twice the “real part” and is present because we are only summing over 
positive frequencies to generate the image of the flaw reflectivity. As discussed in 
Chap. 12, the measured voltages here are being divided (deconvolved) with a system 
function and an incident beam wave field term so that we must stabilize that decon-
volution process to make it well behaved. Consider, for example, the immersion case 
where ( ) ( )1 1, , / ( )c p A c IV c S V sω ρ ω ω=x x

�
 (see Eq. (11.37) with x x xs r c= = ). Then

�

(13.23)

In implementing Eq. (13.23) we can replace the deconvolution by division again 
with a Wiener filter, i.e.

�
(13.24)

where the filtered voltage is

�

(13.25)

so that in the immersion case we would find
�

(13.26)

This 3-D imaging measurement model can also be related to a corresponding SAFT 
algorithm, as done in Chap. 12 for the simpler 2-D problems. If we set 0ε =  in the 
Wiener filter and simply ignore all the terms in Eq.  (13.26) except the constant 
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/ 2  ω π∆ , the measured voltages, and the phase terms involving the propagation 
terms T  we find the SAFT image (see Eq. (12.5)):

�
(13.27)

The imaging measurement model of Eq.  (13.21) is applicable to the imaging of 
large or small surfaces. When the flaw is small enough so that the incident wave 
fields do not vary significantly over the flaw surface we have
�

(13.28)

for a fixed image point y0
 near the flaw surface and Eq. (13.21) becomes

�

(13.29)

which is a POFFIS-style imaging expression, similar to the 2-D case considered in 
Chap. 12. Computationally, Eq. (13.29) requires much less effort than Eq. (13.21) 
to implement since one needs to calculate the incident wave field terms only for the 
one fixed point y0

 for all image points y. However, in implementing Eq. (13.29) 
one should only use images points near the flaw surface so that Eq. (13.28) is not 
violated. Thus, with multiple flaws that are widely separated one should locally im-
age each flaw individually with Eq. (13.29).

As done in Chap. 12 for the 2-D scalar case, we can write Eq. (13.29) in terms of 
the far field scattering amplitude of the flaw by using the Thompson-Gray measure-
ment model (Eqs. (11.26) and (11.30)) for either an immersion or contact setup. In 
the pulse-echo case we have 1 1p A p Bc S c Sρ ρ= , and ( ; )inc incA A β β= −e e , so that we find 
that for both the immersion and contact cases

�
(13.30)

Equation (13.30) can be used to simulate POFFIS-style images generated by an 
imaging measurement model for a flaw whose far field scattering amplitude can be 
modeled by semi-analytical or numerical means. When discussing POFFIS imag-
ing, Bleistein [3] obtained this result for 3-D scalar wave problems (see Eq. 9.2.9 
in [3]), a result which we see here is also directly applicable to imaging with elastic 
waves.
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We can also develop an imaging measurement model for the pulse-echo edge 
response of cracks following similar steps to those used in Chap. 12 for the scalar 
2-D case. We will again assume that there is no specular response from the crack 
surface (which will be assumed to be entirely lit by the incident waves) so that we 
must start by modifying Eq. (13.2) to reflect that fact. In Chap. 11, we obtained this 
form of an approximate measurement model by using the Kirchhoff approximation 
to obtain (see Eq. (11.47), written here in terms of velocities)

�
(13.31)

where ( , ) 2 ( , )c cTφ =x x x x .The integrand term ( )I x  was evaluated at the stationary 
phase points on the flaw surface to model the specular response of the surface. Here, 
instead we keep the original integral term, Eq. (11.48), which for pulse-echo, same 
mode responses reduces to
�

(13.32)

Now, let us define a vector field, F, as
�

(13.33)

which is possible since if there are no specular points on the crack surface the de-
nominator in Eq. (13.33) never vanishes. At high frequencies the derivatives of this 
field come from derivatives of the phase term so that we have, approximately
�

(13.34)

where we have used the vector identity

�
(13.35)

Thus, using Stokes theorem

� (13.36)

where t is a unit tangent vector to the crack edge, C, we can rewrite Eq. (13.31) as
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(13.37)
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If we introduce the singular function of the crack edge, ( )Cγ x , where for any func-
tion f ( )x

� (13.38)

Equation (13.37) can be rewritten in a form very similar to Eq. (13.4), namely

�
(13.39)

where the reflectivity of the crack edge, eR , is defined here as

�
(13.40)

As discussed in Chap. 12 for the 2-D case, we cannot expect to image explicitly 
this reflectivity at each point on the edge because of the dependence of the coef-
ficients of ( )Cγ x  in Eq. (13.40) on the incident and scattering directions, but we can 
ignore those dependencies and write ( )e eR R= x  only in trying to image the crack 
edge singularities. In that case Eqs. (13.39) and (13.4) are nearly identical. In fact, 
we can make the forms identical by making the replacement ( )2/V i c Vβω→

� �
 in 

Eq. (13.4). Thus, making the same replacement in the imaging measurement model 
of Eq. (13.21), we obtain for an image of the crack edge

�
(13.41)

with ( ) ( )e eI R≡y y . As found in Chap. 12 for the 2-D scalar case, we see that a 3-D 
crack image involves an additional 2i / cβω  factor not present in the image of the 
specular surface response. Although we have only considered the pulse-echo case 
here, following the same steps for the full matrix imaging approach described in 
the next section also leads to a crack edge image that is related to the specular flaw 
response by making the replacement ( )2/V i c Vαω→

� �
.

13.2 � Full Matrix Imaging

The previous section showed that measuring all the pulse-echo responses from an 
array of elements in a 2-D array was sufficient to generate a 3-D image of a flaw. If 
instead, one captures all combinations of responses from element pairs (full-matrix 
capture) then one can also form up an image. The element pairs can be on the same 
array or on separate arrays, as shown in Fig. 13.3. As done in Chap. 12 for the scalar 
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problem, we will first consider the case where we have a single sending element and 
receive with all elements of the receiving array. Again, we will consider the param-
eters ( , , )s r ωx x as continuous variables. From Eq. (11.62) we had
�

(13.42)

which, in terms of the velocities (1) (1) (2) (2),V i U V i Uβ β α αω ω= − = −� � � �  becomes
�

(13.43)

Introducing the singular function of the surface again we can write Eq. (13.43) as

�

(13.44)

We will parameterize the receiving array element locations, xr
, assumed here 

to lie on a planar surface, in terms of two auxiliary variables ( )1 2,r r rξ ξ=ξ ,  
i.e. ( )r r rξ=x x , and in this case define the flaw image as

� (13.45)
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Fig. 13.3   A pitch-catch 
setup where separate array 
elements are used as senders 
and receivers
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which reduces to our previous definition, Eq. (13.5), for the pulse-echo case. Since 
Eq. (13.44) is again a Fourier-like integral we will attempt to invert that equation 
and form an image via the relation

�
(13.46)

Placing Eq. (13.44) into (13.46) gives formally
�

(13.47)

As in the pulse-echo case Eq. (13.47) can be true if in some sense we have

�

(13.48)

This is possible since at high frequencies again we expect the major contribution to 
come from this highly oscillatory integrand around the critical point x y= . Evaluat-
ing the amplitude of the integrand of the integral at that critical point and expanding 
the phase to first order, i.e.

�
(13.49)

Equation (13.48) becomes

�

(13.50)

Now, defining a wave vector, k, as
�

(13.51)

we transform the integral in Eq. (13.50) to one over 3-D k-space:
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(13.52)
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where the inverse of the Jacobian of the transformation can be written as

�
(13.53)

in terms of the Beylkin determinant, 1 2( , , )r rh ξ ξ y . Thus, if one takes the function K  as
�

(13.54)

one obtains the k-space transform representation of the delta function again (see 
Eq. (3.17)) and Eq. (13.46) becomes
�

(13.55)

If one chooses the parameters 1 2( , )r rξ ξ  to be spherical coordinates ( , )r rθ φ  at the 
image point y, as shown in Appendix A the magnitude of this Beylkin determinant 
simply becomes

� (13.56)

where Θ is the angle at y between a ray path from the source to that point and a ray 
path from the receiver to that point (see Fig. 13.3). Then Eq. (13.55) is

�

(13.57)

where sinr r r rd d dθ θ φΩ =  is a solid angle corresponding to different (2)
αe  directions 

at y from the receivers. If we relate this solid angle to a corresponding area, rdS , on 
the plane of the receiving elements then we have
�

(13.58)

Equation (13.58) shows that we can form an image of the reflectivity of a flaw with 
only one element firing but with many receiving elements. However, in practice one 
uses an array with some or all elements both firing and receiving to have as high a 
signal-to-noise ratio as possible. To simulate this case we can write the position of 
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the sending element, xs, in terms of parameters 1 2( , )s sξ ξ  and consider varying those 
parameters. If we choose these auxiliary parameters to be spherical coordinates 
( , )s sθ φ , as similarly done with the receiving elements, then ( , , )R R s sI I θ φ= y  and 
we can define the integral of this image over a solid angle as measured to the send-
ing elements as

� (13.59)

where sins s s sd d dθ θ φΩ = . Using that definition and Eq. (13.58) we find

�

(13.60)

in terms of an integral over both the sending and receiving element surfaces. The 
angle–area ratios / , /r r s sd dS d dSΩ Ω  can again be easily obtained with ray theory 
for a single medium or radiation through a planar interface, as shown in Fig. 13.3. 
The details are given in Appendix B where it is shown that the angles ( , )s rβ β  be-
tween the normal to the arrays and the Snell’s law rays to the flaw (see Fig. 13.3) 
appear.

Equation (13.60) shows that in a full matrix imaging approach the explicit image 
generated in the continuous case is the flaw reflectivity integrated over the angular 
directions associated with the sending elements. For a real array, this image will be-
come a band-limited and aperture-limited (on both the sending and receiving sides) 
version, BA

RI , of this integrated reflectivity. Implementing Eq. (13.60) is computa-
tionally challenging since it involves a total of five integrations. We can relate this 
image to one obtained with the total focusing method, replacing the integrations 
with finite sums over the element locations and positive frequencies, and ignoring 
all the parameters except a / 2  ω π∆  factor, the measured voltage, and phase term 
in Eq. (13.60), to obtain the TFM image generated by an array with L1 elements in 
the x1 -direction and L2 elements in the x2

-direction at M  positive frequencies (see 
Eq. 12.2.4):

�

(13.61)
If the flaw is small enough we can reduce the computational burden of computing 
Eq. (13.60) somewhat by using a POFFIS-style imaging model for full matrix imag-
ing. In this case, we assume that the incident fields can be evaluated at a fixed image 
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point, y0
, near the scatterer and the phase term in Eq. (13.60) expanded to first order, 

so making the replacements

�

(13.62)

in Eq. (13.60) gives

�

(13.63)

where

� (13.64)

Equation (13.63) can also be written in terms of the far field scattering amplitude 
since we found previously in Chap. 11 the measured voltage in the Thompson-Gray 
measurement model written in our current notation is

�

(13.65)

so that Eq. (13.63) becomes

�

(13.66)

which can be compared to the pulse-echo case of Eq. (13.30). Equation (13.66) is 
valid for both immersion and contact setups.

( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( )

(1) (1)
0

(2) (2)
0

0 0

(1) (2)
0 2 0 2

, , , ,

, , , ,

, , , ,

s s

r r

s r s r

V V

V V

T T

c c

β β

α α

β β α α

ω ω

ω ω

φ

≅

≅

≅ +

+ ⋅ − + ⋅ −

x y x y

x y x y

x x y x y x y

e y y e y y

� �

� �

( )
( ) ( ) ( ) ( )

( )

2

3 4 (1) (2)
2 2 0 0 0 0

2 r
0

2 r

, ,1
( )

16 , , exp , , , exp ,

. 1 cos exp ,

s r
R

s s r r

s
r s

s

V
I

c V i T V i T

c d d
i dS dS d

c dS dS

α β α

α

β

ω ω
π ρ ω ω ω ω

ω ω

=
      

Ω Ω + Θ − ⋅ − 

∫ ∫ ∫
x x

y
x y x y x y x y

s y y

�

� �

(1) (2)
2 2/ / .c cβ β α α= +s e e

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( )

1 2
0 0 0 0

1 22 2

2

, , , , exp , , , exp ,

4
, ,

x x x y x y x y x y

e e

β α

α
β α

α

ω ω ω ω ω
πρ ω

   =    

  ⋅ −
−

� � �
s r s s r rV V i T V i T

c
A

ik

( ) ( )

( )

(1) (2) 2
22

22

0

1
( ) ; , 1 cos

4

.exp ,

R

sr
r s

r s

c
I ik A

cc

dd
i dS dS d

dS dS

α
α β α

βα

ω
π

ω ω

= − + Θ

ΩΩ − ⋅ − 

∫ ∫ ∫y e e

s y y



29313.3 � 2-D Imaging with a Linear Array�

13.3 � 2-D Imaging with a Linear Array

In Sect. 13.1, we showed how to form a 3-D image of a flaw from 3-D data con-
sisting of the pulse-echo responses as measured over the planar area of a 2-D array 
and at all frequencies. This is the minimum amount of data needed for 3-D imag-
ing. For a linear array, we only have elements distributed in one dimension so that 
it is not possible to develop a 3-D image without physically moving the array to 
obtain additional data measured in a second spatial dimension. However, one can 
use linear arrays without any motion to form 2-D images of 2-D scatterers such as 
side-drilled holes, which are commonly used as reference scatterers in evaluating 
imaging parameters. Figure 13.4 shows a pitch-catch setup where separate send-
ing and receiving elements of a linear array are interrogating a 2-D scatterer. The 
centroids of the sending and receiving elements are located at the points ( , )x xs r  
respectively. It is assumed that both these centroids and the point xQ on the scat-
terer all lie in a common plane given as x x xs r2 2 2 0= = = , which is also the com-
mon plane of incidence in this setup. An example inspection problem of this type 
is shown in Fig. 13.5 where a pair of linear arrays are used in a calibration setup 
with a side-drilled hole. We will find it convenient to use capital letters to distin-
guish quantities that only have 2-D coordinates in that common plane. Thus, since 
the centroids ( , )x xs r  are also assumed to lie along the ( , )x xs r1 1  axes, respectively, 
we have x Xs s sx= =( , )2 0  where Xs s sx x= =( , )1 3 0 , and x Xr r rx= =( , )2 0  where 
Xr r rx x= =( , )1 3 0 . Similarly, we can write x XQ x= =( , )2 0  where X = ( , )x x1 3  and 
a generic point x anywhere on the scatterer is x X= ( , )x2 .

Fig. 13.5   An example 
inspection setup of the type 
shown in Fig. 13.4 where a 
pair of linear arrays placed on 
wedges are used in a pitch-
catch calibration setup with a 
side-drilled hole

 

Fig. 13.4   A sending and 
receiving element of two 
linear arrays interrogating a 
2-D scatterer through a planar 
interface, where the long axis 
of the scatterer is parallel to 
the long dimensions of the 
elements. The polarizations 
of P- and S-waves incident 
on the scatterer in states (1) 
and (2) are shown explicitly, 
as well as other pertinent 
geometric parameters
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We begin with our previous result for full matrix imaging given by Eq. (13.43):

�
(13.67)

and note that we can write it in terms of the incident velocities in states (1) and (2) 
as (see Eqs. (11.42) and (11.43), which are for the corresponding displacements):

� (13.68)

where

� (13.69)

For our linear arrays we will write these velocity fields instead as
�

(13.70)

where we have used the fact that the long length of the array elements produces 
a wave field from an element polarized essentially in the plane of incidence (the 
polarizations (1) (2),β αD D  (see Fig.  13.4) lie in those planes for the sending and re-
ceiving elements, respectively) and the major time delays are also primarily those 
measured in that plane since there is little beam spreading in the x2-direction. Thus, 
Eq. (13.68) becomes

� (13.71)

or, equivalently,
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with

� (13.73)
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Eq. (13.73) into an integral of the wave fields over the length of the scatterer and a 
counterclockwise integral over the “lit” circumference of the flaw, in the form
�

(13.74)

where

� (13.75)

Introducing the singular function ( )Cγ X  of the lit circumference of the scatter then 
transforms Eq. (13.74) into an integral over the entire ( , )x x1 3  plane at x2 0=  and 
we have

�

(13.76)
in terms of the 2-D reflectivity

� (13.77)

Comparing Eq. (13.76) with (13.44) we see that Eq. (13.76) is the comparable start-
ing point for describing full matrix imaging of 2-D scatterers with linear arrays. 
Thus, we can follow the same steps used for 3-D imaging suitably modified to ac-
count for the fact that we are now working strictly with 2-D terms in Eq. (13.76). 
In this case we will define a 2-D image, 2 ( )DI X , as 2 2( ) ( )D DI R=X X , and for a 
fixed sending element and varying receiving elements attempt to obtain this image 
through an integral of the form

�

(13.78)

where the location of the centroid of the receiving element (assumed to be a continuous 
variable here again) is parameterized by the variable 1rξ , i.e. 1 1 1( ) ( ( ),0)r r r rxξ ξ=X . If 
we place Eq. (13.76) into Eq. (13.78) we obtain formally
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which suggests we must have

�

(13.80)

Again, as in the 3-D imaging case we expect at high frequencies the major con-
tributions to the integrals in Eq. (13.80) to occur around the critical point X Y= . 
Expanding the phase term about this point we have
� (13.81)

and defining a 2-D k-vector, k 2D , as
�

(13.82)

we can rewrite Eq. (13.80) as approximately

�

(13.83)

As in the 3-D case, we can write the inverse of the Jacobian appearing in Eq. (13.83) 
in terms of a Beylkin determinant, 1( , )rH ξ Y , where now

�
(13.84)

and

� (13.85)

which shows that if we take

�
(13.86)

we indeed have valid representation of a delta function, i.e.
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(13.87)

Placing Eq. (13.86) into Eq. (13.78) gives
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�

(13.88)

As shown in Appendix A, if we take the parameter 1rξ  to be associated with the 
incident angle, rθ , of a wave in the plane of incidence coming from the receiving 
element to the image point, Y, the Beylkin determinant can be easily evaluated (see 
Eq. (A.34) and the image is given by

�

(13.89)

If through ray tracing, following the same procedures as done for the solid angle/
area ratios in Appendix B, we relate the angle parameter rθ  to the location of the 
receiving element in the 1rx -direction by evaluating 1/r rd dxθ  then we have

�

(13.90)

Equation (13.90) shows that, similar to what was found in the 3-D imaging case, 
with a linear array we can form a 2-D image with only one element firing and 
receiving with many elements. To simulate the full matrix imaging case where 
there are multiple sending elements firing, we can use Eq. (13.90) and parameterize 
X Xs s sx= ( )1  by an incident angle, 

sθ , at the image point of a wave coming from the 
sending element which also causes the image of Eq. (13.90) to be a function of that 
angle, i.e. 2 2 ( , )D D sI I θ= Y . If we integrate these images over that incident angle, we 
obtain the 2-D image
� (13.91)

where
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(13.92)
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Equation (13.92) is an imaging measurement model for full matrix imaging. If one 
replaces the integrals by sums over the array elements and positive frequencies only 
and ignores all the terms except a / 2  ω π∆  parameter, the measured voltage, and 
the phase term, Eq. (13.92) becomes the 2-D image generated by the total focusing 
method:

�
(13.93)

which can be compared with the total focusing result for 2-D scalar problems given 
by Eq. (12.49).

A 2-D image of a 2-D scatterer can also be generated with the pulse-echo responses 
of a linear array. Many details follow closely that of the full matrix imaging approach 
so we will only outline the highlights here. The pulse-echo case can be obtained from 
our full matrix case by letting α β=  and making the following replacements:

�

(13.94)

Then the equation for the received voltage, Eq. (13.74), becomes

� (13.95)

where, recall, the integration is counterclockwise over the lit surface. This equation 
can then be inverted, as before, to form the 2-D image as

�

(13.96)

where the location of the centroid of the element has been parameterized in terms of 
the variable 1cξ , i.e. 1 1 1( )c c cx x ξ= . As shown in Appendix A, the Beylkin determinant 
for the pulse-echo case, 1( , )pe cH ξ Y , can be easily evaluated if we take 1c cξ θ= , 
where cθ  is an angle defining the incident wave direction at the image point. Then 

2
24 /peH cβ=  and we find

�
(13.97)
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Again, using ray tracing we can turn the integration over cθ  into one over the cen-
troid location, xc1, of the element, to obtain the pulse-echo imaging measurement 
model:

�
(13.98)

Two-dimensional SAFT imaging with a linear array is a highly simplified version of 
this imaging model where only the measured voltage and phase terms are retained 
and the integrations are replaced by sums over the discrete elements and at discrete 
positive frequencies, giving

�
(13.99)

which is the same expression as developed for 2-D scalar problems in Eq. (12.29).
Finally, a 2-D POFFIS-style imaging model can again be obtained for both full 

matrix and pulse-echo imaging with a linear array. Consider first the pulse-echo 
case, Eq. (13.98), and assume the flaw is small enough so that the fields can be eval-
uated at a fixed point, Y0, at the flaw and the phase term expanded to first order. Then

�

(13.100)

(see the corresponding 3-D case in Eq. (13.28)), to give

�

(13.101)

To compare this result to that of the scalar 2-D problem in a single medium con-
sidered in Chap. 12, consider the immersion case version of Eq. (13.101), which is
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(13.102)
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Letting 1 2ρ ρ ρ= = , 1 2pc c cβ= = , (1)
22kβ β =e k , Y Y X X X− = − = ′0 0

 and writing 
the area 2A AS l L= , where L2

is a large characteristic length in the x2-direction, we 
have

�

(13.103)

To compare the non-dimensional field terms in the two cases we need to make the 
replacement

� (13.104)

where the 2L  length appears because of the integration of the 3-D fields in LVβ
�  that is 

absent for the 2-D case of Chap. 12. Then Eq. (13.103) becomes

�
(13.105)

Finally, transforming back to a k-space integration through (see Eq. (12.25))
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we obtain
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(13.107)

which is just Eq. (12.19). A similar set of steps for the contact case can also trans-
form it into this equation.

In the full matrix imaging case we have
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and Eq. (13.92) becomes

�

(13.109)

where, as in 3-D imaging,

� (13.110)

but now S is a 2-D vector in the plane perpendicular to the x2-axis of the scatterer. 
Equation (13.109) is our POFFIS type of imaging measurement model for full ma-
trix imaging 2-D flaws with linear arrays.

We can use the Thompson-Gray measurement model for 2-D scatterers to write 
the image in terms of the far field scattering amplitude of the flaw as done previ-
ously in the 2-D and 3-D cases. Recall, in the case of a 3-D scatterer in an elastic 
solid, we found (see Eq. 11.69):
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(13.111)

in terms of the velocity fields (1) (1)V i Uβ βω= −� � , (2) (2)V i Uα αω= −� � . For a 2-D scatterer a 
corresponding measurement model can be derived in our current notation as (see 
[Schmerr-Song] for the assumptions that go into the derivation):
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(13.112)

for the general pitch-catch case and
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(13.113)
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for the pulse-echo-case, where L is the length of the 2-D scatterer and A is the 3-D 
scattering amplitude. In the full matrix imaging case then, from Eq. (13.109) we 
obtain

�

(13.114)

and for the pulse-echo case, from Eq. (13.101):

�

(13.115)

13.4 � Discussion

This chapter has shown that SAFT, TFM, and POFFIS methods image different 
ad-hoc or filtered versions of the reflectivity images that are described explicit-
ly in our imaging measurement model approach. All of these methods fall under 
the category of delay and sum methods which have been some of the most suc-
cessful imaging techniques used to date. These methods are, however, ultimately 
constrained by the fundamental fact, as discussed in Chap. 12, that they can only 
reconstruct proper images of flaw properties that are directly or indirectly related 
to the specular response of flaw surfaces and/or the response of flaw edges. It is 
important to remember this limitation when trying to use these methods for flaw 
characterization or sizing applications. For example, having a one-sided aperture-
limited image of only the front surface for volumetric flaws is generally inadequate 
to deduce flaw size information, regardless of how detailed the image resolution 
might be. If delay and sum methods are used with data obtained from both front 
and back surface specular responses, however, then sizing volumetric flaws from 
an image is certainly possible. In contrast, it is possible in principle to image a crack 
edge with a one-sided aperture-limited setup and still obtain crack size information 
from that image. A simple example where SAFT is used in this manner to calculate 
crack lengths and compared to time-of-flight diffraction (TOFD) sizing is given 
in [4]. For flaw characterization studies, the situation is similar. For example, in 
POFFIS-style imaging the image is directly related to the inverse Fourier transform 
of the far field scattering amplitude of the flaw. However, again this yields cor-
rect images only of the specular surface or edge diffracted parts of the scattering 
amplitude. Other responses seen in the image are artifacts of the delay and sum 
image formation process and not related to the flaw properties in a usable fashion. 
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In Chap. 12, a striking example of this fact was demonstrated for a cylindrical in-
clusion having a wave speed twice that of the surrounding material. In that case, 
the back surface response was imaged as a fictitious point scatterer located at the 
center of the inclusion! These limitations of the delay and sum methods may not be 
widely realized because of (1) their long history of successful use in medical and 
seismology applications where scatterers may be large enough so that the specular 
surface and edge responses inherently play key roles in directly interpreting the im-
ages generated and (2) a tradition of using the weak scattering Born approximation 
to describe how the measured signals are formed. Within the Born approximation, 
for example, it is possible to properly image both front and back surface reflections 
since the wave speed of the flaw is assumed to differ little from that of the host ma-
terial. In that case, an image of the scattering potential may be reasonably connected 
to a quantitative image of the entire flaw geometry. An example of this case was 
shown in Chap. 12 where the image of a weak scattering inclusion was given. In 
NDE applications, however, where flaws are typically not weak scatterers and they 
may be small, irregular and with few other distinguishing characteristics, images 
obtained with delay and sum methods may often be of more limited value. Thus, it 
is important to examine other ways in which the underlying array data may be used. 
The work of Wilcox and his colleagues [5–7], for example, are excellent examples 
of advanced flaw characterization methods that attempt to find other patterns and 
features that can be extracted from phased array inspections. The equivalent flaw 
sizing approach of Engle et al. [8] is also a case where an array is used not to form 
crack images but to act instead as a steerable single element transducer that can ef-
fectively collect crack scattering data in multiple directions that can then be used to 
obtain crack size and orientation information.

Another limitation of delay and sum imaging methods that may not be frequently 
understood is that the images they produce may be statistically unstable [9]. This 
means that in a random or inhomogeneous material where the material properties 
are not known explicitly, it is not sufficient to form images with some “equivalent” 
model of the material properties since the images depend crucially on the particular 
realization of those properties present in the actual material. The work by Borcea 
and her colleagues have studied this issue in depth and offered some solutions that 
might be useful in NDE inspections of welds and composites [10–12].

In this chapter, we have not discussed computational efficiency issues or concen-
trated on imaging methods that are optimized for speed of computation. There are 
two reasons for this. First, in NDE applications speed is not nearly as critical as in 
the medical world since most NDE measurements are done in a static environment. 
Second, a focus on speed issues tends to neglect the basic elements of the imag-
ing process and instead concentrate on implementation details. As the title of this 
book implies, we have chosen to describe in depth the fundamentals of how flaw 
signals are generated with phased arrays and how one can use that knowledge of 
the measurement process to produce quantitative flaw images. That being said, we 
do recognize the importance that speed plays in making imaging with phased arrays 
practical and cost-effective. This is especially true for 3-D imaging which is compu-
tationally challenging even with modern high speed computers. There are versions 
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of pulse-echo and full matrix imaging, for example, that can take advantage of FFTs 
in forming images [13–16]. See also Wilcox [17] for a discussion of other speed 
issues. Also, in Chaps. 5 and 8, we noted that the solution of a large number of ray 
paths when calculating either time delay laws or the fields produced through planar 
interfaces does benefit greatly by the use of high speed methods.

The delay and sum methods we have discussed are only a small subset of the 
world of possible imaging methods that we could have chosen to describe. There are 
imaging methods based on time-reversal, singular value decomposition, and tomog-
raphy, as well as topological methods, statistical methods, and many more that are 
available or are being developed [18–22]. The challenge for all of those methods, 
in our view, is to demonstrate that they can provide practical improvements to the 
delay and sum methods commonly in use today. Those improvements must come 
not just in terms of resolution but also in terms of the flaw information they provide, 
i.e. information that the NDE community can use for quantitative flaw detection, 
sizing, and characterization studies. Thus, although we could have analyzed image 
resolution by evaluating point response functions with our imaging measurement 
models, we chose instead to concentrate on what flaw properties are being imaged.

The imaging measurement approach we used in this chapter gives us a very ef-
fective tool for understanding the images that are generated with common methods 
such as SAFT, TFM, and POFFIS and our approach shows how those methods must 
be modified to obtain images that are truly images of flaw properties and not the 
entire measurement system. There are other analytical and semi-analytical methods 
that are used in practice that can also help us to understand the imaging process 
[23–27]. Some of these are based on the Born approximation rather than the Kirch-
hoff approximation. Here, we sought to concentrate on a fundamental approach that 
is compatible with the frequencies and types of flaws and flaw images that can be 
expected in NDE tests and is based on the physics of how the flaw signals are gener-
ated in ultrasonic NDE measurement systems.

13.5 � Summary of Imaging Measurement Models

In the previous sections of this chapter, we have derived a number of imaging mod-
els. Those models contain a relatively large number of parameters which are defined 
in this chapter and others. In this section, we will summarize all the results of this 
chapter in a consistent fashion and reiterate the meaning of all the defining param-
eters in terms of quantities that can be measured or modeled. In all cases, we will 
use forms that involve direct deconvolutions (without a Wiener filter) to simplify 
the expressions.
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Consider, first the case of pulse echo imaging with a 2-D array. In this case, we 
can use Eq. (13.22):

�

(13.116)

Here, ( , )∆ ∆x xc c1 2
 are the spacing between the centroids of the array elements in 

the ( , )x x1 2  directions, respectively, so they are just the arrays pitches in those di-
rections. The quantity ω∆  is the spacing of frequency components (in rad/s) and 

2 2( , )cβρ  are the density and wave speed in the medium surrounding the flaw for 
an incident wave of type β . The points 1 2( , )nl nl nl

c c cx x=x  are the discrete locations of 
the element centroids, mω  are the discrete sampled frequencies, and y is the image 
point (which will also be sampled discretely in practice). The quantity d dSc cΩ /  is a 
solid angle–area ratio that is calculated from an element centroid to an image point, 
as shown in Appendix B for various cases, while ( , )nl

cT x y  is the time it takes for a 
wave to travel from the centroid of an element to the image point. The normalized 
voltages, ( ),nl

c mV ωx
�

, are given in terms of the real measured voltages, ( , )nl
c mV ωx , 

for immersion cases, by

� (13.117)

and,for contact cases, by

� (13.118)

where 1 1( , )pcρ  are the density and (compressional) wave speed at the transmitting 
element and SA is the area of that element. Similarly, ( , )pcρ  are the density and 
(compressional) wave speed at the receiving element, and SB

 is the area of that 
element. For the pulse-echo case considered here, 1ρ ρ= , 1p pc c= , 

A BS S= . The 
quantities ( ( ), ( ))I m C ms sω ω  are the system functions for an element in immersion 
or contact testing, respectively, at the discrete sampled frequencies. The normal-
ized velocity terms, (1) ( , , )nl

c mVβ ωx y� , are related to the actual incident velocity, 
(1); ( , , )inc nl

c mβ ωv x y , generated by the transmitting elements at the image point, y, for 
immersion problems, by

�
(13.119)

and, for contact problems, by

�
(13.120)
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where ( , )( ) ( )v FT T
1 1  are the velocity and force, respectively, on the face of the transmit-

ting elements and where (1)
βd  is the polarization (unit vector). Note that these nor-

malized velocity terms can be calculated directly from Eqs. (13.119) (13.120) using 
the ultrasonic beam models discussed in previous chapters and are not dependent 
on ( , )( ) ( )v FT T

1 1 . Note also that Eq. (13.116) can be used to image the edge of a crack, 
as previously discussed, (see Eq. 13.41) with the replacement 2(i / )mV c Vβω→

� �
.

In the case of a small flaw, this pulse-echo imaging measurement model reduces, 
from Eq. (13.29) to a POFFIS-style discrete form:

�

(13.121)

where the point y0  is a fixed point close to the flaw and y is the image point,. All 
of the quantities in Eq. (13.121) have been described previously for Eq. (13.116) 
except (1)

0( , )nl
cβe x y  which is a unit vector in the direction of the incident wave for a 

wave traveling from an element to the fixed point, y0 .
For the case of full matrix imaging with a 2-D array we have from Eq. (13.60)

�

(13.122)

Here ( , )∆ ∆x xs s1 2  are the pitches of the transmitting elements and ( , )∆ ∆x xr r1 2  are 
the pitches of the receiving elements and ω∆  is again the frequency spacing. The 
quantities 2 2 2( , , )c cβ αρ  are the density, the wave speed of the incident wave (of type 
β ), and the wave speed of the scattered wave (of type α ) for the material surround-
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( ) ( ) ( ), , , ,pq nl pq nl
s r s rT Tφ = +x x y x y x y  is the total time it takes to travel from a send-

ing element to an image point and back to a receiving element. The normalized 
voltages, ( ), ,pq nl

s r mV ωx x are again related to the actual voltages, ( , , )pq nl
s r mV ωx x , for 

various element pairs by relations similar to Eqs. (13.117) (13.118), i.e.

( )
( )

( )

( ) ( ) ( ) }

1 2
2c1 c2

03 4 2
(1)1 1 12 2

0

(1)
0 0 0 2

,
( ) 2Re ,

2 , ,

.exp 2 , exp 2 , / ,

nlL LM
c mBA nlc

R m c
nlm n l c
c m

nl nl
m c m c

Vx x d
I

dSc V

i T i c

β β

β β

ωω ω
π ρ ω

ω ω

= = =

∆ ∆ ∆ Ω= 
   

   − − ⋅ −   

∑∑∑
x

y x y
x y

x y e x y y y

�

�

( ) ( ) ( )
( )

( ) ( ) ( )

1 2 1 2
21 2 1 2 2

3 4
1 1 1 1 1 22 2

2(1)

( ) 2Re 1 cos
16

.exp , , , ,

, ,. .
, , , ,

L L L LM
BA s s r r

R m nlpq
m n l p q

pq nl nl pqsr
m s r r s

r s

pq nl
s r m

pq nl
s m r m

x x x x c
I

cc

dd
i

dS dS

V

V V

α

βα

β α

ω ω
π ρ

ω φ

ω
ω ω

= = = = =

∆ ∆ ∆ ∆ ∆ = + Θ


ΩΩ − 





∑∑∑∑∑y

x x y x y x y

x x

x y x y

�

� �



307

� (13.123)

for the immersion case and

�
(13.124)

for the contact case where again 1 1( , )pcρ  are the density and (compressional) wave 
speed at the transmitting element and SA is the area of that element. Similarly, 
( , )pcρ are the density and (compressional) wave speed at the receiving element 
and SB is the area of that element. The normalized velocity terms, (1) ( , , )pq

s mVβ ωx y�
, and (2) ( , , )nl

r mVα ωx y� , are related to the velocity at the image point for the incident 
wave (of type β ) from the sending element, (1); ( , , )inc pq

s mβ ωv x y , and the velocity at 
the image point for an incident wave (of type α ) from the receiving transducer, 

(2) ( , , )nl
r mα ωv x y , when it is acting as a transmitter as

� (13.125)

and

� (13.126)

for immersion problems where ( , )( ) ( )v vT R
1 2  are the driving velocities on the faces of 

the sending and receiving elements, respectively, and (1) (2)( , )β αd d  are the polarization 
unit vectors. For the contact case, we have similarly,

� (13.127)

and

� (13.128)

in terms of the forces ( , )( ) ( )F FT R
1 2  on the faces of the sending and receiving elements 

respectively. Once again these normalized velocity terms can be calculated by beam 
models. For this full matrix imaging case we can also use Eq. (13.122) for imaging 
the edge of a crack with the replacement ( )2/V i c Vαω→

� �
.

For POFFIS-style full matrix imaging we have from Eq. (13.63)
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where the point y0 is a fixed point close to the image point, y. All of the quantities 
in Eq. (13.129) have been described previously for Eq. (13.122) except the vector 

0( , , )pq nl
s rs x x y  which is given by

�
(13.130)

where (1)
0( , )pq

sβe x y  is a unit vector in the direction of the incident wave for a wave 
traveling from an sending element to the fixed point, y0, and similarly (2)

0( , )nl
rαe x y  

is a unit vector in the direction of the incident wave for a wave traveling from an 
receiving element to the fixed point.

For imaging 2-D flaws with a linear array most of the quantities previously de-
fined also appear in these cases so we will just outline the main differences here. 
First, we summarize the three cases we considered. For the pulse-echo case we have 
(see Eq. (13.98))
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(13.131)

which reduces, for POFFIS-style pulse-echo imaging (Eq. (13.101)), to
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(13.132)

In the full matrix imaging case, from Eq. (13.102) we find
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and for POFFIS-style full matrix imaging (Eq. (13.109))
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For these 2-D imaging cases the array centroid locations are all along the x1 axis in 
the ( , )x x1 3  plane at the center of the linear array so Xc

n , Xs
l , and Xr

n all are discrete 
locations of the elements along the x1-axis. All the capitalized vectors also lie in the 
( , )x x1 3  plane, including the image point, Y, and the fixed point, Y0. The unit vector 

(1)
0( , )n

cβe X Y  and the vector S X X Y( , , )s
l

r
n

0 , given by

� (13.135)

also lie in the ( , )x x1 3  plane and the angle Θnl
 is the angle between the incident and 

scattered directions in the ( , )x x1 3  plane (see Fig. 13.4). In this 2-D case, the solid 
angle–area ratios are replaced by angle–length ratios such as 

1/c cd dxθ , 1/s sd dxθ ,  
1/r rd dxθ , which can be calculated explicitly for the case of a single medium, as 

shown in Chap. 12, or they can be calculated by the ray methods of Appendix B.
One major difference between these 2-D problems for a linear array and the 2-D 

array cases considered previously is in the beam correction terms, which now are 
integrated field values given by quantities such as LVβ

�  and LVαβ
� . These quantities are 

defined as
�

(13.136)

and

� (13.137)

and they can be calculated again by a beam model for the 3-D incident fields which, 
for the full matrix, immersion case are written as

�

(13.138)

and for the full matrix, contact case

�

(13.139)

at the 3-D point y Y= ( , )y2 . The pulse-echo case follows similarly with the replace-
ments X Xs

l
c
n→ , X Xr

n
c
n→  and α β= . Here the polarization vectors (1)

βD , (2)
αD  lie in 

the ( , )x x1 3  plane and the integrations are along the x2
-axis, which is parallel to the 

long axis of the linear array and the 2-D scatterer (see Fig. 13.4). For POFFIS-style 
imaging we must let Y Y= 0 in all these expressions.
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Chapter 14
Element Boundary Conditions and Other 
Modeling Issues

As seen in previous chapters, single element beam models form the fundamental 
building blocks for developing complete phased array transducer beam models. In 
all the cases considered previously, an element was modeled either as a velocity dis-
tribution on a planar surface embedded in an infinite, rigid baffle (immersion cases) 
or as a pressure distribution on an otherwise stress-free surface (contact cases). For 
large, single element transducers, those models describe very well the transducer 
wave fields. However, as discussed in Chap. 1, the construction characteristics of 
phased arrays may bring the basic assumptions of those models into question. In 
this chapter, we will examine the consequences of using more general models that 
describe how array elements produce sound in the adjacent material.

14.1 � Finite Impedance Baffle Model

In this section, we will use two-dimensional (2-D) beam models similar to those 
discussed in Chap. 2 to illustrate in a simple context the effects of different model-
ing assumptions. In particular, we will again assume that a 1-D element is located 
on the plane z = 0 and radiates pressure waves into a fluid. Most single element 
beam models assume that when the piezoelectric element is driven electrically, a 
pressure distribution, p x y t( , , ), and a normal velocity, v x y tz ( , , ), are produced over 
the face of the element and that over the remainder of the plane z = 0 outside the 
element either the velocity or pressure (or combinations of velocity and pressure) 
are specified. If the surface outside the element is a pressure-free surface, then we 
would have p x y t( , , ) = 0 on that surface. If instead the element is imbedded in a rig-
id “baffle”, then we would have v x y tz ( , , ) = 0 on the baffle. Although both of these 
types of conditions are commonly used in modeling large, single element transduc-
ers, neither of these extreme conditions may hold for an element in an array since 
the array elements are often embedded in a surrounding matrix of material that has 
a different acoustic impedance from the piezoelectric element or has facing layers 
that have a different acoustic impedance from either the element or the surround-
ing fluid. Techniques such as finite elements can be used to model in detail these 

L. W. Schmerr Jr., Fundamentals of Ultrasonic Phased Arrays, 
Solid Mechanics and Its Applications 215, DOI 10.1007/978-3-319-07272-2_14, 
© Springer International Publishing Switzerland 2015
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features of an array element but here we want to develop a much simpler model that 
can examine the effects of the boundary conditions surrounding an element (see 
Pesque and Fink [1] for a similar approach). Specifically, we will model the array 
element as embedded in a baffle having a finite specific acoustic impedance, zb , 
where on the baffle the condition

� (14.1)

is satisfied (see Fig. 14.1). The case zb → ∞  then corresponds to the rigid baffle 
and the case zb → 0  models the pressure-free surface. Other finite values of the 
baffle impedance can then be used to model conditions that are in between these 
two extreme limits.

In the 2-D model discussed in this section, we will assume that the length of the 
element is of length 2b over the interval [− b, b] in the x-direction. On the plane z = 0, 
we will specify the pressure and velocity fields as

�
(14.2)

which satisfies Eq. (14.1) on the surface outside the element and assumes that the 
pressure and velocity fields on the face of the element combine to generate a net 
non-zero driving term, v x t0 ( , ), having the dimensions of a velocity, but which we 
see from Eq. (14.2) is not the actual velocity on the face of the element. Taking the 
Fourier transform of Eq. (14.2) gives

�
(14.3)

To obtain solutions for the sound beam generated by this element, as done in 
Chap. 2, we will express the pressure field ( , , )p x z ω  in the form of an angular 
spectrum of plane waves. Specifically, we will write:

p x y t z v x y tb z( , , ) / ( , , )+ = 0

0 ( , )( , 0, )
( , 0, ) ,

0z
b

v x t b x bp x z t
v x z t

otherwisez

− ≤ ≤=
+ = = 



0 ( , )( , 0, )
( , 0, ) .

0z
b

v x b x bp x z
v x z

otherwisez

ωω ω
− ≤ ≤=

+ = = 


Fig. 14.1   A 1-D array ele-
ment in a finite impedance 
baffle radiating into a fluid
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�
(14.4)

where

�
(14.5)

and /k cω=  is the wave number for pressure waves in the fluid. Since the right 
side of Eq. (14.4) is a superposition of plane waves and inhomogeneous waves, both 
of which are exact solutions of the Helmholtz equation, the pressure ( , , )p x z ω  in 
Eq. (14.4) will also be an exact solution to that equation. The “amplitude” terms 

( ), ( ), ( )x x xP k V k G k  in Eq. (14.4) are at present undefined. The particular combi-
nation of these terms given in Eq.  (14.4) was chosen simply to help satisfy the 
boundary conditions of Eq. (14.3), as we will now show. First, we note that from 
the equation of motion of the fluid in the z-direction, the pressure and the z-velocity 
must satisfy the differential relationship [Schmerr]

�
(14.6)

Taking the Fourier transform of both sides of this equation and solving for 
( , , )zv x z ω  we find

�
(14.7)

where fz cρ=  is the specific impedance of the fluid.
Thus, using Eqs. (14.4) and (14.7), we can write the left-hand side of Eq. (14.3) 

as

�

(14.8)

However, if we let

�
(14.9)
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we see that on z = 0, Eq. (14.8) is in the form of an inverse spatial Fourier transform, 
i.e.

	
[ ]1

( , 0, ) / ( , 0, ) ( ) / ( ) exp ( ) ,
2b z x b x x xp x z z v x z P k z V k ik x dkω ω
π

+∞

−∞

= + = = +∫
�(14.10)

so that from an inverse spatial Fourier transform we have

	 [ ]( ) / ( ) ( , 0, ) / ( , 0, ) exp ( ) .x b x b z xP k z V k p x z z v x z ik x dxω ω
+∞

−∞

+ = = + =∫ �

(14.11)

Equation (14.11) shows that the boundary conditions of Eq. (14.3) will be satisfied 
if we let

� (14.12)

where the term V kx0 ( )  is just the spatial Fourier transform of the right side of 
Eq. (14.3), i.e.

�
(14.13)

and from Eq. (14.11) it can be seen that P kx( )  and V kx( )  can be identified as the 
spatial Fourier transforms of the fields ( , 0, )p x z ω=  and ( , 0, )zv x z ω= , respec-
tively, given by

�

(14.14)

Collecting all these results we then can obtain the pressure wave field of Eq. (14.4) 
explicitly as

�
(14.15)

Equation  (14.15) is an angular plane wave spectrum representation for the wave 
field of a transducer element embedded in an infinite baffle of acoustic impedance, 
zb

. If we also assume that the driving velocity term, 0 ( , 0, )v x z ω= , is spatially uni-
form over the face of the transducer, i.e.

0( ) / ( ) ( ),x b x xP k z V k V k+ =

0 0( ) ( , ) exp ( ) ,
b

x x

b

V k v x ik x dxω
+

−

= −′ ′ ′∫

( ) ( , 0, ) exp ( ) ,

( ) ( , 0, ) exp ( ) .

x x

x z x

P k p x z ik x dx

V k v x z ik x dx

ω

ω

+∞

−∞
+∞

−∞

= = −

= = −

∫

∫

0
z

1
( , , ) ( ) exp ( ) .

2 /
b f

x x z x
f b

z z
p x z V k ik x ik z dk

z z k k
ω

π

+∞

−∞

 
= + +  

∫



31714.1 � Finite Impedance Baffle Model�

�

(14.16)

then the inverse Fourier transform of this velocity term can be performed analyti-
cally, giving

�
(14.17)

in terms of the sinc function sinc ( x) = sin( x)/x. This case is similar to a model of a 
single element piston transducer in a rigid baffle where the normal velocity is as-
sumed to be uniform on the face of the transducer. Thus, we will also refer to our 
model of a element in a finite impedance baffle that satisfies Eq. (14.16) as a piston 
model.

Since on the face of the element we have

� (14.18)

if we integrate Eq. (14.18) over the element face we find

�
(14.19)

which can be written in terms of the force/unit length, ( )tF ω , acting on the element 
face and the average velocity in the z-direction, ( )zv ω , on the face as

�

(14.20)

If we define the acoustic radiation impedance/unit length, ( )tZ ω , as

� (14.21)

we then have

�

(14.22)

Equation (14.22) shows how the source term, 0 ( )v ω , for a piston element in a finite 
impedance baffle is related to the average velocity on the element face. Similarly, 
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we could write a relationship between the average pressure in the z-direction, ( )p ω , 
and the source term 0 ( )v ω  as

�

(14.23)

so that if we instead define a source term, 0 0( ) ( )bp z vω ω=  for our finite impedance 
baffle model which has the dimensions of a pressure, Eq.  (14.23) shows we can 
relate that pressure source term to the average pressure through

�
(14.24)

14.2 � Line Source Model of an Element in a Finite 
Impedance Baffle

It is possible to perform the angular plane wave spectrum integral of Eq. (14.15) 
numerically, leading to an “exact” solution for the wave field generated by the ele-
ment. However, we can instead obtain some approximate results that allow us to 
describe the acoustic field more explicitly. First, we rewrite Eq. (14.15) in terms of 
the source velocity, 

0 ( , )v x ω′  by using Eq. (14.13) to obtain
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∫ ∫
�(14.25)

At high frequencies the integration over kx
 can be performed approximately by 

the method of stationary phase [Schmerr], which for 1-D integrals states that the 
integral, I, is given by

�

(14.26)

where kx
s  is the stationary phase point where s( ) 0xkφ =′  and ,φ φ′ ′′  are the first and 

second derivatives of the function ( )xkφ . The sgn() function is simply

�

(14.27)

In our case we have
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�

(14.28)

and it is easy to show that at the stationary phase point

�
(14.29)

where (see Fig. 14.1)

�
(14.30)

is the distance from a point ( , )′x 0  on the plane z = 0 to a point x = ( , )x z  in the 
fluid. We then also find

�
(14.31)

where cos ( ) /z rθ =′  (see Fig. 14.1). Using all of these results the stationary phase 
evaluation of Eq. (14.25) gives

�

(14.32)

Equation (14.32) represents the transducer wave field as a superposition of waves 
arising from line sources acting on the z = 0 plane over the region − < ′ <b x b, where 
the remainder of the plane is a baffle of finite impedance. For a piston source we 
have

�
(14.33)

Since the term exp ) /(ikr r  in Eq.  (14.33) represents a cylindrically spreading 
wave we see that the amplitude of this cylindrical wave is modified by the angle-
dependent term,

�
(14.34)
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which we refer to as the directivity function for the finite impedance baffle. For 
the case of the rigid baffle ( / )fbz z → ∞ , we have simply 1bfD =  and Eq. (14.33) 
reduces to the Rayleigh-Sommerfeld equation (also called the Rayleigh equation) 
for a piston velocity source in a rigid baffle:

�
(14.35)

Similarly, if we let 0 0( ) ( ) / bv p zω ω=  and consider the case of the pressure-free 
surface outside the element ( / 0)b fz z → , we obtain the Rayleigh-Sommerfeld 
equation (also called the Sommerfeld equation) for a constant pressure source on a 
stress-free surface:

�
(14.36)

Our result, Eq.  (14.33), thus is the generalization of these Rayleigh/Sommerfeld 
equations to the more general case of the finite impedance baffle.

Since most testing will be done at distances from an element where the far field 
approximation is valid, we can examine the effects of a finite impedance baffle 
by considering that case. The details of obtaining the far field for the Rayleigh-
Sommerfeld equation have been given for a piston element in a rigid baffle so we 
will summarize the same results here. In the far field, we can make the replacements 

0 ,r r θ θ→ →′  (see Fig. 14.1) in the amplitude parts of Eq. (14.32) and keep two 
terms in the expansion of the phase to give
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(14.37)

And, for piston behavior, we find

�

(14.38)

where ( )bD θ  is the far field directivity of a piston element in a rigid baffle 
(Eq. (2.39)). Comparing Eq. (14.38) with the equivalent result for a piston source in 
a rigid baffle (Eq. (2.38)), we see that the finite impedance of the baffle introduces 
an additional directivity term

�
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[Note that the 
0 ( )v ω  source term here is not the same as the normal velocity term 

denoted by the same symbol in Eq. (2.37) because of Eq. (14.22)].
Figure  14.2 plots this additional directivity term for a baffle of impedance 

2.85MRaylsbz =  (which is typical of the impedance of an epoxy-like filling around 
an array element) adjacent to water with 1.48MRaylsfz = . Also plotted in Fig. 14.2 
is the far field directivity, 

bD , of a piston element in a rigid baffle for an element 
length equal to one wavelength (2 / 1)b λ = . The product of these two directivities, 
which is the total far field directivity, is plotted in Fig. 14.3. It can be seen that the 
additional directivity term from the finite impedance baffle will produce an ampli-
tude change but very little angular changes in the total directivity of the element in 
the far field. The same behavior will be true for element sizes larger than a wave 
length where the directivity, 

bD , will be even more concentrated around 0θ = . Thus, 
for arrays radiating into water, it is only for element sizes significantly smaller 
than a wavelength where we would expect to see any effects on the directivity 
of the element and hence the radiated field of the entire array. Although we have  

Fig. 14.3   The total directiv-
ity of the element considered 
in Fig. 14.2

 

 Fig. 14.2   The far field 
directivity versus angle 
due to a finite impedance 
baffle ( solid line) and the far 
field directivity of a piston 
element in a rigid baffle 
( dashed line) for an element 
length equal to one wave 
length (2 / 1)b λ = . The baffle 
impedance 2.85MRaylsbz =  
and the impedance 
of the fluid (water) 

1.48MRaylsfz =
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only considered a 1-D element radiating in two dimensions, we can also examine a 
2-D array element radiating into a fluid (immersion case). Since the analysis for a 
2-D array element can be performed with an angular plane wave spectrum approach 
in exactly the same fashion (see Chap. 6 for the piston element in a rigid baffle), we 
simply write the end result here for the pressure in the fluid for a 2-D element in a 
finite impedance baffle (see Fig. 14.4). We find

�
(14.40)

Because the same directivity ( )iD θ′  appears in Eq. (14.40) as in Eq. (14.32), this 
directivity will affect the total far field directivity of the 2-D element only when the 
dimensions of the element are significantly less than a wavelength.

We can also examine the use of our finite impedance model for a 1-D element 
radiating into a fluid to consider a case similar to that of a contact array element ra-
diating into a solid. Since a contact element on the free surface of a solid is normally 
modeled as a constant pressure source on a stress-free surface, we can emulate that 
case with our 1-D model with a finite impedance by setting 

0 0( ) ( ) / bv p zω ω=  in 
Eq. (14.33) to obtain

�
(14.41)

In the far field, then we find

�
(14.42)

which shows that the finite impedance baffle model contains directivity, ( )mD θ , 
given by
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Fig. 14.4   A 2-D array ele-
ment in a finite impedance 
baffle
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�
(14.43)

But for a constant pressure source acting on a free surface, a far field free surface 
directivity, ( ) cosfsD θ θ=  also exists because of the presence of the cosθ′  term in 
Eq. (14.36) so that Dm

 simply modifies that free surface directivity. Figure 14.5 
plots these two directivities for a baffle impedance of an epoxy material again, but 
where the fluid impedance is taken as that of a P-wave in aluminum. Except for a 
small amplitude change, there is very little difference between these two directivi-
ties, which are frequency independent, so one would conclude that baffle imped-
ance effects are very small even for very small elements in contact testing setups. 
Although this conclusion is based on a fluid model of a contact element, one can 
also use an angular plane wave spectrum approach to model a contact 2-D element 
as a constant source (having dimensions of a pressure) on a finite impedance surface 
of an elastic solid, following the same approach in [Schmerr] for a constant pressure 
source on an otherwise stress-free surface of a solid. Again, we will not present all 
the details here, but just give the final result as:

�

(14.44)

where ( , )ωv x  is the velocity in the solid due to P-waves generated by a constant 
source, 0 ( )p ω , acting on the surface of an elastic solid having a finite impedance. 
The directivity, ( )m

pK θ′ , is given as

�
(14.45)
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Fig. 14.5   The far field direc-
tivity, Dm

, versus angle for a 
source having the dimensions 
of pressure in a finite imped-
ance baffle ( solid line) and 
the corresponding directiv-
ity, cos(θ), for a constant 
pressure on a free surface 
(fluid model). The baffle 
impedance 2.85MRaylsbz =  
and the impedance of 
the “fluid” is taken to be 

17.33MRaylsfz = , the 
P-wave impedance of 
aluminum
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where

�

(14.46)

and zp  is the impedance of a P-wave traveling in the elastic solid and 1 1/p sc cκ =  
is the ratio of compressional to shear wave speeds of the solid. One can com-
pare this result to the corresponding contact model presented in Chap.  6 (see 
Eqs. (6.38)–(6.40)) which is of identical form but where 0bz = . Like the fluid mod-
el case just discussed, we see that the finite impedance simply modifies a directivity 
term, ( )pK θ′ , (see Eq. (6.39)) which is present for a contact model of a constant 
pressure on a stress-free interface. Figure 14.6 compares the finite impedance baffle 
far field directivity K p

m  (for a baffle having an impedance of epoxy) with K p  when 
the elastic solid is aluminum. As in the corresponding fluid model case the finite 
impedance baffle only has a minor impact on the far field directivity.

Note that for 2-D arrays we can relate the source terms ( , )v p0 0
 to the average 

velocity and pressure on the face of the element in similar forms to the ones found 
for 1-D elements. We find (see Eqs. 14.22 and 14.24):

�
(14.47)

and

�

(14.48)
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Fig. 14.6   The far field 
directivity, m

pK , versus 
angle for a source having 
the dimensions of pressure 
in a finite impedance baffle 
on an elastic solid ( solid 
line) and the corresponding 
directivity, pK , for a constant 
pressure on a free surface 
of the solid. The baffle 
impedance 2.85MRaylsbz =  
and the impedance of 
the solid is taken to be 

17.33MRaylsfz = , the 
P-wave impedance of 
aluminum

 



32514.3 � Other Modeling Issues�

where Zt
 is the radiation impedance of the element and S  is the element area. To 

obtain this impedance numerically for a rectangular piston element is not difficult, 
as shown by Sha et al. [2].

From the above discussion, it is more likely that we will see far field directivity 
effects in the case of an array used in immersion testing. Fortunately, in the immer-
sion case we can actually measure the total far field directivity of a single element 
experimentally to see how well the assumption that the element acts as a piston 
velocity source in a rigid baffle is satisfied. Figure 14.7 shows an example of such 
measurements taken at a frequency of 5 MHz for a single element of a 16-element 
linear array, where the pitch of the array was 0.6 mm, the length of the element 
was 0.5 mm, and the element height was 10 mm. In this case, it is seen that piston 
behavior and a rigid baffle assumption matches well the measured directivity of the 
central lobe of the element.

14.3 � Other Modeling Issues

Besides the impedance of the baffle surrounding a transducer element, there are 
other modeling issues that one must be aware of when modeling arrays. In some 
cases, when a single element of array is excited by a voltage pulse, nearby elements 
may also exhibit some motion, as illustrated in Fig. 14.8 for a given element and 
its adjacent neighbors. This coupling may be due to the exciting electrical fields 
extending over more than one element, as shown in Fig. 14.8a, or it may be due to 
acoustic waves generated by the excited element that travel across the filler and/
or facing materials to other elements, as shown in Fig. 14.8b. Needless to say, both 
electrical and acoustic types of interactions between elements are very complicated 
to describe. Baer and Kino [3] have given a relatively simple theory for acoustic 
cross coupling and Assaad and Bruneel [4] have used finite element models to ana-

Fig. 14.7   Measurement of 
the total far field directivity 
of the eighth element of a 
16-element linear array at a 
frequency of 5 MHz ( solid 
line) compared to the behav-
ior of a piston velocity source 
in a rigid baffle ( dashed 
line). Pitch = 0.6 mm, element 
length = 0.5 mm, element 
height = 10 mm
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lyze such element-to-element couplings in detail. Although we will not examine 
these couplings in this book, we can note that if a single element of the array is 
excited and the far field directivity of the element is measured, any significant cou-
pling to adjacent elements should be evident in changes of this directivity. Thus, 
as in the case of the baffle impedance, one could in principle take these couplings 
effects into account, at least partially, by measurements of the total directivity of an 
element in the far field, as discussed in the previous section, and use those measure-
ments to define an effective length of an element that would produce the measured 
directivity. A similar approach has been used in large, single element transducers to 
define similar effective parameters [Schmerr].
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Appendices

A The Beylkin Determinant

A.1 The Beylkin Determinant for 3-D Imaging (Common 
Source Case)

In forming an imaging measurement model for a fixed sending element and varying 
receiving elements we defined a 3-D wave vector, k, as

� (A.1)

where φ represents the total travel time from the centroid of a sending element lo-
cated at xs

to an image point y and then back to the centroid of a receiving element 
at xr

, i.e.

� (A.2)

and where the variable receiving element centroid location is parameterized in terms 
of the 

rξ variables. The transformation from integrations over the ( ),rξ ω variables 
to the k wave vector coordinates then involves the magnitude of the Jacobian, J , 
of this transformation, i.e.

� (A.3)

and the inverse of this Jacobian can be written as

� (A.4)

where the Beylkin determinant [1], h,is given by
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� (A.5)

If we define slowness vectors ( ),s rp p as

� (A.6)

and their derivatives as

� (A.7)

then the Beylkin determinant becomes

� (A.8)

At high frequencies these slowness vectors satisfy the eikonal equations

� (A.9)

so that the slowness vectors are orthogonal to their derivatives. In particular

� (A.10)

Thus, the cross product in Eq. (A.8) must be parallel to pr
and we have

� (A.11)
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Since we are only interested in the absolute value of the Beylkin determinant (see 
Eq. (A.3)), the plus or minus sign here is immaterial and will henceforth be dropped. 
Thus, the determinant can be written

� (A.12)

If we let Θ be the angle between the two slowness vectors (see Fig. A.1), then

� (A.13)

We can write Eq. (A.13) for the determinant in our original notation as

� (A.14)

where h x xr r r1 2, ,y( ) is defined as

� (A.15)
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Fig. A.1   Parameters associ-
ated with the determination 
of the Beylkin determinant
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and where ( )2
r α=e e is the unit vector along the incident wave direction at the image 

point y coming from the receiving element (acting as a transmitter). This deter-
minant can be easily evaluated if we choose ( ) ( )1 2, ,r r r rξ ξ θ φ= where ( ),r rθ φ  are 
spherical coordinates at the image point y with the polar “z” axis taken along a fixed 
reference pr

 direction. Then we have

� (A.16)

and

� (A.17)

so the complete Beylkin determinant is given by

� (A.18)

A.2 The Beylkin Determinant for 3-D Imaging (Pulse-Echo Case)

When an image is formed with the pulse-echo responses of the individual elements 
of an array, a 3-D wave vector, k, is defined as

� (A.19)

Where ( ),cΤ x y is the one-way travel time from the centroid, xc
, of the element 

to an image point y. As in the general case we will assume this centroid location 
is parameterized in terms of ( )1 2,c c cξ ξ ξ= variables and we will write the inverse 
Jacobian as (see Eq. (A.4)):

� (A.20)

where the Beylkin determinant is now

� (A.21)
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We can evaluate the determinate in Eq. (A.21) by starting from Eq. (A.5) and letting 
p p pr s c= = so that Θ = 0 and set α β=  (same mode on sending and receiving). 
We simply replace the parameters ( )1 2,r rξ ξ  in the general case by the parameters 
( )1 2,c cξ ξ  and as before we let these parameters be spherical coordinates ( ),c cθ φ
defined at the image point y. Then following all the same steps as before we find

� (A.22)

A.3 The Beylkin Determinant for 2-D Imaging

Linear arrays can be used to form 2-D images of 2-D scatterers such as side-drilled 
holes, as shown in Chap. 13. In this case one defines a 2-D wave vector, k 2D

, as

� (A.23)

where X X Ys r, ,( ) are all 2-D vectors associated with the centroid of the sending el-
ement, the centroid of the receiving element, and the image point, respectively. For 
a linear array the element centroids can be parameterized in terms of the variables 
( )1 1.s rξ ξ , i.e. ( )( )1 1 3, 0s s s sX Xξ= =X , ( )( )1 1 3, 0r r r rX Xξ= =X but the image point 
Y = ( )Y Y1 3, is a general point in a plane at the center of the array (see Fig. A.2). If 
one fixes the sending element and lets the location of the receiving element vary 
then in forming an imaging measurement model one needs to determine the inverse 
of the Jacobian defined as

� (A.24)

( ) 3

8sin
, , .c

pe c ch
cβ

θθ φ =y

( )2 , , ,D Y s rω φ= ∇k X X Y

( )
( ) ( )2

1
1

, ,
,

D
r

r

Hω ξ
ω ξ

∂
=

∂
k

Y

Fig. A.2   Parameters for 
defining the Beylkin deter-
minant for 2-D imaging with 
linear arrays

 

Appendices



332

where

� (A.25)

Now, as in the 3-D case define the 2-D slowness vectors p ps r,( ) as

� (A.26)

Then the determinant becomes

� (A.27)

where we have used the distributional property of the triple product and e y  is a unit 
vector along the x2

-axis (or y-axis, i.e. perpendicular to the imaging plane). These 
2-D slowness vectors still satisfy the eikonal equations, Eq. (A.9), so the slowness 
vectors are orthogonal to their derivatives and we have

� (A.28)

As before, we can ignore the sign indeterminancy here since we are only interested 
in the absolute value of the determinant, and if we let Θ be the angle between the 
two slowness vectors we have

� (A.29)
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where

� (A.30)

Equation (A.30) can be rewritten as

� (A.31)

where er  is a unit vector along the incident wave direction at the image point Y 
coming from the receiving element location, Xr

. Now, suppose we use as the pa-
rameter 

1rξ the angle 
rθ  that this unit vector makes with respect to the x3

-axis (see 
Fig. A.2). Then

� (A.32)

so that

� (A.33)

and, finally,

� (A.34)

For pulse-echo 2-D imaging with a linear array, the 2-D k-vector is instead given by

� (A.35)

and the inverse Jacobian becomes

� (A.36)
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where

� (A.37)

Equation (A.37) again can be expressed in terms of a unit vector and its derivatives 
(see Eq. (A.31), and letting 

1c cξ θ= allows us to evaluate the determinant simply 
and we find (with α β=  for the pulse-echo case)

� (A.38)
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B Angle-Area Ratios

In developing imaging measurement models, it was convenient to parameterize the 
locations of the array elements by spherical coordinates at the image point, as this 
choice made the evaluation of the Beylkin determinant very simple. However, to 
express the final imaging models in terms of integrations over the element coor-
dinates it is necessary to determine the angle-area ratios, d dSΩ / , where dΩ  is a 
solid angle measured at the image point and dS  is an area element on the plane of 
the array [1, 2].

B.1 Ratios for Inspection in a Single Medium

For an array radiating into a single medium this ratio is simple to evaluate, as shown 
explicitly in Chap. 12 for 2-D scalar problems. In three dimensions, we have (see 
Fig. B.1)

� (B.39)

where rs
is the distance from the image point to the centroid, xs

, of a sending ele-
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respect to a ray along the propagating wave direction from the element to the image 
point, y . Similarly, rr

 is the distance from the image point to the centroid, xr
, of a 

receiving element and 
rβ  is the angle that the normal to the plane of the array at xr

makes with respect to a ray along the propagating wave direction from the element 
to the image point, y .The relations of Eq. (B.39) are easily derivable from the ge-
ometry of Fig. B.1b. If one considers a bundle of rays of solid angle d sΩ  extending 
from the image point y to the point sx , the cross-sectional area of this bundle is 
dS r ds s= 2 Ω  and the corresponding area of the bundle on the plane of the element 
is / coss sdS dS β= , which leads directly to Eq. (B.39) for the sending element. A 
completely identical process yields the angle-area ratio at a receiving element.

B.2 Ratios for Inspection Through a Planar Interface

For immersion testing or testing with an array on wedge, the waves from the array 
must pass through an interface for both the sending and receiving elements. The 
angle-area ratios in this case are more complex than in the single medium case but 
they still can be easily calculated with a ray theory approach that follows a bundle 
of rays along the sound generation or reception propagation paths to the element of 
the array. Figure B.2 shows the geometry for a two medium problem for relating 
the solid angle d sΩ  to the area dSs

 at a sending element across a planar interface, 
where a compressional wave is traveling with a wave speed cp1  in medium one and 
a wave of type ( ),p sβ β = is propagating in medium two with wave speed 2cβ . 
To analyze this problem it is convenient to consider first a spherical bundle of rays 
when it reaches the interface at point P, as shown in Fig. B.3. The cross-sectional 
area of the bundle is just ( )2

1 2s sdS r dβ= Ω  and the projected area on the interface, 
dA , as shown in Fig. B.3 is just 

1 2/ cos sdA dS βθ= , where 
2s

βθ is the angle that the 
wave front area makes with respect to the interface (which is also the angle that the 
ray along the propagation path makes with respect to the normal to the interface). 

Fig. B.1   a Geometry for computing the angle-area ratio, /s sd dSΩ , at a sending element in a single 
medium, and b detailed elements in the computation. Note that an entirely similar set of figures 
also hold for computing /r rd dSΩ  at a receiving element
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The bundle of rays in medium one has a wave front that is no longer spherical. At 
point P on the interface, let the principal radii of curvature of the refracted wave 
front be ( ),si so

α αρ ρ , in the plane of incidence and perpendicular to that plane, respec-
tively. These radii are given by

� (B.40)

where ( )2 1,s s
β βθ θ  are the angles that the wave fronts make with respect to the plane 

of the interface in medium two and medium one, respectively. It is relatively easy 
to prove these relations. Consider first rays propagating in the plane of incidence, as 
shown in Fig. B.4. From the geometry for medium two we have

� (B.41)

If we let 
si
βρ be the distance from the interface to the virtual source point V1

 which 
the rays in medium one appear to originate from, we likewise have

� (B.42)
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Fig. B.3   Geometry of a 
spherical bundle of rays in 
medium two

 

Fig. B.2   Geometry for calcu-
lating the angle-area ratio for 
a sending element in immer-
sion or angle beam inspection 
problems

Appendices



337

so that

� (B.43)

But, from Snell’s law we have

� (B.44)

which implies that

� (B.45)

so that combining Eq. (B.45) and Eq. (B.43) we obtain the expression for 
si
βρ  given 

in Eq. (B.40).
Now, consider rays that are traveling out of the plane of incidence, as shown in 

Fig. B.5. In this case we have
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Fig. B.5   Rays propagating 
out of the plane of incidence

Fig. B.4   Rays propagating in 
the plane of incidence
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� (B.46)

where 
so
βρ is the distance from the interface to the virtual source point V2

 from 
which these rays appear to originate in medium two. However, for these rays and 
small angles, Snell’s law is simply

� (B.47)

so that combining Eq. (B.47) with Eq. (B.46) we also obtain the relationship for 
so
βρ  

given in Eq. (B.40).
The cross-sectional area of the bundle of rays at point P on the interface is just 
2 1 1si so s odS d dβ β βρ ρ θ θ=  (see Fig. B.6). The projection of this cross-sectional area onto 

the plane of the interface is 
2 2/ cos sdA dS βθ= . Similarly, at the sending element, 

the cross-sectional area of the bundle is just ( )( )3 1 1 1 1si s so s s odS r r d dβ β β β βρ ρ θ θ= + +  
and the projected area of this bundle onto the plane of the sending element is 

3 / coss sdS dS β= . With all these results we can then calculate the angle-area ratio 
as

� (B.48)

Using Eq. (B.40) in this ratio, we find

� (B.49)
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Fig. B.6   The geometry of 
the bundle of rays in medium 
one
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or the equivalent form

� (B.50)

At a receiving element, the geometry for the calculation of the angle-area ratio is 
shown in Fig. B.7. In this case it is assumed that a wave of type ( ),p sα α = exist 
in medium two. Since the calculations in this case follow exactly the same steps as 
outlined for the sending element, we simply write the final results for the angle-area 
ratio as

� (B.51)

or, equivalently,

� (B.52)
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C MATLAB® Functions and Scripts

In this Appendix we will summarize the MATLAB® functions and scripts that ap-
pear throughout the book and give detailed listings of the codes. The MATLAB® 

m-files are also available by sending an e-mail with subject titled “Phased Array 
Codes” to the author at lschmerr@cnde.iastate.edu.

C.1 Beam Models for Single Elements

rs_2Dv (Code Listing C.1) A function which calculates the normalized pressure 
wave field of a 1-D element radiating waves in 2-D into a fluid as calculated by a 
superposition of Hankel functions over the face of the element.

ls_2Dv (Code Listing C.2) A function which calculates the normalized pressure 
wave field of a 1-D element radiating waves in 2-D into a fluid as calculated by a 
superposition of high frequency line sources over the face of the element.

ls_2D_int (Code Listing C.3) A function which calculates the normalized pressure 
wave field of a 1-D element radiating waves in 2-D across a plane interface between 
two fluids as calculated by a superposition of high frequency line sources over the 
face of the element and propagating the waves from those sources across the inter-
face with ray theory.

fresnel_2D (Code Listing C.7) A function which calculates the normalized pressure 
wave field of a large 1-D element radiating waves in 2-D into a fluid as calculated 
by Fresnel integrals in the paraxial approximation.

on_axis_foc2D (Code Listing C.9) A function which calculates the normalized 
pressure wave field along the central axis of a large, focused 1-D element radiating 
waves in 2-D into a fluid as calculated by Fresnel integrals in the paraxial approxi-
mation.

Gauss_2D (Code Listing C.10) A function which calculates the normalized pres-
sure wave field of a large 1-D element radiating waves in 2-D into a fluid as calcu-
lated by a superposition of Gaussian beams in the paraxial approximation.

NPGauss2D (Code Listing C.16) A function which calculates the normalized pres-
sure wave field of a 1-D element radiating waves in 2-D into a fluid as calculated 
by a superposition of non-paraxial Gaussian beams.

ps_3Dv (Code Listing C.20) A function which calculates the normalized pressure 
wave field of a 2-D rectangular element radiating waves in 3-D into a fluid as cal-
culated by a superposition of point sources over the face of the element.

ps_3Dint (Code Listing C.23) A function which calculates the normalized veloc-
ity components in an elastic solid for a 2-D rectangular element radiating waves 
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in 3-D across a plane fluid/solid interface as calculated by a superposition of high 
frequency point sources over the face of the element and propagating the waves 
from those sources across the interface with ray theory.

C.2 Delay Laws and Apodization Laws

delay_laws2D (Code Listing C.12) A function which generates the time delay laws 
for steering and focusing of an array of 1-D elements radiating waves in 2-D into 
a single medium. The function can also be used to generate delay laws for a linear 
array of 2-D elements.

discrete_windows (Code Listing C.13) A function which generates 1-D apodiza-
tion laws for an array using cosine, Hanning, Hamming, Blackman, triangular, or 
rectangular weights.

delay_laws2D_int (Code Listing C.19) A function which generates the time delay 
laws for steering and focusing of an array of 1-D elements radiating waves in 2-D 
across a plane interface between two fluids. The function can also be used to gener-
ate delay laws for a linear array of 2-D elements.

delay_laws3D (Code Listing C.22) A function which generates the time delay laws 
for steering and focusing of an array of rectangular 2-D elements radiating waves in 
3-D into a single medium.

delay_laws3D_int (Code Listing C.27) A function which generates the time delay 
laws for steering and focusing of an array of 2-D elements radiating waves in 3-D 
across a plane interface between two media.

C.3 Beam Models for Arrays

mls_array_modeling (Code Listing C.14) A script which models the normalized 
pressure wave field an array of 1-D elements radiating waves into a fluid, using 
a superposition of multiple line sources for each element. Steering, focusing, and 
apodization parameters for the array are specified.

mls_array_model_int (Code Listing C.18) A script which models the normalized 
pressure wave field an array of 1-D elements radiating waves across a plane inter-
face between two fluids, using a superposition of multiple line sources for each 
element. Steering, focusing, and apodization parameters for the array are specified.

mps_array_modeling (Code Listing C.21) A script which models the normalized 
pressure wave field an array of 2-D rectangular elements radiating waves into a 
fluid, using a superposition of multiple point sources for each element. Steering, 
focusing, and apodization parameters for the array are specified.
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mps_array_model_int (Code Listing C.26) A script which models the normalized 
velocity components in an elastic solid for an array of 2-D rectangular elements 
radiating waves across a fluid solid/solid interface, using a superposition of multiple 
point sources for each element. Steering, focusing, and apodization parameters for 
the array are specified.

C.4 Miscellaneous Functions

pts_2Dintf (Code Listing C.4) A function which uses Snell’s law to determine the 
intersection points of rays traveling in 2-D across a plane interface between two 
media from the centroid of a 1-D element in an array to points (x, z) in the second 
medium. This function uses the helping functions ferrari2 and init_xi.

ferrari2 (Code Listing C.5) A function which uses the input parameters of the func-
tions pts_2Dintf or pts_3Dint to express Snell’s law for a plane interface as the 
problem of finding the appropriate root of a quartic equation. Ferrari’s method is 
used to obtain the roots of the quartic and return the location of the single intersec-
tion point on the interface of a ray path that goes from the centroid of an array ele-
ment or element segment to a specified single point in the second medium.

init_xi (Code Listing C.6) A function which examines the sizes of the variables 
describing the points (x, z) in the input parameters of pts_2Dintf and generates the 
consistent size needed for the intersection points on the interface that define Snell’s 
law ray paths and the number of calls needed to the function ferrari2, which can 
only return a single intersection point at a time.

fresnel_int (Code Listing C.8) A function which evaluates the Fresnel integral nu-
merically.

gauss_c15 (Code Listing C.11) A function which returns fifteen Gaussian coef-
ficients developed by Wen and Breazeale, which can be used to describe the wave 
field of an 1-D element with a multi-Gaussian beam model. See also gauss_c10.

elements (Code Listing C.15) A function which allows specification of array ele-
ment sizes and gap sizes in normalized form and returns the actual element sizes 
and centroid locations. This function is used in the script mls_array_modeling to 
perform parametric studies.

gauss_c10 (Code Listing C.17) A function which returns ten Gaussian coefficients 
developed by Wen and Breazeale, which can be used to describe the wave field of 
an 1-D element with a multi-Gaussian beam model.

pts_3Dint (Code Listing C.24) A function which uses Snell’s law to determine the 
intersection points of rays traveling in 3-D across a plane interface between two 
media from the centroid of a 2-D element in an array to points (x, y, z) in the second 
medium. This function uses the helping functions ferrari2 and init_xi3D.



Appendices� 343

init_xi3D (Code Listing C.25) A function which examines the sizes of the variables 
describing the points (x, y, z) in the input parameters of pts_3Dint and generates the 
consistent empty matrix needed to hold the intersection points on the interface that 
define Snell’s law ray paths. The function also returns the dimensions of the matrix 
holding the interface points, parameters which are used in calling the function ferrari2.

interface2 (Code Listing C.28) A function which expresses Snell’s law in terms of 
the location of the point of intersection of a ray path with a planar interface. The val-
ue of the function is zero when Snell’s law is satisfied. This function is used in the 
function ferrari2 as a back-up evaluation in the event Ferrari’s method does not give 
a sufficiently accurate solution. In that case the intersection point on the interface 
is calculated iteratively with the built-in MATLAB function fzero, using the call

>>xi = fzero(@interface2,[0,DX], [ ], cr, DF, DT, DX);

Note that this call to fzero can also be used as a direct replacement for the call to 
ferrari2:

>>xi = ferrari2(cr, DF, DT, DX);

but the use of fzero in this manner is typically much less efficient.

T_fluid_solid (Code Listing C.29) A function which computes the P-P (compres-
sional wave to compressional wave) and P-S (compressional wave to vertical-shear 
wave) transmission coefficients, based on velocity ratios, for the oblique incidence 
of a plane wave on a fluid-solid interface.

C.5 Code Listings

Code Listing C.1. The function rs_2DV which calculates the normalized pressure 
wave field of a 1-D element radiating waves in 2-D into a fluid as calculated by a 
superposition of Hankel functions over the face of the element.
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Code Listing C.2. The function ls_2Dv which calculates the normalized pressure 
wave field of a 1-D element radiating waves in 2-D into a fluid as calculated by a 
superposition of high frequency line sources over the face of the element.
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Code Listing C.3. The function ls_2Dint which calculates the normalized pressure 
wave field of a 1-D element radiating waves in 2-D across a plane interface between 
two fluids as calculated by a superposition of high frequency line sources over the 
face of the element and propagating the waves from those sources across the inter-
face with ray theory.
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Code Listing C.4. The function pts_2Dintf which uses Snell’s law to determine the 
intersection points of rays traveling in 2-D across a plane interface between two 
media from the centroid of a 1-D element in an array to points (x, z) in the second 
medium. This function uses the helping functions ferrari2 and init_xi.
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Code Listing C.5. The function ferrari2 which uses the input parameters of the func-
tions pts_2Dintf or pts_3Dint to express Snell’s law for a plane interface as the 
problem of finding the appropriate root of a quartic equation. Ferrari’s method is 
used to obtain the roots of the quartic and return the location of the single intersec-
tion point on the interface of a ray path that goes from the centroid of an array ele-
ment or element segment to specified single point in the second medium.
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Code Listing C.5. The function ferrari2 which uses the input parameters of the func-
tions pts_2Dintf or pts_3Dint to express Snell’s law for a plane interface as the 
problem of finding the appropriate root of a quartic equation. Ferrari’s method is 
used to obtain the roots of the quartic and return the location of the single intersec-
tion point on the interface of a ray path that goes from the centroid of an array ele-
ment or element segment to specified single point in the second medium.
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Code Listing C.6. The function init_xi which examines the sizes of the variables 
describing the points (x, z) in the input parameters of pts_2Dintf and generates the 
consistent size needed for the intersection points on the interface that define Snell’s 
law ray paths and the number of calls needed to the function ferrari2, which can 
only return a single intersection point at a time.
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Code Listing C.7. The function fresnel_2D which calculates the normalized pres-
sure wave field of a large 1-D element radiating waves in 2-D into a fluid as calcu-
lated by Fresnel integrals in the paraxial approximation.

Code Listing C.8. The function fresnel_int which evaluates the Fresnel integral nu-
merically.



Appendices352

Code Listing C.9. The function on_axis_foc_2D which calculates the normalized pres-
sure wave field along the central axis of a large, focused 1-D element radiating waves 
in 2-D into a fluid as calculated by Fresnel integrals in the paraxial approximation.
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Code Listing C.10. The function Gauss_2D which calculates the normalized pres-
sure wave field of a large 1-D element radiating waves in 2-D into a fluid as calcu-
lated by a superposition of Gaussian beams in the paraxial approximation.

Code Listing C.11. The function gauss_c15 which returns fifteen Gaussian coef-
ficients developed by Wen and Breazeale, which can be used to describe the wave 
field of an 1-D element with a multi-Gaussian beam model.
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Code Listing C.12. The function delay_laws2D which generates the time delay laws 
for steering and focusing of an array of 1-D elements radiating waves in 2-D into 
a single medium. The function can also be used to generate delay laws for a linear 
array of 2-D elements.
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Code Listing C.13. The function discrete_windows which generates 1-D apodiza-
tion laws for an array using cosine, Hanning, Hamming, Blackman, triangular, or 
rectangular weights.

Code Listing C.14. The script mls_array_modeling which models the normalized 
pressure wave field an array of 1-D elements radiating waves into a fluid, using 
a superposition of multiple line sources for each element. Steering, focusing, and 
apodization parameters for the array are specified.
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Code Listing C.15. The function elements which allows specification of array ele-
ment sizes and gap sizes in normalized form and returns the actual element sizes 
and centroid locations. Used in the script mls_array_modeling to perform paramet-
ric studies.
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Code Listing C.16. The function NPGauss_2D which calculates the normalized 
pressure wave field of a 1-D element radiating waves in 2-D into a fluid as calcu-
lated by a superposition of non-paraxial Gaussian beams.
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Code Listing C.17. The function gauss_c10 which returns ten Gaussian coefficients 
developed by Wen and Breazeale, which can be used to describe the wave field of 
an 1-D element with a multi-Gaussian beam model.

Code Listing C.18. The script mls_array_model_int which models the normalized 
pressure wave field an array of 1-D elements radiating waves across a plane inter-
face between two fluids, using a superposition of multiple line sources for each 
element. Steering, focusing, and apodization parameters for the array are specified.
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Code Listing C.19. The function delay_laws2D_int which generates the time delay 
laws for steering and focusing of an array of 1-D elements radiating waves in 2-D 
across a plane interface between two fluids. The function can also be used to gener-
ate delay laws for a linear array of 2-D elements.
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Code Listing C.20. The function ps_3Dv which calculates the normalized pressure 
wave field of a 2-D rectangular element radiating waves in 3-D into a fluid as cal-
culated by a superposition of point sources over the face of the element.
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Code Listing C.21. The script mps_array_modeling which models the normalized 
pressure wave field an array of 2-D rectangular elements radiating waves into a 
fluid, using a superposition of multiple point sources for each element. Steering, 
focusing, and apodization parameters for the array are specified.
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Code Listing C.22. The function delay_laws3D which generates the time delay laws 
for steering and focusing of an array of rectangular 2-D elements radiating waves in 
3-D into a single medium.

Code Listing C.23. The function ps_3Dint which calculates the normalized veloc-
ity components in an elastic solid for a 2-D rectangular element radiating waves in 
3-D across a plane fluid/solid interface as calculated by a superposition of high fre-
quency point sources over the face of the element and propagating the waves from 
those sources across the interface with ray theory.
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Code Listing C.24. The function pts_3Dint which uses Snell’s law to determine the 
intersection points of rays traveling in 3-D across a plane interface between two 
media from the centroid of a 2-D element in an array to points (x, y, z) in the second 
medium. This function uses the helping functions ferrari2 and init_xi3D.
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Code Listing C.25. The function init_xi3D which examines the sizes of the vari-
ables describing the points (x, y, z) in the input parameters of pts_3Dint and gener-
ates the consistent size needed for the intersection points on the interface that define 
Snell’s law ray paths and the number of calls needed to the function ferrari2, which 
can only return a single intersection point at a time.
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Code Listing C.26. The script mps_array_model_int which models the normalized 
velocity components in an elastic solid for an array of 2-D rectangular elements 
radiating waves across a fluid solid/solid interface, using a superposition of multiple 
point sources for each element. Steering, focusing, and apodization parameters for 
the array are specified.
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Code Listing C.27. The function delay_laws3Dint which generates the time delay 
laws for steering and focusing of an array of 2-D elements radiating waves in 3-D 
across a plane interface between two media.
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Code Listing C.28. The function interface2 which expresses Snell’s law in terms 
of the location of the point of intersection of a ray path with a planar interface. The 
value of the function is zero when Snell’s law is satisfied. This function is used in 
the function ferrari2 as a back-up evaluation method when Ferrari’s method does 
not give an accurate solution. In that case the intersection point on the interface is 
calculated iteratively with the built-in MATLAB function fzero, using the call

xi = fzero(@interface2,[0,DX], [ ], cr, DF, DT, DX);
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Code Listing C.29 The function T_fluid_solid which computes the plane wave 
transmission coefficients at a plane fluid-solid interface, based on velocity ratios, 
for both P-to-P waves and P-to-SV waves.
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Born approximation, 249

far field scattering amplitude, inclusion 
(2-D), 271

C
Convolution theorem, 116, 117
Crack tip diffraction See Edge waves, 258
Creeping waves, 246, 249

D
Deconvolution, 10, 206, 208, 222, 251, 257, 

261, 284, 304
Delay and sum imaging methods, 241, 303

Delay laws:
paraxial, steering See Paraxial, 91
steering and focusing, single medium 

(2-D), 84, 99
steering and focusing, single medium 

(3-D), 101, 170
steering and focusing through a planar 

interface (3-D), 94, 95, 174
steering, single medium (2-D), 83, 86
steering, single medium (3-D), 99
steering through a plane interface (2-D), 

172, 173
steering through a plane interface (3-D), 

107

E
Edge waves, 248, 249
Effective length of an element, 326
Electrical cross-talk, 8
Element directivity (1-D element), 165
Element directivity (2-D element)

rectangle, 141, 184
triangle, 141

F
Far field scattering amplitude

defined, 211, 232
for an inclusion (separation of variables), 

263
specular point response, 224

Far field waves (2-D), 23
Far field waves (3-D), 117, 118
Ferrari method, 106, 175
Finite impedance baffle, 313, 314, 317, 320, 

321, 324
Fourier transform, 115, 118, 254, 259, 316
Free surface velocity, 185, 187, 191, 217
Fresnel integral, 202

375
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Full matrix capture (FMC), 12, 13, 244, 254, 
257, 261, 269

G
Gaussian beam, 138, 139, 142, 143
Gaussian beam equivalent point source 

(GBEPS) model, 139, 142, 144, 146
Grating lobes, 13, 76, 79, 80

sound generation, 191
sound reception, 156, 191

Green’s function for the Helmholtz equation 
(2-D), 271

H
Hamming Window, 63, 88
Hankel function, 263, 270
Hankel function beam model, 94
Hanning window, 87, 88
Helmholtz equation (2-D), 271, 315
Helmholtz equation (3-D), 113, 114

I
Imaging measurement model (IMM), 14

edge waves (3-D), 249
edge waves, scalar (2-D), 248
full matrix capture (3-D), 287, 288, 289, 

290, 291, 292
linear array and a 2-D scatterer, 293, 294, 

295, 296, 297, 298, 299, 300, 301
pulse-echo (3-D), 260, 285, 286
pulse-echo, scalar (2-D), 260, 279, 280, 

281, 282, 283, 285, 287
Information matrix, 12
Inhomogeneous waves, 114, 315
Inverse Fourier transform, 114, 116, 251, 255, 

302, 317

K
Kerf, 5
Kirchhoff approximation, 223, 224, 227, 237, 

248, 249, 261, 286, 304

L
Linear array, 5, 6, 10, 101, 152, 169, 202, 206, 

279, 293, 294
Linear time-shift invariant (LTI) system, 184, 

188
Line source beam model See Multiple line 

source element beam model, 89

M
Measurement models See Ultrasonic 

measurement model, 14
Multi-Gaussian element beam model, 91, 138

Multiple line source array beam model
fluid, 76
fluid-fluid interface, 140

Multiple line source element beam model
fluid, 28
finite impedance baffle, 318
fluid-fluid interface, 140

Multiple point source array beam model
contact, 182
fluid/solid interface, 182
immersion (single medium), 151, 181
solid/solid interface, 187

Multiple point source element beam model
contact, 122, 123, 132
fluid-solid interface, 132
immersion (single medium), 120–122, 131
solid-solid interface, 133

N
Near field distance, 209
Non-paraxial Gaussian model, 93, 94
Norton equivalent circuit of a receiving 

element, 186

P
Paraxial approximation, 86, 87, 91, 101, 102, 

138, 197, 203, 209
Physical Optics Far Field Inverse Scattering 

(POFFIS), 14, 260
Piston model, 114, 195, 317
Pitch of an array, 5
Point source beam models See Multiple point 

source beam model, 138
Point source directivity, 81, 84, 152, 154, 155, 

165
Prony’s method, 142, 143

R
Rayleigh distance, 93
Rayleigh-Sommerfeld equation, 124, 320
Ray theory, 124, 125, 138, 139, 291
Reciprocal theorem, 213
Reciprocity

for a cable, 187, 213
for a flaw measurement system, 213
for an element, 182, 213

Reflectivity of a flaw (pitch-catch), 257
Reflectivity of a flaw (pulse-echo), 241
Rigid baffle model, 12, 113

S
Scattering amplitude See Far field scattering 

amplitude, 221
Separation of variables, 263, 268
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Single line source array beam model, 75, 76, 
86

Single point source array beam model, 151, 
154, 156

Single point source element beam model
contact, 124
fluid/solid interface, 135, 136
immersion (single medium), 150

Singular function of a surface, 251, 260, 288
Snell’s law, 97, 103, 104, 125, 127, 138, 140, 

174, 223, 237, 291
Sound generation transfer function  

(see Transfer function – sound 
generation)

Sound reception transfer function (see Transfer 
function – sound reception)

Specular point response, 223, 224, 232, 247, 
249

Specular reflection points, 247
Synthetic Aperture Focusing Technique 

(SAFT), 14, 241
System function, 9, 10, 13, 179, 193, 195, 

205–207, 305

T
Thévenin equivalent

circuit of a receiving element, 186
voltage of a driving circuit, 8

Thévenin’s theorem, 180
Thompson-Gray measurement model See 

Ultrasonic measurement model—
reduced, 14

Total Focusing Method (TFM), 14, 241, 244, 
257, 279, 291

Transfer function
acoustic/elastic See Acoustic/elastic 

transfer function, 9
sound generation, 8
sound reception, 8

Transfer matrix, 181, 187
Triangular window, 88
Two port system, 179, 182, 183, 185

U
Ultrasonic measurement model, 14, 179, 211

contact (3-D), 217, 218
for imaging (3-D), 229
for imaging, scalar (2-D), 308
immersion (3-D), 216, 217
reduced (3-D) (Thompson-Gray), 14, 222
reduced, scalar (2-D), 218, 235

W
Wave equation (2-D), 18
Wave equation (3-D), 113
Wave number, 20
Wen and Breazeale coefficients, 93
Weyl representation of spherical wave, 117
Wiener filter, 10, 206, 208, 251, 252, 253, 

284, 304
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